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1 Preface

Radiation therapy along with surgery and chemo- or target-oriented therapy (antibody and ”small
molecules”) represent the four pillars of oncological treatment of cancer patients whilst approx.
50% of all cancer patients receive some sort of radiotherapeutic treatment. Many tumour entities,
including brain and head and neck tumours require radiation as part of the existing standard-of-
care therapy schemes. Thus, the efficiency of a radiation therapy treatment represents a strong
determinant of the overall prognosis for these diseases. The efficiency of radiation therapy is de-
termined on the one hand by the intrinsic radiosensitivity of the normal tissue surrounding the
tumour which restrains the maximum tolerated and thus applicable total dose. For the other, re-
sistance of tumour cells upon irradiation in the course of radiation therapeutic treatment can limit
its overall effect. Hence, one of the uttermost important objectives in molecular radiooncological
research is to understand the mechanisms of the radiation response in normal and tumour tissue
while the knowledge of which would provide the foundation for the identification of molecular tar-
get structures to be tackled by therapeutic agents that would allow the modulation of the radiation
response in such a way radiation therapy becomes most efficient. This as a matter, of course only
would work if the modulating agent specifically increases the radiation sensitivity of the tumour
tissue and without also increasing that of the surrounding normal tissue.

The last decades of cancer research have undoubtedly shown that tumour biology is very much
characterised by inter- and intraindividual heterogeneity. Modern therapeutic approaches have to
account for this by providing individualised treatments. This requires the ability to stratify into
groups that are likely to respond to individualised treatment approaches in the first place and to a
priori identify patients being parts of these strata. This involves identification of prognostic markers
in clinical, radiomics and molecular data of patients as part of retrospectively or prospectively col-
lected cohorts. The latter can be efficiently done in high-dimensional molecular omics ”big-data”
sets that characterise the genome, transcriptome, proteome, metabolome etc. that are generated
on clinical samples from patients of such cohorts in combiniation with clinical follow-up data fol-
lowed by predictive modelling.

Through the mechanistic characterisation of the molecular radiation response and the discov-
ery of prognostic markers predicting the therapeutic success of radiation treated cancer patients,
important steps have been made forward. So, for head and neck cancer and glioblastoma prog-
nostic markers were identified and independently validated. With regard to the understanding
of the molecular radiation response both for normal and tumour tissue important insights have
been generated. Combining these two sources of knowledge is likely to result in new personalised
therapy concepts for radiation treated cancer. Another non-intended side-effect of radiotherapy
is the induction of secondary malignancies in non-tumour tissue that receives irradiation dose as a
side-effect. While epidemiologically proven, the underlying mechanisms and markers of radiation-
induced secondary malignancies are still under investigation. We have demonstrated for radiation-
induced thyroid and breast cancer that such mechanisms and markers exist.

The present cumulative habiliation thesis puts up clinical-translational scientific projects mak-
ing extensive use of computational approaches - two of which are part of the present work - that
were published in peer-reviewed papers that worked towards the understanding of the mech-
anisms of the radiation response and identified prognostic markers in radiation-therapy treated
cancer patient cohorts and cohorts of patients with radiation-induced breast cancer.



2 Scientific Background 4

2 Scientific Background

2.1 Cellular radiation response in the context of radiation therapy

The aim of primary definitive or adjuvant radio (chemo)therapy is to kill all dormant or dividing
tumour cells by introducing DNA damage. Single-strand breaks (SSB), double-strand breaks (DSB)
or base changes in the DNA of the cells are caused, whereby the biological effect of the radiation is
mainly caused by unrepaired or incorrectly repaired DSBs. There are various mechanisms of DNA
repair in affected cells. Besides single strand break repair (SSBR), base excision repair (BER) and
homologous recombination (HR), non-homologous end-joining (NHEJ) plays the leading role [1].
Defective repair of DNA damage can lead to the loss of the unlimited ability for tumour cell division,
whereby different forms of cell death (apoptosis, necrosis, autophagy, mitotic cell death) or senes-
cence can be induced. Cells with non-repaired or mismatched DNA damage often go through sev-
eral cell divisions before mitotic cell death (mitotic catastrophe) is activated. Serine protein kinase
ATM (ataxia teleangiectasia mutated) is an important sensor of DNA damage and triggers various
signalling cascades involved in the regulation of cell cycle control, cell cycle arrest, DNA repair and
cell death [2]. In sufficiently irradiated tumour cells, cell death is directly activated because the large
number of DNA damages exceeds the cell’s repair capacity. The capacity for DNA repair of each cell
type determines the specific intrinsic sensitivity of each cell type. Tumour cells bear large numbers
of genetically enhanced mutations, such as inactivating mutations of the P53 gene, in the course
of tumour evolution. Genetic alterations often affect signal molecules involved in DNA repair, as a
result of which tumour cells usually have reduced repair capacity and are therefore more severely
damaged than normal tissue cells as a result of being exposed to radiation. In addition, the normal
tissue is exposed to a lower dose than the tumour tissue in the course of a therapeutic irradiation.
This results in a survival advantage of normal cells with prior elimination of the tumor cells [3].

2.1.1 Approaches for the modulation of the radiation response

In order to modulate the sensitivity of normal and tumour tissue to radiation, targeted therapy can
be applied at different levels, which essentially include DNA repair, cell cycle control, cell division
and signalling pathways influencing cell death (e. g. NF-B or PI3K signalling pathways) and further-
more the microenvironment and a reduction of normal tissue toxicity [2]. In order to increase the
radiation sensitivity of tumour cells without influencing the radiation sensitivity of normal tissue
one strategy is the intensification of the oxygen effect by increasing the oxygen partial pressure in
the breathing air in the context of a so-called hyperbaric oxygenation to increase the oxygen con-
centration in the tissue [4, 5]. The oxygen effect describes the amplification of the effect of ionizing
radiation by the radicals and peroxides formed during radiolysis in the presence of oxygen, which
attack the DNA in a chain reaction and fixate the DNA damage. The effect occurs mainly with the
application of low-LET (linear energy transfer) radiation and is more pronounced the higher the
oxygen concentration in the tissue. Hypoxic tumour areas, on the other hand, are characterised by
increased resistance to radiation, which is why their elimination is, amongst other factors, decisive
for the success of radiation therapy [6]. In addition, some chemotherapeutic agents and targeted
substances for modulating radiation sensitivity and simultaneously damaging tumour cells have
been successfully used in clinical applications such as e. g.B. Mitomycin-C, taxanes, antifolates, cis-
platin, 5-FU, hydroxycarbamide and the EGFR inhibitor cetuximab in the radiochemotherapeutic
treatment of head and neck tumours [7, 8, 9, 10]. Another chemotherapeutic agent that is used
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in standard therapy of glioblastomas which is also radiosensitising is temozolomide [11, 12, 13].
Although the specific synergistic effects of these substances cannot be determined in detail by
means of radiochemotherapy, cooperative effects that act simultaneously and at the same loca-
tion on a tissue are differentiated from those that occur locally and possibly also at different times.
In addition to the pharmacological mechanism of action, this distribution also depends to a large
extent on the design of the therapy scheme [7, 10].

2.1.2 Therapy resistance

In the course of radiotherapeutic treatment of tumours, the occurrence of local and locoregional
recurrences can often be observed, which is a strong limiting factor for the success of the therapy.
Three factors can be blamed for the occurrence of local recurrences: the radiation resistance of
hypoxic tumour cells, the ability of tumour cells to repopulate and intrinsic or acquired resistance
towards radiation [2]. Since tumour cells exhibit a high degree of genomic instability, resistance
to radiation can also be acquired in the course of tumour evolution and the enrichment of ge-
netic alterations, e.g. mutation of P53, an important cell cycle control gene [7]. Accordingly, it is
an important research objective to identify the markers and mechanisms underlying intrinsic and
acquired radiation resistance in order to be able to use them for prognosis and targeted therapy.

2.1.3 Radiation-induced secondary malignancies

One side effect of radiotherapeutic treatment, particularly in the case of fractionated percutaneous
photon-based radiotherapy is significant deposition of dose in normal tissue surrounding the tu-
mour to be treated [14]. This problem is even more prominent the younger the patients are at
the time of the radiotherapeutic treatment [15, 16]. While from the epidemiologic point of view
there is no doubt about the inducibility of secondary cancers after radiation exposure the molecu-
lar mechanisms leading to radiation-induced carcinogenesis are not yet conclusively investigated
[15]. However, in own research projects we could identify markers of radiation-induced thyroid and
breast cancer. For thyroid cancer we identified a region on chromosomal band 7q11 which contains
the gene CLIP2. 7q11 was exclusively gained in thyroid cancers of patients who were exposed to
radiation from the Chernobyl accident fallout compared to a non-exposed control group. Further,
expression of the CLIP2 protein was significantly increased in the exposed group compared with
the unexposed group [17, 18, 19]. For breast cancer we recently demonstrated in a group of female
patients who worked as clean-up workers at the Chernobyl power plant facility and were exposed
to radiation that their breast cancer tissues showed attenuated expression of the transcription fac-
tor TRPS1 compared to a non-exposed control group. We further found miRNA hsa-miR-26b-5p
as a likely regulator of TRPS1 as its expression was increased in the exposed compared to the non-
exposed group [20]. In the same group of patients we identified a genomic copy number signature
that allows prediction of the exposure status in breast cancer [21]. The breast cancer-related works
are part of the present thesis.

2.2 Improvement of therapeutic success by the use of high-dimensional data analysis

Prior therapy of a tumour disease is the initial diagnosis, which must be followed by further diag-
nostic surveys through imaging (radiology), histology (pathology) and molecular markers (molec-
ular pathology). Based on the overall diagnosis, a decision is made as to which therapy route is
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chosen. The combination of surgical, radiotherapeutic, chemotherapeutic and new targeted treat-
ment influences the clinical course of the disease and thus the therapeutic success. The process
of individual diagnosis for the overall diagnosis, which is decisive for the therapy decision, is the
key to an optimal therapy, in which the patients are assigned to a corresponding therapy scheme
based on the diagnosis groups. The likelihood that in the course of standard treatment the cho-
sen therapy route will lead to success is high for the majority of the assigned group. However, the
clinical course at individual level is highly heterogeneous due to individual differences which can-
not be resolved by radiological and pathological diagnostics. The aim of the analysis of clinically
associated high-dimensional data sets is therefore to identify mechanisms of radiation sensitivity,
molecular target structures for personalized therapy approaches and prognostic markers for ther-
apy response.

High-dimensional data sets and analyses can be used to calculate the so-called molecular net-
work of radiation sensitivity. These networks can, for example, be calculated from microarray or
next generation sequencing derived gene expression data sets of tissues with different radiation
sensitivity and represent the interaction of genes associated with altered radiation sensitivity. By
assigning genes to signalling pathways, molecular mechanisms of radiation sensitivity can be de-
rived in the form of molecular networks. This in turn allows the most important subnetworks to be
identified, whose manipulation has the potential to modulate the radiation sensitivity [22]. Such
analyses would, in the most optimal case, result in the identification of a target structure, which
would allow specific sensitisation of the tumour tissue but not the normal tissue [23].

One promising route towards achievement of the above-mentioned goals is the analysis of
comprehensive data sets of different molecular levels from cells of normal and tumour tissue. These
data sets are generated using microarray technology, mass spectrometry and next generation se-
quencing. The molecular levels genome, transcriptome and proteome, the interaction of which is
described by the ”Central Dogma of Molecular Biology”, can be recorded and the molecular levels
of epigenetics, which have a regulatory effect on genome, transcriptome and proteome, should
be considered even importantly [24]. Such ”big data”, integrative data sets are characterised by the
fact that several molecular levels are simultaneously recorded in the measurement of clinical tissue
samples or cells of model systems and the interaction of these is taken into account in the analysis.
So, the integration of miRNA and mRNA levels can be used to identify genes that are regulated by
the miRNAs involved and thus allow drawing conclusions about the functional role of these miR-
NAs.

Biological systems can be studied on the molecular, cellular, organ, individual or population
level. Understanding, describing, quantifying and analysing these levels as systems or parts of
systems is the core of systems biology research approaches. The aim is to identify the elements
that make up a biological system as globally as possible, systematically searching for connections
between these elements and characterising the type of interaction. Like a circuit diagram of a tech-
nical device, an attempt is being made to represent the biological system as a regular and repro-
ducible network that can precisely described. This requires that the elements of the molecular
levels of cells representing normal tissue or tumour tissue are captured as completely as possible
[25, 26]. The great advantage over traditional, purely association-based, descriptive biological re-
search lies in the potential predictive power of systematically described systems. If the system is
known, then it is also possible to make a statement about how the system will change in the event
of a change (perturbation) of one or more components. These predictions are made with the help
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of mathematical models adapted to the high-dimensional systems biology data.

2.3 Statistical analysis of high-dimensional data sets

2.3.1 Association analysis of integrative high-dimensional data sets

In association analysis, which is hypothesis-driven, patients are divided into groups that differ with
respect to one parameter e.g. response to therapy. The measurement data of each data point is
then assigned to the groups to be compared and subjected to a statistical test, which allows the null
hypothesis to be checked and which is adequate for the test situation. Decisive for the selection
of the test is, among other things, the distribution of the measured values, which must correspond
to a certain distribution (e. g. normal distribution) for parametric tests, whereas this prerequisite
does not have to be fulfilled for non-parametric tests. In addition, the data type (continuous or
categorical data) plays an important role in the selection of a test. The final result of an association
test is the probability for the rejection of the null hypothesis, which is represented by the so-called
P-value. Many null hypotheses are tested in the association analysis of high-dimensional data sets
due to the large number of data points. According to the measured data points, the number ranges
from a few hundred (microRNA) to several million (Next Generation Sequencing)[27, 28].

Multiple Testing Problem
With normally distributed data and a significance level of 5%, a false positive rate (error I. type) of 5%
is to be expected by definition, i.e. 5 false positive test results on 100 tests, 50 on 1,000 and 50,000
on 1 million. This problem is described as a so-called multiple test problem, which is addressed to
reduce the number of false positives by correcting the P-values resulting from the statistical tests.
The two best-known strategies have been developed and published by Carlo Emilio Bonferroni and
the mathematicians Yoav Benjamini and Yosi Hochberg, whereas the false discovery rate (FDR) de-
veloped by Benjamini and Hochberg has established itself as a standard method in biostatistics
because it is less conservative, i.e. tends to reject less null hypotheses [29, 30].

Static and dynamic data
Cells and tissues represent biological systems and are therefore dynamic. Thus, high-dimensional
molecular measurements from tissues correspond to snapshots of dynamic processes and result
in static data sets. Most of the clinical high-dimensional datasets contain one of these snapshots
for each patient, whereby it must be left to chance as to the exact time at which this snapshot cor-
responds. However, since the molecular concentrations determined using high-throughput mea-
surement technology correspond to the average over an entire tissue segment, it is assumed that
found group differences represent general and thus also robust markers for a certain phenotype.
Numerous studies have identified prognostic and predictive markers that are used in the diagno-
sis and therapy of tumour diseases. These include in the case of glioblastoma methylation of the
promoter of the MGMT gene, in breast cancer a chromosomal rearrangement leading to the fusion
protein HER2/neu or in squamous cell carcinoma in the head and neck area mutation of the P53
gene and especially HPV virus infection and activity [31, 32, 33, 34]. In contrast to static data sets,
dynamic data sets need to be generated from living cells by performing several measurements at
different times. Dynamic data sets are often generated in the frame of perturbation experiments in
order to determine the effect of a stimulus (e. g. irradiation) on the rapidly reacting molecular lev-
els, such as transcriptome, miRNA level or proteome. The answer can be quantified and described
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over a whole period of time or, in the simplest case, a distinction can be made between answering
sooner and later after perturbation [35]. Another application of dynamic data is the computation of
gene regulatory association networks, which can be performed much more accurately from time-
dependent transcriptome data than from static transcriptome data sets [36].

2.3.2 Interpretation of primary analysis results

In association analyses of high-dimensional data sets, especially gene expression data sets (mRNA
array or RNAseq), a large number of genes correlated with the investigated groups are often found.
In order to facilitate the interpretation of these often complex results, downstream analyses are
carried out. A frequently used approach here is enrichment analysis, in which genes are grouped
together into gene sets, resembling biological processes known from the literature. Specific ac-
cumulation of genes in these gene sets is tested and it is assumed that, in the event of a positive
result, the underlying biological process is involved in the formation of the associated phenotype.
In the context of a modified radiation response of tumour or normal cells, changes in genes that
occur frequently in signalling pathways associated with DNA repair, stress response, senescence or
apoptosis would be expected.

2.3.3 Prediction analysis in high-dimensional data setting

One of the central analyses of high-dimensional data is the development of prognostic signatures
using prediction approaches. The aim of such analyses is to develop a signature consisting of sev-
eral features (i. e. genes, miRNAs, proteins) from a high-dimensional data set, whose expression
allows the calculation of a so-called ”risk score”, which in turn reflects the probability of a certain
outcome such as therapeutic success or survival. The underlying signature is calculated from a
high-dimensional data set in combination with clinical follow-up and endpoints (e. g. overall sur-
vival, tumour-specific survival, relapse-free survival). A particular challenge in the development of
prognostic signatures is to keep the complexity (i. e. the number of elements used) of the signa-
ture low in a sense that the probability of an overfitting of the underlying model is kept low as well.
Overfitting usually leads to the fact that the calculated signature cannot be validated in a differ-
ent data set than the one in which it was developed (”validation surprise”). Cross-validation and
the use of the Akaike Information Criterion (AIC) are frequently used methods for the reduction
or avoidance of model overfitting [37, 38]. A key element of each signature determination is its
validation in an independent data set. For this purpose, a training and a validation data set must
be defined before the calculations are started. Validity can also be increased by testing the model
against other independent data sets. The basis for the development of prognostic signatures is
the Cox regression model, which estimates the influence of variables on the duration of an event
(e. g. death or occurrence of a relapse). Possible variables included in the model represent the mea-
suring points of a high-dimensional data set. In order to select from these variables those which,
as part of a signature, reliably predict the occurrence of the considered endpoint, either linear re-
gression methods in combination with regularization or a so-called step-by-step regression (e. g.
forward selection, forward-selection backward-elimiation, bidirectional elimination) are generally
used [39, 40, 41, 42].
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2.3.4 Reconstruction of gene regulatory networks

The reconstruction of gene regulatory association networks is helpful for the investigation of molec-
ular mechanisms of radiation response. In the case of de novo reconstructed gene regulatory net-
works, it is advantageous to gain knowledge about the interaction of genes in the context of the
radiation response without prior knowledge. This analysis is based on the assumption that direct
or indirect interaction of genes is expressed in a high correlation of the expressions of the relevant
interaction partners. The central elements of gene regulatory association networks are the tran-
scription factors, which influence entire groups of genes in their expression behaviour. However,
since correlations reflect causalities only to a limited extent and a pure correlation-based method
leads to numerous false-positive interactions, the principle of partial correlation can be used. The
final result of the analysis is a network with all calculated direct and indirect interaction partners
[36]. The advantage of representation in the form of a network is that it can be analyzed with the
help of network graph analysis. This includes, for example, the analysis using centrality measures,
which allow the identification of the most important and central genes. Such genes could, in con-
nection with the research of the molecular mechanisms of radiation response, be candidates for
target structures that are suitable for the modulation of radiation sensitivity. In addition, so-called
network modules can be used to identify which groups of genes are the most likely to interact. The
detailed analysis of network modules can allow conclusions to be drawn on previously unknown
mechanisms of action of genes [43]. In order to be able to use transcriptome data sets for the
purpose of reconstructing gene regulatory association networks, they must meet certain require-
ments, so the number of replicates used should be as large as possible and the sample should be
as uniform as possible [44].
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3 Own research

The research projects being part of this thesis are from three different areas: Identification and
characterisation of prognostic markers in head and neck squamous cell carcinoma (HNSCC) and
glioblastoma, identification of markers predicting radiation exposure in radiation-induced breast
cancer and bioinformatic/biostatistic tools for the time-resolved analysis of transcriptome data and
the determination of genomic copy number data from widely used Affymetrix SNP 6.0 data. In the
following all papers included are shortly described, summarised and potential implications for the
field are discussed.

3.1 A 5-MicroRNA signature predicts Survival and Disease Control of Patients with
Head and Neck Cancer negative for HPV-infection

Hess J*, Unger K*, Maihoefer C, Schüttrumpf L, Schneider L, Heider T, Weber P, Marschner S,
Braselmann K, Kuger S, Pflugradt U, Baumeister P, Walch A, Woischke C, Kirchner T, Werner M,
Werner K, Baumann M, Budach V, Combs SE, Debus J, Grosu AL, Krause M, Rödel C, Stuschke
M, Zips D, Zitzelsberger H, Ganswindt U, Henke M, Belka C A 5-MicroRNA signature predicts
Survival andDisease Control of Patients with Head andNeck Cancer negative for HPV-infection.
Clin Canc Res. 2018 Aug 31. (IF: 10.2, *co-first authorship)

3.1.1 Background

The 5-year survival rate of patients with locally advanced head and neck squamous carcinoma (HN-
SCC) is approx. 50%. Standard-of-care comprises surgery in combination with radio(chemo)therapy
(adjuvant treatment) or definitive radio(chemo)therapy treatment. The success of therapy is ex-
pressed by local and distant control of the tumour while in cases where radiotherapy is involved,
tumour control is reduced by resistance to radiation. A lot of discussion about the mechanism of
the development of recurrences is ongoing and alternative and complementary treatment con-
cepts including immunotherapy have been proposed [45]. However, this requires knowledge of
the strata that are likely to profit or not to profit from new therapy concepts. This, in turn, requires
prognostic biomarkers that allow, either alone or, more likely, in combination with the established
molecular and clinical prognostic markers, to classify patients in order to assort them into specific
treatment strata. As for most cancer entities established molecular clinical parameters that would
allow specific stratification are also missing for HNSCC. The only established molecular factor for
HNSCC is HPV16 infection. Although, its predictive significance remains subject of discussion, HPV-
associated HNSCC now is also considered being a distinct cancer entity [46, 47, 48]. Moreover, a
number of other candidate prognostic markers have been proposed for HNSCC, however there is
none that made it into clinical practice so far [49].

3.1.2 Summary

We set out to search for a prognostic signature predicting the risk for local and distant recurrence
in the course of HNSCC therapy. In a discovery cohort of 85 HPV-negative HNSCC patients estab-
lished by the German Consortium for Translational Cancer Research Radiation Oncology Group
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(DKTK-ROG) we identified a 5-miRNA signature predicting recurrence of the disease and survival
endpoints. We were able to validate our results in an independent cohort of HPV-negative pa-
tients who were recruited at the Department of Radiation Oncology at the LMU University Clinics.
Using recursive partitioning analysis (RPA) we were further able to build a decision tree integrating
the prognostic miRNA signature with established clinical parameters and identified four prognosti-
cally distinct groups as a potential aid in therapy guidance. In addition a transcriptome-supported
miRNA-mRNA target prediction network provides putative insights into the molecular networks
the miRNA signature is embedded in.

3.1.3 Methods, Results and Discussion

3.1.3.1 Patients The two cohorts exclusively contained HPV-negative HNSCC patients who had
undergone surgical resection of the tumour followed by radio(chemo)therapy. All patients were
diagnosed with histologically proven HNSCC of the hypopharynx, oropharynx, or the oral cavity.
The DKTK-ROG discovery cohort contained patients who were treated from 2005-2011 at one of
the eight DKTK partner sites [50]. The monocentric validation cohort comprised 85 patients treated
between 2008 and 2013 at the LMU Department of Radiation Oncology.

3.1.3.2 miRNA microarray expression profiling Total RNA with preserved small RNA fraction
was used for global miRNA expression profiling using Agilent microarrays. After quality assessment
and filtering the data set comprised the profiles of 1.046 miRNAs across 161 patients.

3.1.3.3 Prognostic model A robust likelihood-based survival modelling forward-selection ap-
proach was used for the selection of features i.e. miRNAs in the discovery set to be included in a
prognostic cox-proportion hazard model predicting freedom from recurrence [51]. The maximum
number of miRNAs allowed in the model was 20 and iterative random assignment of 4 folds for
cross-validation was 10 times repeated. The best model was chosen according to the Akaike Infor-
rmation Criterion (AIC) and contained the following five miRNAs: hsa-let-7g-3p, hsa-miR-6508-5p,
hsa-miR-210-5p, hsa-miR-4306, and hsa-miR-7161-3p. Risk scores were calculated for each patient
after linear combination of signature miRNA expressions and prediction model cox-proportional
hazard coefficients. The median risk score of the discovery set was used as a threshold for the defi-
nition of high- and low-risk patients in the validation set. Fig 1 shows the performance of the model
in the discovery and validation sets (although not meaningful the log-rank test p-value for the dis-
covery set was included for demonstration purposes). In addition to the endpoint freedom from
recurrence which was used to build and train the model the signature also predicted other end-
points such as recurrence-free survival, overall survival and disease-specific survival.
In order to assess performance of the model with regard to sensitivity and specificity of the risk fac-
tor, receiver-operator characteristics (ROC) analysis was conducted. The analysis was performed
in comparison to other clinical parameters that also showed association with freedom from re-
currence in univariate cox-proportional hazard analysis. After five years follow-up (freedom from
recurrence) the risk factor showed a better AUC compared with T-stage, lymphovascular invasion
(LVI) and extracapsular extension (ECE, Figure 2).
In order to test for independence of the miRNA risk factor from the other clinical parameters, mul-
tivariate cox analysis was performed in which T-stage, LVI and ECE were included as covariates.
Overall the model significantly predicted freedom from recurrence for DKTK-ROG with a hazard-
ratio of 5.55 (95% CI 2.09-14.79, P=0.0006) and for LMU-KKG with a hazard-ratio of 3.94 (95% CI
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1.23-12.59, P=0.02082).
These data and results demonstrate the independent prognostic relevance of the 5-miRNA sig-
nature and a superior prognostic value compared with established clinical parameters. However,
prognostic relevance alone does not mean clinical relevance which requires that the prognostic
marker aids in therapeutic decision making in concert with established clinical parameters. An ap-
proach to define prognostic groups considered for different treatment is the generation of decision
trees using recursive partitioning analysis (RPA). We applied RPA in a pooled analysis on a dataset
combining DKTK-ROG and LMU-KKG on the parameters 5-miRNA signature risk factor, T-stage, N-
stage and ECE. The analysis revealed four distinct groups that significantly differed in prognosis.
The groups identified by RPA could build the basis for the conception of personalised treatment
approaches while in a first step the group with the best prognosis could be considered for thera-
peutic deintensification- and that with the worst prognosis for intensification strategies.
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Figure 1: Freedom from recurrence stratified by risk according to the five-miRNA-signature:
miRNA expression and Kaplan-Meier curves in the training and validation set. Heat map col-
ors indicate scaled miRNA log2 expression values multiplied by the Cox proportional hazard coef-
ficients (coxph) from low (blue) to high (red) on a scale from -3 to 3 for each of the five signature
miRNAs in the training (left panel) and validation set (right panel). Kaplan-Meier curves for the end-
point freedom from recurrence for HNSCC patients of the training (DKTK-ROG sample; left panel)
and validation set (LMU-KKG sample; right panel) stratified into low- and high-risk patients accord-
ing to the five-miRNA-signature. P-values are derived by log-rank test.
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Figure 2: Time-dependent ROC curve analysis for the prediction of freedom from recurrence.
(A) Time-dependent receiver operating characteristics (ROC) curves for the prediction of freedom
from recurrence in the training (left panel) and validation set (right panel) at five follow-up years.
The area under the curve (AUC) and the 95% CI of the five-miRNA-signature derived risk factor, TNM
T stage, lymphovascular invasion (LVI), and extracapsular extension (ECE) are shown. (B) ROC curve
analysis was performed for freedom from recurrence in the training (left panel) and validation set
(right panel) at follow-up years 1-5. The area under the curve (AUC) of the five-miRNA-signature
derived risk factor, TNM T stage, lymphovascular invasion (LVI), and extracapsular extension (ECE)
are shown over time (at years 1-5).
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Figure 3: Risk groups for recurrence identified by recursive partitioning analysis (RPA). RPA tree
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HNSCC data set (n=162). Each node shows the predicted probability of recurrence (locoregional
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freedom from recurrence for the four identified risk groups “low-risk”, “low-intermediate risk”, “high-
intermediate risk”, and “high-risk”. Multivariate and pairwise comparisons are shown. P-values are
derived by log-rank test.

3.1.4 Conclusion

In the study we identified a prognostic 5-miRNA signature in a multicentric cohort followed by
validation in a monocentric cohort. The signature was independent of established clinical prog-
nosticators. Moreover, integration with established clinical prognostic parameters resulted in four
prognostically distinct groups that could be considered for personalised therapeutic concepts.
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3.1.5 Outlook

In a next step thorough exploration of the mechanistic molecular impact of the signature will be
carried out in order to investigate the possibilities of specifically molecularly targeting the revealed
prognostic groups. This involves in vitro and in vivo characterisation of cells with regulated expres-
sion of the signature miRNAs on the one hand. On the other hand transcriptome analysis of tumour
specimens followed by correlation with the 5-miRNA signature risk score will be carried out. An-
other ongoing project investigates the intra-tumour heterogeneity of tissue sections of patients
from the LMU-KKG cohort for whom the 5-miRNA signature risk score is known.
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3.2 Prediction of the therapy response in glioblastoma

Niyazi M, Pitea A, Mittelbronn M, Steinbach J, Sticht C, Zehentmayr F, Piehlmaier D, Zitzels-
berger H, Ganswindt U, Rödel C, Lauber K, Belka C, Unger K A 4-miRNA signature predicts the
therapeutic outcome of glioblastoma. Oncotarget. 2016 Jul 19;7(29):45764-45775. (IF: 5.2)

3.2.1 Background

Glioblastoma (GBM) represent the most aggressive form of gliomas and in the standard setting
including patients younger than 70 years with a Karnofsky performance score (KPS) greater 60 are
treated by surgical resection and adjuvant radiochemotherapy followed by maintenance chemother-
apy with temozolomide [12, 11]. However, high rate of recurrence is mostly responsible for the
5-year overall survival rate of 10% [52, 53]. Beside the established clinical prognostic markers in-
cluding age, sex and KPS the only relevant molecular prognosticator is methylation of the promoter
region of the MGMT gene. MGMT promoter methylation as such, however, lacks sufficient prog-
nostic power for changing therapeutic decisions.
In an explorative study we set out to identify a molecular signature that enables stratification of
GBM patients into prognostically significant groups for tailored GBM treatment approaches. We
decided for miRNA as the molecular level of interest as it is known that miRNAs with a high de-
gree of promiscuity target and regulate several mRNA species encoding for proteins involved in
various signaling pathways [54]. Further, miRNA expression profiles can be easily accessed from
formalin-fixed paraffin-embedded (FFPE) tissue which are gathered in the frame of clinical routine
diagnostics carried out on stereotactic biopsies or surgically resected tumour tissues [55].

3.2.2 Summary

We profiled global miRNA expression patterns using microarray technology in a standard-treated
retrospective cohort of 36 GBM patients. A prognostic cox-proportional hazard model was gen-
erated after applying iterative forward-selection feature selection in combination with overall sur-
vival as clinical outcome endpoint. A signature consisting of four miRNAs was identified that sig-
nificantly predicted overall survival in a retrospective validation cohort (n = 58) that was matched
for age, sex and MGMT promoter methylation status. The signature was independent from age,
sex and MGMT methylation status and identified a high- and low-risk group that differed in the
risk for death in the discovery and validation cohorts. The signature was technically validated in
the discovery cohort by qRT-PCR. At the functional level matched miRNA and trancriptome data
were used for correlation analyses in order to identify genes that are likely to be regulated by the
signature miRNAs.

3.2.3 Methods, Results and Discussion

The FFPE sections of resected tumour tissues from 36 GBM patients were subjected to total RNA
isolation followed by miRNA expression profiling using Febit human miRNA microarrays. The re-
sulting data were quality filtered and quantile normalised. In conjunction with overall survival time
and censoring status the data were subjected to iterative forward-selection for feature selection
using the R package rbsurv [56]. Based on the Akaike Information Criterion (AIC) which provides a
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trade-off between complexity and model deviance four miRNAs were selected: hsa-let-7a-5p, hsa-
let-7b-5p, hsa-miR-125a-5p and hsa-miR-615-5p. A risk score was built using linear combination
and high- and low-risk groups were defined using its median. Although not meaningful, in the dis-
covery cohort, the high-risk and low risk groups showed a hazard-ratio of 3.8 (95%-CI 2.03-12.85,
log-rank test p-value: 0.0001, Fig. 4). In the validation cohort this finding could be replicated af-
ter calculating the risk scores using linear combination of the model coefficients and expression of
signature miRNAs and defining high- and low-risk groups using the median threshold as defined
in the discovery cohort. In the validation cohort, the risk for death in the high-risk group was 2.1
times higher compared to the low-risk group (95%-CI 1.13-3.91, log-rank test p-value: 0.02, Fig. 5).
Moreover, in both cohorts the signature was independent of sex, age and MGMT promoter methy-
lation status. The latter is important with regard to a potential integration of the signature and
MGMT promoter methylation which has the potential to identify strata with even more extreme
differences in prognosis.
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Figure 4: 4-miRNA signature as prognostic marker in the retrospective GBM cohort. A. Kaplan-
Meier overall survival analysis of high-risk and low-risk GBM patients. High-risk and low-risk pa-
tients were stratified based on the risk factors calculated from the cox-proportional hazard coeffi-
cients and the miRNA expression levels as measured in the microarray (left panel, 36 patients) or
by qRT-PCR analyses (bottom panel, 19 patients). Hazard ratios and p-values were calculated by
log-rank test. B. Overall survival (top panel), hierarchical cluster heat map of miRNA array expres-
sion levels (middle panel), and risk factors calculated on the basis of miRNA expression values and
cox-proportional hazard coefficients (bottom panel) for all patients. miRNAs hsa-let-7a-5p, hsa-let-
7b-5p and hsa-miR-125a-5p in patients of the higher-risk group show a tendency towards lower
expression and that of hsa-miR-615-5p a tendency towards higher expression. The median risk
factor value was used to classify high-risk and low-risk patients. C. Distribution of age (left panel)
and sex (middle and right panels) in high-risk and low-risk GBM patients. Statistical comparison
was performed by Student’s t-test or Fisher’s exact test. The patients of the lower-risk group were
statistically significant older compared with that of the lower-risk group. The differences in the
numbers of male and female patients of the lower- and higher-risk groups were not statistically
significant.
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Figure 5: Validation of 4-miRNA GBM signature in retrospective validation set. A. Age distribu-
tion in the exploratory cohort and the TCGA GBM cohort before and after age matching. B. Overall
survival (top panel), hierarchical cluster heat map of miRNA expression levels (middle panel), and
risk factors for patients of the age- and sex-matched TCGA GBM cohort. The median risk factor
value was used to classify high-risk and low-risk patients. miRNAs hsa-let-7a-5p, hsa-let-7b-5p and
hsa-miR-125a-5p in the high-risk group show a slight tendency towards lower expression and that
of hsa-miR-615-5p a slight tendency towards higher expression. C. Kaplan-Meier overall survival
analyses of high- and low-risk patients of the matched TCGA GBM cohort. Classification was per-
formed on the basis of the risk factors calculated from the cox-proportional hazard coefficientsand
the miRNA expression levels. Hazard ratios and p-values were calculated by log-rank test. D. Dis-
tribution of age (left panel) and sex (right panel) in high-risk and low-risk patients of the age- and
sex-matched TCGA GBM cohort. Student’s t-test and Fisher’s exact test were employed for statistical
comparison as depicted.

3.2.4 Conclusion

In the study we were able to identify a prognostic 4-miRNA signature that allows to identify high-
and low-risk GBM patients. This signature has the potential to identify patients which would profit
from therapy options different from the current standard-of-care setting.

3.2.5 Outlook

In order to prove validity of the miRNA signature the level of independent validation has to be
increased by testing in further miRNA data sets from standard-treated GBM patients. Further, vali-
dation in a prospective setting is required. Another aspect is the evaluation of signature expression
in blood plasma samples in order to test potential prognostic significance as liquid biopsy marker.
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3.3 Agenomic copy number signature predicts radiation exposure in post-Chernobyl
breast cancer.

Wilke CM, Braselmann H, Hess J, Klymenko SV, Chumak VV, Zakhartseva LM, Bakhanova EV,
Walch AK, Selmansberger M, Samaga D, Weber P, Schneider L, Fend F, Bösmüller HC, Zitzels-
berger H, Unger K A genomic copy number signature predicts radiation exposure in post-
Chernobyl breast cancer. Int J Cancer. 2018 Sep 15;143(6):1505-1515. (IF: 7.3)

3.3.1 Background

Breast cancer is known to be a heterogeneous disease which is associated with a number of risk
factors such as life style, smoking, age. In addition, incidence of the disease has been associated
with exposure to ionising radiation at the epidemiology level [57, 58, 59]. However, at the molecular
level no radiation-specific mechanisms of radiation-associated breast cancer tumourigenesis have
been identified so far. In the course of the clean-up activities after the Chernobyl reactor accident
on the 26th April 1986 so-called ”liquidators” were employed to remove nuclear waste from the
reactor facilities. These clean-up workers were exposed to significant doses of ionising radiation in
the range of only a few to hundreds of milligrays. Amongst these, also female workers have been
employed and exposed and increased breast cancer incidence rates have been reported for most
regions that were contaminated with radioactive fallout in the aftermath of the Chernobyl accident
including oblasts in Russia, Belarus and the Ukraine [60, 61, 62].

3.3.2 Summary

We set up a comparative study on a cohort of female breast cancer patients from women who
were exposed to ionising radiation in the course of Chernobyl clean-up activities and a case-by-
case matched control cohort of sporadic female breast cancer patients who were not exposed and
who were from the same regions of residence. We selected genomic copy number as the molecu-
lar level of interest since the DNA double strand break is the primary relevant molecular lesion in
cells caused by ionising irradiation. A signature comprising nine different genomic copy number
regions was established in a randomly selected training subset of the data which was subsequently
validated in the remaining data.

3.3.3 Methods, Results and Discussion

FFPE sections from 68 patients were used for the generation of the training data set and that from
the remaining 68 patients for the validation data set. All sections were reviewed by a pathologist
for the purpose of diagnosis and typing of the estrogen- and progesteron-receptor expression and
HER2 after immunohistochemistry staining. Further, the cellularity was determined and tumour
regions marked prior macrodissection.
Macrodissected tumour tissues were subjected to DNA extraction using the Qiagen AllPrep kit. The
genomic DNA of the tumours was labelled with Cy3-dCTP and that of pooled male reference DNA
(Promega) with Cy5-dCTP using random-prime labelling prior hybridisation on Agilent 8x60k hu-
man aCGH arrays. After washing the slides were scanned using an Agilent array scanner.
The resulting spot intensities were imported into the R statistical platform. Log2 ratios were built
after correction for spatial artefacts and median normalisation [63]. The copy number profiles were
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subjected to circular binary segmentation, copy number calling and copy number regions calcu-
lation using the R packages CGHcall and CGHregions [64, 65]. In order to build a mathematical
model predicting exposure status a multivariate logistic regression approach was used while ex-
posure status was used as response variable and genomic copy number status (-1 loss, 0 normal
and 1 gain) of the signature regions were used as independent variables. The signature regions
were identified by a stepwise-forward-selection/backward-elimination feature selection approach.
Akaike information criterion (AIC) was used for selection of the best performing model. A signature
consisting of nine genomic copy regions on chromosomal bands on chromosomal bands 7q11.22–
11.23, 7q21.3, 16q24.3, 17q21.31, 20p11.23–11.21, 1p21.1, 2q35, 2q35 and 6p22.2 was identified.
The performance of the signature is illustrated in Figure 6. From the 68 patients (34 exposed and
34 non-exposed) in the validationset 45 were predicted as exposed and 23 as non-exposed. This
results in a true-positive rate of 0.794 and a false-positive rate of 0.529. The ROC area under the
curve (AUC) was 0.617 and thereby greater than an area of 50% as it would be expected just by
chance (Figure 7).
The signature is, therefore, with some statistical uncertainties able to predict breast cancer that is
likely of having developed in the course of exposure to ionising radiation. The uncertainties in pre-
diction can be explained by the fact that the range of radiation doses the exposed patients have
received was wide and real ground truth with regard to known radiation-induced and spontaneous
breast cancer cases cannot be formulated. However, the results suggest that a molecular signature
of genomic copy number changes differentiates radiation-exposed and non-exposed breast can-
cers.
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Figure 6: Performanceof 9-CNAsignature in validation set. Copy number gains (green) and losses
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Figure 7: Receiver Operator Characteristics (ROC) analysis. ROC analysis of the logistic regression
model using the 9-CNA signature fitted on the training set and evaluated on the validation set.
Each point (circles) corresponds to a probability cutoff level decreasing from left to right, given by
the steps visualized in Figure 6. Points are connected by straight lines.

3.3.4 Conclusion

We identified a genomic copy number signature that allows the differentiation of breast cancers
from patients who were exposed and those who were not exposed to ionising radiation. It bears
the potential to study radiation-specific molecular features of radiation-induced breast cancer such
as secondary breast cancer that develops in the course of medical radiation.

3.3.5 Outlook

In order to translate the results of the study into the clinical setting, verification of the signature in
a clinically derived cohort of secondary breast cancers that developed the disease after exposure
to therapeutic radiation of preceding malignant diseases such as tumours of the lung.
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3.4 Expression of miRNA-26b-5p and its target TRPS1 is associated with radiation ex-
posure in post-Chernobyl breast cancer

Wilke CM, Hess J, Klymenko SV, Chumak VV, Zakhartseva LM, Bakhanova EV, Feuchtinger
A, Walch AK, Selmansberger M, Braselmann H, Schneider L, Pitea A, Steinhilber J, Fend F,
Bösmüller HC, Zitzelsberger H, Unger K Expression of miRNA-26b-5p and its target TRPS1 is
associated with radiation exposure in post-Chernobyl breast cancer. Int J Cancer. 2018 Feb
1;142(3):573-583. (IF: 7.3)

3.4.1 Background

Long-term data on the survivors of the Japan atomic bombings have shown, amongst other can-
cer entities, an increase in breast cancer that was associated with the exposure to ionising radiation
[57]. Moreover, breast cancer also is amongst the diseases that have been shown to be increased
in incidence after the Chernobyl accident in 1986 [60]. The important role of epigenetics and post-
transcriptional regulation via miRNAs has been increasingly acknowledged in the last decades and
a number of miRNAs have been shown to be associated with breast cancer carcinogenesis. We
took up this knowledge and conducted a study in which we studied the role of these miRNAs in
radiation-associated breast cancer that has developed in patients who were exposed to ionising
radiation in the course of their role as female clean-up workers aka ”liquidators” after the Cher-
nobyl reactor accident in 1986 in comparison to spontaneous breast cancer cases from residence-
matched non-exposed controls. The main aim of our study was to determine a potential radiation-
specific role of the miRNAs and even importantly of proteins these miRNAs are likely to regulate.

3.4.2 Summary

We identified breast cancer associated miRNAs by literature research and tested these for differ-
ential expression in a cohort of 77 exposed and 77 non-exposed breast cancer patients from the
Ukraine. The patient cohort was randomly split into a discovery (n=76) and validation (n=78) set.
From the tested miRNAs only hsa-miR-26b-5p was significantly higher expressed in the exposed
compared to the unexposed patients. The protein TRPS1, which is one of the transcriptional tar-
gets of hsa-miR-26b-5p was significantly lower expressed in the exposed compared to unexposed
cases. TRPS1, which is a transcription factor, would be particularly suitable as a radiation marker
in breast cancer since it would be technically feasible to detect from diagnostic routine samples.
After siRNA knowdown of the TRPS1 gene in a breast cancer cell culture model we identified genes
playing a role in DNA-repair, cell cycle, mitosis, cell migration, angiogenesis and EMT pathways.

3.4.3 Methods, Results and Discussion

From the 77 breast cancer patients who were exposed and from the 77 patients who were no ex-
posed to radiation formalin-fixed paraffin-embedded tissue sections were available. The tissue
sections were assessed by a pathologist for diagnosis and the definition of tumour regions prior
macrodissection and isolation of DNA and total RNA including small RNAs using the Qiagen All-
Prep kit. Further, the pathologist provided estrogen, progesteron, HER2, c-kit, cytokeratin 5/6, P53,
Ki-67 and BRCA1/2 status. Further, for all exposed cases the doses the patients received was re-
constructed using the RADRUE method [66]. The majority of tumours was diagnosed as invasive
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carcinoma of no special type (NST). Further types diagnosed were invasive lobular carcinoma (ILC),
intracystic papillary breast carcinoma and breast carcinomas with medullary features.
In order to find miRNAs repeatedly reported to play a role in breast cancer carcinogenesis in the
context of radiation a PubMed research was conducted which resulted the miRNAs hsa-miR-26b-
5p, hsa-miR-99b-5p, hsa-miR-221-3p and hsa-miR-222-3p for which the expression was subsequently
determined using qRT-PCR. Only hsa-miR-26b-5p could be shown to be overexpressed in the ex-
posed cases compared with the unexposed (Fig. 8).
The expression of TRPS1 which is a transcriptional target of hsa-miR-26b-5p was determined by
immunohistochemistry on FFPE slides and was significantly reduced in exposed compared to un-
exposed cases. This finding suggests a regulatory effect of hsa-miR-26b-5p on TRPS1 protein ex-
pression (Fig. 9 and Fig. 10).
Since expression of the transcription factor TRPS1 was specifically down-regulated in exposed cases
we strove for investigating the mechanistic impact of TRPS1 on the transcriptional level by siRNA
knock-down in a radiation-transformed breast cancer cell culture model B42-16 and by correlation
analyses using the TCGA breast cancer data set [67]. The transcriptome was characterised using Ag-
ilent human gene expression array analysis comparing B42-16 cells after TRPS1 siRNA knockdown
with scrambled controls. Pathway enrichment of differentially upregulated genes revealed DNA-
repair, cell cycle and mitosis and that of down-regulated genes cell migration, angiogenesis and
EMT. Using the TCGA breast cancer data set we generated a TRPS1-centered correlation network
(Fig. 11). Pathway enrichment analysis of the network revealed mostly apoptosis related pathways.
The transcriptome analysis results suggest involvement of TRPS1 important cancer hallmarks. Thus,
TRPS1 could be a early radiation-induced event in the carcinogenesis of the breast after exposure
to ionising radiation.
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Figure 8: Expression of breast cancer associated miRNAs. Violin plots displaying the expressions
of hsa‐miR‐26b‐5p, hsa‐miR‐221‐3p and hsa‐miR‐222‐3p in the Chernobyl discovery cohort and
hsa‐miR‐26b‐5p in the Chernobyl validation cohort measured by qRT‐PCR (−ΔCT values) are shown
(right panel). The nonexposed control group is labeled in light blue and the exposed group in
purple. The middle dark line represents the median of expression values. The vertical black line
represents the interquartile.
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Figure 9: TRPS1 immunohistochemistry staining Digital image analysis of immunohistochemi-
cally stained FFPE tumour sections from non‐exposed and exposed breast cancer samples using
an antibody against TRPS1. (A/B) Two representative immunohistochemically stained breast car-
cinoma cases are shown for nonexposed (A) and exposed (B) cases. Image details of Aa and Ba
(black frames) are shown in Ab and Bb. Detection and quantification of TRPS1‐stained nuclei was
performed using the digital image software Definiens. Nuclei of tumour cells, for which the staining
intensities were calculated based on the algorithm, are labeled in yellow (Ac, Bc).
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Figure 10: Differential TRPS1 protein expression in exposed and unexposed cases. Significantly
increased TRPS1 protein expression represented by the marker staining intensity was observed in
breast cancer tissues from the nonexposed groups (light blue) compared to the exposed groups
(purple) in the discovery (a, p = 0.028) and validation cohorts (b, p = 0.027). p values were calcu-
lated using the partial differential test considering intertumour heterogeneity.
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Figure 11: TRPS1‐centered correlation networks. Top 100 correlating genes with an FDR <0.05.
The expression of genes labeled with dark grey circles showed negative correlation with TRPS1 ex-
pression and that of genes labeled with light grey circles showed positive correlation with TRPS1
expression. (a) TRPS1‐centered correlation network based on global mRNA expression data from
matched sporadic breast cancers of the publicly available TCGA dataset. (b) TRPS1‐centered corre-
lation network based on microarray gene expression data from B42‐11 and B42‐16 untransfected,
scrambled‐siRNA transfected and TRPS1‐downregulated cells.

3.4.4 Conclusion

We were able to identify the radiation markers miRNA hsa-miR-26-5p and the protein TRPS1 which
have the potential to serve as a marker for radiation-induced secondary breast cancer in the clinical
setting.

3.4.5 Outlook

In order to study a potential role as markers for secondary, radiation-induced breast cancer prospec-
tive validation in clinically derived cohorts is required. Moreover, further in vitro and in vivo exper-
iments are necessary to further investigate the mechanistic role of TRPS1 and hsa-miR-26b-5p in
radiation-associated breast carcinogenesis.
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3.5 Natural Cubic Spline RegressionModeling Followed by Dynamic Network Recon-
struction for the IdentificationofRadiation-SensitivityGeneAssociationNetworks
from Time-Course Transcriptome Data

Michna A, Braselmann H, Selmansberger M, Dietz A, Hess J, Gomolka M, Hornhardt S, Blüth-
gen N, Zitzelsberger H, Unger K. Natural Cubic Spline Regression Modeling Followed by Dy-
namic Network Reconstruction for the Identification of Radiation-Sensitivity Gene Association
Networks from Time-Course Transcriptome Data. PLoS One. 2016 Aug 9;11(8). (IF: 2.8)

3.5.1 Background

The characterisation of the transcriptome and its analysis plays an important role in modern molec-
ular biology while the majority of data sets still is conducted on steady-state static datasets that
simply work out differential expression based on t-testing approaches. However, time-resolved
dynamic transcriptomic analyses are likely to be much more informative but require tailored ap-
proaches to analyse differential expression over time. One major approach to extract and analyse
the information from time-resolved transcriptome data from another angle is the reconstruction of
gene regulatory networks (GRN) that allow gathering insights into the interplay of genes expressed
by network modules. And in addition, the resulting networks and network modules can be anal-
ysed towards the involvement of molecular pathways. In this study we developed the R package
SplineTimeR which provides a workflow for the conduction of the afore described computational
tasks.
The analysis workflow of the study was established using time-resolved transcriptome data from
lymphoblastoid cells lines that were generated in the frame of the LUCY (Lung Cancer in the Young)
study and which differed in radiation sensitivity. Results on differential expression over time after
gamma irradiation with 1 Gy and 10 Gy, as well as pathway analysis of the reconstructed GRN is
presented in the study.

3.5.2 Summary

We developed the R package SplineTimeR which provides functions required for an analysis work-
flow for time-resolved transcriptome data and apply this workflow in order to work out the tran-
scriptome response of a radiation-normal and -hypersensitive lymphoblastoid cell line. The devel-
oped natural cubic spline regression modelling (NCSRM) approach for time-resolved differential
transcriptomics showed superior performance in comparison with existing approaches.

3.5.3 Methods, Results and Discussion

A graphical outline of the study is shown in Fig. 12.

https://bioconductor.org/packages/release/bioc/html/splineTimeR.html
https://bioconductor.org/packages/release/bioc/html/splineTimeR.html
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Figure 12: Graphical outline of the study.

The transcriptome profiles of biological replicates of the normal and the hypersensitive cell lines
were generated 15 min, 30 min, 1 h, 2 h, 4 h, 8 h and 24 h after irradiation or sham irradiation. For
this Agilent human gene expression microarrays were used. The profiles of the duplicates were
averaged and then analysed for differential gene expression between irradiated and sham con-
trol. We applied the NCSRM approach on the data sets and revealed a sparse response at the gene
expression level of the normal sensitive cells after 1 Gy (7 genes) compared to that of the hypersen-
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sitive cells (2335 genes). An example for NCRSM differential expression of the gene BBC3 is shown
in Fig. 13. After 10 Gy irradiation both cell lines showed a massive transcriptomic response: 3892
genes for the normal and 6019 genes for the hypersensitive cells. For assessing plausibility of the
results pathway enrichment analysis was conducted for the differentially expressed genes. This re-
sulted in no pathway for the normal sensitive cell line after 1 Gy and in hundreds of pathways for
the other comparisons which all showed cell cycle and cell division related pathways at the top of
the lists.

Figure 13: NCRSM fit for gene BBC3 in the hypersensitive cells The blue line represents the fitted
model for the control (0 Gy) and read line that for the irradiated group (1 Gy). Blue and red dots
represent the measured expression levels of the biological replicates. Vertical lines represent the
endpoints and interior knots correspond to the 0.33- and 0.66-quantiles.

The expression profiles of these genes were then subjected to GRN reconstruction using the GeneNet
approach which resulted in networks that in size (number of nodes/edges) were proportional to
the number of underlying differentially expressed genes: normal sensitive 1 Gy no network, hyper-
sensitive 1 Gy 1140/12198 (nodes/edges), normal sensitive 10 Gy 2735/84695 (nodes/edges) and
hypersensitive 10 Gy 3483/114629 (nodes/edges). We identified the top most important genes (i.e.
nodes) from the networks using a combined network analysis metric and subjected these genes to
pathway enrichment analysis. Normal sensitive cells after 10 Gy and hypersensitive cells after 1 Gy
showed strong association with cellular senescence while hypersensitive cells after 10 Gy showed
enrichment of apoptosis related pathways.
We also evaluated the differential expression results and reconstructed GRNs that were received
after NCSRM and another established method for the analysis of time-course transcriptome data
BETR (Bayesian Estimation of Temporal Regulation)[68]. Overall, NCSRM detected more genes as
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differentially expressed compared to BETR but there was a great overlap between NCRSM and BETR
results. Also when comparing the top hub genes of the GRNs there was a good overlap between
enriched pathways. In line with the literature BETR seems to underestimate the number of truly
differentially expressed genes and thereby is likely to miss potentially important information. Also,
in contrast to BETR NCSRM is more flexible and tolerant when it comes to selection of time-points
and missing data. This is an important feature since it is not a rare scenario that the design of tran-
scriptomic data analysis is not optimised for the purpose of differential expression analysis. In a
further comparison where we compared the overlap of GRNs reconstructed from NCRSM and BETR
identified differentially expressed genes with the interactions as known from the Reactome Inter-
action Network database. Except one network we saw significantly better overlap between NCRSM
derived GRNs with Reactome than with that of the BETR derived ones [69].

3.5.4 Conclusion

We established a workflow for the differential gene expression, GRN reconstruction and functional
interpretation of the GRNs of time-resolved transcriptome data. Our approach is flexible and tol-
erant against frequently occurring experimental uncertainties such as suboptimal study design or
missing data points. Analysis of the biological data set revealed differences and common proper-
ties in the molecular radiation response. We provide the workflow as a Bioconductor R package
and thereby allow public and free access to it for the scientific community.

3.5.5 Outlook

Since GRNs are derived from transcriptome data the identified interactions between genes could
reflect direct or indirect relationships of the expressed proteins. Thus, the physical interaction be-
tween nodes identified in the GRNs and their biological meaning will will be subject of future stud-
ies.
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3.6 Copy number aberrations from Affymetrix SNP 6.0 genotyping data - how accu-
rate are the commonly used prediction approaches?

Pitea A, Kondofersky I, Sass S, Theis FJ, Mueller NS, Unger K. Copy number aberrations
from Affymetrix SNP 6.0 genotyping data—how accurate are commonly used prediction
approaches? Briefings in Bioinformatics. 2018:doi:10.1093/bib/bby096, (IF: 6.3)

3.6.1 Background

Genomic copy number changes (CNA) are frequently occurring in most cancer entities and different
approaches are available for typing CNAs while the method of choice is array comparative genomic
hybridisation (aCGH). However, also other sources of data which are not primarily for this purpose
can be used for typing CNAs including DNA methylation array data, exome and whole genome
sequencing data and SNP (short nucleotide polymorphism) array data. In our study we focussed
on Affymetrix SNP 6.0 data generated from clinical tumour specimen. Since we are working in the
field we used the Affymetrix SNP 6.0 data on the TCGA (The Cancer Genome Atlas) head and neck
squamous cell carcinoma (HNSSC) data set [70]. In addition and in order to be able to assess the
performance of different approaches we used a simulated Affymetrix SNP 6.0 like dataset. The main
aim of the study was, to compare the performance of established analysis approaches including
OncoSNP, ASCAT, CGHcall, genoCNA and GISTIC with each other. Further, we improved the tumour-
derived data tailored approach CGHcall for the purpose which we called CGHcall*. Moreover, we
compared the CNA results of the assessed analysis approaches on the TCGA HNSCC data set with
published CNA data on HNSCC.

3.6.2 Summary

In our study we comprehensively compared the performance of the copy number calling algo-
rithms OncoSNP, ASCAT, CGHcall, genoCNA and GISTIC and considered confounding or biasing
parameters tumour purity, length of CNA and CNA burden. Amongst the tested algorithms CGHcall
provided the best performance with regard to prediction call accuracy. However, we observed that
the accuracy of CGHcall drops once the CNA burden exceeds 50% of the genome. CGHcall*, an ad-
justed version of CGHcall was implemented and we could demonstrate its improved performance.
The scripts of the workflow and conducted analyses is provided to the community in GitHub.

3.6.3 Methods, Results and Discussion

For performance assessment two data sets were used: A synthetic Affymetrix SNP 6.0 data set that
was generated using the jointseg R package and the HapMap dataset on naturally occurring CNAs
in the human populations for which comprehensive experimental validation data exist [71, 72].
For the evaluation of the performance on a realistic tumour sample derived data set the raw data
of the TCGA HNSCC data were used. All SNP 6.0 data were preprocessed using Affymetrix Power
Tools (APT) in order to receive LRR (probewise LogR-ratio) values and B-allele frequencies which
were already available for the simulated data. All data were then subjected to analysis with the
genomic copy number analysis tools OncoSNP, ASCAT, CGHcall, genoCNA and GISTIC.
Performance for the simulated data was assessed using F score statistics which integrates precision

https://github.com/adspit/PASCAL
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(positive predicted value) and recall (sensitivity). Good prediction is reflected by F-score values to-
wards 1 and bad prediction by values towards 0. Differences between F-score distributions were
assessed using Wilcoxon Cox test and resulting p-values were Bonferroni corrected.
When manually inspecting the copy number calling profiles we observed that in case of profiles
with more than half of the genome changed in copy number reflected by the segmentation pro-
files, prediction of the CGHcall algorithm fails. This problem was caused by estimating the baseline
copy number for which the median of all LRR values per profile is used and which fails in case of
more than 50% of the profile being altered. We solved this by only considering LRRs which are cov-
ered by the interval [-0.1, 0.1]]. This correction was implemented in the CGHall workflow which we
then called CGHcall*.
CGHcall* included, the prediction F-scores were determined for the 100 simulated genomic copy
number data. When comparing the performance of the algorithms for profiles with different simu-
lated tumour purity (i.e. cellularity) huge differences were obvious. GISTIC was not able to correctly
predict CNAs in profiles with less then 100% tumour purity. The ability to correctly call losses was
poor for all algorithms while CGHcall* and GenoCNA improved with higher tumour purity. The
overall performance of the algorithms to call the normal state was not good for all algorithms but
improved with higher purities. With purities greater than 70% CGHcall* and GenoCNA performed
best. Prediction F-scores also for gains were not good for tumour purities below 70% for all algo-
rithms but significantly improved for CGHcall* and GenoCNA for 70% purity and greater. For 100%
purity CGHcall* and OncoSNP performed best. The results are summarised in Fig. 14
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Figure 14: Performance of CNA calling algorithms on synthetic data. The y-axis represents the
F-score and x-axis represents the tumour purity level in %. The three facets represent the different
classes: loss, normal and gain. Each boxplot consists of F-scores for 100 synthetic samples. The
total number of genetic markers covered by the synthetic signal was approximately 8 bp.

Another important factor in CNA analysis is the length of the underlying chromosomal seg-
ments. Optimally an algorithm performs equally well for short, medium and long segment lengths.
We could show that for 100% tumour purity OncoSNP and CGHcall* perform best across different
copy number segment lengths as outlined in Fig. 15 A. Finally, when comparing the performance
of the algorithms dependent from the CNA burden OncoSNP and CGHcall* most accurately pre-
dicted the true copy number states when the CNA burden was greater 50% (Fig. 15 A).
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Figure 15: Heatmap of meanF-scores for different lengths of copynumber regions (A) and for
CNA burdens smaller and greater 50%.

Further we tested performance of the algorithms on the non-tumour HapMap SNP 6.0 data (n
= 81) for which comprehensive validation data were generated using array CGH and fluorescence
in situ hybridisation and which we used as true state. Again, GenoCNA and CGHcall* performed
almost similarly and best amongst all algorithms while the performance of GenoCNA was slighly
better than that of CGHcall* (Fig. 16).
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Figure 16: Heatmap of mean F-scores for different lengths of copynumber regions (A) and for
CNA burdens smaller and greater 50%.

Finally, we typed the genomic copy number changes in the TCGA HNSCC data set. We com-
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pared the frequencies of gene copy number alterations of genes CDKN2A and CCND1 which are
frequently altered in HNSCC as reported by Gollin et al. (2014) with that determined in the TCGA
data [73]. In this comparison CGHcall* and GISTIC showed the best comparable results while most
profiles were from tumours with tumour purities greater 60%.

3.6.4 Conclusion

We evaluated the prediction performance of commonly used SNP 6.0 data genomic copy number
calling algorithms and provide a pipeline for this purpose. Further, we could improve overall per-
formance of CGHcall implemented in CGHcall*. Our study provides the basis for informed selection
of the best suitable genomic copy number calling algorithm when using Affymetrix SNP 6.0 data.

3.6.5 Outlook

The provided pipeline could be used as blueprint for the performance assessment for copy number
typing for other data types allowing for copy number typing such as genomic number from DNA
methylation array data, whole exome or whole genome sequencing data.
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Statement of translational relevance (word count: 150 words) 

 

HPV-negative HNSCC cancer is currently treated with a set of standard-of-care therapeutic 

approaches which in total result in approx. 50% overall survival for locally advanced HNSCC 

demonstrating that substantial subgroups are not likely to profit from state-of-the-art therapy. The 

most relevant clinical event limiting success of HNSCC therapy is recurrence of the disease after 

surgical tumor resection followed by radio(chemo)therapeutic treatment. The presented HNSCC 

HPV-negative five-miRNA-signature predicts the risk for recurrence in HNSCC and allows, in 

combination with the clinically established risk factors, the definition of four prognostically 

distinct groups. This provides the first prerequisite for the consideration of personalized treatment 

approaches in HPV-negative HNSCC. Possible personalized treatment options include 

consideration of adjusting therapy intensity according to the overall risk for therapy failure in the 

first line. Further, and most importantly, it represents the basis for a more focused search for 

molecular therapeutic targets improving therapy success for appropriate patients.  
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Abstract (word count: 249 words) 

Purpose: 

HPV-negative head and neck squamous cell carcinoma (HNSCC) associates with unfavorable 

prognosis while independent prognostic markers remain to be defined. 

Experimental Design: 

We retrospectively performed miRNA expression profiling. Patients were operated for locally 

advanced HPV-negative HNSCC and had received radiochemotherapy in eight different hospitals 

(DKTK-ROG; n=85). Selection fulfilled comparable demographic, treatment and follow-up 

characteristics. Findings were validated in an independent single-center patient sample (LMU-

KKG; n=77). A prognostic miRNA-signature was developed for freedom from recurrence and 

tested for other endpoints. Recursive-partitioning analysis was performed on the miRNA-

signature, tumor and nodal stage, and extracapsular nodal spread. Technical validation used qRT-

PCR. A miRNA-mRNA target network was generated and analyzed. 

Results: 

For DKTK-ROG and LMU-KKG patients, the median follow-up was 5.1 and 5.3 years, the 5-

year freedom from recurrence rate was 63.5% and 75.3%, respectively. A five-miRNA-signature 

(hsa-let-7g-3p, hsa-miR-6508-5p, hsa-miR-210-5p, hsa-miR-4306 and hsa-miR-7161-3p) 

predicted freedom from recurrence in DKTK-ROG (HR 4.42, 95% CI 1.98−9.88, P<0.001), 

which was confirmed in LMU-KKG (HR 4.24, 95% CI 1.40−12.81, P=0.005). The signature also 

predicted overall survival (HR 3.03, 95% CI 1.50−6.12, P=0.001), recurrence-free survival (HR 

3.16, 95% CI 1.65−6.04, P<0.001) and disease-specific survival (HR 5.12, 95% CI 1.88−13.92, 

P<0.001), all confirmed in LMU-KKG data. Adjustment for relevant covariates maintained the 

miRNA-signature predicting all endpoints. Recursive-partitioning analysis of both samples 

combined classified patients into low (n=17), low-intermediate (n=80), high-intermediate (n=48) 

or high risk (n=17) for recurrence (P<0.001). 

Conclusions: 

The five-miRNA-signature is a strong and independent prognostic factor for disease recurrence 

and survival of patients with HPV-negative HNSCC.  
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Introduction 

 

Prognosis of patients with locally advanced head and neck squamous cell carcinoma (HNSCC) 

generally remains poor. Whereas patients with high-risk human papillomavirus (HPV) associated 

HNSCC have a considerably more favorable outcome, HPV-negative patients still have to expect 

limited disease control and survival (1,2). From the biologic perspective, intrinsic resistance of 

tumor cells to radiochemotherapy or therapy failure caused by metastatic spread are possible 

underlying factors. Consequently, research aims at altering radiation dose and fractionation or - 

more recently - at the additional administration of targeted drugs and/or immune checkpoint 

inhibitors (3,4). However, biomarkers to predict which patients potentially would profit from 

these approaches are missing. 

Complex and heterogeneous genomic aberrations and mutation patterns molecularly control 

initiation and progression of HNSCC (5-7). MicroRNAs (miRNAs), involved in 

posttranscriptional regulation, have been shown to be highly deregulated in most cancers and 

might well be of prognostic relevance (8,9). In HNSCC aberrantly expressed miRNAs were 

described (10-12). However, so far no study has investigated the prognostic role of miRNAs by 

comprehensive miRNA-profiling in well-characterized HPV-negative HNSCC cohorts. 

Here we analyzed miRNA expression profiles in cancer tissue of locally advanced HNSCC 

(n=162). We hypothesized that we can develop a miRNA-based molecular signature, which 

allows to stratify HPV-negative HNSCC patients according to risk of recurrence following 

adjuvant radio(chemo)therapy.  
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Materials and Methods 

 

Patient specimens and study design 

In the present study, we analyzed two independent samples of HNSCC patients who had 

undergone surgical resection followed by adjuvant radio(chemo)therapy: the DKTK-ROG 

(German Consortium for Translational Cancer Research, Radiation Oncology Group) and the 

LMU-KKG (Ludwig-Maximilians-University of Munich, Clinical Cooperation Group 

“Personalized Radiotherapy in Head and Neck Cancer“) samples. For both of which, clinical data 

and treatment-naive patient tissue specimens were collected retrospectively. All patients were 

diagnosed with histologically proven HNSCC of the hypopharynx, oropharynx or the oral cavity. 

Only HPV-negative HNSCC were included (Supplementary Methods). Ethical approval (EA) for 

this retrospective study, carried out in accordance with the Declaration of Helsinki, was obtained 

by the ethics committees of all DKTK-ROG partners including the LMU (EA 312-12, 448-13, 

17-116). Tumor stage was assessed using the UICC TNM Classification of Malignant Tumors, 

7th edition. 

The multicentric study sample DKTK-ROG originally included 221 HNSCC patients treated at 

one of the eight different DKTK partner sites (13). This study reports on 85 out of 143 patients 

with HPV-negative tumors who were treated between 2005 and 2011. 58 patients had to be 

omitted due to insufficient tumor material. All patients received postoperative radiotherapy 

covering the previous tumor region and regional lymph nodes with concurrent cisplatin(CDDP)-

based chemotherapy according to standard protocols. Inclusion criteria were positive microscopic 

resection margins and/or extracapsular extension (ECE) of lymph nodes and/or tumor stage pT4 

and/or or more than three positive lymph nodes. The median overall treatment time was 44 days 

(interquartile range IQR 43-46 days). Adjuvant radiotherapy including elective irradiation of 

cervical lymph nodes was applied with a median dose of 50 Gy (median dose 2 Gy/fraction) and 

a boost to the former tumor region and to microscopic disease (if any) to a median dose of 66 Gy 

(median dose 2 Gy/fraction). Cisplatin was applied weekly with a median cumulative dose of 200 

mg/m² body surface area (BSA) (range 100-300 mg/m² BSA). 

The monocentric study sample LMU-KKG included originally all HNSCC patients with at least 

UICC TNM stage III or close/positive microscopic resection margins (resection margins were 

considered “close margin” when declared R0, but less than 5 mm by the local pathologist) who 

were treated with adjuvant radiotherapy between 06/2008 and 01/2013 at the LMU Department 

of Radiation Oncology (14). The median overall treatment time was 45 days (IQR 43-47 days) 
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with five fractions per week. A median radiation dose of 64 Gy (median dose 2 Gy/fraction) was 

applied to the former tumor bed or regions of ECE, elective lymph node regions have been 

covered according to tumor stage and localization with a median dose of 50 Gy (median dose 2 

Gy/fraction), 56 Gy (median dose 2 Gy/fraction) were applied to involved lymph node regions. 

In the case of close/positive microscopic resection margins and/or ECE, patients received 

concurrent chemotherapy. The majority (76 %) of the patients received CDDP/5-fluorouracil (5-

FU) (CDDP: 20 mg/m² BSA day 1–5/29–33; 5-FU: 600 mg/m² BSA day 1–5/29–33). In selected 

cases, Mitomycin C (MMC) or 5-FU/MMC replaced platin-based chemotherapy. This study 

reports on the HPV-negative tumor subset (n=77) of all patients with available tumor tissue 

specimens (n=115). 

After histopathological review of haematoxylin and eosin stained tissue sections from available 

blocks with formalin-fixed and paraffin-embedded (FFPE) tumor tissue by a pathologist (DKTK-

ROG: KW; LMU-KKG: CW/AW), the tumor area was annotated. If necessary, microdissection 

was performed prior nucleic acids extraction in order to ensure a tumor cellularity (i.e., the 

percentage of tumor cells in analyzed tissue) of at least 60% (DKTK-ROG: median 60%, IQR 

60-70%; LMU-KKG: median 70%, IQR 70-80%).  
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Procedures 

Total RNA, including the small RNA fraction, was extracted using the Qiagen miRNeasy FFPE- 

(DKTK-ROG) or the AllPrep DNA/RNA FFPE-Kit (LMU-KKG) according to the 

manufacturer’s protocols (Qiagen, Hilden, Germany). Isolated RNA was quantified with the 

Qubit-Fluorometer and integrity of small RNAs was assessed (Supplementary Methods). 

miRNA expression was profiled using SurePrint G3 8x60K Human miRNA Microarrays 

(AMADID 70156; Agilent Technologies, Santa Clara, CA, USA) representing 2,549 human 

miRNAs (content sourced from miRBase database, Release 21.0; Supplementary Methods). 

Microarray raw data were uploaded to the publicly available database ArrayExpress (accession 

no. E-MTAB-5793). miRNA expression microarray profiling resulted in a data set of 162 

HNSCC samples (DKTK-ROG: n=85; LMU-KKG: n=77). 

Data analysis was performed using the R statistical software (version 3.3.1) in combination with 

R-Bioconductor/CRAN packages (Supplementary Methods)(15). 

For the purpose of building a Cox proportional hazards model predicting disease recurrence in 

combination with miRNA expression, we used a robust likelihood-based survival modelling 

approach deploying an iterative forward-selection algorithm implemented in the R package 

rbsurv (16). We recently built a miRNA-signature predicting outcome in glioblastoma using the 

same approach (Supplementary Methods)(17). 

Experimentally validated miRNA-target genes of the signature miRNAs were obtained from the 

miRTarBase database (Release 6.0). The Cytoscape software (version 3.2.1) with the Reactome 

FI plugin (version 4.0.0) was used to generate a miRNA-mRNA target regulatory network and to 

conduct pathway enrichment analysis of the target genes. Pathways with P-values < 0.05 were 

considered as significantly enriched with target genes (18). 

For technical validation of microarray data quantitative real-time RT-PCR (qRT-PCR) analysis 

was performed (Supplementary Methods). 

Clinical endpoints and statistical analysis 

As the main objective of the study was the identification of a miRNA-signature that allows 

separation of patients according to risk of recurrence, the primary endpoint was freedom from 

recurrence. Freedom from recurrence was defined as the time (days) from the start of 

radiotherapy treatment to the time of the first observation of confirmed locoregional or distant 

recurrence. Data for recurrence-free patients were right-censored either at the date of death or last 

follow-up visit. Additional endpoints included were recurrence-free survival, overall survival, 
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disease-specific survival, disease-unspecific survival, distant control, and locoregional control. 

We calculated recurrence-free survival (days) from the date of radiotherapy treatment start to the 

first observation of locoregional/distant recurrence or death due to any cause; overall survival 

from the date of radiotherapy treatment start to the date of death from any cause; disease-specific 

survival from the date of radiotherapy treatment start to the date of tumor related death; non-

tumor related survival from the date of radiotherapy treatment start to the date of non-tumor 

related death; distant control from the date of radiotherapy treatment start to the date of distant 

recurrence; locoregional control from the date of radiotherapy treatment start to the date of local 

recurrence. In the absence of an event, patients were censored at the date of the last follow-up 

visit (or the date of death). 

 

Kaplan-Meier curves were compared for statistical difference using the log-rank test using the R-

package survival. Median time-to-event estimates and Hazard ratios (HR) with 95% confidence 

intervals (CI) were determined. Univariate Cox proportional hazard analysis was performed to 

evaluate the association of clinicopathological variables with outcome (Supplementary Methods). 

We used multivariate Cox proportional hazards analysis to assess the prognostic value of the 

identified miRNA-signature after adjustment for other prognostic clinical parameters as 

covariates. 

The clinical endpoint prediction performance of the five-miRNA-signature and 

clinicopathological variables in terms of sensitivity and specificity, represented by the 

corresponding areas under the curve (AUCs), was determined for follow-up times from 1 to 5 

years (Supplementary Methods). 

Recursive partitioning analysis (RPA) for the generation of a decision tree considering the 

clinical parameters ECE status, TNM T stage, TNM N stage and resection margin status with or 

without the five-miRNA-signature defined risk groups was conducted using the R-package rpart 

(Supplementary Methods). 
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Results 

The clinicopathological characteristics of the HNSCC patients included in our study (median 

follow-up: DKTK-ROG 5.1 years, IQR 3.7-5.6; LMU-KKG 5.3 years, IQR 4.4-6.4) are listed in 

Table 1. Compared to the DKTK-ROG sample, which exclusively contained patients treated by 

postoperative radiotherapy with concurrent cisplatin-based chemotherapy, only 63.6% of the 

LMU-KKG sample received concurrent radiochemotherapy. Accordingly, the LMU-KKG 

sample contained fewer patients with UICC TNM stage IV, advanced nodal stage, ECE or 

positive microscopic resection margins. 31.5% of all patients (51/162) developed disease 

recurrence within the observed follow-up time while the two samples did not differ with regard to 

the endpoints freedom from recurrence and recurrence-free survival (Figure S1). The 5-year 

freedom from recurrence rate was 63.5% and 75.3% for DKTK-ROG and LMU-KKG patients, 

respectively. 

The miRNA expression profiling of 162 tumor specimens identified 1,031 expressed miRNAs. 

After univariate preselection 524 miRNAs remained for feature selection using a robust 

likelihood-based survival modeling forward-selection approach (Table S1). The best model 

according to the Akaike Information Criterion (AIC) contained the five miRNAs hsa-let-7g-3p, 

hsa-miR-6508-5p, hsa-miR-210-5p, hsa-miR-4306 and hsa-miR-7161-3p with the following Cox 

proportional hazard coefficients: -0.5214183, -0.5254865, 0.6461524, -0.3678727 and -

0.8165854, respectively. The coefficients were subsequently used for individual risk score 

calculation after linear combination with appropriate expressions of the signature miRNAs. Using 

the median risk score as a cut-off, 43 patients of the DKTK-ROG sample (training set) were 

assigned to the low-risk group (median time to event not reached (NR), 95% CI 2047−not 

estimable (NE); eight events) and 42 to the high-risk group (median time to event 748 days, 95% 

CI 459–NE; 24 events). As expected, the groups differed significantly in their risk of recurrence 

(HR 4.42, 95% CI 1.98−9.88; log-rank P<0.001; Figures 1A, S2). 

We applied the five-miRNA-based signature prediction model to the miRNA expression data set 

of the LMU-KKG sample (validation set) using the cut-off as calculated from the training sample 

data (0.03629712) and assigned 38 patients to the low-risk (median NR, 95% CI NE−NE; four 

events) and 39 patients to the high-risk group (median NR, 95% CI 708−NE; 15 events). The risk 

for recurrence of the high-risk patients was significantly increased compared to that of the low-

risk patients (HR 4.24, 95% CI 1.40−12.81; P=0.005) confirming the prognostic value of the 

five-miRNA-signature (Figures 1A, S2). miRNA-based risk group classification was not 
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associated with simultaneous chemotherapy treatment (Table 1), which was further supported 

after stratification to LMU-KKG patients treated by concurrent radiochemotherapy (n=49; HR 

3.85, 95% CI 1.09-13.58, P=0.024; Figure S3). 

Moreover, high-risk patients of both samples showed significantly reduced recurrence-free 

survival, overall survival and disease-specific survival rates (Figure 1B). We could also 

demonstrate an impact of both failure sites (locoregional and distant) on the risk stratification, 

while low- and high-risk patients did not differ in non-tumor related death (Figure S4). 

In order to assess whether the five-miRNA-signature was an independent prognosticator, 

associations of known clinicopathological factors with the miRNA-defined risk groups were 

tested. TNM T stage, ECE and tumor localization were associated with the miRNA risk groups 

(Table 1). In the subsequent univariate Cox proportional hazard analysis, TNM T stage and 

lymphovascular invasion (LVI) were significantly associated with freedom from recurrence in 

both samples, ECE was identified as a significant parameter in the DKTK-ROG sample only, 

whereas no differences between the three tumor localizations were observed (Table S2; Figures 

S5-S7). After adjustment for these parameters in multivariate Cox regression analysis, the five-

miRNA-signature retained its independent and exclusive prognostic role in both samples (training 

set: HR 5.55, 95% CI 2.09-14.79, P<0.001; validation set: HR 3.94, 95% CI 1.23-12.59, 

P=0.021; Table 2). 

We analyzed the sensitivity and specificity of the five-miRNA-signature in the prediction of 

different clinical endpoints in comparison to the clinical prognostic parameters TNM T stage, 

LVI and ECE. At 5 years follow-up, the five-miRNA-signature demonstrated a superior 

prediction of all endpoints analyzed (Figures 2A, S8). Furthermore, in time-dependent analysis 

(follow-up years 1 to 5), the five-miRNA-signature superiorly predicted all endpoints from 2 to 5 

years compared to the clinicopathological parameters. After one year follow-up, higher AUCs for 

the miRNA-signature compared with the analyzed endpoints were only observed in the training 

set for the endpoints disease-specific survival and overall survival (Figures 2B, S9, S10). After 

combining the five-miRNA-signature with the clinicopathological parameters (TNM T stage, 

LVI, ECE) an even better prediction of all endpoints from 2 to 5 years was achieved for both 

HNSCC samples, also when compared to combinations of the clinicopathological risk factors 

(Figures 2C, S11). This was also the case after one year follow-up in the DKTK-ROG sample. 

In order to obtain deeper insights into the biological regulatory function of the signature 

miRNAs, we generated a miRNA-mRNA target regulatory network comprising experimentally 
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validated miRNA-target interactions, whereby twelve target genes were found to be shared by the 

signature miRNAs (Table S3, Figure S12). Pathway enrichment analysis of the target genes 

revealed 36 pathways including p53, ATM, and FoxO signalling, DNA double-strand break 

response, pre-NOTCH expression and processing, mitosis and senescence associated pathways 

(Table S4). 

For technical validation of the five-miRNA-signature and potential clinical diagnostic 

application, we measured the expression of the signature miRNAs in the validation set (n=71) by 

qRT-PCR confirming the microarray-derived results as the miRNA-classified risk groups 

significantly differed in freedom of recurrence (HR 5.07, 95% CI 1.17−21.94, P=0.016; Figure 

S13) 

In a Kaplan-Meier analysis in which the samples were pooled (n=162) and stratified according to 

resection margin status, TNM T stage, TNM N stage, ECE and tumor localization the resulting 

five-miRNA-signature risk groups significantly differed in clinical outcome (Figures S14, S15). 

This motivated us to further combine the five-miRNA-signature with clinically relevant 

parameters. RPA identified four different risk groups for recurrence (“low-risk”, “low-

intermediate-risk”, “high-intermediate-risk” and “high-risk”) including the five-miRNA-signature 

as strongest parameter together with TNM T stage, ECE and TNM N stage (Figure 3 and 

extended Figure version S16). The worst prognostic group included miRNA-signature-high-risk 

patients with ECE-positive T3/T4 tumors (median freedom from recurrence 438 days), while 

miRNA-signature-low-risk patients with T1/T2 N0/N1 HNSCC had the best prognosis (no 

event). The four risk groups also significantly differed with regard to locoregional and distant 

control, recurrence-free survival, overall survival and disease-specific survival (Figures S17, 

S18). RPA considering only the clinical parameters identified three risk groups for recurrence 

with T stage as the strongest parameter together with ECE and N stage (Figure S19A). 

Combining the three RPA derived risk groups with the risk factor of our five-miRNA-signature 

revealed patient subgroups significantly differing in clinical outcome (“RPA intermediate-risk”: 

HR 2.71, 95% CI 1.21-6.06, P=0.012; “RPA high-risk”: HR 12.20, 95% CI 1.54-96.90, P=0.004; 

Figure S19B). 
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Discussion 

 

Here we report, for the first time a five-miRNA-signature in HPV-negative patients that predicts 

decreased cancer control following adjuvant radiochemotherapy. Freedom from recurrence was 

the chosen primary endpoint to better estimate treatment effects, as HNSCC patients often suffer 

from multiple comorbidities that affect overall survival (19). Overall, baseline and treatment 

characteristics of our patients were balanced and compare well to reports on HPV-negative 

HNSCC. Remarkably our identified five-miRNA-signature predicts survival as well. Of note: its 

prognostic significance is independent from known clinical parameters 

 

A potential limitation of the study is the fact that clinical data for both samples were obtained 

retrospectively. We thus cannot fully exclude certain selection bias. Heterogeneity due to 

inclusion of a multicenter HNSCC patient sample minimized and potentially excluded selection 

bias. In addition, the signature’s robustness and potential clinical applicability was underlined by 

identification in a multicenter sample and validation in an independent monocentric sample. Most 

other studies introducing prognostic miRNA-signatures (e.g. ovarian, nasopharyngeal and colon 

cancer) followed a comparable strategy (8,20,21). 

The fact that the DKTK-ROG sample exclusively included HNSCC patients treated by post-

operative radiochemotherapy, whereas the LMU-KKG sample comprised both adjuvant treatment 

groups – radiotherapy with simultaneous chemotherapy and radiotherapy alone – might be seen 

as another limitation of our study. However, from our point of view, the independence of the 

five-miRNA-signature from the addition of simultaneous chemotherapy even strengthens the 

potential of our five-miRNA-signature. 

A further potential shortcoming of our study is that the final RPA was limited by small numbers 

of patients. In order to achieve the highest possible number of cases and the maximum statistical 

power, we pooled both HNSCC samples for this analysis (n=162). In all clinical endpoints a 

significant separation of risk groups defined by clinical risk factors combined with the five-

miRNA-signature was achieved. 

To substantiate our findings on patient stratification into risk groups, further validation of our 

five-miRNA-signature in independent retrospective and in particular prospective patient 

populations with fully annotated clinical data will be important future steps. 
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Previous studies have identified multiple deregulated miRNAs in HNSCC partly with prognostic 

relevance for patients (10-12,22-26). A meta-analysis revealed that in particular overexpression 

of miR-21, one of the most frequently studied cancer-related miRNAs, predicts poor prognosis in 

HNSCC (10). However, in general, the overlap of prognostic miRNAs across different HNSCC 

studies is small. This can be potentially explained by differences in demography, treatment 

parameters, composition of patient subgroups (e.g. subsite and HPV-status) as well as by 

methodological issues like the lack of independent validation, limitations due to small sample 

size, the analysis of different endpoints, the number of miRNAs screened and the non-availability 

of thorough clinical information including HPV-status (27). Our comprehensive miRNA profiling 

approach deliberately and exclusively focused on HPV-negative patients based on the fact that all 

current data indicate a completely distinct molecular pathogenesis of HPV-associated cancer, 

which, meanwhile, is regarded a distinct clinical entity (2,6). 

Nevertheless, in our study we were able to confirm previously reported prognostic miRNAs in 

HNSCC such as hsa-miR-21-3p, hsa-let-7g-3p, hsa-miR-210-5p and hsa-miR-210-3p (Figure 

S20) underlining the validity of our miRNA analysis (10,22,26,28,29). In addition, hsa-mir-210-

5p and hsa-let-7g-3p form part of our five-miRNA-signature. hsa-let-7g was shown to predict 

prognosis in oral cavity squamous cell carcinoma (29) and breast cancer patients (30) via 

inhibition of cell invasion and metastasis. Besides head and neck cancer (28), hsa-mir-210 was 

already reported as prognostic factor in breast cancer (31-34), soft-tissue sarcoma (35), 

osteosarcoma (36), pancreatic cancer (37), non-small cell lung cancer (38), renal cancer (39) and 

glioblastoma (40). Multiple functions of hsa-miR-210 are described including hypoxic response, 

regulation of mitochondrial metabolism, cell cycle, cell survival, differentiation DNA repair and 

immune response (41). To the best of our knowledge, the remaining three signature miRNAs 

(hsa-miR-6508-5p, hsa-miR-4306 and hsa-miR-7161-3p) have not yet been associated with 

HNSCC or cancer in general. 

miRNAs are integrative regulator molecules with a highly promiscuous nature thereby interfering 

with multiple pathways. Thus, it is not possible to deduce a definitive functional role of a given 

miRNA within a signaling network. Nevertheless, studying the miRNA-mRNA-target network 

our five-miRNA-signature suggests enrichment of specific signaling pathways: p53, ATM, FoxO 

signaling, and DNA double strand break response, pre-NOTCH expression and processing, as 

well as mitosis and senescence associated pathways. Several of the pathways and miRNA target 

genes were already shown to be relevant for the pathogenesis and radiation response of HNSCC 
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(5-7,42-47). Mutations of IGF1R and ARID1A and the involvement of CADM1 and SOD2 in 

HNSCC have been reported (6,43,46,47). 

Gene expression relates to prognosis of HNSCC (48) as does a seven-gene signature, recently 

also described in our patients (49); this signature, however, predicts freedom from recurrence 

independently from the above mentioned five-miRNA-signature (unpublished). Analogous to 

their prognostic independence the molecular impact of the Schmidt et al. seven-gene signature 

shows no obvious overlap with that of our five-miRNA-signature (49). However, to pin down 

mechanisms and pathogenic relevance of the five-miRNA-signature further studies are required. 

 

At present, treatment decisions for patients with HNSCC are guided predominantly by clinical 

findings. The only relevant biological marker with yet limited influence on treatment decisions is 

HPV-status (1). A key prerequisite for the potential clinical application of a molecular signature 

is a robust, fast and easy to perform laboratory assay. Our qRT-PCR validation of the high-

throughput omics data is a first step in this direction. 

The five-miRNA-signature’s potential is particularly exemplified by the fact that, when 

combined with the clinically relevant prognostic parameters TNM T stage, ECE and TNM N 

stage, it allowed the significant stratification of patients into four risk groups for recurrence. 

Strikingly, in this context, the five-miRNA-signature was the strongest factor for patient 

stratification. Furthermore, the integration of the molecular signature with clinical factors not 

only improved the prediction of outcome but also allowed a more detailed, clinically meaningful 

stratification of patients, which, in turn, could be used as a clinical patient stratification tool. 

Possible personalized treatment options include consideration of adjusting therapy intensity 

according to the overall risk for therapy failure. In particular patients with the highest risk of 

recurrence, for whom the standard treatment is not sufficient, might be candidates for more 

personalized treatment options such as the addition of targeted drugs or immune checkpoint 

inhibitors to radio(chemo)therapy, dose escalation or further (neo)adjuvant chemotherapy. On the 

other hand, for patients with the lowest risk of recurrence de-escalation strategies for the 

reduction of therapy-associated toxicity could be considered. Here dose de-escalation and the 

omission of chemotherapy would be options, as the long-term benefit from the addition of 

simultaneous chemotherapy to radiotherapy is not given for all patients (50). Further, the five-

miRNA-signature represents the basis for a more focused search for molecular therapeutic targets 

improving therapy success for appropriate patients. 
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In order to evaluate the predictive value of the five-miRNA-signature for the guidance of 

treatment decisions, prospective validation studies and clinical trials considering treatment 

stratification are required in future. 

In summary, the herein identified prognostic five-miRNA-signature independently predicts 

disease control and survival of HPV-negative patients. The target gene network of the signature 

miRNAs is well in line with known mechanisms driving HNSCC pathogenesis. In combination 

with established prognostic clinical parameters the ability of the signature to predict disease 

control and survival even improves and allows the definition of four prognostically distinct 

groups. These may provide an important step towards personalized HNSCC treatment.  
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Tables 

Table 1: Clinical and pathological characteristics of HNSCC patients included in the DKTK-ROG 

and the LMU-KKG sample and stratified according to the five-miRNA-signature 

 Training set DKTK-ROG (n=85) Validation set LMU-KKG (n=77) 

 Number of all 

patients 

low-risk 

(n=43) 

high-risk 

(n=42) 

p-value* Number of all 

patients 

low-risk 

(n=38) 

high-risk 

(n=39) 

p-value* 

Age (years)    0.77    0.86 

<45 7 (8%) 2 (5%) 5 (12%)  3 (4%) 1 (3%) 2 (5%)  

45-54 26 (31%) 13 (30%) 13 (31%)  17 (22%) 7 (18%) 10 (26%)  

55-64 35 (41%) 18 (42%) 17 (40%)  28 (36%) 15 (39%) 13 (33%)  

65-74 17 (20%) 10 (23%) 7 (17%)  26 (34%) 13 (34%) 13 (33%)  

>75 0 0 0  3 (4%) 2 (5%) 1 (3%)  

Sex    1.0     1.0 

Male 67 (79%) 34 (79%) 33 (79%)  52 (68%) 26 (68%) 26 (67%)  

Female 18 (21%) 9 (21%) 9 (21%)  25 (32%) 12 (32%) 13 (33%)  

Tumor Localization     0.12     0.022 

Hypopharynx 13 (15%) 9 (21%) 4 (10%)  15 (19%) 4 (11%) 11 (28%)  

Oral cavity 32 (38%) 12 (28%) 20 (48%)  27 (35%) 11 (29%) 16 (41%)  

Oropharynx 40 (47%) 22 (51%) 18 (43%)  35 (45%) 23 (61%) 12 (31%)  

UICC TNM Stage    0.56     0.79 

I 0 0 0  2 (3%) 1 (3%) 1 (3%)  

II 3 (4%) 2 (5%) 1 (2%)  6 (8%) 4 (11%) 2 (5%)  

III 13 (15%) 5 (12%) 8 (19%)  23 (30%) 12 (32%) 11 (28%)  

IV 69 (81%) 36 (84%) 33 (79%)  46 (60%) 21 (55%) 25 (64%)  

T stage    0.33     0.042 

T1 12 (14%) 9 (21%) 3 (7%)  17 (22%) 9 (24%) 8 (21%)  

T2 35 (41%) 17 (40%) 18 (43%)  29 (38%) 18 (47%) 11 (28%)  

T3 22 (26%) 10 (23%) 12 (29%)  21 (27%) 10 (26%) 11 (28%)  

T4 16 (19%) 7 (16%) 9 (21%)  10 (13%) 1 (3%) 9 (23%)  

N stage    0.14     0.41 

N0 10 (12%) 5 (12%) 5 (12%)  19 (25%) 8 (21%) 11 (28%)  

N1 10 (12%) 2 (5%) 8 (19%)  20 (26%) 10 (26%) 10 (26%)  

N2 57 (67%) 33 (77%) 24 (57%)  36 (47%) 20 (53%) 16 (41%)  

N3 8 (9%) 3 (7%) 5 (12%)  2 (3%) 0 2 (5%)  

Lymphovascular invasion (LVI)   0.46     1.0 

0 42 (49%) 25 (58%) 17 (40%)  50 (65%) 26 (68%) 24 (62%)  

1 27 (32%) 13 (30%) 14 (33%)  17 (22%) 9 (24%) 8 (21%)  

Missing information 16 (19%) 5 (12%) 11 (26%)  10 (13%) 3 (8%) 7 (18%)  

Venous tumor invasion (VTI)   1.0     1.0 

0 62 (73%) 33 (77%) 29 (69%)  66 (86%) 34 (89%) 32 (82%)  

1 7 (8%) 4 (9%) 3 (7%)  3 (4%) 2 (5%) 1 (3%)  

Missing information 16 (19%) 6 (14%) 10 (24%)  8 (10%) 0 6 (15%)  

Perineural invasion (PNI)    1.0     0.55 

0 0 0 0  37 (48%) 19 (50%) 18 (46%)  

1 0 0 0  15 (19%) 6 (16%) 9 (23%)  

Missing information 85 (100%) 43 (100%) 42 (100%)  25 (32%) 13 (34%) 12 (31%)  

Resection margin status    0.52     0.49 

0 45 (53%) 21 (49%) 24 (57%)  57 (74%) 28 (74%) 29 (74%)  

1 40 (47%) 22 (51%) 18 (43%)  17 (22%) 7 (18%) 10 (26%)  

2 0 0 0  1 (1%) 1 (3%) 0  

Missing information 0 0 0  2 (3%) 2 (5%) 0  

Extracapsular extension (ECE)   0.007     0.38 

yes 41 (48%) 14 (33%) 27 (64%)  25 (32%) 11 (29%) 14 (36%)  

no 34 (40%) 24 (56%) 10 (24%)  32 (42%) 19 (50%) 13 (33%)  

not applicable (N0) 10 (12%) 5 (12%) 5 (12%)  19 (25%) 8 (21%) 11 (28%)  

Missing information 0 0 0  1 (1%) 0 1 (3%)  

Grading    0.56     0.29 

1 (well differentiated) 3 (4%) 2 (5%) 1 (2%)  2 (3%) 2 (5%) 0  

2 (moderately differentiated) 50 (59%) 23 (53%) 27 (64%)  34 (44%) 15 (39%) 19 (49%)  

3 (poorly differentiated) 32 (38%) 18 (42%) 14 (33%)  41 (53%) 21 (55%) 20 (51%)  

ECOG performance status    0.64    0.20 

0 18 (21%) 8 (19%) 10 (24%)  13 (17%) 4 (11%) 9 (23%)  

1 33 (39%) 17 (40%) 16 (38%)  40 (52%) 21 (55%) 19 (49%)  

2 6 (7%) 4 (9%) 2 (5%)  5 (6%) 1 (3%) 4 (10%)  

Missing information 28 (33%) 14 (33%) 14 (33%)  19 (25%) 12 (32%) 7 (18%)  

Smoking status    0.18     0.68 

Non-smoker 5 (6%) 4 (9%) 1 (2%)  6 (8%) 2 (5%) 4 (10%)  

Smoker 52 (61%) 23 (53%) 29 (69%)  52 (68%) 25 (66%) 27 (69%)  

Missing information 28 (33%) 16 (37%) 12 (29%)  19 (25%) 11 (29%) 8 (21%)  

Smoking history – pack-years    0.20    0.67 

≤10 (including non-smokers) 7 (8%) 5 (12%) 2 (5%)  6 (8%) 2 (5%) 4 (10%)  

>10 23 (27%) 9 (21%) 14 (33%)  48 (62%) 25 (66%) 23 (59%)  

Missing information 55 (65%) 29 (67%) 26 (62%)  23 (30%) 11 (29%) 12 (31%)  

Simultaneous Chemotherapy    1.0     0.16 

Yes 85 (100%) 43 (100%) 42 (100%)  49 (64%) 21 (55%) 28 (72%)  

No 0 0 0  28 (36%) 17 (45%) 11 (28%)  

Data are numbers (%). *Chi-square test or Fisher’s exact test.  
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Table 2: Multivariate Cox regression analysis of the five-miRNA-signature and clinicopathological 

parameters with freedom from recurrence (training and validation set) 

 
 Training set DKTK-ROG Validation set LMU-KKG 

Parameter HR (95% CI) p-value HR (95% CI) p-value 

Five-miRNA-signature (high-risk vs low-risk) 5.55 (2.09-14.79) <0.001 3.94 (1.23-12.59) 0.021 

TNM T stage (T3/T4 vs T1/T2) 2.19 (0.96-5.02) 0.064 2.71 (0.99-7.44) 0.052 

Lymphovascular invasion (yes vs no) 2.22 (0.99-4.97) 0.053 2.50 (0.84-7.45) 0.099 

Extracapsular extension (yes vs no*) 1.45 (0.61-3.48) 0.40 2.29 (0.77-6.78) 0.13 

 
*N0 tumors were included in the group of extracapsular extension negative tumors 
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Figure Legends 

 

Figure 1: Freedom from recurrence stratified by risk according to the five-miRNA-

signature: miRNA expression and Kaplan-Meier curves in the DKTK-ROG (training set) 

and the LMU-KKG (validation set) sample 

(A) Upper panel: Heat map colors indicate scaled miRNA log2 expression values multiplied by 

the Cox proportional hazard coefficients (coxph) from low (blue) to high (red) on a scale from -3 

to 3 for each of the five signature miRNAs in the DKTK-ROG (left panel) and the LMU-KKG 

sample (right panel). Lower panel: Kaplan-Meier curves for the endpoint freedom from 

recurrence for HNSCC patients of the training (DKTK-ROG sample; left panel) and validation 

set (LMU-KKG sample; right panel) stratified into low- and high-risk patients according to the 

five-miRNA-signature. P-values are derived by log-rank test. (B) Kaplan-Meier curves for 

recurrence-free survival (upper panel), overall survival (middle panel) and disease-specific 

survival (lower panel) in patients of the training (DKTK-ROG sample; left) and validation set 

(LMU-KKG sample; right) stratified according to their risk (low- and high-risk group) by the 

five-miRNA-signature. 

 

Figure 2: Performance of the prediction of freedom from recurrence comparing the five-

miRNA-signature with clinicopathological risk factors 

(A) Sensitivity and specificity derived areas under the curve (AUCs) for the prediction of 

freedom from recurrence in the DKTK-ROG (training set; left panel) and the LMU-KKG sample 

(validation set; right panel) at five follow-up years. The AUCs and the 95% CI of the five-

miRNA-signature derived risk factor (black dashed curve), TNM T stage, lymphovascular 

invasion (LVI) and extracapsular extension (ECE) are shown. 

Time-dependent sensitivity and specificity derived AUCs for the prediction of freedom from 

recurrence in the DKTK-ROG t (left panel) and the LMU-KKG sample (right panel) at follow-up 

years 1-5: (B) AUCs of the five-miRNA-signature derived risk factor (black dashed curve), TNM 

T stage, LVI and ECE. (C) AUCs for the five-miRNA-signature derived risk factor alone (black 

dashed curve), the five-miRNA-signature combined with TNM T stage, LVI and ECE (purple 

and greenish curves) and combinations of the clinicopathological risk factors TNM T stage, LVI 

and ECE (bluish curves). 
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Figure 3: Risk groups for recurrence identified by recursive partitioning analysis (RPA) 

RPA tree and risk groups for recurrence combining the parameters five-miRNA-signature (high-

risk, low-risk), ECE (negative - including N0 tumors, positive), T stage (T1/T2, T3/T4) and N 

stage (N0/N1, N2/N3) in the pooled HNSCC data set (n=162). Each node shows the predicted 

probability of recurrence (locoregional or distant failure; color code low to high: blue-red), the 

number of events for the total number of patients and the percentage of observations in the node. 

Kaplan-Meier curves for the endpoint freedom from recurrence for the four identified risk groups 

“low-risk”, “low-intermediate-risk”, “high-intermediate-risk” and “high-risk”. Multivariate and 

pairwise comparisons are shown. P-values are derived by log-rank test. See extended Figure 

version Supplementary Figure S16. 
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ABSTRACT

Multimodal therapy of glioblastoma (GBM) reveals inter-individual variability 
in terms of treatment outcome. Here, we examined whether a miRNA signature 
can be defined for the a priori identification of patients with particularly poor 
prognosis.

FFPE sections from 36 GBM patients along with overall survival follow-up were 
collected retrospectively and subjected to miRNA signature identification from 
microarray data. A risk score based on the expression of the signature miRNAs and 
cox-proportional hazard coefficients was calculated for each patient followed by 
validation in a matched GBM subset of TCGA. Genes potentially regulated by the 
signature miRNAs were identified by a correlation approach followed by pathway 
analysis.

A prognostic 4-miRNA signature, independent of MGMT promoter methylation, 
age, and sex, was identified and a risk score was assigned to each patient that 
allowed defining two groups significantly differing in prognosis (p-value: 0.0001, 
median survival: 10.6 months and 15.1 months, hazard ratio = 3.8). The signature 
was technically validated by qRT-PCR and independently validated in an age- and 
sex-matched subset of standard-of-care treated patients of the TCGA GBM cohort 
(n=58). Pathway analysis suggested tumorigenesis-associated processes such as 
immune response, extracellular matrix organization, axon guidance, signalling by 
NGF, GPCR and Wnt. Here, we describe the identification and independent validation 
of a 4-miRNA signature that allows stratification of GBM patients into different 
prognostic groups in combination with one defined threshold and set of coefficients 
that could be utilized as diagnostic tool to identify GBM patients for improved and/
or alternative treatment approaches.

               Research Paper
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INTRODUCTION

Malignant gliomas account for approximately 70% 
of primary brain tumors diagnosed in adults. Median age 
at diagnosis is 64 years with men being more frequently 
affected than women [1].

Amongst all gliomas, glioblastoma (GBM) is the 
most common and aggressive form [2]. State-of-the-
art treatment of GBM comprises surgical resection and 
adjuvant radiochemotherapy followed by maintenance 
chemotherapy. Implementation of temozolomide (TMZ) 
into the radiochemotherapeutic regime improved 2-year 
survival rates of patients with newly diagnosed malignant 
glioma (mainly GBM) from 11% to 27%, 3-year survival 
rates from 4% to 16%, and 5-year survival rates from 2% 
to 10% [3]. Unfortunately several phase III trials employing 
targeted agents such as bevacizumab (AVAglio & RTOG 
0825) or cilengitide failed to show an improvement in 
overall survival [4, 5]. Thus, TMZ-based radiochemotherapy 
remains standard treatment for GBM. However, prognosis 
of most GBM patients still remains dismal with a high rate 
of local recurrence, emphasizing the clear need for further 
optimization [6]. At present, several strategies are being 
followed in this regard: Firstly, more elaborate imaging 
techniques as well as improved image-guidance during 
radiotherapy are being tested [7, 8]. Secondly, various 
molecularly designed substances are undergoing pre-
clinical and clinical testing for their therapeutic efficacy 
in combination with radio(chemo)therapy [9, 10]. These 
targeted treatment approaches require molecular stratification 
of patients in order to identify the subgroups that can benefit 
most from a given strategy. Classical radiochemotherapy 
also displays wide inter-individual differences in terms of 
response and survival rates [11]. Accordingly, numerous 
efforts are undertaken in order to characterize the molecular 
mechanisms orchestrating therapy sensitivity and resistance 
and to identify prognostic and predictive markers.

So far, only few prognostic factors have been defined 
for GBM, including age and Eastern Cooperative Oncology 
Group (ECOG) score. In addition, involvement of the 
subventricular zone and extent of resection are known to be of 
prognostic importance [12]. More recently, the first molecular 
markers have been established. In this regard, methylation 
of the O6-methylguanine DNA-methyltransferase (MGMT) 
promoter region was recognized to be of positive predictive 
value for the efficacy of TMZ-based radiochemotherapy, 
and molecular profiling of long-term survivors disclosed 
the positive prognostic value of a proneural-like expression 
pattern linked to mutations in the genes encoding for iso-
citrate dehydrogenases 1/2 (IDH1/2) [13].

During the last years, microRNAs (miRNAs) have 
increasingly received attention. With a high degree of 
promiscuity miRNAs target and regulate several mRNA 
species encoding for proteins involved in various signaling 
pathways [14]. Accumulating evidence indicates that miRNA 
expression signatures can serve as biomarkers for diagnosis 

and risk assessment of diverse malignancies, including GBM 
[15–20]. Given that the available prognostic markers can 
segregate GBM patients only to a limited extent, additional 
markers and/or signatures have to be defined. We focused on 
miRNA profiles, because the characterization of epigenetic 
alterations in the field of GBM research has hitherto been 
underrepresented and miRNA expression is well accessible 
from clinical routine diagnostic tissue specimen such as 
formalin-fixed paraffin-embedded (FFPE) tissue sections [21].

We sought to delineate a miRNA expression signature 
that is of predictive/prognostic value for overall survival 
in a retrospective cohort of 36 primary GBM patients who 
underwent adjuvant radiochemotherapy. Applying an iterative 
forward selection approach on miRNA microarray expression 
data, we identified a distinct signature comprising 4 miRNAs 
that was technically confirmed by quantitative real-time 
PCR (qRT-PCR) and independently validated in an age- 
and sex-matched data subset of a cohort of GBM patients 
who received standard-of-care treatment, obtained from The 
Cancer Genome Atlas (https://tcga-data.nci.nih.gov) project 
[22, 23, 3, 24]. Multivariate analysis revealed this signature 
to be independent of the MGMT promoter methylation status 
and of any other prognostic parameters that were available 
for our dataset.

RESULTS

Characterization of the patient cohort: survival 
data and univariate analysis

The MGMT promoter methylation status had no 
statistically significant influence on overall survival 
(p-value=0.763), although in Kaplan-Meier analysis a 
trend towards better survival could be observed in MGMT 
methylated patients. (Supplementary Figure S1) We also 
did not find statistically significant associations of overall 
survival with age (p-value=0.053) and sex (p-value=0.222).

Extraction of a low complexity miRNA signature 
and evaluation of its prognostic significance for 
overall survival

We analyzed miRNA expression profiles in FFPE 
samples of our patient cohort and extracted a signature 
that consisted of the four miRNAs hsa-let-7a-5p, hsa-let-
7b-5p, hsa-miR-125a-5p and hsa-miR-615-5p which was 
statistically significantly associated with overall survival 
(p-value=0.0048). The median risk score calculated from 
the expression levels of the signature miRNAs and the 
corresponding cox-proportional hazard coefficients (Table 
1) separated the patients into a high- and a low-risk group. 
Cox regression analysis of the high- and the low-risk groups 
revealed a 3.79 fold increased risk of death (95% CI: 2.03-
12.85) for the high-risk group compared to the low-risk group 
(p-value=0.000112). The median survival time was 13.5 
months for patients of the high- risk group and 18.4 months 
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for patients of the low-risk group, respectively. These results 
were visualized by Kaplan-Meier overall survival curves 
(Figure 1B). Univariate testing of the individual miRNAs 
within the signature revealed p-values in the range between 
0.0015 and 0.016, indicating that each single miRNA was 
able to statistically significantly predict overall survival. 
Expressions of miRNAs hsa-let-7a-5p, hsa-let-7b-5p and 
hsa-miR-125a-5p positively correlated with overall survival 
and and that of hsa-miR-615-5p negatively correlated 
with overall survival. Figure 1A summarizes the survival 
data of the patients in relation to the calculated risk scores 
and expression levels. When including MGMT promoter 
methylation status in a multivariate cox-proportional hazard 
model, its contribution to the model was not statistically 
significant, thereby suggesting that the identified miRNA 
signature performs independently of the MGMT promoter 

methylation status. Moreover, the other available clinical 
parameters, such as sex and age were not associated with the 
calculated risk-score and also did not statistically significantly 
contribute to the multivariate model when included. A 
detailed representation of the results can be found in Table 1. 
Further, patients in the high-risk group were older compared 
to that in the low-risk group. Concerning distribution of sex 
there were no differences between the high- and the low-risk 
groups (Figure 1C).

Independent in silico validation of the detected 
miRNA signature

For the purpose of independent validation the miRNA 
signature was tested in an age-matched miRNA data subset 
of standard-of-care treated patients (see Supplementary 

Table 1: Results of multivariate cox-proportional hazard analysis of 4-miRNA risk score, age, sex and MGMT 
promoter methylation status

Cohort Model Hazard 
ratios of 

parameters

Confidence 
intervals of 

hazard ratios

p-values of contributions of 
parameters to model

p-value 
of 

model

Discovery

4-miRNA risk-score 3.8 1.47-9.75 0.00574 0.00434

MGMTmeth 0.9 0.39-2 0.7637 0.76298

4-miRNA risk-
score+MGMTmeth 3.8,0.9 1.48-9.81/0.38-1.93 0.00558,0.70124 0.0159

Sex 1.7 0.72-3.86 0.22874 0.22151

4-miRNA risk-score+Sex 3.6,1.3 1.36-9.32/0.57-3.16 0.00982,0.50574 0.01367

Age 1 1-1.07 0.05469 0.05267

4-miRNA risk-score+Age 3.5,1 1.35-9.12/0.99-1.07 0.00979,0.10002 0.00439

4-miRNA risk-
score+MGMTmeth+Sex+Age 3.3,0.9,1,1.4

1.23-8.62/0.38-
2.15/0.99-

1.07/0.59-3.44

0.01765,0.82414,
0.11408,0.43099 0.02158

Validation

4-miRNA risk-score 2.4 1.03-5.69 0.04207 0.04247

MGMTmeth_1 0.5 0.18-1.27 0.13798 0.12236

MGMTmeth_2 0.5 0.21-1.32 0.16924 0.15812

4-miRNA risk-
score+MGMTmeth_1 3.1,0.4 1.24-7.73/0.12-1.01 0.0156,0.05204 0.01532

4-miRNA risk-
score+MGMTmeth_2 2.2,0.6 0.93-5.28/0.24-1.55 0.07096,0.29498 0.07214

Sex 1.5 0.57-3.8 0.41996 0.41121

4-miRNA risk-score+Sex 1 1.36-0.9-9.31-7.64 0.00947,0.07811 0.02402

Age 1 0.94-1.04 0.63117 0.63333

4-miRNA risk-score+Age 0 1.09-0.93-6.25-1.03 0.03098,0.37596 0.08763

4-miRNA risk-
score+MGMTmeth_1+Sex+Age 4.1,0.5,2.1,1 1.44-11.49/0.16-

1.79
0.008,0.30791, 

0.24802,0.37623 0.03941

4-miRNA risk-
score+MGMTmeth_2+Sex+Age 4.5,1,3,1 1.41-14.67/0.34-

3.09
0.01139,0.95454,
0.08428,0.22869 0.06184
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Table S1) of an independent GBM cohort downloaded from 
the TCGA database [25]. The high- and the low-risk groups 
were defined by using the median risk score of the discovery 
set (0.07811832) to dichotomize the patients of the validation 
set. The resulting cox-proportional hazard model revealed a 
hazard ratio of 2.11 (95% CI 1.13-3.91) and a p-value of 0.02 
(Figure 2C). Figure 2B summarizes the survival data of the 
patients of the validation cohort in relation to calculated risk 
scores and expression levels. Also for the validation cohort 
no statistically significant association was found between 
high- and low-risk groups and the parameters age and sex 
(Figure 2D). Univariate testing of the MGMT promoter 
methylation status derived from two DNA methylation array 

probes that have been shown previously to reliably measure 
MGMT promoter methylation status for association with 
overall survival was conducted. No statistically significant 
association was observed (cg12434587: p.value: 0.122/
hazard-ratio: 0.48, cg12981137: p-value: 0.16/hazard-ratio: 
0.48) although in Kaplan-Meier analysis a trend towards 
better survival in MGMT promoter methylation positive 
was also observable here (Supplementary Figure S2). No 
differences in the distribution of age and sex were observed 
in the high- and low-risk groups identified in the validation 
cohort. Also, including in the multivariate cox model 
MGMT promoter methylation status did not show statistical 
significant influence on survival (Table 1).

Figure 1: Extraction of a 4-miRNA signature as independent predictive marker for the overall survival of GBM 
patients in the exploratory cohort. A. Kaplan-Meier overall survival analyses of high-risk and low-risk GBM patients. High-risk 
and low-risk patients were stratified based on the risk factors calculated from the cox-proportional hazard coefficients and the miRNA 
expression levels as measured in the microarray (left panel, 35 patients) or by qRT-PCR analyses (right panel, 19 patients). Hazard ratios 
and p-values were calculated by log-rank test. B. Overall survival (top panel), hierarchical cluster heat map of miRNA array expression 
levels (middle panel), and risk factors calculated on the basis of miRNA expression values and cox-proportional hazard coefficients (bottom 
panel) for all patients. miRNAs hsa-let-7a-5p, hsa-let-7b-5p and hsa-miR-125a-5p in patients of the higher-risk group show a tendency 
towards lower expression and that of hsa-miR-615-5p a tendency towards higher expression. The median risk factor value was used to 
classify high-risk and low-risk patients. C. Distribution of age (left panel) and sex (right panel) in high-risk and low-risk GBM patients. 
Statistical comparison was performed by Student’s t-test or Fisher’s exact test. The patients of the lower-risk group were statistically 
significantly older compared with that of the lower-risk group. The differences in the numbers of male and female patients of the lower- and 
higher-risk groups were not statistically significant.
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Technical validation of signature by qRT-PCR

In order to technically validate the 4-miRNA 
signature and to support potential applicability 
in clinical routine diagnostics, we measured the 
expression of the four miRNAs in a subset of samples 
(n=23), for which residual material was available by 
qRT-PCR. Analogous cox-proportional hazard analysis 
with the qRT-PCR data confirmed the results obtained 
with the miRNA array data. Patients of the high-risk 
group revealed significantly impaired overall survival 
(p-value=0.043) and a hazard-ratio of 3.21 (95% CI 
1.02-10.16) as compared to patients of the low-risk 
group. (Figure 1A).

miRNA-mRNA correlation and pathway 
enrichment analysis

For hsa-let-7b-5p we identified 104 significantly 
correlating genes (53 negative and 51 positive 
correlations), for hsa-miR-125a-5p 112 genes (35 
negative and 77 positive correlations), for hsa-miR-615-
5p 26 genes (10 negative and 16 positive correlations) 
and for hsa-let-7a-5p 412 genes (245 negative and 
167 positive correlations). The overlap between genes 
correlating with expression of the signature miRNAs 
was sparse (Supplementary Figure S1). Heatmaps of 
the top 25 miRNA-mRNA correlations with regard to 
absolute correlation coefficients are depicted in Figure 3. 

Figure 2: Evaluation of the prognostic value of the extracted 4-miRNA signature in an age- and sex-matched subgroup 
of standard-of-care treated patients of the TCGA GBM dataset. A. Age distribution in the exploratory cohort and the TCGA 
GBM cohort before and after age matching. B. Overall survival (top panel), hierarchical cluster heat map of miRNA expression levels 
(middle panel), and risk factors for patients of the age- and sex-matched TCGA GBM cohort. The median risk factor value was used to 
classify high-risk and low-risk patients. miRNAs hsa-let-7a-5p, hsa-let-7b-5p and hsa-miR-125a-5p in patients of the higher-risk group 
show a slight tendency towards lower expression and that of hsa-miR-615-5p a slight tendency towards higher expression. C. Kaplan-
Meier overall survival analyses of high-risk and low-risk standard-of-care treated patients of the age- and sex-matched TCGA GBM cohort. 
Classification of high-risk and low-risk patients was performed on the basis of the risk factors calculated from the cox-proportional hazard 
coefficients (Table 2) and the miRNA expression levels. Hazard ratios and p-values were calculated by log-rank test. D. Distribution of age 
(left panel) and sex (right panel) in high-risk and low-risk patients of the age- and sex-matched TCGA GBM cohort. Student’s t-test and 
Fisher’s exact test were employed for statistical comparison as depicted.
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Interestingly, whereas hsa-let-7b-5p, hsa-miR-125a-5p, 
and hsa-let-7a-5p displayed predominantly negative 
correlations among the top correlations as to be expected, 
hsa-miR-615-5p also showed positive correlations. All 
genes with significant correlations (Pearson correlation 
test, p-value < 0.01) were combined into one list of 
genes (n=654; Supplementary Table S2) and subjected 
to pathway enrichment analysis. In total, 28 statistically 
significant pathways were identified (Supplementary 
Table S3), and the top ten of these (i.e. Transmembrane 
transport of small molecules, Innate Immune System, 
Extracellular matrix organization, Axon guidance, 
Signalling by NGF, Developmental Biology, Neuronal 
System, GPCR downstream signaling, Signaling by 

GPCR and Signaling by Wnt) were considered for 
interpretation of results.

DISCUSSION

GBM patients, who receive surgical resection and 
postoperative radio(chemo)therapy, reveal profound 
differences in terms of overall survival which motivated 
us to search for a miRNA signature that allows the 
identification of patients with specifically poor prognosis 
independently of any other outcome-associated 
parameters. Moreover, we intended to investigate such 
a signature with regard to the molecular mechanisms 
potentially underlying the poor outcome of GBM patients.

Figure 3: Heatmaps of the gene expressions correlating with the 4 miRNAs hsa-let-7b-5p, hsa-miR-125a-5p, hsa-miR-
615-5p and hsa-let-7a-5p the age- and sex-matched TCGA GBM cohort of standard-of-care treated patients. Genes 
whose expression levels statistically significantly correlated (p < 0.01) with the respective miRNA expression levels are shown. Every 
column represents an individual patient. Data are ordered from left to right by increasing miRNA expression.
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To this end, we performed miRNA microarray 
analysis followed by low-complexity miRNA signature 
identification. We could extract a 4-miRNA signature 
which, with high statistical significance, allowed 
differentiating between high- and low-risk GBM patients 
independently of the MGMT methylation status. Technical 
validation by qRT-PCR confirmed the microarray data 
results. Most importantly, the prognostic value of the 
signature could be confirmed by independent validation in 
a large subset of the TCGA study on GBM [25].

At present, the role of individual miRNAs in GBM 
is poorly understood. miRNAs are small non-coding 
regulatory RNAs that reduce stability and/or inhibit 
translation of target mRNAs with full or partial sequence-
complementarity [14]. In this sense, they are important 
post-transcriptional regulators and play essential roles in 
the pathogenesis, development, and progression of cancer 
as well as in the response to therapy [26–28].

It has been shown that GBMs display distinct 
miRNA expression signatures, and several studies have 
linked these miRNA alterations to hallmarks of GBM, 
including proliferation, survival, invasion, angiogenesis, 
and stem cell-like behavior [29]. Moreover, resistance to 
TMZ might be associated with miRNA deregulation [30]. 
In this regard, Ciafre et al. studied the expression of 245 
microRNAs in GBM in comparison to normal brain tissue 
using a microarray technique [31] in comparison to normal 
brain tissue. This approach enabled the identification of 
miRNAs whose expression levels were significantly 
altered in tumor tissue compared to peripheral brain 
tissue of the same patient, including miR-221, which was 
strongly up-regulated in GBM, and a set of brain-enriched 
miRNAs (miR-128, miR-181a, miR-181b, and miR-181c), 
which were down-regulated in GBM [32]. Very recently, 
a number of prognostic miRNA signatures have been 
reported for GBM [33–35, 15, 36, 37, 18–20, 38, 39]. We 
compared these signatures with our signature in terms of 
complexity, independent validation, and the approach used 
for identification of the signature. One important feature 
of molecular signatures is their level of complexity (i.e. 
the number of miRNAs), which should be most optimal 
with regard to prediction performance but at the same time 
should not overfit the data. For data sets with moderate 
dimensionality such as miRNA microarray data sets 
with typically a few hundreds of miRNAs expressed, the 
number of features contained in a signature should be 
of low complexity and in the range of smaller than 10. 
From the above cited studies, only five extracted a miRNA 
signature with low complexity that have been subsequently 
validated in an independent cohort [15, 37, 18–20]. Cheng 
et al. [15] focused on MGMT promoter methylation 
positive tumors only and defined a 5-miRNA signature 
that was validated in an appropriate subset of the so-called 
Chinese Glioma Genome Atlas. In contrast, our signature 
was developed using data from both MGMT promoter 
methylation-positive and -negative tumors. The signatures 

described by Li et al. were developed for each of the five 
molecular GBM subtypes as defined by transcriptomic 
profiling of TCGA GBM cases [37, 40]. Only the signature 
for the ‘mesenchymal‘ subtype consisting of five miRNAs 
was independently validated in a set of GBM tissues [37]. 
Our signature, in contrast, is not limited to this molecular 
subtype only. The small-noncoding RNAs described in 
Manterola et al. [18] allow molecular diagnosis of GBM 
using blood serum samples but the authors did not show 
usability with regard to outcome prediction whilst our 
signature was particularly developed for the purpose 
of predicting survival outcome. In a study by Shou et 
al. [20] three miRNAs were presented that statistically 
significantly allow differentiation into groups of patients 
with favorable and unfavorable prognosis. However, this 
approach was limited to separate and univariate analysis 
for each of the three miRNAs and the study did not include 
an independent validation of the results. The report by 
Sana et al. is most comparable to our study and introduced 
a 6-miRNA-signature which was also validated in the 
TCGA GBM data set [19]. However, contrary to our study 
Sana et al. used different thresholds for the calculated 
risk scores of the discovery and the validation set. Most 
importantly, the thresholds were chosen in such a way that 
they statistically significantly separated the two resulting 
groups of patients [19]. This can be interpreted as a 
technical drawback, and the approach has to be considered 
as a biased one. In strong contrast, we applied the same 
cox-proportional hazard coefficients and the same risk 
score thresholds to all of our three datasets (discovery 
Febit microarray, discovery qRT-PCR and validation 
Agilent microarray). This renders our 4-miRNA-signature, 
in principle, applicable to any other data set regardless of 
the platform the data were generated with.

Comparing our signature with that of the above 
mentioned studies did show no overlapping miRNAs 
of our signature with of the published ones. This can be 
explained by the fact that signature identification is very 
much dependent on the methodology used, the dataset 
with regard to the specific selection criteria of patients 
and the platform that is used for measurements. Since all 
mentioned studies vary with regard to these parameters 
one could not expect overlap of our signature with the 
published ones or overlap between the published ones.

 Besides its prognostic value, it is of major interest 
to understand the impact of the 4-miRNA-signature 
on the biological characteristics of GBM. Our panel of 
miRNAs consists of hsa-let-7a-5p, hsa-let-7b-5p, hsa-
miR-125a-5p and hsa-miR-615-5p. Two miRNAs of 
the signature belong to the let-7 family, which is very 
well known for its tumor suppressor function in various 
cancer entities [41]. The two let-7 miRNAs hsa-let-7a-
5p and hsa-let-7b-5p showed a tendency towards higher 
expression levels in the low-risk compared to the high-
risk group of patients, which is in line with the concept 
of their involvement in tumor suppression. miR-125a-
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5p was described as a tumor suppressor in GBM only 
recently. It is engaged in the repression of target genes 
of the TAZ (transcriptional co-activator with PDZ-
binding motif) transcription factor, including connective 
tissue growth factor (CTGF) and survivin [42]. Our 
analysis revealed a tendency towards higher miR-125a-
5p expression levels in the low-risk compared to the 
high-risk group of patients, again supporting its role in 
tumor suppression. hsa-miR-615-5p was described to act 
as tumor suppressor in pancreatic ductal adenocarcinoma 
[17]. In our analyses, a clear tendency towards higher or 
lower expression levels of hsa-miR-615-5p in the low- and 
high-risk group of patients was not observable. Therefore, 
conclusions concerning its tumorsuppressive role in GBM 
cannot be drawn. Overall, our 4-miRNA-signature reflects 
trends of higher expression levels of tumor suppressive 
miRNAs in low-risk GBMs, supporting the notion that 
these GBMs exhibit a lower degree of malignancy due to 
operational tumor suppressive mechanisms. In order to 
gain insights into the putative functional role of the four 
signature miRNAs, we conducted miRNA-transcriptome 
correlation analyses and obtained 654 genes, whose 
expression levels were positively or negatively correlated 
with that of the miRNAs. We deliberately followed 
this approach to identify direct and indirect regulatory 
effects of the signature miRNAs on the transcriptome. 
An alternative approach would have been to utilize 
miRNA target prediction. This, however, relies strongly 
on the prediction algorithm and the database that are 
used, and databases providing information on in vitro 
validated miRNA targets are still limited with regard to 
the number of miRNAs they provide information on [43]. 
The genes that were identified in our correlation approach 
were subjected to pathway enrichment analyses, which 
disclosed the top ten pathways Transmembrane transport 
of small molecules, Innate Immune System, Extracellular 
matrix organization, Axon guidance, Signalling by 
NGF, Developmental Biology, Neuronal System, GPCR 
downstream signaling, Signaling by GPCR and Signaling 
by Wnt all of which very well known in the context of 
glioblastoma tumorigenesis. These results suggest that our 
4-miRNA signature regulates genes that are well known 
to be involved in the tumorigenesis, progression and 
migration of GBM and may potentially act as druggable 
targets in an alternative treatment approach.

CONCLUSIONS

In the present study, we extracted and validated a 
4-miRNA-signature, which allows to differentiate GBM 
patients undergoing surgical resection and subsequent 
radio(chemo)therapy with favorable and poor prognosis. 
This signature may serve as a potential new marker for 
patient stratification independent of the MGMT methylation 
status. It may furthermore pave the way for personalized 
treatment approaches based on measurements that are 

well feasible in GBM biopsies in the clinical routine. 
Patients with a high-risk score are likely not profiting from 
standard-of-care treatment and therefore the 4-miRNA 
signature could be used to identify patients who require 
therapy intensification. Compared to existing GBM 
miRNA signatures the herein presented signature is of lower 
complexity, was independently validated, and appears to be 
in principle applicable to any data set containing expression 
values of the four signature miRNAs regardless of the 
platform they were generated with.

MATERIALS AND METHODS

For a detailed description of Material and Methods 
sections ’Patient characteristics’, ’miRNA array analysis’, 
’Technical validation of the 4-miRNA signature by qRT-
PCR’ and ’miRNA-mRNA correlation and gene set 
enrichment analysis’ see Supplementary Data.

Patient characteristics

We examined FFPE tissue samples of a non-
selected, retrospective cohort of patients who were 
consecutively treated at the University hospital Frankfurt 
between 1/2009 and 12/2010. Ethics approval (4/09) 
was given by the ethics committee of the medical 
faculty of the Johann-Goethe University (Frankfurt am 
Main, Germany). Only patients who underwent surgical 
resection and post-operative radio(chemo)therapy were 
included into the analyses. Patients underwent resection 
and adjuvant radiotherapy, regularly combined with 
TMZ according to the EORTC/NCIC26981/22981-
NCIC CE3 protocol if no contraindications were 
present (for details see Table 2) [3, 24]. The median 
overall survival time of this patient cohort was 1.28 
years with a median follow-up of 1.99 years (95%-CI, 
634 - 816 days). MGMT promoter methylation status 
was available for all 36 cases (see Table 1). Karnofsky 
performance status (KPS) score and associated recursive 
partitioning analysis (RPA) class had not been collected 
systematically, and no data on the extent of resection 
was available. For independent validation, the miRNA 
expression dataset from an age- and sex-matched subset 
(n=58) of the TCGA GBM cohort (n=357) was used. The 
subset resulted after adjusting the distribution of age of 

Table 2: Cox-proportional hazard coefficients used in 
risk score calculation

miRNA coefficient

hsa-let-7b-5p -0.9669152

hsa-miR-125a-5p -0.2821517

hsa-miR-615-5p 0.3254795

hsa-let-7a-5p 0.5059587
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the whole TCGA GBM dataset to that of our discovery 
cohort (Table 3) and only selecting patients that were 
treated according to standard-of-care.

miRNA array analysis

miRNA analysis was carried out using the Geniom 
Biochip MPEA homo sapiens biochips containing 
1223 miRNA probes (CBC, Heidelberg, Germany). 
FFPE sample preparation, hybridization, washing 
and scanning of arrays was performed as described 
previously [44]. We applied ’winsorized mean’ scaling 
on normalized data with exclusion of 30% of the top 
and bottom values.

TCGA glioblastoma miRNA data set

The validation data set was constructed from 
miRNA microarray profiles of the matched subset of 
patients from the TCGA GBM cohort. Data were generated 
by the University of North Carolina Cancer Genomic 
Characterization Center (CGCC) using the Agilent 8x15K 
Human miRNA-specific microarray platform [22]. For 
the analysis level 3 data were used and in order to allow 
comparability of the data set with the discovery data set 
scaling with ’winsorized mean’ was applied as described 
above.

miRNA signature robust selection

In order to search for a miRNA signature in miRNA 
expression data set of the discovery cohort associated with 
patient survival, the R package rbsurv was used [45]. The 
forward-selection algorithm implemented in the package 
computed the partial likelihood of the Cox model for a 
sequential selection of miRNAs. The best performing 
model was chosen based on the Akaike Information 
Criterion (AIC), which allowed to determine the best 
trade-off between the complexity of a model and its 
goodness of fit.

Calculation of risk scores

The Cox model coefficients (Table 2) were 
multiplied with the scaled expression values of appropriate 
miRNAs and the products were summed up resulting in 
an individual risk score for each patient. The median risk 
score of all patients (0.07811832) was used as a cut-off for 
defining a high-risk (> median risk score) and a low-risk 
group (< median risk score). Subsequently, the log-rank 
test was used to test whether the differences in overall 
survival times between the resulting two groups were 
statistically significant (p-value threshold: 0.05). Further, 
Kaplan-Meier survival curves were plotted for the two 
groups and the hazard ratio was calculated. The influence 

Table 3: Clinical characteristics of discovery cohort

Characteristic Patients (N=36)

Sex

 Male 23 (63.9 %)

 Female 13 (36.1 %)

 Median Age [y] 59 (34-78)

Age Category

< 50 y 13 (36.1 %)

≥ 50 y 23 (63.9 %)

MGMT promoter methylation status

Methylated 18 (50.0 %)

Unmethylated 18 (50.0 %)

Secondary Malignisation

Yes 12 (33.3 %)

No 24 (66.7 %)

Concomitant Temozolomide

Yes 32 (88.9 %)

No 1 (2.8 %)

Unknown 3 (8.3 %)

Median adjuvant TMZ cycles 6 (0−20)
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of the available known risk factors age, sex, and MGMT 
promoter methylation status was assessed univariately and 
by inclusion into the multivariate cox-proportional hazard 
model.

Independent in silico validation of the 4-miRNA 
signature

For each of the 58 included TCGA GBM patients 
(Supplementary Table S1) we calculated a risk score by 
building the sum of the products of the expressions of the 
four miRNAs of the signature and the coxproportional 
hazard coefficients obtained from the initial dataset for 
each of the miRNAs (Table 2).

The patients were assigned to high- and low-risk 
groups by using the same threshold (0.07811832) that 
was defined for the discovery data set. The resulting two 
groups were tested for differential survival outcome using 
log-rank test.

Technical validation of the 4-miRNA signature 
by qRT-PCR

MiScript primer assays (QIAGEN, MD, USA) for 
the four miRNAs of the signature were used for relative 
quantification along with a reference assay for the small 
RNA SNORD61. The relative expression values in 
combination with the cox-proportional hazard coefficients 
were used to calculate a risk score for every patient. The 
patients were dichotomized into a low- and high-risk 
group using the risk score threshold from the discovery 
cohort (0.07811832) and the resulting two groups were 
tested for differences in overall survival using log-rank 
test of the resulting cox-proportinal hazard model.

miRNA-mRNA correlation and gene set 
enrichment analysis

In order to investigate the impact of the four signature 
miRNAs on the transcriptome level we downloaded the 
transcriptome data (level 3) of the cases matching the 
miRNAs data set (n=132) from the TCGA database and 
calculated correlations between the four signature miRNAs 
and expression levels of all genes. Genes that statistically 
significantly correlated with the signature miRNAs were 
subjected to pathway enrichment analysis.

MGMT promoter methylation typing

For the discovery cohort determination of MGMT 
promoter methylation was performed using both 
methylation-specific PCR and sequencing analysis as 
described previously [46, 47].

For the TCGA validation cohort no systematic 
assessment of the MGMT promoter methylation status was 
available. However, in order to determine methylation of 

the MGMT promoter we followed an approach published 
by Bady et al. from methylation array data [48]. The 
resulting MGMT promoter-positive and -negative groups 
were then subsequently tested for association with survival 
univariately and multivariately.
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Breast cancer is the second leading cause of cancer death among women worldwide and besides life style, age and genetic

risk factors, exposure to ionizing radiation is known to increase the risk for breast cancer. Further, DNA copy number altera-

tions (CNAs), which can result from radiation-induced double-strand breaks, are frequently occurring in breast cancer cells. We

set out to identify a signature of CNAs discriminating breast cancers from radiation-exposed and non-exposed female patients.

We analyzed resected breast cancer tissues from 68 exposed female Chernobyl clean-up workers and evacuees and 68

matched non-exposed control patients for CNAs by array comparative genomic hybridization analysis (aCGH). Using a stepwise

forward–backward selection approach a non-complex CNA signature, that is, less than ten features, was identified in the train-

ing data set, which could be subsequently validated in the validation data set (p value<0.05). The signature consisted of

nine copy number regions located on chromosomal bands 7q11.22-11.23, 7q21.3, 16q24.3, 17q21.31, 20p11.23-11.21,

1p21.1, 2q35, 2q35, 6p22.2. The signature was independent of any clinical characteristics of the patients. In all, we identified

a CNA signature that has the potential to allow identification of radiation-associated breast cancer at the individual level.

Ionizing radiation is a known risk factor for the development

of breast cancer.1 An association with increased breast cancer

risk has been reported after exposure to ionizing radiation in

the course of medical treatment, after nuclear reactor acci-

dents or by the Japan atomic bombings.2,3 In particular, for

female breast cancer in Chernobyl clean-up workers, who

participated in recovery operation works in 1986–1987 after

the Chernobyl reactor accident, an almost doubled standard-

ized incidence ratio has been reported when compared to the

national sporadic breast cancer incidence.4,5 Furthermore an

increased breast cancer rate could also be detected among the

population of the most contaminated regions of Ukraine and

Belarus.6 So far only associations with genomic instability,

Her2 and c-myc amplification and higher histological grade

have been described for breast cancers that developed in

atomic bomb survivors in Japan.7,8 Results of breast cancers

that developed in women previously irradiated for Hodgkin

Lymphoma are conflicting with some studies suggesting a
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higher rate of the basal-like subtype in irradiated women and

others showing a higher rate of Her2 amplification.9,10 How-

ever, no histological or molecular marker has been reported

so far that allows identification of radiation-associated breast

cancers after low-dose exposure. In this study, we aimed to

identify genomic copy number alterations that specifically

allow detection of radiation-associated breast cancers. CNAs

account for 85% of the variation in gene expression and

define key genetic events driving tumorigenesis.11,12 Knowl-

edge of radiation-exposure specific CNAs should therefore

also provide mechanistic insights into radiation-associated

breast carcinogenesis. Breast cancer is a heterogeneous dis-

ease with distinct biological features and clinical behaviour.13

Copy number and gene expression profiling of sporadic

breast cancer has led to the identification of different molecu-

lar subtypes (luminal, Her2, basal-like breast cancer).14

Hence, CNAs represent an important molecular layer in

breast cancer that also bears the potential providing prognos-

tic markers.15 The thyroid is another radiation-sensitive

organ and it has been shown that in papillary thyroid carci-

nomas that developed in patients who were exposed to ioniz-

ing radiation at young age, chromosomal band 7q11.22-11.23

was specifically amplified.16 In this study, a combined for-

ward–backward selection approach was applied on CNA data

in order to identify a CNA-signature with low complexity

that allows the identification of radiation-associated breast

cancers. The approach was applied to a whole genome array

CGH data set on breast cancers from a cohort of female

clean-up workers who were exposed to ionizing radiation

from the Chernobyl reactor accident and non-exposed con-

trols matched for residence, tumor type, age at diagnosis,

TNM classification and histological grading.

Material and Methods

Clinical samples and data

We analyzed formalin-fixed paraffin-embedded (FFPE) breast

cancer tissue samples from 68 female Ukrainian patients that

were exposed to ionizing radiation after the Chernobyl reac-

tor accident in 1986. For comparison, a matched set of 68

breast cancer samples from non-exposed patients from

Ukraine was investigated. The exposed and non-exposed

patients included in this study were matched for residence,

tumor type, age at diagnosis, TNM classification and histo-

logical grading. All tumors were diagnosed as invasive

carcinomas of no special type (NST) and were from female

patients younger than 60 years at the time of diagnosis. The

136 breast cancer cases were randomly split into a training

set (n5 68) and validation set (n5 68), while for each of the

sets half of the cases were exposed and the other half were

non-exposed controls. A genomic copy number signature was

developed from the training set data with subsequent perfor-

mance assessment in the validation set.

Out of the 34 patients from the training set, 27 were regis-

tered as clean-up workers, five patients as evacuees and two

patients were registered as both evacuee and clean-up worker.

Seven out of 68 patients of the training set received neoadju-

vant radiotherapy (1–3 days before surgery). The majority (29

out of 34) of patients from the validation set were registered

as clean-up workers. Three patients were registered as evacuees

and two were registered as both evacuee and clean-up worker.

Seven out of 68 patients of the validation set received neoadju-

vant radiotherapy (1–3 days before surgery). The absorbed

doses of the exposed breast cancer patients were reconstructed

by the RADRUE method, which was adapted specifically for

estimation of breast doses.17 The doses showed a large inter-

individual variability ranging from 0.06 to 582.96 mGy

(median 13.07 mGy) in the clean-up workers and from 5.72 to

36.68 mGy (median 18.40 mGy) in the evacuees.18

HER2 genomic copy number status was detected by fluo-

rescence in situ hybridization as published by Wilke et al.

Progesterone and estrogen receptors, C-kit, cytokeratin 5/6,

p53 and Ki67 antigen expression detection was performed by

immunohistochemical staining according to the previously

described protocol.19

An overview of the clinicopathologic characteristics of the

training and validation sets as well as information about age at

time of exposure, age at time of diagnosis and latency is

shown in Table 1. The patient’s individual data are listed in

Supporting Information, Tables S1 and S2. For testing associa-

tions of exposure status with clinical characteristics of the

patients such as estrogen-receptor status, progesterone-receptor

status, cytokeratin-expression status (positive/negative), C-kit-

expression status (positive/negative), Ki67-expression status

(positive/negative), Her2/neu-status, p53-mutation status,

BRCA1/2-mutation status, pT-status, pN-status and histologi-

cal grading, Fisher’s exact test was used. For testing associa-

tions of exposure status with the age at time of diagnosis,

t test was used. Significance was accepted for p values< 0.05.

What’s new?

Exposure to ionizing radiation during medical procedures or following nuclear accidents can increase breast cancer risk by

inducing DNA double-strand breaks that potentially lead to DNA copy number alterations. In this study, the authors identified

a genomic copy number signature associated with radiation exposure in breast cancers in women who were exposed to ioniz-

ing radiation as Chernobyl clean-up workers or accident evacuees. The signature, composed of nine genomic copy number

regions, enabled the calculation of a breast cancer radiation-exposure risk score, which was independent of clinical character-

istics. The findings cast light on a new approach to radiation-induced breast cancer detection.
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Table 1. Patient characteristics of the Chernobyl training and validation set

Training set Validation set

Characteristics Exposed Not exposed p value1 Exposed Not exposed p value1

Number of patients 34 34 34 34

Tumor type, no. (%) Invasive
carcinoma
of no
special type

34 (100) 34 (100) 11 34 (100) 34 (100) 11

Age at diagnosis,
median (years),
(range (years))

51.50
(37.58–59.67)

49.83
(34.67–59.25)

0.472 48.04
(35.33–59.17)

50.96
(35.58–58.50)

0.552

Age at exposure,
median (years),
(range (years))

33.92
(24.17–45.50)

NA 30.58
(18.50-42.58)

NA

Latency, median
(years), (range
(years))

18.83
(10.00–23.83)

NA 19.92 (9.00–29.58) NA

Estrogen-receptor
status, no. (%)

Positive 21 (62) 20 (59) 11 26 (76) 28 (82) 0.771

Negative 13 (38) 14 (41) 8 (24) 6 (18)

Progesterone-receptor
status, no. (%)

Positive 18 (53) 21 (62) 0.621 25 (74) 25 (74) 11

Negative 16 (47) 13 (38) 9 (26) 9 (26)

C-kit status, no. (%) Positive 4 (12) 2 (6) 0.671 4 (12) 5 (12) 11

Negative 30 (88) 32 (94) 30 (88) 29 (88)

Cytokeratin 5/6
status, no. (%)

Positive 6 (18) 3 (9) 0.481 6 (18) 4 (12) 0.731

Negative 28 (82) 31 (91) 28 (82) 30 (88)

P53 status, no. (%) Positive 18 (53) 14 (41) 0.471 13 (38) 20 (59) 0.151

Negative 16 (47) 20 (59) 21 (62) 14 (41)

Ki-67 status, no. (%) Positive 31 (91) 34 (100) 0.241 30 (88) 30 (88) 11

Negative 3 (9) 0 (0) 4 (12) 4 (12)

BRCA1/2 status,
no. (%)

Positive 4 (12) 4 (12) 11 0 (0) 1 (3) 11

Negative 30 (88) 29 (85) 34 (100) 33 (97)

Not evaluable 0 (0) 1 (3) 0 (0) 0 (0)

Her2 status, no. (%) Positive 4 (12) 7 (21) 0.521 4 (12) 2 (6) 0.431

Negative 27 (79) 27 (79) 29 (85) 32 (94)

Not evaluable 3 (9) 0 (0) 1 (3) 0 (0)

pT stage, no. (%) pT1 13 (38) 15 (44) 0.91 13 (38) 12 (35) 11

pT2 20 (59) 18 (53) 19 (56) 20 (59)

pT3 1 (3) 1 (3) 2 (6) 2 (6)

pN stage, no. (%) pN0 18 (53) 19 (56) 11 17 (50) 17 (50) 11

PN1 14 (41) 15 (44) 17 (50) 17 (50)

pN2 1 (3) 0 (0) 0 (0) 0 (0)

pNx 1 (3) 0 (0) 0 (0) 0 (0)

pM stage, no. (%) M0 34 (100) 34 (100) 11 34 (100) 34 (100) 11

Grade, no. (%) G1 1 (3) 1 (3) 11 3 (9) 3 (9) 11

G2 20 (59) 20 (59) 24 (71) 24 (71)

G3 13 (38) 13 (38) 7 (21) 7 (21)

1The p value was calculated by Fisher’s-exact test.
2The p value was calculated by t test.
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Genomic copy number analysis by array CGH

To characterize genomic copy number alterations in the

post-Chernobyl breast cancer cohorts, array CGH was per-

formed using high-resolution oligonucleotide-based SurePrint

G3 Human 60k CGH microarrays (AMADID 21924, Agilent

Technologies, USA). The workflow is described in the Sup-

porting Information, material and methods part.

Hierarchical cluster analysis of DNA copy number profiles

was performed using correlation distance and method

“Ward.” For testing associations of clusters with exposure

status, estrogen-receptor status, progesterone-receptor status,

cytokeratin-expression status, C-kit-expression status, Ki67-

expression status, Her2/neu-status, p53-mutation status,

BRCA1/2-mutation status, triple negative status, tumor size,

lymph-node status, histological grading, age at exposure,

Fisher’s exact test was used. ANOVA F-test was used for cal-

culating associations of clusters with age at diagnosis, age at

exposure and latency. Significance was accepted for p

values< 0.05.

Generation of CNA signature

To identify a genomic copy number signature that allows the

prediction of radiation exposure we followed a multivariate

logistic regression approach. Logistic regression models the

probabilities P of class membership for each patient (exposed

or non-exposed) directly according to the formula

P5 P(h)5 exp(h)/(11 exp(h)), where h5 ß01 ß1X11. . .

1ßnXn5 log(P/(12 P)) is the logit or logarithmic odds value,

with predictor variables Xi, coefficients ßi and n the number

of variables in the model. The calculated probability P serves

then as risk score for radiation exposure. Tumors with a pre-

diction probability P> 0.5 were classified as radiation associ-

ated. For more details, see James et al.20

Binary copy number alteration states of all altered copy

number regions have been used as variables whilst gains and

losses were treated separately. Thus, for every region gain/no

gain (0/1) and loss/no loss (0/1) were reported. Hence, for

each copy number region gain status and loss status were

treated as independent variables. For the purpose of model fit

and validation, the described training and validation sets

were used. Feature selection was performed by stepwise com-

bined forward–backward selection, using the functions glm

(for generalized linear modelling) and step for Akaike Infor-

mation Criterion (AIC) based selection of the best models

from the R package stats.21 The algorithm of function step

computes the likelihoods of each model fit for a sequential

selection of features, whilst the best performing model was

determined using AIC for the sake of the best trade-off

between bias and variance of the model.20 The negative likeli-

hood, which is a positive value, decreases with increasing

number of features in the model. AIC simply adds twice the

number of features to the negative likelihood, so that it

reaches a minimum, which determines the optimal number

of features. Only CNAs (gains or losses) that occurred at

least 5 times in the training set and with univariate p values

up to 0.25 between exposed and non-exposed tumors (Fish-

er’s exact test) were admitted for the selection algorithm. The

number 5 roughly reflects a standard deviation sqrt(5) (Pois-

son rule) corresponding to a CV< 50%, which makes calcu-

lations more stable. 0.25 is also used as a default entry value

for example in variable selection the SAS procedure PROC

PHREG. Subsequently, the afore-defined risk score, based on

the coefficients defined using the training set, was calculated

for every tumor in the validation set. Finally, a confusion

table was built for the comparison of the true and predicted

exposure states and a p value using one-tailed Fisher’s exact

test was determined.

Fisher’s exact test was also used to test the binary associa-

tions of the risk score with any clinical characteristics of the

patients such as estrogen-receptor status, progesterone-receptor

status, cytokeratin-expression status (positive/negative), C-kit-

expression status (positive/negative), Ki67-expression status

(positive/negative), Her2/neu-status, p53-mutation status,

BRCA1/2-mutation status and intrinsic subtypes. Significance

was accepted for p values< 0.05.

Quantitative PCR (qPCR)

For technical validation of the CNAs detected by aCGH, the

copy number status of genes representative for the copy

number regions included in the CNA-signature, was deter-

mined by genomic copy qPCR. The workflow of the genomic

copy number qPCR is described in the Supporting Informa-

tion, material and methods part.

The calculated copy number state was used as the basis

for further calculations in R. Values smaller than 1.5 were

considered as losses and values >2.5 were considered as

gains. The thresholds were taken from the CopyCaller soft-

ware. As reference assay Life Technologies recommend to use

a gene that is known to exist in two copies in a diploid

genome and is being unaffected in all of the experimental

samples. It was not possible to extract a gene showing no

CNA in the whole data set. From the most commonly used

reference genes, the RNaseP gene showed the lowest number

of CNAs over all experimental samples. Therefore, we

decided to use copy number reference assay for this gene as

reference. To make results comparable between qPCR and

aCGH, we also corrected the aCGH copy number states with

that of the appropriate locus covering the RNaseP gene. The

copy number state as determined by array CGH and qPCR

were summarized in a confusion table and subjected to Fish-

er’s exact test. p values <0.05 indicated confirmation of the

array CGH results by qPCR.

Dose–response analysis

Logistic-regression analysis was performed in order to test

for relation between radiation dose and the occurrence of sig-

nature CNAs. The workflow is described in the Supporting

Information, material and methods part.
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Results

This study aimed at the identification of radiation-associated

DNA copy number changes in a cohort of breast cancers

from post-Chernobyl clean-up workers and evacuees from

highly contaminated territories. For this purpose, copy num-

ber profiles of exposed and non-exposed control cases were

generated and a radiation-exposure CNA-signature was

established.

Hierarchical clusters reveal association with radiation

exposure

High-resolution aCGH profiles of 136 breast cancer samples

were generated in order to characterize genomic copy num-

ber patterns of radiation-associated breast cancer. Supporting

Information, Figure S1 shows all genomic copy number pro-

files after unsupervised hierarchical clustering with annotated

parameters exposure status, estrogen-receptor status,

progesterone-receptor status, cytokeratin-expression status,

C-kit-expression status, Ki67-expression status, Her2/neu-sta-

tus, p53-mutation status, BRCA1/2-mutation status, triple

negative status, tumor size, lymph-node status and histologi-

cal grading. The two main clusters C1 and C2 of the hierar-

chical cluster analysis consisted of 33 and 103 cases,

respectively, the subclusters of C2 consisted of 36 cases

(C2.1) and 67 cases (C2.2), respectively, and the sub-sub

clusters of C2.2 consisted of 22 cases (C2.2.1) and 45 cases

(C2.2.2), respectively. In general DNA losses and gains

occurred more frequently in cluster C1 compared to clusters

C2.1, C2.2.1 and C2.2.2. Furthermore, C2.2.1 in general

showed a lower number of aberrations compared to clusters

C1, C2.1 and C2.2.2. From all tested parameters exposure

status (p5 0.019), histological grading (p5 0.03), estrogen-

receptor status (p5 0.04), cytokeratin-expression status

(p5 0.04), Her2/neu-status (p5 0.01), BRCA1/2-mutation

status (p5 0.04), age at diagnosis (F-test, degrees of numera-

tor dn5 3, degrees of denominator dd5 132, p5 0.03) and

tumor size (p5 0.02) were differentially distributed across

C1, C2.1, C2.2.1 and C2.2.2 (Supporting Information, Table

S3). With regard to exposure status all clusters showed equal

distributions except cluster C2.1, which contained signifi-

cantly more non-exposed than exposed cases (26 out of 36,

72%). Further, no association of exposure status with age at

diagnosis or other clinical characteristics of the patients was

detected (Table 1). Large tumors (pT2 and pT3) were associ-

ated with clusters C1, C2.1 and C2.2.2 (76 out of 83, 92%).

Within clusters C2.2.1 and C2.2.2 significantly less G3

tumors (12 out of 40, 30%) were included. In addition aCGH

profiles from estrogen-receptor negative cases were underrep-

resented in clusters C2.2.1 and C2.2.2 (13 out of 41, 32%).

Cases with Her2/neu-status positive and Cytokeratin 5/6-

expression positive were associated with clusters C1, C2.1

and C2.2.2 (Cytokeratin 5/6-expression positive: 19 out of 19,

100%, Her2/neu-status positive 17 out of 17, 100%). Cases

with a BRCA1/2-mutation were enriched in cluster C2.1 (6

out of 9, 67%).

Moreover, patients of cluster C2.1 were significantly youn-

ger at age of diagnosis (mean: 47.08 years) compared to cases

of cluster C1 (mean: 50.79 years), cluster C2.2.1 (mean: 51.66

years) and cluster C2.2.2 (mean: 50.04 years).

Identification of a nine-genomic CNA-signature predicting

radiation exposure

In the first step, univariate testing was used as a preselection

step for selection of highly discriminating copy number

changes. Admitted for the selection algorithm were only

gains or losses that occurred at least five times in the training

set and that showed univariate p values <0.25 (see Material

and Methods and Supporting Information, Table S4). This

resulted in 144 out of 910 CNA regions. In a next step, the

most discriminating features (i.e., CNA regions) were selected

by stepwise combined forward and backward selection and

the optimal number of features was determined by Akaike

Information Criterion (AIC, see Material and Methods) to

avoid overfitting. This approach revealed a CNA-signature

composed of nine altered genomic copy number regions

located on chromosomal bands 7q11.22–11.23 (7:70899666–

72726548), 7q21.3 (7:97597612–97749420), 16q24.3 (16:894

72538–90111178), 17q21.31 (17:44210733–44231916), 20p11.

23–11.21 (20:20226791–24223097), 1p21.1 (1:105300245–10

5546898), 2q35 (2:220499593–220503940), 2q35 (2:219083470

–220474362), 6p22.2 (6:26033303–26234636) in the Cherno-

byl training set. The parameter values of the features are

shown in Table 2. Further, as explained in Material and

Methods, the model, defined by the calculated parameters,

was evaluated in the validation set. For every tumor, the

probability P was calculated as a risk score according to the

model formula. The score values P appeared to be strongly

clustered. 22 values were <1.0 3 1027, 11 times 0.833, 33

times >(1–1027) and two values 0.355 and 0.667. After

rounding to a few decimal digits, 5 uniquely different values

remained. Tumors were then predicted as exposed if P> 0.5

or as non-exposed if P< 0.5. The results of the prediction

performance assessment of the CNA-signature on the valida-

tion set are shown in Figure 1. Of the 68 cases, 45 were pre-

dicted to be exposed and 23 non-exposed (predicted positive

and predicted negative, right and left side in the three panels

of Figure 1, respectively). From the lower panel in Figure 1

performance parameters can be read. The 45 positive pre-

dicted split into 27 true and 18 false positives, the 23 negative

predicted into 16 true and 7 false negatives. We found a sig-

nificant binary association of the risk score with radiation

exposure status, which means that among the positive pre-

dicted cases we found an enrichment of exposed cases

(PPV5 27/435 0.60, lower panel, right side) compared to

exposed cases on the left side (12NPV5 7/235 0.304, lower

panel, right side, one-tailed Fisher’s-exact test, p value5 0.0

2). Under the given conditions (34 exposed, 34 non-exposed),

this is equivalent to say that the true positive rate
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(sensitivity5 27/345 0.794) is higher than false positive rate

(12 specificity5 18/345 0.529). The overall prediction error

is 0.368. The foregoing analysis could be done with any other

cutoff level of the probability score, yielding for each cutoff a

pair of specificity and sensitivity values. These are shown in

the ROC curve, Figure 2. Due to the discrete distribution of

the rounded scores, the ROC contains only 4 points. One of

these points, corresponding to a level of about P5 0.70

(between scores to avoid boundary ambiguities) shows a

slightly better specificity (0.50) and prediction error (0.353),

PPV5 0.614. However, this is in good agreement with the

level of P5 0.50 which corresponds to the smallest expected

prediction error bases on theoretical probabilistic consider-

ations. The AUC (area under the curve) amounted to 0.617.

Technical validation of the nine-CNA-signature by qPCR

The copy number status of the nine signature CNAs, which

was initially determined by array CGH, was technically vali-

dated by qPCR (p< 0.05) (Table 2 and Supporting Informa-

tion, Figure S2). For this purpose, aliquots of the same

genomic DNA samples that were used in array CGH analysis

were analyzed by qPCR. All nine representative genes/regions

from the copy number regions of the CNA-signature showed

similar copy number changes compared to array CGH, con-

firming the initial finding (p< 0.05).

Association of the nine-CNA-signature with clinical and

histological data

The risk score derived from the CNA-signature (7q11.22–

11.23, 7q21.3, 16q24.3, 17q21.31, 20p11.23–11.21, 1p21.1,

2q35, 2q35, 6p22.2) was not associated with any clinical char-

acteristics of the patients such as estrogen-receptor status,

progesterone-receptor status, cytokeratin-expression status

(positive/negative), C-kit-expression status (positive/negative),

Ki67-expression status (positive/negative), Her2/neu-status,

p53-mutation status, BRCA1/2-mutation status and intrinsic

subtypes in the Chernobyl training or the Chernobyl valida-

tion set. This suggests an independent association of the dis-

covered nine-CNA-signature with radiation exposure of

patients.

Dose–response analysis

No statistically significant association of the occurrence of

each of the nine signature CNAs with reconstructed radiation

dose was detected. Moreover, no significant influence of

radiation-dose on the occurrence of each of the nine signa-

ture CNAs could be found in logistic-regression analysis.

Discussion

In this study, we identified a genomic copy number signature

that predicts radiation exposure in post-Chernobyl breast

cancer. Previous studies reported that even at low doses, ion-

ising radiation alters gene expression as a result of induced

CNAs and thus is capable of driving the process of carcino-

genesis.22 In young patients who were exposed to radiation atTa
b
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very young age, copy number gain of the chromosomal band

7q11.22–11.23 has been identified as a marker of radiation

exposure in papillary thyroid carcinomas.16 As for thyroid

cancer, ionizing radiation is also known to be a risk factor

for the development of breast cancer; however, radiation-

specific markers in these tumors are yet undiscovered.1,4–6

Initial studies on gene alterations in breast cancers from the

Atomic bomb survivors in Japan revealed a higher frequency

of Her2 and c-myc oncogene amplifications as well as a

higher histological grading in these radiation-associated

tumors.7,8 However, we did not detect an association of Her2

and c-myc amplification and high histological grade with

breast cancer of patients from the exposed group in our

study (Table 1). This could be due to the fact that patients in

our study were exposed to different radiation conditions

compared to those the Atomic bomb survivors were exposed

to. Clean-up workers of the Chernobyl accident were exposed

to more heterogenous conditions in contrast to the rather

homogenous conditions the Atomic bomb survivors were

exposed to. In addition, women in our study were younger at

time of diagnosis (under 60 years old). Furthermore, exposed

and non-exposed samples were matched for histological grad-

ing in the present study. For the identification of radiation-

specific copy number changes, we used an exploratory

approach on whole genome profiling of genomic copy num-

ber alterations of resected breast cancer tissues from exposed

and matched non-exposed patients.

So far, CNAs are very well described in sporadic breast

cancer while frequently observed CNAs include gain of chro-

mosomal bands 1q, 3q, 4p, 8q, 11q, 17q and 20q and losses

of chromosomal bands 1p, 8p, 11p, 13q, 16q, 17p, 19p and

22q.15,23–25

Figure 1. Heatmap of the 9-CNA-signature of 68 breast cancer patients of the validation set composed of 34 exposed and 34 non-exposed

cases. Copy number gains are represented by green color, losses by red color (top panel). The middle panel shows the risk score on the

probability scale calculated according to the formular described in Material and Methods. Samples (columns) are sorted in ascending order

of the risk score. Cases with probabilities �0.5 are predicted as exposed, otherwise as non-exposed (middle panel, right and left side,

respectively). Given exposure status is shown in the lower panel, thus on the right orange cases mark true positives, blue cases mark false

positives. On the left side orange cases mark false negatives, blue cases mark true negatives.

Figure 2. ROC curve calculated by applying a logistic regression

model fitted on the training set and evaluated on the validation

set. Each point (circles) corresponds to a probability cutoff level

decreasing from left to right, given by the steps visualized in Figure

1. Points are connected by straight lines.
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All these CNAs are in good agreement with CNA-profiles

of this study, which substantiates the plausibility of our

results. Similar findings have been observed in breast cancers

associated with exposure to ionizing radiation in the course

of medical treatment.10 Other cytogenetic studies on breast

cancer have identified CNAs that are associated with clinical

parameters and overall survival.15,24–26 Of special interest is

an association of histological grading and estrogen-receptor

status with specific DNA copy number patterns derived from

primary breast cancers.24 These estrogen-receptor and histo-

logical grading specific patterns, such as gain of 1q and loss

of 16q which are associated with lower histological grading

and estrogen-positive tumors, could also be confirmed in our

study after unsupervised clustering of array-CGH profiles

(Supporting Information, Figure S1). Overall, unsupervised

hierarchical clustering separated the breast cancer CNA pro-

files into four main clusters that correlate with histological

grading, estrogen-receptor status, Her2/neu-status, BRCA1/2-

mutation status, cytokeratin-expression status, age at diagno-

sis and tumor size (Supporting Information, Figure S1 and

Table S3). In addition, the profiles of exposed and non-

exposed cases were differentially distributed between observed

clusters suggesting a radiation-exposure-specific signal within

the genomic copy number profiling data. However,

delineation of copy number alterations determining the clus-

tering is not trivial and might not result in radiation-

exposure specific copy number alterations since an influence

of the other cluster-associated parameters is likely. However,

these findings from the unsupervised cluster analysis moti-

vated us to develop a low-complex CNA-signature predicting

radiation exposure. From mRNA and miRNA expression

data, signatures have been already generated predicting clini-

cal outcome or estrogen-, progesteron-receptor-status and

Her2-status in sporadic breast cancer but there is no such

prediction rule at the genomic copy number level.27,28 Com-

pared to results from association testing, prediction models

come with the advantage that they provide both biological

mechanistic insights and, moreover, bare the potential of

being used as diagnostic or prognostic tools. In the context

of radiation-associated breast cancer a prediction rule could

allow identification of breast cancer tissues that developed

after exposure of patients to ionizing radiation. In order to

generate such a prediction rule we deployed stepwise com-

bined forward–backward selection in combination with mul-

tivariate logistic regression. Signature modeling approaches

using copy number alterations were applied earlier by Pro-

nold et al. and by Sung et al. who applied other statistical

approaches.29,30 Pronold et al. used nearest shrunken

Table 3. Cancer-related candidate genes and miRNAs located in the chromosomal regions of the nine-CNA-signature predicting radiation
exposure in breast cancer

Chromosomal
location Start of region1,2 End of region1,2

Cancer-related candidate genes
and miRNAs Type of aberration

7q21.3 97597612 97749420 OCM2, LMTK2 Gain

6p22.2 26033303 26234636 HIST1H1C, HIST1H1T, HIST1H1E,
HIST1H1D,
HIST1H2AB, HIST1H2AC,
HIST1H2AD,
HIST1H2BB, HIST1H2BC,
HIST1H2BD, HIST1H2BE,
HIST1H2BF, HIST1H2BG,
HIST1H4C, HIST1H4D, HIST1H4E
HFE

Loss

17q21.31 44210733 44231916 KANSL1 Gain

2q35 219083470 220474362 ARPC2, TMBIM1, GPBAR1, AAMP,
PNKD, SLC11A1, USP37, TTLL4
RQCD1, CYP27A1, WNT6,
WNT10A, IHH, NHEJ1, ATG9A,
PTPRN, STK36,
hsa-miR-26b-5p, hsa-miR-375

Loss

1p21.1 105300245 105546898 No tumor-related candidate gene Loss

16q24.3 89472538 90111178 ANKRD11, SPG7, RPL13, CPNE7,
DPEP1, CHMP1A, CDK10,
FANCA, MC1R, TUBB3, C16orf3

Gain

20p11.23-11.21 20226791 24223097 INSM1, RALGAPA2, PAX1, XRN2,
NKX2-2, FOXA2, SSTR4, CD93

Gain

7q11.22-11.23 70899666 72726548 CALN1, STAG3L3, SBDSP1 Gain

2q35 220499593 220503940 SLC4A3 Loss

1Number of clones determined by CGH regions start5 position of first, end5 position of last clone region identifier according to CGH regions.
2According to annotation GRCh37.
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centroids applied to sums of log2-ratios within common

copy number variation segments to predict human ancestry

of healthy individuals.29 Sung et al. applied a 1-norm support

vector machine (SVM) to binary copy number alteration data

for a binary classification of histological subtypes of endome-

trial cancer.30 In our study, logistic regression for a binary

classification of radiation exposure status was chosen for two

reasons: First, called copy number data should preferentially

represent raw or segmented log2-ratios because of the reduc-

tion of noise, interpretability and downstream analysis

according to Van Wieringen et al.31 Second, logistic regres-

sion allows to provide a risk score on the individual level

which is directly associated to the class probabilities.32 Our

approach resulted in a CNA-signature predicting radiation

exposure in breast cancer that is composed of nine genomic

copy number regions located on chromosomal bands

7q11.22–11.23, 7q21.3, 16q24.3, 17q21.31, 20p11.23–11.21,

1p21.1, 2q35, 2q35 and 6p22.2 (Figure 1 and Table 2). The

signature allowed calculating a breast cancer radiation expo-

sure risk score on the probability scale (Figure 1), which was

statistically not associated with any clinical characteristics.

This suggests the signature being an independent prognosti-

cator of radiation exposure of patients. At this point one lim-

itation factor is, that we do not have data on lifestyle factors

such as obesity (in postmenopausal women) and alcohol con-

sumption, which are known to increase the risk for develop-

ing a breast cancer.33 Therefore, we cannot address any

potential influence of these in our analysis. Moreover,

although having information on the smoking status of

patients, we considered working out potential influence of

smoking as not meaningful since most of the patients were

non-smokers.34

Furthermore, no dose–response or statistical association of

the occurrence of CNAs of the signature regions could be

detected. This might be due to another limitation, which is

that dose estimates by RADRUE were only available for a

subset of patients. In addition, an important fact is the uncer-

tainty of dose estimation. The intrinsic uncertainty is mostly

influenced by the uncertainty of dose rates. Another impor-

tant component is the ‘human factor uncertainty,’ which

includes intentional or unintentional mistakes of recollection

and description of the clean-up activities.35 In case of the

female clean-up workers included in this study, this factor is

less pronounced due to the relative simplicity of individual

histories and their operation away from highly heterogeneous

dose rate fields. Furthermore, a small proportion of patients

received very small irradiation doses (0.06 mGy) according to

the RADRUE dose estimation. Although it is possible that

such low doses have no biological effects the samples were

not excluded since we aimed at the identification of a robust

CNA signature for which we preferred a heterogeneous data

set over a homogeneous one. A further limitation point of

this study is, that some of the patients received neoadjuvant

radiotherapy one to three days prior surgery. However, it is

unlikely that over this short period clonal expansion of cells

harboring the same CNAs occurs. Therefore, we would not

expect detectable CNAs that developed in the course of the

neoadjuvant radiotherapy treatment.

However, like many statistical methods, the application of

the signature as a classifier has its own limitations. The best

performance values calculated on the validation set were a

sensitivity of about 80% (0.794) and an NPV (negative pre-

dictive value) of 70% (0.70, given a prevalence of 0.50, that

is, 34 exposed and 34 non-exposed). The PPV (positive pre-

dictive value) was 61.7% (0.617). Often, in diagnostic prac-

tice, one tries to improve the PPV by increasing the cutoff

level of the risk score at the cost of sensitivity. This assumes

a continuous relationship between the score and the PPV.

Using the highest discriminating probability cutoff level in

the data (P � 0.9) yields a PPV of 19/335 0.576 (Figure 1).

Modeled probabilities higher than 0.9 were clustered close to

1.0. They correspond to linear score values h larger than 20.0

up to 300.0. From a post hoc logistic regression of exposure

status (lower panel in Figure 1) with the linear score values h

as independent variable, a smoothed estimate of the PPV

could be achieved, approaching values up to 0.74; however,

this continuous dependency was not significant (results not

shown). Fisher’s exact test showed a significant binary associ-

ation between exposure status and the risk score, using a

probability of 0.5 as decision cutoff. The optimal cutoff (0.7)

determined by ROC analysis (Figure 2) appeared to be

slightly better (one case different); however, from Bayesian

decision theoretic considerations 0.5 is the cutoff with the

smallest expected prediction error. A continuous association

between a risk score given by a signature of CNA and expo-

sure status can also not be expected, because CNA are binary

features. This is one reason for the discrete appearing proba-

bility scores (middle panel in Figure 1 and ROC curve Figure

2). Many of the signature patterns (heatmap, Figure 1) have

frequency 1 and one cannot interpolate between different

combinations of CNA. On the other hand, dosimetric uncer-

tainties may add to the noise seen in the lower panel of

Figure 1. Also and most importantly, it cannot be expected

to predict a complex biological process such as tumorigenesis

with only one parameter such as the signature risk score. The

ability to partly explain the variance of tumorigenesis with a

prediction model is scientifically important.

To get insights into the potential functional impact of the

nine-CNA-signature we extracted all tumor-associated genes

and miRNAs that are mapped to the signature regions (Table

3 and Supporting Information, Table S5). Interestingly, one

region of the CNA-signature overlaps largely with the chro-

mosomal band 7q11.22–11.23 which was gained in the

majority of patients that have been classified as exposed.

7q11.22–11.23 has been reported to be exclusively gained in

papillary thyroid carcinomas of patients who were exposed to

ionizing radiation at very young age in aftermath of the

Chernobyl reactor accident.16 This finding suggests that gain

of the chromosomal band 7q11.22–11.23 could be a radiation

marker of low doses of ionizing radiation, independent of the
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tumor type. Another region of the signature, which is located

on chromosomal band 16q24.3 and overexpression of the

gene FANCA, which is located in this region, predicts

reduced clinical outcome of radiotherapy-treated patients

with head and neck squamous cell carcinoma (HNSCC).36,37

FANCA is a key regulator of the Fanconi anemia (FA)/breast

cancer (BRCA) pathway and controls homology-directed

DNA repair.38 Besides FANCA, many of the genes located

within the copy number regions of the signature are known

to be involved in DNA-damage response and repair (Sup-

porting Information, Table S5). A very prominent gene in

this context is the non-homologous end-joining factor 1 gene

(NHEJ1), which is located on chromosomal band 2q35.

NHEJ1 is required for the non-homologous end-joining path-

way of DNA repair.39 In addition, members of the Histone

H1, H2A, H2b and H4 family, all of which located in the

region of the CNA-signature that covers chromosomal band

6p22.2, were also known to be involved in these processes.40

These findings point to chromosomal instability as a major

consequence of deregulated DNA repair processes, which is a

well-known feature of cells exposed to ionizing radiation.41

Interestingly, copy number loss of the signature region on

2q35 contains miRNA hsa-miRNA-26b-5p, which recently

was published as a breast cancer radiation marker.19 Hsa-

miRNA-26b-5p expression was significantly reduced in cases

showing the loss, indicating, that its expression is mainly

determined by the copy number of the underlying miRNA

gene (Supporting Information, Figure S3).

In summary, our study presents a novel approach to pre-

dict the radiation exposure status of breast cancer patients

using a genomic copy number signature composed of nine

genomic copy number regions. The identified CNA-signature

may allow the detection of radiation-induced breast cancers

and could serve as a diagnostic marker for radiation exposure

in breast cancer. In further studies, an integration of copy

number data with transcriptome data would be desirable to

in-depth investigate if radiation-induced breast cancers repre-

sent a potential new molecular subtype.
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Expression of miRNA-26b-5p and its target TRPS1 is associated
with radiation exposure in post-Chernobyl breast cancer
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Ionizing radiation is a well-recognized risk factor for the development of breast cancer. However, it is unknown whether

radiation-specific molecular oncogenic mechanisms exist. We investigated post-Chernobyl breast cancers from radiation-

exposed female clean-up workers and nonexposed controls for molecular changes. Radiation-associated alterations identified

in the discovery cohort (n538) were subsequently validated in a second cohort (n539). Increased expression of hsa-miR-

26b-5p was associated with radiation exposure in both of the cohorts. Moreover, downregulation of the TRPS1 protein, which

is a transcriptional target of hsa-miR-26b-5p, was associated with radiation exposure. As TRPS1 overexpression is common in

sporadic breast cancer, its observed downregulation in radiation-associated breast cancer warrants clarification of the specific

functional role of TRPS1 in the radiation context. For this purpose, the impact of TRPS1 on the transcriptome was character-

ized in two radiation-transformed breast cell culture models after siRNA-knockdown. Deregulated genes upon TRPS1 knock-

down were associated with DNA-repair, cell cycle, mitosis, cell migration, angiogenesis and EMT pathways. Furthermore, we

identified the interaction partners of TRPS1 from the transcriptomic correlation networks derived from gene expression data

on radiation-transformed breast cell culture models and sporadic breast cancer tissues provided by the TCGA database. The

genes correlating with TRPS1 in the radiation-transformed breast cell lines were primarily linked to DNA damage response and

chromosome segregation, while the transcriptional interaction partners in the sporadic breast cancers were mostly associated

with apoptosis. Thus, upregulation of hsa-miR-26b-5p and downregulation of TRPS1 in radiation-associated breast cancer tis-

sue samples suggests these molecules representing radiation markers in breast cancer.

Breast cancer is one of the most common cancers in women

worldwide. Besides risk factors such as age and lifestyle, it is

well-recognized that breast cancer risk increases with expo-

sure to ionizing radiation. Patients with preceding

radiotherapy for the treatment of Hodgkin lymphoma exhibit

an increased risk to develop breast cancer as a secondary

tumor. In the Japanese atomic bomb survivors cohort, a simi-

lar finding has been reported for women who were exposed
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to ionizing radiation during adolescence.1 Also in the after-

math of the Chernobyl accident in 1986, a significant

increase of the breast carcinoma rate (standardized incidence

ratio 190.6%) in female clean-up workers was noticed in

comparison to sporadic breast cancer rates in Ukraine.2,3 To

date, despite this epidemiologic evidence, the knowledge

about radiation-specific mechanisms of breast carcinogenesis

after low-dose exposure is sparse.

In contrast to environmental exposures of patients from

this study, aberrant expressions of miRNAs after exposure to

therapeutic doses of ionizing radiation have already been

reported.4 miRNAs are 19–25 nucleotides long, noncoding,

highly conserved RNA molecules, that are known to play an

important role in the regulation of gene expression at the

post-transcriptional level. Numerous studies have shown a

deregulation of miRNAs in tumors, thereby demonstrating

that miRNAs are involved in the process of carcinogenesis

and act as oncogenes or as tumor suppressors.5 Breast

cancer-specific miRNA profiles have been observed for differ-

ent breast cancer subtypes, enabling a classification into dif-

ferent molecular subtypes.6 However, the role of miRNAs in

radiation-associated breast cancer has not been investigated

so far. Therefore, our study intended to investigate the

miRNA profiles of breast cancers from a cohort of female

clean-up workers who were exposed to ionizing radiation

from the Chernobyl reactor accident and nonexposed con-

trols matched for residence, tumor type, age at diagnosis,

TNM classification and grading. We explored if among miR-

NAs that are known to play a role in sporadic breast cancer

there are specifically radiation-associated ones. We discovered

that expression of hsa-miR-26b-5p was increased in

radiation-associated breast cancers compared to nonexposed

controls. Further, we showed that expression of one of the

hsa-miR-26b-5p target proteins TRPS1 was significantly

decreased in radiation-exposed cases. TRPS1 is a GATA-type

transcription factor and consists of nine zinc-finger domains,

including a single GATA-type DNA-binding domain. Either

mutation or deletion of this gene causes a disease called tri-

chorhinophalangeal syndrome. Previous studies have shown

that TRPS1 is expressed in several human malignant tumors

and implied an important function in tumor growth, cell

cycle, angiogenesis, apoptosis, cell proliferation, migration

and metastasis.7–13

In this study, we were able to identify for the first time

one miRNA and one of its target proteins to be significantly

associated with radiation-associated breast cancer.

Material and Methods

Patients tumor tissues and clinical data

Formalin-fixed paraffin-embedded (FFPE) breast cancer tis-

sue samples (n5 76) from 38 female Ukrainian patients that

were exposed to radiation after the Chernobyl reactor acci-

dent and a matched set of 38 breast cancer samples from

nonexposed patients from Ukraine were collected (discovery

set). The vast majority (34 out of 38) of patients have been

exposed as clean-up workers after the accident for which an

elevated breast cancer incidence has been reported.2,3 Four

patients were exposed as evacuees after the accident. The

mean age at time of exposure was 33 years (range 18–45

years), the mean age at time of diagnosis was 49 years (range

33–59 years), and the mean latency of tumors was 17 years.

None of the patients from the discovery set received neoadju-

vant radio(chemo)therapy (Table 1).

A validation cohort consisting of FFPE breast cancer tis-

sue samples, 39 from post-Chernobyl clean-up workers and

39 matched nonexposed Ukrainian control cases, was estab-

lished. The mean age at time of exposure was 33 years (range

23–48 years) and the mean age at diagnosis 51 years (range

35–59 years) and the mean latency was 18 years. Out of 78

patients of the validation cohort, 18 received a neoadjuvant

radio(chemo)therapy (Table 1).

The so-called RADRUE method, which was adapted specifi-

cally for estimation of breast doses, was used for reconstruction

of the absorbed doses of the exposed breast cancer patients.14

Information about the absorbed doses were only available for a

subset of the exposed breast cancer patients (n5 54). The

absorbed doses showed a large interindividual variability

between patients ranging from 0.06 to 929 mGy (median 8.53

mGy) in the clean-up workers and from 5.72 to 36.85 mGy

(median 18.68 mGy) in the evacuees (unpublished data).

In both cohorts, all patients were younger than 60 years at

the time of diagnosis. Exposed patients and nonexposed con-

trols for this case–case study were frequency matched for resi-

dence, tumor subtype, age at diagnosis, TNM-classification and

histological grading. The majority of tumors was diagnosed as

invasive carcinoma of no special type (NST; discovery cohort:

What’s new?

While ionizing radiation is an established risk factor for breast cancer, little is known about mechanisms of radiation-specific

breast carcinogenesis related to low-dose exposure. Here, investigation of molecular changes in breast cancers from female

post-Chernobyl clean-up workers exposed to radiation revealed two radiation-specific molecular markers: increased expression

of hsa-miR-26b-5p and downregulation of its target TRPS1. In human radiation-transformed breast cells, TRPS1 knockdown

was found to be associated with enrichment of DNA repair, cell cycle, mitosis, angiogenesis, migration and EMT pathways.

Further investigation of specific markers could facilitate the identification of radiation-induced breast cancer and potentially

provide a basis for individualized therapy.
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95%, validation cohort: 90%) and invasive lobular carcinoma

(ILC; discovery cohort: 2.5%, validation cohort: 8%). Two cases

were diagnosed as intracystic papillary breast carcinoma and

another two as breast carcinomas with medullary features.

Immunohistochemical staining for estrogen and progesterone

receptors, C-kit, Cytokeratin 5/6, TP53 and Ki67 antigen expres-

sion and HER2 gene status determination by fluorescence

in situ hybridization (FISH) is described in the Supporting

Information, Material and Methods part.

Information of all clinicopathologic characteristics of the

discovery and validation cohort is presented in Supporting

Information, Tables S1 and S2.

Total RNA including the small RNA fraction was isolated

using the Qiagen RNeasy FFPE Kit (Qiagen, Hilden, Germany).

Table 1. Patient characteristics of the Chernobyl discovery and validation cohort

Chernobyl Discovery Cohort Chernobyl Validation Cohort

Characteristics Exposed Not exposed p value1 Exposed Not exposed p value1

Number of patients 38 38 39 39

Tumor type, no. (%) invasive carcinoma
of no special type

36 (95) 36 (95) 1 35 (90) 35 (90) 1

lobular 1 (3) 1 (3) 3 (8) 3 (8)

intracystic 0 (0) 0 (0) 1 (3) 1 (3)

medullar 1 (3) 1 (3) 0 (0) 0 (0)

Estrogen-receptor status, no. (%) positive 24 (63) 24 (63) 1 28 (72) 30 (77) 0.8

negative 14 (37) 14 (37) 11 (28) 9 (23)

Progesteron-receptor status, no. (%) positive 22 (58) 26 (68) 0.48 26 (67) 29 (74) 0.62

negative 16 (42) 12 (32) 13 (33) 10 (26)

C-kit status, no. (%) positive 7 (18) 6 (16) 1 2 (5) 3 (8) 1

negative 31 (82) 32 (84) 37 (95) 36 (92)

Cytokeratin 5/6 status, no. (%) positive 7 (18) 7 (18) 1 6 (15) 1 (3) 0.11

negative 31 (82) 31 (82) 33 (85) 38 (97)

P53 status, no. (%) positive 13 (34) 15 (39) 0.81 24 (62) 22 (56) 0.82

negative 25 (66) 23 (61) 15 (38) 17 (44)

Ki-67 status, no. (%) positive 31 (82) 32 (84) 1 39 (100) 39 (100) 1

negative 7 (18) 6 (16) 0 (0) 0 (0)

BRCA1/2 status, no. (%) positive 2 (5) 3 (8) 0.67 4 (10) 3 (8) 1

negative 36 (95) 34 (89) 35 (90) 36 (92)

not eveluable 0 (0) 1 (3) 0 (0) 0 (0)

Her2 status, no. (%) positive 2 (5) 4 (11) 0.67 6 (15) 8 (21) 0.77

negative 36 (95) 34 (89) 29 (74) 31 (79)

not eveluable 0 (0) 0 (0) 4 (10) 0 (0)

pT stage, no. (%) pT1 21 (55) 20 (53) 0.88 11 (28) 12 (31) 0.85

pT2 14 (37) 16 (42) 27 (69) 25 (64)

pT3 3 (8) 2 (5) 1 (3) 2 (5)

pN stage, no. (%) pN0 24 (63) 24 (63) 1 16 (41) 17 (44) 1

PN1 13 (34) 14 (37) 18 (46) 19 (49)

pN2 1 (3) 0 (0) 3 (8) 3 (8)

pN3 0 (0) 0 (0) 1 (3) 0 (0)

pNx 0 (0) 0 (0) 1 (3) 0 (0)

pM stage, no. (%) M0 38 (100) 38 (100) 1 39 (100) 39 (100) 1

Grade, no. (%) G1 1 (3) 1 (3) 1 2 (5) 2 (5) 1

G2 24 (63) 24 (63) 26 (67) 26 (67)

G3 13 (34) 13 (34) 11 (28) 11 (28)

1The p values were calculated by Fisher’s-exact test.

M
o
le
cu
la
r
C
an

ce
r
B
io
lo
g
y

Wilke et al. 575

Int. J. Cancer: 142, 573–583 (2018) VC 2017 UICC



Small RNA (miRNA) integrity was analyzed by qRT-PCR of

the small noncoding RNA RNU24 using TaqMan chemistry

(Life technologies, Carlsbad, CA). Samples with Ct values <35

were considered suitable for analysis.

Fisher’s exact test was used to test associations of the expo-

sure status with any clinical characteristics of the patients such

as estrogen-receptor status, progesterone-receptor status,

cytokeratin-expression status (positive/negative), C-kit-

expression status (positive/negative), Ki67-expression status

(positive/negative), Her2/neu-status, p53-mutation status,

BRCA1/2-mutation status, pT-status, pN-status and grading.

Significance was accepted for p< 0.05.

Quantitative real-time RT-PCR (qRT-PCR)

Reverse transcription of miRNAs was performed using the

MicroRNA Reverse Transcription Kit and microRNA-specific

stem-loop primers according to the manufacturer’s protocol

(Life Technologies). TaqMan MicroRNA assays (Life Technol-

ogies) for the following miRNAs were used: hsa-miR-222-3p

(477982_mir), hsa-miR-221-3p (477981_mir), hsa-miR-372-3p

(478071_mir), hsa-miR-26b-5p (478418_mir), hsa-miR-302d-3p

(478237_mir), hsa-miR-124-3p (477879_mir), hsa-miR-1–3p

(477820_mir) and hsa-miR-99b-5p (478343_mir). For endoge-

nous normalization, the assays for RNU44 (001094) and

RNU48 (001006) were used. qRT-PCR reactions (20 ml) were

carried out in triplicates using the ViiA 7 Real Time PCR Sys-

tem in combination with the ViiA 7 Software v.1.2.2 following

the manufacturer’s protocol (Life Technologies). Relative

expressions were calculated using the DDCt method. The par-

tial differential test considering intertumor heterogeneity was

used to test for statistical significant differences of miRNA

expressions between exposed and nonexposed samples and

possible associations of miRNA expression with clinicopatho-

logical data.15

TRPS1 (Hs00232645_m1) TaqMan gene expression assay

(LifeTechnologies) was used to validate the TRPS1-

knockdown and to determine the TRPS1-knockdown efficacy

in B42-11 and B42-16 cells at gene expression level.

For technical validation of the gene expression microarray

data, qRT-PCR was performed for randomly selected genes

(n5 12) detected by gene expression microarray in B42-11

and B42-16 cells: ANXA1 (Hs00167549_m1), APRT

(Hs00975725_m1), BBC3 (Hs00248075_m1), BMP2 (Hs010

55564_m1), CLNS1A (Hs00818054_m1), DTL (Hs00978

565_m1), DUSP6 (Hs00169257_m1), F2R (Hs00169258_m1),

PLK2 (Hs01573405_g1), RFC5 (Hs00738859_m1), TRPS1

(Hs00232645_m1) and TUBB3 (Hs00801390_s1). For endog-

enous normalization, the assays for ACTB (Hs99999903_m1)

and B2M (Hs99999907_m1) were used. RNA was reverse

transcribed using the QuantiTect Reverse Transcription Kit

(Qiagen). qRT-PCR reactions (10 ml) and calculations of rela-

tive expressions were carried out as described above. For

technical validation of the gene expression microarray data,

Pearson correlation analyses of expression determined by

qRT-PCR with that determined by microarray were

performed. Validation was considered successful for correla-

tion coefficients >0.5 and p values <0.05.

Immunohistochemistry

The expression of the TRPS1 protein in both tumor cohorts

was measured by immunohistochemical staining (IHC) of

FFPE tumor sections with a primary antibody against

TRPS1 (Abcam: ab111439, Cambridge, UK). The antibody

was selected from Abcam with information about antibody

specificity and staining patterns.9 The primary antibody was

used in a dilution of 1:100 and Discovery-Universal (Roche,

Ventana, Tucson, AZ) as a secondary antibody. IHC stain-

ing was performed with the automated staining instrument

Discovery XT (Roche, Ventana) system using peroxidase-

DAB-(diaminobenzidine)-MAP chemistry (Roche, Ventana)

for signal detection. The stained tissue sections were fixed

in an ethanol series and coated by a coverslip. All stained

slides were scanned at 203 objective magnification using

the Leica SCN400 digital slide scanning system (Leica,

Houston, TX).

Digital image analysis

The evaluation of the immunohistochemical staining was per-

formed using the digital image analysis platform Definien-

sTissueStudio 3.5 (Definiens AG, Munich, Germany). For

this purpose, the digital slide images were imported into the

image analysis software. In the first step regions of interest,

that is tumor area, were manually defined. A specific rule set

was then created to detect and quantify the TRPS1-stained

nuclei within the annotated tissue areas. The quantified

parameters were the amount and the mean brown intensity

of TRPS1-positive nuclei per annotated tissue area. The aver-

aged TRPS1 staining intensities were tested for significant dif-

ferences between exposed and nonexposed samples and

possible associations of TRPS1 staining intensities with clini-

copathological data using partial differential testing, which

considers intertumor heterogeneity.15 p values <0.05 were

considered statistically significant.

B42-11 and B42-16 cell lines and spectral karyotyping

(SKY)

Human B42-11 and B42-16 radiation transformed breast cells

were grown in mammary epithelial growth medium (MEGM)

as published previously.16 The B42-11 and B42-16 cell lines

were authenticated by STR-typing and spectral karyotyping

(SKY). Metaphase chromosome spreads were prepared and

hybridized as described earlier.17 SKY image analysis was

performed with a SpectraCube system and SkyView imaging

software (Applied Spectral Imaging).

RNA interference

The B42-11 and B42-16 cells were seeded into six-well plates

and were transfected at 70–90% confluency in triplicates with

a nonsense scrambled control (Ambion, Carlsbad, CA; Nega-

tive control #1) or two specific siRNAs against TRPS1
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(Ambion, silencer select siRNA 1: ID: s14428 and siRNA 2:

ID: s14427). SiRNA transfections were performed using Lipo-

fectamine RNAiMAX (Life Technologies) according to the

manufacturer’s instructions. 7.5 ml lipofectamine and 3.75 ml

of TRPS1 siRNA were used per sample resulting in a siRNA

concentration of 75 pmol per well. After 24, 48, 72 and

96 hrs, cells were harvested for total RNA isolation using the

Qiagen RNeasy Mini Kit (Qiagen). In addition, protein

lysates were generated 48 and 72 hrs after transfection to ver-

ify TRPS1-knockdown efficacy by Western blot analysis.

Western blot analysis

Western blot analysis with an antibody against TRPS1

(Abcam: ab111439) was performed to monitor the TRPS1

knockdown at protein level. RIPA-buffer (150 mM NaCl, 1%

NP-40, 10 mM MDOC, 0.1% SDS, 50 mM Tris pH 8.0 sup-

plemented with protease, phosphatase and HDAC inhibitors)

was used for protein extraction which was performed on ice.

Twenty-five micrograms of total protein was used for each

Western blot analysis. The proteins were separated on a 10%

SDS-PAGE. PVDF-membranes were cut and blocked with

8% skim milk buffer after immunoblotting followed by incu-

bation over night at 48C with primary antibodies (rabbit

polyclonal anti-TRPS1, Abcam: ab111439; 1:2000; mouse

monoclonal anti-ß-Actin, Sigma: A5441; 1:10000) diluted in

Roti-Block (Roth). After four washing steps with TBST-buffer

(5 min each), the PVDF-membranes were incubated for 2

hrs with a secondary antibody (anti-rabbit IgG, Jackson

ImmunoResearch; 1:50000, anti-mouse IgG Jackson Immu-

noResearch; 1:50000), diluted in 8% skim milk buffer. Blots

were developed with Amersham ECL Select Western Blotting

Detection Reagent (GE Healthcare, Little Chalfont, United

Kingdom). Chemiluminescence was detected and images

were acquired with a FluorChem HD2 documentation system

from Alpha Innotech in combination with the AlphaView

software (Biozym, Oldendorf, Germany).

Microarray-based gene expression analysis

To investigate the effect of TRPS1-knockdown on the tran-

scriptome, mRNA microarray expression profiling of biological

triplicates of cells after TRPS1-knockdown, a nonsense scram-

bled control and the B42-11 and B42-16 untreated cell lines 48

hrs after transfection was performed using G3 Human Gene

Expression 8x60k v2 microarrays (AMADID 72363, Agilent

Technologies, Santa Clara, CA). RNA quality was assessed

prior to expression analysis using an Agilent 2100 Bioanalyzer

(Agilent Technologies). The obtained RNA integrity numbers

(RINs) ranged from 6.7 to 9.7. The analysis was performed

according to the manufacturer’s instructions using 50 ng of

total RNA. Microarrays were scanned using a G2505C Sure

Scan Microarray Scanner (Agilent Technologies) followed by

raw data extraction with the Feature Extraction 10.7 software

(Agilent Technologies). Data quality assessment, preprocessing

and normalization were conducted in R using the Bioconduc-

tor AgiMicroRNA package.18 Statistical analyses were

performed using functions from the Bioconductor limma pack-

age for the identification of significantly differentially expressed

genes after TRPS1-knockdown (siRNA 1 and siRNA 2 taken

together) compared to the nonsense scrambled control.19 A

cutoff for FDR-adjusted p values of 0.05 and minimum abso-

lute log2-fold change of 0.5 was applied. Significantly deregu-

lated genes after TRPS1 knockdown were subjected to pathway

enrichment analysis using the Cytoscape Reactome Functional

Interaction (FI) plugin (version 2016) within the Cytoscape

network visualization software (version 3.5.1).20,21 For pathway

enrichment analysis, only network modules containing more

than three genes were considered. The top 50 pathways with

an FDR-adjusted p values <0.05 were considered for further

interpretation.

TRPS1-centered correlation network

To explore potential direct and indirect interaction partners of

TRPS1 at the transcriptome level, we generated gene correla-

tion networks from the microarray gene expression data on

B42-11 and B42-16 untransfected, scrambled-siRNA trans-

fected and TRPS1-downregulated cells and from global mRNA

expression data on sporadic breast cancers of the publicly

available The Cancer Genome Atlas (TCGA) breast cancer

dataset.22,23 The latter of which were matched to the breast

cancer post-Chernobyl cohort for the parameters tumor type,

hormone receptor status, age, TNM-classification, grading,

BRCA1/2- and Her2-status. For both data sets, correlation

(Pearson) of the TRPS1 expression vector and all other genes

was determined and a correlation test was applied. The result-

ing p values were corrected for multiple-testing error deter-

mining the Benjamini–Hochberg FDR.24 A cutoff for FDR-

adjusted p values of 0.05 was applied. The top 100 correlating

genes were selected and subjected to GO-term and pathway

enrichment analysis using the ClueGo plugin (version 2.3.2,

2016) of the Cytoscape network analysis software (version

3.0.2).21,25 The top 50 pathways with an FDR-adjusted p value

<0.05 were considered for further interpretation.

Results

Selection of candidate miRNAs

We explored the literature by PubMed research and identified

the following miRNAs to be most frequently published as

being associated with breast cancer and radiation exposure:

hsa-miR-26b-5p, hsa-miR-99b-5p, hsa-miR-221-3p and hsa-

miR-222-3p.13,26–29 Commonly regulated target genes of these

miRNAs were identified using MiRTarBase (version 4.0, 2014)

and revealed the gene TRPS1 (The trichorhinophalangeal syn-

drome 1).30 According to MiRTarBase (version 4.0, 2014),

TRPS1 is regulated by additional four miRNAs: hsa-miR-124-

3p, hsa-miR-302d-3p, hsa-miR-1–3p and hsa-miR-372-3p. We

selected these eight TRPS1-regulating miRNAs and the target

protein TRPS1 for further analysis in the discovery and valida-

tion cohorts.
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Increased hsa-miR-26b-5p expression is associated with

radiation exposure

The analysis of the selected miRNAs was performed by qRT-

PCR and subsequent partial differential testing between the

exposed and nonexposed tumor sets. Hsa-miR-221-3p

(FC5 1.87, partial differential test p5 0.006), hsa-miR-222-3p

(FC5 1.39, partial differential test p5 0.03) and hsa-miR-26b-

5p (FC5 1.97, partial differential test p value5 0.01) were sig-

nificantly upregulated in the exposed compared to the nonex-

posed tumor set of the discovery cohort. The other miRNAs

did not show statistically significant deregulation between

exposed cases and controls. From the three miRNAs that were

found to be significantly associated with radiation exposure in

the discovery cohort, upregulation of hsa-miR-26b-5p could be

confirmed in the exposed cases of the validation cohort

(FC5 1.3, partial differential test p5 0.02, Figs. 1a and 1b).

Hsa-miR-26b-5p expression was not associated with estrogen-

receptor status, progesterone-receptor status, cytokeratin-

expression (positive/negative), C-kit-expression (positive/nega-

tive), Ki67-expression (positive/negative), Her2/neu-status,

TP53-status and BRCA1/2-mutation status in the discovery or

the validation cohort. Moreover, no dose–response effect was

observed for hsa-miR-26b-5p (data not shown). We also tested

if the exposure status was associated with any clinical

characteristics of the patients, whereby no significant associa-

tion between exposure status and any of the clinical character-

istics could be detected (Table 1).

Decreased TRPS1 protein expression is associated with

radiation exposure

The expression of the TRPS1 protein, which was identified as

a target of the literature-derived candidate miRNAs, was deter-

mined by immunohistochemical staining of serial FFPE tissue

sections and subsequently tested for association with radiation

exposure. After software-based quantification of staining inten-

sities a significant downregulation of TRPS1 protein expression

in breast cancer tissues from exposed patients was detected

(partial differential test p5 0.028). This finding was confirmed

in the validation cohort (partial differential test p5 0.027).

Visualization of these results can be found in Figures 2 and 3a

and 3b. Furthemore, no dose–response effect was observed for

TRPS1 (data not shown).

Association of TRPS1 expression with clinical and

histological data

For all tumor samples of the discovery and validation cohorts,

an association of the TRPS1 protein expression with other

clinical parameters was tested (partial differential test). TRPS1

Figure 1. (a) The expression levels of all eight TRPS1-regulating miRNAs were analyzed in the Chernobyl discovery cohort by qRT-PCR. Hsa-miR-

222-3p, hsa-miR-221-3p and hsa-miR-26b-5p showed a significant differential expression between exposed and nonexposed samples. The

expression levels of these three microRNAs were also tested in the Chernobyl validation cohort. The expression of hsa-miR-26b-5p was associ-

ated with exposure to ionizing radiation in the validation cohort. (b) Violin plots displaying the expressions of hsa-miR-26b-5p, hsa-miR-221-3p

and hsa-miR-222-3p in the Chernobyl discovery cohort and hsa-miR-26b-5p in the Chernobyl validation cohort measured by qRT-PCR (2DCT val-

ues) are shown (right panel). The nonexposed control group is labeled in light blue and the exposed group in purple. The middle dark line repre-

sents the median of expression values. The vertical black line represents the interquartile. [Color figure can be viewed at wileyonlinelibrary.com]
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protein expression was not associated with estrogen-receptor

status, progesterone-receptor status, cytokeratin-expression

(positive/negative), C-kit-expression (positive/negative), Ki67-

expression (positive/negative), Her2/neu-status, TP53-status

and BRCA1/2-mutation status in the discovery and the valida-

tion cohort, suggesting an independent association of TRPS1

downregulation with radiation exposure of patients.

Characterization of the B42-11 and B42-16 cell lines

SKY analysis revealed the following karyotype for B42-16

resulting from evaluation of 15 metaphases: 47,XX,der

(4)t(4;12)(p31;?),i(8)(q10),1der(8)t(8;10)(q21;?),der(10)t(8;10;12)

(?;p12;q23;?),der(12)t(8;10:12)(?;?;q22) and for B42-11:47,XX,

1i(8)(q10),der(7)t(7;10)(q11.1;11.2). A representative metaphase

for each is shown in Supporting Information, Figure S1.

TRPS1 knockdown in B42-11 and B42-16 cells

To characterize the impact of TRPS1 on the transcriptome in

radiation-transformed breast cells, siRNA-knockdown of

TRPS1 was performed in the radiation-transformed breast

cell lines B42-11 and B42-16. The knockdown reached a

maximum after 48 hrs (Fig. 4 and Supporting Information,

Fig. S2); therefore, this timepoint was chosen for differential

expression analysis between TRPS1-knockdown and scram-

bled control of B42-11 and B42-16 cells. The analysis

revealed 281 significantly differentially expressed microarray

probes (144 downregulated and 137 upregulated) relating to

267 different genes (Supporting Information, Table S3). Ran-

domly selected genes (n5 12) detected by gene expression

microarray in B42-11 and B42-16 cells were chosen for tech-

nical validation of the microarray data. Correlation analysis

of expression of the genes selected for validation determined

by qRT-PCR and mRNA microarray showed strong correla-

tion for ten out of 12 analyzed genes (Supporting Informa-

tion, Table S4). Furthermore, pathway enrichment analysis

was conducted based on the Reactome network, resulting in

nine modules containing the 267 significantly deregulated

genes after TRPS1 knockdown. Significantly enriched path-

ways involving DNA-repair, cell cycle, mitosis, cell migration,

angiogenesis and EMT were detected (Supporting

Figure 2. Digital image analysis of immunohistochemically stained FFPE tumor sections from non-exposed and exposed breast cancer sam-

ples using an antibody against TRPS1. (a/b) Two representative immunohistochemically stained breast carcinoma cases are shown for non-

exposed (a) and exposed (b) cases. Image details of Aa and Ba (black frames) are shown in Ab and Bb. Detection and quantification of

TRPS1-stained nuclei was performed using the digital image software Definiens. Nuclei of tumor cells, for which the staining intensities

were calculated based on the algorithm, are labeled in yellow (Ac, Bc). [Color figure can be viewed at wileyonlinelibrary.com]

M
o
le
cu
la
r
C
an

ce
r
B
io
lo
g
y

Wilke et al. 579

Int. J. Cancer: 142, 573–583 (2018) VC 2017 UICC



Information, Table S5). Downregulated genes were mainly

involved in DNA-repair, cell cycle and mitosis while upregu-

lated genes mostly showed up in cell migration, angiogenesis

and EMT pathways (Supporting Information, Table S5).

TRPS1-centered correlation network

To explore putative direct and indirect interaction partners of

TRPS1 in the sporadic and radiation-associated context at

the transcriptome level, two TRPS1-centered correlation net-

works were generated and subsequently analyzed for involved

pathways. To examine the role of TRPS1 in sporadic breast

cancer, we deployed the RNAseq-derived global gene expres-

sion data set on breast cancer from the The Cancer Genome

Atlas (TCGA) dataset.22,23 From the 1106 available cases, a

subset that matched our radiation-associated breast cancer

cohort (n5 382) was used. In total, 12,106 genes showed a

statistical significant correlation with TRPS1 expression in

sporadic breast cancers of the publicly available TCGA data-

set and 1,270 genes in the B42-11 and B42-16 cells

(FDR< 0.05) (Supporting Information, Table S6).

From both correlation networks, we selected the top 100

correlating genes with regard to FDR (Figs. 5a and 5b and Sup-

porting Information, Table S6). GO and pathway enrichment

analysis including the top 100 correlating genes of the sporadic

breast cancer correlation network revealed mainly significant

enrichment of apoptosis related pathways such as TRADD:-

TRAF2:RIP1 complex binds FADD and RIPK1 is

deubiquitinated. The radiation-associated cell lines B42-11 and

B42-16 showed mainly significant enrichment of GO terms

related to the process of chromosome segregation and DNA

repair.

Discussion

Radiation-specific markers have already been reported in

young patients suffering from papillary thyroid carcinomas in

the aftermath of the Chernobyl accident.31 Although ionizing

radiation is also known to be a risk factor for the develop-

ment of breast cancer, radiation-specific markers in these

tumors are still unknown.2,3,32 This study aimed for the dis-

covery of radiation-specific changes of miRNA and protein

expressions in breast cancer samples from Ukrainian clean-

up workers, who were exposed to ionizing radiation from the

Chernobyl accident by comparison with nonexposed Ukrai-

nian control cases matched for age and clinical parameters.

From the published literature, we identified four miRNAs

(hsa-miR-26b-5p, hsa-miR-99b-5p, hsa-miR-221-3p and hsa-

miR-222-3p) that were associated with breast cancer and radi-

ation exposure.13,26–29 The TRPS1 gene was recognized as a

common target gene that is regulated by additional four miR-

NAs (hsa-miR-124-3p, hsa-miR-302d-3p, hsa-miR-1-3p and

hsa-miR-372-3p).30 The eight TRPS1-regulating miRNAs in

total along with the TRPS1 protein were investigated on two

independent post-Chernobyl breast cancer cohorts from clean-

up workers. Consistently, a significant upregulation of hsa-

miR-26b-5p in exposed compared to matched nonexposed

patients became apparent in both cohorts and thus, an associa-

tion of hsa-miR-26b-5p with radiation exposure could be vali-

dated independently (Fig. 1). Hsa-miR-26b-5p plays a pivotal

role in sporadic breast cancer.29 In sporadic breast cancer,

decreased hsa-miR-26b-5p expression was reported, and could

be confirmed in our sporadic breast cancer control cases. Hsa-

miR-26b-5p obviously plays a tumor-suppressive role by the

promotion of apoptosis and the suppression of cell growth.29,33

An opposed observation in post-Chernobyl cases points to a

radiation-specific deregulation of hsa-miR-26b-5p and renders

the question whether TRPS1 is also affected. Surprisingly, also

the TRPS1 expression was significantly downregulated in both

exposed breast cancer cohorts compared to the nonexposed

cohorts. As this finding was confirmed in two independent

cohorts, it suggests an important role of TRPS1 in radiation-

associated breast cancer (Figs. 2 and 3). To our knowledge

TRPS1 and hsa-miR-26b-5p alterations have not been investi-

gated in radiation-associated breast cancers so far. In sporadic

breast cancer, an upregulated TRPS1 expression was previously

reported which is in line with our findings in the sporadic

subset of control cases.34 In sporadic breast cancer TRPS1 is

linked to the stimulation of cell proliferation and angiogenesis

and the promotion of cell cycle progression.7,10,12 Furthermore,

TRPS1 overexpression was proposed as a prognostic marker in

early stage breast cancer due to an association with improved

overall survival and disease-free survival in these tumors.35

Moreover, TRPS1 expression was found to correlate with ER,

Figure 3. Significantly increased TRPS1 protein expression repre-

sented by the marker staining intensity was observed in breast

cancer tissues from the nonexposed groups (light blue) compared

to the exposed groups (purple) in the discovery (a, p50.028) and

validation cohorts (b, p50.027). p values were calculated using

the partial differential test considering intertumor heterogeneity.

[Color figure can be viewed at wileyonlinelibrary.com]
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PgR, Ki67, GATA-3 and Her2 expression, which we could not

confirm in our data.36,37 At the same time, TRPS1 acts as a

negative regulator of EMT and thus could reduce the meta-

static potential of breast cancers by suppressing transcription-

ally the processes of migration and invasion.11,13 Taken

together the published data on TRPS1 overexpression in spo-

radic breast cancer and its impact on tumor progression sug-

gests in turn a more aggressive tumor behavior in radiation-

associated breast cancers with downregulated TRPS1.

To clarify the functional consequences of TRPS1 downre-

gulation in the radiation-associated context, we performed

siRNA-knockdown experiments in radiation transformed

breast cells B42-11 and B42-16. A time-course analysis of

TRPS1 expression after siRNA-transfection (Supporting

Information, Fig. S2) showed a downregulation of TRPS1

compared to the scrambled control at the mRNA and protein

levels (Fig. 4). The major goal of this knockdown experiment

was to establish a gene-correlation network in radiation-

associated B42-11 and B42-16 cells based on global transcrip-

tomic data for functional insights. A pathway enrichment

analysis of differentially expressed genes revealed a significant

enrichment of pathways related to DNA-repair, cell cycle,

mitosis, cell migration, angiogenesis and EMT (Supporting

Information, Table S5). This is in good agreement with the

expectations from the published data as discussed above.

However, a novel finding of this study is the effect of TRPS1

downregulation on DNA-repair pathways in radiation-

associated B42-11 and B42-16 cells pointing to radiation-

induced effects in these cells. Furthermore, gene-expression-

microarray data could be technically validated by qRT-PCR

(Supporting Information, Table S4).

The gene interaction network of TRPS1 from global tran-

scriptomic data of the TRPS1-knockdown in B42-11 and B42-

16 cells was compared to a TRPS1-centered correlation net-

work based on global mRNA expression data from matched

sporadic breast cancers of the publicly available TCGA dataset

(Figs. 5a and 5b and Supporting Information, Table S6). The

main difference between both networks was a significant

enrichment of apoptosis-related processes in sporadic tumors,

while a link to DNA repair, chromosome segregation and

genomic instability became apparent in the radiation trans-

formed cell lines B42-11 and B42-16 (Supporting Information,

Table S7). The involvement of TRPS1 in chromosome segrega-

tion has already been described in chondrocytes.38 Many of

the top ten genes interacting with TRPS1 are known to be

involved in fundamental carcinogenic processes such as DNA

repair and cell migration. For example, GPR64 and LYAR

(TRPS1-interaction partners in B42-11 and B42-16 cells show-

ing a positive correlation with TRPS1) are known to be

involved in the process of migration. GPR64 is known to be

involved in the adhesion and migration of breast cancer cells

through mechanisms including a noncanonical NFkB path-

way.39 Furthermore, it was reported that transcription factor

LYAR promote tumor cell migration and invasion by

Figure 4. (a/c) Levels of TRPS1-mRNA-expression in untransfected (cont), scrambled-siRNA transfected (scr) and TRPS1-siRNA transfected

B42-11 and B42-16 cells 48 hrs after transfection. (b/d): Western Blot images show levels of TRPS1-protein expression in untransfected

(cont), scrambled-siRNA transfected (scr) and TRPS1-siRNA transfected B42-11 and B42-16 cells 48 hrs after transfection.
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upregulating galectin-1 gene expression in colorectal cancer.40

Another interesting network link was RFC5 (activated by

TRPS1 in B42-11 and B42-16) as it appeared in many (10 out

of 14) pathways related to DNA repair and cell cycle/mitosis

from the differential expression analysis and is among the top

five genes correlating with TRPS1. The RFC5 gene belongs to

the replication factor C family and was described to reflect the

hallmark of cancer “genomic instability.”41 It was already

reported that RFC5 recognize DNA damage and is involved in

pathways related to the process of mismatch repair.42,43 Fur-

thermore, an aberrant expression of this gene was already

observed in several tumor entities.42,44,45

This suggests deregulation of cellular processes involved in

radiation-induced damage response. In all, there are several

hints that TRPS1 plays a specific role in DNA repair, chromo-

some segregation and genomic instability which is a well-

established phenotype after irradiation and in radiation-

associated carcinogenesis.46 A link of TRPS1-interaction part-

ners to DNA repair and chromosome segregation is not obvi-

ous from the TRPS1-centered correlation network derived

from the sporadic breast cancer TCGA dataset suggesting this

being a specific effect of TRPS1 deregulation in radiation-

associated breast cancer. Moreover, most of the top ten

TRPS1-interaction partners derived from the sporadic dataset

are known to be involved in apoptosis, cell migration and cell

cycle which is in agreement with the published literature on

TRPS1 in sporadic breast cancer and prostate cancer.47–49

It was already shown in MCF7 breast cancer cells that

TRPS1 functions as a transcription activator of FOXA1 and

negatively regulates the expression of ZEB2.11,13 An interac-

tion of FOXA1 with TRPS1 was also detected in the correla-

tion network of the sporadic TCGA breast cancer dataset

(FOXA1, Pearson correlation5 0.17, FDR5 0.02). The weak

but significant correlation could be due to the fact that the

TRPS1-interaction network for sporadic breast cancer in this

study was developed from mRNA expressions of tumor tis-

sues in contrast to proteomics data from in vitro models as

published by Huang et al.11 The negative association of

TRPS1 with ZEB2, however, was not detected in our data. It

is interesting to note that there is no common gene between

the correlation networks of B42-11 and B42-16 cells and of

the sporadic TCGA dataset which again points to specific

radiation-associated functions of TRPS1.

In conclusion, this study reveals radiation markers in

breast carcinogenesis consisting of an upregulated hsa-miR-

26b-5p and a downregulation of the validated target protein

TRPS1. Both markers could be validated in independent

tumor cohorts of radiation-associated post-Chernobyl breast

cancers, suggesting an important role in radiation-induced

carcinogenesis. Moreover, we could identify interaction

partners of TRPS1 in TRPS1-knockdown models that point

to a functional role of TRPS1 in radiation-associated breast

carcinogenesis in DNA damage response and tumor

progression.

Figure 5. TRPS1-centered correlation networks consisting of the top 100 correlating genes with an FDR <0.05. The expression of genes

labeled with dark grey circles showed negative correlation with TRPS1 expression and that of genes labeled with light grey circles showed

positive correlation with TRPS1 expression. (a) TRPS1-centered correlation network based on global mRNA expression data from matched

sporadic breast cancers of the publicly available TCGA dataset. (b) TRPS1-centered correlation network based on microarray gene expres-

sion data from B42-11 and B42-16 untransfected, scrambled-siRNA transfected and TRPS1-downregulated cells.
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Abstract
Gene expression time-course experiments allow to study the dynamics of transcriptomic

changes in cells exposed to different stimuli. However, most approaches for the reconstruc-

tion of gene association networks (GANs) do not propose prior-selection approaches tai-

lored to time-course transcriptome data. Here, we present a workflow for the identification of

GANs from time-course data using prior selection of genes differentially expressed over

time identified by natural cubic spline regression modeling (NCSRM). The workflow com-

prises three major steps: 1) the identification of differentially expressed genes from time-

course expression data by employing NCSRM, 2) the use of regularized dynamic partial

correlation as implemented in GeneNet to infer GANs from differentially expressed genes

and 3) the identification and functional characterization of the key nodes in the recon-

structed networks. The approach was applied on a time-resolved transcriptome data set of

radiation-perturbed cell culture models of non-tumor cells with normal and increased radia-

tion sensitivity. NCSRM detected significantly more genes than another commonly used

method for time-course transcriptome analysis (BETR). While most genes detected with

BETR were also detected with NCSRM the false-detection rate of NCSRM was low (3%).

The GANs reconstructed from genes detected with NCSRM showed a better overlap with

the interactome network Reactome compared to GANs derived from BETR detected genes.

After exposure to 1 Gy the normal sensitive cells showed only sparse response compared

to cells with increased sensitivity, which exhibited a strong response mainly of genes related

to the senescence pathway. After exposure to 10 Gy the response of the normal sensitive
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cells was mainly associated with senescence and that of cells with increased sensitivity

with apoptosis. We discuss these results in a clinical context and underline the impact of

senescence-associated pathways in acute radiation response of normal cells. The workflow

of this novel approach is implemented in the open-source Bioconductor R-package

splineTimeR.

Introduction
In general terms, the expression of genes can be studied from a static or temporal point of view.
Static microarray experiments allow measuring gene expression responses only at one single
time point. Therefore, data obtained from those experiments can be considered as more or less
randomly taken snapshots of the molecular phenotype of a cell. However, biological processes
are dynamic and thus, the expression of a gene is a function of time [1]. To be able to under-
stand and model the dynamic behavior and association of genes, it is important to study gene
expression patterns over time.

However, compared to static microarray data, the analysis of time-course data introduces a
number of new challenges. First, the experimental costs for the generation of data as well as the
computational cost increases with the increase in the number of introduced time points. Sec-
ond, hidden correlation caused by co-expression of genes makes the data linearly dependent
[2]. Finally, one has to be aware of additional correlations existing between neighboring time
points clearly revealed in published gene expression profiles [3].

Several different algorithms have been suggested to analyze gene time-course microarray
data with regard to differential expression in two or more biological groups (e.g. exposed to
radiation vs. non-exposed) [4–7]. Nevertheless solitary identification of differentially expressed
genes does not help to determine the molecular mechanisms in the investigated biological
groups. Therefore, it is not only important to know differentially expressed genes per se, but
also how those genes interact and regulate each other in order to determine specifically deregu-
lated molecular networks.

Currently, many different algorithms including cluster analysis [8–13] and supervised clas-
sification [14–16] are used to identify relationships between genes. However, both of these
methods suffer from serious limitations. First, the timing information of the measurements is
not incorporated and, therefore, the intrinsic temporal structure of the time-course data is
neglected. Second, the available standard clustering and classification methods are not designed
to measure statistical significance of the results based on a statistical hypothesis test. By nature
of these methods, clusters or classes of genes with similar expression patterns will always be
identified but they do not provide a measure of how reliable this information is. For this reason,
we preferred usage of a dynamic network modeling approach that allows delineation of rela-
tionships between genes along with providing statistical significance for these relationships.

The aim of the present study was to identify and compare signaling pathways involved in the
radiation responses of normal cells differing in their radiation sensitivity that could be used to mod-
ulate cell sensitivity to ionizing radiation. For this, we propose an approach that combines the detec-
tion of genes differentially expressed over time based on statistics determined by natural cubic spline
regression (NCSRM) [17] followed by dynamic gene association network (GAN) reconstruction
based on a regularized dynamic partial correlation as implemented in the GeneNet R-package [18].

Most exploratory gene expression studies focus only on the identification of differentially
expressed genes by treating them as independent events and do not seek to study the interplay
of identified genes. This makes it difficult to tell which genes are part of the interaction network
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causal of the studied phenotype and which are the most “important” with regard to the context
of the investigation. The herein present approach combines the identification of differentially
expressed genes and reconstruction of possible associations between them. Further analysis of
identified GANs then allows hypothesizing which genes may play a crucial role in the investi-
gated processes. This should markedly increase the likelihood to find meaningful results from
an initial observation and help to understand the underlying molecular mechanisms. We
applied our workflow on time-course transcriptome data of two normal and well-characterized
lymphoblastoid cell lines with normal (20037–200) and increased radiation sensitivity (4060–
200), in order to identify molecular mechanisms and potential key players responsible for dif-
ferent radiation responses [19, 20]. Our exploratory approach provides novel and informative
insights in the biology of radiation sensitivity of non-tumor cells after exposure to ionizing
radiation with regard to the identified signaling pathways and their key drivers. Moreover, we
could demonstrate that spline regression in differential gene expression analysis for the pur-
pose of prior selection in gene-association network reconstruction outperforms another com-
monly used existing approach for time-course gene expression analysis.

Results
The schematic workflow of the presented novel approach for time-course gene expression data
analysis is presented in Fig 1.

Identification of ionizing radiation-responsive genes using NCSRM
method
A fraction of the probes was removed due to low expression levels, with not detectable signal
intensities as described in [21]. Table 1 shows the number of probes remained after quality filter-
ing from the total number of 25220 unique probes representing HGNC annotated genes. Differ-
ential analysis was performed relative to the corresponding sham irradiated cells as a reference.
In general, more genes were detected as differentially expressed in the cells with increased radia-
tion sensitivity compared to cells with normal radiation sensitivity after each dose of gamma irra-
diation (Table 1). The most prominent difference was observed when comparing the responses
after 1 Gy irradiation. In the cells with increased radiation sensitivity 2335 genes showed differen-
tial expression compared to only seven genes in cells with normal radiation sensitivity. We
observed the same trend after irradiation with 10 Gy where the cells with increased sensitivity
showed 6019 and the normal sensitive cells 3892 differentially expressed genes.

Pathway enrichment analysis of NCSRM identified genes
Pathway enrichment analysis was performed on differentially expressed genes to identify over-
represented biological pathways. The analysis on genes identified with NCSRM revealed 634
and 964 significantly enriched pathways for the cells with increased radiation sensitivity after 1
Gy and 10 Gy irradiation dose, respectively and 758 pathways for the normal sensitive cell line
after 10 Gy irradiation. For the seven differentially expressed genes (i.e. FDXR, BBC3, VWCE,
PHLDA3, SCARF2, HIST1H4C, PCNA) of the cell line with normal radiation sensitivity after
1 Gy dose of irradiation we did not find any significantly enriched pathways. A summary of the
pathway enrichment results can be found in S2 Table.

Gene association network reconstruction
None of the edge probabilities calculated for the seven differentially expressed genes in the cell
line with normal radiation sensitivity after 1 Gy irradiation exceeded the considered
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significance threshold and hence no network was obtained. For the remaining conditions we
were able to obtain association networks as presented in Table 2. Obtained networks are pro-
vided as igraph R-objects in the supplementary data (S1 File). The graph densities for all result-
ing networks were in the same range as the density of the Reactome interaction network
(Table 2).

Identification and functional characterization of the most important
genes in the reconstructed association networks
The combined topological centrality measure was used to characterize the biological impor-
tance of nodes (genes) in the reconstructed association networks. The 5% of the highest ranked
genes listed in supplementary S3 Table were mapped to Reactome pathways in order to further
evaluate their biological roles. The top 10 most relevant pathways according to the FDR values
are shown in Table 3. For the cell line with increased radiation sensitivity after irradiation with
1 Gy and for the normal sensitive cell line after 10 Gy the induction of pathways associated
with senescence response was detected. For the cell line with increased radiation sensitivity
after 10 Gy of irradiation we mostly observed pathways associated with apoptosis. All pathways
are listed in supplementary S4 Table.

False detected differentially expressed genes between technical replicates
In order to assess the false positive rate, the spline regression based differential analyses between
technical replicates of each treatment conditions and cell lines were performed. Here, we can
state that the null-hypothesis of no differential expression is true for all genes. Then the q�-level
of 0.05 for Benjamini-Hochberg method controls also the FWER at alpha-level equal to 0.05
(type I error) [22]. For all compared technical replicates not more than 3% rejections of null
hypothesis were detected, which is in good accordance to the expected or nominal type I error.

Evaluation of spline regression model in comparison to BETRmethod
Table 1 compares the numbers of differentially expressed genes obtained from both methods
applied on the same gene expression data set and FDR thresholds. For almost all treatment
conditions the BETRmethod detected less differentially expressed genes in comparison to

Fig 1. Schematic workflow of the analysis of gene expression time-course data. Samples were collected 0.25, 0.5, 1, 2, 4, 8 and 24 hours after
sham or actual irradiation. Transcriptional profiling was performed using Agilent gene expression microarrays and comprises three major steps: the
identification of differentially expressed genes from time-course expression data by employing a natural cubic spline regression model; the use of
regularized dynamic partial correlation method to infer gene associations networks from differentially expressed genes and the topological identification
and functional characterization of the key nodes in the reconstructed networks.

doi:10.1371/journal.pone.0160791.g001

Table 1. Number of detected and differentially expressed genes for each dose and cell lines for NCSRM and BETRmethods.

cell line and applied radiation dose increased sensitivity (1
Gy vs 0 Gy)

Normal sensitivity (1
Gy vs 0 Gy)

increased sensitivity (10
Gy vs 0 Gy)

Normal sensitivity (10
Gy vs 0 Gy)

total number of detected probes after
preprocessing

10388 11311 10330 11446

differentially expressed genes detected with
NCSRM

2335 7 6019 3892

differentially expressed genes detected with
BETR

923 12 3889 1256

intersection of differentially expressed genes
resulting from both methods

855 4 3875 1233

doi:10.1371/journal.pone.0160791.t001
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NCSRM. Only for the normal cell line after irradiation with 1 Gy BETR identified 12 genes
whereas NCSRM identified only 7 genes. As a consequence of the lower numbers of detected dif-
ferentially expressed genes with BETR, the obtained networks are smaller than those obtained
after spline regression. The detailed comparison results including numbers of detected differen-
tially expressed genes and the sizes of reconstructed association networks are presented in the
Table 2. The lists of differentially expressed genes obtained with the two methods are shown in
supplementary S1 Table. The top 10 pathways to which the 5% of the most important genes in
the reconstructed association networks where mapped to are shown in Table 3. With NCSRM
we were not only able to detect almost all genes that were detected also by BETR (Table 1), but
also an additional set of genes resulting in almost twice the number of genes compared to BETR.
Nevertheless, the top 5% hub genes of the networks derived from the differentially expressed
genes defined by BETR were associated with similar biological processes as those from the spline
differential expression analysis derived networks. The numbers and names of overlapping hub
genes in the GANs are presented in Table 4 and in supplementary S3 Table, respectively.

Evaluation of reconstructed networks
The evaluation of the two networks derived after 1 Gy irradiation of the cell line with increased
sensitivity showed that the network reconstructed with the differentially expressed genes deter-
mined using BETR did not contain significantly more common edges than random networks
(p = 0.529), whereas the network reconstructed with the differentially expressed genes deter-
mined by NCSRM did (p = 0.048). The networks derived after 10 Gy irradiation of the cell line
with increased sensitivity and 10 Gy irradiation of the normal sensitive cell line contained sig-
nificantly more edges that were common with the Reactome network compared to random
networks for both methods.

Discussion
The success of tumor radiation therapy predominantly depends on the total applied radiation
dose, but also on the tolerance of the tumor surrounding normal tissues to radiation. Toxicity

Table 2. Number of genes subjected to GAN reconstruction and properties of resulted GANs.

method NCSRM BETR

cell line and
applied radiation

dose

Increased
sensitivity (1

Gy)

normal
sensitivity (1

Gy)

Increased
sensitivity (10

Gy)

normal
sensitivity (10

Gy)

Increased
sensitivity (1

Gy)

normal
sensitivity (1

Gy)

Increased
sensitivity (10

Gy)

normal
sensitivity (10

Gy)

number of genes
taken for network
reconstruction

2335 7 6019 3892 923 12 3889 1256

number of nodes
remained in the

network

1140 - 3483 2735 336 - 2299 773

number of edges in
the network

12198 - 114629 84695 3268 - 126378 16862

network density 0.00939 - 0.00945 0.01133 0.02903 - 0.02392 0.02826

density of the
Reactome

interaction network

0.00536

Gene association network reconstructions were performed using the GeneNet method [18]. Association between two genes was considered as significant if

posterior edge probability was equal or greater than 0.95. Densities of the reconstructed networks were compared with the density of the Reactome

interaction network in order to assess their complexity.

doi:10.1371/journal.pone.0160791.t002
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towards radiation, which greatly varies on an individual level due to inherited susceptibility, is
one of the most important limiting factors for dose escalation in radiooncology treatment [23,
24]. To account for radiation sensitivity of normal tissue in personalized treatment approaches
the underlying molecular mechanisms need to be thoroughly understood in order to identify

Table 3. Comparison of NCSRM and BETRmethodswith respect to the top 10 pathways after mapping of 5% highest ranked genes from the recon-
structed gene association networks.

with NCSRMmethod with BETRmethod

increased sensitivity
(1 Gy)

increased sensitivity (10
Gy)

normal sensitivity (10
Gy)

increased sensitivity (1
Gy)

increased sensitivity (10
Gy)

normal sensitivity
(10 Gy)

Signal Transduction Signal Transduction Generic Transcription
Pathway

DNA Damage/Telomere
Stress Induced
Senescencea

Activation of BH3-only
proteinsb

DNA Damage/
Telomere Stress
Induced
Senescencea

Cellular Senescencea Activation of BH3-only
proteinsb

DNA Damage/
Telomere Stress
Induced Senescencea

Senescence-Associated
Secretory Phenotype
(SASP)a

Activation of PUMA and
translocation to
mitochondriab

Generic
Transcription
Pathway

DNA Damage/
Telomere Stress
Induced Senescencea

Activation of PUMA and
translocation to
mitochondriab

Immune System Signal Transduction Cytokine Signaling in
Immune system

Cellular
Senescencea

Formation of
Senescence-
Associated
Heterochromatin Foci
(SAHF)a

Fatty acid, triacylglycerol,
and ketone body
metabolism

Gene Expression Activated PKN1
stimulates transcription
of AR (androgen
receptor) regulated
genes KLK2 and KLK3

Immune System Gene Expression

Cellular responses to
stress

Metabolism Inositol phosphate
metabolism

Cell Cycle Checkpoints Intrinsic Pathway for
Apoptosisb

Meiotic
recombination

RAF-independent
MAPK1/3 activation

Metabolism of proteins IRF3-mediated
induction of type I IFN

Cellular Senescencea Signal Transduction Signal Transduction

Signaling by ERBB4 PPARA activates gene
expression

Cellular Senescencea DNAmethylation Gene Expression Cell Cycle

DAP12 interactions Regulation of lipid
metabolism by
Peroxisome proliferator-
activated receptor alpha
(PPARalpha)

Formation of
Senescence-
Associated
Heterochromatin Foci
(SAHF)a

Packaging Of Telomere
Ends

BH3-only proteins
associate with and
inactivate anti-apoptotic
BCL-2 membersb

Transcriptional
activation of cell
cycle inhibitor p21

PRC2 methylates
histones and DNA

Activation of gene
expression by SREBF
(SREBP)

STING mediated
induction of host
immune responses

RNA Polymerase I
Promoter Opening

Activation of the mRNA
upon binding of the cap-
binding complex and
eIFs, and subsequent
binding to 43S

Transcriptional
activation of p53
responsive genes

Apoptotic execution
phaseb

BH3-only proteins
associate with and
inactivate anti-apoptotic
BCL-2 membersb

Metabolism SIRT1 negatively
regulates rRNA
Expression

Endosomal/Vacuolar
pathway

Senescence-
Associated
Secretory
Phenotype (SASP)a

aPathways associated with senescence responses.
bPathways associated with apoptotic processes.

doi:10.1371/journal.pone.0160791.t003

Table 4. Comparison of hub genes in networks resulting from different methods.

cell line and applied radiation dose increased sensitivity (1 Gy) increased sensitivity (10 Gy) Normal sensitivity (10 Gy)

5% hub genes in the NCSRM resulting network in numbers 57 174 137

5% hub genes in the BETR resulting network in numbers 17 115 39

number of common hub genes resulting from both methods 9 111 31

doi:10.1371/journal.pone.0160791.t004
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molecular targets for the modulation of radiation sensitivity and molecular markers for the
stratification of patients with different intrinsic radiation sensitivity. In the present study we
identified significantly differentially expressed genes over time between the radiation-treated
group and the control group to be used as prior genes for GAN reconstruction. Two doses of
gamma irradiation were used to characterize the differences in radiation response of the two
lymphoblastoid cell lines with known differences in radiation sensitivity. The dose of 10 Gy
was selected following the fact that the same dose has been applied in a previous research proj-
ect examining the radiation sensitivity of the same lymphoblastoid cell lines analyzed in the
study at hand [20]. The dose of 1 Gy reflects the dose that is delivered as part of the so called
“low-dose bath” to the tumor-surrounding tissue during the radiotherapy of the tumors [25].

Here, we conducted time-resolved transcriptome analysis of radiation-perturbed cell culture
models of non-tumor cells with normal and with increased radiation sensitivity in order to
work out the molecular phenotype of radiation sensitivity in normal cells. Moreover, we pres-
ent an innovative approach for the identification of GANs from time-course perturbation tran-
scriptome data. The approach comprises three major steps: 1) the identification of
differentially expressed genes from time-course gene expression data by employing a natural
cubic spline regression model (NCSRM); 2) the use of a regularized dynamic partial correlation
method to infer gene associations network from differentially expressed genes; 3) the identifi-
cation and functional characterization of the key nodes (hubs) in the reconstructed gene
dependency network (Fig 1).

Our proposed method for the detection of differentially expressed genes over time is based
on NCSRM with a small number of basis functions. A relatively low number of basis functions
generally results in a good fit of data and, at the same time, reduces the complexity of the fitted
models. Treating time in the model as a continuous variable, a non-linear behavior of gene
expressions was approximated by spline curves fitted to the experimental time-course data.
Considering temporal changes in gene expression as continuous curves and not as single time
points greatly decreases the dimensionality of the data and thereby decreases computational
cost. In addition, the proposed NCRSM does not require identical sampling time points for the
compared treatment conditions. Furthermore, no biological replicates are needed. Therefore,
the method is applicable to data generated according to a tailored time-course differential
expression study design and to data that were not specifically generated for time-course differ-
ential expression analysis, e.g. existing/previously generated data from clinical samples. Thus,
the adaption of the method to differential expression analysis comprises the potential to reana-
lyze existing data, address new questions in silico and thereby potentially add new or additional
value to existing data. Incomplete time-course data, e.g. due to the exclusion of samples for
technical reasons, that often create major problems for the estimation of the model, are also
suitable for fitting the spline regression model as long as enough data points remain in the data
set. This is especially valuable when data on certain time points, derived from a very limited
sample source, have been excluded from a time-course data set and cannot be repeatedly
generated.

Since gene expression is not only dynamic in the treatment group but also in the control
group, the inclusion of the time-course control data greatly improves the ability to detect truly
differentially expressed genes, as the gene expression values are not referred to a single time
point with static gene expression levels only. Comparing a treatment group to time point zero
does not provide a proper control over the entire time-course, although it is widely practiced
[26–28]. The proposed workflow is implemented in an open-source R-package splineTimeR
and is available through Bioconductor (https://www.bioconductor.org).

Amongst a panel, the two lymphoblastoid cell lines that were different with regard to radia-
tion sensitivity after irradiation with 10 Gy [20], also responded differently with regard to the
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quantity of differentially expressed genes. Interestingly, cells with normal radiation sensitivity
barely responded to 1 Gy irradiation at the transcriptome level. Only seven genes (FDXR,
BBC3, VWCE, PHLDA3, SCARF2, HIST1H4C, PCNA) were identified as differentially
expressed, whereas for the cell line with increased sensitivity 2335 differentially expressed
genes were detected after exposure to the same dose. A similar behavior was observed for those
two cell lines after irradiation with 10 Gy. We detected 6019 and 3892 genes as differentially
expressed in the sensitive and normal cell lines, respectively (Table 2). Those results are in a
good agreement with the previous proteomic study where more differentially expressed pro-
teins were detected for the same sensitive cell line compare to the cell line with normal radia-
tion sensitivity 24 hours after irradiation with 10 Gy [29]. Thus, for both applied doses, the
radiation sensitive cells exhibited much more pronounced transcriptional response compared
to the cells with normal radiation sensitivity and thereby underlines the expected radiation
response of those two cell lines.

Concerning qualitative differences in the transcriptomic response of normal sensitive cells
and cells with increased sensitivity after treatment with 1 Gy and 10 Gy pathway enrichment
analysis was performed. Differentially expressed genes identified for all considered treatment
conditions except for the normal sensitive cells after exposure to 1 Gy radiation showed statisti-
cally significant enrichment of pathways. Most of which were in agreement with known radia-
tion responses such as DNA repair, cell cycle regulation, oxidative stress response or pathways
related to apoptosis (S2 Table) [30–32]. Therefore, the pathway enrichment analysis results
suggest plausibility of generated data and, more importantly, underline the meaningfulness of
our suggested approach based on cubic spline regression for differential gene expression analy-
sis of time-course data. However, differential expression analysis alone followed by pathway
enrichment analysis does not provide any mechanistic insights. For this reason we performed
GAN reconstruction using identified differentially expressed genes. Based on the assumption
that the expression levels of functionally related genes are highly correlated, partial correlation
was used for GAN reconstruction. In simple correlation, the strength of the linear relationship
between two genes is measured, without taking into account that those genes may be actually
influenced by other genes. Partial correlation eliminates the influence of other genes when one
particular relationship between pair of genes is considered. Network reconstruction was per-
formed separately for the cell line with increased radiation sensitivity after 1 Gy and 10 Gy and
for the cell line with normal radiation sensitivity after 10 Gy of radiation dose. Due to the
sparseness of the set of genes differentially expressed after irradiation of the normal-sensitive
cell line with 1 Gy, no GAN was obtained.

Subsequently, we identified the network hubs (i.e. most important genes) of the GANs by
combining three network centrality measures: degree, closeness and shortest path betweenness
[33]. Combining different centrality measures is a widely used approach to identify nodes that
are likely to control the network [34]. Also, this approach allows identification of nodes that
are connected to the central nodes at the same time which can be informative for the interpre-
tation of the whole GAN or single modules making up the network [33, 34].

Identification of key pathways associated with radiation sensitivity
In order to get functional insights into the reconstructed GANs the 5% top important nodes
were identified after a ranking with the combined centrality measure and mapped to the path-
ways from the interactome database Reactome [35]. The obtained results revealed different
pathways considered as the most important in cells with different radiation sensitivity after dif-
ferent doses of ionizing radiation. For the radiation sensitive cell line 4060–200 and 1 Gy irradi-
ation, we mainly detected pathways associated with senescence (Table 3).
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A different outcome was observed after irradiation with 10 Gy. For the radiation sensitive
cells three out of the ten top pathways were linked to apoptotic processes with the genes BBC3,
BCL2, TP53 as key players, whereas for the normal sensitive cell line we mainly observed the
induction of senescence related pathways. This indicates that different doses are necessary to
induce a similar response in the two cell lines. The activation of senescence genes is a damage
response mechanism, which stably arrests proliferating cells and protects them from apoptotic
cell death [36]. Together with the senescence pathway we observed increased levels of chemo-
kine, cytokine and interleukin genes that are known to activate an immune response and signal
transduction pathways in response to irradiation.

Although the senescence-associated pathways were not seen as the most important ones for
the treatment condition 10 Gy/increased sensitivity, they were significantly enriched in the
GANs of the three conditions 1 Gy/increased sensitivity, 10 Gy/ increased sensitivity and 10
Gy/normal sensitivity. All differentially expressed genes that related to senescence-associated
pathways are shown in supplementary S5 Table. The observation that cells with increased radi-
ation sensitivity compared to cells with normal sensitivity, become senescent after exposure to
doses in the range of 1 Gy, rises the question whether this has a positive or negative influence on
the tumor therapy. On the one hand side, senescent cell may secret the so-called SASP (“senes-
cence-associated secretory phenotype“) factors, including growth factors, chemokines and cyto-
kines, which participate in intercellular signaling leading to the attraction of immune cells to the
tumor location that, in turn, eliminate the tumor cells and, thereby, positively contribute to the
tumor therapy [37, 38]. On the other hand side, senescent cells and the SASP are reported to pro-
mote proliferation, survival, invasion and migration of neighboring cells by the release of pro-
inflammatory cytokines leading to sustained inflammation [36]. In this way senescence cells can
damage their local environment and stimulate angiogenesis and tumor progression [39, 40].
Besides, there are some evidences that the induction of senescence in surrounding normal tissue
may lead to an increased radio-tolerance or even radioresistance of the tumor and is, therefore,
not desirable and negatively influences the tumor radiotherapy [41]. Thus, it might be beneficial
to block senescence in order to prevent the radio-hyposensibilization of tumor cells. Therefore,
we suggest a detailed investigation of the consequences of senescent non-tumor cells with the
aim to improve the radiotherapy of tumors in radiosensitive patients.

Identification of senescence associated genes involved in cell radiation
responses
CDKN1A gene was identified as one of the most important key players linked to the identified
senescence associated pathways for both 1 Gy/sensitive and 10 Gy/normal treatment condi-
tions. For both conditions the expression of the CDKN1A was up-regulated for all considered
time points. CDKN1A is a well-known damage response gene for which aberrant transcrip-
tional response has been associated with abnormal sensitivity to ionizing radiation [42, 43].
The study by Badie et al. (2008) has shown that a subgroup of breast cancer patients, who
developed severe reactions to radiation therapy, could be identified by aberrant overexpression
of CDKN1 in peripheral blood lymphocytes [43].

LMNB1 is another genes we identified as a response hub gene after irradiation of sensitive
cell line with 1 Gy radiation dose that is associated with senescence. Although the LMNB1 gene
was not identified as hub gene in the GAN of the 10 Gy/normal treatment condition, it was still
differentially expressed. For both treatment conditions we observed significant downregulation
of this gene 24 hours after irradiation. Shah et al (2013) has suggested that downregulation of
LMNB1 in senescence is a key trigger of chromatin changes affecting gene expression [44]. In
fact also in our data we observed strong downregulation of a group of histone genes associated
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with senescence (S5 Table) for the treatment conditions 1 Gy/increased sensitivity and 10 Gy/
normal sensitivity. Furthermore, Lee et al. (2012) has shown that histone protein modification
may have an impact on the radiation sensitivity of a tissue [45]. Moreover, evidence has been
provided that mutation of LMNA can cause increased sensitivity to ionizing radiation [46],
however, to our knowledge there are no data showing the role of LMNB gene in the context of
radiation sensitivity.

Another potential therapeutic candidate associated with senescence that was identified for
the 10 Gy/normal sensitivity treatment condition was MRE11A for which cell culture data sug-
gest that treatment of cells with Mre11 siRNA increases radiation sensitivity and reduces heat-
induced radiosensitization [47, 48]. However, the clinical applicability of MRE11, has not been
confirmed [49].

Assessment of the false positive rate and validation of the NCSRM
method
The spline regression based differential analyses between technical replicates were performed
in order to estimate the extent of random fluctuations of gene expression values. The detected
3% rejections of the overall null hypothesis of no differential gene expression are in accordance
with the alpha-level of 5% of the familywise error rate (FWER) and can be considered as false
positives. On the other hand, it shows that type I error, due to technical variation, is covered by
the model and test assumptions (moderated F-test, [50]) so that it was not necessary to include
an extra parameter for technical replicates into the model.

In order to validate the previously mentioned biological results using NCSRM, we per-
formed the differential expression analysis with another established method for time-course
data analysis called BETR (Bayesian Estimation of Temporal Regulation) [6]. The number of
genes detected by BETR was considerably lower compared to NCRSM (Table 1), however the
majority of which were also detected with NCSRM (S1 Table). This is in line with the calcula-
tions on the false positive rates that have been conducted on the simulated data presented in
the BETR study. In an analysis of the simulated data set, 65% of truly differentially expressed
genes have been identified after accepting a false positive rate of 5% [6]. This means that a sub-
stantial proportion of differentially expressed genes remained undetected, which is likely to be
also the case for the herein analyzed data with BETR. Although the numbers of differentially
expressed genes and genes remained in the reconstructed networks greatly differ (Table 1), the
qualitative results are well comparable (Table 3). For all treatment conditions where for which
we were able to reconstruct GANs, we observed a great overlap of pathways where the 5% of
hub genes were mapped to (Table 3). The detection of a higher number of differentially
expressed genes with NCSRM resulted in larger GANs with additional information compared
to the smaller GANs that were reconstructed on the basis of genes detected with BETR. This is
underlined by the results of the conducted evaluation of GANs. Except one network based on
the differentially expressed genes using BETR, all investigated networks consist significantly
more common edges with the Reactome reference network compared to random networks
with identical network topology and genes. This shows that the additionally detected genes
with NCSRM add additional information rather than adding false positives or noise to the set
of differentially expressed genes. Moreover the spline regression method is much more flexible
and allows for more freedom during the data collection process. As already mentioned,
NCSRM does not require the same sampling time for treated and control groups and can easily
deal with incomplete data, whereas BETR method is not able to overcome or bypass those limi-
tations. Thus, NCSRM is very robust against the frequently occurring shortcomings in study
design and subsequent data generation occurring in life sciences.
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Conclusion
Prospectively, we suggest and plan a detailed in silico and in vitro analysis of the interactions in
the proposed gene association networks in order to add meaningful knowledge to the mecha-
nism of radiosensitivity at the experimental level. This novel knowledge has the potential to
improve cancer radiation therapy by preventing or lowering the acute responses of normal
cells resulting from radiation therapy. The results add novel information to the understanding
of mechanisms that are involved in the radiation response of human cells, with the potential to
improve tumor radiotherapy. Besides, the presented workflow is not limited to presented study
only, but may be applied in other special fields with different biological questions to be
addressed.

The software is provided as R-package “splineTimeR” and freely available via the Biocon-
ductor project at http://www.bioconductor.org.

Material and Methods

Cell culture
Experiments were conducted with two monoclonal lymphoblastoid Epstein-Barr virus-immor-
talized cell lines (LCL) obtained from young lung cancer patients of the LUCY study (LUng
Cancer in Young) that differ in radiosensitivity, as tested with Trypan Blue and WST-1 assays
[19, 20]. The non-cancer cell lines LCL 4060–200 with increased radiation sensitivity and LCL
20037–200 with normal radiation sensitivity were cultured at 37°C/5% CO2 in RPMI 1640
medium (Biochrom) supplemented with 10% fetal calf serum (FCS; PAA). Mycoplasma con-
tamination was routinely tested using luminescence-based assays (MycoAlert, Lonza).

Irradiation and sample preparation
The cells were seeded in 75 cm2 flasks at a concentration of 0.5 x 106 cells/ml in a total volume
of 60 ml. Exponentially growing cells were irradiated with sham, 1 Gy and 10 Gy of gamma-
irradiation (137Cs-source HWM-D 2000, Markdorf, Germany) at a dose rate of 0.49 Gy/min.
Samples were collected 0.25, 0.5, 1, 2, 4, 8 and 24 hours after sham or actual irradiation.
Between the time of collection cells were kept in the incubator. Collected cells were washed
with PBS and frozen at -80°C. Total RNA was isolated from frozen cell pellets obtained from
two independent experiments using the AllPrep DNA/RNA/miRNA Universal Kit (Qiagen)
including an DNase digestion step, according to the manufacturer's protocol. The concentra-
tion of RNA was quantified with a Qubit 2.0 Fluorometer (Life Technologies), and integrity
was determined using a Bioanalyzer 2100 (Agilent Technologies). RNA samples with a RNA
integrity number (RIN) greater than 7 indicated sufficient quality to be used in subsequent
RNA microarray analysis.

Gene expression profiling
Transcriptional profiling was performed using SurePrint G3 Human Gene Expression 8x60k
V2 microarrays (Agilent Technologies, AMADID 39494) according to the manufacturer’s pro-
tocol. 75 ng of total RNA was used in labeling using the Low Input Quick Amp Labeling Kit
(one-color, Agilent Technologies). Raw gene expression data were extracted as text files with
the Feature Extraction software 11.0.1.1 (Agilent Technologies). The expression microarray
data were uploaded to ArrayExpress (www.ebi.ac.uk/arrayexpress/) and the data set is available
under the accession number E-MTAB-4829. All data analysis was conducted using the R statis-
tical platform (version 3.2.2, www.r-project.org) [51]. Data quality assessment, filtering, pre-
processing, normalization, batch correction based on nucleic acid labeling batches and data
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analyses were carried out with the Bioconductor R-packages limma, Agi4x44PreProcess and the
ComBat function of the sva R-package [4, 21, 52]. All quality control, filtering, preprocessing and
normalization thresholds were set to the same values as suggested in Agi4x44PreProcess R-pack-
age user guide [21]. Only HGNC annotated genes were used in the analysis. For multiple micro-
array probes representing the same gene the optimal probe was selected according to the
Megablast score of probe sequences against the human reference sequence (http://www.ncbi.
nlm.nih.gov/refseq/) [53]. If the resulted score was equal for two or more probes, the probe with
the lowest differential gene expression FDR value was kept for further analyses since only one
expression value per gene was allowed in subsequent GAN reconstruction analysis.

Spline regression model for two-way experimental design
A natural cubic spline regression model (NCSRM) with three degrees of freedom for an experi-
mental two-way design with one treatment factor and time as a continuous variable was fitted
to the experimental time-course data. The mathematical model is defined by the following eq
(1):

y ¼ yðt; xÞ
¼ b0 þ b1B1ðt � t0Þ þ b2B2ðt � t0Þ þ . . .þ bmBmðt � t0Þ þ xðd0 þ d1B1ðt � t0Þ þ d2B2ðt

� t0Þ þ . . .þ dmBmðt � t0ÞÞ

where b0, b1, . . ., bm are the spline coefficients in the control group and d0, d1, . . ., dm are differ-
ential spline coefficients between the control and the irradiated group. B1(t-t0), B2(t-t0), . . .,
Bm(t-t0) are the spline base functions and t0 is the time of the first measurement. For x = 0,
y = ycontrol and for x = 1, y = yirradiated. For three degrees of freedom (df = 3), m = 3.

Depending on the number of degrees of freedom, two boundary knots and df-1 interior knots
are specified. The interior knots were chosen at values corresponding to equally sized quantiles of
the sampling time from both compared groups. For example, for df = 3 interior knots correspond
to the 0.33- and 0.66-quantiles. The spline function is cubic on each defined by knots intervals,
continuous at each knot and has continuous derivatives of first and second orders.

Time-course differential gene expression analysis
The time-course differential gene expression analyses were conducted between irradiated and
control cells (sham-irradiated). Analyses were performed on the normalized gene expression
data using NCSRMwith three degrees of freedom. The splines were fitted to the real time-course
expression data for each gene separately according to eq (1). The example of spline regression
model fitted to the measured time-course data for one selected gene is shown on the Fig 2.

Time dependent differential expression of a gene between the irradiated and corresponding
control cells was determined by the application of empirical Bayes moderated F-statistics [50]
on the differential coefficients values in eq (1). In order to account for the multiple-testing
error, corresponding p-values were adjusted by the Benjamini-Hochberg method for false dis-
covery [22]. Genes with an adjusted p-value (FDR, false discovery rate) lower than 0.05 were
considered as differentially expressed and associated with radiation response.

Assessment of the false positive rate of the NCSRM
Additionally, in order to assess the false positive rate (statistical type I error, also called familywise
error rate or FWER) we applied differential gene expression analysis using NCSRM between two
technical replicates for all treatment groups. Because only two technical replicates were generated
for each time point and treatment, we could not use the same approach to assess the technical vari-
ability for the BETRmethod, as it requires at least two replicates in each compared groups.
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Gene association network reconstruction from prior selected
differentially expressed genes
Differentially expressed genes were subjected to gene association network reconstruction from
time-course data using a regularized dynamic partial correlation method [54]. Pairwise rela-
tionships between genes over time were inferred based on a dynamic Bayesian network model
with shrinkage estimation of covariance matrices as implemented in the GeneNet R-package
available from CRAN [18]. Analyses were conducted with a posterior probability of 0.95 for
each potential edge. Edge directions were not considered. In order to assess the complexity of
the resulting networks, the density of each network was compared to the density of the Reac-
tome functional interaction network [35, 55].

Identification of important nodes in the network
Graph topological analyses based on centrality measures were applied in order to determine
the importance of each node in the reconstructed association networks [56]. Three most

Fig 2. Example of fitted spline regression models. The plot shows spline regression models fitted to the
measured time-course expression data of an arbitrary chosen gene (BBC3). The blue line represents the fitted
model for the control (0 Gy) and read line that for the irradiated group (1 Gy). Blue and red dots represent the
measured expression levels of the biological replicates. Vertical lines represent the endpoints and interior knots
correspond to the 0.33- and 0.66-quantiles.

doi:10.1371/journal.pone.0160791.g002
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commonly used centrality measures: degree, shortest path betweenness and closeness were
combined into one cumulative centrality measure [34]. For each gene the three centrality val-
ues where ranked. The consensus centrality measure for each node was defined as the mean of
the three independent centrality ranks. Combining centrality measures supports the identifica-
tion of the nodes that are central themselves and also connected to direct central nodes, which
demonstrates strategic positions for controlling the network.

Pathway enrichment analysis
The Reactome pathway database was used to conduct the pathway enrichment analysis in
order to further investigate the functions of the selected sets of differentially expressed genes
[35]. Statistical significance of enriched pathways was determined by one-sided Fisher's exact
test. The resulting p-values were adjusted for FDR using the Benjamini-Hochberg method.
Pathways with FDR<0.05 were considered statistically significant and pathways were ranked
according to ascending FDRs.

Evaluation of NCSRM approach
Since we decided to use the set of genes that appeared to be differentially expressed we assessed
the performance of the herein used NCSRM approach in comparison to the BETR approach
implemented in the R/Bioconductor package betr [6]. BETR is a well-established algorithm
that has been previously compared to limma, MB-statistic and EDGE methods and showed the
best performance [6]. The results of spline and BETR methods were compared using the same
initial microarray gene expression data set. The probabilities of each gene to be differentially
expressed obtained with BETR method, were transformed to p-values as described in the origi-
nal paper. Genes were considered significantly differentially expressed if the Benjamini-Hoch-
berg adjusted p-value was lower than 0.05 (FDR<0.05). This transformation allowed us to
compare the outcomes of both methods based on the FDR values for differential expression.
The resulting differentially expressed genes using BETR were analyzed and subjected to net-
work reconstruction as described above for the differentially expressed genes obtained using
NCSRM. Outcomes of both obtained association networks were compared to each other and to
the a priori known biological network provided by the Reactome database [35].

Evaluation of reconstructed gene association networks
In order to assess the quality of the de novo reconstructed gene association networks (GANs),
we developed a novel method that compares the interactions in the reconstructed network to
the experimentally validated interactions present in the Reactome interaction network. For this
purpose we used the Reactome reference network, consisting of protein-protein interaction
pairs stored in the Reactome database (http://www.reactome.org/pages/download-data/). For
the comparison, sub-networks of reconstructed networks consisting only of genes overlapping
with the Reactome network were built. The number of common edges between these two sub-
networks was determined and referred to the total number of edges in the reconstructed net-
work (percentage of common edges in the reconstructed network). Further, a permutation test
was performed to assess whether the number of common edges in the reconstructed network
was significantly higher than in randomized networks with the same genes. Random networks
were generated by permutation of the node names in the network, while preserving the recon-
structed sub-network topology. After each permutation (n = 1000) the number of common
edges with the reference Reactome sub-network was determined. The reconstructed network
was considered significantly better than random, if more than 90% of the random sub-net-
works contained lower numbers of edges common with the Reactome network than the
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reconstructed sub-network (p-value< 0.1). All networks reconstructed with the genes deter-
mined as differentially expressed from the herein presented spline regression method and the
BETR method were evaluated.

Supporting Information
S1 File. Reconstructed gene association networks. All obtained gene association networks are
provided as R-objects of type igraph.
(RDATA)

S1 Table. Lists of differentially expressed genes. Table includes differentially expressed genes
identified by spline regression and BETR methods. Additionally, a list of overlapping differen-
tially expressed genes between both methods is included.
(XLSX)

S2 Table. Lists of significantly enriched pathways using differentially expressed genes iden-
tified by spline regression method. Four lists of significantly enriched pathways correspond
to each used treatment condition. Lists include total numbers of known genes in the pathways,
numbers of differentially expressed genes that belong to a single pathway (matches), percent-
ages of differentially expressed genes in comparison to the total number of know genes in the
pathway (% match), p-values, FDRs and names of pathways related differentially expressed
genes.
(XLSX)

S3 Table. Lists of 5% of most important genes identified by centrality measures. Lists of 5%
highest ranked genes from the reconstructed gene association networks using spline regression
and BETR methods. Overlap represents common most important genes identified in networks
from compared methods.
(XLSX)

S4 Table. Lists of pathways after mapping of 5% highest ranked genes from the recon-
structed gene association networks. Lists include names of pathways together with names of
mapped most important genes.
(XLSX)

S5 Table. Significantly enriched senescence associated pathways with corresponding differ-
entially expressed genes. Table presents the names of significantly enriched (FDR<0.05)
senescence associated pathways with corresponding differentially expressed genes for all treat-
ment conditions.
(XLSX)
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Abstract

Copy number aberrations (CNAs) are known to strongly affect oncogenes and tumour suppressor genes. Given the critical
role CNAs play in cancer research, it is essential to accurately identify CNAs from tumour genomes. One particular
challenge in finding CNAs is the effect of confounding variables. To address this issue, we assessed how commonly used
CNA identification algorithms perform on SNP 6.0 genotyping data in the presence of confounding variables. We simulated
realistic synthetic data with varying levels of three confounding variables—the tumour purity, the length of a copy number
region and the CNA burden (the percentage of CNAs present in a profiled genome)—and evaluated the performance of
OncoSNP, ASCAT, GenoCNA, GISTIC and CGHcall. Furthermore, we implemented and assessed CGHcall*, an adjusted version
of CGHcall accounting for high CNA burden. Our analysis on synthetic data indicates that tumour purity and the CNA
burden strongly influence the performance of all the algorithms. No algorithm can correctly find lost and gained genomic
regions across all tumour purities. The length of CNA regions influenced the performance of ASCAT, CGHcall and GISTIC.
OncoSNP, GenoCNA and CGHcall* showed little sensitivity. Overall, CGHcall* and OncoSNP showed reasonable performance,
particularly in samples with high tumour purity. Our analysis on the HapMap data revealed a good overlap between
CGHcall, CGHcall* and GenoCNA results and experimentally validated data. Our exploratory analysis on the TCGA HNSCC
data revealed plausible results of CGHcall, CGHcall* and GISTIC in consensus HNSCC CNA regions. Code is available at
https://github.com/adspit/PASCAL.

Key words: copy number calling algorithm; performance assessment; cancer genomics; copy number aberrations
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Introduction

Copy number aberrations (CNAs) are present in all known
cancer genomes [1–3]. Unlike copy number variations (CNVs)
which occur naturally and originate in germline cells [4–6],
CNAs accumulate somatically, emerge after many selection
events and have been associated with development and
progression of human disease, especially with carcinogenesis:
Bardeesy et al. showed that the deletion of the tumour supressor
gene SMAD4 plays a critical role in progression and tumour
biology of pancreatic cancer [7], Witkiewicz et al. showed that
amplification of the gene MYC is uniquely associated with poor
outcome in pancreatic ductal adenocarcinoma [8], Leucci et al.
showed that the long non-coding RNA (lncRNA) gene SAMMSON
is consistently co-gained with MITF in more than 90% of human
melanomas [9], while Wells et al. showed that deletion of the
gene PTGHD1 in the thalamic reticular nucleus only leads to
attention deficiency and hyperactivity [10]. Identifying CNAs that
are affecting oncogenes or tumour suppressor genes provides
knowledge required for the development of new targeted cancer
therapies or patient stratification. It is thus of great importance
to accurately estimate CNAs from tumour genomes. However,
one particular challenge in the accurate estimation of cancer-
related CNAs is the presence of confounding variables such as
tumour purity and length of CNAs.

The tumour purity represents the ratio between cancerous
cells and all the cells present in a tumour sample—comprising
both of cancerous and non-cancerous cells. The mixture of can-
cerous and non-cancerous cells affects the expected allelic frac-
tion between germline and somatic variants and thus influences
the accuracy of CNA calling [11]. In simple terms, the higher the
non-tumour cell content within the assessed tissue sample, the
lower the sensitivity of the copy number calling algorithm gets.
Previous studies have shown that the length of a CNA region, i.e.
the number of covered base pairs by a genomic region, affects the
sensitivity of CNA calling, with longer CNA regions being easier
to find [12, 13].

Within this study we focus on algorithms that call CNAs from
single-nucleotide polymorphism (SNP) arrays. Nowadays, SNP
arrays typically comprise approximately 1.8 million probes and
return allele-specific signals at each marker of genetic variation.
Affymetrix SNP 6.0 data also come with the great advantage that
they can be used for both genotype and copy number analysis.
Another advantage of this technology is that it allows us to
characterise both copy number changes and allelic imbalances
of a sample. To achieve this, the signals resulting from the
array genotyping need to be processed and analysed by specific
methods. Although numerous methods have been proposed,
reliably uncovering cancer-associated CNAs from SNP array data
still represents a challenge [3, 14, 15]. One difficulty is that CNA
calling algorithms fail to address the effect of known biological
confounding variables [16, 17], i.e. the tumour purity of the anal-
ysed tissue and the length of underlying CNA regions. GenoCN
represents a statistical framework that simultaneously searches
for CNAs and CNVs while taking into account the tumour purity
but does not account for a chromosomal background that is not
diploid [18]. OncoSNP represents a unified Bayesian framework
based on a cancer-specific statistical model that classifies SNP
array signals into 21 states and accounts for tumour purity, poly-
ploidy and intra-tumour heterogeneity [19]. ASCAT focuses on
analysing allele-specific copy numbers in solid tumour initially
but requires a threshold-based, model-free segmentation of the
SNPs into regions of equal copy number [6]. Another method
that is used for finding cancer–related CNAs is CGHcall. CGHcall

makes use of breakpoint information from segmentation across
all samples and includes information as tumour purity for find-
ing CNAs [20].

The Cancer Genome Atlas (https://cancergenome.nih.gov)
(TCGA) is one of the largest resources providing molecular
omics data on multiple levels. TCGA covers various cancer
types and aims to improve general knowledge about cancer
development and treatment. The commonly used method to
estimate copy number states from SNP genotyping data in
TCGA studies is GISTIC 2.0 (GISTIC) [21]. GISTIC was designed
to primarily estimate significant relative CNAs across a set
of patients and not on single patient level. GISTIC eliminates
common chromosome arm-level events which are not cancer-
specific and focuses on focal events. However, GISTIC does not
address the effect of confounding variables on the resulting CNA
regions.

Within this study we assessed the performance of the fol-
lowing common-used CNA calling algorithms on Affymetrix SNP
6.0 array data: OncoSNP [19], ASCAT [6], CGHcall [20], genoCNA
[18] and GISTIC [21]. All algorithms are commonly used for
estimating copy number states in tumour samples and, except
for GISTIC, correct for tumour purity, intra-tumour heterogeneity
and tumour cell ploidy (ASCAT and OncoSNP). Unlike previous
studies that evaluated CNV detection—and not cancer-specific
CNAs—for an SNP platform [13, 22] or used a model with 24
parameters for which it is difficult to find a combination that
provides realistic data [23, 24], we focused on five different
algorithms designed to specifically find CNAs and, moreover,
evaluated them on synthetic data derived from Affymetrix SNP
6.0 data. Our contribution consists of

• a pipeline that uses realistic Affymetrix SNP 6.0 array-like
synthetic DNA copy number profiles for evaluating the per-
formance of OncoSNP, ASCAT, CGHcall, genoCNA and GIS-
TIC CNA calling algorithms, under the influence of tumour
purity, length of CNA and CNA burden (the percentage of
CNAs present in the profiled genome, [25])

• the implementation of an adjusted version of the CGHcall
algorithm that allows the estimation of CNAs in highly
variant genomes.

We applied our pipeline on two real data sets derived from
patient samples: a cohort of 522 head and neck squamous
cell carcinoma (HNSCC) samples from TCGA [26] and a
set of 81 Haplotype Map samples [4]. The pipelines con-
sist of R, Python and shell scripts and can be accessed
at https://github.com/adspit/PASCAL. Finally, we provide an
appropriate framework to compare CNAs calling algorithms
with the aim of finding the algorithm that classifies genomic
regions correctly independent of tumour purity, length of a CNA
region and CNA burden. Moreover, we developed an improved
version of CGHcall that we refer to as CGHcall* and included it
in our comparison.

Methods and materials
Preliminaries

The data resulting from Affymetrix SNP 6.0 arrays experiments
comprised of fluorescence intensity values of hybridised A and
B allele probes for each genetic marker on the array [27]. We
obtained and used the following measures from the data:

(i) the log R ratio (LRR) – a log2-transformed value of the total
intensity for allele A and allele B for more than 1.8 million
markers of genetic variation.
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(ii) the B allele frequency (BAF) – the ratio of bases genotyped
as variant allele (B allele). BAF ranged from 0 to 1, where
0 represented the AA/A− genotype, 0.5 represented the
heterozygous AB genotype and 1 represented the BB/B−
genotype [28].

Realistic synthetic data

We used the jointseg R package [24] to generate realistic
Affymetrix SNP 6.0 array-like synthetic tumour data consisting
of 400 samples. Each sample comprised of 1.844.399 markers
of genetic variation. Jointseg was built to generate realistic
synthetic DNA copy number profiles. The framework resamples
signals corresponding to genomic regions with manually
annotated copy number states from the publicly available lung
cancer NCI-H1395 SNP microarray data [24, 29]. We generated
100 samples with each of the following tumour purity levels:
30, 50, 70 and 100%. The tumour purity levels corresponded to
the experimental settings of the [29] study. We randomly placed
between 1 and 8 breakpoints within each sample. A breakpoint
represented a loci where one of the two parental copy number
changed. For the resulting regions we sampled the copy number
states from a predefined set of copy number states: (0,1), (0,2),
(1,1), (1,2), (1,3), (2,2) and (3,2), where (0,1) represented the loss of
a single copy, (0,2) and (1,1) represented normal and (1,2), (1,3),
(2,2) and (3,2) represented the gain of one, two or three copies.

Haplotype Map data

We started the analysis with 98 Affymetrix 6.0 SNP array profiles
of healthy patients from the publicly available Haplotype Map
(HapMap) repository: ftp://ftp.ncbi.nlm.nih.gov/hapmap/ [4]. We
preprocessed the data with the Aroma Affymetrix Power Tools
package [30] and the PennCNV-Affy pipeline [31]. In the prepro-
cessing step, we performed quantile normalisation and gener-
ated genotype calls from the Affymetrix spot intensity readout
files (CEL format) as output by the Affymetrix microarray scan-
ner files using the Birdseed algorithm [32]. Next, we extracted
allele-specific signals, and we calculated the canonical cluster-
ing parameters for each marker of genetic variation. We then
calculated probe-wise LRR and BAF for each patient sample. Fur-
ther, we split the signal file into individual files for each patient.
We then selected 81 patients that were further experimentally
profiled by Redon et al. [4].

HNSCC data

We used Level 1 Affymetrix SNP 6.0 array data generated by the
TCGA research network (http://cancergenome.nih.gov/) consist-
ing of 522 samples collected from patients suffering from HNSCC
[26]. We preprocessed the tumour and normal matched raw
HNSCC CEL files with the Affymetrix Power Tools package [30]
and the PennCNV-Affy pipeline [31] as described in the previous
section.

Genomic copy number calling algorithms

We selected five CNA calling algorithms for comparison: CGH-
Call (release 3.6), OncoSNP (version 2.1), ASCAT (version 2.4),
genoCNA and GISTIC (version 2.0).

OncoSNP

OncoSNP was built upon a statistical model that classifies SNP
array signals—both LRR and BAF, from cancer genomes into 21
states covering different combinations of allele loss and ampli-

fication. The model includes effects of polyploidy, tumour purity
and intra-tumour heterogeneity [19]. We applied OncoSNP on the
synthetic data with the arguments specific for Affymetrix SNP
array, together with the predefined number of training states
and tumour states. We used the intratumour mode and set
the tumour purity paramater to 30, 50, 70 and 100% . For the
HapMap data, we used the same parameter settings, except for
the tumour purity which was set to 0.

ASCAT

ASCAT was designed to perform allele-specific CNA analysis
in tumour samples. The algorithm corrects for the effects of
tumour purity and tumour aneuploidy and infers copy num-
ber classes, loss of heterozygosity and homozygous deletions.
ASCAT estimates the number of copies for both alleles at all
SNP marker positions together with the tumour purity of each
sample [6].

We preprocessed the synthetic data and generated the
ASCAT-format input tumour LRR and BAF files. Afterwards,
we generated corresponding germline genotypes with the
ascat.predictGermlineGenotypes R function with the platform
parameters set to ‘AffySNP6’. Finally, we segmented the data
with the ASPCF segmentation algorithm and applied the ASCAT
copy number calling function. Next, we applied the same steps
to the HapMap data.

GenoCNA

GenoCN was built as a statistical framework that simultaneously
searches for CNAs and CNVs while inferring the tumour
purity. In this study we used the genoCNA component,
which was specifically designed for CNA finding. Applying
genoCNA required the following information for each of the
genetic markers: name, chromosome, position and population
frequency (PFB). We used the genetic marker information as
provided by the Affymetrix PFB file corresponding to the human
genome assembly hg18. Each input file contained LRR, BAF and
PFB values for each genetic marker. We selected the output
format 2 which returned the most likely copy number and
genotype state of all the genetic markers.

GISTIC

GISTIC was designed to find regions of the genome that are
significantly amplified or deleted across a set of samples. The
significance measure is based on the amplitude of the CNA,
on how frequently the CNA occurs across samples and a user-
defined threshold for the discovery rate. GISTIC required as input
a segmentation file, a reference genome file and the LRR signals.
GISTIC does not use the BAF signals. For all data sets we used
the hg18 reference genome and segmentation files obtained by
applying circular binary segmentation—further referred to as
CBS [33]. For the TCGA HNSCC analysis we used the GISTIC
results provided by TCGA as level 3 data.

CGHcall

CGHcall was originally designed for array Comparative Genomic
Hybridization (aCGH) data. The algorithm uses breakpoint
information from CBS [33] and classifies raw log2-ratios between
reference and tumour DNA into five discrete states: double
loss-homozygous (biallelic) deletion, loss-hemizygous deletion
(loss of one of the alleles), normal-two copies, gain-three to four
copies and amplification–more than four copies [20]. We log-
transformed the total copy numbers and we applied the CGHcall
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pipeline on resulting signals with adjustment for tumour purity.
For the HNSCC TCGA data set, we implemented a Python script
to calculate log2-ratios between tumour and normal matched
patient samples. As the HapMap cohort included only healthy
patients, we calculated log2-ratios between each LRR signal and
the mean LRR signal of the 81 selected samples.

CGHcall*

We developed an adjusted version of CGHcall to prevent shifts
of the baseline level after global normalisation: CGHcall*. We
adjusted the normalisation and post-segmentation normalisa-
tion for samples in which the CNA burden exceeded 50% of
the sample profile, by considering only the signals included in
the [-0.1, 0.1] interval (see Section 3.1). We applied the CGHcall*
pipeline on the synthetic data and on the HapMap as described
in the previous section for CGHcall. Further, we applied CGHcall*
on the log2-ratios between tumour and normal matched TCGA
HNSCC samples. When running CGHcall and CGHcall* on the
TCGA HNSCC data, we set the tumour purity parameter to the
consensus measurement of TCGA HNSCC estimations derived
by Aran et al. [34]. For samples with missing derived consensus
measurement estimations, we used the immunohistochemistry
measurements as tumour purity values.

Performance analysis of genomic copy number calling
algorithms

For evaluating the performance of the selected algorithms, we
collapsed the resulting calls to three states: loss, normal and
gain. For CGHcall, CGHcall* and GISTIC the double loss and loss
were collapsed to loss, while the gain and amplification were
collapsed to gain. For OncoSNP we collapsed the homozygous
and the hemizygous deletion states to loss, and all the states
that were defined by more than two copies were considered
gain. For ASCAT and genoCNA, the probes with less than two
copies were defined as lost, while the probes with more than two
copies were defined as gained. We calculated the sample-wise
confusion matrix, precision, recall and balanced F-score [35] as
follows:

precisionc = TP
TP + FP

(1)

recallc = TP
TP + FN

(2)

Fc = 2 · precisionc · recallc

precisionc + recallc
, (3)

where c represented the class: loss, normal or gain. True positives
(TP) represent the number of probes that were classified correctly
for each class c, while false positives (FP) are the probes classified
incorrectly as class c. False negatives (FN) represent the number
of probes that belong to class c but were classified as belong-
ing to another class. To test for statistically significant shifts
between F-score distributions of the algorithms, we performed
non-parametric pairwise comparison Wilcoxon tests [36]. We
adjusted the resulting P-values for multiple testing error through
Bonferroni correction [37].

Next, we assessed the performance of the CNA calling
algorithms on the Affymetrix SNP 6.0 HapMap samples with
matched experimentally genomic copy number validated
results. Finally, we analysed the results of the CNA calling
algorithms on the TCGA HNSCC Affymetrix SNP 6.0 samples in

HNSCC consensus regions with focus on the Cyclin D1 (CCND1)
and the cyclin dependent kinase inhibitor 2A (CDKN2A) genes.

Results and discussion
Characterising molecular phenotypes in cancer research
requires the accurate identification of DNA copy number
changes. Although genomics increasingly deploys genome
sequencing, there is still a wealth of cost-effective SNP array
data available. Thus, making use of these data is important and
requires best possible analysis approaches that, among other
features, are able to correct for cancer-specific confounding
variables such as tumour purity and a wide range of CNA
lengths. To benchmark commonly used CNA calling approaches
in the presence of such confounding variables, we developed an
evaluation pipeline.

To evaluate the CNA algorithms, tumour samples with known
true states are required. Since the true copy number states for
real cancer data are unknown and experimental validation on
genome-wide level is not feasible (the human genome size is
about 3.0 × 109 bp and is affected by CNVs), we assessed the
performance of the algorithms using synthetic data mimicking
Affymetrix SNP 6.0 array experiments (see Methods for details).
To make the samples as similar as possible to the real Affymetrix
SNP 6.0 array samples, we simulated data for 1.844.399 markers
of genetic variation—number of probes comparable to the one
present on an Affymetrix SNP 6.0 array. Subsequently, we eval-
uated the performance of OncoSNP, ASCAT, GenoCNA, CGHcall
and GISTIC at SNP level resolution.

When conducting a benchmarking study, in addition to real-
istic synthetic data, we need to use an appropriate measure for
the performance of copy number calling algorithms. In general,
to show how prediction algorithms perform, receiver operating
characteristics (ROC) curves are commonly used [38]. However,
when the distribution of the classes is imbalanced, as in our case
(Figure S1), ROC curves can present an over-optimistic view on
how an algorithm performs, while the recall and the precision
have been shown to give a more informative view [39, 40]. Since
the F-score represents the balance between the precision and the
recall of an algorithm, we selected it as an appropriate criteria
and used it to evaluate the performance of the copy number
algorithms for each class. The F-score allowed us to determine
the algorithm that classified correctly genomic regions inde-
pendently of the CNA type. This is of great importance, since
for a putative future use in personalised medicine, classifying
correctly regions overlapping oncogenes or tumour suppressor
genes may affect the diagnosis and, thus, the treatment of a
patient.

We were interested whether the investigated algorithms can
classify precisely the LRR and the BAF signals on probe level
into three classes: loss, normal and gain. Therefore, we split the
multi-class classification problem into three binary classification
problems.

An improved algorithm for copy number calling from
Affymetrix SNP 6.0 data: CGHcall*

During manual inspection of the CGHcall pipeline we observed
that the normalised signals before and after segmentation in the
synthetic samples with more 50% non-normal states covering
the sample profiles were incorrectly shifted (either to -1, either
to 1). This led to defining an incorrect baseline level in these
samples and thus, calling the wrong copy number state. Since
cases in which more than half of the genotyped probes are in
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Figure 1. Performance of CNA calling algorithms on synthetic data. We evaluated the performance of six algorithms which are colour-coded as it follows: OncoSNP, coral

red; ASCAT, light green; CGHcall, purple; CGHcall*, cyan; GenoCNA, pale pink brown; and GISTIC, yellow. (A). The y-axis represents the F-score and x-axis represents

the tumour purity level in %. The three facets represent the different classes: loss, normal and gain. Each boxplot consists of F-scores for 100 synthetic samples. The

total number of genetic markers covered by the synthetic signal was approximately 1:8 bp. (B). Heatmap of mean F-scores for different lengths of copy number regions.

(C). Heatmap of mean F-scores for samples with CNA burden ratio < 0.5 versus samples with CNA burden ratio > 0.5.

a non-normal state have already been reported in a pan-cancer
study on somatic genomic CNAs [14], we set up to correct for the
CNA burden effect.

The problem arose from the LRR levels being normalised to
the median level over a sample. If more than half of the genome
is changed in one direction (loss or gain), CGHcall is unable to
correctly estimate the baseline level and assigns the 0 level to
what is actually lost or gained. We observed the same behaviour
when we applied the post-segmentation normalisation, which
assigns the baseline segment to a segment that is either lost
or gained. To correct for this effect, we selected three different
intervals as constrains for the LRR signals, [-0.1, 0.1], [-0.05,
0.05] and [-0.2, 0.2], and analysed how the performance of the
algorithm changes in samples with 100% tumour purity. The
resulting F-scores suggested that the LRR signals within the [-0.1,
0.1] interval provided the optimal mean for normalisation and
post-segmentation normalisation (Figure S2). As a result, we pro-
posed a solution in which, instead of performing normalisation
and post-segmentation normalisation based on all LRR signals,
we limit ourselves to LRR signals that fall in the [-0.1, 0.1] interval.

Tumour purity showed strong influence on
performance

We first analysed how different tumour purities influenced the
performance of the algorithms on synthetic data. We compared
the algorithms based on their F-score distributions (Figure 1A).
We first showed how the six algorithms (OncoSNP, red; ASCAT,
neon green; GISTIC, yellow; CGHcall, purple; CGhcall*, cyan; and
GenoCNA, pale orange) identified losses at tumour purity levels
(depicted on the x-axis) varying from 30 to 100% (Figure 1A, left
panel). OncoSNP was not able to identify losses in samples with
tumour purity < 100% (mean F-score = 0.03). ASCAT, GISTIC,
CGHcall and CGHcall* showed poor performance when calling
losses independent of the tumour purity level (mean ASCAT F-
score = 0.26, mean GISTIC F-score = 0.34, mean CGHcall F-score
= 0.39, mean CGHcall* F-score = 0.51). GenoCNA showed good
performance for correctly calling losses in samples with tumour
purities > 50% (mean F-score = 0.68). Thus, the performance
of CGHcall* and GenoCNA for calling losses increased with the
tumour purity.
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OncoSNP showed increasing performance for calling normal
states as the tumour purity level increased (Figure 1A, middle
panel). This may be caused by the log2 ratios being pushed
towards the 0 baseline in the presence of normal DNA. Moreover,
since the normal state represented the majority class, the
improved F-score for OncoSNP when calling normal states
suggested that the algorithm may not be able to tackle the
imbalance of the classes—represented by the copy number
states. ASCAT was unable to classify correctly normal states
independent of the tumour puritity. GISTIC, CGHcall and
GenoCNA showed poor performance when trying to classify
normal states (mean GISTIC F-score = 0.28, mean CGHcall F-
score = 0.29, mean GenoCNA F-score = 0.35). CGHcall* showed
overall good performance in correctly finding the normal state
when compared to the other three algorithms in samples with
tumour purity 100% (mean F-score = 0.70, Figure 1A, middle
panel).

Next, we compared how the algorithms performed when
trying to identify gains (Figure 1A, right panel). OncoSNP showed
good performance when the tumour purity was > 50%. This
suggests that OncoSNP is not able to correct the effect of tumour
contamination > 50% on the signals in gained genomic regions.
The performance of all algorithms for calling gains increased as
the tumour purity increased. ASCAT was the only algorithm able
to correctly call gains in samples with tumour purities > 30%
(mean F-score = 0.76). Overall, our adjusted version of CGHcall–
CGHcall* showed improved performance with regard to all copy
number states and all tumour purities when compared to CGH-
call. GISTIC and CGHcall showed comparable results. This can be
explained by the fact that both algorithms use CBS segmentation
results and do not make use of the BAF. Our analysis suggested
that OncoSNP and CGHcall* handled calling CNAs better than
the other algorithms in samples with high tumour purities. The
main message of this analysis is that tumour purity strongly
influences the results of the CNA calling algorithms.This is an
important information to be considered in designing a CNA
study, since samples with tumour purities markedly below 50%
should not be included in the analysis or at least, profiles result-
ing from such samples should be handled with care.

The effect of copy number region length

Next, we aimed to understand how the length of a copy number
region influenced the performance of the calling algorithms. For
this purpose, we examined the difference between the mean F-
scores of samples with region lengths of ≤ 105probes (short),
between 105 and 106 probes (medium) and region lengths > 106

(long) (Figure 1B). In order to eliminate the effect of reduced
tumour purity, we selected only samples with 100% tumour
purity. The region length was equal to the number of genetic
markers with the same copy number state within a chromoso-
mal segment. One chromosomal segment covered from 3 kilo
base pairs (kbp) to 1.8 million base pairs (Mbp).

We observed that OncoSNP, GenoCNA and CGHcall* showed
little sensitivity to the length of copy number regions. While
CGHcall* and OncoSNP performed well for all three states,
GenoCNA had difficulty in correctly identifying normal genomic
regions. ASCAT performed worse in samples that included short-
and medium-length CNA regions than in samples containing
long CNA regions. GISTIC was not able to correctly find lost
or amplified genomic regions independent of the length. We
observed the same behaviour for CGHcall. One reason that may
lay at the core of this problem is the fact that both CGHcall and
GISTIC use the CBS algorithm. In all, OncoSNP and CGHcall*

showed consistency and performed well for all three copy
number states across the investigated ranges of copy number
region lengths.

The effect of CNA burden

Since we observed that the percentage of aberrated regions in a
tumour sample—CNA burden—affected the normalisation of the
log2 ratios in the CGHcall pipeline, we investigated whether we
observe a similar effect when applying the other copy number
calling algorithms.

We therefore grouped the synthetic data into samples with
CNA burden > 50% and samples with CNA burden < 50% and
calculated the mean F-scores statewise (Figure 1C). We observed
that both CGHcall and GISTIC performed poorly for samples with
CNA burden > 50%. ASCAT also showed decreased performance
for the same scenario, but only for the normal state. The perfor-
mance of CGHcall* increased in samples with CNA burden > 50%
when compared to CGHcall, confirming that we corrected the
inaccuracy from CGHcall, especially for predicting normal and
gained genomic regions. OncoSNP and CGHcall* were again the
best performing algorithms included in this study.

Performance of the copy number calling algorithms on
SNP 6.0 array profiles of healthy patients (HapMap)

To assess how OncoSNP, ASCAT, CGHcall, CGHcall*, GenoCNA
and GISTIC perform on real data, we would need a gold stan-
dard. Due to the size of human genome – 3.0 × 109 bp, we
lack a complete Affymetrix SNP 6.0 array gold standard. Since
the HapMap project subsequently experimentally validated the
CNAs determined from Affymetrix SNP 6.0 data, we defined the
copy number profiles annotated by Redon et al. [4] as our ‘gold
standard’. OncoSNP, ASCAT, CGHcall, CGHcall* and genoCNA
returned predictions for over 14.500 regions that overlapped the
‘gold standard’. When analysing the F-scores of the algorithms
corresponding to 81 profiles with matched annotated copy num-
ber profiles (Figure 2), we first observed that OncoSNP, ASCAT,
CGHcall, CGHcall* and genoCNA performed well for the normal
class (mean F-score = 0.91). Unlike the other algorithms, GISTIC
returned predictions for only 381 regions overlapping the ‘gold
standard’ and performed poorly for all the classes (mean F-score

Figure 2. Distribution of F-scores for OncoSNP, ASCAT, CGHcall, CGHcall*,

GenoCNA and GISTIC in 81 healthy HapMap subjects.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article-abstract/doi/10.1093/bib/bby096/5139664 by guest on 23 O

ctober 2018



Copy number aberrations 7

= 0.10). OncoSNP could not identify any germline alterations.
ASCAT showed a poor performance for identifying gains and
losses (mean F-score = 0.20). CGHcall showed a mean F-score
of 0.67 for identifying losses, but performed poorly for identify-
ing gains (mean F-score = 0.25). CGHcall* showed a significant
improvement only for the normal class compared to the other
algorithms. GenoCNA performed best for identifying losses and
gains, mean F-score = 0.50. ASCAT, just as OncoSNP and GISTIC,
was implemented to find somatic CNAs in cancer samples and
was not designed to find germline alterations in the first place.
We hypothesise that this might be the reason why OncoSNP,
ASCAT and GISTIC perform poorly on healthy patient data.

We are aware that tumour data tailored genomic copy num-
ber algorithms are designed to consider CNAs deriving from
tumour cell populations. However, HapMap data were gener-
ated from blood cells. The genomic copy number changes to be
expected from these samples are germline. Therefore, all cells
analysed should contain the same alterations. We assume that
it would be ‘easier’ for a tumour data tailored algorithm to pick

up copy number changes. The genomic copy number changes
present in the HapMap samples were comprehensively experi-
mentally validated. Thereby, HapMap provides added value since
the ‘gold standard’ with regard to genomic copy number is
known for these samples and allowed us to calculate the per-
formance of the CNA calling algorithms on real data. Based on
the resulting F-scores, genoCNA, CGHcall and CGHcall* were the
best performing algorithms.

CNAs in HNSCC

To test the plausability of CNA calling results in tumour samples,
we explored the concordance between raw LRR signals from
TCGA HNSCC samples and the CNA calls of the six algorithms.
Additionally, we compared the results with the HNSCC-specific
CNA regions defined in Gollin et. al [41]. We focused on two genes:
one known to be amplified in HNSCC–CCND1 and one that is
known to be lost in HNSCC–CDKN2A (Figures 3 and 4).

Figure 3. CCND1: Concordance between raw data and algorithm calls in TCGA HNSCC. The heatmap columns represent patients clustered by raw LRR signals. The

rows represent the Affymetrix SNP 6.0 probes that overlap the CCND1 region. For CGhcall*, CGHcall, GenoCNA, ASCAT and OncoSNP we also include the neighbouring

probe sets of the overlapping region. The lower bar represents the tumour purity of each sample.
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Figure 4. CDKN2A: Concordance between raw data and algorithm calls in TCGA HNSCC. The heatmap columns represent patients clustered by raw LRR signals in the

probes overlapping the CDKN2A genomic region. The rows represent the Affymetrix SNP 6.0 probes that overlap the CDKN2A region. For CGhcall, CGHcall, GenoCNA,

ASCAT and OncoSNP we also include the neighbouring probe sets of the overlapping region. The lower bar represents the tumour purity of each sample.

The data presented in Figures 3 and 4 show that genomic
regions with high LRR values overlapping the CCND1 and
CDKN2A genes are called as gained, while genomic regions
with low LRR values overlapping the CCND1 and CDKN2A genes
are called as lost. The frequencies of CCND1 gains called by
CGHcall, CGHcall*, OncoSNP and GISTIC are comparable to
the frequencies of CCND1 gains reported from CGH data in
Gollin et. al [41], 32%; CGHcall, 26.5%; CGHcall*, 24.9%; OncoSNP,
44%; and GISTIC, 43%. CGHcall, CGHcall*, OncoSNP and GISTIC
showed a good overlap in frequencies of CDKN2A losses:
CGHcall, 39.8%; CGHcall*, 35.4%; and GISTIC, 59%. The tumour
purity ranged from 27.9 to 97.7%. Most of the samples present
tumour purity > 60%. These results indicate that in a realistic
tumour purity range the algorithms that best performed on
synthetic data CGHcall* and OncoSNP showed plausible results
in the TCGA HNSCC data as well.

Concluding remarks
Within our study we addressed the problem of evaluating the
performance of commonly used copy number calling algorithms
in the presence of cancer-specific confounding variables. Since
we lacked a complete Affymetrix SNP 6.0 array gold standard,
we provided a pipeline to evaluate CNA calling algorithms on
Affymetrix SNP 6.0 array-like synthetic data. The analysis on
the synthetic data revealed that the performance of the CNA
calling algorithms is strongly influenced by tumour purity. CGH-
call, GISTIC and ASCAT showed high sensitivity to the length
of the genomic segments. The CNA burden strongly influenced
the performance of ASCAT, GISTIC and CGHcall. We proposed
CGHcall*, an adjusted version of CGHcall, in which we correct
for the effect of the CNA burden and we showed that indeed the
performance of CGHcall* in samples with a CNA burden higher
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than 50%. However, the scope of our paper was to benchmark
commonly used CNA calling algorithms, and not to develop a
new algorithm.

We further evaluated how the algorithms performed on a real
data set comprising of 81 healthy patients HapMap samples that
were subsequently experimentally validated. CGHcall and CGH-
call* were able to detect germline alterations, unlike OncoSNP
and ASCAT. Finally, we examined how comparable were the
results of the CNA calling algorithms with the annotated CNAs
in CCND1 and CDKN2A, when evaluated on the TCGA HNSCC
data set. The results indicated that CGHcall, CGHcall* and GISTIC
return comparable calls to what has been reported so far.

In conclusion, we provided a benchmarking pipeline for CNA
calling algorithms from Affymetrix SNP 6.0 array tumour profiles
together with CGHcall*—an adjusted version of CGHcall for find-
ing CNAs in highly variant genomes.

Key Points
• CNAs are tumour-specific DNA changes that play an

important role in cancer research.
• The accurate identification of CNAs is affected by bio-

logical confounding variables like tumour purity, the
length of a chromosomal segment and the percentage
of CNAs present in a genome.

• Within this benchmarking study we provide a pipeline
through which we evaluated the performance of six
CNA calling algorithms (OncoSNP, ASCAT, CGHcall,
CGHcall*, GenoCNA and GISTIC) in the presence of
biological confounding variables.

• We provide an adjusted version of CGHcall–CGHcall*
that accounts for a high CNA burden.

• We identify tumour purity and CNA burden to signifi-
cantly influence the performance of all the CNA calling
algorithms.

Supplementary Data
Supplementary data are available online at https://academic.
oup.com/bib.
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