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I. GENERAL INTRODUCTION 

1. Introduction 

Since the first biotechnology drug insulin was approved by the FDA in 1982, the need for suitable 

drug delivery systems for these sensitive, biological molecules have arisen [1]. The 

pharmacological effect of biological molecules is determined by the three-dimensional structure, 

which is again defined by a proteins primary, secondary, tertiary and quaternary structure [2]. 

However, this three-dimensional structure is prone to several chemical and physical alterations, 

which may lead to a loss of action or even toxicity [3, 4]. In addition, the short half-life of circulating 

proteins makes it difficult to administer biotechnological drugs [5]. Therefore, research focuses on 

strategies to overcome these drawbacks. Several techniques have been developed, including 

stabilization by the addition of excipients like sugars or salts to a protein formulation, stabilization 

of the protein using freeze-drying or modification of the protein molecule by polyethylene glycol 

(PEG) to prolong the plasma circulation time [3]. 

Over the last decades, polymer drug delivery systems, especially those having biocompatible and 

biodegradable properties, have become interesting new alternatives for protein delivery [6]. 

Polymer drug delivery systems can be utilized for controlled delivery of protein drugs in order to 

achieve a reduction of the application frequency [7]. In order to achieve sustained or controlled 

delivery of proteins, several delivery systems including implants, micro- and nanoparticles and 

injectable solutions have been investigated [8]. Currently, research is performed on poly-lactid 

acid (PLA), poly-lactic-co-glycolic acid (PLGA), cellulose, starch, chitosan, alginate, dextran, 

hyaluronic acid, collagen, albumin, gelatin, lipid-based carriers (micelles/liposomes) and silk 

fibroin [9, 10]. In the past, research was focused mainly on the PLGA based drug delivery systems, 

as the US Food and Drug Administration (FDA) has approved the biocompatible PLGA for use in 

humans [11]. Consequently, it is hardly surprising, that PLGA based sustained delivery systems for 

the peptides leuprorelin, octreotide and triptorelin have been approved. Moreover, the only 

marketed delivery system for a protein (Nutropin Depot®, recombinant human growth hormone) 

was also based on PLGA [12]. 

In search for an ideal polymer for particulate biomedical applications, silk protein appears to be a 

promising alternative. Due to its biodegradable and biocompatible properties as well as the unique 

mechanical characteristics, silk is an ideal candidate for pharmaceutical applications [13, 14]. Silk 
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proteins from the silkworm fibroin of Bombyx mori as well as spider silk proteins have been 

processed into different forms including gels, films and particles [15]. The possibility to utilize an 

all-aqueous preparation method made silk protein an interesting research object in the field of 

drug delivery for protein molecules [16].  

2. Silk Proteins 

Silk fibroin from silkworm has been used because of its impressive mechanical properties for 

biomedical use, for example as suture material [17]. Silk is produced by different animals like 

insects or spiders. Insects like the silkworm Bombyx mori use silk for their development in cocoons, 

whereas spiders use it for hunting their prey via the spider webs or as safety lines to prevent 

dropping from their nets [18]. 

Compared to currently used biodegradable polymers like collagen or PLGA, use of silk as a drug 

delivery system would be beneficial due to its biocompatibility, stability and weak immunogenic 

properties [19, 20]. Natural silk protein has an extraordinary high thermal stability up to 

temperatures of 140°C [21]. Both, thermal stability and biodegradation rate are affected by the 

crystalline β-sheet content and can therefore be modified by post-treatment with alcohols and 

kosmotropic salts [18]. The degradation of the most commonly used polymer PLGA causes a 

decrease in pH value by the generation of acidic cleavage products [22]. These acidic moieties lead 

to an immune response and acidic catalyzed drug degradation, whereas silk protein is degraded 

to non-toxic amino acids [23]. On the downside, crystalline silk fibroin is poorly water soluble. 

Highly concentrated salt solutions of guanidinium thiocyanate, lithium thiocyanate, calcium 

thiocyanate, lithium bromide or calcium chloride are used for dissolving silk fibroin in water [24–

26]. Such chaotropic agents act by disrupting β-sheet stabilizing bonds and increase the 

hydrophilic properties of the protein [27]. Disadvantageous is therefore the additional step 

required to remove these electrolytes, for example by dialysis against water or aqueous buffers. 

Hexafluoroisopropranol, hexafluoroacetone or formic acid may also be used as solvents for silk 

proteins, however, their use is contra-productive for the preparation of drug delivery systems, as 

an all-aqueous preparation process is a major plus for silk as drug delivery polymer for sensitive 

proteins [25, 28]. The short physico-chemical stability of dissolved aqueous silk solutions is 

another issue, because silk protein is spontaneously precipitating into the water insoluble β-sheet 

state [29]. 

Although silk proteins from spiders and silkworms possess several similarities [30], the following 

two sections will focus on the characteristics of the individual proteins. 
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2.1. Silkworm silk 

Besides the use as suture material, silkworm silk has been used in textile production for many 

years, because silkworms are easy to cultivate [31]. Most of the silkworm silk is collected from the 

cocoon of the silkworm Bombyx mori. Silkworm silk consists of two different structural proteins, a 

fibroin heavy and light chain, which are held together by sericin proteins [18]. The sericin coating 

has been identified as a potential allergen which causes a Type I allergic reaction [17]. To overcome 

this issue, sericin is removed by boiling the silkworm silk cocoons in aqueous sodium carbonate 

solutions for 30-60 minutes [32–34]. Nonetheless, silk fibroin from silkworm is a natural product. 

This means, for example, that the quality of the silk protein may vary between one silkworm 

species like Bombyx mori to other species like Antheraea mylitta and also within individuals of one 

species [35]. The sericin removal process and the variable quality is problematic with regards to 

quality control and approval by authorities [21]. 

Although the majority of the silk fibroins are obtained from the natural cocoons of the silkworms, 

synthesis of recombinant silk-elastin-like polymers (SELPs) is performed in E. coli, in yeast or by 

transgenic B. mori silkworms [36–38]. The design of SELPs is a repeated amino acid sequence of 

the silk-like block (Gly–Ala–Gly–Ala–Gly–Ser) and the elastin-like block (Gly–Val–Gly–Val–Pro) 

[39]. The ratio of these two building blocks can be varied to achieve the desired properties of the 

SELP protein. The degradation rate, the resorption and solubility of SELPs are highly affected by 

the ratio of silk-like to elastin-like blocks [40, 41].  

2.2. Spider silk 

Due to the cannibalistic nature of spiders, industrial farming of spiders is restricted and the 

collection of natural spider silk is very limited [42]. Natural spider silk consists of two major 

proteins, namely MaSp1 and MaSp2 from N. clavipes as well as ADF-3 and ADF-4 from Araneus 

diadematus [14]. Natural spider silk is produced in the major ampullate gland of the spiders. The 

amazing mechanical properties result from a mixture of hydrophobic blocks with crystalline 

features (rich in β-sheets) and hydrophilic elements with an amorphous structure [43]. As reported 

by Gosline et al., some natural silk fibers exhibit a higher toughness than Kevlar fibers [44]. 

Recombinant spider silk proteins are derived from the above-mentioned proteins of N. clavipes 

and A. diadematus. However, the recombinant synthesis of spider silk proteins has been difficult, 

because the natural spider silk sequence contains several repetitive and guanine and cytosine rich 

structures [42]. Consequently, publications on spider silk proteins were rare until the mid-end 
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1990ies (see Figure I-1 ). The progress in protein engineering (Figure I-1) finally enabled the 

production of spider silk proteins in a cost-effective manner and to achieve larger amounts than 

in previous years [45]. 

 

Figure I-1: Number of publications addressing the topics “protein engineering” and “spider silk” as a result 
of the Pubmed tool "Results by year" performed on April, 24th 2016 [46]. 

Protein engineering made it possible to design recombinant spider silk proteins with almost native 

silk properties. For this purpose, repetitive sequences were combined with non-repetitive 

sequences, which were then recombinantly produced in E. coli [45]. 

Most of the recombinant spider silk proteins are produced in E. coli bacteria [42]. Additionally, 

expression in yeast with a yield of 300-1,000 mg/l silk protein is also possible [18]. Other organisms 
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like plants, insects, animal cells and even whole transgenic animals have been used for 

recombinant spider silk protein production [27]. 

The protein engineering approach was further utilized to add functional ligands to the spider silk 

sequence, thereby creating hybrid spider silk proteins. In literature, several ligands like the cell 

binding RGB domain [47], tumor-homing peptides [48], cell-penetrating peptides for targeted drug 

delivery [49] or a His-Tag at the N-terminus of the protein to simplify the purification procedure 

[50] have already been reported to enhance the native spider silk properties. 

3. Silk based drug delivery systems 

Silk proteins offer the possibility to be processed into a variety of drug delivery systems, including 

implants, scaffolds, films, coatings, nano- and microparticles, hydrogels or fibers [21]. Drug 

incorporation into these systems has been studied, starting from small molecules like paracetamol 

[51] up to proteins like lysozyme [52] and different growth factors [53, 54].  

3.1. Implants and Scaffolds 

Mechanical properties are a major issue in scaffold production. Compared to other commonly 

used polymers such as collagen, chitosan and PLGA, silk fibroin possesses great strength and 

elasticity without the need for further crosslinking [55]. Silk-based scaffolds and implants have 

been used in research for tissue regeneration or controlled local drug delivery. For bone 

regeneration, bone morphogenetic protein-2 (BMP-2) was incorporated into 3D silk fibroin 

scaffolds and studied in vitro and in vivo [54]. Silk scaffolds offer the possibility to mimic the porous 

structures of natural bones and have the ability to deliver growth factors over an extended time 

to the tissue. It is not surprising that a lot of studies have been carried out using bone 

morphogenetic protein in vitro and in vivo [54, 56, 57]. 

Adenosine loaded silk-based implants have been used for sustained release studies and controlled 

release over a period of 2 weeks has been reported. Controlled degradation and release of the API 

from the silk-based implants offered the use in refractory epilepsy treatments [58]. 

Other model drugs, which have been tested using silk implants and scaffolds, are horseradish 

peroxidase (HRP) [59], nerve growth factor (NGF) [60], bovine serum albumin (BSA) [61], and 

insulin-like growth factor I (IGF-I) [53]. 
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3.2. Films 

Film casting can be performed in an all-aqueous process or by usage of hexafluoro-2-propanol or 

formic acid [62]. The dissolved silk protein is processed into films by casting on plates [51] or in 

molds [34]. 

Silk films have been used in two different ways of which the first is the application as drug carrier. 

Sensitive drugs, for example glucose oxidase, lipase and horseradish peroxidase, have been 

incorporated into silk films for protection against degradation [63]. The authors were able to show 

that the model proteins were not affected in the film after storage for ten months at 37°C. While 

the incorporated drugs were released after degradation of the silk film, the physically adsorbed 

proteins showed a high burst release at the beginning [63]. The phenomenon of high burst release 

from physically adsorbed drugs or proteins is a common issue. Agostini et al. addressed this topic 

and systematically evaluated several possibilities to slow down the release from silk films [51]. The 

authors found that a multilayer approach, where the drug containing film is covered by two non-

loaded films, significantly slows down release of incorporated drugs. Due to the extra step in the 

production of such multilayer films, the authors also used 2-pyrrolidone as plasticizer for the film 

matrix of monolayer films. The 2-pyrrolidone treated films showed excellent mechanical 

properties and a sustained release of the incorporated protein over several months [51]. 

Covalent decoration of silk films with functional peptides is the other field of application. RGD-

modified silk films, where the RGD motif was either chemically coupled or attached via genetic 

modification and recombinant production, increased the fibroblast adhesion and proliferation in 

an in vitro approach [64]. The integrin recognition sequence (RGD) was used in combination with 

a parathyroid hormone by Sofia et al. for new bone formation [65]. The RGD-modified silk films 

showed a superior osteoblast-based mineralization compared to a control parathyroid hormone 

and plastic implants [65]. Both studies highlight the high potential of modified silk films for tissue 

engineering in the future. 

3.3. Coatings of drug delivery systems 

The possibility of drug incorporation in or between coating layers as well as the possibility to coat 

a large variety of systems is advantageous in modern drug delivery [21]. Silk protein was used for 

layer-by-layer coating of quartz crystals or glass surfaces. The first experiments were used to 

evaluate the properties of the silk layer after coating. The silk based coatings can vary between 

10 nm per layer up to a layer thickness 1 µm or even 10 µm [66, 67]. The secondary structure of 

the silk protein is of high importance for coatings, turning the silk layer into an aqueous insoluble 

conformation and controlling the degradation rate [67]. 
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Drug incorporated, multilayered silk coatings have been developed using heparin, paclitaxel or 

clopidogrel on metallic stents [68]. Wang et el. demonstrated in their study, that silk coated stents 

loaded with heparin, paclitaxel or clopidogrel reduced the attachment and proliferation of cells 

on the stent in an in vitro study [68]. Furthermore, the authors were able to show a prevention of 

restenosis and the stability of the silk coating in an in vivo pig study. 

Silk coatings can also be used without drug incorporation. Zeplin et al. used the recombinant 

spider silk protein eADF4(C16) for coating of silicone implants [69]. A common drawback of breast 

implants is the recognition of the implant by the immune system with subsequent attraction of 

inflammatory cells resulting in fibrosis. The formed fibrotic capsule around the implant can lead 

to painful complications after surgery. However, silk coated implants were able to successfully 

reduce the cell proliferation on the implant surface resulting in less fibrosis by masking the silicone 

[69]. The easy modification by dip coating makes silk coatings an attractive improvement of the 

current silicone implants. 

3.4. Nano- and microfibers 

In contrast to silk implants, fibers can mimic the extracellular matrix due to their nanoscale size. 

Fibers are commonly prepared by electrospinning, where an electrical field is used to form small-

scale fibers from a silk solution in a syringe [70]. Silk fibers containing BMP-2 and hydroxyapatite 

showed efficient drug delivery for in vitro bone formation in human mesenchymal stem cells [71]. 

Due to their small-scale dimensions and variability by adjustment of solution and preparation 

properties, electrospun fibers had become popular in tissue engineering [72]. For example, silk 

nanofibers with incorporated silver nanoparticles were characterized for their use as antimicrobial 

wound dressings [73]. The silver particles were added by easy dip coating and subsequent photo 

reduction on the surface of the electrospun silk nanofibers. 

3.5. Nano- and microparticles 

The significant potential of particulate delivery forms has been used for the delivery of therapeutic 

molecules. Nanoparticles as well as microparticles have been prepared for different applications 

in the field of severe diseases like cancer, AIDS or tuberculosis [74–76]. Size, surface charge and 

surface decoration have been identified as important parameters for interaction with the cell 

membrane and penetration into body tissue [10]. In some cases, protein based nano- and 

microparticles have been prepared under all-aqueous conditions to overcome the shortcomings 

of commonly used preparation methods like emulsification and coacervation [35, 77, 78]. 

Silk particles have been produced in various dimensions, ranging from microparticles with 
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diameters up to 440 µm [9] to nanoparticles with diameters small as 70 nm [79] using several 

different preparation techniques. Some of them shall be presented below. 

3.5.1. Preparation of silk particles 

Nanoparticles from silkworm B. mori and tropical silkworm A. mylitta have been prepared by a 

desolvation technique using dimethyl sulfoxide as desolvating agent [35]. Particle diameters of 

both silk types were comparable in the size range of 155-180 nm. These particles exhibited good 

stability, no toxicity and a negative surface charge. The loaded growth factor showed sustained 

release over three weeks in the cytosol of murine squamous carcinoma cells [35]. 

Recombinant spider silk protein was processed into micro- and nanoparticles. Different particle 

fabrication techniques, including dialysis, mixing with a pipette and micromixing in a syringe pump 

were compared [16]. Essentially, particle formation was driven by a salting out effect in a 

potassium phosphate solution [32]. Using a 500 mM solution (pH 8) resulted in the formation of 

clusters of aggregates whereas the silk protein formed stable spherical particles after treatment 

with a 1 M potassium phosphate solution [16]. When using dialysis of silk solution against 

potassium phosphate, particles were in the range of micrometers with a broad size distribution. 

However, simple mixing of the solutions with a pipette yielded in stable nanoparticles with 

average diameters between 350 nm and 510 nm. Syringe pump mixing generated particles with 

sizes of 290-370 nm applying a flow rate of 2 ml/min and 250-320 nm for turbulent flow conditions 

at a flow rate of 50 ml/min [16]. Increasing the silk protein concentration during particle 

preparation always resulted in larger particles. 

Micrometer sized silkworm silk particles were prepared by spray-drying [26]. The stability of the 

particles and the water insolubility was increased by a post treatment step using either water 

vapor or methanol [26, 80]. The post treatment led to an increase of the proteins β-sheet content. 

However, the high inlet temperatures during spray-drying, which may lead to a damage of the 

encapsulated drug, and potential post treatment procedures to induce water insolubility, are 

disadvantages of spray drying as fabrication method. 

Silkworm silk microspheres have been prepared by Wenk et al. using a laminar jet break-up 

technology [9]. This technique has been used for alginate beads preparation before [81]. An 

aqueous silk solution was sprayed into a bath of liquid nitrogen, using a vibration unit for droplet 

generation [9]. Subsequently, the shock frozen particles were freeze dried at -25°C for 12 h. 

Particle shrinkage has been observed after methanol or water vapor treatment to average 

diameters of 260 µm and 200 µm, respectively. Moreover, a diluted silk solution resulted in 
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smaller particles [9]. 

A traditional water-in-oil preparation method was used for microcapsule fabrication. Due to its 

amphiphilic nature, silk protein assembled at the toluene/water interface generating a film and 

encapsulated an aqueous core. By varying the stirring speed of the solution, the authors were able 

to control the size of the resulting particles [82]. 

Wen et al. used a novel ultra-fine particle processing system [6]. This system was built to 

continuously produce particles in the micron size. Main elements of this new system are a feeding 

nozzle for the silk solution, which is placed in center of a rotating disc. To control and dry the 

droplets after leaving the rotating disc, three different airflow systems are integrated into the 

system. A collecting vessel with carrier gas ensures the complete dryness of the particles and 

moves them forward to a sample collector. Particles prepared with this system show mean 

diameters of 63, 42 and 30 µm for disc speeds of 6,000, 9,000 and 12,000 rpm with a narrow size 

distribution. As shown before, higher concentrated silk solutions generated larger particles. SEM 

micrographs showed a spherical shape with a lot of dents. Uniform drug distribution was achieved 

by a simple encapsulation process [6]. 

Most of the currently performed preparation methods for silk particles require a post treatment 

step to induce water insolubility of the particles. Frequently used post treatment methods are 

using methanol, salt solutions or water vapor [83]. All these treatments are used to transform a 

random coil or helical conformation of the proteins into a β-sheet rich structure, which is 

necessary to achieve water insolubility [84]. Using methanol for this purpose has the disadvantage 

of introducing an organic solvent into the preparation process. Furthermore, previous studies 

have shown a loss of activity for lysozyme after treating silk fibroin films with methanol [85]. 

Nevertheless, silk particle preparation is also possible in an all-aqueous preparation process 

resulting in water insoluble particles, offering the possibility for encapsulation of sensitive drugs 

[52]. 

3.5.2. Drug loading of silk particles 

Essentially, there are three options of drug loading, with i) remote loading after preparation of the 

drug carrier, ii) covalent coupling of the drug to the delivery system and iii) direct encapsulation 

of the drug during the preparation process [21]. 

Remote loading as a post-fabrication method allows the preparation of the delivery system in 

advance and an addition of the drug after the preparation procedure. The drug is protected against 

harsh processing conditions during the preparation process. On the contrary, there are also 
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limitations for post-fabrication loading. If the desired drug is larger than the pores in the delivery 

system, no core diffusion will occur and simple adsorption on the surface is the only loading 

principle. Surface adsorbed drug is easily removed from the delivery system, in particular, if 

adsorption is only driven by electrostatic interactions, and therefore ensuring controlled release 

of a drug could be an issue. Moreover, loading is limited to the adsorption capabilities of drug and 

carrier material. With regards to the isoelectric points of 3.48 for spider silk [86] or 4.2 for silkworm 

silk [87], positively charged drugs preferably interact with spider silk systems at neutral pH values. 

Lammel et al. compared in their study the loading behavior of 12 small molecule drugs on spider 

silk particles [88]. The authors observed that small molecule drugs diffuse into the core of spider 

silk particles by comparing the loading behavior between spider silk particles and dense glass 

beads. In addition, they verified the strong electrostatic dependence between drug and silk 

delivery systems. Basic drugs with a positive charge showed good loading efficiencies whereas 

negatively charged drugs were poorly incorporated or no loading was possible [88]. 

Loading of macromolecular drugs on spider silk particles was demonstrated by Hofer et al. [52]. 

Using lysozyme as a model protein, successful loading of up to 30% [w/w] lysozyme by simple co-

incubation of spider silk particles and lysozyme in phosphate buffer was possible. Electrostatic 

interactions between lysozyme and spider silk particles were demonstrated by comparing loading 

at different ionic strengths. During lysozyme loading, neither the zeta-potential decreased nor the 

particle size increased. This observation support the authors’ argument that lysozyme diffuses into 

the particle matrix [52]. 

The second and most straightforward possibility of drug incorporation is direct encapsulation 

during processing. The main challenge is to ensure that the drug is not damaged during the 

preparation procedure and the drug’s activity is preserved. In addition, the drug should not 

influence the preparation process itself. 

Wenk et al. prepared microspheres with directly encapsulated drugs [9]. The authors used a liquid 

nitrogen bath to collect the manufactured microspheres from an encapsulator with an oscillation 

nozzle. Salicylic acid, propranolol and insulin-like growth factor I (IGF-I) were dissolved prior to 

spraying the solution to the liquid nitrogen bath. Although all model drugs were incorporated in 

the particle matrix during fabrication, a high burst release was observed for salicylic acid and 

propranolol hydrochloride, while the IGF-I protein showed a sustained release profile. [9]. Wang 

et al. prepared the silk microspheres after addition of lipid templates, using dextran and 

horseradish peroxidase as model drugs [80]. Similar to Wenk et al., liquid nitrogen was utilized in 

the particle preparation process. Additionally, three freeze-thaw steps were included to obtain 
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smaller particles with a homogeneous size distribution. Without further post treatment in NaCl 

solution, a high burst release was observed likewise [80]. So, the disadvantage of these 

preparation methods is the necessity of a post treatment after preparation process, which is 

required to generate water insoluble particles. 

Hermanson et al. prepared microcapsules with a water-in-oil emulsification method. Recombinant 

spider silk protein quickly adsorbed at the water/oil interface and encapsulated the water-soluble 

model substance dextran. The majority of the fluorescently labeled dextran with a molecular 

weight of 40 kDa was retained inside the microcapsule, while only a small fraction diffused trough 

the microcapsule. The release rate was highly affected by the enzymatic degradation of the silk 

microcapsule. Cross-linking the silk membrane to prevent enzymatic degradation increased the 

stability of the silk microcapsules. In contrast to non-crosslinked microcapsules, which released 

the encapsulated dextran immediately after proteinase K addition, cross-linked microcapsules 

were stable for one hour of proteinase K incubation at 37°C [89]. 

A direct comparison between the remote loading and direct encapsulation process was conducted 

by Blüm et al. [90]. The authors used recombinant spider silk and the small molecule rhodamine B 

to prepare loaded spider silk particles. The direct encapsulation led to an improved loading 

efficiency of the particles compared to the remote loading. Additionally, further crosslinking of 

the spider silk protein particles using ammonium persulfate (APS) and Tris(2,2′- 

bipyridyl)dichlororuthenium(II) (Rubpy) led to a slower drug release from the particles [90]. 

The last drug loading possibility is covalent coupling of the drug to the matrix of the delivery 

system. In this case, the drug has a permanent connection to the delivery system with a reduced 

risk of leaching. This advantage comes in a price with the negative consequence of an additional 

processing step and risk of toxic residues in the delivery system. 

Covalent coupling of insulin to silkworm silk nanoparticles has been shown by Yan et al. [79]. The 

authors covalently coupled insulin to the silk nanoparticles using a 0.7% glutaraldehyde solution. 

Higher concentrations of glutaraldehyde and a longer incubation time led to increased insulin 

denaturation. In vitro stability studies indicated an improved stability of cross-linked insulin with 

silk fibroin nanoparticles as well as an increased activity compared to unbound insulin [79]. 

Similarly, Florczak et al. used carbodiimide (EDC) and N-hydroxysulfosuccinimide (Sulfo-NHS) 

chemistry to covalently conjugate peptides and an anti-Her2 antibody to spider silk protein 

spheres [74]. The conjugated spheres were used for a targeted drug delivery of the toxic cancer 

chemotherapeutic doxorubicin [74]. 
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Covalent coupling has been also applied for PEGylation of silk nanoparticles. Wongpinyochit et al. 

decorated the nanoparticle surface with polyethylene glycol (PEG) via covalent conjugation [91]. 

The PEGylated silk nanoparticles showed less plasma membrane binding and a modulated cellular 

uptake compared to non- PEGylated nanoparticles [91]. 

3.6. Functionalization of silk based drug delivery systems 

Functionalization of silk based drug delivery systems can be either performed via covalent linkage 

or by using genetic modification. Sofia et al. introduced different target peptides to their silk films, 

including the integrin recognition sequence RGD via carbodiimide chemistry [65]. Analysis of the 

osteoblast like cell response demonstrated a higher affinity of the cells to the RGD decorated films 

when compared to non-decorated silk films [65]. 

A different strategy was assessed by Wang et al. to introduce specific molecules under mild 

conditions [92]. The authors decorated silk gels and microspheres covalently with NeutrAvidin™, 

a genetically modified version of avidin with a high affinity to biotin. Introducing NeutrAvidin™ 

had no effect on the self-assembly properties of the silk molecules or morphology of silk particles. 

Biotinylated horseradish peroxidase (HRP) was used for binding studies on the film, demonstrating 

a high specific binding rate of 90% to NeutrAvidin™ decorated silk gels. However, unspecific 

binding of biotinylated HRP led to a binding rate of 70% to non-decorated gels. The mild conditions 

of this method offer the possibility to link biotinylated molecules to several material surfaces 

under neutral pH and room temperature [92]. 

A great benefit of recombinant spider silk proteins is the possibility to introduce various motifs 

directly into the primary structure via genetic modification. The cell adhesion motif RGD was used 

by Wohlrab et al. to create a genetic modified hybrid protein [64]. The authors processed the new 

hybrid protein and a chemically coupled version into silk films. While the RGD motif had no 

influence on the silk properties, the hybrid protein films showed a slightly better performance 

compared to the conjugated films in vitro [64]. 

Gomes et al. used genetic modification to design antimicrobial spider silk proteins [93]. Three 

human antimicrobial peptides (HNP-2, HNP-4 and hepcidin) were fused to the native spider silk 

protein without changing the properties during film processing. In vitro antimicrobial studies 

against Gram- and Gram+ bacteria showed that the antimicrobial activity of the peptides 

maintained their activity after processing into films. Due to the low cytotoxicity of the hybrid 

protein films, the antimicrobial spider silk proteins can be a potential approach against bacterial 

infections for example in wound healing. 
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In a similar approach, Currie et al. fused a silver binding peptide to a spider silk protein [94]. The 

recombinant silver binding silk proteins were processed into films. The silver binding peptides in 

the film matrix were able to nucleate silver ions from an added silver nitrate solution. Like the 

human antimicrobial peptide hybrid proteins before, the silver-binding silk films inhibited the 

microbial growth of gram negative and gram positive microorganisms in vitro. 

A hybrid spider silk protein for the targeted cancer therapy was engineered by Florczak et al. [74]. 

A variant of the recombinant spider silk protein MS1 (adapted from the major ampullate silk 

protein of N. clavipes) comprised the Her2 binding peptides (H2.1 or H2.2) in order to address cells 

overexpressing the Her2 receptor. While the self-assembling properties of the silk protein were 

unchanged, the authors were able to show that the N-terminal addition of the Her2 binding 

peptides was superior to the C-terminal attachment. Both variants showed effective binding to 

Her2 overexpressing cells, demonstrating the potential for a targeted drug delivery. 

4. Particulate Delivery Systems for Vaccination 

Vaccines are used in healthy persons to prevent infectious diseases. For this purpose, vaccines are 

highly effective, as can be seen by the eradication of smallpox and the control of diseases like 

measles, mumps, rubella and many more [95]. Due to the fact that healthy persons are treated, 

vaccines of all kinds (live attenuated, inactivated or subunit vaccines, with or without adjuvant) 

need to be particularly safe during and after application [96]. 

Conventional vaccines have been prepared by using native pathogens, which were inactivated or 

attenuated during the development. These vaccines were highly immunogenic and able to 

produce both humoral and cellular immunity. On the contrary, there are serious safety concerns 

as pathogens may revert back to their virulent form or when such vaccines are administered to 

immunodeficient individuals [97]. Consequently, recent research has focused on more 

controllable formulations using DNA or subunit vaccines. DNA vaccines consist of genes encoding 

a specific antigen, but have solely been used for veterinary applications so far [98]. Subunit 

vaccines contain only a well-defined part of the original pathogen. Besides an increased safety 

profile of these vaccines, every antigen can be produced by recombinant preparation method, 

even if it is impossible to grow the original pathogen in culture. When DNA or subunit vaccines are 

used, the addition of an immunostimulatory adjuvant is usually needed, as the antigen alone is 

only weakly immunogenic [99]. 

Adjuvants (from Latin, “adjuvare”: to support, to help) are molecules which assist the active 

pharmaceutical ingredient to achieve its effect [100]. Usually, this term is used in relation to 
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vaccines. The traditional definition of a vaccine adjuvant is a molecule, which enhances the effect 

of antigens to elicit an immune reaction [101]. Traditional approved adjuvants like aluminum salts 

or MF59 (an oil-in-water emulsion) act directly as immunostimulatory agents, which activate the 

immune system to react on the administered antigen [102]. However, particulate delivery systems 

may also serve as adjuvants by targeting specific immune cells [97]. Antigen loaded particles can 

mimic the natural size of pathogens, so that the immune system can recognize the antigen easier 

and the uptake by antigen presenting cells (APCs) is enhanced [103]. After entering the body, 

circulating APCs present the epitope in the local lymph nodes to immune cells in order to induce 

an immune response [104]. By that, a cell-mediated immune response is triggered via cross-

presentation the antigen by both MHC-I and MHC-II pathway [105]. Another attractive feature of 

particulate antigen delivery systems is the possibility of a sustained antigen release via an antigen 

depot [106]. With respect to antigen stability, antigen entrapped in particles is protected against 

degradation by proteolytic enzymes, especially as some antigens are destabilized by traditional 

adjuvants like aluminum salts [107]. Additionally, particles can help to deliver the antigen together 

with an immunostimulatory adjuvant to the same group of APCs and affect the type of immune 

response [108]. Moreover, toxic side effects of immunostimulatory adjuvants could be eliminated 

by encapsulation. The simultaneous release of the antigen and adjuvant after uptake by APCs can 

reduce systemic bioavailability and increase the immune response at the same time [96]. 

The strict safety regulations for the approval of new adjuvants are challenging, as many adjuvants 

have shown potent immune stimulation, but are too toxic for routine use [101]. Due to the simple 

reason that healthy individuals, including infants or elderly people, are treated with vaccines, only 

adjuvants with minimal adverse effects are suitable for regular use in vaccination [96]. 

4.1. Nano- and microparticles based on lipids and lipid–saponin mixtures 

4.1.1. Liposomes 

Liposomes are spherical bilayer vesicles composed of phospholipids with an aqueous core. They 

can be easily prepared in the large scale and their sizes can range from 50 nm up to some 

micrometers. Liposomes have been widely studied for drug delivery. These studies led to the 

development of Doxil® (liposomal doxorubicin) and Ambisome® (liposomal amphotericin B), two 

approved liposomal drug formulations, which are used regularly in the clinical routine [109]. 

However, the use of liposomes has also some drawbacks. Conventional liposomes have only a low 

encapsulation efficacy, short circulation time, show limited stability and a high aggregation 

tendency in liquids [110]. Antigens can be incorporated either in the aqueous core or in the lipid 
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shell of the liposomes, all of which can protect the antigen from degradation [95]. Modifying the 

liposome surface with viral envelope proteins led to so called virosomes [103]. With enhanced 

immunostimulatory features, virosomes have the possibility to fuse with the endosomal 

membrane of the target cells and release the antigen to the cytosol [111]. The administration of 

virosomes can elicit both, a humoral and cellular immune response [100]. Besides being just a 

delivery system for the antigen, positively charged liposomes efficiently induced a cell mediated 

immune response [112]. Liposomal formulations were found to be safe and easy to administer, 

which led to the approval of the liposomal vaccines Epaxal® and Inflexal® V [113]. A virosome 

based influenza vaccine, however, showed serious adverse events after intranasal administration 

and resulted in the withdrawal of the formulation from the market [114]. 

4.1.2. Viral-vectors 

Vectored vaccines use a non-replicating pathogen to deliver the DNA encoding for an antigen of 

the pathogen to which immunity is desired. As such vaccines contain the envelope of normal 

pathogens, they elicit a strong immune response and show potential for mucosal immunization 

via nasal application [95]. Many different viral or bacterial vectors are possible candidates, but 

those which have been most used are adenoviruses, poxviruses or Bacillus Calmette-Guérin [115]. 

These vectors combine good safety profiles with an easy production method. Their potential to 

stimulate a cellular T-cell response was studied using HIV vaccines [116]. A prime-boost regimen 

was established to increase the immune response, where the first immunization was carried out 

using a viral-vectored vaccine, followed by a booster dose of the same protein in a soluble form 

or in another type of vector [117]. This procedure was used successfully in vaccination studies 

against malaria [117]. 

4.1.3. Immunostimulating complexes 

Immunostimulating complexes (ISCOMs) are spherical, cage-like colloidal structures composed of 

an antigen, cholesterol, phospholipid and Quil A saponin [118, 119]. The saponin is derived from 

the bark of the South American Quillaja saponaria Molina tree. The hydrophobic antigen can be 

loaded directly into the lipid matrix, whereas hydrophilic antigens need a modification step prior 

to that [103]. ISCOMs have shown a strong immune response with both cellular and humoral 

immunity. Compared to a standard flu vaccine, an ISCOM based vaccine elicited a higher immune 

response rate with a good safety and toxicity profile in humans [120]. Despite their good 

performance, ISCOM vaccines are still not used in human vaccines due to safety concerns with 

regards to saponin toxicity at higher concentrations [95]. However, ISCOM based vaccines are 
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approved in veterinary applications [103]. 

Using the same structure as ISCOMs but excluding the antigen led to the development of 

ISCOMATRIX®. This formulation provides a more general use, because the antigen can be added 

later during the formulation step. Indicating a safe and immunogenic immune response both in 

humans and in animals, ISCOMATRIX® could be used as new adjuvant in vaccine formulations [121, 

122]. 

ISCOMs have also been converted into their positively-charged counterparts, so-called 

PLUSCOMs. Due to their positive charge, it was possible to load the negatively charged model 

antigen ovalbumin by electrostatic interactions [123]. 

4.2. Nano- and microparticles based on polymers and minerals 

4.2.1. Calcium phosphate particles 

Calcium phosphate particles can be fabricated by stirring a combined solution of calcium chloride, 

sodium phosphate and sodium citrate resulting in final particle sizes of less than 1.2 µm [124]. As 

calcium phosphate is naturally present in human body, safety issues are of minor importance. The 

calcium phosphate particles adsorb antigens similar like the commonly used alum salts, although 

to a smaller extent [125]. The intramuscular administration of calcium phosphate nanoparticles 

was well tolerated by guinea pigs in an in vivo study [126]. Further studies indicated that calcium 

phosphate nanoparticles were superior when compared to soluble antigen alone in vitro [127] and 

in vivo in mice [128]. The ability to induce a mucosal immunity was shown in studies against an 

HSV-2 antigen [125]. Furthermore, co-delivery of an immunostimulatory adjuvant together with 

an antigen is possible with calcium phosphate nanoparticles [127]. 

4.2.2. Poly lactic-co-glycolic acid (PLGA) particles 

The most commonly studied polymers for use as drug delivery vehicles are poly-lactic acid (PLA) 

and poly-lactic-co-glycolic acid (PLGA) [11]. These polymers have also been used for particulate 

antigen delivery in the field of vaccination. Already in 1999, PLGA nanoparticles loaded with a 

Helicobacter pylori lysate was found to effectively induce a systemic and mucosal immune 

response after oral administration in mice [129]. The fabrication process of PLGA particles can 

already be used to encapsulate antigens into the polymer matrix. However, simple surface 

adsorption is also possible for pre-fabricated PLGA particles [130]. The biocompatible and 

biodegradable properties make PLGA highly attractive for a systemic administration. The 

degradation rate of the PLGA particles can be tailored to the desired release kinetics of the 
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antigen, where the particles serve as an antigen depot [131]. Joshi et al. reported in their study 

about release times up to 350 hours [132]. Nevertheless, a high burst release after administration 

is commonly observed when PLGA particles are used [133]. In addition, the polymer degradation 

via acidic hydrolysis can lead to a damage of the entrapped antigen due to a shift to acidic pH 

values [134]. 

4.2.3. Chitosan particles 

Chitosan is a natural polymer, which is obtained by alkaline deacetylation of chitin [135]. Due to 

the biodegradable, biocompatible and nontoxic properties, chitosan is commonly used for 

different drug delivery systems [136]. Chitosan based particles are used for protein, peptide and 

DNA vaccination [137–139]. An advantage of chitosan is the stabilization of entrapped DNA, which 

is then protected against degradation by nuclease [140]. Due to the bioadhesive properties, 

chitosan particles are efficiently taken up by enterocytes [141]. The bioadhesive properties of 

chitosan nanoparticles were often demonstrated after oral, nasal and pulmonary antigen delivery 

[142]. However, the oral route is often avoided, because chitosan particles are degraded in an 

acidic environment [143]. If oral vaccination by chitosan particles is desired, alginate is used to 

cover the chitosan particles. The alginate cover is sensitive to a basic pH in the intestine, releasing 

the antigen loaded chitosan particles [139]. Other studies demonstrated that chitosan particles 

were also successful inducing an immune response after intradermal [144] or parenteral 

administration [145]. 

4.2.4. Gelatin particles 

Like chitosan, gelatin is a natural polymer. Two types of gelatin are commercially available, which 

are obtained by acidic or alkaline hydrolysis of collagen [146]. Due to its pharmaceutical use since 

decades, gelatin is considered as GRAS (generally regarded as safe) material by the FDA [147]. 

Although gelatin nanoparticles (GNPs) are studied for use in several pharmaceutical applications, 

they have been poorly studied for vaccination. Coester et al. showed the experimental uptake of 

GNPs loaded with fluorescent dextran into bone marrow derived dendritic cells (BMDCs) [148]. A 

comparison of tetanus toxoid loaded GNPs with traditional aluminum salts showed a slightly 

better performance of the GNPs after subcutaneous administration in mice [149]. In addition, 

cationized GNPs showed excellent uptake by dendritic cells and an enhanced immunostimulatory 

activity of the loaded CpG oligodeoxynucleotides [150]. The protein based structure of the gelatin 

is an additional feature, which could be used for the simultaneous delivery of an antigen and an 

immunostimulatory adjuvant. The release of the loaded antigen is mainly driven by the 
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degradation of the gelatin matrix by lysosomal enzymes [151]. However, the need of crosslinking 

with the potential risk of toxic crosslinking residues is one main disadvantage of the GNPs for their 

use in vaccination [152]. In addition, the influence of the crosslinker on the loaded antigen has to 

be considered carefully. 

4.2.5. Gold particles 

In addition to the several biodegradable particles, which are studied for their use as vaccine 

adjuvants, gold nanoparticles have also been evaluated with respect to their applicability as 

particulate delivery systems. Gold nanoparticles are easy to fabricate and shapeable into different 

systems like spheres or rods [153]. The solid structure of gold nanoparticles allows the adsorption 

of antigens on the particle surface as the only loading mechanism [154]. The surface, however, 

can be modified by a sugar coating, which allows further binding of probes or peptides and an 

interaction with other carbohydrates [155]. Gold nanoparticles have been used as a carrier for 

DNA vaccines [156], proteins [157] and peptides [158]. Especially DNA delivery is of high interest. 

The low potency of commonly studied DNA vaccines was obviously enhanced when using 

electroporation [159]. Electroporation is using an electrical field to increase the permeability of 

cells and therefore the uptake of foreign material into the cell. However, electroporation is not an 

option for human use, as the high voltage pulses will cause drastic cell mortality [160]. The use of 

gold nanoparticles without the assistance of electroporation, however, led to a relatively low 

transfection rate of DNA loaded gold nanoparticles [161]. Due to the non-biodegradable nature of 

the gold nanoparticles, the particles will remain for a relatively long time at the site of injection, 

which may result in an antigen depot showing sustained antigen release. The studies on gold 

nanoparticles revealed that both humoral and cellular immunity is induced following their 

administration [142]. 

4.3. Vaccine administration 

Vaccines are traditionally administered either via subcutaneous (s.c.) or intramuscular (i.m.) 

injection. With the exception of one influenza vaccine, the s.c. and i.m. injections are practiced 

using syringes and needles. This procedure has the drawbacks of requiring trained personnel, can 

lead to needle stick injuries followed by transmission of diseases or end up in the rejection of 

vaccination based on a fear of needles [162]. Some of these drawbacks are bypassed by the 

PharmaJet Stratis®. This jet injector device is approved by the FDA for a needle-free i.m. influenza 

vaccination [163]. However, the site of administration still did not change until the approval of 

FluMist® in 2003 [164]. FluMist® is an influenza vaccine administered intranasally. The intranasal 
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application has the big advantage of mimicking the natural pulmonary, nasal and oral pathway of 

many pathogens. Because of that, the body has a huge mucosal immune system [165]. Using the 

mucosal vaccination route can activate secretory immunoglobulin A (IgA) antibodies [166]. IgA can 

elicit a strong immune response, because the presentation to local lymph nodes is very effective, 

and was shown to be more cross-protective against different strains of a pathogen [167]. 

Furthermore, activated lymphocytes can migrate via local lymph nodes to the bloodstream and 

other mucosal tissues and elicit a strong immune response [168]. However, the nasal application 

has the drawback of just using a small mucosal area, eliciting a more local immunity and a high 

variation of response [169]. In contrast, the lung has a very large surface area for interaction with 

inhaled pathogens or vaccines [170]. In addition, various types of dendritic cells and macrophages 

are located in the lung parenchyma for efficient pathogen internalization and subsequent T cell 

presentation [171]. Because of that, pulmonary vaccination can activate both a humoral and 

cellular immune response [172]. Several studies have shown that pulmonary vaccination is safe 

and effective. For example, de Swart et al. compared an aerosol measles vaccination with a 

traditional parenteral injection in an in vivo monkey study [173]. The authors demonstrated, that 

the aerosol vaccination had no detrimental or toxic side effects and was as effective as the liquid 

injection. While de Swart et al. used no adjuvant for their study, particulate adjuvants can enhance 

the immune response. Copland et al. used free antigen, antigen in non-modified liposomes and 

antigen in mannosylated liposomes. The mannosylated liposomes in the size range of 260 nm 

activated T cells more efficiently than the non-modified liposomes or the free antigens [174]. 

However, the main safety concern is the efficiency of pulmonary vaccines on people with 

respiratory diseases and a potential exacerbation of the diseases after vaccination [175]. 

5. Objectives of the Thesis 

The overall aim of this thesis was to fabricate recombinant spider silk particles for a modern 

vaccination approach. The need for new vaccines is more relevant than ever. Traditional vaccine 

formulations reach their limits with regard to initiating an immune response towards a cell 

mediated immunity or activation for a therapeutic vaccination for indications such as allergy, 

cancer and chronic viral infections. 

First of all, the relevant prerequisites that should be met for studies in the field of vaccination and 

immunization had to be evaluated. Due to the recombinant production of the eADF4(C16) spider 

silk protein, a suitable purification process to remove endotoxins had to be established. These 

fragments of bacterial cell walls may negatively affect in vitro and in vivo studies, as they act as 
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strong immunostimulatory agents. Due to the very stable character of endotoxins, resisting 

extreme temperatures and pH values, removal of endotoxins from proteins is challenging. 

Therefore, a simple and scalable endotoxin purification process of the eADF4(C16) spider silk 

protein had to be established. 

Additionally, the pharmacopeias request sterility as an indispensable prerequisite for parenterally 

administered formulations [176]. On the basis of the extraordinary properties of the spider silk 

protein, an easy and simple method for the sterilization of final eADF4(C16) protein particles had 

to be found. 

Following the establishment of a suitable endotoxin depletion and sterilization procedure, two 

different possibilities to attach a model vaccine antigen to the spider silk particles were assessed: 

chemical linkage and inclusion of the antigen in the recombinant production process to result in 

spider silk hybrid particles.  

Chemical linkage of the antigen to the eADF4(C16) protein was evaluated, in order to have a 

benchmark to the current state-of-the-art method. Therefore, two different cleavable linkers were 

selected for the attachment of the model antigen. The influence of different linkers and 

preparation methods had to be evaluated with respect to coupling efficiency, particle size and 

particle surface charge. 

The main focus of the thesis was, however, the design of an eADF4(C16)-antigen hybrid protein, 

where the antigen is directly incorporated into the primary structure of the spider silk protein. 

This strategy may allow a preparation of antigen containing particulate delivery systems in a one-

step fabrication process. Different hybrid proteins with and without cleavable linkers were 

processed into spider silk submicroparticles. The properties the eADF4(C16)-antigen hybrid 

protein particles had to be studied in comparison to non-modified eADF4(C16) protein particles 

to detect possible alterations by the addition of the antigen. Parameters like particle size and 

surface charge, protein secondary structure, thermal behavior, cellular uptake and antigen release 

were selected for this comparison. 

The toxicity of both non-modified spider silk particles and spider silk hybrid particles was assessed 

in vitro using a MTT assay. The in vitro results were an essential milestone to show the low toxicity 

of the particles and enabled to move the system forward to in vivo studies. 

The final aim of this thesis was the preparation of eADF4(C16) protein particles for in vivo 

investigation to determine the vaccination efficiency of the newly designed eADF4(C16)-antigen 

protein particles following subcutaneous administration. 
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In addition to a traditional subcutaneous administration of the vaccine, the possibility to 

administer the eADF4(C16) protein particle also via lung deposition was shown using nebulization 

experiments. The possibility to use mucosal immunization via pulmonary delivery is a promising 

route for future vaccination, because it mimics the natural route of most infections. Two different 

nebulization techniques were selected for the ability to aerosolize differently sized eADF4(C16) 

protein particles. 

The introduction showed, that loading is a challenging task for most particulate delivery systems. 

Remote loading is a simple and cost effective method, but requires interaction between the 

delivery system and the target molecule. In case of the eADF4(C16) protein, surface charge is 

negative at neutral pH and loading is only possible with positively charged molecules. The 

characterization of a newly designed spider silk protein with an altered surface charge was finally 

the last objective of this thesis. The new spider silk protein was genetically modified and negatively 

charged amino acids were replaced by positively charged ones to result in a positive surface charge 

at neutral pH. The stability and suitability of the positively charged spider silk particles serving as 

potential drug delivery carrier for negatively charged protein drugs was addressed in the last 

chapter. 
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II. ENDOTOXIN DEPLETION OF EADF4(C16) PROTEIN AND PREPARATION 

OF PARTICLES WITH LOW ENDOTOXIN VALUES 

1. Introduction 

Within the new field of pharmaceutical biopolymers, spider silk proteins have gained more and 

more interest in the course of the last years. Several reviews describe the possible applications for 

spider silk materials, which can be coatings for medical devices, matrices for wound healing [1] or 

sustained drug delivery systems [2]. All these applications have in common, that they have to be 

administered parenterally. Spider silk proteins cannot be obtained from natural harvesting like silk 

fibroin from the silkworm [3] because spiders cannot be held in captivity in groups [4]. The 

commonly used spider silk protein variants are all produced recombinantly in cell culture, where 

a homogeneous batch to batch quality can be obtained [1, 5]. 

A challenge of a cell based manufacturing process is the protein purification step. As recombinant 

spider silk proteins are often produced in gram-negative bacteria, it is important to analyze protein 

batches for the presence of bacterial endotoxins. Endotoxins, also called lipopolysaccharides (LPS), 

are fragments of the outer cell membrane of gram-negative bacteria. These lipopolysaccharides 

consist of a non-polar lipid component (lipid A), a core oligosaccharide and a surface antigen (O-

antigen) [6]. This structure results in a molecular weight of 10-20 kDa for the monomer [7]. 

Endotoxins are highly heat stable requiring a minimum of 100-180°C for deactivation [7, 8]. The 

phosphate groups of the lipid A component lead to a negative surface charge of the endotoxins 

while the hydrophobic part leads to binding to hydrophobic materials [6]. If endotoxins are 

administered to a patient or animal, they can lead to fever, septic shock and disseminated 

intravascular coagulation [9]. Due to the risks arising from endotoxins administered to humans, 

both the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA) 

demand the analysis of endotoxins in their guidelines for parenteral drugs. The commonly used 

endotoxin analysis method is based on the coagulation of the lysate of the horseshoe crab, which 

is called limulus amebocyte lysate test (LAL test). This analysis method replaced the formerly used 

rabbit pyrogen assay, because the LAL test is a more specific and a highly sensitive method for the 

detection of bacterial endotoxins from gram-negative bacteria [10]. However, the detection and 

removal of endotoxins, especially from biopharmaceutical samples, is still challenging [6]. Even if 

FDA approved reagents are used, the type of glass- or plastic material used in laboratories can 
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affect the detection of endotoxins [11]. For example, frequently used polypropylene tubes may 

bind a seriously large amount of endotoxins [12]. Furthermore, the removal of endotoxins is a 

challenging task itself. A variety of different methods have been evaluated for a successful 

endotoxin deactivation, which include ultrafiltration, affinity chromatography, adsorption, 

hydrolysis and the application of heat [13]. However, some of the methods are not applicable to 

protein based pharmaceuticals. The application of heat or use of acidic or basic hydrolysis would 

lead to a damage of the protein [14]. Furthermore, every technique has defined limits for 

operation. Ultrafiltration, for example, is only suitable for very small proteins, whereas anionic-

exchange chromatography is not feasible for negatively charged proteins [15]. Additionally, every 

protein has unique characteristics making it necessary to investigate a suitable endotoxin removal 

process.  

Hedhammar et al. already examined a possible route for endotoxin depletion of a recombinantly 

produced spider silk protein [16]. However, this process requires implicitly the need for a special 

cell wash procedure during protein purification. The preparation process for the eADF4(C16) 

spider silk protein used here was already defined, making it impossible to change the overall 

protein fabrication process. For this reason, we focused on methods that are applicable to the 

final spider silk protein after the recombinant production in E. coli. The endotoxin depletion 

methods were evaluated with regards to their possible influence on the spider silk protein particle 

forming behavior, secondary structure and thermal stability. To assess the endotoxin level of the 

investigated eADF4(C16) protein, we used a FDA approved chromogenic LAL test and analyzed 

cells after incubation with a traditional 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazoliumbromide (MTT) assay in order to estimate the influence of the endotoxin level 

on living cells. 
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2. Materials and methods 

2.1. Materials 

2.1.1. Recombinantly produced spider silk protein eADF4(C16) 

The spray dried eADF4(C16) protein was provided by AMSilk GmbH (Martinsried, Germany). This 

bioengineered spider silk protein is based on the natural amino acid sequence of the ADF4 spidroin 

from A. diadematus. The design resulted in a molecular mass of 47.7 kDa, which is a result of one 

T7 Tag and sixteen repeats of the amino acid sequence 

GSSAAAAAAAASGPGGYGPENQGPSGPGGYGPGGP. The theoretical isoelectric point of the 

eADF4(C16) protein is 3.48, resulting in a net negative charge at a physiological pH of 7.4. 

2.1.2. Chemicals and reagents 

Highly purified water (HPW) used in this study was generated using a purelab® device (ELGA 

LabWater, Celle, Germany). Sodium hydroxide solution (1 mol/L, EMPROVE® bio), di-potassium 

hydrogen phosphate (EMPROVE bio, European Pharmacopoeia (Ph. Eur.), British Pharmacopoeia 

(BP)), potassium dihydrogen phosphate (EMPROVE bio, Ph. Eur., BP, United States National 

Formulary (NF)) and fuming hydrochloric acid 37% (EMPROVE bio, Ph. Eur, BP, Japanese 

Pharmacopoeia (JP)) were purchased from Merck KGaA, Darmstadt, Germany. Ethanol 96% (v/v) 

and sodium chloride (NaCl, AnalaR NORMAPUR) were obtained from VWR Chemicals, Darmstadt, 

Germany. Tris(hydroxymethyl)aminomethane (Tris, Trizma® base, purity ≥99.9%) was purchased 

from Sigma Aldrich GmbH, Steinheim, Germany. Guanidinium thiocyanate (for molecular biology) 

was purchased from AppliChem GmbH, Darmstadt, Germany. Luer Lock syringes (HSW NORM-

JECT® 10ml) were purchased from Henke-Sass Wolf GmbH, Tuttlingen, Germany. Needles 

(Sterican® 20G, 40 mm length) were obtained from B. Braun Melsungen, Melsungen, Germany. 

The Endotoxin cartridges (Endosafe-PTS® Cartridges PTS20005F, Sensitivity 0.005 EU/ml) were 

purchased from Charles River, Lyon, France. 

2.2. Methods 

2.2.1. Endotoxin removal from eADF4(C16) protein 

Endotoxin removal from eADF4(C16) protein was performed by three different approaches. The 

first approach was filtration by syringe filters appropriate to remove endotoxins from protein 

solutions. In this case, the eADF4(C16) protein was dissolved for endotoxin removal. The second 
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approach used dry and moist heat for endotoxin destruction. For that purpose, dry heat at 180°C 

and steam at 121°C were chosen. In the third approach, strong alkali was used. Therefore, the 

eADF4(C16) protein was suspended in a 1 M sodium hydroxide (NaOH) solution to destroy 

endotoxins. For the two latter approaches, the eADF4(C16) protein was used as powder. The 

dissolution and analysis was performed afterwards with endotoxin free lab equipment and 

endotoxin free solutions. 

2.2.1.1. Endotoxin removal by filtration 

Filtration is a well-established method for sterilization of liquids. Major benefits of filtration are 

the ease of handling and the possibility to perform filtration at any step of a process. Therefore, 

filtration was used as one of the methods for endotoxin removal. We selected four filters for the 

endotoxin filtration approach which have not been used for the endotoxin removal from 

eADF4(C16) proteins before. The filtration step was performed right before particle preparation. 

Previous tests with the eADF4(C16) protein already used immobilized metal ion affinity 

chromatography and EndoTrap® affinity chromatography (Hyglos GmbH, Bernried am Starnberger 

See, Germany) for endotoxin removal. In this study, a Sartobind Q IEX pico (Sartorius Stedim 

Biotech GmbH, Goettingen, Germany), a Millex®-FG 0.2 µm (Merck Millipore, Darmstadt, 

Germany), an Acrodisc® Unit with Mustang® E Membrane and an Acrodisc® Unit with Mustang® 

Q XT capsule (Pall GmbH, Dreieich, Germany) were tested for their endotoxin removal capacity of 

eADF4(C16) protein. 

The eADF4(C16) spray dried protein powder was dissolved in a 6 M guanidinium thiocyanate 

solution and dialyzed against a 10 mM TRIS/HCl solution pH 8.0 for 24 hours. After dialysis, the 

eADF4(C16) protein solution was filtered with a 0.2 µm cellulose acetate filter (VWR International, 

Radnor, USA) and adjusted to a concentration of 2 mg/ml with 10 mM TRIS/HCl buffer pH 8.0. This 

solution was used for the filtration experiments. A volume of 5 ml was filled into syringes (HSW 

NORM-JECT® 10ml Luer Lock, Henke-Sass Wolf GmbH, Tuttlingen, Germany) and connected to the 

respective syringe filters. The syringes were placed in a self-constructed perfusor (University of 

Munich, Munich, Germany) to ensure a uniform filtration speed. 

Each filter needed special pre-treatment prior to filtration. 

The Sartobind Q IEX pico was first flushed with 1 M NaOH at a flowrate of 0.5 ml/min for 

40 minutes followed by 20 ml highly purified water (HPW) and 10 ml of a 10 mM TRIS/HCl buffer 

pH 8 at flowrates of 2.0 ml/min. Finally, the filter was flushed with additional 5 ml of the 10 mM 

TRIS/HCl buffer pH 8 from the outlet to the inlet. 
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The Millex®-FG 0.2 µm was wetted with 10 ml ethanol at a flowrate of 1.0 ml/min followed by 5 ml 

HPW and 10 ml of the 10 mM TRIS/HCl buffer pH 8 at flowrates of 2.0 ml/min. 

The Acrodisc® Unit with Mustang® E Membrane was flushed with 10 ml of the 10 mM TRIS/HCl 

buffer pH 8 at a flowrate of 2.0 ml/min. 

The Acrodisc® Unit with Mustang® Q XT capsule was preconditioned with 5 ml of a 1 M NaOH 

followed by 5 ml of a 1 M sodium chloride (NaCl) solution at flowrates of 1.0 ml/min. Finally, the 

filter was flushed with 10 ml of the 10 mM TRIS/HCl buffer pH 8 at a flowrate of 2 ml/min. 

After completion of the filter pre-treatment, the eADF4(C16) solution was pumped at a flowrate 

of 2 ml/min through the filters. The first 500 µl of each batch were discarded to avoid dilution 

effects from residual buffer in the filters. Then, 2 ml of the filtered solutions were collected and 

analyzed. The protein recovery was calculated by determining the protein concentration after 

filtration photometrically at 276 nm (Agilent 8453 UV-Vis spectrophotometer, Agilent, 

Waldbronn, Germany). Endotoxin concentration was determined using a limulus amoebocyte 

lysate (LAL) chromogenic endpoint assay (Endosafe®-PTS™, Charles River, Lyon, France) after a 

100-fold dilution with HPW (except for the solution prior to filtration). A dilution of 1:1,000,000 

with HPW for endotoxin analysis was necessary for the unfiltered eADF4(C16) solution prior to 

filtration. 

2.2.1.2. Endotoxin removal by heat 

As a further approach, endotoxin removal by heat was tested. Here, the eADF4(C16) protein was 

used as powder. The dry heat approach used the lowest known temperature for endotoxin 

destruction at 180°C for 3 hours [17]. About 150 mg of the eADF4(C16) protein were weighed into 

glass vials (DIN 10R) and the vials were closed with aluminum foil. The closed glass vials were 

placed into an oven (Binder FED 53, Binder GmbH, Tuttlingen, Germany), which was programmed 

to heat up to 180°C and keep this temperature constant for 3 hours. After cooling down, a 6 M 

guanidinium thiocyanate solution was added for protein dissolution. 

The second heat approach used moist heat by steam sterilization. About 150 mg of the 

eADF4(C16) protein was weighed into glass vials (DIN 10R) and was suspended with 7.5 ml HPW. 

The vials were closed with rubber stoppers and crimped with aluminum caps. Steam sterilization 

was performed for 15 minutes at 121°C in a GTA 50 autoclave (Fritz Gössner, Hamburg, Germany). 

After cooling down, the eADF4(C16) suspension was centrifuged at 10,000 rpm (SIGMA 4K15, 

Sigma Laborzentrifugen, Osterode am Harz, Germany) for 30 minutes and the supernatant was 

discarded. The centrifuged eADF4(C16) protein was dissolved in a 6 M guanidinium thiocyanate 
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solution. 

The eADF4(C16) protein solutions were subsequently dialyzed against an endotoxin free 10 mM 

TRIS/HCl solution pH 8.0 for 24 hours. After dialysis, the eADF4(C16) protein solutions were 

centrifuged at 14,000 rpm (SIGMA 4K15, Sigma Laborzentrifugen, Osterode am Harz, Germany) 

for 30 minutes to remove precipitated protein. The protein concentration was determined 

photometrically at 276 nm (Agilent 8453 UV-Vis spectrophotometer, Agilent, Waldbronn, 

Germany). The protein concentration was adjusted to 2 mg/ml with an endotoxin free 10 mM 

TRIS/HCl solution pH 8.0. The endotoxin values were tested using the Endosafe®-PTS reader. The 

dry heat solution was diluted 2,500-fold with HPW, whereas the autoclaved solution was diluted 

1:20,000 with HPW. 

2.2.1.3. Endotoxin removal by alkali 

As a further approach, incubation of eADF4(C16) protein in a 1 M sodium hydroxide (NaOH) 

solution was investigated. About 150 mg of the eADF4(C16) protein was weighed into glass vials 

(DIN 10R). After adding a volume of 7.5 ml of the 1 M NaOH solution to the eADF4(C16) protein, 

the vials were closed with rubber stoppers and crimped with aluminum caps. After incubation for 

2 hours, the eADF4(C16) protein was fully dissolved in the 1 M NaOH solution. Therefore, this 

solution was directly dialyzed against an endotoxin free 10 mM TRIS/HCl solution pH 8.0 for 

24 hours without the intermediate step of adding a 6 M guanidinium thiocyanate solution for 

protein dissolution. After dialysis, the eADF4(C16) protein solution was centrifuged at 14,000 rpm 

(SIGMA 4K15, Sigma Laborzentrifugen, Osterode am Harz, Germany) for 30 minutes to remove 

precipitated protein. The protein concentration was determined photometrically at 276 nm 

(Agilent 8453 UV-Vis spectrophotometer, Agilent, Waldbronn, Germany). The protein 

concentration was adjusted to 2 mg/ml with an endotoxin free 10 mM TRIS/HCl solution pH 8.0. 

The endotoxin value was tested using the Endosafe®-PTS reader after dilution 1:2,000 with HPW. 

2.2.1.4. Endotoxin removal by combination of filtration and autoclave treatment 

A combination of two endotoxin depleting methods was also evaluated. To do so, we combined 

autoclave treatment and subsequent filtration to a two-step endotoxin depletion process. In a first 

step, about 150 mg of the eADF4(C16) protein were weighed into glass vials (DIN 10R). The 

eADF4(C16) protein was subsequently suspended with 7.5 ml HPW. The vials were closed with 

rubber stoppers and crimped with aluminum caps. Steam sterilization was performed for 

15 minutes at 121°C in a GTA 50 autoclave (Fritz Gössner, Hamburg, Germany). After cooling 

down, the eADF4(C16) suspension was centrifuged at 10,000 rpm (SIGMA 4K15, Sigma 
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Laborzentrifugen, Osterode am Harz, Germany) for 30 minutes and the supernatant was 

discarded. The centrifuged eADF4(C16) protein was dissolved in a 6 M guanidinium thiocyanate 

solution and dialyzed against an endotoxin free 10 mM TRIS/HCl solution pH 8.0 for 24 hours. After 

dialysis, the eADF4(C16) protein solution was filtered through a 0.2 µm polyethersulfone (PES) 

filter (VWR International, Radnor, USA) and adjusted to a concentration of 2 mg/ml with an 

endotoxin free 10 mM TRIS/HCl buffer pH 8.0. In a second step, the Acrodisc® Unit with Mustang® 

E Membrane was pre-flushed with 10 ml of endotoxin free 10 mM TRIS/HCl buffer pH 8. 

Subsequently, the eADF4(C16) solution was filtered with the prepared Mustang® E filter. About 

500 µl of each batch were discarded at the beginning. The protein concentration of the filtered 

eADF4(C16) solution was calculated photometrically at 276 nm (Agilent 8453 UV-Vis 

spectrophotometer, Agilent, Waldbronn, Germany). The endotoxin values were tested using the 

Endosafe®-PTS reader after dilution 1:20 or 1:40 with HPW. 

2.2.2. Particle preparation after endotoxin removal 

After endotoxin removal, the eADF4(C16) protein solutions were adjusted to 1 mg/ml with 

endotoxin free 10 mM TRIS/HCl buffer pH 8.0 for particle preparation. Particle preparation was 

carried out by micromixing using a high pressure syringe pump system. The syringe pump cylinders 

were depyrogenized by 70% (v/v) ethanol over 48 hours. Subsequently, the cylinders were washed 

three times with HPW to remove any organic solvent. After depyrogenation, both cylinders of the 

syringe pump system (Model 100 DX and Series D pump controller, Teledyne Isco, Lincoln, USA) 

were filled with pre-tempered eADF4(C16) solution and pre-tempered endotoxin free 2 M 

potassium phosphate buffer pH 8.0 of 60°C. The solutions were pumped at a high flow rate of 

50 ml/min to a T-shape mixing element (inner diameter 0.5 mm, P-727 PEEK tee, Upchurch 

Scientific, Oak Harbor, USA) leading to an outlet tubing (inner diameter 0.5 mm, 1532 PEEK Tubing, 

Upchurch Scientific, Oak Harbor, USA) for suspension collection. The eADF4(C16) particle 

suspensions were subsequently centrifuged at 14,000 rpm (SIGMA 4K15, Sigma Laborzentrifugen, 

Osterode am Harz, Germany) and washed with HPW three times. A two minute ultrasonication 

(Sonopuls HD 3200, Bandelin electronic, Berlin, Germany) step completed the particle preparation 

procedure. The particle concentrations in mg/ml were determined gravimetrically after drying the 

particles under vacuum (13 mbar) overnight. 

2.2.3. Endotoxin adsorption to polypropylene labware 

To assess the reported adsorption of endotoxins to polypropylene, we evaluated the used lab 

tubes (15 ml tube, Sarstedt AG & Co., Nümbrecht, Germany) with control endotoxin. Control 
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endotoxin (E. coli 055:B5, Charles River, Lyon, France) was dissolved in HPW and diluted to an 

endotoxin value below 100 EU/ml. Volumes of 2 ml were filled into the lab tubes and the solutions 

were subsequently incubated for 8 hours at room temperature. The solutions were analyzed at 

t=0 hours, t=4 hours and t=8 hours with the Endosafe®-PTS reader. 

2.3. Analytical methods 

2.3.1. Endotoxin testing 

The endotoxin values of eADF4(C16) protein solutions, particles and all other used salt solutions 

were determined using the Endosafe®-PTS reader (Charles River, Lyon, France). The Endosafe®-

PTS reader is capable of using Endosafe®-PTS cartridges for endotoxin measurement. In our 

studies, we used cartridges which used the chromogenic endpoint assay based on the limulus 

amoebocyte lysate (LAL) test. The assay is based on the reaction of bacterial endotoxins which 

initiate a cascading series of serine proteases in the LAL from the American Horseshoe Crabs. In 

case of the chromogenic endpoint assay, a modified substrate undergoes cleavage of p-

nitroaniline (the chromophore) in presence of bacterial endotoxins. The p-nitroaniline can be 

photometrically measured at 395 nm by the Endosafe®-PTS reader. The here used FDA-licensed 

cartridges had sensitivities of 0.005 - 0.5 EU/ml and four channels for endotoxin testing. Two of 

the four channels were defined for sample testing whereas the other two channels contained a 

defined control endotoxin spike and served as positive controls for the assay. Each sample was 

diluted with HPW (tested endotoxin value <0.005 EU/ml) 20 to 200-fold before measurement. 

Only glassware (depyrogenation at 220°C for 1 hour [18]) was used for the dilution and storage of 

samples intended for endotoxin analysis. The exact dilution is given in the respective section. A 

volume of 25 µl of the samples was pipetted to the four channels and the test was started. Within 

20 minutes, the endotoxin values were displayed by the Endosafe®-PTS reader. Within 

20 minutes, the endotoxin values were read from the Endosafe®-PTS reader. 

2.3.2. Dynamic light scattering (DLS) 

Particle size and size distribution of submicroparticles were measured in triplicate by dynamic light 

scattering (DLS) using a Zetasizer Nano ZS (Malvern Instruments, Worcestershire, UK). Particle size 

is given as the Z-average value, and the particle size distribution is displayed by the polydispersity 

index (PDI). Directly before each measurement, samples were diluted to a final concentration of 

0.01 mg/ml with HPW. All measurements were conducted at 25°C. 
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2.3.3. Zeta potential 

The zeta potential of eADF(C16) particles was measured using a disposable capillary cell (DTS1061, 

Malvern Instruments, Worcestershire, United Kingdom) in a Zetasizer Nano ZS (Malvern 

Instruments, Worcestershire, United Kingdom). The eADF4(C16) particle samples were diluted 

with a freshly prepared 20 mM NaCl solution to a final NaCl concentration of 19 mM. The NaCl 

solution was filtered with a 0.2 µm PES membrane filter (VWR International, Radnor, USA) before 

used. The final eADF4(C16) particle concentration after dilution with NaCl solution was 

0.05 mg/ml. All measurements were conducted in triplicate at 25°C. 

2.3.4. Scanning electron microscopy (SEM) 

Small droplets of eADF4(C16) particle suspensions were placed onto Thermanox® plastic cover 

slips (Nunc, Rochester, USA), which adhered to Leit-Tabs (Plano GmbH, Wetzlar, Germany). A 

conductive copper band (Plano GmbH, Wetzlar, Germany) connected the plastic cover slips with 

the sample holder. The eADF4(C16) particle suspensions were dried and carbon sputtered under 

vacuum at room temperature. Analysis was performed using a Joel JSM-6500F field emission 

scanning electron microscope (Joel Inc., Peabody, USA). 

2.3.5. Differential Scanning Calorimetry (DSC) 

DSC measurements were performed after drying eADF4(C16) suspensions under vacuum and 

transferring the samples (3-5 mg) to aluminum pans. The sealed pans were perforated with a hole 

in the lid and measured under constant nitrogen gas flow on a Netzsch DSC 204 (Netzsch 

Gerätebau, Selb, Germany) using a scanning rate of 10°C/min. The samples were heated to 110°C 

to remove residual water from the samples. After a 10 minute equilibration step, samples were 

cooled down to -40°C and the actual measurement was started by heating up to 400°C [19]. 

2.3.6. Protein secondary structure 

Protein secondary structures of submicroparticles produced from untreated (control) and 

differently endotoxin depleted eADF4(C16) proteins were determined by Fourier transform 

infrared spectroscopy (FTIR) using a Bruker Tensor 27 FTIR spectrometer (Billerica, USA). Particle 

suspensions (c=20 mg/ml) were analyzed by adding 20 µl into a BioATRCell II (Harrick Scientific, 

Pleasantville, USA). The measurement temperature was controlled at 25°C using a water bath. 

Each spectrum comprises the average of 120 scans at the resolution of 4 cm−1. All measurements 

were performed in triplicate in the range of 850 and 4000 cm-1. 
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2.3.7. In vitro cytotoxicity assay 

Cytotoxicity of eADF4(C16) submicroparticles was assessed via the cell viability of human dermal 

fibroblasts. Submicroparticles produced from endotoxin depleted eADF4(C16) protein 

(combination of steam sterilization and endotoxin filtration) were compared to submicroparticles 

produced from untreated eADF4(C16) protein using the 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazoliumbromide (MTT) assay [20]. Briefly, fibroblasts were seeded at 3.5×104 

cells/well in a 24-well plate in Dulbecco's Modified Eagles Medium containing 10% (v/v) heat-

inactivated fetal bovine serum, penicillin 100 I.U./ml and streptomycin 100 µg/ml (DMEM growth 

medium) as described previously [21]. After 24 hour incubation (37°C, 5% CO2), medium was 

changed to Dulbecco's Modified Eagles Medium without fetal bovine serum (DMEM basal 

medium). The eADF4(C16) particle suspensions were centrifuged and the supernatant discarded. 

The eADF4(C16) particles were diluted in DMEM basal medium. According to a pipetting scheme, 

differently concentrated eADF4(C16) particle suspensions were added to the wells (final volume 

= 500 µl). As a positive control, DMEM basal medium was added. A 10% Triton-X in DMEM basal 

medium solution was used as a negative control. After addition of eADF4(C16) submicroparticles, 

the cells were further incubated for 72 hours (37°C, 5% CO2). Then, 40 μl of a 5 mg/ml MTT 

solution was added to each well under exclusion of light. After 4 hour incubation, the medium was 

removed carefully and the precipitated blue formazan product was extracted in 250 µl DMSO and 

centrifuged at 14,000 rpm for 30 minutes to avoid light scattering effects from the eADF4(C16) 

particles. 150 µl of the supernatant was transferred to a 96-well plate and the absorbance was 

measured at λ = 540 nm using a 96-well micro plate reader (FLUOstar Omega, BMG Labtech, 

Ortenberg, Germany). The assay was performed three times with human dermal fibroblasts from 

three different donors. Within one approach, the controls were conducted in triplicate, while each 

of the differently concentrated eADF4(C16) particle suspensions were incubated in duplicate. 

2.3.8. Statistical analysis 

One-way analysis of variance (ANOVA) was used to analyze statistical differences between the 

negative control and tested samples in the cytotoxicity experiment. In case of significance, post 

hoc pair wise tests were performed using Tukey multiple comparison procedures with SigmaPlot 

12.5 software (Systat Software, San Jose, USA). Differences were considered significant with p 

values < 0.05. 
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3. Results and Discussion 

The first objective of this study was the evaluation of endotoxin binding to the plastic tubes used 

in the lab routine. Relevant remarks about endotoxin adsorption to different kinds of plastics have 

already been published in 1986 [12]. In order to prevent false negative endotoxin results by 

endotoxin binding to the plastic labware, we evaluated the polypropylene tubes used in the lab if 

they are suitable for endotoxin measurements. Control endotoxin was diluted into endotoxin free 

highly purified water (HPW) to a final concentration of 56.7 EU/mL as determined by the limulus 

amebocyte lysate (LAL) test. This endotoxin solution was filled in polypropylene tubes and 

analyzed after 4 hours and 8 hours. The analysis after 4 hours exhibited a drop in the endotoxin 

concentration to 48.9 EU/mL, which further decreased to 46.4 EU/mL after incubation for 8 hours 

(Figure II-1)  

 

Figure II-1: Measured endotoxin values of HPW spiked with control endotoxin stored in polypropylene 
tubes over a time period of 8 hours. 

Although the total decrease of the endotoxin value is not as dramatic as in studies reported before 

[12], we observed a relevant loss of endotoxin of more than 5 EU/mL within the first 4 hours. As 

we expected endotoxin values below 1 EU/mL in our studies, we decided to avoid any 

polypropylene tubes for storage of our products or dilution for endotoxin testing. Instead of using 

plastic tubes, we favored glassware for sample handling, which can be depyrogenized by dry heat 

before [18]. 

The second objective was endotoxin depletion of the eADF4(C16) protein. As some methods have 

already been tested for endotoxin removal from eADF4(C16) protein like immobilized metal ion 

affinity chromatography and EndoTrap® affinity chromatography from Hyglos, we searched for 

alternative methods and selected different approaches. In total, three different methods for 
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endotoxin removal were chosen which included filtration, heat treatment and alkali treatment. 

For the filtration approach of eADF4(C16) protein in solution, we selected endotoxin filters from 

different manufacturers. As endotoxins are hydrophobic molecules [17], they adsorb well to the 

hydrophobic eADF4(C16) protein [22]. This is of course a great challenge for endotoxin filtration, 

as a high protein recovery after filtration is necessary for further eADF4(C16) particle processing. 

In total, we selected four different filters from three different companies, which were a Sartorius 

Sartobind Q IEX pico, a Millex®-FG 0.2 µm from Millipore, a Pall Acrodisc® Unit with Mustang® E 

Membrane and a Pall Acrodisc® Unit with Mustang® Q XT. After standardized filtration of 2 ml 

eADF4(C16) protein solution, endotoxin values of the filtrate and the protein recovery were 

measured (see Table II-1). 

Table II-1: Properties of the native eADF4(C16) protein and of the filters used for endootxin removal from 
the eADF4(C16) solution. 

 

Native 

eADF4(C16) 

protein 

PALL 

Acrodisc 

Unit with 

Mustang E 

Membrane 

PALL XT 

Acrodisc 

Unit with 

Mustang Q 

Membrane 

Millipore 

MILLEX-FG 

0,2 µm Filter 

Unit 

Sartorius 

Sartobind Q 

IEX pico 

Endotoxin value of 

eADF4(C16) solution 

[EU/mg] 

47,505 <0.529 <0.500 >50 1.421 

Protein recovery of 

filtered eADF4(C16) 

solution 

- 60% <1 % 88% 25% 

Principles of 

endotoxin removal 
- 

Hydrophobic 

and 

electrostatic 

interactions 

electrostatic 

interactions 

(ion 

exchange) 

Hydrophobic 

interactions 

Electrostatic 

interactions 

Maximum amount of 

endotoxin depletion 
- 

500,000 

EU/unit 

no 

information 

provided 

no 

information 

provided 

1,200,000 

EU/unit 

 

We chose a small volume of just 2 ml filtration solution in order to avoid endotoxin overload of 

the tested filters. As shown in Table II-1, the initial eADF4(C16) solution had an endotoxin level of 

47,505 EU/mg protein. Three of the tested filters were able to effectively reduce the final 

endotoxin concentration to less than 50 EU/mg protein. The Millex-FG filter was incapable of 
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removing endotoxins from an eADF4(C16) 

protein solution. On the other hand, two of the 

three effective endotoxin filters also removed 

a large amount of the eADF4(C16) protein 

from the solution. The protein recovery, 

measured by UV-Vis spectrometry, was even 

below 1% after filtration with a Pall Acrodisc® 

Unit with Mustang® Q XT. Slightly better 

results were obtained for a Sartobind Q IEX 

pico filter with 25% protein recovery, which is 

still not acceptable for routine filtration. The 

Acrodisc® Unit with Mustang® E Membrane was 

able to lower the endotoxin level of the 

eADF4(C16) protein solution below 0.529 EU/mg protein and 60% of the filtered protein were 

recovered. This was a good starting point for optimization of the endotoxin removal process for 

the eADF4(CF16) protein. The endotoxin filter is a good way to guarantee an eADF4(C16) solution 

with a very low endotoxin level for particle preparation, because the endotoxin filtration can be 

performed right before the particle fabrication process. However, the maximum endotoxin 

removal capacity per filter is limited (e.g. 500,000 EU/unit for the Acrodisc® Unit with Mustang® E 

Membrane and 1,200,00 EU/unit for the Sartobind IEX pico). Taking the endotoxin level of 

47,505 EU/mg eADF4(C16) protein as a basis, only 10 mg (Acrodisc® Unit with Mustang® E 

Membrane) or 25 mg (Sartobind IEX pico) of the untreated eADF4(C16) protein can be processed 

with one of the filter units. Therefore, endotoxin removal by heat and alkali treatment was further 

tested for the eADF4(C16) protein. For the evaluation of the heat treatment, two different 

methods were tested. The first one was the already published endotoxin removal procedure by 

dry heat at 180°C for three hours [15]. The eADF4(C16) powder was heated in a dry state prior to 

further processing into particles (optical evaluation shown in Figure II-2 A). For the second 

method, we used steam sterilization in a wet state. Usually, this method is not applicable for 

endotoxin inactivation [17], but was also tested for the eADF4(C16) protein in this study. The 

eADF4(C16) protein powder was suspended in HPW and placed in an autoclave for treatment at 

121°C for 15 minutes. After treatment, the eADF4(C16) suspension was inspected visually (Figure 

II-2 B). 

 

Figure II-2: Optical evaluation of thermally 
treated eADF4(C16) protein powder. 
A) eADF4(C16) powder after dry heat treatment 
at 180°C. 
B) Suspended eADF4(C16) powder in HPW after 
autoclave treatment at 121°C. 
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During optical evaluation, a color change of the initial white eADF4(C16) powder to a yellow 

brownish powder was observed after heating to 180°C (Figure II-2 A). This was a strong hint that 

heating the protein to 180°C is changing the eADF4(C16) protein irreversibly. On the other hand, 

the autoclaved eADF4(C16) suspension did not change optically before and after autoclave 

treatment (Figure II-2 B). As last option for endotoxin depletion, treatment by alkali was described 

in literature [15, 17] and was examined for endotoxin removal of the eADF4(C16) protein. The 

minimum effective concentration was reported at 0.1 M [15]. In order to have some safety margin 

during the alkali treatment, we chose to use a 1 M sodium hydroxide (NaOH) solution for 

depyrogenation. The eADF4(C16) powder was suspended in the NaOH solution and incubated for 

2 hours. 

NaOH has not been described as dissolution medium of eADF4(C16) protein [23], so we did not 

expect the powder to dissolve. Surprisingly, the eADF4(C16) powder completely dissolved in the 

NaOH solution after incubation and did not need further processing for solubilization. The two 

heat treated eADF4(C16) powders were mixed with a 6 M guanidinium thiocyanate solution as 

done routinely for eADF4(C16) dissolution [24, 25]. At this point, the eADF4(C16) powder treated 

by dry heat did not dissolve as expected. As shown in Figure II-3 B, the protein is dispersed in the 

guanidinium thiocyanate solution resulting in a yellow to brown colored suspension. 

 

Figure II-3: Optical evaluation of eADF4(C16) solutions after dissolution. 
A) eADF4(C16) protein powder after autoclave treatment and dissolution in 6 M GdmSCN. 
B) eADF4(C16) protein after dry heat treatment and dispersion in 6 M GdmSCN. 
C) eADF4(C16) protein after alkali treatment using 1 M NaOH. The protein dissolved during the treatment 
time of 2 hours in 1 M NaOH. 
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The color change of the powder after heating and the fact that the protein did not dissolve by the 

standard procedure caused the exclusion of the dry heat treatment for further analysis. The 

dissolved eADF4(C16) material of the autoclave and the NaOH treatment were dialyzed against a 

10 mM Tris solution (Figure II-3 A and C) and then analyzed for their endotoxin content. Both 

methods reduced the endotoxin load of the native eADF4(C16) protein, surprisingly the autoclave 

treatment more effectively to values of 0.293 - 1.03 EU/mg protein (Table II-2). 

Table II-2: Measured endotoxin values of eADF4(C16) solutions after treatment by different endotoxin 
depletion methods and subsequent processing by the standard method for the native eADF4(C16) 
protein. Alkali Treatment was performed using 1 M NaOH for 2 hours. Autoclave treatment was 
performed using 121°C for 15 minutes. Filtration was performed using the PALL Acrodisc Unit with 
Mustang E Membrane. The autoclave treatment and filtration approach were combined to evaluate an 
additive effect of both methods (Combined). Untreated eADF4(C16) protein with an endotoxin level of 
47,505 EU/mg protein was used. Data is showing the range of two independent experiments. 
 

 Alkali Autoclave Filtration Combined 

Endotoxin 

value [EU/mg] 
4,741 - 6,977 0.293 - 1.03 <0.265 - 0.492 <0.1 - 0.506 

 

The vast endotoxin depletion by the autoclave method was surprising, especially because other 

protein polymers do not withstand a steam sterilization treatment [26]. In addition, previous 

studies [17, 27] did not advise autoclaving for depyrogenation. As a result of this fact, we analyzed 

the supernatant of the autoclaved samples, but were not able to detect high concentrations of 

endotoxin (values below 12.5 EU/ml). Therefore, we excluded our first theory of simple desorption 

of the endotoxins from the eADF4(C16) protein by autoclaving. In contrast to the common opinion 

that autoclaving is not able to inactivate endotoxins, some publications report about successful 

endotoxin depletion by steam sterilization [13, 28]. Tim Sandle summarized general 

depyrogenation methods in his review from 2011 [13]. Although he stated that autoclaving is not 

the method of choice, he refers to reports of successful depyrogenation by prolonged steam 

sterilization or steam sterilization at lower pH. Autoclaving as a method for depyrogenation has 

also been reported by da Silva et al [28]. The authors investigated dry and moist heat (autoclaving) 

for endotoxin inactivation on surgical equipment. After intended endotoxin contamination of the 

endodontic files, both methods were equally effective for endotoxin removal. 
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Figure II-4: eADF4(C16) particle properties. A) Particle size given as the Z-average value and the PDI of 
untreated and endotoxin depleted eADF4(C16) protein particles, treated with different endotoxin 
depletion methods. B) Zeta potential of untreated and endotoxin depleted eADF4(C16) protein particles. 

Our own results and the reported cases of effective endotoxin depletion by steam sterilization 

encouraged us to further investigate autoclaving as a method for the endotoxin removal from 

eADF4(C16) protein. The autoclaving of the eADF4(C16) protein powder as first step followed by 

filtration by the Acrodisc Unit with Mustang E Membrane was chosen as endotoxin removal 

procedure. Each step as well as the combination of both steps was analyzed with respect to 

endotoxin value, particle size, protein secondary structure and thermal stability. 

As displayed in Table II-2, the combination of both endotoxin depletion methods was as effective 

as the filtration method in removing endotoxins. The advantage of the combined method over the 

filtration only approach is the fact, that autoclave treatment as first step of the combined method 

already reduces the endotoxin load to low levels. Due to the endotoxin load reduction, the 

maximum endotoxin removal capacity of the filters is no longer of importance and filtration can 

be used as second step in the combined method. The combined method guaranteed the lowest 

possible endotoxin level, because the autoclave process was up-scaleable for larger batches and 

the remaining level was further reduced by the endotoxin filtration. 

The size analysis of the fabricated eADF4(C16) particles supports the combination of both 

endotoxin depletion methods. (Figure II-4 A) While filtration alone resulted in larger particles 

compared to untreated reference particles, the single autoclave process generated smaller 

particles. Both methods did have an influence on the final particle size, which was not observed 

after a combination of both methods (Combined). It is already known from former publications 

that the eADF4(C16) protein tends to aggregate after change of pH, ionic strength or temperature 

[22, 29]. Maybe, this aggregation behavior was changed during endotoxin removal treatment and 
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further particle processing. However, the zeta potential was slightly less negative after 

combination of both endotoxin depletion methods. (Figure II-4 B). As this level still guaranteed a 

stable particle suspension, this change was not considered as critical; especially since both FTIR 

and DSC measurements indicated stable particles with high β-sheet content.  

 

Figure II-5: Second derivative of the averaged FTIR spectra in the amide I region of eADF4(C16) protein 
particles after endotoxin depletion by different methods compared to untreated eADF4(C16) particles as 
control. Data is showing the mean of two particle batches. Data was analyzed with the Bruker OPUS 
software (version 6.5). 

Figure II-5 shows the spectra of the amide I band between 1600 and 1700 cm-1 in the second 

derivative of the FTIR measurements. The two minima at 1620 and 1695 cm-1 in the spectra 

indicate high β-sheet and β-turn structures for the eADF4(C16) protein as reported before [30]. As 

there are no shifts of the minima and maxima in the spectra, all endotoxin depletion methods 

resulted in stable particles with regard to protein secondary structure. This statement is further 

supported by DSC measurements presented in Figure II-6. All analyzed particles have a high 

degradation temperature around 320°C. After further analysis, differences between the applied 

methods were detectable. While the particles after autoclave treatment or filtration did have a 

degradation temperature of 318°C, the untreated reference particles and the particles after the 

combined endotoxin depletion method displayed a degradation point of 323°C. 
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Figure II-6: DSC thermograms of endotoxin depleted eADF4(C16) protein particles compared to untreated 
eADF4(C16) particles as control. The graph shows the second heating ramp after the removal of residual 
water from the particles. Data is showing the mean of two particle batches. 

Taking all these results together, a combination of autoclave treatment and filtration is an 

excellent way of preparing endotoxin depleted eADF4(C16) particles. To determine whether the 

endotoxin depletion process had an effect on cytotoxicity, we applied an 3-(4,5-dimethylthiazol-

2-yl)-2,5-diphenyltetrazoliumbromide (MTT) test with human dermal fibroblasts [20]. Within this 

cell based assay, endotoxin depleted eADF4(C16) submicroparticles (combined endotoxin 

depletion method) were directly compared to untreated eADF4(C16) submicroparticles at 

different particle concentrations. After incubation for 72 hours, the endotoxin depleted 

eADF4(C16) submicroparticles were tolerated well by the fibroblasts and showed almost no 

cytotoxic potential at any of the tested concentrations up to 5 mg/ml (Figure II-7). However, when 

using particles without prior endotoxin depletion, the cell viability after 72 hours decreased 

concentration dependently. While no differences between untreated and endotoxin depleted 

particles were visible at low concentrations, a significant drop of the cell viability was detectable 

at 1 mg/ml and 5 mg/ml. While the cells still tolerated the endotoxin depleted eADF4(C16) 

submicroparticles at 1 mg/ml, the cell viability significantly decreased to around 80% at the 

highest tested particle concentration of 5 mg/ml. However, the cell viability of 80% for the 

endotoxin depleted particles was still much higher compared to the cell viability of below 60% for 

the untreated eADF4(C16) particles. Because the untreated and endotoxin depleted eADF4(C16) 
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submicroparticles were composed of the same raw material, the observed difference in 

cytotoxicity was most likely due to the presence of endotoxins. 

 

Figure II-7: Cell viability assessed by the MTT assay following 72 hour exposure of endotoxin depleted 
and untreated eADF4(C16) particles on human dermal fibroblasts. Data are shown as % viability 
compared to the positive control and are presented as mean ± SD of three separate experiments 
(fibroblasts from three different donors). ** Values are significantly different, p < 0.01; *** values are 
significantly different, p < 0.001. 

Previous studies had already shown the cytotoxic effect of endotoxins on macrophages after 

incubation over 72h [31]. Yamamoto et el. also observed a drop in cell viability below 60% for LPS 

incubated macrophages and a much better viability for cells incubated with detoxified LPS [31]. 

The MTT results finally encouraged us to use the combined endotoxin depletion method by 

autoclaving and filtration for all further eADF4(C16) studies, where particles with a very low 

endotoxin level were needed. 

4. Conclusion 

The results presented in this chapter demonstrate the possibility to produce eADF4(C16) particles 

with low endotoxin values. Various methods have been tested to determine an optimal way of 

endotoxin inactivation without changing the final eADF4(C16) particle properties. We were able 

to show that the eADF4(C16) protein can withstand one autoclave cycle at 121°C, but not dry heat 

of 180°C. In contrast to many previously reported studies, the autoclave treatment was effective 
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for endotoxin depletion of eADF4(C16) protein. Additionally, we screened several filters for 

endotoxin removal from an eADF4(C16) protein solution and found one system that effectively 

removes endotoxins with high protein recovery. However, all these methods influenced the final 

particle properties when applied. Only when autoclave treatment of the eADF4(C16) protein 

powder and subsequent filtration of the dissolved eADF4(C16) protein were combined, the final 

particle size was comparable to those of untreated eADF4(C16) particles. 

The comparison of untreated and endotoxin depleted eADF4(C16) particles by a cell based MTT 

test highlighted the necessity of endotoxin removal prior to high concentration in vitro studies. 

While eADF4(C16) particles without endotoxin depletion may be applied in settings up to a 

maximum concentration of 0.5 mg/ml, higher concentrations of untreated particles lead to a 

concentration dependent cytotoxicity and may distort the final outcome of future studies. The 

endotoxin depleted eADF4(C16) particles also showed a concentration dependent cytotoxicity, 

however the cell viability levels were much higher compared to the untreated particles. This 

demonstrates the need for endotoxin removal of eADF4(C16) particles prior to in vitro/ in vivo 

based experiments. 

In summary, all results showed that the combined endotoxin depletion method was an effective 

and secure way to produce eADF4(C16) particles for in vitro and in vivo studies, which can be 

integrated easily into the whole eADF4(C16) particle preparation process. 

 

5. References 

[1] K. Schacht and T. Scheibel, “Processing of recombinant spider silk proteins into tailor-made materials for 
biomaterials applications,” Curr. Opin. Biotechnol., vol. 29, pp. 62–69, 2014. 

[2] T. Yucel, M. L. Lovett, and D. L. Kaplan, “Silk-based biomaterials for sustained drug delivery,” J. Control. 
Release, vol. 190, pp. 381–397, 2014. 

[3] F. G. Omenetto and D. L. Kaplan, “New Opportunities for an Ancient Material,” Science (80-. )., vol. 329, 
no. 5991, pp. 528–531, 2010. 

[4] J. G. Hardy, L. M. Römer, and T. R. Scheibel, “Polymeric materials based on silk proteins,” Polymer 
(Guildf)., vol. 49, no. 20, pp. 4309–4327, 2008. 

[5] M. Widhe, J. Johansson, M. Hedhammar, and A. Rising, “Invited review current progress and limitations 
of spider silk for biomedical applications,” Biopolymers, vol. 97, no. 6, pp. 468–478, 2012. 

[6] D. Petsch, “Endotoxin removal from protein solutions,” J. Biotechnol., vol. 76, no. 2–3, pp. 97–119, 2000. 

[7] J. Hurley, “Endotoxemia: methods of detection and clinical correlates,” Clin. Microbiol. Rev., vol. 8, no. 2, 
pp. 268–292, 1995. 

[8] U. K. Slotta, S. Rammensee, S. Gorb, and T. Scheibel, “An Engineered Spider Silk Protein Forms 
Microspheres,” Angew. Chemie Int. Ed., vol. 47, no. 24, pp. 4592–4594, 2008. 



Endotoxin depletion of eADF4(C16) protein 

57 

[9] D. C. Morrison and J. L. Ryan, “Endotoxins and Disease Mechanisms,” Annu. Rev. Med., vol. 38, no. 1, pp. 
417–432, 1987. 

[10] M. J. Devleeschouwer, M. F. Cornil, and J. Dony, “Studies on the sensitivity and specificity of the Limulus 
amebocyte lysate test and rabbit pyrogen assays,” Appl. Environ. Microbiol., vol. 50, no. 6, pp. 1509–
1511, 1985. 

[11] K. Z. McCullough, “Variability in the LAL Test,” PDA J. Pharm. Sci. Technol., vol. 44, no. 1, pp. 19–21, 1990. 

[12] T. J. Novitsky, J. Schmidt-Gengenbach, and J. F. Remillard, “Factors Affecting Recovery of Endotoxin 
Adsorbed to Container Surfaces,” PDA J. Pharm. Sci. Technol., vol. 40, no. 6, pp. 284–286, 1986. 

[13] T. Sandle, “A Practical Approach to Depyrogenation Studies Using Bacterial Endotoxin,” J. GXP 
Compliance, vol. 15, no. 4, pp. 90–96, 2011. 

[14] C. Tanford, “Protein denaturation,” Adv. Protein Chem., vol. 23, pp. 121–282, 1968. 

[15] P. de O. M. D. Batista, A. M. Lopes, P. G. Mazzola, C. de O. R. Yagui, T. C. V. Penna, and A. Pessoa Júnior, 
“Methods of Endotoxin Removal from Biological Preparations: a Review,” J. Pharm. Pharm. Sci., vol. 10, 
no. 3, pp. 388–404, 2007. 

[16] M. Hedhammar, H. Bramfeldt, T. Baris, M. Widhe, G. Askarieh, K. Nordling, S. von Aulock, and J. 
Johansson, “Sterilized Recombinant Spider Silk Fibers of Low Pyrogenicity,” Biomacromolecules, vol. 11, 
no. 4, pp. 953–959, 2010. 

[17] M. B. Gorbet and M. V Sefton, “Endotoxin: The uninvited guest,” Biomaterials, vol. 26, no. 34, pp. 6811–
6817, 2005. 

[18] Deutsche Gesellschaft für Krankenhaushygiene e.V., “Empfehlung für die Validierung und 
Routineüberwachung von Sterilisationsprozessen mit trockener Hitze für Medizinprodukte,” Berlin, 
2009. 

[19] K. Spiess, R. Ene, C. D. Keenan, J. Senker, F. Kremer, and T. Scheibel, “Impact of initial solvent on thermal 
stability and mechanical properties of recombinant spider silk films,” J. Mater. Chem., vol. 21, no. 35, pp. 
13594–13604, 2011. 

[20] T. Mosmann, “Rapid colorimetric assay for cellular growth and survival: application to proliferation and 
cytotoxicity assays,” J. Immunol. Methods, vol. 65, no. 1–2, pp. 55–63, 1983. 

[21] N. B. Wolf, S. Küchler, M. R. Radowski, T. Blaschke, K. D. Kramer, G. Weindl, B. Kleuser, R. Haag, and M. 
Schäfer-Korting, “Influences of opioids and nanoparticles on in vitro wound healing models,” Eur. J. 
Pharm. Biopharm., vol. 73, no. 1, pp. 34–42, 2009. 

[22] D. Huemmerich, C. W. Helsen, S. Quedzuweit, J. Oschmann, R. Rudolph, and T. Scheibel, “Primary 
Structure Elements of Spider Dragline Silks and Their Contribution to Protein Solubility,” Biochemistry, 
vol. 43, no. 42, pp. 13604–13612, 2004. 

[23] C. B. Borkner, M. B. Elsner, and T. Scheibel, “Coatings and films made of silk proteins,” ACS Appl. Mater. 
Interfaces, vol. 6, no. 18, pp. 15611–15625, 2014. 

[24] A. Lammel, M. Schwab, M. Hofer, G. Winter, and T. Scheibel, “Recombinant spider silk particles as drug 
delivery vehicles,” Biomaterials, vol. 32, no. 8, pp. 2233–2240, 2011. 

[25] M. Hofer, G. Winter, and J. Myschik, “Recombinant spider silk particles for controlled delivery of protein 
drugs,” Biomaterials, vol. 33, no. 5, pp. 1554–1562, 2012. 

[26] K. W. Wissemann and B. S. Jacobson, “Pure gelatin microcarriers: Synthesis and use in cell attachment 
and growth of fibroblast and endothelial cells,” Vitr. Cell. Dev. Biol., vol. 21, no. 7, pp. 391–401, 1985. 

[27] J. C. Hurley, “Endotoxemia: methods of detection and clinical correlates,” Clin. Microbiol. Rev., vol. 8, no. 
2, pp. 268–292, 1995. 

[28] R. A. B. da Silva, M. R. Leonardo, L. H. Faccioli, A. I. Medeiros, and P. Nelson-Filho, “Effect of different 
methods of sterilization on the inactivation of bacterial endotoxin (LPS) in endodontic files,” Brazilian J. 
Microbiol., vol. 38, no. 2, pp. 270–272, 2007. 

 



Chapter II 

58 

[29] A. Lammel, M. Schwab, U. Slotta, G. Winter, and T. Scheibel, “Processing conditions for the formation of 
spider silk microspheres,” ChemSusChem, vol. 1, no. 5, pp. 413–416, 2008. 

[30] U. Slotta, S. Hess, K. Spieß, T. Stromer, L. Serpell, and T. Scheibel, “Spider Silk and Amyloid Fibrils: A 
Structural Comparison,” Macromol. Biosci., vol. 7, no. 2, pp. 183–188, 2007. 

[31] Y. Yamamoto, P. He, T. W. Klein, and H. Friedman, “Endotoxin induced cytotoxicity of macrophages is 
due to apoptosis caused by nitric oxide production,” Innate Immun., vol. 1, no. 3, pp. 181–187, 1994. 

 

  



Endotoxin depletion of eADF4(C16) protein 

59 

 



 

60 

  



The effect of steam sterilization on recombinant spider silk particles 

61 

III. THE EFFECT OF STEAM STERILIZATION ON RECOMBINANT SPIDER 

SILK PARTICLES 

This chapter was published in the International Journal of Pharmaceutics: 

M. Lucke, G. Winter, and J. Engert †, “The effect of steam sterilization on recombinant spider silk 

particles,” Int. J. Pharm., vol. 481, no. 1–2, pp. 125–131, Jan. 2015. 

† Corresponding author 

 

The experiments described in this chapter have been performed by Matthias Lucke. The paper has 

been written by Matthias Lucke. The following chapter would have not been possible without the 

scientific guidance of both my supervisors Gerhard Winter and Julia Engert and my colleague from 

the LMU Kay Strüver. Julia Engert provided guidance regarding the spider silk particle preparation 

and characterization. Kay Strüver provided his knowledge regarding the cytotoxicity assay. 

Gerhard Winter and Julia Engert helped a lot to interpret the collected data and critically discussed 

the results of the experiments. Julia Engert finally submitted the manuscript to the journal. 

In the following, the text of the manuscript as submitted is reprinted 

  



Chapter III 

62 

1. Abstract 

In this work, the recombinant spider silk protein eADF4(C16) was used to fabricate particles in the 

submicron range using a micromixing method. Furthermore, particles in the micrometer range 

were produced using an ultrasonic atomizer system. Both particle species were manufactured by 

an all-aqueous process. The submicroparticles were 332 nm in average diameter, whereas 

6.70 µm was the median size of the microparticles. Both particle groups showed a spherical shape 

and exhibited high β-sheet content in secondary structure. Submicro- and microparticles were 

subsequently steam sterilized and investigated with respect to particle size, secondary structure 

and thermal stability. Sterilization temperature and time were increased to assess the thermal 

stability of eADF4(C16) particles. Actually, particles remained stable and their properties did not 

change even after autoclaving at 134°C. Both, the untreated and the autoclaved submicroparticles 

showed no overt cytotoxicity on human dermal fibroblasts after incubation for 72 hours. The 

eADF4(C16) particles were already loaded with proteins and small molecules in previous studies. 

With that, we can provide a highly promising parenteral drug delivery system based on a defined 

polypeptide carrier, manufactured with an all-aqueous process and being fully sterilizable. 

 

2. Introduction 

Biocompatible and biodegradable polymers have gained increasing interest for drug delivery 

applications in recent years [1]. Such biomaterials should have appropriate properties for use in 

medicine and surgery such as adequate initial strength and controlled degradation rate in addition 

to the possibility to be processed into different morphologies [1]. According to the requirements 

of the pharmacopeias, sterility is an indispensable prerequisite for parenterally administered 

compounds [2]. The European Agency for the Evaluation of Medicinal Products and the Evaluation 

of Medicines for Human Use provides a decision tree for the selection of an optimal sterilization 

method [3]. In case of aqueous based formulations, sterilization by moist heat at 121°C for 

15 minutes is the method of choice. Commonly used biodegradable polymers like poly(lactic-co-

glycolic) acid (PLGA) are often not able to withstand these harsh environments. Steam sterilization 

of PLGA composites leads to a degradation and hydrolysis of the polymer [4, 5]. In addition, PLGA 

degradation leads to an acidic microenvironment inside the composite and as a consequence an 

elevated degradation of the loaded protein [6]. Other biodegradable materials have already been 

tested for their ability to be autoclaved. For instance, gelatin beads showed degradation after 

autoclave treatment [7], and heating collagen above the shrinkage temperature changed the 
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protein chemistry and physical properties of the material [8, 9]. Ahmed et al. studied the effect of 

steam sterilization on polyurethane materials [10]. While the non-degradable polymer withstood 

the autoclave treatment, the biodegradable poly(caprolactone-urea)urethane polymer degraded 

during steam sterilization, resulting in the loss of structural integrity. Therefore, aseptic processing 

was assumed to be the only method to fabricate biopolymers until other sterilization techniques 

were evaluated for sensitive biomaterials in the past [8, 11]. Physical sterilization methods like 

gamma irradiation or chemical methods like gas sterilization with ethylene oxide have been 

tested. Nonetheless, even these techniques are not applicable to many biopolymers. For instance, 

a general problem of chemical sterilization with ethylene oxide is the risk of toxic residues in the 

final product [8]. Ahmed et al. showed that polyurethane nanocomposite biomaterials sterilized 

with gamma irradiation had cytotoxic effects in cell culture [10]. In addition, changes in the 

physical properties of tested PLGA microparticles were observed [12]. On that account, other 

biopolymers, which can easily be sterilized by autoclave treatment, needed to be considered. 

Chitosan nanoparticles have been successfully steam sterilized without an effect on particle size 

or morphology [13]. As chitosan can be processed in an all-aqueous environment, it is often used 

as drug carrier for sensitive drugs like proteins [14]. One disadvantage is that crosslinking agents 

are often necessary to control the release kinetics of chitosan based systems [15]. 

Silk proteins represent a promising alternative to the aforementioned biopolymers. It is possible 

to transform the silk protein into different morphologies such as films, hydrogels, scaffolds, micro- 

and nanoparticles [16, 17]. Moreover, Hedhammar et al. have already shown that spider silk fibers 

can be steam sterilized [18]. They proved that a simple steam sterilization process did not affect 

the fibers morphology and had no influence on the secondary structure of the protein.  

In our study, we used the engineered spider silk protein eADF4(C16). This protein is a recombinant 

part of the natural spider silk protein ADF4 from the European garden spider Araneus diadematus. 

Lammel et al. already proved the ability of eADF4(C16) particles to be used as a drug delivery 

system [19], which can be easily fabricated in the submicron scale by an all-aqueous micromixing 

process [20]. We fabricated eADF4(C16) submicroparticles using this micromixing system and 

introduce the ultrasonic atomizer system as an additional method for the preparation of 

eADF4(C16) microparticles. Furthermore, we systematically investigated the effects of different 

steam sterilization conditions on both eADF4(C16) micro- and submicroparticles. Starting with the 

standard autoclave conditions of 121°C for 15 minutes [3], we subsequently increased the thermal 

load of eADF4(C16) micro- and submicroparticles. We focused on characterization of particle size, 

secondary structure and thermal stability related to the selected steam sterilization conditions. 
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Cytotoxic effects of steam sterilized eADF4(C16) submicroparticles were evaluated and compared 

to unsterilized particles. 

 

3. Materials and methods 

3.1. Materials 

3.1.1. Recombinantly produced spider silk protein eADF4(C16) 

The spray dried eADF4(C16) protein was provided by AMSilk GmbH (Martinsried, Germany). This 

spider silk protein is a recombinant part of the natural amino acid sequence of ADF4 from A. 

diadematus. A molecular mass of 47.7 kDa is resulting by 16 repeats of the sequence 

GSSAAAAAAAASGPGGYGPENQGPSGPGGYGPGGP. Due to this amino acid sequence, eADF4(C16) 

has a theoretical isoelectric point of 3.48 and a net negative charge at a physiological pH of 7.4. 

3.1.2. Chemicals 

Trizma base (Tris(hydroxymethyl) aminomethane, primary standard and buffer grade, ≥99.9%) 

and Dulbecco's Modified Eagles Medium were purchased from Sigma Aldrich (St. Louis, USA). 

Triton X-100 (analytical grade), di-potassium hydrogen phosphate (EMPROVE bio, European 

Pharmacopoeia (Ph. Eur.), British Pharmacopoeia (BP)) and potassium dihydrogen phosphate 

(EMPROVE bio, Ph. Eur., BP, United States National Formulary (NF)) were obtained from Merck 

KGaA (Darmstadt, Germany). Guanidinium thiocyanate (molecular biology grade) was purchased 

from AppliChem (Darmstadt, Germany). 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazoliumbromide (MTT) was provided from Calbiochem (Darmstadt, Germany). Fetal 

bovine serum (FKS), L-Glutamine, Trypsin/EDTA solution (0.05%/0.02% (w/v)) and Phosphate 

buffered saline (PBS) were purchased from Biochrom (Berlin, Germany). Penicillin/Streptomycin 

solution (100x) was obtained from PAA Laboratories (Pasching, Austria). 

3.2. Particle preparation 

The eADF4(C16) protein solution for particle preparation was prepared as described earlier [20]. 

Briefly, eADF4(C16) protein powder was dissolved in a 6 M guanidinium thiocyanate solution and 

subsequently dialyzed against a 10 mM Tris(hydroxymethyl)aminomethane(Tris)/HCl solution at 

2-8°C. A dialysis membrane with a molecular weight cut-off of 8,000 Da (Spectrum Laboratories, 

Rancho Dominguez, USA) was used. After dialysis, the solution was centrifuged and filtered 
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through a 0.2 µm PES filter (VWR International, Radnor, USA). The concentration of eADF4(C16) 

protein in solution was determined by an Agilent 8453 UV-Vis spectrophotometer (Agilent, 

Waldbronn, Germany) using a molar extinction coefficient of eADF4(C16) at 276 nm 

( ε = 46,400 M-1*cm-1). This solution was further adjusted to the desired concentrations for particle 

preparation with a filtered 10 mM Tris solution. 

Particle preparation using a micromixing system: Processing of the spider silk solution into 

submicroparticle dispersions was carried out by micromixing using a high pressure syringe pump 

system as described earlier [20]. Briefly, two cylinders of the syringe pump system (Model 100 DX 

and Series D pump controller, Teledyne Isco, Lincoln, USA) were filled with pre-tempered 

eADF4(C16) solution (c=1.0 mg/ml) or pre-tempered 2 M potassium phosphate solution (pH 8) at 

60°C. The pumps were connected via a T-shape mixing element (inner diameter 0.5 mm, P-727 

PEEK tee, Upchurch Scientific, Oak Harbor, USA) into which the solutions were pumped at a flow 

rate of 50 ml/min. 

Particle preparation using an ultrasonic nozzle: An ultrasonic atomizer system was used for the 

preparation of microparticles. The ultrasonic nozzle (Sono-Tek, 120-00456, Milton, USA) was 

powered by a broadband ultrasonic generator (Sono-tek, 06-05108) to generate small atomized 

droplets. A 2 M potassium phosphate solution was fed into the ultrasonic nozzle using a peristaltic 

pump (Ismatec ISM932, Glattbrugg, Switzerland) at a constant flow rate of 3.0 ml/min. The 

potassium phosphate solution was atomized at 0.9 W into a stirred eADF4(C16) protein solution 

(c=10.0 mg/ml) reservoir (V=3.0 ml). To ensure a constant flow of the potassium phosphate 

solution into the nozzle, tubes were completely filled with the potassium phosphate solution prior 

to the atomization of the potassium phosphate solution. After one minute, the peristaltic pump 

was stopped and the resulting particle suspension was stirred for an additional minute. 

Particle suspensions from both preparation methods were subsequently centrifuged at 

14,000 rpm (SIGMA 4K15, Sigma Laborzentrifugen, Osterode am Harz, Germany) and washed with 

highly purified water (HPW) three times. A two minute ultrasonication (Sonopuls HD 3200, 

Bandelin electronic, Berlin, Germany) step completed the particle preparation procedure. 

Particles prepared by micromixing were subsequently filtered through a 1.2 µm filter (Acrodisc 

32 mm syringe filter, Pall Life Sciences, Ann Arbor, USA) to remove any residual agglomerates. No 

crosslinking step was applied. The final particle concentration in mg/ml was determined 

gravimetrically after drying the particles under vacuum (13 mbar) overnight. 
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3.3. Particle sterilization 

Suspensions of eADF4(C16) particles were sterilized by autoclave treatment in a GTA 50 autoclave 

(Fritz Gössner, Hamburg, Germany). All eADF4(C16) particles were suspended in highly purified 

water, and the concentration was adjusted to 1 mg/ml. Sterilization was performed in glass vials 

(DIN 10R, closed with stoppers and crimped with aluminum caps) for 15, 30 and 60 minutes at 

121°C; 3 minutes at 134°C or repeated sterilization cycles for 1 x 15 minutes, 2 x 15 minutes and 

3 x 15 minutes at 121°C. A control sample (Ref sample) was stored at 2-8°C and was analyzed along 

with the treated samples. 

3.4. Characterization of eADF4(C16) particles 

3.4.1. Dynamic light scattering (DLS) 

Particle size and size distribution of submicroparticles were measured in triplicate by dynamic light 

scattering (DLS) using a Zetasizer Nano ZS (Malvern Instruments, Worcestershire, UK). Particle size 

is shown as the Z-average value, and the particle size distribution is displayed by the polydispersity 

index (PDI). Directly before each measurement, samples were diluted to a final concentration of 

0.01 mg/ml with highly purified water. All measurements were conducted at 25°C. 

3.4.2. Laser Diffraction Spectrometry (LDS) 

Particle size and size distribution measurements of microparticles were performed using a Partica 

LA-950 (Horiba, Kyoto, Japan). Particle size is shown as the median particle size of laser diffraction 

analysis using refractive indices of 1.33 for water and 1.60 for protein. Particle distribution is given 

as the span value. The particle size and particle size distribution are the results of a volume based 

distribution. Samples were diluted into water directly before each measurement to obtain 

transmittance values of 75-90%. All measurements were performed in triplicate. 

3.4.3. Scanning electron microscopy (SEM) 

Small droplets of eADF4(C16) particle suspensions were placed onto Thermanox® plastic cover 

slips (Nunc, Rochester, USA), which adhered to Leit-Tabs (Plano GmbH, Wetzlar, Germany). A 

conductive copper band (Plano GmbH, Wetzlar, Germany) connected the plastic cover slips with 

the sample holder. The eADF4(C16) particle suspensions were dried and carbon sputtered under 

vacuum at room temperature. Analysis was performed using a Joel JSM-6500F field emission 

scanning electron microscope (Joel Inc., Peabody, USA). 
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3.4.4. Differential Scanning Calorimetry (DSC) 

DSC measurements were performed after drying eADF4(C16) suspensions under vacuum and 

transferring the samples (3-5 mg) to aluminum pans. The sealed pans were perforated with a hole 

in the lid and measured under constant nitrogen gas flow on a Netzsch DSC 204 (Netzsch 

Gerätebau, Selb, Germany) using a scanning rate of 10°C/min. To prevent false results, samples 

were heated up to 110°C to remove residual water from the samples. After a 10 minute 

equilibration step, samples were cooled down to -40°C and the actual measurement was started 

by heating up to 400°C [21]. 

3.4.5. Protein secondary structure 

Protein secondary structures before and after autoclaving were determined by Fourier transform 

infrared spectroscopy (FTIR) using the Bruker Tensor 27 FTIR spectrometer (Billerica, USA). Particle 

suspensions (c=20 mg/ml) were analyzed by adding 20 µl into a BioATRCell II (Harrick Scientific, 

Pleasantville, USA). Measurement temperature was controlled at 25°C using a water bath. Each 

spectrum comprises the average of 120 scans at the resolution of 4 cm−1. All measurements were 

performed in triplicate in the range of 850-4000 cm-1. 

3.5. In vitro cytotoxicity assay 

Cytotoxicity of eADF4(C16) submicroparticles was assessed as cell viability of human dermal 

fibroblasts. Steam sterilized submicroparticles (121°C, 15 minutes) were compared to untreated 

submicroparticles using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) 

assay [22]. Briefly, fibroblasts were seeded at 3.5×104 cells/well in a 24-well plate in Dulbecco's 

Modified Eagles Medium containing 10% (v/v) heat-inactivated fetal bovine serum, penicillin 

100 I.U./ml and streptomycin 100 µg/ml (DMEM growth medium) as described previously [23]. 

After 24 h incubation (37°C, 5% CO2), medium was changed to Dulbecco's Modified Eagles Medium 

without fetal bovine serum (DMEM basal medium). eADF4(C16) particle suspensions were 

centrifuged and the supernatant discarded. The eADF4(C16) particles were diluted in DMEM basal 

medium. According to a pipetting scheme, differently concentrated eADF4(C16) particle 

suspensions were added to the wells (final volume = 500 µl). As a positive control, DMEM basal 

medium was added. A 10% Triton-X in DMEM basal medium solution was used as a negative 

control. After addition of eADF4(C16) submicroparticles, the cells were further incubated for 72 h 

(37°C, 5% CO2). Then, 40 μl of a 5 mg/ml MTT solution was added to each well under exclusion of 

light. After 4 h incubation, the medium was removed carefully and the precipitated blue formazan 

product was extracted in 250 µl DMSO and centrifuged at 14000 rpm for 30 minutes to avoid light 
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scattering effects from the eADF4(C16) particles. 150 µl of the supernatant was transferred to a 

96-well plate and absorbance was measured at λ = 540 nm using a 96-well micro plate reader 

(FLUOstar Omega, BMG Labtech, Ortenberg, Germany). The assay was performed three times with 

human dermal fibroblasts from three different donors. Within one approach, the positive and 

negative controls were conducted in triplicate, the incubation with each particle concentration in 

duplicate. 

3.6. Statistical analysis 

One-way analysis of variance (ANOVA) was used to analyze statistical differences between the 

negative control and tested samples in the cytotoxicity experiment. In case of significance, post 

hoc pair wise tests were performed using Tukey multiple comparison procedures with SigmaPlot 

12.5 software (Systat Software, San Jose, USA). Differences were considered significant with 

p-values < 0.05. 

 

4. Results and Discussion 

4.1. Particle Preparation in the Micron- and Submicron-Range 

Two types of particles were produced using the recombinant spider silk protein eADF4(C16). The 

submicroparticle preparation process using the micromixing system was utilized as described by 

Hofer et al. [20]. A new method for the preparation of eADF4(C16) spider silk microparticles 

without use of any organic solvent is presented in this study. The particle fabrication using the 

ultrasonic atomizer system resulted in a final eADF4(C16) particle size of 6.70 µm under the 

selected conditions. A span value of 1.13 is demonstrating a uniform particle distribution. No post 

treatment is necessary after particle preparation. The continuous fabrication process is 

advantageous and complements the earlier published spider silk microparticle preparation 

methods [24]. The ultrasonic atomizer system was previously used for the preparation of 

liposomes [25] or protein based nanoparticles [26] by spray-freeze-drying. In our case, eADF4(C16) 

based particles were sufficiently stable to be purified by repeated centrifugation and washing 

steps without the need of freeze drying. According to the scanning electron microscopy (SEM) 

graphs, the submicroparticles (Figure III-1) as well as the microparticles (Figure III-2) display a 

spherical shape with a smooth and dense surface. 
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Figure III-1: SEM micrographs (magnification: 9500×) of different eADF4(C16) submicroparticles. (A) Ref 
particles, (B) 1 × 15 min, (C) 2 × 15 min, (D) 3 × 15 min, (E) 1 × 30 min, (F) 1 × 60 min, (G) 134 °C. 

 

Figure III-2: SEM micrographs (magnification: 1500×) of different eADF4(C16) microparticles. (A) Ref 
particles, (B) 1 × 15 min, (C) 2 × 15 min, (D) 3 × 15 min, (E) 1 × 30 min, (F) 1 × 60 min, (G) 134 °C. 

Both fabrication methods are transforming the spider silk protein into a β-sheet rich secondary 

structure. (Ref in Figure III-3) Temperature, flow rate and protein concentrations were different 

for the two fabrication methods. The common element in both fabrication methods was the 

potassium phosphate solution. The salting out process by a highly molar potassium phosphate 

solution was already discussed earlier [27]. Therefore, eADF4(C16) particle size can be adjusted by 

temperature, flow rate, protein concentration or change of the fabrication method, while 

preserving the high β-sheet content by the use of a concentrated potassium phosphate solution. 
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Figure III-3: Second derivative of the averaged FTIR spectra in the amide I region of (A) eADF4(C16) 
submicroparticles and (B) eADF4(C16) microparticles after extended sterilization conditions and stored 
at 2–8 °C as reference. Data was analyzed with the Bruker OPUS software (version 6.5). 

 

4.2. Sterilization of the eADF4(C16) Particles by Autoclave Treatment 

We tested two particle species (submicro- and microparticles) in terms of their thermal resistance 

during different steam sterilization processes. The particle size and particle size distribution was 

analyzed before and after the treatment. Particle size measurements (Figure III-4) showed that 
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the particle size remained the same for all applied sterilization conditions. In Figure III-4 A the 

submicroparticle sample which was autoclaved at 134°C showed the highest particle distribution 

index (PDI) as well as the highest standard deviation on measured particle size. Besides the high 

temperature of 134°C, samples were also exposed to a higher pressure of 3 bars. Similarly, the 

microparticle sample in Figure III-4 B which was autoclaved three times at 121°C for 15 minutes 

displayed higher standard deviations for particle size and a span value close to 1.2. A visual 

confirmation of particle size by scanning electron microscopy (Figure III-1 and Figure III-2) showed 

that all particles retained their smooth surface and round shape even after autoclave treatment. 

No collapse of the particles or surface defects were visible in the SEM micrographs. 
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Figure III-4: (A) Particle size and polydispersity index of eADF4(C16) submicroparticles prior to 
sterilization, after different sterilization conditions and stored at 2–8 °C as reference. 
(B) Particle size and span value of eADF4(C16) microparticles prior to sterilization, after different 
sterilization conditions and stored at 2–8 °C as reference. 

 

If particle size is relevant for a desired application, the fabrication of spider silk particles in the 

submicron or micron range can easily be executed in a non-sterile environment, followed by a 

steam sterilization step. Compared to other protein based biomaterials (e.g. collagen), which 

Start

1x 1
5 m

in

2x 1
5 m

in

3x 1
5 m

in

1x 3
0 m

in

1x 6
0 m

in
134°C Ref

0

50

100

150

200

250

300

350

400

450

 

 Particle size

 PDI

P
a
rt

ic
le

 s
iz

e
 [
n
m

]

0,0

0,2

0,4

0,6

0,8

1,0

 P
D

I

Start

1x 1
5 min

2x 1
5 min

3x 1
5 min

1x 3
0 min

1x 6
0 min

134°C Ref

0

1

2

3

4

5

6

7

8

9

P
a
rt

ic
le

 s
iz

e
 [
µ

m
]

 Particle size

 PDI

0,6

0,8

1,0

1,2

1,4

1,6

1,8

2,0

 S
p
a

n

B

A



The effect of steam sterilization on recombinant spider silk particles 

73 

thermally denatures during a steam sterilization process [28], it is remarkable that eADF4(C16) is 

extremely durable even though it is a protein based biopolymer.  

To determine the effect of steam sterilization on the secondary structure of the eADF4(C16) 

particles, FTIR measurements of all samples were performed. Figure III-3 shows the spectra of the 

amine I band between 1600 and 1700 cm-1 in the second derivative. The two minima at 1620 and 

1695 cm-1 in the FTIR spectra indicate high β-sheet content in both micro- and submicroparticles. 

Slight intensity differences between the reference and autoclaved particles were visible in the 

spectra, but above all, no shift of the local minima was observed after the autoclave treatment. 

The high β-sheet content of the untreated reference particles was consistent after steam 

sterilization. In conclusion, the combination of high temperature, humidity and pressure resulted 

in no observable change in secondary structure of eADF4(C16) particles. 

We additionally studied the robustness of spider silk particles under elevated temperatures. All 

particle batches were analyzed by differential scanning calorimetry (DSC). DSC thermograms of 

submicroparticles (Figure III-5 A) showed a distinct shoulder at around 260-280°C, which is not 

that pronounced in the thermogram of microparticles (Figure III-5 B). Additionally, the shoulder is 

also missing for the submicroparticles autoclaved at 134°C. Spiess et al. reported that this shoulder 

is due to a bimodal degradation of eADF4(C16) material [21]. Taking these findings together, the 

rather harsh conditions during the autoclave process at 134°C may already force particles to a 

partial degradation. This first degradation point is then missing in the thermogram of 

submicroparticles treated at 134°C. Overall, final degradation of submicroparticle samples before 

and after autoclave treatment takes place at the same degradation point at 326-327°C (Figure III-5 

A). On the contrary, thermograms of the microparticles show differences between the untreated 

particles (Ref) and all other steam sterilized particles (Figure III-5 B). The degradation point of the 

untreated microparticles was notably lower (320°C) and shifted after the steam sterilization 

process. The degradation point of steam sterilized microparticles was at the level of the 

submicroparticles. No increase upon extended steam sterilization conditions was observed and 

the degradation point remained at 326-329°C for all samples. This result leads to the hypothesis, 

that the fabrication using the ultrasonic atomizer system at room temperature forms particles 

with yet a high β-sheet content. However, the β-sheet content is not as high as in the 

submicroparticles which were prepared using the micromixing system at 60°C. The steam 

sterilization process in that case serves as a post treatment for the microparticles, comparable to 

the published water vapor treatment for other silk particles [29]. The hypothesis of increasing β-

sheet content after steam sterilization is additionally supported by the recently published results 
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of Gil et al. [30]. The authors reported a change in enzymatic degradation and an increase of the 

thermal stability of their silk porous 3D scaffolds after steam sterilization. Comparable to our FTIR 

results, they did not observe wavelength shifts in the FTIR spectra. Hofmann et al. reported 

changes in the mechanical properties after sterilization of 3D silk scaffolds [31]. As 3D scaffolds 

are often used for tissue regeneration, cell diffusion rate into the porous scaffolds may be altered 

after sterilization. On the contrary, particles are mostly used as drug delivery systems. For that 

purpose, the physical stability of the system is a crucial parameter. After sterilization by autoclave 

treatment no changes in size or secondary structure were observed. Additional DSC scans 

demonstrated a degradation point far above the used steam sterilization temperatures. We can 

therefore support the statement of Hedhammar et al., who recommended autoclaving as good 

sterilization method for spider silk systems [18]. In addition, we showed that eADF4(C16) particles 

are able to withstand a steam sterilization temperature of 134°C for 3 minutes. These conditions 

are required for prion inactivation when spider silk particles may be used as medical device [32]. 
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Figure III-5: DSC thermograms of (A) eADF4(C16) submicroparticles and (B) eADF4(C16) microparticles 
after extended sterilization conditions and stored at 2–8 °C as reference. 

The effect of sterilized and untreated spider silk submicroparticles on human dermal fibroblasts 

was analyzed in an in vitro assay [33]. We used the 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazoliumbromide (MTT) assay, which is based on the reduction of MTT to a blue 

colored formazan [22]. Evidently, there are no differences in cell viability between the untreated 

and steam sterilized submicroparticles (Figure III-6). 
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Figure III-6: Cell viability assessed by the MTT assay following 72 h exposure of eADF4(C16) 
submicroparticles on human dermal fibroblasts. Data are shown as % viability compared to the positive 
control and are presented as mean ± SD of three separate experiments (fibroblasts from three different 
donors). * Values are significantly different, p < 0.05; *** values are significantly different, p < 0.001. 

The good overall cell viability after 72 h of incubation shows the good compatibility of spider silk 

particles on human dermal fibroblasts. As expected, the negative controls incubated with 1% 

Triton-X showed a significant decrease of cell viability to a level of 5-6%. Up to a final particle 

concentration of 1 mg/ml, the cell viability remains between 80-100% compared to the positive 

control. A drop in cell survival to around 70% at the 5 mg/ml groups indicates a concentration 

dependent increase in cytotoxicity of both, untreated and steam sterilized spider silk 

submicroparticles. The first statistically significant difference to the control groups appears at the 

particle concentration of 0.25 mg/ml and is even more pronounced at the concentration of 

5 mg/ml. Unfortunately, this trend is not supported by the data for the 0.5 and 1.0 mg/ml groups, 

where no significant difference was observed. One reason could obviously be the large standard 

deviation observed in these two groups. Nonetheless, our results are in good agreement with 

previously reported results related to PLGA particles [34, 35]. Although the authors tested their 

PLGA particles using different cell types, they received comparable cell viability levels. Kundu et 

al. studied the influence of silk protein particles gained from the silkworm Antheraea mylitta on 
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proteins was examined by Dams-Kozlowska et al. [37]. They compared two different recombinant 

spider silk proteins with different concentrations for 24 and 48 h. At their highest protein 

concentration of 1 mg/ml the cell viability was significantly reduced to levels between 64% and 

4%. Based on the comparison to these other silk proteins, it can be concluded that eADF4(C16) 

submicroparticles are not cytotoxic. 

 

5. Conclusion 

In this study, we prepared eADF4(C16) spider silk protein particles in the submicron and micron 

range. While the preparation of submicroparticles is already well established, the ultrasonic 

atomizer system presents an additional method for the fabrication of eADF4(C16) microparticles. 

Both particle manufacturing methods are all-aqueous processes avoiding the risk of residual 

organic solvents. 

After preparation of eADF4(C16) particles in a non-sterile environment, we performed a 

systematic analysis of the particles after extended steam sterilization conditions. Sterilization of 

spider silk particles (both in the submicron and micron range) had no detrimental effect on particle 

size, secondary structure and thermal stability. In case of the microparticles, thermal stability was 

actually increased after autoclave treatment. No cytotoxic effects of eADF4(C16) particles on 

human dermal fibroblasts were observed up to a final concentration of 5 mg/ml. While the 

sterilization in the present study was performed with unloaded particles, the effect of steam 

sterilization on drug loaded particles needs to be determined separately for every drug. 
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IV. CHEMICAL COUPLING OF SIINFEKL TO EADF4(C16) PROTEIN 

PARTICLES 

1. Introduction 

The aim of the present study was to evaluate the possibility of connecting a peptide based antigen 

(SIINFEKL) with eADF4(C16) protein particles as carrier to produce a modern vaccine platform. In 

chapter 5 and chapter 6, the genetically modified eADF4(C16) hybrid protein particles are 

described as vaccine delivery platform. These hybrid proteins comprise the native eADF4(C16) 

structure and the peptide based antigen (SIINFEKL). While SIINFEKL was introduced genetically for 

the hybrid proteins in chapter 5 and chapter 6, we focused on chemical coupling in the present 

chapter. Because of the importance of peptide cleavage after cellular uptake, which was shown in 

chapter 6, SIINFEKL and the native eADF4(C16) protein were chemically coupled using cleavable 

linkers. With that, an alternative to the eADF4(C16) hybrid proteins was established, which does 

not require intensive genetical engineering but simple bioconjugation. 

Different linkers have been used for the structure analysis of proteins [1, 2], investigation of 

protein-protein interactions [3, 4], immobilization of proteins for the solid phase synthesis [5–7], 

PEGylation of proteins [8, 9], preparation of immunotoxins by coupling a protein with a toxin [10, 

11], preparation of links between nucleic acids and proteins [12, 13], and for the formation of 

protein-protein, protein-drug and antibody-drug conjugates [14–19]. In case of prodrugs like 

protein-protein, protein-drug or antibody-drug conjugates, the use of a linker which is cleavable 

under mild chemical conditions is mandatory [20]. In addition, the linkage has to be stable under 

physiological conditions (including pH and temperature) and degradation by endogenous 

proteases during blood circulation has to be excluded [21]. Three types of linkers fulfill these 

criteria, but they differ by the type of release of the active molecule from the conjugate [22]. A 

first group of linkers covers the enzymatically cleavable linkers, which are cleaved by special 

enzymes like cathepsins after uptake into lysosomes. This type of linker is used in the antibody-

drug conjugate Brentuximab vedotin (trade name Adcetris®) [23] or in the second generation 

eADF4(C16) hybrid proteins described in chapter 6. Disulfide linkage is used for the second group 

of cleavable linkers. The heterobifunctional linker N-Succinimidyl 3-(2-pyridyldithio)propionate 

(SPDP) is probably one of the most commonly used cross-linkers in science and was originally 

developed by Carlson et al. [24]. The disulfide bond is cleavable by reduction, for example by 
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endogenous glutathione [25]. The third group covers pH sensitive linkers, which are cleaved under 

acidic conditions. This group of linkers uses the fact that the lysosomal pH changes from about 

pH 6 to pH 4.5 to enhance the intracellular degradation rate of foreign matters [26, 27]. The 

objective of all three linker groups is the reversible binding of two molecules. The advantages of 

cleavable over non-cleavable linkers were also identified for modern vaccine designs [28]. Various 

reports in literature led to the development of pH sensitive liposomes [29, 30] and in recent years 

also to more stable acid-degradable particles for vaccination [31, 32]. Newly developed acid-

degradable particles by Standley et al. were superior to non-degradable particles due to better 

release of the antigen after cellular uptake [33]. The authors used an acid labile linker to cross-link 

the particle matrix in order to improve the particle stability. 

This short feasibility study used a reductive-cleavable and an acid-cleavable linker, which should 

both be cleavable after cellular uptake. We evaluated the influence of the activation, modification 

and peptide linkage on the eADF4(C16) protein with regards to particle size and zeta potential. In 

addition, we determined the coupling efficiency of the two linking strategies and sent samples of 

eADF4(C16)-SIINFEKL linked protein particles after coupling with both linkers to our cooperation 

partner for further in vitro studies and comparison to the eADF4(C16) hybrid protein particles of 

chapter 6. 

2. Materials and methods 

2.1. Materials 

2.1.1. Recombinantly produced spider silk protein eADF4(C16) 

The spray dried eADF4(C16) protein was provided by AMSilk GmbH (Martinsried, Germany). This 

bioengineered spider silk protein is based on the natural amino acid sequence of the ADF4 spidroin 

from A. diadematus. The design resulted in a molecular mass of 47.7 kDa, which is a result of one 

T7 Tag and sixteen repeats of the amino acid sequence 

GSSAAAAAAAASGPGGYGPENQGPSGPGGYGPGGP. The theoretical isoelectric point of the 

eADF4(C16) protein is 3.48, resulting in a net negative charge at a physiological pH of 7.4.  

2.1.2. Chemicals and reagents 

Highly purified water (HPW) used for this study was generated by a purelab® device (ELGA 

LabWater, Celle, Germany). Sodium hydroxide solution (1 mol/L, EMPROVE® bio), di-potassium 

hydrogen phosphate (EMPROVE bio, European Pharmacopoeia (Ph. Eur.), British Pharmacopoeia 
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(BP)), potassium dihydrogen phosphate (EMPROVE bio, Ph. Eur., BP, United States National 

Formulary (NF)) and the fuming hydrochloric acid 37% (EMPROVE bio, Ph. Eur, BP, Japanese 

Pharmacopoeia (JP)) were purchased from Merck KGaA, Darmstadt, Germany. Ethanol 96% (v/v) 

and sodium chloride (NaCl, AnalaR NORMAPUR) were obtained from VWR Chemicals, Darmstadt, 

Germany. Tris(hydroxymethyl)aminomethane (Tris, Trizma® base, purity ≥99.9%), DL-

Dithiothreitol (DTT, purity ≥98%), Trifluoroacetic acid (ReagentPlus®, 99%) and fluorescein 

isothiocyanate (suitable for protein labeling) were purchased from Sigma Aldrich GmbH, 

Steinheim, Germany. Guanidinium thiocyanate (for molecular biology) and 4-(2-Hydroxyethyl)-1-

piperazine-1-ethanesulfonic acid (HEPES, for molecular biology) were purchased from AppliChem 

GmbH, Darmstadt, Germany. N-Succinimidyl-p-Formylbenzoate (SFB, Purity ≥98%) and 3-(2-

Pyridyldithio)propionic Acid N-Succinimidyl Ester (SPDP, Purity ≥97%) were obtained from Santa 

Cruz Biotechnology, Dallas, TX, USA. The peptide with the sequence SIINFEKL (Ova257-264, purity 

≥95%) was purchased from AnaSpec, Fremont, CA, USA. The chemically modified peptides 

SIINFEKL-hydrazide (Charge# 2811M05, Purity 97.7%) and (3-nitro-2-pyridylthio)-cysteine-

SIINFEKL ((Npys)-CSIINFEKL) (Charge# 2811M04, Purity 98.6%) were purchased from 

peptides&elephants GmbH, Potsdam, Germany. Acetonitrile (HPLC Grade) was obtained from 

Fisher Scientific, Waltham, MA USA. Dimethyl sulfoxide (DMSO, purity ≥99%) was purchased from 

Grüssing GmbH Analytika, Filsum, Germany. Ammonium sulfate (purity ≥99%) was obtained from 

Bernd Kraft GmbH, Duisburg, Germany. The Endotoxin cartridges (Endosafe-PTS® Cartridges 

PTS20005F, Sensitivity 0.005 EU/ml) were purchased from Charles River, Lyon, France. 

2.2. Methods 

2.2.1. Coupling of SIINFEKL to eADF4(C16) protein 

Two different possibilities of coupling the SIINFEKL peptide to the eADF4(C16) protein were 

evaluated. The first one was coupling the peptide in solution prior to particle preparation and the 

second one was coupling after particle preparation to the fabricated eADF4(C16) protein particles.  

2.2.2. Coupling of SIINFEKL to eADF4(C16) protein in solution 

eADF4(C16) protein was dissolved in a 6 M guanidinium thiocyanate solution and dialyzed against 

a 50 mM HEPES solution pH 7.5 for 24 hours. The protein solution was adjusted to a concentration 

of 10 mg/ml for modification and activation of the eADF4(C16) protein. A 10-fold molar excess of 

either a 100 mM N-Succinimidyl-p-Formylbenzoate (SFB) in dimethyl sulfoxide (DMSO) solution or 

a 100 mM 3-(2-Pyridyldithio)propionic Acid N-Succinimidyl Ester (SPDP) in DMSO solution was 
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added to eADF4(C16) under mild agitation (Polymax 1040, Heidolph Instruments GmbH, 

Schwabach, Germany). After 6 hours reaction at room temperature, the resulting modified 

eADF4(C16) protein was purified by dialysis. The SFB modified eADF4(C16) protein was dialyzed 

against a 50 mM HEPES buffer pH 6.0. After dialysis, the eADF4(C16)-SFB protein was coupled with 

the SIINFEKL-hydrazide peptide in a molar ratio of 1:2. The SIINFEKL-hydrazide peptide was 

dissolved in a 20% DMSO in HPW solution and added dropwise to the activated eADF4(C16)-SFB 

protein. Coupling of SIINFEKL-hydrazide to eADF4(C16)-SFB was allowed to proceed for 13 hours 

under mild agitation. The solution was used for particle preparation of eADF4(C16)-hydrazone-

SIINFEKL conjugate particles without further purification. 

The SPDP modified eADF4(C16) protein was dialyzed against a 50 mM HEPES buffer pH 8.0. The 

purified eADF4(C16)-SPDP protein was reduced by the addition of a 50-fold excess of DL-

Dithiothreitol (DTT) for 15 minutes. Remaining DTT was removed by an additional dialysis step 

against a 50 mM HEPES buffer pH 8.0 for 24 hours. The resulting eADF4(C16)-SH protein was 

coupled with the (Npys)-CSIINFEKL peptide in a molar ratio of 1:2. The (Npys)-CSIINFEKL peptide 

was dissolved in a 20% DMSO in HPW solution and added dropwise to the activated eADF4(C16)-

SH protein. Coupling of (Npys)-CSIINFEKL to eADF4(C16)-SH was allowed to proceed for 13 hours 

under mild agitation. The solution was used for particle preparation of eADF4(C16)-Disulfide-

SIINFEKL conjugate particles without further purification. 

2.2.3. Particle preparation 

Either a 2 M potassium phosphate solution pH 8.0 or a 4 M ammonium sulfate solution were used 

as precipitating salt solutions. The syringe pump system and both the protein solution and the 

precipitating salt solution were pre-tempered at 80°C. The pumps were connected via a T-shape 

mixing element and flowrate was set to 50 ml/min. Resulting particles were centrifuged and 

washed with HPW three times. The concentration of the final eADF4(C16) particle suspension was 

determined gravimetrically. 

2.2.4. Coupling of SIINFEKL to eADF4(C16) protein particles 

eADF4(C16) protein was dissolved in a 6 M guanidinium thiocyanate solution and dialyzed against 

a 10 mM TRIS/HCl solution pH 8.0 for 24 hours. The protein solution was adjusted to a 

concentration of 1 mg/ml. Either a 2M potassium phosphate solution pH 8.0 or a 4 M ammonium 

sulfate solution were used as precipitating salt solutions. The syringe pump system and both 

protein solution and precipitating salt solution were pre-tempered at 80°C. The pumps were 

connected via a T-shape mixing element and the flowrate was set to 50 ml/min. Resulting particles 
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were centrifuged and washed with HPW three times. The concentration of the final eADF4(C16) 

particle suspension was determined gravimetrically and adjusted to a concentration of 10 mg/ml 

with a 50 mM HEPES buffer pH 7.5 for modification of the eADF4(C16) protein particles. A 10-fold 

molar excess of either a 100 mM SFB in DMSO solution or a 100 mM SPDP in DMSO solution was 

added to the eADF4(C16) particles under mild agitation (Polymax 1040, Heidolph Instruments 

GmbH, Schwabach, Germany). After 6 hours reaction at room temperature, the resulting modified 

eADF4(C16) protein particles were centrifuged and washed with 50 mM HEPES buffer for three 

times.  

In case of the SFB modified eADF4(C16) particles, the pH value of the HEPES buffer was 6.0. After 

purification by centrifugation, the eADF4(C16)-SFB particles were coupled with the SIINFEKL-

hydrazide peptide in a molar ratio of 1:2. The SIINFEKL-hydrazide peptide was dissolved in a 20% 

DMSO in HPW solution and added dropwise to the activated eADF4(C16)-SFB particles. Coupling 

of SIINFEKL-hydrazide to the eADF4(C16)-SFB particles was allowed to proceed for 13 hours under 

mild agitation. Finally, uncoupled peptide was removed from the eADF4(C16)-hydrazone-SIINFEKL 

particles by centrifugation and washing with HPW. 

The SPDP modified eADF4(C16) particles were washed with a HEPES buffer at pH 8.0. The 

eADF4(C16)-SPDP particles were reduced by the addition of a 50-fold excess DTT for 15 minutes. 

Residual DTT was removed by an additional centrifugation and washing step with 50 mM HEPES 

buffer pH 8.0. The resulting eADF4(C16)-SH particles were coupled with the (Npys)-CSIINFEKL 

peptide in a molar ratio of 1:2. The (Npys)-CSIINFEKL peptide was dissolved in a 20% DMSO in HPW 

solution and added dropwise to the activated eADF4(C16)-SH particle suspension. Coupling of 

(Npys)-CSIINFEKL to eADF4(C16)-SH was allowed to proceed for 13 hours under mild agitation. The 

resulting eADF4(C16)-Disulfide-SIINFEKL particles were centrifuged and washed with HPW to 

remove uncoupled (Npys)-CSIINFEKL peptide. The concentrations of the final eADF4(C16)-

SIINFEKL particle suspensions were determined gravimetrically. 

Additionally, particle intermediates after modification by SFB or SPDP without further SIINFEKL 

coupling were centrifuged and washed with HPW to analyze the impact of the modification on the 

eADF4(C16) particle size. 

2.2.5. Particle preparation of chemically coupled SIINFEKL for in vitro studies 

After evaluation of the two different coupling schemes, a procedure for particle preparation of 

chemically coupled SIINFEKL particles for in vitro studies was established. The coupling in solution 

was chosen for the particle preparation of eADF4(C16)-hydrazone-SIINFEKL particles, whereas the 
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coupling at final particles was selected for eADF4(C16)-Disulfide-SIINFEKL particles. Both 

preparation methods were also modified to result in endotoxin free particles. In general, the 

eADF4(C16) protein powder was autoclaved as described before. After steam sterilization, the 

autoclaved eADF4(C16) powder was dissolved in a 6 M guanidinium thiocyanate solution. 

For coupling in solution, the eADF4(C16) protein solution was dialyzed against a 50 mM HEPES 

solution pH 7.5 for 24 hours. The protein solution was adjusted to a concentration of 10 mg/ml 

for modification and activation of the eADF4(C16) protein. A 10-fold molar excess of a 100 mM 

SFB in DMSO solution was added to the eADF4(C16) protein under mild agitation (Polymax 1040, 

Heidolph Instruments GmbH, Schwabach, Germany). After 6 hours reaction at room temperature, 

the resulting modified eADF4(C16) protein was purified by dialysis. The SFB modified eADF4(C16) 

protein was dialyzed against a 50 mM HEPES buffer pH 6.0. After dialysis, the eADF4(C16)-SFB 

protein was coupled with the SIINFEKL-hydrazide peptide in a molar ratio of 1:2. The SIINFEKL-

hydrazide peptide was dissolved in a 20% DMSO in HPW solution and added dropwise to the 

activated eADF4(C16)-SFB protein. Coupling of SIINFEKL-hydrazide to eADF4(C16)-SFB was 

allowed to proceed for 13 hours under mild agitation. After incubation, the eADF4(C16)-

hydrazone-SIINFEKL protein solution was filtered first with a 0.2 µm polyethersulfone (PES) filter 

(VWR International, Radnor, USA) and subsequently filtered with a pre-flushed Mustang® E filter 

for endotoxin depletion. The endotoxin values were tested using the Endosafe®-PTS reader after 

dilution 1:40 with HPW. This eADF4(C16)-hydrazone-SIINFEKL protein solution was further 

adjusted to a concentration of 1.0 mg/ml for particle preparation with an endotoxin free 50 mM 

HEPES buffer pH 6.0. A 2 M potassium phosphate solution pH 8.0 was used for particle preparation 

in the syringe pump system at 80°C. The flow rate was set to 50 ml/min. Both cylinders of the 

syringe pump system and the Sonopuls HD 3200 sonotrode were depyrogenized by 70% (v/v) 

ethanol over 48 hours prior to particle preparation. The particle suspensions were centrifuged and 

washed with HPW three times after fabrication. 

For coupling the particles, dissolved eADF4(C16) protein was dialyzed against an endotoxin free 

20 mM HEPES solution pH 8.0 at 2-8°C for 24 hours. After dialysis, centrifugation and filtration, 

the solution was adjusted to a concentration of 2.0 mg/ml with endotoxin free 10 mM TRIS/HCl 

solution pH 8.0. The dialyzed eADF4(C16) protein solution was first filtered with a 0.2 µm PES filter 

and subsequently filtered with a pre-flushed Mustang® E filter. The eADF4(C16) protein solution 

was adjusted to a protein concentration of 1 mg/ml for particle preparation by the syringe pump 

system at 80°C using a flow rate of 50 ml/min and a 4 M ammonium sulfate solution. Both 

cylinders of the syringe pump system and the Sonopuls HD 3200 sonotrode were depyrogenized 
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by 70% (v/v) ethanol over 48 hours prior to particle preparation. The particle suspensions were 

centrifuged at 14,000 rpm and washed with HPW three times after fabrication. The concentration 

of the final eADF4(C16) particle suspension was determined gravimetrically and adjusted to a 

concentration of 10 mg/ml with a 50 mM HEPES buffer pH 7.5 for modification of the eADF4(C16) 

protein particles. A 10-fold molar excess of a 100 mM SPDP in DMSO solution was added to the 

eADF4(C16) particles under mild agitation. After 6 hours reaction at room temperature, the 

resulting eADF4(C16)-SPDP protein particles were centrifuged and washed with 50 mM HEPES 

buffer pH 8.0 for three times. The eADF4(C16)-SPDP particles were reduced by the addition of a 

50-fold excess of DTT for 15 minutes. Residual DTT was removed by an additional centrifugation 

and washing step with 50 mM HEPES buffer pH 8.0. The resulting eADF4(C16)-SH particles were 

coupled with the (Npys)-CSIINFEKL peptide in a molar ratio of 1:2. The (Npys)-CSIINFEKL peptide 

was dissolved in a 20% DMSO in HPW solution and added dropwise to the activated eADF4(C16)-

SH particle suspension. Coupling of (Npys)-CSIINFEKL to eADF4(C16)-SH was allowed to proceed 

for 13 hours under mild agitation. The resulting eADF4(C16)-Disulfide-SIINFEKL particles were 

centrifuged and washed with HPW to remove uncoupled (Npys)-CSIINFEKL peptide. The 

concentrations of the final eADF4(C16)-SIINFEKL particle suspensions were determined 

gravimetrically. 

2.3. Analytical methods 

2.3.1. Dynamic light scattering (DLS) 

Particle size and size distribution of submicroparticles were measured as described in chapter 2. 

2.3.2. Zeta potential 

The zeta potential of eADF(C16) particles was measured as described in chapter 2. 

2.3.3. Scanning electron microscopy (SEM) 

SEM measurements of eADF4(C16) particle suspensions were conducted as described in 

chapter 2. 

2.3.4. RP-HPLC Analysis - Coupling Efficiency 

The conjugated particles were analyzed to determine the coupling efficiency of SIINFEKL. The SFB 

coupled particles were diluted with HPW to a defined particle concentration. Hydrochloric acid 

was added to a final concentration of 0.5 M for the release of SFB coupled SIINFEKL. The SPDP 
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coupled particles were diluted with HPW to a defined particle concentration. A 1 M DTT stock 

solution was added to the particles to a final concentration of 10 mM DTT. Both particle 

suspensions were incubated in a Thermomixer comfort (Eppendorf, Hamburg, Germany) for 

30 minutes and 500 rpm at room temperature. Particle suspensions were centrifuged two times 

at 14,000 rpm (SIGMA 4K15, Sigma Laborzentrifugen, Osterode am Harz, Germany) to obtain the 

supernatant with the released SIINFEKL peptides. 

The supernatant was analyzed by RP-HPLC separation. After centrifugation, 50 µl of the 

corresponding supernatant were separated at 30°C by a reversed phase YMC-Triart C18 column 

(YMC Europe GmbH, Dinslaken, Germany) using a Waters 2695 separations module (Waters 

Corporation, Milford, MA, USA). A gradient with two mobile phases was applied, using water + 

0.1% [m/m] TFA (solvent A) and 100% acetonitrile + 0.1% [m/m] TFA (solvent B). Each run started 

with two minutes of 95% solvent A, and was followed by a linear increase of solvent B from 5% to 

100% over 28 minutes. A five minute washing step with 100% solvent B was used to wash residual 

peptide/protein from the column. The separation run stopped with a five minute equilibration of 

the column at 95% solvent A. The detection was carried out on a Waters UV-Vis detector 2487 

(Waters Corporation, Milford, MA, USA) at wavelengths of 220nm and 280nm. A calibration curve 

of native SIINFEKL, SIINFEKL-hydrazide and (Npys)-CSIINFEKL at concentrations of 12.5, 25, 50 and 

100 µg/ml dissolved in 50% DMSO / 50% water was injected and analyzed. The area of each of the 

peptides in the chromatogram was integrated and used for calculation of calibration curves. To 

avoid false results due to a decrease of the power of the UV-Vis lamp over time, another 

calibration curve was used with concentrations of 10, 20, 30, 50 and 100 µg/ml dissolved in 50% 

DMSO / 50% water for later analysis. The calibration curves were used to calculate the 

concentration of SIINFEKL in the supernatant after integration of the SIINFEKL peaks with 

corresponding retention time. Data analysis was performed with Chromeleon® 6.80 software 

(Dionex GmbH, Germering, Germany). 

 

3. Results and Discussion 

The native eADF4(C16) protein was used as drug delivery platform for the octapeptide OVA257-264 

(SIINFEKL), which is the CD8 epitope of ovalbumin. To realize the idea of a cleavable linker between 

the eADF4(C16) protein particles as drug delivery platform and the SIINFEKL peptide as vaccine 

antigen, a two-step modification and coupling process was necessary. A comparison between the 

introduction of a reductive cleavable disulfide bond and an acid-labile hydrazone bond between 
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the eADF4(C16) protein and the SIINFEKL peptide is outlined in Figure IV-1. The first step of this 

two-step coupling process was a modification and activation of the eADF4(C16) protein by either 

3-(2-Pyridyldithio)propionic Acid N-Succinimidyl Ester (SPDP) or N-Succinimidyl-p-Formylbenzoate 

(SFB). The subsequent coupling as the second step of the process was performed with chemically 

modified SIINFEKL peptides containing either a Cys(Npys) or a hydrazide group. 

 

Figure IV-1: Schematic illustration of the eADF4(C16) protein modification and SIINFEKL coupling. 
A) Synthesis of a eADF4(C16)-SIINFEKL conjugate with a reductive cleavable disulfide bond. 
B) Synthesis of a eADF4(C16)-SIINFEKL conjugate with an acid-labile hydrazone bond. 

As the complete eADF4(C16) modification and coupling process can be conducted either with the 

eADF4(C16) protein dissolved in solution or with in advance prepared eADF4(C16) protein 

particles suspended in highly purified water (HPW), these two options were compared with 

respect to final particle size and zeta potential. 

First, the impact of the eADF4(C16) protein modification and activation by either SPDP or SFB on 

the particle size and zeta potential has been studied. The eADF4(C16) protein was dialyzed against 

a 50 mM HEPES buffer pH 7.5 for the modification of the eADF4(C16) protein in solution. Another 

portion of the eADF4(C16) protein was taken to fabricate eADF4(C16) protein particles with the 

micromixing approach [34] using a 2 M potassium phosphate solution. The prepared eADF4(C16) 

protein particles were suspended in a 50 mM HEPES buffer pH 7.5 for the modification by SPDP or 

SFB. A 10-fold molar excess of SPDP or SFB dissolved in DMSO was used for the modification of 

the eADF4(C16) protein in solution and the modification of the eADF4(C16) protein particles. After 

6 hours at room temperature, the eADF4(C16) protein in solution was diluted with a 50 mM HEPES 

buffer for the particle preparation process, while the modified eADF4(C16) protein particles were 

centrifuged and washed with HPW to remove the residual SPDP or SFB. After particle preparation 

and purification, the particle size and zeta potential were determined.  
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Figure IV-2: Comparison of the SPDP or SFB modified eADF4(C16) protein particles compared to native, 
unmodified eADF4(C16) protein particles. Modification was either performed in solution or with final 
eADF4(C16) protein particles. 
A) Particle size given as the Z-average and the particle dispersity index (PDI) of eADF4(C16) particles 
prepared at 80°C and at protein concentration of 1.0 mg/ml.  
B) Zeta potential of particles described in A). 

The illustrated results in Figure IV-2 show that both the particle size and zeta potential of all 

modified eADF4(C16) particles do not differ from the unmodified eADF4(C16) particles. The results 

show that the modification step of the eADF4(C16) protein by SPDP or SFB has no effect on the 

resulting particle size. In addition, the modification process of the eADF4(C16) protein either 

dissolved in solution or suspended as particles in HPW shows no differences regarding the particle 

size and zeta potential. While no change of particle size was reported before, Blüm et el. reported 

a significant difference of the zeta potential between non-crosslinked and crosslinked eADF4(C16) 

protein particles [35]. While the zeta potential differed between 6-9 mV between the non-

crosslinked and crosslinked eADF4(C16) protein particles, the cross-linking process had no effect 

on the particle size and surface morphology [35]. 

Secondly, the impact of the coupling between the modified and activated eADF4(C16) protein and 

the chemically modified SIINFEKL peptide was studied. We compared again the impact of the 

coupling process conducted in solution with the coupling to modified eADF4(C16) protein particles 

in suspension. Figure IV-3 shows the final particle size and zeta potential of the spider silk particles 

after the coupling procedure has been performed in solution. The eADF4(C16) protein particles 

were prepared by the micromixing device at a protein concentration of 1 mg/ml and a 

temperature of 80°C. The coupled eADF4(C16)-SIINFEKL proteins were precipitated either with a 

2 M potassium phosphate solution or a 4 M ammonium sulfate solution, resulting in different 

particle sizes. 
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Figure IV-3: Properties of eADF4(C16)-SIINFEKL protein particles after coupling in solution and 
subsequent particle preparation. Preparation was either performed with a 2 M potassium phosphate or 
a 4 M ammonium sulfate solution. 
A) Particle size given as the Z-average and the particle dispersity index (PDI) of eADF4(C16)-SIINFEKL 
particles coupled in solution. 
B) Zeta potential of particles described in A. 

We had already shown that the use of the 4 M ammonium sulfate solution results in smaller 

particles compared to the particles fabricated with a 2 M potassium phosphate solution. More 

important is the fact, that the eADF4(C16)-SIINFEKL particles with the pH-sensitive hydrazone 

bond are remarkably larger than the disulfide linked particles. The particle size of the hydrazone 

linked particles prepared with the 2 M potassium phosphate solution was 581 nm compared to 

379 nm of the disulfide linked particles. The same situation is also apparent for the particles 

prepared with the 4 M ammonium sulfate solution, where the hydrazone linked particles display 

a particle size of 378 nm compared to the disulfide linked particles at a size of 252 nm. These 

results demonstrate the influence of the final coupling step of the SIINFEKL peptide to the 

modified eADF4(C16) protein in solution. Like for the modification studies before, we also 

performed the SIINFEKL coupling to pre-fabricated eADF4(C16) protein particles in suspension to 

understand the coupling process in more detail. At this time, we used differently sized particles 

for the preparation of the hydrazone linked and the disulfide linked particles. In order to evaluate 

the influence of the coupling process on the final particle size, the original particle size of the 

respective unmodified particles was added to the graphs in Figure IV-4.  

Hydrazone 2M PO4

Hydrazone 4M (N
H4)2SO4

Disulfid
e 2M PO4

Disulfid
e 4M (N

H4)2SO4

-35

-30

-25

-20

-15

-10

Hydrazone 2M PO4

Hydrazone 4M (NH4)2SO4

Disulfide 2M PO4

Disulfide 4M (NH4)2SO4

0

100

200

300

400

500

600

700

 

 Z-Average

 PDI

Z
-A

v
e
ra

g
e
 [
n
m

]

0,0

0,2

0,4

0,6

0,8

1,0

 P
D

I

 

 Mean Zetapotential

M
e
a

n
 Z

e
ta

p
o
te

n
ti
a
l 
[m

V
]

A B



Chapter IV 

92 

 

Figure IV-4: Properties of eADF4(C16)-SIINFEKL protein particles after coupling the peptide to pre-
fabricated eADF4(C16) protein particles. The eADF4(C16)-SIINFEKL protein particles after coupling are 
compared to the respective unmodified particles. 
A) Particle size given as the Z-average and the particle dispersity index (PDI) of eADF4(C16)-SIINFEKL 
particles.  
B) Zeta potential of particles described in A). 

While the particle size of the disulfide linked eADF4(C16)-SIINFEKL particles is identical to the 

unmodified particles used for the SPDP coupling, the particle size of the hydrazone linked particles 

increased again after coupling from 384 nm to 442 nm. On the contrary, the zeta potential was 

again in the same range for both SIINFEKL coupled and both unmodified eADF4(C16) protein 

particles.  

The success of the chemical linkage of the SIINFEKL molecules to the spider silk carrier was 

evaluated as coupling efficiency (the fraction of SIINFEKL molecules that reacted with the activated 

spider silk protein in %). Coupling efficiency (CE) was determined by cleavage of the coupled 

SIINFEKL peptide from the eADF4(C16) protein particles. Hydrochloric acid was added to a final 

concentration of 0.5 M for SIINFEKL release from the acid-sensitive hydrazone linked eADF4(C16) 

particles. The disulfide linkage between the eADF4(C16) protein and the SIINFEKL peptide was 

cleaved by the addition of a DTT stock solution added to a final concentration of 10 mM DTT. After 

incubation for 30 minutes, the supernatants were analyzed by RP-HPLC for the amount of released 

SIINFEKL peptide. Table IV-1 shows the results of the coupling efficiency determination after RP-

HPLC analysis.  
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Table IV-1: Coupling efficiencies of the eADF4(C16)-SIINFEKL particles after cleavage of the SIINFEKL 
peptide from the eADF4(C16) protein particle and analysis by RP-HPLC. 

Coupling conditions Coupling efficiency (CE) 

 Hydrazone linkage Disulfide linkage 

Coupling in solution 42.0 - 80.3% 17.9 - 24.9% 

Coupling to particles 15.3%* 78.9 - 98.9% 

* Due to the low CE, coupling to particles using the hydrazone linker was performed n=1. 

According to the data in Table IV-1, coupling of SIINFEKL peptide to the eADF4(C16) protein via 

the hydrazone linkage is more effective if the coupling process is conducted in solution. The 

coupling process in solution is favorable in the context of an endotoxin free particle preparation 

process, as the final eADF4(C16) protein solution can be filtered with an endotoxin depletion filter 

directly before the particle preparation. However, the CE of the disulfide coupling in solution is 

three times less effective than the coupling of the SIINFEKL peptide via disulfide linkage to pre-

produced eADF4(C16) protein particles. Although the coupling in solution was favored due to 

above mentioned reasons, disulfide linkage to pre-produced eADF4(C16) protein particles was 

chosen for further activities due to the better CE. 

Because chemically linked eADF4(C16)-SIINFEKL particles are a possible alternative for the 

eADF4(C16) hybrid protein particles containing a cathepsin cleavable linker sequence (see 

chapter 6), chemically linked eADF4(C16)-SIINFEKL particles were prepared for in vitro studies. The 

in vitro studies were planned to show the performance of the chemically linked eADF4(C16)-

SIINFEKL particles compared to the eADF4(C16) hybrid protein particles in terms of cytotoxicity, 

immunogenicity and T cell activation. Figure IV-5 shows the particle size, the zeta potential and 

SEM micrographs of chemically linked eADF4(C16)-SIINFEKL particles used for in vitro studies. 
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Figure IV-5: Properties of the eADF4(C16)-SIINFEKL protein particles prepared for in vitro studies. 
A) Particle size given as the Z-average and the particle dispersity index (PDI) of eADF4(C16)-SIINFEKL 
particles prepared by hydrazone linkage or disulfide linkage. Native eADF4(C16) protein particles serve 
as control. 
B) Zeta potential of particles described in A). 
C) SEM micrographs of particles described in A) at a magnification of 9,500x. The particles were dried 
under vacuum and carbon sputtered before measurement. 

Hydrazone linked eADF4(C16)-SIINFEKL particles were prepared by coupling in solution, resulting 

in a final particle size of 387.8 nm. A particle size of 249.8 nm resulted from the coupling of pre-

produced particles by disulfide linkage, which is close to the particle size of 244.5 nm of the native 

eADF4(C16) protein control particles (Figure IV-5 A). The zeta potential of the three particle types 

was in the same range (Figure IV-5 B). The hydrazone linked and the disulfide linked particles are 

shown in direct comparison to native eADF4(C16) protein control particles in the SEM micrographs 

in Figure IV-5  C. Except for the different particle size, there are no differences observable between 

the linked and unmodified control particles. 

The particle batches shown in Figure IV-5 were sent to our cooperation partner Prof. Dr. Carole 

Bourquin at the University of Fribourg, Switzerland for further in vitro and in vivo tests. Inès Mottas 

performed in vitro pre-tests comparing the chemically linked eADF4(C16)-SIINFEKL particles with 

the eADF4(C16) hybrid protein particles containing the cathepsin S and cathepsin B cleavable 

linker sequences during October 2014 to November 2014. I did not participate in the investigation 
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of the following experiments. All in vitro results and graphs (Figure IV-6 and Figure IV-7) were 

compiled by Inès Mottas. She shared the data for discussion and conclusion of the current chapter. 

Due to the fact that the hydrazone linked particles are not producible in the same size range like 

the other eADF4(C16) protein particles using the endotoxin free, all-aqueous preparation process, 

these particles were not used in further studies (see chapter 6 for in vivo experiments using 

particles with cathepsin cleavable linker). Additionally, the hydrazone linked eADF4(C16)-SIINFEKL 

particles showed an intrinsic immunogenicity, which was not seen for the eADF4(C16) hybrid 

protein particles (Figure IV-6). 

 

Figure IV-6: Cell viability assessed by the MTT assay following 24 hours exposure of different eADF4(C16) 
particles on J774 macrophages. Data are shown as % viability compared to the positive control and are 
presented as mean ± SD of three separate experiments. Asterisks (**, P<0.01; ***, P<0.001) indicate 
significant differences between treated groups using two-way ANOVA followed by Tukey’s multiple 
comparison test. 

Moreover, the hydrazone linked eADF4(C16)-SIINFEKL particles showed no antigen presentation 

on the major histocompatibility complex I (MHC-I) on dendritic cells (data not shown). 

On the contrary, disulfide linked eADF4(C16)-SIINFEKL particles showed better results in the MTT 

test (Figure IV-6). However, the disulfide linked eADF4(C16)-SIINFEKL particles were unable to 

prime a T cell proliferation after 96 hours of incubation (Figure IV-7). 
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Figure IV-7: The disulfide linked eADF4(C16)-SIINFEKL particles are not effective to induce SIINFEKL-
dependent in vitro T-cell proliferation. BMDC (5x10 4 ells /well) were cultured with spider silk particles at 
50 µg NP/mL. R848 (0.25ug/mL) was used as adjuvant for BMDC activation. After 24 hours of incubation, 
CFSE-labelled CD3+CD8+ OT-I cells (105 cells /well) were added. After 3 days of co-culture, the cells were 
analyzed by flow cytometry. Percentage of proliferating cells within the T cell population (CD3+CD8+). 
Each bar represents mean ± SEM of 2 independent experiments performed in quadruplicate. Asterisks 
(**, P<0.01; ***, P<0.001) indicate significant differences between R848-treated groups using two-way 
ANOVA followed by Tukey’s multiple comparison test. 

 

4. Conclusion 

The possibility to load the SIINFEKL antigen on eADF4(C16) protein particles using two different 

cleavable linkers was demonstrated in this study. It was shown, that the modification of the 

eADF4(C16) protein had no effect on the resulting particle size or zeta potential. However, the 

subsequent coupling of the chemically modified SIINFEKL-hydrazide peptide had an impact on the 

resulting particle size. Although coupling was evaluated with both the dissolved eADF4(C16) 

protein in solution and the pre-produced eADF4(C16) protein particles in suspension, the resulting 

particle size of the hydrazone linked particles was larger than the control particles. At the same 

time, the comparison of dissolved eADF4(C16) protein in solution and pre-produced eADF4(C16) 

protein particles in suspension revealed differences in the CE. 

While the hydrazone linked eADF4(C16)-SIINFEKL particles displayed a higher CE in the dissolved 

state, the disulfide linkage had to be conducted to pre-produced eADF4(C16) protein particles in 

order to achieve an acceptable CE. Further studies might be able to optimize the coupling in 

solution with respect to different parameters like the conjugation buffer, temperature or time 

[36]. 

The in vitro results shared by Inès Mottas showed a poor performance of the chemically linked 

eADF4(C16)-SIINFEKL particles compared to the eADF4(C16) hybrid protein particles. Therefore, 
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we can support the statement of Wohlrab et al. to preferably use the genetically modified 

eADF4(C16) protein for further tests [37]. However, if the pH-sensitive or reductive cleavable 

character of a linker is of special interest, chemical coupling can be performed with the 

eADF4(C16) protein and the model peptide SIINFEKL. 
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V. HYBRID EADF4(C16) PROTEIN PARTICLES DESIGNED FOR A MODERN 

VACCINATION APPROACH (FIRST GENERATION) 

1. Introduction 

More than 90 years ago, Ramon discovered the immunostimulatory mode of action of several 

compounds on the antitoxin level of diphtheria and tetanus [1]. Since then, aluminum salts (alum) 

have been often used as immunostimulatory adjuvants in vaccine formulations [2]. Adjuvants are 

commonly required in several vaccine formulations to stimulate a sufficient immune response [3]. 

The need to artificially boost the innate immune system became more important with the 

introduction of the highly purified subunit vaccines [3]. These novel vaccines contain only parts of 

the whole microorganisms and display an increased safety profile, coming along with the lack of 

immunogenicity [4]. Alum has been the only approved immunostimulatory adjuvant on the 

market for a long time [5]. Meanwhile, only few adjuvants have been approved either in Europe 

and/or in the United States of America, which include MF59, AS03 and AF03 (all oil-in-water 

emulsions), virosomes and AS04 (monophosphoryl lipid A (MPL) in combination with alum) [6]. 

Due to the high safety requirements for adjuvants used for human administration, several 

potential adjuvants failed to show the required lack of toxicity for approval [7]. Additionally, alum 

is not suitable for use in frozen vaccine formulations and does not induce a cytotoxic T cell 

response, which is required for the immunization against intracellular pathogens [7]. In addition 

to the previously mentioned immunostimulatory adjuvants, another type of adjuvant has been 

described in literature. O'Hagan et al. differentiated adjuvants with only immunostimulatory 

effects (like MPL or CpG) to those acting as particulate delivery systems for antigens [8]. The class 

of particulate delivery systems includes micro- and nanoparticles, emulsions, immunostimulatory 

complexes (ISCOMs), virosomes and liposomes [9]. Using particulate delivery systems has 

advantages such as an improved antigen stabilization [10] or targeting specific immune cells, 

thereby enhancing the immune response [11]. MF59 (a squalene oil-in-water emulsion) was 

approved in Europe in 1997 and is one representative for particulate delivery systems [8]. The 

efficacy of particulate delivery systems has been reported in several publications and reviews [12–

14]. Various polymers have already been used as carriers for antigens in several studies, 

demonstrating the ability to produce a safe and effective delivery system applicable for 

vaccination. In this manner, non-biodegradable particles consisting of gold [15] and 
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polystyrene [16] as well as biodegradable polymer particles consisting of alginate [17], 

chitosan [18], gelatin [19] and PLGA [20] have been used. The latter one offer the advantage of 

degradation over time within the body, thereby causing no problems in terms of regulatory 

aspects for the administration to humans [9]. The benefit of all particulate delivery systems is the 

possibility to be designed and adjusted for various tasks. The size and surface charge of polymer 

particles can be modified to achieve a targeted antigen delivery to APCs [10]. This approach also 

allows an activation of proliferating T cells which can be used for an anti-tumoral therapy [10]. 

Furthermore, nano- and microparticles can be loaded with antigen and immunostimulatory 

adjuvant for a co-administration to the same immune cells [9]. Besides simple mixing of the 

antigen with an adjuvant system, Oyewumi et al. described three methods for an antigen loading 

[21]. Adsorption of the antigen to the surface of the adjuvant is a relatively simple technique [21]. 

Aluminum based formulations adsorb antigens in a reversible manner, allowing the adjuvant to 

diffuse away after administration [3]. Encapsulation or entrapment into the polymer matrix during 

manufacturing is a second procedure for antigen loading [21]. Although this method can lead to 

antigen depots for a sustained release [22], the antigen is exposed to the harsh conditions 

commonly applied during particle preparation [9]. Moreover, the release of the antigen is 

dependent of the polymer matrix degradation [23]. In case of the PLGA based delivery systems, 

the acidic hydrolysis products can lead to a damage of the entrapped antigen [24]. The third 

described antigen loading method is chemical conjugation to the polymer [21]. For example, 

chemical linkage can be designed to obtain a desired, pH dependent release profile with an 

intracellular removal of the antigen [25]. Although the chemical conjugation is a feasible tool for 

the preparation of tunable vaccines, the risk of losing certain epitopes of the antigen during 

conjugation is high [21]. Furthermore, all mentioned loading methods require an additional step 

during or after particle preparation. We present in this study an alternative approach of an antigen 

loaded particle delivery system based on the recombinant spider silk protein eADF4(C16). The 

possibility to further modify recombinantly produced spider silk proteins has already been shown 

by several authors. Wohlrab et al. added the integrin recognition sequence RGD genetically to the 

eADF4(C16) spider silk protein to form a new hybrid protein [26]. The proliferation rate of attached 

fibroblasts was significantly improved by the addition of the RGD motif. Also, Gomes et al. formed 

a chimeric spider silk protein by the addition of an antimicrobial peptide sequence [27]. The 

antimicrobial activity of the added peptide sequences was demonstrated as well as the 

preservation of the spider silk’s secondary structure, which is important for the material 

performance and the stability. 
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The aim of this study was to characterize the properties of an eADF4(C16)-antigen hybrid protein. 

We used the CD8 epitope of ovalbumin (OVA), OVA257-264 (SIINFEKL), for future applicability of the 

system for vaccination. The peptide sequence of the used epitope was attached either on the C-

terminal, the N-terminal or at the C- and N-terminal part of the native eADF4(C16) protein, 

resulting in three eADF4(C16) hybrid spider silk proteins. The influence of the added epitope on 

the particle forming behavior, the secondary structure and the thermal stability was assessed in 

this study. Additionally, cellular uptake studies were conducted with eADF4(C16) hybrid spider silk 

protein particles of low endotoxin level to examine their in vitro behavior. Some formulations 

containing eADF4(C16) hybrid protein particles of low endotoxin level were shipped to the group 

of Prof. Dr. Carole Bourquin at the University of Fribourg, Switzerland for further in vitro 

experiments, addressing the antigen presentation of dendritic cells. 

 

2. Materials and methods 

2.1. Materials 

2.1.1. Recombinantly produced spider silk protein eADF4(C16) and engineered eADF4(C16) 

hybrid protein 

The spray dried eADF4(C16) protein was provided by AMSilk GmbH (Martinsried, Germany). The 

properties of the native eADF4(C16) protein have been described earlier. The engineered 

eADF4(C16) hybrid proteins maintain the same basic framework of the module C protein like the 

native eADF4(C16) protein. In cooperation with the group of Prof. Dr. Carole Bourquin and the 

group of Prof. Dr. Thomas Scheibel, a model antigen from the egg white protein ovalbumin was 

selected. The CD8 epitope of OVA, OVA257-264 (SIINFEKL), was fused to the eADF4(C16) protein 

framework for the vaccination studies. SIINFEKL has a molecular weight of 963 Da and is 

commonly used in vaccination studies [28, 29]. The SIINFEKL sequence was fused to the 

eADF4(C16) framework on the N-terminal, at the C-terminal and both at the N- and C-terminal (bi-

terminal) end of the eADF4(C16) protein. The molecular weight did not change dramatically, as no 

T7-TAG was used for these hybrid proteins (first generation). The N-terminal hybrid protein has a 

molecular weight of 47,390 Da and the C-terminal hybrid protein has a molecular weight of 

47,464 Da. Both proteins have a theoretical isoelectric point (pI) of 3.45. The bi-terminal hybrid 

protein displays a molecular weight of 48,898 and a pI of 3.62. The genetic modification of the 

spider silk proteins was realized at the group of Prof. Dr. Thomas Scheibel at the University of 
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Bayreuth. The production in E. coli and downstream processing was performed at AMSilk GmbH. 

The final protein was spray dried at the laboratories of AMSilk to a fairly free-flowing powder with 

a white color. An extinction coefficient of 46,400 M-1*cm-1 at 276 nm was used for the 

concentration determination by UV-Vis-spectroscopy. 

2.1.2. Chemicals and reagents 

Highly purified water (HPW) used for this study was generated by a purelab® device (ELGA 

LabWater, Celle, Germany). Sodium hydroxide solution (1 mol/L, EMPROVE® bio), di-potassium 

hydrogen phosphate (EMPROVE bio, European Pharmacopoeia (Ph. Eur.), British Pharmacopoeia 

(BP)), potassium dihydrogen phosphate (EMPROVE bio, Ph. Eur., BP, United States National 

Formulary (NF)) and fuming hydrochloric acid 37% (EMPROVE bio, Ph. Eur, BP, Japanese 

Pharmacopoeia (JP)) were purchased from Merck KGaA, Darmstadt, Germany. Ethanol 96% (v/v) 

and sodium chloride (NaCl, AnalaR NORMAPUR) were obtained from VWR Chemicals, Darmstadt, 

Germany. Tris(hydroxymethyl)aminomethane (Tris, Trizma® base, purity ≥99.9%), Trizma® base 

(cell culture tested, ≥99.9%), Hoechst 33258 solution, fluorescein isothiocyanate (suitable for 

protein labeling) and 4% paraformaldehyde solution were purchased from Sigma Aldrich GmbH, 

Steinheim, Germany. Guanidinium thiocyanate (for molecular biology) and 4-(2-Hydroxyethyl)-1-

piperazine-1-ethanesulfonic acid (HEPES, for molecular biology) were purchased from AppliChem 

GmbH, Darmstadt, Germany. Fetal bovine serum (FKS), L-Glutamine and Phosphate buffered 

saline (PBS) were purchased from Biochrom (Berlin, Germany). Penicillin/Streptomycin solution 

(100x) was obtained from PAA Laboratories (Pasching, Austria). Endotoxin cartridges (Endosafe-

PTS® Cartridges PTS20005F, Sensitivity 0.005 EU/ml) were purchased from Charles River, Lyon, 

France. 

2.2. Methods 

2.2.1. Preparation of eADF4(C16) hybrid protein particles 

The preparation of eADF4(C16) hybrid protein particles was performed using a preparation 

technique by a micromixing system established for the native eADF4(C16) described previously 

[30]. The eADF4(C16) hybrid protein powders were dissolved in a 6 M guanidinium thiocyanate 

solution and subsequently dialyzed against a 10 mM Tris/HCl solution at 2-8°C for 24 hours. A 

dialysis membrane with a molecular weight cut-off of 8000 Da (Spectrum Laboratories, Rancho 

Dominguez, USA) was used. After dialysis, the solution was centrifuged and filtered through a 

0.2 µm polyethersulfone (PES) filter (VWR International, Radnor, USA). Concentrations of the 
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eADF4(C16) hybrid proteins in solution were determined by an Agilent 8453 UV-Vis 

spectrophotometer (Agilent, Waldbronn, Germany) using a molar extinction coefficient of 

eADF4(C16) hybrid protein at 276 nm (ε = 46,400 M-1*cm-1). This solution was further adjusted to 

concentrations between 0.5-1.0 mg/ml for particle preparation with a filtered 10 mM Tris/HCl 

solution. Both cylinders of the syringe pump system (Model 100 DX and Series D pump controller, 

Teledyne Isco, Lincoln, USA) were filled with pre-tempered eADF4(C16) solution and pre-

tempered 2 M potassium phosphate solution of 60 - 80°C. The syringe pump cylinders were 

jacketed by a bath circulator SC100-A10 (Thermo Scientific, Karlsruhe, Germany) which was 

tempered at 60 - 80°C. The solutions were pumped at a high flow rate of 50 ml/min to a T-shape 

mixing element (inner diameter 0.5 mm, P-727 PEEK tee, Upchurch Scientific, Oak Harbor, USA) 

leading to an outlet tubing (inner diameter 0.5 mm, 1532 PEEK Tubing, Upchurch Scientific, Oak 

Harbor, USA) for suspension collection. The eADF4(C16) hybrid protein particle suspensions were 

subsequently centrifuged at 14,000 rpm (SIGMA 4K15, Sigma Laborzentrifugen, Osterode am 

Harz, Germany) and washed with HPW three times. A two minute ultrasonication (Sonopuls HD 

3200, Bandelin electronic, Berlin, Germany) step completed the particle preparation procedure. 

Particle concentrations in mg/ml were determined gravimetrically after drying the particles under 

vacuum (13 mbar) overnight. 

2.2.2. Preparation of endotoxin depleted eADF4(C16) hybrid protein particles for in vitro 

studies 

The particle preparation process described before was slightly adjusted for endotoxin depleted 

particles. Endotoxin depletion aimed for final endotoxin values below the detection limit of the 

assay, which was 0.1-0.2 EU/mg, depending on the necessary dilution steps. The eADF4(C16) 

hybrid protein powder was suspended with HPW in a glass vial (DIN 10R), closed with a rubber 

stopper and crimped with an aluminum cap. Steam sterilization was performed for 15 minutes at 

121°C in a GTA 50 autoclave (Fritz Gössner, Hamburg, Germany). After cooling down, the 

eADF4(C16) hybrid protein suspension was centrifuged at 10,000 rpm (SIGMA 4K15, Sigma 

Laborzentrifugen, Osterode am Harz, Germany) for 30 minutes and the supernatant discarded. 

The centrifuged eADF4(C16) hybrid protein was dissolved in a 6 M guanidinium thiocyanate 

solution and dialyzed against an endotoxin free 10 mM TRIS/HCl solution pH 8.0 for 24 hours. After 

dialysis, the eADF4(C16) hybrid protein solution was filtered with a 0.2 µm PES filter (VWR 

International, Radnor, USA) and adjusted to a concentration of 2 mg/ml with an endotoxin free 

10 mM TRIS/HCl buffer pH 8.0. Concentrations of the eADF4(C16) hybrid proteins in solution were 

determined by an Agilent 8453 UV-Vis spectrophotometer (Agilent, Waldbronn, Germany) using 
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a molar extinction coefficient of eADF4(C16) hybrid protein at 276 nm (ε = 46,400 M-1*cm-1). 

Subsequently, the eADF4(C16) hybrid protein solution was filtered with a pre-flushed Mustang® E 

filter (Pall GmbH, Dreieich, Germany). About 500 µl of each batch were discarded at the beginning. 

The protein concentration of the filtered eADF4(C16) solution was calculated photometrically at 

276 nm (Agilent 8453 UV-Vis spectrophotometer, Agilent, Waldbronn, Germany). Endotoxin 

values were tested using the Endosafe®-PTS reader after a 20- to 40-fold dilution with HPW. This 

eADF4(C16) hybrid protein solution was further adjusted to a concentration of 1.0 mg/ml for 

particle preparation with an endotoxin free 10 mM Tris/HCl solution pH 8.0. Both cylinders of the 

syringe pump system and the Sonopuls HD 3200 sonotrode were depyrogenized by 70% (v/v) 

ethanol over 48 hours prior to particle preparation. The protein concentration for the particle 

preparation was 1 mg/ml and preparation temperature was 80°C. All other parameters were 

identical with the particle preparation for regular eADF4(C16) hybrid protein particles described 

before. 

2.2.3. Fluorescent labelling 

Labelling of eADF4(C16) protein with fluorescein isothiocyanate (FITC) was performed based on 

the published method by Spieß et al [31] using the terminal amine group of eADF4(C16). The 

eADF4(C16) protein powder was autoclaved as described before. After steam sterilization, the 

autoclaved eADF4(C16) powder was dissolved in a 6 M guanidinium thiocyanate solution but 

dialyzed against an endotoxin free 20 mM HEPES solution pH 8.0 at 2-8°C for 24 hours. After 

dialysis, centrifugation and filtration, the solution was adjusted to a concentration of 2.0 mg/ml 

with endotoxin free 20 mM HEPES solution pH 8.0 for coupling in solution. A 20-fold molar excess 

of FITC (dissolved in DMSO) was added slowly to the eADF4(C16) solution. After addition of FITC, 

the solution was incubated in the dark for three hours. After incubation, the FITC coupled 

eADF4(C16) protein solution was filtered first with a 0.2 µm PES filter (VWR International, Radnor, 

USA) and subsequently filtered with a pre-flushed Mustang® E filter (Pall GmbH, Dreieich, 

Germany). The filtered FITC coupled eADF4(C16) protein solution was adjusted to a protein 

concentration of 1 mg/ml for particle preparation by the syringe pump system at a temperature 

of 80°C. All other parameters were identical with the previously described particle preparation 

process. 

2.2.4. Uptake of eADF4(C16) particles into macrophages 

The uptake of eADF4(C16) particles in J774.A1 macrophages was analyzed with endotoxin 

depleted fluorescently labeled particles. The murine macrophages cell line J774.A1 was obtained 
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from the German collection of Microorganisms and Cell Cultures, Heidelberg. J774.A1 

macrophages were seeded out at 1.5x106 cells / 75 cm² in cell culture flasks (Becton-Dickinson, 

Heidelberg, Germany) and cultivated for 3 days (37°C, 5% CO2) in Dulbecco’s Modified Eagle’s 

Medium (DMEM) with 10% (v/v) heat-inactivated fetal bovine serum (FBS), penicillin 100 I.U./ml 

and streptomycin 100 µg/ml. Cells were harvested at 4.5x107 cells / 75 cm² by addition of 3 ml 

TRIS/HCl buffer and gently tapping the culture flask against a table to detach cells. The cells were 

centrifuged (1,000 rpm, 10 minutes) and washed with DMEM three times. 280 µl of this J774.A1 

macrophages cell suspension was seeded at a concentration of 6x105 cells/ml in DMEM with 10% 

(v/v) heat-inactivated FBS, penicillin 100 I.U./ml and streptomycin 100 µg/ml. After 4 hours 

incubation in 8-well IBIDI µ-slides (IBIDI, Martinsried, Germany), 20 µl of a either a 1 or 2 mg/ml 

eADF4(C16) particle suspension was added in triplicate to the cells. The cells were incubated with 

the eADF4(C16) particles for 45 minutes at 37° or on ice after homogenization by pipetting up and 

down. A negative control using 20 µl highly purified water without eADF4(C16) particles was 

added in parallel to the cells. The particle/cell suspension was washed three times with phosphate 

buffered saline (PBS) and fixed with 4% paraformaldehyde. A cell core staining was applied using 

Hoechst 33258 solution (Sigma-Aldrich, Steinheim, Germany) for 15 minutes. 

2.3. Analytical methods 

2.3.1. Endotoxin testing 

The endotoxin values of eADF4(C16) hybrid protein solutions and particles used for the in vitro 

studies were determined as described in chapter 2. 

2.3.2. Dynamic light scattering (DLS) 

Particle size and size distribution of submicroparticles were measured as described in chapter 2. 

2.3.3. Zeta potential 

The zeta potential of eADF(C16) particles was measured as described in chapter 2. 

2.3.4. Scanning electron microscopy (SEM) 

SEM measurements of eADF4(C16) particle suspensions were conducted as described in 

chapter 2. 
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2.3.5. Differential Scanning Calorimetry (DSC) 

DSC measurements were performed as described in chapter 2. 

2.3.6. Protein secondary structure 

Protein secondary structure of untreated eADF4(C16) submicroparticles was determined as 

described in chapter 2. 

2.3.7. Flow cytometry 

A BD Biosciences FACS Canto II (BD Biosciences, Franklin Lakes, USA) equipped with forward 

scatter, side scatter and fluorescence detector was used for flow cytometry measurements. 

Fluorescently labeled eADF4(C16) particle uptake into J744.A1 macrophages was quantified with 

forward scatter (FSC) sensitivity of 174 volts and green fluorescence detector sensitivity of 385 

volts. A triplicate of 10,000 events each was collected per group. Flow cytometry data was 

analyzed using the Diva (BD Biosciences) software using the mean fluorescence per cell. 

2.3.8. Confocal Microscopy 

The uptake and internalization of fluorescently labeled eADF4(C16) particles (extinction 460/ 

emission 500) into macrophages was examined using a Zeiss LSM 510-NLO confocal microscope 

(Carl Zeiss Microscope systems, Jena, Germany) with identical setting for all groups. A Carl Zeiss 

63x oil immersion objective was used for acquisition. Ultraviolet laser (364 nm), Argon laser 

(488 nm) and HeNe laser (543 nm) were used as excitation wavelengths, corresponding the 

emissions of band pass (BP) 385-470 nm, BP 505-530 nm and long pass (LP) 560 nm, respectively. 

Images were averaged 4 times and scan speed was set to 6. Experiments were performed in 

triplicate. 

 

3. Results and Discussion 

The aim of this study was the development and formulation of a novel antigen delivery system for 

vaccination. The spider silk protein was genetically modified by including a defined antigen 

sequence, the CD8 epitope of OVA SIINFEKL (OVA257-264) either on the C-terminal, the N-terminal 

or at the C- and N-terminal (bi-terminal) part of the native eADF4(C16) protein. The addition of 

the epitope to the eADF4(C16) framework resulted in three different eADF4(C16) hybrid proteins, 

illustrated in Figure V-1. 
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Figure V-1: Schematic illustration of the three eADF4(C16) hybrid proteins. The OVA257-264 epitope 
(illustrated as blue star) was added on the C-terminal, the N-terminal or at the C- and N-terminal (bi-
terminal) part of the native eADF4(C16) framework. 

The addition of the SIINFEKL sequence resulted in a molecular weight of 47,390 Da for the N-

terminal hybrid protein and 47,464 Da for the C-terminal hybrid protein. Both proteins have a 

theoretical isoelectric point (pI) of 3.45. The bi-terminal hybrid protein has a molecular weight of 

48,898 and a theoretical pI of 3.62. In contrast to the native eADF4(C16) protein, no T7-TAG was 

used for all of the eADF4(C16) hybrid proteins. 

Spider silk protein particles were prepared using the well-established micromixing device [30]. To 

assess the particle forming behavior after addition of the SIINFEKL sequence to the native 

eADF4(C16) framework, particles were prepared at two different temperatures and at two 

different protein concentrations. Figure V-2 shows the particle size, given as the Z-average value, 

and the polydispersity index (PDI) of fabricated eADF4(C16) hybrid protein particles. A clear trend 

towards smaller particles was visible when using elevated temperatures during particle 

preparation. Similarly, a decrease of protein concentration resulted in smaller particle sizes. 

SIINFEKL at the N-terminal and C-terminal end – “bi-terminal”

SIINFEKL at the C-terminal end

SIINFEKL at the N-terminal end

HN COOH

H2N CO

COHN

eADF4(C16) framework
CD8+ epitope (SIINFEKL)
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Figure V-2: Particle size of eADF4(C16) hybrid particles prepared at 60°C and 80°C and at protein 
concentrations of 1.0 mg/ml and 0.5 mg/ml, respectively. A clear trend towards smaller particles is visible 
for higher temperature and decreased eADF4(C16) protein concentration. 

These results verify the outcome of previous experiments using the native eADF4(C16) protein, 

where an increase of the process temperature and decrease of the eADF4(C16) protein 

concentration led to the same trends [32]. Another important parameter for the particle stability 

in liquids is the zeta potential. Measurements with an artificial sodium chloride (NaCl) 

concentration of 19 mM resulted in values between -25 to -20 mV (Figure V-3). The results indicate 

good particle stabilization, as repulsion between the negatively charged particles hinders 

aggregation. Moreover, the results are also in good agreement with data of native eADF4(C16) 

protein particles prepared by Lammel et al. [33].  
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Figure V-3: Zeta potential of fabricated eADF4(C16) hybrid protein particles as a function of different 
processing parameters. 

Taking the properties of the new eADF4(C16) hybrid protein particles together and comparing 

them with the native eADF4(C16) particle properties (Figure V-2 and Figure V-3), the addition of 

the SIINFEKL sequence did not seem to not influence the fabrication process or resulting particle 

properties. To determine further aspects of the antigen sequence addition, the proteins secondary 

structure was analyzed by FTIR measurements and the thermal stability of the fabricated particles 

was analyzed by DSC scans.  

Figure V-4 shows the results of the FTIR measurements. The spectra of the amide I region between 

1600 and 1700 cm-1 is displayed in the second derivative. Because the secondary structure of a 

protein is defined by the amino acid sequence of the primary structure, the integration of the 

SIINFEKL sequence could have led to an altered secondary structure. An altered secondary 

structure owns the risk to lead to severe dysfunctions, which was already shown for the Amyloid 

β-peptide years ago [34]. However, initial changes in protein secondary structure are sometimes 

negligible. Jastrzebska et al. investigated the influence of two different downstream purification 

methods on the properties of a spider silk protein [35]. Although they observed significant 

differences in the FTIR spectra of the soluble proteins, secondary structure after forming spider 

silk particles were highly similar. High secondary structure similarity was also detected for the here 

studied eADF4(C16) particles. The eADF4(C16) hybrid protein particles displayed the same high β-

sheet rich structure as the native eADF4(C16) protein particles analyzed along as control (Figure 
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V-4). Neither the process parameters like temperature or protein concentration, nor the site of 

SIINFEKL addition to the eADF4(C16) protein had an influence on the proteins secondary structure. 

A high β-sheet content is important for the eADF4(C16) particle stability, as former studies with 

eADF4(C16) protein based films have shown that a random coil or helical conformation leads to 

water soluble forms [36]. 

 

Figure V-4: Second derivative of the averaged FTIR spectra in the amide I region of eADF4(C16) hybrid 
protein particles prepared at 60°C and 80°C and at protein concentrations of 1.0 mg/ml and 0.5 mg/ml 
compared to native eADF4(C16) particles fabricated at 60°C and a protein concentration of 1 mg/ml as 
control. Data was analyzed with the Bruker OPUS software (version 6.5). 

Figure V-5 shows the thermograms obtained by differential scanning calorimetry (DSC). The DSC 

measurements provided information about the stability of the eADF4(C16) hybrid protein particles 

at elevated temperature. A clearly definable marker in the DSC thermograms was the final 

degradation temperature of the eADF4(C16) particles. The analysis showed that the degradation 

temperature was in a narrow range between 320°C and 322.5°C for all analyzed particles. Once 

again, the modified eADF4(C16) hybrid protein particles did not show a distinguishable profile 

compared to the native eADF4(C16) protein particles used as control. Additionally, the 

degradation temperature of 320°C and 322.5°C is very high compared to the degradation 

temperature of below 300°C for films made with silk proteins from the silkworm Bombyx mori 

[37]. The previously published bimodal degradation behavior of eADF4(C16) material was also 

observable for the new eADF4(C16) hybrid protein particles [38]. The good temperature stability 

shows the unique properties of the eADF4(C16) protein. On the one hand, the proteinaceous 
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properties can be used for the introduction of the SIINFEKL sequence into the primary protein 

structure. On the other hand, the eADF4(C16) material is usable like a polymer, forming different 

morphologies including particles with adjustable properties and good stability. 

 

 

Figure V-5: DSC thermograms of eADF4(C16) hybrid protein particles prepared at 60°C and 80°C and at 
protein concentrations of 1.0 mg/ml and 0.5 mg/ml compared to native eADF4(C16) particles fabricated 
at 60°C and a protein concentration of 1 mg/ml as control. The graph shows the second heating ramp 
after the removal of residual water from the particles. 

A visual examination of the eADF4(C16) hybrid protein particles was carried out using scanning 

electron microscopy (SEM). SEM micrographs of two different magnifications are shown in Figure 

V-6. The micrographs in Figure V-6 show round and uniform particles without visible damage. Due 

to the necessary drying step before the SEM measurements, the particles seemed to aggregate 

during the drying process. The particle size measured by DLS (Figure V-2), however, revealed 

separated particles in the liquid state. No differences of the shape or appearance between the 

different eADF4(C16) hybrid protein particles was observable in the micrographs. Additionally, the 

particle appearance of the eADF4(C16) hybrid protein particles was comparable to that of the 

native eADF4(C16) protein particles [33]. 
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Figure V-6: SEM micrographs of eADF4(C16) hybrid particles. A-C at a magnification of 9,500x and D-E at 
a magnification of 20,000x. A+E: C-terminal eADF4(C16) hybrid particles. B+E: N-terminal eADF4(C16) 
hybrid particles. C+F: Bi-terminal eADF4(C16) hybrid particles. All particles were prepared at 80°C at a 
protein concentration of 1 mg/ml. The eADF4(C16) hybrid particles were dried under vacuum and carbon 
sputtered before measurement. 

Taking these findings together, the newly designed eADF4(C16) hybrid protein particles displayed 

no differences to the native eADF4(C16) protein particles regarding particle size, zeta potential, 

protein secondary structure and thermal stability. To further evaluate the newly designed 

eADF4(C16) hybrid protein particles, uptake studies with J774.A1 macrophages to evaluate an 

active or passive internalization were carried out. Fluorescence labeling of the particles was a 

prerequisite for the particle detection after cellular uptake. We used an adopted coupling strategy 

from Spieß et al. to bind the fluorescence dye to the eADF4(C16) protein in solution [31]. Instead 

of the carboxy-fluorescein-succinimidylester used by Spieß et al., we labeled the eADF4(C16) 

proteins with fluorescein isothiocyanate (FITC). The resulting solutions were subsequently filtered 

with an endotoxin removal syringe filter to remove any endotoxins that may have formed during 

the labeling process. The fluorescein labeled proteins were formed to submicroparticles with the 

micromixing method and compared to non-labeled eADF4(C16) particles. The particle size, zeta 

potential, protein secondary structure and the endotoxin values of the eADF4(C16) native and 

hybrid protein particles, with and without FITC labeling, were analyzed before the start of the 

uptake studies. In Figure V-7, the results from the particle size and zeta potential measurements 

are illustrated. The results demonstrate, that the FITC labeling step prior to particle preparation 

had no influence on the resulting particle size and zeta potential of the native and hybrid 

eADF4(C16) protein particles. The addition of fluorescein to the eADF4(C16) proteins had no 
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influence on the overall particle charge, as the zeta potential of the labeled particles is at the same 

level as for the non-labeled particles. Moreover, we were able to produce four eADF4(C16) particle 

batches without FITC labeling and four batches eADF4(C16) particles with FITC labeling that were 

all in a very narrow size range (Figure V-7 A).  

 

Figure V-7: eADF4(C16) particle properties. A) Particle size given as the Z-average value and the PDI of 
endotoxin depleted eADF4(C16) protein particles, with and without FITC labeling. B) Zetapotential of 
endotoxin depleted eADF4(C16) protein particles, with and without FITC labeling. 

The narrow size range is a prerequisite for the comparability of the uptake studies in macrophages, 

because the particle size affects the extent of internalization into the cells [12]. In addition, the 

previously reported endotoxin depletion process, including autoclaving and endotoxin filtration, 

did not alter the particle size of the eADF4(C16) protein particles (see chapter 2). 

Table V-1 shows the endotoxin values of the intermediate eADF4(C16) protein solutions after 

autoclaving and filtration. Three of the four tested eADF4(C16) solutions were below the detection 

limit of the assay after the necessary dilution with water. The fourth eADF4(C16) solution showed 

an endotoxin value of 0.665 EU/mg protein. The defined threshold of 5.0 EU/kilogram body weight 

by the FDA and EMA [39] would allow an application of 7.5 mg protein per kilogram body weight 

even with the highest endotoxin value of 0.665 EU/mg protein. The intermediate solutions were 

further processed to final eADF4(C16) submicroparticles by precipitation using the syringe pump 

system. All of the final eADF4(C16) particles displayed an endotoxin value below the detection 

limit of the test system, as the particle suspensions had to be diluted 200-fold with water in order 

to recover the spiked endotoxin in the two positive control channels. Thereafter, the final 

endotoxin depleted eADF4(C16) submicroparticles were characterized by FTIR analysis before 

starting the uptake experiments.  
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Table V-1:Endotoxin values of final eADF4(C16) particles and eADF4(C16) proteins in solution after 
applying the endotoxin depletion process.  

Type 
Endotoxin values of final 

eADF4(C16) particles 

Endotoxin values of eADF4(C16) 

solutions after endotoxin filtration 

Native eADF4(C16) <1.00 EU/mg <0.100 EU/mg 

Native eADF4(C16) FITC labeled <1.00 EU/mg - 

C-terminal hybrid <1.08 EU/mg 0.665 EU/mg 

C-terminal hybrid FITC labeled <1.00 EU/mg - 

N-terminal hybrid <1.00 EU/mg <0.102 EU/mg 

N-terminal hybrid FITC labeled <1.00 EU/mg - 

Bi-terminal hybrid <1.00 EU/mg <0.102 EU/mg 

Bi-terminal hybrid FITC labeled <1.00 EU/mg - 

 

 

 

Figure V-8: Second derivative of the averaged FTIR spectra in the amide I region of native and hybrid 
eADF4(C16) protein particles with or without FITC labeling. Data was analyzed with the Bruker OPUS 
software (version 6.5). 

Figure V-8 shows the spectra of native and hybrid eADF4(C16) protein particles in the amide I 

region between 1600 and 1700 cm-1 displayed in the second derivative. The FTIR analysis verifies 

the unchanged properties of the native and hybrid eADF4(C16) protein particles after FITC 

coupling. The analyzed particles prove a β-sheet rich structure, which was already observed for 
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the comparison of native and hybrid eADF4(C16) protein particles without endotoxin depletion 

and FITC coupling (Figure V-4).  

The fabricated and characterized eADF4(C16) protein particles were used for uptake studies in 

J774.A1 macrophages. The aim of the uptake experiment was to characterize the possibility of 

eADF4(C16) particle uptake into macrophages and to assess the route of cellular uptake. 

Macrophages were chosen for this study, because they are a possible target for the eADF4(C16) 

hybrid protein particles designed for vaccination. The macrophages are specialized immune cells 

with a high phagocytosis activity [40]. Consequently, the internalization of fluorescently labeled 

eADF4(C16) protein particles was investigated by flow cytometry. The macrophages were 

incubated with fluorescently labeled eADF4(C16) protein particles at 37°C or 0°C for 45 minutes 

at two different particle concentrations. The incubation at 37°C reflects the regular cell 

metabolism environment of the cells, whereas the incubation at 0°C was chosen to neutralize any 

active uptake process.  

 

Figure V-9: Flow cytometry data of the mean fluorescence intensity of J774.A1 macrophages after 
incubation with eADF4(C16) particles at 37°C and 0°C. The first group of bars represent the results of 
incubation with native eADF4(C16) particles, the second group are C-terminal eADF4(C16) hybrid 
particles, the third group are N-terminal eADF4(C16) hybrid particles and the fourth group are Bi-terminal 
eADF4(C16) hybrid particles. All particles were tested at a high concentration (hc) of 2 mg/ml and at a 
low concentration (lc) of 1 mg/ml. Highly purified water served as negative control (neg). 

The flow cytometry results in Figure V-9 clearly show differences between an active uptake 

mechanism at 37°C and a passive or non-specific uptake at 0°C. The results can only be compared 
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within one eADF4(C16) particle group, as the mean fluorescence intensity per particle was not 

determined prior to the uptake experiments. According to the data, the mean fluorescence 

intensity of the J774.A1 macrophages increased noticeable when the incubation took place at 

37°C, although the effect is more pronounced for the higher particle concentration of 2 mg/ml. 

However, a significant fluorescence signal was still detectable even at the 0°C incubation groups, 

where no active uptake can take place. The CLSM images in Figure V-10 indicated that the particles 

are somehow attached to the macrophages outer cell membrane, which would explain the 

fluorescence signal of the 0°C incubation groups as seen in the flow cytometry results. Images E-

H show the macrophages after incubation with eADF4(C16) protein particles at 0°C. The 

fluorescently labeled eADF4(C16) protein particles were located roundly-shaped around the cell 

membrane, whereas the particles were also located next to the inner cell nucleus after incubation 

at 37°C (images A-D). Due to the fact, that both, the outer cell membrane of the J774.A1 

macrophages and the eADF4(C16) protein particles displayed a negative surface charge, the 

adhesion and internalization of the particles was better than expected. Previous studies have 

already shown that negatively charged particles are internalized in a much lower extent compared 

to positively charged particles in the same size range [41]. Due to the repulsive character of the 

two negative charges, it was unclear whether or not eADF4(C16) particles are taken up into the 

J774.A1 macrophages. 
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Figure V-10: Confocal laser scanning microscopy images of macrophages incubated with eADF4(C16) 
particles. Cell nucleus is stained with Hoechst 33258 (blue), eADF4(C16) particles are coupled with FITC 
(green). All images are showing the incubation of macrophages with the high particle concentration at 
2 mg/ml. (A) Native eADF4(C16) particles at 37°C; (B) C-terminal hybrid particles at 37°C; (C) N-terminal 
hybrid particles at 37°C; (D) Bi-terminal hybrid particles at 37°C; (E) native particles on ice; (F) C-terminal 
hybrid particles on ice; (G) N-terminal hybrid particles on ice; (H) Bi-terminal hybrid particles on ice; (I) 
negative control. 

 

The adhesive character of the eADF4(C16) particles to the outer cell membrane could raise a 

problem for the exact evaluation of internalized particles by flow cytometry analysis, but is 

favorable for the uptake itself. Gao et al. described the nanoparticle endocytosis as a two-stage 

process with a particle adhesion to the cell membrane followed by the internalization process into 

the cell [42]. As hydrophobic nanoparticles are internalized at a higher extent compared to 
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hydrophilic nanoparticles in the same size range [43], the driving force for the adhesion of the 

eADF4(C16) particles to the J774.A1 macrophages cell membrane is most likely the hydrophobicity 

of the eADF4(C16) material [44]. Staining of intracellular acidic organelles will prove the 

internalization and cellular processing of the eADF4(C16) particles. 

The results presented in this chapter encouraged us to further test the in vitro properties of the 

eADF4(C16) hybrid protein particles intended for vaccination. We sent particles prepared for in 

vitro tests (properties see Figure V-7 and Figure V-8) to our cooperation partners Prof. Dr. Carole 

Bourquin and Dr. Tina Herbst (both at the University of Fribourg, Switzerland) for further in vitro 

tests. 

 

All the following results and graphs were compiled by Dr. Tina Herbst during June to August 2013 

using the eADF4(C16) hybrid protein particles described before. I did not participate in the 

investigation of the following experiments and use the shared results just for illustration and 

discussion of the eADF4(C16) hybrid protein particle performance. 

 

Figure V-11: Confocal laser scanning microscopy images of macrophages incubated with FITC labeled 
eADF4(C16) hybrid protein particles for 2 hours. Cell nucleus is stained with DAPI (blue), eADF4(C16) 
hybrid protein particles are coupled with FITC (green), LysoTracker® (red). 
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Figure V-12: Flow cytometry results of Bone Marrow-derived Dendritic Cells (BMDC) incubated for 
24 hours with native and hybrid eADF4(C16) protein particles and SIINFEKL peptide as control. 
(A) Histogram of the experiment with phycoerythrin-A (PE-A) labeled anti-SIINFEKL antibody for the 
detection of the CD8 epitope OVA257-264 SIINFEKL. 
(B) Histogram of immunogenicity detection by evaluation of the CD69 upregulation. 
(C) Histogram of the experiment detecting the major histocompatibility complex class II (MHC II). 

Figure V-11 again shows that eADF4(C16) hybrid protein particles were successfully taken up by 

macrophages. The used LysoTracker® probe gives the additional confirmation that the eADF4(C16) 
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particles are processed by the macrophages and end up in the acidic organelles of the cell like 

endosomes or lysosomes [45]. While lysosomes usually degrade cell’s own as well as foreign 

substances in an acidic pH environment [46], lysosomal uptake can be favorable for a vaccination 

approach [47]. As the CD8 epitope SIINFEKL has to be cleaved from the native eADF4(C16) 

sequence, the uptake of the eADF4(C16) hybrid protein particles into endosomal or lysosomal 

compartments was a success. On the contrary, the results in Figure V-12 A clearly show that the 

SIINFEKL sequence was not recognized when bound to the eADF4(C16) hybrid protein particles. 

This fact alone would not be insufficient for the hybrid design, but Figure V-12 C clearly shows that 

no antigen presentation of eADF4(C16) hybrid protein particles took place. The antigen processing 

from the eADF4(C16) hybrid protein particles might be impaired, because the SIINFEKL sequence 

was not cleaved from the native eADF4(C16) sequence. 

 

4. Conclusion 

We prepared eADF4(C16) hybrid protein particles in the submicron range containing the CD8 

epitope OVA257-264 SIINFEKL. Our results demonstrate that the final particle size is adjustable by 

variations in temperature and protein concentration, resulting in uniform particles with high β-

sheet content and a consistent degradation temperature. The newly designed eADF4(C16) hybrid 

protein particles were compared to the native eADF4(C16) protein particles and no changes of the 

investigated particle properties have been detected. The previously developed endotoxin 

depletion method was successfully utilized for the preparation of the eADF4(C16) hybrid protein 

particles. Coupling of a fluorescence dye to the eADF4(C16) protein was performed as prerequisite 

for the detection after cellular uptake in vitro. The particle preparation method using a 

micromixing unit was finally designed to result in four non-FITC labeled and four FITC-labeled 

particle batches of equal size and low endotoxin content, which were used for in vitro 

experiments. The results of the in vitro experiments pointed into the direction, that eADF4(C16) 

particles were actively internalized into macrophages and processed to endosomal or lysosomal 

compartments. Although the eADF4(C16) hybrid protein particles were taken up by macrophages, 

no antigen presentation took place. Therefore, the epitope on the eADF4(C16) hybrid protein 

particles was either sterically hidden inside the particle matrix or the epitope was generally 

recognized, but cleavage of the epitope from the eADF4(C16) sequence was impossible. Based on 

these findings, adjustments of the hybrid design were performed. Because eADF4(C16) particles 

successfully demonstrated the ability to deliver the antigen into the antigen presenting cells, 
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enzymatically cleavable linkers were used for the second generation eADF4(C16) hybrid proteins 

to facilitate the epitope cleavage from the eADF4(C16) sequence (see chapter 6). 
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VI. HYBRID EADF4(C16) PROTEIN PARTICLES CONTAINING A CLEAVABLE 

LINKER SEQUENCE FOR VACCINATION (SECOND GENERATION) 

1. Introduction 

The promising concept of a eADF4(C16) hybrid protein was redesigned after the in vitro 

experiments had been performed using the first generation eADF4(C16) hybrid protein particles. 

Although these particles were successfully taken up by antigen presenting cells (APCs) like 

macrophages and dendritic cells, the antigen was not cleaved from the eADF4(C16) hybrid protein 

particles, hence no antigen presentation took place. For that reason, the redesign of the second 

generation eADF4(C16) hybrid protein focused on the ability of cleavage at a certain position 

between the eADF4(C16) sequence and the attached antigen. The CD8 epitope OVA257-264 

(SIINFEKL), which has been used in the eADF4(C16) hybrid protein of the first generation, was 

again used as antigen. 

The idea to introduce a cleavable linker between a polymer based carrier and a protein or peptide 

is not new, as several studies already used linkers for the coupling of two molecules [1]. Usually, 

a polymeric carrier for drug delivery is coupled to an active drug molecule [2]. The reasons to 

couple the active drug to a carrier system are different, but can include reduced toxicity after 

coupling the active drug (e.g. doxorubicin) [3] or a targeted drug delivery via coupling to an 

antibody [4]. During the years, several coupling strategies were developed. Soyez et al. reviewed 

several carrier-drug conjugates and listed several linkage options of drugs to macromolecules [5]. 

First, there is the possibility of sulfhydryl linkages, connecting the polymer and the drug via a 

disulfide bond [6]. The release of the linked drug is then achieved by reduction of the disulfide 

bonds in the presence of glutathione or other reductive enzymes [1]. Second, hydrolysis can be 

used for a pH controlled drug release from acid-labile linkages [7]. The two commonly used acid-

labile linkers are cis-aconityl and hydrazone linkages, where the latter one is favored due to the 

higher release rate of the linked drug in a mild acidic environment around pH 5 [1]. The third type 

of linkers used for the attachment of drugs to polymers are enzymatically degradable linkers [5]. 

The intracellular variety of proteolytic enzymes allowed the development of several amino acid 

based linker sequences. In case of the currently approved antibody-drug conjugates, one is using 

a non-degradable linker (trade name Kadcyla®) and the other one uses an enzymatically 

degradable linker (trade name Adcetris®) [8]. All linker types are usable for the linkage of drug 
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molecules after fabrication of the carrier. However, only the enzymatically cleavable linkers are 

usable for the recombinant production of the second generation eADF4(C16) hybrid proteins, 

where the primary structure of the spider silk protein is already containing the sequence of the 

antigen. The finding that first generation eADF4(C16) hybrid protein particles are processed in the 

lysosome after cellular uptake directed the selection of a suitable linker towards a lysosomal 

cysteine protease degradable linker. Lysosomal cysteine proteases are a class of enzymes that 

were believed to unselectively degrade proteins intracellularly after uptake in the lysosome [9]. 

Nowadays, 11 human cathepsins have been identified with different unique properties [10]. Most 

of the cathepsins, including cathepsin S, are endopeptidases. However, cathepsin B enzyme is a 

carboxydipeptidase exhibiting an additional endopeptidase activity [10]. The activation and 

optimal activity of the cathepsins is reached after a mild acidification in the lysosome [9, 11]. In 

the meanwhile, most of the cathepsin enzymes are also associated to processes of the immune 

system and to central functions in cancer regulation [11, 12]. APCs like B cells, dendritic cells and 

macrophages express a various number of different cathepsins, including cathepsin S and 

cathepsin B [11]. Consequently, it is no surprise that previous studies already focused on the 

evaluation of the specific amino acid sequences that are cleaved by different cathepsins [13–15]. 

Gradually, with the development of faster analysis methods and the establishment of peptide 

libraries, the identification of more protease cleavage sites was possible [16]. The information 

gained from these experiments led to the design and development of cathepsin cleavable linker 

sequences [17]. The new cathepsin cleavable linkers were used for the design of molecules for 

cancer treatment [18], vaccination [19] and diagnostics [20]. From all available linker sequences, 

we selected two for the design of the second generation eADF4(C16) hybrid proteins. The first one 

is the cathepsin B cleavable linker with the one letter amino acid code GFLG, which was reported 

to be successfully cleaved from various molecules [3, 4, 18, 21, 22]. The second linker displays the 

amino acid sequence PMGLP, which was recently reported to be selectively cleaved by cathepsin S 

[23–25]. According to Honey et al., cathepsin S plays a crucial role in the antigen presentation in 

vivo [11]. 

In this study, the particle preparation process of the second generation eADF4(C16) hybrid 

proteins was evaluated and further optimized to result in small, uniform eADF4(C16) hybrid 

protein particles. The two newly designed eADF4(C16) hybrid protein particles were subsequently 

incubated with purified cathepsin B and S enzymes to investigate the properties of the introduced 

linker sequences on the release of the SIINFEKL antigen. Furthermore, eADF4(C16) hybrid protein 

particles with and without fluorescent labelling and low endotoxin values were prepared for in 
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vitro and in vivo studies and were characterized in terms of cytotoxicity, immunogenicity, uptake 

behavior and induction of a CD8 T cell proliferation. 

2. Materials and methods 

2.1. Materials 

2.1.1. Recombinantly produced spider silk protein eADF4(C16) and engineered eADF4(C16) 

hybrid protein (second generation) 

Spray dried eADF4(C16) protein was provided by AMSilk GmbH (Martinsried, Germany). The 

properties of the native eADF4(C16) protein have been already described in chapter 2. The 

engineered eADF4(C16) hybrid proteins of the first generation were further modified resulting in 

two eADF4(C16) hybrid proteins of the second generation. The antigen used was the OVA257-264 

epitope (SIINFEKL). The difference between the first and the second generation eADF4(C16) hybrid 

proteins is based on the addition of an enzyme cleavable linker between the eADF4(C16) 

framework and the SIINFEKL sequence. This linker was designed to be cleaved by two lysosomal 

cysteine proteases called cathepsin B (CatB) and cathepsin S (CatS). The cathepsin B cleavable 

linker contains the amino acid sequence GFLG, whereas the cathepsin S cleavable linker comprises 

the amino acid sequence PMGLP. Both linker sequences were fused between the C-terminal end 

of the eADF4(C16) framework and the epitope sequence SIINFEKL. A T7-TAG for faster purification 

and detection was added at the N-terminal end. The addition of the T7-TAG and the cleavable 

linker sequence resulted in a molecular weight of 49,415 Da (CatB hybrid) or 49,253 Da (CatS 

hybrid). The theoretical pI of both hybrid proteins was 3.67. Cloning the DNA to a plasmid was 

conducted by the group of Prof. Dr. Thomas Scheibel in Bayreuth. Again, the production in E. coli, 

downstream processing and spray-drying was handled by the AMSilk GmbH. An extinction 

coefficient of 46,400 M-1*cm-1 at 276 nm and the respective molecular weight of the eADF4(C16) 

hybrid proteins were used for the concentration determination by UV-Vis-spectroscopy. 

2.1.2. Chemicals and reagents 

Highly purified water (HPW) used in this study was generated by a purelab® device (ELGA 

LabWater, Celle, Germany). Sodium hydroxide solution (1 mol/L, EMPROVE® bio), di-potassium 

hydrogen phosphate (EMPROVE bio, European Pharmacopoeia (Ph. Eur.), British Pharmacopoeia 

(BP)), potassium dihydrogen phosphate (EMPROVE bio, Ph. Eur., BP, United States National 

Formulary (NF)) and hydrochloric acid 37% (EMPROVE bio, Ph. Eur, BP, Japanese Pharmacopoeia 
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(JP)) were purchased from Merck KGaA, Darmstadt, Germany. Ethanol 96% (v/v) and sodium 

chloride (NaCl, AnalaR NORMAPUR) were obtained from VWR Chemicals, Darmstadt, Germany. 

Tris(hydroxymethyl)aminomethane (Tris, Trizma® base, purity ≥99.9%), Trifluoroacetic acid 

(ReagentPlus®, 99%), DL-Dithiothreitol (DTT, purity ≥98%), Ethylenediaminetetraacetic acid (EDTA 

≥98.5%) and fluorescein isothiocyanate (suitable for protein labeling) were purchased from Sigma 

Aldrich GmbH, Steinheim, Germany. Guanidinium thiocyanate (for molecular biology) and  4-(2-

Hydroxyethyl)-1-piperazine-1-ethanesulfonic acid (HEPES, for molecular biology) were purchased 

from AppliChem GmbH, Darmstadt, Germany. Ammonium sulfate (purity ≥99%) was obtained 

from Bernd Kraft GmbH, Duisburg, Germany. Dimethyl sulfoxide (DMSO, purity ≥99%) was 

purchased from Grüssing GmbH Analytika, Filsum, Germany. Acetonitrile (HPLC Grade) was 

obtained from Fisher Scientific, Waltham, MA, USA. The peptides with the amino acid sequences 

SIINFEKL, IGSIINFEKLG and LPGSIINFEKLG were synthesized by GenScript USA Inc., Piscataway, NJ, 

USA. Cathepsin S (human spleen, purity >90%, activity 183.3 mU/mg) and cathepsin B (human 

liver, purity >95%, activity 274 U/mg) were purchased from Calbiochem, Merck KGaA, Darmstadt, 

Germany. Endotoxin cartridges (Endosafe-PTS® Cartridges PTS20005F, Sensitivity 0.005 EU/ml) 

were purchased from Charles River, Lyon, France. 

2.2. Methods 

2.2.1. Preparation of eADF4(C16) hybrid protein particles (second generation) 

Preparation of eADF4(C16) hybrid protein particles was performed using the well established 

preparation technique using a micromixing system as described before [26]. The eADF4(C16) 

hybrid protein powders were dissolved in a 6 M guanidinium thiocyanate solution and 

subsequently dialyzed against a 10 mM Tris/HCl solution at 2-8°C for 24 hours. A dialysis 

membrane with a molecular weight cut-off of 8,000 Da (Spectrum Laboratories, Rancho 

Dominguez, USA) was used. After dialysis, the solution was centrifuged and filtered through a 

0.2 µm polyethersulfone (PES) filter (VWR International, Radnor, USA). Concentrations of the 

eADF4(C16) hybrid proteins in solution were determined using an Agilent 8453 UV-Vis 

spectrophotometer (Agilent, Waldbronn, Germany). The protein solution was further adjusted to 

a concentration of 1.0 mg/ml for particle preparation with a filtered 10 mM Tris/HCl solution. Both 

cylinders of a syringe pump system (Model 100 DX and Series D pump controller, Teledyne Isco, 

Lincoln, USA) were filled with pre-tempered eADF4(C16) solution (c=1.0 mg/ml) and either a pre-

tempered 2 M potassium phosphate solution or 4 M ammonium sulfate solution of 80°C. The 

syringe pump cylinders were jacketed by a bath circulator SC100-A10 (Thermo Scientific, 
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Karlsruhe, Germany) which was tempered at 80°C. The solutions were pumped at a high flow rate 

of 50 ml/min into a T-shape mixing element (inner diameter 0.5 mm, P-727 PEEK tee, Upchurch 

Scientific, Oak Harbor, USA) leading to an outlet tubing (inner diameter 0.5 mm, 1532 PEEK Tubing, 

Upchurch Scientific, Oak Harbor, USA) for suspension collection. The eADF4(C16) hybrid protein 

particle suspensions were subsequently centrifuged at 14,000 rpm (SIGMA 4K15, Sigma 

Laborzentrifugen, Osterode am Harz, Germany) and washed with HPW three times. A two minute 

ultrasonication (Sonopuls HD 3200, Bandelin electronic, Berlin, Germany) step completed the 

particle preparation procedure. The particle concentrations in mg/ml were determined 

gravimetrically after drying the particles at 13 mbar in a vacuum oven (Memmert, Schwabach, 

Germany) overnight. 

2.2.2. Optimizing eADF4(C16) particle size 

The micromixing particle preparation process was optimized for further reduction of the final 

particle size. Some parameters were changed compared to the preparation process described 

above. The concentration of the eADF4(C16) solution used for particle preparation was adjusted 

to 0.5 - 1.0 mg/ml. In addition to the regularly used 2 M potassium phosphate solution, 2 M, 3 M 

and 4 M ammonium sulfate solutions were used for particle precipitation. The flow rate of the salt 

solution was kept at 50 ml/min, whereas the flow rate of the protein solution was set to 25-

50 ml/min. For these optimization studies, native eADF4(C16) protein was used. All other 

parameters were kept as described before and final particle size was analyzed after particle 

preparation. 

2.2.3. Preparation of endotoxin free eADF4(C16) hybrid protein particles for in vitro and in 

vivo studies 

The particle preparation process described before was slightly adjusted for the preparation of 

endotoxin free particles. The eADF4(C16) hybrid protein powder was suspended with HPW in a 

glass vial (DIN 10R), closed with a rubber stopper and crimped with an aluminum cap. Steam 

sterilization was performed for 15 minutes at 121°C in a GTA 50 autoclave (Fritz Gössner, 

Hamburg, Germany). After cooling, the eADF4(C16) hybrid protein suspension was centrifuged at 

10,000 rpm (SIGMA 4K15, Sigma Laborzentrifugen, Osterode am Harz, Germany) for 30 minutes 

and the supernatant discarded. The centrifuged eADF4(C16) hybrid protein was dissolved in a 6 M 

guanidinium thiocyanate solution and dialyzed against an endotoxin free 10 mM TRIS/HCl solution 

pH 8.0 for 24 hours. After dialysis, the eADF4(C16) hybrid protein solution was filtered through a 

0.2 µm PES filter (VWR International, Radnor, USA) and adjusted to a concentration of 2 mg/ml 
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with an endotoxin free 10 mM TRIS/HCl buffer pH 8.0. Subsequently, the eADF4(C16) hybrid 

protein solution was filtered with a pre-flushed Mustang® E (Pall GmbH, Dreieich, Germany) filter. 

About 500 µl of each batch were discarded at the beginning. The protein concentration of the 

filtered eADF4(C16) solution was determined photometrically at 276 nm (Agilent 8453 UV-Vis 

spectrophotometer, Agilent, Waldbronn, Germany). Endotoxin content was tested using an 

Endosafe®-PTS reader after a 20 - 40-fold dilution of the solution with HPW. This eADF4(C16) 

hybrid protein solution was further adjusted to a concentration of 1.0 mg/ml for particle 

preparation with an endotoxin free10 mM Tris/HCl solution pH 8.0. Both cylinders of the syringe 

pump system and the Sonopuls HD 3200 sonotrode were depyrogenized using 70% (v/v) ethanol 

over 48 hours prior to particle preparation. The protein concentration for particle preparation was 

1 mg/ml and preparation temperature was 80°C. All other parameters were kept constant as 

described before. 

2.2.4. Fluorescent labelling 

Labelling of eADF4(C16) protein with fluorescein isothiocyanate (FITC) was performed based on 

the published method by Spieß et al. [27] using the terminal amine group of eADF4(C16). For the 

preparation of particles used for in vivo studies, the eADF4(C16) protein powder was autoclaved 

as described before. After steam sterilization, the autoclaved eADF4(C16) powder was dissolved 

in a 6 M guanidinium thiocyanate solution but this time dialyzed against an endotoxin free 20 mM 

HEPES solution pH 8.0 at 2-8°C for 24 hours. After dialysis, centrifugation and filtration, the 

solution was adjusted to a concentration of 2.0 mg/ml with an endotoxin free 20 mM HEPES 

solution pH 8.0 for coupling in solution. A 20-fold molar excess of FITC (dissolved in DMSO) was 

added slowly to the eADF4(C16) solution. After addition of the complete amount of dissolved FITC, 

the solution was incubated in the dark for three hours at room temperature. After incubation, the 

FITC coupled eADF4(C16) protein solution was filtered first through a 0.2 µm PES filter (VWR 

International, Radnor, USA) and subsequently filtered with a pre-flushed Mustang® E (Pall GmbH, 

Dreieich, Germany) filter. The filtered FITC coupled eADF4(C16) protein solution was adjusted to 

a protein concentration of 1 mg/ml for particle preparation by the syringe pump system at 80°C. 

All other parameters were identical with the previously described particle preparation process. 

The fluorescent labelling of particles used for in vitro studies was carried out at pre-fabricated 

particles. eADF4(C16) particles were suspended at a concentration of 2.5 mg/ml in an endotoxin 

free 20 mM HEPES buffer pH 8.0. A 20-fold molar excess of FITC (dissolved in DMSO) was added 

dropwise to the particle suspension. After incubation for 72 hours in the dark, the particles were 

centrifuged and washed with HPW for three times. Additional ultrasonication for 2 minutes 
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completed the FITC labelling process of final eADF4(C16) particles. 

2.2.5. In vitro release of SIINFEKL from hybrid eADF4(C16) particles 

The release of the antigen sequence SIINFEKL from the second generation hybrid proteins was 

tested by the addition of cathepsin enzymes. As the second generation hybrid proteins contain 

cleavable linker sequences for the cathepsin S and cathepsin B enzymes, these two cathepsins 

were also used for the in vitro release studies. The eADF4(C16) hybrid protein particles were 

suspended to a final concentration of 2 mg/ml with a 50 mM sodium acetate buffer, pH 5.5, 

containing 1 mM EDTA and 2 mM DTT for incubation with the cathepsin S enzyme. Cathepsin S 

was diluted in the same buffer to a final concentration of 0.9 mU/ml. Slight pH modification of the 

buffer was necessary for the cathepsin B enzyme. The eADF4(C16) hybrid protein particles were 

suspended to a final concentration of 2 mg/ml with a 50 mM sodium acetate buffer, pH 5.0, 

containing 1 mM EDTA and 2 mM DTT for incubation with the cathepsin B enzyme. Cathepsin B 

was diluted in the same buffer to a final concentration of 0.1 U/ml. Incubation of the particles with 

the enzymes was carried out at 37°C on a waving platform shaker (Heidolph Polymax 1040, 

Heidolph Instruments GmbH, Schwabach, Germany) at 10 rpm. Samples were drawn after 1, 6, 

24, 48, 72 and 96 hours and analyzed by RP-HPLC. 

2.3. Analytical Methods 

2.3.1. Endotoxin testing 

The endotoxin values of eADF4(C16) hybrid protein solutions and particles used for the in vitro 

studies were determined as described in chapter 2. 

2.3.2. Dynamic light scattering (DLS) 

Particle size and size distribution of submicroparticles were measured as described in chapter 2. 

2.3.3. Zeta potential 

The zeta potential of eADF(C16) particles was measured as described in chapter 2. 

2.3.4. Scanning electron microscopy (SEM) 

SEM measurements of eADF4(C16) particle suspensions were conducted as described in 

chapter 2. 
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2.3.5. SIINFEKL release - analysis of the supernatant by RP-HPLC 

The cleaved SIINFEKL peptide fragments were analyzed by RP-HPLC. The supernatant of each 

sample was removed from the particles by centrifugation (two times at 12,000 rpm for 

30 minutes). The pellets were discarded and 180 µl of the supernatant was filled into HPLC glass 

inserts and analyzed by RP-HPLC (detection by UV-Vis at 220 nm). Volumes of 50 µl of the 

corresponding supernatants were separated at 30°C by a reversed phase YMC-Triart C18 column 

(YMC Europe GmbH, Dinslaken, Germany) using a Waters 2695 separations module (Waters 

Corporation, Milford, MA, USA). A gradient with two mobile phases was applied, using water + 

0.1% [m/m] TFA (mobile phase A) and 100% acetonitrile + 0.1% [m/m] TFA (mobile phase B). Each 

run started with two minutes of 95% mobile phase A and was followed by a linear increase of 

mobile phase B from 5% to 100% over 28 minutes. A five-minute washing step with 100% mobile 

phase B was used to wash residual peptide/protein from the column. The separation run stopped 

with a five minute equilibration of the column at 95% mobile phase A. The detection was carried 

out on a Waters UV-Vis detector 2487 (Waters Corporation, Milford, MA, USA) at a wavelength of 

220 nm to detect the SIINFEKL peptides. The amount of released SIINFEKL was calculated using a 

standard curve. The cleavage sites of the linkers had been described in literature earlier [3, 5, 23, 

25]. Using the described cleavage sites, a SIINFEKL peptide with the sequence IGSIINFEKLG was 

cleaved from the hybrid protein with the cathepsin B cleavable linker. Cleaving the SIINFEKL 

peptide of the hybrid protein with the cathepsin S cleavable linker resulted in a peptide with the 

sequence LPGSIINFEKLG. These two peptides were used for the standard curve at concentrations 

of 10, 20, 30, 50 and 100 µg/ml dissolved in 50% DMSO / 50% water. The area of each of the 

peptides in the chromatogram was integrated and used for calculation of calibration curves after 

injection and analysis. Data analysis was performed using Chromeleon® 6.80 software (Dionex 

GmbH, Germering, Germany). 

 

3. Results and Discussion 

Two linker sequences were selected on the basis of the most promising data for cathepsin 

cleavable linkers [3, 5, 23, 24]. This process led to the selection of a cathepsin B cleavable sequence 

(GFLG) and a cathepsin S cleavable sequence (PMGLP). The intention to select two target enzymes 

(cathepsin S and B) was to reduce the dependency of one specific enzyme for antigen cleavage. 

The OVA257-264 epitope SIINFEKL has been already used for the first generation eADF4(C16) hybrid 

protein particles. While no antigen presentation of the first generation eADF4(C16) hybrid protein 
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particles was identified, a successful uptake into antigen presenting cells (APCs) like macrophages 

and bone marrow derived dendritic cells (BMDC) was demonstrated (see chapter 5). To promote 

intracellular antigen cleavage, the two selected linker sequences were fused between the native 

eADF4(C16) framework and the SIINFEKL antigen at the C-terminal end (see Figure VI-1 ). The 

addition of the cleavable linker sequence resulted in a molecular weight of 49,415 Da for the 

cathepsin B cleavable eADF4(C16) hybrid protein (eADF4(C16)-CatB hybrid protein) and 49,253 Da 

for the cathepsin S cleavable eADF4(C16) hybrid protein (eADF4(C16)-CatS hybrid protein). 

 

 

Figure VI-1:Schematic illustration of the newly designed second generation eADF4(C16) hybrid proteins. 
The difference to the first generation eADF4(C16) hybrid proteins is the addition of a cathepsin cleavable 
linker sequence between the native eADF4(C16) framework and the SIINFEKL antigen. 

As a first step, the influence of the linker sequence of the newly designed, second generation 

eADF4(C16) hybrid proteins on the resulting particle size was evaluated. The particle size of the 

newly designed cathepsin cleavable hybrid protein particles is compared to the particle size of the 

native eADF4(C16) protein particles and the results are illustrated in Figure VI-2. While the 

eADF4(C16)-CatB hybrid protein particles with a Z-average particle size of 386 nm were in the 

same size range compared to the native eADF4(C16) particles (Z-average value of 369 nm), the 

particles prepared with the eADF4(C16)-CatS hybrid protein were notably larger and had a Z-

average particle size of 510 nm. All particles were prepared using a micromixing device [26] and a 

protein concentration of 1 mg/ml at a temperature of 80°C. 
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Figure VI-2: Properties of the second generation eADF4(C16) hybrid protein particles compared to native 
eADF4(C16) protein particles. A) Particle size given as the Z-average and the particle dispersity index (PDI) 
of eADF4(C16) particles prepared and 80°C and a protein concentration of 1.0 mg/ml. 
B) Zeta potential of the second generation eADF4(C16) hybrid protein particles compared to native 
eADF4(C16) protein particles.  

Particle size itself has a huge impact on the resulting antigen presentation [28]. Joshi et al. 

compared 17 μm, 7 μm, 1 μm, and 300 nm PLGA particles loaded with the model antigen 

Ovalbumin on the antigen-specific cytotoxic T cell response. The authors concluded, that 300 nm 

particles were more effective for a vaccination approach than the larger particles [29]. Foged et al. 

also emphasized, that particles in the size range below 500 nm are superior for an uptake into 

APCs [30]. These reports in combination with the eADF4(C16)-CatS hybrid protein particle size of 

510 nm initiated size optimization studies for the preparation of the second generation 

eADF4(C16) hybrid protein particles using the micromixing device. The preparation of the 

eADF4(C16) protein particles is based on a salting out with kosmotropic ions according to the 

Hofmeister series (see Table VI-1 ). Two characteristics of the used salt solution affect the final 

particle size. The first one is the kosmotropic strength of the used ions of the salts and the second 

one is the ionic strength of the salt solutions [31]. A 2 M potassium phosphate solution was used 

for protein precipitation in previous studies [26] and for the preparation of the eADF4(C16) hybrid 

protein particles of the first generation. Due to the limit of solubility of the potassium phosphate 

used for the preparation of the precipitation buffer, another kosmotropic salt with a higher 

solubility was screened. 
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Table VI-1: The Hofmeister series of salts, separated in anions and cations. The ions used for eADF4(C16) 
protein precipitation are highlighted in bold. 

Kosmotropic, salting-out  

 F- PO4
- SO4

2- CH3COO- Cl- Br- I-   

          

(CH3)4N+ (CH3)2NH+ NH4
+ K+ Na+ Cs+ Li+ Mg2+ Ca2+ Ba2+ 

 Chaotropic, salting-in  

 

The precipitating properties of ammonium sulfate have already been known since the early 70s 

and it has been commonly used for protein purification [32]. The preparation of ammonium 

sulfate solutions up to 4 M was possible at room temperature. In a small scale optimization study, 

the effect of an increasing ammonium sulfate strength with molarities ranging from 2 M to 4 M 

on the final eADF4(C16) protein particle size was evaluated and compared to a 2 M potassium 

phosphate solution. Due to the limited amount of the eADF4(C16)-CatS and eADF4(C16)-CatB 

hybrid proteins, the particle size optimization studies were performed with the native eADF4(C16) 

protein. The optimized particle preparation procedure was then transferred to the second 

generation eADF4(C16)-CatS and eADF4(C16)-CatB hybrid proteins in a second step. Further 

parameters like the protein concentration or the flowrate of the eADF4(C16) protein solution were 

evaluated for the 4 M ammonium sulfate concentration. The results of the particle optimization 

study are visualized in Figure VI-3. The influence of the used salt was negligible, as both salts 

already contain strong kosmotropic ions. However, the trend towards smaller particles with 

increasing the ionic strength of the salt solution is evident. The particle size decreased from 

496 nm for the 2 M ammonium sulfate solution to 302 nm using the 4 M ammonium sulfate 

solution. Decreasing the protein concentration from 1 mg/ml to 0.5 mg/ml additionally lowered 

the final particle size to 274 nm. Finally, the influence of the flowrate on the particle size was 

studied. While keeping a high flowrate of 50 ml/min for the ammonium sulfate solution, the 

flowrate of the eADF4(C16) protein solution was lowered to only 25 ml/min. By that, the salt to 

protein ratio decreased again, similar to the reduced protein concentration of 0.5 mg/ml. Other 

than the reduced protein concentration, the decreased flowrate had no effect on the final particle 

size. 
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Figure VI-3: Properties of native eADF4(C16) protein particles after precipitation with different salt 
solutions and different ionic strengths (2M PO4: particle preparation using 2 M potassium phosphate. 
2M to 4M SO4: particle preparation using 2 M to 4 M ammonium sulfate. 0.5 mg/ml: reduced protein 
concentration. 25 ml/min: decreased flowrate.) 
A) Particle size given as the Z-average and the particle dispersity index (PDI). 
B) Zeta potential of native eADF4(C16) protein particles after precipitation with different salt solutions. 
C) SEM micrographs of native eADF4(C16) protein particles at a magnification of 20,000x. The particles 
were dried under vacuum and carbon sputtered before measurement. 

As illustrated in Figure VI-3 B, particles prepared with the higher molar ammonium sulfate 

solutions showed a clear trend towards increasing negative zeta potentials. The increase of the 

negative zeta potential could consequently increase the colloidal stability of the particle 

suspension. The SEM micrographs in Figure VI-3 C show particles at a magnification of 20,000x. 

The particles were observably round shaped with a smooth and unimpaired surface. 

The results from the particle size optimization screening suggested the use of a 4 M ammonium 

sulfate solution and a protein concentration of 0.5 mg/ml. However, due to the minor effect of 

the protein concentration on the final particle size and the higher yield using a 1 mg/ml protein 

solution, the transfer experiments to the second generation eADF4(C16)-CatS and eADF4(C16)-

CatB hybrid proteins was performed at a protein concentration of 1 mg/ml. 
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Figure VI-4: Properties of the eADF4(C16) cathepsin B and S hybrid protein particles using the optimized 
particle preparation process compared to the old process. 
A) Particle size given as the Z-average and the particle dispersity index (PDI) prepared at a protein 
concentration of 1.0 mg/ml and using either a 2 M potassium phosphate solution (2M PO4) or a 4 M 
ammonium sulfate solution (4M SO4). 
B) Zeta potential of the same particles described in A). 

Figure VI-4 shows the particle size and zeta potential of the eADF4(C16)-CatS and eADF4(C16)-

CatB hybrid protein particles using the optimized particle preparation method in comparison to 

the previously prepared particles. Using the 4 M ammonium sulfate salt solution for the protein 

precipitation resulted in clearly smaller particles with a lower PDI. The particle size is 

approximately 260 nm, independent of the used eADF4(C16) hybrid protein. As already observed 

for the native eADF4(C16) protein particles, the smaller eADF4(C16) hybrid protein particles 

exhibited a lower zeta potential compared to the larger ones (Figure VI-4 B). By using the 

optimized particle preparation process, the preparation of eADF4(C16)-CatS and eADF4(C16)-CatB 

hybrid protein particles with a size below 300 nm was possible, which allows a direct comparison 

to the eADF4(C16) hybrid protein particles of the first generation. 

Because no antigen presentation was detected during the previous in vitro tests with the first 

generation eADF4(C16) hybrid protein particles, an enzymatic release test of the model antigen 

SIINFEKL was conducted. Because the two introduced linkers were designed for the cleavage of 

cathepsin S and cathepsin B, these two enzymes were used for the release experiments. Although 

the cathepsin S linker sequence (PMGLP) was designed for a cleavage by the cathepsin S enzyme 

and the cathepsin B linker sequence (GFLG) was designed to be cleaved by the cathepsin B 

enzyme, both eADF4(C16) hybrid protein particles were tested with both cathepsin enzymes. The 

predicted cleavage sites within the linker sequences were already published earlier [5, 22, 23, 25]. 

The published cleavage sites were used to identify the SIINFEKL peptide sequence that will be 
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cleaved from the eADF4(C16) hybrid protein particles. These peptides were purchased and used 

for the analysis of the cleavage experiments. For the cathepsin B linker, a cleavage site after the 

GFLG linker sequence was postulated (C16-GAVGFLG / IGSIINFEKLG) and the IGSIINFEKLG 

sequence was used for the quantification of the released antigen from the eADF4(C16)-CatB 

hybrid protein. Similarly, for the cathepsin S linker, a cleavage site within the PMGLP linker 

sequence was postulated (C16-PMG / LPGSIINFEKLG) and the LPGSIINFEKLG sequence was used 

for the quantification of the released antigen from the eADF4(C16)-CatS hybrid protein. 

 

Figure VI-5: Differential release of the antigen with different cathepsin enzymes. The sequence 
LPGSIINFEKLG was used for the release from eADF4(C16)-CatS hybrid protein particles, while the 
sequence IGSIINFEKLG was used for the release from eADF4(C16)-CatB hybrid protein particles. Data are 
the mean and SD of 3 independent replicates. 
A) eADF4(C16) hybrid protein particles were incubated with cathepsin S enzyme for 96 hours. 
B) eADF4(C16) hybrid protein particles were incubated with cathepsin B enzyme for 96 hours. 

Figure VI-5 shows the results of the release experiments performed with the enzymes cathepsin S 

(Figure VI-5 A) and cathepsin B (Figure VI-5 B). eADF4(C16) hybrid protein particles were incubated 

for 96 hours and the amount of released SIINFEKL peptide was evaluated using RP-HPLC analysis. 

Three conclusions can be drawn from the enzymatic release experiments. The cathepsin S enzyme 

was capable of cleaving both linker sequences (Figure VI-5 A). Although the linker which was 

assigned for the cleavage by the cathepsin S enzyme (PMGLP) was cleaved more effectively than 

the cathepsin B linker sequence (GFLG), total SIINFEKL amounts over 10% were released from both 

eADF4(C16) hybrid protein particles. The additional cleavage may result from a non-specific linker 

design in the eADF4(C16)-CatB hybrid protein. Peterson et al. investigated cathepsin B linker 

sequences, which were designed to be cleaved by the cathepsin B enzyme, but not by the 

cathepsin D enzyme [17]. The authors identified, that one of their linker sequences was finally 

cleaved by both enzymes. This finding emphasizes the broad proteolytic activity of the cathepsin 

enzyme class. At the same time, we already expected cleavage of the specific cathepsin S linker 

0 20 40 60 80 100

0

5

10

15

20

80

90

100

0 20 40 60 80 100

0

2

4

6

8

80

90

100

T
o
ta

l 
re

le
a
s
e
 [

%
]

Time [h]

 eADF4(C16) CatS hybrid

 eADF4(C16) CatB hybrid

T
o
ta

l 
re

le
a
s
e
 [

%
]

Time [h]

 eADF4(C16) CatS hybrid

 eADF4(C16) CatB hybrid

A B



Hybrid eADF4(C16) protein particles (second generation) 

141 

PMGLP not to be cleaved by the cathepsin B enzyme [23]. This hypothesis was confirmed by results 

illustrated in Figure VI-5 B. Moreover, none of the linkers used for the second generation 

eADF4(C16) hybrid proteins was cleaved effectively by the cathepsin B enzyme (Figure VI-5 B). This 

result was surprising at the beginning, because the GFLG sequence was often reported as 

successful linker for a cathepsin B cleavage [18, 21]. However, the GFLG linker has never been 

used in combination with the eADF4(C16) spider silk protein. Due to the forced protein folding 

during the particle preparation process, the local surrounding of the linker was different to the 

unfolded protein in solution. Therefore, the cathepsin cleavage site of the cathepsin B linker 

sequence could be sterically hindered. Nevertheless, it might be possible to include a cathepsin B 

cleavage site in a different eADF4(C16) hybrid protein, because several different linker sequences 

have been already used for a cleavage with the cathepsin B enzyme. Instead of using the sequence 

GFLG, the dipeptide sequence Val-Cit [33] or the tetra peptides ALAL [34] and GGGF [20] may 

possibly be more effective in combination with the eADF4(C16) spider silk protein. Finally, the 

enzymatic cleavage activity was fast at the beginning of the incubation and slowed down over 

time. Especially the eADF4(C16)-CatS linker was effectively cleaved by the cathepsin S enzyme, 

where over 10% LPGSIINFEKLG were already released within the first 24 hours. After 74 hours of 

incubation, no increase of the released SIINFEKL could be observed, which was most probably due 

to the decrease of the enzymatic activity of both cathepsin enzymes. Putman et al. reported a 

slower release of the coupled 5-fluorouracil over time in their experiments as well [35]. However, 

APCs like macrophages display a higher cathepsin S and cathepsin B activity than other cells [25], 

which would result in a higher rate of SIINFEKL cleavage in cell based in vitro and in vivo mouse 

model experiments. 

In order to evaluate the in vitro and in vivo properties of the newly designed eADF4(C16)-CatS and 

eADF4(C16)-CatBH protein particles, several batches of these particles were prepared. Exemplary 

for these batches, results of one eADF4(C16) protein particle batch are illustrated in Figure VI-6. 

The particles from this batch were finally used for the in vivo experiments performed by Inès 

Mottas at the group of Prof. Dr. Carole Bourquin at the University of Fribourg, Switzerland. 
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Figure VI-6: Properties of one exemplary eADF4(C16) protein particle batch used for the in vitro and in 
vivo experiments. The eADF4(C16)-CatS hybrid protein (CatS hybrid), the eADF4(C16)-CatB hybrid protein 
(CatB hybrid) and the native eADF4(C16) protein (Native eADF4(C16)) were compared to the N-terminal 
hybrid protein without linker sequence (first generation hybrid protein). The eADF4(C16)-CatS hybrid 
protein was additionally FITC labelled (CatS hybrid FITC) for flow cytometry and confocal microscopy 
analysis. 
A) Particle size given as the Z-average and the particle dispersity index (PDI) prepared at a protein 
concentration of 1.0 mg/ml and a temperature of 80°C. 
B) Zeta potential of the same particles described in A). 

The optimized particle preparation method using a 4 M ammonium sulfate solution worked well 

for the eADF4(C16) protein particle batches used for the in vitro and in vivo studies. All different 

particle groups shown in Figure VI-6 are in a narrow size range between 242 nm and 254 nm. Also, 

the mean zeta potential is within a range of -27 mV to -24 mV very consistent among the different 

particle groups. Endotoxin content was analyzed after applying the endotoxin depletion process 

described earlier and the results are summarized in Table VI-2. The detected endotoxin values 

were all below 0.200 EU/mg protein, which was the limit of the assay after the necessary dilution 

before the measurements. 

Table VI-2: Endotoxin values of one exemplary eADF4(C16) protein batch used for the in vitro and in vivo 
experiments in solution after applying the endotoxin depletion process. The LAL based Endosafe®-PTS 
reader was used to determine the endotoxin values. The eADF4(C16) proteins in solution were diluted 
20-50-fold with HPW before measurement. 

   Type 
Endotoxin values of eADF4(C16) solutions 

after endotoxin filtration 

eADF4(C16)-CatS hybrid FITC labeled <0.200 EU/mg 

eADF4(C16) native <0.200 EU/mg 

eADF4(C16)-CatS hybrid <0.200 EU/mg 

eADF4(C16)-CatB hybrid <0.200 EU/mg 

eADF4(C16) first generation hybrid <0.200 EU/mg 

 

CatS hybrid FITC

Native
 eADF4(C16)

CatS hybrid

CatB hybrid

First generation hybrid

-35

-30

-25

-20

-15

-10

CatS hybrid FITC

Native
 eADF4(C16)

CatS hybrid

CatB hybrid

First generation hybrid

0

50

100

150

200

250

300

350

400

 

 Z-Average

 PDI

Z
-A

v
e
ra

g
e
 [
n
m

]

0,0

0,2

0,4

0,6

0,8

1,0

 P
D

I

 

 Mean Zetapotential

M
e
a

n
 Z

e
ta

p
o
te

n
ti
a
l 
[m

V
]

A B



Hybrid eADF4(C16) protein particles (second generation) 

143 

Particles were also examined by SEM microscopy. Figure VI-7 shows the micrographs of the non-

FITC coupled particles used for the final in vivo experiments. In the micrographs roundly shaped 

particles are visible without damages or particle fragments. The actual particle size might appear 

smaller than the results from DLS measurements, because residual solvent had to be evaporated 

to dryness for the SEM images, whereas the DLS measurements were conducted in the suspended 

state. 

 

Figure VI-7: SEM micrographs of eADF4(C16) protein particles at a magnification 20,000x. The eADF4(C16) 
protein particles were dried under vacuum and carbon sputtered before measurement. 

The different batches prepared for in vitro and in vivo testing were sent to our cooperation partner 

Prof. Dr. Carole Bourquin at the University of Fribourg, Switzerland for the in vitro and in vivo tests. 

 

All the following results and graphs were compiled by Inès Mottas from October 2014 to 

November 2015 using the eADF4(C16) protein particles described before amongst other in vitro 

batches. I did not participate in the investigation of the following experiments and use the shared 

results just for illustration and discussion of the performance of the second generation 

eADF4(C16) hybrid protein particles containing the cathepsin cleavable linker sequences. 
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Figure VI-8: None of the spider silk particles induce BMDC cytotoxicity in vitro. BMDC (5x10 4 cells/well) 
were cultured with spider silk particles at 505 µg NP/mL (=10 µg SIINFEKL/mL). After 24 hours of 
incubation, BMDC viability was assessed by flow cytometry and MTT assay. 
(A) Representative dot plot from flow cytometry with propidium iodide (PI) and Annexin V.  
(B) Scheme of the gating strategy to quantify live healthy cells (annexin V-/PI-). 
(C) Percentage of live healthy cells (annexin V-/PI-). 
(D) Optical density (OD) at 570nm correlating with formazan production from the MTT assay. 
Condition without cells (medium only) was used as control. n.d.: not done. Asterisks  (***, P<0.0001) 
indicate significant differences with untreated control group using one-way ANOVA followed by 
Dunnett’s multiple comparison test. 
C and D) Each bar represents mean ± SEM of 3 independent experiments performed in duplicate. (Except 
for Panel C, C16-SIIN  tested once in duplicate). SIIN: SIINFEKL peptide alone; C16: native eADF4(C16) 
particles; eADF4(C16)-SIIN: First generation hybrid particles; C16-CathBseq-SIIN: eADF4(C16)-CatB hybrid 
protein particles, C16-CathSseq-SIIN: eADF4(C16)-CatS hybrid protein particles. 
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Figure VI-9: The spider silk particles do not induce BMDC immunological activation in vitro. BMDC 
(5x10 4 cells/well) were cultured with spider silk particles at 50 µg NP/mL. After 24 hours of incubation, 
BMDC were analyzed by flow cytometry, whereas supernatant was collected for cytokine quantification. 
(A) Median fluorescent intensity (MFI) of BMDC surface activation markers: fold change compared to 
untreated sample. 
(B) Cytokine quantification with ELISA. 
R848 (R8), a TLR7 agonist, was used as positive control (0.25ug/mL). Asterisks (***, P<0.001) indicate 
significant differences with untreated control group using one-way ANOVA followed by Dunnett’s 
multiple comparison test. Each bar represents mean ± SEM of 4 independent experiments performed in 
duplicate. 
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Figure VI-10: Spider silk particles are efficiently taken up by antigen-presenting cells. 
(A) BMDC (5x10 4 cells/well) were cultured with FITC-labelled spider silk particles at 50 µg NP/mL. After 
24 hours of incubation, BMDC were isolated for flow cytometry analysis. Percentage of FITC-positive cells 
within BMDC (CD11c+) population was determined. Each bar represents mean ± SEM of 2 independent 
experiments performed in duplicate. (Except for C16-SIIN: tested once in duplicate). 
(B) Freshly isolated splenocytes (5x10 4 cells/well) were cultured 6 hours with FITC-labelled spider silk 
particles. After 6 hours of incubation, cells were analyzed by flow cytometry. Percentage of FITC-positive 
cells was determined in defined immune cell populations: T cells (CD3+), dendritic cells (CD11c+CD11b+) 
and monocytes/macrophages (CD11c-CD11b+). Graph depicts one representative experiment of 3. Each 
experiment was performed in duplicate. 
C and D) BMDC (1.5x10 5 cells/well) were incubated with Lysotracker for 1 hour and FITC-positive particles 
for an additional 4 hours before imaging with confocal microscopy. (C) Live cell imaging at 20x 
magnification and (D) 60x magnification. 
Black bar: 50µm. BF: Bright field. Similar results were obtained for the other particles (data not shown). 
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Figure VI-11: The Cathepsin S sequence is the most effective to induce SIINFEKL-dependent in vitro T-cell 
proliferation. BMDC (5x10 4 ells /well) were cultured with spider silk particles at 50 µg NP/mL. R848 
(0.25ug/mL) was used as adjuvant for BMDC activation. After 24 hours of incubation, CFSE-labelled 
CD3+CD8+ OT-I cells (105 cells /well) were added. After 3 days of co-culture, the cells were analyzed by 
flow cytometry. 
(A) Percentage of proliferating cells within the T cell population (CD3+CD8+). Each bar represents mean 
± SEM of 2 independent experiments performed in quadruplicate. Asterisks (**, P<0.01) indicate 
significant differences between R848-treated groups using two-way ANOVA followed by Tukey’s multiple 
comparison test. 
(B) Histogram of CFSE dilution from one representative experiment. 
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Figure VI-12: Spider silk particles accumulate in the draining lymph node in vivo. FITC-labelled C16-
CathSseq-SIINFEKL particles were injected subcutaneously into the right flank of 3 mice (505 µg NP in 
100 µL PBS per mouse). PBS was used as negative control. After 24 hours, the ipsilateral draining lymph 
nodes (DLN), the contralateral lymph nodes (non DLN) and the spleen were isolated for flow cytometry 
analysis. 
(A) Number of FITC-positive cells in the different lymphatic organs. 
(B) Percentage of FITC-positive cells within defined immune cell populations. 
Each dot represents one mouse. Bars represent mean ± SEM. Asterisks (***, P<0.001) indicate significant 
differences when comparing FITC-NP treated mice with PBS-treated mice using two-way ANOVA followed 
by Bonferroni’s multiple comparison test.  

 

Figure VI-13: SIINFEKL-containing spider silk particles induce antigen-dependent T-cell proliferation in 
vivo. 10 6 CFSE-labelled CD3+CD8+ OT-I cells in 100 µL of PBS were injected intravenously into mice (each 
dot represents one mouse). 18 hours later, mice were vaccinated with spider silk NPs (505 µg NP in 100 µL 
PBS per mouse). R848 (25 µg) was used as adjuvant. 3 days after vaccination, the DLN were isolated for 
flow cytometry analysis to determine the proliferation of CD3+CD8+ CFSE-labelled OT-I cells. Each dot 
represents one mouse. Bars represent mean ± SEM. Asterisks (****, P<0.0001) indicate significant 
differences with R848-treated control using one-way ANOVA followed by Dunnett’s multiple comparison 
test. 
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The results presented in Figure VI-8 to Figure VI-13 summarize the experiments performed by Inès 

Mottas at the University of Fribourg. The cytotoxicity test readout by a Propidium iodide (PI) assay 

used in conjunction with Annexin V demonstrated once more, that eADF4(C16) protein particles 

are well tolerated by BMDCs (Figure VI-8). The flow cytometry results in Figure VI-8 C clearly show, 

that the percentage of living cells did not differ between untreated and eADF4(C16) protein 

particle incubated cells. In addition, the MTT test results proved our previously published results 

[36] and confirmed the statement, that native eADF4(C16) as well as eADF4(C16) hybrid protein 

particles were well tolerated by cells [36]. The fact, that eADF4(C16) protein particles did not 

induce BMDC immunogenicity (Figure VI-9) was important for a vaccine delivery system. In our 

approach, the eADF4(C16) protein particles served as a delivery system for the epitope SIINFEKL. 

According to the review of Singh et al. particulate vaccine carrier systems could be used for a co-

administration of immunostimulatory adjuvants together with antigens if required [37]. The 

approach of combining an antigen, a delivery system and/or an immunostimulatory adjuvant, 

allows an individual design for various vaccines. In our case, the lack of immunogenicity of the 

eADF4(C16) protein particles is an important prerequisite. Particles with an intrinsic 

immunogenicity could most likely alter the effect of the SIINFEKL loaded eADF4(C16) protein 

particles versus the control SIINFEKL antigen. The presence of immunostimulatory contaminations 

(like endotoxins) could also lead to false results in the experiments [38]. 

Figure VI-10 illustrates the uptake of eADF4(C16) hybrid protein particles containing the cathepsin 

cleavable linker sequence. The cellular uptake of native eADF4(C16) protein particles and the 

uptake of eADF4(C16) hybrid protein particles of the first generation (containing no cathepsin 

cleavable linker) has been already shown in chapter 5 of this thesis. The merged images in Figure 

VI-10 C & D clearly show, that the second generation eADF4(C16) hybrid protein particles were 

processed in the lysosomal compartment within the cell after uptake. That means, that the newly 

designed second generation eADF4(C16) hybrid protein particles were in contact with the 

cathepsin enzymes, which were required for the cleavage and further processing of the SIINFEKL 

epitope [11]. The missing activation of T cells using the first generation eADF4(C16) hybrid protein 

particles was the reason for the introduction of the cleavable linker sequences. Figure VI-11 

demonstrates that the introduction of the cathepsin S and cathepsin B cleavable linker sequences 

enabled the release of SIINFEKL, which led to an induction of the T cell proliferation in vitro. 

However, the eADF4(C16)-CatS hybrid protein particles were more effective in inducing a T cell 

proliferation compared to the eADF4(C16)-CatB hybrid protein particles. This result can be 

explained by the in vitro release experiments performed with cathepsin S and B enzymes (Figure 
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VI-5). Within the first 24 hours, the release of SIINFEKL from the eADF4(C16)-CatS hybrid protein 

particles using the cathepsin S enzyme was more than twice as effective compared to the 

eADF4(C16)-CatB hybrid protein particles, but leveled out to the end of the incubation time. The 

same trend, even more pronounced than in Figure VI-5, was also observable for the in vitro 

experiments using BMDCs (Figure VI-11 A). The eADF4(C16)-CatS hybrid protein particles were 

even more effective than the to the soluble SIINFEKL which served as control. Although an 

induction of T cell proliferation was observable, the co-administration of the immunostimulatory 

adjuvant R848 was indispensable for the in vitro BMDC assay. The level of proliferating T cells 

without the administration of R848 is at the same level, irrespective of the applied sample (Figure 

VI-11). 

Figure VI-12 and Figure VI-13 show the results of the in vivo experiments performed in mice 

(performed by Inès Mottas). Figure VI-12 shows that eADF4(C16) protein particles accumulated in 

the draining lymph node (DLN) after administration. We have already shown, that eADF4(C16) 

protein particles are taken up by macrophages and BMDCs in in vitro experiments. The results 

illustrated in Figure VI-12 B point towards an uptake by dendritic cells (CD11c+CD11b+) rather 

than by macrophages (CD11c-CD11b+) or leukocytes (CD11b-). To understand these uptake 

characteristics, the size of the administered eADF4(C16) protein particles used for the in vivo 

experiments has to be taken into account. The tested eADF4(C16) particles were in the size range 

between 242 nm and 254 nm with a net negative surface charge of -27 mV to -24 mV (Figure VI-6). 

Slütter et al. summarized in their article, that different cellular uptake mechanisms are known for 

particles [28]. While particles of different sizes can be taken up by receptor-mediated endocytosis 

and phagocytosis, the uptake mechanism of macropinocytosis is limited to submicroparticles [39]. 

At the same time, immature dendritic cells exhibit a larger capacity for macropinocytosis than 

macrophages [28, 40]. Taking these two facts together, the preferred eADF4(C16) protein particle 

uptake by dendritic cells as shown in Figure VI-12 B is plausible for this particle size. 

After cellular uptake by dendritic cells, the lysosomal compartment within the dendritic cells 

provides an optimal processing environment for the cathepsin cleavable eADF4(C16) hybrid 

protein particles. Compared to macrophages, the higher lysosomal pH and the reduced proteolytic 

activity are described as advantageous properties of dendritic cells [41]. These attributes allow an 

endosomal escape of the linked antigen for further processing to T cells. Similarly, the lower pH 

and the increase of lysosomal and phagosomal proteolysis lead to an activation of CD4 cells [41]. 

The epitope SIINFEKL, which was used for the eADF4(C16) hybrid protein particle studies, 

interacted with CD8+ cells and should be presented via the MHC-I pathway. As the results in Figure 
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VI-13 demonstrate, the eADF4(C16)-CatS hybrid protein particles were able to induce a CD8+ T 

cell proliferation in the in vivo mouse model. Since the eADF4(C16) hybrid protein particles were 

used for the first time in vivo, the overall good tolerability of these particles, which has been 

already shown in various in vitro experiments, was confirmed by this experiment. 

Much more important is the fact, that the eADF4(C16)-CatS hybrid protein particles were able to 

induce the same level of proliferating CD8+ T cells either with, but also without the use of the 

immunostimulatory adjuvant R848. This was not expected, because the immune response is 

usually higher after the co-administration of an immunostimulatory adjuvant [42]. In our case, we 

can hypothesize the reasons for that. We already know that the cathepsin S enzyme is most likely 

cleaving the linker sequences used in both eADF4(C16) hybrid protein particles. Trombetta et al. 

reviewed the mechanisms of antigen processing and reported about the strong participation of 

the cathepsin S enzyme in the epitope presentation process [40]. Although several cathepsin 

enzymes are expressed in APCs, especially the cathepsin S enzyme seems to play an important 

role in the antigen presentation by both, the MHC class II and MHC class I pathway [11]. This strong 

involvement may serve as an internal cell booster similar to the effect of an extra 

immunostimulatory adjuvant. 

Our studies on the second generation eADF4(C16) hybrid protein particles showed that the 

selection of the cathepsin cleavable linker has a huge impact on the final outcome. While both 

linker sequences were already used in several studies, the cathepsin S cleavable linker performed 

much better in the studies described here. Furthermore, the cathepsin B cleavable linker was not 

cleaved by the cathepsin B enzyme, which was the initial intention. The final in vivo results showed 

that the results from the enzymatic release experiments were useful as predictive method for the 

eADF4(C16) hybrid protein particle performance. Since cloning and production of a new 

eADF4(C16) hybrid protein is time consuming, initial enzymatic release experiments could serve 

as predictive method in future. Because the analytical methods for the detection of the model 

antigen Ovalbumin are well established [43], we used the CD8 epitope SIINFEKL for the 

characterization of the eADF4(C16) hybrid protein particles. 

The next important step would be the further development of the hybrid concept to include a 

disease relevant antigen to the eADF4(C16) hybrid model and verify the findings from this study. 

Although we focused on the delivery of antigen to dendritic cells by the particle in the submicron 

size range, the preparation of eADF4(C16) hybrid protein particles in the micrometer range could 

be an additional idea for the targeting of macrophages [28]. Several methods for the fabrication 
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of eADF4(C16) microparticles have already been published, however not all of them are applicable 

for an up-scalable and endotoxin free preparation [31, 36, 44]. 

 

4. Conclusion 

In conclusion, this study shows the ability of genetically engineered eADF4(C16) hybrid particles 

as peptide delivery system to induce CD8 T cell proliferation in an in vivo mouse model. Moreover, 

the quantity of proliferating T cells is on the same level after co-administering an 

immunostimulatory adjuvant or after administration without an immunostimulatory adjuvant. 

Importantly, this observation is not connected to an increased cytotoxicity or pro-inflammatory 

effect of the eADF4(C16) hybrid particles themselves. These findings also demonstrate the ability 

of the all-aqueous particle preparation method to produce uniformly sized particles in the 

submicrometer range. The optimization of the salting out process led to a robust preparation of 

uniformly sized submicroparticles with an endotoxin level below the detection limit of the assay. 

The fact that particles from two fully independent eADF4(C16) hybrid protein particle batches led 

to comparable in vivo results indicates a high robustness of these constructs and the pertaining 

manufacturing process. 

The effect of the linker sequence, which was essential for the presentation of the antigen, was 

shown by the comparison between the incubation by cathepsin B and cathepsin S enzymes. While 

the cathepsin B enzyme was not able to cleave any linker, the cathepsin S enzyme was capable of 

cleaving both linker sequences. Therefore, the eADF4(C16)-CatS hybrid protein particles were also 

more effective inducing an immune response in vivo than the eADF4(C16)-CatB hybrid protein 

particles in the present study. These findings should be the basis for future studies to screen more 

cathepsin cleavable linker sequences and incorporate other epitopes. The resulting modified 

eADF4(C16) hybrid particles could be used for other therapeutic fields where DC cell targeting and 

T cell activation are of special interest. With the present study, a sound basis for a new peptide 

based all-in-one particular vaccination system is set. 

 

5. References 

[1] M. C. Garnett, “Targeted drug conjugates: principles and progress,” Adv. Drug Deliv. Rev., vol. 53, no. 2, 
pp. 171–216, 2001. 

[2] J. Khandare and T. Minko, “Polymer–drug conjugates: Progress in polymeric prodrugs,” Prog. Polym. Sci., 
vol. 31, no. 4, pp. 359–397, 2006. 



Hybrid eADF4(C16) protein particles (second generation) 

153 

[3] R. Duncan, L. W. Seymour, K. B. O’Hare, P. A. Flanagan, S. Wedge, I. C. Hume, K. Ulbrich, J. Strohalm, V. 
Subr, F. Spreafico, M. Grandi, M. Ripamonti, M. Farao, and A. Suarato, “Preclinical evaluation of polymer-
bound doxorubicin,” J. Control. Release, vol. 19, no. 1–3, pp. 331–346, 1992. 

[4] K. Kunath, P. Kopečková, T. Minko, and J. Kopeček, “HPMA copolymer–anticancer drug–OV-TL16 
antibody conjugates. 3. The effect of free and polymer-bound Adriamycin on the expression of some 
genes in the OVCAR-3 human ovarian carcinoma cell line,” Eur. J. Pharm. Biopharm., vol. 49, no. 1, pp. 
11–15, 2000. 

[5] H. Soyez, E. Schacht, and S. Vanderkerken, “The crucial role of spacer groups in macromolecular prodrug 
design,” Adv. Drug Deliv. Rev., vol. 21, no. 2, pp. 81–106, 1996. 

[6] G. Cavallaro, M. Campisi, M. Licciardi, M. Ogris, and G. Giammona, “Reversibly stable thiopolyplexes for 
intracellular delivery of genes,” J. Control. Release, vol. 115, no. 3, pp. 322–334, 2006. 

[7] G. F. Walker, C. Fella, J. Pelisek, J. Fahrmeir, S. Boeckle, M. Ogris, and E. Wagner, “Toward Synthetic 
Viruses: Endosomal pH-Triggered Deshielding of Targeted Polyplexes Greatly Enhances Gene Transfer in 
vitro and in vivo,” Mol. Ther., vol. 11, no. 3, pp. 418–425, 2005. 

[8] C. M. Dawidczyk, C. Kim, J. H. Park, L. M. Russell, K. H. Lee, M. G. Pomper, and P. C. Searson, “State-of-
the-art in design rules for drug delivery platforms: Lessons learned from FDA-approved nanomedicines,” 
J. Control. Release, vol. 187, pp. 133–144, 2014. 

[9] B. Turk, D. Turk, and V. Turk, “Lysosomal cysteine proteases: more than scavengers,” Biochim. Biophys. 
Acta - Protein Struct. Mol. Enzymol., vol. 1477, no. 1–2, pp. 98–111, 2000. 

[10] V. Turk, “Lysosomal cysteine proteases: facts and opportunities,” EMBO J., vol. 20, no. 17, pp. 4629–
4633, 2001. 

[11] K. Honey and A. Y. Rudensky, “Lysosomal cysteine proteases regulate antigen presentation,” Nat. Rev. 
Immunol., vol. 3, no. 6, pp. 472–482, 2003. 

[12] M. M. Mohamed and B. F. Sloane, “Cysteine cathepsins: multifunctional enzymes in cancer,” Nat. Rev. 
Cancer, vol. 6, no. 10, pp. 764–775, 2006. 

[13] J. J. Peterson and C. F. Meares, “Cathepsin Substrates as Cleavable Peptide Linkers in Bioconjugates, 
Selected from a Fluorescence Quench Combinatorial Library,” Bioconjug. Chem., vol. 9, no. 5, pp. 618–
626, 1998. 

[14] R. Ménard, E. Carmona, C. Plouffe, D. Brömme, Y. Konishi, J. Lefebvre, and A. C. Storer, “The specificity 
of the S1’ subsite of cysteine proteases,” FEBS Lett., vol. 328, no. 1–2, pp. 107–110, 1993. 

[15] G. Lalmanach, C. Serveau, M. Brillard-Bourdet, J. R. Chagas, R. Mayer, L. Juliano, and F. Gauthier, 
“Conserved cystatin segments as models for designing specific substrates and inhibitors of cysteine 
proteinases,” J. Protein Chem., vol. 14, no. 8, pp. 645–653, 1995. 

[16] M. L. Biniossek, D. K. Nägler, C. Becker-Pauly, and O. Schilling, “Proteomic Identification of Protease 
Cleavage Sites Characterizes Prime and Non-prime Specificity of Cysteine Cathepsins B, L, and S,” J. 
Proteome Res., vol. 10, no. 12, pp. 5363–5373, 2011. 

[17] J. J. Peterson and C. F. Meares, “Enzymatic Cleavage of Peptide-Linked Radiolabels from 
Immunoconjugates,” Bioconjug. Chem., vol. 10, no. 4, pp. 553–557, 1999. 

[18] Y. Li, “Cathepsin B-cleavable doxorubicin prodrugs for targeted cancer therapy (Review),” Int. J. Oncol., 
vol. 42, no. 2, pp. 373–383, 2012. 

[19] C. C. Fraser, D. H. Altreuter, P. Ilyinskii, L. Pittet, R. A. LaMothe, M. Keegan, L. Johnston, and T. K. 
Kishimoto, “Generation of a universal CD4 memory T cell recall peptide effective in humans, mice and 
non-human primates,” Vaccine, vol. 32, no. 24, pp. 2896–2903, 2014. 

[20] G. L. DeNardo and S. J. DeNardo, “Evaluation of a Cathepsin-Cleavable Peptide Linked 
Radioimmunoconjugate of a Panadenocarcinoma MAb, m170, in Mice and Patients,” Cancer Biother. 
Radiopharm., vol. 19, no. 1, pp. 85–92, 2004. 

 



Chapter VI 

154 

[21] T. Kwon, J. Park, J. Yang, D. S. Yoon, S. Na, C.-W. Kim, J.-S. Suh, Y.-M. Huh, S. Haam, and K. Eom, 
“Nanomechanical In Situ Monitoring of Proteolysis of Peptide by Cathepsin B,” PLoS One, vol. 4, no. 7, p. 
e6248, 2009. 

[22] Y. E. Kurtoglu, M. K. Mishra, S. Kannan, and R. M. Kannan, “Drug release characteristics of PAMAM 
dendrimer-drug conjugates with different linkers,” Int J Pharm, vol. 384, no. 1–2, pp. 189–194, 2010. 

[23] N. Lutzner and H. Kalbacher, “Quantifying cathepsin S activity in antigen presenting cells using a novel 
specific substrate,” J Biol Chem, vol. 283, no. 52, pp. 36185–36194, 2008. 

[24] W. Shi, S. M. Ogbomo, N. K. Wagh, Z. Zhou, Y. Jia, S. K. Brusnahan, and J. C. Garrison, “The influence of 
linker length on the properties of cathepsin S cleavable 177Lu-labeled HPMA copolymers for pancreatic 
cancer imaging,” Biomaterials, vol. 35, no. 22, pp. 5760–5770, 2014. 

[25] S. M. Ogbomo, W. Shi, N. K. Wagh, Z. Zhou, S. K. Brusnahan, and J. C. Garrison, “177Lu-labeled HPMA 
copolymers utilizing cathepsin B and S cleavable linkers: synthesis, characterization and preliminary in 
vivo investigation in a pancreatic cancer model,” Nucl Med Biol, vol. 40, no. 5, pp. 606–617, 2013. 

[26] M. Hofer, G. Winter, and J. Myschik, “Recombinant spider silk particles for controlled delivery of protein 
drugs,” Biomaterials, vol. 33, no. 5, pp. 1554–1562, 2012. 

[27] K. Spieß, S. Wohlrab, and T. Scheibel, “Structural characterization and functionalization of engineered 
spider silk films,” Soft Matter, vol. 6, no. 17, pp. 4168–4174, 2010. 

[28] B. Slütter and W. Jiskoot, “Sizing the optimal dimensions of a vaccine delivery system: a particulate 
matter,” Expert Opin. Drug Deliv., vol. 13, no. 2, pp. 167–170, 2016. 

[29] V. B. Joshi, S. M. Geary, and A. K. Salem, “Biodegradable Particles as Vaccine Delivery Systems: Size 
Matters,” AAPS J., vol. 15, no. 1, pp. 85–94, 2013. 

[30] C. Foged, B. Brodin, S. Frokjaer, and A. Sundblad, “Particle size and surface charge affect particle uptake 
by human dendritic cells in an in vitro model,” Int J Pharm, vol. 298, no. 2, pp. 315–322, 2005. 

[31] U. K. Slotta, S. Rammensee, S. Gorb, and T. Scheibel, “An Engineered Spider Silk Protein Forms 
Microspheres,” Angew. Chemie Int. Ed., vol. 47, no. 24, pp. 4592–4594, 2008. 

[32] T. P. King, “Separation of proteins by ammonium sulfate gradient solubilization,” Biochemistry, vol. 11, 
no. 3, pp. 367–371, 1972. 

[33] Y. Yoneda, S. C. J. Steiniger, K. Čapková, J. M. Mee, Y. Liu, G. F. Kaufmann, and K. D. Janda, “A cell-
penetrating peptidic GRP78 ligand for tumor cell-specific prodrug therapy,” Bioorg. Med. Chem. Lett., 
vol. 18, no. 5, pp. 1632–1636, 2008. 

[34] B. Schmid, D.-E. Chung, A. Warnecke, I. Fichtner, and F. Kratz, “Albumin-Binding Prodrugs of 
Camptothecin and Doxorubicin with an Ala-Leu-Ala-Leu-Linker That Are Cleaved by Cathepsin B: 
Synthesis and Antitumor Efficacy,” Bioconjug. Chem., vol. 18, no. 3, pp. 702–716, 2007. 

[35] D. A. Putnam, J.-G. Shiah, and J. Kopeček, “Intracellularly biorecognizable derivatives of 5-fluorouracil,” 
Biochem. Pharmacol., vol. 52, no. 6, pp. 957–962, 1996. 

[36] M. Lucke, G. Winter, and J. Engert, “The effect of steam sterilization on recombinant spider silk particles,” 
Int. J. Pharm., vol. 481, no. 1–2, pp. 125–131, 2015. 

[37] M. Singh, A. Chakrapani, and D. O’Hagan, “Nanoparticles and microparticles as vaccine-delivery systems,” 
Expert Rev. Vaccines, vol. 6, no. 5, pp. 797–808, 2007. 

[38] M. R. Geier, H. Stanbro, and C. R. Merril, “Endotoxins in commercial vaccines,” Appl. Envir. Microbiol., 
vol. 36, no. 3, pp. 445–449, 1978. 

[39] F. Sallusto, “Dendritic cells use macropinocytosis and the mannose receptor to concentrate 
macromolecules in the major histocompatibility complex class II compartment: downregulation by 
cytokines and bacterial products,” J. Exp. Med., vol. 182, no. 2, pp. 389–400, 1995. 

[40] E. S. Trombetta and I. Mellman, “Cell biology of antigen processing in vitro and in vivo,” Annu Rev 
Immunol, vol. 23, pp. 975–1028, 2005. 

 



Hybrid eADF4(C16) protein particles (second generation) 

155 

[41] M. Samie and P. Cresswell, “The transcription factor TFEB acts as a molecular switch that regulates 
exogenous antigen-presentation pathways.,” Nat. Immunol., vol. 16, no. 7, pp. 729–736, 2015. 

[42] D. T. O’Hagan and M. Singh, “Microparticles as vaccine adjuvants and delivery systems,” Expert Rev. 
Vaccines, vol. 2, no. 2, pp. 269–283, 2003. 

[43] F. G. Gao, V. Khammanivong, W. J. Liu, G. R. Leggatt, I. H. Frazer, and G. J. P. Fernando, “Antigen-specific 
CD4+ T-Cell Help Is Required to Activate a Memory CD8+ T Cell to a Fully Functional Tumor Killer Cell,” 
Cancer Res., vol. 62, no. 22, pp. 6438–6441, 2002. 

[44] A. Lammel, M. Schwab, U. Slotta, G. Winter, and T. Scheibel, “Processing conditions for the formation of 
spider silk microspheres,” ChemSusChem, vol. 1, no. 5, pp. 413–416, 2008. 

 



 

156 

  



Nebulization of eADF4(C16) protein particles 

157 

VII. NEBULIZATION OF EADF4(C16) PROTEIN PARTICLES 

1. Introduction 

Pulmonary drug delivery of active pharmaceutical ingredients (API) is used for two fields of 

application. The first one is the common strategy to locally treat respiratory diseases in the lung. 

The direct application of the drug to the target area allows higher local API concentrations while 

at the same time adverse side effects of a systemic application are minimized [1, 2]. The local drug 

delivery of steroids or bronchodilators is frequently used for the treatment of respiratory diseases 

like asthma, chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF) [3, 4]. 

Moreover, inhalative antibiotics like aztreonam, ciprofloxacin or gentamicin are used against 

lower airway infections or as treatment of airway infections of CF patients [5, 6]. The only 

approved and available inhalative biopharmaceutical for local therapy is Dornase alfa (DNase, 

trade name Pulmozyme®) for the hydrolysis of DNA in the mucus of CF patients [7]. 

Systemic drug delivery by pulmonary drug deposition is the second field of application. The 

advantage to an intravenous delivery is the non-invasive route of drug administration. The lower 

respiratory airways offer a large surface area interfacing with the blood circulating system [8, 9]. 

The thin epithelial barrier of approx. 0.1-1 µm of the lower airways’ alveolar system facilitates high 

drug absorption into the blood stream [10, 11]. Moreover, the lower enzymatic activity compared 

to the gastro-intestinal (GI) tract and the avoidance of a first pass effect by the liver are beneficial 

for a systemic drug delivery [12, 13]. Although the success of inhaled nicotine by cigarettes or the 

inhalative administration of anesthetics clearly demonstrate the efficacy of systemic API 

application, no approved product for the pulmonary administration for systemic activity is yet on 

the market [14, 15]. Research mainly focused on the administration of inhalable insulin as 

alternative to the approved subcutaneous insulin for the treatment of diabetes. 

However, both marketed inhalable insulin formulations (Exubera® and Afrezza®) were already 

withdrawn. A major challenge of systemic drug application by pulmonary administration is the 

achievement of adequate and reproducible plasma concentrations [16]. To overcome the bad 

efficiency or reproducibility, particulate drug delivery systems may serve as API depot for 

controlled drug release. The use of nebulized submicroparticles can improve API deposition in the 

lower airways [17]. 
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While new developments in device design can further promote pulmonary drug delivery, 

pulmonary vaccination can be used to systemically induce immune response. Following the 

natural route of many pathogens, a lot of immune cells are located in the mucosa of oral, nasal or 

pulmonary tissue [18]. As a result of this, several reviews underline the enhanced antigenicity of 

pulmonary administered vaccines [19, 20]. The ease of handling of stabilized pulmonary vaccines 

and the lower costs due to the elimination of a cold chain could provide a huge benefit to the 

entire health system [18]. A first large scale study using pulmonary vaccination against measles 

was realized in Mexcio [21]. The results showed that the vaccination of children was more effective 

using pulmonary instead of subcutaneous vaccination [22]. The current Measles Aerosol Vaccine 

Project of the WHO is based on such results and is currently collecting data for a licensed 

pulmonary measles vaccine system [23]. The knowledge of the specific amino acid sequence of 

the pathogenic antigen and improvements in the field of recombinant DNA technology led to the 

development of peptide and plasmid DNA vaccination. Using solely the peptide or plasmid DNA 

and not the full pathogen has the advantage to instruct the immune system strictly to the disease-

specific epitope thus limiting autoimmune toxicity. However, DNA plasmids are weakly 

immunogenic [20] and peptide vaccination has shown limited success due to rapid protease 

degradation [24]. 

Peptide incorporation into particulate delivery systems is one solution to overcome the fast 

degradation. Spider silk particles have already demonstrated their ability as carrier system for 

sensitive molecules like peptides or proteins [25–27]. By recombinant engineering of the 

eADF4(C16) spider silk protein, attachment of the OVA257-264 epitope (SIINFEKL) was possible (see 

chapter 5 and chapter 6). Therefore, an administration of eADF4(C16) protein particles to the lung 

seems to be an attractive delivery attempt for pulmonary vaccination, because the peptide is 

protected by the particles and will be released once the particles have been taken up by antigen 

presenting cells. Thus, we performed a nebulization study comparing a pneumatic jet nebulizer 

(PARI TurboBOY) with an active VM nebulizer (PARI eFlow®). Three differently sized eADF4(C16) 

protein particles were prepared by different fabrication methods to evaluate the optimal particle 

size for the deposition to the lower airways. 
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2. Materials and methods 

2.1. Materials 

2.1.1. Recombinantly produced spider silk protein eADF4(C16) 

The spray dried eADF4(C16) protein was provided by AMSilk GmbH (Martinsried, Germany). This 

bioengineered spider silk protein is based on the natural amino acid sequence of the ADF4 spidroin 

from A. diadematus. The design resulted in a molecular mass of 47.7 kDa, which is a result of one 

T7 Tag and sixteen repeats of the amino acid sequence 

GSSAAAAAAAASGPGGYGPENQGPSGPGGYGPGGP. The theoretical isoelectric point of the 

eADF4(C16) protein is 3.48, resulting in a net negative charge at a physiological pH of 7.4 An 

extinction coefficient of 46,400 M-1*cm-1 at 276 nm was used for the concentration determination 

by UV-Vis-spectroscopy.  

2.1.2. Chemicals and reagents 

Highly purified water (HPW) used in this study was generated by a purelab® device (ELGA 

LabWater, Celle, Germany). Sodium hydroxide solution (1 mol/L, EMPROVE® bio), di-potassium 

hydrogen phosphate (EMPROVE bio, European Pharmacopoeia (Ph. Eur.), British Pharmacopoeia 

(BP)), potassium dihydrogen phosphate (EMPROVE bio, Ph. Eur., BP, United States National 

Formulary (NF)) and the fuming hydrochloric acid 37% (EMPROVE bio, Ph. Eur, BP, Japanese 

Pharmacopoeia (JP)) were purchased from Merck KGaA, Darmstadt, Germany. Sodium chloride 

(NaCl, AnalaR NORMAPUR) was obtained from VWR Chemicals, Darmstadt, Germany. 

Tris(hydroxymethyl)aminomethane (Tris, Trizma® base, purity ≥99.9%) was purchased from Sigma 

Aldrich GmbH, Steinheim, Germany. Guanidinium thiocyanate (for molecular biology) was 

purchased from AppliChem GmbH, Darmstadt, Germany.  

2.2. Methods 

2.2.1. Particle preparation 

The eADF4(C16) particles used for the nebulization study were prepared by two different 

preparation methods. The first one was particle preparation by a micromixing system [26], the 

second one was particle preparation by dialysis [28]. Both systems have been described earlier 

and were slightly modified to meet our requirements. The eADF4(C16) protein powder was 

dissolved in a 6 M guanidinium thiocyanate solution and subsequently dialyzed against a 10 mM 
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Tris(hydroxymethyl)aminomethane(Tris)/HCl solution at 2-8°C. A dialysis membrane with a 

molecular weight cut-off of 8,000 Da (Spectrum Laboratories, Rancho Dominguez, USA) was used. 

After dialysis, the solution was centrifuged and filtered through a 0.2 µm polyethersulfone (PES) 

filter (VWR International, Radnor, USA). The concentration of eADF4(C16) protein in solution was 

determined by an Agilent 8453 UV-Vis spectrophotometer (Agilent, Waldbronn, Germany) using 

a molar extinction coefficient of eADF4(C16) at 276 nm (ε = 46,400 M-1*cm-1). This solution was 

further adjusted to the desired concentrations for particle preparation with a filtered 10 mM 

Tris/HCl solution. 

2.2.1.1. Submicroparticle preparation using a micromixing system 

Processing of the spider silk solution into submicroparticles was carried out by micromixing using 

a high pressure syringe pump system. Both cylinders of the syringe pump system (Model 100 DX 

and Series D pump controller, Teledyne Isco, Lincoln, USA) were filled with pre-tempered 

eADF4(C16) solution (c=1.0 mg/ml) and pre-tempered 4 M ammonium sulfate solution of 80°C. 

The solutions were pumped at a high flow rate of 50 ml/min to a T-shape mixing element (inner 

diameter 0.5 mm, P-727 PEEK tee, Upchurch Scientific, Oak Harbor, USA) leading to an outlet 

tubing (inner diameter 0.5 mm, 1532 PEEK Tubing, Upchurch Scientific, Oak Harbor, USA) for 

suspension collection. 

2.2.1.2. Microparticle preparation using a micromixing system 

Processing of the spider silk solution into microparticles was carried out by micromixing using the 

same high pressure syringe pump system described before. Both cylinders of the syringe pump 

system (Model 100 DX and Series D pump controller, Teledyne Isco, Lincoln, USA) were filled with 

eADF4(C16) solution (c=10.0 mg/ml) and 2 M potassium phosphate solution (pH 8) at room 

temperature. The solutions were pumped at a low flow rate of 2.0 ml/min to a T-shape mixing 

element (inner diameter 0.5 mm, P-727 PEEK tee, Upchurch Scientific, Oak Harbor, USA) leading 

to an outlet tubing (inner diameter 1.0 mm, 1538 PEEK Tubing, Upchurch Scientific, Oak Harbor, 

USA) for suspension collection. 

2.2.1.3. Microparticle preparation using dialysis 

Simple dialysis was used to fabricate larger eADF4(C16) microparticles. The eADF4(C16) solution 

(c=10 mg/ml) was filled into a dialysis membrane with a molecular weight cut-off of 8,000 Da 

(Spectrum Laboratories, Rancho Dominguez, USA) and dialyzed against a 2 M potassium 

phosphate solution (pH 8) for 16 hours at room temperature.  
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Finally, eADF4(C16) particle suspensions from all three preparation methods were subsequently 

centrifuged at 14,000 rpm (SIGMA 4K15, Sigma Laborzentrifugen, Osterode am Harz, Germany) 

and washed with highly purified water (HPW) three times. A two minute ultrasonication (Sonopuls 

HD 3200, Bandelin electronic, Berlin, Germany) step completed the particle preparation 

procedure. The particle concentrations in mg/ml were determined gravimetrically after drying the 

particles under vacuum (13 mbar) overnight. 

2.2.2. eADF4(C16) particle aerosolization 

For aerosolization of eADF4(C16) particles, two different nebulization systems were evaluated. 

Pari LC Plus® nebulizer and Pari TurboBoy® compressor (PARI GmbH, Starnberg, Germany) were 

selected as nebulization system. Additionally, Pari eFlow® (PARI GmbH, Starnberg, Germany) was 

chosen as representative vibrating mesh nebulizer. Both nebulizers were filled with 2.5 ml of 

eADF4(C16) particle suspensions at concentrations of 1.0 mg/ml and 2.0 mg/ml. eADF4(C16) 

particles were diluted with highly purified water (HPW) to the desired concentration immediately 

prior to nebulization. 

2.2.3. Nebulization efficiency (NE) 

Nebulization efficiency (NE) was determined for both systems by weighing the nebulization device 

(ND) on a lab balance before nebulization and after end of operation. The latter was defined as 

time point where no more vapor was emitted from the nebulization device. The NE was calculated 

using equations (1) and (2). 

 

(1)   Nebulization efficiency (%) =
Aerosolized eADF4(C16) suspension mass 

eADF4(C16) suspension mass loaded in nebulizer
x100  

 

(2)   Aerosolized drug mass (mg) = eADF4(C16) suspension mass loaded in ND 

−eADF4(C16)suspension mass remaining in ND post nebulization 

 

To determine the post nebulization weight, the whole instrument including the mouth piece was 

put on a lab balance after end of operation. This procedure ensured that only those portions of 

the eADF4(C16) particle suspensions that completely left the nebulization device were considered 

relevant for the NE calculation, whereas leftover material in the device reservoir was evaluated 

with respect to particle size and possible particle aggregation. 
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2.2.4. Deposition study 

For the assessment of the deposition of eADF4(C16) particles from the nebulizer devices a twin-

stage glass impinger (TSI) apparatus type A (Copley Scientific Ltd., Nottingham, UK) according to 

Ph. Eur chapter 2.9.18 was used. Highly purified water was used as suspension medium for the 

collection stages. 7 ml and 30 ml were filled in the upper and lower collection stages, respectively. 

The TSI was assembled and connected to a GLAX.SING.STA. pump (Erweka GmbH, Heussenstamm, 

Germany). The airflow through the TSI was adjusted to 60 l/min to simulate physiologic breathing 

air flow. The nebulization devices were connected with a rubber mouth piece adapter. The pump 

was started first to establish the airflow through the TSI and after 10 seconds the nebulization 

device was switched on. The airflow was stopped 30 seconds after end of operation and the total 

nebulization time was documented. The TSI was disassembled and volumes of stage 1 and 2 were 

collected in two graduated cylinders. Both stages were washed with additional HPW (stage1: 3 ml, 

stage 2: 5 ml) to recover residual eADF4(C16) particles. The wash solutions were united with the 

volumes of stages 1 and 2, respectively. Three TSI replicates were performed for each sample and 

concentration. The concentration of eADF4(C16) particles in the volume of the nebulization device 

reservoir as well as the concentration of stage 1 and 2 were analyzed photometrically at 546 nm. 

The concentration of the eADF4(C16) particles was calculated relative to calibration curves. 

For the calibration of the photometric assay, each particle batch was diluted with HPW to the 

desired particle concentrations (concentrations of the submicroparticle batch: 0, 10, 20, 50, 100, 

250 and 500 µg/ml. Concentrations of both microparticle batches: 0, 1, 5, 10, 20, 50, 100 and 

200 µg/ml). The turbidity of the measurements was used for the calculation of calibration curves. 

The eADF4(C16) particle fraction in stage 2 was considered as the respirable fraction (RF) as part 

of the total nebulized particle fraction and was calculated using equation (3). 

 

(3)   Respirable fraction (%) =
eADF4(C16) particle fraction deposited in stage 2

Nebulized eADF4(C16) particle fraction
x100  

 

2.3. Analytical methods 

2.3.1. eADF4(C16) particle size 

Particle size was analyzed before and after nebulization to detect possible aggregation or 

fragmentation by the nebulization devices. Particles below 1 µm were analyzed by dynamic light 
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scattering, particles larger than 1 µm were analyzed by laser diffraction spectrometry. 

2.3.1.1. Dynamic light scattering (DLS) 

Particle size and size distribution of submicroparticles were measured as described in chapter 2. 

2.3.1.2. Laser Diffraction Spectrometry (LDS) 

Particle size and size distribution of microparticles were measured as described in chapter 3. If 

required, samples were diluted with water directly before each measurement to obtain 

transmittance values of 74.0-98.8%. 

2.3.2. Scanning electron microscopy (SEM) 

SEM measurements of eADF4(C16) particle suspensions were conducted as described in 

chapter 2. 

 

3. Results and Discussion  

The well characterized native eADF4(C16) protein was used to fabricate particles of three different 

sizes to evaluate a possible nebulization application for eADF4(C16) protein particles. The 

fabrication of particles in the submicron range was realized by the micromixing method described 

by Hofer et al. [26]. The conditions used for this process resulted in a particle size of 255.95 nm. 

These particles were labeled as the 250 nm particle group for the upcoming nebulization studies. 

The micromixing method was adopted for the preparation of particles in the low micrometer 

range. Therefore, the preparation temperature was lowered to room temperature, the 

eADF4(C16) protein concentration was 10-fold increased to 10 mg/ml and the flow rate of the 

pumps was adjusted to 2 ml/min, which corresponds to a 25-fold reduced mixing speed. 

Additionally, the inner diameter of the T-shape mixing outlet tubing was increased to 1.0 mm to 

allow particle forming to a larger size. The resulting particles were 2.52 µm in size. This particle 

group was titled as 2.5 µm particles for the nebulization experiments. The last particle preparation 

method used simple dialysis of the eADF4(C16) protein solution against a 2 M potassium 

phosphate solution for 16 hours at room temperature [28]. The particles prepared by dialysis were 

the largest of the studied particles with a mean diameter of 4.67 µm. These particles were labeled 

as 4.7 µm group for the eADF4(C16) protein particle nebulization studies. Figure VII-1 shows SEM 

micrographs of the fabricated particles prior to nebulization at different magnifications. 
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Figure VII-1: SEM micrographs of eADF4(C16) protein particles at a magnification of 9,500x (A) and 1,500x 
(B and C). 
A) Particles prepared with the micromixing device, resulting in a mean particle size of 255.95 nm. 
B) Particles prepared with the adopted micromixing device, resulting in a mean particle size of 2.52 µm. 
C) Particles prepared by dialysis against 2 M potassium phosphate, resulting in a mean particle size of 
4.67 µm. 

All three particle batches are below the particle size limit of 5 µm, which is necessary for a 

pulmonary delivery into the lower airways [29]. The three differently sized eADF4(C16) protein 

particles were suspended in highly purified water (HPW) at concentrations of 1 mg/ml and 

2 mg/ml. 

The final nebulization efficiency is highly influenced by the type of nebulizer, which is used for the 

pulmonary administration of the particles [29]. For this reason, a direct comparison of a jet 

nebulizer, which has been in use already since decades, and an active vibrating mesh (VM) 

nebulizer, which was established in the early 2000s, was performed. 

First, the deposition of the differently sized eADF4(C16) protein particles was evaluated using a 

twin-stage glass impinger (TSI) apparatus. The amount of eADF4(C16) protein particles in the 

lower stage was used for the calculation of the respirable fraction RF. The results of this calculation 

are illustrated in Figure VII-2. 
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Figure VII-2: Impact of the particle size, particle concentration and nebulizer device on the respirable 
fraction (RF). The first term of the figure caption defines the size of the used particle suspension (250nm, 
2.5 µm or 4 µm), the second term shows the concentration of the particles in the suspension (either 1 or 
2 mg/ml) and the last term displays the used type of nebulizer (PARI eFlow or PARI TurboBOY). 

The eADF4(C16) protein particles used for the nebulization studies showed a good deposition to 

the lower airways, resulting in a respirable fraction of up to 56.7% for the 250 nm eADF4(C16) 

protein particles aerosolized by the TurboBOY at a concentration of 2 mg/ml. However, only the 

eADF4(C16) protein particles smaller than 4.7 µm feature high RF values, whereas the 4.7 µm 

particles were mostly not able to reach the lower airways, which results in a RF of only 16.2%. The 

aerosolized 2.5 µm particle group showed RF values between 34.4% and 50.5% (Figure VII-2). With 

regards to values reported in the literature, the following conclusions can be drawn: similar values 

were reported by Fuchs et al. for the nebulization of 150 nm gelatin nanoparticles by a passive VM 

device, while the use of an active VM device resulted in slightly increased RF values [30]. In 

addition, the authors studied the performance of the particle nebulization by a metered dose 

inhaler (MDI). However, the MDI device was identified to be not be suitable for a nanoparticle 

delivery to the therapeutically relevant lower airways [30]. Liu et al. showed in their study using 

solid lipid nanoparticles with a size of approx. 110 nm that further optimization can significantly 

increase the RF [31]. The initial RF of around 40% was increased after the formulation was 

optimized to a final RF of 82.1% using an air-jet nebulizer. The type of nebulizer used also highly 

influenced the lung deposition of the 2.5 µm group in our study, as the deposition to the related 
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lower airways by the eFlow device was 1.5-fold more effective than by the TurboBOY. However, 

this was only true for the 1 mg/ml group. The eFlow was not able to nebulize both the higher 

concentrated 2.5 µm eADF4(C16) protein particles and the 4.7 µm eADF4(C16) protein particles, 

which were studied only at the lower concentration of 1 mg/ml. Although we never determined 

the viscosity of the eADF4(C16) protein particle suspension, the viscosity could be one reason for 

the nebulization problems with the eFlow device. Ghazanfari et al. proved that the viscosity is a 

critical factor affecting the aerosolization of suspensions [17]. The authors observed a prolonged 

nebulization time with increasing viscosity of a formulation. While the overall duration of 

nebulization, which was defined as the time from the start of the device until end of operation, 

was well below 10 minutes for the 250 nm particle group, the nebulization time of the eFlow 

device increased to 20 minutes for the 2.5 µm particle group at a concentration of 1 mg/ml.  

 

Figure VII-3: Dependence of the particle size, particle concentration and nebulizer device on the 
nebulization efficiency (NE). The first term of the figure caption defines the size of the used particle 
suspension (250nm, 2.5 µm or 4 µm), the second term shows the concentration of the particles in the 
suspension (either 1 or 2 mg/ml) and the last term displays the used type of nebulizer (PARI eFlow or 
PARI TurboBOY). 

The good RF values of the eFlow device were somehow surprising after knowing the nebulization 

efficiency (NE) values illustrated in Figure VII-3. While the NE was around 70% for the TurboBOY, 

the NE values of the eFlow device were only between 52.5% and 56.4%. These results 

demonstrate, that a large amount of eADF4(C16) protein particles remained in the nebulization 
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device after end of operation, where no more vapor was emitted from the nebulization device. 

Neither the particle size nor the particle concentration had an effect on the NE, which remained 

constant within the repeated measurements for both devices. The relatively low NE values of the 

used devices could potentially be increased by the change to a different nebulizer. Fuchs et al. 

demonstrated with gelatin nanoparticles that NE values up to 97.8% are possible with an 

appropriate nebulization device [30]. While two of their three studied nebulizers showed NE 

values above 94%, the NE of their third device was only around 50%, which is comparable to the 

NE of the here studied eFlow device. 

Second, the impact of the nebulization on the eADF4(C16) protein particle size was assessed. 

Therefore, fractions of the two impinger stages as well as a fraction of the residual volume in the 

nebulization device reservoir were analyzed by dynamic light scattering (particle size <1 µm) or by 

laser diffraction spectrometry (particles >1 µm). The results of the submicroparticles showed no 

clear trend towards a size separation between the first and second stage of the glass impinger 

(Figure VII-4 A). In addition, the residual particles in the device reservoir were in the same size 

range as the nebulized particles and did not show any aggregation. The aerosolization process did 

not alter the particle size of the submicroparticles compared to the control particles, which were 

analyzed along with the nebulized particles. On the contrary, the results of the microparticles 

displayed a separation between the first and second stage of the impinger and an accumulation 

of larger particles in the remaining volume of the device reservoir (Figure VII-4 B). The particle size 

of the microparticles on both stages of the glass impinger was smaller than the size of the control 

particles. This finding lead to the assumption that smaller microparticles were preferably 

aerosolized by the nebulization devices, whereas the larger particles accumulated in the remaining 

volume of the reservoir. 
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Figure VII-4: A) Particle size of eADF4(C16) protein submicroparticles determined by dynamic light 
scattering after nebulization in dependence of the particle concentration and nebulizer device. The size 
analysis was performed with fractions of the two impinger stages and a fraction of the remaining 
reservoir volume. Particles without nebulization were analyzed as control. 
B) Particle size of eADF4(C16) protein microparticles determined by laser diffraction spectrometry after 
nebulization in dependence of the particle concentration and nebulizer device. The size analysis was 
performed with fractions of the two impinger stages and a fraction of the remaining reservoir volume. 
Particles without nebulization were analyzed as control. 
*1: The particle concentration of the fraction in the upper stage was too low to determine a reliable 
particle size. 
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The non-uniform distribution of the microparticles could result from sedimentation of these 

particles in water. The speed of sedimentation depends on the size or mass of the particles, which 

means that the smaller submicroparticles were more stable during the aerosolization time [32]. 

The high amount of the RF together with the uniform particle size distribution after nebulization 

leads to the conclusion to use of eADF4(C16) protein submicroparticles instead of microparticles 

for nebulization.  

 

4. Conclusion 

In this study, eADF4(C16) spider silk protein particles were used for a nebulization approach for 

the first time. We assessed the basic feasibility of eADF4(C16) protein particle aerosolization by 

the analysis of three different particle sizes at two different concentrations with two different 

nebulization devices. The results of the experiments demonstrated that pulmonary application of 

eADF4(C16) protein particles is generally feasible. Although we did no optimization of the 

eADF4(C16) protein particle formulation, high RF values were achieved for the 250 nm and 2.5 µm 

particles (Figure VII-2). The colloidal stability of the particles after nebulization was verified by the 

analysis of the particle size at the lower impinger stage. The present study focused on the 

feasibility of nebulization using unloaded eADF4(C16) protein particles. In a next step, the 

nebulization of drug loaded eADF4(C16) protein particles should be performed. As there is always 

a risk to lose loaded drug during the aerosolization process, the eADF4(C16) hybrid protein 

particles presented in chapter 6 could be a promising alternative. Due to the integration of the 

active pharmaceutical part into the amino acid sequence of the drug carrier molecule, the risk of 

drug loss during nebulization is very low. However, the possibility of particle aggregation of the 

eADF4(C16) protein particle suspension is still given. Therefore, the development of a dry powder 

inhaler (DPI) could provide a smart alternative to provide a long-term stable application form of 

eADF4(C16) protein particles. Hofer et al. already demonstrated the possibility to produce a dried 

eADF4(C16) protein particle powder by freeze drying [26]. The freeze-dried product could be used 

as an inhalative powder formulation. Claus et al. developed a dry powder inhalation system based 

on the disintegration and aerosolization of lyophilizates by an air impact [33]. Finally, the effect of 

aerosolized eADF4(C16) protein particles on living cells by an in vitro assay has to be 

demonstrated. 
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VIII. POLYCATIONIC SPIDER SILK PROTEIN PARTICLES FOR DRUG 

DELIVERY 

1. Introduction 

Polymeric drug delivery systems for controlled delivery of different pharmaceutical molecules 

including proteins and peptides have been investigated over the last decades [1]. A protective 

delivery system is of special interest for protein and peptide based drugs, as these molecules are 

sensitive to chemical modifications and denaturation during storage or fast proteolysis after 

application [2]. For this purpose, particulate delivery systems like microspheres or nanoparticles 

made of biodegradable polymers have been studied due to their good biocompatibility [3]. 

However, particulate carrier systems are not only used to protect the loaded drug molecule, but 

are designed to control the drug release for a sustained or targeted drug delivery [4]. The polymer 

as basis for the particulate drug delivery system affects the overall performance of the whole 

system, with regards to toxicity, biocompatibility and cheap and easy processability [5]. The most 

common polymers used for the preparation of drug carriers are either synthetic or naturally 

occurring materials. The most extensively studied polymers are the synthetic poly(ethylene glycol) 

(PEG), poly(methyl methacrylate) (PMMA) and polylactic-co-glycolic acid (PLGA) [6, 7]. The latter 

one has the advantage of being biodegradable after application [8]. In the field of natural polymers 

used for particle preparation, chitosan, human serum albumin (HAS) and gelatin were of special 

interest amongst others [9]. Nevertheless, most polymers are not suitable for the drug delivery of 

pharmaceutical relevant proteins due to the required organic solvents, usage of toxic cross-linking 

agents, unfavorable pH extremes or mechanical stress during particle fabrication [10–12]. In order 

to overcome these drawbacks, new biomaterials have been evaluated for drug delivery 

applications. Silk proteins including silk fibroin from the silkworm Bombyx mori as well as spider 

silk proteins have the advantage of being considered non-toxic and are processable by an  

all-aqueous preparation method [5]. 

Particulate carrier systems cannot be loaded with every drug due to the either positive or negative 

surface charge at a given pH. The charge of a polymer or protein particle at a defined pH is defined 

by the isoelectric point (pI) [13]. Thus, molecules with a pI < 7 exhibit a negative surface charge 

during studies at neutral pH, while molecules with a pI > 7 will have a positive surface charge. The 

previously studied eADF4(C16) spider silk protein has a pI of 3.48, which results in negatively 
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charged protein particles at neutral pH [14]. Besides the eADF4(C16) protein, also albumin [15], 

PLGA [16], chitosan [17] and gelatin type B [18] particles are negatively charged at neutral pH. In 

this context, gelatin represents a material, that offers the possibility to be used either as negatively 

or positively charged at neutral pH, depending on the processing of the raw material. Due to the 

negative net charge of these molecules at neutral pH, drugs for loading have to be neutral or 

positively charged in order to be adsorbed to the particle matrix. The current options for a drug 

delivery of positively charged molecules are cationic liposomes or cationic polymers. Although 

liposomes typically show a good safety profile, studies have demonstrated an inflammatory 

response and liver accumulation without liver-specific targeting after administration [19, 20]. 

Polyethylenimine (PEI), chitosan and gelatin type B are cationic polymers used for gene and drug 

delivery. Due to the mucoadhesive properties of chitosan, nasal, peroral and pulmonary drug 

delivery are possible [17]. However, high transfection efficiency seems to be related to a 

significant toxicity [21]. The drawback of chitosan and gelatin particles is moreover the necessity 

of cross-linking after preparation [18]. On the other hand, gelatin offers the possibility to fabricate 

particles with a negative or positive surface charge, due to the commercial availability of type A 

and type B gelatin with different pIs [18]. 

The newly developed eADF4(κ16) protein was designed to maintain most properties of the 

standard eADF4(C16) protein in combination with a positive surface charge at neutral pH [22]. The 

positive surface charge allows the loading of negatively charged molecules and comparative 

studies to the standard eADF4(C16) protein. Doblhofer at al. already showed the possibility of 

loading negatively charged low molecular weight drugs and nucleic acids onto eADF4(κ16) protein 

microparticles. Furthermore, coating of the eADF4(κ16) protein microparticles with negatively 

charged eADF4(C16) protein in a layer-by-layer approach has been demonstrated [22]. 
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Figure VIII-1: Schematic charge differences between the standard eADF4(C16) protein particles and the 
newly developed eADF4(κ16) protein particles at neutral pH. Loading of negatively charged proteins is 
now possible with the positively charged eADF4(κ16) protein particles. 

The aim of this study was to investigate the possibility of loading protein molecules on the 

eADF4(κ16) particles and to compare the results to the previously published results for the 

negatively charged eADF4(C16) protein particles [14]. The surface charge differences of the two 

spider silk protein particles at neutral pH are schematically illustrated in Figure VIII-1. In 

accordance to the study by Hofer et al. using the standard eADF4(C16) protein particles, remote 

loading of positively charged proteins was performed after particle preparation. In order to 

evaluate the influence of the molecular weight on the loading mechanism, three proteins with 

different molecular weights were chosen for the loading experiments. 

Secondly, the colloidal stability of the newly developed eADF4(κ16) protein particles was 

evaluated at different pH and ionic strengths, because previously published studies reported a 

rapid aggregation of positively charged molecules after i.v. administration [23]. The colloidal 

stability was evaluated by analysis of the particle size and zeta potential measurements. 
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2. Materials and methods 

2.1. Materials 

2.1.1. Engineered polycationic spider silk protein eADF4(κ16) 

The standard eADF4(C16) spider silk proteins used so far displays negative net charges at 

physiological pH. This is the result of 16 glutamic acid residues in the proteins amino acid 

sequence. Doblhofer et al. [22] designed a new spider silk protein with a net positive charge, based 

on the eADF4(C16) framework. The exchange of the glutamic acid residues by lysine residues 

resulted in the generation of the new eADF4(κ16) protein. The eADF4(κ16) protein consists of a 

T7-TAG followed by 16 repetitions of the following amino acid sequence: 

GSSAAAAAAAASGPGGYGPKNQGPSGPGGYGPGGPG. 

The eADF4(κ16) protein has a molecular weight of 47.68 kDa and a theoretical isoelectric point of 

9.7. In comparison, the eADF4(C16) protein has a similar molecular weight of 47.7 kDa but a 

theoretical isoelectric point of 3.48. The whole design and cloning of the eADF4(κ16) spider silk 

protein was realized in the group of Prof. Dr. Thomas Scheibel in Bayreuth. The production in E. coli 

and downstream processing was also performed in the group of Prof. Dr. Thomas Scheibel. The 

final protein was freeze dried to a free-flowing powder of a white color. An extinction coefficient 

of 47,680 M-1*cm-1 at 280 nm was used for the concentration determination by UV-Vis-

spectroscopy. 

2.1.2. Ovalbumin 

Ovalbumin form chicken egg white was purchased from Sigma Aldrich GmbH (Steinheim, 

Germany). Ovalbumin is a glycoprotein from the serpin family with 386 amino acids and a 

molecular weight of 45 kDa [24]. The isoelectric point of ovalbumin is 4.5 [25] resulting in a 

negative charge at neutral pH. Ovalbumin is extensively used as model antigen in vaccine studies 

[26] and was also considered as antigen in the eADF4(C16) hybrid approach described in chapter 5 

and chapter 6. 

2.1.3. Anakinra 

Anakinra (trade name Kineret®) was obtained from Swedish Orphan Biovitrum AB (Stockholm, 

Sweden). It is a recombinant human interleukin 1 receptor antagonist with a molecular weight of 

17.3 kDa [27]. Anakinra is approved for the treatment of rheumatic arthritis for adult persons and 

has a theoretical isoelectric point of 5.46. Due to the short half-life of the protein, daily 
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administration is needed and therefore loading on particles to form a depot is beneficial. For 

concentration determination by UV-Vis spectroscopy an extinction coefficient of 13,392M-1*cm-1 

at 280 nm [27] was used. 

2.1.4. Insulin lispro 

Insulin lispro (trade name Humalog®) was obtained from Lilly Deutschland GmbH (Bad Homburg, 

Germany). Insulin lispro is a fast acting insulin analogon based on the reversed arrangement of the 

amino acids lysine and proline. Due to the rearrangement of the original amino acid sequence of 

human insulin, insulin lispro has the same molecular weight as human insulin with 5.8 kDa [28]. 

Due to this low molecular weight, the insulin lispro was selected as small protein molecule for the 

loading experiments. The isoelectric point of the insulin lispro protein is 5.4 [29], which results 

also to a negative charge at neutral pH. An extinction coefficient of 0.9521 ml/mg-1/cm-1 at 

277.5 nm [30] was used for the concentration determination by UV-Vis spectroscopy. 

 

Figure VIII-2: Human insulin (left) and insulin lispro (right) taken from Thevis et al. [28].  

2.1.5. Chemicals and reagents 

Highly purified water (HPW) used for this study was generated by a purelab® device (ELGA 

LabWater, Celle, Germany). Sodium hydroxide solution (1 mol/L, EMPROVE® bio), di-potassium 

hydrogen phosphate (EMPROVE bio, European Pharmacopoeia (Ph. Eur.), British Pharmacopoeia 

(BP)), potassium dihydrogen phosphate (EMPROVE bio, Ph. Eur., BP, United States National 

Formulary (NF)) and the fuming hydrochloric acid 37% (EMPROVE bio, Ph. Eur, BP, Japanese 

Pharmacopoeia (JP)) were purchased from Merck KGaA, Darmstadt, Germany. Sodium chloride 

(NaCl, AnalaR NORMAPUR) was obtained from VWR Chemicals, Darmstadt, Germany. 

Tris(hydroxymethyl)aminomethane (Tris, Trizma® base, purity ≥99.9%) was purchased from Sigma 

Aldrich GmbH, Steinheim, Germany. Guanidinium thiocyanate (for molecular biology) and 4-(2-

Hydroxyethyl)-1-piperazine-1-ethanesulfonic acid (HEPES, for molecular biology) were purchased 

from AppliChem GmbH, Darmstadt, Germany. 
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2.2. Methods 

2.2.1. Preparation of eADF4(κ16) protein particles 

The same particle preparation technique using a micromixing system as described in chapter 3 

was used for the preparation of eADF4(κ16) protein particles. A molar extinction coefficient of 

eADF4(κ16) protein at 280 nm (ε = 47,680 M-1*cm-1) was used for concentration determination by 

UV-Vis spectroscopy. 

2.2.2. Colloidal stability 

The colloidal stability studies of eADF4(κ16) particles were performed at three different pH values 

of 7.0, 8.5 and 12.0. Although the environment at the pH of 12.0 might be a harsh condition for 

protein particles, this pH was chosen to change the surface charge of the eADF4(κ16) protein with 

a theoretical isoelectric point of 9.7 from positive to negative. Each pH value was studied at three 

different ionic strengths of 30 mM, 60 mM and 100 mM. At the pH of 7, a phosphate buffer and a 

HEPES buffer were used. At pH of 8.5, a Tris buffer was chosen and at the pH of 12.0, a phosphate 

buffer was used. The eADF4(κ16) particles in purified water were centrifuged (15,000 rpm, 

30 minutes), the supernatant discarded and the particles redispersed to a final particle 

concentration of 0.25 mg/ml in the desired buffer medium. The particles in the respective buffer 

were stored at room temperature without agitation. Samples were analyzed right after 

redispersion, after 1 hour of storage and after 24 hours of storage. The particle size, the size 

distribution and the zeta potential were analyzed using a Zetasizer Nano ZS (Malvern Instruments, 

Worcestershire, UK). 

2.2.3. eADF4(κ16) particle loading 

Loading of eADF4(κ16) particles was carried out with three different proteins on the basis of 

previous studies with eADF4(C16) particles [14]. The eADF4(κ16) particles were loaded via 

diffusion with the proteins ovalbumin, Anakinra and insulin lispro. The loading process was 

performed in a 30 mM Tris buffer at pH 8.0 (loading buffer). A stock solution of the corresponding 

protein to be tested was prepared by dissolving the protein in the loading buffer (ovalbumin) or 

by dialysis against the loading buffer (Anakinra and insulin lispro). The eADF4(κ16) particles in 

HPW were diluted to a stock dispersion with a 100 mM Tris buffer pH 8.0 resulting in a final ionic 

strength of 30 mM Tris (identical to the loading buffer). For particle loading, appropriate volumes 

of the protein stock solution, the eADF4(κ16) stock dispersion and the loading buffer were mixed 

to achieve a final particle concentration of 0.5 mg/ml and the desired w/w-ratio [%] of protein to 



Polycationic spider silk protein particles for drug delivery 

179 

eADF4(κ16) particles (see equation (1)). 

 

(1)   w/w-ratio [%] =  
Amount of model protein used for loading [µg]

Amount of eADF4(κ16)particles used for loading [µg]
∗ 100  

 

The mixture was incubated for 30 minutes at room temperature under mild agitation at 40 rpm 

(Polymax 1040, Heidolph Instruments GmbH, Schwabach, Germany). After incubation, 75 µL of 

the eADF4(κ16) particle dispersion were used for DLS measurements. At the same time, the 

remaining volume of 925 µl was centrifuged at 15,000 rpm for 30 minutes. The supernatant was 

then analyzed for residual protein content by UV-Vis spectroscopy. The residual amount of 

ovalbumin (molecular weight 45 kDa) was calculated by a calibration curve at 280 nm. The native 

ovalbumin was measured at concentrations of 0.00195-1.0 mg/ml and absorption at 280 nm was 

used for the calculation of the ovalbumin calibration curve. Residual amount of Anakinra 

(molecular weight 17.3 kDa) was calculated using the extinction coefficient of 13,392M-1*cm-1 at 

280 nm [27]. Residual amount of insulin lispro (molecular weight 5.8 kDa) was calculated using the 

extinction coefficient of 0.9521 ml/mg-1/cm-1 at 277.5 nm [30]. The loading [%, w/w] and loading 

efficiency [%, w/w] were determined using equations (2) and (3). 

 

(2)   Loading [%] =  
Amount of model protein loaded on eADF4(κ16) particles [µg]

Amount of eADF4(κ16) particles [µg]
∗ 100  

 

(3)   Loading efficiency [%] =  
Amount of model protein loaded on eADF4(κ16) particles [µg]

Amount of model protein initially added [µg]
∗ 100  

 

2.2.4. Analytical Methods 

2.2.4.1. Dynamic light scattering (DLS) 

Particle size and size distribution of submicroparticles were measured as described in chapter 2. 

2.2.4.2. Zeta potential 

The zeta potential of eADF(C16) particles was measured as described in chapter 2. 

2.2.4.3. Scanning electron microscopy (SEM) 

SEM measurements of eADF4(C16) particle suspensions were conducted as described in 

chapter 2. 
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3. Results and Discussion 

The recently developed eADF4(κ16) protein was processed using the same procedure as described 

by Hofer et al. for the standard eADF4(C16) protein to identify possible differences between the 

two contrarily charged proteins [14]. Dialysis against a 10 mM Tris/HCl buffer (pH 8) at 2-8°C had 

to be performed at a lower concentration (approx. 2 mg/ml) after dissolution of the eADF4(κ16) 

protein powder in a 6 M guanidinium thiocyanate solution. Already at the used protein 

concentration of 2 mg/ml protein precipitation during the dialysis process was observable, 

irrespective of using a 20 mM sodium acetate-acetic acid buffer at pH 5.0 or a 10 mM Tris/HCl 

buffer at pH 8.0. Therefore, the 10 mM Tris/HCl buffer was used for dialysis of the eADF4(κ16) 

protein in order to keep the whole particle preparation process as consistent as possible. The 

precipitation of the dialyzed eADF4(κ16) protein solution into submicroparticles using the 

micromixing system was the most critical part of the particle preparation process. During studies 

with the second generation eADF4(C16) hybrid protein (chapter 6), we had already seen that the 

protein itself has a huge impact on the final particle size. At this time, the charge of the spider silk 

protein has changed due to a replacement of glutamic acid residues of the eADF4(C16) by lysine 

residues at the eADF4(κ16) protein. Therefore, we studied different precipitating solutions on the 

final eADF4(κ16) particle size and compared the eADF4(κ16) particles with standard eADF4(C16) 

protein particles as shown in Figure VIII-3. 

 

Figure VIII-3: Properties of the eADF4(κ16) protein particles compared to the standard eADF4(C16) 
protein particles. 
A) Particle size given as the Z-average and the particle dispersity index (PDI) of eADF4(κ16) and 
eADF4(C16) particles prepared at different conditions. Standard eADF4(C16) particles were prepared at 
60°C at a protein concentration of 1 mg/ml with a 2 M potassium phosphate solution. The different 
eADF4(κ16) protein particles were prepared at 60-80°C at protein concentrations of 0.5-1 mg/ml with 
either a 2 M potassium phosphate or 3-4 M ammonium sulfate solutions. 
B) Zeta potential of particles described in A).  
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The final particle size of the eADF4(κ16) particles is much larger compared to the standard 

eADF4(C16) particle even though the particles were prepared using the same conditions. While 

the standard eADF4(C16) protein particles displayed a particle size of 365 nm, the particle size of 

the eADF4(κ16) protein particles was 633 nm. By modification of the particle forming process 

using a 4 M ammonium sulfate solution, the final particle size of the eADF4(κ16) protein particles 

could be decreased to 325 nm. The influence of the kosmotropic salts used for protein 

precipitation has already been described in chapter 6 for the preparation of the second generation 

eADF4(C16) hybrid protein particles. More important for the evaluation of the eADF4(κ16) protein 

particles were the measurements of the surface charge in neutral solutions. Figure VIII-3 B shows 

the results of the zeta potential measurements. As expected, the standard eADF4(C16) protein 

particles displayed a negative surface charge, whereas the eADF4(κ16) protein particles exhibited 

a positive surface charge. The measured values of the eADF4(κ16) protein submicroparticles were 

between 21 and 26 mV (Figure VIII-3 B). These values of the eADF4(κ16) protein particles zeta 

potential should guarantee a stable aqueous dispersion. Doblhofer et al. reported already a 

positive zeta potential of around 8 mV after fabrication of eADF4(κ16) protein microparticles [22]. 

The difference of the reported zeta potential values of the eADF4(κ16) protein microparticles used 

by Doblhofer et al. and the eADF4(κ16) submicroparticles used in this study might be caused by 

the ionic strength and pH of the used dilution medium for the measurements.  

Like the eADF4(C16) protein particle suspensions, the eADF4(κ16) protein particles were stored in 

highly purified water (HPW) at 2-8°C. A short term stability study of the eADF4(κ16) protein 

submicroparticle suspension stored at a concentration of 1.8 mg/ml at 2-8°C showed a moderate 

increase of the particle size of 4.1% over a period of 4 weeks. The PDI increased in the same time 

from 0.174 at the start to 0.253 after 4 weeks storage. The results indicate that the eADF4(κ16) 

protein submicroparticle suspension is stable in HPW. 

In order to evaluate the impact of pH and ionic strength on the eADF4(κ16) protein particles, a 

colloidal stability study was performed based on the report of Hofer et al. [14]. Due to the different 

pI of the eADF4(κ16) protein, different buffer systems were selected for the colloidal stability 

study. The eADF4(κ16) protein submicroparticle suspensions were studied at 30 mM, 60 mM and 

100 mM ionic strength and at pH 7.0, pH 8.5 and pH 12.0. The phosphate buffer at pH 12 was 

chosen to evaluate the particle behavior after a change of the zeta potential to negative values 

above the pI of 9.7. Figure VIII-4 illustrates the results of the colloidal stability study over time. 

The absolute value of the zeta potential decreased with increasing ionic strength at pH 7.0 and 

pH 8.5 while it increased with increasing ionic strength at pH 12.0. The latter increase of the zeta 
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potential is due to the predicted switch of the zeta potential from positive to negative values at 

the pH of 12. Furthermore, the zeta potential values stayed almost at the same level after 

incubation over 24 hours. That means that the storage time does not affect the zeta potential of 

the eADF4(κ16) protein particles. On the contrary, the particle size is highly affected by all studied 

parameters. While the increasing particle size with increasing ionic strength within one buffer 

group was expected before and is explicable with the zeta potential of the particles (see Figure 

VIII-4 B, D and E), the large particle size increase at pH 7.0 was surprising (see Figure VIII-4 A & B). 

As mentioned above, best colloidal stability is given when eADF4(κ16) particles are stored in HPW. 

The effect of decreasing the pH below the pI of 9.7 resulted in a progressive particle 

agglomeration. Usually, particle aggregation and stabilization can be explained by the DLVO 

theory, whereupon particles are stabilized by an electrostatic repulsive barrier [31]. With an 

increasing zeta potential, the repulsive forces are rising and the whole system becomes more 

stable [32]. According to this, the chosen pH of 7.0 should result in the most stable formulation 

for the eADF4(κ16) protein particles.  
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Figure VIII-4: Results of the colloidal stability study performed with eADF4(κ16) protein particles at pH 7.0 
(HEPES buffer), pH 8.5 (Tris buffer) and pH 12.0 (phosphate buffer) at 30 mM, 60 mM and 100 mM ionic 
strength. 
A) Particle size and PDI as well as B) the zeta potential of eADF4(κ16) particles incubated at p 7.0. 
C) Particle size and PDI as well as D) the zeta potential of eADF4(κ16) particles incubated at p 8.5. 
E) Particle size and PDI as well as F) the zeta potential of eADF4(κ16) particles incubated at p 12.0. 
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Figure VIII-5: A) Particle size and PDI of eADF4(κ16) protein particles incubated at pH 7 (either with a 
HEPES or a phosphate buffer) and an ionic strength of 30 mM over a period of 24 hours. 
B) Zeta potential of eADF4(κ16) protein particles incubated at pH 7 (either with a HEPES or a phosphate 
buffer) and an ionic strength of 30 mM over a period of 24 hours. 
C) Particle size and PDI of eADF4(κ16) protein particles incubated at pH 7 (either with a HEPES or a 
phosphate buffer) and ionic strength of 30 mM, 60 mM and 100 mM at the 24 hour time point. 

To exclude buffer salt effects on the eADF4(κ16) protein particle stability at pH 7.0, a second study 

was conducted to compare particles suspended in HEPES buffer to particles suspended in 

phosphate buffer at pH 7.0 (see Figure VIII-5). Interestingly, the use of the phosphate buffer at 

pH 7.0 was even worse than the HEPES buffer. The particle size of the eADF4(κ16) protein particles 

increased rapidly over the incubation time resulting to over twice the size compared to the start 

(Figure VIII-5 A & C). The incubation with the phosphate buffer led to a drop of the zeta potential 

to values below 10 mV (Figure VIII-5 B), which could be the reason for particle aggregation. 

In conclusion, the results of the colloidal stability suggest the use of HPW or a low ionic strength 

buffer for the storage of the eADF4(κ16) protein particle suspensions. Additionally, storage at 

negative zeta potential is preferable, although a buffer system above pH 10.0 is not favorable for 

most of the pharmaceutically used proteins or peptides. The instability of the eADF4(κ16) protein 

particles in solution is not yet fully understood. Although zeta potential measurements indicated 
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towards a stable suspension, non-DLVO forces might play a role for particle aggregation of 

positively charged spider silk proteins [33]. Interestingly, the native eADF4(C16) protein particles 

showed the highest particle size increase at pH 3, where the eADF4(C16) protein is positively 

charged. 

Drug delivery by spider silk protein particles has already been investigated by Lammel et al. and 

Hofer et al. using the standard eADF4(C16) protein [14, 34] and by Doblhofer et al. using the 

eADF4(κ16) protein to fabricate microparticles, which were loaded with low molecular weight 

drugs [22]. Here, we were using proteins for loading eADF4(κ16) protein submicroparticles. 

Proteins are much larger in size causing possible steric interactions with the carrier system, while 

the charge is defined by the amino acid sequence of the protein molecule [35]. We selected three 

pharmaceutically relevant proteins with different molecular weights for the remote loading 

experiments. All three proteins display a pI below 6.0 resulting in a net negative charge at neutral 

pH, allowing a remote loading of the pre-fabricated eADF4(κ16) protein particles. 

In order to ensure the colloidal stability of the eADF4(κ16) protein particles during the incubation 

time and to guarantee the net negative charge of the proteins, a 30 mM Tris buffer, pH 8.0 was 

used. The incubation time was defined to be 30 minutes and the final particle concentration was 

adjusted to 0.5 mg/ml. The same ionic strength, particle concentration and incubation time were 

also used by Hofer et al. for the remote loading studies with the eADF4(C16) protein particles [14].  

Ovalbumin with a molecular weight of 45 kDa [24] was the largest of the three tested proteins. 

Using a 20% w/w-ratio (a 1:5 ratio given in percent) of ovalbumin to eADF4(κ16) protein particles, 

a maximum loading of 7.8% [w/w] ovalbumin could be achieved by incubation. The associated 

loading efficiencies decreased with increasing ratios of ovalbumin to eADF4(κ16) protein particles 

from 92.4% to 39.2%. The eADF4(κ16) protein particle size increased from 791 nm to 2,661 nm, 

while the zeta potential decreased from 18.3 mV to -2.3 mV at the same time (illustration see 

Figure VIII-6). 
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Figure VIII-6: Remote loading of eADF4(κ16) protein particles with ovalbumin. 
A) Loading and loading efficiencies as a result of an increasing w/w-ratio of ovalbumin to eADF4(κ16) 
protein particles during incubation for 30 minutes using a 30 mM Tris buffer at pH 8.0. 
B) Particle size, PDI and C) zeta potential of the ovalbumin loaded eADF4(κ16) protein particles after 
30 minutes incubation time using a 30 mM Tris buffer at pH 8.0. 

The drop of the zeta potential to negative values at the 20% w/w-ratio of ovalbumin to eADF4(κ16) 

protein particles and the increasing particle size for higher ovalbumin to eADF4(κ16) protein 

particle ratio indicates surface loading. The eADF4(κ16) protein particle surface charge alters to 

negative values due to the adsorption of negatively charged ovalbumin. If we assume that the 

pore size of the eADF4(κ16) protein particle matrix is smaller than the hydrodynamic radius of the 

ovalbumin molecules, the negative zeta potential is a logical consequence. This is in good 

accordance with previously published results of the eADF4(C16) protein, where a molecular 

weight cutoff of 27 kDa for a matrix loading using dextran was determined [36]. In addition, 

comparative studies with fluorescently labeled lysozyme and fluorescently labeled bovine serum 

albumin (BSA) confirmed these findings. While the smaller lysozyme molecules (14.3 kDa) were 

able to freely diffuse into the eADF4(C16) protein particles matrix, the larger BSA molecules 

(66 kDa) only adsorbed to the eADF4(C16) protein particles surface [14]. 
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Figure VIII-7: Remote loading of eADF4(κ16) protein particles with Anakinra. 
A) Loading and loading efficiencies as a result of an increasing w/w-ratio of Anakinra to eADF4(κ16) 
protein particles during incubation for 30 minutes using a 30 mM Tris buffer at pH 8.0. 
B) Particle size, PDI and C) zeta potential of the Anakinra loaded eADF4(κ16) protein particles after 
30 minutes incubation time using a 30 mM Tris buffer at pH 8.0. 

Next, the loading behavior of Anakinra, a smaller molecule with a molecular weight of 17.3 kDa 

[27], was investigated. However, total loading values for Anakinra were only at 4% [w/w] using a 

70% w/w-ratio of Anakinra to eADF4(κ16) protein particles (Figure VIII-7 A). Besides this low 

loading, also the loading efficiency at all tested ratios was below 35% ranging to a minimum of 

only 5.8% at the 70% w/w-ratio. This results made eADF4(κ16) protein particles unfavorable for 

the drug delivery application of Anakinra. By contrast, the zeta potential was only slightly affected 

during the Anakinra loading experiments (Figure VIII-7 C). Nevertheless, a particle aggregation 

with an increasing particle size was clearly detectable at the highest w/w-ratios of 35% and 70% 

(Figure VIII-7 B).  
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Figure VIII-8: Remote loading of eADF4(κ16) protein particles with insulin lispro. 
A) Loading and loading efficiencies as a result of an increasing w/w-ratio of insulin lispro to eADF4(κ16) 
protein particles during incubation for 30 minutes using a 30 mM Tris buffer at pH 8.0. 
B) Particle size and C) zeta potential of the insulin lispro loaded eADF4(κ16) protein particles after 
30 minutes incubation time using a 30 mM Tris buffer at pH 8.0. 

Insulin lispro was finally used as very small protein to further evaluate the remote loading behavior 

of eADF4(κ16) protein particles. Insulin lispro is one of the smallest proteins with a molecular 

weight of 5.8 kDa [28]. With a pI of 5.4, insulin lispro is negatively charged at neutral pH like both 

previously investigated proteins. In contrast to poor Anakinra loading values below 4% [w/w], 

insulin lispro remote loading was within a range of 4.2% to 31.3% [w/w] at corresponding w/w-

ratios of insulin lispro to eADF4(κ16) protein particles of 5% to 70% (Figure VIII-8 A). The loading 

efficiencies between 89.9% and 44.7% were quite high, although the loading efficiency decreased 

already between the 5% and 10% insulin lispro w/w-ratios and did not form a plateau like 

described for the lysozyme and nerve growth factor loading experiments with the eADF4(C16) 

protein particles [14]. In addition, a particle size increase was observed beginning between the 

10% and 20% w/w-ratios of insulin lispro to eADF4(κ16) protein particles, which was not related 

to the particles zeta potential. 
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In order to evaluate the results of the three loading experiments, the grand average of hydropathy 

(GRAVY) value for the proteins was calculated by addition of the hydropathy values of the proteins 

amino acid residues divided by the number of residues in the sequence [37]. The GRAVY value 

provides information on the hydrophilic-hydrophobic character of a protein or peptide. While a 

negative score indicates a hydrophilic character, a positive score points towards hydrophobic 

proteins. The scores were calculated using the ProtParam tool [38] and the results are shown in 

Table VIII-1. 

Table VIII-1: Calculated GRAVY scores of the three proteins used for the remote loading experiments with 
eADF4(κ16) protein particles. The score was calculated using the ProtParam tool [38]. 

 Ovalbumin Anakinra Insulin lispro 

GRAVY score -0.001 -0.412 0.218 

 
 
The GRAVY scores for ovalbumin and especially insulin lispro indicate towards a hydrophobic 

character of these two proteins. On the contrary, Anakinra appears to be a more hydrophilic 

protein based on the negative GRAVY score. If the GRAVY score is then associated to the results 

of the loading experiments, loading of the eADF4(κ16) protein particles is most likely influenced 

by hydrophobic van der Waals forces. The hydrophilic Anakinra protein showed the worst loading 

on the eADF4(κ16) protein particles, whereas the hydrophobic insulin lispro displayed the highest 

w/w-loading values over 30%.  

Nevertheless, we observed a particle size increase already at the lowest insulin lispro ratio (Figure 

VIII-8 B). Particle size increased slowly from 390 nm (control) to 537 nm (10% w/w-ratio) at the 

lower ratios, followed by severe particle aggregation observed at w/w-ratios higher than 20% 

insulin lispro to eADF4(κ16) protein particles (Figure VIII-8 B). While the particle size increase 

observed during the ovalbumin loading experiments was caused by a drop of the zeta potential, 

the zeta potential changed only slightly during the insulin lispro loading from 21.6 mV (control) to 

16.1 mV (70% w/w-ratio). We attribute the particle size increase to the general instability of the 

particles at neutral pH, which was demonstrated by the colloidal stability experiments (Figure 

VIII-4). In principle, the colloidal stability of the particles could be improved by choosing a basic 

pH. However, the surface charge of the eADF4(κ16) protein particles would then change to 

negative values, which allows loading of only positively charged protein molecules again. In 

addition, protein stability at basic pH is poor. 
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4. Conclusion 

Our results add more information about the eADF4(κ16) protein particles to the previously 

published data of eADF4(κ16) protein microparticles and allow a comparison to the eADF4(C16) 

protein particles. Our approach focused on the potential use of the eADF4(κ16) protein particles 

in the submicron range for drug delivery. The modified particle preparation process developed for 

the second generation eADF4(C16) hybrid protein particles could be applied also to the 

eADF4(κ16) protein to form smaller submicroparticles. The colloidal stability of the smaller 

submicroparticles was analyzed at different pH and ionic strength and the influence of the used 

buffer salts at pH 7 was illustrated. The best stability was achieved for suspending eADF4(κ16) 

protein particles in HPW. With increasing ionic strength, particle aggregation of the eADF4(κ16) 

protein particles occurred. The best colloidal stability of the eADF4(κ16) protein particles was 

identified at basic pH, where the particles exhibited a negative surface charge. 

Remote loading was most efficient with smaller and hydrophobic protein molecules. Proteins with 

a molecular weight > 45 kDa most likely only adsorbed to the particle surface and did not 

permeate into the particle matrix. Compared to the loading and loading efficiencies of the 

previously studied eADF4(C16) protein particles, remote loading of eADF4(κ16) protein particles 

was less successful. The loading mechanism was however influenced more by hydrophobic van 

der Waals forces. 
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IX. FINAL SUMMARY AND CONCLUSION 

Particulate drug delivery systems are considered to offer considerable advantages compared to 

simple solutions when it comes to drug and vaccine delivery. Among other things, superiority of 

particulate drug delivery systems was shown in terms of protection of sensitive drugs against 

degradation or controlled release of encapsulated drugs after administration. Factors like 

biocompatibility and biodegradability of the carrier material has led to an intensive research in the 

field of new materials with improved properties. With the possibility to produce recombinant 

spider silk proteins on large scale, this material has gained more and more interest in the scientific 

community. Previous studies in the field of particulate drug delivery systems based on the 

recombinant spider silk protein eADF4(C16) were conducted by Andreas Lammel and Martin 

Schwab. In their experiments, they demonstrated that eADF4(C16) particles can be fabricated by 

an all-aqueous salting out process [1]. Subsequent loading experiments using small molecules 

showed the fundamental possibility to use eADF4(C16) particles as particulate drug delivery 

system [2]. Based on the work of Andreas Lammel and Martin Schwab, Markus Hofer was able to 

further improve the particle preparation technique resulting in excellent reproducibility and the 

possibility for a later scale up of the production [3]. Using the improved particle preparation 

technique, loading of eADF4(C16) submicroparticles with protein drugs was demonstrated. High 

loading efficiencies up to 95% by simple remote loading were achieved using lysozyme and nerve 

growth factor as model drugs. Protein drugs will benefit most from a protective drug delivery 

system, because proteins usually degrade rapidly after administration. However, release of the 

loaded drugs was challenging throughout all experiments. Any changes of pH, ionic strength or 

addition of other plasma proteins significantly accelerated the release. 

Based on these results, the overall aim of this thesis was the design of a recombinant eADF4(C16) 

hybrid protein, which already incorporates an epitope in the amino acid sequence, and the 

subsequent preparation of submicroparticles for subcutaneous vaccination. The hybrid approach 

prevents the unwanted release of the loaded drug by changes of the particle environment. In 

addition, peptide vaccination is still lacking in success due to fast protease degradation and the 

possibility of the epitope to directly bind to receptors of non-antigen-presenting cells (APCs). Here, 

particulate drug delivery systems can protect the sensitive epitope and act as a carrier for 

enhanced APC uptake. Since vaccination studies can be influenced by unwanted cytotoxicity or 
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immunogenicity, important prerequisites like sterility and low endotoxin content of the 

eADF4(C16) particles had to be fulfilled. 

In chapter 1 a general introduction into the topic of spider silk proteins and the application of 

particulate drug delivery systems for vaccination is given. There is still a clear need for a delivery 

system, which can be prepared in a non-toxic environment with as few preparation steps as 

possible resulting in reproducible properties. Reviewing current literature, the need for a 

particulate delivery system in the area of vaccination becomes apparent. However, strict safety 

regulations for the approval of new adjuvants exist. 

Different endotoxin depletion methods of eADF4(C16) protein, subsequent endotoxin free particle 

preparation and characterization and a cell based cytotoxicity test of endotoxin depleted 

eADF4(C16) particles are presented in chapter 2. Endotoxin depletion was studied using several 

different methods, including heat inactivation, endotoxin filtration and chemical treatment. While 

moist heat during an autoclave process at 121°C for 15 minutes did not impair the eADF4(C16) 

protein, dry heat of 180°C for 3 hours visibly degraded the protein. The screening of several filters 

resulted in the selection of one filter, which effectively removed endotoxins from an eADF4(C16) 

solution with high recovery of the spider silk protein. Chemical treatment by alkali showed a 

significant reduction of the endotoxin load. However, the remaining endotoxin level after 

treatment was still too high for routine use. Particle properties after endotoxin depletion using 

autoclave treatment, filtration or a combination of both were studied. Both, autoclave treatment 

and filtration influenced the final particle size and zeta potential. In the end, a combination of 

autoclave treatment and filtration was determined as final setup, which generated eADF4(C16) 

particles with comparable size to untreated particles. The cytotoxicity experiments using a MTT 

test confirmed the good performance of endotoxin depleted particles by a combination of 

autoclave treatment and filtration. 

Sterility as important prerequisite for parenteral administration was addressed in chapter 3. 

Commonly used biodegradable polymers are not able to withstand the conditions during steam 

sterilization, however eADF4(C16) protein is. Therefore, we performed steam sterilization of 

eADF4(C16) particles prepared in a non-sterile environment and assessed the influence of 

extended autoclave treatment on the final particle properties. Neither the particle size nor the 

protein secondary structure was altered after extended steam sterilization conditions. A change 

of the thermal stability at elevated temperature was observed for eADF4(C16) microparticles, 

surprisingly resulting in an increased thermal stability of the microparticles after steam 

sterilization. The good cellular compatibility of steam sterilized eADF4(C16) particles was 



Final summary and conclusion 

197 

demonstrated in a final cytotoxicity test. No cytotoxic effects were observed for particle 

concentrations up to final concentrations of 5 mg/ml. 

In chapter 4, chemical coupling of eADF4(C16) with the the model antigen OVA257-264 (SIINFEKL) 

was evaluated. Chemical coupling using cleavable linkers for SIINFEKL administration was assessed 

as current state-of-the-art method to compare the results of the eADF4(C16) hybrid proteins 

presented in chapter 5 and 6. One of the used linkers was cleavable in acidic pH (hydrazone linker), 

while the other one was a disulfide cleavable linker. Two routes of linking, in particular linking in 

solution or linking to pre-produced particles, were evaluated. It turned out, that the pH sensitive 

linkage showed better results for linking dissolved eADF4(C16) protein, the disulfide linkage 

performance was better when linking SIINFEKL to pre-produced particles. In addition, the 

hydrazone linkage of SIINFEKL to the eADF4(C16) protein led to an increase of particle size after 

particle preparation. Finally, the chemically linked eADF4(C16)-SIINFEKL particles showed a poorer 

outcome in the in vitro studies compared to the second generation eADF4(C16) hybrid protein 

particles. However, chemical linkage of peptides to the eADF4(C16) protein is generally possible 

and was demonstrated in chapter 4. 

In chapter 5, the development of eADF4(C16) hybrid protein particles and their performance is 

described. The straightforward system of an eADF4(C16) hybrid protein by addition of the  

OVA257-264 epitope (SIINFEKL) to the eADF4(C16) amino acid sequence was investigated in 

chapter 5. Three eADF4(C16) hybrid proteins were studied, differing at the position of the SIINFEKL 

epitope, which was attached either at the N-terminal, the C-terminal or at the N- and C-terminal 

(bi-terminal) end of the eADF4(C16) protein. The addition of the epitope to the eADF4(C16) 

protein sequence was investigated with regards to final particle size, particle size distribution, zeta 

potential, protein secondary structure and thermal stability. Compared to native eADF4(C16) 

particles, no changes were detected for all three eADF4(C16) hybrid protein particles. 

Fluorescence labelling using FITC was implemented for all eADF4(C16) proteins. The FITC labelling 

did not alter the particle properties, as shown by comparison to untreated eADF4(C16) particles. 

Cellular uptake studies using macrophages were conducted after successfully implementing the 

endotoxin depletion and fluorescence labelling steps into the particle preparation process. The in 

vitro uptake studies using macrophages showed that the native and all three eADF4(C16) hybrid 

protein particles were internalized by an active uptake mechanism. LysoTracker staining 

confirmed the successful uptake into the acidic organelles like endosomes or lysosomes of the 

macrophages. Although the eADF4(C16) hybrid particles were effectively internalized, no antigen 

presentation was detected in further in vitro experiments. It is possible, that the epitope on the 



Chapter IX 

198 

eADF4(C16) hybrid protein particles was either sterically hidden inside the particle matrix or the 

epitope was generally recognized, but cleavage of the epitope from the eADF4(C16) sequence was 

impossible. 

Since no antigen presentation could be shown for the eADF4(C16) hybrid protein particles in 

chapter 5, a second generation of eADF4(C16) hybrid protein particles was designed and tested. 

The respective results are described in chapter 6. In order to release the epitope after cellular 

uptake, two different peptide based linkers were incorporated between the amino acid sequence 

of the eADF4(C16) protein and the SIINFEKL epitope resulting in two eADF4(C16) hybrid proteins. 

The first second generation eADF4(C16) hybrid protein contained a cathepsin B cleavable linker 

sequence, the second a cathepsin S cleavable linker sequence. After optimization of the particle 

preparation process to result in uniform particles, release of the SIINFEKL epitope from both 

second generation eADF4(C16) hybrid protein particles was tested. High levels of the epitope were 

detected in the supernatant after incubation with the cathepsin S enzyme, while only low levels 

of the epitope were identified in the supernatant after incubation with the cathepsin B enzyme. 

Based on the release test, further in vitro experiments proved that none of the eADF4(C16) 

particles was cytotoxic or immunogenic. Furthermore, effective SIINFEKL-dependent T cell 

proliferation was verified. Encouraged by these in vitro results, successful epitope delivery by the 

cathepsin S cleavable eADF4(C16) hybrid protein particles was shown in an in vivo mouse model. 

Particle uptake into dermal dendritic cells was observed after subcutaneous administration. 

Subcutaneous vaccination using the eADF4(C16)-CatS hybrid protein particles resulted in effective 

induction of T cell proliferation in vivo. Interestingly, eADF4(C16)-CatS hybrid protein particles 

induced the same level of proliferating T cells after administration with or without an additional 

immunostimulatory adjuvant. 

A different application approach for the administration of eADF4(C16) particles was examined in 

chapter 7. The feasibility of eADF4(C16) particle aerosolization was studied, because pulmonary 

administration could enhance the antigenicity and simplify the handling of new vaccine 

formulations. A systematic evaluation of the influence of particle size, particle concentration and 

type the of nebulization device on the lung deposition was performed. It was found that the 

smallest particles with a diameter of 250 nm were mainly deposited in the simulated lower 

airways, while particles with a diameter of 4.7 µm were either trapped in the nebulization device 

or found in the simulated upper airways. The good colloidal stability of the eADF4(C16) particles 

after nebulization and nebulization efficiencies of up to 70% provides a good basis for further 

investigations, for example using the second generation eADF4(C16) hybrid protein particles. 
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In chapter 8, the recently developed eADF4(κ16) protein was used to assess the possibility of 

loading negatively charged molecules on spider silk particles. The exchange of the glutamic acid 

residues of the eADF4(C16) protein by lysine residues in the eADF4(κ16) protein resulted in a new 

spider silk protein with a positive surface charge at neutral pH [4]. While colloidal stability of the 

particles was sufficient at neutral pH, especially at low ionic strength, best results have been 

obtained at basic pH, where the eADF4(κ16) particles had a negative surface charge. Simple 

remote loading of three model proteins showed that smaller and hydrophobic proteins were 

loaded more effectively. Although simple remote loading was generally possible, loading and 

loading efficiencies of the previously studied eADF4(C16) particles were much better. Thus, it can 

be concluded that the hybrid approach presented in chapter 6 could lead to an improvement of 

eADF4(κ16) protein loading, if positively charged spider silk particles are of interest. 

Taking together the results of all chapters, eADF4(C16) hybrid protein particles can serve as 

promising drug delivery system in the field of vaccination. Up-scaleable methods for endotoxin 

depletion and sterilization are available, which can be easily integrated into the robust, all-

aqueous particle preparation method. Integrating a cathepsin cleavable linker between the 

antigen and the eADF4(C16) sequence was necessary for an intracellular antigen processing. The 

remarkable outcome of the in vivo mouse vaccination studies using the second generation 

eADF4(C16) hybrid protein particles should be the basis for future studies. Other types of linkers 

or epitopes may be incorporated into new eADF4(C16) hybrid proteins and used for therapeutic 

vaccination, where dendritic cell targeting and T cell activation are of special interest [5]. In 

addition, lung application of nebulized eADF4(C16) hybrid protein particles provides a further 

route of administration, which could potentially improve vaccination efficiency. 
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