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Zusammenfassung

Diese Doktorarbeit besteht aus zwei Teilen. Teil 1 umfasst Kapitel 1 bis 3 und
besteht aus einer kurzen Einleitung und einer Einführung in die Quantenfeldtheorie
auf gekrümmten Räumen und in die Quantengravitation. Diese Teile haben lediglich
einführenden Charakter. Kapitel 4 und 5 enthalten neue Resultate.

Das euklidische Pfadintegral der Quantengravitation
´
Dgµνe−I beinhaltet

eine Summation über alle Riemannschen Metriken gµν . Mit den klassischen Ein-
stein’schen Feldgleichungen gilt R = 4Λ, wobei R der Ricci Skalar und Λ die
kosmologische Konstante ist. Die euklidische Wirkung des Gravitationsfeldes wird
zu I = − 1

16π

´
d4x (R− 2Λ) = −ΛV

8π
. Der Krümmungsskalar berechnet sich aus

der Metrik. Verschiedene Metriken die die Einstein’schen Feldgleichungen erfüllen,
ergeben dann verschiedene numerische Werte für R. Wird die Pfadintegration
auf klassische Metriken beschränkt ist sie damit äquivalent zu einer Integration
über Λ. Damit wird Λ zu einem variablen Feld über das (mit zu bestimmenden
Gewichtungsfaktoren) summiert werden muss.

Aus dem euklidischen Pfadintegral der Gravitation kann man die Entropie des
Gravitationsfelds berechnen. Der klassisch beobachtete Wert für Λ im thermody-
namischen Gleichgewicht sollte dann durch einen Wert Λs gegeben sein, bei dem
die Entropie maximal wird.

Das so genannte ßpace-time foamModell von Hawking beinhaltet eine Berech-
nung des Entropiemaximums aus der Amplitude der euklidischen Quantengravita-
tion. In der vorliegenden Doktorarbeit wird dieses Modell in Kapitel 3 modifiziert
und erweitert. Eine Näherung von Hawking, welche nur für Λ < 0 funktioniert, wird
weggelassen und die Renormierungsskala wird auf den in der heutigen Literatur
üblichen Wert gesetzt. Zudem werden Materieterme hinzugefügt.

Nach dem Materieterme hinzugefügt wurden erzeugt das modifizierte space-
time foam Modell bei niedrigen Ordnungen der Störungstheorie eine kosmologische
Konstante Λ ≥ 0 mit einem Wert der nah an den Messergebnissen ist.

Es ist bekannt dass die effektive Wirkung von Materieamplituden in höheren
Ordnungen der Störungstheorie topologische Beiträge liefert welche einer f(R)
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Gravitation mit höheren Ableitungen entsprechen. Teile dieser Beiträge sind
proportional zur Euler Characteristik. Diese Beiträge werden teilweise als Resultate
der Erzeugung von Wurmlöchern oder schwarzen Löchern interpretiert. Diese
Beiträge ändern die kosmologische Konstante im Space-time foam Modell nur
leicht.

Der Rest der topologischen Terme der effektiven Materiewirkung ist von einer
Form welche die Ostrogradski Instabilität beinhaltet. Das heisst diese Terme
beschreiben ohne weitere Modifikation die propagation von negativer Energie. Es
wird gezeigt dass die Ostrogradski Instabilität für bestimmte Masseverhältnisse
von Bosonen und Fermionen nicht mehr im System vorhanden ist. Die effektive
Wirkung entspricht dann dem Starobinski Modell einer R +R2 Gravitation aus
der sich die Inflationstheorie ableiten lässt.

Hawking’s Amplitude besteht aus einer verschachtelten Pfadintegration. Mittels
Störungsentwicklung wird eine one-loop Amplitude ausgehend von einer beliebigen
klassischen Raumzeit berechnet. Dann wird diese Amplitude über alle klassischen
Raumzeiten nicht-perturbativ integriert. Es wird dargelegt dass der nichtpertur-
bative Teil der Amplitude nur für bestimmte Verhältnisse des Hubbleparameters
und Λ konvergiert.

Das Modell ergibt insgesamt eine Raumzeit die aus einem Gas aus Wurmlöchern
besteht. Dadurch wird das no-go Theorem von Weinberg umgangen welches eine
translationsinvariante Raumzeit als Voraussetzung verlangt.

Ohne Randterme verschwindet der Hamiltonian der Gravitation. Dies erzwingt
über die Schrödingergleichung der Quantengravitation dass es keine Dynamik für
die Quantenmechanischen Observablen mehr gibt. Es wird angeführt dass das
modifizierte space-time foam Modell dieses Problem mittels Randtermen löst.

Die Bewegungsgleichungen von Teilchen welche in ein Gas aus sehr vielen mi-
kroskopisch kleinen schwarzen Löchern oder Wurmlöchern eingebettet sind können
sich von Bewegungsgleichungen denen Teilchen in einem klassischen Minkowski-
raum unterliegen unterscheiden. Damit beschäftigt sich Kapitel 4 der vorliegenden
Doktorarbeit. Teilchen in einem Gas aus zahlreichen mikroskopischen schwarzen
Löchern sind Hawkingstrahlung hoher Temperatur ausgesetzt. Dieses Photonengas
interagiert mit eingebetteten Teilchen unter anderem durch Streuung und den
Comptoneffekt. Ferner hat das Gravitationsfeld der schwarzen Löcher oder der
Wurmlöcher auf großen Zeitskalen und bei großen Abständen einen kollektiven
Einfluss auf die Teilchen in Form eines Stokes Gesetzes. Setzt man eine Schar
klassischer Teilchen niedriger Energie in eine solche Raumzeit und nimmt man an
dass die Entropie der Schar durch die Interaktion mit den Wurmlöchern nicht ver-
ringert wird, ergibt sich dass dass diese Teilchen durch eine Schrödingergleichung
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beschrieben werden.
Für Teilchen hoher Energie wird ein Modell von ’t Hooft herangezogen. In

diesem Modell wird aus der Streuung eines Teilchens an einem schwarzen Loch die
Wick rotierte Amplitude der Stringtheorie hergeleitet.

Es wird dargelegt dass dieses Modell praktisch ausschließlich für die Streuung an
relativ kleinen schwarzen Löchern geeignet ist und zur Beschreibung der Streuung
von Teilchen an großen derartigen Objekten nicht nutzbar ist.

Es wird hergeleitet, dass im space-time foam Modell durch die Expansion
des Universums Änderungen der Topologie erzeugt werden sollten welche die
Euler-Charakteristik ändern. Ein Theorem von Geroch impliziert dass daraus die
Entwicklung von Singularitäten in der Raumzeit folgt.

DeWitt zeigte dass die Quantenfeldtheorie in gekrümmten Räumen und die
Quantengravitation bei singulären Raumzeiten inkonsistent werden. In dieser Dok-
torarbeit werden die mathematischen Details dieser Probleme dargestellt und
weiter entwickelt. Diese Diskussion zeigt dass die Inkonsistenzen bei Topologieände-
rungen generell für Quantenfeldtheorien gelten (dazu zählt auch die Stringtheorie
bei der man annehmen muss dass eine singuläre Hintergrundraumzeit zuerst desin-
gularisiert wird bevor diese Theorie überall auf einer Raumzeit definiert werden
kann).

Daraus wird der Schluss gezogen dass die Quantenmechanik durch eine Theorie
ersetzt werden sollte die eine mathematische Modellierung beinhaltet welche mit
Singularitäten verträglich ist.

Die Arbeit bemerkt dass das stochastische Modell aus dem die Schrödinger-
gleichung hergeleitet wurde nur auf grossen Längenskalen Differentialgleichungen
mit glatten Lösungen beschreibt. Auf kleinen Längenskalen nutzt das Modell nicht
differenzierbare Trajektorien.

Die Arbeit schliesst mit dem Vorschlag, dass ein ähnliches Modell für die
Quantengravitation entwickelt werden sollte. Damit könnte man in der Nähe der
Singularität während eines Topologieübergangs die nicht-differenzierbare Beschrei-
bung nutzen. Man hätte dann eine Theorie mit der sich Topologieänderungen
konsistent beschreiben lassen.
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Abstract

This thesis consists of two parts. Part one includes chapters 1-3 and consists of a
short introduction into Quantum field theory and Quantum gravity. Chapters 4
and 5 contain new results.

The euclidean path integral of gravity
´
Dgµνe−I can be regarded as a weighed

sum over all Riemannian metrics gµν . Einstein’s classical field equations are
given by R = 4Λ, where R is the curvature scalar which can be computed
from the metric and Λ is the cosmological constant. With the Euclidean action
I = −1

16π

´
d4x(R − 2Λ), different metrics lead to different numerical values of R

and thus of Λ. If path integral is restricted to a sum over classical metrics, it
becomes an integral over Λ with some weighting factors.

The entropy of the gravitational field can be computed from the path integral
of Euclidean quantum gravity. The observed value of Λ at thermodynamical
equilibrium should then be given by a state of maximum entropy.

The so-called space-time foam model of Hawking contains a computation of
the gravitational entropy. In this thesis, this model is modified and extended.

An approximation of Hawking which only works for Λ < 0 is removed, and
for the renormalization scale, a value is assumed which is nowadays used in the
modern literature. Finally, matter terms are added to the model.

We show that the modified space-time foam model predicts a cosmological
constant Λ ≥ 0 whose value is close to the observed magnitude.

For higher orders of perturbation theory of the matter amplitudes, it is known
that one gets an effective matter action with topological terms in the form of
an f(R) gravity with derivative terms of higher orders. Some of these terms are
proportional to the Euler characteristic. We argue why these terms should be
interpreted as resulting from black- or worm hole creation.

The rest of the higher order terms of the effective matter amplitude are such
that they give rise to the so-called Ostrogradski instability. Without further
modification, the effective matter amplitude therefore describes the propagation
of negative energies. We show that for a certain relationship between the masses
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of fermions and bosons, the Ostrogradski instability can be removed and the
Starobinski model R +R2 is obtained, from which the theory of inflation can be
derived.

Hawking’s article describes an amplitude that is given by a nested path integra-
tion. Using perturbative methods, a one loop amplitude is computed with respect
to an arbitrary classical background. Then one integrates this amplitude non-
perturbatively over all classical backgrounds. We argue that the non-perturbative
integral does only converge for a certain relationship between the Hubble constant
and Λ which is consistent with observations.

In general, the model yields a space-time which can be described as a gas
of worm holes. Thereby it circumvents Weinberg’s theorem on the cosmological
constant, which assumes a translationally invariant space-time.

Without boundary terms, the Hamiltonian of gravity is zero, which leads to
stationary observables. It is argued that the modified space-time foam model
solves this problem of time. One has to add boundary terms of the wormholes to
the Hamiltonian, which then becomes non-vanishing.

Particles inserted in a space-time that consists of a gas of microscopic black- or
wormholes may exhibit a different behaviour than those embedded in vacuum. The
implications of this are discussed in chapter 4. Particles in a gas of gravitational
instantons with an event horizon are under the influence of a heath bath with
high temperature from Hawking radiation and they are under the influence of
the collective gravitational field of the worm holes. The former interacts with
the particles, for example trough Compton scattering. The latter has, on long
time scales and large distances, a collective effect on the particles in form of a
Stokes law. It is argued that if one inserts a set of non relativistic and classical
particles into such a space-time, and if one assumes that the particles do not loose
entropy to the black-hole gas on the average, then these particles are governed by
Schrödinger’s equation.

In order to describe particles of high energy, a model of ’t Hooft is used where a
particle scatters with a Schwarzschild black-hole in a Kruskal space-time. ’t Hooft
shows that this yields an S-matrix that is equal to a Wick rotated amplitude from
string theory. It is argued in this thesis that this model does not to hold for large
astronomical black-holes but that it works for small black-holes.

We point out that the space-time foam model implies topological changes
during the expansion of the universe in which the Euler characteristic should
change.

According to a theorem of Geroch, this leads to the emergence of singularities.
DeWitt has argued that quantum field theory in curved space-times and quantum
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gravity become inconsistent when singularities appear. In this thesis, we give
additional details why these inconsistencies emerge. The arguments show that
these problems exist for quantum field theories in general and also hold for string
theory, where a desingularization of the background space-time has to be assumed if
the theory should be defined consistently on the entire background. Unfortunately,
by Geroch’s theorem, such a desingularization is incompatible with the space-time
undergoing a topological change. We therefore conclude that we have to replace
quantum mechanics by different mathematical tools.

We mention that the stochastic model from which we derived the single particle
Schroedinger equation in the thesis is smooth only on the average and on a large
scale. The model uses non-differentiable trajectories on small scales. We close
the thesis with the open suggestion that such an underlying model for quantum
mechanics may be developed for quantum gravity. The theory could then be used
in the vicinity of a singularity during a topology change.
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Part I

Introduction





5

The first part of this thesis begins in chapter 1 with an introduction to quantum
field theory in curved space-times. Then chapter 2 follows with an introduction to
quantum gravity. This part of the thesis is just of introductory value.

Chapter 1 begins with a review of the definition of the functional integral in
mathematically rigorous terms, which is based on [1]. This discussion is extended
to a definition of the path integral and quantum field theory in curved space-times.
Amplitudes in curved space-times are computed with zeta function renormalization.
It is observed that in curved space-times, quantum field theory implies that all
amplitudes carry an undetermined renormalization scale parameter that must be
fixed by measurement. One finds that with a reasonable guess for this scale, one
gets a large cosmological constant from matter amplitudes.

The effective action of matter fields in curved space-times contain terms with
higher derivatives. We review the theorem of Ostrogradski[2] in section 1.5,
which says that these theories are usually unphysical because they describe the
propagation of negative energy forward in time. We note that one can avoid this
instability by adding an R2 term only.

Weinberg’s theorem is reviewed in section 1.6, which shows that one can not have
a small and non-vanishing cosmological constant together with a translationally
invariant metric.

In chapter 2, the covariant and canonical quantisation methods for gravity
are reviewed. Amplitudes for quantum gravity in the covariant formalism are
regularized with zeta functions. The canonical approach that is based on the
Wheeler-DeWitt [3] equation is also reviewed. Quantum gravity is usually assumed
to have a vanishing Hamiltonian constraint. Since the Wheeler-DeWitt equation
is essentially similar to a Schrödinger equation, one can not have time dependent
observables in quantum gravity. This so-called the problem of time in quantum
gravity is reviewed shortly.

Arguments from Hartle and Hawking are discussed that show the gravitational
path integral to be an approximate solution of the Wheeler-DeWitt equation
[4]. These results imply that the problem of time is also there in the covariant
formalism of quantum gravity.

We then review various aspects of the Euclidean version of quantum gravity
that can be used to define partition functions. We mention that the Euclidean
action of gravity is usually assumed not to be bounded from below, which leads to
diverging amplitudes. We note that Dasgupta has shown recently in [5, 6] that if
one adds ghost and gauge fixing terms, the effective Euclidean action of gravity
becomes bounded from below.

As an example of how to use the quantum theory of gravity, the derivation of
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the black-hole entropy with the path integral from [7] is reviewed.
In subsection 3.3, we review Hawking’s proof from [7] that space-time curvature

can not cause the Euclideanized gravitational action to contribute to the entropy
unless the curvature is strong enough to imply the presence of a boundary in the
space-time.

The second part of this thesis consists of chapters 4 and 5 where new results
are obtained. They have been partly published by the author as original paper in
[8] during his work for this phd thesis.

In section 4.2, a discussion of the space-time foam model of Hawking [9] begins.
Several problems of the model are pointed out and it is discussed how the theory
has to be modified.

Hawking assumes that one integrates the Euclidean path integral
´
Dgµνe−I

non-perturbatively over all classical space-times. These space-times fulfil Einstein’s
equation R = 4Λ. Since for classical gravitational fields, the Einstein-Hilbert
action is given by I = −ΛV

8π
, integrating the path integral over all metrics which

fulfil R = 4Λ is equivalent to an integral over Λ with some weighting factors.
Hawking’s work from [9] describes a method to determine these weighting

factors: Before the integration over all classical backgrounds, a perturbative
expansion with zeta function renormalization is done for each background, which
adds a contribution to the weighting factor. From the resulting amplitude, a
number of microstates can be computed. This leads to the definition of an entropy
which can be maximized.

It is noted that Hawking’s calculation contains an approximation of the gravit-
ational action which implies that the model, at least in its original form, seems to
work only for universes with a negative cosmological constant Λ < 0. Furthermore,
the renormalization scale that Hawking used differs from the one that one finds in
the recent literature.

We remove Hawking’s approximation for the action and set the renormalization
scale to a value that is currently used in most articles. We then repeat some of
Hawking’s calculations with the modified model.

We find that the non-perturbative path integration in the modified space-time
foam model only converges if the renormalization scale has a certain relation to
Λ. We argue that this is consistent with observations. We also note that the
model predicts a cosmological constant Λ ≥ 0 and that Λ → 0 in the limit of
the four volume V →∞. Furthermore, the theory appears to solve the so-called
coincidence problem of cosmology. This is the problem how to use a quantum
mechanical amplitude in order to explain the coincidence that Λ ≈ H2

0 , where H0

is Hubble’s constant.
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Then, a matter amplitude is added to the theory. For low orders in perturbation
theory, it is argued that the space-time foam calculation provides a solution to
the cosmological constant problem. This is the problem that the matter terms by
themselves would naively lead to a large cosmological constant.

In higher orders of perturbation theory, parts of the matter terms are pro-
portional to the Euler characteristic. These terms do contribute to the clas-
sical equations of motion or to in the one loop expansion. Nevertheless, in the
non-perturbative amplitude, they appear to make a small contribution to the
cosmological constant.

We argue that these terms may be interpreted as results from black or worm
hole creation that modify the thermodynamic properties of the partition function.

Without further modification the other terms of the effective matter action are
such that they give rise to the Ostrogradski instability. We show that if a specific
relation between the sums of all fermion and boson masses holds, the Ostrogradski
instability can be removed and the effective matter action reduces to a Starobinski
model of an R +R2 gravity.

A general result of the space-time foam model is that space-time should be
filled with "holes" of negative Euler characteristic. This implies that space-time
can not be simply connected. Such a topology usually signals the presence of
worm holes. Noting that intra-universe worm holes are space-times which contain
a boundary, we associate a boundary term to each hole.

We add this boundary term to the Euclideanized gravitational action and
bring it into the form of the cosmological constant term. Since the worm holes of
space-time foam can vary in number and size, the boundary term, and thus the
cosmological constant Λ should be a variable field. The gravitational entropy of
the space-time depends on Λ. Thus, the value of Λ should be found my maximizing
the entropy, as it was done before. It is argued that the boundary terms of the
space-time foam model also can be used to solve the problem of time in quantum
gravity.

It has been pointed out by Hawking that a space-time which can be described
as a gas of microscopic black- or worm holes might modify the trajectories and scat-
tering amplitudes of particles in a way that they disagree with recent experiments
in collider facilities.

In subsection 5.2 of this thesis, we try to give arguments why the modified
space-time foam model of this thesis appears not to imply changes of the observed
physics at low energies.

Because the micro black- or worm holes of space-time do have a small lifetime,
an observer who can not measure short timescales does not observe the process of
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the particle falling into the hole and getting replaced by Hawking radiation.
However, since we have associated a boundary to the black- or worm holes of

space-time foam and since these cavities are small, they should produce Hawking
radiation of a very high temperature. For low a low energy particle, flying
through space-time foam would mean to fly through a thermal heath bath of high
temperature. Additionally, a calculation of Chandrasekhar [10] shows that there
would be a collective effect of the gravitational field of the micro black- or worm
holes that affects the particle over long timescales. We argue in subsection 5.2.1
that together, these two effects would imply that a classical particle in a space-time
foam of micro black- or worm holes undergoes a Brownian motion. If we put a
family of classical particles into such a space-time and demand that on average,
they do not loose entropy to the worm hole gas, the probability amplitude of the
particles is then given by the Schrödinger equation.

The discussion in subsection 5.2.1 is somewhat preliminary. For example,
the behaviour of relativistic particles with spin is not discussed. Furthermore,
we do not derive entangled states. Nevertheless, we review Bell’s theorem in
a mathematically rigorous form in subsection 5.2.2 and we make a short and
preliminary discussion what this theorem implies for the stochastic model from
subsection 5.2.1. Specifically, we argue that the model is not a hidden variable
theory in the sense of Bell because its outcomes are not predetermined. We argue
that if it is possible to extend the model and describe entangled states, one would
have to assume that the worm holes of space-time foam are entangled in the sense
that they produce a correlated heath bath. This may be interesting in view of the
so-called ER=EPR correspondence conjecture of Suesskind.

For the description of the scattering process of particles of high energy with a
black-hole, a model of ’t Hooft [11] is reviewed in section 5.3.1. The amplitude of
this process turns out to be the usual string theory amplitude over the Polyakov
action in Wick rotated form.

In ’t Hooft’s formalism, the mass of the black-hole with which the scattering
is described is arbitrary. We give some arguments in section 5.3.2 which indicate
that the model appears mostly to be valid for small black-holes and does not hold
for large astronomical black-holes.

In section 5.4, we point out that the space-time foam model outlined in this
article implies topological changes during the expansion of the universe in which
the Euler characteristic should change.

A theorem of Geroch [12] implies that a topology change will lead to the
developments of singularities. DeWitt has given two arguments that show in-
consistencies in quantum field theory and quantum gravity when singularities
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appear. DeWitt’s second argument was just a short statement without proof in
a non-technical paper. In this thesis, we provide this proof and give additional
explanations why these inconsistencies emerge and can not be avoided.

In [13], DeWitt has proposed the use of string theory to investigate topology
changes because it is sometimes written that this theory could be exactly defined
on singular spaces like orbifolds. Mathematically, an orbifold is a so-called a
stratified space consisting of a manifold and singularities as strata.

The famous article of Dixon et al. [14] that tries to define string theory on
orbifolds introduces boundary conditions for so-called twisted sectors of the string
theory on an orbifold. The authors note that their amplitude for strings on
orbifolds would yield results that were equal to that of strings on a manifold with
boundary that one gets from the orbifold after one has made a blow-up in the
limit of an infinitesimally small ε neighbourhood around the singularity.

Using a mathematically rigorous construction of the path integral and argu-
ments from constructive quantum field theory, we argue that without a previous
blow up of the orbifold singularity, string theory suffers from similar problems and
inconsistencies as conventional quantum gravity whenever a singularity appears in
the target space.

Noting recent progress by mathematicians [15, 16], we find in section 5.4 that
Dixon et al. can use their boundary conditions because the exponential map is
well behaved in the ε neighbourhood of the orbifold singularity if the latter was
blown up. If one takes the limit ε→ 0, one just removes a point from the orbifold.
For the string theory, this means one removes an end point from each curve over
which one writes a path integral. Since this point has no measure, the implicit
assumption of a blow-up is often not noticed in discussions of these amplitudes for
singular target spaces.

For the description of topology changes in Lorentzian 4D manifolds, this result
causes problems. Because the theorem of Geroch implies singularities whenever
a topological change takes place, one can not, e.g. desingularize a target space
into two Lorentzian manifolds A and B of separate topology and then have a
non-singular path from A to B on which the string theory could be defined exactly.

The incompatibilities of quantum field theory with singular space-times seem
to be quite general, since the field operators are always assumed to be tempered
distributions which are defined by using smooth test functions.

We therefore conclude that we may have to consider theories that yield quantum
field theory only in some approximation if we want to describe topological changes.

Finally, we mention that the stochastic model from which we derived the single
particle Schroedinger equation in the thesis is smooth only on average and on
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a large scale. It uses non-differentiable trajectories on small scales. We close
the thesis with the open suggestion that such an underlying model for quantum
mechanics may be developed for the Wheeler-DeWitt equation of quantum gravity.
Such a theory could then be used in the vicinity of a singularity during a topology
change.

As it was pointed out, the material of chapters 1 and 2 is just review material.
Parts of subsection 1.4, and subsections 2.2, 2.3, and 3.2 are adapted with some
changes (shortened derivations, added references, some additional explanations
and text) from my diploma thesis [17].

In my diploma thesis [17], one could also find a description of Hawking’s
space-time foam model. However, what I wrote at that time about this model
was just review material that enabled me to understand the model. My diploma
thesis does not contain the extensive modifications of Hawking’s model that are
described in this thesis.

The material of chapters 4 and 5 contain original and new results. They were
published to a large part by the author in [8] in the course of his work on this phd
thesis. The publication [8] contains the results of subsections 4.2, 4.3, 4.4, 4.5 and
5.2.1.

Subsection 5.2.2.1 is closely adapted from an old unpublished preprint [18] that
the author of this thesis wrote some time ago in his spare time. It contains only
review material.

The contents of subsections 5.2.2.2, 5.3.2, 5.4 and 5.5 have not yet been
submitted. The author thinks he may want to extend this material and add further
calculations before considering a publication in scientific journals.



Part II

A short review of quantum field
theory in curved space-times and

quantum gravity





Chapter 1

Quantum field theory in curved
space-times

1.1 Introduction

Since much of the later calculations use functional integrals, we begin this section
by reviewing the mathematical definition of this integral in section 1.2. In section
1.3, we then give a rudimentary review of some properties of quantum field theory
in curved space-times. In section 1.4, we describe how to regularize amplitudes in
curved space-times with zeta function renormalization. As an example, we review
the computation of the cosmological constant in a curved background. We end
this section with a discussion about Weinberg’s no-go theorem for the cosmological
constant.

Section 1.4 is adapted from my diploma thesis with some added material and
modifications. Other sources from which material was taken as a basis for this
review section are indicated in the sections.

1.2 The functional integral

This section is concerned with the mathematical definition of the functional integral
that we need later on for most calculations. It is review material based on the
work of DeWitt-Morette [1, 19–21].

A Banach space X is a space with a norm || · ||X where for every Cauchy
sequence

{xn} ∈ X∃x ∈ X : lim
n→∞
{xn} = x. (1.1)
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One can define a Banach space of fields φ : MD → C, where MD is the D
dimensional physical space-time with covariant vectors xµ, µ ∈ 1, . . . , D. One also
can define a dual Banach space X ′ to X which consists of the covectors, or linear
forms x′ : MD → C: and we define a scalar product 〈x′, x〉 that yields the value of
the linear form x′ ∈ X ′ at point x ∈ X. Furthermore, one defines two continuous
linear maps D : X → X ′, G : X ′ → X that fulfil

DG = 1, GD = 1, 〈Dx, y〉 = 〈Dy, x〉, 〈x′, Gy′〉 = 〈y′, Gx′〉. (1.2)

Additionally, one defines two quadratic forms

Q(x) ≡ 〈Dx, x〉 (1.3)

and
W (x′) ≡ 〈x′, Gx′〉, (1.4)

where one sets
W (x′, y′) = 〈x′, Gx′〉. (1.5)

One can define a Gaussian volume element on X by the Fourier transform

(FΓa,Q)(x′) ≡
ˆ
X

dΓa,Q(x)e−2πi〈x′,x〉 = e−aπW (x′) (1.6)

For arbitrary x′ ∈ X ′. The parameter a can be either i for Lorentzian path
integrals, or 1 for Euclidean ones. Finally, one defines a formal volume element
DaQ(x) by

F(Γa,Q)(x′) =

ˆ
X

dΓa,Q(x)e−2πi〈x′,x〉 =

ˆ
X

Da,Q(x)e−
π
a
Q(x)e−2πi〈x′,x〉. (1.7)

In both Euclidean and Lorentzian cases it can be shown that the integrals are
rigorously defined [1, 21].

For the quadratic form Q one can make various choices. For example, Q can
be the kinetic energy of a field plus any existing quadratic terms in the potential
energy. In quantum field theory, Q is usually the second term in a Taylor expansion
of the of the classical action around some background. In physicists notation, the
above path integral is given by

Z0(J) ≡
ˆ
DφeiS(φ)−i〈J,φ〉 ≡ eiW (J). (1.8)



1.2 The functional integral 15

Here, S is the quadratic part of the action, J is the so-called source and W is
called energy functional. It is given by

W (J) ≡ 〈J,GJ〉 ≡
ˆ ˆ

d4xd4yG(x, y)J(x)J(y) (1.9)

G is usually called two-point function or propagator since it can also be defined
by

a

2π
G(x, y) =

ˆ
Da,Qφe−

π
a
Q(φ)φ(x)φ(y), (1.10)

where Q is given by
Q(φ) = 〈Dφ, φ〉. (1.11)

One can expand Z0(J) in powers of J and get n point functions

Gn(x1, . . . xn) = 0 (1.12)

for odd n and

G2m(x1, . . . x2m) =
∑

G(xi1 , xj1)G(xi2 , xj2), . . . G(xim , xjm), (1.13)

where one sums over the permutations i1, . . . , im and j1, . . . jm of 1, 2, . . . , 2m such
that i1 < i2 < . . . im and i1 < j1, . . . im < jm.

Most field theories have an interaction part Si in their action in addition to
the free field description Sfree

S = Sfree + λSi. (1.14)

In that case one can define an amplitude

Zint(J) =

ˆ
DφeiSie−2πi〈J,φ〉 (1.15)

and one can define Wint by

eiWint(J) =
Zint(J)

Zint(0)
. (1.16)

Finally, one can expand Wint as a perturbation series.
Path integrals often diverge and this also holds for the perturbation series.

Therefore, one may insert a convergence factor with a physical dimension into the
functional integral. In order to restore the proper units of the physical expression,
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one has then to insert dimensional parameters (e.g a mass or energy scale). These
parameters then must be determined by measurement before the renormalized
theory becomes predictive.

If one does a perturbation expansion with the functional integral and sorts the
terms according to higher and higher energy, it may be that additional convergence
factors, so-called counter-terms are needed for the higher order terms. If the number
of these terms gets infinite at some order of the perturbation expansion, the theory
would depend on infinitely many free renormalization scale parameters. Thus the
theory would become unpredictive. Such models are called non-renormalizable.

1.3 Quantum field theory and the functional integ-
ral in curved space-times

This section describes some of the basic problems that arise if one does computations
with quantum fields in curved space-times. It is review material based on the
famous article [22] of DeWitt and the book of Birrell and Davies [23], which is
basically an extension of DeWitt’s review article in book form.

For a free field φ that propagates in a curved space-time, the action is given by

S =
1

2

ˆ
φFφd4x (1.17)

and the field equations have the form Fφ = 0, where F is a self adjoint differential
operator that fulfils ˆ

ψ∗1Fψ2d
4x =

ˆ
(Fψ1)∗ψ2d

4x. (1.18)

where ψ1/2 are any two smooth complex functions with compact support. With
two solutions of the field equations u1 and u2 defined on a Cauchy hyper-surface
Σ, one can define an inner product

〈u1, u2〉 = −i
ˆ

Σ

u∗1(Fu2)− (Fu1)∗u2d
4x. (1.19)

One can now find solutions ui, u∗i which fulfil orthogonality relations

〈ui, uj〉 = δij, 〈u∗i , uj〉 = 0 (1.20)

and one can expand ϕ as

ϕ =
∑
i

(aiui + a†iui) (1.21)
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where the ai fulfil
[ai, a

†
j]± = δij, [ai, aj]± = 0. (1.22)

In general, there exist infinitely many sets ui, ui∗ and the field can be expanded in
form of

ϕ =
∑
j

(ajuj + a†ju
∗
j). (1.23)

Different sets ui, u∗i and ui, u∗i are related by

uj =
∑
i

(αjiui + βjiu
∗
i ), ui =

∑
j

(α∗jiuj − βjiu∗j) (1.24)

where
αij = (ui, uj), βij = −(ui, u

∗
j) (1.25)

and
ai =

∑
j

(αjiaj + β∗jia
†
j) (1.26)

and
aj =

∑
i

(αji ∗ ai − β∗jia
†
i ). (1.27)

Furthermore, αij,βij fulfil ∑
k

(αikα
∗
jk − βikβ∗jk) = δij (1.28)

and ∑
k

(αikβjk − βikαjk) = 0. (1.29)

If we have chosen a set such that aj|0〉 = 0 then

ai|0〉 = β∗jia
†
j|0〉 6= 0. (1.30)

Considering that the particle number operator is given by Ni = a†iai, this means
that the particle number for different vacua is different.

Quantized matter fields have an effect on the curvature of space-time. One is
seeking the expectation value of the energy stress tensor Tµν which gets into the
Einstein equations

Rµν −
1

2
Rgµν + Λgµν = −8π〈Tµν〉. (1.31)
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In order to compute that, one considers the generating functional

Z(J) =

ˆ
DϕeiSm(φ)+i

´
Jϕd4x (1.32)

with a matter action Sm. One can now compute the vacuum expectation value by
the variation

δZ(0) = i

ˆ
DϕδSmeiSm = i〈out, 0|δSm|0, in〉 (1.33)

and since in a classical field theory

2δSm√
−gδgµν

= Tµν (1.34)

one has
2δZ(0)√
−gδgµν

= i〈out, 0|δTµν |0, in〉. (1.35)

One problem is that this path integral is usually divergent. And since each vacuum
has a different particle number it is difficult to regularize it "mode by mode".

1.4 Review on zeta function renormalization
The following short introduction is a review of [24] and [25] p. 45, where zeta
function renormalization is described in detail to regularize the divergent amplitude
in curved space-times. This section is an adaption from my earlier diploma thesis
[17] with some shortened derivations, added material and references.

For a scalar field with an Euclidean action

S =
1

2

ˆ
d4x
√
g(gµν∇µϕ∇νϕ+ V ϕ2) (1.36)

zeta function renormalization of a divergent path integral like Z =
´
Dϕe−S

proceeds according to the following algorithm:
One first integrates the action by parts:

S =
1

2

ˆ
d4x(−ϕ∇ν(

√
ggµν∇µϕ) +

√
gV ϕ2)

=
1

2

ˆ
d4x(ϕFϕ) (1.37)
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where
F = −� + V (1.38)

is a self adjoint operator with a well defined eigenvalue problem:

Fϕn = λnϕn (1.39)

The eigenfunctions ϕn of F form an orthonormal base
ˆ
d4x
√
gϕnϕm = δnm (1.40)

because F is self adjoint. The existence of the orthonormal base implies that

ϕ =
∞∑
n=0

cnϕn, (1.41)

with coefficients
cn =

ˆ
d4x
√
gϕϕn. (1.42)

The action can therefore be written as weighed sum of eigenvalues:

S =
1

2

ˆ
d4x
√
g
∑
m,n

cmcnλmϕmϕn =
1

2

∑
n

c2
nλn (1.43)

Given that the Feynman path "measure" Dϕ must be covariant and that cn are
coordinate independent, one makes the guess

Dϕ =
∏
n

µdcn (1.44)

where µ is a renormalization scale which has to be determined from experiment.
The Euclidean path integral Z =

´
Dϕe−S is then given by

Z =

ˆ ∞∏
n=0

dcnµe
−λnc2n =

∞∏
n=0

1

2
µπ

1
2λ−1/2

n =
(
det
(
4µ−2π−1F

))− 1
2 . (1.45)

The determinant of F is equal to the product of its eigenvalues and since F is a
differential operator, this product is infinite. One must find some way to regularize
it. We will do this via analytic continuation.
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We define a generalized zeta function

ζ(s) =
∞∑
n=0

(
1

λn

)s
(1.46)

which will converge for Re(s) > 2 and can be analytically extended to a mero-
morphic function of s with poles only at s = 1 and s = 2. The derivative ζ ′(s) is
formally given by

ζ ′(s) =
d

ds

∞∑
n=0

e−sln(λn) = −
∞∑
n=0

e−sln(λn)ln(λn) = −
∞∑
n=0

λ−sn lnλn. (1.47)

The logarithm of the partition function becomes

ln(Z) = ln
∞∏
n=0

1

2
µπ

1
2λ−1/2

n (1.48)

= lim
s→0

(
∞∑
n=0

λ−sn ln

(
1

2
µπ

1
2λ
− 1

2
n

))
(1.49)

= lim
s→0

(
−1

2

∞∑
n=0

λ−sn lnλn +
∞∑
n=0

λ−sn ln

(
1

2
π

1
2µ

))
(1.50)

= lim
s→0

(
1

2
ζ ′(s) +

1

2
ζ(s) ln

(
1

4
πµ2

))
. (1.51)

These formulas are formal because the sum −
∑

n ln(λn) is not finite. The results
only hold in analytic continuation which should remove the divergences of the
path integral.

Notably is the undetermined normalization scale parameter µ. In flat space,
one generally has ζ(0) = 0, so amplitudes in flat space do not depend on this
parameter. This is different in curved space-times. There, any amplitude should
depend on µ, which must be determined by making a measurement.

In order to compute the zeta function, one employs the heath kernel F (x, y, τ)
which is a solution of the generalized heath equation

d

dτ
K(x, y, τ) + FK(x, y, τ) = 0, (1.52)

where x, y are points in space-time, τ is an additional parameter, and F is an
operator acting on the last argument of K(x, y, τ).
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The heath kernel can be expressed in terms of eigenvalues of F as

K(x, y, τ) =
∞∑
n=0

e−λnτϕn(x)ϕn(y). (1.53)

Since

d

dτ

∑
n

e−λnτϕn(x)ϕn(y) =
∞∑
n=0

(−λn)e−λnτϕn(x)ϕn(y) = −FK(x, y, τ), (1.54)

one defines the “trace” of the heath kernel as

tr(K(τ)) =

ˆ
d4x
√
gK(x, x, τ) =

ˆ
d4x
√
g
∞∑
n=0

e−λnτϕn(x)ϕn(x) =
∞∑
n=0

e−λnτ .

(1.55)
The generalized zeta function is related to the trace of the heath kernel by a Mellin
transformation

ζ(s) =
∞∑
n=0

λ−sn =
1

Γ(s)

ˆ ∞
0

dtts−1tr(K(τ)). (1.56)

One determines K(x, y, τ) by solving the heath equation (1.52) for the operator F
and then compute tr(K(τ)) from which one gets the generalized zeta function.

One application of zeta function renormalization can be the computation of
the vacuum expectation value for the cosmological constant for the various matter
fields. For a massive scalar field with mass m, the zeta function becomes in
Euclidean space

ζ(0) =
1

(4π)2

ˆ
d4x
√
g

(
1

2
m4a0 −m2a1 + a2

)
, (1.57)

where ai are the so called Seley-DeWitt coefficients which were computed by
DeWitt in [26]. For a scalar field, they become

a0 = 1, a1 =

(
1

6
− ζ
)
R (1.58)

and

a2 =
1

80
RµναβR

µναβ − 1

80
RµνR

µν − 1

6

(
1

5
− ζ
)
�R +

1

2

(
1

6
− ζ
)2

R2. (1.59)
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The ζ ′(0) term becomes [23]

ζ ′(0) =
1

2

1

(4π)2

ˆ
d4x
√
g

((
γ − 3

2

)(
1

2
m4 −m2a1 + a2

)
−
ˆ ∞

0

ln(is)
∂3

∂(is)3
(K(x, x, is)e−ism

2

)ids

)
. (1.60)

From this one can compute the amplitude for a scalar matter field with mass m.
The first Seley-DeWitt coefficient does not depend on the geometry. Its integral
over the volume gives an additional term ΛmV that corrects the gravitational action.
The term a1 depends on R. it will yield a renormalization of the gravitational
constant.

The renormalized effective action up to the first Seley-DeWitt coefficient a0

leads to a contribution to the cosmological constant of

Λeff = Λg + Λm, (1.61)

where Λg is the unobserved, bare gravitational constant that should be created
without the matter fields, and

Λm =
m4

(64π)2
ln
m2

µ2
(1.62)

is the matter contribution to Λeff [23, 27].
One observes that this value depends on the renormalization scale µ2 which

must be determined from measurement.
According to the more recent literature on this topic, one can make an estimate.

Because of its units, the square of the scale parameter µ should be of the order of
the energy of the gravitons involved in the amplitude [27–29]. A simple method
for estimating µ was given by Shapiro and Sola in [28].

Currently, we live in a Friedmann universe with Hubble constant

H2
0 =

(
ȧ

a

)2

=
8π

3

(
ρ+ Λ− k

a2

)
, (1.63)

where a is a time dependent scale factor and

ρ = ρm + ρR (1.64)

is the energy density of matter and radiation. We set k = 0 because the universe
is very flat at present. From experiment, one knows that Λ and ρ are of the same
order as the critical density

ρc =
3H2

0

8π
, (1.65)
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therefore
H0 ≈

√
ρc (1.66)

and
T µµ ≈ ρc. (1.67)

The scale parameter µ2 has the units of an energy. Therefore, a reasonable guess
is that

µ ≈
√
T µµ . (1.68)

In a curved background, one has to expect quantum corrections to Tµν . Unfor-
tunately, Tµν diverges and has to be regulated. However, we may assume that
quantum corrections to the observable energy of the universe are small. Therefore,
we neglect the quantum corrections and use Eq. (1.68) but this implies with Eq.
(1.67) that

µ ≈
√
T µµ ≈

√
R ≈ H0. (1.69)

From Friedmann’s equations, one has Λeff ≈ H2
0 and this would imply that

µ2 ≈ Λeff .
The entire matter contribution to the cosmological constant includes phase

transitions of the electroweak theory ρEWvac = −1.2 · 108GeV 4 and qcd ρQCDvac =
10−2GeV 4.

For fermions, the Seley-DeWitt coefficients become a trace over a matrix. After
computing that trace, one finds that each fermionic degree of freedom contributes
to Λm with a different sign as a bosonic degree.

The matter contribution to the cosmological constant then becomes

Λm = ρEWvac + ρQCDvac +
∑
i

nim
4
i

(64π)2
ln
m2
i

H2
0

(1.70)

where nHiggs = 1, nquarks = −4, nleptons = 4, nZ/W± = 3, nneutrinos = 4 and mi is
the mass of the particle species i.

The result of Λm ≈ −3.2 · 108GeV 4 differs largely from the observed value of
Λeff ≈ 1072GeV 4. This is due to the dependence of Λm by a factor ∝ m4 on the
particle masses. One therefore wants a mechanism which adjusts Λg automatically,
such that Λeff becomes the observed value. This is called the cosmological constant
problem. The problem to explain why Λeff ≈ H2

0 from a quantum mechanical
model is called coincidence problem.
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1.5 The Ostrogradski instability
The Seley-DeWitt coefficient a2 leads to R2, RµνR

µν and RµναβR
µναβ terms in the

effective action. Stelle [30, 31] has shown that gravity with higher derivative terms
of the form RµνR

µν + R2 or RµναβR
µναβ + R2 added is a renormalizable theory.

The theory becomes renormalizable because at high energy, one finds propagators
∝ 1

q4 . However, these terms lead to problems with negative energies from the
famous Ostrogradski instability [2, 32].

To demonstrate this instability, one starts with a Lagrangian L(q, q̇, q̈) that
depends on higher derivatives and one makes a non-degeneracy assumption. This
means one assumes that ∂L

∂q̈
depends on q̈. Thereby, one can state an initial value

problem where q(t) is a function

q(t) = Q

(
t, q0, q̇0, q̈0,

d3q

dt3

)
(1.71)

One can express the phase space which depends on 4 different initial data values
with 4 canonical coordinates

Q1 = q, Q2 = q̇ (1.72)

P1 =
∂L

∂q̇
− d∂L

dt∂q̈
, P2 =

∂L

∂q̈
. (1.73)

The non-degeneracy assumption implies that there exists a function a(Q1, Q2, P2)
such that

∂L

∂q̈

∣∣∣∣
q=Q1,q̇=Q2,q̈=a

= P2 (1.74)

and after a Legendre transformation, one finds a Hamiltonian

H = P1Q2 + P2a(Q1, Q2, P2)− L(Q1, Q2, a(Q1, Q2, P2)). (1.75)

Since P1 can go through the entire phase space, H can have arbitrarily negative
energies.

A central assumption of the Ostrogradski instability is the assumption of non-
degeneracy. If one violates this assumption, one can (but this is not a must, see
[33]) avoid the Ostrogradski instability.

It is known that κR + aR2 gravity (where κ, a are arbitrary real coefficients)
violates the non-degeneracy assumption [32] and one can show a positive energy
theorem [34] for this theory. Recently, Alvarez-Gaume et al. [35] argued that pure
aR2 gravity is ghost free and that κR + aR2 gravity has a physical spectrum.
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More precisely, from the κ2R + aR2 theory, one gets a propagator

∆(0)
µν,ρσ =

−1

(6q2a+ κ2)q2
(1.76)

where
P (0)
µν,ρσ =

(
ηµν −

qµqν
q2

)(
ηρσ −

qρqσ
q2

)
(1.77)

and ηµν is the flat space metric.
This propagator looks at first like it would be ∝ 1/q4. However, one can expand

it according to

∆(0)
µν,ρσ =

1

κ

(
1

q2 + κ/6â− iε
− 1

q2 + iε

)
P (0)
µν,ρσ. (1.78)

Hence, this propagator can be described by the sum of a ghost propagator with
negative energy and the propagator of a massive particle. The apparent ghost of
the κ2R + aR2 gravity is, fortunately, not a physical field because one can use
residual gauge freedom to remove it [35]. The remaining field content of the theory
is then the massive spin 0 mode with a propagator ∝ 1/q2. From this one can
conclude that the κ2R + aR2 gravity is ghost free.

From the results of Starobinski [36], one knows that the pure R2 gravity also
leads to an inflationary potential, therefore, the addition of an R2 term appears to
be useful. Unfortunately, the pure κR + aR2 model is non-renormalizable [37].

The effective action of quantized matter fields unfortunately contains not only
the R2 term. Therefore, one has to find conditions which led to a situation where
the RµνR

µν and RµναβR
µναβ terms are not measurable. We will put forward a

proposal to remove the Ostrogradski instability in section 4.4.

1.6 Weinberg’s no go theorem for translationally
invariant vacuum states

Weinberg has proven an interesting theorem in [38] that with a cosmological
constant present one can, in classical general relativity, not have a translationally
invariant solution of the Einstein field equations. The proof goes as follows:

If we add fields ψi, translational invariance of the fields and the metric implies

∂L
∂ψi

= 0 (1.79)
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and
∂L
∂gµν

= 0. (1.80)

With N fields ψi and a symmetric metric, one has N + 6 equations and N + 6
unknowns. Under a GL(4) transformation

g′µν = AρµA
σ
nugρσ (1.81)

and
ψ′i = Dij(A)ψj. (1.82)

Therefore, the Lagrangian becomes as

L′ = det(A)L. (1.83)

The equations of motion then have the unique solution

L = c · det(g) (1.84)

where c is some constant. Thus

∂L
∂gµν

= 0 (1.85)

can only be satisfied for vanishing c, or L = 0, but this implies a vanishing
Lagrangian and a vanishing cosmological constant.

There exist various relaxed versions of this proof. For example, in his article,
Weinberg later relaxes his equations of motion to

gµν
∂L(g, ψ)

∂gµν
=

N∑
n

∂L(g, ψ)

∂ψn
fn(ψ), (1.86)

where fn are some coefficient functions and gµν and ψi constant fields, such that

∂L
∂ψi

= 0, (1.87)

which again implies
∂L
∂gµν

= 0, (1.88)

from which a similar proof can be derived.
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The theorem can be translated into quantum gravity [39]. The GL(4) symmetry
is broken in quantum gravity but it can be replaced with the BRST symmetry
which is a residual global symmetry of diffeomorphisms emerging after gauge fixing.
Then the proof works similarly.

Weinberg’s theorem searches for constant, translationally invariant solutions
of the metric. Constant metrics are not observed in cosmology. Nevertheless,
Weinberg’s result is still interesting. Usually, the vacuum is the ground state of
a theory. In order to circumvent Weinberg’s theorem, it appears that one must
find a model for quantum gravity where the ground state is not a translationally
invariant constant metric like Minkowski space. In the later sections of this thesis
we will argue that this is exactly what happens for the vacuum state of quantum
gravity.
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Chapter 2

Quantum gravity

2.1 Introduction

Most of our later calculations are concerned with the amplitude of Euclidean
quantum gravity that was regulated by the zeta function technique. Therefore,
we start in section 2.2 with a review how to regularize gravity amplitudes with
zeta functions. Some of our later calculations need the Hamiltonian of gravity.
Therefore, we also review the non-perturbative canonical quantisation of gravity
that is based on the Wheeler DeWitt equation in section 2.3. We review how
the canonical and covariant formalism of quantum gravity are related and argue
that one can derive one formalism from the other. We note in section 2.4 that
the Hamiltonian constraint of gravity vanishes and that this leads to a frozen
formalism with no dynamical observables. As an example for concrete calculations,
we review the computation of the black-hole entropy from perturbative quantum
gravity in section 3.2. We close this section by reviewing Gibbons’ and Hawking’s
proof that matter can not cause a curvature of the gravitational field that makes
the gravitational action contribute to the entropy unless the curvature is such that
a boundary term is created in Euclidean quantum gravity.

This section is review material. Sections 2.2, 2.3 and 3.2 are adapted from my
Diploma thesis [17] with some changes (shortened derivations, added references,
different text). Other sources from which material was taken are indicated in the
text.
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2.2 Zeta function renormalization of gravity amp-
litudes

In the second chapter of this thesis, we will work with the gravitational amplitude
in a form where it is regulated with zeta functions. Therefore, we will review
work of Gibbons and Hawking [40] in this section and show how this amplitude is
derived. Some attention is paid to scaling properties of the amplitude that will be
used later.

Perturbative quantum gravity can also be done with dimensional regularization.
For this we merely want to point the reader to the excellent articles by ’t Hooft
[41], Veltman [42], Hamber [43]. For a general overview of quantum gravity, we
point the reader to the excellent articles of DeWitt [3, 22, 26, 44–46].

When discussing these amplitudes, one should note that quantum gravity is a
perturbatively non-renormalizable theory [45]. This implies that one would have
to add more and more additional renormalization parameters with higher orders of
perturbation theory, which would make the theory unpredictive if this procedure
were carried out up to all orders. Unfortunately, for pure gravity, there is no
symmetry that prevents these divergences to occur at higher orders. While the one
loop amplitude of pure gravity is free of divergences [41], the amplitudes become
divergent again at two loop order [47, 48].

Additionally, divergences of the amplitudes have been shown to exist for
combined gravity and matter one loop amplitudes [49–51]. However, these results
were calculated by treating the interaction of the matter fields with the graviton
as in usual Feynman diagrams by introducing a vertex functions.

Usually, the interaction of a matter field with the gravitational field is modelled
with the energy momentum tensor, which has to be renormalized in curved space-
times. The author of this thesis thinks that it is more appropriate to quantize
the gravitational Lagrangian at one loop order along with a computation of the
renormalized energy momentum tensor of the matter fields in an arbitrarily curved
space-time. From this, one gets modified field equations for the gravitational field
and an energy momentum tensor that couples to it. In the opinion of the author
of this thesis, this approach is more useful than working with vertex functions.
The strong self interactions of the gravitons make perturbative computations of
individual particle interactions with gravitons not too meaningful.

The action of Euclidean gravity with metric g̃µν and without cosmological
constant is given by

I =

ˆ
d4xL = − 1

16π

ˆ √
g̃Rd4x (2.1)
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with a Lagrangian density L = − 1
16π

√
g̃R and we want to evaluate the path integral

Z =

ˆ
Dg̃µνe−I (2.2)

perturbatively.
We decompose the metric g̃µν into a background field that is supposed to fulfil

the classical equations of motion and a fluctuating quantum field hµν .
Then we expand the action around the background gµν in a series [40]

I = −
ˆ
d4x

(
1

16π

√
gR + L+ L

)
, (2.3)

where g and R are constructed from gµν . The expansion of the Lagrangian density
L is linear in hµν and L is quadratic in hµν . The path integral of Eq. (2.2) is then
given by

Z = e−
1

16π

´
d4x
√
gR

ˆ
Dhµνe−

´
d4x(L+L+...) = e−I(gµν)

ˆ
Dhµνe−I(hµν), (2.4)

since L = 0 by the equations of motion.
The equations of motion of general relativity are invariant under diffeomorph-

isms. In order to avoid over counting in the path integral, one must consider the
addition of gauge fixing and ghost terms. Historically, they have been found for
first orders by Feynman [52]. DeWitt then generalized this procedure to all orders
[26] and shortly later a short article by Faddeev and Popov arrived [53] that was
simpler to understand (which gave the procedure the name Faddeev-Popov ghosts).
The procedure outlined by these authors was not mathematically rigorous because
they contain an integration over the gauge group. Years later, DeWitt succeeded
to find a rigorous description of the procedure with the mathematical theory of
fibre bundles [54]. This leads to the same amplitude, that can be converted into a
form with determinants and whose regularization we will discuss below.

In their article, Gibbons, Hawking and Perry [40] find that one can express the
amplitude as

ln(Z) = −I(gµν)−
1

2
ln

(
det

(
1

2
π−1µ−2(−F +G)

))
+ ln

(
det

(
1

2
π−1µ−2C

))
,

(2.5)
where µ is the undetermined normalization scale, C is the operator for the ghosts
and −F + G is an operator that describes the perturbation expansion of the
Euclidean action and the gauge fixing. The determinants can be expressed with
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zeta functions. Denoting the zeta function for the eigenvalues of an operator A as
ζA, the amplitude becomes

ln(Z) = −I(gµν) +
1

2
ζ ′F (0) +

1

2
ζ ′G(0)− ζ ′C(0) +

1

2
ln(2πµ2)(ζF (0) + ζG(0)− 2ζC(0)).

(2.6)
One can generalize this procedure to gravity with a cosmological constant.

From a heath kernel calculation, Gibbons, Perry, and Hawking compute a formula
for the zeta functions of a space-time with cosmological constant. This formula
was later corrected by Christensen and Duff [55]:

ζF (0) + ζG(0)− 2ζC(0) =
53

720π2

ˆ
d4x
√
gRαβγδR

αβγδ − 87

120π2
Λ2V (2.7)

≡ γ. (2.8)

Using the generalized Gauss Bonnet theorem, the Euler characteristic for a
compact manifold of dimension 4 can be computed by

χ =
1

32π2

ˆ
d4x
√
g
(
RαβγδR

αβγδ − 4RµνR
µν +R2

)
. (2.9)

which is equal to χ = 1
32π2

´
d4x
√
gRαβγδR

αβγδ if Einstein’s field equations hold in
a vacuum or with cosmological constant Λ. The factor γ is then

γ =
106

45
χ− 87

120π2
Λ2V. (2.10)

Zeta function renormalization of gravity amplitudes is especially interesting
because it delivers the following result: If we rescale the action according to

I(g̃ab) = kI(gab), (2.11)

the eigenvalues of the operators F,G,C will get multiplied by k−1. So we get a
new amplitude of the form

ln(Z̃) = ln(Z) + (1− k)I(gµν) +
1

2
γln(k). (2.12)

The Euclidean action of gravity with cosmological constant is given by

I =
−1

16π

ˆ
d4x
√
g(R− 2Λ) =

−ΛV

8π
, (2.13)
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where Einstein’s equations R = 4Λ have been used. By dimensional considerations,
one finds that

Λ2V = f 2, (2.14)

where f is some scalar factor. This means that one can write

V (Λ) =
f 2

Λ2
(2.15)

or
I = − f 2

8πΛ
. (2.16)

From this, the cosmological constant can, in some sense, be interpreted as a
rescaling of the action. One can use this to derive a useful formula that shows how
the amplitude changes as a function of the cosmological constant.

2.3 TheWheeler-DeWitt equation of canonical quantum
gravity

This section develops the non-perturbative formalism of canonical quantum gravity
that is based on the Hamiltonian formulation of general relativity. This formulation
of quantum gravity provides an excellent tool for the quantisation of closed space-
times, e.g. the closed Friedmann Robertson Walker universe.

This section is merely a review of parts of the first article [3] from DeWitt’s
famous trilogy of three fundamental papers on quantum gravity [3, 44, 45]. Some
parts of the text in this section review a famous article of Hartle and Hawking [4].
This section is adapted from my earlier Diploma thesis [17] with some changes
(shortened derivations, added references, different text).

That the Hamiltonian of gauge theories like gravity needed to be written in the
form of constraints was found by Dirac in 1958 [56]. One year later, Arnowit, Deser
and Misner found the Hamiltonian of general relativity that is used today [57]. In
1967, DeWitt used their Hamiltonian to derive a quantum mechanical equation for
relativistic space-times [3], which we will review shortly in this section. We will
argue that for closed space-times without boundary it leads to a frozen formalism
with no dynamics. We end this section by reviewing Hartle and Hawking’s work
[4] that connect the covariant formalism of quantum gravity with the canonical
one.

If we assume that space-time that is globally hyperbolic, we can find a time
function t such that each surface t = const is a Cauchy surface Σ and there exists



34 2. Quantum gravity

a time flow vector field tµ satisfying tµ∇µt = 1. The metric tensor gµν induces a
spatial metric γij on Σt and one can write gµν as:

gµν =

(
−N2 + βkβ

k βj
βi γij

)
. (2.17)

The function
N =

1

nµ∇µt
(2.18)

is called lapse function, and nµ is the unit normal to Σt. The three dimensional
vector βk is the component of tµ that is tangential to Σt and is called shift vector.
The spatial indices are raised and lowered using the 3 metric γij and its inverse.

In this section, we neglect the factor 1/16π in the Lagrangian for simplicity.
One can write the Lagrangian of general relativity in the form

L =

ˆ
d3x
√
−gR =

ˆ
d3xN

√
γ
(
KijK

ij −K2 +(3) R
)
, (2.19)

The ADM Hamiltonian of general relativity is then given by, see [3, 57, 58]

H =

ˆ
d3x(π∂0N + πi∂0βi + πij∂0γij)− L

=

ˆ
d3x

(
NHG + βiχ

i
)

+ 2Di(γ
−1/2βjπ

ij)
)
, (2.20)

with canonical momenta

π =
δL

δ∂0N
= πi =

δL

δ∂0βi
= 0, πkl =

√
γ
(
γklK −Kkl

)
. (2.21)

In the expression for the Hamiltonian,

Kij =
1

2
N−1(Djβi +Diβj − ∂0γij) (2.22)

is the extrinsic curvature of the hyper-surface x0 = const, Di denotes covariant
derivation with respect to the i-th direction based on the three metric γij and (3)R
is the curvature scalar with respect to γij.

Furthermore
χi = 2Dj

(
γ−1/2πij

)
(2.23)
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and

HG =
√
γKijK

ij −√γK2 −√γ(3)R

= Gijklπijπkl −
√
γ (3)R, (2.24)

with the co-called DeWitt "metric"

Gijkl =
1

2
γ−1/2(γikγjl + γilγjk − γijγkl). (2.25)

After integration, the term 2Di(γ
−1/2βjπ

ij) turns out to be a boundary term
and can be dropped for closed space-times.

For asymptotically flat space-times, the boundary term is not vanishing but
can be shown to be, see [3], or [58], p. 469

E∞ =

ˆ
Σ

N
√
γγij(γik,j − γij,k). (2.26)

Since π = 0, the Poisson bracket yields for a closed space-time

{π,H} = ∂0π = 0 =
∂H

∂N
= Hg. (2.27)

Similarly, πi = 0, which implies{
πi, H

}
= ∂0π

i = 0 =
∂H

∂βi
= χi. (2.28)

Eq. (2.28) is associated with spatial diffeomorphism invariance and therefore called
diffeomorphism constraint.

The three metric γij and πij are canonical coordinates and therefore one finds
the following Poisson bracket:{

γij(x), πkl(x′)
}

= δk(iδ
l
j)δ(x, x

′). (2.29)

In the quantum theory, this becomes a commutator relation:[
γ̂ij(x), π̂kl(x′)

]
= iδk(iδ

l
j)δ(x, x

′), (2.30)

with operators γ̂ij and π̂ij that act on a state functional Ψ which depends on the
three metric γij. The relation (2.30) is fulfilled if

γ̂ijΨ(γij) = γijΨ(γij) (2.31)
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and
π̂ijΨ(γij) =

1

i

δ

δγij
Ψ(γij). (2.32)

The Hamiltonian constraint of Eq. (2.27) then becomes the so-called Wheeler-
DeWitt equation:

ĤGΨ(γij) =

(
Gijkl

δ

δγij

δ

δγkl
+
√
γ (3)R

)
Ψ(γij) = 0. (2.33)

The diffeomorphism constraint also becomes a constraint on the state functional
in the quantum theory

2Dj

(
γ−1/2 1

i

δ

δγij
Ψ(γij)

)
= 0. (2.34)

When the articles of DeWitt appeared, the relation between the perturbative
and the canonical versions of quantum gravity were unknown. This changed with
the work of Hartle and Hawking [4].

For a quantum theory with a scalar field, the path integral fulfils a Schrödinger
equation see, e.g [59]. In analogy to this, the path integral for gravity should
satisfy the Wheeler-DeWitt equation. Hartle and Hawking [4] showed that this is
the case.

The path integral of quantum gravity an be used to define the expectation
value of an operator F̂ by

〈F̂ (g)〉 =

ˆ
DgµνF (g)eiS. (2.35)

One finds
−i δ

δγij

ˆ
DgµνeiS =

ˆ
DgµνπijeiS (2.36)

from which one can get the operator replacements of the canonical coordinates.
Using HG = δS

δN
, one can derive the Hamiltonian constraint

ˆ
Dgµν

δS

δN
eiS = ĤG

ˆ
DgµνeiS = 0. (2.37)

Similarly, one may derive the diffeomorphism constraint.
DeWitt analysed the relation between functional integral and the Wheeler-

DeWitt equation in more detail [46]. He could show that for a mini-superspace



2.4 The problem of time in quantum gravity 37

model with a matter field and no minimal coupling, one gets a non-local equation
and the local Wheeler-DeWitt equation only holds approximately.

The Hamiltonian constraint in this form is therefore not equivalent to the
amplitude in all possible cases. It should therefore not be used as a starting
point for quantisation methods that aim towards constructing a correct theory of
quantum gravity.

Recently, Feng and Matzner gave a very precise description [60] of the rela-
tionship between the Wheeler-DeWitt equation and the gravitational amplitude.
They also showed that one has to work with non-local terms in order to make the
transition from an amplitude to an equation with a Hamiltonian precisely.

2.4 The problem of time in quantum gravity

The Hamiltonian constraint of general relativity is numerically zero. For the time
development of an operator Â this means

Â(t) = e−itHAeitH = A(0), (2.38)

which is obviously inconsistent with observation.
There are several methods to solve this problem. For example, one could try

to make a canonical transformation to new canonical variables

(γab(x), πcd(x))→ (XA(x), PB(x), φr(x), ps(x)) (2.39)

with A,B ∈ {1, 2, 3} and r, s ∈ {1, 2} where the Hamiltonian constraint takes the
form

H = PA(x) + hA(x,XB, φr, ps). (2.40)

One can consider hA 6= 0 as the new the new Hamiltonian of the system. Quantizing
it will yield a time dependent Schrödinger equation [61].

Unfortunately, there are several problems with this approach. First, the
Groenewold van-Hove theorem [62] states that the canonically transformed system
is, after quantisation, in general not unitary equivalent to the quantum theory that
one gets from the untransformed system. Since the canonical transformation which
gives a time dependence is not unique this results in a multiple choice problem
[63].

Furthermore, it was shown by Hajcek [64] that canonical transformations like
the one above do not hold globally in general relativity.
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Recently, it was shown by Feng and Matzner that the problem of time is there
also in the amplitude of quantum gravity [60]. Therefore, this problem is not just
an artefact of a "wrong" quantisation method.

DeWitt pointed out in [3] that in asymptotically Lorentzian metrics, the
boundary terms one has to add to the Hamiltonian will solve the problem of time.

Quantum gravity should be consistent in closed space-times, too. A different
method that yields boundary terms in a closed space-time is the introduction of
worm holes, which will be discussed later in this article.



Chapter 3

Partition functions and entropy
calculations in Euclidean quantum
gravity

3.1 Introduction

The entropy of a thermal quantum field theory with temperature T can be computed
from its the canonical partition sum. The canonical partition sum is given for
a quantum field theory by the Wick rotated and Euclideanized amplitude. In
quantum gravity, the canonical partition function is the path integral over all
positive semi-definite metric tensors

Z =

ˆ
Dgµνe

−I−Igauge−fixing−Ighosts (3.1)

weighted by the Euclidean action

I = − 1

16π

ˆ
d4x
√
gR (3.2)

and terms for gauge fixing and ghosts. Z can be represented as a sum over
"microstates"

Z =
∑
n

〈gn|e−βĤ |gn〉. (3.3)

In Eq. (3.3), β = 1/T is the inverse temperature which is also a periodic Euclidean
time parameter and Ĥ is the quantized form of a classical constraint Hamiltonian.
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Unfortunately, there is some confusion in the recent literature, with some
authors claiming one would not know what these "micro-states" in the partition
function are and other authors even arguing the micro states would be some
"constituents" or "particles" like gravitons [65] and others [66] claim there would
not be a concrete picture of them. To these claims I just want to mention that at
least in the articles of Hawking, the micro states |gn〉 are defined as eigenstates of
the Hamiltonian constraint Ĥ.

Because gravity is invariant under diffeomorphisms, the Hamiltonian operator
consists, as we have seen in subsection 2.3 of a diffeomorphism constraint Ĥdiff and
a gravitational constraint ĤG and potentially some contributions from boundary
terms Ĥ∂M :

Ĥ = ĤG + Ĥdiff + Ĥ∂M , (3.4)

where

ĤG =

(
Gijkl

δ

δγij

δ

δγkl
+
√
γ (3)R

)
. (3.5)

In Eq. (3.5), γij is a 3 metric, (3)R is a Ricci scalar computed from γij and
Gijkl = (γikγjl + γilγjk− γijγkl) is the DeWitt metric as we have seen in subsection
2.3.

A quantum system described by Eq. (3.4) fulfils the time dependent Wheeler-
DeWitt equation [3]

i~∂t|Ψ(γij, t)〉 = Ĥ|Ψ(γij, t)〉. (3.6)

with states Ψ(γij, t) = e−iĤt|gn(γij)〉 that depend on γij and time. In order to
shorten the notation, we will abbreviate |gn〉 ≡ |gn(γij)〉 for the time independent
states from now.

As we have seen in subsection 2.3, The Wheeler-DeWitt equation is formally
solved by the amplitude of Lorentzian quantum gravity[4]

|Ψ(γij, t)〉 =

ˆ
Dgµνe

iS+iSgauge−fixing+iSghosts (3.7)

where
S =

1

16π

ˆ
d4x
√
−gR (3.8)

is the Lorentzian action of the gravitational field and one has to add ghost and
gauge fixing terms to the action in the path integral.

The amplitude in Eq. (3.7) is one loop finite [41] but it diverges at higher
orders in perturbation theory [47]. Yet, it is currently unknown whether it is
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non-perturbatively finite or not. There are some indications that it is finite. The
program that investigates this question is called asymptotic safety [67, 68].

For pure gravity amplitudes, the one loop finiteness of the amplitude makes it
is possible to do a WKB approximation and solve the Wheeler-DeWitt equation
approximately with an Ansatz CeiS where S is the gravitational action.

It is known that the Wheeler-DeWitt equation does have an algebra where
the commutator of two certain operators can not be consistently computed if the
observables are infinitely close in space-time [3] (i.e. the algebra does not close in
this situation).

On the quantum level, one may have a space-time where wormhole production
takes place at short time scales. Space-times with wormholes are not simply
connected (i.e they have a hole of finite size). Thus, the impossibility of consistently
computing certain observables at infinitesimally close locations may not signal
an inconsistency. The problem is then whether quantum gravity can consistently
describe the production of wormholes. In section 5.4, we will investigate this and
find that inconsistencies emerge.

As we have seen in subsection 2.4, the classical Hamiltonian is usually taken
to be zero if no boundary terms H∂M are added to H. In that case, the Wheeler-
DeWitt equation becomes

Ĥ|Ψ(γij, t)〉 = 0 (3.9)

with time independent states |Ψ(γij, t)〉 = |gn〉.
Even if this would lead to all expectation values being stationary, [3, 63, 64],

which disagrees with experiment, one still can do thermodynamics in this situation.
The canonical ensemble then simply becomes the microcanonical ensemble. The
partition sum of the microcanonical ensemble goes over all states in the energy
shell E = 0 and one has

Zm =
∑
n

〈gn|gn〉 (3.10)

If quantized boundary constraints Ĥ∂M are added to Ĥ (like, for example, in
asymptotically flat space-times, see [3]), then one finds the usual time development
of the state functionals |Ψ(γij, t)〉 in the time dependent Wheeler-DeWitt equation.
If there several energetic configurations available, one can then define a useful
canonical ensemble

Z =
∑
n

〈gn|e−βĤ |gn〉 (3.11)

since in the presence of boundary terms, the time independent Wheeler-DeWitt
equation becomes

Ĥ|gn〉 = Ĥ∂M |gn〉. (3.12)
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The microstates |gn〉 in the partition sum of Eq. (3.3) are the eigenstates of Ĥ
after a Wick rotation, i.e. solutions of Eq. (3.12) for an Euclideanized space-time

If one wants to compute the partition sum of a space-time, one needs to
compute the path integral over the Euclidean action, whose finiteness properties
are usually a bit different from path integrals with Lorentzian actions.

For the path integral over asymptotically Euclidean space-times, one can show
a positive mass theorem and with this one can show a positive action theorem.
This was used by Schleich to define convergent path integrals of Euclidean quantum
gravity for asymptotically flat backgrounds [69].

For other backgrounds, Gibbons, Hawking and Perry considered the path
integral over the Euclidean action, but without gauge fixing and ghost terms.
They found that the action is not bounded from below, see [40]. More recently,
Dasgupta argued if one includes the gauge fixing and ghost terms, they would
render the effective action of Euclidean quantum gravity finite [5, 6].

3.2 Calculation of the black-hole entropy from the
path integral

This section reviews the computation of the black-hole entropy from Euclidean
quantum gravity by Gibbons and Hawking in [7]. It is also adapted from my earlier
diploma thesis [17] with some changes (shortened derivations, different text)

Usually, the action of the Euclideanized gravitational field is taken to be
16πI = −

´
d4x
√
gR. However a boundary term is omitted in this action that

usually does not vanish for space-times which are not closed or have boundaries
Varying the gravitational action yields

16πδI = −
ˆ
d4x (

√
ggµνδRµν +

√
gRµνδg

µν +Rδ
√
g)

= −
ˆ
d4x

(
√
ggµνδRµν +

√
g

(
Rµν −

1

2
Rgµν

)
δgµν

)
. (3.13)

where we have used that Rδ√g = −1
2
R
√
ggµνδg

µν . Using

δRµν = ∇λδΓ
λ
νµ −∇νδΓ

λ
λµ, (3.14)

the first term can be converted into a surface integral and further evaluation
shows that it is equal to 2

√
γK, see [58, 70], where K is the trace of the extrinsic

curvature and γ is the induced three metric on the boundary.
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For open space-times or space-times with boundary, the new action therefore
reads

16πI = −
ˆ
d4x
√
gR− 2

ˆ
∂M

d3x
√
γK − C, (3.15)

where C is a constant that is independent of g. In asymptotically flat space a
natural choice for C is such that I = 0 for the Minkowski metric ηµν , or

C = −2

ˆ
∂M

d3x
√
γK0, (3.16)

with K0 as the extrinsic curvature at the boundary embedded in flat space.
The Euclidean path integral

Z = e−I(gµν)

ˆ
Dhµνe−I(hµν) (3.17)

can be used in the case where the background metric gµν is a black-hole.
We now assume that gµν is given by the Schwarzschild metric

ds2 =
32M3

r
e
−r
2M (−dz + dy) + r2dΩ2 (3.18)

in Kruskal coordinates, where

−z2 + y2 =
( r

2M
− 1
)
e

r
2M (3.19)

and
(y + z)

(y − z)
= e

t
2M . (3.20)

The singularity lies at −z2 + y2 = −1. Setting ζ = iz, the metric becomes positive
definite:

ds2 =
32M3

r
e
−r
2M (dζ + dy) + r2dΩ2 (3.21)

With
ζ2 + y2 =

( r

2M
− 1
)
e

r
2M , (3.22)

the coordinate r will be real and greater than or equal to 2M as long as y and ζ
are real. Eq. (3.20) shows that setting t = −iτ implies τ has a period of 8πM .

The Euclidean path integral is a canonical partition sum. For a field ϕ at two
different times t1 and t2 with a Hamiltonian H and an action S

〈ϕ, t2|ϕ, t1〉 =

ˆ
DϕeiS = 〈ϕ, t2|e−iH(t2−t1)|ϕ, t1〉 (3.23)
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where the path integral is over all field configurations that take the value |ϕ, t1〉 at
t1 and |ϕ, t2〉 at t2. If we set t2 − t1 = −iβ and ϕ1 = ϕ2 and sum over all |ϕ, ti〉,
the canonical partition sum turns out to be equal to the Euclidean path integral
with an Euclidean action I

tr(e−βH) =

ˆ
Dϕe−I = Z, (3.24)

where the path integral is taken over all fields with period in β in imaginary time.
Since the Euclidean section of the Schwarzschild metric has R = 0, the non-zero

part of the action comes from the boundary term

16πI = −
ˆ
d4x
√
gR− 2

ˆ
∂M

d3x
√
γ(K −K0). (3.25)

Evaluation of the integral over the intrinsic curvature yields, see [7]:

I = 4πM2 =
β2

16π
(3.26)

From statistical mechanics, we have

〈E〉 = − ∂

∂β
ln(Z) =

β

8π
. (3.27)

The entropy of the canonical ensemble is then given by

S = β〈E〉+ ln(Z) =
β2

8π
− β2

16π
=

β2

16π
= 4πM2 =

1

4
A, (3.28)

where A is the area of the event horizon.

3.3 Gibbons’ and Hawking’s proof that the grav-
itational action can only contribute to the en-
tropy if the action has a boundary term

In the Euclideanized space-time, the curvature scalar R, the extrinsic curvature K
and the tensor of the electromagnetic field Fab are holomorphic functions.

Therefore, the integral over the space-time in the action is a contour integral
that has the same value on any section of the complexified space-time which is
homologous to the Euclidean section, even if the induced metric of this section can
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be complex. Gibbons and Hawking argue in their work [7] that this allows them
to consider metrics which have no real Euclidean section. As an example, they
study the Kerr metric that describes an electrically charged rotating black-hole.

In a further step, they then discuss a black-hole that is surrounded by a perfect
fluid which rotates rigidly with an angular velocity. Gibbons and Hawking find an
action

I = 2πκ

(
M − ΩHJH − ΩMJM −

A

8π
+

ˆ
ρKadΣa

)
, (3.29)

where κ = 1
4M

and M is the total mass of the system. ΩH/M and JH/M are the
angular velocity and angular momentum of the black-hole/matter disk and A is
the black-hole area. As we have seen in section 3.2, this area is computed from a
boundary term. Similar boundaries also occur in worm holes, even if they have no
event horizon. In fact, Gibbons and Hawking argue that even apparent horizons,
which can occur in DeSitter spaces give rise to such boundary terms and thus
a contribution to the gravitational entropy. Ka is the time translation Killing
vector and ρ is the energy density of the matter. Σ is a surface that connects the
boundary of a large sphere around the entire configuration with the bifurcation
surface of the horizon of the black-hole.

The total mass M of the system is given by

M = MH + 2

ˆ
Σ

(Tab −
1

2
T )KadΣb (3.30)

where MH as the mass of the black-hole. The energy momentum tensor is given
by

Tab = (p+ ρ)uaub + pgab (3.31)

where p is the pressure of the matter and ρ is its the energy density. ua is a four
velocity that can be expressed as

λua = Ka + ΩMm
a, (3.32)

where λ is a normalization constant and ma is the axial Killing vector.
The calculation of canonical partition sums with quantum field theory can be

extended to include partition sums of the grand canonical ensemble.

Zg = Tre−β(H−
∑
i µiCi), (3.33)

where µi are chemical potentials associated with conserved quantities Ci.
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For example, for a system with angular angular momentum Ci = J , the
associated chemical potential is the angular velocity µi = Ω.

For a grand canonical partition sum, one has

T lnZg = −W (3.34)

with
W = M − TS −

∑
i

µiCi (3.35)

as grand potential. Whether the amplitude of the quantum field theory yields a
grand canonical or just a canonical ensemble depends on the form of the action I
since the partition sum is approximated by

Zg ≈ e−I . (3.36)

With a temperature of
T =

κ

2π
, (3.37)

the leading gravitational contribution to the grand potential for a rotating black-
hole surrounded by a matter disk becomes

Wg = −T ln(Zg) = M − ΩHJH − ΩMJM −
A

8π
+

ˆ
ρKadΣa (3.38)

If there is no boundary in the space-time, one just has a rotating gas disk and
JH = A = 0. The gravitational contribution to its grand potential is

Wg = M − ΩMJM +

ˆ
Σ

ρKadΣa (3.39)

Since the matter disk can be described as a gas with temperature T , there will
be an additional contributionWM to the thermodynamical potential from quantized
matter fields. Gibbons and Hawking compute an approximate contribution from
matter fields in thermal equilibrium to the partition sum as

WM

T
=

´
pKadΣa

T
. (3.40)

This implies a grand potential

W = Wg +WM = M − ΩMJM +

ˆ
Σ

(p+ ρ)KadΣa. (3.41)
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On the other hand, one has from thermodynamics

dU + pV = TS +
∑
i

µiNi (3.42)

where U is the energy, T the temperature, S is the entropy and Ni is the particle
number of species i. This implies for the corresponding densities that

p+ ρ = Ts+
∑
i

µini (3.43)

with T as the local temperature and s as the entropy density of the fluid. µi are
the local chemical potentials and ni are the number densities of the i-th particle
species. As a result Gibbons and Hawking can write the grand potential as

W = M − ΩmJm +

ˆ
Σ

(
Ts+

∑
i

µini

)
KadΣa. (3.44)

Gibbons and Hawking argue that in thermal equilibrium, one has

T =
T

λ
, µi =

µi
λ

(3.45)

with λ as normalization factor, and T and µi as values of T and µi at infinity.
Using

λua = Ka + ΩmJm, (3.46)

they find for the entropy

S = −
ˆ
suadΣa (3.47)

This expression just contains the entropy density of the fluid s and the 4 velocity
ua with which it rotates.

From this, Gibbons and Hawking conclude that if there is no boundary term
that may be associated with a worm hole or the event horizon of a black-hole or
an apparent horizon, the action of the gravitational field does not contribute to
the entropy.
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Part III

The space-time at the Planck-scale





Chapter 4

Space-time foam

4.1 Introduction

In the next sections, we will argue that the cosmological constant should be
associated with boundary terms since it implies a contribution of the action to the
gravitational entropy. We argue that observed state of the quantum gravitational
field for a given volume should then be found by maximizing this gravitational
entropy.

In this context, we will consider the space-time foam model of Hawking. We
will modify it and remove an approximation that holds only for negative Λ. We
also use a renormalization scale from the current literature. Finally, we use the
corrected coefficients from Christensen and Duff [55] in the perturbative expansion
of the amplitude.

We find that all these modifications imply that Λ ≥ 0 and Λ ≈ H2
0 in thermal

equilibrium, where H0 is Hubble’s constant. Furthermore, Λ was very large at the
beginning of the universe and runs to Λ→ 0 during the expansion of the universe.

Hawking’s evaluation of the amplitude is a non-perturbative path integration
over classical metrics followed by a perturbative expansion.

We consider a comment of Christensen and Duff who argued that the non-
perturbative evaluation does not always converge. Christensen and Duff propose
to use matter particles to save the model. We argue that a proper choice of
the renormalization scale suffices to render the integration finite. This would
exclude certain universes as backgrounds, but only ones which already disagree
with observation.

The modified space-time foam model predicts a negative Euler characteristic
for the universe. We conclude that this suggests that the quantum fluctuations
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give rise to a gas of worm holes. As this is not a translationally invariant ground
state, the space-time foam model evades Weinberg’s no-go result.

Finally, we add matter terms to the model. We find that it solves the cosmolo-
gical constant problem and the coincidence problem at first order in perturbation
theory.

It is known that the effective matter action in higher orders of perturbation
theory generates an f(R) gravity. We find that these higher order terms change
the cosmological constant only slightly.

We argue that the effective matter action can be used to define a gravity action
where one can avoid the Ostrogradski instability if the masses of fermions and
bosons do have some non-trivial relationship.

Worm holes are space-times with a boundary. We argue that a space-time
foam in form of a worm hole gas solves the problem of time.

This chapter of the thesis has appeared in the publication [8] of the author.
I want to close this introduction by mentioning various references which try to
solve the cosmological constant problem similarly by using black- or worm holes.
For example, there are early articles from Coleman [71], Klebanov, Suesskind and
Banks [72] or Preskill [73] which attempt to solve the cosmological constant problem
with worm holes. Unfortunately, they do not get its numerically correct value.
More recent articles proposing similar ideas are from Carlip [74], Padmanabhan
[75], Xue [76] or Cyriac [77]. These papers, however, do not solve the problem of
time or the coincidence problem. Furthermore, they often use assumptions that
do not entirely come from the quantum gravity amplitude alone. Finally, there
are articles like [78] or the recent proposal [79], which suggest the cosmological
constant is related to the problem of time but these authors to not get the value
of the cosmological constant.

4.2 The space-time foam model of Hawking and
why it seems necessary to modify it

When DeWitt quantized the Friedmann Robertson Walker space-time in [3], he
included the cosmological constant term into the vanishing Hamiltonian constraint.

As we have seen, a vanishing Hamiltonian implies the problem of time, i.e. that
the observables to not have dynamics.

The cosmological constant was introduced by Einstein in [80, 81] who set
Λ = 4πρ, where ρ is the matter density. This was done in an attempt to model
a static universe. For a static universe, one could consider it acceptable if the
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microstates and observables do not have dynamics. With a Hamiltonian constraint
Ĥ = 0, the partition sum is then over microstates in the energy shell for this
vanishing Hamiltonian. This is a suitable condition for a microcanonical ensemble.

However, many space-times with cosmological constant describe an expanding
or contracting universe. An expanding universe is a dynamical system. Having
static microstates and observable appears to be inconsistent with a dynamical
macrostate.

Furthermore, in units, one has an energy density
c2

8πG
Λ = ρvac. (4.1)

It is therefore natural to consider
Λ(3)V

8π
, (4.2)

where (3)V is the three volume, as the energy of a closed universe.
For a non-zero Hamiltonian, one would need boundary terms, which a closed

space-time is assumed not to have. In the following sections, we will argue that the
gravitational amplitude leads to a universe filled with worm holes. Space-times with
non-traversable worm holes provide such boundaries, with which the cosmological
constant can be associated. In section 4.5, we will propose to describe the non-zero
part of the gravitational Hamiltonian by a number of time-like boundary terms.

The canonical partition sum of gravity with a non-vanishing Hamiltonian is
given by

Z = 〈gn|e−βH |gn〉 =

ˆ
dgµνe

−I−Igauge−fixing−Ighosts , (4.3)

which one can approximate in the one loop or WKB expansion as

Z ≈ Ce−I , (4.4)

where C is a one-loop correction factor and

I =
−1

16π

ˆ
d4x
√
g(R− 2Λ) (4.5)

is the gravitational action with curvature scalar R and cosmological constant Λ.
If we set the one loop correction C = 1, the partition function of quantum

gravity in the WKB approximation is given by

Z = e
1

16π

´
d4x
√
gR− 1

8π

´
d4x
√
gΛ (4.6)

= e
1

16π

´
d4x
√
gR−ΛV

8π (4.7)
(4.8)
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The free energy F is defined by

F = U − TS (4.9)

where U is the inner energy of the system, T is the temperature and S the entropy.
Using β = 1

kbT
, the free energy F is related to the canonical partition sum as

Z = e−βF = e−βU+βTS = e
−βU+ 1

kb
S (4.10)

This suggests at first to identify 1
16π

´
d4x
√
gR with S

kb
and (3)V Λ

8π
with U as the

time coordinate plays the role of β in an Euclidean thermal field theory.
In contrast to ordinary thermodynamics, there appear some differences in

closed space-times.
In cosmology, one often has a certain space, e.g. a DeSitter space with positive

cosmological constant that one wants to consider. Hawking writes in [82] that for
positive Λ, the Euclidean solutions are necessarily compact, but he appears to give
no proof for the general case.

In his work on space-time foam [9], Hawking considers the Euclidean action
in the form I = −ΛV

8π
where Einstein’s equations R = 4Λ have been used and

a compact Euclidean space-time with 4 volume V was assumed. With help of
dimensional arguments, one can write

√
V = −f/Λ, (4.11)

where f is some dimensionless factor which can be positive or negative. The action
then becomes

I = − f 2

8πΛ
. (4.12)

For classical metric, R = 4Λ. Then, using Λ2V = f 2, one gets 1
16π

´
d4x
√
gR =

f2

4πΛ
.
In Lorentzian gravity, a DeSitter space is an R × S3 space. In Euclidean

quantum gravity, time becomes periodical. The Euclidean version of DeSitter
space is a compact S4 space with a certain 4 volume V .

The DeSitter space has f = −4
√

6π and the action I contributes

S = −I =
12π

Λ
=
f 2

8π
(4.13)

to the entropy [7] for an observer inside an apparent horizon. This entropy can
be verified independently of quantum gravity with a computation of an ordinary
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bosonic or fermionic quantum field in a classical DeSitter background. It is
obviously not equal to f2

4πΛ
which one would get from the canonical ensemble in

Eq. (4.10). In order to get the interpretation with the canonical ensemble correct,
one could argue Eq. (4.10) would describe a larger system than a local observer
can see in one patch. For example, if this action would describe a universe with
pairs of Kerr black-holes in space-like separated regions whose inner regions are
connected by an Einstein-Rosen bridge, then one could argue that the entropy
of the entire system would be twice the entropy that a local observer could see.
Another possibility would be to consider an entropy that would be computed as
S = 1

2
1

16π

´
d4x
√
gR and not as in Eq. (4.10).

We have learned in section 1.4 that the cosmological constant is given by

Λ = Λg + Λm, (4.14)

where Λm is a contribution to the energy density that is due to matter. Λm is
negative and very large. The contribution Λg is due to gravity and must be such
that Λ is very small.

We also have learned from Hawking’s calculation in section 3.3 that the
curvature which matter can cause in the space-time does not led to a gravit-
ational field whose gravitational action contributes to the entropy, unless the
matter causes a curvature which is so strong that the space-time develops a
boundary.

As we have seen above, the action of general relativity with cosmological
constant contributes to the entropy. As a result, one has to conclude that Λg must
indeed be associated with boundary terms.

In [9], Hawking writes the Euclidean action I of gravity with cosmological
constant as

I = − f 2

8πΛ
. (4.15)

In his computation, Hawking makes the approximation f 2 = Λ2V ≈ dχ, where
d is some scalar factor and the Euler characteristic is given by

χ =
1

32π2

ˆ
d4x
√
g(CαβγδC

αβγδ + Λ2). (4.16)

where Cαβγδ is the Weyl tensor.
This approximation is based on the assumption that the Weyl tensor should

not contribute to χ because if it were large, it would lead to conjugate points that
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one finds in black-holes. However, the Weyl tensor appears to be connected to a
measure for the entropy of a space-time, see [83, 84].

Furthermore, Hawking writes in [9] that his space-time foam model describes a
gas of black-holes and his computation proceeds by defining a partition sum. In a
computation of the gravitational entropy, removing a quantity that describes the
entropy of a space-time seems to be problematic to the author.

In order to avoid this problem, we will not write the action in the form

I = − d
2χ

8πΛ
(4.17)

that Hawking uses, but we will repeat some of his calculations with the usual
Euclidean action

I = −ΛV

8π
= − f 2

8πΛ
. (4.18)

Using
Λ2V = f 2, (4.19)

the cosmological constant can be interpreted as a factor that rescales the action
from Eq. (4.15) according to

I = −ΛV

8π
=

1

Λ
I0, (4.20)

where

I0 = − f
2

8π
. (4.21)

The works of Gibbons Hawking and Perry [40] that we have reviewed in section 2.2
show that if the action is rescaled by 1/Λ then, the eigenvalues of the determinants
in the zeta function renormalization scheme are multiplied by Λ. The amplitude of
quantum gravity in the WKB approximation Z = Ce−I then scales according to

Z̃ = Ze(1− 1
Λ)I0(gµν)

(
1

Λ

) 1
2
γ

. (4.22)

As we have argued in section 2.2, the factor γ was first given in [40] but then
corrected in [55] for space-times with cosmological constant. The result from [55]
is

γ =
106

45
χ− 87

120π2
Λ2V. (4.23)
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With an unrescaled amplitude

Z =
(
2πµ2

) 1
2
γ
e−I0+ 1

2
ζ′F (0)+ 1

2
ζ′G(0)−ζ′C(0) (4.24)

one has

Z̃ = e−
1
Λ
I0e

1
2
ζ′F (0)+ 1

2
ζ′G(0)−ζ′C(0)

(
Λ

2πµ2

)− 1
2
γ

(4.25)

If we neglect the term 1
2
ζ ′F (0) + 1

2
ζ ′G(0)− ζ ′C(0) in the amplitude then the factor C

in the WKB approximation Z = Ce−I can then be estimated as

C ∝
(

Λ

2πµ2

)− 1
2
γ

(4.26)

Finally, the amplitude Z = Ce−I on a classical background that fulfils R = 4Λ
can be written as

Z =

(
Λ

2πµ2

)− 1
2( 106

45
χ− 87

120π2 Λ2V )
e

ΛV
8π . (4.27)

From Gibbons, Hawking and Perry [40] comes the following attempt to evaluate
the gravitational path integral: Let an ensemble of matter fields generate a
cosmological constant Λm. Then, by dividing the metric g̃µν into conformal
equivalence classes {g} where

g̃µν = Ω2gµν (4.28)

the amplitude is then given by

Z =

ˆ
D {gµν}DY ({gµν}) (4.29)

where
Y ({gµν}) =

ˆ
dΩe

1
8π

´
d4x
√
g̃(3ΩAΩ−Ω4Λm) (4.30)

and
A = � +

1

6
R. (4.31)

Let us assume that Λm < 0 is negative (as it is the case if we let all matter fields in
the standard model generate a cosmological constant in curved space-time). The
action in a single conformal equivalence class has stationary points R = 4Λ. By
using an imaginary conformal factor, one would then get, due to the 3ΩAΩ term
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in the action, Ω3
6
RΩ = 1

2
Ω4ΛmΩ > 0 which is larger than Ω4Λm if |Ω2| < 1. This

mechanism can turn any initial negative energy density into an effective positive
cosmological constant Λeff > 0 with a positive action. Usually, the integration
over conformal factors is believed to lead to a divergent path integral since the
action is not bounded from below. However, Dasgupta has shown in [5, 6], that the
action becomes bounded if one adds a ghost and gauge breaking term. Therefore,
we assume that we can do this integration.

Hawking notes in [9] that for a usual thermal field theory, the canonical partition
function can be written as

Z =

ˆ ∞
0

dEN(E)e−βE, (4.32)

where N(E) is the density of states between E and E + dE and β = 1/kbT is a
Lagerange multiplier.

In analogy to this, Hawking postulates that the entire amplitude of quantum
gravity can be represented by a partition function that he calls "volume canonical
ensemble"

Z(Λ) =

ˆ ∞
0

dV N(V )e−
ΛV
8π . (4.33)

In analogy to the theory of thermodynamics, the function N(V ) is then interpreted
as the number of states between V and V + dV . Hawking then computes N(V )
as in ordinary thermodynamics by an inverse Laplace transform [85] of Z(Λ). He
inserts the amplitude of Eq. (4.27) into

N(V ) =

ˆ
C

Z(Λ)e
ΛV
8π dΛ ≈ Z(Λs)e

ΛsV
8π , (4.34)

where C is a contour running parallel to and to the right of the imaginary axis,
Here, I want to comment on an article by Christensen and Duff [55]. They

corrected the factor γ in the perturbative expansion that was calculated by Hawking,
Gibbons and Perry. Then they noted that with the corrected factor, the inverse
Laplace transform does not converge if γ < 0.

If γ < 0, the integral diverges because the inverse Laplace transform of a
function f(z) only exists if limz→∞ f(z) = 0 and the amplitude of Eq. (4.27) is
similar to f(Λ) = Λ−γe1/Λ, which diverges at Λ→∞ for γ < 0.

Christensen and Duff propose to cure this problem by adding matter terms.
Here, we want to note that problem has a simpler solution. By setting µ2 = σΛ,
with a proportionality constant σ ≥ 1

2π
, the factor C(Λ) is given by

C(Λ) ∝
(

1

2πσ

)−γ
≤ 1 (4.35)
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for γ < 0. This implies that Z(Λ) does not diverge any more at Λ→∞ and the
Laplace transform should converge.

In his original article, Hawking sets the renormalization scale µ2 to the Planck
length lp since he assumes that quantum gravity breaks down at this scale. However,
this choice is physically problematic.

As we have seen in section 1.4 of this thesis, by deriving the matter contribution
of the cosmological constant, one gets

Λm = ni
m4

8π
ln

(
m2

µ2

)
(4.36)

after a renormalization scheme is applied. The parameter µ2 in the amplitudes for
the massive fields is the same as the parameter µ2 in the gravity amplitude. Eq.
(4.36) is the result of a complete regularization of a renormalizable field theory,
where any cut-offs have been sent to infinity and all divergent terms have been
removed.

Therefore, the parameter µ is not a cut-off. In Hawking’s article on zeta
function renormalization, it is described as a renormalization scale that has to be
found by experiments.

Interestingly, Hawking presented his space-time foam model later in several
conferences. There he correctly describes µ as a renormalization scale parameter
that should be determined by measurement. Without having any measurement
results from quantum gravity, he refuses to set a concrete value for this scale in
these later conference contributions [25].

In section 1.4, we have reviewed arguments from the current literature on the
scale parameter. These arguments imply that µ =

√
T µµ , where T µµ is the energy

momentum tensor, which, for a Friedmann universe, is approximately given by
H2

0 . Thus one should set

µ ≈ H0 (4.37)

Here, we want to comment on another problem with the approach of Hawk-
ing. After evaluation of the inverse Laplace transformation by a saddle point
computation, Hawking gets

N(V ) ≈ Z(Λs)e
ΛsV
8π . (4.38)

where the saddle point Λs is given by

∂

∂Λ

(
ln(Z) +

ΛsV

8π

)∣∣∣∣
Λs

= 0. (4.39)
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The entropy is then defined as

S/kb = ln(Z(Λs)) +
ΛsV

8π
(4.40)

The amplitude of Eq. (4.27) has already a factor e
ΛsV
8π = e

f2

8πΛ . Hence, in order
to make the entropy that results from this method equal to the expression that
one gets from the usual microcanonical ensemble, one has to choose a different
partition function, namely

ZV C = C(Λ) (4.41)

that one inserts into the inverse Laplace transform:

N(V ) =

ˆ
C

ZV C(Λ)e
ΛV
8π dΛ ≈ ZV C(Λs)e

ΛsV
8π . (4.42)

In general, the dominant contributions to a path integral should come from
classical paths. If we use a partition sum ZV C = C, one gets from Equation (4.42)

S = kb

(
ΛV

8π
+ ln(C)

)
. (4.43)

The term ln(C) comes from a perturbative expansion of the metric up to one loop
and can be seen as a correction of quantized gravitational waves of low energy to
the entropy that one gets from the classical background. Such corrections should
be small.

In order for the entropy not to be affected much by this quantum correction,
one should have

C ≈ 1. (4.44)

Since

C =

(
Λ

2πµ2

)− 106
90
χ+ 87

240π2 Λ2V

, (4.45)

setting
C ≈ 1 (4.46)

is consistent with
Λ ≈ 2πµ2. (4.47)

The fact that the inverse Laplace transform only converges for µ2 = H2
0 = σΛ,

with a proportionality constant σ ≥ 1
2π

seems to exclude some spaces that are
classically possible.
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For our universe with H2
0 ≈ 1.18 ·1061 and Λ = 5.6 ·10−122 one has H2

0/Λ = 0.24.
This is larger than 1

2π
≈ 0.1 and thus in the appropriate parameter space for the

integral to converge. Unfortunately, one can not call it predictive, if quantum
gravity excludes space-times that are already ruled out by experiment.

Unfortunately, there are still problems remaining: In ordinary thermodynamics,
the partition sums are given by Eq. (4.32). The parameters β and E are treated
as functionally independent in the sense that for any given β, one can integrate
over all E.

In gravity, this is not so. The 4 volume V of an Euclideanized space-time with
positive cosmological constant depends on Λ by V (Λ) = f2

Λ2 . Hawking notes in [82]

that V is bounded from below by the 4 sphere of radius
√

3
Λ
. This implies that

the Euclidean action I = −ΛV
8π

= − f2

8πΛ
of a classical background where R = 4Λ,

would be bounded from below.
A factor ΛV

8π
that is bounded is in contradiction to Eq. (4.42), where one

assumes that for any given V one can integrate over all Λ from −∞ to ∞. If ΛV
8π

has to be bounded, then the contour is not at ∞ but over some finite values and
this increases the convergence of the integral.

Unfortunately, with V as function of Λ, it seems one can not bring the integral
into the form of an inverse Laplace transform any more. One could try to write

N(f 2) =

ˆ
C

ZV C(Λ)e
f2

8πΛdΛ. (4.48)

and one may substitute β̃ = 1
8πΛ

to get

N(f 2) =

ˆ
C(w)

ZV C(β̃)
−1

8πβ̃
eβ̃f

2

dβ̃ (4.49)

.
While the integrand would have the form of an inverse Laplace transform, the

contour C(w) is problematic. In the original inverse Laplace transform it goes from
−i∞ to i∞. With the substitution β̃ = 1

8πΛ
, this contour would not be defined

any more.
Form a physical viewpoint, one has of course to incorporate the fact that V is

a function of Λ into the calculation. One possible solution could simply be to use
V (Λ) = f2

8πΛ
in the computation of the saddle points and the entropy.

From the integration over conformal factors, we have seen that we get Λ as a
variable field. We have noted that it was shown in [5, 6] that the integral converges
since the effective action is bounded from below. We have argued above that a
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universe expanding in time would need a non-vanishing Hamiltonian because it
has time dependent observables. For a state with non-vanishing Hamiltonian and
a well defined energy, the microcanonical partition sum is a function of the energy.
In section 4.4, we will associate a number of boundary terms to the cosmological
constant which provides a non-vanishing Hamiltonian. We will argue that one
therefore may associate to the energy density given by the cosmological constant
Λ an energy (3)V Λ

8π
, where (3)V is the three volume.

If we regard Zm = C(Λ)e
ΛV
8π as microcanonical partition sum, and want to

compute the maximum of S = ln(Zm) for a given V , then the value Λs where
this maximum occurs can be computed by setting the derivative of dln(Zm)

dΛ
to zero.

Since V is a function of Λ, one has to substitute V (Λ) = f2

8πΛ
, before one computes

the saddle point, i.e one has to compute the maximum of Zm = C(Λ)e
f2

8πΛ .
If one is sceptical with the association of Zm = C(Λ)e

f2

8πΛ with a microcanonical
ensemble, one can also argue as follows:

The amplitude

Z =

ˆ {ϕ2,t2}

{ϕ1,t1}
dϕe−I(ϕ) (4.50)

of a field ϕ with an Euclidean action I that goes over all paths starting from field
configurations ϕ1 at t1 to ϕ2 at t2 is proportional to the probability amplitude
〈φ1, t1|φ2, t2〉 of finding the configuration at t2 in a state ϕ2. Furthermore, if
t2 →∞, then the path integral represents the ground state [4, 82].

If we have associated the cosmological constant with a non-vanishing Hamilto-
nian, one has time dependent states. Given an initial state and a certain 4-volume
V as an end configuration, the probability of finding the state at this final config-
uration can then be computed from the maximum of the amplitude. With Λ as a
continuous field, the maximum should be computed by setting the derivative of
the amplitude with respect to Λ to zero. The observed value of Λ is then where
this maximum occurs.

One should note that this procedure only seems to work if one has a non-
vanishing Hamiltonian Ĥ. If Ĥ = 0, then one has no time dependent states and
there are no amplitudes evolving from an initial time and a starting configuration
to a different configuration in a given interval. We will propose a method how the
cosmological constant can be associated with a non-vanishing energy in section
4.4.

The approach to maximize the amplitude in order to find the ground state
was first proposed by Hawking in [82]. There, Hawking also mentions briefly
that one can get the cosmological constant as a a variable field by summing the
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gravitational path integral over all classical metrics. However, in [82], he sets the
factor C in the amplitude to 1. The one loop correction C contains topological
terms. Without them, the article [82] does not discuss any results that may be
related to the topology.

In [82], Hawking also notes that one can get the variable cosmological constant
from a matter field that makes no other contribution to the equations of motion.
This approach was criticised by Duff in [86], who noted that there would arise an
inconsistency. The equations of motion would yield a cosmological constant with
a different sign than in the action. The problem was cured by Wu in [87] who
noted that one needs to add a boundary term to the matter field in order to get a
consistent model.

Hawking’s idea to threat Λ as a variable field and to maximize the amplitude
with respect to that field is similar to the proposal of Barrow and Shaw [88]. A
main difference is that the calculations of Barrow and Shaw need a universe with
an apparent horizon that can be described with a GHY boundary term. This is
not necessary in Hawking’s model.

4.3 Calculations with the modified space-time foam
model

Before we go into detailed computations, we want to summarize again the differences
between Hawking’s model and the one presented in this thesis:

• In contrast to the computation of Hawking’s article [82], we do not neglect
the parameter C in the amplitude Z = Ce−I .

• In contrast to Hawking’s article [9], we use a different renormalization scale
µ2. We also use a different action I in the amplitude Z = Ce−I without an
approximation that only works for Λ < 0. Furthermore, we do not compute
the saddle point from from Ze

ΛV
8π but from the amplitude Z = Ce−I , where

we always consider that V is a function of Λ.

• In section 4.4 we will discuss what happens when we include the topological
contributions of matter terms. We will show under which conditions these
terms become ghost free. We will describe how their dependence on the
Euler characteristic has to be interpreted physically and how they change
the cosmological constant. In [89], Hawking also analysed matter terms. In
this article, he presents an argument without a precise calculation which
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would imply that the topological terms from the matter amplitudes would
lead to Λ = 0. We will use a simple calculation to show that this is not the
case.

If we compute the saddle point Λs1 from

∂
(

lnZV C(Λ) + f2

8πΛ

)
∂Λ

∣∣∣∣∣∣
Λs1

= 0 (4.51)

we get the following expression

Λs1 = − 90πf 2

848π2χ− 261f 2
. (4.52)

The observed cosmological constant is positive. Therefore, if χ > 0, one must
have χ < 261

848π2f
2.

The Euler characteristic is given by the alternating sum

χ =
4∑
i=0

(−1)ibi, (4.53)

where b0 is the number of connected components and b1, b2, b3, b4 are the numbers
of i+ 1 dimensional cavities. For a compact space-time,

b0 = b4 = 1 (4.54)

and if the manifold is simply connected then [9]

b1 = b3 = 0. (4.55)

A negative Euler characteristic can therefore only occur for space-times which are
not simply connected [9]. This is the case for worm holes, for example.

Substituting f 2 = Λ2V back into Eq. (4.52) yields

Λs1 =
5π

29
±
√

225π2V 2 + 24592π2V χ

87V
. (4.56)

This formula for the stationary point is a bit different from the result of
Hawking due to the various changes that we have made.
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The different signs in front of the square roots from Eq. (4.56) come from the
Λ2 contribution in the amplitude. They are a result of the usual R2 corrections
from quantum field theory in curved space-times [22].

With the stationary point from Eq. (4.52), one can compute the entropy

S/kb = lnZV C(Λs1) +
f 2

8πΛs1

. (4.57)

Inserting Eq. (4.52), one sees that for large V the Λ value with the negative sign
leads to a larger entropy.

The formula with in Eq. (4.56) with the negative sign in front of the square
root yields Λs1 = 0 in the limit V =∞ for negative χ or for χ = 0 and arbitrary
V . Since for our universe, the cosmological constant is very small positive, this
solution appears to be physical. Because the contour integration was right to the
complex axis, the formula must be used such that it leads to a positive Λ. For
χ ≥ 0, one would get Λ < 0 which is forbidden.

The formula with the positive sign has Λs1 = 10π
29

in the limit V →∞ and can
never approach smaller values. Since the observed Λ ≈ 10−122 the solution with
the positive sign therefore appears to be unphysical.

We observe from Eq. (4.56) that Λs1 is not defined at all for negative χ if
χ < − 225V

24592
≈ −0.009V . This implies that for a finite volume V only a certain

number of wormholes can fit, which suggests they have some minimum size.
From the form of Eq. (4.56) and the fact that one has to chose the negative

sign, one can make the prediction that Λ ≥ 0 for all volumes V .
If we solve Eq. (4.56) for χ, we get:

χ = 9Λ

(
29Λ− 10π

848π2

)
V = |c|V. (4.58)

If we insert the observed value of the cosmological constant of 10−122 in Eq. (4.58),
we note that χ for our universe has to be negative.

Despite some differences to Hawking’s formulas, Eq. (4.58) still describes a
space-time filled with one cavity per |c|−1 unit Planck volumes. However, the
cavity density |c| is now much smaller than the density we get from Hawking’s
article. In one Planck 4 volume, Hawking gets one gravitational cavity. With
Eq. (4.58) and Λ = 5.6 · 10−122 one gets a number density of only ≈ 1.89 · 10−123

cavities per unit Planck 4 volume. On macroscopic scales, this is still a large
number density. If one considers a 3 Volume of a single cubic meter for a time of
one second (in si units), then, |χ| ≈ 8.56 · 1024 cavities should have been produced
during that second in this 3 volume.
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Figure 4.1: Plot of the functions Λs1(V ) and Λs0(V )
for χ = −1. For smaller χ, both curves fall slower to their limit 0.

If we would do the computation of the stationary point of Λ with an amplitude
where the Λ2V term is omitted, we would get

Λs0 = −424πχ

45V
. (4.59)

Plotting Λs1 and Λs0 shows that

Λs1 > Λs0 for V where Λs1 is defined (4.60)

if we use the same χ as parameter. For the amplitude with the Λ2V term, the
cosmological constant strives to zero much slower for large volumes, see fig. 4.1.

We can calculate the Euler characteristic that maximizes the entropy from

∂S

∂χ
= −106

45
ln(3)− 53

45
ln(5)− 53

45
ln

(
f 2

(−848π2χ+ 261f 2)µ2

)
= 0. (4.61)

Solving this equation for µ implies 2πµ2 = Λs1 and one easily checks that

∂2S

∂χ2
=

44944

45

π

848π2χ− 261f 2
, (4.62)

Hence Λs1 = 2πµ2 can be a maximum only if

χ <
261f 2

848π2
. (4.63)
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which holds especially for negative Euler characteristic.
If we go a different route by solving Eq. (4.52) for χ and inserting this in the

amplitude as a function of Λs1, we get

∂S

∂Λs1

=
f 2

8πΛ2
s1

(
ln(2) + ln(π)− ln

(
Λs1

µ2

))
, (4.64)

Setting ∂S
∂Λs1

= 0 also shows that Λs1 = 2πµ2, which is a maximum since

∂2S

∂Λ2
s1

= − f 2

8πΛ3
s1

(
2ln(2) + 2ln(π)− 2 ln

(
Λs1

µ2

)
+ 1

)
(4.65)

which is
∂2S

∂Λ2
s1

= − f 2

8πΛ3
s1

< 0 (4.66)

for a positive Λs1 = 2πµ2.
One should note that in Hawking’s original article, Eq. (4.47) does not follow

conclusively as the only possibility because of the different action that he is using.
The coincidence problem of the value of the cosmological constant is now

translated into the problem of a choice for the scale parameter µ. In sections 1.4
we have reviewed arguments from the literature and in section 4.2 we have added
own additional arguments which imply that one has to set

µ ≈ H0 (4.67)

Using Eq. (1.69) in Eq. (4.47) that we computed from the amplitude implies

Λ ≈ 2πH2
0 , (4.68)

which is approximately what is observed.
The cosmological constant that one gets from the amplitude of quantum gravity

therefore seems to be compatible with the relation H2
0 ≈ Λ that emerges from the

classical Eq. (1.63) for a universe where k and ρ can be neglected. This may be
a step to solve the coincidence problem in quantum gravity. However, according
to quantum field theory, the value of the scale parameter must ultimately be
determined with input from measurement. Showing that Λ ≈ 2πµ2 ≈ H2

0 for a
certain Friedmann universe just makes it necessary to measure H0.

For precision calculations, one should note that the measured Λ is not ex-
actly equal to 2πH2

0 . Also, setting Λ = 2πµ2 exactly would imply that C =(
Λ

2πµ2

)− 106
90
χ+ 87

240π2 Λ2V

= 1. One has 1x = 1 for any x, and therefore, any terms
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with respect to the Euler characteristic would become trivial for C = 1. Further-
more, as we have seen, setting C = 1 implies that the amplitude is maximized at
Λ = 0.

Thus, one can not have C = 1 exactly if the considerations about the topological
above should work and if Λ should not be exactly zero.

In the following we will add matter terms and discuss how they change the
considerations above.

4.4 Adding matter terms to the modified space-
time foam model

In the following, we will describe what happens when we add matter corrections.
It is known that in curved space-times, after the application of a suitable renor-
malization method, the effective Euclidean matter action for a field with mass m
becomes

Im;eff = A

ˆ
d4x
√
g

(
1

2
m4a0 −m2a1 + a2

)
, (4.69)

where ai are the Seley-DeWitt coefficients that depend on the matter fields and
on the topology and

A =
1

32π2
ln

(
m2

µ2

)
(4.70)

has been computed with some renormalization method of choice. We can then use
this effective matter action to write a combined matter gravity amplitude

Z̃ = ZV CZmatter (4.71)

where ZV C is given by the gravity amplitude ZV C = C of Eq. (4.41) and

Zmatter = eIm,eff . (4.72)

We have worked here with Euclidean quantum gravity, which is derived by
a Wick rotation. For fermions, there are several issues when one attempts to
construct spinors on an Euclideanized space-time. Several well known attempts
are from Osterwalder and Schrader [90], which doubles the number of spinor fields
in the Euclidean Space-time. There are other approaches, e.g. from Nicolai [91],
whose Euclidean action is not hermitian. Recently, there is a new approach from
Nieuwenhuizen and Waldron [92], where the spinors are not doubled and the
hermiticity is maintained. In this thesis, we will just assume that we can derive
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the amplitude in Lorentzian space-time. The effective action does not contain the
spinorial fields any more. It only contains terms like the Ricci scalar, Ricci tensor,
the Riemann curvature tensor and derivatives. For these terms, the Wick rotation
is unproblematic. Therefore, we assume that we can make the Wick rotation after
we have derived the effective action.

For fermions, the Seley-DeWitt coefficients are given by a trace over matrices
ã0, ã1, ã2. One has [23, 93]

a0Fermion = tr(ã0) = 4, (4.73)

a1Fermion = tr(ã1) = −1

3
R, (4.74)

and
In general, a0 = ±1 for each bosonic (fermionic) degree of freedom and a1 ∝ R.

Therefore, the first term in Im,eff can be written as

1

8π

ˆ
d4x
√
gΛm (4.75)

with

Λm = n
m4

8π
ln

(
m2

µ2

)
, (4.76)

where n is a numerical factor that is +1 for each bosonic and −1 for each fermionic
degree of freedom (for fermions, one degree of freedom means one dimension of the
gamma matrices, so n = −4 for an electron, whereas one has n = 1 for a Higgs
Boson).

Λm is a topology independent renormalization of the cosmological constant,
which then becomes a sum

Λeff = Λg + Λm, (4.77)

where Λg is the cosmological constant that we get from gravity alone.
If we set a2 = 0, then the effective action will only correspond to an additional

cosmological constant term and a renormalization of Newton’s constant. The
scaling behaviour of the gravity amplitude was derived in [55, 94] for solutions
with an arbitrary cosmological constant. These results still hold if we set a2 = 0
in the matter amplitude, but one has to replace Λ by Λeff everywhere. Before
we compute the stationary point, we have to substitute ΛeffV = f 2/Λeff in the
amplitude. Since the contribution Λm is not a variable field, we can compute the
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new stationary value Λeff,s0 of the cosmological constant from solving

d

dΛg

(
f 2

8πΛeff

+ ln (Z̃(Λeff ))

)
= 0 (4.78)

for Λeff , from which we get the relation between the Euler characteristic and Λeff .
Doing this computation shows that the relations between Λeff,s0 and the Euler

characteristic and the volume are again given by Eq. (4.52).
Similarly, we also get the value

Λeff,s0 = 2πµ2 (4.79)

from solving
d

dχ
S̃(Λeff,s0) = 0 (4.80)

for µ2. From this result we can conclude that the contribution of Λm = −9.7 ·
108GeV from the standard model matter has no observable effect at all.

This becomes different if we include the contributions of terms ∝ −
´
d4x
√
ga2

in the matter action. For example, for a scalar boson field, one has [23, 93]

a2Boson =
1

180
RµναβR

µναβ − 1

180
RµνRµν (4.81)

+
1

2

(
1

6
− ζ
)2

R2 − 1

6

(
1

5
− ζ
)
�R, (4.82)

where ζ is an undetermined coupling parameter that has to be measured by
experiment.

For fermions, one has

a2Fermion = tr(ã2) = − 7

360
RµναβR

µναβ − 1

45
RµνRµν (4.83)

+
1

72
R2 +

1

30
�R. (4.84)

Obviously the effective matter action is proportional to the Euler number:

Im,eff ∝
ˆ
d4x
√
ga2 ∝ −ηχ, (4.85)
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The energy momentum tensor Tµν can be computed from the variation of the
matter action. Its trace T gets into Einstein’s field equations and leads to

R = 4Λ− 8πT̃ . (4.86)

Where it is understood that T̃µν only describes the part of the energy momentum
tensor that does not contain the renormalizations of the gravitational and cosmo-
logical constants from a0 and a1. The effects of these terms were discussed above
and are assumed to have been handled already.

For a conformal massless model, one can neglect the contributions from a0 and
a1. It is known [23] that one then gets

T̃ = − a2

16π
. (4.87)

If one assumes that the R2 corrections modify the equations of motion by a
back reaction, then the procedure becomes more difficult.

The variation of the effective matter action with an a2 term is given by:

〈out, 0|T̃µν |0, in〉
〈out, 0|0, in〉

= a (1)Hµν + b (2)Hµν + c (3)Hµν (4.88)

In Eq. (4.88), a, b, c are numerical coefficients that depend on the renormalization
scale µ2 and the particle mass. They must hence be determined by measurement.
One has [23]

(1)Hµν =
1
√
g

δ

δgµν

ˆ
d4x
√
gR2, (4.89)

(2)Hµν =
1
√
g

δ

δgµν

ˆ
d4x
√
gRαβRαβ (4.90)

and
(3)Hµν =

1
√
g

δ

δgµν

ˆ
d4x
√
gRαβγδRαβγδ. (4.91)

The Euler characteristic is a topological invariant whose variation vanishes.
Therefore,

0 =(3) Hµν +(1) Hµν − 4 (2)Hµν . (4.92)

One of the three tensors in the first line of Eq. (4.88) can thus be absorbed into
the other two with new coefficients. For example, we could chose

a (1)Hµν + b (2)Hµν + c (3)Hµν = ã (1)Hµν + b̃ (2)Hµν (4.93)
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with
ã = a− c, b̃ = b+ 4c. (4.94)

Another choice would be

a (1)Hµν + b (2)Hµν + c (3)Hµν = â (1)Hµν + ĉ (3)Hµν (4.95)

where
â =

4a+ b

4
, ĉ =

b+ 4c

4
. (4.96)

Using Eq. (4.88) and
R = 4Λeff − 8πT̃ (4.97)

as well as the Einstein Hilbert action

I = − 1

16π

ˆ
d4x
√
g(R− 2Λeff ). (4.98)

We could try to compute an amplitude Z = Ce−I with the corrections (1)Hµν ,
(2)Hµν and (3)Hµν .

The tensors (1)Hµν , (2)Hµν and (3)Hµν are computed in [23]. They are given by

(1)Hµν = 2R;µν − 2gµν�R−
1

2
gµνR

2 + 2RRµν ,

(2)Hµν = R;µν −
1

2
gµνR�R−�Rµν −

1

2
gµνR

αβRαβ + 2RαRαβµν ,

(3)Hµν = −1

2
gµνR

αβγRαβγ + 2RµαβγR
αβγ
ν

−4�Rµν + 2R;µν − 4RµαR
α
ν + 4RαβRαµβν , (4.99)

where ;µ denotes covariant derivation with respect to µ.
As ∝ R2 corrections to R they would make it necessary to quantize a gravity

action with higher order derivatives.
It was proven by Stelle that gravity with additional terms of the form R2 +

RµνR
µν or R2 +RµναβR

µναβ is renormalizable [30, 31].
As we have seen in section 1.5, theories with higher derivatives often suffer

from the Ostrogradski instability [2, 32].
It is known that the Ostrogradski instability does not occur for the κ2R +

âR2 model because the latter avoids the non-degeneracy assumption [32] of the
Ostrogradski theorem.
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Unfortunately, the Gauss Bonnet theorem allows only to remove one of the
three higher curvature terms in a2. If we remove.e.g (3)Hµν , we still have the (2)Hµν

term left. It contains a variation of RµνR
µν terms that lead to the Ostrogradski

instability.
In the following, we will propose a method to remove the unfriendly ghosts

from the coupled gravity plus effective matter amplitude.
A typical a2 term of the effective action with several bosons and fermions

consists of terms of the form

Ieff = Afermion

(
afermion

ˆ
d4xR2 + bfermion

ˆ
d4xRµνR

µν

+ cfermion

ˆ
d4xRµναβR

µναβ

)
+ Aboson

(
aboson

ˆ
d4xR2

+ bboson

ˆ
d4xRµνR

µν + cboson

ˆ
d4xRµναβR

µναβ

)
(4.100)

Afermion and Aboson are sums of the factors from Eq. (4.70) for the different
particles. For N bosons with masses mi, one has

Aboson =
N∑
i=1

1

32π2
ln

(
m2
i

µ2

)
(4.101)

and we have from [22, 23, 93] that afermion = 1
72
, bfermion = 1

45
, afermion = 1

72
,

cfermion = − 7
360

and aboson = 1
2

(
1
6
− ζ
)2, bboson = − 1

180
, cboson = 1

180
.

Eq. (4.100) is equal to

Ieff = (Afermionafermion + Abosonaboson)

ˆ
d4xR2

+ (Afermionbfermion + Abosonbboson)

ˆ
d4xRµνR

µν

+ (Afermioncfermion + Abosoncboson)

ˆ
d4xRµναβR

µναβ

≡u
ˆ
d4xR2 + v

ˆ
d4xRµνR

µν + w

ˆ
d4xRµναβR

µναβ, (4.102)

where

u = Afermionafermion + Abosonaboson, (4.103)
v = Afermionbfermion + Abosonbboson, (4.104)
w = Afermioncfermion + Abosoncboson (4.105)
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If we remove the RµνR
µν term from the effective action with the Gauss Bonnet

theorem, then one gets

Ieff = ĉ

ˆ
d4xRµναβR

µναβ + â

ˆ
d4xR2 + ωχ, (4.106)

where ω is some numerical factor, and

â =
4a+ b

4
(4.107)

and
ĉ =

b+ 4c

4
. (4.108)

If we ĉ = 0, the effective action then contains only the κ2R + âR2 dependent
terms in addition to a contribution which is proportional to the Euler characteristic
χ. The latter has a vanishing variation. Therefore, it does not contribute to the
equations of motion and it also does not give rise to particles that may propagate
energy. The disastrous RµναβR

µναβ and RµνR
µν terms that lead to ghosts have

been removed. However, in contrast to the original Starobinski model from which
inflation was derived, this theory contains a Λ term.

Here, we just want to note which conditions we need to have for ghost freedom.
If we use Eqs. (4.104-4.105) in Eq. (4.108),

4ĉ = b+ 4c ≡ 0, (4.109)

one finds that
Aboson/60− Afermion/3 ≡ 0. (4.110)

From the definition of Aboson and Afermion in Eq. (4.101) it then follows that
the system of gravity and massive bosonic and fermionic matter is only physical
for a specific relationship between the sums of the logarithms of the masses of
bosonic and fermionic fields.

For massless fields, A = γ̃
32π2 where γ̃ is the Euler Mascheroni constant and

the first Seley-DeWitt coefficients vanish a0 = a1 = 0. For arbitrary fields, the
coefficients a, b, c that the higher derivative terms are multiplied with may be read
off from [93]. If massless fields are present, then their contributions have to be
included if one aims to remove the RµναβR

µναβ term from the effective matter
action.

The calculation of Hawking needs the equations of motion R = 4Λ in order to
express the value of the gravity action I for a given 4 volume V as a function of Λ,
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V , and some numerical coefficients only. This is possible for the classical Einstein
action whose value is given by −ΛV

8π
. However, with the equations of motion for

R +R2 gravity, this is not so easily possible.
One can make the argument that â, ĉ must be very small as we do not observe

corrections from (1)Hµν , (2)Hµν or (3)Hµν in Einstein’s equations in the macroscopic
world.

One can therefore make the assumption to neglect the back-reaction of the
(1)Hµν , (2)Hµν or (3)Hµν corrections to the Einstein equations in a first step.

Then the gravitational field fulfils Einstein’s equation R = 4Λ and Rµν = Λgµν
and one has to compute the effective matter action with these relations.

This would yield corrections proportional to Λ2
mV = f 2 and the Euler charac-

teristic χ in the effective matter action.
If we ignore the back-reaction, then the theory becomes essentially pure gravity

with a cosmological constant

Λ̃ = Λ + âΛ2. (4.111)

With the result of one-loop finiteness of pure gravity, one can continue to use the
WKB approximation.

If one uses that Λ2V = f is some dimensionless factor, then the Λ2 correction
of the effective action does not lead to a rescaling of the eigenvalues of the zeta

functions. Therefore, the Λ2V correction does not affect the factor C =
(

Λ
2πµ2

)− 1
2
γ

in the one loop amplitude Z = Ce−I . The Λ2 correction just appears in the
effective action, but since it is multiplied with V , the additional ∝ ef

2 in the
amplitude does not affect the saddle points.

However, even if one sets the coefficients â, ĉ both to zero (which would be
problematic, since quantum gravity also deals with small corrections), one has
terms proportional to the Euler characteristic in the amplitude. These terms are
given by

ˆ
d4x
√
ga2 ≈

8π2

45
χ (4.112)

for bosons, and for fermions one arrives atˆ
d4x
√
ga2 ≈ −28π2

45
χ, (4.113)

where we have neglected the Λ2V term because it does not change the saddle
points.
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The variation of these terms is zero so they do not result in a a correction to
the classical equations of motion. They also do not result in a correction from
perturbative quantum gravity.

However, Hawking’s space-time foam model includes a non-perturbative sum-
mation over all classical metrics.

Ignoring potential effects of â, ĉ, the combined matter gravity action yields an
amplitude of the form

Z(Λeff , χ) =

(
Λeff

2πµ2

)− 106
90
χ+ 87

240π2 Λ2
effV

eηχ+θf2

(4.114)

where η and θ are some numerical factor that depends on particle masses. One
notes that η has a different sign for bosons and fermions.

We have already noted in section 4.2 that the gravitational amplitude we have
used in the calculation above was simplified and the entire amplitude of quantum
gravity reads

Z̃V C = e
1
2
ζ′F (0)+ 1

2
ζ′G(0)−ζ′C(0)

(
Λ

2πµ2

)− 1
2
γ

. (4.115)

In general, the derivatives of the Euclidean zeta functions contain integrals over
the Seley-DeWitt coefficients according to Eq. (1.60). If one would include these
terms in the gravity amplitude, they would change the numerical coefficients in
the higher derivative terms a bit.

If we are substituting
V (Λeff ) = f 2/Λ2

eff (4.116)

in this amplitude and compute the saddle point Λeff,s1 with the same method as
in Eq. (4.78), we get the same relations between Λeff,s1 and the volume and Euler
characteristic as we computed them in Eq. (4.52) from the amplitude without the
eηχ term.

With Λeff,s1 given by Eq. (4.52), we can write the entropy as

S(Λeff,s1) ≈ ln (Z(Λeff,s1)) +
f 2

8πΛeff,s1

. (4.117)

If we solve
dS

dχ
= 0 (4.118)

for µ2 we get
Λeff,s1 = 2πe

45
53
ηµ2. (4.119)
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and one checks that this is a maximum for large negative Euler characteristics as
before.

The factor η has different signs for fermions and bosons and depends on their
masses. Thereby, with the addition of appropriate matter particles, one may e.g.
correct the stationary value such that it becomes Λ = 2.13H2

0 if we set µ = H0.
For our universe, another important correction may come from a boundary term
at the apparent horizon. Such a term may also change the scaling behaviour of
the amplitude and contribute to the gravitational entropy.

We note that this result is different from an argument of Hawking who, without
a detailed calculation, argues in [89] that the topological terms would lead to
Λ = 0.

We have argued that for a universe where we have added an effective matter
action Im,eff ∝ χ, the equation for the saddle point of Λeff,s1 remains the same as
in Eq. (4.52).

With a positive cosmological constant, one usually gets an accelerated expansion
of the volume of the universe in time. For the universe with the added matter
amplitude, we may wait until some time t1 at which the volume V becomes the
same as in the universe where the matter was not added at some time t0.

Then, Eqs. (4.119) and (4.79), or

Λeff,s1 6= Λeff,s0, (4.120)

would imply that the Euler characteristic between the two universes would be
different, as there are no other quantities in Eq. (4.56) that could be responsible
for a change of the saddle point of Λ.

The Euler characteristic does not change the equations of motion nor does
it introduce new propagating degrees of freedom. Despite this, its appearance
in the matter amplitude implies by Eqs. (4.117) and (4.119), that it changes
the entropy in Hawking’s non-perturbative summation of the path integral over
classical metrics.

This suggests that the physical interpretation of the eηχ dependent terms in
the effective matter action is simply to describe effects from black or worm hole
formation that one gets from energy fluctuations of the matter.

With this perspective, the fact that the perturbation expansion breaks down
in quantum gravity should not come as surprising. The usual Feynman rules
only describe the scattering processes with particles and not with black-holes.
Therefore, one should probably augment them with additional rules for black-hole
scattering before one goes to even higher energies beyond the one-loop order. A
first attempt for such a model is given in section 5.3.
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For researchers working in supergravity, it may be an interesting check whether
the cosmological constant would turn out to be exactly zero if matter terms are
inserted such that the theory is supersymmetric. That the vacuum energy vanishes
in theories with exact supersymmetry has been proven using perturbation theory
in curved space-times but there are also more general grounds that the vacuum
energy of supersymmetric theories is vanishing which are based on the Hamiltonian
[27].

In order to see that the vacuum energy vanishes with supersymmetry one has
to write the matter amplitudes with zeta function renormalization. The graviton is
massless and in an exactly supersymmetric theory, the gravitino would be massless
too. In a supersymmetric theory, there may be additional massless particles. Their
amplitudes would have a similar scaling factor ∝ Λ

2πµ2 .
The vanishing of the sum of all vacuum diagrams in supersymmetric theories

was proven for perturbation theory at all orders in curved space-times by Zumino
[95]. Hence the amplitudes of the massless particles must lead to a γ factor with
opposite sign than the amplitudes of their massless superpartners. Therefore

Zmassless−particles ∝
(

Λ

2πµ2

)−γ
(4.121)

and
Zmassless−superpartners ∝

(
Λ

2πµ2

)γ
. (4.122)

Both amplitudes would be multiplied. This cancels the scaling terms of the one
loop action that have led to Λ ≈ 2πµ2 in the space-time foam calculation. One is
led to C = 1 and an amplitude

Z ∝ e
f2

8πΛ (4.123)

which only contains the background contribution. If we compute the entropy
maximum of this amplitude, we find that Λ = 0. So with exact supersymmetry,
the vacuum energy also vanishes in the space-time foam model.

4.5 The modified space-time foam model and the
problem of time

We have argued in section 4.2 that the approach of Hawking needs the assumption
of a well defined notion of energy for a compact space-time. Space-times with
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cosmological constant usually lead to an accelerated expansion of the universe. This
is a dynamical process for which one would need time dependent observables. As
we have seen in section 2.4, such processes also need a non-vanishing Hamiltonian.

Below, we will give arguments from quantum gravity which suggest that the
cosmological constant is connected to some kind of quasi-local energy.

We have already noted in section 4.2 that the entropy is proportional to

S ∝ ΛeffV

8π
=

f 2

8πΛeff

, (4.124)

where Λeff = Λg + Λm and Λg is a contribution from gravity. In section 3.3, we
have reviewed a calculation from Hawking which implies that the curvature of
space-time must be strong enough to form a boundary if the gravitational action
I makes a contribution to the entropy.

In the case of single black-holes, one has a boundary at infinity and, since
the Euclidean space-time can not describe the space-time within the black-hole,
one also gets a boundary at the horizon. In the space-time foam model, one
assumes that the space-time is compact. So, there is no boundary at infinity.
However, we have found that for a given volume, the state of maximum entropy
has a background space-time filled with N = |c|V cavities. In order to have
a contribution of the action to the entropy, each of these N cavities should be
associated to a boundary. Around the i-th cavity, we add the following Euclidean
GHY boundary term [96] of the form

IGHY,i =
1

8π

ˆ
∂Mi

d3x
√
hKab

i hab (4.125)

to the action
I0 = − 1

16π

ˆ
d4x
√
gR (4.126)

where hab is the induced metric on the i-th boundary ∂Mi and Ki is the extrinsic
curvature there.

This proposal is actually quite similar to a proposals made in [78] and [76].
The authors of [76] show that this mechanism would lead to inflationary behaviour,
and that it would even provide an exit from inflation. But they do not observe
that if the value of the cosmological constant is given by the masses or areas of
instantons, then the cosmological constant should be found by a principle that
determines the most probable configuration for them.

From Eq. (4.58), one gets

N = |χ| = |c|V = |c|
ˆ
d4x
√
g (4.127)
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boundaries and the mean value

ÎGHY =
1

N

N∑
i=1

IGHY,i (4.128)

an action

I = − 1

16π

ˆ
d4x
√
gR +

N∑
i=1

IGHY,i

= − 1

16π

ˆ
d4x
√
gR +NÎGHY

= − 1

16π

ˆ
d4x
√
gR + ÎGHY |c|

ˆ
d4x
√
g

= − 1

16π

(ˆ
d4x
√
gR− 2ΛV

)
, (4.129)

where we have defined

Λ ≡ 8π|c|ÎGHY . (4.130)

Using Eqs. (4.58 and (4.130) one finds that

ÎGHY =
106π

9|(29Λ− 10π)|
. (4.131)

If the boundaries of the cavities are similar to the boundaries of event horizons
from black-holes in Euclidean quantum gravity, then one would expect something
like

ÎGHY =
A

4
(4.132)

where A is the area of each cavity. With Λ ≈ 5.6 ·10−122 one gets A = 4ÎGHY ≈ 4.7
Planck areas.

In order to derive equations of motion, one writes the variation δI as
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δI =
−1

16π
δ

ˆ
d4x
√
gR + δ(|c|V ÎGHY )

=
−1

16π
δ

ˆ
d4x
√
gR

+|c|ÎGHY
ˆ
d4xδ
√
g + |c|V δÎGHY

=
−1

16π
δ

ˆ
d4x
√
gR +

´
d4xδ
√
g

8π
Λ

+
N∑
i=1

ˆ
∂Mi

d3x
√
h
(
δKab

i hab
)

=
−1

16π
δ

ˆ
d4x
√
g(R− 2Λ), (4.133)

where we have used the known fact that the sum of the boundary terms
ˆ
∂Mi

d3x
√
h
(
δKab

i hab
)

(4.134)

cancel another boundary term that one gets from the variation of

−1

16π

ˆ
d4x
√
ggµνδRµν . (4.135)

We observe that a contribution to the equations of motion which is similar to
the cosmological constant does arise because one has the the term ÎGHY for

N = |c|V = |c|
ˆ
d4x
√
g (4.136)

times in the action.
We want to note that for a manifold M with boundary, the Euler characteristic

χ =
1

32π2

ˆ
d4x
√
|gµν|RαβγδR

αβγδ +R2 − 4RµνR
µν (4.137)

usually contains an additional term that has to be added to χ. This term is given
by

χ∂M =
1

128π2

ˆ
∂M

d3x
√
|h|(RabcdK

acnbnd + 64det(Ka
b )), (4.138)
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where na is the outward directed normalt to the boundary ∂M , Kab is the extrinsic
curvature and hab = gab − nanb is the induced metric on ∂M .

In the calculation of the space-time foam model, we used only Eq. (4.137) for
the Euler characteristic and we omitted the contribution of χ∂M . The reason why
we think this is allowed in our case is that according to the computation above,
the N = |c|V boundaries lead to an action that resembles a gravity action without
boundary terms but with cosmological constant term.

Eq. (4.130) also makes clear why the gravitational contribution to the cosmo-
logical constant should be seen as a continuous field. The cosmological constant

Λ = |c|8πÎGHY (4.139)

is related to the mean of the area (given by ÎGHY ) and density (given by |c|) of the
cavities in the space-time that are due to quantum fluctuations. In general, the
cavities can have any area and density per volume, which would lead to different
possible values of Λ. If we have to sum the path integral over all possible metrics
with different boundaries or cavity densities, the system, if it is at its ground state,
should then be observed at the value of Λ where the ground state wave-function is
at its maximum.

The difference between our cavities from the ordinary black-holes from Euc-
lidean quantum gravity appears to be mostly that the boundary is not due to the
Wick rotation since one should get a cosmological constant even when one is not
transforming the metric into an Euclidean one. It therefore can not be an artefact
of Euclideanization and one has to assume that the boundaries are still there in
the Lorentzian theory.

The space-time of Hawking’s model allows the use of the Hamiltonian of gravity,
which implies that space-time is globally hyperbolic and can be written in the
form of Ω = R × Σ, where Σ is a space-like three manifold. Furthermore, Σ
should contain N boundaries ∂Σ and these boundaries should be there even in the
Lorentzian space-time after Wick rotation. Now according to a definition given
by Visser in [97], if a Lorentzian space-time has a compact region Ω = R × Σ
where Σ has a non-trivial topology with boundary ∂Σ ∼ S2, then Ω contains an
intra universe worm hole. Therefore, the cavities in Hawking’s model are certainly
compatible with worm holes, as the latter also imply that space-time is not simply
connected. The assumption that space-time is globally hyperbolic is apparently
needed in order to define the Hamiltonian. With traversable worm holes this would
certainly be incompatible, but not with non-traversable wormholes [98].

We remark that this solution to the cosmological constant problem also appears
to circumvent Weinberg’s no go theorem that we have described in section 1.6.
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The ground state of quantum gravity appears to be a space-time filled with worm
holes. This does certainly not fulfil the requirement of a constant, translationally
invariant metric and thus it appears that Weinberg’s no-go result can not be
applied to this solution of the cosmological constant problem.

The action in Lorentzian space-time is given by S =
´
dtL where L is the

Lagrangian density. After a Wick rotation to Lorentzian space-time, the term

ΛV = |c|ÎGHY
ˆ
d4x
√
g (4.140)

that was added to the Euclidean action gets a minus sign. If such a term is
subtracted from the Lorentzian action, then a term

L∂M = −|c|ÎGHY
ˆ
d3x
√
g = −ΛV (3)

8π
, (4.141)

where V (3) is the 3 volume, is subtracted from the Lagrangian density. The L∂M
term is a boundary term because Λ = 8π|c|ÎGHY , where ÎGHY is the average of an
area that comes from a boundary. For generalized coordinates q, p, the Lagrangian
density is given by

L = q̇ipi −H. (4.142)

Therefore, L∂M has to be added to the gravitational Hamiltonian. As the Hamilto-
nian of general relativity without boundary term is zero, the new Hamiltonian
becomes:

H =
ΛV (3)

8π
(4.143)

or τH = ΛV
8π

. This is a well-defined Hamiltonian that allows the use of canonical
partition sums from thermal field theory, like

Z = tr
(
e−τH

)
= tr

(
e−

V Λ
8π

)
(4.144)

with τ as a time coordinate in Euclidean space. A non zero Hamiltonian leads, in
accordance with the observations in [3, 60] to a solution of the problem of time in
quantum gravity.

By saying this, one should note that even if one can now write time dependent
operators like

A(t) = e−itHAeitH , (4.145)

DeWitt argues in [3] that one only has time evolution if the amplitude is not an
Eigenstate of H and one must construct wave packets with different energy.
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Here we want to note parts of an article of Page and Wooters [99]. They begin
their letter on the problem of time by stating their unproven assumption that
there might exist a super-selection rule for energy in quantum gravity, similar to
the super selection rules that exist for charge in quantum electrodynamics. Such a
rule would mean that there were no superpositions with different energy and one
would still be left with a problem of time.

Hawking’s model of the cosmological constant [4, 82] rests on the fact that
one can write the state of quantum gravity as Ψ =

∑
n ψnψne

iEnt. Only then one
can consider the amplitude of Euclidean quantum gravity as proportional to the
probability of a state with some initial configuration at a time t0 to develop into a
certain different configuration at a later time t1 > t0.

Similarly, Hawking’s volume canonical ensemble from [9] depends on the
assumption that one can construct wave packets of different energy.

The set of states |gn〉 forms a complete orthonormal base of energy eigenstates
according to Hawking. Since one can define a trace over these states, it appears
valid to build superpositions

|Ψ〉 =
∑
n

cn|gn〉 (4.146)

with them. Due to the equality of Eqs. (4.144) and (4.33) some of the states |gn〉
must be associated to different 4 volumes, i.e. they are eigenstates of the Wheeler-
DeWitt equation for different three volumes and thus solve the Wheeler-DeWitt
equation at different times. Using

H =
ΛV (3)

8π
, (4.147)

one sees that eigenstates of the Wheeler-DeWitt equation for different 3 volumes
have different energy. The superposition |Ψ〉 then corresponds to a wave packet of
eigenstates with different energy, as envisaged by DeWitt.



Chapter 5

How matter behaves in the modified
space-time foam model

5.1 Introduction

Quantum fluctuations of gravity might have experimentally observable consequences
if they describe a space-time foam. After Hawking wrote his first article on this
idea, Hawking, Page, Pope and Warner immediately published works where they
investigated how quantum mechanical particles might change their trajectory if
they were flying close to a virtual black-hole from space-time foam [100–102].

In their calculation, Hawking, Page and Pope restrict themselves to simply
connected space-times and note that by using topological sums of a certain number
of copies of CP 2 and CP 2 (the bar means opposite orientation), one can construct
a simply connected closed manifold of arbitrary signature τ and Euler characteristic
χ, with an odd and definite intersection form. Similarly, by using certain numbers
of copies of S2 × S2 and K3 if τ > 0 or K3 if τ < 0, one can construct a simply
connected closed manifold with even and indefinite intersection form, arbitrary
signature and Euler characteristic, see [103] p. 26. By Freedman’s theorem,
the topology of the simply connected space-times from these construction would
then, up to homeomorphy, be equivalent to an arbitrary simply connected space-
time with the same Euler characteristic and signature (Note, however that this
equivalence just holds for the topology, and not the metric).

With the argument above, the topology of this simply connected space-time
can be build out of building blocks like CP 2, CP 2, S2 × S2, K3,K3. Hawking et
al then proceed to calculate the scattering amplitudes of particles that are moving
in these building blocks.
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They conclude that the amplitudes are of order

A ∝
(
k1k2

mp

)s
(5.1)

where k1 and k2 are the momenta of the in and out states, mp is the Planck mass
and s is the spin. For a scalar particle, like the Higgs field, we have s = 0 and
therefore the amplitudes would be of order one.

Hawking writes that this would suggest that the Higgs particle is of composite
nature. However, in 2012, the Higgs particle has been found at the Large Hadron
Collider in Genf, and further analysis of the data provided evidence for the
Higgs field to be indeed a scalar particle [104]. This puts the approximations of
Hawking et al severely into question. Additionally, Warner [102] has analysed
scattering amplitudes of Spin 1 fields with Hawking’s model, and he also found
large amplitudes that are in disagreement with observation.

In the following, we argue that the modifications that we have made to the
space-time foam model in section 4.2 and 4.3 may be able to cure this problem at
least for slow particles at low energy.

We argue that for observers who can not measure processes that occur at short
time intervals or at high energy, the details of a micro black-hole capturing a
particle and releasing it during its decay can not be observed. Nevertheless, the
particle is in a heath bath of very hot thermal radiation. We argue that if we
insert a slow moving particle into such a heath bath, we will derive Schrödinger’s
equation.

Quantum mechanics also describes entangled states which generate highly
correlated outcomes at space-like separated measurement stations. Using these
correlations, one can show Bell’s no-go theorem that excludes the outcomes to be
predetermined prior to measurement if no instantaneous signalling between the
two sites occurs. We review Bell’s theorem in mathematical form. We also argue
that the stochastic model of quantum mechanics is not a hidden variable theory in
the sense of Bell’s theorem because its results are not predetermined. We suggest
that there may be ways do describe entangled states with this model even though
we did not undertake the complicated computation of these correlations in the
random model (They would involve a statistical mean of infinitely many correlated
stochastic processes).

For an observer who can detect processes at short timescales and high energy,
we assume that the details of the scattering process where the particle falls into
the black-hole and interacts with the outgoing particle become available. For this
case, ’t Hooft has found that one gets a scattering matrix which has the form of a
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Wick rotated Polyakov action.
We will give an argument which indicates that this s-Matrix should not be

valid for very large black-holes but that it applies more to small black-holes.
We note that the space-time foam model implies topology changes during the

expansion of the universe. A result of Geroch [12] shows that topology changes in
Lorentzian manifolds come with the emergence of singularities in the space-time.

DeWitt has given two arguments which show that quantum field theory in
curved space-time and the theory of quantum gravity becomes inconsistent when
singularities emerge.

The second argument of DeWitt against topological changes was made as a
short statement in a non-technical article [13] and without much mathematical
details. We explain DeWitt’s argument in detail for conventional quantum gravity
and make some additional considerations.

DeWitt argues in [13] to investigate topological changes with the string theory
framework, because it is sometimes written that the theory could be defined
exactly on singular spaces like orbifolds, which are stratified spaces that consist of
a manifold and singularities as strata. Specifically, DeWitt claims without proof
that string theory could be defined exactly even on Lorentzian orbifolds, which
would make topology changes possible.

A famous article of Dixon et al. [14] tries to define string theory on orbifolds
by additional boundary conditions for twisted sectors of the string theory. The
authors write that their amplitude yields results that are equal to that of strings
on a manifold resulting from a blow-up in the limit of an infinitesimally small ε
neighbourhood around the singularity.

Using the mathematically rigorous construction of the path integral of section
1.2 and arguments from constructive quantum field theory, we argue that without
a previous blow up of the orbifold singularity, string theory is affected from
similar problems and inconsistencies as conventional quantum gravity whenever a
singularity appears in the target space.

Citing recent mathematical results [15, 16], we argue that Dixon et al. can use
their boundary conditions because the exponential map is well behaved in the ε
neighbourhood of the orbifold if its singularity was blown up. If the blow up occurs
in an epsilon neighbourhood and one takes the limit ε → 0, one just removes a
point from the orbifold. For the string theory, this means one removes an end
point from each curve over which the path integral goes. Since this point has no
measure, the implicit assumption of a blow-up is often not noticed in discussions
of these amplitudes.

For topology changes in Lorentzian manifolds, this is a problem. Because the
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theorem of Geroch implies singularities if a topological change takes place, one can
not, e.g. desingularize a target space into two spaces A and B of separate topology
and then have a non-singular path from A to B.

The incompatibilities of quantum field theory with singular space-times seem
to be quite general, since the field operators are always assumed to be tempered
distributions which are defined by using smooth test functions.

We close the thesis by arguing that the stochastic model of quantum mechanics
developed in section 5.2.1 appears to be be consistent in singular space-times.

Section 5.2.1 has been published in [8]. The sections 5.2.2.1 and 5.3.1 are
review material. Sections 5.2.2.2, 5.3.2, 5.4 and 5.5 have not yet been send to a
journal.

5.2 The low energy case

5.2.1 The Schrödinger equation

In sections 4.2 and 4.4, we noted that boundary terms have to be associated with
the gravitational instantons of space-time foam. The effects of boundary terms on
the particle behaviour were not investigated by Hawking and coworkers.

A model where the cavities of space-time foam are associated with boundaries
may cure some of the problems from [100–102] and may lead to amplitudes which
are more well behaved.

One effect of the boundary terms is that the particle can not be observed
coming close to a region of very large curvature or and a singularity as this region
is hidden behind the event horizon. Furthermore, it has been shown that in
order to cross the black-hole horizon, a particle needs to be accelerated to high
kinetic energy relative to the black-hole, as otherwise it would be in an inertial
system where it would see a Poynting-Robertson effect dragging it away from the
black-hole [105].

Especially for micro black-holes it appears difficult to observe a particle falling
into them. The lifetime τ of an isolated black-hole was calculated by DeWitt to
be approximately

τ ∝M3, (5.2)

see [22]. With M = 2R and R being the Schwarzschild radius, τ is therefore very
short for a black-hole if R is approximately around one Planck length. Setting
τ = ∆t into

∆E∆t ≥ ~/2 (5.3)
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(where we have used the Energy time uncertainty relation from Wigner [106]),
shows that one would need to detect processes of very high energy if one would be
able to observe the process of a point particle flying into a Planck sized black-hole
and getting replaced by outgoing radiation.

In this section, we will work on a low energy scale and a large time interval
where we have no details about the in-falling process at relativistic speeds. From
far away of the sources, the gravitational field of a gas of randomly distributed
black-holes has a metric which is not different from the gravitational field of a
gas of randomly distributed stars and one can use Newtonian mechanics at large
distances approximately in both cases.

The author thinks it is reasonable that under these circumstances the following
assumptions hold on which Chandrasekhar [10] bases his article on dynamical
friction in gravity:

There is "a function W (F ) which governs the probability of occurrence of a
force F per unit mass acting on the star and a function τ(|F |) which gives the
average time duration in which such a force acts.[..] The star may be assumed
to suffer a large number of discrete increments in velocity of amounts |F |τ(|F |)
occurring in random directions."

From these assumptions, Chandrasekhar derives the result that the motion
of the particle, or star of mass m and velocity σ̇(t) in a randomly fluctuating
Newtonian gravitational field is, on long time scales t, affected by a dynamical
friction according to Stokes law

F v = mσ̈(t) = −γσ̇(t). (5.4)

Chandrasekhar also found that the friction coefficient γ is of the order of the
reciprocal time τ of relaxation. The relaxation time is the time how long it takes
for cumulative effects to have an influence over the 2 body interaction. If one
assumes that the cavities of space-time foam have a Schwarzschild radius R = 2M
of approximately Planck length and one could use the lifetime τ ∝M3 of a black-
hole of Planck size as relaxation time, then one would have to expect a very large
dynamical friction

γ ∝ 1/τ. (5.5)

It was noted by Liberati and Maccione in [107] that the naive assumption of a
vacuum with a large friction coefficient would have severe consequences for matter
particles that should be experimentally measurable. In the following we will try to
argue why the effects described in [107] are not observed.

The boundary terms of the cavities create a severe additional problem as they
should lead to Hawking radiation. Far away from a single black hole of mass
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M = 2R, where R is the Schwarzschild radius, an observer should see a photon
gas of a temperature

TH =
hc3

8πGMkb
(5.6)

with an infinite number of photons. A space-time where a high number of Planck
sized black or worm holes with boundaries and event horizons are spontaneously
produced from quantum fluctuations would therefore create a photon gas of high
temperature and particle number. In such a photon gas, matter particles should
behave differently as in vacuum due to repeated Compton scattering with the
photons. This is what we will investigate below.

At first, one could think that one would have to work with a thermal field
theory. However, these theories differ from usual quantum field theory, which
is defined at T = 0. For example, in a thermal field theory of temperature T,
one finds that in the absence of interactions, a scalar field with mass m has a
propagator [108]

D0
T (k) =

i

k2 −m2 + iε
+ 2πδ(k2 −m2)f(|k0|) (5.7)

where
f(|k0|) =

1

eβ|k0| − 1
(5.8)

is the Bose distribution and β = 1/T .
This propagator differs from the usual formula

D0
T (k) =

i

k2 −m2 + iε
. (5.9)

If one has a space-time where millions of black- or worm holes are releasing
photons of extremely high temperature, the approach with a thermal field theory
would imply differences to the observed equations so we now try a different
approach.

In his article [10], Chandrasekhar computes an explicit formula for the friction
coefficient γ based on the assumptions that a particle or star would be in purely
gravitational interaction with a random field of stars. Unfortunately, this compu-
tation for γ is not entirely suitable for the case of micro black- or worm holes as it
does not take effects of their radiation into account. Therefore, we have to adapt
our model for this situation.

Hawking radiation consists of photons of all frequencies ν. On classical matter
particles, N photons of frequency ν induce a radiative pressure with a force of
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magnitude

|F | = ν
dN(t)

dt
. (5.10)

For a black-hole with Schwarzschild radius R0, the number of photons that pass a
far away spherical surface of radius r > R0 is given by

< N >=
1

2π

Γ(ω)

eω/kbT − 1
, (5.11)

where ω is the angular frequency of the radiation per unit time and Γ(ω) is an
absorptive coefficient. If we use the temperature of Eq. (5.6) in Eq. (5.11), then
with

dM

dt
=∝ − 1

M2
(5.12)

from [22] one can try to get an estimate of (5.10) for a particle that orbits an
isolated black-hole far away.

From this, one would have to expect that the photon gas produced by micro
black-holes that emerge and explode at random places in space-time creates a
random force F r(t) that acts at every point in space on a traversing particle.

We assume that the black-holes of space-time foam are equally distributed in
space. This means that if at a certain time, Hawking radiation of a black-hole
induces a force ν dN(t)

dt
in ~x direction on a particle, another black-hole could later

induce a force −ν dN(t)
dt

on the same particle in the same direction. For all directions,
this would imply that the average of F r, or its expectation value vanishes:

〈F r〉 = 0 (5.13)

Furthermore, we assume for now that the appearance and explosion of several of
these black-holes should not be correlated events in time. Hence, F r(t) should be
uncorrelated with F r(t − 1). All this implies by a standard argument invoking
the central limit theorem, see [109], that F r(t) should be a Wiener process with a
Gaussian distribution.

With the random force term and the dynamical friction term acting on the
particle, we get Langevin’s famous equation:

mσ̈(t) + γσ̇(t) = F r(t) (5.14)

and since F r(t) is Gaussian, we can use all the results from the classical theory of
Brownian motion.
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If we want to compute e.g. a probability density of the particle to be at a
certain time and position in a gas of black-holes, it may help to use the ergodic
hypothesis and consider instead of a single trajectory a statistical ensemble of
infinitely many trajectories. We label an individual trajectory with an index j
and write σ̇j. By considering the motion of the system without F rj(t), one gets
γ ∝ m

τ
with τ as relaxation time. One may additionally note that the experiment

may consist of additional forces F ext
j as well. One then gets

mσ̈j(t) +
m

τ
σ̇j(t) = F rj(t) + F ext

j (5.15)

for a single trajectory.
From this, one may compute average velocities for the entire ensemble that either

describe the outcomes of single particle observed over a long time or an experiment
where the same configuration is repeatedly measured and then expectation values
are calculated.

It is known that gravitational potentials of a star can reduce the entropy of
a surrounding gas of particles by compressing the gas and slowing it down (the
compression in the gravitational field also heats the gas but this effect is smaller
than the entropy reduction from the reduction of the particle motion, see [110].
The matter that is slowed down then gets on a trajectory where it falls into the
star whose entropy increases). In our case, the dynamical friction induced by the
gravitational fields collectively reduces the entropy of a particle ensemble. Thereby,
Eq. (5.15) contains all the ingredients of the black-hole information paradox: A
term that reduces the entropy of a particle system, and a random noise term that
is purely thermal and does not suffice to restore the original state of the particles,
as it does not contain any information about it.

The black-hole entropy generated by Hawking radiation is much larger than the
entropy of the surrounding matter. A proposal by DeWitt [111] is therefore that
the in-falling particles interact with the outgoing Hawking radiation and modify
its Bogoliubov modes. This interaction may restore the state of the surrounding
matter.

If the information is preserved upon black-hole decay, one has to expect that
the friction term in Eq. (5.15), which reduces the entropy of the particles, gets
reversed into −γσ̇j(t) at a later stage of the process by the radiation. A corrected
radiation term

F̃ rj(t) = 2
m

τ
σ̇j(t) + F rj(t) (5.16)

should then restore the original state of the matter. One gets the following equation:
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mσ̈j(t)−
m

τ
σ̇j(t) = F rj(t) + F ext

j . (5.17)

Although they did not connect Eqs. (5.15) and (5.17) to the behaviour of a
particle ensemble that is put into a gas of black hole like objects, these equations
were first proposed by Fritsche and Haugk in [112] as a starting point to derive
Schrödinger’s equation.

In their calculation, they separate the σ̇j into σ̇j(t) = σ̇rj(t) + σ̇cj(t), where
σ̇cj(t) is the convective velocity that would occur if F rj would be absent, and
σ̇rj(t) is caused by the random force.

Fritsche and Haugk then write the components of σrj(t), σcj(t), F rj(t), and
F ext
j (t) as σrjk(t), σcjk(t), Frjk(t), and F ext

jk (t),
They assume that there are no correlations between σrjl and Frjk including

l = k. Furthermore, for l 6= k, σrjl and σrjk are assumed to be uncorrelated.
Finally, it is assumed that there are no correlations between σcjl and σrjk

From the computation of the average velocities for the ensemble of all j
trajectories described by Eqs. (5.15) and (5.17) under these assumptions, Fritsche
and Haugk get for long time intervals ∆t >> τ

∂t(v − u) + (v + u)∇(v − u)− ν∆(v − u) =
1

m
F ext (5.18)

and
∂t(v + u) + (v − u)∇(v + u) + ν∆(v + u) =

1

m
F ext. (5.19)

In the equations above,
v = vc + u (5.20)

is the ensemble average of σ̇j over j and vc is the ensemble average of σ̇jc over j.
Furthermore,

u = −ν 1

ρ
∇ρ (5.21)

where ρ is the probability density of the particle and

ν =
kbTτ

m
(5.22)

is a diffusion coefficient. T is the effective temperature of the heath bath and one
may set

ν ≡ ~
2m

. (5.23)
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Computing then the average of Eqs. (5.18) and (5.19), one arrives at

d

dt
v − (u∇)u+ ν∆u =

1

m
F ext. (5.24)

Setting ~ = 0 results in ν = 0 and Newton’s second law F = mv̇. On the other
hand, with ~ 6= 0, one can derive the one particle Schrödinger equation

i~∂tψ =

(
−~2∇2

2m
+ Vext

)
ψ (5.25)

from Eq. (5.24).
If we could use Eq. (5.6) in

~ = 2kbTτ, (5.26)

it would imply that

τ =
~

2kbT
=

4πGM

c3
. (5.27)

For a Schwarzschild black-hole

M =
R0c

2

2G
, (5.28)

and with a Schwarzschild radius of Planck length R0 = lp, this would mean a
relaxation time of τ = 2πlp

c
= 3.35 · 10−43s, which is shortly above Planck time of

5.3 · 10−44s.
We note that with these assumptions, neither τ nor ~ do depend on the

gravitational constant. Hence, no matter if we live in a universe where the
gravitational constant G is small or not, if the heath bath is produced by Hawking
radiation of a gas of black-holes of Planck size, one would always get the same
relaxation time and Planck’s constant.

However, one should note that Eq. (5.6), the temperature one sees for a single
black-hole at infinity can, strictly speaking, probably not be used to compute the
temperature in Eq. (5.26). The temperature in Eq. (5.26) contains the average
temperature that a particle sees in a gas of randomly occurring black-holes that
are coupled to a heath bath of their own radiation. This effective temperature is
defined in the Gaussian probability distribution of F r

j(t) which is given by

P (F r
j) =

1
√
π 1
τcoll

√
mkbT

e
−
(
F rj/

(
1

τcoll

√
mkbT

))2
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where τcoll is a mean time of momentum transfer from the encounters with thermal
photons.

Certainly, the effective average temperature that comes from random encoun-
ters with the radiation of many black-holes does not correspond exactly to the
temperature that an observer sees for a single isolated black-hole at infinity. But
perhaps one can use the latter temperature as an approximation for particles which
are never observed to come close to the black-holes of space-time foam. To the
author, the reversible diffusion process outlined above appears to be a possible
explanation for why we do not observe any of the effects mentioned in [107] when
we are dealing with a gas of Planck sized black-holes that would, according to
Chandrasekhar’s calculations, give rise to a highly viscous medium with viscosity
coefficient γ ∝ 1

τ
for all particles immersed in it.

This is certainly only a first idea to solve the problems that space-time foam
poses for the behaviour of matter particles. It is, for example still unclear, how
one should derive the correlations observed in entangled states from such a model.
How to extend these ideas relativistically is also unclear at the moment.

5.2.2 A note on entangled states

This section only aims to show that the treatment of entangled states with the
model described in section 5.2.1 is not entirely impossible.

A well known no go result that concerns the inability of theories to model
entangled states is Bell’s theorem. In subsection 5.2.2.1 we will review this no-go
result in a mathematically rigorous way. In subsection 5.2.2.2, we will then argue
how it may be possible for the stochastic theory above, to circumvent it.

5.2.2.1 Bell’s inequalities

This subsection is a review on Bell’s work and it is essentially similar to the old
unpublished preprint [18] which the author wrote when he accidentally came across
the article [112] of Fritsche and Haugk and then the works of Nelson [113–115]
and Faris [116]. The articles of the mathematicians Nelson and Faris are largely
unknown but they contain a mathematically rigorous analysis of Bell’s theorem.

It turns out that Bell’s work on the hidden variable question can actually be
divided into two theorems.

The first is published in [117] and starts by defining two random variables
A(a, λ) = ±1 and B(b, λ) = ±1, where a is the setting or axis at detector A, b is
the setting at detector B and λ is some parameter over which one integrates.
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In order to describe a theory with exact anti-correlations at the detectors, the
random variables are defined to fulfil:

A(b, λ) = −B(b, λ). (5.29)

Assuming ρ(λ) to be the probability distribution of λ, Bell then writes the expect-
ation

E =

ˆ
dλρ(λ)A(a, λ)B(b, λ) (5.30)

and using Eq. (5.29), Bell gets

E = −
ˆ
dλρ(λ)A(a, λ)A(b, λ). (5.31)

From this starting point, Bell then derives his inequality.
However, already at this point the model is in severe disagreement with quantum

physics. In an EPRB experiment, the outcomes at A and B can be the results of
spin measurements, or of position or momentum measurements. In each case, the
observables for different detector settings do not commute. Spin observables fulfill
an angular momentum commutator

[ŝx, ŝy] = i~ŝz (5.32)

which leads to an uncertainty relation for different axes.
This means that upon measuring axis a at Station A, the measurement result

for axis b 6= a at the same detector A may be disturbed. As a result, one can not
assume that Eq. (5.29) would hold for the unobserved events A(b, λ) for axis b at
A, if one measures A(a, λ) with axis a at the same time at A. One therefore can
not insert Eq. (5.29) into Eq.(5.30).

That there is in fact no locality assumption behind this first derivation of Bell’s
inequality can be seen when reformulating the same theorem in the form given by
Faris in [116]:

Definition 1. Two events A and B are called equivalent with respect to P if

P(A) = P(B) = P(A ∩B) (5.33)

Definition 2. We denote the event that corresponds to a spin up result at detector
A for an axis A as AA, for an axis B as BA and for an axis C as CA. Similarly,
the event that corresponds to a spin down result at detector B is denoted by AB
for axis A, BB for axis B and CB for axis C. The events AA, BA, CA, and AB,
BB, CB are defined on a probability space with a measure P
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One furthermore has the following relations between these events:

Definition 3. According to quantum mechanics, the pairs AA and AB are equi-
valent events if both experimenters choose to measure axis A, BA and BB are
equivalent if axis B is chosen and CA and CB are equivalent for a measurement
on axis C. A similar statement holds for the complements (AA)c, (AB)c as well as
(BA)c, (BB)c and (CA)c, (CB)c.

If we assume that this equivalence holds even for axes which are not chosen for
an actual measurement, one gets the following theorem:

Theorem 1. (Bell’s first theorem) We assume that the definitions (1-3) hold. If
the equivalences of definition (3) are fulfilled even for axes which are not chosen
for measurement, then Bell’s inequality holds

Proof. With the probability measure P, we can write the expression

P
(
A1

⋂
(B2)c

)
+ P

(
B1

⋂
(C2)c

)
+ P

(
C1

⋂
(A2)c

)
Since we assumed that the equivalence of Ac1, Ac2 and Bc

1, Bc
2 as well as Cc

1, Cc
2

holds even if we measure different axes at the detectors, we can substitute the
equivalent events and arrive at a form of Bell’s inequality:

P
(
A1

⋂
(B2)c

)
+ P

(
B1

⋂
(C2)c

)
+ P

(
C1

⋂
(A2)c

)
= P

(
A1

⋂
(B1)c

)
+ P

(
B1

⋂
(C1)c

)
+ P

(
C1

⋂
(A1)c

)
≤ 1,

where we have used that the events whose probabilities are computed are exclusive

One clearly sees that in this naive proof of Bell’s inequality, there is no locality
argument. Instead, we just have ignored the spin uncertainty relation.

However, a few years later, Bell gave a new proof of his inequality in [118].
This time, the proof was more involved and has a clear implication for locality.
We review Bell’s second theorem below, in a version that goes along the lines of
Nelson [113, 114] with corrections in [115], who analysed Bell’s second theorem
with mathematical rigour.

We want to describe the EPR experiment with a probability space (Ω,F , P ),
with outcomes Ω, sigma algebra F = P(Ω), where P denotes the power set, and
P as the probability measure.
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The observables can, for example, be results of spin measurements. Hence we
define a measurable space (E,P(E)) with E = {↑, ↓}

The outcomes are measured at different points in space-time. Therefore, we
have to use random fields. The outcomes can also depend on the settings of the
measurement devices which can be chosen by the experimenters at will.

We let the random field

φµ(x, ω) : (M,Ω)→ E (5.34)

where ω ∈ Ω, describe the outcome measured by a detector with setting µ at point
x ∈M in the space-time M .

In order to make contact with Nelson’s notation, we define the following notation
for the outcomes at the detectors: {σA =↑} ≡ {↑ ×E}, {σA =↓} ≡ {↓ ×E},
{σB =↓} ≡ {E× ↓}, {σB =↑} ≡ {E× ↑}.

The events

{φµ(A, ω)⊗ φν(B,ω) ∈ {σA =↑}} (5.35)
{φµ(A, ω)⊗ φν(B,ω) ∈ {σA =↓}} (5.36)

give information about a spin up/down outcome detector at a point A. We put all
events that give information about an outcome at A into a sigma algebra FA ⊂ F .
Similarly, the events

{φµ(A, ω)⊗ φν(B,ω) ∈ {σB =↑}} (5.37)
{φµ(A, ω)⊗ φν(B,ω) ∈ {σB =↓}} (5.38)

give information about a spin up/down outcome at B and are put into a sigma
algebra FB ⊂ F .

Furthermore, we define a family of axis dependent probability measures
PφAµ⊗φBν

as follows:

P
({
φµ(A, ω)⊗ φν(B,ω) ∈

(
σA
⋂

σB

)})
≡ PAµBν

(
σA
⋂

σB

)
. (5.39)

The EPR experiment consists two stages. A measurement stage, where the
outcomes are measured at two spatially separated detectors located at A and B
and a preparation stage. The events happening at preparation stage take place at
a region S which is in the overlap of the past light cones of A and B. The events
happening in S take place before the measurement is done.
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We put the events happening at S into a sigma algebra FS. The conditional
probability of an event A given the events in FS is then the conditional expectation

P (A| FS) (ω) ≡ EX [1A| FS] (ω) (5.40)

with 1A as the indicator function of A.
Then one can define the condition of passive locality.

Definition 4. (Passive locality, Nelson) We call a theory passively local if

PAµBν

(
σA
⋂

σB

∣∣∣FS) = PAµBν (σA| FS) PAµBν (σB| FS) , (5.41)

for every pair of axes µ and ν.

The violation of passive locality would imply that a dependence of the outcomes
at A and B does not originate from the events in FS.

Now we will define an additional locality condition that forbids instantaneous
signaling.

Definition 5. (Active locality, Nelson) We call the random fields φµ and φµ′

actively local if, whenever µ and µ′ agree except on a region B in space-time, then
φµ′ and φµ′ agree, except on the future cone of B.

This implies than an experimenter at B can not send a signal outside of the
future cone of B.

Consider the products of random fields φµ(A, ω)⊗ φν(B,ω) and φµ′(A, ω)⊗
φν′(B,ω), where A and B are space-like separated points in the space-time where
A is outside the future cone of B. Let µ,µ′ be settings at A and ν,ν′ are settings
at B.

A is outside the future cone of B. If the random fields are actively local, then
if µ = µ′ in A, one has

φµ(A, ω) = φµ′(A, ω) (5.42)

even if we have selected different axes ν 6= ν ′ at B.
An event in FA only contains information about the outcome at A, with

the result for B being the sure event. Active locality implies that an event
{φµ(A, ω)⊗ φν(B,ω) ∈ {σA =↑}} ∈ FA whose probability is computed by PAµBν

is equivalent to {φµ(A, ω)⊗ φν′(B,ω) ∈ {σA =↑}} ∈ FA whose probability is
computed with with respect to PAµBν′ .

In the proof of Bell’s inequality below, we will only use the axis dependent
family of probability measures PAµBν . With this measure, the probability of a
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spin up outcome for different axes at the same detector can not be computed like
in the proof above with P (A1 ∩B1).

Nelson’s proof of Bell’s inequality also uses equivalent events but this is only
done in the active locality condition. There, one only has equivalences of events
that give information about the outcome at a single detector whose settings stay
the same. The outcomes of the detector whose settings are changed are not
specified. This different from the assumptions of Bell’s first theorem.

The proof below does not explicitly assume that one would have equivalences
between events for specific up and down outcomes at the detectors for an axis ν
even if one measures a different axis µ 6= ν at one detector. Thereby, the local
effects of the spin uncertainty relation, which may disturb the exact correlations
for the unobserved outcomes are at not invalidated in the assumptions of the proof
below.

By theory and experimental observation, one has

PAµBµ (σA =↑) = PAµBµ

(
σA =↑

⋂
σB =↓

)
= PAµBµ (σB =↓) =

1

2
,

PAµBµ (σA =↓) = PAµBµ

(
σA =↓

⋂
σB =↑

)
= PAµBµ (σB =↑) =

1

2
(5.43)

for the spin measurements in an EPR experiment with an arbitrary axis µ.
With these definitions, Bell’s second theorem states:

Theorem 2. (Bell’s second theorem) Let Eq. (5.43) and active and passive locality
hold. Then the Clauser-Holt-Shimony-Horne (CHSH) inequality [119] holds

|E (µ,ν)− E (µ,ν ′) + E (µ′,ν) + E (µ′,ν ′)| ≤ 2, (5.44)

where the function

E (µ,ν) ≡ PAµBν

(
σA =↑

⋂
σB =↑

)
+ PAµBν

(
σA =↓

⋂
σB =↓

)
− PAµBν

(
σA =↑

⋂
σB =↓

)
− PAµBν

(
σA =↓

⋂
σB =↑

)
. (5.45)

is called correlation coefficient

Proof. In his work [113–115] Nelson proves an inequality which is a bit different.
Here, the CHSH [119] inequality, a variant of Bell’s inequality is proven which is
tested in EPR experiments.

If µ = ν, then passive locality implies:

PAµBµ

(
σA
⋂

σB

∣∣∣FS) = PAµBµ (σA| FS) PAµBµ (σB| FS) . (5.46)
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and because 0 ≤ PAµBµ (σB| FS) ≤ 1, we have

PAµBµ

(
σA
⋂

σB

∣∣∣FS) ≤ PAµBµ (σA| FS) . (5.47)

By Eq. (5.40),
PAµBµ (σA) = EX

[
PAµBµ (σA| FS)

]
(5.48)

and
PAµBµ

(
σA
⋂

σB

)
= EX

[
PAµBµ

(
σA
⋂

σB

∣∣∣FS)] . (5.49)

With Eq. (5.43), the expectation values in Eqs. (5.48) and (5.49) must be equal.
It then follows from Eq. (5.47) that

PAµBµ

(
σA
⋂

σB

∣∣∣FS) = PAµBµ (σA| FS) . (5.50)

We can condition the probabilities of the events {φAµ ⊗ φBν ∈ σA =↑} ∈ F1

and {φAµ ⊗ φBν ∈ σB =↓} ∈ F2 with respect to FS and get from active locality

PAµBν (σA =↑| FS) = PAµBµ (σA =↑| FS) ≡ Pµ. (5.51)

and similarly

PAµBν (σB =↓| FS) = PAνBν (σB =↓| FS) ≡ Pν . (5.52)

where in the last line, we have used Eq. (5.43)
Plugging Eq. (5.51) and Eq. (5.52) in the passive locality condition yields

PAµBν

(
σA =↑

⋂
σB =↓

∣∣∣FS) = PµPν . (5.53)

The events {φAν ⊗ φBν ∈ σB =↑} ∈ F2 and {φAν ⊗ φAν ∈ σB =↓} ∈ F2 are
disjoint and their union is the sure event. The sum of the conditional probabilities
with respect to a sigma algebra is equal to unity for such events. Using Eq. (5.52),
we can write

PAµBν (σB =↑| FS) = PAνBν (σB =↑| FS) = 1− Pν , (5.54)

and similarly,

PAµBν (σA =↓| FS) = PAµBµ (σA =↓| FS) = 1− Pµ. (5.55)
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Applying the passive locality condition to Eqs. (5.55) yields:

PAµBν

(
σA =↓

⋂
σB =↑

∣∣∣FS) = (1− Pµ) (1− Pν) . (5.56)

In the same way, one can compute

PAµBν

(
σA =↑

⋂
σB =↑

∣∣∣FS) = Pµ (1− Pν) (5.57)

and
PAµBν

(
σA =↓

⋂
σB =↓

∣∣∣FS) = (1− Pµ)Pν . (5.58)

Using the Eqs. (5.57), (5.58), (5.53) and (5.56), we may define the expression

E (µ,ν| FS) ≡ PAµBν

(
σA =↑

⋂
σB =↑

∣∣∣FS) + PAµBν

(
σA =↓

⋂
σB =↓

∣∣∣FS)

−PAµBν

(
σA =↑

⋂
σB =↓

∣∣∣FS)− PAµBν

(
σA =↓

⋂
σB =↑

∣∣∣FS)

= Pµ (1− Pν) + (1− Pµ)Pν − PµPν − (1− Pµ) (1− Pν) .
(5.59)

The conditional probabilities in Eq. (5.59) are all in the interval [0, 1]. For this
reason, one can compute the following inequality with four arbitrary axes µ,µ′
and ν,ν ′ at 1 and 2:

|E (µ,ν| FS)− E (µ,ν ′| FS) + E (µ′,ν| FS) + E (µ′,ν ′| FS)| ≤ 2. (5.60)

The unconditional probabilities are given by the expectation values of the con-
ditional probabilities. For random variables U, V,W, Y on a probability space,
where W = U + V , one has EX[W ] = EX[U ] + EX[V ]. Furthermore, if W ≤ Y ,
then EX[W ] ≤ EX[Y ], almost surely, and if Y = c, where c is a constant, then
EX[Y ] = c. In turn, since EX[W ] ≤ EX[Y ], one has EX[W ] < c. Hence, an
inequality analogous to Eq. (5.60) must be true for the probabilities:

|E (µ,ν)− E (µ,ν ′) + E (µ′,ν) + E (µ′,ν ′)| ≤ 2. (5.61)

Naively, Bell’s first and second theorem seem to look quite different. However,
Faris has shown in [116], that passive locality together with the observed exact anti-
correlations at the measurement stations implies that all events at the detectors are
equivalent to events in FS, which means the events at the detectors are determined



5.2 The low energy case 103

by events happening at the earlier preparation stage. By active locality, the settings
of the instruments which may be chosen later can have no influence on the events
in FS. This can be used to rewrite Bell’s inequality from Bell’s second theorem
in the form of Bell’s first theorem, which shows a clear connection between both
theorems.

One should note that a the same conclusion can be obtained by a variant of the
Kochen-Specker theorem. The so-called "Free-Will Theorem" from Conway and
Kochen [120] also implies that if active locality and exact anti-correlations hold in
quantum mechanics, then the outcomes at the detectors can not predetermined

5.2.2.2 What Bell’s inequality implies for the stochastic model

The stochastic model from section 5.2.1 has several features which open up the
possibility that one might describe entangled states with it, and one might do this
without needing any mechanism for instantaneous signalling between separated
measurement stations.

The outcomes in the stochastic theory at some time t2 are never entirely
predetermined by events that happen at earlier times t2 − t2, where t2 > t1. One
assumption that goes into proofs of Bell’s inequality is that the outcomes at the
detectors are determined by events happening before measurement. As this is not
the case in the stochastic model, it does not constitute a "hidden variable" theory
in the sense of Bell.

Furthermore, the "velocities"

u = − ~
2m

1

ρ
∇ρ (5.62)

and
v =

~
2m
∇ϕ, (5.63)

where ρ is the probability density and ϕ is the phase of the wave function, are, in
this model, just ensemble averages. This is different from other theories. Models
like Bohmian mechanics [121] for example, at first look similar. But there, the
functions u,v are some kind of "particle velocities". For a many particle system
in an entangled state

|Ψ(r1, r2, t)〉 =
1√
2

(|ψ1(r1, t)〉ψ2(r2, t)〉 − |ψ2(r1, t)〉ψ1(r2, t)〉) (5.64)

measuring one system and finding it in a state |ψ1〉 implies that the second system
is in state |ψ2〉. Associating the states with "particle velocities" like it is done in
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Bohmian mechanics, would mean that a measurement in one system can change
the velocities in a space-like separated system, see [121].

If, however, u and v are just statistical expressions from ensemble averages,
then a change of u and v in a distant system can occur just because our knowledge
of this system has been altered since we know there are correlations with an
outcome that we have measured locally.

Finally, the theory discriminates between influences that might be brought in
by experimenters via a term F ext

j and an intrinsic randomness that comes from
a term F rj. As F ext

j can be defined to be local in a many particle system that
stretches over space-like separated regions, this can be used to make the model
fulfil the active locality condition.

The intrinsically random term like F rj can generate exact correlations between
distant systems if experimenters chose to make the settings of their measurement
devices equal. Since the random field would be out of the control of the exper-
imenters, this kind of non locality could not be used to send signals between
space-like separated locations. Non local correlations that can not be used to send
signals are exactly the behaviour that one observes in quantum mechanics.

For example, consider two separate systems

mσ̈j1(t) + γσ̇1j(t) = F rj1(t) + F ext
j1 (5.65)

mσ̈j1(t)− γσ̇j1(t) = F rj1(t) + F ext
j1 (5.66)

and

mσ̈j2(t) + γσ̇j2(t) = F rj2(t) + F ext
j2 (5.67)

mσ̈j2(t)− γσ̇j2(t) = F rj2(t) + F ext
j1 (5.68)

where σ1/2(t) describe separate trajectory ensembles that represent two particles
at different locations.

If we imagine that F ext
j1 ,F

ext
j2 are describing the influences of measurement

devices, then if both devices have the same setting, one has

F ext
j1 = F ext

j2 (5.69)

If we assume that there are correlations between F rj1, and F rj2, then one can
certainly expect correlations between σj2(t) and σj2(t).

If we make two ensemble averages over the j trajectories and associate average
velocities u1/2, v1/2, and quantum states ψ1/2 to these systems and want the entire
ensemble to be described with one quantum state, then one has to this in such a
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way that the information about the correlations between the trajectory ensembles
σj2(t) and σj2(t) is not lost.

In [112], Fritsche and Haugk derived the N particle Schrödinger equation
for independent particles by expanding the vector space of the system to a 3N
dimensional space.

We denote the components of σrjm(t), σcjm(t), F rjm(t), and F ext
jm(t), where

1 ≤ m ≤ N , as σrjkm(t), σcjkm(t), Frjkm(t), and F ext
jkm(t),

During their derivation of the many particle Schrödinger equation for inde-
pendent particles, Fritsche and Haugk proceeded along the same lines as in the
single particle case. They assume that there are no correlations between σrjlm and
Frjkn including l = k, m = n. Furthermore, for l 6= k, m 6= n, σrjlm and σrjkn are
assumed to be uncorrelated. Finally, it is assumed that there are no correlations
between σcjlm and σrjkn.

In order to describe entangled states with this model, one may just loose this
restriction and assume that some of these correlations are not vanishing and then
one may try to derive the many particle Schrödinger equation for an entangled
state.

The author of this thesis has, however, not done this calculation yet. One
has to compute ensemble averages of infinitely many correlated Brownian motion
processes. It appears that the correlation terms that would emerge would make
the computation very difficult.

This section therefore therefore just has the purpose to show that while the
description of entangled states with this model is an open problem, it is not
something that seems to be entirely forbidden by some no-go theorem.

A description of entangled states with this model would, however, imply a
correlation between the terms F rj1,F rj2 that are responsible for the intrinsic
randomness in the theory.

In subsection 5.2.1, we have associated these terms with a heath bath that is
caused by Hawking radiation of microscopic black- or worm holes.

The AdS-CFT conjecture contains an equivalence between conformal field
theories and asymptotically anti DeSitter spaces, including black-hole DeSitter
spaces. The AdS-CFT conjecture can be used to show that a maximally entangled
state of two thermal conformal field theories is dual to an Einstein Rosen bridge
[122]. This reasoning was extrapolated by Suesskind and Maldacena who proposed
in [123] a conjecture called "ER=EPR" which says that a non traversable wormhole
is equivalent to a pair of maximally entangled black-holes.

We have argued in chapter 4 that space-time contains of a gas of worm holes.
Furthermore, we have argued that their collective gravitational field and the
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thermal heath bath of their Hawking radiation would imply that a classical particle
would be be governed by the Schrödinger equation. Finally, we have noted in this
subsection that in order to be able to describe an entangled state with such a
model, one would need to have correlations with the photon gas emerging from the
Hawking radiation at spatially separated space-time points. If the wormholes of
space-time foam were were equivalent to pairs of entangled black-holes, as proposed
in the ER=EPR conjecture, then one would have to expect correlations in the
photon gas produced by these black-holes.

5.3 The high energy case

5.3.1 ’t Hooft’s derivation of the s-matrix of string theory
from particles scattering with black-holes at high en-
ergy

In this section we discuss the scattering of particles with black-holes at high energy.
Unfortunately, the usual Feynman rules of quantum field theory only include the
scattering of particles with themselves. They do not to include rules for scattering
processes of particles with the event horizon of a black-hole or a worm-hole with
some boundary or event horizon.

From a result of ’t Hooft, one has to expect dominant gravitational interactions
in such a process. Let a particle fall into a black-hole at time t0 and an outgoing
particle arrive at the observer outside at time t1. When the particles meet, their
centre of mass energy is boosted by [124]

√
g00 ∝ eπ(t1−t0)TH , (5.70)

where TH is the Hawking temperature. This means that for large t1 − t0 and
for large TH i.e. small black-hole masses, the gravitational interactions between
ingoing and outgoing particles are important.

In ’t Hooft’s calculation from [41, 124–128], a particle’s gravitational field is
described by a Schwarzschild metric. Upon falling into a black-hole, the particle
accelerates to relativistic speed and generates a shock-wave [129, 130]. This
modifies the motion of the outgoing particles.

’t Hooft’s assumption is that the entire process can be described with the usual
rules for quantum mechanical scattering. This means that the black-holes with
which the particle is scattered must be large enough and exist long enough that
the length and time scales where the infalling particle becomes ultra relativistic
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are such that the flight and the interaction between the in and out going particles
can be described by the Schroedinger equation.

The scattering amplitude of this process has a form that is similar to the
amplitude over the Polyakov action from string theory (in Wick rotated form)
[41, 124–128].

A particle that flies through a space-time foam made out of a gas of worm- or
black-holes may encounter many of these scattering processes. These processes also
occur for gravitons. ’t Hooft only derived his S-matrix only for a scalar particle.
If a similar S-matrix could be derived for gravitons scattering with a black-hole,
this could give a scientific reason for the hypothesis that one should use string
theoretic corrections for high energy graviton scattering.

String theory amplitudes are perturbatively renormalizable. Based on the
previous results, where Euler characteristic appears in the energy momentum
tensor of a field in curved space-time, one could assume that the scattering with
black- or wormholes is the dominating process at high energies.

Below we will give a short review of ’t Hooft’s derivation of the Path integral
over the Polyakov action action. The calculation adopts Kruskal coordinates x, y
for a black-hole of mass M , where

xy = −
( r

2M
− 1
)
e

r
2M (5.71)

and
x/y = e

t−t0
2M (5.72)

with t0 as some reference time and Ω = (ϕ, ϑ) are the angular coordinates.
The ingoing particles that enter the hole and cross the future horizon and are

represented by states |in〉 = |pin〉 where pin is the momentum. The particles that
leave the hole and cross the past horizon are represented by states |out〉 = |pout〉.

A particle that falls into a black-hole of mass M is accelerated to relativistic
speed and can be described with the Aichelburg Sexl metric [131]. The |in〉 state of
the ingoing particle causes a gravitational shock wave. Using Kruskal coordinates,
this shock wave implies a coordinate shift

δy = κpinf(Ω,Ω′) (5.73)

where
κ = 4π28GM4e−1 (5.74)

and f is the Green’s function fulfilling

∆f − f = −δ2(Ω,Ω′). (5.75)
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Outgoing wave-functions e−ipouty are then confronted with a shift y − δy which
implies that the outgoing states are multiplied by

|pout〉 = ei
´
d2Ωpoutδy|pout〉 = eiκ

´
d2Ωpout·pinf(Ω,Ω′)|pout〉. (5.76)

We are assuming that information is not lost when the particle goes into the
black-hole. Therefore, the s-matrix 〈pout|pin〉 should be unitary and invariant under
time reversals. The phase shift

|pin〉 = |pin + δpinδ(Ω,Ω
′)〉 (5.77)

of the in going state can be ignored for now as it should not depend on the the
details of the outgoing states. With a Fourier transformation

|pout〉 = C

ˆ
Du−e−

´
d2Ωpoutu− |u−〉, (5.78)

|pin〉 = C

ˆ
Du+e−

´
d2Ωpinu

+|u+〉, (5.79)

where u− = y and u+ = x and C is some normalization constant, one finds

〈u−|u+〉 = C ′e−
´
d2Ω′ i

κ
f−1(Ω,Ω′)u+u− , (5.80)

where
f−1 = 1/f = 1−∇/2π. (5.81)

Using 〈u−|u+〉 and the two equations above, one gets

〈pout|pin〉 =

ˆ
Du−

ˆ
Du+e

´
d2Ω( i

2πκ
(u+u−+∂Ωu

+∂Ωu
−)+iu−pout−iu+pin) (5.82)

or, with membrane coordinates x0, x3

u± = x0 ± x3, (5.83)

and the external momenta

pext = (pin − pout, 0, 0,−pin − pout), (5.84)

one finds
〈pout|pin〉 =

ˆ
Dxe

´
d2Ω( −i2πκ

(x2+∂Ωx
2)+ixpext), (5.85)
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where
x2 = x2 − (x0)2. (5.86)

Finally, the x2 term gets ignored as it is due to the curvature of the horizon and
one may write the amplitude covariantly as path integral over the Wick rotated
Polyakov action:

〈pout|pin〉 =

ˆ
DxµDgabe

´
d2Ω( −i2πκ

√
ggab∂axµ∂bxµ+ixµpµ) (5.87)

One should note that the similarity to string theory may be only formal. In
string theory, one has the following Poisson bracket

{xµ(σ, τ), xν(σ′, τ)} = 0 (5.88)

whereas ’t Hooft computes, after transforming the system into Rindler coordinates
[128]

{xµ(σ, τ), xν(σ′, τ)} = −Tεµν12f(σ, σ′) (5.89)

where ε0123 = −i and the string constant T = 8πG in Rindler coordinates. This
should prevent the derivation of a Virasoro algebra. However, the result appears
to hold only for Rindler coordinates.

5.3.2 On a critical argument against the black-hole scatter-
ing matrix

Some aspects of the construction of this s-matrix have been refined by Itzhaki
[132], Arcioni [133] and Polchinski [134] on which I want to comment. We adopt
Kruskal coordinates

u = t− r∗ (5.90)

and
v = t+ r∗ (5.91)

with a tortoise coordinate

r∗ = r + 2Mln
∣∣∣ r
2M
− 1
∣∣∣ (5.92)

If a particle with Schwarzschild energy δE falls into a black-hole at v1, the
formation time of the horizon v0 is shifted to v0 + δv0 with

δv0 = −4δEe
v0−v1

4M (5.93)
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and a light ray that would arrive at some time u1 will arrive at a shifted time

δu = −4Mln

(
1 +

δv0

4M
exp

u− v0

4M

)
. (5.94)

This shift diverges at a finite time

u1 − v0 ≈ −4Mln

(
|δv0|
4M

)
= 4Mln

(
4M

4δE

)
− v0 + v1. (5.95)

If
u1 − v1 ≥ 4Mln

(
4M

4δE

)
(5.96)

then the outgoing particle is shifted so much that it does not escape the black-hole,
which renders the S-matrix approach invalid [133]. The validity of the black-hole
S-matrix was criticised by Itzhaki [132] especially because it depends not only on
the black-hole mass but also on the energy of the ingoing particle.

I therefore want to make the following comment on the limitations of the
black-hole S-matrix.

In order for this formalism to generate a unitary S-matrix, one should have
time reversal invariance. Time reversal invariance means that there exists an anti
unitary time reversal operator T which, if applied to a state yields

T |ψp,σ〉 = ψPp,−σ (5.97)

where p is the four momentum, σ is the particle spin and P is the parity operator
which in this case reverses the space components of the four momentum.

For the S-matrix, this means

〈ψout,−p|ψin,p〉 = T 〈ψin,p|Tψout,−p〉. (5.98)

This condition implies for the scattering process that if one has an ingoing photon
with momentum p = ~k = ~ν, the outgoing photon must have the momentum
p = −~k = −~ν, and thus their energy ~ν must be equal at measurement stations
that are positioned far away from the place of the scattering.

For a Schwarzschild black-hole, one has the following evaporation law

M3(t) = M3
0 −

27

10π · 84
∆t (5.99)

where we define M0 as the black-hole mass at time v1 from before [22]. This means
that if one starts with a black-hole at mass M0 + δE at time v1, it takes a time of

∆t ≡ u1 − v1 =
40906πδE(M2 +MδE + 1

3
δE2)

9
(5.100)
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until at some time u1 the entire mass δE was released by the black-hole.
If we have ingoing particles, we know that the metric gets perturbed. In

order to derive the evaporation law for this case, one could indeed make a similar
computation as in DeWitt’s review article but with the modified Bogoliubov
coefficients from Arcioni’s work [133]. However, we already know that the time
interval ∆tperturbed until outgoing matter reaches an observer for the perturbed
black-hole gets longer, so

∆tperturbed > ∆t = u1 − v1. (5.101)

Putting everything together, we now have the statement that in the case

∆tperturbed > u1 − v1 =
40906πδE(M2 +MδE + 1

3
δE2)

9
≥ 4Mln

(
M

δE

)
(5.102)

the S-matrix becomes invalid. One can make this more concrete by putting in a
few examples for the black-hole mass.

Assume for example, a black-hole with 1 Solar mass, or M = 9.1 · 1037 Planck
masses. From the above inequality, according to a calculation with Wolfrahm
alpha, it would follow that the ingoing particle must have a Schwarzschild energy
of 0 < δE < 5.47 · 10−40 Planck masses if the black-hole S-matrix were to be valid.
An electron has a mass of 4.1 · 10−23 Planck masses. The S-matrix would thus not
hold for most observable particles (apart from Neutrinos perhaps).

On the other hand, if the black-hole has a mass of M = 1, then 0 < δE <
0.0017 Planck masses before the black-hole s-matrix breaks down, according to a
calculation with Maple 2015, which means that especially for small black-holes,
the S-matrix should be valid.

For a large macroscopic black-hole, this implies that most if not all particles
with energy δE before they fall into the black-hole are outside of the so called
scrambling time and their scattering with black-holes can not be described by the
’t Hooft’s S-matrix. The same should hold for ingoing particles with large energy.
Such a configuration appears to be out of the scrambling time, too.

It therefore appears reasonable to set the mass in the constant κ very small,
perhaps close to the Planck scale.

The black-hole S-matrix of ’t Hooft has additional interesting properties. ’t
Hooft has developed his theory further and included electromagnetic interactions.
These interactions yield a large extra dimension with an S1 topology and radius
r = 2π/e. Non-abelian gauge theories and fermions have not been added to this
model yet.
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String theory usually allows the definition of a Virasoro algebra, from which
a no-ghost theorem can be derived. This result implies that the theory is only
consistent with 26 dimensions in the purely bosonic case or with 10 dimensions in
the supersymmetric case. ’t Hooft has tried to derive commutator rules for his
model in the Rindler frame. Unfortunately, he arrived at a different algebra. It
would be interesting whether one can derive a similar restriction for the number of
extra dimensions in the black-hole scattering matrix of ’t Hooft.

Then one may add additional interactions that result in extra dimensions.
Finally, one may ask how many extra-dimensions one would get if one adds the
known standard model interactions to this theory. This could help to deduce
whether there must exist additional interactions other than those that are in
the known standard model. This may be a problem that the author wants to
investigate in the future.

Saying this, one should be clear that this program would differ very much from
usual methods in which string theory phenomenology is done. There, one usually
wants to create string theory backgrounds where one then can find an effective
action that contains the standard model. Compared to that, the approach by ’t
Hooft is a very different one.

The Polyakov action emerges from the standard model scattering with black-
holes. This process changes the physics so much that one can not automatically
expect the effective action of this to contain the standard model in a subgroup.

The classical limit with the standard model would be only obtained by recog-
nizing that on energy scales where quantum field theory of the standard model
is investigated at present, the black-hole s-matrix of ’t Hooft is simply not there.
For macroscopic black-holes, much of the matter emerges after scrambling time.
For microscopic black-holes, an observer that can only see low energy processes
on a large time scale, would not be able to observe the details of the scattering
process at high energy. Instead, he would only see an ingoing state and after a
time interval too small to get measured, an outgoing state would be there that
contains the same information and entropy.

However, at low energy levels, some residual collective effect of the gravitational
field of the black-hole gas of space-time foam should be seen, since gravitation is a
long range force. What this process leads to was described in the section 5.2.1.
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5.4 Problems with matter amplitudes and topo-
logy changes in the space-time foam

5.4.1 Changes of the Euler characteristic during the expan-
sion of the universe

The cosmological constant was computed in the space-time foam model by maxim-
izing the entropy that is given by the amplitude of Euclidean quantum gravity.
Usually, there is no time evolution in a system that has reached a state of thermo-
dynamical equilibrium and maximum entropy. However, we have computed this
equilibrium state only for a fixed given volume.

If the system with a fixed volume V reaches a state of maximum gravitational
entropy, it will have a positive non vanishing cosmological constant of Λ ≈ H2

0 . On
an infinitesimally small timescale, the latter implies an expansion of the volume V
of the universe to V + dV .

In order to reach a consistent description, we should be able to find out whether
the entropy of the universe increases if its volume is increased.

Did we have only the equation (4.59), then

Λs0 = −424πχ

45V
(5.103)

and a constant Euler characteristic would make it impossible that the entropy
increases with the volume, since then

S ∝ Λs0V

8π
= const. (5.104)

Such a result would imply that either the universe does not expand or that the
Euler characteristic changes during the expansion.

With the Λ2 corrections from quantum gravity, the entropy is proportional to

S ∝ −I =
Λs1V

8π
(5.105)

where Λs1 is given by the saddle point of Eq. (4.56). If we insert the expression
for Λs1 and simplify this, we get

S ∝ 5V

232
−
√
V (225V + 24592χ)

696
(5.106)



114 5. How matter behaves in the modified space-time foam model

This expression for the entropy as a function of the volume is a bit simplified
since have not included the factor C(Λ) from Eq. (4.26).

For a given volume V , Eq. (5.106) implies that the entropy increases the
smaller the Euler characteristic χ becomes. With volume V constant, the entropy
is at its maximum if the term in the squareroot simply vanishes. After this has
been achived, the entropy can only increase by increasing the volume. Maximizing
the entropy then implies a new adjustment of χ.

From Eq. (4.58), one finds

χ =
9

848π2
Λs1(29Λs1 − 10π)V =

9

848

f(10π
√
V + 29f)

π2
(5.107)

after substitution of Λ = −f√
V
. With Λ > 0, one has f < 0 and therefore, the Euler

characteristic becomes smaller with

χ ∝ −
√
V , (5.108)

which has the units of an area.
Unfortunately, the space-time foam calculation does not describe the transition

amplitudes that relate the states of maximum entropy for different volumes and
topologies to each other. There are certain issues that need to be addressed when
one computes transition amplitudes in quantum gravity. For example, instead of
the local Wheeler-DeWitt equation, one gets non-local equations in an appropriate
treatment of the problem [13, 60].

Furthermore, DeWitt had found two arguments against topology change, whose
validity for the model above will be discussed below

5.4.2 Incompatibilities with quantum field theory on curved
space-times during topology change

Many arguments against topology changes in quantum field theory and quantum
gravity come from the work of Geroch [12]. Based on a result from Misner:

Theorem 3. Theorem 1 (Misner): Let S and S ′ be two compact 3-manifolds.
Then there exists a compact geometry M whose boundary is the disjoint union of
S and S ′, and in which S and S ′ are both space-like.

and the following definition from Calabi

Definition 6. A space-time with metric of Lorentzian signature is called isochron-
ous if a continuous choice of the forward light cone can be made.
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Figure 5.1: Trousers topology. The solid horizontal lines indicate field which has
different boundary conditions after the topology changed at some time

Geroch was able to prove the following

Theorem 4. (Geroch) LetM be a compact geometry whose boundary is the disjoint
union of two compact space-like 3-manifolds, S and S ′. Suppose M is isochronous,
and has no closed time-like curve. Then S and S ′ are diffeomorphic, and further
M is topologically S × [0, 1].

This implies that if one starts from a certain 3 geometry embedded in a
Lorentzian space-time and ends at a 3 geometry with different topology in this
Lorentzian space-time, one has either to go over a 4 manifold which has closed
time-like curves, or singularities.

In [135], Anderson and DeWitt used this result to show that quantum field
theory on curved space-times would become inconsistent during a topology change
that would create a singularity.

They begin their argument with what they call a trousers topology. This is a
singular space-time with the topology of a pair of pants. At one end, it has the
form of a cylinder which then undergoes a topology change at some time slice and
gets cut into two cylinders, see fig. 5.1.

Anderson and DeWitt define a set of ingoing modes of a quantum field that
start propagation at the side where the topology is described by one single cylinder.
The field is assumed to fill the entire space and to propagate in time up into the
region where the cylinder is split into two "legs" where one has outgoing modes.

Furthermore, the field is assumed to fall off at the boundary of the space-time.
Then Anderson and DeWitt compute the energy operator of the in and outgoing
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states and find
Ein|in, vac〉 = C|in, vac〉 (5.109)

and
Eout|out, vac〉 = (CR + CL)|out, vac〉 (5.110)

where C,CL, CR are the Casimir energies of the trunk and the left and right leg.
Computing the expectation values of in and out energies, Anderson and DeWitt
find that they differ by an infinite amount. Additionally, they investigate the
expectation of the renormalized energy momentum tensor. The change of the
boundary conditions during the topology change introduces discontinuities in the
field modes. This then results in infinite energies. Anderson and DeWitt repeat a
similar computation with linearised gravity on a 3 Torus which splits up into 2
separate 3 tori. They find similar discontinuities in the mode functions.

The argument of Anderson and DeWitt against topological transitions concerns
a quantum field on a space-time where it is assumed that before the topology
change, the field can reach places that are unreachable after the topological
transition took place.

This problem may probably be solved by simply assuming that the worm holes
of space-time foam are non-traversable. With a traversable wormhole, one could
always try to move the throats such that they face each other. Then, a geodesic
passing through both throats would then be a closed time-like curve [98]

The requirement that wormholes are non-traversable can thus be seen to follow
from a causality requirement.

If the wormholes of space-time foam are non-traversable, quantum fields on
that space-time can not be cut off from regions with different boundary conditions
by the singularity of a topological change. Thus an energy flash could not be
observed when a non-traversable wormhole fluctuates into or out of existence.

However, even in that case, there emerges a problem for quantum gravity.
The space-time during the transition is singular and the question arises whether
quantum gravity is compatible with such space-times.

5.4.3 Problems with path integrals over non-simply connec-
ted configuration spaces

In his non-technical article [13], DeWitt has made a short comment where he writes
that topological changes would be forbidden because there exists no fundamental
group of the configuration space of quantum gravity. Since DeWitt’s comment is
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basically just a short sentence and rather non-technical, we will add the necessary
mathematical terminology for a proof of this result below.

If one were to describe the Aharonov-Bohm experiment with a path integral,
the configuration space of the system would be the set xi(t) of a countably infinite
number of paths indexed by i and parametrized by a time parameter t in which a
particle can get from the source to the destination.

Because some paths can circle around the solenoid for several times one can not
deform each path into another. The homotopy class of a certain group of paths
can be defined by the number of how many times each path is winded around the
solenoid.

A result from Laidlaw and DeWitt-Morette [136] shows that for path integrals
over non simply connected configuration spaces, an amplitude becomes a superpos-
ition of partial amplitudes Kα where in each Kα only paths of a certain homotopy
class α are considered:

Z =
∑
α

D(α)Kα (5.111)

Laidlaw and DeWitt-Morette also show in [136] that the weighting factorD(α) must
be a scalar unitary representation of the fundamental group of the configuration
space. Their result holds for path integrals with arbitrary actions and configuration
spaces. The only requirement is that one can define an integration measure over
paths.

The labelling of a class of paths to a group element requires an arbitrarily
chosen homotopy mesh. Laidlaw and DeWitt-Morette have shown in [136] that
the entire amplitude is independent of the choice of that mesh.

The analysis of the configuration space of quantum gravity began with the early
article from DeWitt [3] on canonical quantum gravity. Then, Fischer analysed
the configuration space more closely in [137]. He found that it is not a manifold
but that it is a stratified space which has strata consisting of ordinary points
and boundary points. In the same conference, DeWitt [138] argued that the
configuration space can be extended such that it becomes a manifold (see also
[139] for an introduction). More recent articles on that topic are the ones from
Giulini [140] and Anderson [141].

In the path integral of quantum gravity, one starts with a 3 manifold Σ1 and
then considers all possible paths over various 4 metrics. These paths end at another
3 manifold Σ2 as their boundary.

When one analyses the configuration space, one usually talks about the 3
manifold (Σ1, γij) from which the paths start. This 3 manifold is an argument of
the wave functional that solves the Wheeler-DeWitt equation Ψ(γij, t) =

´
dgµνe

iS.
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When one sums path integrals of point particles, the dimensionality of the
point from which all the paths start is the same as the dimensionality of the
points from which the paths in the integration are made. This can be different
in quantum gravity. If the wave functional solves the Wheeler deWitt equation
with a vanishing Hamiltonian, it is time independent, i.e. only a functional of γij:
Ψ(γij) =

´
dgµνe

iS. Paths in quantum gravity start and end at 3 manifolds Σ1 and
Σ2 but one has paths whose points describe the metrics of 4 manifolds (M, gµν).

For the formula of DeWitt-Morette, one needs to consider the paths over the
4-manifolds gµν and not the 3 manifolds γij that are usually used in articles to
define the configuration space of quantum gravity.

But in other aspects, the analysis of the configuration space of the paths is
similar. Let us first begin by considering only a single topological manifold M
with fixed topology. The space of 4 metrics gµν is called Riem(M) and the space
Θ̃(M) over which one integrates is given by

Θ(M) = Riem(M)/Diff(M), (5.112)

where Diff(M) is the diffeomorphism group.
As a quotient space, it has quotient singularities. But it can probably be

desingularized in the same way as the 3 manifolds (Σ1, γij). Then one could do a
similar analysis of this space as in [137, 140].

Let us now consider several topological manifolds Mi with different topology,
and then compute the union of these configuration spaces

Θ̃ = ∪iΘ(Mi). (5.113)

This is the configuration space if we include paths that end at a different topology
than the one which they started from.

For the formula of DeWitt-Morette, we need to be able to define the fundamental
group of Θ̃. The fundamental group exists only if we can define a base-point
x0 ∈ Θ̃(M). Then we can consider various loops that start and end at x0. For
this, Θ̃(M) must be path connected.

As an example, choose a flat space and define the metric of this flat space as a
base-point x0. Due to Geroch’s theorem, any path from this space to a space with
different topology will go over a space that has singularities. This means that the
metrics in this space will be divergent somewhere, if we do not allow metrics with
closed time-like curves.

Let us define a continuous path

I : [0, 1]→ X (5.114)
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to a space of metrics
X = ∪iRiem(Mi) (5.115)

where I(0) = I(1) is a flat space metric. Unfortunately, if I is continuous, there
does not exist a σ ∈ (0, 1) where I(σ) maps to a metric tensor that is divergent.

The path I simply can not continuously go to the divergent metric tensor and
then back to a regular flat metric. If we divide the non-path connected space
of metrics X trough the diffeomorphisms, the quotient space remains not to be
path-connected.

The singular spaces of general relativity are usually not manifolds but stratified
spaces. They consist of strata that contain manifolds, and two types of singularities:
boundary singularities and singularities with divergences in metrics and topological
invariants as strata.

In order to do homotopy theory on such a space one may think of using some
kind of stratified homotopy theory [142]. One has to describe the different strata
as a partially ordered set and then one can define an exit path ∞ category where
1-morphisms describe exit paths from lower to higher strata. Unfortunately, this
theory only provides exit paths, which means they are not allowed to return to
the strata they were starting from [142].

One can use a fundamental groupoid on stratified spaces. The fundamental
groupoid does not need a base point. Assume we group the regular metrics without
singularities, and the metrics with singularities into different strata and order them.
Then an exit path could go from a regular metric to a singular one. For a topology
change one would want to go from a regular metric, like e.g. flat space, over a
singular metric back to a regular metric, e.g. a wormhole, with different topology.
Unfortunately, since the exit path can not go back to the stratum where it came
from, stratified homotopy theory can not be used to define topology changing
paths.

This suggests that one needs a version of quantum mechanics that can work
with singularities in order to realize topological changes and at the same time
avoids closed time-like curves.

5.5 Problems with singularities and topological changes
in string theory

In [13], DeWitt notes that sometimes [14] it is claimed that it would be possible
to formulate string theory exactly on orbifolds, which are stratified spaces that
consist of a manifold and a quotient singularity as strata. DeWitt adopts these
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claims, and adds that one could write string theory even on Lorentzian orbifolds.
He argues in his non-technical paper that one may therefore use string theory in
order to describe topology changes of Lorentzian space-times.

The usual string theory amplitude is a path integral of the form

〈pout|pin〉 =

ˆ
DXµDγabV1 . . . Vne

iSp (5.116)

where
Sp =

−1

T

ˆ
d2σ
√
−γγab∂aXµ(σ)∂bηµνX

ν(σ) (5.117)

is the Polyakov action. γab is a 2x2 metric of a world-sheet which is parametrized
by two coordinates σ ∈ [0, 2π], τ ∈ R. The functions Xµ(σ, τ) describe a mapping
of the world sheet into the target space whose metric is ηµν and V1 . . . Vn are so
called vertex operators.

Harvey, Vafa and Witten computed the partition function of string theory on
an orbifold in [14]. They set the following conditions for the embedding functions
in the form of

Xµ(σ + 2π, τ) = gXµ(σ, τ) (5.118)

and for the string states
g|Ψ〉 = |Ψ〉, (5.119)

where g is some element of G. They then calculate the path integral of string
theory with these boundary conditions.

The authors of [14] do not discuss what happens in the classical limit of the
string theory amplitude at the singular point of the orbifold. The article [14] also
seems to leave out how the quantum theory is defined at this point itself.

The equations of motion of string theory are found by minimizing the world
sheet with respect to the target space. Classically, the functions Xµ(σ, τ) thus
describe a geodesic field, with one geodesic λµ(τ) = Xµ(y, τ) for each y ∈ [0, 2π].
The solutions of the string equation of motion are derived from the action where
∂aX

µ(σ, t) appears and are are given by

∂a
(√
−γγab∂bXµ

)
= 0. (5.120)

On the singularity of the orbifold, the derivatives of functions that map into
the target space diverge. Mathematically, canonical quantisation procedures rely
on a smooth Poisson manifold [143]. Therefore, it is unclear how one should define
a quantum theory at the singular point of an orbifold by canonical quantisation.
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The string theory amplitude contains a path integration over the world sheet
metric. If one fixes a topological manifold Σ(2) for the world sheet, the configuration
space over which one integrates is then the quotient space

Ω(Σ(2)) =
Riem(Σ(2))

Diff(Σ(2)) nWeyl(Σ(2))
(5.121)

of 2 metrics divided through the diffeomorphism group and the Weyl invariance
group [144]. This is quite similar to the configurations space of ordinary quantum
gravity.

Obviously, if we consider an enlarged space that includes singular world sheet
metrics or world sheet spaces Σ

(2)
i that have different topology, then the configura-

tion space is given by
Ω̃ = ∪iΩ(Σ

(2)
i ) (5.122)

The path integral formula Eq. (5.111) of Laidlaw and DeWitt-Morette is
completely general in that it is not related to a specific action or a certain
topological space of paths. It thus is also applicable in the string theory case.

If we were to allow singular world-sheet metrics into the path integral of the
string theory amplitude, the space of metrics would also not be path connected
any more. By the same arguments as in the foregoing section, this would prevent
the definition of the fundamental group of the configuration space. By Eq. (5.111),
this would prevent the definition of the string theory amplitude.

The world sheet is of course not the target space. However, the string theory
amplitude also contains a path integration over the embedding functions. We will
see below on which spaces this can defined.

As we have seen in section 1.2, there exists a mathematically rigorous formu-
lation of path integration [1, 19–21, 145]. Unfortunately, this theory shows that
the measure DXµ in the path integral does only exist if the functions Xµ form a
Banach space whose norm induces a metric on the space of functions Xµ. The
reason for this is simply that integrals measure lengths and areas.

The arguments in [1] use parts of advanced measure theory.
String theorists often use the Euclidean path integral with a Wick rotated

Polyakov action. This integral can be mathematically defined with the Feynman-
Kac formula, see [144]. Its measure is in fact a usual Lesbegue measure, see
[1].

Here we give a simplified proof which shows that the Euclidean path integral
needs the embedding functions to form a metrizable space. The proof only uses
simple concepts from Lesbegue theory that can be easily understood by physicists
without much mathematical education.
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In Lesbegue measure theory, one writes a function f(x) : M → N that maps
into some space N as a limit of simple functions fn(x)

f(x) = lim
n→∞

fn(x) (5.123)

where

fn =
n∑
i=1

ωiχXi(x), (5.124)

is a simple function has only finitely many function values ωi. χXi(x) is the
characteristic function of a measurable Borel set Xi. We integrate over an interval
[a, b] = ∪iXi ∈M . The measure of the set Xi is given by the measure µ(Xi) . The
integral becomes ˆ b

a

fdµ = lim
n→∞

∞∑
n=1

ωiµ(Xi). (5.125)

If the set ∪iXi is not measurable, then clearly, the integral does not exist. On the
other hand, if such an integral exists, then one can choose to set f = 1, ωi = 1
and define |

´ b
a
dµ| as length between points a and b, which yields a metric for the

space M = ∪iXi.
The existence of the integral of the function f(x) thereby implies that the

space M whose element x is has to be metrizable.
Similarly, the existence of a path integralˆ

DXµ(σ, τ)e−Sp(Xµ(σ,τ)) (5.126)

over a function space with a Feynman pseudo measure DXµ(σ, τ) implies that the
function space of Xµ must be metrizable. This is simply because the functional
integral measures areas in this function space.

A more formal measure theoretical proof which shows that the space of functions
Xµ must be metrizable if the path integral over DXµ is an Euclidean path integral
that can be described by the Feynman-Kac formula, is given in [1] on pp. 28-31
and pp. 387-390.

For ordinary path integrals with imaginary exponent in the integrand, the
rigorous construction of the path measure from DeWitt-Morette in [21] also works
only with a metrizable function space.

If the space of the functions Xµ(σ, τ) is metrizable, there must be some way
to construct this metric. The metric in the function space defines whether two
functions Xµ

1 (σ, τ) and Xµ
2 (σ, τ) are regarded as "close" or "far" from each other.

The only way to do so is by using the function values of Xµ(σ, τ) themselves.
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For this Xµ(σ, τ) ∈ T must map into a metrizable target space T . Then one
can create, for example, a supremum norm

||Xµ||∞ = sup||Xµ(σ, τ)||T , (5.127)

where || · ||T is the norm of the target space T to which Xµ(σ, t) map. Naturally,
the norm of the target spaces also induces a metric on the target space.

In usual circumstances, one would not need to repeat such simple mathematical
facts in a thesis. However, there are various articles which claim that one could
write string theory even on non-metrizable spaces, see [146] and the references
therein.

These articles use the so-called Buscher rules, which relate metrics by a T-duality
transformation repeatedly. The works in [146] claim that several applications in
different directions, one would get a non-metrizable space. During the proof of
these Buscher rules, one needs to be able to define a differential form dλ ∧ dX0,
where dX0 is a differential form made of the embedding functions that map into
the original manifold, see [147], p. 7-8. The quantity λ is then identified as λ ≡ X̃0,
where X̃0 are the embedding functions on the transformed coordinates.

Hence, in order to proof the Buscher rules, one has to assume that one can
define differential forms dX̃0 on a space that is the result of a t-duality transform-
ation. Unfortunately, since differential forms like dX̃0 only exist on differentiable
manifolds, the proof of the Buscher rules requires the assumption that the trans-
formed space is a differentiable manifold. Unless someone provides a more general
proof that works for spaces which are not manifolds, this result rules out a repeated
application of t-duality transformations that would lead to a non-metrizable space
as a result of the t-duality transformation.

And, as we have seen above, the path integral of string theory also exists only
if the target space is metrizable.

In order for an integral, including a functional integral, to exist, it does not
suffice that the measure of the set over which one integrates exists. The integrand
also must be finite in order to approximate the integral with simple functions.

In physics, one usually has an action where squares of derivatives appear. This
means that that the functions over which the path integral is summed must be
elements of the space L2,1 of absolutely continuous functions whose derivatives are
square integrable, see [1], pp. 59-77.

In case of Xµ ∈ O, where O is an orbifold with singularities, the Polyakov
action would diverge at the singular points. Thus one can not define the path
integral of the string theory amplitude everywhere on singular spaces.
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In string theory, the embedding functions Xµ define the field of a conformal
quantum field theory. Usually, Dirac delta distributions appear in the commutators
or anticommutators of these fields. Delta distributions are so-called tempered
distributions for which a Fourier transformation can be shown to exist. Hence, the
field operators of a quantum field theory also have to be related to, or must be
tempered distributions.

In constructive quantum field theory, one defines quantum field theories purely
axiomatically. By these axioms, field operators are, in fact, defined to be tempered
distributions [148–151]. Tempered distributions can be non-regular. Hence, one
could think that such a construction would work with singular spaces like orbifolds.

However, tempered distributions need so-called fast falling test functions. These
are smooth functions that go to zero faster than any polynomial function.

In order to see how this construction works we review the following example
from [151].

Consider a massive Dirac field ψ(x). It is an operator valued distribution of
mass m that fulfils the Dirac equation of motion

(iγµ∂µ −m)ψ(x). (5.128)

One can now define an operator valued functional Θ(ρ) for a fast falling test
function ρ by

Θ(ρ) = 〈ψ, ρ〉 =

ˆ
d4yψ(y)ρ(y) (5.129)

and one can define a translated functional

Ψ(x) = TxΘ(ρ) = 〈Txψ, ρ〉 =

ˆ
d4yψ(y)ρ(x− y). (5.130)

In both equations (5.129-5.130), the integrations are only to be understood as a
symbolic notation, as integrals over divergent quantities are not rigorously defined.
The scalar product can be exactly defined if one writes the tempered distribution
as the limit of a family of functions (which is possible with all distributions).

The function Ψ(x) also fulfils the Dirac equation but one can show that it is
an analytic function in x.

So in order to be able to work with the possible divergences of the field operators,
one must first assume that the fields are operator valued tempered distributions.
Then, with the help of fast falling smooth test functions and a representation of
the distribution as the limit of a function family, one has to turn the possibly
divergent field into a regular function before one can do analysis with it.
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In this mechanism, the test functions must be smooth and they must be defined
everywhere where the field ψ is defined.

In string theory, the field operators of the embedding functions Xµ would map
on the orbifold. Then, the test functions would also have to map to the orbifold.
At the singularity of the orbifold, it would then not be possible to define smooth
fast-falling test functions.

Thereby, as in the path integral approach, the amplitudes defined by the
constructive quantum field theory approach are not defined exactly at a singularity
of a target space.

It therefore appears that the only way to define string theory on an orbifold is
to desingularize the orbifold in a neighbourhood of the singularity. Then one can
make this neighbourhood infinitesimally small and try to write the classical string
theory on that space. Finally, one quantizes the classical Xµ.

But until recently, it was not even clear if the classical string theory could be
defined in the vicinity of a singularity. As this appears not to be well known in the
string theory community, we will discuss these recent mathematical developments
below.

If G is a finite subgroup of GLn(C), one can define the orbifold χ = Cn/G.
This is an algebraic variety that is constructed from the algebra of G invariant
polynomials on Cn (a G invariant polynomial is a polynomial f ∈ C[x] which fulfils
f(x) =)f(γ(g)x) where γ is a representation of G).

One has the famous theorem

Theorem 5. (Hironaka) every algebraic variety over a field with characteristic 0
has a resolution.

A resolution is a manifold Ũ where one can apply a map β : Ũ → V to get to
the original space V that is described by the algebraic variety.

The characteristic of a ring is the smallest number of times how often one must
add the ring’s multiplicative identity in order to get the additive identity. If this
number does not exist, the characteristic is zero. For example R and C are fields
that are described by varieties of characteristic 0.

A simple example of an Orbifold is C/Z2, which is a cone. Its resolution is a
cylinder Ũ with a metric

ds2 = dr2 + r2dσ2. (5.131)

After the resolution is done in an ε neighbourhood around the singularity,
one can use the recent results Grandjean and Grieser [15] or [16]. For a nice
presentation of these works, see [152].

In [15, 16] it is shown that
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Theorem 6. (Grandjean, Grieser) For every σ ∈ ∂Ũ , there is a unique geodesic
starting at σ.

This result was then used by Grandjean and Grieser in [15, 16] to define the
exponential map in a neighbourhood of ∂Ũ .

With this, a geodesic field Xµ(σ, τ) starting at every point σ ∈ ∂Ũ can be
defined on the cylinder. Since the circle described by ∂Ũ is periodic, one gets the
condition

Xµ(σ + 2π, τ) = gXµ(σ, τ). (5.132)

If one goes from a string on a manifold M to an orbifold M/G, then it is clear
that for the string states, one should additionally have

g|Ψ〉 = |Ψ〉. (5.133)

Because of theorem 6, the geodesic field Xµ(σ, τ) also exists in the limit
ε→ 0 where the epsilon neighbourhood in which we made the resolution becomes
vanishingly small. It appears that the string theory is defined on the orbifold only
in this limit.

When computing the amplitude on the orbifold with the method of [14], the
removed epsilon neighbourhood is not seen. This has the following reason:

Let all geodesics start starting at an epsilon neighbourhood around the singu-
larity. If we go to the limit ε → 0, the set that was removed from the orbifold
around the singularity has a measure of zero. If you remove an area with a measure
of zero from an orbifold, the resulting space has the same area as the orbifold.
Since the embedding functions of string theory map into this space, the area of
the function space remains the same as the orbifold.

In the geodesic picture, each curve does then not begin at the tip of the cone,
but at the boundary of the blow up, which, as we make the ε neighbourhood
smaller, gets closer and closer to the singularity at the tip of the cone. Thereby, in
the limit ε→ 0, the curves which will be quantized have the same length as they
would have on the orbifold. The same then also applies for the quantized strings.
This is the reason why the removed ε neighbourhood of the orbifold is not noticed
in the path integral of string theory.

That the procedure of Dixon, Harvey, Vafa and Witten implicitly assumes a
blowup is also indicated by the fact that on p. 685 of their article [14], the authors
first compute the Euler characteristic of a manifold that they obtain "after blowing
up [the] fixed points" of the orbifold M/G where M is an arbitrary manifold and
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G = Z3. Then they derive the same Euler characteristic from their string theory
calculation.

Dixon et al. propose that one may use their technique also in cases where
the blowup manifold is not known or where it can not be computed. They make
the conjecture that there exist more general methods to resolve singularities on
orbifolds. However, the work of Grandjean and Grieser [16] suggests that one
should not apply this technique without knowing the result of the blowup.

Whereas the geodesic field also exists for cuspidal singularities, the exponential
map differs much from the conical case. For general singularities, one would need
to understand the degeneracies of resolved metrics to higher order, see [152].

Some researchers have investigated the use of blowup techniques to change the
topology in 6 dimensional Euclidean string theory backgrounds. Usually, they use
flip and flop operations [153], where one applies a blowdown from a manifold to
a singular space and then blows it up into two topologically different manifolds.
This operation was also used in the open string case [154].

Separately, there are some claims from Witten [155] that one can avoid the
singularity of the compact 6D space during a topology change with gauged linear
sigma models by supplying a non-zero theta angle.

The authors of [153] analyse the topology changes by going to the mirror
manifolds of the varieties they have blown up.

Unfortunately, flop transitions do not change the Hodge number (which are the
analogue of the Betti numbers but for complex manifolds). Flop transitions are
restricted to other topological indices. e.g. intersection numbers among homology
cycles [154].

Sadly, it seems these results that claim the compatibility of string theory with
topology changes of 6 dimensional Euclidean backgrounds can not translated to
Lorentzian 4 manifolds in a mathematically rigorous way.

The theorem of Geroch does not rest on other properties than a 4D manifold of
Lorentzian signature and causality. For these space-times, the theorem implies that
one can not use the flop operation to blow a singular variety up in two different
ways to get two causal, topologically distinct Lorentzian 4D manifolds A and B
with metrics g and g̃ and then have a non-singular path of metrics from g to g̃ (as
it may be possible in 6 dimensional Euclidean space).

As we have seen, the embedding functions Xµ of string theory are tied by the
definitions of the path integral and the axioms of quantum field theory to the
existence of smooth test functions on the target space. This condition can not be
fulfilled at a singularity.

If one blows a 4 dimensional Lorentzian singular space up into two topologically
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distinct nonsingular spaces, one may define two different string theories on these
two spaces but one can not connect them since one can not define a string theory
exactly on the singular space.

Therefore, string theory, as any other conventional quantum field theory, seems
to have just the same difficulties as ordinary quantum gravity when a Lorentzian
4D sub-manifold of the target space gets singular during a topological change.

5.6 Perhaps one needs a version quantum mechan-
ics that can work with non-differentiable paths

As we have seen above, field operators of a quantum field theory necessarily have
to be tempered distributions and these need a manifold where they are defined on.

Usual quantum field theory therefore appears to be mathematically incom-
patible with singular spaces that are needed for the description of a topological
change in causal Lorentzian 4 dimensional space-times.

However, mathematicians have long noticed that stochastic systems usually
have non-differentiable paths and they have developed methods to describe them
by so called stochastic differential equations.

In section 5.2 we have described a stochastic model for quantum mechanics.
We argued in section 5.2 that it may be possible to derive entangled states

with this stochastic model. Since the theory does not have outcomes that are
predetermined by prior events, it may be that it allows to describe entangled states
without needing mechanisms for instantaneous signalling. Furthermore, it may be
possible to rewrite the model via Boltzmann equations in a manifestly covariant
way. Then one may hope to study relativistic particles and derive effects like
particle spin from the stochastic model. Thus it may be that one can describe the
entire framework of quantum mechanics and quantum field theory by stochastic
differential equations.

In the stochastic derivation of non-relativistic single-particle quantum mechan-
ics, the state function

ψ = ±
√
ρ(x, t)eiϕ(x,t) (5.134)

is derived from the averages of the velocities

v(x, t) =
~
m
∇ϕ(x, t) (5.135)

and the probability density ρ(x, t). The functions ρ(x, t) and v(x, t) are differenti-
able functions only on a large distance scale. They are derived from the arithmetic
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mean of two equations that are derived from the averages of

mσ̈j(t) +
m

τ
σ̇j(t) = F rj(t) + F ext

j . (5.136)

and
mσ̈j(t)−

m

τ
σ̇j(t) = F rj(t) + F ext

j . (5.137)

over all trajectories σj.
In contrast to the averages, the individual trajectories σj are not everywhere

differentiable. The velocity σ̇j is only defined during the times where the random
force term F rj does not abruptly change.

With non-differentiable trajectories, it has to be expected that the system can
can be written on singular space-times. However, a smooth description of the
average values in terms of the Schroedinger equation would then no longer be
possible at the singularity.

Quantum gravity is defined by the Wheeler-DeWitt equation

ĤGΨ(γij) =

(
Gijkl

δ

δγij

δ

δγkl
+
√
γ (3)R

)
Ψ(γij) = 0, (5.138)

which is a version of a Schroedinger equation.
If it were possible to do a similar derivation of the Wheeler-DeWitt equation

from some kind of Brownian motion or stochastic differential equations, then one
could perhaps hope to use the theory at the singularities that emerge during
topology changes, where space-time appears to be non-smooth.

The description of quantum gravity on a smooth manifold would then just be
an approximation for large distance scales that becomes invalid at small scales.

In the vicinity of the singularity during a topological change, one may then
go to the non-differentiable description that is described by stochastic differential
equations.

In section 5.3, we have reviewed ’t Hooft’s argument that the scattering of
particles with black-holes, which is expected to occur at high energy in a space-time
foam picture, leads to a Wick-rotated string theory amplitude.

String theory describes a 2 dimensional quantum field theory. For Euclidean
quantum field theory of ordinary fields, it is known that one can describe them
in terms of Markov processes and stochastic differential equations [113–115]. At
the moment, one can only speculate, whether one can describe String theory by
non-differentiable paths. Such a formulation could be useful to describe topological
changes and other analysis in cases where the differential structure of the target
space breaks down.
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Part IV

Conclusion and outlook





133

In this thesis, we have modified Hawking’s model of space-time foam by
removing a problematic approximation for the action and by using a different
renormalization scale. After repeating the calculations of Hawking with these
modifications, it turned out that the cosmological constant that one gets from this
model is of the observed order. We then added matter terms and noted that the
large contributions of the first Seley-DeWitt coefficient do not affect the observable
result for the expected value of Λ.

We also have made a preliminary discussion about the implications of the
higher perturbative orders of the added matter amplitude.

We have argued that the one loop amplitudes of matter terms can yield
small modifications of the effective cosmological constant and that some of the
topological terms in the effective actions seem to be related to the number of black
or wormholes in of the background space-time at equilibrium.

We have shown that the effective matter amplitude is free from the Ostrogradski
instability for certain mass configurations where it leads to the effective action of
a Starobinski model.

Here one could do clearly more work. Starobinski inflation in higher derivative
models with a Λ term of dark energy was for example analysed in [156, 157]
by Myrzakulov, Odintsov and Sebastiani. These authors used the so-called RG
improved effective action where the coupling constants of the effective action are
replaced by one-loop effective coupling constants. The authors then solve the
equations of motion approximately for a DeSitter space and get values for the
slow-roll parameter and spectral index. Our model also contains the Starobinski
R +R2 terms. However, we evaluate the amplitude by a different method. One
may therefore look whether one can compute similar estimates for measurable
parameters of the early universe from our model. A main difference is that we
include a contribution from the Euler characteristic in the amplitude and then seek
the maximum of the entropy. This leads to a space with high Euler characteristic,
which is not a DeSitter space any more.

Last but not least we have commented on the work of Christensen and Duff,
who noted that the inverse Laplace transform which Hawking uses does not always
converge and who propose to save the model with matter terms.

We have argued that, with our choice of the renormalization scale, for spaces
where µ2 = H2

0 = σΛ, σ ≥ 1
2π
, the inverse Laplace transformation does converge.

These are spaces whose quantum correction to the Friedmann equations is small.
At this point, one may do further work. For example, in the gravity action,

the terms depending on the derivatives of the zeta functions were neglected and
one could include them and repeat the calculations again.
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One could also try include effects from the back-reaction of the R2 modifications
from the matter term when solving the equations of motion whose solution is then
inserted into the one loop amplitude. Unfortunately, it is not clear how to do this,
since including the back-reaction implies that the one-loop renormalizability of
the gravity amplitude is lost.

The model in this thesis leads to a specific evolution of the cosmological constant
as a function of the volume of the universe. One may do further comparison
studies with other theories for dark energy. Especially interesting would be the
determination of an equation of state for the dark energy given by this model. This
would make it easier to compare the theory with other models for dark energy.

We have argued in section 5 that a particle in such a space-time foam within
a gas of wormholes may be affected by a collective influence of the gravitational
field and the Hawking radiation that comes from the boundaries that have to be
associated with these holes. We have argued that this process would lead to a
particle being governed by the Schrödinger equation.

We have discussed that the resulting theory is not a hidden variable theory in
the sense of Bell. We noted that if one assumes that the Hawking radiation at
spatially separated locations is correlated, it may be possible to derive entangled
states. We have not done this calculation in this thesis because it would involve
the computation of average values of a infinite number of correlated stochastic
processes, which is a difficult task.

If the entanglement of particles is due to the entanglement of Hawking radiation
of spatially separated black holes, this would be interesting in view of the so-called
ER=EPR hypothesis. These hypothesis states that a wormhole is dual to an
entangled pair of black-holes. The amplitude of quantum gravity predicts a space-
time with a wormhole gas. The relations of the space-time foam model to the
ER=EPR hypothesis could be further investigated.

In this thesis, we also have not made a derivation of particles with spin from a
stochastic model. Furthermore, we did not discuss how the proposed stochastic
process would look for a particle that moves with relativistic speed. For relativistic
extension of the theory, one would need to write the equations of the stochastic
process in manifestly covariant form. This may be possible by using the Boltzmann
equation.

Quantum field theory only describes scattering processes among particles. With
a space-time filled with a gas of black or worm holes, one has to describe scattering
processes between particles and black or worm holes. In section 5.3 we have
discussed a model for such a process that was invented by ’t Hooft. We have
argued that for large astronomical black-holes, most particles would be beyond the
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scrambling time and that the model is suitable mostly for small black-holes. For
this argument, we made use of the known inequality ∆t = u1−v1 ≥ 4Mln (M/δE)
where ∆t = u1 − v1 was computed for a semi-classical black-hole.

In reality, the inequality is even stronger with ∆tperturbed > ∆t ≥ 4MlnM/δE.
One may calculate ∆tperturbed from the lifetime of the perturbed black-hole that
can be calculated from its Hawking radiation. We have not done this but one may
do this in further work.

The black-hole scattering matrix is a Wick rotated string theory amplitude.
Usually, such an amplitude is only consistent in 26 or 10 dimensions. ’t Hooft
has shown that by adding electrodynamic interactions, one gets an additional S1
dimension. He suggests that adding non-abelian interactions may deliver further
extra-dimensions.

One may then try to add the extra-dimensions that can be computed from
the particles of the standard model. If one could derive similar restrictions in the
black-hole s-matrix for the number of extra dimensions than in ordinary string
theory, one may conclude how many interactions are missing in order to have a
consistent black-hole s-matrix. This is something that also has not been done in
this thesis.

Furthermore, the amplitude of ’t Hooft only describes the scattering of an
individual particle with a single black-hole. The space-time foam model suggests
that one would have such scatterings repeatedly if a particle flies through the
space-time. One needs to work out how the amplitude for repeated scattering with
several black-holes looks like.

We have found in section 5.4 that the expansion of the universe would imply
topology changes in the space-time foam model. These topology changes lead to
singularities in the space-time. We have explained a non-technical argument from
DeWitt in technical terms which shows that quantum gravity is incompatible with
such singularities.

It is often claimed that string theory can be written exactly in singular space-
times. We have given mathematical arguments that use existence theorems for path
integrals and arguments from constructive quantum field theory, which show that
this is unfortunately not the case. However, for conical and cuspidal singularities,
one can show that string theory exists in such singular spaces in the limit of a
blow-up in an infinitesimal neighbourhood of the singularity. In a future work, one
may try to prove whether this result holds for singular spaces with more general
singularities.

Our arguments suggest that the singularities which emerge from topological
changes lead to incompatibilities with all models of quantum gravity that are
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based on differentiable paths or field operators which are defined as tempered
distributions.

We have argued that the stochastic model from which we have derived the
single particle Schroedinger equation works with non-differentiable paths and only
on the average, at a large distance scale, one gets smooth functions from which
one can create a state function and the usual Hamiltonian operator.

One may now try to develop the stochastic model further and one may invent
other methods to compute path integrals of quantum fields from stochastic processes
that can be non differentiable.

Then one may apply these techniques to quantum gravity and string theory.
Perhaps it is somehow possible to define a space-time that fluctuates randomly
like as a stochastic process. If a similar method works with the Wheeler DeWitt
equation of quantum gravity as with the usual Schroedinger equation, the metric
is then non-differentiable at a small scale but on the average, one should be able
to derive the Wheeler-DeWitt equation in a continuum limit.

In section 4.4, we have argued that the non-renormalizability of perturbative
quantum gravity may simply be due to black-hole production. The emergence of
black-holes at high energy suggests that one has to use the black-hole scattering
matrix of ’t Hooft for high energies. It describes a Wick rotated string theory
amplitude, which should be finite.

Since string theory, as any ordinary quantum field theory, has certain difficulties
with its path integral formulation if the target space becomes singular, one may
develop string theory in terms of stochastic differential equations, too. At neigh-
bourhoods of singularities, one could then use the non-differentiable stochastic
model for the consistent description in cases where the differential structure of the
target space breaks down.
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