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1 Introduction 

1.1 Childhood asthma  

Asthma is a complex chronic pulmonary disease with four main pathogenetic 

properties: airway hyperresponsiveness (AHR), bronchial obstruction, airway 

inflammation and airway remodelling. It is the result of a complex interaction involving 

the respiratory tract, inflammatory cells, cytokines and other mediators [1]. A variety 

of influences from (epi-)genetic background to environmental exposure as well as 

respiratory tract infections have been shown to influence the pathogenesis of asthma 

[2-4]. While asthma affects patients of every age, its pathogenetic origins most likely 

lie in the early stages of life [5]. Subsequently, asthma is considered to be the most 

common chronic disease in childhood. Prevalence is continually increasing and 

varies between 5-20% in 13- to 14-year-old children in different parts of the world [6-

8]. In younger patients, especially preschool children, making a reliable asthma 

diagnosis has proven to be a challenge, though not impossible, as obtaining 

objective lung function measurements is difficult and airway inflammation as an 

important criterion has been poorly studied in preschool children [9]. As the most 

frequent asthma-related symptom in paediatric patients is wheezing, a high-pitched 

whistling sound during expiration, wheeze - and not asthma - is the term mainly used 

to describe the illness in this group [10, 11]. The prevalence of wheeze is high as 

almost every third child will experience wheeze at least once until school age, with 

recurrent wheeze affecting roughly 8% to 20% of children [12-15]. 

 

However, wheeze as a pulmonary symptom is not automatically equivalent to an 

actual diagnosis of asthma, while not all asthma patients necessarily show wheezing 

[16]. This makes for a challenging process of correctly differentiating and then 

treating these groups which are very heterogenous in clinical presentation, progress 

and response to therapy [6, 17, 18].  

Current treatment guidelines, such as the 2018 GINA (global initiative for asthma) 

guidelines, mainly propose age-adjusted treatment steps according to the level of 

disease severity as well as symptom control, with varying priorities on different 

medications such as steroids and 2-agonists, only just beginning to implement more 

individualized approaches [19-24]. This might be one reason for the varying response 
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to pharmacological therapy, accounting for patients with mild asthma who still have 

substantial residual disease and some patients with severe asthma who are 

classified as non-responders [25-27]. Non-responders are patients suffering from 

severe or uncontrolled asthma even under medication, a group that is especially 

relevant in preschool children under four years of age [28]. Not only do these children 

suffer a greater loss of quality of life, but some additionally propose a possibly 

increased risk of developing COPD (chronic obstructive pulmonary disease), a 

disease with features similar to asthma but characterized by irreversible airflow 

obstruction, in the third or fourth decade of their life [29]. As asthma cannot be cured 

at the moment, effective therapy will be the key to limit this substantial risk, relieve 

health care costs and, most of all, to increase the patients’ quality of life [30-32].  

 

In summary, childhood asthma, despite all efforts, continues to impose a 

considerable burden on paediatric patients as well as on health care systems [33, 

34].  Disease prevention as well as the access to adequate therapy remain limited for 

many children as long as especially the underlying pathogenetic mechanisms of 

asthma are incompletely understood. 

A recent, promising theory about asthma pathogenesis is the view of asthma as a 

complex disease. This term describes a condition in which a mild genetic hit can 

have a major impact on the clinical presentation when acting together with 

environmental factors, integrating the two main known pathogenetic pathways as well 

as the emerging clinical view of asthma as a syndrome [35]. This new understanding 

lays the foundation for a more precise classification of patients into clinical 

phenotypes as well as biological endotypes, which will be the first step on the way to 

more individually tailored care for patients with childhood asthma, supported by 

biomarkers1 used to improve diagnostic processes and disease monitoring [26, 36].  

As a long term goal, especially patients suffering from severe or poorly controlled 

asthma would benefit from more effective therapies and maybe even possible cures, 

developed and delivered to precisely defined patient subgroups with the help of 

biomarkers [37-39].  

 

 
1 Biomarkers are indicators of physiological or pathogenetic processes, or even of a response to a 

therapeutic intervention, that can be objectively measured and evaluated. 
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1.2 Phenotyping 

1.2.1 Clinical phenotypes 

In clinical practice, phenotypes define groups of patients presenting a similar 

combination of symptoms. There are several ways to define those phenotypes, two 

of the most commonly used being a clinical and an epidemiological approach [40].  

For preschool children, the most frequently used approach is based on clinical 

criteria and takes the patient’s history, diagnostic techniques and treatment 

responses into account. Following this system, children with preschool wheeze are 

classified in two subgroups and then treated accordingly: Either multi-triggered 

wheeze (defined as wheeze being caused by at least two of the following six criteria: 

cold, effort, dust, animal contact, grass pollen, or others) or episodic viral wheeze, in 

which wheeze typically occurs during distinct episodes of respiratory viral infection, 

mainly with rhinoviridae [13, 17, 41-44].  

However, data about the prevalence and, even more important, about the reliability of 

these phenotypes have only been published recently. For example, van Wonderen et 

al. showed in a cohort study that stable multitrigger and episodic viral wheeze are 

relatively uncommon as about 80% of the children changed phenotypes in the period 

of 24 months [45]. In accordance, there have also been reports about significantly 

varying prevalence between wheeze and asthma, which renders the current use of 

wheeze as a proxy symptom for asthma problematic [16].  Additionally, the clinical 

approach is based on the paediatrician’s subjective perception of child and wheeze in 

a particular, not necessarily representative moment. Thus, perception and labelling of 

wheeze symptoms often varies among paediatricians and other clinicians, 

diminishing its reliability considerably [37, 40, 46].  

These limitations cause a serious problem in separating preschool children with self-

limiting episodic viral wheeze from children who will continue to experience 

symptoms and eventually receive an asthma diagnosis. However, this differentiation 

is crucial because one does neither want to submit a child to unnecessary therapy 

not withhold necessary therapy from a child that needs it as early as possible in order 

to limit long-term complications and alleviate overall morbidity [14, 47].  

 

In children older than six years, the most common clinical phenotype distinction is 

mainly based on IgE, an immunoglobulin used to measure allergic sensitization. This 

results in a group of patients classified as allergic asthmatics, who present a high 
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level of IgE (and in particular a positive specific IgE for the most common 

aeroallergens in combination with characteristic clinical symptoms) as well as 

pulmonary symptoms like wheezing, coughing, or an impairment of lung function. As 

there is specific therapy available in the form of anti-IgE-antibodies, the classification 

as allergic asthma has a direct impact on treatment. Meanwhile, a low level and/or 

negative specific IgE without any allergy-related clinical symptoms is what defines 

the non-allergic phenotype [48].  

However, the roles of atopy and IgE as a potential biomarker are under re-evaluation 

especially in younger patients, as atopy takes time to manifest and a clear causal 

connection to asthma pathogenesis has never been proven, suggesting an influence 

of other factors like viral infections [38, 49, 50]. Subsequently, recent studies about 

the use of IgE in prediction of response to omalizumab (an anti-IgE antibody) left the 

role of IgE as a specific biomarker increasingly unclear [50]. More promising results 

were obtained when using the count of blood eosinophils, which is usually elevated in 

asthma [51].  

Even so, these results are still not satisfying, suggesting that the dichotomy of 

allergic versus non-allergic asthma (and in parallel terms, multitrigger wheeze and 

episodic viral wheeze) does not do the disease’s heterogeneity justice. Instead, there 

has been a change towards looking for other methods to define phenotypes, 

ultimately combined in the approach of endotyping that will be explained later on, in 

the hope of a better prediction of treatment responses and outcome as well as the 

development of individualized therapeutic options [36]. 

 

1.2.2 Epidemiological phenotypes  

Another approach to phenotyping is based on epidemiology and driven by data 

stemming from birth cohorts. Mainly latent class analysis (LCA) is used to define 

groups with similar features in a larger heterogeneous group of subjects. As it 

traditionally refers to longitudinal data, it focuses on longitudinal time patterns. This 

way of phenotyping results in longitudinal time patterns and the subsequent 

phenotypes are defined as early transient, persistent or late-onset wheeze as 

illustrated below [17, 18]. 
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Figure 1: Course of longitudinally defined phenotypes. Modified after [52].  

However, as it can only be performed in retrospective, this method is most commonly 

used for research purposes. For example, early transient wheeze is defined as the 

patient having started to wheeze before three years of age but stopped around three 

years, which can only be said in retrospect, and is thus not applicable for clinical 

management of a patient [13, 38].  

Recent efforts to combine both the clinical and the epidemiological approach in order 

to gain benefits from both have found some cases in which the clinical phenotypes 

match the LCA phenotypes, as for example in multitrigger wheeze and persistent 

wheeze, respectively. While this is promising, in other cases they differ greatly, 

further stressing the need to combine more methods for additional precision [17, 18]. 

In an effort to include the change in clinical picture over time, which is common 

especially in children, a recent study by Gardner et al. tried a new approach to 

increase both reliability and stability in connecting LCA phenotypes defined at 

different time points through transition probabilities. Parallel to the above, they found 

evidence supporting some but not all clinical phenotypes [53].  

A possible way to increase their accordance and subsequently, to define more 

precise and thus more reliable phenotypes could be gaining more in-depth insights 

into the underlying pathogenetic immune mechanisms and taking them into account 

when merging the clinical and epidemiological approach to phenotyping. 
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1.3 Immunological mechanisms in the pathogenesis of asthma 

An understanding of the complex underlying mechanisms of the immune system is 

needed prior to integrating immunological insights in the definition of asthma 

phenotypes. The following chapter will comprise a short summary of known 

mechanisms important for asthma pathogenesis in innate and adaptive immunity. 

1.3.1 Adaptive immunity 

In general, adaptive immunity can be divided in T-cell immunity and B-cell immunity. 

B-cells are mainly responsible for the humoral part of adaptive immunity as they 

produce highly specific antibodies. T-cells are further classified into CD8+-T-cells with 

cytotoxic function and CD4+-T-cells with their multiple subsets (see figure 3 below). 

Any kind of adaptive immune response requires the T-cell receptor (TCR) to 

recognize antigen fragments presented via major histocompatibility complex (MHC) I 

or II, depending on the cell type, on antigen presenting cells (APC). This crucial 

pathway is regulated through expression patterns of pattern recognition receptors 

(PRR) on epithelial cells (EC) and APCs. This seems to play a role not only in allergic 

sensitization but also in ongoing asthma [54, 55]. 

MHCI is expressed on all nucleated cells in the body, while the coreceptor necessary 

for antigen presentation, CD8, is only expressed on CD8+ T-cells. Via MHCI, 

cytoplasmatic proteins are presented, which in physiological circumstances induces 

self-tolerance from natural killer cells. In case of intracellular, viral infection highly 

specific, cytotoxic CD8+ T-cells are activated to eliminate the pathogen.  

Antiviral immunity in particular has long been of interest for asthma pathogenesis, as 

epidemiologic studies have shown respiratory viral infection to be an independent 

risk factor. The exact pathophysiological mechanisms through which viral infection 

influences asthma development are still to be elucidated, but an altered immune 

response to viral infection seems to be an important factor. For example, respiratory 

syncytical virus, a very common infection in small children, is thought to 

overstimulate a Th2-type response, which in turn is associated with allergy and 

asthma development as explained in the following [56, 57]. Antiviral immunity is also 

a good example of how asthma is a disease featuring the adaptive as well as the 

innate immune system. There are many intersections through which both systems 
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communicate and influence each other, physiologically maintaining a fine balance 

between inducing and resolving inflammation [26, 58]. 

 

In contrast, MHCII is only expressed on myeloic cells with the capacity to present 

antigens, like dentritic cells (DC), macrophages and also B-cells as well as ECs. On 

MHCII, fragments of extracellular antigens that have been taken up and processed 

by antigen-presenting cells are presented to naïve CD4+ T-cells, also called T-helper 

cells, in the lymph nodes draining e.g. the lungs [59, 60]. 

 

 

Figure 2: Overview of differentiation pathways from progenitor cells for cells of the immune system. 
Peripheral T-cell subsets also include Th19-cells and Th22-cells (not shown), from [61].  

 

In the past, the main role of adaptive immunity for asthma has often been limited to 

the role of the T-helper-Cells (Th-cells). Th1-type cells mainly produce IL-2 and IFN-γ, 

which, in high doses, have suppressive capacities on activated B-cells, which is 

important for terminating an immune response. Additionally, they can activate 

macrophages, resulting in cytotoxicity, which makes them an effective weapon 

against for example acute viral infection.  

Th2-type cells, more prominent in chronic inflammation, produce interleukins (IL) IL-4, 

IL-5 and IL-13, helping B-cell dependent humoral immunity in the production of 

immunoglobulins (Ig) like IgE. IgE is an antibody strongly linked to allergy as it can 
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lead to histamine release from mast cells when cross-linked to the Fcε -receptor on 

mast cells. Reinforcing the relation to allergy, Th2-cells induce mucosal mast cell 

proliferation (mainly via IL-4) as well as proliferation of eosinophils (mainly via IL-5), 

both cell types activated by IgE. Physiologically, these mechanisms are at least partly 

suppressed by Th1-type cells [59].  

In previous asthma research, the “Th2-hypothesis” links the typical symptoms of 

allergic asthma to an imbalance between a diminished Th1-type answer and a 

heightened Th2-type response, leading to IgE production, histamine signalling and 

then airway inflammation [54]. This Th2-shift is especially prominent in the neonatal 

immune system, a time thought to be crucial for asthma development [62]. 

Additionally, Th2-type cytokines have been found to be increased in asthmatic 

children. APCs might at least partly at fault for this disequilibrium as they are 

responsible for the presentation of allergens in mucosal surfaces and start the 

immune response leading to allergy in the genetically susceptible individual [59, 63].  

 

As the view of asthma evolves, the Th2-hypothesis has lost influence in favour of an 

immunological response that is as heterogenous as the disease with many different 

contributing pathogenetic mechanisms [64]. For example, the involvement of other 

Th-cell subtypes has been shown, such as Th17-cells, which are said to drive 

neutrophilic and macrophage inflammation in non-allergic asthma [54, 65].  

IL-17, the cytokine produced by this Th-cell subset, counteracts the anti-inflammatory 

properties of another Th-cell subset, the Th-regulatory cells (Treg) [66]. Lluis et al. 

showed this reciprocal regulation in a cord blood study and proposed that early 

immune maturation of Th17-cells depends for example on genetic predisposition 

among other factors [67]. In studies investigating protective factors, maternal farming 

has been found to positively influence both Treg count and function [68]. 

Consistently, Tregs have been identified to have an overall immuno-supressive 

function. However, they have also been shown to be enriched in children with allergic 

asthma, which could indicate a counter-regulatory process [2]. 

1.3.2 Innate immunity 

As it becomes increasingly clear that childhood asthma has its roots in the earliest 

stages of life, the role of innate immunity has shifted into focus. The reasoning 

behind this is that as adaptive immunity takes time to mature to its full capacity, the 



 9 

innate immune system is very prominent especially at the beginning of life and thus 

in the period seen as critical for asthma development [5].  

Innate immunity is the human body’s first line of defense against pathogens such as 

fungi, bacteria and viruses as well as a variety of altered cells like apoptotic, 

degenerated and virally infected cells. Its task is to recognize these structures as 

antigens (i.e. any structure that eventually leads the immune system to produce 

antibodies) and, in case of pathogens, to signal the adaptive immune system an 

infection has occurred. 

Its cell types, as illustrated below, can be divided into primarily antigen-presenting 

cells like dendritic cells and primary killer cells, like macrophages, neutrophilic 

granulocytes and natural killer cells. In contrast to the adaptive system, there is no 

memory function in innate immunity.  

 

 

Figure 3: Cell types of innate and adaptive immunity. Each system consists of a cellular part and a 
humoral part (complement protein or antibodies, respectively). At the interface of adaptive and innate 
system, see natural killer cells and γδ T-cells, both cytotoxic lymphocytes. From [69]. 

The pathogen receptors of the innate immune system are called pattern recognition 

receptors (PRR) and recognize pathogen associated molecular patterns (PAMPs), 

conserved molecular motifs shared by a class of microbes, which are relatively 

unspecific. They are highly conserved in evolution and commonly divided into four 

subgroups: Toll-Like receptors (TLR), C-Type Lectin receptors (CLR), RIG-I-like 

receptors (RLR) and Node-like receptors (NLR).  
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Upon ligand binding, a complex signalling cascade leads to the typical features of 

innate response: generation of ROS (reactive oxygen species), activation of the 

arachidonic acid cascade, an increase of intracellular calcium, and the activation of 

the mitogen-activated protein kinase (MAPK)-pathway, which influences transcription 

factors such as e.g. NFκB (nuclear factor 'kappa-light-chain-enhancer' of activated B-

cells) and NFAT (nuclear factor of activated T-cells). Both transcription factors are 

found in almost all immune cells, in the innate as well as in the adaptive system. 

Functioning and activation of NFkB and NFAT are largely dependent on Ca2+ related 

mechanisms. Their targets for enhanced transcription include signalling proteins, cell 

surface proteins, other transscription factors and also cytokines like IL1, IL-18 and 

IL-8 [70-72].  

Additionally, PRRs also recognize endogenous damage-associated molecular 

patterns (DAMPs), which occur e.g. when tissue is damaged by ongoing 

inflammation. Physiologically, macrophages eliminate them in order to limit immune 

activation, preventing excess inflammation [26]. 

Many of the innate immune system’s cell types - including monocytes, lung-specific 

macrophages, natural killer cells (NK), dendritic cells, neutrophils, mast cells and 

eosinophils have been shown to be enriched in asthma patients [73].  

In particular, dendritic cells are vitally important innate immunity cells as they do not 

only express the most PRRs, but they also orchestrate immune response following 

their activation. They, like other immune cells, produce different mediators, like IL1β 

and histamine, which is an important cytokine in allergic reactions. Through these 

mediators, they can also influence the adaptive system (and vice versa), for example 

in the pathogenesis of allergy [73, 74]. Recently, another cell subtype, innate 

lymphoid cells, has also been proposed to be involved in allergic sensitization and 

inflammation, linking innate to adaptive immunity [75, 76]. 

Furthermore, innate immunity is also represented by epithelial cells in the airways, 

which act as sentinels and express innate receptors in the same manner as 

professional antigen presenting cells like DCs [55, 73].  

 

Undoubtedly, airway inflammation and subsequent airway remodelling are main 

features of asthma and most likely contribute to its other known features such as 

airway hyperreagibility [1]. Changes in the regulation of the innate immune system 

are likely to contribute to the pathogenesis of asthma in many ways. For example, 
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Boeck et al. showed a link between innate antiviral immunity and asthma 

manifestation through distinct differences for the expression of innate immunity 

antiviral receptors such as LY75, as well as other genes related to calcium signalling,  

in children with allergic as well as non-allergic asthma [77]. Other studies 

investigating the connection of innate immunity and childhood asthma show 

increased neutrophilic inflammation levels for children with non-allergic asthma and 

decreased innate immunity-related gene expression for children with allergic asthma 

[78]. As the lungs constitute an important immunity barrier to the outside world, an 

altered antiviral immunity early in life, and thus in the vulnerable period, might lead to 

excess inflammation and subsequent airway remodelling, finally facilitating the 

development of asthma [5, 62].  

 

1.4 Endotyping 

The effort to integrate immunological insights into the definition of asthma 

phenotypes has led to the definition of the term endotype, describing a specific 

pattern of pathogenetic mechanisms and/or treatment responses leading to a specific 

clinical presentation of asthma [26, 79]. Adding another level of complexity, different 

endotypes could present as the same phenotype [80]. 

Parallel to the growing acceptance for the existence of endotypes, another paradigm 

shift to looking at asthma as a syndrome rather than as a multi-faceted disease might 

allow for more individualised therapy. This definition of an “asthma-syndrome” 

consists of wheeze phenotypes, each of them with their own distinct endotypes, 

including specific immunological patterns and environmental factors [2, 40, 54, 81]. 

With this new key hypothesis, the vast amount of clinical and research data can be 

organized in order to explain the heterogeneity of asthma [26, 37]. These data 

include various birth cohorts which have tried to illuminate the influences, in particular 

early in life, that contribute to the development of a specific asthma endotype. 

Ongoing efforts to harmonize these date will allow joint analyses as well as 

comparisons between different cohorts, and thus contribute to more detailed 

definitions of wheeze phenotypes [82]. Through these and other efforts, certain 

endotypes have already been established, with the next paragraphs detailing a few of 

them that are of special interest for this work.  
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For example, a defunctional antiviral immunity of diminished interferon type 1 

production involving epithelial airway cells might be responsible for higher 

susceptibility to exacerbation in some asthma patients [73, 83]. Also, polymorphisms 

in IL-18, a cytokine potently inducing production of IgE as well as IFN-γ (leading to 

neutrophilia) and IL-13 (leading to airway remodelling), have been linked to certain 

asthma presentations [84]. 

Another proposed set of endotypes focuses on inflammation-resolving mechanisms. 

For example, the levels of anti-inflammatory IL-10 as well as the eicosanoid lipoxin 

A4 have been found to be lowered in severe asthma [85-87]. Eicosanoids are lipid 

mediators derived from arachidonic acid. The arachidonic acid metabolism in general  

is an interesting interface to study the balance of pro- and antiinflammatory stimuli. 

Additionally increasing this pathway’s relevancy for asthma is its relation to 

glucocorticoids whose anti-inflammatory capacities are mediated by the induction of 

lipocortin-1, which blocks phospholipase A2, inhibiting the synthesis of all eicosanoids 

[60]. 

The Th2-hypothesis mentioned above fits into the concept of endotypes as Th2-high 

endotype in allergic asthma with a specific Th2-gene expression. However, as 

already mentioned above, IgE alone does not appear to be a reliable biomarker, 

whereas the Th2-inducing IL-25 and basal eosinophilia are correlated with the 

response to asthma therapy in general, or steroids, respectively [54, 88, 89].  

 

On the plane of non-allergic asthma, Th17-cells driving neutrophilic inflammation 

might be responsible for the notorious steroid resistance in these patients, strongly 

linking this potential endotype to innate immunity [54, 90].  

Up to this point, innate immunity had been thought to play a minor role in chronic 

inflammatory processes like asthma as it was limited to acute inflammation [26]. 

Recently, inflammation mediated by innate immunity through DCs and macrophages 

has come into focus and its part has proved to be major. For example, the reduced 

ability of macrophages to find and remove defunct cells under oxidative stress results 

in activation of PRR through a spill of DAMPs, leading to auto-inflammatory 

processes in both innate and adaptive immunity [91]. These revelations could explain 

a considerable percentage of steroid insensitivity as well as why steroid sensitivity 

decreases when asthma severity increases, as the innate system per se is resistant 

to steroids [92]. 



 13 

This brief overview of already proposed endotypes shows that investigating 

underlying mechanisms, especially in innate immunity, is a good starting point to gain 

more insight into asthma pathogenesis to define new, precise and consistent asthma 

endotypes, especially in non-Th2-related asthma [81].  

1.5 Immunological pathways in this work2 

In order to contribute to endotype definition and further understanding of asthma 

pathogenesis, this work will investigate pathways that, in previous studies mainly 

from our research group, have already shown to be differentially regulated in older 

children with asthma, or have been connected to asthma pathogenesis by others. 

Thus, the candidate genes chosen for this work contain receptors of the innate 

immune system as well as genes associated to calcium signalling, with the main 

question being whether their expression is already altered at birth.  

The following paragraphs will introduce and describe the candidate genes, mainly 

chosen based on previous results from our group reported by Boeck et al. showing 

differential gene expression in school age children in genes related to calcium 

signalling (namely, ATP2A3, CALM2, ITPR2, ORAI1, ORMDL3, S100A9, and STIM2 

among others) as well as genes associated with innate immunity (namely CD209, 

FPR2 and LY75 among others) [77]. 

1.5.1 Receptors related to calcium signalling 

The severity of asthma has long been coupled to a local increase in polycations such 

as calcium. Subsequently, perturbations in the mechanisms controlling the 

intracellular and extracellular concentration of calcium are of great interest in 

understanding the development of asthma. During (airway) inflammation or infection 

and the following activation of immune cells, the concentration of extracellular 

calcium ([Ca2+]e) is high as calcium serves as a danger signal [93]. It then leads to 

increased intracellular levels of calcium ([Ca2+]i), amplyfing inflammation by triggering 

pro-inflammatory signaling cascades. Also, a high [Ca2+]i primes airway smooth 

muscle cells to react to pathophysiological stimuli with a lower threshold, which in 

turn contributes to airway hyperreagibility and airway remodelling [94-97]. 

Physiologically, calcium is an important and versatile second messenger involved in 

signal transduction and apoptosis in many cells of the human body, also in the cells 

 
2 For a better overview of the candidate genes and their functions, see a graphical illustration (“gene 
map”) in the appendix (9.5). 
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of the innate immune system. It is stored in intracellular organelles such as the ER, 

which is responsible for keeping the cytoplasmatic levels at a constant 50-100 nM 

while the extracellular concentration of calcium is at approximately 1mM [96, 98]. Its 

function as a second messenger relies on subtle changes and oscillations in the 

cytoplasmic levels, evoked by many different mechanisms involving either cyclic 

adenosine monophosphate (cAMP) or, more important, inositoltriphosphate (IP3) as 

second messengers [99, 100]. 

 

Figure 4: Immunologically relevant pathways of calcium signalling in the cell. On the left, calcium release 
to the cytoplasm triggered by the TCR (T-cell-Receptor), on the right side of the membrane store-operated 
calcium entry (SOCE) through STIM1 (STIM2: not shown, but with equivalent function). In the lower left 
part, effects of intracellular calcium on transcription factors. InsP3: inositol triphosphate. InsP3-R: 
receptor for inositol triphosphate, equivalent to ITPR2. The calcium channel depicted is exemplary and 
could e.g. contain ORAI1. From [101]. 

IP3 is generated by the enzyme phospholipase C (PLC), which hydrolyses 

phosphatidylinositole-4,5-bisphosphonate (PIP2) to IP3 and diacylglycerole (DAG). 

PLC is activated upon stimulation of immunoreceptors like the TCR, the B-cell 

Receptor, Fc-receptor (responsible for phagocytosis and subsequent antigen 

presentation in macrophages) and mast cell receptor FceR (responsible for the 

release of mast cell mediators such as histamine) [98, 102].  

IP3, which can also be released via cAMP, then binds to its receptor, ITPR2,  a 

calcium channel located in the ER and thus, calcium is released from the ER to the 

cytoplasm [103, 104]. ITPR2 is predominantly expressed in mast cells and often 
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described as signal integrator, as it is most sensitive to ATP and IP3 but also ROS, 

and reacts to a low [Ca2+]i  with increased activity [105]. CAMKII and calmodulin 

terminate calcium influx via protein interaction, together with a negative intrinsic feed-

back through a high [Ca2+]i [106].  

 

Calmodulin 2 (CALM2) is a key protein for Ca2+ signal transduction as it serves as a 

primary receptor for elevated calcium levels and in turn activates CAMKII 

(calmodulin-dependent kinase II), a kinase selectively expressed in macrophages 

[98, 107]. It is activated by IP3, a mechanism regulated by STIM2 [108, 109] and 

ultimately signals to NFAT [110].  A proasthmatic effect of CAMKII through elevated 

generation of ROS and activation of the NLRP3 inflammasome as well as the NFκB 

pathway has recently been proposed especially for allergic asthma [111, 112].   

Store-operated calcium entry (SOCE) is a common mechanism also used by cells of 

the immune system to refill ER calcium stores and evoke Ca2+-signals, regulating a 

wide range of effector mechanisms including gene expression and cytokine release 

[113]. Stromal interaction molecules (STIM) 1 and 2 both detect depletion of the ER’s 

calcium stores and inflict changes on the intracellular [Ca2+]i. While they share the 

same function, they differ in sensitivity as STIM2 detects depletion with a higher 

sensitivity, i.e. earlier than STIM1. After depletion has been detected, STIM is 

translocated to the plasma membrane and interacts with ORAI1, the pore subunit of 

a store-operated calcium channel (SOCC) called CRAC [114-116]. CRAC is 

responsible for SOCE in T-Lymphocytes and mast cells, regulating activation or 

degranulation, respectively [102]. Additionally, STIM2 also influences non-store 

operated changes in calcium levels via CALM2 [109]. It is responsible for stabilizing 

the basal Ca2+ concentration via calcium oscillation and does so independently of 

STIM1, sometimes even antagonizing its effects [102, 117]. 

Once activated by binding of calcium to ORAI1, the CRAC channel opens and allows 

calcium entry through the plasma membrane [104]. In SOCE, ORAI1 is responsible 

for the amplitude of the calcium influx. Ultimately signalling to NFAT, it is very 

important for normal T-Cell-functioning [102, 118, 119]. Both ORAI1 and the CRAC 

channel are inactivated in a calcium-dependent manner through a cooperation of 

CALM2 with STIM1, effectively terminating SOCE [114, 120].  

The resting cytosolic calcium levels are then restored by ATP2A3, a sarco-

endoplasmatic reticulum Ca2+ - ATPase (SERCA) by pumping calcium from the 
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cytoplasm back to the ER [107, 121]. If ATP2A3 expression is diminished, a higher 

grade of airway remodeling, characteristic for asthma, has been observed [122].  

SERCAs such as ATP2A3 are controlled and inhibited by ORMDL3 [121]. In various 

studies, ORMDL3 and SNPs related to its expression have been directly associated 

with childhood asthma [123]. Also, ORMDL3 modifies T-lymphocyte activation by 

modulating SOCE after ligand binding to a TCR, as an increased expression of 

ORMDL3 leads to reduced NFAT signalling [118]. Apart from this influence on 

adaptive immunity, ORMDL3 is also involved in the mediation of cellular stress 

through e.g. unfolded protein response (UFR). An increase in intercellular calcium 

levels has been shown to disturb the ER’s correct folding of proteins, resulting in 

UFR [124]. 

Elevated levels of intracellular calcium, for example via the IP3- pathway, can also 

lead to the augmented presence of proteins called calgranulins in the outer 

membrane and to their release from phagocytes: S100A8 is such a calcium-binding 

protein mostly found in complex with S100A9 (then known as calprotectin) [125, 126]. 

They are abundantly expressed in inflammatory context, mainly in neutrophils and 

activated macrophages, where they promote inflammation by acting as DAMPs and 

through their chemotactic function for neutrophils [126-128]. Calcium binding results 

in signalling via MyD88, modulated by PGE2 and cAMP as well as IL-10, thus 

enhancing the effect of TLR signalling. This creates a positive feed-back loop as both 

S100A8 and S100A9 are induced by IL1β. S100A9 is also involved in airway 

remodelling via the induction of IL-17 [127-129]. Another property of S100A8 and 

S100A9 is their influence on the cell redox state mediated by ROS, which has for 

example been shown to mediate IgE-related mast cell signalling in allergic asthma as 

well as generally promoting inflammatory signalling through both the inflammasome 

and NFκB pathway [111, 112, 127, 129].  

Calprotectin is also involved in the metabolism of arachidonic acid, liberating 

arachidonic acid from the cell membrane through phospholipase A2, which is induced 

by pro-inflammatory cytokines like IL-6 and IL1β [128, 130]. Especially in mast cells 

and DCs, arachidonic acid is metabolized into leukotrienes (LT) and prostaglandines 

(PG), both promoting inflammation. Physiologically, there is a fine balance between 

the broncho-dilative PGs and strictly broncho-constrictive LTs, which is disrupted in 

asthma. Polymorphisms in the enzyme lipoxygenase which is responsible for the 

synthesis of leukotrienes have been related to asthma [131]. Leukotrienes are potent 
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mediators for smooth airway muscle contraction and pulmonary inflammation in 

asthma. More importantly, they are also said to modulate T-cell response in the 

direction of Th2-type inflammation [132].  

However, the arachidonic acid metabolites also include anti-inflammatory lipoxins, 

e.g. lipoxin A4, mediating a resolution of inflammation. Their concentrations have 

been found to be low in case of severe asthma [133]. Overall, a dysbalance of pro-

inflammatory leukotrienes and anti-inflammatory lipoxins seems to be a possible 

pathogenetic mechanism in severe asthma [134]. 

Lipoxins are recognized e.g. by the G-protein-coupled receptor FPR2, a mechanism 

through which FPR2 seems to protect from asthma exacerbations [133, 135]. FPR2 

is an example of how calcium signalling and innate immunity (in the form of pattern 

recognition receptors) interact. Similar points of interaction are of special interest in 

understanding the pathogenesis and interrelations of airway hyperreagibility and 

airway inflammation, as they seem to stem from imbalances in calcium signalling or 

innate immunity, respectively.  

1.5.2 Receptors related to innate immunity 

The main properties of FPR2 lie in innate immunity as it is expressed in neutrophils 

and monocytes. Its functions are similar to a PRR, recognizing a vast number of 

bacterial signalling peptides and formylpeptide, inducing the migration of DCs from 

the perivascular to the peribronchial tissues in allergic airway inflammation [136, 

137]. Upon ligand binding, FPR2 leads to ROS generation, an increase in the 

intracellular concentration of calcium via PLC activation and IP3, and to activation of 

the MAPK-pathway, influencing SOCE as well as transcription factors such as NFAT 

and NFκB [137].  

 

Another point of interaction, this time between innate and adaptive immune system, 

can be found in the NLRP3- inflammasome. It consists of three subunits: NLRP3, 

Caspase-1 and ASC, which serves as an adaptor for the previous two. Caspase-1 is 

the effector subunit which cleaves pro-IL1 and pro-IL-18, transscribed under the 

influence of NFB, into their mature forms. Its activation is triggered and regulated by 

various factors, cAMP and a high [Ca2+]i being very important [138-141].  

The inflammasome can also directly be influenced and activated by ROS. Some of 

the mechanisms influencing the cell redox state have already been mentioned above, 

another are RIG-I-like-receptors DHX58 and DDX58 and their shared adaptor protein 
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IPS1, all a part of the body’s viral defences through the recognition of viral structures 

like DNA [142, 143]. IPS1 is responsible for tight regulation of the RLRs’ effect upon 

ligand binding. Once activated, IPS1 signals to the inhibitors preventing NFκB from 

translocation to the nucleus and thus from actively influencing transcription, lifting this 

inhibition and allowing NFkB to translocate [142, 144]. Its other effector functions 

include the production of antiviral IFN1 that has been linked to a high susceptibility 

for asthma exacerbation (see chapter 1.4). 

The PRR LY75, which belongs to the CLR family, recognizes cell death material from 

virally infected or apoptotic cells and also acts as a mannose receptor. It is 

expressed in both immature and mature DCs, but changes its location from 

intracellular to surface when the DC is activated. Upon ligand binding, the antigen is 

taken up and enters the MHC-presentation pathways. In a steady state, DCs 

continuously process antigens for both the MHCI and the MHCII pathway, 

contributing to peripheral T-Cell tolerance, targeting CD4+, CD8+ and Treg cells [145, 

146]. LY75 expression is elevated in the lungs of patients suffering from allergic 

asthma, induced e.g. via the inflammasome product IL1β, potentially disrupting the 

balance between the induction of tolerance or immunity [147].  

Another CLR with a function similar to LY75 is CD209, which is upregulated via IL-13 

(an important cytokine in Th2-type immunity), to be found on immature DCs and 

macrophages, also in the lungs [58, 148]. Recognition of carbohydrates or Der-p, the 

main antigen of house dust mite, leads to endocytosis and antigen presentation via 

MHC II [149]. Additionally, the arachidonic acid cascade, which has been described 

above, is activated, especially in mast cells and DCs [150, 151]. 

Interestingly, both CD209 and LY75 seem to be dependent on calcium for ligand 

binding and downstream signalling, making them another point of interaction 

between calcium signalling and innate immunity [152]. 

CD209, like LY75, has tolerance-inducing capacities, e.g. by acetylation of NFB if 

an antigen is recognized without an additional inflammatory stimulus. In general, 

CLRs are said to modulate the immune answer after TLR activation [153, 154]. 

However, ligand binding leads to diminished expression of the receptor, a 

mechanism that, if constantly activated, has been proposed to increase the risk of 

life-long allergy and allergic asthma [58, 155]. 
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1.6 Prediction of wheeze outcomes 

All of the receptors and proteins that have been chosen for further investigation in 

this work are part of keeping a fragile balance between tolerance and immunity as 

well as pro- and anti-inflammatory signalling. However, it is crucial for the immune 

system to learn how to keep this balance early in life, and a disruption facilitates the 

development of diseases like asthma.  

Appropriately, it is common for asthma to develop during early childhood, often even 

during the first few years of life. For the 30-40% of preschool children that experience 

wheezing, there are two possibilities: progression to childhood asthma or remission. 

It has been shown that in retrospect, 75% of children with persistent asthma had 

started to wheeze before age three, with their wheeze continuing first into school age 

and later into adulthood [13, 156]. In addition, studies have shown that the degree of 

severity tends to be firmly established early in life [157]. It is safe to say this group 

would largely benefit from early, consistent therapy.  

On the other hand, less than 50% of those patients who have experienced early 

childhood wheeze continue to do so [6, 158]. Also, according to current knowledge, it 

seems likely that patients who do remit do not develop another late-onset wheeze 

later in their lives [38]. Clearly separating these patients from those who will go on to 

develop childhood asthma is at least equally important as defining reliable asthma 

phenotypes: It would spare many children unnecessary treatments that inevitably 

have unwelcome side effects like for example steroids do, and in turn relieve the 

economic burden asthma represents for society. 

 

This overarching goal can be summarized as the improvement of the prediction of 

wheeze outcomes, with possible outcomes including remission as well as the 

different pheno- and endotypes of childhood asthma.  

Currently, there are several tools for diagnosing wheeze and asthma early in life, 

such as the ISAAC (International study of asthma and allergy in childhood) criteria 

[159] or the modified version of the asthma predictive index (mAPI) as an effort to 

improve the prediction value of the original API [160, 161]. Despite this attempt to 

improve the prediction value of the API, its usefulness in clinical practice remains the 

subject of controversial debate [162]. 

In the name of improving the prediction of wheeze outcomes as well as the clinical 

scoring systems needed for this prediction, many influences in the development of 
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asthma and the course of the disease have been discovered, both risk factors (such 

as virally induced wheezing episodes in early childhood [42] or a family history of 

atopy [163]) and protective factors such as farm exposure, whether prenatally or 

during childhood [164, 165].  

However, despite extensive research, currently very few diagnostic tools include the 

respective underlying immune mechanisms and the resulting endo- and phenotypes 

by for example adding biomarkers to the picture. This would certainly increase the 

predictive value of a score, as the important role of immunological pathways and their 

regulation in the pathogenesis of asthma is undisputed [28].  

Consequentially, this work seeks to identify possible new biomarkers in calcium and 

innate signalling, as including them in clinical scoring systems will lead to a more 

precise diagnosis and then to individualised phenotypes, enabling a personalized, 

effective therapy and thus relieving the burden of childhood asthma [2, 3, 166]. 
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2 Aim of the study 

Asthma starts to develop in early childhood, albeit two scenarios are possible for 

children with preschool wheeze: remission or progression to childhood asthma. 

Despite great efforts in research, the pathogenesis of asthma is still not well 

understood. Especially in-depth insights about the role of immune regulation in 

infancy are still missing, wasting the opportunity for early therapeutic interventions in 

children at risk for developing asthma. In order to optimize therapeutic strategies, it is 

crucial to identify children at risk for asthma development as early as possible. 

In addition, currently available therapeutic strategies are significantly lacking in two 

ways: They leave a considerable group of children under-treated with residual 

disease and inadequate symptom control. In contrast, another group of patients is 

over-treated for a wheeze that would eventually remit even without any intervention. 

Those groups would largely benefit from improved prediction of wheeze phenotypes 

as well as the classification of asthma into endotypes defined by their 

pathophysiology in order to administer individualized, effective therapy.  

Genome wide association studies (GWAS) have identified over 100 candidate genes 

and pathways linked to asthma development [26, 167]. The candidate genes chosen 

for this work had already raised interest through differential expression in other 

asthma cohorts investigated by our group. As it is becoming increasingly clear that 

prenatal events can already crucially shape the immune system, this study assessed 

immunological pathways at the earliest point possible, meaning directly at birth in 

cord blood mononuclear cells (CBMCs) [38, 166]. 

The aim of this study is to identify immune mechanisms underlying the pathogenesis 

of asthma that are already altered at birth in order to determine possible candidates 

for new biomarkers to predict and prevent the development of asthma in preschool 

children. Therefore, the following questions were assessed in this thesis: 

• To study whether genes of the calcium signalling pathway and selected innate 

receptors are expressed in cord blood immune regulation of neonates. 

• To investigate if the expression of the chosen genes at birth differs between 

children with subsequent different wheeze patterns and healthy controls.  

• To specifically study whether a pattern in gene expression variation can be 

found between children with multitrigger wheeze and other wheeze patterns 

as well as healthy controls.  
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• To specifically study whether a pattern in gene expression variation can be 

found between children with virally induced wheeze and other wheeze 

patterns as well as healthy controls.  
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3 Materials and methods 

3.1 Materials 

3.1.1 Reagents and chemicals  

0.5M EDTA (pH 8.0) Sigma-Aldrich, St.Louis, USA 

100bp DNA ladder (500μg/ml) New England BioLabs, Ipswich, USA 

Agarose LE Biozym Scientific, Oldendorf, Germany 

Boric Acid Sigma-Aldrich, St.Louis, USA 

Bromphenol blue Roth, Karlsruhe, Germany 

Ethidiumbromide (10mg/ml) Biorad, Hercules, USA 

Glycerol Sigma-Aldrich, St.Louis, USA 

H2O bidest H.Kerndl GmbH, Weißenfeld, Germany 

Primers Life technologies, Invitrogen, Carlsbad, USA 

Trizma Base Sigma-Aldrich, St.Louis, USA 

Xylene cyanol Merck, Darmstadt, Germany 

 

3.1.2 Solutions and buffers 

5X TBE buffer  

 

54g trizma base  

27.5g boric acid  

20ml 0.5M EDTA (pH 8.0)  

1l H2O bidest.  
 

DNA ladder  

 

10μl 100bp DNA ladder  

80μl 0.5x TBE-Buffer  

10μl loading dye diluted solution  
 

Ethidiumbromide [500μg/ml]  

 

Loading dye stock solution  

 

100μl ethidiumbromide  

1.9 ml H20  

0.25g bromphenol blue 

0.25g xylene cyanol 

30% glycerol 

70ml dH2O 
 

Loading dye diluted solution  

 

5ml loading dye stock solution  

13.5ml glycerol  

31.5ml dH2O  
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3.1.3 Reagent kits 

QuantiTect Reverse Transcription Kit Qiagen, Hilden, Germany  

 

Sso Advanced Universal SYBR Green 

Supermix 

Biorad, Hercules, USA  

 

 

3.1.4 Consumables 

96-Well White Shell PCR Plates BD Biosciences, Heidelberg, Germany 

Biosphere® filter tips 0.1-20μl  Sarstedt, Heidelberg, Germany 

Biosphere® filter tips 100-1000μl Sarstedt, Heidelberg, Germany 

Biosphere® filter tips 2-100μl Sarstedt, Heidelberg, Germany 

Microseal “B” Seal Biorad, Hercules, USA 

 

3.1.5 Laboratory equipment 

CFX 96 Touch ™ Real-Time PCR 

Detection System 

Biorad, Hercules, USA 

Electrophoresis power supply VWR International, Radnor, USA 

Gel iX Imager Intas Science Images Instruments, 

Göttingen, Germany 

Nanodrop 2000 Thermo Scientific, Waltham, USA 

Owl D3-14 wide gel electrophoresis 

system 

Thermo Scientific, Waltham, USA 

PeqStar Thermocycler Peqlab, Erlangen, Germany 

Perfect Spin P Peqlab, Erlangen, Germany 

Research plus pipette 10-100μl Eppendorf, Hamburg, Germany 

Research plus pipette 0.5-10μl Eppendorf, Hamburg, Germany 

Research plus pipette 0.1-2.5μl Eppendorf, Hamburg, Germany 

Research plus pipette 2-20μl Eppendorf, Hamburg, Germany 

 



 25 

3.1.6 Software 

Biorad CFX Manager 2.1 Biorad, Hercules, USA 

Endnote X9 ISI ResearchSoft, Berkeley, USA 

Ensembl genome browser http://www.ensembl.org 

National Center for Biotechnology 

Information 

http://ncbi.nlm.nih.gov 

Vector NTI Advance 11.5 Invitrogen, Carlsbad, USA 

SPSS Statistics 23.0 

R 

IBM, Armonk, New York, USA 

General Public License under the 

Free Software Foundation 

 

3.1.7 Primer sequences 

The primer sequences used for this work can be found in the appendix (9.4). 

3.2 Study population3 

3.2.1 PAULINA 

As a part of the birth cohort PAULINA (Pediatric Alliance For Unselected Longitudinal 

Investigation of Neonates for Allergy), umbilical cord blood was obtained from healthy 

neonates (n=118), although due to sample availability or non-participation in the 

follow up, the number available for single analyses varied, born in the Munich 

metropolitan area, Germany [168]. Midwives and delivery room nurses recruited 

subjects from October 2004 to September 2007 during the last trimester of 

pregnancy at the university’s women’s hospital (Frauenklinik Maistraße, Munich). 

Inclusion criteria comprised healthy neonates (assessed via APGAR score and 

clinical evaluation) and mothers with uncomplicated pregnancies. Exclusion criteria 

included preterm deliveries, multiple gestations, maternal infections and/or use of 

antibiotics during the last trimester, perinatal infections and chronic maternal 

diseases. Questionnaires were used to assess parental health and socioeconomic 

status as possible covariates.  

The birth cohort comprises peripheral blood samples (1ml EDTA and 4,9ml serum) 

from atopic mothers (n=48) and non-atopic mothers (n=70) as well as cord blood 

samples from their children (see below). Atopy was defined as a doctor’s diagnosis of 

 
3 All questionnaires mentioned in the following paragraphs can be found in the appendix (9.6).  
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asthma and/or eczema and/or hay fever. Additionally, maternal total and specific IgE 

were measured via radio-allergo-sorbent test (RAST), with a positive specific IgE 

defined as ≥0.35 IU/mL to one or more common allergens from a panel of 20 

allergens (Mediwiss Analytic, Moers, Germany). Approval was obtained from the 

human ethics committee of the Bavarian Ethical Board, LMU Munich, Germany. For 

detailed study information, see [168].  

 

3.2.2 PAULCHEN 

In the PAULCHEN Study (Prospective Cord Blood Study in Rural Southern 

Germany), 82 mothers were approached before delivery. The cohort included 

farming (n=22) and non-farming (n=60) mothers. Subjects were recruited from 

September 2005 until December 2008 in the obstetric clinic of Bad Tölz, Germany 

[68]. Farming was defined as the mother living or regularly working on a farm in the 

last five years and/or during pregnancy. Non-farming mothers lived in the same rural 

area, without having direct contact to a farm environment. Inclusion and exclusion 

criteria as well as potential covariates were equivalent to the previously described 

PAULINA-Study. Approval was obtained from the human ethics committee of the 

Bavarian Ethical Board, LMU Munich, Germany. For detailed study information, see 

[68]. 

3.2.3 Outcome at age three and age six 

As the recruited children reached age 3 and then age 6, follow-ups on the study 

populations were performed. All data were collected by detailed questionnaires filled 

in by the parents, including epidemiologic parameters (e.g. socio-economic status 

and parental smoking). The children’s possible outcomes included atopic dermatitis, 

food allergy, wheeze (clinical symptoms and doctor’s diagnosis) and sensitization to 

allergens, measured by specific IgE in a part of the study population. A positive 

allergen test was defined by at least one positive specific IgE to one of twenty 

common inhaled or food allergens. The 6-year follow-up questionnaire additionally 

included outcomes of allergic comorbidities such as rhinoconjuctivitis. 

3.3 Laboratory methods 

The main focus of this work was to investigate gene expression via qRT-PCR in RNA 

from CBMCs, and to compare gene expression levels between different subsets of 

wheeze in the follow-ups of the birth cohorts described, which were recruited from 
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2004 onwards. Thus, naturally some of the laboratory methods were not conducted 

by the author herself but by other members of the laboratory. 

For the sake of completeness, all laboratory methods involved in this study will be 

described in the following paragraphs. However, every step that was not conducted 

by the author herself will be marked with an asterix (*). 

3.3.1 Study inclusion procedure and criteria 

3.3.1.1 Collection of cord blood (*) 

Parents gave informed written consent about participation in the study. In case of 

uncomplicated, on-term delivery, cord blood was drawn from the umbilical vein of 

healthy neonates. A volume of 30 ml, separated in 10 ml tubes coated with liquemin 

as anticoagulant was obtained in most cases. 

3.3.1.2 Isolation and culture of cord blood mononuclear cells (CBMCs) (*) 

Cord blood samples were processed within a maximum of 24 hours after withdrawal. 

CBMCs were isolated by density-gradient centrifugation with Ficoll-Hypaque 

(Amersham Bioscience, Uppsala, Sweden) after dilution in phosphate buffer saline 

(PBS, Gibco, Karlsruhe, Germany). Cells were centrifuged for 30 min at 20°C with 

1400 rpm, then resuspended in RPMI 1640 (Gibco, Carlsbad, USA) until a dilution to 

5x106 cells/ml in 10% human serum (Sigma Aldrich, Steinheim, Germany) was 

reached. CBMCs were then cultured unstimulated or stimulated with lipid A (LpA, 

0.1μg/ml) or phytohemagglutinin (PHA, 5μg/ml) for 72h.  

Lipid A is the biologically active component of LPS, an endotoxin of gram-negative 

bacteria, stimulating innate immune cells. 

Phytohemagglutinin is a potent mitogen, stimulating mainly T-cells. 

3.3.2 RNA extraction (*) 

One millilitre TRIzol (Invitrogen, Carlsbad, Germany) was added to the harvested and 

centrifuged CBMCs. Samples were then frozen at -80°C. After thawing, 0.2ml 

chloroform was added and the samples were centrifuged at 4°C and 1200 rpm for 15 

minutes. The supernatants of the RNA precipitation were discarded and 0,5 ml 100% 

Isopropanol as well as 1μl Glycogen were added. After another centrifugation 75% 

Ethanol was added and samples were centrifuged again for 5min. Samples were 

then dried for 10-30min at 42°C and, after resuspending in RNAse-free water, 

incubated at +60°C. RNA was stored at -80°C. 
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3.3.3 cDNA extraction4 

Concentration of the extracted RNA was measured via photometry (nanodrop 2000, 

Thermo Scientific, Waltham, USA). 1μg RNA was transferred to 20μl cDNA with a 

Quantitect-kit (Quiagen, Hilden, Germany), including a wipe out of genomic DNA. 

cDNA was stored at -20°C. 

3.3.3.1 Primer design 

DNA primers used for PCR are chemically synthesized oligonucleotides of about 

20bp. They are needed as starting point for the DNA-synthesizing enzyme, 

polymerase. Primers for the genes explored in this work were designed with “Vector 

NTI Advanced10” (Invitrogen, Carlsbad, USA) and were then ordered at Invitrogen. 

Sequences were drawn from the genome database “Ensembl”, a joint project of the 

European Bioinformatics Institute (EBI), the European Molecular Biology Laboratory 

(EMBL) and the Wellcome Trust Sanger Institute (WTSI).  

The following rules were applied to find pairs of forward (fw) and reverse (rv) primers: 

1. Primer length should be between 18 and 27 base pairs. 

2. The resulting PCR product should be about 200 base pairs long. 

3. The 3’ end of each primer should start with guanine (G) or cytosine (C). 

4. The content of guanine (G), cytosine (C) should be between 40% and 60%.  

5. The melting temperature of each primer should be between 54°C and 65°C, 

with the difference in temperature between the forward and the reverse primer 

being no bigger than 0.5°C. 

6. Primers have to be behind the start codon (ATG), as transcription to mRNA 

starts only after this sequence. 

7. The energy by which the primers form dimers or hairpins should be no more 

than +/- 2kcal/mol, because otherwise the primers will not anneal themselves 

to the cDNA in a sufficiently specific way.  

8. The distance between the forward and the reverse primer should be as wide 

as possible, e.g. covering multiple exons, to limit the possibility of unspecific 

amplification.  

The delivered primers were first diluted with DEPC-water to a stock of 1mM. Then, 

with an intermediate dilution to 0.1mM, the final dilution of 1μM was used for PCR, 

containing both forward and reverse primer. The final dilution was stored at +4°C.  

 
4 For this, the author was partly supported by the laboratory’s technician. 
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All primers were tested in a two-step scheme. First, the primer was tested with cDNA 

from test samples, with a focus on whether any amplification was detected at all. 

Also, the melting curve was analysed. 

In the second step, the primer was tested on its specificity for cDNA by performing a 

test-qRTPCR with DNA and RNA. If no amplification occurred, the primer was 

considered as usable for qRT-PCR.  

In case amplification occurred when testing with DNA, an exception was made if the 

melting curves of DNA product and cDNA product were clearly distinguishable 

through different melting temperatures. Additionally, contamination of the isolated 

RNA and thus the cDNA with DNA was considered as highly unlikely. 

 

3.3.4 Polymerase chain reaction (PCR) 

3.3.4.1 Principle of the Polymerase chain reaction  

 

PCR (short for polymerase chain reaction) is a method imitating physiological 

processes used to specifically amplify even small fragments of DNA.  

Basically, the double helix formation of the DNA is heat denaturized. The two 

complimentary single strand DNA molecules are annealed after the specific primers 

bound to their complimentary sequence. Then, a heat-stable polymerase 

resynthesizes a complementary strand to each of those single strands, effectively 

duplicating the original fragment.  

 

A typical PCR thus consists of three steps being repeated in multiple cycles: 

 

1. Denaturation: the already existing double strand(s) are melted into single 

strands at 95°C before each cycle. 

2. Annealing: at 62.5°C, hybridization of primers at the 5’-3’-ends of the single 

strands that are to be amplified within 30 seconds. Choosing the right 

temperature for this step is crucial to avoid non-specific PCR products like e.g. 

primer dimers. All temperatures mentioned in this paragraph are specific for 

this work.  

3. Elongation: at 72°C, the aforementioned heat-stable taq-polymerase starts to 

elongate the primers. The desoxyribonucleotid-triphosphates needed for this 
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step are part of the mastermix, added in abundance. Elongation stops once 

the polymerase reaches the end of the single strand, or the temperature raises 

once cycle restarts with denaturation. 

In theory, the DNA is amplified exponentially, as shown by this equation: 

Nn = N0 x 2n 

 

Nn : amount of cDNA after the nth  cycle 

N0 : original amount of cDNA at the start of the PCR  

n : number of cycles 

 

However, this equation assumes that the taq-polymerase is working with 100% 

efficiency. As this efficiency is not reached in practice, the analysis of PCR data 

includes an efficiency correction. 

3.3.4.2 Quantitative real-time PCR (qRT-PCR) 

In this work, gene expression in stimulated and unstimulated CBMCs was studied at 

mRNA level. To allow the assessment of mRNA, it was transcribed to cDNA. The 

cDNA was then used for qRT-PCR.  

In addition to traditional PCR, quantitative real-time PCR permits conclusions to be 

drawn about the quantity of the original product that was to be amplified. 

Quantification is obtained by fluorescence measurements, as the fluorescence 

increases proportionally with the amount of PCR product.  

In this case, Sso Advanced Universal SYBR Green Supermix (Bio-Rad, Hercules, 

USA) was used as fluorescent dye for qRT-PCR. It intercalates in (c)DNA and then 

starts to fluoresce.  

The cycle of threshold (Ct) describes the cycle during which a fluorescent signal 

above a background signal, thus coming from the PCR product, is detected. 

Consequentially, the Ct value is linked to the original amount of cDNA: The lower the 

Ct value, the higher the initial concentration cDNA. In regard to cDNA, or respectively 

mRNA, a lower Ct value equals higher gene expression. For objective analysis, all Ct 

values are referred to the Ct value of the housekeeping gene with stable and 

ubiquitous expression. In this work, 18S was used as housekeeping gene like. 

However, SYBR Green detects all kinds of double stranded cDNA, also primer 

dimers or unspecific PCR products, thus necessitating a melting curve analysis.  
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3.3.4.3 Preparatory calculations 

For PCR, a mastermix, a cDNA-Mix and an NTC-Mix (for the non-template controls) 

were prepared.  

In all calculations, n indicates the number of wells. 

• For the mastermix: (n + 2 pipetting error) x 5μl SYBR Green, equivalent to 5 μl 

mastermix per well 

• For the cDNA-Mix per condition: (n + 1 pipetting error) x (0.12 μl cDNA + 1.68 

μl DEPC), equivalent to 1.8μl per well 

• For the NTC-Mix: (n + 1 pipetting error) x (1.8 μl DEPC + 5 μl SYBR Green), 

equivalent to 6.8μl per well 

In addition, 3.2μl of final primer dilution were added to each well, resulting in a total 

volume of 10μl per well. 

3.3.4.4 Pipetting scheme 

As can be seen in this scheme, a 96-well-plate (Bio-Rad, Hercules, USA) was used.  

 

Table 1 : Pipetting scheme used for this work. Colums 1-12 each represent a gene of interest while rows 
indicate a stimulating condition (A-F), the housekeeping gene (G) or NTCs (H), respectively. 

 

For pipetting, all reagents were stored and processed on ice. 18S was used as 

housekeeping gene and thus applied next to the 12 genes of interest investigated in 

this study.  

 1 2 3 4 5 6 7 8 9 10 11 12 

A 

 

S100A8 

M 

S100A9 

M 

ORMDL3 

M 

IPS1 

M 

ATP2A3 

M 

ITPR2 

M 

ORAI1 

M 

STIM2 

M 

LY75 

M 

CD209 

M 

FPR2 

M 

CALM2 

M 

B S100A8 

M 

S100A9 

M 

ORMDL3 

M 

IPS1 

M 

ATP2A3 

M 

ITPR2 

M 

ORAI1 

M 

STIM2 

M 

LY75 

M 

CD209 

M 

FPR2 

M 

CALM2 

M 

C S100A8 

PHA 

S100A9 

PHA 

ORMDL3 

PHA 

IPS1 

PHA 

ATP2A3 

PHA 

ITPR2 

PHA 

ORAI1 

PHA 

STIM2 

PHA 

LY75 

PHA 

CD209 

PHA 

FPR2 

PHA 

CALM2 

PHA 

D S100A8 

PHA 

S100A9 

PHA 

ORMDL3 

PHA 

IPS1 

PHA 

ATP2A3 

PHA 

ITPR2 

PHA 

ORAI1 

PHA 

STIM2 

PHA 

LY75 

PHA 

CD209 

PHA 

FPR2 

PHA 

CALM2 

PHA 

E 

 

S100A8 

LpA 

S100A9 

LpA 

ORMDL3 

LpA 

IPS1 

LpA 

ATP2A3 

LpA 

ITPR2 

LpA 

ORAI1 

LpA 

STIM2 

LpA 

LY75 

LpA 

CD209 

LpA 

FPR2 

LpA 

CALM2 

LpA 

F S100A8 

LpA 

S100A9 

LpA 

ORMDL3 

LpA 

IPS1 

LpA 

ATP2A3 

LpA 

ITPR2 

LpA 

ORAI1 

LpA 

STIM2 

LpA 

LY75 

LpA 

CD209 

LpA 

FPR2 

LpA 

CALM2 

LpA 

G 18S 

M 

18S 

M 

18S 

PHA 

18S 

PHA 

18S 

LpA 

18S 

LpA 

     18S 

NTC 

H S100A8 

NTC 

S100A9 

NTC 

ORMDL3 

NTC 

IPS1 

NTC 

ATP2A3 

NTC 

ITPR2 

NTC 

ORAI1 

NTC 

STIM2 

NTC 

LY75 

NTC 

CD209 

NTC 

FPR2 

NTC 

CALM2 

NTC 
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All experiments were run in duplicates. The non-template controls and dissociation 

curves were used to rule out unspecific amplifications and primer-dimers. 

After finishing the pipetting process, the plate was sealed with optical foil (Bio-Rad, 

Hercules, USA) and then centrifuged at 2500 rpm (rotations per minute) for 15 

seconds to eliminate any bubbles. 

Afterwards, the plate was placed in the iCycler (Bio-Rad, Hercules, USA) and the 

protocol was started. 

3.3.4.5 Protocol iCycler 

 
Cycle 1: (1x)  

  
95.0°C  

 
2 minutes  
(= Initial denaturation)  
 

    
Cycle 2: (40x)  
 
  

Step 1: 
  
Step 2:  
 

95.0°C  
 
62.5°C  
 

20 seconds  
(= Denaturation)  
30 seconds 
(=Annealing + Elongation)  
 

Cycle 3: (1x)    
72.0°C  

 
2 Minuten  
(=Elongation)  
 

Cycle 4: (1x)   95.0°C  30 seconds  
Cycle 5: (1x)   55.0°C  30 seconds  
Cycle 6: (80x)   55.0°C  5 seconds  
 Cycle 7: (1x)  20.0 °C HOLD 

 

3.3.4.6 Gel electrophoresis 

Electrophoresis describes the migration of molecules in an electric field depending on 

their charge and size. Gel electrophoresis is a method used for additional PCR 

quality control (for further explanation, see below). 

In this work, three percent agarose gel plates were used. For this, 6g agarose 

(Biozym Scientific, Oldendorf, Germany) solved in 200ml of 0.5% buffer (900ml aqua 

bidest + 100 ml 5xTBE) were heated up to boil until the solution was clear. After 

cooling down to 80°C, 70 μl ethidium bromide (Biorad, Hercules, USA), which 

intercalates with DNA and visualizes it in UV light, were added and the gel (14x23cm) 

was cast. The gel chamber (30x27x11cm, buffer volume 800ml, Thermo Scientific, 

Waltham, USA) was prepared with several combs, forming pockets in the gel after 

their removal when the gel was completely cooled down. 

For performing the gel electrophoresis, 2μl loading dye was added to all PCR 

products as well as the NTCs.  
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PCR products, NTCs and the “ladder”, a solution containing DNA fragments of known 

sizes, used to quantify the size of the PCR products, were pipetted into the gel’s 

pockets. 

The gel chamber was then connected to 120V voltage and 400mA current for 40 

minutes. Afterwards, the gel was evaluated and then photographed under UV light.  

3.3.4.7 qRT-PCR analysis 

After completion of the iCycler protocol, data were analysed with the associated 

program (Bio-Rad, Hercules, USA). 

 

 

 

 

 

 

 

 

 

 

The x-axis shows the number of PCR cycles, while the y-axis shows the intensity of 

the fluorescence signal. The green line (y-axis value 50) is the visualization of the Ct, 

in this case set by the iCycler and not manually. It should lie at the beginning of the 

exponential phase of amplification. The Ct value is what later is used for statistical 

analysis.  

3.3.4.8 Quality control 

3.3.4.8.1 Melting curve analysis 

Melting curve analysis is a method to check for specificity in PCR. The melting curve 

is created by the iCycler by constantly measuring the fluorescent signal while raising 

the temperature in steps of 0.5°C. The PCR product denaturates at a specific 

temperature, represented ideally in a narrow, high peak in the melting curve. 

Unspecific amplification, such as primer dimers, can be recognized by low, broad 

melting curves.  

Figure 5: Exemplary amplification of cDNA. The both 
lines each represent one of the duplicates. 
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The specifity of all data generated by the iCycler was primarily assessed through 

melting curve analysis. In case of unspecific amplification (see Fig.7), the duplicate in 

question was repeated in order to obtain specific results. 

 

 

Figure 7: Exemplary melting curves. In blue: unspecific amplification. In dark grey: height difference in 
two duplicates. In orange: two duplicates, none of which were detectable. 

If the height of the melting curve of two duplicates showed differences equivalent to a 

difference in Ct values greater than 0.7, they were also repeated (see fig.7). This was 

done in order to minimize the influence of technical mistakes and other disturbances. 

If a technical error was already noted during the pipetting process, this duplicate was 

excluded and only the other duplicate was used.  

If both duplicates failed to reach a detectable Ct after 40 cycles of amplification but a 

technical error could be excluded they were both marked as “non-detects” and set to 

an artificial Ct value of 40, which represents the last possibly measured cycle, so they 

were not lost to analysis. 

Figure 6: Exemplary melting curve with typical 
characteristics of specific amplification. 
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3.3.4.8.2 Gel electrophoresis 

PCR products were separated via gel electrophoresis for additional quality control. 

Specificity was evaluated by comparing the expected size of the amplification product 

(around 200bp) with the scale provided by the ladder. 

Also, the electrophoresis was another mean to control the duplicates’ consistency.   

If the PCR product consisted only of the specific sequence demarcated by the primer 

used, a single, sharply outlined band showed in the electrophoresis. 

3.3.5 Statistical analyses5 

Data analysis was performed with SPSS Statistics and R.  

Epidemiological parameters were assessed for differences in phenotypes for the 

study population and screened for possible confounders. Continuous parameters 

were analysed with the Wilcoxon test, categorical variables with the Chi-square test. 

The effect of stimulation with either PHA or LpA in comparison with unstimulated 

cells was assessed using the t-test after calculating the fold change after stimulation. 

Fold change = (log2 -   Ct) 

For the analysis of the PCR data, the ΔCt was calculated by using 18S as 

housekeeping gene, as it is ubiquitously and stably expressed. 

ΔCt (gene of interest) = Ct (gene of interest) - Ct (18S) 

As all experiments were run in duplicates, mean ΔCt values were calculated for all 

duplicates in the next step.  

ΔCt (mean) = ½ (ΔCt (duplicate A) + ΔCt (duplicate B))  

Differences in the expression rates between two subgroups were assessed with the 

Wilcoxon two sample rank sum test.  

Statistical significance was defined as p ≤ 0,05. P values with p ≤ 0,1 were defined as 

trends.  

As no confounders were found in our analysis, a stratified analysis of data was not 

necessary. 

 
5 For the statistical analysis, the author was supported by the laboratory’s statistician. 
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4 Results 

4.1 Study population 

4.1.1 Characteristics 

Epidemiological and clinical data about the children included in PAULINA or 

PAULCHEN, respectively, were collected from detailed questionnaires filled in by the 

parents at birth as well as at age three and six6. For more detailed information about 

the design of each study, see chapter 3.2. As the inclusion and exclusion criteria as 

well as the parts of the questionnaires relevant for this work were equivalent in 

PAULCHEN and PAULINA, they will no longer be distinguished in the following. 

4.1.2 Assessment of outcome at age six 

Based on the information from the questionnaires, patients were assigned to one of 

four previously defined subgroups – multitrigger wheeze, persistent viral wheeze, 

transient early viral wheeze and healthy controls. Those subgroups, each comprising 

a specific clinical outcome, were later compared to each other in order to find 

differences in gene expression in CBMCs at birth. In order to avoid the creation of too 

many subgroups, categorization focused on a small number of questions. 

The definitions applied to the three-year follow-up were equivalent to those applied to 

the six-year follow-up. 

   

Figure 8 : Schematic representation of the four subgroups used in this work. 

 
6 All questionnaires can be found in the appendix (chapter 9.6). 

Virally triggered
wheeze at 3-year 
follow-up and 6-
year follow-up

Wheeze only at 
3-year follow-up
but healthy at 6-
year follow-up

No wheeze, 
neither at 3-year 
follow-up nor at 
6-year follow-up

Wheeze with
multiple triggers
at 3-year follow-
up and 6-year 
follow-up

Multitrigger 

wheeze

(n=14)

Transient 

early viral 

wheeze

(n=14)

Healthy

controls

(n=14)

Persistent 

viral 

wheeze

(n=14)
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Healthy controls (HC) were defined as children who did not have wheeze in both the 

three-year and the six-year follow up. Children whose parents answered “yes” to the 

question “has your child ever had wheeze” were classified as “any wheeze”. 

Additionally, a (repeated) doctor’s diagnosis of obstructive bronchitis was also 

classified as the child having shown wheeze. This large group was then further 

divided.  

“Transient early viral wheeze” (TEV) was defined to include children who classified 

as “viral wheeze” in the three-year follow up, with wheezing only during viral infection 

(see below), but whose parents in the six-year follow-up, answered “no” to the 

question “did your child ever show wheeze in the last three years”.  

Children whose parents answered “yes” to the question “has your child shown 

wheeze in the last three years” in both three- and six-year follow-up could either 

classify as “persistent viral wheeze” or “multiple trigger wheeze”. 

Of those children, “persistent viral wheeze” (PV) contains all whose parents indicated 

that they only wheezed when they had an infection of the airways (i.e. wheezy 

bronchitis) but not outside of these episodes. This had to be stated in both the three-

year and the six-year follow-up. 

For “multiple trigger wheeze” (short: multitrigger or MT), parents had to either report 

that their child’s wheeze was also present without infection and triggered either by 

effort, contact to animals, house dust, grass, or others, or a doctor’s diagnosis of 

obstructive bronchitis. In case of an additional doctor’s diagnosis of an allergic 

comorbidity, like rhinoconjuctivitis, or an allergic sensitization (either parent-reported, 

diagnosed by a doctor, or a positive specific IgE if it was available) was indicated in 

the questionnaire, the child in question was also classified as MT. 

In contrast to PV, this could be stated in either the three- or the six-year follow-up, or 

both. Children who were pulmonally healthy in the three-year follow up but filed as 

MT in the six-year follow up were summarized as “late-onset-multitrigger wheeze” 

(LOM). Viral wheeze in the three-year follow-up, which changed to multitrigger 

wheeze in the six-year follow-up, was classified as “viral to multitrigger wheeze” 

(VM). In contrast, the group who showed multitrigger wheeze in both follow-ups was 

called “persistent multitrigger wheeze” (PM). For reasons of case numbers, these 

three individual subgroups were summarized as MT for sample selection and for a 

part of the analysis. 
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For more detailed information on the questions asked, see the complete 

questionnaires in the appendix as well as the summary table below. 

Phenotype Question 1: 

“Has your child 

ever had 

wheezing?” 

Question 2: 

“Has your child 

wheezed in the 

past 3 years?” 

Additional questions (for more exact 

definition of phenotype) 

Pulmonary  

healthy (H) 

No No ‘Has your child been prescribed 

medication for wheezing or shortness of 

breath in the last 3 years?’: no 

‘Has your child been diagnosed with 

obstructive or convulsive bronchitis or 

asthmatic bronchitis?’: no 

Multitrigger 

wheeze (MT) 

Yes Yes/no ‘What triggers the wheezing?’: at least 

two different triggers 

‘How often does your child wheeze when 

they are not having an acute infection?’: 

at least once a month 

Doctor’s diagnosis of obstructive 

bronchitis  

Yes Yes Positive allergy test  

Positive for rhinoconjunctivitis 

Positive for atopic dermatitis 

Viral wheeze 

(V) 

Yes Yes/no  ‘Is your child completely symptom-free 

between the wheezing episodes?’: yes 

‘How often does your child wheeze when 

they’re not having an acute infection?’: 

never 

Table 2 : Summary table of questions especially relevant for phenotype definition. 

 

4.1.3 Sample selection 

Sample selection was based on a case-control design matched for potential 

confounders. As the limiting group was, consistent with known prevalence, 

multitrigger wheeze with n=14, an equal number was selected from the other, larger 

groups. Those were selected aiming for high homogeneity regarding the variables 

shown in Table 3. Ultimately, a number of n=56 were selected for the analyses of this 

work. As possible confounders were eliminated through the described matching 
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process, there was no need for stratified analyses. The allocation of the samples 

chosen is shown in Figure 9.  

 

Figure 9: Schematic representations for the subgrouping of samples used in this work. N=14 for the MT 
group result from summarizing late onset multitrigger wheeze, viral to multitrigger wheeze and persistent 
multitrigger wheeze. 

 

The epidemiological and socioeconomic characteristics of this smaller cohort are 

shown in the following table.  

Pulmonary

healthy (H)
22

Viral wheeze

(V)
30

Multitrigger 

wheeze (MT)
4

Age 3

Age 6 H
14

V
0

MT
8

H
14

V
14

MT
2

H
0

V
0

MT
4

Healthy
controls

14

Persistent 
multitrigger

wheeze
4

Age 3+6
Early viral 
wheeze

14

Persistent 
viral 

wheeze
14

Viral to
multitrigger

wheeze
2

Late Onset
multitrigger

wheeze
8



 40 

 

 MT (n=14) HC  (n=14) PV (n=14) TEV (n=14)  

Female sex  43% (6) 43% (6) 43% (6) 29% (4) p=0.83 * 

Gestational age (weeks) 40.1 39.7 40.1 39.9 p0.1 # 

Birth weight (g) 3693 3411 3660 3628 p0.1 # 

Birth length (cm) 52.2 51.5 52.6 52.3 p0.15 # 

Family history      

Mother asthmatic 14% (2) 7% (1) 43% (6) 21% (3) p=0.12 * 

Mother atopic 

 
57% (8) 64% (9) 71% (10) 64% (9) p=0.89 * 

Father asthmatic 7% (1) 21% (3) 0% (0) 7% (1) p=0.24 * 

Father atopic 57% (8) 50% (7) 21% (3) 57% (8) p=0.18 * 

Maternal smoking     p=0.67 * 

No 86% (12) 86% (12) 64% (9) 86% (12)  

Yes 0% (0) 0% (0) 7% (1) 7% (1)  

Until pregnancy 7% (1) 14% (2) 14% (2) 0% (0)  

Quit before pregnancy 7% (1) 0% (0) 14% (2) 7% (1)  

Maternal education     p=0.05 * 

Basic school certificate  14% (2) 0% (0) 14% (2) 0% (0)  

Secondary school certificate  29% (4) 7% (1) 14% (2) 0% (0)  

High school degree 14% (2) 43% (6) 7% (1) 14% (2)  

University 43% (6) 50% (7) 64% (9) 86% (12)  

Table 3: Description of the analysed subgroup of the birth cohort. Mother/father atopic: doctor’s 
diagnosis of atopy or atopic disease (hay fever, atopic dermatitis). Mother/father asthmatic: doctor’s 
diagnosis of asthma. Maternal education: highest degree or certificate reached by the mother. MT 
multitrigger wheeze, HC healthy control, PV persistent viral wheeze, TEV transient viral wheeze. 
Percentages and absolute number of subjects (indicated in brackets) shown. Test statistic based on the 
Chi-Square-Test for categorical variables (*) and ANOVA for continuous variables (#). 

 

4.2 Gene expression7 

4.2.1 Description 

In general, most genes from most children were detectable, i.e. their Ct was below 

the detection limit of 40 cycles8. However, several non-detectables, with a Ct above 

the detection limit also occurred. This is to be expected in CBMCs, as gene 

expression is generally lower than in other cell populations like e.g. PBMCs 

(peripheral blood mononuclear cells), and especially in unstimulated CBMCs. In case 

both duplicates showed a Ct >40 and technical issues as possible cause were ruled 

 
7 For a better overview, see the gene map in the appendix. 
8 In qRT-PCR, a low Ct value indicated high gene expression, and vice versa. 
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out, an artificial Ct of 40 was applied in order to include those values in the analysis. 

The following tables give an overview of the characteristics of gene expression. As 

visible in Table 5, only CD209 featured less than 80% detectable values. This 

censoring was considered for the statistical analysis. 

Characteristics of overall gene expression  

Share of detectable values 93.65% 

Share of non-detectable values 6.35% 

Censored values  8.5% 

Table 4: Descriptive display of overall gene expression. Non-detectable: Ct values >40. Censored values: 
exclusion because of known technical mistake. For one ID there was no sufficient material for 
measurement of gene expression in LpA stimulation (visible in the analysis as n=13 instead of n=14). 

Characteristics of gene expression per gene 

Candidate gene Share of non-detectable values Share of detectable values 

ATP2A3 1.53% 98.47% 

CALM2 0.59% 99.41% 

CD209 20.24% 79.76% 

FPR2 4.24% 95.76% 

IPS1 1.75% 98.25% 

ITPR2 0% 100% 

LY75 1.17% 98.83% 

ORAI1 2.99% 97.01% 

ORMDL3 0% 100% 

S100A8 0% 100% 

S100A9 0% 100% 

STIM2 2% 97.62% 

18S 0% 100% 

Table 5: Descriptive display of gene expression, sorted by candidate genes. Non-detectable: Ct values 
>40.
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4.2.2 Effect of stimulation 

The following figure illustrates the expression of the candidate genes after stimulation 

with either PHA or LpA compared to expression levels in unstimulated cord blood 

mononuclear cells (CBMCs) for the cohort that was analysed for this work.  

 

 

 

 

Fold change (log2 -   Ct) 

-1,5     0              2,5 5 8,4 

Figure 10: Graphic representation of fold change in comparison to unstimulated cells after stimulation for 
72h with PHA and LpA, respectively. Negative values (represented in green) show downregulation, 
positive values (represented in red) show upregulation. *** p<0,0001, ** p<0,001, *p<0,05 (t-test). PM 
persistent multitrigger, LOM late-onset multitrigger, PV persistent viral, TEV transient early viral, HC 
healthy controls. 
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4.2.4 Gene expression analysis in the wheeze subgroups 

For this paragraph the four subgroups multitrigger wheeze, persistent viral wheeze, 

transient early viral wheeze and healthy controls (see fig.8) were analysed. The 

results are organized in two parts, calcium signalling and innate signalling, according 

to the biological functions of each gene of interest. 

4.2.4.1 Expression of genes associated to calcium signalling 

4.2.4.1.1 Results for each gene 

In the following sections, the results for all calcium-related genes investigated in this 

work will be displayed, preceded by a short summary of the gene’s biological 

functions. 

 

 Inhibiting influence 
 

Gene or respective protein 

 
Activating influence  Second messenger 

Figure 11: Overview of the candidate genes in a schematic cell (light grey background). Genes related to 
calcium signalling are shown in grey boxes. Genes related to innate immunity are marked in bold.  
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4.2.4.1.1.1 ITPR2 

ITPR2 is a signal integrator that recognizes IP3, but also ROS and is located in the 

endoplasmatic reticulum. Upon activation, it initiates calcium release from the ER 

stores into the cytoplasm. 

 

Figure 12: Graphical representation of the results for ITPR2 in boxplots, sorted by stimulating condition 
on the x-axis and by phenotype as indicated in the legend. Y-axis inverted to illustrate a lower ΔCT value 
as higher expression rate. * trend found in the comparison of the two indicated subgroups (p ≤ 0.1), ** 
significant findings in the comparison of the two indicated subgroups (p ≤ 0.05) for Wilcoxon two sample 
rank sum test.  

Differences between the four groups were seen in unstimulated cells, as the MT 

group showed a significantly higher expression of ITPR2 than the PV group (p= 

0.009). The same was visible in comparison of MT to healthy controls, but only as a 

trend (p= 0.09). After stimulation with PHA, this effect was strengthened in MT vs. HC 

(p=0.02) and remained significant for the comparison of MT vs. PV (p=0.01). Cells 

stimulated with LpA showed a significantly lower expression of ITPR2 in PV when 

compared to TEV (p=0.01) and a trend in the same direction when compared to 

healthy controls (p=0.06). 

**
p=0.02

**
p=0.009

*
p=0.09

**
p=0.01

**
p=0.01

*
p=0.06
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4.2.4.1.1.2 CALM2 

CALM2 is a receptor for elevated extracellular calcium levels located in the outer 

membrane of the cell. Its downstream signalling activates the NLRP3 inflammasome 

as well as the NFκB pathway through CALMKII. 

 

Figure 13: Graphical representation of the results for CALM2 in boxplots, sorted by stimulating condition 
on the x-axis and by phenotype as indicated in the legend. Y-axis inverted to illustrate a lower ΔCT value 
as higher expression rate. * trend found in the comparison of the two indicated subgroups (p ≤ 0.1), ** 
significant findings in the comparison of the two indicated subgroups (p ≤ 0.05) for Wilcoxon two sample 
rank sum test. 

For CALM2, effects were only visible after PHA stimulation. The MT group showed a 

trend for higher gene expression when compared to TEV (p=0.06) and a significantly 

higher expression than the healthy controls (p=0.025).  

**
p=0.025

*
p=0.06
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4.2.4.1.1.3 ORAI1 

ORAI1 is part of a calcium channel in the outer cell membrane needed for store-

operated calcium entry after the depletion of the ER’s stores.  

 

Figure 14: Graphical representation of the results for ORAI1 in boxplots, sorted by stimulating condition 
on the x-axis and by phenotype as indicated in the legend. Y-axis inverted to illustrate a lower ΔCT value 
as higher expression rate. * trend found in the comparison of the two indicated subgroups (p ≤ 0.1), ** 
significant findings in the comparison of the two indicated subgroups (p ≤ 0.05) for Wilcoxon two sample 
rank sum test.  

An elevated expression of ORAI1 for the MT group was already detected as a trend 

in unstimulated cells when compared to the persistent wheeze group (p=0.07). The 

same trend was visible in cells stimulated with PHA (p=0.06). For PHA stimulation, 

the MT group showed significantly higher expression in comparison with the TEV 

group (p=0.04) and trend wise in comparison with the healthy controls (p=0.09). In 

LpA, the persistent wheeze group showed significantly lowered expression opposed 

to the TEV group (p=0.03). 

**
p=0.03

*
p=0.06

*
p=0.07

**
p=0.04

*
p=0.09



 47 

4.2.4.1.1.4 STIM2 

STIM2 is a protein located in the ER, sensing depletion of the ER’s calcium stores. If 

such depletion occurs, STIM2 initiates store-operated calcium entry. 

 

Figure 15: Graphical representation of the results for STIM2 in boxplots, sorted by stimulating condition 
on the x-axis and by phenotype as indicated in the legend. Y-axis inverted to illustrate a lower ΔCT value 
as higher expression rate. * trend found in the comparison of the two indicated subgroups (p ≤ 0.1), ** 
significant findings in the comparison of the two indicated subgroups (p ≤ 0.05) for Wilcoxon two sample 
rank sum test.  

STIM2 was significantly higher expressed in the MT group when compared to the PV 

group (p=0.025), with the same effect visible as a trend in comparison to healthy 

controls (p=0.08), both in cells without stimulation.  

In PHA, the comparison MT vs. HC showed a significantly elevated expression of 

STIM2 in the multitrigger wheeze group (p=0.05). 

**
p=0.025

*
p=0.08

**
p=0.05
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4.2.4.1.1.5 ATP2A3 

ATP2A3 is a SERCA (sarcoplasmatic/endoplasmatic calcium ATPase) located in the 

ER and responsible for restoring physiological intracellular calcium levels after store-

operated calcium-entry.  

 

Figure 16: Graphical representation of the results for ATP2A3 in boxplots, sorted by stimulating condition 
on the x-axis and by phenotype as indicated in the legend. Y-axis inverted to illustrate a lower ΔCT value 
as higher expression rate. * trend found in the comparison of the two indicated subgroups (p ≤ 0.1), ** 
significant findings in the comparison of the two indicated subgroups (p ≤ 0.05) for Wilcoxon two sample 
rank sum test.  

A trend for higher expression in the MT group compared to the TEV group was 

detected in cells stimulated with PHA (p=0.08). For PV vs. transient early viral 

wheeze in LpA there was significantly lower expression of ATP2A3 (p=0.04). 

*
p=0.08

**
p=0.04
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4.2.4.1.1.6 ORMDL3 

ORMDL3 is a protein responsible for inhibiting and thus controlling the SERCA 

ATP2A3. 

 

Figure 17: Graphical representation of the results for ORMDL3 in boxplots, sorted by stimulating 
condition on the x-axis and by phenotype as indicated in the legend. Y-axis inverted to illustrate a lower 
ΔCT value as higher expression rate* trend found in the comparison of the two indicated subgroups (p ≤ 
0.1), ** significant findings in the comparison of the two indicated subgroups (p ≤ 0.05) for Wilcoxon two 
sample rank sum test. 

After PHA stimulation, expression of ORMDL3 was significantly higher in the MT 

group when compared to transient early viral wheeze (p=0.03). The same effect was 

visible as a trend in the MT vs. PV comparison (p=0.08). 

*
p=0.08

**
p=0.03
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4.2.4.1.1.7 S100A8 

S100A8 is a protein that is abundantly found in the cytoplasm of neutrophils. Upon 

activation of the neutrophil, it changes its location to the outer cell membrane. 

S100A8 has chemotactic functions, acts as DAMP and is involved in the cell redox 

state. However, through the liberation of arachidonic acid it also seems to have anti-

inflammatory properties.  

 

Figure 18: Graphical representation of the results for S100A8 in boxplots, sorted by stimulating condition 
on the x-axis and by phenotype as indicated in the legend. Y-axis inverted to illustrate a lower ΔCT value 
as higher expression rate* trend found in the comparison of the two indicated subgroups (p ≤ 0.1), ** 
significant findings in the comparison of the two indicated subgroups (p ≤ 0.05) for Wilcoxon two sample 
rank sum test.  

For S100A8, neither significant effects nor trends were found in this analysis. 
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4.2.4.1.1.8 S100A9 

S100A9 is mainly found in complex with S100A8, and is then called calprotectin. It 

has similar functions as S100A8, but a less pronounced anti-inflammatory function 

than S100A8. 

 

Figure 19: Graphical representation of the results for S100A9 in boxplots, sorted by stimulating condition 
on the x-axis and by phenotype as indicated in the legend. Y-axis inverted to illustrate a lower ΔCT value 
as higher expression rate* trend found in the comparison of the two indicated subgroups (p ≤ 0.1), ** 
significant findings in the comparison of the two indicated subgroups (p ≤ 0.05) for Wilcoxon two sample 
rank sum test.  

Significantly higher expression of S100A9 in cells stimulated with PHA was observed 

when the MT group was compared to healthy controls (p=0.05). 

**
p=0.05
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4.2.4.2 Expression of genes associated to innate signalling 

4.2.4.2.1 Results for each gene 

In the following sections, the results for all innate-immunity-related genes 

investigated in this work will be displayed, preceded by a short summary of the 

gene’s biological functions. 

 

Figure 20: Overview of the candidate genes in a schematic cell (light grey background). Genes shown in 
this paragraph, related to innate immunity, are marked in bold (FPR2, LY75, CD209 and IPS1). For a 
detailed legend see figure 11.  

 



 53 

4.2.4.2.1.1 FPR2 

FPR2 is a protein in the outer cell membrane, acting as a PRR for bacterial signalling 

peptides and formylpeptide. Additionally, it recognizes lipoxins and is involved in IP3 

generation, thus contributing to the calcium-signalling pathway. 

 

Figure 21: Graphical representation of the results for FPR2 in boxplots, sorted by stimulating condition 
on the x-axis and by phenotype as indicated in the legend. Y-axis inverted to illustrate a lower ΔCT value 
as higher expression rate* trend found in the comparison of the two indicated subgroups (p ≤ 0.1), ** 
significant findings in the comparison of the two indicated subgroups (p ≤ 0.05) for Wilcoxon two sample 
rank sum test.  

Trend wise, FPR2 expression was elevated in the MT group after stimulation with 

PHA, in comparison to both the PV and the TEV group (p=0.08 and p=0.06, 

respectively). In unstimulated cells, a trend for higher expression of FPR2 in the 

persistent viral wheeze group when compared to healthy controls was noticed 

(p=0.09). 

*
p=0.08

*
p=0.06

*
p=0.09
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4.2.4.2.1.2 IPS-1 

IPS-1 is a downstream adaptor signalling protein for other RIG-I-like-receptors, 

located in the mitochondrium. Upon activation, it influences the NFκB-pathway and 

leads to ROS generation.  

 

Figure 22: Graphical representation of the results for IPS1 in boxplots, sorted by stimulating condition on 
the x-axis and by phenotype as indicated in the legend. Y-axis inverted to illustrate a lower ΔCT value as 
higher expression rate* trend found in the comparison of the two indicated subgroups (p ≤ 0.1), ** 
significant findings in the comparison of the two indicated subgroups (p ≤ 0.05) for Wilcoxon two sample 
rank sum test.  

IPS-1 expression was shown to be elevated in the MT group after PHA stimulation, 

significantly in comparison to the PV group (p=0.01) and as a trend in comparison to 

the TEV group (p=0.085). In addition, the TEV group showed a trend fhigher 

expression after LpA stimulation when compared to healthy controls (p=0.07). Also, 

in LpA-stimulated cells the expression of IPS-1 in the PV group was significantly 

lower than in the TEV group (p=0.01). 

**
p=0.01

**
p=0.01

*
p=0.07

*
p=0.085
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4.2.4.2.1.3 LY75 

LY75 is a PRR for cell death material for virally infected or apoptotic cells, located on 

the outer cell membrane. In a steady state, it has tolerance-inducing properties. 

 

Figure 23: Graphical representation of the results for LY75 in boxplots, sorted by stimulating condition on 
the x-axis and by phenotype as indicated in the legend. Y-axis inverted to illustrate a lower ΔCT value as 
higher expression rate* trend found in the comparison of the two indicated subgroups (p ≤ 0.1), ** 
significant findings in the comparison of the two indicated subgroups (p ≤ 0.05) for Wilcoxon two sample 
rank sum test.  

Effects for higher expression in multitrigger wheeze were visible at a significant level 

in both unstimulated and PHA-stimulated cells (p=0.02 and p=0.01, respectively) 

when compared to the PV group. The same effect was visible as a trend in 

unstimulated cells (p=0.09) in comparison to the healthy controls. 

**
p=0.01

**
p=0.02

*
p=0.09
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4.2.4.2.1.4 CD209 

CD209 also is a PRR, detecting carbohydrates and Der-p, the main allergen of house 

dust mite. It can activate the arachidonic acid cascade and regulate the NFκB-

pathway via acetylation. 

 

Figure 24: Graphical representation of the results for CD209 in boxplots, sorted by stimulating condition 
on the x-axis and by phenotype as indicated in the legend. Y-axis inverted to illustrate a lower ΔCT value 
as higher expression rate* trend found in the comparison of the two indicated subgroups (p ≤ 0.1), ** 
significant findings in the comparison of the two indicated subgroups (p ≤ 0.05) for Wilcoxon two sample 
rank sum test.  

For CD209, a significantly lowered expression after LpA stimulation in the persistent 

viral wheeze group when compared to the TEV group was observed (p=0.004). 

**
p=0.004
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4.2.5 In-depth analysis of the multitrigger group  

After comparing the four original, larger subgroups, a second analysis was 

conducted. The multitrigger group was divided in the three subtypes late-onset 

multitrigger (LOM), viral to multitrigger (VM) and persistent multitrigger wheeze (see 

fig.9). This was done because the MT group showed the most significant findings and 

by subdividing it, those effects could be traced back to the distinct subgroups causing 

them. However, due to the limited size of the multitrigger group (n=14), case 

numbers for this in-depth analysis were also small (n=2 for VM, n=4 for PM and n=8 

for LOM), meaning all results need to be interpreted with this limitation in mind. 

Again, the results are organized in two parts, calcium signalling and innate signalling, 

according to the biological functions of each gene of interest. Additionally, the 

changes in contrast to the analysis of the four original subgroups are commented on. 
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4.2.5.1 Expression of genes associated to calcium signalling 

4.2.5.1.1 Results for each gene 

In the following sections, the results from the in-depth analysis of the multitrigger 

wheeze subgroup for the calcium-related genes investigated in this work will be 

displayed, followed by a comment on the changes in regard to the analysis of the 

original four wheeze subgroups. In the interest of clarity, effects only concerning the 

PV, TEV and HC groups among one another are not shown in the figures. 

 

Figure 25: Overview of the candidate genes in a schematic cell (light grey background). Genes shown in 
this paragraph, related to calcium signalling, are marked in grey boxes (CALM2, ORAI1, ITPR2, STIM2, 
ATP2A3, ORMDL3, S100A8, S100A9). For a detailed legend see figure 11. 
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4.2.5.1.1.1 ITPR2 

For ITPR2, the previous effect in MT vs. PV for PHA stimulation changes to an effect 

in PM vs. PV. Also, new significant effects in LpA appear, both concerning the PM 

group. In regard to the comparison of MT to healthy controls, it can be seen that both 

the LOM and PM group were involved. However, the trend for higher expression in 

MT vs. HC in unstimulated cells disappears.  

 

Figure 26: Graphical representation of the results for ITPR2 in boxplots, sorted by stimulating condition 
on the x-axis and by phenotype as indicated in the legend. Y-axis inverted to illustrate a lower ΔCT value 
as higher expression rate. * trend found in the comparison of the two indicated subgroups (p ≤ 0.1), ** 
significant findings in the comparison of the two indicated subgroups (p ≤ 0.05) for Wilcoxon two sample 
rank sum test.  

In unstimulated cells, effects were visible in the LOM group, significantly in 

comparison to PV (p=0.004) and as a trend in comparison to the healthy controls 

(p=0.06). A trend for higher expression in PHA when comparing the VM group to the 

PV group was noticed (p=0.07). Elevated expression in PHA for the comparison PM 

vs. PV (p=0.05) and PM vs. HC (p=0.05) were observed.  

In the PM group, expression was significantly higher in comparison to LOM (p=0.03) 

and PV (p=0.003) wheeze in LpA-stimulated cells. 

**
p=0.003

**
p=0.003**

p=0.05

**
p=0.05

*
p=0.07

**
p=0.004

*
p=0.06
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4.2.5.1.1.2 CALM2 

In this detailed analysis of the MT group, several trends for the whole MT group are 

strengthened to significant effects mediated by the PM group. Additionally, the 

different MT subgroups also differ amongst each other, namely the PM and the LOM 

subtype. Also, a new trend for LOM vs. TEV emerges in LpA.  

 

Figure 27: Graphical representation of the results for CALM2 in boxplots, sorted by stimulating condition 
on the x-axis and by phenotype as indicated in the legend. Y-axis inverted to illustrate a lower ΔCT value 
as higher expression rate. * trend found in the comparison of the two indicated subgroups (p ≤ 0.1), ** 
significant findings in the comparison of the two indicated subgroups (p ≤ 0.05) for Wilcoxon two sample 
rank sum test.  

Most effects for CALM2 could be found in comparisons involving the PM group.  

In PHA, the persistent multitrigger group showed significantly higher expression than 

all the other groups (except VM): in comparison to LOM (p=0.02), to PV (p=0.02), to 

TEV (p=0.035) and to HC (p=0.008). In LpA, this effect was also visible as a trend 

when the PM group was compared to LOM (p=0.07).  

Additionally, the LOM group showed a tendency to lower expression than the TEV 

group (p=0.07) after LpA stimulation. 

**
p=0.02

*
p=0.07

**
p=0.02

**
p=0.035

**
p=0.008

*
p=0.07
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4.2.5.1.1.3 ORAI1 

In comparison to the four-group analysis, it emerges that effects previously attributed 

to the MT group can be traced to the PM group. In addition, one of the new 

significant effects is distinguishing the two MT subgroups PM and LOM through 

higher expression of ORAI1 in the PM group. The trend for higher expression in MT 

in comparison to HC after PHA stimulation disappears. 

 

Figure 28: Graphical representation of the results for ORAI1 in boxplots, sorted by stimulating condition 
on the x-axis and by phenotype as indicated in the legend. Y-axis inverted to illustrate a lower ΔCT value 
as higher expression rate. * trend found in the comparison of the two indicated subgroups (p ≤ 0.1), ** 
significant findings in the comparison of the two indicated subgroups (p ≤ 0.05) for Wilcoxon two sample 
rank sum test.  

For ORAI1, the PM group showed high expression in all three stimulating conditions. 

In unstimulated cells, expression was trendwise higher than in the PV group 

(p=0.08). This effect was stronger in cells stimulated with LpA (p=0.002).  

In LpA, PM also showed significantly higher expression than the LOM group 

(p=0.02). After stimulation with PHA, higher expression than in the TEV group was 

observed (p=0.03).  Regarding trends, the ORAI1 expression in LOM was lowered in 

LpA when compared to TEV (p=0.09). 

**
p=0.02

*
p=0.08

**
p=0.002

*
p=0.09

**
p=0.03
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4.2.5.1.1.4 STIM2 

Here, a previously significant effect for MT vs. PV in unstimulated cells is divided into 

two trends concerning PM and LOM in comparison to PV. However, there are also 

new trends in comparisons involving the PM group, in both PHA and LpA. The 

significant effect of MT vs. healthy controls becomes a significantly higher expression 

in PM vs. HC.  

 

Figure 29: Graphical representation of the results for STIM2 in boxplots, sorted by stimulating condition 
on the x-axis and by phenotype as indicated in the legend. Y-axis inverted to illustrate a lower ΔCT value 
as higher expression rate. * trend found in the comparison of the two indicated subgroups (p ≤ 0.1), ** 
significant findings in the comparison of the two indicated subgroups (p ≤ 0.05) for Wilcoxon two sample 
rank sum test.  

A trend for higher expression of STIM2 was observed in the comparison of PM vs. 

PV in all three stimulating conditions (unstimulated p=0.08, PHA p=0.06, LpA 

p=0.08). For PHA stimulation, the trend was also visible in PM vs. TEV (p=0.08). 

Also, PM showed significantly higher expression after PHA stimulation when 

compared to healthy controls (p=0.025). LOM showed higher expression of STIM2 in 

unstimulated cells than the PV group did (p=0.05) and a trend-wise higher expression 

than healthy controls (p=0.09). 

*
p=0.08

*
p=0.06

*
p=0.08

*
p=0.08

**
p=0.025

**
p=0.05

*
p=0.09
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4.2.5.1.1.5 ATP2A3 

Compared to the four-group analysis, the previous trend in MT vs. PV is 

strengthened to significance in PM vs. PV. Two new significant effects emerge for the 

LOM group, one of them distinguishing it from the PM group. 

 

Figure 30: Graphical representation of the results for ATP2A3 in boxplots, sorted by stimulating condition 
on the x-axis and by phenotype as indicated in the legend. Y-axis inverted to illustrate a lower ΔCT value 
as higher expression rate. * trend found in the comparison of the two indicated subgroups (p ≤ 0.1), ** 
significant findings in the comparison of the two indicated subgroups (p ≤ 0.05) for Wilcoxon two sample 
rank sum test.   

In LpA, the persistent multitrigger group showed significantly higher expression than 

the LOM group (p=0.03) as well as the persistent viral group (p=0.02).  

The LOM group showed lower expression of ATP2A3 when compared to the TEV 

group (p=0.03). 

**
p=0.03

**
p=0.02

**
p=0.03
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4.2.5.1.1.6 ORMDL3 

In the in-depth analysis, there are many changes to the earlier analysis of the four 

wheeze subgroups. A new trend in unstimulated cells emerges for LOM vs. PV. 

Previously visible effects in PHA disappear (MT vs. PV and MT vs. TEV). Instead, 

new effects in LpA appear, both of them involving the PM group.  

 

Figure 31: Graphical representation of the results for ORMDL3 in boxplots, sorted by stimulating 
condition on the x-axis and by phenotype as indicated in the legend. Y-axis inverted to illustrate a lower 
ΔCT value as higher expression rate. * trend found in the comparison of the two indicated subgroups (p ≤ 
0.1), ** significant findings in the comparison of the two indicated subgroups (p ≤ 0.05) for Wilcoxon two 
sample rank sum test.  

For ORMDL3, expression in cells stimulated with LpA was significantly higher in the 

PM group as opposed to the PV group (p=0.02), a trend also visible in comparison to 

healthy controls (p=0.08).  

In unstimulated cells, the late-onset multitrigger group showed a trend higher 

expression than the PV group (p=0.07). 

**
p=0.02

*
p=0.08

*
p=0.07
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4.2.5.1.1.7 S100A8 

While in the four-group comparison there were neither trends nor significant effects 

for S100A8, in this more detailed analysis of the MT group three new effects 

concerning late-onset multitrigger group emerge for cells stimulated with LpA.  

 

Figure 32: Graphical representation of the results for S100A8 in boxplots, sorted by stimulating condition 
on the x-axis and by phenotype as indicated in the legend. Y-axis inverted to illustrate a lower ΔCT value 
as higher expression rate. * trend found in the comparison of the two indicated subgroups (p ≤ 0.1), ** 
significant findings in the comparison of the two indicated subgroups (p ≤ 0.05) for Wilcoxon two sample 
rank sum test.  

The LOM group showed a trend for lower S100A8 expression than the TEV group 

(p=0.07) as well as the PV group (p=0.06). In comparison to healthy controls, 

S100A8 expression is significantly lower in the LOM group (p=0.04).  

*
p=0.06

*
p=0.07

**
p=0.04
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4.2.5.1.1.8 S100A9 

Parallel to S100A8, a new effect concerning expression in LOM group after LpA 

stimulation appears in this analysis. However, a previously significant effect for MT 

vs. HC diminishes to a trend. Additionally, a new significant effect distinguishing the 

LOM group from the persistent multitrigger group emerges. 

 

Figure 33: Graphical representation of the results for S100A9 in boxplots, sorted by stimulating condition 
on the x-axis and by phenotype as indicated in the legend. Y-axis inverted to illustrate a lower ΔCT value 
as higher expression rate. * trend found in the comparison of the two indicated subgroups (p ≤ 0.1), ** 
significant findings in the comparison of the two indicated subgroups (p ≤ 0.05) for Wilcoxon two sample 
rank sum test.  

In PHA, there is a trend for higher expression of S100A9 in PM when compared to 

healthy controls (p=0.08).  

In LpA, the TEV group shows higher expression than the LOM group (p=0.03). Also, 

in the comparison PM vs. LOM, the persistent multitrigger group has a higher 

expression (p=0.004). 

**
p=0.004

*
p=0.08

**
p=0.03
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4.2.5.2 Expression of genes associated to innate signalling 

4.2.5.2.1 Results for each gene 

In the following sections, the results from the in-depth analysis of the multitrigger 

wheeze subgroup for the innate-immunity-related genes investigated in this work will 

be displayed, followed by a comment on the changes in regard to the analysis of the 

original four wheeze subgroups. In the interest of clarity, effects only concerning the 

PV, TEV and HC groups among one another are not shown in the figures.  

 

 

Figure 34: Overview of the candidate genes in a schematic cell (light grey background). Genes shown in 
this paragraph, related to innate immunity, are marked in bold (FPR2, LY75, CD209 and IPS1). For a 
detailed legend see figure 11. 
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4.2.5.2.1.1 FPR2 

For FPR2, trends already visible in PHA for the whole MT group changed to 

significant differences in the PM group. In addition, new effects appear for cells 

stimulated with LpA, one of them differentiating the LOM from the PM group. Also, a 

new trend concerning the comparison LOM vs. TEV in LpA-stimulated cells emerges. 

 

Figure 35: Graphical representation of the results for FPR2 in boxplots, sorted by stimulating condition 
on the x-axis and by phenotype as indicated in the legend. Y-axis inverted to illustrate a lower ΔCT value 
as higher expression rate. * trend found in the comparison of the two indicated subgroups (p ≤ 0.1), ** 
significant findings in the comparison of the two indicated subgroups (p ≤ 0.05) for Wilcoxon two sample 
rank sum test.  

In PHA, there is a significantly higher expression in the PM group when compared to 

persistent viral wheeze (p=0.008) as well as compared to transient early viral wheeze 

(p=0.03). Similarly, in LpA the PM group showed elevated expression in comparison 

to the LOM group (p=0.03) and to the PV group (p=0.025), as well.  

In LpA there was also a trend for lower FPR2 expression in the LOM group when 

compared to the TEV group (p=0.09). 

**
p=0.03

**
p=0.025

**
p=0.008

**
p=0.03

*
p=0.09



 69 

4.2.5.2.1.2 IPS-1 

For IPS-1, several new effects involving the PM group emerge for LpA- as well as 

PHA- stimulated cells. A new effect differentiating the LOM group from the TEV 

group was discovered. 

 

Figure 36: Graphical representation of the results for IPS1 in boxplots, sorted by stimulating condition on 
the x-axis and by phenotype as indicated in the legend. Y-axis inverted to illustrate a lower ΔCT value as 
higher expression rate. * trend found in the comparison of the two indicated subgroups (p ≤ 0.1), ** 
significant findings in the comparison of the two indicated subgroups (p ≤ 0.05) for Wilcoxon two sample 
rank sum test.  

In general, the persistent multitrigger group showed the highest expression in this 

comparison. In LpA, expression of IPS-1 in PM was significantly higher than in the 

PV group (p=0.01) as well as the healthy controls (p=0.025). Trend-wise, this effect 

was also noticeable in the comparison PM vs. LOM (p=0.07). In cells stimulated with 

PHA, parallel effects were observed: IPS-1 expression was higher in PM than in the 

PV group (p=0.008), and higher than in the TEV group, although only as a trend 

(p=0.08). Also, the LOM group showed a lower expression than the TEV group after 

LpA-stimulation (p=0.03). 
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4.2.5.2.1.3 LY75 

In comparison to the previous analysis, multiple new effects showing a higher 

expression emerge for the PM group in cells stimulated with PHA as well as in cells 

after LpA-stimulation. Additionally, there are new effects visible in unstimulated cells 

for the comparison LOM vs. PV and healthy controls.  

 

Figure 37: Graphical representation of the results for LY75 in boxplots, sorted by stimulating condition on 
the x-axis and by phenotype as indicated in the legend. Y-axis inverted to illustrate a lower ΔCT value as 
higher expression rate. * trend found in the comparison of the two indicated subgroups (p ≤ 0.1), ** 
significant findings in the comparison of the two indicated subgroups (p ≤ 0.05) for Wilcoxon two sample 
rank sum test.  

In LpA, the PM group showed significantly higher expression than both LOM (p=0.01) 

and PV (p=0.05). In PHA, exactly the same effect was visible for both the 

comparisons PM vs. LOM (p=0.01) and PM vs. PV (p=0.003). Additionally, LY75 

expression in the PM group was significantly elevated when compared to healthy 

controls (p=0.015). As a trend, higher expression in PM in comparison to the TEV 

group was observed (p=0.06). In unstimulated cells, expression of LY75 in the PM 

group compared to the persistent viral wheeze group was significantly elevated 

(p=0.02). There was a parallel trend in LOM vs. healthy controls (p=0.08).  
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4.2.5.2.1.4 CD209 

In contrast to the analysis of the original four wheeze subgroups new, partly 

significant effects appeared for cells after stimulation with LpA appeared, involving 

the PM as well as the LOM group. 

 

Figure 38: Graphical representation of the results for CD209 in boxplots, sorted by stimulating condition 
on the x-axis and by phenotype as indicated in the legend. Y-axis inverted to illustrate a lower ΔCT value 
as higher expression rate. * trend found in the comparison of the two indicated subgroups (p ≤ 0.1), ** 
significant findings in the comparison of the two indicated subgroups (p ≤ 0.05) for Wilcoxon two sample 
rank sum test.  

In the PM group, CD209 expression was significantly higher than in PV (p=0.03) and 

trend-wise higher than in the LOM group (p=0.07) in cells stimulated with LpA. Also, 

in LpA, expression of CD209 was lower in the LOM group when compared to 

transient early viral wheeze (p=0.016). 
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5 Discussion 

Despite great efforts in research, asthma remains one of the most common chronic 

diseases in childhood, developing already early in life. To improve the current 

situation of asthma patients, which is severely lacking in many dimensions, new, 

targeted, more effective therapeutic strategies and predictive tools are urgently 

needed [169]. However, to identify possible targets for therapy as well as to correctly 

deliver individualized therapy to the patients, it is necessary to define precise and 

consistent asthma endotypes.  

This thesis investigated the gene expression of immunological pathways in cord 

blood mononuclear cells. In combination with the detailed follow-ups of the study 

population, this study seeks to identify possibly pathogenetic gene expression 

patterns within the immune system. A long-term goal could be the development of 

selected candidate genes as new biomarkers that could possibly be used to predict 

the outcome of childhood asthma. 

In the following paragraphs, the results will be discussed against the background of 

the current state of relevant studies. 

5.1 Overview of the main findings 

In CBMC samples selected from the PAULINA/PAULCHEN birth cohort, expression 

of all candidate genes could be detected via qRT-PCR. While gene expression in 

CBMCs is often only detectable after stimulation, in this study all candidate genes 

could be detected even in unstimulated cells. Expression varied, trend-wise and 

significantly, among the subsets of children with transient early viral, persistent viral 

or multitrigger wheeze, and also in comparison to healthy controls. Despite the small 

sample size (n=14 per group, lower for the in-depth analysis of the multitrigger 

group), highly significant differences in gene expression levels could be detected. 

Even so, this limitation needs to be kept in mind when interpreting the results from 

this work. 

What sets apart these results is the fact that instead of single findings for stand-alone 

genes with often only mild impact on phenotypes, consistent patterns of elevated or 

lowered gene expressions could be detected for a whole signalling pathway [35].  
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5.1.1 Main findings for transient early viral wheeze 

Gene expression patterns for transient early viral wheeze showed a level of gene 

expression below that of persistent multitrigger wheeze, visible in significant effects 

for FPR2, CALM2 and ORAI1 as well as in trend-wise effects for LY75, STIM2 and 

IPS1, all after stimulation with PHA. In comparison to persistent viral wheeze, TEV 

wheeze showed significantly higher expression of ITPR2, CD209, ORAI1, ATP2A3 

and IPS1, all visible after stimulation with LpA. This gene expression pattern is 

mostly parallel to that of healthy controls. This theory was tested in a three-group 

comparison9 merging HC and transient early viral wheeze (TEV).  

These findings fit the description of transient early wheeze in other studies as very 

common and associated with viral infection but unrelated to atopy, generally 

disappearing without any intervention [170, 171].  

Accordingly, cohort studies have shown a good prognosis in terms of wheeze 

frequency in later childhood. Martinez et al. reported that 60% of children who 

experienced viral wheeze until their third birthday outgrow their symptoms by age 6 

[12]. Additionally, a follow-up study to the Tucson birth cohort proposed children who 

wheezed before age three but not at age six were shown to be as unlikely to 

experience wheeze again after age six as children who had never wheezed [172]. 

Children with TEV wheeze have been consistently reported to have impaired lung 

function in infancy. However, lung function in later childhood has been controversially 

discussed as it had recovered when the children reached school age in some 

cohorts, whereas it stayed at a comparatively low level in others [12, 173]. 

Still, the major part of children who wheeze transiently early in life have a good 

prognosis in terms of respiratory function and show no clinical symptoms at school 

age [174-177].  

 

Results from this study indicate that TEV wheeze does not show altered gene 

expression levels at birth, neither in genes related to calcium signalling nor antiviral 

innate immunity. However, these children still experience wheeze. A possible 

explanation might be the involvement of other pathogenetic factors besides immune 

regulation at birth. Consistently being reported as risk factor is smoking during 

pregnancy. Some studies propose a direct influence of in-utero smoke exposure 

through impaired lung growth and maturation resulting in congenitally smaller 

 
9 As there were no vast differences to the conducted four-group analysis, these data are not shown. 
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airways, a predisposition for wheeze while others suggests it is mediated through 

lower birth weight [38, 178-180]. However, in this study smoking during pregnancy 

could be excluded as possible confounder, pointing out that this theory might only be 

true in some cases. Other influencing factors reported for TEV wheeze include the 

mother’s vitamin D status as potentially protective through the development of the 

foetal lung and thus wheeze as well as a potential influence of young maternal age 

and high maternal BMI [181, 182]. While no evidence for this as an influence through 

socioeconomic status could be found in this study, it has also been proposed that the 

in-utero exposure to systemic inflammation in obesity can hinder the development of 

the child’s immune system [180, 183]. The importance of immune maturation is 

underlined by studies that showed exposure to animal sheds on farms lowers the risk 

for TEV wheeze, suggesting that early life exposure to diverse bacteria could hold an 

immunomodulatory protective effect [184]. 

 

In summary, findings from this work indicate that transient early viral wheeze has a 

gene expression level similar to that of healthy controls. This indicates a positive 

outlook for these children as there seems to be no underlying major modification in 

immune regulation at play.  A hypothesis as to why TEV patients experience wheeze 

anyway that would be consistent with findings from this study is that multiple 

potentially modifiable influences lead to a limited period of susceptibility to lower 

respiratory tract infection. This in turn causes oedema, effectively diminishing the 

already small airway diameter of these children, resulting in wheeze [12, 17, 185-

187]. 

As transient early wheeze currently can only be defined to have been transient in 

retrospect, most of the patients in this group are treated with ICS, accounting for the 

major part of ICS prescriptions in preschool children. However, the benefit of ICS for 

these patients is minimal, as they have been shown to be likely to remit without 

intervention eventually. As ICS have grave side effects like growth retardation, this is 

not to be taken lightly [173, 188]. A way to, indirectly, improve therapeutic 

management of these children through the findings of this work could lie in early 

identification of children at risk for persistent wheeze, which will be discussed in the 

following paragraphs. 
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5.1.2 Main findings for persistent viral wheeze  

 

Figure 39: Overview of the significant findings for persistent viral wheeze, based on differences in Ct 
values. HC healthy controls, TEV transient early viral wheeze, PV persistent viral wheeze, PM persistent 
multitrigger, LOM late-onset multitrigger, MT multitrigger. Red background marks higher expression, 
green background marks lower expression. All subgroups indicated in the grey boxes have been 
compared to persistent viral wheeze. * trend like results (p ≤ 0,1); ** significant results (p ≤ 0,05). 
Stimulating conditions can be seen next to the level of significance: 1 unstimulated, 2 
phytohemagglutinin, 3 lipid A. For a detailed legend see chapter 9.5 in the appendix. 

Children with persistent viral wheeze showed an overall trend for a low level of 

expression of the candidate genes with varying levels of significance depending on 

the respective subgroup comparison. The only exception to this overall pattern is a 

trend for higher expression of FPR2 in healthy controls. 

A large number of candidate genes – including CALM2, ITPR2, ORAI1, STIM2, 

ATP2A3, ORMDL3, IPS1, LY 75 and CD209 - show significantly lower expression in 

children with persistent viral wheeze in comparison to persistent multitrigger wheeze, 

after both stimulation with LpA and PHA, respectively. In comparison to late-onset 

multitrigger wheeze, PV showed significantly lower expression of ITPR2 and STIM2 

as well as a trend-wise lower expression of ORMDL3 and LY75 in unstimulated cells.  

The effects distinguishing PV from TEV wheeze have already been in summarized in 

the chapter above, but fit with the overall pattern of lower expression of the candidate 

genes in persistent viral wheeze. 
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As discussed above, it is important to single out children at risk for persistent wheeze 

from the larger pool of children that experience wheeze before the age of three. As 

most transient early wheeze episodes are connected to viral infection, it is of special 

interest to identify mechanisms that distinguish between transient early viral and 

persistent viral wheeze. A possible predictive pattern that has been identified is that 

children with “troublesome early viral” wheeze are likely to also show viral wheeze at 

age six, which fits description of persistent viral wheeze used in this work [189]. 

Troublesome, in this case, means severe forms of early viral wheeze. Consistently, in 

other studies children with wheeze caused by severe bronchiolitis that required 

hospitalization before the age of three have been shown to be at high risk to develop 

recurrent and persistent wheeze and subsequent asthma [190, 191]. The comparison 

TEV vs. PV wheeze from this work show lower expression of genes related to innate 

antiviral immunity in PV wheeze, such as IPS1 or CD209, after stimulation with LpA.  

Additionally, several genes in the calcium signaling pathway, such as ITPR2, 

ATP2A3 and ORAI1 show the same pattern. ITPR2, for example, is a central signal 

integrator at the starting point of the calcium signaling pathway, so a diminished 

expression, and eventually an impaired function could potentially cause disturbances 

in the whole signaling pathway [105]. Hypothetically, this impaired response could 

facilitate more severe and recurrent infections, in accordance with the reports of 

severe early viral wheeze being a possible precursor of persistent viral wheeze [175].  

 

It has been repeatedly proposed that an important part of PV wheeze pathogenesis 

lies in aberrant stabilization in response to recurrent viral infection and delayed 

maturation of the immune system, especially of Th1-type immunity. This results in a 

susceptibility for lower respiratory tract infections that create airway inflammation, 

disturbing the postnatal maturation or development of the respiratory system [2, 187, 

192]. In keeping, other reports show that physiologically, innate immune cells are 

kept in an “alerted state” through exposition to bacteria in order to be ready to ward 

off viral infections through the release of IL-1 when sensing an inflammasome 

trigger. The authors suggest that impairment of these mechanisms, either through 

not enough exposition to bacteria or through altered function of the inflammasome 

and its triggers could result in a reduced capacity to clear viral infection, contributing 

to the susceptibility to lower respiratory tract infection in persistent viral wheeze [193].  
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Results from this work show altered gene expression for several genes connected to 

inflammasome function, albeit in a small sample and different subgroup comparisons, 

as visualized in fig. 39. The most interesting results for a candidate gene from this 

work come from ITPR2, for which PV wheeze showed significant or trend-wise 

lowered expression of ITPR2 in comparison to all other subgroups. As described 

above, ITPR2 holds a central role in the calcium signalling pathway that regulates the 

intracellular level of calcium ([Ca2+]i). A high [Ca2+]I has been reported to activate the 

inflammasome, so hypothetically disturbances in the pathway controlling [Ca2+]i could 

lead to impared function of the inflammasome [138, 140]. The same gene expression 

pattern is also visible for other genes of the calcium signalling pathway such as 

STIM2, ORAI1, ATP2A3 and ORMDL3, albeit less pronounced.  

The underlying causes for this pattern need to be investigated further, primarily in a 

larger sample. Still, the results from this work indicate the possibility that an impaired 

innate immune response plays a central role to uncovering why children with PV go 

on to have infection-associated symptoms after three years of age [194, 195]. 

 

Virus-induced wheeze episodes have been shown to fulfil all main characteristics of 

asthma which strongly suggests the existence of a childhood asthma phenotype that 

develops from persistent viral wheeze [196]. Indeed, the phenotype persistent viral 

wheeze has been described as predominantly unrelated to atopy and with relatively 

normal lung function, with the majority of children outgrowing their symptoms during 

early school years [186, 197]. In other studies, however, persistent viral wheeze has 

been described as a risk factor for a rapid decline in lung function in adult patients 

even in the absence of asthma. An impaired development of the airways, preventing 

these patients from reaching full lung function, could be a possible explanation for 

these opposing results. As lung function peaks at age 25, a low performance might 

not immediately be visible, explaining the relatively normal lung function at school 

age [38, 198]. 

Supporting the concept of persistent viral wheeze as a distinct phenotype, an atopy-

independent pathway for asthma genesis that begins as early as in utero has been 

proposed as profiles of antiviral cytokines from non-asthmatic mothers during 

pregnancy relate at least partly to the child’s asthma risk [199]. This suggests a 

distinct pathophysiologic mechanism through which viral infection leads to wheeze 

rather than the effect being mediated through the development of atopy, clearly 
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differentiating viral from multiple-trigger wheeze [200]. As visible in fig. 39 and as 

already mentioned above, this work shows a distinct gene expression signature for 

persistent wheeze that is clearly distinguishable from the other wheeze subgroups 

that were analysed, especially from persistent multitrigger wheeze. While these 

results, despite their high significance levels, need to be interpreted with caution due 

to sample size, they too point in the direction of a distinct childhood asthma 

phenotype that develops from persistent viral wheeze. 

 

However, the definition of multiple-trigger wheeze also includes wheeze during viral 

infection. This, at first glance, seems contradictory, however recent research 

proposed an explanation through the type of virus infection. The two most common 

viral infections in childhood are rhinovirus (RV) infection, which has been linked to 

multitrigger wheeze, and respiratory syncytical virus (RSV) infection, linked to 

persistent viral wheeze. Both have been shown to interfere with innate immune 

responses [193]. Rhinovirus infection has been linked to multiple trigger wheeze, as 

infection under the age of three has been shown to be a risk factor for wheeze 

development. Additionally, it shows a strong link to subsequent childhood asthma, 

with one mechanism possibly linked to the susceptibility locus 17q21 in an interesting 

gene-environment-interaction proposition, and another to allergic sensitization [42, 

201, 202]. As to persistent viral wheeze, studies have shown that while maternal 

atopic asthma is a risk factor for rhinovirus induced wheeze, it did not influence RSV 

induced wheeze [202, 203]. This fits with the emerging role of respiratory syncytical 

virus for the pathogenesis of persistent viral wheeze. Early life RSV infection, 

especially when so severe it requires hospitalization have been associated with 

recurrent wheezing in several studies and has already been discussed above [204]. 

 

As of yet, there is no specific treatment for rhinovirus infection, and whether 

corticosteroids can positively influence the resulting airway inflammation is unclear 

[83]. This, however, is different for respiratory syncytical virus infection.  

A possible treatment that may even prevent the development of persistent viral 

wheeze, might lie in reducing RSV-related lower respiratory tract infections. In 

continuation of this hypothesis, this would in turn lead to reduced frequency of 

wheeze episodes in the first years of life, and has already been shown to be effective 

in reducing the need for asthma medications [170, 193, 202]. 
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As especially RSV infections occur in the first few months of life, identifying children 

at risk already at birth could prove very valuable for these patients. Even if the 

progression to childhood asthma cannot be stopped, early identification could for 

example lead to closer clinical monitoring and maybe intermittent ICS therapy to 

alleviate morbidity for patients with persistent viral wheeze [205]. 

In summary, results from this work showed evidence for a transcriptional signature of 

persistent viral wheeze with low expression of genes important for antiviral immunity 

as well as calcium signaling that is closely related to the functions of innate immunity, 

directly visible at birth. These results indicate that further investigation of gene 

expression patterns at birth, for example in a larger cohort with additional follow-up 

information regarding RSV infection, could add to early identification of these patients 

in order to improve clinical management.  

 

5.1.3 Main findings for multitrigger wheeze 

In children presenting multitrigger wheeze, the majority of the candidate genes, 

whether associated with the immunological pathways of calcium signalling or innate 

antiviral immunity, are significantly upregulated in comparison to healthy controls and 

other wheeze subgroups. Significantly or trend-wise upregulated genes include 

ITPR2, CALM2, ORAI1, STIM2, ORMDL3, S100A9, IPS-1 and LY75. This 

upregulation was partly detectable in unstimulated cells and mostly in cells after 

stimulation with PHA, with some effects also showing after stimulation of the innate 

immune system with LpA.  

Multiple-trigger wheeze in preschool children has consistently been proposed to be a 

phenotype at high risk for progression to allergic asthma [206]. Accordingly, it has 

been linked to lower lung function and a higher risk for atopy [207, 208].  

Children with atopic asthma have been shown to have continuous airway 

inflammation while the same was not found in children with virally-induced wheeze. 

This suggests the existence of an inflammatory mechanism in MT wheeze that is 

permanently present, for example through a genetic predisposition for atopy that 

leads to allergic airway inflammation [209]. 

However, therapeutically targeting the known mechanisms of allergic airway 

inflammation, for example through specific antibodies, has so far fallen short of 

expectations. As it has already been explained in detail in the introduction (see 

chapter 1.4), this challenge has been one of the incentives to pursue endotyping as 
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the differences in clinical presentation most likely result from different pathogenetic 

mechanisms [13].  

With this in mind, the multitrigger group was divided in the three subtypes late-onset 

multitrigger (LOM), viral to multitrigger (VM) and persistent multitrigger wheeze (see 

fig.9) for a second analysis. Viral to multitrigger wheeze was included in this analysis 

because in general, wheeze persistence does not necessarily mean the same 

pathophysiological reason remains. In this example of a longitudinal pattern, children 

wheeze because of impaired antiviral immunity early in life and then later because of 

atopic sensitization [210]. However, for the latter there was not enough power for 

reliable analysis due to small sample size, so the following paragraphs will focus on 

persistent and late-onset multitrigger wheeze.  

This already illustrates the main challenge of this in-depth analysis, as due to the 

limited size of the multitrigger group (n=14), case numbers for this in-depth analysis 

were also small (n=2 for VM, n=4 for PM and n=8 for LOM), meaning the following 

discussion of the findings need to be interpreted with this limitation in mind. Even so, 

results from this work show significant results that point to the existence of separate 

endotypes for multitrigger wheeze that are clearly distinguishable through their 

longitudinal pattern as well as their gene expression signature. 
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5.1.3.1 Findings for persistent multitrigger wheeze 

 

Figure 40: Overview of the significant findings for persistent viral wheeze, based on differences in Ct 
values. HC healthy controls, TEV transient early viral wheeze, PV persistent viral wheeze, PM persistent 
multitrigger, LOM late-onset multitrigger, MT multitrigger. Red background marks higher expression, 
green background marks lower expression. All subgroups indicated in the grey boxes have been 
compared to persistent multitrigger wheeze. * trend like results (p ≤ 0,1); ** significant results (p ≤ 0,05). 
Stimulating conditions can be seen next to the level of significance: 1 unstimulated, 2 
phytohemagglutinin, 3 lipid A. For a detailed legend see chapter 9.5 in the appendix. 

Within the multitrigger wheeze group as well as the whole cohort selected for this 

work, the group with persistent multitrigger wheeze showed the most distinct gene 

signature with a high level of expression of the candidate genes, visible for ITPR2, 

CALM2, ORAI1, STIM2, ATP2A3, ORMDL3, IPS1, LY75, CD209 and FPR2. Despite 

the small sample size of n=4, the findings were highly significant, emphasizing their 

importance. This pattern, as illustrated in fig. 40, was predominantly visible after 

stimulation and for the majority of the candidate genes, both those associated to the 

immunological pathways of calcium signalling and to innate immunity, in different 

subgroup comparisons. LY75 as well as IPS1 are of special interest because the 

elevated gene expression pattern was significant or trend-wise significant in 

comparison to all other subgroups, although after different stimulating conditions. The 

most interesting effects are visible for CALM2, which shows significantly elevated 

expression in contrast with all other subgroups after PHA stimulation.  
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Children with multitrigger wheeze already at one to three years of age have been 

shown to have a high level of IgE during the first year of life. This sets atopy down as 

a strong predictor for persistent wheezing and subsequent asthma development, as 

wheeze patterns and lung function that are established at age six are relatively stable 

until young adulthood [170, 172]. Among high IgE levels, other atopic manifestations 

like atopic dermatitis and food allergy have been shown to be predictors for wheeze 

persistence [211]. The presence of atopy in asthma has been connected to severe 

asthma, with studies suggesting that atopy associated pathways additionally increase 

the severity of viral exacerbations [212, 213]. Children with severe asthma have been 

described as severely atopic with multiple aeroallergen sensitization [214]. Taken 

together with findings that asthma severity is established early in life, this adds to the 

hypothesis that persistent multitrigger wheeze could be the precursor of a severe 

asthma phenotype later in life [45].  

 

However, eosinophilic inflammation that traditionally is considered as hallmark 

feature of allergy is only found in roughly half the patients with severe asthma, 

indicating the presence of another pathogenetic mechanism, such as for example 

neutrophilic airway inflammation, or mixed airway inflammation in which eosinophilic 

and neutrophilic inflammation are present [12, 187, 215-217].  

In general, the results from this work support a genetic influence visible in 

upregulated expression of the candidate genes as important factor in the 

pathogenesis of persistent multitrigger wheeze, as well as the role of the IL-1-

pathway and its link to neutrophilic airway inflammation [218].  

 

The finding of such a distinct gene expression signature for persistent multitrigger 

wheeze in this work suggests the possible existence of a distinct endotype for this 

group even though the small sample size limits the reliability of these data.  

However, the theory of PM wheeze as a distinct endotype, potentially driven by 

neutrophilic inflammation, with a strong genetic signature is supported for example by 

Yeh et al. who demonstrated the existence of a distinct gene expression signature in 

PBMCs of children that were classified as neutrophilic severe asthmatics [219]. Other 

studies found evidence of transcriptional signatures that distinguished inflammatory 

phenotypes (eosinophilic and neutrophilic vs. less severe) in induced sputum from 

adult asthmatics, or controlled from severe asthma in schoolchildren. However, in 
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terms of early identification for predictive purposes, induced sputum and airway 

epithelial brushings, used in these studies, are impractical especially in younger 

children, highlighting the importance of gene expression profiling [216]. 

Consistently, the candidate genes chosen for this work relate to neutrophilic 

inflammation mainly through the influence of calcium on the NLRP3-Inflammasome 

and subsequently, the IL-1-pathway. Upregulated expression of candidate genes 

such as CALM2, ITPR2, ORAI1, STIM2 all lead to an increased level of intracellular 

calcium and thus inflammasome activation [140]. Additionally, differential gene 

expressions also included influences on the NFB pathway for example through 

elevated expression of IPS1, responsible for the translocation of NFB to the nucleus 

and thus controlling its activity [144]. Both pathways have also previously been 

connected to innate activation in asthma patients with neutrophilic airway 

inflammation [220-223].  

 

Even though the candidate genes predominantly show a functional relation to 

neutrophilic inflammation as opposed to eosinophilic inflammation, persistent wheeze 

in general has repeatedly and strongly been associated with parental allergy [12, 

180, 224]. Additionally, a family predisposition for asthma has been shown in several 

studies, often linked to maternal asthma. Studies also shown that asthma increases 

for children who have two parents with asthma [225]. A large study by Ferreira et al. 

investigated this overlap of asthma and allergy and found shared genetic variations 

between both with possible functional relevance [226]. 

Even so, by far not all atopic children go on to develop asthma. An intriguing model 

explaining this sees the impact of allergic sensitization on asthma development as 

not binary but quantitative, with relevant influences being the time of sensitization 

and number of sensitized aeroallergens [227]. Early allergic sensitization to multiple 

aeroallergens that persists during childhood has been repeatedly identified as 

important risk factor for wheeze persistence and asthma inception as well as loss of 

lung function [171, 186, 187, 197, 228]. Together with recent results that show that 

allergic sensitization assessment can predict exacerbation rates and response to ICS 

therapy in children with persistent, recurring wheeze, reinforces the involvement of 

atopy in the development of multitrigger wheeze [229]. Consistently, the phenotype 

definition of multitrigger wheeze used for this work included parent-reported or 

doctor-diagnosed allergic comorbidities as well as positive allergy testing. 
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This conflicting information about the known characteristics of persistent multitrigger 

wheeze from other studies pose a main challenge in the interpretation of the findings 

from this work. On the one hand, persistent multitrigger wheeze is consistently 

closely connected to atopy and allergic, eosinophilic inflammation. On the other 

hand, the expression pattern of the candidate genes and other phenotypes with 

equally distinct gene expression signatures suggest it at least has features of 

neutrophilic inflammation. 

It is possible that the answer is a combination of both with a pathogenetic 

involvement of both innate and adaptive immunity. Traditionally, atopy has always 

been assigned to adaptive immunity. However, since the discovery of the farm effect 

that links innate immune stimulation to reduced incidence of allergic disease, this has 

changed [5]. Recent studies highlight the importance of innate immunity in atopy 

through of ILC2 that produce type 2 cytokines and have been shown to drive airway 

inflammation in response to allergic sensitization, especially in paediatric patients 

with severe asthma [187, 230-232]. A study by Stadhouders et al. showed that ILCs 

also express genes known for their role in the pathogenesis of especially allergic 

asthma such as ORMDL3, highlighting their pathogenetic role and thus linking the 

innate immune system to allergic disease [233]. Consistently, data for PM wheeze 

from this work show an elevated expression of ORMDL3, for example in comparison 

to persistent viral wheeze.  

The gene expression signature for persistent multitrigger wheeze that was found in 

this work includes candidate genes from calcium signalling as well as from innate 

immunity. Calcium signalling is important in adaptive immunity, for example through 

signal transduction after the stimulation of the TCR, as well as in innate immunity as 

shown through its influence on the IL-1-pathway. The innate immunity receptors 

analysed in this work also have points of interaction to adaptive immunity and allergy, 

as for example CD209 and LY75 that have tolerance-inducing capacities that, if 

disrupted, lead to an increased risk of allergy.  

With all this in mind, it seems possible that persistent multitrigger wheeze could be 

the result of a combination of atopy and predominantly neutrophilic inflammation as 

two main pathogenetic pathways. However, this is purely hypothetical as the sample 

size in this work was too small to allow any ultimate conclusions. 
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Currently most children with preschool multitrigger wheeze or subsequent (allergic) 

childhood asthma are treated with different forms of corticosteroids. However, even 

early initiation of ICS treatment does not prevent progression from preschool wheeze 

to childhood asthma. [187, 234]. This could be explained by the fact that ICS 

treatment is often started only after the occurrence of symptoms whereas the loss of 

lung function and genetic signature are already visible much earlier, i.e. at birth, as it 

was shown in this work. Additionally, the linkage of atopy to the innate immune 

system as proposed above could provide further explanation for this problem, as the 

innate immune system is intrinsically non-reacting to steroids. This underlines the 

importance of more diversely targeted therapeutic strategies [234, 235]. For example, 

studies have tried to target the avoidance of allergen sensitization with different 

levels of success, at the moment, the most promising approach seems to be early 

allergen immunotherapy [170, 236, 237].   

Even where targeted therapies already exist, the next obstacle is to bring them to the 

right patients, a goal described as precision medicine [187, 238, 239]. The results 

from this work, after careful validation, could for example one day support precision 

medicine through a score supported by transcriptional signatures in cord blood with 

the goal of early identification of children that are at risk for persistent multitrigger 

wheeze. The importance of early identification is highlighted by findings that 

approximately 40% of lung function loss in children who show persistent wheeze at 

age 7 was already present at birth, and that this group benefits from therapy to 

maximize lung function [234, 240].  

 

In summary, the results presented in this work support the existence of a high-risk 

transcriptional endotype that leads to the phenotype of persistent multitrigger wheeze 

that is already identifiable at birth. Data from this work also indicate that PM might be 

established through several pathogenetic pathways, with possible pathways in atopy 

as well as neutrophilic inflammation. These findings could, after replication and 

validation, contribute to early identification of these patients and thus early initiation 

of causal therapeutic approaches such as allergen immunotherapy. 
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5.1.3.2 Findings for late-onset multitrigger wheeze 

 

Figure 41: Overview of the significant findings for persistent viral wheeze, based on differences in Ct 
values. HC healthy controls, TEV transient early viral wheeze, PV persistent viral wheeze, PM persistent 
multitrigger, LOM late-onset multitrigger, MT multitrigger. Red background marks higher expression, 
green background marks lower expression. All subgroups indicated in the grey boxes have been 
compared to late-onset multitrigger wheeze. * trend like results (p ≤ 0,1); ** significant results (p ≤ 0,05). 
Stimulating conditions can be seen next to the level of significance: 1 unstimulated, 2 
phytohemagglutinin, 3 lipid A. For a detailed legend see chapter 9.5 in the appendix. 

In this in-depth analysis, late-onset multitrigger wheeze, in contrast to persistent 

multitrigger wheeze, only begins after the age of three but shares the classical 

clinical characteristics of multitrigger wheeze, like the occurring of wheeze after 

multiple triggers including but not limited to viral infection. Parallel to in-depth 

analysis of PM wheeze discussed in the previous paragraphs, the main limitation for 

the interpretation of the results for LOM wheeze lies in the small sample size of n=8.  

Nevertheless, a main finding from this work is that instead of sharing a gene 

expression signature with PM wheeze, late-onset multitrigger wheeze shares 

strikingly similar patterns of gene expression with persistent viral wheeze. 

All effects differentiating LOM wheeze from PM wheeze were of special interest. 

LOM wheeze showed lower expression of CALM2, ITPR2, ORAI1, ATP2A3, S100A9, 

IPS1, CD209 and LY75. This was mainly observed after microbial stimulation with 

LpA, but some effects were also visible after mitogen stimulation with PHA such as 

for LY75 and CALM2.  
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Despite the similarities through lower gene expression levels than PM wheeze, 

several trends and significant effects indicate differences between the late-onset 

multitrigger and the persistent viral wheeze group mainly through higher expression 

of the respective genes in LOM wheeze. This includes ITPR2, STIM2, ORMDL3 and 

LY75. On the other hand, LOM vs. PV showed a trend for lowered expression of the 

potentially anti-inflammatory S100A8 after LpA stimulation in the late-onset 

multitrigger group. Effects visible for LOM in comparison to PV wheeze are mimicked 

in effects for late-onset multitrigger wheeze in comparison to healthy controls, visible 

for ITPR2, STIM2, LY75 and S100A8. As both the differences from persistent viral 

wheeze and from healthy controls were found in unstimulated cells, this could 

potentially imply a higher baseline expression of these candidate genes as 

contributing factor to the phenotypic differences. 

 

The phenotype of late-onset wheeze has been connected to a phenotype of 

recurrent, unremitting multitrigger wheeze, matching the definition of LOM in this 

work. This group was characterised by atopy, impaired lung function and varying 

association with smoke exposure in utero [17, 171, 180]. Late-onset multitrigger 

wheeze patients are distinguishable through lung function and prognosis from 

children who start to wheeze before age three, supporting existence of a distinct 

phenotype with separate pathophysiological mechanisms [172]. Findings from this 

work, while to be interpreted with caution, point in the same direction through several 

differences in gene expression of the candidate genes between persistent and late-

onset multitrigger wheeze as summarized above.  

 

The rapid rise in asthma prevalence over the last century highlights the importance of 

environmental influences such as viral infection [188]. Recent studies propose gene-

environment interactions as important for the pathogenesis of childhood asthma, 

especially interesting for LOM wheeze in a two-hit hypothesis. A first hit, respiratory 

viral infection, and a second hit, atopic sensitization, interact to create airway 

inflammation through activation of innate and adaptive immunity and subsequent 

wheeze and childhood asthma [187, 227, 241]. As the late-onset multitrigger wheeze 

subgroup in this work had a genetic signature similar to that of persistent viral 

wheeze, it seems plausible they might also share the susceptibility to viral infection, 

especially as many similarities can be found antiviral innate immunity genes such as 
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IPS1, CD209 and FPR2.  Multitrigger wheeze in general is strongly linked to atopy as 

it has been discussed above, and late-onset multitrigger wheeze is no exception, 

rendering atopic sensitization as a second hit likely. Children with both hits have 

been shown to have a very high risk for persistent asthma and have even been 

labelled as “true asthmatics” in the Tucson birth cohort, a landmark study [12, 186, 

192].  

 

The mechanisms through which viral respiratory infections can contribute to wheeze 

pathogenesis have already been discussed above for persistent viral wheeze and 

could also apply to late-onset multitrigger wheeze. Additionally, it has recently been 

proposed that RV infection as well as allergic inflammation lead to the production of 

IL33, a cytokine important in innate immunity that leads to a Th2 shift. In children with 

difficult to control steroid resistant asthma, an upregulation in the IL33-pathway has 

been identified, while IL33 polymorphisms have been associated with late-onset 

wheeze, in an interesting interface between viral infection and allergic sensitization 

[227, 242, 243]. While these findings see respiratory infection contributing to allergic 

sensitization, allergic sensitization has been shown to impair antiviral (and 

antibacterial) defenses which could lead into a possible vicious circle [244]. 

Especially patients with allergic asthma suffer from impaired innate immunity that 

leaves them prone to viral infections, shown through impaired response to rhinovirus 

in PBMCs of allergic asthmatics [245]. The exact mechanisms of interaction between 

viral infection and aeroallergen sensitization are yet to be completely understood, but 

hypotheses include a cumulative airway damage as well as a higher 

immunopathogenic capacity for pre-existing aeroallergen sensitization in children 

with higher susceptibility for viral infection [186]. Some studies go as far as to 

suggest a causal relationship between rhinovirus induced wheeze and allergy 

development [246]. 

 

However, persistent multitrigger wheeze is also connected to atopy and aeroallergen 

sensitization, yet this phenotype is clearly different from LOM, through longitudinal 

pattern as well as in transcriptional signature as illustrated in fig. 39 and 41.  

Explaining this in a way that is compatible with the other results from this work, 

studies that suggest a redefinition of the term atopy, moving on from a yes/no 

dichotomy to a five-class approach. This sees both PM and LOM as atopy related, 
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with the difference in transcriptional signatures due to different kinds of atopy [241]. 

This approach stresses the importance of the pattern of atopic response (meaning 

age at development as well as type and number of specific allergens) over the simple 

dichotomy. As already discussed, multiple early sensitization has been proposed to 

predict persistent asthma, while for LOM an association with grass pollen 

sensitization has been shown, suggesting the influence of a seasonal allergen as 

possible atopic class for this phenotype [247, 248]. In this study, an analysis of the 

pattern of atopic response was not possible due to limited sample size. However, this 

would be desirable information when validating these data in a larger cohort. 

 

Differentiating late-onset multitrigger wheeze patients from patients with persistent 

multitrigger wheeze as early as possible could result in therapeutic consequences.  

Multiple studies have investigated the reasons for poor response to ICS therapy in 

children with asthma, agreeing that different underlying pathogenetic mechanism are 

a main problem. The gene expression signature for late-onset multitrigger wheeze 

found in this work indicates that this could indeed be a distinct endotype with 

potential pathogenetic similarities to persistent viral wheeze. Thus, after further 

investigation of this theory and careful validation, the results of this work could 

contribute to improving disease management. Given the transcriptional signature, 

children with LOM wheeze are likely to benefit from intermittent ICS therapy that has 

been proposed to alleviate viral wheeze rather than the continuous ICS treatment 

that is currently used for patients with multitrigger wheeze [205, 249-251]. 

Additionally, using non-pharmacological treatment options like trigger avoidance and 

prevention of viral infection that are often underestimated could be very valuable if 

the pathogenetic mechanisms of LOM indeed prove to be more similar to persistent 

viral wheeze [169, 252]. 

 

In summary, results from this work indicate late-onset multitrigger wheeze as a 

separate endotype through the existence of a transcriptional phenotype distinctly 

different from persistent multitrigger wheeze despite similar clinical presentation and 

significant despite low case numbers, with a possibility of an equally distinct 

treatment response. A possible pathogenetic hypothesis fitting these results is a two-

hit hypothesis that sees LOM wheeze as the result of environmental influences such 

as viral infection and atopic sensitization [253-256].  
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5.1.3.3 Schematic summary of the main findings 

The data from this work show distinct gene signatures, already visible in cord blood 

at birth, for the wheeze phenotypes of persistent multitrigger wheeze, late-onset 

multitrigger wheeze and persistent viral wheeze. However, despite the significant 

findings, the results from this study need to be interpreted with the relatively small 

sample size in mind. Taken together, these findings add to the growing evidence that 

the heterogenous group childhood asthma actually consists of several endotypes 

with their respective set of pathogenetic properties. 

In the following paragraphs, several hypothetical possibilities regarding the 

pathogenetic properties of the wheeze subgroups analysed in this work will be 

discussed. 

 

 

Figure 42: Schematic summary of figures 39 to 41. Continuous line represents longitudinal course used 
for this work. Dotted line represents hypothetical continuation after the age of six. Boxes indicate 
phenotype as defined for this work next to the respective trajectory. Gene expression levels as measured 
at birth, as shown in fig. 39-41, summarized in coloured boxes below phenotype identification. 
Upregulated, high gene expression represented in red, downregulated, low gene expression represented 
in green. 

 

The pathogenetic pathway predominantly involved in persistent multitrigger wheeze 

seems to be a genetic susceptibility that favors the development of airway 

inflammation through different factors. The findings from this work are consistent with 

this theory as they show a distinct transcriptional signature with elevated expression 

of pro-inflammatory pathways in cord blood, for example in upregulated expression of 

the candidate genes ultimately influencing the activation of the NLRP3-
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Inflammasome. Favouring the hypothesis that PM wheeze is heavily dependent on 

genetic influences, the CAPPS cohort that followed a high-risk birth cohort of children 

with a family history of asthma and atopy found prevalence rates of up to 21% for 

early persistent (multitrigger) wheeze, two times the prevalence in an average 

population [15, 176]. Additionally, a positive family history of asthma has been 

consistently associated with a higher risk for early onset persistent asthma, a 

definition that is very similar to PM wheeze, as opposed to other wheeze phenotypes 

[257]. However, as genetic susceptibility has been the subject of a multitude of 

studies, it becomes increasingly clear that while it might, for some endotypes such as 

persistent multitrigger wheeze, be the predominant pathogenetic factor, it cannot be 

the only driving pathogenetic mechanism – a theory summarized as “missing 

heritability” [258]. Proposed pathogenetic mechanisms involved include early life 

smoke exposure, however in this study, smoking and smoke exposure could not be 

identified as a confounder [257]. 

For persistent viral wheeze, altered postnatal maturation of the lungs through a lower 

respiratory tract infection with for example rhinovirus is proposed as a possible 

scenario for pathogenetic mechanisms. Additionally, results from this work show a 

transcriptional signature of downregulated expression of the candidate genes 

including antiviral innate immunity and calcium signalling, whose relevance for the IL-

1-pathway has already been discussed above. Thus they seem to be consistent 

with a hypothesis proposed by others that children with persistent viral wheeze have 

a higher susceptibility to viral infection [193].  

 

Other results from our group show increased expression of ATP2A3 and ORMDL3 in 

asthmatic children vs. healthy controls, independent of their atopic status. However, 

results from this work indicate different expression between PV, PM and LOM. A 

possible explanation could be that atopy plays a role in all these children albeit with 

different stress on the role of atopy for each phenotype [77]. This exemplarily shows 

that while multitrigger and viral wheeze are phenotypes that are clear-cut at the 

extremes of their longitudinal manifestations, as for example in this work, their 

persistent forms, but apart from that, they show a considerable overlap. The findings 

for late-onset multitrigger wheeze presented in this work could be a first step towards 

further understanding of this overlap [14].  
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A possible theory for late-onset multitrigger wheeze pathogenesis could be a two-hit 

hypothesis as previously discussed [192]. In summary, this hypothesis sees the 

pathogenesis of late-onset multitrigger wheeze as an overlap between atopy and 

viral infection, with gene-environment interactions as potential mechanism [38, 253]. 

The results from this study show LOM wheeze as an overlap as well, with shared 

clinical characteristics of PM wheeze on one hand, and a similar gene expression 

signature to PV wheeze on the other. While this needs to be cautiously interpreted 

because of the small sample size, it is strengthened by the fact that others already 

found a lacking production of Th1-cytokines, already visible in cord blood, for children 

with late-onset wheeze [186, 259, 260]. 

 

Despite the evidence that some pathogenetic pathways are involved in several 

wheeze phenotypes, there are points where they can be distinguished. 

Both persistent and late-onset (multitrigger) wheeze were associated with atopy. 

However, lung function loss was more pronounced in children that persistent, early 

allergic sensitization as opposed to later onset of atopy. Additionally, (early) atopic 

sensitization was found to increase the airways’ susceptibility to non-allergenic 

stimuli like house dust [261, 262]. Both findings imply that PM and LOM could for 

example be distinguished through disease severity [172, 248, 263].  

As to the differentiation between late-onset multitrigger and persistent viral wheeze, a 

study investigating severe bronchiolitis found that while children that were 

additionally atopic were more likely to develop recurrent wheeze, children who only 

had severe bronchiolitis also had an increased risk for recurrent wheeze. This also 

supports the existence of distinct pathways leading to (late-onset) multitrigger 

wheeze and (persistent) viral wheeze respectively [191]. 

Possibilities include pathways such as IL13, as it was shown to be associated with 

both atopic and non-atopic asthmatics suggesting a distinct influence maybe through 

direct effect on the airways. Other pathogenetic pathways that have a direct influence 

on the airways separate of atopy might contribute to the clinical differences between 

LOM and PV, or the differences in severity between PM and LOM [264]. 

 

A possible hypothesis that emerges from summarizing all of the above, features two 

of the main known pathogenetic pathways. One of those pathways is genetic 

susceptibility, for example to atopic sensitization and airway inflammation, the other 
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is an altered lung development and function through viral respiratory infection. 

However, recent asthma research, including the results of this work, indicate that a 

simple dichotomy does not account for the multiple wheeze phenotypes that are 

clearly distinguishable through several characteristics, and as shown in this thesis, 

also on a transcriptional level. Instead, a graded model for the influence of these 

pathways seems to do asthma pathogenesis more justice. Applied to the wheeze 

phenotypes used in this work, persistent multitrigger wheeze would seem to be 

predominantly caused by the former, while for persistent viral wheeze, the latter is 

more visible, and late-onset multitrigger wheeze is influenced by both. 

However, this is heavily speculative and further investigation is needed to test this 

hypothesis, for example in a larger cohort. 
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5.2 Overview of additional findings 

5.2.1 ORMDL3 and 17q21 

As previously discussed, especially persistent wheeze is characterized through high 

association to the known asthma susceptibility locus 17q21, which codes for 

ORDML3 [17, 265]. In another study cohort from our group investigating asthma 

manifestation in children at school age, ORMDL3 as well as ATP2A3 were 

upregulated, despite ORMDL3 physiologically inhibiting ATP2A3. The same was 

visible in this work for persistent multitrigger wheeze. A possible explanation for this 

might be that ATP2A3 is upregulated to overcome the upregulated inhibition via 

ORDML3 [77]. 

However, findings for ORMDL3 in this work were not as strong as one might have 

expected knowing these results and other studies [35]. Having said that, ORMDL3 

results were inconsistent across different studies, being associated with TEV wheeze 

in some populations but with persistent and intermediate-onset wheeze in other 

which suggests a variety of gene-environment interactions in different populations 

[184, 265, 266]. Another explanation might be that the impact of ORMDL3 has been 

identified as mediating airway hyperreagibility in response to allergic sensitization 

especially in airway epithelium cells. As this work examined gene expression levels 

in cord blood, the true effect of ORMDL3 might only reveal itself through GEI that had 

not yet taken place. Fitting this theory as well as the results from this study, Lluis et 

al. found that ORMDL3 expression was lower in CMBCs than in PBMCs of older 

children, which they hypothesized could be due to ORMDL3 expression being 

dependent on immune maturation [267]. 

Of course, the findings in this work could also be due to genotype influence. In 

general, genotype data were assessed in our laboratory. However, this was not the 

focus of this thesis as a stratified analysis was not possible due to small case 

numbers and resulting power limitations. 

Even so, persistent multitrigger wheeze showed a distinct pattern of elevated gene 

expression, including ORMDL3. This might indicate present, but not predominate 

function of ORMDL3 in neonatal immunity. 
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5.2.2 Arachidonic acid cascade 

Candidate genes influencing different aspects of the arachidonic acid cascade were 

significantly differently expressed between the wheeze subgroups, including FPR2, 

both S100A8 and S100A9, and CD209.  

A pattern that emerged from the in-depth group comparisons was an elevated 

expression of associated genes for persistent multitrigger wheeze (visible for FPR2, 

S100A9, and CD209) and lowered expression for late onset multitrigger wheeze 

(visible for S100A8, S100A9, FPR2 and CD209), in comparison to the other wheeze 

subgroups respectively as it can be seen in the overview figures 39 - 41.  

Recently, the intriguing concept of an arachidonic acid mediated calcium influx as an 

alternative to SOCE has been proposed [268]. As the pattern for SOCE-associated 

calcium signalling and the genes associated with arachidonic acid metabolisms show 

the same expression patterns, the results from this study would support this theory 

However, this can only partially explain the effects observed. A possible explanation 

for the elevated expression in persistent multitrigger wheeze might be the induction 

of S100A8 and S100A9 via IL1β. For late onset multitrigger wheeze, it could be 

possible that lowered expression leads to a dysregulation in the arachidonic acid 

cascade, impairing resolution of airway inflammation after viral infection. In 

accordance, it has been found that therapy with the leukotriene antagonist 

montelukast shows a benefit for children with virally induced wheeze [269]. 

Epidemiological studies show these effects could be influenced by nutrition (namely, 

fish oil and omega-3 fatty acids), potentially already prenatally [270]. 
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5.3 Discussion of limitations and strength 

5.3.1 Study design 

The PAULINA/PAULCHEN study is a birth cohort recruited in the metropolitan area 

of Munich and in rural southern Germany, respectively. Due to the natural prevalence 

of wheeze, and especially multitrigger wheeze, case numbers were limited to n=14 

despite the relatively large cohort of n=200 [15]. Even so, results were strongly 

significant in spite of comparatively low case numbers, indicating powerful effects. 

From today’s point of view, additional information from the questionnaires, for 

example more detailed information about viral infections, or a larger volume of cord 

blood available for additional analyses such as western blotting would have been 

desirable. However, conducting such a large birth cohort with in depth immune 

characterization beyond the performed functional studies was logistically not possible 

[68, 168]. 

 

It has been proposed that the time frame in which the individual risk for wheeze and 

asthma is set is very short, ranging from the prenatal period to just the first few years 

of life. As it is additionally becoming increasingly clear just how much prenatal events 

can shape the immune system and thus influence the development of childhood 

wheeze and asthma, birth cohorts are a well-established setting to study its 

pathogenesis [82, 253]. Early biomarkers are an important key to reduce asthma 

morbidity as harmful influences early in life that track through the whole life of the 

patient affected. Only an early biomarker, prenatal or at birth, can contribute 

minimizing these early in life harmful influences, so we studies transcriptional 

signatures in cord blood at birth [5]. 

This particular birth cohort’s strengths include the strict employment of inclusion and 

exclusion criteria (see chapter 3.2), limiting the influence of possibly distorting factors 

to a minimum. The major strength is the detailed longitudinal characterization of the 

study population detailed questionnaires and high follow-up rates.  

 

5.3.2 Wheeze definition 

The questionnaires used provided detailed information about wheeze symptoms, 

other atopy-related diseases (e.g. allergic rhinoconjuctivitis, atopic dermatitis, etc.), 

medication, and general health status of the child as well as a socioeconomic 
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anamnesis. The use of nearly identical questionnaires in both PAULINA and the 

PAULCHEN enabled a joint analysis of the cohorts.  

Using only a parent-dependent, questionnaire-based follow-up might risk incomplete 

or incorrect reporting of the children’s symptoms. As means of compensation, the 

questionnaire included questions about a doctor’s diagnosis of asthma- or atopy-

related symptoms. A major advantage of the questionnaire follow-up was the high 

follow-up rates10.  

A challenge the epidemiological and the clinical approach of phenotyping share is 

dealing with changes in the clinical picture over time, as the assignment of a clinical 

phenotype tends to change, especially in children [38, 271]. One way to deal with this 

challenge is to view the change as a part of the phenotype, thus defining a trajectory 

for this kind of wheeze, increasing both stability and reliability of the phenotypes. The 

other way is that a change in clinical picture automatically leads to reassignment to 

another, more fitting phenotype, which comes at the cost of little to no stability of 

phenotypes [272]. In the PAULINA/PAULCHEN cohort, a combination of clinical 

wheeze phenotypes (multitrigger and viral) and transition trajectories of the well-

established longitudinal Tucson cohort phenotypes (transient early, persistent and 

late onset) was used, thus increasing both stability and reliability of the results for the 

resulting subgroups investigated [14, 82]. This approach is supported by other 

studies with different methods that validated the wheeze phenotypes used in this 

work as comprehensively review by Belgrave et al. [17, 36, 53, 188, 273].    

5.3.3 Stimulation of cord blood mononuclear cells 

CBMC stimulation with PHA as well as LpA is a method commonly used to mimic the 

effects of natural stimulation of the immune system. Phytohemagglutinin (PHA) is a 

protein from the lectin family, and is a powerful stimulus triggering mitosis specifically 

in T-cells by binding to glykoproteins on the cell’s surface, leading to agglutination 

and proliferation [274]. In contrast, LpA (Lipid A) is the biologically active component 

of bacterial LPS and triggers different effects within the innate immune systems as it 

is a ligand for TLR4 [60, 275]. The effect of stimulation was assessed by fold change, 

the comparison to expression of the candidate genes in unstimulated cells. Non-

significant results indicate that gene expression was not significantly up- or 

 
10 Shown in the appendix (9.7).  
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downregulated after stimulation but do not concern the significance of the following 

comparison of the subgroup’s differences in ΔCt.  

For the investigation of the objectives in this study, these two stimulating conditions 

and the additional information about the baseline expression are ideally suited as 

they representatively model effects in both the adaptive and the innate immune 

system respectively.  

5.3.4 Cytokine measurements 

The candidate genes chosen for this work join in the IL1-pathway as final common 

path11. A logical follow-up question is whether the patterns of gene expression levels 

also continues to cytokine levels. The analysis of cytokine levels is currently 

conducted in additional replication studies by the laboratory and thus not the focus of 

this thesis.  

Even so, Rothers et al. investigated cytokine levels in cord blood directly at birth and 

found that cytokine production in cord blood samples did not show any significant 

relation to asthma outcome. However, other results from their study imply that the 

predictive value of cytokine levels is not fully determined at birth but only develops 

during the first year of life, which underlines the importance of the gene expression 

signatures found in this work [264]. 

 

 

 
11 For overview of the candidate genes see a graphical illustration in the appendix. 
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5.4 Implications 

This study supports a graded model for the pathogenesis of childhood wheeze and 

asthma through the findings for persistent multitrigger, late-onset multitrigger and 

persistent viral wheeze. Especially of interest are the strong findings for late-onset 

multitrigger wheeze despite the limited case numbers hinting that LOM wheeze could 

be the result of pathophysiological mechanisms that are clearly distinguishable from 

those causing persistent multitrigger wheeze despite their similar clinical appearance.  

Steps in this direction showed the longitudinal pattern of late-onset and persistent 

wheeze together with AHR and low lung function in childhood as predictors for 

asthma [276]. Findings that differences in lung function levels at age six track to 

adulthood reinforce the importance of early childhood for asthma pathogenesis and 

disease severity [172, 177]. Consistently, a loss of lung function in children that go on 

to have persistent wheeze disorders has been described for the immediate post-natal 

period [187, 277]. This highlights the fact that in clinical practice, the key to reducing 

overall asthma morbidity will be to improve the prediction of wheeze outcomes (see 

chapter 1.6.) in order to identify children at risk for different types of wheeze as early 

as possible [278].  

However, patients will only truly benefit from early identification if therapeutic options 

are available, which provides for another challenge. 

As previously stated, the main therapeutic strategy currently used is ICS therapy in 

different regimens which, however, cannot prevent progression of early to persistent 

wheeze [279]. Findings like this show ICS therapy is symptomatic rather than causal 

and thus should not unthinkingly be used for prevention in preschool children with 

wheeze. While a higher, earlier and more consistent therapy with ICS might prove 

beneficial to some high-risk patients, this is ethically not feasible as long as this high-

risk group cannot be identified properly [278]. Results from this work differentiating 

persistent multitrigger wheeze as a possible high-risk group could provide means to 

test this therapeutic strategy. 

Early and multiple aeroallergen sensitization seems to be pivotal in the pathogenesis 

of persistent multitrigger wheeze in particular. With allergen immunotherapy as a 

possible, causal therapeutic option, early identification of children at risk for PM 

wheeze could lead to an earlier treatment start, limiting consequential damages. 

Aeroallergen sensitization is also important for the development of LOM wheeze, and 
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early identification of these children could improve asthma prevention through for 

example advising parents to avoid allergens in sensitized children [227, 262, 280].   

Supportingly but not un-controversially discussed, Owara et al. found that the 

wheeze trajectory of early wheeze could be modified by prenatal intervention such as 

the avoidance of house dust, pets, and environmental tobacco smoke and 

encouragement of exclusive breastfeeding [176].  

 

Supporting this work’s approach to early identification, a recent study by Howrylak et 

al. showed a correlation between clinically assigned phenotype and gene expression 

of atopy-related genes, albeit in a cohort of older children. Even so, these findings 

are parallel to what was shown in this work supporting the existence of transcriptional 

signatures for these particular phenotypes [281]. 

In order to be suitable for screening purposes, a candidate gene would have to show 

elevated expression in comparison to ideally all other possible groups, especially 

healthy controls. Based on the results showing that persistent multitrigger wheeze is 

a distinct entity with a specific pattern of gene expression within multitrigger wheeze, 

several candidate genes could be proposed as candidates for further investigation 

through replication and validation with the goal of identifying possible biomarkers for 

persistent multitrigger wheeze. The most promising of these results were seen for 

CALM2 after PHA stimulation. To date, high expression of CALM2 in CBMCs has not 

yet been associated to any other disease than childhood wheeze and asthma.  

It has been shown that a biomarker alone cannot predict a complex disease like 

asthma, but combining different biomarkers largely increases the reliability of such 

predictions [75, 282]. Hence, eventually adding the measurement of CALM2, after 

further testing and validation, to a predictive model that already exists could largely 

increase the predictive value of the tool in question [283]. In addition, a biomarker 

from cord blood would have many advantages as it can be gained non-invasively and 

would predict the risk for wheeze development at the earliest point possible. 
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5.5 Outlook 

Currently, our research group is working on the analysis of further follow-up to both 

the PAULINA and the PAULCHEN cohort, which will provide valuable information 

about the further development of the study population, as for example diagnoses of 

childhood asthma. Naturally, extending the subgroup definition to include the 

phenotypes at 10 years and then again comparing gene expression for the candidate 

genes would be a first validation of the results of this thesis and will be done in due 

course. In order to solve the puzzle that is the pathogenesis of childhood asthma, 

data from cohorts of older children and other groups should be brought together with 

data from birth cohorts so they can complement and complete each other [210]. 

While in this work this was already partly realized in the choosing of the candidate 

genes, our group will continue to do so as new insights are gained. 

 Additional findings from this work warrant further investigation concerning the role of 

the arachidonic acid cascade in asthma pathogenesis that would most likely 

contribute to a further understanding of the pathophysiology of steroid-resistant 

asthma. 

For further validation a birth cohort with adjusted design, as well as a higher number 

of cases, should be recruited. The new design might consider including more 

extensive functional investigation of different subsets of CBMCs. Also, protein 

assessment e.g. by western blot to prove that elevated gene expression also leads to 

elevated protein counts (or lowered, respectively) would be of high interest. 

Ultimately, obtaining blood samples in addition to questionnaires at each follow-up 

would provide the opportunity to study changes in the expression of the candidate 

genes as the immune system matures. 

5.6 Conclusion  

In recent research, it has become clear that asthma is a complex, heterogeneous 

disease with a clear hereditary component. Many pathophysiological pathways have 

been identified. While findings of varied expression in single genes often only 

marginally impacts the asthma phenotype, this study detected a consistent pattern of 

varied gene expression for the calcium-signalling pathway revolving around store-

operated calcium entry (SOCE) in children with different subsets of multitrigger 

wheeze. In particular, findings for late-onset multitrigger wheeze, while keeping in 

mind the small case numbers in this study, reinforce the diversity of mechanisms 

involved in asthma pathogenesis and the need for further endotyping. 
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6 Summary  

Asthma remains one of the most common chronic diseases in childhood, developing 

already early in life. In the first year of life, children start to present with wheeze, 

which is currently classified as multi-trigger or viral-wheeze based on specific triggers 

and their long-term time course. An early prediction of children with wheeze and at 

risk for subsequent asthma is currently difficult and underlying immune mechanisms 

of distinct wheeze phenotypes are unknown.  

As early priming of the immune system occurs already prenatally, we aim to identify 

predictive markers for children at risk for subsequent development of childhood 

wheeze and asthma. From previous work of our research group, innate immune 

regulation, in particular antiviral immunity (LY75, CD209, IPS1) and Ca2+-signalling 

pathways, e.g. CALM2 and genes related to store-operated calcium entry (ITPR2, 

STIM2, ORAI1, ORMDL3 and ATP2A3) have been shown to be differentially 

expressed between asthmatics and healthy children during disease manifestation at 

school-age. Here, we aimed to assess these genes at the earliest time point, namely 

at birth. We investigated gene regulation as potential predictive markers for the 

development of subsequent wheeze phenotypes.  

The mRNA-expression of selected candidate genes of Ca2+-signalling (CALM2, 

ITPR2, ORAI1, STIM2, ORMDL3, ATP2A3) and innate immunity (CD209, LY75, 

FPR2, IPS1) was measured in CBMCs of children with subsequent wheeze 

phenotypes compared to healthy children (HC). Children were selected from the 

PAULINA/PAULCHEN cohort (n=200). Phenotypic classification in multitrigger, 

persistent viral or early viral wheeze and healthy control was based on clinical 

information from questionnaires answered by the parents at age 3 and/or 6 years. 

Previously, cord blood was taken from healthy neonates with strict inclusion criteria, 

and CBMCs were isolated within 24 hours, kept unstimulated or were stimulated with 

PHA or LpA for 72h. Gene expression at mRNA level was assessed via qRT-PCR, 

and analysed with the Wilcoxon rank sum test. 

The following results were obtained and are presented in this thesis: 

1.   Expression of all candidate genes of calcium signalling and viral innate immunity 

was detectable and varied significantly or trend-wise between the different 

wheeze subgroups and healthy controls (mainly ITPR2, CALM2, ORAI1, STIM2, 

FPR2, IPS1, LY75). 

2.   Children with persistent viral wheeze showed a lower expression of the candidate 
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genes (ITPR2, CALM2, ORAI1, STIM2, ATP2A3, IPS1, LY75, CD209) than the 

other wheeze subgroups. 

3. Children with persistent multitrigger wheeze showed a distinct pattern of elevated 

expression for the candidate genes (ITPR2, CALM2, ORAI1, STIM2, ORMDL3, 

ATP2A3, S100A9 FPR2, IPS1, LY75, CD209). This was visible for the whole 

calcium-signalling pathway, supporting the view of persistent multitrigger wheeze 

as distinct entity and suggests a pathophysiological relevance of calcium 

signalling. 

4. Despite parallels in clinical presentation, late-onset multitrigger wheeze share 

gene expression patterns with persistent viral rather than persistent multitrigger 

wheeze, suggesting a different underlying pathophysiology. 

Taken together, these results affirm the emerging view of childhood asthma as a 

complex disease and show that differences in immune regulation are already visible 

at birth. Importantly, especially the findings for persistent multitrigger wheeze could 

eventually, after suitable validation for example in a larger cohort with higher case 

numbers, help in the development of specific biomarkers before disease 

manifestation, which may contribute to closer clinical monitoring and in the long-term 

potentially to a change in therapy for patients with distinct phenotypes of childhood 

asthma. 
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7 Zusammenfassung 

Asthma ist eine der häufigsten chronischen Erkrankungen im Kindesalter und 

entwickelt sich bereits in frühen Lebensjahren. Bereits im ersten Lebensjahr zeigen 

die Kinder wheeze (engl. die typische Asthmasymptomatik Pfeifen und Giemen), das 

zurzeit in Abhängigkeit der jeweiligen Auslöser sowie des longitudinalen Verlaufs 

entweder als multi-trigger wheeze oder viral bedingt klassifiziert wird. Eine frühe 

Identifikation von Kindern mit wheeze und einem erhöhten Risiko, ein daraus 

hervorgehendes Asthma zu entwickeln, ist im Moment schwierig. Die der 

Heterogenität der wheeze-Phänotypen zugrundeliegenden pathophysiologischen 

Mechanismen des Immunsystems sind nur unzureichend bekannt.  

Da das frühe Priming des Immunsytems bereits pränatal stattfindet, war das Ziel 

dieser Arbeit, prädiktive Marker für Kinder mit einem erhöhten Risiko für wheeze und 

Asthma im Kindesalter zu identifizieren. Aus früheren Arbeiten der Arbeitsgruppe ist 

bereits bekannt, dass Gene der Regulation des angeborenen Immunsystems, vor 

allem im Bereich der antiviralen Abwehr (z.B. LY75, CD209, IPS-1) und des Calcium-

Signalweges (z.B. CALM2) sowie der SOCE (store-operated calcium entry) (z.B. 

ITPR2, STIM2, ORAI1, ORMDL3 und ATP2A3) bei asthmatischen und gesunden 

Kindern während der Manifestationsphase der Erkrankung unterschiedlich hoch 

exprimiert werden. Im Folgenden soll die Expression dieser Gene zum 

frühestmöglichen Zeitpunkt, also bei Geburt, analysiert werden. Die Genexpression 

soll im Hinblick auf eine mögliche Verwendung als prädiktive Marker für die 

Entwicklung bestimmter wheeze-Phänotypen untersucht werden. 

Die Expression von mRNA der ausgewählten Kandidatengene des Calciu-

Signalweges (CALM2, ITPR2, ORAI1, STIM2, ORMDL3, ATP2A3) und des 

angeborenen Immunsystems (CD209, LY75, FPR2, IPS1) wurde in CBMCs 

gemessen. Im Anschluss wurde die Genexpression von Kindern mit durch Follow-Up 

Untersuchungen bekanntem wheeze mit der Genexpression von pulmonal gesunden 

Kindern (healthy controls, HC) verglichen. Die Kinder wurden aus der 

PAULINA/PAULCHEN-Geburtskohorte (n=200) ausgewählt. Von den in die 

Geburtskohorte eingeschlossen, gesunden Neugeborenen wurde Nabelschnurblut 

gewonnen. Daraus wurden innerhalb von 24h CBMCs (cord blood mononuclear 

cells) isoliert, die dann entweder unstimuliert belassen oder mit PHA bzw. LpA 

stimuliert wurden. Die Einteilung in die unterschiedlichen wheeze-Phänotypen  

„multitrigger wheeze“ (durch mehrere Faktoren ausgelöst), „persistent viral wheeze“ 
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(persistierende Symptome, die durch virale Infektionen ausgelöst werden) und 

„transient early wheeze“ (frühe Symptome, die durch virale Infektionen ausgelöst 

werden und vorübergehend sind) sowie in die gesunde Kontrollgruppe erfolgte 

anhand der klinischen Informationen aus Fragebögen, die im Alter von 3 und/oder 6 

Jahren von den Eltern ausgefüllt wurden. Die Genexpression wurde auf mRNA-Level 

durch qRT-PCR untersucht und mit dem „Wilcoxon rank sum“-Test statistisch 

analysiert.  

Die folgenden Ergebnisse wurden erzielt und in dieser Doktorarbeit vorgestellt: 

1. Die Expression von Kandidatengenen des Calciumsignalweges und der 

angeborenen, antiviralen Immunität war nachweisbar und zeigte sich 

signifikant oder als Trend unterschiedlich zwischen den unterschiedlichen 

wheeze-Gruppen sowie im Vergleich mit den gesunden Kontrollen (vor allem 

für ITPR2, CALM2, ORAI1, STIM2, FPR2, IPS1 und LY75). 

2. Kinder mit „persistent viral wheeze“ zeigten eine niedrigere Expression der 

Kandidatengene (ITPR2, CALM2, ORAI1, STIM2, ATP2A3, IPS1, LY75, 

CD209) als die anderen Wheeze-Untergruppen, besonders nach Stimulation 

mit LpA. 

3. Kinder mit „persistent multitrigger wheeze“ (durchgängig durch mehrere 

Mechanismen ausgelöst) zeigten ein abgegrenztes, charakteristisches Muster 

einer erhöhten Genexpression der Kandidatengene (ITPR2, CALM2, ORAI1, 

STIM2, ATP2A3, S100A9, FPR2, IPS1, LY75, CD209), vor allem nach 

Stimulation der CBMCs mit PHA. Dieses Muster war für den gesamten 

Calciumsignalweg sichtbar. Dies stützt die Theorie, nach der „persistent 

multitrigger wheeze“ eine eigene, scharf abgegrenzte Entität darstellt, 

möglicherweise pathophysiologisch vermittelt durch Veränderungen im 

Calciumsignalweg. 

4. Trotz der klinischen Zuordnung beider Gruppen als „multitrigger wheeze“ zeigt 

„late onset multitrigger wheeze“ (spät einsetzend, durch mehrere Faktoren 

ausgelöst) in der Genexpression der Kandidatengene kaum Ähnlichkeiten mit 

„persistent multitrigger wheeze“. Stattdessen finden sich auffällige Parallelen 

zu den Genexpressionsmustern von „persistent viral wheeze“, was einen 

unterschiedlichen pathogenetischen Mechanismus für die beiden 

Untergruppen von „multitrigger wheeze“ nahelegt.  
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Zusammen bekräftigen diese Ergebnisse, dass Asthma als eine komplexe 

Krankheit anzusehen ist und dass Veränderungen in der Immunregulation bereits 

bei Geburt sichtbar sind. Besonders die Erkenntnisse über „persistent multitrigger 

wheeze“ könnten eventuell, nach entsprechender Validierung z.B. in einer 

Kohorte mit größeren Fallzahlen, für das Fernziel der Entwicklung spezifischer 

Biomarker, die bereits vor der Manifestation der Krankheit verwendbar sind, von 

Interesse sein. Ein Vorteil, der sich daraus für Kinder mit Asthma ergeben könnte, 

wäre eine engmaschigere klinische Kontrolle und vielleicht als Fernziel eine 

Anpassung der Therapiestrategien an den jeweiligen Phänotyp. 
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9 Appendix 

9.1 Abbreviations 

AHR 
Airway hyper 

responsiveness 
GWAS 

Genome wide 

association studies 
PAULCHEN 

Prospective Cord 

Blood Study in 

Rural Southern 

Germany 

(m)API 
(Modified) asthma 

predictive index 
HC Healthy control PAULINA 

Pediatric Alliance 

For Unselected 

Longitudinal 

Investigation of 

Neonates for 

Allergy 

(qRT-

)PCR 

Quantitative Real-Time 

Polymerase Chain 

Reaction 

HDM house-dust mite PBMC 
peripheral blood 

mononuclear cells 

[Ca2+]e 
Concentration of 

extracellular calcium 
ICS 

Inhalative 

corticosteroid 
PG prostaglandine 

[Ca2+]i 
Concentration of 

intracellular calcium 
IFN Interferon PGE2 prostaglandin E2 

AERD 
Aspirin-exacerbated 

respiratory disease 
IgE Immunoglobulin E PHA phytohemagglutinin 

APC antigen presenting cells IL interleukin PLC phospholipase C 

ASC 

Apoptosis-associated 

speck-like protein 

containing a CARD 

IP3 inositoltriphosphate PM 
Persistent 

multitrigger wheeze 

ATP Adenosine triphosphate IPS1 

Synonym for 

Mitochondrial 

antiviral-signalling 

protein 

PRR 

Pattern 

Recognition 

Receptor 

ATP2A3 

ATPase 

Sarcoplasmic/Endoplasmic 

Reticulum Ca2+ 

Transporting 3 

ITPR2 

Inositol 1,4,5-

trisphosphate 

receptor, type 2 

PV 
Persistent viral 

wheeze 

Ca2+ Calcium LCA 
Latent Class 

Analysis 
RAST 

radio-allergo-

sorbent test 

CALM2 Calmodulin 2 LOM 
Late-onset 

multitrigger wheeze 
RLR RIG-I-like receptors 

CALMKII 
calmodulin-dependent 

kinase II 
LpA LipidA ROS 

Reactive oxygen 

species 

cAMP 
cyclic adenosine 

monophosphate 
LT leukotriene S100A8 

S100 calcium 

binding protein A8 

Casp1 Caspase 1 LY75 
Lymphocyte 

antigen 75 
S100A9 

S100 calcium 

binding protein A9 
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CBMC 
Cord blood mononuclear 

cells 
MAPK 

mitogen-activated 

protein kinase 
SERCA 

sarco-

endoplasmatic 

reticulum Ca2+ - 

ATPase 

CD209 
Cluster of Differentiation 

209 
MHC 

Major 

Histocompatibility 

Complex 

SNP 
single nucleotide 

polymorphisms 

CLR C-Type Lectin receptors miRNA Micro-RNA SOCE 
Store-operated 

calcium entry 

COPD 
Chronic obstructive 

pulmonary disease 
mRNA Messenger-RNA STIM1 

Stromal interaction 

molecule 1 

CRAC 
Calcium release-activated 

channels 
MT Multitrigger wheeze STIM2 

Stromal interaction 

molecule 2 

Ct Cycle of threshold NFAT 
nuclear factor of 

activated T-cells 
TCR T-cell receptor 

DAMP 
damage-associated 

molecular patterns 
NFκB 

nuclear factor 

'kappa-light-chain-

enhancer' 

TEV 
Transient early 

viral wheeze 

DC Dendritic cells NK Natural killer cells Th-cells T-helper-cells 

DDX58 DEXD/H-Box Helicase 58 NLR Node-like receptors TLR Toll-Like receptors 

DHX58 DEXH-Box Helicase 58 NLRP3 

NACHT, LRR and 

PYD domains-

containing protein 

3 

Treg Regulatory T-cells 

EC Epithelial cells ORAI1 

Calcium release-

activated calcium 

channel protein 1 

UFR 
Unfolded protein 

response 

ER Endoplasmatic reticulum ORMDL3 
orosomucoid 1-like 

protein 3 
VM 

Viral to multitrigger 

wheeze 

FPR2 
N-formyl peptide receptor 

2 
PAMP 

pathogen 

associated 

molecular patterns 
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9.3 Register of tables 

Table 1 : Pipetting scheme used for this work ............................................................. 31 
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Table 3: Description of the analysed subgroup of the birth cohort .............................. 40 

Table 4: Descriptive display of overall gene expression. ............................................ 41 

9.4 Primer sequences 

Candidate 

gene 

Forward sequence 

 

Reverse sequence 

(complementary) 

 

ATP2A3 GCTGGCTCTTCTTCCGATACCTG TTTCAATGGTCACGAGCACGG 

CALM2 GATGGCAAGAAAAATGAAAGACAC ACCATCACCATCAATATCTGCTTC 

CD209 GCTCGTCGTAATCAAAAGTGCTG CATTTGTCGTCGTTCCAGCC 

FPR2 CTCCACTCCTCTGAATGAATATGAAG ATGGAGACAATGAGGAATGGTAATG 

IPS1 GCAGAGAGAAGGAGCCAAGTTACCC TTCTGTGTCCTGCTCCTGATGCC 

ITPR2 TCGGTCAACGGCTTCATCAG GGTTCCCTTGTTTGGCTTGC 

LY75 GAAGAAGCATCCCCTAAGCCTG AAACCAATCCACAGCCAATGC 

ORAI1 GCACAATCTCAACTCGGTCAAGG GTGGACGGCGAAGACGATAAAG 

ORMDL3 GGACCAGGGCAAGGCGAG CACGCTCATCAGGGACACGG  

S100A8 GGGATGACCTGAAGAAATTGCTAG CTACTCTTTGTGGCTTTCTTCATGG 

S100A9 GAACGCAACATAGAGACCATCATC GCATGATGAACTCCTCGAAGC 

STIM2 GCCTGACCTCTTCCCTTTATTCTG GGCTGCTGCTTCTGGCTAATG 

18S AGTCCCTGCCCTTTGTACACA GATCCGAGGGCCTCACTAAAC 
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9.5 Gene overview map 

 

 

Schematic overview of a cell ( light grey background).  

 Genes associated to 

calcium signalling 

 Inhibiting influence 

 Genes associated to 

innate signalling 

 

Gene or respective protein 

 Activating influence  Second messenger 
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9.6 Questionnaires 

9.6.1 PAULINA at inclusion  
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9.6.2 PAULINA three year follow-up 

  

  

Befragten-ID:

Interviewer-ID:

Datum des Ausfüllens

/ / 

Tag/ Monat/ Jahr

Beginn des Interviews (Uhrzeit):

/ 

Std / Min

2

Mit wem wurde das Interview durchgeführt?

Mutter.....................................................¨

Vater ......................................................¨

Andere: .¨

Wie wurde der Fragebogen ausgefüllt?

Persönlich..............................................¨

Telefonisch ............................................¨

Selbstausfüller .......................................¨

3

F Vor Beginn des Interviews bitte inhaltlich wiedergeben

• Begrüßung

• Dauer des Interviews (ca. 30 min) erläutern

• Erläuterung des Interviewablaufs

Die meisten Fragen können mit Ja/ Nein beantwortet werden  

Bei einigen Fragen gibt es andere Antwortmöglichkeiten

Bitte Fragen erst beantworten, nachdem sie vollständig vorgelesen wurden  

Bei Antworten bitte immer den gesamten Wortlaut der zutreffenden

Antwortkategorie vorlesen

Bei Verständnisproblemen bitte reagieren

• Hinweis, dass nun das Interview mit einigen Fragen zur Gesundheit des Kindes  

beginnt.
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5

4. Wodurch wurden bei Ihrem Kind die pfeifenden / keuchenden  

Atemgeräusche ausgelöst?

Ja Nein  

Anstrengung .................................. ¨ ..........¨

Erkältung........................................ ¨ ..........¨

Kontakt mit Tieren.......................... ¨ ..........¨

Kontakt mit Hausstaub................... ¨ ..........¨

Kontakt mit Gras............................ ¨ ..........¨

Sonstiges:

.... ¨ ..........¨

5. Hat Ihr Kind jemals in den letzten 3 Jahren von einem Arzt Medikamente  

gegen pfeifende oder keuchende Atemgeräusche verschrieben  

bekommen?

(Gemeint sind damit nicht nur Medikamente zum Schlucken, sondern auch  

Inhalationen oder Sprays)

Ja ................¨

Nein.............¨ Þ weiter mit Frage 8!

6. Welche Medikamente waren dies?

Bitte notieren Sie jeweils möglichst genau den Markennamen.

1. 

2. 

3. 

7. Erhält Ihr Kind solche Medikamente gegen pfeifende oder keuchende  

Atemgeräusche

nur bei besonders schweren Phasen solcher Atemgeräusche? .....................

¨ bei (fast) jeder Phase pfeifender oder keuchender Atemgeräusche?

................ ¨ sowohl während akuter Phasen derartiger Geräusche als auch

vorbeugend? ¨

8. Wurde bei Ihrem Kind jemals von einem Arzt ein Allergietest durchgeführt?

Ja Nein  

Ein Hauttest........................................ ¨ ..........¨

Ein Bluttest .........................................¨ ..........¨

Ein anderer Test, z.B. Bioresonanz ... ¨ ..........¨

F Achtung

Wenn alle drei Test-Arten mit „Nein“ beantwortet wurden, weiter mit Frage  

10!

9. Welche Allergie wurde dabei festgestellt?

Ja Nein  

Gegen Pollen................................. ¨ ..........¨

Gegen Hausstaub(milben)............. ¨ ..........¨

Gegen Tiere................................... ¨ ..........¨

Gegen Nahrungsmittel................... ¨ ..........¨

Andere:

.... ¨ ..........¨

6

7

Es folgen Fragen zu Hauterkrankungen

10. Hatte Ihr Kind jemals in den letzten 3 Jahren einen juckenden  

Hautausschlag mit Kratzen und Reiben der Haut?

Ja ................¨

Nein.............¨ Þ weiter mit Frage 15!

11. War der Hautausschlag in den letzten 3 Jahren je an einer der folgenden  

Stellen? Ja Nein

Gesicht........................................... ¨ ..........¨

Hals................................................ ¨ ..........¨

Ellenbeugen / Kniekehlen.............. ¨ ..........¨

Hand- / Fußgelenke....................... ¨ ..........¨

12. Wenn Sie die Zeiten, in denen Ihr Kind diesen Hautausschlag hatte,  

zusammen zählen: Wie lange haben Sie in den letzten 3 Jahren diesen  

Hautausschlag jeweils pro Jahr beobachtet?

Für insgesamt weniger als 6 Wochen / Jahr ¨

Für insgesamt 6 Wochen bis 2 Monate/ Jahr ¨

Für insgesamt 3-5 Monate/ Jahr............

¨

Für insgesamt 6-11 Monate/ Jahr..........

¨

Praktisch für die gesamten 12 Monate/ Jahr ¨

Þ weiter mit Frage 15!

13. Ist der Hautausschlag wieder völlig verschwunden, oder „kommt und geht“  

der Hautausschlag?

Der Hautausschlag ist vollständig  

verschwunden........................................¨

Der Hautausschlag „kommt und geht“ ...¨

Der Hautausschlag ist noch da..............¨ Þ weiter mit Frage 15!

8

14. Wie alt war Ihr Kind, als der Hautausschlag wieder vollständig  

verschwunden ist?

Monate

Þ weiter mit Frage 19!

15. Wie häufig kam es in den letzten 3 Jahren vor, dass ihr Kind sich kratzt?

Nie .........................................................¨

Seltener als einmal pro Monat ...............¨

1 bis 3 mal pro Monat ............................¨

4 bis 6 mal pro Woche...........................¨

Ein- oder mehrmals täglich ....................¨

16. Wie häufig kam es in den letzten 3 Jahren vor, dass Ihr Kind sich wegen  

eines starken Juckreizes blutig gekratzt hat?

Nie .........................................................¨

Seltener als einmal pro Monat ...............¨

1 bis 3 mal pro Monat ............................¨

4 bis 6 mal pro Woche...........................¨

Ein- oder mehrmals täglich ....................¨

17. Wie häufig ist Ihr Kind in den letzten 3 Jahren nachts wegen Juckreiz  

aufgewacht?

Seltener als einmal pro Monat ...............¨

Einmal pro Monat...................................¨

Mindestens zweimal pro Monat .............¨
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18. Haben Sie die Haut Ihres Kindes in den letzten 3 Jahren mit einer  

cortisonhaltigen Creme / Salbe oder einer Tacrolimus- bzw. Pimecrolimus-

haltigen Salbe (Protopic, Elidel) behandelt?

Ja ................¨

Nein.............¨

Es folgen Fragen zu anderen Erkrankungen

19. Wurde bei Ihrem Kind in den letzten 3 Jahren von einem Arzt/einer Ärztin 

eine spastische Bronchitis, obstruktive Bronchitis oder asthmatische  

Bronchitis diagnostiziert?

Nein, nie......................................¨

Ja, einmal....................................¨

Ja, mehrmals...............................¨

20. Wurde bei Ihrem Kind in den letzten 3 Jahren von einem Arzt/einer Ärztin 

eine der folgenden Diagnosen gestellt?

Ja Nein  

Asthma........................................... ¨ ..........¨

Neurodermitis, atopische Dermatitis

oder endogenes Ekzem................. ¨ ..........¨

Es folgen Fragen zu Nahrungsunverträglichkeiten oder -allergien

21. Reagiert Ihr Kind auf irgendwelche Nahrungsmittel mit 

Hautveränderungen? Wir meinen damit eine Nesselsucht oder das  

Auftreten bzw. die Verschlechterung einer Neurodermitis.

Ja ................¨

Nein.............¨ Þ weiter mit Frage 25!

22. Auf welche Nahrungsmittel reagiert Ihr Kind mit derartigen 

Hautveränderungen?

Ja Nein  

Milch und Milchprodukte..............................................¨ ......¨

Hühnereier...................................................................¨ ......¨

Fisch............................................................................¨ ......¨

Weizenmehl oder andere Getreideprodukte ...............¨ ......¨

Nüsse ..........................................................................¨......¨

Soja .............................................................................¨ ......¨

Zitrusfrüchte ................................................................¨ ......¨

Anderes Obst oder Gemüse........................................¨ ......¨

Andere Nahrungsmittel................................................¨ ......¨

Welche? 

23. Wurde bei Ihrem Kind von einem Arzt / einer Ärztin in den letzten 3 Jahren  

eine Nahrungsmittelallergie diagnostiziert?

Ja ................¨

Nein.............¨

10

Þ weiter mit Frage 25!

24. Wurde diese Nahrungsmittelallergie durch einen Allergietest bestätigt?

Ja Nein

Durch einen Hauttest, einen Bluttest oder

einen oralen Provokationstest ....................................¨ ...... ¨

Durch einen anderen Test, z.B. Bioresonanz ..............¨ ......¨

Nun haben wir die Fragen zur Gesundheit Ihres Kindes  
abgeschlossen.

Es geht nun um seine Ernährung, dann um die Umgebung.

25. A) Haben Sie Ihr Kind gestillt?

Ja  

Nein

¨ Wie lange haben Sie Ihr Kind gestillt?.............................

¨

Angaben zur Wohnungs- und Lebenssituation

26. A) Wie viele jüngere Geschwister hat Ihr Kind?

Bitte auch Stiefgeschwister mitzählen, die in Ihrer Familie leben!  

Schwestern.......................Stiefschwestern................

Brüder...............................Stiefbrüder........................

B) Wie viele ältere Geschwister hat Ihr Kind?
Bitte auch Stiefgeschwister mitzählen, die in Ihrer Familie leben!

Schwestern.......................Stiefschwestern...............  
Brüder...............................Stiefbrüder........................

11

27. Bitte notieren Sie Name und Geburtsdatum der Geschwister Ihres Kindes.

Bitte auch Stiefgeschwister mitzählen, die in Ihrer Familie leben!

Name Mädchen Junge Geburtsdatum

¨ ¨ / /

¨ ¨ / /

¨ ¨ / /

28. Wird Ihr Kind regelmäßig zusammen mit anderen Kindern betreut (z.B.  

durch eine Tagesmutter, in einer Kinderkrippe oder bei den Großeltern)? Die  

eigenen Geschwister sind dabei nicht gemeint.

Ja, ..........................................................¨

Mit wie vielen anderen Kindern?

Nein .......................................................¨

29. Welche der folgenden Haustiere haben/hatten Sie innerhalb der Wohnung ?

(Mehrere Antworten sind möglich)

Zur Zeit Im 1. oder 2. Lebensjahr

Hund ¨...............................¨

Katze ¨...............................¨

Hamster ¨...............................¨

Meerschweinchen ¨...............................¨

Kaninchen ¨...............................¨

Vögel ¨...............................¨

Aquarium (Fische) ¨...............................¨

12
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A) Darf oder durfte sich eine Katze im Zimmer, in dem Ihr Kind schläft

aufhalten?

Ja ¨

Nein ¨

B) Darf oder durfte sich eine Katze im Bett Ihres Kindes aufhalten?

Ja ¨

Nein ¨

C) Darf oder durfte sich ein Hund im Zimmer, in dem Ihr Kind schläft  

aufhalten?

Ja ¨

Nein ¨

D) Darf oder durfte sich ein Hund im Bett Ihres Kindes aufhalten?

Ja ¨

Nein ¨

30. Hat/hatte Ihr Kind sonst regelmäßig (ca. 1x/Woche) Kontakt zu folgenden  

Tieren (z.B. in der Wohnung von Freunden/ Verwandten, Käfig/Stall  

außerhalb der Wohnung)?

(Mehrere Antworten sind möglich)

Zur Zeit Im 1. oder 2. Lebensjahr

Hund ¨...............................¨

Katze ¨...............................¨

Pferde ¨...............................¨

Es folgen Fragen zum Rauchverhalten

31. Haben Sie und Ihre Familie in den letzten 3 Jahren mit dem Rauchen in der  

Wohnung aufgehört bzw. das Rauchen innerhalb der Wohnräume  

eingeschränkt?

Ja......................................¨

Nein ..................................¨

Es wurde nie geraucht......¨ Þ weiter mit Frage 33!

32. Wie viele Zigaretten werden durchschnittlich am Tag

in Ihrer Wohnung (damit meinen wir auch die Küche) geraucht?  

Zigaretten, die auf dem Balkon oder der Terrasse geraucht werden,  

brauchen nicht mitgezählt zu werden.

Wie viele davon von... (keine=0)

Mutter pro Tag

Partner pro Tag

Andere Personen pro Tag

Insgesamt pro Tag

Þ Bitte neue Adresse notieren!

14

33. Sind Sie in den letzten 3 Jahren (d.h. seit das Kind geboren wurde)  

umgezogen?

Ja ............................¨

Nein.........................¨

Haben Sie noch weitere Kommentare zum Fragebogen oder allgemein?

Wir danken Ihnen herzlich für das  

Ausfüllen des Fragebogens!

15
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9.6.4 PAULCHEN at inclusion 
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9.6.5 PAULCHEN three-year follow-up 
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9.6.6 PAULCHEN six-year follow-up 

  



 143 

  

  



 144 

  

  



 145 

  

  



 146 

  

 

9.7 Follow-up rates 

Cohort   

PAULINA 3 year follow-up 88.9% 

PAULINA 3 year follow-up 84.4% 

PAULCHEN 6 year follow-up 91.2% 

PAULCHEN 6 year follow-up 89.01% 
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