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We succeeded in taking that picture [from deep space], and, if you look at it, you see
a dot. That’s here. That’s home. That’s us. On it, everyone you ever heard of, every

human being who ever lived, lived out their lives. The aggregate of all our joys and
sufferings, thousands of confident religions, ideologies and economic doctrines, every

hunter and forager, every hero and coward, every creator and destroyer of
civilizations, every king and peasant, every young couple in love, every hopeful child,
every mother and father, every inventor and explorer, every teacher of morals, every

corrupt politician, every superstar, every supreme leader, every saint and sinner in the
history of our species, lived there on a mote of dust, suspended in a sunbeam.˝

– Carl Sagan
extract from speech at Cornell University

October 13, 1994
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Zusammenfassung

Diese These befasst sich mit einem zweiteiligen Studium modifizierter Hintergründe in
Theorien, die die Gravitation verallgemeinern. Im ersten Teil erkunden wir Horndeskis
Lagrange-Dichte im Rahmen des Cartan Formalismus erster Ordnung, und wir studieren
Gravitationswellen in Anbetracht einer nicht-verschwindenden Torsion. Im zweiten Teil
gehen wir zur Stringtheorie über, und studieren T-Dualitäts-Transformationen zu einem
konkreten nichtlinearen Sigma-Modell, das offene Strings enthält. Dies motiviert das
Studium der Hintergründe, die sich aus solchen Transformationen ergeben.

Im ersten Teil analysieren wir Horndeskis Lagrange-Dichte in Cartan Formalismus
erster Ordnung. Dieser Formalismus erlaubt der Torsion, ungleich Null zu sein,
während sie in der allgemeinen Relativitätstheorie eine verschwindende Quantität ist.
Horndeskis Lagrange-Dichte ist die allgemeinste Lagrange-Dichte in vier Dimensionen,
die jede mögliche Wechselwirkung zwischen einem Skalarfeld φ und der Gravitation
zulässt. Ihre Feldgleichungen sind bis zu zweiter Ordung partielle
Differentialgleichungen. Diese Besonderheit jener Feldgleichungen verhindert die
Existenz von Geistfeldern. Da diese Lagrange-Dichte bekannte modifizierte Theorien
der Gravitation als Sonderfälle enthält, konzentrieren wir uns auf die Rolle der
Torsion und ihrer Wirkung auf die linearen Störungen der Felder. Um unsere
Untersuchung handhabbar zu machen, formulieren wir Horndeskis Lagrange-Diche in
die Sprache der Differentialformen um. Dem Cartan Formalismus folgend nehmen wir
an, dass der Spin-Zusammenhang ωab und das Vierbein ea voneinander unabhängig
sind. Wir nehmen die gesamte Horndeskis Lagrange-Dichte und leiten daraus die
Feldgleichungen des Skalarfeldes, des Spin-Zusammenhanges und des Vierbeines ab.
Um den torsionslosen Fall und die gewöhnliche allgemeine Relativitätstheorie zu
erreichen, müssen wir eine Nebenbedingung durch Lagrange-Mutiplikatoren einführen.

Als Vorbereitung zur Analyse linearer Störungen unserer Felder, definieren wir
mehrere Differentialoperatoren, um die Zeitraumstorsion unterscheiden zu können.
Diese Operatoren können auf Lorentz-Indizes tragende p−Formen kovariant
angewendet werden. Insbesondere beweisen wir eine Verallgemeinerung der
Weitzenböck-Identität, die Torsion enthält.

Später erforschen wir Horndeskis Lagrange-Dichte unter linearen Störungen des
Skalarfeldes, des Spin-Zusammenhanges und des Vierbeines. Wir entdecken, dass
nicht-minimale Kopplungen und zweite Ableitungen des Skalarfeldes generische



Quellen der Torsion sind. Das steht in Kontrast zu dem, was bekannt in
Einstein-Cartan-Sciama-Kibble-Schema ist, bei dem sich die Torsion ausschließlich auf
Fermionen bezieht. Tatsächlich entdecken wir, dass die Hintergrundtorsion mit den
sich ausbreitenden metrischen Freiheitsgraden koppelt. Das stellt eine Möglichkeit
dar, Torsion durch Gravitationswellen zu falsifizieren.

Im zweiten Teil behandeln wir T-Dualitäts-Transformationen durch Buschers
Verfahren zum offenen String im Rahmen der Stringtheorie. Solche Transformationen
führen zu interessanten Geometrien, die eine wichtige Rolle in der Stringtheorie
spielen, wie beispielsweise in der Modulistabilisierung oder beim Aufbau von
Inflationspotentialen. Diese Geometrien werden als nicht-geometrische Hintergründe
bezeichnet. In diesem zweiten Teil arbeiten wir technische Details aus, um Lücken in
der Literatur zu schließen. Diese Details betreffen die Anwesenheit von D-Branen und
die Wirkung von T-Dualitäts-Transformationen auf diese.

Zu Beginn studieren wir hierfür ein nichtlineares Sigma-Modell zum offenen String
mit Feldern, die auf der Weltfläche Σ des offenen Strings und ihrer Grenze ∂Σ
definiert sind. Wir ziehen nicht-triviale Topologien für diese Weltfläche in Betracht
und präsentieren die entsprechenden Grenzbedingungen für den offenen String.
Buschers Verfahren zufolge nehmen wir gewisse Bedingungen für die
Hintergrundskonfiguration an, und wir definieren zusätzliche Felder auf Σ und ∂Σ, um
die Anwesenheit von D-Branen ebenfalls zu betrachten. Wir folgen Buschers
Verfahren und führen T-Dualitäts-Transformationen durch, indem wir eine Symmetrie
der Weltfläche eichen und Weltfläche-Eichfelder entlang der Isometrierichtungen der
Zielraummetrik integrieren. Wir erreichen somit die duale Konfiguration für den
offenen und geschlossenen Stringsektor. Insbesondere finden wir heraus, dass das
duale Kalb-Ramond-Feld B einen verbleibenden Teil enthält, der eine wichtige Rolle
spielt, wenn wir über die duale Konfiguration für den offenen String diskutieren.

Um unseren Formalismus zu illustrieren, betrachten wir die Standardkonfiguration
des 3-Torus mit H-Fluss und führen eins, zwei und drei aufeinanderfolgende
T-Dualitäts-Transformationen für verschiedene D-Branen Konfigurationen durch.
Beim Nachlesen der dualen Hintergründe für den geschlossenen und den offenen
Stringsektor finden wir die in der Literatur bekannten nicht-geometrischen
Hintergründe. Allerdings merken wir an, dass solche Hintergründe Beiträge enthalten
können, welche von dem dualen offenen Stringsektor herrühen. Im Bezug auf den
dualen offenen Stringsektor studieren wir die Grenzbedingungen der offenen Strings
der dualen Konfiguration. Dabei wurde entdeckt, dass sie mit bekannten Ergebnissen
in CFT übereinstimmen. Zuletzt studieren wir die globale Wohldefiniertheit der
D-Branen in solchen dualen Hintergründen und illustrieren die Anwendung der
Freed-Witten-Anomalie-Auslöschungs-Bedingung für einige der hier präsentierten
Beispiele.







Abstract

This thesis addresses a two-part study of modified backgrounds in theories that
generalize gravity. In the first part of this work we explore Horndeski’s theory within
Cartan’s first order formalism, and study gravitational waves considering torsion to be
non-vanishing. In part two we move on to string theory and study T-duality
transformations for a particular non-linear sigma model containing open strings. This
prompts the study of the backgrounds arising from such transformations.

In part one we analyze Horndeski’s Lagrangian in Cartan’s first-order formalism.
This formalism allows torsion to be non-zero, whereas in standard general relativity it
is a vanishing quantity. Horndeski’s Lagrangian is the most general Lagrangian in four
dimensions featuring all possible interactions between a scalar field φ and gravity whose
equations of motion are partial differential equations up to second order. This feature
of such equations of motion prevents the existence of ghosts. Since this Lagrangian
contains well-known modified theories of gravity as particular cases, we focus on the
role of torsion and its impact at the linear perturbation regime. In order to make our
analysis manageable, we cast Horndeski’s Lagrangian in differential form language and
we take the spin connection ωab and the vierbein ea to be independent of each other,
following Cartan’s formalism. We take the full Horndeski Lagrangian and compute the
equations of motion for the scalar field, the spin connection and the vierbein. We argue
that in order to recover the torsionless case and make contact with standard General
Relativity, we have to impose a constraint via Lagrange multipliers.

As a preparation for the analysis of the linear perturbation regime, we define several
differential operators capable to discern spacetime torsion. These operators are capable
to act covariantly on p-forms carrying Lorentz indices. In particular, we provide with
a generalization of the Weitzenböck identity that includes torsion.

Later on, we consider linear perturbations around a generic background for the
vielbein, spin connection and scalar field and study Horndeski’s Lagrangian under such
perturbations. What we find is that non-minimal couplings and second derivatives of
the scalar field are generic sources of torsion. This makes a contrast to what was known
from the Einstein-Cartan-Sciama-Kibble framework, where torsion can be sourced only
from fermions. In fact, we find that background torsion couples with the propagating
metric degrees of freedom. This provides with a potential way to falsify torsion via
gravitational waves.



In part two we work inside the framework of string theory and we set to study
T-duality transformations via Buscher’s procedure for the open string. Such
transformations lead to the study of interesting geometries which play an important
role in string theory, as in moduli stabilization or in the construction of inflationary
potentials. Such spaces are called non-geometric backgrounds. In this second part, we
work out technical details which have been missing in the literature. These details
regard the presence of D-branes and the effect of T-duality transformations on them.

We study a non-linear sigma model for the open string with fields defined on the
worldsheet of such open string Σ and on its boundary ∂Σ. We take into account
non-trivial topologies for this worldsheet and we present the appropriate boundary
conditions for the open string. According to Buscher’s procedure, we assume certain
conditions for the background configuration and define additional fields on Σ and ∂Σ
taking into account the presence of D-branes. We follow Buscher’s procedure and
perform T-duality transformations by gauging a worldsheet symmetry and intregrating-
out worldsheet gauge fields. We reach in this way the dual configuration for the open and
closed string sector. In particular, we find that the dual Kalb-Ramond field B features
a residual part which will play a major role when we discuss the dual configuration for
the open string.

To illustrate our formalism, we consider the standard configuration of the three-
torus with H-flux and perform one, two and three collective T-duality transformations
for different D-brane configurations. We read off the dual backgrounds for the closed
and open string sector. We find the standard non-geometric backgrounds found in the
literature, noting that such backgrounds can receive contributions coming from the
dual open string sector. Regarding the dual open string sector, we study the boundary
conditions of the open strings in the dual configuration and we find that they comply
with the usual results in CFT. We study the global well-definedness of these D-branes
on such dual backgrounds and we illustrate the application of the Freed-Witten anomaly
cancelation condition for some of the examples presented.
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Adela Jiménez during their short stay in Munich as well. Now they are experiencing
their first steps as parents, and I’m convinced that you will do excellent in this new
stage of yours. Thanks for the many Game of Thrones nights! I want to thank as well
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General introduction

Motivation

During the 20th century, physics underwent a series of major changes. Our
understanding of gravity was challenged in 1915 when Einstein published his series of
papers on general relativity. What had started as an attempt to extend special
relativity to incorporate gravity, ended up becoming a foundational framework which
elegantly brought geometry and matter together. Not short after – around the 1920s
Bohr, Schrödinger, Heisenberg, Pauli and many others laid the foundations of
quantum mechanics. These basic pillars of modern physics have led generations of
scientists to push further and lead to outstanding developments in physics: just in
2012 the discovery of the Higgs boson was announced, on February 2016 the first
direct detection of gravitational waves was confirmed by the LIGO and VIRGO
scientific collaboration and just in April 2019, the first direct photo of the shadow of a
black hole was taken by the Event Horizon Telescope collaboration.

These breakthroughs in the history of physics were driven by our own curiosity.
Our search for the fundamental laws of Nature has relied to a great extent on the
construction of general and unifying frameworks.

The unification of seemingly unrelated phenomena has lead to discoveries in
physics. A prime example of this is classical electromagnetism [1]: in the beginning,
electricity and magnetism were considered to be independent phenomena. The
research of Cavendish and Coulomb between 1771 and 1785 lead to the theory of
electrostatics. Later on, the study of magnetism by Biot, Savart and Ampère
suggested a connection between magnetic fields and electric currents. In 1831 Michael
Faraday showed that changing magnetic fields generate electric currents. It wasn’t
until 1873 [2] when James Clerk-Maxwell provided a set of equations that addressed
such phenomena as a whole. Such equations included an extra term fixing some
remaining inconsistencies between the equations describing electricity and magnetism
known at that time. This unification of electricity and magnetism led to the discovery
of electromagnetic waves.

The speed of propagation of electromagnetic waves posed a problem within classical
mechanics [2]. By the end of the 19th century, it was thought that light propagated
through a medium called aether at such a speed, and the ad-hoc theory of aether was



proposed. Thanks to the collective effort of many theoreticians and experimentalists
like Hendrik Lorentz, Henri Poincaré, Albert Michelson and Edward Morley, Einstein
published the theory of special relativity in 1905. The idea of aether was dismissed,
and we no longer thought of space and time as separate entities: Such concepts were
unified under the idea of spacetime. With the advent of General Relativity, spacetime
became a dynamical entity and we could understand gravity not simply as a force, but
as the curvature of spacetime itself.

Another example of this tendency is the Standard Model. This model describes
three of the four fundamental forces of Nature (Electromagnetism, strong nuclear force
and weak nuclear force) and all known elementary particles. This theory comprises
electroweak theory together with quantum chromodynamics (QCD) and each of them
were developed following unification as a central motivation. For instance, electroweak
theory was established in the late 1960s by joining electromagnetism and the weak force
as one Yang-Mills field whose gauge group is SU(2) × U(1)Y [1]. QCD on the other
hand binds quarks in atomic nuclei by means of the color charge, whose gauge group
is SU(3).

One crucial test of the Standard Model took place in the year 2012. CERN
announced the discovery of the Higgs boson, thus explaining the mass for the gauge
bosons. In physics, unification has allowed us to have a better understanding of the
underlying mechanisms of Nature.

However, there are still caveats surrounding the Standard Model and general
relativity. For instance, the existence of dark matter cannot be explained from the
framework of SM. In cosmology, the accelerated expansion of the universe is thought
to be driven by dark energy, whose origin is still unclear. In the standard cosmological
model (the ΛCDM model) the cosmological constant Λ contained within Einstein’s
field equations accounts for the existence of dark energy.

These problems drive the development of new models and frameworks. When we
consider the problem of dark energy, one approach to explain it involves the
incorporation of scalar fields in gravity. The study of scalar fields in the gravitational
theory was treated in a beginning by Pascual Jordan between in 1948 and 1959 and
by Carl Brans and Robert Dicke in 1961 [3]. Since then, scalar fields have been used
to explore the problem of inflation and dark energy. In 1974 Gregory Horndeski
proposed a four-dimensional theory exhibiting all possible interactions between a
scalar field and gravity. What makes this theory interesting is that the equations of
motion are of second order, preventing the existence of ghosts.

Following unification as a guiding principle, string theory is a framework that
encapsulates all interactions and all particles in the same scheme. It is a leading
candidate for a theory of quantum gravity. Basically, the idea of the point particle is
replaced by a one-dimensional extended string that can oscillate, and can be either
open or closed. Since the fundamental object is now a string, it means that it can
probe the underlying geometry in other ways. The study of the motion of strings on
certain backgrounds has lead to the discovery of geometries that cannot be described



in terms of Riemannian geometry. Such spaces are called non-geometric backgrounds.

This dissertation is concerned with the study of the two aforementioned frameworks.
First, we will explore Horndeski’s theory of gravitation, and later on, we will work within
the framework of string theory and explore non-geometrical backgrounds from the open
string point of view. In both cases we will explore modifications of the background:
For the Horndeski part, we will allow spacetime torsion to be non-vanishing. This is
a consequence of relaxing the geometrical assumptions of our manifold. On the other
hand, the exploration of non-geometrical backgrounds involves the modification of the
background on which a string propagates, via T-duality transformations.

Thesis’ structure

In order to make exposition easier, this thesis is separated in two parts: Part one deals
with Horndeski’s theory of gravity within the first order formalism of gravity. Part
two, on the other hand, works within the framework of string theory and studies non-
geometric backgrounds from the open-string point of view. Each part contains its own
introductory sections to the subject and its own conclusions. Furthermore, each part
contains a chapter that serves as an introduction for the topic as well.

The final part of this doctoral work contains the final conclusion, an appendix and
the corresponding bibliography.





Part I

Horndeski’s theory with
non-vanishing torsion





Chapter 1

Introduction of Part I

Einstein gravity and its extensions

More than 100 years ago Einstein published in a series of papers his theory of general
relativity (GR). GR is still passing each observational test in the weak and strong field
regime [4], proving to be the one of the most successful theories of physics. Five years
ago, on February 11th, 2016 the LIGO and VIRGO collaboration announced the first
direct observation of gravitational waves (GWs) from coalescing black holes [5] – a
major prediction of GR – launching a new era of observational astronomy. In April
2019, the Event Horizon Telescope Collaboration announced through a series of six
papers [6–11] the first image ever of a black hole and its surroundings located at the
center of the galaxy Messier 87. The ring asymmetry, the shadow˝corresponding to
its event horizon and brightness excess from the southern side were expected features
predicted by Einstein’s theory. The field equations of GR can be derived from the
action SGR

SGR = SEH + SM

=
1

2κ4

∫
d4x
√
| det gµν |

[
R− 2Λ

]
+ SM

(1.0.1)

where gµν , µ, ν = 0, . . . , D − 1 is the metric of our D-dimensional spacetime, κ4 is a
constant given by κ4 = 8πGc−4, R corresponds to the Ricci scalar, Λ is the so-called
cosmological constant and SM is an action which accounts for the matter content. The
action SEH is the Einstein-Hilbert action. Einstein’s celebrated field equations computed
from this action are

Rµν −
1

2
gµνR + Λgµν =

8πG

c4
Tµν , (1.0.2)

where Rµν is the Ricci tensor written in terms of the Christoffel symbols Γλµν and Tµν
is the energy-momentum tensor. The Ricci tensor written in terms of the Riemann
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curvature tensor Rρ
σµν and the Christoffel symbols corresponding to the Levi-Civita

connection are given as follows

Rρ
σµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ,

Rµν = Rρ
µρν ,

Γλµν =
1

2
gλρ (∂µgρν + ∂νgρµ − ∂ρgµν)

(1.0.3)

Even though the accomplishments of GR cannot be overstated, it is not a complete
theory of gravity – it is rather an effective theory. Indeed, when we explore high energies
beyond the Planck mass M2

Pl = 1/8πG we find that we need to add higher curvature
terms ad infinitum to SEH. This is a signature that the theory is not-renormalizable
and that it breaks down at the Planck mass scale. For a pedagogical note on this see
for instance [12].

Another observation that signals that GR is an effective theory comes from the fact
that the Universe is expanding at an accelerated rate. The observations of supernovae
type Ia in 1998 suggested the existence of the so-called dark energy˝ [13]. Further
observations of the cosmic microwave background [14] and baryonic acoustic oscillations
[15] confirm its existence. From a theoretical side, a natural choice would be to interpret
dark energy as the gravitational constant Λ. However, we find that its predicted value
is several orders of magnitude larger than its measured value [16, 17], even as high as
10120 times [18]. As of today, the origin of dark energy remains a mystery.

This gives us a motivation to test gravity from a theoretical side and generalize
GR by modifying the action (1.0.1). These modifications might provide us with clues
about the nature of gravity and dark energy on its own, even if they turn out to be
not viable by experiments. This modifications, however, cannot be arbitrary: first, the
modified theory must remain Lorentz-invariant and second, we want to make sure
that the equations of motion are at most of second order in the metric gµν

1. The last
requirement is needed in order to avoid the so-called Ostrogradsky instabilities [19].
Ostrogradsky’s theorem [20] states that a physical system described by a
non-degenerate Lagrangian dependent on time derivatives higher than one will present
ghost-like instabilities. For a extended discussion on this, see for instance [21,22].

Several approaches to generalize Einstein’s gravity avoiding Ostrograsky instabilities
have been proposed. One of them is a generalization of the Einstein-Hilbert action in
higher dimensions, called Lovelock’s gravity. Another possible approach would be to
add extra degrees of freedom to the theory. The most simple of such additions would
be a scalar field φ, and we could explore different couplings between φ with gravity.
For non-minimal couplings between the scalar field and the curvature, we find a class
of theories called scalar-tensor theories of gravity. Such theories suggest a different

1Notice that standard GR is a theory whose equations of motion are of second order in the
derivatives on the metric, as we can see from (1.0.2) and (1.0.3)



9

origin of the gravitational force: Instead of having its origin from the curvature of
spacetime alone, it originates in part from the value of the scalar field φ at each point
in spacetime. An example of such theories is Brans-Dicke theory [23]. On the other
hand, if we have a theory featuring minimal couplings between the scalar field with
gravity we find theories such as quintessence [24, 25] and k-essence [26, 27], both of
which have found applications in cosmology.

These modified theories of gravity can be thought of particular cases of the four
dimensional Horndeski’s theory2 [32]. This is the most general, four-dimensional
theory of gravity with non-minimal couplings between a scalar field φ and gravity
whose equations of motion are up to second order in the derivatives. Such Lagrangian
has had an extensive presence in the literature. Around the 2010s there was a surge of
interest in Horndeski’s theory when it was shown that the Horndeski’s Lagrangian
featured in the original paper [32] could be rephrased as a Lagrangian for generalized
galileons [33–35]. Recently, the detection of the merger of two neutrons stars via GWs
(GW170817) and electromagnetic radiation (GRB 170817A) has provided a unique
opportunity to test the speed of propagation of gravitational waves [36–38], setting
stringent constraints on modified theories of gravity. Having input from the
observational side of GWs and the upcoming improvements and future detectors will
provide decisive evidence about the nature of gravity.

The first-order formalism of gravity

Considering a manifold M equipped with a metric g we can define a sense of parallel
transport of vectors along a curve with help of the connection, whose components in a
coordinate basis are symbolized by Γλµν [39]. Consider a pseudo-Riemannian manifold,
which is the manifold for standard GR. Among the many connections that can be
chosen, according to the Fundamental Theorem of Riemannian Geometry3 there is a
unique connection which is metric compatible and symmetric, which is the Levi-Civita
connection as written in (1.0.3).

In standard GR, the concepts of metricity (given by the metric gµν) and
parallelism (encoded in the Christoffel symbols Γλµν for the Levi-Civita connection)
are not independent of one another. Indeed, according to the expression (1.0.3) we
find that Γλµν = Γλµν(gρσ). Let us consider now an an arbitrary connection Γ̄λµν . By
studying the commutator of covariant derivatives ∇µ applied to a vector V ρ we
find [40]

[∇µ,∇ν ]V
ρ = Rρ

σµνV
σ − T λµν ∇λV

ρ, (1.0.4)

where4 T λµν = 2Γ̄λ[µν] is called the torsion tensor [41] and ∇µV
ρ = ∂µV

ρ + Γ̄ρµσV
σ.

2Among quintessence, k-essence, Brans-Dicke and f(R)-gravity we find chameleon theory [28–30]
and the convariant galileon as well [31].

3See Theorem 5.10 of [39]
4Our convention for the (anti-)symmetrization of indices contains a factor of (1/n!). For better
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Clearly, if we take the connection to be defined as in (1.0.3) the torsion vanishes.
However, since we can freely choose a connection on our manifold, we can consider more
general connections and in general the torsion might differ from zero. Such treatment
can be studied within the formalism of Cartan geometry. The study of Einstein’s gravity
in four dimensions within the Cartan geometry framework is Einstein-Cartan-(Sciama-
Kibble) (ECSK) gravity [41].

In the framework of Cartan geometry (see for instance [42]), the concepts of metricity
and parallelism are encoded in the vielbein one-forms ea and spin connection one-forms
ωab, respectively. In here the indices a, b = 0, . . . , D − 1 belong to a frame such that
they transform under local Lorentz transformations Λa

b = Λa
b(p) for each point p of

the manifold. This implies in particular that ωab = −ωba. Since ea and ωab are one
forms, they allow an expansion on the coordinate basis {dXµ}, as follows

ea = eaµ dXµ,

ωab = ωabµ dXµ,
(1.0.5)

where the components eaµ diagonalize the metric as gµν = ηab e
a
µ e

b
ν . Moreover, we can

define the two-form torsion T a and Lorentz curvature Rab as follows

T a = Dea = dea + ωab ∧ eb,

Rab = dωab + ωac ∧ ωcb.
(1.0.6)

Working in the first order formalism corresponds to consider metricity and
parallelism to be independent. Together with the formalisms of Cartan geometry, we
can have a clearer treatment and manipulation of the relevant quantities in differential
geometry like the curvature, torsion, connection and the metric. This will be treated
further in chapter .

1.1 Motivation

A non-vanishing torsion can lead to interesting phenomena. For instance, in [43] torsion
has a dramatic effect on the very early Universe, generating repulsion from a finite
radius and providing an alternative to cosmic inflation. In [44] the Randall-Sundrum
model [45] was realized as a solution of a five-dimensional Chern-Simons gravitational
theory with a torsion being zero along the usual four-dimensions but non-vanishing
along the extra dimension. This torsion, along with the dilaton induced an expanding,
accelerating universe.

In the ECSK theory, torsion is generated by fermions and affects only fermions.
These effects are in general weak, since torsional terms are proportional to ψ4 and
become relevant when we have a large fermion density – see for instance section 8

distinction we highlight the (anti-)symmetrized indices by (under-) over-lining them.
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of [46] and [47]. Furthermore, U(1) gauge bosons do not generate and are not affected
by torsion.

However, non-minimal couplings between the scalar field φ and the curvature as
featured in Horndeski’s theory might lead to a non-vanishing torsion, and there are
reasons to justify this suspicion: In [48–51] couplings between the Euler four-form
density and the scalar field φ εabcdR

ab ∧Rcd were studied. It was found that such term
produced non-trivial dynamics with torsion.

In the first part of this doctoral work we will study Horndeski’s theory within the
first order formalism. We will consider the vielbein ea, the spin connection ωab and the
scalar field φ as independent degrees of freedom and study the corresponding equations
of motion. Due to the inception of gravitational wave astronomy, we will study how
torsion can couple to metric perturbations satisfying the wave equation. As stated
above, the presence of the scalar field might support a non-vanishing torsion in this
regime.

1.2 Outline of Part I

Including this introductory chapter, this first part consists of four chapters. With
exception of chapter one, we outline their contents:

• In Chapter 2 we present a short review of modified theories of gravity. We
mention first Lovelock’s gravity and later we consider Horndeski’s Lagrangian
both in its original form and its equivalent description as a generalized Galileon
theory. We present and discuss theories contained inside Horndeski’s
Lagrangian, namely modified gravity with minimally-coupled scalar field,
Brans-Dicke theory and f(R)-gravity. Due to the recent breakthroughs in
gravitational wave astronomy, we discuss as well the implications for Horndeski’s
theory and the constraints it has to meet.

• In Chapter 3 we study Horndeski’s theory in the first order formalism within
Cartan’s formalism. We present a rewriting of the original Horndeski’s
Lagrangian in differential form language and study the equations of motion.
Since we want to keep track of torsion across our treatment, we define useful
torsion-aware differential operators. In the last section, we study Horndeski’s
Lagrangian at the linear perturbation regime on the vielbein, spin connection
and scalar field and we explore how torsion couples with the metric
perturbations.

• In Chapter 4 we present a summary of our findings and we close with conclusions.
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Chapter 2

A primer on Horndeski’s theory

In this chapter we will review and discuss Horndeski’s theory and study some
scalar-tensor theories that can be derived from it. We will explore them to get some
insight about the motivations and consequences of such theories. Motivated by the
recent experimental measurements of gravitational wave effects, we will review some
constraints that arise from such observations and their impact on Horndeski’s
Lagrangian. This will serve as a good motivation to explore Horndeski’s Lagrangian
in the first order formalism, task which will be done in the next chapter.

This section is largely inspired from the reviews [3,52,53], with contributions taken
from [54,55]

On Lovelock gravity

One possible path to extend GR in the low energy regime would be to construct a
generalization without adding extra degrees of freedom. Following Lovelock’s theorem
[56, 57], there is only one Lagrangian in D = 4 whose equations of motion are up
to second order in its time derivatives that depends only on the metric gµν , and it
corresponds to the Einstein Hilbert action SEH found in (1.0.1). In fact, Lovelock
provides a generalization of Einstein’s gravity depending only on the metric gµν for
an arbitrary number of dimensions D, while ensuring that the EOMs will be up to
second-order time derivatives in the equations of motion. Let µ, ν = 0, 1, . . . , D − 1 be
spacetime indices. Considering the Riemann curvature tensor Rρ

σµν given by

Rρ
σµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ, (2.0.1)

we can construct Lovelock’s Lagrangian LLovelock as follows [56]

LLovelock =
t∑

n=0

αnL
n, (2.0.2)
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where t = (1/2)(D−2) for D even and t = (1/2)(D−1) for D odd and αn are arbitrary
constants. Ln is defined as

Ln =
1

2n
δµ1ν1···µnνnα1β1···αnβn

n∏
r=1

Rαrβr
µrνr , (2.0.3)

where Rαβ
µν = gβλRα

λµν and δµ1ν1···µnνnα1β1···αnβn is the generalized Kronecker delta for n indices.

We find that the Einstein-Hilbert action is contained in Lovelock’s Lagrangian for
D = 4 (t = 1). For t = 2 we find among the expansion of LLovelock the well-known
Gauss-Bonnet term R2

R2 = R2 − 4RµνRµν +RµνρσRµνρσ, (2.0.4)

which in D = 4 allows us to compute the Euler class χ(M4) of our four dimensional
manifold. Indeed, under the Chern-Gauss-Bonnet theorem5 we find that

χ(M4) =
1

32π2

∫
M4

d4xR2. (2.0.5)

We mentioned that the Gauss-Bonnet term here presented appears at t = 2. Nothing
stops us to take R2 and incorporate it directly into the Einstein Hilbert action SEH.
However, by computing the equations of motion with respect to gµν we find that in
D = 4 this term does not make any contributions [58], reflecting its topological nature
in four dimensions.

Lovelock’s theorem and Lovelock gravity provides us with a theoretical framework to
study possible generalizations of Einstein’s gravity at the classical level. Its formulation
guarantees us that no higher-order terms in the equations of motion for gµν will be
present. In fact, any higher order derivative present in the variation of the Lovelock
terms Ln conveniently end up as total divergent terms and thus do not contribute to the
equations of motion [53]. If we want to consider other generalizations, then Lovelock’s
theorem states that we have to do one or more of the following [59]: (i) consider other
fields rather than the metric tensor, (ii) allow higher-order derivatives in the equations
of motion, (iii) consider dimensions other than four, (iv) accept non-locality, (v) give
up on either rank (2, 0) tensor field equations, symmetry of the field equations under
exchange of indices or divergence-free field equations.

Our upcoming discussion on Horndeski’s Lagrangian means that we will follow (i).
We will consider the addition of an extra field into Einstein’s formulation in such a way
that still complies with the requirement of having second-order equations of motion for
the metric field, thus making it a scalar-tensor theory. This will be the subject of our
next section.

5For a textbook discussion on this, see for instance p.280 of [39].
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2.1 Horndeski’s theory

In the last section we considered a particular modification of standard GR, namely
Lovelock gravity. In such setting we allowed the dimensionality of spacetime to be
arbitrary and we did not introduce more fields into the picture; we just considered the
metric itself. Now we will explore the case of a theory in D = 4 where we introduce an
extra degree of freedom, a scalar field φ.

Scalar-tensor theories of gravity are non-fully geometrical, metric theories of
gravity where the scalar field is non-minimally coupled to the curvature, i.e. we allow
combinations of φ and its derivatives to multiply directly curvature terms in the full
Lagrangian [3]. Of course, terms which depend solely on φ and its derivatives are
allowed too, which is to say that we allow minimal couplings as well. This is
fundamentally different as to only introduce the scalar field into the matter
Lagrangian, since it would amount to introduce a certain matter field into the
energy-momentum tensor Tµν and work as a source for curvature in the field equations
(1.0.2).

A scalar-tensor theory encompasses the introduction of non-minimal couplings
between the curvature and a scalar field, leading to rethink the origin of gravitational
phenomena: if we take for instance a coupling of the form f(φ)R, with R the Ricci
tensor and f(φ) a certain function of the scalar field, the effective gravitational
coupling G will depend on f(φ) as 1/f , changing the strength of the gravitational
interactions at each point in spacetime [3]. More complicated couplings will lead to
more involved modifications of the effective gravitational constant.

2.1.1 Horndeski’s Lagrangian

Now we set to explore Horndeski’s theory [32]. This corresponds to the most general
scalar-tensor theory in four dimensions that leads to second-order field equations. Many
of the well-known scalar-tensor theories of gravity which appear in the literature are
contained inside Horndeski’s theory.

Let α, β . . . be spacetime indices such that α, β, . . . = 0, 1, 2, 3. Also, let us define
X as

X ≡ −1

2
∂µφ∂µφ. (2.1.1)

From the original work [32] we read Horndeski’s Lagrangian as follows



16 2. A primer on Horndeski’s theory

LHorn = δαβγµνσ

[
κ1∇α∇µφRβγ

νσ +
2

3

∂κ1

∂X
∇α∇µφ∇β∇νφ∇γ∇σφ

+κ3∇αφ∇µφRβγ
νσ + 2

∂κ3

∂X
∇αφ∇µφ∇β∇νφ∇γ∇σφ

]
+δαβµν

[
(F + 2W )Rαβ

µν + 2
∂F

∂X
∇α∇µφ∇β∇νφ

+2κ8∇αφ∇µφ∇β∇νφ

]
−6

[
∂F

∂φ
+ 2

∂W

∂φ
−Xκ8

]
�φ+ κ9.

(2.1.2)

We recall that δα1α2···αn
β1β2···βn is the generalized Kronecker delta. The quantities κi with

i = 1, 3, 8, 9 are arbitrary functions of φ and X. We find W = W (φ) to be an arbitrary
function of the scalar field and F = F (φ,X) to be a function of the scalar field and of
X given in (2.1.1). This function F must satisfy the constraint

∂F

∂X
= 2

[
κ3 + 2X

∂κ3

∂X
− ∂κ1

∂φ

]
. (2.1.3)

This is the form of Horndeski’s Lagrangian which in next chapter will be formulated in
differential form language and explored further in the first order formalism.

We would like to point out that we can think of Horndeski’s theory rather as a
family of theories. This echoes in a way the spirit of generality that binds this doctoral
work together; by choosing the functions κi, F and W subject to the constraint (2.1.3)
we are actually choosing in a way a background on which a test particle can move. In
the next section, we will give some examples of theories contained inside Horndeski’s
Lagrangian.

As we mentioned above, the equations of motion that are derived from this
Lagrangian are up to second-order in the derivatives. The construction that Horndeski
provides in his original paper [32] can be sketched as follows [55, 53]: we consider first
an action in four dimensions whose Lagrangian L depends on the metric gµν , on the
scalar field φ and on their respective derivatives up to order p and q for p, q ≥ 2, i.e.

L = L(gµν , ∂gµν , . . . , ∂
pgµν ;φ, ∂φ, . . . ∂

qφ). (2.1.4)

Let Eµν and Eφ be the equations of motion for gµν and for φ, respectively. Due to
diffeomorphism invariance, we find that the following Bianchi identity for Eµν and Eφ
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holds6

∇µEµν = −∇µφ Eφ. (2.1.5)

In general, ∇µEµν alone is an expression with third-order derivatives on gµν and φ. Let
us assume for a moment that both Eµν and Eφ contain at most second-order derivatives.
The identity (2.1.5) implies then that∇µEµν is at most of second order in the derivatives
due to the right hand side of (2.1.5). The rest of the proof goes on finding a suitable
Eµν which satisfies (2.1.5). The final stages involve to find a suitable Lagrangian such
that Eµν = 0 and Eφ = 0 are the equations of motion.

For the rest of exposition in this section we will consider an equivalent formulation
of Horndeski’s Lagrangian (2.1.2). Let us take the Lagrangian LGal given by

LGal =G2 +G3�φ+G4R +
∂G4

∂X

[
(�φ)2 −∇µ∇νφ∇µ∇νφ

]
+G5G

µν∇µ∇νφ−
1

3!

∂G5

∂X

[
(�φ)3 − 3�φ∇µ∇νφ∇µ∇νφ

+2∇µ∇νφ∇ν∇λφ∇λ∇µφ
]
,

(2.1.6)

where Gi = Gi(φ,X) for i = 2, 3, 4, 5 and Gµν is the usual Einstein tensor Gµν = Rµν −
1
2
gµνR. This formulation was achieved in [60,31], where the motivation was to generalize

Galileon Lagrangians featured in [34]. The equivalence between the formulations (2.1.6)
and (2.1.2) was proved in [35], where it was pointed out that the generalized galileon
can be mapped to Horndeski’s theory via the following identifications

G2 = κ9 + 4X

∫ X

dX ′
[
∂κ8

∂φ
− 2

∂2κ3

∂φ2

]
,

G3 = −6
∂F

∂φ
+ 2Xκ8 + 8X

∂κ3

∂φ
− 2

∫ X

dX ′
[
κ8 − 2

∂κ3

∂φ

]
,

G4 = 2F − 4Xκ3,

G5 = −4κ1.

(2.1.7)

Let us formulate Horndeski’s action by including both LGal and a matter Lagrangian
Lm as follows

SHorn =

∫
d4x
√
|g| LGal + Lm. (2.1.8)

6At the moment of construction of the Lagrangian (2.1.2), taking (2.1.5) and assuming ∇µEµν to
be up to second order in the derivatives imposes a series of constraints upon the form of the functions
κi, which at the end prove to be not independent between each other. The expression (2.1.3) portrays
in a compact form such constraints. For more details on this computation, see section 3 and equation
(3.19) of [32]
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We make κ4 = 8πG = 1. By making appropriate choices for the functions Gi we
can find some well-known examples of scalar-tensor theories found in the literature, as
discussed in the next section.

2.1.2 Theories contained inside Horndeski’s Lagrangian

In the previous section we presented an equivalent formulation of Horndeski’s theory
(2.1.2) in terms of the generalized galileon Lagrangian (2.1.7). From such formulation
we will now discuss some theories contained within.

General relativity with a minimally coupled scalar field

By making the following choice for the functions Gi

G2 = K(φ,X), G3 = G5 = 0, G4 =
1

2
, (2.1.9)

we find the action

S =

∫
d4x
√
|g|
[

1

2
R +K(φ,X) + Lm

]
. (2.1.10)

In the particular case in which K = −Λ = const. we recover standard GR with a
cosmological constant, as seen in (1.0.1). For K(φ,X) = X − V (φ) we find the
quintessence model. For K(φ,X) = f(φ)g(X) with f and g arbitrary we find the
so-called k-essence models.

Quintessence models [24,61–64], involve the introduction of a scalar field φminimally
coupled to gravity, and is the simplest scalar-field scenario that addresses the problem
of dark energy7 [25].

These models can be classified in two classes [66]: in the first class of models, called
thawing models, the scalar field φ is nearly frozen at the early cosmological epoch and
it starts to evolve once the field mass drops below the Hubble expansion rate. In the
second class of models, named freezing models, we find that the evolution of the field
slows down at late cosmological times. The mass of quintessence, defined as

m2
φ =

d2V (φ)

dφ2
, (2.1.11)

has an upper bound of |mφ| . H0 ≈ 10−33eV in order to account today’s cosmological
acceleration. Here, H0 is the Hubble parameter [25].

Models of quintessence feature a so-called tracker behavior, which partly solves the
cosmological constant problem [3]. Depending on the radiation and matter energy
content during cosmological evolution, quintessence starts to resemble dark energy.

7For an introduction on this topic, see for instance [65]
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On the other hand, k-essence models feature a scalar field φ also minimally coupled
to gravity, but the dependence on the kinetic term X may be more involved. These
models were first introduced to account for inflation [26]. Later, different versions of k-
essence are used to model dark energy without introducing fine tuning and relying only
on the dynamics of the fields – see for instance [67, 68]. In particular, in [69] a version
of k-essence called uses purely the K(X,φ) function8 in (2.1.10) as the full Lagrangian
to account for a unified description of dark matter and dark energy.

This model also attempts to solve the coincidence problem; at the present time, the
energy densities of dark matter and dark energy are of the same order, which under the
assumptions of the standard cosmological model it suggests that the initial conditions
in the early Universe were highly fine-tuned [70]. However, the viability of k-essence
models to solve the coincidence problem was later questioned in [71].

Brans-Dicke theory

In this case we make the following choice

G2 =
1

φ
ωbdX − V (φ), G3 = G5 = 0, G4 =

1

2
φ, (2.1.12)

where ωbd is a constant. Plugging this into (2.1.7) we find the Brans-Dicke (BD) action

S =
1

2

∫
d4x
√
|g|
[
φR− 1

φ
ωbd∂µφ∂

µφ− 2V (φ) + Lm
]
. (2.1.13)

Brans-Dicke theory [23] is one of the simplest examples of a non-minimally-coupled
modified theory of gravity. It should be noted that in the original work of Brans and
Dicke in 1964 the parameter ωbd was not present [23]. In such paper, this theory is
developed to incorporate Mach’s principle, which (broadly speaking) states that inertial
frames are determined by the large-scale structure of the universe9.

BD theory has been used to in cosmology [76] and fluctuations of the gravitational
constant in inflationary Brans-Dicke cosmology have been studied in [77]. Some forms
of the V (φ) potential have been ruled out in light of the Planck 2015 data [78].

BD theory features predictions relevant to Cavendish-type experiments and
phenomena at solar-system scales. As we mentioned above, the non-minimal coupling
of φ to the curvature R modifies the gravitational constant. This can be computed by
going at the weak field and low-velocity regime and compare with Newton’s
gravitational law. For the case in which V (φ) = 0 we find that [3]

8πGeff =
1

φ0

[
2ωbd + 4

2ωbd + 3

]
, (2.1.14)

8In the literature this is called kinetic k-essence.
9This idea can be traced back to Berkeley’s A Treatise Concerning the Principles of Human

Knowledge published in 1710 (see [72] for a modern introduction) to Mach’s work Die Mechanik
in ihrer Entwicklung published in 1883 (see [73] for a translated version to english). There has been
several rephrasings of Mach’s principle [74]. See [75] for a discussion of its many formulations.
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where φ0 is the value of φ at the weak field regime. The deflection of light around a
massive object can be computed likewise [23,3], and it reads

δθ =
4GeffM

rma

[
2ωbd + 3

2ωbd + 4

]
. (2.1.15)

In here, M is the massive object and rma corresponds to the distance of closest approach
to the object by the light ray. We can recover the usual standard GR predictions by
taking the limit ωbd →∞. According to [79] however, this limit procedure is no longer
valid if the trace of the energy-momentum tensor vanishes. The Cassini experiment
results have led to the constraint ωbd > 40000 for BD theories with a scalar field φ
having a negligible mass in relation to solar-system size scales [80].

f(R)-theory

By making the choice

G2 = −1

2

(
∂Rf R− f

)
, G4 =

1

2
∂Rf, G3 = G5 = 0, (2.1.16)

we get the action

S =
1

2

∫
d4x
√
|g|f(R). (2.1.17)

f(R)-theory [81,82] corresponds to a modification of the Einstein-Hilbert action found
in (1.0.1) without introducing a scalar field φ. This form of the Lagrangian allows to
construct a higher-order gravity theory which does not present Ostrogradsky
instabilities [83], making them excellent toy models.

A highlight of f(R)-theory is that it is able to produce acceleration of cosmic
expansion with no need of invoking dark energy [84, 85]. Bouncing cosmologies
scenarios have been addressed in [86].

One feature of f(R) gravity is that it is dynamically equivalent to a Brans-Dicke
theory for ωbd = 0 [3]. That is, by taking the modified gravity theory

S =
1

2

∫
d4x
√
|g|
[
f(ψ) +

∂f

∂ψ
(R− ψ)

]
, (2.1.18)

and by looking at the equations of motion with respect to ψ we find that ψ = R. By
replacing this result in (2.1.18) we find the usual f(R)-action. By defining a potential
of the form V (φ) = ψ(φ)φ− f(ψ(φ)) we can write the action

S =
1

2

∫
d4x
√
|g|
[
φR− V (φ)

]
, (2.1.19)

which is the Brans-Dicke action (2.1.13) without the kinetic term. However, the case for
ωbd = 0 has not been explored thoroughly since it has been ruled out by solar system
experiments [3, 4]. On cosmological scales, f(R) gravity has found as well evidence
favoring the ΛCDM model instead [87].
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2.2 Horndeski after LIGO

There has been a number of tests carried out to verify the feasibility of modified
theories of gravity by looking at solar-sized experiments as deflection of light,
Mercury’s perihelion and strong equivalence principle – see for instance [4] for a
thorough review. These observations have placed several constraints and accumulated
evidence pointing out that certain models are to be ruled-out.

In August 2017, the LIGO and VIRGO collaborations along with the
Fermi-Gamma Ray Burst monitor and the INTEGRAL collaborations observed
gravitational waves (GW170817) and a gamma ray burst (GRB170817A) originating
from a neutron star binary merger coming from the NGC 4993 galaxy [36,37]. For the
first time, astronomers and astrophysicists had an opportunity to explore an
extremely energetic event simultaneously from the electromagnetic and gravitational
point of view. Both measurements set a bound on the speed of propagation of
gravitational waves ct. Under the normalization c = 1 it was found that [37]

−3× 10−15 < ct − 1 < 7× 10−16, (2.2.1)

where ct is the speed of propagation of gravitational waves. This result put stringent
restrictions on the form of Horndeski’s theory.

The ct = 1 constraint

The bound (2.2.1) puts severe restrictions on Horndeski’s Lagrangian. The way in
which one can identify the speed of propagation of gravitational waves can be done
by studying the behaviour of tensor perturbations hµν introduced around a background
metric. This can be done by having first the set of solutions of the equations of motion of
(2.1.6) for a specific background metric ḡµν and for φ and by introducing a perturbation
of the kind ḡµ → ḡµν + hµν

10. One studies the resulting Lagrangian at second order in
the perturbations hµν and the equations of motion for such perturbations. One finds
that the speed of propagation of the metric perturbations ct satisfies [3]

c2
t =

1

qt

[
2G4 − φ̇2∂G5

∂φ
− φ̇2φ̈

∂G5

∂X

]
, (2.2.2)

where qt is given by

qt = 2G4 − 2φ̇2∂G4

∂X
+ φ̇2∂G5

∂φ
−Hφ̇3∂G5

∂X
. (2.2.3)

The experimental bound (2.2.1) suggests the study of modified gravity theories for
which c2

t = 1. By imposing this on (2.2.2) we find the condition

0 =
∂G4

∂X
− 2

∂G5

∂φ
+
[
Hφ̇− φ̈

]∂G5

∂X
. (2.2.4)

10For a thorough review on the analysis of gravitational waves, see for instance [88]
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By considering that each term of (2.2.4) vanishes, it implies that G4 = G4(φ) and that
G5 depends on neither X nor φ. Hence, the surviving Horndeski’s Lagrangian is given
by [89]

LHorn,sur = G2(φ,X) +G3(φ,X)�φ+G4(φ)R. (2.2.5)

The set of theories that survive the constraint are f(R)-gravity (2.1.17), Brans-Dicke
(2.1.13), quintessence and k-essence (2.1.10). Other modified theories of gravity like
chameleon models [28] and Kinetic Gravity Braiding models [90] remain viable as well
[91]. The study of the consequences of the constraint (2.2.1) has still to be checked
exhaustively: by taking ct = 1 there is still the question of checking the status of
compact objects in this modified theories of gravity, as pointed out in [92] and check the
polarization of gravitational waves coming from surviving modified theories of gravity.
We mention this in the next section.

Polarization content

Horndeski’s Lagrangian in any of its forms (2.1.2) or (2.1.6) presents equations of motion
for the metric gµν and the scalar field φ which both are up to second order in the
derivatives. Following Ostrogradsky’s result, we find that there are no ghosts that
there are only three healthy degrees of freedom: two related to the polarization of gµν
and one related to the scalar field, which can be massless or not.

The general result in standard GR is that gravitational waves propagate at the
speed of light and possess two polarization states, the plus and cross modes – for a
pedagogical review on gravitational waves, see for instance [88]. For generic modified
theories of gravity, the total possible number of polarization states rises up to six [4].
For Horndeski theories in particular, it is expected that the extra degree of freedom
coming from the scalar field will add an extra polarization state, thus having a total
of three polarization states. Depending whether φ is massless or not, it excites either
the so-called transverse breathing mode (case for mφ = 0) or the transverse-breathing
and longitudinal modes (case for mφ 6= 0) [93]. Among the theories that survive the
constraint ct = 1, like Brans-Dicke theory and f(R)-theory, they feature gravitational
waves with extra polarization states [94].

The study of additional polarization states in gravitational waves has been carried
out even before GW170817: from the observation of binary pulsars, some evidence was
found supporting GWs being described by standard tensor metric perturbations [95].
This was done in the context of specific beyond-GR theories [96,97]. From LIGO, using
data collected between 2015 and 2016 a search for tensor, vector and scalar polarizations
in the stochastic gravitational-wave background was done, finding no evidence for a
background of any polarization [98]. The first measurement of polarization content
done from a transient GW signal was GW170814 [93] and it was found that pure tensor
polarizations are favored against pure vector and pure scalar polarizations [95, 93].
However, as pointed out in [98], LIGO and VIRGO still present limitations to discern
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polarization and future instrumentation like KAGRA [99] and LIGO-India would help
to increase the precision of such measurements.
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Chapter 3

Horndeski’s Lagrangian with torsion

This chapter is based on our work [100]. Here we study how the non-minimal couplings
between gravity and a scalar field produce torsion. To this end, we will consider the
full Horndeski Lagrangian written conveniently in differential-form language. Since we
want to work in first order formalism, we will consider the vierbein ea and the spin
connection ωab to be independent degrees of freedom.

We start exploring the first order formalism of the Horndeski’s Lagrangian by doing
some preliminary work: we will define some helpful operators that will be useful later
on, together with expressing the full Horndeski’s Lagrangian and studying the equations
of motion derived from it.

3.1 First order formalism for Horndeski’s theory

3.1.1 Preliminaries: contraction operators and vierbein

Let us consider a four-dimensional smooth manifold M equipped with a mostly-plus
(−,+,+,+) signature. Regarding the index structure, we will use throughout this
chapter greek indices µ, ν = 0, 1, 2, 3 to denote tensor components in the coordinate
basis {dXµ}, and lowercase Latin indices a, b = 0, 1, 2, 3 for the orthonormal (Lorentz)
basis {ea}. Taking this into account, we are able to write down a change of basis matrix
eaµ = eaµ(X) such that

ea = eaµ dXµ. (3.1.1)

The vierbein components diagonalize the metric as gµν = ηab e
a
µ e

b
ν and thus allow us

to write down the line element in a convenient way

ds2 = gµν dXµ ⊗ dXν = ηab e
a ⊗ eb. (3.1.2)

Please note that the orthonormal indices a, b, . . . are raised and lowered with the ηab

tensor and its inverse. Let us consider the space of p−forms defined on M by Ωp(M)
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and define an operator Ia1···aq that maps p−forms into (p− q)−forms, that is

Ia1···aq : Ωp(M)→ Ωp−q(M), (3.1.3)

whose action on a p−form α is given by

Ia1···aqα = (−1)p(p−q)+1 ∗ (ea1 ∧ · · · ∧ eaq ∧ ∗α) , (3.1.4)

with ∗ corresponding to the Hodge dual operator. Let α and β be p− and q−forms
respectively. We find that for the case q = 1 the operator Ia satisfies the following
properties

Leibniz rule Ia(α ∧ β) = Ia α ∧ β + (−1)pα ∧ Ia β,

Nilpotency IaIa = 0.
(3.1.5)

The idea of working in the first order formalism is to consider the metric gµν and
the connection Γλµν to be independent quantities. In the Einstein-Cartan formalism it
amounts to consider the vielbein ea and the spin connection ωab to be independent from
one another. More concretely for our case in d = 4, we will work with the set of vierbein
ea = eaµ dXµ 1−forms, the spin connection ωab = ωabµ dXµ 2−form and a scalar field
φ 0−form. From these fields, we can write down the torsion field T a and the Lorentz
curvature 2−forms as follows

T a = Dea = dea + ωab ∧ eb,
Rab = dωab + ωac ∧ ωcb.

(3.1.6)

We will denote with a small circle above a certain quantity to be the torsionless
version of that very same quantity. The usual Riemann differential geometry takes the
torsion to be a vanishing, i.e. T a = 0, landing in the usual differential quantities used
in standard general relativity regarding the Levi-Civita connection and the Riemman
curvature tensor11

Γ̊λµν =
1

2
gλρ (∂µgρν + ∂νgρµ − ∂ρgµν) ,

R̊ρ
σµν = ∂µΓ̊ρνσ − ∂νΓ̊ρµσ + Γ̊ρµλΓ̊

λ
νσ − Γ̊ρνλΓ̊

λ
µσ.

(3.1.8)

We can separate systematically the torsional from the no-torsional part in the spin
connection; it admits actually the splitting

ωab = ω̊ab + κab, (3.1.9)

11This can be done by using the torsionless condition T a = 0 and the so-called vielbein postulate
(see p.158 of [46])

0 = ∂µe
a
ν + ωab,µe

b
ν − Γσµνe

a
σ. (3.1.7)
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where ω̊ab corresponds to the torsion-free 1−form spin connection derived from the
vierbein and κab is the 1−form contorsion. We notice that the torsion T a 2−form can
be neatly be written down with use of (3.1.9) as follows

T a = dea + ωab ∧ eb

= dea + ω̊ab ∧ eb + κab ∧ eb

= 0 + κab ∧ eb.

(3.1.10)

Let D̊ be the covariant derivative with respect to the torsionless spin connection
ω̊ab. With use of (3.1.9) we can express the Lorentz curvature 2−form as

Rab = R̊ab + D̊κab + κac ∧ κcb, (3.1.11)

where R̊ab corresponds to the torsionless 2−form Riemann curvature given by

R̊ab = dω̊ab + ω̊ac ∧ ω̊cb. (3.1.12)

We define some useful quantities regarding the scalar field φ and its derivatives in
the first order formalism context. Let us first define the 0-form

Za = Iadφ. (3.1.13)

along with the 1−forms

πa = DZa,

θa = Zadφ.
(3.1.14)

We can think of this quantities as follows: Za corresponds to the derivative of φ
along the a−direction, while πa and θa are equivalent to ∂2φ and (∂φ)2, respectively.

3.1.2 Horndeski’s Lagrangian in differential form language

With help of the Ia operator, we will be able to work with Horndeski’s Lagrangian in
first order formalism in a manageable fashion. In terms of the variables we presented in
the previous section, we present Horndeski’s Lagrangian (2.1.2) written in differential
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form language as follows

LHorn(e, ω, φ) = εabcd

{
2κ1R

ab ∧ ec ∧ πd +
2

3

∂κ1

∂X
πa ∧ πb ∧ πc ∧ ed

+2κ3R
ab ∧ ec ∧ θd + 2

∂κ3

∂X
θa ∧ πb ∧ πc ∧ ed

+(F + 2W )Rab ∧ ec ∧ ed +
∂F

∂X
πa ∧ πb ∧ ec ∧ ed

+κ8θ
a ∧ πb ∧ ec ∧ ed −

[
∂

∂φ
(F + 2W )−Xκ8

]
πa ∧ eb ∧ ec ∧ ed

+
1

4!
κ9e

a ∧ eb ∧ ec ∧ ed
}
.

(3.1.15)

From the definition in (2.1.2) we recall the functions κi = κi(φ,X) for i = 1, 3, 8, 9 and
that W = W (φ), F = F (φ,X), which are subject to the constraint

0 = C(φ,X) =
∂F

∂X
− 2

[
κ3 + 2X

∂κ3

∂X
− ∂κ1

∂φ

]
. (3.1.16)

In the present context, we find that X defined already in (2.1.1) can be written in terms
of Za given in (3.1.13) as

X = −1

2
ZaZ

a. (3.1.17)

The Hodge operator only appears in the Horndeski action (3.1.15) only through the
use of the operator Ia. It interesting to note that it allows us to cast the full Horndeski
Lagrangian in a Lovelock-like fashion (see for instance [56,101]), where πa and θa play
a role similar to the vierbein ea.

In this work, we want to study how do the scalar couplings – craftily involved through
the definitions for Za, πa and θa – featured in Horndeski’s Lagrangian (3.1.15) generate
torsion. According to Horndeski’s theorem [32], when torsion vanishes, (3.1.15) is the
most general scalar-tensor Lagrangian that gives rise to second-order equations for the
metric and Bianchi identities [53] – as long as the constraints (3.1.16) are satisfied. If
we allow the torsion to be non-vanishing and to be explicitly introduced in (3.1.15),
the theorem is no longer valid. The point being made here is that it might well happen
that terms involving the torsion T a explicitly might lead to second-order equations for
the metric. We won’t attempt to generalize Horndeski’s theorem in this fashion, we will
rather focus on how torsion may arise from the Lagrangian (3.1.15) when we consider
the first order formalism. Having the first order formalism at hand, gives us the chance
to have a glimpse of a more general construction where torsion might play a critical
role.
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3.1.3 Equations of motion

We present the equations of motion given the Lagrangian presented in the section
above. Working within the first order formalism paradigm means that we need to find
the equations of motion for ea, ωab and φ. But we need to be careful: Za depends on
ea and the derivatives of φ through the Ia operator. This dependence must be taken
into account when we perform the variations with respect to ea and φ.

The full variation of the Lagrangian given in (3.1.15) can be written (modulo
boundary terms) as δLHorn = δωabEab + δeaEa + δφE . By setting δLHorn = 0 we will
find the equations of motion Eab = 0, Ea = 0, E = 0 for ωab, ea and φ respectively. In
here, Eab is given by

Eab = −1

2
(Zaεbcde − Zbεacde)Icde + εabcde

c ∧Hd − εabcdT c ∧Gd. (3.1.18)

where Icde, Hd and Gd are given by

Icde =

[
κ1R

cd + πc ∧
(
∂κ1

∂X
πd + 2

∂κ3

∂X
+
∂F

∂X
ed
)

+
1

2

(
κ8θ

c −
[
∂

∂φ
(F + 2W )−Xκ8

]
ec
)
∧ ed

] (3.1.19)

Hd = dκ1 ∧ πd + κ1R
d
eZ

e + dκa ∧ θd − κ3dφ ∧ πd

+
1

2
d(F + 2W ) ∧ ed

(3.1.20)

Gd = κ1π
d + κ3θ

d + (F + 2W )ed (3.1.21)

On the other hand, Ea and E take the form

Ea = Ea + Ib(Sb + Tb + Ub)Za,

E = E + Z − dIb(Sb + Tb + Ub),
(3.1.22)

where Ed, E and Z are given by

Ed = εabcd

[
2κ1R

ab ∧ πc +
2

3

∂κ1

∂X
πa ∧ πb ∧ πc

+2κ3R
ab ∧ θc + 2

∂κ3

∂X
θa ∧ πb ∧ πc

+2(F + 2W )Rab ∧ ec + 2
∂F

∂X
πa ∧ πb ∧ ec

+2κ8θ
a ∧ πb ∧ ec +

1

3!
κ9e

a ∧ eb ∧ ec

−3

[
∂

∂φ
(F + 2W )−Xκ8

]
πa ∧ eb ∧ ec

]
,

(3.1.23)
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E = εabcd

[
2

(
∂κ1

∂φ
− κ3

)
Rab ∧ ec ∧ πd + 2

(
1

3

∂2κ1

∂φ∂X
− ∂κ3

∂X

)
πa ∧ πb ∧ πc ∧ ed

+2
∂κ3

∂φ
Rab ∧ ec ∧ θd + 2

∂2κ3

∂φ∂X
θa ∧ πb ∧ πc ∧ ed

+
∂

∂φ
(F + 2W )Rab ∧ ec ∧ ed +

(
∂2F

∂φ∂X
− κ8

)
πa ∧ πb ∧ ec ∧ ed

∂κ8

∂φ
θa ∧ πb ∧ ec ∧ ed −

[
∂2

∂φ2
(F + 2W )−X∂κ8

∂φ

]
πa ∧ eb ∧ ec ∧ ed

+
1

4!

∂κ9

∂φ
ea ∧ eb ∧ ec ∧ ed

]
,

(3.1.24)

Z = εabcd

[
2dκ3 ∧Rab + 2d

∂κ3

∂X
∧ πa ∧ πb

+dκ8 ∧ πa ∧ eb + Dπa ∧
(

4
∂κ3

∂X
πb + κ8e

b

)]
∧ ecZd

+2εabcd

[
κ3R

ab +
∂κ3

∂X
πa ∧ πb + κ8π

a ∧ eb
]
∧ T cZd.

(3.1.25)

Finally we find that the 4−forms Sa, Ta and Ua appearing in (3.1.22) are given by

Sd = 2εabcd

[
Dπa ∧ eb ∧

(
2
∂κ1

∂X
πc + 2

∂κ3

∂X
θc +

∂F

∂X
ec
)

+πa ∧ eb ∧ dX ∧
(
∂2κ1

dX2
πc + 2

∂2κ3

∂X2
θc +

∂2F

∂X2
ec
)

+
1

2
ea ∧ eb ∧ dX ∧

(
θc
∂κ8

∂X
− ec ∂

∂X

{
∂F

∂φ
−Xκ8

})]
,

(3.1.26)

Td = 2εabcd

[
κ1R

ab +
∂κ1

∂X
πa ∧ πb + 2

∂κ3

∂X
πa ∧ θb

+2
∂F

∂X
πa ∧ eb +

1

2
κ8 e

a ∧ θb

−3

2

(
∂

∂φ
(F + 2W )−Xκ8

)
ea ∧ eb

]
∧ T c,

(3.1.27)

Ue = εabcd

[
−Rab ∧ ec ∧

(
Cd

e + 2
∂κ1

∂X
δgdefZgπ

f

)
−πa ∧ πb ∧ ec ∧

(
C̄d

e +
2

3

∂2κ1

∂X2
πdZe

)
+πa ∧ eb ∧ ec ∧Md

e + ea ∧ eb ∧ ec ∧Kd
e

]
.

(3.1.28)

Lastly, we define the quantities Ca
b, C̄

a
b, K

a
b and Ma

b found in (3.1.28)
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Ca
b = 2dφ

[
∂κ3

∂X
ZaZb −

(
κ3 −

∂κ1

∂φ
δab

)]
+eaZb

∂F

∂X
,

(3.1.29)

C̄a
b = 2dφ

[
∂2κ3

∂X2
ZaZb −

(
3
∂κ3

∂X
− ∂2κ1

∂φ∂X
δab

)]
+eaZb

∂2F

∂X2
,

(3.1.30)

Ka
b =

[
∂2

∂φ2
(F + 2W )−X∂κ8

∂φ

]
dφδab

− 1

4!
eaZb

∂κ9

∂X
,

(3.1.31)

Ma
b =

[
2

(
κ8 −

∂2F

∂φ∂X

)
δab −

κ8

∂X
ZaZb

]
dφ

+eaZb
∂

∂X

[
∂F

∂φ
−Xκ8

]
.

(3.1.32)

As a last comment, we find that the 1−forms Ca
b and C̄a

b satisfy the properties

IbCa
b = ZaC,

IbC̄a
b = Za ∂C

∂X
,

(3.1.33)

where C(φ,X) = 0 corresponds to the constraint (3.1.16). At first glance, the first
order formalism approach to Horndeski’s theory looks unmanageable, and trying to get
meaningful conclusions from it looks like a highly-non trivial feat. This is why in the
next section we will construct further differential operators which will make our analysis
simpler and more effective. In any case, we can still draw some general remarks about
the nature of torsion and the role of the φ field.

• We notice first that the definition of our operator Ia done in (3.1.3) and (3.1.4)
allowed us to handle properly the Horndeski’s Lagrangian (3.1.15) in the first order
formalism, i.e. without imposing any restrictions on the torsion whatsoever.

• A quick look at the expressions (3.1.27) and (3.1.18) reveals how torsion appears
naturally for Horndeski’s theory in the first order formalism. This term arises
generally for every non-minimal coupling with the scalar field, and from terms
depending on πa = DIadφ.
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• From eq. (3.1.27) we see that the dynamics of the torsion T a and the scalar field
φ are intertwined. In particular, we find that T a ∼ ∂φ. This implies in turn that
recovering the torsionless case proves to be a bit more tricky. Simply imposing
T a = 0 might freeze the dynamics of the scalar field, instead of recovering the
usual torsionless equations of motion for φ.

The torsionless case

On regards of the last comment we did in the previous section, we need to think
differently on the role of torsion and how it impacts the overall dynamics. Recovering
the torsionless case in this formalism might be thought of a reorganization of the
relations between the fields. This leads us to conclude that instead of simply imposing
T a = 0, we can recover consistently the torsionless case by imposing a constraint on
the more general Cartan geometry framework12. This can be done easily with help of
the Ia.

We introduce a light modification to the Lagrangian (3.1.15) by including the
torsionless condition via a Lagrange multiplier Λa and integrating out it later. We
consider the following Lagrangian

LHorn → L̄H = LHorn + Λa ∧ T a, (3.1.34)

whose equations of motion for ea, ωab and φ are

Ē = E = 0,

Ēa = Ea −DΛa = 0,

Ēab = Eab − 1

2
δabcd Λc ∧ ed = 0,

T a = 0.

(3.1.35)

We can integrate out this Lagrange multiplier first by solving Ēab = 0 for Λa and
then by replacing it in the EOM Ēa = 0. With help of the Ia and Iab operator, we find
that

Λa = 2DIb Eab +
1

2
ea ∧ Ibc Ebc, (3.1.36)

and the standard field equations for the torsionless Horndeski’s theory are recovered by
setting

0 = Ea − 2DIb Eab +
1

2
ea ∧ dIbc Ebc

∣∣
Ta=0

,

0 = E
∣∣
Ta=0

.
(3.1.37)

12This situation seems to have been acknowledged for a long time. See for instance [102] and section
1.7.1 of [103].
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The first difference that strikes us is that, in contrast with the standard Einstein-
Cartan scheme with minimally coupled fields the expression T a = 0 is an equation of
motion rather than a constraint. Introducing the a Lagrange multiplier in that case
would be unnecessary. Moreover, in the Einstein-Cartan scheme, torsion is a non-
propagating field where only fermionic fields can be a source of torsion [46].

Another aspect worth pointing out is how to make sense of the torsionless results
known in standard Horndeski’s theory with the first order formalism that we are dealing
with here. Of course, known solutions in torsionless Horndeski’s theory could be uplifted
consistently into this framework and still be solutions, as it happens for instance in the
refs. [104,44]. Uplifting a torsionless Horndeskian solution to our first order formalism
implies, in particular, that the Riemann curvature R̊ab in (3.1.12) and the scalar field φ
must be the same in the torsionless Horndeski’s theory. However, since the first order
formalism reveals that torsion is sourced from scalar fields it might well happen that the
Lorentz curvature won’t be identical to the Riemann curvature R̊ab. We are not always
guaranteed that such uplift can always be done and it requires rather a case-by-case
analysis.

We already have derived the equations of motion for the vierbein ea, for the spin
connection ωab and for the scalar field φ. To make the analysis more manageable, we
ought to find better-suited wave operators when we approach the study of gravitational
waves in our current scheme. These developments will be carried out in the next section.

3.2 Wave operators, torsion and Weitzenböck

identities

As we mentioned earlier on, the objective is to study gravitational waves inside the first
order formalism for Horndeski’s Lagrangian (3.1.15). This means that we have to study
small perturbations around a certain background configuration, which in turn implies
that we ought to perturb the vierbein ea and the spin connection ωab. These degrees
of freedom are kept independent, and thus we require to construct torsion-aware wave
operators capable to keep this independence untouched. Furthermore, these operators
must be able to act on quantities carrying Lorentz indices, like the vierbein ea for
instance.

Case study I: scalar forms

We will consider first scalar p−forms, scalar meaning that these forms won’t have any
Lorentz indices. Let α be a p−form

α =
1

p!
αµ1...µpdX

µ1 ∧ . . . ∧ dXµp . (3.2.1)
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Symbol Definition Change in form degree Key property

d dXµ∂µ +1 d2 = 0

D d + ω +1

D̊ d + ω̊ +1

d† ∗d∗ −1

D† ∗D∗ −1

D̊
†

∗D̊∗ −1

Ia − ∗ (ea ∧ ∗ −1 IaIa = 0

D‡ −IaDIa −1

D̊
‡

−IaD̊Ia −1

Da IaD + DIa 0

D̊a IaD̊ + D̊Ia 0 D̊ = ea
µ∇̊µ

�dR d†d + dd† 0

�B −∇̊µ ∇̊µ 0

�dR DD‡ + D‡D 0

�B −DaDa 0

Table 3.1: Table containing a summary of the differential operators defined in this section and their
most important properties

Inspired from Hodge theory, we consider one wave operator that could act on this
form, the Laplace-de Rham operator �dR given by

�dR = d†d + dd†. (3.2.2)

In here, the exterior coderivative d†is defined by d† = ∗d∗13. If we apply this
operator to our p−form α we find

�dR α = �B α + Ia
[
R̊a

b ∧ Ibα
]

(3.2.3)

where �B corresponds to the Laplace-Beltrami operator defined as

�B ≡ −∇̊µ ∇̊µ (3.2.4)

and ∇̊µ corresponds to the coordinate covariant derivative with the torsionless

Christoffel symbols Γ̊λµν . This writing of the Weitzenböck identity will prove to be
useful later on.

The definition of the Laplace-de Rham operator is not aware of the presence of
torsion; if it was, there should have been signs of contorsion or the full spin connection

13This definition holds for d = 4 and for manifolds with Lorentzian signature. For other cases, a
minus sign multiplying the definition (3.2.2) might be involved.
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ωab on (3.2.2). The identity (3.2.3) confirms this since�B works only with the torsionless
Christoffel symbols, and we see that in the second term of the RHS of (3.2.3) the
Riemann torsionless curvature R̊ab and the scalar form α are present.

We can see the utility of using the Laplace-de Rham operator with help of the
Weitzenböck identity. Let us take for example the case for electromagnetism in a
curved spacetime. Let us call A to the electromagnetic potential 1−form and F to its
field intensity 2−form F = dA. In vacuum –that is, when the current 1−form J is
identically zero – we find that the non-homogeneous Maxwell equations take the form

0 = d†dA, (3.2.5)

and by choosing the Lorenz gauge d†A
!

= 0 together with (3.2.3) we find

0 = �BA+ IaR̊
a
bI
bA, (3.2.6)

which can be recasted in standard tensor language as

0 = −∇̊λ ∇̊λAµ + R̊µνA
ν . (3.2.7)

Notice that R̊µν corresponds to the usual torsionless Ricci tensor. This small exercise
shows us that U(1) gauge bosons for classical electromagnetism don’t interact at all
with torsion, even if the underlying spacetime geometry is such that T a 6= 014

Case study II: forms with indices

We explored the Laplace-de Rham operator �dR and the Laplace-Beltrami �B in the
previous section with α as a test subject. We will explore wave differential operators
for p−form with m Lorentz indices. Let us consider βa1···am be a p− form with such
indices, that is

βa1···am =
1

p!
βa1···amµ1···µpdX

µ1 ∧ · · · ∧ dXµp . (3.2.8)

Since this is a form that presents indices, we require to have a differential operator
that takes them into account. This means that we require of a covariant derivative. A
first approach would be to define a kind of de Rham Lorentz-covariant derivative as
D† = ∗D∗, completely analogous to d† = ∗d∗. However, we will find that the following
definition suits better

D‡ ≡ −IaDIa. (3.2.9)

14This is true when Yang-Mills bosons are described mathematically by connections on principal
bundles, meaning in particular that the field strength reads Fµν = ∂µAν − ∂νAµ + 1

2 [Aµ, Aν ], not
Fµν = ∇µAν −∇νAµ + 1

2 [Aµ, Aν ], which differs from the former when torsion is present. Both points
of view have been studied in the literature. Some examples of the first can be found in [105–108]. Some
examples of the second point of view, coupling YM bosons and torsion can be found in [109–111]. In
here we will consider only the first approach.
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Notice that for the torsionless case, D̊
‡

satisfies

D̊
‡

= −IaD̊Ia = ∗D̊ ∗ . (3.2.10)

From this operator let us define the generalized Laplace-de Rham operator

�dR ≡ DD‡ + D‡D. (3.2.11)

When we let �dR operate on a p−form with m Lorentz indices, it can be seen that this
operator satisfies a generalized Weitzenböck identity, as follows

�dR β
a1···am = �B β

a1···am + IcD
2Icβa1···am

= �B β
a1···am + Ic

[
Rc

bI
bβa1···am

+Ra1
bI
cβba2···am + · · ·+Ram

bI
cβa1···am−1b

]
,

(3.2.12)

where �B denotes the generalized Laplace-Beltrami operator

�B ≡ −DaDa, Da ≡ IaD + DIa. (3.2.13)

Some comments are in order. First, the Weitzenböck identity (3.2.12) regarding the
operator �dR is capable to discern spacetime torsion since the Lorentz curvature Rab

containing the contorsion κab is present. Second, the torsionless version of Da, namely
D̊a = IaD̊ + D̊Ia takes the simpler form D̊a = ea

µ∇̊µ. This means that D̊a matches

the usual torsionless covariant derivative ∇̊ = ∂ + Γ̊ and we can recover the standard
Weitzenböck identity (3.2.3) for multiple Lorentz indices

�̊dR β
a1···am = �B β

a1···am + IcD̊
2
Icβa1···am

= �B β
a1···am + Ic

[
R̊c

bI
bβa1···am

+R̊a1
bI
cβba2···am + · · ·+ R̊am

bI
cβa1···am−1b

]
.

(3.2.14)

Let α and β be respectively p− and q−forms. We find that the operator Da satisfies
the following properties

Da (α ∧ β) = Da α ∧ β + α ∧ Da β, (3.2.15)

[Ia,Db] = −IabT
c Ic, (3.2.16)

[Da,Db] = D2Iab + IabD
2 + IaD

2Ib − IbD
2Ia

− (DIabT
c) ∧ Ic − IabT

cDc. (3.2.17)

From the previous discussion, it becomes clear that whenever we want gravitational
waves to interact with the torsion sector of geometry, we require the field to have Lorentz
indices; the differential operators defined in this section can discern the background
spacetime torsion only when there are Lorentz indices to act on.
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3.3 Gravitational waves and torsional modes

In this section we study torsional couplings to gravitational waves at first order in
perturbation theory, without having an specific astrophysical process in mind. Second-
order perturbations will be treated elsewhere.

3.3.1 Linear perturbations in first order formalism

Let us consider a background geometry configuration described by the fields ēa, ωab and
φ̄. We consider linear perturbations around this background following the prescription

ēa → ea = ēa +
1

2
ha |ha| � 1,

ω̄ab → ωab = ω̄ab + uab |uab| � 1,

φ̄ → φ = φ̄+ ϕ |ϕ| � 1.

(3.3.1)

In here, we use the background vierbein āa as a basis for one-forms written in the
orthogonal frame. This implies that we can write ha and uab as follows

ha = hab ē
b,

uab = uabc ē
c.

(3.3.2)

We find that the metric g with the above described prescription reads at first order in
the perturbations as

g = ηab e
a ⊗ eb

= ηab
[
ēa + hac ē

c
]
⊗
[
ēb + hbd ē

d
]

= ηab ē
a ⊗ ēb +

1

2
(hab + hba) ē

a ⊗ ēb

= (ḡµν + h+
µν) dXµ ⊗ dXν .

(3.3.3)

In here we have made implicit use of the definition h±ab = (1/2)(hab ± hba) which
gives the symmetric and antisymmetric parts of hab, respectively. Notice that in the
following analysis only the symmetric part of hab plays a role; it can be shown that h−ab
amounts to nothing more than an infinitesimal local Lorentz transformation15 Notice
that the construction of the Lagrangian (3.1.15) is explicitly local Lorentz invariant,

15Under local Lorentz transformations realized by matrices Λab , the metric ηab must remain
invariant. This implies that Λab = δab + λab + O(λ2), where λab = −λba. If the vierbein changes
like ea → ea + 1

2 [h−]abe
b, we identify 1

2 [h−]ab = λab and we find that such change amounts to an
infinitesimal Lorentz transformation.
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which means that the antisymmetric part of hab can always be gauged away. From now
on, we will just assume that hab is a symmetric quantity.

We can do better and perform still a systematic separation of the metric-dependent
part of the 1−form spin connection perturbation term uab. This goes as follows: we
know that in standard general relativity the perturbation in the geometry is described
in terms of the metric perturbations term hµν only. For us it is not surprising, since
we know already the dependence of the connection on the metric itself. In the first
order formalism, however, both the metric and the connection are independent degrees
of freedom, which amounts to say the same for the vierbein ea and the spin connection
ωab. This implies in particular that the perturbations on the background vierbein and
spin connection ha and uab are independent of one another as well. We will see that it is
always possible to split the linear perturbation 1−form uab in two pieces: one carrying
all the dependence on ha and one completely independent from it.

Let us consider the effects of the perturbation procedure (3.3.1) on the torsion
T a = Dea. We find that

T̄ a → T a = T̄ a +
1

2
D̄ha + uab ∧ ēb

= T̄ a +
1

2
˚̄Dha +

1

2
κ̄ab ∧ hb + uab ∧ ēb.

(3.3.4)

In the previous expression, ˚̄D denotes the exterior covariant derivative with respect to
the torsionless piece of the background spin connection ˚̄ωab.

Let us recall the writing of the torsion in terms of the contorsion 1−form κab as
T a = κab ∧ eb. Let us define as well a perturbation in the contorsion by qab, which
works as

κ̄ab → κab = κ̄ab + qab. (3.3.5)

We notice that the linear perturbations for the torsion read as

T̄ a → T a = T̄ a +
1

2
κab ∧ hb + qab ∧ ēb. (3.3.6)

If we take the relations (3.3.4) and (3.3.6) we avert an apparent contradiction. Notice
that (3.3.4) possesses a derivative on ha, whilst (3.3.6) does not. This annoyance can
be cured precisely with help of the decomposition of the uab perturbation term we
mentioned a while ago. Notice that uab must be of the form

uab = ůab + qab, (3.3.7)

We want still to have a sense of torsionlessness˝at the linear perturbation regime.
By using the torsionless term in (3.3.7) we demand that – by taking the background
vierbein ēa – the following torsionless relation holds

0 =
1

2
˚̄Dha + ůab ∧ ēb. (3.3.8)
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Indeed, if we take both (3.3.8) and (3.3.7) and put them to use in the expression (3.3.4)
there is contradiction no more.

Further definitions

So far we have dealt with the basics for our perturbation scheme in the first-order
formalism. This has been somewhat limited to study the metric and torsional
perturbations. Before we study the perturbation regime for the Lagrangian (3.1.15),
we need to carefully define some other useful quantities in order to keep our

computations manageable. In particular, it can happen that the derivatives ˚̄D and D̄
might mix somewhere. For this, let us define the quantities

Uab = ůab −
1

2

[̄
Ia(κ̄bc ∧ hc)− Īb(κ̄ac ∧ hc)

]
,

Vab = qab +
1

2

[̄
Ia(κ̄bc ∧ hc)− Īb(κ̄ac ∧ hc)

]
.

(3.3.9)

where Ī
a

corresponds to the operator Ia using the background vierbein ēa and Hodge
operator ∗̄ related to the background metric structure, i.e. Ī

a
= −∗̄(ēa ∧ ∗̄. We notice

that Uab and V satisfy

uab = ůab + qab

= Uab + Vab.
(3.3.10)

It can be proven that torsion T a and contorsion κab are related by

κab =
1

2

(
IaTb − IbTa + ec IabTc

)
, (3.3.11)

and show that the torsionless condition (3.3.8) mentioned a bit ago can be written as

0 =
1

2
D̄ha + Uab ∧ ēb +

1

2
Ī
a
(hb ∧ T̄ b). (3.3.12)

Having these results, we can prove that the linear perturbations for the torsion indicated
in (3.3.6) can be written as

T̄ a → T a = T̄ a + Vab ∧ ēb −
1

2
Ī
a
(hb ∧ T̄ b). (3.3.13)

We can get a more compact expression for the linear perturbations in the Lorentz
curvature Rab. We see first that by using (3.3.12) we can cast Uab as follows

Uab = −1

2

(
Ī
a
D̄hb − Ī

b
D̄ha

)
, (3.3.14)
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and show that the linear perturbation of the Lorentz curvature can be simply written
as

R̄ab → Rab = R̄ab + D̄
(
Uab + Vab

)
. (3.3.15)

Finally, one can show that the perturbations at first order for Za = Iadφ can be
written down as

Z̄a → Za = Z̄a + Ī
a
dϕ− 1

2
habZ̄

b. (3.3.16)

We finish this subsection with two comments: first, we were able to make a careful
splitting of the spin connection perturbation uab in two parts, namely Uab and Vab.
We found that Uab depends only on the vierbein perturbation, as featured in (3.3.14)
and that linear perturbations on the torsion depend on both Vab and ha. Second, we
derived that linear perturbations on the Lorentz curvature depend on a total covariant
derivative of Uab + Vab.

In the following section we start performing the analysis of gravitational waves at
first order for Horndeski’s Lagrangian in the first-order formalism.

3.3.2 Gravitational waves in the first-order formalism

In the last section we saw that torsion is able to propagate through the modes Vab
we defined in (3.3.9) together with a coupling term between the metric perturbations
ha and the background torsion T̄ a. One might think that propagations of torsion are
only tied to terms in the Lagrangian (3.1.15) other than the standard Einstein-Hilbert
(EH) term εabcdR

ab ∧ ec ∧ ed. An initial guess would say that performing perturbations
around a background configuration described by (3.3.1), only the wave equation and
interactions of ha arise from the EH, just as in the torsionless standard case. This is
no longer the case here: we will see that the EH term gives rise to both metric modes
– which by the way may interact with the background torsion T̄ a – and propagating
torsional modes.

The study of gravitational waves and propagation of torsion in the first order
formalism for Horndeski’s theory proves to be challenging and by no means a trivial
task. Let us start then by studying first the Einstein-Hilbert term apart from the
other terms in (3.1.15): consider a Lagrangian in the Horndeski family of the form

L(4)
EH(e, ω) = L(4)

EH + (other terms). (3.3.17)

In here, L(4)
EH corresponds to the usual Einstein-Hilbert four form

L(4)
EH(e, ω) =

1

4κ4

εabcdR
ab ∧ ec ∧ ed. (3.3.18)
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and the (other terms) correspond to quantities giving rise to torsion through
non-minimal couplings and/or second-order derivatives of φ.

The field equations derived from (3.3.17) have the schematic form

δeL(4) = δeL(4)
EH + δe(other terms) = 0,

δωL(4) = δωL(4)
EH + δω(other terms) = 0,

δeL(4) = δφ(other terms) = 0,

(3.3.19)

where we find that δeL(4)
EH and δwL(4)

EH are given by

δeL(4)
EH =

1

2κ4

εabcdR
ab ∧ ec ∧ δed,

δωL(4)
EH =

1

2κ4

εabcdδω
ab ∧ T c ∧ δed,

(3.3.20)

The G term

Here we study the equations of motion for the linear perturbation fields. Let us then
consider ēa, ω̄ab and φ̄ to be a background configuration satisfying the field equations
(3.3.19), and at the same time consider linear perturbations around that very same
configuration as stated in (3.3.1). The wave behavior is found to be at the equation of
motion for the vierbein as stated in (3.3.19). Taking this into account, we find that the
following relation holds

0 = G +
1

4κ4

R̄ab ∧ hc ∧ δed +
1

2κ4

εabcdD̄Vab ∧ ēc ∧ δed

+ (linear perturbations of other terms).
(3.3.21)

In here we have defined the 4−form G

G =
1

2κ4

εabcdD̄Uab ∧ ēc ∧ δed. (3.3.22)

We will see shortly that the term (3.3.22) generates gravitational waves coupled with
torsion, process described by means of the generalized wave operator �dR = D‡D+DD‡.
By using the expression (3.3.14) in (3.3.22) we find the following rewriting of the G-term

G = − 1

4κ4

∗̄
{
D̄aD̄ahd − D̄aD̄dha

−ēcD̄c
(
ĪdD̄aha − D̄dh

)
−1

2

[̄
Ib
(
D̄aD̄ahb − D̄aD̄bha

)
−D̄b

(
Ī
bD̄aha − D̄bh

)]
ēd
}
∧ δed.

(3.3.23)
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Some definitions are in order here: The D̄a stands for the operator D̄a = Ī
a
D̄ + D̄Ī

a

where Ī
a

was defined briefly in the previous subsection, and h = Īah
a.

The Lorenz gauge

The discussion of standard gravitational waves involves the use of a gauge in order to
simplify the equations describing wave propagation. We set out to find a suitable gauge
choice in order to reach a manageable wave equation within the first-order formalism.
To this end, we want to take advantage of the diffeomorphism invariance of the action
to fix an appropriate gauge.

Let us then consider the following: Let ζ be a vector field. We want to study the
infinitesimal diffeomorphism transformations for hab whenever ζ acts on the background
geometry, which is equivalent to study the infinitesimal Lie dragging 1−£ζ on hab. We
notice that hab responds to this infinitesimal dragging as

hab → h′ab = hab −
(
D̄aζb + D̄bζa

)
+ ζcĪc

(
ĪaT̄b + ĪbT̄a

)
. (3.3.24)

Let us do the standard change of variable ha → h̃a, by saying

ha = h̃a − 1

2
ēah̃, (3.3.25)

where h̃ corresponds to the trace of the components of h̃a. By making use of the
aforementioned operator D̄a, one can show that the expression D̄ah̃a under the dragging
(3.3.24) transforms as D̄ah̃a → D̄ah̃′a, where D̄ah̃′a corresponds to

D̄ah̃′a =
[
− ˚̄Da ˚̄Daζb + D̄aĪbh̃a − Īab

˚̄Ra
cζ
c

Ī
ac
T̄a
( ˚̄Dcζb + ˚̄Dbζc − ηcb ˚̄Dpζp

)
+ĪcbT̄aĪ

c
h̃a
]
ēb,

(3.3.26)

with ˚̄D = Īa
˚̄D + ˚̄DĪa. This enables us to find a certain vector field ζ such that the RHS

of (3.3.26) vanishes, thus fixing the so-called Lorenz gauge

D̄ah̃a = 0. (3.3.27)

With help of this gauge fixing and by using the commutation relations found in
(3.2.16) and (3.2.17) we can reformulate the expression (3.3.21) in terms of h̃a as

0 = �̄dR h̃d + Īad
(
R̄a

b ∧ h̃b
)

−
{
Ad +Bd +

1

2
ēd
[
C − Īc

(
Ac +Bc

)]}
+εabcd ∗̄

(
R̄ab ∧ hc + 2D̄Vab ∧ ēc

)
+(linear perturbations of other terms).

(3.3.28)
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With help of the generalized Weitzenböck identity (3.2.12) we find �̄dR h̃a to be

�̄dR h̃a = −D̄bD̄bh̃a + Īb
(
R̄b

cĪ
c
h̃a − R̄b

aĪ
c
h̃c
)
, (3.3.29)

while the torsional terms Aa, Ba and C are given by

Aa =
(
ĪcaT̄b

)
D̄b h̃c + h̃bc D̄ĪcaT̄b,

Ba =
(
Ī
c
T̄b
)
Ī
b[D̄a(h̃ ēc)− D̄c(h̃ ēa)]

+
1

2

{
h̄ D̄

‡
T̄a + Ī

b[
D̄
(
h̃ ĪaT̄b

)
− T̄bĪaD̄h̃

]}
,

C = D̄c
(
h̃ab ĪbcT̄a

)
+
(
ĪbcT̄a

)
Ī
a
D̄
c
h̃b.

(3.3.30)

Finally, we can find the equation for propagation of linear perturbations by taking
(3.3.28) and plugging it in (3.3.21). We conclude this section with some remarks.

Remarks

• The metric wave h̃ab couples to both the background torsion T̄ a and background
curvature R̄ab. This can be readily seen in the second term of (3.3.28) and in the
C term in (3.3.30).

• Since h̃a satisfies a wave equation with source – and thus it is a propagating field,
we can automatically conclude that torsion itself is a propagating field. This
can be readily seen from the behavior of the torsion under linear perturbations
(3.3.13) and from the definition of Vab given in (3.3.9). At some point we ought
to insert the propagating solution for h̃a in (3.3.9), thus obtaining wave behavior.

• Some couplings between h̃ab and the background torsion appear through the trace
h̃. It turns out rather surprising that the traceless˝variable h̃ab does not lead to
equations without the trace h̃.

3.3.3 Gravitational Waves and generic terms of Horndeski’s
Lagrangian

In the previous section we put ourselves to the task of exploring the arising of
torsional modes from the well-known Einstein-Hilbert term, which corresponds to an
specific model properly included among the family of theories belonging to
Horndeski’s Lagrangian. We found that the EH term can indeed produce
gravitational waves interacting with the background torsion and propagating torsional
modes. This leads us to think how torsion could arise from the other terms present in
the Lagrangian (3.1.15).



44 3. Horndeski’s Lagrangian with torsion

Let us study – in a rather qualitative manner – how this behavior might arise
similarly in other therms from the Horndeski family. We will find that generic terms
from Horndeski’s Lagrangian (3.1.15) will couple h̃a, Vab and ϕ with the background
curvature R̄ab and torsion T̄ a. However, only some specific terms will contribute with
second-order wave-like operators in the metric modes (terms of the form ∂2h̃a) and first
order-operators on the torsional modes (∂Vab terms).

In order to get some clarity in our treatment, we will take as a simplifying assumption
that propagations associated to the scalar field φ are turned off, i.e. we consider ϕ = 0.
Having this in sight, we find that the linear perturbations on the fields ea, Rab, T a, Za,
θa and πa are given by

ēa → ea = ēa +
1

2
ha,

R̄ab → Rab = R̄ab + D̄Vab − 1

2
D̄
(
Ī
a
D̄hb − Ī

b
D̄ha

)
,

T̄ a → T a = T̄ a + Vab ∧ ēb −
1

2
Ī
a(
hb ∧ T̄ b

)
,

Z̄a → Za = Z̄a − 1

2
habZ̄

b,

θ̄a → θa = θ̄a − 1

2
habθ̄

b,

π̄a → πa = π̄a − 1

2
habπ̄

b

+

[
Vab − 1

2

(
Ī
a
D̄hb − Ī

b
D̄ha − D̄hab

)]
Z̄b.

(3.3.31)

From the arrangement written above, we can draw already a couple of conclusions:
only the perturbation of the Lorentz curvature includes second-order derivatives of ha

– due to the presence of the operator D̄Ī
a
D̄ – and first-order derivatives of the torsional

perturbation D̄Vab. In contrast, for πa we find that only first-order derivatives for ha

and no derivatives for Vab appear. Since the Hodge operator only appears in Horndeski’s
Lagrangian through the operator Ia = − ∗ ea ∧ (∗ together with the fact that d2 = 0,
we find that in the equations of motion for the vielbein and spin connection Ea = 0 and
Eab = 0 (found in (3.1.18) and (3.1.22)) terms of the form ∂2h̃a and ∂Vab can arise only
when the Lorentz curvature is present. This simplifies greatly our discussion here.

Indeed, for our Horndeski Lagrangian (3.1.15) we focus then in two kind of terms:
those containing explicitly the Lorentz curvature Rab and those containing πa. Our
interest on πa comes from the fact that this term generates a Lorentz curvature through
the Bianchi identity Dπa = D2Za = Ra

bZ
b16.

16This can be seen more easily by considering the vierbein dependence of Za = Iadφ and later by
integrating by parts (see for instance (3.1.26)).
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We ought to pay then our attention to the Lagrangian terms

(F + 2W ) εabcdR
ab ∧ ec ∧ ed,

κ3 εabcdR
ab ∧ ec ∧ θd,

κ1 εabcdR
ab ∧ ec ∧ πd,

(3.3.32)

and

∂κ1

∂X
εabcd π

a ∧ πb ∧ πc ∧ ed,

∂κ3

∂X
εabcd θ

a ∧ πb ∧ πc ∧ ed,

∂F

∂X
εabcd π

a ∧ πb ∧ ec ∧ ed.

(3.3.33)

Let us illustrate this point with an example. Consider the ferm Lθ given by

Lθ =
1

2
εabcdR

ab ∧ ec ∧ θd. (3.3.34)

Consider the variation of Lθ under an infinitesimal change in the vierbein, i.e. δeLθ
given by

δeLθ =

[
1

2
εabcdR

ab ∧ θc + Ia(Ga ∧ θd)
]
∧ δed, (3.3.35)

where the 3−form Gd corresponds to

Gd =
1

2
εabcdR

ab ∧ ec. (3.3.36)

Let’s unfreeze the linear perturbations of φ (i.e. ϕ 6= 0) and implement the rest of them
in (3.3.35). We find that δeLθ behaves as

δeLθ = δēLθ̄ +

{
Ī
m(Wm ∧ θ̄d + Ḡm ∧ Yd

)
+

1

2
εabcdR̄

ab ∧ Yc

+
1

2
εabcdD̄

[
Vab − 1

2

(
Ī
a
D̄hb − Ī

b
D̄ha

)]
∧ θ̄c

−1

2
hmnĪn

(
Ḡn ∧ θ̄d

)}
∧ δed.

(3.3.37)



46 3. Horndeski’s Lagrangian with torsion

In here we have defined Ya as

Ya = −1

2
habθ̄

b + dφ̄ Ī
a
dϕ+ Z̄adϕ. (3.3.38)

which actually corresponds to the linear perturbation of θa, while Wa corresponds to

Wd = −1

4
εabcdD̄

(
Ī
a
D̄hb − Ī

b
D̄ha

)
∧ ēc

+
1

2
εabcd

[
1

2
R̄ab ∧ hc + D̄Vab ∧ ēc

]
= +

1

4
∗̄
[
�̄dR h̃d + Īad

(
R̄a

b ∧ h̃b
)]

−1

4
∗̄
{
Ad +Bd +

1

2
ēd
[
C − Īc

(
Ac +Bc

)]}
+

1

2
εabcd

[
1

2
R̄ab ∧ hc + D̄Vab ∧ ec

]
.

(3.3.39)

In here, Aa, Ba and C are the same torsion couplings defined in (3.3.30). One can
find similar expressions on the linear perturbations for the rest of the terms written in
(3.3.32) (3.3.33).

We finish this section by remarking some points. Interestingly enough, the
appearance of terms of the form ∂2h̃a is related to couplings with torsion. The
treatment of linear perturbations in Horndeski’s framework in first-order formalism
states that this seems to be a rule, rather than an isolated occurrence.



Chapter 4

Summary and conclusions of Part I

This first part of this doctoral work addressed the study of Horndeski’s Lagrangian
within the first order formalism. Such Lagrangian entails all possible interactions
between gravity and a scalar field in four-dimensional spacetime that yield equations
of motion up to second order in the derivatives. We explored how these couplings
within the first order formalism might give rise to a non-vanishing torsion. With help
of torsion-aware differential operators we were able to study the linear perturbation
regime around a certain background and see how the background torsion couples to
the metric perturbations. Let us summarize this first part and findings therein.

Summary

In Chapter 2 we made a first presentation of certain modified theories of gravity. We
discussed a generalization which depends solely on the metric, which is Lovelock’s
theory. This prompted the question of whether we can find further reasonable
modifications for Einstein’s gravity. Motivated by the current problem of dark energy,
we discussed the possibility of including a scalar field into the picture. This lead us to
introduce Horndeski’s theory and give an account of its formulation, features and
some of the theories contained. Given the recent developments and experimental
results in gravitational wave astronomy, we dedicated a subsection to discuss how
such data constraint the form of Horndeski’s Lagrangian if we impose the speed of
propagation of gravitational waves to be the speed of light. Other constraints coming
from the polarization side were mentioned as well.

After having introduced Horndeski’s theory, in Chapter 3 we studied Horndeski’s
Lagrangian within the first order formalism. Since torsion is a non-Riemannian feature
of geometry, we find it convenient to work with the Cartan geometry formalism.

• In section one of chapter 3 we introduced some convenient definitions in order
to explore Horndeski’s Lagrangian in Cartan’s first-order formalism. We wrote
down the full Horndeski’s Lagrangian in the language of p-forms and derived the
field equations with respect to ea, ωab and φ.
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• Section two was the most mathematical-oriented portion of this chapter. In
here, we defined torsion-aware differential operators as a preparation for our
study of linear perturbations coupled to torsion. Such operators are able to
discern the presence of torsion and can act on forms carrying Lorentz indices.
We summarized such operators in Table 3.1. We provided a generalized version
of the Weitzenböck identity that relates torsion-aware versions of the
Laplace-Beltrami and the Laplace-de Rham operators. Such identities work for
forms with and without Lorentz indices, as given by (3.2.12) and (3.2.3).

• Finally, in section three we dealt with the linear perturbation theory for a
theory of gravity non-minimally coupled to a scalar field within the first-order
formalism. We studied the most relevant parts of Horndeski’s Lagrangian
(3.1.15) which can lead to gravitational waves. Such perturbation theory is
highly non-trivial. Thanks to the differential operators defined in section two we
were able to discern and separate the torsional degrees of freedom from the
metric perturbations, all within the assumption that our background
configuration might have an arbitrary curvature and torsion. Taking the
Einstein-Hilbert portion of Horndeski’s Lagrangian as a case study, our analysis
showed that the background torsion does indeed couple to the propagating
metric degrees of freedom. This motivated us to study further terms of
Horndeski’s Lagrangian which might give rise to wave equations for the metric
perturbations, concluding that the relevant terms one has to look for those
containing the Lorentz curvature Rab and πa explicitly. As expected, we find a
wave operator acting on the metric perturbations, coupled with the background
curvature and torsion, analogous to the case for the Einstein-Hilbert term.

Discussion and conclusions

The exploration of classical theories of gravity can be further deepened within the
first-order formalism of geometry. Indeed, by taking the concepts of metricity and
parallelism as independent we relax our geometric assumptions and allow a broader
account of phenomenological and theoretical aspects of our theory that might have been
overlooked. This is the reason behind the appeal of studying Horndeski’s theory within
the first-order formalism: It is the most general description of a non-minimal coupling
between a scalar field and gravity with no ghosts. Horndeski’s Lagrangian contains
several modified theories of gravity that address remaining problems in cosmology,
such as inflation, dark energy and dark matter. As stated in 3.2, U(1) gauge bosons are
unaware of the background torsion. This motivated the study of torsion arising from
other significant astrophysical phenomena, like gravitational waves.

In this first part of this doctoral work, we explored solutions to two important issues
regarding torsion: First, how it can be sourced. Second, to check whether it arises from
phenomena where torsion can be potentially falsified.

Regarding the first point, in the pure ECSK theory, torsion does not propagate
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in vacuum and fermions are its only (very weak) source. This makes it necessary
to look for more general theories in four dimensions and new torsion sources. This
prompted to take Horndeski’s theory and allow torsion to be non-zero within the first-
order formalism. We found that every non-minimal coupling of the geometry with the
scalar field φ and every term containing second derivatives of φ are generic sources
of torsion. This was expected from previous work, such as section 1.7.1 of [103] on
Brans-Dicke theory and [51] on non-minimal couplings with the Gauss-Bonnet term.
Regarding the second point, we approached gravitational waves as a way to probe
torsion. We developed differential operators capable to discern torsion, and we showed
that any Horndeski Lagrangian that includes the Einstein-Hilbert will generate –under
linear perturbations– gravitational waves, as seen in (3.3.28). Such gravitational waves
will contain interactions with the background torsion.

Even though we were able to show that torsion is present at the level of
perturbations at linear level, there are still remaining issues that need to be
addressed. For instance, with the input of observational evidence, modified theories of
gravity have been heavily constrained. In particular, after GW170817 and its
electromagnetic counterpart, observational evidence suggests to take the speed of
propagation of gravitational waves to be the same as the speed of light if we explore
alternative theories of gravitation. By doing so, we are limited only to a certain
subset of theories contained within Horndeski’s framework.

In this work, we explored the perturbation regime with no matter Lagrangian.
The role of torsion in realistic astrophysical phenomena within surviving theories still
needs to be modeled. Even for the vacuum case, a proper analysis of the equations of
motion and possible solutions whenever torsion is presents needs to be done. It has
been argued recently that torsion does have an effect on the polarization tensor of
gravitational waves, without changing the speed of propagation [112]. New
instrumentation, arrangements and upgrades for the current gravitational wave
observatories might be able to discern the presence of torsion.

From a theoretical side, the question of adding torsional terms to Horndeski’s
Lagrangian still remains an open problem. Horndeski’s Lagrangian is ensured to give
equations of motion up to second order in the derivatives. Within the first order
formalism and allowing torsion to be non-vanishing, it is still unclear how torsion
might be added consistently to Horndeski’s Lagrangian, i.e. how we could generalize
the Lagrangian by adding torsional terms and guarantee that the equations of motion
will be up to second order in the derivatives. The aforementioned remaining problems
will be subject for future work.
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Part II

T-duality and the Open String





Chapter 5

Introduction of Part II

Enter string theory

In the first part of this doctoral work we explored Horndeski’s Lagrangian, allowing a
non-vanishing torsion and studied linear perturbations for the scalar field, spin
connection and vierbein. Horndeski’s theory is a particular generalization of Einstein
gravity, and allows us to explore possible extensions of it. Moreover, we worked inside
a framework that does not force torsion to vanish. All in all, we relaxed our
assumptions of geometry and found that torsion might play a significant role in the
propagation of gravitational waves. This exercise is a small reflection of an aspect of
the study of Nature: Throughout the history of science, we find that the search for
generality and unified descriptions have driven the development of physics.

So far, our best framework to address gravitational phenomena is general
relativity. Its predictive power cannot be overstated: The announcement of the
detection of gravitational waves in February 2017 and the results of the Event Horizon
Telescope released in April 2019 are the last of a long list of confirmations of
Einstein’s Theory. On the other hand, in March 2013 the CMS and ATLAS
collaborations at CERN announced the detection of the Higgs boson, adding another
success for the standard model of particles [113].

Despite their successes, there are still problems that the standard model and general
relativity cannot address. For instance, the origin of dark matter and dark energy is
still unknown. It is still unclear also if quantum chromodynamics and the electroweak
theory can be unified under a Grand Unification Theory. Furthermore, if we want to
incorporate gravity into the standard model we find that general relativity cannot be
quantized since it is non-renormalizable.

It is widely regarded that the incorporation of general relativity into the Standard
Model is needed. A theory of quantum gravity would allow – for instance – to have a
unified description of all fundamental forces of nature. It could also allow the study of
processes in early cosmology, where the quantum effects of the gravitational
interaction become relevant [114]. The energy scale at which these effects become
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relevant is thought to be the Planck mass MP = ~c/G ' 1019 GeV/c2 [115]. A
candidate framework for a quantum theory of gravity that unifies all fundamental
forces and particles is string theory.

String theory is a framework in which we use strings instead of the idea of the point
particle. These strings can be either opened or closed. Depending on the oscillation
modes of the string, we can generate different particles. In fact, the graviton – which
is thought to be the carrier particle of the gravitational interaction – appears naturally
inside this framework from the oscillations of the closed bosonic string. In fact, source-
free general relativity appears naturally when we study consistency conditions dictated
by conformal invariance.

One of the many surprising consequences of string theory involves the dimensions
of our spacetime. Bosonic string theory – that is, a string theory containing only
bosons plus a tachyon – states that the number of dimensions is 26, whereas
superstring theory – a string theory featuring fermions and bosons that incorporates
supersymmetry – establishes the number of dimensions to 10. Since the world we live
in has – up to our knowledge – only four spacetime directions, this feature of string
theory has led to the study of compactification schemes that allow us to make contact
with the four-dimensional spacetime. The treatment of compactification for the
superstring lead to the study of interesting geometries, like Calabi-Yau manifolds.
Regarding the bosonic case, we will explore compactification for the bosonic string in
next chapter as a motivation to study T-duality transformations.

Another feature of string theory is that it contains extended objects called D-branes.
These are the very same objects on which the endpoints of the open strings attach. An
open string can stretch between two different D-branes or start and end on the same
brane. The dimension of such D-branes is determined by the number of Dirichlet and
Neumann boundary conditions that the open string satisfies. As an example, let d be
the dimension of the target spacetime. If we have an open string with p directions Xa

satisfying Neumann boundary conditions and d − p directions X i satisfying Dirichlet
boundary conditions at its endpoints, we have a p-dimensional D-brane – or Dp-brane,
for short17.

Such objects are of crucial importance in string theory: D-branes are
non-perturbative degrees of freedom and are allowed to have dynamics on their own.
They were central to the discovery of an intricate web of dualities between all five
superstring theories - see for instance section 3 of [117]. Intersecting D-branes play an
important role in the construction of gauge bosons and matter fields with properties
of those of the standard model. In this second part of this doctoral work, D-branes
will be central to our treatment of T-duality transformations.

17There is an exotic case for a Dp-brane, which is the D(-1)-brane. This is a brane with Dirichlet
boundary conditions in the time direction as well as all spatial directions. See for instance section 8.2
of [116].
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Figure 5.1: (a) An open string with endpoints attached to the same D-brane. (b) An open string
stretching between two D-branes.

T-duality and non-geometric spaces

In string theory, T-duality is an equivalence between two seemingly different theories
which actually describe the same physics. In its most simple case, it establishes that
bosonic closed strings compactified on a circle of radius R have the same physics as
theories compactified on a circle of radius α′/R - see for instance Section 10.2 of [115].
For the superstring, we find that it relates the type IIA and type IIB supersymmetric
theories (see for instance [118, 119] and section 7.5 of [116]) and the heterotic SO(32)
and E8 × E8 theories. For a thorough discussion on T-duality transformations for the
heterotic string, see sections 2.1 and 2.2 of [120].

T-duality transformations can be used to construct non-geometric backgrounds in
string theory. These non-geometric spaces cannot be described in terms of Riemannian
geometry only: In order to have a proper globally well-defined patching of such spaces
we need to incorporate duality transformations. This means that diffeomorphisms
are not enough and we need to incorporate O(D,D;Z) transformations as transition
functions between local charts [121, 122]. Such spaces are of special interest in string
theory, since they lead to non-associative [123–129] and non-commutative structures
[130–139].

The standard construction of a non-geometric background is carried by applying
successive or collective T-duality transformations on the three-torus with H-flux: This
configuration considers a target space metric G of a product space S1 × S1 × S1

together with the flux H = dB related to the antisymmetric Kalb-Ramond field B.
By performing one T-duality transformation one reaches at a twisted
three-torus [140, 141] which is a geometrical space with a geometric F -flux F i

jk

associated to it. By performing a second T-duality transformation we reach the T-fold
background [121], which carries the non-geometric Q-flux with components Qij

k.
Even though this space allows a local geometric description in terms of the
target-space metric and the Kalb-Ramond field B, it is globally non-geometric. Even
though Buscher’s rules do not allow it, we can still formally perform a third T-duality
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transformation and reach the so-called R-space [142, 143]. Such space carries the
non-geometric R-flux Rijk and does not even allow a local geometric description. The
Q- and R-fluxes have found application in moduli-stabilization [144–149, 142, 143] and
in construction of inflationary potentials [150,151].

5.1 Motivation

The study of T-duality transformations for curved background configurations requires
the use of the Buscher’s procedure. This procedure employs the isometries of the
background, where the corresponding isometry algebra can be abelian or non-abelian.
On the other hand, the incorporation of D-branes into the picture requires to study
T-duality transformations from the open-string point of view, hence the boundary
conditions for such strings need to be taken into consideration. The study of
T-duality transformations for the open string has been addressed in the literature. We
mention some relevant works: in [152] T-duality transformations for the open string
along one direction are discussed. This direction satisfies Neumann boundary
conditions and a Lagrange multiplier is implemented. Such Lagrange-multiplier does
not allow the generalization to Dirichlet directions for non-trivial worldsheet
topologies. In [153–155] non-abelian T-duality transformations along one direction are
studied from the path integral and canonical transformations point of view. The B-
field is set to zero and only a trivial topology for the worldsheet is considered. In [156]
the authors explore T-duality transformations for the open-string sigma model
including the fermionic section on the worldsheet. The case for one T-duality
transformation is discussed, taking into account a trivial topology for the worldsheet.

In this second part we study non-geometric backgrounds from the open-string point
of view via Buscher’s procedure, addressing missing details in the literature. In our
discussion we will consider a non-trivial worldsheet topology and perform multiple T-
duality transformations on a curved background. Since we include D-branes in this
picture, we present treatments for directions which satisfy either Dirichlet or Neumann
boundary conditions. We present the construction of a non-linear sigma model whose
isometry algebra will be considered to be non-abelian and implement Buscher’s rules,
but main results will address the abelian case.

5.2 Outline of Part II

This second part consists of four chapters plus this introduction. We present an outline
of their contents:

• In Chapter 6 we present an introductory treatment on T-duality and
non-geometric spaces. We illustrate T-duality by presenting the case of the
bosonic string compactified on a circle and on a toroidal lattice. We showcase
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the effect of T-duality transformations on the mass spectrum of the closed string
and present the set of transformations behind them. We present as well a
treatment on general backgrounds and introduce Buscher’s procedure. In the
next subsection we display the standard non-geometric configurations and some
of their properties. In the final subsection of this chapter we present the
so-called toroidal fibrations and show the globally well-definedness of
non-geometric backgrounds when we use duality transformations.

• In Chapter 7 we present a treatment of T-duality transformations for the open
string using Buscher’s procedure. We construct a non-linear sigma model for
the open string with non-trivial boundary and present in detail the boundary
conditions for the string. We use Hodge’s decomposition theorem for manifolds
with boundary for this task. Later we study the global and local symmetry of the
worldsheet action and implement Buscher’s procedure. We study collective T-
duality transformations along directions that satisfy either Dirichlet or Neumann
boundary conditions and read the dual background configuration. We illustrate
this formalism with the standard example of the three torus with H-flux and study
the backgrounds of the dual configuration. Later, we discuss the application of the
Freed-Witten anomaly cancelation condition on some of our examples, and later
we study the global well-definedness of the D-branes on the dual configuration.

• In Chapter 8 we present a current development on non-abelian T-duality
transformations. We consider a Wess-Zumino-Witten model for a Lie group
manifold and apply Buscher’s procedure. We integrate along all of the isometry
directions of the diagonal subgroup of G, and present the corresponding change
of basis. We illustrate this for the case G = SU(2) and discuss preliminary
results.

• In Chapter 9 we present a summary of our findings and we close with conclusions.
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Chapter 6

T-duality and non-geometrical
Spaces

In this chapter we will present the subject of T-duality as a motivation for our next
chapter, when we study T-duality transformations for the open string.

Here, we review the study of a closed bosonic string defined on a Minkowskian
target space background with S1 as a compact dimension. We study its mass spectrum
and the discrete transformations that leave it invariant. For completeness, we explore
the general case of compactifications on tori TD. After these treatments, we go on
the study of T-duality transformations for general curved backgrounds via Buscher’s
procedure. This will work as a preparation for the next chapter, when we extend
these formalisms by adding consistently D-Branes in our configuration. We address the
study of the geometrical spaces obtained after these transformations in the subsequent
sections on non-geometric spaces and fibrations. Since this thesis deals with T-duality
transformations for oriented strings, we won’t do any treatment for the unoriented case.
The interested reader can check section 4.11 of [116] and section 8.8 of [157] on this
matter.

The following treatment is inspired from [158], [159] and [115]. The interested reader
can further deepen on this subject with help of these references.

6.1 T-Duality

6.1.1 The case of S1

Anomaly-free string theory for the bosonic string requires that d = 26, whereas the
superstring requires d = 10. Since we want to establish contact with four-dimensional
field theories and phenomenology, we can resort to compactification in order to get
effective 4d-theories from higher dimensional ones. This idea has been long before
explored: In 1921 and 1926 Kaluza and Klein put forward a compactification scheme to
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unify electromagnetism and general relativity by considering an extra dimension besides
the usual four [160,161].

Here we perform the simplest mechanism for compactification by allowing one
direction to be along the circle S1. We will consider the simplest case of a string
moving on a Minkowskian target-space and study its mass spectrum.

To this end, we will consider the action for such string. Let Xµ = Xµ(τ, σ) denote
each coordinate of the string which depends on parameters (τ, σ). The propagation of
the string in spacetime generates a two-dimensional Lorentzian worldsheet Σ which can
be parametrized precisely by (σ, τ). By performing the usual gauge fixings18 we get the
action for a worldsheet with intrinsic metric hab = ηab = diag(−1,+1) given by

SP = − 1

2πα′

∫
Σ

1

2
ηµν dXµ ∧ ∗dXν , (6.1.1)

where ηµν is the metric of the target space. This action corresponds to the Polyakov
action. We start by solving the equations of motion that can be derived from it.

Closed strings

Let us consider the expansion of a closed bosonic string moving on a Minkowski target
space in d = 26 and derive the equations of motion derived from the (6.1.1). We find
that all Xµ satisfy the wave equation (∂2

σ − ∂2
τ )X

µ = 0 and we solve it for the closed
string, which satisfies the periodic boundary conditions Xµ(τ, σ) = Xµ(τ, σ+ `), where
` corresponds to the length of the string. We find that Xµ allows an expansion in term
of the left and right movers XL and XR as Xµ = Xµ

L +Xµ
R, where

Xµ
R(σa) =

1

2
(xµ − cµ) +

πα′

`
pµ(τ − σ)

+i

√
α′

2

∑
n6=0
n∈Z

1

n
αµn exp

[
−i2πn

`
(τ − σ)

]
,

Xµ
L(σa) =

1

2
(xµ + cµ) +

πα′

`
pµ(τ + σ)

+i

√
α′

2

∑
n6=0
n∈Z

1

n
ᾱµn exp

[
−i2πn

`
(τ + σ)

]
,

(6.1.2)

where cµ is a constant, xµ is the center of mass position of the string at τ = 0 and pµ

is the total space-time momentum of the string. The quantities αµn and ᾱµn correspond
to the oscillators which follow the commutation relations after the usual quantization

18To get insight into the process of deriving the equations of motion, quantization procedure and
light-cone gauge for the bosonic string, the reader can turn to Appendix A.
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procedure

[αµm, α
ν
n] = mδm+n η

µν [ᾱµm, ᾱ
ν
n] = mδm+n η

µν

[αµm, ᾱ
ν
n] = 0 [xµ, pν ] = i ηµν ,

(6.1.3)

where the α′s satisfy the reality (hermeticity) conditions (αµm)† = αµ−m and (ᾱµm)† =
ᾱµ−m.

From this point, we allow X25 to be periodic along a circle of radius R. This has two
consequences: One, that the momentum p25 needs to be quantized so that the string
states remain invariant under a translation along this circle, leading to

p25 =
n

R
(6.1.4)

with n ∈ Z. Second, in string theory the closed string is allowed to wind around this
compact dimension more than once. This behavior is captured in numbers by

X25(τ, σ + `) = X25(τ, σ) + 2πwR, (6.1.5)

where w ∈ Z is called the winding number. With these considerations, we find that the
expansion for X25 can be written down as

X25(τ, σ) = x25 +
2πα′

`
p25τ +

2πα′

`

wR

α′
σ+

+ i

√
α′

2

∑
n6=0
n∈Z

1

n

[
α25
n e−i

2πn
`

(τ−σ) + ᾱ25
n e−i

2πn
`

(τ+σ)
]
,

(6.1.6)

where the oscillators αµn and ᾱµn together with x25 and p25 satisfy the commutation
relations

[α25
m , α

25
n ] = mδm+n,

[x25, p25] = i , [ᾱ25
m , ᾱ

25
n ] = mδm+n,

[α25
m , ᾱ

25
n ] = 0.

(6.1.7)

It will be helpful to write X25(τ, σ) = X25
L (τ, σ) +X25

R (τ, σ), where

X25
L (τ, σ) = x25

L +
2πα′

`
p25
L (τ + σ) + i

√
α′

2

∑
n 6=0
n∈Z

1

n
α25
n exp

[
−i2πn

`
(τ + σ)

]
,

X25
R (τ, σ) = x25

R +
2πα′

`
p25
R (τ − σ) + i

√
α′

2

∑
n6=0
n∈Z

1

n
ᾱ25
n exp

[
−i2πn

`
(τ − σ)

]
.

(6.1.8)
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where we find the momenta p25
L,R

p25
L =

1

2

[
n

R
+
wR

α′

]
,

p25
R =

1

2

[
n

R
− wR

α′

]
.

(6.1.9)

Since we performed a compactification along the 26th spacetime direction, the idea
is to have a sense of m2 perceived by an 25−dimensional observer. This means that
we ought to compute α′m2 = −α′pµ pµ for µ = 0, . . . , 24 via the light-cone gauge
quantization procedure. By using the expressions for the light-cone gauge found at
Appendix A we find that the mass squared has the form

α′m2 = α′
[
n2

R2
+
w2R2

α′2

]
+ 2(N̄ +N − 2)

= α′m2
R + α′m2

L,

(6.1.10)

where N and N̄ are the number operators for the left and right movers respectively
derived in the light-cone quantization, and the α′mL,R are

α′m2
L =

1

2

[
n

R
+
wR

α′

]2

+ 2N − 2,

α′m2
R =

1

2

[
n

R
− wR

α′

]2

+ 2N̄ − 2.

(6.1.11)

Moreover, physical states must satisfy the constraints

m2
L = m2

R −→ N − N̄ = nw, (6.1.12)

We notice something interesting in the mass formula (6.1.10). In the usual Kaluza-
Klein schemes of compactification, we can get rid of higher dimensional effects on the
mass of scalar fields by making them infinitely massive (thus being difficult to excite)
by taking the extra dimension to be small. In here we see something quite different: In
the limit R → ∞ we find that the mass increases due to the winding modes and the
compact momentum becomes continuous. This is expected for a non-compact direction,
since in field theory the momentum for a particle in a non-compact direction is rather
a continuous function of a continuous parameter. However, for R → 0 one finds that
while the momentum modes do become infinitely massive, the winding modes become
at the same time continuous. This is a feature of stringy origin only.

The mass has more to tell us: From the mass-squared formula (6.1.10) we find that
it remains invariant under the simultaneous discrete transformation

R→ α′

R
, n←→ w. (6.1.13)
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This illustrates a duality transformation for our bosonic string compactified on S1 case,
named T-duality. It states that the theory is indistinguishable from the original one
under such transformation, as long we are concerned about the mass. This implies that
the mass spectrum for this configuration is completely characterized by the values R ≥√
α′ or 0 < R ≤

√
α′, where evidently R =

√
α′ is a fixed point of this transformation.

By extending its action to all oscillator modes via the transformations we find

pL → +pL, XL → +XL,

pR → −pR, XR → −XR.
(6.1.14)

By considering these transformations and using (6.1.8) we find that the action of
these T-duality transformation corresponds to a Z2 asymmetric reflection, and the
CFT content for both the left and right modes for X25 are left untouched. This shows
that T-duality is a duality symmetry of the theory – in the sense that the physics of
our system do not change.

As a brief comment, we mention that T-duality transformations are not limited to
the bosonic string. The Z2 action acts on worldsheet fermions as well via the action
(+ψL,+ψR) → (+ψL,−ψR). This maps the IIB theory on the circle of radius R into
the type IIA theory on the dual circle with radius α′/R. This case will be explored
elsewhere.

Open strings

The previous discussion focused on the treatment of the closed string. Since we will
work with D-branes in the next chapter, it is a timely moment to mention the effect of
a T-duality transformation on an open string.

Let us consider an open string satisfying Neumann boundary conditions at each
endpoint, i.e. that

∂Xµ

∂σ

∣∣∣∣
σ=0,`

= 0. (6.1.15)

Solving the two-dimensional wave equation for Xµ with Neumann-Neumann conditions
(NN) (6.1.15) we find

Xµ
NN(σ) = xµ +

2πα′

`
pµτ

+i
√

2α′
∑
n 6=0
n∈Z

1

n
αµn exp

[
−iπnτ

`

]
cos
[πnσ
`

]
.

(6.1.16)

Let us consider now the expansion of the NN string (6.1.16) on a circle of radius R,
this time by writing its left and right moving expansion such that X25

NN = X25
NN,L +X25

NN,R,
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and

X25
NN,L = xNN,L +

πα′

`

n

R
(τ + σ) + i

√
α′

2

∑
n6=0
n∈Z

1

n
α25
n exp

[
−iπn

`
(τ + σ)

]
,

X25
NN,R = xNN,R +

πα′

`

n

R
(τ − σ) + i

√
α′

2

∑
n6=0
n∈Z

1

n
α25
n exp

[
−iπn

`
(τ − σ)

]
,

(6.1.17)

where the momentum is quantized according to p25 = n/R and n ∈ Z. By taking the
T-duality transformation (XL, XR) → (+XL,−XR) we find that the full expansion of
the string transforms as X25

NN → X̃25
NN, where

X̃25
NN = x25

0 +
2πα′

`

n

R
σ

+
√

2α′
∑
n 6=0
n∈Z

1

n
α25
n exp

[
−iπnτ

`

]
sin
[πnσ
`

]
.

(6.1.18)

We find that X̃25
NN is an expansion of an open string with Dirichlet-Dirichlet boundary

conditions. Notice that the string at σ = 0 is located at x25
0 = xNN,L − xNN,R and it

winds n times around the T-dual circle of radius R′ = α′/R at σ = `. If we had taken a
DD open string and performed the same T-duality transformation, we would have had
this time a NN open string expansion. This means that a T-duality transformation on
an open string exchanges boundary conditions.

This exchange of boundary conditions tells us that a T-duality transformation
transforms a Dp−brane into a D(p ± 1)−brane depending on whether the
transformation was done perpendicular to the brane (+) or parallel to it (−).

Let us get ahead and discuss the consequences of defining D-Branes. Having
Dp−branes in our configuration requires that our worldsheet boundary must not be
empty, i.e. ∂Σ 6= ∅. Let us remember that this object is characterized by the number
of Dirichlet and Neumann boundary conditions imposed to the Xµ; we have p + 1
Neumann directions and d− p− 1 Dirichlet directions. At the same time, the study of
the spectrum of Dp−brane states tells us the following: The massless level features a
state of p− 1 indices that transforms as a vector under of SO(p− 1) [115]. These are
gauge bosons, and in fact we can stack several D-branes in such a way that these
states correspond to Yang-Mills (non-abelian) boson. This lead us to interesting
consequences when we approach the construction of curved backgrounds. In
particular, we are allowed to define boundary gauge fields on ∂Σ, which (as the reader
might suspect by now) are affected by T-duality transformations.

Let’s consider a constant gauge field that begins and ends on the same brane. This
means that we ought to work with a U(1)−valued gauge field one-form given by a =
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aµ(X)dXµ on ∂Σ, whose writing on the action has the form

Sg = − 1

2πα′

∫
∂Σ

2πα′ a, (6.1.19)

where for illustrative purposes we will say a = (θ/2πR)dX25. We consider as well the
holonomy of our gauge field (or Wilson line19) to be

Wq = eiq Sg = e−iqθ. (6.1.20)

The integral (6.1.19) with this particular choice of gauge field can be thought as
an angle, and the exponential (6.1.20) as a group element of U(1). In fact, we will
see later on that if we have a Dp−brane wrapping along X25 – that is, that if one of
the space directions of the brane is X25, and if we perform a T-duality transformation
along this very same direction, the resulting D(p − 1)−brane will be located at θ on
the dual circle. More intricate constructions can be done if we allow N branes to
be separated, which leads to the notion of Chan-Paton factors20, the construction of
non-abelian gauge fields and even the realization of non-perturbative effects on the
worldsheet [164]. We will illustrate with examples the role of boundary gauge fields
whenever T-duality transformations are performed in the upcoming chapter.

This treatment has regarded only the case of one compact direction. It should not
be a surprise that this procedure can be further generalized to the case for toroidal
compactifications. By doing this we will have a better look on the group behind T-
duality transformations.

6.1.2 On general background configurations

The non-linear sigma model

Let us study a particular generalization of the Polyakov action (6.1.1). When we study
the different massless states arising from the closed bosonic string at level n = 2 – that
is, by letting two creation operators act on the vacuum |0; kµ〉, there are three fields
which arise: The target-space graviton Gµν(X), the Kalb-Ramond field Bµν(X) and
the dilaton φ(X)21. These fields in principle may depend on the bosonic target-space
coordinates Xµ, and we can use them to write an action for a propagating string. From
this point on we will work on a Euclidean worldsheet Σ by performing a Wick rotation

19This quantity measures the non-triviality of the gauged field by parallel-transporting it around a
non-trivial loop. These objects have been used in non-perturbative QCD and involved as well in the
so-called string confinement [162]. For a pedestrian approach on Wilson loops, see for instance [163].

20If we have a configuration of N Dp−branes on top of each other, the corresponding states can
be written as |k, l; pi〉 = λakl|a; pi〉, where k, l = 1, . . . , N encode the information on which brane the
string starts and ends, a = 1, . . . , N2, and (i, a) denote D and N directions, respectively. The λ’s are
N2 matrices which are the hermitian generators of U(N) and are called the Chan-Paton factors.

21See section A.4.1 of Appendix A
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σ0 → −iσ0 and work with the corresponding Euclidean action SE resulting from the
rotation S → −iSE. Noticing that ∗ 1 is the volume element of the worldsheet (with ∗
the Hodge dual) we write

SE = − 1

2πα′

∫
Σ

[
1

2
Gµν(X) dXµ ∧ ∗dXν

+
i

2
Bµν(X)dXµ ∧ dXν +

α′

2
Rφ(X) ∗ 1

]
,

(6.1.21)

where R corresponds to the Ricci scalar of the worldsheet. The action here accrued
corresponds to a non linear σ−model for the string.

At first glance it seems odd that we establish a background with fields which are
generated from the string itself. However, we can think of these fields as effective
descriptions made out from the respective coherent states [116]. Consider for instance
Gµν(X) = ηµν +χµν(X) to be an expansion of our target space metric and consider the
action only with the gravitational coupling and without any Weyl gauge fixing

SG = − 1

2πα′

∫
Σ

1

2
Gµν(X)dXµ ∧ ∗dXν

= − 1

4πα′

∫
Σ

d2σ
√
−hhabGµν(X)∂aX

µ∂bX
ν .

(6.1.22)

Notice that exponentiation of this action including the expansion of the metric leads
us to

eSG = eSP
[
1− 1

4πα′

∫
Σ

d2σ
√
−hhabχµν(X)∂aX

µ∂bX
ν + . . .

]
, (6.1.23)

where SP corresponds to the Polyakov action. We see that the term of order χ is
actually a vertex operator for the graviton state, therefore stating that the metric itself
is of stringy˝origin and allowing us to couple consistently the string with the curved
background metric.

Let us briefly discuss the role of α′. The action (6.1.21) can be thought of as a 2D
interacting quantum field theory. Since α′ has units of (length)2 we find that it counters
the units of length found in the G and B fields, not being the case for the dilaton. In
this respect, we can think of a dimensionless coupling constant λ =

√
α′/Rc where Rc

is the characteristic radius of the target space – in fact, we are actually working in the
λ� 1 regime, where the wavelengths are long compared to the string scale and massive
string states are not created [157].

We conclude this section with a small remark. Looking at (6.1.21) we are at risk
to jump quickly to the conclusion that choosing different values for Gµν , Bµν and φ
corresponds to choose different theories. This is not the case. What we do here actually
is to choose different backgrounds. Let us not forget that we are working inside string
theory, and that choosing different values for the aforementioned fields amount to look
at different states inside the framework of ST.
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Beta functions

Since the action (6.1.21) accrued from the generalization of the Polyakov action, we
want to ensure Weyl invariance in order to define a consistent string theory. This
amounts to enforce the tracelessness of the worldsheet energy-momentum tensor Tab.
Having in mind that H = dB, we find that its trace is given by

T a
a = − 1

2α′
βGµνh

ab ∂aX
µ ∂bX

ν − i

2α′
βBµνε

ab ∂aX
µ ∂bX

ν − 1

2
βφR. (6.1.24)

We find as well the so-called beta functions for the metric, Kalb-Ramond field and
dilaton

βGµν = α′
[
Rµν + 2∇µ∇νφ−

1

4
HµκσHν

κσ

]
+O(α′2),

βBµν = α′
[
−1

2
∇κHκµν +∇κφHκµν

]
+O(α′2),

βφ = α′
[
D −Dc

6α′
− 1

2
∇2φ+∇κφ∇κφ− 1

24
HκµνH

κµν

]
+O(α′2),

(6.1.25)

where Dc is the critical dimension of the theory – for the bosonic string here treated
Dc = 26. These expressions required to vanish for Weyl invariance at first order in α′.

6.1.3 The case of TD

In this section we will consider a more general configuration for our propagating string
and allow more compactified directions to exist. Taking (6.1.21), let us now consider
the action for a bosonic, closed string

S = − 1

2πα′

∫
Σ

[
1

2
Gµν dXµ ∧ ∗dXν +

1

2
BµνdX

µ ∧ dXν

]
, (6.1.26)

with Gµν and Bµν constant components of the symmetric target space metric and the
antisymmetric Kalb-Ramond field, respectively. For the moment we will consider the
worldsheet metric to have a Lorentzian signature and Xµ = Xµ(τ, σ), µ = 0, . . . , 25
describes the motion of the string. We will explore the effect of T-duality
transformations given this configuration with multiple compactified directions. Let us
take for a moment Bµν = 0.

We let D bosonic coordinates to be compactified on a D−dimensional torus TD via
the identification

XI ∼ XI + 2πLI , I = 25−D, . . . , 25 (6.1.27)

with

LI =
D∑
i=1

ni eIi , ni ∈ Z. (6.1.28)
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Here the capital indices describe compact directions. The set of vectors LI are
vectors of a D−dimensional lattice which can be written as a linear combination of the
lattice basis vectors {eIi } – the vielbein basis. It will be useful to consider the dual basis
of this lattice, given by {ẽiI}. Both bases satisfy the conditions

eIi ẽ
j
I = δji ,

eIi ẽ
i
J = δIJ ,

(6.1.29)

from which we can write the metric of our lattice as gij = eIi e
J
j δIJ and its inverse as

gij = ẽiI ẽ
j
J δ

IJ . This allows us to write the center of mass momentum pI as pI = mi ẽ
i
I

with mi ∈ Z, and we mention as well that the center of mass position and momentum
satisfy the usual commutation relations

[xI , pJ ] = iδIJ . (6.1.30)

Taking into account the identification (6.1.27) we find that XI allows an expansion
of the form XI = XI

L +XI
R, where

XI
L = xIL +

2πα′

`
pIL(τ + σ) + i

√
α′

2

∑
n 6=0
n∈Z

1

n
ᾱIn exp

[
−i2πn

`
(τ + σ)

]
,

XI
R = xIR +

2πα′

`
pIR(τ − σ) + i

√
α′

2

∑
n6=0
n∈Z

1

n
ᾱIn exp

[
−i2πn

`
(τ − σ)

]
,

(6.1.31)

and we find the center of mass position and momentum expansion

xIL =
1

2

[
xI + cI

]
, pIL =

1

2

[
pI +

LI

α′

]
,

xIR =
1

2

[
xI − cI

]
, pIR =

1

2

[
pI − LI

α′

]
.

(6.1.32)

In fact, we find that the momentum P I = (pIL, p
I
R) is a lattice vector of an even, self-dual

Lorentzian lattice ΓD,D whose scalar product is P · P ′ =
∑

I(p
I
Lp
′J
L − pIRp′JR )δIJ .

Recalling the expression (6.1.11) we find

α′m2
L =

α′

2

∑
I

[
pI +

1

α′
LI
]2

+ 2N̄ − 2,

α′m2
R =

α′

2

∑
I

[
pI − 1

α′
LI
]2

+ 2N − 2.

(6.1.33)
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For the sake of simplicity we will consider our target space metric to be Euclidean along
the compact directions (i.e. GIJ = δIJ) and turn on the Kalb-Ramond field components
along these same directions only. By using (6.1.26) one can show that the presence of
the Kalb-Ramond field generates a shift on the center of mass momentum πI computed
from the canonical momentum Πµ = ∂L/∂Ẋµ. Turns out that πI allows the writing
πI = miẽ

i
I , with mi ∈ Z (since it generates translations on the lattice), which in turn

allows the left and right components of the momenta pI to be written as

pI,L =
1

2
ẽiI

[
mi +

1

α′
(gij − bij)nj

]
,

pI,R =
1

2
ẽiI

[
mi −

1

α′
(gij + bij)n

j

]
.

(6.1.34)

where we have

gij = GIJ e
I
i e
J
j ,

bij = BIJ e
I
i e
J
j .

(6.1.35)

We will address this quantities later on when we discuss its role in the mass
invariance of the string spectrum and when we comment on the moduli space of this
compactified theory.

Mass invariance

In this section we explore the mass spectrum for our toroidal configuration. The purpose
is to find a set of transformations that leave it invariant, just as we saw earlier for S1.
In matrix notation we find the square of the left and right momenta of the lattice to be

α′p2
L,R =

α′

2
mTg−1m+

1

2α′
nT
[
g − bg−1b

]
n+

+nT bg−1m± nTm.

=
1

2
nTHn± 1

2
nTη n.

(6.1.36)

where we have defined

n =

(
ni

mj

)
, H =

(
1
α′

(g − bg−1b) bg−1

−g−1b α′g−1

)
, η =

(
0 1D×D

1D×D 0

)
, (6.1.37)

and of course we have (+) for L and (−) for R. The last expression in (6.1.36) – as seen
for instance in [158,165] – is rather suggestive and it will prove to be quite useful. The
quantity H defined above is called the generalized metric.

If we want to find the mass perceived by an (25 − D)−dimensional observer, we
compute the mass squared under the light-cone gauge α′m2 = −α′

∑25−D
µ=0 pµp

µ.
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Analogously to the S1 case we find that the left and right mass squared and total
mass squared are given by

α′m2
L,R = 2α′p2

L,R + 2(NL,R − 1),

α′m2 = α′m2
L + α′m2

R,

α′m2
L = α′m2

R (Level-matching condition),

(6.1.38)

where regarding the notation in (6.1.11) we said NL ≡ N and NR ≡ N̄ . We achieve
invariance of the total mass squared by requiring that both α′m2

L and α′m2
R remain

invariant under the action of a soon-to-be-determined transformation. This
transformation must then leave the square of each p2 of (6.1.36) invariant, as well as
the number operators.22 The reader can check that this invariance can be achieved
under the transformations [158]

n→ ñ = O n , H → H̃ = O−THO−1, (6.1.39)

where the matrices O ought to satisfy OT ηO = η. The requirement that the
components ñ must still belong to Z leads us to the conclusion that

O ∈ O(D,D;Z). (6.1.40)

At this stage we have given a concrete realization of how T-duality transformations
should act on TD-compactified configurations by starting from the example for S1. Of
course, the case for S1 is contained in this kind of compactification; by setting D = 1,
the group O(D,D;Z) delivers us two copies of Z2, as expected.

We will take the opportunity to address the moduli space of this compactified
setup. Basically, the moduli space is the space of parameters that determines an
specific theory. In our case, we see that the theory is determined by gij and bij already
defined in (6.1.35). Put together, we find that there are
D(D + 1)/2 + D(D − 1)/2 = D2 linearly independent parameters that determine our
theory. These parameters live in a D2−dimensional parameter space. The question
that comes now is, what is the space of inequivalent physical theories? It can be
proven that all possible self-dual lattices ΓD,D can be obtained from an O(D,D;Z)
rotation of some reference lattice Γ0. But since the mass spectrum is invariant under
independent rotations of the lattice momenta in (6.1.34) under either O(D;Z)L or
O(D;Z)R, then at first it seems that the moduli space is actually given by [115]

M0 =
O(D,D;Z)

O(D;Z)×O(D;Z)
. (6.1.41)

22So far we are handling T-duality as a symmetry of the mass spectrum, meaning that we demand
p2
L,R to be invariant only. In this respect, we can make it a duality symmetry between different CFTs.

For that we require to write down the appropriate transformations for X and p.
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However, taking into account the set of transformations O ∈ O(D,D;Z) that leave
the mass square invariant, we need once more to divide by O(D,D;Z) in order to
distinguish the inequivalent physical configurations. Hence, the true moduli space is
given by

M1 =
O(D,D;R)

O(D;R)×O(D;R)

/
O(D,D;Z). (6.1.42)

Basic transformations

Having the O(D,D;Z) group at our disposal opens a way for explicitly examining
some specific transformations upon the g and b background fields, which can be read
from H̃. Before we move on towards the next section, we will state the basic
transformations which will be used throughout our treatment for the open string.
Note that we have not yet discussed the effect of these transformations on the
momenta and bosonic coordinates – we will rather approach this matter concretely
once we work out explicit examples in the next chapter. These transformations are
further covered in the existing literature for instance in the review articles [166, 158]
and in [167, 120], where in the latter the case for the heterotic string is thoroughly
explored. We have then

1. Diffeomorphisms: Let A ∈ GL(D;Z). Diffeomorphism transformations are
parametrized by a 2D × 2D matrix OA given by

OA =

(
A−1 0

0 A−T

)
. (6.1.43)

This transformation belongs to the so-called geometric group.

2. Integer B parameter shifts: Let B be a D × D antisymmetric matrix with
integer entries. This 2D × 2D matrix OB given by

OB =

(
1 0
B 1

)
(6.1.44)

shifts the b matrix as b → b + α′B. Notice that if B = dΛ (with Λ properly
well defined) then this can be regarded as a gauge transformation for b. This
transformation belongs to the geometric group as well.

3. Factorized dualities: Let Di be a D × D matrix with null entries in all of its
components except at the ii entry. We find that the 2D×2D matrices OD±i given
by

OD±i =

(
1− Di ±Di

±Di 1− Di

)
(6.1.45)
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give us the generalization of the R → α′/R circle duality. We mention that this
kind of transformation is not a symmetry of the action, but a duality
transformation instead.

4. β-transformations: Let’s consider an antisymmetric D × D matrix β with
integer entries. Consider now the transformations generated by the 2D × 2D
matrix Oβ given by

Oβ =

(
1 β
0 1

)
. (6.1.46)

As it happens with the factorized dualities, these transformations are not a
symmetry of the action, but a duality transformation as well.

In the next section will explore the formalism for T-duality transformations
whenever we find a curved background for our propagating string.

6.1.4 Buscher rules

The σ−model (6.1.21) offers the possibility to study intricate background configurations
with fields that might depend on the coordinates of the target space Xµ. On the other
hand, the cases we have explored so far for the S1 and TD have brought us insight
about the structure of T-duality transformations for flat backgrounds. Can we extend
our discussion and study T-duality transformations when we have an arbitrary, curved
background then? The answer is yes. Instead of studying the conformal field theory
for the curved case, we turn to study the Buscher’s rules.

Such rules were first introduced in his papers [168, 169] and dealt with the case of
performing a T-duality transformation along one direction only. In this doctoral work
we will introduce instead the Buscher’s rules for multiple directions right away. Our
background configuration must first satisfy a set of conditions which we will mention
later on. If these conditions are met we introduce then into the action a set of Lagrange
multipliers and worldsheet gauge fields. We will see that the T-dual configuration can be
reached finally by integrating-out the worldsheet gauge fields. The Lagrange multipliers
are interpreted as coordinates of the T-dual target space.

The following discussion will take notation from [170] and marks the first approach
to our work done in [171], with the difference that during the next sections we will
address the gauging procedure taking in consideration the Wess-Zumino-Witten term.

The worldsheet action and its symmetries

We consider a slightly different σ−model action from the one showed in (6.1.21),
where we work with the field intensity H instead of B23. Let’s consider a compact

23By doing this, we avoid some issues regarding the well-definedness of B on the worldsheet itself,
as can be seen in [172].
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3−dimensional Euclidean worldsheet Ω such that ∂Ω = Σ is a 2−dimensional
worldsheet. We consider the set of parameters σa to describe either Σ or Ω, when the
situation requires it.We confine the metric G and dilaton φ to be on Σ and the
Wess-Zumino-Witten (WZW) term H to be on Ω24 We will consider the quantization
condition for H

1

2πα′

∫
Ω

H ∈ 2πZ. (6.1.47)

Our action takes the form

SWZW = S1 + S2

= − 1

2πα′

∫
Σ

[
1

2!
Gij dX i ∧ ∗dXj +

α′

2
Rφ ∗ 1

]
− i

2πα′

∫
Ω

1

3!
Hijk dX i ∧ dXj ∧ dXk,

(6.1.48)

where the latin indices run as i, j, k = 1, . . . , D.

As we mentioned before, the gauging procedure requires for the background to
satisfy some requirements. Let’s consider an infinitesimal transformation on the
coordinates X i of the form

δεX
i = εαkiα, (6.1.49)

where kiα are the components of the Killing vectors kα, α = 1, . . . , N and εα are
infinitesimal constant parameters. Here, the Killing vectors satisfy the Lie algebra

[kα, kβ] = fαβ
γkγ. (6.1.50)

We find that the action (6.1.48) is invariant under the transformations (6.1.49) if
the background fields G, φ and H all satisfy the conditions

LkαG = 0, LkαH = 0, Lkαφ = 0, (6.1.51)

where Lξ is the Lie derivative Lζ = d ιζ + ιζ d acting on p−forms along a vector
field ζ and ιξ is the contraction operator acting on p−forms along a vector field ξ. If all
of the previous conditions are met, we say that the action features a global symmetry
generated by the parameters ε. The next step is to promote these global symmetries to
be local, and this can be achieved if we introduce worldsheet gauge fields.

We promote now the parameter εα to depend on the worldsheet parameters, that is
εα = εα(σa). Let us concretize the aforementioned conditions and say

LkαG = 0, ιkαH = dvα, Lkαφ = 0, (6.1.52)

24If H is not exact, then the Kalb-Ramond potential B satisfying H = dB can only be found locally
and S2 in (6.1.48) depends on the choice of manifold Ω.
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which still satisfy (6.1.51) taking into account that dH = 0. Here, vα = vα(X)
corresponds to a 1−form on Σ. On top of this, we introduce gauge fields Aα and
Lagrange multipliers χα into the action (6.1.48) in the following way

ŜWZW = − 1

2πα′

∫
Σ

[
1

2!
Gij (dX i + kiαA

α) ∧ ∗(dXj + kjβA
β) +

α′

2
Rφ ∗ 1

]
− i

2πα′

∫
Σ

[
(vα + dχα) ∧ Aα +

1

2
(ι[kαvβ] + fαβ

γχγ)A
α ∧ Aβ

]
− i

2πα′

∫
Ω

1

3!
Hijk dX i ∧ dXj ∧ dXk.

(6.1.53)

In here, Aα and χα are quantities which depend on the worldsheet parameters σa only.

It can be shown that the action (6.1.53) has a local symmetry provided that the
conditions (6.1.52) are met along with the infinitesimal transformations and constraints

δεX
i = +εαkiα

δεA
α = −dεα − εβAγ fβγα

δεχα = −ιk(αvβ)ε
β − fαβγεβχγ,

(6.1.54)

Lk[αvβ] = fαβ
γvγ, ιk[αfβγ]

δvδ =
1

3
ιkαιkβ ιkγH. (6.1.55)

We have introduced worldsheet gauge fields in order to promote a global symmetry
to a local symmetry. By doing this, we need to ensure that we haven’t introduced
additional degrees of freedom into the action. The Lagrange multipliers carry through
their equation of motion the constraint that the worldsheet gauge fields Aα must satisfy,
and in virtue of them we need to show that we can get back our original action (6.1.48).
We show this in the next section.

Recovering the ungauged action

Our discussion must take a short digression and consider the Hodge decomposition25

for dχα. Since dχα is a closed form, it allows a decomposition in its exact and harmonic
part as follows

dχα = dχ(0)
α +

2g∑
m=1

χ(m)
α ωm. (6.1.56)

Here we have used a basis of harmonic one-forms of Σ denoted by ωm such that
ωm ∈ H1(Σ,R) and m = 1, . . . , 2g, where g is the genus of Σ. We find the coefficients

25For a discussion on the Hodge decomposition theorem for p-forms, see for instance Theorem 7.7
of [173].
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χ
(m)
α to be real-valued. The one-forms ωm are dual to the cycles γn, that is∫

γn

ωm = δmn . (6.1.57)

We find as well that the forms ωn satisfy∫
Σ

ωm ∧ ωn = Jmn, (6.1.58)

where Jmn are the entries of a non-degenerate matrix [174]. To gain information about
Aα we require to study both the equations of motion for the exact part and harmonic
part of χα. Taking (6.1.53), we find the equations of motion for χ

(0)
α to be

0 =
i

2πα′

∫
Σ

δχ(0)
α

[
dAα − 1

2
fβγ

αAβ ∧ Aγ
]
. (6.1.59)

We consider the case for an abelian isometry algebra, i.e. fαβ
γ = 0. The equations

then tell us that Aα is a closed form, i.e. dAα = 0 and in turn we can decompose Aα

as follows.

Aα = dAα(0) +

2g∑
m=1

Aα(m)ω
m. (6.1.60)

Let us derive now the equations of motion for χ
(m)
α . Taking the assumption that the

isometry algebra is abelian we find that the relevant term
∫

Σ
dχα ∧ Aα in the action

(6.1.53) can be written using (6.1.56), (6.1.58) and (6.1.60) as follows

2πiα′ Srel =

∫
Σ

dχα ∧ Aα

=

∫
Σ

[
dχ(0)

α +

2g∑
m=1

χ(m)
α ωm

]
∧
[
dAα(0) +

2g∑
n=1

Aα(n)ω
n

]

=

∫
Σ

[ 2g∑
m=1

χ(m)
α ωm ∧ dAα(0)

]
+

2g∑
m,n=1

χ(m)
α Aα(m)J

mn

+
(
terms depending on χ

(0)
α

)
.

(6.1.61)

We dismiss the first term in the third line of (6.1.61) since it is a total derivative

and does not contribute to the action. By performing the variation with respect to χ
(m)
α

we find that Aα(m) = 0, hence Aα is pure gauge. Finally, with help of the transformation

for Aα in (6.1.54) we can set Aα = 0 and recover finally the original, ungauged action
(6.1.48).

The case for non-abelian isometry algebras proves to be a bit more involved. For
instance, in [170] one can go back to the original action by taking DX i ≡ dX i + kiαA

α
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and perform a change of basis in such a way that DX i is closed, identify them as as set
of vielbein valuated in a different set of coordinates Y i, and finally express the gauged
action in terms of p−forms valuated in the basis of 1−forms dY i, thus recovering the
original action. However, this can be done since the worldsheet is considered to have
an empty boundary, whereas the case for worldsheets with non-empty boundary cannot
be properly addressed by means of the Hodge decomposition alone.

Dual action

We have treated the procedure to recover the original action from the gauged one.
Now it is moment to take the next step and treat the procedure to find the dual
action whenever T-duality transformations along different directions are done. The
case for one T-duality transformation has become part of the canon of the standard
textbooks, whereas the case for T-duality transformations along multiple directions has
been done for instance in [172, 170, 175], with approaches from the point of view of
doubled geometry in [176], and from the point of view of doubled field theory – in here,
T-duality is treated as a symmetry of a field theory by doubling the configuration space
(see for instance the review [177]) We won’t include bla bla . This will be properly
addressed in the next chapter of this work.

Let’s retake our gauged action (6.1.53). To reach the dual model, we ought to
integrate out the worldsheet gauge fields Aα. This can be done by taking the equations
of motion related to Aα and replacing them directly into the action (6.1.53). Considering
now the equations of motion given by the variation with respect to Aα we find the
equation of motion

0 = ∗kα + GαβAβ − i ξα + iDαβAβ, (6.1.62)

where we have defined the following quantities

kα = kiαGijdX
j, Gαβ = kiαGijk

j
β,

ξα = vα + dχα, Dαβ = ι[kαvβ] + fαβ
γχγ.

(6.1.63)

Since the EOMs (6.1.62) do not involve derivatives of Aα, we can solve for Aα

algebraically with help of the Hodge dual. We find in obvious matrix notation

Aα = −
[(
G − DG−1D

])αβ (
1 + i ∗ DG−1

)
β
γ (k + i ∗ ξ)γ . (6.1.64)

Even though we have to work with the inverse of G for a while, we’ll see later on that
the construction of the dual model relies in the invertibility of (G ± D).

Placing this last expression into the action (6.1.53) we obtain the dual action ŠWZW

ŠWZW = − 1

2πα′

∫
Σ

[
Ǧ+

α′

2
Rφ̌

]
− i

2πα′

∫
Ω

Ȟ,

(6.1.65)
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where the dual metric Ǧ and the dual H−field Ȟ are given by

Ǧ = G − 1

2
(k + ξ)α

[
(G +D)−1]αβ ∧ ∗ (k− ξ)β,

Ȟ = H − d
[ 1

2
(k + ξ)α

[
(G +D)−1]αβ ∧ (k− ξ)β

]
.

(6.1.66)

In here, we have of course

G =
1

2!
Gij dX i ∧ ∗ dXj,

H =
1

3!
Hijk dX i ∧ dXj ∧ dXk,

(6.1.67)

and a matrix multiplication being carried on the α, β = 1, . . . , N indices. This points
out that the new dual fields Ǧ and Ȟ are actually defined on an enlarged
(D + N)−dimensional target space whose local coordinates are {X i, χα}. As a final
comment, the feasibility on reaching such dual fields relies whether the matrix
combination (G ± D) is invertible.

Notice that we haven’t talked about φ̌ so far. In order to do this and talk about non-
geometric spaces in our upcoming sections, we must find first an appropriate change of
basis. We set off to this task right away.

Change of basis

To find an appropriate change of basis, we first notice that the vector fields ňα given in
components

ňα =

(
kiα
Dαβ

)
(6.1.68)

conform a set of N null eigenvectors of Ǧ and Ȟ, i.e. ιňαǦ = 0 and ιňαȞ = 0. Assuming
for a moment that det kαβ 6= 0, we can indeed find an useful change of basis matrix T .
Let us label collectively our extended basis of 1−forms by dXA = {dX i, dχα} and write
accordingly

Ǧ =
1

2!
ǦAB dXA ∧ ∗ dXB,

Ȟ =
1

3!
ȞABC dXA ∧ dXB ∧ dXC .

(6.1.69)

The components T AB of the change of basis matrix can be written as

T AB =


0N×(D−N) 0N×N

kiα
1(D−N)×(D−N) 0(D−N)×N

Dαβ 0N×(D−N) 1N×N

 , (6.1.70)
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where 0M×N and 1M×N denote the M ×N null and identity matrix, respectively. The
new 1−form basis corresponds to eA = (T −1)ABdXB, which can be split conveniently
as eA = {eα, eα, em}, where

eα = (k−1)αβ dXβ,

eα = Dαβ eβ + vα + dχα,

em = −kmβ eβ + dXm.

(6.1.71)

In here, α, β = 1, . . . , N , m,n = N + 1, . . . , D and (k−1)αβ denotes the inverse of the
matrix with components kαβ

26. In general, each family of vielbein is not closed. Indeed,
one can show that deA reads as

deα = −1

2
fβγ

α eβ ∧ eγ − (k−1)αγ∂mk
γ
βe

m ∧ eβ,

deα = −fαβγ eβ ∧ eγ

+
[
∂mιk(αvβ) − (k−1)γδ ∂mk

δ
β

(
ιk(αvγ) + fαγ

σχσ
)]
em ∧ eβ,

dem =
[
kmβ (k−1)βγ ∂nk

γ
α − ∂nkmα

]
en ∧ eα.

(6.1.72)

The exterior derivative of a vielbein basis {eA} provides us with the structure
constants fBC

A associated to the Lie algebra of the vector fields dual to {eA}. This
can be done if we assume a torsionless connection Γ on the manifold. The structure
constants can be read as

deA = −1

2
fBC

A eB ∧ eC . (6.1.73)

This determines whether the vielbein bases {eα}, {eα}, and {em} mix under the
exterior derivative.

We see that in general the vielbein algebra does not close on itself under the exterior
derivative. However, one can simplify this discussion and have deA = 0 if we work with
an abelian isometry algebra (fαβ

γ = 0), with a vα form such that ιk(αvβ) are constants
and with a coordinate system such that kmα = 0.

On the other hand, the components of Ǧ change as

ǦAB → ǦAB = ǦCDT CAT DB, (6.1.74)

while the components of Ȟ change accordingly as

ȞABC → ȞABC = ȞCDET CAT DBT EC . (6.1.75)

26This can be done if the isometry group has no fixed point or only isolated points. However, if the
isotropy of the isometry group is non-trivial, then the matrix of components kαβ is not invertible (see
for instance [178]) and we are required to find another suitable basis.
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Under this change of basis, we find that the target-space metric can be written down
as

Ǧ =
1

2!
ǦAB e

A ∧ ∗ eB,

=
1

2!
Ǧab e

a ∧ ∗ eb,
(6.1.76)

where ea = {eα, em} and of course a, b = 1, . . . , D. The reason for this is that Ǧ
possesses N null eigenvectors, which have been included in T . The components Ǧab can
be written down as follows

Ǧmn =Gmn − kαm
[

(G +D)−1 G (G − D)−1 ]αβkβn

− kαm
[

(G +D)−1 D (G − D)−1 ]αβvβn
+ vαm

[
(G +D)−1 D (G − D)−1 ]αβkβn

+ vαm
[

(G +D)−1 G (G − D)−1 ]αβvβn,
Ǧm

β =− kαm
[

(G +D)−1 D (G − D)−1 ]αβ
+ vαm

[(
G +D

)−1 G (G − D)−1 ]αβ,
Ǧα

n = +
[

(G +D)−1 D (G − D)−1 ]αβkβn

+
[

(G +D)−1 G (G − D)−1 ]αβvβn,
Ǧαβ = +

[
(G +D)−1 G (G − D)−1 ]αβ.

(6.1.77)

These correspond to the target-space metric components of the dual background
after performing N collective T-duality transformations. We see that this
transformations modify portions of the original target-space metric G in a non-trivial
way, while generating completely new ones. We notice that this metric has no legs in
the eα vielbein as well, which is in a way an indication that we have departed from
the original background configuration.

In a similar way we can compute the components of the new dual H−field
components via the recipe indicated in (6.1.75). In particular, it can be shown that
these components do not have legs in the set of eα forms as well, that is, ȞαJK = 0.

Dual dilaton

The form of the dual dilaton φ̌ has to be determined via a one-loop computation
along the lines of [169]. Equivalently (as put for instance in [115]) we can compute φ̌
by enforcing that the combination e−2φ

√
detG remains invariant under T-duality

transformations, that is, that

e−2φ
√

detG
!

= e−2φ̌
√

det Ǧ. (6.1.78)
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Solving for φ̌ we find the transformation rule for the dilaton field

φ̌ = φ− 1

4
log

[
detG

det Ǧ

]
, (6.1.79)

where Ǧ has been already determined in (6.1.77). Having the dual fields Ǧ, Ȟ and φ̌
determined in (6.1.77), (6.1.75) and (6.1.79) respectively, we are able to reach the dual
background configuration (Ǧ, Ȟ, φ̌).

Final remarks

The dual metric Ǧ dictates which coordinates are meaningful on the target-space
manifold. Remember that in the T-dual configuration we are working with a metric
with no legs in the eα vielbein forms. In particular, if eα = dXα it means that the
T-dual quantities Ǧ and Ȟ should not depend on the set of coordinates Xα. To
address this one can show that

ĽňαǦ = 0, ĽňαȞ = 0, Ľňαφ = 0 (6.1.80)

These isometries in the enlarged target-space allow us to drag˝these fields along
the isometry directions without changing their values. In particular, we can drag them
to a convenient point and evaluate them there. For the case in which eα = dXα we
can do it at Xα = 0 and therefore they no longer depend on the original coordinates
Xα [159].

6.2 Non-Geometric Spaces

In section 6.1.1 we studied the case for the closed bosonic string propagating on a
26−dimensional target space with one compact dimension. By choosing the
25th−direction to be compact, the expansion of X25 given by (6.1.6) not only presents
a discretized momentum number p25, but also features a new discretized quantity
called winding number w. This quantity accounts for the number of times a string can
wrap around this compact direction. Wrapping around a certain direction is a
capability that points particles do not have, which in turn tells us that strings can
probe spaces in ways point particles cannot do. This can be used to gain access to
other kind of spaces.

Let us take the WZW model described by the Lagrangian (6.1.48). Let us then to
the gauging procedure and read the dual action described by (6.1.65) and consider the
Buscher rules for the metric and the H−flux given in (6.1.77) and (6.1.75). By
performing a T-duality transformation – that is, by gauging either along one or more
directions – we actually map the background configuration described by the fields
(G,H, φ) to a dual configuration (Ǧ, Ȟ, φ̌). When it comes to the metric, it happens



6.2 Non-Geometric Spaces 81

that the new background geometry described by Ǧ is no longer the same as the one
described by G; even the topology could end up being totally different. For these
geometries not even diffeomorphisms are enough to have a globally well-defined
description. These kind of spaces are called non-geometric spaces.

To illustrate the points above we will take the WZW model and introduce the
standard example of the three-torus (T3) with constant H−flux background, and keep
the dilaton constant. We will perform T-duality transformations along one, two and
three directions and discuss each of the new backgrounds we get. The way to proceed
can be enlisted as follows:

1. Construct the starting background by defining explicitly the metric G, the H−flux
H and the dilaton φ. In particular, the background metric must present isometries
accounted by the Killing vectors kα. These fields must satisfy the constraints
(6.1.52).

2. Proceed to construct the gauged action as in (6.1.53) and find a 1−form vα such
that satisfies both (6.1.52) and the set of constraints (6.1.55).

3. Integrate-out the worldsheet gauge fields Aα, read the dual metric Ǧ, dualH−field
Ȟ and dual dilaton φ̌ following (6.1.66) and (6.1.79). Perform the change of basis
indicated by (6.1.71) and read the dual metric Ǧ belonging to the dual background
(Ǧ, Ȟ, φ̌).

We mention that several other non-geometric spaces can be studied, but for this
doctoral work we will mention the T-duals of the T3 with H−flux only. For convenience,
let us define

dχ̌α ≡
1

α′
dχα. (6.2.1)

The following section can be further deepened in [158].

6.2.1 T3 with H−flux

We describe the background configuration of a three-torus with H−flux through the
metric G, the H−flux field H = dB and the dilaton field φ. By considering as well a
basis of 1−forms {dX i} for i = 1, 2, 3 we find that

Gij =

R2
1 0 0

0 R2
2 0

0 0 R2
3

 , H =
α′

2π
h dX1 ∧ dX2 ∧ dX3 , φ = φ0 , (6.2.2)

where Gij denotes the components of the metric G, h ∈ Z is constant and the dilaton
has a constant value φ0 as well. In here we find that the coordinates respect the
identification X i ∼ X i + 2π.
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Let us denote the set of Killing vectors by kα. The Killing vectors for the three-torus
presented here satisfy an abelian Lie algebra, i.e. [kα, kβ] = 0 and we can write down
the components of each vector in the basis {∂i}, i = 1, 2, 3 as follows

k1 =

1
0
0

 , k2 =

0
1
0

 , k3 =

0
0
1

 . (6.2.3)

Let us consider now a vielbein basis {ea = eaidX
i} for a = 1, 2, 3. In this case,

the components of the vielbein eai correspond to those of a 3 × 3 matrix, and let
ea
i correspond to the components of the inverse matrix. The vielbein components

diagonalize the the metric components as δab = ea
iGijeb

j. We find that eai = δai Ri

with no summation convention.

In the mentioned vielbein basis, we find that the H−flux can be written as

H =
α′

2π

h

R1R2R3

e1 ∧ e2 ∧ e3. (6.2.4)

We will take this background configuration and perform one, two and three
simultaneous T-duality transformations along the isometry directions with help of the
Buscher rules established in (6.1.75), (6.1.77) and (6.1.79).

6.2.2 Twisted torus

Let us take now the background configuration of the T3 with an H−flux described
by (6.2.2) along with the identification X i ∼ X i + 2π. We perform now a T-duality
transformation along the direction of the Killing vector k1 = ∂1 by using the rules
indicated in (6.1.77), (6.1.77) and (6.1.79).

By properly solving the constraints and going into adapted coordinates we can find
the dual basis given by ea ∈ {dχ̌1, dX

2, dX3}. The metric components are given by

ǦIJ =


α′2

R2
1

−α′2

R2
1

h
2π
X3 0

−α′2

R2
1

h
2π
X3 R2

2 + α′2

R2
1

[
h
2π
X3
]2

0

0 0 R2
3

 , (6.2.5)

and the dual H−field and dilaton are

Ȟ = 0,

φ̌ = φ0 − log

[
R1√
α′

]
.

(6.2.6)

This background is known as the twisted three-torus [140, 141]. Notice that in this
background the flux Ȟ vanishes. We haven’t lost information about the flux, however;
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it has only migrated to the dual metric Ǧ. We can recover it by studying the algebra
of the vielbein ẽa that diagonalizes the metric. Consider then

ẽ1 =
α′

R1

[
dχ̌1 −

h

2π
X3dX2

]
, ẽ2 = R2dX2, ẽ3 = R3dX3. (6.2.7)

One can check right away that Ǧij = ẽai δabẽ
b
j. The structure constants fbc

a can be
read from

dẽa =
1

2
fbc

a ẽb ∧ ẽc. (6.2.8)

We find that the only non-vanishing structure constant component is f23
1 and it is given

by

f23
1 =

α′

2π

h

R1R2R3

. (6.2.9)

This is the so-called f−flux, and since it can be extracted from the vielbein ẽa it
corresponds to a geometric flux. The matter of global well-definedness of this space will
be treated in the next section on toroidal fibrations.

6.2.3 T-fold

Now we will discuss a dual background coming from T-duality transformations
performed along two directions indicated by the Killing vectors k1 = ∂1 and k2 = ∂2.
By following the procedure indicated at the beginning of this section, we can find a
dual basis {dχ̌1, dχ̌2, dX

3} and the dual background fields (Ǧ, Ȟ, φ̌). The components
of Ǧ are given by

ǦIJ =


α′2R2

2

R2
1R

2
2+[ α′2π hX3]

2 0 0

0
α′2R2

1

R2
1R

2
2+[ α′2π hX3]

2 0

0 0 R2
3

 , (6.2.10)

and the Ȟ and φ̌ field is given by

Ȟ = − h

2π

α′

ρ2

(
R2

1R
2
2

α′2
−
[
hX3

2π

]2)
dχ̌1 ∧ dχ̌2 ∧ dX3,

φ̌ = φ0 −
1

2
log(ρ),

(6.2.11)

where we have defined ρ as

ρ =
R2

1R
2
2

α′2
+

[
hX3

2π

]2

. (6.2.12)
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This corresponds to the T-fold background [121]. The computation of this
background marks a departure from what we call geometric background ; in order to
have a proper global description, we must ensure that going once around the circle
along X3 we come back to the same point. If we can do this up to a diffeomorphism
transformation, then we would be successful in providing a geometrical description.
However, there is no diffeomorphism transformation that can relate Ǧ|X3=0 with
Ǧ|X3=2π. We will come to this issue in the following section.

We want to know now where the information of the original H−flux (6.2.4) went.
For this, we require to know B̌ such that Ȟ = dB̌. We find that – up to a gauge
transformation – the components of B̌ can be written as

B̌IJ = α′2


0

− α
′

2π
hX3

R2
1R

2
2+[ α′2π hX3]

2 0

+ α′
2π
hX3

R2
1R

2
2+[ α′2π hX3]

2 0 0

0 0 0

 . (6.2.13)

Let us now consider a certain metric gij and a bivector field βij, both arising from
the following computation [

Ǧ± B̌
]−1

= g ± β, (6.2.14)

with g and β corresponding to the symmetric and antisymmetric parts of such matrix
inverse. With this, we can compute the components of the Q−flux

Qi
jk = ∂iβ

jk. (6.2.15)

Taking then the dual metric in (6.2.10), the dual B−field in (6.2.13) and following
the aforementioned steps for computing the Q−flux we find that the non-vanishing
component is given by

Q3
12 =

α′

2π

h

R1R2R3

. (6.2.16)

Notice that the origin of this flux comes neither from the vielbein that diagonalizes
Ǧ nor from the dual H−flux Ȟ, quantities which are nor globally well-defined under
diffeomorphism transformations; in the literature the Q−flux is referred as a
non-geometric flux.

6.2.4 R space

We have reviewed spaces that comes from one and two T-duality transformations along
the isometry directions of the flat three-torus T3 with a constant H−flux, being the
twisted three-torus and the T-fold, respectively. The possibility of performing three
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T-duality transformations on the T3 with constant H by making use of the Buscher
rules is rather suggestive. However, a closer examination on the conditions (6.1.55)
reveal that such procedure is forbidden. Indeed, since the isometry algebra is abelian,
i.e. fαβ

γ = 0 we find from (6.1.55) that

0
!

=
1

3
ιk1ιk2ιk3H =

1

3

h

2π
, (6.2.17)

which immediately forces h = 0. Thus, performing three T-duality transformations on
the three-torus with H−flux is forbidden, unless we turn off the H−flux by imposing
h = 0.

The application of successive T-duality transformations on our background suggests
that we have still a flux to be found. Indeed, by considering the decomposition (6.2.14)
we can get an expression for the so-called non-geometric R−flux written with respect
to the coordinate basis

Rijk = 3β[im∂mβ
jk]. (6.2.18)

By employing the aformentioned definition, we see that the only non-vanishing
component for Rijk is

R123 =
α′

2π

h

R1R2R3

. (6.2.19)

The R−space is another example of a non-geometric space [143]. It is an example
of a space in which we fail to provide even a local Riemannian geometrical description;
in the next chapter we will argue that not even the description of a point in terms of
Riemann geometry can be done.

6.3 Toroidal fibrations

In the previous section we discussed about different spaces that stem from the one, two
and three T-duality transformations on the T 3 with constant H−flux. In this section
we will review how we can study the matter of global well-definedness for the T3 with
H−flux, the twisted three-torus and the T-fold. Please note that we will only discuss
fibrations defined on S1; it is possible to explore fibrations on other spaces, but we
won’t develop on this.

T2 fibrations on S1

In order to discuss fibrations over the circle S1 and the well-definedness of the (non-
)geometrical spaces featured in the last section, the construction of the generalized
metric H found in (6.1.37) will prove to be useful. For each space, we are required –up
to a gauge choice– to find B̌ such that Ȟ = dB̌.
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Let us consider the T3 with H−flux, the twisted torus and the T-fold backgrounds
presented in the previous section. For each of them, we can write the components of
the dual metric Ǧ and the dual B−field B̌ schematically as

Ǧab =

(
g ij(X

3) 0

0 R2
3

)
, B̌ab =

(
bij(X

3) 0

0 0

)
, (6.3.1)

where i, j = 1, 2 corresponds to an index system related to the fiber and a, b = 1, 2, 3.
We will provide for each background the respective dual metric and dual B−field in
the upcoming sections.

Figure 6.1: We can see toroidal fibrations over S1 as tori defined on each point on a circle with
parameter X3. We can study the global behavior of such tori by transporting them once around this
circle. For the backgrounds here presented, the patching between tori at X3 and X3 + 2π can be done
via O(d, d;Z) transformations.

Taking inspiration from (6.1.37) and taking the metric and B−field indicated in
(6.3.1) we construct the generalized metric H as follows

H =

(
− 1
α′

B̌Ǧ−1B̌ B̌Ǧ−1

−Ǧ−1B̌ α′Ǧ−1

)
. (6.3.2)

Having the dual metric and dual B−field written as given in (6.3.1) delivers a
more transparent picture of the following process: On top of each point of the circle
parametrized by X3 we define a toroidal space. Given that we haven’t performed a
T-duality transformation along X3, we expect that under the shift X3 → X3 + 2π –
that is, by transporting the T2 fiber around the circle – we can properly merge H at
X3 with H at X3 + 2π. We will see that this is indeed possible, and furthermore,
the merging is mediated by the O(D,D;Z) transformations featured in section 6.1.3.
These transformations contain gauge transformations on the B−field, diffeomorphisms
and the so-called β−transformations.

The aim now is to study the behavior of H(X3) under the shift X3 → X3 + 2π for
each of the aforementioned spaces – except for the R−space.
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T3 with H−flux

For this background configuration, we find that the components of the matrices g and
b found in (6.3.1) can be written as

g ij =

(
R2

1 0
0 R2

2

)
, bij = α′

(
0 +hX3

2π

−hX3

2π
0

)
. (6.3.3)

Let us now recall the set of transformations regarding a gauge transformation for the
B field, indicated in (6.1.43). Let us take then the matrix OB ∈ O(2, 2;Z) ⊂ O(3, 3;Z)
denoted by

OB =

(
13×3 03×3

B 13×3

)
, B =

 0 +h 0
−h 0 0
0 0 0

 . (6.3.4)

It can be shown that the behavior of the generalized metric H in (6.3.2) – with g
and b indicated in (6.3.3) – under the shift X3 → X3 + 2π can be expressed as

H(X3 + 2π) = O−TB H(X3)O−1
B , (6.3.5)

which indicates that by winding once around the X3 direction of the circle we can patch
consistently (Ǧ, B̌) at X3 with (Ǧ, B̌) at X3 + 2π by performing a gauge transformation
on the B−field. This is an example of a geometrical transformation.

The original identifications X i ∼ X i + 2π still hold, indicating that T3 is nothing
more than the product of three circles, each with radius Ri.

Twisted three-torus

Now we take the background configuration of the twisted torus. Since the dual H−field
in here vanishes, we can set a gauge such that B̌ = 0 and write the components of g
and b found in (6.3.1) as follows

g ij =

(
α′2

R2
1

−α′2

R2
1

h
2π

−α′2

R2
1

h
2π
X3 R2

2 + α′2

R2
1

[
h
2π
X3
]2) , bij =

(
0 0
0 0

)
. (6.3.6)

If we revolve around the base circle once we find that we can patch (Ǧ, B̌) via a
diffeomorphism transformation. This transformation can be concretized via the matrix
OA ∈ O(2, 2;Z) ⊂ O(3, 3;Z) found in (6.1.43), namely

OA =

(
A−1 03×3

03×3 A−T

)
, A =

1 −h 0
0 1 0
0 0 1

 . (6.3.7)
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We notice that under a shift X3 → X3 + 2π, the generalized metric H constructed
by taking g and b indicated in (6.3.6) behaves in the same fashion as (6.3.5), that is

H(X3 + 2π) = O−TA H(X3)O−1
A . (6.3.8)

This tells us that both the Ǧ and B̌ fields at X3 can be properly patched to their
respective counterparts at X3 + 2π via a diffeomorphism transformation. This is again
a geometrical transformation.

T-fold

Finally we consider the case of the T-fold background. In here we ought to consider
the following g and b matrices characterized by their respective components

g ij =
1

ρ

(
R2

2 0
0 R2

1

)
, bij =

α′

ρ

(
0 −hX3

2π

+hX3

2π
0

)
, (6.3.9)

where we recall that ρ is given by

ρ =
R2

1R
2
2

α′2
+

[
hX3

2π

]2

. (6.3.10)

Now we would like to repeat the same procedure as before and merge consistently the
Ǧ and B̌ fields once we go around the circle by studying the behavior of the
generalized metric when X3 → X3 + 2π. We can indeed do this if we consider this
time β−transformations, already pointed out in (6.1.46). Let us then consider
Oβ ∈ O(2, 2;Z) ⊂ O(3, 3;Z), where

Oβ =

(
13×3 β

03×3 13×3

)
, β =

 0 +h 0
−h 0 0
0 0 0

 . (6.3.11)

It can be proven that the generalized metric H constructed considering g and b in
(6.3.9) transforms under the shift X3 → X3 + 2π as follows

H(X3 + 2π) = O−Tβ H(X3)O−1
β . (6.3.12)

Notice that the patching can be consistently done by considering neither gauge
transformations on the B−field nor diffeomorphisms. Instead, we had to implement
transformations that find no analog in the usual Riemannian geometry. This is the
reason why these transformations are considered to be non-geometric.



Chapter 7

T-duality transformations for the
Open String

This chapter is based on our work [171]. Here we study T-duality transformations for
an open-string non-linear σ− model with non-trivial boundary. While in the previous
chapter we placed the foundations regarding the non-linear σ−model for the closed
string, here we want to present a precise account for T-duality transformations whenever
D-branes are included in the picture, addressing missing details in the literature.

This chapter starts by presenting the non-linear σ−model for the open string and
establishing concretely the technical details in order to define consistently a D-brane
on this setup.

7.1 The gauged non-linear sigma model

7.1.1 Worldsheet action

Following the same motivations and conventions that led the construction of (6.1.21),
we consider now a σ−model on an Euclidean worldsheet Σ with non-empty boundary,
i.e. ∂Σ 6= ∅. This gives us the chance of incorporating Wilson lines by introducing
a boundary gauge field a = ai dX

i , along with the target-space metric G, the Kalb-
Ramond field B and the dilaton φ. The field intensities for both a and B are to be
taken as F = da and H = dB, respectively. Remembering that i, j = 1, . . . , D, our
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action reads then as

S = − 1

2πα′

∫
Σ

[
1

2
Gij(X)dX i ∧ ∗dXj

+
i

2
Bij(X)dX i ∧ dXj +

α′

2
Rφ(X) ∗ 1

]
− 1

2πα′

∫
∂Σ

[
2πiα′ai(X)dX i + α′k(s)φ ds

]
.

(7.1.1)

One thing to notice is that the gauge field a is meant to be restricted on the boundary.
We recall that we called s the parameter of the boundary ∂Σ and na and ta the unit
vectors normal and tangential to it, respectively. We find as well the incorporation of
the extrinsic curvature of the boundary k(s) = tatb∇anb coupled to the dilaton field.
Finally, we remember that on the boundary dX i|∂Σ = ta∂aX

ids.

By letting the fields G, B, φ and a to be present in this model we are actually
studying the motion of a string moving on a background generated by states related
to the open-oriented and closed-oriented string. As we have discussed in the previous
chapter, the presence of a boundary gauge field (transforming in this case under U(1))
is due to excitations of oscillators on open string states.

Boundary conditions

In order to read the boundary conditions related to X i we require to compute its
equations of motion and read the boundary term that it arises. First, the EOMs can
be read as

0 = d ∗ dX i + ΓimndXm ∧ ∗dXn − i

2
GikHkmndXm ∧ dXn

− α′

2
Gim∂mφR ∗ 1 ,

(7.1.2)

where Γijk corresponds to the usual Christoffel symbols related to the target-space metric
and Gij denotes obviously its inverse.

We take Dirichlet boundary conditions to be of the form δX i|∂Σ = 0. The tangential
and normal part of dX i can be written as follows(

dX i
)

tan
≡ ta∂aX

i ds
∣∣
∂Σ
,(

dX i
)

norm
≡ na∂aX

i ds
∣∣
∂Σ
.

(7.1.3)

By splitting the target-space index i = 1, . . . , D as i = {̂i, a} to denote Dirichlet
directions î and Neumann directions a we find the boundary conditions to be

Dirichlet 0 =
(
dX î

)
tan
,

Neumann 0 = Gai

(
dX i

)
norm

+2πα′iFab
(
dXb

)
tan

+α′k(s)∂aφ ds
∣∣∣
∂Σ
,

(7.1.4)
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where we have introduced the gauge-invariant open string field strength Fab which
satisfies 2πα′Fab = 2πα′F +B.

Similar to the analysis we have done in the previous chapter, we need to handle
properly the decomposition of forms, this time for manifolds with boundary. Let Ωp be
the space of smooth differential p−forms on Σ and d† ≡ ∗d∗ the co-exterior derivative.
The Hodge decomposition theorem for manifolds with boundary – as seen in [179],
allows us to decompose the space of p−forms Cp = {ω ∈ Ωp : dω = 0} as a direct sum
of the space of exact p−forms Ep = {ω ∈ Ωp : ω = dη, η ∈ Ωp−1} and the space of
closed and co-closed forms whose normal part vanishes on the boundary CcCp

N = {ω ∈
Ωp : dω = 0, d†ω = 0, ωnorm = 0}, i.e.

Cp = Ep ⊕ CcCp
N . (7.1.5)

Moreover, it can be proven that if a closed and co-closed p−form defined on a
connected, oriented, smooth Riemannian manifold vanishes on the boundary, then it
is identically zero [179]. This implies in particular that 1−forms dX i that respect
Dirichlet boundary conditions are exact on Σ.

Global symmetries

As we have seen previously, the action (7.1.1) must comply with a certain set of
conditions before we can implement the Buscher’s procedure. One of these is that it
must remain invariant under infinitesimal transformations of the coordinates X i of the
form

δεX
i = εαkiα (7.1.6)

where, as seen in (6.1.49) the εα are constant, infinitesimal parameters and the kiα are
the components of the target-space vector fields kα which satisfy the Lie algebra

[kα, kβ] = fαβ
γkγ, (7.1.7)

where fαβ
γ are the structure constants and α = 1, . . . , N , where N corresponds to the

dimension of the Lie algebra.

The action (7.1.1) features then a global symmetry under the infinitesimal
transformations (7.1.6) as long the following conditions are met

LkαG = 0 ,

LkαB = dvα , 2πα′Lkαa
∣∣
∂Σ

= (−vα + dωα)
∣∣
∂Σ
,

Lkαφ = 0 .

(7.1.8)

Here, vα are globally well-defined 1−forms on Σ, whereas ωα are to be taken as
globally well-defined functions on ∂Σ.
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It might happen that the boundary conditions themselves change under this
symmetry transformation of the action. By evaluating the infinitesimal
transformation (7.1.6) on the boundary conditions stated in (7.1.4) we find a
requirement for the Dirichlet boundary conditions, whereas for the Neumann
conditions no requirement is necessary. These can be stated as

Dirichlet 0 = ∂ak
î
α

∣∣∣
∂Σ
,

Neumann ∅ .
(7.1.9)

In the next section we take care of its construction by promoting the global
symmetries to local ones, mirroring the procedure we did for the WZW action in the
previous chapter.

7.1.2 The gauged worldsheet action

As pointed out in the last section, we set off to promote the global symmetries to
local symmetries by introducing worldsheet gauge fields. As stated before, we take the
infinitesimal parameter εα to be coordinate-dependant, i.e. ε = ε(σa). We read the
gauged action to be then

Ŝ = − 1

2πα′

∫
Σ

[
1

2
Gij

(
dX i + kiαA

α
)
∧ ∗
(
dXj + kjβA

β
)

+
α′

2
Rφ ∗ 1

]
− i

2πα′

∫
Σ

[
1

2
Bij dX i ∧ dXj

+(ṽα + dχα) ∧ Aα +
1

2

(
ιk[α ṽβ] + fαβ

γχγ

)
Aα ∧ Aβ

]
− 1

2πα′

∫
∂Σ

[
2πiα′aadXa − iΩ∂Σ + α′k(s)φ ds

]
.

(7.1.10)

Just like we did in (6.1.53), we have introduced a set of worldsheet gauge fields Aα and
Lagrange multipliers χα, with α, β = 1, . . . , N . We have introduced here the one form
ΩΣ whose value depend on whether the gauging direction is along Dirichlet or Neumann
directions. We will specify its value later on. Another field we have just introduced
here is ṽα, which is given by

ṽα := vα − ιkαB. (7.1.11)

Taking into account the constraints (7.1.8), we see that the action (7.1.10) is
invariant under the local symmetry transformations

δ̂εX
i = εαkiα ,

δ̂εA
α = −dεα − fβγ

α εβAγ ,

δ̂εχα = −ιk(αvβ) ε
β − fαβ

γ εβχγ ,

(7.1.12)
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provided that dχα is globally well-defined on all Σ and that the additional constraints
are satisfied as well

Lk[α ṽβ] = fαβ
γ ṽγ , ιk[α fβγ]

δṽδ =
1

3
ιkαιkβ ιkγH . (7.1.13)

Before we proceed, we need to address properly the matter of whether the
boundary conditions (7.1.4) are preserved under the local infinitesimal transformation
and constraints already presented. This is of uttermost importance; if we have a
certain D-brane configuration in our system, it better remain the same under these
transformations.

We see that the conditions (7.1.4) are indeed preserved if the infinitesimal
transformation parameters εα meet the following conditions on the boundary

Dirichlet 0 = kîα
(
dεα
)

tan

∣∣∣
∂Σ
,

Neumann 0 = Gaik
i
α

(
dεα
)

norm
+ 2πα′iFabkbα

(
dεα
)

tan

∣∣∣
∂Σ
,

(7.1.14)

where we employed the restrictions (7.1.9) coming from the global symmetry
transformations. Note however that the Dirichlet condition on the target-space
coordinates δX î|∂Σ = 0 imply the somewhat stronger condition

Dirichlet 0 = kîα ε
α
∣∣
∂Σ

(7.1.15)

Since this is a statement about the behavior of the local infinitesimal parameter εα

on the boundary along Dirichlet directions, it means that there will be an impact on
the infinitesimal transformations (7.1.12) themselves on the boundary. In particular,
we notice that

δ̂εA
α
∣∣
∂Σ

= 0 (7.1.16)

along the Dirichlet directions. For the Neumann directions, on the other hand, by
studying the equations of motion related to X i derived from the gauged action (7.1.10)
we find an expression for the normal and tangential components of Aα. This motivates
us to impose the following boundary conditions for Aα [156] as follows

Dirichlet 0 = kîα
(
Aα
)

tan

∣∣∣
∂Σ
,

Neumann 0 = Gaik
i
α

(
Aα
)

norm
+ 2πα′iFabkbα

(
Aα
)

tan

∣∣∣
∂Σ
.

(7.1.17)

It can be checked that these boundary conditions for the gauge field Aα are indeed
preserved under the local infinitesimal transformations (7.1.12).

Having clarified the boundary conditions for our worldsheet gauge field Aα, we are
set to concretize about the form of ΩΣ. We will differentiate between two cases: when
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the infinitesimal transformations are done all along Dirichlet directions X î or when are
done all along Neumann directions Xa 27

• For the Dirichlet case, we saw already in (7.1.15) that the variation parameters
εα vanish on ∂Σ. This means that all of the terms at the boundary part of the
action (7.1.1) remain invariant under the infinitesimal transformations (7.1.14),
hence we introduce no term whatsoever to ensure invariance and set

Dirichlet Ω∂Σ = 0 . (7.1.18)

• For Neumann directions we face a different situation. After we perform the
infinitesimal transformations given in (7.1.12) we find that we need to add extra
fields. Let φα to be a second set of Lagrange multipliers, where α = 1, . . . , N .
We define ΩΣ in this case to be

Neumann Ω∂Σ =
(
χα + φα + ωα − 2πα′ιkαa

)
Aα . (7.1.19)

Please note that by defining ΩΣ on ∂Σ we are allowing χα to be present on the
boundary, meaning that χα must be a globally well defined 0−form (or function)
on ∂Σ – when in principle dχα was only meant to be a globally well defined one-
form on the bulk Σ. At the same time, φα must be a set of globally well defined
constant functions on ∂Σ.

The fact that χα is globally well defined on ∂Σ brings us an useful fact: this means
that dχα must be exact on ∂Σ, implying that its closed and co-closed component
must vanish at ∂Σ. Therefore, in virtue of the Hodge decomposition theorem for
manifolds with boundary, dχα must be exact on all of Σ.

Finally, to ensure invariance of the action (7.1.1) in the case of Neumann boundary
conditions we find that the following set of conditions must hold as well

Lk[αωβ]

∣∣∣
∂Σ

=
1

2

[
fαβ

γωγ + ιk[αvβ]

] ∣∣∣
∂Σ
, 0 = fαβ

γφγ

∣∣∣
∂Σ
. (7.1.20)

Additional symmetries of the gauged action

Since we have introduced additional fields vα, φα and ωα into the game, it may
happen that our action (7.1.1) might display new symmetries besides the ones
generated by the local transformations (7.1.14). Indeed, the action features the
following transformations28 that render it invariant [153]:

27We consider these two cases only. Cases in which we perform infinitesimal transformations along
Dirichlet and Neumann directions can also be treated with this formalism. However, for ease of the
discussion we won’t treat them here.

28Since ΩΣ = 0 for the case of Dirichlet boundary conditions, the last two transformations here
listed become slightly modified and less stringent.
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1 Gauge transformations of the Kalb-Ramond field:

B → B + dΛ ,

a → a− 1
2πα′

Λ ,

vα → vα + ιkαdΛ ,

ωα → ωα − ιkαΛ .

(7.1.21)

with a globally well-defined one-form on the world-sheet Σ denoted by Λ.

2 Shifts of the one-forms vα:

vα → vα + dλα ,

χα → χα − λα ,
ωα → ωα + λα ,

Lk[αλβ] = fαβ
γλγ . (7.1.22)

where λα are well defined functions on Σ.

3 Gauge transformations of the open-string gauge field a:

a → a+ dλ ,

ωα → ωα + 2πα′ıkαdλ .
(7.1.23)

where λ is a globally well-defined function on the boundary ∂Σ.

4 Shifts of the functions ωα:

χα → χα + θα ,

ωα → ωα − θα ,
fαβ

γ θγ = 0 . (7.1.24)

where θα are constant quantities.

5 Shifts of the functions φα:

φα → φα + Θα ,

ωα → ωα −Θα .
(7.1.25)

where Θα are constants.

Thus far we have prepared the grounds to start implementing the Buscher rules.
As we saw in the previous chapter, we need to ensure that we have not artificially
introduced new degrees of freedom when we gauged the worldsheet action: We need
to be able to recover the original, ungauged action. This can be done with help of the
equations of motion of the Lagrange multipliers. We address this matter in the next
section.
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7.1.3 Recovering the original action

In this section we discuss how from the action (7.1.10) we can recover the original,
ungauged action (7.1.1). To this end, we need to compute the equations of motion for
the Lagrange multipliers χα and φα [180,178,181].

The equations of motion for χα and φα

Since the 1−form ΩΣ defined on ∂Σ is sensitive to the boundary conditions, we need to
make a distinction and derive the equations of motion for φα and χα for both Dirichlet
and Neumann conditions.

• Dirichlet conditions: Recalling (7.1.18), we have ΩΣ = 0 and therefore there’s no
EOMs for φα to look at. Taking this into account and performing the variation
of the action (7.1.10) with respect to χα

29 we find

δχŜ =
i

2πα′

∫
Σ

δχα

(
dAα − 1

2
fβγ

αAβ ∧ Aγ
)
. (7.1.26)

Recalling the Dirichlet boundary conditions for Aα (7.1.17) and taking δχŜ = 0
we find

0 = Fα = dAα − 1

2
fβγ

αAβ ∧ Aγ , 0 = Aα
∣∣∣
∂Σ
. (7.1.27)

• Neumann conditions: In contrast to the Dirichlet case, ΩΣ given by (7.1.19)
switches on and we must find the variations with respect to both χα and φα.
This gives us

δχŜ =
i

2πα′

∫
Σ

δχα

(
dAα − 1

2
fβγ

αAβ ∧ Aγ
)
,

δφŜ =
i

2πα′

∫
∂Σ

δφαA
α .

(7.1.28)

This naturally leads us to the equations of motion

0 = Fα = dAα − 1

2
fβγ

αAβ ∧ Aγ , 0 = Aα
∣∣∣
∂Σ
. (7.1.29)

29In the previous chapter we set off to recover the ungauged action as well. We found that we ought
to systematically separate dχα (given by (6.1.56)) to read properly the equations of motion for χα.

With our current setup, however, we know from the start that dχα is exact and thus χα ≡ χ(0)
α ; there

are no equations of motion for its CcC1
N component to be found since it is identically zero.
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We notice that in both cases we make sure that Aα vanishes on the boundary [153],
either as a consequence of its own the boundary conditions or as an actual equation of
motion, hence the importance of introducing φα in the second case.

Now we explore in which cases we can actually go back to our original, ungauged
action (7.1.1) depending on whether we have an abelian or non–abelian isometry
algebra.

Ungauged action I: Abelian isometry algebra

Let’s start with the case for an abelian isometry algebra, i.e. fαβ
γ = 0. The equations

of motion for χα derived previously in both Dirichlet and Neumann cases imply that
Aα is closed on Σ. By applying then the Hodge decomposition theorem we find that
Aα in this case can be written as

Aα = daα(0) +
∑
m

aα(m)ϕ
m . (7.1.30)

In here, aα(0) are globally well-defined functions on Σ, aα(m) are real coefficients and
ϕm conform a basis of the space of closed and co-closed 1−forms on Σ. The EOMs we
have derived in (7.1.27) and (7.1.29) state that Aα must vanish on the boundary ∂Σ.
This means then that the CcC1

N component of Aα must vanish, that is aα(m) = 0, leading
us to the conclusion that Aα is an exact form.

Given that Aα is exact, we can make use of the infinitesimal transformations (7.1.12)
and choose εα = aα(0) (together with fαβ

γ = 0) to gauge it away and set Aα = 0. By

doing this, we recover immediately the original action (7.1.1) from the gauged one
(7.1.12).

Ungauged action II: Non-abelian isometry algebra

Applying Hodge’s decomposition theorem to closed forms allows us to systematically
separate them into an exact part and closed and co-closed part, as indicated in (7.1.5).
For the abelian case, we found that Aα complies with this decomposition and we were
able to gauge it away, recovering the original model. As we mentioned in the previous
chapter, for the non-abelian case the situation is rather different: Aα satisfies (7.1.29)
with fβγ

α 6= 0 and is no longer closed, thus spoiling the decomposition (7.1.5).

We could follow an approach similar to the one in [170] and indicated in and set us
to the task of redefining DX i = dX i + kiαA

α as an element of a closed, 1−form basis
{dY i} and thus recovering the form of the original model in the case of non-abelian
isometries. The downside is though, that this approach does not take into account the
topological non-triviality of the worldsheet.

A more accurate account would be to start from the cohomology of the
gauge-covariant derivative and determine precisely the Hodge decomposition theorem
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for manifolds with non-empty boundary. This task is beyond the scope of this
doctoral work and it will be treated elsewhere.

7.2 T-duality

We discuss now about T-duality transformations for the open string. As we mentioned
at the beginning of this chapter, we are studying a microscopic model of a string moving
in a background generated by the excitations on open-oriented and closed-oriented
states. This means in particular that we must be able to tell the effects of T-duality
upon the closed- and open-string sectors. We will talk about these two aspects of
T-duality in the next sections.

7.2.1 The closed-string sector

Simply put, exploring the effects of T-duality transformations on the closed-string sector
means studying how does the metric Gµν , the Kalb-Ramond field Bµν and the dilaton φ
transform under their action. To this end, we will follow the aforementioned Buscher’s
procedure of gauging target-space isometries and integrating-out the world-sheet gauge
fields Aα.

The equations of motion for Aα

We take the action (7.1.10) and perform the variation with respect to Aα. Let’s address
first the equations of motion for the bulk Σ. We get an analogous expression to (6.1.62),
and we can solve algebraically for Aα. We get them using obvious matrix notation

Aα = −
[(
G − DG−1D

])αβ (
1 + i ∗ DG−1

)
β
γ (k + i ∗ ξ)γ , (7.2.1)

where we recall that α, β = 1, . . . , N . The auxiliary quantities are almost the same as
(6.1.63); in this case we find

Gαβ = kiαGij k
j
β , ξα = dχα + ṽα ,

Dαβ = ιk[α ṽβ] + fαβ
γχγ , kα = kiαGij dX

j ,
(7.2.2)

where we recall as well that ṽα = vα − ιkαB. Analogously to the WZW case, we need
invertibility of (G±D) in order to construct the dual model, so we dismiss any concerns
regarding the invertibility of G.

Note that there is a contribution coming from the boundary ∂Σ depending on
whether Dirichlet or Neumann boundary conditions are considered. Since ΩΣ = 0 for
the Dirichlet case, there are no Aα in ∂Σ and we get no information. For the



7.2 T-duality 99

Neumann case, on the other hand, we find an expression that has to be imposed as a
constraint. In summary, we find

Dirichlet ∅ ,

Neumann 0 = 2πα′ ιkαa− (χα + φα + ωα)
∣∣∣
∂Σ
.

(7.2.3)

Integrating-out the Aα fields

Having both (7.2.1) and (7.2.3) in mind, we can now take our gauged action (7.1.12)
and evaluate it. We read this evaluated action to be

Š = − 1

2πα′

∫
Σ

[
Ǧ+ iB̌ +

α′

2
Rφ ∗ 1

]
− 1

2πα′

∫
∂Σ

[
2πiα′aadXa + α′k(s)φ ds

]
,

(7.2.4)

where Ǧ and B̌ are given by

Ǧ = G− 1

2
(k + ξ)T

(
G +D

)−1 ∧ ∗(k− ξ) ,

B̌ = B − 1

2
(k + ξ)T

(
G +D

)−1 ∧ (k− ξ) ,
(7.2.5)

where the matrix multiplication here is understood. This multiplication is carried on the
α, β = 1, . . . , N , and G and B are the usual two forms for the metric and Kalb-Ramond
field given by

G =
1

2!
Gij dX i∧ ∗dXj,

B =
1

2!
Bij dX i∧ dXj.

(7.2.6)

As it happens in our dual action for the WZW model (6.1.65), we find that the tensor
quantities Ǧ and B̌ are defined on an enlarged (D + N)−dimensional target-space as
well, locally parametrized by the set of coordinates {dX i, χα} [182].

In order to read properly the dual background fields for both the open and closed
string sector we require to perform a suitable change of basis. We explore this subject
right away.

The change of basis

The enlarged, symmetric target-space metric Ǧ possesses N null-eigenvectors. We can
readily express these eigenvectors in the {dX i, χα} basis as follows

ňα =

(
kiα

Dαβ − ιkα ṽβ

)
. (7.2.7)
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From the last chapter we know that these vectors can be used to construct a change
of basis matrix T of the form as (6.1.70) and find a vielbein basis of the form eA =
(T −1)AB dXB, for coordinates A = {i, α}. Now, by assuming that the kα vectors are
linearly independent we can always find a coordinate system in which the N×N matrix
of components kαβ has an inverse, while all of the other remaining components vanish30.

eα =
(
k−1
)α
β

dXβ ,

em = dXm ,

eα = dχα +
[
ιk(αvβ) + fαβ

γχγ
](
k−1
)β

γ dXγ .

(7.2.8)

As always, α, β = 1, . . . , N and m,n = N+1, . . . , D. The simplification from (6.1.72) is
evident; in particular, we notice that dem = 0. In fact, to address properly the upcoming
examples the present formalism we ought to take some simplifying assumptions to
render our basis closed.

Having this new basis at hand, we are able now to express properly the dual G and
B fields. Since the symmetric two-form Ǧ has N zero eigenvalues (as we previously
mentioned), it can be brought into the simpler form

Ǧ =
1

2
ǦIJ e

I ∧ ∗eJ , (7.2.9)

where we designate the vielbein eI as eI = {em, eα} and I = 1, . . . , D. Following the
definitions stated in (7.2.2) and (7.1.11) we find that the components ǦIJ can be written
down as

Ǧmn = Gmn − kαm
[
(G +D)−1 G (G − D)−1

]αβ
kβn

− kαm
[
(G +D)−1D (G − D)−1

]αβ
ṽβn

+ ṽαm
[
(G +D)−1D (G − D)−1

]αβ
kβn

+ ṽαm
[
(G +D)−1 G (G − D)−1

]αβ
ṽβn,

Ǧm
β = − kβm

[
(G +D)−1D (G − D)−1

]αβ
+ ṽαm

[
(G +D)−1 G (G − D)−1

]αβ
,

Ǧα
n = +

[
(G +D)−1D (G − D)−1

]αβ
kβn

+
[
(G +D)−1 G (G − D)−1

]αβ
ṽβn,

Ǧαβ = +
[
(G +D)−1 G (G − D)−1

]αβ
.

(7.2.10)

These expressions for the dual metric metric match exactly those of (6.1.77), except
that in this case we use ṽα instead of vα. Hence, these are the components of the metric

30See Footnote 26 on page 78.
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of the dual background after performing a collective T-duality transformation along N
directions. And naturally, for the case of a T-duality transformation along one direction
these expressions reduce to the usual Buscher rules [168].

Now we turn to read off the components related to the B̌ field under the basis
(7.2.8). We find that this field has the form

B̌ =
1

2
B̌IJ e

I ∧ eJ + B̌res. , (7.2.11)

where the antisymmetric components B̌IJ can be read as

B̌mn = Bmn + kαm
[
(G +D)−1D (G − D)−1

]αβ
kβn

+ kαm
[
(G +D)−1 G (G − D)−1

]αβ
ṽβn

− ṽαm
[
(G +D)−1 G (G − D)−1

]αβ
kβn

− ṽαm
[
(G +D)−1D (G − D)−1

]αβ
ṽβn,

B̌m
β = + kβm

[
(G +D)−1 G (G − D)−1

]αβ
− ṽαm

[
(G +D)−1D (G − D)−1

]αβ
,

B̌α
n = −

[
(G +D)−1 G (G − D)−1

]αβ
kβn

−
[
(G +D)−1D (G − D)−1

]αβ
ṽβn,

B̌αβ = −
[
(G +D)−1D (G − D)−1

]αβ
.

(7.2.12)

These expressions give the B-field of the T-dual background, which in the case of a
single T-duality comply with the Buscher rules.

The residual B−field B̌res.is a quantity which will prove later on to be essential
while exploring the effect of T-duality transformations on the open-string background.
It can be written in terms of the basis (7.2.8) in the following way

B̌res. = eα ∧
[

dχα + vα +
1

2

(
ιk[αvβ] + fαβ

γχγ
)
eβ
]
. (7.2.13)

Notice that this field still depends on the coordinates of the original background through
the one forms eα = (k−1)αβ dXβ. Depending on whether we work with Dirichlet or
Neumann boundary conditions, its form will change when we study its interplay with
quantities related to the open string sector.

Dual dilaton

In the previous chapter we already discussed the transformation rule for the dilaton
field in (6.1.79). Along with the expressions (7.2.10) and (7.2.12), we will use the the
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form of φ̌ given by (6.1.79) to describe the dual background of the closed string sector
(Ǧ, B̌, φ̌). To this end, we first need to clarify the the closure of the basis to ensure that
we are working with a sound 1−form basis.

Closure of the basis eA

Having the basis eA under the assumption that we can find a coordinate system in which
the components kmα , m = N + 1, . . . , D of the linearly independent Killing vectors kα
vanish makes the discussion about its closure easier – we saw already in (6.1.72) that
the exterior derivative of eA is rather convoluted. Indeed, by having kmα = 0 we find
that deα, dem and deα are given as follows

deα = −1

2
fβγ

αeβ ∧ eγ −
(
k−1
)α
β

[
∂mk

β
γ

]
em ∧ eγ ,

dem = 0 ,

deα = −fαβγ eβ ∧ eγ

+
(
∂m ιk(αvβ) −

[
ιk(αvγ) + fαγ

δχδ
](
k−1
)γ
ε

[
∂mk

ε
β

])
em ∧ eβ.

(7.2.14)

In particular, we notice that in general the basis eI = {em, eα} is not closed. This
means that the dual background might implicitly depend on the original coordinates,
a property expected from a non-geometric background. We can circumvent this caveat
by restricting ourselves to one of the following cases

0 = fαβ
γ

0 = ∂m ιk(αvβ)

0 = ∂mk
β
α

 ,

{
0 = fαβ

γ

0 = ιk(αvβ)

}
. (7.2.15)

The reader can verify that by taking either of both scenarios here displayed, the basis
of 1−forms eI = {em, eα} is closed under the exterior derivative. We will stick to either
of one of the two cases when we present our findings on T-duality transformations done
over specific configurations in the upcoming examples.

Remarks on non-geometric fluxes

This is a good moment to do a small pause and make contact with what we have said
in section 6.2. Having the expressions for the dual metric (7.2.10) and B−field (7.2.12)
we take the chance to talk about the possible non-geometric fluxes that might arise
given an initial background configuration. Given the components ǦIJ and B̌IJ , we can
compute the quantity (

Ǧ± B̌
)−1

= g ± β , (7.2.16)
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where g and β are the symmetric and antisymmetric parts of this decomposition. In
here, g is a metric field with (symmetric) components gIJ while β is a bivector field
with (antisymmetric) components βIJ . From these quantities we are able to compute
the non-geometric fluxes Q and R as follows

QI
JK = ∂Iβ

JK , RIJK = 3β[IM∂Mβ
JK] . (7.2.17)

Let us consider a D dimensional configuration and perform a collective T-duality
transformation along all the D directions. We obtain a dual D dimensional
configuration with a vielbein basis eα which is not necessarily closed, as stated in
(7.2.14). Indeed, the exterior derivative for eα is given by

deα = −fαβγ eβ ∧ eγ . (7.2.18)

Let us put this fact aside for a while and proceed on computing theQ− and R−fluxes
for our dual configuration. Taking the components (7.2.10) and (7.2.12) we find that
gIJ and βIJ are given as follows

gαβ = Gαβ , βαβ = Dαβ , (7.2.19)

where the index structure is changed due to the index structure associated to the
coordinates of the original background configuration Xα. For our dual configuration,
we find ∂I = ∂α = ∂/∂χα and recalling the definitions for Dαβ in (7.2.2) and using the
Jacobi identity we find

Qα
βγ = fβγ

α , Rαβγ = ιkαιkβ ιkγH . (7.2.20)

This is a result we expected on general grounds; by having an isometry group with its
respective non-vanishing structure constants we are told that the target-space metric
is non-trivial, and in general will present a non-geometric flux related somehow to
fαβ

γ. By performing a collective T-duality transformation along all directions this non-
triviality migrates and gets mapped into the non-geometric Q−flux. The H−flux data
migrates as well towards the R− flux.

7.2.2 The open-string sector: Neumann directions

Now that we have elucidated what happens for the closed string sector under
T-duality transformations we turn now to explore the open string sector whenever
these transformations are performed along Neumann directions Xa only.31 In the next
subsection we will address the case for T-duality transformations along Dirichlet
directions.

The procedure for both Neumann and Dirichlet cases starts similarly by integrating
out the worldsheet gauge fields Aα. The difference now is that we need to take into
consideration its boundary conditions, as given in (7.1.17).

31In this doctoral work we won’t talk about T-duality transformations performed along Neumann
and Dirichlet boundary conditions, even though the formalism allows us to do it.
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Integrating-out I: gauge fields Aα

As we saw in the previous sections, we require to integrate-out the gauge fields Aα to
reach the dual background. This gives us the dual metric field Ǧ and the dual B−field
B̌ along with the residual B−field given in (7.2.13). Let us not forget that by doing
this process of integrating-out we solved the equations of motion for Aα, giving us a
contribution coming from the boundary ∂Σ which has to be enforced as a constraint.
This is summarized in (7.2.3). For the Neumann case, we implement this constraint as
a delta function into the path integral given by

δ
(
φα − χ̃α

)
∂Σ
, χ̃α = χα + ωα − 2πα′ιkαa . (7.2.21)

The Neumann boundary conditions for Aα must be evaluated taking into account
the solution found in (7.2.1). In equations, we find that Aα must satisfy on the boundary

0 =
[
Gaik

i
α ∗ Aα

∣∣
(7.2.1)

+ 2πα′iFabkbαAα
∣∣
(7.2.1)

]
∂Σ

, (7.2.22)

where Aα
∣∣
(7.2.1)

corresponds to the solution (7.2.1).

The worldsheet gauge field Aα harbors information about the boundary conditions
of the dual coordinates χα. For general cases, reading the boundary conditions turns
out to be rather convoluted. However, if we consider the case of abelian isometries
(that is, fαβ

γ = 0) it can be shown that

0 = dχ̃α
∣∣
∂Σ
. (7.2.23)

These expressions correspond precisely to Dirichlet boundary conditions for the dual
coordinates χα, which is expected having seen the CFT analysis.

Integrating-out II: Lagrange multipliers φα

The process of integrating out a certain field ϕ belonging to a certain action S[ϕ, ψA],
where ψA denote a collection of other fields, amounts to perform the path integral on
ϕ. This process was done already with the worldsheet gauge fields Aα and now we
would like to implement the constraints (7.2.21) directly in the path integral. Taking
into account both processes, the path integral takes the form

Z =

∫
[DX i] [Dχα]

Vgauge

∫
[Dφα] δ

(
φα − χ̃α

)
∂Σ

exp Š[X i, χα] . (7.2.24)

Here, Vgauge corresponds to the volume of local gauge symmetry (7.1.12), the delta
function along with χ̃α has been defined on (7.2.21) and the action Š corresponds to
the one defined in (7.2.4).

Now, given that the action does not depend on the Lagrange multipliers φα (since
the Neumann condition given in (7.2.3) is currently underway) it turns out that the
integration can be performed trivially and the delta integration in (7.2.24) gives exactly
one.
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Integrating-out III: The coordinates Xα

As we mentioned in section 6.1.4, it may happen that after the application of the
Buscher rules, the action Š still depends on the original coordinates Xα through the
vielbein eα present at both the boundary ∂Σ and in the residual B−field B̌res.. Let us
not forget that these coordinates Xα satisfy Neumann boundary conditions, which in
particular imply that the dXα forms may have a non-vanishing closed and co-closed
part, as stated by the Hodge decomposition theorem. The local symmetry (7.1.12)
alone is not enough to remove completely the dXα’s. It turns out that the residual B−
field provide the required terms to remove successfully these terms.

For ease of the discussion, let us restrict now to the abelian case and make the
assumption that the components kαβ are constant. For more general cases, a case-by-
case study is necessary.

In this point the residual B− field, the constraints (7.1.8) and the boundary fields
all play together. The constraint for the open string gauge field a in (7.1.8) establishes
a relation between a, ωα and vα in ∂Σ, which are quantities that depend on the target
space coordinates X i only. The key here is that X i possess a unique continuation from
the boundary to the bulk, and therefore we can assume that the relations (7.1.8) and
(7.1.13) still hold on Σ.

This allows us to write down B̌res.as follows

B̌res. = d
[
−χ̃αeα − 2πα′a

]
+ 2πα′

(
1
2
Fmne

m ∧ en
)
. (7.2.25)

Let us remember that F = da corresponds to the open-string field strength and
that χ̃α = χα +ωα− 2πα′ιkαa. Notice that the boundary gauge field a and the residual
B-field (both in the dual action (7.2.4)) combine in the following way

− i

2πα′

∫
Σ

B̌res. − i

2πα′

∫
∂Σ

2πα′a

= +
i

2πα′

∫
∂Σ

χ̃αe
α − i

2πα′

∫
Σ

2πα′
(

1
2
Fmne

m ∧ en
)
. (7.2.26)

The reader can verify that the second term from (7.2.26) corresponds to the
open-string gauge field intensity along the directions which were not dualized. Its
components combine with the Bmn of B̌ into the gauge-invariant open-string field
strength 2πα′Fmn = Bmn + 2πα′Fmn.

Let’s have a look on the dXα forms now. These forms are still present in the action
through the one forms eα at the boundary. Since the forms dXα are closed, we are
allowed to expand them accordingly as follows

dXα = dXα
(0) +

∑
m

Xα
(m)ϕ

m . (7.2.27)
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In here, Xα
(0) are globally well-defined functions on Σ, Xα

(m) are real constants and

ϕm ∈ CcN1
N denote a basis of closed and co-closed one-forms with vanishing normal

part at the boundary ∂Σ, which respects a normalization∫
γm

ϕn = δnm (7.2.28)

where we have denoted by γm a basis of the first homology on ∂Σ.

The exact part of dXα can be set to zero by use of the local symmetries given in
(7.1.12), whereas the closed and co-closed part of it requires a bit more of care. We can
distinguish two situations that might happen:

• A first possibility is that the coefficients Xα
(m) respect a quantization related to

momentum quantization along a compact direction. Here, such coefficients are
proportional to a certain Z−valued number such that respects the normalization∮

γm

dXα = Xα
(m) = 2πnα(m) , nα(m) ∈ Z . (7.2.29)

The nα(m) could be either winding or momentum numbers; for a compactification

of Xα on a circle or a flat torus without H−flux these winding/momentum always
exist, as we see for instance in the expansions (6.1.6), (6.1.17) and (6.1.31). On
more general backgrounds though, these may be absent or not be quantized at
all.

Let’s pick our path-integral computation done in (7.2.24) after we integrated out
φα. This computation contains the terms

Z ⊃
∫

[DXα]

Vgauge

exp

[
i

2πα′

∫
∂Σ

χ̃αe
α

]
⊃
∫ [
DXα

(0)

]
Vgauge

∑
nα
(m)
∈Z

exp

[
i

2πα′

∫
∂Σ

χ̃β
(
k−1
)β
α

dXα

]

⊃
∑
nα
(m)
∈Z

exp

[
i

α′
χ̃β
(
k−1
)β
α
nα(m)

]
∂Σ

⊃
∑

mα(m)∈Z

δ

[
1

2πα′
χ̃β
(
k−1
)β
α
−mα(m)

]
∂Σ

.

(7.2.30)

We see that the partition function Z contains a quantization condition for the
χ̃α coordinates; we go from the second to the third line of this computation by
removing the exact part via the local symmetries, and from the third to the fourth
line the definition of the periodic delta Kronecker symbol was employed [180].
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The partition function is meaningful as long as the deltas blow up, leading to the
condition

1

α′
χ̃β
(
k−1
)β
α

∣∣∣
∂Σ
∈ 2πZ . (7.2.31)

• The other possibility is that the real coefficients Xα
(m) appearing in the expansion

of dXα are not quantized and therefore are arbitrary. It turns out that the sum
in (7.2.30) becomes an integral over the variables Xα

(m). This finally leads to the
condition

χ̃α
∣∣
∂Σ

= 0 . (7.2.32)

Bear in mind that the coordinate χ̃α actually correspond to the shifted coordinate
χα by πα′ιkαa − ωα. Aside from the presence of ωα, the shift caused by the boundary
gauge field is expected on general grounds. This is indeed what we already discussed
in 6.1.1 for the case of a direction compactified on a circle.

7.2.3 The open-string sector: Dirichlet directions

Now we will perform a collective T-duality transformation along entirely Dirichlet
directions. Since in this case we find no contributions related to the EOMs for Aα

coming from the boundary ∂Σ, we find that there are no φα Lagrange multipliers and
the procedure differs from that of Neumann boundary conditions.

Integrating-out I: gauge fields Aα

The procedure is done similarly as the closed-string case and the Neumann open-string
case: we solve the equations of motion for Aα and evaluate the action on it, leading to
the dual metric and dual B−field given in (7.2.10) and (7.2.12). Later, we implement
the Dirichlet boundary conditions stated in (7.1.17).

The form of the residual B field is given in (7.2.13) and we know already that there
are no constraints coming from the equations of motion for Aα in the Dirichlet boundary
conditions case, as stated in (7.2.3).

Now we need to impose the boundary conditions on our worldsheet gauge field Aα,
according to (7.1.17). For the Dirichlet case, it means that Aα must vanish identically
on the boundary, this is

0 =
[
Aα
∣∣
(7.2.1)

]
∂Σ

. (7.2.33)

Using the explicit form of Aα given in (7.2.1) and imposing such condition in the basis
eI = {em, eα} we find

0 = Ǧα
I

(
eI
)

norm
+ iB̌α

I

(
eI
)

tan
. (7.2.34)
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These relations correspond to Neumann boundary conditions for the dual coordinates,
encoded in the normal part of eI . This is again expected on general grounds.

Integrating-out II: removing the Xα coordinates

As happened before for the Neumann case, the dual action (7.2.4) still has depends on
the dualized coordinates Xα through the 1−forms eα present in the residual B− field.
Nonetheless, we can still get rid of them as follows.

Let’s assume for simplicity that the Killing vectors are constant and that vα = 032.
Since the original coordinates Xα satisfy Dirichlet boundary conditions, then the dXα

forms are exact on ∂Σ and we can write down the residual B−field (7.2.13) as follows

B̌res. = eα ∧ dχα = d
[
Xα
(
k−1
)β
α
eβ

]
. (7.2.35)

By using Stokes’ theorem we can pull the residual B−field to the boundary ∂Σ,
obtaining

− i

2πα′

∫
Σ

B̌res. = − i

2πα′

∫
∂Σ

2πα′
[
Xα(k−1)βα

2πα′
eβ

]
− i

2πα′

∫
∂Σ

2πα′ǎαeα.

(7.2.36)

This means that the position of the D−brane in the original theoryXα|∂Σ determines
a constant gauge field in the T-dual theory given by

ǎα =
1

2πα′
(
k−1
)α
β
Xβ
∣∣∣
∂Σ
. (7.2.37)

Using the local transformations given in (7.1.12) we can fix Xα in the bulk Σ to a
convenient value and later trivially perform the path integral, reaching thus the T-dual
theory.

The results in the open string sector agree with the expected CFT results for both
the Neumann and the Dirichlet boundary condition cases. In short: a T-duality
transformation along a Neumann direction gives us a Dirichlet direction, and if there’s
a non-trivial Wilson line (i.e. boundary gauge field) it leads to a shift of the dual
coordinates of the boundary. On the other hand, a T-duality transformation along a
Neumann direction results in a Neumann direction in the dual theory, where the
position of the original brane leads to a constant open-string boundary gauge field in
the T-dual configuration.

Now that we have this construction, the next step is to illustrate this formalism
via some known examples. In particular, we will consider a three-torus with constant
H-flux and perform T-duality transformations along multiple directions.

32For more general configurations what follows can be treated in a similar manner. However,
depending on the configuration they have to be treated case by case.
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7.3 Examples: T3 with H−flux

In this section we will illustrate our formalism and work out different examples with the
three-torus with H−flux as a starting background. We will consider different Dp−brane
setups and non-trivial background fields, exploiting the power of Buscher rules for
curved background configurations.

Our setup is given as follows: we consider the target-space metric of a flat-three
torus T3 with an H−flux. The coordinates on the three-torus will be labeled by X i,
i = 1, 2, 3 equipped with the identifications X i ∼ X i + 2π. We choose the contangent
basis of the 1−forms to be given by the dX i. We consider then the target-space metric
components Gij, the B field B and the dilaton to be given as follows

Gij =

R2
1 0 0

0 R2
2 0

0 0 R2
3

 , B =
α′

2π
hX3 dX1 ∧ dX2 , φ = φ0 . (7.3.1)

In here, h ∈ Z responds to the flux-quantization condition. The units of dimension
are carried by the metric components; the Ri have the dimension of the string-length
`s whereas the coordinates X i are dimensionless. Finally, the dilaton φ is taken to be
constant.

Notice that the Killing vectors kα of T3 are the tangent vectors to each circle, which
are linearly independent and satisfy an abelian Lie algebra, i.e. the vectors kα in (7.1.7)
satisfy

[kα, kβ] = 0. (7.3.2)

Therefore, we can write down the components of each Killing vector kα as

k1 =

1
0
0

 , k2 =

0
1
0

 , k3 =

0
0
1

 . (7.3.3)

For the open-string sector, we will consider that a Dp−brane has Neumann
boundary conditions along the time direction and along p spatial directions. The
remaining directions will have Dirichlet boundary conditions. For ease of our
discussion, we will work with the dimensionless dual coordinates χ̌α given by

χ̌α =
1

α′
χα . (7.3.4)

7.3.1 One T-duality transformation

In the following cases, we will perform one T-duality transformation for the
configuration given above. The T-duality transformations will be done along the X1

direction for simplicity.
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D1-brane along X1

Let’s consider then a D1−brane along the X1 (Neumann) direction. If we choose a
constant open-string gauge field a we find that F = da = 0 and together with the
background fields given above we read that the boundary conditions (7.1.4) are

0 =
(
dX1

)
norm

, 0 =
(
dX2

)
tan
, 0 =

(
dX3

)
tan
. (7.3.5)

Let us remember that in order to apply the Buscher rules we require to find fields vα
and ω − α that satisfy the set of constraints (7.1.8), (7.1.13) and (7.1.20). The reader
can check that the following set of fields does indeed satisfy them

a = a1 dX1 ,

v1 = 0 ,

ω1 = 0 ,

a1 = const. . (7.3.6)

We compute the dual metric and dual B−field components ǦIJ and B̌IJ from (7.2.10)
and (7.2.12). What we obtain is

ǦIJ =


α′2

R2
1

−α′2

R2
1

h
2π
X3 0

−α′2

R2
1

h
2π
X3 R2

2 + α′2

R2
1

[
h
2π
X3
]2

0

0 0 R2
3

 , B̌IJ = 0 . (7.3.7)

This background is known as a twisted-three torus, whose dual basis is given by
{dχ̌1, dX

2, dX3}. For the dual coordinate dχ̌1 we can read off its boundary conditions
from (7.2.22). We find at the end that the boundary conditions for the dual basis is
given by

0 =
(
dχ̌1

)
tan
, 0 =

(
dX2

)
tan
, 0 =

(
dX3

)
tan
. (7.3.8)

This means that the dual background contains a D0−brane, just what we expected.
The residual B−field takes the form B̌res. = dX1 ∧ dχ1, and by performing the path-
integral procedure described in (7.2.30) we find[

χ̌1 − 2πa1

]
∂Σ
∈ 2πZ . (7.3.9)

As we pointed out in 7.2.2, depending on the background configuration we might
have a clear quantization scheme, which will be reflected in the winding or momentum
modes present in the expansion of the X i. In particular, we do not know how to quantize
the theory in presence of a non-trivial H−flux and thus we have no information about
the momentum/winding numbers of the original coordinate X1. We face then the
second situation stated in the path-integral procedure in 7.2.2 and we set the RHS of
(7.3.9). Finally, we see that the dual background corresponds to a twisted torus with a
D0−brane, whose position is specified by the Wilson line a1.
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D2-brane along X1 and X2

We consider now a D2-brane along the directions X1 and X2. We choose now to have
a non-trivial boundary gauge field a such that its field intensity F = da is constant
whose non-zero component is F12 = f = const. We find the boundary conditions to be

0 = R2
1

(
dX1

)
norm

+ 2πα′ i
(
f + h

4π2 X
3
) (

dX2
)

tan
,

0 = R2
2

(
dX2

)
norm
− 2πα′ i

(
f + h

4π2 X
3
) (

dX1
)

tan
,

0 =
(
dX3

)
tan
.

(7.3.10)

The fields that satisfy the constraints (7.1.8), (7.1.13) and (7.1.20) for a single T-
duality transformation along X1 are

a = a1 dX1 + a2 dX2 + fX1 dX2 ,

v1 = −2πα′f dX2 ,

ω1 = 0 .

a1, a2, f = const. , (7.3.11)

Given this, we find that the T-dual G and B field given by (7.2.10) and (7.2.12) give

ǦIJ =


α′2

R2
1

− α′

R2
1

[
2πf + α′

2π
hX3

]
0

− α′

R2
1

[
2πα′f + α′

2π
hX3

]
R2

2 + 1
R2

1

[
2πα′f + α′

2π
hX3

]2
0

0 0 R2
3

 ,

B̌IJ = 0 .

(7.3.12)

We notice that the background dual metric has the form of that of a twisted three-
torus. Surprisingly, the field intensity of the boundary gauge field a appears through
the gauge-invariant open-string field strength

2πα′F12 = 2πα′f +
α′

2π
hX3. (7.3.13)

Now to determine the boundary conditions of the dual background basis. Following
(7.2.8) we find again the dual basis to be {dχ̌1, dX

2, dX3}, and from (7.2.22) we find
the boundary conditions

0 =
(
dχ̌1

)
tan
,

0 = Ǧ2
1
(
dχ̌1

)
norm

+ Ǧ22

(
dX2

)
norm

,

0 =
(
dX3

)
tan
.

(7.3.14)

These boundary conditions describe Dirichlet boundary conditions for χ̌1 and X3

and a Neumann boundary condition for X2, thus giving D1−brane in the dual
configuration.
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Now the residual B−field comes in. Using (7.2.13) we find that B̌res.can be written
down as

B̌res. = dX1 ∧ (dχ1 − 2πα′dX2) (7.3.15)

which cancels the fX1dX2 component of the open string gauge field a through the
mechanism presented in (7.2.26). Since X1 corresponds to the direction being
T-dualized, we ought to perform the path integral on it. Remembering that we are in
a background on which a proper quantization procedure is not clear, then according
to (7.2.32) we find [

χ̌1 − 2πa1

]
∂Σ

= 0 . (7.3.16)

Lastly, the Wilson line a2dX2 is the only surviving component of the original open-
string boundary gauge field, hence the dual boundary gauge field ǎ has the form

ǎ = a2 dX2 . (7.3.17)

In short, we found that the T-dual for this configuration is a twisted three-torus
with a tilted D1−brane along the χ̌1−X2 direction, and with a constant dual boundary
gauge field along X2.

D3-brane along X1, X2 and X3

Now we set to discuss a T-duality transformation along all directions of T3. This is
more of a formal computation, since the Freed-Witten anomaly cancellation condition
does not allow such starting configuration [183]. We will perform nonetheless the
computation here and in the next section we will discuss it further. For the
three-torus with H−flux, it states that the H−flux pulled back to the boundary must
vanish in cohomology, i.e. taking into account the boundary conditions we must be
able to write it down as an exact form, which in this case it does not happen.
Nevertheless, nothing stops us to formally compute the dual G and B fields.

For simplicity, let us consider the same D2− brane setup presented above, this time
with X3 as a Neumann direction and a = 0. We obtain then

ǦIJ =


α′2

R2
1

−α′2

R2
1

h
2π
X3 0

−α′2

R2
1

h
2π
X3 R2

2 + α′2

R2
1

[
h
2π
X3
]2

0

0 0 R2
3

 , B̌IJ = 0 , (7.3.18)

with boundary conditions

0 =
(
dχ̌1

)
tan
,

0 = Ǧ2
1
(
dχ̌1

)
norm

+ Ǧ22

(
dX2

)
norm

,

0 =
(
dX3

)
norm

.

(7.3.19)
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As it was expected, this configurations describe a D2−brane with Dirichlet boundary
conditions along the χ̌1 direction and Neumann boundary conditions along X2 and
X3. It turns out that since we started with an inconsistent configuration, the dual
configuration is inconsistent as well. We will treat this shortly in the next section.

D0-brane

So far we have tested our formalism for cases in which we always had to T-dualize along
a Neumann direction. Let us now try other configurations for which X1 is a Dirichlet
direction and perform a T-duality transformation along it. We start then with the
D0−brane, which is a point-like object on the three-torus. From (7.1.4) we read the
boundary conditions for this starting configuration to be

0 =
(
dX1

)
tan
, 0 =

(
dX2

)
tan
, 0 =

(
dX3

)
tan
. (7.3.20)

The constraints (7.1.8) and (7.1.13) are readily solved with the choice of the following
fields

a = 0 , v1 = 0 , ω1 = 0 . (7.3.21)

Via the expressions (7.2.10) and (7.2.12) we find that the dual metric and B−field
are given by

ǦIJ =


α′2

R2
1

−α′2

R2
1

h
2π
X3 0

−α′2

R2
1

h
2π
X3 R2

2 + α′2

R2
1

[
h
2π
X3
]2

0

0 0 R2
3

 , B̌IJ = 0 . (7.3.22)

We find the dual background to be again a twisted three-torus. We get the dual
basis via (7.2.8) and reads {dχ̌1, dX

2, dX3}, which satisfies the boundary conditions
(7.2.34)

0 = Ǧ11
(
dχ̌1

)
norm

+ Ǧ1
2

(
dX2

)
norm

,

0 =
(
dX2

)
tan
,

0 =
(
dX3

)
tan
.

(7.3.23)

The boundary conditions of the dual basis describe a D1−brane; we find a Neumann
boundary condition for the direction χ̌1 and Dirichlet boundary conditions for X2 and
X3. Moreover, the residual B−field B̌res.takes the form

B̌res. = dX1 ∧ dχ1 = d(X1dχ1), (7.3.24)
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where the last step can be done since dX1 is exact. This means that we can write down

− i

2πα′

∫
Σ

B̌res. = − i

2πα′

∫
∂Σ

2πα′
[
X1

2π
dχ̌1

]
. (7.3.25)

This describes a constant Wilson line along the direction χ̌1, whose component
contains the one of the coordinates of the position of the original D0−brane, i.e.

ǎ =
X1|∂Σ

2π
dχ̌1 . (7.3.26)

D1-brane along X2

Let’s set now a D1−brane placed along the X2 direction with a constant Wilson line
along this same direction too. We find that the boundary conditions are given by

0 =
(
dX1

)
tan
, 0 =

(
dX2

)
norm

, 0 =
(
dX3

)
tan
, (7.3.27)

and that the constraints (7.1.8) and (7.1.13) are satisfied by

a = a2 dX2 ,

v1 = 0 ,

ω1 = 0 ,

a2 = const. . (7.3.28)

Applying the Buscher rules we find the dual G and B fields

ǦIJ =


α′2

R2
1

−α′2

R2
1

h
2π
X3 0

−α′2

R2
1

h
2π
X3 R2

2 + α′2

R2
1

[
h
2π
X3
]2

0

0 0 R2
3

 , B̌IJ = 0 , (7.3.29)

with dual basis {dχ̌1, dX
2, dX3}. The boundary conditions (7.2.34) for this dual basis

are evaluated as

0 = Ǧ11
(
dχ̌1

)
norm

+ Ǧ1
2

(
dX2

)
norm

,

0 = Ǧ2
1
(
dχ̌1

)
norm

+ Ǧ22

(
dX2

)
norm

,

0 =
(
dX3

)
tan
.

(7.3.30)

These expressions describe a D2−brane along the directions χ̌1 and X2. By working
out the residual B−field term B̌res.we find the dual open-string gauge field

ǎ =
X1|∂Σ

2π
dχ̌1 + a2 dX2 . (7.3.31)
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D2-brane along X2 and X3

We finish this section for one T-duality transformation with the case of a D2−brane
placed along the X2 and X3 directions. For the sake of simplicity, we consider a
vanishing open string gauge field, making the analysis similar to the case of a D1−brane
along X2 seen already above; by using the expressions for the G and B field (7.2.10)
and (7.2.12) we find their duals to be

ǦIJ =


α′2

R2
1

−α′2

R2
1

h
2π
X3 0

−α′2

R2
1

h
2π
X3 R2

2 + α′2

R2
1

[
h
2π
X3
]2

0

0 0 R2
3

 , B̌IJ = 0 . (7.3.32)

The dual basis corresponds to {dχ̌1, dX
2, dX3} as well, and its boundary conditions

(7.2.34) are

0 = Ǧ11
(
dχ̌1

)
norm

+ Ǧ1
2

(
dX2

)
norm

,

0 = Ǧ2
1
(
dχ̌1

)
norm

+ Ǧ22

(
dX2

)
norm

,

0 =
(
dX3

)
norm

,

(7.3.33)

which describe a D3−brane along the twisted three-torus. The boundary gauge field in
the dual picture is given by

ǎ =
X1|∂Σ

2π
dχ̌1 . (7.3.34)

In view of the Freed-Witten anomaly cancellation condition, this background is
consistently well defined.

7.3.2 Two T-duality transformations

Let us now employ the capabilities of this formalism a bit further and perform two
collective T-duality transformations for our three-torus with H−flux setup given in
(7.3.1).

For the next set of examples we will perform our T-duality transformations along
the X1 and X2 directions, which both will have the same boundary conditions.

D2-brane along X1 and X2

We consider first a D2−brane placed along the X1 and X2 directions, with an open-
string field a such that its field intensity is constant, i.e. F = da and F12 = f = const.
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We read the boundary conditions (7.1.4) for the dX i elements of the original basis to
be

0 = R2
1

(
dX1

)
norm

+ 2πα′ i
(
f + h

4π2 X
3
) (

dX2
)

tan
,

0 = R2
2

(
dX2

)
norm
− 2πα′ i

(
f + h

4π2 X
3
) (

dX1
)

tan
,

0 =
(
dX3

)
tan
.

(7.3.35)

The fields that solve the constraints (7.1.8) and (7.1.13) for T-duality
transformations along two directions are given by

a = a1 dX1 + a2 dX2 + 1
2
f
(
X1 dX2 −X2 dX1

)
,

v1 = −2πα′f dX2 ,

v2 = +2πα′f dX1 ,

ω1 = − πα′f X2 ,

ω2 = + πα′f X1 .

a1, a2, f = const. (7.3.36)

The dual metric Ǧ and the dual B field B̌ are computed using of course (7.2.10)
and (7.2.12). These take the form

ǦIJ =


α′2R2

2

R2
1R

2
2+[2πα′f+ α′

2π
hX3]

2 0 0

0
α′2R2

1

R2
1R

2
2+[2πα′f+ α′

2π
hX3]

2 0

0 0 R2
3

 ,

B̌IJ =


0

−α′2
[
2πα′f+ α′

2π
hX3

]
R2

1R
2
2+[2πα′f+ α′

2π
hX3]

2 0

+α′2
[
2πα′f+ α′

2π
hX3

]
R2

1R
2
2+[2πα′f+ α′

2π
hX3]

2 0 0

0 0 0

 ,

(7.3.37)

which are the metric and the Kalb-Ramond field B for the T-fold background [121].
We find once more that the open-string sector has an effect on the closed-string sector
of the theory; the field intensity F = da appears via the gauge invariant field strength

2πα′F12 = 2πα′f +
α′

2π
hX3, (7.3.38)

We find the dual basis via (7.2.8) and is given by {dχ̌1, dχ̌2, dX
3}. The boundary

conditions for this dual basis can be determined from (7.2.22), which are

0 =
(
dχ̌1

)
tan
, 0 =

(
dχ̌2

)
tan
, 0 =

(
dX3

)
tan
. (7.3.39)
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This conditions tell us that the dual background contains a D0−brane. The residual
B−field (7.2.13) is found to be

B̌res. = dX1 ∧ dχ1 + dX2 ∧ dχ2 − 2πα′fdX1 ∧ dX2, (7.3.40)

which via the computation below (7.2.26) fixes the positions of the χ̌α as[
χ̌α − 2πaα

]
∂Σ

= 0 , (7.3.41)

with use of (7.2.32).

D3-brane along X1, X2 and X3

For illustrative purposes, let us consider a D3−brane extending on our three-torus with
H−flux. Such configuration is inconsistent, according to the Freed-Witten anomaly
cancelation condition [183]. The situation is analog to the case for a D2-brane along
X1 and X2. Consider then the background (7.3.36). By performing a collective T-
duality transformation along the directions X1 and X2 we find the same background
configuration as in (7.3.37), i.e.

ǦIJ =


α′2R2

2

R2
1R

2
2+[2πα′f+ α′

2π
hX3]

2 0 0

0
α′2R2

1

R2
1R

2
2+[2πα′f+ α′

2π
hX3]

2 0

0 0 R2
3

 ,

B̌IJ =


0

−α′2
[
2πα′f+ α′

2π
hX3

]
R2

1R
2
2+[2πα′f+ α′

2π
hX3]

2 0

+α′2
[
2πα′f+ α′

2π
hX3

]
R2

1R
2
2+[2πα′f+ α′

2π
hX3]

2 0 0

0 0 0

 ,

(7.3.42)

The dual basis is {dχ̌1, dχ̌2, dX
3}, which satisfies the boundary conditions

0 =
(
dχ̌1

)
tan
, 0 =

(
dχ̌2

)
tan
, 0 =

(
dX3

)
norm

. (7.3.43)

These conditions point out that the dual background contains a D1−brane along
X3. We will mention this setup later on when we discuss the Freed-Witten anomaly
condition.

D0-brane

Now we turn to explore T-duality transformations along Dirichlet directions, these
being X1 and X2. For this D0−brane configuration we find the boundary conditions
for the 1−form basis of the original background to be

0 =
(
dX1

)
tan
, 0 =

(
dX2

)
tan
, 0 =

(
dX3

)
tan
, (7.3.44)
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and the constraints (7.1.8) and (7.1.13) are solved by

a = 0 , v1,2 = 0 , ω1,2 = 0 . (7.3.45)

Notice that since all of the dX i 1−forms vanish at the boundary, our setup does not
support an open-string gauge field, hence a = 0. The dual background can be easily
computed with help of (7.2.10) and (7.2.12), which give

ǦIJ =


α′2R2

2

R2
1R

2
2+[ α′2π hX3]

2 0 0

0
α′2R2

1

R2
1R

2
2+[ α′2π hX3]

2 0

0 0 R2
3

 ,

B̌IJ =


0

−α′2 α
′

2π
hX3

R2
1R

2
2+[ α′2π hX3]

2 0

+α′2 α
′

2π
hX3

R2
1R

2
2+[ α′2π hX3]

2 0 0

0 0 0

 .

(7.3.46)

This is again the G and B− background fields for a T-fold. The boundary conditions
for the dual basis {dχ̌1, dχ̌2, dX

3} can be read from (7.2.33) as

0 = Ǧ11
(
dχ̌1

)
norm

+ i B̌12
(
dχ̌2

)
tan
,

0 = Ǧ22
(
dχ̌2

)
norm

+ i B̌21
(
dχ̌1

)
tan
,

0 =
(
dX3

)
tan
.

(7.3.47)

These boundary conditions indicate that our background has a D2-brane along the
χ̌1 and χ̌2 directions. The dual boundary gauge field has the form

ǎ =
X1|∂Σ

2π
dχ̌1 +

X2|∂Σ

2π
dχ̌2 . (7.3.48)

D1-brane along X3

Let us exhaust the possible cases and explore finally the case of a D1−brane along
the X3 direction with no boundary gauge field. Turns out that this case is similar to
the case of the D0−brane we just reviewed: by performing a T-duality transformation
along the X1 and X2 directions we get the T-fold background as seen in (7.3.46), i.e.
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ǦIJ =


α′2R2

2

R2
1R

2
2+[ α′2π hX3]

2 0 0

0
α′2R2

1

R2
1R

2
2+[ α′2π hX3]

2 0

0 0 R2
3

 ,

B̌IJ =


0

−α′2 α
′

2π
hX3

R2
1R

2
2+[ α′2π hX3]

2 0

+α′2 α
′

2π
hX3

R2
1R

2
2+[ α′2π hX3]

2 0 0

0 0 0

 .

(7.3.49)

The basis for this dual space is given again by {dχ̌1, dχ̌2, dX
3}, whose boundary

conditions are again given by

0 = Ǧ11
(
dχ̌1

)
norm

+ i B̌12
(
dχ̌2

)
tan
,

0 = Ǧ22
(
dχ̌2

)
norm

+ i B̌21
(
dχ̌1

)
tan
,

0 =
(
dX3

)
tan
.

(7.3.50)

These conditions tell us that the dual background contains a D3−brane. The dual
boundary gauge field is given by

ǎ =
X1|∂Σ

2π
dχ̌1 +

X2|∂Σ

2π
dχ̌2 . (7.3.51)

7.3.3 Three T-dualities

In this final section we discuss the case for T-duality transformations done along each
direction of our three-torus, i.e. X1, X2 and X3. In this case, however, in order to
comply with the set of conditions given in (7.1.13), we need to turn off the H−field in
(7.3.1) by setting h = 0.

Since the directions to be T-dualized must be either all Dirichlet or all Neumann,
we have two cases at our disposal: A D3−brane or a D0−brane. Let’s start then with
an starting background containing D3−brane.

D3-brane along X1, X2 and X3

In this situation we perform T-duality transformations along all directions of the
three-torus. Since this configuration supports with no problem an open-string gauge
field along all directions, we consider a such that F = da is constant, with non-zero
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component F12 = f = const.. Since h = 0, we find B = 0. We find then the following
boundary conditions for the dX i basis

0 = R2
1

(
dX1

)
norm

+ 2πα′ if
(
dX2

)
tan
,

0 = R2
2

(
dX2

)
norm
− 2πα′ if

(
dX1

)
tan
,

0 = R2
3

(
dX3

)
norm

.

(7.3.52)

The constraints (7.1.8) and (7.1.13) are solved with the following fields

a = a1 dX1 + a2 dX2 + a3 dX3 + 1
2
f
(
X1 dX2 −X2 dX1

)
,

v1 = −2πα′f dX2 ,

v2 = +2πα′f dX1 ,

v3 = 0 ,

ω1 = − πα′f X2 ,

ω2 = + πα′f X1 ,

ω3 = 0 .

a1, a2, a3, f = const. , (7.3.53)

By using the expressions (7.2.10) and (7.2.12) we find the dual metric field and the
dual Kalb-Ramond field to be

ǦIJ =


α′2R2

2

R2
1R

2
2+[2πα′f ]2

0 0

0
α′2R2

1

R2
1R

2
2+[2πα′f ]2

0

0 0 α′2

R2
3

 ,

B̌IJ =

 0 −2πα′3f

R2
1R

2
2+[2πα′f ]2

0
+2πα′3f

R2
1R

2
2+[2πα′f ]2

0 0

0 0 0

 .

(7.3.54)

This dual background corresponds to that of a T-fold, once more. We find as well
that the open-string sector interacts with the closed-string sector of the theory via the
open-string field intensity F = da.

By using (7.2.8) we obtain that the dual basis is given by {dχ̌1, dχ̌2, dχ̌3}. The
boundary conditions for this dual basis can be determined from (7.2.22) and are

0 =
(
dχ̌1

)
tan
, 0 =

(
dχ̌2

)
tan
, 0 =

(
dχ̌3

)
tan
, (7.3.55)

This describes a D0−brane in the dual background. The location of each dual
coordinate at the boundary is given by[

χ̌α − 2πaα
]
∂Σ

= 0 . (7.3.56)
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D0-brane

To close this section, we deal with the D0−brane. This configuration does not support
an open-string gauge field at the boundary and we have no B−field whatsoever. After
performing a T-duality transformation along all three directions we find the dual
background

ǦIJ =


α′2

R2
1

0 0

0 α′2

R2
2

0

0 0 α′2

R2
3

 , B̌IJ = 0 . (7.3.57)

This background is actually a three-torus with inverted radii; three independent circles
each of radius Ri being T-dualized into dual circles of radii α′/Ri, echoing the simple
examples we featured in sections 6.1.1 and 6.1.3.

The dual basis is determined via (7.2.8) and found to be {dχ̌1, dχ̌2, dχ̌3}. We find
that the dual background contains a D3−brane, which is described by the boundary
conditions

0 =
(
dχ̌1

)
norm

, 0 =
(
dχ̌2

)
norm

, 0 =
(
dχ̌3

)
norm

. (7.3.58)

We find a dual open-string gauge field, and with help of (7.2.37) we get that its
components are

ǎα =
Xα

2πα′

∣∣∣
∂Σ
. (7.3.59)

Summary

We have taken the flat three-torus with H-flux background and illustrated how to
implement Buscher’s rules whenever we have D-branes in our setup, according to the
procedure described in section 7.2. In this section we have presented some examples
for certain backgrounds with Dp-branes defined on them and performed T-duality
transformations along X1 (one transformation), X1 and X2 (two transformations) or
X1, X2 and X3 (three transformations). Depending on whether the initial Dp-brane
is parallel or perpendicular to the direction of such transformations, the brane in the
dual configurations complies with the known results in conformal field theory.

We present now a summary of our findings. Please note that the components of
the boundary gauge fields are written down according to the corresponding 1−form
basis. The D-brane configurations are indicated according to the direction on which
they extend. For instance, a D1-brane along X2 will be indicated by “X2”. A D2-
brane along χ̌1 and X2 in the dual configuration will be indicated by “χ̌1−X2” and so
on. We highlight in red those configurations not allowed by the Freed-Witten anomaly
cancellation condition. We leave the discussion of the dilation for the last section of
this chapter.



122 7. T-duality transformations for the Open String

Original configuration Dual configuration

D-brane Boundary
Ǧ and B̌

D-brane Boundary
configuration gauge field configuration gauge field

D0 none Twisted T3 (7.3.22) χ̌1 (X
1

2π
, 0, 0)

X1 (a1, 0, 0) Twisted T3 (7.3.7) D0 none

X2 (0, a2, 0) Twisted T3 (7.3.29) χ̌1 −X2 (X
1

2π
, a2, 0)

X1 −X2 (a1, a2 + fX1, 0) Twisted T3 with f shift(7.3.12) X2 (0, a2, 0)

X2 −X3 none Twisted T3 (7.3.32) χ̌1 −X2 −X3 (X
1

2π
, 0, 0)

D3 none Twisted T3 (7.3.18) X2 −X3 none

Table 7.1: Examples for one T-duality transformation. We call f−shift to the shift experienced by
the X3 coordinate as α′

2πhX
3 → 2πα′f + α′

2πhX
3.

Original configuration Dual configuration

D-brane Boundary
Ǧ and B̌

D-brane Boundary
configuration gauge field configuration gauge field

D0 none T-fold (7.3.46) χ̌1 − χ̌2 (X
1

2π
, X

2

2π
, 0)

X3 none T-fold (7.3.49) χ̌1 − χ̌2 −X3 (X
1

2π
, X

2

2π
, 0)

X1 −X2 (a1 − 1
2
fX2, a2 + 1

2
fX1, 0) T-fold with f shift(7.3.37) D0 none

D3 (a1 − 1
2
fX2, a2 + 1

2
fX1, 0) T-fold with f shift(7.3.42) X3 none

Table 7.2: Examples for two T-duality transformations. As before, we call f−shift to the shift
experienced by the X3 coordinate as α′

2πhX
3 → 2πα′f + α′

2πhX
3.

Original configuration Dual configuration

D-brane Boundary
Ǧ and B̌

D-brane Boundary
configuration gauge field configuration gauge field

D0 none Inverted T3 (7.3.57) χ̌1 − χ̌2 − χ̌3 (X
1

2π
, X

2

2π
, X

3

2π
)

D3 (a1 − 1
2
fX2, a2 + 1

2
fX1, a3) T-fold(7.3.54) D0 none

Table 7.3: Examples for three T-duality transformations.

7.4 The Freed-Witten Anomaly and boundary

conditions

This section will explore the well-definedness of some examples carried out in the last
section. More concretely, we will talk about the Freed-Witten anomaly cancellation
condition and study if the setups featured in the previous section comply with it. After
this, we will study in a general manner whether the boundary conditions are properly
well defined on the T-dual configurations.
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7.4.1 The Freed-Witten anomaly

Whenever we have a background with a non-vanishing H−flux and D-branes placed in
it, the Freed-Witten anomaly cancellation condition [183] gives a criterion to determine
whether the background is consistently well-defined.

In particular, we find that the pullback of the field strength H = dB to the D-brane
has to vanish in cohomology. In formulas, if we label the cycle wrapped by the D-brane
by Γ and it’s Poincaré dual by [Γ] we can express this condition as

H ∧ [Γ] = 0 . (7.4.1)

This is for the case with H−flux only. If we want to consider geometries with F−flux
and non-geometries with Q− and R− fluxes we ought to generalize this condition. This
issue has been addressed in [184,145,185–187,151]. We find the expression(

d−H ∧ −F ◦ −Q • −R x
)
[Γ] = 0 . (7.4.2)

We ought to consider each flux as an operator acting on the dual Poincaré [Γ]. We
can write down each flux operator as listed below

H ∧ = 1
3!
Hijk dX i ∧ dXj ∧ dXk ,

F ◦ = 1
2!
Fij

k dX i ∧ dXj ∧ ιk ,

Q • = 1
2!
Qi

jk dX i ∧ ιj ∧ ιk ,

R x = 1
3!
Rijk ιi ∧ ιj ∧ ιk .

(7.4.3)

In here, ιi corresponds to the contraction operator along the direction of the ∂i
vectors dual to the dX i basis, that is ιi ≡ ι∂i .

We have now a way to tell whether a certain background is consistently defined
whenever D-branes are involved. In particular, it is expected that (non-)consistent
configurations are mapped into (non-)consistent configurations under T-duality
transformations. Indeed, let us review some examples developed in the previous
section.

Let us start first with the case of the three-torus with H-flux. Let’s recall the case of
one T-duality transformation along X1 for a D3−brane in section 7.3.1. We mentioned
that placing a D3−brane with such background configuration is not allowed according
to the Freed-Witten condition. Indeed, the Poincaré dual related to the cycles wrapped
by this brane [ΓD3] corresponds to a point on our three-torus. Evaluating then the

condition (7.4.1) on any point of our T3 leads us to H
!

= 0; the H−flux must be zero if
we intend to place a D3−brane on our three-torus.

Now let’s consider the background of a twisted torus with a geometric F−flux in
section 7.3.1 as well. With help of the generalization of the Freed-Witten anomaly
cancellation condition (7.4.2) we can determine which D-brane configuration is allowed
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or not. The components of the geometric F−flux Fij
k can be easily computed from the

vielbein Ea = Ea
b e

b whose components diagonalize the dual target space metric Ǧ as
E−T ǦE−1 = 1 We find that

dEk =
1

2
Fij

k Ei ∧ Ej. (7.4.4)

We read then that the only non vanishing component of the geometric flux Fij
k is given

by

F23
1 =

α′

2π

h

R1R2R3

. (7.4.5)

This tells us that a D2−brane placed along the directions X2 and X3 is not allowed in
this case; the Poincaré dual of such brane has a component along dX3 which is picked
up by the contraction operator, thus forcing that f 1

23 must be zero. This agrees with
our conclusions regarding this case in section 7.3.1.

As a last case, let us consider the T-fold backgrounds in section 7.3.2. In this case
we can compute the non-geometric Q−flux via the expressions found in (7.2.17). What
we can find is that the only non-vanishing component of the Q−flux is given by

Q3
12 =

α′

2π
h, (7.4.6)

which tells us that a D1−brane placed along the X3 direction on this background is
forbidden. This agrees with our findings, once again.

On a side note, we can ask if the open-string gauge field intensity F = da can mix
with the F - and Q- fluxes, since it can mix with the metric and B-field as seen in
(7.3.12) and (7.3.37). Since F12 = f is constant, it will not affect such fluxes.

7.4.2 Well-definedness of boundary conditions

With the use of the Buscher rules, we are able to start from a certain background
configuration with D−branes defined on it and end up in the T-dual background, where
the form of the dual D−brane will depend on the direction and amount of T-duality
transformations. We saw as well in section 6.1.3 that the O(D,D;Z) transformations
keep the mass squared of the string invariant for toroidal-compactified configurations.

We saw already in section 6.3 that the geometric and non-geometric spaces we
reviewed here so far can be treated as toroidal fibrations over a circle, giving us the
chance of exploring the global behavior and well-definedness of these spaces. This was
done regarding the closed-string sector fields G and B. Since we are studying the
open string sector of the theory as well, we can ask ourselves whether the D-branes are
globally well defined on these (non-)geometric backgrounds as well. It turns out that
we can study the well-definedness of the boundary conditions fiberwise as well with
help of the O(D,D;Z) set of transformations.
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In this section we will study the global well-definedness of D-branes on the different
geometric and non-geometric backgrounds we have seen so far. In order to do this,
we require to be concrete about the specification of boundary conditions in matrix
language.

Boundary conditions

Let’s remember that the metric G and Kalb-Ramond field B for the examples worked
out in the last section can be brought into the form

Gij =

(
Gij(X

3) 0

0 R2
3

)
, Bij =

(
Bij(X

3) 0

0 0

)
, (7.4.7)

where i, j = 1, 2, 3 and the fiber directions are labeled by i, j = 1, 2. Let us recall
the boundary conditions we found in (7.1.4) too. We can express them properly in
2D−dimensional matrix notation as(

D

N

)
=

(
α′ 0

2πα′F G

)(
i
(
dX
)

tan(
dX
)

norm

)
. (7.4.8)

Notice that the dilaton has not been included in this set of transformations; we will
address it separately in the following subsection. We understand this expression to be
evaluated at the boundary; G and F in this case are considered to be restricted to ∂Σ.

To specify a determined D-brane configuration we need to agree on which directions
we them to be Dirichlet or Neumann. This can be done it we let a projection operator
act on (7.4.8). Let Π be this operator given by

Π =

(
∆ 0
0 1−∆

)
, ∆2 = ∆ , (7.4.9)

where ∆ is a diagonal matrix whose components are either zero or one. For example,
a D2−brane along the X1 and X2 directions is specified by choosing
∆ = diag (0, 0, 1, . . . , 1). This projection operator will come in handy later on.

Now we want to see what happens when we transport the D-branes along the circle
S1. Intuition says that if the boundary conditions are globally well-defined, once we
go around the circle we should be able to consistently glue the resulting D−brane
configuration with the original one via a set of appropriate transformations. This
transformations should be the same that leave the generalized metric H invariant. This
tells us that we need to see how do the boundary transformations (7.4.8) behave under
X3 −→ X3 + 2π, taking into account the form of the G and B fields given in (7.4.7).

We first see that the tangential and normal part of dX i under the action of
O(D,D;Z) behave fiber-wise as follows(

i
(
dX
)

tan(
dX
)

norm

)
O−−−−→

(
i
(
dX̃
)

tan(
dX̃
)

norm

)
= Ω

(
i
(
dX
)

tan(
dX
)

norm

)
. (7.4.10)
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In here, we find that for the three-torus with H−flux, the twisted three-torus and
the T-fold the corresponding matrices are given by

T3 with H-flux: ΩB =

(
1 0

0 1

)
,

twisted T3: ΩA =

(
A−1 0

0 A−1

)
,

T-fold: Ωβ =

(
1 + 2πβF 1

α′
βG

1
α′
βG 1 + 2πβF

)
.

(7.4.11)

Here, we use the form of the matrices A and β indicated in (6.3.7) and (6.3.11),
respectively. Now we want to see how does the boundary conditions (7.4.8) change
when X3 −→ X3 + 2π. Both matrices at the RHS of (7.4.8) must be evaluated at
X3 + 2π, and taking into account the examples of section 7.3 we then find(

D

N

)
X3 + 2π

=

(
α′ 0

2πα′F G

)
X3 + 2π

(
i
(
dX̃
)

tan(
dX̃
)

norm

)

= O?
(

α′ 0
2πα′F G

)
X3

Ω−1
?

(
i
(
dX̃
)

tan(
dX̃
)

norm

)

= O?
(

D

N

)
X3

.

(7.4.12)

The subscript ? = (B,A, β) labels the matrices to be used for the three-torus with
H−flux, the twisted three-torus and the T-fold. We keep in mind that the dX i forms
transform as in (7.4.10) and that these relations make sense as long as we evaluate
them at the boundary. We conclude that the boundary conditions are globally-well
defined, meaning that D-branes can be consistently glued by using gauge
transformations, diffeomeorphisms and β−transformations.

We mentioned early that a specific D-brane configuration can be determined via the
projection operator Π defined in (7.4.9). The question that now arises is whether the
configuration remains the same after we transport it once around the circle. We find
that the transformations must to be performed first, and then projected by using Π
and not the other way around, this is

Π

[(
D

N

)
X3 + 2π

]
= Π

[
O?
(

D

N

)
X3

]
, (7.4.13)

where ? labels the O(D,D;Z) transformations related to the three torus with H−flux,
twisted torus and the T-fold. We emphasize once more that the configurations are
well preserved as long as the respective projection is carried out after we transport the
boundary conditions once around S1.
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The dual dilaton

To finish this chapter, we finally touch the subject of the transformation of the dilaton.
We mentioned early in this chapter that under T-duality transformations, the dilaton
transforms according to (6.1.79); we are required to keep the combination e−2φ

√
detG

invariant. By using then (6.1.79) we find for each background that the dilaton is given
by

T3 with H-flux: φ = φ0 ,

twisted T3: φ = φ0 − log

[
R1√
α′

]
,

T-fold: φ = φ0 −
1

2
log

[
R2

1R
2
2

α′2
+
(
2πf + h

2π
X3
)2
]
,

(7.4.14)

where for the T-fold we have included the case for a constant open-string gauge field
intensity f = const.

The breakdown for each case goes as follows. For the three-torus with H−flux we
find that a gauge transformation leaves the (constant) metric components invariant.
Therefore, under the action of the OB transformation the combination e−2φ

√
detG

remains invariant. At the boundary, since the dilaton is constant it remains unaffected
under X3 → X3 + 2π and thus the contribution to the boundary is well defined.

Let us consider now see the case for the twisted three-torus. By applying the
transformation rule (6.1.79) we find that the dual dilaton is still constant and that the
combination e−2φ

√
detG remains invariant under the action of diffeomorphisms OA.

The contribution of the dilaton at the boundary is therefore well defined.

Finally, for the T-fold case we find that the resulting dual dilaton is non-constant
and that it depends on the X3 coordinate. However, the dilaton behaves properly under
the action of the β−transformations.

To illustrate why this is the case, let’s consider the generalized metric H of the
T-fold background given for instance in (7.3.37). We find that H transforms under the
action of OB according to (6.1.37), and we find that it adds a shift 2πf → 2πf + h
when X3 → X3 + 2π. This is exactly how the dilaton for the T-fold in (7.4.14) behaves
under the very same shift X3 → X3 + 2π; OB acts rather in an abstract way and not
as a matrix multiplication on the dilaton, that is

φ(X3 + 2π) = Oβ
[
φ(X3)

]
. (7.4.15)

We can finally conclude that the dilaton is globally well-defined under X3 → X3 + 2π
using a β−transformation, and that the contribution to the boundary conditions is well
defined.
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Chapter 8

Developments on non-abelian
T-Duality Transfomations

In the previous chapter we studied T-duality transformations via the implementation
of Buscher’s rules on a concrete background configuration – namely, the three-torus T3

with H−flux – whenever D-branes are present. In the literature, this is a well-known
example of a background with abelian isometry algebra. On the other hand, Buscher’s
procedure allows to explore T-duality transformations for background configurations
whose isometry algebra is not abelian, as stated in (7.1.7).

In this chapter we report on some developments regarding non-abelian T-duality
transformations for a background with H−flux and a background geometry
corresponding to a Lie group manifold. We realize this configuration via a WZW
model and perform T-duality transformations along all isometry directions of the
diagonal subgroup. We circumvent the problem of finding an invertible change of
basis, as mentioned in Footnote 26 in page 78. The matter of consistently including
D-branes in this picture is not addressed.

We start this chapter by discussing the WZW model for group manifolds, following
and borrowing notation from [176].

8.1 On non-abelian T-duality transformations

In previous chapters we presented Buscher’s procedure in order to perform T-duality
transformations along the isometry directions of the underlying geometry. The setup is
constructed for an arbitrary isometry algebra, i.e. fαβ

γ not necessarily zero. It is then
natural to study T-duality transformations on backgrounds whose isometry algebra is
non-abelian, according to Buscher’s procedure.

Non-abelian T-duality transformations (NATDTs) proves to be a challenging
problem. For instance, it is not clear whether the gauged model –that is, the model
we get after integrating out the gauge fields Aα – is equivalent to the original
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model [158]. Another caveat is that the transformation is not invertible, thus one
cannot go back since the isometries of the original model are broken once the
transformations are performed [188, 189]. Another issue is that the change of basis
matrix T displayed in (6.1.70) might be singular.

Nonetheless, NATDTs have been used as a solution-generating technique in
supergravity [190, 191] and there have been developments that circumvent some of
these issues. For instance, NATDTs have been understood in the context of principal
chiral models in [192, 188] – for a review, see for instance [193]. Other approaches to
NATDTs can be found in the context of Poisson-Lie T-duality, as in [194–196].

In the current context, we would like to study the implementation of Buscher’s rules
presented in chapter 6 on a background configuration realized via the WZW action.

8.2 The WZW model for Lie group manifolds

Let g ∈ G be an element of a D−dimensional Lie group G with Lie algebra g. The
WZW action (6.1.48) – without the dilaton term – featured in section 6.1.4 is given by

SWZW = +
1

2πα′

∫
Σ

tr

[
k

4
g−1dg ∧ ∗ g−1dg

]
− i

2πα′

∫
Ω

tr

[
k

3!
g−1dg ∧ g−1dg ∧ g−1dg

]
,

(8.2.1)

where ∂Ω = Σ with Σ our two-dimensional worldsheet, k corresponds to the level, ∗
denotes the Hodge dual operator and tr() is the trace operator.

Let us use a, b, c . . . as indices labelling g-valued elements, and by i, j, k . . . the
indices of a coordinate basis. We can define the left- and right-invariant forms ωL and
ωR given by

ωL = g−1dg = ωL
ata, ωR = dg g−1 = ωR

ata, (8.2.2)

where the ta form a set of generators for the Lie algebra g. These generators satisfy33

[ta, tb] = ifab
ctc, tr

(
tatb) = 2δab. (8.2.3)

Having ωL
a and ωR

a specified in (8.2.2) we can construct the metric G and the
H−field for our theory as follows

G = −kδab ωLa ∧ ∗ωLb = −kδab ωRa ∧ ∗ωRb,

H = −ik
3!
fabc ωL

a ∧ ωLb ∧ ωLc = −ik
3!
fabc ωR

a ∧ ωRb ∧ ωRc.
(8.2.4)

33We assume that the structure constants fabc = fab
dδdc are antisymmetric in its indices.
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In particular, with (8.2.4) we can bring (8.2.1) in a suggestive fashion. To this end,
let us now consider a coordinate basis {dX i} with i = 1, . . . , D such that ωL

a and ωR
a

as follows

ωL
a = ωL

a
i dX

i,

ωR
a = ωR

a
i dX

i.
(8.2.5)

By using (8.2.5) together with (8.2.4) we can cast (8.2.1) as

SWZW = +
1

2πα′

∫
Σ

1

2
Gij(X)dX i ∧ ∗dXj

− i

2πα′

∫
Ω

1

3!
Hijk(X)dX i ∧ dXj ∧ dXk.

(8.2.6)

We now state some definitions regarding the underlying differential geometry. The
left- and right-invariant forms satisfy Maurer-Cartan equations given by

0 = dωL
a +

i

2
fbc

aωL
b ∧ ωLc,

0 = dωR
a − i

2
fbc

aωR
b ∧ ωRc.

(8.2.7)

Having this we can define vector fields dual to ωL
a and ωR

a such that

ιξLb
ωL

a = ιξRb
ωR

a = δab, (8.2.8)

where the vector fields ξLa and ξRa take the form

ξLa =
(
ω−1
L

)i
a∂i, ξRa =

(
ω−1
R

)i
a∂i. (8.2.9)

Using (8.2.9) we define the R matrix and its inverse componentwise as follows

ιξLa
ωR

b = ωR
b
i

(
ω−1
L

)i
a = Rb

a

ιξRa
ωL

b = ωL
b
i

(
ω−1
R

)i
a =

(
R−1

)b
a.

(8.2.10)

We find that ξLa and ξRa satisfy the algebra

[ξLa, ξLb] = +ifab
cξLc,

[ξRa, ξRb] = −ifabcξRc,

[ξLa, ξRb] = 0,

(8.2.11)

and moreover, ξLa and ξRa are Killing vector fields for the metric, that is

LξLa
G = LξRa

G = 0. (8.2.12)
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Gauging conditions

Now we take the action (8.2.6) and implement the gauging procedure found in section
6.1.4. Let us define the vector fields ka and one-forms va as

ka = −i
(
ξLa − ξRa

)
, va = −i k δab

(
ωL

b + ωR
b
)
. (8.2.13)

We find that the vectors ka span a Lie algebra [ka, kb] = fab
ckc and that G and H

satisfy

LkaG = 0, ιkaH = dva, (8.2.14)

that is to say that ka correspond to Killing vector fields of the metric G. The action
(8.2.1) therefore features a global symmetry under infinitesimal transformations δX i =
εakia for εa constant.

Additionally, by taking the definitions (8.2.13) together with (8.2.4) it can be shown
that va and H satisfy

Lk[avb] = fab
cvc, ιk[afbc]

dvd =
1

3
ιkaιkbιkcH, ιk(avb) = 0. (8.2.15)

Since by construction the expressions (8.2.15) hold for our model, we can promote the
global symmetries to local symmetries by introducing worldsheet gauge fields Aa and
Lagrange multipliers χa. This allows us to do the isometry gauging procedure to find
the dual model. The gauged WZW model takes the form

ŜWZW = +
1

2πα′

∫
Σ

1

2
Gij(dX

i + kiaA
a) ∧ ∗(dX i + kjbA

b)

− i

2πα′

∫
Σ

[
(va + dχa) ∧ Aa +

1

2
(ι[kavb] + fab

cχc)A
a ∧ Ab

]
− i

2πα′

∫
Ω

1

3!
HijkdX

i ∧ dXj ∧ dXk,

(8.2.16)

which is invariant under the local infinitesimal transformations (6.1.54) for εa = εa(X)

δεX
i = +εakia

δεA
a = −dεa − εbAc fbc

a

δεχa = −fabcεbχc.

(8.2.17)

Since in our setup we consider only closed strings we can always reach the ungauged
model as indicated in section 6.1.4. At the same time, we can integrate-out the gauge
fields Aa and find Ǧ and Ȟ according to (6.1.65) and (6.1.66). Since we want to study
non-abelian T-duality transformations, according to (8.2.15) we have to perform at least
three T-duality transformations along the isometry directions indicated by the Killing
vectors ka. Let us recall that in order to read the T-dual configuration we have to find
an appropriate change of basis. We will address this in the next section.



8.3 T-duality 133

8.3 T-duality

We now give an account now recent developments in studying non-abelian T-duality
transformations for the three-sphere with H−flux, taking the WZW model presented in
the previous section. The aim is to perform three T-duality transformations according
to Buscher’s rules and read out the dual configuration.

Before we present all of the details concerning this computation, we will make a
digression on non-abelian T-duality transformations in general.

8.3.1 Dual action

Let us consider a Lie group G. Let us take the gauged WZW action (8.2.16) and
perform T-duality transformations along all of the isometry directions. We integrate-
out the D worldsheet gauge fields Aa following the procedure indicated in section 6.1.4.
This implies in particular that i, j . . . = 1, . . . , D and a, b, . . . = 1, . . . , D. We find the
action

ŠWZW = − 1

2πα′

∫
Σ

Ǧ− i

2πα′

∫
Ω

Ȟ, (8.3.1)

where Ǧ and Ȟ take the usual form

Ǧ = G − 1

2
(k + ξ)a

[
(G +D)−1]ab ∧ ∗ (k− ξ)b,

Ȟ = H − d
[ 1

2
(k + ξ)a

[
(G +D)−1]ab ∧ (k− ξ)b

]
.

(8.3.2)

where we recall the fields defined in (6.1.63)

ka = kiaGijdX
j, Gab = kiaGijk

j
a

ξa = va + dχa, Dab = ι[kavb] + fab
cχc.

(8.3.3)

Here, the one-form ka is defined by the left- and right-invariant one-forms as

ka = +ik δab
(
ωL

b − ωRb
)
. (8.3.4)

Change of basis

Here we have performed T-duality transformations along all directions indicated by each
Killing vector field ka. Let A,B = 1, . . . , 2D be indices denoting collectively the {i, a}
indices and let dXA label the basis of 1−forms {dX i, dχa}. We recall from (6.1.69)
that Ǧ and Ȟ can be written as

Ǧ =
1

2!
(dXA)T ǦAB ∧ ∗ dXB,

Ȟ =
1

3!
ȞABC dXA ∧ dXB ∧ dXC .

(8.3.5)
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Following the observations done in section 6.1.4 we ought to find a change of basis
matrix T capable of block-diagonalizing the 2D × 2D Ǧ matrix and bring it into the
form

(
T T ǦT

)
AB

=

(
0D×D 0D×D

0D×D Ǧab.

)
(8.3.6)

The caveat here is that the change of basis matrix T we defined previously in (6.1.70)
might be singular. It turns out that there exists an invertible change of matrix capable
of block-diagonalize Ǧ for a general Lie group G and bring it into the form (8.3.6). We
write down the change of basis matrix blockwise as follows

T =
1

i
√
k

(
A B

C D

)
. (8.3.7)

Let us denote the components of each block by Aib, B
i
b, Cab and Dab. The leftmost

index labels a row and the rightmost index denotes a column. Explicitly, each
component is given by

Aib = −2
(
ω−1
L

)i
c

(
1−R−1

)c
b,

Bi
b = +

(
ω−1
R

)i
b,

Cab = +2i fab
cχc,

Dab = +2i k δac
(
R−1

)c
b.

(8.3.8)

The existence of the matrix T relies on the invertibility of the matrices of
components (ωL)ai and (ωR)ai. The one-forms ρA in the new basis are obtained by

ρA =
(
T −1

)A
BdXB. The new basis corresponds to the set of one-forms {πa, ρa} given

by

πa = −i
√
k
[(
G +D

)−1]ab[
k δbc ωL

c +
i

2
dχb

]
,

ρa = +i
√
k
[
ωa
R − i

(
1−R

)a
b

[(
G +D

)−1]bc(
2i k δcd ω

d
L − dχc

)]
.

(8.3.9)

Taking (8.3.8) into account, Ǧ in this new basis is given by

Ǧ =
1

2!
(dXA)T ǦAB ∧ ∗dXB

=
1

2!
(ρA)T

(
T T ǦT

)
AB
∧ ∗ρB

= ρaδab ∧ ∗ρb,

(8.3.10)
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thus reaching a proper block-diagonalization as stated in (8.3.6). We find that ρa

conforms a vielbein basis for Ǧ. As for the dual H−flux Ȟ, we evaluate its components
in the same fashion as displayed in (6.1.75).

Notice that the diagonalization procedure can be done for any Lie group G with a
Lie algebra with completely antisymmetric structure constants. This change of basis
holds up for the model stated by the action (8.3.1) whenever we perform T-duality
transformations along all isometry directions – indicated by the set of Killing vectors
ka – following Buscher’s procedure.

8.3.2 Vielbein algebra

We compute now the exterior derivative of the vielbein basis. Let us recall sections 6.1.4
and 7.2.1. Once we perform the change of basis in order to block-diagonalize Ǧ we ought
to check that the vielbein basis {eα, em, eα} closes properly. The exterior derivative
of the vielbein basis that diagonalizes the metric provides of a sense of twisting˝of
the underlying geometry. In the case of T-duality transformations, after performing
the change of basis it may well happen that the exterior derivative of the 1−forms
conforming this new basis still depends on the original coordinates, indicating potential
non-geometric properties of the background.

Taking the definitions given in (8.3.9) we find that

dπa = +
1√
k
fbc

a πb ∧ πc +
1

2
√
k
Fbc

a ρb ∧ ρc,

dρa = − 2√
k
fbc

a πb ∧ ρc +
1

2
√
k

[
fbc

a − 2k(1−R)adFbc
d
]
ρb ∧ ρc,

(8.3.11)

where we have defined Fbc
a as

Fbc
a =

[(
G +D

)]ad
δde
(
R−1

)e
ffbc

f . (8.3.12)

Let us recall that the metric Ǧ is written only in terms of ρa. The exterior derivative
of ρa contains terms with πa. Hence the algebras spawned by the vector fields dual to the
bases {ρa} and {πa} mix under the Lie bracket. This signals that the dual target-space
might present non-geometric properties.

In contrast to what we discussed in sections 6.1.4 and 7.2.1, choosing suitable
conditions for the closure under the exterior derivative becomes more involved. This
prevents us to read properly the dual metric: There is a mixing with the old
coordinates that prevents us from forming a clear picture of the dual basis. This issue
will be left for future work.

8.3.3 The case of SU(2)

Let us gain some insight and illustrate parts of this procedure by studying the case for
the three-sphere S3. The idea is not new: the case for three T-duality transformations
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on S3 with H = 0 using Buscher’s procedure as presented here has been studied in [170],
while other approaches for the case of three T-duality transformations for S3 have
been discussed for instance in [178, 181, 192, 189, 197–200, 194]. As for our case, the
construction presented in the previous section allows us to perform three T-duality
transformations, in contrast to the case seen for the T3 with constant H−flux.

Let us then consider G = SU(2) as our Lie group. Let us use the set of coordinates
{X1, X2, X3} to parametrize this space. We can express the components of the left-
and right-invariant forms ωL

a and ωR
a in the coordinate basis {dX i} as follows

(
ωL
)a
i = i

 0 + cos(X1) sin(X3) − sin(X1)
0 − sin(X1) sin(X3) − cos(X1)
−1 − cos(X3) 0

 ,

(
ωR
)a
i = i

− cos(X2) sin(X3) 0 + sin(X2)
− sin(X2) sin(X3) 0 − cos(X2)
− cos(X3) −1 0

 ,

(8.3.13)

where X1, X2 ∈ [0, 2π[ and X3 ∈ [0, π[. By using the definitions given in (8.2.4) we
find the metric components to be

Gij = k

 1 cos(X3) 0
cos(X3) 1 0

0 0 1

 , (8.3.14)

while the H−field is given by

H = − k
3!

sin(X3) dX1 ∧ dX2 ∧ dX3. (8.3.15)

To implement Buscher’s rules we construct the relevant quantities according to
(8.2.13), gauge the model to get (8.2.16), integrate out the worldsheet gauge fields Aa

to read Ǧ and Ȟ and perform the change of basis.

The dual metric cannot be given just yet, since the vielbein basis {ρa} does not
provide us with an appropriate one-form basis. On the other hand, by computing the
components of the dual H−field according to (6.1.75) we find that

Ȟ = 0. (8.3.16)

This result might provide with clues about the geometric nature of the T-dual space.
Let us recall the beta functions (6.1.25) and consider a non-vanishing dilaton from
the very beginning. The form of the beta functions remains invariant under T-duality
transformations. Let us imagine for a moment that we found an appropriate basis of
1−forms {eα}, α = 1, 2, 3 such that the metric is properly block-diagonalized. For our
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case in particular, Ȟ = 0 which in turn implies that the beta function for G found in
(6.1.25) reads

0 = Řαβ + 2∇α∇βφ̌, (8.3.17)

where Řαβ is the Ricci tensor computed from the dual metric and φ̌ is the dual dilaton,
computed from (6.1.79). It is clear that in our dual picture the curvature is related to
the dual dilaton, which might provide some insight about the dual geometry. This is
left for future work.
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Chapter 9

Summary and conclusions of Part II

This second and final part of this doctoral work focused on the study of T-duality
transformations from an open-string perspective. First, we presented a formalism to
study T-duality transformations for the open string via Buscher’s procedure.
Afterwards, we approached the study of non-abelian T-duality transformations
considering a Wess-Zumino-Witten model. Let us summarize this

Summary

• In Chapter 2 we presented an introduction on T-duality and non-geometric
spaces. We studied the effect of T-duality on the compactified bosonic string on
S1 and on TD and explored the invariance of the mass spectrum. Later, we
introduced a generalization of the Polyakov action and studied Buscher’s
procedure for this background. Under a change of basis, we read off the dual
background configuration. We presented in the section for non-geometric
backgrounds the twisted three-torus, the T-fold and the R-space, with their
respective fluxes. Finally, we presented a way to visualize the dual
configurations as toroidal fibrations.

• In Chapter 3 we studied T-duality transformations for the open string via
Buscher’s procedure and extended previous analyses: We considered a
non-trivial worldsheet topology, we included T-duality transformations for
directions satisfying Dirichlet boundary conditions and we found expressions for
the dual metric and Kalb-Ramond field for multiple T-duality transformations.

We studied the dual open string sector as well. For curved backgrounds, we found
the boundary conditions are exchanged under T-duality, as expected from CFT.
Furthermore, if we do a T-duality transformation along a Neumann direction
with a constant Wilson line, this Wilson line shifts the position of the D-brane
along the dual Dirichlet direction. If we perform a T-duality transformation along
Dirichlet direction, on the other hand, we find that the original position of the



140 9. Summary and conclusions of Part II

brane along the Dirichet direction becomes a constant Wilson line along the dual
Neumann direction.

We presented an application of our formalism and studied T-duality
transformations for the three-torus with H-flux. For the case of one and two
T-duality transformations we found D-branes on the twisted-three torus and
T-fold, respectively. We found that the open-string gauge field intensity F = da
can appear in the closed string sector of the dual theory.

Later, we reviewed some explicit examples applying the Freed-Witten anomaly
cancellation condition. Later on we studied whether D-branes on the dual
configuration were well-defined. We discovered that such D-branes are properly
well-defined using O(D,D;Z) transformations on each of the T-dual
configurations. For the dual dilaton φ̌ we found that it was properly well defined
under such transformations as well.

• In Chapter 4 we studied non-abelian T-duality transformations for the WZW
model. We found a non-singular change of basis matrix and the vielbein πa, ρa.
We found that the dual metric Ǧ can be written in terms of ρa only. However, ρa

and πa mix under the action of the exterior derivative, suggesting that the dual
configuration is non-geometric. Nonetheless, for the case G = SU(2) we find that
the dual H-flux vanishes.

Discussion and conclusions

String theory has driven the development of sophisticated frameworks and techniques.
It has lead to the discovery of interesting structures, geometries, spaces and it has
given us an interesting way to think about how Nature works at a fundamental level. It
provides a unified way to view the constituents of matter and the fundamental forces:
This can be attributed to the oscillation modes of the string. Even though the prediction
it makes are still far to be testable, it provides us a first suggestion of how a quantum
theory of gravity should look like.

Since the fundamental object of the theory is an extended string, it means that it
probes geometry in a different way as the point particle does [158]. This lead to the
discovery and development of the so-called non-geometric backgrounds. In this second
part of this doctoral work, we focused on bosonic open string theory, and explored many
technical aspects surrounding T-duality transformations which have not been addressed
so far. The exploration of the abelian isometry algebra case and the treatment of our
examples allowed us to make consistency checks with the literature, while finding an
interplay between the open and closed string sector.

The next step is to consider non-abelian T-duality transformations. In the treatment
of chapter three, we couldn’t reach the original model for a non-abelian isometry algebra.
Another issue we found is that the change of basis we presented in (7.2.8) is singular
for some non-abelian cases.
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In chapter four we presented some current developments using a non-linear sigma
model. We considered a WZW with Lie group manifold G with Lie algebra g and
followed Buscher’s procedure. We can construct the Killing vectors of the target space
metric from the diagonal subalgebra of g and perform T-duality transformations along
all of them. We found a non-singular change of basis for this case, but we fail to provide
the dual background since the vielbeins ρa and πa mix under the action of exterior
derivative. The problem stems from the presence of the coordinates of the original
configuration X i. Integrating-out these coordinates proves to be highly non-trivial. If
we were to solve this problem, the next step would be to incorporate D-Branes into
this picture. Nonetheless, the case for G = SU(2) shows that the dual H-flux vanishes,
pointing out that the curvature of the dual configuration depends solely on the dilaton.
This approach to non-abelian T-duality transformations is still underway and will be
subject for future work.
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General conclusion

In the history of science, theory and experiment have been constantly in interplay.
The search for generality and unification has been one of the driving forces of the
development of theories and frameworks that address certain domains of Nature. In
the age of gigantic particle accelerators, gravitational wave observatories and world-
wide radiotelescope networks, our most fundamental ideas of Nature are being put to
test right now in an unprecedented scale.

It is likely that in the course of the next decades, new intriguing results and data
regarding the large-scale structure of the universe, black holes, particle physics and
gravitational wave astronomy will be uncovered. This implies that new developments
for our current understanding of theoretical physics will be needed. During the 20th
century, the unification of phenomena in physics was a major driving force behind such
developments.

We explored in this thesis two of such developments: Horndeski theory and non-
geometric backgrounds within string theory. With use of Cartan’s first formalism, we
studied Horndeski theory and discovered that non-minimal couplings between the scalar
field and gravity are generic sources of torsion. The phenomenological implications of
this still need to be worked-out, and the upcoming improvements in instrumentation of
the new gravitational wave observatories will help us falsify torsion.

We studied non-geometric spaces from the open bosonic string perspective. Since
bosonic string theory dictates that the number of dimensions of spacetime is 26, we
need to implement new mechanisms to make contact with the usual four-dimensional
spacetime. By doing this, we explored compactification schemes, and we found that
T-duality relates different background configurations that describe the same physics.
We presented a non-linear sigma model for the open string and explored non-geometric
backgrounds via T-duality transformations, extending previous results found in the
literature. By using the standard setup of the three-torus with H-flux, we studied
the global well-definedness of D-branes on such non-geometric backgrounds. T-duality
transformations for the on-abelian isometry algebra case were explored as well. Such
treatment is left for future work.

The exploration of new structures and frameworks within physics is crucial to the
pursuit a better understanding of the fundamental mechanisms of Nature. New
improvements in the sensitivity and design of particle detectors and gravitational



146

wave observatories will provide us with new clues about directions that need to be
taken. The history of physics has repeatedly showed us that this is the case.



Appendix A

The bosonic string

A.1 The Polyakov action

Consider a string moving in a d dimensional Minkowski spacetime. This sweeps a
two-dimensional surface, the worldsheet Σ, in such spacetime. This surface is
parametrized by the coordinates34 σa = (σ0, σ1) = (τ, σ). We consider for generality
that the boundary of Σ is not necessarily empty. To describe the motion of the string,
we consider d coordinates Xµ = Xµ(τ, σ), where µ = 0, 1, . . . , d− 1.

The most simple Poincaré invariant action for our string can be given in terms of
the area of Σ, namely

SNG = − 1

2πα′

∫
Σ

dA

= − 1

2πα′

∫
Σ

d2σ
√
− det γab.

(A.1.1)

In here, we have defined γab as the induced metric on the worldsheet

γab = ηµν ∂aX
µ ∂bX

ν , (A.1.2)

and α′ corresponds to the Regge slope, with units of (length)2 35 This action is called
the Nambu-Goto action whose equations of motion with respect to Xµ describe the
motion of our string. However, it turns out that the square root makes a deeper
analysis rather convoluted. We can remove this square root by introducing an
auxiliary worldsheet-valued metric hab = hab(σ

a) with signature (−,+) and by writing
the equivalent Polyakov action

SP = − 1

4πα′

∫
Σ

d2σ
√
− dethhab ηµν ∂aX

µ ∂bX
ν . (A.1.3)

34We consider that these parameters take values σ1 ∈ ]σ1
i , σ

1
f [ , and σ2 ∈ [0, `[

35We can relate the Regge slope to the tension of the string T via T = 1/2πα′. The open and closed
string tensions are the same.
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It can be checked that this action is classically equivalent to the Nambu-Goto action:
Consider the equations of motion of hab

0 = Tab (A.1.4)

where Tab is the usual energy-momentum tensor36 given by

Tab = − 1

α′

[
∂aX

µ ∂bXµ −
1

2
habh

cd ∂cX
µ ∂dXµ

]
. (A.1.6)

By using (A.1.4) and (A.1.6) and replacing in (A.1.3) we immediately recover SNG.

This action features three symmetries37:

1. Poincaré invariance in d dimensions (global):

δXµ = aµν X
ν + bµ,

δhab = 0.
(A.1.7)

where aµν and bµ are constants such that aµν = −aνµ.

2. Diffeomorphism invariance (local):

δXµ = −ζa∂aXµ,

δhab = −(ζc ∂chab + ∂aζ
c hcb + ∂bζ

c hac)

= −(∇aζb +∇bζa),

(A.1.8)

where ζa are arbitary infinitesimal functions of σa.

3. Weyl invariance in two dimensions (local):

δXµ = 0,

δhab = 2Ωhab,
(A.1.9)

where Ω is an arbitrary infinitesimal function of σa.

We find that Weyl invariance leads to constraints for the energy-momentum tensor
Tab

0 = habTab = T a
a (Weyl), (A.1.10)

36The energy momentum is defined by

Tab =
4π√
−h

δSP

δhab
(A.1.5)

37It is worth pointing out that the Nambu-Goto action does feature Poincaré and diffeomorphism
invariance, as given for the Polyakov action.
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while diffeomorphism invariance, on the other hand, leads to energy-momentum
conservation on the worldsheet

0 = ∇aTab (Diffeo) (A.1.11)

Before going into the equations of motion for Xµ, it is worth to mention a few
points. First, this action allows a natural generalization by replacing the flat
Minkowski background by a general metric ηµν → Gµν(X), fact that will bring us to
the construction of non-linear sigma models in the upcoming chapters. Second, let’s
consider the quantity

χ =
1

4π

∫
Σ

d2σ
√
− dethR +

1

2π

∫
∂Σ

ds k(s) , (A.1.12)

where R is the curvature scalar for the worldsheet metric hab and k(s) corresponds to
the extrinsic curvature of the boundary ∂Σ, with parameter s. This is nothing more
than the Euler number of the worldsheet. We can add this quantity to SP and consider
S = SP − aχ. Although (A.1.12) breaks Weyl symmetry, it is a crucial if we want
to study string perturbation theory, and it plays a role later on when we explore the
non-linear sigma model38. For now, it is enough to consider the action (A.1.3).

A.2 Conformal gauge and equations of motion for

the string

Let us compute the equations of motion of the string and study the boundary
conditions. Of course, we could have considered either the Nambu-Goto action (A.1.1)
or the Polyakov action (A.1.3) and derive the equations of motion for Xµ. However,
we can derive the equations of motion more easily if we turn to the conformal gauge.

Before we proceed, it is a good moment to write down the action (A.1.3) in a
suggestive manner. Let dXµ = ∂aX

µdσa be a set of one-forms where the Xµ = Xµ(σ)
are the usual target space coordinates. Consider as well the Hodge star operator ∗ on
Σ and the components of the unit tangential and normal vectors to ∂Σ by ta and na,

38One can see the role of χ if we write the full path integral defining the string theory

Z =

∫
DX Dg eS .

The resulting amplitudes are weighted by a factor of eλχ = gχs , which tells us that the amplitude is to
be expanded in powers of the string coupling gs = eλ. Considering the different processes of absorption
and emission of open and closed strings, the Euler number related to a worldsheet can be written as
χ = 2 − 2h − b − c, where h, b and c are the number of holes, boundaries and crosscaps. Clearly, χ
works as a bookkeeping device.
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respectively. Clearly, dXµ|∂Σ = ta ∂aX
µds where s is the parameter of the boundary,

as usual. We can rewrite then the Polyakov action as

SP = − 1

2πα′

∫
Σ

1

2
ηµν dXµ ∧ ∗dXν . (A.2.1)

No matter which gauge choice we do regarding the worldsheet metric, the Hodge dual
takes care of the form of hab automatically.

The two dimensional worldsheet metric hab has 3 independent degrees of freedom
(since it is a 2 × 2 symmetric matrix). With help of the local symmetry
transformations (A.1.8)–(A.1.9) we have the right amount of parameters (two for
diffeomorphism transformations and one for Weyl transformations) to fix the metric as

hab = ηab. (A.2.2)

With this gauge choice, we see that (A.2.1) can be written as

SP = − 1

4πα′

∫
Σ

d2σ ηµν (−∂τ Xµ ∂τ X
ν + ∂σX

µ ∂σX
ν)

= − 1

4πα′

∫
Σ

d2σ ηµν (−Ẋµ Ẋν +X ′µX ′ν)

=

∫
Σ

d2σL.

(A.2.3)

where we have defined Ẋµ ≡ ∂τ X
µ and X ′µ ≡ ∂σX

µ. 39.

We find the equations of motion for Xµ by performing the variation of SP with
respect to Xµ. By using integation by parts we find

δXSP = 0 = +
1

2πα′

∫
Σ

δXµ ηµν d ∗ dXν

− 1

2πα′

∫
∂Σ

δXµ ηµν ∗ dXν .

(A.2.4)

The vanishing of the variation lead us to the EOMs for the string40

0 = d ∗ dXµ, (A.2.5)

while the boundary term in (A.2.4) delivers us the behaviour of the string at ∂Σ. We
need to distinguish two cases: for the closed string we find that Σ has the topology of a

39This fixing can always be done locally. However, in order to have a globally well-defined conformal
gauge fixing we have to satisfy more involved conditions. See Pag. 18 and 19 [115] for more details.

40We consider the variation of Xµ at τi and τf to be δXµ(τi) = δXµ(τf ) = 0.
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cylinder and thus ∂Σ = ∅ and there’s no contribution from the boundary. We impose
then periodic boundary conditions of the form

Xµ(τ, σ) = Xµ(τ, σ + `). (A.2.6)

On the other hand, for the open string we have ∂Σ 6= ∅. In this case, we will consider
the usual boundary conditions for the classical string, i.e. Dirichlet and Neumann
boundary conditions, which can be casted as

Dirichlet 0 = δXµ|∂Σ,

Neumann 0 = ∗ dXµ|∂Σ.
(A.2.7)

We can recover the usual boundary conditions given in the literature by choosing a
parametrization of the worldsheet such that the unit normal and tangential vectors are
parallel to the lines of constant σ and τ , respectively. Thus we recover

Dirichlet 0 = ∂τX
µ|σ=0,`,

Neumann 0 = ∂σX
µ|σ=0,`.

(A.2.8)

If we think for a moment, what are actually the objects to which the endpoints
of the open string are attached? We haven’t placed any object in the theory besides
the string itself, much less a wall. This is actually the first indication of the existence
of a fundamental object in string theory, called a D-brane. D-branes are determined
by the number of Dirichlet boundary conditions and Neumann boundary conditions
and correspond to objects on which the endpoints of open string are attached. Closed
strings, on the other hand, are not attached to them.

The equation of motion (A.2.5) is nothing more than the wave equation on the
worldsheet. For the closed string, we find that the general two-dimensional solution for
this equation is given by Xµ(σa) = Xµ

L(σa) +Xµ
R(σa), where

Xµ
R(σa) =

1

2
(xµ − cµ) +

πα′

`
pµ(τ − σ)

+i

√
α′

2

∑
n 6=0
n∈Z

1

n
αµn exp

[
−i2πn

`
(τ − σ)

]
,

Xµ
L(σa) =

1

2
(xµ + cµ) +

πα′

`
pµ(τ + σ)

+i

√
α′

2

∑
n 6=0
n∈Z

1

n
ᾱµn exp

[
−i2πn

`
(τ + σ)

]
,

(A.2.9)

where cµ is a constant, xµ is the center of mass position of the string at τ = 0 and pµ is
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the total space-time momentum of the string41. The coefficients αµn and ᾱµn are Fourier
coefficients such that they satisfy the reality condition

αµ−n = (αµn)∗ ᾱµ−n = (ᾱµn)∗ (A.2.12)

For the open string we have two possible boundary conditions for each endpoint,
making up a total of 4 combinations. It will be enough to write down the expansions
for the Dirichlet-Dirichlet (DD) and Neumann-Neumann (NN) string. Recalling the
form of the Dirichlet boundary conditions in (A.2.8) and fixing the endpoints of the
string via Xµ(τ, σ = 0) = xµ0 and Xµ(τ, σ = `) = xµ1 we find that for DD

Xµ
DD(σ) = xµ0 +

1

`
(xµ1 − x

µ
0)σ

+
√

2α′
∑
n6=0
n∈Z

1

n
αµn exp

[
−iπnτ

`

]
sin
[πnσ
`

]
,

(A.2.13)

we notice that there is no center of mass momentum. For the open string with NN
boundary conditions we find

Xµ
NN(σ) = xµ +

2πα′

`
pµτ

+i
√

2α′
∑
n6=0
n∈Z

1

n
αµn exp

[
−iπnτ

`

]
cos
[πnσ
`

]
.

(A.2.14)

As it happens for the closed string, xµ and pµ are the center of mass position and total
spacetime momentum, respectively. The oscillators αµn for the open string – regardless
of the boundary conditions, satisfy the reality conditions (A.2.12).

A.3 Hamilton dynamics

The first setting on which one can see what the effects of a T-duality transformation
are corresponds to the study of the mass spectrum of a quantized string with one
compactified dimension. To get to that point, we need to have a look on the
quantization procedure of the bosonic string. The canonical quantization procedure
takes the relevant dynamical quantities of the classical description of our system and
promotes them to operators, point which will address in the following pages.

41For the open and closed string, xµ and pµ are called the zero modes. We define for ease of exposition

(closed) αµ0 =
√
α′/2pµ (A.2.10)

(open) αµ0 =
√

2α′pµ (A.2.11)
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By considering the Lagrangian density L from (A.2.3) we find that the conjugate
momentum to Xµ is

Πµ =
∂L
∂Ẋµ

=
1

2πα′
Ẋµ. (A.3.1)

By using the usual Poisson brackets at equal τ 42we find that both Xµ and Πµ satisfy
the relations

0 = [Xµ(σ), Xν(σ′)]PB = [Πµ(σ),Πν(σ′)]PB,

ηµνδ(σ − σ′) = [Xµ(σ),Πν(σ′)]PB.
(A.3.2)

Let us recall the closed and open string expansions (A.2.9), (A.2.13) and (A.2.14).
Regarding the oscillator coefficients for both kind of strings, it can be shown using
(A.3.2) that they satisfy the Poisson brackets

−im δm+n η
µν = [αµm, α

ν
n] = [ᾱµm, ᾱ

ν
n],

0 = [αµm, ᾱ
ν
n],

ηµν = [xµ, pν ].

(A.3.3)

The Hamiltonian for the open and the closed string can be computed by considering
the Hamiltonian densityH(σ) = ẊµΠµ−L for each string and then by integrating along
its length. For the closed string we get

Hclosed =

∫ `

0

dσHclosed(σ)

=
π

`

∑
n∈Z

(α−n · αn + ᾱ−n · ᾱn),
(A.3.4)

where we have defined for simplicity αm · αn ≡ αµn αµ,n. For the open string we
distinguish between the (DD) and (NN) cases. Performing the same integration along
the length of each string we find

HDD =
1

4πα′`
(xµ1 − x

µ
0)2 +

π

2`

∑
n6=0
n∈Z

α−n · αn,

HNN =
π

2`

∑
n∈Z

α−n · αn.
(A.3.5)

So far we haven’t touched the constraints (A.1.10). Since these conditions arise from
a local symmetry treated as a gauge symmetry, it implies immediately that a proper

42This is analog to the case in classical mechanics when we study Poisson brackets between different
phase-space functions at equal time.
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dynamical description of our system – in terms of position and momenta, require to
know all of the constraints for an appropriate account of the physical degrees of freedom
and for a proper writing of the Hamiltonian43. Furthermore, the equations of motion
for hab (A.1.4) are to be taken as constraints as well to ensure the equivalence between
the Nambu-Goto action and the Polyakov action while keeping the conformal gauge
fixing. We can bring these constraints into a helpful way. Tracelessness and vanishing
of the energy-momentum tensor can be expressed as

T01 = T10 = − 1

α′
ẊµX ′µ = 0,

T00 = T11 = − 1

2α′

(
ẊµẊµ +X ′µX ′µ

)
= 0.

(A.3.6)

By using the light-cone change of coordinates σ± = τ ± σ we find

T++ = − 1

α′
∂+X

µ∂+Xµ = 0,

T−− = − 1

α′
∂−X

µ∂−Xµ = 0,

T+− = T−+ = 0

(A.3.7)

Implementing energy-momentum conservation (A.1.11) in these expressions for
these coordinates together with the constraints (A.3.7), we find the conservation
equations

0 = ∂+T−− ⇒ T−− = T−−(σ−)

0 = ∂−T++ ⇒ T++ = T++(σ+).
(A.3.8)

which is a statement of the existence of infinite conserved charges of the form

Lf =
1

πα′

∫ `

0

dσ f(σ+)T++(σ+),

L̄g =
1

πα′

∫ `

0

dσ g(σ−)T−−(σ−),

(A.3.9)

with f and g arbitrary functions. We can show that under appropriate choices of f and
g for the closed and open string, this family of conserved charges satisfy an infinite-
dimensional algebra. Taking for instance the closed string and defining

Ln = − `

4π2

∫ `

0

dσ exp

[
−i2πn

`
σ

]
T−− =

1

2

∑
m∈Z

αn−m · αm,

L̄n = − `

4π2

∫ `

0

dσ exp

[
+i

2πn

`
σ

]
T++ =

1

2

∑
m∈Z

ᾱn−m · ᾱm.
(A.3.10)

43For a detailed account on this, see for instance [201,202].
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we can see that implementing the set of constraints is equivalent to (classically)
implementing Lm = 0 for each m. Notice that Hclosed = 2π

`
(L0 + L̄0). Let us turn now

to the case for the open NN string. Taking into account the mixture of left and right
movers, we define

Ln = − `

4π2

∫ `

0

dσ

[
exp

[
−i2πn

`
σ

]
T−−

+ exp

[
+i

2πn

`
σ

]
T++

]
=

1

2

∑
m∈Z

αn−m · αm.
(A.3.11)

and similarly for the DD open string for n 6= 0. For both DD and NN we can find
as well that H = (π/`)L0. Collecting our results (A.3.10) and (A.3.11) together with
(A.3.3) we find that the Lm and L̄m are actually generators satisfying the Witt algebra

[Lm, Ln]PB = −i(m− n)Lm+n,

[L̄m, L̄n]PB = −i(m− n)L̄m+n,

[Lm, L̄n]PB = 0.

(A.3.12)

Implementing the constraints (A.3.7) in this context is equivalent to say Lm = L̄m = 0
for each m, which in the quantized context becomes essential in order to define the
physical states. We finish this part by remarking on a noteworthy property of these
generators. Implementing the constraint L0 = L̄0 = 0 for both the NN open string and
closed string and recalling the definition of the zero modes (A.2.10) and (A.2.11) we
find

M2 =
1

α′

∞∑
n=1

α−n · αn (open NN)

M2 =
2

α′

∞∑
n=1

(α−n · αn + ᾱ−n · ᾱn) (closed)

(A.3.13)

This tells us that the mass of the string is given in terms of the string tension
(through α′) and the number of excited oscillators in the string. Obviously, this
observation is valid only in this classical setting: We proceed now to quantize the
string.

A.4 Quantization procedure

For this, let’s consider the Poisson brackets (A.3.2) and (A.3.3) and implement the
usual quantization procedure [ , ]PB → −i[ , ]. Our set of Poisson brackets for
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the position, canonical momenta and oscillators – which we now consider as operators,
become the following set of commutators at equal τ

[Xµ(σ),Πµ(σ′)] = i ηµν δ(σ − σ′) [αµm, α
ν
n] = mδm+n η

µν

[Xµ(σ), Xµ(σ′)] = 0 [ᾱµm, ᾱ
ν
n] = mδm+n η

µν

[Πµ(σ),Πµ(σ′)] = 0 [αµm, ᾱ
ν
n] = 0

[xµ, pν ] = i ηµν .

(A.4.1)

where the oscillators satisfy the reality (hermeticity) conditions (αµm)† = αµ−m and
(ᾱµm)† = ᾱµ−m. What naturally comes after is to define a state in a Fock space properly
labeled with our available data. We start with a ground state labeled by its center
of mass momentum kµ given by |0; kµ〉. This state is defined in such a way that it
is annihilated by all positive modes αµm, m > 0, i.e. by the annihilation operators.
Creation operators are those corresponding to the negative modes aµ−m, m > 0. This
state satisfies then

αµm |0; kµ〉 = 0,

pµ |0; kµ〉 = kµ|0; kµ〉.
(A.4.2)

That is, this state is an eigenstate of the momentum operator pµ.

We have so far considered the quantization procedures for the string expansion.
However, the Witt generators Ln satisfying the algebra (A.3.12) come into play and
carry the information about the conformal invariance of our worldsheet description of
the string’s evolution, and need to be properly quantized as well. This can be achieved
by means of normal ordering – by keeping annihilation operators to the right. However,
L0 poses an issue since the zero modes aµ0 bring a ambiguity at the moment of ordering,
which can be cured by introducing a constant term. We will address this issue later on
when we define the physical states.

We define then the generators Ln to be

Ln =
1

2

∑
m∈Z

: αn−m · αm : forn 6= 0

L0 =
1

2
α2

0 +
∞∑
m=1

α−m · αm

(A.4.3)

with similar expressions for L̄m and L̄0. Taking care of the ordering, we see that these
objects satisfy the Virasoro algebra

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n. (A.4.4)

This states that the Virasoro algebra is nothing more that the central extension of
the Witt algebra. The C−number c it is called the central charge and it accounts
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for the breaking of the Weyl invariance at the quantum level. Its value depends on
the matter content in the 2d theory defined on the worldsheet; each free worldsheet
boson Xµ contributes with one unit to the value of c, while worldsheet fermions ψµ

each make a contribution of 1/2. At the moment of studying the path integral of
the free boson theory and bringing the Faddeev-Popov procedure, the vanishing of the
free anomaly can be achieved if d = 26, and we get d = 10 for the superstring. The
references [203,204] will serve as a primer on this matter for the interested reader.

Now we define the physical states. As it happens in constrained Hamiltonian
systems, our theory is described by configurations respecting the constraints under
which our system is restricted. This means that our physical states |φ〉 must comply
with set of constraints (A.3.7) via the Virasoro generators in a quantum context, i.e.
in the form

Ln |φ〉 = 0 ∀n. (A.4.5)

However, the presence of the central charge in the Virasoro algebra leads to
inconsistencies if we implement this condition for all n. In light of this, we define the
physical states as those which satisfy the set of constraints.

Lm |φ〉 = 0 n > 0,

(L0 + a) |φ〉 = 0.
(A.4.6)

where a is a constant regarding the normal ordering ambiguity for L0. These constraints
apply as well for the L̄m’s when considering the closed string, along with the level
matching condition

(L0 − L̄0) |φ〉 = 0. (A.4.7)

With these considerations, we can express the mass operator for both the closed
and open string. It can be shown that the mass for the closed string can be written as

α′m2 = −α′pµpµ
= α′m2

L + α′m2
R

= 2(N̄ + a) + 2(N + a).

(A.4.8)

where a is the normal ordering constant in (A.4.6) and N is the eigenvalue for of the
number operator given by

N =
∞∑
n=1

α−n · αn (A.4.9)

for the closed string, with an analog expression for N̄ and m2
L = m2

R. For the open
string, on the other hand we find

N =
∞∑
n=1

(
αµ−n αµ,n + αi−n αi,n

)
, (A.4.10)
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where µ labels NN directions and i the DD directions44.It can be shown that the mass
of the open string is given by.

α′m2 = N + α′(T∆x)2 + a. (A.4.11)

In here, T is the tension of the string, and ∆x corresponds to the distance between the
endpoints in the DD directions and a corresponds to the normal ordering constant as
seen in (A.4.6). Again, here N is the eigenvalue of the number operator.

A.4.1 The light-cone gauge

We can express the mass formulae (A.4.8) and (A.4.11) in terms of physical degrees of
freedom with help of the light-cone gauge. This gauge is a conformal gauge which uses
the residual gauge freedom τ → τ̃ = f(σ+) + g(σ−) and σ → σ̃ = f(σ+)− g(σ−). Let
X± = (1/

√
2)(X0 ± X1). We find that the components target-space valued vector A

given by (A+, A−, Ai), i = 2, . . . , D will be raised and lowered as A+ = −A−, A− = −A+

and Ai = Ai. We fix X+ as

X+ =
2πα′

`
p+τ. (A.4.12)

We notice that with this choice, all oscillators αµn and ᾱµn vanish in the expansion
for X+ with exception of the zero modes. We find them to be

α+
0 = ᾱ+

0 =

√
α′

2
p+ (closed string),

α+
0 =

√
2α′p+ (open string).

(A.4.13)

By defining the center of mass position q− = (1/`)
∫ `

0
dσX− we find that the

Polyakov action in conformal gauge (A.2.3) can be written as

SP,l.c. =
1

4πα′

∫
d2σ
[
(Ẋ i)2 − (X ′i)2

]
−
∫

dτp+∂q̇−

=

∫
dτLl.c.,

(A.4.14)

where we recall that i = 2, . . . , D.

44We haven’t considered in this exposition the DN or ND boundary conditions, which contribute
to an additional term in the number operator. See for instance equations (2.105), (2.106) and (3.51)
of [115].
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The Hamiltonian in light-cone gauge

In this section we derive the form of the Hamiltonian for the open and closed string in
the light-cone gauge. For that, we find first the canonical momenta p− and Πi following
the usual Hamiltonian procedure

p− =
∂Ll.c.

∂q̇−
,

Πi =
∂Ll.c.

∂Ẋ i
=

1

2πα′
Ẋ i.

(A.4.15)

With this, we are able to write down the Hamiltonian in light-cone gauge as follows

Hl.c. =
1

4πα′

∫ `

0

dσ
[
(Ẋ i)2 + (X ′i)2

]
. (A.4.16)

By using the constraints (A.3.6) and pµ = 1
2πα

∫
dσẊµ we find that

p− =
`

2πα′p+
Hl.c.. (A.4.17)

Under this gauge, the dynamical variables are given by the quantities p−, q−, X i and
Πi. In order to write down the expansion of the light-cone Hamiltonian Hl.c. we impose
the following commutation relations between these variables

[q−, p+] = −i, [qi, pj] = iδij,

[αin, α
j
m] = nδijδn+m,0, [ᾱin, ᾱ

j
m] = nδijδm+n,0.

(A.4.18)

We recall now the expansions for the open and closed string given by the expressions
(A.2.9), (A.2.13) and (A.2.14) and consider only the directions for which µ ≥ 2. Taking
into account normal ordering, we find for the closed string

Hclosed, l.c. =
2π

`

[∑
n>0

αi−nα
i
n + ᾱi−nᾱ

i
n

]
+

2π

`

[
a+ ā

]
+
πα′

`
pipi, (A.4.19)

while for the open string we have

Hopen, l.c. =
π

`

[∑
n>0

αi−nα
i
n

]
+
π

`
a

+
πα′

`

∑
NN

pipi +
1

4πα′`

∑
DD

(xi1 − xi2)2,

(A.4.20)

where a and ā account for the unregularized expression
∑

n n arising from the normal
ordering prescription on the α and ᾱ oscillators, respectively. Note that we consider
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only open strings of with NN or DD boundary conditions. By using the definition of
the Riemann zeta function ζ(s)

ζ(s) =
∞∑
n=1

n−s, (A.4.21)

one can show that a = ā = −(1/24)(d − 2). The mass operator m2 = −pµpµ in the
light-cone gauge takes the form m2 = 2p+p− − pipi. With this, we can express the
masses for the open and closed string in terms of physical degrees of freedom only.
Using our previous definitions, we have for the closed string m2 = m2

L +m2
R, where

α′m2
L = 2N̄tr −

1

12
(d− 2)

α′m2
R = 2Ntr −

1

12
(d− 2),

(A.4.22)

where

N̄tr =
∑
n>0

ᾱi−nᾱ
i
n,

Ntr =
∑
n>0

αi−nα
i
n.

(A.4.23)

On the other hand, for the open string we find the mass to be

α′m2 = Ntr −
1

24
(d− 2) + α′(T∆X)2, (A.4.24)

where we recall that T−1 = 2πα′.

The massless closed-string spectrum

In this subsection we discuss the massless states for the closed string. Consider for
simplicity that this string propagates in a Minkowski spacetime. Let us consider the
ground state |0〉. By using the mass operator m2 = m2

L + m2
R along with (A.4.22) we

find

α′m2|0〉 = −1

6
(d− 2)|0〉, (A.4.25)

which implies for d > 2 that its mass squared is negative. This state corresponds
to a scalar tachyon. We compute now the mass for the next excited state, which is
αi−1ᾱ

j
−1|0〉. By using the mass operator we find that its mass is

α′m2 = 4− 1

6
(d− 2). (A.4.26)
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Now, the state αi−1ᾱ
j
−1|0〉 transforms under the Euclidean group in d−2 dimensions

E(d−2). However, since we discuss propagation of strings on a Minkowski background,
let us consider rather SO(d− 2) which is contained in E(d− 2). SO(d− 2) corresponds
precisely to the group whose representations classify massless particles [205]. This
implies that such state must be massless. In particular, this implies that d = 26, which
is the number of dimensions in which the bosonic string propagates.

We can finally decompose this state into irreducible representations of SO(d − 2).
We find the symmetric traceless, antisymmetric and trace part of the state as follows.

αi−1ᾱ
j
−1|0, p〉 =

[
α

(i
−1ᾱ

j)
−1 −

1

24
δijαk−1ᾱ

k
−1

]
|0, p〉

+α
[i
−1ᾱ

j]

−1|0, p〉

+
1

24
δijαk−1ᾱ

k
−1|0, p〉.

(A.4.27)

This decomposition indicates that we can represent a massless spin-two particle, an
antisymmetric tensor and a massless scalar. These fields can be identified as the metric
field Gµν (symmetric), the Kalb-Ramond field Bµν (antisymmetric) and the dilaton field
(scalar). These are precisely the fields which we use in part 2 to construct a particular
σ−model.
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[50] Umit Ertem and Özgür Açık. Generalized Chern-Simons Modified Gravity in
First-Order Formalism. Gen. Rel. Grav., 45:477–488, 2013.

[51] Adolfo Toloza and Jorge Zanelli. Cosmology with scalar–Euler form coupling.
Class. Quant. Grav., 30:135003, 2013.

[52] Ryotaro Kase and Shinji Tsujikawa. Dark energy in Horndeski theories after
GW170817: A review. Int. J. Mod. Phys., D28(05):1942005, 2019.

[53] Christos Charmousis. From Lovelock to Horndeski‘s Generalized Scalar Tensor
Theory. Lect. Notes Phys., 892:25–56, 2015.

[54] Atsushi Naruko, Daisuke Yoshida, and Shinji Mukohyama. Gravitational
scalar–tensor theory. Class. Quant. Grav., 33(9):09LT01, 2016.

[55] Tsutomu Kobayashi. Horndeski theory and beyond: a review. 2019.

[56] D. Lovelock. The Einstein tensor and its generalizations. J. Math. Phys., 12:498–
501, 1971.

[57] D. Lovelock. The four-dimensionality of space and the einstein tensor. J. Math.
Phys., 13:874–876, 1972.



167

[58] Alexandre Yale and T. Padmanabhan. Structure of Lanczos-Lovelock Lagrangians
in Critical Dimensions. Gen. Rel. Grav., 43:1549–1570, 2011.

[59] Timothy Clifton, Pedro G. Ferreira, Antonio Padilla, and Constantinos Skordis.
Modified Gravity and Cosmology. Phys. Rept., 513:1–189, 2012.

[60] C. Deffayet, S. Deser, and G. Esposito-Farese. Generalized Galileons: All
scalar models whose curved background extensions maintain second-order field
equations and stress-tensors. Phys. Rev., D80:064015, 2009.

[61] L. H. Ford. Cosmological-constant damping by unstable scalar fields. Phys. Rev.
D, 35:2339–2344, Apr 1987.

[62] C. Wetterich. Cosmology and the fate of dilatation symmetry. Nuclear Physics
B, 302(4):668 – 696, 1988.

[63] Bharat Ratra and P. J. E. Peebles. Cosmological consequences of a rolling
homogeneous scalar field. Phys. Rev. D, 37:3406–3427, Jun 1988.

[64] Pierre Binétruy. Cosmological constant versus quintessence. International Journal
of Theoretical Physics, 39(7):1859–1875, Jul 2000.

[65] C. S. Frenk, G. E. Kalmus, N. J. T. Smith, S. D. M. White, and Paul J. Steinhardt.
A quintessential introduction to dark energy. Philosophical Transactions of the
Royal Society of London. Series A: Mathematical, Physical and Engineering
Sciences, 361(1812):2497–2513, 2003.

[66] R. R. Caldwell and Eric V. Linder. The Limits of quintessence. Phys. Rev. Lett.,
95:141301, 2005.

[67] C. Armendariz-Picon, V. Mukhanov, and Paul J. Steinhardt. Essentials of k-
essence. Phys. Rev. D, 63:103510, Apr 2001.

[68] Takeshi Chiba. Tracking k-essence. Phys. Rev. D, 66:063514, Sep 2002.

[69] Robert J. Scherrer. Purely kinetic k-essence as unified dark matter. Phys. Rev.
Lett., 93:011301, 2004.

[70] H. E. S. Velten, R. F. vom Marttens, and W. Zimdahl. Aspects of the cosmological
“coincidence problem”. Eur. Phys. J., C74(11):3160, 2014.

[71] Camille Bonvin, Chiara Caprini, and Ruth Durrer. A no-go theorem for k-essence
dark energy. Phys. Rev. Lett., 97:081303, 2006.

[72] P. J. E. Kail. Berkeley’s A Treatise Concerning the Principles of Human
Knowledge: An Introduction. Cambridge Introductions to Key Philosophical
Texts. Cambridge University Press, 2014.



168 A. Bibliography

[73] Ernst Mach. The Science of Mechanics: A Critical and Historical Exposition
of its Principles. Cambridge Library Collection - Physical Sciences. Cambridge
University Press, 2013.

[74] Herbert Lichtenegger and Bahram Mashhoon. Mach’s principle. 2004.

[75] Hermann Bondi and Joseph Samuel. The Lense-Thirring effect and Mach’s
principle. Phys. Lett., A228:121, 1997.

[76] M. Arik, M. C. Calik, and M. B. Sheftel. Friedmann equation for Brans-Dicke
cosmology. Int. J. Mod. Phys., D17:225–235, 2008.

[77] Juan Garcia-Bellido, Andrei D. Linde, and Dmitri A. Linde. Fluctuations of the
gravitational constant in the inflationary Brans-Dicke cosmology. Phys. Rev.,
D50:730–750, 1994.

[78] B. Tahmasebzadeh, K. Rezazadeh, and K. Karami. Brans-Dicke inflation in light
of the Planck 2015 data. JCAP, 1607:006, 2016. [Erratum: JCAP1607,E01(2016)].

[79] Valerio Faraoni. Illusions of general relativity in Brans-Dicke gravity. Phys. Rev.,
D59:084021, 1999.

[80] L. Perivolaropoulos. PPN Parameter gamma and Solar System Constraints of
Massive Brans-Dicke Theories. Phys. Rev., D81:047501, 2010.

[81] H. A. Buchdahl. Non-linear Lagrangians and cosmological theory. Monthly
Notices of the Royal Astronomical Society, 150:1, Jan 1970.

[82] Thomas P. Sotiriou. f(R) gravity and scalar-tensor theory. Class. Quant. Grav.,
23:5117–5128, 2006.

[83] Richard P. Woodard. Avoiding dark energy with 1/r modifications of gravity.
Lect. Notes Phys., 720:403–433, 2007.

[84] Antonio De Felice and Shinji Tsujikawa. f(R) theories. Living Rev. Rel., 13:3,
2010.

[85] Shin’ichi Nojiri and Sergei D. Odintsov. Unified cosmic history in modified
gravity: from F(R) theory to Lorentz non-invariant models. Phys. Rept., 505:59–
144, 2011.

[86] Kazuharu Bamba, Andrey N. Makarenko, Alexandr N. Myagky, Shin’ichi Nojiri,
and Sergei D. Odintsov. Bounce cosmology from F (R) gravity and F (R) bigravity.
JCAP, 1401:008, 2014.

[87] Jian-hua He, Luigi Guzzo, Baojiu Li, and Carlton M. Baugh. No evidence for
modifications of gravity from galaxy motions on cosmological scales. Nat. Astron.,
2(12):967–972, 2018.



169

[88] Eanna E. Flanagan and Scott A. Hughes. The Basics of gravitational wave theory.
New J. Phys., 7:204, 2005.

[89] Noemi Frusciante, Simone Peirone, Santiago Casas, and Nelson A. Lima.
Cosmology of surviving Horndeski theory: The road ahead. Phys. Rev.,
D99(6):063538, 2019.

[90] Cedric Deffayet, Oriol Pujolas, Ignacy Sawicki, and Alexander Vikman. Imperfect
Dark Energy from Kinetic Gravity Braiding. JCAP, 1010:026, 2010.

[91] Edmund J. Copeland, Michael Kopp, Antonio Padilla, Paul M. Saffin, and
Constantinos Skordis. Dark energy after GW170817 revisited. Phys. Rev. Lett.,
122(6):061301, 2019.

[92] David Langlois, Ryo Saito, Daisuke Yamauchi, and Karim Noui. Scalar-
tensor theories and modified gravity in the wake of GW170817. Phys. Rev.,
D97(6):061501, 2018.

[93] Yungui Gong and Shaoqi Hou. The Polarizations of Gravitational Waves. 2018.
[Universe4,no.8,85(2018)].

[94] Shaoqi Hou, Yungui Gong, and Yunqi Liu. Polarizations of Gravitational Waves
in Horndeski Theory. Eur. Phys. J., C78(5):378, 2018.

[95] B. P. Abbott et al. GW170814: A Three-Detector Observation of Gravitational
Waves from a Binary Black Hole Coalescence. Phys. Rev. Lett., 119(14):141101,
2017.

[96] J. M. Weisberg, D. J. Nice, and J. H. Taylor. Timing Measurements of the
Relativistic Binary Pulsar PSR B1913+16. Astrophys. J., 722:1030–1034, 2010.

[97] Paulo C. C. Freire, Norbert Wex, Gilles Esposito-Farèse, Joris P. W. Verbiest,
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Daniela Narbona, Eduardo Rodŕıguez, and Omar Valdivia. Nonminimal
couplings, gravitational waves, and torsion in Horndeski’s theory. Phys. Rev.,
D96(8):084023, 2017.

[101] Bruno Zumino. Gravity Theories in More Than Four-Dimensions. Phys. Rept.,
137:109, 1986.

[102] Alberto Iglesias, Nemanja Kaloper, Antonio Padilla, and Minjoon Park. How
(Not) to Palatini. Phys. Rev., D76:104001, 2007.

[103] L. Castellani, R. D’Auria, and P. Fre. Supergravity and superstrings: A Geometric
perspective. Vol. 1: Mathematical foundations. 1991.

[104] Pedro D. Alvarez, Pablo Pais, Eduardo Rodŕıguez, Patricio Salgado-Rebolledo,
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Conformal Field Theory. Graduate Texts in Contemporary Physics. Springer,
1997.

[204] R. Blumenhagen and E. Plauschinn. Introduction to Conformal Field Theory:
With Applications to String Theory. Lecture Notes in Physics. Springer Berlin
Heidelberg, 2009.

[205] Rakibur Rahman and Massimo Taronna. From Higher Spins to Strings: A Primer.
2015.


	Zusammenfassung
	Abstract
	List of Figures
	List of Tables
	Acknowledgements
	General Introduction
	Motivation
	Thesis' structure

	I Horndeski's theory with non-vanishing torsion
	Introduction of Part I
	Motivation
	Outline of Part I

	A primer on Horndeski's theory
	Horndeski's theory
	Horndeski after LIGO

	Horndeski's Lagrangian with torsion
	First order formalism for Horndeski's theory
	Wave operators, torsion and Weitzenböck identities
	Gravitational waves and torsional modes

	Summary and conclusions of Part I

	II T-duality and the Open String
	Introduction of Part II
	Motivation
	Outline of Part II

	T-duality and non-geometrical Spaces
	T-Duality
	Non-Geometric Spaces
	Toroidal fibrations

	T-duality transformations for the Open String
	The gauged non-linear sigma model
	T-duality
	Examples: T3 with H-flux
	The Freed-Witten Anomaly and boundary conditions

	Developments on non-abelian T-Duality Transfomations
	On non-abelian T-duality transformations
	The WZW model for Lie group manifolds
	T-duality

	Summary and conclusions of Part II

	III Close
	General conclusion
	The bosonic string
	The Polyakov action
	Conformal gauge and equations of motion for the string
	Hamilton dynamics
	Quantization procedure

	Bibliography


