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Summary 
Pulmonary surfactant is a complex mixture of lipids and proteins that lines the alveolar 

surface to prevent alveolar collapse by reducing the surface tension at the air-liquid 

interface. Therefore, surfactant plays a critical role for normal gas exchange and lung 

function. ABCA3, an ABC transporter in alveolar type II (ATII) cells, plays a key role in 

surfactant homeostasis. Using the energy of ATP hydrolysis by its nucleotide binding 

domains (NBDs), it translocates surfactant lipids into lamellar bodies (LBs), the storage 

compartment for surfactant. Mutations in ABCA3 display a common genetic cause for 

surfactant deficiency-induced respiratory diseases like fatal respiratory distress syndrome 

in neonates and interstitial lung disease in children and adults. To date no therapy that 

addresses the underlying cause is available. 

In recent years, promising success regarding the pharmacological rescue of mutant 

CFTR, which is also an ABC transporter, was achieved. Since CFTR and ABCA3 show 

structural similarity, the aim of this study was to investigate if correctors and potentiators 

that were shown to rescue CFTR folding and function, respectively, also rescue mutant 

ABCA3, and to identify possible modulators that might serve as a therapeutic approach in 

the future. A549 cells, which display a valid model for ATII cells, were stably transfected 

with hemagglutinin (HA)-tagged wild type or mutant ABCA3. To enable quantification 

of lipid transport activity of ABCA3, a functional assay was established, in which the 

transport of fluorescently labeled PC (TopF-PC), the main constituent of surfactant, into 

ABCA3-HA positive vesicles is assessed. 

Evaluation of processing, trafficking, localization and function of the mutant ABCA3 

proteins enabled the categorization of mutations as misfolding or functional mutation. 

Misfolding mutations lead to the retention of the protein in the ER, impeding its correct 

processing, trafficking, and localization. Functional mutations in contrast do not 

influence correct processing and trafficking to LBs, but result in impaired lipid transport 

function, most likely by abolishing ATP binding or hydrolysis.  

Temperature sensitivity of mutant protein was shown for four out of five misfolding 

ABCA3 mutants. The chemical chaperone TMAO and the small molecule correctors C13 

and C17 also rescued processing, trafficking, and localization of the same four mutant 
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proteins. Mutant ABCA3 rescued by C13 and C17 was further shown to be functionally 

active by quantifying TopF-PC transport. 

Furthermore, the effects of the two CFTR potentiators genistein and ivacaftor were 

evaluated for five functional ABCA3 mutations. The potentiators rescued the diminished 

lipid transport function of three of the mutants with mutations located in the first NBD of 

the protein. The remaining two mutants likely impair protein function by other means 

than impaired ATP binding and hydrolysis and were therefore not rescued by potentiator 

treatment. 

The results presented in this thesis display a first proof that misfolding and functional 

ABCA3 mutations can be modulated by correctors and potentiators, respectively, 

providing a potential novel therapeutic option for the treatment of diseases resulting from 

ABCA3 deficiency. 
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1 Introduction 

1.1 Alveolar cells and surfactant 
In the lung, the air is conducted through a highly branched respiratory system leading to 

approximately 300 million alveolar sacs, which provide an extensive surface for gas 

exchange (Whitsett et al., 2010). The alveolar surface is mainly covered by two distinct 

epithelial cell types, alveolar type I (ATI) and type II (ATII) pneumocytes. The flat, non-

dividing, squamous ATI cells cover about 90% of the alveolar surface and are important 

for the gas exchange between the alveolar space and the alveolar capillaries (Crapo et al., 

1982). The cuboidal ATII cells cover about 5% of the surface area, are metabolically very 

active and contain a large number of cell organelles (Fig. 1A). They serve as progenitors 

of the epithelial cells and are able to transdifferentiate into ATI cells in an event of lung 

injury (Adamson & Bowden, 1975; Evans et al., 1973). They also play a role in innate 

immunity and have immunomodulatory functions by secreting anti-inflammatory and 

antimicrobial substances, chemokines and cytokines. The major function of ATII cells is 

the production, storage and secretion of pulmonary surfactant (Mason, 2006).  

Surfactant, short for surface-active agent, is a complex lipoprotein mixture that lowers the 

surface tension at the air-liquid interface to prevent alveolar collapse at the end of 

expiration and thus allows normal gas exchange (Clements, 1957; Pattle, 1955; von 

Neergaard, 1929). It maintains the alveolar size in the different phases of the respiratory 

cycle and is important for lung compliance. Furthermore, surfactant is implicated in host 

defense (Clements, 1977; Wright, 1997, 2005). Surfactant is composed of approximately 

90% lipids, mostly phospholipids (PLs) and 10% proteins (Goerke, 1998). The main 

phospholipid component is phosphatidylcholine (PC), which accounts for about 60-70% 

of the PLs, and is mainly present in its saturated form as dipalmitoylphosphatidylcholine 

(DPPC, about 40% of total PC) (Kahn et al., 1995). DPPC is the only surfactant 

component capable of generating low surface tension during compression (Veldhuizen et 

al., 1998). Phosphatidylglycerol (PG) displays the second most abundant PL species in 

surfactant (about 7%). It is important for even spreading of surfactant on the alveolar 

surface since PC, especially DPPC, has low spreading properties (Akella & Deshpande, 
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2013). Apart from PC and PG, surfactant also contains low amounts of 

phosphatidylinositol, phosphatidylethanolamine (PE), sphingomyeline, other PLs and 

neutral lipids, the most abundant being cholesterol (Akella & Deshpande, 2013; Griese, 

1999; Yu et al., 1983). The protein part of surfactant is mainly composed of four different 

surfactant proteins (SP), SP-A, SP-B, SP-C, and SP-D (Griese, 1999). The hydrophobic 

proteins SP-B and SP-C are essential for the structural organization of surfactant and play 

an important role in accelerating the adsorption of PLs at the air-liquid interface, thus 

contributing to the surface active function of surfactant (Oosterlaken-Dijksterhuis et al., 

1991; Wang et al., 1996). Hydrophilic proteins SP-A and SP-D play an important role in 

innate immunity in the lung. They are able to bind bacteria, fungi and viruses and 

facilitate their clearance from the lung by mediating phagocytosis and killing by 

phagocytic cells (Kingma & Whitsett, 2006; Kudo et al., 2004; Lim et al., 1994; Van 

Iwaarden et al., 1994; Weikert et al., 2000). They further modulate lung inflammation 

(Madan et al., 1997). SP-D is also involved in regulation of surfactant pool sizes and its 

reuptake (Ikegami et al., 2000; Ikegami et al., 2005; Korfhagen et al., 1998). 

All surfactant components are synthesized, stored, secreted and recycled by ATII cells 

(Fig. 1). The storage compartment for surfactant inside ATII cells are the lamellar bodies 

(LBs), specialized lysosome-derived secretory granules with a diameter of 1-2 µm 

(Weaver et al., 2002). Surfactant PLs are synthesized in the endoplasmic reticulum (ER) 

and transported to the LBs likely by a non-vesicular transport, since disruption of the 

Golgi does not affect lipid secretion (Osanai et al., 2001). At the lamellar bodies, PLs are 

translocated into the lumen by ATP-binding cassette (ABC) transporter A3 (ABCA3, see 

1.3.2) (Ban et al., 2007; Mulugeta et al., 2002; Yamano et al., 2001). Inside LBs 

surfactant lipids are stored as tightly packed concentric membrane lamellae (Weaver et 

al., 2002), which is dependent on SP-B (Clark et al., 1995; Stahlman et al., 2000). SP-B 

and SP-C are synthesized in the ER as large precursors. Their proteolytic processing 

occurs on their route via the Golgi apparatus and multivesicular bodies (MVBs) to the 

LBs. SP-A and SP-D probably bypass the LBs and are targeted to the plasma membrane 

via secretory vesicles (Fig. 1B) (Olmeda et al., 2017; Voorhout et al., 1992). 
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Figure 1: Structure of the alveolus and pulmonary surfactant metabolism. (A) Schematic structure of 
the alveolus. Alveolar sacs are lined by two main cell types: thin squamous alveolar type I (ATI) cells 
cover about 90% of the surface and are important for gas exchange between alveolar space and the 
capillaries and form the structure of the alveolar wall; cuboidal ATII cells synthesize, store, secrete and 
recycle pulmonary surfactant. The storage organelles for surfactant are the lamellar bodies (LB). Secreted 
surfactant reorganizes as tubular myelin (TM) and its components adsorb to the air-liquid interface to form 
a surfactant layer. (B) Surfactant metabolism. After synthesis of all surfactant components in the 
endoplasmic reticulum (ER), they are trafficked through the cell via separate pathways. Synthesized 
phospholipids (PL) are trafficked from the ER directly to the lamellar bodies (LB), where they are 
translocated into the LB lumen by the lipid transporter ABCA3. ABCA3 and the hydrophobic surfactant 
proteins (SP) B and C are routed via the Golgi apparatus (GA) and multivesicular bodies (MVB) to the 
LBs. Inside LBs, surfactant lipids and proteins are stored as tightly packed bilayer membranes. SP-A and D 
are probably targeted to the plasma membrane by secretory vesicles and bypass storage in LBs. LB 
contents are secreted into the alveolar fluid via regulated exocytosis and the components rearrange as 
tubular myelin (TM) and adsorb to the air-liquid interface to form a surfactant layer. Surfactant components 
can be removed from the surfactant layer and are either cleared by alveolar macrophages or taken up by 
ATII cells for recycling or degradation in lysosomes. ABCA3, ATP-binding cassette transporter A3, 
ATI/II, alveolar type I/II cell; ER, endoplasmic reticulum; GA, Golgi apparatus; LB, lamellar body; MVB, 
multivesicular body; PL, phospholipids; SP, surfactant protein; TM, tubular myelin. 
 
 
Fusion of LBs with the plasma membrane and the secretion of surfactant into the alveolar 

space are primarily regulated by mechanical stretching of the alveoli during inspiration 

(Frick et al., 2004; Wirtz & Dobbs, 1990). After secretion into the fluid lining the 

alveolar surface, surfactant is re-organized as tubular myelin or vesicular structures 
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(Goerke, 1998; Nag et al., 1999), facilitating adsorption of PLs to form a functional 

surfactant film at the air-liquid interface (Griese, 1999).  

Maintenance of a functional surfactant film requires removal of surfactant components 

and incorporation of newly synthesized and secreted components. Surfactant components 

are therefore either cleared by alveolar macrophages, removed via the mucociliary 

escalator or are taken up by receptor mediated endocytosis into ATII cells (Gurel et al., 

2001; Stern et al., 1986). Internalized components are then recycled via MVBs that fuse 

with LBs or are targeted for lysosomal degradation (Kalina & Socher, 1990; Perez-Gil & 

Weaver, 2010) (Fig. 1B). 

 

1.2 Interstitial lung disease 
Interstitial lung disease (ILD), also called diffuse parenchymal lung disease (DPLD), 

represents a group of more than 200 rare, mostly chronic, restrictive pulmonary disorders, 

which are characterized by abnormal gas exchange often due to fibrotic changes in the 

interstitium and the alveoli after inflammation, and display significant morbidity and 

mortality (Fan et al., 2004; Griese et al., 2009). ILD in children (chILD) is very rare with 

a prevalence of 3.6 cases per million (Dinwiddie et al., 2002) and significantly differs 

from ILD in adults. ILDs can be distributed into two groups: disorders, which are more 

prevalent in infancy, and disorders, which occur at all ages (Deutsch et al., 2007).  

ChILD often displays with tachypnea, crackles, hypoxemia and diffuse infiltrates on 

chest radiographs, but signs and symptoms of chILD are mostly unspecific (Fan et al., 

2004). ILD can be caused by infections, environmental exposures, autoimmune diseases, 

or drugs, but most ILDs are idiopathic (Travis et al., 2002). In recent years, genetic 

disorders that disrupt normal surfactant metabolism have been recognized as an 

underlying cause of formerly idiopathic ILDs in children and adults. Affected genes 

include key players of surfactant metabolism like ABCA3, SP-B, SP-C, and thyroid 

transcription factor-1 (TTF-1), which regulates expression of ABCA3, SP-B and SP-C 

(Kolla et al., 2007; Stahlman et al., 2007; Turcu et al., 2013). Mutations in the ABCA3 

gene are the most common genetic cause of inherited surfactant diseases (Glasser et al., 

2010; Wambach et al., 2012; Wambach et al., 2014) and affected patients present with 



  Introduction 

 5 

variable clinical outcomes ranging from lethal acute respiratory distress syndrome (RDS) 

in the neonatal period (Shulenin et al., 2004) to late and progressive chronic ILD 

manifestations in child- and adulthood (Kröner et al., 2017; Wambach et al., 2014).  

Treatment of ILDs is mostly unspecific and includes administration of oxygen and 

mechanical ventilation. Pharmacological treatments include compounds like 

corticosteroids and hydroxychloroqine, which mainly exert anti-inflammatory effects, 

even though their efficacy has never been tested in clinical trials due to rarity of the 

disease (Braun et al., 2015; Bush et al., 2015). If patients do not respond to treatments, 

lung transplantation may be the last possible option to prolong survival (Eldridge et al., 

2017). A causal therapy that addresses the underlying genetic defect is not available. 

 

1.3 The ATP-binding cassette transporter ABCA3 

1.3.1 ABC transporters and the ABCA subgroup 
Adenosine triphosphate (ATP)-binding cassette (ABC) transporters are one of the largest 

protein families and are expressed in prokaryotes, plants, fungi, yeast, and animals 

(Vasiliou et al., 2009). They use the energy of ATP hydrolysis to translocate substrates 

like lipids, ions, carbohydrates, amino acids, or small proteins across the plasma 

membrane or intracellular membranes and are thus involved in a range of crucial 

biochemical and physiological processes (Higgins, 1992; Vasiliou et al., 2009). 

ABC transporters share a common architecture containing two transmembrane domains 

(TMDs), which serve as a passageway for the substrate across the membrane, and two 

nucleotide-binding domains (NBDs) that bind and hydrolyze ATP to provide the energy 

required for substrate translocation (Higgins, 1992; Hyde et al., 1990) (Fig. 2). Those 

four domains are either present in a single protein (full transporter) or the protein contains 

one NBD and one TMD (half transporter) and assembles as homo- or heterodimers to 

form a functional transporter (Dean & Allikmets, 1995).  

The TMDs vary considerably in their sequence and architecture explained by the 

heterogeneity of transported substrates (Rees et al., 2009; Saurin & Dassa, 1994). Most 

ABC transporters exhibit 12 transmembrane helices but their number can range between 

five and twelve (Rees et al., 2009).  
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The NBDs of ABC transporters are highly conserved and contain several conserved 

motifs, like the Walker A motif, or also called P-loop, which is implicated in nucleotide 

binding, the Walker B motif, the ABC signature motif (LSGGQ, also called C-motif), 

and the Q-loop (Higgins et al., 1985; Hollenstein et al., 2007; Saraste et al., 1990) (Fig. 

2B). The two NBDs are arranged in a head-to-tail orientation so that the Walker A motif 

of one NBD is facing the LSGGQ motif of the other NBD and vice versa to create two 

ATP-binding sites (Chen et al., 2003; Dawson & Locher, 2007; Jones & George, 1999; 

Loo et al., 2002; Smith et al., 2002) (Fig. 2C).  

Binding and hydrolysis of ATP at the NBDs leads to conformational changes in the 

NBDs that are transmitted to the TMDs leading to translocation of the substrate (Locher 

et al., 2002; Rosenberg et al., 2001). Transmission is achieved via coupling helices at the 

interface between TMDs and NBDs (Fig. 2 A, C) (Chen et al., 2001; Locher et al., 2002). 

Those coupling helices share only little sequence identity, but they are present in all ABC 

transporters, displaying a conserved mechanism of transmission (Hollenstein et al., 

2007).  

ABC transporters can function as importers or exporters, but importers are only found in 

prokaryotes (Hollenstein et al., 2007). In mammalians, 49 ABC transporters have been 

identified and are classified into seven subfamilies, termed ABCA to ABCG, based on 

their domain organization and sequence homology (Allikmets et al., 1996; Allikmets & 

Dean, 1998; Dean et al., 2001; Schriml & Dean, 2000).  

The subfamily A of ABC transporters is composed of 12 full transporters that are 

expressed in a variety of different tissues (Annilo et al., 2002; Arnould et al., 2002; 

Kaminski et al., 2000; Klugbauer & Hofmann, 1996; Luciani et al., 1994; Prades et al., 

2002). ABCA transporters are mostly involved in lipid trafficking with their substrates 

being phospholipids, cholesterol and sphingolipids (Borst & Elferink, 2002; Quazi & 

Molday, 2011). This subfamily contains the largest ABC proteins with some proteins of 

more than 2,100 amino acids and more than 200 kDa in size (Prades et al., 2002). 

ABCA5, ABCA6, ABCA8, ABCA9, and ABCA10 built up a subgroup inside the ABCA 

subfamily. They share a very high sequence similarity, are clustered on chromosome 

17q24 and are generally shorter than the other ABCA members (Arnould et al., 2002). 
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Figure 2: ABC transporter models. (A) 3D model of the ABCA3 transporter, showing the two 
transmembrane domains (TMDs) and two nucleotide-binding domains (NBDs). The coupling helices 
transmit conformational changes of the NBDs to the TMDs for substrate translocation. (B) 2D model of an 
ABC transporter showing the transmembrane helices that build a conduit through the cell membrane. NBDs 
contain the signature Walker A and B motives and a LSGGQ motif, also called C motif. (C) Schematic 
model of ABC transporters showing the dimerization of NBDs in a head-to-tail orientation so that the 
Walker A motif of one NBD is facing the LSGGQ motif of the other NBD and vice versa. 

 

ABC transporters are involved in a variety of important physiological processes like 

cholesterol and lipid transport, multidrug resistance, antigen presentation, and ion 

transport (Abele & Tampé, 2004; Rees et al., 2009). Mutations in ABC transporter genes 

are thus associated with severe rare genetic diseases. About half of the human ABC 

transporters from all subfamilies have been identified to play a key role in distinct 

disorders such as Tangier disease (ABCA1) (Rust et al., 1999), Stargardt disease 

(ABCA4) (Allikmets et al., 1997), hereditary biliary disease (ABCB4) (de Vree et al., 

1998), and cystic fibrosis (ABCC7, CFTR, see 1.4) (Kerem et al., 1989; Riordan et al., 

1989). 
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1.3.2 ABCA3 
The 80 kb ABCA3 gene comprising 33 exons, of which 30 are transcribed, is localized on 

chromosome 16p13.3. It encodes for a 1704 amino acid protein with a molecular weight 

of about 190 kDa (Connors et al., 1997; Klugbauer & Hofmann, 1996). ABCA3 is 

strongly expressed in the lung, but it is also observed in a variety of other tissues 

including heart, brain, liver, kidney, and pancreas (Stahlman et al., 2007). In the lung, 

ABCA3 expression is restricted to ATII cells, where it localizes to the outer membrane of 

LBs to mediate the translocation of surfactant lipids such as PC, PG, phosphatidylserine 

(PS), and PE into lamellar bodies and is also implicated in cholesterol transport (Ban et 

al., 2007; Cheong et al., 2006; Cheong et al., 2007; Fitzgerald et al., 2007; Matsumura et 

al., 2007; Zarbock et al., 2015). ABCA3 thus represents a key player in surfactant 

homeostasis and LB biogenesis. 

The structure of ABCA3 resembles the typical ABC transporter architecture with two 

TMDs, comprised of six transmembrane helices each, and two NBDs (Fig. 2A, 3). 

Furthermore, ABCA3 contains a signature-targeting motif (xLxxKN) that routes the 

protein to post-Golgi sorting vesicles. Since all ABCA transporters (except ABCA10) 

exhibit this motif but all have different subcellular localizations, subsequent targeting of 

ABCA3 to the LBs needs further not yet identified signals (Beers et al., 2011). ABCA3 

moreover contains two N-linked glycosylation sites at positions N124 and N140, which 

are important for protein stability (Beers et al., 2013) (Fig. 3). 

ABCA3 expression is strongly induced during lung development and peaks shortly 

before birth (Mulugeta et al., 2002). The ABCA3 promoter contains a glucocorticoid-

responsive element; thus ABCA3 expression is induced by glucocorticoids like 

dexamethasone, which are involved in fetal maturation (Yoshida et al., 2004).  
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After transcription, translation, and translocation to the ER, the ABCA3 protein passes 

the Golgi apparatus, sorting vesicles, and MVBs on its route to the LBs (Fig. 1B) (Beers 

et al., 2013; Cheong et al., 2006; Mulugeta et al., 2002; Nagata et al., 2004). During its 

trafficking through the cell, ABCA3 is glycosylated and the N-terminus is proteolytically 

cleaved by cathepsins L and B in post-Golgi compartments (Engelbrecht et al., 2010; 

Hofmann et al., 2016) (Fig. 3). The cleavage of ABCA3 results in the presence of two 

protein forms in the cell, the 190 kDa full-length protein and a shortened product of about 

170 kDa in size (Cheong et al., 2006; Hofmann et al., 2016; Matsumura et al., 2006; 

Nagata et al., 2004). It is not yet clear if this process is a step of activation or rather 

degradation of the protein, but presence of the shortened cleavage product might serve as 

a biomarker for correct trafficking of the protein (Beers & Mulugeta, 2017). In the 

process of LB secretion, ABCA3 attains the plasma membrane and is subsequently 

recycled to the LBs or degraded in the lysosomes (Schaller-Bals et al., 2000) (Fig. 1).  

 

Figure 3: ABCA3 topology. ABCA3 contains two transmembrane domains (TMDs) comprised of six 
transmembrane helices each, and two nucleotide-binding domains (NBDs) with the signature Walker A and 
B motives and a C motif. The targeting motif at the N-terminus for routing of the protein to post Golgi 
sorting vesicles and glycosylation sites at residues 124 and 140 are marked. Scissors mark the proteolytic 
cleavage site at residue 174. EL: external loop. 
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1.3.3 ABCA3 mutations 
The important role of ABCA3 in normal lung function is underlined by the discovery that 

bi-allelic ABCA3 deficiency in full-term infants leads to surfactant deficiency and RDS 

(Brasch et al., 2006; Garmany et al., 2006; Shulenin et al., 2004). 

Bronchoalveolar lavage of the patients displayed decreased amounts of PC and PG, 

reducing the surface activity of surfactant (Garmany et al., 2006; Griese et al., 2015). 

Affected patients also showed decreased numbers or a complete lack of mature LBs, but 

displayed electron-dense inclusion organelles with densely packed lipid core structures 

instead of lamellae (electron-dense bodies) (Edwards et al., 2005; Shulenin et al., 2004). 

In mouse models, homozygous Abca3 null mice died shortly after birth due to respiratory 

distress. They displayed no mature LBs in ATII cells but electron-dense bodies and 

severely decreased amounts of PC and PG in the pulmonary surfactant, mirroring the 

findings in ABCA3-deficient infants (Ban et al., 2007; Fitzgerald et al., 2007; Hammel et 

al., 2007). Heterozygous deletion led to a decrease of PC, PG, PE, and PS in surfactant 

and less LBs in the ATII cells of the lung (Cheong et al., 2007).  

ABCA3 mutations display the most common genetic cause of surfactant related disorders 

like RDS and ILD and to date, more than 200 mutations have been identified in the 

human ABCA3 gene, including nonsense, frameshift, missense, and splice site mutations, 

insertions, and deletions (Kröner et al., 2017; Wambach et al., 2014). Nonsense and 

frameshift mutations, which lead to an ABCA3 null phenotype, consistently show poor 

outcomes and affected infants die shortly after birth. Missense or splice site mutations or 

insertions/deletions on the other hand are associated with a more chronic phenotype and 

the age of presentation and clinical outcome vary markedly (Kröner et al., 2017; 

Wambach et al., 2014). Despite the nature of mutation, other factors can influence the 

clinical outcomes, including environmental factors, genetic predispositions, and clinical 

interventions (Wert et al., 2009; Young et al., 2008). Most ABCA3 mutations are unique 

and restricted to individuals or families and are often carried in compound heterozygosis. 

Homozygous mutations often result from consanguinity, but uniparental disomy has also 

been reported (Hamvas et al., 2009; Shulenin et al., 2004).  

In vitro studies in A549 cells, a human adenocarcinoma cell line, identified different 

types of ABCA3 missense mutations (Matsumura et al., 2006). They can result in protein 
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misfolding, which is recognized by the cell’s quality control mechanisms and 

subsequently leads to ER retention of the mutant protein and its degradation. The protein 

is not trafficked through the cell and does not reach the LBs (Matsumura et al., 2006; 

Matsumura et al., 2008; Weichert et al., 2011; Young et al., 2008). Those mutations are 

termed misfolding mutations and include mutations like L101P or Q215K (Engelbrecht et 

al., 2010; Matsumura et al., 2006). Mutations in or in close proximity to the NBDs often 

lead to a functional impairment of ABCA3. The protein indeed reaches the LBs but its 

ATP binding or hydrolysis function is impaired, resulting in impaired lipid transfer. 

Those mutations are termed functional mutations and include mutations like N568D or 

E690K (Matsumura et al., 2006; Matsumura et al., 2008).  

 

1.4 CFTR and cystic fibrosis 
Cystic fibrosis transmembrane conductance regulator (CFTR) belongs to the family of 

ABC transporters (ABCC7), and is the only known member that acts as an anion channel 

(Anderson et al., 1991a; Bear et al., 1992). The CFTR gene is located on chromosome 

7q31.2 and encodes for the 1480 amino acid CFTR protein with a molecular weight of 

180 kDa (Kerem et al., 1989; Riordan et al., 1989). CFTR is located in the apical 

membrane of epithelial cells of the lung, liver, pancreas, intestine, reproductive tract, and 

the sweat glands, where it mediates chloride and bicarbonate transport (Engelhardt et al., 

1994; Trezise et al., 1993). Like all ABC transporters, CFTR consists of two TMDs with 

six transmembrane helices each, forming the channel, and two NBDs that bind and 

hydrolyze ATP (Higgins, 1992; Riordan et al., 1989). Furthermore, CFTR contains a 

unique large hydrophilic regulatory (R) domain that is cyclic adenosine monophosphate 

(cAMP)-dependently phosphorylated by protein kinase A to activate the protein 

(Anderson et al., 1991b; Chappe et al., 2005; Gregory et al., 1990). Gating of CFTR 

requires binding of ATP at both binding sites at the NBD interface (Berger et al., 2005). 

Binding of ATP promotes dimerization of the two NBDs, which leads to conformational 

changes in the TMDs that subsequently result in channel opening (Csanády et al., 2010; 

Vergani et al., 2003; Vergani et al., 2005). Experiments showed that ATP in the first ATP 

binding site is slowly hydrolyzed, while ATP in the second binding site is hydrolyzed 
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more rapidly (Aleksandrov et al., 2002; Basso et al., 2003), leading to the assumption that 

hydrolysis of the ATP in the second binding site and release of adenosine diphosphate 

(ADP) and Pi initializes channel closing (Berger et al., 2005; Carson et al., 1995; Ikuma 

& Welsh, 2000). 

In healthy lungs, the chloride efflux through CFTR channels leads to the establishment of 

an osmotic gradient that results in water flow into the luminal space to keep the airway 

surface liquid (ASL) optimally hydrated (Anderson et al., 1991b; Saint-Criq & Gray, 

2017). ASL is a thin fluid layer that covers the airway epithelium surface and has 

important functions in trapping and removing inhaled particles. The volume, pH, and 

composition of ASL play critical roles for its antimicrobial properties and also for ciliary 

function of epithelial cells and mucociliary clearance (Abou Alaiwa et al., 2014; Saint-

Criq & Gray, 2017; Tarran et al., 2002). 

CFTR dysfunction leads to cystic fibrosis (CF), one of the most widespread life-

shortening monogenetic diseases with an incidence of about 1 in 2,000 – 3,500 neonates 

(Kosorok et al., 1996; Southern et al., 2007). Mutations in CFTR result in a lack of 

chloride efflux accompanied by an increase in sodium absorption mediated by epithelial 

sodium channels, leading to an imbalance of the osmotic gradient, resulting in ASL 

dehydration, increased mucus viscosity, and impaired mucociliary transport. This 

subsequently results in plugging of the small airways, persistent bacterial infections, and 

chronic inflammation, which are the main causes of morbidity and mortality in patients 

with CF (Chen et al., 2010; Derichs et al., 2011; Gustafsson et al., 2012; Pezzulo et al., 

2012; Quinton, 1983). 

 

1.4.1 CFTR mutation classes 
To date more than 2000 mutations in CFTR have been described and can be grouped into 

six mutation classes (Cystic Fibrosis Mutation Database (CFTR1); Welsh & Smith, 1993; 

Zielenski & Tsui, 1995). Class I mutations include nonsense, frameshift, and splice site 

mutations that lead to the total absence of mature CFTR protein. Class II mutations lead 

to folding and processing defects resulting in retention of the protein in the ER and its 

degradation instead of trafficking to the cell surface. Class III describes mutations that 

cause gating defects, meaning the inability of the protein to pump chloride ions even 
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though it is correctly trafficked to the apical membrane. Mutations of class IV influence 

channel conductance, i.e. reduced ion flow through the pore. Class V mutations result in 

reduced protein levels due to alternative splicing or promoter abnormalities that only 

allow very low levels of normal CFTR mRNA. Class VI mutations decrease CFTR 

stability at the plasma membrane (Haardt et al., 1999; Highsmith et al., 1997).  

Some mutations result in more than one defect and can therefore be grouped into several 

classes. Mutation classes I-III are generally associated with a more severe phenotype 

compared to mutations of classes IV-VI (de Gracia et al., 2005; McKone et al., 2006). 

Deletion of phenylalanine at position 508 (F508del) in the NBD1 represents the most 

common CFTR mutation and is found in about 90% of CF patients on at least one allele 

(Cystic Fibrosis Mutation Database (CFTR1)). The mutation impedes the protein from 

attaining its native conformation. The misfolded protein is recognized by the cell’s 

quality control system and is retained in the ER und subsequently targeted for 

proteasomal degradation (Cheng et al., 1990; Meacham et al., 2000; Ward et al., 1995). A 

small portion of F508del CFTR might be able to escape the control mechanisms and 

reach the cell surface, but those proteins further display gating defects and decreased 

stability at the cell surface. F508del is therefore classified into mutation classes II, III, 

and VI (Dalemans et al., 1991; Denning et al., 1992; Lukacs et al., 1993).  

The most common class III mutation and the third most common CFTR mutation in 

general is a glycine-to-aspartate mutation at position 551 (G551D), which is found in 

about 4% of CF patients (Cystic Fibrosis Mutation Database (CFTR1)). This mutation is 

located in the LSGGQ signature motif of the NBD1 of CFTR, which is implicated in 

ATP binding. The mutation therefore impedes ATP binding and normal CFTR function 

(Lin et al., 2014). 

 

1.4.2 CFTR modulators 
The identification of CFTR, its characterization, and the understanding of its dysfunction 

in CF were an important step towards the development of drugs that target the underlying 

cause of the disease. The classification of mutants allows targeting mutations of the same 

class with the same therapeutic strategy. Compounds that improve protein folding, 

processing, trafficking, and cell surface expression are called correctors and target class II 
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mutants. Compounds targeting class III and IV mutants by enhancing CFTR function at 

the cell surface are called potentiators (Solomon et al., 2015).  

In recent years, major breakthroughs were achieved by developing high-throughput 

screens (HTS) that allow for the fast screening of hundreds of thousands of chemical 

compounds for the identification of CFTR modulators (Pedemonte et al., 2005; Van Goor 

et al., 2006). Selected compounds can subsequently be chemically modified (lead 

optimization) to enhance efficiency and minimize toxicity (Cheng et al., 2007). Using 

those approaches, one potentiator (called ivacaftor) and one corrector/potentiator 

combination (lumacaftor/ivacaftor, called Orkambi) were developed that ultimately were 

approved by the U.S. Food and Drug Administration (FDA) for the treatment of CF (Van 

Goor et al., 2009; Van Goor et al., 2011; Vertex Pharmaceuticals Inc., 2014, 2015). 

1.4.2.1 Potentiators 

The first evidence and proof of principle that small molecular compounds enhance CFTR 

channel activity was the finding that the isoflavone genistein enhances the activity of 

wild type (WT) and G551D CFTR (Illek et al., 1995; Illek et al., 1999). Genistein (4’,5,7-

trihydroxyisoflavone) is a phytoestrogen that naturally occurs in soybeans (Dixon & 

Ferreira, 2002). It affects CFTR channel activity by direct binding to the protein (Moran 

et al., 2005; Wang et al., 1998; Weinreich et al., 1997). Genistein binds to CFTR at the 

NBD interface, stabilizing the NBD dimer as well as inhibiting ATP hydrolysis at the 

second ATP-binding site in NBD2, which controls channel closing. Thereby genistein 

increases CFTR’s open probability Po by increasing the open time of the channel and 

decreasing its closed time (Al-Nakkash et al., 2001; Hwang et al., 1997). So far no 

clinical trials with genistein in CF patients were conducted. In pre-clinical studies, 200 

µM genistein rescued the defects of G551D CFTR to 20% of WT level. This 

concentration might be too high to achieve appropriate blood concentrations (Sohma et 

al., 2013; Zegarra-Moran et al., 2002). 

The development of HTS assays and chemical optimization of lead compounds led to the 

identification of the potentiator ivacaftor (VX-770) (Van Goor et al., 2009). In 

recombinant cells and CF patient-derived human bronchial epithelial cells, VX-770 

treatment led to an increase of F508del and G551D CFTR activity, measured as increased 

chloride secretion, apical fluid height, and ciliary beat frequency (Van Goor et al., 2009). 
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Positive results in clinical studies led to the initial FDA approval of ivacaftor for 

treatment of patients with the G551D mutation on at least one allele (Accurso et al., 

2010; Ramsey et al., 2011) that was later on further extended for eight other mutations 

(De Boeck et al., 2014). Recently, in vitro data on several more mutations was sufficient 

to extend the approval further, including now 38 different CFTR gating and conductance 

mutations (Ratner, 2017; Yu et al., 2012).  

The precise mechanism of action of VX-770 is not yet understood, but it was shown to 

directly interact with the CFTR protein to increase the open probability of the CFTR 

channel by a phosphorylation-dependent, but ATP-independent mechanism (Byrnes et 

al., 2018; Eckford et al., 2012; Jih & Hwang, 2013). 

1.4.2.2 Correctors 

Correctors target class II CFTR mutants by restoring folding and trafficking of the 

protein and thereby increase the amount of CFTR protein that reaches the cell surface. 

Proof of concept that CFTR can be rescued was delivered by the finding that low 

temperature incubation of cells, which express F508del-CFTR, rescued the folding defect 

of the protein and led to its correct trafficking to the plasma membrane (Denning et al., 

1992).  

Correctors are divided into chemical and pharmacological chaperones and improve the 

protein folding by either modulating the protein homeostasis or by acting directly on the 

protein, respectively. Chemical chaperones can further be divided into two subclasses, 

osmolytes and hydrophobic chaperones (Cortez & Sim, 2014). Osmolytes like 

trimethylamine N-oxide (TMAO) and glycerol are products of the cell stress response 

and increase the hydration around the protein and thereby make the protein reduce its 

relative surface area by tighter packing. This hydrophobic effect stabilizes the protein and 

thus favors its folded state (Bolen & Baskakov, 2001; Welch & Brown, 1996). Since 

osmolytes work in an unspecific and colligative way, high concentrations are needed to 

exert desired effects (Nieddu et al., 2013). Hydrophobic chaperones like 4-phenylbutyric 

acid (PBA) probably regulate transcription of proteins that are involved in different 

folding and cell stress processes, for example heat-shock proteins (Wright et al., 2004). 

PBA, glycerol, and TMAO were shown to aid CFTR protein folding but act in an 

unspecific way and therefore high concentrations are needed for correction, which 
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precludes their use in clinical studies (Brown et al., 1996; Fischer et al., 2001; Rubenstein 

et al., 1997; Rubenstein & Zeitlin, 2000; Sato et al., 1996). 

The first two correctors identified by HTS were the bithiazole C4 (also called corr-4a) 

and the quinazolinole C3 (also called VRT-325). But these two compounds showed low 

oral bioavailability, low efficiency, and rather high toxicity and were therefore not 

suitable for clinical use (Loo et al., 2006; Pedemonte et al., 2005).  

The corrector VX-809 (lumacaftor) was also identified by HTS and was chemically 

optimized to enhance its potency and decrease its toxicity. VX-809 showed a high 

efficacy in vitro, especially in primary cultures of bronchial epithelial cells from CF 

patients harboring the F508del mutation (Van Goor et al., 2011), and is well tolerated in 

patients (Clancy et al., 2012). Unfortunately, monotherapy with lumacaftor only showed 

little efficacy in patients homozygous for F508del CFTR mutation (Clancy et al., 2012), 

explained by the fact that F508del CFTR despite the folding defect also displays 

impairments in channel gating and protein stability. Therefore a combinational therapy of 

lumacaftor together with the potentiator ivacaftor (Orkambi) was tested in vitro and in 

clinical studies to target the folding as well as the gating defect of F508del CFTR (Boyle 

et al., 2014; Van Goor et al., 2011; Wainwright et al., 2015). Since lung function was 

significantly improved and pulmonary exacerbations were reduced in patients compared 

to the placebo group, Orkambi was approved by the FDA for use in patients homozygous 

for F508del CFTR (Vertex Pharmaceuticals Inc., 2015).   

The mechanism of action of VX-809 stays elusive. The direct interaction of the 

compound with CFTR was shown, but the exact binding site is not yet identified (Hudson 

et al., 2017; Loo et al., 2013; Ren et al., 2013). VX-809 is probably stabilizing the first 

TMD (Loo et al., 2013; Okiyoneda et al., 2013; Ren et al., 2013), improves its folding 

(Ren et al., 2013), and stabilizes interactions between the TMDs and the NBDs (Farinha 

et al., 2013; Loo & Clarke, 2017; Okiyoneda et al., 2013). 
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2 Aim of the study 
Surfactant is a complex mixture of lipids and proteins that adsorbs to the alveolar air-

liquid interface to reduce surface tension and thus prevents alveolar collapse at the end of 

expiration. The lipid transporter ABCA3 plays a key role in surfactant homeostasis. In 

ATII cells it translocates surfactant lipids into the lumen of LBs, where surfactant is 

assembled and stored before its exocytosis into the alveolar space. Mutations in ABCA3 

display a common genetic cause for diseases like fatal surfactant deficiency-induced 

respiratory distress in neonates and interstitial lung disease in children and adults, for 

which currently no causal therapy exists. 

Since CFTR and ABCA3 both belong to the ABC transporter family, they share 

structural similarities. Hence, recent promising advance in the identification of correctors 

and potentiators to rescue trafficking or function of mutant CFTR, respectively, may 

provide potential options to rescue mutant ABCA3. The aim of this study was therefore 

to prove the concept that disease-causing mutant ABCA3 can be modulated by correctors 

and potentiators in vitro and to investigate available options for its functional rescue.  

To analyze the effect of modulators on mutant ABCA3, different clinically relevant 

missense mutations were introduced into a pT2/HB transposon vector containing HA-

tagged human ABCA3 by site-directed mutagenesis. Stable expression in A549 cells, an 

ATII model cell line, was conducted using the Sleeping Beauty transposon system 

(Geurts, 2003). A sensitive functional assay was established that allows quantification of 

ABCA3 lipid transport activity. Several mutant ABCA3 proteins were then first 

characterized in regard to their processing, trafficking, localization, and transport activity. 

Subsequently, misfolding mutants were subjected to treatment with correctors and 

functional mutants were analyzed regarding their response to potentiators. 

Correction of five misfolding ABCA3 mutants by low temperature, a range of chemical 

chaperones and several small molecule correctors of CFTR was assessed by 

quantification of protein processing products in Western blots and correct intracellular 

protein localization in vesicular structures, which resemble LBs. Furthermore, lipid 

transport function of rescued ABCA3 was assessed by quantification of transport of 

fluorescently labeled PC into ABCA3-HA positive vesicles.  
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Furthermore the effects of CFTR potentiators genistein and ivacaftor on five functionally 

impaired ABCA3 mutants, two of them in homologous location to two common CFTR 

mutations, were analyzed in regard to lipid transport function by analyzing the transport 

of fluorescently labeled PC.  
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3 Results 

3.1 Functional rescue of misfolding ABCA3 mutations by small 

molecular correctors 
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Abstract
Adenosine triphosphate (ATP)-binding cassette subfamily A member 3 (ABCA3), a phospholipid transporter in lung lamellar
bodies (LBs), is essential for the assembly of pulmonary surfactant and LB biogenesis. Mutations in the ABCA3 gene are an
important genetic cause for respiratory distress syndrome in neonates and interstitial lung disease in children and adults, for
which there is currently no cure. The aim of this study was to prove that disease causing misfolding ABCA3 mutations can be
corrected in vitro and to investigate available options for correction. We stably expressed hemagglutinin (HA)-tagged wild-type
ABCA3 or variants p.Q215K, p.M760R, p.A1046E, p.K1388N or p.G1421R in A549 cells and assessed correction by quantitation of
ABCA3 processing products, their intracellular localization, resembling LB morphological integrity and analysis of functional
transport activity. We showed that all mutant proteins except for M760R ABCA3 were rescued by the bithiazole correctors C13 and
C17. These variants were also corrected by the chemical chaperone trimethylamine N-oxide and by low temperature. The identifi-
cation of lead molecules C13 and C17 is an important step toward pharmacotherapy of ABCA3 misfolding-induced lung disease.

Introduction
Surfactant, a mixture of lipids and proteins, prevents the end
expiratory collapse of alveolar units and is thereby crucial for
normal breathing (1–3). It is synthesized in alveolar type II cells,
where the surfactant is stored in lamellar bodies (LBs), a
lysosome-derived compartment (4). The transporter adenosine
triphosphate (ATP)-binding cassette subfamily A member 3
(ABCA3) localizes to the limiting membrane of LBs and is
involved in their biogenesis by transporting surfactant lipids
into the lumen of LBs (5–8). ABCA3 consists of two transmem-
brane domains, each containing six transmembrane helices,
and two nucleotide binding domains (NBDs) with ATP-
hydrolyzing function (Fig. 1) (9,10). After folding in the endoplas-
matic reticulum (ER), ABCA3 is trafficked through golgi and

post-golgi compartments, where it is glycosylated and proc-
essed, respectively (5,7,11–13). The N-terminus of the 190 kDa
protein is proteolytically cleaved by cathepsins L and B, result-
ing in a shortened 170 kDa form of the protein (12,13). The pres-
ence of the cleavage product might serve as a biomarker for
correct anterograde post-golgi trafficking of the protein, which
enables the processing (14), although it is not clear if this proc-
ess is a step of maturation or degradation (13,14).

Mutations in ABCA3 may cause respiratory distress syn-
drome in mature neonates and early death, or chronic intersti-
tial lung disease in children and adults (15,16). To date, there is
no treatment targeting such disease causing mutations.
Misfolding of ABC transporters due to certain mutations is the
underlying cause of many diseases (17) including cystic fibrosis
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(CF), a disease caused by mutations in the cystic fibrosis con-
ductance regulator (CFTR, ABCC7) gene (18). In recent years,
small molecular correctors were identified by high throughput
screening, which directly bind the mutated CFTR protein, stabi-
lize interaction of its functional domains and restore its folding,
intracellular processing, trafficking and function (19–21). The
entire development and selection of such correctors were per-
formed using cellular in vitro assays, refraining from animal or
organ models (20). Following toxicology testing, candidates
were successfully tested in humans and thus made rapidly
available to patients (22,23).

The goal of this study was to prove the concept that disease
causing misfolding ABCA3 mutations can be corrected in vitro
and to define the impact of options available to target the pro-
tein correctly. We used low temperature, which has been shown
to help correct protein folding so proteins reach their final desti-
nation (24–28). We also used chemical chaperones, which gen-
erally favor a cellular milieu, are not protein specific and were
shown to correct multiple ABC transporters (29). Due to struc-
tural similarity to CFTR, we also tested small molecular correc-
tors on ABCA3. We show that certain mutated and mistrafficked
ABCA3 proteins can be redirected and functionally corrected to
wild-type (WT) levels, setting the stage for the development of
mutation-group specific drug treatment of ABCA3 deficiency.

Results
Selection of ABCA3 missense mutations

The in vitro mutagenesis model consisted of A549 cells stably
expressing HA-tagged WT or mutated ABCA3 variants. As ER
retention of misfolded ABCA3 proteins interferes with proteo-
lytic processing, the measurement of cleaved and uncleaved
ABCA3 products was used as a semi-quantitative marker of
mistrafficking (14,30). Five disease-causing mutations known to
result in protein misfolding were selected for this study (Fig. 1,
Supplementary Material, Table S2). The Q215K and M760R
mutations resulted in the complete absence of the post-
processing 170 kDa isoform (Fig. 2A, B, 37!C), and the A1046E,
K1388N and G1421R variants resulted in a markedly decreased
170/190 kDa ratio (Fig. 2A–C, 37!C).

WT ABCA3-HA protein is localized at the limiting membrane
of LBs, seen as lysosome-related organelles displaying vesicle-
like structures in A549 cells, co-localizing with the lysosomal
marker CD63 (Fig. 2D, 37!C). In contrast, ABCA3-HA proteins
containing mutations Q215K or M760R were diffusely distrib-
uted in the cell, while proteins harboring A1046E, K1388N or
G1421R mutations showed both, small vesicular structures, co-
localizing with CD63, accompanied by a diffuse pattern in the
cell (Fig. 2D, 37!C).

Low temperature restores processing and subcellular
localization of mutant ABCA3-HA proteins

After incubating A549 cells for 48 h at 30!C, the lower 170 kDa
form of ABCA3-HA was enriched for WT and all mutated
proteins, except M760R ABCA3-HA (Fig. 2A and B). The lower
to upper band ratio was slightly increased for all mutated
proteins except M760R ABCA3-HA (Fig. 2C). Even at 26!C, no
alteration was seen for M760R ABCA3-HA (Supplementary
Material, Fig. S1).

Consistent with this, at 30!C, all mutated ABCA3-HA pro-
teins except for M760R ABCA3-HA showed a similar co-
localization with lysosomal marker CD63 comparable to WT
ABCA3-HA expressing cells, indicating restored LB morphology
(Fig. 2D). Since temperature-sensitivity gives a hint if misfolded
proteins can be corrected (27,31), our findings suggest that all
mutated proteins except M760R ABCA3-HA may be susceptible
to correction by small molecules.

The chemical chaperone TMAO restores processing and
localization of mutated ABCA3-HA

We tested the chemical chaperones trimethylamine N-oxide
(TMAO), dimethylsulfoxid (DMSO), glycerol, 4-phenylbutyric
acid (PBA) and suberoylanilide hydroxamic acid (SAHA), effec-
tive in other ABC misfolding disorders (summarized in 29).
Western blot analysis showed that all chemical chaperones, at
the higher concentration tested, led to an unspecific enrich-
ment in total protein, without altering the 170/190 kDa ratio in
mutant compared to untreated wild-type cells (Fig. 3A–F,
Supplementary Material, Fig. S2). Only TMAO at the highest 200

Figure 1. Topology model of ABCA3. Positions of all mutations analyzed in this study are marked. Scissors indicate the cleavage site for processing of the 190 kDa form
to the 170 kDa form in post-golgi compartments. Mutations that could be corrected completely are boxed; dashed lines indicate partial correction of Q215K ABCA3.
M760R was not susceptible to correction (shown in gray). EL: extracellular loop, NBD: nucleotide binding domain, A: walker A motif, B: walker B motif. C: C motif.
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mM concentration was able to significantly increase the 170/
190 kDa ratio to a level closer to WT for all mutated proteins
except M760R (Fig. 3A–F lower panel). For Q215K, the 170/190
kDa ratio was only partially restored to a level comparable to
the less deleterious mutations A1046E, K1388N and G1421R
(Fig. 3B).

Analysis of subcellular localization of ABCA3-HA proteins by
confocal microscopy confirmed these findings. Only TMAO was
able to restore localization of all mutated proteins except Q215K
and M760R ABCA3-HA in vesicular-like structures, co-localizing
with CD63, comparable to WT protein in untreated cells, resem-
bling intact LB morphology (Supplementary Material, Fig. S3). PBA
and SAHA treatment led to a strong accumulation of mutant
ABCA3-HA protein in all cells, not showing any vesicular

structures or co-localization with CD63 (Supplementary Material,
Fig. S3). Treatment with DMSO or glycerol showed no differences
compared to untreated cells.

Identification of correctors to restore processing of
mutated ABCA3-HA

Cells stably expressing WT ABCA3-HA and mutations were
treated with correctors C2, C4, C17, C18 and VX-809 at the com-
monly used screening concentration of 10 mM. C17 increased
the amount of the 170 kDa form of all mutated proteins except
M760R ABCA3-HA (Fig. 4A–F upper panel, Supplementary
Material, Fig. S4) and led to a significant increase of the 170/190

Figure 2. Defects in ABCA3-HA processing caused by mutations are temperature-sensitive. A549 cells stably expressing WT or mutated ABCA3-HA, were grown at
either 37!C or 30!C for 48 h and ABCA3-HA protein was analyzed by western blot (A). Densitometric quantification of protein amount in each band (190 kDa and 170
kDa) was performed using Image J, with the 190 kDa form of WT protein at 37!C set to 1 (B). The ratio of 170/190 kDa form was calculated relative to WT at 37!C (C).
Confocal microscopy images of cells stained for ABCA3-HA and lysosomal marker CD63 are shown in (D). Scale bar represents 10 mm. Results are means þ S.E.M. of
three independent experiments. */# p < 0.05; **/##p<0.01; ***/###p < 0.001 with * regarding the 190 kDa form and # regarding the 170 kDa form in (B). ns: not significant.
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kDa form ratio of all mutated ABCA3-HA proteins (except M760R
ABCA3-HA) toward a WT-like level (Fig. 4A–F, lower panel).

Next, we tested correctors C13 and C14, which are analogues
of C17 (Supplementary Material, Table S1). C13, similar to C17, led
to an increase in the amount of the 170 kDa form and the 170/190
kDa form ratio of all mutated proteins except M760R ABCA3-HA
(Fig. 4A–F, Supplementary Material, Fig. S4). Interestingly, the

ratio was not increased in cells expressing the ABCA3-HA
mutation A1046E, because the amount of the upper band
was also highly increased by C13 treatment (Fig. 4D). C14 was
able to increase the amount of 170 kDa form (Supplementary
Material, Fig. S4) and the ratio of processed 170 kDa to unpro-
cessed 190 kDa form for K1388N and G1421R ABCA3-HA
(Fig. 4E and F).

Figure 3. Chemical chaperone TMAO restores processing of ABCA3-HA mutants. A549 cells stably expressing ABCA3-HA WT or mutations were treated with two differ-
ent concentrations of chemical chaperones for 48 h and ABCA3-HA protein pattern was analyzed by western blot (upper panel). Densitometric quantification of protein
amount in each band (190 kDa and 170 kDa, see Supplementary Material, Fig. S2) was performed using Image J and the ratio of 170/190 kDa form was calculated with
untreated WT set to 1 (lower panel). (A) wild-type ABCA3-HA. (B) Q215K ABCA3-HA. (C) M760R ABCA3-HA. (D) A1046E ABCA3-HA. (E) K1388N ABCA3-HA. (F) G1421R
ABCA3-HA. Results are means þ S.E.M. of three independent experiments. *p<0.05; **p < 0.01; ***p < 0.001 in regard to the untreated control. nt: no treatment.
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To test combinations of correctors coming from different
pharmacological classes, we selected Q215K ABCA3-HA, a muta-
tion where correction was least efficient. Combining C13 or C17
with correctors C18 or VX-809 had no additive effects
(Supplementary Material, Fig. S5).

Correctors C17 and C13 are most potent and restore
subcellular distribution of mutated ABCA3-HA

As C17 and C13 were the most potent correctors, they were used for
further experiments. Effects of higher concentrations were tested

(Supplementary Material, Fig. S6), but due to severe decrease of cell
viability at higher concentrations (Supplementary Material, Fig. S7),
10 mM of correctors were used in all further experiments.

Upon C13 or C17 treatment, all mutated ABCA3-HA proteins
except M760R ABCA3-HA displayed a vesicle-like distribution in
the cell, co-localizing with CD63, comparable to the pattern in
cells expressing WT ABCA3-HA (Fig. 5). Only Q215K ABCA3-HA
in addition showed remaining diffuse distribution in the cell.
Interestingly, upon C13 treatment A1046E ABCA3-HA protein
was also apparent in vesicular structures, even though it did
not lead to an increase of the 170/190 kDa ratio in western blot

Figure 4. CFTR correctors restore processing of ABCA3-HA mutants. A549 cells stably expressing ABCA3-HA WT or mutations were treated with 10 mM of correctors for
48 h and ABCA3-HA protein pattern was analyzed by western blot (upper panel). Densitometric quantification of protein amount in each band (190 kDa and 170 kDa,
see Supplementary Material, Fig. S4) was performed using Image J and the ratio of 170/190 kDa form was calculated with untreated WT set to 1 (lower panel). (A) wild-
type ABCA3-HA. (B) Q215K ABCA3-HA. (C) M760R ABCA3-HA. (D) A1046E ABCA3-HA. (E) K1388N ABCA3-HA. (F) G1421R ABCA3-HA. Results are means þ S.E.M. of three
independent experiments. *p < 0.05; **p < 0.01’ ***p < 0.001 in regard to the DMSO vehicle control. nt: no treatment.
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(Fig. 4D). Taken together, these results show that correctors C13
and C17 were able to restore proper processing, trafficking and
subcellular localization of all mutated ABCA3-HA proteins
tested, except M760R ABCA3-HA.

Transport of TopF-labeled PC into ABCA3-HA positive
vesicles after corrector treatment

Transport of TopFluor-labeled phosphatidylcholine (TopF-PC)
serves as a functional assay for ABCA3 activity (32). C17 treat-
ment led to an increase of TopF-PC in all analyzed ABCA3-HA-
positive vesicles in cells expressing either WT or mutated
ABCA3-HA and also if only filled vesicles were taken into
account (Fig. 6A and B). Furthermore, the portion of filled
vesicles was increased in Q215K, A1046E and G1421R ABCA3-HA
expressing cells and the volume of ABCA3-HA-positive vesicles
was increased in all cells, including WT ABCA3-HA cells (Fig. 6C
and D). As a control for active ATP-dependent transport of
TopF-PC, we used ortho-vanadate to inhibit ATPase function
(32) and no transport of TopF-PC into ABCA3-HA vesicles was
detected (Supplementary Material, Fig. S8).

C13 treatment led to an increase of TopF-PC in all measured
vesicles in all cells with the exception of G1421R ABCA3-HA
expressing cells (Fig. 6A). If only filled vesicles were taken into
account, C13 increased the amount of TopF-PC in ABCA3-HA pos-
itive vesicles similar to WT-like levels in cells expressing Q215K,
A1046E and K1388N ABCA3-HA (Fig. 6B). The portion of filled
vesicles was increased in Q215K, A1046E and G1421R ABCA3-HA
expressing cells (Fig. 6C). The volume of ABCA3-HA positive
vesicles was increased in all cells after C13 treatment, including

WT ABCA3-HA expressing cells (Fig. 6D). Representative pictures
of these findings are shown in Figure 6E and Supplementary
Material, Fig. S9.

Discussion
Missense mutations in ABCA3 can lead to misfolding and mis-
trafficking of the protein, resulting in the absence of ABCA3
from LBs, defective LB structure and complete loss of phospholi-
pid transport function (Fig. 7). In this study, we proved that clin-
ically relevant misfolding mutations in ABCA3 can be corrected
in vitro. Our results showed that four of the five analyzed var-
iants were temperature-sensitive and were corrected by chemi-
cal chaperone TMAO and correctors C13 and C17. Correction
was assessed as restored N-terminal processing, localization of
the protein at the limiting membrane of lysosome-related
organelles resembling LBs, their morphological intactness and
restoration of the phospholipid transport function (Fig. 7).

Four of the five investigated ABCA3 mutations, located in
different domains of the protein, were responsive to low tempera-
ture, all of which restoring collocation to the LB limiting mem-
brane after 30!C incubation except for M760R. It is postulated, that
temperature-sensitivity gives a hint whether mutated proteins are
susceptible to corrector treatment (27,31). Our data are in agree-
ment with this hypothesis, as M760R ABCA3-HA was also not cor-
rected by the chemical chaperones or correctors tested.

In CF, small molecular correctors for CFTR (ABCC7) were
recently identified by high throughput in vitro assays followed
by lead optimization and clinical studies. Novel disease-
modifying treatments were made available for CF patients in a

Figure 5. Correctors C17 and C13 restore subcellular localization of ABCA3-HA mutants. A549 cells stably expressing ABCA3-HA WT or mutations were treated with
10mM of C13 or C17 for 48 h and stained for ABCA3-HA and lysosomal marker CD63. nt: no treatment; scale bar represents 10 mm.
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very short time (23,33). These correctors act protein specific and
at low doses (34) but their precise mechanism of action is poorly
understood. Some correctors like VX-809 were shown to bind
the CFTR protein directly and stabilize the domain interactions
to promote the native folding conformation (35). Other correc-
tors might mitigate the interaction of mutated CFTR with the
proteostasis machinery, preventing protein retention and deg-
radation (36).

We tested seven correctors with different mechanisms of
action, including the compound VX-809 that was recently
approved by the Food and Drug Administration (FDA) for CF
treatment (Vertex press release, http://www.businesswire.com/
news/home/20150702005760/en/; date last accessed January 12,

2018). Class II correctors (C4, C17, C13 and C14, all bithiazoles)
stabilize the NBD2 of CFTR and its interfaces with other protein
domains (19). For the tested ABCA3 mutations, only class II cor-
rectors were able to correct the misfolded proteins, indicated by
restoration of processing and intracellular localization, with C13
and C17 being the most potent ones.

The phospholipid transport activity of ABCA3 variants was
comparable to WT ABCA3 after C13 treatment or even higher than
WT levels after C17 treatment. These results indicate that the
mutations investigated here lead to a misfolding defect and do
not additionally impair the phospholipid transport function of the
protein. All tested mutations are localized in extra- or intracellular
loops of the protein but not directly in the NBDs (Fig. 1). Therefore,

Figure 6. Corrector treatment increases transport of TopFluor-labeled PC into ABCA3-HA positive vesicles. After treatment with 10 mM C13 or C17 for 24 h, cells were
incubated with liposomes containing TopFluor-conjugated phosphatidylcholine (TopF-PC) and treated with correctors for another 24 h. After fixation, cells were
stained for ABCA3-HA and (A) the fluorescence intensity in all analyzed ABCA3-HA positive (ABCA3þ) vesicles, (B) the fluorescence intensity in only TopF-PC-filled
vesicles, (C) the portion of TopF-PC-filled vesicles and (D) the volume of ABCA3-HA positive vesicles were measured using Fiji (Image J). (E) Representative pictures
of the experiment, see also Supplementary Material Fig. S9. Scale bar represents 10 mm. Pseudo colors were used to stay consistent with former experiments. Three
independent experiments were performed in total. Results are means þ S.E.M. *p < 0.05; **p < 0.01; ***p < 0.001; ****p<0.0001. nt: no treatment.
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it is likely that the NBDs, i.e. the ATP-hydrolyzing domains, are
not directly affected by the mutations. The correctors also had an
impact on WT ABCA3-HA and increased the amount of ABCA3-
HA protein, the amount of TopF-PC per vesicle and the volume of
ABCA3-HA positive vesicles. This suggests that a certain portion
of WT ABCA3 is also degraded, comparable to CFTR where about
70% of newly synthesized protein is degraded due to high quality
control (37). The correctors probably increase the availability of
WT ABCA3-HA thus increasing TopF-PC transport into ABCA3-HA
positive vesicles.

It is important to note that correction of Q215K ABCA3-HA
was not as effective as that of the other mutant proteins. Only a
small portion of the cells was susceptible to correction, resulting
in fewer vesicles in fewer cells analyzed. Since only a portion of
protein was corrected, the lipid transport function is lower than
in WT ABCA3-HA expressing cells. In this case, an additional
treatment with potentiators might be beneficial to restore
ABCA3 function further like shown for CFTR mutations (38). C13
and C17 were also shown to rescue ATP8B1, a member of the
P-type cation transport ATPase family, lacking homology to
CFTR. These finding suggest a more general molecular mecha-
nism of action of these compounds, probably by modulating the
proteostasis machinery.

Class I correctors that stabilize interactions between
NBD1 and intracellular loops 1 and 4 of CFTR (C18, VX-809) (19)
did not show any correction for the tested ABCA3 mutations.
Unfortunately, VX-809 (lumacaftor), which is an approved drug
for CF, showed no effect on ABCA3 mutations tested. This might
be due to its optimization for CFTR (34,39–41). However, VX-809
was shown to correct other proteins like mutant ABCA4, but
mutations were located in the NBD1 of the protein that shows
high similarity to CFTR (42). Interestingly, a combination of
classes I and II correctors that additively enhanced efficacy of
correction in CFTR (19) did not enhance the efficacy of ABCA3
correction.

We explored a range of chemical chaperones, previously
shown to correct other misfolding defective ABC transporters
(29). Chemical chaperones can be divided into two subclasses,
osmolytes and hydrophobic chaperones. Osmolytes include
DMSO, TMAO and glycerol. They sequester water molecules and
thereby leave a hydrophobic environment around the protein,
favoring its folded state to decrease exposure of the hydrophilic
backbone to the hydrophobic surroundings (43). We show that
only TMAO was able to restore processing of the mutant pro-
teins and their intracellular localization. TMAO was only effec-
tive at 200 mM, a concentration that precludes its use in vivo or
in clinical studies (44). Hydrophobic chaperones like PBA and
SAHA regulate transcription of proteins that are involved in
different folding processes, like heat-shock proteins (45,46).
They were shown to be less toxic than osmolytes (47), but
unfortunately were not able to correct ABCA3 processing or traf-
ficking. In contrast, they led to a heavy intracellular accumula-
tion of ABCA3-HA protein. They act as histone deacetylase
inhibitors, which were shown to transcriptionally activate
Cytomegalovirus (CMV) promoters (48). It is likely that the CMV
promoter, which controls ABCA3-HA expression in the designed
vector, was stimulated by PBA or SAHA treatment, thereby
increasing the expression of mutated misfolded ABCA3-HA that
accumulates in the cell.

In this study, we used the A549 cell model stably expressing
clinically relevant mutations. A potential limitation of such
an approach may be that the impact of patient-specific other
genetic or environmental influences (49) cannot readily be
assessed. The corrector response in patients may be difficult to
predict. Corrector activity was shown to also be influenced by
cell background (50). In future studies, this can be overcome by
the use of patient-specific primary cell cultures or induced plu-
ripotent stem (iPS) cells.

As ABCA3 mutations are all rare and without mutational hot
spots in the ABCA3 gene, patient populations are too small to

Figure 7. Intracellular trafficking pathways of wild-type, mutant and corrected ABCA3. Left – Wild-type ABCA3. After its synthesis and translocation to the ER, properly
folded ABCA3 is routed via the golgi apparatus (GA) through post-golgi compartments like sorting vesicles, multivesicular bodies (MVB) and composite bodies, where
N-terminal processing of the 190 kDa protein to a 170 kDa form takes place, to the limiting membrane of lamellar bodies (LB). When the content of LBs is released via
regulated exocytosis, ABCA3 stays in the plasma membrane and is recycled or degraded in lysosomes. EE: early endosome. Middle – mutant ABCA3. ABCA3 mutations
like Q215K and M760R lead to misfolded protein that is unable to escape the ER and is targeted for degradation in the proteasome. For mutations A1046E, K1388N, and
G1421R, a small portion of the ABCA3 protein can escape the ER, undergoes regular trafficking and processing, and is located at the limiting membrane of LBs, which
are smaller and fewer than in wild-type cells. Right. Corrected mutant ABCA3. Low temperature, chemical chaperone TMAO, and correctors C13 and C17 correct the mis-
folding defect of mutant ABCA3 (except for M760R, gray) and restore trafficking, processing, and morphological features of LBs. Correctors bind directly to the protein,
whereas TMAO acts as an osmolyte and low temperature might slow down degradation of the mutant protein. Mutations that could be corrected completely are boxed;
dashed lines indicate partial correction of Q215K ABCA3.
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conduct clinical trials on individual mutations. Thus, in vitro
identification of groups of mutations that can be targeted by the
same modulator is highly warranted. In this regard the FDA just
recently announced, that ‘in vitro assay data could potentially
be used in place of additional small clinical trials when seeking
to expand [treatments that target specific mutations] to other
population subsets’, referring to ivacaftor, a CFTR potentiator
(51). The next steps toward clinical trials comprise chemical
optimization of the correctors identified to enhance their specif-
icity to ABCA3 and lower potential toxicity. Furthermore, libra-
ries of compounds should be screened for other possible
correctors and experiments should be performed in patient-
derived cells or iPS cells.

The results presented here show that misfolding mutations
in ABCA3 can be corrected in vitro. This is a proof of principle
and a first step toward the development of pharmacological
therapies for diseases caused by ABCA3 misfolding, for which
currently no treatment is available.

Materials and Methods
Chemical chaperones and correctors

Correctors C2, C4, C13, C14, C17 and C18 were obtained from
Cystic Fibrosis Foundation Therapeutics (Bethesda, Maryland,
USA). VX-809 was purchased from Sellekchem (Munich,
Germany). Supplementary Material, Table S1 shows their full
chemical names. PBA, TMAO, DMSO and SAHA were purchased
from Sigma Aldrich (Taufkirchen, Germany). Glycerol was
obtained from Merck Millipore (Darmstadt, Germany).

Cell culture

A549 cells were obtained from the German Collection of
Microorganisms (DSMZ, Braunschweig, Germany) and main-
tained in Roswell Park Memorial Institute (RPMI) 1640 medium
(Life technologies, Darmstadt, Germany) supplemented with
10% fetal bovine serum (FBS, Sigma) at 37!C and 5% CO2.

Plasmids

A pT2/HB transposon vector (Addgene, Cambridge; plasmid#26557)
was generated, containing hABCA3 cDNA (NM_001089) with corre-
sponding CMV promoter elements fused to a C-terminal HA-tag
and puromycin resistance gene, as described before (52). Single
point mutations p.Q215K (c.643C>A), p.M760R (c.2279T>G),
p.A1046E (c.3137C>A), p.K1388N (c.4164G>C) and p.G1421R
(c.4261G>A) were introduced into the vector using the Q5VR site-
directed mutagenesis kit (NEB, Massachusetts, USA). Primer
sequences are given in the Supplementary Materials and Methods
section.

Transfection and generation of stable cell clones

Transfection of A549 cells according to the sleeping beauty
transposon system (53) and generation of stable cell clones were
performed as described earlier (52).

Protein isolation and western blotting

A549 cells were lysed in radioimmunoprecipitation assay buffer
[0.15 M sodium chloride, 1% Triton-X 100, 0.5% sodium deoxy-
cholate, 0.1% sodium dodecylsulfate, 5 mM ethylene diamine

tetraacetic acid (EDTA), 50 mM Tris (pH 8)] (all from Sigma,
except EDTA from GE Healthcare, Buckinghamshire, UK, Tris
from Merck Millipore), supplemented with complete protease
inhibitor (Roche, Mannheim, Germany). Protein concentrations
were determined using the Pierce BCA protein assay (Thermo
Fisher Scientific, Waltham, Massachusetts, USA). 15 or 20 mg of
total protein were separated on NuPage Mini 3–8% Tris-Acetate
gels (Invitrogen, Waltham, Massachusetts, USA) and subse-
quently transferred to a polyvinylidenfluorid membrane (Merck
Millipore). The membrane was probed with rat anti-HA mono-
clonal antibody (Roche) followed by incubation with rabbit anti-
rat IgG (Hþ L) HRP secondary antibody (Southern Biotechs,
Birmingham, Alabama, USA). b-Actin (Santa Cruz, Dallas, Texas,
USA) probing served as a loading control. Detection was per-
formed using SuperSignalVR West Femto Maximum Sensitivity
Substrate (Thermo Fisher Scientific). Densitometric analysis
was performed using Image J software.

Immunofluorescence staining and confocal microscopy

A549 cells expressing ABCA3-HA were fixed with 4% paraformal-
dehyde (Merck Millipore) and permeabilized with 0.5% TritonX-
100 (Sigma). To block unspecific binding sites, cells were
incubated in blocking solution [3% Bovine serum albumin
(BSA, Sigma) and 10% FBS in PBS]. To detect ABCA3-HA protein
localization, cells were incubated with Anti-HA antibody (Sigma)
and Anti-CD63 antibody (Abcam, Cambridge, UK) and according
AlexaFluor secondary antibodies (Life technologies). Nuclei were
stained with 0.1 mg/ml 40, 6-diamidin-2-phenylindol (DAPI, Life
technologies). Subsequently, cells were covered in mounting
medium [90% glycerol in PBS and 2% 1, 4-diazabicyclo[2.2.2]oc-
tane (DABCO, Merck Millipore)]. Images were obtained using a
ZEISS LSM 800 with ZEN 2 blue edition software.

Viability assay

Cells were treated with different concentrations of correctors in
phenol red free RPMI mediumþ10% FBS. Cell viability was
assessed by quantification of the specific cleavage of yellow
XTT tetrazolium salt (Sigma) to orange formazan in the pres-
ence of phenazine methosulfate (PMS, Sigma). Absorbance at
450 nm was measured using a spectrophotometer.

TopFluor-PC transport quantification

Surfactant-like liposomes were prepared and transport of TopF-
PC into HA-positive vesicles was quantified as described before
(32). In short, A549 cells expressing WT or mutant ABCA3-HA
were pre-treated with correctors for 24 h. After labeling the cells
with TopF-PC containing liposomes (1:20 diluted in OptiMEM,
Thermo Fisher Scientific), cells were incubated with medium
containing correctors for another 24 h. To stop the lipid uptake,
cells were covered with 5% BSA (in PBS) for 30 min at 4!C for
removal of labeled lipids adherent to the cell membrane. Cells
were fixed, permeabilized with saponine (Carl Roth GmBH,
Karlsruhe, Germany) and stained for HA-tag. Microscopy, fluo-
rescence analysis and acquisition of vesicle volume and per-
centage of filled vesicles was performed as described previously
(32) using a confocal laser-scanning microscope (LSM 800, ZEISS
with ZEN 2 blue edition software) and the modified Fiji (Image J)
plugin “Particle_in_Cell-3D” (54).
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Statistical analysis

Comparison of two groups was performed using t-test.
Comparisons of multiple groups were done using one-way anal-
ysis of variance with Dunnet’s post hoc test to compare to the
untreated or vehicle-treated control.

Results were plotted as meansþS.E.M. P-values < 0.05 were
considered statistically significant. All tests were performed
using GraphPad Prism 5.0 (GraphPad Software, La Jolla, USA).

Supplementary Material
Supplementary Material is available at HMG online.
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Functional rescue of misfolding ABCA3 mutations by small molecular 

correctors. Kinting et al 2018. 
 

Supplements 
Supplemental material and methods 

Primer 

Site-directed mutagenesis was performed with the following primers (mutated 

nucleotides are underlined): 
Q215K-for:    5’-CCTGGCCGTGAAGCATGCTGT-3’ 

Q215K-rev:   5’-AAGCCTTCCCGGATGTACC-3’ 

 

M760R-for:     5’-GGCTATCACAGGACGCTGGTG-3’ 

M760R-rev:    5’-GGCACCGTATTTCTGCTTG-3’ 

 

A1046E-for:   5’-AACAACCAGGAGTACCACTCTC-3’ 

A1046E-rev:  5’- GAACAAGGCGTTGACGAC-3’ 

 

K1388N-for:   5’-AGCTCTCCAACGTGTACGAGC-3’ 

K1388N-rev:  5’-CCTTGATAATCAGAGGTGTG-3’ 

 

G1421R-for:   5’-CAATGGAGCCAGGAAGACCACGAC-3’ 

G1421R-rev:   5’-AAGCCCAGCAGGCCGAAG -3’ 

 

Sanger sequencing verified all resulting vector constructs. The sequence analysis and 

alignment was performed using Clone Manager Suite (Version 6.00).  
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Supplemental figures and tables 

 

 

 
 
Figure S1: M760R ABCA3-HA processing defect is not temperature-sensitive. A549 

cells stably expressing M760R ABCA3-HA were cultured at either 26°C or 37°C for 48 

hours and protein pattern was analyzed by Western blot.  
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Figure S2: Chemical chaperone TMAO restores processing of ABCA3-HA mutants. 

A549 cells stably expressing ABCA3-HA WT or mutations were treated with two 

different concentrations of chemical chaperones for 48 hours and ABCA3-HA protein 

pattern was analyzed by Western blot (see fig. 3). Densitometric quantification of protein 

amount in each band (190 kDa and 170 kDa) was performed using Image J.  

A) wild type ABCA3-HA 

B) Q215K ABCA3-HA 

C) M760R ABCA3-HA 
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D) A1046E ABCA3-HA 

E) K1388N ABCA3-HA 

F) G1421R ABCA3-HA 

Results are means + S.E.M. of three independent experiments. */# p<0.05 **/##p<0.01 

***/###p<0.001 in regard to the DMSO vehicle control with * regarding the 190 kDa and 

# regarding the 170 kDa form. nt: no treatment. 
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Figure S3: Chemical chaperone TMAO restores subcellular localization of ABCA3-

HA mutants. A549 cells stably expressing ABCA3-HA WT or mutations were treated 

with the higher concentration of chemical chaperones from fig. 3 for 48 hours and stained 

for ABCA3-HA and lysosomal marker CD63. nt: no treatment; scale bar represents 10 

µm. 
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Figure S4: CFTR correctors restore processing of ABCA3-HA mutants. A549 cells 

stably expressing ABCA3-HA WT or mutations were treated with 10 µM of correctors 

for 48 hours and ABCA3-HA protein pattern was analyzed by Western blot (see fig. 5). 

Densitometric quantification of protein amount in each band (190 kDa and 170 kDa) was 

performed using Image J.  

A) wild type 
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B) Q215K ABCA3-HA 

C) M760R ABCA3-HA 

D) A1046E ABCA3-HA 

E) K1388N ABCA3-HA 

F) G1421R ABCA3-HA 

Results are means + S.E.M. of three independent experiments. */# p<0.05 **/##p<0.01 

***/###p<0.001 in regard to the DMSO vehicle control with * regarding the 190 kDa and 

# regarding the 170 kDa form. nt: no treatment. 
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Figure S5: Combination of correctors from different classes has no additive effects. 

A549 cells expressing Q215K ABCA3-HA were treated with combinations of C13 or 

C17 with either VX-809 or C18 for 48 hours and ABCA3-HA protein pattern was 

analyzed by Western blot. 
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Figure S6: Effectiveness of different corrector concentrations. A549 cells stably 

expressing WT or mutated ABCA3-HA were treated with increasing concentrations of 

C13 and C17. After 48 hours cells were harvested, lysed, and proteins were separated for 

Western blot. For each condition the 170/190 kDa ratio was calculated after 

densitometric analysis using ImageJ. 
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Figure S7: Effects of C13 and C17 on cell viability. 

A549 cells stably expressing WT or mutated ABCA3-HA were treated with increasing 

concentrations of C13, C17 or the vehicle DMSO. After 48 hours, cell viability was 

measured using XTT assay. The arrow indicates the concentration used in all experiments 

(10 µM). Results are means + S.E.M. of three independent experiments. * p<0.05, 

**p<0.01, ***p<0.001. 

  



  Results 

 43 

 
 

Figure S8: Ortho-vanadate inhibits ABCA3-dependent TopF-PC transport into 

ABCA3-HA positive vesicles. WT ABCA3-HA expressing A549 cells were treated with 

TopF-PC (red) containing liposomes for 24 hours and cultured with or without 12.5 mM 

ortho-vanadate for 22 h. ABCA3-HA proteins (green) were stained by 

immunofluorescence. Scale bar represents 10 µm. 
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Figure S9: Corrector treatment increases transport of TopF-PC into ABCA3-HA 

positive vesicles. A549 cells stably expressing ABCA3-HA WT or mutations were 

treated with 10 µM of correctors C13 or C17 and labeled with TopF-PC. After 24 hours 

cells were fixed and stained for ABCA3-HA. Scale bar represents 10 µm. nt: no 

treatment.  
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Supplemental table 1: Utilized small molecular correctors from CF foundation with 

full chemical names. Structures of the compounds were adopted from the CF foundation 

website (https://www.cff.org/Research/Researcher-Resources/Tools-and-Resources/ 

CFTR-Chemical-Compound-Program/). 

ID Chemical name Chemical structure 

C2 2-{1-[4-(4-Chloro-benzensulfonyl)-piperazin-1-yl]-
ethyl}-4-piperidin-1-yl-quinazoline 

 

C4 N-[2-(5-Chloro-2-methoxy-phenylamino)-4'-methyl-
[4,5']bithiazolyl-2'-yl]-benzamide 

 

C13 N-(2-(3-acetylphenylamino)-4'-methyl-4,5'-
bithiazol-2'-yl)benzamide 

 

C14 N-(2'-(2-methoxyphenylamino)-4-methyl-5,5'-
bithiazol-2-yl)benzamide 

 

C17 
N-(2-(5-chloro-2-methoxyphenylamino)-4'-methyl-

4,5'-bithiazol-2'-yl)pivalamide 
 

C18 
1-(benzo[d][1,3]dioxol-5-yl)-N-(5-((S)-(2-
chlorophenyl)((R)-3-hydroxypyrrolidin-1-

yl)methyl)thiazol-2-yl)cyclopropanecarboxamide 
 

VX-809 
3-(6-(1-(2,2-difluorobenzo[d][1,3]dioxol-5-

yl)cyclopropanecarboxamido)-3-methylpyridin-2-
yl)benzoic acid 
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Supplemental table 2: Overview of analyzed ABCA3 variants. Allele frequency was obtained 

from ExAC (1). aa, amino acid. 
p.
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3.2 Potentiation of ABCA3 lipid transport function by ivacaftor and 

genistein 
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Pulmonary surfactant is a lipoprotein complex that lines the alveo-
lar spaces and is synthesized, stored and secreted by alveolar type 
II (ATII) cells. Surfactant is crucial for normal breathing, its main 
function is to lower the surface tension at the air-liquid interface 
to prevent end-expiratory collapse of alveolar units.1-4 The storage 
compartments for surfactant are the lysosome-derived lamellar bod-
ies (LBs). Adenosine triphosphate (ATP)-binding cassette subfam-
ily A member 3 (ABCA3), a lipid transporter involved in surfactant 

homoeostasis, is localized at the outer membrane of lamellar bod-
ies.5-8 Like all ABC transporters it is composed of two transmem-
brane domains (TMDs) that form a pore and two nucleotide-binding 
domains (NBDs) that bind and hydrolyse ATP to generate the energy 
to transport surfactant lipids into the lumen of LBs.9,10

Phosphatidylcholine (PC) is the most abundant lipid species in 
human pulmonary surfactant11 and was shown to be transported 
by ABCA3.6 We recently established a functional assay to quantify 
the lipid transport function of ABCA3 by assessing the fluorescence 
intensity of TopFluor-labeled PC (TopF-PC) inside ABCA3-positive 
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ABCA3 is a phospholipid transporter implicated in pulmonary surfactant homoeosta-
sis and localized at the limiting membrane of lamellar bodies, the storage compart-
ment for surfactant in alveolar type II cells. Mutations in ABCA3 display a common 
genetic cause for diseases caused by surfactant deficiency like respiratory distress 
in neonates and interstitial lung disease in children and adults, for which currently no 
causal therapy exists. In this study, we investigated the effects of ivacaftor and gen-
istein, two potentiators of the cystic fibrosis transmembrane conductance regulator 
(CFTR), on ABCA3-specific lipid transport function. Wild-type (WT) and functional 
ABCA3 mutations N568D, F629L, G667R, T1114M and L1580P were stably ex-
pressed in A549 cells. Three-dimensional modelling predicted functional impairment 
for all five mutants that was confirmed by in vitro experiments (all <14% of WT func-
tional activity). Treatment with potentiators rescued the mutants N568D (up to 114% 
of WT), F629L (up to 47% of WT), and G667R (up to 60% of WT), the latter variation 
needing higher concentrations of genistein, showing reduced affinity of the potentia-
tor to the mutant protein. Our results present a first proof that functional ABCA3 
mutations are rescued by CFTR potentiators, making them a potential therapeutical 
option for patients suffering from surfactant deficiency due to ABCA3 mutations.
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vesicles that resemble LBs in A549 cells.12 The overall transport ac-

tivity, expressed as the fluorescence intensity per vesicle in all mea-

sured vesicles is thereby composed of three different parameters: 

the volume of the vesicles, the portion of filled vesicles and the fluo-

rescence intensity in filled vesicles.

Mutations in ABCA3 lead to surfactant deficiency and pulmo-

nary diseases like fatal respiratory distress in newborns or chronic 

interstitial lung disease in children (chILD) and adults.13,14 To date, no 

causal therapies exist to treat patients suffering from lung diseases 

due to ABCA3 mutations. It is therefore a major task to identify 

pharmacological modulators for ABCA3 that would allow to treat 

those diseases.

In cystic fibrosis, a pulmonary disease caused by mutations in 

the ABC transporter cystic fibrosis transmembrane conductance 

regulator (CFTR, ABCC7),15,16 compounds have successfully been 

developed, which partially or completely correct the molecular de-

fect in a mutation-specific manner. Misfolding mutations, like the 

most frequent variation F508del, that lead to impaired processing 

and trafficking through the cell due to ER retention can be targeted 

by so called correctors that increase the delivery of CFTR to the 

cell surface.17-20 Functional mutations, like the third-most frequent 

CFTR variation G551D, that display impaired function but correct 

processing and localization, can be rescued by potentiators.17,20-22 

CFTR potentiators ivacaftor (IVA) and genistein (GEN) lead to an in-

crease in CFTR transport activity at the cell surface by enhancing its 

open probability (P0).

For ABCA3 we showed that a treatment with correctors rescued 

processing, trafficking, localization and function of misfolding muta-

tions.23 Since a lot of ABCA3 mutations are classified as functional 

mutations, the main goal of this study was to evaluate the effect 

of potentiators on the lipid transport function of those mutations. 

Therefore we analysed three well-described functional ABCA3 mu-

tants, namely N568D in NBD1, T1114M in TMD2 and L1580P in 

NBD2.24-26 We additionally analysed F629L and G667R variations, 

which were homologous to positions F508 and G550 in CFTR re-

spectively (Figure 1A and B). G667R is located in the NBD1 con-

served ABC signature motif, similarly affected in G551D in CFTR. It 

was selected because a rare variant has been described in humans 

in this position.27

All five mutants showed severely impaired lipid transport func-

tion that was rescued by treatment with the CFTR potentiators 

ivacaftor (IVA) and genistein (GEN) in mutants N568D, F629L and 

G667R. The results presented here might pave the way for muta-

tion-group specific treatment of pulmonary diseases caused by 

ABCA3 mutations.
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Structural models of wild-type and mutant ABCA3 were build using 

phyre2 protein modelling webserver.28 The model of ABCA3 full-

length in its unbound conformation was build based on the 4.1Å 

electron microscopy structure of human ABCA1 (pdbid: 5XJY).29 

Solely the NBD1-2 and the TMD1-2 were kept in the final model. 

These regions have an identity of 46% with the template, ensur-

ing an accurate prediction of ABCA3 structure. The model of the 

NBD1-NBD2-ATP was modelled based on the 3.25Å crystallography 

structure of bacterial MacB dimer bound to ATP (pdbid: 5LJ7).30 The 

NBD1 and NBD2 of ABCA3 have identities of 30% and 22% respec-

tively to the template NBD domain of MacB. Mutations in the TMD 

(T1114M) or of the TMD/NBD interface (F629L) were modelled on 

full-length ABCA3 while mutations close to the ATP binding sites 

(N568D, G667R and L1580P) were modelled on the NBD1-NBD2-

ATP assembly.

ƑĺƑՊ|Պ";t�;m1;�-m-Ѵ�vbv

Protein sequence alignment between ABCA3 and CFTR was per-

formed with the UniProt sequence alignment online tool.31 F629 

and G668 were identified to correspond to F508 and G551 in CFTR 

(Figure 1B). Variations F629L and G667R were identified using the 

Exome Aggregation Consortium (ExAc) Browser,27 with G667 corre-

sponding to G550 in CFTR since no mutation was listed for position 

G668 in ABCA3.

Conservation analysis was performed with ConSurf Server.32 

Initial sequence selection was performed on the Uniref90 database 

using an E-value threshold of 0.0001. Within this pool, the best 137 

ABCA3 sequences were manually selected. Final alignment was per-

formed with the MAFFT-L-INS-i method and scoring was calculated 

using the Bayesian method.

ƑĺƒՊ|Պ�o|;m|b-|ouv

Ivacaftor (VX-770, IVA) was purchased from Sellekchem (Munich, 

Germany). Genistein (GEN) was purchased from Sigma Aldrich 

(Taufkirchen, Germany). Both substances were dissolved in dimethyl 

sulphoxide (DMSO, Sigma).

ƑĺƓՊ|Պ�;ѴѴ�1�Ѵ|�u;

A549 cells were obtained from the German Collection of 

Microorganisms and Cell Cultures (DSMZ, Braunschweig, Germany) 

and cultured in RPMI 1640 medium (Life technologies, Darmstadt, 

Germany) supplemented with 10% foetal bovine serum (FBS, Sigma) 

at 37°C and 5% CO2.

ƑĺƔՊ|Պ�Ѵ-vlb7v

A pT2/HB transposon vector (Addgene, Cambridge, plasmid#26557) 

was generated, containing hABCA3 cDNA (NM_001089) with cor-

responding CMV promoter elements fused to a C-terminal HA-

tag and puromycin resistance gene, as described before.33 Single 

point mutations p.N568D (c.1702 A > G), p.F629L (c.1887 C > G), 

p.G667R (c.1999 G > A), p.T1114M (c.3341 C > T), and p.L1580P 

(c.4739 T > C) were introduced into the vector using the Q5® 
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 ��&!� �ƐՊLocalization and molecular consequences of five functional ABCA3 mutations. A, Two-dimensional (2D) topology model 
of ABCA3 with marked positions of the five analysed functional mutations. Scissors mark cleavage site for processing of the 190 to 
170 kDa form. EL: external loop, A: Walker A motif, B: Walker B motif, C: C motif. B, Sequence alignment between ABCA3 and cystic 
fibrosis transmembrane conductance regulator (CFTR) to identify amino acids homologous to F508 and G551 in CFTR. Variations F629L 
and G667R were identified using the Exome Aggregation Consortium (ExAc) Browser,27 with G667 corresponding to G550 in CFTR since no 
mutation was listed for position G668 in ABCA3. A solid line indicates the conserved ABC signature motif (LSGGQ). C, Full-length 3D model 
of ABCA3 with detailed pictures of location and consequences of the five functional ABCA3 mutations (i) N568D, (ii) F629L, (iii) G667R, 
(iv) T1114M, (v) L1580P. Mutated residues are represented as grey spheres in the full-length model. In the detailed pictures, the side chains 
of the wild-type residues are represented in full sticks and the substituting residues are shown in transparent grey sticks at each mutated 
position. Other residues of interest and ATP are also represented in stick when required; likely hydrogen bonds of interest are represented 
as blue dotted lines. ATP: adenosine triphosphate; NBD: nucleotide-binding site; TMD: transmembrane domain
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site-directed mutagenesis kit (NEB, Massachusetts, United States). 
Primer sequences are given in the Supporting Information Materials 
and Methods Section.

ƑĺѵՊ|Պ$u-mv=;1|bom�-m7�];m;u-|bom�o=�v|-0Ѵ;�
1;ѴѴ�1Ѵom;v

Transfection of A549 cells using the sleeping beauty transposon 
system34 and generation of stable cell clones were performed as de-
scribed before.33

ƑĺƕՊ|Պ�uo|;bm�bvoѴ-|bom�-m7�);v|;um�0Ѵo||bm]

A549 cells were lysed in radioimmunoprecipitation assay (RIPA) 
buffer [0.15 mol/L sodium chloride, 1% Triton-X 100, 0.5% so-
dium deoxycholate, 0.1% sodium dodecylsulfate, 5 mmol/L ethyl-
ene diamine tetraacetic acid (EDTA), 50 mmol/L Tris (pH 8)] (Sigma, 
EDTA from GE Healthcare, Buckinghamshire, UK, Tris from Merck 
Millipore, Darmstadt, Germany), supplemented with complete pro-
tease inhibitor (Roche, Mannheim, Germany). Protein concentrations 
were measured using the Pierce BCA protein assay (Thermo Fisher 
Scientific, Waltham, Massachusetts, USA) and 15 µg protein was sep-
arated on NuPage Mini 3-8% Tris-Acetate gels (Invitrogen, Waltham, 
Massachusetts, USA) and subsequently transferred to a polyvi-
nylidene fluoride (PVDF) membrane (Merck Millipore). For probing 
of ABCA3-HA, rat anti-HA monoclonal antibody (Roche) and rab-
bit anti-rat IgG (H + L) HRP secondary antibody (Southern Biotechs, 
Birmingham, AL) were used. β-Actin (Santa Cruz, Dallas, TX) probing 
served as a loading control. SuperSignal® West Femto Maximum 
Sensitivity Substrate (Thermo Fisher Scientific) was used for detec-
tion. Densitometric analysis was performed with Image J software.

ƑĺѶՊ|Պ�ll�mo=Ѵ�ou;v1;m1;�v|-bmbm]�-m7�
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For immunofluorescent stainings, cells were seeded in ibiTreat slides 
(ibidi, Martinsried, Germany). Cells were fixed with 4% paraformal-
dehyde (Merck Millipore) and permeabilized with 0.5% TritonX-100 
(Sigma). Cells were incubated with blocking solution [3% bovine 
serum albumin (BSA, Sigma) and 10% FBS in PBS] to block unspe-
cific binding sites. ABCA3-HA protein and CD63 were probed with 
anti-HA (Sigma) and anti-CD63 antibody (abcam, Cambridge, UK), 
and according AlexaFluor secondary antibodies (life technologies). 
��1Ѵ;b��;u;�v|-bm;7�0�� bm1�0-|bom��b|_�ƏĺƐ�]ņlѴ�ƓனķѵŊ7b-lb7bmŊƑŊ
phenylindol (DAPI, life technologies). Subsequently, cells were 
covered in mounting medium [90% glycerin in PBS and 2% 1,4-di-
azabicyclo[2.2.2]octane (DABCO, Sigma)] and images were acquired 
using a ZEISS LSM 800 with ZEN 2 blue edition software.

ƑĺƖՊ|Պ$orѴ�ouŊ���|u-mvrou|�t�-m|b=b1-|bom

Surfactant-like liposomes were prepared and transport of TopFluor-
labeled phosphatidylcholine (TopF-PC) into HA-positive vesicles 

was quantified as described before.12 In short, TopF-PC contain-
ing liposomes (1:20 diluted in OptiMEM, Thermo Fisher Scientific) 
were offered to the cells expressing WT or mutant ABCA3-HA for 
30 minutes at 4°C. After two hours at 37°C, cells were treated with 
potentiators or DMSO as a vehicle control for 24 hours. Then cells 
were covered with 5% BSA (in PBS) for 30 minutes at 4°C for re-
moval of residual labelled lipids adherent to the cell membrane. Cells 
were fixed, permeabilized with saponin (Carl Roth GmBH, Karlsruhe, 
Germany) and stained for HA-tag. Microscopy, fluorescence analysis 
and quantification of vesicle volume and percentage of filled vesicles 
were performed as described previously12 using a confocal laser-
scanning microscope (LSM 800, ZEISS with ZEN 2 blue edition soft-
ware) and the modified Fiji (Image J) plugin “Particle_in_Cell-3D”.35

ƑĺƐƏՊ|Պ"|-|bv|b1-Ѵ�-m-Ѵ�vbv

Data are shown as means ± SEM. Statistical significance among 
means was calculated using one-way ANOVA with Dunnet's post 
hoc test to compare to the WT or DMSO vehicle-treated control. 
P < 0.05 was considered significant.

ƒՊ |Պ!�"&�$"
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Three-dimensional structure modelling was performed and molecu-
lar consequences of all five mutations were consistently predicted 
to impair function of the ABCA3 lipid transport activity (Figure 1). 
These observations are indicated for each mutation below.

The residue N568 is located in the conserved Walker A motif. Its 
side chain is directly involved in the binding of the third phosphate 
group of ATP. The loss of the side chain amine induced by the N568D 
mutation likely prevents this interaction and reduces or completely 
prevents ATP binding to ABCA3 (Figure 1C,i).

Residue F629, homologous to F508 in CFTR (Figure 1B), is very 
well conserved and is located in the NBD1 at a hydrophobic pocket, 
making interface with the transverse helices of TMD1. Substitution 
of a phenylalanine by a leucine prevents some hydrophobic interac-
tions and may hinder the allosteric transmission of conformational 
changes to the TMD following ATP hydrolysis (Figure 1C,ii).

G667R is located in the conserved ABC signature motif (LSGGQ) 
(Figure 1B) implicated in ATP binding at the NDB1/NBD2 interface. 
In the ATP-bound form G667 is in close proximity to phosphate 
groups 2 and 3 of the ATP molecule. A substitution to an arginine 
adds a large side chain that cannot be accommodated and prevents 
ATP binding (Figure 1C,iii).

Residue T1114 is located in the second helix of the TMD2, far 
from the NBDs (Figure 1C,iv). It likely forms a hydrogen bond with 
the conserved residue Q929 in the loop following the first trans-
verse helix of the TMD2. Its mutation to a methionine precludes this 
hydrogen bonding and might prevent conformational changes of the 
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TMD2 happening upon ATP hydrolysis in the NBDs and thereby re-
duce the transport activity of the protein.

Residue L1580 is located in a highly conserved helix following 
the H-loop. Its mutation to a proline, incompatible with helical sec-
ondary structure, has likely a strong impact on the conformation of 
this region and of the close H-loop that interacts with ATP and the 
NBD1 (Figure 1C,v).

In summary, based on these data from 3D modelling, we ex-
pected functional impairment of all five mutants, making them 
possible targets for treatment with potentiators to rescue the func-
tional defect.

ƒĺƑՊ|Պ�m1|bom-Ѵ�����ƒ�l�|-m|v�7bvrѴ-��1ouu;1|�
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WT ABCA3-HA and all five mutant proteins were stably expressed 
in A549 cells and showed vesicular structures that resemble LBs 
and co-localized with the lysosomal marker CD63, demonstrating 

their correct protein localization (Figure 2A). However, the vesicles 
formed by all mutant proteins were significantly smaller than those 
in WT-ABCA3 expressing cells (Figure 2B).

N-terminal cleavage of ABCA3 in post-Golgi compartments 
resulting in the presence of two products of about 190 and 
170 kDa,36,37 serves as a marker for correct protein traffick-
ing.23,37,38 All five mutant proteins showed both processing products 
in Western blots (Figure 2C) with a ratio of 170 to 190 kDa form not 
significantly different from the WT protein, indicating correct pro-
cessing and trafficking through the cell (Figure 2D).

Despite normal processing and localization, all five mutants ex-
hibited a strong decrease in lipid transport activity compared to WT 
as predicted from the 3D model (Figure 3A and E, no treatment). 
Volume of the analysed vesicles, the portion of filled vesicles and the 
fluorescence intensity in filled vesicles were diminished for all mu-
tants compared to WT, resulting in a transport activity of 14% of WT 
in N568D and T1114M mutants, 12% activity of WT in F629L and 
G667R mutants and 10% of WT lipid transport activity in L1580P 
mutant (Figure 3A-D, no treatment).

 ��&!� �ƑՊSubcellular localization and protein processing is not affected by functional mutations. A, Subcellular localization of ABCA3 
wild-type (WT) and mutants shown by immunofluorescence and confocal microscopy. A549 cells stably expressing ABCA3 WT or mutants 
were fixed, permeabilized and stained for ABCA3-HA and lysosomal marker CD63. All proteins are localized in vesicular structures 
resembling lamellar bodies, co-localizing with CD63. Scale bar represents 10 µm. B, Volume of ABCA3-HA-positive vesicles in A549 cells 
stably expressing WT and mutant protein. All analysed mutations led to significantly smaller vesicles compared to WT ABCA3 in A549 cells. 
Results are taken from the functional assay shown in Fig. 3D and are given as means ± SEM of three independent experiments. *P < 0.05 
**P < 0.01 ***P < 0.001 compared to WT. C, Western blot analysis of WT and mutant ABCA3. Molecular masses are indicated on the left, 
β-actin served as a loading control. D, Quantification of the Western blot shown in (C). Densitometric quantification of protein amount was 
performed with ImageJ. The ratio of 170/190 kDa processing form serves as a marker for correct processing. Mutants do not show different 
ratios from WT, indicating correct trafficking and processing in the cell. Results are means ± SEM of five independent Western blots
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 ��&!� �ƒՊTransport of TopF-labeled phosphatidylcholine (TopF-PC) is increased by potentiators ivacaftor and genistein. A549 cells 
expressing wild-type (WT) or mutant ABCA3 were incubated with liposomes containing TopF-PC and treated with potentiators for 24 h. 
After fixation and staining for ABCA3-HA, confocal microscopy pictures were obtained to measure: A, TopF-PC fluorescence intensity per 
vesicles in all analysed ABCA3-HA-positive vesicles relative to WT nt, B, TopF-PC fluorescence intensity in only TopF-PC-filled ABCA3-
HA-positive vesicles relative to WT nt, C, Portion of TopF-PC-filled vesicles and D, Volume of all analysed ABCA3-HA-positive vesicles. 
E, Representative pictures of the experiment. Scale bar represents 10 µm. Pseudo colours were used to stay consistent with former 
experiments. Results are means ± SEM of three independent experiments. *P < 0.05 **P < 0.01 compared to dimethyl sulphoxide (DMSO) 
vehicle controls. nt: no treatment; GEN: genistein, IVA: ivacaftor; TopF-PC: TopFluor-labeled phosphatidylcholine
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In WT ABCA3-HA expressing cells, treatment with 1 µmol/L iva-

caftor or 10 µmol/L genistein led to a 2.7- and twofold increase of 

lipid transport activity, respectively, resulting from an increase in the 

portion of filled vesicles and the fluorescence intensity in filled vesi-

cles (Figure 3).

In N568D expressing cells, potentiator treatment led to a drastic 

elevation of lipid transport activity from 14% of WT activity to 114% 

in presence of ivacaftor and 90% with genistein, resulting from an 

increase in vesicle volume, portion of filled vesicles and fluorescence 

intensity in filled vesicles to a WT level (Figure 3).

Lipid transport activity of F629L mutant was increased to 47% 

of WT activity by ivacaftor and 46% by genistein treatment, due 

to a significant increase of the portion of filled vesicles (Figure 3A 

and C).

For all other mutant proteins, a slight yet not significant increase 

of lipid transport activity upon potentiator treatment was detected.

Potentiators did not influence the processing of ABCA3 as-

sessed by Western blotting (Figure S1). To further address speci-

ficity of their effects, potentiators were also tested in A549 cells 

expressing misfolding mutants Q215K and K1388N. Neither 

their processing and thus nor their function was affected (Figure 

S2), confirming exclusive effects of potentiators on functional 

mutations.

To further rule out a potential influence of the lower protein ex-

pression of N568D ABCA3-HA on the results obtained, we addition-

ally tested another cell clone (N568D-2) with a higher ABCA3-HA 

expression than in WT ABCA3-HA cells and confirmed the results 

reported above (Figure S3).
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Genistein was shown to bind to the LSGGQ signature motif 

in CFTR.39-41 Since G667R is located in this motif in ABCA3 

(Figure 1B), we suggested a decreased affinity of genistein to the 

mutant protein that might be overcome by higher concentrations 

of the potentiator.

About 50 µmol/L of genistein led to a 2.8-fold increase of lipid 

transport function in WT-ABCA3 expressing cells resulting from an 

increase in fluorescence intensity in filled vesicles and the portion of 

filled vesicles, whereas 100  µmol/L genistein did not increase the 

lipid transport (Figure 4A and B).

In G667R expressing cells, 100 µmol/L genistein led to a signif-

icant increase in lipid transport to 60% of WT function. Assessing 

filled vesicles only, this concentration increased lipid transport to 

a WT level (Figure 4A and B) and also the portion of filled vesi-

cles and the volume were slightly also not significantly increased 

(Figure 4C and B).

In L1580P ABCA3 expressing cells, no significant effect of 

genistein at increased concentrations was detected.

In our experimental setup, concentrations of 5 µmol/L ivacaftor 

reduced the viability of the cells (data not shown), so no analysis 

of higher concentrations of ivacaftor on lipid transport in G667R 

ABCA3 expressing cells was possible. Viability assays showed the 

toxicity of ivacaftor for the cells (Figure S4).

ƓՊ |Պ	�"�&""���

Functional impairment of ABCA3 due to mutations may lead to fatal 

or chronic disturbances of ATII cells and surfactant homoeostasis re-

sulting in pulmonary diseases like neonatal respiratory distress syn-

drome and chronic interstitial lung disease. In the present study, we 

showed impaired phospholipid transport function of ABCA3 due to 

distinct disease causing functional mutations that can be rescued by 

the CFTR potentiators ivacaftor and genistein for mutations located 

in the NBD1 of the protein.

The functional defect displayed by mutants N568D and F629L 

was successfully rescued by 1 µmol/L ivacaftor or 10 µmol/L 

genistein. For mutant G667R, 100 µmol/L genistein was sufficient 

to yield a significant increase in lipid transport function. Like de-

scribed before, mutation N568D led to a functional impairment of 

the ABCA3 protein with only 14% of WT transport function despite 

correct processing and localization.25 Furthermore, the two mutants 

F629L and G667R also showed functional impairment with 12% of 

WT activity but normal processing and localization and were there-

fore also classified as functional mutations. Ivacaftor and genistein 

treatment elevated transport activity of WT ABCA3 by 2.7- and 

twofold, of N568D mutant up to 114% and 90% of WT function, 

respectively, and 46% and 47% for F629L mutant.

Since genistein is presumably binding in the LSGGQ motif of 

NBD1,41 where the mutation G667R is located, the affinity of the 

potentiator to the mutant protein is likely to be lowered like shown 

for G551D in CFTR.39,40 For WT ABCA3, genistein treatment exerted 

potentiating effects up to a concentration of 50 µmol/L and inhibi-

tory effects at higher concentrations resulting in a bell-shaped dose-

response relation like also shown for CFTR.39,42,43 This is explained 

by the assumption of two binding sites for genistein, one high-affin-

ity site activating the protein and a second low affinity site exerting 

an inhibitory effect.41,43 In G667R ABCA3 expressing cells, on the 

other hand, only 100 µmol/L genistein yielded a significant increase 

in lipid transport activity to a level of 60% of WT function. Therefore 

the dose-response curve was shifted to the right compared to WT 

ABCA3, indeed indicating a reduced binding of genistein. Lowered 

affinity of potentiators to CFTR protein harbouring the G551D mu-

tation was also shown for various other potentiator compounds in-

cluding ivacaftor.22,44,45 In our cell model, higher concentrations of 

ivacaftor reduced the viability of the cells and we could not evaluate 

their effects on ABCA3 activity. In the TopF-PC transport assay, a 

concentration of 5 µmol/L ivacaftor impaired cell viability, imped-

ing evaluation of lipid transport. In such experiments, the cells are 
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incubated at 4°C and in serum-reduced medium, so that treatment 
with ivacaftor probably adds an additional stressor to the cells. Cell 
type-specific toxicity may be related to differences in cellular uptake 
of the drug.46

Impaired function of T1114M and L1580P mutants was not 
rescued by potentiator treatment. We recorded a lipid transport 
function of 14% and 10% of WT function for T1114M and L1580P 
as reported before.25,26 For mutation T1114M, Matsumura et al as-
sessed a rather moderate impairment of 52% of WT ATP hydrolysis 
function but showed a decreased lipid transport function not differ-
ent from untransfected cells.26

The residue T1114 is located in the TMD, where it likely ensures 
the transmission of conformational changes triggered by NBD di-
merization to the TMDs and the extracellular domain, required to 

translocate the substrate. Mutation of this threonine to methionine 
likely decouples NBD dimerization and substrate translocation, ex-
plaining the lack of effect induced by potentiators that stabilize the 
NBD dimer formation to enhance transport function and activity. 
This is further supported by the fact that ivacaftor was also ineffec-
tive to rescue the L927P CFTR mutant (T1114 is homologous to L935 
in CFTR), which is also located in the eighth transmembrane helix 
and is implicated in conformational changes necessary to open the 
channel.47,48 Furthermore, ivacaftor did not overcome impaired PC 
secretion activity in a TMD mutant of ABCB4.49

Residue L1580 is not directly located in the ATP binding site, 
however its mutation to a proline most likely breaks the helix, in 
which it is located. This will affect the upstream H-loop, which is 
also implicated in NBD dimerization and ATP binding. In addition to 

 ��&!� �ƓՊG667R ABCA3 mutant 
is rescued by increased concentrations 
of genistein. A549 cells expressing 
wild-type (WT) or mutant ABCA3 were 
incubated with liposomes containing 
TopFluor-conjugated PC (TopF-PC) 
and treated with 50 or 100 μmol/L 
genistein (GEN) for 24 h. After fixation 
and staining for ABCA3-HA, confocal 
microscopy pictures were obtained 
to measure: A, TopF-PC fluorescence 
intensity per vesicles in all analysed 
ABCA3-HA-positive vesicles relative 
to WT nt, B, TopF-PC fluorescence 
intensity in only TopF-PC-filled ABCA3-
HA-positive vesicles relative to WT nt, 
C, Portion of TopF-PC-filled vesicles, 
and D, Volume of all analysed ABCA3-
HA-positive vesicles. E, Representative 
pictures of the experiment. Scale bar 
represents 10 µm. Pseudo colours were 
used to stay consistent with former 
experiments. Results are means ± SEM 
of three independent experiments. 
*P < 0.05 **P < 0.01 compared to dimethyl 
sulphoxide (DMSO) vehicle controls. nt: 
no treatment; GEN: genistein, TopF-PC: 
TopFluor-labeled phosphatidylcholine
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preventing the ATP-induced NBD dimerization, it is possible that the 
change in conformation might actively prevent the mutated protein 
to reach the active state even in presence of potentiators, explaining 
its non-responsiveness even at high concentrations.

Furthermore, since ivacaftor was chemically adjusted to specifi-
cally act on CFTR22 it might only exert effects on regions of ABCA3 
that show very high homology to CFTR, like the NBD1, which might 
explain exclusive effects on mutations located in this domain.

In this study, we used the A549 cell model stably expressing 
WT and mutant ABCA3. A limitation of this approach is the current 
inability to predict the effect of potentiators in patients. On the 
one hand, there is a lack of information on influences of the pa-
tient-specific genetic and environmental background. On the other 
hand, the impact of overexpression of ABCA3 is unknown. In future 
studies, those limitations might be overcome by the use of patient-
specific primary cell cultures or induced pluripotent stem (iPS) cells. 
The optimal model would utilize patient-derived alveolar epithelial 
type II cells, which are not readily available due to rarity of the pa-
tients and difficulties to access the terminal area of the lungs.

Nevertheless, the A549 model is a valuable tool to identify 
groups of mutations that can be targeted by the same modulator. 
Similar to cystic fibrosis, where in vitro studies on Fisher rat thyroid 
cells expressing rare CFTR mutants were sufficient for the approval 
of ivacaftor for 23 rare CFTR mutations without need of patient data 
from clinical trials.48,50 Our functional assay using TopF-PC reliably 
reproduced lipid transport and ATPase activity studies of the mutant 
proteins performed by Matsumura et al25,26 (Table S1) and also rep-
licated dose-response relations of genistein in CFTR,39,42,43 making 
it suitable for high-throughput screens to identify other substances 
that act as potentiators for ABCA3.

Here we showed that some functional ABCA3 mutations were 
rescued by the potentiators genistein and ivacaftor. This provides 
a proof of principle and a first step for the development of pharma-
cological therapies for interstitial lung diseases caused by ABCA3 
mutations, for which currently no treatment is available.
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Supporting Information 
 

Supplemental material and methods 

 
Primer 

Site-directed mutagenesis was performed with the following primers (mutated 

nucleotides are underlined): 

N568D forward: 5’-GCTGGGCCACGACGGTGCCGG-3’ 

N568D reverse: 5’-AGGACGGTGATCTGTCCCTCGTACAG-3’ 

F629L forward: 5’-ACCTTTATTTGTACGCCCAGC-3’ 

F629L reverse: 5’-GCTCTGCGACTGTCAAGT-3’ 

G667R forward: 5’-CTTCCTGAGCAGGGGCATGAG-3’ 

G667R reverse: 5’-CGGCTCCGTGAGTTCCAC-3’ 

T1114M forward: 5’-TTGGCCAGCATGTTCTCCATC-3’ 

T1114M reverse: 5’-GAATGCCATGGCGAAGAG-3’ 

L1580P forward: 5’-TGTGAGGCCCCGTGCACCCGG-3’ 

L1580P reverse: 5’-CTCCTCCATGCTGTGGGAGG-3’ 

Resulting constructs were verified via Sanger sequencing using Clone Manager 

Suite (Version 6.00). 
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Supplemental figure S1: Potentiator treatment is not affecting protein processing. 

Western blot analysis of WT ABCA3-HA and all five mutants after potentiator treatment. 

Treatment with potentiators genistein (GEN) and ivacaftor (IVA) had no effect on protein 

processing. Molecular masses are indicated on the left, β-actin served as a loading control.  
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Supplemental figure S2: Potentiators have no effects on misfolding mutations. 

A) Western blot analysis of Q215K- and K1388N-ABCA3. Impaired processing of 

misfolding mutations is not affected by potentiator treatment. Molecular masses are 

indicated on the left, β-actin served as a loading control. 

B) Representative pictures obtained by confocal microscopy. Potentiator treatment does 

not affect localization of Q215K- or K1388N-ABCA3-HA. Therefore no lipid transport 

can be assessed. Scale bar represents 10 µm. 

GEN: genistein; IVA: ivacaftor 
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Supplemental figure S3: Transport of TopF-labeled PC in N568D-2 mutant is 

increased upon potentiator treatment. 

A) Western blot analysis of WT ABCA3-HA and two different clones of mutant N568D 

ABCA3-HA. Mutant N568D-2 shows much higher protein expression than WT and 

N568D mutant. Molecular masses are indicated on the left, β-actin served as a loading 

control.  

A549 cells expressing WT or mutant ABCA3 were incubated with liposomes containing 

TopFluor conjugated PC (TopF-PC) and treated with potentiators genistein (GEN) or 

ivacaftor (IVA) for 24 hours. After fixation and staining for ABCA3-HA, confocal 

microscopy pictures were obtained to measure 

B) TopF-PC fluorescence intensity per vesicle in all analyzed ABCA3-HA positive 

vesicles, 

C) TopF fluorescence intensity in only filled ABCA3-HA positive vesicles, 

D) Portion of filled vesicles, and 

E) Volume of all analyzed ABCA3-HA positive vesicles. 

F) Representative pictures of the experiment showing N568D-2 ABCA3-HA mutant. 

Scale bar represents 10 µm. Pseudo colors were used to stay consistent with former 

experiments. 

Results are means ± S.E.M. of 120 analyzed vesicles. nt: no treatment; GEN: genistein; 

IVA: ivacaftor; TopF-PC: TopFluor-labeled phosphatidylcholine 
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Supplemental figure S4: Cell viability upon potentiator treatment. 

A549 cells stably expressing WT or mutant ABCA3-HA were treated with increasing 

concentrations of potentiators genistein (GEN) and ivacaftor (IVA) for 24 hours. Cell 

viability was assessed by quantification of the specific cleavage of yellow XTT 

tetrazolium salt (Sigma) to orange formazan in the presence of phenazine methosulfate 

(PMS, Sigma). Absorbance at 450 nm was measured using a spectrophotometer. 
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Supplemental table 1: Overview of potentiator effects on WT and mutant ABCA3. 

Results of functional assays performed in this study are summarized and compared to 

results obtained before. nt: no treatment. 
 

bold: significant change compared to DMSO vehicle control 

*: measurements by Matsumura et al. (1, 2)  
†: lipid transport function not different from untransfected cells (without ABCA3) 

×: treatment with 100µM genistein 
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Fluorescence intensity in all vesicles relative to WT 

nt 

 
ATPase activity 

% WT * 
nt 

Genistein 

(10µM) 
Ivacaftor (1µM) 

WT 100 100 217 ± 30 272 ± 25 

N568D 13 14 ± 8 90 ± 14 114 ± 26 

F629L - 12 ± 5 46 ± 15 47 ± 11 

G667R - 12 ± 7 60 ± 8× 37 ± 24 

T1114M 52† 14 ± 7 26 ± 7 78 ± 61 

L1580P 9 10 ± 7 16 ± 6 33 ± 16 
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3.3 Quantification of volume and lipid filling of intracellular vesicles 

carrying the ABCA3 transporter 
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A B S T R A C T

The ABCA3 lipid transporter is located in the limiting membrane of lamellar bodies (LBs) in type-II-pneumo-
cytes. Mutations within the ABCA3 gene may functionally impair the transporter, causing lung diseases in
newborns, children and adults. Assays to quantify volume and lipid filling of the LBs on the level of the vesicular
structures and thereby assess the function of ABCA3 are still lacking. In the present study human influenza
haemagglutinin- (HA-) tagged wild type and mutant ABCA3 proteins were stably expressed in lung A549 cells.
Fluorescently-labelled TopFluor phosphatidylcholine (TopF-PC) incorporated in surfactant-like liposomes was
delivered to the cells and visualized by confocal microscopy. Subsequently, a comprehensive image analysis
method was applied to quantify volume and fluorescence intensity of TopF-PC in ABCA3-HA-positive vesicles.
TopF-PC accumulated within the vesicles in a time and concentration-dependent manner, whereas the volume
remained unchanged, suggesting active transport into preformed ABCA3 containing vesicles. Furthermore, this
finding was supported by a decrease of the fluorescence intensity within the vesicles when either the ATPase of
the transporter was inhibited by vanadate, or when a disease-causing mutation (K1388N) close to the ABCA3-
nucleotide binding domain 2 was introduced. Conversely, a mutation (E292V) located in the first cytoplasmic
loop of ABCA3 did not significantly affect lipid transport, but rather resulted in smaller vesicles. In addition to
these findings, the assay used in this work for analysing the PC-lipid transport into ABCA3 positive vesicles will
be useful to screen for compounds susceptible to restore function in mutated ABCA3 protein.

1. Introduction

Pulmonary surfactant is needed in the lungs to reduce surface ten-
sion and prevent alveolar collapse during expiration. It is composed of
phospholipids, especially phosphatidylcholine (PC) and phosphati-
dylglycerol, along with minor amounts of phosphatidylinositol, phos-
phatidylethanolamine, phosphatidylserine, sphingomyelin and surfac-
tant proteins [1,2]. Surfactant is accumulated and stored in the
lysosome-derived lamellar bodies (LBs) in type-II-pneumocytes. LBs are
eventually exocytosed into the alveolar space, and the surfactant
spreads along the air-liquid interface [3].

ATP-binding cassette (ABC)-transporters actively transport a wide
variety of substrates across different membranes. ABCA3, which be-
longs to the class of full ABC transporters consists of 1704 amino acids
with two nucleotide-binding domains for ATP hydrolysis and two

membrane-spanning domains (Fig. 1A) [4,5,6].
In the lungs, ABCA3 is located in alveolar type II epithelial cells at

the limiting membrane of the lamellar body, a type II cell-specific or-
ganelle related to lysosomes [7]. It is needed for the biogenesis of LBs
and functions as an intracellular transmembrane transporter which
carries lipids from the cytosol into the LBs and thereby generates pul-
monary surfactant [8]. Although the molecular composition of the
surfactant lipids is believed to reflect the transport specificities of
ABCA3, little is yet known about its transport activities and specifi-
cities. ABCA3 likely transports PC and phosphatidylglycerol [9]. This is
in agreement with ex-vivo data from children with ABCA3 deficiency,
showing a depletion in PC and phosphatidylglycerol transport leading
to depletion in alveolar surfactant [10].

In patients, ABCA3 deficiency and loss of function mutations lead to
lethal respiratory distress syndrome in neonates. In addition, less
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damaging mutations lead to chronic interstitial lung diseases in chil-
dren and adults [11,12]. To date more than two hundred different
ABCA3 mutations from patients suffering from respiratory symptoms
have been described [13]. Aberrantly formed LBs may represent a
biomarker for decreased or loss of ABCA3-function as for example the
clinically relevant mutations K1388N and E292V, which are classified
as functional mutations [14,15,16]. Unfortunately until now only
methods assessing the whole cells were performed, as subcellular
fractioning and direct isolation of aberrantly formed LBs due to de-
creased ABCA3 function is technically challenging.

In contrast to other ABC transporters which are localized at the
cellular plasma membrane and therefore can be easily assessed, ABCA3
is localized intracellularly in membranes of LBs. Thus, it is very difficult
to remove and measure substrates transported by ABCA3. Over the past
years different cellular assays were established to assess ABCA3 func-
tion of non-mutated protein. For example, several groups used sucrose
fractionation of intracellular compartments, biochemical lipid analysis
and electron microscopy to show that ABCA3 mediates the uptake of
choline-phospholipids into the vesicular structures, and is needed for LB
biogenesis [9,17]. Cheong et al. showed that silencing of ABCA3 with
small interfering RNA reduces the uptake of PC into the ABCA3+ cells

and therefore concluded that PC was a substrate of ABCA3 [18]. Using
confocal microscopy and analysis with fluorescent NBD-labelled lipid
analogs of PC and phosphatidylethanolamine for visualization of the
uptake these authors studied cellular dysfunction secondary to ABCA3
mutations [17,19]. To further characterize cellular dysfunction of
ABCA3 mutations, alterations of the transporters spatial distribution in
the cells were monitored by immunostaining [20,14]. Others assessed
the ABCA3 transporting activity indirectly using its ability to sequester
and detoxify doxorubicin, other cytotoxic drugs or imatinib into the
lysosomal compartment [21,22,23,24,25].

Whereas these experiments analyzed many aspects of normal and
mutated ABCA3, the actual lipid transport on the level of the vesicular
lamellar body structures has not been assessed yet. Here, we established
a method to quantify the uptake of fluorescently labelled PC specifically
into ABCA3 positive vesicles in a human cellular model stably expres-
sing wild type and mutant ABCA3 proteins.

Fig. 1. Schematic overview over the experimental setup.
A) Schematic structure of the ABCA3 transporter with two
assessed mutations (E292V and K1388N). The ABCA3
transporter consists of two nucleotide binding domains
(NBD1, NBD2), 12 transmembrane domains, two large ex-
tracellular loops (EL1, EL2) as well as a Walker A motif (A),
a Walker B motif (B) and a Walker C signature motif (C),
which is unique to ABCA transporters. Illustration adapted
from [33].
B) Structural formula of Top Fluor Phosphatidylcholine.
Copyright and permission for using by Avanti Polar Lipids
Inc. (https://avantilipids.com/images/structures/810281s.
gif, downloaded 2017-08-06).
C–E) Scheme for experimental setup. C illustrates cell
treatment with TopF-containing liposomes and liposome
accumulation on the cell surface before incorporation into
the cell, D displays the ABCA3-dependent lipid uptake from
the cytosol into the LBs and E depicts the accumulation of
liposomes in the ABCA3-positive vesicles. The lipid trans-
port via ABCA3 can be inhibited by the ATPase inhibitor
ortho-vanadate or by a mutation affecting the nucleotide
binding domain.
F) Scheme for vesicular selection. From each Z-stack, 20
ABCA3-containing vesicles were chosen with a particular
pattern containing 20 fields.
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2. Methods

2.1. Generation of stable cell clones and treatment protocols

Cells were cultured and stable cell clones were generated as pre-
viously described [14].

Surfactant-like liposomes were prepared by mixing 1 μmol TopF-PC,
1.67 μmol egg-phosphatidylcholine, 2.33 μmol 16:0 phosphatidylcho-
line, 0.67 μmol phosphatidylglycerol (all from Avanti Polar Lipids,
Alabaster, USA) and 1 μmol cholesterol (Sigma, Taufkirchen,
Germany). Chloroform was evaporated under a stream of N2 and the
dried lipids were redissolved in PBS (Sigma). The solution was placed in
a ultrasonic bath for 30 min at 50 °C to generate small liposomes and
centrifuged at 1000g for 20 min to remove disposals. Before cell treat-
ment, liposomes were solved in OptiMEM (ThermoFisher, Waltham,
USA), a modification of Eagle's Minimum Essential Media, buffered
with HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) and
sodium bicarbonate with a 50% reduced serum content, at the ratio of
1:2, 1:20 or 1:200 for dose-response experiments. A ratio of 1:20 was
used for all the other experiments. The liposomes were unilamellar and
had a size of about 100 nm and a polydispersity index (PdI) of 0.4
(n = 3 determinations), which was assessed with a Malvern laser par-
ticle analyser (Zetasizer, Malvern Instruments GmbH, Herrenberg,
Germany). ABCA3-WT and -variant cells were disseminated in μ-slides
with 8 independent wells (IBIDI, Martinsried, Germany) and incubated
at 37 °C with 5% CO2 for 24 h. Afterwards, cells were incubated for
15 min at 4 °C, medium was replaced by the liposome-OptiMEM mix-
ture and cells were incubated at 4 °C for 30 min. Subsequently, the li-
posome mixture was replaced by pre-warmed OptiMEM and cells were
incubated for different time periods at 37 °C with 5% CO2. To stop the
uptake, OptiMEM was removed and the cells were incubated with 5%
bovine serum albumin (BSA, Sigma) solved in PBS at 4 °C for 30 min
which removes labelled lipids adherent to the outer membrane. Finally,
cells were fixed with 3.7% formaldehyde for 20 min and treated with
0.1% glycine for 10 min.

Whenever necessary, cells were treated with 12.5 mM ortho-vana-
date (Sigma) to block the ATPase activity of ABCA3 2 h after cell la-
belling with the liposomes. All experiments were repeated at least 3
times to exclude coincidental occurrences.

Instead of mock-transfected cells, which would not exhibit LBs,
comprising vesicular selection, WT-ABCA3-HA transfected cells were
used as controls.

2.2. Immunostaining

Fixed cells were permeabilized with 0.5% saponine (Karl Roth,
Karlsruhe, Germany) for 10 min and afterwards incubated in blocking
solution containing 3% BSA and 10% FBS for 30 min. Subsequently, the
cells were treated with the first antibody against the HA-tag (rat anti
HA; Roche, Mannheim, Germany). Before and after treating the cells
with the secondary antibody Alexa 555 goat anti-rat (Roche), cells were
washed three times with PBS, then incubated with DAPI for 10 min and
afterwards covered with mounting medium (90% Glycerine and 20%
DABCO in PBS).

2.3. Microscopy

Cells in at least two chambers were exposed to the same conditions.
From each of these two chambers three Z-stacks with 0.4 μm height and
123.02 μm length and width were imaged using a Leica confocal mi-
croscope with a 405 Diode, an Argon and a HeNe 543 laser. All confocal
images were acquired with the same conditions of laser intensity, gain,
offset and pinhole width. For observation of the TopF-PC lipids, the
filter set included an excitation filter of 488 nm; for observation of the
Alexa 555 antibody an excitation filter of 543 nm; and for DAPI an
excitation filter of 405 nm.

2.4. Fluorescence analysis with the Fiji-Plugin “Particle_in_Cell-3D”

From each Z-stack, 20 ABCA3+ vesicles were chosen with a par-
ticular pattern containing 20 fields (Fig. 1F). To ensure an unbiased
selection, first ABCA3+ vesicles were randomly selected using the
signal from 543 nm excitation. Next, associated lipids were visualized
at 488 nm and the fluorescence intensity within the vesicles was mea-
sured using the Fiji-Plugin “Particle_in_Cell-3D” [26], an image analysis
method developed to quantify the cellular uptake of fluorescently-la-
belled targets. The Plugin, originally designed for the analysis of single
cells, was customized to allow the selection and analysis of multiple
vesicles. The quantification of lipids was performed using the Routine 4
of Particle_in_Cell-3D. Here, lipids within vesicles were automatically
selected in the image and analyzed accordingly.

2.5. Vesicle volume

The diameter of the previously selected ABCA3+ vesicles was
measured by using the Fiji software and the volume was determined by
considering spherical vesicles (i.e. V = 4/3π ∗ (d/2)^3).

2.6. Percentage of filled vesicles

To assess the amount of ABCA3-containing vesicles filled with
fluorescently-labelled lipids, a percentage of filled vesicles per analyzed
stack was measured. The average result was calculated by combining
the stack results.

2.7. Statistical analysis

Whereas the images illustrated the data obtained, quantitative as-
sessment of lipid content of ABCA3+ vesicles analysis is crucial for the
approach presented. From all filled ABCA3-containing vesicles, the
mean and the standard error of the fluorescence intensity was de-
termined. For comparison of multiple groups, one-way repeated mea-
sure ANOVAs with Dunett's multiple comparison tests was done.
Comparison of two groups was calculated by using the Student's t-test.

3. Results

3.1. Time and concentration dependence of lipid uptake is specific for
ABCA3+ vesicles

To localize the lipid uptake, ABCA3+ wild type vesicles were la-
belled by immunostaining against HA (green, Fig. 2A). With time and
exposure to red-labelled PC, the fluorescence intensity in the cells and
in the ABCA3+ vesicles increased. Quantification of PC in the ABC-
A3+ vesicles, which is proportional to the amount of lipids within the
LBs, linearly increased with time for up to 24 h (Fig. 2B). The percen-
tage of filled vesicles followed this trend and increased accordingly to
the amount of lipids per vesicle (Fig. 2C). Interestingly, the mean vo-
lume of the vesicles remained basically the same (Fig. 2D).

Fig. 3 shows that the higher the concentration of PC, the more ef-
ficiently it was transported into the LBs (Fig. 3A–C), without detectable
changes in the mean volume of the vesicles (Fig. 3D). Based on these
experiments we chose the dilution of 1:20 for further experiments.

3.2. ABCA3 specific lipid uptake

To confirm that the lipid uptake was an active ABCA3-dependent
transport, and that it did not proceed by passive diffusion, cells were
treated with ortho-vanadate (Fig. 4A). Ortho-vanadate inhibits the A-
TPase activity of ABC-transporters [27]. After 22 h of treatment with
ortho-vanadate the fluorescence intensity and the amount of filled ve-
sicles were significantly decreased, whereas the volume of the vesicles
stayed the same (Fig. 4B–D).
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3.3. Mutation dependent effects on the ABCA3-dependent PC-transport

The ABCA3-variant K1388N, which is located close to the NBD2
domain of the ABCA3 transporter (Fig. 1A) had a profound impact on
the lipid transport of the ABCA3 protein (Fig. 5A). Remarkably, the
fluorescence intensity of the ABCA3+ vesicles and the percentage of
filled vesicles, as well as their volume were significantly decreased
(Fig. 5B–D). Vesicle volume and content were reduced by about 50%.
For comparison, we used another ABCA3-variant, E292V. This is lo-
cated in a loop combining two transmembrane domains, but not nearby
a NBD domain (Fig. 1A). The E292V mutation also reduced the volume
of the LBs (Fig. 5D), indicating untoward effects in lamellar body
genesis, reducing the percentage of filled vesicles in comparison to the
wild type (Fig. 5C). However, it did not significantly affect the PC
transport function of the ABCA3-transporter when compared to the wild
type (Fig. 5B).

4. Discussion

In this study we developed a sensitive assay to quantify the uptake
of PC, the major pulmonary surfactant phospholipid, into ABCA3-con-
taining intracellular vesicles. The lipid-specific uptake was observed to
be time and dose-dependent and could be blocked by manipulation of
the ABCA3 transporter, i.e. inhibition of its ATPase activity by a

chemical or by introducing a disease-causing mutation into its ATP-
binding domain.

Using confocal microscopy and A549 cells stably expressing ABCA3-
WT, we demonstrated that the fluorescently conjugated PC TopF-PC
was endocytosed by A549 cells as described previously [28] and en-
riched in ABCA3 labelled vesicles. We previously demonstrated that the
ABCA3-containing vesicles are equivalent to LBs, as ABCA3 co-localizes
with CD63, a marker for late endosomes and LBs [14]. Using TopF-PC
had the huge advantage over NBD-PC as the fluorescent signal of the
label is less sensitive to bleaching, whereas the accumulation of the
label in LBs is similar [29,19,30]. By using this approach it was possible
to detect small lipid amounts in the vesicles with confocal microscopy.
After 4 h of incubation with the lipids the fluorescence intensity was
already measurable with the Fiji plugin, which was consistent with the
visualization in the confocal images. Even small differences in the
fluorescence intensity between the different points of time were de-
tectable. Nagata et al. stated that the ATPase activity of ABCA3 is

Fig. 2. Time-dependent lipid uptake.
A) Immunofluorescence staining of ABCA3-HA wild type protein in A549 cells, after
treatment with liposomes containing TopF-PC for 0, 4, 8, 12 and 24 h. Scale: 10 μm.
B) Fluorescence intensity increase per vesicle during a period of 24 h measured with the
Fiji plugin Particle_in_Cell-3D.
C) Percentage of ABCA3-wild type positive cells containing TopF-PC.
D) Volume of ABCA3-positive vesicles in μm3 during a period of 24 h, calculated based on
the diameter measured with Fiji.

Fig. 3. Concentration dependency of lipid uptake.
A) Confocal fluorescence images with immunofluorescent staining of HA-tagged ABCA3-
wild type protein included in vesicles and with different liposome concentrations con-
taining TopF-PC solved in OptiMEM media (1 part of liposomes and 200 parts of
OptiMEM, 1 part of liposomes and 20 parts of OptiMEM, which is the normally used
mixing ratio, and 1 part of liposomes and only 2 parts of OptiMEM) after 24 h of treat-
ment. Scale: 10 μm.
B) Fluorescence intensity per ABCA3-wild type vesicle measured with the Fiji Plugin
Particle_in_Cell-3D after 24 h of treatment (SEM, *** P < 0.001, ** P < 0.01).
C) Percentage of ABCA3-wild type positive vesicles containing TopF-PC (SEM, **
P < 0.01).
D) Volume of ABCA3-positive vesicles after treatment with different liposome con-
centrations for 24 h of incubation measurement.
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induced by lipids provided in the cytosol [17]. Our results support that
statement as we observed a positive correlation between the amount of
lipids provided to the cells and the lipids taken up into the vesicles.

In order to show that the lipids did not diffuse passively into the
vesicular structures, the cells were treated with ortho-vanadate, which
blocks the nucleotide binding domain of the ABC transporters. To make
sure that only the ABCA3 dependent lipid-transport was influenced by
the vanadate but not the lipid uptake into the cells, vanadate was added
2 h after the lipids were placed on the cells. After 2 h of incubation,
lipids could be found in the cytosol but not in the LBs (data not shown).
Lipid uptake into ABCA3 positive vesicles decreased significantly in the
cells treated with ortho-vanadate, whereas the volume of the organelles
remained the same. This confirmed an active ABCA3-dependent trans-
port of the labelled lipids into the vesicles. However, it should be taken
into consideration that ortho-vanadate does not exclusively inhibit the
ATPase activity of the ABCA3 transporter, but rather of all ATPases. As
there is no known ABCA3 inhibitor specifically affecting function and
not expression (as siRNA does), inhibiting ABCA3 by ortho-vanadate
was the approach of choice. Thus, indirect effects on ABCA3 cannot be
excluded, as the specificity of the transport is derived from the direct
and sole observation of ABCA3 stained organelles. In another approach

to demonstrate specificity of the observed transport, we selected cells
stably transfected with a mutation very close to the nucleotide binding
domain (K1388N) of the ABCA3 transporter; such data should ad-
ditionally support the critical role of an intact ATP-binding domain for
phospholipid transport into the vesicles. Cells stably expressing ABCA3-
K1388N were able to form vesicles, but these vesicles were significantly
smaller and the lipid amount within them was significantly lower than
in the cells expressing ABCA3-WT. Therefore, we show that phospho-
lipid transport into the vesicles was not only dependent on the integrity
of the ABCA3 protein and LB generation, but also on the phospholipid
transport function and LB filling.

Interestingly, a mutation in the first cytoplasmatic loop of the
transporter (E292V) did not significantly affect the amount of lipid
accumulation per ABCA3-containing vesicle. However, in those cells
the volume of the vesicles and the percentage of filled vesicles were
smaller. This implicates that the LB formation and overall transport
activity of cells carrying the E292V mutation were impaired, but lipid
transport function appeared normal. These results are in accordance
with the previous exploration by Matsumura et al. who as well revealed
only a moderately preserved lipid transport in cells expressing the

Fig. 4. ABCA3 specific lipid uptake.
A) Fluorescence images of ABCA3-wild type cells treated with TopF-PC containing lipo-
somes for 24 h and with/without 12.5 mM ortho-vanadate for 22 h. ABCA3-HA proteins
were stained immunofluorescently.
B) Fluorescence intensity per vesicle measured with Fiji plugin Particle_in_Cell-3D. Ortho-
vanadate-treated (12.5 mM) or untreated cells when analyzed after incubation with TopF-
PC containing liposomes (SEM, *** P < 0.001).
C) Percentage of ABCA3-positive vesicles affiliating TopF-PC after treatment with ortho-
vanadate in comparison to untreated cells.
D) Volume of ABCA3-dependent vesicles in cells treated or not treated with ortho-va-
nadate.

Fig. 5. Effects of mutations within the ABCA3-gene on the transport of the ABCA3 protein
and volume of ABCA3-dependent vesicles.
A) Immunofluorescent staining of HA-tagged ABCA3-wild type, ABCA3-K1388N and
ABCA3-E292V proteins after cells were treated with TopF-PC containing liposomes for
24 h.
B) Fluorescence intensity per vesicle in a.u. measured with the Fiji plugin Particle_in_Cell-
3D after 24 h of incubation (SEM, *** P < 0.001).
C) Comparison of the percentage of fluorescent lipid uptake into ABCA3-positive vesicles
carrying different ABCA3-mutations and ABCA3-wild type.
D) Vesicle volume of ABCA3-dependent vesicles of different ABCA3 variants in measured
with Fiji (SEM, *** P < 0.001).
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ABCA3-E292V mutation [15]. Therefore, mutations like E292V within
the protein loop seem to influence the building of the vesicles but not
the ATP-dependent transport of lipids, for which the NBD domain plays
a central role. This is also in agreement with a milder clinical pre-
sentation of some patients carrying the E292V mutation, who are prone
to develop interstitial lung disease but have a higher life expectancy in
comparison with K1388N patients [11,14].

A major strength of the method presented here is that it allows the
quantification of PC transport by the ABCA3 transporters into the ve-
sicular organelles carrying this transporter in a cellular system. As there
is no standard reference, we cannot prove the results with another
method. In our system, ABCA3 is almost exclusively expressed in-
tracellularly, and cannot be detected on the cell surface in sufficient
quantity by immune stains. This precludes the easy development of
high-throughput assays to directly measure transporter activity, as for
other ABC transporters [31]. Similarly, the direct assessment of the
transporter's dependency on the different molecular lipid species is not
possible with this set-up. An alternative approach may be ABCA3 ex-
pression in the outer membrane of yeast [32] which could be a good
goal for the future.

Thanks to this novel method it will be possible to search for in-
hibitors or activators of wild type or mutated ABCA3 protein. Such
molecules could be used as potential candidates to explore treatment
options for patients with ABCA3 induced lung disease [12]. In this
context expression of the transporter in a stable cellular model is of
advantage for comparison and detailed study, as many different mu-
tations occur in the many rare patients, unfortunately lacking muta-
tional hot spots. Taken together, we present a method which quantifies
specific PC transport into ABCA3+ vesicles. This enables to directly
assess ABCA3 transport function and to screen for therapeutic mod-
ulators of ABCA3 activity.
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4 Discussion 
ABCA3 is a key player in alveolar surfactant homeostasis in ATII cells since it transports 

surfactant lipids into LBs, the storage compartment of surfactant. Mutations in ABCA3 

display the most common genetic cause for lung diseases like fatal respiratory distress 

syndrome in newborns and chronic interstitial lung disease in children and adults. To date 

no causal therapies are available for patients suffering from those diseases due to ABCA3 

deficiency. In this study, five clinically relevant ABCA3 misfolding mutations and five 

functional mutations were analyzed to prove the concept of modulation of mutant 

ABCA3 in vitro and to identify possible correctors and potentiators for ABCA3 

(summary of the results is presented in Table 1). Four of the five misfolding mutants 

were temperature-sensitive and were corrected by the chemical chaperone TMAO and by 

CFTR corrector compounds C13 and C17. The correction was determined as restored N-

terminal processing of the protein, which indicates its Golgi apparatus passage, restored 

localization at the limiting LB membrane, and restored lipid transport function. 

Furthermore, impaired lipid transport function of three of the five analyzed functional 

ABCA3 mutations was rescued by the known CFTR potentiator genistein and the FDA 

approved compound ivacaftor.  

 

4.1 Identification of correctors for ABCA3 
Incubation of baby hamster kidney cells at low temperature was shown to lead to a so 

called cold-shock response, which causes down-regulation of proteins, which are 

involved in protein biosynthesis and degradation, and up-regulation of proteins involved 

in folding, maturation, and trafficking (Gomes-Alves et al., 2009). This explains the 

increase in ABCA3 protein amount in the cells after incubation at 30°C and the 

mechanism of action of correcting misfolded ABCA3 by low temperature. Incubation of 

the cells at 30°C led to rescued trafficking, processing, and localization of all tested 

misfolding ABCA3 mutants except for M760R. This mutation might therefore lead to a 

more severe folding defect, also shown by the fact that cells expressing M760R ABCA3  
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Table 1: Results of functional rescue of ten different clinically relevant ABCA3 mutants. Shown is a 
short description about the severity of the phenotype in the patient, the in vitro classification as a 
misfolding or functional mutation, resulting in treatment with either correctors or potentiators, respectively. 
Results from the functional assay, in which transport of TopF-labeled PC into ABCA3-HA-positive 
vesicles was assessed, are expressed as percent of WT activity, which was set to 100%. Bold numbers 
indicate significant changes compared to no treatment. ExAC, Exome Aggregation Consortium; GEN, 
genistein; ILD, interstitial lung disease; IVA, ivacaftor; nt, no treatment; pILD: pediatric ILD; RDS, 
respiratory distress syndrome; x: treatment with 100 µM GEN (G667R). 

ABCA3 

mutation 

Genotype and 
Severity phenotype 

(clinic) 

Mutation 
class  

(in vitro) 

Fluorescence intensity in all 

vesicles relative to WT nt  

[%](in vitro) Reference 

nt C13 C17 

WT - - 100 235±20 263±33  

Q215K Homozygous, lethal RDS misfolding 0 36±8 42±8 (Brasch et al., 2006) 

M760R 
Compound heterozygous 

(R208W), respiratory failure 
misfolding 0 0 0 (Doan et al., 2008) 

A1046E 
Compound heterozygous 

(DelEx29, A1338T), lethal 

RDS 

misfolding 4±1 83±12 120±10 (Kröner et al., 2017) 

K1388N Homozygous, lethal RDS misfolding 13±2 80±12 212±25 
 (Kröner et al., 2017; 

Wittmann et al., 2016) 

G1421R 
Compound heterozygous  

(P193S), lethal RDS 

misfolding/ 

functional? 
1±0.7 20±3 130±15 (Kröner et al., 2017) 

   nt GEN IVA  

WT - - 100 217±30 272±25  

N568D 
No mutation identified on 

one allele, lethal RDS 
functional 14±8 90±14 114±26 

(Matsumura et al., 

2006; Shulenin et al., 

2004)  

F629L Homolog to F508 in CFTR functional 12±5 46±15 47±11 
ExAC (Karczewski et 

al., 2017) 

G667R Homolog to G550 in CFTR functional 12±7 60±8× 37±24 ExAC (Karczewski et 

al., 2017) 

T1114M 
Compound heterozygous 

(E292V), pILD 
functional 14±7 26±7 78±61 

 (Bullard et al., 2005; 

Doan et al., 2008; 

Matsumura et al., 2008) 

L1580P 
Compound heterozygous 

(4552insT), lethal RDS 
functional 10±7 16±6 33±16 

(Matsumura et al., 

2006; Shulenin et al., 

2004) 
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completely lack the processed 170 kDa form, while most of the other mutant proteins 

show a reduced abundance of the processed form. Q215K ABCA3, which also shows no 

detectable processing, is only partially rescued. Since temperature sensitivity was 

described as an indicator if proteins are susceptible to correction (Brown et al., 1997; 

Gautherot et al., 2012), and M760R was not corrected by any of the tested compounds, 

temperature sensitivity might also serve as marker for susceptibility to correction of 

mutant ABCA3.  

All tested chemical chaperones in this study - like lowered growth temperature - 

increased the amount of ABCA3 protein in the cells. This is probably explained by the 

fact that osmolytes are products of the cell stress response and therefore stabilize 

misfolded proteins and reduce their degradation (Brown et al., 1997; Wang & Bolen, 

1997). The amount of WT ABCA3 is also increased after treatment, since newly 

synthesized WT protein is probably also in parts degraded due to high quality control, 

like shown for CFTR where a remarkable portion of protein is degraded before 

maturation (Lukacs et al., 1994). PBA and suberanilohydroxamic acid (SAHA) might 

also induce expression of ABCA3 since in this experimental setting ABCA3 is controlled 

by a Cytomegalovirus (CMV) promoter and these compounds were shown to act as 

histone deacetylase inhibitors that transcriptionally activate the CMV promoter 

(Kusaczuk et al., 2015; Lai et al., 2010; Lea & Tulsyan, 1995). Indeed, in 

immunofluorescent stainings heavy accumulation of mutant ABCA3 in the cytoplasm 

was observed upon PBA and SAHA treatment. Of the tested chemical chaperones, only 

TMAO was able to restore processing, trafficking, and localization of mutant ABCA3. 

Despite increasing ABCA3 protein abundance, only TMAO did alter the ratio of 170 kDa 

to 190 kDa form of mutant protein, which indicates correct processing and trafficking 

through the cell, which is further confirmed by correct localization at the LBs. It stays 

elusive why TMAO did rescue mutant ABCA3 but other chemical chaperones failed in 

doing so. Bandyopadhyay et al. described that other osmolytes like glycerol were able to 

rescue different ‘cell death and differentiation protein’ mutants than TMAO and TMAO-

sensitive mutants were mostly unsusceptible to glycerol (Bandyopadhyay et al., 2012). 

Furthermore, mutant α1-antitrypsin was rescued by glycerol and PBA but not by TMAO 

(Burrows et al., 2000) and mutant γD-crystallin was shown to be rescued by PBA but not 
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by TMAO, DMSO, or glycerol (Gong et al., 2010). Those findings suggest different 

mechanisms of action of the compounds that are still not fully understood. Furthermore, 

molecular defects resulting from distinct mutations might be different even though they 

all result in misfolding. This indicates that different ABCA3 mutations might be rescued 

by other chemical chaperones. 

Since osmolytes act in an unspecific and colligative mode, high concentrations are 

needed for their effects. In a mouse model about 50% of mice died after injection of 

multiple doses of TMAO, which resulted in a serum concentration of about 50 mM (Bai 

et al., 1998). TMAO corrected misfolded ABCA3 at concentrations of 200 mM, which 

precludes its use in clinical trials due to toxicity. More specific compounds that were 

identified as correctors for CFTR rescued mutant ABCA3 in much lower concentrations 

(10 µM), the most potent compounds being C13 and C17, which restored processing, 

trafficking, and localization of ABCA3, and further restored its lipid transport function, 

shown by the transport of TopF-PC into ABCA3-HA-positive vesicles, which resemble 

LBs.  

Fluorescence intensity in filled WT ABCA3-HA positive vesicles was nearly threefold 

increased upon C17 treatment. C13 treatment did not significantly increase fluorescence 

intensity in only filled vesicles. Furthermore, function of A1046E and K1388N ABCA3 

is rescued to about 80% of WT activity upon C13 treatment, and up to 120% and 212% 

of WT activity after treatment with C17 (Table 1). This might indicate a dual function of 

C17 as a corrector and a potentiator. This hypothesis is further underlined by the fact that 

fluorescence intensity in vesicles of G1421R ABCA3 expressing cells was only increased 

compared to DMSO treated cells when treated with C17 but not after C13 treatment. 

Residue G1421 is located close to the conserved Walker A motif of the second NBD. 

Introduction of the much larger side chain of arginine (R) might hinder ATP binding, 

explaining the low lipid transport activity even after correction of processing and 

trafficking by C13 (Fig. 4). This mutant therefore might display an additive functional 

defect that is rescued by the potential dual function of C17. 
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Figure 4: Three-dimensional modeling of the 
G1421R mutation in ABCA3. The side chain of 
the wild type residue is represented in full red 
sticks and the substituting residue is shown in 
transparent yellow sticks at the mutated position. 
Residue G1421 is located close to the Walker A 
motif of the second NBD. Introduction of the 
larger side chain of Arginine (R) likely hinders 
ATP binding. 
 

 

 

Unfortunately, VX-809, which is approved by the FDA for the treatment of CF, did not 

correct mutant ABCA3, probably due to its chemical optimization to specifically act on 

CFTR (Loo et al., 2013; Ren et al., 2013; Solomon et al., 2015; Van Goor et al., 2011). In 

this study, only the bithiazoles C13, C14, and C17 led to correction of the tested mutants. 

C13 and C17 were also shown to rescue ATP8B1, a member of the P-type cation 

transport ATPase family, lacking homology to CFTR, suggesting a more general 

mechanism of action not restricted to ABC transporters (van der Woerd et al., 2016).  

C13 and C17 might serve as lead compounds for correctors of ABCA3 and chemical lead 

optimization might be the next step in the development of a therapeutic drug. 

Alternatively, identification of approved compounds that are able to correct misfolding 

ABCA3 mutants displays a faster and cheaper approach to provide a possible treatment 

for patients suffering from ABCA3 deficiency. Our group therefore established a HTS 

based on the results presented here. In cooperation with the Assay Development and 

Screening Platform (ADSP) of Helmholtz Center Munich, a high-throughput setting was 

established that automatically seeds cells in a 384-well format, treats the cells with 

compound libraries, fixes and stains the cells. A microscope is automatically obtaining 

pictures and its software was trained to recognize WT-like ABCA3-HA vesicles. Several 

FDA approved compounds were identified in a first screen that were validated by the 

here presented low-throughput approaches (unpublished data, not shown). Identified 

compounds might display a therapeutic option for patients when used in drug repurposing 

initiatives. Drug repurposing harbors the big advantage that preclinical and clinical trials 

are completed and information about activity and safety of the compounds is already 
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available, resulting in decreased time for development and approval, reduced costs, and 

higher success rates compared to the procedure of developing new compounds (DiMasi, 

2013).  

  

4.2 Identification of potentiators for ABCA3 
To analyze potentiation of impaired ABCA3 lipid transport activity, three ABCA3 

mutants, which were already extensively characterized, were analyzed (Matsumura et al., 

2006; Matsumura et al., 2007; Matsumura et al., 2008). Furthermore, two ABCA3 

mutations with homologous location to the most common and third most common CFTR 

mutants, F508del and G551D, were analyzed. The identified mutations F629L and 

G667R also resulted in correct processing and subcellular localization of the protein but 

impaired lipid transport function, classifying them as functional mutations.  

N568D and F629L ABCA3 were potentiated by low concentrations of ivacaftor (1 µM) 

and genistein (10 µM). Function of the G667R mutant was rescued by 100 µM genistein. 

The potentiators did not influence processing of the proteins and therefore had no effect 

on two misfolding mutants. The residue G667 is located in the ATP-binding LSGGQ 

motif. Genistein was shown to bind to this region in CFTR (Moran & Zegarra-Moran, 

2005). A mutation at this location might therefore not only reduce ATP but also genistein 

binding (Moran et al., 2005; Zegarra-Moran et al., 2002). WT ABCA3 was potentiated by 

50 µM genistein, but 100 µM genistein exerted inhibitory effects, resulting in a bell-

shaped dose-response curve, similar to CFTR (Illek et al., 1995; Wang et al., 1998; 

Zegarra-Moran et al., 2002). This is explained by the assumption of two binding sites for 

genistein, one high affinity site activating the protein and a second low affinity site 

exerting inhibitory effects (Moran & Zegarra-Moran, 2005; Wang et al., 1998). For 

G667R ABCA3 the dose-response curve was shifted to the right compared to WT 

ABCA3 since only 100 µM genistein induced a significant increase in lipid transport 

activity, indeed indicating a reduced binding of genistein. Decreased binding of various 

potentiators including ivacaftor was shown for G551D CFTR (Cai et al., 2006; Ma et al., 

2002; Van Goor et al., 2009). In our experimental setup higher concentrations of 

ivacaftor were toxic for the cells impeding their evaluation on G667R ABCA3 lipid 
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transport function. It stays elusive why this compound that was shown to be safe in 

clinical trials exerts high toxicity in our cell model, but it might be explained by cell-

type-specific uptake and accumulation of the drug (Lei et al., 2011). 

Impaired lipid transport function of T1114M and L1580P ABCA3 was not rescued by 

ivacaftor or genistein. Mutation of the threonine at position 1114 to methionine likely 

decouples NBD dimerization and substrate translocation. Since potentiators stabilize the 

NBD dimer formation to enhance transport function and activity, no effect was seen for 

the T1114M mutation. In CFTR, ivacaftor was also ineffective in overcoming the defects 

introduced by the mutation L927P, which is like T1114M located in the eighth 

transmenbrane helix of the protein (T1114M in ABCA3 corresponds to L935 in CFTR) 

and is implicated in conformational changes necessary to open the channel (Van Goor et 

al., 2014; Zhang et al., 2018). Furthermore, ivacaftor did not overcome impaired PC 

secretion activity in a TMD mutant of ABCB4 (Delaunay et al., 2017). 

Mutation of leucine to a proline at position 1580 might break the helix it is located in, 

which might influence the adjacent H-loop involved in ATP binding and NBD 

dimerization. The mutation might prevent the protein to reach an active state even in the 

presence of potentiators, explaining why the lipid transport function of the protein is not 

enhanced by ivacaftor or genistein. 

Another explanation might be that ivacaftor, like VX-809, was chemically refined to 

specifically work on CFTR. This might explain why in this study the compound only 

potentiated mutants with mutations located in the first NBD, which shows high homology 

to CFTR. Delaunay et al., who investigated the effects of ivacaftor on mutant ABCB4 

and only found it to be active for mutations located in the NBDs, drew the same 

conclusion (Delaunay et al., 2017).  

Ivacaftor might display a future therapeutic option for patients suffering from surfactant 

deficiency diseases due to ABCA3 mutations. Furthermore, the data presented here 

proves the principle of potentiation of function-defective mutant ABCA3 und thus might 

serve as a basis for the establishment of an HTS to identify more compounds that can 

modulate ABCA3 function. Based on the HTS that our group already established to 

screen for correctors, the TopF-PC transport assay could be used in the HTS setting to 
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automatically quantify the fluorescence intensity accumulated in automatically 

recognized vesicles. 

 

4.3 Transport of TopFluor-labeled PC as a functional assay for ABCA3 
Here, a functional assay to monitor the lipid transport activity of ABCA3 in A549 cells 

was established, which was employed to identify correctors and potentiators for ABCA3. 

In this assay, liposomes containing TopFluor-labeled PC (TopF-PC) besides other 

unlabeled lipids found in surfactant are offered to the cells and the accumulation of 

TopFluor fluorescence inside ABCA3-HA positive vesicles after 24 hours is assessed. 

The fluorescence intensity per vesicle in all measured vesicles, which is influenced by the 

volume of the vesicles, the portion of filled vesicles, and the fluorescence intensity in 

filled vesicles, represents the overall lipid transport activity of ABCA3. The transport of 

TopF-PC was shown to be dose and time dependent and its specific transport by ABCA3 

was shown by abrogated accumulation in the vesicles after treatment with the ATPase 

inhibitor orthovanadate. In other studies so far, lipid transport by ABCA3 could only be 

quantified by analyzing lipid contents in whole cell lysates or density gradient fractions, 

or by ATPase assays (Matsumura et al., 2006; Matsumura et al., 2008; Wambach et al., 

2016), but the actual transport into ABCA3-HA positive vesicles could not be analyzed. 

The ATPase activity is not necessarily an equivalent of lipid transport activity, if the 

NBDs and therefore ATP binding and hydrolysis are unaffected by mutations. In the case 

of the T1114M mutant for example, Matsumura et al. assessed a rather moderately 

decreased ATP activity but severely decreased lipid transport function, indicated by 

decreased choline-phospholipid contents in sucrose gradient fractions of post nuclear 

supernatants of the cells (Matsumura et al., 2008). In this study, results obtained by 

Matsumura et al. for the lipid transport activity of mutants N568D, T1114M, and L1580P 

were successfully reproduced (Matsumura et al., 2006; Matsumura et al., 2007; 

Matsumura et al., 2008). Furthermore, dose-response relations of genistein on WT and 

G667R ABCA3 mirror results obtained for WT and G551D CFTR (Illek et al., 1995; 

Wang et al., 1998; Zegarra-Moran et al., 2002), confirming the use of the employed 

TopF-PC transport assay as a reliable tool to quantify ABCA3 function. 
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With the transport of TopF-PC the recycling pathway of surfactant lipids is addressed, 

since liposomes, resembling surfactant, are offered the cells through the medium. Our lab 

now established a different approach using the choline analogue propargylcholine, which 

was shown to be inserted into cellular choline-containing lipids and is easily visualized 

by a click reaction to conjugate an azido fluorophore to its three-carbon propargyl group 

(Aharoni et al., 2016; Jao et al., 2009; Paper et al., 2018). Using this approach, the de 

novo synthesis of surfactant lipids and their transport into ABCA3-HA vesicles can be 

assessed using the same software tool for quantification utilized here (Li et al., 2019). 

Furthermore, PLs containing propargylcholine mimic natural lipids much better than 

TopF-PC where the fluophore might influence biophysical and biochemical properties of 

PC by changing its size, and might affect transport by the cells and by ABCA3. However, 

in a study utilizing TopFluor-labeled Ceramide-1-phosphate (C1P), the authors were able 

to rule out such influences and identified TopFluor-C1P as a reliable mimetic of C1P 

(Shirey et al., 2016). An advantage of the TopF-PC over propargylcholine-PC is its 

possible use in live-cell imaging in future studies (Modzel et al., 2017). 

PC is the main constituent of pulmonary surfactant. This is why TopF-PC was chosen to 

assess ABCA3 transport activity in this study. But ABCA3 was shown to also transport 

PG, PS, PE, and cholesterol (Ban et al., 2007; Cheong et al., 2006; Cheong et al., 2007; 

Fitzgerald et al., 2007; Matsumura et al., 2007; Zarbock et al., 2015). Therefore, to 

elucidate full ABCA3 transport function, future studies might benefit from mass 

spectrometry measurements of lipids from isolated LBs.  

 

4.4 A549 cells as a model for alveolar type II cells 
Immortal cell lines display several advantages like easy cultivation, reproducibility of 

experiments, and nearly unlimited supply. Furthermore, their cultivation is low-cost, the 

cells can maintain their phenotype through a long cultivation period, and the genetic 

manipulation and stimulation are easy to be conducted. In this study the A549 cell line 

was used, which was isolated from a lung carcinoma patient in 1973 (Giard et al., 1973) 

and was characterized as a suitable model for ATII cells (Nardone & Andrews, 1979; 

Shapiro et al., 1978). A549 cells express ABCA3, but the cells used in this study showed 
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nearly undetectable levels of intrinsic ABCA3 mRNA and no detectable protein in 

Western blots in mock control transfected cells (Wittmann et al., 2016). The effects of 

the intrinsic ABCA3 are therefore negligible, since all experiments specifically 

concentrated on introduced HA-tagged ABCA3. The key role of ATII cells is the 

production, storage, and secretion of surfactant. The A549 cells utilized here form 

lamellar bodies that can be displayed by electron microscopy only after stable 

transfection with wild type ABCA3-HA but not in mock control transfected cells 

(Schindlbeck et al., 2018; Wittmann et al., 2016). Furthermore, the TopF-PC transport 

assay confirmed ABCA3-dependent surfactant lipid transport into ABCA3-positive 

vesicles. Therefore, the A549 cell model displays a valuable tool to analyze ABCA3 

function and dysfunction and to group mutations for identification of suitable 

modulators.  

Nevertheless, this approach harbors several limitations, like the current inability to 

predict the effect of tested ABCA3 modulators in patients due to a lack of information 

about the influence of the patient-specific genetic and environmental background. The 

CFTR corrector VX-809 for example showed high efficacy in vitro for F508del CFTR 

but only exerted moderate effects in CF patients homozygous for F508del CFTR (Clancy 

et al., 2012).  

The optimal in vitro model to analyze ABCA3 modulators would utilize patient-derived 

ATII cells, but those cells are not readily available due to rarity of the patients and 

difficulties to access the terminal area of the lungs. Furthermore, it was shown that 

primary ATII cells spontaneously differentiate into ATI cells during one to two weeks of 

cultivation (Fuchs et al., 2003). Those limitations might be overcome by the use of 

recently developed models for ATII cells, which include the use of embryonic stem cells 

(Spitalieri et al., 2011), mesenchymal stem cells  (Cerrada et al., 2014), ATII progenitor 

cells (Fujino et al., 2010), or induced pluripotent stem cells (Ghaedi et al., 2013). But 

these model systems are still not completely characterized and display several technical 

difficulties, which limit their widespread use (Cooper et al., 2016). 

Therefore, the use of A549 cells displays a suitable model system to prove the concept of 

modulation of ABCA3 by correctors and potentiators like done in this study. In cystic 

fibrosis for example, in vitro studies on Fisher rat thyroid cells were sufficient for the 
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extended approval of the potentiator ivacaftor for 23 rare CFTR mutants, so that no 

additional clinical trials had to be conducted (Ratner, 2017; Van Goor et al., 2014). 

 

4.5 Structural model of ABCA3 and ABCA3 mutation classes 
To better understand molecular consequences of mutations, a structural full-length and a 

NBD model of WT and mutant ABCA3 were built in this study using the electron 

microscopy structure of ABCA1 and the crystallography structure of bacterial MacB 

dimer as templates, respectively (Crow et al., 2017; Qian et al., 2017). To date, a reliable 

model from crystallographic structure of ABCA3 is still lacking since generation of 

crystal structures is especially challenging for multi-membrane-spanning proteins. They 

display a hydrophobic surface and therefore require the use of detergents to be extracted 

from the cell membranes. Furthermore, they are usually flexible and unstable (Carpenter 

et al., 2008).  

The model employed here allows insight into defects that were shown in experiments, but 

it cannot be used to predict them. The model is built on similarities to other proteins and 

is therefore not accurate in all regions. The extracellular domains between ABCA1 and 

ABCA3 for example do not align well, consequently, interpretation of mutations located 

in those domains is difficult. The analysis of mutations in the NBDs is more precise since 

this region is well conserved in all proteins. Furthermore, the model can help to find 

explanations why modulators do not rescue impairments caused by certain mutations like 

in the case of potentiators and the mutations T1114M and L1580P.  

The model might also help to further categorize mutations into different mutation classes. 

To date ABCA3 mutations are mostly classified as nonsense, misfolding, or functional 

mutations (Matsumura et al., 2006; Wambach et al., 2014), and some genotype-

phenotype correlations have been demonstrated (Kröner et al., 2017; Wambach et al., 

2014), but many ABCA3 mutations still remain unclassified or result in several defects. 

For example ABCA3 harboring the mutations R208W, R288K, or G964D shows normal 

protein processing, localization, and lipid transport function, but predisposes for the 

development of ILD by yet undefined mechanisms (Schindlbeck et al., 2018). 

Impairments in protein stability or enhanced turnover might be implicated and should 
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further be investigated. Furthermore, subclasses of functional mutations could be useful, 

taking into consideration if ATP binding and hydrolysis is affected or if impaired signal 

transduction to TMDs might hinder the protein’s transport function. Those impairments 

due to mutations might be identified with the help of the 3D model. 

A classification system analogous to the one used for CFTR mutations would facilitate 

the identification of novel mutation class specific therapeutics for ABCA3-related lung 

diseases. So far no treatment options for class V and VI CFTR mutations have been 

proposed, but advances in CF research might have direct impact on ABCA3 and other 

proteins implicated in rare genetic diseases. Ataluren for example was shown to rescue 

class I CFTR mutants by suppressing premature stop codons (Ryan, 2014). 

Unfortunately, ataluren did not rescue the R1561X ABCA3 mutant (data not shown), but 

different compounds should be tested. Furthermore, in future studies combinations of 

different approaches should be tested, for example G1421R ABCA3 might profit from 

combinations of correctors and potentiators to rescue both, its folding and lipid transport 

function. 

 

4.6 Conclusion 
In the present thesis, misfolded mutant ABCA3 was rescued by incubation at low 

temperature, the chemical chaperone TMAO, and the CFTR correctors C13 and C17. The 

latter might in future studies be further optimized to minimize toxicity and enhance 

efficiency of the compounds to provide a safe new pharmacological therapy for ABCA3 

deficiency. Alternatively, the results presented here served as a basis for the 

establishment of a high-throughput screen to identify FDA approved compounds that 

might provide a new therapeutic option for patients suffering from ABCA3 deficiency in 

the near future. Furthermore, ivacaftor, which is already approved as a potentiator for the 

treatment of CF, was shown to potentiate ABCA3 function and might be investigated in 

repurposing initiatives. In conclusion, this study provides the proof of concept that 

mutant ABCA3 can be rescued pharmacologically and the identification of correctors and 

potentiators for defective ABCA3 pave the way for the development of novel mutation 

group specific pharmacological strategies to treat ABCA3 deficiency. 
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6.1 List of abbreviations  
ABC     ATP-binding cassette 

ABCA3    ATP-binding cassette subfamily A member 3 

ADP    Adenosine diphosphate 

ASL    Airway surface liquid  

ATI/II    Alveolar type I/II cell 

ATP    Adenosine triphosphate 

BCA    Bicinchoninic acid 

BSA    Bovine serum albumin 

C1P     Ceramide-1-phosphate 

cAMP     Cyclic adenosine monophosphate 

CF    Cystic fibrosis 

CFTR    Cystic fibrosis transmembrane conductance regulator 

chILD    Childhood interstitial lung disease 

CMV    Cytomegalovirus 

DABCO   1,4-Diazabicyclo[2.2.2]octane 

DAPI    4′,6-Diamidino-2-phenylindole 

DMSO    Dimethyl sulfoxide 

DPLD    Diffuse parenchymal lung disease 

DPPC     Dipalmytoylphosphatidylcholine 

DTT     Dithiothreitol 

EDTA    Ethylenediaminetetraacetic acid 

EL    External loop 

ER    Endoplasmic reticulum 

FBS    Fetal bovin serum 

FDA    U.S. Food and Drug Administration 

GA    Golgi apparatus 

GEN    Genistein (4’,5,7-trihydroxyisoflavone) 

HA    Hemagglutinin 

HDACi   Histone deacetylase inhibitor 
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HRP    Horseradish peroxidase 

HTS    High-throughput screen 

IgG    Immunoglobulin G 

ILD    Interstitial lung disease 

iPS cell   Induced pluripotent stem cell 

IVA    Ivacaftor 

LB    Lamellar body 

MacB    Macrolide export ATP-binding/permease protein MacB 

MVB    Multivesicular body 

NBD    Nucleotide binding domain 

ns    Not significant 

nt    No treatment 

OptiMEM   Serum reduced Eagle's Minimum Essential Medium 

PO    Open probability 

PBA    4-phenylbutyric acid 

PBS    Phosphate buffered saline 

PC    Phosphatidylcholine 

PE    Phosphatidylethanolamine 

PG    Phosphatidylglycerol 

PI    Phosphatidylinositol 

PL    Phospholipids 

PMS    Phenazine methosulfate  

PS    Phosphatidylserine 

PVDF    Polyvinylidene difluoride 

R domain   Regulatory domain 

RDS    Respiratory distress syndrome 

RIPA buffer   Radioimmunoprecipitation assay buffer 

RPMI    Roswell Park Memorial Institute medium 

SAHA    Suberanilohydroxamic acid 

SM    Sphingomyeline 

SP-A/-B/-C/-D  Surfactant protein A/B/C/D 
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TM    Tubular myeline 

TMAO    Trimethylamine N-oxide 

TMD    Transmembrane domain 

TopF    TopFluor 

TopF-PC   TopFluor-labeled phosphatidylcholine 

Tris    Tris(hydroxymethyl)aminomethane 

TTF-1    Thyroid transcription factor-1 

WT    Wild type 

XTT     2,3-Bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium- 

5-carboxanilide 
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