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1 Introductory summary

1.1 Background

The study of health care utilization answers important health care questions. An appropriate

management of health care utilization assists to prevent serious health conditions and provides

the foundation for more e�cient procedures (de Boer et al., 1997). For example, problems with

access to care can be indicated by the �nding that people with a lower income or who live in cer-

tain regions use fewer services (Diehr et al., 1999). However, a high variation among subgroups

in rates at which surgery is performed indicates that some individuals may not receive optimal

care (Deyo et al., 2010). Therefore, a prediction of total health care costs for a number of indi-

viduals remains important, because then the providers can appropriately allocate resources for

caring for those people (Bates et al., 2014).

In addition, well-managed health care resource allocation and adherence to recommended

care practices tend to reduce the use of emergency rooms and hospitalization, leading to better

health outcomes and less expensive care for patients (Hilton et al., 2018).

Currently, the introduction of individual health records and claims data delivered by he-

alth care providers and insurers assists in understanding and managing health care utilization

(Schneeweiss and Avorn, 2005).

Usually, health claims data include not only information on health services such as the type

and location of care, services provided, diagnosis, and procedure codes, but also the individual-

level information such as the demographics for thousands of patients. However, utilization data

hold several characteristics that foster them challenging to analyze (Griswold et al., 2004; Mihay-

lova et al., 2011).

Because of the increasing complexity of medical procedures and the focus on evidence-based

practice, attention to statistical quality in medical research has risen in recent years. Although

randomized trial designs have been employed to evaluate the quality of care and to identify ef-

fective interventions in the real world, the empirical basis of public health research is primarily

resides on data collected in the observational setting, e.g., in the routine setting of daily prac-

tice (Normand, 2008; Clarke et al., 2019). However in routine data, data are often collected for

other purposes and are not used experimentally (Powell et al., 2003). Hence, empirical analyses

of routine data require statistical tools that can manage the complexity of these data.

This thesis presents three statistical approaches and applications that address problems in

analyzing health care utilization using claims data, covered in three di�erent manuscripts. All

manuscripts included in this thesis explore and use recently developed statistical methods that

may be speci�cally useful for the analysis of health claims data.

The �rst approach concerns the unique distributional properties of health care utilization cost

data and the problems that accompany accurate modeling and prediction of such data. Many of

the problems that typically arise during the analytical process can be solved by the statistical

distribution for health care cost data of this approach.

The second approach focuses on discovering of latent subgroups of individuals with distinct

utilization patterns. Policymakers, payers, and clinicians seek to improve care and reduce spen-

ding in these groups by interventions tailored to subpopulations (Hastings et al., 2014). Here,
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a Bayesian mixture regression model for count data identi�es distinct subgroups of lung can-

cer patients with regard to their health as well as treatment, and relationships between other

covariates (e.g. age, living in rural areas) and hospital length of stay.

The third approach concentrates on causal inference applications using health claims data.

First, the causal e�ect of bariatric surgery on health care costs was estimated. This estimate

derived from a developed and applied Bayesian structural time series model that estimated what

costs would have incurred for individuals if they had not received the surgery.

1.2 Accurate modeling and prediction of health care costs

Accurate estimates of health care costs determine the trade o�s between medical possibilities,

their �nancial viability, as well as the quality and fairness in any health care system. Health

care utilization cost data are usually not normally distributed, as some individuals cause no costs

while others cause extremely high costs. In addition, costs cannot be negative. The distribution of

costs is called semi-continuous (Min and Agresti, 2002) and poses many problems. For example,

common statistical models involving the Gamma or log-normal distributions have di�culty with

such a combination of discrete and continuous values due to the signi�cant part of the population

with zero costs. Models for these data must be �exible enough to accommodate these features

and yet still produce interpretable, policy-relevant results (Mihaylova et al., 2011).

A popular manner to analyze cost data in the generalized linear models (GLM) framework is

the use of two-part models (Duan et al., 1983) that combine a binary model for the dichotomous

event of having either zero or positive values with a continuous model for those individuals

having positive values. This complements a two-stage decision process, that can be inadequate

because the two decisions are not usually made independently (Winkelmann, 2004; Van Ophem,

2011). In constrast, the Tobit model uses a single distribution (Tobin, 1958). This model is based

on a zero-truncated Normal distribution but cannot handle excess zeros, i.e. the presence of more

zeros in the data than would be expected from the underlying distribution. This linear regression

setting assumes constant variance that is inadequate for cost data.

Recent research has primarily focused on developing new models and comparing distribu-

tions for the continuous part of the two-part models. For example, Jones et al. (2016) compare

several recent developments in parametric and semiparametric regression models, i.e., models

that use a �nite number of parameters for health care costs, including the generalized Gamma

distribution (GenG), Weibull, and exponential distribution. The comparative studies from Basu

et al. (2006) and Hill and Miller (2010), study models with either real data, i.e. the true distribution

is unknown, or by using simulations. Both analyze positive costs with no emphasis on the zero

aspect. The only comparative study considering zero costs has been documented by Buntin and

Zaslavsky (2004).

As an alternative, Manuscript 1 (Kurz, 2017) considered a single distribution GLM that can

simultaneously model the zeros and continuous positive outcomes for cost data. The number of

excess zeros could be arbitrarily high while still providing good support for the positive costs.

This model, based on the family of Tweedie densities (Tweedie, 1984), demonstrates many ad-

vantages that enable it an ideal candidate for health economic cost data modeling.

The Tweedie family of distributions corresponds to special cases of exponential dispersion
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models (Jorgensen, 1997) in which the mean-variance relationship can be �exibly speci�ed. For

example, the purely continuous Normal, Gamma and inverse Gaussian distributions are all part

of the Tweedie family. However, the class of compound Poisson-Gamma distributions that have

positive mass at zero, but are otherwise continuous, are the most relevant subclass for cost data.

Because Tweedie distributions also belong to the exponential family of distributions, they can be

used in the GLM framework.

Manuscript 1 compared the Tweedie model with the two-part (Binomial/Gamma and Bino-

mial/GenG), the Tobit, and the Poisson models regarding marginal e�ects (at the means), model

�t and prediction error in both Monte Carlo simulation and real data. These are all simple models

that are easy to interpret and favored by analysts.

The simulation study assessed both root mean squared error (RMSE), an absolute measure of

model quality, and Akaike information criterion (AIC) (Akaike, 1973), a relative measure of model

quality, across di�erent settings with low and high correlation (i.e., how much users and non-

users di�er in their characteristics) and varying the numbers of zeros. If the number of zeros was

below 20%, the Tweedie model outperformed the Tobit, the Poisson, and both two-part models

in situations with high correlation between users and non-users. When the zero percentage was

above 20%, two-part models started to surpass the Tweedie model in both AIC and RMSE.

In a real data application, the AICs of the Tweedie and the two-part Gamma models were

almost identical, suggesting a comparable model �t. Yet, the two-part GenG showed slightly

superior �t with a lower AIC, but the Tweedie clearly outperformed Poisson and Tobit models.

From these results, the models based on Tweedie distributions provide an interesting alter-

native for the analysis of semi-continuous health care cost data. Indeed, they remain especially

useful when the correlation between users and non-users of health care utilization is high and

the proportion of these non-users is low.

1.3 Subgroup identi�cation in health care utilization data

To characterize the utilization behaviors and to investigate the drivers of variations in health

care utilization may highlight targeted interventions that can improve disease management and

treatment. Clustered data complicates an analysis primarily because no reason exists to assume

that observations are statistically independent within a cluster (Normand, 2008). For example,

with many public health studies, interventions are assessed on patients who are treated within

practice settings. When evaluating the quality of health care provided in ambulatory treatment

settings, all patients in the practice are exposed to the same quality level. Thus, it may be highly

likely that the reception of guideline treatment for two patients sampled from the same practice

would be more equal than the likelihood of two patients sampled from two di�erent practices.

Consequently, identifying subgroups remains an important but challenging task.

A variety of statistical models have been considered for subgroup identi�cation. For exam-

ple, models based on mixtures of parametric models represent a complicated density as a linear

combination of simpler densities and, therefore, identify groups of observations with similar

outcomes using unsupervised clustering. These mixture models, also known as latent class mo-

dels (Böhning and Seidel, 2003; Muthén and Shedden, 1999) or switching models (Frühwirth-

Schnatter, 2001), are motivated by the concern that di�erent parts of the response distribution
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(e.g., low cost users, high cost users) could be di�erently a�ected by covariates. They are widely

used (see reviews in McLachlan and Peel (2004) and Titterington et al. (1985)) and often perform

better than standard GLMs and the hurdle model (Deb and Trivedi, 1997).

However, �tting mixture models requires the speci�c number of mixture components (or

clusters). Too many clusters will over-�t the data and impair model interpretation while too few

will be unable to fully re�ect the structure of the data. In the simplest case of mixture modeling, an

initial natural hypothesis is posed which subgroups might exhibit di�erent behavior, providing

both an initial choice of the number of clusters and even which data points belong to each cluster.

However, the problem remains on how to infer the clusters precisely, and derive hypotheses

for further study from the model. Usually, the number of components will be decided either ex

ante, by the choice of a convenient and interpretable number such as two or three or ex post,

by the generation of models with di�erent numbers of components and the manual search for a

plausible best �t by the comparison of quantities such as AIC or likelihood ratio (McLachlan and

Rathnayake, 2014).

Manuscript 2 (Kurz and Hat�eld, 2019) concentrated on the variation in hospital inpatient

days among patients diagnosed with lung cancer. To calculate this variation, two implementati-

ons of mixture models for zero-in�ated count regression were de�ned and compared: maximum-

likelihood-based �nite mixture models (FMMs) and parametric Bayesian mixture models. Indeed,

an explicit comparison could de determined about the maximum likelihood and parametric Baye-

sian mixture models for count data. Furthermore, assessment could be achieved about these two

approaches’ ability to detect the true number of mixture components and estimate component

parameters, as well as the practicalities of both approaches could be produced. The model allowed

for frequent zero-valued observations.

In summary, the Bayesian mixture modeling allowed the number of clusters to be estima-

ted from the data. Yet, in a simulation study, the selection of the number of clusters in a FMM

using model �t statistics such as AIC did not provide a very precise method for determining the

true number of clusters. Instead, the posterior clusters probabilities from the Bayesian model

were closer to the truth, although slightly overestimated the number of clusters as seen by other

authors (Onogi et al., 2011).

Among the claims data set with lung cancer patients, three distinct clusters could be iden-

ti�ed using the Bayesian mixture model. The �rst cluster contained individuals with the fewest

hospital days on average; it found many patients undergoing chemotherapy only or undergoing

chemotherapy in combination with radiation therapy. This and the lack of surgery, likely indi-

cate that these patients were already in an advanced (metastatic) stage at diagnosis. For these

patients, it could be that therapy had a palliative intent with a focus on improving the quality of

life. In contrast, patients in clusters 2 and 3 were more likely to have surgery only, surgery and

chemotherapy, and the combination of all three treatments. This suggests diagnosis at an earlier

stage, and fosters more aggressive treatment.

1.4 Causal inference applications using health claims data

Although not always explicitly stated, the most common goal in public health research involves

establishing causation. Causal inference focuses on what would happen to a speci�c individual
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under di�erent intervention options. Interventions can include di�erent treatment options, but

also educational or care programs, policy changes, or health promotion campaigns.

Health claims data have not been originally collected for drawing causal estimates from he-

alth claims data, because they are observational rather than experimental, and consequently,

usually fail to meet most of the assumptions to support a causal conclusion (Shi�rin, 2016). Ho-

wever, health claims data present an exciting opportunity to determine estimates in health eco-

nomics and health policy research because of their accurate collection of utilization measures.

In the absence of a randomized control group, analyzing such data requires the use of new data-

adaptive approaches that automatically optimize a confounding control to study causal treatment

e�ects (Schneeweiss, 2018).

Manuscript 3 (Kurz et al., 2019) used claims data from the largest health insurance provider in

Germany to estimate the causal e�ect of bariatric surgery on health care costs. Surgical measures

to combat obesity are very e�ective in terms of weight loss, recovery from diabetes, and impro-

vement in cardiovascular risk factors but their e�ect on health care utilization remains unclear.

The economic aspects of bariatric surgery should be an important policy question, because being

overweight and obesity pose high economic costs to health care providers (Yates et al., 2016; Tsai

et al., 2011). This is particularly important in Germany because the absorption of bariatric sur-

gical procedures expenses is not currently included in the statutory health insurance standard

bene�t catalogue. For individual cases, however, the interventions can be requested and funded

by the patient’s insurance fund. This might be the reason why the number of bariatric procedu-

res in Germany is signi�cantly lower than in neighboring nations. The frequency of operations

for morbid obesity is currently 9 per 100,000 adults in Germany; in other European countries it

is many times higher (e.g., Sweden: 77; France: 57; Belgium: 108) (Angrisani et al., 2015).

Due to the absence of a control group in the provided data, none of the traditional methods to

establish causal estimates such as regression control and matching (Stuart, 2010) could be used.

Instead, Manuscript 3 employed a Bayesian structural forecasting model to construct a synthe-

tic control group. These methods have been shown to be useful in the analysis of intervention

e�ects through time-series data in the absence of a randomized controlled trial (Bouttell et al.,

2018). Traditional synthetic control methods usually involve the construction of a weighted com-

bination of groups used as controls, to which the treatment group is compared.

In contrast, the Bayesian structural model estimates the model on the pre-treatment period

using Gibbs sampling and then iterated each sampling trajectory forward using the estimated

parameters to construct the post-intervention counterfactual. This is essentially a forecasting

method trained on pre-treatment outcomes to construct a post-intervention counterfactual, i.e.

what would have happened to individuals who did not receive bariatric surgery. This approach

has the advantage that it does not require a set of dedicated control units, i.e., untreated indivi-

duals, and instead can use any sort of related time series to predict the counterfactual.

Using this method, Manuscript 3 found that bariatric surgery was associated with a cost

reduction in pharmaceuticals and physician services, but also with rising costs for inpatient care.

In total, health care costs increased slightly after bariatric surgery.
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1.5 Conclusion and outlook

In conclusion, the current doctoral thesis highlights the new statistical challenges and opportu-

nities that occur with analyzing health care utilization using health claims data. In Manuscript 1,

a new statistical distribution was introduced that has the potential to more accurately model

cost data. It showed many advantages over current methods for predicting and analyzing costs

in health care settings. In future work, this could be extended to cost-e�ectiveness analyses in

which the distributional aspects of the data also play an important role. Manuscript 2 focused

on identifying di�erent inpatient utilization patterns with the aim of improving health outcomes

and care quality while reducing health care spending in groups with substantial heterogeneity.

The presented Bayesian approach could be extended with more sophisticated priors to potential-

ly use in�nite mixture models. Also, a variational Bayesian approach to lower the computational

burden might be considered. Manuscript 3 estimated the e�ect of bariatric surgery on health care

costs using a synthetic control group estimated by a Bayesian structural model. This remains an

important health policy question that needs further investigation with an increased number of

patients and possibly a set of untreated controls to verify the results obtained in this manuscript.
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