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I. INTRODUCTION 

This chapter is partially adapted from Schmohl KA, Nelson PJ, Spitzweg C. Tetrac as an anti-angiogenic 

agent in cancer. Endocr Relat Cancer 2019;26:R287-304 and Schmohl KA, Müller AM, Nelson PJ, 

Spitzweg C. Thyroid hormone effects on mesenchymal stem cell biology in the tumour 

microenvironment. Exp Clin Endocrinol Diabetes 2019 [Epub ahead of print]. 

1.1 Cancer – an overview 

Cancer is the second leading cause of death, accounting for one in six deaths and an estimated total of 

9.6 million deaths worldwide in 2018. In many of the most developed countries, including large parts 

of Europe and North America, cancer is the leading cause for premature mortality at ages below 70 [1]. 

Though huge advances in understanding and treating cancer have been made over the past 50 years, 

many aspects of cancer biology are still poorly understood and, as the numbers above indicate, there is 

still an urge to develop effective treatment strategies.  

Cancer development and progression are highly complex, multi-stage processes that involve multiple 

genetic and epigenetic changes to transform normal cells into malignant tumour cells. As Peyton Rous 

said in his Nobel lecture of 1966, “Tumours destroy man in a unique and appalling way, as flesh of his 

own flesh which has somehow been rendered proliferative, rampant, predatory and ungovernable” [2]. 

In normal tissues, a homeostasis of cell number and thus tissue composition and function are maintained 

by the careful control of mitogenic signalling. In cancer cells, this signalling is deregulated, leading to 

sustained proliferation, circumvention of growth suppressors, and evasion of cell death. To provide the 

ever-growing cell mass with oxygen and nutrients, new tumour vasculature is established through 

angiogenesis. Ultimately, tumour cells acquire the ability to escape the primary tumour mass by invading 

adjacent tissues and disseminating to distant sites to form metastases [3, 4]. 

1.1.1 The tumour microenvironment 

Solid tumours are organ-like structures that develop within a complex microenvironment [5]. Mimicking 

chronic wounds, tumours hijack the wound healing response to recruit “migratory neighbours and distant 

invaders” as supporting cells and generate the stroma they need for survival and growth [6-9]. The 

malignant cancer cells are typically outnumbered by the ‘benign’ cells of the stromal compartment that 

is composed of a heterogeneous population of cells, including cancer-associated fibroblasts (CAFs), 

mesenchymal stem cells (MSCs), pericytes, vascular endothelial cells, and immune cells, besides non-

cellular components, i.e. signalling molecules and the extracellular matrix (Fig. 1) [10, 11]. The 

adaptation of cells of the tumour stroma to the harsh conditions a growing tumour faces, such as oxygen 

and nutrient deprivation, preserves tumour homeostasis by creating a protective niche not only shielding 
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cancer cells from metabolic stress and immune surveillance, but also fostering resistance to treatment 

[10, 12].  

 

1.1.2 Tumour hypoxia and angiogenesis 

As mentioned above, tumour growth and progression require an adequate vascular supply. Rapidly 

proliferating tumour masses, however, typically outgrow their vasculature, leading to hypoxic areas with 

low oxygen concentrations. This in turn triggers the hypoxic response, both in tumour and stromal cells, 

which is initiated by stabilisation of hypoxia-inducible factors (HIFs). HIFs mediate the expression of 

genes involved in angiogenesis, the formation of new blood vessels from the existing vasculature. 

Angiogenesis is a highly regulated process, temporally and spatially controlled by a balance between 

pro- and anti-angiogenic factors [13, 14]. In response to specific stimuli, including hypoxia and 

inflammation, the angiogenic switch occurs in the quiescent endothelium through the local release of 

vascular growth factors by tumour cells, endothelial cells, and cells of the tumour stroma, initiating 

coordinated endothelial cell proliferation, invasion, migration, and, ultimately, tube formation and 

maturation [14, 15]. Angiogenesis is closely linked to tumour progression, both sustaining tumour 

growth by providing oxygen and other nutrients, and facilitating metastasis. While physiological 

angiogenesis in the context of development, tissue growth, and wound-healing is tightly regulated and 

self-limiting, cancer-associated angiogenesis, though in principle regulated by the same pathways, is 

usually persistent and abnormal, contributing to the formation of a dysfunctional endothelium that is 

often leaky and tortuous [16, 17].  

 

Figure 1. Schematic illustration of the tumour microenvironment. Besides the malignant cancer cells, 

tumours consist of several different supporting cell types that are recruited to the tumour stroma during 

tumour growth and progression. 
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1.1.3 Mesenchymal stem cells 

MSCs are multipotent non-hematopoietic stromal cells, primarily found in the bone marrow and adipose 

tissue, that are capable of differentiating into multiple connective tissue lineages, such as osteocytes, 

chondrocytes, and adipocytes [18]. They contribute to tissue maintenance and regeneration by their 

recruitment as ‘first responders’ to sites of tissue injury and inflammation [11]. Hence, MSCs actively 

home to tumours that are disguised as wounds. The presence and function of MSCs in the tumour 

microenvironment is still incompletely understood, though our current knowledge suggests that they 

serve as progenitor cells for CAFs and blood vessel-stabilising pericytes [5, 8, 18-20]. As with 

fibroblasts associated with wound healing that remodel and regenerate tissues, CAFs are activated 

fibroblasts that support tumourigenesis by encouraging a pro-angiogenic, immunosuppressive, and pro-

inflammatory microenvironment [6, 19, 21]. In addition, they perpetually remodel the extracellular 

matrix, thus releasing sequestered proteins, besides physically creating space for proliferating and 

migrating tumour cells [21]. Pericytes, on the other hand, envelop vascular tubes formed by endothelial 

cells and serve as scaffolding. By their differentiation into pericytes, MSCs support the stabilisation and 

maturation of newly formed vessels [14]. In addition, numerous pro-angiogenic factors have been 

identified in the secretome of MSCs that induce endothelial cell proliferation, migration, invasion, and 

endothelial cell tube formation [14]. Hence, MSCs affect a broad spectrum of angiogenic processes 

through their interaction and communication with endothelial cells [22, 23]. Ultimately, MSCs and their 

differentiated progeny support tumour cell survival and growth, angiogenesis, immune evasion, 

invasion, and metastasis through cell-to-cell interactions and the secretion of tumour-promoting factors 

[24]. 

1.2 Thyroid hormones 

The thyroid hormones L-thyroxine (T4) and 3,5,3’-triiodo-L-thyronine (T3) are iodinated low molecular 

mass compounds derived from the amino acid L-tyrosine (Fig. 2). Virtually all multicellular animals, 

including primitive invertebrate species, have the capacity to respond to thyroid hormones [25]. Their 

diverse functions include the regulation of development, differentiation, growth, and metabolism. Given 

that they influence such a broad range of processes, it is not surprising that growing clinical and 

experimental evidence suggests that thyroid hormones are also implicated in cancer development and 

progression.  

In vertebrates, thyroid hormones are produced and released into the circulation by the thyroid gland 

controlled by feedback mechanisms within the hypothalamic-pituitary-thyroid axis. In response to 

thyroid-stimulating hormone (TSH; thyrotropin) released by the pituitary, thyroid follicular cells 

produce T4 and, to a lower extent, T3. Though T4 is quantitatively the major secretory product, T3 is 

generally considered the metabolically most active thyroid hormone. Relevant T3 production occurs in 

the periphery by de-iodination of T4. Besides the classical thyroid hormones, several naturally 
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occurring, biologically active metabolites have been discovered. These include the acetic acid T4 

analogue 3,3’,5,5’-tetraiodothyroacetic acid (tetrac; Fig. 2) that is generated by deamination and 

decarboxylation at the alanine side chain of the inner tyrosyl ring of T4 and circulates in the blood at 

low nanomolar concentrations [26-28]. 

1.2.1 Thyroid hormone signalling 

At the cellular level, thyroid hormone activity is mediated through specific receptors in the nucleus, but 

also the mitochondria, the cytoplasm, and the plasma membrane [29]. Classical or ‘genomic’ thyroid 

hormone signalling occurs via the nuclear thyroid hormone receptors TRα and TRβ that act as ligand-

dependent transcription factors [30, 31]. In this canonical pathway, T3 is the primary ligand, while T4 

functions as pro-hormone [32]. The term non-classical thyroid hormone signalling, in contrast, 

summarises all those effects where pathway initiation by thyroid hormones is ‘non-genomic’, i.e. not in 

the nucleus, though downstream consequences may culminate in effects on gene transcription. 

 

Integrin αvβ3 

One such non-classical pathway is initiated at integrin αvβ3, a plasma membrane thyroid hormone 

receptor identified in 2005 by Bergh et al. [33]. Integrins are a structurally related family of 

heterodimeric membrane receptors involved in cell-cell and cell-extracellular matrix protein 

interactions, and have emerged as major regulators of the activity of various cell-signalling pathways. 

Though integrins themselves are not oncogenic, their expression by tumour cells and tumour stroma-

associated cells critically contributes to tumour progression and metastasis [34]. Ligand binding to the 

extracellular domain is translated into downstream signalling events via outside-in signalling inside the 

 
 

Figure 2. Membrane-initiated thyroid hormone signalling. Left panel: Chemical structures of 3,5,3’-triiodo-

L-thyronine (T3), L-thyroxine (T4) and thyroid hormone metabolite 3,3’,5,5’-tetraiodoacetic acid (tetrac). Right 

panel: The thyroid hormone binding site on integrin αvβ3 contains two distinct binding domains, S1 and S2 that 

activate separate signalling cascades and downstream effects relevant to tumour progression. 
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cell, usually engaging signal transducing kinase cascades [35]. Integrin signalling is typically transduced 

into cell motility, adhesion, division, and angiogenesis via direct effects on the cytoskeleton and 

modulation of gene transcription. Furthermore, crosstalk between integrins and neighbouring growth 

factor and cytokine receptors, affecting their expression, ligand affinity, and signalling, seems to be 

required for many of their tumour-promoting effects [34]. 

Integrin αvβ3 is primarily expressed on cancer cells, dividing endothelial cells, and tumour stroma-

associated cells, highlighting its potential importance in oncology [20, 36]. Its prototypic ligand is the 

extracellular matrix glycoprotein vitronectin that binds to the integrin’s extracellular domain via an RGD 

(arginine-glycine-aspartic acid) sequence [37]. The thyroid hormone binding site on integrin αvβ3 is 

located near this RGD recognition site and comprises two distinct domains that are related neither 

structurally nor functionally to nuclear thyroid hormone receptors [38, 39]. The binding site S1 

exclusively binds T3 and causes activation of the phosphoinositide 3-kinase (PI3K) cascade, which has 

been proposed to stimulate HIF-1α expression and thus indirectly affect angiogenesis [39]. The S2 site, 

in contrast, binds both T3 and T4 and results in MAPK (ERK1/2) pathway activation [39]. From the 

latter site, thyroid hormones have been reported to stimulate angiogenesis and cell proliferation, and to 

inhibit apoptosis (Fig. 2) [40]. Thus, in contrast to the TR/thyroid hormone axis, both T4 and T3 act as 

active hormones at the integrin receptor. In fact, as the affinity for T4 is far higher than that for T3, and 

lies in the physiologic concentration range that is comparable to the T3 affinity for nuclear receptors, 

T4 may well be the main hormone signalling at the integrin, thus transcending its role of pro-hormone 

for T3 [41]. Tetrac binds to both thyroid hormone binding sites on the integrin and is a specific inhibitor 

of integrin-mediated thyroid hormone action [26, 42]. Within the cell, in contrast, tetrac has low-grade 

thyromimetic activity, both by itself, as well as through its conversion to triiodothyroacetic acid (triac) 

[43, 44]. Via integrin αvβ3, thyroid hormones have been shown to stimulate proliferation in various 

tumour cell lines, both in vitro and in vivo, impede apoptosis, and augment angiogenesis, inflammation, 

immune escape, and therapy resistance, while tetrac reversed these effects [29, 40, 45, 46].  

1.2.2 Thyroid hormones and cancer – the yes, the no, and the maybe 

While experimental evidence conclusively demonstrates a link between thyroid hormones and tumour 

progression, clinical evidence is more ambiguous. Several studies have examined the relationship 

between cancer and thyroid status. Hyperthyroidism has been associated with an increased risk, 

mortality, rate of recurrence, and/or progression in many different tumour entities, including 

gynaecological and gastrointestinal cancers, prostate cancer, glioma, and leukaemia, among others. In 

hepatocellular carcinoma, in contrast, hyperthyroidism has been shown to be associated with smaller 

tumours and a decreased mortality. Hypothyroidism is mostly reported to be associated with a decreased 

cancer risk and a better prognosis, with the exception of uterine and colorectal cancer, and, again, 

hepatocellular carcinoma. Studies comparing the overall risk and mortality for any type of cancer 

complicate things further, as for both hyper- and hypothyroidism results range from an increase to a 
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decrease in cancer risk and/or mortality, with some studies finding no association at all (recently 

reviewed in [47, 48]). More conclusive evidence of thyroid hormone involvement in cancer progression 

has derived from the chance observation that cancer patients that develop hypothyroidism as unwanted 

side effect of treatment often show a more favourable outcome. In addition, in rodent models, 

hypothyroidism has been reported to reduce tumour growth [31, 49-54]. Based on these findings, 

hypothyroidism was deliberately induced in cancer patients in a few pioneering studies. Indeed, 

induction of mild hypothyroidism in glioma patients was associated with tumour regression and 

prolongation of survival and time-to-progression [55-57]. Interestingly, pharmacologic induction of a 

euthyroid hypothyroxinaemic state under maintenance of normal circulating T3 levels and euthyroidism 

with substantial reduction of circulating T4 levels in advanced cancer patients was associated with a 

significant prolongation of actual versus expected survival [58].  

1.3 Targeted cancer gene therapy 

The simplest definition of gene therapy is the genetic modification of cells to produce a therapeutic 

effect [59]. As cancer is a genetic disease, high expectations have been placed on cancer gene therapy. 

Faced with obstacles such as the polygeneity and heterogeneity of tumours, progress, however, has been 

slow [60]. Trying to correct the many different genes that are abnormal for each individual tumour is 

not feasible. Instead, the selective modification of tumour cells with therapeutically active genes is a 

more promising strategy [60]. 

1.3.1 The sodium iodide symporter NIS 

One such therapeutically active gene that has evolved as a highly promising candidate for cancer gene 

therapy is the sodium iodide symporter (NIS; SLC5A5). NIS encodes an intrinsic transmembrane 

glycoprotein that mediates the cellular uptake of iodide from the bloodstream into thyroid follicular cells 

as the first and rate-limiting step of thyroid hormone synthesis [61]. NIS actively transports one iodide 

ion (I-) and two sodium ions (Na+) across the basolateral membrane of thyroid follicular cells using the 

sodium gradient generated by the Na+/K+-ATPase. Iodide transport is inhibited by the Na+/K+-ATPase 

inhibitor ouabain, and the competitive inhibitors thiocyanate and perchlorate. Thyroidal NIS expression 

is regulated by pituitary-derived TSH [61]. In addition to its role in thyroid physiology, NIS provides 

the basis for the diagnostic imaging and therapy of differentiated thyroid cancer and its metastases using 

radioactive iodine isotopes, and other radionuclides that are also transported by NIS. This has been 

successfully exploited for the treatment of thyroid cancer patients since 1946, making thyroid cancer 

one of the most manageable cancers to date [61, 62].  

Cloning of the NIS gene in 1996 marks the birth of a cytoreductive gene therapy approach based on 

targeting functional NIS expression to thyroidal and non-thyroidal tumours, thus extending a well-

established and highly effective therapeutic strategy beyond the treatment of differentiated thyroid 

tumours [61, 63, 64]. The feasibility of the NIS gene therapy concept in cancer treatment has been 
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demonstrated in several preclinical studies and as a result, it has entered clinical trials [65]. These trials 

are based on local or systemic (i.e. by intraperitoneal injection) NIS gene delivery by measles virus in 

various cancer types (NCT01503177, NCT01846091, NCT02364713, and NCT02700230) or by MSCs 

infected with a NIS-encoding measles virus in recurrent ovarian cancer (NCT02068794).  

 

The many advantages of NIS include its dual function as reporter and therapy gene. This allows the 

characterisation of vector biodistribution, localisation, level, and duration of transgene expression, as 

well as dosimetric calculations by standard non-invasive nuclear medicine imaging modalities, 

including 123I- and 99mTc-scintigraphy, as well as 124I- and 18F-TFB-positron emission tomography 

(PET), before the application of a therapeutic dose of therapeutic radionuclides 131I, 188Re, or 211At (Fig. 

3) [66]. In addition, NIS is non-immunogenic and its biodistribution, expression, and safety profile are 

well-defined due to the extensive experience gained in differentiated thyroid cancer patients [67, 68]. 

Notably, NIS-based therapy is associated with a substantial bystander effect on non-transfected cells 

that are irradiated by the crossfire emanating from adjacent transfected cells (Fig. 3). The effective range 

of the beta emission of the therapeutic radionuclide 131I, for instance, is up to 2.4 mm in tissues. The 

 

Figure 3. Schematic illustration of the theranostic NIS gene therapy concept. Cloning of thyroidal NIS 

has paved the way for NIS gene transfer to both thyroidal and extrathyroidal tumours. Application of 

diagnostic radionuclides allows diagnostic imaging and dosimetric calculations, before the application of 

therapeutic radionuclides. 
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significance of this effect is that not only NIS expressing cells are destroyed, but also neighbouring cells, 

hence compensating incomplete targeting of all tumour cells [68].  

1.3.2 Gene transfer concepts 

Clinical application of the NIS gene therapy concept depends on specific and efficient tumour targeting 

at low toxicity and requires systemic application for the treatment of disseminated cancer. The 

biostability and delivery efficiency of naked nucleic acids are very low, limiting their systemic 

applicability and making the development of gene transfer vehicles indispensable [69]. Prof. Dr. 

Christine Spitzweg’s lab has focussed on the optimisation of selective NIS gene transfer into both 

thyroidal and non-thyroidal tumours in collaboration with Prof. Dr. Ernst Wagner (Pharmaceutical 

Biotechnology, Department of Pharmacy, Centre for System-Based Drug Research and Centre for 

Nanoscience, LMU Munich) and Prof. Dr. Peter J Nelson (Clinical Biochemistry Group, Department of 

Internal Medicine IV, University Hospital of Munich, LMU Munich). To this end, different gene transfer 

vehicles that allow systemic application are being evaluated, including genetically engineered MSCs, 

viral vectors, and non-viral synthetic vectors.  

MSCs 

MSCs, based on their natural tropism for solid tumours and metastases, have been used as Trojan horses 

to deliver the NIS gene deep into the tumour microenvironment. After an initial proof-of-principle study 

using the constitutively active cytomegalovirus (CMV) promoter to drive NIS expression in MSCs and 

target hepatocellular carcinoma in a subcutaneous murine xenograft model, tumour specificity was 

enhanced in subsequent studies using promoters selectively activated in the tumour milieu [66]. These 

included the chemokine CCL5/RANTES promoter, a hypoxia-inducible promoter, a TGF-β-responsive 

promoter, and a radiation-inducible promoter [70-75]. These approaches allowed diagnostic imaging of 

MSC biodistribution and transgene expression followed by successful NIS-based radionuclide therapy 

in different tumour models, including orthotopic hepatocellular carcinoma xenografts, colon cancer liver 

metastasis xenografts, and a genetically engineered mouse model of pancreatic ductal adenocarcinoma 

[71, 72, 76]. 

Viral vectors 

A further method for systemic gene transfer is the use of viral vectors. Since viruses are nucleic acid 

transfer vehicles optimised by evolution, their transfection efficiency is unrivalled. In a radiovirotherapy 

approach, a replication-selective oncolytic adenovirus was used to successfully target NIS to 

hepatocellular carcinoma xenografts, resulting in a significant therapeutic effect [77]. To increase 

tumour specificity by reduction of off-target effects, viruses were coated with poly(amidoamine) 

dendrimers, which resulted in successful liver detargeting and effective tumour retargeting of the NIS 

gene transfer vectors [78]. Coupling these dendrimers to GE11, a ligand of the epidermal growth factor 
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receptor (EGFR), which is highly expressed on many tumour cells, further improved tumour selectivity 

of the adenoviral NIS gene therapy approach [79].  

Synthetic vectors 

Though widely used and, in principle, highly promising, viral vectors do come with a number of 

drawbacks, including safety concerns based on their potential immunogenicity and oncogenesis, in 

addition to limited payload capacity and the difficulty of large-scale production [80]. In an approach to 

imitate viruses to deliver nucleic acid payloads efficiently without the aforementioned drawbacks, the 

development of synthetic polymers has gained momentum. In this context, cationic polymers have 

emerged as the most promising class of non-viral gene delivery vehicles [81]. Polycations stabilise 

nucleic acids by forming sub-micrometre complexes called polyplexes, thus effectively protecting them 

from premature degradation and unwanted interactions with extracellular components [81]. Branched 

polycations based on pseudodendritic oligoamines demonstrated the huge potential of synthetic 

polymers for tumoural NIS gene transfer after systemic application in a syngeneic mouse model of 

neuroblastoma and a xenograft mouse model of hepatocellular carcinoma [82, 83]. Tumour targeting 

relied on the high intrinsic tumour affinity of the polyplexes due to the enhanced permeability and 

retention effect that arises from the dysfunctional and leaky endothelium of tumours and drives the 

passive accumulation of polyplexes [69, 84, 85]. To enhance tumour-targeting, polyplexes can be 

equipped with tumour-specific ligands, such as the EGFR-specific peptide GE11 mentioned above. To 

this end, GE11 was attached to one of the most widely used polycations, linear polyethylenimine (LPEI), 

via a polyethylene glycol (PEG) linker, thus reducing cytotoxicity by shielding the surface of the 

polyplex, to target NIS to a high EGFR-expressing xenograft mouse model of hepatocellular carcinoma, 

resulting in a significant therapeutic effect [81, 86, 87].  

1.4 Aims of the thesis 

Cancer is a major cause of mortality around the world. Hence, there is a drive to understand the 

mechanisms contributing to tumour progression with the aim to avoid risk factors and develop more 

target-oriented, individualised therapy approaches. These two aspects, (1) understanding tumour 

biology, and (2) development of tumour-targeted treatment strategies, are the two major topics 

underlying this thesis. 

Over the past two decades, there has been increasing evidence linking the thyroid hormones T3 and T4 

to critical aspects of tumour growth and progression, including stimulation of tumour cell proliferation, 

angiogenesis, and inflammation. These effects are thought to be mediated through integrin αvβ3 and are 

blocked by the T4 derivative tetrac. While thyroid hormone effects on tumour cells and endothelial cells 

have been described in a variety of integrin αvβ3-positive tumour models in vitro and in vivo, effects on 

other critical cells within the tumour microenvironment, including αvβ3-positive MSCs, have not been 

investigated to date.  
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Initially, the tools and thyroid hormone treatment strategies required for the analysis of thyroid hormone 

effects initiated at integrin αvβ3 had to be established in vitro and in vivo. To eliminate endogenous 

thyroid hormone synthesis in the mouse, thyroid ablation protocols needed to be devised.  

Subsequently, building on the extensive experience with adoptively applied MSCs as tumour-selective 

gene delivery vehicles in Prof. Dr. Christine Spitzweg’s and Prof. Dr. Peter J Nelson’s laboratories, the 

effects of thyroid hormones versus tetrac on the tumour homing capacity of MSCs and their 

differentiation within the tumour milieu were investigated.   

As the analysis of MSC differentiation under thyroid hormone stimulation unearthed a subset of genes 

relevant to angiogenesis, and MSCs are known to modulate angiogenesis both by paracrine and cell-cell 

contact effects, the next logical step was to investigate the angiogenic effects of thyroid hormones versus 

tetrac on MSCs in the tumour milieu in more detail. The unique reporter gene properties of NIS, a well-

established theranostic gene in the laboratory of Prof. Dr. Christine Spitzweg, provided the basis to 

examine signalling pathway activation in MSCs in the tumour microenvironment under thyroid hormone 

stimulation. 

Next, a comparison of thyroid hormone versus tetrac effects on tumour growth in an αvβ3-positive 

tumour cell line and an αvβ3-negative tumour cell line was aimed at to determine the importance of 

integrin αvβ3 expression on the tumour cells themselves for tumour growth stimulation by thyroid 

hormones, as opposed to effects on endothelial cells and the tumour stroma. 

The second major topic of this thesis is focussed on NIS gene transfer for cancer gene therapy using 

synthetic non-viral polymers as gene delivery vehicles based on previous work in the laboratories of 

Prof. Dr. Christine Spitzweg and Prof. Dr. Ernst Wagner.  

To begin with, the therapeutic efficacy of LPEI-based polymers containing an EGFR-targeting ligand 

to re-induce NIS expression in undifferentiated thyroid cancer that has lost its endogenous NIS 

expression, were tested.  

In a further step towards clinical application, these polymers were applied in a more advanced tumour 

model. To this end, a genetically engineered mouse model of pancreatic ductal adenocarcinoma was 

used that better reflects human disease and is thus highly suitable to predict the clinical effectiveness of 

a specific therapy approach.  
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2.1 Abstract 

Due to the high variance in available protocols on iodide-131 ablation in rodents, we set out to establish 

an effective method to generate a thyroid-ablated mouse model that allows the application of the sodium 

iodide symporter (NIS) as reporter gene without interference with thyroidal NIS. We tested a range of 

131I doses with and without pre-stimulation of thyroidal radioiodide uptake by low-iodine diet and TSH 

application. Efficacy of induction of hypothyroidism was tested by measurement of serum T4 

concentrations, pituitary TSHβ and liver deiodinase type 1 (DIO1) mRNA expression, body weight 

analysis and 99mTc-pertechnetate scintigraphy. 

While 200 µCi (7.4 MBq) 131I alone was not sufficient to abolish thyroidal T4 production, 500 µCi (18.5 

MBq) 131I combined with one week of low-iodine diet decreased serum concentrations below the 

detection limit. However, the high 131I dose resulted in severe side effects. A combination of one week 

of low-iodine diet, followed by injection of bovine TSH before the application of 150 µCi (5.5 MBq) 

131I, decreased serum T4 concentrations below the detection limit and significantly increased pituitary 

TSHβ concentrations. The systemic effects of induced hypothyroidism were shown by growth arrest and 

decrease in liver DIO1 expression below the detection limit. 99mTc-pertechnetate scintigraphy revealed 

absence of thyroidal 99mTc-pertechnetate uptake in ablated mice. 

In summary, we report a revised protocol for radioiodide ablation of the thyroid gland in the mouse to 

generate an in vivo model that allows the study of thyroid hormone action using NIS as reporter gene. 
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2.2 Introduction 

Mouse models of hypothyroidism increase our understanding of the mechanisms that regulate thyroid 

hormone action both during normal function and disease. Drug-induced hypothyroidism is a commonly 

used approach for assessment of thyroid hormone action in rodent models. An alternative approach 

makes use of the thyroid-lethal properties of the radionuclide iodide-131 to induce hypothyroidism. This 

is based on the ability of thyroid follicular cells to transport and concentrate radioactive iodide due to 

their expression of the sodium iodide symporter (NIS). Several non-thyroidal organs physiologically 

express NIS, such as salivary glands, gastric mucosa and lactating mammary glands and therefore 

possess the ability to actively transport iodide. They do not, however, organify and store it. These 

characteristics allow for high thyroid-specific cytotoxicity of 131I with minimal side effects [88]. 

The first report of selective destruction of thyroid tissue by iodide-131 was published by Hamilton in 

1942 [89]. Since then, numerous protocols for radioiodide ablation of the mouse thyroid gland have 

been published with broad variation of the thyroid-lethal dose of 131I administered to mice ranging from 

28 to 1000 µCi (1 to 37 MBq) in the presence or absence of stimulation of thyroidal iodide uptake by 

treatment with low-iodine diet for one to four weeks or exogenous TSH application prior to the 

administration of radioiodide [50, 90-98].  

We and others have shown the potential of NIS as reporter gene for molecular imaging with a broad 

range of possible applications [66, 70, 77-79, 82, 83, 87, 99-102]. In our previous work, the role of NIS 

as a reporter gene allowed non-invasive multimodal imaging of functional NIS expression by 99mTc or 

123I scintigraphy as well as SPECT and 124I PET imaging that correlated well with the results of ex vivo 

gamma counter measurements as well as NIS mRNA and protein analysis. Stem cells have been the 

object of research in gene and cellular therapies. To date, these studies have lacked detailed information 

about the exact in vivo biodistribution, survival and biological compartment of these cells in tissues. 

Genetically engineered mesenchymal stem cells that express NIS allow detailed, non-invasive in vivo 

tracking of stem cells from their initial deposition to survival, migration and differentiation by 123I 

scintigraphy/SPECT and 124I PET, as has been demonstrated in our previous work [66, 70]. Based on 

these studies, we are now employing this system to study thyroid hormone action on mesenchymal stem 

cell biology within the tumour microenvironment. In an effort to generate a thyroid-ablated mouse 

model for the NIS-based evaluation of thyroid hormone action avoiding interference with thyroidal NIS 

that underlies an exclusive regulation by TSH, in the current study we describe an effective protocol for 

thyroid radioiodide ablation in mice. 
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2.3 Materials and Methods 

Animals 

Male CD1 nu/nu mice from Charles River (Sulzfeld, Germany) were maintained under specific 

pathogen-free conditions with access to standard nude mouse diet (2.2 mg/kg iodine; ssniff, Soest, 

Germany) or low-iodine diet (LID; < 15 µg/kg iodine; ssniff) and tap water ad libitum. Animals were 

allowed to acclimatise for one week prior to the start of treatments. At the beginning of the experiments, 

mice weighed 25-30 g with an average body weight of 26.6 g ± 1.27 g (mean ± standard deviation). 

After the end of the experiments, animals were sacrificed and tissues and blood were taken for analysis. 

The experimental protocol was approved by the regional governmental commission for animals 

(Regierung von Oberbayern, Munich, Germany). 

Thyroid radioiodide ablation 

Mice were randomly assigned to different treatment groups. For thyroid ablation, animals received a 

single i.p. injection of 200 µCi (7.4 MBq; according to [96]; n=6), 500 µCi (18.5 MBq; according to 

[90]; n=6) or 150 µCi (5.5 MBq; according to [97, 98]; n=12) of carrier-free iodide-131 in 250 µl 

phosphate-buffered saline containing sodium thiosulfate as reducing agent (GE Healthcare, 

Braunschweig, Germany) or saline for control animals (n=6 for each experiment). Animals that received 

500 µCi of 131I were additionally put on LID one week prior to radioiodide application. Before 

administration of 150 µCi of 131I, mice were fed LID for one week and, on day eight, received an i.p. 

injection of 10 mIU bovine TSH (Sigma, Munich, Germany) two hours before radioiodide application. 

A subset of radioiodide-ablated animals (n=6) received daily i.p. injections of 20 ng/g body weight T4 

(Sigma) starting the day after the application of 131I.  

Serum T4 measurements 

T4 concentrations were monitored in pooled serum samples from tail vein blood or in individual serum 

samples after sacrifice. Serum total T4 concentrations were measured in duplicate by radioimmunoassay 

using a commercially available kit (RIA-4524; DRG Instruments, Marburg, Germany) according to the 

manufacturer’s instructions. The samples and calibrators were incubated with radiolabelled tracer in 

antibody-coated tubes. After incubation, the liquid was aspirated and the antibody-bound radiolabelled 

tracer was counted in a gamma counter (1277 Gammamaster; LKB Wallac, Turku, Finland). The limit 

of quantification was at 10 nM with an intra-assay coefficient of variation (CV) of 3.6% at 80 nM and 

1.1% at 167 nM.  

Whole-body planar 99mTc-pertechnetate scintigraphy 

Two hours after i.p. injection of 500 µCi (18.5 MBq) 99mTc-pertechnetate, a gamma emitter that is also 

transported by NIS [102], 99mTc-pertechnetate accumulation was assessed using a gamma camera 

equipped with a low-energy high-resolution (LEHR) collimator (e.cam, Siemens, Munich, Germany). 



Radioiodide ablation of mouse thyroid 

15 

 

Imaging studies were performed under inhalational anesthesia using an isofluorane vaporiser. Regions 

of interest were quantified and expressed as fraction of the injected dose of applied radionuclide in the 

cervical region. 

RNA extraction and quantitative real-time PCR 

After sacrifice, mouse pituitaries and livers were snap frozen on dry ice and stored at -80°C until further 

processing. Total RNA was prepared using the RNeasy Mini Kit with QIAshredder (Qiagen, Hilden, 

Germany) according to the manufacturer’s instructions. Reverse transcription was performed using 

SuperScript III First-Strand Synthesis System (Invitrogen Life Technologies, Karlsruhe, Germany). 

Quantitative real-time PCR was run in duplicate with the QuantiTect SYBR Green PCR Kit (Qiagen) in 

a Mastercycler ep gradient S PCR cycler (Eppendorf, Hamburg, Germany). Relative expression levels 

of pituitary TSHβ and liver deiodinase type 1 (DIO1) were calculated from ΔΔCt values normalised to 

internal β-actin and 18S rRNA. The following primers were used: Actb, forward 5’-

AAGAGCTATGAGCTGCCTGA-3’, reverse 5’-TACGGATGTCAACGTCACAC-3’; R18s, forward 

5’-CGCAGCTAGGAATAATGGAA-3’, reverse 5’-TCTGATCGTCTTCGAACCTC-3’; Tshb, 

forward 5’-GGGTATTGTATGACACGGGATA-3’, reverse 5’-ATTTCCACCGTTCTGTAGATGA-

3’; Dio1, forward 5’-AAGACAGGGCTGAGTTTGGG-3’, reverse 5’-

TGAGGAAATCGGCTGTGGAG-3’. 

Statistical analysis 

Every data point was generated using three to six mice per group. Values are reported as mean ± SEM 

or mean fold change ± SEM. Statistical significance of T4 and TSHβ concentrations was tested by two-

tailed Student’s t-test, that of body weight measurements by two-tailed Mann-Whitney U-test (*p<0.05; 

**p<0.01; ***p<0.001). 

2.4 Results 

131I ablation and T4 measurements 

Three different protocols for radioiodide ablation of the thyroid gland were compared with the aim to 

establish a thyroid-ablated mouse model of hypothyroidism. Four weeks after administration of a single 

dose of 200 µCi iodide-131, serum T4 concentrations had dropped by 50% in ablated mice compared to 

untreated control animals (Fig. 4A).  

By increasing the 131I dose to 500 µCi with additional treatment with LID for one week prior to 131I 

application, serum T4 concentrations dropped below the limit of detection (<10 nM) as early as two 

weeks after radioiodide administration (Fig. 4A). However, starting at approximately one week after 

ablation, mice suffered from drastic weight loss and heavy breathing despite T4 supplementation in a 

subgroup of mice, and, as a result, had to be sacrificed (Fig. 4B).  



Radioiodide ablation of mouse thyroid 

16 

 

 

The combination of one week of low-iodine diet and stimulation with TSH prior to administration of 

150 µCi 131I (LID/TSH/150 µCi 131I), resulted in serum T4 concentrations below the detection limit 

within two weeks after ablation that remained stable until the end of the observation period (ten weeks 

after ablation; Fig. 4C). The ablated mice without T4 supplementation showed only minor side effects 

such as absence of weight gain (Fig. 5B) and slower movement in the cage. Therefore, all further 

experiments were conducted following this protocol. Serum T4 concentrations in the subgroup of mice 

that received T4 supplementation by daily i.p. injections of 20 ng T4 per gram body weight were in the 

same range as in the untreated euthyroid group of mice (Fig. 4C).  

Monitoring of body weight and analysis of TSHβ and DIO1 mRNA expression  

The drop in serum T4 concentrations in ablated mice coincided with a 48- and 45-fold increase, 

respectively, in pituitary TSHβ concentrations two and ten weeks after thyroid ablation, compared to 

untreated controls (Fig. 5A). 

As a drop in serum T4 and elevation of pituitary TSH do not per se prove a systemic state of 

hypothyroidism, we additionally monitored body weight gain in ablated mice versus untreated control 

mice. Radioiodide-ablated mice showed an arrest in growth from around one week after 131I injection, 

while untreated control animals continued to grow throughout the observation period (Fig. 5B). We also 

investigated expression of DIO1 in the liver as a second marker for systemic hypothyroidism. Four 

 

Figure 4. Comparison of radioiodide thyroid ablation protocols. (A) Serum T4 concentrations 4 weeks 

after injection of 200 µCi 131I and 2 weeks after injection of 500 µCi 131I combined with LID compared to 

untreated controls. The lower 131I dose resulted in a 50 % reduction in serum T4 concentrations only, while 

the higher dose decreased T4 below the detection limit (<10 nM; ***p<0.001). (B) Mice injected with 500 

µCi 131I suffered weight loss irrespective of T4 supplementation and had to be sacrificed, while untreated 

control mice showed continuous growth. Results are expressed as % of initial body weight. (C) Serum T4 

concentrations 2 and 10 weeks after treatment with LID/TSH/150 µCi 131I compared to untreated controls 

and mice that additionally received 20 ng/g body weight T4. This treatment led to undetectable serum T4 

concentrations as early as two weeks after 131I application that remained undetectable after 10 weeks. T4 

supplemented mice showed T4 concentrations in the range of the concentrations measured in untreated and 

therefore euthyroid control animals (*p<0.05; ***p<0.001). 
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weeks after 131I application, liver DIO1 mRNA concentrations dropped below the detection limit with 

Ct values >40, whereas for control animals a mean Ct value of 26.11 ± 0.69 was measured with 

comparable reference gene concentrations between the two treatment groups. 

 

99mTc-pertechnetate whole body imaging 

To examine the effects of 131I ablation on thyroidal radioiodide uptake, we monitored 99mTc-

pertechnetate biodistribution by gamma camera imaging. Significant 99mTc-pertechnetate accumulation 

was observed in tissues that physiologically express NIS, i.e. thyroid, salivary glands and stomach, as 

well as the urinary bladder due to renal elimination of the radionuclide (Fig. 6A, B).  

 

 

Figure 5.  Pituitary TSHβ mRNA expression and body weight analysis. (A) 2 and 10 weeks after 

LID/TSH/150 µCi 131I treatment, pituitary TSHβ mRNA concentrations were increased significantly to 48-

fold and 45-fold, respectively, compared to untreated control mice (**p<0.01; ***p<0.001). conc.: 

concentration. (B) While control animals continued to grow throughout the observation period, 

LID/TSH/150 µCi 131I-treated mice showed a growth arrest starting from around one week after thyroid 

ablation (day 0). Results are expressed as % of initial body weight (**p<0.01). 

 

Figure 6. Whole body 99mTc-pertechnetate scintigraphy. 4 weeks after LID/TSH/150 µCi 131I treatment, 
99mTc-pertechnetate gamma camera imaging showed strongly reduced 99mTc-pertechnetate uptake in the neck 

region of ablated animals (approx. 3-5 % (A)) compared to untreated control animals (B). A representative 

image for both ablated mice and control mice is shown. SG: salivary glands. (C) Quantification of 99mTc-

uptake in the cervical region. Results are expressed as fold change compared to untreated controls 

(***p<0.001).  



Radioiodide ablation of mouse thyroid 

18 

 

Four weeks post 131I injection, 99mTc-pertechnetate uptake was strongly reduced in the cervical region 

of ablated mice with a remaining 99mTc-pertechnetate uptake of approximately 3-5 % which was caused 

by the salivary glands that in mice are localised in the direct neighbourhood of the thyroid gland and 

physiologically express NIS (Fig. 6A, C) [103]. In comparison, untreated control mice accumulated 

approx. 35-40% of the injected dose in the cervical region (Fig. 6B, C). 

2.5 Discussion 

The aim of the current study was to generate a mouse model in which endogenous thyroid hormone 

production is abolished to create an experimental paradigm with a defined baseline for the evaluation of 

response to thyroid hormone that at the same time allows for the use of NIS as a reporter gene. While 

treatment of mice with anti-thyroid drugs in drinking water is a widely used approach to render mice 

hypothyroid, mice have to be treated throughout the experiment, a certain degree of variability remains 

due to differences in water intake and potential side effects of the drugs have to be taken into 

consideration [104, 105]. Furthermore, as this approach typically relies on a combination of thionamides 

(methimazole or propylthiouracil) that have been shown to affect thyroidal NIS expression [106], as 

well as the NIS-specific inhibitor perchlorate to block thyroid hormone synthesis, the use of NIS as 

reporter gene to study thyroid hormone action is limited in this setting.  

Therefore, a reliable method of thyroid radioiodide ablation was developed in mice that exploits the 

ability of NIS to transport 131I. This eliminates interference of reporter gene activity from thyroidal NIS 

that is exclusively regulated by TSH and therefore affected by the thyroid hormone status of the mouse. 

A literature search revealed a variety of protocols [50, 90-98]. As the “American Thyroid Association 

Guide to investigating thyroid hormone economy and action in rodent and cell models” [107] had just 

been published, we initially tested the protocol described there [96]. Here the recommended 131I dose of 

200 µCi was not sufficient to completely abolish endogenous thyroid hormone production. This was 

most likely due to insufficient accumulation of radioiodide in the thyroid, as mice were fed standard 

chow containing 2.2 mg/kg iodine, which competes with radioiodide for thyroidal uptake. We therefore 

increased the amount of 131I to 500 µCi, a dose that was reported by Gorbman [90] to destroy thyroid 

tissue within 24 days after radioiodide application. In addition, we pretreated mice with low-iodine diet 

for one week prior to 131I application to decrease thyroidal iodine content and increase thyroidal NIS 

expression to enhance the uptake of radioiodide into thyroid follicular cells. This treatment decreased 

serum T4 concentrations below the detection limit. However, mice showed severe side effects, i.e. 

drastic weight loss and breathing difficulties, starting from around one week after iodide injection 

irrespective of T4 supplementation, and had to be sacrificed prematurely. We assume that the relatively 

high dose of 131I, while specifically concentrated in the thyroid, caused severe damage to the thyroid 

surrounding tissues, in particular the radiation-sensitive trachea. Due to the close proximity of these 

tissues to the thyroid and the thyroid’s small size, the β-particles emitted by 131I that have a path length 
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of up to 2.4 mm in tissue [108], can cause lesions in the trachea, recurrent laryngeal nerve and 

parathyroid glands, as was observed by Gorbman [91]. Furthermore, transient NIS-mediated transport 

of high doses of radioiodide across epithelia in the gastrointestinal tract may impair their function and 

lead to subsequent damage. 

To avoid aforementioned problems, we adapted protocols published by Abel et al. and Barca-Mayo et 

al. [97, 98], where relatively low doses of 131I were reported to be sufficient for total ablation of the 

thyroid gland under stimulation of 131I uptake. We decided on a protocol consisting of one week of low-

iodine diet, followed by an injection of bovine TSH on day eight, two hours before injection of 150 µCi 

of 131I. We here show the efficacy of this protocol in inducing hypothyroidism in mice at the level of (1) 

the first indicators of a disruption of thyroid function, i.e. serum T4 concentrations and pituitary TSHβ 

content, (2) indicators of systemic hypothyroidism, i.e. growth arrest and decrease in liver DIO1 

concentrations and (3) the thyroid itself by 99mTc-pertechnetate gamma camera imaging. 

Two weeks after thyroid ablation serum T4 concentrations had dropped below the detection limit and 

as expected pituitary TSHβ concentrations reactively increased 48-fold compared to untreated control 

mice. At the end of the observation period, ten weeks after thyroid ablation, T4 concentrations remained 

undetectable and TSHβ concentrations remained high. As growth hormone secretion is thyroid 

hormone-sensitive in rodents [109], ablated mice showed an arrest in growth as a consequence of 

decreasing serum thyroid hormone concentrations, indicating systemic hypothyroidism. Another marker 

for systemic thyroid hormone status is the liver type 1 deiodinase that is downregulated in 

hypothyroidism [110]. Four weeks after thyroid ablation, liver DIO1 mRNA concentrations had dropped 

below the detection limit. Gamma camera imaging revealed a significant reduction in 99mTc-

pertechnetate uptake in the cervical region four weeks after thyroid ablation, despite maximal TSH 

stimulation due to thyroid hormone deficiency in ablated animals. The low residual uptake originates 

from salivary glands that also physiologically express NIS [103, 111]. In mice, the submandibular-

sublingual salivary gland complex is relatively large in relation to the thyroid and is located in the ventral 

cervical region in the direct neighbourhood of the thyroid, therefore causing an overlapping signal on 

123I or 99mTc-pertechnetate scintigraphies [112]. As salivary glands do not possess the ability to organify 

iodine, retention time of the thyroid-ablative dose of 131I is limited. Thus, salivary glands are preserved, 

at least in part, as is their ability to accumulate 99mTc-pertechnetate, while thyroidal uptake is completely 

eliminated, as was shown by whole body and neck transaxial planar SPECT imaging by Choi et al. 

[113]. 

In conclusion, our data provide an effective protocol for radioiodide ablation of the thyroid gland that 

renders mice hypothyroid within the course of two weeks and abolishes thyroidal radioiodide uptake. 

Based on our findings, we recommend stimulation of NIS-mediated thyroidal iodide uptake by 

pretreatment with low-iodine diet and TSH application to help deliver a well-tolerated dose of 150 µCi 

of 131I to mice for successful ablation of the thyroid gland. 
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3.1 Abstract 

To improve our understanding of non-genomic, integrin αvβ3-mediated thyroid hormone action in 

tumour stroma formation, we examined the effects of T3, T4 and integrin-specific inhibitor tetrac on 

differentiation, migration and invasion of mesenchymal stem cells (MSCs) that are an integral part of 

the tumour’s fibrovascular network. Primary human bone marrow-derived MSCs were treated with T3 

or T4 in the presence of hepatocellular carcinoma (HCC) cell-conditioned medium, which resulted in 

stimulation of expression of genes associated with CAF-like differentiation as determined by qPCR and 

ELISA. In addition, T3 and T4 increased migration of MSCs towards HCC cell-conditioned medium 

and invasion into the centre of three-dimensional HCC cell spheroids. All these effects were tetrac-

dependent and therefore integrin αvβ3-mediated. In a subcutaneous HCC xenograft model, MSCs 

showed significantly increased recruitment and invasion into tumours of hyperthyroid mice compared 

to euthyroid and in particular hypothyroid mice, while treatment with tetrac almost completely 

eliminated MSC recruitment. These studies significantly improve our understanding of the anti-tumour 

activity of tetrac, as well as the mechanisms that regulate MSC differentiation and recruitment in the 

context of tumour stroma formation as an important prerequisite for the utilisation of MSCs as gene 

delivery vehicles.  
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3.2 Introduction 

Tumours are composed of malignant tumour cells and the ‘benign’ stromal compartment that contains 

many distinct cell types, including endothelial cells, smooth muscle cells, cells of the immune system, 

and pericytes/cancer-associated fibroblasts (CAFs) [114, 115]. As the tumour stroma plays a key role in 

cancer progression with effects on tumour cell proliferation, angiogenesis and metastasis, it has become 

an attractive target for tumour therapy. Thus, understanding the biology of the tumour microenvironment 

is becoming as important as knowledge of the neoplastic epithelial cells themselves.  

Mesenchymal stem cells (MSCs) are multipotent non-hematopoietic progenitor cells that are 

characterised by their capacity to self-renew and differentiate into cells of connective tissue lineages 

such as bone, cartilage, muscle and adipose tissue [18, 116]. In the course of tissue injury or during 

chronic inflammation, MSCs contribute to tissue remodelling by their mobilisation and subsequent 

recruitment to the site of injury [18, 116]. Similarities between the wound healing process and tumour 

stroma formation have led to the suggestion that tumours are “wounds that do not heal” [9]. We and 

others have shown that MSCs are actively recruited to growing tumour stroma [66, 70, 117-120] 

mediated by high local concentrations of inflammatory chemokines and growth factors [18, 115, 121, 

122]. This tumour tropism constitutes the basis for the ‘Trojan horse’ approach, in which MSCs are used 

as shuttle vectors to deliver therapeutic agents into growing tumours [18, 114, 123-126], as we have 

successfully demonstrated in our previous work using the sodium iodide symporter (NIS) [66, 70, 71] 

and herpes simplex virus type 1 thymidine kinase (HSV-TK) [118-120] as therapy genes in various 

tumour models.  

Upon homing, MSCs act as important progenitors to subtypes that comprise the tumour stroma, 

including cells of the tumour vasculature and cancer-associated fibroblast- (CAF-) like cells [24]. A 

CAF-like phenotype is defined by the following sets of markers: (1) fibroblast surface markers; (2) 

indicators of tissue remodelling and invasion; (3) markers of angiogenesis; and (4) tumour promoting 

growth factors [19, 127, 128]. While it is now well established that MCSs play a major role in supporting 

tumour vasculature and forming the tumour’s fibrovascular network, the exact mechanisms behind their 

migration and differentiation in the tumour microenvironment and their impact on tumour progression 

are not yet fully understood. 

Thyroid hormones 3,3’,5-triiodo-L-thyronine (T3) and L-thyroxine (T4) are regulators of 

differentiation, growth and metabolism in most healthy tissues, but they have also been proposed to play 

a critical role in tumour stroma formation by stimulation of angiogenesis, proliferation and inflammation 

[129, 130]. These effects have been shown to be transduced by non-genomic mechanisms via a plasma 

membrane receptor for thyroid hormone on integrin αvβ3 that was identified in 2005 by P.J. Davis and 

co-workers [33]. Integrin αvβ3 is predominantly concentrated in the plasma membrane of endothelial 

cells, vascular smooth muscle cells, osteoclasts and cancer cells, and is an attractive target for attempts 
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to manipulate tumour cell proliferation and tumour-related neovascularisation [131]. 

Tetraiodothyroacetic acid (tetrac), a deaminated T4 derivative, is a specific inhibitor of thyroid hormone 

action at the integrin site [33, 130]. 

There is growing evidence that iodothyronines act as ‘non-classical’ pro-angiogenic modulators and 

induce neovascularisation. Pro-angiogenic actions of T3 and T4 are initiated at the hormone receptor on 

integrin αvβ3, transduced by the MAPK/ERK pathway, and involve effects on basic fibroblast growth 

factor (FGF2), vascular endothelial growth factor (VEGF) and epidermal growth factor (EGF) secretion 

[13, 129]. As an inhibitor of T3/T4 binding to αvβ3, tetrac has been shown to inhibit angiogenic activity 

of thyroid hormones. In addition, αvβ3-mediated proliferative activity of T3 and T4 has been reported 

in various cancer cell lines. A recent uncontrolled observational study suggests that lowering of 

circulating T4 levels is correlated with prolonged survival of terminal stage cancer patients [58]. In 

contrast, tetrac exerts a tumour growth-inhibitory effect based on the inhibition of T3/T4 effects, but 

also on agonist-independent direct anti-angiogenic and pro-apoptotic effects [130, 132]. In this context, 

an array of genes has been identified in human cancer cells that are regulated by tetrac through αvβ3. 

This regulation includes stimulation of pro-apoptosis genes and downregulation of proto-oncogenes, 

cyclin genes, the EGFR gene, as well as genes in the Wnt/β-catenin pathway, such as CTNNA1 and 

CTNNA2 [133]. 

MSCs are key players in the tumour microenvironment and thyroid hormones have been shown to play 

a critical role in the regulation of tumour stoma formation. Therefore, in the current study we sought to 

investigate the non-genomic effects of T3, T4 and tetrac on important aspects of MSC biology in the 

tumour milieu, such as differentiation, migration, recruitment and invasion as a critical prerequisite for 

the application of MSCs as gene delivery vehicles. 

3.3 Materials and Methods 

Cell lines 

Primary human bone marrow-derived CD34-negative MSCs (either prepared in house or provided by 

apceth, Munich, Germany) were isolated and characterised according to the minimal criteria for MSCs 

released by the International Society for Cellular Therapy [134]. MSCs were used from passage 2 to 8 

for experiments. The integrin αvβ3-negative human hepatocellular carcinoma cell line HuH7 was 

authenticated and purchased from JCRB Cell Bank (Osaka, Japan) and passaged up to ten times in our 

laboratories. Both cell lines were grown in DMEM (Sigma-Aldrich, St. Louis, Missouri, USA) 

containing 10 % (v/v) fetal bovine serum (FBS; FBS Superior, Biochrom/Merck Millipore, Berlin, 

Germany), 100 U/ml penicillin/100 µg/ml streptomycin (Sigma-Aldrich) and 2 mM L-glutamine 

(Sigma-Aldrich) and maintained at 37 °C in a humidified 5 % (v/v) CO2 atmosphere. 
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Thyroid hormone treatment in vitro 

T3, T4 and tetrac were dissolved in 0.1 N NaOH at 1 mg/ml. 25 µM (T3 and T4) or 100 µM (tetrac) 

stock solutions were prepared in sterile culture medium and stored in working aliquots at -20 °C 

protected from light. For the preparation of conditioned medium (CM), HuH7 were grown for 48 h to 

80 % confluence in DMEM containing 10 % (v/v) charcoal-stripped FBS (csFBS; T3: <0.2 pg/ml, T4: 

0.2-0.6 ng/dl). Supernatant was removed and centrifuged to eliminate cell debris. Prior to thyroid 

hormone treatment, MSCs were grown in DMEM/csFBS for 24 hours. Medium was changed to 80 % 

(v/v) DMEM/csFBS and 20 % (v/v) HuH7 CM for differentiation studies or DMEM/csFBS for 

migration and invasion studies and supplemented with 1 nM T3 or 1 µM T4 with and without 100 nM 

tetrac for 24 h. In a pilot study ranges of 1-100 nM T3 as well as 1-1000 nM T4 were tested and optimal 

concentrations of 1 nM total T3 (~ 30 pM free T3) and 1 µM total T4 (~ 1.5 nM free T4) were used for 

further experiments. 

Flow cytometry 

For flow cytometry, MSCs and HuH7 were harvested with EDTA (Sigma-Aldrich) and washed with 

PBS (Sigma-Aldrich) supplemented with 10 % (v/v) FBS (FACS buffer). Cells were incubated with a 

mouse monoclonal anti-integrin αvβ3 antibody (2 µg/106 cells; Abcam, Cambridge, UK) for 45 min on 

ice, washed with FACS buffer and then incubated with a Cy3-conjugated polyclonal donkey anti-mouse 

antibody (2 µg/106 cells; Jackson, Baltimore, USA) for 30 min on ice. Cells incubated without the 

primary antibody served as negative control. Analysis was performed in the FL2 channel of a BD Accuri 

C6 flow cytometer using Cflow software (BD Biosciences, Franklin Lakes, USA). 105 events were 

recorded for each sample. Cell debris was excluded from analysis by appropriate gating. 

Quantitative real-time PCR 

Total RNA from MSCs was prepared using the RNeasy Mini Kit with QIAshredder (Qiagen, Hilden, 

Germany). Reverse transcription and quantitative real-time PCR were performed as described 

previously [70] and run in a Mastercycler ep gradient S PCR cycler (Eppendorf, Hamburg, Germany). 

Relative expression levels were calculated from ΔΔCt values normalised to internal β-actin and 18S 

rRNA. Primers are listed in table 1. 

ELISA 

Supernatant from MSCs was removed, centrifuged and stored at -80 °C until assayed for EGF, FGF2, 

hepatocyte growth factor (HGF), interleukin 6 (IL-6), stromal-derived factor 1 (SDF-1), transforming 

growth factor β1 (TGF-β1), thrombospondin 1 (TSP1) and VEGF concentrations using the respective 

DuoSet ELISA kit (R&D Systems, Abingdon, UK). Contributions from medium and HuH7 CM were 

subtracted.  
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Migration assay  

MSC migration was analysed using the µ-slide Chemotaxis3D system from ibidi (Martinsried, Germany). 

MSCs were seeded in collagen I (0.3×106 cells/ml) and subjected to a gradient between serum-free 

unconditioned medium and serum-free HuH7 CM. Both media and the collagen gel contained either no 

thyroid hormone, 1 nM T3 or 1 µM T4 with and without 100 nM tetrac. Chemotaxis was monitored by 

time-lapse microscopy over a 24 h period on a Leica DM IL microscope (Leica Microsystems, Wetzlar, 

Germany). Pictures were taken every 15 min with a Jenoptik ProgRes CCD camera (Jenoptik, Jena, 

Germany) controlled by the open source ImageJ (NIH, Bethesda, Maryland, USA) plug-in µManager 

[135]. 25 randomly selected cells were manually tracked with the ImageJ plug-in Manual Tracking 

(Fabrice Cordelières, Orsay, France) and analysed with Chemotaxis and Migration Tool software (ibidi). 

The migratory behaviour of cells was quantified by forward migration index (FMI), a measure of the 

efficiency of the migration of cells in relation to the CM gradient and centre of mass (CoM) displacement 

that is calculated from the averaged point of all cell endpoints. 

Table 1. qPCR primer sequences. 

gene forward primer (5’ → 3’) reverse primer (5’ → 3’) 

ACTA2 (α-SMA) ACCCACAATGTCCCCATCTA GAAGGAATAGCCACGCTCAG 

ACTB (β-actin) AGAAAATCTGGCACCACACC TAGCACAGCCTGGATAGCAA 

CXCL12 (SDF-1) AGAGCCAACGTCAAGCATCT CTTTAGCTTCGGGTCAATGC 

DES (desmin) AAGCTGCAGGAGGAGATTCA GGCAGTGAGGTCTGGCTTAG 

EGF CAGGGAAGATGACCACCACT CAGTTCCCACCACTTCAGGT 

FAP GGTCTCCCAACAAAGGATGA CATTGCCTGGAAATCCACTT 

FGF2 GGAGAAGAGCGACCCTCAC AGCCAGGTAACGGTTAGCAC 

HGF CTGGTTCCCCTTCAATAGCA CTCCAGGGCTGACATTTGAT 

IL6 TACCCCCAGGAGAAGATTCC TTTTCTGCCAGTGCCTCTTT 

MMP3 (SL-1) GCAGTTTGCTCAGCCTATCC GAGTGTCGGAGTCCAGCTTC 

R18s CAGCCACCCGAGATTGAGCA TAGTAGCGACGGGCGGTGTG 

S100A4 (FSP1) CCCTGGATGTGATGGTGTCC CGATGCAGGACAGGAAGACA 

TGFB1 (TGF-β1) CAGCACGTGGAGCTGTACC AAGATAACCACTCTGGCGAGTC 

THBS1 (TSP1) TTGTCTTTGGAACCACACCA CTGGACAGCTCATCACAGGA 

TNC TTCACTGGAGCTGACTGTGG TAGGGCAGCTCATGTCACTG 

VEGF CTACCTCCACCATGCCAAGT ATGATTCTGCCCTCCTCCTT 

 

Spheroid invasion assay 

Invasion assays were performed as described previously [136-139]. In brief, spheroids of 200-300 µm 

in diameter were grown from HuH7 cells. Single spheroids were rolled in 2.5×104 thyroid hormone-

treated, CellTracker Green CMFDA- (5-chloromethylfluorescein diacetate, Life Technologies) labelled 

MSCs for 2 h, washed and incubated for further 24 h. Spheroids were fixed in 4% formalin, embedded 

in 1 % (w/v) 2-hydroxyethylagarose (Roth, Karlsruhe, Germany) containing green fluorescent 

microspheres (F-XC 50 Estapor, Merck, Darmstadt, Germany; 1:50,000 dilution) and aspirated into a 
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glass capillary. Imaging was performed with a 488 nm laser (2 mW laser power, 120 ms exposure time; 

Cube, Coherent, Santa Clara, California, USA) and an sCMOS camera (Orca-flash 4.0 V2, Hamamatsu, 

Hamamatsu City, Japan) from 5 different angles equally spaced over 360°, controlled via the FIJI 

µManager plug-in [135]. The subsequent registration of beads and fusion of images was performed 

using SPIM open source software on FIJI [140]. Signals from CMFDA-labelled MSCs and the 

autofluorescent spheroid were detected and segmented using the FIJI 3D object counter plugin [141]. 

Invasion depths were quantified by measurement of distances from the centre of each MSC to the border 

of the spheroid using the FIJI 3D manager plugin [142]. 

Animals  

Male CD1 nu/nu mice from Charles River (Sulzfeld, Germany) were maintained under specific 

pathogen-free conditions with access to standard nude mouse diet (ssniff, Soest, Germany) and water ad 

libitum. Animals were allowed to acclimatise for one week prior to the start of treatments. Experiments 

were conducted with animals between 5-12 weeks of age. Thyroid hormone status was regularly 

monitored in serum samples as described previously [143]. The experimental protocol was approved by 

the regional governmental commission for animals (Regierung von Oberbayern, Munich, Germany). 

MSC recruitment to tumours in vivo 

HuH7 xenograft tumours were established by subcutaneous injection of 3.5×106 HuH7 cells in 100 µl 

PBS into the flank region. Three days later, animals received drinking water supplemented with 0.02 % 

(w/v) 2-mercapto-1-methylimidazole (MMI; Sigma-Aldrich), 1 % (w/v) sodium perchlorate (Sigma-

Aldrich) and 0.3 % (w/v) saccharin (Sigma-Aldrich) [144] to induce hypothyroidism to generate the 

same baseline thyroid hormone levels for all groups. Three weeks later, once small tumours (<3 mm) 

were visible, mice were randomly assigned to different groups by daily intraperitoneal injections. The 

hyperthyroid group (n = 8) received 100 ng/g body weight L-T4 (Sigma-Aldrich), the euthyroid group 

20 ng/g body weight L-T4 with (n = 8) or without (n = 7) 10 µg/g body weight tetrac (Sigma-Aldrich), 

hypothyroid animals (n = 8) received saline only. 18 days later (tumour volume approx. 500 mm3) 5×105 

MSCs cytoplasmically labelled with 20 µM CMFDA for 30 min were injected via the tail vein in 500 

µl PBS. 72 h later, mice were sacrificed and tumours were embedded in Tissue-Tek O.C.T. compound 

(Sakura Finetek, Alphen aan den Rijn, The Netherlands), snap-frozen on dry ice and stored at -80 °C.  

Immunofluorescence microscopy  

Tissue sections were fixed in methanol/acetone, counterstained with 5 µg/ml bisbenzimide Hoechst 

33258 (Sigma-Aldrich), mounted with Dako Fluorescence Mounting Medium (Dako, Carpinteria, 

California, USA) and imaged at 10× magnification on an Axiovert 135 TV fluorescence microscope 

equipped with an AxioCam MRm CCD camera and AxioVision Rel. 4.8 software (Carl Zeiss, Munich, 

Germany). 4-7 visual fields in perivascular regions were recorded per animal and MSC recruitment was 
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quantified as percentage of CMFDA positive area using ImageJ software (NIH, Bethesda, Maryland, 

USA). 

Statistics 

All in vitro experiments were performed at least in triplicate. In vivo data were generated in two 

independent experiments. Values are reported as mean ± SEM or mean fold change ± SEM. Statistical 

significance was tested by two-tailed Student’s t-test or, for invasion assays, by Kruskal-Wallis test. p-

values <0.05 were considered significant (*p<0.05; **p<0.01; ***p<0.001).  

3.4 Results 

Expression of integrin αvβ3 is absent on HuH7 cells and not influenced by thyroid 

hormones T3 and T4 or tetrac in MSCs 

Absence of integrin αvβ3 expression on HuH7, as well as presence of αvβ3 on MSCs was confirmed by 

flow cytometry (Fig. 7). Treatment of MSCs with 1 nM T3 or 1 µM T4 in the presence or absence of 

tetrac (100 nM) or tetrac alone did not alter expression levels of the integrin (Fig. 7). 

 

Thyroid hormones T3 and T4 increase CAF-like differentiation of MSCs in vitro 

24 h stimulation of MSCs with HuH7 CM in the presence of 1 nM T3 or 1 µM T4 resulted in significantly 

increased mRNA levels for genes associated with a CAF-like phenotype. Upon T3 treatment, surface 

marker fibroblast-specific protein 1 (FSP1; S100A4), markers of angiogenesis desmin and VEGF, as 

well as tumour-promoting growth factors EGF, FGF2, HGF, IL-6, SDF-1 and TGF-β1 were expressed 

at significantly higher mRNA levels as compared to control cells treated with HuH7 CM alone. Surface 

marker fibroblast activation protein (FAP), indicators of tissue remodelling and invasion tenascin-C 

(TN-C) and TSP1 (THBS1), as well as the angiogenesis marker α-smooth muscle actin (α-SMA; 

ACTA2) showed the same trend that was, however, not significant (Fig. 8A). T4 stimulation led to 

 

Figure 7. Evaluation of integrin αvβ3 expression on HuH7 and MSCs. MSCs were treated with HuH7 

CM alone or in the presence of 1 nM T3 or 1 µM T4 with or without 100 nM tetrac, or in the presence of 

tetrac alone for 24 h. HuH7 and MSCs were analysed for integrin αvβ3 expression by flow cytometry. A 

representative image from three experiments is shown. 
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significant increases in mRNA expression for FAP, TN-C, TSP1, α-SMA and desmin, as well as FGF2, 

IL-6, SDF-1 and TGF-β1, while the same, albeit not significant trends were seen for FSP1, VEGF, EGF 

and HGF (Fig. 8B). Marker of invasion and remodelling stromelysin-1 (SL-1/MMP3) was not detected 

for any of the conditions tested (not shown).  

 

 

Figure 8. Expression of CAF-like markers in MSCs is stimulated by thyroid hormones T3 and T4 via 

integrin αvβ3. MSCs were treated with HuH7 CM alone (grey line) or in the presence of 1 nM T3 or 1 µM 

T4 with or without 100 nM tetrac, or in the presence of tetrac alone for 24 h. Expression of CAF-like markers 

was assessed at the mRNA level by qPCR ((A) T3, (B) T4) and at the protein level by ELISA (C). Results 

are expressed as mean fold change compared to control cells treated with HuH7 CM only (n = 4; two-tailed 

Student’s t-test: *p<0.05; **p<0.01; ***p<0.001). 
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Effects seen at the mRNA level were confirmed at the protein level for TSP1, VEGF, IL-6, SDF-1 and 

TGF-β1 by ELISA (Fig. 8C). Protein levels for EGF, FGF2 and HGF remained below the detection 

limit of the ELISA kits used for all treatment conditions. The T3- and T4-triggered increases in gene 

and protein concentrations were found to be tetrac-dependent and therefore αvβ3-mediated. No 

significant changes were observed when cells were treated with tetrac alone (data not shown). 

 

 

Figure 9. Migration of MSCs towards tumour cell CM is increased upon T3 and T4 treatment 

mediated by integrin αvβ3. (A) Representative trajectories of untreated MSCs without gradient influence. 

(B-G) Representative trajectories of MSCs treated with 1 nM T3 or 1 µM T4 with or without 100 nM tetrac 

or with tetrac alone for 24 h migrating along a linear gradient of HuH7 CM over 24 h compared to untreated 

control cells from six independent experiments. Centres of mass are indicated by red dots. (H, I) 

Quantification of chemotaxis parameters FMI and CoM (two-tailed Student’s t-test: *p<0.05; **p<0.01). 
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Thyroid hormones T3 and T4 increase migration of MSCs towards tumour signals 

MSCs subjected to a gradient between HuH7 CM and serum-free medium showed directed chemotaxis 

towards CM with significantly increased FMI and CoM displacement along the gradient of 0.227 ± 

0.041 (p<0.001) and 84.7 ± 18.8 µm (p<0.001), respectively (Fig. 9B, H, I), compared to untreated cells 

not subjected to a gradient that showed basal random chemokinesis (FMI -0.060 ± 0.025 and CoM -26.8 

± 11.3 µm; Fig. 9A).  This set-up was used to analyse the effects of T3, T4 and tetrac on the migratory 

behaviour of MSCs towards HuH7 CM. MSCs were pretreated with thyroid hormone with or without 

tetrac for 24 h and kept under the same T3/T4/tetrac concentrations throughout the chemotaxis assay. 

Migration of MSCs towards CM was significantly increased upon treatment with 1 nM T3 (FMI: 0.383 

± 0.049; p<0.05 and CoM 167.3 ± 21.2 µm; p<0.05; Fig. 9D, H, I) or 1 µM T4 (FMI: 0.345 ± 0.032; 

p<0.05 and CoM 160.0 ± 12.8 µm; p<0.01; Fig. 9F, H, I) compared to untreated control cells. Additional 

treatment with 100 nM tetrac inhibited the effects of T3 and T4, respectively, on MSC migration (T3 + 

tetrac: FMI: 0.219 ± 0.023; p<0.05 vs. T3 and CoM 102.5 ± 13.8 µm; p<0.05 vs. T3; Fig. 9E, H, I; T4 

+ tetrac: FMI: 0.261 ± 0.029; p=0.055 vs. T4 and CoM 127.9 ± 19.2 µm; p=0.16 vs. T4; Fig. 9G, H, I). 

Cells treated with tetrac alone showed no significant change in migratory behaviour compared to control 

cells (FMI: 0.275 ± 0.049; p=0.47 and CoM 106.3 ± 19.4 µm; p=0.44; Fig. 9C). 

 

 

Figure 10. Deeper invasion of MSCs into 3D HuH7 spheroids upon T3 and T4 treatment is reversed 

upon additional treatment with tetrac. (A-E) Representative images of CMFDA-labelled MSCs (green) 

treated with 1 nM T3 or 1 µM T4 with or without 100 nM tetrac for 24 h invading into HuH7 spheroids 

(blue). (F) Quantification of invasion depths in distance from surface of the spheroid (n = 3; Kruskal-Wallis 

test: **p<0.01). Cell clusters are indicated by asterisks. 
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Thyroid hormones T3 and T4 increase invasion of MSCs into tumour cell spheroids 

The invasive capacity of MSCs was evaluated in a three-dimensional HuH7 spheroid model. MSCs were 

pretreated with 1 nM T3 or 1 µM T4 in the presence or absence of 100 nM tetrac before attaching to 

spheroids. Both after T3 (Fig. 10B) and T4 stimulation (Fig. 10D), MSCs showed deeper invasion (T3: 

34.5 ± 7.42 µm; p=0.15 and T4: 29.00 ± 1.37 µm; p<0.01) into the centre of spheroids compared to 

untreated control cells (21.83 ± 1.79 µm; Fig. 10A, F). Cells treated with T3 or T4 in the presence of 

tetrac (T3 + tetrac: 9.00 ± 1.78 µm; p<0.05 vs. T3 and T4 + tetrac: 22.25 ± 1.55 µm; p<0.01 vs. T4) 

showed inhibition of invasion and remained at the surface (Fig. 10C, E, F). In some cases, especially 

after T3 treatment, invaded cells clustered inside the spheroid and could not be resolved to single cells. 

Clusters (marked by asterisks in Fig. 10F) were therefore counted as single cells. 

T4 increases tumour migration and invasion in vivo 

To assess the effect of thyroid hormone status and tetrac on MSC recruitment and invasion into tumours 

in vivo, nude mice harbouring HuH7 xenografts were subjected to different thyroid hormone treatments 

(euthyroid, hyperthyroid, hypothyroid and euthyroid + tetrac; for serum thyroid hormone concentrations 

see Fig. 11C) and, 72 h before sacrifice, were systemically injected with 5×105 CMFDA-labelled MSCs. 

Immunofluorescence microscopy (Fig. 11A) revealed significantly increased recruitment of MSCs to 

perivascular regions in the tumour and invasion into the surrounding tumour tissue in hyperthyroid mice 

(CMFDA positive area 25.7 ± 2.1%; p<0.001; Fig. 11B) compared to euthyroid mice (CMFDA positive 

area 12.2 ± 1.0%; Fig. 11B). In hypothyroid mice recruitment and invasion were strikingly reduced 

(CMFDA positive area 6.7 ± 0.7%; p<0.001; Fig. 11B). Treatment of euthyroid mice with tetrac resulted 

in an additional reduction in MSC recruitment revealing only a thin margin of MSCs surrounding blood 

vessels and no detectable tissue invasion (CMFDA positive area 2.0 ± 0.2%; p<0.001; Fig. 11B). Neither 

thyroid hormone status nor tetrac treatment had a significant effect on tumour growth in this model (data 

not shown). 
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Figure 11. Thyroid hormone status significantly influences MSC recruitment into tumours in vivo. In 

a HuH7 tumour xenograft model, mice were injected daily with 20 ng/g body weight L-T4 (euthyroid; n = 

7), 100 ng/g body weight L-T4 (hyperthyroid; n = 8), saline (hypothyroid; n = 8) or 20 ng/g body weight L-

T4 + 10 µg/g body weight tetrac (euthyroid + tetrac; n = 8). 72 h before sacrifice, 5×105 CMFDA-labelled 

MSCs were injected i.v. Frozen tumour sections were counterstained with Hoechst dye and imaged by 

fluorescence microscopy. (A) One representative image is shown per group. Magnification: 10×, scale bar = 

100 µm. (B) Quantification of MSC recruitment to tumours depicted as mean values of CMFDA positive 

area in % for each group (two-tailed Student’s t-test: ***p<0.001). (C) Serum total T4 levels of the different 

treatment groups compared to untreated euthyroid mice (two-tailed Student’s t-test: ***p<0.001; ns: not 

significant). 
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3.5 Discussion 

Based on the fact that both MSCs and thyroid hormones impact crucial steps of tumour stroma formation 

[24, 130], we investigated the regulation of MSC biology in the tumour microenvironment by non-

genomic effects of T3, T4 and tetrac. To distinguish between effects on MSCs/stroma biology as 

opposed to direct effects on tumour, we selected an αvβ3-negative hepatocellular carcinoma as an 

experimental model [145]. 

First we addressed the question as to whether thyroid hormones can enhance the CAF-like phenotype 

that MSCs acquire when exposed to tumour cell-conditioned medium [19, 24, 127]. Compared to MSCs 

treated with HuH7 CM alone, upon additional treatment with T3 or T4 we observed an overall enhanced 

expression of (1) fibroblast surface markers FAP and FSP; (2) indicators of tissue remodelling and 

invasion TN-C and TSP1; (3) proteins associated with angiogenesis α-SMA, desmin and VEGF; and (4) 

tumour-promoting growth factors/chemokines EGF, FGF2, HGF, IL-6, SDF-1 and TGF-β1, suggesting 

a T3/T4-enhanced CAF-like differentiation of MSCs mediated through αvβ3 as shown by inhibition of 

these effects by tetrac. 

In line with our observations, transduction of the thyroid hormone signal via integrin αvβ3 was shown 

to lead to transcription of angiogenesis relevant genes FGF2 and VEGF in the chorioallantoic membrane 

(CAM) model, as well as in heart and T-cell lymphoma [129, 146]. A direct effect of thyroid hormones 

on inflammatory mediators such as IL-6 has been tentatively proposed based on the inhibition of pro-

inflammatory cytokines by the iodothyronine antagonist tetrac [147]. Integrin αvβ3 has been shown to 

engage in crosstalk with tyrosine kinase growth factor receptors such as EGF receptor, FGF receptor, 

platelet-derived growth factor (PDGF) receptor and VEGF receptor that are all expressed by MSCs [115, 

130, 147]. Explanations for the changes in the expression levels of markers of CAF-like differentiation 

shown here could involve binding of CM-derived growth factors to their respective receptors on MSCs 

or autocrine stimulation by growth factors secreted by MSCs in response to CM, with potentiation of 

the signal through integrin αvβ3 crosstalk. A further indirect effect could involve an enhanced 

expression of hypoxia-inducible factor 1α (HIF-1α) that was shown to be increased upon T3 binding to 

integrin αvβ3 transduced by the phosphoinositide 3-kinase (PI3K) pathway, which in turn stimulates the 

secretion of HIF-responsive genes, such as VEGF, FGF2, IL6, SDF1 and TGFB1 [130, 147]. However, 

the exact mechanisms behind the synergistic effects of CM and T3/T4 on MSC differentiation remain 

to be elucidated.  

In addition, we observed enhanced chemotaxis of MSCs towards tumour signals and invasion into three-

dimensional HCC cell spheroids under thyroid hormone stimulation, mediated by αvβ3. Balzan et al. 

[148] reported similar effects on microvascular endothelial cells in a wound healing assay with increased 

migration after T3 or T4 stimulation that was abolished by treatment with tetrac. Studies on multiple 

myeloma cells and bone marrow aspirates from multiple myeloma patients by Cohen and co-workers 

[149] illustrate thyroid hormone-dependent, αvβ3-mediated regulation of cell migration. Furthermore, 
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there is growing evidence that thyroid hormones increase the motility of αvβ3-expressing immune cells, 

and, possibly by similar mechanisms, nerve cell migration [150]. An array of growth factors, including 

PDGF, insulin-like growth factor 1 (IGF-1), HGF, EGF and VEGF, as well as chemokines, such as 

RANTES/CCL5, CCL22 and, to a lower extent, SDF-1/CXCL12 and their respective receptors have 

been implicated in MSC migration [115, 121] and many of these have been shown in this and other 

studies to be regulated by thyroid hormones via differential gene expression and receptor crosstalk [130, 

147].  

Modulation of recruitment and engraftment efficiency of MSCs is of clinical interest, in settings of tissue 

regeneration, in the context of general tumour growth and the emerging field of MSC-based gene 

delivery in cancer therapy [66, 70, 151]. As the tumour stroma plays such a key role in tumour growth, 

angiogenesis and metastatic potential, it has become an important target for tumour therapy. Due to their 

natural tropism for solid tumours and metastases, as well as their relative ease of engineering and 

expansion in vitro, MSCs are excellent gene delivery vehicles to target tumour environments. In a series 

of previous studies we demonstrated active homing of HSV-TK-transduced MSCs into pancreatic, 

breast and liver cancer tumour stroma that led to a significant reduction in tumour growth and, depending 

on the targeting strategy used, reduced incidence of metastases after application of ganciclovir [118-

120]. In more recent studies we have shown that MSCs transfected with NIS under control of the CMV 

promoter or the tumour stroma-specific RANTES/CCL5 promoter are actively recruited to experimental 

hepatocellular carcinoma as well as disseminated colon cancer liver metastases and induce anti-tumour 

effects after application of 131I or 188Re based on NIS-mediated radioiodine accumulation [66, 70]. 

However, full therapeutic potential can only be exploited when MSCs are efficiently recruited to their 

site of action. Several approaches have been used to increase MSC survival, migration and 

differentiation, including the application of growth factors and overexpression of stem cell regulatory 

genes [152]. In agreement with our in vitro data, we observed a significant impact of thyroid hormone 

status on MSC recruitment and invasion in an αvβ3-negative HCC xenograft mouse model. In 

hyperthyroid animals both recruitment of MSCs and their subsequent invasion into tumours was 

markedly enhanced in comparison with euthyroid and in particular hypothyroid mice that showed low 

levels of MSC recruitment and almost no invasion. These data suggest that MSC conditioning with T3 

or T4 and/or T3 or T4 treatment of patients could serve as an effective tool to enhance MSC migration 

and engraftment in tissue engineering and gene delivery approaches.  

At the same time, it should be taken into account that the stimulatory effect of iodothyronines, shown in 

our study, on the differentiation of MSCs towards CAFs that are known to support a microenvironment 

that drives tumour progression and metastasis, could enhance tumour growth [153]. However, 

depending on the approach used, MSC-based cancer gene therapy can include the destruction of 

exogenously applied engineered MSCs in the context of therapy, which is likely to overcome any 

endogenous tumour-promoting effects of adoptively applied MSCs. This was demonstrated in our 

previous work using MSCs as delivery vehicles for tumour-selective NIS gene delivery, showing no 
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tumour growth-promoting effects in subcutaneous HuH7 or hepatic colon cancer metastasis xenograft 

mouse models where a significant therapeutic effect of 131I or 188Re was seen [66, 70]. Moreover, we did 

not observe an effect of thyroid hormone status or tetrac treatment on the growth of the HCC xenograft 

model used in this study, which we attribute to the absence of integrin αvβ3 on HuH7 cells and also to 

the short time frame for assessment of tumour stroma-mediated effects on tumour growth in our 

experimental setting. 

Further, we observed a dramatic effect of tetrac treatment in euthyroid mice that led to nearly complete 

abolishment of MSC recruitment into the tumour. Tetrac also reversed effects of T3 and T4 on CAF 

marker gene expression, migration and invasion in vitro. While tetrac is known to exert low-grade 

thyromimetic effects intracellularly [44], it was shown to have anti-tumour effects in vitro and in vivo 

in various cancer models via modulation of tumour cell proliferation, apoptosis and angiogenesis by 

T3/T4 antagonistic action mediated through integrin αvβ3 [130, 154]. Further anti-tumour activity of 

tetrac includes suppression of invasiveness/metastasis, increased radio- and chemosensitisation and 

antagonism of inflammation [130, 132, 133, 147]. These effects are thought to be largely mediated by 

αvβ3 expressed on the tumour cells themselves. Using an αvβ3-negative tumour model, our data suggest 

a novel mechanism by which tetrac can exert anti-tumoural effects, not by targeting the cancer cells per 

se, but by targeting the tumour stroma via MSCs as important stomal progenitor cells. Besides presenting 

an additional aspect of tetrac’s anti-tumour action, this effect opens the prospect of using tetrac as 

therapy agent irrespective of integrin αvβ3 expression on tumour cells. 

In conclusion, our data suggest that thyroid hormones T3 and T4 have a profound effect on the biology 

of MSCs in the tumour microenvironment through stimulation of CAF-like differentiation as well as 

migration and invasion in vitro. Tetrac-dependency demonstrates that these effects are largely mediated 

through non-genomic mechanisms via integrin αvβ3. In vivo, the thyroid status had a dramatic impact 

on MSC recruitment and tumour invasion with increased recruitment in the hyperthyroid state that was 

significantly decreased in the hypothyroid state and almost abolished upon treatment with tetrac. These 

studies enhance our understanding of the critical role of T3 and T4 in the regulation of MSC 

differentiation and migration in the context of tumour stroma formation and stroma-targeted cancer 

therapy, as well as the molecular mechanisms of the anti-tumour activity of tetrac. 

3.6 Acknowledgements 

We are grateful to Roswitha Beck and Rosel Oos (Department of Nuclear Medicine, University Hospital 

of Munich, Germany) for their assistance with animal care and Josef Köhrle (Institut für Experimentelle 

Endokrinologie, Charité-Universitätsmedizin Berlin, Germany) for thyroid hormone measurements in 

mouse serum within the Priority Programme SPP1629 (Deutsche Forschungsgemeinschaft). 



Effects of T3, T4 and tetrac on MSC biology 

37 

 

This work was supported by grants from the Deutsche Forschungsgemeinschaft within the Priority 

Programme SPP1629 to C Spitzweg, PJ Nelson (SP 581/6-1, SP 581/6-2, NE 648/5-2) and H Heuer (HE 

3418/7-1), as well as within the Collaborative Research Center SFB 824, project C 08 to C Spitzweg. 

 



Thyroid hormones stimulate the angiogenic potential of MSCs 

38 

 

IV. CHAPTER 3 

 

Integrin αvβ3-mediated effects of thyroid hormones on mesenchymal stem 

cells in tumour angiogenesis 

 

Kathrin A Schmohl1, Andrea M Müller1, Maike Dohmann1, Rebekka Spellerberg1, Sarah Urnauer1, 

Nathalie Schwenk1, Sibylle I Ziegler2, Peter Bartenstein2, Peter J Nelson1 and Christine Spitzweg1 

 

1Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Munich, Germany 

2Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany 

 

This chapter is a pre-copy-edited version of a peer-reviewed article accepted for publication in Thyroid 

in 10/2019.



Thyroid hormones stimulate the angiogenic potential of MSCs 

39 

 

4.1 Abstract 

Several clinical and experimental studies have implicated thyroid hormones in cancer progression. 

Cancer-relevant effects, including stimulation of tumour growth and new blood vessel formation by 

angiogenesis, are thought to be mediated by a non-classical signalling pathway initiated at integrin αvβ3 

expressed on cancer cells and proliferating endothelium. In an earlier study, we established 

mesenchymal stem cells (MSCs), important contributors to the fibrovascular network of tumours, as 

new thyroid hormone-dependent targets. Here, we evaluated the effects of thyroid hormones T3 and T4 

versus tetrac, an integrin-specific inhibitor of thyroid hormone action, on MSCs in tumour angiogenesis.  

Modulation of the expression and secretion of angiogenesis-relevant factors by thyroid hormones in 

primary human MSCs and their effect on endothelial cell tube formation was tested in vitro. We further 

engineered MSCs to express the sodium iodide symporter (NIS) reporter gene under control of a 

hypoxia-responsive promoter and the vascular endothelial growth factor (VEGF) promoter to test effects 

on these pathways in vitro and, for VEGF, in vivo in an orthotopic hepatocellular carcinoma xenograft 

mouse model by PET imaging. 

T3 and T4 increased the expression of pro-angiogenic genes in MSCs and NIS-mediated radioiodide 

uptake in both NIS reporter MSC lines in the presence of hepatocellular carcinoma cell-conditioned 

medium. Supernatant from thyroid hormone-treated MSCs significantly enhanced endothelial cell tube 

formation. Tetrac and/or inhibitors of signalling pathways downstream of the integrin reversed all of 

these effects. Tumoural radioiodide uptake in vivo demonstrated successful recruitment of MSCs to 

tumours and VEGF promoter-driven NIS expression. Hyperthyroid mice showed an increased 

radioiodide uptake compared to euthyroid mice, while tracer uptake was markedly reduced in 

hypothyroid and tetrac-treated mice.  

Our data suggest that thyroid hormones influence angiogenic signalling in MSCs via integrin αvβ3 and 

further substantiate the anti-angiogenic activity of tetrac in the tumour microenvironment.
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4.2 Introduction 

Angiogenesis, the formation of new blood vessels from the pre-existing vasculature, is a fundamental 

process during embryonic development, wound healing and tissue repair. Physiologically, angiogenesis 

is a highly regulated process controlled by the balance between pro- and anti-angiogenic regulatory 

molecules [13, 14]. The angiogenic switch occurs when this equilibrium is changed, leading to 

endothelial cell migration and proliferation from existing vessels, vascular sprouting and three 

dimensional vessel formation, followed by maturation and stabilisation of newly formed vessels through 

their coverage by pericytes and smooth muscle cells [13]. Though the endothelium remains mostly 

quiescent in adulthood, endothelial cells retain their ability to rapidly proliferate in response to specific 

stimuli such as hypoxia or inflammation - stimuli that are typically found in the tumour 

microenvironment [155]. As a tumour grows, so does its demand for oxygen and nutrients, requiring an 

expansion of the vascular network to meet this need. Hypoxia, a common feature of solid tumours, leads 

to increased activity of hypoxia-inducible transcription factors (HIFs) that in turn initiate the expression 

of target genes regulating angiogenesis [156]. Thus, pathologically activated angiogenesis contributes 

to cancer progression.  

Numerous angiogenic factors have been discovered in the secretome of mesenchymal stem cells 

(MSCs). First described by Friedenstein and co-workers in the 1960s, these multipotent non-

hematopoietic stromal-like cells migrate to sites of tissue injury and inflammation, where they contribute 

to recovery of tissue integrity [115, 157, 158]. Governed by highly similar migratory signals, MSCs also 

home to the growing tumour stroma, where they differentiate into stroma-associated cells, including 

cancer-associated fibroblast- and pericyte-like cells [19, 20, 24, 127, 128]. In the context of 

angiogenesis, MSCs influence endothelial cell proliferation, migration and tube formation through their 

secretion of pro-angiogenic chemokines and growth factors. They are further involved in blood vessel 

maturation in their function as pericytes that help stabilise newly formed vessels [14]. Further, the 

secretion of angiogenic factors by MSCs was reported to be upregulated under hypoxic conditions [14]. 

In an earlier study we observed that the thyroid hormones 3,3’,5-triiodo-L-thyronine (T3) and L-

thyroxine (T4) stimulate the differentiation of MSCs towards a cancer-associated fibroblast-/pericyte-

like phenotype. This included their upregulation of the pro-angiogenic endothelial growth factor genes 

vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (FGF2), in addition to the 

pericyte markers α-smooth muscle actin and desmin, as well as less specific factors that have been 

reported to be pro-angiogenic, such as hepatocyte growth factor, epidermal growth factor (EGF), 

transforming growth factor β1 and interleukin 6 [20]. The upregulation of these factors by thyroid 

hormones in MSCs was shown to be initiated at the cell surface at integrin αvβ3 [20]. 

Discovered as a thyroid hormone receptor in 2005, the integrin αvβ3 is present in the plasma membrane 

of proliferating endothelial cells and cancer cells, and also MSCs [20, 33, 47, 131, 159]. The role of 
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integrin αvβ3 in cancer-related angiogenesis has been known since the 1990s [160]. Subsequently, over 

the last two decades, iodothyronines have emerged as non-classical pro-angiogenic modulators mediated 

through αvβ3 and have been shown to induce neovascularisation in a variety of settings, such as the 

heart, ischemic striated muscle and tumour beds [161]. The complex pro-angiogenic actions of T4 and 

T3 include the stimulation of endothelial cell proliferation, migration and vascular tube formation. This 

involves the transcription and/or secretion of, among others, FGF2, VEGF and HIF-1α, in addition to 

the modification of vascular growth factor receptor function via crosstalk between the integrin and co-

clustered growth factor receptors [42, 47, 133, 146, 148, 161-163].  

The αvβ3 integrin contains two distinct binding sites for thyroid hormones that are localised near the 

Arg-Gly-Asp (RGD) recognition site that is essential for extracellular matrix binding [164]. Upon 

binding of T3 to the S1 site, the PI3K/Akt pathway is activated, resulting in downstream effects that 

may include the transcription of HIF-1α [13, 129, 131]. The second site, S2, binds both T4 and T3 and 

the hormone signal is transduced via the ERK1/2 (MAPK) pathway that leads to enhanced cell 

proliferation and the transcription of pro-angiogenic modulators, including FGF2 and VEGF [13, 29]. 

Of note is that in contrast to classical thyroid hormone signalling via nuclear thyroid hormone receptors 

(TRs), T4 is not merely a pro-hormone for T3, but actually functions as an active hormone at the integrin. 

3,3’,5,5’ tetraiodothyroacetic acid (tetrac), a deaminated T4 derivative, specifically inhibits thyroid 

hormone action at both binding sites on the integrin [13, 129, 131].  

Based on the observation that MSCs, in their role as progenitor cells of the tumour’s fibrovascular 

network, are sensitive to thyroid hormones and the accumulating evidence for the pro-angiogenic action 

of thyroid hormones, the aim of the current study was to evaluate the potential effects of T3 and T4 

versus tetrac on MSCs in the context of tumour angiogenesis.  

4.3 Materials and Methods 

Cell culture 

Primary human CD34-negative MSCs extracted from bone marrow (apceth GmbH, Munich, Germany) 

were cultured until passage 8 in DMEM (Sigma-Aldrich, St. Louis, Missouri, USA) containing 10% 

(v/v) FBS (FBS Superior, Biochrom/Merck Millipore, Berlin, Germany), 100 U/ml penicillin/100 µg/ml 

streptomycin (Sigma-Aldrich). For reporter gene transfection, the SV40-immortalised human bone 

marrow-derived MSC line L87 was used [66, 165]. These cells are easily engineered and expandable, 

show similar differentiation capacity, as well as homing and activation characteristics as primary MSCs 

[72, 166]. L87 were cultured in RPMI (Sigma-Aldrich) supplemented with 10% (v/v) FBS and 100 U/ml 

penicillin/100 µg/ml streptomycin. Primary human umbilical vein endothelial cells (HUVECs; provitro 

AG, Berlin, Germany) were used until passage 8 and cultured in endothelial cell proliferation medium 

(provitro AG). The human hepatocellular carcinoma (HCC) cell line HuH7 (JCRB Cell Bank, Osaka, 

Japan) was cultured in DMEM containing 10% (v/v) FBS and 100 U/ml penicillin/100 µg/ml 
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streptomycin and passaged up to 10 times. All cell lines were maintained at 37 °C in a humidified 5% 

(v/v) CO2 atmosphere. 

Stable transfection of MSCs 

For reporter gene assays, L87 MSCs transfected with the human sodium iodide symporter (NIS) gene 

under control of either a promoter containing hypoxia response elements (HRE-NIS-MSCs; established 

in [72]) or the VEGF promoter (VEGF-NIS-MSCs) were used. VEGF-NIS-MSCs were established by 

stable transfection of wildtype L87 MSCs with the expression vector 

pcDNA6.2ITR_BLASTI_Vegf2.1kb.NIS. The plasmid was generated with the MultiSite Gateway Pro 

Plus Kit (Thermo Fisher Scientific, Waltham, MA, USA) as described previously [73, 167] and contains 

the human NIS gene driven by the mouse Vegf promoter, two Sleeping Beauty transposition sites and a 

blasticidin resistance gene. Cells were transfected with 2 µg pcDNA6.2ITR_BLASTI_Vegf2.1kb.NIS 

and 1 µg pCMV(CAT)T7-SB100X (provided by Z Ivics, Max Delbrück Center for Molecular Medicine, 

Berlin, Germany), which contains the Sleeping Beauty transposase system for transgene insertion into 

the host cell genome, by electroporation using a single 30 ms pulse at 900 V on the Neon Transfection 

System (Thermo Fisher Scienific). Blasticidin (InvivoGen, Toulouse, France) was used to select for 

transfected cells. Single cell clones were isolated and analysed for NIS-mediated iodide uptake activity 

(see below). The stably transfected clone with the highest iodide uptake was used for all further 

experiments. 

Hormone treatment in vitro 

The preparation of and treatment with HuH7-conditioned medium and T3 or T4 with or without tetrac 

was performed as described previously [20]. For in vitro experiments, both T3 and T4 were used at 

physiologic and supraphysiologic concentrations, i.e. 1 nM or 10 nM T3 and 100 nM or 1000 nM T4, 

respectively. The reference ranges for total hormone concentrations in healthy, euthyroid humans are 

64-154 nM for T4 and 1.1-2.9 nM for T3 [168]. Tetrac was applied at an end concentration of 100 nM. 

As FBS, per se, contains thyroid hormones, charcoal-stripped serum was used for stimulation 

experiments (T3 concentration <0.2 pg/ml; T4 concentration 0.2-0.6 ng/dl). 

Quantitative real-time PCR 

RNA extraction, reverse transcription and quantitative real-time PCR (qPCR) were performed as 

described previously [20]. Primer sequences are listed in table 2. Relative expression levels were 

calculated from ΔΔCt values normalised to the geometric means of internal β-actin (ACTB) and 18S 

rRNA (R18S). Samples were run in duplicate for each of four independent experiments. 

ELISA 

Supernatant from MSCs after 24 h and 48 h of stimulation was centrifuged and stored at -80 °C until 

assayed for angiogenin (ANG), angiopoietin 1 (ANGPT1), angiopoietin 2 (ANGPT2), interleukin 8 
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(CXCL8), insulin-like growth factor 1 (IGF1) and placental growth factor (PGF) using the respective 

DuoSet ELISA kit (R&D Systems, Abingdon, UK). Where necessary, supernatants were diluted as 

follows to be within the linear range of the assay: ANG 24 h 1:20, 48 h 1:80; ANGPT1 48 h 1:4; CXCL8 

24 h 1:20, 48 h 1:60; IGF1 24 h and 48 h 1:10; PGF 24 h and 48 h 1:2. Samples were analysed in 

duplicate in four independent experiments. 

Table 2. qPCR primer sequences. 

gene forward primer (5' → 3') reverse primer (5' → 3') 

ACTB AGAAAATCTGGCACCACACC TAGCACAGCCTGGATAGCAA 

ANG  CATCATGAGGAGACGGGG TCCAAGTGGACAGGTAAGCC 

ANGPT1  AACATGAAGTCGGAGATGGC CAGCAGCTGTATCTCAAGTCG 

ANGPT2  GAAGAGCATGGACAGCATAGG GAGTCATCGTATTCGAGCGG 

bsd CCTCATTGAAAGAGCAACGG CTGTTCTCATTTCCGATCGC 

CCL2  AGCCACCTTCATTCCCCAAG TTGGGTTTGCTTGTCCAGGT 

CCL4 GCTGCTTTTCTTACACCGCG TACACGTACTCCTGGACCCA 

CXCL7  CCTGTAACAGTGCGAGACCA TCGACTTGGTTGCAATGGGT 

CXCL8 TCTGCAGCTCTGTGTGAAGG TTCTCCACAACCCTCTGCAC 

CYR61 TTTGGAATGGAGCCTCGCAT TTCAGGCTGCTGTACACTGG 

HIF1A  GCTTTAACTTTGCTGGCCCC TTCAGCGGTGGGTAATGGAG 

IGF1  GCTGGTGGATGCTCTTCAGT TTGAGGGGTGCGCAATACAT 

NIS TGCGGGACTTTGCAGTACATT TGCAGATAATTCCGGTGGACA 

PGF  CATCCTGTGTCTCCCTGCTG GTCTCCTCCTTTCCGGCTTC 

R18S CAGCCACCCGAGATTGAGCA TAGTAGCGACGGGCGGTGTG 

SV40 TTGCTGTGCTTACTGAGGATG CCAATTATGTCACACCACAGA 

TEK  AACTCTGTGTGCAACTGGTCC AAGTCATCTTCCGAGCTTGG 

TIMP1  CTCGTCATCAGGGCCAAGTT GCAAGAGTCCATCCTGCAGT 

TIMP2  GCTGGACGTTGGAGGAAAGA TGTGACCCAGTCCATCCAGA 

 

Radioiodide uptake in vitro 

NIS-mediated uptake of 125I (PerkinElmer, Waltham, MA, USA) by HRE-NIS-MSCs, VEGF-NIS-

MSCs and wildtype MSCs was measured according to Spitzweg et al. [169]. To test inducibility of the 

hypoxia-responsive and the VEGF promoter, cells were stimulated with 300 µM of the hypoxia-

simulating agent cobalt chloride (CoCl2; Sigma-Aldrich) or with 20% FBS, respectively, for 24 h. 

Thyroid hormone treatment was performed as described above. HRE-NIS-MSCs were additionally 

stimulated with 300 µM CoCl2 during thyroid hormone treatment. The signalling pathway inhibitors LY 

294002 (InSolution LY 294002, Calbiochem/Merck Millipore, Darmstadt, Germany) and RAF265 

(Novartis, Basel, Switzerland), both stored as 10 mM stock solutions at -20°C in DMSO, were used at 

10 µM and 1 µM end concentrations, respectively, and were added to cells simultaneously with thyroid 

hormones. For each iodide uptake assay, two to four technical replicates were performed in three 

independent experiments each. Radioiodide uptake was normalised to cell viability determined by MTS-
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assay (Promega, Mannheim, Germany) as described previously [170] using the absorbance at 620 nm 

relative to control cells.  

Tube formation assay 

HUVECs were seeded at a density of 7.5×103 cells/well in a 96 well µ-Plate Angiogenesis (ibidi, 

Martinsried, Germany) on growth factor-reduced Matrigel (Becton Dickinson Biosciences, Heidelberg, 

Germany). Five to six wells were plated for each condition in each of three or four independent 

experiments. Plates were incubated for 12 h at 37°C before photo microscopy. Images were acquired on 

a Leica DM IL microscope (Leica Microsystems, Wetzlar, Germany) equipped with a Jenoptik ProgRes 

CCD camera (Jenoptik, Jena, Germany) at 5× magnification. Tube formation was quantified in an 

automated fashion with the ImageJ (National Institutes of Health, Bethesda, Maryland, USA) plug-in 

Angiogenesis Analyzer [171]. Evaluated parameters were the mean number of meshes, junctions and 

the mean total tube length per well. 

Animals  

All experiments were conducted with approval from the regional governmental commission for animals 

(Regierung von Oberbayern, Munich, Germany). Four- to five-week old male CD1 nu/nu mice (Charles 

River, Sulzfeld, Germany) were allowed to acclimatise for one week under specific pathogen-free 

conditions with access to standard nude mouse diet (ssniff, Soest, Germany) and water ad libitum. HuH7 

tumour cells (1×106) were implanted into the livers of mice after laparotomy as described previously 

[72].  

Hormone treatment in vivo 

Starting from one week after tumour cell injection, mice received drinking water supplemented with 

0.02% (w/v) 2-mercapto-1-methylimidazole (MMI; Sigma-Aldrich) and 1% (w/v) sodium perchlorate 

(Sigma-Aldrich) to induce hypothyroidism and generate the same baseline thyroid hormone levels for 

all groups [20, 144]. 0.3% (w/v) saccharin (Sigma-Aldrich) was added as a sweetener to mask the bitter 

taste of MMI/perchlorate. Two weeks later, mice were randomly assigned to different treatment groups 

and received the following intraperitoneal (i.p.) injections daily: The hyperthyroid group (n=6) received 

100 ng/g body weight L-T4 (Sigma-Aldrich), the euthyroid group 20 ng/g body weight L-T4 with (n=7) 

or without (n=6) 10 µg/g body weight tetrac (Sigma-Aldrich), while hypothyroid mice (n=8) received 

saline only. Three days before imaging (see below), perchlorate was removed from the drinking water 

and only MMI treatment continued to prevent interference with radioiodide uptake. Thyroid hormone 

status was regularly monitored in serum samples by ELISA (DRG Diagnostics, Marburg, Germany).  

124I positron emission tomography (PET) 

Three weeks later, i.e. six weeks after tumour cell inoculation, 5×105 VEGF-NIS-MSCs or wildtype 

MSCs (n=2), were injected systemically in 500 µl phosphate-buffered saline via the tail vein. 72 h later, 
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10 MBq 124I (PerkinElmer or DSD Pharma, Purkersdorf, Austria) were applied intraperitoneally and 

radioiodide distribution assessed using an Inveon P120 microPET (Siemens Healthcare, Erlangen, 

Germany). In three mice the competitive NIS inhibitor sodium perchlorate (2 mg/mouse; Sigma-

Aldrich) was injected i.p. 30 min prior to radioiodide administration to verify that tumoural radioiodide 

accumulation was NIS-mediated. PET images were reconstructed with the software Inveon Acquisition 

Workplace (Siemens) and analysed with Inveon Research Workplace (Siemens). Three dimensional 

regions of interest were defined and quantified as mean percent of the injected dose per ml tumour (% 

ID/ml tumour). After PET imaging, mice were sacrificed and tumours embedded in Tissue-Tek O.C.T. 

compound (Sakura Finetek, Alphen aan den Rijn, The Netherlands), snap-frozen on dry ice and stored 

at -80 °C until further processing (see below). 

Ex vivo immunofluorescence staining  

Immunofluorescence staining for human NIS and  mouse CD31 on frozen tissue sections was performed 

as described previously [72, 170] using the mouse monoclonal anti-NIS antibody clone FP5A (Merck 

Millipore, Berlin, Germany) or the rat monoclonal anti-mouse CD31 antibody clone MEC 13.3 and a 

Cy3-conjugated donkey anti-mouse secondary antibody (Jackson ImmunoResearch, Cambridgeshire, 

UK) or a Cy3-conjugated donkey anti-rat secondary antibody (Jackson ImmunoResearch), respectively. 

Nuclei were counterstained with 5 µg/ml bisbenzimide Hoechst 33258 (Sigma-Aldrich). Stained 

sections were mounted with Dako Fluorescence Mounting Medium (Dako, Carpinteria, California, 

USA) and imaged at 20× (NIS) or 10× (CD31) magnification on a Leica DMI6000 B fluorescence 

microscope equipped with a Leica DFC365 FX CCD camera, and the software Leica Application Suite 

X (Leica Microsystems). A minimum of five visual fields was recorded per tumour for three to four 

mice per treatment group. The number of NIS-positive cells was counted manually, while the CD31 

positive area per visual field was quantified using ImageJ, blinded to group assignment. 

Ex vivo analysis of NIS mRNA expression 

To normalise NIS expression to MSC recruitment, total RNA was isolated from tumours (euthyroid 

n=5; hyperthyroid n=6; hypothyroid n=5; euthyroid + tetrac n=6) and quantitative real-time PCR was 

performed as described above using primers specific for NIS, SV40, which was used for MSC 

immortalisation, and the blasticidin resistance gene (bsd), which is encoded by the NIS expression 

plasmid and constitutively expressed (for primer sequences see table 2). β-actin and 18S rRNA served 

as internal controls. Results were calculated from ΔΔCt values for NIS divided by the mean of the 

respective ΔΔCt values for SV40 and bsd as a measure of the amount of MSCs present. 

Statistics 

All data are expressed as mean ± SEM or mean fold change ± SEM. Statistical significance was tested 

by one-way ANOVA followed by Tukey’s post hoc test. p-values <0.05 were considered statistically 

significant (*p<0.05; **p<0.01; ***p<0.001). 
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4.4 Results 

Thyroid hormones increase the expression of angiogenesis modulators in MSCs in vitro  

Initially, we examined the expression of angiogenesis relevant factors in MSCs. To this end, we treated 

primary human bone marrow-derived MSCs with physiologic or supraphysiologic concentrations of T3 

or T4 and HCC cell-conditioned medium to simulate the tumour environment in vitro. mRNA (Fig. 

12A, B) and protein concentrations (Fig. 13A, B) for genes associated with angiogenesis were analysed 

by qPCR or ELISA, respectively.  

 

For genes of the angiopoietin/TEK tyrosine kinase (TIE2) axis that control vessel maturation, expression 

levels of the receptor itself were reduced under stimulation with 100 nM T4, while no significant 

 

Figure 12: Expression of pro-angiogenic genes. Primary human bone marrow-derived MSCs were treated 

with hepatocellular carcinoma cell-conditioned medium and either physiological (1 nM, “T3”) and 

supraphysiological (10 nM, “T3 supra”) concentrations of T3 or physiological (100 nM “T4”) and 

supraphysiological (1000 nM “T4 supra”) concentrations of T4 with and without tetrac (100 nM). (A) mRNA 

concentrations of various genes relevant to angiogenesis were assessed by qPCR after 24 h normalised to 

(B) reference gene expression (mean-fold change ± SEM; n=4). Note that the y-axis for HIF1A and ANGPT2 

have a different scale. The dotted lines relate to cells treated with hepatocellular carcinoma cell-conditioned 

medium only (*p<0.05; **p<0.01 compared to control; #p<0.05; ##p<0.01; ###p<0.001 no tetrac treatment 

compared to tetrac treatment). 
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changes for its ligand ANGPT1 were detected at the mRNA level. ANGPT1 contributes to the 

maintenance of the resting endothelial state. In contrast, mRNA concentrations of ANGPT2, the 

naturally occurring antagonist of ANGPT1 that enhances vascular permeability and destabilises the 

endothelium, were dose-dependently increased upon T3 stimulation compared to cells treated with 

tumour cell-conditioned medium alone, an effect that was significant at 10 nM T3 and was blocked by 

tetrac. Pro-angiogenic ANG and the growth factor IGF1 showed a similar expression pattern. HIF1A 

mRNA expression was significantly upregulated by both physiological and supraphysiological 

concentrations of both T3 and T4 and T4 effects were reduced by tetrac. The chemokines CCL4, pro-

platelet basic protein (PPBP/CXCL7), and CXCL8 showed only slight, non-significant upregulation 

under T3 stimulation that was decreased by tetrac, while CCL2 expression was significantly increased 

under stimulation with 10 nM T3. No T4 effects were observed for these chemokines. PGF showed only 

weak, non-significant stimulation under T3 treatment, but was significantly increased under stimulation 

with 1000 nM T4 at the mRNA level. The extracellular matrix-associated angiogenic modulator 

cysteine-rich 61 (CYR61), as well as tissue inhibitors of metalloproteinases 1 and 2 (TIMP1/2) showed 

no significant changes in expression levels under thyroid hormone stimulation. CYR61 and TIMP1 

mRNAs were upregulated when cells were treated with HCC cell-conditioned medium and tetrac as 

compared to cells treated with HCC cell-conditioned medium alone (Fig. 12A). The reference genes 

ACTB and R18S used for normalisation were not impacted by the different treatment conditions (Fig. 

12B). 

For a subset of these genes, the concentrations of secreted proteins in MSC supernatants after 24 h (Fig. 

13A) and 48 h (Fig. 13B) of stimulation were validated by ELISA. Effects seen at the mRNA level were 

confirmed at the protein level for ANGPT1, ANG, and IGF1 by ELISA (Fig. 13A, B). ANGPT2 

expression was increased significantly and dose-dependently under T3 stimulation in a tetrac-dependent 

manner after 48 h, reflecting the effects seen at the mRNA level (Fig. 13B). At 24 h, ANGPT2 levels 

were below the detection limit of the ELISA for all treatment conditions. CXCL8 showed a significant 

increase in secreted protein at 24 h that was completely absent after 48 h. PGF expression, by contrast, 

was induced by T4 after 24 h, an effect that was even stronger after 48 h. This effect was blocked by 

additional treatment with tetrac.  
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Supernatant from thyroid hormone-treated MSCs stimulates endothelial cell tube 

formation  

To examine the paracrine effects of angiogenic factors secreted by MSCs on endothelial cells, HUVECs 

were seeded on growth factor-reduced Matrigel and subjected to conditioned medium from stimulated 

MSCs. Tube formation was analysed and quantified in an automated manner on microscopy images 

after 12 h (Fig. 14A). Compared to untreated HUVECs, supernatant from MSCs enhanced tube 

formation, as evidenced by more intricate tubular networks with a larger number of meshes and junctions 

as well as a higher total tube length after 12 h (Fig. 14B, C). This effect was further enhanced when 

MSCs had been additionally treated with thyroid hormones (Fig. 14B, C). While tetrac had no effect on 

basal HUVEC tube formation, or MSC supernatant-stimulated tube formation, supernatant from MSCs 

stimulated with tetrac in addition to thyroid hormone reduced tube formation to, or even below, basal 

levels (Fig. 14B, C). To estimate potential effects of residual thyroid hormones in the MSC supernatant 

on HUVEC tube formation, HUVECs were treated with thyroid hormones alone in a further tube 

 

Figure 13: Secretion of pro-angiogenic proteins. Primary human bone marrow-derived MSCs were treated 

with hepatocellular carcinoma cell-conditioned medium and either physiological (1 nM, “T3”) and 

supraphysiological (10 nM, “T3 supra”) concentrations of T3 or physiological (100 nM “T4”) and 

supraphysiological (1000 nM “T4 supra”) concentrations of T4 with and without tetrac (100 nM). (A) Protein 

concentrations in supernatants of stimulated MSCs were measured by ELISA after 24 h or (B) 48 h (mean ± 

SEM; n=4). Note that compared to the 24 h diagrams, the y-axis at 48 h is 10× and 4× larger for ANGPT1 

and IGF1, respectively. The dotted lines relate to cells treated with hepatocellular carcinoma cell-conditioned 

medium only (*p<0.05; **p<0.01; compared to control; #p<0.05; ##p<0.01; ###p<0.001 no tetrac treatment 

compared to tetrac treatment). 
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formation experiment. No significant effects were observed at the thyroid hormone concentrations used, 

though the data do imply a slight inhibiting effect of tetrac on HUVEC tube formation under parallel T3 

stimulation (Fig. 14D). 

 

 

Figure 14: Tube formation assay. (A) HUVEC tube formation on growth factor-reduced Matrigel was 

quantified on microscope images after 12 h in an automated fashion by analysing the number of meshes and 

junctions (red arrows) and the total tube length. (B) HUVECs were subjected to supernatant from MSCs 

stimulated with hepatocellular carcinoma cell-conditioned medium and T3 (1 or 10 nM) or T4 (100 or 1000 

nM) with and without tetrac (100 nM). Representative images from supraphysiological hormone treatment 

are shown. Magnification: 5×. (C) Quantification of effects on tube formation (mean ± SEM; n=3; *p<0.05; 

**p<0.01 compared to untreated). (D) HUVECs were treated with T3 (1 or 10 nM) or T4 (100 or 1000 nM) 

with and without tetrac (100 nM) and effects on tube formation were quantified (mean ± SEM; n=4; 

*p<0.05). MSC-CM: MSC-conditioned medium. px: pixel. 
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Thyroid hormone affects VEGF signalling in MSCs in vitro 

As the hypoxia response/VEGF axis critically mediates angiogenesis, we established two reporter gene 

systems to monitor the involvement of HIF-1 and VEGF signalling in thyroid hormone-mediated 

angiogenic effects of MSCs in more detail. We engineered MSCs to express the reporter gene NIS under 

the control of the hypoxia-responsive promoter (HRE-NIS-MSCs) or the VEGF promoter (VEGF-NIS-

MSCs). We could then use radioiodide uptake by NIS in transfected cells as readout of active hypoxia 

or VEGF signalling. To induce promoter activity, HRE-NIS-MSCs were stimulated with the hypoxia-

simulating agent CoCl2 and VEGF-NIS-MSCs with FBS. In a functional assay, both HRE-NIS-MSCs 

and VEGF-NIS-MSCs showed inducible radioiodide uptake activity that was blocked upon treatment 

with the competitive NIS inhibitor perchlorate (Fig. 15A). While untreated HRE-NIS-MSCs and 

wildtype MSCs showed no 125I uptake above background levels, unstimulated VEGF-NIS-MSCs 

showed some basal activity (Fig. 15A).  

We then stimulated HRE-NIS-MSCs with HCC cell-conditioned medium and thyroid hormones with or 

without tetrac in the presence of CoCl2 to simulate hypoxia and thus stabilise newly expressed HIF-1α. 

Compared to HRE-NIS-MSCs treated with HCC cell-conditioned medium only, additional stimulation 

with T3 or T4 led to a slight, non-significant increase in iodide uptake activity (Fig. 15B, left panel). 

VEGF-NIS-MSCs showed a stronger, more robust response to thyroid hormone stimulation, as 

evidenced by a significant tetrac-dependent increase of 1.50- and 1.53-fold for 1 nM and 10 nM T3 and 

1.57- and 1.73-fold for 100 nM and 1000 nM T4, respectively (Fig. 15B, right panel). Tetrac reduced 

125I uptake induced by thyroid hormones in both cell lines, though only reaching statistical significance 

for VEGF-NIS-MSCs. 

To further verify integrin αvβ3 involvement, we applied inhibitors of signalling pathways downstream 

of the integrin in addition to the integrin-specific inhibitor tetrac. The PI3K inhibitor LY 294002 was 

used to probe for T3 signalling via the S1 binding site in the thyroid hormone binding domain of integrin 

αvβ3 and the ERK1/2 (MAPK) pathway inhibitor RAF265 for T3 and T4 signalling via the S2 binding 

site (Fig. 15C). In both HRE-NIS-MSCs and VEGF-NIS-MSCs the T3 effects were blocked upon tetrac, 

LY 294002 and RAF265 treatment, while T4 effects were only blocked by tetrac and RAF265 and not 

by LY 294002 (Fig. 15D). Note that in this set of experiments T3 and T4 effects did reach statistical 

significance in HRE-NIS-MSCs. 
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Figure 15: Hypoxia and VEGF signalling in vitro. Two different reporter constructs were established by 

placing the NIS gene under control of a hypoxia-responsive promoter (HRE-NIS, left panel) or the VEGF 

promoter (VEGF-NIS, right panel). (A) L87 MSCs transfected with these constructs showed inducible 125I 

uptake activity compared to wildtype MSCs. Sensitivity to perchlorate indicates NIS specificity. Stim.: 

stimulated (mean ± SEM.; n=3; *p<0.05; **p<0.01; ***p<0.001). (B) HRE-NIS-MSCs (left panel) or 

VEGF-NIS-MSCs (right panel) were treated with hepatocellular carcinoma cell-conditioned medium only 

(control) or additionally with T3 (1 or 10 nM) or T4 (100 or 1000 nM) with and without 100 nM tetrac (mean 

± SEM; n=3; *p<0.05; **p<0.01). (C) Schematic representation of thyroid hormone signalling versus 

inhibition via integrin αvβ3. (D) Control cells and cells treated with 1 nM T3 or 100 nM T4 were additionally 

treated with 100 nM tetrac, 10 µM LY 294002 or 1 µM RAF265 and 125I uptake activity assessed (mean ± 

SEM; n=3; *p<0.05; **p<0.01 compared to control; #p<0.05; ##p<0.01 with versus without inhibitors). The 

thyroid hormones and the inhibitors were added to the cells simultaneously. 
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Thyroid hormone stimulates VEGF signalling in MSCs in liver tumours in vivo  

Based on the stronger thyroid hormone-dependent effects seen in vitro using the VEGF-NIS-MSCs, 

compared to the HRE-NIS-MSCs, the former were further evaluated in vivo by 124I PET in an orthotopic 

HCC xenograft nude mouse model (Fig. 16A). Mice were subjected to different thyroid hormone 

treatments (euthyroid, hyperthyroid, hypothyroid and euthyroid + tetrac; Fig. 16B). 72 h after systemic 

injection of VEGF-NIS-MSCs, tumoural 124I accumulation and thus functional NIS expression was 

assessed by three-dimensional high-resolution small animal PET (Fig. 16B).  

 

Radioiodide signals in the liver region demonstrated successful tumoural recruitment of VEGF-NIS-

MSCs after systemic application followed by VEGF promoter-driven NIS expression in tumours (Fig. 

17A). Compared to euthyroid mice, the tumours of hyperthyroid mice accumulated markedly more 

radioiodide one hour after 124I injection, while hypothyroid and tetrac-treated mice accumulated less 

radioioide in their liver tumours (Fig. 17A, B). Tracer uptake was also observed in mouse tissues that 

endogenously express NIS (thyroid, stomach, nasal mucosa and salivary glands) as well as in the urinary 

bladder, due to renal radioiodide elimination (Fig. 17A). The competitive NIS inhibitor perchlorate 

inhibited both tumoural NIS expression as well as endogenous expression, thus verifying that tracer 

uptake in tumours was indeed NIS-mediated (Fig. 17A). No 124I uptake above background was observed 

in tumours of mice injected with wildtype MSCs (Fig. 17A).  

Immunofluorescence staining for human NIS in tumours reflected PET imaging results with a 

significantly higher number of NIS positive cells in hyperthyroid mice and significantly less in 

hypothyroid and tetrac-treated animals compared to euthyroid mice (Fig. 17C, D). Normalisation to 

MSC recruitment confirmed the observed effects on NIS expression levels (Fig. 17E).  

Tumour growth was not affected by thyroid hormone status or tetrac treatment in this model (data not 

shown). Thyroid hormone concentrations in serum at sacrifice reflected the different thyroid states of 

the treatment groups (Fig. 17F). The ELISA used could not differentiate between T4 and tetrac, leading 

 

Figure 16: Experimental set-up in vivo. (A) Orthotopic tumours were established by injection of the human 

hepatocellular carcinoma cell line HuH7 into the livers of nude mice. (B) One week after tumour cell 

inoculation, endogenous thyroid hormone production was blocked by MMI/perchlorate via the drinking 

water. Two weeks later, mice were assigned to different thyroid hormone groups that received either 20 ng/g 

body weight T4 (euthyroid), 100 ng/g body weight T4 (hyperthyroid), saline (hypothyroid) or 20 ng/g body 

weight T4 alongside 10 µg/g body weight tetrac (euthyroid + tetrac) i.p. daily. Finally, mice received a single 

tail vein injection of VEGF-NIS-MSCs and radioiodide uptake in the tumour region was assessed by 124I 

PET 72 h later.  
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to false high serum T4 values in tetrac-treated mice (data not shown). Tetrac-treated animals received 

the same body weight-adjusted dose of T4 as the euthyroid group, which leads to highly reproducible 

serum T4 levels in the range of untreated naturally euthyroid mice. 

 

Figure 17: VEGF signalling in vivo. (A) 124I PET imaging of mice bearing intrahepatic HuH7 tumours 

demonstrated tumoural radioiode accumulation (indicated by arrows) in animals that were injected with 

VEGF-NIS-MSCs, while no signal was detected in the tumours of wildtype MSC-treated mice (wt MSCs). 

Endogenous NIS expression led to tracer uptake in the thyroids (t) and stomachs (s) of mice. Signals in the 

bladder (b) are due to renal excretion of the PET tracer. Treatment with the NIS-specific inhibitor perchlorate 

(ClO4
-) extinguished tracer uptake both in the tumour and in organs with endogenous NIS expression. (B) 

Tumoural radioiodide uptake was quantified 1 h after radioiodide injection by placing three-dimensional 

regions of interest over the tumours (mean % of the injected dose/ml tumour ± SEM; euthyroid: n=6, 

hyperthyroid: n=6, hypothyroid: n=8, euthyroid + tetrac: n=7; *p<0.05; **p<0.01). (C) Tumoural NIS 

expression was further confirmed by NIS-specific immunofluorescence staining. Magnification: 20×. (D) 

Quantification of NIS staining on tumour sections (diamonds represent counts in a single visual field, red 

lines represent mean ± SEM; n=4/treatment group; *p<0.05). (E) NIS expression relative to MSC recruitment 

was assessed by qPCR (mean ± SEM of ΔΔCt for NIS/mean of ΔΔCts for SV40 and bsd; n=5 for euthyroid 

and hypothyroid mice, n=6 for hyperthyroid and tetrac-treated mice; *p<0.05; **p<0.01). (F) Thyroid 

hormone concentrations in serum samples from the individual treatment groups at sacrifice (mean ± SEM; 

n=4/treatment group; *p<0.05; **p<0.01). 
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To further assess effects on angiogenesis, ex vivo CD31 straining on tumour sections was performed. 

The blood vessel densities of the different treatment groups showed a trend reflecting the effects on 

angiogenesis seen in vitro and in vivo with a significantly decreased tumour vascularisation in 

hypothyroid mice compared to euthyroid mice, and a significantly increased vascularisation in 

hyperthyroid mice as compared to hypothyroid and tetrac-treated mice (Fig. 18A, B). 

4.5 Discussion 

Angiogenesis is pivotal to tumour growth and progression. Therefore, understanding the molecular 

regulation of cellular events involved in angiogenesis has immense clinical implications. MSCs have 

been shown to secrete pro-angiogenic factors in the tumour microenvironment upon their homing to the 

tumour stroma and their differentiation into cancer-associated fibroblast-like and pericyte-like cells [19, 

20]. It is assumed that the angiogenic effect of MSCs is predominantly caused by their secretion of pro-

angiogenic factors [14]. In a previous study, we observed that the thyroid hormones T3 and T4 stimulate 

the differentiation of MSCs towards a tumour-promoting, pro-angiogenic phenotype via a cell surface 

receptor on integrin αvβ3 [20]. The thyroid hormone metabolite tetrac, a specific inhibitor of thyroid 

hormone action at the integrin site, reversed the effects of agonist thyroid hormone. Indeed, thyroid 

hormone has been shown to be pro-angiogenic via integrin αvβ3 expressed on tumour cells and 

endothelial cells in numerous studies [47, 146, 162]. Our data suggested another layer to the story, in 

that non-hematopoietic cells of the tumour stroma, namely MSCs, can be driven towards a more pro-

 

Figure 18: Ex vivo CD31 staining. (A) Immunofluorescence staining for CD31 was performed on tumour 

sections to visualise vascularisation. Magnification: 10×. (B) Quantification of CD31 staining (diamonds 

represent the % CD31 positive area in a single visual field, red lines represent mean ± SEM; n=3-4/treatment 

group; *p<0.05; **p<0.01). 
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angiogenic phenotype by thyroid hormones via their signalling through the αvβ3 integrin. Hence, we 

decided to take a closer look at thyroid hormone regulation of angiogenic effects of MSCs in the current 

study.  

Analysing the response of a broader range of angiogenic factors found in the MSC secretome to thyroid 

hormone versus tetrac treatment, we here show that thyroid hormones, especially T3, stimulate pro-

angiogenic gene expression and protein secretion in MSCs at physiologically relevant hormone 

concentrations. Interestingly, HIF-1α expression was significantly induced by both T3 and T4. The 

transcription factor HIF-1 is a key modulator of a cell’s adaptation to hypoxia and an important 

angiogenesis mediator. It is a heterodimer composed of the constitutively expressed HIF-1β and the 

oxygen-sensitive HIF-1α subunit that is tightly regulated and degraded under normoxia [172]. Under 

hypoxia, HIF-1α accumulates leading to transcriptional activation of genes containing hypoxia response 

elements, such as VEGF [156]. The HIF-1α-related pro-angiogenic activity of thyroid hormones is 

especially interesting in the context of solid tumours that are typically associated with local hypoxia 

[161]. T3 has been reported to induce HIF-1α expression by a PI3K-dependent mechanism in human 

skin fibroblasts, an effect that has been proposed to be mediated by cytoplasmically located TRβ [173, 

174]. Further, T3, and not T4, has been shown to induce HIF-1α expression in human glioma cells, again 

via PI3K [39]. Whether PI3K-dependent induction of HIF-1α expression is initiated at the cell surface 

at integrin αvβ3 or at a cytoplasmically located TR, or both, has, however, not yet been conclusively 

shown [39, 47, 129, 174]. T4, on the other hand, has been shown to induce internalisation of integrin 

αvβ3 in human non-small cell lung cancer and ovarian carcinoma cells, resulting in a complex formed 

between the αv monomer and ERK1/2 (MAPK), leading to nuclear import [175]. Tetrac inhibited 

internalisation of integrin αvβ3. In the nucleus, αv acts as a transcriptional co-activator that helps drive 

the transcription of HIF-1α.  [45, 161, 176]. The pro-angiogenic effect of thyroid hormones on MSCs 

was further confirmed in an in vitro endothelial tube formation assay demonstrating significantly 

enhanced tube formation under treatment with supernatant from T3-stimulated MSCs. The increased 

expression and secretion of pro-angiogenic factors by MSCs under thyroid hormone stimulation 

detected by qPCR and ELISA directly stimulated HUVEC tube formation. The tube formation data also 

reflect the observation that T3 generally seems to have stronger effects in our system. Many of the 

effects on gene expression could be directly blocked by additional treatment with tetrac. The inhibitory 

effects of tetrac on angiogenesis were strikingly apparent in the tube formation assay. Thus, we conclude 

that the observed effects are largely initiated at integrin αvβ3. Interestingly, we observed no tetrac effects 

on basal tube formation, or on the increased tube formation triggered by MSC-conditioned medium. A 

possible explanation for the strong tetrac effects only under parallel treatment with thyroid hormone 

may lie in integrin activation and/or clustering in the cell membrane of MSCs as a result of agonist 

thyroid hormone stimulation. Tetrac would then be able to exert its inhibitory effects only once this 

activation has occurred. In this context, tetrac was shown to prevent radiation-induced activation of the 

β3 monomer in vitro, while it did not affect the basal, non-irradiated activation state [177]. Furthermore, 



Thyroid hormones stimulate the angiogenic potential of MSCs 

56 

 

integrin cluster formation and resulting activation is not only known to be essential for extracellular 

matrix adhesion, but has also been proposed to influence integrin-related signalling [178]. Indeed, when 

the binding site for RGD, which provokes integrin clustering, is blocked, thyroid hormone action at the 

integrin is inhibited [133]. Whether thyroid hormone influences integrin cluster formation has not been 

thoroughly investigated to date, though T4 was reported to regulate integrin clustering in astrocytes 

[179, 180]. The observation that co-clustering and resulting crosstalk between integrin αvβ3 and 

angiogenesis-relevant growth factor receptors for VEGF, FGF2, EGF, platelet-derived growth factor 

and IGF1 occurs, adds a further dimension to the complex regulation of angiogenesis by thyroid 

hormones [161, 181]. Tetrac has been proposed to interfere with this crosstalk on the surface of 

endothelial cells and similar effects in MSCs are conceivable [161].  

HIF-1α and VEGF are two master regulators of angiogenesis with central importance in angiogenic 

signalling, whose expression by MSCs has been shown to be regulated by thyroid hormones and tetrac 

in the current study (HIF-1α), and in a previous study (VEGF; [20]). We therefore established hypoxia-

responsive and VEGF-promoter reporter constructs. As reporter gene we used the transmembrane 

protein NIS that transports iodide into thyroid follicular cells and thus provides the molecular basis for 

the diagnostic and therapeutic application of radioiodide in thyroid cancer patients [88]. In our previous 

work, we have gathered extensive experience in targeting NIS to non-thyroidal tumours using 

genetically engineered MSCs as gene transfer vehicles based on their inherent tumour homing capacity 

[66, 70-73, 75, 76]. One of the many advantages of NIS is that it allows detailed, non-invasive in vivo 

tracking of MSCs, as well as quantifiable functional NIS expression, by 123I scintigraphy and 124I PET. 

Based on these studies, we employed this system to study thyroid hormone action on MSC biology 

within the tumour microenvironment. In vitro we observed a thyroid hormone-dependent up-regulation 

of hypoxia-responsive and VEGF promoter activity that was already evident at physiological hormone 

concentrations and could be blocked by tetrac, as well as inhibitors of signalling pathways downstream 

of the hormone binding site at the integrin. These observations further support the involvement of 

integrin αvβ3.  

Based on the more promising in vitro results using the VEGF-NIS reporter construct and the central role 

of VEGF in regulating practically all relevant aspects of tumour angiogenesis, we applied VEGF-NIS-

MSCs in vivo in an orthotopic HCC xenograft mouse model. We then measured 124I uptake by PET in 

mice with different thyroid hormone states. Tumoural radioiodide uptake demonstrated successful 

recruitment of VEGF-NIS-MSCs after systemic application followed by VEGF promoter-driven NIS 

expression. In hyperthyroid animals, a strongly enhanced radioiodide signal was detected compared to 

euthyroid mice, while hypothroidism or treatment with tetrac markedly reduced the signal seen. Ex vivo 

analysis of NIS-specific immunoreactivity and NIS mRNA expression normalised to MSC recruitment, 

reflected the PET imaging results. These data confirm the in vitro data suggesting thyroid hormone-

mediated stimulation of VEGF that is inhibited by tetrac. In addition, tumour vascularisation reflects the 
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pro-angiogenic effects of thyroid hormones seen in vitro and in vivo as evidenced by a lower blood 

vessel density in hypothyroid and tetrac-treated mice as compared to euthyroid and hyperthyroid mice. 

Our data imply that T3 and T4 influence angiogenic signalling via integrin αvβ3 in the tumour 

microenvironment not only in tumour cells and endothelial cells, but also in MSCs, further establishing 

MSCs as thyroid hormone-dependent targets via integrin αvβ3. Stimulation of cancer-related 

angiogenesis is obviously undesirable in cancer patients and thyroid hormones have been proposed to 

limit anti-angiogenic therapy [162, 182]. Growing experimental evidence, supported by clinical data 

and population-based studies, suggests that thyroid hormones are involved in cancer development, 

progression and metastasis, with established effects on cancer cell proliferation and cancer cell defence 

pathways, in addition to angiogenesis [45, 47, 183]. Against this background, understanding the complex 

mechanisms underlying pro-angiogenic effects of thyroid hormones is of paramount importance, not 

least due to the promising anti-angiogenic activity of tetrac. 
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5.1 Abstract 

Thyroid hormones are emerging as critical regulators of tumour growth and progression via a non-

classical signalling pathway initiated at integrin αvβ3 expressed on many tumour cells, proliferating 

endothelial cells, and tumour stroma-associated cells. To assess the contribution of thyroid hormone 

signalling via integrin αvβ3 to tumour growth, we compared the effects of thyroid hormones versus 

tetrac, a specific inhibitor of thyroid hormone action at integrin αvβ3, in two murine xenograft tumour 

models with and without integrin αvβ3 expression. 

Integrin αvβ3-positive human anaplastic thyroid cancer cells SW1736 and integrin αvβ3-negative 

human hepatocellular carcinoma cells HuH7 were injected into the flanks of nude mice. Tumour growth 

was monitored in euthyroid, hyperthyroid, hypothyroid, and euthyroid tetrac-treated mice in both 

models. In SW1736 xenograft mice, hyperthyroidism led to a significantly increased tumour growth 

resulting in a decreased survival compared to euthyroid mice. In hypothyroid and tetrac-treated mice, in 

contrast, tumour growth was significantly reduced and, hence, survival prolonged compared to euthyroid 

and hyperthyroid animals. Both proliferation and vascularisation, as determined by Ki67 and CD31 

immunofluorescence staining, respectively, were significantly increased in tumours from hyperthyroid 

mice as compared to hypothyroid and tetrac-treated mice. No differences in tumour growth, survival, or 

Ki67 staining were observed between the different thyroid hormone states in mice bearing integrin αvβ3-

negative HuH7 xenografts. The blood vessel density, however, was significantly decreased in 

hypothyroid and tetrac-treated mice compared to both euthyroid and hyperthyroid mice. Apoptosis was 

not affected in either tumour model, nor was cell proliferation in vitro.  

Both the reduced tumour growth rate in tetrac-treated mice bearing integrin αvβ3-positive tumours and 

the unaffected growth of integrin αvβ3-negative tumours imply integrin αvβ3-dependency. The 

regulation of tumour growth by thyroid hormones in αvβ3-positive tumours has important implications 

for cancer patients, especially for those with cancer treatment-related or unrelated thyroid dysfunction 

or thyroid cancer patients treated with thyroid-stimulating hormone- (TSH-) suppressive L-thyroxine 

doses.
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5.2 Introduction 

The thyroid hormones 3,5,3’-triiodo-L-thyronine (T3) and L-thyroxine (T4) have a broad spectrum of 

biological activity relating to embryonic development, differentiation, growth, and metabolism in the 

healthy organism. Several decades of both clinical and experimental evidence suggest that they are also 

critical regulators of tumour progression [47, 184]. Indeed, thyroid hormones have been shown to 

stimulate tumour cell proliferation and inhibit apoptosis, besides modulating angiogenesis, 

inflammation, and tumour stroma formation [29, 47, 147, 161, 184-186]. These effects are thought to 

be mediated mainly by non-classical thyroid hormone signalling initiated at integrin αvβ3. This 

heterodimeric transmembrane adhesion receptor links the extracellular matrix to the intracellular 

cytoskeleton and is expressed at high levels on many tumour cells, dividing endothelial cells, and 

stromal cells [20, 187, 188]. Discovered in 2005 by Bergh et al., the thyroid hormone binding site on 

integrin αvβ3 is located on the extracellular domain and shows neither structural nor functional 

homology to the classical nuclear thyroid hormone receptors (TRs) [33, 38, 39]. The binding site is 

subspecialised into two distinct sites: one binds T3 and stimulates the PI3K pathway, while the other 

binds both T3 and T4 and activates MAPK (ERK1/2) signalling [39]. The latter has been shown to 

enhance cell proliferation and decrease apoptosis in tumour cells upon thyroid hormone binding [29, 

39], while angiogenesis may be modulated from both binding sites [39]. The naturally occurring thyroid 

hormone metabolite 3,3’,5,5’-tetraiodothyroacetic acid (tetrac) blocks thyroid hormone binding and thus 

signalling at both binding sites on the integrin [39]. 

Physiological concentrations of T4 and supraphysiological concentrations of T3 have been reported to 

enhance the proliferation of tumour cell lines in vitro, including breast and ovarian cancer, follicular and 

papillary thyroid carcinoma, small cell and non-small cell lung carcinoma, glioma, T-cell lymphoma, 

and multiple myeloma [39, 146, 189-199]. In addition, T3 and T4 have been shown to drive angiogenesis 

via stimulation of endothelial cell proliferation, migration, and vascular tube formation. This can occur 

either directly by stimulation of the endothelial cells themselves, or indirectly by stimulation of the 

secretion of pro-angiogenic modulators by tumour cells and tumour-educated mesenchymal stem cells 

that in turn act on endothelial cells [20, 42, 47, 148, 162, 163, 185]. In all cases, the observed effects on 

proliferation and angiogenesis were attributed to integrin αvβ3-mediated thyroid hormone signalling, as 

shown by inhibitors that selectively block αvβ3, including tetrac. In vivo data support these observations: 

In rodents bearing syngeneic and xenograft tumours, induction of hypothyroidism, by pharmaceutical 

inhibition of thyroid hormone synthesis, radioiodine ablation, or surgical thyroidectomy, led to reduced 

tumour growth in models of breast, prostate, and lung carcinoma, as well as sarcoma, fibrosarcoma, and 

hepatoma [31, 49-54]. Further, T4 has been shown to increase tumour growth in syngeneic mouse 

models of sarcoma and fibrosarcoma [50]. In a murine Lewis lung carcinoma model, T4, but not T3, 

treatment increased tumour growth, an effect that was inhibited by tetrac [200]. In addition, tetrac 



Tumour growth stimulation by thyroid hormones 

61 

 

reduced tumour mass and haemoglobin content in breast, renal, follicular thyroid, medullary thyroid, 

lung, and pancreas carcinoma xenografts in mice via stimulation of apoptosis and inhibition of 

angiogenesis [132, 154, 190, 196, 201-203]. 

Thus, the impact of thyroid hormone signalling via integrin αvβ3 on tumour growth can be attributed to 

a direct response of the cancer cells themselves through increased proliferation and/or inhibition of 

apoptosis, and to indirect effects on the stromal compartment, particularly on angiogenesis, via 

stimulation of integrin αvβ3-positive endothelial cells and stromal cells. In order to better understand 

the contributions of these separate effects on tumour growth and to confirm the central role of tumoural 

integrin αvβ3 expression, we used an integrin αvβ3-positive and an integrin αvβ3-negative tumour cell 

line to compare thyroid hormone versus tetrac effects on tumour growth in murine xenografts in the 

current study. 

5.3 Materials and Methods 

Cell culture 

The human anaplastic thyroid carcinoma cell line SW1736 and the human hepatocellular carcinoma cell 

line HuH7 were cultured in RPMI (Sigma-Aldrich, St. Louis, MO, USA) and DMEM low-glucose 

(Sigma-Aldrich), respectively, supplemented with 10% (v/v) FBS (FBS Superior, Biochrom/Merck 

Millipore, Berlin, Germany) and 100 U/ml penicillin/100 µg/ml streptomycin (Sigma-Aldrich). Both 

cell lines were maintained at 37 °C in a humidified 5% (v/v) CO2 atmosphere. 

Quantitative real-time PCR 

mRNA expression of the two integrin αvβ3 subunit genes ITGAV and ITGB3 was determined by 

quantitative real-time PCR (qRT-PCR) as described previously [20] on a LightCycler 96 (Roche 

Diagnostics, Mannheim, Germany) using the following primers: ACTB, fwd 5’-

AGAAAATCTGGCACCACACC-3’, rev 5’-TAGCACAGCCTGGATAGCAA-3’; R18S, fwd 5’-

CAGCCACCCGAGATTGAGCA-3’, rev 5’-TAGTAGCGACGGGCGGTGTG-3’; ITGAV, fwd 5’-

CACCAGCAGTCAGAGATGGA-3’, rev 5’-GGCAACCGTGTCATTCTTTT-3’; ITGB3, fwd 5’-

AAGGATAACTGTGCCCCAGA-3’, rev 5’-CACAGGCTTGTCCACAAATG-3’. Relative expression 

levels are expressed as ΔΔCt values normalised to internal ACTB (β-actin) and R18S (18S rRNA). 

Samples were run in duplicate for each of four independent replicates. 

Flow cytometry 

Cell surface expression of integrin αvβ3 was assessed by flow cytometry as described previously [204]. 

Per sample, 106 cells were incubated with 0.5 µg of a mouse monoclonal IgG1 antibody against integrin 

αvβ3 (clone 27.1 (VNR-1); Abcam, Cambridge, UK). As secondary antibody an Alexa Fluor 488-

conjugated goat anti-mouse antibody (Abcam) was used.  
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Thyroid hormone treatment in vitro 

SW1736 and HuH7 were serum-starved overnight prior to treatment with physiological or 

supraphysiological total concentrations of thyroid hormones (all from Sigma-Aldrich), i.e. 1 nM or 10 

nM T3 and 100 nM or 1000 nM T4, with and without 100 nM tetrac in medium containing charcoal-

stripped serum (<0.2 pg/ml T3, 0.2-0.6 ng/dl T4). Cell proliferation was assessed by MTT assay 

(Promega, Mannheim, Germany) as described previously [170] after 24, 48, 72, and 96 h of thyroid 

hormone treatment.  

Animals  

All animal experiments were performed in accordance with German animal welfare laws and the 

approval of the regional governmental commission for animals (Regierung von Oberbayern, Munich, 

Germany). Male immunodeficient CD1 nu/nu mice (Charles River, Sulzfeld, Germany) were allowed 

to acclimatise for one week and kept under specific pathogen-free conditions with access to standard 

nude mouse diet (ssniff, Soest, Germany) and water ad libitum. To establish xenograft tumours, five- to 

six-week old mice were implanted with either 15×106 SW1736 or 5×106 HuH7 in 100 µl PBS 

subcutaneously into the right hind flank. Tumour growth was monitored by calliper measurement of 

three dimensions at least every second day and the volume calculated as 4/3 × π × length/2 × width/2 × 

height/2. 

Thyroid hormone treatment in vivo 

Once tumours were visible, mice received drinking water supplemented with 0.02% (w/v) 2-mercapto-

1-methylimidazole (MMI; Sigma-Aldrich) and 1% (w/v) sodium perchlorate (Sigma-Aldrich) to induce 

hypothyroidism and generate the same baseline treatment for all groups [20, 144]. Saccharin (Sigma-

Aldrich) was added at a concentration of 0.3% (w/v) to mask the bitter taste of the anti-thyroid drugs. 

Thyroid hormone treatment was started when tumours reached a size of >100 mm3. Mice were randomly 

assigned to different treatment groups that received daily intraperitoneal injections of 100 ng/g body 

weight L-T4 (Sigma-Aldrich) to induce hyperthyroidism (SW1736 n=6; HuH7 n=7), 20 ng/g body 

weight L-T4 to render mice euthyroid, with (SW1736 n=5; HuH7 n=8) or without (SW1736 n=6; HuH7 

n=8) 10 µg/g body weight tetrac (Sigma-Aldrich), or saline for the hypothyroid group (SW1736 n=5; 

HuH7 n=7). The thyroid hormone status was monitored in final serum samples by ELISA (DRG 

Diagnostics, Marburg, Germany). Mice were sacrificed and dissected when tumours reached a size 

>1500 mm3, or, as was the case for one tetrac-treated mouse bearing an SW1736 tumour, the tumour 

started to exulcerate. 

Ex vivo analysis 

Immunofluorescence staining of frozen tissue sections was performed as described previously [205]. 

For Ki67 (proliferating cells) and CD31 (blood vessels) co-staining, a rabbit polyclonal antibody against 

human Ki67 (Abcam; dilution 1:200) and a rat monoclonal antibody against mouse CD31 (BD 
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Pharmingen, Heidelberg, Germany; dilution 1:100) followed by an Alexa Fluor 488-conjugated anti-

rabbit secondary antibody (Jackson ImmunoResearch, West Grove, PA, USA) and a Cy3-conjugated 

anti-rat secondary antibody (Jackson ImmunoResearch), respectively, were used. To stain for apoptotic 

cells, a terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assay was performed 

(Click-iT TUNEL Alexa Fluor 488, Thermo Fisher Scientific, Waltham, MA, USA) according to the 

manufacturer's instructions. Nuclei were counterstained with 5 µg/ml bisbenzimide Hoechst 33258 

(Sigma-Aldrich). Stained sections were mounted with Dako Fluorescence Mounting Medium (Dako, 

Carpinteria, CA, USA) and imaged at 10× (Ki67/CD31 staining) or 20× (TUNEL) magnification on a 

Leica DMI6000 B fluorescence microscope equipped with a Leica DFC365 FX CCD camera, and the 

software Leica Application Suite X (Leica Microsystems, Wetzlar, Germany). A minimum of five visual 

fields was recorded per tumour. The percentage of Ki67-positive and apoptotic nuclei, or the percent 

CD31-positve area per visual field were determined using ImageJ (National Institutes of Health, 

Bethesda, MD, USA).  

Statistics 

All data are expressed as mean ± SEM, mean fold change ± SEM, or, for survival plots, percent. 

Statistical significance was tested by one-way ANOVA followed by Tukey’s Honestly Significant 

Difference post hoc test, except for the qRT-PCR data and mouse survival, where Student’s t-test and 

log-rank test were performed, respectively. p-values <0.05 were considered statistically significant 

(*p<0.05; **p<0.01; ***p<0.001; n/s not significant).   

5.4 Results 

Integrin αvβ3 is expressed on SW1736, but not on HuH7 cells  

Integrin αvβ3 expression in human anaplastic thyroid cancer cells SW1736 and human hepatocellular 

carcinoma cells HuH7 was analysed by qRT-PCR and flow cytometry. In SW1736, mRNA for both 

integrin subunits was detected, while HuH7 only express ITGAV, the gene for the αv subunit, and no 

mRNA for the gene coding for the β3 subunit (ITGB3) was detected (Fig. 19A). Accordingly, cell 

surface expression of integrin αvβ3 was only detected in SW1736 by flow cytometry (Fig. 19B). 

Thyroid hormone stimulation in vitro 

Thyroid hormone (1 and 10 nM T3 or 100 and 1000 nM T4) and/or tetrac (100 nM) treatment had no 

effect on tumour cell proliferation in vitro, neither in integrin αvβ3-positive SW1736, nor in integrin 

αvβ3-negative HuH7 cells after 24, 48, 72, or 96 h of stimulation (data not shown). 
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Thyroid hormone stimulates tumour growth via integrin αvβ3 

Mice bearing either integrin αvβ3-positive anaplastic thyroid carcinoma SW1736 xenograft tumours or 

integrin αvβ3-negative hepatocellular carcinoma HuH7 xenograft tumours were assigned to different 

thyroid hormone treatment groups and tumour growth was observed until a tumour size of 1500 mm3 

was reached (Fig. 20A). One mouse bearing an SW1736 tumour treated with tetrac had to be sacrificed 

prematurely due to ulceration of the tumour. The respective thyroid hormone status was confirmed by 

T4 measurement in serum after sacrifice (Fig. 20B). As the ELISA could not distinguish tetrac from T4, 

serum values for euthyroid tetrac-treated mice are not shown. However, the same body weight-adjusted 

dose of T4 was used for the tetrac-treated group as for the euthyroid group, leading to highly 

reproducible serum T4 levels in the range of untreated naturally euthyroid mice (control in Fig. 20B). 

 

Tumour growth of integrin αvβ3-positive anaplastic thyroid carcinoma SW1736 xenograft tumours was 

significantly increased in hyperthyroid compared to euthyroid mice, while tumour growth was 

 

Figure 19: Integrin αvβ3 expression on SW1736 and HuH7 cells. (A) Average mRNA expression of 

integrin subunits αv (ITGAV) and β3 (ITGB3) in human anaplastic thyroid carcinoma cells SW1736 and 

hepatocellular carcinoma cells HuH7 (n=4, mean ± SEM; ***p<0.001) was determined by qRT-PCR. (B) 

Cell surface expression of integrin αvβ3 was analysed by flow cytometry using an integrin αvβ3-specific 

primary antibody followed by an Alexa Fluor 488-labelled secondary antibody. Controls were incubated 

with the secondary antibody only. 

 

 

Figure 20: Experimental set-up in vivo. (A) SW1736 or HuH7 tumour cells were injected subcutaneously 

into nude mice and endogenous thyroid hormone production was blocked by MMI/perchlorate in the drinking 

water. Mice were assigned to different thyroid hormone treatment groups by daily injections once tumours 

reached a size >100 mm3 and tumour growth was monitored until the tumour size exceeded 1500 mm3. (B) 

The thyroid hormone status of the different groups was verified by serum T4 measurement and compared to 

untreated euthyroid control mice (ctrl). 
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significantly reduced both in hypothyroid and tetrac-treated euthyroid animals (Fig. 21A). This led to a 

significantly increased survival, defined by a maximum tumour size of 1500 mm3, in the hypothyroid 

(median survival 25 days) and the tetrac-treated group (median survival 23 days), and a significantly 

reduced survival in the hyperthyroid group (median survival 11 days) as compared to euthyroid animals 

(median survival 16 days; Fig. 21A). In the integrin αvβ3-negative HuH7 tumour model, in contrast, no 

significant differences in tumour growth or survival were detected between the different treatment 

groups (Fig. 21B).  

 

Effects on tumour growth arise from increased proliferation and angiogenesis 

Ex vivo analysis of frozen tumour sections revealed an increase in proliferating cells and vascularisation 

in the tumours of hyperthyroid mice compared to both hypothyroid and tetrac-treated mice in SW1736 

tumours as evidenced by the results of Ki67 and CD31 staining, respectively (Fig. 22A).  

 

Figure 21: Thyroid hormone status influences tumour growth in murine xenografts via tumoural 

integrin αvβ3 expression. For both (A) integrin αvβ3-positive SW1736 xenografts (euthyroid: n=6, 

hyperthyroid: n=6, hypothyroid: n=5, euthyroid + tetrac: n=5) and (B) integrin αvβ3-negative HuH7 

xenografts (euthyroid: n=8, hyperthyroid: n=7, hypothyroid: n=7, euthyroid + tetrac: n=8), the average 

tumour growth (left panels; mean ± SEM; *p<0.05 versus euthyroid; #p<0.05, ##p<0.01 versus hyperthyroid) 

and survival (right panels; percent; *p<0.05, **p<0.01, n/s not significant) of the different treatment groups 

were compared. One SW1736 tumour-bearing mouse had to be sacrificed prematurely due to tumour 

ulceration (red arrows in (A)). 
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Figure 22: Ex vivo analysis of tumoural cell proliferation, vascularisation, and apoptosis. Tumour cell 

proliferation was assessed by Ki67 immunofluorescence staining and blood vessel density by CD31 staining 

on frozen SW1736 (A) and HuH7 (B) tumour sections. A minimum of five visual fields was quantified per 

tumour (mean ± SEM; *p<0.05, **p<0.01). Magnification: 10×. (C) Apoptosis was analysed by TUNEL 

assay on a minimum of seven visual fields per frozen tumour section at 20× magnification (mean ± SEM). 
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In HuH7 tumours, the blood vessel density was significantly decreased in hypothyroid and tetrac-treated 

animals compared to both euthyroid and hyperthyroid animals (Fig. 22B). Tumour cell proliferation, in 

contrast, was not affected by any of the treatment regimens (Fig. 22B). No significant differences in the 

number of apoptotic cells were detected between the different treatment groups in either of the tumour 

models (Fig. 22C). 

5.5 Discussion 

Growing clinical and experimental evidence suggests that thyroid hormones are implicated in cancer 

development and progression, affecting tumour cell proliferation, survival, and angiogenesis [29, 147, 

161, 185]. Besides canonical thyroid hormone signalling via nuclear receptors, thyroid hormone action 

can also be exerted via the plasma membrane receptor integrin αvβ3. The integrin is highly expressed 

on many cancer cells, proliferating endothelial cells, and stromal cells in the tumour milieu [20, 187, 

188]. Hence, it stands to reason that signalling via integrin αvβ3 is linked to cancer-relevant thyroid 

hormone effects. Indeed, previous studies in tumour models expressing integrin αvβ3 have conclusively 

demonstrated that thyroid hormones and tetrac, a T4 derivative that functions as a specific inhibitor of 

thyroid hormone action at integrin αvβ3, modulate tumour growth and angiogenesis. To our knowledge, 

thyroid hormone effects specifically on integrin αvβ3-negative tumours, however, have not been 

examined to date. To evaluate the contribution of integrin αvβ3 expression on tumour cells to thyroid 

hormone effects on tumour growth in vivo, we employed an integrin αvβ3-positive and an integrin αvβ3-

negative murine xenograft tumour model in the current study.  

We here show that only for the integrin-positive tumour cell line SW1736 tumour growth was influenced 

by thyroid hormone status and tetrac. While hyperthyroid mice showed a significantly faster tumour 

growth, both hypothyroid and tetrac-treated euthyroid mice showed a significantly reduced tumour 

growth as compared to euthyroid mice. Accordingly, the study endpoint of tumour sizes exceeding 1500 

mm3 was reached significantly later in hypothyroid and tetrac-treated euthyroid mice, and significantly 

earlier in hyperthyroid mice as compared to euthyroid animals. These results confirm observations made 

in a number of different tumour models in vitro and in vivo [31, 39, 49-54, 132, 146, 154, 189-203] that 

were attributed to effects on tumour cell proliferation [39, 54, 146, 189-199, 201], apoptosis [132, 203], 

and angiogenesis [132, 154, 190, 196, 200, 202, 203]. To assess the mechanisms contributing to the 

differences observed in the current study, we evaluated these same parameters, i.e. tumour cell 

proliferation, apoptosis, and angiogenesis, ex vivo on tumour sections.  

Tumour cell proliferation was influenced by thyroid hormone status only in the integrin-positive 

SW1736 tumours with a significantly decreased number of proliferating cells in tumours of hypothyroid 

and tetrac-treated mice as compared to hyperthyroid mice. Surprisingly, considering this in vivo 

observation, we did not detect effects on tumour cell proliferation in vitro. This may stem from the 

oversimplification of the system under observation in 2D cell culture, where crucial components such 
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as extracellular matrix and stromal cell interactions, as well as concentration gradients of oxygen, 

nutrients, and effector molecules are virtually non-existent [206]. Apoptosis was not significantly 

influenced in either of the models, though in SW1736 tumours a trend with lowest apoptosis rates in 

euthyroid animals and highest in tetrac-treated animals was observed that may have additionally slightly 

contributed to the differences in tumour growth rates.  

Vascularisation, in contrast, was decreased in tumours of the hypothyroid and tetrac-treated groups in 

both the integrin-positive SW1736 and the integrin-negative HuH7 tumour model. This is not surprising, 

as proliferating endothelial cells are known to express high levels of integrin αvβ3 and, indeed, 

endothelial cell proliferation, migration, and vascular tube formation have been shown to be modulated 

by thyroid hormones via integrin αvβ3 [42, 148, 162, 163]. However, though tumour vascularisation 

was influenced in integrin αvβ3-negative HuH7 tumours, this effect was not sufficient to significantly 

influence tumour growth. This observation is in accordance with a previous study, where, analysing 

thyroid hormone effects on tumour angiogenesis in an orthotopic HuH7 mouse model, we found that 

differences in angiogenesis did not affect tumour growth [185]. Taking a closer look at tumour growth 

and survival in the HuH7 model, the hypothyroid and especially the tetrac-treated group seem to initially 

(for the first 10-13 days) slightly lag behind the euthyroid and hyperthyroid groups, though differences 

were not statistically significant. In tetrac-treated animals, where this effect is more pronounced, median 

survival amounted to 22 days, compared to 13, 12, and 15 days in the eu-, hyper-, and hypothyroid 

groups, respectively. Following this initial lag, however, tetrac-treated mice caught up with the other 

groups and no significant differences in overall survival were observed. Yalcin et al. made the 

interesting observation that mouse xenografts of human medullary thyroid cancer show an acute reaction 

to tetrac treatment within the first few days that the authors’ attribute to the anti-angiogenic activity of 

tetrac [203]. This acute phase is followed by a long-term progressive, albeit weaker, inhibiting effect on 

tumour growth thought to be caused by the pro-apoptotic activity of tetrac on the tumour cells 

themselves [203]. As we do see effects on angiogenesis in the HuH7 model, the initial slight delay in 

tumour growth may stem from this acute response. 

The differences in tumour growth and, as a consequence, survival between the integrin αvβ3-positive 

and -negative tumour models along with the fact that in the integrin-positive tumour cell line tetrac 

inhibited tumour cell proliferation in euthyroid mice to the same extent as the induction of 

hypothyroidism, are further compelling evidence for pathway initiation at integrin αvβ3. Obviously, 

stimulation of tumour growth, be it by endogenous or exogenously applied thyroid hormones, is 

undesirable in cancer patients. In this context, a myriad of population-based and clinical studies have 

examined the potential link between thyroid state and the risk of developing cancer and cancer 

progression and survival. Overall, data remain inconclusive, ranging from no detectable effects to both 

higher and lower cancer risk and better and worse prognosis in existing cancers for both hyper- and 

hypothyroidism [47]. Compelling clinical evidence for a tumour-promoting effect of thyroid hormones, 

however, stems from the observation that cancer patients that develop hypothyroidism as an unwanted 
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side effect of tyrosine kinase inhibitor, interleukin-2 or radiation treatment, often show a more 

favourable outcome [47]. Against this background, T4 supplementation as standard hormone 

replacement therapy for hypothyroidism and the application of thyrotropin (TSH)-suppressive doses of 

T4 in differentiated thyroid cancer patients may have to be reconsidered – at least in those patients with 

tumoural integrin αvβ3 expression [47, 184]. The affinity for T4 is far higher than for T3 at integrin 

αvβ3 [41]. Indeed, several experimental studies have observed that T3 in the physiological concentration 

range does not elicit effects on tumour growth, suggesting that T3 supplementation may have an 

advantage over T4 supplementation, at least in a subset of patients [29, 41, 58, 184, 200]. In addition, 

as integrin αvβ3 is rarely expressed at high levels on normal cells and allows targeting of multiple 

cancer-relevant mechanisms from a single receptor site, blocking integrin αvβ3 function without 

affecting physiologic thyroid hormone signalling at nuclear thyroid hormone receptors is a feasible 

alternative.  

The comparison of the effects on tumours derived from αvβ3-positive and αvβ3-negative tumour cells 

demonstrates that integrin expression on the tumour cells themselves is more critical than effects on 

angiogenesis via the endothelium itself. These observations highlight the importance of tumoural 

receptor status and identify a possible explanation for the discrepancies in clinical studies examining 

thyroid hormone effects on cancer. 
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6.1 Abstract 

Anaplastic thyroid carcinoma (ATC), the most aggressive form of thyroid cancer, is unresponsive to 

radioiodide therapy. In the current study, we aimed to extend the diagnostic and therapeutic application 

of radioiodide beyond the treatment of differentiated thyroid cancer by targeting the functional sodium 

iodide symporter (NIS) to ATC. 

We employed nanoparticle vectors (polyplexes) based on linear polyethylenimine (LPEI), shielded by 

polyethylene glycol (PEG) and coupled to the synthetic peptide GE11 as an epidermal growth factor 

receptor (EGFR)-specific ligand in order to target a NIS-expressing plasmid (LPEI-PEG-GE11/NIS) to 

EGFR overexpressing human thyroid carcinoma cell lines. Using ATC xenograft mouse models, we 

evaluated transfection efficiency by 123I scintigraphy and potential for systemic radioiodide therapy after 

systemic polyplex application. 

In vitro iodide uptake studies in SW1736 and Hth74 ATC cells, and, for comparison, in more 

differentiated follicular (FTC-133) and papillary (BCPAP) thyroid carcinoma cells demonstrated high 

transfection efficiency and EGFR-specificity of LPEI-PEG-GE11/NIS that correlated well with EGFR 

expression levels. After systemic polyplex injection, in vivo 123I gamma camera imaging revealed 

significant tumour-specific accumulation of radioiodide in an SW1736 and an Hth74 xenograft mouse 

model. Radioiodide accumulation was found to be higher in SW1736 tumours, reflecting in vitro results, 

EGFR expression levels and results from ex vivo analysis of NIS staining. Administration of 131I in 

LPEI-PEG-GE11/NIS-treated SW1736 xenograft mice resulted in significantly reduced tumour growth 

associated with prolonged survival compared to control animals.  

Our data open the exciting prospect of NIS-mediated radionuclide imaging and therapy of ATC after 

non-viral reintroduction of the NIS gene. The high tumour-specificity after systemic application makes 

our strategy an attractive alternative for the treatment of highly metastatic ATC. 
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6.2 Introduction 

The sodium iodide symporter (NIS) is an intrinsic transmembrane protein that actively transports iodide 

from the blood into thyroid follicular cells as the first step in thyroid hormone synthesis [88]. Functional 

NIS expression provides the molecular basis for the diagnostic and therapeutic application of 

radioiodide, which has successfully been in use since 1946 to treat thyroid cancer patients [62]. This 

approach still represents the most effective form of anticancer radiotherapy in clinical use to date and 

makes differentiated thyroid carcinoma one of the most manageable cancers [61, 65]. Anaplastic 

(undifferentiated) thyroid carcinoma (ATC) cells, in contrast, have lost the ability to concentrate iodide 

and are subsequently unresponsive to radioiodide therapy [207]. ATC is the most lethal form of thyroid 

cancer and one of the most aggressive solid tumours in humans, characterised by rapid progression, 

early dissemination and a high propensity for distant metastasis [207]. Typically, ATC is treated with a 

multimodal therapeutic approach, consisting of surgery, chemotherapy and loco-regional radiotherapy, 

though with limited success [208, 209], clearly demonstrating the need for new therapeutic strategies. 

Cloning of NIS in 1996 was the first step in the development of a novel cytoreductive gene therapy 

strategy based on targeting functional NIS to both thyroidal and extrathyroidal malignancies, thus 

extending an established and highly effective anti-cancer strategy beyond the treatment of differentiated 

thyroid cancer [63, 64, 68]. We and others have shown that selective NIS gene transfer into tumour cells 

allows systemic application of radionuclides resulting in tumour-specific radionuclide concentration that 

can be used both for non-invasive imaging as well as therapy [66, 67, 70-72, 77-79, 82, 83, 87, 99, 205, 

210].  Clinical development of the NIS gene therapy concept is dependent on highly specific and efficient 

tumour targeting at low toxicity and requires systemic application of the therapeutic gene, especially for 

the treatment of disseminated cancer. However, the biostability and delivery efficiency of ‘naked’ 

nucleic acids are very low, limiting their systemic applicability [69]. Cationic polymers, such as linear 

polyethylenimine (LPEI), are a class of non-viral gene delivery vehicles that form sub-micrometre 

complexes with nucleic acids called polyplexes and thus stabilize the DNA by eliminating unwanted 

interactions with blood components and other non-target sites [69]. After intravenous application, 

nanoparticle concentration builds up in the plasma with a long half-life, as nanoparticles escape both 

renal clearance and penetration of normal endothelium due to their size [85]. LPEI-based polyplexes are 

internalised with high efficiency and exhibit intrinsic endosomolytic activity allowing efficient release 

into the cytoplasm followed by nuclear import of the therapeutic gene. Tumour targeting is based on the 

so-called enhanced permeability and retention (EPR) effect that drives passive accumulation of 

polyplexes due to the leaky vasculature prevalent in tumours in conjunction with a tumour’s slow venous 

return and poor lymphatic clearance [69, 84, 85]. Due to inter- and intratumoural heterogeneity, 

nanoparticle-based drugs that rely on the EPR effect alone for efficient delivery have their limitations 

in the clinical setting and efficiency will vary from patient to patient [211]. However, tumour specificity 
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and delivery efficacy can be further increased using ligands that bind to receptors overexpressed on 

tumour cells. To this end, we attached the epidermal growth factor receptor- (EGFR-) specific ligand 

GE11 to LPEI via a polyethylene glycol (PEG) link that facilitates surface shielding of polyplexes and 

thus reduces cytotoxicity [86]. GE11 polyplexes undergo efficient clathrin-mediated endocytosis and 

are quickly transported to the nucleus [212]. In our previous work, LPEI-PEG-GE11 polymers were 

shown to be highly efficient NIS gene delivery vehicles in a high EGFR expressing liver cancer 

xenograft mouse model, as well as an advanced genetically engineered mouse model of pancreatic ductal 

adenocarcinoma, as evidenced by tumour-specific radioiodide accumulation and therapeutic efficacy of 

131I [87, 210].  

As EGFR is typically overexpressed on ATC cells [213], we used the LPEI-PEG-GE11 nanoparticle 

vectors for NIS gene transfer to ATC in the present study to capitalise on the dual diagnostic and 

therapeutic function of NIS. 

6.3 Materials and Methods 

EGFR and NIS immunohistochemistry of human anaplastic tumour tissue 

In total, nine different tumours stored in the database of the Institute of Pathology from anaplastic 

thyroid carcinoma patients, which had been operated on between 2003 and 2012, were examined. 

Immunohistochemical staining of EGFR was performed on a BenchMark XT slide staining system 

(Ventana Medical Systems, Tucson (AZ), USA) using a monoclonal (IgG1) mouse-antibody (clone: 

3C6; Ventana Medical Systems). Evaluation of the staining pattern was performed by visual scoring. 

No staining resulted in a score of 0; little, non-circumferential staining in more than 10% of the tumour 

cells was scored as 1+; weak, but thin circumferential staining in more than 10% of the tumour cells was 

rated with the score 2+; a score of 3+ signifies an intense, thick circumferential staining in more than 

10% of the tumour cells. Scores of 0 were rated as negative, while scores of 1+, 2+ and 3+ indicated a 

weak, moderate and strong positive expression of EGFR, respectively [214]. NIS staining was 

performed as described previously using a mouse monoclonal antibody (Millipore, Damrstadt, 

Germany) diluted 1:500 [215]. 

Cell lines 

Anaplastic thyroid carcinoma cell lines SW1736 and Hth74, follicular thyroid carcinoma cell line FTC-

133 and papillary thyroid carcinoma cell line BCPAP were grown in RPMI (Thermo Fisher Scientific, 

Waltham (MA), USA) supplemented with 10% (v/v) fetal bovine serum (FBS; PAA, Colbe, Germany) 

and 100 U/mL penicillin/100 µg/mL streptomycin (Thermo Fisher Scientific, Waltham (MA), USA). 

Cells were maintained at 37°C and 5% (v/v) CO2 in an incubator with 95% humidity. Cell culture 

medium was replaced every second day and cells were passaged at 70% confluence.  
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Flow cytometry 

For analysis of cell surface EGFR expression by flow cytometry, cells were trypsinised, re-suspended 

in FACS buffer (phosphate-buffered saline supplemented with 10% (v/v) FBS) and diluted to a density 

of 6×105 cells/100 µL. Cells were incubated with a mouse monoclonal anti-human EGFR antibody 

(Dako, Hamburg, Germany) or control antibody (mouse IgG; Dako) for 1.5 hours at 4°C. Cells were 

washed with FACS buffer and incubated with an Alexa488 conjugated polyclonal goat anti-mouse 

antibody (1:400; Dianova, Hamburg, Germany) for 1 hour at 4°C. To discriminate live and dead cells, 

propidium iodide (Sigma-Aldrich, Taufkirchen, Germany) was added before acquisition. Analysis was 

performed on a BD FACSCanto II flow cytometer (BD, Heidelberg, Germany). Cell aggregates and 

debris were excluded from analysis by appropriate gating. 

Polyplex formation 

LPEI-based polymers were condensed with plasmid DNA at specific conjugate to plasmid ratios (c/p) 

in HEPES-buffered glucose as described previously [216] and incubated on ice for 20 minutes before 

use. Final DNA concentrations were 2 μg/mL for in vitro studies and 200 μg/mL for in vivo studies.  

Transient transfection 

For in vitro transfection experiments, cells were grown to 70-80% confluency, washed and incubated 

with LPEI-PEG-GE11/NIS polyplexes at c/p 0.8 in the absence of serum and antibiotics for 4 h. As 

controls, cells were transfected with LPEI-PEG-Cys/NIS, a polyplex without the active EGFR-targeting 

ligand or non-coding LPEI-PEG-GE11/antisenseNIS (NIS sequence back to front). LPEI-PEG-

GE11/NIS-transfected cells treated with the NIS-specific inhibitor perchlorate (1 mM potassium 

perchlorate; Merck, Darmstadt, Germany) served as additional control. After further incubation in full 

growth medium for 24 h, transfection efficiency was measured by iodide uptake activity. 

125I uptake assay 

Iodide uptake was analysed as described previously [169, 170]. 

Establishment of SW1736 and Hth74  xenografts 

Female CD1 nu/nu mice (Charles River, Sulzfeld, Germany) were maintained under pathogen-free 

conditions with free access to standard nude mouse diet containing 2.2 mg/kg iodine (ssniff, Soest, 

Germany) and water ad libitum. Tumours were established by subcutaneous injection of 5×106 tumour 

cells in 100 µL phosphate-buffered saline into the flank region. Tumours were measured twice a week 

and tumour volumes were calculated using the equation: tumour volume = length × width × height × 

0.52. To reduce thyroidal iodide uptake and thus enhance tumoural uptake, animals were orally pre-

treated with 5 mg/L L-thyroxine (Sigma-Aldrich) for 10 days prior to radioiodide (123I, 131I) application 

as described previously [78, 82, 99]. The experimental protocol was approved by the regional 

governmental commission for animals (Regierung von Oberbayern, Munich, Germany).  
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Radioiodide uptake in vivo 

Once subcutaneous tumours reached a diameter of 8-10 mm (approx. 10-12 weeks after tumour cell 

injection), two rounds of LPEI-PEG-GE11/NIS (n=3 per tumour model) were injected intravenously 

(i.v.) via the tail vein 48 h and 24 h prior to intraperitoneal (i.p.) injection of 18.5 MBq (0.5 mCi) 123I 

(GE Healthcare, Braunschweig, Germany). As a control, a subset of mice (n=1 per tumour model) 

received 2 mg/mouse of the competitive NIS inhibitor sodium perchlorate (Sigma-Aldrich) 30 minutes 

before 123I injection. Radioiodide biodistribution was assessed using a gamma camera equipped with a 

UXHR collimator (e.cam; Siemens, Erlangen, Germany). Regions of interest were quantified by 

measuring the percentage of the total injected radioiodide dose per gram (% ID/g) tumour. The retention 

time of radioiodide in the tumour was determined by serial scanning. Dosimetric calculations for 131I 

were done according to the Medical Internal Radiation Dose (MIRD) technique with a RADAR dose 

factor (http://www.doseinfo-radar.com). 

Indirect immunofluorescence assay  

Immunofluorescence staining of frozen tissue sections from LPEI-PEG-GE11/NIS-treated mice was 

performed as described previously [170] using a rabbit polyclonal NIS-specific primary antibody (Acris 

Antibodies, Herford, Germany; 1:1,000) and a Alexa488-conjugated secondary antibody (Jackson 

ImmunoResearch, Suffolk, UK; 1:400). Sections were imaged at 40× magnification on an Axiovert 135 

TV fluorescence microscope equipped with an AxioCam MRm CCD camera and AxioVision Rel. 4.8 

software (Carl Zeiss, Munich, Germany). 

In vivo 131I therapy study 

Therapy trials were initiated in SW1736 xenografts eight weeks after tumour cell injection at tumour 

diameters of approx. 5-10 mm. A cycle consisting of polyplex administration on two consecutive days 

and a single radioiodide application 24 h later was repeated for a total of three times: polyplexes LPEI-

PEG-GE11/NIS or, as controls, LPEI-PEG-GE11/antisenseNIS or NaCl, were administered 

systemically via the tail vein on days 0/1, 3/4 and 7/8 followed by i.p. application of 55.5 MBq (1.5 

mCi) 131I (GE Healthcare), or, as control, saline, on days 2, 5 and 9 (LPEI-PEG-GE11/NIS + 131I, n=10; 

LPEI-PEG-GE11/antisenseNIS + 131I, n=10; LPEI-PEG-GE11/NIS + NaCl, n=15; NaCl + NaCl, n=11). 

Mice were sacrificed when at least one endpoint criterion was reached, i.e. when a tumour volume >1500 

mm3 was reached or when tumours started to exulcerate. 

Statistics 

All in vitro experiments were performed in triplicate. Results are expressed as mean ± S.E.M., mean-

fold change ± S.E.M or, for visual EGFR scoring of human ATC samples and survival plots, percent. 

Statistical significance was tested by two-tailed Student’s t-test, or, for tumour volumes, one-way 

ANOVA, followed by Tukey’s Honestly Significant Difference test. Statistical significance of Kaplan-
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Meier plots was analysed by log-rank test. p-values <0.05 were considered statistically significant 

(*p<0.05; **p<0.01; ***p<0.001). 

6.4 Results 

EGFR and NIS immunoreactivity of human ATC tissue 

In total, nine anaplastic thyroid tumours from different patients were examined and ranked according to 

their EGFR expression. Seven (78%) of the nine examined tumours were categorised as 3+ (Fig. 23A, 

C), while one tumour (11%) was classified as 2+ and one (11%) showed no EGFR-specific 

immunoreactivity (Fig. 23B, C). Immunohistochemical staining for NIS revealed no differences in NIS 

staining between EGFR positive (score 3+) and EGFR negative (score 0) ATC tissue (Fig. 23D, E). 

Graves’ tissue served as positive control for NIS staining (Fig. 23F). 

 

EGFR-targeted NIS gene transfer in vitro 

Two different human anaplastic thyroid cancer cell lines and, for comparison, more differentiated 

follicular and papillary thyroid carcinoma cell lines were examined for their EGFR expression levels by 

flow cytometry. SW1736 cells showed high EGFR expression, while intermediate EGFR levels were 

measured on Hth74, FTC-133 and BCPAP cells (Fig. 24A).  

 

Figure 23. EGFR and NIS expression in human ATC.  Human ATC samples (n=9) were ranked according 

to their EGFR expression. Highly EGFR-positive sections were classified as 3+ (A), while a score of 0 

indicated no EGFR-specific staining (B). (C) Quantification of visual scores. NIS staining of human ATC 

sections revealed no NIS-specific immunoreactivity without differences between highly EGFR positive (D) 

and EGFR negative (E) samples. Graves’ tissue served as positive control for NIS staining (F).  
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Twenty-four hours after transient transfection with LPEI-PEG-GE11/NIS, NIS-specific iodide uptake 

was detected in all four cell lines. SW1736 cells showed a 25-fold, Hth74 and BCPAP cells a 10-fold 

increase and FTC-133 cells a 7-fold increase in 125I uptake compared to background levels measured in 

untransfected cells. The NIS-specific inhibitor perchlorate completely blocked iodide uptake in all cell 

lines. After transfection with unspecific LPEI-PEG-Cys/NIS, iodide uptake was significantly reduced 

compared to EGFR-targeted polyplexes LPEI-PEG-GE11/NIS. Cells transfected with LPEI-PEG-

GE11/antisenseNIS showed no gain in uptake compared to untransfected cells (Fig. 24B). The amount 

of iodide uptake correlated well with EGFR levels measured by flow cytometry. Comparing the two 

ATC cell lines to each other, SW1736 cells showed a significantly higher iodide uptake than Hth74 cells 

(Fig. 24B). 

EGFR- targeted NIS gene transfer in vivo  

24 hours after two rounds of systemic NIS gene transfer via i.v. application of LPEI-PEG-GE11/NIS, 

123I uptake was evaluated on a gamma camera. Serial scanning revealed maximum tumoural iodide 

accumulation one hour post 123I injection based on NIS-mediated iodide influx from the blood 

circulation. Over time, iodide content in the circulation decreased due to renal clearance. In the tumour, 

the radioiodide recirculated to a certain extent, as iodide lost by one tumour cell was taken up by 

 

Figure 24. EGFR-targeted NIS gene transfer in vitro. (A) Human ATC cell lines SW1736 and Hth74, 

follicular thyroid carcinoma cell line FTC-133 and papillary thyroid carcinoma cell line BCPAP showed 

high (SW1736) to intermediate (Hth74, FTC-133, BCPAP) EGFR expression levels as determined by flow 

cytometry. (B) In vitro transfection with LPEI-PEG-GE11/NIS showed a significant increase in perchlorate-

sensitive 125I accumulation compared to transfection with untargeted LPEI-PEG-Cys/NIS (mean ± S.E.M.; 

n=3; *p<0.05, **p<0.01). No iodide uptake above the background levels observed for untransfected cells 

was detected after transfection with non-coding LPEI-PEG-GE11/antisenseNIS. 
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neighbouring NIS-transduced cells. Due to lack of iodide organification, however, tumoural iodide 

content slowly decreased over time, as 123I was completely cleared from the circulation (Fig. 25A-C).  

 

A maximum 123I uptake of 5.6-7.8% ID/g was observed for SW1736 tumours, whereas Hth74 tumours 

accumulated 4.5-5.8% ID/g (Fig. 25A-C). For 131I, this translates to a tumour-absorbed dose of 35.1 

mGy/MBq/g tumour with an effective half-life of 3.1 h in the SW1736 model and 25.0 mGy/MBq/g 

tumour with an effective half-life of 2.7 h in the Hth74 model. Pre-treatment of LPEI-PEG-GE11/NIS 

transfected xenografts with perchlorate inhibited tumoural accumulation of radioiodide in both models 

 

Figure 25.  In vivo imaging of NIS-mediated iodide uptake. 123I scintigraphy revealed tumour-specific 

radioiodide uptake in SW1736 (A) and Hth74 (B) xenografts after injection of LPEI-PEG-GE11/NIS that 

was perchlorate sensitive. SG: salivary glands. (C) Radionuclide retention time in tumours was determined 

by serial scanning over 12 h (mean ± S.E.M.; n=3 each; *p<0.05). 
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(Fig. 25A, B). Physiological iodide uptake in the thyroid, salivary glands and stomach was also blocked 

upon perchlorate treatment. Radioiodide accumulation in the bladder is due to renal elimination of 

radioiodide (Fig. 25A, B). 

 

After gamma camera imaging, mice were sacrificed and dissected. In both SW1736 and Hth74 tumours 

from LPEI-PEG-GE11-treated mice, immunofluorescence staining revealed areas of NIS-specific 

staining, and the amount of NIS-positive cells in SW1736-derived tumours seemed higher than in Hth74 

tumours (Fig. 26). SW1736 tumours transfected with LPEI-PEG-GE11/antisenseNIS, in contrast, 

showed no NIS-specific immunoreactivity (Fig. 26). 

131I therapy after in vivo NIS gene transfer 

Mice harbouring SW1736 xenograft tumours were treated with three cycles of LPEI-PEG-GE11/NIS 

followed by 131I 24 h later (Fig. 27A). Mice injected with LPEI-PEG-GE11/NIS and saline, LPEI-PEG-

GE11/antisense-NIS and 131I or saline only served as controls and exhibited a continuous, exponential 

tumour growth (Fig. 27B). Mice injected with LPEI-PEG-GE11/NIS and 131I, in contrast, showed a 

significant delay in tumour growth which resulted in prolonged survival (Fig. 27B, C). Thirty-five days 

after therapy start the last control mouse was sacrificed, while 60% of mice injected with LPEI-PEG-

GE11/NIS and 131I were still alive (Fig. 27C). Median survival times were 42 days for the therapy group, 

28 days for both LPEI-PEG-GE11/antisenseNIS + 131I- and NaCl + NaCl-treated animals, and 18 days 

for the LPEI-PEG-GE11/NIS + NaCl group. 

 

Figure 26.  Ex vivo NIS staining. Immunofluorescence staining verified more robust NIS gene transfer to 

SW1736 tumours as compared to Hth74 tumours. No NIS-specific staining was detected after transfection 

of non-coding antisenseNIS. 40× magnification. 
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Figure 27. Therapeutic application of 131I after NIS gene transfer in vivo. Mice harbouring SW1736 

xenograft tumours were treated with three cycles of dual i.v. injections of polyplexes followed by i.p. 

injection of 55.5 MBq 131I (A). (B) Mice treated with LPEI-PEG-GE11/NIS + 131I (mean ± S.E.M; n=10) 

showed a stabilisation in tumour volumes compared to control groups LPEI-PEG-GE11/antisenseNIS + 131I 

(mean ± S.E.M; n=10; *p<0.05), LPEI-PEG-GE11/NIS + NaCl (n=15; mean ± S.E.M.; **p<0.01) and NaCl 

+ NaCl (n=11; mean ± S.E.M.; **p<0.01). (C) This led to an increased overall and median survival in the 

therapy group compared to control groups LPEI-PEG-GE11/antisenseNIS + 131I (*p<0.05), LPEI-PEG-

GE11/NIS + NaCl (**p<0.01) and NaCl + NaCl (*p<0.05). 
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6.5 Discussion 

Besides its key role in healthy thyroid physiology, NIS-mediated iodide uptake provides the molecular 

basis for diagnostic imaging and targeted radionuclide therapy for the treatment of differentiated thyroid 

carcinomas. This concept, however, has proven ineffective in poorly differentiated and undifferentiated 

forms of thyroid cancer that lose the ability to accumulate iodide due to reduced or absent expression of 

functional NIS [217]. A very elegant and obvious therapy approach is to reinstate NIS expression and 

thus make it susceptible to radioiodide therapy either by redifferentiation aimed at recovery of 

endogenous NIS expression or by transfection with exogenous NIS.  

Substances for the induction of redifferentiation in dedifferentiated thyroid cancer that have been tested 

to date include retinoids, thiazolidinediones, such as rosiglitazone, and regulators of epigenetic 

modifications, i.e. histone deacetylase (HDAC) inhibitors and DNA methyltransferase inhibitors [218-

223]. Clinical success rates, however, have remained unexpectedly low for all of these compounds [222, 

224]. More recently, the MAPK kinase inhibitor selumetinib and the selective BRAF inhibitor 

dabrafenib were shown to induce clinically relevant levels of radioiodide uptake in patients with 

radioiodine-refractory differentiated thyroid cancer [225, 226].  

The alternative strategy of exogenously introducing NIS was made available by the cloning of the NIS 

gene in 1996 [63, 64].  Early work in tumourigenic Fisher rat thyroid follicular cells transfected stably 

with rat NIS demonstrated iodide uptake capacity in vitro and in vivo [227]. Similarly, after transfection 

of human ATC cells with NIS and subsequent injection into nude mice, tumours could be imaged by 

scintigraphy and were susceptible to radionuclide therapy [228-230]. Intratumoural injection of NIS 

using adenoviral vectors in a medullary thyroid carcinoma xenograft mouse model and measles virus 

vectors in an ATC xenograft mouse model restored radioiodide uptake as shown by gamma camera or 

SPECT imaging, respectively, and therapeutic efficacy of 131I [215, 231]. For the development of this 

concept towards clinical application, especially in metastatic disease, however, systemic application of 

NIS followed by safe, efficient and tumour-specific delivery are essential.  

Our previous work has focused on systemic delivery of the NIS gene to extrathyroidal tumours using 

viral vectors, mesenchymal stem cells and synthetic polymers as gene transfer vehicles [66, 70-72, 77-

79, 82, 83, 87, 99, 205, 210]. Based on the high efficiency of EGFR-targeted LPEI-PEG-GE11 polymers 

for tumour-specific delivery of functional NIS to a liver cancer xenograft mouse model, as well as an 

advanced genetically engineered mouse model of pancreatic ductal adenocarcinoma in our earlier 

studies and the high expression levels of EGFR in human ATC tissue samples, we chose these synthetic 

polymers as delivery vehicles for the NIS gene to ATC. High EGFR expression on ATC was confirmed 

by FACS analysis of human ATC cell lines SW1736 and Hth74. Both cell lines express wild type EGFR 

protein, though Hth74 harbour a heterozygous silent polymorphism in the EGFR gene [232, 233]. 

Transient in vitro transfection of these cells with LPEI-PEG-GE11/NIS led to significant perchlorate-

sensitive and therefore NIS-mediated radioiodide uptake. In comparison, iodide uptake was significantly 
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lower after transfection with non-targeted LPEI-PEG-Cys/NIS, demonstrating improved transfection 

efficiency using the peptide ligand GE11. NIS-dependency was further confirmed by the absence of 

iodide uptake activity using non-coding antisenseNIS DNA. The higher EGFR levels detected on 

SW1736 cells by FACS were reflected in higher iodide uptake activity as compared to Hth74 cells. 

Similar results were obtained in more differentiated follicular and papillary thyroid carcinoma cell lines, 

demonstrating the feasibility of this strategy for NIS gene transfer in EGFR-positive radioiodine 

refractory thyroid carcinoma in general.  

Transferring these results to systemic vector application in vivo, intravenous administration of LPEI-

PEG-GE11/NIS resulted in significant perchlorate-sensitive, tumour-specific iodide uptake in xenograft 

mouse models derived from both ATC cell lines, although, again, SW1736 showed higher 123I uptake, 

as determined by gamma camera imaging and confirmed by immunofluorescence staining. The 

biological half-life measured in ATC tumours was similar to what we have observed in previous studies 

in other tumour models, which is clearly long enough for a significant therapy effect [71, 72, 205, 210]. 

The radiation dose that reaches the tumour depends on the rate of iodide uptake, its retention time in the 

tumour cell, i.e. iodide efflux, iodide recirculation within the tumour and iodide organification [234]. 

Due to loss of thyroid peroxidase (TPO) and thyroglobulin expression in ATC as a result of 

dedifferentiation, we did not see any iodide organification in neither of the ATC xenografts. However, 

the iodide retention time is longer than one would expect without organification, as the iodide is 

recirculated within the tumour. A possible approach to enhance iodide retention time and the delivered 

dose in non-organifying tissues, is co-transfection of NIS and TPO [234]. In this context, co-expression 

of both genes decreased iodide efflux in non-small cell lung cancer cell lines and enhanced tumour cell 

apoptosis as compared to single transfection with NIS [235]. In contrast, after co-infection of human 

cervix carcinoma cells with two adenoviral vectors encoding NIS and TPO, no increase in iodide 

retention time was detected, though active TPO was produced and a significant increase in organification 

was observed [236]. To date, there is no clear evidence that TPO-mediated organification does indeed 

enhance the efficacy of NIS-based gene therapy. No clear data exist to prove that organification is a 

crucial prerequisite for successful 131I therapy. On the contrary, our results in the current study as well 

as in earlier studies in various non-organifying tumour entities, demonstrate that iodide organification 

is not required for accumulation of therapeutically effective radioiodide doses.  

The differences in both in vitro and in vivo data between the two ATC cell lines used here are presumably 

due to differences in EGFR expression levels. Tumour heterogeneity is a typical problem seen in clinical 

practice – indeed, of the nine patient samples analysed for EGFR receptor expression in this study, one 

tumour showed slightly lower EGFR receptor expression, while one showed no expression at all. For 

this reason we are constantly broadening our arsenal of targeting strategies, so that different targeting 

ligands can be applied depending on receptor status. In this context, a further interesting candidate for 

ATC targeting is transferrin, as the transferrin receptor is highly expressed on ATC [237-239]. 
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Due to the more promising results in SW1736, the subsequent evaluation of the therapeutic effectiveness 

of 131I after LPEI-PEG-GE11-mediated systemic NIS gene delivery was performed in this model only. 

After three cycles of two applications of LPEI-PEG-GE11/NIS followed by a application of 131I in 

SW1736 xenograft tumour carrying mice, we were able to demonstrate a significant delay in tumour 

growth in therapy animals compared to control groups, which was accompanied by a significant increase 

in survival time.  

Taken together, our data clearly show the great potential of EGFR-targeted synthetic polymers to target 

NIS to ATC. Systemic application is of particular importance in ATC, as it rapidly metastasises to distant 

sites and, at the time of diagnosis, metastases, predominantly in the lung, liver, bone and brain are 

already present in 50 % of patients [209]. To our knowledge, this is the first study demonstrating 

successful reinstatement of NIS expression and therefore susceptibility to radioiodide uptake in ATC 

after systemic application of the therapeutic gene, an important prerequisite for clinical development. 
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7.1 Abstract 

The theranostic sodium iodide symporter (NIS) gene allows detailed molecular imaging of transgene 

expression and application of therapeutic radionuclides. As a crucial step towards clinical application, 

we investigated tumour specificity and transfection efficiency of epidermal growth factor receptor 

(EGFR)-targeted polyplexes as systemic NIS gene delivery vehicles in an advanced genetically 

engineered mouse model of pancreatic ductal adenocarcinoma (PDAC) that closely reflects human 

disease. PDAC was induced in mice by pancreas-specific activation of constitutively active KrasG12D 

and deletion of Trp53. We used tumour-targeted polyplexes (LPEI-PEG-GE11/NIS) based on linear 

polyethylenimine, shielded by polyethylene glycol and coupled with the EGFR-specific peptide ligand 

GE11, to target a NIS-expressing plasmid to high EGFR-expressing PDAC. In vitro iodide uptake 

studies in cell explants from murine EGFR-positive and EGFR-ablated PDAC lesions demonstrated 

high transfection efficiency and EGFR-specificity of LPEI-PEG-GE11/NIS. In vivo 123I gamma camera 

imaging and three-dimensional high-resolution 124I PET showed significant tumour-specific 

accumulation of radioiodide after systemic LPEI-PEG-GE11/NIS injection. Administration of 131I in 

LPEI-PEG-GE11/NIS-treated mice resulted in significantly reduced tumour growth compared to 

controls as determined by magnetic resonance imaging, though survival was not significantly prolonged. 

This study opens the exciting prospect of NIS-mediated radionuclide imaging and therapy of PDAC 

after systemic non-viral NIS gene delivery.   
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7.2 Introduction 

Pancreatic ductal adenocarcinoma (PDAC) is currently the fourth leading cause of cancer-related 

mortality in developed countries despite its comparably low incidence of less than 3 %, clearly 

demonstrating the lack of effective therapeutic strategies. The five-year survival rate is around 7 % for 

all stages of the disease and drops to below 2 % and a median survival of less than a year for patients 

with metastatic disease, mostly due to late diagnosis at the stage of inoperability and the unusually high 

resistance of PDAC to conventional radiation- and chemotherapy [240, 241]. Despite intensive scientific 

and industrial efforts, so far no significant extension of survival could be achieved by any of the 

numerous therapy approaches tested [242].  

The genetic and morphological changes in the carcinogenesis of PDAC are well known and include the 

initiation and progression of premalignant lesions to invasive and metastatic pancreatic cancer [242-

245]. The genetic hallmark of PDAC development is an activating mutation in the KRAS oncogene, 

followed by other genetic changes, commonly including inactivation of the tumour suppressors TP53, 

CDKN2A (P16INK4A) and SMAD4, and activation of several growth factor receptors, such as the 

epidermal growth factor receptor (EGFR) [242, 246].  

Against this background, several complex genetically modified mouse models of PDAC that mirror the 

typical changes found in human patients, have been generated in recent years [242, 243, 247-249]. One 

such model is the Ptf1a+/Cre;Kras+/LSL-G12D;Trp53loxP/loxP (Kras;p53) mouse. Here, PDAC is induced by 

pancreas-specific activation of constitutively active KrasG12D in combination with conditional deletion 

of Trp53 [247]. To restrict these genetic modifications to the pancreas, mice with the mutated alleles are 

interbred with animals that express the Cre recombinase driven by the pancreas-specific promoter for 

Ptf1a, a subunit of pancreas transcription factor 1 (Ptf1) that is required to commit cells to a pancreatic 

fate during embryonic development [243, 250]. Thus, the activation of the oncogenic KrasG12D via 

excision of a transcriptionally inhibitory LSL (loxP-STOP-loxP) construct and deletion of the floxed 

tumour suppressor Trp53 occur in the pancreas only, leading to ductal lesions with complete penetrance 

[243, 251]. The development of endogenous mouse models away from the usual transplant models 

represents a significant step in the evolution of preclinical models [252]. The morphological and 

molecular composition of endogenous tumours far better reflects human disease, making them highly 

suitable to predict the clinical effectiveness of a specific treatment strategy. 

The sodium iodide symporter (NIS; SLC5A5) mediates the uptake of iodide into thyroid follicular cells 

allowing both diagnostic and therapeutic application of radioiodide in thyroid cancer patients [253, 254]. 

In our previous work, we have extensively investigated the dual reporter/therapy capacity of NIS in 

various non-thyroidal tumours and have proven the feasibility of extrathyroidal radioiodide therapy after 

tumour-selective NIS gene transfer [66, 70, 71, 77-79, 82, 83, 87, 99, 205]. Transfection of cancer cells 

with the NIS gene allows non-invasive monitoring of functional NIS expression and in vivo 
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biodistribution before the application of a therapeutic dose of radioiodide. One of the major hurdles of 

efficient and safe application of the NIS gene therapy concept in the clinical setting is optimal tumour-

specific targeting in the presence of low toxicity and high transfection efficiency of gene delivery 

vectors, with the ultimate goal of systemic vector application.  

In a previous study, we used synthetic polyplexes based on pseudodentritic oligoamines with high 

intrinsic tumour affinity for NIS gene therapy in a syngeneic neuroblastoma mouse model as well as a 

subcutaneous human hepatocellular carcinoma mouse model [82, 83]. After systemic NIS gene transfer, 

the tumour-selective accumulation of radioiodide was sufficient for a significant therapeutic effect. In 

addition to an intrinsic tumour affinity due to the so-called enhanced permeability and retention (EPR) 

effect based on ‘leaky’ tumour vasculature, the tumour targeting of polyplexes can be further optimised 

by the attachment of tumour-specific ligands. To this end, in a subsequent study, we used LPEI-PEG-

GE11 polymers composed of linear polyethylenimine (LPEI), shielded by polyethylene glycol (PEG) 

and coupled to the synthetic peptide GE11 as an EGFR-specific ligand for NIS gene delivery [87]. After 

systemic application of these polymers condensed with NIS DNA, tumour-specific radioiodide 

accumulation demonstrated effective and EGFR-specific tumour targeting in a high EGFR-expressing 

xenograft mouse model of hepatocellular carcinoma. After the injection of a therapeutic dose of 131I, 

tumoural iodide uptake was sufficiently high for a significant delay of tumour growth and prolongation 

of animal survival [87].  

Based on our previous work and the well-known characteristic upregulation of EGFR in PDAC, we 

investigated the potential of EGFR-targeted polyplexes for systemic NIS gene therapy in an advanced 

endogenous mouse model of PDAC as a next step towards clinical application.  

7.3 Materials and Methods 

Establishment of genetically modified mice 

Establishment of the Kras;p53 (Ptf1a+/Cre;Kras+/LSL-G12D;Trp53lox/loxP) and Kras;p53;Egfr 

(Ptf1a+/Cre;Kras+/LSL-G12D;Trp53loxP/loxP;Egfrfl/fl) strains has been described previously [243, 250, 251, 

255, 256]. Mouse strains were maintained on a mixed C57BL/6;129/Sv background. Animals were kept 

under specific pathogen-free conditions with access to mouse chow and water ad libitum. Both male and 

female mice at 5-7.5 weeks of age were used for experiments. The experimental protocol was approved 

by the regional governmental commission for animals (Regierung von Oberbayern, Munich, Germany).  

Preparation and culture of PDAC cell explants 

Cell explants from primary PDAC of Kras;p53 and Kras;p53;Egfr mice were isolated as described 

previously [257] and cultured in DMEM high glucose medium (Invitrogen, Karlsruhe, Germany) 

supplemented with 10% fetal bovine serum (v/v; PAA, Colbe, Germany), 100 U/mL penicillin/100 

µg/mL streptomycin (Invitrogen) and 1% non-essential amino acids (v/v; Invitrogen). Cells were 
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maintained at 37°C and 5% CO2 in an incubator with 95% humidity. Cell culture medium was replaced 

every second day and explants were passaged at 85% confluency.  

Plasmid and polymer synthesis and polyplex formation 

The human NIS-encoding plasmid and LPEI-based conjugates were cloned and synthesised, 

respectively, as described previously [87]. Plasmid DNA was condensed with polymers at indicated 

conjugate to plasmid (c/p) ratios (w/w) in HEPES-buffered glucose (HBG: 20 mmol/L HEPES, 5% 

glucose (w/v), pH 7.4) as described previously [216] and incubated at room temperature for 20 min 

before use. Final DNA concentrations were 2 μg/mL for in vitro studies and 200 μg/mL for in vivo 

studies.  

Transient transfection 

For in vitro transfection experiments, PDAC cell explants were grown to 60-80% confluency. Explants 

were incubated for 4 hours with polyplexes in the absence of serum and antibiotics followed by 

incubation with complete growth medium for 24 h. Either LPEI-PEG-GE11/NIS (EGFR-targeting of 

NIS due to the EGFR-specific ligand GE11), LPEI-PEG-Cys/NIS (no active targeting of NIS to EGFR, 

as the ligand GE11 is replaced by a cysteine residue), or LPEI-PEG-GE11 alone (polymer without NIS 

DNA) were added in c/p ratios as indicated. Transfection efficiency was evaluated by measurement of 

iodide uptake activity as described below. Transfections were done in triplicate for each separate 

explant.  

In vitro 125I uptake assay 

Following transfections, iodide uptake of PDAC cell explants was determined at steady-state conditions 

as described previously [169, 258]. Results were normalised to cell viability that was measured using 

the commercially available MTS-assay (Promega, Mannheim, Germany) as described previously [170]. 

Radioiodide uptake after systemic NIS gene transfer in vivo 

For the proof-of-principle of NIS-mediated tumour-specific radioiodide accumulation in vivo, 

polyplexes (LPEI-PEG-GE11/NIS, c/p 0.8) were applied via the tail vein (i.v.) at a DNA dose of 2.5 

mg/kg (50 μg DNA in 250 μL HBG). Mice received 18.5 MBq 123I (GE Healthcare, Braunschweig, 

Germany) intraperitoneally (i.p.) 24 h (n=9) or 48 h (n=7) after polyplex injection and radioiodide 

distribution was monitored by serial imaging on a gamma camera (Forte, ADAC Laboratories, Milpitas, 

CA, USA) equipped with a VXHR (ultra-high resolution) collimator as described previously [170]. 

Regions of interest were quantified and expressed as a fraction of the total amount of applied 

radionuclide per gram tumour tissue. The retention time within the tumour was determined by serial 

scanning after radioiodide injection. A subset of mice (n=2 for each time point) was pretreated i.p. with 

2 mg of the competitive NIS inhibitor sodium perchlorate (NaClO4; Sigma-Aldrich, Taufkirchen, 

Germany) 30 min before 123I administration. Dosimetric calculations for 131I were made using the 
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Medical Internal Radiation Dose (MIRD) technique and a RADAR dose factor (http://www.doseinfo-

radar.com).In order to achieve better discrimination between uptake in the tumour and the adjacent 

stomach, 24 or 48 h after i.v. injection of polyplexes (LPEI-PEG-GE11/NIS, each time point n=5; LPEI-

PEG-GE11/antisenseNIS, each time point n=1) mice received 10 MBq 124I (Perkin Elmer, Waltham, 

MA, USA) i.p. and radioiodide biodistribution was monitored by static acquisition 3 h post injection 

using a micro PET system (Inveon, Siemens Preclinical Solutions, Erlangen, Germany). Mean tumoural 

radioiodide uptake was calculated in MBq/mL by manually placing 3D regions of interest in the tumour. 

Analysis of NIS mRNA expression by quantitative real-time PCR (qPCR) 

Total RNA was isolated from PDAC or non-target tissues (liver, lung) using the RNeasy Mini Kit 

(Qiagen, Hilden, Germany) according to the manufacturer’s recommendations. Single-stranded oligo 

(dT)-primer cDNA was generated using Super Script III Reverse Transcriptase (Invitrogen). qPCR was 

performed with the cDNA from 1 μg RNA using SYBR Green PCR master mix (Qiagen) in a Rotor 

Gene 6000 (Corbett Research, Morthlake, New South Wales, Australia). The following primers were 

used: NIS, forward 5′-ACACCTTCTGGACCTTCGTG-3′, reverse 5′-

GTCGCAGTCGGTGTAGAACA-3′ and GAPDH, forward 5′-GAGAAGGCTGGGGCTCATTT-3′, 

reverse 5′-CAGTGGGGACACGGAAGG-3′. Relative expression levels were calculated using the 

comparative ΔΔCt method and internal GAPDH for normalization. 

Analysis of tissue sections 

Immunohistochemical and immunofluorescence staining of NIS was performed using a mouse 

monoclonal antibody directed against human NIS (kindly provided by John C Morris, Mayo Clinic, 

Rochester, MN, USA) as described previously [66, 215].  

Radioiodide therapy 

Starting when mice were around 30 d of age, tumour sizes were assessed weekly by high resolution 

magnetic resonance imaging (MRI) on a 3T clinical scanner (Philips Ingenia 3.0T; Royal Philips 

Electronics, Eindhoven, The Netherlands). Once tumours reached the inclusion size of 200-450 mm3, 

therapy trials were started. To this end, 48 h after systemic administration of LPEI-PEG-GE11/NIS or, 

as control, LPEI-PEG-GE11/antisenseNIS, a therapeutic dose of 55.5 MBq 131I (GE Healthcare) was 

administered i.p. (LPEI-PEG-GE11/NIS + 131I n=6; LPEI-PEG-GE11/antisenseNIS + 131I n=3). A 

second control group received saline only (n=4). The cycle consisting of systemic NIS gene transfer 

followed by radioiodide was repeated for a total of three times on days 0/2, 4/6 and 7/9. Mice from all 

groups were sacrificed when at least one endpoint criterion was reached. Endpoint criteria included a 

tumour volume >1000 mm3, a body weight loss >15%, as well as a number of general physical, clinical 

and behavioural criteria. Body condition was monitored by independent animal care personnel blind to 

treatment and hypothesis. 
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Statistics 

Results are reported as mean ± S.E.M., mean-fold change ± S.E.M. or, for survival plots, percent. 

Statistical significance was generally tested by two-tailed Student’s t-test except for the therapy study. 

For tumour volumes, one-way ANOVA was performed, followed by Tukey’s Honestly Significant 

Difference test. Statistical significance of Kaplan-Meier plots was analysed by log-rank test. p-values 

<0.05 were considered statistically significant (*p<0.05; **p<0.01; ***p<0.001; n/s not significant). 

7.4 Results 

Iodide uptake studies in vitro 

In order to optimise transfection conditions for LPEI-PEG-GE11 polymers condensed with the NIS 

plasmid (LPEI-PEG-GE11/NIS) in high EGFR-expressing PDAC cell explants derived from Kras;p53 

mice (Fig. 28A), radioiodide uptake activity was evaluated 24 h after polyplex application (data not 

shown). A c/p ratio of 0.8 resulted in highest transfection efficiency at lowest cytotoxicity. Therefore, 

this c/p ratio was used in all subsequent experiments. Twenty-four hours after transfection with LPEI-

PEG-GE11/NIS, cell explants from three different mice showed a 22-26-fold increase in 125I 

accumulation as compared to cells incubated with the empty control vector LPEI-PEG-GE11 (Fig. 28B). 

Transfection with untargeted LPEI-PEG-Cys/NIS (targeting ligand GE11 replaced by a cysteine 

residue) resulted in significantly lower iodide uptake activity compared to EGFR-targeted LPEI-PEG-

GE11/NIS (Fig. 28B). In both cases, iodide uptake was blocked upon additional treatment with the NIS-

specific inhibitor perchlorate. 

 

 

Figure 28. Iodide uptake in PDAC cell explants in vitro.  Kras;p53 mice develop PDAC that occupies a 

large portion of the abdominal cavity below the stomach (A). (B) PDAC cell explants from three separate 

mice (three technical replicates per mouse) transfected in vitro with LPEI-PEG-GE11/NIS showed a 

significant increase in perchlorate- (ClO4
--) sensitive 125I accumulation compared to transfection with LPEI-

PEG-Cys/NIS (mean ± S.E.M.; *p<0.05; **p<0.01; ***p<0.001). No iodide uptake above background levels 

was observed in cells transfected with LPEI-PEG-GE11 alone. (C) Transfection of EGFR-ablated PDAC 

cell explants from two mice (three technical replicates per mouse) with LPEI-PEG-GE11/NIS and LPEI-

PEG-Cys/NIS showed no significant differences between transfection with targeted or untargeted 

polyplexes, demonstrating EGFR-specificity of the targeting ligand GE11 (mean ± S.E.M.). 
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To further verify EGFR-specificity of the targeting ligand GE11, we performed additional iodide uptake 

studies in EGFR-ablated PDAC cell explants from Kras;p53;Egfr mice. No significant difference 

between transfection with targeted LPEI-PEG-GE11/NIS or untargeted LPEI-PEG-Cys/NIS polyplexes 

was observed (Fig. 28C). Polyplex-mediated NIS gene transfer did not affect cell viability for any of the 

treatment conditions compared to untreated cells as measured by MTS assay (data not shown).  

123I scintigraphy and 124I PET imaging of EGFR-targeted NIS gene delivery 

Functional NIS expression in mice with high EGFR-expressing PDAC was imaged by whole body 123I 

gamma camera and 124I PET imaging. Polyplexes were administered i.v. either 24 or 48 h before 

injection of the respective radionuclide for imaging. 

 

In vivo 123I gamma camera imaging revealed high levels of NIS-mediated radionuclide accumulation in 

pancreatic tumours both at 24 and 48 h after systemic injection of EGFR-targeted LPEI-PEG-GE11/NIS 

(Fig. 29A, B). Tumours accumulated 10.8 ± 0.7 % of the injected dose per gram (ID/g) with an average 

 

Figure 29. In vivo imaging of NIS-mediated iodide uptake. 123I scintigraphy revealed pancreatic tumoural 

radioiodide uptake 24 h (A) and 48 h (B) after injection of mice with LPEI-PEG-GE11/NIS that was not seen 

after injection with non-coding LPEI-PEG-GE11/antisenseNIS (C). Iodide uptake was perchlorate-sensitive 

(D) and therefore indeed NIS-mediated. (E) Radionuclide retention time in tumours was determined by serial 

scanning over 10 h (mean ± S.E.M.; 24 h: n=9, 48 h: n=7). 124I PET-imaging confirmed findings of 

scintigraphy and allowed better differentiation between tumoural and stomach radioiodide uptake (F, H). 

After injection of the control vector LPEI-PEG-GE11/antisenseNIS (G, I), no pancreatic iodide uptake 

activity above background levels could be detected. Significantly higher radioiodide accumulation 48 h after 

gene transfer as compared to 24 h was confirmed by PET (mean ± S.E.M.; n=5 each; *p<0.05) (J). SG: 

salivary glands. 
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biological half-life of 4 h at 24 h and 14.2 ± 1.4 % ID/g with an average biological half-life of 4.5 h at 

48 h (Fig. 29E). For 131I, a tumour-absorbed dose of 74.7 mGy/MBq/g tumour with an effective half-

life of 3.2 h (24 h after polyplex administration) and 96.5 mGy/MBq/g tumour, effective half-life 4.5 h 

(48 h after polyplex administration), was calculated. In contrast, injection of non-coding control 

polyplexes LPEI-PEG-GE11/antisenseNIS (NIS sequence back to front) resulted in no significant 

tumoural radioiodide accumulation (Fig. 29C). In addition to 123I uptake in the tumour, radioiodide 

accumulation was also observed in the stomach, the thyroid and the salivary glands, as they 

physiologically express NIS, as well as in the urinary bladder due to renal radionuclide elimination (Fig. 

29A-C). To further confirm that tumoural iodide uptake was indeed NIS-mediated, LPEI-PEG-

GE11/NIS-injected mice were additionally treated with the competitive NIS-inhibitor perchlorate 30 

min before 123I administration, which completely blocked polyplex-mediated tumoural iodide 

accumulation in addition to physiological uptake in the stomach, the thyroid gland and the salivary 

glands (Fig. 29D). 

To better distinguish tumoural uptake from iodide accumulation in the stomach, we additionally 

employed three-dimensional high-resolution 124I PET to image radioiodide biodistribution. Again, 

systemic injection of LPEI-PEG-GE11/NIS resulted in strong transfection of tumour tissue at both time 

points (Fig. 29F, H), an effect that was not seen in mice treated with LPEI-PEG-GE11/antisenseNIS 

(Fig. 29G, I). Quantification of tumoural 124I uptake again revealed significantly higher radioiodide 

accumulation 48 h after i.v. injection of LPEI-PEG-GE11/NIS as compared to 24 h after NIS gene 

transfer (Fig. 29J). 

Ex vivo analysis of NIS expression in PDAC 

48 h after polyplex administration, mice were sacrificed and dissected. Tumours and non-target organs 

(liver, lung) were analysed for NIS mRNA expression by qPCR. A 20-fold increase in NIS mRNA 

expression was detected in PDAC lesions from mice injected with LPEI-PEG-GE11/NIS as compared 

to untreated tumours (Fig. 30A). In contrast, no significant NIS mRNA expression above background 

levels was observed in non-target organs and tumours of mice treated with the control vector LPEI-

PEG-GE11/antisenseNIS (Fig. 30A). In tumours from LPEI-PEG-GE11/NIS-treated mice, areas of 

NIS-specific immunoreactivity were observed surrounding ductal lesions by immunohistochemical and 

immunofluorescence staining using a human NIS-specific antibody (Fig. 30B). NIS staining was found 

to be both cell membrane-associated and cytoplasmic. In contrast, tumours from mice treated with the 

control vector LPEI-PEG-GE11/antisenseNIS showed no NIS-specific immunoreactivity (Fig. 30B).  
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NIS-mediated 131I therapy of PDAC 

PDAC-bearing mice were treated with three cycles of LPEI-PEG-GE11/NIS followed by 131I 48 h later 

– the optimal time point for radionuclide injection based on the imaging studies. Controls were injected 

with non-coding LPEI-PEG-GE11/antisenseNIS and 131I or saline only. Tumour progression was 

monitored by MRI. Mice in the therapy group showed a significant stabilization of tumour growth and, 

in two cases, even a reduction in tumour volume (Fig. 31A, D), while aggressive tumour growth was 

observed in both control groups (Fig. 31B-D). This led to an enhanced survival in the therapy group that 

lived up to 28 days post therapy start with a median survival of 25 days, as compared to the antisenseNIS 

group that survived up to 13 days with a median survival of 11 days and saline controls that lived up to 

21 days, median survival 21 days (Fig. 31E). The effect on mouse survival was, however, not significant. 

 

Figure 30. Analysis of NIS mRNA and protein distribution ex vivo. NIS-specific qPCR analysis revealed 

a 20-fold increase of NIS mRNA expression in pancreatic tumours of mice injected with LPEI-PEG-

GE11/NIS as compared to tumours of untreated mice. In contrast, NIS mRNA was not increased in non-

target organs and in tumours of mice injected with the control vector LPEI-PEG-GE11/antisenseNIS (mean-

fold change ± S.E.M.; ***p<0.001) (A). Both immunohistochemical (B, upper three panels; magnification: 

10×, 20× and 40×) and immunofluorescence staining (B, bottom panel; magnification: 200×) of sections of 

pancreatic tumours revealed areas of NIS-specific immunoreactivity after systemic application of LPEI-

PEG-GE11/NIS. In contrast, tumours treated with the control vector LPEI-PEG-GE11/antisenseNIS showed 

no NIS-specific immunoreactivity. 
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7.5 Discussion 

While the incidence of PDAC is gradually increasing, the prognosis of patients with pancreatic cancer 

has not significantly changed over the last 20 years – despite numerous advances in diagnostic imaging, 

surgical techniques and chemotherapeutic strategies [242, 259]. Intensified chemotherapy protocols in 

patients with advanced pancreatic cancer show a significant, yet still unsatisfactory survival benefit 

[260]. So far, no targeted agent or approach has changed this fatal course of the disease, even though 

preclinical trials in in vitro cell culture systems and in vivo xenograft models had shown promising 

results [242, 260]. These set-backs can mainly be attributed to the complexity of the disease. The 

homogeneous molecular equipment, simple stromal architecture and immune deficiency of xenograft 

models limits their transferability to the clinical setting. Endogenously grown tumours, in contrast, are 

genetically and morphologically heterogeneous, less vascularised and harbour a far more complex 

microenvironment with high immunosuppression and extensive desmoplasia [261, 262]. Genetically 

engineered mouse models that closely reflect the key aspects of pancreatic carcinogenesis have been 

 

Figure 31. Therapeutic application of 131I after NIS gene transfer in vivo. Kras;p53 mice were treated 

with three cycles of i.v. injection of polyplexes on days 0/4/7 followed by i.p. injection of 55.5 MBq 131I 48 

h later, on days 2/6/9. Tumour sizes were monitored weekly by MRI. Exemplary MRI images of endpoint 

tumour sizes from an LPEI-PEG-GE11/NIS + 131I- (A), an LPEI-PEG-GE11/antisenseNIS + 131I- (B) and a 

NaCl + NaCl-treated Kras;p53 mouse are shown (C). Tumours are highlighted by red dotted lines. (D) Mice 

treated with LPEI-PEG-GE11/NIS + 131I (n=6) showed a stabilization in tumour volume compared to control 

groups LPEI-PEG-GE11/antisenseNIS + 131I (n=3; mean ± S.E.M.; *p<0.05) and NaCl + NaCl (n=4; 

**p<0.01). Mean tumour volumes (solid lines) and volumes for individual mice (dotted lines) are shown. 

(E) Injection of LPEI-PEG-GE11/NIS + 131I led to an increased overall and median survival in the therapy 

group (n=6) compared to control groups injected with LPEI-PEG-GE11/antisenseNIS + 131I (n=3; n/s) or 

NaCl + NaCl (n=4; n/s). 
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shown to correlate well with data from clinical trials and provide an exciting new platform to predict 

human tumour responses to treatment [252].  

After the proof-of-principle of our polyplex-mediated NIS gene therapy concept in different 

subcutaneous xenograft tumour models [82, 83, 87], the genetically engineered mouse model of PDAC 

used in this study provides an important step towards further development towards clinical application. 

Based on the known activity of EGFR in PDAC and this model, we chose EGFR-targeted LPEI-PEG-

GE11 polymers as delivery vehicles for the NIS gene [87, 263, 264]. 

Transfection of PDAC explant cell cultures with LPEI-PEG-GE11/NIS led to significant perchlorate-

sensitive and therefore NIS-mediated radioiodide accumulation. The empty vector LPEI-PEG-GE11 did 

not result in iodide accumulation above background levels, further confirming NIS-dependency of 

radioiodide accumulation. Iodide uptake was significantly reduced after transfection with non-targeted 

LPEI-PEG-Cys/NIS, demonstrating improved transfection efficiency using the targeting ligand GE11. 

EGFR-specificity of targeting was further substantiated by the observation that in EGFR-negative 

cultures derived from Kras;p53;Egfr mice, no significant difference between transfection with EGFR-

targeted or non-targeted vectors was observed. Translating these promising in vitro results to systemic 

vector application in vivo, intravenous administration of LPEI-PEG-GE11/NIS resulted in a significant 

perchlorate-sensitive tumour-specific iodide uptake in mice harbouring endogenous PDAC tumours, as 

demonstrated by 123I gamma camera imaging. Three-dimensional 124I PET imaging with increased 

sensitivity and resolution was employed for more accurate quantification of tumoural radioiodide 

uptake, as radionuclide signals from pancreatic lesions partially overlap with stomach signals based on 

physiological gastric NIS expression. Results from PET imaging confirmed gamma camera imaging 

results with strong radioiodide signals in pancreatic tumours. Control experiments with LPEI-PEG-

GE11/antisenseNIS showed no significant tumoural radioiodide accumulation above background levels, 

confirming NIS-specificity of tumoural tracer uptake. These molecular imaging data were further 

corroborated by NIS-specific immunohistochemistry and immunofluorescence as well as qPCR 

analysis.  

Both the abundance and the permeability of the tumour’s vasculature are crucial for sufficient transgene 

delivery into the tumour [265, 266]. One of the main factors thought to hamper efficient drug delivery 

to PDAC, is its highly desmoplastic stroma alongside its high interstitial pressure and poor 

vascularization [267]. Thus, the enhanced permeability and retention effect that is caused by the 

irregular, ‘leaky’ tumour vasculature and is usually exploited for passive targeting of therapeutic agents 

to tumour sites, is limited in PDAC [266, 268]. For this reason, an additional tumour-targeting strategy 

is particularly important. Our imaging data convincingly demonstrate that targeting our polyplexes to 

EGFR allows strong transfection of pancreatic tumours with NIS. In a previous study, using the same 

vector construct in a subcutaneous hepatocellular carcinoma xenograft model, a tumour-absorbed dose 

of 47 mGy/MBq/g was calculated for 131I 24 h after polyplex administration [87], while in the current 

study, a dose of 74.7 mGy/MBq/g tumour 24 h post polyplex injection was achieved. We mainly 
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attribute this significantly enhanced tumoural radioiodide uptake to the very high EGFR expression in 

PDAC. NIS staining was restricted to areas of high EGFR expression surrounding ductal lesions [246]. 

This focal pattern of transgene expression further underlines the advantage of NIS as therapy gene in 

this setting, as the high radionuclide bystander effect allows destruction of tumour cells beyond 

transfected cells. 

Building on these promising results, the next logical step was to evaluate the therapeutic effectiveness 

of 131I in the PDAC mouse model after LPEI-PEG-GE11-mediated systemic NIS gene delivery. We were 

able to demonstrate stabilization, and, in two cases, even a pronounced reduction, of tumour growth 

after application of three cycles of LPEI-PEG-GE11/NIS followed by 131I. Mouse survival was 

prolonged in the therapy group, especially compared to the non-coding LPEI-PEG-GE11/antisenseNIS-

treated control group, although without reaching statistical significance, despite the strong effects on 

tumour growth. Interestingly, while animals in the saline group had to be sacrificed due to compromised 

well-being owing to excessive tumour growth, the non-coding control group showed signs of ill health 

at much lower tumour volumes and had to be sacrificed. Similarly, effects on animal health were 

observed in the therapy group, though to a lower extent. We attribute this observation to toxicity of the 

LPEI-based conjugates, possibly combined with effects from 131I. Due to the stabilization of tumour 

growth in therapy animals, they fared better than the non-coding control group that was potentially 

affected by side effects from polyplex and radioiodide injection in addition to rapid tumour growth. To 

date, the use of LPEI-based polymers did not affect animal health in any of our previous studies, nor 

was viability of PDAC cell explants affected in the current study. LPEI has been shown to exhibit certain 

cytotoxic effects both in vitro and in vivo [269-273], though LPEI-based polyplexes have already been 

tested in a clinical trial for bladder cancer therapy and no adverse effects were reported [274]. Similarly, 

we have so far only encountered side effects from 131I in one previous study with the objective to 

radioablate mouse thyroids under intentional stimulation of thyroidal radioiodide uptake [143]. 

Symptoms developed with a delay of seven days after radioiodide application, while in the current study, 

animal health deteriorated from the beginning of treatment [143]. However, our earlier work was done 

in subcutaneous xenograft models, where tumour growth per se has no impact on animal health. In 

contrast, Kras;p53 mice with their extremely aggressive pancreatic tumour growth and subsequent rapid 

health deterioration, seem to react more unfavourably to the polyplexes and/or radioiodide treatment. 

LPEI is seen as the ‘gold standard’ for non-viral DNA delivery, as it shows such high transfection 

efficiency and flexibility at relatively low toxicity, compared to other viral and non-viral gene delivery 

approaches. To further refine our approach and solve the toxicity issue, we are currently developing 

sequence-defined polymers with higher biocompatibility for targeted NIS gene delivery [205].  

In conclusion, our data clearly show the high potential of EGFR-targeted nanoparticle vectors to target 

the NIS gene to PDAC. After systemic application of LPEI-PEG-GE11/NIS, we were able to reach 

sufficient iodide concentrations at the tumour site to (1) produce a strong enough signal to image 

pancreatic tumours in situ and (2) provoke a therapeutic effect. Based on its role as potent and well 
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characterised reporter gene, NIS allows non-invasive imaging and detailed characterization of in vivo 

biodistribution of functional NIS expression as an essential prerequisite for exact planning and 

monitoring of clinical gene therapy trials with the aim of individualization of the NIS gene therapy 

concept in the clinical setting. 
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VIII. SUMMARY 

While a great amount of attention is being given to the fight against cancer and considerable advances 

have been made, many cancers remain deadly diseases. Understanding tumour biology is fundamental 

to disease management and the development of effective therapeutic strategies. The work presented in 

this thesis touches on both tumour biology, specifically on thyroid hormone effects on tumours and 

tumour-associated mesenchymal stem cells (MSCs), and on the development of treatment strategies, 

specifically on the evaluation of non-viral tumour-targeted gene delivery vehicles for systemic sodium 

iodide symporter (NIS) gene therapy.  

Initially, an effective protocol for radioiodide ablation of the mouse thyroid gland was established, thus 

generating a hypothyroid in vivo model that is tailored to the use of NIS as reporter gene, in which 

interference from both endogenous thyroid hormones and thyroidal NIS are avoided. 

Subsequently, thyroid hormone effects on MSCs in the tumour milieu were investigated. Non-classical 

thyroid hormone signalling via cell surface receptor integrin αvβ3 has been shown to drive tumour cell 

proliferation and survival, as well as angiogenesis and inflammation. This phenomenon is of course 

undesirable in cancer patients and, indeed, over the past century, several clinical and experimental 

studies have implicated thyroid hormones in cancer progression. Integrin αvβ3 is abundantly expressed 

on most cancer cells and the growing endothelium associated with tumours, but also on MSCs. These 

multipotent progenitor cells actively home to growing tumours where they differentiate into carcinoma-

associated fibroblast (CAF)-like cells and blood vessel-stabilising pericytes, and thus support the 

tumour’s fibrovascular network. Integrin αvβ3 expression on MSCs makes them susceptible to thyroid 

hormone stimulation. Indeed, the work presented here demonstrates that thyroid hormones stimulate the 

differentiation of MSCs towards a CAF-/pericyte-like and hypoxia-responsive, pro-angiogenic 

phenotype, characterised by the secretion of numerous paracrine pro-angiogenic factors, in addition to 

driving their migration, invasion, and recruitment to the tumour microenvironment in an experimental 

hepatocellular carcinoma model in vitro and in vivo. The deaminated thyroid hormone metabolite tetrac, 

a specific inhibitor of thyroid hormone action at the integrin site, reverses these effects. The modulation 

of MSC signalling and recruitment by thyroid hormones via integrin αvβ3 adds a further layer to the 

multifaceted effects of thyroid hormones on tumour progression, and suggests a novel mechanism for 

the anti-tumour activity of tetrac. In addition, modulation of MSC recruitment is of clinical interest in 

tissue regeneration and in the field of cancer gene therapy, where MSCs are being used as Trojan horses 

to deliver therapeutic payloads, including the NIS gene, into tumours. 

To assess the relevance of integrin αvβ3 expression on the cancer cells themselves as opposed to effects 

on angiogenesis and the tumour stroma in general, we compared the effects of thyroid hormones versus 

tetrac in two murine xenograft tumour models with and without integrin αvβ3 expression. Tumour 

growth was significantly increased in hyperthyroid mice and significantly decreased in hypothyroid and 
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tetrac-treated euthyroid mice, resulting in either a reduced or prolonged survival, respectively, compared 

to euthyroid mice in αvβ3-positive human anaplastic thyroid cancer xenografts. Both proliferation and 

vascularisation were significantly increased in tumours from hyperthyroid mice as compared to 

hypothyroid and tetrac-treated mice. No differences in tumour growth, survival, or proliferation were 

observed between the different thyroid hormone states in mice bearing αvβ3-negative hepatocellular 

carcinoma xenografts. The blood vessel density, however, was significantly decreased in hypothyroid 

and tetrac-treated mice compared to both euthyroid and hyperthyroid mice in this model.  

The modulation of MSC recruitment, differentiation, and angiogenic signalling, in addition to the 

regulation of tumour growth in αvβ3-positive tumours by thyroid hormones via integrin αvβ3 have 

important implications for the management of cancer patients, especially for those with thyroid 

dysfunction and thyroid cancer patients treated with thyroid-stimulating hormone-suppressive L-

thyroxine doses. 

Addressing the second topic of the thesis, selective transfer of the theranostic NIS gene into tumour cells 

allows systemic application of radionuclides for non-invasive imaging as well as therapy. For clinical 

development of the NIS gene therapy approach, tumour targeting needs to be highly specific and efficient 

at low toxicity, and requires systemic application for the treatment of metastatic disease. To investigate 

the potential of targeting the epidermal growth factor receptor (EGFR), which is highly expressed on 

many cancer cells, for systemic non-viral NIS gene transfer, the well-established cationic polymer linear 

polyethylenimine (LPEI) was shielded with polyethylene glycol (PEG) and coupled to the EGFR-

specific peptide ligand GE11. Two different tumour models were used, specifically anaplastic thyroid 

carcinoma xenografts that have lost the ability to express NIS in the process of dedifferentiation, and, 

as a further step towards clinical application, an advanced genetically engineered mouse model of 

pancreatic ductal adenocarcinoma (PDAC) that closely mirrors human disease. In both models, high 

NIS- and EGFR-specific iodide uptake was achieved in vitro and in vivo. This resulted in a significant 

delay in tumour growth in both models in subsequent 131I therapy studies that was accompanied by a 

significantly prolonged survival in the anaplastic thyroid carcinoma model. The work reported here was 

the first study to demonstrate successful re-instatement of NIS-mediated radioiodide uptake in anaplastic 

thyroid carcinoma after systemic application of NIS as a theranostic gene. Further, the successful 

targeting and tumour growth reduction in PDAC proves the applicability of this approach in a highly 

complex model that closely emulates human PDAC. Taken together, these data in two highly aggressive 

tumour entities clearly demonstrate the great potential of EGFR-targeted nanoparticle vectors to 

selectively deliver NIS to EGFR-expressing tumours after systemic application, an important 

prerequisite for the treatment of metastatic disease by NIS gene therapy.  
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Niess H, Carlsen J, Zach C, Wagner E, Bartenstein P, Nelson PJ, Spitzweg C. Hypoxia-targeted 131I 

therapy of hepatocellular cancer after systemic mesenchymal stem cell-mediated sodium iodide 

symporter gene delivery. Oncotarget 2016;7:54795-810. 

12. Urnauer S, Morys S, Krhac Levacic A, Müller AM, Schug C, Schmohl KA, Schwenk N, Zach C, 

Carlsen J, Bartenstein P, Wagner E, Spitzweg C. Sequence-defined cMET/HGFR-targeted polymers 

as gene delivery vehicles for the theranostic sodium iodide symporter (NIS) gene. Mol Ther 

2016;24:1395-404. 

2015 

13. Schmohl KA, Müller AM, Wechselberger A, Rühland S, Salb N, Schwenk N, Heuer H, Carlsen J, 

Göke B, Nelson PJ, Spitzweg C. Thyroid hormones and tetrac: new regulators of tumour stroma 

formation via integrin αvβ3. Endocr Relat Cancer 2015;22:941-52. 

14. Schmohl KA, Müller AM, Schwenk N, Knoop K, Rijntjes E, Köhrle J, Heuer H, Bartenstein P, 

Göke B, Nelson PJ, Spitzweg C. Establishment of an Effective Radioiodide Thyroid Ablation 

Protocol in Mice. Eur Thyroid J 2015;4:74-80. 

15. Knoop K, Schwenk N, Schmohl K, Müller A, Zach C, Cyran C, Carlsen J, Böning G, Bartenstein 

P, Göke B, Wagner E, Nelson PJ, Spitzweg C. Mesenchymal stem cell-mediated, tumor stroma-

targeted radioiodine therapy of metastatic colon cancer using the sodium iodide symporter as 

theranostic gene. J Nucl Med 2015;56:600-6. 
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9.2 Reviews 

2019 

16. Schmohl KA, Müller AM, Nelson PJ, Spitzweg C. Thyroid hormone effects on mesenchymal stem 

cell biology in the tumour microenvironment. Exp Clin Endocrinol Diabetes 2019 [Epub ahead of 

print]. 

17. Schmohl KA, Nelson PJ, Spitzweg C. Tetrac as an anti-angiogenic agent in cancer. Endocr Relat 

Cancer 2019;26:R287-304. 

9.3 Oral Presentations 

2019 

03/2019 62. Deutscher Kongress für Endokrinologie, Göttingen, Germany 

Schmohl KA, Schwenk N, Bartenstein P, Nelson PJ, Spitzweg C. Non-genomic effects 

of thyroid hormones on mesenchymal stem cells in tumour angiogenesis 

02/2019 18th Retreat of the Dept. of Medicine IV, LMU Munich, Frauenchiemsee, Germany 

Schmohl KA, Müller AM, Dohmann M, Spellerberg R, Urnauer S, Schwenk N, Ziegler 

SI, Nelson PJ, Spitzweg C. Non-genomic effects of thyroid hormones on mesenchymal 

stem cells in tumour angiogenesis 

2018 

10/2018 88th Annual Meeting of the American Thyroid Association, Washington DC, USA 

Schmohl KA, Urnauer S, Schwenk N, Bartenstein P, Nelson PJ, Spitzweg C. Non-

genomic effects of thyroid hormones on mesenchymal stem cells in tumour 

angiogenesis (highlighted oral presentation) 

09/2018 41st Annual Meeting of the European Thyroid Association, Newcastle, UK 

Schmohl KA, Urnauer S, Schwenk N, Bartenstein P, Nelson PJ, Spitzweg C. Non-

genomic effects of thyroid hormones on mesenchymal stem cells in tumour 

angiogenesis 

06/2018 6th Annual Meeting of the Priority Programme Thyroid Trans Act, Berlin, Germany 

Schmohl KA, Nelson PJ, Spitzweg C. Plasma membrane-mediated non-genomic 

effects of T4, T3 and thyroid hormone metabolite tetrac on different aspects of 

mesenchymal stem cell biology and their signalling pathways 

05/2018 20th European Congress of Endocrinology, Barcelona, Spain  



Publications 

103 

 

Schmohl KA (invited speaker). Tetrac as an antiangiogenic agent in cancer 

2017 

10/2017 87th Annual Meeting of the American Thyroid Association, Victoria, BC, Canada 

Schmohl KA, Dohmann M, Wechselberger A, Nelson PJ, Spitzweg C. Non-genomic 

effects of thyroid hormones on mesenchymal stem cells and angiogenesis 

09/2017 40th Annual Meeting of the European Thyroid Association, Belgrade, Serbia 

Schmohl KA, Dohmann M, Wechselberger A, Nelson PJ, Spitzweg C. Non-genomic 

effects of thyroid hormones on mesenchymal stem cells and angiogenesis 

06/2017 5th Annual Meeting of the Priority Programme Thyroid Trans Act, Bremen, Germany 

Schmohl KA, Nelson PJ, Spitzweg C. Plasma membrane-mediated non-genomic 

effects of T4, T3 and thyroid hormone metabolite tetrac on different aspects of 

mesenchymal stem cell biology and their signalling pathways 

05/2017 Aktuelles zum Thema Schilddrüse – Update 2017, Munich, Germany 

Schmohl KA. Beeinflussen Schilddrüsenhormone das Tumorwachstum? – from Bench 

to Bedside (Do thyroid hormones influence tumour growth? – from bench to bedside) 

03/2017 60. Deutscher Kongress für Endokrinologie, Würzburg, Germany 

Schmohl KA, Dohmann M, Wechselberger A, Nelson PJ, Spitzweg C. Non-genomic 

effects of thyroid hormones on mesenchymal stem cells and angiogenesis 

02/2017 17th Retreat of the Dept. of Medicine IV, LMU Munich, Frauenchiemsee, Germany 

Schmohl KA, Müller AM, Wechselberger A, Rühland S, Dohmann M, Schwenk N, 

Nelson PJ, Spitzweg C. Thyroid hormones and tetrac – new regulators of tumour stroma 

formation via integrin αvβ3 

2016 

06/2016 4th Annual Meeting of the Priority Programme Thyroid Trans Act, Essen, Germany 

Schmohl KA, Müller AM, Wechselberger A, Nelson PJ, Spitzweg C. Plasma 

membrane-mediated non-genomic effects of T4, T3 and thyroid hormone metabolite 

tetrac on different aspects of mesenchymal stem cell biology and their signalling 

pathways 

05/2016 18th European Congress of Endocrinology, Munich, Germany 

Schmohl KA, Dohmann M, Wechselberger A, Nelson PJ, Spitzweg C. Non-genomic 

effects of thyroid hormones on endothelial cell tube formation 
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2015 

11/2015 Retreat of the Dept. of Medicine II, LMU Munich, Munich, Germany 

Schmohl KA, Müller AM, Wechselberger A, Rühland S, Salb N, Dohmann M, 

Schwenk N, Nelson PJ, Spitzweg C. Thyroid hormones and tetrac – new regulators of 

tumour stroma formation via integrin αvβ3 

04/2015 3rd Annual Meeting of the Priority Programme Thyroid Trans Act, Berlin, Germany 

Schmohl KA, Müller AM, Wechselberger A, Nelson PJ, Spitzweg C. Plasma 

membrane-mediated non-genomic effects of T4, T3 and thyroid hormone metabolite 

tetrac on the tumour microenvironment 

2014 

12/2014 30. Arbeitstagung Experimentelle Schilddrüsenforschung (AESF), Bremen, Germany 

Schmohl KA, Müller AM, Salb N, Rühland S, Wechselberger A, Schwenk N, Nelson 

PJ, Spitzweg C. Analysis of the effects of T3, T4 and tetrac on mesenchymal stem cell 

biology 

06/2014 96th Annual Meeting of the Endocrine Society, Chicago, IL, USA 

Schmohl KA, Müller AM, Salb N, Knoop K, Wechselberger A, Schwenk N, Nelson 

PJ, Spitzweg C. Effects of thyroid hormones T3 and T4 on mesenchymal stem cell 

biology 

04/2014 2nd Annual Meeting of the Priority Programme Thyroid Trans Act, Essen, Germany 

Schmohl KA & Müller AM. Regulation of the tumour microenvironment by thyroid 

hormones 

9.4 Poster Presentations 

2019 

10/2019 89th Annual Meeting of the American Thyroid Association, Chicago, IL, USA 

Schmohl KA, Han Y, Tutter M, Schwenk N, Nelson PJ, Spitzweg C. Stimulation of 

tumour growth by thyroid hormone depends on integrin αvβ3 expression 

2018 

10/2018 88th Annual Meeting of the American Thyroid Association, Washington DC, USA 

Schmohl KA, Kitzberger C, Kälin RE, Glaß R, Nelson PJ, Spitzweg C. Mesenchymal 

stem cell-mediated sodium iodide symporter (NIS) reporter gene delivery in an 

orthotopic glioblastoma mouse model 
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2018 Annual Trainee Poster Contest winner, best basic research poster 

05/2018 20th European Congress of Endocrinology, Barcelona, Spain 

Schmohl KA, Dohmann M, Schwenk N, Bartenstein P, Nelson PJ, Spitzweg C. Non-

genomic effects of thyroid hormones on mesenchymal stem cells in tumour 

angiogenesis 

03/2018 100th Annual Meeting of the Endocrine Society, Chicago, IL, USA 

Schmohl KA, Urnauer S, Schwenk N, Bartenstein P, Nelson PJ, Spitzweg C. Non-

genomic effects of thyroid hormones on mesenchymal stem cells in tumour 

angiogenesis 

2017 

04/2017 99th Annual Meeting of the Endocrine Society, Orlando, FL, USA 

Schmohl KA, Dohmann M, Wechselberger A, Nelson PJ, Spitzweg C. Non-genomic 

effects of thyroid hormones on endothelial cell tube formation 

2016 

09/2016 86th Annual Meeting of the American Thyroid Association, Denver, CO, USA 

Schmohl KA, Grünwald GK, Gupta A, Trajkovic-Arsic M, Klutz K, Schwenk N, 

Braren R, Senekowitsch-Schmidtke R, Schwaiger M, Wagner E, Ogris M, Siveke J, 

Spitzweg C. Systemic epidermal growth factor receptor-targeted sodium iodide 

symporter (NIS) gene delivery in a genetically engineered mouse model of pancreatic 

ductal adenocarcinoma 

09/2016 86th Annual Meeting of the American Thyroid Association, Denver, CO, USA 

Schmohl KA, Dohmann M, Wechselberger A, Nelson PJ, Spitzweg C. Non-genomic 

effects of thyroid hormones on endothelial cell tube formation 

05/2016 DACH-Tagung der Deutschen, Österreichischen und Schweizerischen Gesellschaften 

für Endokrinologie 2016, Munich, Germany 

Schmohl KA, Dohmann M, Wechselberger A, Nelson PJ, Spitzweg C. Non-genomic 

effects of thyroid hormones on endothelial cell tube formation 

04/2016 98th Annual Meeting of the Endocrine Society, Boston, MA, USA 

Schmohl KA, Dohmann M, Wechselberger A, Nelson PJ, Spitzweg C. Non-genomic 

effects of thyroid hormones on endothelial cell tube formation 
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2015 

10/2015 15th International Thyroid Congress (ITC), Orlando, FL, USA 

Schmohl KA, Dohmann M, Wechselberger A, Nelson PJ, Spitzweg C. Non-genomic 

effects of thyroid hormones on endothelial cell tube formation 

03/2015 58. Symposium der Deutschen Gesellschaft für Endokrinologie, Lübeck, Germany 

Schmohl KA, Müller AM, Salb N, Rühland S, Wechselberger A, Schwenk N, Nelson 

PJ, Spitzweg C. Analysis of the effects of T3, T4 and tetrac on mesenchymal stem cell 

biology 

2014 

12/2014 1st International Conference of Thyroid Trans Act (TTA IC), Bremen, Germany 

Schmohl KA, Müller AM, Salb N, Rühland S, Wechselberger A, Schwenk N, Nelson 

PJ, Spitzweg C. Analysis of the effects of T3, T4 and tetrac on mesenchymal stem cell 

biology 

10/2014 84th Annual Meeting of the American Thyroid Association, Coronado, CA, USA 

Schmohl KA, Müller AM, Salb N, Knoop K, Wechselberger A, Schwenk N, Nelson 

PJ, Spitzweg C. Influence of thyroid hormones T3 and T4 on the hypoxia response 

network 

09/2014 38th Annual Meeting of the European Thyroid Association, Santiago de Compostela, 

Spain 

Schmohl KA, Müller AM, Salb N, Wechselberger A, Knoop K, Schwenk N, Nelson 

PJ, Spitzweg C. Effects of thyroid hormones T3 and T4 on mesenchymal stem cell 

differentiation and migration 

03/2014 57. Symposium der Deutschen Gesellschaft für Endokrinologie, Dresden, Germany 

Schmohl KA, Müller AM, Knoop K, Schwenk N, Wechselberger A, Nelson PJ, 

Spitzweg C. Effects of thyroid hormones T3 and T4 on mesenchymal stem cell 

differentiation 

2013 

10/2013 83th Annual Meeting of the American Thyroid Association, San Juan, Puerto Rico 

Müller AM*, Schmohl KA*, Knoop K, Schwenk N, Wechselberger A, Nelson PJ, 

Spitzweg C. Effects of thyroid hormones T3 and T4 on mesenchymal stem cell 

differentiation. *equal contribution 
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9.5 Grants and Awards 

2019 

10/2019 E. Chester Ridgway Trainee Grant, American Thyroid Association for the 89th Annual 

Meeting of the American Thyroid Association, Chicago, IL, USA 

Travel grant, Deutsche Gesellschaft für Endokrinologie for the 89th Annual Meeting of 

the American Thyroid Association, Chicago, IL, USA 

2018 

10/2018 2018 Annual Trainee Poster Contest winner, best basic research poster at the 88th 

Annual Meeting of the American Thyroid Association, Washington DC, USA 

10/2018 E. Chester Ridgway Trainee Grant, American Thyroid Association for the 88th Annual 

Meeting of the American Thyroid Association, Washington DC, USA 

Travel grant, Deutsche Gesellschaft für Endokrinologie for the 88th Annual Meeting of 

the American Thyroid Association, Washington DC, USA 

09/2018 Travel grant, European Thyroid Association for the 41st Annual Meeting of the 

European Thyroid Association, Newcastle, UK 

05/2018 Invited speaker, European Society of Endocrinology at the 20th European Congress of 

Endocrinology, Barcelona, Spain 

2017 

10/2017 E. Chester Ridgway Trainee Grant, American Thyroid Association for the 87th Annual 

Meeting of the American Thyroid Association, Victoria, BC, Canada 

09/2017 Travel grant, European Thyroid Association for the 40th Annual Meeting of the 

European Thyroid Association, Belgrade, Serbia 

03/2017 Travel grant, Deutsche Gesellschaft für Endokrinologie for the 60. Deutscher Kongress 

für Endokrinologie, Würzburg, Germany 

2016 

09/2016 Travel grant, GlaxoSmithKline Stiftung for the 86th Annual Meeting of the American 

Thyroid Association, Denver, CO, USA 

E. Chester Ridgway Trainee Grant, American Thyroid Association for the 86th Annual 

Meeting of the American Thyroid Association, Denver, CO, USA 
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Travel grant, Deutsche Gesellschaft für Endokrinologie for the 86th Annual Meeting of 

the American Thyroid Association, Denver, CO, USA 

2015 

10/2015 E. Chester Ridgway Trainee Grant, American Thyroid Association for the 15th 

International Thyroid Congress (ITC), Orlando, FL, USA 

Travel grant, Deutsche Gesellschaft für Endokrinologie for the 15th International 

Thyroid Congress (ITC), Orlando, FL, USA 

Travel grant, European Thyroid Association for the 15th International Thyroid Congress 

(ITC), Orlando, FL, USA 

03/2015 Travel grant, Deutsche Gesellschaft für Endokrinologie for the 58. Symposium der 

Deutschen Gesellschaft für Endokrinologie, Lübeck, Germany 

2014 

03/2014 Travel grant, Deutsche Gesellschaft für Endokrinologie for the 57. Symposium der 

Deutschen Gesellschaft für Endokrinologie, Dresden, Germany
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