# Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität München

# Phosphor(V)-nitride durch Hochdruck-Hochtemperatur-Synthese

von

Kai Landskron

aus

Kulmbach

| _ |    |    |     |      |          |   |
|---|----|----|-----|------|----------|---|
| ᆮ | rk | ıä | rii | ın   | $\alpha$ | • |
| ᆫ | ıΝ | ıa | ıυ  | 11 1 | u        |   |

Diese Dissertation wurde im Sinne von § 13 Abs. 3 bzw. 4 der Promotionsordnung vom 29. Januar 1998 von Prof. Dr. W. Schnick betreut.

# Ehrenwörtliche Versicherung:

Diese Dissertation wurde selbständig und ohne unerlaubte Hilfe erarbeitet.

München, am 14.5.2001

Dissertation eingereicht am 21.5.2001

1. Gutachter Prof. Dr. W. Schnick

2. Gutachter Prof. Dr. R. Pöttgen

Mündliche Prüfung am 18.6.2001

Meinen herzlichen **Dank** möchte ich aussprechen an...

...Herrn Prof. Dr. Wolfgang Schnick für die großen Freiheiten bei der Gestaltung des Themas, seine große Diskussionsbereitschaft und Unterstützung bei Problemen jeglicher Art sowie den sehr guten Arbeitsbedingungen.

...Herrn Prof. Dr. Rainer Pöttgen für die Übernahme des Korreferates.

...Frau Elisabeth Irran für die Verfeinerung der Kristallstrukturen von NaP<sub>4</sub>N<sub>7</sub>, KP<sub>4</sub>N<sub>7</sub>, RbP<sub>4</sub>N<sub>7</sub> und CsP<sub>4</sub>N<sub>7</sub> aus Pulverdaten sowie temperaturabhängigen Pulvermessungen. Besonders bedanken möchte ich mich für Deine Bereitschaft und die Geduld, mich in die Pulvermethoden einzuweisen und auftretende Probleme bereitwillig zu diskutieren, das Aufspüren von Fehlern in dieser Arbeit sowie die angenehme Nachbarschaft!

...Frau Sabine Schmid für die Strukturlösung und -verfeinerung der Verbindungen  $CaP_2N_4$ ,  $SrP_2N_4$  und  $NaPN_2$ .

...ganz besonders Dr. Dan Frost, Prof. David C. Rubie sowie Dr. Peter Ulmer für die Bereitschaft, ihr großes Know-How in der Multianvil-Technik weiterzugeben.

...Herrn Dr. Hubert Huppertz für den wohlorganisierten Aufbau der 1000 t-Hochdruckpresse, die Einweisung in die Multianvil-Technik sowie in besonderem Maße für Hilfe und Geduld bei handwerklichen Problemen.

...Herrn Wolfgang Wünschheim für die Programmierung des Steuerprogrammes für die 1000 t-Presse.

...Herrn Prof. Dr. Jürgen Evers für die Durchführung der Experimente mit dem Belt-Modul.

...Herrn Dr. Jürgen Senker für die MAS-NMR-spektroskopischen Messungen sowie die stete Diskussionsbereitschaft bei der Auswertung der Spektren.

...Frau Andrea Barra für zahlreiche MAS-NMR-spektroskopische Messungen.

...Herrn Marcus Schwarz für die Härtemessungen an γ-P<sub>3</sub>N<sub>5</sub>.

...Herrn Dr. Wolfgang Milius, Herrn Dr. Klaus Köllisch und Herrn Henning Höppe für das Testen und Messen von Einkristallen.

...Herrn Sascha Correll für die temperaturabhängigen pulverdiffraktometrischen Messungen sowie die angenehme Laborzusammenarbeit.

...Frau Barbara Jürgens und Frau E. Kiesewetter für die IR-spektroskopischen Messungen.

...Herrn Michael Orth, Herrn Stefan Roth und Herrn Stefan Rannabauer für die Beseitigung von Computerproblemen.

...last but not least Frau Alexandra Lieb für die kompetente Einkaufsberatung in Sachen Mode für meine Doktorprüfung sowie die Mitgestaltung meines Dissertationsvortrags!

...schließlich allen, die mich bei der Fertigstellung dieser Arbeit in irgendeiner Weise unterstützt haben.

Nicht grübeln, nicht ins Chaos hinabsteigen, sich wenigstens nicht dort aufhalten! Sondern aus dem Chaos, welches die Fülle ist, ans Licht emporheben, was reif und fähig ist, Form zu gewinnen.

Quelle: Thomas Mann, "Schwere Stunde".

# Inhaltsverzeichnis

| l.    | Einführung                                                                                               | 5  |
|-------|----------------------------------------------------------------------------------------------------------|----|
| II.   | Allgemeiner Teil                                                                                         | 9  |
| 1.    | Präparative Techniken                                                                                    | 9  |
| 1.1   | Vakuum-Schutzgasanlage                                                                                   | 9  |
| 1.2   | Ammoniakanlage                                                                                           | 11 |
| 1.3   | Hochdruck-Apparaturen                                                                                    | 13 |
| 1.3.1 | Die 1000 t-Hochdruckpresse                                                                               | 13 |
| 1.3.2 | Das Belt-Modul                                                                                           | 14 |
| 1.3.3 | Das Multianvil-Assembly                                                                                  | 15 |
| 2.    | Untersuchungsmethoden                                                                                    | 19 |
| 2.1   | Pulvermethoden                                                                                           | 19 |
| 2.2   | Einkristallmethoden                                                                                      | 20 |
| 2.3   | Infrarotspektroskopie                                                                                    | 22 |
| 2.4   | Kernresonanzspektroskopie                                                                                | 22 |
| 2.5   | Thermogravimetrie (TG) und Differentielle Thermische Analyse (DTA)                                       | 23 |
| 2.6   | Härteuntersuchungen                                                                                      | 23 |
| III.  | Spezieller Teil                                                                                          | 25 |
| 1.    | Bezugsquellen, Reinheit und Handhabung der eingesetzten Chemikalien                                      | 25 |
| 1.1   | Gase                                                                                                     | 25 |
| 1.2   | Lösungsmittel und weitere kommerziell erhältliche Reagenzien                                             | 25 |
| 1.3   | Phosphor(V)-nitrid P <sub>3</sub> N <sub>5</sub>                                                         | 26 |
| 1.4   | Hexaaminodiphosphazenium-chlorid [(NH <sub>2</sub> ) <sub>3</sub> PNP(NH <sub>2</sub> ) <sub>3</sub> ]Cl | 27 |
| 2.    | Nitridophosphate im Überblick                                                                            | 29 |
| 3.    | Konventionelle Synthesekonzepte für Nitridophosphate im Überblick                                        | 33 |

| 4.    | Das Konzept der Hochdruck-Hochtemperatur-Synthese für Nitridophosphate                                                                                                | 35  |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 5.    | Hexaaminodiphosphazenium-Salze                                                                                                                                        | 38  |
| 5.1   | Synthese der Verbindungen Hexaaminodiphosphazenium-bromid                                                                                                             |     |
|       | [(NH <sub>2</sub> ) <sub>3</sub> PNP(NH <sub>2</sub> ) <sub>3</sub> ]Br, Hexaaminodiphosphazenium-nitrat                                                              |     |
|       | [(NH <sub>2</sub> ) <sub>3</sub> PNP(NH <sub>2</sub> ) <sub>3</sub> ][NO <sub>3</sub> ] und Hexaaminodiphosphazenium-toluol-4-sulfonat                                |     |
|       | $[(NH_2)_3PNP(NH_2)_3][CH_3C_6H_4SO_3]$                                                                                                                               | 40  |
| 5.2   | Schwingungsspektroskopische Untersuchungen                                                                                                                            | 40  |
| 5.3   | NMR-spektroskopische Untersuchungen                                                                                                                                   | 43  |
| 5.4   | Thermogravimetrische Untersuchungen                                                                                                                                   | 44  |
| 5.5   | Pulverdiffraktometrische Untersuchungen                                                                                                                               | 46  |
| 5.6   | Strukturbestimmung von $[(NH_2)_3PNP(NH_2)_3]Br$ , $[(NH_2PNP(NH_2)_3][NO_3]$ und                                                                                     |     |
|       | $[(NH_2)_3PNP(NH_2)_3][CH_3C_6H_4SO_3]$                                                                                                                               | 47  |
| 5.7   | Strukturbeschreibung und Diskussion                                                                                                                                   | 62  |
| 6.    | Nitridophosphate durch Hochdruck-Hochtemperatur-Synthesen                                                                                                             | 67  |
| 6.1   | Versuchssystematik bei den Hochdruckexperimenten                                                                                                                      | 67  |
| 6.2   | Die Alkali-phosphor(V)-nitride NaP <sub>4</sub> N <sub>7</sub> , KP <sub>4</sub> N <sub>7</sub> , RbP <sub>4</sub> N <sub>7</sub> und CsP <sub>4</sub> N <sub>7</sub> | 67  |
| 6.2.1 | Synthese                                                                                                                                                              | 68  |
| 6.2.2 | Strukturaufklärung                                                                                                                                                    | 68  |
| 6.2.3 | Strukturbeschreibung von NaP <sub>4</sub> N <sub>7</sub> , KP <sub>4</sub> N <sub>7</sub> , RbP <sub>4</sub> N <sub>7</sub> und CsP <sub>4</sub> N <sub>7</sub>       | 78  |
| 6.2.4 | Kristallchemische Diskussion                                                                                                                                          | 82  |
| 6.2.5 | Temperaturabhängige pulverdiffraktometrische Untersuchungen                                                                                                           | 86  |
| 6.2.6 | IR-spektroskopische Untersuchungen                                                                                                                                    | 88  |
| 6.2.7 | <sup>31</sup> P-MAS-NMR-spektroskopische Untersuchungen                                                                                                               | 90  |
| 6.2.8 | Thermogravimetrische Untersuchungen                                                                                                                                   | 94  |
| 6.3   | Die Rubidium- und Cäsium-phosphor(V)-nitride Rb <sub>3</sub> P <sub>6</sub> N <sub>11</sub> und Cs <sub>3</sub> P <sub>6</sub> N <sub>11</sub>                        | 96  |
| 6.3.1 | Synthese                                                                                                                                                              | 96  |
| 6.3.2 | Strukturaufklärung                                                                                                                                                    | 97  |
| 6.3.3 | Strukturbeschreibung von Rb <sub>3</sub> P <sub>6</sub> N <sub>11</sub> und Cs <sub>3</sub> P <sub>6</sub> N <sub>11</sub>                                            | 102 |
| 6.3.4 | Kristallchemische Diskussion                                                                                                                                          | 105 |
| 6.3.5 | Temperaturabhängige pulverdiffraktometrische Untersuchungen                                                                                                           | 107 |
| 6.3.6 | IR-spektroskopische Untersuchungen                                                                                                                                    | 109 |
| 6.3.7 | <sup>31</sup> P-MAS-NMR-spektroskopische Untersuchungen                                                                                                               | 110 |

| 6.3.8 | Thermogravimetrische Untersuchungen                                                                                | 112 |
|-------|--------------------------------------------------------------------------------------------------------------------|-----|
| 6.4   | Das Natrium-phosphor(V)-nitrid NaPN <sub>2</sub>                                                                   | 113 |
| 6.4.1 | Synthese                                                                                                           | 113 |
| 6.4.2 | Strukturaufklärung                                                                                                 | 114 |
| 6.4.3 | Strukturbeschreibung von NaPN <sub>2</sub>                                                                         | 117 |
| 6.4.4 | Kristallchemische Diskussion                                                                                       | 120 |
| 6.4.5 | Temperaturabhängige pulverdiffraktometrische Untersuchungen                                                        | 121 |
| 6.4.6 | IR-spektroskopische Untersuchungen                                                                                 | 122 |
| 6.4.7 | <sup>31</sup> P-MAS-NMR-spektroskopische Untersuchungen                                                            | 123 |
| 6.4.8 | Thermogravimetrische Untersuchungen                                                                                | 124 |
| 6.5   | Die Calcium- und Strontium-phosphor(V)-nitride CaP <sub>2</sub> N <sub>4</sub> und SrP <sub>2</sub> N <sub>4</sub> | 125 |
| 6.5.1 | Synthese                                                                                                           | 126 |
| 6.5.2 | Strukturaufklärung                                                                                                 | 126 |
| 6.5.3 | Strukturbeschreibung von CaP <sub>2</sub> N <sub>4</sub> und SrP <sub>2</sub> N <sub>4</sub>                       | 132 |
| 6.5.4 | Kristallchemische Diskussion                                                                                       | 134 |
| 6.5.5 | Temperaturabhängige pulverdiffraktometrische Untersuchungen                                                        | 136 |
| 6.5.6 | IR-spektroskopische Untersuchungen                                                                                 | 137 |
| 6.5.7 | <sup>31</sup> P-MAS-NMR-spektroskopische Untersuchungen                                                            | 138 |
| 6.5.8 | Thermogravimetrische Untersuchungen                                                                                | 141 |
| 6.6   | Das Phosphor(V)-nitrid $\gamma$ -P <sub>3</sub> N <sub>5</sub>                                                     | 142 |
| 6.6.1 | Synthese                                                                                                           | 143 |
| 6.6.2 | Strukturaufklärung                                                                                                 | 143 |
| 6.6.3 | Strukturbeschreibung von γ-P <sub>3</sub> N <sub>5</sub>                                                           | 147 |
| 6.6.4 | Kristallchemische Diskussion                                                                                       | 151 |
| 6.6.5 | Temperaturabhängige pulverdiffraktometrische Untersuchungen                                                        | 153 |
| 6.6.6 | IR-spektroskopische Untersuchungen                                                                                 | 154 |
| 6.6.7 | <sup>31</sup> P-MAS-NMR-spektroskopische Untersuchungen                                                            | 156 |
| 6.6.8 | Thermogravimetrische Untersuchungen                                                                                | 157 |
| 6.6.9 | Härtemessungen                                                                                                     | 158 |
| 7.    | Nitridophosphate im Vergleich                                                                                      | 162 |
| 7.1   | Kritik des Hochdruck-Hochtemperatur-Synthesekonzeptes für Nitridophosphate                                         | 162 |
| 7.2   | Topologischer Vergleich der P-N-Teilstrukturen in Nitridophosphaten                                                | 163 |

| 7.3 | Vergleich der Bindungslängen in Nitridophosphaten                        | 165 |
|-----|--------------------------------------------------------------------------|-----|
| 7.4 | Kristallchemischer Vergleich der Nitridophosphate                        | 168 |
| 7.5 | <sup>31</sup> P-MAS-NMR-spektroskopischer Vergleich der Nitridophosphate | 170 |
| 8.  | Ausblick                                                                 | 172 |
| 9.  | Zusammenfassung                                                          | 176 |
| 10. | Summary                                                                  | 181 |
| 11. | Publikationen und Hinterlegungsnummern der kristallographischen Daten    | 185 |
| 12. | Literaturverzeichnis                                                     | 186 |
| 13. | Lebenslauf                                                               | 192 |

# I. Einführung

Sauerstoff und Silicium sind die häufigsten Elemente der Erdkruste (Abb. 1).<sup>[1]</sup> 75 Gew. % der Erdkruste bestehen aus diesen beiden Elementen. Bei Raumtemperatur liegt elementarer Sauerstoff als gasförmiges Disauerstoffradikal vor, welches reaktiv ist und mit Silicium sehr stabile oxidische Verbindungen (Oxosilicate) bildet. Die Erdkruste besteht also zum größten Teil aus Oxosilicaten. Diese sind nicht nur hinsichtlich ihres Gewichtsanteils an

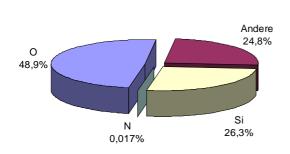



Abb. 1: Elementverteilung in der Erdhülle in Gew. %.

der Erdkruste sondern auch wegen ihres vielfältigen strukturellen Aufbaus bedeutsam. [1] Nahezu alle Oxosilicate sind aus SiO<sub>4</sub>-Tetraedern aufgebaut. [2] Diese können entweder isoliert vorliegen oder durch gemeinsame O-Atome miteinander verknüpft sein. Die O-Atome können dabei maximal an zwei Si-Atome gebunden sein. In der Stammverbindung

der Oxosilicate, dem SiO<sub>2</sub>, sind alle O-Atome an je zwei Si-Atome gebunden. Die Vielfalt der Verknüpfungsmöglichkeiten begründet die variantenreiche Strukturchemie der Oxosilicate. Zur strukturellen Klassifizierung werden die Oxosilicate in Insel-, Gruppen-, Ring-, Ketten-, Band- Schicht- und Gerüstsilicate eingeteilt. Der große strukturelle Variantenreichtum und die hohe thermische sowie chemische Stabilität führt zu interessanten physikalischen Eigenschaften der Oxosilicate. Daher spielen diese eine wichtige Rolle als Materialien. Im täglichen Leben werden sie als Baustoffe, Geschirr, Gläser, Füllstoffe oder Schmuck verwendet. Große technische Bedeutung haben Oxosilicate auch als Ionenaustauscher und Katalysatoren (Zeolithe).<sup>[3]</sup> Für die gezielte Synthese von Oxosilicaten existiert eine Vielzahl von etablierten Verfahren. Ein klassisches Beispiel ist die Synthese von Oxosilicaten auf der Basis des Säure-Base Konzeptes von *Lux* und *Flood* durch Umsetzung von Metalloxiden mit SiO<sub>2</sub>. Zu den modernen Methoden gehören Synthesen ausgehend von molekularen Precursoren und der Einsatz von Templaten zum gezielten Aufbau von Poren und Kanälen in Si-O-Netzwerk-Strukturen.<sup>[4,5]</sup>

Ersetzt man in Oxosilicaten formal Sauerstoff durch Stickstoff gelangt man zur Verbindungsklasse der Nitridosilicate. Das im Periodensystem dem Sauerstoff benachbarte Element Stickstoff ist auf der Erde weit weniger verbreitet als Sauerstoff (0,017 Gew.%, Abb. 1).<sup>[6]</sup> 99% des natürlich vorkommenden Stickstoffs auf der Erde liegen als gasförmiges N<sub>2</sub>-Molekül vor, welches Hauptbestandteil der Atmosphäre ist. Der Rest ist vor allem in

Nitraten, z.B. Chilesalpeter, und in organischen Naturstoffen, vor allem Proteinen, gebunden. Trotz der Häufigkeit von Stickstoff in der Atmosphäre existieren auf der Erde nahezu keine natürlichen nitridischen Verbindungen, insbesondere keine den Oxosilicaten vergleichbaren Nitridosilicate. Eines der wenigen Beispiele hierfür ist das Mineral Sinoit, welcher Bestandteil von Magmagestein und Meteoriten ist. [7,8] Ein wesentlicher Grund für diesen Mangel ist die zum radikalischen Sauerstoffmolekül O<sub>2</sub> geringe im Distickstoffmoleküls N2. Dies kann durch einen Vergleich der Dissoziationsenergie von O2 und N<sub>2</sub> veranschaulicht werden. Diese ist für N<sub>2</sub> mit 946 kJ/mol nahezu doppelt so hoch wie die von O<sub>2</sub> (499 kJ/mol). [9] Zudem bildet Stickstoff im Vergleich zu Sauerstoff weniger stabile Bindungen aus, und die Bildungsenthalpien für Nitride sind dementsprechend geringer als die der Oxide. So beträgt die Bindungsenergie einer Si-O-Einfachbindung 444 kJ/mol (Si-N: 335 kJ/mol). [10] Die Bildungsenthalpie von z.B. SiO<sub>2</sub> beträgt –911 kJ/mol (Si<sub>3</sub>N<sub>4</sub>: -248 kJ/mol, bezogen auf ein Mol Si-Atome).[10] Nitridische Verbindungen stellen präparativ hohe Ansprüche. Schwierigkeiten ergeben sich vor allem durch die Notwendigkeit, Sauerstoff und Wasser bei der Synthese von Nitriden auszuschließen. Zudem ist der Zugang zu vielen Nitriden durch deren geringe Stabilität erschwert. Diese Instabilität tritt vor allem bei binären Nitriden mit schweren Elementen auf. [10] In jüngerer Zeit erlangen nitridische Verbindungen jedoch trotz ihrer oft aufwendigen Synthese immer mehr Bedeutung in Forschung und Anwendung. Man erwartet sich von nitridischen Verbindungen vor allem neue interessante Materialeigenschaften, die mit oxidischen Verbindungen bislang nicht erreicht werden können.

Nichtmetallnitride wie  $Si_3N_4$  oder kubisches BN sind wichtige keramische Werkstoffe. Diese sind durch ihre starken kovalenten Bindungen und ihren hohen Vernetzungsgrad außerordentlich hart, thermisch beständig und chemisch inert, worauf ihre Verwendungsfähigkeit als Hochleistungskeramiken, z.B. in Turboladern ( $Si_3N_4$ ), beruht. In neuerer Zeit sind in unserer Arbeitsgruppe auch Verbindungen mit anionischen Si-N-Netzwerken, Nitridosilicate [11], synthetisiert worden. Diese sind wie ihre Stammverbindung  $Si_3N_4$  als Hochleistungskeramiken von großem materialwissenschaftlichem Interesse.

Die Verbindungsklasse der Nitridosilicate war im Gegensatz zu den Oxosilicaten bis vor wenigen Jahren nur sehr unzureichend untersucht, da kein Synthesekonzept existierte, welches einen breiten präparativen Zugang ermöglichte. Versuche,  $\mathrm{Si}_3\mathrm{N}_4$  mit Metallnitriden $^{[12,13]}$  oder Metallen $^{[14-18]}$  umzusetzen sowie durch Nitridierung von Metallsiliciden mit  $\mathrm{N}_2^{[21]}$  Nitridosilicate darzustellen, waren nur in wenigen Fällen erfolgreich. Als größtes Problem erwies sich hierbei die geringe Reaktivität und die hohe thermodynamische Stabilität von Siliciumnitrid. Die erfolgreiche Darstellung einer ganzen

Reihe dieser Verbindungen ist auf die Einführung von Si(NH)<sub>2</sub> als Edukt zurückzuführen. Dieses ist ein reaktives Polymer, welches sich bei etwa 1200 °C zu Si<sub>3</sub>N<sub>4</sub> umsetzt.<sup>[22]</sup> *Schlieper* konnte in unserer Arbeitsgruppe zeigen, daß durch die Umsetzung von Si(NH)<sub>2</sub> mit Metallen unter N<sub>2</sub>-Atmosphäre in einem speziellen Hochfrequenzofen bei 1200 bis 1600 °C ein einfacher und breiter Zugang zu Nitridosilicaten ermöglicht wird.<sup>[23]</sup> Die Reaktion kann als Auflösen eines Metalls in einer polymeren Säure unter H<sub>2</sub>-Entwicklung verstanden werden. Durch Variation der Metalle sowie des molaren Verhältnisses Metall : Si(NH)<sub>2</sub> kann mit diesem Verfahren die Verbindungsklasse der Nitridosilicate auf eine Vielzahl von möglichen Phasen systematisch untersucht werden. Die Produkte fallen dabei in der Regel grobkristallin an. Die Reaktionszeit beträgt meist nur wenige Stunden.

Schlieper konnte auf diese Weise die Nitridosilicate  $M_2Si_5N_8$  (M = Ca, Sr, Ba)<sup>[24,25]</sup> und  $M_3Si_6N_{11}$  (M = Ce, Pr)<sup>[26,27]</sup> darstellen. Huppertz konnte zeigen, daß die strukturellen Möglichkeiten in Nitridosilicaten gegenüber Oxosilicaten deutlich erweitert sind. Er beschrieb die Nitridosilicate MYbSi<sub>4</sub>N<sub>7</sub> (M = Sr, Ba, Eu), in welchen das neuartige Strukturmotiv des NSi<sub>4</sub>-Tetraeders auftritt. [28-30] Weiterhin konnte er mit BaSi<sub>7</sub>N<sub>10</sub> ein Nitridosilicat mit einer Gerüststruktur darstellen, dessen SiN<sub>4</sub>-Tetraeder sowohl über Ecken als auch über Kanten verknüpft sind. [31] Kantenverknüpfung der SiO<sub>4</sub>-Tetraeder wird bei Oxosilicaten hingegen nicht beobachtet. Mit der Darstellung von Ba<sub>2</sub>Nd<sub>7</sub>Si<sub>11</sub>N<sub>23</sub> gelang es ihm, ein Nitridosilicat mit synthetisieren.[32] zu zeolithartiger Struktur Darüberhinaus wurden  $BaEu(Ba_{0.5}Eu_{0.5})YbSi_6N_{11}^{[33]}$  und  $Eu_2Si_5N_8^{[30]}$  erfolgreich dargestellt. Letzteres zeigt interessante optische Eigenschaften.

Ersetzt man in Oxosilicaten formal nicht nur den Sauerstoff durch den Stickstoff, sondern zusätzlich das Silicium durch Phosphor, gelangt man zur Verbindungsklasse der Nitridophosphate. Die Elementkombination P/N (5 + 5 = 10 Valenzelektronen)ist isoelektronisch zur Elementkombination Si/O (4 + 6 = 10 Valenzelektronen). Strukturvielfalt der P-N-Teilstrukturen in Nitridophosphaten, in welchen der Stickstoff an ein oder zwei Phosphoratome gebunden ist, könnte also der Strukturvielfalt der Si-O-Teilstrukturen in Oxosilicaten ähnlich sein, da zu jedem Oxosilicat-Ion ein P/N-Pendant vorstellbar ist. In Nitridophosphaten ist der Bereich des Kondensationsgrades gegenüber den Oxosilicaten jedoch erweitert  $(0.25 \le P : N \le 0.6; 0.25 \le Si : O \le 0.5)$ . Nitridophosphate mit einem höheren Kondensationsgrad P: N > 0.5können als hochkondensierte Nitridophosphate bezeichnet werden. Der maximale Kondensationsgrad P: N = 0,6 ist in der Stammverbindung der Nitridophosphate, dem P<sub>3</sub>N<sub>5</sub>, realisiert. In diesem sind zwei Fünftel der N-Atome an je drei sowie drei Fünftel der N-Atome an je zwei P-Atome gebunden.

Während in unserer Arbeitgruppe seit einigen Jahren zur Darstellung von Nitridosilicaten mit der Hochfrequenztechnik ein breit anwendbares Verfahren zur Verfügung steht, existierte bislang keine Syntheseroute zu Nitridophosphaten, die einen breiten Zugang zu dieser Substanzklasse erlaubte. Trotz intensiver Anstrengungen konnte deshalb bislang nur eine geringe Zahl an Nitridophosphaten dargestellt und charakterisiert werden. Hauptschwierigkeit bei der Präparation bereitete dabei die vergleichsweise geringe thermische Stabilität der Nitridophosphate. Diese zersetzen sich oberhalb von 850 °C irreversibel unter Abspaltung des sehr stabilen Distickstoffmoleküls N2. Für die Synthese kristalliner Nitridophosphate, insbesondere Phasen mit hochkondensierten P-N-Netzwerken, sind jedoch hohe Synthesetemperaturen wünschenswert, um rekonstruktiven Bruch und Bildung starken kovalenten P-N-Bindungen zu ermöglichen und Kristallisationsbedingungen zu schaffen. Die Synthese von Nitridophosphaten gestaltet sich also zu einer Gratwanderung zwischen Kristallisation und thermischer Zersetzung. [10] Zudem hauptsächlich Nitridophosphate mikrokristallin fallen kristalline was Strukturbestimmung dieser Verbindungen erschwert, da nicht auf Einkristallmethoden zurückgegriffen werden kann. In der Vergangenheit wurden in unserem Arbeitskreis verschiedene Synthesekonzepte entwickelt, um kristalline P-N-Phasen zu erhalten. Mit allen diesen Konzepten, welche im "Speziellen Teil" dieser Arbeit genauer beschrieben werden sollen, gelang es bisher jedoch nicht, einen breiten synthetischen Zugang zu dieser Verbindungsklasse zu erschließen, da deren thermische Labilität die maximale Synthesetemperatur entsprechend begrenzt. Insbesondere hochkondensierte Nitridophosphate waren bislang nahezu unzugänglich. So konnte die Stammverbindung der Nitridophosphate, das α-P<sub>3</sub>N<sub>5</sub>, erst nach jahrelangen Anstrengungen nur unter sehr spezifischen Reaktionsbedingungen phasenrein dargestellt und röntgenographisch werden.[34] charakterisiert Da die zweifelsfrei strukturellen Möglichkeiten Nitridophosphaten und Nitridosilicaten vergleichbar sind und Nitridophosphate auch von beträchtlicher anwendungstechnischer Bedeutung sind, besteht großes Interesse an einem solchen Syntheseverfahren. Die Herausforderung in dieser Arbeit bestand daher darin, ein Konzept zur Darstellung von Nitridophosphaten zu entwickeln, mit dem es möglich ist, sowohl die maximale Synthesetemperatur signifikant zu steigern als auch die Edukte systematisch zu variieren. Ein solches Syntheseverfahren Kristallisationsbedingungen bieten und einen systematischen Zugang zu Nitridophosphaten, besonders Nitridophosphaten mit hochkondensierten P-N-Netzwerken ermöglichen.

# II. Allgemeiner Teil

### 1. Präparative Techniken

### 1.1 Die Vakuum-Schutzgasanlage

Im Rahmen dieser Arbeit wurden zum Teil hydrolyseempfindliche Edukte eingesetzt und auch teilweise luftempfindliche Produkte erhalten. Daher wurde eine spezielle Schutzgasapparatur eingesetzt, mit welcher Reaktionen unter Inertgasbedingungen durchgeführt werden konnten.

Mit Hilfe dieser Schutzgasapparatur (Abb. 1.1-1) war es möglich, Reaktionsgefäße wahlweise mit Argon oder Stickstoff zu beschicken. Sie bestand aus einer Gasreinigungsanlage und einem Vollglasverteilerrechen, der es ermöglichte, über die Anschlüsse (q) durch Betätigen der Hähne (x) bzw. (w) drei Versuchsapparaturen unabhängig voneinander zu evakuieren oder mit Schutzgas zu versorgen. Zur Reinigung von Argon und Stickstoff wurden diese über die Anschüsse (I) und (m) zunächst durch einen mit Paraffin gefüllten Blasenzähler (p) geleitet, dann nacheinander über Silicagel (h) mit Feuchtigkeitsindikator (Blaugel, Fa. Merck), Kaliumhydroxid (g), Molekularsieb mit einer Porenweite von 400 pm (f) und einem Gemisch aus Phosphorpentaoxid mit einem Feuchtigkeitsindikator (Sicapent, Fa. Merck) und Bimsstein (e) getrocknet. Zur Entfernung von Sauerstoff und Stickstoffspuren wurde das getrocknete Argon durch ein mit Titanschwamm (Fa. Johnson Matthey) gefülltes und mittels eines Ofens (a) auf 800 °C erhitztes Quarzrohr (b) geleitet. Der getrocknete Stickstoff wurde durch einen BTS-Katalysator (c) (Fa. Fluka) von Sauerstoffspuren befreit. Über die Abgriffe (q) konnte sowohl Argon als auch Stickstoff abgenommen werden. Über die Abgriffe (q) angeschlossene Gefäße konnten durch Betätigen der Hähne (x) evakuiert werden. An den Vakuumstrang war über einen Metallbalgenschlauch (v) eine zweistufige Drehschieberpumpe (t) (RZ 8, Fa. Vakuubrand) angeschlossen. Die Druckmessung erfolgte durch ein digitales Meßgerät (o) (Thermovac TM 20, Fa. Leybold) mit Meßsonde (i) (TR 211, Fa. Leybold). Um die gesamte Anlage vor Gasüberdruck zu schützen, wurden Quecksilberüberdruckventile (d) eingebaut. Über den Anschluß (u) konnte die unten beschriebene Ammoniakanlage evakuiert und mit Argon beschickt werden.

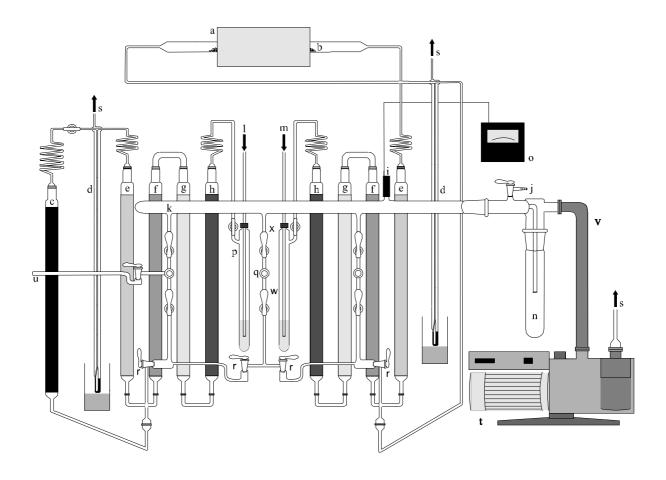



Abb. 1.1-1: Schutzgasanlage, Darstellung nach *Huppertz*. [35]

a: Ofen; b: Quarzglasrohr; c: Säule mit BTS-Katalysator; d: Quecksilberüberdruckventil; e: Säule mit  $P_4O_{10}$ /Bimsstein; f: Molekularsieb; g: KOH; h: Silicagel; i: Meßsonde TR 211; j: Belüftungshahn; k: Vakuumstrang; l:  $N_2$ -Zufuhr; m: Ar-Zufuhr; n: Kühlfalle; o: Vakuummeßgerät Thermovac TM 20; p: Blasenzähler; q: Benutzerabgriff; r: Hähne für  $N_2$ - bzw. Ar-Zufuhr; s: Gasauslaß; t: Vakuumpumpe RZ 8; u: Verbindung zur Ammoniakanlage; v: Metallbalgenschlauch; w: Hahn zum Fluten eines an (q) angeschlossenen Gefäßes; x: Hahn zum Evakuieren eines an (q) angeschlossenen Gefäßes.

### 1.2 Die Ammoniakanlage

Zum Arbeiten in flüssigem NH<sub>3</sub> stand eine spezielle Ammoniakanlage (Abb. 1.2-1) zur Verfügung, die es gestattete, technisches Ammoniak (Reinheit 3.8, Fa. Linde) zu trocknen. Dazu wurde das Ammoniak zunächst durch eine mit KOH-Plätzchen gefüllte Säule (b) geleitet, anschließend in eine mit Natrium gefüllte Kühlfalle (d) einkondensiert und von dort in eine mit Kalium gefüllte Kühlfalle (e) umkondensiert. Aus dieser wurde das so getrocknete NH<sub>3</sub> zur Entfernung von Alkalimetallspuren in eine weitere, leere Kühlfalle (f) einkondensiert und dann dem Reaktionsansatz zugeführt. Dazu wurde das NH<sub>3</sub> durch die Leitung (g) geleitet und an den Abgriffen (o) abgenommen. Zum Evakuieren der Apparatur wurde eine zweistufige Drehschieberpumpe (g) (RD4, Fa. Vakuubrand) benutzt. Überbrückung (k) war es möglich, angeschlossene Glasgefäße getrennt von den Kühlfallen zu evakuieren. Über den Anschluß (n) war die Ammoniakanlage mit dem Gasstrang der Schutzgasapparatur verbunden. Dadurch war es möglich, von der Schutzgasapparatur aus an die Ammoniakanlage angeschlossene Reaktionsgefäße mit Argon oder Stickstoff zu fluten. Der Strang (I) war über den Anschluß (p) mit dem Vakuumstrang der Schutzgasanlage verbunden. Zur Sicherung der Apparatur vor eventuellem Überdruck waren Quecksilberüberdruckventile (c) eingebaut. Das verwendete Kältemittel zur Kondensation von Ammoniak bestand aus einer Mischung von vergälltem Ethanol und pulverisiertem Trockeneis.

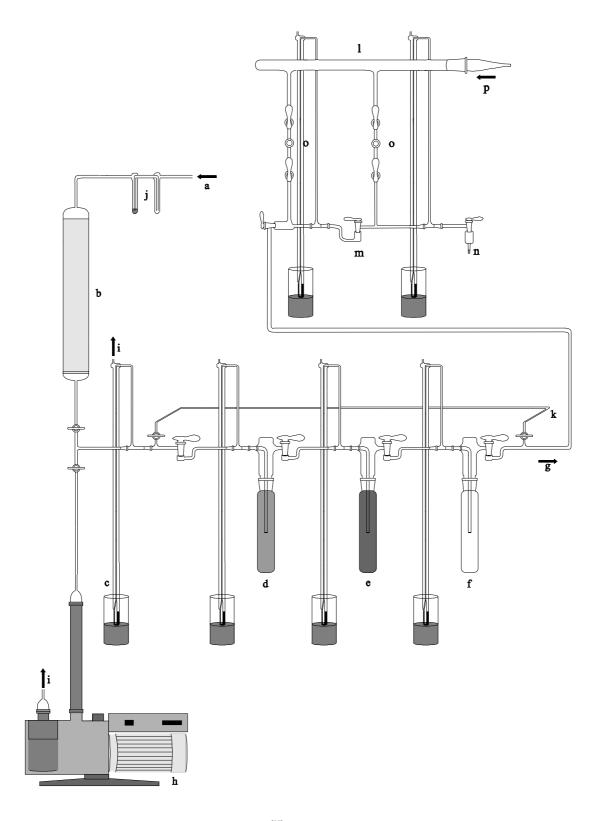



Abb. 1.2-1: Ammoniakanlage, Darstellung nach Huppertz. [35]

a: NH<sub>3</sub>-Zufuhr; b: Säule mit KOH; c: Quecksilberüberdruckventil; d: Kühlfalle mit Natrium; e: Kühlfalle mit Kalium; f: Vorratskühlfalle für getrocknetes NH<sub>3</sub>; g: Glasleitung; h: Drehschiebervakuumpumpe RD4; i: Gasauslaß; j: Blasenzähler; k: Überbrückung; l: Vakuumstrang; m: Gasstrang; n: Verbindung zum Gasstrang der Schutzgasanlage ; o: Benutzerabgriffe; p: Verbindung mit Vakuumstrang der Schutzgasanlage.

# 1.3 Hochdruck-Apparaturen

# 1.3.1 Die 1000 t-Hochdruckpresse

Zur Erzeugung der für den Aufbau von Druck notwendigen Kraft stand eine Vier-Säulen-Oberkolbenpresse (Fa. Voggenreiter, Mainleus) zur Verfügung (Abb. 1.3.1-1). [36,37] Mit dieser ist es möglich, Kräfte von bis zu 10 MN zu erzeugen. Die Presse besteht im wesentlichen aus zwei massiven Stahlplatten (a), die über vier Stahlsäulen (b) miteinander verschraubt sind. Im Prinzip wird mit einem Spindelhubelement (c) über einen Kolben kleinen Querschnitts (d) ein Kolben großen Querschnitts (e) hydraulisch bewegt. Der maximale Öldruck in den Zylindern beträgt 700 bar.

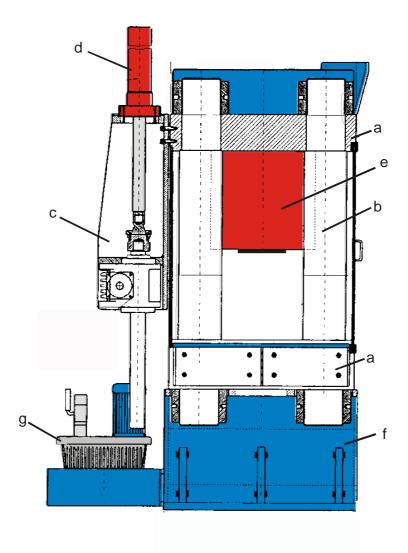



Abb. 1.3.1-1: 1000 t-Hochdruckpresse. **a**: Stahlplatten; **b**: Stahlsäulen; **c**: Spindelhubelement; **d**: Zylinder (kleiner Querschnitt); **e**: Zylinder (großer Querschnitt); **f**: Sockel; **g**: Ölvorratsbehälter (Bild mit freundlicher Genehmigung von Dr. H. Huppertz).

### 1.3.2 Das Belt-Modul

Zur Erzeugung von Drücken im Bereich von 1 bis 40 kbar stand ein sogenanntes Belt-Modul zur Verfügung (Abb. 1.3.2-1).<sup>[38]</sup>

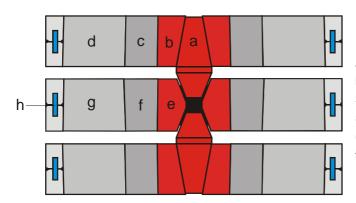
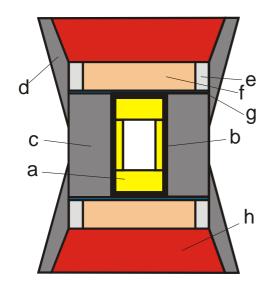




Abb. 1.3.2-1: Aufbau des Belt-Moduls. **a**: Stempel aus Hartmetall G15 (WC- mit Co-Anteil: 8,5%, Fa. Weiß); **b**: Stempelfassung (Hartmetall-G15, Fa. Weiß); **c,d,f,g**: Stützringe aus Stahl (HV50 1480); **e**: Matrize (Hartmetall-G15, Fa. Weiß); **h**: Kühlring (Stahl) (Bild mit freundlicher Genehmigung von Dr. H. Huppertz).

Dieses erlaubt gleichzeitig Temperaturen von maximal 1800 °C. Im Prinzip wird dabei die Kraft von zwei konischen Stempeln aus Wolframcarbid (a) uniaxial über feste Medien quasihydrostatisch auf die Probe übertragen. Dabei treten starke Tangentialkräfte auf. Deshalb sind die Stempel in spezielle Stempelfassungen eingepreßt. Diese bestehen aus drei konischen, kalt ineinandergepreßten Stützringen aus Wolframcarbid (b) bzw. Stahl (cd). Die Probe befindet sich innerhalb einer doppelt konisch geschliffenen Matrize aus Wolframcarbid (e), welche ebenfalls in zwei konische Stützringe aus Stahl (f-g) kalt eingepreßt ist. Durch das Einpressen wird im Material eine Spannung erzeugt, die den Kräften beim Experimentieren entgegengesetzt wirkt. Auf diese Weise wird die mechanische Belastbarkeit des Materials stark erhöht. Ein weiterer Stahlring (h), welcher von Kühlwasser durchflossen werden kann, umgibt die beiden Stützringe. Das druckübertragende Medium im Inneren der Matrize ist ein Hohlzylinder aus Pyrophyllit. Der direkte Kontakt zwischen den Stempeln und der Wolframcarbid-Matrize wird durch zwei Konen aus Pyrophyllit vermieden. Pyrophyllit ist ein Schichtsilicat und besitzt sehr gute quasihydrostatische Eigenschaften. Im Inneren des Pyrophyllit-Hohlzylinders befindet sich eine zylindrische Graphithülse. Diese dient als Widerstandsofen zur Aufheizung der Probe. Die Probe befindet sich in einem Tiegel aus Bornitrid, welcher mit einem Deckel aus BN verschlossen ist. Die Graphithülse ist mit zwei Graphitscheiben bedeckt. Der elektrische Kontakt zwischen der Graphithülse und den Wolframcarbid-Stempeln erfolgt über zwei Molybdän-Scheibchen sowie zwei Stahlringe, in die jeweils ein Korundscheibchen eingefaßt ist. Diese dienen der thermischen Isolierung des Systems (Abb. 1.3.2-2).



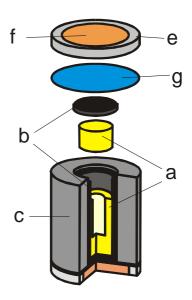



Abb. 1.3.2-2: Aufbau des Assemblys für das Belt-Modul. **a**: BN-Tiegel; **b**: Graphithülsen und –deckel; **c**: Pyrophyllit-Hohlzylinder; **d**: Pyrophyllit-Konen; **e**: Stahlring; **f**: Korundscheiben; **g**: Molybdänblech; **h**: Wolframcarbid-Stempel (Bild mit freundlicher Genehmigung von Dr. H. Huppertz).

### 1.3.3 Das Multianvil-Assembly

Zur Erzeugung von Drücken bis 250 kbar (25 GPa) stand ein Multianvil-Modul (Walker-Modul) zur Verfügung (Abb. 1.3.3-1). Im Prinzip wird dabei die Kraft, die von einer hydraulischen Presse erzeugt wird, über verschiedene Stempel zunächst auf die sechs Flächen eines Würfels, und schließlich auf die acht Flächen eines MgO-Oktaeders, welcher die Probe enthält, nahezu isotrop übertragen. Durch diese Versuchsanordnung werden die zur Seite wirkenden Kräfte stark minimiert. Es kann somit bei Drücken von bis zu 250 kbar mit größeren Probenmengen gearbeitet werden. Gleichzeitig sind Synthesetemperaturen bis zu 2500 °C möglich. Im folgenden soll die Versuchsanordnung im einzelnen beschrieben werden. Die Qualität und die Bezugsquellen der verwendeten Verbrauchsmaterialien sind in Tab. 1.3.3-1 aufgeführt.

Die Probe wird zunächst in einen Tiegel aus hexagonalem Bornitrid gefüllt. Bornitrid ist aufgrund seiner guten quasihydrostatischen Eigenschaften und seiner hohen chemischen und thermischen Stabilität als Tiegelmaterial gut geeignet. Der Tiegel wird anschließend in eine Graphithülse überführt und mit einem Deckel aus BN verschlossen. Die Graphithülse dient als Widerstandsofen. Zur Vermeidung von Temperaturgradienten wird diese Graphithülse mittig in einer weiteren Graphithülse plaziert. Das verbleibende Volumen wird

mit zwei zylindrischen MgO-Abstandsstücken gefüllt. Auf die MgO-Stücke wird je ein Molybdänscheibchen flach aufgeklebt, welches den elektrischen Kontakt zwischen Graphitofen und den äußeren Stempeln herstellt. Diese Anordnung wird in eine ZrO<sub>2</sub>-Hülse, die der thermischen Isolierung des Systems dient, überführt und dann in ein durchbohrtes MgO-Oktaeder gesetzt (a), (c). Um das präparierte Oktaeder herum werden nun acht Wolframcarbid-Würfel, deren Ecken abgeschliffen wurden, so positioniert, daß die Dreiecksflächen der Würfel und des Oktaeders zur Deckung gelangen (b). Bei Verwendung von Oktaedern ohne angegossene Dichtungen (für Drücke > 100 kbar) werden vorher an den Würfeln Dichtungen aus Pyrophyllit angebracht. Je vier der Würfel werden mit Teflon-Folie bzw. Papier beklebt. Die Wolframcarbid-Würfel fungieren als Stempel. Die Kraftübertragung auf das Oktaeder erfolgt über deren Dreicksflächen. Durch die Anordnung der acht Wolframcarbidwürfel resultiert ein größerer Würfel, dessen Flächen mit Glasgewebe-Platten beklebt werden. Zwei dieser Platten werden mit Hilfe einer Schere eingeschnitten und ein Stück Kupferblech so zwischen die Einschnittstelle geklemmt, daß ein elektrischer Kontakt zu den gegenüberliegenden stromführenden Wolframcarbid-Würfeln, welche die Molybdänscheibchen kontaktieren, ermöglicht wird. Der so präparierte Würfel wird in einen Stahlring (vakuumgehärteter Warmarbeitsstahl, Rockwellhärte 52) zwischen sechs sogenannten Wedges (vakuumgehärteter Schnellarbeitsstahl, Rockwellhärte 63) so positioniert, daß die Raumdiagonale des Würfels parallel zur Richtung der Preßkraft ausgerichtet ist (d-f). Um den Stahlring von den Wedges elektrisch zu isolieren, wird dieser mit einer PET-Folie ausgekleidet. Um ein Gleiten der Wedges an der Innenwand des Stahlrings zu erleichtern, werden die Außenflächen der Wedges mit Hilfe von Teflonspray ebenfalls mit PET-Folie belegt. Die Geometrie der Wedges sorgt dafür, daß die von der Presse erzeugte uniaxiale Kraft gleichmäßig auf alle Flächen des Würfels und von diesem über die dreieckigen Stempelflächen auf das Oktaeder übertragen werden kann. Auf die Wedges wird eine Druckplatte aus Aluminium (QP 60) aufgesetzt. Diese Druckplatte sowie eine analog aufgebaute Druckplatte am Boden des Stahlrings kann von Kühlwasser durchflossen werden. Durch die hohe Wärmeleitfähigkeit des Aluminiums wird auch das Innere des Multianvil-Moduls gekühlt. Das so zusammengesetzte Walker-Modul wird gemäß (g) in der Hochdruckpresse plaziert.

Die Messung von Druck und Temperatur im Walker-Modul erfolgte indirekt über entsprechende Eichkurven. Zur Druckeichung wurde die Widerstandsänderung von Bismut in Abhängigkeit vom Druck gemessen. Die Temperatureichung erfolgte mit einem koaxial zum Graphit-Widerstandsofen eingeführten Thermoelement Pt-Pt<sub>13</sub>Rh<sub>87</sub> bzw.  $W_{97}Re_{3}$ - $W_{75}Re_{25}$ . Weitere Details zur Druck- und Temperaturkalibrierung finden sich in [39].

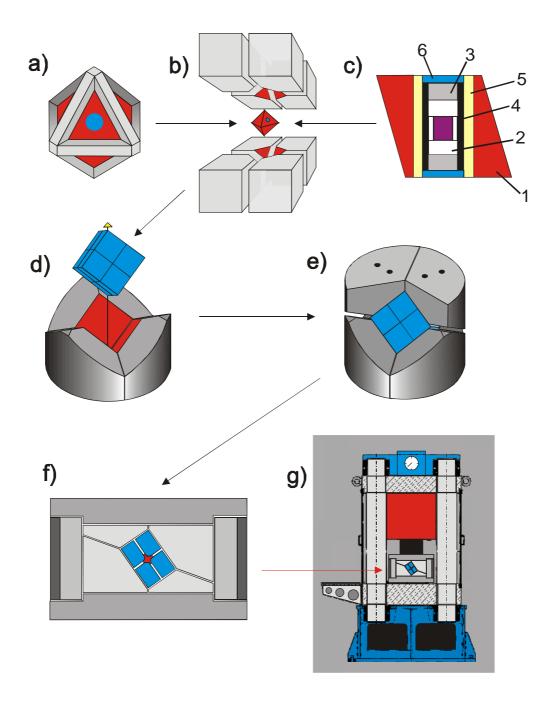



Abb. 1.3.3-1: Aufbau des Multianvil-Assemblys (Walker-Modul). a: MgO-Oktaeder mit Dichtungen in der Aufsicht; b: Anordung des Oktaeders zwischen den Wolframcarbid-Würfeln; c: MgO-Oktaeder (1) im Querschnitt: Bornitrid-Tiegel (2), MgO-Scheiben (3), Graphithülse (4), Zirkonhülse (5) sowie Molybdänscheiben (6); d: Plazierung der WC-Würfel (blau) zwischen den "unteren" Wedges; e: Anordnung der "oberen" Wedges um die WC-Würfel; f: WC-Würfel und Wedges im Stahlring (mit Druckplatten); g: Anordnung des Walker-Moduls in der 1000 t-Presse (Bild mit freundlicher Genehmigung von Dr. H. Huppertz).

| Verbrauchsmaterial                                 | Bezugsquelle               | Produktbezeichung  |
|----------------------------------------------------|----------------------------|--------------------|
| Hexagonales BN                                     | Fa. Henze (Kempten)        | SBN-Sinterkörper   |
| (ca. 2,6% B <sub>2</sub> O <sub>3</sub> ); Stangen |                            |                    |
| Graphit-Stäbe                                      | Fa. SGL Carbon (Bonn)      | Spektralkohlestäbe |
|                                                    |                            | RWIVRW403          |
| MgO-Stäbe (99,4% MgO)                              | Fa. Norton Ceramics, Saint |                    |
|                                                    | Gobain Corp. (Worchester,  |                    |
|                                                    | USA)                       |                    |
| ZrO <sub>2</sub> -Stücke (93,5% ZrO <sub>2</sub> , | Fa. Ceramic Substrates     |                    |
| 5,5% CaO, 0,15% TiO <sub>2</sub> )                 | and Components Ltd. (Isle  |                    |
|                                                    | of Wight, UK)              |                    |
| Mo 99,9% (Stangen)                                 | Fa. Goodfellow (Bad        |                    |
|                                                    | Nauheim)                   |                    |
| MgO und Binder für                                 | Fa. Aremco Prod. (Valley   | Ceramacast 584-OF  |
| "castable octahedra"                               | Cottage, New York)         |                    |
| Würfel aus Wolframcarbid                           | Fa. Toshiba Tungaloy       | Grade F            |
| (mit 6% Co)                                        | Europa GmbH                |                    |
|                                                    | (Langenfeld)               |                    |
|                                                    | Fa. Widia (Essen)          | THM-F              |
| "precastable" MgO-                                 | Fa. Ceramic Substrates     |                    |
| Oktaeder (95% MgO, 5%                              | and Components Ltd., (Isle |                    |
| MgCrO₄), Kantenlängen                              | of Wight, UK)              |                    |
| 25, 18, 14, 10 mm                                  |                            |                    |
| Pyrophyllit-Dichtungen                             | Fa. Ceramic Substrates     |                    |
| (94% Pyrophyllit, 0,9-1,6%                         | and Components Ltd., (Isle |                    |
| Fe <sub>2</sub> O <sub>3</sub> , > 0,25% CaO, >    | of Wight, UK)              |                    |
| 3% TiO <sub>2</sub> )                              |                            |                    |
| Teflonfolie                                        | Fa. Beichler & Grünenwald  | PTFE-Virgina       |
|                                                    | (Löchgen)                  |                    |
| PET-Folien (Dicke 0,07                             | Fa. Goodfellow (Bad        |                    |
| mm und 0,05 mm)                                    | Nauheim)                   |                    |
| Glasgewebeplatten                                  | Fa. Menzel + Seyfried      | Typ 2372.4         |
|                                                    | (Gröbenzell)               |                    |

### 2. Untersuchungsmethoden

### 2.1 Pulvermethoden

Die Röntgenbeugungsexperimente an Pulvern wurden an zwei STOE Stadi P Diffraktometern in parafokussierender Transmissionsgeometrie durchgeführt. Es stand sowohl Cu $_{K\!\alpha}$   $_{T}$  als auch Mo $_{K\!\alpha}$   $_{T}$ -Stahlung zur Verfügung. Die Monochromatisierung erfolgte jeweils mit einem Ge(111)-Primärmonochromator. Die Reflexe wurden jeweils mit einem ortsempfindlichen Detektor mit einem Öffnungswinkel von  $\Delta 2\theta = 5^{\circ}$  aufgenommen. Als Zählrohrgas diente bei der Verwendung von Mo-Strahlung ein Krypton/Methan-Gemisch (90% Kr, 10% Methan). Bei Messungen mit Cu-Strahlung wurde als Zählrohrgas ein Gemisch aus 90% Argon und 10% Methan verwendet. Zur Messung wurden die Proben in Markröhrchen (Fa. Hilgenberg, Malsfeld, Außendurchmesser 0,3 mm) eingeschmolzen. Diese Technik ermöglichte den Schutz der Proben vor Zersetzung durch die Einwirkung von Luft und erlaubte die Untersuchung von sehr geringen Probenmengen.

Die Bestimmung der Gitterkonstanten erfolgte mit dem Programm WinXPOW (Fa. STOE).<sup>[40]</sup> Dazu wurden die Reflexe mit den integrierten Programmroutinen VISSER<sup>[41]</sup> und WERNER<sup>[42]</sup> indiziert und die Gitterkonstanten anschließend verfeinert.

Mit dem Programm WinXPOW<sup>[40]</sup> konnte zusätzlich auf eine Datenbank zugegriffen werden, welche es erlaubte, gemessene Pulverdiffraktogramme mit Referenzdiffraktogrammen zu vergleichen.

Die Extraktion der Reflexintensitäten und die Strukturlösung erfolgte mit dem Programm EXPO<sup>[43]</sup> unter Verwendung Direkter Methoden. Die so erhaltenen Strukturmodelle wurden anschließend mit dem Programm GSAS<sup>[44]</sup> unter Verwendung der Rietveld-Methode verfeinert. Sämtliche thermische Auslenkungsparameter wurden isotrop verfeinert. Die Ergebnisse der einzelnen Messungen sind im "Speziellen Teil" zu finden.

Aus den mit den Programmen EXPO und GSAS erhaltenen Atomkoordinaten wurden mit den Programmen DIAMOND<sup>[45]</sup> und KPLOT<sup>[46]</sup> (Vers. 7.5.16) Strukturbilder erstellt (siehe "Spezieller Teil").

### 2.2 Einkristallmethoden

Die Röntgenbeugung an Einkristallen wurde zur exakten Kristallstrukturbestimmung neuer Verbindungen eingesetzt. Die Messungen wurden auf einem Vierkreisdiffraktometer (P4, Fa. Siemens, Karlsruhe) in Vollkreis-Eulerwiegen-Geometrie durchgeführt. Es wurde monochromatisierte  $Mo_{K\alpha}$  -Srahlung ( $\lambda$  = 71,073 pm) verwendet. Die Detektion der Reflexe erfolgte mit einem Szintillationszähler.

Ein Einkristall wurde unter einem Stereomikroskop mit Polarisationsaufsatz (MZ6, Fa. Leica, Bensheim) ausgewählt. Der ausgewählte Kristall wurde in ein Markröhrchen (Außendurchmesser 0,3 mm, Fa. Hilgenberg, Malsfeld) überführt und eingeschmolzen. Die Meßparameter der jeweiligen Messungen sind tabellarisch im "Speziellen Teil" erfaßt. Es wurde für jede Messung eine Lorentz-, Polarisations- und Absorptionskorrektur durchgeführt. Die Absorptionskorrektur erfolgte empirisch anhand von Ψ-Scans. Die Strukturlösung und Strukturverfeinerung erfolgte mit dem Programm SHELXTL Vers. 5.06. [47] Zur Strukturbestimmung wurden Direkte Methoden eingesetzt, mit welchen die Positionen der Schweratome bestimmt werden konnten. Die Atomlagen der leichteren Atome wurden durch Differenz-Fourier-Synthese ermittelt. Mit Ausnahme der Wasserstoff-Atome wurden sämtliche Atome mit anisotropen thermischen Auslenkungsparametern verfeinert.

Aus der Mittelung der beobachteten Intensitäten  $F_o^2$  symmetrieäquivalenter Reflexe wurde als Gütekriterium für den Datensatz der interne R-Wert ( $R_{int}$ ) nach Gleichung 2.2-1 bestimmt:

$$R_{\text{int}} = \sqrt{\frac{\sum |F_o^2 - \overline{F_o^2}|}{\sum F_o^2}}$$
 Gl. 2.2-1

 $F_o^2$ : Intensität

 $\overline{F_o^2}$  : gemittelte Intensität

Die Gütefaktoren der Strukturverfeinerungen in SHELXTL Vers. 5.03 berechnen sich nach den Gleichungen 2.2-2 und 2.2-3.

$$R1 = \frac{\sum ||F_o| - |F_c||}{\sum |F_o|}$$
 GI. 2.2-2

 $F_o$ : beobachteter Strukturfaktor

F<sub>c</sub>: berechneter Strukturfaktor

w: Wichtungsfaktor

$$wR2 = \sqrt{\frac{\sum (w(F_o^2 - F_c^2)^2)}{\sum (w(F_o^2)^2)}}$$
 Gl. 2.2-3

Aus den mit dem Programm SHELXTL ermittelten Atompositionen wurden mit dem Graphikprogramm KPLOT Vers. 7.5.16 Strukturbilder erstellt (siehe "Spezieller Teil").

### 2.3 Infrarotspektroskopie

Zur Vorbereitung der Messung wurden in einer Glove-Box 0,5 mg Substanz und 500 mg KBr in einem Mörser vermengt und mit einem Stößel fein pulverisiert. In einer Handpresse wurden daraus mit einem Anpreßdruck von 10 t im Vakuum Tabletten gepreßt. Zur Messung selbst wurde ein Einstrahl-Fourier-Transformations-Infrarot-Spektrometer (IFS66v/s, Fa. Bruker) verwendet. Um die Preßlinge vor Luft und Feuchtigkeit zu schützen, wurde die Meßzelle evakuiert. Zur Bearbeitung der Spektren wurde das Programmpaket OPUS (Fa. Bruker) verwendet. [48]

### 2.4 Kernresonanzspektroskopie

Für NMR-Messungen in Lösung stand ein FT-NMR-Spektrometer (Eclipse +270, Fa. JEOL) zur Verfügung. Im Rahmen dieser Arbeit wurden ausschließlich <sup>31</sup>P-NMR-Experimente in D<sub>2</sub>O durchgeführt.

Festkörper-MAS-NMR-Messungen wurden mit einem DSX 500 Avance FT-Spektrometer (Fa. JEOL) vorgenommen (Protonenresonanz 500 MHz, 1 kW Leistung). Die Messungen wurden mit einem Doppelresonanzprobenkopf durchgeführt, welcher Rotationsfrequenzen von bis zu 35 MHz erlaubt. Für alle Experimente wurden Rotoren mit einem Durchmesser von 2,5 mm aus ZrO<sub>2</sub> verwendet.

### 2.5 Thermogravimetrie (TG) und Differentielle Thermische Analyse (DTA)

Um Masseänderungen von Stoffen durch thermische Zersetzung zu untersuchen, wurde die Methode der Thermogravimetrie angewandt. Dazu wurde eine TGA 92-2400 (Fa. Setaram) eingesetzt. Diese besteht im Prinzip aus einem Wägebalken, der an einem Torsionsfaden aufgehängt ist. Ein Arm der Waage befindet sich über einem Graphitrohrofen ( $T_{max} = 2400~^{\circ}$ C). An diesem wird der Probenträger mit der zu untersuchenden Substanz aufgehängt. Die Auslenkung der Waage wird durch eine Photodiode hinter einem an der Waage angebrachten optischen Spalt detektiert. Ein Elektromagnet kompensiert die auslenkende Kraft und hält die Waage so im Gleichgewicht. Das Gerät läßt sich auch zu simultanen TG-DTA-Messungen verwenden. Dazu wurde zusätzlich eine Referenz in den Probenträger aus  $Al_2O_3$  des Ofens gebracht und das DTA-Signal geeicht. Auftretende Enthalpieänderungen wurden dann durch Zufuhr einer konstanten Wärmemenge pro Zeiteinheit über die entstehenden Temperaturunterschiede in Probe und Referenz gemessen.

### 2.6 Härteuntersuchungen

Mechanische Eigenschaften wie Elastizität, Zug- und Druckfestigkeit, Verformbarkeit, Härte, Kompressibilität, Abriebfestigkeit, Sprödigkeit und Spaltbarkeit bestimmen wesentlich den Einsatzbereich einer Substanz oder eines Werkstoffes. Diese Materialeigenschaften hängen wesentlich von Struktur und Bindungssituation im jeweiligen Material ab.

Ein sehr wichtiger Bestandteil der materialwissenschaftlichen Charakterisierung einer Substanz ist deren Härteprüfung. Unter der physikalischen Härte einer Substanz versteht man deren Widerstandsfähigkeit gegenüber einer verformend wirkenden Kraft. Eine exakte, allgemein gültige Definition der physikalischen Härte-Bestimmung existiert jedoch nicht. Es gibt hingegen eine Vielzahl unterschiedlicher empirischer Prüfverfahren, deren Auswahl von der Probenbeschaffenheit und –größe sowie vom zu erwartenden Härtewert abhängen. Im Rahmen der vorliegenden Arbeit wurden Härtemessungen an polykristallinem, unter Druck gesintertem Material mit dem Prüfverfahren nach *Vickers* durchgeführt, das die Bestimmung der sogenannten Mikrohärte einer Substanz erlaubt.<sup>[49]</sup>

Für die Härtemessung nach *Vickers* stand am Institut für Materialwissenschaften der TU Darmstadt ein Härteprüfer PC6 (Leco Instrumente GmbH, Kirchheim) zur Verfügung. Die Anlage zur Härteprüfung bestand aus dem eigentlichen Härteprüfer und einem Meßmonitor.

Die in der 1000 t-Hochdruckpresse gesinterten Preßlinge wurden zunächst in eine Polymermatrix (Bakelit) eingebettet. Der auf diese Weise erhaltene zylindrische Probenkörper (Durchmesser etwa 3 cm, Höhe etwa 2 cm) wurde auf einem Schleiftisch soweit vollständig plan geschliffen, bis die Preßlinge an die Oberfläche des Probenkörpers traten.

Beim Vickersverfahren handelt es sich um ein Eindruckverfahren zur Härteprüfung. Über die Größe des Eindrucks (Abb. 2.6-1), die ein Diamant durch Belastung mit einem definierten Gewicht verursacht, wird der Härtewert bestimmt. Das Bild der Eindrücke wurde mittels einer CCD-Kamera auf den Meßmonitor übertragen, wo die Größe der Eindrücke nach Wegnahme der Prüflast F dann optisch durch Anlegen von Meßlinien vermessen werden konnte (dx, dy in μm). Der verwendete Eindringkörper aus Diamant hatte die Form einer Eindrucks, wie er durch den Pyramide mit quadratischer Grundfläche, deren gegenüberliegende Flächen einen Winkel von  $\alpha = 136^{\circ}$  zueinander bildeten. Die entsteht, mit Meßlinien zu Vickershärte HV ist proportional dem Quotienten aus der Prüfkraft und der Oberfläche des Eindrucks, der als gerade Pyramide mit quadratischer Grundfläche und gleichem Winkel wie der Eindringkörper angenommen wird (Gl. 2.6-1).

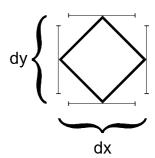



Abb. 2.6-1: Eindringkörper aus Diamant beim Vickers-Verfahren Größenbestimdessen mung.<sup>[50]</sup>

HV = 0,102 
$$\frac{2 \cdot F \cdot \sin\left(\frac{\alpha}{2}\right)}{d^2}$$
 GI. 2.6-1<sup>[50]</sup>

- α Winkel zwischen den gegenüberliegenden Flächen des pyramidenförmigen Eindringkörpers (136°)
- Prüfkraft in N
- arithmetischer Mittelwert der beiden Diagonalen dx und dy in mm

# III. Spezieller Teil

### 1. Bezugsquellen, Reinheit und Handhabung der eingesetzten Chemikalien

# **1.1 Gase**

Für die Arbeit unter Inertbedingungen wurden die Gase Stickstoff und Argon verwendet. Als reaktive Gase wurden im Rahmen der Dissertation NH<sub>3</sub> und Cl<sub>2</sub> verwendet. Die Bezugsquellen und Reinheit sowie die weitere Handhabung sind in Tab. 1.1-1 aufgeführt.

Tab. 1.1-1: Reinheit, Behandlung und Bezugsquellen der verwendeten Gase.

| Gas                       | Reinheit / % | Behandlung        | Bezugsquelle     |
|---------------------------|--------------|-------------------|------------------|
| Ammoniak NH <sub>3</sub>  | 99,98        | Siehe Kap. II.1.2 | Messer Griesheim |
| Argon Ar                  | 99,998       | Siehe Kap. II.1.1 | Messer Griesheim |
| Chlor Cl <sub>2</sub>     | 99           |                   | Linde            |
| Stickstoff N <sub>2</sub> | 99,999       | Siehe Kap. II.1.1 | Messer Griesheim |

## 1.2 Lösungsmittel und weitere kommerziell erhältliche Reagenzien

Die Bezugsquellen, Reinheit und weitere Handhabung der verwendeten Lösungmittel und kommerziell erhältlichen Reagenzien sind Tab. 1.2-1 zu entnehmen.

Tab. 1.2-1: Bezugsquellen, Reinheit und Behandlung der Lösungsmittel und kommerziell erhältlichen Reagenzien.

| Lösungsmittel                                                         | Reinheit / % | Behandlung                                 | Bezugsquelle |
|-----------------------------------------------------------------------|--------------|--------------------------------------------|--------------|
| Ammoniumchlorid NH₄Cl                                                 | >99,8        |                                            | Merck        |
| Cäsiumchlorid CsCl                                                    | >99,5        |                                            | Fluka        |
| Calciumchlorid Hexahydrat                                             | >99          |                                            | Fluka        |
| CaCl <sub>2</sub> ·6H <sub>2</sub> 0                                  |              |                                            |              |
| Dichlormethan CH <sub>2</sub> Cl <sub>2</sub>                         | >99 (stab.)  | Trockn. über P <sub>2</sub> O <sub>5</sub> | Merck        |
| Diethylamin Et₂NH                                                     | >99          | Trockn. über BaO                           |              |
| Dischwefeldichlorid S <sub>2</sub> Cl <sub>2</sub>                    | >98          |                                            | Fluka        |
| Kaliumbromid KBr                                                      | >99,5        |                                            | Merck        |
| Kaliumchlorid KCI                                                     | >99,5        |                                            | Merck        |
| Kaliumnitrat KNO <sub>3</sub>                                         | >99,5        |                                            | Merck        |
| Natriumazid NaN <sub>3</sub>                                          | >99          |                                            | Fluka        |
| Natriumchlorid NaCl                                                   | >99,5        |                                            | Merck        |
| Petrolether (hochsiedend)                                             | Puriss.      |                                            | Fluka        |
| Phosphorylchlorid POCl <sub>3</sub>                                   | >99          | frisch dest.                               | Merck        |
| Rubidiumchlorid RbCl                                                  | >99          |                                            | Fluka        |
| Schwefel S <sub>8</sub>                                               | Purum subl.  |                                            | Fluka        |
| Strontiumchlorid Hexahydrat                                           | >99          |                                            | Fluka        |
| SrCl <sub>2</sub> ·6H <sub>2</sub> O                                  |              |                                            |              |
| 1,1,2,2-Tetrachlorethan C <sub>2</sub> H <sub>2</sub> Cl <sub>4</sub> | >99,5        |                                            | Fluka        |
| $\hbox{4-Toluol sulfons \"aure $CH_3C_6H_4SO_3H$}$                    | >99          |                                            | Fluka        |

# 1.3 Phosphor(V)-nitrid P<sub>3</sub>N<sub>5</sub>

Zur Darstellung von  $P_3N_5$  wurde ein von *Lücke* in unserem Arbeitskreis eingeführtes Verfahren verwendet. Dabei wird  $[PNCl_2]_3$  im Ammoniakstrom erhitzt und unter kontinuierlicher Ammonolyse polymerisiert. Die entstehenden Polyphosphazene kondensieren schließlich unter  $NH_3$ -Abspaltung zum Endprodukt  $P_3N_5$ . Dieses Verfahren führt im Gegensatz zu der von *Horstmann* beschriebenen Methode zwar nicht zu phasenreinem  $\alpha$ - $P_3N_5$  sondern nur zu einer teilkristallinen Phase der Zusammensetzung  $P_3N_5$ , jedoch ist das Produkt in wesentlich größeren Mengen darstellbar. Die Qualität des so

erhaltenen P<sub>3</sub>N<sub>5</sub> erwies sich für im Rahmen dieser Dissertation durchgeführte weitere Umsetzungen als geeignet.

### Versuchsdurchführung

In ein Korundschiffchen wird [PNCl<sub>2</sub>]<sub>3</sub> eingewogen und mit gasförmigem NH<sub>3</sub> bei Temperaturen von 100 °C (10 h), 130 °C (5 h), 190 °C (3 h) und 300 °C (4 h) im Strömungsrohr umgesetzt. Nach jeder Temperaturstufe wird die abgekühlte, zu einem kompakten Feststoff zusammengesinterte Probe durch Mörsern homogenisiert. Das so erhaltene chloridfreie Rohprodukt wird auf 600 °C (2 h) im Vakuum ( $10^{-2}$  Pa) erhitzt. Nach weiterer Thermolyse bei 950 °C (2 h) im Ammoniakstrom wird teilkristallines P<sub>3</sub>N<sub>5</sub> erhalten, welches für weitere Umsetzungen geeignet ist.

# 1.4 Hexaaminodiphosphazenium-chlorid [(NH<sub>2</sub>)<sub>3</sub>PNP(NH<sub>2</sub>)<sub>3</sub>]CI

Hexaaminodiphosphazenium-chlorid [(NH<sub>2</sub>)<sub>3</sub>PNP(NH<sub>2</sub>)<sub>3</sub>]Cl wurde nach der von *Horstmann* in unserer Arbeitsgruppe beschriebenen Methode durch Ammonolyse von [Cl<sub>3</sub>PNPCl<sub>3</sub>]Cl in einem großen Überschuß flüssigen Ammoniaks dargestellt (Gl. 1.4-1).<sup>[52]</sup> Die Abtrennung des als Nebenprodukt gebildeten NH<sub>4</sub>Cl erfolgte durch Umsetzung mit Diethylamin und anschließende Extraktion mit Dichlormethan.

$$[Cl_3PNPCl_3]Cl + 12 NH_3$$
  $\longrightarrow$   $[(NH_2)_3PNP(NH_2)_3]Cl + 6 NH_4Cl$  (Gl. 1.4-1)

Die Vorstufe  $[Cl_3PNPCl_3]Cl$  ist ausgehend von  $PCl_5$  über eine mehrstufige Synthese erhältlich. In der ersten Stufe wurde  $PCl_5$  mit  $NH_4Cl$  zu  $[Cl_3PNPCl_3]PCl_6$  umgesetzt. (Gl. 1.4-2).

$$3 \text{ PCI}_5 + \text{NH}_4\text{CI} \longrightarrow [\text{CI}_3\text{PNPCI}_3]\text{PCI}_6 + 4 \text{ HCI}$$
 (GI. 1.4-2)

Das Rohprodukt wurde ohne weitere Reinigung mit S/S<sub>2</sub>Cl<sub>2</sub> zu Cl<sub>2</sub>P(S)NPCl<sub>3</sub> umgesetzt. Das Produkt wurde anschließend destillativ gereinigt. Durch Chlorierung von Cl<sub>2</sub>P(S)NPCl<sub>3</sub> wurde schließlich [Cl<sub>3</sub>PNPCl<sub>3</sub>]Cl erhalten (Gl. 1.4-3).

$$Cl_2P(S)NPCl_3 + 2 Cl_2$$
  $\rightarrow$   $[Cl_3PNPCl_3]Cl + SCl_2$  (Gl. 1.4-3)

# 1,1,3,3,3-Pentachloro-1-thio-1 $\lambda^{-5}$ , $3\lambda^{-5}$ - $\phi$ hosphaz-2-en $Cl_2P(S)NPCl_3$

In 40 ml frisch destilliertem POCl<sub>3</sub> werden 2,14 g (0,04 mol) NH<sub>4</sub>Cl und 25,02 g PCl<sub>5</sub> (0,12 mol) mit 6,0 g NaCl versetzt und 2 h unter Rückfluß erhitzt. Nach Beendigung der Gasentwicklung werden die schwach gelben Kristalle abfiltriert und im Vakuum getrocknet. Das Rohprodukt [Cl<sub>3</sub>PNPCl<sub>3</sub>]PCl<sub>6</sub> enthält noch NaCl, wird aber direkt mit 9,45 g Schwefel (0,29 mol) und 4 ml S<sub>2</sub>Cl<sub>2</sub> in 40 ml Tetrachlorethan suspendiert und 3 d unter Rückfluß gekocht. Das NaCl wird abfiltriert und bei 60 °C das Lösungsmittel im Wasserstrahlvakuum abdestilliert. Zurück bleibt eine schwach gelbe Flüssigkeit, die fraktionierend destilliert wird (10<sup>-3</sup> mbar). Bei einer Siedetemperatur von 70 °C geht das gewünschte Produkt über. <sup>31</sup>P-NMR (101,254 MHz):  $\delta = 31,3$ (s),  $\delta = -30$ (s) (CDCl<sub>3</sub>); Lit.:  $\delta = 284$ ,  $\delta = -51$ . <sup>[55]</sup>

## 1,1,1,3,3,3-Hexachloro-1 $\lambda^{-5}$ , 3 $\lambda^{-5}$ -**ph**osphazenium-chlorid [Cl<sub>3</sub>PNPCl<sub>3</sub>]Cl

10 g Cl<sub>2</sub>P(S)NPCl<sub>3</sub> werden in 200 ml Petrolether (Siedebereich 140-160 °C) gelöst, und es wird langsam Chlorgas durch die Lösung geleitet. Dabei färbt sich die Mischung rötlich und ein weißer Feststoff fällt aus. Das Ende der Reaktion ist daran zu erkennen, daß sich kein Chlor mehr löst. Das Produkt wird abfiltriert, dreimal mit je 20 ml Petrolether gewaschen und im Vakuum getrocknet. Das Produkt ist ein farbloser Feststoff, der heftig mit Wasser reagiert.

## 1,1,1,3,3,3-Hexaamino-1 $\lambda$ <sup>5</sup>, 3 $\lambda$ <sup>5</sup>-**ph**osphazenium-chlorid [(NH<sub>2</sub>)<sub>3</sub>PNP(NH<sub>2</sub>)<sub>3</sub>]Cl

In einem Schlenk-Rohr mit seitlichem Ansatz werden 50 ml (2,36 mol) flüssiges NH<sub>3</sub> bei -70 °C einkondensiert. Unter Rühren und Schutzgas werden 5,0 g [Cl<sub>3</sub>PNPCl<sub>3</sub>]Cl (15,4 mmol) mit Hilfe einer Einfüllbirne langsam zugegeben. Danach wird 12 h unter Kühlung gerührt und bei langsamem Auftauen auf Raumtemperatur das Ammoniak verdampft. Zur Isolierung des Produkts wird der weiße Rückstand mit 50 ml  $CH_2Cl_2$  und 30 ml (0,1 mol) Diethylamin versetzt und unter Rückfluß gerührt, bis kein NH<sub>3</sub> mehr entweicht. Durch Extraktion mit 50 ml heißem Dichlormethan wird das Diethylaminhydrochlorid entfernt. Nach dem Trocknen werden 2,55 g reines 1,1,1,3,3,3-Hexaamino- $1\lambda^5$ ,  $3\lambda^5$ -diphosphazenium-chlorid (12,3 mmol; 80 %) erhalten.  $^{31}$ P-NMR (101,254 MHz):  $\delta = 19,2$ (s) (D<sub>2</sub>O).

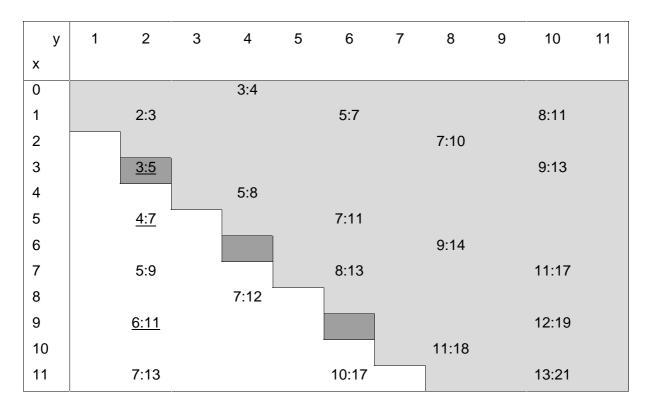
## 2. Nitridophosphate im Überblick

Phosphor-Stickstoff-Verbindungen werden seit über 150 Jahren in der Literatur diskutiert. Detaillierte Untersuchungen über Synthese und Struktur von Nitridophosphaten werden jedoch erst seit wenigen Jahren durchgeführt. Bislang existieren erst einige wenige Alkali- und Erdalkalinitridophosphate, sowie einige Übergangsmetall-Nitridosodalithe. Die Stammverbindung der Nitridophosphate ist das P<sub>3</sub>N<sub>5</sub>, welches erst nach jahrelangen intensiven Anstrengungen kürzlich erstmals phasenrein dargestellt und strukturell bestimmt werden konnte. Eng verwandt mit den Nitridophosphaten sind die Phosphornitridimide. Hier wurden bereits die Verbindungen HPN<sub>2</sub>, (PN(NH)) und HP<sub>4</sub>N<sub>7</sub> (P<sub>4</sub>N<sub>6</sub>(NH)) charakterisiert.

Strukturell sind Nitridophosphate mit den Oxosilicaten eng verwandt. Oxosilicate sind aus SiO<sub>a</sub>-Tetraedern aufgebaut, welche entweder isoliert vorliegen oder über gemeinsame Ecken unter Ausbildung von Si-O-Si-Brücken verknüpft sein können. Die zunehmende Kondensation der SiO<sub>4</sub>-Tetraeder führt zu stärker vernetzten Oxosilicat-Ionen. Der maximale Kondensationsgrad ist im SiO<sub>2</sub> erreicht. Dieser ist definiert über das molare Verhältnis Si: O und kann für Oxosilicate im Bereich zwischen 0,25 für Orthosilicat-Anionen [SiO<sub>4</sub>]<sup>4-</sup> bis 0,5 (SiO<sub>2</sub>) variieren. Die Elementkombination Si/O ist isoelektronisch zur Elementkombination P/N (Si/O: 4 + 6 = 10 Valenzektronen; P/N: 5 + 5 = 10 Valenzelektronen). Somit ist zu jedem Oxosilicat-Ion ein isoelektronisches Nitridophosphat-Ion vorstellbar. Im Vergleich zu Sauerstoff kann Stickstoff jedoch nicht nur an ein oder zwei, sondern auch an drei Si- oder P-Nachbaratome kovalent gebunden sein. Daher sind bei den Nitridophosphaten auch P-N-Teilstrukturen mit einem Kondensationsgrad P: N > 0,5 möglich. Phasen mit einem Verhältnis P: N ≤ 0,5 werden im folgenden als niedrigkondensierte Nitridophosphate, Phasen mit einem molaren Verhältnis P: N > 0,5 als hochkondensierte Nitridophosphate bezeichnet. Der maximale Kondensationsgrad ist im  $P_3N_5$  (P: N = 0,6) erreicht. Unter der Voraussetzung, daß in niedrigkondensierten Nitridophosphaten ausschließlich PN<sub>4</sub>-Tetraeder vorliegen und Stickstoff immer an ein oder zwei Phosphoratome gebunden ist, folgen alle P-N-Teilstrukturen der Formel  $[P_a^{[4]}N_x^{[1]}N_v^{[2]}]^{5a-3(x+y)}$ . Für hochkondensierte Nitridophosphate gilt die analoge Formel  $[P_a^{[4]}N_x^{[2]}N_y^{[3]}]^{5a-3(x+y)}$ . Alle möglichen niedrigkondensierten P-N-Gerüste, in denen alle P-Atome an vier N-Atome und gleichzeitig alle N-Atome kovalent an ein oder zwei P-Atome gebunden sind, sind in den Lösungen von Gleichung 2-1 quantitativ erfaßt:

Analog gilt für hochkondensierte P-N-Strukturen:

$$4a = 2x + 3y \text{ mit } a, x, y \in N_0^+$$
 GI. 2-2<sup>[62]</sup>


Tab. 2-1 und Tab. 2-2 zeigen alle möglichen Zusammensetzungen von P-N-Teilstrukturen an, welche aus Gl. 2-1 und Gl. 2-2 für  $x, y \in \{0,1,2....11\}$  folgen. Ist bei einer bestimmten Zusammensetzung bereits eine oder sind mehrere Verbindungen bekannt, so ist der Kondensationsgrad P: N an der entsprechenden Stelle unterstrichen eingetragen. Kann bei einer bestimmten Zusammensetzung eine neue Verbindung existieren, ist der zugehörige Kondensationsgrad P: N ohne Unterstreichung an der entsprechenden Stelle bezeichnet. Verbindungen, deren Zusammensetzung ein Vielfaches einer bereits benannten Verbindung ist sowie Phasen nicht ganzzahliger Stöchiometrie im Bereich x,  $y \in \{0,1,2...11\}$  sind nicht berücksichtigt. In hellgrau markierten Bereichen sind ausschließlich polykationische, in weißen Bereichen nur polyanionische P-N-Strukturen möglich. Die einzig mögliche elektroneutrale P-N-Struktur besitzt das binäre Nitrid P<sub>3</sub>N<sub>5</sub>, welches dunkelgrau unterlegt ist. Bei den niedrigkondensierten P-N-Verbindungen sind ausschließlich anionische P-N-Teilstrukturen möglich, während bei hochkondensierten Verbindungen auch elektroneutrale und kationische P-N-Gerüste möglich sind. Der maximale Kondensationsgrad ist nach Gl. 2-2 mit der hypothetischen P-N-Teilstruktur  $[P_3N_4]^{3+}$  (x = 0, y = 4) erreicht, in welcher analog zu Si<sub>3</sub>N<sub>4</sub> alle N-Atome an drei Nachbaratome gebunden sind.

Im Bereich der niedrigkondensierten Nitridophosphate wurde mit  $\text{Li}_7\text{PN}_4^{[63]}$  eine Verbindung charakterisiert, die der Bedingung x=4, y=0 (P:N=0,25) genügt. Diese Phase ist aus Li<sup>+</sup>-Ionen und isolierten [PN<sub>4</sub>]<sup>7-</sup>-Tetraedern aufgebaut und kristallisiert in einer Variante des Fluorit-Typs. Die N-Atome bilden dabei eine kubisch dichte Kugelpackung. Die Tetraederlücken werden von P- und Li-Atomen besetzt. Die Verbindung ist isoelektronisch zum Lithium-orthooxosilicat Li<sub>4</sub>SiO<sub>4</sub>. Die gut charakterisierten Nitridophosphate  $Mg_2PN_3^{[64]}$  und  $Ca_2PN_3^{[65]}$  erfüllen die Bedingung x=2, y=1 (P:N=1:3).  $Mg_2PN_3$  und  $Ca_2PN_3$  kristallisieren in Strukturen mit Ketten aus eckenverknüpften  $PN_4$ -Tetraedern. Dieses Strukturmotiv tritt auch in den Si-O-Teilstrukturen von Oxosilicaten wie Enstatit  $MgSiO_3$  oder Wollastonit  $CaSiO_3$  auf. Das Lithium-nitridophosphat  $Li_{12}P_3N_9^{[66]}$  weist den gleichen Kondensationsgrad P:N=1:3 wie die Verbindungen  $Mg_2PN_3$  und  $Ca_2PN_3$  auf. Jedoch besteht die P-N-Teilstruktur aus isolierten  $P_3N_3$ -Ringen eckenverknüpfter Tetraeder (x=6, y=3). Auch für diese P-N-Teilstruktur gibt es isostere Si-O-Teilstrukturen bei den Oxosilicaten z.B. Cyclowollastonit  $Ca_3Si_3O_9$ . Das Nitridophosphat  $Li_{10}P_4N_{10}^{[67]}$  (x=2, y=3) ist das bislang einzige bekannte niedrigkondensierte Nitridophosphat, dessen P-N-

Teilstruktur keine Entsprechung bei den Oxosilicaten hat. Statt dessen ist es aus  $[P_4N_{10}]^{10}$ -Käfigen aufgebaut, welche isoster zu molekularem  $P_4O_{10}$  sind. In LiPN $_2^{[68]}$  sind alle N-Atome an zwei P-Atome gebunden (x = 0, y = 2). Das P-N-Gerüst ist isoelektronisch zu SiO $_2$ . LiPN $_2$  kristallisiert in einer aufgefüllten Variante des ß-Cristobalit-Strukturtyps. Die gleiche Topologie besitzt HPN $_2$ . Fig. Auch die Nitridosodalithe weisen einen Kondensationsgrad P: N = 1: 2 (x = 0, y = 12) auf. Bislang wurden hier die quinquinären bzw. quaternären Verbindungen  $M_{7-x}H_{2x}[P_{12}N_{24}]Cl_2$  (M = Zn, Co, Ni) sowie  $Zn_{3.8}H_{6.4}[P_{12}N_{24}]Br_2$  Fig. Zn $_8[P_{12}N_{24}]X_2$  (X = O, S, Se, Te) und  $Co_8[P_{12}N_{24}]X_2$  (X = Se, Te) synthetisiert. Darüber hinaus wurde ein ternärer Nitridosodalith der Zusammensetzung  $Zn_6[P_{12}N_{24}]$  charakterisiert.

Bislang existieren nur vier Verbindungen mit hochkondensierten P-N-Teilstrukturen. Hierzu gehört das binäre Nitrid  $\alpha$ -P<sub>3</sub>N<sub>5</sub> (x = 3, y = 2; P: N = 0,6), dessen Struktur erst kürzlich aufgeklärt werden konnte.[34] Es repräsentiert die Stammverbindung der Nitridophosphate. α-P<sub>3</sub>N<sub>5</sub> kristallisiert in einer dreidimensionalen Gerüststruktur sowohl eckenverknüpfter als auch kantenverknüpfter PN₄-Tetraeder. Hierbei erfolgt die Kantenverknüpfung über die N<sup>[3]</sup>-Atome, die Eckenverknüpfung über N<sup>[2]</sup>-Atome. Es treten Stränge abwechselnd ecken- und kantenverknüpfter PN<sub>4</sub>-Tetraeder auf. Diese Stränge sind durch weitere PN<sub>4</sub>-Tetraeder verknüpft. Das Strukturmotiv des kantenverknüpften PN<sub>4</sub>-Tetraeders tritt auch in HP<sub>4</sub>N<sub>7</sub> auf (x = 5, y = 2). In Analogie zu  $\alpha$ -P<sub>3</sub>N<sub>5</sub> kristallisiert HP<sub>4</sub>N<sub>7</sub> in einer hochkondensierten Raumnetzstruktur aus ecken- und kantenverknüpften PN₄-Tetraedern. Gemäß dem Kondensationsgrad P : N = 0,57 treten in der Struktur N<sup>[3]</sup>-Brücken auf. Wie im  $\alpha$ -P<sub>3</sub>N<sub>5</sub> erfolgt die Kantenverknüpfung durch die N<sup>[3]</sup>-Atome. Die Struktur von HP₄N<sub>7</sub> ist separierbar in zwei verschiedene offenverzweigte Zweier-Einfachketten aus PN<sub>4</sub>-Tetraedern. Diese Stränge bestehen aus kanten- bzw. eckenverknüpften Tetraederpaaren, welche über Ecken zu Strängen verknüpft sind. Die Verknüpfung dieser Stränge ergibt die Gesamtstruktur. Die einzigen bislang bekannten hochkondensierten metallhaltigen Phosphornitride sind das  $Na_3P_6N_{11}$  und das  $K_3P_6N_{11}$  (x = 9, y = 2). [71,57] Im Unterschied zu  $P_3N_5$  und  $HP_4N_7$ kristallisieren diese isotyp in einer Kristallstruktur mit ausschließlich eckenverknüpften PN<sub>4</sub>-Tetraedern.

Tab. 2-1: Die möglichen hochkondensierten Phosphornitride der Formel  $[P_a^{[4]}N_y^{[2]}N_y^{[3]}]^{5a-3(x+y)}$ . Existiert für Gl. 2-2 bei gegebenen x und y eine Lösung für a im Raum der natürlichen Zahlen, ist in der Tabelle der Kondensationsgrad P: N der zugehörigen P-N-Teilstruktur angegeben. Ist bei einem bestimmmten Kondensationsgrad bereits eine Verbindung charakterisiert, ist diese unterstrichen dargestellt. Zusammensetzungen, die einem Vielfachen einer bereits aufgeführten entsprechen, sind nicht berücksichtigt. Das hellgraue Feld kennzeichnet den Bereich der polykationischen Strukturen (weißes Feld: polyanionische Strukturen; dunkelgraue Felder: elektroneutrale Strukturen).



Tab. 2-2: Die möglichen niedrigkondensierten Phosphornitride der Formel  $[P_a^{[4]}N_x^{[7]}N_y^{[2]}]^{5a-3(x+y)}$ . Existiert für Gl. 2-1 bei gegebenen x und y eine Lösung für a im Raum der natürlichen Zahlen, ist in der Tabelle der Kondensationsgrad P:N der zugehörigen P-N-Teilstruktur angegeben. Ist bei einem bestimmmten Kondensationsgrad bereits eine Verbindung charakterisiert, ist diese unterstrichen dargestellt. Zusammensetzungen, die einem Vielfachen einer bereits aufgeführten entsprechen, sind nicht berücksichtigt.

| у  | 0          | 1          | 2          | 3          | 4   | 5    | 6    | 7    | 8    | 9    | 10   | 11   |
|----|------------|------------|------------|------------|-----|------|------|------|------|------|------|------|
| х  |            |            |            |            |     |      |      |      |      |      |      |      |
| 0  |            |            | <u>1:2</u> |            |     |      |      |      |      |      |      |      |
| 1  |            |            |            |            |     |      |      |      |      |      |      |      |
| 2  |            | <u>1:3</u> |            | <u>2:5</u> |     | 3:7  |      | 4:9  |      | 5:11 |      | 6:13 |
| 3  |            |            |            |            |     |      |      |      |      |      |      |      |
| 4  | <u>1:4</u> |            |            |            | 3:8 |      |      |      | 5:12 |      |      |      |
| 5  |            |            |            |            |     |      |      |      |      |      |      |      |
| 6  |            | 2:7        |            |            |     | 4:11 |      |      |      |      |      | 7:17 |
| 7  |            |            |            |            |     |      |      |      |      |      |      |      |
| 8  |            |            | 3:10       |            |     |      | 5:14 |      |      |      | 7:18 |      |
| 9  |            |            |            |            |     |      |      |      |      |      |      |      |
| 10 |            | 3:11       |            | 4:13       |     |      |      | 6:17 |      | 7:19 |      | 8:21 |
| 11 |            |            |            |            |     |      |      |      |      |      |      |      |

# 3. Konventionelle Synthesekonzepte für Nitridophosphate im Überblick

Die Synthese von Nitridophosphaten ist außerordentlich anspruchsvoll. Die Hauptschwierigkeit bei der Präparation bereitet dabei die vergleichsweise geringe thermische Stabilität der Nitridophosphate. Diese zersetzen sich oberhalb von 800°C irreversibel unter Abspaltung des sehr stabilen Distickstoffmoleküls N2. Für die Synthese kristalliner Nitridophosphate, insbesondere Phasen mit hochkondensierten Netzwerken, sind jedoch hohe Synthesetemperaturen notwendig, um rekonstruktiven Bruch und Bildung der starken kovalenten P-N-Bindungen in ausreichendem Maße zu ermöglichen und so günstige Kristallisationsbedingungen zu schaffen. Die Synthese von Nitridophosphaten gestaltet sich also zu einer Gratwanderung zwischen Kristallisation und thermischer Zersetzung. [10]

In der Vergangenheit wurden in unserem Arbeitskreis verschiedene Synthesekonzepte entwickelt, um kristalline P-N-Phasen zu erhalten. Zum einem wurde versucht,  $P_3N_5$  mit Metallnitriden in Quarzampullen umzusetzen. Bei diesen Reaktionen wirkt das Metall als Nitrid-Ionen-Donator,  $P_3N_5$  als Nitrid-Ionen-Akzeptor. Der Reaktionstyp ähnelt der von der

Synthese der Oxosilicate wohlbekannten Säure-Base-Reaktion nach *Lux* und *Flood*. Dieses Verfahren hat den Vorteil, daß das molare Verhältnis zwischen den Edukten systematisch variiert werden kann und somit die Steuerung des Kondensationsgrades im Produkt möglich ist. Mit dieser Syntheseroute konnten durch Variation der molaren Verhältnisse von Li<sub>3</sub>N und P<sub>3</sub>N<sub>5</sub> die Lithium-nitridophosphate Li<sub>7</sub>PN<sub>4</sub><sup>[63]</sup>, Li<sub>12</sub>P<sub>3</sub>N<sub>9</sub><sup>[66]</sup>, Li<sub>10</sub>P<sub>4</sub>N<sub>10</sub><sup>[67]</sup> und LiPN<sub>2</sub><sup>[68]</sup> bei 600 bis 800 °C dargestellt werden. Durch Umsetzung von Mg<sub>3</sub>N<sub>2</sub> bzw. Ca<sub>3</sub>N<sub>2</sub> und P<sub>3</sub>N<sub>5</sub> im Verhältnis 2 : 1 wurden die Verbindungen Mg<sub>2</sub>PN<sub>3</sub><sup>[64]</sup> und Ca<sub>2</sub>PN<sub>3</sub><sup>[65]</sup> bei 700 °C erhalten. Da alle diese Verbindungen einen niedrigen Kondensationsgrad aufweisen, kristallisieren sie schon bei Temperaturen unterhalb 800 °C. Für die Synthese von hochkondensierten Nitridophosphaten erwies sich dieses Synthesekonzept als unbrauchbar. Hier führt die Reaktion bei Temperaturen unterhalb 800 °C zur Bildung röntgenamorpher Produkte. Offenbar sind die Synthesetemperaturen zu gering, um ein ausreichendes Maß an rekonstruktivem Bruch und Bildung der P-N-Bindungen zu ermöglichen und so eine gute Kristallinität des Produktes zu erreichen. Führt man die Reaktion bei Temperaturen über 800 °C durch, erfolgt thermische Zersetzung der P-N-Verbindungen unter irreversibler Abspaltung von N<sub>2</sub>.

alternative Syntheseroute ist die Thermolyse von speziellen molekularen Einkomponentenvorläufern, welche das charakteristische Bauelement der Nitridophosphate, das PN<sub>4</sub>-Tetraeder, enthalten. Mit Hilfe solcher Einkomponentenvorläufer gelang es in unserer Arbeitsgruppe erstmals, kristalline Verbindungen mit hochkondensierten P-N-Gerüsten darzustellen. Durch Thermolyse von Pentaaminothiodiphosphazen  $(NH_2)_2(S)PNP(NH_2)_3^{[72]}$  bzw. Tetraaminophosphonium-iodid  $[P(NH_2)_4]I^{[73]}$  wurde einphasiges  $HP_4N_7^{[61]}$  $\alpha - P_3 N_5^{[34]}$  erhalten. Da für iede bzw. P-N-Phase Einkomponentenvorläufer notwendig ist, stellt jedoch auch dieses Verfahren kein breit anwendbares Syntheseverfahren dar und führte bislang nur in den genannten Fällen zu einphasigen Produkten.

Weiterhin wurden Anstrengungen unternommen, mit Hilfe von Reaktionen unter erhöhtem NH $_3$ -Partialdruck kristalline Nitridophosphate zu synthetisieren. Das NH $_3$  hat hierbei die Funktion eines Mineralisators. Auf diese Weise bilden sich fast auschließlich wasserstoffhaltige niedrigkondensierte P-N-Phasen. So gelang es *Lücke*, durch Druckammonolyse von P $_3$ N $_5$  kristallines Phosphornitridimid HPN $_2$  zu erhalten. $^{[60]}$  Das einzige wasserstofffreie Nitridophosphat, welches durch Ammonothermalsynthese ausgehend von P $_3$ N $_5$  und K(NH $_2$ ) dargestellt werden konnte, ist K $_3$ P $_6$ N $_{11}$ . $^{[57]}$  Die sodalithanalogen P-N Teilstrukturen wie Zn $_7$ [P $_{12}$ N $_{24}$ ]Cl $_2$ [58,70] entstehen, wenn HPN $_2$  mit Übergangsmetallhalogeniden oder -chalkogeniden umgesetzt wird.

## 4. Das Konzept der Hochdruck-Hochtemperatur-Synthese für Nitridophosphate

Mit den genannten Synthesekonzepten für Nitridophosphate gelang es bisher nicht, einen breiten präparativen Zugang zu dieser Verbindungsklasse zu erschließen. Dies ist vor allem darauf zurückzuführen, daß bei allen konventionellen Ansätzen die Synthesetemperatur auf etwa 800 °C begrenzt ist, was zu ungünstigen Kristallisationsbedingungen führt. Daher konnten im Vergleich zu den Oxosilicaten und auch Nitridosilicaten bislang nur eine geringe Zahl an kristallinen Nitridophosphaten synthetisiert werden. Die strukturellen Möglichkeiten in Nitridophosphaten sind jedoch denen in Oxo- und Nitridosilicaten ähnlich. Darum könnte eine vergleichbare Zahl an Nitridophosphaten mit einer variantenreichen Strukturchemie existieren. Darüber hinaus ist auch eine materialwissenschaftliche Motivation vorhanden, die Verbindungsklasse der Nitridophosphate systematisch zugänglich zu machen. Besonders hochkondensierte Nitridophosphate sollten aufgrund ihrer hohen Härte und Hydrolyseunempfindlichkeit Anwendungspotential als keramische Materialien besitzen. Die Herausforderung in dieser Arbeit bestand daher darin, ein Syntheseverfahren zu entwickeln, welches einen eleganten Zugang zu Nitridophosphaten, insbesondere Nitridophosphaten mit hochkondensierten P-N-Netzwerken ermöglicht. Daher wurden zunächst Überlegungen angestellt, welche Voraussetzungen ein solches Verfahren erfüllen sollte, um eine elegante Synthese zu ermöglichen. Die Erfahrungen mit herkömmlichen Synthesestrategien legten nahe, daß das prinzipielle Problem bei der Darstellung von P-N-Phasen in den mangelhaften Kristallisationsbedingungen infolge der limitierten Synthesetemperatur zu suchen ist. Ein gutes alternatives Konzept sollte dieses Problem also umgehen. Da bei der thermischen Phosphornitriden  $N_2$ irreversibel abgespalten Zersetzung von Reaktionsbedingungen, welche die Eliminierung von N<sub>2</sub> unterdrücken, geeignet sein, die maximale Synthesetemperatur zu erhöhen, um so die Kristallisationsbedingungen zu verbessern.

Eine in der Chemie weit verbreitete Methode, die Eliminierung eines gasfömigen Stoffes aus einer thermisch labilen Verbindung zu vermeiden, ist die Anwendung von Druck. Dies stellt eine spezielle Anwendung des Prinzips des kleinsten Zwangs von *LeChatelier* dar.<sup>[74]</sup> So konnten beipielsweise thermisch labile Oxide in Autoklaven unter erhöhtem O<sub>2</sub>-Druck synthetisiert werden.<sup>[75]</sup> Das bekannteste Beispiel für die Beeinflussung eines Reaktionsgleichgewichts durch Erhöhung des N<sub>2</sub>-Partialdruckes ist wohl die Darstellung von NH<sub>3</sub> aus den Elementen mit dem Haber-Bosch-Verfahren.<sup>[76]</sup> Da das Produkt NH<sub>3</sub> ein kleineres Volumen als die Ausgangsstoffe H<sub>2</sub> und N<sub>2</sub> hat, begünstigt Druckerhöhung die Bildung von NH<sub>3</sub>. Gleichzeitig ermöglicht die Druckerhöhung auch die Synthese bei höheren Temperaturen, was für die Überwindung der Aktivierungsenergie dieser exothermen

Reaktion und damit für die Geschwindigkeit der Umsetzung eine bedeutende Rolle spielt. Eine Erhöhung des  $N_2$ -Partialdrucks sollte also auch die Bildung von nitridischen Festkörpern wie Nitridophosphaten begünstigen beziehungsweise deren thermische Zersetzung unter  $N_2$ -Abspaltung entgegenwirken, da die thermische Dissoziation zu einer Erhöhung des  $N_2$ -Partialdrucks führt und somit dem "äußeren Zwang" entgegengerichtet ist. Technisch ist die Anwendung dieses Prinzips zur Synthese von Nitridophosphaten schwierig, da die Eliminierung von  $N_2$  aus diesen Verbindungen unterhalb von 900 °C aus kinetischen Gründen irreversibel ist. Eine Hochdrucksynthese im Autoklaven schien daher ungeeignet, da kommerziell erhältliche Autoklaven nur bis zu Temperaturen von maximal 1100 °C und Drücken von maximal 5 kbar einsetzbar sind.

Als bessere Alternative zur Erzeugung von Druck erschien daher der Einsatz von Hochdruckzellen, in denen der Druck mit mechanischen Stempeln auf die Probe übertragen wird. Hier bot sich der Einsatz von Belt- bzw. Multianvil-Modulen an, mit welchen Druck und Temperatur über einen weiten Bereich variiert werden können (Belt-Modul:  $p_{max} = 50$  kbar,  $T_{max} = 1800$  °C; Multianvil-Modul:  $p_{max} = 250$  kbar;  $T_{max} = 2500$  °C (vgl. Kap. II.1.3)). Respektive der Wahl der Edukte erschien in Anlehnung an das Synthesekonzept mit  $P_3N_5$  und Metallnitriden als Edukte der Einsatz von Metallaziden und  $P_3N_5$  besonders vielversprechend. Die Metallazide sollten unter Hochdruck-Hochtemperaturbedingungen sowohl als  $N_2$ - als auch als Nitrid-Ionen-Quelle gemäß folgendem Reaktionsschema dienen können (Gl. 4.1):

$$M_x(N_3)_y \to M_x N_{3y-2y} + y N_2$$
 (GI. 4.1)

Das vermutlich intermediär auftretende Metallnitrid sollte dann gegenüber  $P_3N_5$  als Nitrid-Ionen-Donor wirken und sich mit diesem zu einem ternären Phosphornitrid (Nitridophosphat) umsetzen (Gl. 4.2). Dieses Prinzip wurde in modifizierter Form schon von *Evers* bei der Synthese von  $Na_3BN_2$  aus  $NaN_3$ , Na und BN in einer Belt-Apparatur angewendet.<sup>[77]</sup>

a 
$$M_x N_{3y-2y}$$
 + b  $P_3 N_5 \rightarrow M_{ax} P_{3b} N_{a(3y-2y)+5b}$  (GI. 4.2)

Die Abspaltung von  $N_2$  aus dem  $P_3N_5$  und dem entstehenden Nitridophosphat sollte unter Hochdruckbedingungen erst bei deutlich höheren Temperaturen einsetzen als bei Normaldruck. Gleichzeitig sollte der durch die Zersetzung des Azids vermutlich entstehende hohe  $N_2$ -Partialdruck zusätzlich der thermischen Zersetzung des Nitridophosphats entgegenwirken. Aufgrund des unter Hochdruckbedingungen hermetisch abgeschlossenen

Reaktionsraumes ist zu erwarten, daß durch systematische Variation der molaren Verhältnisse von Metallazid und P<sub>3</sub>N<sub>5</sub> eine Vorhersage über die Zusammensetzung der Produkte möglich ist. Ein hoher Anteil an Metallazid im Eduktgemisch sollte zu einem niedrigkondensierten Nitridophosphat führen, während bei einem hohen Anteil von P<sub>3</sub>N<sub>5</sub> ein hochkondensiertes Nitridophosphat entstehen sollte. Entspricht das molare Verhältnis Metall: Phosphor im Eduktgemisch dem Verhältnis Metall: Phosphor eines stabilen Nitridophosphats, so sollte dieses phasenrein entstehen. Auf diese Weise kann die Verbindungsklasse der Nitridophosphate beguem und systematisch auf die Existenz von kristallinen Phasen abgesucht werden. Ein weiterer Vorteil von P<sub>3</sub>N<sub>5</sub> und Metallaziden als Edukte ist deren leichte Darstellbarkeit in größeren Mengen. Zwar ist die Synthese von einphasigem  $\alpha$ -P<sub>3</sub>N<sub>5</sub> wie beschrieben sehr schwierig, jedoch läßt sich teilkristallines P<sub>3</sub>N<sub>5</sub> leicht aus (PNCl<sub>2</sub>)<sub>3</sub> im Ammoniakstrom darstellen. Die erfolgreichen Synthesen der bereits bekannten niedrigkondensierten Lithium- und Erdalkali-nitridophosphate aus teilkristallinem P<sub>3</sub>N<sub>5</sub> und den entsprechenden Metallnitriden legten nahe, daß dieses auch als Edukt für die Darstellung von Nitridophosphaten unter Hochdruckbedingungen geeignet ist. Viele Metallazide sind ebenfalls leicht in größeren Mengen darstellbar und leicht zu handhaben. Ionisch aufgebaute Azide wie Alkali- oder Erdalkaliazide (Ausnahmen: Be(N<sub>3</sub>)<sub>2</sub> und Mg(N<sub>3</sub>)<sub>2</sub>) können leicht durch Ionenaustausch in wäßriger Lösung aus kommerziell erhältlichem NaN<sub>3</sub> dargestellt werden. Diese Azide sind nicht nur stoßunempfindlich, sondern auch hydrolyseunempfindlich und nicht hygroskopisch. Es erschien daher sinnvoll, sich beim Einstieg in die Hochdruck-Hochtemperatur-Synthese von Nitridophosphaten zunächst auf die Darstellung von Alkali- und Erdalkali-nitridophosphaten zu konzentrieren.

## 5. Hexaaminodiphosphazenium-Salze

Parallel zu den Hochdruck-Hochtemperatur-Experimenten wurde im Rahmen der Arbeit an der Synthese von P-N-Molekülverbindungen gearbeitet, welche auch als Einkomponentenvorläufer für kondensierte P-N-Festkörperstrukturen in Frage kommen. Mit diesen Verbindungen soll sich dieses Kapitel beschäftigen, bevor die Ergebnisse der Hochdruckexperimente im Detail beschrieben werden.

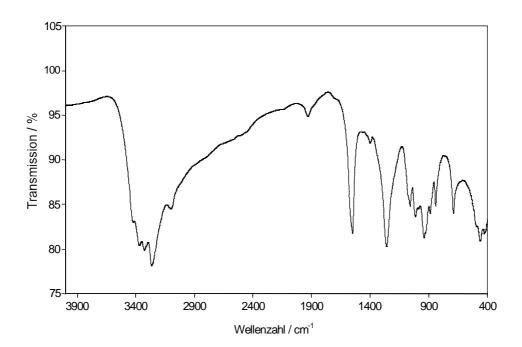
Tetraaminophosphonium-Salze sind die einfachsten molekular-ionischen Verbindungen mit isolierten  $PN_4$ -Tetraedern. Es liegen  $[P(NH_2)_4]^+$ -Ionen vor. Diese kondensieren bei ihrer Thermolyse unter Eliminierung von  $NH_3$  zu Polyphosphazenen. Daher sind sie als Einkomponentenvorläufer für kondensierte P-N-Gerüststrukturen von Interesse. Durch Thermolyse von  $[P(NH_2)]_4$ I konnte *Horstmann* in unserer Arbeitsgruppe erstmals phasenreines  $\alpha$ - $P_3N_5$  darstellen, dessen Kristallstruktur kürzlich aufgeklärt wurde. [34]

Die erfolareich dargestellten Tetraaminophosphonium-Salze Tetraaminophosphonium-iodid<sup>[73]</sup> und das Tetraaminophosphonium-chlorid<sup>[78]</sup>. Die Synthese von Tetraaminophosphonium-iodid gelingt ausgehend von Thiophosphorsäuretrichlorid, welches in füssigem NH<sub>3</sub> zunächst zu Thiophosphorsäuretriamid umgesetzt wird. Anschließend wird die Schwefelfunktion des SP(NH<sub>2</sub>)<sub>3</sub> durch Umsetzung mit Iodmethan zu Methylthioaminophosphonium-iodid [(CH<sub>3</sub>S)P(NH<sub>2</sub>)<sub>3</sub>]I aktiviert. Durch Einleiten gasförmigem NH<sub>3</sub> in eine Suspension von [(CH<sub>3</sub>S)P(NH<sub>2</sub>)<sub>3</sub>]I in CH<sub>2</sub>Cl<sub>2</sub> gelingt die Substitution der CH<sub>3</sub>S-Funktion durch eine NH<sub>2</sub>-Gruppe und es wird Tetraaminophosphonium-iodid erhalten. [73] Einfacher zugänglich ist das Tetraaminophosphonium-chlorid. Es kann durch direkte Ammonolyse von PCI<sub>5</sub> in flüssigem Ammoniak im Überschuß erhalten werden.<sup>[78]</sup> Inzwischen gelang es, über Anionenaustausch weitere Tetraaminophosphonium-Salze mit anderen Gegenionen zu synthetisieren, die möglicherweise ebenfalls als Einkomponentenvorläufer zur Synthese von kondensierten Phosphornitriden in Frage kommen. der Hydrolyseempfindlichkeit des  $[P(NH_2)_4]^+$ -lons Ionenaustausch in flüssigem NH<sub>3</sub> als Lösungsmittel im Batch-Verfahren durchgeführt. [79,80] Die Selektivitäten kommerziell erhältlicher Ionenaustauscher schränken jedoch die Zahl der austauschbaren Anionen beim Batch-Verfahren stark ein. Da die Selektivitätsreihen von Anionenaustauschern in flüssigem NH<sub>3</sub> wenig bekannt sind, ist es bislang noch schwierig, dieses Verfahren gezielt anzuwenden.

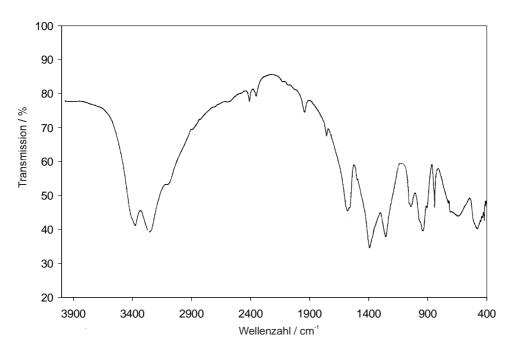
1,1,1,3,3,3-Hexaamino- $1\lambda^5$ ,  $3\lambda^5$ -diphosphazenium-Ion  $[(NH_2)_3PNP(NH_2)_3]^+$ einfachste Kondensationsprodukt des Tetraaminophosphonium-Ions. Die Struktur von [(NH<sub>2</sub>)<sub>3</sub>PNP(NH<sub>2</sub>)<sub>3</sub>]Cl wurde kürzlich ebenfalls von Horstmann in unserer Arbeitsgruppe 1,1,1,3,3,3-Hexaamino- $1\lambda^5$ ,  $3\lambda^5$ -diphosphazenium-Salze aufgeklärt.[81] (im folgenden Hexaaminodiphosphazenium-Salze genannt) sollten wie die Tetraaminophosphonium-Salze vielversprechende Einkomponentenvorläufer von kondensierten Phosphornitriden sein.

Wie <sup>31</sup>P-NMR-Untersuchungen an [(NH<sub>2</sub>)<sub>3</sub>PNP(NH<sub>2</sub>)<sub>3</sub>]Cl in D<sub>2</sub>O zeigten, ist das Hexaaminodiphosphazenium-Ion über mehrere Stunden hydrolysestabil. Daher ist mit Hexaaminodiphosphazenium-Salzen Ionenaustausch in wäßriger Lösung unter Verwendung der Säulentechnik möglich. Dies erweitert die Zahl der zugänglichen Produkte im Vergleich zum Ionenaustausch in flüssigem NH<sub>3</sub> erheblich. Zudem sind so größere Produktmengen viel einfacher darstellbar als bei der Verwendung von flüssigem Ammoniak. Im Rahmen dieser Arbeit gelang die Darstellung und Strukturbestimmung von Hexaaminodiphosphazeniumbromid, -nitrat und -toluol-4-sulfonat.

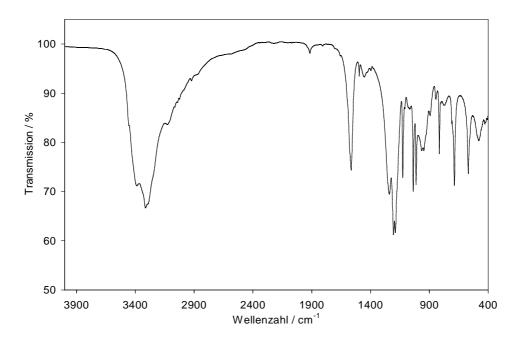
# 


In eine Glassäule ( $\varnothing$  = 1 cm, Länge: 40 cm) mit Hahn und einem porösen Glasfrittenboden der Porösität P0 werden 30 g Ionenaustauscher III (OH<sup>-</sup>-Form, Fa. Merck) gegeben. Dann wird der Ionenaustauscher mit 500 ml Wasser gespült und anschließend 2 h lang in H<sub>2</sub>O quellen gelassen. Nun wird eine wäßrige Lösung mit KBr, KNO<sub>3</sub> bzw. Toluolsulfonsäure auf den Ionenaustauscher gegeben. Die Lösung wird solange durch die Säule geschickt, bis das Eluat neutral bzw. sauer reagiert. Anschließend wird der Ionenaustauscher mit 1 l H<sub>2</sub>O gewaschen. Dann werden 500 mg Hexaaminodiphosphazenium-chlorid in 100 ml Wasser gelöst und auf den Ionenaustauscher gegeben. Das Eluat wird in einem 500 ml Rundkolben aufgefangen. Nachdem die Lösung vollständig die Säule passiert hat und der Ionenaustauscher mit 100 ml Wasser gespült worden ist, wird das Wasser im Vakuum abrotiert und das gewünschte Produkt bleibt als weißer Feststoff zurück. Einkristalle der Produkte können aus Acetonitril im Temperaturgradienten zwischen 60 °C und Raumtemperatur erhalten werden.

## 5.2 Schwingungsspektroskopische Untersuchungen


Die IR-Spektren der Hexaaminodiphosphazenium-Salze sind in Abb. 5.2-1, 5.2-2 und 5.2-3 abgebildet. Die Banden und ihre Zuordnung sind in Tab. 5.2-1 angegeben. Die Banden für das [(NH<sub>2</sub>)<sub>3</sub>PNP(NH<sub>2</sub>)<sub>3</sub>]<sup>+</sup>-Ion zeigen bei allen Produkten gute Übereinstimmung mit den Banden des IR-Spektrums von [(NH<sub>2</sub>)<sub>3</sub>PNP(NH<sub>2</sub>)<sub>3</sub>]CI.<sup>[81]</sup> Oberhalb von 3200 cm<sup>-1</sup> sind die N-H-Valenzschwingungen zu beobachten. Während für das Nitrat und Toluolsulfonat nur zwei breite Banden mit Schulter auftreten, zeigt das Spektrum des Bromids vier scharfe intensitätsstarke Banden. Bei etwa 3100 cm<sup>-1</sup> tritt eine Absorption auf, die als Oberschwingung zu der P-N-H-Deformationsschwingung bei ca. 1560 cm<sup>-1</sup> gedeutet werden kann. Zwischen 700 und 1400 cm<sup>-1</sup> liegt der Bereich der P-N-Valenzschwingungen. Bei 1264 cm<sup>-1</sup> tritt die P-N-P-Valenzschwingung auf, zwischen 800 und 1100 cm<sup>-1</sup> findet man die P-NH<sub>2</sub>-Valenzschwingungen. Wegen der starken Überlappung mit den Schwingungen des Toluol-4-sulfonat-Ions sind letztere in [(NH<sub>2</sub>)<sub>3</sub>PNP(NH<sub>2</sub>)<sub>3</sub>][CH<sub>3</sub>C<sub>6</sub>H<sub>4</sub>SO<sub>3</sub>] nicht eindeutig zuzuordnen.

Die Lage der Banden für die Schwingungen des  $NO_3$ -Ions in [(NH<sub>2</sub>)<sub>3</sub>PNP(NH<sub>2</sub>)<sub>3</sub>][NO<sub>3</sub>] und des Toluol-4-sulfonat-Ions in [(NH<sub>2</sub>)<sub>3</sub>PNP(NH<sub>2</sub>)<sub>3</sub>][CH<sub>3</sub>C<sub>6</sub>H<sub>4</sub>SO<sub>3</sub>] stimmen überein mit den


Banden der zu Vergleichszwecken aufgenommenen Spektren von  $NaNO_3$  und Toluolsulfonsäure.



 $Abb.\ 5.2-1:\ IR-Spektrum\ von\ Hexaaminodiphosphazenium-bromid\ [(NH_2)_3PNP(NH_2)_3]Br,\ KBr-Preßling.$ 



 $Abb.\ 5.2-2:\ IR-Spektrum\ von\ Hexaaminodiphosphazenium-nitrat.\ [(NH_2)_3PNP(NH_2)_3][NO_3],\ KBr-Preßling.$ 



 $Abb.\ 5.2-3:\ IR-Spektrum\ von\ Hexaaminodiphosphazenium-toluolsulfonat\ [(NH_2)_3]PNP(NH_2)_3][CH_3C_6H_4SO_3],\ KBr-Preßling.$ 

Tab. 5.2-1. Zuordnung der Banden in den IR-Spektren von  $[(NH_2)_3PNP(NH_2)_3]Br$ ,  $[(NH_2)_3PNP(NH_2)_3][NO_3]$  und  $[(NH_2)_3PNP(NH_2)_3][CH_3C_6H_4SO_3]$ .

| Beob. Banden / cm <sup>-1</sup> [(NH <sub>2</sub> ) <sub>3</sub> PNP(NH <sub>2</sub> ) <sub>3</sub> ]Br | Beob. Banden / cm <sup>-1</sup> [(NH <sub>2</sub> ) <sub>3</sub> PNP(NH <sub>2</sub> ) <sub>3</sub> ][NO <sub>3</sub> ] | Beob. Banden / cm <sup>-1</sup> $[(NH2)3PNP(NH2)3]$ $[CH3C6H4SO3]$ | Zuordnung         |
|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------|
| 3422 vs                                                                                                 |                                                                                                                         |                                                                    | v (N-H)           |
| 3378 vs                                                                                                 | 3389 vs                                                                                                                 | 3380 vs                                                            |                   |
| 3322 vs                                                                                                 |                                                                                                                         | 3313 vs                                                            |                   |
| 3264 vs                                                                                                 | 3277 vs                                                                                                                 |                                                                    |                   |
| 3100 w                                                                                                  | 3117 w                                                                                                                  | 3127 w                                                             | 2δ (P-N-H)        |
| 1551 s                                                                                                  | 1563 s                                                                                                                  | 1564                                                               | δ (P-N-H)         |
| 1262<br>1061                                                                                            | 1249                                                                                                                    | 1245                                                               | ν <b>(</b> P-N-P) |
| 1020                                                                                                    | 1022                                                                                                                    |                                                                    | ν (N-P-N)         |
| 942                                                                                                     | 939                                                                                                                     | 940                                                                |                   |
| 844                                                                                                     | 837                                                                                                                     |                                                                    |                   |

## **5.3 NMR-spektroskopische Untersuchungen**

Lösungen von  $[(NH_2)_3PNP(NH_2)_3]Br$ ,  $[(NH_2)_3PNP(NH_2)_3][NO_3]$  und  $[(NH_2)_3PNP(NH_2)_3][CH_3C_6H_4SO_3]$  in  $D_2O$  wurden  $^{31}P$ -NMR-spektroskopisch untersucht. Die Spektren zeigen für jedes der drei Salze ein  $^{31}P$ -Singulett bei  $\delta$  = 19,2 ppm. Diese chemische Verschiebung stimmt gut mit der von *Horstmann* beobachteten Verschiebung für  $[(NH_2)_3PNP(NH_2)_3]CI$  überein.  $[^{81}]$  Das  $[(NH_2)_3PNP(NH_2)_3]^+$ -Ion ist in Lösungen von  $[(NH_2)_3PNP(NH_2)_3]Br$ ,  $[(NH_2)_3PNP(NH_2)_3][NO_3]$  und  $[(NH_2)_3PNP(NH_2)_3][CH_3C_6H_4SO_3]$  mehrere Stunden lang hydrolysebeständig. Erst nach mehreren Tagen tritt merkliche Hydrolyse auf. Als Hydrolyseprodukt bildet sich Phosphorsäuretriamid, welches anhand seiner chemischen Verschiebung bei 23 ppm identifiziert wurde.

## 5.4 Thermogravimetrische Untersuchungen

Um nähere Aussagen über den Wert der dargestellten Hexaaminodiphosphazenium-Salze als Einkomponentenvorläufer zu kondensierten P-N-Verbindungen machen zu können, wurden thermogravimetrische Untersuchungen durchgeführt. Die Proben wurde dazu in der Thermowaage mit einer Heizrate von 10 °C / min auf 800 °C aufgeheizt und der dabei auftretende Gewichtsverlust beobachtet. Man erkennt in den Diagrammen für jede Substanz charakteristische Stufen, die auf die Existenz einer zugehörigen definierten Phase hindeuten. Bei ca. 800 °C erfolgt vermutlich vollständige Zersetzung der kondensierten P-N-Phase unter N<sub>2</sub>-Abspaltung (Abb. 5.4-1 – Abb. 5.4-3).

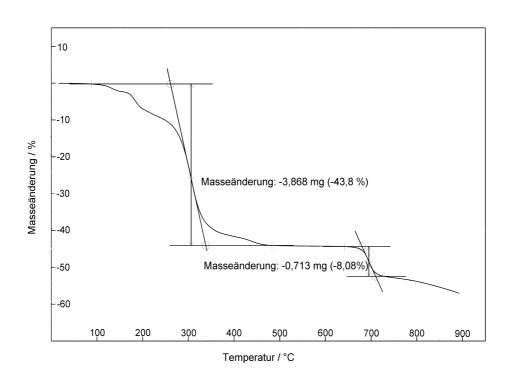
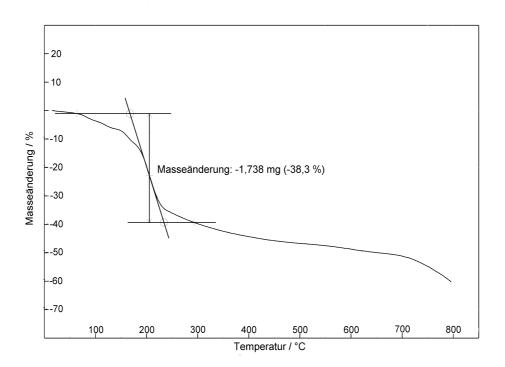
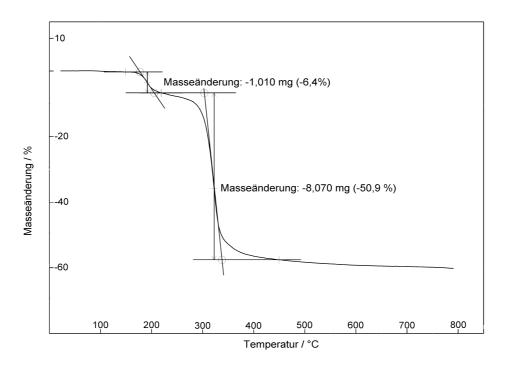





Abb. 5.4-1: Thermogravimetrische Untersuchung von  $[(NH_2)_3PNP(NH_2)_3]Br$ , Einwaage 6,532 mg.



 $Abb.\ 5.4-2: Thermogravimetrische\ Untersuchung\ von\ [(NH_2)_3PNP(NH_2)_3][NO_3],\ Einwaage\ 4,442\ mg.$ 



 $Abb.\ 5.4-3: Thermogravimetrische\ Untersuchung\ von\ [(NH_2)_3PNP(NH_2)_3][CH_3C_6H_4SO_3],\ Einwaage\ 5,521\ mg.$ 

## 5.5 Pulverdiffraktometrische Untersuchungen

Die vollständige Indizierung des Pulverdiffraktogramms gelang für  $[(NH_2)_3PNP(NH_2)_3]Br$  und  $[(NH_2)_3PNP(NH_2)_3][NO_3]$  triklin, während  $[(NH_2)_3PNP(NH_2)_3][CH_3C_6H_4SO_3]$  monoklin indiziert werden konnte. Die Parameter der jeweiligen Messungen sind in Tab. 5.5-1 zusammengefaßt.

Tab. 5.5-1: Parameter der pulverdiffraktometrischen Untersuchungen an  $[(NH_2)_3PNP(NH_2)_3]Br$ ,  $[(NH_2)_3PNP(NH_2)_3][NO_3]$  und  $[(NH_2)_3PNP(NH_2)_3][CH_3C_6H_4SO_3]$ .

| Verbindung                                    | [(NH2)3PNP(NH2)3]Br  | [(NH2)3PNP(NH2)3] $[NO3]$ | $[(NH_2)_3PNP(NH_2)_3]$<br>$[CH_3C_6H_4SO_3]$ |
|-----------------------------------------------|----------------------|---------------------------|-----------------------------------------------|
| Pulverdiffraktometer                          | STOE STADI P         | STOE STADI P              | STOE STADI P                                  |
| Strahlung                                     | Cu <sub>Kα 1</sub>   | Cu <sub>Kα 1</sub>        | Cu <sub>Kα 1</sub>                            |
| Meßtemperatur / K                             | 293                  | 293                       | 293                                           |
| Winkelbereich 2θ / °                          | 5-75                 | 3-80                      | 2-85                                          |
| Kristallsystem                                | triklin              | triklin                   | monoklin                                      |
| Gitterkonstanten / pm, °                      | a = 596,2(1)         | a = 550,9(1)              | a = 804,1(1)                                  |
|                                               | b = 744,5(1)         | b = 796,3(1)              | b = 596,1(1)                                  |
|                                               | c = 1114,4(1)        | c = 1115,7(1)             | c = 3218,7(3)                                 |
|                                               | $\alpha = 108,78(1)$ | $\alpha = 94,45(1)$       |                                               |
|                                               | $\beta = 104,18(1)$  | $\beta = 99,55(1)$        | $\beta = 94,59(1)$                            |
|                                               | $\gamma = 90,64(1)$  | $\gamma = 101,53(1)$      |                                               |
| Zellvolumen / 10 <sup>6</sup> pm <sup>3</sup> | 451,8(1)             | 469,8(1)                  | 1538,0(2)                                     |

# 5.6 Strukturbestimmung von $[(NH_2)_3PNP(NH_2)_3]Br$ , $[(NH_2)_3PNP(NH_2)_3][NO_3]$ und $[(NH_2)_3PNP(NH_2)_3][CH_3C_6H_4SO_3]$

Einkristalle von  $[(NH_2)_3PNP(NH_2)_3]Br$  der Größe  $0,10 \times 0,22 \times 0,20 \text{ mm}^3$   $([(NH_2)_3PNP(NH_2)_3][NO_3]: 0,12 \times 0,20 \times 0,15; [(NH_2)_3PNP(NH_2)_3][CH_3C_6H_4SO_3]: 0,12 \times 1,20 \times 0,18 \text{ mm}^3)$  wurden mit Hilfe eines Glasfadens in Markröhrchen (Fa. Hilgenberg) überführt und diese unter Argon abgeschmolzen. Die Messung der Reflexintensitäten (vgl. Tab. 5.6-1, Tab. 5.6-4 und Tab. 5.6-7) erfolgte mit einem Siemens P4-Diffraktometer.

Es wurden die Intensitäten von 4803 Reflexen des Kristalls von [(NH<sub>2</sub>)<sub>3</sub>PNP(NH<sub>2</sub>)<sub>3</sub>]Br gemessen ( $[(NH_2)_3PNP(NH_2)_3][NO_3]$ : 3505;  $[(NH_2)_3PNP(NH_2)_3][CH_3C_6H_4SO_3]$ : 9508 Reflexe). Dabei [(NH<sub>2</sub>)<sub>3</sub>PNP(NH<sub>2</sub>)<sub>3</sub>]Brwurden für 2554 symmetrieunabhängige Reflexe  $([(NH_2)_3PNP(NH_2)_3][NO_3]: 2725; [(NH_2)_3PNP(NH_2)_3][CH_3C_6H_4SO_3]: 4483)$ beobachtet  $R_{int} = 0.035$ ;  $[(NH_2)_3PNP(NH_2)_3][NO_3]$ : ([(NH<sub>2</sub>)<sub>3</sub>PNP(NH<sub>2</sub>)<sub>3</sub>]Br: $R_{int} = 0.018$ ;  $[(NH_2)_3PNP(NH_2)_3][CH_3C_6H_4SO_3]: R_{int} = 0,036)$ . Aus den Auslöschungsbedingungen ergaben sich für [(NH<sub>2</sub>)<sub>3</sub>PNP(NH<sub>2</sub>)<sub>3</sub>]Br und [(NH<sub>2</sub>)<sub>3</sub>PNP(NH<sub>2</sub>)<sub>3</sub>][NO<sub>3</sub>] als mögliche Raumgruppen P1 und P1, während für  $[(NH_2)_3PNP(NH_2)_3][CH_3C_6H_4SO_3]$  eindeutig die Raumgruppe  $P2_1/c$ resultierte. Die vollständige Strukturlösung gelang für [(NH<sub>2</sub>)<sub>3</sub>PNP(NH<sub>2</sub>)<sub>3</sub>]Br und  $[(NH_2)_3PNP(NH_2)_3][NO_3]$  in der Raumgruppe  $P\overline{1}$  sowie für  $[(NH_2)_3PNP(NH_2)_3][CH_3C_6H_4SO_3]$ in der Raumgruppe  $P2_1/c$ .

Die P-Atome Verbindungen S-Atom aller drei das sowie von [(NH<sub>2</sub>)<sub>3</sub>PNP(NH<sub>2</sub>)<sub>3</sub>][CH<sub>3</sub>C<sub>6</sub>H<sub>4</sub>SO<sub>3</sub>] und das Br-Atom von [(NH<sub>2</sub>)<sub>3</sub>PNP(NH<sub>2</sub>)<sub>3</sub>]Br konnten mittels Direkter Methoden lokalisiert werden. Die Positionen der C-, N- und O-Atome wurden durch Differenz-Fourier-Synthesen eindeutig ermittelt. Alle Br, S, P, O, N und C-Atome wurden frei verfeinert. Die H-Atome von allen drei Salzen konnten ebenfalls durch Differenz-Fourier-Synthese lokalisiert werden. Die H-Atome von [(NH<sub>2</sub>)<sub>3</sub>PNP(NH<sub>2</sub>)<sub>3</sub>][NO<sub>3</sub>] konnten frei verfeinert werden, während Positionen und Temperaturfaktoren der H-Atome  $[(NH_2)_3PNP(NH_2)_3]Br$  und  $[(NH_2)_3PNP(NH_2)_3][CH_3C_6H_4SO_3]$  fixiert wurden. Die endgültige Verfeinerung der schwereren Atome unter Verwendung anisotroper Temperaturfaktoren P; ([(NH<sub>2</sub>)<sub>3</sub>PNP(NH<sub>2</sub>)<sub>3</sub>]Br:Br, N,  $[(NH_2)_3PNP(NH_2)_3][NO_3]$ : Ρ.  $[(NH_2)_3PNP(NH_2)_3][CH_3C_6H_4SO_3]: S, P, N, O, C)$  ergab für  $[(NH_2)_3PNP(NH_2)_3]Br$  R1 = 0,048 wR2 = 0,104 $([(NH_2)_3PNP(NH_2)_3][NO_3]:$ R1 = 0.033bzw. wR2 = 0.095;  $[(NH_2)_3PNP(NH_2)_3][CH_3C_6H_4SO_3]$ : R1 = 0,052 bzw. wR2 = 0,136). Die verfeinerten Atomparameter sind in Tab. 5.6-2, Tab. 5.6-5 und Tab. 5.6-8, anisotrope Temperaturfaktoren in Tab. 5.6-3, 5.6-6 und 5.6-9 enthalten.

Die ermittelten Atomlagen von [(NH<sub>2</sub>)<sub>3</sub>PNP(NH<sub>2</sub>)<sub>3</sub>]Br, [(NH<sub>2</sub>)<sub>3</sub>PNP(NH<sub>2</sub>)<sub>3</sub>][NO<sub>3</sub>] und [(NH<sub>2</sub>)<sub>3</sub>PNP(NH<sub>2</sub>)<sub>3</sub>][CH<sub>3</sub>C<sub>6</sub>H<sub>4</sub>SO<sub>3</sub>] entsprechen lokalen Maxima der Elektronendichtefunktion. Für leichte Atome, insbesondere Wasserstoff, können Abweichungen von den tatsächlichen Atompositionen auftreten. So erklären sich die offensichtlich zu kurzen N-H- und C-H-Abstände, für die ein Wert von etwa 100 pm erwartet werden kann.<sup>[82]</sup> Aus diesem Grund wurden idealisierte Wasserstoffpositionen der Strukturdiskussion zugrunde gelegt.

Zwischen den gemessenen Pulverdiffraktogrammen und den auf der Basis von Einkristalldaten berechneten Diffraktogrammen besteht gute Übereinstimmung (Abb. 5.6-1 bis Abb. 5.6-3).

 $Tab.\ 5.6\text{-}1: Parameter\ der\ Kristallstrukturbestimmung\ von\ [(NH_2)_3PNP(NH_2)_3]Br.$ 

| Tab. 5.6-1. Parameter der Kristalistrukturbestimmung von [(NF |                                                            |
|---------------------------------------------------------------|------------------------------------------------------------|
| Formel                                                        | $[(NH_2)_3PNP(NH_2)_3]Br$                                  |
| Molmasse / g⋅mol <sup>-1</sup>                                | 252,0                                                      |
| Kristallsystem                                                | triklin                                                    |
| Raumgruppe                                                    | P 1 (Nr. 2)                                                |
| Diffraktometer                                                | Siemens P4                                                 |
| Strahlung                                                     | $Mo_{K\alpha}$ (Graphit-Monochromator)                     |
| Kristallgröße / mm <sup>3</sup>                               | $0,10\times0,22\times0,20$                                 |
| Meßtemperatur / K                                             | 296(2)                                                     |
| Gitterkonstanten / pm, °                                      | a = 596,2(1)                                               |
|                                                               | b = 744,5(1)                                               |
|                                                               | c = 1114,4(1)                                              |
|                                                               | $\alpha = 108,78(1)$                                       |
|                                                               | $\beta = 104,18(1)$                                        |
|                                                               | $\gamma = 90,64(1)$                                        |
| Zellvolumen / 10 <sup>6</sup> pm <sup>3</sup>                 | 451,8(1)                                                   |
| Z                                                             | 2                                                          |
| Röntgenogr. Dichte / g⋅cm <sup>-3</sup>                       | 1,852                                                      |
| F(000)                                                        | 252                                                        |
| Absorptionskoeffizient / mm <sup>-1</sup>                     | 4,85                                                       |
| Meßbereich                                                    | $4^{\circ} \le 2\theta \le 70^{\circ}$                     |
| Indexbereich                                                  | $-4 \le h \le 4$ , $-11 \le k \le 11$ , $-17 \le l \le 17$ |
| Gemessene Oktanten                                            | alle                                                       |
| Scan-Modus                                                    | $\omega$ -Scan                                             |
| Gemessene Reflexe                                             | 4803                                                       |
| Symmetrieunabhängige Reflexe                                  | 2554 ( $R_{int} = 0.035$ )                                 |
| Beobachtete Reflexe                                           | 1687 $(F_o^2 > 2.0 \sigma(F_o^2))$                         |
| Korrekturen                                                   | Lorentz, Polarisation, Extinktion,                         |
|                                                               | Absorption                                                 |
| Absorptionskorrektur                                          | $\Psi$ -Scans                                              |
| Min. und max. Transmissionsfaktor                             | 0,247; 0,923                                               |
| Extinktionskoeffizient $\chi$                                 | 0,004(3)                                                   |
| Verfeinerte Parameter                                         | 128                                                        |
| Min. und max. Restelektronendichte / e·Å-3                    | -1,00; 0,93                                                |
| GOF                                                           | 1,040                                                      |
| R – Werte <sup>a</sup>                                        | R1 = 0.048                                                 |
|                                                               | wR2 = 0,104                                                |
|                                                               |                                                            |

<sup>&</sup>lt;sup>a</sup>  $w^{-1} = s^2(F_o^2) + (0.0618 P)^2 + 0.0000 P mit P = (F_o^2 + 2 F_c^2)/3$ 

Tab. 5.6-2: Verfeinerte Ortsparameter und isotrope äquivalente Auslenkungsparameter  $U_{eq}$  / pm $^2$  der Atome in  $[(NH_2)_3PNP(NH_2)_3]Br$ .  $U_{eq}$  ist definiert als ein Drittel der Spur des orthogonalisierten Tensors  $U_{ij}$  (Standardabweichungen in Klammern).

| Atom | x          | у          | Z          | U <sub>eq</sub> |
|------|------------|------------|------------|-----------------|
| Br   | -0,1216(1) | 0,1586(1)  | 0,3308(1)  | 376(2)          |
| P1   | 0,2293(2)  | 0,3095(2)  | 0,0670(1)  | 263(3)          |
| P2   | -0,4075(2) | 0,3570(2)  | 0,6991(1)  | 278(3)          |
| N1   | -0,6850(8) | 0,3444(6)  | 0,6372(4)  | 472(11)         |
| N2   | -0,2368(9) | 0,4328(6)  | 0,6300(4)  | 491(12)         |
| N3   | -0,3619(8) | -0,1347(5) | 0,6689(4)  | 443(11)         |
| N4   | 0,3296(1)  | 0,1543(5)  | 0,1359(4)  | 401(10)         |
| N5   | -0,0496(7) | 0,2648(5)  | 0,0444(4)  | 348(10)         |
| N6   | 0,2524(8)  | 0,2800(5)  | -0,0796(3) | 415(11)         |
| N7   | -0,3605(7) | 0,4862(5)  | 0,8494(3)  | 322(9)          |
| H11  | -0,747(8)  | 0,265(6)   | 0,552(3)   | 500             |
| H12  | -0,705(9)  | 0,470(3)   | 0,654(5)   | 500             |
| H21  | -0,237(9)  | 0,357(6)   | 0,548(3)   | 500             |
| H22  | -0,189(9)  | 0,561(3)   | 0,667(5)   | 500             |
| H31  | -0,496(6)  | 0,077(7)   | 0,668(5)   | 500             |
| H32  | -0,217(5)  | 0,094(7)   | 0,676(5)   | 500             |
| H41  | 0,250(8)   | 0,036(4)   | 0,101(4)   | 500             |
| H42  | 0,487(4)   | 0,167(7)   | 0,174(5)   | 500             |
| H51  | -0,158(7)  | 0,319(7)   | -0,003(4)  | 500             |
| H52  | -0,099(9)  | 0,266(7)   | 0,116(3)   | 500             |
| H61  | 0,191(8)   | 0,167(4)   | -0,145(4)  | 500             |
| H62  | 0,374(7)   | 0,356(7)   | -0,078(1)  | 500             |

Tab. 5.6-3: Verfeinerte anisotrope Auslenkungskoeffizienten / pm² in  $[(NH_2)_3PNP(NH_2)_3]Br$ . Der Exponent des anisotropen Auslenkungsfaktors hat die Form:  $[-2\pi^2(U_{11}h^2a^{*2}+...+2U_{12}hka^*b^*)]$ .

| Atom | U <sub>11</sub> | U <sub>22</sub> | U <sub>33</sub> | U <sub>23</sub> | U <sub>13</sub> | U <sub>12</sub> |
|------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Br   | 397(5)          | 341(2)          | 337(2)          | 59(2)           | 78(2)           | -34(2)          |
| P1   | 299(9)          | 223(4)          | 254(4)          | 69(3)           | 66(4)           | -17(4)          |
| P2   | 334(9)          | 236(4)          | 239(4)          | 54(3)           | 69(4)           | -26(4)          |
| N1   | 390(30)         | 510(20)         | 400(20)         | 58(18)          | 24(19)          | 10(20)          |
| N2   | 650(40)         | 450(20)         | 357(20)         | 36(16)          | 230(20)         | -160(20)        |
| N3   | 460(30)         | 286(18)         | 530(20)         | 71(16)          | 110(20)         | 32(18)          |
| N4   | 290(30)         | 359(18)         | 560(20)         | 255(17)         | -5(19)          | -16(17)         |
| N5   | 310(30)         | 336(18)         | 420(19)         | 163(15)         | 90(17)          | 38(16)          |
| N6   | 510(30)         | 390(20)         | 292(16)         | 20(14)          | 155(17)         | -154(19)        |
| N7   | 430(30)         | 279(15)         | 228(13)         | 45(11)          | 92(14)          | -96(15)         |

 $Tab.\ 5.6-4:\ Parameter\ der\ Kristallstrukturbestimmung\ von\ [(NH_2)_3PNP(NH_2)_3][NO_3].$ 

| Formel                                                 | [(NH2)3PNP(NH2)3][NO3]                                     |
|--------------------------------------------------------|------------------------------------------------------------|
| Molmasse / g⋅mol <sup>-1</sup>                         | 234,1                                                      |
| Kristallsystem                                         | triklin                                                    |
| Raumgruppe                                             | P 1 (Nr. 2)                                                |
| Diffraktometer                                         | Siemens P4                                                 |
| Strahlung                                              | $Mo_{K\alpha}$ (Graphit-Monochromator)                     |
| Kristallgröße / mm³                                    | $0,12 \times 0,20 \times 0,15$                             |
| Meßtemperatur / K                                      | 296(2)                                                     |
| Gitterkonstanten / pm, °                               | a = 550,9(1)                                               |
|                                                        | b = 796,3(1)                                               |
|                                                        | c = 1115,7(1)                                              |
|                                                        | $\alpha = 94,45(1)$                                        |
|                                                        | $\beta = 99,55(1)$                                         |
|                                                        | $\gamma = 101,53(1)$                                       |
| Zellvolumen / 10 <sup>6</sup> pm <sup>3</sup>          | 469,8(1)                                                   |
| Z                                                      | 2                                                          |
| Röntgenogr. Dichte / g⋅cm <sup>-3</sup>                | 1,655                                                      |
| F(000)                                                 | 244                                                        |
| Absorptionskoeffizient / mm <sup>-1</sup>              | 0,461                                                      |
| Meßbereich                                             | $4^{\circ} \le 2\theta \le 60^{\circ}$                     |
| Indexbereich                                           | $-1 \le h \le 7$ , $-11 \le k \le 11$ , $-15 \le l \le 15$ |
| Gemessene Oktanten                                     | hkl, hk $\bar{l}$ , h $\bar{k}$ l, h $\bar{k}\bar{l}$ ,    |
| Scan-Modus                                             | $\omega$ Scan                                              |
| Gemessene Reflexe                                      | 3505                                                       |
| Symmetrieunabhängige Reflexe                           | $2725 (R_{int} = 0.018)$                                   |
| Beobachtete Reflexe                                    | 2427 $(F_o^2 > 2.0 \sigma(F_o^2))$                         |
| Korrekturen                                            | Lorentz, Polarisation, Extinktion,                         |
|                                                        | Absorption                                                 |
| Absorptionskorrektur                                   | $\Psi$ -Scans                                              |
| Min. und max. Transmissionsfaktor                      | 0,246; 0,534                                               |
| Extinktionskoeffizient $\chi$                          | 0,074(8)                                                   |
| Verfeinerte Parameter                                  | 167                                                        |
| Min. und max. Restelektronendichte / e·Å <sup>-3</sup> | -0,38; 0,62                                                |
| GOF                                                    | 0,98                                                       |
| R – Werte <sup>a</sup>                                 | R1 = 0.033                                                 |
|                                                        | WR2 = 0,095                                                |

<sup>&</sup>lt;sup>a</sup> w<sup>-1</sup> = s<sup>2</sup>(F<sub>o</sub><sup>2</sup>) + (0,0665 P)<sup>2</sup> + 0,1967 P mit P = (F<sub>o</sub><sup>2</sup> + 2 F<sub>c</sub><sup>2</sup>)/3

Tab. 5.6-5: Verfeinerte Ortsparameter und isotrope äquivalente Auslenkungsparameter  $U_{eq}$  /  $pm^2$  der Atome in  $[(NH_2)_3PNP(NH_2)_3][NO_3]$ .  $U_{eq}$  ist definiert als ein Drittel der Spur des orthogonalisierten Tensors  $U_{ij}$  (Standardabweichungen in Klammern).

| Atom | X          | у         | Z          | $U_{eq}$ |
|------|------------|-----------|------------|----------|
| P1   | -0,0051(1) | 0,2440(1) | -0,8727(1) | 307(2)   |
| P2   | 0,3023(1)  | 0,1959(1) | -0,6512(1) | 292(2)   |
| N1   | 0,2098(3)  | 0,3319(2) | -0,5604(2) | 422(3)   |
| N2   | 0,1645(3)  | 0,0091(2) | -0,6159(2) | 399(3)   |
| N3   | 0,5987(3)  | 0,1861(3) | -0,6219(2) | 493(4)   |
| N4   | -0,1287(3) | 0,3959(2) | -0,8169(2) | 423(3)   |
| N5   | -0,2399(3) | 0,0795(2) | -0,8924(2) | 474(4)   |
| N6   | 0,0664(3)  | 0,2549(2) | -0,0088(2) | 427(3)   |
| N7   | 0,2535(2)  | 0,2413(2) | -0,7869(2) | 346(3)   |
| N8   | 0,4912(3)  | 0,6820(2) | -0,7640(2) | 436(3)   |
| O1   | 0,4447(3)  | 0,6432(3) | -0,8759(2) | 753(6)   |
| O2   | 0,3169(3)  | 0,6867(2) | -0,7031(2) | 743(6)   |
| O3   | 0,7100(3)  | 0,7093(2) | -0,7090(2) | 601(4)   |
| H11  | 0,231(5)   | 0,432(4)  | -0,581(2)  | 530(70)  |
| H12  | 0,243(5)   | 0,318(3)  | -0,484(3)  | 540(70)  |
| H21  | 0,012(6)   | 0,002(4)  | -0,616(3)  | 710(90)  |
| H22  | 0,211(5)   | -0,076(4) | -0,642(2)  | 520(70)  |
| H31  | 0,637(6)   | 0,173(4)  | -0,558(3)  | 750(100) |
| H32  | 0,685(5)   | 0,265(3)  | -0,646(2)  | 530(70)  |
| H41  | -0,257(7)  | 0,403(5)  | -0,844(3)  | 890(110) |
| H42  | -0,017(5)  | 0,494(4)  | -0,778(2)  | 530(70)  |
| H51  | -0,354(6)  | 0,082(4)  | -0,847(3)  | 770(90)  |
| H52  | -0,226(5)  | 0,002(3)  | -0,925(2)  | 460(70)  |
| H61  | -0,041(6)  | 0,264(4)  | -0,070(3)  | 780(90)  |
| H62  | 0,205(5)   | 0,309(3)  | -0,012(2)  | 500(60)  |

Tab. 5.6-6: Verfeinerte anisotrope Auslenkungskoeffizienten / pm² in [(NH<sub>2</sub>)<sub>3</sub>PNP(NH<sub>2</sub>)<sub>3</sub>][NO<sub>3</sub>]. Der Exponent des anisotropen Auslenkungsfaktors hat die Form:  $[-2\pi^2(U_{11}h^2a^{*2}+...+2U_{13}hla^*c^*)]$ .

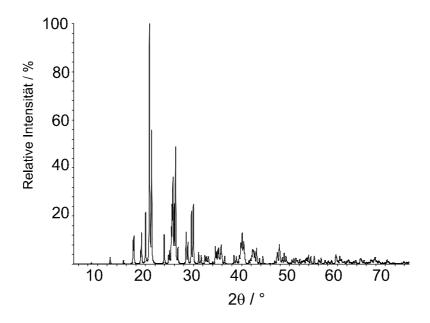
| Atom | U <sub>11</sub> | U <sub>22</sub> | U <sub>33</sub> | U <sub>23</sub> | U <sub>13</sub> | U <sub>12</sub> |
|------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| P1   | 278(2)          | 334(2)          | 293(2)          | 64(2)           | 28(2)           | 33(2)           |
| P2   | 232(2)          | 358(2)          | 285(2)          | 64(2)           | 46(2)           | 48(2)           |
| N1   | 450(8)          | 432(8)          | 366(7)          | -15(6)          | 70(6)           | 79(6)           |
| N2   | 419(8)          | 369(7)          | 416(7)          | 92(6)           | 121(6)          | 49(6)           |
| N3   | 262(7)          | 806(13)         | 450(9)          | 233(9)          | 69(6)           | 140(7)          |
| N4   | 344(7)          | 424(8)          | 514(9)          | 71(6)           | 51(6)           | 129(6)          |
| N5   | 413(8)          | 455(9)          | 473(9)          | -20(7)          | 97(7)           | -78(7)          |
| N6   | 414(8)          | 532(9)          | 306(7)          | 121(6)          | 40(6)           | 29(7)           |
| N7   | 290(6)          | 443(7)          | 315(6)          | 95(5)           | 49(5)           | 89(5)           |
| N8   | 323(7)          | 342(7)          | 625(10)         | 81(6)           | 64(6)           | 45(5)           |
| O1   | 513(9)          | 1082(16)        | 545(9)          | 279(10)         | -75(7)          | -39(9)          |
| O2   | 505(9)          | 474(8)          | 1279(17)        | -94(9)          | 396(10)         | 59(7)           |
| О3   | 373(7)          | 801(11)         | 550(9)          | -66(8)          | -9(6)           | 74(7)           |

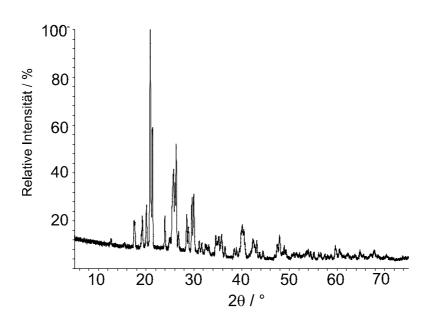
 $Tab.\ 5.6-7:\ Parameter\ der\ Kristallstrukturbestimmung\ von\ [(NH_2)_3]PNP(NH_2)_3][CH_3C_6H_4SO_3].$ 

| Formel                                        | [(NH2)3PNP(NH2)3][CH3C6H5SO3]                            |
|-----------------------------------------------|----------------------------------------------------------|
| Molmasse / g⋅mol <sup>-1</sup>                | 343,3                                                    |
| Kristallsystem                                | monoklin                                                 |
| Raumgruppe                                    | <i>P</i> 2₁/c (Nr. 14)                                   |
| Diffraktometer                                | Siemens P4                                               |
| Strahlung                                     | $Mo_{K\alpha}$ (Graphit-Monochromator)                   |
| Kristallgröße / mm³                           | $0,12 \times 1,20 \times 0,18$                           |
| Meßtemperatur / K                             | 296(2)                                                   |
| Gitterkonstanten / pm, °                      | a = 804,1(1)                                             |
|                                               | b = 596,1(1)                                             |
|                                               | c = 3218,7(3)                                            |
|                                               | $\beta = 94,59(1)$                                       |
| Zellvolumen / 10 <sup>6</sup> pm <sup>3</sup> | 1538,0(2)                                                |
| Z                                             | 4                                                        |
| Röntgenogr. Dichte / g⋅cm <sup>-3</sup>       | 1,483                                                    |
| F(000)                                        | 720                                                      |
| Absorptionskoeffizient / mm <sup>-1</sup>     | 0,437                                                    |
| Meßbereich                                    | $3^{\circ} \le 2\theta \le 60^{\circ}$                   |
| Indexbereich                                  | $-11 \le h \le 11, -8 \le k \le 8, -45 \le l \le 45$     |
| Gemessene Oktanten                            | $hkl, hk\bar{l}, \bar{h}\bar{k}l, \bar{h}\bar{k}\bar{l}$ |
| Scan-Modus                                    | $\omega$ -Scan                                           |
| Gemessene Reflexe                             | 9508                                                     |
| Symmetrieunabhängige Reflexe                  | 4483 ( $R_{int} = 0.036$ )                               |
| Beobachtete Reflexe                           | 2913 $(F_o^2 > 2.0 \sigma(F_o^2))$                       |
| Korrekturen                                   | Lorentz, Polarisation, Extinktion,                       |
|                                               | Absorption                                               |
| Absorptionskorrektur                          | $\Psi$ –Scans                                            |
| Min. und max. Transmissionsfaktor             | 0,257; 0,270                                             |
| Extinktionskoeffizient χ                      | 0,009(2)                                                 |
| Verfeinerte Parameter                         | 182                                                      |
| Min. und max. Restelektronendichte / e·Å-3    | -0,512; 0,658                                            |
| GOF                                           | 1,037                                                    |
| R – Werte <sup>a</sup>                        | R1 = 0,052                                               |
|                                               | wR2 = 0,136                                              |

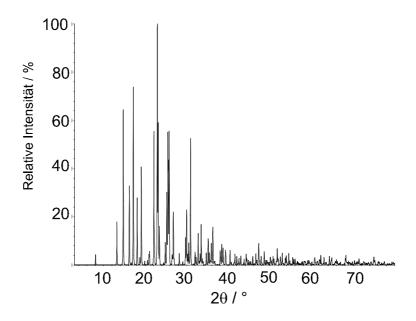
<sup>&</sup>lt;sup>a</sup> w<sup>-1</sup> = s<sup>2</sup>(F<sub>o</sub><sup>2</sup>) + (0,0933 P)<sup>2</sup> + 0,0060 P mit P = (F<sub>o</sub><sup>2</sup> + 2 F<sub>c</sub><sup>2</sup>)/3

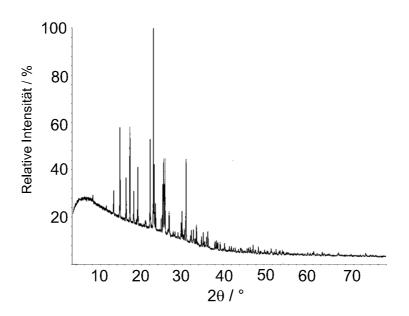
Tab. 5.6-8: Verfeinerte Ortsparameter und isotrope äquivalente Auslenkungsparameter  $U_{eq}$  / pm $^2$  der Atome in [(NH<sub>2</sub>)<sub>3</sub>PNP(NH<sub>2</sub>)<sub>3</sub>][CH<sub>3</sub>C<sub>6</sub>H<sub>4</sub>SO<sub>3</sub>].  $U_{eq}$  ist definiert als ein Drittel der Spur des orthogonalisierten Tensors  $U_{ij}$  (Standardabweichungen in Klammern).


|                  | ,         |             |            |          |
|------------------|-----------|-------------|------------|----------|
| Atom             | х         | у           | Z          | $U_{eq}$ |
| S                | 0,5082(1) | -0,2138(2)  | 0,1194(1)  | 399(2)   |
| P1               | 0,9971(1) | 0,2129(2)   | 0,0916(1)  | 325(2)   |
| P2               | 0,7746(1) | 0,2117(2)   | 0,0168(2)  | 303(2)   |
| N1               | 0,7597(3) | -0,0536(4)  | 0,0065(1)  | 443(5)   |
| N2               | 0,5954(3) | 0,2578(4)   | 0,0360(1)  | 441(5)   |
| N3               | 0,7786(4) | 0,3734(5)   | -0,0232(1) | 625(8)   |
| N4               | 0,9749(3) | -0,0488(4)  | 0,1036(9)  | 550(6)   |
| N5               | 0,8958(3) | 0,3808(5)   | 0,1201(1)  | 540(6)   |
| N6               | 0,1923(3) | 0,2605(4)   | 0,1050(1)  | 495(6)   |
| N7               | 0,9422(2) | 0,2697(4)   | 0,0443(1)  | 360(5)   |
| 01               | 0,5247(3) | 0,0265(3)   | 0,1170(1)  | 572(6)   |
| 02               | 0,3347(3) | -0,2803(4)  | 0,1171(1)  | 673(7)   |
| <b>)</b> 3       | 0,6022(4) | -0,3281(5)  | 0,0895(1)  | 769(8)   |
| C1               | 0,5954(3) | -0,2966(4)  | 0,1693(1)  | 376(5)   |
| C2               | 0,5573(4) | -0,5022(5)  | 0,1851(1)  | 544(7)   |
| C3               | 0,6271(5) | -0,5661(6)  | 0,2240(1)  | 638(9)   |
| C4               | 0,7340(4) | -0,4292(7)  | 0,2475(1)  | 625(9)   |
| C5               | 0,7719(5) | -0,2243(8)  | 0,2311(2)  | 810(13)  |
| C6               | 0,7037(4) | -0,1569(6)  | 0,1921(1)  | 645(9)   |
| C7               | 0,8048(6) | -0,4963(11) | 0,2910(2)  | 1069(18) |
| <del>1</del> 2   | 0,4850    | -0,5983     | 0,1697     | 500      |
| <del>-</del> 13  | 0,6006    | -0,7059     | 0,2345     | 500      |
| H5               | 0,8447    | -0,1288     | 0,2464     | 500      |
| H6               | 0,7312    | -0,0179     | 0,1815     | 500      |
| H7A              | 0,8762    | -0,3791     | 0,3025     | 500      |
| H7B              | 0,8678    | -0,6324     | 0,2894     | 500      |
| H7C              | 0,7150    | -0,5196     | 0,3084     | 500      |
| <del>-</del>  11 | 0,8480    | -0,1286     | -0,0052    | 500      |
| <del>1</del> 12  | 0,6623    | -0,1023     | -0,0005    | 500      |
| <del>-</del> 121 | 0,5838    | 0,4181      | 0,0418     | 500      |
|                  |           |             |            |          |

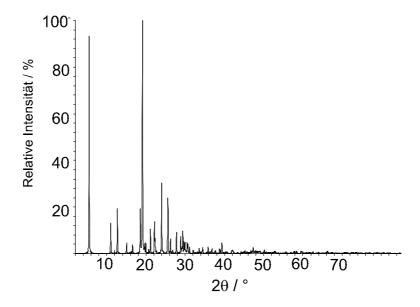

Tab. 5.6-8 (Fortsetzung):

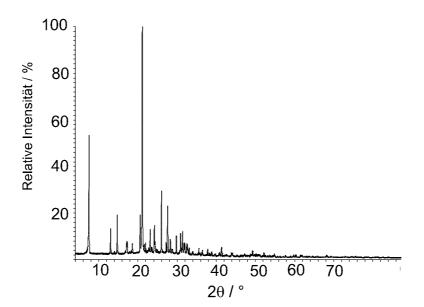
| H22 | 0,5817 | 0,1529  | 0,0578  | 500 |
|-----|--------|---------|---------|-----|
| H31 | 0,7084 | 0,3611  | -0,0453 | 500 |
| H32 | 0,8798 | 0,4449  | -0,0242 | 500 |
| H41 | 0,0741 | -0,1354 | 0,1097  | 500 |
| H42 | 0,8888 | -0,1176 | 0,0897  | 500 |
| H51 | 0,9245 | 0,3840  | 0,1476  | 500 |
| H52 | 0,8052 | 0,4537  | 0,1112  | 500 |
| H61 | 0,2272 | 0,4161  | 0,1096  | 500 |
| H62 | 0,2582 | 0,1467  | 0,1057  | 500 |


Tab. 5.6-9: Verfeinerte anisotrope Auslenkungskoeffizienten / pm² in [(NH<sub>2</sub>)<sub>3</sub>PNP(NH<sub>2</sub>)<sub>3</sub>][CH<sub>3</sub>C<sub>6</sub>H<sub>4</sub>SO<sub>3</sub>]. Der Exponent des anisotropen Auslenkungsfaktors hat die Form: [- $2\pi^2$ (U<sub>11</sub>h<sup>2</sup>a\*²+...+2U<sub>13</sub>hla\*c\*)].


| Atom | U <sub>11</sub> | U <sub>22</sub> | U <sub>33</sub> | U <sub>23</sub> | U <sub>13</sub> | U <sub>12</sub> |
|------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|      | 460(4)          | 374(3)          | 349(3)          | -31(2)          | -45(2)          | 80(3)           |
| P1   | 285(3)          | 354(3)          | 332(3)          | 47(2)           | -5(2)           | 22(2)           |
| P2   | 281(3)          | 336(3)          | 293(3)          | -13(2)          | 20(2)           | -10(2)          |
| N1   | 372(11)         | 366(11)         | 596(14)         | -116(10)        | 65(10)          | -41(9)          |
| N2   | 333(11)         | 523(14)         | 470(12)         | -73(10)         | 53(9)           | 38(10)          |
| N3   | 711(17)         | 778(19)         | 351(11)         | 161(12)         | -172(11)        | -330(15)        |
| N4   | 570(15)         | 399(13)         | 670(16)         | 162(12)         | -26(12)         | 6(11)           |
| N5   | 538(14)         | 652(16)         | 425(12)         | -60(12)         | 9(10)           | 207(13)         |
| N6   | 311(11)         | 556(15)         | 596(14)         | 70(11)          | -106(10)        | 42(10)          |
| N7   | 286(9)          | 435(12)         | 350(10)         | 65(9)           | -28(8)          | -49(9)          |
| O1   | 711(14)         | 401(11)         | 601(12)         | 49(10)          | 25(11)          | 42(10)          |
| O2   | 519(13)         | 717(15)         | 733(15)         | 90(12)          | -260(11)        | -81(11)         |
| O3   | 1090(20)        | 840(17)         | 370(10)         | -109(11)        | 4(12)           | 494(16)         |
| C1   | 348(12)         | 443(13)         | 333(11)         | -52(10)         | -3(9)           | 1(11)           |
| C2   | 654(19)         | 499(16)         | 461(15)         | 33(13)          | -68(14)         | -64(15)         |
| C3   | 750(20)         | 670(20)         | 486(16)         | 138(15)         | 6(16)           | 60(18)          |
| C4   | 471(16)         | 1040(30)        | 356(14)         | 50(17)          | 14(12)          | 107(18)         |
| C5   | 660(20)         | 1280(40)        | 455(17)         | -50(20)         | -153(16)        | -360(20)        |
| C6   | 700(20)         | 770(20)         | 447(15)         | 10(16)          | -103(15)        | -333(18)        |
| C7   | 830(30)         | 1950(50)        | 399(17)         | 190(30)         | -112(18)        | 120(30)         |







 $Abb.\ 5.6-1: Be rechnetes\ (oben)\ und\ gemessenes\ (unten)\ Pulverdiffraktogramm\ von\ [(NH_2)_3] Br.$ 





 $Abb.\ 5.6-2:\ Berechnetes\ (oben)\ und\ gemessenes\ (unten)\ Pulverdiffraktogramm\ von\ [(NH_2)_3]PNP(NH_2)_3][NO_3].$ 





 $Abb.\ 5.6-3:\ Berechnetes\ (oben)\ und\ gemessenes\ (unten)\ Pulverdiffraktogramm\ von\ [(NH_2)_3]PNP(NH_2)_3][CH_3C_6H_4SO_3].$ 

#### 5.7 Strukturbeschreibung und Diskussion

Die Verbindungen  $[(NH_2)_3PNP(NH_2)_3]Br$ ,  $[(NH_2)_3PNP(NH_2)_3][NO_3]$  und  $[(NH_2)_3PNP(NH_2)_3][CH_3C_6H_4SO_3]$  sind aus diskreten  $[(NH_2)_3PNP(NH_2)_3]^+$ -Ionen und den jeweils zugehörigen Anionen  $Br^-$ ,  $[NO_3]^-$  bzw.  $[CH_3C_6H_4SO_3]^-$  aufgebaut. Der P-N-P-Winkel in den Kationen entspricht mit 134° für  $[(NH_2)_3PNP(NH_2)_3]Br$  ( $[(NH_2)_3PNP(NH_2)_3][NO_3]$ : 129°;  $[(NH_2)_3PNP(NH_2)_3][CH_3C_6H_4SO_3]$ : 130°) annähernd den entsprechenden Werten in  $[(NH_2)_3PNP(NH_2)_3]CI$  (133°) (Tab. 5.7-1). Bei der Variation der N-P-N-Winkel findet man eine ähnliche Situation wie im Kation von  $[(NH_2)_3PNP(NH_2)_3]CI$ . Zwei N-P-N-Winkel sind aufgeweitet, drei weitere gestaucht und der verbleibende entspricht etwa dem idealen Tetraederwinkel (Tab. 5.7-1). Die Geometrie der  $PN_4$ -Tetraeder in  $[(NH_2)_3PNP(NH_2)_3]^+$ -Ionen wird offenbar von intrinsischen elektronischen Effekten gesteuert.

Wie im 1,1,1,3,3,3-Hexaamino- $1\lambda^5$ ,  $3\lambda^5$ -diphosphazenium-lon von [(NH<sub>2</sub>)<sub>3</sub>PNP(NH<sub>2</sub>)<sub>3</sub>]Cl sind in [(NH<sub>2</sub>)<sub>3</sub>PNP(NH<sub>2</sub>)<sub>3</sub>]Br je drei NH<sub>2</sub>-Gruppen der zwei PN<sub>4</sub>-Tetraeder gestaffelt (staggered) zueinander angeordnet (Abb. 5.7-1, Tab. 5.7-2). Demgegenüber werden überraschenderweise in [(NH<sub>2</sub>)<sub>3</sub>PNP(NH<sub>2</sub>)<sub>3</sub>][NO<sub>3</sub>] und [(NH<sub>2</sub>)<sub>3</sub>PNP(NH<sub>2</sub>)<sub>3</sub>][CH<sub>3</sub>C<sub>6</sub>H<sub>4</sub>SO<sub>3</sub>] andere Konformationen bevorzugt. Die PN<sub>4</sub>-Tetraeder von [(NH<sub>2</sub>)<sub>3</sub>PNP(NH<sub>2</sub>)<sub>3</sub>][NO<sub>3</sub>] stehen nahezu ekliptisch zueinander, während die PN₄-Tetraeder in  $[(NH_2)_3PNP(NH_2)_3][CH_3C_6H_4SO_3]$ gauche-Stellung in angeordnet sind (Abb. 5.7-1, Die Konformation beiden PN₄-Tetraeder der zueinander [(NH<sub>2</sub>)<sub>3</sub>PNP(NH<sub>2</sub>)<sub>3</sub>]<sup>+</sup>-Ionen also offenbar durch Packungseffekte beeinflußt. Dies wurde durch Extended-Hückel-Rechnungen mit Hilfe des Programms WinCACAO<sup>[83]</sup> [(NH<sub>2</sub>)<sub>3</sub>PNP(NH<sub>2</sub>)<sub>3</sub>]<sup>+</sup>-lon bestätigt. Es wurden keine nennenswerten Energiebarrieren zwischen den verschiedenen Konformationen festgestellt.

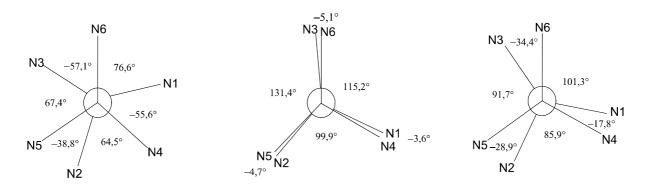



Abb. 5.7-1: Die Konformationen der  $[(NH_2)_3PNP(NH_2)_3]^+$ -Ionen in  $[(NH_2)_3PNP(NH_2)_3]Br$ ,  $[(NH_2)_3PNP(NH_2)_3][NO_3]$  und  $[(NH_2)_3PNP(NH_2)_3][CH_3C_6H_4SO_3]$ : Newman-Projektionen sowie die zugehörigen N-P1-P2-N-Torsionswinkel. Wird N-P1 durch Rechtsdrehung in P2-N überführt, ist der Wert positiv definiert.

Die P-N-Bindungslängen in den P-N-P-Brücken ([(NH<sub>2</sub>)<sub>3</sub>PNP(NH<sub>2</sub>)<sub>3</sub>]Br: 158, 159 pm; [(NH<sub>2</sub>)<sub>3</sub>PNP(NH<sub>2</sub>)<sub>3</sub>][NO<sub>3</sub>]:  $2\times$  158 pm; [(NH<sub>2</sub>)<sub>3</sub>PNP(NH<sub>2</sub>)<sub>3</sub>][CH<sub>3</sub>C<sub>6</sub>H<sub>4</sub>SO<sub>3</sub>]:  $2\times$  158 pm) sind nahezu identisch. Die P-NH<sub>2</sub>-Bindungslängen liegen im üblichen Bereich, sind jedoch deutlich kürzer als für eine P-N-Einfachbindung zu erwarten (177 pm). Mit dieser Bindungsverkürzung geht bei jedem der Hexaaminodiphosphazenium-Salze (Tab. 5.7-1) ebenso wie in den [P(NH<sub>2</sub>)<sub>4</sub>]<sup>+</sup>-Salzen eine Planarisierung an den NH<sub>2</sub>-Gruppen einher. Die Winkelsummen an jeweils fünf Amino-N-Atomen entsprechen mit Werten zwischen 346 und 359° einer weitgehend planaren Konformation der entsprechenden P-NH<sub>2</sub>-Gruppen. Jeweils eine der P-NH<sub>2</sub>-Gruppen der [(NH<sub>2</sub>)<sub>3</sub>PNP(NH<sub>2</sub>)<sub>3</sub>]<sup>+</sup>-Ionen weist eine pyramidale Konformation auf (Winkelsummen an N: 335 – 338°).

 $[(NH_2)_3PNP(NH_2)_3]Br$  kristallisiert isotyp zu  $[(NH_2)_3PNP(NH_2)_3]CI$ . Die Br-Ionen bilden Doppelschichten parallel zur ab-Ebene, in denen die Br-Ionen entlang [010] zick-zack-artig angeordnet sind. Zwischen diesen Ketten befinden sich Paare von  $[(NH_2)_3PNP(NH_2)_3]^+$ -Ionen (Abb. 5.7-2). Eine ähnliche Packung von Kationen und Anionen existiert auch in  $[(NH_2)_3PNP(NH_2)_3][CH_3C_6H_4SO_3]$  (Abb. 5.7-3). Doppelschichten von Anionen mit eingelagerten Kationen-Paaren liegen auch in  $[(NH_2)_3PNP(NH_2)_3][NO_3]$  vor (Abb. 5.7-4). Durch die Stapelung der  $NO_3$ -Ionen entlang [010] wird die zick-zack-artige Anordung der Anionen entlang [100] in  $[(NH_2)_3PNP(NH_2)_3][NO_3]$  dagegen weitgehend aufgehoben.

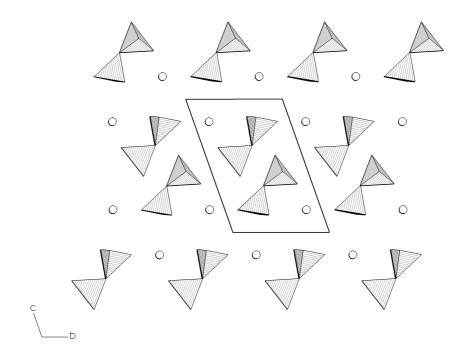
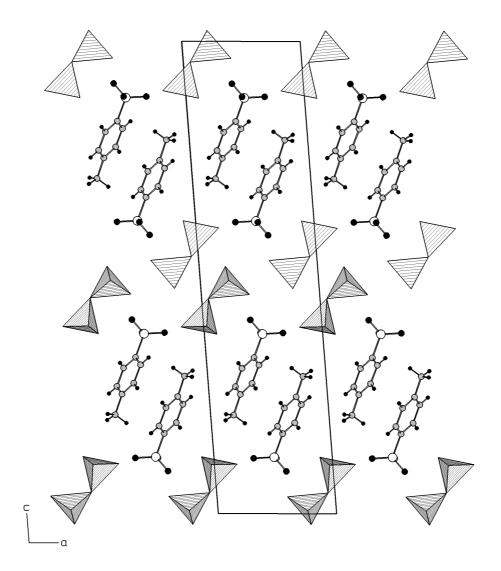




Abb. 5.7-2: Packung von Kationen und Anionen in der Kristallstruktur von [(NH<sub>2</sub>)<sub>3</sub>PNP(NH<sub>2</sub>)<sub>3</sub>]Br, Blick entlang [100].



 $Abb.\ 5.7-3: Packung\ von\ Kationen\ und\ Anionen\ in\ der\ Kristallstruktur\ von\ [(NH_2)_3PNP(NH_2)_3][CH_3C_6H_4SO_3],\ Blick\ entlang\ [010].$ 

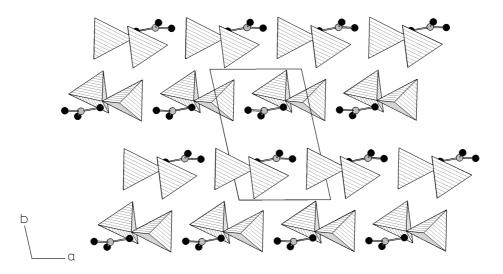



Abb. 5.7-4: Packung von Kationen und Anionen in der Kristallstruktur von  $[(NH_2)_3PNP(NH_2)_3][NO_3]$ , Blick entlang [001].

 $\label{eq:tab.solution} Tab.~5.7-1: \quad Bindungswinkel \ / \ ^\circ \quad und \quad Bindungslängen \ / \ pm \quad des \quad [(NH_2)_3PNP(NH_2)_3]^+-lons \quad in \quad [(NH_2)_3PNP(NH_2)_3]Br, \\ [(NH_2)_3PNP(NH_2)_3][NO_3] \ und \ [(NH_2)_3PNP(NH_2)_3][CH_3C_6H_4SO_3].$ 

|                   | $[(NH_2)_3PNP(NH_2)_3]Br$ | $[(NH_2)_3PNP(NH_2)_3][NO_3]$ | $[(NH_2)_3PNP(NH_2)_3][CH_3C_6H_4SO_3]$ |
|-------------------|---------------------------|-------------------------------|-----------------------------------------|
| P1-N4             | 162,6(4)                  | 163,3(2)                      | 162,1(2)                                |
| P1-N5             | 163,3(5)                  | 161,9(2)                      | 162,1(2)                                |
| P1-N6             | 161,7(4)                  | 163,6(2)                      | 162,0(2)                                |
| P1-N7             | 158,0(3)                  | 158,4(2)                      | 158,8(2)                                |
| P2-N1             | 161,8(5)                  | 163,7(2)                      | 161,9(2)                                |
| P2-N2             | 161,2(4)                  | 163,8(2)                      | 163,6(2)                                |
| P2-N3             | 162,0(4)                  | 163,0(2)                      | 161,2(2)                                |
| P2-N7             | 159,1(3)                  | 157,6(2)                      | 158,9(2)                                |
| N7-P1-N6          | 103,6(2)                  | 104,1(1)                      | 114,1(2)                                |
| N7-P1-N4          | 110,2(2)                  | 109,8(1)                      | 114,0(2)                                |
| N6-P1-N4          | 118,5(2)                  | 118,3(1)                      | 103,2(2)                                |
| N7-P1-N5          | 121,8(2)                  | 120,5(1)                      | 107,3(2)                                |
| N6-P1-N5          | 103,1(2)                  | 103,7(1)                      | 105,1(2)                                |
| N4-P1-N5          | 100,5(2)                  | 101,2(1)                      | 112,9(2)                                |
| N7-P2-N3          | 117,0(2)                  | 105,3(1)                      | 104,1(2)                                |
| N7-P2-N1          | 105,8(2)                  | 110,3(1)                      | 111,8(2)                                |
| N3-P2-N1          | 102,4(2)                  | 117,1(1)                      | 115,2(2)                                |
| N7-P2-N2          | 110,6(2)                  | 120,6(1)                      | 119,1(2)                                |
| N3-P2-N2          | 103,2(2)                  | 101,8(1)                      | 106,0(2)                                |
| N1-P2-N2          | 118,1(2)                  | 102,2(1)                      | 100,9(2)                                |
| P1-N7-P2          | 133,7(2)                  | 129,1(1)                      | 130,2(2)                                |
| Winkel-<br>summen | 335-359                   | 338-357                       | 337-359                                 |
| an N              |                           |                               |                                         |

Tab. 5.7-2: N-P1-P2-N-Torsionswinkel / ° in  $[(NH_2)_3PNP(NH_2)_3]Br$ ,  $[(NH_2)_3PNP(NH_2)_3][NO_3]$  und  $[(NH_2)_3PNP(NH_2)_3][CH_3C_6H_4SO_3]$ . Wird N-P1 durch Rechtsdrehung in P2-N überführt, ist der Winkel positiv definiert.

| Torsionswinkel | $[(NH_2)_3PNP(NH_2)_3]Br$ | [(NH <sub>2</sub> ) <sub>3</sub> PNP(NH <sub>2</sub> ) <sub>3</sub> ][NO <sub>3</sub> ] | $[(NH_2)_3PNP(NH_2)_3]$<br>$[CH_3C_6H_4SO_3]$ |
|----------------|---------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------|
| N4-P1-P2-N1    | -55,6                     | -3,6                                                                                    | -17,8                                         |
| N4-P1-P2-N2    | 64,6                      | 99,9                                                                                    | 85,9                                          |
| N5-P1-P2-N2    | -38,8                     | -4,7                                                                                    | -28,9                                         |
| N5-P1-P2-N3    | 67,4                      | 131,4                                                                                   | 91,7                                          |
| N6-P1-P2-N1    | 76,6                      | 115,2                                                                                   | 101,3                                         |
| N6-P1-P2-N3    | -57,1                     | -5,1                                                                                    | -34,4                                         |

Die beschriebenen Synthesen von  $[(NH_2)_3PNP(NH_2)_3]Br$ ,  $[(NH_2)_3PNP(NH_2)_3][NO_3]$  und  $[(NH_2)_3PNP(NH_2)_3][CH_3C_6H_4SO_3]$  zeigen, daß über Ionenaustausch in wäßriger Lösung ein einfacher Zugang zu Hexaaminodiphosphazenium-Salzen mit einem breiten Spektrum an Gegenionen möglich ist. Diese Verbindungen weisen gute Voraussetzungen als Einkomponentenvorläufer für kondensierte P-N-Verbindungen auf.

#### 6. Nitridophosphate durch Hochdruck-Hochtemperatur-Synthesen

### 6.1 Versuchssystematik bei den Hochdruckexperimenten

Zur Erarbeitung einer sinnvollen Systematik bei den Versuchsreihen lagen Tab. 2-1 und Tab. 2-2 als Schema zugrunde. Wie in Kap. 2 gezeigt, existieren bereits ternäre Phosphornitride, welche Elemente aus der 1. Gruppe des Periodensystems enthalten (z.B. LiPN $_2$ , K $_3$ P $_6$ N $_{11}$ , HP $_4$ N $_7$ ). Durch Umsetzung der jeweiligen Alkali- und Erdalkaliazide mit P $_3$ N $_5$  im entsprechenden molaren Verhältnis unter Hochdruckbedingungen wurde versucht, entsprechende Homologe dieser bekannten Nitridophosphate mit verschiedenen Metall-lonen darzustellen. So wurde beispielsweise durch die Reaktion von Alkaliaziden mit P $_3$ N $_5$  im molaren Verhältnis 3:4 versucht, die formalen Alkalisalze der bereits beschriebenen Verbindung HP $_4$ N $_7$  zu erhalten. Tab. 2-1 und Tab. 2-2 bieten auch Anhaltspunkte für Nitridophosphat-lonen neuer Zusammensetzung, wie etwa das hypothetische Polyanion [P $_5$ N $_9$ ] $^2$ . Daher wurde untersucht, ob bei solchen Zusammensetzungen P-N-Phasen existieren. Im folgenden soll im Detail beschrieben werden, welche neuen Alkali- und Erdalkali-nitridophosphate erhalten werden konnten.

# 6.2 Die Alkali-phosphor(V)-nitride NaP<sub>4</sub>N<sub>7</sub>, KP<sub>4</sub>N<sub>7</sub>, RbP<sub>4</sub>N<sub>7</sub> und CsP<sub>4</sub>N<sub>7</sub>

Die Existenz der Verbindung HP<sub>4</sub>N<sub>7</sub> legte nahe, nach den formalen Alkalisalzen dieser Phase zu suchen. Während keine Hinweise auf ein Nitridophosphat der Zusammensetzung LiP<sub>4</sub>N<sub>7</sub> gefunden wurden, konnten die Verbindungen NaP<sub>4</sub>N<sub>7</sub>, KP<sub>4</sub>N<sub>7</sub>, RbP<sub>4</sub>N<sub>7</sub> und CsP<sub>4</sub>N<sub>7</sub> mit der Hochdruck-Hochtemperatur-Synthese nahezu phasenrein erhalten werden. Die nachfolgend detailliert beschriebenen Experimente erwiesen sich als ausgezeichnet reproduzierbar.

#### 6.2.1 Synthese

Die Synthese der Nitridophosphate  $NaP_4N_7$ ,  $KP_4N_7$ ,  $RbP_4N_7$  und  $CsP_4N_7$  erfolgte durch Umsetzung von  $P_3N_5$  mit den entsprechenden Alkaliaziden im molaren Verhältnis 4:3 in einer Belt-Apparatur bei einem Druck von ca. 40 kbar und vermutlich 1200 - 1300 °C (Gl. 6.2.1-1). Bei den Versuchen mit dem Belt-Modul wurde aus der Eichkurve für die Temperatur zunächst eine deutlich höhere Synthesetemperatur von 1800 - 2000 °C ermittelt. Die Wiederholung der Versuche im Walker-Modul, in welchem die Temperatur wesentlich genauer gemessen werden kann, zeigte jedoch, daß sich die Verbindungen unter einem Druck von 40 kbar bereits ab ca. 1400 °C zersetzen. Daher muß die Synthesetemperatur bei den Versuchen im Belt-Modul deutlich geringer eingeschätzt werden, als aus der Eichkurve hervorgeht.

$$4 P_3 N_5 + 3 MN_3 \xrightarrow{1200 - 1300 \, ^{\circ}C, 15 \, \text{min}}$$
  $\rightarrow$   $3 MP_4 N_7 + 4N_2 (M = Na-Cs) Gl. 6.2.1-1$ 

Die feinpulverisierten und innig vermengten Edukte (Einwaage  $P_3N_5$ : je 65,2 mg,  $NaN_3$ : 19,5 mg,  $KN_3$ : 24,3 mg,  $RbN_3$ : 38,2 mg,  $CsN_3$ : 52,4 mg) wurden in einem Belt-Modul (genaue Versuchsanordnung siehe Kap. II. 1.3.2) in 30 s unter einen Druck von ca. 40 kbar gesetzt und anschließend in der gleichen Zeit auf die Reaktionstemperatur von vermutlich ca. 1200 – 1300 °C gebracht. Die Probe wurde für 15 min unter diesen Bedingungen gehalten und anschließend auf Raumtemperatur abgeschreckt. Nach dem Entspannen (Dauer: 10 s) und dem Entfernen des BN-Tiegels wurden  $NaP_4N_7$ ,  $KP_4N_7$ ,  $RbP_4N_7$  und  $CsP_4N_7$  nahezu phasenrein als luftstabile weiße Pulver erhalten.

#### 6.2.2 Strukturaufklärung

Die Aufklärung der Kristallstruktur von NaP<sub>4</sub>N<sub>7</sub>, KP<sub>4</sub>N<sub>7</sub>, RbP<sub>4</sub>N<sub>7</sub> und CsP<sub>4</sub>N<sub>7</sub> wurde auf der Basis von Pulver-Röntgenbeugungsdaten durch Frau Elisabeth Irran vorgenommen. Die Pulverdiffraktogramme wurden mit einem konventionellen Transmissions-Pulverdiffraktometer in Debye-Scherrer-Geometrie aufgenommen. NaP<sub>4</sub>N<sub>7</sub>, KP<sub>4</sub>N<sub>7</sub> und RbP<sub>4</sub>N<sub>7</sub> wurden mit Cu<sub>κα</sub> <sub>τ</sub>-Strahlung, CsP<sub>4</sub>N<sub>7</sub> wegen seines höheren  $Mo_{K\alpha l}$  -Strahlung Absorptionskoeffizienten mit untersucht. Die Indizierung Diffraktogramme erfolgte mit dem Programm VISSER. [41] Die Pulverdiffraktogramme wurden im Fall von NaP<sub>4</sub>N<sub>7</sub> monoklin, bei KP<sub>4</sub>N<sub>7</sub>, RbP<sub>4</sub>N<sub>7</sub> und CsP<sub>4</sub>N<sub>7</sub> dagegen orthorhombisch indiziert. Aufgrund der Ähnlichkeit der Diffraktogramme und der ermittelten Gitterkonstanten von KP<sub>4</sub>N<sub>7</sub>, RbP<sub>4</sub>N<sub>7</sub> und CsP<sub>4</sub>N<sub>7</sub> war die Isotypie dieser Verbindungen zu vermuten. Aus den systematischen Auslöschungsbedingungen ergaben sich für NaP<sub>4</sub>N<sub>7</sub> die möglichen Raumgruppen Cc und C2/c, während für KP<sub>4</sub>N<sub>7</sub>, RbP<sub>4</sub>N<sub>7</sub> und CsP<sub>4</sub>N<sub>7</sub> die Raumgruppen Pn2<sub>1</sub>a und Pnma in Frage kamen. Die integrierten Intensitäten von NaP<sub>4</sub>N<sub>7</sub> und RbP<sub>4</sub>N<sub>7</sub> wurden mit dem Programm EXPO<sup>[43]</sup> extrahiert und unter Verwendung Direkter Methoden die Positionen aller Alkali-, P- und N-Atome ermittelt. Die Rietveld-Verfeinerung der erhaltenen Kristallstrukturdaten erfolgte mit dem Programm GSAS.[44] Dabei wurden Skalierungsfaktor, Gitterkonstanten, Nullpunktsverschiebung und Untergrund verfeinert. Die Profilform der Beugungsreflexe wurde durch eine Pseudo-Voigt-Funktion angeglichen [85] und ihre Asymmetrie korrigiert. [86] Bei der Verfeinerung der Struktur von NaP<sub>4</sub>N<sub>7</sub> wurde ein Restraint für den Abstand zwischen den Atomen P1 und N4 (Startwert 170 pm) eingeführt, alle anderen Atomparameter wurden frei verfeinert. Die Temperaturfaktoren der Alkaliatome sowie der P-Atome wurden frei verfeinert. Die Temperaturfaktoren der N-Atome wurden hingegen für NaP<sub>4</sub>N<sub>7</sub> und RbP<sub>4</sub>N<sub>7</sub> voneinander abhängig, sonst ebenfalls frei verfeinert. Im Falle der Verbindungen NaP<sub>4</sub>N<sub>7</sub> und RbP<sub>4</sub>N<sub>7</sub> wurde hexagonales Bornitrid, welches mit einem molaren Anteil von ca. 5 % als Verunreinigung vorlag, als zweite Phase verfeinert. Die Parameter der Messungen sowie der Kristallstrukturbestimmung und -verfeinerung sind in Tab. 6.2.2-1 bis Tab. 6.2.2-6 wiedergegeben. Die aus der Rietveld-Verfeinerung erhaltenen Differenzdiffraktogramme sind in Abb. 6.2.2-1 bis Abb. 6.2.2-4 wiedergegeben.

Tab. 6.2.2-1: Parameter der Kristallstrukturbestimmung und Ergebnis der Rietveldverfeinerung von  $NaP_4N_7$ ,  $KP_4N_7$ ,  $RbP_4N_7$  und  $CsP_4N_7$ , Standardabweichungen in runden Klammern.

| Formel                                    | NaP <sub>4</sub> N <sub>7</sub> | KP <sub>4</sub> N <sub>7</sub> | RbP <sub>4</sub> N <sub>7</sub> | CsP <sub>4</sub> N <sub>7</sub> |
|-------------------------------------------|---------------------------------|--------------------------------|---------------------------------|---------------------------------|
| Molmasse / g⋅mol <sup>-1</sup>            | 244,88                          | 261,04                         | 307,42                          | 354,79                          |
| Kristallsystem                            | monoklin                        | orthorhomb.                    | orthorhomb.                     | orthorhomb.                     |
| Raumgruppe                                | C2/c (Nr. 15)                   | <i>Pnma</i> (Nr. 62)           | <i>Pnma</i> (Nr. 62)            | <i>Pnma</i> (Nr. 62)            |
| Diffraktometer                            | Stoe STADI P                    | Stoe STADI P                   | Stoe STADI P                    | Stoe STADI P                    |
| $\lambda$ / pm                            | 154,05 Cu <sub>κα 1</sub>       | 154,05 Cu <sub>κα 1</sub>      | 154,05 Cu <sub>κα 1</sub>       | 70,93 Mo <sub>κα 1</sub>        |
| T/°C                                      | 25(2)                           | 25(2)                          | 25(2)                           | 25(2)                           |
| Gitter-                                   | a = 1233,45(4)                  | a = 1222,72(2)                 | a = 1231,07(2)                  | a = 1242,91(3)                  |
| konstanten / pm, °                        | b = 852,30(3)                   | b = 984,25(2)                  | b = 989,46(1)                   | b = 997,63(3)                   |
|                                           | c = 513,97(1)                   | c = 466,24(1)                  | c = 468,44(1)                   | c = 471,33(2)                   |
|                                           | $\beta = 102,572(2)$            |                                |                                 |                                 |
| Volumen / 10 <sup>6</sup> pm <sup>3</sup> | 527,37(3)                       | 561,10(2)                      | 570,60(1)                       | 584,43(3)                       |
| Z                                         | 4                               | 4                              | 4                               | 4                               |
| Meßbereich / °                            | $10 \leq 2\theta \leq 120$      | $5 \leq 2\theta \leq 85$       | $5 \leq 2\theta \leq 120$       | $5 \leq 2\theta \leq 60$        |
| Datenpunkte                               | 11000                           | 8800                           | 11500                           | 5500                            |
| Beob. Reflexe                             | 389                             | 212                            | 452                             | 894                             |
| Atomparameter                             | 17                              | 19                             | 19                              | 19                              |
| Profilparameter                           | 7                               | 7                              | 7                               | 7                               |
| Untergrundparam.                          | 5                               | 3                              | 3                               | 4                               |
| $R_p$                                     | 0,0772                          | 0,0865                         | 0,0350                          | 0,0524                          |
| $wR_p$                                    | 0,1077                          | 0,1113                         | 0,0462                          | 0,0646                          |
| $R_{F}$                                   | 0,0718                          | 0,0821                         | 0,0589                          | 0,0494                          |

Tabelle 6.2.2-2: Atomkoordinaten und isotrope Auslenkungsparameter  $U_{iso}$  / pm $^2$  von NaP $_4$ N $_7$ , Standardabweichungen in runden Klammern. Die Auslenkungsparameter für N wurden abhängig voneinander verfeinert.

| Atom | Wyckoff- | X         | У         | z         | $U_iso$ |
|------|----------|-----------|-----------|-----------|---------|
|      | Position |           |           |           |         |
| Na   | 4e       | 0         | 0,2112(7) | 1/4       | 435(23) |
| P1   | 8f       | 0,3301(2) | 0,4261(4) | 0,1972(6) | 83(10)  |
| P2   | 8f       | 0,3759(2) | 0,0781(4) | 0,2048(6) | 59(9)   |
| N1   | 4e       | 0         | 0,5218(2) | 1/4       | 64(13)  |
| N2   | 8f       | 0,1351(5) | 0,0503(8) | 0,073(2)  | 64(13)  |
| N3   | 8f       | 0,3600(5) | 0,247(1)  | 0,329(2)  | 64(13)  |
| N4   | 8f       | 0,1852(4) | 0,4485(8) | 0,116(2)  | 64(13)  |

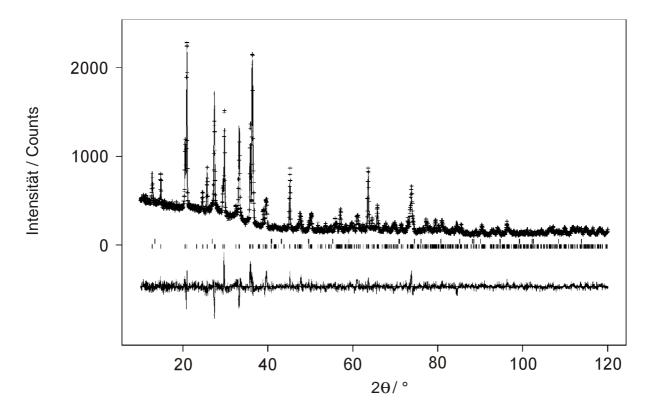



Abb. 6.2.2-1: Beobachtetes (Kreuze) und berechnetes (Linie) Röntgen-Pulverdiffraktogramm sowie Differenz-Profil der Rietveld-Verfeinerung von  $NaP_4N_7$ . Erlaubte Positionen der Reflexe sind durch senkrechte Striche (obere Reihe: BN, untere Reihe:  $NaP_4N_7$ ) gekennzeichnet. Das Diffraktogramm wurde mit einem konventionellen STOE Stadi P Pulverdiffraktometer erhalten ( $Cu_{Kr}$ ,  $\lambda$  = 154,05 pm).

Tab. 6.2.2-3: Atomkoordinaten und isotrope Auslenkungsparameter  $U_{iso}$  /  $pm^2$  von  $KP_4N_7$ ,  $RbP_4N_7$  und  $CsP_4N_7$ , Standardabweichungen in runden Klammern. Die Auslenkungsparameter für N wurden für  $RbP_4N_7$  abhängig voneinander verfeinert.

| Atom | Wyckoff- | х          | у          | Z          | U <sub>iso</sub> |
|------|----------|------------|------------|------------|------------------|
|      | Position |            |            |            |                  |
| K    | 4c       | 1/4        | 0,3505(3)  | 0,7610(9)  | 348(11)          |
| Rb   | 4c       | 1/4        | 0,3598(2)  | 0,7707(4)  | 88(3)            |
| Cs   | 4c       | 1/4        | 0,3565(3)  | 0,7735(4)  | 132(4)           |
| P1   | 8d       | 0,1298(2)  | 0,0989(3)  | 0,2862(6)  | 250(9)           |
|      | 8d       | 0,1300(2)  | 0,0887(2)  | 0,2858(5)  | 56(5)            |
|      | 8d       | 0,1289(2)  | 0,0891(4)  | 0,2824(11) | 112(9)           |
| P2   | 8d       | 0,0006(3)  | 0,3459(3)  | 0,2742(8)  | 287(9)           |
|      | 8d       | 0,0005(2)  | 0,3442(2)  | 0,2769(6)  | 110(5)           |
|      | 8d       | -0,0011(3) | 0,3446(4)  | 0,2747(11) | 90(9)            |
| N1   | 4c       | 1/4        | 0,1285(8)  | 0,2253(25) | 166(32)          |
|      | 4c       | 1/4        | 0,1289(2)  | 0,2111(2)  | 70(8)            |
|      | 4c       | 1/4        | 0,1165(13) | 0,216(4)   | 50(32)           |
| N2   | 8d       | 0,1045(4)  | 0,1256(7)  | 0,6197(12) | 239(26)          |
|      | 8d       | 0,1096(5)  | 0,1120(5)  | 0,6103(2)  | 70(8)            |
|      | 8d       | 0,1052(7)  | 0,1185(11) | 0,6116(17) | 163(29)          |
| N3   | 8d       | 0,1013(4)  | 0,4411(6)  | 0,3164(15) | 199(24)          |
|      | 8d       | 0,1048(5)  | 0,4361(5)  | 0,3124(2)  | 70(8)            |
|      | 8d       | 0,0929(7)  | 0,4403(10) | 0,3028(31) | 414(42)          |
| N4   | 8d       | 0,0463(5)  | 0,1982(7)  | 0,1157(16) | 402(28)          |
|      | 8d       | 0,0465(5)  | 0,2021(5)  | 0,1223(9)  | 70(8)            |
|      | 8d       | 0,0489(8)  | 0,1991(9)  | 0,1093(18) | 134(30)          |

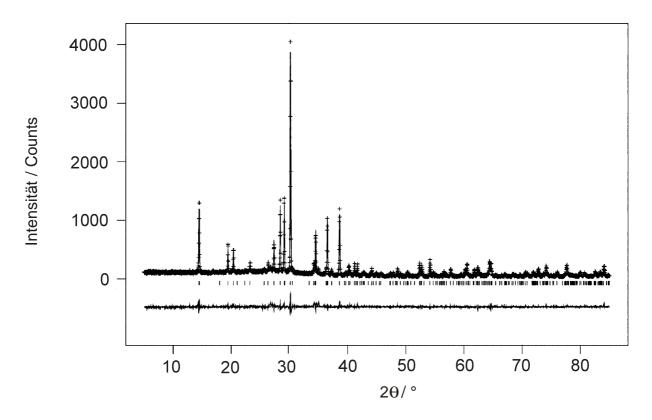



Abb. 6.2.2-2: Beobachtetes (Kreuze) und berechnetes (Linie) Röntgen-Pulverdiffraktogramm sowie Differenz-Profil der Rietveld-Verfeinerung von  $KP_4N_7$ . Erlaubte Positionen der Reflexe sind durch senkrechte Striche gekennzeichnet. Das Diffraktogramm wurde mit einem konventionellen STOE Stadi P Pulverdiffraktometer erhalten ( $Cu_{K\alpha}$ ,  $\lambda$  = 154,05 pm).

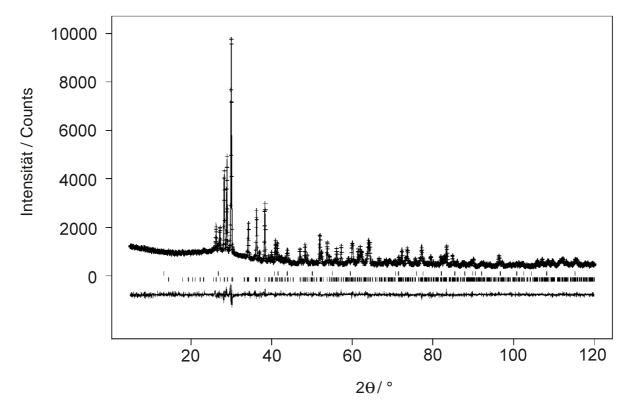



Abb. 6.2.2-3: Beobachtetes (Kreuze) und berechnetes (Linie) Röntgen-Pulverdiffraktogramm sowie Differenz-Profil der Rietveld-Verfeinerung von RbP $_4$ N $_7$ . Erlaubte Positionen der Reflexe sind durch senkrechte Striche gekennzeichnet (obere Reihe: BN, untere Reihe: RbP $_4$ N $_7$ . Das Diffraktogramm wurde mit einem konventionellen STOE Stadi P Pulverdiffraktometer erhalten (Cu $_{KC}$ ,  $\lambda$  = 154,05 pm).

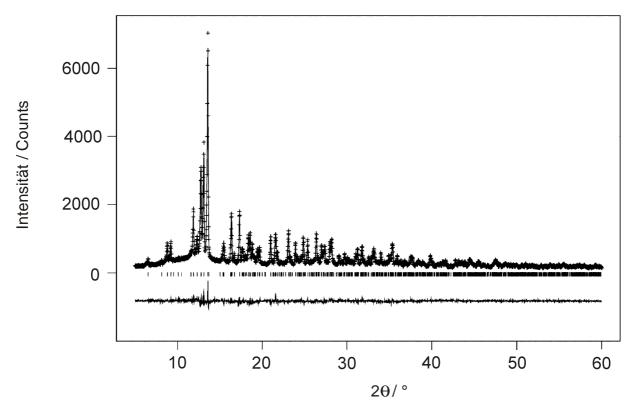



Abb. 6.2.2-4: Beobachtetes (Kreuze) und berechnetes (Linie) Röntgen-Pulverdiffraktogramm sowie Differenz-Profil der Rietveld-Verfeinerung von  $CsP_4N_7$ . Erlaubte Positionen der Reflexe sind durch senkrechte Striche gekennzeichnet. Das Diffraktogramm wurde mit einem konventionellen STOE Stadi P Pulverdiffraktometer erhalten ( $Mo_{K\alpha}$  1,  $\lambda$  = 7093 pm).

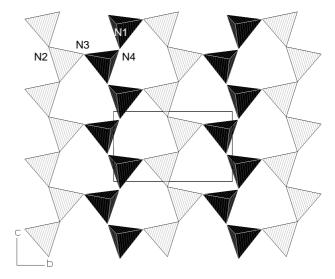
Tab. 6.2.2-4: Bindungslängen / pm und -winkel / ° in NaP $_4$ N $_7$ , Standardabweichungen in runden Klammern.

|                      | - Industry - Industry - Industry | mirtar 4117, Otandardab Wolondingon in Tanda |          |
|----------------------|----------------------------------|----------------------------------------------|----------|
| P1-N2 <sup>[2]</sup> | 157,4(6)                         | N2 <sup>[2]</sup> -P1-N2 <sup>[2]</sup>      | 120,0(3) |
| -N2 <sup>[2]</sup>   | 155,3(7)                         | N2 <sup>[2]</sup> -P1-N3 <sup>[2]</sup>      | 107,9(3) |
| -N3 <sup>[2]</sup>   | 167,8(8)                         | N2 <sup>[2]</sup> -P1-N4 <sup>[3]</sup>      | 101,7(4) |
| -N4 <sup>[3]</sup>   | 175,6(4)                         | N2 <sup>[2]</sup> -P1-N3 <sup>[2]</sup>      | 113,7(3) |
|                      |                                  | N2 <sup>[2]</sup> -P1-N4 <sup>[3]</sup>      | 103,8(4) |
|                      |                                  | N3 <sup>[2]</sup> -P1-N4 <sup>[3]</sup>      | 108,5(3) |
| P2-N1 <sup>[2]</sup> | 157,3(4)                         | N1 <sup>[2]</sup> -P2-N3 <sup>[2]</sup>      | 114,5(4) |
| -N3 <sup>[2]</sup>   | , ,                              | N1 <sup>[2]</sup> -P2-N4 <sup>[3]</sup>      |          |
|                      | 160,6(9)                         |                                              | 104,5(4) |
| -N4 <sup>[3]</sup>   | 171,4(6)                         | N1 <sup>[2]</sup> -P2-N4 <sup>[3]</sup>      | 108,6(3) |
| -N4 <sup>[3]</sup>   | 167,3(7)                         | N3 <sup>[2]</sup> -P2-N4 <sup>[3]</sup>      | 104,9(4) |
|                      |                                  | N3 <sup>[2]</sup> -P2-N4 <sup>[3]</sup>      | 116,6(4) |
|                      |                                  | N4 <sup>[3]</sup> -P2-N4 <sup>[3]</sup>      | 106,6(3) |
| Na-N1 <sup>[2]</sup> | 265(2)                           | P2-N1 <sup>[2]</sup> -P2                     | 144,4(7) |
| -N2 <sup>[2]</sup>   | 247,9(8) 2x                      | P1-N2 <sup>[2]</sup> -P1                     | 132,4(5) |
| -N2 <sup>[2]</sup>   | 304,9(7) 2x                      | P1-N3 <sup>[2]</sup> -P2                     | 133,5(4) |
| -N3 <sup>[2]</sup>   | 248,1(6) 2x                      | P1-N4 <sup>[3]</sup> -P2                     | 119,1(4) |
|                      | ,                                | P1-N4 <sup>[3]</sup> -P2                     | 115,8(4) |
|                      |                                  | P2-N4 <sup>[3]</sup> -P2                     | 117,4(3) |
|                      |                                  |                                              |          |

Tab. 6.2.2-5: Bindungslängen / pm in  $KP_4N_7$ ,  $RbP_4N_7$  und  $CsP_4N_7$ , Standardabweichungen in runden Klammern. M = K, Rb, Cs.

|                      | KP₄N <sub>7</sub> | RbP₄N <sub>7</sub> | CsP <sub>4</sub> N <sub>7</sub> |
|----------------------|-------------------|--------------------|---------------------------------|
| M-N1 <sup>[2]</sup>  | 307,6(2)          | 302,9(8)           | 316(2)                          |
| -N3 <sup>[2]</sup>   | 289,8(7) 2x       | 291,6(6) 2x        | 307(2) 2x                       |
| -N3 <sup>[2]</sup>   | 328,8(7) 2x       | 321,1(2) 2x        | 327(2) 2x                       |
| -N2 <sup>[3]</sup>   | 299,0(7) 2x       | 302,8(5) 2x        | 307(1) 2x                       |
| -N2 <sup>[3]</sup>   | 320,7(7) 2x       | 313,3(5) 2x        | 321(3) 2x                       |
| -N4 <sup>[3]</sup>   | 334,4(6) 2x       | 334,9(5) 2x        | 334(3) 2x                       |
| -N1 <sup>[2]</sup>   | 332(1)            | 343,3(5)           | 348(2)                          |
| -N1 <sup>[2]</sup>   | 355(2)            | 354,2(5)           | 353(2)                          |
| -N1 <sup>[2]</sup>   | 364(2)            | 365,3(5)           | 353(2)                          |
| -N4 <sup>[3]</sup>   | 376,8(6) 2x       | 375,5(5) 2x        | 383(1) 2x                       |
| P1-N1 <sup>[2]</sup> | 154,2(4)          | 156,9(1)           | 156,2(5)                        |
| -N2 <sup>[2]</sup>   | 160,4(6)          | 160,3(4)           | 160,6(8)                        |
| -N3 <sup>[2]</sup>   | 158,9(6)          | 160,8(5)           | 160(2)                          |
| -N4 <sup>[3]</sup>   | 167,0(6)          | 170,4(5)           | 169,0(9)                        |
| P2-N2 <sup>[2]</sup> | 152,2(5)          | 160,1(4)           | 154,9(8)                        |
| -N3 <sup>[2]</sup>   | 155,9(5)          | 158,2(5)           | 151,5(9)                        |
| -N4 <sup>[3]</sup>   | 172,4(7)          | 168,0(5)           | 174(1)                          |
| -N4 <sup>[3]</sup>   | 174,7(7)          | 177,9(6)           | 176,1(9)                        |

 $Tab.\ 6.2.2-6:\ Bindungswinkel\ /\ ^{\circ}\ in\ KP_{4}N_{7},\ RbP_{4}N_{7}\ und\ CsP_{4}N_{7},\ Standard abweichungen\ in\ runden\ Klammern.$ 


|                                         | $KP_4N_7$ | RbP₄N <sub>7</sub> | CsP <sub>4</sub> N <sub>7</sub> |
|-----------------------------------------|-----------|--------------------|---------------------------------|
| N1 <sup>[2]</sup> -P1-N2 <sup>[2]</sup> | 109,0(5)  | 109,2(4)           | 109,8(8)                        |
| N1 <sup>[2]</sup> -P1-N3 <sup>[2]</sup> | 112,1(4)  | 110,8(4)           | 112,4(7)                        |
| N1 <sup>[2]</sup> -P1-N4 <sup>[3]</sup> | 110,1(5)  | 107,5(3)           | 110,9(7)                        |
| N2 <sup>[2]</sup> -P1-N4 <sup>[2]</sup> | 104,4(4)  | 104,5(3)           | 103,9(5)                        |
| N2 <sup>[2]</sup> -P1-N3 <sup>[2]</sup> | 113,0(4)  | 112,6(3)           | 111,1(7)                        |
| N3 <sup>[2]</sup> -P1-N4 <sup>[3]</sup> | 108,0(4)  | 111,9(3)           | 108,5(6)                        |
| N3 <sup>[2]</sup> -P2-N2 <sup>[2]</sup> | 125,3(4)  | 125,4(3)           | 122,6(6)                        |
| N4 <sup>[3]</sup> -P2-N2 <sup>[2]</sup> | 106,3(4)  | 108,4(3)           | 107,7(6)                        |
| N4 <sup>[3]</sup> -P2-N2 <sup>[2]</sup> | 102,4(4)  | 102,2(3)           | 102,9(5)                        |
| N4 <sup>[3]</sup> -P2-N3 <sup>[2]</sup> | 107,5(4)  | 108,5(4)           | 110,0(7)                        |
| N4 <sup>[3]</sup> -P2-N3 <sup>[2]</sup> | 107,1(4)  | 104,6(3)           | 106,6(6)                        |
| N4 <sup>[3]</sup> -P2-N4 <sup>[3]</sup> | 106,7(3)  | 106,6(2)           | 108,4(4)                        |
| P1-N1 <sup>[2]</sup> -P1                | 144,8(8)  | 140,5(6)           | 149,1(2)                        |
| P1-N2 <sup>[2]</sup> -P2                | 131,2(4)  | 128,3(3)           | 132,5(5)                        |
| P1-N3 <sup>[2]</sup> -P2                | 133,8(4)  | 131,8(4)           | 141,0(8)                        |
| P1-N4 <sup>[3]</sup> -P2                | 118,5(5)  | 115,8(3)           | 118,4(6)                        |
| P1-N4 <sup>[3]</sup> -P2                | 121,8(4)  | 124,1(4)           | 121,9(6)                        |
| P2-N4 <sup>[3]</sup> -P2                | 119,6(4)  | 119,9(4)           | 119,1(6)                        |

### 6.2.3 Strukturbeschreibung von NaP<sub>4</sub>N<sub>7</sub>, KP<sub>4</sub>N<sub>7</sub>, RbP<sub>4</sub>N<sub>7</sub> und CsP<sub>4</sub>N<sub>7</sub>

Im Festkörper bestehen NaP<sub>4</sub>N<sub>7</sub>, KP<sub>4</sub>N<sub>7</sub>, RbP<sub>4</sub>N<sub>7</sub> und CsP<sub>4</sub>N<sub>7</sub> aus dreidimensionalen Gerüsten eckenverknüpfter PN<sub>4</sub>-Tetraeder. In den Kanälen der P-N-Gerüste befinden sich die Alkali-Ionen. NaP<sub>4</sub>N<sub>7</sub> kristallisiert isotyp zu den Verbindungen M(M′)<sub>4</sub>O<sub>7</sub> (M = Ca, Sr; M ′= Al, Ga)<sup>[87-90]</sup>, während KP<sub>4</sub>N<sub>7</sub>, RbP<sub>4</sub>N<sub>7</sub> und CsP<sub>4</sub>N<sub>7</sub> isotyp zum Mineral Barylith BaBe<sub>2</sub>Si<sub>2</sub>O<sub>7</sub><sup>[91-93]</sup> kristallisieren. Dem molaren Verhältnis P : N = 4 : 7 entsprechend existieren sowohl N<sup>[2]</sup>-Nitridobrücken als auch N<sup>[3]</sup>-Nitridobrücken im molaren Verhältnis 5 : 2 (Machatschki-Formel:  $\frac{3}{\infty}$ [(P<sup>[4]</sup><sub>4</sub>N<sub>5</sub><sup>[2]</sup>N<sub>2</sub><sup>[3]</sup>)·]).

Die P-N-Gerüststruktur von NaP<sub>4</sub>N<sub>7</sub> kann in Schichten kondensierter  $P_6N_6$ -Sechserringe senkrecht zu [100] separiert werden. Diese Schichten sind aus kondensierten Zweierketten von PN<sub>4</sub>-Tetraedern entlang [001] aufgebaut. Die Tetraederspitzen in den Ketten zeigen jeweils abwechselnd nach [100] und [ $\overline{1}$ 00] (Abb. 6.2.3-1).

Abb. 6.2.3-1: Schicht von  $P_6N_6$ -Sechserringen in  $NaP_4N_7$ , Blick entlang [100]. Die  $PN_4$ -Tetraeder (helle bzw. schwarze geschlossene Polyeder) sind entlang [001] durch N2- bzw. N4-Atome über Ecken zu Ketten verknüpft. Die Verknüpfung der Ketten erfolgt über die Atome N3. Die hellen Tetraeder enthalten P1, die schwarzen Tetraeder P2 als Zentralatom.



Je zwei dieser Schichten bilden Doppelschichten parallel zu [100] (Abb.6.2.3-2). Das Atom N4 fungiert hierbei als Brückenatom. Die Verknüpfung dieser Doppelschichten über N1 führt zur Raumnetzstruktur. Zwischen den Doppelschichten existieren große Kanäle aus P<sub>8</sub>N<sub>8</sub>-Achterringen entlang [001], in welchen sich die Na<sup>+</sup>-Ionen befinden.

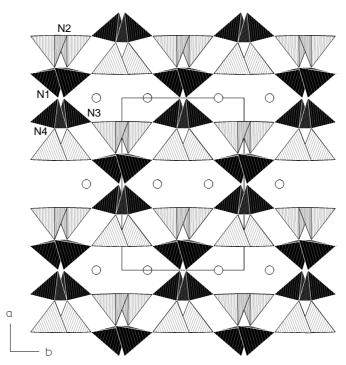



Abb. 6.2.3-2: Kristallstruktur von NaP<sub>4</sub>N<sub>7</sub>, Blick entlang [001]. Die PN<sub>4</sub>-Tetraeder sind als geschlossene Polyeder dargestellt. Die Na<sup>+</sup>-Ionen (weiße Kugeln) befinden sich in charakteristischen  $P_8N_8$ -Achterringen.

Die Kristallstruktur der isotypen Verbindungen  $KP_4N_7$ ,  $RbP_4N_7$  und  $CsP_4N_7$  kann als der Aristotyp des Minerals Barylith  $BaBe_2Si_2O_7$  angesehen werden. Die P-N-Gerüststruktur läßt sich senkrecht zu [010] in Schichten aus  $P_3N_3$ -Dreier- und  $P_4N_4$ -Viererringen separieren (Abb. 6.2.3-3).

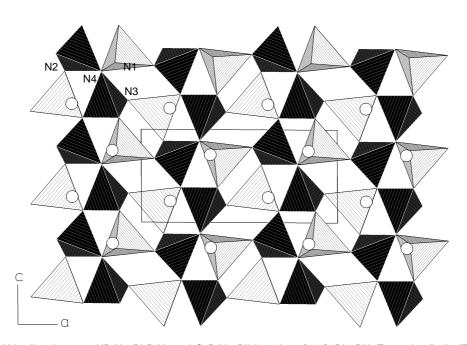



Abb. 6.2.3-3: Kristallstruktur von  $KP_4N_7$ ,  $RbP_4N_7$  und  $CsP_4N_7$ , Blick entlang [010]. Die  $PN_4$ -Tetraeder (helle (Zentralatom: P1) und schwarze (Zentralatom: P2) geschlossene Polyeder) bilden Schichten aus kondensierten  $P_3N_3$ -Dreier- und  $P_4N_4$ -Viererringen. Diese Schichten alternieren mit Schichten aus Alkali-Ionen.

Die Verknüpfung dieser Schichten zur Gerüststruktur erfolgt durch  $PN_4$ -Tetraederpaare (Abb. 6.2.3-4). Diese entsprechen den  $Si_2O_7$ -Tetraederdoppeln in  $BaBe_2Si_2O_7$ . Die Alkalilonen ( $K^+$ ,  $Rb^+$ ,  $Cs^+$ ) befinden sich in Kanälen aus  $P_6N_6$ -Sechserringen, die sowohl entlang [100] als auch [001] verlaufen. Die Sechserringe, welche senkrecht zu [100] stehen, sind in der bc-Ebene über Dreierringe verknüpft, während die Verknüpfung der Sechserringe, welche senkrecht zu [001] stehen, in der ab-Ebene über Viererringe erfolgt (Abb. 6.2.3-4 und Abb. 6.2.3-5).

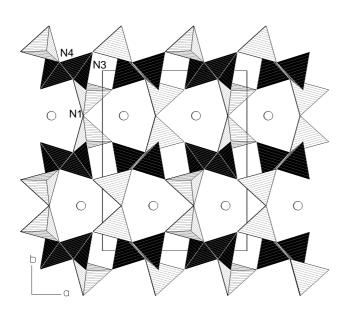



Abb. 6.2.3-4: Kristallstruktur von KP $_4$ N $_7$ , RbP $_4$ N $_7$  und CsP $_4$ N $_7$ , Blick entlang [001]. Entlang [001] existieren Kanäle aus P $_4$ N $_4$ -Vierer- und P $_6$ N $_6$ -Sechserringen. Die Alkali-Ionen (weiße Kugeln) befinden sich in den Kanälen aus P $_6$ N $_6$ -Sechserringen. Die PN $_4$ -Tetraeder mit den Zentralatomen P1 sind als helle, PN $_4$ -Tetraeder mit P2 als Zentralatom als schwarze geschlossene Polyeder dargestellt.

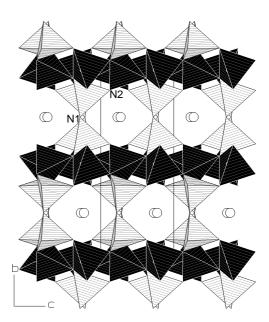



Abb. 6.2.3-5: Kristallstruktur von  $KP_4N_7$ ,  $RbP_4N_7$  und  $CsP_4N_7$ . Blick entlang [100]. Paare von  $PN_4$ -Tetraedern (helle, geschlossene Polyeder) verknüpfen Ketten aus  $PN_4$ -Tetraedern (schwarze, geschlossene Polyeder) zu einer Gerüststruktur. Kanäle aus  $P_6N_6$ -Sechserringen, welche die Alkali-Ionen enthalten, verlaufen entlang [100].


Die topologischen Unterschiede zwischen den Gerüststrukturen von  $NaP_4N_7$  und den Verbindungen  $KP_4N_7$ ,  $RbP_4N_7$  und  $CsP_4N_7$  können durch eine Analyse der Kreisklassespektren nach  $Klee^{[94\cdot97]}$  quantitativ belegt werden (Tab. 6.2.3-1). Die strukturellen Ähnlichkeiten zeigen sich durch die jeweils gleiche Zahl an  $P_3N_3$ -Dreier-,  $P_4N_4$ -Vierer- und  $P_5N_5$ -Fünferrringen pro Elementarzelle. Die unterschiedliche Zahl von  $P_6N_6$ -Sechserringen und allen weiteren höhergliedrigen Ringen dokumentieren die Unterschiede in der Topologie von  $NaP_4N_7$  gegenüber  $KP_4N_7$ ,  $RbP_4N_7$  und  $CsP_4N_7$ . Die Kreisklassespektren zeigen zudem den grundlegend unterschiedlichen strukturellen Aufbau dieser Alkalinitridophosphate gegenüber ihrer formalen Säure  $HP_4N_7^{[61]}$  (Tab. 6.2.3-1) und des zu  $HP_4N_7$  homöotypen

 $P_4N_6O^{[98]}$ . Die wesentlichen Unterschiede resultieren aus dem Auftreten von  $P_2N_2$ -Zweierringen (kantenverknüpfte  $PN_4$ -Tetraeder) in  $HP_4N_7$  und  $P_4N_6O$ . Solche Verknüpfungen gibt es in  $NaP_4N_7$ ,  $KP_4N_7$ ,  $RbP_4N_7$  und  $CsP_4N_7$  nicht. Dagegen existieren in  $NaP_4N_7$ ,  $KP_4N_7$ ,  $RbP_4N_7$  und  $CsP_4N_7$  und  $P_4N_6O$  nicht auftreten.

Tab. 6.2.3-1: Kreisklassespektren von  $HP_4N_7$ ,  $NaP_4N_7$ ,  $KP_4N_7$ ,  $RbP_4N_7$  und  $CsP_4N_7$ . Die Ringgröße n bezieht sich auf den Index n im  $P_nN_n$ -Ring.

| Ringgröße n                     | 2 | 3 | 4 | 5  | 6  | 7  | 8   |
|---------------------------------|---|---|---|----|----|----|-----|
| HP <sub>4</sub> N <sub>7</sub>  | 4 | 0 | 4 | 16 | 60 | 72 | 252 |
| NaP <sub>4</sub> N <sub>7</sub> | 0 | 4 | 4 | 8  | 28 | 48 | 148 |
| $MP_4N_7$ (M = K, Rb, Cs)       | 0 | 8 | 8 | 16 | 44 | 72 | 272 |

Die P-N-Bindungslängen in NaP $_4$ N $_7$ , KP $_4$ N $_7$ , RbP $_4$ N $_7$  und CsP $_4$ N $_7$  liegen für P-N $^{[2]}$  (NaP $_4$ N $_7$ : 155 pm < P-N $^{[2]}$  < 168 pm; KP $_4$ N $_7$ , RbP $_4$ N $_7$ , CsP $_4$ N $_7$ : 152 pm < P-N $^{[2]}$  < 161 pm) und P-N $^{[3]}$  (NaP $_4$ N $_7$ : 167 pm < P-N $^{[3]}$  < 175 pm; KP $_4$ N $_7$ , RbP $_4$ N $_7$ , CsP $_4$ N $_7$ : 167 pm < P-N $^{[3]}$  < 178 pm) im typischen Bereich. Erwartungsgemäß sind die P-N $^{[2]}$ -Abstände deutlich kleiner als die P-N $^{[3]}$ -Abstände. Die Bindungswinkel N-P-N variieren für NaP $_4$ N $_7$  zwischen 102 und 120° (KP $_4$ N $_7$ , RbP $_4$ N $_7$  und CsP $_4$ N $_7$ : 102-125°). Die Bindungswinkel P-N $^{[2]}$ -P variieren in NaP $_4$ N $_7$  zwischen 132 und 144°, während die entsprechenden Winkel bei KP $_4$ N $_7$ , RbP $_4$ N $_7$  und CsP $_4$ N $_7$  zwischen 128 und 149° liegen. Die Winkelsumme am N $^{[3]}$ -Atom beträgt für KP $_4$ N $_7$ , RbP $_4$ N $_7$  und CsP $_4$ N $_7$  annähernd 360°, während die entsprechende Winkelsumme für NaP $_4$ N $_7$  mit 352° etwas kleiner als der Idealwert ist.



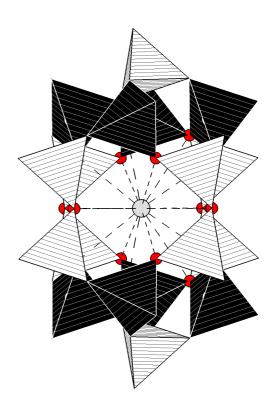



Abb. 6.2.3-6: Koordination der Na<sup>+</sup>-Ionen (hellgraue Kugeln) durch N-Atome (dunkelgraue Kugeln) in NaP<sub>4</sub>N<sub>7</sub>.

Abb. 6.2.3-7: Koordination von  $K^+$ ,  $Rb^+$  und  $Cs^+$  (hellgraue Kugeln) durch N-Atome (dunkelgraue Kugeln) in  $KP_4N_7$ ,  $RbP_4N_7$  und  $CsP_4N_7$ .

Die Na $^+$ -Ionen von NaP $_4$ N $_7$  sind von je 7 N-Atomen koordiniert (Abb. 6.2.3-6). Die Alkali-Ionen in KP $_4$ N $_7$ , RbP $_4$ N $_7$  und CsP $_4$ N $_7$  sind jeweils von 16 N-Atomen umgeben (Abb. 6.2.3-7). Während in NaP $_4$ N $_7$  ausschließlich N $^{[2]}$ -Atome zur Koordination des Na $^+$ -Ion beitragen, sind in KP $_4$ N $_7$ , RbP $_4$ N $_7$  und CsP $_4$ N $_7$  auch N $^{[3]}$ -Atome an der Koordination beteiligt. Diese Befunde basieren auf den Ergebnissen von MAPLE-Rechnungen (siehe auch Kap. 6.2.4). $^{[99-101]}$ 

#### 6.2.4 Kristallchemische Diskussion

Zur Überprüfung der Kristallstrukturen von NaP<sub>4</sub>N<sub>7</sub>, KP<sub>4</sub>N<sub>7</sub>, RbP<sub>4</sub>N<sub>7</sub> und CsP<sub>4</sub>N<sub>7</sub> wurde der Madelunganteil der Gitterenergie (MAPLE: <u>Madelung Part of Lattice Energy</u>)<sup>[99-101]</sup> berechnet. Das MAPLE-Konzept geht bei der Berechnung des Madelunganteils der Gitterenergie von einem rein elektrostatischen Ansatz aus. Es werden dabei sowohl sämtliche anziehende als auch abstoßende elektrostatische Wechselwirkungen eines Ions mit allen noch so weit entfernten Nachbarn im Kristall berücksichtigt. Eine zentrale Rolle spielt hierbei die Madelungkonstante, die eine einfache, vom Strukturtyp und der Ladung der beteiligten Ionen abhängige dimensionslose Größe darstellt. Diese ist die Summe von Madelungfaktoren

einzelner Ionen, welche die Beiträge der einzelnen Ionen zur Gitterenergie wiedergeben. Die MAPLE-Werte variieren für jedes Ion in einem relativ engen, für dieses Ion charakteristischen Bereich. Die Berechnung dieser Werte für die einzelnen Ionen einer neuen Verbindung kann somit zur Überprüfung der Korrektheit einer Kristallstruktur herangezogen werden. Tab. 6.2.4-1 zeigt die partiellen Madelunganteile der Gitterenergien von NaP<sub>4</sub>N<sub>7</sub>, KP<sub>4</sub>N<sub>7</sub>, RbP<sub>4</sub>N<sub>7</sub> und CsP<sub>4</sub>N<sub>7</sub>. Erwartungsgemäß leisten die hochgeladenen formalen P<sup>5+</sup>-Ionen auch die höchsten Beiträge zur Gitterenergie, während die nur einfach positiv geladenen Alkali-Ionen den geringsten Anteil beisteuern. Die MAPLE-Berechnungen zeigen deutlich, daß gleiche Ionen ähnlicher Koordination sehr ähnliche Beiträge zur Gitterenergie leisten. Dies bestätigt die aus den röntgenographischen Daten ermittelten Kristallstrukturen. Der relativ hohe Unterschied zwischen den MAPLE-Werten des Atoms N4 und den anderen Stickstoffatomen ist aufgrund der höheren Zahl der an N4 gebundenen P-Atome plausibel.

Tab. 6.2.4-1: Partielle Madelunganteile der Gitterenergien /  $kcal \cdot mol^{-1}$  von  $NaP_4N_7$ ,  $KP_4N_7$ ,  $RbP_4N_7$  und  $CsP_4N_7$ . M = Na, K, Rb, Cs (von oben nach unten).

|                                 | М   | P1   | P2   | N1 <sup>[2]</sup> | N2 <sup>[2]</sup> | N3 <sup>[2]</sup> | N4 <sup>[3]</sup> |
|---------------------------------|-----|------|------|-------------------|-------------------|-------------------|-------------------|
| NaP <sub>4</sub> N <sub>7</sub> | 175 | 3572 | 3574 | 1494              | 1558              | 1431              | 1626              |
| KP <sub>4</sub> N <sub>7</sub>  | 161 | 3698 | 3406 | 1450              | 1519              | 1523              | 1644              |
| RbP <sub>4</sub> N <sub>7</sub> | 161 | 3661 | 3390 | 1390              | 1507              | 1523              | 1666              |
| CsP <sub>4</sub> N <sub>7</sub> | 154 | 3656 | 3405 | 1386              | 1498              | 1542              | 1654              |

Die Bindungssituation in NaP<sub>4</sub>N<sub>7</sub>, KP<sub>4</sub>N<sub>7</sub>, RbP<sub>4</sub>N<sub>7</sub> und CsP<sub>4</sub>N<sub>7</sub> wurde mit dem CHARDI<sup>[102]</sup> (Charge Distribution in Solids)- und dem Bindungslängen-Bindungsstärken-Konzept<sup>[103]</sup> näher charakterisiert. CHARDI basiert auf dem MAPLE-Konzept<sup>[99-101]</sup>. Aus vorgegebenen Ionenradien[104] werden mittlere fiktive Ionenradien (MEFIR) berechnet und daraus effektive ermittelt.[105] Koordinationszahlen (ECoN) Die Berechnungen der effektiven Koordinationszahlen in NaP<sub>4</sub>N<sub>7</sub>, KP<sub>4</sub>N<sub>7</sub>, RbP<sub>4</sub>N<sub>7</sub> und CsP<sub>4</sub>N<sub>7</sub> sind weitgehend konsistent mit den Ergebnissen der Röntgenstrukturanalyse. Die hohen ECoN-Werte für die N-Atome sind auf die signifikanten Nitrid-Kation-Wechselwirkungen zurückzuführen. Die Werte für die P-Atome entsprechen in etwa den Erwartungen (Tab. 6.2.4-2). Auch die Berechnung der Ladungsverteilung bestätigt die röntgenographisch ermittelten Strukturen. Wie zu erwarten, errechnet sich für Phosphor eine Ladung von etwa +5, während die Werte für die N-Atome nahe bei -3 liegen. Da N4 kovalent an drei P-Atome gebunden ist, ist die errechnete Ladung

erwartungsgemäß etwas niedriger als bei allen anderen N-Atomen, welche nur zwei Bindungen zu P ausbilden.

Tab. 6.2.4-2: Effektive Koordinationszahlen und Ladungsverteilung  $\Sigma Q$  in NaP<sub>4</sub>N<sub>7</sub>, KP<sub>4</sub>N<sub>7</sub>, RbP<sub>4</sub>N<sub>7</sub> und CsP<sub>4</sub>N<sub>7</sub> nach dem CHARDI-Konzept. M = Na, K, Rb, Cs (von oben nach unten).

|            |                                 | М     | P1    | P2    | N1 <sup>[2]</sup> | N2 <sup>[2]</sup> | N3 <sup>[2]</sup> | N4 <sup>[3]</sup> |
|------------|---------------------------------|-------|-------|-------|-------------------|-------------------|-------------------|-------------------|
| ECoN       | I NaP₄N <sub>7</sub>            | 5,52  | 3,60  | 3,81  | 2,91              | 3,21              | 2,87              | 3,21              |
|            | KP <sub>4</sub> N <sub>7</sub>  | 10,54 | 3,80  | 3,44  | 3,69              | 3,74              | 3,52              | 4,27              |
|            | RbP <sub>4</sub> N <sub>7</sub> | 11,42 | 3,86  | 3,66  | 3,88              | 3,92              | 3,76              | 4,12              |
|            | CsP <sub>4</sub> N <sub>7</sub> | 12,46 | 3,81  | 3,57  | 4,44              | 3,96              | 3,83              | 4,53              |
|            |                                 |       |       |       |                   |                   |                   |                   |
| $\Sigma Q$ | NaP <sub>4</sub> N <sub>7</sub> | +0,98 | +4,76 | +5,26 | -3,29             | -3,48             | -2,67             | -2,71             |
|            | KP <sub>4</sub> N <sub>7</sub>  | +0,97 | +4,86 | +5,16 | -3,45             | -3,12             | -3,10             | -2,55             |
|            | RbP <sub>4</sub> N <sub>7</sub> | +0,98 | +4,93 | +5,08 | -3,16             | -3,04             | -3,12             | -2,76             |
|            | CsP <sub>4</sub> N <sub>7</sub> | +0,98 | +4,92 | +5,09 | -3,14             | -3,03             | -3,27             | -2,64             |

Zur Überprüfung der Koordinations- und Bindungsverhältnisse kann zusätzlich das Bindungslängen-Bindungsstärken-Konzept herangezogen werden. Im Prinzip werden dabei Bindungsvalenzen als Funktion von Bindungslängen berechnet. Zwischen einer Bindungsvalenz zweier Atome i und j und einer Bindungslänge gilt nach *Brese* und *O'Keeffe* folgender empirischer Zusammenhang (Gl. 6.2.4-1):<sup>[106]</sup>

$$v_{ij} = \exp\left[\frac{R_{ij} - d_{ij}}{b}\right]$$
 GI. 6.2.4-1

 $v_{ij}$  = Valenz der Bindung;  $d_{ij}$  = beobachtete Bindungslänge;  $R_{ij}$  = empirischer Bindungsvalenzparameter; b = experimentell bestimmte Konstante (37 pm).

Die Konstante b wurde von *Brown* und *Altermatt* zu 37 pm bestimmt.  $^{[107]}$   $R_{ij}$  ist eine für die jeweilige Elementkombination spezifische Größe. Sie entspricht im Prinzip der Länge einer Einfachbindung. Nach *O'Keeffe* ist dieser Wert für die Elementkombination P/N 173 pm.  $^{[103]}$  Wie *Horstmann* in unserer Arbeitsgruppe zeigen konnte, ist dieser Wert jedoch als zu hoch anzusehen.  $^{[62]}$  Aus dem binären Nitrid  $P_3N_5$  errechnete er statt dessen einen  $R_{PN}$ -Wert von

170 pm. Dieser liefert für P-N-Verbindungen deutlich sinnvollere Bindungsvalenzen. Daher wurde zur Berechnung der Valenzen von NaP $_4$ N $_7$ , KP $_4$ N $_7$ , RbP $_4$ N $_7$  und CsP $_4$ N $_7$  für R $_{PN}$  der Wert 170 pm eingesetzt (Tab. 6.2.4-3). Erwartungsgemäß liegen die Valenzsummen der Phosphoratome nahe dem Wert 5,0, die der Stickstoffatome nahe dem Wert 3,0. Die relativ hohen Abweichungen für das Phosphoratom P2 der Verbindung RbP $_4$ N $_7$  und das Stickstoffatom N3 in NaP $_4$ N $_7$  sind vermutlich auf die vergleichsweise hohen Ungenauigkeiten bei den mit dem Rietveld-Verfahren erhaltenen Bindungslängen zurückzuführen. Für die Valenzsummen der Alkali-Ionen liefert das Bindungslängen-Bindungstärkenkonzept nur für K $^+$  einen sinnvollen Wert. Vermutlich sind die Parameter R $_{MN}$  (M = Na, K, Rb, Cs) aufgrund zu weniger Daten zu ungenau bestimmt, um verläßliche Daten zu liefern. Inkonsistente Valenzsummen wurden zudem mit dem Bindungslängen-Bindungsstärken-Konzept auch bei anderen Nitriden regelmäßig beobachtet. Die State von State verlaße bei anderen Nitriden regelmäßig beobachtet.

Tab. 6.2.4-3: Bindungsvalenzen und Valenzsummen für NaP<sub>4</sub>N<sub>7</sub>, KP<sub>4</sub>N<sub>7</sub>, RbP<sub>4</sub>N<sub>7</sub> und CsP<sub>4</sub>N<sub>7</sub> nach dem Bindungslängen-Bindungsstärke-Konzept mit  $R_{ij}$  = 170 pm. M = Na, K, Rb, Cs.

|                                    | М   | P1  | P2  | N1 <sup>[2]</sup> | N2 <sup>[2]</sup> | N3 <sup>[2]</sup> | N4 <sup>[3]</sup> |
|------------------------------------|-----|-----|-----|-------------------|-------------------|-------------------|-------------------|
| ∑V NaP <sub>4</sub> N <sub>7</sub> | 0,8 | 5,0 | 4,9 | 2,8               | 2,9               | 2,4               | 3,1               |
| $KP_4N_7$                          | 1,0 | 4,9 | 4,9 | 3,0               | 2,9               | 2,6               | 2,8               |
| RbP <sub>4</sub> N <sub>7</sub>    | 1,3 | 5,0 | 4,6 | 2,8               | 2,6               | 2,7               | 2,9               |
| CsP <sub>4</sub> N <sub>7</sub>    | 1,7 | 5,1 | 4,8 | 3,0               | 2,8               | 2,9               | 2,8               |

### 6.2.5 Temperaturabhängige pulverdiffraktometrische Untersuchungen

Um zu entscheiden, ob es sich bei den kristallographisch ermittelten Strukturen von NaP<sub>4</sub>N<sub>7</sub>, KP<sub>4</sub>N<sub>7</sub>, RbP<sub>4</sub>N<sub>7</sub> und CsP<sub>4</sub>N<sub>7</sub> um eine Normaldruckmodifikation oder eine abgeschreckte Hochdruckphase handelt, wurden pulverdiffraktometrische Messungen zwischen 20 und 820 °C (NaP<sub>4</sub>N<sub>7</sub>) bzw. 20 und 750 °C (KP<sub>4</sub>N<sub>7</sub>, RbP<sub>4</sub>N<sub>7</sub>, CsP<sub>4</sub>N<sub>7</sub>) durchgeführt. Dazu wurde jede Probe in einem Quarzglas-Markröhrchen in Schritten von 40 °C aufgeheizt und simultan jeweils 30 min bei der entsprechenden Temperatur pulverdiffraktometrisch mit Mo $_{K\alpha}$  1-Strahlung untersucht. Abb. 6.2.5-1 und Abb. 6.2.5-2 zeigen anhand der temperaturabhängig aufgenommenen Diffraktogramme von NaP<sub>4</sub>N<sub>7</sub> und CsP<sub>4</sub>N<sub>7</sub>, daß sich innerhalb des gemessenen Winkelbereiches die Intensität der Reflexe nicht wesentlich ändert und auch keine neuen Reflexe hinzukommen. Die entsprechenden Untersuchungen an KP4N7 und RbP<sub>4</sub>N<sub>7</sub> führten zu analogen Ergebnissen. Bei den Kristallstrukturen von NaP<sub>4</sub>N<sub>7</sub>, KP<sub>4</sub>N<sub>7</sub>, RbP<sub>4</sub>N<sub>7</sub> und CsP<sub>4</sub>N<sub>7</sub> handelt es sich also vermutlich um Normaldruckmodifikationen, die auch unter Hochdruckbedingungen stabil sind. Die geringe Verschiebung aller Reflexe zu kleineren 20-Werten ist auf die thermische Ausdehnung der Verbindungen und die damit verbundene Vergrößerung der Gitterkonstanten zurückzuführen. Die aufgenommenen Diffraktogramme von KP<sub>4</sub>N<sub>7</sub>, RbP<sub>4</sub>N<sub>7</sub> und CsP<sub>4</sub>N<sub>7</sub> konnten orthorhombisch indiziert werden, während für die Indizierung des monoklinen NaP<sub>4</sub>N<sub>7</sub> zu wenige Reflexe gemessen wurden. Es wurden bei 750 °C folgende Gitterkonstanten erhalten: a = 1228,6(6), b = 989,6(3), c = 468,6(2) pm (KP<sub>4</sub>N<sub>7</sub>); a = 1225(3), b = 988(2), c = 474,5(8) pm (RbP<sub>4</sub>N<sub>7</sub>); a = 1246,7(5), b = 1002,2(5), c = 473,4(3) pm (CsP<sub>4</sub>N<sub>7</sub>). Die Zellvolumina bei 750 °C betragen V = 569,7(3) (KP<sub>4</sub>N<sub>7</sub>), 574(2) (RbP<sub>4</sub>N<sub>7</sub>), 591,4 ·10<sup>6</sup> pm<sup>3</sup> (CsP<sub>4</sub>N<sub>7</sub>). Volumenzunahme gegenüber Raumtemperatur beträgt 1,5 % (KP<sub>4</sub>N<sub>7</sub>), 0,6 % (RbP<sub>4</sub>N<sub>7</sub>),  $1,2 \% (CsP_4N_7).$ 

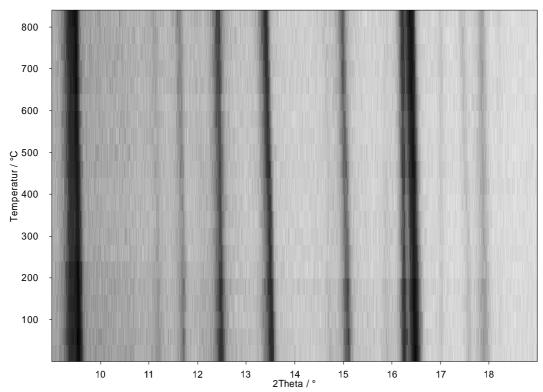



Abb. 6.2.5-1: Temperaturabhängiges Pulverdiffraktogramm von NaP $_4$ N $_7$ , Mo $_{K\alpha}$   $_I$  -Stahlung, Meßbereich 9° < 20 < 19°.

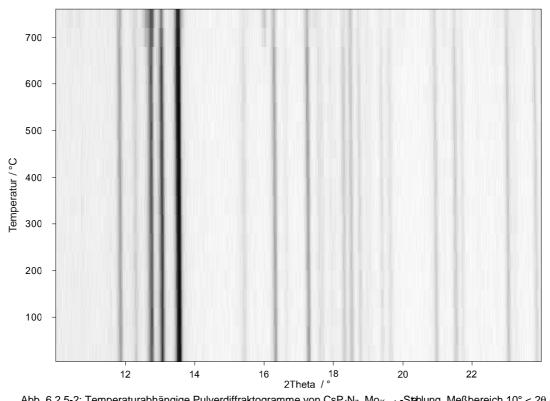



Abb. 6.2.5-2: Temperaturabhängige Pulverdiffraktogramme von CsP<sub>4</sub>N<sub>7</sub>, Mo<sub> $K\alpha$  1</sub> -Sthlung, Meßbereich 10° < 20 < 24°.

# 6.2.6 IR-spektroskopische Untersuchungen

IR-spektroskopische Untersuchungen an NaP<sub>4</sub>N<sub>7</sub>, KP<sub>4</sub>N<sub>7</sub>, RbP<sub>4</sub>N<sub>7</sub> wurden in einer KBr-Matrix durchgeführt. Abb. 6.2.6-1 bis Abb. 6.2.6-4 zeigen die IR-Spektren im Bereich von 4000 bis 400 cm<sup>-1</sup>.

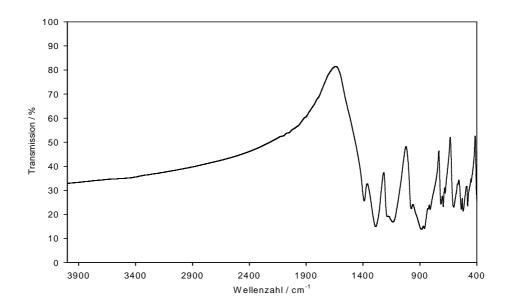



Abb. 6.2.6-1: IR-Spektrum von NaP<sub>4</sub>N<sub>7</sub>, KBr-Preßling.

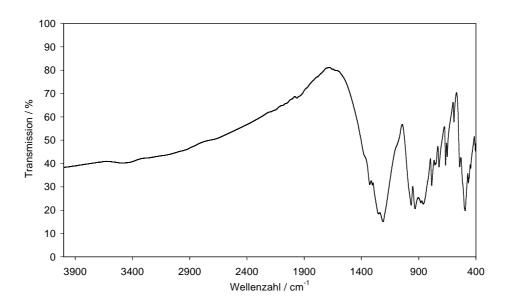



Abb. 6.2.6-2: IR-Spektrum von KP<sub>4</sub>N<sub>7</sub>, KBr-Preßling.

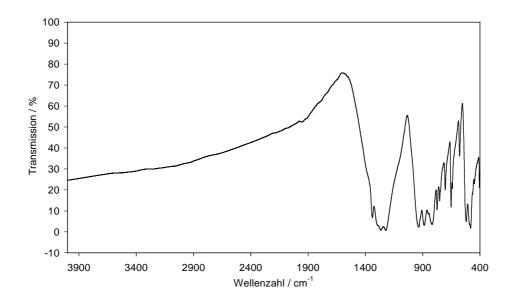



Abb. 6.2.6-3: IR-Spektrum von RbP<sub>4</sub>N<sub>7</sub>, KBr-Preßling.

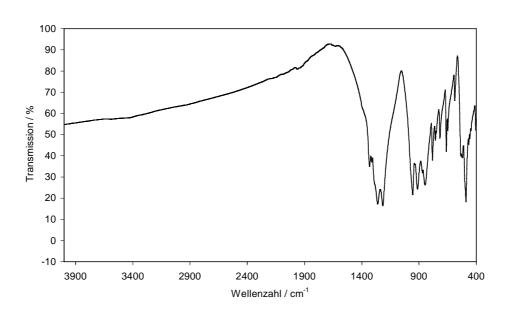



Abb. 6.2.6-4: IR-Spektrum von CsP<sub>4</sub>N<sub>7</sub>, KBr-Preßling.

Unterhalb von ca. 1500 cm<sup>-1</sup> existiert jeweils ein komplexes Muster von Absorptionsbanden, welche auf P-N-Gerüstschwingungen zurückzuführen sind. Dabei werden jeweils drei Gruppen von Banden bei ca. 1200-1500, 600-1100 sowie 400-600 cm<sup>-1</sup> beobachtet. Eine genaue Zuordnung der Banden ist aufgrund der Komplexität der Gerüstschwingungen nicht möglich. Verwandte Muster werden aber auch bei anderen Phosphornitriden wie  $\alpha$ -P<sub>3</sub>N<sub>5</sub> oder HP<sub>4</sub>N<sub>7</sub> beobachtet. Die sehr große Ähnlichkeit der Spektren von KP<sub>4</sub>N<sub>7</sub>, RbP<sub>4</sub>N<sub>7</sub> und CsP<sub>4</sub>N<sub>7</sub> dokumentiert die Isotypie dieser Verbindungen.

# 6.2.7 <sup>31</sup>P-MAS-NMR-spektroskopische Untersuchungen

Zur Bestimmung der chemischen Verschiebung der <sup>31</sup>P-Kerne in den Verbindungen NaP<sub>4</sub>N<sub>7</sub>, KP<sub>4</sub>N<sub>7</sub>, RbP<sub>4</sub>N<sub>7</sub> und CsP<sub>4</sub>N<sub>7</sub> sowie zur Bestätigung der röntgenographisch ermittelten Zahl der kristallographisch unabhängigen Phosphorlagen wurden <sup>31</sup>P-MAS-NMR-Untersuchungen durchgeführt. Darüber hinaus soll der systematische Vergleich der MAS-NMR-Daten dazu beitragen, aus MAS-NMR-Spektren möglichst genaue Aussagen über den Aufbau einer Verbindung machen zu können. So wird eine Abhängigkeit der chemischen Verschiebung der <sup>31</sup>P-Resonanz vom Kondensationsgrad der Nitridophosphate vermutet. <sup>[62]</sup>

Alle Spektren wurden bei einer Anregungsfrequenz von 202,473 MHz und und einer Rotationsfrequenz von 25 kHz aufgenommen. Die Messungen erfolgten mit 1-Puls-Anregung und vierfacher Phasenzyklisierung. Die Pulslänge der 90°-Pulse betrug 2,1  $\mu$ s. Die Wiederholzeit betrug für NaP<sub>4</sub>N<sub>7</sub> 500 s (KP<sub>4</sub>N<sub>7</sub> und RbP<sub>4</sub>N<sub>7</sub>: 1600 s, CsP<sub>4</sub>N<sub>7</sub>: 4000 s).

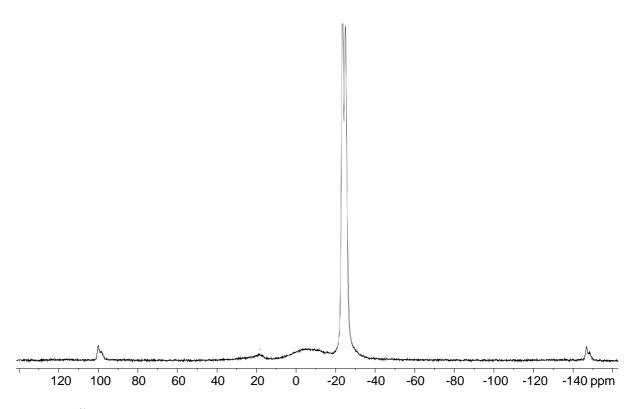



Abb. 6.2.7-1: <sup>31</sup>P-MAS-NMR-Spektrum von NaP<sub>4</sub>N<sub>7</sub>.

Das Spektrum von  $NaP_4N_7$  (Abb. 6.2.7-1) zeigt zwei Signale bei -23,5 und -25,0 ppm bezogen auf die chemische Verschiebung von Phosphorsäure  $H_3PO_4$  (85 Gew.-%) sowie die Rotationsseitenbanden der Signale. Darüberhinaus werden zwei kleine, sehr breite Signale bei 4,8 und 18,4 ppm beobachtet, welche offenbar von Verunreinigungen herrühren

(Prozentualer Anteil an der Gesamtintensität: ca. 24 %). Die gefundenen chemischen Verschiebungen (-23,5 bzw. -25,0 ppm) stimmen sehr gut mit den Verschiebungen von  $HP_4N_7$  (-26 ppm)<sup>[62]</sup> überein. Die Integrale der beiden Signale stehen in einem Intensitätsverhältnis von ca. 3:4 zueinander. Kristallographisch wurden zwei allgemeine achtzählige P-Lagen ermittelt. Idealerweise sollten die Integrale der <sup>31</sup>P-Signale also gleich groß sein. Vermutlich sind aufgrund der teilweisen Überlappung des sehr breiten Signals bei 4,8 ppm mit den Resonanzen von  $NaP_4N_7$  die Integrale nicht exakt bestimmbar.

Das Spektrum von KP<sub>4</sub>N<sub>7</sub> (Abb. 6.2.7-2) zeigt zwei Signale bei -0,4 bzw. -1,7 ppm sowie deren Rotationsseitenbanden. Trotz der ähnlichen chemischen Umgebung der P-Atome von KP<sub>4</sub>N<sub>7</sub> und HP<sub>4</sub>N<sub>7</sub> bzw. NaP<sub>4</sub>N<sub>7</sub> (gleiche Koordinationszahl an P, gleicher Kondensationsgrad des PN<sub>4</sub>-Tetraeder-Gerüsts) weicht die chemische Verschiebung von <sup>31</sup>P in KP<sub>4</sub>N<sub>7</sub> signifikant von der Verschiebung in HP<sub>4</sub>N<sub>7</sub> und NaP<sub>4</sub>N<sub>7</sub> ab. Bemerkenswert ist auch der Unterschied zu den chemischen Verschiebungen der isotypen Verbindungen RbP<sub>4</sub>N<sub>7</sub> und CsP<sub>4</sub>N<sub>7</sub> (vgl. unten). Chemische Verschiebungen von ca. 0 ppm wurden bislang nur in Nitridophosphaten mit einem Kondensationsgrad P : N = 0,5 (z.B. LiPN<sub>2</sub>)<sup>[68]</sup> gefunden. Offensichtlich kann das Alkali-Kation, obwohl nicht in unmittelbarer chemischer Umgebung des <sup>31</sup>P-Kerns, signifikant die Entschirmung dessen beeinflussen. Die Integrale der beiden P-Signale sind mit einem Intensitätsverhältnis von 7 : 8 annähernd gleich groß. Dies steht im Einklang mit den röntgenographisch ermittelten Strukturdaten.

Die Spektren RbP $_4$ N $_7$  von CsP $_4$ N $_7$  (Abb. 6.2.7-3 und 6.2.7-4) zeigen je zwei Resonanzen bei -19,6 und -28,2 ppm bzw. -21,6 und -31,9 ppm sowie die Rotationsseitenbanden der Signale. Darüberhinaus werden für CsP $_4$ N $_7$  zwei kleine Signale bei -8,8 und -37,0 ppm bzw. ein kleines Signal bei 34,8 ppm für RbP $_4$ N $_7$  beobachtet, welche offenbar von Verunreinigungen herrühren (durch Integration bestimmter Anteil an der Gesamtintensität: 6,4 % bzw. 3 %). Die gefundenen chemischen Verschiebungen stimmen sehr gut mit den entsprechenden Werten von  $^{31}$ P in HP $_4$ N $_7$  (-26 ppm)  $^{[62]}$  sowie NaP $_4$ N $_7$  überein. Die Integrale der beiden Signale stehen in Einklang mit der Zahl und Häufigkeit der kristallographisch ermittelten P-Lagen (Intensitätsverhältnis ca. 1 : 1).

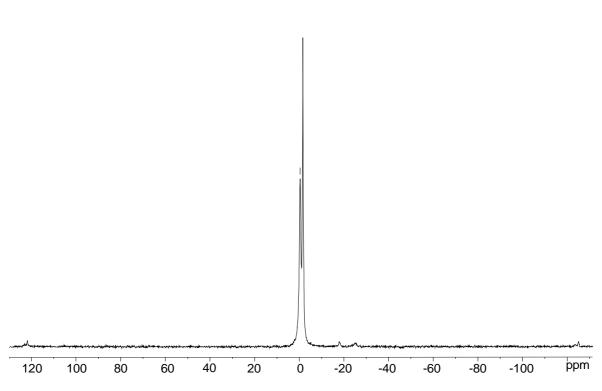



Abb. 6.2.7-2:  $^{31}\text{P-MAS-NMR-Spektrum von KP}_4\text{N}_7$ .

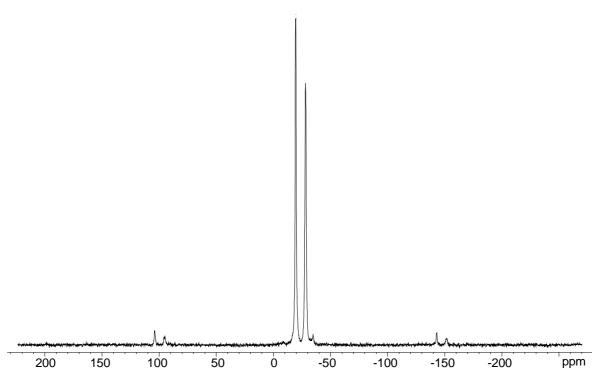



Abb. 6.2.7-3:  $^{31}P\text{-MAS-NMR}$  von RbP $_4N_7$ .

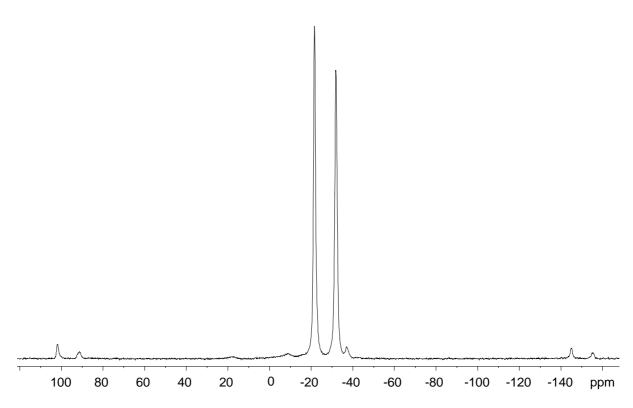



Abb. 6.2.7-4: <sup>31</sup>P-MAS-NMR-Spektrum von CsP<sub>4</sub>N<sub>7</sub>.

# 6.2.8 Thermogravimetrische Untersuchungen

Zur Untersuchung der thermischen Stabilität von  $NaP_4N_7$ ,  $KP_4N_7$ ,  $RbP_4N_7$  und  $CsP_4N_7$  wurden die Zersetzungstemperaturen thermogravimetrisch bestimmt. Alle Messungen wurden in Heliumatmosphäre mit einer Heizrate von 10 °C/min durchgeführt. Die thermische Zersetzung der Verbindungen beginnt wie für Nitridophosphate typisch bei ca. 850 °C (Abb. 6.2.8-1 bis Abb. 6.2.8-4).

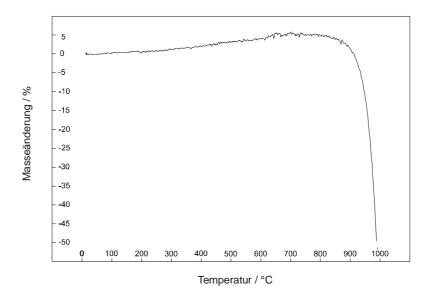



Abb. 6.2.8-1: Thermogravimetrische Untersuchung von NaP<sub>4</sub>N<sub>7</sub>, Einwaage 4,741 mg.

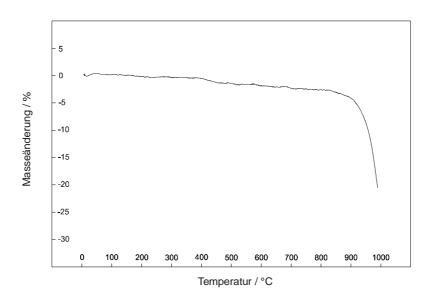



Abb. 6.2.8-2: Thermogravimetrische Untersuchung von KP<sub>4</sub>N<sub>7</sub>, Einwaage 0,697 mg.

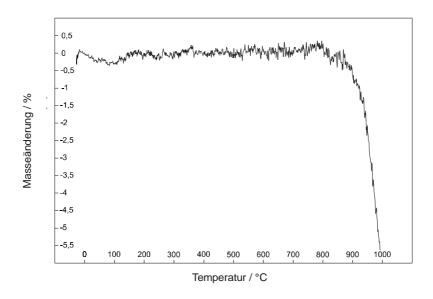



Abb. 6.2.8-3: Thermogravimetrische Analyse von RbP $_4N_7$ , Einwaage 0,721 mg.

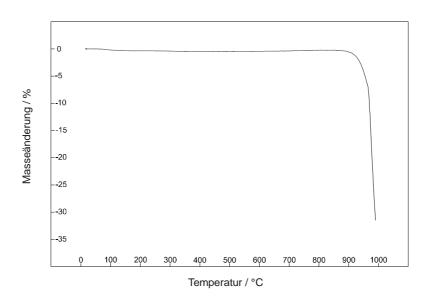



Abb. 6.2.8-4: Thermogravimetrische Analyse von  $CsP_4N_7$ , Einwaage 1,462 mg.

# 6.3. Die Rubidium- und Cäsium-phosphor(V)-nitride Rb<sub>3</sub>P<sub>6</sub>N<sub>11</sub> und Cs<sub>3</sub>P<sub>6</sub>N<sub>11</sub>

Die Existenz der Verbindungen  $Na_3P_6N_{11}^{[71]}$  und  $K_3P_6N_{11}^{[57]}$  legte nahe, nach den höheren Homologen  $Rb_3P_6N_{11}$  und  $Cs_3P_6N_{11}$  zu suchen. Die erfolgreiche Hochdruck-Hochtemperatur-Synthese dieser Verbindungen ausgehend von  $P_3N_5$  und dem jeweiligen Alkaliazid sollte die breite Anwendbarkeit dieses Verfahrens für die Darstellung von hochkondensierten Nitridophosphaten unterstreichen. Die unten detailliert beschriebene Synthese führte problemlos zu den gewünschten Verbindungen und erwies sich als ausgezeichnet reproduzierbar.

### 6.3.1 Synthese

Die Synthese der Nitridophosphate  $Rb_3P_6N_{11}$  und  $Cs_3P_6N_{11}$  erfolgte durch Umsetzung von  $P_3N_5$  mit den entsprechenden Alkaliaziden im molaren Verhältnis 2 : 3 in einem Multianvil-Modul (18/11-Assembly, castable octahedrons) bei einem Druck von ca. 35 kbar und 1200 - 1300 °C (Gl. 6.3.1-1).

$$2 P_3 N_5 + 3 MN_3 \xrightarrow{1200 - 1300 \, ^{\circ}C, \ 15 \, \text{min}} M_3 P_6 N_{11} + 4N_2 \quad (M = Rb, Cs)$$
 GI. 6.3.1-1

Die feinpulverisierten und innig durchmengten Edukte (Einwaage  $P_3N_5$ : je 54,3 mg, RbN<sub>3</sub>: 63,7 mg, CsN<sub>3</sub>: 87,3 mg) wurden in einem Walker-Modul (genaue Versuchsanordnung siehe Kap. II. 1.3.3) innerhalb von 3 h unter einen Druck von ca. 35 kbar gesetzt und anschließend in 30 min auf eine Temperatur von ca. 1200-1300 °C gebracht. Die Probe wurde 15 min unter diesen Bedingungen gehalten und anschließend auf Raumtemperatur abgeschreckt. Nach dem Entspannen (Dauer: 3 h) und dem Entfernen des BN-Tiegels wurden  $Rb_3P_6N_{11}$  und  $Cs_3P_6N_{11}$  röntgenrein als luftstabile weiße Pulver erhalten.

### 6.3.2 Strukturaufklärung

Die Aufklärung der Kristallstruktur von Rb<sub>3</sub>P<sub>6</sub>N<sub>11</sub> und Cs<sub>3</sub>P<sub>6</sub>N<sub>11</sub> wurde auf der Basis von Pulver-Röntgenbeugungsdaten vorgenommen. Die Pulverdiffraktogramme wurden mit einem konventionellen Transmissions-Pulverdiffraktometer STOE STADI P in Debye-Scherrer-Geometrie aufgenommen.  $Rb_3P_6N_{11}$  wurde mit  $Cu_{K\alpha}$  -Stahlung,  $Cs_3P_6N_{11}$  wegen des höheren Absorptionskoeffizienten von Cs mit Mo<sub>K $\alpha$ , -Stahlung untersucht. Die Indizierung der</sub> Diffraktogramme erfolgte mit dem Programm WERNER. [42] Die Pulverdiffraktogramme von Rb<sub>3</sub>P<sub>6</sub>N<sub>11</sub> und Cs<sub>3</sub>P<sub>6</sub>N<sub>11</sub> wurden kubisch indiziert. Aufgrund der Ähnlichkeit der Diffraktogramme und der ermittelten Gitterkonstanten von Rb<sub>3</sub>P<sub>6</sub>N<sub>11</sub> und Cs<sub>3</sub>P<sub>6</sub>N<sub>11</sub> war die Isotypie dieser Verbindungen zur bereits bekannten Verbindung K<sub>3</sub>P<sub>6</sub>N<sub>11</sub><sup>[57]</sup> zu vermuten. Daher wurden für die anschließende Rietveld-Verfeinerung von Rb<sub>3</sub>P<sub>6</sub>N<sub>11</sub> und Cs<sub>3</sub>P<sub>6</sub>N<sub>11</sub> mit dem Programm GSAS<sup>[44]</sup> die Atomkoordinaten von K<sub>3</sub>P<sub>6</sub>N<sub>11</sub> als Startwerte eingesetzt. Dabei wurden Skalierungsfaktor, Gitterkonstanten, Nullpunktsverschiebung und Untergrund verfeinert. Die Profilform der Beugungsreflexe wurde durch eine Pseudo-Voigt-Funktion angeglichen<sup>[85]</sup> und ihre Asymmetrie korrigiert.[86] Alle Atomkoordinaten Temperaturfaktoren wurden frei verfeinert. Die Parameter der Messung sowie der Kristallstrukturbestimmung und -verfeinerung sind in Tab. 6.3.2-1 bis Tab. 6.3.2-3 wiedergegeben. Die aus der Rietveld-Verfeinerung erhaltenen Differenzdiffraktogramme sind in Abb. 6.3.2-1 und Abb. 6.3.2-2 dargestellt.

Tab. 6.3.2-1: Parameter der Kristallstrukturbestimmung und Ergebnis der Rietveldverfeinerung von  $Rb_3P_6N_{11}$  und  $Cs_3P_6N_{11}$ , Standardabweichungen in runden Klammern.

| Formel                                        | $Rb_3P_6N_{11}$            | $Cs_3P_6N_{11}$           |  |
|-----------------------------------------------|----------------------------|---------------------------|--|
| Molmasse / g⋅mol <sup>-1</sup>                | 596,20                     | 738,52                    |  |
| Kristallsystem                                | kubisch                    | kubisch                   |  |
| Raumgruppe                                    | <i>P</i> 4₁32 (Nr. 213)    | <i>P</i> 4₁32 (Nr. 213)   |  |
| Gitterkonstante / pm                          | a = 1049,74(1)             | a = 1065,15(1)            |  |
| Zellvolumen / 10 <sup>6</sup> pm <sup>3</sup> | 1156,76(2)                 | 1208,47(2)                |  |
| Z                                             | 4                          | 4                         |  |
| Diffraktometer                                | Stoe STADI P               | Stoe STADI P              |  |
| $\lambda$ / pm                                | 154,050 Cu <sub>κα 1</sub> | 70,926 Mo <sub>κα 1</sub> |  |
| T/°C                                          | 25(2)                      | 25(2)                     |  |
| Meßbereich / °                                | $5 \leq 2\theta \leq 120$  | $5 \leq 2\theta \leq 85$  |  |
| Datenpunkte                                   | 11500                      | 8000                      |  |
| Beobachtete Reflexe                           | 208                        | 926                       |  |
| Atomparameter                                 | 9                          | 9                         |  |
| Profilparameter                               | 7                          | 7                         |  |
| Untergrundparameter                           | 3                          | 3                         |  |
| $R_p$                                         | 0,0979                     | 0,0487                    |  |
| $wR_p$                                        | 0,1077                     | 0,0618                    |  |
| $R_{F}$                                       | 0,0612                     | 0,0812                    |  |
| CHI <sup>2</sup>                              | 0,5998                     | 0,812                     |  |

 $Tab. \quad 6.3.2-2: \quad Atomkoordinaten \quad und \quad isotrope \quad Auslenkungsparameter \quad U_{iso} \quad / \quad pm^2 \quad von \quad Rb_3P_6N_{11} \quad und \quad Cs_3P_6N_{11}, \\ Standard abweich ungen in runden Klammern.$ 

| Atom | Wyckoff-<br>Position | Х           | у         | Z         | U <sub>iso</sub> |
|------|----------------------|-------------|-----------|-----------|------------------|
| Rb1  | 4a                   | 3/8         | 3/8       | 3/8       | 305(6)           |
| Cs1  | 4a                   | 3/8         | 3/8       | 3/8       | 289(5)           |
| Rb2  | 8c                   | 0,76289(7)  | x         | x         | 164(4)           |
| Cs2  | 8c                   | 0,77134(4)  | x         | x         | 188(3)           |
| Р    | 24e                  | 0,06985(16) | 0,2107(2) | 0,2980(2) | 63(5)            |
|      | 24e                  | 0,06753(16) | 0,2006(2) | 0,2923(2) | 98(5)            |
| N1   | 24e                  | 0,0102(5)   | 0,3497(6) | 0,2761(5) | 56(13)           |
|      | 24e                  | 0,0067(6)   | 0,3390(6) | 0,2757(5) | 125(17)          |
| N2   | 12d                  | 1/8         | 0,1905(4) | 0,4405(4) | 56(13)           |
|      | 12d                  | 1/8         | 0,1810(4) | 0,4310(4) | 115(22)          |
| N3   | 8c                   | 0,1997(4)   | x         | x         | 56(13)           |
|      | 8c                   | 0,1938(4)   | Х         | Х         | 96(29)           |

Tab. 6.3.2-3: Bindungslängen / pm und –winkel / ° von  $Rb_3P_6N_{11}$  und  $Cs_3P_6N_{11}$ , Standardabweichungen in runden Klammern. M = Rb, Cs.

|                                        | Rb <sub>3</sub> P <sub>6</sub> N <sub>11</sub> | Cs <sub>3</sub> P <sub>6</sub> N <sub>11</sub> |
|----------------------------------------|------------------------------------------------|------------------------------------------------|
| M1-N2 <sup>[2]</sup>                   | 333,3(2) 6x                                    | 342,3(2) 6x                                    |
| -N3 <sup>[3]</sup>                     | 318,6(7) 2x                                    | 334,4(8) 2x                                    |
| -N1 <sup>[2]</sup>                     | 397,1(9) 6x                                    | 408,1(9) 6x                                    |
|                                        |                                                |                                                |
| M2-N1 <sup>[2]</sup>                   | 287,4(6) 3x                                    | 301,4(5) 3x                                    |
| -N1 <sup>[2]</sup>                     | 310,4(5) 3x                                    | 318,7(6) 3x                                    |
| -N2 <sup>[2]</sup>                     | 341,4(5) 3x                                    | 349,3(6) 3x                                    |
|                                        |                                                |                                                |
| P-N1 <sup>[2]</sup>                    | 159,0(5)                                       | 159,5(5)                                       |
| -N1 <sup>[2]</sup>                     | 160,5(7)                                       | 162,0(6)                                       |
| -N2 <sup>[2]</sup>                     | 161,8(4)                                       | 161,3(4)                                       |
| -N3 <sup>[3]</sup>                     | 171,3(2)                                       | 170,7(2)                                       |
|                                        |                                                |                                                |
| N1 <sup>[2]</sup> -P-N1 <sup>[2]</sup> | 112,5(3)                                       | 113,8(3)                                       |
| N1 <sup>[2]</sup> -P-N2 <sup>[2]</sup> | 113,0(2)                                       | 111,7(3)                                       |
| N1 <sup>[2]</sup> -P-N3 <sup>[3]</sup> | 106,6(2)                                       | 106,7(2)                                       |
| N1 <sup>[2]</sup> -P-N2 <sup>[2]</sup> | 111,2(3)                                       | 110,9(3)                                       |
| N1 <sup>[2]</sup> -P-N3 <sup>[3]</sup> | 107,8(4)                                       | 108,2(4)                                       |
| N2 <sup>[2]</sup> -P-N3 <sup>[3]</sup> | 105,2(3)                                       | 105,0(3)                                       |
|                                        |                                                |                                                |
| P-N1 <sup>[2]</sup> -P                 | 131,3(4) 2x                                    | 130,7(4) 2x                                    |
| P-N2 <sup>[2]</sup> -P                 | 111,7(4) 2x                                    | 112,4(4) 2x                                    |
| P-N3 <sup>[3]</sup> -P                 | 119,5(7) 3x                                    | 119,4(1) 3x                                    |

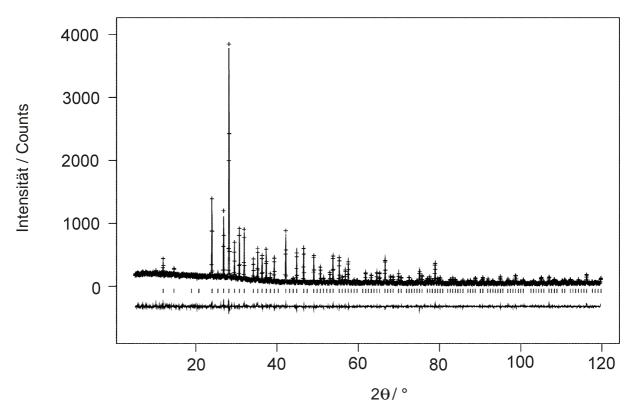



Abb. 6.3.2-1: Beobachtetes (Kreuze) und berechnetes (Linie) Röntgen-Pulverdiffraktogramm sowie Differenz-Profil der Rietveld-Verfeinerung von  $Rb_3P_6N_{11}$ . Erlaubte Positionen der Reflexe sind durch senkrechte Striche gekennzeichnet. Das Diffraktogramm wurde mit einem konventionellen STOE Stadi P Pulverdiffraktometer erhalten ( $Cu_{K\alpha}$ <sub>1</sub>,  $\lambda$  = 15405 pm).

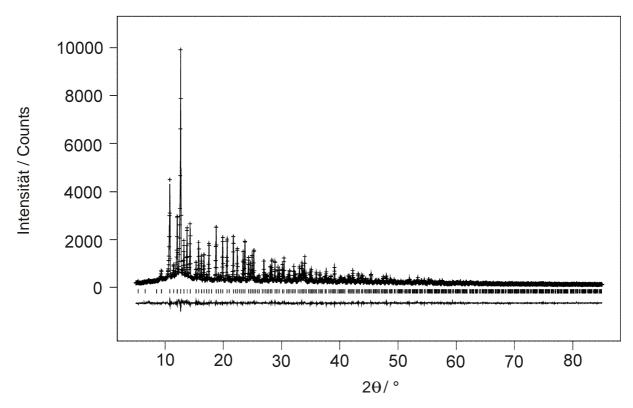



Abb. 6.3.2-2: Beobachtetes (Kreuze) und berechnetes (Linie) Röntgen-Pulverdiffraktogramm sowie Differenz-Profil der Rietveld-Verfeinerung von  $Cs_3P_6N_{11}$ . Erlaubte Positionen der Reflexe sind durch senkrechte Striche gekennzeichnet. Das Diffraktogramm wurde mit einem konventionellen STOE Stadi P Pulverdiffraktometer erhalten ( $Mo_{K\alpha}$ <sub>1</sub>,  $\lambda$  = 7093 pm).

# 6.3.3 Strukturbeschreibung von Rb<sub>3</sub>P<sub>6</sub>N<sub>11</sub> und Cs<sub>3</sub>P<sub>6</sub>N<sub>11</sub>

Im Festkörper sind  $Rb_3P_6N_{11}$  und  $Cs_3P_6N_{11}$  aus einem dreidimensionalen Gerüst eckenverknüpfter  $PN_4$ -Tetraeder aufgebaut. Beide Verbindungen sind isotyp zu  $K_3P_6N_{11}$ . [57] Gemäß  $_{\infty}^3[(P_6^{[4]}N_9^{[2]}N_2^{[3]})^3$ ] existieren sowohl  $N^{[2]}$ - als auch  $N^{[3]}$ -Nitridobrücken im molaren Verhältnis 9 : 2.

Das P-N-Gerüst von  $Rb_3P_6N_{11}$  und  $Cs_3P_6N_{11}$  kann in drei symmetrieäquivalente spiralig gewundenene Ketten eckenverknüpfter  $PN_4$ -Tetraeder entlang [100], [010] und [001] separiert werden (Abb. 6.3.3-1 und Abb. 6.3.3-2). Diese Ketten werden sowohl von  $N^{[2]}$ - als auch von  $N^{[3]}$ -Atomen zum Netzwerk verknüpft (Abb. 6.3.3-3). Entlang [100], [010] und [001] existieren Kanäle aus  $P_{10}N_{10}$ -Zehnerringen, in denen sich Alkali-Ionen befinden. Die Topologie des Gerüsts ist durch das Kreisklassespektrum (Tab. 6.3.3-1) wiedergegeben.

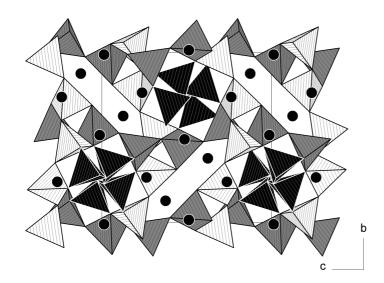
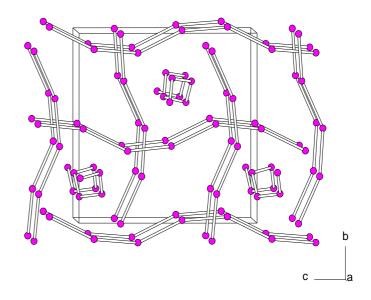




Abb. 6.3.3-1: Kristallstruktur von  $Rb_3P_6N_{11}$  und  $Cs_3P_6N_{11}$ , Blick entlang [100]. Die dreidimensionale Netzwerkstruktur kann in drei symmetrieäquivalente Ketten aus  $PN_4$ -Tetraedern (geschlossene Polyeder) entlang [100], [010] und [001] (schwarz, grau und weiß) separiert werden. Die Alkali-Ionen (schwarze Kugeln) befinden sich in den  $P_{10}N_{10}$ -Zehnerringen.

Abb. 6.3.3-2: Ausschnitt aus der Topologie der Kristallstruktur von Rb $_3$ P $_6$ N $_{11}$  und Cs $_3$ P $_6$ N $_{11}$ , Blick entlang [100]. Die Abbildung zeigt die Verknüpfung der P-Tetraederzentren (graue Kugeln) zu den charakteristischen spiralig gewundenen Ketten (P-P-Abstand: 291 pm) entlang [100], [010] und [001].



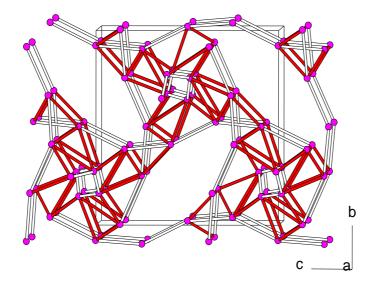



Abb. 6.3.3-3: Topologie der Kristallstruktur von  $Rb_3P_6N_{11}$  und  $Cs_3P_6N_{11}$ , Blick entlang [100]. Die Abbildung zeigt die Verknüpfung (graue Stäbe) der P-Tetraederzentren der spiralig gewundenen Ketten (weiße Stäbe) zur Gesamttopologie.

Die P-N-Bindungslängen in  $Rb_3P_6N_{11}$  und  $Cs_3P_6N_{11}$  liegen innerhalb des für Phosphor(V)-nitride typischen Bereichs (P-N<sup>[2]</sup>: 159 - 162 pm; P-N<sup>[3]</sup>: 170 - 171 pm). Erwartungsgemäß sind die P-N<sup>[2]</sup>-Bindungslängen signifikant kürzer als die P-N<sup>[3]</sup>-Abstände. Die N-P-N-Bindungswinkel variieren zwischen 102 und 120°. Die P-N-P-Bindungswinkel liegen zwischen 119 und 131°. Dies sind ebenfalls typische Werte für Phosphor(V)-nitride. Die Winkelsumme an den N<sup>[3]</sup>-Atomen beträgt fast 360°. Daher können diese Atome als sp²-hybridisiert betrachtet werden. Alle Bindungslängen und -winkel stimmen mit denen von  $K_3P_6N_{11}$  sehr gut überein.<sup>[57]</sup>

Die Alkali-Ionen auf den Rb1- bzw. Cs1-Lagen sind in  $Rb_3P_6N_{11}$  und  $Cs_3P_6N_{11}$  von je 14 N-Atomen koordiniert (Abb. 6.3.3-4). Dabei tragen sowohl die  $N^{[2]}$ -Atome als auch die  $N^{[3]}$ -Atome zur Koordination des Alkali-Ions bei. Die Alkali-Ionen auf den Rb2- bzw. Cs2-Lagen sind von je 9 N-Atomen koordiniert (Abb. 6.3.3-5). Hier tragen ausschließlich die  $N^{[2]}$ -Atome zur Koordination bei. Diese Befunde ergeben sich aus MAPLE-Rechnungen. [99-101]

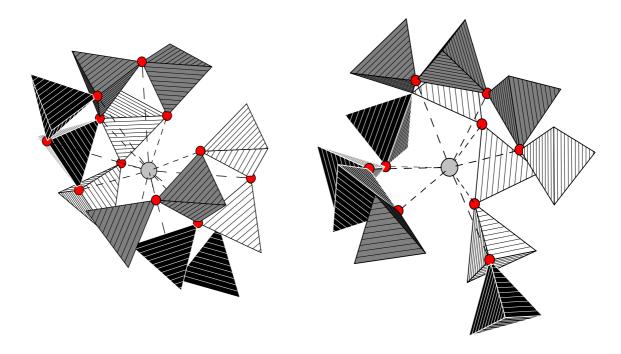



Abb. 6.3.3-4: Koordination der Rb $^+$ - bzw. Cs $^+$ -lonen auf den Rb1- bzw. Cs1-Lagen (hellgraue Kugeln) durch je 14 N-Atome (dunkelgraue Kugeln) in Rb $_3$ P $_6$ N $_{11}$  und Cs $_3$ P $_6$ N $_{11}$ .

Abb. 6.3.3-5: Koordination der Rb $^+$ - bzw. Cs $^+$ -lonen auf den Rb2- bzw. Cs2-Lagen (hellgraue Kugeln) durch N-Atome (dunkelgraue Kugeln) in Rb $_3$ P $_6$ N $_{11}$  und Cs $_3$ P $_6$ N $_{11}$ .

Tab. 6.3.3-1: Kreisklassespektren von  $Rb_3P_6N_{11}$  und  $Cs_3P_6N_{11}$ .

| Ringgröße n                                                                                       | 2 | 3  | 4  | 5  | 6  | 7  | 8  |
|---------------------------------------------------------------------------------------------------|---|----|----|----|----|----|----|
| Rb <sub>3</sub> P <sub>6</sub> N <sub>11</sub> und Cs <sub>3</sub> P <sub>6</sub> N <sub>11</sub> | 0 | 24 | 12 | 24 | 56 | 48 | 72 |

#### 6.3.4 Kristallchemische Diskussion

Um die Plausibilität der Kristallstruktur von Rb<sub>3</sub>P<sub>6</sub>N<sub>11</sub> und Cs<sub>3</sub>P<sub>6</sub>N<sub>11</sub> zu überprüfen, wurden MAPLE-Rechnungen durchgeführt. Die MAPLE-Werte für die Alkali-, P- und N-Atome liegen im jeweils typischen Bereich (Tab. 6.3.4-1). Das an drei P-Atome gebundene Atom N3 weist erwartungsgemäß einen höheren MAPLE-Wert auf als die Atome N1 und N2, welche an nur zwei P-Atome gebunden sind. Auffällig sind die prozentual hohen Unterschiede der MAPLE-Werte zwischen den Atomen Rb1 und Rb2 bzw. Cs1 und Cs2. Da diese Atome nur sehr wenig zur Gitterenergie beitragen, ist hier bei der Berechnung der gitterenergetischen Beiträge auch mit höheren Fehlern zu rechnen. Somit sind die Ergebnisse der MAPLE-Rechnungen konsistent mit den Resultaten der Kristallstrukturanalyse.

Tab. 6.3.4-1 Partielle Madelunganteile der Gitterenergien /  $kcal \cdot mol^{-1}$  von  $Rb_3P_6N_{11}$  und  $Cs_3P_6N_{11}$ . M = Rb, Cs (von oben nach unten).

|                                                | M1  | M2  | Р    | N1 <sup>[2]</sup> | N2 <sup>[2]</sup> | N3 <sup>[3]</sup> |
|------------------------------------------------|-----|-----|------|-------------------|-------------------|-------------------|
| Rb <sub>3</sub> P <sub>6</sub> N <sub>11</sub> | 100 | 149 | 3492 | 1507              | 1500              | 1724              |
| Cs <sub>3</sub> P <sub>6</sub> N <sub>11</sub> | 99  | 140 | 3487 | 1496              | 1504              | 1733              |

Mit dem CHARDI-Konzept wurde die Ladung  $\Sigma Q$  an den Atomen sowie die effektive Koordinationszahl ECoN berechnet. Die ECoN für die P-Atome liegen nahe dem erwarteten Wert 4. Die ECoN für die N-Atome sind aufgrund der koordinativen Beiträge der Alkali-Ionen deutlich größer als 2 (für N1 und N2) bzw. 3 (für N3). Die berechneten Ladungen  $\Sigma Q$  bestätigen hervorragend die angenommenen Formalladungen an den jeweiligen Atomen (Rb, Cs: +1, P: +5, N: -3). Lediglich die Ladung an N3 weicht mit Werten von -2,76 bzw. -2,86 vergleichsweise stark vom Idealwert -3 ab (Tab. 6.3.4-2).

Tab. 6.3.4-2: Effektive Koordinationszahlen und Ladungsverteilung  $\Sigma Q$  in  $Rb_3P_6N_{11}$  und  $Cs_3P_6N_{11}$  nach dem CHARDI-Konzept. M = Rb, Cs.

|            |                                                  | M1    | M2    | Р     | N1 <sup>[2]</sup> | N2 <sup>[2]</sup> | N3 <sup>[3]</sup> |
|------------|--------------------------------------------------|-------|-------|-------|-------------------|-------------------|-------------------|
| ECoN       | N Rb <sub>3</sub> P <sub>6</sub> N <sub>11</sub> | 9,30  | 7,08  | 3,87  | 4,04              | 5,00              | 3,85              |
|            | Cs <sub>3</sub> P <sub>6</sub> N <sub>11</sub>   | 9,77  | 7,61  | 3,90  | 4,21              | 5,17              | 3,92              |
|            |                                                  |       |       |       |                   |                   |                   |
| $\Sigma Q$ | $Rb_3P_6N_{11}$                                  | +1,04 | +0,97 | +5,00 | -3,12             | -2,92             | -2,76             |
|            | Cs <sub>3</sub> P <sub>6</sub> N <sub>11</sub>   | +1,01 | +0,99 | +5,00 | -3,04             | -3,01             | -2,86             |

Die Ladungsverteilung an den Atomen von  $Rb_3P_6N_{11}$  und  $Cs_3P_6N_{11}$  wurde zudem mit dem Bindungslängen-Bindungsstärken-Konzept berechnet (Tab. 6.3.4-3). Die Valenzsummen an P ergeben für  $R_{PN}$  = 170 pm sehr gute Näherungen an den Idealwert 5,0. Die Werte für N3 stimmen mit dem zu erwartenden Wert 3,0 exakt überein, während sich für N1 und N2 größere Abweichungen ergeben. Für die Alkali-Ionen ergeben sich nur für die M2-Atome sinnvolle Werte.

Tab. 6.3.4-3: Bindungsvalenzen und Valenzsummen für  $Rb_3P_6N_{11}$  und  $Cs_3P_6N_{11}$  nach dem Bindungslänge-Bindungsstärke-Konzept mit  $R_{ij}$  = 170 pm.

|                                                | M1  | M2  | Р   | N1 <sup>[2]</sup> | N2 <sup>[2]</sup> | N3 <sup>[3]</sup> |
|------------------------------------------------|-----|-----|-----|-------------------|-------------------|-------------------|
| $\Sigma V Rb_3P_6N_{11}$                       | 0,6 | 1,0 | 4,9 | 2,6               | 2,6               | 3,0               |
| Cs <sub>3</sub> P <sub>6</sub> N <sub>11</sub> | 0,6 | 1,1 | 4,9 | 2,6               | 2,6               | 3,0               |

### 6.3.5 Temperaturabhängige pulverdiffraktometrische Untersuchungen

Um zu unterscheiden, ob es sich bei der kristallographisch ermittelten Struktur von Rb<sub>3</sub>P<sub>6</sub>N<sub>11</sub> und Cs<sub>3</sub>P<sub>6</sub>N<sub>11</sub> um eine Normaldruckmodifikation oder eine abgeschreckte Hochdruckphase handelt, wurden pulverdiffraktometrische Messungen zwischen 20 und 540 °C (Rb<sub>3</sub>P<sub>6</sub>N<sub>11</sub>) bzw. 20 und 820 °C (Cs<sub>3</sub>P<sub>6</sub>N<sub>11</sub>) durchgeführt. Dazu wurde die Probe in einem Quarzglas-Markröhrchen in Schritten von 20 °C aufgeheizt und simultan jeweils 35 min bei der entsprechenden Temperatur pulverdiffraktometrisch mit Mo $_{K\alpha}$  <sub>1</sub>-Stahlung untersucht. Abb. 6.3.5-1 zeigt anhand des temperaturabhängig aufgenommenen Diffraktogramms von Rb<sub>3</sub>P<sub>6</sub>N<sub>11</sub>, daß sich innerhalb des gemessenen Winkelbereiches die Intensität der Reflexe nicht wesentlich ändert und auch keine neuen Reflexe hinzukommen. Bei den Kristallstrukturen von Rb<sub>3</sub>P<sub>6</sub>N<sub>11</sub> und Cs<sub>3</sub>P<sub>6</sub>N<sub>11</sub> handelt es sich offensichtlich um Normaldruckmodifikationen, die auch bei Hochdruckbedingungen stabil sind. Die geringe Verschiebung aller Reflexe zu kleineren 2θ-Werten ist auf die thermische Ausdehnung der Verbindung und die damit verbundene Vergrößerung der Gitterkonstanten zurückzuführen. Die Indizierung der bei 540 °C (Rb<sub>3</sub>P<sub>6</sub>N<sub>11</sub>) bzw. 820 °C (Cs<sub>3</sub>P<sub>6</sub>N<sub>11</sub>) erhaltenen Diffraktogramme ergab die Gitterkonstanten a = 1052,4(3) (Rb<sub>3</sub>P<sub>6</sub>N<sub>11</sub>) und a = 1069,1(3) pm  $(Cs_3P_6N_{11})$ . Die Zellvolumina bei 540 °C bzw. 820 °C betragen 1165(3)  $(Rb_3P_6N_{11})$  bzw. 1221(3)·10<sup>6</sup> pm<sup>3</sup> (Cs<sub>3</sub>P<sub>6</sub>N<sub>11</sub>). Die Verbindung Rb<sub>3</sub>P<sub>6</sub>N<sub>11</sub> zeigt bis 540 °C praktisch keine Volumenzunahme. Dagegen nimmt das Volumen von Cs<sub>3</sub>P<sub>6</sub>N<sub>11</sub> um 1,1 % zu.

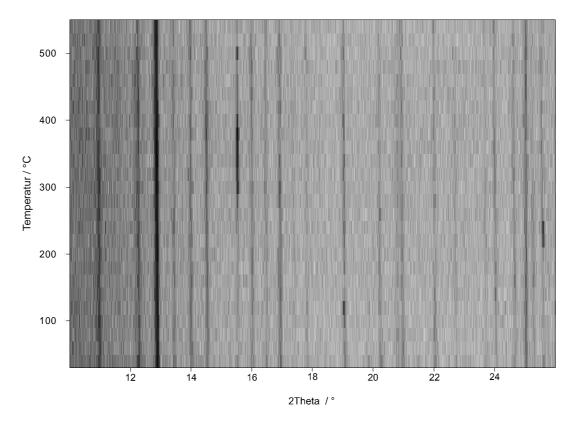



Abb. 6.3.5-1: Temperaturabhängiges Pulverdiffraktogramm von Rb $_3$ P $_6$ N $_{11}$ , Mo $_{K\alpha}$   $_7$ -Stahlung, Meßbereich 10° < 2 $\theta$  < 26°.

# 6.3.6 IR-spektroskopische Untersuchungen

IR-spektroskopische Untersuchungen wurden in einer KBr-Matrix durchgeführt. Abb. 6.3.6-1 und Abb. 6.3.6-2 zeigen die IR-Spektren von  $Rb_3P_6N_{11}$  und  $Cs_3P_6N_{11}$  im Bereich von 4000 bis 400 cm<sup>-1</sup>.

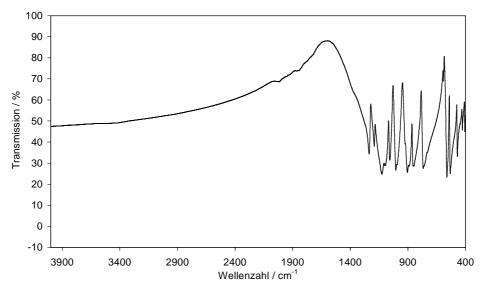



Abb. 6.3.6-1: IR-Spektrum von  $Rb_3P_6N_{11}$ , KBr-Preßling.

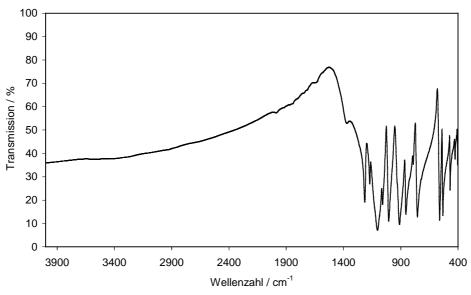



Abb. 6.3.6-2: IR-Spektrum von  $Cs_3P_6N_{11}$ , KBr-Preßling.

Unterhalb von ca. 1400 cm<sup>-1</sup> existiert ein komplexes Muster von Absorptionsbanden, welche auf P-N-Gerüstschwingungen zurückzuführen sind. Es existieren jeweils zwei Gruppen von Banden im Bereich von 600-1400 sowie 400-600 cm<sup>-1</sup>. Die Banden zwischen 400 und 600 cm<sup>-1</sup> ähneln denjenigen von KP<sub>4</sub>N<sub>7</sub>, RbP<sub>4</sub>N<sub>7</sub> und CsP<sub>4</sub>N<sub>7</sub>. Eine genaue Zuordnung der Banden ist aufgrund der Komplexität der Gerüstschwingungen nicht möglich. Die Ähnlichkeit

der Spektren von  $Rb_3P_6N_{11}$  und  $Cs_3P_6N_{11}$  dokumentiert die Isotypie der beiden Verbindungen.

# 6.3.7 <sup>31</sup>P-MAS-NMR-spektroskopische Untersuchungen

 $Rb_3P_6N_{11}$  und  $Cs_3P_6N_{11}$  wurden  $^{31}P$ -MAS-NMR-spektroskopisch untersucht. Alle Spektren wurden bei einer Anregungsfrequenz von 202,48 MHz und und einer Rotationsfrequenz von 25 kHz aufgenommen. Die Messungen erfolgten mit 1-Puls-Anregung und vierfacher Phasenzyklisierung. Die Pulslänge der 90°-Pulse betrug 2,1  $\mu$ s. Die Wiederholzeit betrug jeweils 500 s.

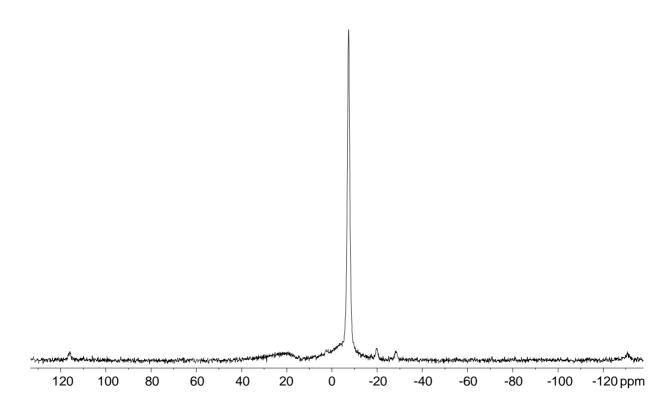



Abb. 6.3.7-1: <sup>31</sup>P-MAS-NMR-Spektrum von Rb<sub>3</sub>P<sub>6</sub>N<sub>11</sub>.

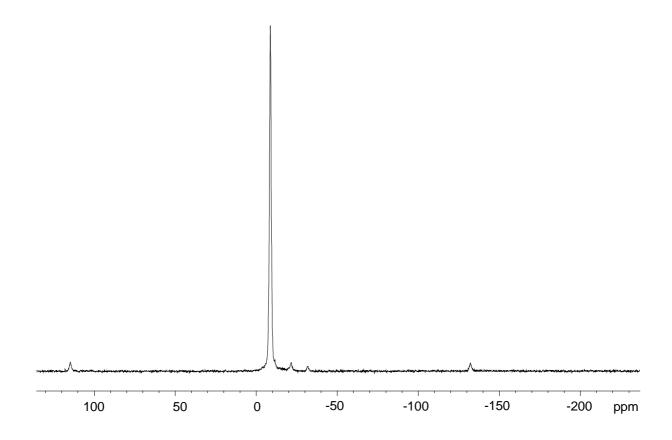



Abb. 6.3.7-2: 31P-MAS-NMR-Spektrum von Cs<sub>3</sub>P<sub>6</sub>N<sub>11</sub>.

Die beiden Spektren (Abb. 6.3.7-1 und Abb. 6.3.7-2) zeigen für  $Rb_3P_6N_{11}$  bzw.  $Cs_3P_6N_{11}$  jeweils eine Resonanz bei -7,4 bzw. -8,9 ppm (bez. auf 85%ige  $H_3PO_4$ ). Die Spektren zeigen zusätzlich je zwei sehr kleine, scharfe Signale ( $RbP_4N_7$ : -19,9 und -28,1 ppm, bzw. 21,7 und 31,6 ppm), welche  $RbP_4N_7$  bzw.  $CsP_4N_7$  zugeordnet werden können.  $RbP_4N_7$  zeigt zusätzlich ein breites Signal bei 19,4 ppm, welches offenbar einer unbekannten Fremdphase zugehörig ist. Der durch Integration bestimmte Intensitätsanteil der Fremdphasen beträgt im Spektrum von  $Rb_3P_6N_{11}$  ca. 19 % ( $Cs_3P_6N_{11}$ : 4,8 %) Die NMR-spektroskopischen Daten stehen im Einklang mit der röntgenographisch ermittelten Zahl der kristallographisch unabhängigen Phosphor-Lagen (1 P-Lage).

# 6.3.8 Thermogravimetrische Untersuchungen

Zur Untersuchung der thermischen Stabilität von  $Rb_3P_6N_{11}$  und  $Cs_3P_6N_{11}$  wurden die Zersetzungstemperaturen thermogravimetrisch bestimmt. Alle Messungen wurden in Heliumatmosphäre mit einer Heizrate von 10 °C/min durchgeführt. Die thermische Zersetzung der Verbindungen beginnt wie für Nitridophosphate typisch bei ca. 900 °C (Abb. 6.3.8-1 und Abb. 6.3.8-2).

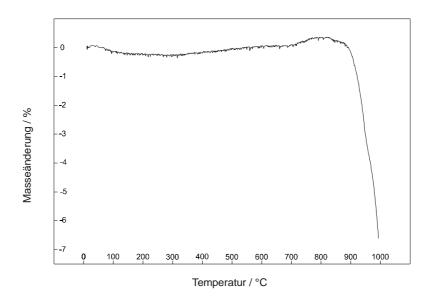



Abb. 6.3.8-1: Thermogravimetrische Analyse von  $Rb_3P_6N_{11}$ , Einwaage 6,239 mg.

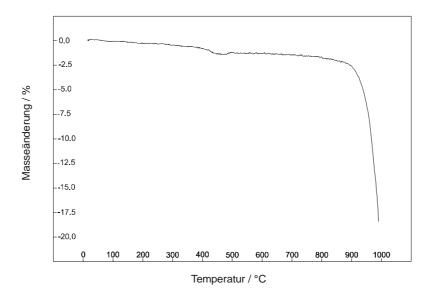



Abb. 6.3.8-2: Thermogravimetrische Analyse von Cs<sub>3</sub>P<sub>6</sub>N<sub>11</sub>, Einwaage 6,909 mg.

### 6.4 Das Natrium-phosphor(V)-nitrid NaPN<sub>2</sub>

HPN<sub>2</sub> und LiPN<sub>2</sub> existieren zwei ternäre Phosphor(V)-nitride mit einem Kondensationsgrad von P: N = 0.5, welche Elemente der 1. Gruppe des PSE enthalten. Daher wurde versucht, die höheren Homologen von HPN<sub>2</sub> und LiPN<sub>2</sub>, nämlich NaPN<sub>2</sub>, KPN<sub>2</sub>, RbPN<sub>2</sub> und CsPN<sub>2</sub> mit dem beschriebenen Hochdruck-Hochtemperatur-Synthesekonzept darzustellen. Die Existenz einer Verbindung NaPN2 wurde bereits von Ronis, Millers und Vitola postuliert.[108] Dabei wurde NaPN2 durch Umsetzung von kristallinem HPN2 mit NaH hergestellt und das Pulverdiffraktogramm des Produktes tetragonal (a = 495,5(2) pm, c = 700,9(4) pm). Durch Vergleich der Diffraktogramme wurde Isotypie von NaPN<sub>2</sub> zu LiPN<sub>2</sub> und HPN<sub>2</sub> festgestellt. Während die im Rahmen der Dissertation durchgeführten Umsetzungen von KN<sub>3</sub>, RbN<sub>3</sub> und CsN<sub>3</sub> mit P<sub>3</sub>N<sub>5</sub> nur zu weitgehend röntgenamorphen Produkten führten, gelang die Hochdruck-Umsetzung von NaN<sub>3</sub> mit P<sub>3</sub>N<sub>5</sub> zu phasenreinem NaPN<sub>2</sub> problemlos. Die unten detailliert beschriebene Synthese erwies sich als ausgezeichnet reproduzierbar.

### 6.4.1 Synthese

Die Synthese des Nitridophosphats  $NaPN_2$  erfolgte durch Umsetzung von  $P_3N_5$  mit  $NaN_3$  im molaren Verhältnis 1:3 in einem Multianvil-Modul (18/11-Assembly, castable octahedron) bei einem Druck von ca. 35 kbar und 1000 °C (Gl. 6.4.1-1).

$$P_3N_5$$
 + 3 NaN<sub>3</sub>  $\xrightarrow{1000 \, ^{\circ}\text{C}, \, 15 \, \text{min}}$   $\rightarrow$  3 NaPN<sub>2</sub> + 4 N<sub>2</sub> Gl. 6.4.1-1

Das feinpulverisierte und homogenisierte Eduktgemenge (Einwaage  $P_3N_5$ : 32,58 mg, NaN<sub>3</sub>: 39,00 mg) wurde in einem Walker-Modul (genaue Versuchsanordnung siehe Kap. II. 1.3.3) innerhalb von 3 h auf einen Druck von ca. 35 kbar gebracht und anschließend in 15 min auf 1000 °C erhitzt. Die Probe wurde 15 min unter diesen Bedingungen gehalten und anschließend auf Raumtemperatur abgeschreckt. Nach dem Entspannen (Dauer: 3 h) und dem Entfernen des BN-Tiegels wurde NaPN<sub>2</sub> röntgenrein als weißes, leicht hydrolyseempfindliches Pulver erhalten.

### 6.4.2 Strukturaufklärung

Die Aufklärung der Kristallstruktur von NaPN2 wurde auf der Basis von Pulver-Röntgenbeugungsdaten durch Schmid in unserem Arbeitskreis vorgenommen. Die Pulverdiffraktogramme wurden mit einem konventionellen Transmissions-Pulverdiffraktometer STOE STADI P in Debye-Scherrer-Geometrie aufgenommen. NaPN<sub>2</sub> wurde mit Cu<sub>κα τ</sub>Strahlung untersucht. Die Indizierung des Diffraktogrammes erfolgte mit dem Programm WERNER.[42] Das Pulverdiffraktogramm von NaPN2 wurde tetragonal indiziert. Aufgrund der Ähnlichkeit der Diffraktogramme und den ermittelten Gitterkonstanten von NaPN<sub>2</sub> und LiPN<sub>2</sub> sowie HPN<sub>2</sub> war die Isotypie dieser Verbindungen zu vermuten. Daher wurden für die anschließende Rietveld-Verfeinerung von NaPN<sub>2</sub> mit dem Programm GSAS<sup>[44]</sup> die Atomkoordinaten von LiPN2 als Startwerte eingesetzt. Dabei wurden Skalierungsfaktor, Gitterkonstanten, Nullpunktsverschiebung und Untergrund verfeinert. Die Profilform der Beugungsreflexe wurde durch eine Pseudo-Voigt-Funktion angeglichen<sup>[85]</sup> und ihre Asymmetrie korrigiert<sup>[86]</sup>. Alle Atomkoordinaten und Temperaturfaktoren wurden frei verfeinert. Die Parameter der Messung sowie der Kristallstrukturbestimmung und -verfeinerung sind in Tab. 6.4.2-1 bis Tab. 6.4.2-3 wiedergegeben. Das aus der Rietveld-Verfeinerung erhaltene Differenzdiffraktogramm ist in Abb. 6.4.2-1 wiedergegeben.

Tab. 6.4.2-1: Kristallographische Daten von NaPN<sub>2</sub>, Standardabweichungen in runden Klammern.

| NaPN <sub>2</sub>           |
|-----------------------------|
| 81,95                       |
| tetragonal                  |
| /4 2d (Nr. 122)             |
| a = 497,19(2)               |
| c = 697,56(3)               |
| 172,459(8)                  |
| 4                           |
| Stoe STADI P                |
| 154,050, Cu <sub>Kv 1</sub> |
| 25(2)                       |
| $5 \le 2\theta \le 110$     |
| 10500                       |
| 36                          |
| 4                           |
| 7                           |
| 4                           |
| 0,0502                      |
| 0,0649                      |
| 0,0788                      |
| 0,4978                      |
|                             |

Tab. 6.4.2-2: Verfeinerter Ortsparameter und äquivalente isotrope Auslenkungsparameter  $U_{iso}$  /  $pm^2$  von  $NaPN_2$ , Standardabweichungen in runden Klammern.

| Atom | Wyckoff- | Х         | У   | Z   | U <sub>iso</sub> |
|------|----------|-----------|-----|-----|------------------|
|      | Position |           |     |     |                  |
| Р    | 4 a      | 0         | 0   | 0   | 257(6)           |
| Na   | 4 b      | 0         | 0   | 1/2 | 293(8)           |
| N    | 8 d      | 0,1293(1) | 1/4 | 1/8 | 171(10)          |

Tab. 6.4.2-3: Interatomare Abstände / pm und Winkel /  $^{\circ}$  in NaPN<sub>2</sub>, LiPN<sub>2</sub> und HPN<sub>2</sub> (M = Na, Li, H), Standardabweichungen in runden Klammern.

| Verbindung | NaPN <sub>2</sub> | LiPN <sub>2</sub> <sup>[68]</sup> | HPN <sub>2</sub> <sup>[109]</sup> |
|------------|-------------------|-----------------------------------|-----------------------------------|
| P-N        | 163,9(1) 4×       | 164,5(7) 4×                       | 157(1)                            |
|            |                   |                                   | 161(1)                            |
|            |                   |                                   | 165(1)                            |
|            |                   |                                   | 169(1)                            |
| M-N        | 240,9(1) 4×       | 209,3(10) 4×                      |                                   |
|            | 296,1(1) 4×       | 300,6(10) 4×                      |                                   |
| P-N-P      | 134,3(1) 2x       | 123,6(8) 2x                       | 127,6(7)                          |
|            |                   |                                   | 127,9(6)                          |
| N-P-N      | 106,4(1) 4×       | 107,0(5) 4×                       | 105,5(8)                          |
|            | 115,7(1) 2×       | 114,5(2) 2×                       | 106,8(6)                          |
|            |                   |                                   | 106,9(8)                          |
|            |                   |                                   | 109,3(6)                          |
|            |                   |                                   | 111,3(5)                          |
|            |                   |                                   | 117,2(6)                          |

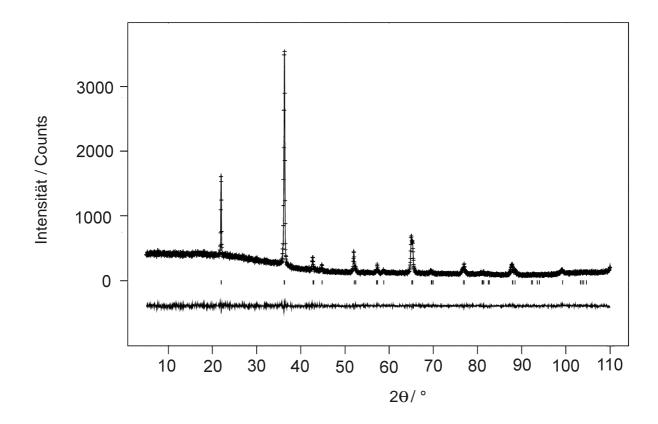



Abb. 6.4.2-1: Beobachtetes (Kreuze) und berechnetes (Linie) Röntgen-Pulverdiffraktogramm sowie Differenz-Profil der Rietveld-Verfeinerung von NaPN<sub>2</sub>. Erlaubte Positionen der Reflexe sind durch senkrechte Striche gekennzeichnet. Das Diffraktogramm wurde mit einem konventionellen STOE Stadi P Pulverdiffraktometer erhalten ( $Cu_{K\alpha}$  ,  $\lambda$  = 154,05 pm).

### 6.4.3 Strukturbeschreibung von NaPN<sub>2</sub>

Das Nitridophosphat NaPN $_2$  kristallisiert isotyp zu LiPN $_2$ . [68] Es ist im Festkörper aus einem dreidimensionalen P-N-Netzwerk eckenverknüpfter PN $_4$ -Tetraeder aufgebaut, in dem die Na $^+$ -Ionen eingelagert sind (Abb. 6.4.3-1). Sämtliche N-Atome sind an je zwei P-Atome gebunden. Das Gerüst ist isoelektronisch zu SiO $_2$ . NaPN $_2$  stellt eine aufgefüllte Variante des  $\beta$ -Cristobalit-Typs dar und ist homöotyp zu Chalkopyrit CuFeS $_2$ . Die Topologie von NaPN $_2$  ist quantitativ durch das Kreisklassespektrum (Tab. 6.4.3-1) wiedergegeben. Nach *Hyde* und *O'Keeffe* sind die Netzwerke dieser Verbindungen durch Rotation der sie konstituierenden Tetraeder um einen Drehwinkel  $\phi$  ineinander überführbar ( $\beta$ -Cristobalit-Typ:  $\phi$  = 0°; NaPN $_2$ :  $\phi$  = 26,4°, idealer Chalkopyrit-Typ:  $\phi$  = 45°) (Tab. 6.4.3-2). [110] Die Drehung erfolgt ausgehend von der kubischen Elementarzelle des aufgefüllten  $\beta$ -Cristobalit-Typs um  $\phi$  = -tan $^{-1}$  (4x) (x-Koordinate von N) um ihre  $\overline{4}$ -Achse. [110] Diese Drehung bewirkt den Übergang von der kubischen in die tetragonale Symmetrie gemäß der Basistransformation

(½ ½ 0; -½ ½ 0; 0 0 1). In NaPN<sub>2</sub> beträgt der Drehwinkel  $\varphi$  = 26,4° und ist damit etwas kleiner als in LiPN<sub>2</sub> ( $\varphi$  = 34,2°)<sup>[68]</sup>. Beim Vorliegen von regulären PN<sub>4</sub>-Tetraedern in NaPN<sub>2</sub> sollte das c/a-Verhältnis der tetragonalen Elementarzelle c/a =  $\sqrt{2+32~x^2}$  =1,59 (LiPN<sub>2</sub>: c/a = 1,71<sup>[68]</sup>) betragen. Durch Stauchung der PN<sub>4</sub>-Tetraeder in Richtung der c-Achse wird jedoch ein kleineres Verhältnis c/a = 1,40 (LiPN<sub>2</sub> = 1,56<sup>[68]</sup>) beobachtet. Dies wird durch die zwei N-P-N-Bindungswinkel (NaPN<sub>2</sub>: 116° (2×), 106° (4×); LiPN<sub>2</sub>: 114° (2×), 107° (4×))<sup>[68]</sup> dokumentiert. Die beschriebene Verdrehung der PN<sub>4</sub>-Tetraeder bestimmt den P-N-P-Winkel (NaPN<sub>2</sub>: 134°; LiPN<sub>2</sub>: 124°).<sup>[68]</sup> Die in NaPN<sub>2</sub> beobachteten P-N<sup>[2]</sup>- Bindungslängen liegen mit 164 pm im typischen Bereich. MAPLE-Berechnungen<sup>[99-101]</sup> zufolge ist Na<sup>+</sup> von 8 N-Atomen umgeben (Na-N-Abstände: 241 pm (4×); 296 pm (4×)) (Abb. 6.4.3-2).

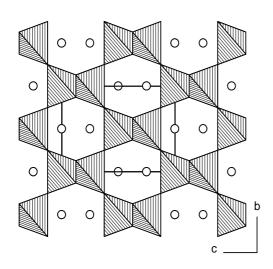



Abb. 6.4.3-1: Kristallstruktur von NaPN $_2$ , Blickrichtung [100]. PN $_4$ -Tetraeder sind als geschlossene Polyeder dargestellt. Weiße Kugeln: Na $^+$ .

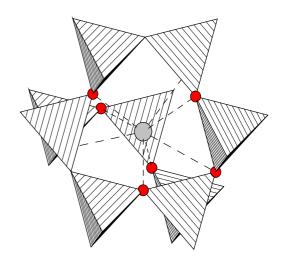



Abb. 6.4.3-2: Umgebung der  $Na^+$ -lonen (hellgraue Kugeln) in  $NaPN_2$  durch N-Atome (dunkelgraue Kugeln).

Tab. 6.4.3-1: Kreisklassespektrum von NaPN<sub>2</sub>.

| Ringgröße n       | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|-------------------|---|---|---|---|---|---|---|
| NaPN <sub>2</sub> | 0 | 0 | 0 | 0 | 4 | 0 | 6 |

Tab. 6.4.3-2. Vergleich der Strukturen von Cristobalit, LiPN<sub>2</sub>, NaPN<sub>2</sub> und Chalkopyrit bezüglich des Drehwinkels  $\phi$  und des Bindungswinkels T-X-T (T = Si, P; X = O, N). Tabelle in Anlehnung an  $L\ddot{u}cke$ . [51]

|                         | Drehwinkel φ / ° | Bindungswinkel T-X-T / ° | TX <sub>4</sub> -Tetraedergerüst, Blick entlang [001]. |
|-------------------------|------------------|--------------------------|--------------------------------------------------------|
| C9-Typ<br>(Cristobalit) | 0                | 180                      |                                                        |
| LiPN₂<br>NaPN₂          | 34,2<br>26,4     | 124<br>134               |                                                        |
| Chalkopyrit             | 45               | 109,5                    |                                                        |

#### 6.4.4 Kristallchemische Diskussion

Ergänzend zur Kristallstrukturanalyse von NaPN<sub>2</sub> wurden MAPLE-Rechnungen durchgeführt. Die MAPLE-Werte für die Alkali-, P- und N-Atome liegen im für diese jeweils typischen Bereich (Tab. 6.4.4-1). Die Ergebnisse der MAPLE-Rechnungen sind konsistent mit den Resultaten der Kristallstrukturanalyse.

Tab. 6.4.4-1: Madelunganteile der Gitterenergien / kcal·mol<sup>-1</sup> von NaPN<sub>2</sub>.

|                   | Na  | Р    | N <sup>[2]</sup> |
|-------------------|-----|------|------------------|
| NaPN <sub>2</sub> | 151 | 3611 | 1459             |

Berechnungen der Ladungsverteilung an den Atomen mit dem CHARDI-Konzept ergeben sowohl für die ECoN als auch für  $\Sigma Q$  plausible Werte. Die ECoN von N ist aufgrund der signifikanten koordinativen Beiträge der Na $^+$ -Ionen größer als 3. Für P ergibt sich der Idealwert 4,00.  $\Sigma Q$  ist für alle Atome identisch mit den aus den Formalladungen zu erwartenden Werten. Das Bindungslängen-Bindungsstärken-Konzept liefert gegenüber dem CHARDI-Konzept deutlich unbefriedigendere Werte. Zwar ergibt sich für Na $^+$  eine plausible Valenzsumme, jedoch sind die Valenzsummen für die P-Atome und insbesondere für die N-Atome zu gering. (Tab. 6.4.4-2). Solche Abweichungen werden für Nitride jedoch oft beobachtet. [35] Offenbar ist das Bindungslängen-Bindungsstärken-Konzept auf Nitride nur begrenzt anwendbar.

Tab. 6.4.4-2: Effektive Koordinationszahlen, Ladungsverteilung  $\Sigma Q$  und Valenzsummen  $\Sigma V$  in NaPN<sub>2</sub> nach dem CHARDI- bzw. Bindungslängen-Bindungsstärken-Konzept.

|            | Na    | Р     | N     |
|------------|-------|-------|-------|
| ECoN       | 4,72  | 4,00  | 4,34  |
|            |       |       |       |
| $\Sigma Q$ | +1,00 | +5,00 | -3,00 |
| $\Sigma V$ | 1,0   | 4,7   | 2,4   |

# 6.4.5 Temperaturabhängige pulverdiffraktometrische Untersuchungen

Um zu überprüfen, ob es sich bei der kristallographisch ermittelten Struktur von NaPN2 um eine Normaldruckmodifikation oder eine abgeschreckte Hochdruckphase handelt, wurden pulverdiffraktometrische Messungen zwischen 20 und 760 °C durchgeführt. Dazu wurde die Probe in einem Quarzglas-Markröhrchen in Schritten von 40 °C aufgeheizt und simultan jeweils 30 min bei der entsprechenden Temperatur pulverdiffraktometrisch mit  $Mo_{K\alpha}$  1-Abb. 6.4.5-1 zeigt, Strahlung untersucht. daß sich innerhalb des gemessenen Winkelbereiches die Intensität der Reflexe nicht wesentlich ändert und auch keine neuen Reflexe hinzukommen. Bei der Kristallstruktur von NaPN<sub>2</sub> handelt es sich also vermutlich um eine Normaldruckmodifikation, die auch bei Hochdruck stabil ist. Die geringe Verschiebung aller Reflexe zu kleineren 20-Werten bei zunehmender Temperatur ist auf die thermische Ausdehnung der Verbindung und die damit verbundene Vergrößerung der Gitterkonstanten zurückzuführen. Die Indizierung des bei 740 °C erhaltenen Diffraktogrammes ergab die Gitterkonstanten a = 497,8(4), c = 706,6(3) pm. Das Zellvolumen vergrößerte sich gegenüber Raumtemperatur um 1,5 % auf V =  $175,13\cdot10^6$  pm<sup>3</sup>.

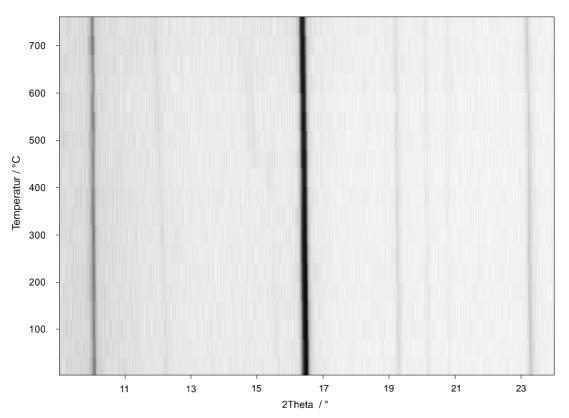



Abb. 6.4.5-1: Das Pulverdiffraktogramm von NaPN<sub>2</sub> in Abhängigkeit von der Temperatur, Mo<sub> $K\alpha$  7</sub>-Stahlung, (Meßbereich  $9^{\circ} < 2\theta < 24^{\circ}$ ).

# 6.4.6 IR-spektroskopische Untersuchungen

IR-spektroskopische Untersuchungen wurden in einer KBr-Matrix durchgeführt. Abb. 6.4.6-1 zeigt das IR-Spektrum von NaPN<sub>2</sub> im Bereich von 4000 bis 400 cm<sup>-1</sup>.

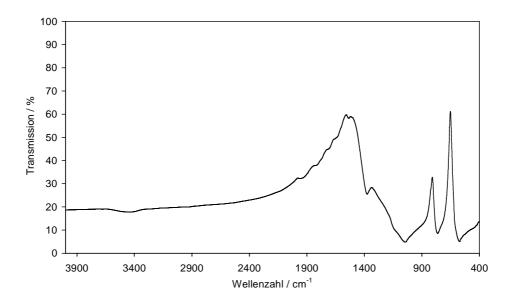



Abb. 6.4.6-1: IR-Spektrum von  $NaPN_2$ , KBr-Preßling.

Unterhalb von ca. 1500 cm<sup>-1</sup> existiert ein komplexes Muster von Absorptionsbanden, welche auf P-N-Gerüstschwingungen zurückzuführen sind. Das Spektrum zeigt drei Gruppen von breiten Banden, die sich bei ca. 800-1500, 700 und 400-600 cm<sup>-1</sup> befinden. Ein ganz ähnliches Spektrum zeigt die isotype Verbindung LiPN<sub>2</sub>. [51] Eine genaue Zuordnung der Banden ist aufgrund der Komplexität der Gerüstschwingungen nicht möglich.

# 6.4.7 <sup>31</sup>P-MAS-NMR-spektroskopische Untersuchungen

NaPN $_2$  wurde  $^{31}$ P-MAS-NMR-spektroskopisch untersucht. Das Spektrum wurde bei einer Anregungsfrequenz von 202 MHz und und einer Rotationsfrequenz von 25 kHz aufgenommen. Die Messung erfolgte mit 1-Puls-Anregung und vierfacher Phasenzyklisierung. Die Pulslänge der 90°-Pulse betrug 2,1  $\mu$ s. Die Wiederholzeit betrug 500 s.

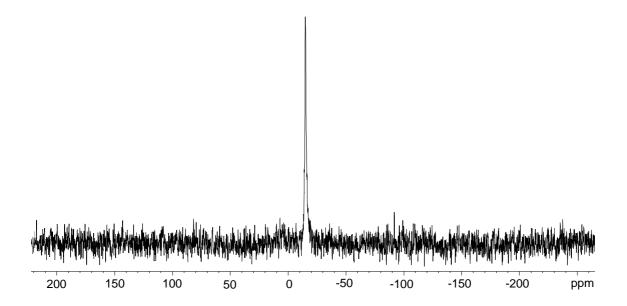



Abb. 6.4.7-1: 31P-MAS-NMR-Spektrum von NaPN<sub>2</sub>.

Das Spektrum (Abb. 6.4.7-1) zeigt eine Resonanz bei  $-15\,\mathrm{ppm}$ . Dies ist eine für ein Nitridophosphat mit einem Kondensationsgrad von P:N=0,5 ungewöhnlich niedrige chemische Verschiebung. So zeigt die isotype Verbindung LiPN $_2$  eine  $^{31}P$ -Resonanz bei 0 ppm. $^{[111]}$  Der Nitridosodalith  $Zn_6[P_{12}N_{24}]$ , welcher ebenfalls einen Kondensationsgrad von 0,5 aufweist, zeigt ein Signal bei einer sehr ähnlichen chemischen Verschiebung (2,0 ppm). $^{[112]}$  Wie schon beim  $^{31}P$ -Spektrum von  $KP_4N_7$  beobachtet, können offensichtlich in isotype P-N-Teilstrukturen eingelagerte Kationen die chemische Verschiebung der  $^{31}P$ -Signale wesentlich beeinflussen.

# 6.4.8 Thermogravimetrische Untersuchungen

Zur Untersuchung der thermischen Stabilität von  $NaPN_2$  wurden thermogravimetrische Messungen in einer Heliumatmosphäre durchgeführt. Die Probe wurde mit einer Heizrate von 10 °C pro Minute aufgeheizt. Wie Abb. 6.4.8-1 zeigt, beginnt ab ca. 900 °C rasche Zersetzung von  $NaPN_2$ .

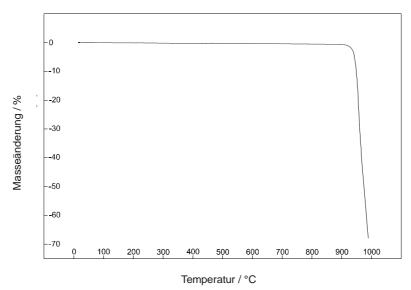



Abb. 6.4.8-1: Thermogravimetrische Untersuchung von NaPN<sub>2</sub>, Einwaage 8,820 mg.

### 6.5 Die Calcium- und Strontium-nitridophosphate CaP<sub>2</sub>N<sub>4</sub> und SrP<sub>2</sub>N<sub>4</sub>

Die erfolgreiche Anwendung des Hochdruck-Hochtemperatur-Synthesekonzepts auf die Synthese von Alkali-nitridophosphaten motivierte, dieses Synthesekonzept auch zur Darstellung von Erdalkali-nitridophosphaten anzuwenden. Hierzu wurden  $Ca(N_3)_2$ ,  $Sr(N_3)_2$  und  $Ba(N_3)_2$  mit  $P_3N_5$  unter Hochdruck-Hochtemperaturbedingungen umgesetzt. Mit  $Mg(N_3)_2$  und  $Be(N_3)_2$  wurden aufgrund deren Hydrolyseempfindlichkeit keine Versuche durchgeführt. Das molare Verhältnis Azid:  $P_3N_5$  wurde auf den Kondensationsgrad P:N der bereits bekannten Alkali-nitridophosphate eingestellt (P:N=1:2;6:11;4:7). Im ternären System Erdalkali-Phosphor-Stickstoff existieren bereits die niedrigkondensierten Verbindungen  $Mg_2PN_3$  und  $Ca_2PN_3$ . Daher wurde zusätzlich angestrebt, die homologen Verbindungen  $Sr_2PN_3$  und  $Ba_2PN_3$  zu synthetisieren.

Die Versuche, Erdalkali-nitridophosphate mit einem Kondensationsgrad von P:N=1:2 darzustellen, führten mit  $Ca(N_3)_2$  und  $Sr(N_3)_2$  problemlos zu röntgenreinem  $CaP_2N_4$  und  $SrP_2N_4$ . Analoge Versuche mit  $Ba(N_3)_2$  ergaben ebenfalls ein kristallines Produkt, dessen Pulverdiffraktogramm jedoch nicht indiziert werden konnte. Weitere Synthesen zur Darstellung der hypothetischen hochkondensierten Nitridophosphate  $M(P_6N_{11})_2$  und  $M(P_4N_7)_2$  ( $M=Ca,\ Sr,\ Ba$ ) führte im Falle von  $M=Ca,\ Sr$  jeweils zu  $CaP_2N_4$  und  $SrP_2N_4$  als Hauptprodukt, während für M=Ba jeweils neue, kristalline Produkte erhalten wurden. Die aufgenommenen Diffraktogramme dieser Produkte konnten jedoch nicht indiziert werden. Auch beim Versuch der Synthese des hypothetischen  $Ba_2PN_3$  wurde ein kristallines Produkt erhalten, welches aber nicht näher charakterisiert werden konnte. Dagegen war das Produkt, beim Versuch  $Sr_2PN_3$  darzustellen, weitgehend amorph. Die nachfolgend detailliert beschriebene Synthese für  $CaP_2N_4$  und  $SrP_2N_4$  erwies sich als ausgezeichnet reproduzierbar.

### 6.5.1 Synthese

Die Synthese der Nitridophosphate  $CaP_2N_4$  und  $SrP_2N_4$  erfolgte jeweils durch Umsetzung von  $P_3N_5$  mit  $Ca(N_3)_2$  bzw.  $Sr(N_3)_2$  im molaren Verhältnis 2 : 3 in einem Multianvil-Modul (18/11-Assembly, castable octahedron) bei einem Druck von ca. 35 kbar und 1200 - 1300 °C (Gl. 6.5.1-1).

$$2 P_3 N_5 + 3 M(N_3)_2 \xrightarrow{1200 - 1300 \, ^{\circ}C, \, 15 \, \text{min}}$$
  $\rightarrow 3 M P_2 N_4 + 8 N_2 (M = Ca, Sr) Gl. 6.5.1-1$ 

Das jeweils feinpulverisierte und homogenisierte Eduktgemenge (Einwaage  $P_3N_5$ : je 36,2 mg,  $Ca(N_3)_2$ : 41,37 mg,  $Sr(N_3)_2$ : 57,27 mg) wurde in einem Walker-Modul (genaue Versuchsanordnung siehe Kap. II. 1.3.3) innerhalb von 3 h auf einen Druck von ca. 35 kbar gebracht und anschließend in 15 min auf 1200-1300 °C erhitzt. Die jeweilige Probe wurde 15 min unter diesen Bedingungen gehalten und anschließend auf Raumtemperatur abgeschreckt. Nach dem Entspannen (Dauer: 3 h) und dem Entfernen des BN-Tiegels wurden  $CaP_2N_4$  bzw.  $SrP_2N_4$  röntgenrein als weiße, luftstabile Pulver erhalten.

### 6.5.2 Strukturaufklärung

Die Aufklärung und Verfeinerung der Kristallstruktur von CaP<sub>2</sub>N<sub>4</sub> und SrP<sub>2</sub>N<sub>4</sub> wurde auf der Basis von Pulver-Röntgenbeugungsdaten von Frau Sabine Schmid vorgenommen. Die Indizierung der mit einem konventionellen Pulverdiffraktometer STOE STADI P aufgenommenen Diffraktogramme gelang mit dem Programm WERNER. [42] Aufgrund der systematischen Auslöschungen ergaben sich die Raumgruppen P63, P63/m und P6322. Die Integration der Intensitäten sowie die Strukturlösung mit Direkten Methoden erfolgte mit Hilfe des Programmes EXPO.[43] Dabei ließen sich in der Raumgruppe P63 alle P und N lokalisieren, die Rietveld-Verfeinerung der so gefundenen Atomkoordinaten wurde zunächst in der Raumgruppe P6<sub>3</sub>22 sowie deren Untergruppe P6<sub>3</sub> mit dem Programmsystem GSAS<sup>[44]</sup> durchgeführt. Die strukturchemisch sinnvollere Verfeinerung wurde dabei in der Raumgruppe P6<sub>3</sub>22 erhalten. Die Raumgruppen P6<sub>3</sub>22 und P6<sub>3</sub> implizieren das Vorhandensein von zwei bzw. 4 P-Lagen für CaP<sub>2</sub>N<sub>4</sub> und SrP<sub>2</sub>N<sub>4</sub>. Dies steht im Widerspruch zu <sup>31</sup>P-MAS-NMRspektroskopischen Untersuchungen, die beweisen, daß mindestens fünf kristallographisch verschiedene P-Lagen existieren müssen (vgl. Kap 6.5.7). Deshalb wurde versucht, die Strukturen in Untergruppen von P6<sub>3</sub>22 zu verfeinern, für welche sich eine entsprechende Anzahl an P-Lagen ergibt und sich mit der Topologie des Gerüsts in Einklang bringen lassen. Entsprechende Rechnungen in den Raumgruppen P3,  $P222_1$  und  $P2_1$  führten zwar zu befriedigenden  $R_p$ - w $R_p$  und  $R_F$ -Werten, jedoch nicht zu strukturchemisch sinnvollen Bindungslängen und -winkeln sowie Temperaturfaktoren. Da die Verfeinerung in der Raumgruppe  $P6_322$  die besten Resultate lieferte, soll diese im folgenden Abschnitt im Detail beschrieben werden. Es sei jedoch darauf hingewiesen, daß die erhaltene Struktur aufgrund der Widersprüche zu den  $^{31}P$ -MAS-NMR-Daten nur den Charakter eines Strukturmodelles haben kann. Eine genaue Klärung der Symmetrie der Verbindungen könnte durch röntgenographische Untersuchungen an Einkristallen möglich sein. Es gelang im Rahmen der Dissertation jedoch nicht, Einkristalle von  $CaP_2N_4$  oder  $SrP_2N_4$  zu züchten.

Zu Beginn der Rechnungen wurden Skalierungsfaktor, Gitterkonstanten, Nullpunktsverschiebung und Untergrund verfeinert, die Profilform der Beugungsreflexe wurde durch eine Pseudo-Voigt-Funktion<sup>[85]</sup> angeglichen und ihre Asymmetrie<sup>[86]</sup> nachkorrigiert. Bei der anschließenden Verfeinerung der Atomparameter ergaben sich zufriedenstellende  $R_p$ - und w $R_p$ -Werte sowie strukturchemisch sinnvolle Bindungslängen P-N. Die Temperaturfaktoren von Ca und Sr sowie P von  $CaP_2N_4$  konnten frei verfeinert werden während die P-Atome von  $SrP_2N_4$  und die N-Atome jeweils voneinander abhängig verfeinert wurden. Es ergaben sich jedoch unbefriedigende  $R_F$ -Werte.

Um die aus konventionellen Pulverdaten erhaltene Struktur zu überprüfen, wurden zusätzliche Untersuchungen mit höherer Auflösung unter Verwendung Synchrotronstrahlung an der National Synchrotron Light Source in Brookhaven / USA (Beamline X7A) durchgeführt. Die Beugungsuntersuchungen mit Synchrotronstrahlung erfolgten in Debye-Scherrer Geometrie. Die erhaltenenen Pulverdiffraktogramme bestätigten die aus konventionellen Pulverdaten erhaltene Elementarzelle. Daher wurden die Diffraktogramme analog zu oben beschriebener Methode mit dem Programm GSAS<sup>[44]</sup> verfeinert. Dabei traten sowohl bei den Temperaturfaktoren von P als auch bei N strukturchemisch nicht sinnvolle Werte auf. Trotz befriedigend verfeinerter Profilparameter ergaben sich bei den Synchrotron-Messungen nicht nur zu hohe R<sub>F</sub>-Werte, sondern auch strukturchemisch nicht sinnvolle Bindungslängen und -winkel. Versuche die Struktur mit Restraints bei den P-N-Bindungen zu verfeinern führten zum Divergieren der Verfeinerung. Daher wurden für die anschließende Strukturdiskussion die Daten der Messungen mit Cu<sub>Kα</sub> 1-Strahlung zugrunde gelegt. Die Parameter der Messung und Strukturbestimmung sind in Tab. 6.5.2-1 bis Tab. 6.5.2-3 wiedergegeben. Die Anpassung der Diffraktogramme durch die Rietveld-Verfeinerung zeigen Abb. 6.5.2-1 und Abb. 6.5.2-2.

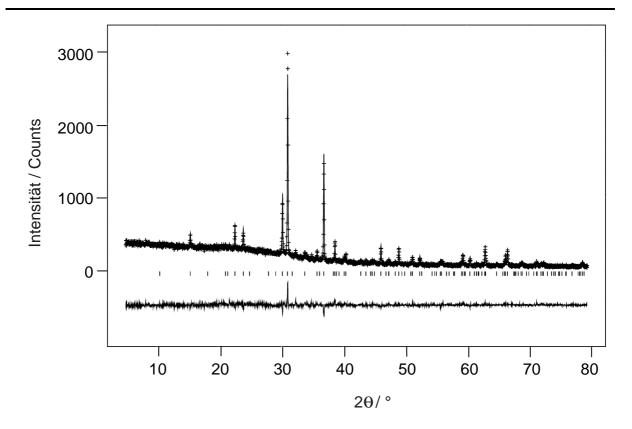



Abb. 6.5.2-1: Beobachtetes (Kreuze) und berechnetes (Linie) Röntgen-Pulverdiffraktogramm sowie Differenz-Profil der Rietveld-Verfeinerung von  $CaP_2N_4$ . Erlaubte Positionen der Reflexe sind durch senkrechte Striche gekennzeichnet. Das Diffraktogramm wurde mit einem konventionellen STOE Stadi P Pulverdiffraktometer erhalten ( $Cu_{K\alpha}$ <sub>1</sub>,  $\lambda$  = 154,05 pm).

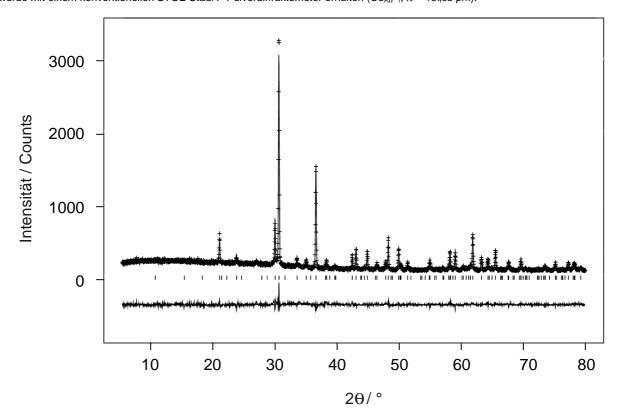



Abb. 6.5.2-2: Beobachtetes (Kreuze) und berechnetes (Linie) Röntgen-Pulverdiffraktogramm sowie Differenz-Profil der Rietveld-Verfeinerung von  $SrP_2N_4$ . Erlaubte Positionen der Reflexe sind durch senkrechte Striche gekennzeichnet. Das Diffraktogramm wurde mit einem konventionellen STOE Stadi P Pulverdiffraktometer erhalten ( $Cu_{K\alpha}$ <sub>1</sub>,  $\lambda$  = 154,05 pm).

 $Tab.\ 6.5.2\text{-}1: Kristallographische\ Daten\ von\ CaP_2N_4\ und\ SrP_2N_4\ aus\ der\ Vefeinerung\ der\ Messung\ mit\ Cu_{\textit{K}\alpha}\ _{\textit{1}}\text{-}Stahlung.$ 

| Formel                                        | CaP₂N₄                     | SrP <sub>2</sub> N <sub>4</sub> |  |
|-----------------------------------------------|----------------------------|---------------------------------|--|
| Molmasse / g·mol <sup>-1</sup>                | 158,05                     | 205,59                          |  |
| Kristallsystem                                | hexagonal                  | hexagonal                       |  |
| Raumgruppe                                    | <i>P</i> 6 <sub>3</sub> 22 | P6 <sub>3</sub> 22              |  |
| Gitterkonstanten / pm                         | a = 972,11(1)              | a = 987,44(1)                   |  |
|                                               | c = 785,90(1)              | c = 810,48(1)                   |  |
| Zellvolumen / 10 <sup>6</sup> pm <sup>3</sup> | V = 643,19                 | V = 684,14                      |  |
| Z                                             | 8                          | 8                               |  |
| Strahlung                                     | 154,05 Cu <sub>κα 1</sub>  | 154,05 Cu <sub>κα 1</sub>       |  |
| T/°C                                          | 25(2)                      | 25(2)                           |  |
| Meßbereich / °                                | 5 < 20 < 80                | 5 < 2θ < 80                     |  |
| Datenpunkte                                   | 7500                       | 7500                            |  |
| Beobachtete Reflexe                           | 106                        | 109                             |  |
| Atom-Parameter                                | 36                         | 35                              |  |
| Profil-Parameter                              | 7                          | 7                               |  |
| Untergrund-Parameter                          | 3                          | 3                               |  |
| $R_p$                                         | 0,064                      | 0,077                           |  |
| $wR_p$                                        | 0,086                      | 0,099                           |  |
| $R_{F}$                                       | 0,212                      | 0,125                           |  |
| CHI <sup>2</sup>                              | 0,625                      | 0,738                           |  |

Tab 6.5.2-2: Verfeinerte Ortsparameter und äquivalente isotrope Auslenkungsparameter  $U_{iso}$  /  $pm^2$  von  $CaP_2N_4$  und  $SrP_2N_4$ , erhalten aus den Messungen mit  $Cu_{K\alpha}$  <sub>1</sub>-Strahlung, n.p.d. = non positive defined.

| Atom | Wyckoff- | Х         | у         | Z         | U <sub>iso</sub> |
|------|----------|-----------|-----------|-----------|------------------|
|      | Position |           |           |           |                  |
| Ca1  | 6h       | 0,5190(3) | 0,0381(5) | 1/4       | 579(23)          |
| Sr1  | 6h       | 0,5182(2) | 0,0365(3) | 1/4       | 97(8)            |
| Ca2  | 2b       | 0         | 0         | 1/4       | 320(40)          |
| Sr2  | 2b       | 0         | 0         | 1/4       | 122(3)           |
| P1   | 12i      | 0,3342(8) | 0,1556(8) | 0,5528(4) | 363(14)          |
|      | 12i      | 0,3303(6) | 0,1553(2) | 0,5563(5) | 41(10)           |
| P2   | 4f       | 1/3       | 2/3       | 0,4541(9) | 482(30)          |
|      | 4f       | 1/3       | 2/3       | 0,4434(2) | 41(10)           |
| N1   | 6g       | 0         | 0,190(4)  | 1/2       | 614(19)          |
|      | 6g       | 0         | 0,189(4)  | 1/2       | 446(10)          |
| N2   | 6h       | 0,146(2)  | 0,292(3)  | 1/4       | 614(19)          |
|      | 6h       | 0,166(2)  | 0,333(3)  | 1/4       | 446(10)          |
| N3   | 12i      | 0,190(3)  | 0,497(3)  | 0,524(2)  | 614(19)          |
|      | 12i      | 0,2001(3) | 0,5021(4) | 0,5126(2) | 446(10)          |
| N4   | 6g       | 0,293(4)  | 0,293(4)  | 1/2       | 614(19)          |
|      | 6g       | 0,283(5)  | 0,283(5)  | 1/2       | 446(10)          |
| N5   | 2c       | 1/3       | 2/3       | 1/4       | 614(19)          |
|      | 2c       | 1/3       | 2/3       | 1/4       | 446(10)          |

Tab. 6.5.2-3: Bindungslängen / pm und -winkel / ° von  $CaP_2N_4$  und  $SrP_2N_4$  aus den Messungen mit  $Cu_{K\alpha}$  , Standardabweichungen in runden Klammern. M=Ca, Sr.

|          | CaP <sub>2</sub> N <sub>4</sub> | SrP <sub>2</sub> N <sub>4</sub> |
|----------|---------------------------------|---------------------------------|
| M1-N2    | 314(2) 2×                       | 302(2) 2×                       |
| -N3      | 238(2) 2×                       | 257(2) 2×                       |
| -N3      | 301(2) 2×                       | 309(2) 2×                       |
| -N3      | 307(2) 2×                       | 332(2) 2×                       |
| -N4      | 282(3) 2×                       | 296(4) 2×                       |
| -N5      | 312(4)                          | 316(2)                          |
| M2-N1    | 270(3) 6×                       | 275(3) 6×                       |
| -N2      | 246(4) 3×                       | 284(2) 3×                       |
| -N4      | 347(2) 6×                       | 341(3) 6×                       |
| P1-N1    | 152(2)                          | 154(2)                          |
| -N2      | 159,3(5)                        | 157,3(4)                        |
| -N3      | 157(3)                          | 162(3)                          |
| -N4      | 163(2)                          | 161(2)                          |
| P2-N3    | 163(2) 3×                       | 160(3) 3×                       |
| -N5      | 160,3(8)                        | 157(1)                          |
| N1-P1-N2 | 97(2)                           | 109,8(7)                        |
| N1-P1-N3 | 115(2)                          | 118(2)                          |
| N1-P1-N4 | 106(2)                          | 103(2)                          |
| N2-P1-N3 | 126(2)                          | 110(2)                          |
| N2-P1-N4 | 98(5)                           | 103(7)                          |
| N3-P1-N4 | 111(2)                          | 111(2)                          |
| N3-P2-N3 | 109,2(6) 3×                     | 108,4(7) 3×                     |
| N3-P2-N5 | 109,7(6) 3×                     | 110,6(7) 3×                     |
| P1-N1-P1 | 130(3)                          | 131(4)                          |
| P1-N2-P1 | 154(3)                          | 178(2)                          |
| P1-N3-P2 | 122(1)                          | 127(1)                          |
| P1-N4-P1 | 146(3)                          | 151(4)                          |
| P2-N5-P2 | 180                             | 180                             |

### 6.5.3 Strukturbeschreibung von CaP<sub>2</sub>N<sub>4</sub> und SrP<sub>2</sub>N<sub>4</sub>

Die Verbindungen  $CaP_2N_4$  und  $SrP_2N_4$  kristallisieren isotyp in einer Raumnetzstruktur aus eckenverknüpften  $PN_4$ -Tetraedern. Gemäß  $_{\infty}^3[(P_2^{[4]}N_4^{[2]})^{2-}]$  sind alle N-Atome an je zwei P-Atome gebunden. Die P-N-Teilstrukturen sind isoelektronisch zu  $SiO_2$  sowie den P-N-Gerüsten von  $HPN_2^{[51]}$ ,  $LiPN_2^{[68]}$  und  $NaPN_2$ . Die Topologie der P-N-Teilstruktur von  $CaP_2N_4$  und  $SrP_2N_4$  ist jedoch signifikant verschieden von der jeweiligen Topologie der vorgenannten Verbindungen.

Die Struktur von  $CaP_2N_4$  und  $SrP_2N_4$  ist separierbar in Schichten kondensierter  $P_6N_6$ -Sechserringe, die senkrecht zu [001] stehen (Abb. 6.5.3-1).

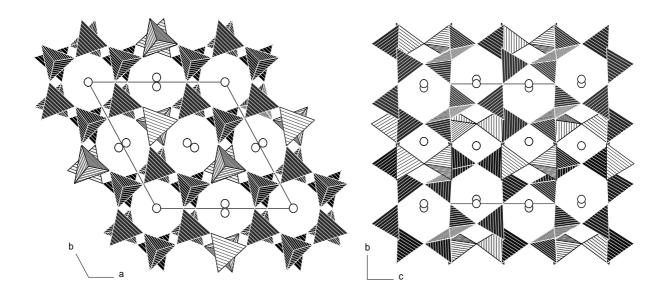



Abb. 6.5.3-1: Kristallstruktur von  $CaP_2N_4$  und  $SrP_2N_4$ , Blick entlang [001]. In den Kanälen kondensierter  $P_6N_6$ -Sechserringe befinden sich die  $Ca^{2+}$ - bzw.  $Sr^{2+}$ -lonen (weiße Kugeln).

Abb. 6.5.3-2: Kristallstruktur von  $CaP_2N_4$  und  $SrP_2N_4$ , Blick entlang [100]. Die Darstellung zeigt die Verknüpfung der  $P_6N_6$ -Sechserringe aus Abb. 6.5.3-1 entlang [001] über  $P_4N_4$ -Viererringe sowie weitere  $P_6N_6$ -Sechserringe.

Innerhalb dieser Schichten liegen zwei Sorten (S1 und S2)  $P_6N_6$ -Sechserringe vor. Während S1 aus Tetraedern besteht, deren Spitzen alternierend nach [001] und [00 $\overline{1}$ ] zeigen, wechseln bei S2 drei Tetraeder, deren Spitzen nach [001] zeigen, mit drei Tetraedern, deren Spitzen nach [00 $\overline{1}$ ] gerichtet sind, ab. S1 tritt drei mal so häufig auf wie S2. Die Schichten aus  $P_6N_6$ -Sechserringen sind entlang [001] gestapelt. Die Verknüpfung der Schichten erfolgt über die Atome N2 und N5 unter Ausbildung von  $P_4N_4$ -Viererringen sowie weiteren  $P_6N_6$ -Sechserringen, welche jeweils senkrecht zu [100] und [010] stehen (Abb. 6.5.3-2).

Strukturelle Ähnlichkeiten existieren damit zu den Verbindungen  $BaAl_2O_4^{[113]}$  und Nephelin  $NaAlSiO_4^{[114]}$ , welche ebenfalls hexagonal kristallisieren und aus entlang [001] gestapelten kondensierten  $T_6O_6$ -Sechserringen aufgebaut sind. Im Unterschied zu  $CaP_2N_4$  und  $SrP_2N_4$  liegen jedoch keine  $T_4O_4$ -Viererringe senkrecht zu [100] und [010] (T=AI, Si) vor, wie die Kreisklassespektren dokumentieren (Tab. 6.5.3-1).

Tab. 6.5.3-1: Kreisklassespektren von  $CaP_2N_4$  und  $SrP_2N_4$  im Vergleich zu den Verbindungen  $NaPN_2$ ,  $BaAl_2O_4^{[113]}$  und Nephelin  $NaAlSiO_4^{[114]}$ .

| Ringgröße n                                                         | 2 | 3 | 4 | 5 | 6  | 7 | 8  |
|---------------------------------------------------------------------|---|---|---|---|----|---|----|
| CaP <sub>2</sub> N <sub>4</sub> und SrP <sub>2</sub> N <sub>4</sub> | 0 | 0 | 6 | 0 | 20 | 0 | 60 |
| BaAl <sub>2</sub> O <sub>4</sub>                                    | 0 | 0 | 0 | 0 | 8  | 0 | 18 |
| NaAlSiO <sub>4</sub> (Nephelin)                                     | 0 | 0 | 0 | 0 | 32 | 0 | 48 |
| NaPN <sub>2</sub>                                                   | 0 | 0 | 0 | 0 | 4  | 0 | 6  |

Die P-N-Bindungslängen in  $CaP_2N_4$  bzw.  $SrP_2N_4$  variieren zwischen 151 < P-N<sup>[2]</sup> < 163 pm bzw.  $154 < P-N^{[2]} < 162 \text{ pm}$  (vgl. Kap. 7.3). Die N-P-N-Bindungswinkel nehmen Werte zwischen 97 und 126° (CaP<sub>2</sub>N<sub>4</sub>) bzw. 103 und 118° (SrP<sub>2</sub>N<sub>4</sub>) an. Die P-N-P-Bindungswinkel variieren zwischen 122 und 180° (CaP<sub>2</sub>N<sub>4</sub>) bzw. 127 und 180° (SrP<sub>2</sub>N<sub>4</sub>). Der P-N-P-Winkel von 180° ist durch die hexagonale Symmetrie der Elementarzelle erzwungen. Eine ähnliche Situation wird oft in Diphosphaten wie ZrP<sub>2</sub>O<sub>7</sub> gefunden, in denen P-O-P-Winkel von 180° auftreten. Genaue Untersuchungen an dieser Verbindung haben ergeben, daß ein solcher 180°-Winkel nur im Mittel durch die Schwingungen der P-O-P-Gruppe existiert. [115] Ganz ähnliche Beobachtungen wurden bei der genauen strukturellen Untersuchung von Silicaten mit Si-O-Si-Bindungswinkeln von 180° gemacht. Es treten hier stets sehr große Schwingungsellipsoide senkrecht zu den Si-O-Bindungen auf. [116] Diese Befunde, sowie 31P-MAS-NMR-spektroskopische Untersuchungen (vgl. auch Kap. 6.5.7) legen nahe, daß auch der P-N-P-180°-Winkel in CaP<sub>2</sub>N<sub>4</sub> und SrP<sub>2</sub>N<sub>4</sub> einem Mittelwert entspricht. Daraufhin wurde versucht, die Atome N5 und N2, welche die P<sub>6</sub>N<sub>6</sub>-Sechserringe entlang [001] verknüpfen, fehlgeordnet zu verfeinern. Dies führte jedoch regelmäßig zum sofortigen Divergieren der Verfeinerung.

Die Erdalkali-Ionen auf den Ca1- bzw. Sr1-Lagen sind in  $CaP_2N_4$  bzw.  $SrP_2N_4$  von je 6 bzw. 11 N-Atomen koordiniert (Abb. 6.5.3-3), während Ca2 bzw. Sr2 von je 9 bzw. 15 N-Atomen umgeben sind (Abb. 6.5.3-4). Die Angaben basieren auf MAPLE-Rechnungen. [99-101]

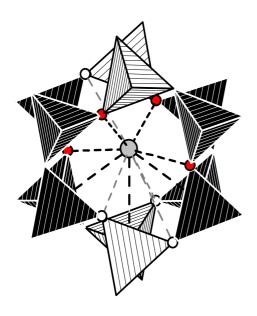



Abb. 6.5.3-3: Koordination der Ca<sup>2+</sup>- bzw. Sr<sup>2+</sup>-lonen auf den Ca1- bzw. Sr1-Lagen. Die sechs N-Atome, welche sowohl Ca<sup>2+</sup> als auch Sr<sup>2+</sup> umgeben, sind als hellgraue Kugeln dargestellt, während die fünf N-Atome, welche ausschließlich Sr<sup>2+</sup> koordinieren, weiß dargestellt sind. Die Wechselwirkungen zwischen den jeweiligen Atomen sind durch schwarze bzw. graue gestrichelte Linien symbolisiert.

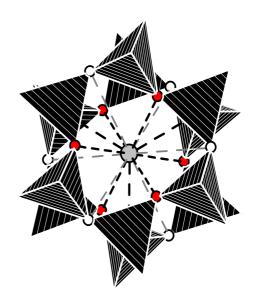



Abb. 6.5.3-4: Koordination der  $Ca^{2+}$ - bzw.  $Sr^{2+}$ -Ionen auf den Ca2- bzw. Sr2-Lagen. Die neun N-Atome, welche sowohl  $Ca^{2+}$  als auch  $Sr^{2+}$  umgeben, sind als hellgraue Kugeln dargestellt, während die sechs N-Atome, welche ausschließlich  $Sr^{2+}$  koordinieren, weiß dargestellt sind. Die Wechselwirkungen zwischen den jeweiligen Atomen sind durch schwarze bzw. graue gestrichelte Linien symbolisiert.

### 6.5.4 Kristallchemische Diskussion

Ergänzend zur Kristallstrukturanalyse von CaP<sub>2</sub>N<sub>4</sub> und SrP<sub>2</sub>N<sub>4</sub> wurden MAPLE-Rechnungen durchgeführt. Die MAPLE-Werte für die Erdalkali-, P- und N-Atome liegen mit Ausnahme des Atoms N5, welches in CaP<sub>2</sub>N<sub>4</sub> einen etwas zu hohen Wert annimmt, im jeweils typischen Bereich (Tab. 6.5.4-1). Das Atom N5 verbrückt zwei P-Atome über einen Winkel von 180°. Dieser Winkel ist, wie schon in Kap. 6.5.3 diskutiert, jedoch strukturchemisch wahrscheinlich nicht sinnvoll. Die MAPLE-Rechnungen können daher als zusätzlicher Indikator zur Bestätigung dieser Vermutung herangezogen werden.

Tab. 6.5.4-1: Partielle Madelunganteile der Gitterenergien / kcal·mol<sup>-1</sup> von CaP<sub>2</sub>N<sub>4</sub> und SrP<sub>2</sub>N<sub>4</sub>, M = Ca, Sr.

|                                 | M1  | M2  | P1   | P2   | N1 <sup>[2]</sup> | N2 <sup>[2]</sup> | N3 <sup>[2]</sup> | N4 <sup>[2]</sup> | N5 <sup>[2]</sup> |
|---------------------------------|-----|-----|------|------|-------------------|-------------------|-------------------|-------------------|-------------------|
| CaP <sub>2</sub> N <sub>4</sub> | 410 | 700 | 3877 | 3394 | 1383              | 1376              | 1598              | 1331              | 1715              |
| SrP <sub>2</sub> N <sub>4</sub> | 426 | 496 | 3832 | 3706 | 1526              | 1493              | 1490              | 1373              | 1573              |

Zusätzlich wurde die Ladungsverteilung und die ECoN an den Atomen mit dem CHARDI-Konzept sowie die Valenzsummen mit dem Bindungslängen – Bindungsstärken-Konzept berechnet. Tab. 6.5.4-2 und Tab. 6.5.4-3 zeigen, daß die mit CHARDI berechneten Werte  $\Sigma Q$  deutlich stärker den zu erwartenden Ladungen entsprechen als die mit dem Bindungslängen-Bindungstärken-Konzept erhaltenen Valenzsummen  $\Sigma V$ . Jedoch treten auch bei  $\Sigma Q$  teilweise erhebliche Abweichungen von den zu erwartenden Werten auf. Die ECoN-Werte sind für die N-Atome aufgrund der koordinativen Beiträge der Erdalkali-Ionen mit Ausnahme von N5 in  $SrP_2N_4$  größer als +2, für die P-Atome ergeben sich erwartungsgemäß Werte nahe +4. Für die Erdalkali-Ionen ergeben sich für Ca1 und Sr1 stark unterschiedliche Werte, während die ECoN von Ca2 und Sr2 sehr ähnlich sind. Der unterschiedliche Ionenradius von  $Ca^{2+}$  und  $Sr^{2+}$  wirkt sich offenbar auf den beiden kristallographischen Lagen verschieden stark auf die Wechselwirkungen mit den umgebenden N-Atomen aus.

Tab. 6.5.4-2: ECoN. ΣQ- und ΣV-Werte von CaP<sub>2</sub>N<sub>4</sub>.

|            | Ca1  | Ca2  | P1   | P2   | N1 <sup>[2]</sup> | N2 <sup>[2]</sup> | N3 <sup>[2]</sup> | N4 <sup>[2]</sup> | N5 <sup>[2]</sup> |
|------------|------|------|------|------|-------------------|-------------------|-------------------|-------------------|-------------------|
| ECoN       | 5,37 | 8,60 | 3,91 | 3,99 | 3,71              | 3,16              | 3,16              | 3,93              | 2,17              |
| $\Sigma Q$ | 1,93 | 1,99 | 5,11 | 4,79 | -3,43             | -2,65             | -3,33             | -2,36             | -2,70             |
| ΣV         | 1,1  | 1,2  | 5,7  | 4,8  | 3,3               | 3,1               | 2,2               | 2,7               | 2,8               |

Tab. 6.5.4-3: ECoN,  $\Sigma Q\text{-}$  und  $\Sigma V\text{-}Werte$  von  $SrP_2N_4.$ 

|            | Sr1  | Sr2   | P1   | P2   | N1 <sup>[2]</sup> | N2 <sup>[2]</sup> | N3 <sup>[2]</sup> | N4 <sup>[2]</sup> | N5 <sup>[2]</sup> |
|------------|------|-------|------|------|-------------------|-------------------|-------------------|-------------------|-------------------|
| ECoN       | 8,52 | 10,17 | 3,90 | 3,92 | 2,05              | 2,02              | 2,51              | 2,09              | 2,00              |
| $\Sigma Q$ | 2,09 | 1,82  | 4,97 | 5,04 | -3,47             | -3,11             | -2,93             | -2,53             | -3,10             |
| $\Sigma V$ | 1,9  | 1,5   | 5,8  | 4,2  | 3,3               | 2,6               | 3,1               | 2,6               | 2,8               |

### 6.5.5 Temperaturabhängige pulverdiffraktometrische Untersuchungen

Um zu entscheiden, ob es sich bei der kristallographisch ermittelten Struktur von  $CaP_2N_4$  und  $SrP_2N_4$  um eine Hoch- oder Normaldruckmodifikation handelt, wurden pulverdiffraktometrische Messungen zwischen 20 und 760 °C durchgeführt. Dazu wurde  $CaP_2N_4$  in einem Quarzglas-Markröhrchen in Schritten von 40 °C aufgeheizt und jeweils 30 min bei der entsprechenden Temperatur pulverdiffraktometrisch mit  $Mo_{K\alpha}$   $_7$ -Stahlung untersucht. Abb. 6.5.5-1 zeigt am Beispiel  $CaP_2N_4$ , daß sich innerhalb des gemessenen Winkelbereiches die Intensität der Reflexe nicht wesentlich ändert und auch keine neuen Reflexe hinzukommen. Bei der Kristallstruktur von  $CaP_2N_4$  und  $SrP_2N_4$  handelt es sich also vermutlich um eine Normaldruckmodifikation, die auch unter Hochdruck stabil ist. Die geringe Verschiebung aller Reflexe zu kleineren 20-Werten bei zunehmender Temperatur ist auf die thermische Ausdehnung der Verbindung und die damit verbundene Vergrößerung der Gitterkonstanten zurückzuführen. Die Indizierung des Diffraktogrammes bei 740 °C ergab für  $CaP_2N_4$  die Gitterkonstanten a = 975(1), c = 789,2(6) pm. Das Zellvolumen V = 650,5(8)·10^6 pm³ ist damit um 1,13 % größer als bei Raumtemperatur.

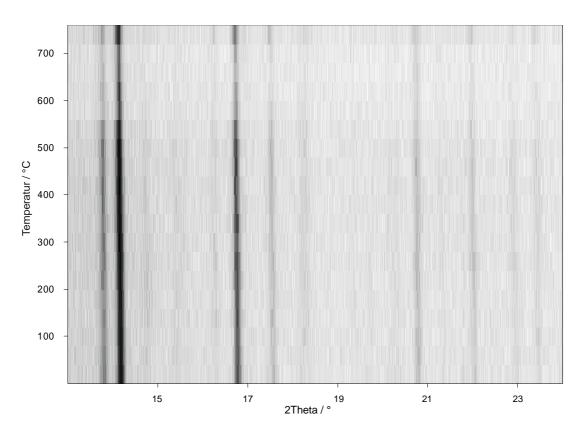



Abb. 6.5.5-1: Temperaturabhängiges Pulverdiffraktogramm von CaP<sub>2</sub>N<sub>4</sub>,  $Mo_{K\alpha}$  <sub>1</sub>-Stahlung, Meßbereich 13 °< 2 $\theta$  < 24°.

### 6.5.6 IR-spektroskopische Untersuchungen

Die IR-spektroskopischen Untersuchungen wurden in einer KBr-Matrix durchgeführt. Abb. 6.5.6-1 und Abb. 6.5.6-2 zeigen die IR-Spektren von  $CaP_2N_4$  und  $SrP_2N_4$  im Bereich von 4000 bis 400 cm<sup>-1</sup>.

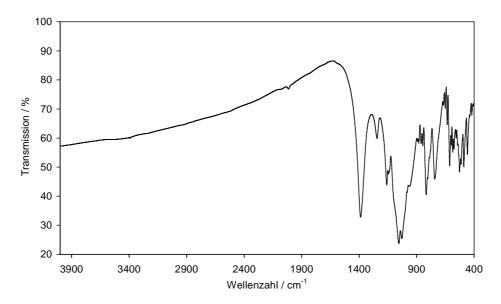
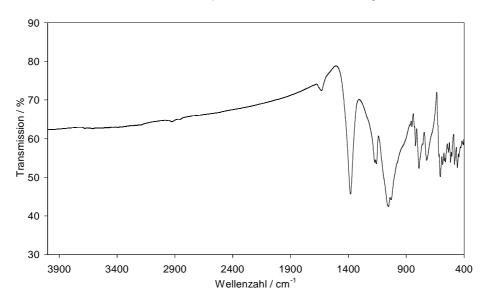
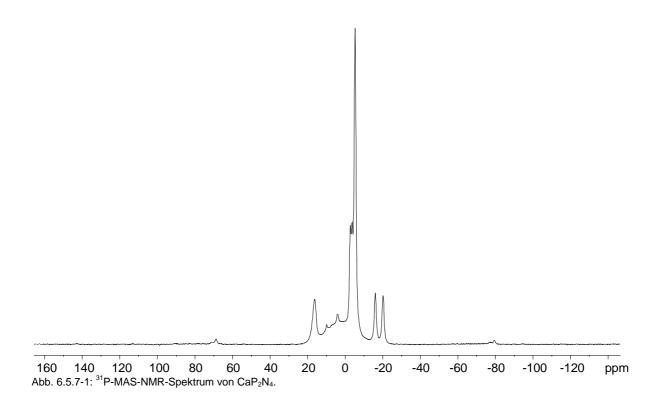



Abb. 6.5.6-1: IR-Spektrum von CaP<sub>2</sub>N<sub>4</sub>, KBr-Preßling.





Abb. 6.5.6-2: IR-Spektrum von SrP<sub>2</sub>N<sub>4</sub>, KBr-Preßling.


Unterhalb von ca. 1500 cm<sup>-1</sup> existiert ein komplexes Muster von Absorptionsbanden. Charakteristisch für die Spektren ist jeweils eine sehr starke Bande bei ca. 1380 cm<sup>-1</sup>. Eine genaue Zuordnung der Banden ist aufgrund der Komplexität der P-N-Gerüstschwingungen nicht möglich. Die Ähnlichkeit der beiden Spektren dokumentiert die Isotypie der beiden Verbindungen.

### 6.5.7 <sup>31</sup>P-MAS-NMR-spektroskopische Untersuchungen

 $CaP_2N_4$  und  $SrP_2N_4$  wurden  $^{31}$ P-MAS-NMR-spektroskopisch untersucht. Die Spektren wurden bei einer Anregungsfrequenz von 202,48 MHz und und einer Rotationsfrequenz von 25 kHz aufgenommen. Die Messungen erfolgten mit 1-Puls-Anregung und vierfacher Phasenzyklisierung. Die Pulslänge der 90°-Pulse betrug 2,1  $\mu$ s, die Wiederholzeit jeweils 2000 s.

Die Spektren (Abb. 6.5.7-1 und Abb. 6.5.7-2) zeigen überraschenderweise 8 Resonanzen für  $CaP_2N_4$  bzw. 7 Signale für  $SrP_2N_4$ . Bei -20,0, -15,9, -5,2, -3,6, und -2,6 ppm existiert für  $CaP_2N_4$  eine charakteristische Gruppe aus fünf scharfen Signalen. Eine analoge Signalgruppe, die jedoch zu tieferem Feld verschoben ist (-27,8, -23,4, -17,1, -15,5 und -14,1 ppm), wird im Spektrum von  $SrP_2N_4$  beobachtet. Zusätzlich zeigen die Spektren noch zwei bzw. drei weitere Resonanzen bei 17,3, 10,0 (sehr breit) und 3,6 ppm für  $CaP_2N_4$  bzw. 17,5 und 1,5 ppm (sehr breit) für  $SrP_2N_4$ . Die NMR-spektroskopischen Befunde stehen somit in Widerspruch zu den Ergebnissen der Kristallstrukturanalyse, aus der zwei Lagen für die P-Atome ermittelt wurden (genaue Diskussion siehe Kap. 6.5.2)





Um zu klären, ob die beobachteten Resonanzen in den Spektren den Verbindungen  $CaP_2N_4$  und  $SrP_2N_4$  zugehörig oder teilweise auf Verunreinigungen der Probe zurückzuführen sind, wurden die Relaxationszeiten  $T_1$  der  $^{31}$ P-Kerne bestimmt. Zusätzlich wurde für  $SrP_2N_4$  ein RFDR-Austauschspektrum aufgenommen. Hierbei wird die unter MAS-Bedingungen ausgemittelte dipolare Wechselwirkung durch achtfach phasenzyklisierte  $180^\circ$ -Pulse während einer Mischzeit  $t_m$  wieder eingeführt. Die Mischzeit  $t_m$  muß hierbei ein ganzzahliges Vielfaches der inversen Rotationsfrequenz  $1/v_{rot} = \tau_r$  sein. In der Mitte jedes Zeitabschnittes  $\tau_r$  wird ein  $180^\circ$ -Impuls ausgeführt. Bei dem Experiment wurde die  $90^\circ$ -Pulslänge auf  $3,5~\mu s$  justiert. Die Rotationsfrequenz betrug 20~kHz, für  $t_m$  wurden  $8~\mu s$  gewählt. Diese große Mischzeit gewährleistet einen effizienten Austausch zwischen benachbarten P-Atomen in einem Radius von 2~nm, so daß auf diese Weise Signalgruppen, die zu einer Phase gehören, identifiziert werden können.

Die Messungen der  $T_1$ -Zeiten ergaben sehr lange Spin-Gitter-Relaxationszeiten für die Signale zwischen -20,0 bis -2,6 ppm (1846 <  $T_1$  < 3028 s) bzw. -27,8 bis -14,1 ppm (2532 <  $T_1$  < 4224 s), während für die anderen Resonanzen jeweils deutlich kürzere  $T_1$ -Relaxationszeiten (69 <  $T_1$  < 1182 ppm) gemessen wurden. Dies ist bereits als deutlicher

Hinweis darauf zu werten, daß die fünf Signale bei -20,0, -15,9, -5,2, -3,6, und -2,6 ppm bzw. -27,8, -23,4, -17,1, -15,5 und -14,1 ppm  $CaP_2N_4$  bzw.  $SrP_2N_4$  zuzuordnen sind, während die anderen Signale offenbar von Verunreinigungen stammen. Den Beweis für diese Vermutung lieferte schließlich das RFDR-Austauschspektrum (Abb. 6.5.7-3). Dieses zeigt klar, daß die fünf Signale zwischen -27,8 und -14,1 ppm zu einer einzigen Phase gehören. Bis auf die Resonanzen, deren chemische Verschiebungen am stärksten voneinander differerieren ( $\delta$  = -14,1 und -27,8 ppm), existiert zwischen allen Signalen eine Korrelation. Der über die Integration der jeweiligen Intensitäten bestimmte Anteil der Verunreinigung in den Spektren beträgt 22 % ( $CaP_2N_4$ ) bzw. 12 % ( $SrP_2N_4$ ).

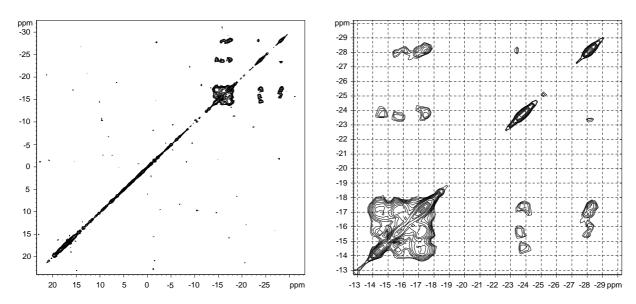



Abb. 6.5.7-3: RFDR-Austauschspektrum von SrP<sub>2</sub>N<sub>4</sub>. von –35 bis 25 ppm bzw. –13 bis –29 ppm.

### 6.5.8 Thermogravimetrische Untersuchungen

Zur Untersuchung der thermischen Stabilität von  $CaP_2N_4$  und  $SrP_2N_4$  wurden thermogravimetrische Messungen in einer Heliumatmosphäre durchgeführt. Die Probe wurde mit einer Heizrate von 10 °C pro Minute aufgeheizt. Wie Abb. 6.5.8-1 zeigt, ist  $CaP_2N_4$  überraschenderweise bis 1000 °C thermisch stabil, während  $SrP_2N_4$  sich ab ca. 900 °C langsam zu zersetzen beginnt (Abb. 6.5.8-2).

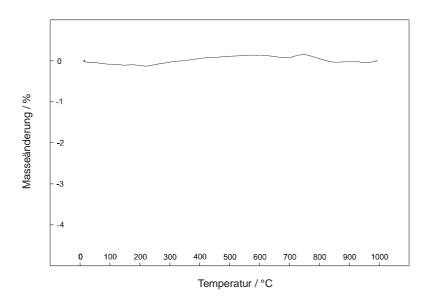



Abb. 6.5.8-1: Thermogravimetrische Untersuchung von  $CaP_2N_4$ , Einwaage 5,563 mg.

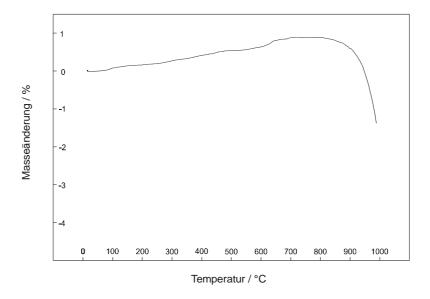



Abb. 6.5.8-2: Thermogravimetrische Untersuchung von SrP<sub>2</sub>N<sub>4</sub>, Einwaage 4,443 mg.

# 6.6 Das Phosphor(V)-nitrid γ-P<sub>3</sub>N<sub>5</sub>

Phosphor(V)-nitrid  $P_3N_5$  ist die Stammverbindung der Nitridophosphate und besitzt zahlreiche potentielle Anwendungsmöglichkeiten. So wird beispielsweise eine Verwendung als Flammschutzmittel erprobt. [118,119] Gegenwärtig wird auch eine Eignung als Sperrisolator in der Halbleitertechnik untersucht. [119,120] Wichtig hierfür ist die Entwicklung effizienter Techniken zur Präparation dünner  $P_3N_5$ -Schichten. So wurde bereits die photochemische Gasphasenabscheidung von  $P_3N_5$ -Filmen sowie Niederdruck-Plasma-CVD erprobt. [121,122] Darüber hinaus wurden Versuche unternommen,  $P_3N_5$  aus den Elementen zu gewinnen, um dieses als billigen Ausgangsstoff für das Düngemittel Ammoniumphosphat einzusetzen. [123] Als Düngemittel ist  $P_3N_5$  selbst ungeeignet, da es bei Raumtemperatur vollkommen hydrolyseunempfindlich ist. [124]

α-P<sub>3</sub>N<sub>5</sub> ist die bei Normaldruck thermodynamisch stabile Modifikation von Phosphor(V)-nitrid. Einphasiges α-P<sub>3</sub>N<sub>5</sub> ist sehr schwierig zu synthetisieren. Die erstmalige Darstellung dieser Verbindung gelang erst kürzlich nach langjährigen Anstrengungen Horstmann in unserer Arbeitsgruppe durch Thermolyse von Tetraaminophosphonium-iodid bei 825 °C und 1 bar. [34] Die Kristallstruktur von α-P<sub>3</sub>N<sub>5</sub> konnte anschließend von Irran in unserem Arbeitskreis aufgeklärt werden. $^{[34]}$  Die Tatsache, daß bei Versuchen zur Darstellung von  $\alpha$ - $P_3N_5$  häufig  $\alpha$ -P<sub>3</sub>N<sub>5</sub> eine von ableitbare geordnete Stapelvariante,  $\beta$ -P<sub>3</sub>N<sub>5</sub>, sowie stapelfehlgeordnete Varianten entstehen, deutet auf erhebliche sterische Spannungen in α-P<sub>3</sub>N<sub>5</sub> und damit die Bereitschaft zu einer druckinduzierten Phasenumwandlung in eine weniger gespannte Struktur hin. Ein weiteres Indiz für Spannungen in der Struktur von α-P<sub>3</sub>N<sub>5</sub> ist die große Varianz der Bindungslängen P-N (151-174 pm). Es lag daher nahe, Hochdruckmodifikation von  $P_3N_5$  zu suchen. Im Gegensatz Normaldruckmodifikation α-P<sub>3</sub>N<sub>5</sub> sollte diese aufgrund der deutlich höheren maximalen thermischen Belastbarkeit von Phosphor(V)-nitriden unter Hochdruck leicht zur Kristallisation gebracht werden können. Eine zusätzliche Motivation, eine Hochdruckmodifikation von  $\alpha$ -P<sub>3</sub>N<sub>5</sub> herzustellen, bestand in der Möglichkeit der druckinduzierten Koordinationszahlerhöhung in einer binären Verbindung. Durch die damit zu erwartende stärkere Vernetzung des P-N-Gerüsts sollten gegenüber der Normaldruckmodifikation auch verbesserte Materialeigenschaften, wie z.B. höhere Härte, zu erwarten sein.

#### 6.6.1 Synthese

Zur Synthese von  $\gamma$ -P<sub>3</sub>N<sub>5</sub> wurde teilkristallines P<sub>3</sub>N<sub>5</sub>, in einem Walker-Modul (18/11-Assembly, precastable octahedron) innerhalb von 5 h auf einen Druck von 110 kbar gebracht. Die Probe wurde anschließend in 15 min auf 1500 °C erhitzt und diese Temperatur für 5 min gehalten (Gl. 6.6.1-1).

$$\alpha$$
-P<sub>3</sub>N<sub>5</sub>  $\xrightarrow{1500 \text{ °C}, 5 \text{ min}}$   $\gamma$ -P<sub>3</sub>N<sub>5</sub> GI. 6.6.1-1

Nach Abschrecken der Probe auf Raumtemperatur und anschließendem Entspannen auf 1 bar (Dauer 15 h) wurde nach Entfernen des BN-Tiegels kristallines  $\gamma$ -P<sub>3</sub>N<sub>5</sub> phasenrein als luftstabile weiße gesinterte Substanz erhalten.

#### 6.6.2 Strukturaufklärung

Die röntgenographischen Untersuchungen an  $\gamma$ -P<sub>3</sub>N<sub>5</sub> wurden mit einem konventionellen Pulverdiffraktometer in Debye-Scherrer Geometrie mit Cu<sub>K\tau</sub>  $_f$ -Stahlung durchgeführt. Das Diffraktogramm wurde mit Hilfe des Programms WERNER<sup>[42]</sup> orthorhombisch indiziert. Aus den Auslöschungsbedingungen ergaben sich die Raumgruppen l222,  $l2_12_12_1$ , lmm2 und lmmm. Die Extraktion der Reflexintensitäten und die Strukturlösung mit Direkten Methoden erfolgte mit dem Programm EXPO.<sup>[43]</sup> Die eindeutige Lokalisierung aller P- und N-Atome gelang nur in der Raumgruppe lmm2. Die Rietveld-Verfeinerung erfolgte mit dem Programm GSAS.<sup>[44]</sup> Zu Beginn der Rechnungen wurden Skalierungsfaktor, Gitterkonstanten, Nullpunktsverschiebung und Untergrund verfeinert. Die Profilform der Beugungsreflexe wurde durch eine Pseudo-Voigt-Funktion<sup>[85]</sup> angeglichen und ihre Asymmetrie korrigiert<sup>[86]</sup>. Sämtliche Atomparameter wurden frei verfeinert. Die Ergebnisse der Strukturverfeinerung sind in Tab. 6.6.2-1 bis 6.6.2-3 zusammengefaßt. Das Differenzdiffraktogramm ist in Abb. 6.6.1-1 dargestellt.

Tab. 6.6.2-1: Kristallographische Daten von  $\gamma$ -P<sub>3</sub>N<sub>5</sub>.

| Formel                                         | $\gamma$ –P <sub>3</sub> N <sub>5</sub> |
|------------------------------------------------|-----------------------------------------|
| Molmasse / g⋅mol <sup>-1</sup>                 | 162,9                                   |
| Kristallsystem                                 | orthorhombisch                          |
| Raumgruppe                                     | <i>Imm</i> 2 (Nr. 44)                   |
| Gitterkonstanten / pm                          | a = 1287,21(4)                          |
|                                                | b = 261,312(6)                          |
|                                                | c = 440,03(2)                           |
| Zellvolumen / 10 <sup>6</sup> ·pm <sup>3</sup> | 148,01                                  |
| Z                                              | 2                                       |
| Diffraktometer                                 | Stoe STADI P                            |
| $\lambda$ / pm                                 | 154,050, Cu <sub>∕∞ 1</sub>             |
| T/°C                                           | 25(2)                                   |
| Meßbereich / °                                 | $10 \le 2\theta \le 85$                 |
| Datenpunkte                                    | 7500                                    |
| Beobachtete Reflexe                            | 41                                      |
| Atom-Parameter                                 | 13                                      |
| Profil-Parameter                               | 12                                      |
| Untergrund-Parameter                           | 3                                       |
| $R_p$                                          | 0,073                                   |
| $wR_p$                                         | 0,094                                   |
| $R_{F}$                                        | 0,048                                   |
| CHI <sup>2</sup>                               | 0,655                                   |

Tab 6.6.2-2: Verfeinerte Ortsparameter und äquivalente isotrope Auslenkungsparameter  $U_{iso}$  /  $pm^2$  von  $\gamma$ - $P_3N_5$ , Standardabweichungen in runden Klammern.

| Atom | Wyckoff- | X         | У   | Z          | $U_{iso}$ |
|------|----------|-----------|-----|------------|-----------|
|      | Position |           |     |            |           |
| P1   | 2a       | 0         | 0   | 0,3114(10) | 274(14)   |
| P2   | 4c       | 0,8191(2) | 1/2 | -0,0420(9) | 360(10)   |
| N1   | 2b       | 0         | 1/2 | 0,5159(15) | 62(29)    |
| N2   | 4c       | 0,8953(4) | 0   | 0,0768(9)  | 214(19)   |
| N3   | 4c       | 0,7265(6) | 1/2 | 0,2196(12) | 263(25)   |

| P1-N1 <sup>[2]</sup>                    | 158,6(6) 2× | P2-N2 <sup>[3]</sup>     | 171,5(4) 2× |
|-----------------------------------------|-------------|--------------------------|-------------|
| -N2 <sup>[3]</sup>                      | 169,8(5) 2× | -N3 <sup>[3]</sup>       | 165,8(6)    |
|                                         |             | -N3 <sup>[3]</sup>       | 177,5(5) 2× |
|                                         |             |                          |             |
| N1 <sup>[2]</sup> -P1-N1 <sup>[2]</sup> | 110,9(6)    | P1-N1 <sup>[2]</sup> -P1 | 110,9(6)    |
| N1 <sup>[2]</sup> -P1-N2 <sup>[3]</sup> | 110,2(2) 4× | P1-N2 <sup>[3]</sup> -P2 | 129,7(2) 2× |
| N2 <sup>[3]</sup> -P1-N2 <sup>[3]</sup> | 105,1(4)    | P2-N2 <sup>[3]</sup> -P2 | 97,3(3)     |
|                                         |             | P2-N3 <sup>[3]</sup> -P2 | 130,4(2) 2× |
| N2 <sup>[3]</sup> -P2-N2 <sup>[3]</sup> | 99,3(3)     | P2-N3 <sup>[3]</sup> -P2 | 94,8(4)     |
| N2 <sup>[3]</sup> -P2-N3 <sup>[3]</sup> | 79,0(2) 2×  |                          |             |
| N2 <sup>[3]</sup> -P2-N3 <sup>[3]</sup> | 158,4(4) 2× |                          |             |
| N2 <sup>[3]</sup> -P2-N3 <sup>[3]</sup> | 101,5(3) 2× |                          |             |
| N3 <sup>[3]</sup> -P2-N3 <sup>[3]</sup> | 99,9(2) 2×  |                          |             |
| N3 <sup>[3]</sup> -P2-N3 <sup>[3]</sup> | 94,8(4)     |                          |             |

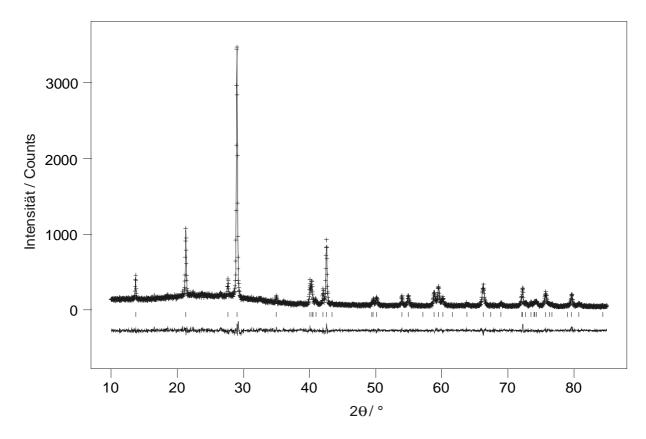



Abb. 6.6.1-1: Beobachtetes (Kreuze) und berechnetes (Linie) Röntgen-Pulverdiffraktogramm sowie Differenz-Profil der Rietveld-Verfeinerung von  $\gamma$ -P<sub>3</sub>N<sub>5</sub>. Erlaubte Positionen der Reflexe sind durch senkrechte Striche gekennzeichnet. Das Diffraktogramm wurde mit einem konventionellen STOE Stadi P Pulverdiffraktometer erhalten (Cu<sub>Kα</sub>  $_{f}$ ,  $\lambda$  = 154,05 pm).

#### 6.6.3 Strukturbeschreibung von γ-P<sub>3</sub>N<sub>5</sub>

Die Hochdruckmodifikation  $\gamma$ -P<sub>3</sub>N<sub>5</sub> besteht aus einer Raumnetzstruktur miteinander verknüpfter PN<sub>4</sub>-Tetraeder sowie tetragonalen PN<sub>5</sub>-Pyramiden. Gemäß P<sup>[5]</sup><sub>2</sub>[P<sup>[4]</sup>N<sub>3</sub>]N<sub>2</sub> kann  $\gamma$ -Phosphor(V)-nitrid in Anlehnung an die von *Liebau* für Silicate vorgeschlagene Nomenklatur als Phosphor-nitridophosphat-nitrid bezeichnet werden. Entlang [010] verlaufende Stäbe aus *trans*-kantenverknüpften PN<sub>5</sub>-Pyramiden sind über Ecken zu Schichten verknüpft, die senkrecht zu [100] stehen (Abb. 6.6.3-1).

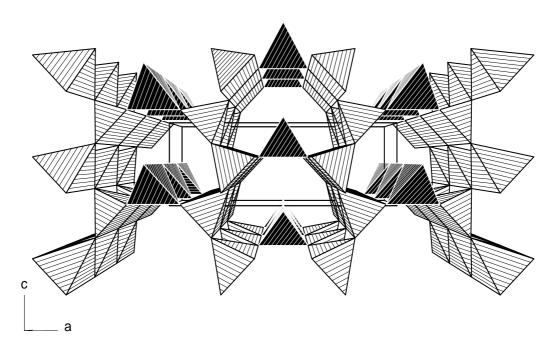



Abb. 6.6.3-1: Kristallstruktur von  $\gamma$ -P<sub>3</sub>N<sub>5</sub>, Blick entlang [010].

Diese Schichten ähneln Ausschnitten aus der Rutil-Struktur, bei denen die Oktaeder durch Eliminierung jeweils einer Ecke zu tetragonalen Pyramiden geworden sind (Abb. 6.6.3-2).

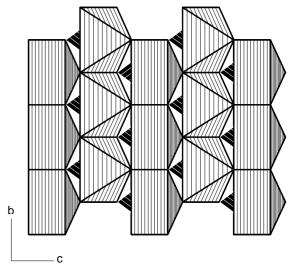



Abb. 6.6.3-2: Kristallstruktur von  $\gamma$ -P<sub>3</sub>N<sub>5</sub>, Blick entlang [100].

Entlang [010] verlaufende Stäbe eckenverknüpfter  $PN_4$ -Tetraeder verknüpfen jeweils spiegelsymmetrische Schichten aus  $PN_5$ -Einheiten (Abb. 6.6.3-1, Abb. 6.6.3-3).

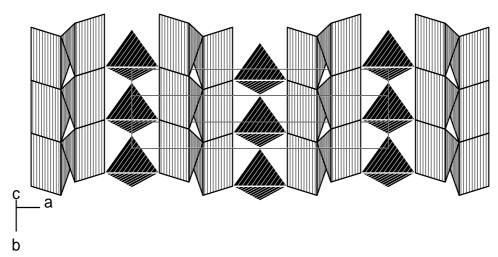



Abb. 6.6.3-3: Kristallstruktur von  $\gamma$ -P<sub>3</sub>N<sub>5</sub>, Blick entlang [012].

Entsprechend der Druck-Koordinationsregel<sup>[126]</sup> wird in der Hochdruckphase  $\gamma$ -P<sub>3</sub>N<sub>5</sub> im Vergleich zu  $\alpha$ -P<sub>3</sub>N<sub>5</sub> eine partielle Erhöhung der Koordinationszahl von Phosphor beobachtet. Gemäß dem Druck-Abstands-Paradoxon<sup>[127]</sup> sind dabei die Bindungslängen in den PN<sub>5</sub>-Pyramiden (166, 171 und 177 pm) deutlich länger als die jeweiligen Werte in den PN<sub>4</sub>-Tetraedern (159 und 170 pm) (Abb. 6.6.3-4 und Abb. 6.6.3-5). Eine ganz ähnliche Beobachtung wird in der Spinell-Struktur von kubischem  $\gamma$ -Si<sub>3</sub>N<sub>4</sub> gemacht, das im Vergleich zu den beiden Normaldruck-Phasen  $\alpha$ - und  $\beta$ -Si<sub>3</sub>N<sub>4</sub> eine partielle Erhöhung der Koordinationszahlen des Siliciums von vier auf sechs aufweist.<sup>[128]</sup> Die tetragonalen PN<sub>5</sub>-Pyramiden in  $\gamma$ -P<sub>3</sub>N<sub>5</sub> sind wie auch die PN<sub>4</sub>-Tetraeder nahezu regulär (Abb. 6.6.3-4, Abb. 6.6.3-5, Tab. 6.6.2-3). Die Grundfläche der PN<sub>5</sub>-Pyramiden in  $\gamma$ -P<sub>3</sub>N<sub>5</sub> beträgt 261 × 222 pm und ist nahezu rechtwinklig (Abb. 6.6.3-4). Dies entspricht fast exakt der Gitterkonstanten b bzw. 2× der Gitterkonstanten c.

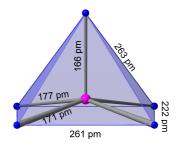



Abb. 6.6.3-4:  $PN_5$ -Pyramiden in  $\gamma$ - $P_3N_5$ .

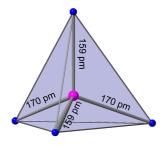
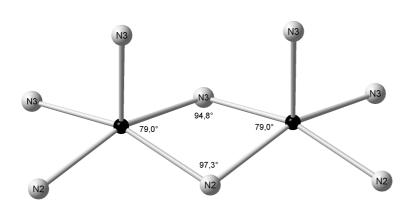




Abb. 6.6.3-5: PN<sub>4</sub>-Tetraeder in γ-P<sub>3</sub>N<sub>5</sub>.

Alle bislang untersuchten Nitridophosphate sind ausschließlich aus  $PN_4$ -Tetraedern aufgebaut. In molekularen spirocyclischen Verbindungen sind  $PN_5$ -Baueinheiten bekannt, jedoch liegen nur in Einzelfällen genaue Strukturdaten vor. [129-133] Entsprechend dem VSEPR-Konzept, welches die trigonal-bipyramidale Konformation gegenüber der quadratisch-pyramidalen leicht favorisiert, liegen in allen diesen Verbindungen eher verzerrte trigonale  $PN_5$ -Bipyramiden vor. Die z. B. in Aminodiazadiphosphetospirobis[triazaphosphol] ermittelten Bindungslängen P-N entsprechen etwa den jeweiligen Werten in den  $PN_5$ -Pyramiden von  $\gamma$ - $P_3N_5$ . [129] Entsprechende P-N-Verbindungen mit quadratisch- oder tetragonal-pyramidalen  $PN_5$ -Einheiten sind jedoch bislang unbekannt.

In  $\gamma$ -P<sub>3</sub>N<sub>5</sub> sind die tetragonalen PN<sub>5</sub>-Pyramiden entlang [010] über gemeinsame Kanten verknüpft. Das Strukturmotiv der Kantenverknüpfung von P-N-Polyedern wurde bereits in  $\alpha$ -P<sub>3</sub>N<sub>5</sub><sup>[34]</sup> und HP<sub>4</sub>N<sub>7</sub><sup>[61]</sup>, in denen kantenverknüpfte PN<sub>4</sub>-Tetraeder vorliegen, beobachtet. Auch bei den Nitridosilicaten wurden mit den Verbindungen Ba<sub>5</sub>Si<sub>2</sub>N<sub>6</sub><sup>[134]</sup> und BaSi<sub>7</sub>N<sub>10</sub><sup>[31]</sup> bereits Beispiele für Strukturen mit kantenverknüpften Tetraedern gefunden. Allerdings sind bei den Nitridosilicaten bisher keine Strukturen mit SiN<sub>5</sub>-Einheiten bekannt. Auch bei anderen nitridischen Verbindungen wie Ca<sub>3</sub>Ge<sub>2</sub>N<sub>4</sub><sup>[135]</sup>,  $\gamma$ -Ca<sub>3</sub>Al<sub>2</sub>N<sub>4</sub><sup>[136]</sup>, Sr<sub>3</sub>Ga<sub>2</sub>N<sub>4</sub><sup>[135]</sup> und Li<sub>3</sub>FeN<sub>2</sub><sup>[137]</sup> sind kantenverknüpfte Tetraeder ein häufiges Strukturelement. In den Verbindungsklassen der Oxosilicate und der Oxophosphate gibt es dagegen keine sicheren Hinweise auf die Existenz kantenverknüpfter TO<sub>4</sub>- oder TO<sub>5</sub>-Einheiten (T = Si, P).

Die Existenz von kantenverknüpften P-N-Polyedern impliziert das Vorhandensein von  $P_2N_2$ -Zweierringen (Abb. 6.6.3-6). In der Kristallstruktur von  $\gamma$ - $P_3N_5$  betragen die transannularen P-P-Abstände 261 pm. Demgegenüber sind die entsprechenden P-P-Abstände gemäß dem Druck-Abstands-Paradoxon in  $\alpha$ - $P_3N_5$  mit 255 pm etwas kleiner. Die Bindungswinkel N-P-N



in den Zweierrringen sind sowohl in  $\alpha$ - (82,9° und 84,5°) als auch in  $\gamma$ -P<sub>3</sub>N<sub>5</sub> (2× 79,0°) kleiner als 90°, während die entsprechenden P-N-P-Winkel 94,8 und 97,3° ( $\gamma$ -P<sub>3</sub>N<sub>5</sub>) bzw. 97,1 und 97,5° ( $\alpha$ -P<sub>3</sub>N<sub>5</sub>) betragen.

Abb. 6.6.3-6:  $P_2N_2$ -Zweierring aus zwei kantenverknüpften  $PN_5$ -Pyramiden in  $\gamma$ - $P_3N_5$ .

In  $\gamma$ -P<sub>3</sub>N<sub>5</sub> streuen die Bindungslängen der jeweiligen PN<sub>4</sub>- und PN<sub>5</sub>-Einheiten deutlich weniger als in dem nur aus PN<sub>4</sub>-Tetraedern aufgebauten  $\alpha$ -P<sub>3</sub>N<sub>5</sub> (151 – 174 pm). Dieser Sachverhalt deutet darauf hin, daß  $\gamma$ -P<sub>3</sub>N<sub>5</sub> wesentlich weniger sterische Spannungen als unter Normaldruck hergestelltes  $\alpha$ -P<sub>3</sub>N<sub>5</sub> aufweist. Zwischen  $\alpha$ -P<sub>3</sub>N<sub>5</sub> und  $\gamma$ -P<sub>3</sub>N<sub>5</sub> lassen sich keine engeren topologischen Beziehungen feststellen. Die Phasenumwandlung ist rekonstruktiv. Dies dokumentiert sich quantitativ in den Kreisklassespektren der beiden Modifikationen. Der signifikante Unterschied zwischen den Kreisklassespektren ist das Auftreten von P<sub>3</sub>N<sub>3</sub>-Dreierringen in  $\gamma$ -P<sub>3</sub>N<sub>5</sub>, welche in  $\alpha$ -P<sub>3</sub>N<sub>5</sub> nicht existieren (Tab. 6.6.3-1).

Tab. 6.6.3-1: Kreisklassespektren von  $\alpha$ - und  $\gamma$ -P<sub>3</sub>N<sub>5</sub>.

| Ringgröße n                             | 2 | 3 | 4  | 5  | 6   | 7   | 8    |
|-----------------------------------------|---|---|----|----|-----|-----|------|
| $\alpha$ -P <sub>3</sub> N <sub>5</sub> | 4 | 0 | 4  | 16 | 52  | 104 | 336  |
| $\gamma$ -P <sub>3</sub> N <sub>5</sub> | 2 | 6 | 13 | 42 | 140 | 542 | 2122 |

Ein Fünftel aller N-Atome in  $\gamma$ -P<sub>3</sub>N<sub>5</sub> sind an jeweils zwei benachbarte P gebunden (N<sup>[2]</sup>), die restlichen an jeweils drei (N<sup>[3]</sup>). Erwartungsgemäß sind dabei die Bindungslängen P–N<sup>[2]</sup> (159 pm) deutlich kürzer als die Werte für P-N<sup>[3]</sup> (166 – 177 pm). Gegenüber α-P<sub>3</sub>N<sub>5</sub> (zwei Fünftel N<sup>[3]</sup>, drei Fünftel N<sup>[2]</sup>) sind also im Mittel auch die Koordinationszahlen an N erhöht. Die Summen der Bindungswinkel an den N<sup>[3]</sup>-Brücken betragen jeweils annähernd 360°. Die Winkel P-N<sup>[2]</sup>-P sind mit 111° deutlich kleiner als diejenigen in α-P<sub>3</sub>N<sub>5</sub> (142, 143 bzw. 171°). Sie ähneln aber denen in ausschließlich aus N<sup>[2]</sup>-Brücken aufgebauten P-N-Sodalithen M<sub>(7-x)</sub>H<sub>2x</sub>[P<sub>12</sub>N<sub>24</sub>]Y<sub>y</sub> (125 –126°)<sup>[10]</sup> sowie in LiPN<sub>2</sub> (124°)<sup>[68]</sup> und HPN<sub>2</sub> (130°). <sup>[51]</sup>

#### 6.6.4 Kristallchemische Diskussion

Ergänzend zur Kristallstrukturanalyse von  $\gamma$ -P<sub>3</sub>N<sub>5</sub> wurden MAPLE-Rechnungen durchgeführt. Die MAPLE-Werte für die P- und N-Atome liegen im für diese jeweils typischen Bereich (Tab. 6.6.4-1). Die Erhöhung der Koordinationszahl an P hat keinen Einfluß auf dessen MAPLE-Wert. Erwartungsgemäß zeigt das Atom N1, welches an zwei P-Atome gebunden ist, einen kleineren MAPLE-Wert als die Atome N2 und N3, die an je drei P-Atome gebunden sind. Die Ergebnisse der MAPLE-Rechnungen sind somit konsistent mit den Resultaten der Kristallstrukturanalyse.  $\gamma$ -P<sub>3</sub>N<sub>5</sub> zeigt eine gute Übereinstimmung mit  $\alpha$ -P<sub>3</sub>N<sub>5</sub> bezüglich der Summe der partiellen Madelunganteile der Gitterenergie. Die Abweichung der MAPLE-Werte beträgt 2,0 %. Ähnliche Verhältnisse liegen bei dem MAPLE von  $\alpha$ - und  $\beta$ -Si<sub>3</sub>N<sub>4</sub> vor (MAPLE  $\alpha$ -Si<sub>3</sub>N<sub>4</sub>: 12691 kcal/mol; MAPLE  $\beta$ -Si<sub>3</sub>N<sub>4</sub>: 12711 kcal/mol). Hier differieren die Werte um 0,1 % und damit nochmals deutlich weniger als bei den stärker kovalent aufgebauten Phosphor(V)-nitrid-Modifikationen. Für das in der Spinell-Struktur kristallisierende  $\gamma$ -Si<sub>3</sub>N<sub>4</sub><sup>[128]</sup>, welches wie  $\gamma$ -P<sub>3</sub>N<sub>5</sub> eine Hochdruckmodifikation mit partiell erhöhter Koordinationszahl darstellt, ergibt sich mit 12570 kcal/mol ein gegenüber  $\alpha$ - und  $\beta$ -Si<sub>3</sub>N<sub>4</sub> um 1,1 bzw. 1,2 % erniedrigter MAPLE-Wert.

Tab. 6.6.4-1: Summe der partiellen Madelunganteile der Gitterenergien von  $\gamma$ -P<sub>3</sub>N<sub>5</sub> / kcal·mol<sup>-1</sup>.

|                                         | P1 <sup>[4]</sup> | P2 <sup>[5]</sup> | N1 <sup>[2]</sup> | N2 <sup>[3]</sup> | N3 <sup>[3]</sup> | Σ     |
|-----------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------|
| $\gamma$ -P <sub>3</sub> N <sub>5</sub> | 3673              | 3572              | 1430              | 1552              | 1513              | 18382 |

Tab. 6.6.4-2: Summe der partiellen Madelunganteile der Gitterenergien von  $\alpha$ -P<sub>3</sub>N<sub>5</sub> / kcal·mol<sup>-1</sup>.

|                                         | P1 <sup>[4]</sup> | P2 <sup>[4]</sup> | P3 <sup>[4]</sup> | N1 <sup>[2]</sup> | N2 <sup>[3]</sup> | N3 <sup>[3]</sup> | N4 <sup>[3]</sup> | N5 <sup>[3]</sup> | Σ     |
|-----------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------|
| $\alpha$ -P <sub>3</sub> N <sub>5</sub> | 3718              | 3641              | 3550              | 1549              | 1539              | 1524              | 1613              | 1627              | 18761 |

Zusätzlich zu den MAPLE-Rechnungen wurden mit dem CHARDI-Konzept die effektiven Koordinationszahlen ECoN sowie die Ladungsverteilung an den Atomen bestimmt (Tab. 6.6.4-2). Die ECoN für das tetraedrisch von N koordinierte Atom P1 liegt erwartungsgemäß nahe bei 4,00. Auch das tetragonal-pyramidal von N umgebene Atom P2 zeigt eine plausible effektive Koordinationszahl (ECoN = 4,99). Für die Stickstoffatome ergibt sich für N1<sup>[2]</sup> ein idealer ECoN-Wert von 2,00 und auch für die Atome N2 und N3, welche an je 3 P-Atome gebunden sind, ergeben sich Werte, welche sehr nahe beim Idealwert 3,00 liegen (N2: 2,97, N3: 2,99). Die mit CHARDI berechnete Ladungsverteilung ∑Q an den Atomen entspricht mit hoher Genauigkeit den formalen Oxidationsstufen der jeweiligen Die mit dem Bindungslängen-Bindungsstärken-Konzept Elemente. Valenzsummen  $\Sigma V$  weichen dagegen etwas stärker von den zu erwartenden Werten ab. Insbesondere sind die Werte für die P-Atome sowie N1 und N2 zu niedrig (Tab. 6.6.4-2).

Tab. 6.6.4-2: Effektive Koordinationszahlen, Ladungsverteilung  $\Sigma Q$  und Valenzsummen  $\Sigma V$  in  $\gamma$ -P<sub>3</sub>N<sub>5</sub> nach dem CHARDI- bzw. Bindungslängen-Bindungsstärken-Konzept.

|            | P1   | P2   | N1 <sup>[2]</sup> | N2 <sup>[3]</sup> | N3 <sup>[3]</sup> |
|------------|------|------|-------------------|-------------------|-------------------|
| ECoN       | 3,92 | 4,99 | 2,00              | 2,97              | 2,99              |
|            |      |      |                   |                   |                   |
| $\Sigma Q$ | 5,14 | 4,93 | -2,85             | -3,02             | -3,05             |
| $\Sigma V$ | 4,69 | 4,70 | 2,69              | 2,76              | 3,05              |

### 6.6.5 Temperaturabhängige pulverdiffraktometrische Untersuchungen

Um zu bestätigen, daß es sich bei der kristallographisch ermittelten Struktur von  $\gamma$ -P<sub>3</sub>N<sub>5</sub> um eine Hochdruckmodifikation handelt, wurden pulverdiffraktometrische Messungen zwischen 20 und 820 °C durchgeführt. Dazu wurde γ-P<sub>3</sub>N<sub>5</sub> in einem Quarzglas-Markröhrchen in Schritten von 40 °C aufgeheizt und simultan jeweils 30 min bei der entsprechenden Temperatur pulverdiffraktometrisch mit Mo<sub>K $\alpha$  1</sub>-Strahlung untersucht. Abb. 6.6.5-1 zeigt, daß sich innerhalb des gemessenen Winkelbereiches die Intensität der Reflexe nicht wesentlich ändert und auch keine neuen Reflexe hinzukommen. Eine weitere Messung von 850 bis 1000 °C zeigte ebenfalls keine Veränderung der Probe. Eine Phasenumwandlung in α-P<sub>3</sub>N<sub>5</sub> findet also bis zu einer Temperatur von 1000 °C nicht statt. Offenbar ist die Aktivierungsenergie, die für die Phasenumwandlung in die Normaldruckmodifikation α-P<sub>3</sub>N<sub>5</sub> notwendig ist, sehr groß. Die geringe Verschiebung aller Reflexe zu kleineren 20-Werten bei zunehmender Temperatur ist auf die thermische Ausdehnung der Verbindung und die damit verbundene Vergrößerung der Gitterkonstanten zurückzuführen. Die Indizierung des Diffraktogramms bei 820 °C ergab die Gitterkonstanten a = 1293,7(5), b = 262,3(2), c = 443,6(4) pm. Das Zellvolumen ist bei dieser Temperatur mit V = 150,52·10<sup>6</sup> pm<sup>3</sup> um 1,7 % größer als bei 20 °C.

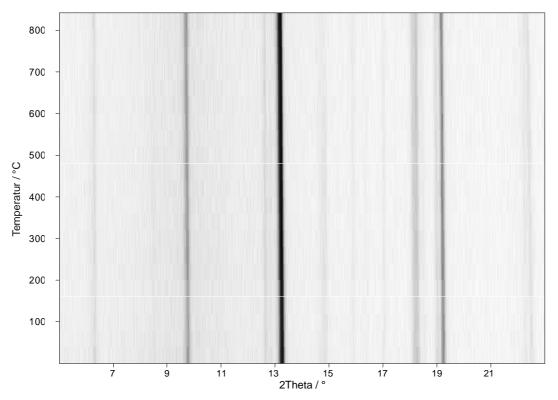



Abb. 6.6.5-1: Temperaturabhängiges Pulverdiffraktogramm von  $\gamma$ -P<sub>3</sub>N<sub>5</sub>, Mo<sub>Kα 1</sub>-Stahlung, Meßbereich: 6 °< 2θ < 22°.

### 6.6.6 IR-spektroskopische Untersuchungen

IR-spektroskopische Untersuchungen wurden in einer KBr-Matrix durchgeführt. Abb. 6.6.6-1 zeigt das IR-Spektrum von  $\gamma$ -P<sub>3</sub>N<sub>5</sub> im Vergleich zu  $\alpha$ -P<sub>3</sub>N<sub>5</sub> (Abb. 6.6.6-2) im Bereich von 4000 bis 400 cm<sup>-1</sup>.

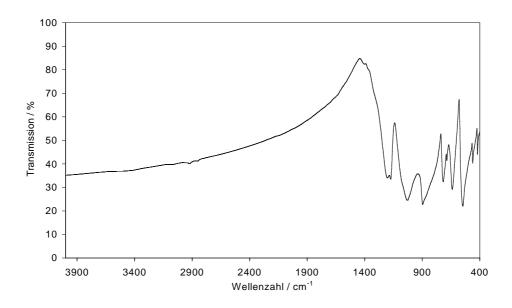



Abb. 6.6.6-1: IR-Spektrum von  $\gamma$ -P<sub>3</sub>N<sub>5</sub>, KBr-Preßling.

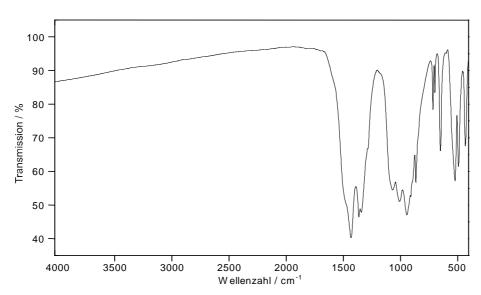
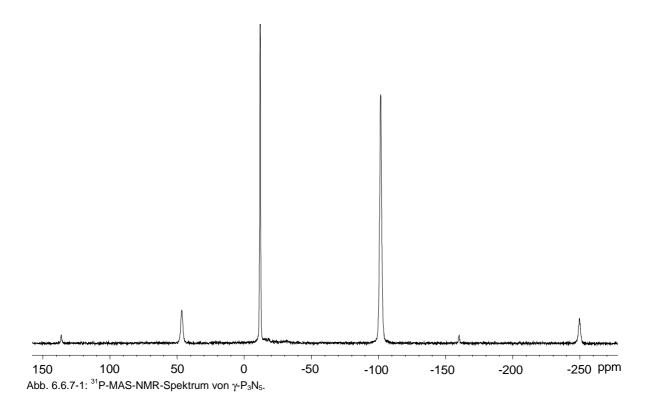



Abb. 6.6.6-2: IR-Spektrum von  $\alpha$ -P<sub>3</sub>N<sub>5</sub>, KBr-Preßling.<sup>[104]</sup>


Unterhalb von ca. 1400 cm<sup>-1</sup> existiert für  $\gamma$ -P<sub>3</sub>N<sub>5</sub> ein komplexes Muster von Absorptionsbanden, welche auf P-N-Gerüstschwingungen zurückzuführen sind. Eine genaue Zuordnung der Banden ist jedoch aufgrund der Komplexität der Schwingungen nicht möglich. Das Spektrum weicht deutlich vom Spektrum des  $\alpha$ -P<sub>3</sub>N<sub>5</sub> ab. Dies ist jedoch plausibel, da

 $\gamma$ -P<sub>3</sub>N<sub>5</sub> tetragonale PN<sub>5</sub>-Pyramiden enthält, während  $\alpha$ -P<sub>3</sub>N<sub>5</sub> ausschließlich aus PN<sub>4</sub>-Tetraedern aufgebaut ist. Auffällig ist auch die Verschiebung der Banden zu kleineren Wellenzahlen. Dies entspricht der niedrigeren Bindungsordung und damit Kraftkonstanten der Bindungen P-N in  $\gamma$ -P<sub>3</sub>N<sub>5</sub> gegenüber der Normaldruckmodifikation  $\alpha$ -P<sub>3</sub>N<sub>5</sub>.

### 6.6.7 <sup>31</sup>P-MAS-NMR-spektroskopische Untersuchungen

 $\gamma$ -P<sub>3</sub>N<sub>5</sub> wurde <sup>31</sup>P-MAS-NMR-spektroskopisch untersucht. Das Spektrum wurde bei einer Anregungsfrequenz von 202,48 MHz und einer Rotationsfrequenz von 30 kHz aufgenommen. Die Messungen erfolgten mit 1-Puls-Anregung und vierfacher Phasenzyklisierung. Die Pulslänge der 90°-Pulse betrug 2,1  $\mu$ s, die Wiederholzeit 10000 s.

Die Messung ergab zwei sehr scharfe Resonanzen bei -11,9 und -101,7 ppm mit den zugehörigen Rotationsseitenbanden (Abb. 6.6.7-1). Die Integration der vollständig relaxierten Signale zeigte ein Intensitätsverhältnis von 1 : 2, was in guter Übereinstimmung mit den kristallographischen Ergebnissen steht. Dieser Befund sowie ein Vergleich mit den an der Normaldruck-Modifikation von  $P_3N_5$  ermittelten  $^{31}P$ -MAS-NMR-Daten $^{[137]}$  erlauben eine eindeutige Zuordnung der Resonanzen bei -11,9 ppm (PN<sub>4</sub>-Tetraeder) und bei -101,7 ppm (PN<sub>5</sub>-Pyramiden). Die Bestimmung der  $T_1$ -Zeiten ergab  $T_1$  = 1550 s für das Signal bei -11,9 ppm bzw. 1000 s für das Signal bei -101,7 ppm.



### 6.6.8 Thermogravimetrische Untersuchungen

Zur Untersuchung der thermischen Stabilität von  $\gamma$ - $P_3N_5$  wurden thermogravimetrische Messungen in einer Heliumatmosphäre durchgeführt. Die Probe wurde mit einer Heizrate von 10 °C pro Minute aufgeheizt. Wie Abb. 6.6.8-1 zeigt, ist  $\gamma$ - $P_3N_5$  bis ca. 900 °C thermisch stabil.

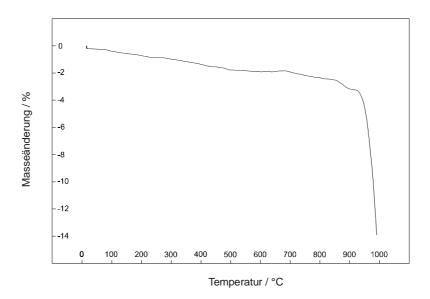



Abb. 6.6.8-1: Thermische Analyse von  $\gamma$ -P<sub>3</sub>N<sub>5</sub>, Einwaage 0,669 mg.

#### 6.6.9 Härtemessungen

Sowohl  $\alpha$ -P<sub>3</sub>N<sub>5</sub> als auch  $\gamma$ -P<sub>3</sub>N<sub>5</sub> bilden hochkondensierte dreidimensionale P-N-Gerüststrukturen mit stark kovalenten Bindungen. Diese strukturellen Eigenschaften sind gute Voraussetzungen für große Härte. Es lag daher nahe, Härteuntersuchungen an diesen Verbindungen vorzunehmen und die gemessene Härte mit der Härte von wichtigen anderen harten keramischen Materialien zu vergleichen. γ-P<sub>3</sub>N<sub>5</sub> entsteht bei 110 kbar und 1500 °C im Walker-Modul als gesintertes Material in Form eines Preßlings (Durchmesser: ca. 1,5 mm, Dicke ca. 3 mm). Daher wurden Härtemessungen nach Vickers [49] an diesen Preßlingen durchgeführt, bei denen der Eindringkörper aus Diamant direkt in die Oberfäche des in eine Polymermatrix eingebetteten Preßlings gedrückt wurde. Als Prüflast wurden 2 kg, 1 kg und 0,5 kg eingesetzt, die Einwirkdauer betrug jeweils 10 s Sekunden. Durch Vermessen der durch den Eindruckkörper aus Diamant verursachten Eindrücke in die Proben bei Vergrößerungsfaktoren von 10 und 55 wurde nach Gl. 2.6-1 (Kap. II. 2.6) die Vickers-Härte bestimmt. Zum Vergleich wurde auch die Härte eines entsprechenden Preßlings von teilkristallinem  $P_3N_5$  (reines  $\alpha$ - $P_3N_5$  ist nur sehr schwer präparativ zugänglich) gemessen, welches zuvor bei 30 kbar und 600 °C für 1 h im Walker-Modul gesintert wurde. Die Oberfläche der eingebetteten Preßlinge wies trotz sorgfältigen Schleifens eine recht hohe Rauhigkeit auf. Deshalb konnten die Eindrücke in die Proben teilweise nur ungenau vermessen werden, was zu teilweise recht großen Schwankungen der jeweils berechneten Härte führte. Die einzelnen Meßwerte sind in Tab. 6.6.9-1 und Tab. 6.6.9-2 zusammengefaßt.

Das aritmethische Mittel der Meßwerte ergab für teilkristallines  $P_3N_5$  eine *Vickers*-Härte von 5,1 GPa, während für die Härte von  $\gamma$ - $P_3N_5$  mit 9,7 GPa erwartungsgemäß ein deutlich höherer Wert ermittelt wurde. Die Härte von  $\gamma$ - $P_3N_5$  liegt damit in einer ähnlichen Größenordnung wie die Härte von Si $_3N_4$ , wird aber von der Härte von SiC, B $_4$ C, kubischem BN und Diamant sowie vielen Sialonen deutlich übertroffen (Tab. 6.6.9-3).

Tab. 6.6.9-1: Meßwerte der Härteuntersuchung nach  $\it Vickers$  für teilkristallines  $P_3N_5$ .

| Eindruck Nr. | Vergröß. | 2a1 / µm | 2a2 / µm | Last / kg | HV / GPa<br>(berechnet) |
|--------------|----------|----------|----------|-----------|-------------------------|
| 1            | 10x      | 90,2     | 85,8     | 2         | 5,07                    |
| 1            | 55x      | 88,7     | 76,9     | 2         | 5,73                    |
| 2            | 10x      | 88,0     | 85,1     | 2         | 5,24                    |
| 2            | 55x      | 87,3     | 91,4     | 2         | 4,92                    |
| 3            | 10x      | 80,4     | 82,9     | 2         | 5,89                    |
| 3            | 55x      | 92,3     | 82,1     | 2         | 5,16                    |
| 4            | 10x      | 89,7     | 86,5     | 2         | 5,06                    |
| 4            | 55x      | 85,0     | 85,9     | 2         | 5,38                    |
| 5            | 10x      | 90,2     | 80,6     | 2         | 5,38                    |
| 5            | 55x      | 88,3     | 82,7     | 2         | 5,37                    |
| 6            | 55x      | 60,1     | 51,4     | 1         | 6,32                    |
| 7            | 55x      | 58,6     | 67,3     | 1         | 4,95                    |
| 8            | 55x      | 55,8     | 52,9     | 0,5       | 3,32                    |
| 9            | 55x      | 43,9     | 51,11    | 0,5       | 4,35                    |
|              |          |          | Mitte    | lwert     | 5,12                    |

Tab. 6.6.9-2: Meßwerte der Härteuntersuchung nach  $\it Vickers$  für  $\gamma\text{-P}_3N_5$ .

| Eindruck Nr. | Vergröß. | 2a1 / µm | 2a2 / µm | Last / kg  | HV / GPa<br>(berechnet) |
|--------------|----------|----------|----------|------------|-------------------------|
| 1            | 10x      | 53,6     | 52,0     | 2          | 14,08                   |
| 1            | 10x      | 54,3     | 50,6     | 2          | 14,27                   |
| 1            | 50x      | 59,8     | 68,7     | 2          | 9,51                    |
| 2            | 10x      | 59,4     | 65,4     | 2          | 10,08                   |
| 2            | 55x      | 71,3     | 61,8     | 2          | 8,87                    |
| 3            | 10x      | 58,7     | 60,9     | 2          | 10,98                   |
| 3            | 55x      | 69,7     | 70,3     | 2          | 8,01                    |
| 4            | 10x      | 59,5     | 66,1     | 2          | 9,96                    |
| 4            | 55x      | 64,7     | 64,0     | 2          | 9,48                    |
| 5            | 10x      | 68,6     | 66,1     | 2          | 8,66                    |
| 5            | 55x      | 59,3     | 71,0     | 2          | 9,25                    |
| 6            | 55x      | 58,0     | 47,6     | 1          | 7,04                    |
| 7            | 55x      | 44,3     | 44,0     | 1          | 10,07                   |
| 8            | 55x      | 60,4     | 48,2     | 1          | 6,66                    |
| 9            | 55x      | 33,8     | 34,3     | 0,5        | 8,47                    |
|              |          |          | J        | Mittelwert | 9,66                    |

Tab. 6.6.9-3: Vickers-Härten einiger oxidischer und nitridischer Substanzen.

| Substanz                                                                   | Vickers-Härte / GPa | Literatur    |
|----------------------------------------------------------------------------|---------------------|--------------|
| Teilkristallines P <sub>3</sub> N <sub>5</sub>                             | 5,1                 | diese Arbeit |
| $\gamma$ -P <sub>3</sub> N <sub>5</sub>                                    | 9,7                 | diese Arbeit |
| $Sr_3Pr_{10}Si_{18}AI_{12}O_{18}N_{36}$                                    | 22,0                | [50]         |
| Sialon-Gläser (dotiert mit Lanthanoid-Metallen)                            | 7 – 11              | [139]        |
| Si <sub>12</sub> Al <sub>18</sub> O <sub>39</sub> N <sub>8</sub> (X-Phase) | 10 – 15             | [141-143]    |
| $Si_{2-z}AI_zO_{1+z}N_{2-z}; z = \le 0,3 \text{ (O-Phase)}$                | 15                  | [143]        |
| α-Sialone                                                                  | 19 – 23,5           | [144-145]    |
| $\alpha$ -Sialone (dotiert mit Sm)                                         | 21 – 22             | [147]        |
| $\alpha$ -Sialone (gesintert, dotiert mit Sm, Dy)                          | 16,2 – 18           | [148]        |
| $\alpha$ -Sialone (dotiert mit Ca)                                         | 1 – 13              | [149]        |
| β-Sialone                                                                  | 13 – 15             | [150]        |
| β-Sialone                                                                  | 13,9 – 16           | [151]        |
| β-Sialon/MoSi <sub>2</sub> -Komposite                                      | 11,3 – 13,3         | [152]        |
| Sialon-Polytypen (dotiert mit Nd, Sm, Gd, Yb)                              | 16 – 18,5           | [153]        |
| Mg-Ca-Si-Al-O-N-Gläser                                                     | 6 – 10              | [154]        |
| Si <sub>2</sub> N <sub>2</sub> O                                           | 15,8                | [155]        |
| Si <sub>3</sub> N <sub>4</sub> (drucklos gesintert)                        | 10 – 12             | [156]        |
| Si <sub>3</sub> N <sub>4</sub> (heiß gepreßt)                              | 11,5 – 18,5         | [157]        |
| SiC                                                                        | 25 – 36,5           | [158]        |
| B <sub>4</sub> C                                                           | 32 – 44             | [157]        |
| BN (kubisch)                                                               | 46                  | [157]        |
| $\alpha$ -Al <sub>2</sub> O <sub>3</sub>                                   | 12 – 23             | [157]        |
| Diamant                                                                    | 115,8 – 129,5       | [157]        |
| C <sub>2</sub> BN                                                          | 76                  | [159]        |
| Fensterglas                                                                | 10                  | [158]        |

#### 7. Nitridophosphate im Vergleich

#### 7.1 Kritik des Hochdruck-Hochtemperatursynthese-Konzeptes für Nitridophosphate

Mit der Hochdruck-Hochtemperatur-Synthese wurde ein für Nitridophosphate neuartiger Syntheseweg mit einer im Arbeitskreis anfangs nicht zu Verfügung stehenden apparativen Technik beschritten. Das Ziel, die Kristallisationsbedingungen für diese Verbindungsklasse durch Erhöhung der maximalen Synthesetemperatur signifikant zu verbessern und damit ein breit anwendbares Syntheseverfahren zur Verfügung zu haben, konnte problemlos erreicht werden. Dies führte zu einer erheblichen Steigerung der Anzahl der bekannten binären und ternären Phosphor(V)-nitride. Der Erfolg der ersten Hochdruckversuche mit der Belt-Technik in Zusammenarbeit mit Evers (Darstellung der Verbindungen NaP<sub>4</sub>N<sub>7</sub>, KP<sub>4</sub>N<sub>7</sub>, RbP<sub>4</sub>N<sub>7</sub> und CsP<sub>4</sub>N<sub>7</sub>) trug wesentlich zur Anschaffung der 1000 t-Hochdruckpresse, deren Aufbau durch Huppertz in unserem Arbeitskreis erfolgte, und der Einführung der Multianvil-Technik an der LMU München bei. Insgesamt konnte durch die Hochdruck-Hochtemperatur-Synthese die Zahl der kristallographisch eindeutig beschriebenen ternären Phosphor(V)-nitride von 9  $(Li_7PN_4, Li_{10}P_4N_{10}, LiPN_2, HPN_2, HP_4N_7, Mg_2PN_3, Ca_2PN_3, Na_3P_6N_{11}, K_3P_6N_{11})$  um 9 weitere  $(NaP_4N_7, KP_4N_7, RbP_4N_7, CsP_4N_7, Rb_3P_6N_{11}, Cs_3P_6N_{11}, NaPN_2, CaP_2N_4, SrP_2N_4)$  auf 18 erhöht werden. Insbesondere wurde die Zahl der hochkondensierten Nitridophosphate von 3  $(HP_4N_7, Na_3P_6N_{11}, K_3P_6N_{11})$  um 6  $(NaP_4N_7, KP_4N_7, RbP_4N_7, CsP_4N_7, Rb_3P_6N_{11}, Cs_3P_6N_{11})$  auf 9 gesteigert. Darüber hinaus gelang die Darstellung einer Hochdruckmodifikation des Phosphor(V)-nitrids  $P_3N_5$ . Die im Rahmen der Dissertation Hochdruckbedingungen erhaltenen Verbindungen entstanden zum größten Teil röntgenrein und konnten problemlos reproduziert werden. Voraussetzung für die Einphasigkeit der Produkte ist lediglich ein exaktes molares Verhältnis der Edukte Metallazid und P<sub>3</sub>N<sub>5</sub>.

Bei der Synthese zu beachten ist zudem die Zusammensetzung der MgO-Oktaeder. So wurde festgestellt, daß beim Gießen der MgO-Oktaeder ein möglichst hohes Verhältnis MgO: Bindemittel (siehe auch Kap. II. 1.3.3) essentiell ist, um die Oktaeder bei einer Temperatur von wenigstens 900 °C ohne Schrumpfung brennen zu können. Eine hohe Brenntemperatur ist wichtig, um eine vollständige Sinterung und damit die chemische Inertheit des MgO-Oktaeders gegenüber der Probe sicherzustellen. Wie entsprechende Experimente zeigten, sintert ein bei zu niedriger Temperatur gebranntes Oktaeder offensichtlich während des Hochdruck-Hochtemperatur-Versuchs unter Abgabe des organischen Bindemittels sowie Wasser weiter zusammen, was nicht nur die Qualität des Reaktionsproduktes negativ beeinflußt sondern auch die Wahrscheinlichkeit eines Blow-outs wesentlich erhöht. Dies wirkte sich insbesondere bei Versuchen zur Darstellung von Alkali-

nitridosilicaten aus, bei denen die Umsetzung von  $Si_3N_4$  mit Alkaliaziden regelmäßig zur Bildung von Alkalicyaniden führte. Darüber hinaus trägt eine hohe Brenntemperatur wesentlich zu einer guten Druckübertragung auf die Probe bei. Bei allen anderen Materialien wie BN, Graphit und  $ZrO_2$  ergaben sich keine Anhaltspunkte für eine Reaktivität gegenüber der Probe.

#### 7.2 Topologischer Vergleich der P-N-Teilstrukturen in Nitridophosphaten

Ein quantitativer topologischer Vergleich der Nitridophosphate ist mit den Kreisklassespektren nach  $Klee^{[95, 96]}$  möglich, die mit dem Programm TOPOLAN<sup>[97]</sup> berechnet werden können. Wesentliche qualitative Aussagen über die Topologie einer Kristallstruktur sind im Kondensationsgrad P : N und in der Framework-Density<sup>[160]</sup> enthalten. Tab. 7.2-1 gibt eine Übersicht über diese Größen aller bekannten binären und ternären Phosphor(V)-nitride mit einem Kondensationsgrad P : N  $\geq$  0,5.

Die Kreisklassespektren der Verbindungen zeigen eine klare Abhängigkeit der Ringgröße n vom Kondensationsgrad P: N. Es wird dabei tendenziell mit steigendem Kondensationsgrad des P-N-Gerüsts eine Zunahme der Zahl kleinerer P<sub>n</sub>N<sub>n</sub>-Ringe in Nitridophosphaten beobachtet. So weisen die Nitridophosphate mit einem Kondensationsgrad P: N = 0,5 keine P<sub>n</sub>N<sub>n</sub>-Ringe mit n < 4 auf. Unter ihnen sind CaP<sub>2</sub>N<sub>4</sub> und SrP<sub>2</sub>N<sub>4</sub> die einzigen Phasen mit P<sub>4</sub>N<sub>4</sub>-Viererringen. P<sub>3</sub>N<sub>3</sub>-Dreierringe, jedoch keine P<sub>2</sub>N<sub>2</sub>-Zweierringe, werden in allen hochkondensierten Alkali-nitridophosphaten beobachtet. Dagegen existieren in α-P<sub>3</sub>N<sub>5</sub> und  $HP_4N_7$   $P_2N_2$ -Zweierringe aber keine  $P_3N_3$ -Dreierringe.  $\gamma$ - $P_3N_5$  ist das einzige bekannte Phosphor(V)-nitrid, welches sowohl P<sub>2</sub>N<sub>2</sub>-Zweier- als auch P<sub>3</sub>N<sub>3</sub>-Dreierringe enthält. Es ist Phosphor(V)-nitrid zudem das mit der höchsten Framework-Density (FD = 40,6 T·(1000 Å<sup>3</sup>)<sup>-1</sup>), welche annähernd so groß ist wie die von β-Si<sub>3</sub>N<sub>4</sub> (FD = 41,2 T·(1000 Å<sup>3</sup>)-1). Tab. 7.2-1 zeigt zudem, daß bei gleichem Kondensationsgrad P:N die Framework-Density der P-N-Gerüste mit der Größe der Kationen, welche derselben Gruppe des Periodensystems angehören, abnimmt.

Tab. 7.2-1: Die bekannten binären und ternären Phosphor(V)-nitride (P:  $N \ge 0,5$ ) mit ihren Kreisklassespektren nach *Klee* sowie dem jeweils zugehörigen Kondensationsgrad P: N und der Framework-Density / Tetraederzentren (10<sup>9</sup> pm<sup>3</sup>)<sup>-1</sup>.

|                                                | Relative Häufigkeit der Ringgröße n |    |    |    |     |     |      |                    | Frame-           |
|------------------------------------------------|-------------------------------------|----|----|----|-----|-----|------|--------------------|------------------|
| Ringgröße n                                    | 2                                   | 3  | 4  | 5  | 6   | 7   | 8    | tionsgrad<br>P : N | work-<br>Density |
| $\alpha$ -P <sub>3</sub> N <sub>5</sub>        | 4                                   | 0  | 4  | 16 | 52  | 104 | 336  | 0,6                | 30,8             |
| $\gamma$ -P <sub>3</sub> N <sub>5</sub>        | 2                                   | 6  | 13 | 42 | 140 | 542 | 2122 | 0,6                | 40,6             |
| HP <sub>4</sub> N <sub>7</sub>                 | 4                                   | 0  | 4  | 16 | 60  | 72  | 252  | 0,57               | 31,1             |
| NaP <sub>4</sub> N <sub>7</sub>                | 0                                   | 4  | 4  | 8  | 28  | 48  | 148  | 0,57               | 30,3             |
| KP <sub>4</sub> N <sub>7</sub>                 | 0                                   | 8  | 8  | 16 | 44  | 72  | 272  | 0,57               | 28,5             |
| RbP <sub>4</sub> N <sub>7</sub>                | 0                                   | 8  | 8  | 16 | 44  | 72  | 272  | 0,57               | 28,0             |
| CsP <sub>4</sub> N <sub>7</sub>                | 0                                   | 8  | 8  | 16 | 44  | 72  | 272  | 0,57               | 27,3             |
| Na <sub>3</sub> P <sub>6</sub> N <sub>11</sub> | 0                                   | 24 | 12 | 24 | 56  | 48  | 72   | 0,54               | 22,2             |
| $K_3P_6N_{11}$                                 | 0                                   | 24 | 12 | 24 | 56  | 48  | 72   | 0,54               | 21,4             |
| $Rb_3P_6N_{11}$                                | 0                                   | 24 | 12 | 24 | 56  | 48  | 72   | 0,54               | 20,7             |
| $Cs_3P_6N_{11}$                                | 0                                   | 24 | 12 | 24 | 56  | 48  | 72   | 0,54               | 19,9             |
| CaP <sub>2</sub> N <sub>4</sub>                | 0                                   | 0  | 6  | 0  | 20  | 0   | 60   | 0,5                | 21,5             |
| SrP <sub>2</sub> N <sub>4</sub>                | 0                                   | 0  | 6  | 0  | 20  | 0   | 60   | 0,5                | 20,7             |
| HPN <sub>2</sub>                               | 0                                   | 0  | 0  | 0  | 4   | 0   | 6    | 0,5                | 26,7             |
| LiPN <sub>2</sub>                              | 0                                   | 0  | 0  | 0  | 4   | 0   | 6    | 0,5                | 26,8             |
| NaPN <sub>2</sub>                              | 0                                   | 0  | 0  | 0  | 4   | 0   | 6    | 0,5                | 23,1             |
| $Zn_{6}P_{12}N_{24}$                           | 0                                   | 0  | 0  | 0  | 12  | 0   | 24   | 0,5                | 14,6             |

### 7.3 Vergleich der Bindungslängen in Nitridophosphaten

Die Betrachtung der Bindungslängen P-N in den im Rahmen dieser Arbeit synthetisierten Nitridophosphaten bestätigt die Zunahme der Bindungslängen P-N mit der Zahl der jeweils an ein N-Atom gebundenen P-Atome (Tab. 7.3-1, Abb. 7.3-2). Zudem ist eine Abhängigkeit der Bindungslängen von jeweils an gleichviele P-Atome gebundenen N-Atomen vom Kondensationsgrad der Verbindung zu beobachten (Abb. 7.3-1). Die Bindungslängen nehmen mit dem Kondensationsgrad P: N ab.

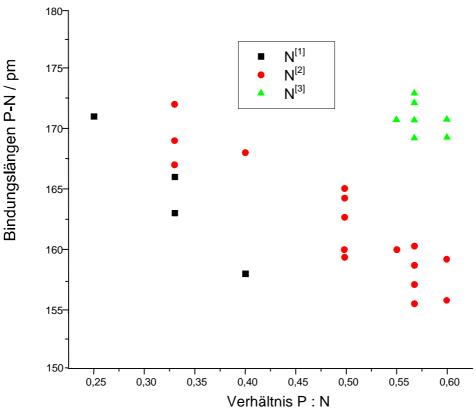



Abb. 7.3-1: Abhängigkeit der mittleren Bindungslängen der Atome  $N^{[1]}$ ,  $N^{[2]}$  und  $N^{[3]}$ , welche an je ein, zwei bzw. drei P-Atome gebunden sind, vom Kondensationsgrad P: N der jeweiligen Nitridophosphate.

Tab. 7.3-1: Mittlere Bindungslängen P-N / pm in Phosphornitriden.

| Verbindung                                      | Verhältnis P : N | P-N-Teilstruktur                                                   | N <sup>[1]</sup> | <b>N</b> <sup>[2]</sup> | N <sup>[3]</sup> |
|-------------------------------------------------|------------------|--------------------------------------------------------------------|------------------|-------------------------|------------------|
| Li <sub>7</sub> PN <sub>4</sub> <sup>[63]</sup> | 0,25             | $[(P^{[4]}N_4^{[1]})^{7}]$                                         | 171              |                         |                  |
| $\text{Li}_{12}\text{P}_{3}\text{N}_{9}^{[66]}$ | 0,33             | $[(P_3^{[4]}N_6^{[1]}N_3^{[2]})^{12}]$                             | 163              | 169                     |                  |
| Ca <sub>2</sub> PN <sub>3</sub> [65]            | 0,33             | $_{_{\infty}}^{^{1}}[(P^{[4]}N^{[1]}N_{2}^{[2]})^{4}]$             | 163              | 167                     |                  |
| $\mathrm{Mg_2PN_3}^{[64]}$                      | 0,33             | $_{_{\infty}}^{1}[(P^{[4]}N^{[1]}N_{2}^{[2]})^{4}]$                | 166              | 172                     |                  |
| $\text{Li}_{10}\text{P}_4\text{N}_{10}^{[67]}$  | 0,40             | $[(P_4^{[4]}N_4^{[1]}N_6^{[2]})^{10}]$                             | 158              | 168                     |                  |
| CaP <sub>2</sub> N <sub>4</sub>                 | 0,50             | $_{_{\infty}}^{3}[(P^{[4]}N_{2}^{[2]})^{\text{-}}]$                |                  | 160                     |                  |
| SrP <sub>2</sub> N <sub>4</sub>                 | 0,50             | $_{\infty}^{3}[(P^{[4]}N_{2}^{[2]})^{-}]$                          |                  | 160                     |                  |
| NaPN <sub>2</sub>                               | 0,50             | $_{_{\infty}}^{3}[(P^{[4]}N_{2}^{[2]})^{-}]$                       |                  | 160                     |                  |
| LiPN <sub>2</sub> <sup>[68]</sup>               | 0,50             | $_{_{\infty}}^{3}[(P^{[4]}N_{2}^{[2]})^{\text{-}}]$                |                  | 165                     |                  |
| HPN <sub>2</sub> <sup>[51]</sup>                | 0,50             | $_{_{\infty}}^{3}[(P^{[4]}N_{2}^{[2]})^{\text{-}}]$                |                  | 160                     |                  |
| $Zn_7P_{12}N_{24}Cl_2^{[69]}$                   | 0,50             | $_{\infty}^{3}[(P_{12}^{[4]}N_{24}^{[2]})^{12\text{-}}]$           |                  | 163                     |                  |
| $K_3P_6N_{11}^{[57]}$                           | 0,55             | $_{_{\infty}}^{3}[(P_{6}^{[4]}N_{9}^{[2]}N_{2}^{[3]})^{3}]$        |                  | 160                     | 171              |
| $Rb_3P_6N_{11}$                                 | 0,55             | $_{_{\infty}}^{3}[(P_{6}^{[4]}N_{9}^{[2]}N_{2}^{[3]})^{3}]$        |                  | 160                     | 171              |
| $Cs_3P_6N_{11}$                                 | 0,55             | $_{_{\infty}}^{3}[(P_{6}^{[4]}N_{9}^{[2]}N_{2}^{[3]})^{3}]$        |                  | 160                     | 171              |
| $HP_4N_7^{[61]}$                                | 0,57             | $_{_{\infty}}^{3}[(P_{4}^{[4]}N_{5}^{[2]}N_{2}^{[3]})^{\text{-}}]$ |                  | 160                     | 169              |
| NaP <sub>4</sub> N <sub>7</sub>                 | 0,57             | $_{_{\infty}}^{3}[(P_{4}^{[4]}N_{5}^{[2]}N_{2}^{[3]})^{\text{-}}]$ |                  | 160                     | 171              |
| $KP_4N_7$                                       | 0,57             | $^{3}_{_{\infty}}[(P_{4}^{[4]}N_{5}^{[2]}N_{2}^{[3]})^{\text{-}}]$ |                  | 156                     | 171              |
| RbP <sub>4</sub> N <sub>7</sub>                 | 0,57             | $^{3}_{_{\infty}}[(P_{4}^{[4]}N_{5}^{[2]}N_{2}^{[3]})^{\text{-}}]$ |                  | 159                     | 172              |
| CsP <sub>4</sub> N <sub>7</sub>                 | 0,57             | $_{_{\infty}}^{3}[(P_{4}^{[4]}N_{5}^{[2]}N_{2}^{[3]})^{\text{-}}]$ |                  | 157                     | 173              |
| $\alpha\text{-P}_3N_5{}^{[34]}$                 | 0,60             | $_{_{\infty}}^{3}[P_{3}^{[4]}N_{3}^{[2]}N_{2}^{[3]}]$              |                  | 156                     | 169              |
| $\gamma$ -P $_3$ N $_5$                         | 0,60             | $_{\infty}^{3}[P_{1}^{[4]}P_{2}^{[5]}N_{1}^{[2]}N_{4}^{[3]}]$      |                  | 159                     | 171              |

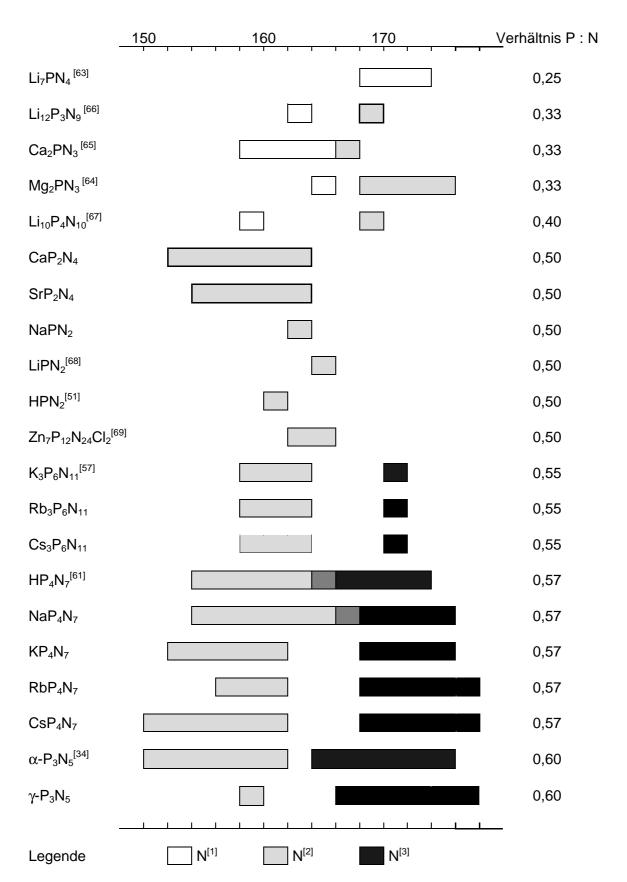



Abb. 7.3-2: Bereiche der P-N-Bindungslängen / pm in Abhängigkeit der Zahl der an ein N-Atom gebundenen P-Atome sowie dem Kondensationsgrad P: N.

### 7.4 Kristallchemischer Vergleich der Nitridophosphate

Ein Vergleich der MAPLE-Werte in Nitridophosphaten zeigt, daß diese weitgehend unabhängig von der Struktur der Nitridophosphate sind und für jede Atomsorte in einem schmalen charakteristischen Wertebereich variieren, welcher vor allem durch die formale Ladung des jeweiligen Atoms bestimmt wird. Signifikant ist, daß N-Atome, welche an drei P-Atome gebunden sind, einen um ca. 100 kcal/mol erhöhten MAPLE-Wert besitzen. Dagegen führt in  $\gamma$ -P<sub>3</sub>N<sub>5</sub> die Erhöhung der Koordinationszahl an P von vier auf fünf zu keiner Erhöhung des MAPLE-Wertes für das entsprechende P-Atom (Tab. 7.4-1).

Tab. 7.4-1: Übersicht über die partiellen MAPLE-Werte / kcal·mol<sup>-1</sup> von Nitridophosphaten. M = Alkali- oder Erdalkali-Kation.

|                                                | М       | Р         | N <sup>[2]</sup> | N <sup>[3]</sup> |
|------------------------------------------------|---------|-----------|------------------|------------------|
| $\gamma$ -P <sub>3</sub> N <sub>5</sub>        |         | 3572-3673 | 1430             | 1513-1552        |
| NaP <sub>4</sub> N <sub>7</sub>                | 175     | 3572-3574 | 1431-1558        | 1626             |
| KP <sub>4</sub> N <sub>7</sub>                 | 161     | 3406-3698 | 1450-1523        | 1644             |
| RbP₄N <sub>7</sub>                             | 161     | 3390-3661 | 1390-1523        | 1666             |
| CsP <sub>4</sub> N <sub>7</sub>                | 154     | 3405-3656 | 1386-1542        | 1654             |
| Rb <sub>3</sub> P <sub>6</sub> N <sub>11</sub> | 100-149 | 3492      | 1500-1507        | 1724             |
| Cs <sub>3</sub> P <sub>6</sub> N <sub>11</sub> | 99-140  | 3487      | 1496-1504        | 1733             |
| NaPN <sub>2</sub>                              | 151     | 3611      | 1459             |                  |
| CaP <sub>2</sub> N <sub>4</sub>                | 476-485 | 3394-3877 | 1331-1715        |                  |
| SrP <sub>2</sub> N <sub>4</sub>                | 448-553 | 3706-3832 | 1373-1573        |                  |

Anhand der berechneten Ladungsverteilungen mit dem CHARDI- bzw. dem Bindungslängen-Bindungsstärken-Konzept kann die Aussagekraft dieser Konzepte über die Bindungssituation in Nitridophosphaten beurteilt werden. Es zeigt sich, daß das CHARDI-Konzept im allgemeinen deutlich sinnvollere Werte als das Bindungslängen-Bindungsstärken-Konzept liefert. Dies wurde auch schon bei anderen nitridischen Verbindungen, wie den beobachtet.[35] Die Nitridosilicaten wesentliche Schwäche des Bindungslängen-Bindungsstärken-Konzeptes scheint der oft unzureichend bestimmte Parameter R<sub>ij</sub> zu sein, welcher im wesentlichen die durchschnittliche Bindungslänge einer Bindung zwischen den Atomen i und j wiederspiegelt. Da beispielsweise die durchschnittliche Bindungslänge P-N auch vom Kondensationsgrad des Nitridophosphates abhängt (vgl. Kap. 7.3), wird verständlich, daß mit dem Bindungslängen-Bindungsstärken-Konzept stark veinfachende Annahmen gemacht werden, wodurch sich die Valenzsummen nur mit relativ großen Fehlern bestimmen lassen.

## 7.5 <sup>31</sup>P-MAS-NMR-spektroskopischer Vergleich von Nitridophosphaten

Anhand der im Rahmen dieser Arbeit erhaltenen <sup>31</sup>P-NMR-spektroskopischen Daten konnte tendenziell eine Abnahme der chemischen Verschiebung der tetraedrisch koordinierten P-Atome mit dem Kondensationsgrad P: N beobachtet werden. Dies steht im Einklang mit bereits bekannten <sup>31</sup>P-MAS-NMR-Daten anderer Nitridophosphate (Tab. 7.5-1). Die tendenziell schwächere Entschirmung des <sup>31</sup>P-Kerns bei höherem Kondensationsgrad ist plausibel, da in einer hochkondensierten P-N-Struktur pro P-Atom elektronenziehende (entschirmende) N-Atome existieren als in einer niedrigkondensierten P-N-Verbindung (Abb. 7.5-1). Mit der <sup>31</sup>P-MAS-NMR-spektroskopischen Untersuchung von γ-P<sub>3</sub>N<sub>5</sub> konnte zum ersten Mal die chemische Verschiebung eines tetragonal-pyramidal von fünf N-Atomen koordinierten P-Atoms gemessenen werden. Der 31 P[5]-Kern zeigt eine signifikant niedrigere chemische Verschiebung als alle bislang in Nitridophosphaten beobachteten an je vier N-Atome gebundene <sup>31</sup>P<sup>[4]</sup>-Kerne. Dies ist zu erwarten, da P<sup>[4]</sup>-Atome im Gegensatz zu P<sup>[5]</sup>-Atomen einen phosphonium-ionischen Charakter besitzen.

Überraschend ist zunächst die deutlich andere chemische Verschiebung der <sup>31</sup>P-Kerne von NaPN<sub>2</sub> und KP<sub>4</sub>N<sub>7</sub> gegenüber den jeweils isotypen Verbindungen LiPN<sub>2</sub> bzw. RbP<sub>4</sub>N<sub>7</sub> und CsP<sub>4</sub>N<sub>7</sub>. Während bei NaPN<sub>2</sub> ein für ein Nitridophosphat mit einem Kondensationsgrad P: N = 0,5 ungewöhnlich niedriger Wert von -15 ppm gefunden wird, sind die <sup>31</sup>P-Kerne von KP<sub>4</sub>N<sub>7</sub> überraschend stark entschirmt (-0,4, -1,7 ppm). Auch die Signale von CaP<sub>2</sub>N<sub>4</sub> und besonders von SrP<sub>2</sub>N<sub>4</sub> erscheinen bei Verschiebungen, die bislang bei hochkondensierten Nitridophosphaten beobachtet wurden. Die Metall-Ionen Nitridophosphate haben also offenbar, obwohl nicht in unmittelbarer chemischer Umgebung der <sup>31</sup>P-Kerne, einen erheblichen Einfluß auf deren chemische Verschiebung. Bei jeweils isotypen Verbindungen zeigt sich klar, daß diese mit der Ordnungszahl der Kationen abnimmt. Da in Elementarzellen isotyper Nitridophosphate die Elektronendichte mit der Ordnungszahl des Metall-Ions deutlich erhöht ist und damit die <sup>31</sup>P-Kerne vom Magnetfeld stärker abgeschirmt werden, ist dieser Sachverhalt verständlich.

Tab. 7.5-1: Chemische Verschiebungen / ppm von  $^{31}\mathrm{P}$  in Nitridophosphaten.

| Verbindung                                        | $\delta$ $^{31}$ P / ppm | Kondensationsgrad P: N |
|---------------------------------------------------|--------------------------|------------------------|
| $\gamma$ -P <sub>3</sub> N <sub>5</sub>           | -11,9                    | 0,60                   |
|                                                   | -101,7                   |                        |
| $\alpha$ - $P_3N_5^{[62]}$                        | -46                      | 0,60                   |
|                                                   | -65                      |                        |
| $HP_4N_7^{[62]}$                                  | -26                      | 0,57                   |
| NaP₄N <sub>7</sub>                                | -23,5                    | 0,57                   |
|                                                   | -25,0                    |                        |
| KP <sub>4</sub> N <sub>7</sub>                    | -0,4                     | 0,57                   |
|                                                   | -1,7                     |                        |
| RbP₄N <sub>7</sub>                                | -19,6                    | 0,57                   |
|                                                   | -28,2                    |                        |
| CsP <sub>4</sub> N <sub>7</sub>                   | -21,6                    | 0,57                   |
|                                                   | -31,9                    |                        |
| $Rb_3P_6N_{11}$                                   | -7,4                     | 0,55                   |
| $Cs_3P_6N_{11}$                                   | -8,9                     | 0,55                   |
| LiPN <sub>2</sub> <sup>[111]</sup>                | 0                        | 0,50                   |
| NaPN <sub>2</sub>                                 | -15                      | 0,50                   |
| CaP <sub>2</sub> N <sub>4</sub>                   | -20,0                    | 0,50                   |
|                                                   | -15,9                    |                        |
|                                                   | -5,2                     |                        |
|                                                   | -3,6                     |                        |
|                                                   | -2,6                     |                        |
| SrP <sub>2</sub> N <sub>4</sub>                   | -27,8                    | 0,50                   |
|                                                   | -23,4                    |                        |
|                                                   | -17,1                    |                        |
|                                                   | -15,5                    |                        |
|                                                   | -14,1                    |                        |
| $Zn_6P_{12}N_{24}^{[112]}$                        | 2,0                      | 0,50                   |
| Li <sub>7</sub> ·PN <sub>4</sub> <sup>[161]</sup> | 54,6                     | 0,25                   |
|                                                   | 49,2                     |                        |

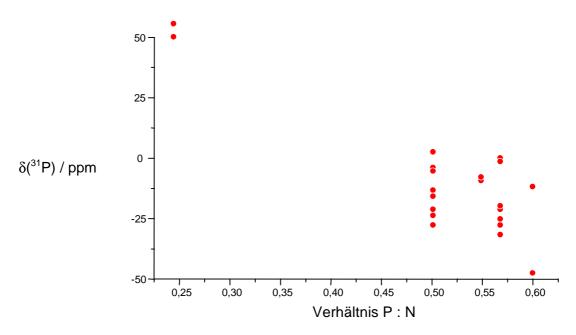



Abb. 7.5-1: Die chemische Verschiebung von tetraedrisch koordinierten <sup>31</sup>P-Kernen in Nitridophosphaten / ppm in Abhängigkeit des Kondensationsgrades im Bereich von –50 bis 50 ppm.

#### 8. Ausblick

Die Leichtigkeit und Eleganz, mit der die in dieser Arbeit beschriebenen Alkali- und Erdalkalinitridophosphate über Hochdruck-Hochtemperatur-Synthese ausgehend von P<sub>3</sub>N<sub>5</sub> und Alkalibzw. Erdalkali-aziden erhalten werden konnten, legen nahe, analoge Versuche zur Darstellung von Nitridophosphaten mit anderen Metallen des Periodensystems, beispielsweise mit den Lanthanoiden, durchzuführen. Voraussetzung für eine erfolgreiche Synthese sollte lediglich die Existenz eines entsprechenden Metall-azids oder -nitrids als Edukt sein. Durch die Tatsache, daß im Prinzip beliebig viele Azide und Nitride gleichzeitig in einem frei wählbaren molaren Verhältnis eingesetzt werden können, sollten nicht nur ternäre, sondern auch quaternäre und multinäre Phasen zugänglich sein. Bei der Synthese von quaternären und höheren Verbindungen sollten auch Metall-azid/Metall-Gemenge als Edukte verwendbar sein, da das Azid in der Lage sein sollte, das elementare Metall zum Kation zu oxidieren. Der Einsatz von Metallen bietet sich vor allem dann an, wenn die entsprechenden Azide oder Nitride sehr explosiv bzw. instabil sind.

Auch die Synthese von Metall-phosphor-imidnitriden unter Hochdruckbedingungen ist vorstellbar. Hier wäre die Umsetzung von  $HPN_2$  oder  $HP_4N_7$  mit Metall-aziden sinnvoll. Eine andere Zugangsmöglichkeit könnte die Reaktion von  $P_3N_5$  mit  $NH_4N_3$  in Gegenwart von Metallen oder Metall-aziden sein.

Durch Umsetzung Si<sub>3</sub>N₄ mit Metall-aziden sollten unter Hochdruckvon Hochtemperaturbedingungen auch Nitridosilicate erhalten werden können. Im Gegensatz zum Verfahren im Hochfrequenzofen könnten hier auch Nitridosilicate leicht flüchtiger Metalle wie z.B. Na, K, Rb und Cs synthetisierbar sein. Durch analoge Reaktionen von BN, AlN oder GaN mit Metall-aziden sollte die Verbindungsklasse der Nitridoborate, -aluminate und -gallate systematisch erschlossen werden können. Wegen der großen Reaktionsträgheit dieser binären Nitride könnte hier eine Synthese ausgehend von den Elementen Bor, Aluminium und Gallium eine gute Alternative sein.

Interessant wäre auch eine Synthese von C-N-Verbindungen unter Hochdruckbedingungen. So ist das binäre Kohlenstoff(IV)-nitrid  $C_3N_4$  bislang noch unbekannt. Es könnte durch thermische Zersetzung sehr stickstoffreicher C-N-Molekülverbindungen wie Cyanurazid  $C_3N_{12}$  unter Hochdruck erhalten werden. Zudem wäre beispielsweise von Interesse, ob das lineare Cyanamid-Ion  $CN_2^{2-}$  durch Nitridierung mit Metallnitriden wie Li<sub>3</sub>N unter Hochdruck in ein trigonal planares  $CN_3^{5-}$  bzw. tetraedrisches  $CN_4^{8-}$ -Nitridocarbonat-Ion überführbar ist.

Durch Reaktionen von  $P_3N_5$  mit  $Si_3N_4$  könnten Silicium-nitridophosphate mit hochkondensierten Si-P-N-Netzwerken entstehen. Die Durchführung einer solchen Reaktion in Gegenwart eines Metall-azids könnte zu entsprechenden Metall-silicium-nitridophosphaten führen. Bor-, Aluminium- und Gallium-nitridophosphate könnten analog durch Umsatz von BN bzw. AlN und GaN mit  $P_3N_5$  erhalten werden. Prinzipiell sind auch multinäre P-Si-B-Al-Ga-Netzwerkstrukturen denkbar. Diese sollten sich ebenfalls durch Hochdruck-Hochtemperatur-Synthese aus Gemengen der binären Nitride darstellen lassen.

Eine weitere interessante Anwendung der Hochdrucksynthese ist die Möglichkeit der Koordinationszahlerhöhung in Verbindungen. Somit könnten nitridische Festkörper mit ungewöhnlichen Strukturelementen wie z.B. PN<sub>6</sub>-, AIN<sub>6</sub>-, SiN<sub>6</sub>-Oktaedern oder BN<sub>4</sub>-Tetraedern erhalten werden.

Das beschriebene Hochdruck-Hochtemperatur-Synthesekonzept sollte nicht nur für rein nitridische, sondern auch für oxonitridische, sulfonitridische oder carbonitridische Verbindungen Potential besitzen. Zur Darstellung solcher Verbindungen sollte lediglich ein entsprechendes Oxid, Sulfid oder Carbid wie z.B. SiO<sub>2</sub>, SiS<sub>2</sub> oder SiC neben den Aziden und Nitriden als Edukt eingesetzt werden müssen.

Somit könnte die Hochdruck-Hochtemperatur-Synthese ein universelles präparatives Werkzeug in einem großen Bereich der anorganischen Festkörperchemie werden. Das mögliche Potential ist graphisch noch einmal in Abb. 8-1 veranschaulicht.

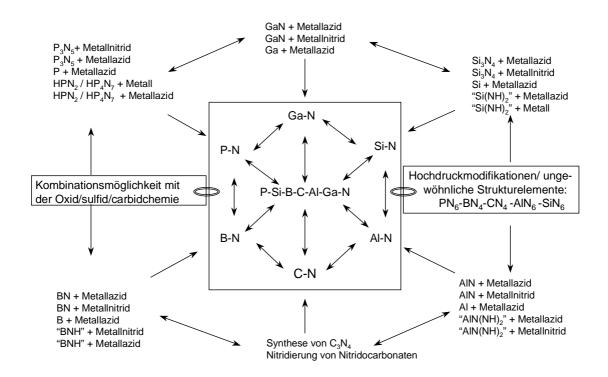



Abb. 8-1: Das mögliche präparative Potential der Hochdruck-Hochtemperatur-Synthese für nitridische Verbindungen in einer graphischen Übersicht.

### 9. Zusammenfassung

1. Entwicklung und Etablierung der Hochdruck-Hochtemperatur-Synthese als breiten Zugang zu Nitridophosphaten. Im Rahmen der Dissertation gelang es erstmals, ein breit anwendbares Synthesekonzept zur Darstellung von Nitridophosphaten zu systematischen entwickeln und so die Grundlage zur Erschließung dieser Substanzklasse zu legen. Es konnte gezeigt werden, daß unter Hochdruck-Bedingungen (> 3 GPa) bei Verwendung eines Belt- oder Walker-Moduls kristalline Alkali- und Erdalkali-nitridophosphate durch Umsetzung des binären Phosphor(V)-nitrids P<sub>3</sub>N<sub>5</sub> mit Alkali- und Erdalkaliaziden bei Temperaturen von 1200 °C bis ca. 1600 °C darstellbar sind. Dadurch wurde bewiesen, daß bei Synthesen unter Hochdruck die thermische Zersetzung durch irreversible Abspaltung von N<sub>2</sub> aus Nitridophosphaten, welche bei Normaldruck bereits bei ca. 800 °C stattfindet, unterdrückt werden kann. Es gelang somit durch Anwendung von Hochdruck, die maximale Synthesetemperatur ungefähr zu verdoppeln. Dies hat deutlich verbesserte Kristallisationsbedingungen zu Folge. Das Hauptproblem bei konventionellen Synthesen von Nitridophosphaten, nämlich ungünstige Kristallisationsbedingungen infolge limitierter Synthesetemperatur, konnte somit beseitigt und infolgedessen die Zahl der bekannten kristallographisch eindeutig charakterisierten ternären Phosphor(V)-nitride von neun auf achtzehn verdoppelt werden. Insbesondere wurde die Zahl der bekannten hochkondensierten Nitridophosphate (molares Verhältnis P: N > 1:2) von drei auf neun erhöht sowie eine neue Modifikation des binären Phosphor(V)-nitrids P<sub>3</sub>N<sub>5</sub> erhalten. Daher kann das im Rahmen der Dissertation entwickelte Hochdruck-Hochtemperatur-Synthesekonzept als das erste breit anwendbare Verfahren zur Darstellung von Nitridophosphaten angesehen werden. Es erlaubt aufgrund der hermetischen Abgeschlossenheit des Reaktionsraums zudem das genaue Einstellen des Kondensationsgrades im P-N-Gerüst des Nitridophosphates durch systematische Variation des molaren Verhältnisses von P<sub>3</sub>N<sub>5</sub> und dem jeweiligen Azid im Eduktgemenge. Weiterhin wurde gezeigt, daß unter den beschriebenen Hochdruck-Hochtemperaturbedingungen die Reaktionszeiten gegenüber konventionellen Synthesemethoden drastisch verkürzt werden können. Während konventionelle Nitridophosphat-Synthesen eine Reaktionszeit von mehreren Stunden bis Tagen benötigen, verlaufen die Umsetzungen unter Hochdruckbedingungen bereits bei Reaktionszeiten von 5-15 min quantitativ.

Die für die Hochdrucksynthesen erforderlichen Apparaturen standen am Anfang der Dissertation innerhalb des Arbeitskreises nicht zur Verfügung. Der Erfolg der ersten Synthesen (NaP<sub>4</sub>N<sub>7</sub>, KP<sub>4</sub>N<sub>7</sub>, RbP<sub>4</sub>N<sub>7</sub>, CsP<sub>4</sub>N<sub>7</sub>), welche in Zusammenarbeit mit *Evers* durchgeführt wurden, trugen wesentlich zur Anschaffung der 1000 t-Hochdruckpresse,

- deren Aufbau durch *Huppertz* erfolgte, und zur Einführung der Multianvil-Hochdrucktechnik an der LMU München bei.
- 2. NaP<sub>4</sub>N<sub>7</sub>, KP<sub>4</sub>N<sub>7</sub>, RbP<sub>4</sub>N<sub>7</sub> und CsP<sub>4</sub>N<sub>7</sub>. Die Nitridophosphate NaP<sub>4</sub>N<sub>7</sub>, KP<sub>4</sub>N<sub>7</sub>, RbP<sub>4</sub>N<sub>7</sub> und CsP<sub>4</sub>N<sub>7</sub> wurden durch Umsetzung des jeweiligen Alkaliazids mit P<sub>3</sub>N<sub>5</sub> im molaren Verhältnis MN<sub>3</sub>: P<sub>3</sub>N<sub>5</sub> = 3: 4 (M = Na, K, Rb, Cs) in einem Belt-Modul bei ca. 40 kbar und 1300 °C synthetisiert. NaP<sub>4</sub>N<sub>7</sub> (C2/c, a = 1233,45(4), b = 852,30(3), c = 513,97(1) pm,  $\beta = 102,572(2)^{\circ}$ , Z = 4,  $R_p = 0,0772$ ,  $wR_p = 0,1077$ ,  $R_F = 0,0718$ ) kristallisiert isotyp zu CaAl<sub>4</sub>O<sub>7</sub> in einer dreidimensionalen Gerüststruktur aus eckenverknüpften PN<sub>4</sub>-Tetraedern. Gemäß  $_{\infty}^{3}[(P_{4}^{[4]}N_{5}^{[2]}N_{2}^{[3]})^{-}]$  existieren sowohl  $N^{[2]}$ - als auch  $N^{[3]}$ -Brücken im molaren Verhältnis 5 : 2. Die Na<sup>+</sup>-Ionen befinden sich in den Kanälen des P-N-Gerüstes.  $KP_4N_7 \quad (\textit{Pnma}, \quad a = 1222,72(2), \quad b = 984,25(2), \quad c = 466,24(1) \; pm, \quad Z = 4, \quad R_p = 0,0865,$  $WR_p = 0.1113$ ,  $R_F = 0.0821$ ),  $RbP_4N_7$  (a = 1231.07(2), b = 989.46(1), c = 468.44(1) pm, Z = 4,  $R_p = 0.0350$ ,  $wR_p = 0.0462$ ,  $R_F = 0.0589$ ) und  $CsP_4N_7$  (a = 1242,91(3),  $b = 997,63(3), \quad c = 471,33(2) \; pm, \quad Z = 4, \quad R_p = 0,0524, \quad wR_p = 0,0646, \quad R_F = 0,0494)$ kristallisieren isotyp zum Mineral Barylith BaBe<sub>2</sub>Si<sub>2</sub>O<sub>7</sub> in einer Raumnetzstruktur aus eckenverknüpften  $PN_4$ -Tetraedern. Gemäß  ${}^3_\infty[(P_4^{[4]}N_5^{[2]}N_2^{[3]})^-]$  existieren sowohl  $N^{[2]}$  als auch N<sup>[3]</sup>-Brücken im molaren Verhältnis 5 : 2. In den Kanälen der P-N-Gerüste befinden sich die jeweiligen Alkali-Ionen. Anhand der kristallographischen Daten wurden an MP<sub>4</sub>N<sub>7</sub> (M = Na, K, Rb, Cs) kristallchemische Rechnungen mit dem MAPLE- und CHARDI-Konzept sowie Berechnungen auf der Basis des Bindungslängen-Bindungsstärken-Konzepts durchgeführt und diskutiert. Dabei wurden die röntgenographisch ermittelten Strukturen bestätigt. Die Verbindungen wurden IR-spektroskopisch sowie <sup>31</sup>P-MAS-NMRspektroskopisch ( $\delta = -23.5, -25.0 \text{ (NaP}_4\text{N}_7); -0.4, -1.7 \text{ (KP}_4\text{N}_7), -19.6, -28.2 \text{ (RbP}_4\text{N}_7),}$ -21,6, -31,9 ppm (CsP<sub>4</sub>N<sub>7</sub>)) charakterisiert. Mit thermogravimetrischen Untersuchungen unter Inertgasbedingungen wurde der thermische Zersetzungspunkt der Verbindungen ermittelt, welcher jeweils bei ca. 850-900 °C liegt.
- 3. **Rb**<sub>3</sub>**P**<sub>6</sub>**N**<sub>11</sub> **und Cs**<sub>3</sub>**P**<sub>6</sub>**N**<sub>11</sub>. Die Nitridophosphate Rb<sub>3</sub>P<sub>6</sub>N<sub>11</sub> und Cs<sub>3</sub>P<sub>6</sub>N<sub>11</sub> wurden durch Umsetzung des jeweiligen Alkaliazids mit P<sub>3</sub>N<sub>5</sub> im molaren Verhältnis MN<sub>3</sub> : P<sub>3</sub>N<sub>5</sub> = 3 : 2 (M = Rb, Cs) bei 35 kbar und 1300 °C in einem Walker-Modul dargestellt. Rb<sub>3</sub>P<sub>6</sub>N<sub>11</sub> (*P*4<sub>1</sub>32, a = 1049,74(1) pm, Z = 4, R<sub>p</sub> = 0,0979, wR<sub>p</sub> = 0,1077, R<sub>F</sub> = 0,0612) und Cs<sub>3</sub>P<sub>6</sub>N<sub>11</sub> (*P*4<sub>1</sub>32, a = 1065,15(1) pm, R<sub>p</sub> = 0,0487, wR<sub>p</sub> = 0,0618, R<sub>F</sub> = 0,0812) kristallisieren isotyp zu K<sub>3</sub>P<sub>6</sub>N<sub>11</sub> in einer Raumnetzstruktur aus eckenverknüpften PN<sub>4</sub>-Tetraedern, in dessen Hohlräumen sich die Alkali-Ionen befinden. Gemäß  $_{\infty}^{3}$  [(P<sub>6</sub><sup>[4]</sup>N<sub>9</sub><sup>[2]</sup>N<sub>2</sub><sup>[3]</sup>)<sup>3-</sup>] existieren N<sup>[2]</sup>- und N<sup>[3]</sup>-Brücken im molaren Verhältnis 9 : 2. Anhand der kristallographischen Daten wurden an M<sub>3</sub>P<sub>6</sub>N<sub>11</sub> (M = Rb, Cs) kristallchemische Rechnungen mit dem MAPLE- und CHARDI-

Konzept sowie Berechnungen auf der Basis des Bindungslängen-Bindungsstärken-Konzepts durchgeführt und diskutiert. Dabei wurden die röntgenographisch ermittelten Strukturen bestätigt. Die Verbindungen wurden IR-spektroskopisch sowie  $^{31}$ P-MAS-NMR-spektroskopisch ( $\delta$  = -7,4 (Rb $_3$ P $_6$ N $_{11}$ ), -8,9 ppm (Cs $_3$ P $_6$ N $_{11}$ )) charakterisiert. Mit thermogravimetrischen Untersuchungen unter Inertgasbedingungen wurde der thermische Zersetzungspunkt der Verbindungen ermittelt, welcher jeweils bei ca. 850-900 °C liegt. Temperaturabhängige pulverdiffraktometrische Untersuchungen zeigten, daß sich die Verbindung Rb $_3$ P $_6$ N $_{11}$  zwischen Raumtemperatur und 540 °C praktisch nicht thermisch ausdehnt.

- 4. NaPN<sub>2</sub>. Das Nitridophosphat NaPN<sub>2</sub> wurde durch Umsetzung von NaN<sub>3</sub> mit P<sub>3</sub>N<sub>5</sub> im molaren Verhältnis NaN<sub>3</sub>:  $P_3N_5 = 3:1$  bei 35 kbar und 1000 °C in einem Walker-Modul dargestellt. NaPN<sub>2</sub> ( $\overline{/4}$ 2d, a = 497,21(2), c = 697,60(3) pm, Z = 4, R<sub>p</sub> = 0,0502,  $wR_p = 0.0649$ ,  $R_F = 0.0788$ ) kristallisiert isotyp zu LiPN<sub>2</sub> in einer Raumnetzstruktur aus eckenverknüpften PN<sub>4</sub>-Tetraedern, in dessen Kanälen sich die Na<sup>+</sup>-lonen befinden.  $_{\infty}^{3}[(P^{[4]}N_{2}^{[2]})]$ N<sup>[2]</sup>-Brücken. existieren ausschließlich Gemäß Anhand kristallographischen Daten wurden an NaPN<sub>2</sub> kristallchemische Rechnungen mit dem MAPLE- und CHARDI-Konzept sowie Berechnungen auf der Basis des Bindungslängen-Bindungsstärken-Konzepts durchgeführt und diskutiert. Dabei wurde die röntgenographisch ermittelte Struktur bestätigt. Die Verbindung wurde IRspektroskopisch sowie <sup>31</sup>P-MAS-NMR-spektroskopisch ( $\delta$  = -15,0 ppm) charakterisiert. Mit thermogravimetrischen Untersuchungen unter Inertgasbedingungen wurde der thermische Zersetzungspunkt ermittelt, welcher bei ca. 900 °C liegt.
- 5.  $\text{CaP}_2\text{N}_4$  und  $\text{SrP}_2\text{N}_4$ . Die Nitridophosphate  $\text{CaP}_2\text{N}_4$  und  $\text{SrP}_2\text{N}_4$  wurden durch Umsetzung von  $\text{Ca}(\text{N}_3)_2$  bzw.  $\text{Sr}(\text{N}_3)_2$  mit  $\text{P}_3\text{N}_5$  im molaren Verhältnis  $\text{M}(\text{N}_3)_2$ :  $\text{P}_3\text{N}_5=3:2$  bei 35 kbar und 1300 °C in einem Walker-Modul dargestellt. Aus röntgenographischen Untersuchungen an Pulvern von  $\text{CaP}_2\text{N}_4$  und  $\text{SrP}_2\text{N}_4$  konnte ein Strukturmodell erhalten werden.  $\text{CaP}_2\text{N}_4$  ( $P6_322$ , a = 972,11(1), c = 785,90(1) pm, Z = 8, Rp = 0,059, wRp = 0,079, RF = 0,174) und  $\text{SrP}_2\text{N}_4$  ( $P6_322$ , a = 987,44(1), c = 819,48(1) pm, Z = 8, Rp = 0,075, wRp = 0,096, RF = 0,115) kristallisieren isotyp in einer Raumnetzstruktur aus eckenverknüpften  $\text{PN}_4$ -Tetraedern, in dessen Kanälen sich die Erdalkali-Ionen befinden. Dabei sind senkrecht [001] verlaufende Schichten kondensierter  $\text{P}_6\text{N}_6$ -Sechserringe über  $\text{P}_4\text{N}_4$ -Viererringe sowie weitere  $\text{P}_6\text{N}_6$ -Sechserringe zum dreidimensionalen P-N-Gerüst verknüpft. Gemäß  $\frac{3}{\infty}$  [( $\text{P}^{[4]}\text{N}_2^{[2]}$ )] existieren ausschließlich  $\text{N}^{[2]}$ -Brücken. Anhand der kristallographischen Daten wurden an  $\text{CaP}_2\text{N}_4$  und  $\text{SrP}_2\text{N}_4$  kristallchemische Rechnungen mit dem MAPLE- und CHARDI-Konzept sowie Berechnungen auf der Basis des

Bindungslängen-Bindungsstärken-Konzepts durchgeführt und diskutiert. Dabei wurden die röntgenographisch ermittelten Strukturen weitgehend bestätigt. Die Verbindungen wurden IR-spektroskopisch sowie  $^{31}$ P-MAS-NMR-spektroskopisch ( $\delta$  = -20,0, -15,9, -5,2, -3,6, -2,6 (CaP<sub>2</sub>N<sub>4</sub>), -27,8, -23,4, -17,1, -15,5, -14,1 ppm (SrP<sub>2</sub>N<sub>4</sub>) charakterisiert. Die thermogravimetrischen Untersuchungen unter Inertgasbedingungen ergaben einen thermischen Zersetzungspunkt von SrP<sub>2</sub>N<sub>4</sub> bei ca. 900 °C, während sich CaP<sub>2</sub>N<sub>4</sub> bis 1000 °C als stabil erwies.

- 6.  $\gamma$ -P<sub>3</sub>N<sub>5</sub>. Bei 110 kbar und 1500 °C gelang die Darstellung von  $\gamma$ -P<sub>3</sub>N<sub>5</sub>, einer Hochdruckmodifikation von α-P<sub>3</sub>N<sub>5</sub>. Im Gegensatz zu α-P<sub>3</sub>N<sub>5</sub>, welches ausschließlich aus PN<sub>4</sub>-Tetraedern aufgebaut ist, bildet γ-P<sub>3</sub>N<sub>5</sub> eine dreidimensionale Raumnetzstruktur sowohl aus PN<sub>4</sub>-Tetraedern als auch aus tetragonalen PN<sub>5</sub>-Pyramiden. Strukturelement der tetragonalen PN<sub>5</sub>-Pyramide war bislang unbekannt. In der Kristallstruktur von  $\gamma$ -P<sub>3</sub>N<sub>5</sub> (*Imm*2, a = 1287,20(5), b = 261,312(6), c = 440,04(2) pm, Z = 2,  $R_p = 0.073$ ,  $wR_p = 0.094$ ,  $R_F = 0.048$ ) sind Stäbe trans-kantenverknüpfer  $PN_5$ -Pyramiden zu Schichten verknüpft. Diese sind wiederum über Ketten eckenverknüpfter  $PN_4$ -Tetraeder zur Gesamtstruktur verknüpft. Gemäß  ${}^3_m[P_1^{[4]}P_2^{[5]}N_1^{[2]}N_4^{[3]}]$  existieren sowohl N<sup>[2]</sup> als auch N<sup>[3]</sup>-Brücken im molaren Verhältnis 1:4. Anhand der kristallographischen Daten wurden an γ-P<sub>3</sub>N<sub>5</sub> kristallchemische Rechnungen mit dem MAPLE- und CHARDI-Konzept sowie Berechnungen auf der Basis des Bindungslängen-Bindungsstärken-Konzepts durchgeführt und diskutiert. Dabei wurde die röntgenographisch ermittelte Struktur bestätigt. Die Verbindung wurde <sup>31</sup>P-MAS-NMR-spektroskopisch spektroskopisch sowie  $(\delta = -11.9,$ charakterisiert. Mit thermogravimetrischen Untersuchungen unter Inertgasbedingungen wurde der thermische Zersetzungspunkt ermittelt, welcher bei ca. 900 °C liegt. Die Messung der *Vickers*-Härte von γ-P<sub>3</sub>N<sub>5</sub> ergab einen Wert von 9,7 GPa.
- 7. Hexaaminodiphosphazenium-bromid, -nitrat und -toluolsulfonat. Es konnte gezeigt werden, daß Hexaaminodiphosphazenium-Salze die [(NH<sub>2</sub>)<sub>3</sub>PNP(NH<sub>2</sub>)<sub>3</sub>]Br, $[(NH_2)_3PNP(NH_2)_3]NO_3$ und  $[(NH_2)_3PNP(NH_2)_3][CH_3C_6H_4SO_3]$ ausgehend von [(NH<sub>2</sub>)<sub>3</sub>PNP(NH<sub>2</sub>)<sub>3</sub>]Cl durch Anionenaustausch in wässriger Lösung dargestellt werden können. Die Strukturen dieser Verbindungen konnten anhand von Einkristallen, welche aus Acetonitril im Temperaturgradienten gezüchtet wurden, ermittelt werden  $([(NH_2)_3PNP(NH_2)_3]Br: P\overline{1}, a = 596,2(1), b = 744,5(1), c = 1114,4(1) pm, \alpha = 108,78(1),$  $\beta = 104,18(1), \gamma = 90,64(1)^{\circ}, R1 = 0,048, WR2 = 0,104; [(NH<sub>2</sub>)<sub>3</sub>PNP(NH<sub>2</sub>)<sub>3</sub>]NO<sub>3</sub>: P1,$ a = 550,9(1), b = 796,3(1), c = 1115,7(1) pm,  $\alpha$  = 94,45(1),  $\beta$  = 99,55(1),  $\gamma$  = 101,53(1)°, R1 = 0,033, wR2 = 0,095;  $[(NH_2)_3PNP(NH_2)_3][CH_3C_6H_4SO_3]$ :  $P2_1/c$ , a = 804,1(1),

 $b = 596,1(1), c = 3218,7(3) \text{ pm}, \beta = 94,59(1)^{\circ}, R1 = 0,052, wR2 = 0,136. Die$ Verbindungen kristallisieren in Strukturen mit diskreten [(NH<sub>2</sub>)<sub>3</sub>PNP(NH<sub>2</sub>)<sub>3</sub>]<sup>+</sup>-Ionen und den entsprechenden Anionen. [(NH<sub>2</sub>)<sub>3</sub>PNP(NH<sub>2</sub>)<sub>3</sub>]Br ist isotyp zu [(NH<sub>2</sub>)<sub>3</sub>PNP(NH<sub>2</sub>)<sub>3</sub>]Cl. Zwischen den Ionen existieren zahlreiche Wasserstoffbrückenbindungen. Das [(NH<sub>2</sub>)<sub>3</sub>PNP(NH<sub>2</sub>)<sub>3</sub>]<sup>+</sup>-Ion liegt in [(NH<sub>2</sub>)<sub>3</sub>PNP(NH<sub>2</sub>)<sub>3</sub>]Br in der gestaffelten Konformation vor, während in [(NH<sub>2</sub>)<sub>3</sub>PNP(NH<sub>2</sub>)<sub>3</sub>]NO<sub>3</sub> die ekliptische Konformation bevorzugt wird. In [(NH<sub>2</sub>)<sub>3</sub>PNP(NH<sub>2</sub>)<sub>3</sub>][CH<sub>3</sub>C<sub>6</sub>H<sub>4</sub>SO<sub>3</sub>] wird die gauche-Konformation bevorzugt. Anhand von Extended-Hückel-Rechnungen wurde gezeigt, daß keine nennenswerten Rotationsbarrieren zwischen den Konformationen existieren. Die Verbindungen wurden IR- und  $^{31}$ P-NMR-spektroskopisch ( $\delta$  = 19,2 ppm) charakterisiert. Das thermische Verhalten der Verbindungen wurde thermogravimetrisch untersucht.

### 10. Summary

1. Development and establishment of the high-pressure high-temperature synthesis as a broad approach to nitridophosphates. In this thesis for the first time a broad access to nitridophosphates was developed and therefore the basis for a systematic investigation of this class of compounds was established. It was shown, that under highpressure conditions (> 3 GPa) using a belt or Walker module crystalline nitridophosphates can be obtained by reaction of phosphorus(V) nitride with alkaline or earth alkaline azides at temperatures of 1200-1600 °C. Thus the possibilty to suppress eliminiation of N<sub>2</sub> from nitridophosphates, which occurs at 800 °C under atmospheric pressure, was proved by use of high-pressure conditions. Thereby the maximum temperature in synthesis of nitridophosphates was approximately doubled. A raise of the maximum temperature during the synthesis leads to much better crystallization conditions. Hence the main problem in synthesis of crystalline nitridophosphates, which consists of bad crystallisation conditions due to limited maximum reaction temperature, was solved and the number of the crystallographically well characterized ternary phosphorus(V) nitrides was doubled from nine to eighteen. Especially the number of highly condensed nitridophosphates (molar ratio P: N > 1:2) could be raised from three to nine and a second modification of the binary phosphorus(V) nitride  $P_3N_5$  was obtained. Consequently the high-pressure high-temperature synthesis can be seen as the first widely applicable approach to nitridophosphates. Due to the hermetically sealed reaction cell precise modulation of the P-N framework by systematic variation of the P<sub>3</sub>N<sub>5</sub>: azide molar ratio in the starting materials. Moreover under high-pressure conditions the reaction time was reduced dramatically compared to conventional synthesis. While using conventional methods several hours or days are needed for quantitative reactions, reactions under high pressure conditions succeed in 5-15 min.

At the beginning of the work the apparatus for the high-pressure experiments did not exist within the laboratory equipment of our research group. The success of the first experiments (synthesis of NaP<sub>4</sub>N<sub>7</sub>, KP<sub>4</sub>N<sub>7</sub>, RbP<sub>4</sub>N<sub>7</sub>, CsP<sub>4</sub>N<sub>7</sub>), which were performed in cooperation with *Evers*, significantly contributed to the aquisition of the 1000 t-press installed by *Huppertz*, and the introduction of the multianvil high-pressure technique at the University of Munich (LMU).

2.  $NaP_4N_7$ ,  $KP_4N_7$ ,  $RbP_4N_7$ , and  $CsP_4N_7$ . The nitridophosphates  $NaP_4N_7$ ,  $KP_4N_7$ ,  $RbP_4N_7$ , and  $CsP_4N_7$  were synthesized by reaction of  $P_3N_5$  with the respective alkaline azide in the molar ratio  $MN_3: P_3N_5 = 3: 4$  (M = Na, K, Rb, Cs) at approximately 40 kbar and 1300 °C using a belt module.  $NaP_4N_7$  (C2/c, a = 1233.45(4), b = 852.30(3), c = 513.97(1) pm,

 $\beta = 102.572(2)^{\circ}$ , Z = 4, R<sub>p</sub> = 0.0772, wR<sub>p</sub> = 0.1077, R<sub>F</sub> = 0.0718) crystallizes isotypic to CaAl<sub>4</sub>O<sub>7</sub> in a three-dimensional network structure of corner-sharing PN<sub>4</sub> tetrahedra with  $Na^{+}$  ions in the channels. According to the formula  $_{_{\infty}}^{3}[(P_{4}^{[4]}N_{5}^{[2]}N_{2}^{[3]})^{-}]N_{2}^{[2]}$ - and  $N_{5}^{[3]}$ -bridges exist in a molar ratio 5:2.  $KP_4N_7$  (*Pnma*, a = 1222.72(2), b = 984.25(2),  $R_p = 0.0865$ ,  $wR_p = 0.1113$ ,  $R_F = 0.0821$ ), c = 466.24(1) pm,Z = 4, (a = 1231.07(2), b = 989.46(1), c = 468.44(1) pm, Z = 4, R<sub>p</sub> = 0.0350, wR<sub>p</sub> = 0.0462, $R_F = 0.0589$ ), and  $CsP_4N_7$  (a = 1242.91(3), b = 997.63(3), c = 471.33(2) pm, Z = 4,  $R_p = 0.0524$ ,  $wR_p = 0.0646$ ,  $R_F = 0.0494$ ) crystallize isotypic to the mineral barylite BaBe<sub>2</sub>Si<sub>2</sub>O<sub>7</sub> in a three-dimensional network structure from corner-sharing PN<sub>4</sub> tetrahedra with the alkaline ions in the channels. According to the formula  ${}^3_{\infty}[(P_4^{[4]}N_5^{[2]}N_2^{[3]})^-]N_2^{[2]}$ and N<sup>[3]</sup>-bridges exist in a molar ratio 5:2. Using the obtained crystallographic data of  $MP_4N_7$  (M = Na, K, Rb, Cs) MAPLE and CHARDI calculations as well as calculations based on the bond-length bond-strength concept were carried out and discussed. The radiographically obtained results were confirmed. The compounds were characterized by IR- and  $^{31}$ P-MAS NMR-spectroscopy ( $\delta$  = -23.5, -25.0 (NaP<sub>4</sub>N<sub>7</sub>); -0.4, -1.7 (KP<sub>4</sub>N<sub>7</sub>), -19.6, -28.2 (RbP<sub>4</sub>N<sub>7</sub>), -21.6, -31.9 ppm (CsP<sub>4</sub>N<sub>7</sub>)). Thermogravimetric examinations under inert gas conditions revealed the thermal decomposition temperature of the compounds, which is about 850-900 °C.

3.  $Rb_3P_6N_{11}$  and  $Cs_3P_6N_{11}$ . The nitridophosphates  $Rb_3P_6N_{11}$  and  $Cs_3P_6N_{11}$  were synthesized by reaction of P<sub>3</sub>N<sub>5</sub> with the respective alkaline azide in the molar ratio  $MN_3: P_3N_5 = 3:2$  (M = Rb, Cs) using a Walker module at approximately 35 kbar and 1300 °C.  $Rb_3P_6N_{11}$  ( $P4_132$ , a = 1049.74(1) pm, Z = 4,  $R_p = 0.0979$ ,  $wR_p = 0.1077$ ,  $R_F = 0.0612$ ) and  $Cs_3P_6N_{11}$  ( $P4_132$ , a = 1065.15(1) pm,  $R_p = 0.0487$ ,  $wR_p = 0.0618$ ,  $R_F = 0.0812$ ) crystallize isotypic to  $K_3P_6N_{11}$  in a three-dimensional network structure of corner-sharing PN<sub>4</sub> tetrahedra with the alkaline ions in the channels. According to the formula  $_{\infty}^{3}[(P_{6}^{[4]}N_{9}^{[2]}N_{2}^{[3]})^{3}]$   $N^{[2]}$ - and  $N^{[3]}$ -bridges exist in the molar ratio 9:2. Using the obtained crystallographic data of  $M_3P_6N_{11}$  (M = Rb, Cs) MAPLE and CHARDI calculations as well as calculations based on the bond-length bond-strength concept were carried out and discussed. The radiographically obtained results were confirmed. The compounds were characterized by IR- and  $^{31}P$ -MAS NMR-spectroscopy ( $\delta = -7.4$  (Rb<sub>3</sub>P<sub>6</sub>N<sub>11</sub>), -8.9 ppm (Cs<sub>3</sub>P<sub>6</sub>N<sub>11</sub>)). Thermogravimetric examinations under inert gas conditions revealed the thermal decomposition temperature of the compounds, which is about 850-900 °C. Temperature-dependant powder X-ray investigations revealed that Rb<sub>3</sub>P<sub>6</sub>N<sub>11</sub> shows no thermal expansion between room temperature and 540 °C.

- 4. **NaPN**<sub>2</sub>. The nitridophosphate NaPN<sub>2</sub> was synthesized by reaction of P<sub>3</sub>N<sub>5</sub> with NaN<sub>3</sub> in the molar ratio NaN<sub>3</sub>: P<sub>3</sub>N<sub>5</sub> = 3:1 using a Walker module at approximately 35 kbar and 1300 °C. NaPN<sub>2</sub> ( $I\overline{4}$  2d, a = 497.21(2), c = 697.60(3) pm, Z = 4, R<sub>p</sub> = 0.0502, wR<sub>p</sub> = 0.0649, R<sub>F</sub> = 0.0788) crystallizes isotypic to LiPN<sub>2</sub> in a three-dimensional network structure of corner-sharing PN<sub>4</sub> tetrahedra with the Na<sup>+</sup> ions in the channels. According to the formula  $\frac{3}{\infty}[(P^{[4]}N_2^{[2]})^*]$  N<sup>[2]</sup>-bridges exist exclusively. Using the obtained crystallographic data of NaPN<sub>2</sub>, MAPLE and CHARDI calculations as well as calculations based on the bond-length bond-strength concept were carried out and discussed. The radiographically obtained results were confirmed. The compound was characterized by IR- and <sup>31</sup>P-MAS NMR-spectroscopy ( $\delta$  = -15.0 ppm). Thermogravimetric examinations under inert gas conditions revealed the thermal decomposition temperature of the compound, which is about 900 °C.
- 5. CaP<sub>2</sub>N<sub>4</sub> and SrP<sub>2</sub>N<sub>4</sub>. The nitridophosphates CaP<sub>2</sub>N<sub>4</sub> und SrP<sub>2</sub>N<sub>4</sub> were obtained by reaction of  $Ca(N_3)_2$  and  $Sr(N_3)_2$  with  $P_3N_5$  (molar ratio  $M(N_3)_2: P_3N_5 = 3:2$ ) at 35 kbar and 1300 °C in a Walker module. A structure model could be obtained from X-ray powder data.  $CaP_2N_4$  ( $P6_322$ , a = 972.11(1) pm, c = 785.90(1) pm, Z = 8,  $R_p = 0.059$ ,  $WR_p = 0.079$ ,  $R_F = 0.174$ ) and  $SrP_2N_4$  ( $P6_322$ , a = 987.44(1), c = 785.90(1) pm, Z = 8,  $R_p = 0.075$ ,  $wR_p = 0.098$ ,  $R_F = 0.115$ ) crystallize isotypic in a network structure from corner-sharing PN<sub>4</sub> tetrahedra with the alkaline earth ions within the channels. Perpendicular to [001] layers from condensed P<sub>6</sub>N<sub>6</sub> sechser rings exists which are linked by P<sub>4</sub>N<sub>4</sub> vierer rings and further P<sub>6</sub>N<sub>6</sub> sechser rings forming the network structure. According to the formula  ${}^3_\infty[(P^{[4]}N_2^{[2]})^{-}]$   $N^{[2]}$ -bridges occur exclusively. Using the obtained crystallographic data of CaP<sub>2</sub>N<sub>4</sub> and SrP<sub>2</sub>N<sub>4</sub>, MAPLE and CHARDI calculations as well as calculations based on the bond-length bond-strength concept were carried out and discussed. The radiographically obtained results were confirmed. The compounds were characterized by IR- and  $^{31}P$ -MAS NMR-spectroscopy ( $\delta = -20.0, -15.9, -5.2, -3.6, -$ 2.6 (CaP<sub>2</sub>N<sub>4</sub>), -27.8, -23.4, -17.1, -15.5, -14.1 ppm (SrP<sub>2</sub>N<sub>4</sub>). Thermogravimetric examinations under inert gas conditions revealed the thermal decomposition temperature of SrP<sub>2</sub>N<sub>4</sub>, which is about 900 °C. CaP<sub>2</sub>N<sub>4</sub> was stable up to 1000 °C.
- 6.  $\gamma$ -P<sub>3</sub>N<sub>5</sub>. The synthesis of  $\gamma$ -P<sub>3</sub>N<sub>5</sub> was successfully carried out at 110 kbar and 1500 °C. In contrast to  $\alpha$ -P<sub>3</sub>N<sub>5</sub>, which is exclusively build up from PN<sub>4</sub> tetrahedera,  $\gamma$ -P<sub>3</sub>N<sub>5</sub> forms a three-dimensional network structure from PN<sub>4</sub> tetrahedra and tetragonal PN<sub>5</sub> pyramids. The tetragonal PN<sub>5</sub> pyramid is a formerly unknown structural building unit. In the crystal-structure of  $\gamma$ -P<sub>3</sub>N<sub>5</sub> (*Imm*2, a = 1287.20(5), b = 261.312(6), c = 440.04(2) pm, z = 2, R<sub>p</sub> = 0.073, wR<sub>p</sub> = 0.094, R<sub>F</sub> = 0.048) rods of *trans* edge-sharing PN<sub>5</sub> pyramids are

condensed via vertice forming layers. These layers are linked by chains of corner-sharing tetrahedra. According to the formula  ${}^3_{\infty}[P_1^{[4]}P_2^{[5]}N_1^{[2]}N_1^{[3]}]N_4^{[3]}]N_4^{[2]}$  and  $N_4^{[3]}$  bridges occur in the molar ratio 1 : 4. Using the obtained crystallographic data of  $\gamma$ - $P_3N_5$ , MAPLE and CHARDI calculations as well as calculations based on the bond-length bond-strength concept were carried out and discussed. The radiographically obtained results were confirmed. The compound was characterized by IR- and  $^{31}P$ -MAS NMR-spectroscopy ( $\delta$  = -11.9, -101.7 ppm). Thermogravimetric examinations under inert gas conditions revealed the thermal decomposition temperature of the compound, which is about 900 °C. The *Vickers* hardness was determined with a value of 9.7 GPa.

7. Hexaaminodiphosphazenium-bromide, -nitrate, and -toluenesulfonate. It was hexaaminodiphosphazenium-salts  $[(NH_2)_3PNP(NH_2)_3]Br$ , shown, that the  $[(NH_2)_3PNP(NH_2)_3]$   $[NO_3]$ , and  $[(NH_2)_3PNP(NH_2)_3]$   $[CH_3C_6H_4SO_3]$  are accessible by anion exchange in water using [(NH<sub>2</sub>)<sub>3</sub>PNP(NH<sub>2</sub>)<sub>3</sub>]Cl as starting material. The structures of these compounds were obtained from single crystals, which were obtained from an acetonitrile solution in a temperature gradient ( $[(NH_2)_3PNP(NH_2)_3]Br: P\overline{1}$ , a = 596.2(1), b = 744.5(1), c = 1114.4(1) pm,  $\alpha$  = 108.78(1),  $\beta$  = 104.18(1),  $\gamma$  = 90.64(1)°, R1 = 0.048, wR2 = 0.104;  $[(NH_2)_3PNP(NH_2)_3][NO_3]$ :  $P\overline{1}$ , a = 550.9(1), b = 796.3(1), c = 1115.7(1) pm,  $\beta = 99.55(1), \quad \gamma = 101.53(1)^{\circ}, \quad R1 = 0.033,$ wR2  $\alpha = 94.45(1)$ ,  $[(NH_2)_3PNP(NH_2)_3][CH_3C_6H_4SO_3]$ :  $P2_1/c$ , a = 804.1(1), b = 596.1(1), c = 3218.7(3) pm,  $\beta = 94.59(1)^{\circ}$ , R1 = 0.052, wR2 = 0.136). The compounds crystallize in structures with discrete [(NH<sub>2</sub>)<sub>3</sub>PNP(NH<sub>2</sub>)<sub>3</sub>]<sup>+</sup>-ions and the corresponding anions. [(NH<sub>2</sub>)<sub>3</sub>PNP(NH<sub>2</sub>)<sub>3</sub>]Br is isotypic to [(NH<sub>2</sub>)<sub>3</sub>PNP(NH<sub>2</sub>)<sub>3</sub>|Cl. Between the ions many hydrogen bonds exist. In [(NH<sub>2</sub>)<sub>3</sub>PNP(NH<sub>2</sub>)<sub>3</sub>]Br the [(NH<sub>2</sub>)<sub>3</sub>PNP(NH<sub>2</sub>)<sub>3</sub>]<sup>+</sup>-ion occurs in a staggered conformation, while in [(NH<sub>2</sub>)<sub>3</sub>PNP(NH<sub>2</sub>)<sub>3</sub>][NO<sub>3</sub>] an ecliptic conformation is preferred.  $[(NH_2)_3PNP(NH_2)_3][CH_3C_6H_4SO_3]$  the gauche-conformation exists. It was shown by Extended Hückel calculations, that no significant rotation barriers exist between the conformations. The compounds were characterized by IR and <sup>31</sup>P NMR-spectroscopy  $(\delta = -15.0 \text{ ppm})$ . The thermal behaviour of the compounds was examined by thermogravimetry.

# 11. Publikationen und Hinterlegungsnummern der kristallographischen Daten

1. Synthese und Kristallstruktur neuer 1,1,1,3,3,3-Hexaamino- $1\lambda^5$ ,  $3\lambda^5$ -diphosphazenium-Salze

K. Landskron, W. Schnick, Z. Naturforsch. 1999, 54b, 1363-1370.

[(NH<sub>2</sub>)<sub>3</sub>PNP(NH<sub>2</sub>)<sub>3</sub>]Br: CSD-410887 [(NH<sub>2</sub>)<sub>3</sub>PNP(NH<sub>2</sub>)<sub>3</sub>][NO<sub>3</sub>]: CSD-410886

 $[(NH_2)_3PNP(NH_2)_3][CH_3C_6H_4SO_3]: CSD-132030$ 

2. High-Temperature High-Pressure Synthesis of the Highly Condensed Nitridophosphates NaP<sub>4</sub>N<sub>7</sub>, KP<sub>4</sub>N<sub>7</sub>, RbP<sub>4</sub>N<sub>7</sub>, and CsP<sub>4</sub>N<sub>7</sub> and Crystal-Structure Determination by X-ray Powder Diffraction

K. Landskron, E. Irran, W. Schnick, Chem. Eur. J. 1999, 5, 2548-2553.

NaP<sub>4</sub>N<sub>7</sub>: CSD-410629 KP<sub>4</sub>N<sub>7</sub>: CSD-410630

RbP<sub>4</sub>N<sub>7</sub>: CSD-410631

CsP<sub>4</sub>N<sub>7</sub>: CSD-410632

3.  $Rb_3P_6N_{11}$  and  $Cs_3P_6N_{11}$  – New Highly Condensed Nitridophosphates by High-Pressure High-Temperature Synthesis

K. Landskron, W. Schnick, J. Solid State Chem. 2001, 156, 390-393.

Rb<sub>3</sub>P<sub>6</sub>N<sub>11</sub>: CSD-411412 Cs<sub>3</sub>P<sub>6</sub>N<sub>11</sub>: CSD-411413

4. Hochdruck-Synthese von γ-P<sub>3</sub>N<sub>5</sub> bei 11 GPa und 1500 °C in einer Multianvil-Apparatur: ein binäres Phosphor(V)-nitrid mit einer Raumnetzstruktur aus PN<sub>4</sub>-Tetraedern und tetragonalen PN<sub>5</sub>-Pyramiden

K. Landskron, H. Huppertz, J. Senker, W. Schnick, *Angew. Chem.*, zur Publikation angenommen.

γ-P<sub>3</sub>N<sub>5</sub>: CSD-411847

5. Hochdruck-Synthese, Kristallstruktur und Eigenschaften von NaPN<sub>2</sub>

K. Landskron, S. Schmid, W. Schnick, *Z. Anorg. Allg. Chem.*, zur Publikation angenommen.

NaPN<sub>2</sub>: CSD-411818

### 12. Literaturverzeichnis

- [1] A. F. Holleman, E. Wiberg, "Lehrbuch der Anorganischen Chemie", 101. Auflage, de Gruyter, Berlin 1995, S. 62.
- [2] F. Liebau, "Structural Chemistry of Silicates", Springer, Berlin 1985, S. 14.
- [3] R. Pool, Science, 1994, 263, 1698.
- [4] A. Monnier, F. Schüth, Q. Huo, D. Kumar, D. Margolese, R. S. Maxwell, G. D. Stucky, M. Krishnamurty, P. Petroff, A. Firouzi, M. Janicke, B. F. Chmelka, *Science* 1993, 261, 1299.
- [5] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, *Nature* **1992**, *359*, 710.
- [6] siehe Lit. [1], S. 637.
- [7] C. A. Anderson, K. Kreil, B. Mason, *Science* **1964**, *146*, 256.
- [8] W. H. Baur, *Nature* **1972**, *240*, 461.
- [9] siehe Lit. [1], S. 84.
- [10] W. Schnick, Angew. Chem. 1993, 105, 846;Angew. Chem. Int. Ed. Engl. 1993, 32, 806.
- [11] W. Schnick, H. Huppertz, Chem. Eur. J. 1997, 3, 679.
- [12] P. Eckerlin, A. Rabenau, H. Nortmann, Z. Anorg. Allg. Chem. 1967, 353, 113.
- [13] P. Eckerlin, Z. Anorg. Allg. Chem. 1967, 353, 225.
- [14] J. David, Y. Laurent, J. Lang, Bull. Soc. Fr. Mineral. Cristallogr. 1970, 93, 153.
- [15] M. Wintenberger, R. Marchand, M. Maunaye, Solid State Commun. 1977, 21, 733.
- [16] M. Winterberger, F. Tcheou, J. David, J. Lang, Z. Naturforsch. 1980, 35b, 604.
- [17] J. David, Rev. Chim. Miner. 1972, 9, 717.
- [18] T. Endo, Y. Sato, H. Takizawa, M. Shimada, J. Mater. Sci. Lett. 1992, 11, 424.
- [19] M. Woike, W. Jeitschko, Inorg. Chem. 1995, 34, 5105.
- [20] M. Woike, Dissertation, Universität Münster 1996.
- [21] M. Woike, W. Jeitschko, Z. Kristallogr. 1996, 211, 813.
- [22] O. Glemser, P. Naumann, Z. Anorg. Allg. Chem. 1959, 298, 134.
- [23] T. Schlieper, Dissertation, Universität Bayreuth 1995.
- [24] T. Schlieper, W. Schnick, Z. Anorg. Allg. Chem. 1995, 621, 1037.
- [25] T. Schlieper, W. Milius, W. Schnick, Z. Anorg. Allg. Chem. 1995, 621, 1380.
- [26] T. Schlieper, W. Schnick, Z. Anorg. Allg. Chem. 1995, 621, 1535.
- [27] T. Schlieper, W. Schnick, Z. Kristallogr. 1996, 211, 254.
- [28] H. Huppertz, W. Schnick, *Angew. Chem.* 1996, 108, 2115;Angew. Chem. Int. Ed. Engl. 1996, 354, 1983.
- [29] H. Huppertz, W. Schnick, Z. Anorg. Allg. Chem. 1997, 623, 212.

- [30] H. Huppertz, W. Schnick, Acta Crystallogr. 1997, C53, 1751.
- [31] H. Huppertz, W. Schnick, *Chem. Eur. J.* **1997**, *3*, 249.
- [32] H. Huppertz, W. Schnick, Angew. Chem. 1997, 109, 2765;
  Angew. Chem. Int. Ed. Engl. 1997, 36, 2651.
- [33] H. Huppertz, W. Schnick, Z. Anorg. Allg. Chem. 1998, 624, 371.
- [34] S. Horstmann, E. Irran, W. Schnick, Angew. Chem. 1997, 109, 1938;
  Angew. Chem. Int. Ed. Engl. 1997, 36, 1873.
- [35] H. Huppertz, Dissertation, Universität Bayreuth 1997.
- [36] D. Walker, M. A. Carpenter, C. M. Hitch, *Am. Mineral.* **1990**, *75*, 1020.
- [37] D. Walker, Am. Mineral. 1991, 76, 1092.
- [38] K. J. Range, R. Leeb, Z. Naturforsch. 1975, 30b, 889.
- [39] D. C. Rubie, *Phase Transitions* **1999**, *68*, 431.
- [40] STOE WinXPOW, Vers. 1.05, 1999.
- [41] J. W. Visser, J. Appl. Crystallogr. 1969, 2, 89.
- [42] P.-E. Werner, Z. Kristallogr. 1964, 120, 375.
- [43] a.) A. Altomare, M. C. Burla, G. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori, J. Appl. Cryst. 1995, 28, 842; b.) A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori, M. Camalli, J. Appl. Cryst. 1994, 27, 435-436.
- [44] A. C. Larson, R. B. von Dreele, **1990**, General Structure Analysis System, Los Alamos National Laboratory Report LAUR 86-748.
- [45] K. Brandenburg, DIAMOND Vers. 2.1, 1999.
- [46] R. Hundt, KPLOT Ein Programm zum Zeichnen und zur Untersuchung von Kristallstrukturen, Universität Bonn 1979.
- [47] SHELXTL X-Ray Single Crystal Analysis System, Version 5.06, Siemens Analytical X-Ray Instruments Inc., Madison **1996**.
- [48] OPUS/IR Vers. 2.0 Fa. Bruker, Analytische Meßtechnik, Karlsruhe 1984.
- [49] E. Hering, R. Martin, M. Stohrer, *"Physik für Ingenieure"*, VDI-Verlag, Düsseldorf **1995**, S. 94 ff.
- [50] R. Lauterbach, *Dissertation*, Universität Bayreuth **1999**.
- [51] J. Lücke, Dissertation, Universität Bonn 1993.
- [52] S. Horstmann, W. Schnick, Z. Naturforsch. 1997, 52b, 490.
- [53] M. Becke-Goehring, W. Lehr, Z. Anorg. Allg. Chem. 1963, 325, 287.
- [54] R. Link, R. Schwesinger, *Angew. Chem.* 1992, 104, 864;*Angew. Chem. Int. Ed. Engl.* 1992, 31, 850.
- [55] G. Schilling, C. W. Rabener, W. Lehr, *Z. Naturforsch.* **1982**, *37b*, 1489.

- [56] J. Liebig, Ann. Chem. 1834, 11, 139.
- [57] H. Jacobs, R. Nymwegen, Z. Anorg. Allg. Chem. 1997, 623, 429.
- [58] F. Wester, W. Schnick, Z. Anorg. Allg. Chem. 1996, 622, 1281.
- [59] J. Weitkamp, S. Ernst, F. Cubero, F. Wester, W. Schnick, Adv. Mater. 1997, 9, 247.
- [60] W. Schnick, J. Lücke, Z. Anorg. Allg. Chem. 1992, 610, 121.
- [61] S. Horstmann, E. Irran, W. Schnick, Angew. Chem. 1997, 109, 2085;
  Angew. Chem. Int. Ed. Engl. 1997, 36, 1992.
- [62] S. Horstmann, Dissertation, Universität Bayreuth 1997.
- [63] W. Schnick, J. Lücke, J. Solid State Chem. 1990, 87, 101.
- [64] V. Schultz-Coulon, W. Schnick, Z. Anorg. Allg. Chem. 1997, 623, 69.
- [65] W. Schnick, V. Schultz-Coulon, Angew. Chem. 1993, 105, 308;
  Angew. Chem. Int. Ed. Engl. 1993, 32, 280.
- [66] U. Berger, W. Schnick, unveröffentlicht.
- [67] W. Schnick, U. Berger, Angew. Chem. 1991, 103, 857;
  Angew. Chem. Int. Ed. Engl. 1991, 30, 830.
- [68] W. Schnick, J. Lücke, Z. Anorg. Allg. Chem. 1990, 588, 19.
- [69] W. Schnick, J. Lücke, Z. Anorg. Allg. Chem. 1994, 620, 2014.
- [70] W. Schnick, J. Lücke, Angew. Chem. 1992, 104, 208;Angew. Chem. Int. Ed. Engl. 1992, 31, 213.
- [71] A. Vitola, J. Ronis, T. Millers, Latv. PSR Zinat. Akad. Vestis Kim. Ser. 1990, 90, 299.
- [72] S. Horstmann, W. Schnick, Z. Naturforsch. 1997, 52b, 490.
- [73] W. Schnick, S. Horstmann, A. Schmidpeter, *Angew. Chem.* 1994, 106, 818;
  Angew. Chem. Int. Ed. Engl. 1994, 33, 785.
- [74] Lit. [1], S. 202.
- [75] S. Möhr, H. Müller-Buschbaum, Angew. Chem. 1995, 107, 691;Angew. Chem. Int. Ed. Engl. 1995, 34, 634.
- [76] A. Mittasch, "Geschichte der Ammoniaksynthese", Verlag Chemie, Weinheim 1951.
- [77] J. Evers, M. Muensterkoetter, G. Oehlinger, K. Polborn, B. Sendlinger, J. Less-Common Met. **1990**, *162*, L17.
- [78] S. Horstmann, W. Schnick, Z. Naturforsch. 1996, 51b, 127.
- [79] K. Landskron, *Diplomarbeit*, Universität Bayreuth 1998.
- [80] K. Landskron, S. Horstmann, W. Schnick, Z. Naturforsch. 1999, 54b, 1.
- [81] S. Horstmann, W. Schnick, Z. Naturforsch. **1996**, *51b*, 1732.
- [82] A. F. Wells, "Structural Inorganic Chemistry", Clarendon Press, Oxford 1984.
- [83] C. Mealli, D. M. Proserpio, WinCACAO, PC Beta-Version 5.0, 1998.
- [84] H. Hess, D. Forst, Z. Anorg. Allg. Chem. 1966, 342, 240.
- [85] P. Thompson, D. E. Cox, J. B. Hastings, J. Appl. Crystallogr. 1987, 20, 79.

- [86] L. W. Finger, D. E. Cox, A. P. Jephcoat, J. Appl. Crystallogr. 1994, 27, 892.
- [87] D. W. Goodwin, A. J. Lindop, Acta Cryst. Sect. B 1970, 26, 1230.
- [88] A. J. Lindop, D. W. Goodwin, Acta Cryst. Sect. B 1972, 28, 2625.
- [89] H.-J. Deiseroth, H. Müller-Buschbaum, Z. Anorg. Allg. Chem. 1971, 382, 149.
- [90] H.-J. Deiseroth, H. Müller-Buschbaum, Z. Anorg. Allg. Chem. 1972, 387, 154.
- [91] K. K. Abrashev, V. V. Ilyukhin, N. V. Belov, Kristallografiya 1964, 9, 816.
- [92] E. Cannillo, A. Dal Negro, G. Rossi, *Rend. Soc. Ital. Mineral. Petrol.* **1970**, *26*, 53.
- [93] P. D. Robinson, J. H. Fang, *Amer. Mineral.* **1977**, *62*, 167.
- [94] W. E. Klee, Z. Kristallogr. 1987, 179, 67.
- [95] A. Beukemann, W. E. Klee, Z. Kristallogr. 1994, 209, 709.
- [96] A. Beukemann, W. E. Klee, Z. Kristallogr. 1992, 201, 37.
- [97] TOPOLAN Topological Analysis of Crystal Structures, G. Thimm, S. Schumacher, W. Uhr, W. E. Klee, Universität Karlsruhe **1993**.
- [98] J. Ronis, B. Bondars, A. Vitola, T. Millers, J. Schneider, F. Frey, J. Solid State Chem. 1995, 115, 265.
- [99] R. Hoppe, Z. Naturforsch. 1995, 50a, 555.
- [100] C. Weiß, R. Hoppe, Z. Anorg. Allg. Chem. 1996, 622, 1019.
- [101] MAPLE, Programm zur Berechnung des Madelunganteils der Gitterenergie, R. Hübenthal, Vers. 4, Universität Gießen 1993.
- [102] R. Hoppe, S. Voigt, H. Glaum, J. Kissel, H. P. Müller, K. Bernet, J. Less-Common Met. 1989, 156, 105.
- [103] N. E. Brese, M. O'Keeffe, Acta Crystallogr. 1991, B47, 192.
- [104] W. H. Baur, Crystallogr. Rev. 1987, 1, 59.
- [105] R. Hoppe, Angew. Chem. 1970, 82, 7;
  Angew. Chem. Int. Ed. Engl. 1970, 9, 25.
- [106] M. O'Keeffe, Struct. Bonding 1989, 71, 161.
- [107] I. D. Brown, D. Altermatt, Acta Crystallogr. 1985, B41, 244.
- [108] A. Vitola, J. Ronis, T. Millers, Latv. PSR Zinat. Akad. Vestis, Kim. Ser. 1990, 35.
- [109] H. Jacobs, R. Nymwegen, S. Doyle, T. Wroblewski, W. Kockelmann, *Z. Anorg. Allg. Chem.* **1997**, *623*, 1467.
- [110] M. O'Keeffe, B. G. Hyde, Acta Crystallogr. 1976, B32, 2923.
- [111] H.-P. Baldus, W. Schnick, J. Lücke, U. Wannagat, G. Bogedain, *Chem. Mater.* **1993**, *5*, 845.
- [112] F. Wester, *Dissertation*, Universität Bayreuth 1996.
- [113] W. Hoerkner, H. Mueller-Buschbaum, Z. Anorg. Allg. Chem. 1979, 451, 40.

- [114] Lit. [1], S. 776.
- [115] N. Khosrovani, V. Korthuis, A. W. Sleight, T. Vogt, *Inorg. Chem.* 1996, 35, 485.
- [116] Lit. [2], S. 25.
- [117] J. Cremer (Hoechst AG), DE-A 2 311 180, 1974.
- [118] H.-J. Sterzel (BASF AG), DE 19838719 A1 20000302, 2000.
- [119] Y.-H. Jeong, K.-H. Choi, S.-K. Jo, B. Kang, Jpn. Apl. Phys. 1995, 34, 1176.
- [120] Y. Matsumoto, T. Hanajiri, T. Sugano, L. T. T. Tuyen, Katoda, *Thin Solid Films* **1995**, *269*, 41.
- [121] S. Veprek, Z. Iqbal, J. Brunner, M. Schärli, *Philosoph. Mag. B* **1981**, *43*, 527.
- [122] Y.-H. Jeong, J.-H. Lee, Y.-H. Bae, Y.-H. Hong, Appl. Phys. Lett. 1990, 57, 2680.
- [123] E. V. Borisov, E. E. Nifantév, Uspekhi Khimii 1977, 46, 1604.
- [124] G. Müller, P. Kundler, W. Matzel, Arch. Acker- Pflanzenbau Bodenkd. 1974, 18, 15.
- [125] Lit. [2], S. 90.
- [126] A. Neuhaus, Chimia 1964, 18, 93.
- [127] W. Kleber, K.-Th. Wilke, Kristall und Technik 1969, 4, 165.
- [128] a.) A. Zerr, G. Miehe, G. Serghiou, M. Schwarz, E. Kroke, R. Riedel,
  H. Fueß, P. Kroll, R. Boehler, *Nature* 1999, 400, 340; b.) M. Schwarz, G. Miehe, A.
  Zerr, E. Kroke, B. Poe, H. Fuess, R. Riedel, *Adv. Mater.* 2000, 12, 883.
- [129] R. Day, A. Schmidpeter, R. Holmes, *Inorg. Chem.* 1983, 22, 3696.
- [130] D. Schomburg, U. Wermuth, R. Schmutzler, *Phosphor. Sulfur Silicon* 1986, 26, 193.
- [131] D. Schomburg, U. Wermuth, R. Schmutzler, Chem Ber. 1987, 120, 1713.
- [132] P. G. Jones, A. Meyer, R. Schmutzler, Z. Naturforsch. 1990, 45b, 175.
- [133] J. Breker, P. G. Jones, R. Schmutzler, *Phosphor. Sulfur Silicon* 1990, 53, 193.
- [134] H. Yamane, F. J. DiSalvo, J. Alloys Compd. 1996, 240, 33.
- [135] S. J. Clarke, F. J. DiSalvo, *Inorg. Chem.* **1997**, *36*, 1143.
- [136] J. Jäger, Dissertation, Universität Darmstadt 1995.
- [137] A. Gudat, S. Haag, P. Höhn, R. Kniep, W. Milius, A. Rabenau, *J. Alloys Compd.* **1991**, 177, 17.
- [138] W. Schnick, J. Lücke, F. Krumeich, Chem. Mater. 1996, 8, 281.
- [139] R. Ramesh, E. Nestor, M. J. Pomeroy, S. Hampshire, *J. Eur. Ceram. Soc.* **1997**, *17*, 1933.
- [140] Y. Zhou, J. Vleugels, T. Laoui, P. Ratchev, O. van der Biest, *J. Mater. Sci.* **1995**, *30*, 4584.
- [141] C. C. Anya, A. Hendry, J. Mater. Sci. 1994, 29, 527.
- [142] C. M. Sheppard, K. J. D. MacKenzie, M. J. Ryan, J. Eur. Ceram. Soc. 1998, 18, 185.
- [143] T. Ekström, P.-O. Olsson, M. Holmström, J. Eur. Ceram. Soc. 1993, 12, 165.

- [144] A. Bartek, T. Ekström, H. Herbertsson, T. Johansson, *J. Amer. Ceram. Soc.* **1992**, *75*, 432.
- [145] T.-Z. Sheu, J. Amer. Ceram. Soc. 1994, 77, 2345.
- [146] S.-L. Hwang, H.-T. Lin, P. F. Becher, J. Mater. Sci. 1995, 30, 6023.
- [147] L.-O. Nordberg, Z. Shen, M. Nygren, T. Ekström, J. Eur. Ceram. Soc. 1997, 17, 575.
- [148] C. Zhang, W. Y. Sun, D. S. Yan, J. Eur. Ceram. Soc. 1999, 19, 33.
- [149] C. A. Wood, H. Zhao, Y.-B. Cheng, J. Amer. Ceram. Soc. 1999, 82, 421.
- [150] E. Kokmeijer, G. de With, R. Metselaar, J. Eur. Ceram. Soc. 1991, 8, 71.
- [151] K. Kishi, S. Umebayashi, E. Tani, *J. Mater. Sci.* **1990**, *25*, 2780.
- [152] C. M. Huang, C. Y. Yuh, M. Farooque, D. Zhu, Y. Xu, W. M. Kriven, J. Amer. Ceram. Soc. 1997, 80, 2837.
- [153] Z.-K. Huang, S.-Y. Liu, A. Rosenflanz, I.-W. Chen, *J. Amer. Ceram. Soc.* **1996**, *79*, 2081.
- [154] M. Deckwerth, C. Rüssel, J. Non-Cryst. Solids 1997, 217, 55.
- [155] M. Bauccio, "Engineering Materials Reference Book", 2<sup>nd</sup> edn., ASM International, Ohio **1994**, 210.
- [156] I. J. Mc Colm, "Ceramic Hardness", Plenum Press, New York, London 1990.
- [157] N. L. Parr, E. R. W. May, Proc. Brit. Ceram. Soc. 1967, 7, 81.
- [158] D. Thompson, Nature 1997, 389, 675.
- [159] V. Solozhenko, D. Andrault, G. Fiquet, M. Mezouar, D. C. Rubie, *Appl. Phys. Lett.* 2001, 78, 1385.
- [160] Lit. [2], S. 155.
- [161] R. Lauterbach, *Diplomarbeit*, Universität Bayreuth **1996**.

## 13. Lebenslauf

17.4.1973: Geburt in Kulmbach

1979-1983: Besuch der Grundschule "Obere Schule" in Kulmbach.

1983-1992: Besuch des Markgraf-Georg-Friedrich-Gymnasiums in Kulmbach.

1992: Abitur am Markgraf-Georg-Friedrich-Gymnasium Kulmbach.

1992-1997: Studium der Chemie (Diplom) an der Universität Bayreuth mit Ausnahme eines Auslandsaufenthalts von 9/1995 bis 3/1996 an der Herriott-Watt-University in Edinburgh im Rahmen des ERASMUS-Programmes.

4/1997-1/1998: Diplomarbeit im Arbeitskreis von Prof. Dr. W. Schnick an der Universität Bayreuth.

2/1998-6/2001: Promotion an der LMU München im Arbeitskreis von Prof. Schnick.