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3 Abstract 

The symbiosis between legume plants and nitrogen-fixing rhizobia leads to the formation 

of a novel organ, the root nodule. Bacterial secreted lipo-chitooligosaccharides, so-called 

nodulation factors (NF) are recognized at the surface of plant root hairs, leading to the 

initiation of calcium spiking in the nucleus. These calcium oscillations are decoded by a 

complex comprising CCaMK, a calcium and calmodulin dependent kinase, and the 

transcription factor CYCLOPS, a nuclear-coiled-coil protein. CCaMK phosphorylates 

CYCLOPS at two serines (S50 and S154) essential for symbiosis. Activated CYCLOPS 

(CYCLOPS-DD) binds to the NIN promoter in a sequence specific manner and in turn 

drives its expression. NIN encodes a transcription factor with a highly conserved RWP-

RK DNA-binding domain. Homologous NIN-like proteins control nitrate signalling in 

presumably all land plants. Since its discovery, NIN has been considered a positive 

regulator in nodulation based on its rapid upregulation after NF perception and its 

requirement for root hair infection and the initiation of cortical cell division. 

Nevertheless, a negative role of NIN in the process of infection thread formation was 

recently described, raising the question how NIN can play a bifunctional role in infection 

and nodule organogenesis. In this study, we demonstrated that NIN and CYCLOPS 

interact in yeast and in the nucleus in planta. Furthermore, the co-expression of NIN, 

CYCLOPS and CCaMK was investigated and the results suggest the formation of a 

trimeric complex. Moreover, a negative regulatory role of NIN on the CYCLOPS-DD 

mediated activation was observed in transactivation assays using the NIN promoter. In 

addition, NIN can efficiently bind to a cis-element of the NIN promoter in close vicinity 

of the CYCLOPS binding site in electrophoretic mobility shift assays (EMSA). Strikingly, 

both proteins can bind simultaneously to the NIN promoter, resulting in a supershift in 

EMSA. Lastly, overexpression of NIN in L. japonicus Gifu wild-type plants and different 

nodulation mutants led to an inhibition of nodulation independent of the autoregulation 

of nodulation process. In our model NIN regulates its own expression via a negative 

feedback loop by binding to the NIN promoter and through protein-protein interaction 

between NIN and CYCLOPS thus preventing further activation of the CYCLOPS-

mediated signalling pathway and restricting further infection by rhizobia.  
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4 Zusammenfassung 

Die Symbiose zwischen Leguminosen und Stickstoff-fixierenden Rhizobien führt zur 

Bildung eines neuen Organs, dem Wurzelknöllchen. Bakterielle sekretierte Lipo-

chitooligosaccharide, sogenannte Nodulationsfaktoren (NF), werden an der Oberfläche 

von Pflanzenwurzelhärchen erkannt und führen zu symbiotischem „Calcium spiking“ im 

Kern. Diese Kalziumoszillationen werden durch einen Komplex dekodiert, der aus 

CCaMK, einer Calcium- und Calmodulin- abhängigen Kinase und dem 

Transkriptionsfaktor CYCLOPS, einem Zellkern-lokalisierten coiled-coil Protein besteht. 

CCaMK phosphoryliert CYCLOPS an zwei Serinen (S50 und S154), die von wesentlicher 

Bedeutung für die Symbiose sind. Aktiviertes CYCLOPS (CYCLOPS-DD) bindet 

sequenzspezifisch an den NIN Promotor und induziert anschließend die NIN 

Expression. NIN kodiert für einen Transkriptionsfaktor mit einer hochkonservierten 

„RWP-RK“ DNA-Bindungsdomäne. Homologe NIN-ähnliche Proteine steuern die 

Signalweiterleitung in der Nitratassimilation in vermutlich allen Landpflanzen. Seit seiner 

Entdeckung galt NIN als ein positiver Regulator in der Knöllchensymbiose, basierend auf 

der schnellen Hochregulierung der NIN Genexpression nach NF Wahrnehmung und der 

Notwendigkeit von NIN für die Wurzelhaar-Infektion und für die Einleitung der 

kortikalen Zellteilung. Für NIN wurde jedoch kürzlich auch eine negative regulatorische 

Funktion beim Prozess der Infektionsschlauchbildung demonstriert, was die Frage 

aufwirft, wie NIN eine bi-funktionelle Rolle bei Infektion und Knöllchenbildung spielen 

kann. 

In dieser Studie haben wir gezeigt, dass NIN und CYCLOPS im Zellkern von Pflanzen  

und in Hefe miteinander interagieren können. Darüber hinaus wurde die Co-Expression 

von NIN, CYCLOPS und CCaMK untersucht und die Ergebnisse zeigen, dass diese 

Proteine einen trimeren Komplex bilden. Zudem wurde eine negative regulatorische Rolle 

von NIN auf die von CYCLOPS-DD vermittelte Aktivierung in Transaktivierungsassays  

unter Verwendung des NIN Promotors beobachtet. Außerdem konnte in Electrophoretic 

Mobility Shift Assays (EMSAs) gezeigt werden, dass NIN effizient an ein cis-Element des 

eigenen Promotors binden kann, welches sich in unmittelbarer Nähe der CYCLOPS-

Bindungsstelle befindet.  
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Beide Proteine können gleichzeitig nebeneinander an den NIN Promotor binden, was zu 

einem Supershift im EMSA führte. Schließlich kommt es durch die Überexpression von 

NIN zu einer Hemmung der Knöllchenbildung in Gifu Wildtyp Pflanzen und 

verschiedenen nodulierenden Mutanten, die unabhängig vom Prozess der Autoregulation 

der Nodulation reguliert ist. In unserem Modell reguliert NIN seine eigene Expression 

durch eine negative Feedback-Schleife, indem es an den NIN Promotor bindet und durch 

Protein-Protein Interaktion von NIN und CYCLOPS eine weitere Aktivierung des durch 

CYCLOPS vermittelten Signalwegs verhindert und dadurch für eine Einschränkung 

weiterer Infektionen durch Rhizobien sorgt. 
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5 Introduction 

5.1 The Root Nodule Symbiosis and Arbuscular Mycchorizha 

Symbiosis 

The symbiosis between legume plants and nitrogen-fixing soil bacteria (rhizobia) is a 

beneficial interaction for both partners (Den Herder and Parniske, 2009). Rhizobia live in 

a newly formed plant organ, named nodule (Brewin et al., 1999; Oldroyd and Downie, 

2008; Oldroyd et al., 2011). In this environment, rhizobia fix atmospheric nitrogen under 

oxygen-restricted conditions and provide the plant with ammonium, leading to an 

improved survival of the plant in nitrogen-poor soil (Gage, 2004). In exchange the 

microsymbiont receives carbon sources (including dicarboxylates and amino acids) 

deriving from photosynthesis and mineral nutrients (iron, molybdenum, sulphur and 

others) from the plant. 

Microbial partners efficiently engage in root nodule symbiosis (RNS) with various 

flowering plant species, which belong to the Eurosid I clade, specifically those from the 

four orders of Fagales, Fabales, Cucubitales and Rosales, also referred to as nodulating 

clade (Kistner and Parniske, 2002; Cermak et al., 2011). RNS with rhizobia is restricted to 

legumes (Fabaceae), with one exception for the non-legume Parasponia (Op den Camp et 

al., 2012; Remigi et al., 2016). There is, however, another RNS between filamentous 

actinomycetes of the genus Frankia (Actinobacteria) and so-called “actinorhizal” plants 

(e.g. Datisca and Casuarina) (Li et al., 2015; Pawlowski and Sprent, 2008). 

In all RNSes, several symbiotic genes were co-opted from the signalling pathway of the 

more ancient association between plants and arbuscular mycorrhizal fungi (Delaux et al., 

2013; Delaux et al., 2015). About 80% of all land plants are able to establish the 

arbuscular mycorrhizal symbiosis (AMS) with fungi from the phylum Glomeromycota 

(Schüβler et al., 2001; Parniske, 2008). The plant receives phosphorus and other inorganic 

nutrients from the fungus in exchange for carbon sources (Harrison, 1999; Parniske, 

2008). In this association the fungus is able to colonize the plant by invasion of the root 

and forms highly branched structures in the cortex, named arbuscules (Gutjahr and 

Parniske, 2013).  
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Both symbioses share a common set of genes (common symbiosis genes), which are 

required for the initiation of the signalling cascade within the plant (Kistner and Parniske, 

2002). 

 

5.2 Signal perception and symbiotic calcium signalling 

Under nitrogen limiting conditions, leguminous plants secret flavonoids that attract 

compatible symbiosis partners (Peters et al., 1986). In turn, bacteria respond with the 

activation of nod genes, leading to the production and secretion of nodulation factors 

(NF) into the soil (Fisher and Long, 1992). Variations of NFs exist among different 

rhizobial species, which ensures the perfect match of interaction partners between host 

plant and microsymbiont (Roche et al., 1991; Denarie et al., 1996). The chemical 

compositions of NFs is a chitooligosaccharide backbone with four to five N-

actetylglucosamine residues with β-1,4 linkeages decorated with further species-specific 

groups such as methyl, acetyl or sulphate groups (Denarie et al., 1996). 

This first signal exchange initiates a complex signalling cascade to activate the common 

signalling pathway leading to gene activation (Figure 1). In the past 30 years several genes 

required for the two major subsequent events, bacterial infection and nodule formation, 

have been identified and characterised (Oldroyd, 2013). 

Firstly, NFs are recognised by the two Lysin Motif (LysM)–type receptors Nod Factor 

Receptor 1 (NFR1) and NFR5, on the root hair plasma membrane (Madsen et al., 2003; 

Radutoiu et al., 2003). NFR1 shows a typical domain structure of a receptor kinase, which 

is an active intracellular kinase domain that is capable of auto-phosphorylation and trans-

phosphorylation of other proteins, including NFR5 (Radutoiu et al., 2003; Madsen et al., 

2011). In contrast to NFR1, NFR5 has a pseudokinase that lacks important motifes of a 

functional kinase and is not able to phosphorylate other proteins (Madsen et al., 2003; 

Madsen et al., 2011). Interestingly, the receptors feature an additional LysM domain in the 

extra-cytoplasmic domain exclusively in plants, which has been shown to be crucial for 

NF binding (Bateman and Bycroft, 2000; Zhang et al., 2007; Broghammer et al., 2012). 

Both receptors localise to the plasma membrane and form a heterodimeric complex 

(Madsen et al., 2011; Lefebvre et al., 2012; Pietraszewska-Bogiel et al., 2013). 
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Figure 1: symbiotic signal transduction in root nodule symbiosis 

Nod factor (NF) is recognised and bound by the NF receptors NFR1 and NFR5 at the plasma membrane. 
SYMRK, a plasma membrane bound receptor-like kinase and SYMREM1, a remorin upregulated during 
symbiosis, are interacting with both NFRs. Calcium channels (CNGCs) are responsible for calcium release 
from the nuclear envelop. Three components of the nuclear pore complex NUP133, NUP85 and NENA 
as well as two ion-channels CASTOR and POLLUX are required for the generation of calcium spiking. 
The nuclear calcium and calmodulin-dependent kinase CCaMK is the decoder of these calcium 
oscillations. CCaMK and CYCLOPS form a complex and activate NIN expression. Figure modified from 
(Singh and Parniske, 2012) 

SYMRK is a receptor-like kinase (RLK) that is indispensable for both RNS and AMS 

(Endre et al., 2002; Stracke et al., 2002; Yoshida and Parniske, 2005; Markmann et al., 

2008; Kosuta et al., 2011; Antolin-Llovera et al., 2014; Ried et al., 2014). SYMRK consists 

of an extra-cytoplasmic region including Leucin-rich repeats (LRRs), a malectin-like 

domain and a functional intracellular protein kinase domain (Stracke et al., 2002; Yoshida 

and Parniske, 2005; Kosuta et al., 2011; Antolin-Llovera et al., 2014).  
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An active role for SYMRK in the signalling pathway of root nodule symbiosis was 

demonstrated with the overexpression in hairy root experiments, which lead to the 

formation of spontaneous nodules in the absence of rhizobia (Ried et al., 2014). The 

interaction of SYMRK and NFR5 places them at an early recognition point for RNS and 

suggests a role of SYMRK as a co-receptor (Antolin-Llovera et al., 2014; Ried et al., 

2014). 

Furthermore, the interaction between these receptors and a plasma membrane associated 

remorin, SYMREM1, was demonstrated. Remorins function as scaffold proteins and are 

assumed to be involved in the organization of microdomains and thus may facilitate 

bacterial entry (Lefebvre et al., 2010; Jarsch and Ott, 2011; Toth et al., 2012). The 

interplay of these receptors is the earliest recognition step between the symbiotic partners 

to verify the specificity of the host and allow for colonisation.  

Two of the earliest readouts in the plant after contact with bacteria are calcium influx at 

the root-hair tip and nuclear calcium spiking (Kosuta et al., 2008; Chabaud et al., 2011; 

Sieberer et al., 2012). The same response is triggered with purified NF extracted from 

rhizobia (Kosuta et al., 2008; Chabaud et al., 2011; Sieberer et al., 2012). Recently, three 

calcium channels have been identified, which encode cyclic nucleotide-gated channels 

(CNGCs) and probably account for calcium release from the nuclear envelope 

(Charpentier et al., 2016). In the nuclear envelope CASTOR and POLLUX, two cation 

channels with a preference for K+ ions, are both required for the establishment of the 

symbiosis in Lotus japonicus (Ané et al., 2004; Imaizumi-Anraku et al., 2005; Charpentier et 

al., 2008). Moreover, proteins of the nuclear pore complex, NUP85, NUP133 and 

NENA, are required for calcium spiking within the plant (Bonfante et al., 2000; Kistner et 

al., 2005; Kanamori et al., 2006; Saito et al., 2007; Groth et al., 2010).  

Binding of NFs to the receptors leads to a rapid response within the plant, including 

calcium spiking, rearrangement of the cytoskeleton and the curling of responsive root 

hairs in a typical “shepherd’s crook” structure (Jones et al., 2007; Broghammer et al., 

2012). The first event is an influx of calcium within one minute, actin rearrangement 

happens within three to five minutes of NF perception (Weerasinghe et al., 2005), 

followed by calcium spiking in the nucleus within 15 minutes and root hair deformation 

within one to three hours (Ehrhardt et al., 1996; Miwa et al., 2006; Oldroyd, 2013).  
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Infection is initiated by the attachment of rhizobia to the growing root tip. Then, the 

plant cell wall is modified to facilitate rhizobial uptake. The entrapped rhizobium divides 

and multiplies to a microcolony in the “shepherd’s crock” curl structure, within an 

infection pocket. Within 10 to 20 hours the full process of infection thread formation is 

initiated (Fournier et al., 2015). Then, rhizobia enter the plant through a tube like 

structure (infection thread) bound by the plant membrane and cell wall, which guides 

them to the root cortex (Esseling et al., 2003; Geurts et al., 2005; Fournier et al., 2008; 

Murray, 2011). Cortical cell division in close proximity to the infection thread leads to the 

formation of a nodule primordium, where the bacteria are released into the cytoplasm of 

nodule cells and then differentiate into nitrogen-fixing bacteroids (Timmers et al., 1999; 

Bolanos et al., 2004). Genes required for cell-cycle activation and for hormone 

biosynthesis are induced during the process of infection thread formation (Yang et al., 

1994; Breakspear et al., 2014).  

 

5.3 Decoding of the calcium signal 

In the nucleus there are several proteins that are responsible for inducing gene expression 

downstream of calcium spiking. A calcium and calmodulin dependent serine/threonine 

kinase (CCaMK) is considered to be the central player in the signalling transduction 

pathway and the decoder of calcium spiking (Levy et al., 2004; Mitra et al., 2004; Tirichine 

et al., 2006; Hayashi et al., 2010; Singh and Parniske, 2012).  

CCaMK harbours a calmodulin binding domain (CaMBD), an active kinase domain and a 

C-terminal visinin-like domain (VLD) with three calcium binding EF hands (Gleason et 

al., 2006; Tirichine et al., 2006). Interestingly, CCaMK only exists in symbiotic plants 

(Hrabak et al., 2003) and it becomes active after calcium binding to the EF hand, leading 

to auto-phosphorylation of the kinase (Tirichine et al., 2006; Shimoda et al., 2012; 

Swainsbury et al., 2012). Then, binding of CaM to the CaMBD results in a release of auto-

inhibition of the kinase, inducing a conformational change in the protein structure and 

activating the kinase for transphosphorylation (Gleason et al., 2006; Shimoda et al., 2012; 

Singh and Parniske, 2012). 
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The central role of CCaMK in symbiotic sinalling was demonstrated by the study of an 

autoactive version of CCaMK that carries a replacement of threonine at position 265 by 

aspartic acid or isoleucine (T265D or I). Plants that express this autoactive CCaMK form 

spontaneous nodules in the absence of bacteria (Tirichine et al., 2006; Hayashi et al., 2010; 

Madsen et al., 2010). Expression of the kinase alone also leads to spontaneous nodule 

formation in ccamk plant mutants; however, infection is not restored (Gleason et al., 2006; 

Shimoda et al., 2012; Takeda et al., 2012). Moreover, spontaneous nodulation can also be 

triggered by expression of a gain-of-function version of CCaMK in a cyclops mutant 

background, with CYCLOPS being a phosphorylation target of CCaMK (Yano et al., 

2008). The fact that an autoactive version of CCaMK is able to induce downstream 

signalling, suggestes that the primary purpose for all upstream symbiotic genes is to 

activate CCaMK (Gleason et al., 2006; Tirichine et al., 2006; Hayashi et al., 2010; Madsen 

et al., 2010). 

CCaMK forms a complex with CYCLOPS in the nucleus (Yano et al., 2008; Singh et al., 

2014). CYCLOPS is both required for RNS and AMS (Messinese et al., 2007; Yano et al., 

2008; Horvath et al., 2011; Ovchinnikova et al., 2011).  Furthermore, the phosphorylation 

of CYCLOPS via CCaMK leads to the activation of downstream transcription factors 

(Singh et al., 2014). Two phosphorylation sites of the CYCLOPS protein are essential for 

symbiosis, as replacements of S50D and S154D (CYCLOPS-DD) lead to an autoactive 

version of CYCLOPS that is able to trigger the nodulation process without the symbiont 

partner (Singh et al., 2014). In combination, CYCLOPS-WT and gain-of-function 

CCaMKT265D are able to transactivate the NODULE INCEPTION (NIN) promoter in 

Nicotiana benthamiana leaves and L. japonicus hairy roots, a gene required for bacterial entry 

and nodule formation (Schauser et al., 1999; Singh et al., 2014). Moreover, the same effect 

was achieved by only expressing CYCLOPS-DD, suggesting that the two 

phosphorylation residues are required for NIN activation (Singh et al., 2014). 

Furthermore, the CYCLOPS binding site was pinpointed to a cis-responsive element 

“CYC” (CYC-RE) within the NIN promoter (Singh et al., 2014), demonstrating that 

CYCLOPS confers both DNA-binding and transactivation abilities. Both functional 

domains of CYCLOPS were further analysed, with the activation domain (AD) mapped 

to a central part of the protein (aa 267 to 380), while the DNA binding domain (BD) was 
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delimited to the C-terminal region (aa 364 to 518), harbouring a coiled-coil domain (Singh 

et al., 2014). A minimal version of CYCLOPS, consisting of only the AD and BD part of 

the protein (CYC-min, aa 255 to 518), was demonstrated to be sufficient for mimicking 

CYCLOPS-DD behaviour (Singh et al., 2014). The function of CYCLOPS as a 

transcriptional activator is dependent on its phosphorylation by CCaMK at the 

phosphorylation sites S50 and S154, which induces a structural change, releasing 

CYCLOPS from auto-inhibition of the activation domain and promoting its potential for 

DNA binding capability (Singh et al., 2014). 

 

5.4 The symbiotic transcriptional network 

Furthermore, several nuclear-associated transcriptional regulators, including 

NODULATION SIGNALLING PATHWAY 1 and 2 (NSP1 and NSP2) are required 

for the expression of downstream genes and initation of nodule development (Kaló et al., 

2005; Smit et al., 2005; Heckmann et al., 2006; Hirsch and Oldroyd, 2009). Both proteins 

belong to the family of GRAS transcription factors that are conserved throughout the 

plant kingdom and have diverse roles in plant development (Bolle, 2004). A function 

during mycorrhorzial colonisation was only demonstrated for NSP2 (Liu et al., 2011).  

Moreover, three Ethylene response factors (ERF) required for nodulation (ERN1, ERN2 

and ERN3) have been shown to associate with the ENOD11 promoter, an early nodulin 

gene encoding a repetitive proline-rich protein (Journet et al., 2001; Charron et al., 2004; 

Andriankaja et al., 2007; Fournier et al., 2015).  

Interestingly, ERN1 and ERN2 function as transcriptional activators, while ERN3 acts as 

a repressor on the identified cis binding element (NF box) on the ENOD11 promoter 

(Andriankaja et al., 2007). Expression profiles and cross-complementation studies 

suggested a functional reduncancy (Cerri et al., 2012). This was recently corroborated by 

ern2 single and ern1ern2 double mutant phenotypic characterisation. ERN1 and ERN2 are 

acting together to regulate epidermal infection, but ERN1 seems to be the major factor 

orchestrating infection in the cortex (Cerri et al., 2016). 
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NSP1 and NSP2 form a complex, which upregulates symbiosis-related marker-genes such 

as ENOD11 or NIN. Only NSP1 demonstrated DNA-binding properties to the target 

promoters (Murakami et al., 2006; Hirsch et al., 2009). NSP1 binds to NIN (-893 to -13 

bp) on a cis regulatory element containing an AATTT motif (Hirsch et al., 2009). The 

heterodimeric complex of NSP1 and NSP2 induces the expression of NIN and ERN1 

(Marsh et al., 2007; Middleton et al., 2007; Cerri et al., 2012). 

 

5.5 NIN - a transcription factor 

In 1999, the first gene involved in RNS was identified, a putative transcription factor 

named NODULE INCEPTION (NIN) (Schauser et al., 1999). A transposon-inactivated 

nin was shown to be responsible for a defect in nodulation, while “revertants”, which had 

lost the transposon, nodulated normally (Schauser et al., 1999).  

NIN is involved in bacterial entry, cortical cell division and nodule formation (Schauser et 

al., 1999; Borisov et al., 2003; Schauser et al., 2005). nin mutants show excessive root hair 

curling in response to NF treatment, indicating that the NF signal is recognized, but 

further signal trandcution is arrested (Schauser et al., 1999; Borisov et al., 2003; Marsh et 

al., 2007). Recently, a role of NIN in remodelling the infection pocket was demonstrated 

(Fournier et al., 2015). 

The NIN cDNA sequence consists of 2,634 bp with a 3’ untranslated region of 140 bp, 

coding for a protein of 878 aa (Schauser et al., 1999). The nucleotide identity is around 

60% between Lotus japonicus and Pisum sativum NIN (LjNIN and PsNIN, respectively) and 

the intron/exon structure is conserved (Borisov et al., 2003).  

The open reading frame of PsNIN encodes a protein with 922 aa in comparison to 878 aa 

in LjNIN (Borisov et al., 2003). The transcription of NIN was upregulated upon rhizobia 

treatment after one day (8 fold) and at 10 days (Marsh et al., 2007; Yano et al., 2008), 

suggesting a two-phase NIN response. The expression of PsNIN was localized in the 

meristematic cells (zone I) and infection cells (zone II), whereas in the fixation zone (zone 

III) no expression was detected (Borisov et al., 2003). In Lotus NIN expression was 

shown to be dependent on NFR1, NFR5 and SYMRK (Radutoiu et al., 2003), 

furthermore calcium spiking is normal in nin mutant (Miwa et al., 2006). Overexpression 
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of SYMRK, NFR1, NFR5 and gain-of-function versions of CCaMK or CYCLOPS 

triggered spontaneous NIN expression in the plant (Ried et al., 2014; Singh et al., 2014). 

 

5.6 Transcriptional targets of NIN 

Several genes have been identified in the past years, which are dependent on NIN 

expression and respond in a positive or negative regulatory way. 19 putative target genes 

of NIN were identified in the transcriptome database and 9 candidates were verified by 

real time (RT)-PCR (Soyano et al., 2013).  

One transcriptional target is pectate lyase (NPL), a gene involved in infection thread 

formation. For the formation of infection treads, cell walls are degraded by a pectate lyase 

activity to break down polygalacturonic acid and pectin (methyl esterified PGA) via a 

beta-elimination reaction (Xie et al., 2012). Direct regulation of NPL was demonstrated, 

as NIN´s DNA binding domain was able to bind to the NPL promoter (Xie et al., 2012).  

Other downstream regulation genes are NF-YA and NF-YB, which belong to a hetero-

trimeric complex with NF-YC (Soyano et al., 2013). NIN directly bound to the promoters 

of NF-YA1 and NF-YB1 and upregulated their transcription (Soyano et al., 2013). The 

heterodimeric NF-Y complex has been described to trigger the entry into the cell cycle 

division (Laloum et al., 2013; Laloum et al., 2014).  

Soyano and collegues could show that overexpression of NIN induces NF-YA and NF-

YB expression and in turn induces initiation of lateral root organs resembling nodule-like 

structures (Soyano et al., 2013). 

Although the nitrogen fixing bacteria inside a nodule are beneficial for the plant, a 

negative feedback loop exists that prevents hypernodulation, as the bacteria require large 

amounts of photosynthate (Reid et al., 2011). The autoregulation of nodulation AON is 

dependent on two signals being exchanged, one coming from the root and the other from 

the shoot of the plant (Mortier et al., 2012). Furthermore, CLAVATA3/ENDOSPERM 

SURROUNDING REGION (CLE)-related peptides, CLE ROOT SIGNAL (CLE-RS1) 

and CLE-RS2, are transcriptional targets of NIN (Soyano et al., 2014).  
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These factors are assumed to function as root-derived signals that are perceived by the 

shoot acting AON receptor, the HYPERNODULATION ABERRANT ROOT 

FORMATION (HAR1) (Wopereis et al., 2000; Okamoto et al., 2009; Soyano et al., 2014; 

Kucukoglu and Nilsson, 2015; Nishida et al., 2016). The number of nodules per plant is 

strictly regulated via an AON pathway (Magori and Kawaguchi, 2009). 

A negative regulatory role of NIN was demonstrated in the daphne mutant, which 

harbours a chromosomal translocation 7 kb upstream of NINs transcriptional start site 

(Yoro et al., 2014). daphne shows an increased level of infection thread formation, while 

nodule formation is inhibited (Yoro et al., 2014). Interestingly, hyperinfection was 

suppressed by the overexpression of NIN (Yoro et al., 2014). Downstream of CCaMK, 

the autoactivation of Lotus Histidine Kinase (LHK1), encoding a cytokine receptor 

protein, also triggers spontaneous nodule formation (snf2) (Murray et al., 2007; Tirichine 

et al., 2007). Here, a single nucleotide exchange, leading to the replacemnet of leucine 266 

to phenylalanine (L266F) in the receptor, was sufficient to continuously trigger cytokinin 

signalling to induce nodule formation. Strikingly, the mutation in LHK1 leads to a local 

activation of cell division rather than prolific cell division along the entire root (Murray et 

al., 2007). As the daphne snf2 double mutant formed no nodules, the phenotype of daphne is 

likely caused downstream of the cytokinin signalling (Yoro et al., 2014). 

 

5.7 NIN domain structure 

Six conserved modular domains were identified by alignment of the NIN protein of 

legumes and NIN-like proteins from different land plants (Figure 2) (Schauser et al., 

2005). Domains I to III are NIN family specific domains with unknown function. A 

transmembrane domain is predicted for domain IV, which is inconsistent with its 

localisation in the nucleus in planta (Yokota et al., 2010; Soyano et al., 2013). Domains V 

and VI are the RWP-RK, involved in DNA binding and the PB1 domain, which 

functions in protein heterodimerization, respectively (Schauser et al., 2005). The 

secondary structure predicted for the RWP-RK domain is a helix-turn-helix and a helical 

leucine zipper (Schauser et al., 2005).  
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Figure 2: Domain structure of NIN.  

Domains I to III are NIN family specific domains with unknown function. A transmembrane region is 

predicted for domain IV. NIN harbours two NLS within its conserved RWP-RK domain (V), which 

confers DNA binding capability. A protein-protein interaction domain is proposed for domain VI due to 

its homology to a PB1 domain. The full-length NIN protein consists of 878 aa and has a molecular weight 

of 97 kDa. NIN-C (546-878 aa) is a truncated version of NIN only harbouring both the RWP-RK domain 

(571-621 aa) and PB1 domain (780-863 aa).  

 

5.8 NIN like proteins (NLPs)  

Due to the conserved DNA binding domain (RWP-RK), NIN belongs to the protein 

family of NIN-like proteins (NLPs), which are required in nitrate signalling (Schauser et 

al., 2005; Castaings et al., 2009; Suzuki et al., 2013).  Strikingly, NLPs feature an additional 

functional domain, the GAF domain, which was lost in an ancestor NLP turning into the 

symbiotic NIN gene (Schauser et al., 2005). 

This 210 bp deletion in the N-terminal part of the gene probably preceded the 

recruitment of NIN for its special function in RNS (Schauser et al., 2005). NIN lost its 

responsiveness towards nitrate, which is crucial for its role in nodule development, as 

nodules are only formed under N-deficient conditions (Streeter and Wong, 1988; 

Schauser et al., 2005). 

Blast searches of a L. japonicus genomic database identified 4 NLPs, with NLP1 being the 

closest homolog to NIN (Suzuki et al., 2013). A 43 bp sequence of a nitrate responsive 

cis-element (NRE), which is conserved in nitrate inducible genes, was bound by the RWP-

RK domain of NLPs and NIN (Konishi and Yanagisawa, 2013). In particular the activity 

of NLP6 was examined, where the N-terminal part of NLP6 is post-translationally actived 

by nitrate signals and in turn can interact with the NRE (Konishi and Yanagisawa, 2013). 



30 
 

Another well characterized NLP is NLP7 from Arabidopsis, which is regulated by nitrate 

via a nuclear retention mechanism (Marchive et al., 2013). NLP7 is transported actively 

from the nucleus to the cytoplasm via exportin, which is consistent with the presence of a 

predicted leucine-rich nuclear export signal (Marchive et al., 2013). A ChIP-chip approach 

identified 851 targets of NLP7, which were mainly involved in N-metabolism and related 

metabolic pathways, including hormone signalling (Marchive et al., 2013). Interestingly, 

NLP7 was found to be both an activator and a repressor (Marchive et al., 2013). Nitrate 

plays an active role in converting NLPs from an inactive to an active form.  

Despite the high homology between NIN and NLPs, in a cross-species transformation 

the pNIN-OsNLP1 could not rescue the infection phenotype of the nin-1 mutant (Yokota 

et al., 2010). In contrast, expression of the rice homologs of NSP1 and NSP2 could fully 

complement the Lotus mutant phenotypes, restoring infection and nodule organogenesis 

(Yokota et al., 2010). 
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6 Aim of the thesis 

Understanding the molecular crosstalk and the interplay between the symbiotic players 

might allow us to transfer this symbiosis to non-legumes with the goal of reducing 

fertilizer use in agriculture.  

 NIN is a nuclear-localised transcription factor that plays an essential role in the root 

nodule signalling pathway and is required for both infection and organogenesis (Schauser 

et al., 1999). Despite beeing the first symbiosis transcription factor identified in 1999, the 

mechanistic action of the NIN protein remains poorly understood.  

In the past, NIN was primarily used as a genetic marker to study nodulation during 

symbiotic signalling, as it is rapidly induced after inoculation with rhizobia. However, the 

function of the NIN protein during nodulation at the molecular level was not well 

understood.  

My project aimed to characterise NIN at the molecular level and to test whether NIN is 

part of the CCaMK/CYCLOPS complex. To do so, I made use of not only the full-

length protein, but also a truncated version referred to hereafter as “NIN-C” comprising 

two conserved C-terminal domains, namely RWP-RK and PB1. Both were previously 

described as DNA-binding and protein-protein interacting domains respectively (Schauser 

et al., 2005). I analysed them in order to better understand how NIN functions as a 

transcription factor. 

The main goals of the thesis were to I) confirm the protein-protein interaction between 

NIN and the CCaMK/CYCLOPS complex, II) understand the molecular mechanism of 

this interaction and III) to elucidate the role of NIN in nodulation. 
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7 Results 

7.1 NIN accumulates in the nucleus 

NIN harbours a predicted transmembrane domain and two nuclear localisation signals 

(NLS) (Figure 2), indicating that it could localise to a membrane or be targeted to the 

nucleus. Due to the predicted domains, a model was proposed were NIN is located at 

either the plasma or the nuclear membrane and then undergoes a cleavage process in 

which the NIN-C part is released and moves to the nucleus (Schauser et al., 1999; Borisov 

et al., 2003).  

 
In order to characterise the subcellular localisation of NIN, I generated YFP-tagged NIN 

translational fusions (C-terminal fusion tags) and transiently expressed them under the 

control of the constitutive cauliflower mosaic virus 35S promoter in N. benthamiana leaves. 

Free YFP was observed in both the cytosol and the nucleus (Figure 3A), in line with the 

absence of a NLS. A YFP signal for both the full-length NIN and NIN-C was detected in 

the nucleus (Figure 3B and C), indicating that the NLS is functional. However, the 

predicted transmembrane domain did not localise NIN to either the plasma or nuclear 

membrane.   

 
 

 
 
Figure 3: Localisation of NIN protein in planta. 

(A) Free YFP is expressed in the cytosol and the nucleus. NIN-YFP (B) and NIN-C-YFP (C) localised to 

the nucleus in N. bentamiana leaf cells. The YFP signal is shown in yellow in an overlay image of the bright 

field with the micrograph using an YFP filter. N. benthamiana leaf epidermis cells were transformed by 

Agrobacterium-mediated transformation and all proteins were transiently expressed under the 35S promoter. 

Protein expression was examined 3 days post infiltration. Bar: 50 µm. 
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7.2 NIN interacts with CYCLOPS in the nucleus 

CYCLOPS and CCaMK form a tight complex in the nucleus that activates the 

transcription of NIN upon perception of calcium signals. As NIN also localized within 

the nuclear compartment, we asked whether NIN could be part of this complex. To test 

this hypothesis, three different protein-protein interaction techniques were performed. 

7.2.1 Yeast two-hybrid analysis 

An deletion series of the CYCLOPS protein was available (Yano et al., 2008) and was 

used in yeast two-hybrid (Y2H) assays to further investigate the interaction between 

CYCLOPS and NIN. This technique is based on the reconstitution of the split 

transcription factor Gal4, which is then able to activate a downstream reporter gene, by 

binding to the upstream activated sequence (UAS). Thus, the DNA binding domain (BD) 

of GAL4 is fused to one protein (bait) while the activation domain (AD) is fused to the 

other protein (prey), in order to test for protein-protein interaction. In this study the yeast 

strain AH109 was used, which contains the reporter gene HIS3, required for the 

biosynthesis of histidine. Yeast is able to grow on minimal agar plates lacking the amino 

acid if the two proteins tested interact. In addition two markers, LEU2 and TRP, are 

present on the plasmids for selecting positive transformants.  

 

Using NIN as bait and CYCLOPS as prey, we observed growth on selection media, 

indicating an interaction (Figure 4). The co-expression of N-terminal CYCLOPS (1-159 

aa) fused to BD and NIN fused to the GAL4 activation domain did not show any yeast 

growth on selection media, indicating that the N-terminal part of CYCLOPS is not 

sufficient for the interaction with NIN in yeast (Figure 4). For the positive control, the 

combination of CYCLOPS-AD and CCaMK-BD demonstrated yeast growth on minimal 

agar in all dilutions (Figure 4). The yeast two-hybrid analysis indicates an interaction 

between NIN and CYCLOPS.  
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Figure 4: Interaction of NIN and CYCLOPS in yeast  

Yeast two-hybrid GAL4 based assay was performed for the identification of interaction domains for NIN 

and CYCLOPS. Positive interaction was detected between NIN and CYCLOPS, while CYCLOPS (aa 1-

159) did not interact with NIN. CYCLOPS and CCAMK were used as positive control. Interaction assays 

were performed in the yeast strain AH109 cotransformed with prey (AD) and bait (BD) vectors 

containing NIN, CYCLOPS variants and CCaMK. The cotransformants and interacting partners were 

analysed on synthetic dropout nutrient medium lacking leucine and tryptophan (-LW) and lacking leucine, 

tryptophan and histidine (-LWH) plus 10 mM 3-AT respectively. The assay was performed with undiluted, 

10-1 and 10-2 diluted suspension of co-transformation with 10 µl spotted on the plate.  

 

7.2.2 Bimolecular fluorescence complementation (BIFC) 

Second, a targeted split-YFP experimental approach was performed to test the interaction 

of NIN with the CCaMK/CYCLOPS complex. This technique enables in vivo 

visualization of protein-protein interaction. Each potential interactor is fused to one half 

of the YFP protein, which by itself is non-fluorescent. If our candidates are in close 

proximity, an active YFP is reconstituted and a fluorescent signal should be visible upon 

excitation. Candidate proteins were either fused to the N-terminal half or C-terminal half 

of YFP and were transiently expressed in N. benthamiana leaves using A. tumefaciens 

transformation.  

When NIN-YFPN was co-expressed with YFPC-CYCLOPS-WT, a nuclear YFP signal 

was observed (Figure 5A), suggesting protein-protein interaction. As CCaMK interacts 

with different phosphosite variants of CYCLOPS (Singh et al., 2014), we wanted to test if 

this is also the case for NIN.  
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Hence, NIN-YFPN was co-expressed with two CYCLOPS phosphosite variants, YFPC-

CYCLOPS-AA and YFPC-CYCLOPS-DD. Both CYCLOPS variants, when co-expressed 

with NIN, led to a fluorescent signal in the nucleus, demonstrating that they both interact 

with NIN in planta (Figure 5B and C). The interaction between CCaMK-YFPN and YFPC-

CYCLOPS was included as positive control in this assay (Figure 5D). Interestingly, no 

fluorescence was observed when NIN-YFPN and CCaMK-YFPC where co-expressed 

(Figure 5E), indicating no direct interaction with CCaMK within this approach. However, 

in the presence of CYCLOPS-DD, a positive YFP signal for NIN-YFPN and CCaMK-

YFPC was detected in the nucleus, strongly suggesting the formation of a trimeric 

complex (Figure 5F). 

 

 

Figure 5: NIN interacts with different variants of CYCLOPS in N. benthamiana leaf cells.  

Analysis of the interaction between NIN and the CCaMK/CYCLOPS complex by bimolecular 

fluorescence complementation in N. benthamiana leaf cells. Positive interaction was visualised in the 

nucleus between NIN and CYCLOPS-WT (A) as well as with CYCLOPS-AA (B) and with CYCLOPS-

DD (C). As positive control, the interaction between CCaMK and CYCLOPS showed an YFP signal in 

the nucleus (D). No YFP fluorescence was detected for the combination of NIN and CCaMK (E), 

however, in the presence of CYCLOPS-DD, an interaction between NIN and CCaMK was detected in 

the nucleus (F). Candidate proteins were fused to the N- or C-terminal part of YFP (YFPn attached to a 

c-Myc tag or YFPc attached to a HA tag) and driven by the cauliflower mosaic virus 35S promoter. 

Interaction is indicated by a yellow YFP signal and was visualized 60 hpi. Pictures show an overlay of 

bright field with micrographs recorded with an YFP filter. Bars: 10 µm 
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The BiFC technique is often subject to creating false positives, inducing a random 

association of the two separated fluorophore halves (Kerppola, 2008). Therefore, it is 

necessary to include suitable controls such as non-interacting proteins. In the performed 

experiments no interaction was observed between NIN and CCaMK. Still, the lack of 

interaction could be due to various reasons. To ensure that this result is not a false 

negative, western blot analyses were performed to verify that all proteins are correctly 

expressed, at comparable level. The expression level of all proteins was detected with an 

immunoblot analysis to verify that the lack of fluorescence was not due to altered 

expression of the proteins (data not shown). 

7.2.3 FLIM–FRET approach 

To validate the previous results and to further quantify the observed interaction between 

NIN and CYCLOPS variants, Fluorescence-Lifetime-Imaging-Microscopy (FLIM) was 

performed in N. benthamiana epidermal leaf cells.  

As this technique was new in the lab, I first established FLIM as a reliable technique for 

protein-protein interaction studies using a Leica SP5 confocal microscope and applicable 

software from Becker and Hickl.  

FLIM is based on the lifetime change of a fluorescent protein due to Förster Resonance 

Energy Transfer (FRET). After excitation by laser light and transition into the first 

excited state every fluorescent protein has a molecule specific fluorecence lifetime before 

it sends out a fluorescent photon and transitions back to the ground state. If two 

molecules called donor and acceptor are in close proximity (below 10 nm) the energy of 

the first excited state can be transferred from the donor to the acceptor. This energy 

transfer results in a decreased lifetime of the donor. By analysing either the lifetime 

change or the decrease of the donor fluorescence and increase of the acceptor 

fluorescence an energy transfer rate can be calculated.  

In this work TSapphire (TS) was used as the donor and mOrange (mO) as the acceptor 

molecule. This FLIM-FRET pair was described to be efficient and functional in plant 

cells (Bayle et al., 2008) and it allows to directly visualise the proximity of both molecules.  
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In this FLIM-FRET set-up the fluorescence lifetime of the donor was used as probe. A 

repetitive pulsing 80 mHz Multi-Photon (MP) laser was tuned to 800 nm and used to 

excite the donor fluorophore TSapphire. The excited state of the donor fluorophore was 

analysed by a time correlated single photon counting FLIM measurement for a number of 

20 scanning cycles (5 sec/cycle), to acquire a suitable photon count rate in our set-up. 

First, the functional set-up and the resulted measurements of this technique had to be 

verified. So, the lifetime of free TSapphire co-expressed with free mOrange was measured 

to estimate the lifetime for non-interacting protein partners. For mimicking the possible 

interaction of two proteins we made use of a chimeric construct that separates TSapphire 

and mOrange by a 16 aa linker (Bayle et al., 2008). To analyse the fluorescent lifetime 

changes of the donor TSapphire in the presence of the acceptor mOrange, N. benthamia 

leaves were infiltrated with equimolar amounts of p35S::TSapphire-nos and 

p35S::mOrange-nos or  with p35S::TSapphire-mOrange-nos, and all proteins were 

transiently expressed in the plant. The TSapphire fluorophore lifetime is coded in pseudo 

colours ranging from blue (2.6 nanoseconds) to red (1.5 nanoseconds), as depicted in the 

representative lifetime images of each measured combination (Figure 6).  

A lifetime was successfully and consistently detected with 2.49±0.09 ns (Figure 6) for 

TSapphire when co-expressed with free mOrange, showing that the FLIM measurements 

were adequate and within the expected lifetime range. As also expected, the lifetime 

measured for the TSapphire and mOrange fusion construct resulted in a significant shift 

to 2.17±0.11 ns, amounting for an energy transfer of 13% (Figure 6;  

Table 1).  

To confirm that intermolecular interactions are appropriately detected with our FLIM-

FRET set-up, the donor and acceptor were fused to the known interaction pair CCaMK 

and CYCLOPS (Yano et al., 2008; Singh et al., 2014). The coexpression of CCaMK and 

CYCLOPS resulted in a lifetime shift of the donor from 2.35±0.09 ns for TS-CYCLOPS 

in combination with free mOrange to 2.06±0.10 ns for TS-CYCLOPS in the presence of 

CCaMK-mOrange (Figure 6). This amounted for a FLIM-FRET efficiency of around 

12% ( 

Table 1). 
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Figure 6: FRET FLIM analysis of control combinations in N.benthamiana cells.  

Lifetime images of TSapphire in a cell co-expressing either free TSapphire and free mOrange (A) or 

TSapphire-mOrange fusion (C). Fluorescent lifetimes were significantly reduced for the chimeric contruct, 

mimicking interaction (t-test: p=3.76-12). Lifetime images of TSapphire in a cell co-expressing either TS-

CYCLOPS and free mOrange (B) or TS-CYCLOPS and CCaMK-mO (D).  Fluorescent lifetimes were 

significantly reduced in the presence of CCaMK-mOrange, indicating interaction (t-test: p=5.63-12). In a 

colour code ranging from blue (2.6 ns) to red (1.5 ns) representative lifetime images show the analysed 

fluorescent lifetime for one nucleus per combination. Below the image, histograms illustrate the 

distribution of all measured lifetimes of TSapphire in the nucleus in context of the combination. 

Arrowheads point to the lifetime of the depicted nuclei. Insets show mean value and standard deviation. 

Measurements were performed in N.benthamiana leaf cells 60 hours post infiltration. TS: TSapphire; mO: 

mOrange; Bars: 2 µm 
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For the paper Singh et al., I performed FLIM-FRET analysis for further characterisation 

of the CCaMK/CYCLOPS complex. Then, I could show that the complex formation 

takes place independent of the phosphorylation status of CYCLOPS, as all analysed 

CYCLOPS variants (CYCLOPS-WT, CYCLOPS-AA and CYCLOPS-DD) showed 

interaction with CCaMK in FLIM-FRET experiments. Furthermore, the dimerization 

properties of CYCLOPS variants were tested, with all combinations resulting in 

interactions, and interestingly with CYCLOPS-DD showing a stronger association 

compared to CYCLOPS-AA and CYCLOPS-WT. These results were published in 

Figure1 (Singh et al., 2014). 

To quantify the interaction of CYCLOPS and NIN, they were fused to either TSapphire 

at the N-terminus or to mOrange at the C-terminus of the proteins. Expression of all 

proteins was driven by the 35S promoter. The averaged mean lifetime was measured for 

TS-CYCLOPS-WT/AA/DD in the presence of free mOrange and was found to be 2.33 

± 0.08 ns, 2.32 ± 0.08 ns and 2.32 ± 0.05 ns, respectively, in four independent 

experiments (Figure 7). These measurements were taken as the control, and used as 

reference values for non-interacting proteins. To examine the changes in lifetime in the 

presence of a potential interactor, TS-CYCLOPS-WT/AA/DD and NIN-mOrange 

(NIN-mO) were co-expressed in N. bethamiana leaf cells. In comparison the average mean 

lifetime for TS-CYCLOPS-WT/AA/DD in the presence of NIN-mO resulted in a 

significant shift in the lifetime profile of the donor, in detail to 2.08 ns ± 0.09 ns, 2.12 ± 

0.07 ns and 2.06 ns ± 0.09 ns, respectively (Figure 7). The overall FRET-FLIM efficiency 

for the energy transfer was 11%, 9% and 11 % respectively (Table 1). 

In conclusion, FLIM-FRET analysis confirmed the interaction between NIN and 

CYCLOPS variants. 

Taken together, the results of the BiFC, FRET-FLIM and Yeast-two hybrid experiments 

strongly corroborate that NIN interacts with CYCLOPS. 
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Figure 7: FLIM-FRET analysis confirms the interaction between NIN and CYCLOPS variants  

(A-C) For control measurements, TSapphire-CYCLOPS and phospho-site mutants were co-expressed 

with free mOrange, and the fluorescent lifetime of TSapphire-CYCLOPS variants was measured as 

reference for non interacting proteins  with no lifetime difference (ANOVA: F2,85=0.195; p=0.823). (D-E) 

A significant reduction in lifetime of TS-CYCLOPS-WT/-AA/-DD was detected when co-expressed with 

NIN-mO, suggesting an interaction of CYCLOPS phosphorilation-site mutants and NIN in the nucleus 

(t-test: p=1.894-13; p= 7.457-9, p=2.626-10) without any difference in lifetime for the variants (ANOVA: 

F2,74=0.76; p=0.471). FLIM-FRET measurements were performed in N. benthamina 60 hours post 

transformation. In a colour code ranging from blue (2.6 ns) to red (1.5 ns) representative lifetime images 

show the analysed fluorescent lifetime for one nucleus per combination. The histogram depicts all 

measurements obtained for individual nuclei; the arrowhead shows the lifetime of the nucleus in the 

image. For each combination the mean value and standard deviation is indicated below the representative 

nucleus. TS: TSapphire; mO: mOrange; Bar: 2 µm 
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expressed proteins average  
lifetimes (ns) 

n FRET  
efficiency (%) 

    

free TSapphire + free mOrange 
TSapphire-mOrange fusion 

2.49 ± 0.09 
2.17 ± 0.11 

22 
20 

 
13 

TSapphire-CYCLOPS-WT+ free mOrange 2.33 ± 0.08 32  

TSapphire CYCLOPS-WT + CCaMK-mOrange 
TSapphire-CYCLOPS-WT+ NIN-mOrange 

2.06 ± 0.10 
2.08 ± 0.09 

21 
28 

12 
11 

TSapphire-CYCLOPS-AA+ free mOrange 2.32 ± 0.08 28  

TSapphire-CYCLOPS-AA+ NIN-mOrange 2.12 ± 0.07 22 9 

TSapphire-CYCLOPS-DD+ free mOrange 2.32 ± 0.05 27  

TSapphire-CYCLOPS-DD+ NIN-mOrange 2.06 ± 0.09 28 11 

    

 
Table 1: Average mean lifetimes and calculated FRET-FLIM efficiencies for protein-protein 

interaction 

Fluorescent lifetimes of the donor TSapphire in the presence of the acceptor mOrange fused to either a 

protein or the free mOrange alone was measured in plants to determine protein-protein interaction 

between CCaMK, CYCLOPS variants and NIN. For control measurements, CYCLOPS and free 

mOrange or free fluorophores were used. In addition, corresponding FRET efficiencies were calculated. 

 
 

7.3 NIN inhibits CYCLOPS-DD mediated pNIN activation in 

N.benthamiana leaf cells 

It was previously shown that the expression of CYCLOPS-DD is sufficient to 

transactivate the NIN promoter in planta (Singh et al., 2014). Based on the interaction data 

of NIN with CYCLOPS-WT and with two CYCLOPS phosphorylation-site variants in 

the nucleus, we asked if this interaction could have an impact on the previously published 

CYCLOPS-DD transcriptional properties (Singh et al., 2014). 

Therefore, we examined if the interaction of NIN and CYCLOPS can modulate the 

transactivation properties of CYCLOPS-DD for the NIN mediated activation in a 

transient expression assay in N. benthamiana. Leaves were co-infiltrated with a reporter 

construct comprising the NIN promoter (-870 bp) fused to the uidA gene (pNIN:GUS) 

and the coding squences of the effector proteins NIN-FL and CYCLOPS-DD (Figure 8). 

All combinations were analysed by both fluorimetric and histochemical GUS assays. 
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Figure 8: NIN inhibits CYCLOPS-DD mediated activation of the NIN promoter in N. 

benthamiana.  

The expression of CYCLOPS-DD alone led to a strong transactivation of the NIN promoter, while NIN 

alone showed no transactivation activity of its own transcription. CYCLOPS-DD in combination with 

NIN showed a reduction in transcriptional activity compared to the CYCLOPS-DD alone. The 

expression of free RFP functioned as an internal control for a possible autoactivation of the reporter 

construct. Respective T-DNAs of 35S:NIN-myc and/or 35S:HA-CYCLOPS-DD were co-expressed with a 

pNIN:GUS (-870 bp) reporter. GUS activity was quantified with a histochemical and fluorimetric assay 

from infiltrated tobacco leave cells 60 hours after infiltration. Mean value and standard deviation were 

determined from seven biological replicates. The image of one leaf-disc is representative for each 

combination. 
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CYCLOPS-DD strongly induced pNIN:GUS reporter expression, as already shown 

previously (Singh et al., 2014). When expressed alone, NIN only induced a faint GUS 

expression, indicating that NIN is not able to transactivate its own promoter (Figure 8). 

Strikingly, the co-expression of NIN and CYCLOPS-DD resulted in a significant 

reduction of the GUS reporter activity, indicating that CYCLOPS-DD, in presence of 

NIN is no longer able to transactivate the reporter expression (Figure 8). To confirm that 

all proteins were correctly expressed, Western blot analysis were performed with 

respective antibodies (data not shown). 

 

7.4 Development of a Golden Gate cloning system to facilitate co-

expression of different genes in Lotus japonicus 

In order to confirm our results from the N. benthamiana leaf assays in Lotus roots, it was 

necessary to co-express the different proteins in a hairy root system. To facilitate the 

assembly of suitable co-expression constructs we developed a Golden Gate based cloning 

toolbox, which was successfully published (Binder et al., 2014).  

The golden gate system offers the possibility to assemble multiple DNA fragements in a 

certain order in a single cut-ligation reaction with high efficiency (Engler et al., 2008; 

Engler et al., 2009; Engler and Marillonnet, 2011). For the assembly of a certain construct, 

one combines promotors, genes, protein tags, terminators and fluorophore markers. The 

correct assembly order of different elements is guaranteed through the use of predefinded 

overhangs that link all elements in a certain order. Furthermore, golden gate cloning 

exclusively uses type IIS restriction enzymes in the cutting reaction to create sticky 

overhangs. In our case, we used BsaI, BpiI and Esp3I, which generate a 4 base-pairs 

overhang upon cleavage. This powerful tool has been used already for other applications, 

such as the cloning of designer transcription-activator-like effectors (TALEs) (Cermak et 

al., 2011; Morbitzer et al., 2011; Weber et al., 2011; Sakuma et al., 2013). 
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Our toolbox of Level I (LI) vectors consisted of a collection of promoters, N-terminal 

tags, Gene of interest (GOI), C-terminal tags, terminators and a miscellenous module, 

which are all equipted with BsaI restriction sites at both ends. For the successful assembly 

of a Level II construct (synthetic gene), you combine six LI vectors and a Level II (LII) 

backbone. For co-expression of more than one gene you use a Level III (LIII) backbone 

for the assembly of different LII constructs. 

I generated serveral contructs for our toolbox, including a promoter, various fluorescent 

protein tags for N and C terminal fusion, dummies as placeholders, LI backbones, LII 

and LIII backbones.  

For reliable co-expression of both NIN and CYCLOPS-DD with equal gene dosage 

within one root system, both genes were cloned into the same golden gate LIII backbone. 

To enable efficient assembly in a single cut-ligation reaction, the recognition sites of the 

Type IIS restriction enzymes BsaI, BpiI and Esp3 were removed from both genes by 

introduction of silent point mutations. For the LII construct the genomic sequence of 

NIN was recombined with the L. japonicus polyubiquitin promoter (pUb) and with the 

sequence of c-myc (coding for a C-terminal tag). 

 

7.5 NIN inhibits CYCLOPS-DD mediated pNIN activation in roots of 

L. japonicus  

To verify the results of the transactivation assays from N. benthamiana in L. japonicus, hairy 

root transformation was performed in a wild-type line harbouring a stable integrated 2 kb 

pNIN:GUS transcriptional fusion (Radutoiu et al., 2003).   

As expected, CYCLOPS-DD induced a strong and specific GUS activity in 90 % of the 

analysed root systems (Figure 9B;  

Table 2). In line with the results obtained in N. benthamiana leaf cells previously, no GUS 

staining was visible in roots transformed with the empty vector control or expressing 

pUb:NIN, demonstrating that NIN, at least when overexpressed, is also not able to 

activate its own transcription in Lotus roots (Figure 9C). 
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Figure 9: NIN inhibits CYCLOPS-DD mediated activation of the NIN promoter in Lotus roots. 

No GUS activity was observed in transformed roots of the empty vector control (A) and overexpressing 

NIN alone (B). Strong GUS activity was detected in roots expressing CYCLOPS-DD alone (C). The co-

expression of CYCLOPS-DD with NIN led to a reduction of GUS staining in approximately 2/3 of the 

analysed root systems (D). Some blue-stained patterns were observed with the co-expression of 

CYCLOPS-DD and NIN in 1/3 of the analysed root systems (E and F). Analysis of GUS induction in a 

pNIN:GUS reporter Lotus line, transformed with constructs expressing pUb:CYCLOPS-DD, pUb:NIN or 

co-expressing pUb:NIN and pUb:CYCLOPS-DD (golden gate construct) was performed 4 weeks post 

transformation. Reporter activity was determined by GUS staining of transformed plants carrying the 

inserted T-DNA. Transformed plants were identified by expression of GFP. Bar: 2 mm 

 

Interestingly, the co-expression of CYCLOPS-DD and NIN led to a reduced induction of 

pNIN:GUS. In 72% of the observed transformed root systems, no GUS activity was 

detected (referred to as GUS-, Figure 9D;  

Table 2), while 28 % of the plants showed some GUS staining in different areas along the 

root (referred to as GUS+; Figure 9E and F;  

Table 2). In 28% of transformed plants co-expressing NIN and CYCLOPS-DD together 

with the pNIN:GUS reporter resulted in a blue stained pattern shown in Figure 9 (E and 

F). The positive GUS pattern in the co-expression roots resembles the pattern observed 
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in the CYCLOPS-DD activated GUS in roots, indicating that overexpression of NIN was 

not always able to reduce CYCLOPS-DD mediated pNIN activation. 

 

contructs total plants GUS- GUS+ 

empty vector 91 91 0 

CYCLOPS-DD 92 8 84 

NIN 74 74 0 

CYCLOPS-DD+NIN 50 36 14 
 

Table 2: Quantification of GUS expression in roots of pNIN:GUS line  

The total number of hairy roots are listed with respective number of roots presenting GUS activity (GUS 

+) or no GUS (GUS-) activity. The data were generated from 5 independent experiments. 

 

Nevertheless, these results are in agreement with the data from N. benthamiana. Again, the 

co-expression led to a reduction of GUS staining compared to the CYCLOPS-DD 

transactivating activity on the NIN promoter. The pictures illustrate the results of the 

histochemical GUS activity that are representative for each construct (Figure 9), which is 

consistent with the observations in N. benthamiana (Figure 8). In conclusion, the co-

expression experiments performed in leaf cells and in roots demonstrate that the 

transactivation activity of CYCLOPS-DD on the NIN promoter is strongly reduced in 

the presence of NIN. 

 

7.6 NIN inhibits CYCLOPS-DD mediated pNIN activation at the 

previously identified CYCLOPS-responsive element 

We showed that NIN and CYCLOPS interact in planta and that the presence of NIN 

reduces the transactivation of the NIN promoter by CYCLOPS-DD. CYC-RE was 

demonstrated to be the binding site for CYCLOPS-DD on the NIN promoter and 

sufficient to mimic NIN transactivation by CYCLOPS-DD (Singh et al., 2014). 
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We hypothesized that this could be potentially achieved via the the following 

mechanisms:  

1) As CYCLOPS-DD was demonstrated to interact with the previously identified 

CYCLOPS-responsive element (CYC-RE, 30 bp), it is possible that NIN equally binds to 

CYC-RE in close proximity to the CYC-box and in turn blocks CYCLOPS-DD from 

transactivating the NIN promoter.  

CYC-RE: CGATTGCCATGTGGCACGCAGAGAGGAGCC with CYC-box in red 

2) Alternativly, since co-expression of NIN and CYCLOPS reduced GUS activity by 

inhibiting pNIN activation in Nicotiana and in Lotus, the protein-protein interaction of 

NIN and CYCLOPS could prevent the binding of CYCLOPS-DD to DNA and thereby 

inhibit CYCLOPS-DD mediated pNIN transactivation. 

In order to test if NIN can also reduce CYCLOPS-DD mediated pNIN activation at 

CYC-RE, the same set of combinations was performed in transactivation assays as 

previously described (Figure 8), but using this time 2xCYC-RE:GUS as a reporter (Figure 

10). 

The 2xCYC-RE:GUS reporter was transactivated when co-infiltrated with CYCLOPS-

DD, whereas no GUS activity was detected in the presence of NIN alone, as expected 

(Figure 10). The co-expression of CYCLOPS-DD and NIN led to a reduction in GUS 

activity compared to the CYCLOPS-DD activated 2xCYC-RE (Figure 10), suggesting 

that the transactivation activity of CYC-RE can be reduced with NIN co-expression by 

either competitive binding of CYCLOPS-DD and NIN or by no binding of either 

transcription factor due to their protein-protein interaction capability.  

In general the overall GUS activity readout of the 2xCYC-RE:GUS reporter was weaker 

for all tested combinations in comparison to the pNIN:GUS promoter in previous 

experiments. Still, the same tendency of reporter expression and repression effect was 

triggered as with the pNIN:GUS reporter (Figure 8). In conclusion, NIN seems to 

function as a transcriptional repressor of the CYCLOPS-DD activated NIN expression in 

planta 
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Figure 10: NIN inhibits CYCLOPS-DD transactivation of 2xCYC-RE:GUS in N. benthamiana  

Pinpointing the inhibitory site of NIN interfering with the CYCLOPS-DD mediated transactivation to the 

cis responsive element CYC-RE. The expression of CYCLOPS-DD alone led to a strong activation of the 

2xCYC-RE:GUS, while NIN alone showed no transactivation activity of GUS. Co-expression of both 

CYCLOPS-DD and NIN led to a reduction in transactivation of GUS expression. Respective T-DNAs of 

35S:NIN-myc and 35S:HA-CYCLOPS-DD were co-expressed with a 2xCYC-RE:GUS (-717 to -683 bp) 

reporter. Free RFP was used as control and showed no transactivation activity of 2xCYC-RE:GUS. 

. 
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7.7 NIN binds to its own promoter, located in close vicinity to the 

CYC-box, in a sequence-specific manner  

As NIN can reduce the activation of 2xCYC-RE:GUS expression mediated by 

CYCLOPS-DD in planta, we then tested whether NIN could directly bind to DNA on the 

CYC-box element or in the vicinity of that element. In turn, NIN binding could prevent 

CYCLOPS-DD from binding to the CYC-box or both proteins might simultaneously bind 

next to each other on the CYC-RE.  

Electrophoretic mobility shift assays (EMSA) provide a powerful tool to study DNA-

protein interactions (Fried, 1989). This method relies on the principle that a DNA-protein 

complex (bound probe) will have different mobility during electrophoresis than non-

bound linear DNA (free probe) (Ryder et al., 2008). These shifts can be visualized by a 

native acrylamide gel using labeled DNA to form the DNA-protein binding complex 

(Ryder et al., 2008). Near infrared (IR) fluorescence EMSA offer a safe and sensitive 

alternative to radioactive EMSA techniques. Short linear DNA fragments that contain 

consensus binding sequences are used as probe and are 5’ end-labeled with IR dye for the 

binding assay. 

NIN binding site (NBS) motifs have already been identified (Soyano et al., 2013; Soyano 

et al., 2014), so we searched for similar bipartite consensus NBS in silico in order to find 

putative binding sites for NIN on the NIN promoter, in particular in the region 

surrounding the CYC-RE.  One sequence was found in close proximity upstream of the 

CYC-RE element, which contains both bipartite consensus elements, a T-rich region and 

an AGG separated by 7 bp (named hereafter NIN-RE, Figure 11). Strikingly, another 

AGG sequence was found within the CYC-RE with 7 bp downstream of CYC-box 

element. 

To test direct binding of NIN to the identified cis elements, EMSAs were performed 

using different IR-labeled DNA probes (NIN-RE, CYC-RE and PAL) (Figure 11). The 

PAL probe was included to distinguish between binding to the palindromic CYC-box 

sequence (highlighted in red) and the present AGG sequence (highlighted in green) within 

the CYC-RE (Figure 11). 
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Figure 11: NIN can bind to different probes in close proximity and on the CYC-RE.  

Different nucleotide binding sites (NBS) within the NIN promoter were used as probes in EMSAs. 

Sequences containing the consensus NBS of NIN are highlighted in green, the palindromic region of the 

CYC-box is indicated in red. The C-terminal part of NIN (NINC, aa 546-878), the DNA-binding domain 

of NIN (RW, aa 546-643) and CYCLOPS (CYCBD, aa 364-518) were tested for ability to bind to different 

NBS within the NIN promoter (NIN-RE, CYC-RE and PAL) in EMSAs. CYCBD was able to interact 

with all tested elements. NINC did bind to NIN-RE and CYC-RE, but did not interact with PAL. Arrow 

point towards the detected shifted bands, while arrow head marks the free probe in the gel. Data and this 

figure were generated by Katja Katzer. 

We tested these probes with the C-terminal part of NIN (NINC, aa 546-878), which was 

already shown to successfully bind to the promoter of LjNF-YA-1 and LjNF-YB-1 

(Soyano et al., 2013). This NIN fragment contains the RWP-RK domain and the PB1 

domain, which are predicted to function in DNA binding and in protein-protein 

interaction, respectively (Schauser et al., 1999; Schauser et al., 2005). This protein was 

further reduced to contain only the DNA binding domain (RW, aa 546-643). Two shifted 

bands (two bound probes) of the NIN-RE probe were detected upon incubation with 

NINC (Figure 11), indicating protein-DNA binding. Interestingly, IR-labeled CYC-RE 

was also shifted by NINC, whereas the probe containing the palindromic CYC-box 

(Rodríguez-Llorente et al.) alone did not show a mobility shift (Figure 11), sugessting that 

the AGG region within the CYC-RE is responsible for NIN-DNA binding. RW also 

resulted in a mobility shift with NIN-RE and again with no binding affinity to PAL, 

confirming that NIN interacts with DNA in a sequence specific manner via its predicted 

DNA binding domain.  
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In conclusion, NIN can interact with DNA on NIN-RE and CYC-RE, but not PAL, 

confirming the hypothesis that NIN can bind to DNA on the CYC-RE and on another 

site in close vicinity likely via its RWP-RK domain. 

It was demonstrated that the binding domain of CYCLOPS (aa 364 – 518, CYCBD) can 

bind in a sequence specific manner to a palindromic element named CYC-box (highlighted 

in red in Figure 11) (Singh et al., 2014). Hence, we also tested if CYCBD can bind to the 

NIN-RE in vitro, although there is no sequence similar to the CYC-box on this element. 

Interestingly, CYCBD caused a mobility shift with NIN-RE as with CYC-RE and PAL in 

EMSA (Figure 11), suggesting that CYCBD can bind to other elements on DNA other 

than the previously identified CYC-box (Singh et al., 2014). 

Striking is the observation that NIN binds the probed DNA with two shifted bands while 

CYCBD only binds DNA with one specific mobility shift band, suggesting that NIN binds 

in different complexes or to additional motifs.  

To verify that NINC binds to NIN-RE in a sequence specific manner, different 

competition analyses were performed. A NIN binding sequence has already been 

described, which is conserved in two parts within the identified consensus sequence, 

namely on the left with a richness in T and on the right with the sequence AGG (Soyano 

et al., 2013). Consequently, NIN-RE was mutated in the conserved regions of the element 

(highlighted in red, Figure 12). Sequence specificity of NIN-RE was demostrated as the 

binding can be out-competed by addition of unlabeled NIN-RE DNA in a large 

molecular excess (40x and 200x), but not with mutated competitor NIN-RE DNA 

(mNIN-RE) with 4 bps substituted on the bipartite NBS or PAL DNA (Figure 12).  

Moreover, we confirmed that a higher NINC protein concentration results in a thicker 

shifted band detected in EMSAs, refecting the higher amount of bound probe (Figure 

12). NIN binds with two mobility shifted bands on NIN-RE; however, we observed that 

the lower mobility shift interacts less specifically than the upper one with NIN-RE. One 

explanation might be that different stoichiometric complexes of NINC or unspecific 

DNA-protein complexes are represented. As expected, unlabeled Pal DNA comprising 

the CYC-box did not compete for the binding of NINC to labeled NIN-RE probe (Figure 

12), as it was previously shown to not interact with this element (Figure 11).   



53 
 

These results demonstrate that NIN has sequence-specific DNA-binding properties and 

can directly bind to a NBS in close vicinity to the CYC-box in vitro.  

 

 

Figure 12: NINC specifically binds to NIN-RE in vitro.  

Sequences of NIN-RE and mNIN-RE are shown above the gel. Regions related to the consensus NBS of 

NIN and mutated base pairs are highlighted in green and red, respectively. Mobility shifted bands of 

NINC bound to NIN-RE are enhanced with increasing concentration of NINC (0-45 pmol). Unlabeled 

wild-type or mutated versions of NIN-RE (mNIN-RE) or wild-type PAL were used as competitor DNA 

in 40- and 200-fold excess. Arrows point towards the detected shifted bands, while the arrow head marks 

the free probe in the gel. Data and this figure were generated by Katja Katzer. 

 

7.7.1 Competition of NIN and CYCLOPS for NIN promoter regulatory elements 

As CYCLOPS and NIN can both bind to the same NIN-RE DNA element within the 

NIN promoter (Figure 11), we asked about the binding affinity both NIN and CYCLOPS 

would have in the same binding reaction with NIN-RE. To test which transcription factor 

has a higher affinity for NIN-RE, competition experiments between NINC and CYCBD 

were performed (Figure 13).  
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We observed that equal molar amounts of NINC and CYCBD incubated with NIN-RE as 

probe caused a shift, which was shifted to an intermediate position, between the mobility 

shift of individually bound NINC or CYCBD. Excess of CYCBD over NINC was able to 

out-compete the upper specific mobility shift of NINC, whereas the unspecific lower shift 

remained bound to NIN-RE. On the other hand, NINC was less effective to prevent 

CYCBD from binding to NIN-RE (Figure 13).  

While a 5-fold excess of CYCBD over NINC strongly shifted the complex stoichiometry 

towards NIN-RE+CYCBD, the same molar excess of NINC over CYCBD only 

insufficiently competed for the DNA element. Instead the lower unspecific shift of NINC 

bound to NIN-RE increased. 

 

 

Figure 13: Competition experiments between NINC and CYCBD for NIN-RE.  

CYCBD shows a higher affinity for NIN-RE and can out-compete NINC for binding. Equal quantities of 

NINC and CYCBD caused a shift of intermediate mobility (CYCBD, NINC)* which is moving towards the 

band height of NIN-RE+CYCBD complex with increasing concentration of CYCBD. Molar amounts of 

proteins used for each binding reaction are indicated above the gel. Data and this figure were generated by 

Katja Katzer. 

 

These results indicate that CYCBD has a higher affinity for NIN-RE and can outcompete 

NINC for binding in vitro; and also that once NIN-RE is saturated with CYCBD, high 

quantities of NINC are required to replace CYCBD and shift the equilibrium towards NIN-

RE+NINC complex. 
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7.7.2 Co-binding of NIN and CYCLOPS to the NIN promoter regulatory 

element 

It was demonstrated that NIN binds specifically to NIN-RE, which is in close proximity 

to CYC-box, the binding site of CYCLOPS. Next, we asked whether NIN and CYCLOPS 

would both interact simultaneously with DNA or would compete for binding to the 

tested element, which combines both identified responsive sequences NIN-RE and CYC-

RE (named NC-RE). 

The activity of CYCLOPS to mediate DNA binding and transcriptional activation was 

previously verified for a minimal CYCLOPS version. So, to better distinguish this band 

from the mobility shifts of the individual proteins, the minimal CYCLOPS (CYCMin, aa 

255-518) was used, which has a higher molecular weight than CYCBD. 

When NC-RE was used as probe, both proteins could individually interact with the 

element (Figure 14B). Strikingly, when both proteins were simultaneously present in one 

binding reaction, an additional super shift of potentially trimeric NC-RE+CYCMin+NINC 

complex was observed (Figure 14). 

In accordance, since both NINC and CYCMin bind to different NBS on the CYC-RE, 

CYLOPS to the CYC-box and NIN to the 3’ region of the CYC-RE, both proteins can 

concurrently bind the probe in EMSA and create an additional super shift, as observed 

for NC-RE (Figure 14B). This result can only be explained by simultaneous binding of 

CYCMin and NINC. 

Interestingly, the auto-active, full-length CYCLOPS (CYCDD) (Singh et al., 2014) did not 

cause an additional super shift of CYC-RE in the presence of NINC (Figure 14), which 

might be caused by sterical hindrance between the two proteins.  

Finally, the results from the competition EMSAs are in agreement with the idea that NIN 

inhibits CYCLOPS-DD mediated NIN activation through its co-binding to DNA. 
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Figure 14: Competition analyses using NC-RE and CYC-RE together with CYCLOPS and NINC  

(A) Different nucleotide binding sites (NBS) within the NIN promoter were used as probes in EMSAs. 

Sequences containing the consensus NBS of NIN are highlighted in green, the palindromic region of the 

CYC-box is indicated in red. (B) The minimal CYCLOPS (CYCMin, aa 255-518) and NINC can individually 

and simultaneously bind to NC-RE and CYC-RE in EMSA. Super shifted band of trimeric 

DNA+CYCMin+NINC complex is indicated. (C) When CYCDD and NINC are incubated together with 

CYC-RE only CYCDD can bind and not NINC. NINC does not interfere with binding of CYCDD to CYC-

RE in EMSA.The arrows and the arrowheads show positions of specifically bound and free probe, 

respectively. Data and figure were generated by Katja Katzer. 

 

7.8 Overexpression of NIN leads to local inhibition of nodulation and 

infection 

Due to the observed negative regulatory effect of the NIN protein on its own 

transcription in the CYCLOPS-DD mediated activation pathway shown in transactivation 

assays in N. benthamiana and L. japonicus roots (Figure 8 and Figure 9), we tested if 

overexpression of NIN would cause an effect on the nodulation efficiency in L. japonicus. 

Therefore, hairy root experiments were performed, where NIN was expressed under the 

strong and constitutive poly-ubiquitin promoter in Gifu wild-type roots. The transformed 

plants were inoculated with Mesorhizobium loti symbiont and nodulation was examined 4 

weeks post infection (wpi).  
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As depicted in the pictures of representative samples for a successful hairy root 

transformation, the root systems often consisted of a mix of transformed (visualized in 

green, expressing the GFP transformation marker) and untransformed roots (no green 

colour, not expressing the GFP transformation marker)(Figure 15).  

Strikingly, nodulation was blocked in GFP positive transformed roots overexpressing 

NIN (Figure 15D-F), indicating an inhibitory effect on nodulation. Nevertheless, the 

overall root system exhibited normal root architecture (Figure 15D-F). 

To validate that this negative effect on nodulation is caused specifically by NIN, the 

overexpression of another transcription factor, CYCLOPS, which is relevant for 

symbiosis, was tested in Gifu hairy root systems. The overexpression of CYCLOPS in 

Gifu wild-type plants led to a normal nodulation efficiency (Figure 15G-I) that was 

comparable to the control plants transformed with an empty vector (Figure 15A-C).  

Hence, no inhibition of nodulation was observed in this experiment, demonstrating that 

overexpression of CYCLOPS has no repressive effect on nodulation and that the 

inhibition of nodulation is specific to the overexpression of NIN.  

Next, we tested if the inhibitory effect was restricted to nodule organogenesis or if it also 

had an impact on the infection process. As observed, infection was also blocked at the 

very early microcolony stage, restricted to the GFP positive roots overexpressing NIN 

and where nodule organogenesis was not concomitantly triggered (Figure 16B).  
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Figure 15: Nodulation is inhibited by overexpression of NIN in Gifu hairy roots.  

(A-C) There were no effects on nodulation along the whole root system in roots transformed with the 

empty vector control. (D-F) Nodulation was suppressed in the transformed roots overexpressing NIN, 

but nodules were formed on non-transformed roots of the same root system. (G-I) Overexpression of 

CYCLOPS did not inhibit nodulation in Gifu hairy roots. Representative brightfield images with 

corresponding GFP fluorescent images as a transformation marker and DsRed expressing M.loti were 

taken 4 weeks past infection. Bar: 2 mm; Numbers in parentheses show: first number represents the 

amount of plants showing a normal wild-type phenotype, the second number represents the number of 

total plants tested in 4 independent hairy root experiments.  

However, infection threads were normally formed on non-transformed roots of the same 

root system overexpressing NIN (Figure 16C). In comparison, the empty vector control 

showed normal nodulation and infection, in both GFP negative and GFP positive roots, 

on 100% of the observed root systems (Figure 15A-C and Figure 16A). 

To further quantify the observed difference on nodulation in GFP positive and negative 

roots caused by the overexpression of NIN, the nodule numbers for GFP positive and 

GFP negative roots were counted separately for each root system in two Lotus wild-type 

ecotypes Gifu and MG-20 (Figure 17).  
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Figure 16: Infection is locally inhibited by overexpression of NIN in Gifu hairy roots.  

A typical shepherd’s crook curl is formed by a responsive root hair and an infection thread is formed in 

empty vector transformed plants (A). Infection is stopped at the entrapped microcolony stage with 

overexpression of NIN (B), however, infection threads are formed in non-transformed roots of the same 

root system (C). Representative infection events 14 dai on Gifu hairy roots are depicted. M. loti expressing 

dsRED are visualized in red. Bar: 100 µm; Numbers in parentheses represent individual infection events 

counted in 4 independent root systems in comparison to the average number of fully developed infection 

threads (average from 100 infection events per root system). Infection events were counted 14 dpi with 

M.loti. 

 

The mean number of nodules formed on GFP positive roots overexpressing NIN was 

significantly lower in comparison to the GFP positive roots expressing the empty vector 

control, in both Gifu and MG-20.  

In fact, nodule formation was completely inhibited in 80% of the plants overexpressing 

NIN, while the nodule number in roots transformed with the empty vector control 

showed a median of 13 nodules in Gifu and 8 nodules in MG-20. Consistently, the same 

effect on nodulation was observed in both ecotypes. The obtained results are summarized 

in Figure 17.  

Interestingly the mean nodule number was around 16 in Gifu and 8 in MG-20 in the 

untransformed (GFP negative) roots overexpressing NIN in the same roots system, 

confirming the local effect of inhibition of nodulation caused via overexpression of NIN 

(Figure 17). 
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Figure 17: Local inhibition of nodulation is caused by overexpression of NIN  in Gifu and MG-20 

hairy roots 

An inhibition of nodulation was observed in GFP positive roots transformed with pUb:NIN in Gifu and 

MG-20 plants (t-test: Gifu p=7.08-11; ; MG-20 p=1.33-5). In GFP negative roots overexpressing NIN 

more nodules are formed compared to roots transformed with the empty vector control in Gifu plants (t-

test: Gifu p=0.001517). In contrast to GFP negative roots overexpressing NIN less nodules are formed 

compared to roots transformed with the empty vector control in MG-20 plants (t-test: MG-20 

p=0.007161). Gifu and MG-20 were inoculated with the symbiont M.loti and nodule number was scored 4 

wpi. Around 30 plants were analysed in each experiment.  

 

As expected, the number of infected nodules along the root was independent of a 

transformation event in plants transformed with the empty vector, with nodules formed 

in non-transformed roots comparable to GFP positive roots. Looking only at the GFP 

negative roots in Gifu, the mean nodule number was higher in NIN overexpressing roots 

compared to the empty vector control.  
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The opposite was observed in MG-20, with more nodules in the empty vector control 

compared to the ones overexpressing NIN (Figure 17), indicating that there is a 

difference in the regulation of nodule inhibition in the different ecotype backgrounds. 

These findings indicate that NIN overexpression locally inhibits nodulation in Gifu wild-

type roots, as the number of nodules is solely reduced in GFP positive roots 

overexpressing NIN. It can be speculated that expression of NIN is reduced via NIN 

overexpression leading to a local inhibition of nodulation and infection. However, the 

observation in MG-20 suggests a systemic inhibition of nodulation caused by NIN 

overexpression. 

 

7.9 nin-2 and -8 mutants cannot be complemented by overexpression 

of NIN 

To test the hypothesis that NIN overexpression complements the nin mutant phenotype, 

hairy root experiments were performed in nin-2 and nin-8 (Schauser et al., 1999; Perry et 

al., 2009). The nin-2 mutant has a transposon insertion that causes a frame shift at C145. 

The nin-8 mutant harbours a mutation at C1785 to T that leads to a stop codon and in 

addition contains a har-1 mutation.  

Both nin mutant alleles cause the same phenotype of non-nodulating and no infection 

thread formation and no nodulation after inoculation with the symbiont. Overexpression 

of NIN previously causing the repression effect on nodulation and infection in Gifu, was 

tested by A. rhizogenes mediated hairy root transformation in both nin mutants.  

Representative pictures of the phenotype observed in the nin-8 mutant are depicted in 

Figure 18. All plants transformed with the empty vector control showed the typical non-

nodulating phenotype und infection blocked at the microcolony stage (Figure 18A-C). 

Nodulation and the infection process was not rescued with overexpression of NIN in nin 

hairy roots (Figure 18D-F). Consequently, it was not possible to complement the mutant 

phenotype with overexpression of NIN. 
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Figure 18: Overexpression of NIN did not rescue nodulation or infection in nin mutants 

(A-C) Hairy roots of nin-8 mutants were transformed with the empty vector control showed the mutant 

phenotype without any nodule formation or infection thread formation. (D-F) No complementation of 

nodulation and infection growth was observed with overexpression of NIN in hairy roots. The left panels 

(A,D) show bright field images, images in the middle panels (B,E) highlight only the transformed roots 

expressing free GFP as transformation marker, and the right panels (C,F) show M. loti expressing dsRed 

marker in red colour. Roots were analysed under the epifluorescence microscopy 4 weeks after inoculation 

with M. loti. Bar: 2 mm in B and E, 500 µm in C and F. 

 

The results from the complementation experiments are in line with the idea of NIN 

acting as a repressor and strengthen the hypothesis of a tight regulation of the NIN gene. 

As both tested mutants are no genetic null mutants, it would be interesting if 

complementation of a null nin mutant might be possible. In nin-2 and nin-8 the N’ 

terminal part of NIN is still expressed, which could also trigger the inhibitory effect on 

infection and nodulation. 
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7.10 The negative regulatory effect on nodulation caused by 

overexpression of NIN is independent of autoregulation of 

nodulation  

Next, we wanted to determine at which point within the symbiosis signalling pathway the 

inhibition of nodulation is caused by overexpression of NIN. To pinpoint the negative 

mechanistic action caused by overexpression of NIN, several nodulation mutants were 

analysed for the effect on nodulation efficiency.  

The nodule number is regulated by a key process named autoregulation of nodulation, 

preventing the production of an excessive number of nodules along the root (Wopereis et 

al., 2000; Magori and Kawaguchi, 2009). This mechanism is based on long-distance cell-

to-cell communication between root and shoot. In Lotus japonicus, one shoot-acting 

receptor-like kinase HYPERNODULATION ABERRANT ROOT FORMATION 1 

(HAR1) has been identified to be involved in this process (Krusell et al., 2002; Nishimura 

et al., 2002; Buzas and Gresshoff, 2007). 

 

Figure 19: Overexpression of NIN inhibited nodulation in har1-3  hairy roots 

(A-C) In har1-3 hairy roots transformed with the empty vector, hypernodulation was normal, which is in 

agreement with the respective mutant phenotype. (D-F) Nodulation is inhibited in transformed roots 

overexpressing NIN (GFP positive) in the har1-3 mutant, but not in non-transformed roots (no GFP 

expression) of the same root system. Nodulation was examined after 4 weeks of inoculation with rhizobia. 

Bar: 2 mm 
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As HAR1 is required for AON to inhibit nodulation, the mutant phenotype is hyper-

nodulating and thus forms an enormous amount of nodules (Wopereis et al., 2000). To 

investigate if the inhibitory effect on nodulation via NIN overexpression is dependent on 

HAR1 regulation and thus connected to AON, hairy root experiments were performed in 

the har1-3 mutant background. While har1-3 hairy roots transformed with the empty 

vector control showed a typical excessive nodulation phenotype (Figure 19A-C), the 

overexpression of NIN resulted in the inhibition of nodulation in GFP positive roots 

(Figure 19D-E), confirming a local inhibition of nodulation independent of AON.  

Strikingly, the root length of transformed roots overexpressing NIN were longer (3.6 ± 

0.8 cm) compared to the empty vector control (1.8 ± 0.4 cm) in the absence of rhizobia, 

indicating that the cell division process was still active (Figure 20). 

 

 

Figure 20: har1-3 hairy roots overexpressing NIN were longer in root length 

The analysis of har1-3 hairy roots overexpressing NIN showed a longer root length, compared to the roots 

transformed with the empty vector control. Root length was measured 4 wpi with M.loti.  

 

Taken together, these data demonstrate that overexpression of NIN is sufficient to block 

the process of infection and nodulation within the nodulation signalling pathway in a har-

1 independent manner. 
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7.11 Inhibition of nodulation caused by NIN overexpression is 

downstream of the common symbiosis pathway 

Based on the previous result that NIN is part of the CCaMK/CYCLOPS complex 

(Figure 5), we asked ourselves whether the interference of NIN within the signalling 

pathway would be active either upstream or downstream of the common symbiosis 

pathway.  

Interestingly, the complex nodule organogenesis program can be activated by the 

deregulation of CCaMK, which triggers spontaneous nodulation in the absence of 

rhizobia (Tirichine et al., 2006). Tirichine reported a spontaneous nodule formation (snf1-

1) mutant, which harbours two mutations causing the induction of nodulation, one is a C 

to T transition leading to the replacement of threonine 265 by Isoleucine, and the second 

is a mutation in intron 1 (Tirichine et al., 2006). 

To investigate if the inhibition of nodulation triggered by overexpression of NIN acts 

upstream or downstream of CCaMK, snf1-1 was subjected to the overexpression of NIN 

in hairy root experiments and was further cultivated in the absence of rhizobia in order to 

test for spontaneous nodulation.  

Interestingly, rhizobia-free spontaneous nodules were not formed on hairy roots 

overexpressing NIN (GFP positive), while the wild-type roots from the same root system 

showed normal nodulation (Figure 21C-F; Figure 22). This is in line with the observation 

using Lotus wild-type plants and har1-3 plants, indicating a mechanism independent from 

rhizobial infection.  

To verfy that overexpression of NIN is causing the inhibition of spontaneous nodule 

formation, NSP2, another transcription factor relevant for symbiosis, was equally tested 

in this experiment. Overexpression of NSP2 slightly reduced spontaneous nodulation in 

snf1-1 (Figure 21G and H; Figure 22), however, still showed nodulation on GFP positive 

roots as control plants transformed with the empty vector control (Figure 21; Figure 22). 
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Figure 21: Inhibition of spontaneous nodulation in snf1-1 is caused by overexpression of NIN.  

(A and B) In snf1-1 plants transformed with the empty vector control spontaneous nodules developed as 

expected for the snf1-1 phenotype. (D-F) Spontaneous nodulation is inhibited in hairy roots 

overexpressing NIN in the snf1-1 mutant, but is not blocked in GFP negative roots (non-transformed 

roots). (G and H) Overexpression of NSP2 did not inhibit spontaneous nodule formation in snf1-1 hairy 

roots. Representative bright field images (on the left panels) with corresponding GFP fluorescent images 

highlighting GFP as transformation marker (right panels). The first number in parenthesis depicts the 

amount of nodulated plants, the second number represents the total number of plants tested in 4 

independent hairy root experiments. Nodulation was assayed 5 weeks post transplantation in pots kept 

under sterile conditions. Bar: 2mm  
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Figure 22: Quantification of spontaneous nodules formed in snf1-1 hairy roots overexpressing 
NIN or NSP2 

The number of spontaneous nodules was scored in snf1-1 hairy roots overexpressing either NIN or NSP2 
and roots transformed with the empty vector control 5 weeks after transplantation to pots without 
infection of rhizobia. Statistical analysis showed a significant difference in nodule numbers with 
overexpression of NIN or NSP2 compared to the empty vector control (ANOVA: F2,54=27.21; p=6.71-9; 
Tukey HSD: NIN:p=0.0; NSP2:p=0.0001), with less spontaneous nodules formed on hairy roots 
overexpressing NIN compared to the nodule number counted on hairy roots overexpressing NSP2. 
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Another spontaneous nodulation formation (snf2-2) mutant had been identified that 

harbours a gain-of-function mutation in a cytokinin receptor (Lotus Histidine Kinase: 

LHK1), caused by a single nucleotide transition C to T, replacing leucine 266 by 

phenylalanine (L266F) (Tirichine et al., 2007). Exogenous application of cytokinin to the 

plant is solo sufficient to induce non-infected nodule-like structures in a NIN expression 

dependent manner (Heckmann et al., 2011). 

Due to a strong dependence of LHK1 on NIN, we were investigating if NIN 

overexpression would influence the efficiency of spontaneous nodule formation thus 

linking the previously observed negative feedback loop to the action of cytokinin 

regulation. 

To test if cytokinin plays a role in the suppression of nodulation observed by 

overexpression of NIN, hairy root experiments were performed in snf2-2 and the 

frequency of spontaneous nodulation was analysed. 

Again, NIN overexpression restricted nodulation only in the GFP positive roots, while 

nodule formation was normal in the non-transformed roots of the same root system in 

snf2-2 mutant (Figure 23C-F; Figure 24). snf2-2 plants transformed with the empty vector 

control (Figure 23A and B; Figure 24) or overexpressing NSP2 (Figure 23G and H; 

Figure 24) exhibited a homogenous distribution of spontaneous nodules on GFP positive 

and GFP negative roots of the same root system. These results suggest that the inhibition 

of nodulation caused by NIN overexpression is independent of the LHK1 regulation and 

cytokinin perception. 

 These findings support the idea of a local inhibitory effect on nodulation induced by 

overexpression of NIN, which acts downstream of CCaMK and LHK1 in the root nodule 

symbiosis signalling pathway. 
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Figure 23: Spontaneous nodule formation is inhibited by NIN overexpression in snf2-2.  

(A and B) In hairy roots transformed with the empty vector control, spontaneous nodules were formed in 

line with the snf2-2 mutant phenotype, regardless of whether the roots were GFP positive or negative. (C-

F) Overexpression of NIN inhibited spontaneous nodulation only in the positive transformed roots of 

snf2-2 mutants, and not in the GFP negative roots (non-transformed roots). (G and H) In hairy roots 

overexpressing NSP2 spontaneous nodulale were developed like in the empty vector control. 

Representative bright field images (left panels) are shown with corresponding GFP fluorescent images 

highlighting GFP as transformation marker (right panels). Numbers in parentheses indicate the amount of 

plants showing the nodulation phenotype compared with the total number of plants tested in 4 

independent hairy root experiments. Bar: 2 mm  
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Figure 24: Quantification of spontaneous nodule development in snf2-2 hairy roots 
overexpressing NIN or NSP2 

Number of spontaneous nodules was scored in hairy roots overexpressing either NIN or NSP2 and in 
addition transformed roots with the empty vector control in snf2-2 after 5 weeks of transplantation to pots 
without infection of rhizobia. Statistical analysis showed a significant reduction in nodule numbers only 
with overexpression of NIN, but not with NSP2 compared to the empty vector control (ANOVA: 
F2,88=13.7; p=6.62-6; Tukey`s HSD: NIN: p=0.0000122; NSP2: p=0.84;) Furthermore a significant 
reduction of spontaneous nodule number was detected for the overexpression of NIN in comparison to 
overexpression of NSP2 in snf2-2 hairy roots (Tukey`s HSD: NSP2 and NIN: p=0.0001403) 
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7.12 NIN overexpression has no effect on the infection with the 

arbuscular mycorrhiza fungus Rhizophagus irregularis 

NIN is dispensable for the more wide spread AMS among plants (Schauser et al., 1999; 

Marsh et al., 2007). Importantly, there is emerging evidence that NIN was specially 

recruited for RNS due to its loss in nitrate sensitivity (Suzuki et al., 2013).  

Therefore, we expected that the overexpression of NIN would not influence the 

symbiosis between AM fungi and L. japonicus. In addition, it was reported that infection 

by Rhizophagus irregularis was fully functional in nin mutants (Schauser et al., 1999), 

suggesting no function of NIN in AM symbiosis. 

Here, we tested our hypothesis by performing hairy root experiments overexpressing 

NIN in Gifu wild-type plants and infecting the transformed plants with AM fungi. Hairy 

roots transformed with the empty vector control or overexpressing NIN were identified 

with the GFP transformation marker. Later, only transformed roots were selected and 

stained with ink to highlight structures formed by the fungi within the root.  

Both, hairy roots transformed with the empty vector control or roots overexpressing 

NIN showed successful AM colonisation in Gifu (Figure 25). 

 

 

Figure 25: Overexpression of NIN did not inhibit AM colonization in Gifu hairy roots 

(A) In Gifu hairy roots transformed with the empty vector control a fully colonized root by the fungus 

was also observed. (B) The whole root system overexpressing NIN was colonized by AM in Gifu hairy 

roots, showing different AM structures containing fully developed arbuscules and vesicles. Root samples 

of Lotus japonicus Gifu wild-type were harvested 4 wpi with R. irregularis, cultivated in chive pots with 

BEG195 in controlled climate chambers. AM fungal structures were stained with acid ink and analysed 

using a stereomicroscope. Bar: 100 µm 
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Figure 26: Quantification of percentage of root length colonized by AM in Gifu hairy roots 

overexpressing NIN.  

No significant difference of colonised root length was observed for vesciles or hyphae (Vesicles: p=1;; 

hyphae: p=0.9548) between hairyroots transformed with the empty vector control or hairy roots 

overexpressing NIN. A higher percentage of arbuscular colonisation was observed in hairy roots 

overexpressing NIN (Arbuscules: p=0.02), indicating successful infection. Percentage of root length  of 

hyphal colonization (hyphae, %), arbuscular colonization (arbuscules, %) and vesicle formation (vesicle, 

%) was quantified in 5 plants per combination, using the intersection method. Infection sites per cm per 

root were analysed after 5 weeks of cultivation at 24 °C. A t-test was performed to determine the statistical 

difference between overexpression of NIN and empty vector for the different structures.  
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To examine the percentage of root length colonisation by the fungus the intersect method 

was performed (McGonigle et al., 1990), where the abundance of certain fungal structures 

like hyphae, arbuscule and vesicles is taken into account. Gifu hairy roots overexpressing 

NIN showed successful infection and were fully colonized with hyphae, arbuscules and 

vesicles. 

The quantification confirmed a comparable percentage of root length colonization in 

hairy roots overexpressing NIN and hairy roots transformed with the empty vector 

control for the amount of vesicles and hyphae formed (Figure 26). Interestingly, there was 

a slight reduction in the abundance of arbuscles in hairyroots overexpressing NIN 

compared to roots transformed with the empty vector control (Figure 26). 

As expected, these results confirmed that the molecular mechanism induced by   

overexpression of NIN does not interfere with the AM signalling pathway, as all 

structures induced by AM fungi are formed in Gifu. Furthermore, these findings suggest a 

mechanism interfering with a factor required specifically for RNS, and strengthen the idea 

that NIN itself is a likely candidate as it is not required for AM symbiosis. 

 

7.13 Overexpression of NIN triggers the process of cell division 

NIN is a transcription factor that is nodulation specific and is crucial for the initiation of 

nodule formation (Schauser et al., 1999). NIN functions as transcriptional activator and 

one target is LjNF-YA1 that is also required for root nodule organogenesis (Soyano et al., 

2013). NF-YA is part of a heterodimer complex NF-Y, which is involved in cell cycle 

regulation and likely triggers cortical cell division in nodule formation (Laloum et al., 

2014). 

Interestingly, Soyano and collegues could show that overexpression of NIN induces 

nodule like structures in the absence of bacteria. Further the expression of the molecular 

nodule marker Enod40 was detected in those structures (Soyano et al., 2013). 
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To investigate whether the published results could be reproduced, I performed hairy root 

experiments in L. japonicus Gifu plants overexpressing NIN, under the same conditions as 

described in Soyano et al. (2013) and as my previous experiments.  

 

 

Figure 27: Spontaneous nodule formation and induction of nodule-like structures in Gifu hairy 

roots  

Spontaneous nodules were not induced in the hairy roots transformed with the empty vector control (A), 

while hairy roots overexpressing CCaMK-T265D did form spontaneous nodules (B). Nodule-like 

structures were also formed on hairy roots overexpressing NIN (C and D). Spontaneous nodulation was 

examined 6 weeks past transplantation to pots, in the absence of rhizobia, using a stereomicroscope in 

bright field view. Scale bar: 0.1 mm 

 

Interestingly, the formation of spontanteous structures like bumps and nodules were also 

observed in hairy roots overexpressing NIN (Figure 27C and D), indicating a potential of 

NIN to induce cell division. In hairy roots tansformed with the empty vector these 

spontaneous structures were absent (Figure 27A). Round shaped spontaneous nodules 

were developed on hairy roots overexpressing the gain-of-function CCaMK version 

carrying a replacement of threonin (T) at position 265 by aspartic acid (D) (Figure 27B) 

(Madsen et al., 2010).  

Furthermore, longitudinal sections of these stuctures induced by NIN overexpression 

show a nodule-like character (Figure 28A). The frequency of such spontaneous structures 

induced by NIN overexpression was determined at 14 % (Figure 28B). 
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Figure 28: Overexpression of NIN induced the formation of nodule-like structures in the absence 

of rhizobia  

(A) Microtome sectioned nodule-like structure were induced in Gifu hairy roots overexpressing NIN were 

analysed after 6 weeks of cultivation in the absence of M. loti. Longitudinal 50 µm section; Scale bar: 100 

µm. (B) Quantification on the frequency of the development of spontaneous nodule-like structures in 

hairy roots experiments in the Gifu hairy roots counted 6 weeks past transplantion in pots in the absence 

of rhizobia. 

 

Repetitive inspection of the root systems showed that hairy roots overexpressing NIN 

were thicker compared to roots transformed with the empty vector control. To confirm 

and quantify this observation, transversal sections of Gifu hairy roots overexpressing 

NIN and of roots transformed with the empty vector control were performed. Then the 

root diameter was measured, different cell types inspected and the cell layers in those 

roots counted.  

In comparison to the control plants with a mean diameter of 308 mm, the diameter of 

hairy roots overexpressing NIN was significantly increased to 408 nm, showing bigger 

sized cortical cells and partly an additional cortical cell layer (Figure 29). Other cell types 

were represented equally the hairy roots transformed with the empty vector and in hairy 

roots overexpressing NIN. 
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Figure 29: Root diameter was increased in Gifu hairy roots overexpressing NIN 

(A) A diameter of 308 mm was measured in light micrographs of cross sections of Gifu hairyroots 

transformed with the empty vector (B) While hairy roots overexpressing NIN induced an increase in 

diameter of the root to 408 mm. Roots were sectioned 4 weeks past transformation. An average diameter 

was calculated from 6 independent root systems in 3 independent transformation events. Sections were 

sliced in the region of 1 cm distance to the root origin of the plant. Scale bars: 100 µm 

 

Taken together these results underline the positive role of NIN in root nodule 

organogenesis, with its potential to trigger cortical cell division leading to nodule 

formation and thicker root diameters. 
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8 Discussion 

 

8.1 NIN – CYCLOPS – CCaMK: two dimers or a trimer? 

CYCLOPS and CCaMK form a complex in the nucleus (Yano et al., 2008), raising the 

question whether there are additional members in this complex that play an active role in 

the signalling pathway (Yano et al., 2008; Singh et al., 2014). The dimer formation of 

CCaMK with CYCLOPS was delimited to a functional kinase domain of CCaMK and the 

activation domain of CYCLOPS (Yano et al., 2008).  

In the current work, NIN was found to interact with CYCLOPS in planta and in yeast 

(Figure 5, Figure 4), and that it has a possible function in the nucleus where all three 

players are localised (Figure 3) (Yano et al., 2008). The interaction of NIN with 

CYCLOPS was independent of the phosphorylation status of CYCLOPS, which is also 

the case for the CYCLOPS-CCaMK interaction (Singh et al., 2014). The interaction 

between NIN and CYCLOPS was further quantified by FLIM-FRET analysis (Figure 7). 

Identification and analysis of the specific interaction domains of the NIN and CYCLOPS 

proteins will be required to clarify a possible mode of action for the interplay. 

NIN is a transcriptional target of the CCaMK/CYCLOPS complex that activates 

downstream genes in the root nodule signalling pathway (Singh et al., 2014). It becomes 

increasingly important to understand the molecular mechanism through which the 

complex acts and regulates. As overexpression of CCaMK-T265D induces spontaneous 

nodule formation in the cyclops-3 mutant, it was believed that another transcription factor 

bypasses the action of CYCLOPS (Tirichine et al., 2006; Yano et al., 2008) and which may 

be NIN. However, no direct interaction was observed between CCaMK and NIN (Figure 

5). Interestingly a gain-of-function version of CCaMK can stimulate the induction of 

NIN in the cortex but not in the epidermis tissue, suggesting that the action of NIN is 

localized to specific tissues of the root (Tirichine et al., 2006). Therefore, it would be 

interesting to further analyse the interaction of NIN with different variants of CCaMK, 

especially gain-of-function versions. As all interaction analyses were performed in leaf 

cells or in yeast, symbiosis specific factors might also be missing for a positive interaction 

between CCaMK and NIN.  
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A direct protein-protein interaction of NIN and CCaMK might require a gain-of-function 

CCaMK version or a third protein partner. The observed interaction between NIN and 

CCaMK in the presence of CYCLOPS could indicate that CYCLOPS functions as a 

scaffold protein in a trimeric complex (Figure 5). A similar interaction was reported about 

a protein harbouring the PB1 domain that interacts with a kinase in the presence of a 

scaffold protein (Lamark et al., 2003). NIN harbours this conserved PB1 domain at the 

very C-terminus, an evolutionary conserved domain that facilitates hetero-dimerization 

with other proteins (Ponting et al., 2002; Schauser et al., 2005; Sumimoto et al., 2007). 

The formation of a trimer could be easily verified in protein-protein interaction studies 

like multicolour BiFC or Co-immunoprecipitation from Nicotiana and with the use of the 

golden gate tool box in Lotus hairy root experiments, where co-expression of multiple 

proteins is feasible (Binder et al., 2014). 

NIN has been shown to be a transcriptional target of the NSP1/NSP2 complex and of 

the NSP2 interacting protein IPN2 (Hirsch et al., 2009; Kang et al., 2011), therefore it 

would be important to test whether NIN can interact with members of transcriptional 

activating complexes other than CCaMK/CYCLOPS. The co-expression of different 

complexes could lead to a synergistic effect and further upregulate NIN expression or the 

different complexes could interfere with each other and thus downregulate NIN 

expression. For example, Laloum and co-workers showed a synergistic mode of action 

between the players NSP1 and NSP2 with NF-YA. The trimeric complex triggers a higher 

upregulation of ERN1 than that achieved by the NSP1/NSP2 complex or NF-YA alone 

(Laloum et al., 2014).  

CCaMK has already been reported to be part of a trimeric protein complex (Kang et al., 

2015). In the yeast two-hybrid system the CCaMK interacting protein 73 (CIP73), a 

Scythe-N domain containing, ubiquitin like protein with unknown function was identified 

to interact with CCaMK (Kang et al., 2011). RNA interference (RNAi)-mediated 

knockdown of CIP73 expression impaired nodulation (Kang et al., 2011). Later, the same 

approach was applied to find interaction partners of CIP73, identifying a HSC/HSP70-

interacting protein (Raymond et al.; Kang et al., 2015). CCaMK, CIP73 and HIP were 

shown to co-localise in the nucleus through the use of a multicolour BiFC system (Waadt 

et al., 2008; Kang et al., 2015).  
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Interestingly, HIP expression is downregulated during nodule development and nodule 

senescence (Kang et al., 2015). Using RNAi to lower HIP expression levels led to an 

increase in nodulation, suggesting a negative role of HIP in nodulation (Kang et al., 2015). 

As CYCLOPS and CIP73 are both phosphorylation targets of CCaMK, NIN could also 

be a phosphorylation target of CCaMK. Previously it was shown that CCaMK can 

phosphorylate NIN in a calcium-dependent manner (Diploma thesis, 2010). The obtained 

results suggested that NIN is a phosphorylation target of CCaMK, as is CYCLOPS, 

strengthening the hypothesis that CCaMK, CYCLOPS and NIN form a trimeric complex.  

This study presents the first evidence of NIN being part of a protein complex, as so far 

no protein interaction partners of NIN have been identified. To better understand the 

interplay of the regulatory networks will be a task for future research, especially to relate 

active networks to specific tissues and time points in symbiosis. 

 

8.2 Dual Role of NIN in symbiosis: Activator and Repressor  

When NIN was first identified in L. japonicus, the gene was described as transcriptional 

activator and essential for nodule inception (Schauser et al., 1999). Later, NIN was 

considered a repressor in symbiotic signalling, due to an extended expression pattern of 

ENOD11 in the nin mutant (Marsh et al., 2007). ENOD11 expression is restricted to a 

confined region in wild-type plants (Journet et al., 2001; Marsh et al., 2007), leading to the 

hypothesis that NIN plays an active negative regulatory role, restricting the expression of 

ENOD11 in roots. Here, I demonstrated that the co-expression of NIN and CYCLOPS-

DD lowered the transactivation potential of NIN in comparison to the sole activation by 

CYCLOPS-DD in transactivation assays performed both in leaf cells and in roots (Figure 

8, Figure 9). These results further demonstrate that NIN functions as a repressor that can 

also block its own transcriptional activation. Which molecular mechanism could trigger 

this repression mode? 

The expression of the transcriptional activator ERN1 is sufficient for the induction of 

ENOD11 in the epidermis, as observed in transactivation assays in N. benthamiana and M. 

truncatula (Andriankaja et al., 2007; Cerri et al., 2012), similar to CYCLOPS-DD activating 

the transcription of NIN (Figure 8, Figure 9) (Singh et al., 2014).  



80 
 

ERN transcription factors belong to the family of AP2/ERF proteins. AP2/ERF 

activators and repressors join in a coordinated interplay to regulate the fine-tuning of gene 

expression in antagonistic signalling pathways (McGrath et al., 2005; Nakano et al., 2006). 

ERN family members are involved in the regulation of gene expression of the pre-

infection stage, enabling the association between the bacteria and the plant (Andriankaja 

et al., 2007). Interestingly, it was shown that another ERN transcription factor named 

ERN3 acts as a repressor of ENOD11 expression, as the co-expression of ERN1 and 

ERN3 led to a reduced transactivation activity (Andriankaja et al., 2007). This is in line 

with the observation in our experiments where NIN acts as a repressor for the regulation 

of NIN transcription via CYCLOPS-DD (Figure 8), pointing towards a similar repression 

mechanism.  

The DNA binding domain of ERN3 was not required to repress ENOD11 expression, 

suggesting a mechanistic action independent of DNA binding (Andriankaja et al., 2007). 

Since NIN harbours a conserved RWP-RK domain that is involved in DNA binding 

(Schauser et al., 1999; Schauser et al., 2005; Schauser et al., 2005), it would be interesting 

to test if a NIN protein without the DNA binding domain would also show a comparable 

suppression potential to verify a similar mode of action. While there are several ERN 

proteins present in legume plants that function in different roles, NIN is the only known 

protein of its family that is involved in the process of nodulation (Schauser et al., 1999; 

Andriankaja et al., 2007). This strengthens the idea that NIN might fulfil functions to 

both negatively and positively regulate gene expression (Soyano et al., 2013; Soyano et al., 

2014; Yoro et al., 2014).  

As other transcription factors bind to the NIN promoter and upregulate its expression, 

the question arises if NIN could also prevent the activation by the NSP1/NSP2 complex, 

as it does with the CCaMK/CYCLOPS complex (Hirsch et al., 2009; Singh et al., 2014). 

No connection between NIN and the NSP complex has been described and it would be 

interesting to investigate and maybe find a missing link between different transcriptional 

activation protein complexes in the symbiosis pathway. Would the co-expression of NIN 

repress the transactivation activity of the NSP1/NSP2 complex on the NIN promoter, as 

it did in combination with CYCLOPS-DD?  
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These experiments would further clarify if the observed repression mode is specific for 

the CYCLOPS-DD mediated pathway or if it is a general mechanism that is triggered by 

any activating transcription factor for the induction of NIN.  

In contrast to the negative regulatory function of NIN observed in this work, there are 

several publications showing that NIN functions as transcriptional activator (Soyano et 

al., 2014; Qiu et al., 2015; Vernie et al., 2015). For example, SCARN expression is 

induced by NIN, as was shown in transactivation assays performed in N. benthamiana leaf 

cells (Qiu et al., 2015). In addition NIN is able to upregulate both CRE1 and NF-YA1 

promoter activity, where CRE1 seems to be more strongly activated compared to NF-YA 

(Soyano et al., 2013; Vernie et al., 2015). MtCRE1 gene encodes a cytokinin receptor 

(homolog to LjHAR1) required for nodulation (Gonzalez-Rizzo et al., 2006) (Plet et al., 

2011); while NF-YA is involved in cell cycle activation (Soyano et al., 2013; Laloum et al., 

2014). Thus, NIN acts as positive regulator of gene transcription in these cases. 

Strikingly, NIN seems to unite both functions as activator and repressor in a bifunctional 

transcription factor (this work, (Soyano et al., 2014; Yoro et al., 2014; Qiu et al., 2015; 

Vernie et al., 2015). This is in contrast to ERN transcription factors, where each function 

is distributed to a separate ERN member, with ERN1 enabling activation of ENOD11 

induction, while ERN3 functions as a repressor in Medicago (Andriankaja et al., 2007).  

Various NIN-like proteins exist in leguminous plants (4 NLPs in L. japonicus) (Schauser et 

al., 2005; Suzuki et al., 2013) and non-leguminous plants (9 NLPs in Arabidopsis) with 

probably redundant roles in nitrate signalling (Castaings et al., 2009; Chardin et al., 2014). 

NLPs have been shown to function as transcriptional activators with their N-terminal 

activation domain inducing nitrate signalling (Konishi and Yanagisawa, 2014). Although 

NLPs and NIN are homologous in their conserved C-terminal RWP-RK domain, NIN is 

unique to leguminous plants and in symbiosis, due to a deletion within its N-terminal 

region leading to a loss in nitrate responsiveness (Schauser et al., 2005; Suzuki et al., 

2013). Hence NIN and NLPs function in different signalling pathways. 
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However, the transactivation activity of NLP1 on nitrate-response element was reduced 

in the presence of NIN, showing the same pattern as for the CYCLOPS DD mediated 

NIN activation in co-expression experiments with NIN (Figure 8, Figure 9)(Suzuki et al., 

2013). One hypothesis is that NIN and NLPs function in antagonistic ways to regulate 

gene expression, repressing or activating the nodulation process (Suzuki et al., 2013; 

Soyano et al., 2014; Soyano et al., 2015).  

 

8.3 The NIN promoter - a target for different transcription factors  

Transcription factors bind to specific DNA elements to enhance or repress transcription 

at a defined locus (Carrera and Treisman, 2008). NIN has been characterised as a 

transcription factor due to its conserved RWP-RK domain, which functions in DNA 

binding (Schauser et al., 1999; Schauser et al., 2005; Soyano et al., 2015). The RWP-RK 

domain consists of an unusual DNA binding domain with a basic region followed by a 

heptad leucine or isoleucine repeat (Schauser et al., 1999). Interestingly, this domain also 

features structures of bZIP transcriptions factors with an amphipathic leucine-zipper 

structure but with an unusual longer stretch between the zipper and the basic sequence 

(Schauser et al., 1999; Sornaraj et al., 2016).  

Here, we could show that NIN is able to bind to NIN-RE, an element that is in close 

proximity to CYC-RE on the NIN promoter (Figure 11, Figure 14). The identified NIN-

RE consists of a bipartite sequence TTTGxxxxxxxAGG, which is similar to the previous 

published conserved NIN binding site (NBS) that was found via random binding site 

analysis (Soyano et al., 2013). In comparison to this NBS, our identified NBS consists also 

of a sequence rich in T (TTT, left part) and of an adenine followed by two guanines 

(AGG, right part) (Figure 11) (Soyano et al., 2013; Soyano et al., 2015). In addition, 

Soyano and colleagues predicted two NIN binding sites within the NIN promoter (-1849 

bp and -338 bp) in ChIP experiments (Soyano et al., 2014), supporting the findings in our 

EMSAs (Figure 11, Figure 12). 
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Similar binding sequences for NIN were also identified in the CRE1 promoter. NIN 

binding to the CRE1 promoter activates CRE1 expression in cortex cells (Vernie et al., 

2015). Although NIN can bind to its promoter in EMSA, it does not activate its own 

transcription (Figure 8, Figure 9, Figure 11), which is supported by the work of Qui and 

colleagues (Qiu et al., 2015).  

Furthermore, in competition assays we could verify that NIN binds via its DNA binding 

domain in a sequence specific manner to the identified NIN-RE binding sequence, as the 

unlabelled NIN-RE fully competed with labelled NIN-RE in EMSAs, while a PAL 

element and the mutated NIN-RE did not interfere with the binding to NIN-RE (Figure 

13). NIN-RE was mutated in the T rich region to an A (left part) and in the AGG region 

to TCC (right part), similar to the nucleotide sequence mutated in (Soyano et al., 2013). 

 

 

Figure 30: alignment of NBS for NIN in this work and Soyano 

 

NIN binding to the NIN-RE resulted in two shifted bands in EMSAs (Figure 11, Figure 

12, Figure 13, Figure 14). The higher band showed a specific binding affinity compared to 

the lower band, as the upper band was outcompeted with unlabelled NIN-RE and the 

lower band was not. Thus, the lower band could be NIN-RE bound in a different 

stoichiometric complex or it could be an unspecific DNA-protein association. In other 

reports NIN binding properties were also demonstrated in EMSAs, however, only the 

higher shifted band was bound specifically by NIN (Soyano et al., 2013; Soyano et al., 

2014, 2015). Moreover, in a recent publication one can clearly see two bands but only the 

upper specific band was discussed as bound by NIN (Qiu et al., 2015). To further 

determine the specificity in EMSA it would be required to measure relative binding 

activity and stoichiometry of NIN to the cis responsive element (Flores et al., 2015). 
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Due to a deletion in the N-terminal part of NIN, NIN has lost its sensitivity towards 

nitrate, in contrast to NLPs (Schauser et al., 2005). Nevertheless NIN is still able to bind 

to nitrate responsive elements (NRE), although with a weaker affinity compared to 

LjNLP1 and AtNIR1 (Suzuki et al., 2013). Interestingly, the same binding pattern with 

two shifted bands was shown for these NIN-like proteins, with the upper band presenting 

a specific binding and the lower band a non-specific binding in vitro (Suzuki et al., 2013). 

There has been no functional explanation for the requirement of this binding to NRE, as 

NIN is unable to activate nitrate responsive genes (Suzuki et al., 2013). Maybe NIN binds 

to NRE to prevent NLP binding and therefore blocks nitrate signalling, as NIN is highly 

upregulated in symbiosis in a N-deficient environment. 

Several plant genes have been described to act in cooperation at neighbouring binding 

sites, making gene regulation more specific (Buttner and Singh, 1997; Riechmann and 

Meyerowitz, 1998; Diaz et al., 2002; Brown et al., 2003). The NIN promoter binding site 

for CYCLOPS-DD was identified to be a palindromic sequence of TGCCA, named 

“CYC-box”, in the region between –717 bp and – 683 bp upstream of the transcriptional 

start site (Singh et al., 2014). Both NINC and CYCLOPSBD were incubated together with 

the CYC-RE resulting in a super shift in EMSA, indicating that both proteins can be 

simultaneously bound, next to each other (Figure 14).  

It seems to be a common feature for transcription factors that the NBSs of two different 

DNA binding proteins are located in close proximity to each other or even partially 

overlap. Examples for that include CAAT binding TF, DOF TF, HD-ZIP protein and 

W-box binding sites for WRKY transcriptions factors (Kusnetsov et al., 1999; Yanagisawa 

and Schmidt, 1999; Andriankaja et al., 2007). Accordingly, NIN is also a transcriptional 

target of many known players involved in the symbiosis signalling pathway, with different 

identified binding elements (Hirsch and Oldroyd, 2009; Singh et al., 2014). 

The NIN promoter is also a target for NSP1, which has the preferred binding site 

AATTT, and direct binding was verified to the NIN promoter region between -892 bp 

and -13 bp (Hirsch et al., 2009). Interestingly, our newly identified NIN-RE harbours an 

AATTT sequence for a putative NSP1 binding site only 6 bp downstream from the AGG 

recognition site for NIN binding.  
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Figure 31: Putative NSP1 binding site present on NIN-RE  

The identified cis-binding element “NIN-RE” of NIN is shown, with the consensus NBS of NIN 
highlighted in green and a putative NSP1 binding site depicted in blue. 

 

Therefore, it would be interesting to test if NSP1 and NIN could simultaneously bind to 

the NIN-RE cis-element, which should result in a supershift in EMSA, similar to the 

combined binding of NIN and CYCLOPS to the CYC responsive cis-element (Figure 

14). In summary, NIN expression appears to be tightly controlled by the interplay of a 

massive regulatory network of different TFs.  

 

8.4 Inhibition of nodulation: local or systemic repression caused by 

NIN overexpression 

The nin mutant phenotype is non-nodulating, indicating that NIN is required for 

nodulation (Schauser et al., 1999). Still, so far no published data could successfully 

demonstrate complementation of nin mutants (Figure 18) (Yokota et al., 2010; Yoro et al., 

2014; Clavijo et al., 2015). One reason might be that most nin mutants still produce a 

transcriptional product of NIN which might negatively regulate normal nodule 

development. While overexpression of a gene under a strong constitutive promoter can 

often complement a mutant phenotype (e.g. NSP2), in some cases mutants require 

expression of the gene under the native promotor for successful complementation, e.g. in 

case of the ern1 mutant (Middleton et al., 2007; Cerri et al., 2012). Partial 

complementation of a nin mutant (nin-2) was shown for the infection process, by 

transforming a 5 kb (4877 bp) NIN promoter fragment into L. japonicus (Yokota et al., 

2010), suggesting that the expression of NIN has to be tightly regulated to respond in 

certain tissues with an adequate expression level. Nodule formation was also partially 

complemented in Lotus and Medicago with the native promoter of NIN or the constitutive 

poly-ubiqiutin promoter driving NIN expression (Soyano et al., 2014; Yoro et al., 2014; 

Clavijo et al., 2015; Vernie et al., 2015).  
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It seems clear that the spatio-temporal expression of NIN has to be tightly regulated to 

induce the right signals for a functional mutant complementation of root nodule 

symbiosis. Regulatory elements upstream of the utilized 5 kb promoter sequence may be 

required for successful complementation, but they have not been identified so far (this 

work) (Yoro et al., 2014; Clavijo et al., 2015). The fact that NLPs failed to cross-

complement nin mutants (Yokota et al., 2010), highlights the unique role NIN has 

acquired during evolution with a function in symbiosis (Soyano et al., 2014). 

NIN overexpression driven by the poly-ubiquitin promoter led to inhibition of nodulation 

with arrested infection at the stage of micro-colony formation (Figure 15, Figure 16) 

(Maekawa et al., 2009). We therefore concluded that the observed inhibition in 

transactivation of the NIN promoter caused by NIN overexpression has a negative 

regulatory effect on infection thread formation and nodule number. Interestingly, the 

arrested infection phenotype at the micro colony stage observed upon overexpression of 

NIN resembles the cyclops mutant phenotype (Figure 16) (Yano et al., 2008). In contrast, 

the nin mutant phenotype shows excessive curling of responsive root hairs but no 

entrapped microcolony (Schauser et al., 1999). Overexpression of CYCLOPS or NSP2, 

both required for RNS, did not trigger the same negative effect on nodulation (Figure 15, 

Figure 21, Figure 23) (Kaló et al., 2005; Yano et al., 2008; Yokota et al., 2010), supporting 

the hypothesis that the negative regulation observed is a unique feature of NIN 

overexpression. 

An inhibition of nodulation was only observed in transformed hairy roots (Figure 15), 

suggesting a local response due to the overexpression of NIN. In agreement with this is 

the observation that overexpression of NIN triggers an inhibition of nodulation in a 

mutant background involved in systemic inhibition of nodulation (Figure 19). In the 

original paper that identified NIN as an essential player in symbiosis, it was also 

hypothesized that NIN might act locally (Schauser et al., 1999). This was due to the 

observation of nin revertants showing densely packed nodules in a defined area of the 

root (Schauser et al., 1999). Moreover, a local repression effect on rhizobia infection was 

detected when NIN was expressed under a cortex specific promoter (Yoro et al., 2014). 

NIN has been shown to have a bifunctional role, in both the infection and the nodulation 



87 
 

process (Figure 15; Figure 16; Figure 27) (Schauser et al., 1999; Soyano et al., 2014; Yoro 

et al., 2014). 

Soyano and collegues showed that overexpression of NIN under the 35S promoter 

induced the formation of two distinct morphologies in the root architecture, with both 

malformed structures and also normal root structures (Soyano et al., 2014). This is in 

contrast to my work, as only normal root architecture was observed in all tested mutants 

upon overexpression of NIN (Figure 15, Figure 19). The difference in observed root 

architecture might be due to the usage of a different promoter (Soyano: 35S promoter; 

this work: poly-ubiqutin promoter) and the addition of a glucocorticoid receptor (GR) to 

induce the 35S promoter activity (Soyano et al., 2014). In hairy roots showing normal 

architecture during overexpression of NIN, both Soyano and I report a reduction of 

nodulation only in GFP-positive, NIN overexpressing hairy roots, while the GFP-

negative roots showed normal nodulation, in line with the empty vector control (this 

work) (Soyano et al., 2014). However, reports on roots forming malformed structures due 

to NIN overexpression demonstrate a systemic repression of nodulation, with no nodule 

development on either GFP-positive or GFP-negative roots (Soyano et al., 2014). They 

argue for a mechanism whereby NIN overexpression promotes CLE-RS peptide 

upregulation, which in turn blocks nodulation in a systemic response (Soyano et al., 2014). 

Hence there might be different modes of action regulated by NIN for local and systemic 

regulation of nodule development in plants. 

Furthermore the domain of NIN that is responsible for the local inhibition of nodulation 

still needs to be identified. For example, inhibition of nodule formation was also observed 

for another transcriptional target of NIN, SCARN, that is required for root hair infection 

(Qiu et al., 2015). The negative regulatory domain of SCARN was pinpointed to the N-

terminal part (Qiu et al., 2015). Interestingly, the C-terminal part of SCARN harbouring a 

WA domain with a function in G-acting binding led to an increased number of nodules 

on transformed roots in Gifu plants (Qiu et al., 2015). By analysing N- or C-terminal 

truncated versions of NIN, the domains of NIN involved in the negative regulation could 

be dissected and thus the molecular mechanism underlying the regulation could be 

clarified. 
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8.5 Involvement of NIN in nodule development by inducing cell 

division 

The formation of spontaneous nodules (snf) was first observed with gain-of-function 

mutations in CCaMK (T265I, snf1) and LHK1 (L266F, snf2), which are both dependent 

on NIN expression (Tirichine et al., 2006; Tirichine et al., 2007; Hayashi et al., 2010). For 

the snf2 mutant it was reported that cytokinin signalling is constantly active and triggers 

auxin accumulation in nodule primordia (Tirichine et al., 2007). The same effect of local 

auxin accumulation was detected by overexpression of NIN, which induced cortical cell 

division (Suzuki et al., 2013).  

The induction of nodule-like structures was observed upon overexpression of NIN in 

14% of transformed Gifu wild-type plants (Figure 27), similary to other works (Suzaki et 

al., 2012; Soyano et al., 2013; Soyano et al., 2014). This was observed in less frequent 

numbers compared to what was examined with overexpression of gof-CCaMK (67%) or 

gof-LHK1 (47%) (Madsen et al., 2010). For example, NF-YA was shown to be a 

transcriptional target of NIN and overexpression of NF-YA also induced swelling of root 

tips resembling malformed structures (Soyano et al., 2013). The paper lacked, however, 

convincing evidence that NIN can transactivate NF-YA in planta (Soyano et al., 2013). In 

Medicago, NIN overexpression was confirmed to induce spontaneous nodule-like 

structures with a high occurrence rate of 75% on transformed roots (Vernie et al., 2015). 

Furthermore Vernie and colleagues demonstrated that NIN expression driven by an 

epidermis (pEXPA) and by a cortex (pNRT1.3.) specific promoter still induced cortical 

cell division (Vernie et al., 2015). The role of NIN is well characterised in the cortex of 

legumes, where it functions as a positive factor for cortical cell division mediated by 

cytokinin, which in turn also leads to nodule primordia development (Heckmann et al., 

2011; Soyano et al., 2013).  

Transversal sections of Gifu hairy roots overexpressing NIN showed a larger diameter in 

comparison to hairy roots transformed with the empty vector control (Figure 29). The 

cells in the outer cortex appeared lager and an additional cell layer was visible (Figure 29). 

This observation is in line with work, which demonstrated that the outermost cortical 

cells contained larger nuclei due to a higher DNA amount, indicating endoreduplication 

(Bourdon et al., 2011). In addition, Soyano reported increased cell divisions caused by 
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NIN overexpression in pericycle cells, from which root primordia originate (Soyano et al., 

2013). Based on the role of Arabidopsis RKD proteins in the induction of cell division, the 

RWP-RK domain of NIN was proposed to have a similar function (Koszegi et al., 2011; 

Waki et al., 2011). 

I observed that NIN overexpression also inhibited spontaneous nodulation in both snf1 

and snf2 mutants, suggesting that NIN might interfere with cytokinin signalling (Figure 

21, Figure 23). Others demonstrated a relationship of NIN with the novel gene tricot (Tco). 

Tco, which encodes an AMP1-related carboxypeptidase, might be involved in the 

induction of NIN (Suzaki et al., 2013). Furthermore, when Tco was mutated an inhibition 

of nodulation in snf2 was observed, supporting the hypothesis that NIN could interfere 

with cytokinin signalling (Suzaki et al., 2013). 

8.6 A model for the negative feedback loop caused by NIN 

When bacteria and plants engage in symbiosis, many plant cells actively respond to NF 

perception (Ehrhardt et al., 1996; Journet et al., 2001). However, only a few cells actually 

develop into a nodule. This process is independent from AON, as nodules are still 

formed in the har1 mutant (Oldroyd and Downie, 2008; Okamoto et al., 2009; Reid et al., 

2011). How this process is regulated and controlled remains unresolved. In the following 

model I will present a process that may answer this open question. 

Based on the results obtained in this thesis, I propose here the following mechanistic 

model. Symbiosis signalling is activated, leading to calcium spiking in the plant (Ehrhardt 

et al., 1996). CCaMK, the postulated decoder of calcium spiking, phosphorylates its target 

CYCLOPS, forming a complex in the nucleus (Yano et al., 2008). Through the site-

specific phosphorylation of CYCLOPS at serine 50 and 154, CYCLOPS gains DNA 

binding properties and is able to transactivate NIN (Singh et al., 2014). For the 

transcriptional activation of NIN the active CCaMK/CYCLOPS complex probably 

interacts with the basal transcription machinery (Singh et al., 2014) (Figure 32). The 

transcription of NIN is then upregulated, leading to an abundance of NIN expression in 

the cell. Consequently, NIN accumulates in the nucleus and engages in a trimeric complex 

with CCaMK and CYCLOPS.  
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A novel finding of my work is that NIN can bind to its own promoter in close vicinity to 

the CYC-box element of CYCLOPS-DD and thereby suppresses further activation of 

NIN expression in the CYCLOPS-DD mediated signaling pathway (Figure 11). In 

addition, co-binding of NIN and CYCLOPS to the CYC-RE is further stabilized through 

protein-protein interaction (Figure 7, Figure 14). 

Hence, NIN creates a negative feedback loop on its transcriptional activation mediated by 

autoactive CYCLOPS-DD and prevents further pNIN activation, which would otherwise 

lead to an inhibition of nodulation (Figure 32).  

 

 

Figure 32: Model of mechanistic action of NIN creating a negative feedback loop on the 

activation of NIN expression mediated by the CCaMK/CYCLOPS complex.  

Upon Calcium spiking, CCaMK gets activated and forms a complex with CYCLOPS in the nucleus. 

Phosphorylation of CYCLOPS by CCaMK induces a conformational change in CYCLOPS protein that 

turns CYCLOPS into a transcriptional activator. Then CYCLOPS is able to bind to DNA and activates 

the transcriptional target NIN. Consequently, the transcription of NIN is upregulated and leads to an 

increase in NIN protein level, which also accumulates in the nucleus. Hence, NIN engages in the complex 

formation with CCaMK/CYCLOPS. In addition, NIN can bind to its own promoter at cis binding 

elemts, which are located upstream and downstream of the cis binding element “CYC-box” bound by 

CYCLOPS. In turn, this prevents further activation of NIN expression in the CYCLOPS-DD mediated 

pathway, by blocking the transactivation property of CYCLOPS. This meachnism might explain the block 

of the formation of nodules in Lotus japonicus roots upon overexpression of NIN.  
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In the early phase of infection, NIN expression is highly upregulated, likely through the 

identified CYCLOPS-DD mediated pathway (Schauser et al., 1999; Yano et al., 2008; 

Madsen et al., 2010; Xie et al., 2012; Singh et al., 2014; Fournier et al., 2015). The 

expression pattern of NIN is associated with infected cells in the epidermis following the 

process of cortical cell division where nodule primordia are formed (Marsh et al., 2007; 

Soyano et al., 2013). Furthermore NIN expression in roots is activated in two stages in 

the early infection process (Schauser et al., 1999; Yano et al., 2008).  

The observation that the co-expression of NIN and ERN1 leads to a reduction in the 

transactivation ability of ERN1 on the NF-responsive element of the ENOD11 promoter 

(Vernie et al., 2015) is in line with my data presented in this work concerning CYCLOPS-

DD and NIN (Figure 8). Both experiments observe the suppresion of gene expression 

caused by NIN co-expression on the binding cis elements of either ERN1 or CYCLOPS-

DD (Figure 8) (Vernie et al., 2015), suggesting that NIN in combination with either 

protein might compete for binding to the cis element, or that co-binding prevents 

transactivation capability. However, an interaction between ERN1 and NIN similar to 

what was demonstrated for NIN and CYCLOPS in this work (Figure 5; Figure 7; Figure 

4), has not yet been tested.  

Strikingly, the binding of NIN to the NIN promoter can be outcompeted by addition of 

CYCLOPS protein in the EMSA reaction, suggesting that binding of activated CYCLOPS 

is more specific or has a higher affinity to the NIN promoter. So given equal protein 

amounts of NIN and CYCLOPS, activation of NIN expression is dominant (Figure 13). 

Thus NIN would need to be at an excessive amount to compete for binding to the NIN 

promoter, which is the case during the second phase of NIN activation in the symbiosis 

process (Yano et al., 2008).  

In my model I speculate that NIN is upregulated in one cell, leading to an increase of 

protein in that cell. Then, NIN is able to move to neighboring cells and there prevents 

NIN activation, ensuring that limited specific infection sites are activated and discrete 

nodules are formed. This might involve short-distance cell-to-cell communication 

mediated by plasmodesmata, which are channels that traverse cell walls enabling transport 

through the connected cytoplasm of neighboring cells (Complainville et al., 2003).  
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The ability to move from the cytoplasm to the nucleus has already been demonstrated for 

NLPs in Arabidopsis (Konishi and Yanagisawa, 2013; Marchive et al., 2013). Others also 

hypothesized about a mobile signal that traffics between epidermis and cortex to ensure a 

controlled infection process and nodule development (Hayashi and Parniske, 2014; Held 

et al., 2014; van Zeijl et al., 2015).  

The negative regulation caused by NIN is likely occuring within the first 24 hours of the 

infection process (Marsh et al., 2007; Yoro et al., 2014). A negative regulatory role of NIN 

was previously reported for the infection process, as infection was inhibited in the daphne 

mutant, harboring a mutation in the NIN promoter (Yoro et al., 2014). Moreover, NIN 

cannot activate its own transcription (Figure 8) (Vernie et al., 2015). I believe that the 

repressor function of NIN is directed at controlling the number of formed nodules by 

creating a negative feedback loop on its own expression at certain stages in symbiosis.  

Further evidence to support my model is given by studies of ERN3, which might 

represses the association of the ERN1 activator to the DNA binding site on the 

ENOD11 promoter by protein-protein interaction (Andriankaja et al., 2007). A negative 

feedback-loop triggered by protein-protein interaction is a common way to regulate gene 

expression during signaling cascades in plants. This type of regulation has also been 

reported for other ERF transcription factors (Fujimoto et al., 2000; Ohta et al., 2001). 

Recently, this mechanism has been described in Arabidopsis where two bHLH 

heterodimers (LHW and TSL1) form a complex to induce the transcription of a repressor 

gene (SACL3). In turn SACL3 prevents DNA binding of the LHW-TSL1 complex to the 

SACL3 promoter, via protein-protein interaction with LHW, thus maintaining the root 

apical meristem (RAM) size (Katayama et al., 2015). 

More and more evidence has been presented that stresses the role of NIN as a 

transcription factor with a dual role in gene regulation in the process of RNS, depending 

on the stage of symbiosis. Based on the obtained results, I propose that a tight regulation 

of NIN expression is required to direct its function in RNS to either exert a positive or a 

negative role within the signalling pathway regulating nodule organogenesis. 
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9 Materials and Methods 

9.1 Materials 

Device Manufacturer 

Confocal microscope, Leica TCS SP5 Leica Mikrosystems, Wetzlar 

French Pressure cell press  SIM-Aminco Spectronic Instruments, 

Rochester 

Incubators Binder, Tuttlingen 

Inverted Microscope Leica DMI6000B Leica Mikrosystems, Wetzlar 

LaminAir HB 2448  Heraeus Sepatech GmbH, Osterode 

Microtiter plate reader Tecan, Thermo Fisher Scientific 

NanoDrop ND-Spectrophotometer  Kisker, Steinfurt 

Sanyo ultra low (-80 °C freezer) Heraeus Sepatech GmbH, Osterode 

Stereomicroscope (Leica MZ16A) Leica Microsystems, Wetzlar 

 

9.2 Solutions 

Name  Components 

Bradford solution (1x) dilution in ddH2O, stored at 4 °C 

Blocking solution TBS-T + 5 % Skimmed milk 

Coomassie staining solution 10% acidic acid, 10% ethanol, 0,1% 
Coomassie brilliant blue 

CaCl2 solution  75 mM CaCl2, 15 % Glycerol, 10 mM 
PIPES, pH 7 

Extraction buffer (fluorometric Gus assay) 50 mM NaPO4 pH 7; 10 mM EDTA pH 7; 
0.1% Laurylsarcosine; 0.1% Triton-X100; 
14,7 mM beta-Mercaptoethanol; protease 
inhibitor (1:1000) 
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GUS assay buffer 50 mM NaPO4 pH 7; 10 mM EDTA pH 7; 
0.1% Laurylsarcosine; 0.1% Triton-X100; 
14,7 mM β-Mercaptoethanol; 1 mM 4-
MUG 

GUS staining solution 0.1 M NaPO4, pH 7; 5 mM EDTA, pH 7; 
1 mM K3 (Fe(CN)6); 1 mM K4 (Fe(CN)6); 
0.1% Trition-X100; 1 mM X-Gluc 

Infiltration buffer  10 mM MgCl2, 10 mM MES/KOH 
pH5.6, 150 µM acetosyringone 

Lysis buffer (protein extraction from N. 
benthamiana leaves) 

62.6 mM Tris, 2 % SDS, 10 % Gly-cerol, 5 
% b-Mercaptoethanol, Protease inhibitor 
(1:1000) 

6x SDS sample buffer 300 mM Tris/HCl (pH 6.6), 12 % SDS, 60 
% Glycerol, 6 mM DTT, little bit 
Bromphenol blue 

10 % SDS separating gel (per gel) 2 ml millipore water, 1.3 ml 1.5 M Tris, pH 
8.8, 0.05 ml 10 % SDS, 1.7 ml 30 % 
Acrylamid, 0.05 ml 10 % APS, 0.002 ml 
TEMED 

4 % SDS stacking gel (per gel) 0.68 ml millipore water, 0.13 ml 1M Tris 
pH 6.8, 0.01 ml 10 % SDS, 0.17 ml 30 % 
Acrylamid, 0.17 ml 10 % APS, 0.001 ml 
TEMED 

SDS PAGE running buffer  

 

25 mM Tris/HCl, 200 mM Glycine,  

0.1 % SDS 

Western Blot Transfer buffer, pH 8.3 25 mM Tris base, 192 mM Glycine, 10% 
Methanol 

10x TBS, pH 7.6 24.2 g/l Tris base, 80 g/l NaCl 

TAE-buffer 40 mM Tris-acetate, pH 8.6, 1 mM EDTA 

Z-buffer (500 ml)  4.27 g NaH2PO4, 2.75 g NaH2PO4H2O, 
0.375 g KCl, 0.125g MgSO4 
7 H2O, pH 7, store at 4 °C (do not 
autoclave) 

 

 

9.3 Media 

B5 Medium 1.65 g Gamborg B5 salt; 10 g sucrose; 5 g 
Bactoagar; in 500 ml dd H2O 
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Bactoagar 0.8% Bactoagar in 500 ml dd H2O 

Hoagland Solution 0,6 ml Hoagland Trace Elements; 1 ml 
KNO3 (495 mM); 1 ml Ca(NO3)2 4H2O 
(43 mM); 2 mL MgSO4 7 H2O (200 mM); 2 
ml Fe-Citrat (22 mM) 

LB Medium 1 % (w/v) Tryptone, 0.5 % 
(w/v) 

LB Medium 1 % (w/v) Tryptone, 0.5 % 
(w/v) Yeast extract, 1 % (w/v) NaCl, pH 
7.0(NaOH) 

SD-Medium  SD-Medium 0.7 % Yeast nitrogen base 
without amino acids, 0.1 % Dropout mix, 
2 % Glucosemonohydrate, pH 5.8 

TY-Medium  TY-Medium 0.3 % (w/v) Yeast extract, 0.5 
% (w/v) Tryptone, pH 7.0 

YPAD Medium (liquid)  YPAD Medium (liquid) 1 % Bacto yeast 
extract, 2 % Bacto peptone, 2 % Glucose 
monohydrate, 0.004 % Adenine sulfate, 
pH 6.5 

 

9.4 Chemicals 

Chemicals Manufacturer 

Acetosyringone  Fluka, Buchs, CH 

3-AT  Sigma-Aldrich, Taufkirchen 

Bacterial Protease Inhibitor  Sigma-Aldrich, Taufkirchen 

Biorad Protein Assay  Biorad, München 

Carrier DNA (Hering Sperm, 10 mg/ml) Promega, Mannheim 

Dropout Supplement  Clontech, Mountain View, USA 

Gamborg B5 salt  Sigma-Aldrich, Taufkirchen 

Gelrite   Roth, Karlsruhe 

LR Clonase II Enzyme Mix Invitrogen Karlsruhe 

Luminogen. TMA-6 
GE Healthcare UK, Little Chalfont 
Buckinghamshire 

4-MU Sigma-Aldrich Taufkirchen 

MUG Sigma-Aldrich Taufkirchen 

Plant Protease Inhibitor Sigma-Aldrich Taufkirchen 
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Polyethylenglycol (MW 3350) GE Healthcare Freiburg 

 

9.5 Antibodies 

Antibody Description Dilution Source 

Anti-HA-HRP primary antibody conjugated 

with HRP, IgG, 

monoclonal, rat. 

1:2000 Roche, Penzberg 

Anti-GFPpoly a-GFP primary antibody, 

IgG, polyclonal, mouse 

1:3000 Rockland 

Anti-myc primary antibody 1:1000 Roche, Penzberg 

Anti-dsRed primary antibody 1: 5000 Clonetech 

Anti-mouse 

IRdye800 

secondary antibody 

conjugated with HRP, IgG, 

monoclonal, goat 

1:10000 Biomol, Hamburg 

Anti-rabbit HRP secondary antibody 1:20000 Amersham 

 

9.6 Plant Material  

Plant species ecotype genotype reference 

Lotus japonicus Gifu B-129 wild-type Larsen, 1995 

Lotus japonicus MG-20 wild-type  

Lotus japonicus Gifu  snf1-1 Tirichine et al., 2006 

Lotus japonicus Gifu  snf2-2 Tirichine et al., 2007 

Lotus japonicus Gifu  har1-3 (Barbulova et al., 2007) 
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Lotus japonicus Gifu  nin-2,  

nin-8 

(Schauser et al., 1999) 

(Perry et al., 2009) 

 

Lotus japonicus Gifu (accession number B-129) and ecotype Miyakojima MG-20 were used 

as the wild-type along with five symbiotic mutants, nin-2, har1-3, cyclops-3, snf1-1 and snf2-2 

in hairy root experiments. 

9.7 Bacterial Strains 

strain    description resistance 

Agrobacterium 
AR1193  

MATa trp1-901 leu23,112 ura3-52 his3-200 
gal4 gal80 LYS2::GAL1UASGAL1TATA- 
HIS3 MEL1 GAL2UAS-
GAL2TATAADE2, 
URA3::MEL1UASMEL1TATA-lacZ, 
Stougaard et al., 1987 

 

rifampicin  
(100µg/ml), 
carbenicillin  
(50 µg/ml) 
 

Agrobacterium 
agl1 

Lazo et al.; 1991 Oct; 963-7 

 

rifampicin  
(100µg/ml), 
carbenicillin  
(50 µg/ml) 
 

Agrobacterium 
GV3101 

Koncz & Schell, 1986 

 

rifampicin 
(100 mg/ml),  
gentamycin  
(50 mg/ml) 
 

E. coli, Top10 

F-, mcrA, Δ (mrr-hsdRMS-mcrBC), φ 
80lacZ ΔM15, Δ lacX74,recA1, araD139,Δ 
(araleu) 7697, galU, galKrpsL (StrR), endA1, 
nupG, λ- 

 
 

Mesorhizobium 
loti MAFF 
303099  

wild-type with RFP transgene (DsRed) 
 

 

Root transformation was performed with A. rhizogenes (AR1193) and nodulation 

experiments were done with M. loti MAFF303099 expressing DsRED constitutively 

(Maekawa et al., 2009). E.coli strains DH5alpha, DB3.1 and TOP10 were used for plasmid 

transformation and propagation of the plasmid. E.coli Rosetta strain was used for protein 

expression of NIN and CYCLOPS. A. tumefaciencs strains agl1 and GV3101 were used for 

transient expression in Nicotiana leaf cells. Yeast strain AH109 was used for yeast 

transformation and in the yeast-two hybrid analysis. 
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9.8 Oligonucleotides 

Oligonucleotides were designed in CLC Main Workbench and the web-based program 

primer3plus (Untergasser et al., 2012). They were ordered from Sigma-Aldrich 

(Germany).  

Primer (5´-3´) 

Contruct Primer Sequence forward and reverse 

NIN-546-878 coding sequence = NINC ATGGTCTCTCACCATGTCTTCTTATA

CCTTTGGAAGCCG_f 

ATGGTCTCACCTTTTAAGATGGGCT

GCTATTGCG_r 

NIN-546-643 coding sequence = RW 

 BsaI 

ATGGTCTCTCACCATGTCTTCTTATA

CCTTTGGAAGCCG_f BsaI 

ATGGTCTCACCTTTTACTGTATGGC

ACCCTCAGCA_r BsaI 

 

EMSA probes and competitors (5´-3´) 

 

CYC-RE  

NIN-RE wild-type 

(Singh et al., 2014) 

ATATAAGTTTGCATTTTTAGGTACACAAATTT_f 
AAATTTGTGTACCTAAAAATGCAAACTTATAT_r 

NIN-RE mutated ATATAAGATTGCATTTTTTCCTACACAAATTT_f 

AAATTTGTGTAGGAAAAAATGCAATCTTATAT_r 

NC-RE TAAGTTTGCATTTTTAGGTACACAAATTTTGTACGATT
GCCATGTGGCACGCA_f 

GCGTGCCACATGGCAATCGTACAAAATTTGTGTACCTA
AAAATGCAAACTTAT_r 

Pal TACGATTGCCATGTGGCACGC_f 

TGCGTGCCACATGGCAATCGT_r 

 



99 
 

9.9 Plasmid construction 

 

pENTR_BsaI:cNIN-546-878 = (NINC) Phusion PCR product of cNIN-546-878 

nucleotide sequence amplified from 

pENTR:cNIN with NIN-546-

878_fwd/rev cloned into BsaI sites of 

pENTR_BsaI-GW-BsaI 

pENTR_BsaI:cNIN-546-643 = (RW) Phusion PCR product of cNIN-546-643 

nucleotide sequence amplified from 

pENTR:cNIN with NIN-546-

643_fwd/rev cloned into BsaI sites of 

pENTR_BsaI-GW-BsaI 

pDEST17:cNIN-546-878 = (NINC) and 

pDEST17:cNIN-546-643 = (RW) 

(N-terminal 6xHis-tag) 

LR reaction (Invitrogen) of pDEST17 

(Invitrogen) and pENTR_BsaI:cNIN-

546-878 or pENTR_BsaI:cNIN-546-643 

pDEST15:CYCLOPS, phosphosite and 

truncated versions(N-terminal GST-tag) 

Singh et al., 2014 

pENTR:cNIN Phusion PCR amplified cDNA NIN was 

cloned into pENTR/D TOPO via TOPO 

reaction (Invitrogen) 

pENTR:cNSP2 Phusion PCR amplified cDNA NSP2 was 

cloned into pENTR/D TOPO via TOPO 

reaction (Invitrogen) 

p35S:TSapphire-GW Singh et al., 2014 

p35S:Tsapphire-CYCLOPS and 

99hosphor-site mutants 

Singh et al., 2014 
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p35S:mOrange Singh et al., 2014 

Tsapphire-mOrange chimeric fusion Bayle et al., 2008 

p35S:mOrange-GW Singh et al., 2014 

p35S:CCaMK-mOrange Singh et al., 2014 

p35S:NIN-mOrange LR reaction (Invitrogen) 

pENTR:cNINΔstop and p35S:GW-

mOrange (Bayle et al., 2008) 

pSPYNE35S:CYCLOPS and phosphosite 

mutants 

Singh et al., 2014 

pSPYNE35S:NIN LR reaction (Invitrogen) of 

pENTR:cNIN with pSPYNE35S:GW 

pSPYCE35S:CCaMK Yano et al., 2008 

pGWB735 CYCLOPS and phosphosite 

mutants 

Singh et al., 2014 

pUb:3xHAgCYCLOPS Singh et al., 2014 

pUb:cNIN LR reaction (Invitrogen) of 

pENTR:cNIN and pUB:GWGFP 

(Maekawa et al., 2008) 

pUb:cNSP2 LR reaction (Invitrogen) of 

pENTR:cNSP2 and pUB:GWGFP 

(Maekawa et al., 2008) 

pUb:gNIN:myc-

pUb:gCYCLOPSDD:HA-35S:GFP 

LIII GG cut-ligation of LII 

promUb:gNIN:myc, LII 

promUb:gCYCLOPSDD:HA and LII 

35S:GFP and insulators 
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Plasmids for the golden gate tool box Binder et al., 2014 

p35S:cNIN-YFP LR reaction (Invitrogen) of 

pENTR:cNIN and M1( (p35S:GW:YFP)  

p35S:cNIN-C-YFP LR reaction (Invitrogen) of 

pENTR:cNIN-C and M18 

(p35S:GW:YFP) 

pNIN:GUS  Singh et al., 2014 

2xCYC-RE:GUS  
 

Singh et al., 2014 

BD-NIN LR reaction (Invitrogen) of 

pENTR:cNIN and pBD-GAL4 Cam 

(Stratagene) 

AD-NIN LR reaction (Invitrogen) of 

pENTR:cNIN and pGAD424 (Clontech) 

AD-CYCLOPS Yano et al., 2008 

BD-CYCLOPS (1-159 aa) Yano et al., 2008 

BD-CCaMK Yano et al., 2008 

 

10 Methods 

10.1 Molecular biology methods 

10.1.1 Polymerase-chain reaction  

For cloning experiments the amplification of DNA fragments was performed using 

Phusion high fidelity polymerase (NEB) in either HF or GC buffer. Colony PCR was 

performed with Taq polymerase in standard buffer (NEB).  

These components were mixed as follows: 
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Phusion PCR 

component  volume 

template (200 ng/µl)  1 µl 

5x HF buffer  10 µl 

dNTPs (5 mM)  1 µl 

primer forward (2 µM)  5 µl 

primer reverse (2 µM)  5 µl 

Phusion(NEB con.)  1 µl 

sterile ddH2O  27 µl 

total  50 µl 

 

Standard PCR-program for Phusion polymerase: 

98 °C:30 sec; (98 °C:10 sec, X °Ca 30 sec,72 °C:15-30s/1 kb) x 35; 72 °C 10 min; 4 °C  

 

10.1.2 Electrophoresis of DNA 

1 % Agarose solution was prepared with TAE buffer and boiled. Then, ethidium bromide 

was added to the mixture. Gel was left at RT to polymerize. Samples and DNA ladder 

were loaded into the sample wells. The gel was run with 120 Volts for 30 minutes. The 

separated fragments were visualized by a gel documentation system. 

 

10.1.3 Extraction of PCR products from agarose gels/PCR clean-up 

The gel containing DNA sample was placed on a UV table and exposed very shortly to 

UV. A scalpel was used to cut out the DNA fragment and transfer it to a 1.5 ml reaction 

tube. The extraction procedure of DNA from agarose gels was performed with the Gel 

Extraction kit from Fermentas according to the manufacturer´s instructions. 

Alternatively, the PCR product was directly cleaned up with the PCR clean-up kit from 

Fermentas according to the manufacturer’s instructions. The cleaned PCR product was 

further used in cloning reactions. 
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10.1.4 Plasmid isolation and estimation of DNA concentration 

Plasmid DNA was isolated from 2 ml of overnight cultures of E.coli grown at 37°C using 

the GeneJET Plasmid Miniprep Kit (Thermo Scientific) according to the manufacturer’s 

instructions. The concentration of the isolated DNA was measured with a Nanodrop 

spectrophotometer according to the manufacturer´s instructions. 

10.1.5 Restriction endonuclease digestion of DNA  

The restriction enzyme digest-mix was prepared on ice with the following components 

(one reaction): 

 

Component Volume 

10x NEB buffer  1 µl 

BSA (10mg/ml)  1 µl 

Enzyme (3 units)  0.3 µl 

DNA (250ng/µl)  1 µl 

sterile ddH2O  6.7 µl 

total volume  10 µl 

 

The reaction was incubated at the recommended temperature for 2 hours. The reaction 

was stopped with 10x DNA-loading buffer and run on a 1 % agarose gel to separate the 

cut fragments according to its size. 

10.2 Cloning and Vector construction of NIN 

The coding region of NIN was amplified using cDNA from Gifu wt roots and genomic 

NIN was amplified using genomic DNA from Gifu wt roots. The genomic sequence of 

NIN was cloned with the Golden Gate strategy (Binder et al.; details see golden gate 

cloning). NIN-C (aa) cDNA was cloned from the vector template of NIN-FL. For the 

construction of genomic NIN three type IIS sites had to be removed, therefore the gene 

was divided into 3 fragments and rejoined in a LI vector. The LII construct for NIN was 

combined as pUb:gNIN:myc. For the co-expression of CYCLOPS-DD and NIN together 

with a GFP transformation marker, a LIII vector was assembled (pUb:gNIN:myc-

pUb:CYCLOPS-DD:HA-35S:GFP) with insulators separating the genes. 
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10.2.1 Golden gate cloning (cut-ligation reaction) 

BsaI, BpiI and Esp3I cut-ligation:  

For convenience all plasmids were diluted to a final concentration of 100 ng/μl. 

The cut-ligation for Golden Gate cloning was set up as follows: 

Compound volume 

Destination vector 1 µl 

Enzyme (BsaI/BpiI/Esp3I) (5-10 units) 0,5 µl 

T4 ligase buffer (10x) 1,5 µl 

T4 ligase 0,75 µl 

different insert vectors 1 µl 

dd H2O ad 15 µl 

 

For BsaI cut-ligations 0.15 μl of bovine serum albumin (10mg/ml) were added. Reactions 

were incubated in a thermocycler for 20-40 cycles, cycling between 37°C for 2 min and 

16°C for 5 min, followed by 37°C for 5 min, 50°C for 5 minutes and 80°C for 5 minutes. 

3-5 μl of the reaction were transformed into E. coli TOP10 or DB3.1 (for insertion of ccdB 

cassettes).  

Blunt-end cut-ligation (subcloning): 

For blunt-end cloning of PCR fragments into pUC57 vector an optimized cut-ligation 

protocol was used.  

 

Compound volume 

StuI/NruI (5-10 units) 0,5 µl  

T4 Ligase 1 µl 
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T4 ligase buffer  2 µl  

100 mM ATP 0,2 µl 

pUC57 25-50 ng 

Insert 6:1 (6x) 

H2O up to 20  

 

Standard cut-ligation program: (37 °C:5 min; 20°C:5 min)x 20-40; 80 °C:10 min  

 

0.4 μl of fresh enzyme (StuI/NruI) was added together with 0.4 μl of antarctic 

phosphatase (NEB) and 2 μl of phosphatase reaction buffer. Samples were incubated for 

another 30 min at 37°C, then heat inactivated at 80°C for 20 min.  

5 μl of the reaction was transformed into E. coli Top10 by heat shock and plated on LB 

plates containing the appropriate antibiotic supplemented with 40 μg/ml X-Gal (5-Brom-

4-chlor-3-indoxyl-β-D-galactopyranosid) and 100 μM IPTG (Isopropyl β-D-

thiogalactopyranoside). Plasmids were isolated from white colonies and validated by 

sequencing.  

 

10.2.2 Cloning: LR-reaction 

LR reactions were set up like stated in the table below. The reaction mix was incubated at 

25 °C for 1,5 hours.  

Component Volume 

entry-vector (100 ng)  0.75 µl 

destination-vector (300 ng)  0.75 µl 

LR clonase Mix  1 µl 

 

The whole reaction mix was transformed into E. coli by heat shock transformation. 

10.2.3 TOPO Cloning 

The TOPO cloning reaction was set up like listed in the table below, then the reaction 

was incubated for 1 hour at 21 °C.  
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Component volume 

pENTR-D-TOPO vector (50 ng) 0.5 µl 

Salt 0.5 µl 

Insert (50 ng) 1 µl 

Aqua 1 µl 

 

The whole volume of the TOPO-reaction was transformed into E. coli Top10 by heat 

shock. 

10.2.4 Transformation of E. coli cells (heat shock method) 

Chemically competent E. coli TOP10 or DB3.1 cells were used for transformation. Cells 

were thawed on ice for 2 minutes and 50 µl of the suspension was added to a 1.5 ml 

microliter tube. 1-5 µl of plasmid DNA or ligation reaction were added and mixed by 

gentle pipetting. The reaction was incubated on ice for 2 minutes, and then a heat shock 

of 42°C was applied for 30 seconds. The tubes were immediately returned to ice and 500 

µl of LB medium was added. After incubation at 37°C on a shaker (200 rpm) for 30 min 

to 1 h, 50-200 µl of the suspension was plated on LB plates containing the appropriate 

antibiotics and incubated overnight at 37°C. Successful transformations were screened by 

colony PCR and/or following plasmid extraction by restriction digestions and sequencing.  

10.2.5 Transformation of Agrobacterium cells (Electroporation method) 

Electrocompetent A. rhizogenes AR1193 or A. tumefaciens AGL1 cells were used for 

transformation. The cells were thawed on ice for 2 minutes and mixed together in chilled 

1.5 ml microliter tubes with 1-2 µl of plasmid DNA (10-50 ng) by gentle pipetting. The 

mixed suspension was pipetted into chilled electroporation cuvettes. For electroporation 

the following settings were used: Voltage 1.2 kV, conductance = 25/25/125 Fd; 

resistance = 400 Ω. After the pulse, the cells were immediately mixed with 500 µl of LB 

medium and transferred to 1.5 ml microliter tubes. Cells were incubated at 28°C for 1 

hour and 20-100 µl were plated on LB plates containing the appropriate antibiotics. 

Successful transformations were screened by colony PCR.  
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10.2.6 Sequencing 

DNA sequence analysis was performed by the “Sequencing Service of the Faculty of 

Biology” with an ABI3730 48 capillary sequencer (Applied Biosystems) using Big Dye 

Terminator 3.1. Sequencing runs were set up according to the “cycle, clean & run” 

protocol with 100 – 500 ng of plasmid DNA and 3.2 pmol of sequencing primer in a total 

volume of 7 µl.  

 

10.3 Cultivation methods 

10.3.1 Bacterial growth conditions 

E. coli was grown at 37 °C in LB medium overnight. Agrobacterium strains were grown at 

28 °C for 1-2 days in LB medium, M. loti strains were grown at 28 °C for 2 to 4 days in 

TY medium. Liquid cultures were shaken at 200 rpm. 

10.4 Plant cultivation 

10.4.1 N. benthamiana transformation  

BiFC and localisation stduies were performed in 5 weeks old Nicotiana benthamiana plants 

following A. tumefaciens GV3101 pM90RK (Koncz and Schell, 1986) and Agl1 strain 

mediated transient transformation, respectively (Lazo et al., 1999; Walter et al., 2004). 

Bacteria cultures of 2 ml LB-medium with selective antibiotics were inoculated with 1 

Agrobacteria colony carrying the constructs of interest. The cultures were incubated 1-2 

days at 28°C shaking at 170-220 rpm, and then the OD600 of the cultures was measured. 

Cultures were centrifuged at 4000 rpm for 5 min at RT, the pellet was resuspended in 

freshly prepared infiltration buffer and adjusted to a final OD600 of 0.5. Then, the 

resuspended cultures were incubated in the dark for 2 hours at RT. Agrobacterium 

cultures carrying constructs for testing a putative interaction/localisation were mixed with 

an Agrobacterium strain carrying the P19 silencing suppressor (Voinnet et al., 2003; 

Lakatos et al., 2004) in equal ratios. Bacterial mixtures were infiltrated into the lower side 

of the leaf of N. benthamiana plants via a small wound. After infiltration the plants were 

kept in a Binder growth chamber at 22°C for 16 hours day and 8 hours night cycle for 72 

hours, which was determined to be the best time point for the expression of NIN. Leaf 
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samples were cut out, and the expression of fluorescent proteins was detected with an 

inverted epifluorescence or a confocal laser-scanning microscope, respectively. After 

microscopy, 3 leaf discs per sample were harvested and frozen in liquid nitrogen for 

protein extraction and western blot analysis. 

10.4.2 Plant germination and growth  

L. japonicus seeds were scarified with sandpaper, sterilized with 2% NaOCl containing 

0.1% sodium dodecylsulfate with an incubation time of 5 minutes, then washed 5 times 

with 1 ml sterile ddH2O and incubated for at least 6 hours or overnight in sterile water 

rotating on a wheel. Swollen seeds were transferred to 0.8% bactoagar plates and 

germinated in the dark (wrapped in aluminium foil) for 3 days (in vertical position). The 

plants were unwrapped from the foil and grown at 24°C in a 16 h light / 8 h dark cycle. 

Hairy root transformation was performed with 6-7 days old seedlings. 

10.4.3 Lotus hairy root Transformation 

Following germination L. japonicus seedlings were grown on 0.8% bacto agar plates for 3 

days in the dark and 4 days in the light at 24 °C prior to transformation. A. rhizogenes 

AR1193 (Stougaard et al., 1987a) carrying the desired plasmids were precultivated on agar 

plates containing the appropriate antibiotics for 2-3 days. Bacteria from a single colony 

were taken and dissolved in 200 µl dd H2O and grown for 1 day.  

For hairy root transformation the bacteria were scraped off the LB plates onto a Petri 

dish and diluted in 1 ml of sterile water. The roots were cut at the hypocotyls with a 

scalpel that was covered with bacterial suspension. The wound was dipped into the 

bacteria and the plants were placed on agar plates containing B5 medium. The plates were 

covered with aluminum foil and co-cultivated in the dark at approximately 24 °C in a 

growth chamber. After 2 days the aluminum foil was partly removed (two thirds of the 

bottom of the plates was still covered to limit light exposure of the roots) and the plants 

were incubated for 3 days in 16 h light/8 h dark condition at 24°C in a growth chamber. 

The plants were transferred to B5 plates containing Cefotaxime (333 µg/ml) in order to 

halt the growth of the Agrobacteria. The plants were then cultivated at 24 °C in 16 h 

light/8 h dark conditions until emergence of hairy roots (2 to 3 weeks). 
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10.4.4 Nodulation assay 

L. japonicus plants were inoculated with Mesorhizobium loti MAFF303099 expressing dsRed 

((Maekawa, 2009 #295)). The bacteria were inoculated from a preculture plate and grown 

in 20 ml liquid TY medium containing 10 µg/ml gentamycin for 4 days. Cultures were 

centrifuged for 10 minutes at 3000 g, then suspended in 1 ml sterile water. OD600 was 

measured and the suspension was diluted in Hoagland medium to an OD600 of 0.05.  

For nodulation of transformed L. japonicus hairy roots, plants were transferred from the 

B5 agar plates into open pots containing 300 g of sand/vermiculite (1:1) supplemented 

with 50 ml Hoagland medium. The plants were grown for one week at 24°C, and then 

inoculated evenly with 10 ml of M. loti MAFF303099 dsRED (OD600 of 0.05). Nodulation 

was assayed four weeks later.  

 

In sterile assays the plants were cultivated in open pots containing 300 g of 

sand/vermiculite (1:1) supplemented with 50 ml Hoagland medium (10-15 plants per 

pot). The plants were watered with sterile water twice a week and supplemented with 50 

ml Hoagland once a week. Spontanous nodulation was scored 5 weeks after 

transplantation. 

10.4.5 AM Assay 

Seeds of L. japonicus ecotype Gifu B-129 wild-type were scarified and surface sterilized 

with 1 % NaClO. Imbibed seeds were germinated on 1 % Bacto Agar (Difco) at 18 °C or 

24 °C for 5-6 days. Seedlings were cultivated in chive (Allium schoenoprasum) nurse pots 

containing ‘G. intraradices-like’ BEG195 (Stockinger et al., 2009) as described (Kistner et 

al., 2005) except that sand/vermiculite (1/1 vol.) was used as substrate. After 5 weeks of 

growth in open pots at 24 °C, 16 h light/ 8 h dark cycles, roots were harvested and 

cleared with 10 % KOH at 90 °C for 15 min. AM fungal structures were stained with ink 

and quantified under the inverted-fluorescence microscope using the intersections 

method (McGonigle et al., 1990).  

10.4.6 Nodule sectioning 

Mature nodules were embedded in 6% low melting agarose and sections (50 µm) were cut 

using the vibratome VT100S (Leica). Sections were stained with toluidine blue (0.05%) 
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and pictures were taken with a Leica DM16000 inverted light microscope using 

brightfield illumination.  

10.5 Biochemical methods 

10.5.1 Histochemical GUS Staining  

GUS staining was performed with 3 week old transformed L. japonicus roots or with N. 

benthamiana leaves that carried a pNIN:GUS reporter 60 hours after transformation. 

Samples were infiltrated with a GUS staining solution (1 mM X-Gluc (5-bromo-4-chloro-

3-indolyl-b-glucuronic acid), 0.1 M NaPO4 pH7, 5 mM EDTA, 0,1% Triton X-100, 1mM 

K3(Fe(CN)6), 1 mM K4(Fe(CN)6), enzymatic reaction was incubated for 3 hours at 37 °C 

and subsequently washed with 100 % Ethanol. 

10.5.2 Fluorimetric GUS assay 

Leaf samples from infiltrated N. benthamia plants were harvested 72 hours after infiltration 

and frozen in liquid nitrogen. Frozen samples were homogenized with beads in a retch 

mill (2x40 sec, 30/sec). Then, 200 µl extraction buffer was added to the samples and 

vortexed for 1 minute. Samples were rotated for 10 minutes at 4 °C and then centrifuged 

at 14000 rpm at 4 °C for 15 minutes. The supernatant was transferred to a new tube and 

used for the fluorimetric GUS assay. 10 µl of cell extract was added to GUS buffer and 

the reaction was incubated at 37°C for certain time points (3 min, 6 min, 9 min). The 

reaction was stopped by addition of 100 µl NaCO3 (0,2 M). The reaction mix was 

measured with a tecan reader for fluorescence (4-MU) at an excitation wavelength of 360 

nm and a detection wavelength of 465 nm. Protein concentration was estimated with the 

Bradford test. 1 µl of cell extract was mixed with 100 µl Bradford reagent and measured at 

the absorption of 595 nm.  

10.5.1 Protein extraction from N. benthamina leaves 

Frozen samples of 3 leaf discs per tested combination was ground with a tissue lyser with 

a frequency of 30/sec for 1.5 minutes. Per sample tube 300 µl of lysis buffer were added 

and then vortexed for 1 minute. All samples were kept on ice for a few minutes and then 

rotated on a wheel for 5 minutes at 4 °C. Then, the protein samples were heated at 95 °C 

for 5 minutes and then centrifuged at 16000 rpm for 20 minutes. The protein extracts 
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were separated on an SDS-PAGE and expressed proteins were detected via western blot 

analysis. 

10.5.2 SDS PAGE 

Each protein sample was mixed with 5x SDS sample buffer and incubated at 95 °C for 3 

minutes. Then, all samples were shortly centrifuged prior to loading on a gel. A pre-

stained protein ladder was loaded to correlate separated protein sizes from the samples. 

Samples were loaded on the gel and run at 150 V for 1 hour. The SDS-gel was then either 

stained with Coomassie staining solution or subjected in a western blot with protein 

transfer on a membrane. 

 

10.5.3 Western blot 

The PVDF-membrane was activated by incubation in 100 % ethanol for 15 seconds and 

then transferred to transfer buffer for 5 minutes. A sandwich for the transfer of proteins 

from an SDS-gel to the membrane was put together with 4 Whatman filter papers and 2 

western sponges. The blot was run at 130V for 90 minutes. After transfer of the proteins 

from the gel to the membrane, the PVDF-membrane was washed with TBS once and 

then washed with TBS-T twice (each time for 10 minutes). For blocking the membrane 

was incubated in TBS-T with 5 % milk for 1 hour at RT on a shaker or overnight at 4 °C. 

The membrane was washed 3 times with TBS-T for 10 minutes on a shaker. Antibodies 

were diluted in TBS-T with 5 % milk and added to the membrane for 2 hours at RT or 

overnight at 4°C. The membrane was washed again 3 times with TBS-T for 10 minutes. A 

secondary antibody conjugated with HRP was added to the membrane for the duration of 

1 hour. Additional washing was performed 3 times with TBS-T for 10 minutes. 

Horseradish peroxidase (HRP) activity was detected using chemiluminescence. 

10.5.4 Protein expression and purification 

Expression of NIN deletion constructs was induced in E. coli Rosetta pLaqI (Novagen) 

for 12 hr at 18 °C by addition of 0.5 mM IPTG. His-tagged proteins were purified by 

metal affinity chromatography using TALON resin (Clontech) as described by the 

protocol of the manufacturer. Buffer conditions were modified accordingly (binding and 

wash buffer: 20 mM PIPES, 500 mM KCl, 2 mM β-mercapto-ethanol, 10 mM imidazole, 

pH 7.0; elution buffer: 20 mM PIPES, 200 mM KCl, 2 mM β-mercapto-ethanol, 250 mM 
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imidazole, pH 7.0). Expression and purification of GST-CYCLOPS phosphosite and 

truncated versions was performed as described (Sing et al., 2014). Protein concentration 

was determined by the Bradford Method (Bio-Rad), using BSA (Sigma) as a standard. 

Protein purity was analyzed by SDS-PAGE and Coomassie staining of the gel. 

10.5.5 Electrophoretic mobility shift assay 

Binding reaction composition and practical application was as described in Sing et al.. 

2014. 100 fmol 5’ CY5 labeled DNA and 15 pmol NINC and RW, 25 pmol NINN, 20 

pmol CYCBD, 35 pmol CYCMin and 75 pmol CYCDD were used (competitor DNA and 

variant molar amounts of protein are indicated within the figure). Reactions were solved 

on 4 % native polyacrylamide gels. CY5 labeled DNA was visualized with the Typhoon 

TriO phosphoimager (Amersham Biosciences). Complementary pairs of labeled and 

unlabeled oligonucleotide probes are listed in 9.8. 

10.5.6 Bradford assay for protein standard curve and protein concentration 

measurement 

Bradford reagent was diluted with ddH2O in a ratio of 1:5 and filter sterilized. A dilution 

series of 1000 µg, 500 µg, 250 µg and 125 µg BSA was prepared, by diluting a 100mg/l 

BSA stock solution. The reaction mixes were incubated for a maximum of 10 minutes at 

RT and the OD of each sample was measured at 595 nm. For the determination of 

protein concentrations, 20 µl of protein sample were mixed with 980 µl Bradford 

solution. Then the concentration of proteins was calculated from the BSA standard curve 

using MS Excel. 

10.5.7 Yeast two-hybrid 

Yeast two-hybrid interaction assay was performed in the the yeast AH109 according to 

the user manual (Yeast Protocols Handbook, Clonetech). AH109 yeast strain were 

transformed with the lithium acetate method (Woods and Gietz, 2001). Transformants 

were screened on SD medium containg 0,67 % yeast nitrogen base, 2% glucose, but 

lacking appropriate nutrients. 

A single colony of AH109 was inoculated into 20 ml YPAD-medium and grown in a 

shaker at 30 °C overnight. The OD of the yeast culture was measured at 546 nm. The 

Culture was adjusted to an OD of 0.2 and then grown until an OD of 0.6-0.8. Culture was 
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pelleted for 5 minutes at 700 g and resuspended in 1 ml sterile H2O (an amount sufficient 

for 10 single- or co-transformations). 

A master mix was prepared with the following components (one transformation) and 

vortexed briefly: 

 

component  volume 

50 % PEG  240 µl 

1 M LiAc  36 µl 

ssDNAa  30 µl 

total  306 µl 

 

Per transformation 300 µl of master mix were used and mixed with 7. 5 µl of plasmid-

DNA (200 ng/µl) and 100 µl yeast cells. The mix was vortexed for 1 minute. The 

mixtures were incubated in a water bath at 42 °C for 45 minutes. Then a centrifugation 

step was performed at 700 g for 5 minutes. The Pellet was resuspended in 100 µl sterile 

0.9 % NaCl and plated onto selective SD(-)LW plates. The plates were incubated at 30 °C 

for 2-3 days and grown yeast colonies were subjected to a yeast two hybrid test. 

10 independent clones of each combination were picked and inoculated into 500 µl sterile 

water in a 12 well plate. Then the cultures were incubated at 30°C shaking at 170-220 rpm 

overnight. The next day, all cultures were adjusted to an OD546 of 1.0. For each 

construct dilutions of 101, 102 and 103 were prepared in sterile ddH2O. A metallic stamp 

was used to transfer 10 µl of each diluted sample to the selective SD plates. All plates 

were and incubated at 30 °C for 2-3 days and yeast growth was analysed. 

10.6 Microscopy 

Confocal laser scanning microcopy (CLSM) was performed with a Leica SP5 microscope. 

N. benthamiana leaves were vacuum infiltrated prior to imaging and imaged with a HCX 

PL Fluotar 63x objective. For image acquisition the resolution was set to 512 x 512 pixels 

and the frame average to 2. Using the argon laser at 20% power, GFP was excited with 

the 488 nm laser line and detected at 500-530 nm, YFP with the 514 nm spectral line and 

detected at 530-550 nm, mOrange was excited with the 514 nm laser line and detected at 

545 nm to 600 nm. TSapphire was excited with a 405 diode laser and detected at 485 nm 
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to 535 nm. Images of L. japonicus root systems were taken using a Leica M165 FC 

epifluorescence stereomicroscope equipped with a GFP and RFP filter. 

10.6.1 FLIM-FRET 

Nicotiana benthamiana leaves were co-infiltrated with Agrobacterium tumefaciens bacteria 

carrying the respective plasmid constructs. 60 hpi leave discs were harvested and used for 

the interaction study. For CLSM T-Sapphire was excited with a 405 diode laser, whereas 

mOrange was excited with a 514 nm argon laser line (Bayle et. al., 2008). The emission of 

TSapphire was detected with a 485 nm to 535 nm band pass emission filter, while 

mOrange was detected with a 545 nm to 600 nm band-pass emission filter. A Ti-Sapphire 

Mai Tai multiphoton (MP) laser from Spectra Physics was tuned at 800 nm for the 

excitation of TSapphire fluorescence, which runs at 80 mHz with a 100 fs pulse length. 

For a single FLIM measurement a number of 20 scanning cycles (5s/cycle) were applied 

to get a suitable photon count rate at a spatial resolution of 256x256 pixels. As the FLIM 

setup a Leica SP5 microscope with an implemented FLIM PMT detector from Becker 

and Hickl were used. Hence the Becker and Hickl photon count software TCSPC2.80 was 

used for recording the light signals. For lifetime calculations a region of interest was set 

around the nucleus and the double exponential model was applied for all interaction pairs 

in the Becker and Hickl SPCImage software. Both scatter and shift were fixed to zero. 

The FRET efficiency was calculated as described in Bayle et al., 2008. 

10.6.2 Statistics 

All statistical analyses and data plots have been performed and generated with R version 

3.0.2. For statistical analysis of the numbers of nodules, AM structures and FLIM-FRET 

a t-test and ANOVA was applied.  
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