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Abstract 
 

Mitosis and meiosis are both controlled by oscillations in the activities of cyclin-

dependent kinase 1 (Cdk1) and the anaphase-promoting complex/cyclosome (APC/C). 

Nevertheless, these types of cell division differ in fundamental aspects. In mitosis, Cdk1 

and APC/CCdc20 form a cyclical system whereby each cycle recreates the starting 

conditions for the next one. As a result, chromosomes duplication during S-phase 

alternates with chromosome segregation during M-phase. By contrast, meiosis is 

a linear pathway of precisely two waves of Cdk1 and APC/CCdc20 activity that govern 

the progression through one S-phase followed by two M-phases and a differentiation 

program dedicated to the formation of gametes or spores. Despite recent advances in 

our understanding of meiosis, it is unclear how the mitotic cell cycle engine is modified 

to regulate the two meiotic divisions. Therefore, we combined mathematical modeling 

with experimental studies on budding yeast to describe the general mechanism of 

progression through meiotic divisions with special emphasis on the regulation of the 

exit from meiosis II. We showed that progression through meiotic divisions is driven by 

a well conserved Cdk1-APC/CCdc20 oscillator complemented by a set of meiotic 

regulators in order to perform two, and only two, meiotic divisions. The machinery that 

terminates the oscillations after completion of meiosis II consists of a meiosis I-specific 

mechanism that unleashes the irreversible inactivation of M-phase regulators after the 

second wave of APC/CCdc20 activity, thereby preventing cells from undergoing an 

additional third division. Here, we describe the roles of the two main APC/C co-

activators, Ama1 and Cdc20, in triggering the exit from meiosis and in terminating the 

oscillations. We show that Ama1 acts as a terminator of the meiotic oscillations, while 

Cdc20 is important for the proper timing of the exit from meiosis II. We propose that in 

the absence of Ama1, the properties of the system change, allowing Cdc20 to adopt the 

function of the terminator precisely after meiosis II. In addition, we evaluate an 

APC/C-independent mechanisms, which might be important for preventing a third 

meiotic division. 
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1. Introduction 
 

One of the most fundamental aspects of eukaryotic life is the capability of a cell to 

replicate and divide its genetic material, ensuring the survival and perpetuation of 

species. For this purpose, cells of sexually reproducing organisms encode molecular 

machineries that govern chromosome segregation in two types of cell division: mitosis 

and meiosis. Although the core of the regulation of both types of cell division is based 

on the same key mechanisms, mitosis and meiosis differ in fundamental aspects. 

Mitosis is adopted by cells in order to multiply, creating genetically identical daughter 

cells during one round of DNA replication followed by one round of nuclear division. 

By contrast, meiosis halves the content of the genetic material, generating haploid 

gametes, such as eggs and sperms, from a diploid germ cell. This is a result of cells 

performing one round of DNA replication followed by exactly two nuclear divisions. 

Failure in the molecular control of the divisions may lead to changes in chromosome 

content and as a result to conditions such as Down syndrome and infertility (Hassold 

and Hunt, 2001; Sherman et al., 2007). To ensure the production of healthy and viable 

gametes, the meiotic machinery has to promote precise and robust regulation of the 

consecutive divisions. Despite recent advances in studying meiosis, our molecular 

understanding of this type of cell division still remains incomplete. In this work, I have 

investigated the regulatory network that controls two meiotic divisions using 

mathematical modeling in combination with biological experiments. I have studied 

how budding yeast orchestrates meiotic divisions and what are the essential 

components contributing to the proper completion of meiosis resulting in formation of 

four haploid spores. 

1.1. General principles of meiosis 

Meiosis has to ensure the maintenance of proper ploidy (number of chromosomes) in 

the daughter cells by promoting a specific set of cell cycle events that differs from 

mitosis (Figure 1). The general principles of both types of cell division are similar: the 

genetic material has to be duplicated during S-phase and segregated into new nuclei 

during M-phase. However, unlike during proliferation that alternates between these 

two phases, meiosis is a linear pathway, which consists of two consecutive nuclear 

divisions that follow one event of DNA replication (Petronczki et al., 2003). Successful 
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completion of meiotic divisions is followed by a differentiation program dedicated to 

generation of gametes or spores encapsulating haploid nuclei. This process is called 

gametogenesis or sporulation, respectively. 

Meiosis evolved as means for rapid evolution, by bringing variation to a genetic pool of 

sexually reproducing eukaryotes (Kerr et al., 2012). This is a result of combining the 

genetic material of maternal and paternal cells during recombination. Recombination of 

homologous chromosomes allows the exchange of genetic material and the 

establishment of a physical link (chiasma) during the crossing over. During the first 

meiotic division sister chromatids clamp together providing mono-orientation 

(Petronczki et al., 2006; Tóth et al., 2000). The mono-orientation is essential to reduce the 

number of chromosomes and maintain ploidy. It is a unique feature of the first meiotic 

division absent from mitosis, which is characterized by bi-orientation. In budding yeast, 

mono-orientation during meiosis I is mediated by a protein complex, called monopolin, 

that clamps the sister kinetochores together (Tóth et al., 2000). Properly attached 

homologous chromosomes can be resolved during meiosis I by destruction of the 

molecules that are holding them together (Buonomo et al., 2000). These molecules, 

called cohesins, create a complex that entraps sister chromatids by forming a ring 

around them (Gruber et al., 2003; Klein et al., 1999). The complex consists of three 

subunits, called Smc1, Smc3 and an α-klesin subunit: Scc1 in mitosis or Rec8 in meiosis. 

During mitosis, cohesin is cleaved entirely at the onset of anaphase, resulting in 

segregation of chromosomes to opposite poles (Uhlmann et al., 1999). However, in 

meiosis, cohesin is removed in a stepwise manner. During meiosis I only the fraction of 

Rec8 molecules along chromosome arms (arm Rec8) is cleaved, culminating in the 

segregation of homologous chromosomes. The fraction of Rec8 residing at the 

centromeres (centromeric Rec8) that holds the sister chromatids together is protected 

from cleavage by a complex molecular machinery (Kiburz et al., 2005; Nasmyth and 

Haering, 2005). Following segregation of homologous chromosomes, cells enter the 

second meiotic division. Unlike in meiosis I, sister kinetochores attach to microtubules 

from the opposite spindle poles ensuring bi-orientation of chromatids. The protection 

machinery of the centromeric Rec8 is removed, allowing cleavage of the remaining pool 

of cohesin and segregation of sister chromatids. These events ensure formation of 

haploid daughter cells.  
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Figure 1. The mitotic and the meiotic programs in budding yeast. (A) In mitosis, cells exit from G1-
phase and enter the S-phase during which they duplicate their genome and load cohesin (yellow dots) 
that holds the sister chromatids together. During metaphase, chromosomes bi-orient and create tension 
(red arrows). At anaphase cohesin is cleaved, allowing separation of sister chromatids. The resulting 
daughter cells containing identical copies of the maternal genome enter a new cycle. (B) In meiosis, after 
the exit from G1-phase, cells enter pre-meiotic S-phase and load meiotic cohesin (red dots) that holds 
sister chromatids together. During prophase I, cells undergo recombination. Cells create a physical link 
between homologous chromosomes required for proper segregation during consecutive divisions. 
During metaphase I cells mono-orient sister chromatids. Homologous chromosomes are segregated and 
arm cohesin is cleaved. Remaining centromeric cohesin ensures attachment of sister kinetochores 
required for bi-orientation at metaphase II. It is removed only at the onset of anaphase II, triggering the 
segregation of sister chromatids. Resulting four haploid cells enter differentiation program for generation 
of spores. 
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1.2. Control of cell division by the Cdk1-APC/C oscillator 

Chromosome segregation is controlled by two main regulators: a serine/threonine 

cyclin-dependent kinase (Cdk) and an E3 ubiquitin ligase anaphase-promoting 

complex/cyclosome (APC/C) (Nasmyth, 1996; Nigg, 2001; Zachariae and Nasmyth, 

1999). They provide a mechanism that ensures the progression through different stages 

of  both mitosis and meiosis (Figure 2). Budding yeast encodes a single Cdk that drives 

the cell cycle, Cdk1/Cdc28, which exhibits constant levels though the cell division 

(Mendenhall and Hodge, 1998). Its activity depends on its regulatory subunits, cyclins, 

which are synthesized at specific stages of cell division. In budding yeast, G1 cyclins, 

Cln1-Cln3, are required for the transition to S-phase. B-type cyclins, Clb1-Clb6, drive 

the progression through later stages of cell division (Bloom and Cross, 2007; Murray, 

2004). Four of the B-type cyclins, Clb1-Clb4, are involved in the spindle assembly and 

chromosome segregation during M-phase. Changes in Cdk1 activity levels depend not 

only on the synthesis of cyclins, but also on their degradation, which is essential to 

establish the cell cycle oscillator. Levels of cyclins increase during metaphase and 

decreases during anaphase, as they are targeted for proteolysis to the 26S proteosome 

by addition of ubiquitin chains by the APC/C (Irniger, 1995; Sudakin, 1995).  

The activity of APC/C rises during anaphase, allowing cells to enter a low Cdk1 state 

and divide the nuclei. APC/C activity depends on its co-activators, namely Cdc20, 

Cdh1, and Ama1 (Pesin and Orr-Weaver, 2008). They dictate the substrate specificity at 

a defined time of cell division. Cdh1 plays a crucial role during the exit from mitosis, 

maintaining cells in the subsequent G1-phase (Yeong et al., 2000). In meiosis it has been 

shown that Cdh1 activity is restricted to pre-meiotic G1-phase (Oelschlaegel et al., 

2005). On the other hand, Ama1 is present only during meiosis. It is required for 

inhibition of M-phase proteins at prophase I (Okaz et al., 2012). Cdc20 is present in both 

mitosis and meiosis and it triggers the two main M-phase events. Firstly, it targets 

cyclins for degradation, resulting in inactivation of Cdk1 and spindle disassembly. 

Secondly, it provokes cohesin cleavage by a caspase-like cysteine protease, called 

separase/Esp1 (Uhlmann et al., 1999). Esp1 activity is inhibited during metaphase 

through the complex formation with securin/Pds1 (Buonomo et al., 2003; Ciosk et al., 

1998), which is targeted for degradation by APC/CCdc20 (Cohen-Fix et al., 1996). As 

a result, Esp1 is freed from the inhibitory complex with Pds1. This event allows the 

cleavage of cohesin and segregation of chromosomes.  
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Figure 2. Cdk1 and APC/C drive progression through mitosis and meiosis. (A) In mitosis, B-type cyclins 
activate Cdk1 that phosphorylates the APC/C core, allowing binding of Cdc20. APC/CCdc20 targets 
cyclins for degradation at anaphase, inhibiting Cdk1 and activating APC/CCdh1. APC/CCdh1 triggers the 
exit from the M-phase and the entry into the next cycle. (B) During prophase I of meiosis, APC/CAma1 
prevents accumulation of M-phase cyclins until completion of recombination. At metaphase I, highly 
synthesized cyclins activate Cdk1 that inhibits activities of APC/CAma1 and APC/CCdh1. On the other 
hand, Cdk1 activates APC/CCdc20, which triggers degradation of cyclins and entry into anaphase I. Unlike 
in mitosis, in meiosis cells inactivate APC/CCdc20 and re-accumulate cyclins for the second division 
without an intervening S-phase. At the onset of anaphase II cells activate APC/CCdc20 that triggers 
degradation of cyclins and APC/CAma1 that triggers degradation of other M-phase regulators. 
 
 

Cdk1 has different roles in regulating the APC/C activity. It inhibits APC/CCdh1 by 

phosphorylating the Cdh1 protein, preventing its binding to the APC/C core (Zachariae 

et al., 1998; Jaspersen et al., 1999). Similarly, it has been shown that Cdk1-Clb1 inhibits 

the activity of APC/CAma1 in meiosis (Okaz et al., 2012). Thus, both co-activators are 

able to activate APC/C only during the stage of low Cdk1 activity. On the other hand, 

Cdk1-Clb phosphorylates the APC/C core, allowing binding of Cdc20 (Kramer et al., 

2000; Rudner and Murray, 2000). The consequence is formation of an oscillatory 

mechanism that drives the events of the cell cycle. In mitosis, APC/CCdc20 is activated 

A 

B 
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only once, triggering cleavage of cohesin in a single step. The single wave of Cdk1-Clbs 

and APC/CCdc20 activities is recreated in the next cycle of a new cell (Kapuy et al., 2009; 

Novák et al., 2010). As mitotic cells exit M-phase, they maintain low Cdk1 activity by 

the activation of APC/CCdh1 and assembly of inhibitory complex with an stoichiometric 

inhibitor of Cdk1, namely Sic1 (Schwob et al., 1994). This mitotic oscillatory engine of 

Cdk1-APC/C is modified to generate a two-division meiosis. Unlike in mitosis, in 

meiosis APC/CCdc20 is activated precisely twice after DNA replication, generating 

a system of two consecutive divisions that allows stepwise elimination of cohesin. Only 

after the second division, cells maintain low activity of Cdk1. It has been proposed that 

the meiosis-specific APC/C co-activator, Ama1, is involved in this process, similar to 

Cdh1 in mitosis (Okaz et al., 2012).  

1.3. Regulation of the progression through meiosis 

The Cdk1-APC/CCdc20 oscillator is complemented by a large number of proteins, 

forming a complex regulatory network regulating cell division. This network directs the 

production of healthy daughter cells with remarkable robustness and precision. 

It ensures that all events happen in the right order and time, preventing errors that may 

cause unsuccessful completion of meiosis (Hartwell and Weinert, 1989; Musacchio, 

2015; Novák et al., 2010; Shonn et al., 2000).  

1.3.1. Commitment to meiosis and pre-meiotic S-phase 

In higher eukaryotes, meiosis is provoked by a hormonal signal that directs germ cells 

to perform meiotic divisions (Bowles and Koopman, 2010). In budding yeast, 

Saccharomyces cerevisiae, entry into meiosis is initiated in diploid cells in response to 

poor nutrient conditions during G1-phase (Roeder, 1995). Under these conditions, 

budding yeast produce a meiosis-specific transcription factor, Ime1, which ensures the 

synthesis of several early-meiotic genes (Mitchell et al., 1990). One of these proteins is 

a serine/threonine protein kinase, named Ime2. It is required for pre-meiotic S-phase 

and serves as a substitute of mitotic Cdk1-Cln2 in promoting DNA replication (Smith 

and Mitchell, 1989; Szwarcwort-Cohen et al., 2009) along with Dbf4-dependent Cdc7 

kinase and Cdk1-Clb5/6 (Benjamin et al., 2003; Dirick et al., 1998; Sclafani, 2000). At this 

time, the maternal and paternal chromosomes are duplicated, Rec8 is synthesized and 

cohesin is loaded onto the chromosomes, binding sister chromatids together (Nasmyth 

and Haering, 2009).  
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1.3.2. Prophase I and DNA recombination 

As cells finish DNA replication, they enter low Cdk1 state and start the process of 

recombination after the deliberate introduction of DNA double-strand breaks (DSBs) in 

the homologous chromosomes (Klapholz et al., 1985). The DSBs are being sensed by the 

DNA damage response machinery that provokes the activation of the Dmc1 

recombinase and, as a result, formation of the synaptonemal complex (SC) (Busygina 

et al., 2013). The SC is a railway-like structure that binds chromosomes together and 

helps maintaining the pairing during the DNA repair (Page and Hawley, 2004). Until 

after DNA breaks are repaired, cells are prevented from further progression through 

meiosis by the activity of the meiotic recombination checkpoint (RC) that senses the 

unrepaired DNA on the chromosomes (Malone et al., 2004). The main target of the RC is 

the meiosis-specific transcription factor Ndt80 (Tung et al., 2000). It regulates the 

synthesis of more than 200 meiotic genes, among them M-phase cyclins: Clb1, Clb3, and 

Clb4 (Figure 3) (Chu and Herskowitz, 1998). Synthesis of Ndt80 is prevented by its 

transcriptional repressor Sum1, which is active during prophase I (Lindgren et al., 

2000). It has been proposed that this repression depends on the activity of the RC (Corbi 

et al., 2014; Pak and Segall, 2002). However, the exact regulation of Ndt80 by the RC 

remains unclear.  

 
 

 
 
 
Figure 3. Regulation of progression through meiosis by Ndt80-dependent synthesis. Ndt80 is activated 
after silencing of the recombination checkpoint. By an auto-regulatory positive feedback loop, it amplifies 
its own synthesis and triggers progression to the first division. Ndt80 coordinates meiotic progression 
through regulation of the synthesis of more than 200 meiotic genes, among others Mam1 (monopolin), M-
phase cyclins, Cdc20 and Smk1 (MAPK kinase). Arrows in the graph indicate activation of a protein or 
a process, while bar-headed lines indicate inactivation of a protein. Modified from (Winter, 2012). 
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The repression of Ndt80 synthesis prevents premature activation of Cdk1 by M-phase 

cyclins and formation of meiotic bipolar spindle. Cdk1 activity is further suppressed by 

the protein kinase Swe1 (Leu and Roeder, 1999). It has been reported that the deletion of 

this kinase in meiosis has little effect on the checkpoint arrest (Pak and Segall, 2002). 

A more pronounced effect is observed by eliminating Ama1 (Okaz et al., 2012). In the 

absence of Ama1, cells enter the first meiotic division before the completion of DNA 

repair. The consequences of the premature exit from prophase I are recombination 

defects and chromosome missegregation. It has been shown that APC/CAma1 controls 

the prolonged prophase I by targeting for degradation the key M-phase regulators, such 

as cyclins and polo-like kinase Cdc5 (Okaz et al., 2012).  

1.3.3. Progression through two meiotic divisions 

The transition from prophase I to metaphase I is marked by three main events: 

the destruction of the SC, the silencing of the RC and the rapid accumulation of M-

phase cyclins resulting in the formation of a bipolar metaphase I spindle (Okaz et al., 

2012). The silencing of the RC leads to the suppression of Sum1 and elevation of Ndt80 

levels due to auto-regulation of its transcription (Chu et al., 1998). The activity of Ndt80 

depends on M-phase kinases, Cdk1 and Ime2, which inhibit the activity of Sum1 

through its phosphorylation (Ahmed et al., 2009; Shin et al., 2010). Moreover, it has 

been proposed that Ime2, and possibly Cdc5, promote activation of Ndt80 through its 

direct phosphorylation (Acosta et al., 2011; Schindler and Winter, 2006; Sopko et al., 

2002). Upon entry into metaphase I with high activity of Cdk1, Ndt80 becomes active 

and APC/CAma1 becomes inactive due to the inhibitory phosphorylation of Ama1 

protein (Okaz et al., 2012). This mutual inhibition between APC/CAma1 and Cdk1-Clb1 

ensures the irreversibility of the transition (Okaz et al., 2012). 

During metaphase I, only two B-type cyclins are transcribed: Clb1 and Clb4. Clb3 

accumulates only during the time of meiosis II. The importance of limiting the activity 

of Clb3 to meiosis II is not yet understood (Berchowitz, 2013; Carlile and Amon, 2008). 

Active Cdk1-Clb1/4 promotes the formation of the metaphase I spindle required for the 

segregation of homologous chromosomes. Sister kinetochores mono-orient due to the 

activity of the monopolin complex, which is restricted to the first division. The 

meiosis I-specificity of monopolin complex has been found to be regulated by a protein 

produced exclusively during the first division, namely Spo13 (Katis et al., 2004; Lee et 

al., 2004). Spo13 promotes monopolin function by recruiting it to kinetochores and 

enhancing its activity through Cdc5-dependent phosphorylation. 
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The proper attachment of homologous kinetochores to microtubules is sensed by 

a machinery called the spindle assembly checkpoint (SAC). The SAC restrains the 

activity of APC/CCdc20 during metaphase, thereby inhibiting the cleavage of cohesin 

(Hwang et al., 1998; Musacchio and Salmon, 2007). The activity of the SAC depends on 

the proteins that are conserved among all eukaryotes, such as Mad2, Bub3 and Mps1 

(Hoyt et al., 1991; Li and Murray, 1991). The Mad2-Cdc20 complex interacts with Bub3 

and forms an inhibitory complex of APC/CCdc20, named the mitotic checkpoint complex 

(MCC) (Sudakin et al., 2001). It has been reported that the loss of the SAC activity in 

meiosis I shortens the duration of metaphase I and accelerates anaphase I onset in 

vertebrates oocytes (Homer et al., 2005). This leads to an increase of aneuploid gametes 

caused by unstable connections of homologs with microtubules and consequent 

missegregation. Once all chromosomes are properly attached, the SAC is silenced and 

the inhibition of APC/CCdc20 is relieved, leading to degradation of cyclins and 

securin/Pds1. It has been proposed that cyclins are not completely degraded and 

therefore some basal activity of Cdk remains to prevent additional DNA replication 

between the two divisions (Dahmann et al., 1995; Phizicky et al., 2018; Strich et al., 

2004). Degradation of Pds1 results in activation of separase/Esp1 and cleavage of 

cohesin. Only the phosphorylated fraction of Rec8 may be cleaved. In budding yeast, 

this phosphorylation is ensured by the activities of two kinases: Cdc7-Dbf4 and the 

casein kinase 1δ, Hrr25 (Katis et al., 2010). While Rec8 molecules distributed along the 

chromosome arms are susceptible to phosphorylation, the centromeric fraction of Rec8 

remains unphosphorylated and protected from cleavage. The protection mechanism 

involves a protein called shugoshin/Sgo1, which recruits to the centromeres a protein 

phosphatase 2A regulated by a subunit Rts1 (PP2ARts1) (Riedel et al., 2006). PP2ARts1 

counterbalances the phosphorylation, thus protecting the centromeric pool of Rec8 from 

Esp1-mediated destruction (Riedel et al., 2006). Centromeric Rec8 remains to hold the 

sister chromatids together until the onset anaphase II. 

Following the cleavage of arm Rec8 and the first nuclear division, cells enter a second 

round of high Cdk1 activity. During meiosis II, cyclins re-accumulate and reactivate 

Cdk1, allowing the assembly of bipolar metaphase II spindles. The sister chromatids 

attach to microtubules emerging from opposite poles of the spindle, in so-called bi-

oriented fashion. The SAC senses unattached kinetochores and inhibits the activity of 

APC/CCdc20 until after all chromosomes are properly oriented on the metaphase II 

spindles. APC/CCdc20 is activated for the second time triggering degradation of B-type 

cyclins and activation of Esp1. As PP2ARts1 is removed from the centromeres, 



 Chapter 1. Introduction  
 

10 

 

centromeric pool of Rec8 is phosphorylated and cleaved. At the onset of anaphase II, 

Cdk1 is inactivated due to complete degradation of cyclins, which leads to activation of 

APC/CAma1 and degradation of other meiotic regulators. With the destruction of cyclins 

and Cdc5, elongated anaphase II spindles disassemble. Cells exit the second division 

and enter a developmental pathway of differentiation that involves a set of proteins 

required for spore formation (Argüello-Miranda et al., 2017). 

1.4. Regulation of the exit from meiotic divisions 

During the exit from a cell division, APC/C activity raises, leading to a decrease in 

Cdk1 activity and entry into a low Cdk1/kinase state. On the protein regulatory level, 

the exit from a cell division can be defined as a decline in the concentrations of nuclear 

M-phase cyclins and Pds1 followed by cleavage of Rec8. On the level of chromosome 

organization, it leads to chromosome segregation into separate nuclei and disassembly 

of spindles. These two levels of regulation are coupled with each other during both 

mitosis and meiosis, allowing for robust control of progression through the exit from 

a cell division (Zachariae and Nasmyth, 1999). During the exit from mitosis and 

meiosis II, cells prepare for the next event characterized by a low activity of Cdk1: re-

entry into the G1-phase of the next cycle and differentiation program, respectively. By 

contrast, at the exit from meiosis I, cells do not cleave all of cohesin and do not 

completely inactivate Cdk1. They prepare for re-accumulation of cyclins and entry into 

the second meiotic division.  

1.4.1. Preventing complete inactivation of Cdk1 at the exit from meiosis I 

Preventing DNA re-replication and enabling the re-accumulation of cyclins is a unique 

characteristic of the exit from meiosis I. Studies in fission yeast and budding yeast have 

shown that significant portion of cyclin B remains in the nuclei during anaphase I 

(Izawa et al., 2005; Strich et al., 2004). Reduced, but not completely abolished activity of 

Cdk in Xenopus oocytes is required for preventing DNA replication after meiosis I and 

for timely transition to meiosis II (Gerhart et al., 1984; Iwabuchi et al., 2000). It has been 

proposed that destruction of cyclin B between meiosis I and -II is antagonized by 

different factors. Firstly, the APC/CCdc20-dependent degradation of cyclin B is reduced 

during anaphase I (Gross et al., 2000). Secondly, the synthesis of cyclins increases 

between meiosis I and -II, thus counterbalancing the APC/C-dependent degradation 

(Hochegger et al., 2001). In budding yeast, during the transition from meiosis I to 

meiosis II, the activity of Ndt80 is maintained until the exit from meiosis II (Argüello-
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Miranda et al., 2017). Lastly, Cdk1 activity may not be completely abolished due to 

down-regulation of its inhibitors, such as Sic1 and Cdh1 (Holt et al., 2007). Inhibitors of 

Cdk1 are inactivated by Cdk1-dependent phosphorylation. This phosphorylation is 

reversed by the activity of phosphatases, such as Cdc14. It has been speculated that 

during the exit from meiosis I, the ability of Cdc14 to remove Cdk1-phosphorylation 

may be reduced due to the activity of Cdc5 and Ime2 (Holt et al., 2007).  

1.4.2. Regulation of the APC/C activity at the exit from meiosis II 

Two strategies to regulate the exit from meiosis I and meiosis II by the APC/C have 

been suggested (Irniger, 2006; Tyson and Novak, 2008). The first one assumes that 

APC/CCdc20 activity is partially inhibited during anaphase I, thus preventing complete 

degradation of cyclins and other regulators. In fission yeast, the APC/CCdc20 activity is 

inhibited at anaphase I by the meiosis I-specific inhibitor, called Mes1 (Izawa et al., 

2005; Kimata et al., 2011). Mes1 binds to the same domain of Cdc20, called Slp1 in 

fission yeast, as the M-phase cyclin Cdc13 in a competitive manner, thus inhibiting the 

activity of the ligase. In budding yeast, no inhibitor of a similar activity has been found 

to date. In vertebrates oocytes, hyperactive APC/CCdc20 is used to trigger the exit from 

meiosis II. Cells arrest in metaphase II (cytostatic factor arrest) by inhibiting APC/CCdc20 

activity with Emi2 to prevent the entry into developmental process without fertilization 

(Irniger, 2006; Schindler and Schultz, 2009). Upon fertilization Ca2+ signal is introduced 

that activates APC/CCdc20 and triggers the completion of meiosis.  

The second strategy of regulating the exit by the APC/C activity implies the existence 

of an additional meiosis II-specific co-activator that carries out the exit from meiosis II. 

In fission yeast, meiosis is completed by the activation of a meiosis-specific Cdh1 

paralogue, Mfr1/Fzr1 (Kimata et al., 2011). In Drosophila, the exit from meiosis is 

executed by meiosis-specific APC/C activators: Fzr2 during spermatogenesis and 

Cortex during oogenesis (Chu et al., 2001; Jacobs et al., 2002). Likewise, budding yeast 

express a meiosis-specific APC/C co-activator, Ama1, that is up-regulated during the 

exit from meiosis II, implying a similar role to fission yeast Mfr1/Fzr1 (Cooper et al., 

2000; Diamond et al., 2009). Regulation of APC/CAma1 in meiosis II is not well 

understood. Ama1 shows a similar transcriptional and translational pattern as the 

meiosis II-specific protein Clb3 (Berchowitz et al., 2013; Brar et al., 2012). Clb3 

translation is coordinated by the activity of Ime2 kinase, which inhibits the repressor of 

Clb3 translation, a meiosis-specific RNA-binding protein called Rim4 (Berchowitz et al., 

2013). Whether a similar machinery is required for the meiosis II-specific up-regulation 

and activation of Ama1 is unknown. 
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1.4.3. Regulation of meiotic divisions by phosphatases 

Progression through two meiotic divisions is strictly coordinated by the kinases and 

counteracting phosphatases that regulate activities of the substrates of the cell cycle 

kinases. Among the key phosphatases that direct the cell division in both mitosis and 

meiosis in budding yeast are Cdc14, protein phosphatase 2A (PP2A) and protein 

phosphatase 1 (PP1). Cdc14 is required for reduplication of spindle pole bodies (SPBs) 

and spindle disassembly (Buonomo et al., 2003; Jaspersen and Morgan, 2000). While 

Cdc14 is highly conserved among eukaryotes, its exact role during meiosis is unclear 

(Mocciaro and Schiebel, 2010). In budding yeast, Cdc14 is sequestered in the nucleolus 

during most of the cell cycle and meiosis. It is activated upon release through the Cdc14 

early anaphase release (FEAR) pathway and mitotic exit network (MEN) to counteract 

Cdk1 substrates (Stegmeier and Amon, 2004; Sullivan and Morgan, 2007). In meiosis, 

the FEAR pathway is required to activate Cdc14 during anaphases of meiosis I and -II 

(Marston et al., 2003). Inhibition of Cdc14 activity leads to the inability to reduplicate 

SPBs and thus to form meiosis II spindles (Buonomo et al., 2003). Despite the 

importance of Cdc14 activity at the exit from meiosis I, the inactivation of the 

phosphatase in meiosis II does not affect the disassembly of anaphase II spindles and 

the exit from meiosis II (Argüello-Miranda et al., 2017). 

Other phosphatases may be involved in regulation of the meiotic divisions and the exit 

from meiosis II. PP1 is a highly conserved serine/threonine phosphatase involved in 

several events during cell cycle and meiosis. In budding yeast, PP1 regulates the 

activity of the SAC (Sassoon et al., 1999) and progression through early meiosis (Bailis 

and Roeder, 2000; Sarkar et al., 2014). Moreover, while regulated by a meiosis-specific 

subunit Gip1, it appears to be required for spore wall formation and its nuclear import 

(Tachikawa et al., 2001). PP2A is another conserved serine/threonine phosphatase that 

consists of a catalytic subunit (Pph21/Pph22), a scaffold subunit (Tpd3) and 

a regulatory subunit (Cdc55 or Rts1) that directs the substrate specificity (Sneddon et 

al., 1990; Healy et al., 1991; Shu et al., 1997). PP2ACdc55 has been shown to 

counterbalance Cdk1 and Ime2-dependent phosphorylations during meiosis (Holt et al., 

2007). It coordinates spindle assembly and chromosome segregation (Bizzari and 

Marston, 2011; Kerr et al., 2016). It regulates the entry and the exit from mitosis (Queralt 

et al., 2006; Sarkar et al., 2014). Moreover, it has been shown that PP2ACdc55 

dephosphorylates the APC/C subunits, Cdc16 and Cdc27, thus preventing Cdc20 from 

binding to the APC/C core (Rossio et al., 2013). In vertebrates oocytes, PP2AB55 

(PP2ACdc55 in yeast) is required for timely entry into meiosis II (Adhikari et al., 2014), 

targeting for dephosphorylation Cdk1 and Cdc5 sites (Cundell et al., 2013).  
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1.5. Mathematical modeling as a tool to describe biological systems 

Protein networks that regulate biological processes, such as meiosis, usually consist of 

multiple molecules interacting with each other in a complex manner. The complexity of 

the biological system is also a consequence of nonlinear characteristics of the response 

to stimuli, meaning that the amount of the reaction product is not proportional to the 

amount of the starting material (Fischer, 2008). Thus, analysis of such processes often 

requires a simplification by mathematical description, achieved by using an approach 

called mathematical modeling. Mathematical modeling allows to capture the main 

properties of the studied system and to understand how the system responds to the 

stimuli, perturbations and changes in the regulatory network (Fischer, 2008; Sible and 

Tyson, 2007). It is often used to generate testable hypotheses and allows the integration 

of data coming from different levels of biological description. Mathematical modeling 

allows formalizing the relations between the most essential elements of the studied 

system and formulating novel conceptual questions (Fischer, 2008; Kohl et al., 2010). 

1.5.1. Development of mathematical models of dynamical biological processes 

A dynamical biological system is a system of interacting components that undergoes 

changes in time. In mathematical modeling language such components are called 

variables. The change may refer to the modification in molecular concentration of 

a protein within a cell. The goal of mathematical modeling is to describe, analyze, and 

predict the behavior of the individual variables and the emergent properties of the 

studied system (Tyson et al., 2001). To build a mathematical model of biological system, 

a knowledge from biological experiments is required to define the basic regulation of 

the system and the key components of the regulatory network. After defining the basic 

players, a wiring diagram of interactions between system components is constructed. 

Such diagram is a graphical representation of the connections between all key variables. 

Mathematical models present these interactions based on the wiring diagram with 

mathematical equations that define the rules of the time-dependent changes using the 

laws of biochemical reaction kinetics. The interactions are described with parameters, 

which are constants used to specify the reaction speed (rate constants). Mathematical 

functions contain collection of parameters defining biophysical or biochemical 

interactions between molecules. Importantly, mathematical model describing the same 

interactions with the same set of equations may result in different solutions depending 

on the values of the parameters used to define the interactions. Therefore, a crucial step 

during development of a model is estimation of the parameters. This step requires 
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running the computational simulation, which solves the mathematical equations and 

present the result of the model in form of a change of the variable over time. The values 

of the parameters can be adjusted by comparing the numerical solution to experimental 

data and biological phenotypes. The model can be readjusted by changing the basic 

assumptions and components of the network depicted by the wiring diagram, as well as 

by changing the form of equations or the parameter values. The adjusted model can be 

used to test hypotheses and to make predictions regarding the phenotype of biological 

mutants. Figure 4 presents simplified process scheme of development of a typical 

mathematical model. 

 

 
 
Figure 4. Process scheme of developing a mathematical model of biological system. Knowledge from 
biological observations is necessary for the description of key regulators of the studied process. Based on 
a wiring diagram depicting the relevant interactions between the components of the system (network) 
mathematical equations are constructed. After estimation of parameter values, the simulation is run to 
solve the equations. The solutions are verified by biological experiments.  
 

1.5.2. Mathematical description of the protein dynamics 

There are two main approaches to describe a dynamical system (Alon, 2006; Sauro, 

2018). The first one is called a deterministic approach, in which the variable value 

defines its exact state at the next time point. The second one is called a stochastic 

approach, in which the variable value defines the probability of a particular state at the 

next time point. Deterministic modeling is used to study the behavior of a cell without 

considering biological perturbations, such as gene expression level. Often it is assumed 

that a large number of studied molecules does not affect the probability of a particular 

interaction and response of the system. If the system consists of a small number of 

random effects that become relevant to the outcome, the individual reactions are 

calculated with the stochastic approach. Systems with a high number of molecules that 

exhibit stochastic effects are often well approximated by deterministic models that 

describe the average behavior within the cell (Sauro, 2018). The deterministic approach 

is widely used in the studies of cell cycle in various organisms, from prokaryotes and 

unicellular eukaryotes, to vertebrates (Sible and Tyson, 2007).  
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The biochemical reactions described in a deterministic manner are often based on 

a mathematical representation in the form of ordinary differential equations (ODEs) 

(Sauro, 2018; Tyson et al., 2001). With defined ODEs and initial values of the variables 

(at time point zero), the future behavior of the biological system can be characterized. 

A set of ODEs is solved numerically during the process called computer simulation and 

is often referred to as in silico experimentation.  

The change of the studied biological variable over time due to interactions with other 

variables is usually described using five general types of biological processes (Alon, 

2006; Szallasi et al., 2006): 
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In Equation 1, xi describes a subsequent time-dependent variable presented in the form 

of differential equation �

��
. The value of the variable at a given time t forms the state of 

the system at this particular time. Different terms describing the model component refer 

to the active or inactive states of the variable presented with a positive or negative sign. 

A positive sign indicates a reaction resulting in gain of the product. A negative sign 

describes a reaction resulting in loss of the product. The positive term synthesis defines 

the formation of the molecule in the form of transcription/translation, while the 

negative term degradation describes its destruction. Other processes can be described as 

having both positive or negative effects. The chemical modification indicates activation or 

inactivation processes, such as phosphorylation of a protein. The term complex formation 

refers to the assembly or disassembly of a molecular complex. The term transport 

defines the import and export of the molecule within the cell, such as transport between 

the nucleus and cytoplasm. When the positive and negative reactions are balanced, the 

variable does not change over time. In the protein regulatory networks, the variables 

describing the components of the network are coupled with each other, forming a set of 

multiple ODEs. 

1.5.3. Approximation of biochemical interactions between molecules 

A mathematical model has to be as close to reality as possible in the description of the 

biological system, but also as simple as possible for the computational analysis (Tyson 

et al., 2003; Sible and Tyson, 2007). For simplification, biochemical reactions are 

approximated by mathematical equations that are based on known biochemical laws 

(Alon, 2006; Szallasi et al., 2006). Approximation of the biochemical reaction is used in 



 Chapter 1. Introduction  
 

16 

 

ODEs models with an assumption of homogenous environment of the studied system. 

The commonly used biochemical law is the law of mass action, stating that the rate of 

a chemical reaction is proportional to the product of the concentrations of the reagents, 

such as constant synthesis of a protein: 
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In Equation 2, X is the concentration of the protein produced at a constant rate ks. The 

concentration depends only on the initial value of the protein. The more complex 

reactions describe the processes affected by the components of the system, such as the 

1st order reaction, as in the example of protein degradation: 
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In Equation 3, kd is a constant rate of degradation of the protein. The concentration 

depends on the protein itself and changes linearly. More complex kinetics is described 

with the 2nd order reactions, in which the activity of the protein depends on at least one 

additional component. An example is formation of a protein complex: 
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Proteins X and Y form a heterodimer XY. The formation of the complex proceeds with 

a constant rate of the assembly kas. The total concentrations of the proteins used in the 

reaction are indicated by XT and YT.  

Many reactions described in the mathematical models have high activation energy and 

do not occur spontaneously, for example enzymatic reactions (Sauro, 2018). They are 

described with Michaelis-Menten kinetics. The enzyme E binds to the substrate S and 

let the substrate turn into a product P: 
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In Equation 5, vmax is a maximal speed of the reaction and Km is a Michaelis-Menten 

constant. When the change in the substrate concentration is slow, Hill kinetics is often 

used as an approximation (Gonze and Abou-Jaoudé, 2013). It describes biochemical 

processes, in which the binding of the ligand to the molecule is higher or lower in the 

presence of other ligands: 
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In Equation 6, Km describes a Hill constant and n is a Hill coefficient that determines the 

steepness of the response. If � > 1, the binding of the ligand to the protein increases in 

the presence of other ligands. If n < 1, this binding decreases. If n = 1, the binding does 

not affect the steepness of the response. A specific type of enzymatic reaction is 

a competitive inhibition, during which the ligand prevents the occurrence of the 

reaction (Schäuble et al., 2013). An inhibitor I binds to the active site of an enzyme and 

compete with a substrate S with the dissociation constant KI: 
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When biological system consists of two states derived by the actions of two different 

enzymes with opposing effects, a modified form of Michaelis-Menten kinetics is used, 

called Goldbeter-Koschland kinetics (Goldbeter and Koschland, 1981): 
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For the variable Xp that describes the phosphorylated form of a protein, the opposite Xd 

characterizes the dephosphorylated form of the same protein. Parameters kph and kdph 

define maximal speed of the phosphorylation and dephosphorylation reactions, 

respectively. Kmph and Kmdph are the Michaelis-Menten constants of the reactions. 

1.5.4. Common patterns of interactions between proteins 

Biological dynamical systems show a wide range of responses resulting from 

interactions between the molecules. Often the interactions generate a particular 

behavior of the components of the network and the whole system. Examples are 

switches and oscillations of proteins regulating transitions between various stages of 

the cell cycle (Ingolia and Murray, 2004; Tyson and Novak, 2008). Regulatory control of 

biological system is based on the patterns of interactions, called motifs. The common 

motifs in biology are feed forward and feedback loops (Figure 5). Feed forward loops 

are used to transmit the signal in a cascade from the input stimuli. They are responsible 

for noise rejection and nonlinear amplification of the signal (Sauro, 2018). Feed forward 

loop with positively interacting components consisting of at least two different 



 Chapter 1. Introduction  
 

18 

 

pathways is called coherent. It can rapidly shut down when the starting protein that 

transmit the signal is inactivated. When a component X has different roles in regulating 

the output of the system, the incoherent feed forward loop is involved. 

 

 
 
Figure 5. Schemes of common motifs. Each panel presents general description of the feed forward (A) or 
the feedback (B) loop with interactions between components of the studied system named X, Y and Z. 
Positive interactions are presented with arrow-headed lines, while negative with bar-headed lines. 
 
 
Feedback loops base the response of the system on how it affects itself. Cellular 

regulatory networks commonly contain multiple feedback loops allowing the existence 

of many back-up mechanisms (Ferrell et al., 2009). A positive feedback loop occurs 

when the product of a reaction leads to the increase in that reaction due to mutual 

activation of the system components. An example is a meiotic transcription factor 

Ndt80, which positively regulates its own synthesis. A special type of a positive 

feedback loop is a double-negative feedback loop that is based on a mutual inhibition. 

This pattern of interaction ensures the existence of two states of the system, in which 

one protein cannot exist in the presence of another. This type of interaction is crucial 

during the cell cycle, in which Cdk1 inhibits the activity of APC/CCdh1 through 

phosphorylation of Cdh1 protein, while APC/CCdh1 inhibits the activity of Cdk1 

through degradation of cyclins. The opposite effect on a system has a negative feedback 

loop, which is formed when the system components are antagonistic towards each 

other. In this case, one protein stimulates another, which in turn inhibits the activity of 

its own activator. The product of the reaction leads to a decrease in that reaction. 

A common example of a negative feedback loop is the interaction between Cdk1 and 

APC/CCdc20 during mitosis and meiosis. 

A 

B 
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1.5.5. Types of dynamical behavior of biological system 

Nonlinear dynamical systems are characterized by steady states in which the variables 

are constant in time in spite of ongoing processes. Steady states can be stable or 

unstable depending on whether they recover or not after small perturbations. The 

behavior of the dynamical system and transitions between different states is called 

bifurcation. It is represented by a signal-response curve, also called bifurcation diagram 

(Ferrell, 2013; Tyson et al., 2001). The bifurcation diagram describes the modification of 

the studied variable depending on a change of the particular parameter value of the 

signal. Figure 6 presents different types of dynamical system behaviors on the 

bifurcation diagrams based on the type of interaction between molecules and the 

motifs. The basic type of behavior of the biological system is linear, like for the protein 

degradation, or hyperbolic, like for the protein phosphorylation described with the 2nd 

order kinetics (Tyson et al., 2003).  

 

 

 
 
Figure 6. Behavior of biological system described with a signal-response curves. Different types of 
responses (R) to a signal (S) are presented. S is the parameter that describes the effect of one component 
of the network on the other. Blue curves indicate the response in term of value of the system component 
dependent  on the value of the bifurcation parameter S. Stable regions in bistable switch are indicated 
with solid lines, while unstable with dashed lines.       
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Many biochemical reactions work as a switch between different states of the system that 

exhibit ultrasensitivity. Ultrasensitive reactions respond with a higher sensitivity to 

a signal than Michaelis-Menten kinetics (Tyson et al., 2003). Ultrasensitivity appears 

when a system reacts to small changes in the input signal producing a larger nonlinear 

response with a sigmoidal behavior. It can be reached by series of multi-step 

mechanisms, such as multisite phosphorylation, and can be described with Goldbeter-

Koshland or Hill kinetics (Ferrell and Ha, 2014). An example is activation and 

inactivation of the APC/CCdc20 by Cdk1-cyclin B complex during M-phase. APC/CCdc20 

reacts abruptly when the concentration of active Cdk1 is high, which allows multisite 

phosphorylation of the APC/C. 

The ultrasensitivity is often generated by a positive or a double-negative feedback loop, 

which forms a switch-like response (Ferrell, 2013). The switch changes abruptly as the 

signal crosses a critical value (threshold). In a bifurcation diagram, it is presented as 

a bistable response (Tyson et al., 2001). Bistability is a property of the system that 

exhibits two stable steady states coexisting at a certain concentration of a signal 

(bifurcation parameter). In the bistable region, two stable steady states are separated by 

unstable region than can be described as a mountain ridge separating two valleys 

(Tyson et al., 2001). The switch from low to high response occurs with a change of the 

signal concentration by jumping through the unstable state. An example is a bistable 

switch that occurs at the entry into metaphase I of meiosis, during which the RC 

inhibits the synthesis of Ndt80, which in turns produces the inhibitor of the RC, namely 

Cdc5 (Okaz et al., 2012). 

Negative feedback loop may result in two types of responses: homeostasis or 

oscillations. Oscillatory behavior is common in biological systems, from cell cycle and to 

control of gene expression in DNA damage response pathways. Oscillations can occur 

in the system when four general conditions are met (Ferrell et al., 2011). Firstly, 

oscillations require a negative feedback loop of at least two components. Secondly, an 

oscillatory response requires a sufficient time delay between the activities of the 

components of the oscillator. Moreover, the system has to exhibit non-linearity. Lastly, 

appropriate rate constants of the reactions are necessary. Depending on the values of 

the parameters, the system may oscillate or stabilize at intermediate levels. Depending 

on the type of the oscillations, the number of interacting components may be also an 

additional requirement. A two-component system may exhibit oscillations with 

decreased amplitude over time leading to the appearance of stable steady states of 

interacting components creating damped oscillations (Figure 7A) (Griffith, 1968). 



 
 

 

Sustained oscillations, like the oscillations of 

components in the negative feedback loop in order to achie

(Figure 7B). In the three-component system, protein 

activation of an intermediate enzyme 

condition, protein Y creates a necessary time delay and a sharp response causing the 

system to repeatedly overshoot and undershoot the steady state, preventing it from 

entering an intermediate level

 

 
Figure7. Types of oscillations created by a negative feedback loop. 

created in two-component systems. In this scenario, the amplitude of the oscillations decreases in time 
leading to decay of the oscillations. The components of such system enter intermediate steady state. 
(B) Sustained oscillations are often created in three
the oscillations is stable.  
 

1.6. Mathematical models of cell cycle

Progression through a cell division is strictly regulated by the activity of Cdk1 and its 

regulators. Together, they create a complex network of interactions, forming feedback 

and feed forward loops that direct 

models of the mitotic cell cycle help to understand mechanisms driving 

and the importance of particular elements of 

regulation of mitosis (Tyson, 1999).

Mathematical models have been used for decades to understand the processes of 

cell cycle in different organisms. The first models focuse

cycle and its relation to cell growth (Brooks et al., 1980; Shields and Smith, 1977). With 

more knowledge gained from biological experiments and first descriptions of Cdk1

based regulation of the cell division (Nurse, 1990; Pines, 1995), models 

that included essential Cdk1 

descriptions helped to develop models 

A 

Chapter 1. Introduction  

21 

Sustained oscillations, like the oscillations of the cell cycle, usually require at least three 

components in the negative feedback loop in order to achieve a sufficient time delay

component system, protein X activates protein 

activation of an intermediate enzyme Y; then, protein Z inhibits 

creates a necessary time delay and a sharp response causing the 

system to repeatedly overshoot and undershoot the steady state, preventing it from 

entering an intermediate level (Ferrell et al., 2011; Tyson and Novak

. Types of oscillations created by a negative feedback loop. (A) Damped oscillations are often 
component systems. In this scenario, the amplitude of the oscillations decreases in time 

leading to decay of the oscillations. The components of such system enter intermediate steady state. 
tions are often created in three-component systems. In this scenario, the amplitude of 

1.6. Mathematical models of cell cycle 

Progression through a cell division is strictly regulated by the activity of Cdk1 and its 

they create a complex network of interactions, forming feedback 

that direct cell fate (Tyson and Novak, 2008). Mathematical 

cell cycle help to understand mechanisms driving 

d the importance of particular elements of the network required for the proper 

(Tyson, 1999). 

Mathematical models have been used for decades to understand the processes of 

cell cycle in different organisms. The first models focused on defined phase

cycle and its relation to cell growth (Brooks et al., 1980; Shields and Smith, 1977). With 

more knowledge gained from biological experiments and first descriptions of Cdk1

based regulation of the cell division (Nurse, 1990; Pines, 1995), models 

that included essential Cdk1 regulation (Goldbeter, 1991). More detailed experimental 

descriptions helped to develop models explaining control of cell division with 

B 

the cell cycle, usually require at least three 

sufficient time delay 

activates protein Z through the 

inhibits X directly. In this 

creates a necessary time delay and a sharp response causing the 

system to repeatedly overshoot and undershoot the steady state, preventing it from 

k, 2008). 

 

Damped oscillations are often 
component systems. In this scenario, the amplitude of the oscillations decreases in time 

leading to decay of the oscillations. The components of such system enter intermediate steady state. 
component systems. In this scenario, the amplitude of 

Progression through a cell division is strictly regulated by the activity of Cdk1 and its 

they create a complex network of interactions, forming feedback 

(Tyson and Novak, 2008). Mathematical 

cell cycle help to understand mechanisms driving the divisions 

required for the proper 

Mathematical models have been used for decades to understand the processes of the 

d on defined phases of the cell 

cycle and its relation to cell growth (Brooks et al., 1980; Shields and Smith, 1977). With 

more knowledge gained from biological experiments and first descriptions of Cdk1-

based regulation of the cell division (Nurse, 1990; Pines, 1995), models were developed 

(Goldbeter, 1991). More detailed experimental 

of cell division with different 
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genetic mutants in yeast and in mammalian embryos (Hatzimanikatis et al., 1999; 

Novak and Tyson, 1993; Thron et al., 1996). Various levels of regulation of cell division, 

such as physiology, biochemistry, and genetics, started to be incorporated in more 

details, for example in the model of cell cycle in budding yeast (Chen et al., 2000) that 

included such regulatory mechanisms as DNA synthesis machinery, spindle formation 

and cell separation. This model was the first one to be tested against a big set of 

experimental data. It has been later extended with additional modules, such as 

checkpoints and phosphatases (Chen et al., 2004). It has been tested on more than 120 

mutants based on experiments provided by Cross et al. (Cross et al., 2002). The model 

anticipated the existence of a phosphatase opposing Cdk1 activity that was later 

identified (Queralt et al., 2006). The latest version of the model (Kraikivski et al., 2015) 

has been used to predict the phenotypes of more than 30 novel mutant alleles. It has 

been proposed that due to similarities of the cell cycle control among species (Nurse, 

1990), the principles of the models developed for budding yeast can be extended to 

higher organisms (Csikász-Nagy et al., 2006).  

1.6.1. Mathematical modeling of Cdk1-APC/C oscillator 

Despite the complexity and variety of biological oscillators, the main core design 

includes an essential negative feedback loop between Cdk1 and the APC/C Cdc20. The 

general principle of the mitotic oscillator is that Cdk1 activates APC/CCdc20 that inhibits 

Cdk1 though cyclins degradation. APC/CCdc20 is activated at the onset of anaphase and 

requires phosphorylation of the APC/C core. This phosphorylation is triggered by 

Cdk1 and Cdc5 that increases the binding of Cdc20 to the APC/C (Golan et al., 2002; 

Rudner and Murray, 2000). The phosphorylation on more than 100 sites of the APC/C 

(Kraft et al., 2003; Zhang et al., 2016) gives a required time delay between the activity of 

Cdk1 and the degradation of cyclins, necessary for the oscillations to occur (Yang and 

Ferrell, 2013). Different approaches are used to model this delay, for example 

ultrasensitivity introduced with the Hill function based on the assumed multi-step 

phosphorylation of the APC/C (Yang and Ferrell, 2013). Models that consist of two 

components of the oscillator create damped oscillations that approach a steady state 

with intermediate levels of both Cdk1 and Cdc20 (Ferrell et al., 2011). Sustained 

oscillations are modeled by including a signaling cascade into the negative feedback 

loop. Ferrell et al. describes an intermediate protein acting as an enzyme to transmit the 

positive signal that generates a delay in response to APC/C activity (Ferrell et al., 2011). 

This approach is used in models of the cell cycle in Xenopus oocytes, budding yeast and 

fission yeast (Chen et al., 2000; Novak et al., 2001; Novak and Tyson, 1993). The 
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intermediate protein that introduces the delay has been proposed to be the polo-like 

kinase (Ferrell et al., 2011) or the phosphorylated form of APC/C (Chen et al., 2004).  

It has been reported that binding of Cdc20 to APC/C is inhibited by the Cdk1-

dependent phosphorylation of the Cdc20 protein (Chung and Chen, 2003; Labit et al., 

2012; Yudkovsky et al., 2000). This possibility is introduced in some of the models to 

create a delay in the two-component systems based on the additional double-negative 

feedback loop (Ciliberto et al., 2005; Vinod et al., 2013). The APC/C core can be 

included as a binding partner of Cdc20 (Kraikivski et al., 2015). Through 

phosphorylation of the APC/C, Cdk1 acts as an activator providing a necessary 

negative feedback loop. At the same time, it has the opposite effect on the Cdc20 

protein. Faster events of phosphorylation and dephosphorylation for Cdc20 and slower 

for the APC/C core ensure a sufficient time delay for sustained oscillations.  

1.6.2. Mathematical modeling of irreversible switches 

The bistable switches are common properties of various transitions during the mitotic 

cell cycle. They are characterized by positive or double-negative feedback loops and 

nonlinearity of the reactions that create irreversible transitions (Tyson and Othmer, 

1978). Irreversibility has been firstly introduced in a model of cell division in Xenopus 

oocytes (Borisuk and Tyson, 1998). The transition is triggered by the concentration of 

active Cdk-cyclin complex, called MPF (maturation-promoting factor), after exceeding 

a certain threshold. The model predicted the existence of two steady states that 

explained how cells remain in M-phase even when the MPF activity drops in anaphase. 

Later it has been shown that other transitions in cell cycle are controlled by bistable 

switches, such as the G1/S-phase transition (Cappell et al., 2018; Charvin et al., 2010; 

Zhang et al., 2011) and the entry into M-phase (Mochida et al., 2016; Rata et al., 2018).  

It has been proposed that the mitotic exit is irreversible due to degradation of M-phase 

cyclins by APC/CCdc20 (Potapova et al., 2006; Reed et al., 2003). However, later it has 

been shown that APC/CCdc20-dependent inactivation of Cdk1 is not sufficient to make 

the system exit irreversibly from mitosis due to the continues synthesis of cyclins 

(Novak et al., 2007). Therefore, it has been suggested that a positive feedback loop may 

provide the irreversibility of the transition to low Cdk1 state of the next cycle (Ferrell, 

2002). The positive feedback loop was based on the activation of Cdk1 inhibitor Sic1 

that allowed the maintenance of low Cdk1 activity after the initial cyclin proteolysis, 

similarly as during the G1/S-phase transition (Figure 8A) (López-Avilés et al., 2009).  

Irreversibility during the exit may occur due to the action of other regulators. Cdc14 

phosphatase may be involved in triggering the exit from mitosis through 
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dephosphorylation of Cdk1 inhibitors at the onset of anaphase (Vinod et al., 2011). 

Additionally, PP2ACdc55 is required for general regulation of mitotic exit in eukaryotes 

(Figure 8B). The irreversible switch at the exit from mitosis is triggered by the 

Greatwall pathway that results in activation of the phosphatase, dephosphorylation of 

key mitotic regulators and the exit from the cycle (Baro et al., 2013; Hégarat et al., 2014; 

Queralt et al., 2006).  

 

 
Figure 8. Bistable switches in cell cycle transitions. The motifs (left panels) and bifurcation diagrams 
(right panels). Green solid lines of bifurcation diagrams represent steady states, while dashed lines 
unstable states. Red arrows describe the transition from the starting state to a new state. (A) Transition 
from G1- to S-phase. Sic1 and Cdk1-Clb5 create a double-negative feedback loop that results in a bistable 
switch. A new cell is at a low steady state during G1 with low activity of Cdk1 and highly accumulated 
Sic1. The increase in Cdk1-Cln2 activity in late G1 triggers the entry into the high Cdk1 state of S-phase. 
(B) Exit from mitosis. ENSA enzyme is a direct inhibitor of PP2AB55, which in turns inhibit ENSA through 
dephosphorylation. Additionally, PP2AB55 inhibits the activity of Gwl (Greatwall) kinase. During 
anaphase cells wait for reduced activity of Cdk1-Clbs to allow inactivation of Gwl and activation of 
PP2AB55, which dephosphorylates M-phase regulators and returns the cell to a low Cdk1 state of G1. 
Taken from (Hopkins et al., 2017). 
 

1.7. Mathematical models of meiosis 

Although mathematical models are commonly used to describe the control of cell cycle 

in several organisms, not many models describing meiosis have been developed to date. 

Studies have been carried out in Xenopus oocytes to understand the activation of the 

maturation process and completion of meiotic divisions (Ferrell and Machleder, 1998; 

Pfeuty et al., 2012). Nevertheless, a principle of the two meiotic divisions has not been 

formulated. Notwithstanding, partial models of meiosis exist. 

1.7.1. Modeling the entry into meiosis 

One of the most studied subjects in meiosis is the meiotic commitment. The meiotic 

entry in budding yeast occurs due to the dynamics of the regulatory network after 

nutrients depravation. The transition to meiosis strongly depends on initiators of cell 

division, such as Ime1 and Ime2, described in more details using ODEs (Ray et al., 

2013). The network of meiotic entry consists of a set of positive and negative feedback 

loops allowing the irreversible entry into meiosis and commitment to the pre-meiotic S-

A B 
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phase. Another model describing this switch incorporates the regulation of initiators of 

both meiosis and mitosis: Ime1/Ime2 and Cdk1-Cln3 (Wannige et al., 2015). The study 

shows that the entry into cell division is based on an all-or-none type of bistable switch 

that explains mutually exclusive existence of the initiation pathway of both types of cell 

division. Similar conclusions of bistability of the entry into meiosis were driven from 

the mathematical model based on fission yeast (Bhola et al., 2018). 

1.7.2. The model of the entry into metaphase I 

It has been found that the entry into metaphase I is based on a bistable switch (Okaz 

et al., 2012). The model of the prophase I-to-metaphase I transition explains this 

irreversibility as a consequence of a mutual inhibition between APC/CAma1 and Cdk1. 

Figure 9A presents a wiring diagram of the main interactions in the model. The initial 

conditions of the model start with prophase I levels of meiotic regulators, during which 

DSBs are under repair and the RC is active (Figure 9B). The RC inhibits the synthesis of 

Ndt80 by activating its transcriptional repressor Sum1. Sum1 can be inactivated by two 

kinases: Ime2 and Cdk1. With the checkpoint satisfied, Sum1 frees the NDT80 promoter 

and allows the synthesis of Ndt80 and other M-phase regulators. Proteins that are not 

specific to meiosis, like cyclins and Cdc5, can be synthesized during prophase I in 

Ndd1-dependent manner in the mutant lacking Ama1. The activities of APC/CAma1 and 

the RC keep the system in check for entering metaphase I prematurely by inhibiting the 

activity of key M-phase regulators. In the model APC/CAma1 is regulated in a complex 

manner. Cdk1-Clb1 inhibits its activity by phosphorylating Ama1. Additionally, the 

model predicts the existence of Ndt80-dependent stoichiometric inhibitor of Ama1, 

named additional inhibitor (AI). 

The model explains the irreversible switch that governs the transition from prophase I 

to metaphase I upon repair of DSBs (Figure 9C). It presents the response of the kinase 

activity to different concentration of Ama1. At the wild-type level of Ama1, the system 

coexists at two states: high and low activity of Cdk1/Cdc5/kinase in metaphase I and 

prophase I, respectively. In the presence of DSBs cells maintain a low kinase state until 

after the repair is completed and the RC is silenced. The bistable region becomes 

narrower with the DSBs repair due to removal of the positive feedback loop between 

Ndt80, Cdc5 and the RC. The narrow range forces the system to jump to the higher 

branch of the bifurcation diagram (metaphase I). Additionally, the model describes the 

effect of the increased concentration of Ama1 that prevents the transition to the high 

kinase state. Thus, cells are unable to enter metaphase I and remain in prophase I arrest 

(Okaz et al., 2012).   
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Figure 9. The model of prophase I-to-metaphase I transition. (A) Wiring diagram of interactions 
between main components of the model. DSB is double-strand break, RC is the recombination checkpoint 
and AI is an additional inhibitor of Ama1. Arrow-headed and bar-headed lines indicate positive and 
negative interactions, respectively. (B) Computational simulation of meiotic time course. Graph presents 
change in the proteins concentration or activity in time in wild-type cells. Simulation mimics the 
biological time course starting at prophase I at 4 hr. Green arrow indicates start of the process of 
formation of metaphase I spindle. (C) Bifurcation diagram describing response in the Cdc5 protein level 
on a signal in form of the parameter defining total concentration of Ama1. WT indicates wild-type levels 
of Ama1 assumed in the model. Pro I is prophase I, while Meta I is metaphase I. Red line describes the 
response in the presence of DSBs, while blue line describes the response when DSBs are repaired. Solid 
lines indicate stable states, while dashed lines unstable states. Taken from (Okaz et al., 2012). 
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1.8. Aim of the study 

Despite the recent advances in studying meiosis, the exact mechanism of its regulation 

is still unclear. It has been proposed that the two meiotic divisions may be based on 

a modified mitotic regulatory machinery (Tyson and Novak, 2008). However, how this 

mitotic engine is modified to create precisely two consecutive divisions in meiosis is not 

fully understood. Thus, the major aim of this work is to elucidate the dynamics of the 

protein network controlling the progression through meiotic divisions, with special 

emphasis on the exit from meiosis II, using mathematical modeling in combination with 

biological experiments on budding yeast.  

Mathematical modeling allows testing various hypotheses about the regulation of 

meiosis leading to exactly two divisions. It allows determining the sensitivities of the 

studied dynamical system and identifying its key regulators. Nevertheless, despite 

these advantages a functional mathematical model of meiotic two divisions has not 

been published to date.  One of the challenges of developing the mathematical model of 

meiosis includes poor understanding of the complex protein network regulating the 

divisions. Experimental support for the model design is demanding, since the 

manipulation of the meiotic genes must not disrupt the earlier phases of mitotic cell 

cycle and the entry into meiosis.  

In this work, I present the first mathematical model describing regulation of two 

meiotic divisions. The model is based on the knowledge of cell cycle control of meiosis 

and biological experiments performed in our lab on budding yeast. Budding yeast are 

used to study meiosis due to the ability of each cell to undergo meiosis and 

differentiation, ease in manipulation of genetic background and well-studied control of 

cell cycle events. In order to study meiosis in a large scale and with high resolution, I 

used our newly developed synchronization technique of meiotic cell culture (Argüello-

Miranda et al., 2017). I modified the method to study in more details the exit from 

meiosis II and post-anaphase II events. Furthermore, I used various approaches to test 

the importance of different regulators in meiosis II. I developed a model based on these 

experiments and tested hypotheses about possible mechanisms of the control of meiotic 

exit.  
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1.9. Contributions 

The experiment presented in Figure 22 was conducted by Dr. Orlando Argüello-

Miranda and described in his doctoral thesis (Argüello-Miranda, 2015). The rest of the 

work presented in this thesis is my own.  
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2. Results 
 

To shed light on the control of progression through the meiotic divisions and the exit 

from meiosis, we studied the dynamics of the main regulators contributing to the two 

waves of Cdk1 and APC/C activities. For this purpose, we developed a mathematical 

model characterizing the regulatory network driving two meiotic divisions. First three 

subchapters describe studies on the transitions required for entry and progression 

through the meiotic divisions. Later subchapters characterize possible mechanisms of 

the exit from meiosis after precisely two waves of Cdk1 and APC/C activities, resulting 

in the completion of meiotic divisions and entry into the differentiation program of 

sporulation. 

2.1. Strategy of the development of the mathematical model 

To address the question of the molecular mechanism that guarantees two meiotic 

divisions, we defined the main biological events of meiosis that contribute to the 

progression through the divisions. We omitted early and late phases of meiosis, such as 

DNA replication and sporulation. Based on biological observations, we constructed 

a wiring diagram of interactions between regulators of meiotic divisions. We 

considered that interactions depicted in the diagram depend on the molecular 

concentration or activity of the participants of the reaction (variables) and on fixed rate 

constants (parameters). All the variables in the model, which describe the components 

of the meiotic network, are dimensionless and represent the relative concentrations and 

activities of proteins or regulatory process. We used a deterministic approach and 

developed a set of nonlinear ordinary differential equations (ODEs) formulated 

according to biochemical reaction laws based on the wiring diagram. The background 

synthesis of the proteins included in the model is approximated by the zero order 

kinetics. The background degradation is based on the 1st order kinetics and the 

processes of activation and inactivation are described by the 1st and the 2nd order 

kinetics. Background degradation and inactivation are included to avoid unlimited 

increase in protein level and activity. The ultrasensitive responses are described with 

Goldbeter-Koshland kinetics and a Hill function. The parameters are designated as 

k and Michaelis-Menten constants as J. Subscripts indicate the type of the reaction: 

ks stands for synthesis, kd for degradation, ka for activation, ki for inactivation, kas and kds 
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for association and dissociation of the complex, respectively. These parameters are 

given in a dimension of min-1. Michaelis-Menten constants and other parameters are 

dimensionless. The same conventions apply for all models presented in this work. 

To solve the set of ODEs, we performed computational simulations. We integrated the 

equations and determined the starting conditions for the simulation. We specified the 

preliminary values of the parameters using the previous work (Okaz et al., 2012) and 

our guesses based on our knowledge of biological processes. Values of the parameters 

of protein degradation (degradation rates) were derived from biological observations. 

The solution for each component of the model was plotted in the simulation window 

that displays the changes of the variables over time.  

We optimized the values of parameters by adopting a commonly used approach called 

“guess-and-check” method, in which the parameter values are estimated by fitting them 

to the observed phenotypes “by hand” (Sible and Tyson, 2007). We fitted the 

parameters to wild-type observations and the phenotypes of some mutant strains. 

Deletion of a gene or depletion of a protein was simulated by setting the synthesis rate 

of a relevant protein and/or its total concentration to zero at the beginning of the 

simulation. Inactivation or inhibition of a protein activity was simulated by setting the 

parameter of activation to zero at a specified time of the simulation. The aim of the 

parameter optimization was to find a single set of parameter values, which could 

recreate meiosis of the wild-type strain and various mutant strains in silico. The initial 

parameter values were revised by comparing numerical solutions to experimental data 

with respect to protein appearance at different stages of meiosis and the time of spindle 

formation. It is important to note that the chosen values of the model parameters are not 

optimal and different sets of the values may give comparable solutions.  
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2.2. The core of meiotic divisions is based on a Cdk1-APC/C oscillator 

supplemented with meiotic regulators 

The two meiotic divisions could be generated by a mitotic Cdk1-APC/C oscillator with 

addition of meiosis-specific regulators that trigger the entry into the first division and 

possibly limit the number of divisions to two (Figure 11). To create a mathematical 

model of the regulation of meiosis, we incorporated an oscillator into the existing model 

of the prophase I-to-metaphase I transition (Okaz et al., 2012).  

 

 
 
Figure 11. The core of the mathematical model of meiotic divisions is based on Cdk1-APC/C 
oscillations and the model of meiotic entry. The scheme presents stages of meiosis regulated by 
machineries described by the model of the prophase I-to-metaphase I transition (Okaz et al., 2012) and 
the Cdk1-APC/C oscillator. The entry into high kinase state of metaphase I and meiosis-specific 
regulators, such as Ndt80, are provided by the Okaz et al. model. The oscillator is incorporated to provide 
the progression through meiotic divisions. RC indicates the recombination checkpoint. 
 
 

2.2.1. The modified model of prophase I-to-metaphase I transition provides the 

regulatory network that controls the entry into metaphase I 

To create a model of two meiotic divisions, we used as a basis an existing model of the 

prophase I-to-metaphase I transition developed by Okaz et al. (Okaz et al., 2012). The 

model describes the irreversible exit from prophase I and the entry into metaphase I, 

which is regulated by a complex network of meiosis-specific proteins, such as Ama1 

and Ndt80, and proteins common to both meiosis and mitosis, such as Clb1 and Cdc5 

(Figure 11). We simplified the model by omitting the modules not necessary to 

understand the progression through two meiotic divisions, creating a modified version 

of the prophase I-to-metaphase I model, as presented by the wiring diagram in 

Figure 12A.  



 Chapter 2. Results  
 

32 

 

g 

 
 
Figure 12. The modified mathematical model of prophase I-to-metaphase I transition provides the 
entry into meiotic divisions. (A) Detailed wiring diagram of the modified model. For simplification, 
Cdk1-Clb4 and Ama1:AI complex are omitted in the diagram. Each interaction is depicted by an arrow ↓ 
or bar-headed line ┴ indicating positive or negative regulation, respectively. (B) Computational 
simulation presenting concentration or activity of the key meiotic regulators in WT cells. Simulation starts 
with DSB formation, which corresponds to t = 4 hr in a WT meiotic culture. Green line above the graph 
depicts the time of the formation and the persistence of metaphase I spindle (MI). 
 

We performed computational simulations that recreated a biological 12 hr time course 

in wild-type (WT) cells using the modified model (Figure 12B). We started simulations 

at the time of formation of DSBs, which corresponds to 4 hr in a WT meiotic time 

course. At this time, cells exhibit the activity of the RC due to unrepaired DSBs. At 6 hr 

cells accumulate Ndt80, which is followed by accumulation of Cdc5 and cyclins. Cdk1 

is activated leading to formation of metaphase I spindles (MI) and inhibition of Ama1 

activity. Due to inactivation of Ama1 and lack of another Cdk1 inhibitor, cells arrest in 

metaphase I with constant levels of M-phase regulators and stabilized spindle. The 

observed metaphase I-arrest phenotype is caused by the lack of Cdc20 in the model that 

provides the transition from metaphase I to anaphase I, as studying the progression 

through divisions was not a subject of the model developed by Okaz et al.  

The following equations describing the biological events of the prophase I-to-

metaphase I transition in the modified version of the model used to build the model of 

two divisions are derived from the model described in Okaz et al. In this model, the 

entry into metaphase I is triggered by silencing of the RC. The activity of the RC is 

modeled as an ultrasensitive switch (Equation 9) dependent on the activity of Cdc5 and 

the exponential decrease in DSBs. The decrease in DSBs is proportional to the level of 

the DNA repair mechanisms represented by Dmc1 (Equation 10), which is the meiosis-

specific recombinase required for DSBs repair  (Busygina et al., 2013). 
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After the repair of DSBs, cells activate Ndt80. In the model of the prophase I-to-

metaphase I transition, Ndt80 is presented as total nuclear protein, which corresponds 

to the active form of this protein. NDT80 expression is activated by Ndt80 itself, which 

competes for the binding to its promoter with the transcriptional repressor Sum1 (Pak 

and Segall, 2002). In the model, it is presented by an algebraic equation (Equation 13) 

that complements the competitive inhibition reaction. We modified this version of 

Ndt80 by including an additional form of the protein regulated by Ime2 or Cdc5 

(Schindler and Winter, 2006; Sopko et al., 2002). We assumed that the active form of 

total Ndt80, which has been developed by Okaz et al., is now an inactive version, 

referred to as Ndt80T (Equation 11). The newly added form with regulated activity 

corresponds to the fully active Ndt80 (Equation 12) that triggers its own synthesis. 
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The model of the prophase I-to-metaphase I transition uses three forms of Sum1 that 

control Ndt80 expression. Regulation of Sum1 depends on the activities of the RC, Ime2 

and Cdk1 (Equation 17). Sum1 is inactivated by Ime2-dependent phosphorylation in 

prophase I (Sum1UVWA
X ) (Equation 14). Additionally, Sum1 is inactivated by Cdk1 

(Sum1YZ[<
X ) (Equation 15). For this inhibition, Ndt80 activity needs to synthesize M-

phase cyclins. Thus, the Cdk1-dependent inhibition of Sum1 requires prior inhibition of 

Sum1 by Ime2 (Ahmed et al., 2009; Shin et al., 2010). The activation of Sum1 by the RC 

(Sum1\Y
X ) counteracts this inactivation (Equation 16). The total concentration of Sum1 

(Sum1T) is constant throughout meiosis (Pak and Segall, 2002; Okaz et al., 2012).  
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The initial activation of Ndt80 leads to the production of Cdc5 and, in turn, inhibition of 

the RC. This double-negative feedback loop boosts the activity of Ndt80 and production 

of cyclins. In the model, the total concentration of Clb1 and Clb4 is assumed to be equal 

to the active form of Cdk1-Clb1 and Cdk1-Clb4, respectively (Equations 18-19). The 

synthesis of Clb1 and Clb4 depends on Ndt80, while their proteolysis depends on 

APC/CAma1 (Okaz et al., 2012). The model of the prophase I-to-metaphase I transition 

introduces an additional synthesis of Clb1 that depends on the activity of Ndd1, 

a subunit of a mitotic transcription factor (Breeden, 2000; Loy et al., 1999). Ndd1 triggers 

premature synthesis of Clb1 in the absence of Ama1, which suppresses mitotic cell-cycle 

control during prophase I. This process is essential for proper segregation of homologs 

during meiosis I. For simplification of the model used as a basis of the model of two 

meiotic divisions, we omitted the module of Ndd1 and the Ndd1-dependent synthesis 

of meiotic regulators, as we do not investigate the premature entry into metaphase I 

caused by this transcription factor and the return to growth phenomena. 
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Active Cdk1 is required for the formation of a metaphase I spindle (Haase et al., 2001). 

In the model, spindle formation is controlled by a generic Cdk1 substrate SP activated 

through multi-site phosphorylation by Cdk1 (Equation 20). The activity of the SP varies 

between 0 and 1, and the spindle is assembled when the value raises above 0.5 (Okaz 

et al., 2012). 
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Cdc5 is presented in two forms: as a total level, referred to as Cdc5T (Equation 21), and 

as an active form (Equation 22) which depends on the activity of Cdk1, similarly as 
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during mitosis (Mortensen et al., 2005). Cdc5 is synthesized by Ndt80 and targeted for 

degradation by APC/CAma1 (Okaz et al., 2012). Similar to Clb1, Cdc5 synthesis is 

additionally controlled by Ndd1. However, in a modified version of the model, we 

omitted this regulation. Thus, the equation describing the total levels of Cdc5 in Okaz 

et al. was modified to Equation 21. 
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The APC/C core is omitted in the model, as the concentration of APC/C subunits are 

constant throughout meiosis and not limiting for the activity of the ligase. The total 

level of Ama1, referred to as Ama1T, is assumed to be constant. The activity of Ama1 is 

inhibited by Cdk1-Clb1 through multi-site phosphorylation, creating a double-negative 

feedback loop that suppresses the activity of Cdk1 and Ama1 at the same time (Okaz 

et al., 2012). The active form of Ama1, referred to as Ama1AT, is modeled as an 

ultrasensitive switch with Goldbeter-Koshland kinetics (Equation 23).  

 

[e��1i"]
�
��

= �i& < < ∙
[e��1"] − [e��1i"]

@i& < + [e��1"] − [e��1i"]
− (�i& <�< + �i& <�A ∙ [9�`1])   

∙
[e��1i"]

@i& < + [e��1i"]
 

  (23) 

 

Additionally, in the model of the prophase I-to-metaphase I transition it has been 

assumed that Ama1 forms a complex with an additional inhibitor (AI), which represses 

the activity of APC/CAma1. The inhibitor is synthesized by Ndt80 (Equation 24). The AI 

forms a complex with both phosphorylated and unphosphorylated forms of Ama1, 

referred to as Ama1:AI (Equation 25). The most active form of Ama1 that triggers the 

degradation of cyclins and Cdc5 is unphosphorylated and free of AI (Equation 26). 

However, it has been proposed by Okaz et al. that both phosphorylation and binding to 

the AI reduce the activity of the APC/CAma1, but do not completely suppress it. 

Therefore, the proteolysis of Cdc5 and cyclins is proportional to both Ama1T and 

unbound Ama1 described with Equation 26.  
 

 [ej"]
�
��

= �i0"�< ∙ [G��80] − �i0"�< ∙ [ej"] (24) 
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 [e��1: ej]
�
��

= �i0 �< ∙ ([e��1"] − [e��1: ej]) ∙ ([ej"] − [e��1: ej] − �i0��< ∙ [e��1: ej] (25) 

 

 [e��1] = [e��1i"] −
[e��1: ej] ∙ [e��1i"]

[e��1"]
 (26) 

 

Initial values describing the concentration or activity of the RC, DSB and Ama1AT at the 

beginning of the simulation were set to 1, as these components of the model are present 

at prophase I. Initial values of other variables were set to 0, as they appear only when 

DSBs are repaired. The values of the model parameters are depicted in Table 1.  

In summary, in the modified version of the model of the prophase I-to-metaphase I 

transition, which we used as a core for the model of the meiotic two divisions, we 

adopted the majority of the equations and parameters described in Okaz et al. We 

modified Equation 11 describing Ndt80 synthesis and added an additional form of the 

protein with regulated activity (Equation 12). We simplified the system by excluding 

the Ndd1-dependent synthesis of Clb1 and Cdc5 (Equations 18 and 21). We excluded 

the Ndd1-regulatory module that is triggering the early synthesis of M-phase proteins 

in the absence of Ama1 during prophase I. 

 

 

Table 1. Parameter values of the simplified model of prophase I-to-metaphase I transition. 
Equation number Parameters and their values 

9 �:; < = 1, �:;�< = 0.1, �:;�A = 2, @:; = 0.01   

10 >��1 = 1, �DEF�< = 0.02 

11, 12, 13 
�J��KL�< = 0.01, �J��KL�A = 2, �J��KL�< = 1, �J��KL < = 4, �J��KL A = 2, �J��KL�< = 0.2, 

@J��KL = 0.2, M = 1, Q = 0.1, �� = 0.01 

14, 15, 16 
(O�1" = 1, �E]&<�< = 0.025, �E]&< < = 0.1oh, �E]&<�A = 0.1, �E]&<�_ = 1,  

�E]&< A = 0.01, �E]&<�b = 0.25, �E]&< _ = 1 

18 �;cd<�< = 0.002, �;cd<�A = 0.2, �;cd<�< = 0.1, �;cd<�A = 0.2, �;cd<�_ = 0.02 

19 �;cdb�< = 0.2, �;cdb�A = 0.1, �;cdb�< = 0.2, �;cdb�A = 1, �;cdb�_ = 0.02 

20 �Ef < = 2, �Ef�< = 2, @Ef = 0.01 

21, 22 
�;�gh�< = 0.004, �;�gh�A = 0.03, �;�gh�< = 0.02, �;�gh�A = 0.06, �;�gh�_ = 0.002,  

�;�gh < = 0.1, �;�gh A = 0.4, �;�gh _ = 0.3, �;�gh�< = 0.1 

23 e��1" = 1, �i& < < = 0.1, �i& <�< = 0.005, �i& <�A = 0.1, @i& < = 0.1 

24 �i0�< = 0.1, �i0�< = 0.15 

25 �i0 �< = 10, �i0��< = 1 
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2.2.2. Combining the model of the entry into metaphase I with the Cdk1-APC/C 

oscillator provides the necessary transitions for the meiotic progression 

To describe the entry into the second division, we studied a mechanism that is required 

for the transition from metaphase to anaphase. The minimal Cdk1-APC/C oscillator 

was based on the existing models of the cell cycle (Chen et al., 2004; Tyson and Novak, 

2008). The oscillator is depicted in a simplified form in Figure 13A. The negative 

feedback loop providing the oscillatory behavior of the system is based on the 

activation of APC/CCdc20 by Cdk1 and inactivation of Cdk1 by APC/CCdc20. 

Additionally, a Cdc5-dependent activation of APC/CCdc20 is included, which provides 

an additional connection between the mitotic and the meiotic machineries. 

 

 
 

Figure 13. The minimal model of a Cdk1-APC/C oscillator provides the transition from metaphase to 
anaphase. The oscillator is based on two main components: Cdk1-cyclin B and APC/CCdc20, depicted in 
the model as Clb1 and Cdc20, respectively. The time delay between the activity of Clb1 and Cdc20 is 
achieved by the introduction of nonlinearity and an intermediate enzyme (IE) transmitting the signal. 
(A) Wiring diagram of the minimal oscillator. ↓, positive interaction; ┴, negative interaction. 
(B) Simulation of the minimal oscillator showing concentration or activity of Clb1, Cdc20 and Cdc5. 
 

In the model, Cdk1 is activated by the M-phase cyclins, depicted in form of Clb1 

(Equation 27). Cdk1-Clb1 phosphorylates the APC/C core, which allows binding of 

Cdc20 and activation of the ligase. Additionally, we extended the minimal oscillator by 

including the Cdc5 kinase, which has been proposed to phosphorylate and activate the 

APC/C core along with Cdk1 (Golan et al., 2002; Rudner and Murray, 2000). The 

activity of Cdc5 depends on Cdk1-dependent activation (Equation 28). 

 

[9�`1]
�
��

= �;cd<�< − (�;cd<�< + �;cd<�A ∙ [9��20]) ∙ [9�`1] (27) 

 

[9��5]
�
��

= (�;�gh < + �;�gh A ∙ [9�`1]) ∙ (1 − [9��5]) − �;�gh�< ∙ [9��5] (28) 

 

B A 
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In order for the system to oscillate, a time delay was introduced in form of an additional 

intermediate enzyme (IE) that mediates between Cdk1 and Cdc20 (Ferrell et al., 2011; 

Pomerening et al., 2005; Tyson et al., 2003) (Equation 28). We incorporated the IE into 

the model, in which Cdk1 and Cdc5 activate the enzyme triggering activation of Cdc20 

(Equation 29). The activation and inactivation of Cdc20 is faster than the activation and 

inactivation of the IE, ensuring that the decline in Clb1 does not affect Cdc20 activity 

immediately.  

 

[jr]
�
��

= (�0s < ∙ [9�`1] + �0s A ∙ [9��5]) ∙
1 − [jr]

@0s + 1 − [jr]
− �0s�< ∙

[jr]
@0s + [jr]

 (29) 

 

[9��20]
�
��

= �;�gAL < ∙ [jr] ∙
1 − [9��20]

@;�gAL + 1 − [9��20]
− �;�gAL�< ∙

[9��20]
@;�gAL + [9��20]

 (30) 

 

The system starts in the low Cdk1 state, during which cells do not synthesize M-phase 

regulators. Thus, the initial values of all the variables were set to 0. The parameters of 

the minimal model of Cdk1-APC/C oscillator are presented in Table 2. 

 

Table 2. Parameter values of the minimal model of Cdk1-APC/C oscillations. 
Equation number Parameters and their values 

27 �;cd<�< = 0.01, �;cd<�< = 0.01, �;cd<�A = 0.2  

28 �;�gh < = 0.01, �;�gh A = 0.05, �;�gh�< = 0.1  

29 �0s < = 0.1, �0s A = 0.1, �0s�< = 0.04, @0s = 0.01 

30 �;�gAL < = 1, �;�gAL�< = 0.5, @;�gAL = 0.001 

 
 

We simulated the behavior of cells in the four-component system (Figure 13B). Clb1 

and Cdc5 activate the IE, which results in activation of Cdc20 with a time delay. This 

leads to abrupt degradation of Clb1. Cdc20 follows the decline of the IE after Clb1 

degradation and allows re-accumulation of cyclins for the next division. Cdc5 does not 

depend directly on the activity of Cdc20, but is regulated by Cdk1, which provides 

a time delay for Cdc5 inactivation. 

To study the progression through the meiotic divisions, we expanded the modified 

model of the prophase I-to-metaphase I transition that provides the entry into the first 

division and the key meiotic regulators (Equations 9-26). We incorporated the Cdk1-

APC/CCdc20 oscillator (Equations 27-30). The interactions between the components of 

the combined model are presented in Figure 14A. Equations 18-19 describing Clb1 and 

Clb4, respectively, were substituted by Equations 31-32, which incorporate Cdc20-

dependent degradation of cyclins.  
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[9�`1]

�
��

= �;cd<�< + �;cd<�A ∙ [G��80] − (�;cd<�< + �;cd<�A ∙ [e��1] + �;cd<�_ ∙ [e��1"]

+ �;cd<�b ∙ [9��20]) ∙ [9�`1] 
(31) 

 

 
[9�`4]

�
��

= �;cdb�< + �;cdb�A ∙ [G��80] − (�;cdb�< + �;cdb�A ∙ [e��1] + �;cdb�_ ∙ [e��1"]

+ �;cdb�b ∙ [9��20]) ∙ [9�`4] 
(32) 

 

The IE is activated by Cdc5 and the combined activity of Clb1 and Clb4. Thus, 

Equation 29 was substituted by Equation 33. Cdc20 is synthesized in a Ndt80-

dependent manner. Thus we added an additional form of total level of Cdc20 protein, 

referred to as Cdc20T (Equation 34). We modified the active form of Cdc20 

(Equation 35) by including the background degradation. The initial values of the newly 

described components were set to 0. The new and modified parameters of the model 

are presented in Table 3. 

 

 [jr]
�
��

= (�0s < ∙ ([9�`] + [9�`4]) + �0s A ∙ [9��5]) ∙
1 − [jr]

@0s + 1 − [jr]
− �0s�< ∙

[jr]
@0s + [jr]

 (33) 

 

 [9��20"]
�
��

= �;�gAL�< + �;�gAL�A ∙ [G��80] − �;�gAL�< ∙ [9��20"] (34) 

 

 
[9��20]

�
��

= �;�gAL < ∙ [jr] ∙
[9��20"] − [9��20]

@;�gAL + [9��20"] − [9��20]
− �;�gAL�< ∙

[9��20]
@;�gAL + [9��20]

− �;�gAL�< ∙ [9��20] 
(35) 

 

Table 3. Parameter values of modified equations in the combined model. 
Equation number Parameters and their values 

31 
�;cd<�< = 0.002, �;cd<�A = 0.02, �;cd<�< = 0.02, �;cd<�A = 0.2, �;cd<�_ = 0.02,  

�;cd<�b = 0.2 

32 �;cdb�< = 0.05, �;cdb�A = 0.1, �;cdb�< = 0.2, �;cdb�A = 1, �;cd<�_ = 0.02, �;cdb�b = 1  

33 �0s < = 0.02, �0s A = 0.01, �0s�< = 0.05, @0s = 0.0001  

34, 35 
�;�gAL�< = 0.001, �;�gAL�A = 0.2, �;�gAL�< = 0.1, �;�gAL < = 1, �;�gAL�< = 0.5,     

@;�gAL = 0.01 
 

 

We performed simulations of the combined model, starting from the time of DSB 

formation, which corresponds to 4 hr in a WT meiotic time course (Figure 14B). Ndt80 

accumulates at 6 hr, after inhibition of the Ndt80 repressor Sum1. It is followed by 

Cdc5, Clb1 and Clb4. Due to the introduction of the Cdk1-APC/C oscillator, cyclins 

accumulate periodically. Cdc20 total protein appears at the same time as cyclins, unlike 

its active version (Figure 14C). Interestingly, due to the stable behavior of Ndt80, 

Cdc20T persists at high levels in contrast to its periodic activity.  
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With the introduction of the Cdk1-APC/CCdc20 oscillations, the system recreates the 

transition from metaphase, with high activity of Cdk1, to anaphase, with high activity 

of APC/C Cdc20. The combined model successfully recapitulates key events that drive 

the meiotic divisions, such as: (i) the entry into the first meiotic division with 

accumulation of Ndt80 and M-phase cyclins; (ii) the transition from metaphase I to 

anaphase I with degradation of cyclins; (iii) the transition from anaphase I to 

metaphase II with re-accumulation of cyclins. However, the model fails to terminate at 

meiosis II. Instead of complete degradation of cyclins, the oscillations of Cdk1-

APC/CCdc20 continue after the second wave of their activities, creating additional 

divisions. 
 

 

 

 
Figure 14. Combining the model of metaphase I entry with the Cdk1-APC/C oscillator provides 
metaphase-to-anaphase transitions. (A) Simplified wiring diagram of the combined model. Interactions 
provided by the oscillator are depicted in red. For simplification Cdk1-Clb4, Ama1:AI, SP and Sum1 are 
omitted in the diagram. ↓, positive interaction; ┴, negative interaction. (B-C) Simulation of the model 
showing concentration or activity of: the RC, Ndt80 and their regulators (B); cyclins and Cdc20 (C). 
MI, MII, ... are metaphase I, -II, ... spindles indicating the consecutive divisions. 
 

A 

B C 
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2.3. The properties of Cdk1-APC/C oscillator in meiosis 

Periodic activation of Cdk1 counteracted by APC/C ensures that all the events of the cell 

cycle happen in the right order and time. In mitotic cells, during the low Cdk1 state of 

interphase and anaphase, APC/C activity is dominant, cyclins are poorly transcribed 

and constantly destroyed. Once cells enter the high Cdk1 state of metaphase, these 

mechanisms are reversed (Kapuy et al., 2009). Meiosis consists of a similar machinery. 

However, unlike during proliferation, there are only two waves of Cdk1 activity. It has 

been proposed that the complex regulation of cyclins may be the key to unravel how 

meiotic divisions are orchestrated (Carlie and Amon, 2008; Futcher, 2008). Thus, we 

asked whether the biological properties of cyclins may be relevant for cells to perform 

precisely two divisions. 

2.3.1. The components of the meiotic oscillator exhibit different dynamical patterns 

During meiotic divisions three M-phase cyclins are expressed: Clb1, Clb3 and Clb4. We 

asked which cyclins are necessary for proper activation of the oscillator and, as 

a consequence, for progression through two meiotic divisions. For this purpose we 

performed an experiment on a synchronized meiotic cell culture in cells containing 

deletions of different cyclins: clb1∆, clb3∆ and clb4∆. We collected immunofluorescence 

(IF) samples in a conventional meiotic time course, during which cells were sporulated 

in sporulation medium (SPM). We used Pds1 tagged at the C-terminus with 18 Myc 

epitopes (Pds1-myc18) as a protein marker of the progression though meiosis 

(Shirayama et al., 1999). We used DAPI to visualize the nuclear divisions by staining the 

DNA content and α-tubulin antibodies to visualize spindles. The number of the bipolar 

spindle indicates the progression through meiosis, which is a consequence of activity of 

the Cdk1-APC/C oscillator. We consider formation of one and two spindles as 

landmarks for meiosis I and -II, respectively. All tested mutant strains exhibit similar 

meiotic progression as the WT cells for the first 8 hr in SPM (Figure 15A). At later 

stages, a visible difference is observed between the tested strains. Unlike clb3∆ cells, 

which divide nuclei twice and disassemble bipolar spindles with similar kinetics as WT 

cells, clb1∆ and clb4∆ mutants are defective in completion of two meiotic divisions. 

These cells are delayed in degradation of Pds1 and disassembly of meiotic spindles. 

After 24 hr, half of cells are tetra-nucleated in comparison to ~90% of WT and clb3∆ cells 

(Figure 15B). The majority of cells abolish the activity of the oscillator, possibly due to 

deficiency in cyclin levels. Thus, both Clb1 and Clb4 are important for proper function 

of the meiotic oscillator and progression through two meiotic divisions.  
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Figure 15. Clb1 and Clb4 are required for the proper activity of the meiotic oscillator. A conventional 
meiotic time course was performed on WT (Z30291), clb1∆ (Z22156), clb3∆ (Z30292) and clb4∆ (Z30293) 
strains expressing Pds1-myc18. (A) Quantification of meiotic progression by IF detection. Fixed cells were 
stained to detect nuclear division (2+4N is at least one division, 4N is two divisions), nuclear Pds1-myc18 
signal and meiosis I (Meio I) and -II (Meio II) spindles. Plots indicate percentage of cells at each time 
point. (B) Quantification of percentage of nuclear division after 24 hr. Bar plots indicate percentage of 
cells with one nucleus (<2N), two nuclei (2N) and more than two nuclei (>2N). 
 

Next, we asked about the properties of Clb1 and Clb4 during meiotic divisions that may 

contribute to the specific two-division model of meiosis. We quantified the nuclear 

signal of Clb1 and Clb4 at defined stages of meiosis. The quantification of the cyclins 

levels provided us with a possibility to identify the differences in the levels at meiosis I 

and -II. We performed a conventional meiotic time course with strains containing Clb1 

and Clb4 tagged at the C-terminus with 9 Myc epitopes (Clb1-myc9 and Clb4-myc9), as 

well as untagged control serving as a correction for the background signal. The nuclear 

signal was measured at different stages of meiosis based on the morphology of the 

spindle and number of nuclei. Clb1 and Clb4 accumulate during metaphase I and -II. 

Clb1-myc9 exhibits similar average intensities during both divisions (Figure 16A), in 

contrast to Clb4-myc9 (Figure 16B). The signal of the latter is at least twice lower at 

metaphase II than at metaphase I. Unlike Clb1, Clb4 is completely degraded between 

meiosis I and -II. The nuclear signal of Clb1-myc9 is still detectable during anaphase I, 

but significantly reduced. Additionally, some portion of Clb1 diffuses to the cytoplasm 

(Buonomo et al., 2003). As cells progress through divisions, cyclins level do not exceed 

the level at metaphase I, suggesting a possible activity of the degradation during 

metaphase II or insufficient time for stronger accumulation at later stages of meiosis.  

B A 
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Figure 16. Clb1 and Clb4 exhibit different dynamical pattern during meiosis. Intensity of nuclear Myc 
signal was measured for Clb1-myc9 (Z29974) (A) and Clb4-myc9 (Z5157) (B) at different stages of 
meiosis. Left panels show box plots displaying quantified signal intensity of Myc-tagged proteins after 
subtraction of the background signal from untagged control (Z29971). Right panels show representative 
pictures of cells at different stages of meiosis stained for spindles (red tubulin), nuclear division (blue 
DNA) and Myc signal (grayscale panel). Pro I is prophase I, Meta I and Meta II are metaphase I and -II, 
respectively, Ana I and Ana II are anaphase I and -II, respectively. n is the number of quantified cells. 
 

Differences in the levels of cyclins throughout meiosis prompted us to ask whether the 

dynamical pattern of another component of the oscillator, namely Cdc20, is different at 

meiosis I and -II. We quantified intensity of Cdc20 tagged at the N-terminus with 18 

Myc epitopes (Myc18-Cdc20). We observed that Cdc20 protein accumulates gradually 

reaching the highest peak around anaphase I (Figure 17A). At metaphase I, we 

observed almost twice lower average intensity of Myc18-Cdc20 signal in comparison to 

subsequent stages of meiotic divisions. It has been previously proposed (Salah and 

Nasmyth, 2000) that Cdc20 protein forms two peaks of accumulation, which follow 

Cdc20 activity. However, our quantification and mathematical model presented in the 

previous chapter indicate that Cdc20 levels and activity exhibit a different dynamical 

pattern. Cdc20 protein persists at high level during meiotic divisions showing one peak 

of its total nuclear concentration. Cdc20 total nuclear protein gradually rises during 

metaphase I and is maintained until metaphase II.  

A 

B 
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To study the difference between the total nuclear level of Cdc20 and its activity, we 

tested the intensity of the Pds1-myc18 nuclear signal at different stages of meiosis, as 

Pds1 is a well-known substrate of Cdc20 (Shirayama et al., 1999). Pds1-myc18 

accumulate strongly during prophase I (Figure 17B), due to the synthesis dependent on 

the Mbp1 transcription factor, but not Ndt80 (MacIsaac et al., 2006). Similar levels of 

Pds1-myc18 are present at metaphase I, indicating the absence of its degradation 

machinery. At anaphase I, the signal decreases visibly indicating high activity of 

APC/CCdc20. Similar to Clb4, Pds1 is completely degraded at this stage of meiosis. 

During the second division, cells re-accumulate Pds1, pointing to inactivation of 

APC/CCdc20. However, an inability to re-accumulate metaphase I-like levels of Pds1 and 

high levels of Cdc20 protein at the same stage prompted us to speculate about 

a possible basal activity of APC/CCdc20 during metaphase II. 
 

 
 

 

 

 

 
 

Figure 17. The dynamical pattern of Cdc20 level and activity is different throughout meiosis. Intensity 
of nuclear Myc signal was measured for Myc18-Cdc20 (Z29973) (A) and Pds1-myc18 (Z19647) (B) at 
different stages of meiosis. Left panels show box plots displaying quantified signal intensity of Myc-
tagged proteins after subtraction of the background signal from untagged control (Z29971). Right panels 
show representative pictures of cells at different stages of meiosis stained for spindles (red tubulin), 
nuclear division (blue DNA) and Myc signal (grayscale panel). Pro I is prophase I, Meta I and Meta II are 
metaphase I and -II, respectively, Ana I and Ana II are anaphase I and -II, respectively. n is the number of 
quantified cells. 

B 

A 
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2.3.2. Recreating dynamical pattern of the components of the oscillator does not 

explain the two-division meiosis 

We asked whether recreating the observed properties of the Cdk1-APC/C oscillator in 

the mathematical model is sufficient to answer the question how meiosis makes 

precisely two divisions. We used the combined model of the prophase I-to-metaphase I 

transition and the oscillator. We refitted the parameters (Table 4) to achieve similar 

dynamical pattern of Clb1, Clb4 and Cdc20 as observed experimentally during the first 

two divisions. These patterns include: (i) gradual accumulation of Cdc20 and 

persistence of the protein between meiosis I and -II; (ii) similar levels of Clb1 during 

metaphase I and II; (iii) half decrease in the level of Clb4 during metaphase II; 

(iv) incomplete degradation of Clb1 during anaphase I; (v) complete degradation of 

Clb4 during anaphase I.  

 

Table 4. Parameter values of the readjusted model.1 
Equation number Parameters and their values 

13 @J��KL = 0.1 

20 �Ef = 1 

31, 32 �;cd<�b = 0.08, �;cdb�A = 0.2, �;cdb�< = 0.1   

33, 35 �0s < = 0.015, �;�gAL < = 1.5 

1Only parameters with changed values are shown 

 

We performed a computational simulation of the combined model with readjusted 

parameters. The model recreates the levels of the relevant proteins as depicted in 

Figure 18. However, the system is unable to stop the oscillations after the second 

division. It creates damped oscillations that stabilize at intermediate levels of cyclins 

and Cdc20.  

The results of simulation and quantification of the nuclear signals of the main M-phase 

cyclins prompted us to speculate that Cdc20 substrates are regulated differently 

between meiosis I and -II. In the model, Clb1 degradation is slower than degradation of 

Clb4, which ensures a basal activity of Cdk1 during anaphase I, recreating the 

biologically observed pattern. Additionally, the model explains that the inability to re-

accumulate metaphase I-like levels of Clb4 and Pds1 at meiosis II is due to two factors: 

the basal activity of Cdc20 at metaphase II and the short period of lowered activity of 

APC/C during the second division. Cdc20 itself exhibits an interesting dynamical 

pattern which is different between its total levels and activity. It is mostly caused by 

persistent activity of its transcription factor Ndt80, while its main activator Cdk1 

exhibits an oscillatory behavior.  
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Although our combined model recreated physiological levels of cyclins and Cdc20, as 

well as Cdc20 activity, it did not result in recapitulating the exit from meiosis II. 

Therefore, recreating the exact levels of the components of the oscillator is not sufficient 

for the explanation of the progression through meiotic divisions and the exit from 

meiosis II. We conclude that another mechanism exists apart from the oscillator that 

terminates the waves of Cdk1-APC/C activities after meiosis II. 

 

 
 

Figure 18. Model with readjusted parameters recreates the general levels of cyclins and Cdc20 in 
meiosis I and II. Simulation shows concentration or activity of Clb1, Clb4, Cdc20 (active form) and 
Cdc20T (total levels). MI, MII, ... are metaphase I, -II, ... spindles indicating the consecutive divisions. 
 

2.4. Role of meiosis II-specific APC/C co-activators in meiotic exit 
 
2.4.1. A meiosis II-specific mechanism ensures termination of meiotic oscillations 

after completion of meiosis II  

We asked whether a hypothetical mechanism for terminating the oscillations may 

prevent additional divisions after the exit from meiosis II. Firstly, we specified the 

minimal requirements of the hypothetical terminator, called Term. In order to terminate 

the oscillations precisely after meiosis II, accumulation and activity of the Term has to 

be inhibited at earlier stages of meiosis by a meiosis I-specific inhibitor, referred to as 

Inh (Figure 19A). The Inh prevents premature accumulation of the terminator, which 

would result in cutting-off the meiotic divisions before the completion of the second 

one. Thus, the initial value of the Inh is equal to 1. The inhibitor is degraded in a Cdc20-

dependent manner at anaphase I (Equation 36). Due to the strong degradation and the 

synthesis independent of M-phase proteins, the inhibitor is present only during the first 
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division and does not re-accumulate for meiosis II. Along with its degradation, the 

terminator is synthesized at the exit of meiosis II. The terminator is modeled with an 

introduction of nonlinearity and a Hill function resulting in an ultrasensitive response 

(Equation 37). Initial value of the Term is set to 0. 

 

 [j�ℎ]
�
��

= −(�0+4�< + �0+4�A ∙ [9��20]) ∙ [j�ℎ] (36) 

 

 [t
��]
�
��

= �"7u&�< ∙
@"7u&

+

@"7u&
+ + [j�ℎ]+ − �"7u&�< ∙ [t
��] (37) 

 

In order to terminate the oscillations, the terminator has to inactivate key meiotic 

regulators. We assumed that it stops the oscillations through degradation of Clb1 and 

Clb4, and, additionally, Ndt80 and Cdc5. Degradation of Ndt80 results in the inability 

to re-synthesize cyclins, as well as in decline in Cdc20 levels and activity. Equations 

describing these components of the model were modified with introduction of the 

Term-dependent degradation. Equations 38-39 for regulation of Clb1 and Clb4 were 

based on previous Equations 31-32. Equations 40-43 for regulation of Ndt80 and Cdc5 

were based on previous Equations 11-12, 21-22. New parameter values are presented in 

Table 5. 
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Table 5. Parameter values of the readjusted model with introduction of hypothetical terminator.1 
Equation number Parameters and their values 

36 �0+4�< = 0.002, �0+4�A = 0.1 

37 �"7u&�< = 1, �"7u&�< = 0.1, @"7u& = 0.1ob,   � = 2 

38, 39 �;cd<�h = 0.5, �;cdb�h = 1   

40-43 �J��KL�A = 0.4, �;�gh�b = 0.1  

1Only newly introduced parameters are presented. 

 

 

 

 
 
 
Figure 19. Meiosis II-specific hypothetical terminator of meiotic oscillations limit the number of 
divisions. The readjusted model was extended by inclusion of the hypothetical terminator (Term), which 
degrades cyclins, Ndt80 and Cdc5, and its meiosis I-specific inhibitor (Inh). (A) Simplified wiring 
diagram with inclusion of the Term module depicted in red. For simplification some interactions are 
omitted from the diagram. ↓, positive interaction; ┴, negative interaction. (B-C) Simulation of the model 
with Term-dependent degradation of cyclins, Ndt80 and Cdc5 showing concentration or activity of Clb1, 
Cdc20, the terminator and its inhibitor (B) or Clb1, Clb4, Ndt80T, Cdc5T and Cdc20T (C). MI and MII are 
metaphase I and -II spindles indicating the consecutive divisions. 
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We asked whether degradation of key meiotic regulators introduced in the combined 

model is sufficient to stop the oscillations precisely after the second division and to 

recreate the WT phenotype. We performed simulations of the model with introduced 

Term-dependent degradation of cyclins, Ndt80 and Cdc5 in meiosis II. The hypothetical 

terminator appears at the exit from meiosis II after degradation of its inhibitor at 

anaphase I (Figure 19B). It triggers degradation of Clb1 and Clb4, therefore completely 

inactivating Cdk1 at the onset of anaphase II (Figure 19C). The terminator triggers 

abrupt degradation of Ndt80 and Cdc5 at around 8 hr. With degradation of Ndt80, all 

major regulators of meiosis that do not depend on the hypothetical terminator, such as 

Cdc20T, follow the decline of Ndt80T. This decline is a result of the strong dependence 

of the synthesis regulated by Ndt80 and the fast background degradation of the protein. 

The oscillator stops after the second division with disassembly of meiosis II spindles 

and degradation of the major M-phase regulators. We conclude that in order to 

complete meiosis precisely after the second division, cells need to activate a meiosis II-

specific machinery exhibiting the properties of the hypothetical terminator. Thus, the 

minimal requirements of the terminator of the oscillations are: (i) meiosis I-specific 

inhibition of its accumulation and activity; (ii) meiosis II-specific dynamical pattern; 

(iii) direct or indirect degradation of Ndt80 and cyclins.  

2.4.2. Cdh1 does not regulate two meiotic divisions 

We hypothesized that the oscillations of Cdk1 and APC/C activities during meiosis are 

limited by a meiosis II-specific mechanism involved in degradation of key meiotic 

regulators. The importance of this mechanism prompted us to seek the biological 

identity of the terminator and its meiosis I-specific inhibitor.  

In mitosis, the exit from a division is triggered by activity of APC/CCdc20 and 

APC/CCdh1 (Visintin et al., 1997). Both, Cdc20 and Cdh1, are present also in meiosis. 

Due to the fact that Cdc20 is a component of the oscillator, it is unlikely that it plays 

a role in the termination of meiotic oscillations. Thus, we focused on examining the role 

of other APC/C co-activators, such as Cdh1 and Ama1. Firstly, we focused on studying 

the relevance of Cdh1 for the progression through meiosis and meiotic exit. In meiosis, 

Cdh1 activity is regulated by two kinases: Ime2 and Cdk1 (Bolte et al., 2002; Jaspersen et 

al., 1999; Visintin et al., 1998). They phosphorylate Cdh1 during both divisions leading 

to its inability to bind and activate APC/C. Therefore, Cdh1 is active only in the 

absence of the kinases: during entry into meiosis and possibly after the exit from 

meiosis II. This pattern of Cdh1 activity creates the possibility of Cdh1 being involved  
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Figure 20. Cdh1 depletion from meiosis does not affect the progression through meiotic divisions and 
the exit from meiosis II. A conventional meiotic time course was performed with CDH1 (Z29971) and 
PHSL1-CDH1 (Z27965) strains. (A) Immunoblot detection of proteins. Cc indicates sample taken from 
proliferating cells. (B) Quantification of meiotic progression by IF detection of nuclear division (2+4N is 
at least one division, 4N is two divisions) and meiosis I (Meio I) and -II (Meio II) spindles. 
 

in the termination of meiotic oscillations after completion of meiosis II in a similar way 

as the hypothetical terminator. To test this hypothesis, we performed a conventional 

meiotic time course on cells lacking Cdh1 in meiosis. We placed CDH1 under a mitosis-

specific HSL1 promoter in order to not disrupt the preceding mitotic divisions. PHSL1-

CDH1 cells accumulate M-phase proteins at 8 hr and form bipolar spindle with similar 

kinetics as the control CDH1 cells. In both strains the meiosis I-specific protein Dbf4 is 

degraded at the same time, indicating the exit from meiosis I (Figure 20A). WT cells 

accumulate unphopshorylated form of Cdh1 at 10 hr (the fastest migrating band), 

indicating its activation at the late stage of meiosis. Cells depleted of Cdh1 loose the 

protein during first hours in meiosis. Both strains dephosphorylate other substrate of 

Cdk1 and Ime2, namely Sum1, at 10 hr, indicating the complete inactivation of these 
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kinases. At this time, majority of cells degrade M-phase proteins, dissemble bipolar 

spindles and complete two divisions (Figure 20B). Degradation of Cdc5 and Ndt80 is 

triggered by the activity of strongly accumulated Ama1 in both strains. These results 

indicate that Cdh1 activity does not regulate the exit from meiosis and does not 

terminate meiotic oscillations. Additionally, depletion of Cdh1 does not cause defects in 

meiotic progression. It is possible that strong accumulation of Cdh1 protein during 

meiosis in WT cells is important for late events of meiosis associated with sporulation 

or G1-phase arrest.  

2.4.3. Ama1 exhibits properties of the hypothetical terminator of meiotic oscillations 

Ama1 is a meiosis-specific activator of APC/C that exhibits similar properties to the 

hypothetical terminator of meiotic oscillations. It is not expressed during mitosis, thus it 

does not affect the cell cycle oscillator during proliferation. Furthermore, it has been 

shown that it targets for degradation M-phase cyclins, such as Clb1 and Clb4, as well as 

Cdc5 (Okaz et al., 2012). Ndt80 appears to be indirectly affected by the Ama1 activity. 

Although it has been suggested that strong accumulation of Ama1 protein at the exit 

from meiosis II may play a role in the completion of meiosis, Ama1 is known to exhibit 

additional functions during meiosis, being required for proper transition from 

prophase I to metaphase I.  

Unlike the hypothetical terminator, Ama1 is present during prophase I and its activity 

prevents premature accumulation of M-phase cyclins. Furthermore, Ama1 is regulated 

by Clb1-dependent inhibition. Additionally, Ama1 is inhibited through binding to an 

Ndt80-dependent stoichiometric inhibitor of unknown identity, called an additional 

inhibitor (AI). Mutual inhibition between Ama1, Clb1 and AI creates a double-negative 

feedback loop, which is a property that allows irreversible exit from prophase I. We 

asked whether this specific dynamical pattern of Ama1 activity and accumulation 

allows the termination of meiotic oscillations after completion of meiosis II.  

We developed a model, in which we replaced the hypothetical terminator by Ama1, as 

presented in wiring diagram in Figure 21A. We incorporated into the combined model 

an additional form of regulated total levels of Ama1, referred to as Ama1T. High 

accumulation of Ama1 is inhibited in early stages of meiosis by a meiosis I-specific 

mechanism. We assumed that the inhibitor of Ama1 synthesis is based on the same 

principles as the hypothetical inhibitor, which is present during prophase I (initial value 

set to 1), preventing premature accumulation of Ama1. The inhibitor of the synthesis is 

degraded during anaphase I in a Cdc20-dependent manner. To avoid re-accumulation 
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of the inhibitor after the exit from meiosis II, we added its Ama1-dependent 

degradation (Equation 44).  
 

 [j�ℎ]
�
��

= −(�0+4�< + �0+4�A ∙ [9��20] + �0+4�_ ∙ [e��1] + �0+4�b ∙ [e��1"]) ∙ [j�ℎ] (44) 

 

Ama1 synthesis is inhibited with a Hill kinetics (Equation 45). Due to the fact that 

Ama1 is synthesized in lower levels in prophase I and metaphase I, we assumed 

additional inhibitor-independent synthesis of the protein, which was introduced in the 

model with the initial value of Ama1T equal to 1. Degradation of Ama1 depends on 

unknown mechanism and was also included in a modified version of the equation 

depicting unphosphorylated form of Ama1 (Equation 46). As Ama1 basal activity is 

required for prophase I, the initial value of Ama1AT was set to 1. 
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Ama1 triggers degradation of Cdc5 and cyclins, as described with Equations 21-22, 31-

32. Additionally, we included Ama1-dependent degradation of Ndt80 (Equations 47-

48), as indicated by simulations of the hypothetical terminator. Newly introduced 

parameters or parameters with readjusted values are given in Table 6. 
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Table 6. Parameter values of the model with Ama1 as a terminator of the oscillations.1 
Equation number Parameters and their values 

31, 32 �;cd<�A = 0.08, �;cd<�b = 0.035, �;cdb�A = 0.1, �;cdb�< = 0.2 

35 �;�gAL < = 2 

44 �0+4�_ = 0.005, �0+4�b = 0.002 

45, 46 �i& <�< = 1, �i& <�< = 0.015, @0+4 = 0.0002, � = 2 

47, 48 �J��KL�A = 0.2, �J��KL�_ = 0.15  

1Only newly introduced or modified parameters are presented. 
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Figure 21. Ama1 exhibits the properties of hypothetical terminator. The hypothetical terminator module 
was replaced by Ama1-dependent degradation of cyclins, Ndt80 and Cdc5. Additionally, meiosis I-
specific inhibitor of Ama1 synthesis, Inh, was included. (A) Simplified wiring diagram with Ama1 
module depicted in red. For simplification some interactions are omitted from the diagram. ↓, positive 
interaction; ┴, negative interaction. (B-D) Simulation of the model depicting concentration or activity of 
different forms of Ama1, Inh, Clb1 and Cdc20 (B) or Ama1 substrates (C-E) in the presence of Ama1 (B-

C), in the absence of Ama1 (Ama1T = Ama1AT = 0, kAma1s1 = 0) (D) or in the absence of Ama1 from meiosis 
II but not prophase I (Ama1T = Ama1AT = 1, kAma1s1 = 0) (E). MI, MII, ... are metaphase I, -II, ... spindles 
indicating the consecutive divisions. 
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We simulated a time course recreating a conventional biological experiment. Simulation 

of the model assuming Ama1 taking the role of the hypothetical terminator shows 

strong accumulation of Ama1 at meiosis II (Figure 21B). Ama1 accumulates at 

prophase I, where it inhibits premature accumulation of M-phase proteins. Ama1 level 

decreases exponentially as cells progress to metaphase I. At the exit from meiosis II 

Ama1T rises abruptly as its inhibitor is degraded by Cdc20. With degradation of Clb1 at 

meiosis II, Ama1 activity rises following increase in its total level. This creates an 

irreversible switch, leading to a complete degradation of cyclins, Ndt80 and Cdc5, as 

well as indirect substrates such as Cdc20 (Figure 21C). We modeled Ama1 as 

a terminator mechanism, thus its exclusion from meiosis results in repetitive events of 

high and low Cdk1 activity that mimic multiple divisions (Figure 21D). Due to the fact 

that deletion of AMA1 causes failure in proper completion of meiotic recombination 

and premature entry into metaphase I (Okaz et al., 2012), we tested a reduction of Ama1 

levels only during meiosis II (Figure 21E). For this purpose we mimicked expression of 

AMA1 from the DMC1 promoter active during recombination. We observed that the 

activity of Ama1 in prophase I does not affect the exit from meiosis II. Cells perform 

multiple oscillations after the exit from meiosis II. Thus, the model predicts that the 

meiosis II-specific high accumulation and high activity of Ama1 is required for 

terminating Cdk1-APC/CCdc20 oscillations after the exit from meiosis II.  

To verify the results obtained by the model, we performed biological experiment. To 

test the importance of Ama1 during later stages of meiosis without disrupting the entry 

into meiosis I, we made use of a depletion that expresses AMA1 from the DMC1 

promoter. The experiment was performed by Dr. Orlando Argüello-Miranda (Argüello-

Miranda, 2015). We performed a conventional meiotic time course using ama1∆ PDMC1-

AMA1 strain. Pds1-myc18 was stained as a protein marker of progression through 

meiotic divisions. In this setup, WT cells accumulate high level of Ama1 after 10 hr, 

while ama1∆ PDMC1-AMA1 cells synthesize the protein only until 6 hr (Figure 22A). Cells 

from both strains progress through two divisions normally and exit around 10 hr 

degrading cyclins. At this time ~80% of cells disassemble meiotic spindles and complete 

two divisions (Figure 22B). Nonetheless, ama1∆ PDMC1-AMA1 cells are unsuccessful in 

degradation of Ndt80, Cdc5 and Cdc20, as predicted by the model. Furthermore, 

usually dephosphorylated proteins, such as Sum1 and Cdh1, exhibit persistent 

phosphorylation, resulting in their inactivity and suggesting continuous activity of M-

phase kinases, such as Ime2. 
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Figure 22. Ama1 depletion from meiosis II affects the exit from meiosis. A conventional meiotic time 
course was performed with AMA1 (Z20217) and ama1∆ PDMC1-AMA1 (Z20219) cells. (A) Immunoblot 
detection of proteins. Cc means proliferating cells. (B) Quantification of meiotic progression by IF 
detection of nuclear division (2+4N is at least one division, 4N is two divisions), meiosis I (Meio I) and -II 
(Meio II) spindles, and nuclear Pds1-myc18. Taken from (Argüello-Miranda, 2015). 
 

Unlike predicted by the model, cells without Ama1 in meiosis II do not perform 

additional divisions but exit from meiosis with complete degradation of cyclins and 

disassembly of meiotic spindles. These discrepancies between the results of 

computational experiment and biological experiment indicate incorrect assumptions in 

the model. Although both types of experiments show significant difference in the exit 

from meiosis in the absence of Ama1 with maintenance of the key meiotic regulators, 

the mathematical model incorrectly predicts the appearance of multiple Cdk1 

oscillations after meiosis II. We speculate that ama1∆ does not show a typical phenotype 

of gene deletion with loss of function. It rather causes significant changes in the 

regulatory network, resulting in a robust regulation of termination of meiotic 

oscillations. In the absence of Ama1, usually degraded Ndt80 and Cdc20 proteins 
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persist longer after the exit from meiosis II. Moreover, other proteins, such as Cdh1, 

show modifications that differs from the WT situation. Due to the fact that even with 

the persistence of the transcription factor of cyclins, Ndt80, they are not present for 

meiosis III, we speculated that additional APC/C-dependent mechanism is involved in 

inhibition of their re-accumulation and thus in stopping the meiotic oscillations. 

Therefore, we suggest that deletion of AMA1 may cause other proteins to acquire the 

function of Ama1 in the termination of the oscillations by keeping strong degradation of 

cyclins and thus inhibition of Cdk1 activity after meiosis II. 

2.4.4. Cdh1 does not take the role of Ama1 in termination of the oscillations 

We asked whether another mechanism apart from Ama1 is involved in terminating the 

oscillations. Due to the fact that Cdh1 is modified after the exit from meiosis II, we 

tested whether it takes the role of Ama1 in limiting the number of divisions in meiosis. 

We performed a conventional meiotic time course comparing CDH1 and PHSL1-CDH1 in 

ama1∆ PDMC1-AMA1 genetic background. Both strains progress through meiosis with 

similar kinetics, as indicated by the accumulation of M-phase proteins (Figure 23A) and 

IF counting of Pds1-myc18 signals, bipolar spindles and nuclear division (Figure 23B). 

Depletion of Cdh1 does not affect degradation of cyclins and Pds1-myc18 and does not 

cause re-accumulation of these proteins after completion of meiotic divisions. Cells 

degrade Pds1-myc18, disassemble bipolar spindles and complete two divisions within 

12 hr. Thus, Cdh1 is not important for termination of meiotic oscillations, as well as 

general progression through meiotic divisions. In the absence of Ama1, Cdh1 does not 

take its role as a terminator of the oscillations and does not influence the reduction of 

cyclin accumulation after the exit from meiosis II. However, in both strains containing 

WT or depleted Cdh1, we observed strong accumulation and persistence of Cdc20. 

Therefore, we speculated that not Cdh1, but rather Cdc20 may be relevant in 

termination of the oscillations. Normally, Cdc20 functions as a component of the 

oscillator. However, in the absence of Ama1 the properties of the network controlling 

two divisions may result in Cdc20 taking the usual role of Ama1 as the terminator of 

the oscillations. Stabilized Cdc20 after the exit from meiosis II may continuously 

degrade cyclins preventing the entry into meiosis III. 
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Figure 23. Depletion of Cdh1 in the absence of Ama1 in meiosis II does not cause defects in the exit 
from meiosis. A conventional meiotic time course was performed in ama1∆ PDMC1-AMA1 strains 
containing CDH1 (Z22388) or PHSL1-CDH1 (Z28157). (A) Immunoblot detection of proteins. Cc means 
proliferating cells. (B) Quantification of meiotic progression by IF detection of nuclear division (2+4N is 
at least one division, 4N is two divisions), meiosis I (Meio I) and -II (Meio II) spindles, and nuclear Pds1-
myc18. 

2.5. Regulation of meiotic exit by Cdc20  

We demonstrated that Ama1 is involved in the control of some of the events of the exit 

from meiosis II. It may take a role of the terminator of the meiotic oscillations in WT 

cells. However, the absence of the activity of this protein in meiosis II does not cause the 

predicted phenotype of multiple oscillations. Thus, we speculated that the loss of Ama1 

function leads to the modification of the entire meiotic network and the gain of function 

by another APC/C co-activator. Since we excluded Cdh1 as a possible regulator of 

meiotic exit, we focused on the role of a component of meiotic oscillator, Cdc20. Indeed, 

Cdc20 exhibits modification at the exit from meiosis II in the absence of Ama1, 

suggesting its possible function as the terminator of the oscillations.  
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2.5.1. The model predicts that Cdc20 acts as the terminator of the oscillations in the 

absence of Ama1 

To test the possibility of Cdc20 taking the role of the terminator, we first performed 

computational simulations. We revised the previous model describing Ama1 as 

a terminator, to be able to create more realistic dynamical patterns of proteins and 

recapitulate the ama1∆ phenotype with persisting Cdc20 in meiosis II. First, we 

readjusted the model parameters to fit the WT and ama1∆ phenotypes, as well as 

biological observations regarding the dynamics of the components of the oscillator. For 

better description of reality, we readjusted the model using parameters derived from 

experiments. We measured parameter values of protein degradation by performing 

a protein degradation assay (Baliga et al., 1969; Chou and Deshaies, 2011). It is used to 

measure half-lives of studied proteins by inactivating the translational elongation by the 

addition of cycloheximide (CHX) (Schneider-Poetsch et al., 2009). We divided cell 

cultures into a DMSO culture, serving as a control of meiotic progression, and a CHX 

culture. We studied three forms of degradation introduced in the model: background 

degradation, Cdc20-dependent degradation and Ama1-dependent degradation. First, 

we studied protein degradation triggered by Cdc20 and compared it to the background 

degradation to identify the effect of Cdc20. We performed experiments in metaphase I-

arrested cells in the absence of Cdc20 and in anaphase I cells in the presence of Cdc20. 

To achieve high level of synchrony and resolution allowing manipulation of cells at 

a precise stage of meiosis, we used a system of CDC20-meiotic-arrest/release, CDC20-

mAR, developed recently in our laboratory (Argüello-Miranda et al., 2017). In this 

system, cells are arrested at metaphase I by expressing CDC20 from the mitotic CLB2 

promoter (PCLB2-CDC20). At 8 hr, cells are released from the arrest to progress 

synchronously though meiotic divisions. This is achieved by the activation of an 

additional copy of CDC20 placed under the inducible CUP1 promoter (PCUP1-CDC20) by 

addition of CuSO4. After the release from the arrest, cells enter anaphase I 

synchronously and complete divisions within 120 min.  

To study the background degradation of M-phase proteins ("Meta I"), cells were 

arrested in metaphase I and treated with DMSO or CHX. DMSO culture exhibit increase 

of protein level (Figure 24A). The majority of detected proteins stabilize in CHX culture, 

indicating the absence of a degradation machinery. Ama1 is the only unstable protein. 

To test Cdc20-dependent degradation, we released cells from the metaphase I-arrest at 

8 hr ("Ana I") and added DMSO or CHX to the cultures 40 min later. At this time, most 

of the cells enter anaphase I, as indicated by the disappearance of the meiosis I-specific  
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Figure 24. Levels and stability of meiotic regulators in the presence and absence of Cdc20 in meiosis I. 
CDC20-mAR cells (Z29418) were transferred to SPM (t = 0) and treated with solvent (DMSO, 0.5%) or 
cycloheximide (CHX, 0.5 mg/ml) at the indicated times. Proteins were detected in whole-cell extracts by 
immunoblotting. (A) Immunoblot detection of proteins in metaphase I-arrested cells (Meta I). DMSO/ 
CHX was added at t = 480 min. (B) Immunoblot detection of proteins at anaphase I cells (Ana I) after 
release from metaphase I-arrest. Cells were treated with 10 µM of CuSO4 at t = 480 min and with DMSO/ 
CHX at t = 520 min. (C) Graphs show half-lives (t1/2) of proteins measured from CHX-treated cultures. 
Signal intensity was compared between metaphase I cells (Meta I) in the absence of Cdc20 and anaphase I 
cells (Ana I) in the presence of Cdc20. Data points are mean values from 2 gels. 
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protein Dbf4 (Figure 24B). Cells from the DMSO culture progress through meiosis 

normally, accumulating high amounts of Ama1 and degrading M-phase proteins. By 

contrast, the addition of CHX at anaphase I does not allow accumulation of Ama1, 

resulting in stabilization of Ndt80 and Cdc5, but not cyclins. Clb1 and Clb4 are stable in 

the absence of Cdc20 (half-lives >2 hr) similarly to Ndt80 and Cdc5 and are degraded 

abruptly during anaphase I (half-lives ~24 and 13 min, respectively) (Figure 24C). 

Interestingly, we observed slower degradation of Clb1, which is in agreement with 

previous quantification of Clb1 and Clb4 levels at different stages of meiosis. Slower 

degradation of Clb1 may be important for keeping a basal activity of Cdk1 during 

anaphase I and thus allowing fast re-accumulation of cyclins for metaphase II. 

Next, we studied the stability of Ndt80 and Cdc5 in meiosis II to obtain Ama1-

dependent degradation rates. We treated AMA1 cells ("AMA1") and ama1∆ PDMC1-

AMA1 cells ("no AMA1") with DMSO or CHX 60 min after the release from 

metaphase I-arrest. At this time, cells enter meiosis II. DMSO-treated cells degrade 

cyclins and exit meiosis in the presence and absence of Ama1 (Figure 25A-B). As 

expected, ama1∆ PDMC1-AMA1 cells have low levels of Ama1 protein that leads to 

persistence of Ndt80 and Cdc5. CHX-treated cells from a culture expressing AMA1 

show degradation of Ama1 substrates (Figure 25A) in contrast to cells with inactive 

Ama1 (Figure 25B). Both Ndt80 and Cdc5 are degraded with similar kinetics by Ama1, 

as indicated from measurements of their half-lives (Figure 25C). Interestingly, Ama1 

shows similar half-life (<20 min) as in earlier stages of meiosis. Thus, Ama1 degradation 

does not depend on the stage of meiosis. Similar pattern is observed for Cdc20, whose 

half-life is ~5 min in the presence or absence of Ama1 and in meiosis I and -II. We did 

not measure half-lives of cyclins due to the low intensity of the signal in meiosis II.  

We calculated degradation rates based on the half-lives and used them as new values of 

parameters describing Cdc20- and Ama1-dependent degradation. We refitted other 

parameters to recreate the known phenotypes of WT and ama1∆ cells. We selected 

a single set of parameter values that resulted in two meiotic divisions (Table 7). 
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Figure 25. Levels and stability of meiotic regulators in the presence and absence of Ama1 in meiosis II. 
CDC20-mAR cells expressing AMA1 (Z31284) or ama1∆ PDMC1-AMA1 (Z31285) were transferred to SPM 
(t = 0) and treated with 10 µM of CuSO4 at t = 480 min. Cells were treated with solvent (DMSO, 0.5%) or 
cycloheximide (CHX, 0.5 mg/ml) at t = 540 min. Proteins were detected in whole-cell extracts by 
immunoblotting. (A) Immunoblot detection of proteins in AMA1 cells (AMA1). (B) Immunoblot detection 
of proteins in ama1∆ PDMC1-AMA cells (no AMA1). (C) Graphs show half-lives (t1/2) of proteins measured 
from CHX-treated cell cultures. Signal intensity was compared between cells expressing AMA1 and 
ama1∆ PDMC1-AMA1. Data points are mean values from 2 gels. 
 

Table 7. Parameter values of the model with Ama1 and Cdc20 as terminators of oscillations.1 
Equation number Parameters and their values 

9 �:; < = 2, �:;�< = 0.5, @:; = 1 

13, 47, 48 
�J��KL�< = 0.002, �J��KL�A = 0.25, �J��KL�< = 0.01, �J��KL�A = 0.02,    

�J��KL�_ = 0.008, �J��KL < = 1, �J��KL A = 0.8, �J��KL�< = 0.4 , �� = 0.02 

14-16 
�E]&<�< = 0.1, �E]&< < = 0.05, �E]&<�_ = 0.5, �E]&< A = 0.2, �E]&<�b = 0.05,   

�E]&< _ = 0.3 

20 �Ef < = 0.3, �Ef�< = 3, @Ef = 0.001   

21, 22 
�;�gh�< = 0.001, �;�gh�A = 0.05, �;�gh�< = 0.01, �;�gh�A = 0.03, �;�gh�_ = 0.001,   

�;�gh < = 0.2, �;�gh A = 2, �;�gh _ = 1, �;�gh�< = 0.4  

31, 32 

�;cd<�< = 0.001, �;cd<�A = 0.04, �;cd<�< = 0.01, �;cd<�A = 0.02, �;cd<�_ = 0.0035,      

�;cd<�b = 0.05, �;cdb�< = 0.002, �;cdb�A = 0.03, �;cdb�<0.01, �;cdb�A = 0.03,   

�;cdb�_ = 0.008, �;cdb�b = 0.12 

33 �0s < = 0.0004, �0s A = 0.0002, �0s�< = 0.01   

34, 35 �;�gAL�A = 0.13, �;�gAL�< = 0.15, �;�gAL < = 20, �;�gAL�< = 1, @;�gAL = 0.1   

44 �0+4�< = 0.01, �0+4�A = 0.032 

45, 46 �i& <�< = 2, �i& <�< = 0.06, �i& < < = 1, @0+4 = 0.001, � = 1   

1Only modified parameters are presented. 
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We simulated different conditions based on the readjusted model. In WT cells, Ama1 

takes a role of the terminator of meiotic oscillations (Figure 26A). Initially, cyclins are 

degraded by Cdc20 at anaphase I and anaphase II. With gradual degradation of Clb1 

and complete degradation of Inh, Ama1T accumulates abruptly, triggering degradation 

of Cdc5 and Ndt80. Cells disassemble meiotic spindle and complete two divisions. Even 

lowered accumulation of Ama1 in meiosis II (half reduction of level mimicking 

heterozygous deletion of AMA1) causes irreversible exit from meiosis (Figure 26B), 

which is in agreement with biological observations (data not shown). Further reduction 

of Ama1 accumulation is still sufficient to exit from meiosis II with Ama1 functioning as 

a terminator (Figure 26C). However, expression of Ama1 from a constitutive promoter, 

which leads to similar levels of the protein in meiosis I and -II, results in inability of 

cells to properly activate Ama1 for the exit from meiosis II (Figure 26D). To simulate 

persistence of Ama1 protein at prophase I, we modified Equation 45 describing Ama1T. 

We introduced a background Inh-independent synthesis of Ama1 protein (parameters 

are kAma1s1 = 0, kAma1s2 = 0.015) (Equation 49). 

 

 [e��1"]
�
��

= �i& <�< ∙
@0+4

+

@0+4
+ + [j�ℎ]+ + �i& <�A − �i& <�< ∙ [e��1"] (49) 

 

Under this condition, Ndt80 persists longer along with Cdc5 and Cdc20. Strong 

accumulation and activity of Cdc20 leads to complete degradation of cyclins, similar as 

in the absence of Ama1 in meiosis II, mimicking ama1∆ PDMC1-AMA1 cells (Figure 26E) 

and similar as in ama1∆ cells (Figure 26F). In all these scenarios, Cdc20 takes a role of 

the terminator of the meiotic oscillations. In cells lacking appropriate levels of Ama1 in 

meiosis II, Cdc20 is highly active to prevent any additional divisions. Its strong 

accumulation results from stable Ndt80, while its strong activity results from 

persistence of one of its activator, Cdc5. As Ndt80 is also responsible for the synthesis of 

cyclins, Cdc20-dependent degradation of Clb1 and Clb4 is stronger than the synthesis, 

leading to the prevention of their re-accumulation for the third division. In the revised 

model, a meiosis II-specific activity of Cdc20 is achieved by gradual accumulation of the 

protein and gradual increase of its activators. The kinetics of the activation and 

inactivation of IE and Cdc20 is crucial for maintaining a stable activity of Cdc20. It is 

important to note that Cdc20 cannot gain the function of the terminator before the exit 

from meiosis II in order to prevent the premature exit from meiosis after anaphase I. 

Thus, in the absence of Ama1, Cdc20 gains a meiosis II-specific function that is different 

from its function at the exit from meiosis I. 
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Figure 26. Cdc20 takes a role of Ama1 in termination of meiotic oscillations after meiosis II. 
Simulations were performed on the adjusted model with Ama1 serving as the terminator in WT cells (A), 
cells with 50% reduction (kAma1s1 = 1) (B) or 75% reduction (kAma1s1 = 0.5) (C) of AMA1 expression and with 
Cdc20 serving as the terminator in cells with AMA1 expressed from a constitutive (cons) promoter 
(kAma1s1 = 0, kAma1s2 = 0.015) (D), AMA1 expressed from prophase I DMC1 promoter (Ama1T = Ama1AT = 1, 
kAma1s1 = 0) (E) or in ama1∆ (Ama1T = Ama1AT = 0, kAma1s1 = 0) (F). Parameters of the combined model were 
readjusted to fit the measured half-lives and phenotypes of WT cells and ama1∆ mutant cells. Simulations 
show concentration or activity of key meiotic regulators. MI and MII are metaphase I and -II spindles 
indicating the consecutive divisions. 
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In order for Cdc20 to gain the function of the terminator in meiosis II, but not meiosis I, 

Cdc20 activity must be regulated differently between meiosis I and -II, leading to the 

increase of the activity during the exit from the second division. Our previous 

experiments and simulations showed that Cdc20 protein levels are lower at metaphase I 

than at metaphase II. We asked whether this time delay in accumulation of Cdc20 may 

provide an explanation of its meiosis II-specificity in the absence of Ama1. We tested 

computationally two scenarios: decrease in Ndt80-dependent synthesis of Cdc20 in 

meiosis II to the levels of meiosis I and increase in Ndt80-independent synthesis of 

Cdc20, mimicking equal levels of the protein in both meiosis I and -II. Additionally, we 

tested a scenario of abrupt but not gradual accumulation of the transcription factor of  
 
 

 
 
Figure 27. Difference in Cdc20 protein level between the two divisions is not sufficient to explain 
a possible meiosis II-specific activity of Cdc20. Simulations of the model present concentration or 
activity of Clb1, Cdc20, Cdc20T and Ndt80T in the absence of Ama1 (Ama1T = Ama1AT = 0, kAma1s1 = 0). 
(A) 50% decrease in Cdc20 levels in meiosis II (kCdc20s2 = 0.065 at t = 7 hr) does not affect the exit from 
meiosis II. (B) Two-fold increase in Ndt80-dependent synthesis of Cdc20 in meiosis I (kCdc20s2 = 1.3 at 
t = 4 hr) does not affect the exit from meiosis II. (C) Increase of Cdc20 level in meiosis I by induction of 
Ndt80 in early meiosis (kNdt80s1 = 0.24 at t = 6 hr, kNdt80s2 = 0) does not cause defects in the meiotic exit. Black 
arrowheads indicate change of the parameters. MI and MII are metaphase I and -II spindles indicating 
the consecutive divisions. 
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Cdc20, namely Ndt80. Both decrease of the synthesis in meiosis II (Figure 27A) and 

increase of the synthesis in meiosis I (Figure 27B) result in robust progression through 

two meiotic divisions and the exit after meiosis II in the absence of Ama1. Similarly, 

simulations that mimic inducible expression of NDT80 with the abrupt accumulation of 

Ndt80T, leads to proper progression through meiosis (Figure 27C). In conclusion, 

gradual accumulation of Cdc20 is not required for proper progression through meiotic 

divisions. It is more likely that the kinetics of activation and inactivation of APC/CCdc20 

plays a crucial role in its meiosis II-specific activity in the absence of Ama1. Moreover, 

an inhibitor of APC/CCdc20 activity may be present in between meiosis I and -II that 

prevents the exit from meiosis after only one division. 

2.5.2. Cdc20 activity is required for timely exit from meiosis II 

Ama1 and Cdc20 are both active during the exit from meiosis II in WT cells. Due to the 

change in the properties of the network regulating meiotic divisions in the absence of 

Ama1, Cdc20 terminates the oscillations after the exit from meiosis II. Thus, Cdc20 takes 

the role of Ama1. We asked whether the reverse is also true, and whether Ama1 can 

take the role of Cdc20 during meiosis. Firstly, we investigated a theoretical problem of 

Ama1 activity at the exit from meiosis I. In WT cells, anaphase I is triggered by the 

activity of Cdc20, which depends on the activity of Cdk1. Cdc20 and Cdk1 create an 

oscillator, which along with partial inhibition of Cdc20 in meiosis I allows the re-

accumulation of cyclins for the second division. We simulated a scenario, in which cells 

lack Cdc20 activity in meiosis I and instead accumulate high levels of Ama1, similar to 

the levels at the exit from meiosis II in WT cells. For simulated induction of Ama1, we 

used a combined model with Ama1T described with Equation 49, depicting additional 

background synthesis of the protein. In addition, we readjusted the parameters 

describing degradation of the inhibitor of Ama1 synthesis Inh, in order to prevent 

premature appearance of Ama1. Table 8 presents changed parameter values that 

substitute the parameters used in previous versions of the model. 

 

 

Table 8. Parameter values of the model with Ama1 and Cdc20 as terminators of oscillations.1 
Equation number Parameters and their values 

44 �0+4�< = 0.003, �0+4�A = 0.05, �0+4�_ = 0.05, �0+4�b = 0.02 

1Only changed parameters are presented. 
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Figure 28. Ama1 does not take a role of Cdc20 in the exit from meiosis I. Simulation presents 
concentration or activity of proteins in metaphase I-arrest in the absence of Cdc20 (kCdc20s1 = kCdc20s2 = 0). 
(A) Cells with WT expression of AMA1 (kAma1s1 = 2). (B-D) Cells with induced expression of AMA1 with 
meiosis II-like level (kAma1s2 = 0.15 at t = 7 hr) (B), 50% decrease (kAma1s2 = 0.075 at t = 7 hr) (C) and prophase 
I-like level (AMA1 expressed from consecutive promoter, cons) (kAma1s1 = 0, kAma1s2 = 0.06 at t = 4 hr) (D). 
Black arrowheads indicate change of the parameters. MI is metaphase I spindle. 
 

Cells depleted of Cdc20 arrest in metaphase I for long period (>6 hr in silico) 

(Figure 28A). Simulated induction of Ama1 around 7 hr leads to slow accumulation of 

the protein within next 2 hr (Figure 28B). At 9 hr, Ama1 activity slowly rises triggering 

degradation of its inhibitor Clb1. Degradation of Clb1 happens within next 30 min, 

leading to the full activation of highly synthesized Ama1 and degradation of its 

substrates, such as Cdc5 and Ndt80. Although cells degrade cyclins and disassemble 

meiotic spindle, they are unable to enter the second meiotic division with complete 

degradation of Ndt80 and stable activity of Ama1. Thus, cells exit irreversibly without 

entering meiosis II, which indicates the inability of Ama1 to take the role of Cdc20 in its 

absence. Even reduction of the levels of Ama1 leads to an inability to perform meiosis II 

(Figure 28C). Notwithstanding, prophase I-like levels of Ama1 are not able to trigger 

the exit from a metaphase I-arrest, possibly to due predominant inhibition by Clb1, 

which can only be overcame by strong accumulation of Ama1 (Figure 28D).  
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We verified the prediction of Ama1 inhibiting the entry into meiosis II in cells arrested 

in metaphase I by expression of CDC20 from the mitotic promoter HSL1 (PHSL1-CDC20). 

We expressed high levels of Ama1 protein by introducing an additional copy of AMA1 

under inducible GAL promoter (PEST-AMA1). This system takes advantage of the Gal4-

estrogen receptor fusion for the induction of a gene under the GAL promoter with 

estradiol (Okaz et al., 2012). We induced AMA1 at 7 hr. After induction, cells 

accumulate high level of Ama1 protein and degrade M-phase regulators within next 

3 hr (Figure 29). As predicted by the model, cells exit from the high Cdk1 state, but do 

not re-accumulate cyclins for the second division. Thus, in the absence of Cdc20, Ama1 

does not take its role in performing the exit from meiosis I and allowing the entry into 

the second division. Unlike Cdc20, Ama1 threatens the two-division meiosis and has to 

be inhibited robustly at meiosis I to allow the entry into meiosis II. 

 

 

 

 

 
Figure 29. Ama1 activity does not take the role of Cdc20 in the exit from meiosis I. Cells were arrested 
in metaphase I by depletion of Cdc20 from meiosis by expressing PHSL1-CDC20. 10 µl of estradiol (EST) 
was added at t = 7 hr to the cultures expressing WT AMA1 (Z34661) or WT AMA1 with an additional 
inducible copy PEST-AMA1 (Z34662). (A) Immunoblot detections of proteins. Black arrowhead indicates 
addition of EST. Cc means proliferating cells. (B) Quantification of meiotic progression by IF detection of 
nuclear division (2+4N is at least one division, 4N is two divisions), meiosis I (Meio I) and -II (Meio II) 
spindles, and nuclear Pds1-myc18. 
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Next, we tested in silico the possibility of Ama1 taking the role of Cdc20 at the exit from 

meiosis II. For this purpose, we simulated the inactivation of Cdc20 during metaphase 

II. We did not induce the expression of Ama1, but allowed WT accumulation of the 

protein using Equation 45 for Ama1T. We inactivated Cdc20 at 7 hr during the time 

when cells enter metaphase II. Cells with active Cdc20 at meiosis II exhibit lower levels 

of Clb1 and Clb4 than at metaphase I (Figure 30A). They degrade cyclins and Ndt80 

abruptly, disassembling metaphase II spindles within <20 min. However, cells with 

inactivated Cdc20 at meiosis II accumulate higher levels of cyclins and maintain high 

Ndt80 and Cdc5 levels for ~3 hr (Figure 30B). Strong accumulation of cyclins in 

metaphase II indicates the inability of Ama1 to limit the levels of its own inhibitors, 

unlike Cdc20. Inactivation of Cdc20 leads to a delay in Ama1 accumulation and  
 

 

 
Figure 30. Cells exit from meiosis II with a delay in the absence of Cdc20 activity during meiosis II. 
Simulations present concentration or activity of proteins in the presence (Wild-type) (A) or absence 
(Cdc20 -) of activity of Cdc20 in meiosis II (kCdc20a1 = 0 at t = 7 hr) (B-C). (A-B) Cells with WT inhibition of 
Ama1 activity mediated by Clb1 and AI. (C) Cells without Clb1- and AI-dependent inhibition of Ama1 
(Clb1/AI-) (kAma1i2 = kAIs1 = 0). Black arrowheads indicate change of the parameters. MI and MII are 
metaphase I and -II spindles indicating the consecutive divisions. 
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a significant delay in its activity due to the persistence of the Ama1 inhibitors, namely 

Clb1 and AI. Metaphase II spindles are stabilized for ~2 hr. Simulations of cells without 

the Clb1- and AI-dependent inhibition of Ama1 shows that this inhibition is necessary 

for keeping proper time of metaphase II-arrest. In cells with inactivated Cdc20 in 

meiosis II, the metaphase II is shortened from ~3 hr to ~45 min (Figure 30C).  

Cells evolved a mechanism that inhibits the premature activation of APC/C in order to 

have sufficient time for proper segregation of chromosomes. The SAC usually inhibits 

Cdc20 activity during metaphase, thus extending the time necessary to attach the 

chromosomes to the spindle poles. In the absence of Cdc20, additional machinery is 

necessary to inhibit premature exit from meiosis II. Our simulations suggest that this 

machinery is based on Clb1- and AI-dependent inhibition of Ama1. Although in the 

absence of Cdc20 cells lacking this inhibition break from the metaphase II-arrest faster 

than cells with inhibited Ama1, they are still unable to exit meiosis on time.  

Simulations of the model show that Cdc20 activity is important for the timely exit from 

meiosis II and Ama1 is not able to perform the same role as Cdc20 in its absence. We 

tested this prediction biologically. We developed a new method that allows to 

inactivate Cdc20 in meiosis II without affecting the exit from meiosis I. We made 

advantage of a CDC20 allele sensitive to high temperature, cdc20-3, for inactivation of 

APC/CCdc20 (Shirayama et al., 1998). We modified the CDC20-mAR system by mutating 

PCUP1-CDC20 to create cdc20-3-mAR. This approach allows to inactivate Cdc20 in highly 

synchronized meiotic culture precisely at metaphase II. We used as a control the 

unmodified CDC20-mAR system with active Cdc20. We arrested CDC20-mAR and 

cdc20-3-mAR cells with WT AMA1 in metaphase I and released them from the arrest at 

8 hr. At 50 min, we inactivated Cdc20 in cdc20-3-mAR cells by shifting the temperature 

from 25 °C to 36 °C. At this time, the meiosis I-specific protein Spo13 is degraded in 

both strains, indicating the completion of the first division (Figure 31A). Although 

cdc20-3-mAR cells enter meiosis II at the same time as the control, as indicated from 

accumulation of meiosis II-specific cyclin Clb3, they accumulate higher levels of cyclins 

and Pds1-myc18. In contrast to the control strain that activates Ama1 at ~100 min and 

degrades Ndt80 and Cdc5, the strain with inactive Cdc20 maintains high levels of these 

proteins for longer period of time. Additionally, as Clb3 and Clb5 are degraded around 

140 min, Clb1 and Clb4 exhibit high levels until the end of the time course. These results 

indicate a long delay in the exit from meiosis II in the absence of Cdc20 activity. 

Similarly as predicted by the model, cells arrest in metaphase II for ~1 hr with high 
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Figure 31. Cells do not exit from meiosis II on time in the absence of Cdc20 in meiosis II. (Figure 
legend on the next page 71) 

A 

B 

C D 



 Chapter 2. Results  
 

71 

 

accumulation of cyclins and Pds1-myc18 (Figure 31B). Individual cells contain visibly 

higher intensity of Pds1-myc18 nuclear signal in meiosis II that the control cells at the 

same time (60-120 min) (Figure 31C). In addition to strong accumulation of Clb1, Clb4 

and Pds1-myc18 in meiosis II, cells re-accumulate Clb5, which is not observed in the 

control strain. This indicates a basal activity of Cdc20 in wild-type cells during 

metaphase II that does not allow re-accumulation of the S-phase cyclin in meiosis II. 

Although the exit is visibly delayed, after 24 hr in SPM, the majority of cells complete 

two meiotic divisions (Figure 31D). Thus, the arrest in metaphase II is not stable in the 

presence of active Ama1. Eventually, in the absence of Cdc20 cells break out from the 

arrest, but with a significant time delay. We conclude that Cdc20 is required for timely 

degradation of cyclins and the exit from meiosis II. In its absence, Ama1 is unable to 

perform the same role as Cdc20. 

Due to the instability of the metaphase II-arrest in the absence of Cdc20, we asked 

whether for stabilization in metaphase II-arrest cells have to be depleted of both Cdc20 

and Ama1. We simulated a scenario, in which we inhibited Cdc20 activity in metaphase 

II in the absence of Ama1. In the absence of both APC/C co-activators, cells are unable 

to degrade cyclins, disassembly meiotic spindles and exit from meiosis II (Figure 32). 

They maintain high level of cyclins and metaphase II spindles due to inactivation of 

Cdc20 and stabilization of Ndt80, which continues to synthesize Clb1 and Clb4. 

To verify the stability of metaphase II-arrest in the absence of the activities of both 

Cdc20 and Ama1 in meiosis II, we used the cdc20-3-mAR system. We arrested ama1∆ 

PDMC1-AMA1 cells in metaphase I and released them from the arrest at 8 hr in SPM. 

50 min after the release, we shifted the temperature to 36 °C, which led to inactivation 

of Cdc20 in the cdc20-3-mAR strain. The control CDC20-mAR strain and the cdc20-3-

mAR strain enter meiosis II at the same time with accumulation of Clb3 at 60 min 

 

 

 
 

Figure 31. Cells do not exit from meiosis II on time in the absence of Cdc20 in meiosis II. Cells from 
CDC20-mAR culture (Z21260) and cdc20-3-mAR culture (Z31711) in the presence of WT AMA1 were 
arrested in metaphase I and released from the arrest at t = 8 hr by the addition of 10 µM of CuSO4 at 
25 °C. At t = 50 min, temperature was shifted to 36 °C to inactivate Cdc20. (A) Immunoblot detection of 
proteins. CC means proliferating cells. Black arrowheads mean addition of CuSO4; white arrowheads 
mean temperature shifts. (B) Quantification of meiotic progression by IF detection of nuclear division 
(2N is one division, 4N is two divisions), metaphase I (Meta I), anaphase I (Ana I) or meiosis II (Meta II + 
Ana II) spindles and nuclear Pds1-myc18 signal. (C) Representative IF pictures of cells at the given time 
after the release from metaphase I-arrest (t = 0). (D) Bar plots indicating percentage of cells with one 
nucleus (<2N), two nuclei (2N) and more than two nuclei (>2N) 24 hr in SPM. 
 



 Chapter 2. Results  
 

72 

 

(Figure 33A) and formation of metaphase II spindles at the same time (Figure 33B-C). 

Cells with active Cdc20 complete both meiotic divisions within 2 hr after the release 

from metaphase I-arrest. In contrast, cells with inhibited Cdc20 stabilize Cdc20 

substrates. At 120 min, ~60% of cells maintain metaphase II spindles in comparison to 

control cells, which disassemble meiotic spindles at this time. After 24 hr in SPM, ~ 70% 

of cells remain bi-nucleated in contrast to cells with active Cdc20 (<5%) (Figure 33D). 

Based on the morphology of the spindles and the persistence of metaphase II proteins, 

we conclude that cells with inhibited activities of both Cdc20 and Ama1, but not Cdh1, 

arrest in metaphase II. Thus, APC/C activity is required for cells to exit from the second 

meiotic division. 

 

 
 

Figure 32. Cells arrest in metaphase II in the absence of Cdc20 and Ama1 in meiosis II. Simulation 
presents concentration or activity of Clb1, Clb4, Cdc20 and Ndt80T in the absence of Ama1 
(Ama1T = Ama1AT = 0, kAma1s1 = 0). Cdc20 was inactivated at metaphase II (kCdc20a1 = 0 at t = 7 hr), what is 
indicated by black arrowhead. MI and MII are metaphase I and -II spindles indicating the consecutive 
divisions. 
 
 
 
 

 
 

Figure 33. Cells arrest in metaphase II in the absence of Ama1 and Cdc20 activity in meiosis II. Cells 
from CDC20-mAR culture (Z27968) and cdc20-3-mAR culture (Z31712) in ama1∆ PDMC1-AMA1 background 
were arrested in metaphase I and released from the arrest at t = 8 hr by the addition of 10 µM of CuSO4 at 
25 °C. At t = 50 min, temperature was shifted to 36 °C to inactivate Cdc20. (A) Immunoblot detection of 
proteins. CC means proliferating cells. Black arrowheads mean addition of CuSO4; white arrowheads 
mean temperature shift. (B) Quantification of meiotic progression by IF detection of nuclear division (2N 
is one division, 4N is two divisions), metaphase I (Meta I), anaphase I (Ana I) or meiosis II (Meta II + 
Ana II) spindles and nuclear Pds1-myc18 signal. (C) Representative IF pictures of cells at the given time 
after the release from metaphase I-arrest (t = 0). (D) Bar plots indicating percentage of cells with one 
nucleus (<2N), two nuclei (2N) and more than two nuclei (>2N) 24 hr in SPM. 
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Figure 33. Cells arrest in metaphase II in the absence of Ama1 and Cdc20 activity in meiosis II. (Figure 
legend on the previous page 72) 
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2.5.3. Cells do not enter a third division after inactivation of Cdc20 and Ama1 at the 
exit from meiosis II 

We showed that the activity of Cdc20 is required for the timely exit from meiosis II. We 

speculated that Cdc20 takes the role of the terminator of meiotic oscillations in the 

absence of Ama1. To test the hypothesis of Cdc20 terminating the oscillations, we 

performed computational and biological experiments that allowed us to shed light on 

this process. We used the advantage of mathematical modeling and cdc20-3-mAR 

system allowing manipulation of Cdc20 activity after the exit from meiosis II to test 

whether inactivation of Cdc20 may lead to re-accumulation of cyclins for a third 

division. 

Cells arrested at metaphase II accumulate high levels of cyclins and Pds1-myc18. In 

addition, they exhibit elevated levels of Ndt80 and Cdc5. We speculated that high levels 

of meiotic regulators in meiosis II that mimic or exceed the levels at meiosis I may lead 

to the possibility of a third division after restoration of Cdc20 activity. Firstly, we 

performed simulations, during which we arrested cells in metaphase II for ~1 hr by 

inactivating Cdc20 in the absence of Ama1, and then reactivated Cdc20 for the release 

from the metaphase II-arrest. This reactivation causes immediate degradation of cyclins 

and spindle disassembly within 30 min (Figure 34A). Unphysiological and long 

metaphase II-arrest and excessive amount of cyclins do not cause defects in the exit 

from meiosis and completion of two divisions even in the absence of Ama1. Restoration 
 

 

 
Figure 34. Model predicts the entry meiosis III after complete inactivation of APC/C. Simulations 
presents concentration or activity of Clb1, Clb4, Cdc20 and Ndt80T in the absence of Ama1 
(Ama1T = Ama1AT = 0, kAma1s1 = 0). Cdc20 was inactivated at metaphase II (kCdc20a1 = 0 at t = 7 hr). (A) Cdc20 
reactivated after 1 hr (kCdc20a1 = 2 at t = 8 hr). Cdc20 is active after the exit from meiosis II causing 
irreversible exit. (B) Cdc20 is reactivated after 1 hr in the arrest (kCdc20a1 = 2 at t = 8.15 hr) and inactivated 
after 10 hr (kCdc20a1 = 0 at t = 10.15 hr) causing the entry into meiosis III. Black arrowheads indicate change 
of the parameters. MI, MII and MIII are metaphase I, -II and -III spindles indicating the consecutive 
divisions. 
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of Cdc20 activity does not lead to waves of Cdk1 activity repeated periodically after the 

exit from meiosis II. Instead, cells exit from meiosis similarly as in the presence of WT 

Cdc20. These results imply that manipulation of Cdc20 activity does not change its 

general behavior and function. Cells exit from meiosis II with termination of meiotic 

oscillations even after recreation of the levels of metaphase I proteins during 

metaphase II. Thus, we tested whether inactivation of Cdc20 after the exit from 

meiosis II may overcome the termination machinery of the oscillations. Indeed, our 

simulations confirmed that cells lacking Cdc20 activity after the exit from meiosis II re-

accumulate cyclins for the third time and create metaphase III-like spindles 

(Figure 34B). This is achieved due to persistent Ndt80 that counteracts degradation of 

cyclins and in their absence boosts the synthesis of Clb1 and Clb4.  

We next tested experimentally whether cells with inactivated Cdc20 after the exit from 

meiosis II re-accumulate cyclins for a third meiotic division. In order to prevent any 

APC/C-dependent degradation, we used ama1∆ PDMC1-AMA1 and PHSL1-CDH1 genetic 

background to inactivate both Ama1 and Cdh1, respectively. Using the cdc20-3-mAR 

system, we arrested cells in metaphase I and released them from the arrest at 8 hr. To 

accumulate high levels of metaphase proteins, Cdc20 was inactivated by the 

temperature shift to 36 °C at 50 min. To release cells from the metaphase II-arrest, the 

temperature was shifted back to 25 °C 70 min later. We observed that cells with 

reactivated Cdc20 degrade cyclins and disassembly meiotic spindles within 40 min 

(Figure 35). We allowed the control cells ("Cdc20 active") to continue with active Cdc20 

after the release from metaphase II-arrest. In order to inactivate Cdc20 in the 

experimental strain ("Cdc20 inactive"), we shifted the temperature of the culture at 

240 min to 36 °C. We did not observe additional strong accumulation of M-phase 

proteins for a third time. Thus, we conclude that cells do not attempt to enter a third 

division. We confirmed these results with experiments performed with another marker 

of meiotic progression, Clb1-myc9, to address the Ndt80-dependent accumulation of 

component of meiotic oscillator in IF staining. Similarly as in cells with Pds1-myc18, we 

did not observe a third wave of accumulation of Clb1-myc9 in tetra-nucleated cells 

(data not shown). We conclude that inactivation of Cdc20 after the exit from meiosis II 

does not cause re-accumulation of its substrates and reassembly of metaphase spindle. 

Consequently, additional, APC/C-independent mechanisms exist that are required for 

terminating meiotic oscillations by maintaining low Cdk1 activity and preventing any 

additional division after completion of meiosis II. 
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Figure 35. Cells do not enter meiosis III in the absence of Cdc20 and Ama1 activity after the exit from 
meiosis II. (Figure legend on the next page 77) 
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A nuclear protein has to be transported to the nucleus after its synthesis in the 

cytoplasm to perform its function. We speculated that inability of a cell to perform the  

nuclear import may as a consequence limit the ability to synthesize M-phase proteins 

after the exit from meiosis II. One possibility of limiting the nuclear import may be due 

to the process of formation of prospore membrane that engulfs the haploid nuclei, 

resulting in generation of spores. To prevent possible restriction of protein synthesis by 

the mechanical barrier, we deleted one of a gene required for the formation of the 

prospore membrane, namely MPC70 (Bajgier et al., 2001). As previously, we arrested 

cells in metaphase I and released them from the arrest at 8 hr. We let them progress 

synchronously to meiosis II and arrested them for 1 hr in metaphase II to accumulate 

metaphase I-like levels of meiotic regulators. We released cells from metaphase II-arrest 

in permissive temperature and after complete degradation of cyclins we inactivated 

Cdc20 once again. We observed that cells with mpc70∆ progress through meiotic 

divisions with similar kinetics as cells with WT MPC70 (Figure 36). Cells from both 

strains exit meiosis II at the same time with degradation of cyclins and disassembly of 

meiotic spindles. Although we suspected that inability to observe the third wave of 

accumulation of cyclins may be due to the prospore membrane formation, we could not 

verify these assumption. Similarly as in cells with active Mpc70 protein, mpc70∆ cells 

keep low levels of cyclins after complete inactivation of APC/C at the exit from 

meiosis II. Thus, we conclude that the formation of the prospore membrane does not 

prevent re-accumulation of M-phase proteins in the absence of APC/C.  Nonetheless, it 

is important to note that the system of metaphase II-arrest/release used in this work 

requires strong manipulation of Cdc20 activity and therefore may affect the general 

conclusion. 

 

 

 
 

Figure 35. Cells do not enter meiosis III in the absence of Cdc20 and Ama1 activity after the exit from 
meiosis II. Cells in ama1∆ PDMC1-AMA1 PHSL1-CDH1 background in cdc20-3-mAR system (Z33491) were 
arrested in metaphase I and released from the arrest at t = 8 hr by the addition of 10 µM of CuSO4 at 
25 °C. At t = 50 min, temperature was shifted to 36 °C to inactivate Cdc20. At t = 120 min, temperature 
was shifted back to 25 °C to reactivate Cdc20. The control strain ("Cdc20 active") was incubated at 25 °C 
until the completion of the experiment, while the experimental strain ("Cdc20 inactive") was shifted to 
36 °C at t = 240 min for inactivation of Cdc20 after the exit from meiosis II. (A) Immunoblot detection of 
proteins. CC means proliferating cells. Black arrowheads mean addition of CuSO4; white arrowheads 
mean temperature shifts. (B) Quantification of meiotic progression by IF detection of nuclear division (2N 
is one division, 4N is two divisions), metaphase I (Meta I), anaphase I (Ana I) or meiosis II (Meta II + 
Ana II) spindles and nuclear Pds1-myc18 signal. (C) Representative IF pictures of cells at the given time 
after the release from metaphase I-arrest (t = 0). 
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Figure 36. Cells do not enter meiosis III in the absence of prospore membrane and APC/C activity. 
Cells in ama1∆ PDMC1-AMA1 PHSL1-CDH1 background in cdc20-3-mAR system containing WT MPC70 
(Z34121) or mpc70∆ (Z34122) were arrested in metaphase I and released from the arrest at t = 8 hr by the 
addition of 10 µM of CuSO4 at 25 °C. At t = 50 min, temperature was shifted to 36 °C to inactivate Cdc20. 
At t = 120 min, temperature was shifted back to 25 °C to reactivate Cdc20. To inactivate Cdc20 after the 
exit from meiosis II, temperature was shifted to 36 °C at t = 240 min. (A) Immunoblot detection of 
proteins. CC means proliferating cells. Black arrowheads mean addition of CuSO4; white arrowheads 
mean temperature shifts. (B) Quantification of meiotic progression by IF detection of nuclear division (2N 
is one division, 4N is two divisions), metaphase I (Meta I), anaphase I (Ana I) or meiosis II (Meta II + 
Ana II) spindles and nuclear Pds1-myc18 signal. 
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2.6. Role of phosphatases in termination of meiotic oscillations 

Activities of kinases, such as Cdk1 and Cdc5, are driving both mitotic and meiotic 

divisions. In meiosis, kinases are required for proper progression though two divisions, 

being important for spindle formation, APC/C activation or general regulation of 

Ndt80-dependent synthesis. As the events of synthesis of cyclins, and thus activity of 

Cdk1, are counteracted by Ama1- and Cdc20-dependent degradation, the activities of 

kinases are counterbalanced by the activities of phosphatases. Therefore, we tested 

whether some of the well-known cell cycle phosphatases may contribute to the 

termination of meiotic oscillations together with APC/C. 

2.6.1. Phosphatases might inhibit the synthesis of proteins after the exit from meiosis 
II  

Ndt80 activity strictly depends on the activities of three kinases: Cdk1, Ime2 and Cdc5. 

Both Cdk1 and Ime2 are required for inhibition of the repressor of Ndt80 transcription, 

namely Sum1. Cdc5 and Ime2 activate Ndt80 through phosphorylation (Schindler and 

Winter, 2006; Sopko et al., 2002). Therefore, dephosphorylation counteracting Ndt80 

phosphorylation may lead to inactivation of Ndt80 and, as a result, decrease in 

synthesis of other M-phase regulators. Inactivation of such phosphatases may create yet 

another situation of a gain of function of a protein that usually is not involved in 

a particular process, such as termination of the oscillations. Here, we studied whether 

a hypothetical phosphatase activated at the exit from meiosis II may be important for 

the termination of meiotic oscillations along with Cdc20. Firstly, we simulated a model, 

in which a component of the termination machinery, called a protein phosphatase PP, 

inhibited the Ndt80-dependent synthesis at the exit from meiosis II. For simplicity, we 

assumed that the activity of PP is inhibited by a meiosis I-specific inhibitor (initial value 

of PP was set to 0) (Equation 50). 
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We assumed direct consequences of the activity of the phosphatase on Ndt80-

dependent synthesis (Figure 37A). Thus, we modeled a PP-dependent inhibition of 

Ndt80 activation: 
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Table 9. Parameter values of the model with a possible phosphatase.1 
Equation number Parameters and their values 

50 @Jff = 0.001  

51 �ff < = 1, �ff�< = 0.8, @f0 = 0.1ob, @ff = 0.05, $$" = 10   

1Only newly introduced parameters are presented. 

 

With inactivation of Ndt80 after the exit from meiosis II, the levels of the transcription 

factor and its substrates decrease (Figure 37B-C). The activity of PP can be replaced by 

the activity of either Ama1 or Cdc20, leading to the exit from meiosis II and limitation 

of the number of divisions. In cells with inactive Cdc20 and Ama1 in meiosis II exit, the 

phosphatase, or other machinery inhibiting the Ndt80-dependent synthesis, is 

important to keep the low levels of cyclins and prevent re-entry into the high Cdk1 state 

of a third meiotic division (Figure 37C).  

 

 
 

Figure 37. A meiosis II-specific phosphatase may be involved in termination of meiotic oscillations. 
(A) Simplified wiring diagram with PP module depicted in red. For simplification only interactions 
between Ndt80 and PP are presented. ↓ is positive interaction; ┴ is negative interaction. (B-C) Simulations 
depicting concentration or activity of Clb1, Cdc20, Ndt80T and PP. Simulations were performed in the 
absence of Ama1 (Ama1T = Ama1AT = 0, kAma1s1 = 0). (B) Simulation in the presence of active Cdc20. 
(C) Simulation of cells with inhibited Cdc20 activity after the exit from meiosis II (kCdc20a1 = 0 at t = 7 hr; 
kCdc20a1 = 20 at t = 8.15 hr; kCdc20a1 = 0 at t = 10.15 hr). Black arrowheads indicate change of the parameters. 
MI and MII are metaphase I and -II spindles indicating the consecutive divisions. 
 

2.6.2. PP2ACdc55 and PP1Gip1 modify proteins at the exit from meiosis II 

From previous studies, we conclude that Cdc14 activity is not important for the exit 

from meiosis II (Argüello-Miranda et al., 2017). Cells degrade M-phase regulators, 

disassemble meiotic spindles and enter a low Cdk1 state in the absence of this 

phosphatase. Thus, we studied the importance of two other phosphatases known to be 

involved in the exit from mitosis: PP2ACdc55 and PP1. Firstly, we tested the effect of 

PP2ACdc55 on the progression through meiotic exit. Cdc55 is known to be required for 

proper regulation of mitosis and meiosis I (Queralt et al., 2006; Kerr et al., 2011). Thus,  
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Figure 38. Early inhibition of Cdc55 activity affects the exit from meiosis II. A conventional meiotic 
time course was performed using anchor-away system with Cdc55 tagged with FRB in control cells 
RPL13A (Z34012) and in experimental strain RPL13A-FKBP12 (Z34013). For inactivation of Cdc55, 
10 µg/ml of rapamycin (Rapa) was added at t = 4 hr. (A) Immunoblot detection of proteins. Black 
arrowhead means addition of rapamycin. Cc means proliferating cells. (B) Quantification of meiotic 
progression by IF detection of nuclear division (2+4N is at least one division, 4N is two divisions), 
meiosis I (Meio I) and -II (Meio II) spindles, and nuclear Pds1-myc18. 
 

we created a version of Cdc55, which allowed us to inhibit the nuclear activity of the 

phosphatase at a precise time without interfering with its function in earlier stages. We 

used an anchor-away (AA) system, in which a nuclear protein of interest is inactivated 

through its forced export to the cytoplasm (Haruki et al., 2008). The studied protein is 

tagged with a FRB domain and binds to an anchor, which is a ribosome subunit Rpl13a 

tagged with FKBP12, in the presence of rapamycin. The complex of the tagged protein 

and Rpl13a-FKBP12 moves to the cytoplasm. Therefore, the protein fails to exert its 

nuclear function. The system is implemented with fpr1∆ and tor1-1 mutation, interfering 

with the binding of rapamycin to Tor1 and its rapamycin-dependent inhibition. We 
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tagged with FRB the C-terminus of Cdc55 and performed a conventional meiotic time 

course to test the effect on the phosphatase on the progression through meiotic 

divisions. Upon inactivation of Cdc55 at 4 hr, cells from the experimental strain 

(RPL13A-FKBP12) accumulate M-phase proteins at the same time as the control strain 

(RPL13A), indicating proper entry into the first division (Figure 38A). Cells with 

inhibited Cdc55 fail to form meiotic spindle (Figure 38B), which is in agreement with 

previous works (Bizzari and Marston, 2011; Kerr et al., 2011). The meiotic oscillator is 

not disrupted and cells degrade meiosis I-specific protein Dbf4 and accumulate meiosis 

II-specific Clb3 at the same time as the control strain. Interestingly, a visible delay is 

observed at the exit from meiosis II. Upon inactivation of Cdc55, cells accumulate Ama1 

later, resulting in a delay in degradation of its substrates. These results indicate that 

Cdc55 is involved in regulation of the exit from meiosis II. Later experiments with 

inhibition of Cdc55 activity precisely in meiosis II indicated that this regulation strictly 

depends on the activities of meiosis I-specific proteins, as cells with Cdc55 absent in 

meiosis II do not exhibit any visible differences in the activity of APC/C and the exit 

from the second division (data not shown).  

Next, we tested another phosphatase known to play a role during mitotic exit, namely 

PP1. We used a mutant of the meiosis-specific regulatory subunit of PP1, Gip1, which 

has a defect in sporulation (Tachikawa et al., 2001). We used the CDC20-mAR system for 

better resolution and observed that in the presence of active Ama1 in meiosis II, gip1∆ 

cells fail to dephosphorylate some of the Ime2 substrates, such as Sum1 and Cdh1 

(Figure 39A). Notwithstanding, cells still degrade Cdc20 and Ama1 substrates and 

divide the second time, thus performing undisrupted exit from meiosis II (Figure 39B). 

We confirmed this result by using a temperature-sensitive mutant of a catalytic subunit 

of PP1, Glc7, inactivated precisely in meiosis II (data not shown). These results 

prompted us to speculate that PP1 may be involved in the exit from meiosis by 

regulation of Ime2 substrates and thus possibly Ndt80-dependent synthesis of M-phase 

regulators. 
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Figure 39. Deletion of GIP1 causes defects in dephosphorylation of some of the Ime2 substrates, but 

not the exit from meiosis II. CDC20-mAR system was used. Cells expressing GIP1 (Z32710) or gip1∆ 
(Z32711) were arrested in metaphase I and released from the arrest at t = 8 hr by the addition of 10 µM of 
CuSO4. (A) Immunoblot detection of proteins. Cc means proliferating cells. (B) Quantification of meiotic 
progression by IF detection of nuclear division (2N is one division, 4N is two divisions), spindles and 
nuclear Pds1-myc18. 
 

 
2.6.3. Inhibition of PP1Gip1 or PP2ACdc55 in the absence of Ama1 activity does not 
cause defects in the exit from meiosis 

We were interested whether the phosphatases of interest are involved in regulation of 

the Cdc20-dependent exit from meiosis II in the absence of Ama1 activity. This would 

shed light on their involvement in the regulation of the termination machinery of 

meiotic oscillations independent of Ama1. Thus, we inhibited the activities of PP2A and 

PP1 in the absence of Ama1 activity in meiosis II. Firstly, we tested the effect of 

PP2ACdc55. We carried out an experiment in a system that allowed us to inhibit Cdc55 

activity precisely in meiosis II. We did not use the CDC20-mAR system due to 

a disruption in Cdc14 release in meiosis I in cells with tagged Cdc55 during long 

metaphase I-arrest (data not shown). Thus, we adopted the Ndt80-arrest/release system 

(Carlie and Amon, 2008; Matos et al., 2008), in which cells arrest reversibly in prophase I 

due to deletion of NDT80. The release from the arrest is triggered by the expression of 
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NDT80 from an estradiol-inducible promoter (Benjamin et al., 2003; Picard, 1999). We 

arrested cells of the ama1∆ PDMC1-AMA1 background and released them from the arrest 

at 7 hr in SPM by addition of estradiol. We added rapamycin at metaphase I-to-

anaphase I transition to inhibit the activity of Cdc55 in meiosis II. We noticed that the 

strain lacking Cdc55 in the nucleus progresses through meiotic divisions with similar 

kinetics as the control strain, degrading Dbf4 ~120 min and accumulating Clb3 at 

~150 min (Figure 40). Cells from both strains degrade cyclins in meiosis II at similar 

time and disassemble meiotic spindles, resulting in completion of meiosis and 

termination of meiotic oscillations.  

 

 
 

 
 
 
Figure 40. Inhibition of Cdc55 activity in meiosis II does not affect the exit from meiosis II in the 
absence of Ama1. Ndt80 arrest/release system was used  for synchronizing meiotic culture. Anchor-
away system was used in ama1∆ PDMC1-AMA1 background in RPL13A strain (Z34712) and RPL13A-
FKBP12 strain (Z34713). Cells were arrested in prophase I and released from the arrest at t = 7 hr by 
addition of 10 µM of estradiol (EST). At t = 100 min, Cdc55 activity was inhibited by addition of 10 µg/ml 
of rapamycin (Rapa). (A) Immunoblot detection of proteins. Black arrowhead means addition of 
rapamycin. Cc means proliferating cells. (B) Quantification of meiotic progression by IF detection of 
nuclear division (2N is one division, 4N is two divisions), spindles and nuclear Pds1-myc18. 
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We next tested whether inactivation of PP1Gip1 has an effect on the activity of Ime2 

kinase, and possibly Ndt80-dependent synthesis, in the absence of Ama1. We used the 

CDC20-mAR system in ama1∆ PDMC1-AMA1 background. We observed that gip1∆ cells 

progress through meiotic divisions with similar kinetics as the control strain containing 

GIP1 (Figure 41). Cells degrade cyclins at the similar time at ~100 min and disassemble 

meiotic spindles, completing two meiotic divisions. Notice that cells degrade cyclins 

completely after the exit from meiosis II and do not attempt their re-accumulation. 

Additionally, gip1∆ cells in the absence of both Ama1 and Cdc20 in the cdc20-3-mAR 

system keep low levels of cyclins after the exit from meiosis II (data not shown). Taken 

together, we conclude that neither PP1Gip1 nor PP2ACdc55 are important for the 

termination of meiotic oscillations after the exit from meiosis II in the presence or 

absence of APC/C co-activators. 

 

 

 
  

 

Figure 41. Deletion of GIP1 does not affect the exit from meiosis II in the absence of Ama1. CDC20-
mAR system was used. ama1∆ PDMC1-AMA1 cells expressing GIP1 (Z24253) or gip1∆ (Z34254) were 
arrested in metaphase I and released from the arrest at t = 8 hr by the addition of 10 µM of CuSO4. 
(A) Immunoblot detection of proteins. Cc means proliferating cells. (B) Quantification of meiotic 
progression by IF detection of nuclear division (2N is one division, 4N is two divisions), spindles and 
nuclear Pds1-myc18. 
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3. Discussion 
 
 
3.1. Meiosis consists of two waves of Cdk1-APC/C activity 

During meiosis, cells undergo exactly two rounds of chromosome segregation after only 

one round of DNA replication, resulting in a reduction of the DNA content by half. The 

two meiotic divisions are followed by a differentiation program, leading to the 

formation of gametes, such as eggs or sperms. In yeast, four haploid nuclei are engulfed 

in spores, which allow cells to survive unfavorable environmental conditions (Coluccio 

et al., 2008). Progression through meiotic divisions is strictly regulated by the periodic 

activation and inactivation of Cdk1 and APC/C. Unlike in mitosis, during which cells 

enter a low Cdk1 state to prepare for the next cycle, in meiosis cells reactivate Cdk1 

abruptly to enter the second division (Marston and Amon, 2005). Sequential activation 

of Cdk1 is required for the proper segregation of the genetic material. The exit from 

meiosis is followed by the sporulation program during which low Cdk1 activity is 

maintained. Several questions can be asked to unravel how exactly cells regulate this 

stepwise activation of Cdk1 and the precise exit from meiosis after the second division. 

 (i) How is the mitotic engine that consists of waves of Cdk1 and APC/CCdc20 activities 

modified to perform a two-division meiosis? Meiosis can be viewed as a modified 

version of mitosis with regard to the regulatory protein network that governs the 

divisions. Cells require a specific machinery that allows them to modify the mitotic 

Cdk1-APC/CCdc20 oscillator to segregate chromosomes in two rounds. 

(ii) How do meiotic cells regulate the time of the exit from meiosis? A meiosis II-specific 

machinery must ensure the completion of two divisions and the immediate exit 

precisely after meiosis II, preventing any additional meiotic division to occur. In 

vertebrates, defects in the regulation of the exit result in a third wave of Cdk1 

activity and formation of additional spindles, leading to defective gametes (Kubiak, 

1989; Dumollard et al., 2011; Pfeuty et al., 2012). 

(iii) How robust is the mechanism that prevents additional divisions? Regulation of the 

exit from meiosis after meiosis II must not only be precise but also robust to prevent 

possible re-entry into the third high Cdk1 state after the completion of meiosis II. 

The exit from meiosis II may be controlled by several different mechanisms that are 

coupled to meiosis II and create a redundant system for the meiotic exit. 
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3.2. Mathematical modeling allows to study the multi-component 
network driving meiotic divisions 

The meiotic machinery that orchestrates the events of cell division is based on the Cdk1-

APC/CCdc20 oscillator, well conserved among species, and is complemented by a variety 

of meiotic regulators. Together, these molecules form a complex protein regulatory 

network that directs the nuclear divisions. Analyzing the regulation of biological 

processes, such as meiosis, often requires a mathematical description that takes into 

account the complexity and the dynamics of the regulatory systems. 

Advantages of mathematical modeling 

Due to the complexity of dynamical biological systems resulting from a high number of 

components of the network and their nonlinear responses, it is challenging to study the 

properties of the system and the behavior of a single cell or the whole population. 

Mathematical modeling simplifies the biological description of various types of 

interactions between multiple components of the regulatory network. This approach 

allows to capture the critical components of the system and helps to understand how it 

responds to stimuli, perturbations and changes in the regulatory network in mutant 

cells. Modeling is often used to predict the implications of modifications of the 

biological system, thus it has a predictive value. In this work, we used a mathematical 

modeling approach in combination with biological experiments to study the control of 

the two meiotic divisions in budding yeast. 

Unraveling the details of the meiotic regulation in budding yeast is hampered by the 

fact that the two divisions are very close to each other and the synchrony of meiotic 

cultures is poor. Describing two divisions using mathematical language allows to 

perform synchronous in silico experiments that do not require manipulation of the 

network in order to achieve high resolution between particular stages of meiosis. Thus, 

it is possible to study in more details the properties of transitions in meiosis without 

interfering with the wild-type properties of the system. Due to the two-division nature 

of meiosis and the complexity of its regulatory network, no mathematical model 

describing the two divisions has been developed to date. Tyson and Novak proposed 

a generic picture of the regulation of meiosis based on the knowledge from mitosis 

(Tyson and Novak, 2008), which was later adopted as a model to study the regulation of 

Clb1 during meiosis (Tibbles, 2013). Our model presented here describes in more details 

the control of progression through meiosis based on the Cdk1-APC/CCdc20 oscillator 

with special emphasis on the regulation of the termination of these oscillations precisely 

after the second division.  



 Chapter 3. Discussion  
 

89 

 

Simplification of the meiotic network with mathematical modeling 

To understand the crucial components of the regulatory network, mathematical models 

reduce its complexity. Models containing detailed information about the regulatory 

network might create difficulties in interpretation of the result of the computation and 

of the dependences of the particular behavior of the system on a studied mechanism. It 

is challenging to develop a simplified model of a biological dynamical process that 

describes the process without impairing the network significantly. The difficulties lie in 

choosing the most relevant components of the model influencing the process and 

connecting the assumed simplifications to observed biological phenomena. Although 

approximations have to be made during model development, the simplified model can 

be still constructed as quantitative rather than only conceptual, giving a detailed 

numerical solutions comparable to the biological measures. 

We simplified the regulatory network of meiotic divisions by choosing the relevant time 

scale of the events we wanted to portray. We omitted early events of meiosis, such as 

DNA replication, and late events, such as sporulation. We focused on reproducing four 

main transitions between the entry into meiosis I and the exit from meiosis II. To 

provide the entry into the first division, we used the existing model of the prophase I-

to-metaphase I transition (Okaz et al., 2012). We incorporated the Cdk1-APC/CCdc20 

oscillator to implement two other transitions: from metaphase I to anaphase I and from 

anaphase I to metaphase II (Figure 14). Lastly, we modified the model by adding 

a hypothetical regulator of the oscillations that terminates them precisely after 

meiosis II (Figure 19). For further simplification, we chose the nuclear molecules that 

we identified as most relevant to the progression through the divisions. We tested 

in silico different possibilities of molecules and interactions involved. We simplified 

some of the interactions, such as complex formation between the APC/C core and 

Cdc20 activator. For the model of two divisions, we omitted some of the interactions 

that result from a cross-talk between the chromosomes and protein network. An 

example is the regulation of Cdc20 activity by the spindle assembly checkpoint (SAC). 

Its inclusion in future versions of the model might provide additional level of 

regulation of meiotic divisions that would contribute to the precise timing of the exit 

from meiosis I and -II. Our model is designed to be extended by additional modules, 

such as a more detailed network of Ndt80 regulation. Additionally, the model can be 

further extended to understand events of meiosis I and - II in more details, such as 

sporulation. Figure 42 presents a simplified wiring diagram of the final version of the 

model presented in this work in Chapter 2.5., as well as simulation of wild-type cells 

recreating the general progression through the divisions and the exit after meiosis II. 



 
 

 

f 

Figure 42. Mathematical model of two meiotic divisions describes regulation of the progression 
through meiotic divisions and the exit after completion of meiosis II. (A) 
main interactions in the meiotic network included in the model
additional inhibitor; IE - intermediate enzyme; Inh 
Sum1, Clb4 and the complex formation between AI and Ama1 are omitt
through meiotic divisions in wild
divisions. MI and MII are metaphase I and
 

Relevance of parameter estimation

The properties of the biological system resulting from specific types of interactions 

between molecules often create more than one type of cellular behavior. The type of the 

behavior depends directly on the mathematical level of the description 

based on kinetic laws and values of parameters describing relation between 

components. Small changes in

behavior. For example, the same set of equations describing negative feedback loop 

may give an oscillating system or 

step in developing a model is estimation of parameter values. 

starts with a guess of the parameter values followed by changes of those values to 

minimize the discrepancy between the model and the biological data.

with nonlinearity have multiple sets of parameters that lead to 

Given a particular set of biological data, parameterization obtained by a parameter 

estimation procedure does not mean that all parameters are optimal. Different sets of 

parameter values might give similar solutions of the equations.

The estimation is usually based on different str

engineering approach parameters are estimated by fitting the model output to available 
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. Mathematical model of two meiotic divisions describes regulation of the progression 
through meiotic divisions and the exit after completion of meiosis II. (A) Simplified wiring diagram of 

in the meiotic network included in the model. RC - recombination checkpoint; AI 
intermediate enzyme; Inh - inhibitor of Ama1. For simplification of the diagram, 

Sum1, Clb4 and the complex formation between AI and Ama1 are omitted. (B) Simulation of progression 
-type cells showing concentration or activity of key regulators of 

metaphase I and -II spindles indicating the consecutive division

estimation 

The properties of the biological system resulting from specific types of interactions 

between molecules often create more than one type of cellular behavior. The type of the 

behavior depends directly on the mathematical level of the description 

based on kinetic laws and values of parameters describing relation between 

components. Small changes in parameter values might result in change

the same set of equations describing negative feedback loop 

may give an oscillating system or a system that approaches homeostasis. Thus, 

model is estimation of parameter values. The parameter estimation 

of the parameter values followed by changes of those values to 

minimize the discrepancy between the model and the biological data.

with nonlinearity have multiple sets of parameters that lead to such 

biological data, parameterization obtained by a parameter 

estimation procedure does not mean that all parameters are optimal. Different sets of 

parameter values might give similar solutions of the equations. 

estimation is usually based on different strategies. For example, in

parameters are estimated by fitting the model output to available 

experimental data (Sible and Tyson, 2007). There are different algorithms for 

computational parameter estimation, but these methods become more complicated with 

number of parameters (Ashyraliyey et al., 

“guessing” method and fitting “by hand” is implemented (Sible and 
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The properties of the biological system resulting from specific types of interactions 
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behavior depends directly on the mathematical level of the description of the system 

based on kinetic laws and values of parameters describing relation between the system 

result in changes of dynamical 

the same set of equations describing negative feedback loop 

homeostasis. Thus, a crucial 

The parameter estimation 

of the parameter values followed by changes of those values to 

minimize the discrepancy between the model and the biological data. Kinetic models 

such minimizations. 

biological data, parameterization obtained by a parameter 

estimation procedure does not mean that all parameters are optimal. Different sets of 

For example, in reverse 

parameters are estimated by fitting the model output to available 

experimental data (Sible and Tyson, 2007). There are different algorithms for 

me more complicated with 

 2009). Therefore, 

“guessing” method and fitting “by hand” is implemented (Sible and 
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Tyson, 2007). For development of our model, we combined this approach with our 

knowledge about experimentally measured values, such as degradation rates of 

proteins and relative abundance of proteins. This addition results in a more quantitative 

relation between the dynamics of different components of the network. Other 

parameters were based on parameters known from previous work on the model of the 

prophase I-to-metaphase I transition (Okaz et al., 2012) or guessed based on biological 

observations. All the parameters were adjusted to fit biological observations and to 

create the most robust system that is able to maintain its behavior in various biological 

mutant conditions with the introduction of noise and perturbations. A single set of 

parameters recapitulates the majority of the tested mutant phenotypes.  

Robustness of the dynamical system 

Dynamical biological systems are usually robust, which means that small changes in the 

input stimuli or network do not change the general behavior of the system. The chosen 

values of parameters that describe the interactions, as well as the characteristics of the 

network ensure robustness of the model and support the complex behavior of the 

biological system.  

As living cells are noisy systems, the regulatory network has to be able to generate the 

same response for the small perturbations in the activities of molecules. The main 

challenge in developing a model of meiosis is to ensure that it recreates a two-division 

meiosis when subjected to small perturbations. At the same time, the model should 

allow the system to be flexible enough to perform fast changes in the activities of 

meiotic regulators that result in two sharp waves Cdk1 and APC/CCdc20 activities. The 

activation of Cdk1-APC/CCdc20 oscillator is a robust characteristic of the meiotic 

network that cannot change in response to normal biological noise. Thus, for each 

version of the model presented in this work, we chose the values of the majority of 

model parameters that maintain the general behavior of the system when subjected to 

a change of +/- 20% of the initial value in wild-type cells and ama1∆ cells.  

Robustness of the biological system is a property of this system. The robustness of the 

oscillations and the exit from meiosis after the second division is preserved in some of 

the mutant strains, such as ama1∆. Thus, the meiotic network consists of additional 

machineries that in the absence of one of the component of the network direct the 

system to perform two undisrupted divisions. The robustness of meiotic divisions 

depends on the structure of the network. To achieve robustness in the designed model, 

a set of interactions, equations and parameters have to be carefully selected and tested 

in silico under different conditions.  
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In summary, the crucial and challenging characteristics of the model of two meiotic 

divisions that result from the robustness of the model are: (i) the ability for rapid 

changes in the activities of regulators resulting in sharp and rapid responses; 

(ii) robustness of the two divisions in response to biological perturbations and changes 

in the network in mutant cells. 

3.3. The Cdk1-APC/C oscillator modulates progression through divisions 
in meiosis 

Progression through the meiotic divisions is ensured by a negative feedback loop 
between Cdk1 and APC/CCdc20 

Meiotic cells enter the first division after a long period of low Cdk1 activity during 

prophase I. This transition is a result of cooperation of a set of positive feedback loops 

and double-negative feedback loops (Figure 43A). The entry into metaphase I is 

mediated by the inactivation of the recombination checkpoint (RC) after the repair of 

double-strand breaks (DSBs). The components of the positive feedback loops coexist 

with each other thus amplifying the activation of Ndt80 and Cdk1. On the other hand, 

the double-negative feedback loop between Cdk1-Clb1 and Ama1 creates two mutually 

exclusive stable states. After inactivation of the RC and inhibition of Ama1 activity, cells 

switch irreversibly to the high Cdk1 state of metaphase I. The resulting stability leads to 

cells being trapped in a high Cdk1 state of metaphase I. In order for cells to progress 

through the divisions, cells have to escape this stable state. It is known that the addition 

of a negative feedback loop to a system composed of circuits of positive feedback allows 

the escape from a stable state by turning a bistable switch into oscillations (Boissonade 

and De Kepper, 1980; Pfeuty and Kaneko, 2009). A negative feedback operating with 

a time delay and sharp activation of the inhibitory component allows destabilization of 

the stable state (Pfeuty and Kaneko, 2009). In the model of meiosis, we created an 

oscillator by introducing a negative feedback loop between Cdk1 and APC/CCdc20 

(Figure 43B). APC/CCdc20 activity is responsible for the degradation of B-type cyclins 

and the escape from the high Cdk1 state of metaphase I. Moreover, the negative 

feedback loop ensures the presence of the oscillations between Cdk1 and APC/C 

activities, thus allowing the entry into the second meiotic division. The negative 

feedback loop allows for a fast and reversible switch resulting in progression through 

meiosis I and -II. 

 

 



 
 

 

 

 

Figure 43. Wiring diagrams presenting feedback loops regulating 
and II. (A) Positive feedback loops (green) promote the entry into metaphase I, while double
feedback loops (blue) offers two mutually exclusive states of prophase I or metaphase I (Okaz et al., 
2012). (B) Negative feedback loop (red) creates an oscillator allowing ra
metaphase to anaphase of meiosis I and II.
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regulation of the meiotic oscillator: cyclin specificity and general concentration of the 

proteins. It is known that some of the B
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. Wiring diagrams presenting feedback loops regulating the progression through meiosis I 
feedback loops (green) promote the entry into metaphase I, while double

feedback loops (blue) offers two mutually exclusive states of prophase I or metaphase I (Okaz et al., 
Negative feedback loop (red) creates an oscillator allowing rapid and sharp transition from 

metaphase to anaphase of meiosis I and II. 

Modification of mitotic Cdk1-APC/C oscillator in meiosis 

to create two, and only two, meiotic divisions cells have to:

constantly synthesize cyclins and Cdc20 to be able to activate 

oscillations resulting in two consecutive divisions; (ii) stop the synthesis of the 

oscillator precisely after the second division. Thus, strictly regulating 

the synthesis of cyclins is crucial for progression through two divisions.

phase cyclins: Clb1, Clb3 and Clb4 (Chu and Herskowitz, 1998). 

Dahman and Futcher showed that deletion of any two cyclins results in cells execut

only one division (Dahmann and Futcher, 1995). We observed that deletions

leads to defects in progression through meiotic divisions in a majority of cells

. There are two reasons why Clb1 and Clb4 may be important for proper 

regulation of the meiotic oscillator: cyclin specificity and general concentration of the 

proteins. It is known that some of the B-type cyclins have distinct roles during meiosis. 

phase cyclins, Clb5 and Clb6, are necessary for the execution of DNA r

(reviewed in Bloom and Cross, 2007), while Clb1 inhibits the activity 

taphase I (Okaz et al., 2012). The balance in the levels of cyclins during the two 

meiotic divisions appears to be a key factor that regulates the activity of

progression through divisions. Carlie and Amon showed that overexpression of Clb2 or 

Clb3 in meiosis I, which elevates the overall levels of cyclins, leads to defects in 

chromosome segregation (Carlie and Amon, 2008). Thus, the proper levels 

have to be ensured to balance the activity of Cdk1 and APC/C for the meiotic oscillator. 

B 

 

the progression through meiosis I 
feedback loops (green) promote the entry into metaphase I, while double-negative 

feedback loops (blue) offers two mutually exclusive states of prophase I or metaphase I (Okaz et al., 
pid and sharp transition from 

divisions cells have to: 

constantly synthesize cyclins and Cdc20 to be able to activate fast and sharp 

; (ii) stop the synthesis of the 

. Thus, strictly regulating 

the synthesis of cyclins is crucial for progression through two divisions. Budding yeast 

cyclins: Clb1, Clb3 and Clb4 (Chu and Herskowitz, 1998). 

Dahman and Futcher showed that deletion of any two cyclins results in cells executing 

only one division (Dahmann and Futcher, 1995). We observed that deletions of CLB1 or 

leads to defects in progression through meiotic divisions in a majority of cells 

. There are two reasons why Clb1 and Clb4 may be important for proper 

regulation of the meiotic oscillator: cyclin specificity and general concentration of the 

type cyclins have distinct roles during meiosis. 

execution of DNA replication 

(reviewed in Bloom and Cross, 2007), while Clb1 inhibits the activity of Ama1 during 

he balance in the levels of cyclins during the two 

meiotic divisions appears to be a key factor that regulates the activity of Cdk1 and the 

progression through divisions. Carlie and Amon showed that overexpression of Clb2 or 

the overall levels of cyclins, leads to defects in 

proper levels of cyclins 

e activity of Cdk1 and APC/C for the meiotic oscillator. 
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For the meiotic system to oscillate, cells have to ensure the re-accumulation of cyclins by 

persistence of Ndt80 throughout the divisions, until the exit from meiosis II. Switching 

off Ndt80-dependent synthesis by inactivating one of its activators, Ime2, leads to an 

inability to re-accumulate cyclins and enter meiosis II (Benjamin et al., 2003). We 

showed that both Clb1 and Clb4 re-accumulate abruptly after the exit from meiosis I, 

although with different dynamics (Figure 16). Intriguingly, Clb4 exhibits a higher 

degradation rate than Clb1, leading to complete degradation of this cyclin at anaphase I. 

By contrast, Clb1 appears to be more stable with a half-life two-fold higher than that of 

Clb4. Clb1 is not completely degraded between meiosis I and -II, which indicates that 

Cdk1 activity is not completely abolished between the two divisions. This is in 

agreement with previous works, suggesting a necessary basal activity of Cdk1 in 

preventing additional DNA replication between the divisions and ensuring the timely 

entry into meiosis II (Dahmann et al., 1995; Gerhart et al., 1984; Iwabuchi et al., 2000; 

Phizicky et al., 2018; Strich et al., 2004). On the other hand, during the exit from 

meiosis II both cyclins are completely destroyed. To ensure the proper balance between 

the activity of Cdk1 and APC/C at the exit, we suggested that cells keep a basal activity 

of APC/CCdc20 during metaphase II. High level of cyclins in the absence of APC/CCdc20 

activity causes cells to delay the exit from meiosis II (Figure 30-31). We speculate that 

the basal degradation of cyclins is important for the regulation of the timely exit from 

meiosis. We have previously shown that prolonged activity of Cdk1 in the absence of 

Ama1 results in a significant delay in anaphase II spindle disassembly and defects in 

the exit from meiosis II (Argüello-Miranda et al., 2017). Likewise, increase in cyclins 

expression in higher eukaryotes leads to improper exit from meiosis II and formation of 

metaphase III-like spindles (Kubiak, 1989; Verlhac et al., 1996; Dumollard et al., 2011). 

Thus, robust regulation of the synthesis of B-type cyclins is required for progression to 

meiosis II and for the proper and timely exit from meiosis. 
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3.4. Exit from meiosis II and termination of meiotic oscillations are 
driven by APC/C 

At the time of the exit from meiosis II three distinct events happen at the protein 

regulatory level that are different from the exit from meiosis I: (i) complete degradation 

of cyclins; (ii) inactivation of Cdk1 and maintenance of a low kinase state after the exit 

from meiosis; (iii) inactivation of Ndt80-dependent synthesis of the components of the 

meiotic oscillator. We speculate that in order to limit the number of meiotic divisions, 

cells require the activity of a meiosis II-specific termination machinery that regulates 

these events. Inactivation of the termination may lead to re-entering to a high Cdk1 

state after meiosis II exit and continuing the oscillations. Due to the importance of the 

APC/C at the exit from mitosis and meiosis I, we hypothesize that the termination 

machinery of meiotic oscillations is based on the APC/C co-activators. 

The meiosis II-specific activity of Ama1 is responsible for termination of meiotic 
oscillations 

Eukaryotes evolved various methods of triggering the exit from meiosis II based on the 

activity of APC/C. An example is the adaptation of mitotic regulators, like Cdc20, that 

control the exit from meiosis in oocytes or development of meiosis-specific 

Cdc20/Cdh1-related co-activators of APC/C (Chu et al., 2001; Jacobs et al., 2002; 

Kimata et al., 2011). In fission yeast, Fzr1 has been found to be up-regulated at the exit 

from meiosis II and it has been speculated that its activity limits the number of meiotic 

divisions (Blanco et al., 2001; Aoi et al. 2012). Similarly, it has been reported that in 

plants, APC/C activity is required for proper exit from meiosis II and defects in its 

regulation lead to the re-establishment of metaphase-like spindles for a third division 

(Cromer et al., 2012; Cifuentes et al., 2016). Budding yeast evolved a meiosis-specific 

APC/C co-activator, Ama1, which is closely related to Cdh1 and Fzr1 and, similarly, is 

up-regulated at meiosis II (Cooper et al., 2000; Diamond et al., 2009). Consistent with 

our previously published data (Argüello-Miranda et al., 2017), we showed that 

inactivation of Ama1 in meiosis II causes defects in some of the aspects of meiotic exit 

(Figure 22). Although ama1∆ cells are able to exit from meiosis by degrading cyclins and 

disassembling meiotic spindle, they are unable to degrade Cdc5 and Ndt80. 

Maintaining strong activity of these regulators provides a possible machinery for the re-

accumulation of cyclins and re-introduction of oscillations after the second division. 

Additionally, ama1∆ cells stabilize the phosphorylated forms of the main regulators of 

meiosis, such as Ime2 and Sum1. This suggests the inability to properly balance the 

activities of meiotic kinases and phosphatases in the absence of Ama1 in meiosis II. 
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Ama1 exhibits properties of the hypothetical termination machinery of meiotic 

oscillations. It is not expressed during mitosis and it is inactive throughout the meiotic 

divisions, thereby triggering degradation of its substrates only during prophase I (Okaz 

et al., 2012) and at the exit from meiosis II. Moreover, similar to the hypothetical 

terminator predicted by our model, Ama1 targets for degradation the components of 

the meiotic oscillator, as well as other key regulators of meiosis, namely Cdc5 and, 

indirectly, Ndt80. Such properties make Ama1 a possible terminator of the meiotic 

oscillations (Figure 44A). Premature expression of Ama1 in cells arrested in metaphase I 

by the depletion of Cdc20 causes degradation of Cdc5, Ndt80 and cyclins, a single 

nuclear division and, eventually, exit from meiosis after one division (Figure 28-29). 

High activity of Ama1 in meiosis I prevents re-accumulation of cyclins for the second 

division, thus threatening the progression through meiosis. To be able to perform 

meiosis II, cells ensure down-regulation of Ama1. One of the methods to prevent early 

exit from meiosis before the completion of genome haploidization is the control of 

Ama1 activity through the Cdk1-Clb1-dependent inhibitory phosphorylation 

(Oelschlaegel et al., 2005; Okaz et al., 2012). Ama1 and Cdk1-Clb1 form a double-

negative feedback loop that suppresses the activity of Ama1 during the high Cdk1 state. 

We showed in silico that cells unable to inhibit the activity of Ama1, exhibit 

a significantly shorter metaphase II, which possibly result in defects in chromosome 

segregation and meiotic exit (Figure 30). Moreover, Ama1 is strictly regulated though 

its levels. It has been shown that AMA1 mRNA levels are constant during meiosis I and 

increase enormously during meiosis II (Chu et al., 1998; Primig et al., 2000). Although 

Ama1 accumulation depends on Ndt80 (Chu and Herskowitz, 1998; Okaz et al., 2012), 

it does not accumulate together with other targets of Ndt80 at the beginning of 

metaphase I. We speculate that AMA1 mRNA may be down-regulated by a meiosis I-

specific inhibitor that prevents the translation of Ama1 protein before the entry into 

meiosis II. A similar pattern is observed for the meiosis II-specific Clb3 (Carlie and 

Amon, 2008). Clb3 translation is regulated by the meiosis I-specific inhibitor Rim4, 

which prevents the synthesis of the cyclin before cells enter meiosis II. Furthermore, 

strong accumulation of Ama1 in meiosis II is coupled to the activity of APC/CCdc20 

during anaphase I, as in its absence cells exhibit a strong delay in Ama1 accumulation. 

Due to the fact that Rim4 is regulated in a meiosis-specific manner and is degraded by 

proteolysis (Carpenter et al., 2018), we speculated that Ama1 may be regulated in 

a fashion similar to Clb3. Thus, its strong accumulation and activity is inhibited only 
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Figure 44. Ama1 and Cdc20 terminate meiotic oscillations at the exit from meiosis II

and bar-headed lines indicate interactions explicit during the exit from meiosis II. 
from the inhibition of its synthesis during meiosis II, triggers rapid degradation of 
regulators preventing the appearance of additional divisions. 
function of the terminator due to 
Degradation of strongly active Cdc20 in meiosis II exceeds the synthesis level of cyclins thus triggering 
the exit from meiosis II and preventing additional waves of Cdk1 activity.
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during the first division, allowing the entry into meiosis II, but preventing the entry 

into additional third division.  

terminate meiotic oscillations at the exit from meiosis II

headed lines indicate interactions explicit during the exit from meiosis II. 
inhibition of its synthesis during meiosis II, triggers rapid degradation of 

regulators preventing the appearance of additional divisions. (B) Cdc20 in the absence of Ama1 gain
function of the terminator due to persistent synthesis of the protein and Cdc5
Degradation of strongly active Cdc20 in meiosis II exceeds the synthesis level of cyclins thus triggering 
the exit from meiosis II and preventing additional waves of Cdk1 activity. 
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presence is maintained long after the exit from meiosis II. This prompted us to speculate 

that Cdc20 gains the function of the terminator of the oscillations. Thus, Cdc20 activity 

is tightly controlled during meiotic divisions and changed in the absence of Ama1 at 

meiosis II. We found that the Cdc20 protein accumulates gradually throughout meiosis 

(Figure 17). However, simulations of the model excluded that strong accumulation of 

Cdc20 in meiosis II is an important factor for a possible meiosis II-specific activity of 

Cdc20 (Figure 27). We speculate that inhibition of APC/CCdc20 activity rather than 

accumulation of the protein is necessary for cells to enter meiosis II. On the other hand, 

lack of inhibition at meiosis II exit is important for maintaining the low Cdk1 state. 

Other eukaryotes use the strategy of down-regulation of APC/CCdc20 in meiosis I and 

up-regulation at the meiotic exit. In mammalian oocytes, APC/CCdc20 activity is 

inhibited at metaphase II by a specific mechanism called a cytostatic factor (CSF) which 

involves Emi2/Erp1 and/or Emi1 inhibitors of APC/CCdc20 (Wu et al., 2007; Perry and 

Verlhac, 2008; Schmidt et al., 2005; Tung and Jackson, 2005). Fission yeast evolved a 

stoichiometric inhibitor Mes1 that binds to the APC/C core and inhibits it from forming 

an active complex with Cdc20 (Izawa et al., 2005; Kimata et al., 2011). In budding yeast, 

such an inhibitor has not been found to date.  

Cdc20 activity in meiosis II is required for timely exit from meiosis 

Although Cdc20 takes the role of Ama1 in its absence, the reverse situation was not 

observed. Our model predicted that in the absence of Cdc20 in meiosis II, cells delay the 

exit from meiosis II (Figure 30), which was confirmed by biological experiments. Cells 

that are unable to activate APC/CCdc20 during the second division, accumulate higher 

levels of Cdc20 substrates during metaphase II and delay their degradation, as well as 

disassembly of meiotic spindles (Figure 31). As predicted by the model, Ama1 is unable 

to degrade cyclins as efficiently as Cdc20. High levels of Cdc20 substrates during 

metaphase II in the absence of Cdc20 activity implies that Cdc20 is likely active during 

metaphase II in wild-type cells. There it prevents the strong re-accumulation of cyclins 

and a possible delay in the exit from meiosis II. Additionally, Ama1 substrates, such as 

Ndt80 and Cdc5, persists longer than in the presence of active APC/CCdc20, indicating 

a delay in activation of APC/CAma1. We theorize that Cdc20 is required to maintain low 

levels of Clb1, which is an inhibitor of APC/CAma1. With longer persistence of Cdk1-

Clb1, Ama1 requires longer time to overcome this inhibition and degrade meiotic 

regulators resulting in the exit from meiosis II. Such a mechanism of a delay of the exit 

from the high Cdk1 state resembles regulation of the APC/CCdc20 activity by the SAC. 

The SAC inhibits APC/CCdc20 activity during metaphase until after all chromosomes are 
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properly attached to the spindle. In the absence of Cdc20, a delay is not regulated by the 

feedback from the chromosomes. Thus, cells might have evolved additional machinery 

that prevents premature exit from the high Cdk1 state. This machinery is possibly based 

on the Cdk1-dependent inhibition of Ama1 activity in the absence of Cdc20. Eventually, 

cells break out from the arrest at the high Cdk1 state of metaphase II with the 

reactivation of APC/CAma1. We showed that this exit is indeed triggered by Ama1, as in 

the absence of the activities of both APC/CCdc20 and APC/CAma1 in meiosis II, cells 

maintain the arrest at the high Cdk1 state (Figure 32-33). Based on the persistence of 

spindles and strong accumulation of Pds1 and Clb1, we concluded that these cells arrest 

in metaphase II. 

3.5. APC/C-independent mechanisms that regulate meiotic exit 
 

APC/C-independent mechanism is likely involved in the termination of the 
oscillations 

We showed that both Ama1 and Cdc20 are important for triggering the exit from 

meiosis II and for termination of meiotic oscillations after the second division. Ama1 

plays the role of the meiosis II-specific terminator in wild-type cells, while Cdc20 

aquires its role in its absence. We tested whether inactivation of APC/CCdc20 in the 

absence of Ama1 creates a third wave of accumulation of cyclins. Such behavior would 

indicate the reversibility of the exit from meiosis II. The mathematical model implied 

that inactivation of APC/CCdc20 after the exit from meiosis II in cells lacking Ama1 

results in the abrupt re-accumulation of cyclins and in the formation of metaphase III-

like spindles due to the persistence of Ndt80 and lack of the degradation machinery. 

However, the biological experiments did not verify the in silico predictions (Figure 35). 

This fact prompted us to speculate about the reason of this discrepancy. We eliminated 

the possibility of Cdh1 inhibiting re-accumulation of cyclins after the exit from 

meiosis II, as depletion of this protein does not cause re-accumulation of cyclins. Thus, 

we investigated whether APC/C-independent mechanisms might contribute to the exit 

from meiosis II. One of them may be a mechanical barrier between the cytoplasm and 

the nucleus. Synthesis of nuclear proteins depends on the ability of the cell to maintain 

nuclear import. Thus, we asked if a prospore membrane formation in yeast meiosis may 

be responsible for limiting the synthesis of meiotic regulators and thus the number of 

divisions. It has been reported that in the absence of Ama1 the prospore membrane is 

formed and remains open (Knop and Strasser, 2000). We tested the involvement of the 

prospore membrane formation in limiting the nuclear import of proteins using a mutant 
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of one of the genes required for formation of prospore membrane, namely MPC70 

(Bajgier et al., 2001). However, we did not observe re-accumulation of Cdc20 substrates 

for the third division or reassembly of metaphase III-like spindles (Figure 36). Thus, we 

conclude that the formation of the prospore membrane does not prevent re-

accumulation of M-phase proteins.  

Another possibility of the inability of cells to re-accumulate cyclins for meiosis III is the 

existence of a preventive machinery that controls the translation of proteins or that 

controls the events of autophagy. Autophagy plays a critical role in the entry into 

meiosis in budding yeast as a response to starvation signals (Schlumpberger et al., 1997; 

Sarkar et al., 2014). Additionally, it is known that in higher eukaryotes autophagy is 

involved in early stages of development, which follows two meiotic divisions (Yin et al., 

2016). Thus it might be important to regulate the late events of meiosis, such as the exit 

(termination of the oscillations) and sporulation. 

Regulation of meiotic exit by balancing the activities of kinases and phosphatases 

Similar to mitosis, meiosis is driven by the activity of kinases, among others Cdk1, Cdc5 

and Ime2. The activity of Cdk1 is essential for DNA replication, formation of meiotic 

spindles and proper segregation of chromosomes during the two consecutive divisions. 

It is known that for proper progression through a cell division, cells require the 

activities of phosphatases that counteract the kinases, thus contributing to the formation 

of a switch-like response at different stages of mitosis or meiosis (Bollen et al., 2009). 

Phosphatases are known to be required for the proper entry and exit from mitosis in 

a variety of eukaryotes (reviewed in Wurzenberger and Gerlich, 2011). We were 

interested to test whether the well-known phosphatases of the cell cycle are involved in 

the exit from meiosis II and the termination of meiotic oscillations. 

Cdc14 is a major Cdk1-counteracting phosphatase in both mitosis and meiosis in 

budding yeast (Buonomo et al., 2003; Jaspersen and Morgan, 2000). Although it is 

required for proper chromosome segregation during both mitosis and meiosis I, the 

absence of Cdc14 activity during meiosis II does not affect the events of the second 

division and the exit from meiosis II (Argüello-Miranda et al., 2017). Thus, we studied 

two other major phosphatases present in yeast meiosis: PP2A and PP1. One of the main 

phosphatase known to counteract Cdk1 phosphorylation in different species is PP2AB55 

(PP2ACdc55 in budding yeast). PP2AB55 is known to be regulated in a Cdk1-dependent 

manner through the Greatwall pathway. The Greatwall kinase (Rim15 in budding 

yeast) inhibits indirectly the activity of PP2AB55 during the high Cdk1 state. As cells 

degrade cyclins and enter anaphase of mitosis, they activate the phosphatase, which 
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leads to dephosphorylation of Cdk1 substrates (Gharbi-Ayachi et al., 2010). The mutual 

inhibition of kinases and phosphatases ensures an irreversible switch to the low Cdk1 

state (Cundell et al., 2013; Hegarat et al., 2014; Vinod and Novak, 2015). A similar 

machinery has been found to regulate meiosis in vertebrates oocytes (Li et al., 2013; 

Yamamoto et al., 2011). Moreover, the activity of the Greatwall- PP2AB55 pathway is 

important in the mitotic cell cycle in budding yeast (Queralt et al., 2006; Sarkar et al., 

2014). Also in meiosis, PP2ACdc55 is required for spindle disassembly and chromosome 

segregation during the first division (Kerr et al., 2011). Thus, PP2ACdc55 is important for 

the exit from meiosis I. Another phosphatase, PP1, plays a variety of roles during 

mitosis and meiosis (reviewed in Wurzenberger and Gerlich, 2011). In budding yeast 

meiosis, PP1/Glc7 is involved in spore wall formation and in the regulation of 

Aurora B/Ipl1. It is controlled by several different subunits that contribute to the 

substrate specificity of the phosphatase. Among them is Gip1, which is involved in 

nuclear localization of the PP1/Glc7 during meiosis (Tachikawa et al., 2001). We 

showed that inactivation of neither PP1 nor PP2ACdc55 during meiosis II affect the exit 

from meiosis II. In the absence of the activities of these phosphatases cells progress 

through the second division undisrupted and degrade cyclins completely at anaphase II 

(Figure 38-41). Cells disassemble meiotic spindles and enter the low Cdk1 state after the 

meiotic exit. Even in cells with inactivated APC/C after the exit form meiosis II and 

additional deletion of GIP1, we did not observe re-accumulation of cyclins for the third 

division (data not shown). These results indicate that the activities of the tested 

phosphatases during the second division are not important for regulation of the exit 

from meiosis II and termination of meiotic oscillations. 

3.6. Regulation of meiosis II-specific terminator by meiosis I-specific 
inhibitor 

Although there are different possibilities for termination of meiotic oscillations, they 

should all be strictly coupled to the events of meiosis II. Tyson and Novak considered 

that two waves of Cdk1 activity are controlled by a meiosis-specific protein synthesized 

in early meiosis I and down-regulated at the exit from the first division (Tyson and 

Novak, 2008). They proposed a simplified generic model of two meiotic divisions where 

the meiosis I-specific role is played by an unknown protein Y that activates Cdk1 

inhibitors in meiosis II. The protein Y introduced in this generic model has been 

considered to be the meiosis-specific protein Spo13 (Tyson and Novak, 2008). Spo13 is 

expressed in early meiosis I and is degraded at anaphase I (Katis et al., 2004). Mutants 
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of SPO13 perform only one meiotic division with a delayed exit (Katis et al., 2004; 

Shonn et al., 2002; Lee et al., 2004), which indicates its role in regulation of the exit from 

meiosis. Another candidate, which acts in meiosis I but not in meiosis II, is Dbf4, 

a component of the DDK kinase that initiates DNA replication and is important for 

chromosome segregation at meiosis I (Matos et al., 2008). In the model of two meiotic 

divisions, we assumed that an inhibitor exists that is specific to meiosis I and does not 

allow high activity of the terminator, Ama1 and Cdc20, before the exit from meiosis II. 

We speculate that an inhibitor of Ama1 is related to high expression of this protein 

specifically in meiosis II. The meiosis II-specific behavior of Cdc20 may be dependent 

on its activity that is possibly inhibited during anaphase I. To date the identities of 

possible inhibitors of the meiosis II-specific activity of the APC/C remain unknown. 

3.7. Is the exit from meiosis II irreversible? 

The protein network that regulates the progression through meiotic divisions is 

composed of circuits of feedback loops. Positive and double-negative feedback loops 

trigger the transition into metaphase I. A negative feedback loop between Cdk1 and 

Cdc20 triggers the oscillator allowing progression through meiosis I and -II. We 

propose that the exit from meiosis II is triggered by two double-negative feedback loops 

that result in strong accumulation of active Ama1 during the exit from meiosis II. Such 

behavior resembles the regulation of the transition from prophase I to metaphase I. Both 

stages of meiosis are characterized by the presence of meiosis-specific events, such as 

meiotic DNA recombination or sporulation, followed or preceded by the Cdk1-APC/C 

oscillator, respectively. Similar to the exit from meiosis II, at prophase I cells activate 

APC/CAma1, which inhibits accumulation of M-phase proteins. During the transition to 

the high Cdk1 state, APC/CAma1 activity is inhibited, allowing strong accumulation of 

Ndt80 and its substrates. At the exit from meiosis II, the opposite can be observed. Cells 

exit from the high Cdk1 state of metaphase II to the low Cdk1 state of anaphase II, 

which is maintained after the completion of meiosis II (Figure 45). This transition is 

triggered by a strong accumulation of Ama1 due to degradation of the repressor of its 

synthesis, possibly Rim4. Additionally, APC/CAma1 is freed from the Cdk1-dependent 

inhibition, which kept it inactive during meiosis I and -II.  

In the absence of APC/CAma1 activity, the exit is not regulated by two double-negative 

feedback loops, but rather it is mediated by the activity of APC/CCdc20. The exit from 

the high Cdk1 state of metaphase II is based on the negative feedback loop between 

Cdc20 and Cdk1, as well as surrounding positive feedback loops that amplify the 
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The exit from meiosis II is probably regulated by a switch that make the transition to 

the low Cdk1 state irreversible. Thus, instead of re-accumulating cyclins and continuing 

with oscillations in the absence of their terminator, it is possible that meiotic cells settle 

in a low Cdk1 stable state after the exit from meiosis II. After exceeding a certain 

threshold of the activity of the APC/C and degradation of cyclins, cells are not be able 

to return to a high Cdk1 state. Even after the completion of meiosis, inhibition of any 

remaining APC/C will not cause the entry into an additional metaphase-like state. This 

is due to the fact that cells may inactivate APC/C after they stabilize at a low Cdk1 

state. Thus, similarly as the transition from prophase I to metaphase I, the exit from 

meiosis II may exhibit irreversibility due to meiosis II-specific activity of APC/CAma1 or 

APC/CCdc20 regulated with an additional unknown feedback loop, which allows it to 

settle in a high activity state and inhibit accumulation of cyclins for meiosis III. 

3.8. On studying processes of meiosis II in high resolution  

In this work, we presented a newly developed system of metaphase II-arrest/release, 

cdc20-3-mAR, based on the system of the release from metaphase I-arrest developed 

previously in our lab (Argüello-Miranda, et al., 2017). It allows synchronous release of 

cells to anaphase I and synchronous arrest in metaphase II by inactivating APC/CCdc20 

after its induction in meiosis I. In the presence of Ama1, cells maintain metaphase II 

arrest for <1 hr (Figure 31). After this time, they accumulate high levels of Ama1 and 

exit from the second division. In the absence of Ama1, cells with inactivated 

APC/CCdc20 arrest in metaphase II for a long period of time (Figure 33). We observed 

that after 24 hr in the metaphase II-arrest the majority of cells remain bi-nucleated. The 

system allows manipulation of meiotic regulators precisely during metaphase II, which 

is normally challenging due to short period spent in metaphase II by non-arrested cells 

(<40 min). Additionally, cells arrested in metaphase II can be released from the arrest to 

synchronously enter anaphase II (Figure 35). Thus, the system is able to mimic the 

behavior of vertebrates oocytes which arrest in metaphase II until fertilization, which 

triggers the activation of APC/CCdc20 for the completion of meiosis. The metaphase II-

arrest/release system can be used as a model for studying metaphase II and post-

anaphase II events with high resolution. 
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3.9. Concluding remarks 

During meiosis, cells have to perform a set of coordinated events that lead to formation 

of haploid gametes or spores. One of the biggest challenges is to understand how cells 

regulate sequential events of meiosis resulting in the exit precisely after meiosis II. To 

achieve a two-division meiosis, cells implement a set of distinct decisions requiring 

sharp activation of key regulators of cell division, namely Cdk1 and APC/C. These two 

regulators create an oscillatory core, which is commonly found in various systems 

requiring the control on a cell cycle level, from embryonic cell cycle, stem cells 

development to oocyte maturation. Mathematical modeling helps to understand how, 

despite the complexity and specificity of biological systems, the Cdk1-APC/C core 

remains unchanged. It suggests modifications of the network surrounding the core 

based on complementary feedback loops that regulate process-specific transitions. In 

budding yeast meiosis, the core that drives the progression through two meiotic 

divisions is adjusted to be able to complete the divisions precisely after meiosis II. The 

oscillator is complemented with meiosis-specific regulators that unleash the machinery 

preventing the appearance of an additional third division. The protein network that 

regulates meiosis sheds light into an overall regulation of processes based on the Cdk1-

APC/C oscillator. General principles of modification of the core to generate two 

divisions can be applied to various organisms, and be used to describe specific 

regulation of Cdk1-APC/C core in other oscillatory processes based on a cell cycle 

machinery. 
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4. Materials and Methods 
 
4.1. Construction of yeast strains  

We used diploid Saccaromyces cerevisiae strains of the fast-sporulating SK1 genetic 

background (ho::LYS2 lys2 ade2::hisG trp1::hisG leu2::hisG his3::hisG ura3) (Kane and 

Roth, 1974). Diploid strains were produced by mating of the correspondent MATa and 

MATα haploids. Genotypes of all strains are listed in Table 10. The following alleles 

have been previously characterized: Myc18-CDC20 (Zachariae et al., 1998), 

mpc70∆::KanMX4 (Knop and Strasser, 2000), CLB1-myc9 (Buonomo et al., 2003), PCLB2-

CDC20 (Lee and Amon, 2003; Petronczki et al., 2006), PDS1-myc18 and ama1∆::NatMX4 

(Oelschlaegel et al., 2005), PGALL-AMA1, clb1∆::NatMX4, clb4∆::KanMX4, and 

ndt80∆::NatMX4 (Okaz et al., 2012), HRR25-HIS3::hrr25::KanMX4, PDMC1-AMA1 and 

PCUP1-CDC20 (Argüello-Miranda et al., 2017). The strains with estradiol-inducible 

expression from the GAL promoter (called PEST herein) contains a plasmid producing 

a PGDP1-GAL4484-ER fusion (Benjamin et al., 2003). GPD1 promoter is a fusion of the Gal4 

transcription factor and a hormone-binding domain of the human estrogen receptor ER. 

The Ndt80 arrest/release system uses PEST-NDT80 in ndt80∆ background (Benjamin et 

al., 2003; Carlie and Amon, 2008; Matos et al., 2008). The anchor-away (AA) system 

(Haruki et al., 2008) uses tor1-1::HIS3, fpr1∆::KanMX4 and RPL13A-2xFKBP12 (a gift 

from Andreas Hochwagen; Argüello-Miranda et al., 2017).  

For deletion of the genes CLB3 (clb3∆::TRP1) and GIP1 (gip1∆::NatMX4), PCR-generated 

cassettes were used (Goldstein and McCusker, 1999; Wach et al., 1994). For C-terminal 

tagging with Myc9 and Myc18, PCR-generated cassettes were used (Ciosk et al., 1998; 

Knop et al., 1999). Tagged proteins are fully functional as verified by testing 

proliferation and sporulation of the homozygous diploids. For the AA system, CDC55 

was tagged at the C-terminus with a PCR-generated cassette encoding FKBP12-

rapamycin-binding (FRB) domain of human mTOR (Haruki et al., 2008). For depletion 

of Cdc20 and Cdh1 in meiosis, the endogenous promoters were replaced with the 

mitosis-specific promoter of HSL1 (Okaz et al., 2012). The temperature-sensitive mutant 

cdc20-3 (G360/S) (Shirayama et al., 1998) was generated by PCR-mediated site-directed 

mutagenesis (Li and Wilkinson, 1997) of CDC20 integrated behind the copper-inducible 

CUP1 promoter in the yeast integrative plasmid YIplac204. The plasmid was integrated 

into the trp1 locus by cutting with Bsu36I restriction enzyme. 
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Table 10. List of Saccharomyces cerevisiae SK1 strains used in this study. 
Figure1 Strain Genotype2 

15 Z30291 PDS1-myc18::KITRP1 

15 Z22156 clb1∆::NatMX4 PDS1-myc18::KITRP1 

15 Z30292 clb3∆::TRP1 PDS1-myc18::KITRP1 

15 Z30293 clb4∆::HphMX4 PDS1-myc18::KITRP1 

16, 17A, 20 Z29971  

16A Z29974 CLB1-myc9::KITRP1 

16B Z5157 CLB4-myc9::KITRP1 

17A Z29973 Myc18-CDC20::TRP1 

17B Z7122 HRR25-HIS3::hrr25::KanMX4 

17B Z19647 HRR25-HIS3::hrr25::KanMX4 PDS1-myc18::KITRP1 

20 Z27965 hct1::PHSL1-HCT1::HphMX4 

22 Z20217 PDS1/ PDS1-myc18::KITRP1 

22 Z20219 ama1∆::CaURA3 trp1/trp1::PDMC1-cAMA1::TRP1 
PDS1/PDS1-myc18::KITRP1 

23 Z22388 ama1∆::CaURA3 leu2::PDMC1-cAMA1::LEU2 PDS1-
myc18::KITRP1 

23 Z28157 ama1∆::CaURA3 leu2::PDMC1-cAMA1::LEU2 hct1::PHSL1-
HCT1::HphMX4 PDS1-myc18::KITRP1 

24 Z29418 cdc20::PCLB2-CDC20::KanMX6 trp1::PCUP1-CDC20::TRP1 
ESP1-myc18::TRP1 

25A,C Z31284 cdc20::PCLB2-CDC20::KanMX6 ura3::PCUP1-CDC20::URA3 
Ha3-MPS1::LEU2 PDS1-myc18::TRP1 

25B-C Z31285 ama1∆::NatMX4 leu2::PDMC1-cAMA1::LEU2 cdc20::PCLB2-
CDC20::KanMX6 ura3::PCUP1-CDC20::URA3 Ha3-
MPS1::LEU2 PDS1-myc18::TRP1 

29 Z34661 cdc20::PHSL1-CDC20::HphMX4 ura3::PGPD-GAL4484-
ER::URA3 PDS1-myc18::TRP1 

29 Z34662 cdc20::PHSL1-CDC20::HphMX4 ura3::PGPD-GAL4484-
ER::URA3 leu2::PGALL-cAMA1::LEU2 PDS1-myc18::TRP1 

31 Z21260 cdc20::PCLB2-CDC20::KanMX6 trp1::PCUP1-CDC20::TRP1 
PDS1-myc18::HIS3MX6 

31 Z31711 cdc20::PCLB2-CDC20::KanMX6 trp1::PCUP1-cdc20-3::TRP1 
PDS1-myc18::HIS3MX6 
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33 Z27968 ama1∆::NatMX4 leu2::PDMC1-cAMA1::LEU2 cdc20::PCLB2-
CDC20::KanMX6 trp1::PCUP1-CDC20::TRP1 PDS1-
myc18::HIS3MX6 

33 Z31712 ama1∆::NatMX4 leu2::PDMC1-cAMA1::LEU2 cdc20::PCLB2-
CDC20::KanMX6 trp1::PCUP1-cdc20-3::TRP1 PDS1-
myc18::HIS3MX6 

35 Z33491 ama1∆::NatMX4 leu2::PDMC1-cAMA1::LEU2 cdc20::PCLB2-
CDC20::KanMX6 trp1::PCUP1-cdc20-3::TRP1 hct1::PHSL1-
HCT1::HphMX4 PDS1-myc18::HIS3MX6 

36 Z34121 ama1∆::NatMX4 leu2::PDMC1-cAMA1::LEU2 cdc20::PCLB2-
CDC20::KanMX6 trp1::PCUP1-cdc20-3::TRP1 hct1::PHSL1-
HCT1::HphMX4 PDS1-myc18::HIS3MX6 

36 Z34122 mpc70∆::BleMX4 ama1∆::NatMX4 leu2::PDMC1-
cAMA1::LEU2 cdc20::PCLB2-CDC20::KanMX6 trp1::PCUP1-
cdc20-3::TRP1 hct1::PHSL1-HCT1::HphMX4 PDS1-
myc18::HIS3MX6 

38 Z34012 CDC55-FRB::NatMX6 fpr1∆::KanMX4 tor1-1::HIS3 PDS1-
myc18::HIS3MX6 

38 Z34013 CDC55-FRB::NatMX6 fpr1∆::KanMX4 tor1-1::HIS3 
RPL13A-2XFKBP12::TRP1 PDS1-myc18::HIS3MX6 

39 Z32710 cdc20::PCLB2-CDC20::KanMX6 trp1::PCUP1-CDC20::TRP1 
PDS1-myc18::KITRP1 

39 Z32711 gip1∆::NatMX4 cdc20::PCLB2-CDC20::KanMX6 trp1::PCUP1-
CDC20::TRP1 PDS1-myc18::KITRP1 

40 Z34712 ama1∆::NatMX4 leu2::PDMC1-cAMA1::LEU2 CDC55-
FRB::NatMX6 fpr1∆::KanMX4 tor1-1::HIS3 
ndt80∆::NatMX4 ura3::PGPD-GAL4484-ER::URA3 
leu2::PGAL1-NDT80::LEU2 PDS1-myc18::HIS3MX6 

40 Z34713 ama1∆::NatMX4 leu2::PDMC1-cAMA1::LEU2 CDC55-
FRB::NatMX6 fpr1∆::KanMX4 tor1-1::HIS3 
ndt80∆::NatMX4 ura3::PGPD-GAL4484-ER::URA3 
leu2::PGAL1-NDT80::LEU2 RPL13A-2XFKBP12::TRP1 
PDS1-myc18::HIS3MX6 

41 Z24253 ama1∆::NatMX4 leu2::PDMC1-cAMA1::LEU2 cdc20::PCLB2-
CDC20::KanMX6 trp1::PCUP1-CDC20::TRP1 PDS1-
myc18::KITRP1 

41 Z24254 ama1∆::NatMX4 leu2::PDMC1-cAMA1::LEU2 
gip1∆::NatMX4 cdc20::PCLB2-CDC20::KanMX6 trp1::PCUP1-
CDC20::TRP1 PDS1-myc18::KITRP1 

1Strains are listed for each figure used in this study.  
2All strains are diploid MATa/MATα in the SK1 genetic background ho::LYS2 lys2 ade2::hisG trp1::hisG 

leu2::hisG his3::hisG ura3. Mutations are homozygous unless stated otherwise. 
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4.2. Induction of meiosis 

Synchronous meiosis of SK1 diploid strains was induced at 30 °C as described before 

(Oelschlaegel et al., 2005). Healthy zygotes produced by appropriate haploids were 

streaked to single colonies on yeast extract peptone glycerol (YPG) plates and grown for 

36-40 hr. Single colonies were transferred to YP-dextrose (YPD) plates and grown in 

~2 cm2 patches for 24-28 hr. Cells were plated evenly on YPD plates and grown until 

they formed a lawn (~24 hr). Cells were inoculated into 250 ml of liquid YP-acetate 

medium (YEPA; YP plus 2% K-acetate) to OD600 ~0.3. The cultures were shaken at 

200 rpm for 11-12 hr in an orbital shaker to OD600 ~1.6 and budding index <10% (arrest 

in G1-phase). Cells were concentrated by centrifugation at 3600 rpm for 3 min and 

washed once with 150 ml of pre-warmed sporulation medium (SPM; 2% K-acetate). 

Cells were inoculated to OD600 ~3 into 90-110 ml of SPM in a 2.8 l-Fernbach flask and 

shaken at 200 rpm. For meiotic time courses using temperature-sensitive mutants, cells 

were grown in YEPA at 25 °C for 14-15 hr and transferred to SPM at 25 °C. 

4.3. Meiotic time course experiments 

For a conventional (unsynchronized) meiotic time course, samples were taken every 

2 hr after the transfer into SPM (t = 0) for indirect immunofluorescence (IF) and 

trichloroacetic acid (TCA) whole-cell protein extracts. For inactivation of Cdc55 using 

the AA system by induction of binding of FRB to FKBP12, rapamycin (10 µg/ml, LC 

Laboratories R-5000) was added at 4 hr. The AA system uses depletion of a protein 

from the nucleus, which depends on the heterodimerization of the human FKBP12 to 

the FRB domain of human mTOR in the presence of rapamycin (Haruki et al., 2008). 

The FRB-tagged protein interacts with a ribosome subunit Rpl13a tagged with FKBP12 

and moves to the cytoplasm, therefore failing to exert its nuclear function. 

To induce expression of Ama1 in metaphase I-arrested cells, estradiol (10 µM, Sigma 

E2758) was added at 7 hr. For the meiotic time course using the CDC20-meiotic-

arrest/release system (CDC20-mAR) cells were released from the metaphase I-arrest 

after 8 hr with addition of 10 µM CuSO4 at 30 °C. For the time course using the 

modified metaphase II-arrest/release (cdc20-3-mAR) cells were released from the 

metaphase I-arrest after 8 hr with 10 µM CuSO4 at 25 °C. For the arrest in metaphase II, 

the temperature was shifted to 36 °C at 50 min. For the release from metaphase II, the 

temperature was shifted back to 25 °C at 120 min. For inhibition of Cdc20 activity after 

the exit from meiosis II, the temperature was shifted to 36 °C at 240 min. Temperature 

shifts were carried out with a covered water bath shaking horizontally at 200 rpm. To 
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measure half-lives of proteins DMSO solvent (0.5%) or cycloheximide (CHX, 

0.5 mg/ml, Sigma C7698) was added at the indicated times and TCA samples were 

collected at t = 0, 10, 20, 40 and 80 min. For meiotic time courses using Ndt80 

arrest/release system, cells were released from the prophase I-arrest after 6 hr with 

estradiol (10 µM, Sigma E2758). For inactivation of the nuclear activity of Cdc55 with 

the AA system, rapamycin (10 µg/ml, LC Laboratories R-5000) was added at 100 min 

after the release from the prophase I-arrest. Additionally, IF samples were collected 

24 hr after the transfer into SPM to visualize nuclear divisions.  

4.4. TCA protein extraction and SDS-PAGE analysis 

Cells from meiotic time course (8-10 ml from SPM) or proliferating culture (cycling 

cells, Cc) grown to exponential phase in YPD medium (50 ml, OD600 ~0.8, washed once 

with ice-cold water) were collected by centrifugation at 4000 rpm (4 °C) for 2 min. 

Pellets were resuspended in 1 ml of 10% TCA. Samples were transferred to 1.5 ml safe-

lock Eppendorf tubes and centrifuged for 2 min at 8000 rpm (4 °C). Samples were 

resuspended in 200 µl of TCA. The same amount of zirconia beads (0.5 mm diameter, 

Roth 11079105z) was added to the samples. Cells were disrupted by shaking at 30 Hertz 

for 6 min at 4 °C with a mixer mill (MM400 Retsch) and collected by low-speed 

centrifugation (10 minutes at 3000 rpm, 4 °C). The resulting pellet was resuspended in 

2x Laemmli sample buffer (62.5 mM Tris-HCl pH 6.8, 10% glycerol, 2% SDS, 0.01% 

bromophenol blue, 30 mM β-mecaptoethanol) and neutralized with half-volume of 1 M 

Tris base. Samples were heated to 95 °C for 10 min and centrifuged at 14000 rpm for 

10 min. Protein concentrations were measured with a colorimetric Bradford Protein 

Assay (Bio-Rad). Samples of 60-100 µg of total protein were loaded on 8% SDS 

polyacrymalide (SDS-PAGE) gels (for detection of Sum1 and Spo13 7% and 10% gels 

were used, respectively). SDS-PAGE gels were run at 35-45 V overnight.  

4.5. Immunoblot detection of proteins in whole-cell extracts 

Semidry western blotting was used to transfer proteins to PVDF membranes 

(Immobilon P, Millipore). The transfer was conducted for 1 hr at 0.45 mA/cm2. 

Membranes were blocked for 1 hr in phosphate-buffer saline (PBS) with 0.1% Tween 20 

(PBS-T) and 4% non-fat milk powder (PBS-T/milk). Membranes were incubated with 

primary antibody at room temperature for 1-2 hr. The primary antibodies were diluted 

in PBS-T/milk with 0.01% sodium azide and stored at -20 °C. Membranes were washed 
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three times for 10 min in PBS-T/milk and incubated for 1-3 hr with the appropriate 

secondary antibody conjugated to horseradish peroxidase (dilution 1:5000 in PBS-

T/milk). Membranes were washed four times with PBS-T and incubated for 20-40 sec 

with ECL (ECL detection system, GE Healthcare). Membranes were exposed to X-ray 

film and developed using an Optimax 2010 machine (Protec). 

Rabbit polyclonal antibodies were used for detection of the following proteins: Ama1 

(dilution 1:2000; Oelschlaegel et al., 2005), Cdc5 (1:5000; Matos et al., 2008), Cdc20 

(1:5000; Camasses et al., 2003), Cdh1 (1:5000; Zachariae Lab), Clb3 (1:3000; Zachariae 

Lab), Dbf4 (1:5000; Matos et al., 2008), mTOR human FRB domain (1:2000; Enzo Life 

Sciences ALX-215-065-1), Ndt80 (1:10000; a gift from Kirsten Benjamin; Benjamin et al., 

2003), Spo13 (1:5000; Matos et al., 2008), β-tubulin/Tub2 (1:20000; a gift from Wolfgang 

Seufert). Goat polyclonal antibodies from Santa Cruz Biotechnology were used for 

detection of Clb1 (1:300; sc-7647), Clb4 (1:400; sc-6702), Clb5 (1:100; sc-6704), Fkbp12 

(1:200; sc-6174), and Sum1 (1:200; sc-26441). Mouse monoclonal antibodies were used to 

detect Pgk1 (1:40000; Invitrogen) and Myc 9E10 (1:150; Evan et al., 1985).  

4.6. Indirect immunofluorescence microscopy 

Samples (1 ml) for indirect immunofluorescence (IF) were fixed overnight at 4 °C in 

3.7% formaldehyde (Salah and Nasmyth, 2000). Samples were washed three times with 

1 ml of 0.1 M potassium phosphate buffer (pH 6.4) and once with 1 ml of spheroplasting 

buffer (0.1 M potassium phosphate buffer pH 7.4, 1.2 M sorbitol, 0.5 mM MgCl2). Cells 

were centrifuged for 2 min at 4000 rpm and resuspended in spheroplasting buffer. 

Spheroplasting was carried out with 10% solution of β-mercaptoethanol. Samples were 

incubated at 30 °C, 700 rpm, for 15 min. To obtain spheroplasts, 10 µl of zymolase 

solution (Zymolase 100T from Amsbio 1 mg/ml in spheroplasting buffer) was added. 

Cells were shaken at 30 °C, 700 rpm, for 20-60 min until the cell wall was removed from 

~75% of cells. The appearance of spheroplasts was assessed by checking cells using 

phase-contrast microscopy. Digestion was stopped by addition of 1 ml of ice-cold 

spheroplasting buffer. Cells were centrifuged at 4 °C, 2500 rpm, for 2 min and 

resuspended in 100-150 µl of spheroplasting buffer. Spheroplasted samples were added 

to a polylysine-coated 15-well slide and kept on the slide for 5 minutes to adhere to the 

surface. Excessive liquid was removed and cells were dehydrated by incubating the 

slides for 3 min in cold methanol and for 10 sec in cold acetone (at -20 °C). The slides 

were air-dried and incubated for 10 min with 6 µl per well of filtered PBS for 

rehydration. Spheroplasts were blocked for 1 hr with 6 µl per well of PBS containing 1% 
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bovine serum albumin (PBS-BSA, filtered). The slides were incubated for 2 hr with 

primary antibodies in a humid chamber. Monoclonal primary antibodies were used: 

from rat to tubulin (dilution in PBS-BSA 1:300; Serotec YOL1/34) and from mouse to 

Myc 9E10 (1:5; Evan et al., 1985). Cells were washed for 5 min 4-6 times with PBS-BSA. 

They were incubated with secondary antibodies in a humid dark chamber for 1.5-2 hr 

and washed six times with PBS. Affinity-purified, preabsorbed secondary antibodies 

were used as follows: from donkey conjugated to α-rat Alexa 488 (1:200; Chemicon) and 

from goat conjugated to α-mouse Cy3 (1:200; Abcam). To detect DNA, the wells were 

covered with mounting medium: 100 mg p-phenylenediamine and 0.05 µg/ml DAPI 

(4',6-diamidino-2-phenylindole) in glycerol. The slide was carefully covered with 

a cover slip to uniformly spread the mounting medium. Cells were observed using 

a Zeiss Axioskop 2 epifluorescence microscope with a 100x plan-apochromat 1.40 

NA/oil objective. Pictures were captured with a Retiga Exi CCD camera controlled by 

QCapture 2.9.12 software (QImaging) and processed with Adobe Photoshop. The width 

of a single image is 10 µm. At least 100 cells per time point were counted.  

4.7. Quantification of signal intensity from immunofluorescence staining 

Spheroplasted, formaldehyde-fixed cells covered with DAPI mounting medium were 

used to quantify the signal intensity of Myc-tagged proteins at different stages of 

meiosis. Images were taken using a DeltaVision system (Applied Precision) controlled 

by softWoRx 5.0 software and included Olympus IX-71 inverted microscope equipped 

with autofocus module (Ultimate Focus), solid state illumination (InsightISS), Olympus 

UPLSApo 100X/1.40 NA/oil objective, set of DeltaVision filters and CoolSNAP HQ2 

CCD camera (Photometrics). Images were acquired in DAPI to visualize cell nuclei, 

FITC to visualize spindles and TRITC to visualize Myc signal without the neutral 

density filter. Exposure times of 0.02-0.08 sec were used. %T was set for 10% for DAPI 

and 32% for FITC and TRITC. Arc lamp was aligned for Koehler illumination. Digital 

image was acquired with camera binning 2x2 and camera gain 1x. Raw images were 

saved without data compression. Images were processed with guidelines described in 

Waters (Waters, 2009). Images were analyzed using ImageJ (W. S. Rasband, U.S. NIH, 

Bethesda, MD, http://imagej.nih.gov/ij/). For each cell from a specified stage of 

meiosis based on the morphology of the spindle and number of nuclei, a ROI (region of 

interest) was defined by the border of the cell nuclei (DAPI). The raw intensity Myc 

signal was measured within the borders of the ROI. Quantification of the signal 

intensity was performed on 50-160 cells. The nuclear background signal generated from 
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untagged cells by the α-Myc antibody was measured and averaged for each stage of 

meiosis. The mean value of the background signal was subtracted from the nuclear Myc 

signal of individual protein-tagged cells at the corresponding meiotic stage.  

4.8. Quantification of ECL signals 

For quantification of half-lives and estimation of degradation rates, cultures treated 

with cycloheximide (CHX) were used. X-ray films with ECL signals were scanned using 

densitometric scanning. Scanning was performed in 480 dpi in 8-bit grayscale without 

any adjustment of signal levels. Digital scans were analyzed using ImageJ (W. S. 

Rasband, U.S. NIH, Bethesda, MD, http://imagej.nih.gov/ij/). Intensity of the ECL 

signal of each protein band was measured using Gel Analyzer. Background 

surrounding the signals was subtracted.  

4.9. Mathematical modeling 

Mathematical modeling was performed using a deterministic approach. Change of the 

concentration or activity of the variables was described using nonlinear ordinary 

differential equations (ODEs) according to biochemical reaction kinetics. Sets of the 

equations, parameter values and initial values of the variables were incorporated into 

XPPAUT software (Ermentrout and Mahajan, 2003) used to solve the ODEs and plot the 

results in the simulation window. Simulations were run by implementing the Stiff 

integration method (Hairer and Wanner, 1991; Shampine and Thompson, 2007) as an 

approximation algorithm to solve the ODEs. The time step for the integrator (Dt) was 

set to 1. The starting time (T0) was set to 0. The basic simulation run time integrating 

the equations was set to 480 or 600 which corresponds to 8 hr and 10 hr of a meiotic 

time course, respectively. All mathematical models, which simulations are presented in 

this work are listed in Table 11. 
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Table 11. List of mathematical models. 
Figure1 Model description Equations Tables with model 

parameters2, 3 

12B Modified prophase I-to-
metaphase I model 

9-26 1 

13B Minimal Cdk1-APC/C 
oscillator model 

27-30 2 

14B-C Combined model 9-17, 20-26, 31-35 1, 3 

18 Combined model with 
modified levels of cyclins 

and Cdc20 

9-17, 20-26, 31-35 1, 3, 4 

19B-C Model with hypothetical 
terminator 

9-10, 13-17, 20, 23-26, 
33-43 

1, 3, 4, 5 

21B-E Model with Ama1 as the 
terminator 

9-10, 13-17, 20-22, 24-26, 
31-35, 44-48 

1, 3, 4, 6 

26A-F, 
27A-D 

Model with Ama1 and 
Cdc20 as the terminator 

9-10, 13-17, 20-22, 24-26, 
31-35, 44, 46-49 

1, 3, 4, 6, 7 

28A-D, 
30A-C, 32, 

34A-B 

Model with Ama1 and 
Cdc20 as the terminator 

with adjusted parameters 

9-10, 13-17, 20-22, 24-26, 
31-35, 44, 46-49 

1, 3, 4, 7, 8 

36B-C Model with inhibition of 
synthesis at the exit from 

meiosis II 

9-10, 13-17, 20-22, 24-26, 
31-35, 44, 46-47, 49-51 

1, 3, 4, 7, 8, 9 

1Mathematical models are listed for each figure used in this study.  
2Table numbers are listed containing parameters used in specified model. 
3Only tables containing parameters used to simulate WT conditions are listed. Changes in parameter 
values in tested mutants are provided in the figure legends. 

4.10. Statistical analysis 

For calculation of mean, median and 95% confidence interval of IF signal intensity of 

Clb1-myc9, Clb4-myc9, Pds1-myc18, Myc18-Cdc20 and untagged control, Microsoft 

Excel was used. BoxPlotR (Spitzer et al., 2014; http://boxplot.tyerslab.com) was used 

for generation of box plots with Tukey whiskers. Box plots display quantified signal 

intensity (in arbitrary units) of Myc-tagged proteins after subtraction of the background 

signal from untagged controls. The crosses on the box plots represent the mean value of 

the signal intensity. The box plot limit displays the 1st and the 3rd quartile (25th and 75th 

percentile, respectively). The whiskers indicate variability outside the 1st and the 3rd 

quartiles and extend 1.5 times of the interquartile range. The outliers are represented by 

empty circles above the upper whisker and below the lower whisker. The notches 
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represent the 95% confidence interval (CI) for each median displayed as a center line in 

each box plot. Non-overlapping notches indicate 95% confidence that two medians 

differ.  

For measurement of half-lives of proteins at metaphase I, at anaphase I, and at meiosis 

II in the presence and absence of Ama1, exponential regression was performed in 

Microsoft Excel to fit the trend line to the measured data points of ECL signal intensity. 

Diamonds on the graphs indicate an averaged intensity at a specified time point. Best fit 

was indicated by the R-squared value. The trend line equation described the line that 

best fits the data points and was used to calculate half-life of proteins (formula 

describing exponential decay). Degradation rate was calculated as ln(2) divided by the 

value of half life. Background degradation rates of proteins used in the mathematical 

model were approximated. 
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Abbreviations 

 

AA anchor-away 

AI  additional inhibitor 

APC/C  anaphase promoting complex/cyclosome 

BSA  bovine serum albumin 

Cdk cyclin-dependent kinase 

CHX  cycloheximide 

CSF cytostatic factor 

DAPI  4',6'-diamino-2-phenylindole 

DMSO  dimethyl sulfoxide 

DSB  double strand break 

ER  estrogene receptor 

FEAR  cdc14 early anaphase release 

FRB  FKBP12-rapamycin-binding  

IE  intermediate enzyme 

IF  immunofluorescence 

mAR  meiotic-arrest/release 

MCC  mitotic checkpoint complex 

MEN mitotic exit network 

MPF maturation-promoting factor 

OD  optical density 

ODE  ordinary differential equation 

PBS  phosphate buffered saline 

PCR  polymerase chain reaction 

PP protein phosphatase 

RC  recombination checkpoint 

ROI  region of interest 

SAC  spindle assembly checkpoint 

SC  synaptonemal complex 

SDS  sodium dodecyl sulfate 

SPB  spindle pole body 

SPM  sporulation medium 

TCA  trichloroacetic acid 

WT wild-type 
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YEPA  yeast extract peptone acetate 

YPD  yeast extract peptone dextrose 

YPG  yeast extract peptone glycerol 
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