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SUMMARY 
 
The nuclear exosome is the central 3'-5' RNA degradation machinery that performs a myriad 

roles critical for the health of a cell. The exosome associates with the MTR4 helicase, which 

binds and unwinds RNA substrates that are threaded through the exosome barrel for 

degradation. In several cases, MTR4 is targeted to specific RNA substrates via its association 

with adaptor proteins. Since MTR4 is a component of several exosome adaptor complexes, it 

was hypothesized that it might be recognizing the adaptor proteins via a common motif. The 

first results section of this thesis presents a study in which I identified and characterized the 

interactions of the MTR4 helicase with a pre-ribosome processing adaptor, NVL and the 

scaffolding and MTR4 activating component of the nuclear exosome targeting complex, 

ZCCHC8. I identified that the N-terminal regions of NVL and ZCCHC8 contain conserved 

sequences resembling the arch interacting motif (AIM) of the yeast rRNA processing factors. 

The structural and biochemical analysis indicate that these AIM-like motifs bind the MTR4 

arch domain in a manner similar to that of the AIMs described earlier in the literature. 

Overall, the results suggest that nuclear exosome adaptors have evolved canonical and non-

canonical AIM sequences to bind to human MTR4 and demonstrate the versatility and 

specificity with which the MTR4 arch domain can recruit a repertoire of different RNA-

binding proteins.  

 

 Recognizing RNA substrates for degradation is not only important in the nucleus but 

also in the cytoplasm. Nonsense mediated decay (NMD) is a cytoplasmic RNA decay 

mechanism which recognizes and degrades aberrant mRNA containing premature stop 

codons. It has also been shown to function in the regulation of physiological gene expression. 

SMG1, a 410 kDa PI3K related kinase, plays a crucial role in metazoan NMD by 

phosphorylating the UPF1 helicase. The phosphorylation of UPF1 was shown to be essential 

for the execution of NMD and represents the committed step of the NMD pathway. Although 

earlier low-resolution electron microscopic structures of human SMG1 along with some of its 

interacting partners were useful in gaining insight into the domain architecture of SMG1, the 

mechanism and regulation of SMG1 phosphorylation activity by SMG8-SMG9 remain 

poorly understood and are a subject of current research. The second results section presents a 

study, where I contributed to the characterization the C. elegans SMG8-SMG9 structurally 

and biochemically in an attempt to gain insights into the architecture of the complex and its 

possible biochemical role in NMD. The structure of the SMG8-SMG9 complex revealed that 
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the complex exists as G-domain heterodimer with nucleotide binding capabilities. In a later 

study, presented as the third part of the results section, I contributed to understanding of the 

architecture of the SMG1-SMG8-SMG9 complex. The results not only recapitulate the 

findings of the SMG8-SMG9 complex but also provide structural basis for the SMG8-SMG9 

interaction with SMG1. The structure also revealed that inositol-6-phosphate is a constitutive 

component of SMG1 and seems to play a role as a critical structural co-factor. The high-

resolution structure of SMG1-SMG8-SMG9 provides a basis for several follow-up structural 

and biochemical studies centered on the early steps of NMD.  
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1.0 PREFACE 

 

RNA surveillance, degradation and turnover are ubiquitous in all forms of life. The entire 

process involves a myriad of protein factors, each performing a specific yet significant role to 

identify and target RNA substrates at the right time. In spite of the decades of progress made 

in the field, several mysteries remain to be unraveled due to the sheer complexity of the RNA 

decay and turnover processes. The work summarized in this dissertation represents a small 

contribution to the enormous and challenging task of understanding RNA decay.  

 

 This dissertation is written in a cumulative style. Chapter two begins with a general 

introduction to the field of eukaryotic RNA surveillance and decay with a focused description 

of the pathways centered on the eukaryotic exosome. Interactions involving the nuclear 

exosome helicase MTR4 and the NMD kinase SMG1 are highlighted, as the questions 

addressed in the thesis are formed and developed around these two RNA decay factors. 

Chapter three includes the results culminated from the work1,2,3 performed since June 2014, 

in the form of three original manuscripts, each including its own introduction, detailed 

materials and methods, and results. Chapter four and five feature an extended discussion and 

a brief outlook based on the results described in chapter three and other relevant publications 

in the field. 

 

1. Lingaraju.M., Johnsen.D., Schlundt.A., Langer.L.M., Basquin.J., Sattler.M., Jensen.T.H., 

Falk.S., Conti.E. (2019). The MTR4 helicase recruits nuclear adaptors of the human RNA 

exosome using distinct arch-interacting motifs. Nat Comm 10, 3393.  

 

2. Liang.L., Lingaraju.M., Basquin.C., Basquin.J., Conti.E. (2017). Structure of a SMG8-

SMG9 complex identifies a G-domain heterodimer in the NMD effector proteins. RNA 23, 

1028-1034.  

 

3. Gat.Y., Schuller.J.M., Lingaraju.M., Weyher.E., Bonneau.F., Strauss.M., Murray.P.J., 

Conti.E. InsP6 binding to PIKKs revealed by the cryo-EM structure of a SMG1-SMG8-

SMG9 complex. Nat. Struc. Mol. Biol  12. 1089-1093. 
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2.0 INTRODUCTION 

 

RNA biogenesis and maintenance of steady state RNA levels is a very complex process. 

Carefully orchestrated processing steps often follow transcription before the RNA can be 

functional. The processes of transcription and post-transcriptional processing are prone to 

errors, creating a need for several surveillance mechanisms to identify and degrade spurious 

RNA, which might otherwise negatively impact cellular function. Finally, functional RNAs 

need to be targeted for timely degradation to facilitate efficient cellular function. Despite the 

seeming complexity, many RNA degradation and processing pathways share substantial 

similarities in the mechanism of substrate recognition and decay. At their core, all decay 

mechanisms involve RNA degrading enzymes (RNases), belonging to three classes, namely 

the 5'-3' exonucleases, the endonucleases, and the 3'-5' exonucleases. Exonucleases and 

endonucleases often function hand-in-hand with several other RNA decay factors which 

confer substrate selectivity (refer to Table 1 for a summarized list of eukaryotic RNAses and 

their functions). 

 

2.1 5'-3' EXORIBONUCLEASES AND ASSOCIATED FACTORS  

 

Of all the ribonucleases known, very few of the enzymes possess 5'-3' exoribonuclease 

activity. The majority of known 5'-3' exoribonucleases belong to the XRN superfamily of 

enzymes and play a crucial role in various cellular activities, reviewed in (Jones et al., 2012; 

Krzyszton et al., 2012; Nagarajan et al., 2013). XRNs are evolutionarily conserved Mg2+ 

dependent enzymes (Stevens, 1980) present in the nucleus (XRN2 and nuclear XRN1) and in 

the cytoplasm (XRN1). Non-XRN 5'-3' exoribonucleases like Rrp17p (Oeffinger et al., 2009) 

and enzymes possessing 5'-3' exonuclease and endonuclease activity like CPSF-73 (X. C. 

Yang et al., 2009) still function in conjunction with the XRNs (Eaton et al., 2018). 

 

Nuclear XRNs (XRN1 and XRN2) are involved in ribosomal processing, specifically 

in the internal transcribed spacer (ITS)-1 trimming steps (Sloan et al., 2013). The nuclear 

XRN1 has been implicated in DNA recombination and chromosome stability (Z. Liu et al., 

1995). XRN2 is involved in the processing of small nucleolar RNAs (snoRNAs) (C. Y. Lee 

et al., 2003), maturation of microRNAs (Zhang et al., 2017), and degradation of unspliced 

messenger RNAs (mRNAs) (Danin-Kreiselman et al., 2003) and telomeric repeat containing 

RNAs (Luke et al., 2008). Perhaps the most intensely studied function of XRN2 is its role in 
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transcription termination (Fong et al., 2015; West et al., 2004). However, the mechanism by 

which XRN2 functions to bring about the termination is not clear. Nuclear XRN1 and XRN2 

activities are functionally interchangeable in several cases (A. W. Johnson, 1997) except in 

the case of transcription termination (Dengl & Cramer, 2009).  

 

To elicit these functions, nuclear XRNs interact with associated co-factors that 

modulate their activity. In yeast, XRN2 is known to associate with Rai1, which moderately 

stimulates its activity (Xiang et al., 2009). Although higher eukaryotes possess respective 

Rai1 homologs (Xue et al., 2000), their role in modulating XRN2 activity remains poorly 

understood. XRN2 is also a component of the ternary complex TXT (Twi1-XRN2-Tan1), 

which plays a role in tRNA degradation and rRNA processing (Couvillion et al., 2012). In 

addition, some co-factors contain a conserved XRN2 binding domain, which possibly allows 

them to stabilize XRN2-substrate interactions, thus modulating XRN2 activity via a generic 

mechanism (Miki et al., 2014; Richter et al., 2016). 

 

 In the cytoplasm, XRN1 is found localized to P-bodies (Kulkarni et al., 2010; Sheth & 

Parker, 2003) where it is involved in all the major cytoplasmic mRNA decay mechanisms 

(detailed in section 2.5). There, it associates with the decapping machinery facilitating 

mRNA decay once decapping takes place (Coller & Parker, 2004). Cytoplasmic XRN1 also 

plays a crucial role in antiviral response where it is believed to interact with viral gag protein 

to target viral RNA for decay (Rowley et al., 2016)	and prevent viral replication (Y. Li et al., 

2015).  

 

2.2 ENDONUCLEASES 

 

Most cellular RNAs are modified at the 5' and 3' ends to protect them against exonucleases 

thereby extending their half-life. In many such cases, endonucleases are required to target and 

perform initial cleavage reactions in order to free the RNA to be processed by the 

exonucleases. Endonucleolytic activity is also critical for several RNA processing steps. In 

the nucleus, the endonucleolytic activity of Rnt1 is required for efficient termination of PolI 

and PolII transcription (El Hage et al., 2008). Rnt1 is also involved in the processing of 

snoRNAs (Chanfreau et al., 1998) and is specifically implicated in initiation of the 5' end 

processing of C/D box snoRNA (Grzechnik et al., 2018). The PIN domain endonucleases, 

UTP23, UTP24 and NOB1 are involved in rRNA processing, where their activities are 
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required for 18S RNA maturation (An et al., 2018; Lamanna & Karbstein, 2009; Wells et al., 

2017). Endonucleolytic activity of the cleavage and polyadenylation complex (CPSF) is 

required for site-specific cleavage of pre-mRNA prior to addition of the polyA tail (Ryan et 

al., 2004).  

 

  Endonucleolytic activity is central to protein complexes involved in microRNA 

pathways. The endonuclease activity of RNA-induced silencing complex (RISC) is believed 

to be predominantly cytoplasmic (Karginov et al., 2010), although endonucleases involved in 

the microRNA pathways also have roles in the nucleus (Gagnon et al., 2014). Human PMR1 

(Gu et al., 2012) acts in the microRNA pathway (Gu et al., 2016) upstream of Dicer 

processing and is activated in an estrogen-dependent manner. APE1 endonuclease, involved 

in c-myc mRNA regulation (W. C. Kim et al., 2010), is also believed to regulate Dicer 

activity.  

 

 Although there is substantial indirect evidence of endonucleolytic activity in various 

mRNA quality control pathways in the cytoplasm	 (Arribere & Fire, 2018; Doma & Parker, 

2006), very few bonafide endonucleases have been characterized. SMG6 is a bonafide 

endonuclease of the NMD pathway (Eberle et al., 2009; Gatfield et al., 2003; Huntzinger et 

al., 2008) (detailed in section 2.5.2).  Here it displays targeted endonucleolytic activity by the 

way of a 14-3-3-like domain to exert selectivity and a PIN domain for catalytic activity 

(Glavan et al., 2006). Recently, Cue2, another endonuclease, was shown to be recruited to 

stalled ribosomes and promote No-Go decay (NGD) in yeast	(D'Orazio et al., 2019; Glover et 

al., 2019).  

 

 IRE1 endonuclease (K. P. Lee et al., 2008) and the isoforms of the Zc3h12 zinc finger 

endonuclease, (Matsushita et al., 2009) play a role in the ER stress response and immune 

response, respectively, by regulating specific mRNA levels to elicit various signaling 

pathways.  
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Table 2.1: Summary of the major eukaryotic RNA degradation factors & their known functions  
   

Enzymes Associated co-factors Functions 
5'-3' decay   

XRN1  Ribosomal processing 
  DNA recombination and chromosome 

stability 
  Cytoplasmic RNA decay 
   

XRN2 Rai1 Small nucleolar RNA degradation 
 Twi1-Tan1 tRNA degradation and rRNA processing 
  Transcription termination 
   

Rrp17  Ribosomal processing 
   

CPSF-73 Component of cleavage and 
polyadenylation complex 

Histone pre-mRNA processing (putative) 

   
Endonucleases   

Rnt1  Transcription termination 
   

UTP23, UTP24, 
NOB1 

 rRNA processing 

   
CPSF-73 Component of cleavage and 

polyadenylation complex 
mRNA processing 

   
RISC, PMR1  Micro RNA processing 

   
APE1 Dicer c-myc mRNA regulation 

   
SMG6 UPF1 Nonsense mediated decay 

   
Cue2  No-go and Non-stop decay pathways 

   
IRE1, Zc3h12  ER stress response, immune response 

   
3'-5' decay    

   
Dss1 Component of mitochondrial 

degradosome 
Mitochondrial RNA degradation 

   
Pan2 Pan3 Deadenylation 

   
CCR4, Caf1 Components of the CCR4-NOT complex Deadenylation 

   
Rrp44 Component of the exosome General 3'-5' decay functions 
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2.3  3'-5' EXORIBONUCLEASES AND ASSOCIATED FACTORS 

 

3'-5' exoribonucleases often function together with the 5'-3' exoribonucleases and 

endonucleases, thereby completing the arsenal of eukaryotic RNA decay enzymes. Even 

though their roles appear to be redundant, they are indispensable and form a key aspect of the 

RNA metabolism (Ibrahim et al., 2008). There are primarily three distinct classes of 3'-5' 

exoribonucleases. The RNAse II enzymes are non-specific and have a preference for single-

stranded substrates. They are represented in eukaryotes by the Rrp44/DIS3 subunit of the 

exosome (Lorentzen et al., 2008; Robinson et al., 2015). The functional aspects of the 

exosome and its components will be detailed in later sections. Dss1 is another RNAse II 

superfamily enzyme present as a component of the mitochondrial degradosome (Razew et al., 

2018). The other two classes of 3'-5' exoribonucleases, which are beyond the scope of this 

thesis, are comprised of the DEDD and EEP superfamilies (Goldstrohm & Wickens, 2008). 

These enzymes are predominantly deadenylases and carry out most of their functional roles 

in the cytoplasm. 

 

2.4 THE EXOSOME – ARCHITECTURE 

 

The RNA exosome is an RNA decay complex contributing to the majority of the 3'-5' 

exoribonuclease activity targeting a variety of RNA substrates (Pefanis et al., 2014; 

Schneider et al., 2012). It is the most extensively characterized 3'-5' RNA decay factor since 

its discovery in yeast (Mitchell et al., 1997). The RNA exosome is ubiquitously present in the 

nucleus and the cytoplasm with varying subunit compositions. A scaffold of nine catalytically 

inactive subunits (Exo9) along with a 3'-5' exonuclease form the common core of the 

exosome. The Exo9 is comprised of six RNase PH-like domain-containing proteins (Rrp41, 

Rrp42, Rrp43, Rrp45, Rrp46, and Mtr3), which form the barrel of the exosome (Q. Liu et al., 

2006; Makino & Conti, 2013). Three S1/KH RNA-binding domain-containing proteins 

(Rrp4, Rrp40, and Csl4), cap the barrel from the top. The tenth subunit, Rrp44/Dis3 is a 

Mg2+-dependent 3'-5' exoribonuclease, which binds at the base of the Exo9 barrel and 

contributes to the central catalytic activity of the exosome (Dziembowski et al., 2007) (Fig. 

2.1a & 2.1b). Additionally, Rrp44 possesses an endonucleolytic activity provided by its PIN 

domain (Schaeffer et al., 2009; Schneider et al., 2009). Notably in humans, there are two 

homologs of the yeast Rrp44 – nuclear DIS3 and cytoplasmic DIS3L, resulting in 

compartment-specific variants of the exosome core (Tomecki et al., 2010).  
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 In addition to the core components, the nuclear exosome interacts with three more 

factors, catalytic Rrp6, Rrp47 (C1D in humans), and Mpp6 (Makino et al., 2015; Schuller et 

al., 2018) (Fig. 2.1a). Rrp6 is a distributive 3'-5' exonuclease. It binds to the top of the 

exosome barrel and is believed to control substrate threading to Rrp44 (Wasmuth et al., 

2014). While Rrp6 is an integral component of the nuclear exosome, it might have 

cytoplasmic functions apart from the exosome (Tomecki et al., 2010). Rrp6 interacts tightly 

with Rrp47 and together they help to recruit the helicase Mtr4 to the exosome	(Schuch et al., 

2014). Mpp6 is recruited to the exosome via Rrp40	(Falk, Bonneau, et al., 2017) and is also 

believed to stabilize the interaction of Mtr4 to the exosome core	 (Gerlach et al., 2018; 

Schuller et al., 2018; Zinder & Lima, 2017). Mpp6 has been reported to be required for 

Rrp44-dependent degradation (K. Kim et al., 2016).  

 

 

 
 

Figure 2.1: Representative architecture of the yeast nuclear and cytoplasmic exosomes.  

a) A possible model of the exosome barrel together with C1D (Rrp47 in yeast), MTR4 

helicase and associated cofactors shown to represent the nuclear exosome. b) A speculatory 

model of the core exosome barrel together with the Ski-complex shown to represent the 

functional cytoplasmic assembly of the exosome. The figure has been adapted from	(Zinder & 

Lima, 2017)  
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2.4.1 HELICASES IN EXOSOME-DEPENDENT RNA DECAY 

 

RNA substrates of the exosome often have complex secondary and tertiary structures 

requiring the RNA to be linearized before it can be threaded through the narrow entry pore of 

the exosome barrel. While bacterial degradosomes possess helicase activity (RNAseR, RhlB, 

RhlE) to deal with the complication of structured RNA (Khemici & Linder, 2018), the 

eukaryotic degradosomes recruit helicases that belong to the Ski2-like helicase branch of the 

SF2 superfamily (Jankowsky et al., 2011). The cytoplasmic exosome functions together with 

the Ski complex (Ski2-Ski3-Ski8) with Ski2 providing the helicase activity (Fig. 2.1b) 

(Anderson & Parker, 1998; Halbach et al., 2013) whereas the nuclear exosome functions 

together with the Mtr4 helicase (Fig. 2.1a) (Schuch et al., 2014; Schuller et al., 2018). 

 

 Ski2 and Mtr4 are DExH helicases with 3'-5' unwinding activity (Fig. 2.2) and share a 

very similar architecture	(Halbach et al., 2013; Halbach et al., 2012; Weir et al., 2010). They 

both harbor two highly conserved and essential RecA-like domains with sequence motifs 

involved in interactions with ATP and nucleic acid. In addition, both Ski2 and Mtr4 contain 

helical domains called the winged helix and ratchet domain that pack against the RecA 

domains in a manner reminiscent of Hel308 (Buttner et al., 2007). These additional helical 

domains in the exosome helicases seem to be functionally similar to their analogs in Hel308. 

In yeast Mtr4, the ratchet domain aids in RNA binding, and its deletion compromises the 

helicase activity	(Holub et al., 2012; Taylor et al., 2014). The nucleic acid binding properties 

of the conserved residues in the ratchet and helical domain region are believed to enforce 

directionality of unwinding	 (Buttner et al., 2007). In addition to the helical core, both Ski2 

and Mtr4 harbor a large insertion domain comprised of a helical stalk and a globular β-barrel 

domain (Fig. 2.2a & 2.2b). Although the sequence of the insertion domain is poorly 

conserved between the two helicases, its architecture is very similar. The insertion domain of 

the helicases has been shown to be involved in RNA binding and aid in substrate loading	

(Halbach et al., 2012; Weir et al., 2010).  

 

 The unwinding mechanism of Ski2 and Mtr4 is believed to be similar to that of 

Hel308, owing to highly similar structural features. A proposed model implicates that the 

helicases unwind the RNA in steps similar to the inchworm model of unwinding activity	

(Buttner et al., 2007; Tanner & Linder, 2001). ATP hydrolysis induces the conformational 

changes required for the translocation. Consistent with this model, single molecule studies 
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conducted with yeast Mtr4 have shown that the helicase unwinds RNA duplexes in steps of 

six base pairs and can perform only a single step of unwinding in the presence of a non-

hydrolysable ATP analog	 (Patrick et al., 2017). However, the exact mechanism of strand 

splitting in Ski2 and Mtr4 still remains to be unraveled. 

 

 
 

Figure 2.2: A comparison of the domain architecture of Mtr4 and Ski2 helicases 

a) A representation of the crystal structure of the Mtr4 helicase (PDB 2XGJ) highlighting the 

individual domains of the helicase. b) A representation of the crystal structure of Ski2 

helicase (PDB 4A4Z) highlighting the individual domains of the helicase. The figure has been 

adapted from (S. J. Johnson & Jackson, 2013). 
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Ski2 and Mtr4 interact with the exosome and provide a single-stranded 3' end of the 

RNA to be threaded through the barrel. Ski2 is constituent of the Ski complex	(Halbach et al., 

2013) and interacts with the exosome via Ski7 (Kowalinski et al., 2016). In the nucleus, Mtr4 

is recruited to the exosome via the nuclear specific components, Rrp6-Rrp47	(Schuch et al., 

2014) and Mpp6 (Falk, Bonneau, et al., 2017). Recent structural and biochemical studies 

have shown that the interactions of Mtr4 with the exosome lead to the formation of a 

continuous substrate-channeling path from the helicase through the barrel of the exosome	

(Gerlach et al., 2018; Schuller et al., 2018; Weick et al., 2018). 

 

2.4.2 FUNCTIONS OF THE NUCLEAR EXOSOME 

 

The nuclear exosome performs a variety of functions in the nucleus owing to a diversity of 

RNA substrates that need to be processed (Fig. 2.3). This section presents a brief summary of 

the various nuclear exosome targets. The first known function of the nuclear exosome is its 

role in pre-ribosomal RNA processing (Mitchell et al., 1997). In yeast, the activity of the 

nuclear exosome is required for the degradation of the 5' external transcribed spacer (ETS) in 

the process of maturation of 18S ribosomal RNA (de la Cruz et al., 1998). It is also 

implicated in the trimming of 21S pre-rRNA (Preti et al., 2013; Sloan et al., 2013). Finally, 

the nuclear exosome is also involved in the maturation of the pre-60S particle where it is 

responsible for the 7S to 5.8S rRNA processing step (Briggs et al., 1998; Schuller et al., 

2018). Apart from rRNA, the nuclear exosome aids in the processing of other stable RNAs 

such as small nuclear RNAs, small nucleolar RNAs, and tRNAs (Allmang et al., 1999). 

 

 Another important function of the exosome is the degradation of RNAs produced by 

cryptic transcription (Szczepinska et al., 2015; Wyers et al., 2005). The exosome has been 

shown to target cryptic unstable transcripts (CUTs), promoter upstream transcripts 

(PROMPTs), and enhancer RNAs (Preker et al., 2008; Szczepinska et al., 2015). In general, 

the exosome is also involved in the turnover of non-coding RNAs. 

 

 The nuclear exosome is involved in the quality control of mRNAs at various levels of 

mRNA processing. It degrades transcripts that terminated aberrantly and pre-mRNAs with 

retained introns (Bousquet-Antonelli et al., 2000; Schneider et al., 2012). It can as well target 

aberrant mRNPs that accumulate due to RNA packaging errors, as observed in yeast with 

mRNA export defects (Rougemaille et al., 2007). Apart from targeting aberrant mRNA, the 
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nuclear exosome is implicated in the regulation of gene expression. For instance, in S. pombe, 

the nuclear exosome along with associated specificity factors targets meiotic RNAs that are 

generated during mitotic growth (Harigaya et al., 2006). Furthermore, the exosome plays a 

role in spliceosome-mediated decay, degrading unstable products emerging from splicing of 

intron-less transcripts (Volanakis et al., 2013). 

 

 Apart from direct regulation of RNA levels, the nuclear exosome is believed to play 

an indirect role in the DNA damage response. The activity of the nuclear exosome is 

downregulated in response to agents that cause DNA damage thereby allowing for the 

stabilization of certain transcripts leading to the DNA damage response (X. Wang et al., 

2008). Moreover, the exosome is involved in maintaining genomic integrity by targeting R-

loops that make the genome vulnerable to double strand breaks (X. Li & Manley, 2006). 

 

 

 

 
 

Figure 2.3: A summary of the functions of the eukaryotic nuclear exosome. 

The individual components of the nuclear exosome are highlighted and labeled in the center 

of the figure as identified in (Weick et al., 2018). Several functions of the nuclear exosome 

are highlighted. 

 

 



	

	12	

2.4.3 SUBSTRATE RECOGNITION – ROLE OF EXOSOME ADAPTORS   

 

The diversity of the substrates that are processed or degraded by the exosome, especially in 

the nucleus, leads to an interesting conundrum. How can the exosome selectively recognize 

and recruit its substrate at the right time? Since the nuclear exosome relies on the helicase 

Mtr4 to unwind and ‘feed’ the substrates into the exosome barrel, Mtr4 has evolved to 

interact with several adaptor proteins that in turn target substrates to Mtr4 for unwinding (Fig. 

2.4).  

 

 The Trf4-Air2-Mtr4 polyadenylation (TRAMP) complex is among the first 

discovered and characterized exosome adaptors (LaCava et al., 2005; Vanacova et al., 2005). 

In S. cerevisiae, the complex is also present as TRAMP5 where Mtr4 associates with Trf5 

and Air1. Air1/2 are zinc finger proteins likely aid in substrate binding while Trf4/5 function 

as polymerases which add short poly(A) stretches to the 3' ends of RNA substrates (Holub & 

Vanacova, 2012; Schmidt & Butler, 2013). It is believed that these overhangs help load the 

helicase Mtr4 on to the structured RNA substrate to trigger unwinding and subsequent 

exosome threading (Jia et al., 2012). The TRAMP complex offers selectivity towards 

aberrant tRNAs (Kadaba et al., 2006), small nuclear and nucleolar RNA	 (Carneiro et al., 

2007; Grzechnik & Kufel, 2008) and aberrant RNA polymerase II products (Tudek et al., 

2014; Vasiljeva & Buratowski, 2006) via the Nrd1-Nab3-Sen1 complex through an 

interaction mediated via Trf4. The TRAMP complex in budding yeast has a similar 

architecture to that of fission yeast, albeit with a seemingly more specialized function	(Keller 

et al., 2010; Larochelle et al., 2012). A TRAMP-like complex is also present in metazoans 

and is composed of MTR4, PAPD5 (polymerase) and ZCCHC7 (Zinc finger protein)	(Lubas 

et al., 2011). However, the human TRAMP complex remains poorly characterized 

structurally and functionally. 

 

 In addition to the TRAMP complex, Mtr4 interacts with the ribosomal biogenesis 

factors Nop53 and Utp18, targeting the exosome to the pre-ribosome as indicated by studies 

in S. cerevisiae	(Thoms et al., 2015). Interaction of Mtr4 with Nop53 facilitates the trimming 

of the 5.8S rRNA extension, which is required for maturation of the pre-60S particle	(Falk, 

Tants, et al., 2017; Schuller et al., 2018). The Mtr4-Utp18 interaction, on the other hand, is 

believed to be involved in the degradation of the 5' ETS	(Thoms et al., 2015). In addition to 

Nop53 and Utp18, human MTR4 was shown to interact with early ribosome biogenesis 
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factors, WDR74 and NVL2 that take part in ITS1 processing	(Hiraishi et al., 2018; Hiraishi et 

al., 2015). However, the mechanisms of the role of the exosome in 21S pre-rRNA and ITS1 

processing remain to be elucidated	(Sloan et al., 2013). 

 

 Metazoan MTR4 complexes, specifically human MTR4, are much more diverse. The 

nuclear exosome-targeting complex (NEXT) is one of the central factors targeting various 

RNAs like PROMPTs, snRNA, and snoRNA	 to the exosome. This metazoan-specific 

complex is comprised of an RNA-binding protein, RBM7 (Hrossova et al., 2015), linked to 

MTR4 by the Zn-finger scaffold protein, ZCCHC8	(Falk et al., 2016; Hrossova et al., 2015; 

Lubas et al., 2011). iCLIP analysis revealed that RBM7 interacts with newly synthesized 

RNA indicating that NEXT functions in conjunction with several other RNA processing 

events	 (Hrossova et al., 2015; Lubas et al., 2015). Apart from providing RNA targeting 

abilities to NEXT, RBM7 and ZCCHC8 also promote helicase activity of MTR4	 (Puno & 

Lima, 2018). Phosphorylation of	 the NEXT complex regulates its RNA binding capabilities 

(Tiedje et al., 2015) allowing for the regulation of NEXT-dependent exosomal activity. 

 

 MTR4-ZFC3H1 represents yet another important exosome adaptor complex that 

possibly targets the exosome to transcripts containing poly(A) tails via the nuclear polyA 

binding protein (PABPN1)	 (Meola & Jensen, 2017; Ogami et al., 2017). A homologous 

interaction is also observed in S. pombe where Mtl1, an MTR4-like helicase and Red1, a 

multi domain zinc finger protein, along with several other factors form a large complex called 

MTREC	 (Zhou et al., 2015). Many factors of the MTREC complex have homologs in 

metazoans suggesting that the interaction space of ZFC3H1 could quite possibly be very 

complex. However, the validity of these potential complexes remains to be verified. 

Interestingly, MTR4-ZFC3H1 seems to function via a similar targeting mechanism as that of 

the NEXT complex	 (Silla et al., 2018). Through this complex, the exosome seems to be 

targeted towards pre-mRNAs and functionally competes with the export pathway to degrade 

retained transcripts. Taken together, NEXT and MTR4-ZFC3H1 seem to operate as if 

exosome targeting and degradation is the default fate of transcription, allowing them to target 

a wide variety of substrates, while still allowing for some degree of regulation (Bresson & 

Tollervey, 2018).  
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Figure 2.4: Human nuclear exosome adaptors and their localization. 

The figure represents a graphical visualization of the subnuclear localization of exosome 

components, MTR4 and associated complexes. The TRAMP complex and MTR4 interacting 

ribosome biogenesis factors are localized to the nucleolus whereas NEXT, PAXT and 

exosome regulator NRDE2 are localized to the nucleoplasm. 

 

2.4.4 EXOSOME ADAPTOR INTERACTION HOTSPOTS ON THE MTR4 

HELICASE 

 

While a complete picture of how Mtr4 could recruit several different factors is lacking, a 

wealth of structural and biochemical work has been performed in an effort to address this 

question. Examination of the existing literature suggests that Mtr4 is recruited to the various 

complexes through the catalytically active DExH core aided by the arch domain	(Falk, Tants, 

et al., 2017; Falk et al., 2014; Schuller et al., 2018; Thoms et al., 2015). 

 

 In yeast, Trf4 and Air2 interact with Mtr4 at the DExH core	 (Falk et al., 2014). 

Interestingly, NRDE2, a novel metazoan MTR4 interaction partner has also been shown to 

interact at the same site as Trf4	(J. Wang et al., 2019). Furthermore, the C-terminal domain of 

ZCCHC8 interacts at the same site as MPP6 indicating the presence of yet another hotspot on 

the DExH core of MTR4	(Puno & Lima, 2018; Weick et al., 2018).  
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 The arch domain of MTR4 has also been demonstrated to directly recruit ribosome 

biogenesis factors, Nop53 and Utp18 via a conserved arch interacting motif (AIM)	(Thoms et 

al., 2015). Biochemical and crystallographic evidence showed that a conserved arginine in 

the Mtr4 arch is crucial for the interaction with the AIM-containing Nop53	 (Falk, Tants, et 

al., 2017). The presence of the AIM in multiple unrelated Mtr4-interacting proteins, namely 

ribosome biogenesis factors Nop53 and Utp18, a zinc finger protein which is a component of 

the TRAMP complex, Air2, and a G-patch domain protein, Sqs1, suggests that it could 

function as a versatile motif to recruit several other MTR4-exosome adaptors	 (Losh & van 

Hoof, 2015; Thoms et al., 2015). Chapter 3.1 of this thesis provides further evidence in 

support of this hypothesis. 

 

2.4.5 FUNCTIONS OF THE CYTOPLASMIC EXOSOME 

 

The cytoplasmic exosome functions together with the Ski complex and plays a redundant role 

in cytoplasmic mRNA turnover. While XRN1 elicits the 5'-3' decay pathway following 

decapping, the exosome elicits 3'-5' decay following deadenylation. Studies in yeast have 

shown that at least one of the decay pathways needs to be viable for survival. Quantification 

of decay rates in yeast indicate that exosome-dependent decay is much slower than 

decapping-dependent decay. This is thought to be because of the rate limiting nature of 

deadenylation compared to decapping, reviewed in	 (Labno et al., 2016; Schaeffer et al., 

2011). In addition to its role in canonical mRNA turnover, the cytoplasmic exosome plays a 

key role in antiviral defense. Typical eukaryotic mRNAs have protective features like the 

poly(A) tail and the cap structure whereas many viral RNAs lack these features. Many host 

defense mechanisms rely on these differences to efficiently target and clear the invading 

RNAs. Similarly, exosomal targeting of viral RNAs could be imagined as an innate immune 

response. In fact, the first described function of the Ski complex is related to antiviral defense 

(Widner & Wickner, 1993). Recently, it was shown that the TRAMP-exosome, which is 

canonically a nuclear complex, migrates to the cytoplasm in response to the viral infection 

(Molleston et al., 2016).  

 

 In ways reminiscent of its nuclear function, the exosome plays a crucial role in 

mRNA surveillance in the cytoplasm. The exosome and XRN1 rely on specific factors that 

recognize and target aberrant mRNA for degradation. The degradation of these faulty mRNA 

is much more rapid and allows for “easier” exosome-based degradation because the rate 
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limiting step of deadenylation is bypassed by endonucleases. There are three major mRNA 

surveillance pathways in the cytoplasm, all of which culminate in degradation by the 5'-3 'and 

3'-5' decay pathways. They are termed non-stop decay (NSD), no-go decay (NGD) and 

nonsense-mediated decay (NMD) based on aberrations in the mRNA caused by the lack of a 

stop codon, a block to translation or a spurious stop codon, respectively. Exosomal decay of 

mRNA is also the final step of several gene regulation pathways like ARE-mediated decay	

(Haile et al., 2003), micro-RNA mediated decay	(Valencia-Sanchez et al., 2006) and Staufen-

mediated decay	(Park & Maquat, 2013).  

 

2.5 mRNA SURVEILLENCE PATHWAYS – PREAMBLES TO 

EXOSOME/XRN1-MEDIATED DECAY 

 

2.5.1 NO-GO AND NON-STOP DECAY PATHWAYS 

 

Both NGD and NSD pathways seem to be initiated in response to ribosome stalling. The 

NGD pathway targets mRNA substrates with features that would cause the ribosome to stall 

before reaching the end of the message	 (Doma & Parker, 2006) (Fig. 2.5a). NSD targets 

mRNAs lacking a stop codon where a ribosome might stall on a truncated mRNA codon or 

on a message without an in-frame stop codon causing the ribosome to translate the poly(A) 

tail and thus stall	(Vasudevan et al., 2002) (Fig. 2.5b). Despite the substrates being seemingly 

different, NGD and NSD have several unifying features. Furthermore, an NGD substrate 

would become an NSD-like substrate after an endonucleolytic cleavage. The secondary stall 

formed in the upstream translating ribosome would result in an NSD-like scenario where the 

ribosome is stalled at the end of the message, reviewed in (Graille & Seraphin, 2012; Lykke-

Andersen & Bennett, 2014; Shoemaker & Green, 2012; Simms et al., 2017). Finally, both 

NGD and NSD would require similar resolution mechanisms to recognize and rescue stalled 

ribosomes. 

 Two central factors involved in NGD and NSD related ribosomal rescue mechanisms 

are Dom34 (or Pelota in metazoans) and Hbs1	 (Saito et al., 2013; Shoemaker et al., 2010). 

They are structurally related to the canonical termination factors eRF1 and eRF3 and 

therefore interact directly with the empty aminoacyl site (A-site) of the ribosome	(Hilal et al., 

2016). However, unlike the canonical release factors, Dom34-Hbs1 lack the hydrolytic 

activity required to release the nascent chain (Pisareva et al., 2011). Structural evidence has 

shown that Hbs1 possibly prevents Dom34 from binding actively translating ribosomes 
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thereby acting as a sensor of translational status	 (Hilal et al., 2016). while Dom34, once 

bound to the empty A-site promotes ribosomal splitting by Rli1/ABCE1	 (Shoemaker & 

Green, 2011). Cryo-electron microscopic (Cryo-EM) analysis revealed that Dom34-Hbs1 

bind to NGD and NSD stalled ribosomes in a similar manner suggesting a general 

mechanism of ribosomal rescue	(Becker et al., 2011; Hilal et al., 2016). However, the exact 

role of Dom34 and Hbs1 in NSD remains to be elucidated. Another unifying feature of the 

two quality control pathways is the necessity for an endonucleolytic cleavage event to trigger 

the pathway. Recently, Cue2 endonuclease was shown as the competent endonuclease 

required for NGD via Xrn1-mediated decay and possibly NSD substrates	 (D'Orazio et al., 

2019).  

 

 Even though the exosome possibly has a role in the clearance of both NGD and NSD 

substrates, the exosome-associated Ski complex has been shown to play a key role in 

recognizing NSD substrates	 (van Hoof et al., 2002). While all components of the Ski 

complex are required for promoting the degradation of both normal mRNAs and NSD 

substrates, the C-terminal domain of Ski7 seems to be specifically involved in recognizing 

NSD substrates	(van Hoof et al., 2002). Given that Ski7 shares structural similarity to Hbs1, 

it is possible that the role of Dom34: Hbs1 in NSD is much more complex than previously 

envisioned. Furthermore, endonucleolytic activity of the exosome in yeast seems to play a 

role in NSD (Schaeffer & van Hoof, 2011) indicating a more central role for the cytoplasmic 

exosome in clearing NSD substrates. However, further research is required to clearly 

understand the role of endonucleolytic activity of the exosome in NSD. 
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Figure 2.5: Cartoon representation of the No-go and Non-stop decay mechanisms 

a) A cartoon representation of the no-go decay pathway where a strong mRNA secondary 

structure results in stalling of the ribosome. The ribosome stall triggers the recruitment of the 

Dom34-Hbs1 complex resulting in the resolution of the stall and subsequent clearance of the 

aberrant mRNA by the exosome and XRN1. b) A cartoon representation of the non-stop RNA 

decay pathway highlighting a model where Ski7 mimics the tRNA and binds to the A-site 

triggering the recruitment of the cytoplasmic exosome. The figure has been adapted from 

(Garneau et al., 2007). The graphics are not to scale and do not represent the true 

architecture of the protein complexes. 

 

2.5.2 NONSENSE-MEDIATED DECAY 

 

Nonsense-mediated decay (NMD) is a conserved quality control pathway in eukaryotes, 

recognizing and degrading faulty mRNAs that contain premature termination codons. 

Although several NMD factors and aspects of NMD were first described based on work 

carried out in yeast and nematodes, only the current mechanistic view of EJC-dependent 

mammalian NMD is discussed here (Fig. 2.6).  

 

 A mammalian splicing-dependent NMD substrate is defined based on the location of 

the stop codon with respect to the exon junction complex (EJC). The EJC is deposited upon 

splicing in the nucleus, about 20-24 nucleotides upstream of splice junctions	 (Le Hir et al., 

2000). The EJC forms a binding platform for the NMD trans-acting factors in the cytoplasm 

and appears to coordinate with the terminating ribosome. NMD is believed to be elicited if a 

ribosome terminates at a premature termination codon (PTC) that is at least 50-55 nucleotides 

upstream of a splice junction, i.e. at least ~20 nucleotides upstream of an EJC. It is possible 

that this minimal distance reflects the physical space taken up by protein-protein interactions 

between the terminating ribosome and the EJC, but the nature of these interactions is not well 

understood. 

 

 The initiation of NMD is a complex process and involves several transacting factors 

organized around the EJC. The core NMD factors are the up-frame shift proteins UPF1, 

UPF2 and UPF3 (so named from studies in yeast) (Karam & Wilkinson, 2012). The 

metazoan-specific NMD trans-acting factors that were originally identified from screens in C. 

elegans include the proteins SMG1, SMG5, SMG6, and SMG7	(Hodgkin et al., 1989; Pulak 
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& Anderson, 1993).	More recently, the additional factors SMG8 and SMG9 (Yamashita et 

al., 2009) and DHX34 and NAG/NBAS	(Longman et al., 2007) have been identified. Finally, 

eukaryotic release factors (eRF1 and eRF3) that are found on terminating ribosomes as well 

as the poly(A) binding protein (PABPC1) are also known to be involved in the NMD 

pathway.  
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Figure 2.6: Initial steps of the EJC-dependent NMD pathway. 

The first panel shows a model of a typical NMD substrate, which contains a premature 

termination codon upstream of the exon-junction complex. The second panel highlights the 

requirement of a minimal distance of 50-55 nucleotides between the stalled ribosome and the 

exon-junction complex, which triggers the recruitment of UPF1 and SMG1 via an unknown 

mechanism. The conversion of the surveillance complex (SURF) to the decay-inducing 

complex (DECID) is represented in panels 3 and 4. The figure has been adapted from 

(Kurosaki et al., 2019). The graphics are not to scale and do not represent the true 

architecture of the protein complexes. 

 

 Although several aspects of NMD are debated, a consensus has emerged from studies 

over the years. The key NMD factor UPF1 is an RNA helicase. The ATPase activity of UPF1 

is essential for NMD and is thought to be required to remodel the messenger 

ribonucleoprotein particles (mRNP). mRNP remodeling would make the RNA accessible to 

the action of exoribonucleases	(Franks et al., 2010). Degradation and recycling of the mRNA 

and associated proteins are the final steps of NMD and are the result of a coordinated series 

of events. 

 

 The function of UPF1 is regulated by protein-protein interactions and post-

translational modifications. The ATPase activity of UPF1 is switched on by the binding of 

UPF2	(Chakrabarti et al., 2011; Clerici et al., 2009). UPF2 interacts with UPF3 (Kadlec et al., 

2004), which in turn binds the EJC	 (Buchwald et al., 2010). In metazoans, the helicase 

domain of UPF1 is flanked by N- and C-terminal unstructured regions, which are the sites of 

phosphorylation by SMG1 (Okada-Katsuhata et al., 2012). UPF1 phosphorylation is an 

important signal to recruit SMG6 and the SMG5-SMG7 heterodimer. These are multidomain 

proteins with phospho-serine binding 14-3-3 like domains (Fukuhara et al., 2005; Jonas et al., 

2013). SMG6 endonucleolytically cleaves the NMD target (which is a committed step 

towards its degradation) via its PIN domain (Eberle et al., 2009; Glavan et al., 2006). SMG5 

and SMG7 bring the transcript to P bodies, which are the site of decapping and 5'-3' 

degradation, and recruit the phosphatase that dephosphorylates UPF1	 (Chiu et al., 2003; 

Unterholzner & Izaurralde, 2004).  

 

 The phosphorylation and dephosphorylation cycle of UPF1 is essential for metazoan 

NMD (Chang et al., 2007). However, how and when it occurs is unclear. Unphosphorylated 



	

	22	

UPF1 is found together with eRF1, eRF3 and SMG1 as part of the so-called SURF complex 

as identified by co-immunoprecipitation studies (Kashima et al., 2010). Although the validity 

of the model remains uncertain, it suggests that SURF-bound UPF1 interacts with the 

downstream UPF2-UPF3-bound EJC to form the so-called decay-inducing (DECID) 

complex. In this context, UPF1 is believed to be phosphorylated; inducing the decay of the 

mRNA it is bound to. The two possible regulators of SMG1 (SMG8-SMG9) are part of the 

SURF complex	 (Yamashita et al., 2009), and are likely involved in controlling timely 

activation of the kinase activity. Similarly, SMG1-UPF1 has been recently shown also to 

interact with UPF2	 (Melero et al., 2014) and with the ATPase DHX34 (Hug & Caceres, 

2014). These early steps in NMD centered on SMG1 and the SURF complex are poorly 

understood at the mechanistic and structural level.  

 

2.5.2.1 SMG1 KINASE – THE GATE KEEPER OF NONSENSE-MEDIATED DECAY 

 

The committed step of metazoan NMD is phosphorylation of UPF1 by SMG1 kinase, which 

triggers the recruitment of the endonuclease SMG6	 (Chakrabarti et al., 2014; Eberle et al., 

2009). As such, understanding how SMG1 is recruited to an NMD event and how its activity 

is regulated is critical for understanding NMD.  
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Figure 2.7 Low resolution architecture of SMG1 and SMG1-SMG8-SMG9 (SMG1C) 

Architecture of SMG1 showing the C-terminal head domain comprised of the FAT, FRB and 

the kinase domain and the N-terminal HEAT repeat arm. The HEAT repeat density is fitted 

with the homology model and the head density is fitted with the structure of mTOR by the 

authors. The lower panel shows how the HEAT repeat region undergoes a conformational 

change upon SMG8-SMG9 binding. The figure has been adapted from (Melero et al., 2014). 

  

SMG1 is a large multi domain kinase of about 410 kDa in humans. It belongs to the 

phosphatidylinositol (PI) 3-kinase-related kinase (PIKK) family and shares a similar 

architecture with other mammalian PIKKs	 (Grimson et al., 2004). Low-resolution EM 

analyses have revealed that SMG1 forms a two-lobed structure (Fig. 2.7). The larger lobe (the 

so-called ‘head’) appears to include the C-terminal part of the polypeptide amounting to 

about two thirds of the molecule. This C-terminal region is expected to contain a FAT 

domain, a PIKK-like kinase domain, a poorly understood insertion domain that possibly 

plays a role in substrate recruitment and a small C-terminal FATC domain (Arias-Palomo et 

al., 2011; Deniaud et al., 2015; Melero et al., 2014). Attached to the ‘head’ is an extended 

‘arm’ that is likely to be formed by the N-terminal HEAT-repeat region amounting to about 

one third of the polypeptide	(Deniaud et al., 2015; Melero et al., 2014). 

 

 Almost all the domains of SMG1 were directly, or indirectly shown to have a role in 

regulating its kinase activity	 (Morita et al., 2007). UPF1, the physiological substrate of 

SMG1 is recruited to the head region as shown by the low-resolution EM studies.  

Biochemical analysis revealed that the phosphorylation sites on UPF1 are located at both the 

N-terminus and C-terminus of the helicase. The ‘head’ region of SMG1 was also shown to 

interact with the helicase DHX34	(Melero et al., 2016). Although, the exact role of DHX34 in 

NMD is unclear, it has been hypothesized that DHX34 interacts preferentially with 

unphosphorylated UPF1 and promotes the interaction of SMG1 with other NMD factors	

(Melero et al., 2016). Another NMD factor that is believed to affect SMG1 catalytic activity 

via an interaction at the ‘head’ region is UPF2. Initially, it was believed that UPF2  

modulates SMG1 activity in an allosteric manner	 (Melero et al., 2014). However, a later 

study found that UPF2 functions possibly in substrate release and sequestering 

phosphorylated UPF1 away from SMG1	 (Deniaud et al., 2015). Biochemical analysis of 

SMG1 identified key mutations in the FATC domain that affected its activity suggesting a 

structural rearrangement of the kinase domain with respect to the FATC domain upon 
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substrate binding	(Morita et al., 2007). Indeed, low-resolution EM studies comparing SMG1 

and a UPF1-bound state of SMG1 indicate a rearrangement near the ‘head’ region of SMG1	

(Melero et al., 2014). The N-terminal heat repeat region is known to recruit the G-domain 

containing proteins, SMG8 and SMG9. Structural studies have shown that the N-terminal 

region undergoes a significant conformational change upon binding SMG8. In addition, 

SMG8-SMG9 mutants were shown to effect the stability of PTC-containing transcripts	

(Yamashita et al., 2009), and deletion of the N-terminal region of SMG1 resulted in a loss of 

kinase activity indicating a regulatory role of SMG8-SMG9 via the N-terminal region of 

SMG1	 (Morita et al., 2007). However, the exact mechanism of this regulation is poorly 

understood with in vitro data showing that SMG8 suppresses the kinase activity of SMG1 

while in vivo data shows that SMG8-SMG9 are required for productive NMD. 

 

 Despite the wealth of biochemical and low-resolution structural data, lack of a high-

resolution structure of SMG1 and its complexes have strongly hindered understanding the 

mechanistic basis of the initial steps of NMD and rationalization of the biochemical data.  
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2.6 AIM AND SCOPE OF THE THESIS 

 

One of the most interesting questions in RNA decay is how substrates are accurately 

recognized. As described in the section 2.4.3, the Mtr4 helicase seems to play a crucial role in 

directing the activity of the nuclear exosome by participating in various complexes that 

localize in distinct compartments in the nucleus. The work performed in this thesis builds on 

the hypothesis that certain exosome adaptors are recruited to MTR4 via a conserved motif 

known as the ‘arch interacting motif’	 (Thoms et al., 2015). The research questions were 

designed to explore whether the arch interacting motif identified in ribosome biogenesis 

factors could be a more general motif, thus establishing recruitment of exosome adaptors via 

the Mtr4 KOW domain as a general interaction mechanism. This thesis question is addressed 

by structural and biochemical characterization of the interactions of MTR4 with an early 

ribosomal biogenesis factor, NVL and with ZCCHC8, the scaffolding and MTR4 stimulating 

factor of the NEXT complex.  

 

 Additional work that contributed to the thesis explores the architecture of the SMG1-

SMG8-SMG9 complex. Despite a wealth of low-resolution structural and biochemical work, 

many of the findings have yet to be rationalized at a structural level. Structural basis for the 

activity and function of the SMG1 kinase could potentially lead to new testable hypotheses 

regarding the early steps of NMD. Work performed as part of the thesis lead to the 

establishment of a robust expression system for the SMG1-SMG8-SMG9 complex that 

culminated in productive structural studies.  
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3.0 RESULTS 
 
3.1 CHARACTERIZATION OF MTR4-EXOSOME ADAPTOR INTERACTIONS 
 
Lingaraju.M., Johnsen.D., Schlundt.A., Langer.L.M., Basquin.J., Sattler.M., Jensen.T.H., 

Falk.S., Conti.E. (2019). The MTR4 helicase recruits nuclear adaptors of the human RNA 

exosome using distinct arch-interacting motifs. Nat Comm 10, 3393.  

 
 
This study characterizes the interactions of MTR4 with ZCCHC8 and NVL. The results 

demonstrate that both ZCCHC8 and NVL harbor an arch interacting motif extending the 

repertoire of the motif to recognize and bind the MTR4 KOW domain.  

 

 The work was performed under the supervision of Dr. Falk S. and Prof. Conti E. 

Lingaraju M. participated in the design of the project, crystallography and biochemical 

analysis. The collaborators contributed to in cellulo experiments and NMR analysis. Detailed 

author contributions are included in the attached article.  
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The nuclear exosome and its essential co-factor, the RNA helicase MTR4, play crucial roles in

several RNA degradation pathways. Besides unwinding RNA substrates for exosome-

mediated degradation, MTR4 associates with RNA-binding proteins that function as adaptors

in different RNA processing and decay pathways. Here, we identify and characterize the

interactions of human MTR4 with a ribosome processing adaptor, NVL, and with ZCCHC8,

an adaptor involved in the decay of small nuclear RNAs. We show that the unstructured

regions of NVL and ZCCHC8 contain short linear motifs that bind the MTR4 arch domain in a

mutually exclusive manner. These short sequences diverged from the arch-interacting motif

(AIM) of yeast rRNA processing factors. Our results suggest that nuclear exosome adaptors

have evolved canonical and non-canonical AIM sequences to target human MTR4 and

demonstrate the versatility and specificity with which the MTR4 arch domain can recruit a

repertoire of different RNA-binding proteins.
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Eukaryotic cells generate a multitude of RNA species that
require timely maturation and decay to maintain a healthy
transcriptome. A central machinery in nuclear RNA pro-

cessing, quality control and decay pathways is a conserved 3′–5′
exoribonuclease complex known as the RNA exosome (reviewed
in1,2). Most mechanistic studies to date have analyzed the RNA
exosome from S. cerevisiae, the species in which it was originally
identified 20 years ago3. The yeast exosome consists of a 10-
subunit core complex (Exo10)4, the activity of which depends on a
single processive exoribonuclease (Rrp44, also known as Dis3)5,6.
The Exo10 core is present in both nuclear and cytoplasmic
compartments, but its cofactors and regulators have distinct
subcellular localizations (reviewed in1,2). In the nucleus, Exo10 is
bound to the distributive ribonuclease Rrp6 and its associated
protein Rrp47 as well as to the Mpp6 protein7–9. Together, Rrp6-
Rrp47 and Mpp6 recruit the RNA helicase Mtr4 to the exo-
some10–12. Orthologues of all these 14 proteins exist in human
cells, and engage in similar interactions to form the corre-
sponding human nuclear exosome complex12,13.

In both yeast and humans, the nuclear helicase Mtr4/MTR4 is
central to exosome function2,14,15. First, it functions as an enzyme
to remodel ribonucleoprotein (RNP) substrates with its 3′–5′
unwinding activity, and to present the unwound RNA substrate
to the exosome core12,16. Furthermore, it functions as a binding
platform for RNA-binding adaptors, providing the primary
interactions to transcripts subjected to exosomal degradation in
both RNA processing and decay pathways17,18. For example, S.
cerevisiae Mtr4 binds Nop53, a ribosome biogenesis factor that
recruits the exosome for a late step in rRNA processing, namely
the trimming of ITS2 (Internal Transcribed Spacer 2). Two other
factors, Trf4 and Air2, bind Mtr4 to form the so-called TRAMP
complex19–21, which allows the exosome to target aberrant
tRNAs22, rRNAs and small nuclear and nucleolar RNAs (sn/
snoRNAs) for decay23. Higher eukaryotes not only have ortho-
logues of Nop53 and TRAMP, but also have an increased number
of nuclear exosome adaptors. In human cells, MTR4 has been
reported to interact with the early ribosome biogenesis factors
WDR74 and NVL, which take part in the processing of ITS1
(Internal Transcribed Spacer 1)24,25. Human MTR4 also binds to
two large Zinc-finger proteins, ZCCHC8 and ZFC3H1. ZCCHC8
interacts with MTR4 and the RNA-binding protein RBM7 to
form the trimeric Nuclear EXosome Targeting (NEXT)
complex17,26, which targets enhancer RNAs (eRNAs), promoter
upstream transcripts (PROMPTs) and intronic RNAs for
exosome-mediated decay27. ZFC3H1 instead directs MTR4 and
the nuclear exosome to polyadenylated nuclear RNAs by con-
necting to the nuclear poly(A) binding protein PABN128–30.
Furthermore, MTR4 binds NRDE-2, a negative regulator that
prevents the nuclear exosome from targeting RNAs that should
be exported to the cytoplasm31.

How does the nuclear exosome helicase mediate binding to
such a diverse and functionally distinct set of proteins? Structural
studies have shown that yeast Mtr4 contains an unstructured N-
terminal region, a DExH helicase core and an ‘arch’ domain with
a globular Kyprides, Ouzounis, Woese (KOW) domain14,32. All
Mtr4 domains are involved in protein-protein interactions: the N-
terminal region binds Rrp6-Rrp4711, the helicase core binds
Mpp6 as well as Trf4-Air233,34 and the KOW domain binds a
short sequence known as ‘arch-interacting motif’ that is present
in Nop53, Utp18, and Air235,36. In the case of human MTR4,
both the arch domain and the DExH helicase core bind NRDE-
231. Structural data have also elucidated how the helicase core of
human MTR4 binds a region of ZCCHC837. This protein is
however expected to harbor another MTR4-binding region37,
which remains to be identified. Also unclear is how other human
MTR4-binding proteins are recognized. With the exception of the

expected AIM sequence in the human NOP53 orthologue (also
known as GLTSCR2) and in NRDE-231, there is no consensus
motif that can be identified with confidence at the sequence level
in other MTR4-binding factors. Here, we used a combination of
biochemical studies, X-ray crystallography and nuclear magnetic
resonance (NMR) experiments to obtain mechanistic insights
into how human MTR4 interacts with two metazoan RNA exo-
some adaptors: the RNA processing factor NVL and the RNA
decay factor ZCCHC8.

Results
The unstructured region of human NVL interacts with MTR4.
The nuclear VCP-like (NVL) protein, also known as NVL2, is a
ribosome biogenesis factor of the AAA-ATPase family that has
been reported to interact with human MTR438. NVL is a multi-
domain protein characterized by an N-terminal nucleolin-bind-
ing domain (residues 10–74)39 and a linker region (residues
76–266) followed by two globular domains, characteristic of
AAA-ATPases that are responsible for catalytic activity (Fig. 1a,
Supplementary Fig. 1a). Bioinformatic analyses suggested that the
linker region is mostly unstructured (residues 76–239) (Supple-
mentary Fig. 1b). In other AAA-ATPases, unstructured regions
upstream of the catalytic domains often mediate protein-protein
interactions40–42. To test if the portion upstream of the NVL
catalytic domains mediates the interaction with MTR4, we
expressed and purified the N-terminal region of human NVL
tagged with thioredoxin (Trx) as the prey protein (Trx-NVL1–266)
and the structured portion of MTR4 tagged with glutathione-S-
transferase (GST) as the bait protein (GST-MTR4-∆N). In these
assays, Trx-NVL1–266 specifically co-precipitated with GST-
MTR4-∆N (Fig. 1b, lane 11, compare with GST control in lane 9).
Interestingly, pull-down assays with the recombinant yeast
orthologues showed that the N-terminal unstructured region of
Rix7 does not interact with yeast Mtr4 (Supplementary Fig. 1c),
indicating that the interaction between human NVL and MTR4 is
not conserved in S. cerevisiae.

We narrowed down the MTR4-interacting region of human
NVL based on bioinformatic analysis. Sequence alignments
showed that the N-terminal unstructured region of NVL contains
an insertion that is present in the human protein and other
chordates but not in the yeast orthologue (Supplementary Fig. 1a).
Upon testing whether this insertion is responsible for the
interaction with human MTR4, we found that a construct
encompassing the conserved portion of the human NVL insertion
spanning residues 167–216 (Supplementary Fig. 1a) was indeed
able to co-precipitate with GST-MTR4-∆N in pull-down assays
(Fig. 1b, lane 14, Trx-NVL167–216). Thus, the MTR4-binding
determinants of NVL reside in an unstructured region that is
present in the human orthologue and more generally in chordate
NVL proteins, but not in lower eukaryotes.

NVL targets the MTR4 KOW domain. To identify where the
MTR4-binding determinants for NVL reside, we performed GST
pull down assays with MTR4 constructs harboring the DExH core
of the helicase (GST-MTR4∆N∆arch) and the KOW domain
(GST-MTR4 KOW). Neither Trx-NVL1–266 nor Trx-NVL167–216
co-precipitated with GST-MTR4-ΔNΔarch (Fig. 1b, lanes 12 and
15). In contrast, the KOW domain characteristic of the MTR4
arch (GST-MTR4-KOW) was able to co-precipitate both Trx-
NVL1–266 and Trx-NVL167–216 (Fig. 1b, lanes 13 and 16). We
quantified the strength of the interaction by biophysical approa-
ches. Using microscale thermophoresis (MST), we measured a
dissociation constant of ~1 µM between a YFP-tagged version of
NVL167–216 and MTR4-KOW (Fig. 1c). A similar dissociation
constant was obtained when testing the interaction of NVL167–216
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and MTR4-∆N using isothermal titration calorimetry (ITC)
(Supplementary Fig. 1d). The fact that the KOW domain alone
binds NVL167–216 as strongly as MTR4-∆N indicated that the
NVL167–216 binding region resides within the KOW domain.

We proceeded to characterize the NVL167–216-binding site of
MTR4 with structural approaches. Using NMR spectroscopy, we
confirmed that the MTR4-KOW domain has a sequential
arrangement of secondary structure elements consistent with
the fold observed in a recent crystal structure of an MTR4-
NRDE-2 complex31, namely a five-stranded β-sheet flanked by a
long C-terminal helix and containing smaller helical segments
within loops (Supplementary Fig. 2). We then carried out
titration experiments using a 15N-labelled MTR4-KOW protein
and adding increasing amounts of unlabeled NVL167–216. In line
with a dissociation constant of ~1 µM, we observed an
intermediate exchange regime for most of the peaks during the
titration in HSQC (heteronuclear single quantum coherence)
spectra. Chemical shift perturbations (CSP) measured upon
NVL2167–216 addition revealed significant effects (Fig. 2a–c) with
clusters of strongly shifting peaks around residues 658, 695, 743,
and 764. From the NMR analysis of the NVL167–216 - MTR4-
KOW interaction, the CSPs were very similar to those we had

previously reported for the yeast Nop53-Mtr4 KOW interaction36
(Supplementary Fig. 3a, 3b). Consistently, a reverse-charge
substitution of Arg743 (R743E mutant) impaired the binding of
both NVL167–216 (pull-down assays in Fig. 2d, lane 8) and of the
human Nop53 orthologue (Supplementary Fig. 3c).

Identification of W-AIM: a tryptophan arch-interacting motif
of NVL. Given that NVL167–216 binds the KOW domain of
MTR4 similarly to Nop53, we expected the presence of a similar
AIM motif. A stretch of amino acids within this segment (NVL
residues 185–190) appeared to show significant sequence simi-
larity to the Nop53 AIM sequence (Fig. 3a). Surprisingly in this
context, the F186A and D189R mutations in the Nop53-like
stretch did not affect NVL167–216 binding to MTR4 in a pull-
down assay with recombinant proteins (Fig. 3b, compare lanes 5
and 6), indicating that this segment is not a bona-fide AIM. To
identify the arch-interacting motif in NVL167–216, we analyzed
the sequences from different species in terms of evolutionary
conservation. We noticed that vertebrates feature a conserved
hydrophobic segment GWFIDKTP (residues 172–179, Fig. 3a;
Supplementary Fig. 1a). Mutations in this segment (W173A,
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(lanes 9–16) were analyzed on 15% SDS-PAGE gels stained with coomassie brilliant blue. c Microscale thermophoresis experiment with MTR4 KOW and
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I175E) either abolished or impaired NVL167–216 binding to
MTR4∆N in pull-down assays in vitro (Fig. 3b, lanes 7 and 8),
suggesting that this stretch functions as an arch-interacting motif,
which we coin ‘tryptophan-centered arch - interacting motif’ (W-
AIM).

We co-crystallized the NVL W-AIM peptide in complex with a
construct of human MTR4 encompassing both the DExH core
and the arch domain (residues 70–1042) (Table 1). The overall
structure of the helicase is similar to that of the human NRDE-2-
MTR4 complex31, but with a notably different conformation of
the arch domain. In the NVL-bound crystal structure, the arch
domain of MTR4 is an open conformation, with the KOW
domain clearly separated from the helicase core (Fig. 3c and
Supplementary Fig. 4a). The NVL W-AIM polypeptide chain
binds in an extended conformation, similar to that reported for
NRDE-231, Nop5336 and Air234 (Supplementary Fig. 4b, 4c). The
hydrophobic side chains of Trp173NVL, Phe174NVL, and
Ile175NVL contact Val766MTR4, Tyr745MTR4, and Val742MTR4
respectively, while Asp176NVL interacts with Arg743MTR4
(Fig. 3d). The NVL polypeptide chain then forms a pronounced
bend at Pro179NVL (which contacts Phe653MTR4) and continues
to form a crystal contact, docking at the Trf4-binding site of a
symmetry related helicase core (Supplementary Fig. 5a).

Consistent with the structural data, mutation of Asp176NVL
(D176A mutant) impairs the binding of NVL167–216 to MTR4∆N
in a GST pull down experiment (Supplementary Fig. 5b).

Finally, we tested the effect of the MTR4-interacting residues of
NVL in human cells. To this end, we carried out co-
immunoprecipitation (co-IP) assays in HeLA cells stably expres-
sing MTR4 with an eGFP ‘localization and affinity purification’
(LAP) tag at the N-terminus and transiently expressing FLAG-
tagged full-length NVL constructs (wild type, or with the W173A/
I175A mutation or with deletion of the entire hydrophobic
segment). Western blotting analysis confirmed that wild type
NVL bound MTR4 and that disruption of the 172–180 segment,
either by mutation or deletion, impaired the NVL-MTR4
interaction (Fig. 3e, compare lanes 8, 9, 10). Taken together, we
conclude that NVL interacts with the KOW domain of MTR4
using a short linear W-AIM sequence. The NVL W-AIM is more
hydrophobic than the Nop53 AIM35, rationalizing why it binds
MTR4 with an order of magnitude higher affinity than the yeast
Nop53-Mtr436 and human Nop53-MTR4 interactions (Supple-
mentary Fig. 3d).

The unstructured region of ZCCHC8 interacts with the MTR4
KOW domain. Identification of the W-AIM sequence in NVL
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motivated us to examine whether other known MTR4 interactors
also contain a similar tryptophan-centered motif. One such
interactor is ZCCHC8, the scaffolding subunit of the NEXT
complex27,37,43. This modular protein contains a predicted N-
terminal coiled–coil domain (residues 40–80), a Zinc-knuckle
domain (residues 222–246), a proline-rich domain (residues
287–334) that interacts with RBM743 and a C-terminal domain
(CTD) (residues 659–707) (Fig. 4a) that interacts with the DExH

core of MTR4 and activates it37. The N-terminal portion of
ZCCHC8 is expected to contain an additional MTR4-binding
site37. Within the N-terminal portion, we focused our attention
on the linker between the coiled-coil and the Zinc-knuckle
domains, as it appeared to contain an NVL-like tryptophan-
containing sequence (Supplementary Fig. 6a). We expressed a
large portion of this linker (residues 91–211) tagged to maltose
binding protein (MBP-ZCCHC891–211) and purified the resulting

Arch

DExH 
core

NVL

172

189

W173

StalkKOW

F174

I175

D176

P179

R743

Y745

V766
V742

F653

KOW
domain

c

d

NVL

Elution

GST

Trx-NVL167–216

GST-MTR4∆N

GST

Trx-NVL167–216

GST-MTR4∆N

GST-MTR4∆N

Trx-NVL167–216
 WT

Trx-NVL167–216 W173A

Trx-NVL167–216 I175E

Input

–

+

–

–

–

–

–

+

–

–

–

–

–

+

–

–

–

–

–

+

Trx-NVL167–216 F186A/D189R

+

+

–

–

–

+

–

+

–

–

+

–

–

+

–

+

–

–

–

+

b

116

66

45

35

25

(k
Da)

18

14

116

66

45

35

25

18

14

MTR4-LAP (eGFP)

FLAG-NVL WT

FLAG-NVL W173A/I175E

FLAG-NVL ∆W-AIM

LAP (eGFP)

α-FLAG

α-MTR4

α-GFP

α-GFP

α-β-Actin

–

+

–

–

+

+

–

–

–

–

+

+

–

–

–

+

–

+

–

–

+

–

–

+

–

–

+

–

–

+

+

–

–

–

–

+

+

–

–

–

+

–

+

–

–

+

–

–

+

–

Endogenous MTR4

(k
Da)

130

130
170

170

40

40

2 3 4 5 6 7 8 9 101

2 3 4 5 6 7 81

2 3 4 5 6 7 81

Input Elution

e

MTR4-LAP(eGFP)

 Flag-NVL

LAP (eGFP)

β-Actin

MTR4-LAP(eGFP)

167

167

163

191

189

188

192

190

189

216

213

210

Hs NVL

Gg NVL

Xt NVL

Hs NVL

Gg NVL

Xt NVL

W-AIM    Nop53-likea

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11339-x ARTICLE

NATURE COMMUNICATIONS | ��������(2019)�10:3393� | https://doi.org/10.1038/s41467-019-11339-x | www.nature.com/naturecommunications 5



	

	32	

  

construct for pull-down assays with the versions of GST-tagged
MTR4 described above (Fig. 1a). MBP-ZCCHC891–211 co-
precipitated with GST-MTR4-∆N but not with GST-MTR4-
∆N∆arch (Fig. 4b, lanes 6 and 7). Similar to the results we had
obtained for NVL167–216, the pull-down assays showed that MBP-
ZCCHC891–211 interacts with GST-MTR4-KOW (Fig. 4b, lane 8).
Next, we determined the affinity of the MTR4-KOW-
ZCCHC891–211 interaction using microscale thermophoresis
(MST) with a fluorescent-tagged version of ZCCHC891–211 (that
we had engineered by fusing a YFP to the C-terminus). In this
quantitative assay, we measured a dissociation constant (KD) of
~0.3 µM (Fig. 4c), indicating a higher affinity than that of the
NVL167–216 fragment. To corroborate these results, we pre-formed
a GST-MTR4-∆N - Trx-NVL167–216 complex and incubated it
with increasing amounts of MBP-ZCCHC891–211 before subject-
ing the mixtures to GST pull-down assays. The competition assay
showed that ZCCHC891–211 could displace NVL167–216 from the
pre-formed complex (Fig. 4d, lanes 5–8), suggesting that they
interact with the exosome helicase in a mutually exclusive manner.

Identification of C-AIM: a cysteine arch-interacting motif of
ZCCHC8. We proceeded to identify the MTR4-binding site

within the N-terminal region of ZCCHC8. We first interrogated
the NVL-like tryptophan-containing patch (GWEIPK, residues
197–202, Fig. 5a). Surprisingly, mutation of Trp198 and Lys202
(W198A/K202E mutant) did not alter the interaction of
ZCCHC891–211 with MTR4-∆N in GST pull down assays (Fig. 5b,
lane 7), indicating that this patch of ZCCHC8 is not a bona-fide
W-AIM sequence.

To identify the arch-interacting motif in ZCCHC891–211, we
took a similar bioinformatics approach as described above
for NVL. When analyzing the evolutionary conservation of
ZCCHC891–211, we identified a conserved patch centered at the
FCLDKLG segment (residues 178–184, Fig. 5a). Mutation of
Phe178 and Asp181 (F178A/D181R mutant) in this segment
impaired the interaction with MTR4-∆N (Fig. 5b, lane 6). This
cysteine-centered arch-interacting motif (C-AIM) is loosely
related to the Nop53 AIM and the NVL W-AIM segments, and
is thus expected to bind to the same site of the KOW domain.
Consistently, the Arg743 reverse-charge substitution (R743E) in
MTR4 also impaired the binding of ZCCHC891–211 (Fig. 5c,
lane 8).

ZCCHC8 also contains a non-canonical arch-interacting motif:
I-AIM. While attempting to narrow down the KOW binding
region of ZCCHC8 further, we observed that N-terminal trun-
cation of ZCCHC891–211 resulted in a near loss of MTR4 binding
(Supplementary Fig. 6b). Based on these results, we reasoned that
ZCCHC891–211 might harbor an additional MTR4-binding motif
that would be predicted to bind to an adjacent surface on the
KOW domain (and thus show no resemblance to the previously
identified arch-interacting motifs). Using bioinformatics
approaches, we identified another conserved segment upstream of
C-AIM (IEEF, residues 112–115). Indeed, mutation of Ile112 and
Phe115 (I112R/F115R mutant) severely weakened the MTR4-∆N
- ZCCHC891–211 interaction in GST pull-down assays (Fig. 5b,
lane 8). Thus, this segment (which we refer to as an isoleucine-
centered arch-interacting motif, or I-AIM) also contributes to
MTR4 binding. Next, we mapped the possible MTR4-binding site
of I-AIM. The β-barrel of the MTR4 KOW domain is structurally
related to that of Tudor domains (Supplementary Fig. 7a), small
globular folds that generally present a hydrophobic pocket for
binding methylated arginines and lysines44. Although there is
little overall sequence similarity, MTR4-KOW features hydro-
phobic residues at the equivalent position of the
substrate–binding residues of Tudor domains (Supplementary
Fig. 7b)44,45. In particular, MTR4 Phe677 is evolutionarily con-
served (Supplementary Fig. 7b) and is located on a surface
adjacent to the Arg743 site where the Nop53 like AIM, W-AIM
and C-AIM sequences are recognized (Supplementary Fig. 7c). In
line with this site being used for the additional I-AIM sequence of
ZCCHC891–211, mutation of Phe677 (F677E) disrupted binding
of ZCCHC891–211 (Fig. 5c, lane 7) and did not affect the binding

Fig. 3 The vertebrate specific W-AIM in NVL is crucial for binding to MTR4 KOW. a Sequence alignment of vertebrate specific insertion regions of
representative NVL sequences, Homo sapiens (Hs), Gallus gallus (Gg), Xenopus tropicalis (Xt), highlighting the W-AIM (GWFIDKTP) (red box), and the
Nop53-like region (LFXϕD) (purple). The sequences were obtained from the UniProt database and aligned using the T-coffee server59. b Protein co-
precipitations by pull down assays. GST-tagged MTR4∆N was incubated with either wild type Trx-NVL167–216 or its indicated mutant before co-
precipitation with glutathione sepharose beads. A total of 3% of the input (top) and 30% of the eluates (bottom) were analyzed on 15% SDS-PAGE gels
and visualized by staining with coomassie brilliant blue. c Overall structure of MTR4∆N2

70–1042 - NVL167–216 complex, with the DExH core of MTR4
colored in gray and arch colored in light blue. NVL is colored in orange. d Zoom-in view of the interactions between MTR4 KOW (light blue) domain and
NVL (orange). Domains are colored as in Fig. 3a and viewed are 90° rotation along the horizontal and vertical axes with respect to the view in Fig. 3a.
Residues discussed in the text are highlighted and labeled. e Cellular co-IP assay. FLAG-tagged wild type NVL construct, or its indicated mutant variant,
were transiently expressed in cells stably expressing MTR4-LAP. After precipitation of MTR4-LAP, a total of 0.5% of the input (left) and 8.0% of the
eluates (right) were analyzed on 4–12% SDS-PAGE gel followed by western blotting analysis. The primary antibody used is indicated below the panel

Table 1 Data collection and refinement statistics

Mtr4ΔN70–1042 – NVL167–216

Data collection
Space group P61
Cell dimensions

a, b, c (Å) 184.37, 184.37, 90.53
α, β, γ (°) 90.0, 90.0, 120.0

Resolution (Å) 92.18–3.07
Rsym or Rmerge 15.7 (527.6)a

I / σI 12.6 (0.9)
Completeness (%) 99.9 (99.5)
Redundancy 16.5
CC1/2 99.9 (62.7)

Refinement
Resolution (Å) 60.35–3.07 (3.22–3.07)
No. reflections 32,919
Rwork/Rfree 22.3 / 25.7
No. atoms

Protein 7074
Ligand/ion 58
Water 6

B-factors
Protein 123.57
Ligand/ion 138.03
Water 92.34

R.m.s. deviations
Bond lengths (Å) 0.003
Bond angles (°) 0.478

avalues in parentheses are for highest-resolution shell
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of NVL167–216 (Fig. 2d, lane 7) or human Nop53 (Supplementary
Fig. 3c, lane 7).

We tested the importance of the I-AIM segment in human
cells. HeLa LAP-MTR4 cells were transfected with FLAG-tagged
full-length ZCCHC8 constructs (wild type, the I-AIM I112R/

F115R double mutant or a deletion construct lacking the
ZCCHC8 CTD). Western blotting analysis of the resulting co-
IPs revealed that disrupting the I-motif by mutation is sufficient
to impair the ZCCHC8-MTR4 interaction, whereas deletion of
the CTD did not significantly affect complex formation (Fig. 5d,
lanes 8, 9, 10). These mutations also did not affect the ZCCHC8-
RBM7 interaction (Supplementary Fig. 6c). The CTD of ZCCHC8
has been shown to bind the DExH core of MTR4 and to enhance
helicase activity37. In contrast, we found that neither the
ZCCHC8 nor the NVL AIM motifs have a significant effect on
the catalytic properties of MTR4, as judged by assaying both ATP
hydrolysis and RNA helicase activities (Supplementary Fig. 8).
These results suggest a division of labor of the N-terminal and C-
terminal ZCCHC8 regions: while the C-terminal domain
regulates the activity of the helicase37, the N-terminal region
plays has a central scaffolding role in incorporating MTR4 into
the NEXT complex.

Discussion
In this study, we show that the human nuclear exosome adaptors
NVL and ZCCHC8 bind the MTR4 KOW domain on a surface
that is also employed by Nop5336 and NRDE-231 using distinct
arch-interacting motifs35. The AIMs of Nop53/Utp18/Air2
(LFxϕD(x)1–2G/P), NVL (GWFIDKTP), ZCCHC8
(NFCLDKLG), and NRDE-2 (SFRTDKKP) can best be con-
sidered as subfamilies of canonical AIMs. With insight, sequences
in both NVL and ZCCHC8 that at first glance appeared to
resemble known AIMs instead contain individual amino acids
that are likely to prevent MTR4 binding. The consensus sequence
of canonical bona-fide AIMs can thus be re-defined as xωxxD(x)1/
2G/P, with a C-terminal glycine or proline residue that allows the
polypeptide chain to bend as it extends away from its binding site.
The aromatic (ω) and polar/non-polar amino acids might vary,
but tend to be conserved within individual subfamilies of cano-
nical AIMs. Despite the variability, all canonical AIM sequences
are recognized, in a mutually exclusive manner, at a surface
pocket of the MTR4 KOW domain that is defined by the presence
of Arg743 (yeast Mtr4 Arg774). Mutation of this surface pocket
may thus be a useful tool to probe new MTR4-interacting
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Fig. 4 The N-terminus of ZCCHC8 interacts with the MTR4 KOW domain.
a Schematic representation of the domain organization of ZCCHC8.
Domain boundaries are obtained from previous studies37,43 and
computational sequence analysis. b Protein co-precipitations by pull down
assays. GST-tagged MTR4∆N, MTR4∆N∆arch, and MTR4 KOW were
incubated with MBP-ZCCHC8 91–211 before co-precipitation with
glutathione sepharose beads. A total of 3% of the input (lanes 1–4) and
30% of the eluates (lanes 5–8) were analyzed on 12% SDS-PAGE gels and
visualized by staining with coomassie brilliant blue. c Microscale
thermophoresis experiment with MTR4 KOW and MBP-ZCCHC8 91–211-
(GS)3-eYFP. In all, 1 μM MBP-ZCCHC8 91–211-(GS)3-eYFP was incubated
with increasing concentrations of MTR4 KOW and thermophoresis was
measured by tracking the fluorescence of the ZCCHC8-YFP fusion protein.
The binding curve was calculated using MO software (Nanotemper
technologies) and the dissociation constant (Kd) is given in the inset. The
error bars represent the standard deviations of each data point calculated
from three independent thermophoresis measurements. d Competition
experiment using GST pull down assay technology. A preformed GST-
MTR4∆N:Trx-NVL167–216 complex was incubated with increasing
concentrations of MBP-ZCCHC8(91–211) before precipitation with
glutathione sepharose beads. A total of 3% of the input (lanes, 1–4) and
30% of the eluates (5–8) were analyzed on 15% SDS-PAGE gels and
visualized by staining with coomassie brilliant blue
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proteins that contain arch-interacting motifs, as these motifs are
difficult to identify due to the degeneracy of their consensus
sequence. Furthermore, we found that ZCCHC8 harbors an
additional arch-interacting motif that does not conform to the
canonical AIM consensus sequences. These findings show how

different exosome adaptor proteins have evolved similar
mechanisms to recognize MTR4 in a specific and mutually
exclusive manner, but can also modulate the affinity and thus
selectivity with which they are ultimately recruited to the nuclear
exosome.
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Fig. 5 Analysis of the ZCCHC8-MTR4 KOW complex by site directed mutagenesis. a Sequence alignment of the region between the predicted coiled coil
domain and the zinc finger of ZCCHC8 from representative metazoan species, Homo sapiens (Hs), Gallus gallus (Gg), Xenopus laevis (Xl), highlighting NVL-
like region (red), Nop53-like AIM (C-AIM) and ZCCHC8 specific I-AIM (purple boxes). The sequences were obtained from the UniProt database and
aligned using the T-coffee server59. b Protein co-precipitations by pull down assays testing ZCCHC8 91–211 mutants for MTR4∆N binding ability. GST-
tagged MTR4∆N was incubated with either ZCCHC891–211 WT or mutants before co-precipitation with glutathione sepharose beads. A total of 3% of the
input (top) and 30% of the eluates (bottom) were analyzed on 12% SDS-PAGE gels and visualized by staining with coomassie brilliant blue. c Protein co-
precipitations by pull down assays testing MTR4∆N mutants for their ZCCHC8 91–211 binding ability. GST-tagged MTR4∆N (WT or mutant variants) were
incubated with MBP-ZCCHC8 91–211 before co-precipitation with glutathione sepharose beads. A total of 3% of the input (lanes, 1–4) and 30% of the
eluates (5–8) were analyzed on 12% SDS-PAGE gels and visualized by staining with coomassie brilliant blue. d Cellular co-IP assay. FLAG-tagged ZCCHC8
constructs (WT/IF mutant/CTD deletion) were transiently expressed in cells stably expressing MTR4-LAP. After precipitation of MTR4 taking advantage
of the LAP tag, a total of 0.5% of the input (left) and 8.0% of the eluates (right) were analyzed on 4–12% SDS-PAGE gel followed by western
blotting analysis. The primary antibody used is indicated below the panel
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Methods
Protein expression and purification. Human MTR4 constructs (full-length,
MTR4-∆N (75–1042), MTR4-KOW (645–787) and MTR4-∆N∆arch, where resi-
dues 598–842 were substituted by 2xGS linker) were expressed as 6xHis-GST-
tagged fusion (cleavable with 3 C protease) proteins in BL21 star (DE3) E. coli cells,
grown either in terrific broth (for biochemical studies) or minimal medium sup-
plemented with 15N labelled ammonium chloride and/or 13C labeled Glucose (for
NMR studies). The proteins were purified using a Ni-nitrilotriacetate (NTA) affi-
nity column and a heparin column (GE healthcare) for ion exchange chromato-
graphy. When appropriate, the His-GST tag was cleaved at this point by incubation
with 3 C protease, followed by removal of the tag with an additional Ni-NTA
affinity step. Finally, the protein was subjected to size exclusion chromatography
on a Superdex 200 column (GE healthcare) in 50 mM Hepes/NaOH pH 7.5,
150 mM NaCl, 5% (v/v) glycerol, 2 mM DTT.

The human MTR4 construct used for crystallization (71–1042) was cloned as
GST fusion construct with a TEV cleavage site immediately preceding the
MTR4 sequence which when cleaved would leave a glycine (the natural 70th
residue in MTR4) yielding MTR4 protein with residues 70–1042 (referred to as
MTR4∆N2 in the text). The construct was purified as described above.

The primers used for cloning all the constructs described are listed in
Supplementary table 1.

All NVL and ZCCHC8 constructs and truncation mutants described in the text
were expressed as 6xHis-Trx and 6xHis-MBP tagged fusion (cleavable with 3 C
protease) proteins, respectively in BL21 star (DE3) E. coli cells. The proteins were
purified using a Ni-NTA affinity column. When appropriate, the tags were cleaved
upon incubation with 3 C protease at this step, followed by an additional Ni-NTA
affinity step for the removal of the tag. In case of ZCCHC8, the tag cleavage was
performed only in the presence of MTR4 to prevent the protein from precipitating.
In the final purification step, the proteins were subjected to size-exclusion
chromatography on a Superdex 75 in 50 mM Hepes/NaOH pH 7.5, 150 mM NaCl,
2 mM DTT.

Biophysical assays. The microscale thermophoresis measurements were per-
formed on a NanoTemper Monolith NT.115 machine. Before the measurements,
all samples were dialyzed against a buffer containing in 50 mM Hepes/NaOH pH
7.5, 150 mM NaCl, 5% (v/v) glycerol, 0.5 mM TCEP. For NVL, 50 nM of Trx-
NVL167–217-(GS)3-eYFP was incubated with increasing concentrations of unlabeled
MTR4 KOW and thermophoresis was measured with an MST power of 20% and
an LED power of 20%. For ZCCHC8, 1 μM of MBP-ZCCHC891–211 -(GS)3-eYFP
was incubated with increasing concentrations of unlabeled MTR4-KOW and
thermophoresis was measured with an MST power of 70% and an LED power of
15%. In both cases, the MTR4 KOW concentration series was produced by serial
dilution (1:1). Titrations were performed in triplicates and the data were analyzed
using the Thermophoresis with T-Jump strategy option with the MO software
(NanoTemper Technologies).

Isothermal calorimetry experiments were carried out using the ITC200
Isothermal titration calorimeter from Microcal. Before the measurement, all
samples were dialysed against a buffer containing 50 mM Hepes/NaOH pH 7.5,
150 mM NaCl, and 0.5 mM TCEP. For NVL: MTR4-∆N (the reactant) samples
were concentrated to 40 µM and NVL (the injectant) to 500 µM. For human
NOP53: MTR4-KOW (the reactant) samples were concentrated to 100 µM and
NOP53 (the injectant) to 1 mM. Titrations were carried out at 25 °C with 2 µL of
the injectant per injection added to 200 µL of reactant cell solution. All data were
processed and curves fitted using Origin5.0.

Biochemical assays. For pull-down assays, appropriate protein mixtures were
incubated in 50 mM Hepes (pH 7.5), 150 mM NaCl, 5% (v/v) glycerol, 0.05% (v/v)
NP40, 1 mM DTT for 30 min at 4 °C. For ZCCHC8, 2 μM GST-MTR4∆N was
incubated with 8 μM MBP-ZCCHC8 constructs. For NVL, 10 μM GST-MTR4∆N
was incubated with 20 μM Trx-NVL constructs. For NOP53, 30 μM GST-
MTR4∆N was incubated with 60 μM Trx-NOP5384–123 in a total volume of 30 μl.
The protein mixtures were then incubated with Glutathione sepharose beads (GE
healthcare) for 2 h. Post incubation, the beads were washed three times with 0.1 ml
incubation buffer and the retained material was eluted with incubation buffer
supplemented with 30 mM reduced glutathione. Input material (1–3%) and eluates
(~30%) were analyzed by SDS-PAGE and Coomassie staining.

For ATPase assays, 150 pmol of MTR4∆N or MTR4∆N-containing complexes
were incubated 40 nmol MESG (2-amino-6-mercapto-7-methylpurine
ribonucleoside) and 0.5 U purine nucleoside phosphorylase (Enzchek Phosphate
Assay kit, Invitrogen) in a buffer containing 50 mM MOPS pH 6.5, 50 mM Nacl,
2.5 mM MgCl2, 5 mM β-mercaptoethanol and 5% (v/v) glycerol. For reactions
containing RNA, the mixture was incubated with 2 μg poly-U RNA (Sigma). The
reaction was initiated by addition of ATP to a final concentration of 1 mM. The
generation of 2-amino-6-mercapto-7-methylpurine from MESG was monitored by
measuring absorbance increase at 360 nm on a plate reader (Infinite M1000 Pro,
Tecan) for 12 min at 60 s intervals. The data were normalized by subtracting the y-
intercept from the raw data. The experiment was performed in triplicate. The mean
(n= 3) and standard deviation (error bars) were plotted using Graphpad prism 8.

Helicase assays were performed essentially as described by Puno et al.37. A
duplex RNA was formed by mixing a 5’ Fluorescein amidite (FAM) labeled RNA

(FAM-AGCACCGUAAAGACGC) with 1.5 molar excess of complementary RNA
with a 25 A overhang (GCGUCUUUACGGUGCUAAAAAAAAAAAAAAAAA
AAAAAAAA) in a buffer containing 20 mM Tris-HCl pH 7.5 and 50 mM NaCl.
To anneal the RNA duplex, the mixture was heated to 95 °C and allowed to cool
down slowly to ambient temperature by turning off the heat block. 0.3 pmol of
duplex RNA was incubated with 3.75, 7.5, 30 pmol of MTR4∆N or MTR4∆N-
containing complexes in a buffer containing 50 mM MOPS pH 6.5, 50 mM Nacl,
0.5 mM MgCl2, 5 mM β-mercaptoethanol and 5% (v/v) glycerol for 5 min at 30 °C.
The reaction was then initiated by the addition of ATP, MgCl2 and a trap DNA
oligo complementary to the FAM labeled RNA (GCGTCTTTACGGTGCT) to a
final concentration of 2 mM, 2 mM and 400 nM respectively. The reactions were
quenched after 40 min by placing the tubes on ice and adding quenching buffer to a
final concentration of 0.5% (w/v) SDS, 10 mM EDTA, 10% (v/v) glycerol and
0.005% (w/v) xylene cyanol. The sample were analyzed by electrophoresis on a 15%
acrylamide–Tris base, boric acid, EDTA (TBE) gel. The fluorescence was imaged
using a Typhoon FLA 7000. The oligonucleotides used in the assay were obtained
from Ella Biotech GmBH.

NMR spectroscopy. NMR measurements of MTR4-KOW were performed in
phosphate buffered saline (10 mM PO4

3−, 137 mM NaCl, 2.7 mM KCl) mixed with
10% (v/v) D2O. Backbone chemical shift assignments of the KOW region were
obtained from two 13C, 15N-labelled samples with protein concentration of 700 μM
and 500 μM, respectively. HNCA, HNCACB, HNcoCA, HNCO, HNcaCO, and 3D
15N-edited NOESY spectra46 were acquired at 298 K on Bruker Avance III spec-
trometers at field strengths corresponding to 600 and 800 proton Larmor fre-
quency, equipped with TCI cryogenic probe heads. The 15N steady-state
heteronuclear {1H}-15N NOE experiment was performed at 170 μM and a field
strength of 500MHz as described previously47. Protein binding was measured from
HSQC experiments containing water-flip-back/WATERGATE48,49 sequences.
Titrations with the NVL peptide were carried out at 298 K with a KOW con-
centration of 53 μM and in presence of 0.25, 0.5, 1, 2, and 6 stoichiometric molar
equivalents of NVL. Spectra were recorded and processed with Topspin3.5 and
analyzed with CCPNMR Analysis 2.450 and Sparky (http://www.cgl.ucsf.edu/
home/sparky). The chemical shift perturbations were calculated as CSP (ppm)= [6
(ΔH)2+ (ΔN)2]0.5.

Crystallization and structure determination. MTR4∆N2 (70–1042) was mixed
with 2 molar excess of NVL (167–216) in a buffer containing 20 mM Tris pH 7.5,
150 mM Nacl, 1 mM Mgcl2, 2 mM ADP and 1 mM TCEP. The crystallization trials
were performed using a vapour diffusion setup. Initial crystals were obtained in the
A4 (2 M ammonium sulfate, 0.1 M Tris pH 8.5) condition of SG1TM screen
(Molecular dimensions). The best diffracting crystals were obtained at a con-
centration of 10 mg/ml at 277 K in 0.1 M Tris pH 8, 1.8 M ammonium sulfate. The
crystals were cryo-protected with reservoir solution supplemented with 30% gly-
cerol prior flash-freezing in liquid nitrogen. Data were collected at 100 K at PXIII
beamline of the Swiss light Source (Villigen, Switzerland). Data processing and
scaling was performed using Xia2/DIALS51,52 within CCP4i2 software suite53. The
crystals belong to the hexagonal spacegroup 169 (P61) containing one molecule
(MTR4∆N2 – NVL167–216) in the asymmetric unit and diffract to 3.07 Å resolution.
The structure was solved by molecular replacement with Phaser54 within Phenix
using the co-ordinates of the DExH core (98-593 and 847–1042) and KOW
domain (645–787) of MTR4 (PDB 6IEH)31 as search models. The model was
manually completed in COOT55 and refined using phenix.refine56. The optimal
TLS groups for TLS refinement were determined using TLSMD server57. 96.1% of
the protein backbone dihedral angles in the final model are in Ramachandran
favored region. The figures of crystallographic models were prepared using pyMOL
(Schrödinger, LLC).

Cell culture and co-immunoprecipitation assays. Human HeLa Kyoto LAP,
MTR4-LAP, RBM7-LAP cell lines were generated as outlined by Poser et al.58 and
used for example by Lubas et al.27 (RBM7-LAP) and Meola et al.30 (MTR4-LAP).
Briefly, HeLa Kyoto LAP MTR4-LAP, RBM7-LAP cells were cultured in DMEM+
10% FBS. Transfection was carried out using 10 µg of plasmid containing FLAG-
tagged NVL or ZCCHC8 constructs, with Lipofectamine 2000 (Thermo Fisher)
following the manufacturer’s instructions. Forty-eight hours after transfection the
cells were collected and resuspended in extraction buffer (150 mM NaCl, 20 mM
HEPES pH 7.4, 0.5% (v/v) Triton X-100) containing Protease Inhibitors (Roche).
The lysates were sonicated twice for 5 s at 20W, and cell debris was removed by
centrifugation at 10,000 g for 10 min. Lysates were incubated 1 h with Dynabeads
M-270 Epoxy (Invitrogen) coupled to a polyclonal llama anti-GFP antibody. Beads
were washed three times in extraction buffer, then incubated 20 min at 25 °C with
100 units of Benzonase (Sigma) and 2 mMMgCl2. Beads were then washed twice in
extraction buffer and proteins were eluted using NuPage LDS Sample Buffer
(Invitrogen) at 70 °C for 10 min, and NuPage Sample Reducing Agent was added.
The input material (0.5%) and the eluate (8.0%) were analyzed by SDS-PAGE on a
NuPage Novex 4–12% Bis-Tris gel (Invitrogen). Western blotting analysis was
performed following standard protocols. Following primary antibodies were used:
anti-FLAG M2 (Dilution 1:50000; Sigma, F1804), anti-MTR4 (Dilution 1:4000;
Abcam, ab70551), anti-GFP (Dilution 1:1000; Santa Cruz Biotechnology, SC-9996),
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anti-β-actin (Dilution 1:100000; Sigma, A2228) and anti-RBM7 (Dilution 1:1000;
human protein atlas, HPA013993). Anti-mouse and anti-rabbit secondary anti-
bodies coupled to Horseradish Peroxidase (Dako) were used.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
A reporting summary for this Article is available as a Supplementary Information file.
NMR backbone chemical shifts of the human MTR4 KOW domain were deposited at the
BMRB under accession number 27831. The coordinates and the structure factors have
been deposited in the Protein Data Bank with accession code PDB ID 6RO1. The source
data are provided in Supplementary Fig. 10. All data is available from the corresponding
author upon reasonable request.

Received: 14 January 2019 Accepted: 7 July 2019

References
1. Chlebowski, A., Lubas, M., Jensen, T. H. & Dziembowski, A. RNA decay

machines: the exosome. Biochim Biophys. Acta 1829, 552–560 (2013).
2. Zinder, J. C. & Lima, C. D. Targeting RNA for processing or destruction by

the eukaryotic RNA exosome and its cofactors. Genes Dev. 31, 88–100
(2017).

3. Mitchell, P., Petfalski, E., Shevchenko, A., Mann, M. & Tollervey, D. The
exosome: a conserved eukaryotic RNA processing complex containing
multiple 3′–>5′ exoribonucleases. Cell 91, 457–466 (1997).

4. Makino, D. L., Halbach, F. & Conti, E. The RNA exosome and proteasome:
common principles of degradation control. Nat. Rev. Mol. Cell Biol. 14,
654–660 (2013).

5. Dziembowski, A., Lorentzen, E., Conti, E. & Seraphin, B. A single subunit,
Dis3, is essentially responsible for yeast exosome core activity. Nat. Struct.
Mol. Biol. 14, 15–22 (2007).

6. Liu, Q., Greimann, J. C. & Lima, C. D. Reconstitution, activities, and structure
of the eukaryotic RNA exosome. Cell 127, 1223–1237 (2006).

7. Butler, J. S. & Mitchell, P. Rrp6, Rrp47 and cofactors of the nuclear exosome.
Adv. Exp. Med Biol. 702, 91–104 (2010).

8. Milligan, L. et al. A yeast exosome cofactor, Mpp6, functions in RNA
surveillance and in the degradation of noncoding RNA transcripts. Mol. Cell
Biol. 28, 5446–5457 (2008).

9. Schilders, G., Raijmakers, R., Raats, J. M. & Pruijn, G. J. MPP6 is an exosome-
associated RNA-binding protein involved in 5.8S rRNA maturation. Nucleic
Acids Res 33, 6795–6804 (2005).

10. Falk, S., Bonneau, F., Ebert, J., Kogel, A. & Conti, E. Mpp6 incorporation in
the nuclear exosome contributes to RNA channeling through the Mtr4
helicase. Cell Rep. 20, 2279–2286 (2017).

11. Schuch, B. et al. The exosome-binding factors Rrp6 and Rrp47 form a
composite surface for recruiting the Mtr4 helicase. EMBO J. 33, 2829–2846
(2014).

12. Weick, E. M. et al. Helicase-dependent RNA decay illuminated by a Cryo-EM
structure of a human nuclear RNA exosome-MTR4 complex. Cell 173,
1663–1677 e21 (2018).

13. Gerlach, P. et al. Distinct and evolutionary conserved structural features of the
human nuclear exosome complex. Elife 7, e38686 (2018).

14. Jackson, R. N. et al. The crystal structure of Mtr4 reveals a novel arch domain
required for rRNA processing. EMBO J. 29, 2205–2216 (2010).

15. Kilchert, C., Wittmann, S. & Vasiljeva, L. The regulation and functions of the
nuclear RNA exosome complex. Nat. Rev. Mol. Cell Biol. 17, 227–239 (2016).

16. Johnson, S. J. & Jackson, R. N. Ski2-like RNA helicase structures: common
themes and complex assemblies. RNA Biol. 10, 33–43 (2013).

17. Lubas, M. et al. Interaction profiling identifies the human nuclear exosome
targeting complex. Mol. Cell 43, 624–637 (2011).

18. Ogami, K., Chen, Y. & Manley, J. L. RNA surveillance by the nuclear RNA
exosome: mechanisms and significance. Noncoding RNA 4, 8 (2018).

19. Vanacova, S. et al. A new yeast poly(A) polymerase complex involved in RNA
quality control. PLoS Biol. 3, e189 (2005).

20. LaCava, J. et al. RNA degradation by the exosome is promoted by a nuclear
polyadenylation complex. Cell 121, 713–724 (2005).

21. Wyers, F. et al. Cryptic pol II transcripts are degraded by a nuclear quality
control pathway involving a new poly(A) polymerase. Cell 121, 725–737
(2005).

22. Kadaba, S., Wang, X. & Anderson, J. T. Nuclear RNA surveillance in
Saccharomyces cerevisiae: Trf4p-dependent polyadenylation of nascent

hypomethylated tRNA and an aberrant form of 5S rRNA. RNA 12, 508–521
(2006).

23. Carneiro, T. et al. Depletion of the yeast nuclear exosome subunit Rrp6 results
in accumulation of polyadenylated RNAs in a discrete domain within the
nucleolus. Mol. Cell Biol. 27, 4157–4165 (2007).

24. Hiraishi, N., Ishida, Y. & Nagahama, M. AAA-ATPase NVL2 acts on MTR4-
exosome complex to dissociate the nucleolar protein WDR74. Biochem
Biophys. Res Commun. 467, 534–540 (2015).

25. Hiraishi, N., Ishida, Y. I., Sudo, H. & Nagahama, M. WDR74 participates in an
early cleavage of the pre-rRNA processing pathway in cooperation with the
nucleolar AAA-ATPase NVL2. Biochem Biophys. Res Commun. 495, 116–123
(2018).

26. Gustafson, M. P., Welcker, M., Hwang, H. C. & Clurman, B. E. Zcchc8 is a
glycogen synthase kinase-3 substrate that interacts with RNA-binding
proteins. Biochem Biophys. Res Commun. 338, 1359–1367 (2005).

27. Lubas, M. et al. The human nuclear exosome targeting complex is loaded onto
newly synthesized RNA to direct early ribonucleolysis. Cell Rep. 10, 178–192
(2015).

28. Ogami, K. et al. An Mtr4/ZFC3H1 complex facilitates turnover of unstable
nuclear RNAs to prevent their cytoplasmic transport and global translational
repression. Genes Dev. 31, 1257–1271 (2017).

29. Silla, T., Karadoulama, E., Makosa, D., Lubas, M. & Jensen, T. H. The RNA
exosome adaptor ZFC3H1 functionally competes with nuclear export activity
to retain target transcripts. Cell Rep. 23, 2199–2210 (2018).

30. Meola, N. et al. Identification of a nuclear exosome decay pathway for
processed transcripts. Mol. Cell 64, 520–533 (2016).

31. Wang, J. et al. NRDE2 negatively regulates exosome functions by inhibiting
MTR4 recruitment and exosome interaction. Genes Dev 33, 536–549 (2019).

32. Weir, J. R., Bonneau, F., Hentschel, J. & Conti, E. Structural analysis reveals
the characteristic features of Mtr4, a DExH helicase involved in nuclear RNA
processing and surveillance. Proc. Natl Acad. Sci. USA 107, 12139–12144
(2010).

33. Schuller, J. M., Falk, S., Fromm, L., Hurt, E. & Conti, E. Structure of the
nuclear exosome captured on a maturing preribosome. Science 360, 219–222
(2018).

34. Falk, S. et al. The molecular architecture of the TRAMP complex reveals the
organization and interplay of its two catalytic activities. Mol. Cell 55, 856–867
(2014).

35. Thoms, M. et al. The exosome is recruited to RNA substrates through specific
adaptor proteins. Cell 162, 1029–1038 (2015).

36. Falk, S. et al. Structural insights into the interaction of the nuclear exosome
helicase Mtr4 with the preribosomal protein Nop53. RNA 23, 1780–1787 (2017).

37. Puno, M. R. & Lima, C. D. Structural basis for MTR4-ZCCHC8 interactions
that stimulate the MTR4 helicase in the nuclear exosome-targeting complex.
Proc. Natl Acad. Sci. USA 115, E5506–E5515 (2018).

38. Nagahama, M. et al. The AAA-ATPase NVL2 is a component of pre-
ribosomal particles that interacts with the DExD/H-box RNA helicase DOB1.
Biochem. Biophys. Res Commun. 346, 1075–1082 (2006).

39. Fujiwara, Y. et al. Structure and function of the N-terminal nucleolin binding
domain of nuclear valosin-containing protein-like 2 (NVL2) harboring a
nucleolar localization signal. J. Biol. Chem. 286, 21732–21741 (2011).

40. Meyer, H., Bug, M. & Bremer, S. Emerging functions of the VCP/p97 AAA-
ATPase in the ubiquitin system. Nat. Cell Biol. 14, 117–123 (2012).

41. Hanzelmann, P. & Schindelin, H. The structural and functional basis of the
p97/valosin-containing protein (VCP)-interacting motif (VIM): mutually
exclusive binding of cofactors to the N-terminal domain of p97. J. Biol. Chem.
286, 38679–38690 (2011).

42. Buchberger, A., Schindelin, H. & Hanzelmann, P. Control of p97 function by
cofactor binding. FEBS Lett. 589, 2578–2589 (2015).

43. Falk, S. et al. Structure of the RBM7-ZCCHC8 core of the NEXT complex
reveals connections to splicing factors. Nat. Commun. 7, 13573 (2016).

44. Cote, J. & Richard, S. Tudor domains bind symmetrical dimethylated
arginines. J. Biol. Chem. 280, 28476–28483 (2005).

45. Friberg, A., Oddone, A., Klymenko, T., Muller, J. & Sattler, M. Structure of an
atypical tudor domain in the drosophila polycomblike protein. Protein Sci. 19,
1906–1916 (2010).

46. Sattler, M., Schleucher, J. & Griesinger, C. Heteronuclear multidimensional
NMR experiments for the structure determination of proteins in solution
employing pulsed field gradients. Prog. NMR Spectrosc. 34, 93–158 (1999).

47. Farrow, N. A. et al. Backbone dynamics of a free and phosphopeptide-
complexed Src homology 2 domain studied by 15N NMR relaxation.
Biochemistry 33, 5984–6003 (1994).

48. Grzesiek, S. & Bax, A. The importance of not saturating H2O in protein NMR
- application to sensitivity enhancement and NOE measurements. J. Am.
Chem. Soc. 115, 12593–12594 (1993).

49. Piotto, M., Saudek, V. & Sklenář, V. Gradient-tailored excitation for single-
quantum NMR spectroscopy of aqueous solutions. J. Biomol. NMR 2, 661
(1992).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11339-x

10 NATURE COMMUNICATIONS | ��������(2019)�10:3393� | https://doi.org/10.1038/s41467-019-11339-x | www.nature.com/naturecommunications



	

	37	

  

50. Vranken, W. F. et al. The CCPN data model for NMR spectroscopy:
development of a software pipeline. Proteins 59, 687–696 (2005).

51. Winter, G. xia2: an expert system for macromolecular crystallography data
reduction. J. Appl. Crystallogr. 43, 186–190 (2010).

52. Winter, G. et al. DIALS: implementation and evaluation of a new integration
package. Acta Crystallogr D. Struct. Biol. 74, 85–97 (2018).

53. Potterton, L. et al. CCP4i2: the new graphical user interface to the CCP4
program suite. Acta Crystallogr. D. Struct. Biol. 74, 68–84 (2018).

54. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr 40,
658–674 (2007).

55. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development
of Coot. Acta Crystallogr. D. Biol. Crystallogr 66, 486–501 (2010).

56. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for
macromolecular structure solution. Acta. Crystallogr. D Biol. Crystallogr. 66,
(213–221 (2010).

57. Painter, J. & Merritt, E. A. Optimal description of a protein structure in terms
of multiple groups undergoing TLS motion. Acta Crystallogr. D. Biol.
Crystallogr 62, 439–450 (2006).

58. Poser, I. et al. BAC TransgeneOmics: a high-throughput method for
exploration of protein function in mammals. Nat. Methods 5, 409–415 (2008).

59. Di Tommaso, P. et al. T-Coffee: a web server for the multiple sequence
alignment of protein and RNA sequences using structural information and
homology extension. Nucleic Acids Res 39, W13–W17 (2011).

Acknowledgements
We would like to thank the Crystallization Facility of MPI Biochemistry and also Vincent D.
Maciej for his contributions at the early stages of this project. This study was supported by
the Max Planck Gesellschaft, the European Commission (ERC Advanced Investigator Grant
294371) and the Deutsche Forschungsgemeinschaft (SFB646, SFB1035, GRK1721, FOR1680
to E.C., and SFB1035 and GRK1721 to M.S. This work was supported by the Cluster of
Excellence EXC114 (to E.C. and M.S.). T.H.J. was supported by the ERC (grant 339953), the
Lundbeck- and the Novo Nordisk-Foundations.

Author contributions
S.F and E.C. initiated the project; M.L. performed the in vitro experiments; D.J. per-
formed the co-IP experiments under the supervision of T.H.J.; M.L. and J.B. performed

the crystallography experiments, M.L. and S.F. built, refined and analyzed the structure;
A.S. and M.S. collected and analyzed NMR data; L.L. performed preliminary in vitro
experiments with NVL under the supervision of S.F.; M.L., S.F., and E.C. prepared
the paper.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
019-11339-x.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Peer review information: Nature Communications thanks David Tollervey, and the
other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer
reviewer reports are available.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2019

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11339-x ARTICLE

NATURE COMMUNICATIONS | ��������(2019)�10:3393� | https://doi.org/10.1038/s41467-019-11339-x | www.nature.com/naturecommunications 11



	

	38	

  	
 

SUPPLEMENTARY INFORMATION 

 

 

 

The MTR4 helicase recruits nuclear adaptors of the human RNA 

exosome using distinct arch- interacting motifs 

 

Lingaraju et al. 

  



	

	39	

 
	 	



	

	40	

	 	

Supplementary Figure 1 (a) Sequence alignment of N-termini of representative vertebrate and fungal NVL 

sequences, highlighting the chordate specific insertion (blue dashed box), the W-AIM (red box) and a Nop53 (LFXφD) 

like region (purple). The sequences were obtained from the NCBI database and aligned using the T-coffee server1. Hs 

stands for Homo sapiens, Gg for Gallus gallus, Xt for Xenopus tropicalis, Dr for Danio rerio, Bb for Branchiostoma 

belcheri, Ap for Acanthaster planci, Ob for Octopus bimaculoides, Lp for Limulus polyphemus, Ce for Caenorhabditis 

elegans, Cc for Coprinopsis cineria, Rm for Rhizopus microsporus, Sc for Saccharomyces cerevisiae, and Km for 

Kluyveromyces marxianus. (b) Disorder prediction of human NVL as obtained from the D2P2 database2. The region of 

NVL that is commonly predicted to be disordered by multiple algorithms is colored in bright green. (c) Protein co-

precipitations by pull down assays. GST tagged MTR4∆N or yMtr4 were incubated with the vertebrate specific NVL 

insertion, Trx-NVL167-216 and the N-terminus of Rix7, Trx-Rix71-206, respectively before co-precipitation with glutathione 

sepharose beads. A total of 3% of the input (left) and 30% of the eluates (right) were analyzed on 15% SDS-PAGE 

gels and visualized by staining with coomassie brilliant blue. (d) ITC experiment of MTR4ΔN with NVL167-216. The filled 

squares show reference corrected titration of NVL167-216 into the MTR4ΔN containing cell. The number of calculated 

binding sites (N), and dissociation constants (Kd) are shown in the inset. 
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Supplementary Figure 2: NMR analysis of the MTR4 KOW domain 

loop 1 loop 2
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Supplementary Figure 2  (a) Upper bar chart shows secondary carbon chemical shifts of MTR4 KOW plotted against 

its primary sequence. The clusters of positive bars >2 represent α-helices and the clusters of negative bars >-2 represent 

β-strands. The scheme above shows a summary of secondary structure elements as derived from the analysis, and 

elements are labeled for comparison with panel b. The bottom chart shows a heteronuclear NOE plot of the MTR4 KOW 

demonstrating the residue-resolved rigidity along the primary sequence. Note that the two prominent dips are located 

within loops 1 and 2. (b) Secondary structure features of the KOW domain obtained from NMR analysis mapped on to 

the KOW domain from the crystal structure of MTR4 (PDB 6IEH)3. 
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Supplementary Figure 3: NVL and Nop53 interact with MTR4 KOW in a similar manner 

  19/ &63s   y1op�� &63s
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Supplementary Figure 3 �a� 6tructural model of 0T5� .2: �3'% �,(+�� showing regions of significant bacNbone 

chemical shift perturbation �&63s� upon 19/ titration highlighted as red spheres. �b� y0tr� .2: �3'% �224� showing 

significant &63s �orange spheres� upon y1op�� titration as reported by )alN et al4. �c� 3rotein co-precipitations by pull 

down assays. *6T tagged 0T5�∆1 or the corresponding 0T5�∆1 mutants were incubated with the $,0 containing 

region of human 1op�� �Tr[-h1op�� ��-�2�� before co-precipitation with glutathione sepharose beads. $ total of �� of the 

input �left� and ��� of the eluates �right� were analy]ed on ��� 6'6-3$*( gels and visuali]ed by staining with coomas-

sie brilliant blue. �d� ,T& e[periment of 0T5� .2: with h1op�� ��-�2�. The filled squares show reference corrected 

titration of h1op�� ��-�2� into the 0T5� .2: containing cell. The number of calculated binding sites �1�, and dissociation 

constants �Kd� are shown in the inset.
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Supplementary Figure 4 (a) Comparison of the crystal structure of the NVL-MTR4 complex with crystal structure 

of MTR4 alone and the NRDE-2-MTR4 complex (PDB 6IEG and 6IEH)3. The structures were aligned based on the 

DExH core region (colored in grey) to represent the difference in orientation of the arch region (colored in light blue) 

with respect to the DExH core. (b) Zoom-in view of the interactions between MTR4 KOW domain (light blue) and NVL 

(orange) as displayed in Fig. 3d. The model is overlaid with the refined 2mFo-DFc map (grey mesh) showing the 

density for NVL and the interacting residues of MTR4. The residues of interest are labeled and the map is contoured 

at 1.0σ. (c) Zoom in view of MTR4-NVL crystal structure showing the ordered region of NVL (orange). The model is 

overlaid with the 2mFo-DFc omit map calculated in PHENIX omitting the NVL residues. The map is contoured at 1.0σ. 

(d) Zoom-in view of the KOW-AIM interfaces in NVL-MTR4, NRDE-2-MTR4 (PDB 6IEH3), Nop53-Mtr4 (PDB 5OOQ4) 

and Trf4-Air2-Mtr4 (PDB 4U4C5) crystal structures. KOW domains of the human MTR4 and yeast Mtr4 are colored in 

light blue and green respectively. NVL, NRDE-2, Nop53 and Air2 are colored in orange, yellow orange, olive and pale 

orange respectively and the residues of interest are labeled. 
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Supplementary Figure 5: Features of the NVL-MTR4 crystal structure and structure based mutagenesis 
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Supplementary Figure 6 (a) Sequence alignment of the N-termini of NVL (orange) and ZCCHC8 (pink), 

highlighting W-AIM (red box), the respective Nop53-like C-AIM (LFXφD) and ZCCHC8 specific I-AIM (purple boxes). 

The sequences were obtained from the UniProt database and aligned using the T-coffee server1. Hs stands for Homo 

sapiens, Gg for Gallus gallus, Xt for Xenopus tropicalis and, Xl for Xenopus laevis. (b) Protein co-precipitations by pull 

down assays. GST tagged MTR4∆N was incubated with MBP-ZCCHC891-211 or MBP-ZCCHC8134-211 before co-

precipitation with glutathione sepharose beads. A total of 1% of the input (left) and 30% of the eluates (right) were 

analyzed on 10% SDS-PAGE gels and visualized by staining with coomassie brilliant blue. (c) Cellular co-IP assay. 

FLAG-tagged ZCCHC8 constructs (WT, IF-mutant, CTD-deletion) were transiently expressed in cells stably 

expressing RBM7-LAP. After precipitation of RBM7 taking advantage of the LAP tag, a total of 0.5% of the input (left) 

and 8.0% of the eluates (right) were analyzed on 4-12% SDS-PAGE gel followed by western blotting. The primary 

antibody used is indicated below the panel. 
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Supplementary Figure 7: Putative ligand binding phenylalanine in tudor domains is conserved in MTR4 KOW
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Supplementary Figure 7  (a) Structural superposition of MTR4 KOW model (light blue) (PDB 6IEH3) with structures 

of SMN tudor domain (gold) (PDB 1G5V)6, TDRD3 tudor domain (turquoise) (PDB 3S6W)7, SPF30 tudor domain 

(smudge green) (PDB 4A4F)8 and Pcl tudor domain (orange) (PDB 2XK0)9. The superpositions were performed in 

PyMOL graphics system, version 2.2 (Schrödinger LLC). (b) Sequence alignment of representative MTR4 KOW (blue) 

and tudor (purple) domains, highlighting hydrophobic core residues (brown box) and putative substrate binding 

residues (red box) of tudor domains. The hydrophobic core resides conserved between KOW and tudor sequences 

are marked with brown rectangles (▪). The residues of interest in MTR4 KOW, Phe677 and Arg743, are marked by 

green and red asterisks respectively. The sequences were obtained from UniProt database and aligned using the T-

coffee server1. Hs stands for Homo sapiens, Ce for Caenorhabditis elegans, Dm for Drosphila melanogaster, and Sc 

for Saccharomyces cerevisiae. (c) Cartoon and surface representation of MTR4 KOW (light blue) (PDB 6IEH)3 

highlighting the AIM interacting arginine (red) and putative ligand binding phenylalanine (green).  
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Supplementary Figure 8 : Arch interacting regions of NVL and ZCCHC8 do not influence MTR4 activity.
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Supplementary Figure 8 �a� (nd point helicase activity assay of 0T5�∆1, 0T5�∆1 with .2:-binding regions of 

19/ and =&&+&�, and 0T5� with &-terminal domain of =&&+&� on 51$ duple[ substrates. �b� Time course of $T3 

hydrolysis by 0T5�∆1 alone or in presence of 51$ and .2:-binding regions of =&&+&� �upper panel� and 19/ 

�lower panel�. The data show mean �n �� with standard deviation plotted as error bars. =&&+&� &-terminal domain, 

which is Nnown to stimulate $T3ase activity of 0T5���, is used as positive control �c� &oomassie stained 6'6-3$*( 

gel showing the proteins used in the helicase and $T3ase assays.
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a

Supplementary Figure 9 : Stereo view of electron density at NVL-MTR4 interface 
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Supplementary Figure 9 (a) Stereo zoom-in view of the interactions between MTR4 KOW domain (light blue) and NVL 

(orange) as displayed in Fig. 3d. The model is overlaid with the refined 2mFo-DFc map (grey mesh) showing the density 

for 19/ and the interacting residues of 0T5�. The residues of interest are labeled and the map is contoured at �.�ѫ. �b� 

Stereo zoom in view of MTR4-NVL crystal structure showing the ordered region of NVL (orange). The model is overlaid 

with the 2m)o-')c omit map calculated in 3+(1,; omitting the 19/ residues. The map is contoured at �.�ѫ.
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Supplementary Figure 10: Uncropped gels & blots
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Supplementary Figure 10 (a) Fig.1b  (b) Fig.2d  (c) Fig.3b  (d) Fig.3e  (e) Fig.4b  (f) Fig.4d  (g) Fig.5b  (h) Fig.5c 

(i) Fig.5d (j) Supplementary Fig.1c  (k) Supplementary Fig.3c  (l) Supplementary Fig.5b  (m) Supplementary Fig.6b (n) 

Supplementary Fig.6c  (o) Supplementary Fig.8a  (p) Supplementary Fig.8c.    
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Supplementary Table 1: List of primers for generating constructs used in this study. 
 

Primer Sequence (5'-3') 
MTR∆N-Fwd ccaggggcccgactcgatgatttttggaaagaagcccaggatagaagagtc 
MTR∆N-Rev cagaccgccaccgactgcttacaagtagaggctggcagcaaacacaatatctctcttg 
MTR∆N∆arch-Fwd gcttttttcagttccagaatgttattagctctggctcgggacaggccgttattcagctggatgacc 
MTR∆N∆arch-Rev ggtcatccagctgaataacggcctgtcccgagccagagctaataacattctggaactgaaaaaagc 
MTR4 KOW-Fwd ccaggggcccgactcgatgcacaaaccaaaatactgcttaccttttctac 
MTR4 KOW-Rev cagaccgccaccgactgcttaatcttgaatgcccatatcatcaataggg 
NVL(1-266)-Fwd ccaggggcccgactcgatgaagcccagacctgcagggttcg 
NVL(1-266)-Rev cagaccgccaccgactgcttaatcttcaaacttcacgttggagatctgg 
NVL(167-216)-Fwd ccaggggcccgactcgatgaaagattctgaaggaggatggtttattgac 
NVL(167-216)-Rev cagaccgccaccgactgcttaatcactctccaaaagagaagaatcttttgaatcc 
NVL(167-216)-eYFP-
cterm fusion-Fwd 

tcaaaagattcttctcttttggagagtgatggcagcatggtgagcaagggcgag 

NVL(167-216) eYFP cterm 
fusion-Rev 

ctcgcccttgctcaccatgctgccatcactctccaaaagagaagaatcttttga 

MTR∆N F677E-Fwd tgactttggctggggagtagtggtgaatgagtcaaaaaagtcaaatgttaag 
MTR∆N F677E-Rev cttaacatttgacttttttgactcattcaccactactccccagccaaagtca 
MTR∆N R743E-Fwd gtctttaggaatgtaaagctcaacactgctgatagcagacaggag 
MTR∆N R743E-Rev ctcctgtctgctatcagcagtgttgagctttacattcctaaagac 
MTR∆N for crystallization-
Fwd 

ccaggggcccgactcggaaaacctgtatttccagggaacagatgaacccatttttggaaagaagc  

NVL(167-216) 
F186A/D189R-Fwd 

gtgtaaagaaagacagtgctttcttgcgcctgtcatgtgagaaaagtaatcc 

NVL(167-216) 
F186A/D189R-Rev 

ggattacttttctcacatgacaggcgcaagaaagcactgtctttctttacac 

NVL(167-216) W173A-
Fwd 

ccaggggcccgactcgaaagattctgaaggaggagcgtttattgac 

NVL(167-216) I175E-Fwd ccaggggcccgactcgaaagattctgaaggaggatggtttgaagac 
NVL FL-Fwd taagcagatatcatgaagcccagacctgcag 
NVL FL-Rev tgcttagcggccgcccggctgagggactcct 
NVL FL W173A/I175E-
Fwd 

ctgccaaagattctgaaggaggagcgtttgcggacaaaaccccaagtgtaaag 

NVL FL W173A/I175E-
Rev 

ctttacacttggggttttgtccgcaaacgctcctccttcagaatctttggcag 

NVL FL ∆W-AIM-Fwd ccattcccttgaagacccctgccaaagattctgaaggaagtgtaaagaaagacagttttttcttggacctg 
NVL FL ∆W-AIM-Rev caggtccaagaaaaaactgtctttctttacacttccttcagaatctttggcaggggtcttcaagggaatgg 
ZCCHC8(91-211)-Fwd aagttctgttccaggggcccatggatggacctatattacagattctattcatgaacaatg 
ZCCHC8(91-211)-Rev ccccagaacatcaggttaatggcgttaaacaatgtggctgaagacttgatggtacttg 
ZCCHC8(91-211)-eYFP 
cterm fusion-Fwd 

catcaagtcttcagccacattgttggcagcatggtgagcaagggcgag 

ZCCHC8(91-211)-eYFP 
cterm fusion-Rev 

ctcgcccttgctcaccatgctgccaacaatgtggctgaagacttgatg 

ZCCHC8(91-211) 
F178A/D181R-Fwd 

gaagcggttgccccaatttacgaaggcaagcattagtaaaatacaggacacttcctacaaca 

ZCCHC8(91-211) 
F178A/D181R-Rev 

tgttgtaggaagtgtcctgtattttactaatgcttgccttcgtaaattggggcaaccgcttc 

ZCCHC8(91-211) 
W198A/K202E-Rev 

gcaaagcaccgtcgttaaacaatgtggctgaagacttgatggtactcgggtatttcagctccttcggaaag
ctg 

ZCCHC8(91-211)/FL 
I112R/F115R-Fwd 

ttcatgaacaatgctatttcaaagcaatatcatcaagaaagagaggaacgtgtatcaaatttagtaaaaagat
ttgag 

ZCCHC8(91-211)/FL 
I112R/F115R-Rev 

ctcaaatctttttactaaatttgatacacgttcctctctttcttgatgatattgctttgaaatagcattgttcatgaa 

ZCCHC8 FL-Fwd taagcagatatcatggccgcagaggtgtattt 
ZCCHC8 FL-Rev tgcttagcggccgcttcagaggcctttttgtttttctg 
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yMtr4-Fwd ccaggggcccgactcgatggattctactgatctgttcgatgttttcgagg 
yMtr4-Rev cagaccgccaccgactgcttataaatacaaagaaccagcagatacgatatctctatg 
Rix7(1-206)-Fwd ccagggagcagcctcgatggttaaagtaaagtcgaaaaagaactcatt 
Rix7(1-206)-Rev gcaaagcaccggcctcgttaggatttcagagacgaattaggtggagatc 
hNop53(84-123)-Fwd ccaggggcccgactcgatggaaaaactcttcttcgtggacactg 
hNop53(84-123)-Rev cagaccgccaccgactgcttattctcgaggatgaggtcaacc 
NVL D176A-Fwd ccaggggcccgactcgatgaaagattctgaaggaggatggtttattgccaaaac 
ZCCHC8(134-211)-Fwd aagttctgttccaggggcccatgacttcctttaatcttttgccccagc 
ZCCHC8 ∆CTD-Rev tgcttagcggccgcgctatgaattttagtggccgttg 
ZCCHC8 (659-707)-Fwd ccaggggcccgactcgatgcctatacctgacatgagcaaatttgcaac 
ZCCHC8 (659-707)-Rev cagaccgccaccgactgcttattattcagaggcctttttgtttttctgc 

*All primers contain overhangs to facilitate ligation independent cloning 
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3.2 CHARACTERIZATION OF THE SMG8-SMG9 INTERACTION 
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complex identifies a G-domain heterodimer in the NMD effector proteins. RNA 23, 1028-

1034. 

 

The study presents the first crystal structures of the C. elegans SMG8-SMG9 complex. The 

findings demonstrate that the complex resembles a G-domain heterodimer and that the 

nucleotide binding state of the proteins might play a role in regulating the activity of the 

SMG1 kinase.  
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Structure of a SMG8–SMG9 complex identifies a G-domain
heterodimer in the NMD effector proteins

LIANG LI, MAHESH LINGARAJU, CLAIRE BASQUIN, JÉROME BASQUIN, and ELENA CONTI
Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, D-82152 Martinsried, Germany

ABSTRACT

Nonsense-mediated mRNA decay (NMD) is a eukaryotic mRNA degradation pathway involved in surveillance and post-
transcriptional regulation, and executed by the concerted action of several trans-acting factors. The SMG1 kinase is an
essential NMD factor in metazoans and is associated with two recently identified and yet poorly characterized proteins, SMG8
and SMG9. We determined the 2.5 Å resolution crystal structure of a SMG8–SMG9 core complex from C. elegans. We found
that SMG8–SMG9 is a G-domain heterodimer with architectural similarities to the dynamin-like family of GTPases such as
Atlastin and GBP1. The SMG8–SMG9 heterodimer forms in the absence of nucleotides, with interactions conserved from
worms to humans. Nucleotide binding occurs at the G domain of SMG9 but not of SMG8. Fitting the GDP-bound SMG8–
SMG9 structure in EM densities of the human SMG1–SMG8–SMG9 complex raises the possibility that the nucleotide site of
SMG9 faces SMG1 and could impact the kinase conformation and/or regulation.

Keywords: NMD; post-transcriptional regulation; C. elegans; G domain

INTRODUCTION

Nonsense-mediated mRNA decay (NMD) is a eukaryotic
surveillance mechanism that degrades aberrant mRNAs con-
taining premature translation termination codons (PTCs)
(Popp and Maquat 2013; Lykke-Andersen and Bennett
2014; Karousis et al. 2016). In addition, NMD is a post-tran-
scriptional regulatory mechanism that modulates the expres-
sion of physiological mRNAs, affecting the stability of ∼10%
of the transcriptome (Lykke-Andersen and Jensen 2015). A
universal requirement for NMD is a 5′–3′ RNA unwinding
activity that is exerted by the helicase UPF1 and regulated
by two associated factors, UPF2 and UPF3. In metazoans,
UPF1 is additionally regulated by phosphorylation at the
N- and C-terminal regions, a decisive event that creates the
binding platform for recruiting SMG6 and SMG5–SMG7,
which then target the transcript for degradation (Popp and
Maquat 2013; Karousis et al. 2016).

UPF1 phosphorylation is catalyzed by the SMG1 kinase
(Yamashita et al. 2001). In human cells, SMG1 copurifies
in a complex with SMG8 and SMG9 (Yamashita et al.
2009). Human and nematode SMG8 and SMG9 proteins
affect the stability of PTC-containing mRNAs in NMD re-
porter assays (Yamashita et al. 2009). Consistently, inhibition
of human SMG-8 has been shown to ameliorate NMD-exac-
erbated mutant phenotypes (Usuki et al. 2013). However,

general impairment of NMD on natural PTC-containing
targets was not detected in smg-8 mutants in C. elegans
(Rosains and Mango 2012) and in human subjects carrying
homozygous loss-of-function SMG9 mutations (Shaheen
et al. 2016). Human patients with SMG9 deficiency display
widespread transcriptional dysregulation, suggesting a pre-
dominant role of SMG9 in post-transcriptional regulation
rather than in surveillance (Shaheen et al. 2016).
SMG8 and SMG9 interact with each other and inhibit the

kinase activity of SMG1 in vitro (Yamashita et al. 2009;
Fernández et al. 2010). Electron microscopy studies have re-
vealed the overall architecture of the SMG1–SMG8–SMG9
complex and the central position of SMG8–SMG9 in this tri-
meric assembly (Arias-Palomo et al. 2011; Melero et al. 2014;
Deniaud et al. 2015). However, the limited resolution of the
EMmaps and the absence of atomic models have so far ham-
pered a molecular understanding of the mechanisms. In this
work, we set out to obtain an atomic model of SMG8–SMG9.

RESULTS AND DISCUSSION

Using bioinformatics analyses and proteolysis experiments,
we identified regions C. elegans (C.e.) full-length SMG8
(873 residues) and SMG9 (385 residues) as sufficient to
form a stable heterodimeric core complex (SMG8c, residues
1–423 and SMG9c, residues 59–375, Fig. 1A) and to yield
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diffracting crystals. After overcoming crystal lattice defects
(detailed in Materials and Methods), we solved the structure
and refined it at 2.5 Å resolution withRfree of 26.0% (Table 1).
SMG8c and SMG9c contain a similar globular fold with

characteristic architecture of G domains along with addition-
al secondary structure elements (Fig. 1B,C). G domains are
centered at a mixed β-sheet surrounded by α-helices on the
concave and convex surfaces (α1, α5 and α2, α3, α4, respec-
tively) (Wittinghofer and Vetter 2011). The major structural
difference between SMG8c and SMG9c is the presence in
the former of a helical bundle of three C-terminal helices
(α7–α9) that forms a stalk-like protrusion reminiscent of
the stalk domain found in GTPases of the dynamin family,
such as Atlastin and GBP1 (Fig. 1B; Supplemental Fig. S1;
Daumke and Praefcke 2016).
The G domains of SMG8c and SMG9c face each other and

interact with part of their convex surfaces (Fig. 1B). In partic-
ular, SMG8c helix α2A interacts with SMG9c helices α4
and α3 (patch 1) (in particular Val83SMG8, Ile86SMG8 with
Leu258SMG9, Leu261SMG9) (Fig. 1D). In addition, the stalk
domain of SMG8c folds back on the convex surface of
SMG9c (patch 2). Here, SMG8c stalk helices α2B and α7 in-
teract with SMG9c helices α7 and α3 (e.g., Ile335SMG8 and
Phe338SMG8 with Val212SMG9 and Tyr358SMG9) (Fig. 1E).
Many of the hydrophobic interface residues observed in the
C. elegans SMG8c–SMG9c structure are conserved in the
human orthologs (Supplemental Figs. 2, 3), suggesting a sim-
ilar overall structure. To test this prediction, we engineered
mutations in human full-length SMG9 (hSMG9) by substi-
tuting Met390 (corresponding to C. elegans Leu258SMG9)
and Tyr515 (corresponding to C. elegans Tyr358SMG9). We
transiently coexpressed full-length HA-tagged hSMG8 and
Flag-HA-tagged hSMG9 (wild-type, M390R and M390R,
Y515R mutants) in HEK293T cells and carried out coimmu-
noprecipitation assays with Anti-Flag affinity beads, probing
with an anti-HA antibody. We found that the interaction of
hSMG8 and hSMG9 observed with the wild-type proteins
was indeed strongly impaired by the hSMG9 M390R mutant
and almost abolished with the hSMG9 M390R, Y515R
double mutant (Fig. 1F).
The relative position of the G-like domains in the SMG8c–

SMG9c heterodimer is remarkably similar to that observed in
active dimeric GTPases of the dynamin family (Supplemental
Fig. S1; Daumke and Praefcke 2016), with the two G domains
converging at the loops that are known to harbor the nucle-
otide-binding motifs (G motifs) in canonical GTPases.
However, SMG8 lacks the characteristic residues of G motifs.
Another difference is that the single-stalk domain in SMG8c–
SMG9c has a different position as compared to the confor-
mations observed in dynamin-like proteins (Supplemental
Fig. S1; Byrnes et al. 2013). Finally, the SMG8c–SMG9c
heterodimer is formed irrespective of nucleotides, while pro-
teins such as Atlastin or GBP1 dimerize in the presence of
GTP analogs (Ghosh et al. 2006; Bian et al. 2011; Byrnes
and Sondermann 2011).

FIGURE 1. Structure of the conserved core of C. elegans SMG8–SMG9.
(A) Schematic representation of the domain organization of C. elegans
SMG8 (in orange) and SMG9 (in blue). Domains with a structured
fold are shown as rectangles and labeled. Predicted low-complexity re-
gions are shown as lines. The arrows below the diagram highlight the
parts of the proteins that were crystallized. (B) Two views of the crystal
structure of the C. elegans SMG8c–SMG9c core complex, with the mol-
ecules shown in orange and blue, respectively. The two views are related
by a 90° clockwise rotation around a horizontal axis. The G-like domains
and the stalk domain are indicated, as well as the N- and C-terminal res-
idues with ordered electron density. The GDP moiety bound to the
SMG9 G domain is shown in stick representation. Disordered loops
are highlighted with dotted lines. On the right, the two rectangles high-
light the two main interaction interfaces (patches 1 and 2) that are
shown in more detail below in panels D and E. (C) Topological diagram
of SMG8c and SMG9c (β-strands shown as arrows and α-helices as cyl-
inders). Loops between secondary SMG9 feature similarities in the so-
called G motifs as compared to other G domains. The positions of the
G motifs in the loops between secondary structure elements are indicat-
ed in red. Note that SMG8c and SMG9c feature additional elements as
compared to canonical G domains (α2A, α6 and α6, α7, respectively).
(D) Zoomed-in view of the interacting residues at patch 1. The molecule
is shown after∼180° rotation around a horizontal axis with respect to the
view in panel A. SMG8c helix α2A and SMG9c helices α3 and α4 are la-
beled. (E) Zoomed-in view of the interacting residues at patch 2. The
molecule is shown in a similar orientation as in panel C. SMG8c stalk
helices α2B and α7 and SMG9c helices α3 and α7 are indicated. (F)
Coimmunoprecipitation assays of human full-length HA-tagged
hSMG8 and Flag-HA-tagged hSMG9 (wild-type or mutants) in tran-
siently transfected HEK293T cells. Cell lysates (input) were immuno-
precipitated with Flag binder and detected with an HA-antibody
(precipitate) (12% SDS-PAGE gel). The mutated residues in human
SMG9 (M390 and Y515) correspond to C. elegans SMG9 Leu258 (patch
1, panel D) and Tyr358 (patch 2, panel E). HA-SMG8 is 111.7 kDa and
Flag-HA-SMG9 is 63.6 kDa.

Structure of the SMG8–SMG9 complex
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We tested whether SMG8c–SMG9c can bind guanosine
nucleotides. In fluorescence binding assays with mant-
nucleotide derivatives, mant-GDP bound SMG8c–SMG9c
and SMG9c with a dissociation constant (Kd) of 10 µM
and 15 µM, respectively (Fig. 2A). Mant-GTPγS bound
SMG8c–SMG9c with a Kd of 6.5 µM, suggesting a slightly
tighter binding in the presence of the nucleotide γ-phosphate
(Fig. 2A). In general, the low-micromolar binding affinities
we measured for SMG8c–SMG9c are similar to those report-
ed for GBP1 (Praefcke et al. 1999). We proceeded to obtain
the structure of a nucleotide-bound SMG8c–SMG9c com-
plex. Although the SMG8c–SMG9c crystals cracked when
soaking GTP, GDP soaking experiments were successful.
Diffraction data to 2.65 Å resolution (Table 1) showed the
presence of well-defined electron density for a GDP moiety
in SMG9c but not in SMG8c (Supplemental Fig. S4).

GDP binds SMG9c at a similar position as in Atlastin
and GBP1, in particular with similarities at the phosphate-
binding loops, e.g., at the motifs G1 (P loop), G2 (switch
1), and G3 (switch 2) (Fig. 2B,C). In SMG9c, the P loop
residues Lys99SMG9 and Ser100SMG9 coordinate the phos-
phates of GDP. Although parts of the switch regions are dis-
ordered in our GDP-bound structure, the switch 2 residue
Asp150SMG9 is at the position expected for coordinating the
magnesium ion, while the switch 1 residue Thr135SMG9 is
10 Å away from the position expected upon γ-phosphate

binding. There are two notable differenc-
es in the G1–G3 motifs of SMG9c as
compared to the dynamin-like family.
First, there is a conserved proline residue
(Pro153SMG9, disordered in the present
structure) at the position of switch 2 typ-
ically occupied by a glycine (Fig. 2B,C).
Second, there is a conserved glycine resi-
due (Gly96SMG9) in the P loop at the
equivalent position of the so-called argi-
nine “finger” (Arg77Atlastin) (Fig. 2B,C).
Consistent with the absence of such
arginine (which stimulates the GTPase
activity of dynamin-like proteins in cis),
we did not detect convincing GTPase
hydrolysis in vitro (data not shown).
Another significant difference is at the
G4 and G5 loops that bind the base of
the nucleotide in dynamin-like proteins.
The characteristic guanosine specificity
determinant of Atlastin and GBP1 in
the G4 motif is not present in SMG9
(Fig. 2B,C). At the corresponding posi-
tion of Asp218Atlastin, SMG9 features a
conserved lysine residue (Lys241SMG9)
that stacks with its aliphatic portion on
top of the guanine base. With the caveat
that motif G5 is largely disordered,
none of the interactions in the current

structure engage guanine-specific moieties.
We used our coordinates to progress in the interpretation

of cryo-EM structures of human SMG1–SMG8–SMG9 that
have been recently resolved at ∼20 Å resolution (Fig. 3;
Arias-Palomo et al. 2011; Melero et al. 2014; Deniaud et al.
2015). We fitted a homology model of SMG1 with the kinase
domain in the “head” region of the density and the N-termi-
nal HEAT-repeat domain in the “arm” region, as in Deniaud
et al. (2015). We positioned the C. elegans SMG8c–SMG9c
structure in the remaining unoccupied density that is
connected to the “arm,” in a density previously shown to
correspond to human SMG8–SMG9 (Arias-Palomo et al.
2011). Although the interpretation of low-resolution maps
needs to be judged with caution, placing the atomic coordi-
nates appeared to result in a remarkably good fit, whereby
the G domain of SMG9 is at the center of the density, with
the G-motif loops pointing toward the HEAT repeat region
of SMG1 (Fig. 3). In this pseudo-atomic model, SMG8 has
a more peripheral position, with the G-like domain ap-
proaching the N-terminal end of the “arm” while the stalk
is exposed to solvent.
This pseudo-atomic model is generally in agreement with

previous biochemical data (Yamashita et al. 2009; Deniaud
et al. 2015). The start of the G domain of C. elegans SMG9
(residue 59) is near the density of the SMG1 HEAT repeat
“arm.” Consistently, the low-complexity N-terminal region

TABLE 1. Data collection and refinement statistics

CeSMG8-9-Apo CeSMG8-9-GDP

Data set
Wavelength (Å) 0.979 0.9785
Resolution range (Å)a 52.36–2.493 (2.583–2.493) 47.48–2.65 (2.734–2.65)
Space group P 32 2 1 P 32 2 1
a, b, c (Å) 111.085, 111.085, 374.474 110.605, 110.605, 360.266
α, β, γ (°) 90 90 120 90 90 120
Total reflectionsa 3,768,766 (360,260) 764,628 (71,339)
Unique reflectionsa 94,467 (9210) 76,172 (7433)
Multiplicitya 39.9 (39.1) 10.0 (9.6)
Completeness (%)a 100 (98) 100 (99)
Mean I/sigma(I )a 27.25 (1.61) 12.39 (1.85)
R-mergea 0.1374 (2.587) 0.1198 (1.09)
CC1/2a 1 (0.783) 0.998 (0.793)

Refinement
R-work 0.2247 0.2318
R-free 0.2602 0.2740
Average B-factor 89.31 81.5
Ligands GDP, Mg, EDO

Stereochemistry
RMS (bonds) 0.003 0.003
RMS (angles) 0.57 0.72
Ramachandran favored (%) 96 96
Ramachandran allowed (%) 3.6 4.1
Ramachandran outliers (%) 0 0

aValues in parentheses correspond to the highest-resolution shell.
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of human SMG9 has been shown to interact with the SMG1
HEAT-repeat domain in co-IP assays (Yamashita et al. 2009)
and in crosslinking-mass spectrometry experiments
(Deniaud et al. 2015). The end of the folded domain of C. ele-
gans SMG8 (residue 421) points toward the SMG1 C-termi-

nal “head.” Consistently, the low-complexity C-terminal
region of human SMG8 has been shown to contact an inser-
tion domain present in the C-terminal domain of human
SMG1 (Deniaud et al. 2015). Finally, the β5–α4 loop of
SMG8 faces the density of the SMG1 N-terminal arch.

Consistently, the corresponding loop of
human SMG8 (residues 290–293) has
been shown to contact the SMG1 N ter-
minus in crosslinking-mass spectrometry
experiments (Deniaud et al. 2015).
Although parts of the SMG9 G motifs
as well as the low-complexity regions de-
scribed above are not present in the cur-
rent SMG8c–SMG9c crystal structure,
the fitting suggests that they might be-
come ordered upon SMG1 binding. In
summary, the pseudo-atomic model not
only rationalizes how SMG9 recruits the
more peripheral SMG8 to the SMG1
complex (Deniaud et al. 2015), but also
has predictive value because it raises the
hypothesis that the nucleotide-binding
state of SMG9might impact on the entire
complex.

MATERIALS AND METHODS

Protein expression and purification

We analyzed the amino acid sequence of
SGM8 and SMG9 proteins from different spe-
cies in an effort to identify orthologs that
would be best suited for crystallization.We se-
lected the C. elegans (C.e.) proteins since they
are 10%–25% smaller and therefore likely
more compact than their human counter-
parts. C.e. SMG8 (873 residues) and SMG9
(385 residues) were subcloned from a C.e.
cDNA library with standard PCR protocols
in a single MultiBac expression vector (pFL)
(Fitzgerald et al. 2006). SMG8 was cloned
into the multiple cloning site 1 (MCS1) of
the pFL vector using Xma1 and Nhe1, while
SMG9 was cloned into the multiple cloning
site 2 (MCS2) using BamHI and SalI.
Coexpression was crucial to obtain the heter-
odimer: Although SMG9 could be expressed
and purified in a soluble form, SMG8 was in-
soluble when in isolation (data not shown).
Rounds of limited proteolysis and optimiza-
tion of the expression constructs narrowed
down the SMG8c–SMG9c core complex
(C.e. SMG8 1–423 and SMG9 59–375).
SMG8c–SMG9c were coexpressed in baculo-
virus-infected Hi-Five insect cells
(Invitrogen) at 26°C for 70 h. Cells were lysed
in 25 mM Tris pH 8.0 with 300 mM NaCl,

FIGURE 2. The nucleotide-binding site of SMG9. (A) Fluorescence measurements of binding
affinities of guanosine-nucleotides to SMG8c–SMG9c and SMG9c using mant-labeled GDP
and GTP. The data were fitted to a binding equation describing a single-site binding model to
obtain the dissociation constants (Kd). The best fit was plotted as a solid line. The Kd values
and their corresponding errors are the mean and standard deviation of a minimum of three
independent experiments. (B) Zoomed-in view at the nucleotide-binding site from the structure
of SMG8c–SMG9c bound to GDP. The G domain of SMG9 is shown in the same orientation as in
Figure 1B, left panel. The G domain of SMG8 and, as comparison, the G domain of Atlastin
(bound to the GDP–AlF4 transition-state analog, ref) are shown in a similar orientation after
optimal superposition. The nucleotides and important residues at the nucleotide-binding pockets
of SMG9 and Atlastin are shown in ball-and-stick representation. Note that Thr135 in GDP-
bound SMG9 (center panel) corresponds to Thr120 in GDP–AlF4-bound Atlastin (left panel).
In SMG8, the equivalent site is incompatible with nucleotide binding: His35 and Gln192 would
sterically clash with the ribose and base moieties, respectively, and Asp39 would lead to electro-
static repulsion with the phosphates. (C) Alignment of the G1–G4motif sequences of SMG9 from
C. elegans (Ce), H. sapiens (Hs), and D. rerio (Dr), and comparison with human Hs Atlastin and
Ce SMG8. The position of the G motifs is schematized in Figure 1B: G1 (or P loop) in the β1–α1
loop, G2 (or switch 1) in α1–β2, G3 (or switch 2) in β3–α2, G4 in β5–α4, and G5 in β6–α5. The G5
motif is disordered in the present structure and divergent in sequence and therefore cannot be
compared at present.
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and 20 mM imidazole was supplemented to the supernatant before
loading onto the nickel column. The complex was purified
by nickel-based affinity chromatography via a C-terminal hexa-
histidine tag on C.e. SMG8, and subsequent ion exchange (Heparin
HiTrap) and gel-filtration chromatography (Superdex200, equilibrat-
ed with 25 mM Tris, 300 mM NaCl, pH 8.0). SelenoMethionine
(SeMet) substituted proteins were expressed in insect cells with sim-
ilar protocols that we reported previously (Halbach et al. 2013). The
purification procedure of the SeMet-substituted complex was the
same as for the native protein, except that all buffers were degassed
and 4 mM β-mercaptoethanol and 2 mM DTT were added before
and after elution from the Ni2+–NTA resin, respectively. Mass spec-
trometry analysis showed the presence of ∼60% SeMet incorpora-
tion in the purified complex.

Crystallization and structure determination

C.e. SMG8c–CeSMG9c crystallized by vapor diffusion in several
PEG conditions at pH 8.0 and 10°C. These initial crystals diffracted
to ∼3.0 Å resolution and could be processed in a hexagonal space-
group, but analysis of the cumulative intensity distribution showed
the presence of merohedral twinning with a twin fraction close to
0.5. Additive screening allowed us to identify yttrium chloride as
an effective chemical compound to overcome the twinning prob-
lem. The best un-twinned crystals were grown by hanging-drop va-
por diffusion in drops formed by equal volumes (1.5 µL) of protein
(6.8 mg/mL in gel filtration buffer supplemented with 0.11 mM
YCl3) and crystallization buffer (10% PEG3350, 0.1M Tris pH
8.5). SeMet crystals were obtained using the same conditions, but
adding tris(2-carboxyethyl)phosphine (TCEP, to limit SeMet oxida-
tion) and covering the reservoir buffer with paraffin oil (to slow
drop evaporation and increase crystal size). All crystals were cryo-
protected with the crystallization buffer supplemented with 25%
ethylene glycol prior to cryo-cooling and data collection.

Diffraction data were collected at 100K at the Swiss Light Source
(SLS) beamline PXII. Diffraction data were collected at the selenium
K-edge peak wavelength and were processed with XDS (Kabsch
2010). The crystals belong to a trigonal P3221 space group with
three copies of the complex in the asymmetric unit related by non-
crystallographic symmetry. We used SHELX for phasing (Sheldrick

2010) and phenix.autobuild for initial model building (Adams et al.
2010). We completed the model with iterative rounds of manual
building in Coot and refinement with phenix.refine. The three inde-
pendent copies of the complex in the asymmetric unit are very sim-
ilar and contain most of the polypeptide chains, except disordered
loop regions. The copy of SMG8c–SMG9c described in the text con-
tains SMG8 residues 1–416 (with the exception of disordered loops
between residues 193–211, 256–288, and 356–386) and SMG9 res-
idues 59–363 (with the exception of disordered loops between res-
idues 124–134, 152–172, and 284–311) (Table 1).

Native crystals were soaked with 10 mM GDP for 5 min prior to
freezing. The structure of C.e. SMG8c–SMG9c–GDP was deter-
mined by molecular replacement with Phaser using the SeMet-de-
rivatized CeSMG8–9 structure as a search model. The model was
completed with Coot (Emsley et al. 2010) and refined with
phenix.refine (Adams et al. 2010).

Nucleotide-binding experiments

The affinities for GDP were determined by fluorescence measure-
ments on an Infinite M1000 Pro (Tecan). Experiments were carried
out at 21°C in a buffer containing 25mMTris pH 8.5, 150mMNaCl,
and 5 mMMgCl2. Increasing protein concentrations were incubated
with 1.67 µM of methylanthraniloyl (mant) labeled GDP for 30 min
at room temperature. The experiments were carried out with the
fragments crystallized, since the full-length proteins were prone to
degradation of the low complexity sequences. Fluorescence of
mant-GDP was excited at 355 nm and emission spectra were then
monitored from 400 to 500 nm, with emission maxima detected at
448 nm. The intrinsic protein fluorescence as well as themant-nucle-
otide backgroundwas subtracted from the curves. Curve fittings were
done with Origin with a one-to-one binding model and are consis-
tent with the presence of one molecule of nucleotide per hetero-
dimer. Curves were done in triplicate. Similar approaches were
used to determine the binding affinities for GTPγS.

Coimmunoprecipitation assays

Both the SMG8 and SMG9 were cloned in a vector containing the
EF-1 α promoter and with an N-terminal Flag tag and N-terminal

FIGURE 3. Pseudo-atomic model of a SMG1–SMG8–SMG9 complex. In gray is the EM density of a human SMG1–SMG8–SMG9 complex fitted
with a model of human SMG1, as in Deniaud et al. (2015). The remaining density was fitted with the crystal structure of the C. elegans SMG8–
SMG9 core complex (which lacks the low-complexity SMG9 N-terminal and SMG8 C-terminal regions). In red is the GDP molecule bound to
SMG9. The fitting was done in Chimera (Pettersen et al. 2004).
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HA tag using EcoRI and NotI restriction sites. HEK293T cells were
cultured in Dulbecco’s modified Eagle medium containing 10% fe-
tal bovine serum (Gibco), 100 U/mL penicillin, and 0.1 mg/mL
streptomycin (Gibco) at 32°C/5% CO2. Plasmids were transfected
with polyethyleneimine (Polysciences Inc., 1 mg/mL) for protein
interaction studies. HEK293T cells were collected from confluent
six-well plates after 72 h of transient transfection. Cells were lysed
in 0.5 mL of lysis buffer containing 50 mM Tris, pH 7.4, 150 mM
NaCl, supplemented with protease inhibitor cocktail (Roche) and
DNase I. The lysate was centrifuged at 16,000g for 30 min at 4°C.
Twelve microliters of Anti-Flag M2 sepharose beads (Sigma) were
added to supernatant for 1 h at 4°C. Beads were washed four times
with 1 mL of buffer containing 50 mMTris, pH 7.4, 300 mMNaCl,
and proteins were eluted with 25 µL of lysis buffer supplemented
with 100 µg/mL flag peptide (Sigma-Aldrich, F3290). Eluted pro-
teins were run on 12% polyacrylamide gels and transferred onto
polyvinylidene difluoride membrane (0.45 µm pore size)
(Millipore Immobilon-P) for Western blotting. Anti-HA
(Covance, MMS-101 R) antibody and horseradish peroxidase–
coupled goat anti-mouse (Millipore, AQ502A) secondary
antibody were used in combination with ECL prime Western blot-
ting detection reagent (GE healthcare) for detection of Flag-HA
and HA-tagged proteins via Western blotting.

DATA DEPOSITION

The coordinates have been deposited in the Protein Data Bank
with accession codes 5NKM (SMG8-SMG9) and 5NKK (SMG8-
SMG9-GDP).

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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Supplementary figure 1: Comparison of the structures of SMG8-SMG9 and the dynamin-like 
GTPase Atlastin

The C.e. SMG8-SMG9 heterodimer is shown on the left, as in Figure 1A. The monomeric form of 
Atlastin (GDP-bound) is shown in the central panel, with the G domain in the same orientation as the 
G domain of SMG9 as shown in the left panel. The homo-dimeric form of Atlastin (GTP bound) is 
shown on the right panel, with protomer in pink shown in the same orientation as in the central panel, 
after optimal superposition of their G domains. The nucleotides are shown in ball-and-stick 
representation. Note the different position of the stalk domains.
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Supplementary figure 2: Evolutionary conservation of metazoan SMG8 
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Supplementary figure 3: Evolutionary conservation of metazoan SMG9 

Evolutionary conservation of metazoan SMG8 & SMG9 (Supplementary figures 2 & 3)

Sequence alignment of SMG8 and SMG9 from C. elegans (Ce), D. melanogaster (Dm), H. 
sapiens (Hs), D. rerio (Dr) and X. tropicalis (Xt). Conserved residues of SMG8 and SMG9 are 
highlighted in orange and blue, respectively. Above the sequences are the secondary struc-
ture elements, labeled as in the topology diagram in Figure 1B. The G motifs of SMG9 are 
indicated.
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Supplementary figure 4: Electron density of the GDP molecule bound to SMG9  

Zoom-in view of the GDP molecule bound to SMG9.The model is overlaid with the refined 
2mFo-DFc map (grey mesh) showing the density for GDP and the map is contoured at 1.0σ
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3.3 STRUCTURE OF SMG1-SMG8-SMG9 
 

Gat.Y., Schuller.J.M., Lingaraju.M., Weyher.E., Bonneau.F., Strauss.M., Murray.P.J., 

Conti.E. InsP6 binding to PIKKs revealed by the cryo-EM structure of a SMG1-SMG8-

SMG9 complex. Nat. Struct. Mol. Biol 12. 1089-1093. 

 

The study presents the first high-resolution structure of the human SMG1-SMG8-SMG9 

complex. The study shows that IP6 is a structural co-factor of SMG1 and possibly other 

PIKKs and is required for their activity.  

 

 The work was performed under the supervision of Prof. Conti E. Lingaraju M. along 

with Bonneau F. cloned the constructs, established the mammalian expression system and 

initial purification protocols for the complex. Detailed author contributions are included in 

the article attached.  
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Abstract 

We report the 3.45-Å resolution cryo-EM structure of human SMG1-SMG8-SMG9, a 

phosphatidylinositol-3-kinase (PI3K)-related protein kinase (PIKK) complex central to 

mRNA surveillance. Structural and mass spectrometry analyses reveal the presence of 

inositol hexaphosphate (IP6) in the SMG1 kinase. We show that the IP6-binding site is 

conserved in mTOR and potentially other PIKK members, and that it is required for 

optimal in vitro phosphorylation of both SMG1 and mTOR substrates. 

 

The SMG1 kinase performs a crucial phosphorylation event in the nonsense-mediated mRNA 

decay (NMD) pathway, a surveillance process that targets and degrades defective mRNAs 

containing premature translation termination codons (PTCs)1,2. Although the precise 

mechanisms of NMD are not fully understood, a general consensus posits that upon 

premature translation termination, this PIKK phosphorylates Ser/Thr motifs of the NMD 

factor UPF13-6, enabling the recruitment of downstream effectors that promote degradation of 

PTC-containing transcripts1,2. SMG1 constitutively binds to two cofactors, SMG8 and 

SMG97. Unlike other PIKKs (the cytoplasmic mTOR and the nuclear proteins DNA-PK, 

ATM, ATR and TRRAP)8,9, structural data for the SMG1-SMG8-SMG9 complex is currently 

limited by low resolution10-12.   

 

To gain mechanistic insights into this important NMD factor and relationships 

between PIKKs, we first generated stable mammalian cell lines expressing streptavidin-

tagged versions of wild-type (WT) human SMG1 (for biochemical analyses) or an inactive 

Asp2335Ala mutant (for cryo-EM analyses). Both co-purified with endogenous SMG8 and 

SMG9, though higher yields were obtained when co-expressing all three proteins 

(Supplementary Fig. 1). The resulting 3.45 Å resolution structure (Supplementary Fig. 2 and 

3) allowed building of a de novo atomic model of SMG1-SMG8-SMG9 core complex (Fig. 1, 

Supplementary Table 1, Supplementary Fig. 4, 5).  

 

SMG1 consists of a globular ‘head’ and an extended ‘arch’ (Fig. 1). Like for other 

PIKKs, the head contains the catalytic module (also referred to as FATKIN8,9), which 

consists of the two lobes typical of Ser-Thr protein kinases packed against the so-called FAT 

and FATC domains13. Remarkably, the well-ordered FATC domain of SMG1 follows a 
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disordered insertion spanning more than 1100 residues (Fig. 1a).  The FAT domain includes a 

curved ‘spine’ of 8 irregular tetratricopeptide repeats (TPR) and another helical repeat region 

with a ‘ring’ structure (Fig. 1). As reflected in the name of this protein kinase family, the 

spine of SMG1 and other PIKKs is similar (but more extended) to that found in PI3K, a lipid 

kinase that binds and phosphorylates the headgroup of phosphatidylinositols8. Finally, 

attached to the globular head is the arch structure, a curved solenoid of 14 N-terminal HEAT 

repeats. In contrast to other PIKKs, the N-terminal solenoid of SMG1 is a single structural 

unit and does not mediate homodimerization. Similarly to other members of this kinase 

family, however, the N-terminal solenoid forms the binding platform for recruiting regulatory 

proteins, SMG8 and SMG9 (Fig. 2a).  

 

Human SMG8 and SMG9 contain a globular core with architectural similarities to the 

dynamin-like GTPase family, as previously observed in the crystal structure of the C. elegans 

orthologues14. Two loop regions in the SMG8 and SMG9 G-folds provide the main SMG1-

binding determinants. First, a helix of SMG8 binds the SMG1 arch, engaging the surface 

groove between HEAT 8 and HEAT 10 with conserved hydrophobic interactions (Fig. 2b). 

Second, an extended segment of SMG9 (residues 435-464) interacts at the parallel surface 

groove in the SMG1 arch formed between HEAT 10 and 11 (Fig. 2c). Finally, a short stretch 

of residues extends from SMG9 and contacts the ring region of the SMG1 FAT domain (Fig. 

2a). Overall, the SMG8-SMG9 heterodimer wedges between the ‘head’ and the ‘arch’ of 

SMG1, positioning the G-fold of SMG9 to face the kinase active site of SMG1. Although this 

is reminiscent of the other cytoplasmic PIKK, mTOR, which binds a small RAS-superfamily 

GTPase (Supplementary Fig. 6)15, the dynamin-like SMG8-SMG9 heterodimer has unusual 

biochemical properties. Only the SMG9 G-domain contains a nucleotide-binding site though 

it lacks residues required for hydrolysis activity14. Consistently, only SMG9 is bound to a 

nucleotide in our cryo-EM reconstruction (Supplementary Fig. 7a). As the resolution was not 

sufficient to unambiguously identify the endogenous ligand that co-purifies together with 

human SMG9, we set out to biochemically identify it. We purified SMG8-SMG9 

(Supplementary Fig. 7b) and subjected it to electrospray ionization-mass spectroscopy (ESI-

MS), coupled to reversed-phase ion-pair high-performance liquid chromatography (RPIP-

HPLC). Surprisingly, the mass spectrometry analysis revealed the presence of a low-

molecular weight mass corresponding to ATP (506 Da) and no GDP nor GTP 
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(Supplementary Fig. 7c). The biochemical basis and relevance for this unusual nucleotide in a 

G-fold domain awaits further investigations. 

 

During model building, we noted that the polypeptide chain of the SMG1 PI3K-like 

module forms a cavity lined by conserved positively charged residues, containing a strong 

spherical electron density (Fig. 3a). To identify small molecules non-covalently bound to the 

~578-kDa SMG1-SMG8-SMG9 complex, we subjected the purified sample to the same 

RPIP-HPLC - ESI-MS analysis described above. In the MS analysis of the ternary complex, 

we detected not only the low-molecular weight mass corresponding to the SMG9-bound ATP 

(506 Da), but also a prominent 659-Da peak (Fig. 3b). Coupled to collision-induced 

dissociation MS (Supplementary Fig. 8), we could unambiguously assign the 659 Da peak to 

inositol hexaphosphate (IP6), a small negatively-charged metabolite that is present in the 

cytoplasm at micromolar concentrations16.  Thus, IP6 constitutively bound in vivo to SMG1 

and remained associated with the protein complex during purification. 

 

The IP6 ligand fitted well in the distinctive properties of the electron density and 

chemical features of the protein environment (Fig. 3a). On one side, IP6 phosphates interact 

with conserved positively-charged residues of the SMG1 FAT domain (Fig. 3a, 

Supplementary Fig. 5), notably starting from helical repeats of the spine that extend beyond 

those found in the PI3K lipid kinase. On the other side, IP6 phosphates interact with the 

conserved hinge between the kinase lobes (Fig. 3a). Thus, IP6 appears to play a structural role 

in locally stabilizing and/or configuring lobes of the protein kinase domains and may 

therefore be required for optimal catalytic activity. To test this, we expressed and purified a 

SMG1 mutant whereby we substituted a positively-charged IP6-binding lysine residue of the 

helical spine (Lys1530, Fig. 3a) to a negatively charged glutamic acid (SMG1-K1530E) in 

order to disfavor IP6 binding by electrostatic repulsion. We then assayed SMG1 kinase 

activity using its physiological substrate, UPF1. Unlike WT-SMG1, SMG1-K1530E only 

poorly phosphorylated UPF1, indicating that an intact IP6-binding site is required for full 

SMG1 activity in vitro (Fig. 3c). 

 

Superimposing the SMG1 structure with atomic models of other PIKK family 

members revealed a very similar positively-charged cavity at the corresponding position in 
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mTOR (Fig. 3d). Inspection of mTOR electron density maps15,17,18 indeed showed un-

modeled density that could be interpreted as a partially ordered IP6 molecule (Fig. 3d). To 

identify the endogenous ligand bound to mTOR, we expressed and purified a complex of 

mTOR (residues 1376-2549) and its binding factor mLST8 (as described in 15, hereby defined 

mTOR∆N) and subjected it to the RPIP-HPLC - ESI-MS analysis described above. In the MS 

data, we identified a 659-Da peak mTOR∆N, corresponding to a constitutively bound IP6 (Fig. 

3e). To test the functional relevance of the bound IP6 molecule, we engineered mTOR∆N 

mutants with a single K1753E substitution (corresponding to SMG1 K1530E) or with a 

double K1753E-K1788E substitution (referred to as KE and KKEE mutants), and assayed for 

kinase activity using an mTOR substrate, AKT1 (residues 450-480). In these assays, the 

phosphorylation activity of mTOR∆N WT was reduced in the mTOR∆N KE single mutant, and 

was undetectable in the mTOR∆N KKEE double mutant (Fig. 3F), suggesting that IP6 is 

important for full mTOR∆N activity in vitro. 

 

Although mTOR is the PIKK with the most extensive similarity to SMG1 at the IP6-

binding pocket, the available structural data suggest that at least some of the nuclear members 

of the PIKK family, ATM/ATR and TRRAP in particular, may also feature an IP6 binding 

site (Supplementary Fig. 9). In contrast, DNA-PK appears to have evolved alternative 

structural elements that replace the architectural role of IP6 (Supplementary Fig. 9, consistent 

with19,20). In summary, IP6 is an integral structural element of the catalytic module of SMG1, 

mTOR and possibly other members of the phosphatidylinositol-3-kinase (PI3K)-related 

protein kinase family.  
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Figure 1 

 

 Cryo-EM structure of human SMG1-SMG8-SMG9. (a) Schematic representation of the 

domain arrangements. Regions lacking ordered density are in white. (b) Two orthogonal 

views of the cryo-EM density map, segmented and colored by domain, and (c) corresponding 

atomic model in cartoon representation. 
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Figure 2	 

 

Interactions between SMG1 and SMG8-SMG9 (a) Overall view, with protein domains 

colored as in Fig. 1. (b, c) Zoom-in views of interactions with cryo-EM densities 

superimposed. 
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Figure 3 

 

IP6-binding site of SMG1 and mTOR (a) Structure of SMG1 IP6-binding site with density 

around IP6. (b) Ion-pair HPLC-MS spectrum. HPLC extracted-ion chromatogram (top) and 

MS analysis of the peak fraction indicated (bottom). (c) In vitro kinase assay with purified 

SMG1-SMG8-SMG9 and UPF1 substrate. Coomassie-stained gel (top), phosphorylation 

assay with [γ
32

P]-ATP (bottom). (d) Atomic model of the SMG1 IP6-binding site 

superimposed with the corresponding region of mTOR17 (in grey), with a previously 

unmodeled density feature (Fo-Fc, 4σ) (18,15,17). (e) Ion-pair HPLC-MS spectrum of mTOR∆N 

(as in panel b). (f) In vitro kinase assay with purified mTOR∆N complexes and GST-ATK1 

450-480 substrate (as in panel c). 
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Supplementary Figure 1
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Biochemical characterization of recombinant SMG1-SMG8-SMG9 complex (SMG1c). (a) 

Size-exclusion chromatography assay showing the formation of homogeneous SMG1-SMG8-

SMG9 ternary complex. After expression in mammalian cells, the complex was purified by 

size-exclusion column (Superose 6 Increase 10/300 GL, void volume of 8.0 ml). Top panel: 

chromatography profile, with absorbance at 280 nm and 260 nm shown as blue and purple 

traces, respectively. Bottom panel: Coomassie-stained SDS-PAGE gel, with samples from 

each fraction that eluted between 8.5–16 ml; the SMG1c eluted between 13–15 ml. (b) Mass 

spectrometry (MS) analysis of purified SMG1. Graphical representation shows the result of 

an in-gel peptide mass fingerprinting experiment. Identified peptides are indicated as red 

dashes at the corresponding position in the SMG1 sequence (horizontal axis) and are plotted 

against their intensity, as detected by MS (vertical axis). The uniform distribution of detected 

peptides over the entire amino acid sequence indicates that the entire SMG1 polypeptide is 

present in the purified sample. 
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Supplementary Figure 2 
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Cryogenic electron microscopy (Cryo-EM) data collection and analysis. (a) A representative 

cryo-EM micrograph collected on an FEI Titan Krios microscope, operated at 300 kV and 

equipped with a K2 Summit camera. (b) Representative reference-free 2D class averages are 

shown. (c) Angular distribution of the particles used for the final round of refinement. (d) 

Local-resolution analysis of the SMG1c. Map shows the variation in local resolution, as 

estimated by RELION. (e) Local-resolution analysis of the SMG1c (including the C-terminal 

region of SMG8). Map shows the variation in local resolution, as estimated by cryoSPARC. 

(f) 3D FSC and preferred orientation analysis of the dataset with the red line representing the 

estimated global FSC of 3.45 Å ± 1 SD (green dashed lines). A sphericity of 0.943 indicates a 

mostly isotropic map without preferred orientation bias. (g) Model vs. map FSC for the final 

PHENIX real-space refined model. (h) The model was probed for over-fitting by randomly 

perturbing the atoms by 0.5 Å and refining against the first of the two independent half-maps 

(work half-map, red). The resulting refined model was then used to calculate a model-map 

FSC against the second half-map (test half-map, green), which was not used for refinement. 

FSC-work and FSC-test curves show excellent agreement over the entire resolution range, 

validating the entire structure against over-fitting. 
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Supplementary Figure 3 

 

Cryo-EM data processing scheme. The 849,831 particles from the 2D classification were 

initially 3D-classified into five classes. The two classes containing the best aligning particles 

were combined and auto-refined in RELION to a resolution of 3.45 Å. The dataset was 

further classified for the C-terminus of the SMG8 protein in cryoSPARC, using 

heterogeneous refinement. A class-showing density for the SMG8 C-terminal region was 

then selected and refined using homogenous refinement to a resolution of 3.57 Å. 
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Supplementary Figure 4 
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Quality of the structural model built de novo in the cryo-EM map. (a) Representative regions 

of the SMG1c and surrounding electron density are shown. (b) Ramachandran plot of the 

main chain φ/ψ-conformational angles of the SMG1-SMG8-SMG9 atomic model. Areas of 

favored φ/ψ-combinations are defined in dark blue (see also Supplementary Table 1). 
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Supplementary Figure 5 
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Structure-based sequence conservation. The structure-based sequence alignments of SMG1, 

SMG8 and SMG9 were performed using Clustal Omega and colored by conservation using 

Jalview. The SMG1 alignment includes orthologues from Homo sapiens (3661 amino acids), 

X. laevis (3653 aa), Danio rerio (3641 aa), and Caenorhabditis elegans (2322 aa). Secondary 

structure elements are shown above the sequences (rectangles for α-helices and arrows for β-

strands), colored as in Fig. 1a. Helices and strands are numbered sequentially according to the 

primary modeled structure. The zigzag line below the sequences represent regions left as a 

poly-alanine-level model. Cyan and green circles indicate the residues interacting with SMG8 

and SMG9, respectively. Red circles indicate the residue mutated at the kinase active site and 

the IP6-binding site, and black circles indicate IP6-binding residues. SMG8 and SMG9 are 

aligned, numbered and colored as SMG1. Yellow circles are shown below residues that 

interact with the SMG1 arch (as shown in Fig. 2b and 2c).   
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Supplementary Figure 6 

 

G-fold protein regulators of the cytoplasmic PIKK proteins, SMG1 and mTOR. Structures of 

SMG1 bound to the G-domain proteins, SMG8 and SMG9 (a), and of mTOR bound to 

RHEB (PDB, code 6BCU) (b) are shown in a similar orientation after superimposition of the 

kinase domains of SMG1 and mTOR. Although the overall binding site is similar, there are 

major differences. First, RHEB is a bona fide GTPase, whereas the G-domain regulators of 

SMG9 binds ATP rather than GTP, and may well lack catalytic activity. Second, RHEB is 

positioned with its GTP domain roughly facing the catalytic cleft of mTOR, in an opposite 

orientation to that of SMG9. Unlike SMG9, RHEB binds to HEAT repeats proximal to the 

catalytic head (‘bridge’), as well as the very N-terminal HEAT repeats of mTOR (‘horn’). 

Significantly, the ‘bridge’ region of the mTOR HEAT repeats forms an extensive interface 

with the globular RHEB and largely replaces the equivalent position of SMG8 in the SMG1 

structure.  
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Supplementary Fig. 7 

 
SMG9 purifies bound to ATP. (a) Dimerization interface between the G-fold-like domains of 

SMG8 (cyan) and SMG9 (green), showing the electron density around the nucleotide and Mg 

ion bound in the SMG9 G-fold. (b) Coomassie-stained SDS gel of the human SMG8-SMG9 

complex purified from HEK 293T cells. (c) Analysis of the purified SMG8-SMG9 dimer by 

ion-pair HPLC-mass spectrometry. Top: HPLC extracted-ion chromatogram (EIC) of SMG8-

SMG9 dimer. Bottom: MS analysis of the peak fraction indicated above, with the mass 

corresponding to ATP labeled.  
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Supplementary Fig. 8 

 

Validation of IP6 identification and interactions. (a) The SMG1 complex was analyzed by ion 

pair HPLC-MS (top panel). To validate the identity of the 658.85 Da mass, this ligand was 

fragmented and the daughter ions analyzed by a second MS (bottom panel). As expected, the 

masses of the fragmented ions reflect a loss of individual groups of phosphate and water. (b) 

The table shows the chemical formula, the composition and the monoisotopic mass (both 

observed and expected) of each daughter ion. (c) Diagram of the chemical environment of IP6 

bound to SMG1, showing the distances between the IP6 phosphate oxygens and the amino 

groups of SMG1 lysine and arginine side chains measured from the atomic model. We note, 

however, that the precision of these measurements is limited by the resolution of the electron 

density map. 
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Supplementary Figure 9 

 

Structural comparison of the FAT domains of SMG1 with that of the other PIKK family 

members. In this figure, all structures are shown in the same orientation after optimal manual 

superposition of their FAT domains (FAT in violet, catalytic domain in slate, N-terminal 

HEAT in yellow). mTOR (mammalian target of rapamycin) is from the PDB, code 4JSV, 

ATM (ataxia telangiectasia-mutated) is from the PDB, code 5MP0, ATR (ataxia- and Rad3-



	

	98	

related) is from the PDB, code 5X6O, DNA-PK (DNA protein kinase) is from the PDB, code 

5LUQ, and the related protein TRRAP (transformation/transcription domain-associated 

protein) is from the PDB, code 5OJS. Despite poor structural conservation of the position and 

orientation of individual helices, the overall cleft-like feature that in SMG1 binds IP6 appears 

to be conserved within the PIKK family. Comparing the contact potential of each protein (not 

shown) we observe that the surface of this cleft is distinctly positive in SMG1, mTOR, 

TRRAP and ATR. The contact potential of DNA-PK is not as positive, and ATM was not 

included in this comparison due to the low resolution of this region. Shown in the lower 

panels are zoom-in views at the IP6-binding site for SMG1 and mTOR.   
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Supplementary Table 1. 

Cryo-EM data collection, refinement, and validation statistics. 
 SMG189 high res 

(EMDB-10347) 
(PDB 6SYT) 

SMG189 
(EMDB-10348) 
 

Data collection and processing   
Magnification    135,000 135,000 
Voltage (kV) 300 300 
Electron exposure (e–/Å2) 52.8 52.8 
Defocus range (µm) 0.5-3.5 0.5-3.5 
Pixel size (Å) 1.06 1.06 
Symmetry imposed C1 C1 
Initial particle images (no.) 849 831 849 831 
Final particle images (no.) 214 254 128 074 
Map resolution (Å) 
    FSC threshold 

3.45 
0.143 

3.57 
0.143 

   
   
Refinement   
Model resolution (Å) 
    FSC threshold 

3.78 
0.5 

3.92 
0.5 

Map sharpening B factor (Å2) -144 -55 
Model composition 
    Non-hydrogen atoms 
    Protein residues 
    Ligands 

  
18370 
2582 
IP6 
ATP 
Mg 

(1) 
(1) 
(1) 

B factors (Å2) 
    Protein 
    Ligand 

  
54.74 
41.01 

RMS deviations 
    Bond lengths (Å) 
    Bond angles (°) 

  
0.018 
1.243 

 Validation 
    MolProbity score 
    Clashscore 
    Poor rotamers (%)    

  
1.54 
3 
0.13 

 Ramachandran plot 
    Favored (%) 
    Allowed (%) 
    Disallowed (%) 

  
92.93 
6.99 
0.08 
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METHODS 

Protein expression and purification 

HEK 293T cell lines stably expressing Twin-Strep®-tagged SMG1, SMG8, and SMG9 were 

generated using the PiggyBac transposon system21,22. Cells were grown to a density of 1 × 

106 cells/ml in FreeStyle 293 Expression Medium (Gibco, Thermo Fisher Scientific, 

Waltham, MA, USA) and induced using 1 µg/ml doxycycline for 72 h at 37˚C. Cells were 

resuspended in phosphate-buffered saline (PBS), containing 1 mM MgCl2, 1 mM 

dithiothreitol (DTT), and a Complete Protease Inhibitor Cocktail Tablet (Roche, Basel, 

Switzerland). They were then lysed using a Dounce homogenizer and clarified by 

centrifugation. The supernatant was loaded onto a StrepTrap column (GE Healthcare, 

Chicago, IL, USA) and eluted with PBS and 5 mM desthiobiotin. The protein-containing 

fraction was further purified by size-exclusion chromatography using a Superose 6 Increase 

10/300 GL column (GE Healthcare) in PBS, containing 1 mM MgCl2 and 1 mM DTT. 

SMG1-SMG8-SMG9-containing fractions were pooled and concentrated using centrifugal 

concentrators (Sartorius, Göttingen, Germany). This protocol was used for wild-type (WT) 

SMG1, as well as for a catalytically inactive mutant (engineered for structural studies to 

prevent possible auto-phosphorylation and heterogeneity) and the IP6-binding mutants. 

 

The human SMG8-SMG9 dimer was purified using full length HA-tagged SMG8 and 

HA-flag tagged SMG9 expressed using the same system described above. HEK 293T cells 

were grown to 1 million cells/ml in 300 ml of FreeStyle 293 Expression Medium (Gibco, 

Thermo Fisher Scientific, Waltham, MA, USA). The cells were transfected using a 4:1 ratio 

of SMG8:SMG9 using PEI as the transfection reagent and grown for 72 h at 37˚C. Cells were 

washed with PBS and resuspended in PBS, 0.5% TRITON X-100 and Complete Protease 

Inhibitor Cocktail Tablet (Roche, Basel, Switzerland). Cells were lysed using a Dounce 

homogenizer and clarified by centrifugation. The supernatant was then incubated with ANTI-

FLAG® M2 beads for 1 hour at 4˚C. The beads were washed with PBS 0.5% TRITON X-

100 and finally eluted with the addition of 0.15 µg/µl 3X FLAG peptide incubated for 1 hour 

at 4˚C.  The eluted protein was further purified by gel filtration or directly applied to a 

centrifugal concentrator to exchange the buffer to PBS and increase its concentration for MS 

analysis. 
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The SMG1 substrate, UPF1, was expressed in bacterial cells and purified using 

protocols similar to those previously reported23. Briefly, a plasmid expressing TEV-cleavable 

6X-Histidine (His)-tagged UPF1 was transformed into competent BL21(DE3) Escherichia 

coli cells. Bacterial cultures were grown in Terrific Broth (TB) medium and induced with 0.5 

mM IPTG at 18˚C overnight. Cells were harvested by centrifugation, resuspended in buffer 

containing, 20 mM Tris (pH 7.5), 500 mM NaCl, 10% glycerol, 2 mM MgCl2, 1 mM β-

mercaptoethanol, and 0.1% NP-40, and then lysed by sonication. The lysate was clarified by 

centrifugation, loaded onto a HisTrap HP Ni column (GE Healthcare), washed, and eluted 

with 300-mM imidazole. Eluted protein was incubated with TEV protease while being 

dialyzed against buffer containing, 20 mM Tris (pH 7.5), 100 mM NaCl, 10% glycerol, 1 

mM MgCl2, and 3 mM DTT. Protein was reloaded onto a second HisTrap HP Ni column and 

collected from the flow through. The protein was then loaded onto a heparin column (GE 

Healthcare), equilibrated with buffer containing 20 mM Tris (pH 7.5), 85 mM KCl, 10% 

glycerol, 1 mM MgCl2, and 1 mM DTT, and eluted with a linear gradient of 20 mM Tris (pH 

7.5), 1000 mM KCl, 10% glycerol, 1 mM MgCl2, and 1 mM DTT. The UPF1-containing 

peak was loaded onto a Superdex 200 Increase 10/300 GL column (GE Healthcare) for size-

exclusion chromatography in buffer containing, 20 mM Tris (pH 7.5), 85 mM KCl, 10% 

glycerol, 1 mM DTT, and 1-mM MgCl2. 

 

For mTOR expression and purification, we chose a complex between mTOR (1376-

2549) and LST8 (mTORΔN) that had been previously characterized to be stable and active17. 

Stable cell lines expressing Strep-tagged WT and mutant mTORΔN were made using the 

PiggyBac transposon system21,22 . Cells were grown to 1x106 cells/ml and induced with 1 

µg/ml doxycycline in the presence of 3.75 mM valproic acid for 72 hours. Cells were 

resuspended in PBS, 10% glycerol, 1 mM EGTA, 1 mM EDTA, 2 mM DTT and then lysed 

by sonication and clarified by centrifugation. The lysate was loaded onto a StrepTrap column 

(GE Healthcare, Chicago, IL, USA), and eluted with 5mM desthiobiotin in lysis buffer. The 

mTORΔN complex was further purified by size exclusion in PBS 2 mM DTT on a 

Superdex200 Increase 10/300 column (GE Healthcare, Chicago, IL, USA). As mTOR 

substrate, we expressed a vector encoding GST-AKT1 (450-480) in E. coli BL-21 pLysS 

gold. Cells were lysed by sonication in 50 mM Tris pH 7.5, 500 mM NaCl, 1 mM DTT. After 

centrifugation, the supernatant was loaded on a glutathione Sepharose column and eluted 
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with 10 mM reduced glutathione. The protein was further purified over a Superdex75 16/60 

(GE healthcare) in PBS, 1 mM DTT.  

 

Cryo-EM data collection and processing 

Cryogenic electron microscopy (cryo-EM) grids were prepared by applying 4 µl of SMG1-

SMG8-SMG9 complex at 0.5 mg/ml, in the presence of 0.05% octyl-β-glucoside, to glow-

discharged R2/1 200-mesh holey carbon grids (QUANTIFOIL, GroBlöbichau, Germany). 

Grids were blotted for 3.5 sec at approximately 95% humidity and 4°C and then plunge-

frozen into liquid ethane and cooled by liquid nitrogen using a Vitrobot Mark IV (FEI, 

Hillsboro, OR, USA). A total of 10034 micrographs were collected on a Titan Krios electron 

microscope (FEI), operated at 300 kV, and equipped with a post-GIF K2 Summit direct 

electron detector (Gatan, Pleasanton, CA, USA). Images were acquired using the SerialEM 

software suite were used for automated acquisition, with defocus values ranging from 0.5 µm 

to 3.5 µm24. Images were acquired as 40-frame movies in electron counting mode (pixel size: 

1.06 Å per pixel), using a total specimen dose of 52.8 e−/Å2. The dose-fractionated movies 

were gain-normalized, aligned, and dose-weighted using MotionCor225. Defocus values were 

estimated using GCTF26, and 1,569,697 particles were automatically chosen using 

Gautomatch software (https://www.mrc-lmb.cam.ac.uk/kzhang/Gautomatch/). Subsequent 

image processing steps were carried out in RELION 2.127 and RELION 3.028.  

 

Particle sorting and reference-free 2D classification was performed to remove non-

particle candidates and damaged particles, resulting in a total of 849,831 particles. An ab 

initio model was generated using the stochastic gradient descent (SGD) algorithm28. The 

resulting ab initio model was low-pass filtered to 60 Å, thereby preventing any model bias 

using a completely data driven starting model. This model was subjected to 3D classification 

using 5 classes. The two best aligning classes, a total of 214,254 particles, were combined 

and subsequently subjected to 3D refinement, yielding an overall resolution of 3.45 Å. Global 

resolution and B-factor (-144 Å2) of the map were estimated by applying a soft mask around 

the protein density, using the gold standard Fourier shell correlation (FSC) = 0.143 criterion. 

This map was then used for de novo model building.  
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During processing, it was noted that there is a sub-set of particles carrying a C-

terminal helical bundle on the SMG8 protein that was previously described in the 

Caenorhabditis elegans X-ray structure14. The final polished particles were classified into 

three classes using heterogeneous refinement in cryoSPARC29. A single class that carried this 

C-terminal extension was refined to 3.57 Å using the homogenous refinement routine, and 

this map was only used to display and model the C-terminus of SMG8.  

 

Model building and validation 

The atomic model of the SMG1-SMG8-SMG9 complex was refined against the cryo-EM 

map using the phenix.real_space_refine routine in the PHENIX software package30. The final 

model was probed for over fitting by randomly displacing the atoms of the structural model 

by 0.5 Å and subsequent refinement against the first of the two independent half-maps. The 

second half-map was not used for refinement, and the model vs. map FSC curve shows 

excellent agreement. Directional FSC curves and map anisotropy were assessed using the 

3DFSC (Supplementary Fig. 2f )31. Statistical quality of the final model was assessed using 

the program Molprobity32 (Table S1, Supplementary Fig. 4), and figures were prepared using 

PyMOL and UCSF ChimeraX.  

 

In-vitro kinase assays 

Kinase activity assays were performed in 10-µl reactions, containing 1 µM	human UPF1 and 

50 nM of either WT-SMG1-SMG8-SMG9 complex or a version containing the K1530E 

mutation at the IP6-binding site of SMG1. Reaction buffer consisted of PBS, 10 mM MgCl2, 

and 1 mM DTT. Phosphorylation reactions were initiated by the addition of a radiolabeled 

ATP mix, consisting of 0.5 mM ATP and 0.8	µCi [γ-32P]-ATP, and allowed to proceed for 30 

min at 30˚C. Reactions were quenched by the addition of sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) loading buffer, and samples were analyzed 

by 10% SDS-PAGE. After Coomassie staining, phosphoproteins were visualized by 

autoradiography using a Typhoon FLA7000 imager. In-vitro kinase assays of mTORΔN were 

essentially identical to those of SMG1-SMG8-SMG9, with the exception that we used 100 

nM of each mTORΔN variant and 1 µM GST-AKT1 450-480 as substrate.   
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Mass spectrometry analysis 

The IP6 molecule was resolved and detected using protocols adapted from a previous study33. 

In brief, 2 µM of the purified SMG1-SMG8-SMG9 complex were injected onto a C18 

column (Agilent Zorbax Eclipse plus C18, 2.1x100 mm, pore size 3.5 µm), mounted on an 

Agilent 1290 High-Performance Liquid Chromatography (HPLC) apparatus. Bound ligands 

were eluted at 200	µl/min	with the following gradient profile: 10% Buffer B for 3 min, 25% 

Buffer B for 4 min, and 100% Buffer B for 6 min (Buffer A: 20-mM triethylammonium 

acetate [pH 9.0], and Buffer B: 20 mM triethylammonium acetate [pH 9.0], 20% 

acetonitrile), in MS2-negative mode, a mass range of 200–1000 m/z, and collision cell energy 

of -40.0 eV. This experiment was conducted at pH 9.0, with the MS operating in negative ion 

mode to accommodate detection of the negatively charged IP6, and therefore, the masses of 

both IP6 and ATP (Fig. 5b) are off by -1 Da. MS analysis of mTORΔN was essentially 

identical to that described for SMG1-SMG8-SMG9.  
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4.0 EXTENDED DISCUSSION 

 

4.1 PART ONE – MTR4-EXOSOME ADAPTOR INTERACTIONS 

 

4.1.1 SHORT LINEAR MOTIFS (SLiMS) AS STRUCTURALLY FLEXIBLE 

BINDING MODULES  

 

The cell faces a unique challenge to be able to recognize and target a variety of substrates to 

the nuclear MTR4-exosome in a timely and accurate fashion. The MTR4-exosome, being a 

central component of the RNA degradation and quality control machinery, is an inflexible 

evolutionary target to modulate recognition of a variety of substrates. Thus, this machinery 

relies on adaptor proteins with a modular architecture to recognize RNA substrates. Research 

performed on MTR4-exosome adaptor interactions as part of this thesis and prior literature 

indicates that these interactions are mediated by short linear motifs (SLiMs).  

 

 SLiMs are short stretches of adjacent amino acids located usually in the disordered 

regions of proteins allowing them to interact with a partner protein or a ligand	(Dinkel et al., 

2014). Examination of SLiMs at a sequence level along with their partner proteins indicates 

that SLiMs evolve in a convergent manner, which is distinct from how globular protein 

interaction modules evolve	(Davey et al., 2012; Diella et al., 2008). Furthermore, SLiMs are 

comparatively short, allowing sampling of the binding space in a relatively short amount of 

evolutionary time	(Davey et al., 2012). The motifs bind with relatively low affinities making 

them indispensible in mediating transient interactions. These evolutionarily flexible features 

of SLiMs make them ideal for being selected as ‘access points’ that link the MTR4-exosome 

to its substrates (Fig. 4.1).  

 

 SLiMs are tailored to interact with their respective binding surfaces and thus are very 

difficult to predict with standard computational and bioinformatics approaches	(van der Lee 

et al., 2014). However, they can be identified based on the common features of several 

validated SLiMs. Some of the common features of SLiMs include distinct lack of bulky 

hydrophobic residues, disorder to order molecular recognition features and specific prediction 

flavors such as their tendency to be subjected to post translational modifications	(van der Lee 

et al., 2014). SLiMs and intrinsically disordered regions also possess distinct biophysical 

properties like their tendency to form a phase transition in vitro because of the unique 
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distribution of charges across the sequence. Despite the wealth of research regarding SLiMs, 

they still remain very difficult to identify with appreciable accuracy.  

 
Figure 4.1: Functional characteristics of short linear motifs and intrinsically disordered 

regions.  

The figure shows the functional characteristics of short linear motifs and intrinsically 

disordered regions. The area of each sector represents the relative abundance of the binding 

mode in all of the motifs identified until 2014. The MTR4 adaptors are listed and are 

associated with their properties indicating the versatility of the factors. The figure has been 

adapted from (van der Lee et al., 2014). 

 

 The key features of the SLiM required to target the MTR4 KOW region can be 

identified based on the work performed as part of this thesis and prior literature. Structure 

based mutagenesis on the identified regions allowed us to refine the consensus of the SLiM to 

xωxxD(x)1/2G/P. Although the motif is quite flexible in terms of the sequence, the 

combination of an aspartate residue and a predominantly hydrophobic nature of the motif 

seems indispensible. Examination of the interaction surface indicates that a network of 
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hydrophobic stacking interactions and a single salt bridge between MTR4 Arg743 and the 

SLiM Asp residue stabilize the complex. Mutagenesis indicates that both the charged and the 

hydrophobic residues are individually important, and mutations that drastically change the 

properties of the individual amino acids severely impact the ability of the motif to bind the 

interacting surface. The structural data also indicate that the sequence tends to organize itself 

as a β−sheet on the surface of the MTR4-KOW region making the presence of a glycine or 

proline important for the positioning of the motif. The presence of key hydrophobic residues 

mediating the interaction makes the motif difficult to predict computationally as bulky 

hydrophobic residues are a rare feature among SLiMs.  

 

4.1.2 MODULATION OF BINDING AFFINITIES IN SLiMS  

 

Since MTR4 needs to interact with several substrate-presenting adaptors, the modulation of 

binding affinity becomes paramount to allow MTR4 to act in a target specific manner. MTR4 

is localized throughout the nucleus, whereas the exosome adaptors are localized to specific 

compartments where their substrates are likely present. The adaptors examined in this study, 

Nop53 and NVL, are localized in the nucleolus, whereas ZCCHC8 is localized to the 

nucleoplasm	 (Ogami et al., 2018). Even though, MTR4 is likely present as a component in 

several distinct complexes, it would be beneficial for the cell to utilize the available pool of 

MTR4 protein molecules as efficiently as possible.  

 

 Examination of the structures of several AIMs bound to MTR4 reveals that the 

affinities are possibly modulated by a hydrophobic effect achieved by modulation of the 

hydrophobicity of the motif. Biophysical analysis of the NVL and Nop53 interactions reveals 

nearly an order of magnitude of difference in binding affinities rationalized by the 

characteristics of the hydrophobic residues. However, as in the case of ZCCHC8	 (Puno & 

Lima, 2018) and NRDE-2	(J. Wang et al., 2019), the binding affinities can also be modulated 

by the presence of auxiliary features that aid in the interaction of the adaptor protein along 

with the broadly conserved SLiM. Taken together, it is likely that MTR4 is directed passively 

toward the substrates as needed due to the motifs on different exosome adaptors competing 

with each other to bind MTR4. A competition pull-down experiment examining the MTR4 

binding factors ZCCHC8 and ZFC3H1, which are localized in the nucleoplasm, suggests 

indeed that there might be functionally relevant competition (Fig. 4.2).  
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Figure 4.2: A GST pulldown competition assay showing the competition between the 

arch interacting ZCCHC8 and ZFC3H1. 

A preformed GST-MTR4∆N-MBP- ZFC3H11130-1310 was incubated with increasing 

concentrations of MBP- ZCCHC891-211  before co-precipitation with glutathione sepharose 

beads. A total of 3% of the input (lanes on the left hand side) and 30% of the eluates (lanes 

on the right hand side) were analyzed on 15% SDS-PAGE gels and visualized by staining 

with Coomassie brilliant blue (unpublished results).  

 

 Post translational modifications (PTMs) are yet another way SLiM-based interactions 

are regulated. Although there is no direct evidence of PTMs regulating the interactions 

centered around MTR4, examination of the Trf4-Air2-Mtr4 (TRAMP)	(Falk et al., 2014) and 

NVL-MTR4 structures indicate that PTMs might very well play a role in modulating these 

interactions. In the TRAMP complex, the conserved arginine of Mtr4 interacts with a sulfate 

ion coordinated by a threonine from Air2 mimicking a phosphorylation event. We observe a 

similar situation for the interface between NVL and the MTR4 KOW domain (Fig. 4.3). 

Interestingly, the residues coordinating the sulfate ion are conserved and have been reported 
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to be phosphorylated indicating that interactions centered on MTR4 are possibly modulated 

by PTMs.  

 
 

Figure 4.3: Zoom-in view of KOW-AIM interfaces in NVL-MTR4 (PDB 6RO1) and 

Air2-Mtr4 (PDB 4U4C) structures. 

KOW domains of yeast Mtr4 and human MTR4 are colored in light green (upper panel) and 

light blue (lower panel), respectively. Air2 and NVL are colored in pale orange and orange, 

respectively. The representation shows a possible role of phosphorylation in modulating the 

interaction. 

 

 Thus, AIMs in the exosome adaptors seem to employ a combination of features that 

could result in both active and passive regulation of binding affinities. 
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4.2 PART TWO – STRUCTURAL ANALYSIS OF SMG1-SMG8-SMG9 

COMPLEX 

 

4.2.1 EXAMINATION OF THE STRUCTURE ACTIVITY HYPOTHESES OF 

SMG1 IN THE LITERATURE 

 

Initial in vitro functional analysis of SMG1 indicated that the N-terminal HEAT repeat region 

and the C-terminal FATC domain are crucial for the kinase activity of the protein	(Morita et 

al., 2007). This finding is in line with biochemical analysis performed on other PIKK proteins 

where minor changes or deletion of either the FATC domain or HEAT repeat region lead to 

drastic changes in the kinase activity	 (Beamish et al., 2000; Priestley et al., 1998). The 

structure of SMG1 rationalizes these hypotheses to a certain extent. The structure reveals that 

the hydrophobic C-terminal part of the FATC domain that is distinctly absent in other PI3K 

structures	(Miller et al., 2010; Walker et al., 1999), packs into a loop of the kinase domain, 

indicating that it might be crucial for the structural integrity of the kinase domain. Upon 

structural alignment with mTOR, organization of the C-terminal portion of FATC and the 

loop regions of the kinase domain resemble how FATC of mTOR stabilizes the mTOR 

activation loop. This stabilization effect might be one of the possible allosteric mechanisms 

by which the FATC domain influences the activity of SMG1. However, the structure does not 

rationalize why the L3646A mutation	(Morita et al., 2007) in the FATC domain dramatically 

affects the kinase activity, as this residue is present at the surface and does not appear to be 

involved in any van der Waals contacts. The structure also indicates that a portion of the 

FATC domain of SMG1 is solvent exposed and is therefore available to mediate protein-

protein interactions like the FATC domains of ATM, ATR and TRRAP kinase where it is 

believed to mediate interactions with Tip60 histone acetyltransferase	 (Jiang et al., 2006). 

Given that several residues of the FATC domain are conserved among several PIKKs, it can 

be envisioned that the FATC of SMG1 might also be involved in a similar protein-protein 

interaction role, although the interaction might not be necessary for activation of the kinase. 

Activity assays performed to examine the effects of N-terminal deletions indicated that the 

region is indispensable for the activity of SMG1	(Morita et al., 2007). Low-resolution cryo-

EM reconstructions of the SMG1-SMG8-SMG9 complex revealed the role of the N-terminal 

HEAT repeat region of SMG1 as a scaffold to recruit SMG8-SMG9	 (Arias-Palomo et al., 

2011). The N-terminal HEAT repeat deletions that compromise the kinase activity of SMG1 
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coincide with the regions that form surfaces for SMG8-SMG9 interaction. This finding along 

with the fact that SMG1 does not require SMG8-SMG9 for kinase activity indicate that the 

HEAT repeat region might be involved in inducing and stabilizing some long range 

conformational changes, priming the kinase domain for efficient activity. A more detailed 

understanding would require high-resolution structural analysis of SMG1 in isolation in order 

to examine changes in the overall architecture of the protein with a specific focus on the 

conformation of the kinase domain. 

 

While previous studies attempting to understand SMG1 activity are valuable, it is well 

known in the field that sample quality has been the limiting factor in structural and 

biochemical characterization of SMG1. Therefore, it is crucial to interpret the structural-

activity data in the literature with care. In our structural study, we overcame the limitation by 

establishing a mammalian expression system stably expresses SMG1-SMG8-SMG9 complex, 

which enabled us to purify a well-behaved sample of SMG1-SMG8-SMG9 (See Methods in 

3.3).  

 

4.2.2 Inositol hexaphosphate (IP6) as a structural co-factor of PIKKs 

 

IP6 is an abundant metabolite in eukaryotic cells	 (Monserrate & York, 2010). IP6 and its 

precursors have been shown to be structural co-factors of other enzymes involved in RNA 

regulation like ADAR2	(Macbeth et al., 2005) and the Dbp5 complex	(Montpetit et al., 2011). 

In all the previous reported structures, IP6 functions as a tether bringing two individual 

domains or proteins together to help stabilize a particular conformation. In SMG1 and 

mTOR, however, IP6 helps package the spine region of the FAT domain onto the kinase 

domain, perhaps stabilizing a certain kinase domain conformation. The structural role played 

by IP6 in SMG1 and mTOR in packaging the helical repeats is also observed in other 

proteins. In the cohesion dynamics controlling factor Pds5, for example, IP6 restricts the 

conformational freedom of the helical repeat region (Fig. 4.4), thus enabling it to bind 

cohesin	(Ouyang et al., 2016).  
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Figure 4.4: Structures of Pds5 and SMG1 showing the similar ways in which IP6 

restricts the helical regions. 

A comparison of the structures of Pds5 (PDB 5HDT) with helical repeats colored in blue 

(upper panel) and SMG1 with regions stabilized by IP6 colored in yellow and the rest of the 

protein in gray. In both structures, the helical region wraps around IP6 thus stabilizing the 

domain which seems to be crucial for protein function. 
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5.0 OUTLOOK 

 

5.1 MTR4-EXOSOME ADAPTOR INTERACTIONS  

 

Recent studies regarding MTR4 interactions along with the results presented in thesis shed 

significant light in our journey toward a comprehensive mechanistic understanding of the 

nuclear exosome. Yet, a lot remains to be understood regarding the individual mechanisms of 

the complexes, both structurally and biochemically. Structural studies on larger MTR4 

containing assemblies provide the basis for how a substrate itself might be targeted to the 

exosome as demonstrated by the cryo-EM analysis of the pre-ribosome bound to the exosome	

(Schuller et al., 2018). Functional analysis of the complexes sheds new light on the interplay 

between MTR4 containing complexes and other related cellular pathways. Functional 

analysis and knock-down studies could also pave the way to define new exosome adaptors in 

a manner akin to the experiments that led to the identification of the poly(A) exosome 

targeting connection	(Meola & Jensen, 2017).  

 

 An interesting question that arises as a result of the identification of several MTR4 

centered interactions is how these complexes are regulated. Findings related to the MTR4-

NRDE-2 interaction point to the fact that a portion of unbound MTR4 might be sequestered 

from the exosome-interacting pool of MTR4 thereby limiting the productive substrate-

MTR4-exosome interaction	 (J. Wang et al., 2019). However, it is unclear whether this 

phenomenon truly represents a sequestering effect because NRDE-2 is capable of stimulating 

MTR4 and improving its RNA binding abilities	 (J. Wang et al., 2019). These findings also 

lead to several questions centered around the activity of MTR4 itself – why is it that some 

exosome adaptors, like ZCCHC8 and NRDE-2 stimulate MTR4 while factors like NVL and 

NOP53 do not seem to. Differential regulation of MTR4 activity and RNA binding ability 

indicate that some adaptors might have evolved to provide MTR4 with abilities to recognize 

and unwind far more complex substrates and to allow an additional layer of regulation of 

MTR4 activity.  
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5.2 STRUCTURAL CHARACTERIZATION OF THE SMG1-SMG8-SMG9 

COMPLEX 

 

The structure of SMG1-SMG8-SMG9 shows remarkable similarity to other phosphoinositide 

3-kinase related kinases, especially mTOR. At the same time, the complex is sufficiently 

unique and leaves several unanswered questions and unverified hypotheses. Although, the 

structure revealed the basis for the SMG8-SMG9 interaction with SMG1, it is unclear how 

they impact the activity of SMG1. Given that SMG1 seems to be a constitutively active 

kinase without the need for an activator, it was hypothesized and verified via in vitro kinase 

assays that SMG8-SMG9 could play an inhibitory role. This regulation seems to be in 

contrast with how Rheb regulates mTOR by interacting with the PIKK regulatory domain at 

the C-terminus of mTOR	(H. Yang et al., 2017). While SMG1 has its own unique insertion 

domain toward the C-terminus, the fact that it is not ordered in the SMG1-SMG8-SMG9 

complex, points to a more elusive role of this domain rather than a regulatory role involving 

SMG8 and SMG9. Furthermore, it is unclear how SMG1 recruits UPF1 and how the activity 

of the kinase varies based on the absence or presence of SMG8-SMG9. Further high-

resolution structural studies would also shed light on the role of the DHX34 helicase in 

targeting unphosphorylated UPF1 to SMG1 and the role of UPF2 in inducing substrate 

release	 (Deniaud et al., 2015; Melero et al., 2016). High-resolution structural studies in 

conjunction with biochemical and functional analyses could contribute to obtain a 

mechanistic understanding of the initial steps of the nonsense-mediated decay pathway. 
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