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Summary  

The ovary is one of the most dynamic organs in the human body, bearing resting, developing 
and dying follicles as well as the corpus luteum (CL). This is a temporary endocrine gland, 

which develops after ovulation, produces hormones (e.g. progesterone), but eventually 
regresses. Accordingly, controlled cell death events in ovarian follicles and the CL are inevitably 
for reproduction and, consequently, make life feasible. However, the underlying mechanisms 

of cell death in the human ovary mostly remain elusive.  
 

One reason for this lack of knowledge is the poor accessibility of translational models. Human 
luteinized granulosa cells (LGCs) from patients undergoing in vitro fertilization (IVF) are 
assumed to offer a good model for the primate CL. LGCs produce progesterone during the first 

days of culture. Eventually, they lose this ability and die like their counterparts in vivo. While 
apoptosis represents one way for the CL to die, necroptosis ‒ a form of programmed cell death 
(PCD) ‒ was recently discovered in LGC culture as another possibility. The present work 

manifests necroptosis in the CL of humans, common marmosets (Callithrix jacchus) and rhesus 
macaques (Macaca mulatta) in situ. In the latter it was only evident in the late stages, suggesting 

necroptosis during luteal regression. Resemblance of transcriptomic and proteomic data of in 
vivo derived monkey CL and in vitro cultured human LGCs, confirmed these cells as a suitable 
model. Interestingly, both datasets demonstrated coherent upregulation of the ceramide (CER, 
N-acyl-sphingosine) salvage pathway over culture and in the late CL. Recently, CER was shown 
to induce necroptosis in other cellular systems. Consistently, the addition of a synthetical analog 

of this lipid to the LGC culture led to elevated signs of necroptosis in the present study. 
Furthermore, the pharmacological reduction of the cellular CER content indicated the opposite 
effect by improving LGC viability. 

 
In contrast to follicular granulosa cells (GCs) in vivo, isolated LGCs do not proliferate in 

culture. Subsequently, these cells are inappropriate to study necroptosis during follicle 
development. 3D-cultured monkey follicles are well suited to discover mechanisms in dividing 
follicular GCs. With the present work, necroptosis was verified in this system and blocking the 

aforementioned type of PCD was shown to improve follicular growth. Further exploring in this 
setting, the trophic action of acetylcholine was confirmed, which represents a substantial local 
signaling factor within the ovary.  
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During follicular development, many follicles grow but only one becomes mature. The other 

follicles eventually become atretic and perish. In some rare settings, the cell death events 
involved are evaded by degenerated GCs. A consequence can be the development of granulosa 

cell tumors (GCT), for which surgery has so far been the only effective treatment method. The 
idea to “trick” the endogenous inhibitor of apoptosis proteins (IAPs) by analogs of the second 
mitochondria-derived activator of caspases (SMAC) yields new treatment options. In the 

present work, heterogenous expression of the IAP machinery in GCTs and a model cell line 
(KGN) was confirmed and apoptosis was successfully induced by the SMAC mimetic BV6 in 

this cell line.  
 
Collectively, the data suggest necroptosis as a physiological event during follicular 

development, as well as in luteal regression, and link the latter to the CER salvage pathway. 
Further, a proof of concept that SMAC mimetics are capable to induce apoptosis in a GCT cell 
line is provided. In the future, these findings might help patients suffering from GCTs, improve 

IVF outcome by opposing luteal dysfunction or render targets for fertility control by affecting 
CL lifetime. 
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Zusammenfassung 

Das Ovar ist eines der dynamischsten Organe im menschlichen Körper. Es enthält neben den 
ruhenden, wachsenden und sterbenden Follikeln auch das corpus luteum (CL). Dieses ist eine 

temporäre endokrine Drüse, die nach dem Eisprung entsteht, um Hormone (z.B. Progesteron) 
zu produzieren. Im Laufe des Zyklus bildet sich das CL jedoch wieder zurück. Demnach sind 
die kontrollierten Zelltodvorgänge, die die ovariellen Follikel und das CL regulieren, 

unausweichlich für die Fortpflanzung, die wiederum das Leben überhaupt erst möglich macht. 
Nichtsdestotrotz sind die Mechanismen, die im menschlichen Ovar für diese Vorgänge 

verantwortlich sind, weitestgehend unbekannt.  
 
Ein Grund für diese Wissenslücke ist der Mangel an Modellen, die auf den Menschen 

übertragbar sind. Es wird angenommen, dass humane luteinisierte Granulosazellen (LGCs) 
von Patientinnen, die sich einer künstlichen Befruchtung (IVF) unterziehen, ein gutes Modell 
für das CL von Primaten darstellen. Während der ersten Tage in Kultur produzieren LGCs 

Progesteron, schließlich verlieren sie diese Fähigkeit jedoch und sterben, genau wie ihr 
Gegenstück in vivo. Während die Apoptose ein bereits bekannter Zelltodmechanismus im CL 

ist, kam vor kurzem mit der Entdeckung der Nekroptose ‒ einer Form des programmierten 
Zelltods (PCD) ‒ in der LGC Kultur eine weitere Möglichkeit auf. In der vorliegenden Arbeit 
konnte gezeigt werden, dass auch in den CL von Menschen, Weißbüschelaffen (Callithrix 
jacchus) und Rhesusaffen (Macaca mulatta) Nekroptose vorkommt. Bei der zuletzt genannten 
Spezies war diese Zelltodform nur im späten CL ersichtlich, was bedeuten könnte, dass 

Nekroptose eine Rolle während der Luteolyse spielt. Die Ähnlichkeit zwischen den 
Transkriptomdaten von in vivo gereiften Affen CL und den Proteomdaten von in vitro 
kultivierten LGCs bestätigte dabei die gute Übertragbarkeit des verwendeten Modellsystems. 

Interessanterweise war in beiden Datensätzen der Ceramid (CER, N-Acyl-Sphingosin) 
Recycling Signalweg sowohl über die Kulturzeit als auch im späten CL hochreguliert. Vor 

kurzem wurde in anderen zellulären Systemen gezeigt, dass CER Nekroptose auslöst. Damit 
übereinstimmend führte die Zugabe eines synthetischen Analogons dieses Lipids zur LGC 
Kultur in der vorliegenden Arbeit zu mehr Nekroptose. Im Gegensatz dazu verbesserte die 

pharmakologische Senkung des zellulären CER Spiegels die Vitalität der LGCs.  
 
Anders als die follikulären Granulosazellen (GCs) in vivo, teilen sich isolierte LGCs nicht in 

Kultur. Aus diesem Grund ist dieses Modell ungeeignet, um die Nekroptose während der 



Zusammenfassung 

 XIV 

Follikelentwicklung zu studieren. Im Gegensatz dazu stellen 3D kultivierte Affenfollikel ein 

passendes Modell dar, um die Mechanismen in sich teilenden, follikulären GCs zu verstehen. 
In der vorliegenden Arbeit konnte in diesem Modellsystem Nekroptose nachgewiesen werden 

und gleichzeitig gezeigt werden, dass das Blockieren dieses PCD zu verbessertem 
Follikelwachstum führt. Zusätzlich konnte die trophische Aktivität von Acetylcholin, einem 
wichtigen Signalfaktor im Ovar, bestätigt werden. 

 
Während der Follikelentwicklung wachsen viele Follikel, jedoch reift nur ein einzelner zum 

Graafschen Follikel heran. Die anderen werden atretisch und sterben schließlich. In seltenen 
Fällen umgehen entartete GCs jedoch den damit verbundenen Zelltod, was dazu führen kann, 
dass sich ein Granulosazelltumor (GCT) entwickelt. Derzeit gilt die operative Entfernung des 

GCTs als die einzige kurative Behandlungsmaßnahme. Die Idee künstliche sekundäre 
mitochondriale Caspase-Aktivatoren (SMAC) einzusetzen, um endogene Apoptose-Inhibitor-
Proteine (IAPs) „auszutricksen“, liefert neue Behandlungsmöglichkeiten. In der aktuellen 

Arbeit konnte gezeigt werden, dass die IAP-Maschinerie sowohl heterogen in GCTs als auch 
in einer Modellzelllinie (KGN) exprimiert wird und dass Apoptose in KGN durch das SMAC-

Mimetikum BV6 ausgelöst werden kann.  
 
Die vorliegende Arbeit legt den Schluss nahe, dass Nekroptose ein physiologisches Ereignis 

während der Follikelentwicklung und der Luteolyse ist und dass der zuletzt genannte Prozess 
in Verbindung mit dem CER-Signalweg steht. Zusätzlich wird der Machbarkeitsnachweis dafür 

geliefert, dass SMAC-Mimetika in der Lage sind, Apoptose in einer GCT-Zellline auszulösen. 
Zukünftig könnten diese Ergebnisse genutzt werden, um GCT-Patientinnen zu helfen, die IVF-
Erfolgschancen durch die Bekämpfung der lutealen Dysfunktion zu erhöhen oder um neue 

Zielmoleküle für die Schwangerschaftsverhütung zu liefern, die die Lutealphase verkürzen.
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1 Introduction 
Right now, there are roughly 7,700,000,000 humans on our planet. The population will reach 

approximately 11 billion people in 2100, as projected by the United Nations in 2019 1. Even if 
all of us would drastically reduce our ecological footprint, earth capacity is assumed to reach its 
limit at a maximum of 10 billion people 2. Consequently, overpopulation represents a threat, 

which this and emerging generations will have to face.  
 
On the contrary, in vitro fertilization (IVF) has been developed to help people with an 

unfulfilled desire to have children. Although the first IVF baby was already born in 1978 3, this 
technique still bears drawbacks, as success rates are low and the implicit hormonal treatment 

detrimentally affects women 4,5. To contribute to a solution to the opposing problems of 
infertility and overpopulation, it is important to understand the biology of human reproduction.  
 

Living organisms on our planet developed different ways of reproduction to maintain their 
species. Primates, including humans, reproduce biparentally. This form of propagation has 

evolved over time 6 and in contrast to asexual reproduction, it depends on two genetically 
different parents. For that purpose, nature developed two complex systems to produce, protect 
and mature the gametes, which make life feasible. In females, the ovaries facilitate this crucial 

task. Therefore, it is important to understand the mechanisms that govern this certain organ to 
conquer some of the threats of our time.  

 

1.1 Life and death in the healthy primate ovary  

To paraphrase reproduction, people would use words like creation, fecundity, pregnancy and 

life but not inflammation, self-destruction and cell death. Paradoxically it is exactly those latter 
words that provide the most accurate description of the prevailing mechanisms in the ovary. 

This complex biological system is the primary reproductive organ in women and comprises 
various structures that are dynamically altered to protect, develop and select the seed of life ‒ 
the oocyte. Most of these processes are dominated by cell death events, which determine the 

fate of every single oocyte and decide whether pregnancy occurs or not. In the female embryo, 
a non-proliferating pool of gametes is formed and before birth, a significant proportion already 
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vanishes by self-destructive cell death. This “sorting-out” proceeds over the whole prepubertal 

as well as the reproductive life. Whereas in every menstrual cycle, ovulation and corpus luteum 
regression (luteolysis) come in addition, which represent events governed by inflammation and 

cell death (Fig. 1). Therefore in a healthy ovary, cell death events parallel normal development 
and function. 
 

1.1.1 Follicle selection  

Follicles are cellular conglomerates to preserve the largest and probably most precious cell in 

the human body ‒ the oocyte (104 - 121 µm in the preovulatory follicle 7,8). The earliest form is 
the primordial follicle, which represents the resting pool of gametes in the ovary and consists 
of one oocyte and a layer of flat granulosa cells (GCs). Collectively they have an average 

diameter of 44 µm 9,10. These follicles already start emerging 4 months after conception in-
utero 11 and at this point, female embryos harbor around 7 million oocytes. Until birth, the 

majority (6 million) of this pool will vanish and by puberty, less than 400,000 follicles will 
survive 12,13. Within the reproductive life of a woman (around 36 years after menarche), only 
0.007 % (around 500) of all produced oocytes will ever mature to a final stage and ovulate. The 

overwhelming majority (> 99.99 %) will degenerate and become atretic 14. If atresia does not 
work properly, this can lead to some reproductive disorders including the polycystic ovarian 
syndrome and premature menopause, both of which go in front of infertility 15,16. Furthermore, 

compromised cell death mechanisms might lead to more severe diseases like cancer 17. Together 
these facts indicate the importance of cell death during follicle selection in healthy women. 
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Primordial
follicle

Cumulus 

Early 
antral follicle

Mural granulosa cells

Theca cells

Antrum

Immune cells

Small lutein cells

Vascularization
Large lutein cells

100 % of corpora lutea regress
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OvulationOvulation
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tumor
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Regressing CL

preantral

antral

Figure 1 Schematic illustration of the life history of one selected primordial follicle 

The green part describes the lifetime of one primordial follicle from left to right. The primordial follicle 
develops through preantral (gonadotropin-independent) and antral (gonadotropin-dependent) stages. 
Preantral stages include primordial, primary and secondary stages. In the early antral follicle, a cavity 
(antrum) is formed. Antral volume is strongly increased over follicular development. More than 99 % of 
all primordial follicles will never attain the preovulatory stage but become atretic and die. Granulosa cell 
tumors might develop during the follicular phase from proliferating granulosa cells (GCs). The cumulus 
consists of an oocyte that is surrounded by GCs. Mural GCs are encased by theca cells. Theca cells are 
not present in primordial and primary follicles and GCs change their shape from flat to cubical between 
these two stages. The preovulatory follicle is schematically depicted in 2x magnification 
(diameter = 4 cm; in vivo it is 2 cm). Ovulation and subsequently release of the cumulus into the fallopian 
tube separate the follicular from the luteal phase, whereas the latter is depicted in the orange part from 
right to left. Post-ovulation, in the forming corpus luteum (CL) the residual granulosa and theca cells 
differentiate into large and small lutein cells, respectively. Strong vascularization is a hallmark of a 
functioning, active CL. Immune cells can be observed in the CL in every stage, however, the amount 
strongly increases in the regressing CL. In this latter luteal stage the CL is endocrinologically inactive and 
its regression is governed by cell death events.  
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Follicular development occurs during the whole life of a woman and describes the 

morphological and cellular changes of the oocyte bearing structures (Fig. 1). It starts with the 
activation of a bulk of resting primordial follicles. The exact number of recruited follicles, 

however, depends on the remaining pool and subsequently alters over life. It has been proposed 
that a maximum of 900 follicles per month will change their state from resting to growing in a 
14-year-old girl. On the contrary, in a 40-year-old woman, only 100 of these structures are 

recruited from the primordial pool 18. With activation, GCs become cubical in the primary 
follicle stage and recruit a theca cell layer in the secondary stage. In the early antral stage, a 

follicular fluid (FF)-filled cavity (antrum) is formed 19,20. Beyond this point, growth becomes 
gonadotropin-dependent. The size drastically increases to reach a maximum of around 2 cm in 
the preovulatory follicle (Fig. 1 depicts a 2x magnification of the preovulatory follicle). This 

enlargement by over 40,000 % (vs. the primordial follicle (44 µm)) is primarily due to the 
increased FF volume and GC number 9.  
 

As stated above, only a marginal fraction of all follicles will ever reach this size. In the primordial 
stage, atresia leads to exclusion of low quality and DNA-damaged oocytes by apoptosis 21. 

Although altered GC number has been hypothesized as a selection marker, it is very likely that 
the oocyte quality and grade of DNA damage are the driving forces in primordial follicle 
atresia 22-25.  

 
For the proliferative follicular stages, evidence is growing that GCs play the key role in defining 

follicular fate 26. Further it is thought that apoptosis is the predominant form of cell death 27. 
The preantral stages are regulated by factors GCs produce, e.g. inhibin 28, steroids 29 and anti-
Muellerian hormone (AMH) 30. As indicated by genetic manipulation experiments in mice, 

these stages have been proposed to be gonadotropin (e.g. follicle stimulating hormone (FSH)) 
independent 31. However, in vitro and in vivo studies in humans 32-34 and primates 35,36 led to the 

conclusion that FSH, in a concentration-dependent manner, is beneficial but not crucial for 
preantral follicle development. Besides apoptosis 37,38, autophagy 39 has been proposed as a form 
of cell death governing follicles at these stages. However, this still needs to be proven in 

primates including humans.  
 
Nevertheless, it is unanimously accepted that antral follicle growth is FSH-dependent and 

predominantly occurs during the reproductive life, which is governed by the complex hormone 
profile of the menstrual cycle 26 that can be measured in the bloodstream 40. These endocrine 
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changes are a result of the crosstalk between the hypothalamus, the pituitary gland and the 

ovary 41. In the latter organ, FSH fulfils a critical role. Upon binding to the corresponding FSH-
receptor (FSHR) 42, expression of which is a determinant for follicle survival or death 43, FSH 

leads to estradiol (E2) production 44 and selection of the dominant follicle 45 through activation 
of protein kinase A and the subsequent pathways 46. Additionally, produced E2 is able to directly 
block apoptosis 47,48. Although other regulators of atresia are known 49-51, the actions of FSH, 

FSHR, E2 and apoptosis are thought to explain follicle development and atresia in the antral 
stages. 

 

1.1.2  Luteal phase 

The follicular phase is followed by ovulation and the luteal phase. During ovulation, the oocyte 

and the directly surrounding GCs (cumulus cells) leave the follicle and move into the fallopian 
tube. The residual cells (mural GCs and theca cells) form a structure that is crucial for fertility 

- the corpus luteum (CL) (Fig. 1). The factor that enables the differentiation from granulosa to 
large lutein cells (LLCs) and from theca to small lutein cells is a hormone that peaks just prior 
to ovulation and is named after its mode of action, luteinizing hormone (LH) 52. During this 

metamorphosis-like process, GCs change their shape and enzymatic machinery 53, which allows 
them to produce progesterone (P4) 54. The key function of this steroid is to prepare the 
endometrium for implantation of a fertilized oocyte 55, but it also affects ovarian FSH levels and 

subsequently the next follicular wave. In a normal menstrual cycle, the CL stops producing P4 
(functional luteolysis) and regresses structurally within 14 days post ovulation. If distorted, this 

process may also account for luteal phase defects. For fertility, it is crucial that the setup and 
depletion of the CL occur in a time-dependent (around 14 days) manner. If luteal phase is 
shortened or prolonged, embryo implantation and the subsequent follicular phase may be 

disturbed. Importance of the CL in pregnancy and in vitro fertilization became obvious 5 when 
luteal dysfunction led to implantation failures and miscarriages, which could be rescued by P4 

supplementation 4. It is now known, that up to 40 % of all women amid their reproductive life 
(20 - 40 years) show luteal phase defects with irregular length 56. Luteal phase defects can lead 
to early pregnancy wastage post conception and result from premature luteolysis or disturbed 

CL formation. Each of these two malfunctions can be a consequence of compromised 
vascularization and gonadotropin defects 57. However, the underlying mechanisms from 

induction to execution of luteal regression in humans remain poorly understood. 
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1.2 Granulosa cell tumors – malignancies of the ovary 

The latest evaluation of the Robert Koch Institute (https://www.krebsdaten.de) revealed, that 

1 of 71 women in Germany will probably develop ovarian cancer during her lifetime, and in the 
US the Surveillance, Epidemiology and End Results (SEER) program of the National Cancer 

Institute (http://seer.cancer.gov) has estimated that around 22,530 women will be diagnosed 
with ovarian cancer in 2019.  
 

It is often projected that approximately 5-8 % of these incidents can be traced back to ovarian 
sex cord and stromal tumors, among which granulosa cell tumors (GCTs) are the most common 
(90 %) types 58,59. Unfortunately, this estimation is based on a publication from 1992 60. A 

personal, yet unpublished statement of the Munich Cancer Registry 
(https://www.tumorregister-muenchen.de/) revealed that between 2008 and 2018, 2.36 % 

(5799) of all female inhabitants (2.46 million) of the Munich area have been diagnosed with 
ovarian cancer. However, only 2.41 % (140) of these patients have evidentially been diagnosed 
with a GCT.  

 
The recurrent and advanced stage GCTs are associated with high mortality rates (up to 80 %). 

In clinics, unfortunately, the tendency is visible that treatment options for all ovarian cancers 
are tailored to the most common type (ovarian epithelial cancer, 90 %), which surely will not 
improve viability rates of GCT patients 59.  

 
GCTs are classified into two groups, the adult (aGCT, 95 %) and the juvenile (jGCT, 5 %) 61. 

This separation was initially established due to the frequency these forms appear in “young” 
and “old” patients. Normally, jGCTs emerge during the first 30 years of life (90 %), however 
in rare cases they have been found in elder patients 62. On the other hand, aGCTs are most 

frequently found in 50 to 55-year-old patients, as only few cases being reported in young 
individuals 63. Nowadays, the grouping is also based on evaluation of a mutation in the FOXL2 
gene (402CàG; C134W) that exclusively is found in 97 % of all aGCTs 64,65. The size of aGCTs 

usually ranges between 5-15 cm and their solid (soft to firm) and yellowish colored tissue 
typically contains blood-filled cysts. Nevertheless, the tumor morphology can strongly vary 

between different GCT patients 61.  
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GCTs derive from follicular GCs of unknown stage, however there is at least some evidence 
that they stem from early antral follicles 66 (Fig. 1). Based on their origin and steroidogenic 

nature, these tumors express FSHR and produce various hormones, including E2 and inhibin 
67. They are often recognized by elevated pre-pubertal and post-menopausal E2 levels. AMH, 
which is strongly expressed by GCTs, can additionally be used as a diagnostic marker 58. 

 
Every day spontaneous mutations with the potential to lead to tumors occur in healthy 

organisms. However, a cellular quality control mechanism (apoptosis) will kill these 
malfunctioning cells. In some rare cases, cells evade this suicide mode to survive. If these error-
prone cells manage it to pass the immune system unnoticed, a tumor is formed 68. GCTs have 

been shown to follow this paradigm of cell death evasion 69. To fight this rare cancer, it is 
important to understand the general mechanisms behind cell death, where GCTs accomplish 
to sustain natural suicide signals.  

 

1.3 Understanding cell death 

The term necrosis stems from the Greek language and means “mortification” or “killing”. In 
the past, all cell death forms were described by this single term and were perceived as 

coincidental events (accidental cell death, ACD). In 1842 Carl Vogt made a meaningful 
observation, which altered this view. He observed a reproducible event of “disappearing” cells, 
which accomplished tadpole development 70. Although Vogt did not use this wording, his work 

described regulated cell death (RCD) for the first time.  
 

In 1972 another biological hallmark was created by the definition of apoptosis 71. This cell death 
form exhibits typical morphological signs like cell shrinkage and membrane blebbing. The same 
key parameters were described by Schweichel and Merker, but the corresponding cell death 

form was named necrosis type 1 72. Among necrosis type 1 (apoptosis), specific characteristics 
of necrosis type 2 and 3 were postulated by these authors. Based on the typical morphology and 
the current knowledge, type 2 necrosis can be referred to autophagy. However, type 3 necrosis 

retained its coincidental character over many years. And still, the scientific language epitomizes 
“necrosis” with unregulated, accidentally occurring cell death with typical morphological signs 

like ballooning and membrane leakage, as described by type 3 necrosis 73. 
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Yet, in 2005 a regulated cell death form with morphological signs of necrosis (type 3) was 
discovered and termed necroptosis 74. With this determination, science again proved its ability 

to solve coincidence, as the so thought accidental occurring (type 3) necrosis was found to 
harbor an underlying mechanism. 2018 the Nomenclature Committee on Cell Death (NCCD) 
published their definitions of 12 forms of RCD next to ACD, which are distinguishable by their 

morphological, biochemical and functional characteristics 75. Apoptosis is already known to be 
a crucial mechanism within the ovary, especially during follicular development 76. However, 

whether the newly discovered forms of cell death exist in the primate ovary, remains to be 
evaluated.  
 

1.3.1  Once upon a time there was apoptosis 

Apoptosis is a RCD, known to play crucial roles in many physiological processes including 

ovarian function 76-78. In general, apoptotic events are classified by the mode of activation, e.g. 
intrinsic (mitochondrial) or extrinsic (receptor-dependent) (Fig. 2). Both pathway variants will 
lead to exhibition of key characteristics, such as nuclear fragmentation (karyorrhexis), 

chromatin condensation (pyknosis) and formation of apoptotic bodies (blebbing) which allow 
for the differentiation of apoptosis from other forms of cell death 72,75.  
 

The fundamental step of intrinsic apoptosis execution is the permeabilization of the outer 
mitochondrial membrane (MOM), which is tightly controlled 75 and enabled by members of the 

apoptosis regulator protein family (BCL2), namely BCL2 associated X protein (BAX), BCL2 
antagonist/killer 1 (BAK) and BCL2 family ovarian killer protein (BOK) 79,80. Induced by 
various stimuli, including DNA damage 81, reactive oxygen species (ROS) 82, endoplasmic 

reticulum (ER) stress 83 and withdrawal of growth factors 84,85, MOM-pore formation is 
irreversibly executed. As a result, mitochondrial factors, such as cytochrome c 86 and second 

mitochondria-derived activator of caspases (SMAC) 87 are released into the cytosol (Fig. 2).  
 
Apoptotic peptidase activating factor 1 (APAF1) binds cytochrome c and caspase 9 (CASP9) 

to form the apoptosome, which activates CASP9 88,89. Further downstream, this complex 
activates the effector caspases 3 and 7 (CASP3, CASP7) by cleavage 90. Subsequently these 

proteases cleave a variety of cellular proteins to induce cell death. Just as activation of CASP3 
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and CASP7 represent intermediate steps of apoptosis, cleavage of poly(ADP-ribose) 

polymerase 1 (PARP1) is recognized as a terminal step of apoptosis and therefore serves as a 
valid marker 91. 

 
SMAC deprives inhibitor of apoptosis proteins (IAPs), like cellular inhibitor of apoptosis 1 and 
2 (cIAP1, cIAP2, also known as BIRC2 and BIRC3, respectively) or X-linked inhibitor of 

apoptosis (XIAP, sometimes referred to as BIRC4), of their anti-apoptotic ability 92. Although 
well conserved within the family, IAPs execute different functions to block apoptosis. XIAP, for 

example, directly binds caspases to inhibit apoptosis 93. cIAP1 and cIAP2 on the contrary do 
not directly inhibit caspases. However, they harbor E3 ubiquitin ligase domains, which enable 
them to ubiquitinate the receptor interacting protein kinase 1 (RIP1) and subsequently activate 

the canonical, pro-survival NF-kB pathway 94 (Fig. 2). Upon binding by SMAC, IAPs forfeit 
their abilities and eventually the non-canonical NF-kB pathway and apoptosis are induced.  
 

As the name adumbrates, extrinsic apoptosis principally relies on extracellular signals, which 
interact with specific receptors. These so-called death receptors include tumor necrosis factor 

receptor superfamily members (TNFRSF) and the Fas cell surface receptor (FAS, also known 
as CD95) 95. After interaction of a ligand (e.g. TNFa, FASLG) with the respective death 
receptor, a signaling complex is formed to regulate the activity of initiator caspase 8 (CASP8) 
96. In TNFa-induced apoptosis, the adaptor protein TNFRSF1A-associated death domain 
protein (TRADD) acts as an anchor for TNF receptor associated factor 2 and 5 (TRAF2, 

TRAF5), cIAP1, cIAP2 and RIP1 97,98 (Fig. 2). Within this complex (complex I), 
posttranslational modification status of RIP1 is of special interest, since polyubiquitinated RIP1 
(facilitated by cIAP1 and cIAP2) enables cell survival and inflammatory pathways like mitogen-

activated protein kinase (MAPK) and canonical NF-kB pathways 99-101. However, in the 
presence of endogenous SMAC or other IAP antagonists 102, cIAP1/2 are inhibited and RIP1 

subsequently is de-ubiquitinated. Thus, the pro-survival pathways are terminated and initiator 
CASP8 is activated, which in turn will lead to the execution of CASP3 dependent apoptosis 75. 
After CASP3/7 activation, intrinsic and extrinsic apoptosis are indistinguishable.  
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1.3.1.1  SMAC as a role model 

One goal all organisms aim for is to stay alive. Tumor cells brought this to perfection by actively 
evading apoptosis 103. Among other features they facilitate this by upregulation of IAPs 104-107, 

which are present in all cells to regulate the equilibrium between apoptosis and survival. In 
humans, 8 members belong to this family (genes: BIRC1-8). The structural characteristic that 

is shared by all of these proteins is a zinc-binding domain, namely baculoviral IAP repeat 
domain (BIR) 108, which facilitates protein-protein interactions. Prominent members of this 
family are the human BIRC2, BIRC3 and BIRC4. The translated products are often referred to 

as cIAP1, cIAP2 and XIAP, respectively. Each of these proteins contains three BIR domains 109, 
one ubiquitin-associated domain (UBA) 110 and one really interesting new gene domain 

(RING) 111. Additionally, cIAP1 and 2 harbor a caspase recruitment domain (CARD) 112. By 
their ability to bind and ubiquitinate key substrates within various cellular properties, including 
cell migration 113-115, extracellular matrix modelling 116 or tumor progression 117 IAPs are able to 

influence these.  

Figure 2 Apoptosis mechanisms 

Schematic illustration of intrinsic and extrinsic apoptosis. Extrinsic apoptosis is exemplarily illustrated 
for the actions of TNFa. The color code distinguishes between the three alternate pathways, extrinsic 
apoptosis (yellow), intrinsic apoptosis (green) and survival (purple). Molecules that are shared by more 
than one pathway, e.g. CASP3/7, are multicolored appropriately. SMAC and IAPs are highlighted in red 
as they play key roles in regulating all three pathways. cIAP1/2 act as molecular switches between death 
and survival. Upon TNFa ligation and in the presence of these molecules, RIP1 is polyubiquitinated and 
the pro-survival pathways (NF-kB and MAPK) are activated. In the absence of cIAP1/2 activity, complex 
II is formed. It consists of TNFR, TRADD, FADD, RIP1 and TRAF2/5. CASP8 can be recruited via FADD, 
which in turn will enable activation of this peptidase. Active CASP8 is able to cleave and subsequently 
activate CASP3 and CASP7. These two so-called executioner caspases cleave cellular substrates and 
induce cell death. CASP3/7 can be inactivated by XIAP, which in turn can be inactivated by SMAC that is 
released from mitochondria during intrinsic apoptosis. Cellular stress and other factors induce 
permeabilization of the mitochondrial membrane that leads to the release of cytochrome c and SMAC 
into the cytosol. SMAC acts on IAPs, whereas cytochrome c interacts with APAF1 and CASP9 to form the 
apoptosome. This complex enables CASP9 peptidase activity, which subsequently activates CASP3 and 
CASP7. From this point onwards, extrinsic and intrinsic apoptosis are indistinguishable. Abbreviations: 
TNFa = tumor necrosis factor a; TNFR = TNF receptor (TNFRSF1A); TRADD = TNFRSF1A associated via 
death domain; TRAF = TNF receptor associated factor; RIP1 = receptor interacting protein kinase 1; 
FADD = Fas associated via death domain; CASP = caspase; cIAP = cellular inhibitor of apoptosis protein; 
XIAP = X-linked inhibitor of apoptosis protein; Ub = Ubiquitin; MAPK = mitogen-activated protein kinase 
pathway; NF-kB = nuclear factor kB pathway; APAF1 = apoptotic peptidase activating factor 1. 
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However, their main function is to regulate the fate of cells. For this cIAP1, cIAP2 and XIAP 
all bind caspases 118, but XIAP is the only IAP that directly inhibits these peptidases 93,119,120. 

cIAP1 and cIAP2 control caspases by ubiquitination 120,121, an ability that also affects several 
other pathways, e.g. NF-kB 122-125 (Fig. 2), mitogen activated protein kinase (MAPK) 126 and 
PI3K/AKT pathway 127.  

 
This impact on cell death or survival and the fact that cIAP1/2 and XIAP are upregulated in 

many tumors makes them promising targets in cancer therapy 67,128-130. To develop appropriate 
therapeutics, the trick is to imitate nature as evolution already created a tool to inactivate IAPs, 
namely SMAC or its rodent homolog direct IAP-binding protein with low pI (DIABLO). 

Mechanistically, SMAC is released from mitochondria upon membrane permeabilization 
(Fig. 2). Subsequently it inactivates IAPs by binding the BIR domains with its N-terminus. Four 
amino acids (AA) (Alanin-Valin-Prolin-Isoleucin) are crucial for this purpose 109,131. Based on 

this knowledge, small molecules, so-called SMAC mimetics have been developed to mimic these 
four AA. There are various of these compounds in preclinical and clinical (phase 1 and 2) trials, 

showing promising results, as summarized by Owens et al. 132. In GCTs however, the expression 
of IAPs and effects of SMAC mimetics are poorly understood 67.  
 

1.3.2 Necroptosis is programmed necrosis 

In scientific parlance the term necrosis describes an accidentally occurring cell death (ACD). 
Paradoxically, the 2005 discovered necroptosis is named after this randomly occurring cell 
death but is tightly regulated through specific pathways 74,75. It is now well accepted that various 

stimulants are able to induce necroptosis through death receptors (TNFRSF1A, CD95) 133, toll 
like receptors (TLR3, TLR4) 134, nucleic acid sensors (Z-DNA binding protein, ZBP1) 135, 

retinoic acid responders (retinoic acid inducible gene 1, RIG1) 136 and adhesion receptors (e.g. 
CD44) 137. However, in most settings necroptosis was only inducible, if apoptosis-related 
proteins such as CASP8 are blocked or totally retrieved from the system 138 (Fig. 3). Within the 

signaling pathways that govern necroptosis or apoptosis, there are molecular switch proteins, 
like CASP8, which regulate the outcome of a receptor-ligand association, as the same 
interaction (e.g. TNFRSF1A with TNFa) sometimes exhibits a range of effects, from survival 

over inflammation to cell death.  
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TNFa-induced necroptosis is a well described pathway that is evidentially interlinked with 
apoptosis and cell survival (Fig. 3). Herein several molecules, including RIP1 and CASP8, act 

as molecular switch proteins to change the pathway outcome from survival to cell death 139. 
Post-translational modifications, including ubiquitination and phosphorylation, play a crucial 
role in this context, as stated above and summarized by Tang et al. 73. Upon TNFa ligation one 

of three processes can follow. First, in the presence of IAPs, the pro-survival NF-kB pathway 
will be executed. If these proteins are not available or inhibited, the CASP8-dependent death 

pathway branch can be activated (Fig. 2), which leads to extrinsic apoptosis induction. In the 
third scenario, CASP8 is inactivated through specific proteins like cellular FLICE-like 
inhibitory protein (cFLIP) 140 or caspase inhibitors like Z-VAD-FMK and Q-VD-OPH 141, 

which in turn might lead to necroptosis.  
 
This third branch in TNFa-signaling relies on RIP1 and receptor interacting protein kinase 3 

(RIP3) kinase activities 142,143. As RIP1 and RIP3, both harbor a RIP homotypic interaction 
motif (RHIM) 144, they can interact with each other. Upon phosphorylation of RIP1 and RIP3, 

the formation of the necrosome is enabled 145,146, which facilitates recruitment of mixed lineage 
kinase domain-like pseudokinase (MLKL) 147,148 (Fig. 3). Although RIP1 seems to be crucial in 
TNFa-signaling, there is also evidence for necroptotic pathways where RIP1 is dispensable 

(e.g. TLR-dependent necroptosis in macrophages 134 and virus-dependent necroptosis in mice 
135,149). Within the necrosome, RIP3 phosphorylates MLKL at S357/T358, which subsequently 

is able to oligomerize to tetra- and octamers 150. This process has been shown to depend on the 
chaperone heat shock protein 90a family class A member 1 (HSP90AA1) 151 and 
phosphatidylinositol 152,153. Oligomerized MLKL induces membrane permeabilization by 

forming channels or pores with a diameter of 4 nm 150,154,155. Interestingly, rodent and primate 
MLKL are utterly different from each other. Mouse MLKL does not oligomerize to 

tetramers 150, is phosphorylated at a different residue and it is not sensitive to necrosulfonamide 
(NSA), a potent necroptosis blocker in human cells 147. 
 

Taken together, this cell death form exhibits morphological signs of type 3 necrosis 72 and 
strongly depends on MLKL and RIP kinases. Although it has been discovered in 2005, there 
are only few evidences for this cell death form to occur in the primate ovary, as species 

differences between humans and rodents are present. However, recent findings in cellular and 
histological studies might hint to a physiological necessity of necroptosis in GCs 156,157.  
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1.3.2.1  Sphingolipids regulate cell fate 

Sphingolipids are bioactive lipids, found in all eukaryotic organisms and consist of a sphingosine 
(Sph) backbone, which can be linked to any fatty acid through an amid bond 158. The headgroup, 

linked to the primary hydroxyl group of the Sph backbone further increases complexity in 
sphingolipids 159 (Fig. 4). Based on the marked difference that results from these three building 
blocks, it is apparent that sphingolipids offer infinite possibilities for functions. Indeed, it has 

been shown that members of this class affect the cytoskeleton, endocytosis, cell cycle, 
senescence, cell migration, inflammation, survival and cell death 160-163.  

 
The central molecule of the sphingolipid metabolism is ceramide (CER; N-acyl-sphingosine, 
Fig. 4) 164, which can be generated by de novo synthesis, breakdown of sphingomyelin or the 

salvage pathway (Fig. 3).  

Figure 3 Necroptosis and the sphingolipid metabolism 

Necroptosis (yellow) and the sphingolipid metabolism (green) represent two pathways that might be 
interlinked. Yet, there is not much evidence for such a hypothesis. The cell death pathway is 
schematically depicted as a consequence of TNFa ligation. Upon interaction between ligand and 
receptor and in the absence of polyubiquitinated RIP1 the “death” complex II is formed, which activates 
CASP8-dependent apoptosis. However, if CASP8 is inhibited (e.g. by cFLIP) RIP1 is phosphorylated, which 
induces recruitment of RIP3. Together with MLKL these three proteins form the necrosome. Within the 
necrosome RIP3 and MLKL are phosphorylated, which facilitates MLKL oligomerization (tetramers and 
octamers in humans), membrane permeabilization and subsequently necroptosis. The sphingolipid 
metabolism can be described by three independent pathways. A simplified sphingolipid metabolism is 
depicted by green key molecules. De novo sphingolipid synthesis utilizes sphingosine and palmitate and 
the subsequent metabolites to generate the storage form sphingomyelin. Sphingomyelin can be 
transported via membranes and through endocytic transport. Within an acidic compartment like a late 
endosome or lysosome the storage form can be metabolized to ceramide (sphingomyelinase pathway). 
This step is facilitated by the acid sphingomyelinase (SMPD1). The acid ceramidase (ASAH1) degrades 
ceramide to sphingosine, which is a more soluble form that can exit membranes and enter the cytosol. 
Sphingosine can be phosphorylated to sphingosine-1-phosphate by the sphingosine-1 kinase (S1K) or 
utilized in the salvage pathway to generate ceramide via a ceramide synthase (CerS). These two 
metabolites possess opposite functions. Ceramide is known to induce cell death and sphingosine-1-
phosphate preferably supports survival.  
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In short, de novo synthesis starts with fusion of serine and palmitate to 3-keto-
dihydrosphingosine by the serine palmitoyl transferase 165. After reduction and subsequent 

acylation by a ceramide synthase (CerS) and further processing by a desaturase, ceramide is 
formed 166,167. This central molecule can act as a signaling molecule or be further processed by 
phosphorylation (ceramide kinase) 168 or glycosylation (glycosyl-/galactosyl ceramide 

synthases) 169. Furthermore, CER can be degraded to Sph by acid or neutral ceramidases or 
processed to sphingomyelin (SM) by sphingomyelin synthases 170. SM acts as a storage form of 

CER and can be broken down to this bioactive lipid by sphingomyelinases (acid (SMPD1), 
neutral and alkaline) upon induction 171,172. Sph is based on its amphipathic nature, is soluble in 
aqueous solutions (30 % in cytosol) and organic solvents (70 % in membranes) and is, 

therefore, recognized as a transportation form of insoluble sphingolipids 173. This molecule can 
be phosphorylated to sphingosine-1-phosphate (S1P) by sphingosine kinases 174, or be further 

degraded by the sphingosine-1-phosphate lyase to ethanolamine-phosphate and hexadecenal 
to subsequently exit the sphingolipid metabolism 175. Another possibility for Sph conversion is 
the salvage pathway, which basically represents a recycling process to re-generate CER 176 (Fig. 

3). This pathway starts with the degradation of SM or other complex sphingolipids within acidic 
compartments, namely late endosomes and lysosomes, to generate Sph that is transported to a 

CerS containing compartment. The CER, which results from the Sph conversion, can act as a 
signaling molecule or be used for the regeneration of more complex sphingolipids. Interestingly, 
the salvage pathway was estimated to account for 50 ‒ 90 % of the sphingolipid biosynthesis, as 

it offers a more efficient energy balance compared to de novo synthesis 176-178.  
 

R1 = Fatty acid Amid linkage

Headgroup
Sphingosine backbone

Figure 4 Sphingolipid building blocks 

Sphingosine is a molecule with 18 C atoms and a polar hydroxyl headgroup (blue). It can be linked to a 
fatty acid of varying acyl chain length (R1, N-acyl, green) by an amid linkage (orange) to form a ceramide 
(N-acyl-sphingosine). The hydroxyl group can be substituted by a variety of molecules to form complex 
sphingolipids (e.g. phosphocholine in sphingomyelin, one or more sugar residues in a glycosphingolipid). 
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Most sphingolipids are ubiquitously present in lipid membranes. However, there is clear 

evidence that de novo production of CER is restricted to the endoplasmic reticulum, from where 
it gets transported to the Golgi apparatus to be processed to SM, which in turn is transported 

through vesicles to any other membrane. SM degradation predominantly occurs in lysosomes 
or the plasma membrane 179. Interestingly, in most organisms the cellular contents of the storage 
form (SM), CER, S1P and the transportation form (Sph) strikingly differ. For example, 10 times 

more SM is present in cells compared to CER, which in turn is an order of magnitude more 
concentrated than Sph 180 and S1P is rarely found. Therefore, slightly manipulated activity and 

expression of enzymes, such as sphingomyelinases (e.g. acid; SMPD1), ceramidases (e.g. acid; 
ASAH1) or sphingosine kinases (SK1 or SK2) tremendously affect the levels of their products 
and subsequently their effects.  

 
A special interest lies in CER and S1P as these molecules have multiple times been shown to 
influence cell fate based on their ratio 181. It has consistently been shown that S1P- and CER-

effects oppose each other 182. Lysosomal CER, for example, has been shown to activate 
cathepsin D and therefore was linked to TNFa- and mitochondria-dependent apoptosis 183. 

Furthermore, CER was shown to activate protein kinase Cz and apoptosis in stem cells 184. 
Another group has implicated the involvement of SMPD1 activity and subsequently CER 
production in tumor cell stress response and apoptosis upon radiation therapy 185. General 

importance of this protein and its metabolites was supported by experiments in mouse oocytes, 
showing that disruption of the gene encoding SMPD1 (smpd1), or exogenous addition of S1P 

rescues these cells 186. A mechanistic link of CER to mitochondria was proposed by the effects 
of sphingolipids in intrinsic apoptosis (HeLa and mouse cells) 187. Indeed, it was demonstrated 
that CER forms channels in the outer mitochondrial membranes 158,188. The feature of CER to 

induce cell death in various cell types and species is currently tried to be utilized by scientists 
in ovarian cancer 189 and other tumors 182,190. 

 
Over time, more evidence has accumulated that CER plays a role in both, apoptosis and 
necroptosis. For example, CER was shown to induce necroptosis in trophoblasts during 

preeclampsia 191 and in monocytic like cells 192. Mechanistically, CER accumulation was shown 
to occur downstream of RIP1 activation during necroptosis 193. RIP1 dependency was further 
confirmed by CER associated pore formation in lung cancer cells 194.  
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In the ovary, CER was shown to induce cell death in cultured GCs and CL of mice 195,196, GCs 

of hen 197,198, antral follicles and CL of cattle 199,200, GCs and lutein cells of rat 201-204 and in human 
GCs 205,206. Nevertheless, most of the studies were conducted before alternate cell death forms 

like necroptosis were discovered. Thus, some of the above-cited work insufficiently 
distinguished between cell death forms and may falsely have concluded to apoptosis.  
 

Taken together, CER has been shown to induce cell death, including apoptosis and necroptosis, 
in various systems. However, it still needs to be elucidated, how the impact of CER on human 

ovarian physiology has to be interpreted. 
 

1.4 Humans are not mice 

Research on human physiology remains a challenging task, as most experiments cannot be 
executed on human individuals. Scientists, therefore, developed an inventory of models and 

used experimental organisms to overcome this limitation, though some drawbacks have to be 
considered. Leonelli and Ankeny distinguished between model and experimental organisms 207, 
whereas the latter ones were defined as species that are studied but do not necessarily represent 

other species. However, they render deep insights into specific interesting phenomena or 
characteristics of the studied species. Contrary to this, model organisms are studied for 

translational insights into more complex organisms. Accordingly to these two scientists model 
organisms are: “... non-human species that are extensively studied in order to understand a 
range of biological phenomena, with the hope that data, models and theories generated will be 
applicable to other organisms, particularly those that are in some way more complex than the 
original.” 207.  

 
Next to non-mammalian models (e.g. Saccharomyces cerevisiae, Drosophila melanogaster, 
Caenorhabditis elegans) there are two mammalian species recognized by the National Institutes 

of Health Center for Scientific Review (https://public.csr.nih.gov) as traditional model 
organisms - the laboratory mouse (Mus musculus) and rat (Rattus norvegicus domestica). Some 
of the fundamental advantages of model organisms are the low costs for animal husbandry, the 

short generation times, the numerous tools that have been developed over time to genetically 
manipulate these animals and of course the physical animal size, which makes work easier.  
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Nevertheless, the benefits come at an expense of significant drawbacks. Scientists argue that 

studying a handful of well characterized organisms, whilst neglecting other species might drive 
the academic ecology into a wrong direction 208 by supporting the idea that every conclusion 

from a model experiment must generally be true for all the other species 209. Unfortunately, the 
underlying differences between human biology and rodent biology are not respected in a way 
they should and therefore, inappropriate conclusions are done too often. Mark M. Davis, a 

highly renowned professor from Stanford University summarized that the mouse is an 
unsuccessful and poorly translational model for clinical questions regarding human 

immunity 210. This opinion is shared by other researches in a variety of diseases 211-213. 
Nevertheless, without the experiments in mice, rats and all the other model organisms, 
scientists never would have accumulated so much knowledge about the fundamental 

mechanisms in biology. Based on the pros and cons of model organisms, it can be concluded 
that it wise to utilize these systems to resolve general questions. However, it is doubtful to draw 
conclusions towards human physiology or pathology, as any gathered hypotheses from mouse 

experiments need to be proven right in humans or more related systems, like non-human 
primates. In some research areas like development 209, neurodegeneration 211,212 or 

environmental impact 214, it has been shown that the used model organisms do not mirror the 
situation in humans. In such cases it is advisable to investigate the suitability of an experimental 
organism.  

 

1.4.1  Experimental organisms for the human ovary 

For research purposes on the physiology of the human ovary and probably all other human 
organs 215, non-human primates represent the best suited experimental organisms as evolutional 
proximity is much closer compared to rodents 216,217. The latest shared ancestor of humans and 

mice was on earth around 90 million years ago 218. For primates like the New World monkey C. 
jacchus the differential evolution begins around 45 million years ago and for the Old World 

monkey M. mulatta the proximity is even closer with around 30 million years 217.  
 
In the ovary obvious differences between rodents and primates concern cycle length (1 month 

in humans vs. 1 week in rodents) 219, offspring number (1 in humans vs. 8 in rodents) 220,221, 
menses (present in humans but absent in rodents) 222, gestation length (40 weeks in humans 

vs. 20 days in rodents) 223 and menopause, which is naturally absent in rodents due to the short 
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life time 224,225. However, there are further discrepancies between these two taxa. E2 has a 

beneficial effect on primordial follicle development in primates in-utero 226, but exerts opposite 
effects in mice, where primordial follicle formation occurs post-natal 227. These hormonal 

differences are also indicated during the peaks of E2 and FSH, where rats, contrary to macaques 
show high FSH and low E2 levels 228. Next to the differences during follicular development (e.g. 
varying impact of E2) and ovulation 229, the luteal phases significantly differ between taxa 230,231. 

In contrast to the ultra-short CL lifespan of rats and mice (24 h), primates exhibit a longer 
luteal phase (14 days). One reason for this discrepancy is the continual expression of inhibin in 

humans 232, which downregulates FSH during the luteal phase. In rodents the preovulatory LH 
surge represses inhibin to facilitate the next follicular wave 233. Another big question mark 
remains on luteal regression in primates. This process is well understood in rats 231 but remains 

elusive in primates to a large extent 228. In most species including rodents the uterus secrets 
prostaglandin F2a (PGF2a) to induce luteolysis. In humans and primates, however, the uterus 
is dispensable for luteolysis 234. Another facet that encapsulates primates from the rest of the 

animal kingdom is the secretion and function of chorionic gonadotropin (CG) to rescue the CL 
in pregnancy 235,236. Next to primates solely equines do secret CG, however the function and 

time of secretion do differ from primate CG 237.  
 
In respect of these profound differences, model organisms are good opportunities to understand 

general biological mechanisms. However, the human relevance of any mouse or rat experiment 
has to be proven in humans or at least in the most related experimental organisms - non-human 

primates. As studies in living animals are expensive, challenging and frequently meet ethical 
concerns 238, cellular or organoid systems from hosts that resemble humans are developed to 
gain insights. One appropriate experimental system that is readily used in ovarian research is 

the three-dimensional (3D) culture of follicles, extracted from in vivo-developed M. mulatta 
ovaries 36,239. This system offers the possibility to study follicular development in vitro, while 

rendering a deep insight into human physiology. To facilitate this, ovaries are surgically 
removed and follicles are extracted manually. Afterwards, the follicles can be embedded into an 
alginate hydrogel to mimic the firmness of the surrounding tissue in vivo 240. With this technique 

it is possible to study age or hormone dependent follicular development that is closely related 
to the physiological situation in humans 35. Next to the basic research approach, this system 
might also help cancer patients in future. Nowadays young female cancer patients are offered 

to have their ovarian tissue be removed and stored before chemotherapy and re-implanted 
afterwards. This is done with the hope to fully mature a follicle in vitro in future to finally 
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facilitate IVF-dependent pregnancy in these patients 241. Although we are quite far from this 

point yet, the non-human primate system renders the best possibility to understand human 
follicular development and to reach this aim. 

 

1.4.2  Cellular models for the human ovary 

As non-human primates are poorly accessible experimental organisms, it is advisable to employ 

a primary cellular system, originated from human tissue that resembles the organ of interest for 
first insights. For the ovary, a possibility was discovered with the invention of IVF 3: human 

IVF-derived luteinized granulosa cells (LGCs).  
 
Within most IVF procedures the female patients undergo a controlled ovarian stimulation 

(COS), which aims for the development and maturation of multiple oocytes in one menstrual 
cycle 242. Although numerous different COS protocols exist to establish this aim, they all include 

a dose of the so-called “pregnancy hormone” (human chorionic gonadotropin, hCG) to facilitate 
final follicle and oocyte maturation. 243,244. hCG is used in IVF for its chemical similarity to LH. 
Both of these proteins bind the same receptor (LH receptor) and lead to similar consequences, 

but to a varying extent 245,246. After COS is realized, oocytes are retrieved by follicle punctuation. 
To assure that the oocyte is aspirated, all follicular fluid (Fig. 1) is retrieved. During this 
process, some of the mural GCs are taken along. These cells can be isolated from the follicular 

fluid and cultivated. Due to the stimulation protocol and especially the final hCG dose, GCs 
luteinize in culture and subsequently become LGCs, which resemble LLCs of the human CL 
247. This can be verified by the presence of progesterone in the LGC culture medium, which 
follicular GCs are incapable of producing 247. Isolation of LGCs can be established by distinctive 
cellular characteristics (size of cell aggregates, cell density, adherence speed or epitope 

presentation (immune cells)) that discern these cells from the remaining contents (e.g. blood 
and immune cells) of the follicular fluid. Based on this, various methods have been invented to 

improve LGC isolation. The cell-strainer technique, built on the differences between LGC 
aggregate size and other cells (red and white blood cells, fibroblasts) yields the most reasonable 
compromise between purity, speed, simplicity and yield 248,249.  

 
Taken together, due to the lack of appropriate and conveniently accessible animal models, 

LGCs represent a well-suited cellular model to understand mechanisms of the human and 
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primate luteal phase. In vivo, the luteal phase is induced by a specific hormonal pattern (e.g. 

LH-surge), which IVF-derived LGCs also were exposed to. In culture, these cells express typical 
markers of LLCs (e.g. progesterone production), which makes them an adequate cellular model 

for this cell type. However, as it is a cellular model and cell culture effects might affect the 
outcomes, it is essential to verify the findings in primate studies.  
 

1.4.2.1  Granulosa cell tumor cell lines 

Granulosa cell tumors (GCTs) of the ovary are, as stated above, rare diseases. Thus, primary 

tissue from cancer patients is not readily accessible. Nevertheless, research on these tumors is 
necessary to help suffering patients and as a consequence, it is important to utilize any available 
system to better understand the genetic changes and molecular events of tumorigenesis and 

tumor proliferation 250. Only a few scientists managed to cultivate primary GCT cells, however, 
a range of GCT-like cell lines have been developed over time. For most cases follicular GCs, 
isolated from mice, cattle, pigs, monkeys and humans were differentiated by oncogenic 

transformation, immortalization and radiation into GCT-like cell lines 251. Unfortunately, most 
of the available cell lines are from model species (mice) or lack the key characteristics of 

steroidogenesis and gonadotropin dependence. Next to these in vitro differentiated cell lines, 
there are three publicly available cell lines gathered from patient-derived GCTs (COV434 and 
KGN) 252-254 or granulosa-theca cell tumors (HTOG) 255. As the HTOG cell line does not 

produce steroids and does not respond to gonadotropins, the other two cell lines are more 
interesting to use for the research on GCTs of the ovary. KGN evolved as the predominant cell 

line in GCT research, although COV434 was established before 251. Next to the work that can 
be done in KGN or COV434, it is essential to use primary patient-derived tumor tissue to 
compare the outcomes from cellular studies with in situ material.  
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2 Aims and expectations 
The present work was based on the findings from previous studies 156,256,257 with a special interest 

in necroptosis, which was identified in the culture of human luteinized granulosa cells (LGCs) 
derived from in vitro fertilization (IVF). However, the mechanisms behind this cell death form 
in the human ovary and its physiological importance remained elusive. Furthermore, LGCs are 

a widely used model for the investigation of the human ovary. Yet, a broad characterization of 
these cells on the proteomic level has never been done until now. Another model for the human 
ovary are KGN cells, which are a granulosa cell tumor (GCT)-derived cell line that could 

provide insights into cell death mechanisms, which are poorly understood in this type of tumor.  
 

Þ To better understand cultured LGCs and their relevance to in vivo situations, a proteomic 
approach was designed. The key question was whether these cells resemble follicular 
granulosa cells (GCs) or large lutein cells (LLCs). Based on the hormonal stimulation 

protocols in IVF and the behavior of LGCs in culture, these cells were expected to be more 
related to LLCs.  

 
Þ To find a link between basally occurring necroptosis in LGC culture and physiological 

processes in the human ovary the proteomic data were analyzed and compared to in vivo 

data. This approach identified the ceramide (CER) salvage pathway as a candidate. In the 
ovary, the link between CER and necroptosis is not well established. Therefore, cellular 

studies were designed to evaluate the mechanistic coherence of these two pathways in vitro. 
 

Þ Contrary to LGCs, in vitro cultured primate follicles are a system for the research of 

follicular development, at least in vitro. As the impact of necroptosis on follicular 
development in primates was not elaborated yet, the present study was designed to address 
the question, if necroptosis is involved in in vitro follicle maturation. Further in this setting, 

the impact of acetylcholine on primate follicle development was tested to validate its trophic 
actions found before 257.  

 
Þ Next to physiological processes, cell death mechanisms play a significant role in tumors. At 

the moment there are no treatment options for granulosa cell tumors (GCTs) besides 

surgery. Therefore, it was questioned on the cellular level, whether SMAC mimetics could 
offer a treatment possibility in the future and what the underlying mechanism would be. 
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3 Results 

3.1 Publication 1 (Bagnjuk et al. 2019) 

 

Necroptosis in primate luteolysis: a role for ceramide 

 
Konstantin Bagnjuk, Jan Bernd Stöckl, Thomas Fröhlich, Georg Josef Arnold, Rüdiger Behr, Ulrike Berg, 

Dieter Berg, Lars Kunz, Cecily Bishop, Jing Xu & Artur Mayerhofer 

 

Cell Death Discovery, Vol. 5, No. 67, 2019. DOI: 10.1038/s41420-019-0149-7 
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Figure 5 Graphical summary of publication 1 (Bagnjuk et al. 2019) 

A proteomic analysis, symbolized by a mass spectrum in the red circle, of cultured LGCs (day 2 to day 
5) revealed high similarity between the cell culture model and the regressing rhesus monkey CL in vivo. 
In the latter, signs for necroptosis became evident that were absent in earlier luteal stages. Additionally, 
the CER salvage pathway was upregulated at the mRNA level. In vitro culture of LGCs mimicked this 
situation, as results indicated necroptosis execution on day 5 of culture, which was absent at day 2 of 
culture. The CER salvage pathway was likewise upregulated at the protein level. Manipulation of cellular 
CER concentrations by blocking the CER synthase or by exogenous addition of CER led to reduced or 
elevated LGC cell death, respectively. (CER = ceramide; LGCs = luteinized granulosa cells) 



 

 

 
 
 
 

 

 

 

 

 

 

  



 

 

  



 

 

  



 

 

  



 

 

  



 

 

  



 

 

  



 

 

  



 

 

  



 

 

  



 

 

  



 

 

 

  



 

 

  



 

 

  



 

 

 

Supplement File 
 
Supplement Fig. 1: Pathway illustration of known reactions of sphingolipid 
metabolism and the ceramide salvage pathway.  
Metabolites are shown in rectangular boxes with rounded corners and proteins in 

rectangular boxes colored according to the log2 fold change between day 5 and day 2. 

Proteins were colored with the shown gradient according to their log2 fold change. 

Proteins with no significant change in abundancies are shown in grey. 

 
Supplement Fig. 2: Illustration of ceramide salvage pathway associated 
genes/proteins generated by transcriptomic/proteomic analysis. 
LFQ values and log2 transformed transcriptome data for specified proteins/genes are 

shown in column diagrams. In most cases, the tendency was the same for proteomic 

and transcriptomic data. P-values and fold changes are shown in Supplement Tab. 1 

and p < 0.05 is marked with an asterisk (*). Proteomic data, n = 5; transcriptomic data, 

n = 8. Error bars indicate SEM.  

 

Supplement Fig. 3: Confocal microscopy images of immunostained GCs and 
Western blot results showing actions of NSA  
(a) GCs, cultured on glass coverslips were fixed on day 2 or 5 of culture, or stimulated 

with NSA (20 µM, 72 h) before fixation. Immunocytochemical staining using anti-

ceramide and anti-golgin97 antibodies revealed different intensities and loci due to 

culture time and stimulation. Controls using mouse IgG and IgM are shown in insets of 

the first column. Three independent experiments were conducted, and representative 

pictures are shown. Scale bars indicate 50 µm.  
(b, c) Western Blot of GCs stimulated for 72 h either with (b) the solvent control, (b, c) 

50 µM C2-CER alone or (c) in combination with 20 µM NSA showed phosphorylation 

of MLKL at T357/S358, and oligomerization. In all groups, monomeric 

pMLKL(T357/S358) bands at <55 kDa and octameric pMLKL(T357/S358) at >250 kDa 

were evident. The Western Blots were evaluated by quantification of 5 independent 

experiments per group. Intensity of the pMLKL(T357/S358) bands (monomeric + 

oligomeric) were normalized to the MLKL band. Representative blots are shown. (b, c) 

paired Student’s t-test was conducted to evaluate statistical significance (*p < 0.05); 



 

 

means and SEM are shown.  

 

Supplement Fig. 4: Confocal microscopy images of immunostained GCs 
showing actions of FB1 and Nec1s.  
(a) GCs, cultured on glass coverslips were fixed on day 2 (left column) or day 5 (middle 

column) of culture, with or without stimulation by FB1 (0.5 µM, 72 h, right column) 

before fixation. Controls using rabbit IgG and mouse IgM are shown in insets of the 

first row. (b) In another experiment GCs were cultured the same way but stimulated 

with Nec-1s (20 µM, 72 h, right column) instead of FB1. Immunocytochemical staining 

using anti-ceramide and anti-golgin97 antibodies revealed different intensities and 

cellular localization, depending on culture time and stimulation. Two independent 

experiments were performed and representative pictures are shown. Scale bars 

indicate 25 µm (a) and 50 µm (b).  

 

Supplement Tab. 1: The levels of proteins and genes (mRNA) involved in 
ceramide salvage pathway, which were upregulated after 5 days of culture in 
human IVF-derived GCs and in the late stage macaque CL, respectively.  
The p-values resulted from Student’s t-test with Welch’s correction analysis of log2 fold 

change values of protein and mRNA expression data of cultured GCs and timed 

macaque CL.  
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Supplement Table 1 

 

  
protein levels (GC d5 vs. 

d2) 

mRNA levels (late vs. 

early CL) 

gene 

name 
protein name p value log2 FC p value log2FC 

ARSA arylsulfatase A 0.181 1.329 0.024 0.338 

ASAH1 acid ceramidase 0.006 2.568 0.001 1.326 

CTSA cathepsin A 3.72E-06 1.848 0.071 0.456 

GALC galactocerebrosidase 0.043 1.809 0.439 -0.252 

GBA glucosylceramidase 0.217 1.427 0.649 0.081 

GLA a-galactosidase A n.d. n.d. 0.091 0.399 

GLB1 b-galactosidase 0.058 1.073 0.011 0.807 

GM2A GM2 ganglioside activator 0.017 1.389 0.014 1.510 

HEXA hexosaminidase subunit a 4.81E-04 1.369 0.004 0.662 

HEXB hexosaminidase subunit b 2.81E-04 0.911 0.002 1.168 

NEU1 sialidase 1 0.032 2.124 0.661 0.075 

PSAP prosaposin 0.002 1.056 0.001 0.967 

SCARB2 
lysosomal membrane 

protein 2 
0.017 1.510 0.001 0.661 

SMPD1 acid sphingomyelinase 0.006 1.166 0.646 0.071 
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3.2 Publication 2 (Du, Bagnjuk et al. 2018) 

 

Acetylcholine and necroptosis are players in follicular development in primates 
 

Yongrui Du*, Konstantin Bagnjuk*, Maralee S. Lawson, Jing Xu & Artur Mayerhofer 

 

Scientific Reports, Vol. 8, No. 6166, 2018, DOI: 10.1038/s41598-018-24661-z 

*co-first author 
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Figure 6 Graphical summary of publication 2 (Du, Bagnjuk et al. 2018) 

Secondary rhesus monkey follicles were cultured under the influence of necrostatin 1 or Huperzine A. 
The expression of the necroptotic machinery and acetylcholinesterase were verified. Addition of 
necrostatin 1 blocked necroptosis and consequently improved follicle growth by increasing the follicle 
and oocyte size and the granulosa cell number. Huperzine A blocked endogenous 
acetylcholinesterase, which elevated acetylcholine levels and increased follicle size.  
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3.3 Publication 3 (Bagnjuk, Kast et al. 2019) 

 

Inhibitor of apoptosis proteins are potential targets for treatment of granulosa 

cell tumors – Implications from studies in KGN 
 

Konstantin Bagnjuk*, Verena Jasmin Kast*, Astrid Tiefenbacher, Melanie Kaseder, Toshihiko Yanase, 

Alexander Burges, Lars Kunz, Doris Mayr, Artur Mayerhofer 

 

Journal of Ovarian Research, Vol. 12, No. 76, 2019, DOI: 10.1186/s13048-019-0549-6 

*co-first author 

 

 

 

Figure 7 Graphical summary of publication 3 (Bagnjuk, Kast et al. 2019) 

The expression of potential SMAC targets in granulosa cell tumors (GCTs) was verified by 
immunohistochemistry for cIAP1 and by PCR for BIRC2, BIRC3 and BIRC4. The effects of the SMAC 
mimetic BV6 on KGN, a GCT cell line, were elaborated in vitro. BV6 was able to induce apoptosis in 
the cell line and affected NF-kB-dependent gene expression. (BIRC = gene encoding the baculoviral 
IAP repeat containing protein; cIAP = cellular inhibitor of apoptosis protein; SMAC = second 
mitochondria-derived activator of caspases) 
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4 Discussion 
Reproduction governs life. In our modern society, however, factors like environmental 

influence, career goals, financial resources or social pressure affect the reproductive functions 
and capability. The desire to reproduce is contrasted with the threat of overpopulation, which 
we will have to face.  

 
On one hand, it is important to help people with an unfulfilled wish for having a family. On the 
other hand, it is necessary to prevent unwelcomed pregnancy by fertility control techniques 

rather than induced abortions. To achieve these opposed goals, the biology of human 
reproduction needs to be understood.  

 
The present work focused on the female part in human reproduction. In particular, the CL was 
explored, which is a transient organ that produces P4 to regulate fecundity. Low P4 levels have 

been associated with diminished pregnancy rates 258, which might originate from luteal phase 
defects or improper large lutein cell (LLC) function 259. Cell death events regulate CL lifetime 

that in turn manifests in P4 production. Interference with these incidents could hence allow us 
to maintain or disturb CL function in case of preterm regression or in fertility control, 
respectively. Subsequently, the interest in this work was concentrated on the ongoing cell death 

events in the human CL to understand the mechanisms which could be interfered with. The 
adjusted understanding of CL regression in humans and its implication for fertility control and 

IVF will be discussed in the following. 
 
Additionally, the discussion will be focused on basic research goals that might yield 

improvements for fertility preservation in cancer patients. As medicine is evolving, odds for 
long-term cancer survivors are improving. For pediatric cancer patients this rate fortunately 
increased up to 70 % 260. However, only half of the counseling oncologists will send their 

patients to fertility preservation specialists 261,262. This might be due to limited options for 
fertility preservation in prepubertal patients or the knowledge about current techniques. Hence, 

the present study touched on two key issues of a prepubertal cancer patient on the way through 
treatment to contribute to the aim of giving back the patients the ability to decide whether they 
want to have children or not. A therapy option apart from gonadotoxic chemotherapy and 

radiation, namely treatment with the small molecule BV6 was evaluated. Furthermore, attempts 
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were made to improve in vitro follicle maturation for fertility preservation, as this technique is 

ubiquitously suited for female cancer patients.  
 

4.1 LGCs – a model for human LLCs 

In reproductive biology there is a lack of translational models to examine the complex ovary, 

with its vast interspecies difference. A widely used in vitro model, namely LGCs, could 
eliminate this gap of knowledge, if a proper characterization of these cells was performed. All 
studies that characterized LGCs by big data analysis, used transcriptomic approaches, which 

depend on mRNA levels 263-265. These, however, do not necessarily represent protein levels, a 
fact that is constituted by publications describing the expression patterns of the steroidogenic 
acute regulatory protein (StAR) in the ovary. StAR protein expression is restricted to the theca 

layer and cells of the CL 266,267. Although this was verified at the mRNA level before 268, a novel 
transcriptomic analysis indicates strong StAR mRNA expression in GCs of the follicle 269. Based 

on these discrepancies between RNA and protein levels, it is substantial to collect proteomic 
data of LGCs for a proper characterization of this cellular model. As proteomic data are 
exclusively available for follicular fluid 270, the present study was designed to assess IVF-derived 

LGCs by mass spectrometry. The particular attention was focused on the changes of LGCs over 
time in vitro, which could actually mimic LLC in vivo. However, it has to be considered that 

IVF-derived LGCs are the product of a clinical intervention on the endocrinological 
homeostasis. During the course of IVF, COS leads to a defective luteal phase, whereas the 
explanation for this phenomenon remains indistinct 271,272. Next to a variety of hypotheses 273-

275, supraphysiological hormone levels may be an appropriate answer 271,275,276. Nevertheless, 
IVF-derived LGCs could be the means of choice to tackle the question behind COS-dependent 

luteal insufficiency.  
 
Upon ovulation the CL is formed, it produces P4 and hence enables pregnancy. Before follicular 

GCs luteinize, they do not synthesize this steroid, as the key enzyme StAR is missing 268. 
Consequently, the first rise in P4 levels after the LH surge must be due to theca cell actions 277. 
Post luteinization, however, P4 is mainly produced by LLCs 52,278. With modern mass 

spectrometric approaches, it was verified that human IVF-derived LGCs resemble LLCs rather 
than GCs, as they express StAR and produce P4 in vitro 247. Although IVF-derived LGCs have 

been used to make conclusions on follicular GCs 256,279-281, the present mass spectrometric data 
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(e.g. expression patterns of CYP11A1, LDL-R, 3b-HSD and StAR) and the comparison to 

literature revealed that cultured LGCs from day 2 onwards more likely resemble the main 
content of the CL 282, the LLCs of the mid-luteal to late (regressing)-luteal phase. This is further 

supported by yet unpublished results, which showed that P4 levels are highest between day 1 
and 2 of culture and decline afterwards.  
 

The mass spectrometric approach supported the assumption that human, IVF-derived LGCs 
resemble LLCs of the human CL 282 of an IVF patient. But yet a cellular model does not fully 

mimic a whole organ, which is characterized by the interplay between a variety of cells. In the 
primate CL there are non-steroidogenic and steroidogenic cells 283, whereas the latter ones 
equate the largest proportion of the CL in volume 284. However, endothelial cells play an 

inevitable role in the vascularization process of this transient organ in the early- and mid-luteal 
phase. These cells have been shown to interact with steroidogenic cells 285 and they are 
responsible for the connection between the CL and the rest of the human body through the 

blood stream. Compromised vascularization was linked to premature luteolysis, induced 
through gonadotropin defects, which led to pregnancy loss 57. Therefore, steroidogenic activity 

is strongly dependent on endothelial function, and of course it could be possible that endothelial 
cells regulate LLCs cell death, or vice versa, by yet unknown factors. Unfortunately, the 
multicellular behavior cannot readily be examined in the 2D-culture system used in the study. 

Human LGCs provide insights into the human situation, but come with the drawbacks of cell 
culture. These drawbacks can, however, be overcome by reproducing the findings in studies 

with non-human primates in vivo or in situ.  
 

4.2 Let’s rethink luteal regression in the human ovary 

The luteal phase can be dissected into three parts, CL formation, maintenance and regression. 
Especially the mechanisms governing luteal regression in humans remain poorly understood, 

as most of the research is done in animals like rats 286, cattle 287,288 and sheep 289, where CL 
regression is due to the actions of uterine prostaglandin F2a (PGF2a). Although apoptosis is 
suffice to explain most of the features of a regressing CL in rodents 49, the situation for the 

bovine and the primate CL 290,291 is more complex, as the largest proportion of the occurring cell 
death remains unexplained. Recent work in the bovine indicated necroptosis during CL 

regression in vivo 292,293. Hereby the authors used bovine CL to show that PGF2a administration 
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elevates RIP1 and RIP3 mRNA expression. Furthermore, a study by Wang and colleagues 294 

indicated that PGF2a administration does induce luteolysis in mice, as seen by lowered P4 
levels. The importance for apoptosis in this process, however, was unconvincing, as PARP1 vs. 

cleaved PARP1 levels remained unchanged and CASP3 levels were only slightly elevated 294. 
This indicates the importance to reflect the process of luteal regression with the gained 
expertise about cell death forms, even in rodents. In the human CL it was demonstrated that 

apoptosis is a rare event 295. Sugino and Okuda 296 summarized that there are tremendous 
differences between species in terms of luteolysis. This was the motivation to verify the first 

hints for necroptosis in primate CL regression 156 to improve the understanding of this field in 
human physiology. 
 

As stated above, most animal models are barely suited for the study of the human CL. The only 
well-suited animal models are closely related species from the order of primates like Macaca 
mulatta and Callithrix jacchus. Contrary to most other animals, uterine PGF2a was clearly 

shown to be negligible for luteal function in primates 297,298, a fact based on the human and non-
human primate anatomy. Nevertheless, in primates PGF2a can be synthesized locally, which 

was shown in human LGCs 299 and monkey LLCs 300. Next to its luteolytic function 301 and 
contrary to other prostaglandins 302, PGF2a is able to induce vasoconstriction 303,304. 
Accordingly, this hormoneʼs actions are implicated in myocardial dysfunction 305,306, brain injury 
307 and inflammation 308. The vasoconstrictive ability of PGF2a could strongly affect the highly 
vascularized CL in the late luteal phase, where this hormone is known to peak 301. Interestingly, 

E2 administration is able to induce PGF2a-dependent functional luteolysis in M. mulatta 309,310, 
probably through modifying the cellular PGF2a receptor localization 311. Accordingly, in C. 
jacchus it was verified that the PGF2a analogue Cloprostenol is able to induce functional 

luteolysis 301. Consistent with other species, PGF2a plays a role in luteal regression in primates, 
but the origin and mode of action are different from other model and experimental organisms. 

Especially the form of cell death that is induced by PGF2a in primates remains elusive. This, 
however, was not examined in the present study, as cell death was observed to occur 
spontaneously in culture 282. The possibility that PGF2a treatment could increase LGC death 

in culture represents a scenario that therefore remains to be tested. In the present setting, cell 
death, including necroptosis, could be induced by the withdrawal of the cells from their natural 
environment and subsequent from the stimulus of luteotrophic factors like hCG or LH 312. In 

primates it was demonstrated that withdrawal of pituitary gonadotropin support induces 
reversible functional luteolysis in vivo 313. Together with the recent, unpublished findings, 
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which indicate that hCG is able to reduce necroptosis in vitro, the deprivation hypothesis fits 

the present results. However, the mechanistic mode of action of how deprivation of specific 
factors eventually induces cell death in the culture system, remains elusive. 

 
Nevertheless, post induction a multifold of cell death events lead to the demise of the CL. This 
process must include forms of cell death that differ from apoptosis 290,291. Data from the present 

study proposed necroptosis as a mechanism during luteal regression in primates (Fig. 5). A 
process that can readily be mirrored in a cell culture system (human LGCs), as it was shown 

that the basally occurring cell culture phenomena are indeed relevant for the in vivo situation. 
The published findings 282 are supported by yet unpublished results, which indicate that the 
“pregnancy hormone” hCG, which rescues the CL in vivo 314,315, also rescues LGCs in culture 

by reducing necroptosis.  
 
Although still unknown how necroptosis is initiated in the human CL, there is much evidence 

for this form of cell death to be important for CL clearance. Necroptosis leads to membrane 
permeabilization and release of so-called damage-associated molecular patterns (DAMPs), 

which attract immune cells 316 (Fig. 3). Just recently there was a proof of concept study in cancer 
research utilizing this characteristic of necroptosis to actively attract immune cells to a tumor 
317. The hypothesis that CL regression represents an immunological event is old 318, but it was 

supported by migrating immune cells 319. In the bovine, it was demonstrated that this migration 
occurred upon PGF2a stimulation 320, supporting the need of an immunogenic cell death. 

However, this interplay between numerous cells is difficult to evaluate in a cell culture system 
321. Therefore, to test the possibility that necroptosis is attracting immune cells to the 
human/primate CL, whole animal studies utilizing primates are needed.  

 
The present study contributed to the understanding of one of the mechanisms that actually 

execute cell death in the LGC culture and the primate CL. It was pinpointed that CER, a 
prominent cell death inducer, plays a substantial role in luteal regression in humans and non-
human primates, although in an unexpected way. The significant impact of CER on the ovary 

has been proposed by the capability of sex hormones to regulate the CER metabolism during 
the menstrual cycle. During the luteal phase, CER was reported to be upregulated in organs of 
the female reproductive tract, however the ovary was not examined 322. Interestingly, cellular 

concentrations of CER (Fig. 4) were shown to differ between healthy and malignant tissue of 
the ovary which makes the ceramide pathway not only interesting in physiology but also in 
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oncology 323,324. In the present study the impact of the CER metabolism on the luteal phase of 

humans and non-human primates was evaluated. It was demonstrated that enzymes of the CER 
salvage pathway 176 were upregulated over culture in human LGCs as well as during primate CL 

regression in vivo. Especially SMPD1 and ASAH1 were strikingly upregulated. These enzymes 
are predominantly located in the endolysosomal compartments 179,325 and it is known that their 
activation leads to CER production through the salvage pathway 326 (Fig. 3). By 

immunocytochemistry it was verified that this upregulation actually led to translocation and 
increased levels of CER. Translocation of CER between cellular compartments was 

hypothesized to be important in CL formation 327, however the study was conducted in bovine 
and shows only few data of the localization of CER. Luteolysis and CER were linked in mice 
195,328 and rats 204 before. In mouse studies, luteal endothelial cells were examined. It was 

indicated that the enzyme, which degrades sphingomyelin to CER is important for TNFa-
dependent apoptosis in endothelial cells of the CL but not in lutein cells 328. The impact of 
ceramide on apoptosis of bovine lutein cells was shown in two independent studies 200,329. In 

human IVF-derived LGCs, CER was also shown to induce apoptosis. Interestingly, in this study 
clear morphological markers for necrotic cell death were evident 206, which support the present 

findings. Together with the studies in various species cited above, it is irrefutable that CER is 
able to induce cell death in lutein cells. Although most studies linked CER to apoptosis, some 
of them lacked clear markers for this type of cell death. Subsequently, these do not contradict 

the present study. Furthermore, it has to be considered that there are significant interspecies 
differences for organs of the reproductive tract, which was recently shown by a broad gene 

transcription analysis between various model and experimental organisms and humans 330. In 
view of this fact, the results from the present work indicate that ceramide is a cell death inducer 
and linked to necroptosis, at least in primates during luteal regression.  

 
Western Blot experiments, performed in the frame of the present study, implied that CER 

accumulation, which actually leads to cell death in the CL, occurs post MLKL phosphorylation 
in the necroptosis pathway 282. Therefore, CER could rather be a necroptosis executioner than 
a necroptosis inducer. This is in line with recent findings from Parisi et al. 193, who state that 

CER accumulation occurs post RIP1 phosphorylation, an upstream event to MLKL 
phosphorylation. Another study assessing CER nanoliposomes in ovarian cancer models 
hypothesized a MLKL-dependent but RIP-independent necroptotic cell death 189, further 

underpinning the recent findings of ceramide executed necroptosis.  
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With the limitations of work published before, namely incomplete cell death determination, and 

the present and previous findings, which based on ceramide actions in a variety of systems 
including human LGCs, the hypothesis of luteal regression in the human and primate CL can 

be rewritten by adding ceramide-dependent necroptosis as a molecular switch between survival 
and cell death next to the well-established apoptotic mechanisms in LLCs. 

4.3 The aim to give back the ability to decide 

According to a recent analysis by Kim et al. 260, up to 70 % of all prepubertal cancer patients 
survive their disease. However, cancer treatment often includes gonadotoxic therapies like 

chemotherapy or radiation. As techniques regarding fertility preservation parallelly improved 
over time, there are new practice guidelines for oncologists 331, which recently have been 
updated 332 and should be followed to disclose the possibilities patient have. For female patients, 

there are currently two well established methods, which are embryo- and oocyte-
cryopreservation. Both of these techniques are not suited for a subset of patients including 

prepubertal girls with immature, gonadotropin irresponsive follicles and patients with E2-
sensitive breast cancer or gynecological malignancies 332. The most innovative approach to 
preserve fertility in female cancer patients is the cryopreservation and transplantation of the 

ovarian cortex, which already showed promising results 333,334. Although still considered as an 
investigative approach in the US, German reproductive specialists support this technique 

because of proved success 335. Probably the most significant advantage of this method is that 
the obligatory surgery can be done immediately without hormonal stimulation and risk for 
patients. Furthermore, it is suited for patients with immature ovaries, as the transplant is able 

to restore the normal ovarian function, including endocrinological characteristics. However, it 
is not known whether this method is suited for leukemia patients or patients with ovarian cancer 

as risk of reoccurrence could be elevated 332. Right now, prepubertal cancer patients who suffer 
from the most common pediatric cancer 336, namely leukemia, and ovarian cancer patients have 
no adequate option to preserve fertility.  

 
To give back these patients the ability to decide, whether they may want to have a family or not, 
there are three possibilities, whereas adoption is the only established. The other two consist of 

non-gonadotoxic treatments, which are rare for most cancers, as chemotherapy and radiation 
are still the place holder in cancer therapy 337, and in vitro follicle maturation, which remains in 
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an investigative state until now. The results of two 338,339 of the present studies may, however, 

contribute to the goal of giving back the patients the ability to decide. 
 

4.3.1  Necroptosis is to consider in in vitro follicle maturation  

In vitro follicle maturation (IFM) is a clinical approach using preantral follicles to produce 
preovulatory ones, containing metaphase II oocytes that can readily be fertilized. A derivative 

of this technique is the in vitro oocyte maturation (IOM), which comprises antral follicles 
(< 13 mm) and is already used in some indications 340,341. With the invention of laparoscopic 

surgery to acquire preovulatory follicles 342, IVF with its controlled ovarian stimulation (COS) 
protocol prior to retrieval of mature oocytes became the predominant form of all assisted 
reproductive technologies. The prosperous birth of Louis Brown 3 through IVF marked the 

clinical starting point of this technique. However, IOM procedures have been shown to lead to 
pregnancy 340,341, even without in vivo stimulation with gonadotropins,. Therefore, this 

technique bears advantages for particular cases as reviewed elsewhere 239,343,344. In brief, IOM is 
of special interest in patients who disproportionately respond to COS (e.g. patients with ovarian 
hyperstimulation syndrome (OHSS) or polycystic ovary syndrome), or patients with other 

indications (e.g. fertility preservation due to cancer treatment, premature ovarian failure due 
to chemotherapy, oophorectomy, autoimmune diseases or infections, genetic abnormalities like 
Turner 47, XXX syndrome or FSHR mutations). Additionally, IOM is cheaper, as medications 

for possible OHSS and gonadotropin stimulation are not necessary. Furthermore, the 
monitoring costs are lowered due to the low impact on the ovarian physiology. 

 
Once IFM becomes a standardized method, it could be utilized for the same indications as IOM, 
however the main use case would be fertility preservation 239. Hereby this technique is 

advantageous as it enables fertility preservation for all women including breast cancer patients, 
where gonadotropin stimulation should be avoided 345, patients with aggressive cancer, where 

time is precious and prepubertal girls, who do not harbor developed follicles but have been 
diagnosed with cancer to be treated by gonadotoxic therapies (e.g. radiation, chemotherapy). 
In these, sometimes very young patients, ovarian tissue is retrieved for fertility preservation and 

in most cases transplanted post gonadotoxic treatment to regain fertility 346. This clinical 
approach has already successfully restored the fertility in patients 347. Although it is very 

promising in most prepubertal cancer cases, patients who suffer from ovarian malignancies, 
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leukemia or metastatic cancers are not suited for transplantation of ovarian tissue, as cancer 

reoccurrence could be promoted by implantation. Therefore, IFM is a technique, worth to be 
fully developed to render treatment possibilities for these patients. With the present work in 

primate follicles 338, preclinical insights were gathered that could lead to improvement of IFM 
one day.  
 

10 years ago it was demonstrated that a secondary primate follicle can be fully matured in 3D-
culture in vitro 36,240, but since then only once a meiotically competent metaphase II oocyte has 

been developed from human preantral follicles 348, indicating a gap of knowledge. Contrary to 
this, in mice IFM has been established a long time ago 349 and it has been shown recently that 
the whole process from a pool of rodent germ cells to mature oocytes can be established in vitro 
350. These achievements probably can be explained by the frequent use of this model organism 
in research, but it has also to be considered that the laboratory mouse is much less complex than 
a human in this perspective. For human follicles it has been shown that a two-phase 3D-culture 

method is needed to generate a mature follicle 348. Hereby the follicles were grown in a firm 
alginate capsule until the antral stage. Afterwards, the follicle was released from the alginate 

capsule into a low attachment plate to mimic the in vivo environment, as it is thought that 
follicles move from the firm ovarian cortex to the less rigid perimedullary region during 
follicular development 351. In M. mulatta a single-phase 3D-culture is sufficient to render 

metaphase II oocytes 36, whereas C. jacchus follicles can be fully matured in 2D-culture, 
indicating the great difference even between closely related species and implicating the 

complexity of human ovarian physiology. Another explanation for these differences between 
species in terms of IFM success may be provided by the varying size of preovulatory follicles, 
where the impact of diffusion of nutrients and oxygen within a follicle is proportional to 

follicular size. Rodent preovulatory follicles are considerably smaller (around 0.4 mm 352) if 
compared to C. jacchus (2-4 mm 353,354), M. mulatta (around 7 mm 355) or human preovulatory 

follicles (2 cm 9). Therefore, the molecular transport through the antrum represents a limiting 
factor that is important to consider in IFM.  
 

In the study with human follicles, the authors generated an apparently healthy metaphase II 
oocyte, however they stated that the oocyte and follicle diameter never reached in vivo size 348. 
As described above, antral follicle size is primarily determined by the volume of follicular fluid 

and the number of granulosa cells. Based on the findings in LGCs 156, where these cells have 
been found to have the ability to die by necroptosis, it can be hypothesized that follicles might 
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also be governed by necroptosis in vitro 338. Therefore, the effects of the RIP1 kinase activity 

blocker necrostatin-1 (Nec1) on in vitro development of secondary follicles of M. mulatta in a 
3D-culture system 338 have been evaluated. Additionally, the trophic actions of the 

acetylcholinesterase (AChE) blocker Huperzine A on GC proliferation have been tested. It was 
found that both supplements improved follicular development as measured by size and cell 
death markers (Fig. 6). Nec1 is a known necroptosis blocker, but it also blocks the 

immunomodulatory enzyme indoleamine 2,3-dioxygenase (IDO) 356. IDO regulates 
inflammation and cytokine production via the NF-kB pathway, mainly in immune cells 357. 

Interestingly, immune cells have been detected in ovarian follicles 358-360 and Nec1 could block 
IDO of these cells and therefore change the cytokine pattern, which could affect follicular fate. 
Although various studies found immune cells in follicular fluid from IVF patients, these cells 

could also derive from contaminations with surrounding tissue. IVF samples are almost always 
contaminated with blood and tissue pieces, which can be separated from LGCs during primary 
cell preparation. Nevertheless, this ambiguous immune cell factor could be overcome in future 

studies by the use of a more specific Nec1 analogue, namely Nec1s 356. In the setting used in 
the present study, namely in vitro cultured monkey follicles, off target effects have not been 

separated 338, as more specific Nec1 analogues like Nec1s were not readily available at the time 
of experimental design. Nevertheless, necroptosis was verified by two parameters, which 
minimize the proportion of possible off-target effects in the interpretations that necroptosis is 

occurring in primate follicular GCs in culture and might be a factor in follicular atresia 156,338. 
The present study showed that it is possible to improve follicular size and probably GC number 

by applying a necroptosis blocker or an AChE blocker (Fig. 6). Together with a two-phase 3D-
culture system this could improve IFM. However, the addition of more than one supplement 
needs to be evaluated in future studies, and hereby Nec1s should be used instead of Nec1.  

 
The present results underpin the differences between species in follicular atresia of in vitro 
cultured follicles and during follicular development in vivo. Until now 361 follicular atresia has 
been equated by apoptosis in most published studies, although never really tested in primate or 
human follicles. Studies, including the present one 156,338 shed light on this poorly understood 

topic of follicular cell death by indicating necroptosis as an important factor, as apoptosis is not 
the sole cell death mechanism in atresia, at least in IFM. 
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4.3.2  GCTs may be sensitive to SMAC mimetics 

Fertility preservation in patients who underwent gonadotoxic treatment is important, but could 
be redundant by the development of non-gonadotoxic treatment methods. To accomplish this 

goal, science is in duty to understand the behavior and characteristics of tumors, to be able to 
trigger the weak spots without affecting the healthy environment. Therefore, the current study 
339 was designed to translate the knowledge about cell death, gathered in GCs 338 and LGCs 282, 

to GCTs with the aim to better understand the ways GCT cells could undergo cell death. For 
this approach the effects of SMAC mimetics 123,125,362,363 were assessed in KGN culture and their 

translational capacity was evaluated by immunohistochemistry 339 (Fig. 7).  
 
Overexpression of IAPs correspond to a poor prognosis in a variety of cancers 128,364-368, as these 

proteins empower tumor cells to evade cell death 103. In the ovary, expression of IAPs is poorly 
understood. The Human Protein Atlas 369 (http://www.proteinatlas.org), which represents an 

online tool for pathologists, reflects this situation, as it shows, contrary to Leung and colleagues 
67, no staining for cIAP1/2 and XIAP within the stroma of the healthy ovary. For malignancies 
of the ovary the protein atlas shows significant staining for cIAP1 and XIAP. This is consistent 

with the present and a recent publication, where XIAP 67 and cIAP1 339 staining were found in 
GCTs. In the rat ovary XIAP was expressed in follicles depending on their size, with 
preovulatory follicles showing the strongest staining 370. RNA sequencing data of human 

follicles of various size 269 indicated strongest expression of XIAP in the secondary and antral 
follicle. For cIAP2 this study showed unchanged but low levels of mRNA during the whole 

follicular phase, whereas cIAP1 levels were highest in the primary stage. RNA sequencing and 
the immunohistochemical data from multiple sources, including the present study, propose 
differential staining patterns for follicles of various stages and between healthy and malignant 

tissues of the ovary. The gathered results, however, have to be put to the test, as 
immunohistochemical results always depend on antibody specificity and tissue preparation and 

RNA data do not necessarily mirror protein expression. Nevertheless, the studies do not refute 
that the resting pool of primordial follicles show the lowest expression levels for IAPs compared 
to cancerous tissue, where IAPs are much stronger expressed in. Therefore, SMAC mimetics 

could indeed be an alternative treatment method for GCTs with a lower gonadotoxic side effect, 
which could improve the situation for a subset of young cancer patients.  
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For this study, the bivalent SMAC mimetic BV6 was used to treat the GCT cell line KGN. This 

compound was chosen for its high potency 125 and the vast amount of experience from 
experiments with a variety of cancer cells 371-375. In the present work 339 BV6 was effective in 

affecting the transcription of NF-kB-dependent genes and in inducing apoptosis in KGN, as 
shown by viability assays, Western Blot and qRT-PCR experiments (Fig. 7). Therefore, the 
aims of this study were reached by supplying a proof of concept that SMAC mimetics alone are 

able to induce cell death in KGN and based on the expression patterns, these therapeutics might 
be of interest in future GCT treatments. The question, how BV6 or other SMAC mimetics will 

act on GCTs in vivo remains of interest and cannot be evaluated in the used setting. To further 
pursue this question xenograft models and primary tumors have to be assessed 376. Additionally, 
other options of interfering with IAPs, such as downregulation of these targets, should be kept 

in mind for upcoming studies. For this, the antisense oligonucleotide AEG35156 should be 
considered in future approaches, as this compound showed promising results in preclinical 118 
and clinical studies 377-380 with patients having malignancies other than GCTs. 

 
The results of the present study may help to better understand the cell death mechanisms in 

GCTs and the tools these tumors use to evade cell death (IAP overexpression). With these 
preliminary findings and its interpretations, it is proposed that SMAC mimetics could be a less 
gonadotoxic treatment opportunity for GCT patients, although this still needs to be evaluated 

in xenograft models and clinical studies.  
 

4.4 Future scenarios 

The work summarized in this dissertation was performed with the aim to improve the general 

understanding of the human ovary and to generate basic research knowledge that may be 
translatable to a clinical application.  
 

The better understanding of the newly discovered cell death form necroptosis during luteal 
regression in humans renders alternative possibilities for improvement of IVF procedures. 
Hormonal treatment during IVF represents a significant intrusion into the hormonal 

homeostasis of the human body and is therefore accompanied by many negative side effects 
381,382. Next to FSH for follicle development, hCG is used for oocyte maturation and luteal phase 

support, as the artificially suppressed (through gonadotropin releasing hormone (GnRH) 
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antagonists 383) LH peak needs to be replaced. The artificial addition of the recombinant 

“pregnancy hormone” hCG might induce OHSS 384, which should be avoided. Interestingly, 
hormonal stimulation could drastically be reduced by interference with necroptosis, which is 

now known to be a factor in luteal regression. By reducing the amount of GnRH antagonists 
during the late follicular phase, a moderate but natural LH surge could occur, which should be 
sufficient for oocyte maturation. Otherwise stimulation with GnRH agonists 385 or recombinant 

LH could be considered, as this hormone offers a shorter half-life and subsequent lower impact 
on hormonal homeostasis 386. In a next step, during follicle punctuation and oocyte retrieval, 

Nec1s or other necroptosis inhibitors like NSA could be introduced into the luteinizing follicle 
to block cell death and therefore support the luteal phase. But, it has to be considered that too 
many active CL produce supraphysiological levels of hormones that in turn lead to inhibition of 

LH by a negative feedback loop 275,276,383,387. Therefore, necroptosis blockers could selectively be 
introduced into a specific number of follicles, sufficient enough to sustain the LH shortage and 
to enable pregnancy. In theory, the un-supplemented CL would undergo regression, whereas 

the supplemented CL would survive and maintain pregnancy. Supplementation with 
necroptosis blocker could also be considered in natural cycle IVF to support luteal phase, as 

hormonal stimulation is avoided in this procedure 388. These scenarios have yet not been tested 
in vivo, however, in theory they might improve IVF outcomes and reduce risks of hormonal 
treatment.  

 
If blocking cell death in the CL is possible, induction would be possible too. Therefore, the 

knowledge could be translated into contraceptives by induction of necroptosis in the CL. 
Hereby a body temperature-dependent pump could be introduced into the main artery that 
supplies the CL with blood. Body temperature is a measurement for the menstrual cycle 389, 

which could render the accurate timing for ovulation, upon which S1P-kinase blockers could be 
released to the bloodstream through the pump to increase ceramide levels and subsequently 

induce necroptosis. The CL is the most vascularized structure in the ovary 390 and based on the 
level of vascularization, ovarian compartments would be more or less affected by this treatment. 
Therefore, the CL could absorb most of the chemical and eventually regress. This hypothesis 

would lead to evasion of the use of hormones and therefore yield an improvement for the 
current situation for patients. However, artery devices are not evolved enough for such a use 
case as they remain a high-risk factor. Such devices have been utilized in cancer therapy 391, but 

not for fertility control approaches. Therefore, this idea remains a possible far future scenario. 
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Next to healthy individuals with fertility issues, GCT patients and prepubertal cancer patients 

could benefit from the work in this dissertation. For this purpose, IAP antagonists have 
successfully been used to induce apoptosis in GCT like cells, which improves the understanding 

of this tumor and opens a wide, recently emerged field of tumor therapeutics 392 that are used 
in clinical trials, namely SMAC mimetics and could also potentially be used for GCTs. Right 
now, no publications examined gonadotoxicity of SMAC mimetics. This needs to be evaluated 

before it can be said that SMAC mimetics offer a more gonad friendly alternative to radiation 
393 and chemotherapy 394. In a next step, a variety of SMAC mimetics that are used in preclinical 

and clinical trials should be evaluated in KGN and other human GCT cell lines to determine 
optimal candidates for xenograft studies. Furthermore, the mode of action of these molecules 
in GCT like cells and other human cells needs further evaluation to be able to estimate possible 

consequences for the human body.  
 
Next to cancer treatment options, factors that influence IFM have been identified in this study. 

Although necroptosis has been tagged to represent a substantial factor in GC death, it remains 
elusive how this affects the outcome of IFM 348, as oocyte quality was not assessed in this study. 

Therefore, necroptosis blockers like Nec1s should be included in studies using two-phase 3D-
culture systems to evaluate its importance in follicle maturation.  
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