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Zusammenfassung	
Das Glioblastoma multiforme (GBM) ist ein tödlicher Tumor, der 2,5 Personen von 100000 

Erwachsenen pro Jahr betrifft. Trotz der aggressiven Interventionen hat ein Patient eine 

Lebenserwartung von 14-16 Monaten. Die GBM-Zellen dringen in das Tumorparenchym ein 

und breiten sich von der ursprünglichen Masse zu entfernten Stellen aus. Der wachsende Tumor 

induziert das Aussprossen der vorhandenen Blutgefäße und die vaskuläre Proliferation, die als 

das Phänomen der "Tumorangiogenese“ bekannt ist. Angesichts der ausgeprägten 

Vaskularisierung des Glioblastoms stellen antiangiogene Wirkstoffe eine vielversprechende 

therapeutische Strategie dar und viele Medikamente werden derzeit untersucht, um diese 

Malignität zu behandeln. Die meisten Interventionen zielen auf das Vascular Endothelial 

Growth Factor (VEGF) Signal ab, aber ihre langfristigen Vorteile haben den Erwartungen nicht 

entsprochen: der Tumor kommt immer wieder, unterstützt von der Hochregulation anderer 

angiogener Signale und der zusätzlichen Hilfe der Tumor-assoziierten myeloiden Zellen. 

Deshalb ist die Validierung alternativer Ziele ein drängendes Thema in der präklinischen 

Forschung, um effizientere Therapien gegen das GBM zu finden. Unter den vielen neuen 

antiangiogenen Signalen, die an der GBM-Neoangiogenese beteiligt sind, hat die aktuelle 

Forschung neue Aufmerksamkeit auf den Apelin - Apelin Rezeptor (APLN-APLNR) 

Signalweg gelenkt. Das APLN-APLNR-Signal spielt eine wichtige Rolle bei der Entwicklung 

des vaskulären Systems während der Embriogenese, aber auch bei verschiedenen 

pathologischen Zuständen.  

In meiner Doktorarbeit habe ich eine ausführliche Charakterisierung der Expression von APLN 

und APLNR in in vitro Zellkulturen aus GBM-Patienten und in GBM Maus- und menschlichen 

Proben durchgeführt. Ligand und Rezeptor sind im GBM-Gewebe hochreguliert und diese 

Hochregulation ist mit dem angiogenen GBM-Phänotyp assoziiert. Die Erzeugung mehrerer 

primärer GBM-Zellen mit Verlust der APLN-Expression hat dabei die Notwendigkeit des 

APLN-Signals für die GBM-Neoangiogenese bestätigt. Außerdem, führte der Verlust eines 

autokrinen APLN-APLNR-Signals in den implantierten GBM-Zellen zu einer erhöhen 

Tumorinvasion.  

In verschiedenen humanen GBM-Proben wies die besondere Verteilung von Ligand und   

Rezeptor in der Tumormasse auf die Doppelrolle dieses Signals sowohl bei der 

Tumorangiogenese als auch der Tumorzell-Invasion hin. Die invasive Fähigkeit der GBM-

Zellen mit APLN-Verlust wurde in vitro umfassend charakterisiert, wobei, analog zu den in 

vivo Resultaten, das Fehlen eines autokrinen APLN-APLNR-Signals die Zellinvasion antreibt. 



 
 

Zusätzlich fand ich heraus, dass die Blockade von APLNR die Zellinvasion in vitro beeinflusst 

und dass die intrazelluläre Rezeptorverteilung sich dabei ändert. Daher könnte der 

Aktivierungsstatus des Rezeptors selbst eine zentrale Funktion bei der Bestimmung des GBM-

Zellverhaltens haben. Die zusätzlich hergestellten primären GBM-Zellen mit APLNR-Verlust 

werden in zukünftigen Studien eine bessere Charakterisierung des APLNR Rezeptors und 

seiner Rolle als Treiber der Tumorinvasion ermöglichen. 

Die Analyse verschiedener Proben von Patienten und Mausmodelle, die aus Studien über die 

Behandlung des GBMs mit antiangiogenen Mitteln kommen, zeigte, dass der APLN-APLNR-

Signalweg auch an der Rekurrenz des Tumors beteiligt ist.  

Des Weiteren konnte ich darlegen, dass die therapeutische Blockade von APLNR in vivo, die 

die Tumorinvasion und Angiogenese reduzierte, eine erhöhte Akkumulation von 

intratumoralen myeloiden Zellen auslöst, welche mit der Tumorrekurrenz nach Verabreichung 

von antiangiogenen Behandlungen verbunden zu sein scheint.  

Insgesamt, zeigte es sich in meiner Arbeit, dass der APLN-APLNR-Signalweg, mit seiner 

prominenten Expression in GBM-Gewebe und seiner Rolle bei der Eindämmung der GBM-

Invasion und –Angiogenese, ein interessantes Ziel für zukünftige Tumortherapien darstellt. 

Weitere Studien sind jedoch notwendig, um die Konsequenzen und das therapeutische 

Potenzial seiner Blockade vollständig zu offenbaren. 

 

 

 

 

 

 

 

 

 

 



 
 

Preamble 

Part of the work collected in this thesis is included in a manuscript entitled “Targeting 

APLN/APLNR Improves Antiangiogenic Efficiency and Blunts Proinvasive Side Effects of 

VEGFA/VEGFR2 Blockade in Glioblastoma”, where my colleagues Min Li, Mengzhuo Hou, 

and I are three first authors. The manuscript is cited as reference 147. 

 

  



 
 

  



 
 

Abstract	
Glioblastoma multiforme (GBM) is a deadly tumor that affects 2.5 people every 100000 adults 

per year. Despite the aggressive interventions, a GBM patient has a life expectancy of 14-16 

months. GBM cells invade the tumor parenchyma and spread to distant sites from the original 

mass. The growing tumor induces sprouting of the existing vessels and vascular proliferation, 

the phenomenon known as “tumor angiogenesis”. Given the prominent vascularization of 

glioblastoma, anti-angiogenic agents are a promising strategy for the treatment of this 

malignancy and many drugs are under evaluation. The majority of these interventions, which 

target the vascular endothelial growth factor (VEGF) signaling pathway, do not show long-term 

benefits: tumor rebound always occurs, supported by the upregulation of other angiogenic 

pathways and the tumor-promoting role of the tumor-associated myeloid cells. Therefore, the 

validation of alternative targets for more efficient therapies is an urgent need in preclinical 

research. Among other emerging angiogenic pathways involved in GBM neo-angiogenesis, 

recent findings brought attention to the apelin-apelin receptor (APLN-APLNR) signaling, 

which has a primary role in the development of the vascular system during embryogenesis, but 

it is also associated to different pathological conditions.  

In the present thesis, I performed an extensive characterization of the expression of APLN and 

APLNR in in vitro cultures of patient-derived GBM cells and in mouse and human GBM 

specimens. Ligand and receptor were up-regulated in the GBM tissue and this upregulation was 

associated with the GBM angiogenic phenotype. The generation of several primary GBM cells 

with loss of APLN expression confirmed that GBM neo-angiogenesis in vivo depends on APLN 

function. Moreover, the loss of an autocrine APLN-APLNR signaling in the implanted GBM 

cells drove tumor invasion. 

In various human GBM samples, the peculiar distribution of both ligand and receptor across 

the tumor mass hinted to the dual role of the pathway in tumor angiogenesis and invasion. The 

invasive ability of the GBM cells with loss of APLN was extensively characterized in vitro, 

where, as demonstrated in vivo, the absence of an autocrine APLN-APLNR signaling increased 

cell invasion.  

In addition, the in vivo intratumoral administration of the receptor antagonist apelin-F13A was 

able to reduce tumor invasion and angiogenesis. In vitro, the exposure to apelin-F13A reduced 

the invasive abilities of the cells tested.  

Moreover, the administration of apelin-13 and apelin-F13A did not only modify the in vitro and 

in vivo behavior of the GBM cells, but also the intracellular distribution of APLNR. Therefore, 



 
 

the distribution/activation status of the receptor itself may have a central function in the 

determination of the GBM phenotype.   

Next, the analysis of various samples obtained from different studies of GBMs therapeutically-

treated with anti-angiogenic agents, demonstrated that the APLN-APLNR signaling, aside from 

being a driver of tumor progression, may also be involved in therapy resistance.   

Overall, the prominent expression of the APLN-APLNR signaling in GBM tissue and its role 

in driving GBM invasion and angiogenesis indicate its promising function as target of future 

tumor therapies. Further studies, however, are required to fully disclose the consequences and 

the therapeutic potential of its blockade. 
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1. Abbreviations	
 

aCSF   Artificial cerebrospinal fluid   

ACV   Anterior cardinal vein 

Ang-2   Angiopoietin 2 

Apelin-13scr   Apelin-13 scrambled  

APLN   Apelin 

APLNR  Apelin receptor 

ATCC   American Type Culture Collection 

BBB   Blood brain barrier 

bFGF   Basic fibroblastic growth factor 

cAMP   Cyclic adenosine monophosphate 

CD68, 11b  Cluster of differentiation 68, 11b 

CHO   Chinese hamster ovary cells 

CNS   Central nervous system 

CSF   Colony stimulating factor 

ECs   Endothelial cells 

EGF   Endothelial growth factor 

EMA   European Medicine Agency 

FDA   Food and Drug Administration (United States) 

GBM   Glioblastoma multiforme       

GFP   Green fluorescent protein 

GPCR   G protein-coupled receptor 

GSCs   Glioma stem cells 

HEK293  Human embryonic kidney 293 cells 

HIF   Hypoxia-inducible factor 

HS   Homo sapiens 
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IDH   Isocitrate dehydrogenase 

IBA1   Ionized calcium-binding adapter molecule 1 

IFNγ   Interferon γ 

IL   Interleukin 

ISVs   Intersomitic vessels 

EG5   Kinesin-5 

KD   Knock down 

KO   Knock out 

MM   Mus musculus 

NOS   Nitric oxygen synthase 

NPCs   Neural precursor cells 

NSCLC  Non-small cell lung cancer 

OPN   Osteopontin 

OS   Overall survival 

PCV   Posterior cardinal vein 

PDGF   Platelet-derived growth factor 

PDX                            Patient-derived xenograft  

PFS   Progression-free survival 

PIGF   Placenta growth factor 

(pyr1)apelin-13 Pyroglutamylated apelin-13 

qPCR   Quantitative PCR 

siRNA   Small interfering RNA 

SVZ   Subventricular zone 

TAMs   Tumor-associated myeloid cells 

TMZ   Temozolomide 
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VEGF   Vascular endothelial growth factor 

VSMCs  Vascular smooth muscle cells 

WHO   World health organization 

WT   Wild type 
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4. Introduction	
 

4.1 Glioblastoma	multiforme	
 

Gliomas are the most common primary brain cancers among adults, accounting for 80% of all 

brain tumors. Among them, glioblastoma multiforme (GBM) is diagnosed in 65% of the cases 

[1-3]. The World Health Organization (WHO) classifies GBMs as grade IV gliomas and, 

according to the new guidelines of the 2016 Classification of Tumors of the Central Nervous 

System (CNS WHO), divides them into isocitrate dehydrogenase gene (IDH)-wildtype (WT) 

and IDH-mutant. IDH-WT GBMs originate de novo, while IDH-mutants are secondary tumors 

developed from a low-grade glioma. The average survival rates of IDH-wildtype and IDH-

mutant GBMs are approximatively 14-16 and 27 months, respectively [4]. Typical features of 

grade IV gliomas are abundant necrosis, the highly invasive behavior, and the presence of 

numerous microvascular proliferations [5, 6]. 

Neovascularization is a fundamental step in the distinction between low-grade and high-grade 

gliomas: the progression from a low-grade to a high-grade tumor is not only associated with an 

increased infiltrative behavior, but also with increased vascular proliferation [7-9]. This 

phenomenon, known as the “angiogenic switch”, defines GBM as a fatal disease and explains 

the recent attempts in cancer research to block angiogenesis with anti-angiogenic agents [9, 10]. 

Tumor transformation to a fatal high-grade status is a matter of intense study and the possibility 

to predict disease progression would be an important achievement for patient-specific 

therapeutic interventions. Rees and colleagues demonstrated that two reliable factors for 

malignancy prediction of gliomas are tumor volume and its growth rate, this latter showing an 

exponential curve for the brain tumors that will undergo a low- to high-grade evolution [11]. 

GBM was classified by gene expression profiling into four different subclasses: proneural, 

neural, classical, and mesenchymal. Recent studies, however, dismissed the “neural” category 

as a proper subgroup because of its lack of typical genetic abnormalities that would allow a 

GBM classification under this name [12]. In fact, the neural subtype expresses genes that are 

also found in non-tumor tissue and it is mostly represented by the marginal tumor regions, 

where GBM cells alternate with brain parenchyma. It is therefore a less-defined GBM 

subgroup, in contrast to the other ones that are mostly found in the contrast-enhancing regions 

of the tumor core [13].  

The GBM subgroups do not only differ in the altered expression of molecular pathways, but 

also in the therapeutic responses to treatments and in clinical outcomes, with an average 
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survival advantage in the proneural subtype and a worse outcome in mesenchymal GBM [14]. 

It is important to underline that often a tumor mass does not belong to a single subtype, but 

presents itself as a heterogeneous mass containing tumor areas with different subtypes [12, 15, 

16]. GBM subgroup heterogeneity, a major challenge to therapeutic efficacy, is not restricted 

to a spatial axis, but develops along the temporal one too: the evolution of the disease after 

recurrence implies changes in the subgroup features with a typical progress to the mesenchymal 

classification [17].  

Characteristic pathological features of these GBM subtypes can be recapitulated by genetic 

manipulations of neural precursor cells (NPCs): these manipulations include the ablation or 

mutation of the tumor suppressor p53, deletion of neurofibromatosis-1 (NF1), or loss of cdkn2a 

genes. Concomitant with these loss-of-function mutations, gliomagenesis requires the 

upregulation of a proto-oncogenic gene, such as the epidermal growth factor receptor (EGFR), 

the platelet derived growth factor receptor-A (PDGFRA), or a constantly-activated form of 

EGFR (EGFR-variant-3, EGFRvIII) [16, 18].  

Intratumoral heterogeneity is enhanced by the presence of non-tumoral cells that contribute to 

GBM growth or suppression: natural killer cells, dendritic cells, CD8+ or CD4+ T-cells, 

microglia, macrophages, Treg cells, and endothelial cells (ECs) (Figure 1). The latter five are 

generally involved in GBM progression and represent the major targets for innovative 

therapeutic interventions [19-21]. 

Currently, the standard treatment for GBMs consists in surgical resection (when possible), 

followed by combined radiotherapy and temozolomide (TMZ) chemotherapy, and TMZ alone 

as adjuvant at the end of irradiation. Corticosteroids are administered in case of brain edema 

and when necessary also after tumor resection [22, 23], but a recent study performed by Pitter 

et al. reported corticosteroid adverse effects on patient overall survival (OS) [24]. Despite the 

aggressive therapeutic regimen, relapse normally occurs in proximity to the first lesion, 

specifically in close association with the invasive margins of the resected tumor mass [25-27].  

The absence of a successful treatment that provides a significant improvement in the length of 

the progression-free survival (PFS) period, if not a complete cure, for GBM patients, makes the 

discovery and testing of new drugs an urgent need in the field of cancer research.  
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Figure 1: The heterogeneity of the GBM microenvironment. The microenvironment of glioblastoma 
multiforme is very heterogeneous and characterized by the presence of numerous non-neoplastic cells: 
ECs and pericytes belonging to co-opted blood vessels or newly-synthesized vessels induced by the 
tumor-secreted angiogenic signals; tumor-associated microglia and macrophages, attracted by numerous 
cues released by the tumor cells; other tumor-associated immune cells, such as Tregs, natural killer cells, 
CD4+ and CD8+ cells, and dendritic cells. All these cells participate in the generation of GBM by acting 
in a pro-tumorigenic or anti-tumorigenic way.  

 

4.1.1 Tumor	angiogenesis	
 

The formation of new vessels is a fundamental process during embryogenesis and childhood, 

to sustain organ development and growth. In adulthood, vessels are quiescent and actively 

proliferate only during healing, ovarian cycle, pregnancy, and disease [28].  

In brain malignancies, it is believed that the tumor cells migrate along the existing vessels in 

order to assure blood supply, in a phenomenon known as “vessel co-option” [29]. Soon the 

growing tumor mass may reach a point when the level of oxygenation is not sufficient anymore, 

thus entering a hypoxic phase [30]. The production of the hypoxia-inducible transcription 

factors (HIFs) induces the secretion of growth factors that stimulate ECs to form new branching 

vessels for adequate sustainment of the tumor. ECs do not only support tumor growth by 

delivering oxygen and nutrients, but also by releasing important cytokines for maintenance of 

the cancer initiating and propagating cells [31, 32]. The ongoing angiogenic signaling generates 

an abnormal and unbalanced proliferation of ECs that form disorganized vessels characterized 

by high permeabilization, irregular pericyte coverage, and heterogeneous blood flow. The 

newly formed vessels are mostly nonfunctional and generate a vicious cycle that leads to 

increased hypoxia and tissue necrosis [33, 34]. The formation of such abnormal vessels lacking 
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proper tight junctions causes the disruption of the blood brain barrier (BBB) [35, 36] and the 

accumulation of interstitial fluid that enhances intra-tumoral pressure and originates a brain 

edema, one of the main causes of morbidity [30, 37].  

 

4.1.2 Anti-angiogenic	therapies	in	GBMs	
 
Due to its high vascularization, GBM is considered a perfect candidate to be targeted with 

antiangiogenic therapies [38]. Current treatments mainly target the VEGF - VEGFR signaling 

that, together with other pathways only more recently taken under consideration, plays a central 

role in GBM angiogenesis [31, 39].  

VEGFA is the best known component of the VEGF family and has a central role in maintaining 

the homeostasis of vessel growth and branching, acting as a growth factor to stimulate EC 

proliferation [40]. When VEGFA expression is induced by HIF1α in the hypoxic tissue, it acts 

in a paracrine fashion activating quiescent ECs [31, 40-42]. Inhibitors of VEGF and its 

receptors are widely approved by the United States Food and Drug Administration (FDA) and 

the European Medicines Agency (EMA) for the treatment of numerous malignancies, often in 

concomitance with chemotherapy [43]. 

The FDA approved bevacizumab (a humanized monoclonal antibody against VEGFA, also 

known under the trade name of Avastin®) for recurrent GBM, also as monotherapy. The EMA, 

however, rejected its use in glioblastoma [44, 45]. Phase II and III clinical trials for recurrent 

and primary GBMs reported increased PFS of patients treated with bevacizumab in 

combination with chemotherapy, or bevacizumab in combination with chemotherapy and 

radiation. These studies, however, did not detect any improvements in patient OS and the 

number of adverse events following therapies was higher in the bevacizumab-treated group [39, 

46]. Sorafenib and sunitinib, two inhibitors of receptor protein tyrosine kinases, did not give 

better outcomes: sorafenib trials in GBM are ongoing and results are not available yet [47], 

while the administration of sunitinib as monotherapy in phase II trials for GBM was 

unsuccessful [48]. 

The regimen of bevacizumab administration for GBM was adopted from the standard therapy 

of other tumors, but for improvements in clinical results the dose may need adjustments and the 

agent might not work with the same efficacy in the different GBM subtypes [39]. In fact, a 

deeper analysis of the results obtained in the Avaglio (Avastin® in Glioblastoma) study 

revealed that the use of bevacizumab in addition to the standard chemotherapy-TMZ regimen 
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significantly increased the OS of patients with a proneural IDH1 wild-type tumor, in 

comparison to the placebo group [49]. 

The general unchanged OS following the administration of an antiangiogenic agent can be 

explained by the increased invasive/aggressive tumor behavior [50]. This assumption is 

supported by a study on bevacizumab administration in an orthotopic GBM mouse model, 

where the antiangiogenic treatment selected a more invasive mesenchymal tumor phenotype 

[51]. Other studies in tumor-bearing mice reported an increase of metastasis formation 

following antiangiogenic treatments [52, 53] or VEGFA ablation [52].  

As mentioned in the beginning of this paragraph, VEGF signaling, despite playing a major role 

in tumor vascularization, does not act alone: there are many other factors that act in parallel to 

the VEGF axis and are upregulated in GBM neo-angiogenesis. Among these are e.g. the basic 

fibroblast growth factor (bFGF), the platelet-derived growth factor (PDGF), the placenta 

growth factor (PIGF), angiopoietin 2 (ang-2), and APLN [30, 54, 55]. Some of these have been 

found overexpressed in patient-derived GBM samples following bevacizumab administration 

[54, 56] and are under evaluation as alternative targets in different tumor mouse models and 

clinical trials for multi-targeting anti-angiogenic treatments [30, 54, 57, 58]. These treatments, 

which combine the targeting of the VEGF-VEGFR pathway and an additional angiogenic 

factor, already showed beneficial effects on animal survival in laboratory studies [54, 59]. 

Importantly, as I will describe in the next paragraphs, also the stromal cells involved in tumor 

progression as fibroblasts and myeloid cells contribute to tumor resistance to antiangiogenic 

therapies and GBM recurrence [60-63]. 
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4.2 	APLN-APLNR	signaling	
 

The APLN gene encodes for a 77 amino acid pre-propeptide that is cleaved into the different 

isoforms apelin-13, apelin-17, and apelin-36. The pyroglutamylated (Pyr1)apelin-13, which 

originates through post-translational modifications, is the most abundant form in the human 

cardiac tissue and, together with apelin-13, the most potent activator of APLN receptor [64]. 

Apelin-13 sequence is conserved among mammals [65] and comparison of human and Xenopus 

apelin-13 reveals sequence identity among vertebrates [55]. Mouse and human APLNR 

receptors show 91% of protein sequence homology [64]. 

APLN peptides bind to the receptor APLNR, a G-protein-coupled receptor that has the highest 

sequence homology to the angiotensin II receptor but does not bind angiotensin II [66]. 

Both ligand and receptor are abundantly expressed in the adult human central nervous system 

(CNS) and in various peripheral organs [65, 67, 68]. APLNR activation inhibits the production 

of cyclic adenosine monophosphate (cAMP), activates the PI3K/Akt and the proteinase kinase 

C (PKC) signaling pathways [69, 70], and increases intracellular calcium concentration [67]. 

The PKC pathway acts through the mitogen-activated protein kinase (MAPK) and the 

extracellular-regulated kinase (ERK) in the regulation of angiogenesis [71, 72] (Figure 2). In 

rats, intravenous administration of APLN lowers the blood pressure in a dose-dependent 

manner, by inducing nitric oxide synthase (NOS) phosphorylation [73]. APLN transcription is 

activated by hypoxia, which acts through a hypoxia-responsive element at the first intron [74, 

75]. 

Studies showed that the fate of the activated APLNR and its responsiveness to a persistent 

stimulus depends on the isoform of the binding APLN peptide: binding assays with APLNR 

fused to the green fluorescent protein (GFP) demonstrated that apelin-13 and apelin-36 recruit 

different β-arrestins, causing either the receptor internalization and rapid recycling to the cell 

surface, or its stable intracellular sequestration, respectively [76, 77]. Another study by Pope et 

al. reported that the fast mechanism of receptor internalization after stimulation with 

(Pyr1)apelin-13 is not mediated by β-arrestins, but dynamin-dependent clathrin-coated vesicles 

[78]. Hence, the heterogeneity of APLNR intracellular pathways increases the varieties of 

cellular responses and the possible physiological outcomes in consequence to the activation of 

the receptor. 

In addition to these numerous responses to the stimulation with the agonist peptides, in vitro 

and in vivo studies showed that the administration of the peptide apelin-F13A, where the 
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carboxyl-terminal phenylalanine is substituted with an alanine, has an antagonistic effect on 

APLNR activation [67, 79, 80].  
A recent crystallography study on the structure of the APLNR revealed a 2-sites binding mode 

of the APLN peptides [81]. Contrary to previous findings [67], in this latest study the antagonist 

peptide apelin-F13A did not show any decreased binding affinity to the APLNR [81]. 

 

 
Figure 2: The APLN-APLNR signaling. APLN peptides activate the receptor APLNR, a G-protein-
coupled receptor, which in turn lowers intracellular cAMP and induces PI3K and PKC. PI3K is 
associated with vasodilation, while PKC is involved in the control of cell proliferation and angiogenesis, 
acting through MAPK and ERK. The receptor may undergo different intracellular pathways, depending 
on the isoform of the binding APLN peptide and, consequently, on the intracellular vesicle-triggering 
proteins involved.  
 
 

4.2.1 APLN-APLNR	signaling	in	embryonic	development	
 
In Xenopus laevis, Cox et al. and Kälin et al demonstrated that the APLN-APLNR signaling 

plays a role in the development of the intersomitic vessels (ISVs): APLN expressed in the 

dermatomes first acts in an autocrine way to stimulate APLNR-expressing vessels coming from 

the posterior cardinal vein (PCV). The use of APLN- and APLNR-knock-down (APLN-KD, 

APLNR-KD) models revealed a disruption in ISVs, PCV and ventral plexus vessels in the 

absence of a proper APLN-APLNR signaling. Inui et al. reported a role of the APLN-APLNR 

signaling in the development and organization of the Xenopus cardiovascular system [82].  

In the developing cardiovascular system of the zebrafish, the APLN-APLNR signaling is a 

critical factor for the migration of myocardial progenitors [83].  
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Saint-Geniez et al. found that both APLN and the APLNR are strongly expressed in vessels and 

capillaries of the mouse developing retina, where they display differential staining patterns that 

hint to a migratory effect of APLN on APLNR-expressing endothelial cells. Their expression, 

however, decreases at later developmental stages [84]. In the mouse embryo, APLNR is 

expressed in the ECs sprouting from the dorsal aorta and in the migrating end of the anterior 

cardinal vein, but not in the pre-existing ECs of the dorsal aorta. APLNR expression in the 

sprouting ECs in the dermis of the neonatal mice is lost with maturity [85]. Hence, these 

findings suggest a transient role of the APLN-APLNR signaling, restricted to the ECs in the 

stages of angiogenesis. In vitro studies confirmed the role of APLN as chemoattractant on 

APLNR-transfected cell lines [86, 87], and as chemoattractant and mitogen on vascular ECs 

[55, 88, 89].  

Mutant mice lacking APLNR are born at a sub-Mendelian rate and half of the embryos dies in 

utero. The phenotypical characterization of these mice and their developmental defects revealed 

an impaired vasculature (with abnormalities or absence of important veins and arteries), a 

decreased number of vascular smooth muscle cells around vessels, and marked cardiac 

malformations [90].  

On the contrary, APLN ablation does not show increased lethality in embryogenesis, and APLN 

mutant mice have a normally developed vasculature and cardiac system, even though decreased 

hart contractility in aged APLN-knock-out (APLN-KO) mice was reported, indicating that the 

peptide has an important function to maintain a normal cardiac activity in the adult [91]. 

Postnatal APLN-KO mice show defect in retina vascularization, which recover with time. 

Ocular malformations, however, are six times more common in APLN-mutant mice, compared 

with controls [92]. 

A possible explanation for the viable phenotype of the APLN-KO mice is the presence of 

another ligand, called apela (or elabela or toddler), that binds to APLNR, thus maintaining the 

downstream signaling [93]. Apela acts in the very early phases of the embryonic development, 

hence it is also known as APLN receptor early endogenous ligand. It is expressed in human 

pluripotent stem cells and is able to induce receptor internalization in human embryonic kidney 

cells 293 (HEK293) and in Chinese hamster ovary cells (CHO) [94]. In zebrafish, it is the first 

hormone recognized by APLNR and its mutation causes cardiac malformations comparable to 

those observed in APLNR-null fish [95]. During zebrafish gastrulation, it is a fundamental 

signal for cell migration [96]. A recent model of apela-KO pregnant mice showed how the 

absence of this circulating hormone, which is normally produced by the placenta, induced pre-

eclampsia symptoms due to a defective placental angiogenesis, and was able to cause 
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embryonic malformations similar to the ones observed in the APLNR-KO mice. Importantly, 

the authors demonstrated that the loss of apela led to the upregulation of other pro-angiogenic 

factors, APLN included. Therefore, this early ligand, which may be responsible for the vascular 

integrity of both mother and fetus, plays an intertwined role together with APLN in the 

angiogenic process [97].  

  

4.2.2 APLN-APLNR	signaling	in	pathological	angiogenesis	
 

In addition to its physiological functions described in the previous paragraphs, the APLN-

APLNR signaling is involved in recovery and formation of new vessels during cerebral 

ischemia, limb ischemia and myocardial infarction [98-100]. This pathway, however, does not 

always positively affect disease outcome, and it is also associated with disease progression: 

Kasai et al. reported that APLN causes pathological retinal angiogenesis in mice with oxygen-

induced retinopathy. When APLN was knocked-down in endothelial cells, these showed 

decreased proliferation in favor to a maturation state in vitro; when implanted in vivo, the 

APLN-KD ECs had increased pericyte coverage, which supports vessel normalization [101]. 

This result was confirmed in APLN-KO mice that did not develop hypoxia-induced 

pathological retinal angiogenesis, in comparison with the affected WT controls [102]. 

Several gain-of-function studies addressed the impact of the angiogenic pathway APLN-

APLNR on cancer growth and progression. In 2007, Sorli et al. found that the subcutaneous 

implantation of a murine breast carcinoma cell line with induced APLN over-expression was 

able to generate tumors with faster onset and progression [103]. In accordance with these 

findings, APLN over-expression in a non-small cell lung cancer (NSCLC) cell line showed that 

these cells were able to generate subcutaneous tumors with a faster growth rate and an increased 

vessel density [104]. Contradictory results were reported in a similar subcutaneous model 

generated by a murine colorectal cancer cell line with APLN over-expression: the enhanced 

APLN signal inhibited tumor growth and led to enlarged and more mature tumor vessels. The 

discrepancies between the studies may be explained by the involvement of different 

downstream effectors of APLNR activation [105], but also by differences in the expression 

levels of the endogenous APLN and APLNR in the cell lines, with consequent variations in the 

paracrine and autocrine signaling generated [103, 106, 107]. 

A study performed on the use of bevacizumab to treat a subcutaneous mouse model of colon 

cancer reported an upregulation of APLN expression during the supposed vessel normalization 

window following the anti-angiogenic treatment [108]. The vessel normalization window is a 
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time frame obtained by blocking the unbalanced angiogenic signals induced by the tumor 

hypoxic areas, and it is characterized by more regular and non-leaky vessels, reduced hypoxia 

and reduced aberrant EC proliferation [33]. The upregulation of APLN as consequence of anti-

VEGF treatment may be a useful clinical tool to detect vessel normalization, but may also 

indicate tumor rebound through an alternative angiogenic pathway. 

Aside from the above-mentioned mouse models, numerous observations made on different 

types of human cancer resections suggested a central role for APLN-APLNR signaling in 

pathological angiogenesis and in the progression of malignancies [55, 80, 104, 109-111]. 

APLN was found to be upregulated in patient-derived samples of NSCLC, in comparison with 

normal lung tissue, and associated with a poor prognosis [104]. The analysis of 62 samples of 

patient-derived oral squamous cell carcinoma revealed a correlation between hypoxia-induced 

APLN expression upregulation and tumor recurrence [109]. Picault et al. reported an 

upregulation of APLN and APLNR in human colon adenocarcinomas and in colorectal cancer 

cell lines, suggesting the existence in these cells of a loop of autocrine signal that sustain tumor 

development [80]. An expression profile analysis of 1250 human cancer samples including 

head and neck squamous cells carcinoma, breast cancer, and clear cell renal cell carcinoma, 

reported APLNR as a signature gene of tumor angiogenesis [110]. A recent work done by Patel 

et al. identified a link between APLNR and the efficacy of immunotherapy administered to 

patients with metastatic melanoma and lung cancer. In particular, the authors found that the 

tumor samples from patients refractory to the therapy had multiple loss-of-function mutations 

in the APLNR gene, thus rendering tumor cells and vessels less responsive to interferon γ 

(IFNγ) released by T-cells. This finding highlights a new possible role of the APLN-APLNR 

signaling in the regulation of the tumor-associated immune-compartment, thus rendering the 

pathway an even more promising target for cancer therapy [111]. A study of our group on 

patient-derived GBM sections reported upregulated APLN and APLNR expression in tumor 

tissue and tumor vessels, with a co-localized expression of APLN and VEGFA in the tumor 

necrotic areas [55].  

Altogether, these data indicate a role of the APLN-APLNR signaling in the progression of 

different malignancies and in the growth and angiogenesis of glioblastoma. Therefore, a better 

characterization of the pathway in the context of GBM is essential to unravel another potential 

suitable target for future interventions. While the above-mentioned results were limited to the 

study of subcutaneously-implanted cell lines or primary tumor cells, the use of orthotopically-

implanted primary GBM cells allows a higher reproducibility of the human disease in the GBM 

mouse models. Moreover, in this doctoral work I present for the first time the use of primary 
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GBM cells with a manipulated expression of APLN, in order to better understand the role of 

this ligand and the activation of its receptor in the context of glioblastoma progression. 
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4.3 	GBM-associated	myeloid	cells	
 

Myeloid cells, which account for resident microglia and peripheral macrophages, are the most 

abundant non-neoplastic cells identifiable in a glioma, representing up to the 50% of the total 

number of cells in the tumor mass [63]. Microglia cells are resident cells of the central nervous 

system (CNS), while peripheral macrophages are circulating monocytes that enter the nervous 

system through the disrupted BBB [112]. The abundance of tumor-associated myeloid cells 

(TAMs) drove the attention on their role in the history of glioma progression. Studies using 

transgenic mouse models with depletion of the myeloid cell pool through the herpes simplex 

virus thymidine kinase (HSVTK) – glancicovir system gave contradictory results in terms of 

glioma growth, depending on a specific depletion of the resident microglia or of the circulating 

macrophages [113, 114]. As a consequence, these studies opened multiple possibilities on the 

individual role of each subpopulation, or on their specific activation status, in the panorama of 

GBMs.  

Traditionally, myeloid cell activation states were classified according to two categories, M1 

and M2, described as a classical inflammatory activation and a pro-tumorigenic activation, 

respectively. Recent discoveries, however, defined this classification as too artificial, as mainly 

deduced on gene expression profiles obtained in vitro, but not reproducible in a complex and 

heterogeneous setting as the in vivo tumor microenvironment, where transitions between states 

are less defined and in a persistent change [115, 116] . Thus, in this thesis I will not refer to the 

macrophage/microglia-polarization states, but I will simply refer to them as TAMs.  

4.3.1 The	tumor-supportive	role	of	TAMs	
 

Most studies on TAMs in GBM (in vitro, in vivo, and in the clinical setting) point to a tumor-

supportive role of these cells: TAMs, in fact, release matrix metalloproteases (MMPs) and EGF 

that increase glioma invasion [63, 117-119] and cooperate with growth factors such as VEGF, 

PDGF, FGF, and the transforming growth factor β (TGF β) in the promotion of tumor 

angiogenesis [62, 117, 120] (Figure 3). 

Nishie et al. demonstrated that the level of intratumoral macrophages correlated with glioma 

grade, being higher in grade IV gliomas in comparison to the lower grade ones. Moreover, the 

increase in TAMs also correlated with an increase in the vascular density measured in these 

samples, suggesting a direct effect of TAMs on neovascularization. The author postulated that 

IL8, the expression of which correlated with the increase of macrophages found in high-grade 

GBM samples, may have a role in their attraction to the tumor [121]. It is now known that IL8 
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expressed by glioma cells attracts myeloid cells and promotes angiogenesis [122], together with 

other molecules such as the colony-stimulating factor 1 (CSF1), the glial cell-derived 

neurotropic factor (GDNF), the granulocyte-macrophage colony-stimulating factor (GM-CSF), 

VEGFA, and ATP [63, 117, 123]. 

In vivo studies performed on orthotopic GBM mouse models demonstrated that TAMs are 

recruited by high levels of intratumoral hypoxia, and their presence is associated with tumor 

resistance to anti-angiogenic therapies  [124, 125]. The role of TAMs in recurrent GBMs was 

further assessed in a study conducted on a cohort of autopsies from GBM patients: the tumor 

resections after treatment with bevacizumab showed increased numbers of TAMs, quantified 

by staining with cluster of differentiation 68 (CD68) and CD11b, in comparison with the pre-

treatment samples. Moreover, the higher number of infiltrating myeloid cells inversely 

correlated with the OS of these patients [61]. The association between TAMs and resistance to 

anti-angiogenic therapy may also be indirectly deduced by the fact that, as already mentioned, 

resistance to anti-VEGF therapies correlates with a transition to the GBM mesenchymal 

subtype, which is characterized by ample intratumoral heterogeneity [12, 51]. 

In conclusions, targeting TAMs is a promising strategy in the field of cancer research, given 

the evidences in support of their pro-tumorigenic and immunosuppressive role and their 

involvement in tumor resistance to anti-angiogenic therapies [123, 126]. There are already some 

data available on the blockage of single pathways involved in TAMs recruitment in peripheral 

solid tumor and GBMs, which showed beneficial effects restricted to specific tumor typologies 

[127, 128]. 

 

 
Figure 3: The tumor-associated myeloid cells. Glioblastoma secretes numerous attractive cues that 
induce microglia and macrophage migration to the tumor. Myeloid cells sustain GBM growth and 
progression by releasing growth factors, cytokines, and metalloproteases that support tumor invasion 
and angiogenesis. 
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4.3.2 APLN-APLNR	signaling	and	tumor-associated	myeloid	cells	
 

A recent study conducted by Szulzewsky and colleagues analyzed the genetic expression of 

microglia and macrophages in the context of glioblastoma and identified two novel genes 

strongly upregulated in GBM-associated myeloid cells: these genes encode for the 

transmembrane glycoprotein NMB, also known as osteoactivin, and the secreted 

phosphoprotein 1 (SPP1), also known as osteopontin (OPN), respectively. The latter, in 

particular, acts on tumor cell invasion and binds to CD44, increasing the stemness properties 

of glioblastoma stem cells (GSCs) [129].  

The induction of macrophage proliferation and migration by different chemokines acting 

through OPN has been demonstrated in pathological contexts (obesity and diabetes) [130, 131]; 

in an in vitro study, apelin-13 upregulated OPN on rat vascular smooth muscle cells (VSMCs), 

[132].  

Therefore, given that both APLN-APLNR signaling and TAMs have important roles in tumor 

progression and angiogenesis, the exploration of the possible role of APLN and of the blockade 

of the APLN-APLNR signaling on TAM recruitment is a fundamental step to evaluate and fully 

understand how the pathway is implicated in GBM evolution. 
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5. Objectives	of	the	study	
 

The short survival expectancy of glioblastoma patients and the absence of a successful 

therapeutic intervention with long term benefits make the discovery of new GBM treatments 

an urgent topic in cancer research.  

In this thesis, to fully characterize the effects of the APLN-APLNR signaling on GBM growth, 

I pursued three main objectives: 

 

1- The analysis of APLN and APLNR expression and distribution in human and mouse 

primary GBM cells as well as in murine and patient GBM tissue; 

2- The study of the function of APLN-APLNR signaling by generating new models of 

human primary GBM cells depleted for APLN expression for in vitro and in vivo 

experimentation; 

3- The study of APLNR activation or blockade for potential GBM therapy, alone or in 

combination with anti-angiogenic approaches, and its effects on the tumor 

microenvironment. 

 

In the objectives n.1, the analysis of APLN and APLNR expression was performed on human 

and mouse primary GBM cells by quantitative PCR (qPCR); in addition, I extensively 

characterized the expression of both APLN and APLNR in human and mouse GBM samples, 

by qPCR and in situ hybridization. This last technique, when used on mouse xenografts with 

implanted human GBM cells, allowed me to distinguish between the tumor- and brain 

parenchyma-derived signals. 

 

In the objectives n.2, the new human primary GBM cell models with APLN loss were obtained 

by lentiviral transduction. After the assessment of the viability and proliferative abilities of the 

generated cells, their invasive potential was analyzed in vitro and the cells were orthotopically 

implanted to study in vivo the impact of APLN loss in GBM angiogenesis and growth. The in 

vivo and in vitro findings, demonstrating an enhanced tumor invasion detected after loss of 

APLN expression, brought me to the following secondary objectives: 

 

• The generation of human and mouse primary GBM cells with APLNR loss: the human 

primary GBM cells with APLNR loss were generated by lentiviral transduction and 

characterized in vitro for cell viability and proliferative potential; 
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• The analysis of the intracellular distribution of APLNR was evaluated after the up-take 

of GFP-linked apelin-13 peptides. 

 

In the objectives n.3, I focused on the use of anti-angiogenic therapies against the VEGF-

signaling and assessed the possible consequent upregulation of alternative angiogenic pathways 

or of the recruitment of TAMs. 

These objectives were divided into the following parts: 

 

• The analysis of APLN and APLNR expression in human- and mouse-derived GBM 

samples of tumors treated with anti-VEGF-signaling agents: this analysis was 

performed by qPCR in patient-derived GBM samples and mouse-derived GBM 

xenografts, previously treated with anti-VEGFA antibodies or VEGFR-2-blocking 

compounds; 

• The quantification of TAMs in mouse xenografts: given the possible direct role of the 

APLN-APLNR signaling on myeloid cell recruitment and some preliminary promising 

data obtained by my colleague Jonathan Muffler, I performed some experiments of 

immunostaining and quantified the ionized calcium-binding adapter molecule 1 (Iba1)-

positive cells in two different orthotopic GBM mouse models treated with the 

antagonistic peptide apelin-F13A.  
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6. Materials	and	methods	
 

6.1 			List	of	materials	
 

6.1.1	Cells	culture	–	Table	1 	

Material Brand Catalog Number 
B27 Invitrogen  17504-044 

Collagenase Serva 17456 

DMEM Biochrom FG0415 

DMEM-F12 Invitrogen 11320-074 

EGF R&D systems 236-EG 

Fetal Bovine Serum Life Technologies 102270-106 

FGF PeproTech 100-18B 

MEM non-essential amino acids Life Technologies 11140-035 

penicillin-streptomycin Life Technologies 15140-122 
 

6.1.2	Cloning	of	GIPZ	lentiviral	DNA	vectors	–	Table	2 	

Material Brand Catalog Number 

GIPZ APLN shRNA, hs Dharmacon GE Life 
Sciences 

RHS4430-EG187 
V3LHS_401190 

GIPZ APLNR shRNA, hs Dharmacon GE Life 
Sciences 

RHS4531- EG187 
V3LHS_634451 

GIPZ APLNR shRNA, hs Dharmacon GE Life 
Sciences 

RHS4531- EG187 
V3LHS_34449 

GIPZ APLNR shRNA, mm Dharmacon GE Life 
Sciences 

RMM4532-EG23796 
V2LMM_218787 

GIPZ APLNR shRNA, mm Dharmacon GE Life 
Sciences 

RMM4532-EG23796 
V3LMM_517943 

GIPZ non-silencing Lentiviral 
shRNA Control 

Dharmacon GE Life 
Sciences RHS4346 

LB medium Sigma Aldrich L-3397 

Midi Prep kit Qiagen 12143 

 

 

 



26 
 

6.1.3	Lentivirus	production	and	cell	transduction	–Table	3 	

Material Brand Catalog Number 
Accutase Sigma Aldrich A6964 

Hs PDGFB primers Eurofins Genomics - 

Puromycin Sigma Aldrich P8833 
TransLenti Viral GIPZ 
Packaging System Dharmacon GE Life Sciences TPLP4614 

Trypsin/EDTA  Merck Millipore L2153 
 

6.1.4	Quantitative	PCR	–	Table	4 	

Material Brand Catalog Number 
QuantiTec Reverse Transcription Kit Qiagen 205313 

TaqMan Gene Expression Master Mix Applied Biosystems 4369016 

Trizol ThermoFisher Scientific 15596-026 

Trypsin/EDTA  Merck Millipore L2153 
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em

s Gene Catalog Number 

Hs Actin Hs99999903_m1 

Hs APLN Hs00936329_m1 

Hs EG5 Hs00189698_m1 

Hs GAPDH Hs99999905_m1 

Hs HPRT1 HS99999909_m1 

Hs KDR Hs009117_m1 

Hs VEGFA Hs00900054_m1 

Hs APLNR Hs00945496_s1 

Mm apela Mm04278373_m1 

Mm APLN Mm00443562_m1 

Mm APLNR Mm00442191_s1 

Mm GAPDH Mm99999915_g1 

Rn APLN Rn00581093_m1 

Rn APLNR Rn00580252_s1 

Rn GAPDH Rn01775763_g1 

Rn KDR RN00564986_m1 
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6.1.5	Assessment	of	RNA	quality	–	Table	5	

Material Brand Catalog Number 
Agilent RNA 6000 Nano kit Agilent Technologies 5067-1511 

 

6.1.6	Viability	and	proliferation	assays	–	Table	6	

Material Brand Catalog Number 
CellTiter 96 Non-Radioactive Cell 
Proliferation Assay Promega G4000 

 

6.1.7	Invasion	assays	–	Table	7	

Material Brand Catalog Number 
(Ala13)apelin-13 Bachem H-6308.005 

Collagen I Gibco A10483-01 

pyroglutamylated apelin-13 Bachem  H-4568 
	

6.1.8	GBM	mouse	specimens	–	Table	8	

Material Brand Catalog Number 
Cryomatrix ThermoFisher Scientific 6769006 

Narcoren Merial - 
 

6.1.9	Immunostaining	–	Table	9	

Material Brand Catalog Number 
Alexa Fluor® 647 AffiniPure Donkey 
anti-goat Jackson Immunoresearch 705-607-003 

Alexa Fluor® 594 Streptavidin Jackson Immunoresearch 016-580-084 

Alexa Fluor® 488 Streptavidin Jackson Immunoresearch 016-540-084 

Alexa Fluor® 647 Streptavidin Jackson Immunoresearch 016-600-084 

Anti-APLNR made in rabbit Abcam  Ab66218 

Anti-iba1 made in goat Abcam Ab5076 
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Biotin-SP AffiniPure Donkey Anti-
Rabbit Jackson Immunoresearch 711-065-152 

DAB 2-components kit DCS Innovative 
Diagnostik-Systeme DC137C100 

DAPI Fluka 32670 

Donkey Serum Jackson Immunoresearch 017-000-121 

Entellan Merck Millipore 107960 

Dako Fluorescent Mounting Medium Dako S3023 

Hemalaun Sigma HAT1101128 
Peroxidase AffiniPure Donkey anti-
goat Jackson Immunoresearch 705-035-003 

Peroxidase Streptavidin Jackson Immunoresearch 016-030-084 

RotiHistol Roth  6640.1 

To-Pro™-3 Iodide ThermoFisher Scientific T3605 

Triton-X Fluka  93418 
Wheat germ agglutinin (WGA) Alexa 
Fluor® 594 ThermoFisher Scientific W11262 

 

6.1.10	Probe	generation	for	in	situ	hybridization	–	Table	10	

Material Brand Catalog Number 
DIG RNA labeling mix Roche Diagnostics 11277073910 

EcorI Fast Digest ThermoFisher Scientific FD0274 

KpnI Fast Digest ThermoFisher Scientific FD0524 

Mini Elute Reaction Clean-up Kit Quiagen 28204 

NotI Fast Digest Thermo Scientific FD0594 

Polymerase T3 Roche Diagnostics 11031163001 

Polymerase T7 Roche Diagnostics 10881775001 

Polymerase SP6 Roche Diagnostics 10810274001 

Quick Spin Columns Roche Diagnostics 11273990001 

SalI Fast Digest Thermo Scientific FD0644 
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6.1.11	In	situ	hybridization	–	Table	11	

Material Brand Catalog Number 
Acetic anhydride Sigma Aldrich 320102 

Anti-DIG antibody Roche Diagnostics 11093274910 

BCIP/NBT substrate Vector Laboratories SK-5400 

Proteinase K PeqLab 04-1070 

RNAse-Zap Sigma Aldrich R2020 

ssDNA – salmon sperm DNA Ambion AM9680 

co-precipitate RNA – Yeast RNA Ambion AM7118 

Triethanolamine Sigma Aldrich 09278 
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6.2 	List	of	devices	–	Table	12	
 

Device / Software Brand 
Agilent 2100 Bioanalyzer Agilent Technologies 

Agilent 2100 Expert software Agilent Technologies 

Axiovert25 Zeiss 

Axiocam MRm Zeiss 

Axiocam 105 color Zeiss 

Axioskop2 Zeiss 

Axiovision Rel. 4.8 software Zeiss 

Axiovision SE64 Rel. 4.9 software Zeiss 

LAS AF software Leica Microsystems 

LAS X software Leica Microsystems 

Leica SP5 confocal microscope Leica Microsystems 
Leica SP8X WLL upright confocal 
microscope Leica Microsystems 

Microtome Pfm Medicals 

SofMax Pro Software Molecular Devices 

StepOnePlus Instrument Applied Biosystems 

StepOne Software v2.2.2 Applied Biosystems 

Versa Max reader Molecular devices 
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6.3 	Techniques	
 

6.3.1 Animals	
 

All experiments were performed in compliance with the National Guidelines for Animal 

Protection, Germany, with approval of the local animal care committee of the Government of 

Oberbayern (Regierung von Oberbayern), the “Landesamt für Gesundheit und Soziales 

(LaGeSO)” in Berlin and every experiment was conducted after the guidelines of the UK Co-

ordinating Committee on Cancer Research [133]. 

All mice were kept in a 12 h light/dark cycle with ad libitum access to food and water. Mice 

were sacrificed at defined pre-symptomatic time points or at humane end-point for the survival 

experiments. 

 

6.3.2 Cell	culture	
 

Human primary GBM cells were obtained from surgically resected tumor samples at the 

Medical Faculty Heidelberg [134] and the Charité Medical University of Berlin, according to 

local ethical regulations. NPCs were isolated from the subventricular zone (SVZ) of Bl6/J or 

FVB mice bearing homozygous deletion in p53 or cdkn2a and APLN genes respectively, and 

subsequently transduced to obtain GBM specific subtypes.  

Human and mouse primary cells were cultured as floating neurospheres in DMEM-F12 

supplemented with 1X B27, 5% penicillin-streptomycin, 10 ng/ml EGF, and 10 ng/ml FGF.  

U87 MG cells were obtained from the American Type Culture Collection (ATCC). U87 APLN-

KD and non-silencing control (NSC) cells had been previously obtained by transduction with 

lentiviral vectors carrying the short-hairpin RNA (shRNA) of interest. For some experiments 

mentioned in this doctorate thesis, U87 MG, U87 APLN-KD, and U87 NSC cells were cultures 

under spheroid conditions with DMEM-F12 medium supplemented as mentioned above.  

All cells were maintained at 37 °C in a humidified atmosphere of 95% O2 and 5% CO2.  

 

 

 

 

 

 



32 
 

6.3.3 Cloning	of	GIPZ	lentiviral	DNA	vectors	
 

The plasmids of interest carrying the shRNA constructs for Homo sapiens (Hs) APLN-KD, Hs 

APLNR-KD, and NSC were acquired as glycerol stocks. Each glycerol stock was plated in LB 

medium containing ampicillin at a final concentration of 100 µg/ml and left on the shaker for 

16 hours maximum. Plasmid amplification and purification were performed according to the 

midi prep protocol of the manufacturer. 

 

6.3.4 Lentivirus	production	and	cell	transduction	
 

Lentiviral vectors carrying APLN-KD (V3LHS_401190), APLNR-KD (V3LHS_634451, 

V3LHS_34449, V2LMM_218787, V3LMM_517943), or NSC GFP-micro-RNA-adapted 

shRNA with the puromycin-resistance gene were produced in HEK293T cells using the 

TransLenti Viral GIPZ Packaging System according to the manufacturer´s instructions. Virus-

containing supernatant was harvested two days after transfection, filtered with a 0,22 µm filter 

to avoid cellular contamination and preserved at -80°C. For GBM cell transduction, the primary 

spheroids (GBM14, GBM#1, NCH644, and p53KO PDGFB) were dissociated with Accutase. 

8x104 cells were incubated with 500 µl of virus [multiplicity of infection (MOI) = 0,6-0,7] for 

six hours in a 24-well plate, then 1ml of medium was added and cells left overnight at 37°C. 

The day after, cells were centrifuged and resuspended in 1ml of fresh F12 medium. On the 

second day after transduction, cells were treated with 50 µl of Accutase and resuspended in 

fresh F12 medium. 

After cell recovery, puromycin was added to culture medium and selection maintained for 3 

weeks. The concentrations of the antibiotics had been previously determined by a kill curve and 

differed for each cell type. 

 

6.3.5 Generation	of	mouse	primary	GBM	cells		
 

NPCs were isolated from the SVZ of 30-day-old Bl6/J mice carrying homozygous deletion in 

the cdkn2a and the APLN genes. The isolated tissue was treated with trypsin for 15 min at 

37°C, then homogenized with a glass pipette and incubated with collagenase for other 10 min 

at 37°C.  

DMEM with 10% FSC was added to inactivate trypsin, centrifuged and substitute with DMEM 

F12 supplemented with growth factors. 
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Once cells recovered and formed spheres, the transduction with retroviral particles carrying 

human PDGFB-GFP or -dsRed gene was performed: 200000 cells were resuspended in 5 µl of 

medium and incubated for 2 hours at 37°C with 0,8 µl of viral particle, for a MOI of 80.  

VSV-G pseudotyped retroviral particles were kindly provided by F.Calzolari/M.Götz. The 

cDNA of human PDGFB was derived from the RCAS-pBIG plasmid (kindly provided by E. 

Holland, Fred Hutchinson Cancer Research Center Seattle, WA; USA).  

Fresh medium was added after 2 hours and cells left overnight at 37°C, until the complete 

change of medium on the next day.  

After transduction, red- or green-fluorescent neurospheres were selected to have a 100% 

transduced culture. The correct insertion of the human PDGFB gene was verified by PCR 

amplification (primers: HsPDGFB f2 5´-CAGCTGAAAGGGTGGCAACT-3´; HsPDGFB r2 

5´-ATGGTTCGTCTTCACTCGCC-3´) and ran on a 2% agarose gel. 

 

6.3.6 Quantitative	PCR	(qPCR)	
 

RNA extraction was performed using the Trizol protocol according to the manufacturer´s 

instructions. 1µg RNA per cell pellet or tumor sample was reverse-transcribed into cDNA using 

the QuantiTect Reverse Transcription Kit. The cDNAs were analyzed by quantitative PCR 

using the TaqMan Gene Expression Assays for the following Hs, Mm and Rattus norvegicus 

(Rn) genes: APLN, APLNR, apela, KDR, VEGFA, EG5, HPRT1 and GAPDH, with TaqMan 

Gene Expression Master Mix in a StepOnePlus Instrument. Samples were amplified with the 

standard running method provided by StepOne Software v2.2.2, increasing the cycle numbers 

to 45. In every run, the expression levels of the gene of interest were normalized to the 

housekeeping gene GAPDH, HPRT1, or actin. 

 

6.3.7 Assessment	of	RNA	quality	
 
To verify the extraction procedure and the quality of the extracted RNA, some of the isolated 

RNA samples (from cell pellets and tissue samples) were run on the Agilent Bioanalyzer with 

the Agilent RNA 6000 Nano kit according to manufacturer´s instructions. 
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6.3.8 Viability	and	proliferation	assays	
 

6000 cells/well were plated in 96-well plates in DMEM-F12 on day 0. Cell viability was 

measured after 24, 48, 72 and 96 hours using a tetrazolium compound-based assay (3(4,5-

dimethylthiazol-2-yl)2,5-diphenyl-tetrazoliumbromide, MTT) for cell metabolic activity 

according to manufacturer´s instruction, incubating the cells for one hour with the Stop Mix 

solution. Absorbance was measured with Versa Max microplate reader and SoftMax Pro with 

a reference wavelength of 630 nm. Background absorbance from empty wells was subtracted 

from all measurements and six replicate/samples were used in each experiment. Three 

experiments per cell type were done. 

 

6.3.9 Limiting	dilution	assay	
 

GBM14 APLN-KD (V3LHS_401190) and NSC cells were dissociated with Accutase, counted, 

and plated in triplicates at decreasing densities of 2000, 1500, 1000, 500, 200, 100 and 10 

cells/well in 200 µl of DMEM F12 in 96-well plates. 

Pictures were taken after 7 days under an Axiovert25 microscope with Axiocam MRm and 

Axiovision Rel. 4.8 software at 10x magnification. Sphere were quantified with Fiji  

(https://fiji.sc/, [135, 136]) and their umber adjusted for well area. The Extreme Limiting 

Dilution Analysis (ELDA), for the analysis of the stem cell frequency [137], was performed by 

uploading the data of the sphere-dilution assay to the software at 

http://bioinf.wehi.edu.au/software/elda/. 

 

6.3.10 Invasion	assays	
 

For these assays, also U87 cells have been maintained in spheroid conditions with DMEM-F12 

medium. Cellular spheres were picked up under an Axiovert25 microscope. In 24-well plates, 

each spheroid was plated into a 50 µl drop mixture of 1 mg/ml Rat Tail Collagen I, 10X PBS, 

1N NaOH and dH2O, diluted according to manufacturer´s instructions.  

To create an APLN-enriched environment, two conditions have been used: either an U87 MG 

sphere was plated in 75 µl of collagen mix with an APLN-KD (V3LHS_401190) or NSC 

sphere, or apelin-13 200 nM (pyroglutamylated apelin-13) was added to the collagen mix. For 

blocking conditions, apelin-F13A 200 nM ((Ala13)apelin-13) was added to the collagen mix. 

Collagen matrix was left gelling for 50 min at 37°C, then covered with 600 µl DMEM-F12. 
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Cell invasion was followed over a 7-days period and pictures taken every day under an 

Axiovert25 microscope with Axiocam MRm and Axiovision Rel. 4.8 software.  

Pictures were analyzed with Fiji and the invasive area (mm2) calculated as ΔA= (area covered 

on day n) – (sphere area at day0). 

 

6.3.11 APLN	up-take	experiments	
 
The APLN up-take experiments were performed with GBM14 cells. The cells were plated at a 

density of 10.000 cells/well on a glass coverslip previously coated with poly-D-lysin 50 µg/ml 

followed by laminin 50 µg/ml. The day after, the medium was replaced with 200 µl of fresh 

medium and the GFP-conjugated peptides or the polyplexes containing a Cy5-labelled siRNA 

were added at a final concentration of 1 µM. The Cy5-polyplexes and the GFP-conjugated 

peptides were kindly provided by Sören Reinhard, from the group of Prof. Dr. Ernst Wagner at 

the Department of Pharmacy, LMU Munich.  

Cy5-polyplexes: after plating on the cells, they were incubated on ice for 15 min, then medium 

was replaced with 250 µl of fresh medium and incubated for 45 min at 37 °C.  

GFP-labelled peptides: for the condition of competition, the non-labelled apelin-13 peptide was 

added at a concentration of 20 µM 30 min prior to the addition of the GFP-labelled apelin-13. 

The cells were incubated with the GFP-peptides for 120 min at 37 °C.  

After the incubation at 37°C, cells in both conditions were washed and fixed for 30 min with 

4% PFA. Afterwards, they were incubated for 10 min at room temperature with WGA-594 

1:200 and DAPI 1:1000 diluted in PBS. After staining, cells were washed and mounted on a 

glass slide with Dako Fluorescent Mounting Medium. The pictures were taken at the Leica 

SP8X WLL upright confocal microscope or at the Leica SP5 inverted confocal microscope, 

with the LAS X software, and analyzed with ImageJ.  

For the quantification of the GFP-positive cells, 6 pictures per condition were used, and for 

each picture the data were measured as number of GFP-positive cells (with bound or 

internalized GFP-particles) on the total number of cells, which were approximatively 

20/picture. 

 
6.3.12 Mouse	GBM	specimens	and	immunofluorescent	staining	

 
Tumor-bearing mice were transcardially perfused under Narcoren anesthesia with 1x PBS 

followed by 4% phosphate buffered PFA. Brains were post-fixed for two days in 4% PFA and 

then left in 30% sucrose for at least 24 hours at 4 °C. Freezing was performed embedding the 
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tissue in Cryomatrix and brains were preserved at -20°C. Tissue was sectioned horizontally in 

40 µm-thick slices on a microtome. Floating sections were washed with PBS, blocked for 1h at 

room temperature in 1X PBS containing 5% donkey serum and 0,3% Triton-X, and then 

incubated overnight at 4°C with the primary antibodies. On the second day, slices were washed 

in PBS and incubated for 3h at room temperature with the secondary (and tertiary when 

necessary) antibody, then washed with PBS and mounted with mounted with Dako Fluorescent 

Mounting Medium. All secondary antibodies were diluted in blocking solution. 

 

6.3.13 Immunofluorescent	staining	on	mouse	GBM	floating	sections	
 

Slice were incubated overnight at 4°C with goat anti-Iba1 and rabbit anti-APLNR primary 

antibodies, both diluted 1:100. On the second day, they were incubated for 3h at room 

temperature with donkey anti-rabbit biotynilated 1:250, then for 2h at room temperature with 

Alexa Fluor® donkey anti-goat 647 1:500, Alexa Fluor® conjugated streptavidin 594 1:500, 

and Dapi nuclear staining 1:10000. The pictures were taken at the Leica SP8X WLL upright 

confocal microscope, with the LAS X software.  

For immunostaining for the detection of the invading APLNR-positive GBM cells or the 

APLNR-positive NPCs in the SVZ, the same protocol with the primary antibodies rabbit anti-

APLNR was used. In these two experiments, the pictures were taken at the confocal microscope 

at Leica SP5 inverted confocal microscope with the LAS AF software.   

 

6.3.14 Human	GBM	specimens	
 
GBM samples were obtained from the Neurosurgery Department of the University Clinics 

LMU Munich. Samples were classified as “center” or “border” of the original tumor mass, 

according to their position at the time of surgical resection. Necrotic tumor tissue as evaluated 

by H&E was excluded from the analysis. Paraffin slides of the GBM sample that underwent 

stereotactic resection were obtained from the Center for Neuropathology and Prion Research 

(ZNP) LMU Munich. With each section obtained from this specimen a surgical depth (indicated 

as distance in mms from the target point 0 defined by the neurosurgeon) and a histopathological 

description was attributed. The studies were conducted according to the local standard ethical 

regulations. 
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6.3.15 Immunohistochemistry	with	horseradish	peroxidase	(HRP)	on	mouse	
GBM	floating	sections	

 
Human paraffin-embedded tissue was left in isopropanol heated to 60°C for 30 min, then in 

acetone at -20°C for 10 min. After one wash in distilled water, it was washed in PBS. At this 

point, the human mounted tissue or the mouse floating sections were incubated for 10 minutes 

with H2O2 0,3%, methanol 50%. After washing with PBS, slices were blocked for 1h at room 

temperature in 1X PBS containing 5% donkey serum and 0,3% Triton-X, then incubated 

overnight at 4°C with goat anti-Iba1 primary antibodies diluted 1:100.  

On the next day, after rinsing with PBS, the human tissue was incubated with the secondary 

antibodies donkey anti-rabbi biotynilated 1:250 for 3h at room temperature, and subsequently 

with the third antibodies streptavidin HRP-conjugated, 1:500 for 2h at room temperature.  

On the second day, after rinsing with PBS, the mouse slices were incubated for 3h at room 

temperature with the secondary antibodies donkey anti-goat HRP-conjugated, 1:500.  

After the incubation with the respective antibodies, the slices were washed with PBS and the 

chromogenic reaction was obtained by incubating the tissue for 10 min with DAB: DAB 

chromogen was mixed with DAB substrate according to manufacturer´s instructions.  

After being washed with PBS and ethanol 70%, tissue was incubated in hematoxylin for 2 min, 

then in graded alcohol (70-100%) and Roti Histol. Slides were mounted with Entellan. 

For the quantification of the iba1-positive cells, pictures were taken at 40x magnification at the 

Axioskop2 microscope with Axiocam 105 Color and Axiovision SE64 Rel. 4.9 software and 

quantified with Fiji. For each mouse, 3 to 4 slices were considered. Slices in which the tumor 

was located in the ventricular space were excluded from counting. For each slice, three areas 

were analyzed: intratumoral, defined as the area with densely-distributed tumor cells; 

peritumoral, defined as the area lining the mass of dense tumor cells; contralateral, defined as 

the area in the hemisphere opposite to the tumor-bearing one. For each area, 2 to 4 pictures 

were taken, depending on the dimension of the tumor mass. In the graphs, the quantification is 

shown as number of cells/area of the picture (µm2).  

 

6.3.16 Hematoxylin	and	Eosin	staining		
 
Paraffin-embedded samples were cut into 15 µm-thick slices and mounted on slides. 

Deparaffination was done with serial passages into Roti-Histol and graded alcohol (100%-70%) 

for a Hematoxylin & Eosin staining (H&E) according to the standard protocol. Slides were 

mounted with Entellan. 
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6.3.17 Probe	generation	for	in	situ	hybridization	
 
Probes were generated as previously described [55]. Briefly, for linearization, the plasmids 

(Life Technologies) carrying the genes of interest were incubated with the restriction enzymes 

Fast Digest for the time and at the temperatures indicated in the table below: 

Table 13 – Plasmid linearization for in situ probe synthesis 

Gene Enzyme Temperature Time (min) 
Enzyme inactivation 

Temperature Time (min) 

Hs APLN anti-sense EcoRI 37°C 30 80°C 

15 

Hs APLN sense NotI 37° C 60 80°C 

Hs APLNR anti-sense EcoRI 37° C 30 80°C 

Hs APLNR sense KpnI 37° C 30 80°C 

Mm APLN anti-sense SalI 37° C 30 65°C 

Mm APLN sense NotI 37° C 60 80°C 

Mm APLNR anti-sense SalI 37° C 30 65°C 

Mm APLNR sense NotI 37° C 60 80°C 

Hs VEGFA anti-sense SalI 37° C 30 65°C 

 

For confirmation, the linearized plasmids ran onto a 1% agarose gel and were purified with the 

MinElute Reaction Clean-up Kit according to the manufacturer´s instructions. 1 µg of each 

purified linearized plasmid was taken for probe synthesis and incubated for 5 hours at 37°C 

with DIG-labelled RNA according to manufacturer´s instructions. The polymerases T3, T7, or 

SP6 (Roche Diagnostics) were used according to each promoter. 

The enzymes were subsequently inactivated with the addition of EDTA for 5 minutes at 65°C. 

Probe generation was verified by running on a 1% agarose gel.  

The probes were then purified with the Quick Spin Columns according to the manufacturer´s 

protocol. The concentrations of the purified DIG-labelled probes were measured prior to the 

performance of the in situ hybridization. 

 

6.3.18 In	situ	hybridization	
 
The bench and the instrumentation were carefully cleaned with RNAse-Zap and solutions were 

prepared with RNAse free water and sterilized. Sections on slides were deparaffinized by serial 

passages into Roti-Histol and graded alcohol (100%-25%). Tissue was permeabilized with 10 
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min incubation in 10 µg/ml of Proteinase K. Slides were fixed for 10 min in 4% 

paraformaldehyde (PFA) and blocked for 10 min with 2,5 % Acetic Anhydride in 1,5% 

Triethanolamine. Sections were dried for 2 hours at room temperature, then incubated overnight 

at 65°C in a humidified chamber with DIG-labelled antisense or sense probes at a final 

concentration of 7 µg/ml, diluted in a hybridization solution containing 100 µg/ml ssDNA, to 

mask unspecific binding, and 100 µg/ml co-precipitant RNA. The probe-containing 

hybridization solution was boiled at 95°C for 10 min before application. On day two, unspecific 

signal was removed with graded stringency washes with saline sodium citrate from 20x to 0.1x 

and incubated overnight at 4°C with alkaline phosphatase-conjugated anti-DIG antibody diluted 

in 10% sheep serum. On day three, slides were washed in PBT (0,1% Tween in 1xPBS) and 

incubated with BCIP/NBT substrate at 37°C for up to four days. For counterstaining with Eosin, 

slides underwent serial passages in graded alcohol (70%-100%) till Roti-Histol and were then 

mounted with Entellan. Pictures were taken under an Axioskop2 microscope with Axiocam 105 

Color and Axiovision SE64 Rel. 4.9 software. 

 

6.3.19 Statistical	analysis	
 
All statistical analysis was performed with the GraphPad Prism Software. The statistical tests 

used in each experiment are indicated in the figure legends. P-values were considered 

statistically significant when <0,05 (*p<0.05, **p<0.005, ***p<0.0005). Analysis was 

performed with Student’s t-test, one-way ANOVA with Newman Keuls post-hoc test, or two-

way ANOVA test. 
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7. Results	
 

The	role	of	the	APLN-APLNR	signaling	in	GBM	progression	
 

7.1 	APLN	and	APLNR	expression	in	GBM	

7.1.1 APLN	and	APLNR	are	expressed	by	primary	cultured	GBM	cells	at	variable	
levels	

 
Initially, I verified that both cultured cells and tumor tissue used in the study express APLN 

and APLNR.  

Our research group possesses different human primary GBM cell types derived from patient 

tumor resections. Moreover, we have murine GBMs obtained from p53-KO or cdkn2a-KO 

NPCs that were transduced with vectors carrying GBM-specific proto-oncogenes to reproduce 

the typical human GBM subgroups. The tumorigenicity of the transfected cells was verified in 

vivo and the tumor histology confirmed by a neuropathologist.  

The qPCR analysis was performed on primary patient-derived GBM cells, human GBM cell 

lines, primary NPCs-derived mouse GBM cells, and WT NPCs (Figure 4 A, B, C, D).  

I detected APLN expression in all our GBM cell types. In all the analyzed primary GBM cells 

APLN levels showed inter-group variation, without correlation with any of the GBM genetic 

subtypes (Figure 4A, B). In the human primary GBM cells, APLNR expression varies among 

cell groups and does not show any particular correlation with the genetic subtypes (Figure 4C). 

In NPCs-derived GBM cells, APLNR expression was generally low and did not correlate with 

either the proneural or classical subgroups; among these cells, however, an extremely high 

expression of APLNR was shown in the p53-KO PDGFB group, which is extremely invasive 

when implanted in vivo (Figure 4D).  
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Figure 4: qPCR analysis of APLN and APLNR expression in primary GBM cultures. (A) 
Expression analysis of APLN was performed by qPCR on patient-derived GBM cells of different genetic 
subtypes. Experiments were conducted in triplicates; (B) Analysis of APLN expression in different 
murine glioma cell cultures carrying driver mutations that are representative of different human GBM-
subtypes. In APLN-KO NPCs no APLN mRNA was detectable.; (C) APLNR expression analyzed by 
qPCR also shows variability among the primary human GBM batches divided according to their genetic 
subtype; (D) The murine GBM cells generally express low levels of APLNR, which was extremely high 
in the p53KO PDGFB group. One-way ANOVA with Newman Keuls post-hoc test, *p<0.05, 
**p<0.005, ***p<0.0005 and GAPDH was used as housekeeping gene for all the experiments.  
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7.1.2 Immunofluorescent	detection	of	APLNR	in	the	NPCs	along	the	SVZ	
 

APLNR expression had already been detected in the mouse hippocampal neurogenic niche 

[138], and, at paragraph 7.1.1, I demonstrated that APLNR is detectable by qPCR in SVZ-

isolated WT NPCs and in NPCs-derived mouse primary GBM cells.  

To test if in vivo APLNR was detectable in the NPCs of the SVZ neurogenic niche, I performed 

an immunofluorescent analysis on the SVZ of nestin-GFP reporter mice. Nestin-GFP reporter 

mice express GFP under the nestin promoter [139]. Nestin is a marker for NPCs along the 

neurogenic process [140], which were therefore GFP-labelled in the neurogenic niches of these 

mice.  

The results shown in figure 5 demonstrated that, in vivo, the NPCs along the SVZ expressed 

APLNR and may thus be responsive to the ligand APLN. To-ProTM Iodide was used as nuclear 

staining. In accordance with the previous findings obtained by qPCR on the analysis of APLNR 

expression in mouse NPCs, the fluorescent staining demonstrated that APLNR is detectable in 

some nestin-positive NPCs in vivo as well. In addition, the APLNR signal was detectable in 

other non-nestin-positive cells of the SVZ, thus indicating that the responsiveness to the APLN 

signal is not restricted to the NPCs (Arrows in figure 5A, B, and C). 
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Figure 5: APLNR is expressed in the NPCs lining along the SVZ. (A) In nestin-GFP reporter mice 
I observed different NPCs co-stained for APLNR, indicated by the arrowheads. The asterisks in the 
overviews indicate the areas enlarged. In the enlargements, the cross-hair shows a cell positive for 
nestin and APLNR; In (B) and (C) the overviews and cross-hair show other areas along the SVZ 
where double-stained NPCs, indicated by arrowheads, are detectable. The asterisks indicate the 
enlarged cells, which show a strong APLNR signal at the cell body and at the cell protrusions as well. 
Scale bar in the overviews = 50µm, in the enlargements = 10µm. In A, B, and C the arrows indicate 
non-nestin-positive cells that express APLNR. 
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7.1.3 APLN	and	APLNR	are	strongly	expressed	in	GBM	cells	and	in	tumor	
vessels	of	mouse	GBM	xenografts	–	In	situ	hybridization	

 
Once APLN and APLNR expression was confirmed in our cultured primary GBM cells, I 

verified that both ligand and receptor would be detectable in mouse tumor xenografts and 

checked for their cellular distribution: to do this, I performed in situ hybridization on mouse 

GBMs generated by U87 cells. These xenografts were used as a positive control to establish the 

protocol, as U87 GBM cells showed the highest level of APLN expression by qPCR analysis 

(see figure 4A).  

On these samples I also verified the presence of VEGFA, which is upregulated by tumor 

hypoxia [42] and was previously reported to be detected in APLN-expressing regions of human 

GBM by in situ hybridization [55]. 

The different species of the tumor cells (human) and the brain parenchyma (mouse) allowed 

me to distinguish between APLN, APLNR, and VEGFA expressed by either the tumor or its 

microenvironment, by using human (Hs)- or mouse (Mm)-specific antisense RNA probes.  

In these mouse xenografts APLN and APLNR were detectable in the U87 tumor mass (Figure 

6A): Hs APLN was homogeneously expressed by the GBM cells across the tumor; Mm APLNR 

was upregulated in the tumor vessels originated in the GBM microenvironment and not 

detectable in the tumor-free contralateral hemisphere. 

In the xenografts in figure 6B, as observed for Mm APLNR, Mm APLN was upregulated in the 

tumor tissue, in comparison with the tumor-free hemisphere. In addition, the signals of Mm 

APLN and Hs VEGFA, even though deriving from different sources, showed a similar 

localization across the tumor mass: while Hs VEGFA was found in human cells of the tumor 

mass indicative for hypoxic regions, Mm APLN was detected in the tumor vessels of the 

VEGFA-positive area.  

These results allowed me to conclude that the method of in situ hybridization is a reliable 

technique for the detection of APLN, APLNR, and VEGFA expression in vivo; moreover, I 

found that Hs VEGFA and Hs APLN are upregulated in the tumor cells, and Mm APLN and 

Mm APLNR are upregulated in the newly forming vessels of the xenografts. 

Next, I investigated APLN and APLNR expression in a murine GBM model obtained by the 

implantation of p53-KO PDFGB cells (Figure 6C). These cells generated fast-growing and 

invasive tumors, where the neo-angiogenic areas of the tumor necrotic regions expressing 

APLN and APLNR were strongly identified by in situ hybridization. In accordance with the 

previous results shown in figure 6A and B, in the murine GBM model I detected an upregulation 
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of both APLN and APLNR in the tumor cells and in the newly forming tumor vessels, in 

comparison to the non-tumor areas of the xenografts (Figure 6C). 

I confirm the specificity of the signals by using sense probes that did not hybridize with the 

tissue (Figure 6D). 
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Figure 6: Spatial localization of APLN and APLNR expression in mouse GBM xenografts. (A) The 
overviews show that the signals of APLN and APLNR obtained by in situ hybridization are very strong 
in the GBM mass. APLN and APLNR show different expression patterns between tumor cell and tumor 
microenvironment: APLN, detected in the human GBM cells U87, shows a diffuse staining across the 
tumor, while APLNR, detected in the mouse cells, depicts the mouse blood vessels in the GBM mass, 
as better illustrated by the enlargement; (B) VEGFA and APLN signals are detectable in the GBM mass 
originated by U87 cells, but not in the contralateral tumor-free hemisphere. The enlargements show that 
their expression patterns are similar across the tumor mass. Scale bar = 500µm. 
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Figure 6 (continued): Spatial localization of APLN and APLNR expression in mouse GBM 
xenografts. (C) The tumors originated by p53-KO PDGFB cells are highly invasive and give a 
substantially less compact mass than the ones obtained with U87 cells. The signals of APLN and 
APLNR in the tumor vessels (asterisks) and tumor cells (arrowheads) are strongly detected by in situ 
hybridization around the necrotic areas (indicated by arrows in the overviews). The enlargements show 
the details of APLN and APLNR signals in cells and vessels. (D) The sense-control probes did not bind 
and did not give any signals in the mouse GBM xenografts originated by the implantation of U87 MG 
cells. Scale bar = 500µm.  

 

 

7.1.4 APLN	and	APLNR	are	abundantly	expressed	in	patient-derived	GBM	
samples	–	In	situ	hybridization	

 

Next, to evaluate the cellular distribution of the APLN-APLNR signal in human GBMs, I 

performed in situ hybridization on a patient-derived GBM sample obtained from the 

Neurosurgical Department of the LMU University Clinics. The H&E staining of these GBM 

sections, used to verify the architecture of the tissue and for comparison with the in situ 

hybridization signal, allowed me to distinguish between an area very dense with tumor cells 

and a region with healthier tissue (Figure 7A).  

The APLN and APLNR signals detected by in situ hybridization resembled the H&E features 

of the sample and showed a clear distinction between the cell-dense tumor areas of the specimen 
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and the more tumor-free regions, thus indicating a correlation between APLN/APLNR 

expression and the presence of tumor tissue (Figure 7A).  

With inspection at higher magnification, the expression of APLN an APLNR in the tumor-

dense area was detectable in the tumor cells and in the ECs (Figure 7B). APLNR signal was 

very intense at the single-cell level across the tumor and in the regions surrounding the vessels, 

as shown in the enlargement; APLN signal, instead, although detectable as well in the cells 

sparse in the tissue, was more intense in the ECs. A similar expression pattern was found on 

another section of the same GBM analyzed subsequently (Figure 7C). Importantly, APLN and 

APLNR were not detectable in the control samples obtained from healthy brain, confirming a 

specific role of the signaling in tumor progression (see Figure 14). Neither APLN nor APLNR 

sense-probe gave a detectable signal in the control hybridization (Figure 7D). 

 

In conclusion, with the analysis of the mouse tumor xenografts and the patient-derived GBM 

samples, I demonstrated that APLN and APLNR are upregulated in the tumor mass and this 

upregulation correlates with the areas of tumor tissue, thus indicating that the APLN-APLNR 

signaling plays a role in GBM progression. Moreover, their absence or very low detection 

outside the tumor or in non-tumor-associated blood vessels indicated that the signaling function 

is restricted to tumor neo-angiogenesis. In the human specimens, the cellular pattern observed 

for APLN suggested a more prominent detection of the ligand in the tumor vessels, while the 

APLNR expression, although detectable as well in the ECs, was generally more diffuse across 

the tissue and gave a very intense signal at the level of single GBM cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

51 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 7: APLN/APLNR expression is upregulated in the cell-dense tumor tissue. (A) In situ 
hybridization for APLN/APLNR characterization was performed on a patient-derived tumor sample: as 
shown in the H&E staining, the sample presents a tumor-dense area, on the right, opposed to a more-
normal-looking region, on the left. The intensity of the in situ hybridization signals correlates with the 
density of the tumor cells; Scale bar = 500µm; (B) As shown in the enlargements indicated by the red 
asterisks, APLNR signal is very sharp at the single-cell level (arrowheads) surrounding the vessels 
(arrows); APLN signal, instead, even though equally detectable at the single-cell level (arrowheads), is 
mostly upregulated on vessels (arrows). The H&E staining is used as reference for the tissue structure 
and the vessels are indicated by asterisks. Scale bar in the overview = 100µm; (C) Another section of 
the same specimens analyzed by in situ hybridization show the same pattern for the APLN and APLNR 
staining. The asterisks indicate the enlarged regions, the arrows the ECs and the arrowheads the positive 
cells in the tumor tissue. Scale bar in the overviews = 100µm; (D) The sense probes tested on these 
sections did not did not give any detectable signal. The asterisks indicate the enlarged regions. Scale bar 
in the overviews = 100µm. 
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7.2 	APLN	and	APLNR	expression	in	GBMs	correlates	with	the	
angiogenic	switch	

 
To further assess the involvement of the APLN-APLNR signaling in tumor angiogenesis, I 

analyzed various samples obtained from a serial-implantation GBM rat model that allows the 

study of GBM angiogenic switch [141]. The model was originated with the orthotopic 

implantation of patient-derived GBM cells, which were sequentially isolated and re-implanted 

in another receiver. Up to the third re-implantation event, this patient-derived xenograft (PDX) 

model produces highly infiltrative brain tumors that recruit the pre-existing vasculature without 

apparent signs of neo-angiogenesis. With serial passaging in animals the tumors gradually 

transform into a vessel-rich phenotype (angiogenic switch) (Figure 8A) [142]. An advantage of 

the PDX model is that the gene expression contributed by the GBM cells or by the host can be 

identified individually by qPCR analysis, by using human or rat (Rn) TaqMan primers.  

Furthermore, the modulation of the EGFR signaling can induce the angiogenic phenotype and 

can be used as an additional model of GBM angiogenic switch, thus providing another method 

to uncover signaling pathways that control angiogenesis and invasiveness in GBM [143] 

(Figure 8A). In this last model, the EGFR signaling was inactivated by transducing patient-

derived GBM cells presenting EGFR amplification with a lentivirus carrying a dominant-

negative form of the receptor. I analyzed the xenografts deriving from both the serial 

transplantation and the EGFR-blockade models, which had been previously classified by a 

neuropathologist as either invasive or angiogenic [142, 143], in order to determine changes in 

the APLN/APLNR expression at the angiogenic switch.  

First, I evaluated the gene expression-patterns of the PDX model by comparing the expression 

levels in the initial generation against the later generation of tumors originated from different 

patients: I found that tumor cell-derived expression levels of Hs APLN and Hs APLNR were 

not altered throughout the change from an invasive to an angiogenic phenotype; however, the 

expression of Rn APLN and Rn APLNR increased dramatically in the tumor microenvironment 

of the angiogenic GBMs (Figure 8B). Interestingly, tumor-derived VEGFA levels did not 

change significantly, while the increase of KDR (encoding for VEGFR2) expression level in 

the tumor microenvironment correlated with the angiogenic switch (Figure 8C). As KDR is an 

endothelial marker and APLN and APLNR are assumed to be too (see figures 6 and 7), the rat 

expression seems to reflect the newly formed ECs. 
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Second, I analyzed the tumor xenografts deriving from the EGFR-blockade model and 

confirmed the above-mentioned findings: the expression of host-derived Rn APLN and Rn 

APLNR increased in the tumor microenvironment of the angiogenic GBMs, in comparison to 

the invasive ones (Figure 8D). 

 

In conclusion, the analysis of the PDX model allowed me to demonstrate that, not only APLN 

and APLNR are upregulated in the tumor tissue, but also that their signal positively correlates 

with tumor angiogenesis. 

 

 

 

 

 
 
Figure 8: The upregulation of the APLN-APLNR signaling in GBMs correlates with the 
angiogenic switch. (A) The scheme represents the two models of angiogenic switch used in this 
analysis: model n.1 refers to the spontaneous angiogenic switch obtained by the passaging of the human 
tumor GBM cells between rats; model n.2 refers to the switch induced by the implantation of cells 
previously transduced with a dominant negative form of EGFR. 
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Figure 8 (continued): The upregulation of the APLN-APLNR signaling in GBMs correlates with 
the angiogenic switch. (B) The results obtained by qPCR show that, in the tumor microenvironment, 
the angiogenic switch is associated with a significant upregulation of APLN and APLNR. The graphs 
at the top represent the single samples, which are grouped in the graphs at the bottom for the statistical 
analysis. Housekeeping gene: GAPDH. For APLN and APLNR samples were 8 and 5 respectively, 3 
replicates each sample; for Hif1α samples were 7 and 4, 3 replicates each, Student’s t-test, *p < 0,05, 
***p < 0,0005. No significant difference is detectable in APLN and APLNR expressed by the tumor 
cells.  
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Figure 8 (continued): The upregulation of the APLN-APLNR signaling in GBMs correlates with 
the angiogenic switch. (C) In the tumor cells and in the rat microenvironment respectively, the 
expression of VEGFA and KDR shows a tendency to increase, although not significantly, in association 
with the angiogenic switch. The graphs at the top represent the single samples grouped in the graphs at 
the bottom for the statistical analysis. Housekeeping gene: GAPDH. 3 replicates each sample, Student’s 
t-test; (D) When the angiogenic switch is induced by EGFR inactivation, a similar tendency to an 
increased expression of APLN, APLNR, and KDR is observable in the tumor microenvironment. 
Results are shown as single samples (bottom) and grouped according to their classification as “invasive” 
or “angiogenic” (top). Unfortunately, the number of samples available in this model was insufficient for 
a statistical analysis. 3 replicates per sample were used. 
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7.3 	The	generation	of	models	to	study	APLN	function	in	primary	
GBM	cells	

7.3.1 Generation	and	characterization	of	primary	human	GBM	cells	with	APLN	
loss		

 
The data presented so far showed a higher expression of both APLN and APLNR in tumor 

tissue and the correlation of signal upregulation with an angiogenic tumor phenotype. These 

results however do not provide insights on the direct role of APLN in driving tumor growth and 

angiogenesis.  

The manipulation of APLN expression in either the glioma cells, the healthy brain 

microenvironment, or both, would allow us to better understand the contribution of the signal 

and of each compartment to the progression of glioblastoma. In order to reduce APLN 

expression in the selected GBM cells, I transduced them with a lentivirus carrying a short-

hairpin RNA (shRNA) against human APLN, generating APLN-KD primary GBM clones 

(Figure 9A). The incorporation of the shRNA into a lentivirus allows a stable insertion of the 

construct into the cell genome. The transcribed shRNA is cleaved by Dicer in the cytoplasm 

and directs the cleavage and subsequent degradation of the complementary mRNA [144]. 

From the APLN-expression screening presented in figure 4A, I chose three primary cultures 

(GBM14, NCH644, and GBM1i) that were relatively high in APLN expression, as indicated in 

figure 9B. For each cell culture, I also generated the control group transduced with a non-

silencing control (NSC) shRNA.  

After three weeks of selection with puromycin to eliminate the non-transduced clones, cell 

pellets were collected for qPCR analysis of gene expression (Figure 9C). As shown in figure 

9C, APLN expression was significantly reduced in the APLN-KD cells, in comparison with the 

NSC and parental groups. Specifically, APLN expression in GBM14 APLN-KD cells was 

reduced to 14% compared to NSC cells, to 10% in NCH644 APLN-KD, and to 27% in GBM1i 

APLN-KD.   

To verify the specificity of the lentiviral transduction, I performed a qPCR analysis for the 

expression of different control genes: kinesin-5 (also known as Eg5), an essential protein during 

mitosis [145]; actin, the cytoskeletal housekeeping gene; and VEGFA, to exclude possible 

unwanted effects of APLN knock-down on the VEGF-signaling [146]. In all three primary 

cultures I did not find any differences in the expression of non-targeted genes, meaning that the 

knock-down of APLN was specific (Figure 9D). 
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To assess whether the transduction impaired the viability of the cells, which would influence 

their in vivo growth and the results of further experiments, I have used the MTT viability assay: 

I normalized the absorbance measured for APLN-KD and NSC cells at 24, 48, 72, and 96 hours 

on their parental group; up to 96 hours after plating, the NSC or APLN-KD GBM14, NCH644, 

and GBM1i did not shown any decreased viability in comparison with their parental controls 

(Figure 9E). When comparing the proliferative abilities of the transduced cells and their 

parental groups, I normalized the absorbance at day 2 (48 hours), 3 (72 hours), and 4 (96 hours), 

on the absorbance at day 1 (24 hours). After 3 days, GBM14 APLN-KD cells proliferate more 

than their NSC and parental groups. NCH644 and GBM1i cells did not show any differences 

in proliferation over 3 days of observation (Figure 9E). 

Next, to confirm that the GBM14 APLN-KD cells were equal to the NSC control group in the 

ability to form spheres, I have performed a sphere-dilution assay, by plating the cells at 

decreasing density (from 2000 to 10 cells/well) and quantifying the spheres formed after 7 days. 

Spheres were formed at comparable rate in both groups at all cell dilutions, proving that the 

transduced cells did not lose the stemness potential also when APLN expression was reduced 

(Figure 9F). In addition, I used the data from the sphere-dilution assay on the GBM14 cells in 

the Extreme Limiting Dilution Analysis (ELDA), to assess possible differences in stem cell 

frequency between GBM14 APLN-KD and NSC cells [137]. The results obtained with the 

ELDA confirmed no differences between the two cell groups (Figure 9G).  

 

In conclusion, the generation of viable APLN knock-down clones and non-silenced controls 

was successful, and the two groups were comparable in proliferation, viability, and sphere 

formation, respectively. The maintenance of the proliferative abilities after the knock-down of 

APLN expression suggest that the autocrine signal is not responsible for the preservation of the 

stemness pool. In support to this finding, I observed that the cultured APLN-KO NPCs have a 

proliferative behavior comparable to the one of APLN-WT NPCs, when kept in standard stem 

cell culture conditions and without the addition of apelin peptide to the culturing medium. 
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Figure 9: Generation and characterization of new primary GBM models with loss of APLN 
expression. (A) Schematic representation of the experimental process to obtain APLN-KD and NSC 
clones; (B) qPCR screening of APLN expression in the primary human GBM cells. The arrows indicate 
the three cell types chosen for the transduction; (C) After selection with puromycin, the reduction of 
APLN expression in the three transduced cell groups was confirmed by qPCR. Results are normalized 
to GAPDH and obtained by at least 3 independent experiments with 3 replicates each. Student’s t-test 
was used to compare APLN expression between APLN-KD cells and NSC or parental cells, *p < 0,05, 
***p < 0,0005. 
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Figure 9 (continued): Generation and characterization of new primary GBM models with loss of 
APLN expression. (D) qPCR analysis to confirm the specificity of APLN targeting by lentiviral 
transduction. One-way ANOVA with Newman Keuls post-hoc test, results normalized to GAPDH and 
obtained from at least 3 independent experiments with 3 replicates each.  
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Figure 9 (continued): Generation and characterization of new primary GBM models with loss of 
APLN expression. (E) The transduction does not affect cell viability. The parental groups are used each 
day for normalization and indicated as 1. NCH644 and GBM1i cells show no differences in proliferating 
abilities between groups over a period of 3 days. GBM14 APLN-KD cells, however, have increased 
proliferative abilities after 3 days, compared to NSC and parental cells. At least 3 independent 
experiments were performed and analyzed with two-way ANOVA, *p < 0,05, ***p <  0,0005; (F) After 
7 days, the ability to form sphere is comparable between GBM14 APLN-KD and NSC cells; 3 
replicates/condition; (G) The ELDA analysis, performed at http://bioinf.wehi.edu.au/software/elda/,  
shows no differences in stem cell frequency between GBM14 APLN-KD and NSC cells; 3 
replicates/condition. 
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7.3.2 	 APLN	loss	induces	decreased	tumor	angiogenesis	and	increased	tumor	
invasion	in	vivo	

 
The human primary GBM cultures that I generated, GBM14 and NCH644 with and without the 

loss of APLN expression, have been used for numerous in vivo orthotopic implantations to 

study the role of the APLN-APLNR signaling in tumor progression. In these in vivo models, 

APLN expression was modulated in the tumor cells (by using the APLN-KD or NSC GBM 

cells), and/or in the tumor microenvironment (by using APLN-KO or WT mice). The in vivo 

results obtained by the implantation of APLN-KD or NSC cells in APLN-KO or WT mice are 

extensively discussed in our manuscript “Targeting APLN/APLNR Improves Antiangiogenic 

Efficiency and Blunts Proinvasive Side Effects of VEGFA/VEGFR2 Blockade in Glioblastoma” 

[147]. 

The implantation of GBM14 and NCH644 APLN-KD cells in APLN-KO or WT mice revealed 

a direct correlation between the overall level of expressed APLN (contributed by the tumor 

cells and the host) and the GBM angiogenic phenotype, in confirmation of the results that I 

reported in the GBM models of the angiogenic switch (chapter 7.2) (Figure 10A and B). When 

implanted, GBM14 and NCH644 NSC cells generated tumors with a significantly higher vessel 

density, in comparison with the tumors generated by GBM14 and NCH644 APLN-KD cells, 

respectively. In addition, the manipulation of APLN expression in the tumor microenvironment, 

by using APLN-WT or -KO mice, demonstrated that APLN produced by the brain parenchyma 

partially compensated the decreased APLN levels in the GBM14 APLN-KD cells: in fact, the 

APLN-KD cells implanted in an APLN-WT parenchyma generated tumor with increased vessel 

density, when compared to the tumors developed in APLN-KO brains (Figure 10A). 

Furthermore, we observed that the APLN-KD GBM cells were able to generate the most 

invasive tumors (Figure 10C and D). In addition to this, the absence of APLN in the APLN-

KO parenchyma significantly increased the invasive behavior of the GBM14 APLN-KD cells 

(Figure 10C). These results hint to a prominent role of APLNR and the autocrine APLN-

APLNR signaling in the determination of an invasive phenotype, aside from its role in 

angiogenesis. 

As discussed in the introduction, the activation of the APLNR can also be triggered by the 

recently-identified early endogenous ligand apela: to test for apela expression, I performed a 

qPCR analysis on the brain lysate of APLN-WT, APLN-KO, and K14-APLN brains. The K14-

APLN mouse is a transgenic model where APLN is ectopically expressed under the control of 

the keratin K14 promoter. This model is used to study the effect of epidermal APLN on the 

regulation of blood vessel caliber [148].  The qPCR results showed that apela is detectable in 
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all three lysates: in particular, its presence in the APLN-WT type and –KO brains indicated that 

it may act with or in compensation to APLN in activating APLNR (Figure 10E). 

 

 
Figure 10: APLN loss induces decreased tumor angiogenesis and increased tumor invasion in vivo. 
In the in vivo models generated by GBM14 (A) and NCH644 (B) cells, vessel density decreases in 
correlation to a decreased APLN expression contributed by the tumor cells and the tumor 
microenvironment; A: one-way ANOVA with Newman Keuls post-hoc test, APLN-WT n=7/cell type, 
APLN-KO n=4/cell type; B: Student’s t-test, NSC n=8, APLN-KD n=6. **p<0.005, ***p<0.0005. 
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Figure 10 (continued): APLN loss induces decreased tumor angiogenesis and increased tumor 
invasion in vivo. (C) GBM14 cells show increased invasive behavior when the overall level of secreted 
APLN, from the tumor and the tumor microenvironment, decreases (GBM14 APLN-KD cells in APLN-
KO mice). Arrows indicate the invasive borders. One-way ANOVA with Newman Keuls post-hoc test, 
WT n=7/cell type, APLN-KO n=4/cell type; (D) When implanted, NCH644 APLN-KD cells show 
increased invasive abilities in comparison with control cells. Arrows indicate the tumor borders. 
Student’s t-test, NSC n=8, NCH644 APLN-KD n=6; (E) The qPCR results confirm the presence of 
apela in APLN-WT, APLN-KO, and K14-APLN brains. GAPDH was used as housekeeping gene. 
**p<0.005, ***p<0.0005. 
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7.3.3 Generation	of	mouse	proneural	primary	GBM	cells	with	APLN	loss		
 
To study the role of the APLN-APLNR pathway in an immunocompetent mouse model, I 

generated mouse primary GBM cells with APLN loss from isolated NPCs (Figure 11A). 

Cells were isolated from the SVZ of 30-day-old Bl6/J mice carrying homozygous deletion in 

cdkn2a or in cdkn2a and APLN genes (cdkn2a-KO and cdkn2a-KO;APLN-KO mice).  

Before proceeding with the viral transduction, I verified by qPCR the reliability of the 

genotyping results by comparing APLN expression in cdkn2a-KO;APLN-KO NPCs with the 

one measured in a whole-homogenate of APLN-KO brain and in WT NPCs (Figure 11B). Once 

the genotyping was confirmed, I transduced the isolated NPCs with VSV-G pseudotyped 

retroviral particles carrying the Hs PDGFB-GFP or -dsRed gene to obtain GBM cells of the 

proneural subtype, cdkn2a-KO PDGFB and cdkn2a-KO;APLN-KO PDGFB cells (indicated as 

cdkn2aKO;APLN-KO GFP or cdkn2a-KO;APLN-KO dsRed). Due to the absence of a marker 

for antibiotic selection in the viral construct, I manually selected the GFP- or dsRed-positive 

spheres. At last, the success of the transduction was confirmed by verifying the presence of the 

human PDGFB gene by PCR (Figure 11C). In a first set of in vivo experiments, both cell types 

did not generate a compact tumor mass and further investigation on these clones is required. 
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Figure 11: Generation of mouse GBM cells with APLN loss. (A) The scheme shows the experimental 
process to obtain cdkn2a-KO;APLN-KO PDGFB GFP/dsRed cells and their corresponding controls 
cdkn2a-KO PDGFB GFP/dsRed; (B) qPCR analysis confirmed the genotyping results and the loss of 
APLN in the cdkn2a-KO;APLN-KO isolated NPCs. Results are normalized to GAPDH and obtained 
by 3 independent experiments, n = 9. APLN-KO brain and Cdkn2a-KO APLN-KO cells were compared 
to WT NPCs with one-way ANOVA with Newman Keuls post-hoc test, *p £ 0,05, **p £  0,005; (C) 
After manual selection under the microscope of GFP/dsRed-positive spheres, I confirmed by PCR the 
quality of the transduction verifying the presence of the Hs PDGFB gene.  
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7.4 	APLN	and	APLNR	expression	differs	according	to	the	
localization	in	the	tumor	mass	

7.4.1 Analysis	of	APLN	and	APLNR	expression	in	human	GBM	samples	paired	as	
tumor	core	and	tumor	border	

 
Our research group previously reported an upregulation of APLN and APLNR in WHO grade 

IV GBM specimens, especially in hypoxic tumor areas marked by HIF1A and VEGFA 

expression and in microvascular proliferations [55]. This finding is supported by my results on 

mouse and human tumor specimens, where APLN and APLNR were upregulated in the tumor 

tissue. In addition, in the human GBM sections I observed that APLN expression was 

particularly strong in the ECs (Figure 7B).  

To further characterize APLN and APLNR distribution across the tumor, I analyzed GBM 

biopsies in more detail: the samples were segregated, during neurosurgical resection supported 

by a neuro-navigation system, into samples derived from the tumor center or from the tumor 

border (Figure 12A). By qPCR analysis I found that the expression of the marker of hypoxia 

HIF1A and APLN shared a tendency to be higher in the tumor center, in comparison with the 

tumor border. The localization of APLN expression in hypoxic areas is in accordance with 

previous findings reported by me (see figure 6B) and our group [55]. APLNR expression 

instead tended to increase at the tumor borders (Figure 12B). These results were confirmed with 

in situ hybridization performed on a pair of center and border tumor samples: APLN was 

detectable at the tumor core, in tumor vessels and tumor cells, and was not detectable at the 

tumor periphery; on the contrary, APLNR signal was stronger in tumor cells at the tumor 

borders, but detectable as well in the vessels of the tumor core (Figure 12C). As expected, the 

frequency of vascular proliferates, visible on H&E, was much higher in the tumor core than in 

the tumor-periphery. Tumor-free brain tissue did not show considerable expression of APLN 

or APLNR by in situ hybridization (compare also to Figure 13B).  
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Figure 12: APLN and APLNR are heterogeneously expressed across the tumor mass – Samples 
classified as center and border. (A) The illustration represents the criteria for the classification of the 
paired samples belonging to a single tumor mass as “center” or “border” depending on their position at 
the time of surgical resection; (B) The qPCR analysis detected a tendency to a differential expression 
pattern of APLN, APLNR, and HIF1a across the GBM mass, although not significant: both APLN and 
HIF1a tend to an increased expression in the tumor centers, while APLNR expression tends to be higher 
at the tumor borders. Interestingly, APLNR expression is much higher when comparing its DCt to APLN 
DCt. Housekeeping gene: GAPDH. The graphs on the left show the single results, which are grouped in 
the graphs on the right for statistical analysis. Student’s t-test, n= 7;7. 
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Figure 12 (continued): APLN and APLNR are heterogeneously expressed across the tumor mass 
– Samples classified as center and border. (C) The qualitative assessment of APLN and APLNR 
expression by in situ hybridization on a pair of center-border GBM sections supports the qPCR findings. 
The H&E staining indicates the presence of necrotic tissue and abundant vessels (arrows) in the tumor 
core, in comparison to a more-homogeneous tissue at the border. APLN expression is strongly detectable 
only in the tumor center, in correspondence to the presence of vessels. APLNR shows an increased 
cellular expression at the tumor border. Arrows indicate a positive signal on vessels, arrowheads indicate 
a positive signal in the tumor cells. To confirm the specificity of the hybridization, a staining with sense 
probes is shown; scale bar = 50µm. 
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7.4.2 Analysis	of	APLN	and	APLNR	expression	in	human	GBM	samples	classified	
according	to	the	coordinates	of	stereotactic	resection		

 
For an enhanced local resolution of APLN/APLNR expression in GBM WHO grade IV, I next 

investigated a set of stereotactic GBM biopsies. These biopsies were resected along a 

stereotactic trajectory on the z-axis, with recorded distances in mm from the starting point of 

the resection, defined as zero (Figure 13A). A neuropathologist identified cell dense 

pleomorphic glial tumor presenting with GFAP and MAP2 positivity, IDH1 WT, 15% Ki67 

positive tumor nuclei and many vascular proliferates from coordinate z = 0 to 1 mm towards 

the tumor border. From 6 to 9 mm along the z-axis, the biopsies contained CNS tissue with 

infiltrating glial tumor cells.  

By in situ hybridization I found that APLN expression was very strong in the biopsies from z 

= 0 to 1 mm, with a clear signal especially in the tumor vessels (Figure 13B). APLN was almost 

undetectable in the outermost sections, in accordance with my previous results shown in figure 

12C, which illustrates the intense APLN signal detectable in the tumor center, compared with 

an absent staining at the tumor border. APLNR instead, even though detectable in the sections 

close to the point z=0, also gave a very strong signal at the levels z = 6 to 9 mm, further away 

from the tumor-dense core, in the region where tumor invading cells were described in the 

report of the neuropathologist. These findings demonstrated that APLNR expression is present 

not only in the GBM neo-angiogenic areas, but in the tumor invasive regions as well. APLN 

and APLNR expression in the GBM samples was compared to the in situ hybridization 

performed on an healthy brain sample (called “brain” in figure 13B): here no signal from both 

probes was detectable.  

 

Taken together, these results on the different patterns of APLN and APLNR localization in the 

tumor mass point to an additional role of the APLN-APLNR signaling in tumor progression, 

aside from its function in driving tumor angiogenesis. This hypothesis is supported by our 

results in vivo described at paragraph 7.3.2 (Figure 10C and D), where we demonstrated that 

the implantation of GMB cells with APLN loss generates more invasive tumors, thus indicating 

an additional role of APLN-APLNR signaling in driving GBM invasion.  
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Figure 13: APLN and APLNR are heterogeneously expressed across the tumor mass in a 
stereotactic tumor sample. (A) The illustration represents the relative positions of the GBM sections 
in the tumor mass, from the deepest point z=0 to the outermost z=9 mm; (B) APLN expression is 
observable in the core sections, rich of vascular proliferations (arrows), but not in the outermost ones. 
APLNR is detectable along the axis from z=0 to z=9. Arrowheads indicate a positive signal at the single 
cell level and asterisks indicate the enlarged areas. Scale bar in the overview = 50µm. 
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7.5 	APLNR	is	detectable	in	vivo	by	immunofluorescence	in	the	GBM	

mass	and	in	the	invading	tumor	cells	–	Analysis	of	GBM	mouse	

xenografts	

 

To better characterize APLNR detectability and expression at tumor periphery and verify its 

presence in the invasive cells of our GBM mouse models, I analyzed the xenografts of four 

models with fluorescent immunostainings.  

The immunofluorescence analysis allowed me to have a better resolution of the receptor at the 

single-cell level and to verify its presence in the tumor mass but also in the cells detaching from 

it, in order to have a comparison for the findings obtained on human GBM samples with in situ 

hybridization.  

For this study, I stained the xenografts originated by the implantation of either GBM14 APLN-

KD, GBM14 NSC, p53-KO PDGFB, or cdkn2a-KO EGFRvIII cells in either WT or APLN-

KO mice (Figure 14). Importantly, all the implanted GBM cells expressed GFP and were easily 

identifiable on mouse sections. The choice of these cell types was based on the differences in 

their growth behavior, showing either a more invasive or compact phenotype. 

As shown in the overview panels of the staining in figure 14A, APLNR was expressed not only 

at the border of the tumor mass, but also in the non-tumor cells (non GFP-positive), where the 

staining presented itself with a specific and distinguishable pattern and appeared generally 

nuclear. Where a more compact tumor mass was obtained, it showed an intense APLNR signal 

that was heterogeneous. Whether this heterogeneity correlates with the presence of more or less 

newly generated tumor vessels would be an interesting question for further studies. In these 

different GBM xenografts, the GBM cells invading the brain parenchyma express APLNR as 

well, as shown in the different examples at figure 14B. Interestingly, the localization of APLNR 

detected in the invading GBM cells, contrary to what I observed in the non-tumor cells, did not 

always co-localize with the nuclear staining, but was in the cytoplasmic region as well.  

Therefore, as shown in the human biopsies, APLNR, which is abundantly expressed in the 

tumor mass, is expressed as well by some of the invading tumor cells, with a pattern that does 

not coincide with the one observed in non-tumor cells.  

This difference may hint to a specific role of the receptor in the behavior and physiology of 

GBM cells, or to the important role covered by the up-regulated APLN-APLNR pathway in the 

development of glioblastoma. 
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Figure 14: APLNR is expressed at the border of the GBM mass and in the invading GBM cells. 
(A) The overviews show the interfacing areas between the green GBM mass and the normal brain tissue, 
tracked by the dashed line. The border of the tumor mass expresses APLNR in a heterogeneous fashion. 
Single cells in the healthy parenchyma (arrowheads) show a positive and characteristic APLNR signal 
as well, different from the one originated by GBM cells in the tumor mass (indicated by asterisks). Scale 
bar = 20µm; (B) Not only the GBM cells in the tumor mass, but also the ones invading the brain 
parenchyma, show a heterogeneous APLNR signal that is not restricted to the cell nucleus. Scale bar = 
10µm. 
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7.6 The	APLN-APLNR	signaling	drives	the	invasion	of	tumor	cells	in	
vitro	

7.6.1 Apelin-13	enhances	the	invasion	of	the	U87	APLN-KD	cells	
 
To gain insight on the mechanisms of APLN-driven GBM cells invasion I used an in vitro assay 

established as a 3D environment constituted by rat tail collagen. The set-up of the experiment 

is illustrated in figure 15A.  

Because previous studies reported the role of APLN as chemoattractant for various cells, as 

293T cell line and ECs [86, 89], I used this in vitro assay to evaluate the invasive behavior of 

the tumor cells according to their status of endogenous APLN expression, which influences the 

autocrine APLN-APLNR signaling, and the exposure to an external source of APLN, which 

would induce a paracrine signaling. In fact, as we observed in vivo (Figure 10C), the presence 

of an weak autocrine APLN-APLNR signaling seemed to be a key factor in the generation of 

the invasive GBM behavior. 

In the first group of experiments, I assessed the in vitro invasive ability of U87 APLN-KD and 

NSC cells, which were previously originated by transducing the human GBM cell line U87 MG 

with lentiviral particles. Despite the fact that U87 cells are normally cultured under adherent 

conditions, to perform this assay I kept them in DMEM F12 to obtain a spheroid phenotype. 

Each sphere was seeded into a well of a 24-well plate in the collagen matrix and its invasion 

was observed over a period of 7 days [149]. The invasion rate of the U87 APLN-KD and NSC 

cells at basal conditions (standard medium) was comparable (Figure 15B).  

Next, to model the complex situation in a tumor in vivo, I added a WT U87 MG sphere to each 

well as an in vitro stable source of growth factors and chemokines, APLN included. I observed 

that the APLN-deficient U87 cells showed a much higher invasive behavior in comparison to 

the U87 NSC control cells when a U87 MG sphere was present in the collagen matrix (Figure 

15C). When the exogenous apelin-13 peptide was added to the collagen mix, instead of the WT 

U87 MG sphere, I also observed a significantly higher invasion of the U87 APLN-KD cells 

compared to the U87 NSC cells (Figure 15D). Hence, in both experimental setups, the loss of 

endogenous APLN contributed to the invasive tumor phenotype observed in response to the 

U87 MG-derived growth factors or to the exogenous apelin-13 specifically. 

These results were in accordance with the in vivo situation, where the U87 APLN-KD cells 

implanted into APLN-WT mice were significantly more invasive that the U87 NSC cells 

(Figures 15E). 
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Figure 15: Invasion assays for the human GBM cell line U87. (A) The scheme shows the 
experimental set-up; (B) U87 APLN-KD and NSC cells invade at a comparable rate in control conditions 
with standard medium DMEM F12, n=13-14;17-20; analysis was performed with two-way ANOVA; 
(C) Top graph: U87 APLN-KD invade significantly more than NSC cells when exposed to an U87 MG 
sphere; two-way ANOVA n=4-9;3-6. Bottom graph: U87 NSCs exposed to a WT U87 MG sphere 
invade less, but not significantly, than in control conditions; Student’s t-test, n=13;9; (D) Top graph: 
U87 APLN-KD cells show enhanced-invasive behavior when the peptide apelin-13 is added to the 
collagen mix; two-way ANOVA, n=15;15. Bottom graph: with the addition of exogenous apelin-13, 
U87 NSC cells invade less than in control conditions. Student’s t-test; n= 13;15; (E) In vivo orthotopical 
implantation of U87 APLN-KD and NSC cells was performed: after scoring the GFP-positive cells for 
their invasiveness, we found that the U87 cells with APLN loss invaded more than the NSC cells, in 
accordance with my in vitro findings. Arrows indicate the tumor borders. One-way ANOVA with 
Newman Keuls post-hoc test; n=15, 15, 10, 13. Statistical significances: *p £ 0,05, **p £ 0,005, ***p £  
0,0005, scale bar on cell invasion assays = 250µm. 
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7.6.2 Apelin-13	enhances	the	invasion	of	the	GBM14	APLN-KD	cells	
 

In a second set of experiments, I investigated the invasive ability of GBM14 cells using the 

same 3D-invasion assay (Figure 16A). First, I compared GBM14 APLN-KD and NSC cells in 

basal conditions (with standard DMEM F12 medium) and found no differences in their invasive 

behavior (Figure 16B). Next, I added a WT U87 MG sphere to each well in the same fashion 

illustrated in figure 15C, to provide an in vitro source of growth factors (APLN included), and 

detected a more invasive behavior in the GBM14 APLN-KD cells compared to the controls 

(Figure 16B). The same observation was made when the peptide apelin-13 was added to the 

collagen mix, instead of a WT U87 MG sphere (Figure 16C). 

These findings correlate with the in vitro results on the U87 cells and the in vivo data presented 

in figure 10A. 

Together, the invasion assays showed that, when exogenous factors including APLN are 

present, the invasion rate of the cells that had lost endogenous APLN expression significantly 

increases. Thus, the APLN-APLNR signaling not only regulates GBM angiogenesis in vivo, 

but it is also able to directly control GBM cell invasion. 
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Figure 16: Invasion assays for the human primary GBM cells GBM14. (A) The scheme shows the 
experimental set-up; (B) GBM14 APLN-KD and NSC cells invade at a comparable rate in standard 
medium. Analysis was performed with two-way ANOVA, n=8;15; (C) Top graph: when a WT U87 MG 
sphere is added to the collagen mix, GBM14 APLN-KD cells invade significantly more than the 
controls; two-way ANOVA, n=5-7:7-9. The bottom graph shows that GBM14 NSC cells exposed to a 
WT U87 MG sphere invade less than in control conditions; Student’s t-test, n=8;9; (D) Top graph: 
GBM14 APLN-KD cells show a more invasive behavior when the peptide apelin-13 is added to the 
collagen mix; two-way ANOVA, n=10;10-11. Similarly, the bottom graph shows that GBM14 NSC 
cells exposed to apelin-13 are less invasive than in control conditions; Student’s t-test, n=15,10. 
Significances for two-way ANOVA and Student’s t-test: *p £ 0,05, **p £ 0,005, ***p £  0,0005, scale 
bar= 100µm. 
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7.6.3 APLNR	blockade	affects	the	invasion	of	GBM	cells	in	vitro	
 

To test if the invasion of the GBM cells was indeed APLNR-dependent, I created a receptor-

blocking condition by adding the antagonistic peptide apelin-F13A [79] to the collagen matrix, 

in competition with the exogenous apelin-13 provided by a WT U87 MG sphere or by the 

addition of the apelin-13 peptide itself (Figure 17A). I tested this condition on the U87 APLN-

KD cells, which had previously demonstrated the highest invasive ability in vitro, and observed 

that the addition of the apelin-F13A to an environment also enriched by the exogenous apelin 

peptide significantly decreased their invasive behavior (Figure 17B, C). However, this 

inhibitory effect was not detectable by applying the same conditions to the U87 NSC cells 

(Figure 17D), whose invasion on the contrary was inhibited by the addition of the apelin-F13A 

alone, without exogenous apelin-13 (Figure 17E). A possible explanation of this discrepancy 

may be the much lower invasive behavior observed in U87 NSC cells after the addition of the 

peptide apelin-13 (Figure 15D): thus, an even greater reduction might not be reached with the 

exposure to apelin-F13A. 

Interestingly, the antagonistic peptide apelin-F13A added in competitive condition with apelin 

peptide, but not alone, was able to decrease the in vitro invasion of the GBM14 NSC cells 

(Figure 17F, G), in a similar fashion to the results obtained with U87 APLN-KD cells (Figure 

17B).  

Furthermore, the in vivo therapeutic treatment of GBM14 NSC tumors was performed: to 

observe the effect of the APLNR blockade on GBM growth in vivo, either apelin-F13A peptide 

or the artificial cerebrospinal fluid (aCSF) were infused intratumorally. The results obtained on 

tumor invasion correlated with the in vitro data collected on the GBM14 NSC cells and the 

addition of the apelin-F13A peptide was able to reduce tumor cell invasion (Figure 17H).  

In the in vivo therapeutic approach, we also studied the effect of the intratumoral infusion of 

apelin-F13A on the growth of GBMs originated by the very invasive p53-KO PDGFB mouse 

cells. To verify the in vitro reproducibility of this experiment, I performed some invasion assays 

with the p53-KO PDGFB cells and the addition of exogenous apelin-13 and/or apelin-F13A. 

As shown in figure 17I and J, respectively, the in vivo and in vitro administration of apelin-

F13A was able to significantly reduce tumor invasion. The addition of the peptide apelin-13 

alone significantly enhances cell invasion, in comparison with the control conditions (Figure 

17K).  
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In conclusion, the in vitro invasion assays demonstrated that endogenous APLN reduces GBM 

invasion through an autocrine APLN-APLNR signaling, that exogenous APLN enhances the 

invasive behavior of the GBM cells presenting a loss of endogenous APLN, and that the 

blockade of the APLNR with the inhibitory peptide apelin-F13A is able to attenuate, in some 

circumstances, the invasion of the GBM cells. Aside from the inhibition of tumor invasion, the 

in vivo study on the intratumoral infusion of apelin-F13A demonstrated a significant decrease 

of GBM angiogenesis too, in comparison to the aCSF-treated controls [147]. Given the 

promising results in decreasing tumor invasion in vitro and in the reduction of tumor invasion 

and angiogenesis obtained in the in vivo therapeutic approach, the blockade of the APLNR may 

be a beneficial strategy to treat some glioblastomas depending on their level of APLN and 

APLNR expression. 
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Figure 17: The blockade of the APLNR affects the invasion of the GBM cells in vitro. (A) Apelin-
F13A was added to a collagen drop together with either a U87 MG sphere or apelin-13 peptide (B) 
Apelin-F13A negatively affects the invasive rate of U87 APLN-KD cells when added in competition 
with exogenous apelin-13 but (C) not when added alone. N=3-6;5-9 and n=17-20;19-21; (D) The effect 
of apelin-F13A on U87 NSC cells is the opposite: it does not alter cell invasion when added in 
competition with apelin-13, but (E) significantly reduces U87 NSC invasion when added alone. N=9;7 
and n=13-14;14-15. Analysis was performed with two-way ANOVA, *p £ 0,05, **p £ 0,005, scale bar 
= 200µm. 
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Figure 17 (continued): The blockade of the APLNR affects the invasion of the GBM cells in vitro. 
(F) GBM14 NSC invasion is reduced with the addition of apelin-F13A in competitive conditions, 
n=12;13; (G) The exposure of GBM14 NSC cells to apelin-F13A only does not affect their invasive 
behavior, n=8;12; (H) The in vitro results on the exposure of the GBM14 NSC cells to apelin-F13A 
recapitulate the in vivo results: when apelin-F13A is administered intratumorally, it significantly reduces 
GBM cell invasion. Figures from Mastrella et al. [147]; Student’s t-test, n=6;5; (I) The intratumoral 
infusion of apelin-F13A in vivo reduces the invasive ability of the p53-KO PDGFB cells. Figures from 
Mastrella et al. [147]; Student’s t-test, n= 8;6; (J) In vitro, the invasion of p53-KO PDGFB cells 
decreases after exposure to apelin-F13A and apelin-13; n=7; 4; (K) The administration of apelin-13 
alone enhances p53-KO PDGFB cell invasion; n=14;14. Analysis was performed with two-way 
ANOVA, *p £ 0,05, **p £ 0,005, scale bar = 100µm. 
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7.6.4 The	peptides	apelin-13	and	apelin-F13A	show	no	effects	on	the	
proliferation	of	GBM	cells	

 

To test if the differences in GBM cell invasion that I observed in vitro could be due to an 

enhanced/decreased proliferation ability induced by the peptides apelin-13 and apelin-F13A, I 

investigated the proliferation of GBM14 and U87 cells in vitro with the MTT assay after the 

addition of apelin-13 or apelin-F13A 200 nM on the day of seeding. As shown in figure 18A 

and B, I did not find any significant effects on cell proliferation induced by the addition of 

apelin-13 or apelin-F13A on U87 and GBM14 APLN-KD cells. Figure 18B shows a slightly 

increased proliferation of the GBM14 NSC cells after exposure to apelin-F13A for 96 hours. 

However, the invasion rate of the GBM14 NSC cells after exposure to apelin-F13A showed no 

effect or a decreased ability to invade (Figure 17F, G) in comparison with the control 

conditions, hence confirming that the result on cell proliferation does not change the read-out 

of the cell invasion assays.  

In conclusion, the observed differences in cell behavior presented in figures 15, 16, and 17 are 

attributable to a direct effect of the peptides on cell invasion and not to an induced change of 

cell proliferation. 
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Figure 18: The effects of the peptides apelin-13 and apelin-F13A on the proliferation of GBM 
cells. (A) The MTT assays proves that the addition of apelin-13 or apelin-F13A 200nM does not affect 
U87 cell proliferation; (B) Similarly, no effect is shown by the addition of apelin-13 or apelin-F13A to 
GBM14 APLN-KD cells. Only the GBM14 NSC cells proliferate more when exposed to apelin-F13A 
for 96 hours. This result, however, is not reflected by an increased invasive behavior of these cells 
after the addition of apelin-F13A.  6 replicates/experiment; two-way ANOVA. *p £ 0,05. 
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7.6.5 Generation	and	characterization	of	primary	human	and	mouse	GBM	cells	
with	APLNR	loss		

 
The above-mentioned in vitro and in vivo results on cell invasion after the blockade of APLNR 

hint to its possible role in the regulation of cell behavior. Thus, to test the specific role of the 

receptor in driving tumor invasion, I generated primary human GBM14 cells and mouse p53KO 

PDGFB cells depleted of APLNR expression (Figure 19). In the human cells, the loss of the 

receptor was obtained by transducing GBM14 cells with lentiviral vectors carrying a shRNA 

against the Hs APLNR mRNA. To obtain the most efficient knock-down I used two vectors, 

each carrying a shRNA (V3LHS_634451 or V3LHS_34449) targeting two different sequences 

on the human APLN gene. After cell recovery and selection with puromycin, I identified the 

construct V3LHS_634451 as the most promising for a significant reduction of APLNR 

expression compared to the parental group (Figure 19A). When verifying the specificity of the 

knock-down, I found that actin was not significantly affected in the APLNR-KD cells (Figure 

19B). All the qPCR results were obtained by three independent experiment, with three 

replicates each. The cell proliferation assay, performed on a period of 4 days where the 

absorbances at 48, 72, and 96h were normalized on 24h, demonstrated that the APLNR-KD 

cells proliferated at the same rate as the NSC and control groups (Figure 19C). In addition, I 

observed that a constant viability was maintained by the three cell types over a period of 96 

hours, with normalization of the absorbance of APLNR-KD and NSC cells on the parental 

groups (Figure 19D). 

The generation of p53-KO PDGFB APLNR-KD and p53-KO PDGFB NSC cells was 

performed by cell transduction with lentiviral vectors carrying a shRNA against the Mm 

APLNR or a non-silencing shRNA, respectively. For the generation of the APLNR-KD cells, I 

tested two vectors (V2LMM_218787 and V3LMM_517943) carrying different shRNAs. 

Initially, the generation of the NSC cells was performed according to the standard protocol, by 

adding 500 µl of virus-containing medium. However, after cell recovery and selection with 

puromycin, I found that APLNR expression was significantly reduced in the control group, 

similarly to the reduction observed in the APLNR-KD cells (Figure 19E). In the attempt to find 

a concentration that would give a good control without side effects of infection, which may 

result in cell cytotoxicity and unspecific targeting [150], I tested different dilution of the NSC 

viral particles (Figure 19F). After this second transduction as well, the NSC cells showed 

reduced expression of the APLNR, independently from the concentration of the viral particles 

used. Both GAPDH and actin were tested as housekeeping genes (Figure 19E and F, 

respectively). Actin expression was not altered in the p53KO-PDGFB APLNR-KD cells 
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compared to the parental ones (Figure 19G). Before further characterization of the p53-KO 

PDGFB APLNR-KD cells, a reliable control group must be obtained.   
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Figure 19: Generation and characterization of the primary human and mouse GBM cells with 
APLNR loss. (A) APLNR is knocked-down (to the 5%) in the GBM14 cells transduced with the 
V3LHS_634451 construct, in comparison with NSC and parental groups. HPRT1 was used as 
housekeeping gene. Student’s t-test, *p £ 0,05, n=9; (B) Actin expression is not affected by the 
transduction. All results are normalized to HPRT1 and analyzed with one-way ANOVA with Newman 
Keuls post-hoc test, n=9; (C) No differences in proliferation are detectable with the MTT assay between 
the three groups. N= 18, two-way ANOVA; (D) Each group maintains a constant variability over a 
period of 4 days. N=18; (E) The two shRNA constructs used to transduce the p53-KO PDGFB cells 
show a successful knock-down of APLNR expression. This reduction, however, is also induced by the 
NSC shRNA; cells compared to the parental group with Student’s t-test test, **p £ 0,005, n³9; (F) 
Different dilutions of the NSC viral particles were tested; cells were compared to the parental group 
with Student’ s t-test test, *p £ 0,05, n³9. Both GAPDH (E) and actin (F) were assessed as housekeeping 
genes. (G) Cell transduction did not alter actin expression in p53-KO PDGFB APLNR-KD cells; 
normalization on GAPDH, one-way ANOVA with Newman Keuls post-hoc test, n= 9, 9, 6. 
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7.7 	Apelin-13	peptides	specifically	target	APLNR-expressing	
GBM14	cells	

 

In collaboration with the research group of Prof. Dr. Ernst Wagner from the Department of 

Pharmacy of the LMU Munich, I tested the binding and fusion abilities of apelin-13-bound 

polyplexes carrying a Cy5-small interfering RNA (siRNA), and the binding and up-take 

abilities of apelin-13-GFP peptides in GBM14 cells. Polyplexes are an efficient method to 

deliver siRNAs and are obtained thanks to the interaction of the positively-charge polymers 

with the negatively-charged RNA [151].  

The purposes of these experiments were to evaluate the specificity of the apelin-13 binding and 

to provide insights on the mechanism of apelin circulation in intracellular compartments. If 

functional, APLN could serve to specifically target APLNR-expressing cells for different 

therapeutic protocols. G protein-coupled receptors (GPCRs), which control numerous 

physiological processes, are often used as drug targets. The understanding of their intracellular 

re-distribution mechanisms is a key step for the generation of efficient therapeutic interventions 

[152, 153], as the receptor signaling can continue after its internalization [153, 154]. 

Immunofluorescence and spatial-intensity distribution analysis are used to evaluate the 

intracellular processes following receptor activation [152, 155]. 

To be able to visualize and quantify the processes of protein binding and up-take, I used two 

different methods: in the first model, I exposed the GBM14 cells to polyplexes presenting either 

apelin-13, apelin-F13A, apelin-13 scrambled (apelin-13scr), or no ligand, and carrying a Cy5-

linked siRNA to visualize and quantify the binding and fusion events of the polyplexes to the 

cell membrane; in the second model, I exposed the GBM14 cells to either GFP-linked apelin-

13, GFP-linked apelin-F13A, GFP-linked apelin-13scr, or to a condition of competition where 

both apelin-13 and GFP-linked apelin-13 were used. As positive control I plated the GFP-linked 

oligomer 728 [156]. For a better visualization, I co-stained the cells with the membrane marker 

WGA and the nuclear marker DAPI (Figure 20). The analysis of the images obtained by 

exposure to the Cy5-polyplexes revealed a high-level of unspecific binding and fusion, 

detectable when apelin-13scr-polyplxes or non-targeted polyplexes were used (Figure 20A). 

Even though both binding and up-take of apelin-13-polyplexes were higher than apelin-13scr-

polyplexes, the processes were very well detectable in all the tested conditions. The discussions 

of these results with the group of Prof. Dr. Wagner confirmed possible unwanted unspecific 

binding of the polyplexes due to their lipid nature. Therefore, for the study of the specificity of 
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apelin-13 binding and up-take I decided to continue with the administration of the GFP-linked 

peptides described in the second model.   

 

 
Figure 20: The specific up-take of apelin-13 peptides by GBM14 cells. (A) GBM14 cells exposed 
to Cy5-polyplexes: the lipid nature of the polyplexes causes unspecific binding observable with 
apelin-13scr-linked and non-targeted polyplexes. The membrane signal is in red. Scale bar = 10 µm. 

 

The quantification of the number of cells presenting bound or up-taken GFP-apelin-13 was 

performed on 6 confocal pictures/condition taken at the level of the cell nucleus in the z-axis. 

As shown in figure 20B, GFP-apelin-13 specifically targeted the APLNR-expressing GBM14 

cells leading to a significant higher number of GFP-positive cells in comparison to GFP-apelin-

13scr (Figure 20B). GFP-apelin-F13A did not show any significant differences in binding and 

up-take abilities compared to GFP-apelin-13 (Figure 20B). Moreover, with the condition of 

competition I demonstrated that, not only the peptides GFP-apelin-13 specifically target the 

GBM14 cells, but the presence of highly-concentrated non-GFP linked apelin-13 is able to 

compete with GFP-apelin-13 and reduce its fluorescent signal, demonstrating once more its 

binding specificity (Figure 20B).  
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Figure 20 (continued): The specific up-take of apelin-13 peptides by GBM14 cells. (B) The 
quantification of GBM14 cells presenting GFP-fluorescence revealed a specificity of apelin-13 binding 
and up-take, in comparison to apelin-13scr and when administered in competition to non-GFP labelled 
apelin-13 peptide. Six stacks/condition were taken, and the central layer of each stack was quantified 
counting the number of cells presenting GFP fluorescence. One-way ANOVA with with Newman Keuls 
post-hoc test, *p £ 0,05; the enlargements show example of WGA-labelled cells (red) with a GFP-
positive signal indicated by the arrows. Scale bar = 15 µm. 
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Interestingly, the observations at the confocal microscope showed that in the cells exposed to 

GFP-apelin-13 numerous intracellular vesicles were detectable, especially in the perinuclear 

region (visible in figure 20C). The green signal coming from apelin-13 sometimes merged with 

the red membrane marker, as shown in the enlargement of figure 20C, indicating the co-

localization of apelin-13 with the intracellular vesicles. In addition, I observed many of these 

vesicles in the nuclear regions, where also a GFP-signal alone was detectable. The nuclear 

transport of vesicles that internalized apelin-13 together with its receptor APLNR would 

support the findings of others [157] on the nuclear trans-localization of APLNR and its 

intracellular redistribution in consequence to an APLN signaling, showing that the bound 

apelin-APLNR complex is transported as a whole.  
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Figure 20 (continued): The specific up-take of apelin-13 peptides by GBM14 cells. (C) The 
enlargements show perinuclear and nuclear GFP-positive signal (arrows), sometimes in co-localization 
with the red membrane staining (asterisks), indicating an intracellular circulation of the internalized 
peptides. Scale bar = 5µm. All pictures were obtained at the confocal microscope. 
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Anti-angiogenic	treatment	of	GBM	
 

7.8 	The	therapeutic	blockage	of	the	VEGF	signaling	pathway	in	
GBM	affects	the	expression	of	APLN	and	APLNR			

 

So far, the use of anti-angiogenic therapies targeting VEGF signaling for the treatment of GBMs 

did not show any long term benefits and improvements in patient OS [50]. GBM escapes the 

angiogenic blockade by up-regulating alternative chemokines involved in vessel formation or 

by switching to a more invasive phenotype [50-53, 56]. In addition, glioma-supporting cells 

release interleukins, cytokines, and growth factors that help tumor recurrence [126]. Thus, anti-

angiogenic interventions alone cannot be successful unless a more-widespread targeting that 

considers multiple pathways of escape is applied.  

In this project, I demonstrated that APLN and APLNR expression controls GBM angiogenic 

phenotype in vivo and that it has an additional role in driving in vitro GBM invasion. Therefore, 

I considered the possibility that the APLN-APLNR pathway would take part in GBM 

recurrence and invasion after the administration of anti-angiogenic therapies. 

To assess this, I evaluated the expression status of APLN and APLNR after VEGF signaling 

blockade in three sets of samples belonging to different independent experiments where an anti-

VEGFA antibody or a VEGFR-blocking small chemical compound had been used. 

The first set of samples included patient samples obtained from tumor resections before and 

after the treatment with bevacizumab (Figure 21A). I extracted the RNA from these tissues and 

analyzed APLN and APLNR expression comparing it to the expression levels detected in two 

healthy brain samples. In the pre-treatment sample I found an up-regulated expression of both 

APLN and APLNR compared to the heathy brains, thus confirming a function of the pathway 

in the biology of GBM. APLN and APLNR expression was down-regulated after bevacizumab 

treatment indicating reduced tumor angiogenesis. However, APLN expression in the core 

sample after treatment remained higher in comparison to the healthy brains, indicating the 

persistent presence of tumor tissue. 

The second set of samples available included mouse-derived GBM xenografts obtained from 

the RCAS/t-va model treated with a murine anti-VEGFA antibody [24, 158] (Figure 21B). 

Briefly, this model allows the reproduction of a GBM that “spontaneously” originates from 

neural precursor cells expressing the t-va receptor under a defined promoter when infected by 

the RCAS virus carrying an oncogene. The tumor generated reproduces the histological and 

pathological features of grade IV glioma. I isolated the RNA from 4 treated and 4 control 
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samples and analyzed the expression of APLN, APLNR, and KDR by qPCR (Figure 21B). 

While APLN and KDR expression were rather reduced after the administration of anti-VEGFA 

antibodies, APLNR was significantly upregulated in the treated mice compared to the controls. 

In this thesis I have previously demonstrated that a decreased APLN expression correlates with 

lower levels of tumor angiogenesis (Figure 8 and 10), while APLNR expression and activation 

may control tumor invasion (Figure 10, 13, and 17). Therefore, these findings on a decreased 

APLN expression and increased APLNR expression after treatment with anti-VEGFA 

antibodies support the decreased vessel area and increased tumor volume reported in the 

RCAS/t-va GBM model [24]. 

In the third set, samples were obtained from a subcutaneous tumor mouse model originated by 

the human GBM line U87 and treated with sunitinib and temozolomide to test new 

combinations of anti-angiogenic and chemotherapeutic compounds in GBMs [159] (Figure 

21C). In the qPCR analysis of these samples I could distinguish between genes deriving from 

the tumor (human) or the microenvironment (mouse). APLN and APLNR expression in the 

tumor cells did not show any differences in any of the therapeutic regimens (sunitinib or 

temozolomide as monotherapy, sunitinib and temozolomide combined, and control). In the 

microenvironment, however, APLNR was significantly up-regulated when the combined 

treatment with sunitinib and temozolomide was administered (Figure 21C). The authors 

reported an increased vascular resistance with upregulation of alternative angiogenic factors as 

angiopoietin-1 and tie-1 as consequence of the combined treatment of sunitinib + temozolomide 

[159]. The unchanged expression of APLN in the tumor microenvironment is consistent with 

the observed resistance of the tumor vasculature, which is also supported by the presence of 

increased levels of APLNR in the brain parenchyma.  

Taken together, these results obtained from three independent sets of experiments demonstrated 

that the expression of APLN and APLNR is affected by the therapeutic blockade of the VEGF 

signaling pathway. The synergistic effects of the blockade of VEGF signaling on the APLN-

APLNR signaling shown in figure 21A could lead to a promising therapeutic efficacy of the 

anti-angiogenic treatments; however, as demonstrated in figure 21B and C, this is not always 

the case and the blockade of one angiogenic pathway may lead to unexpected adverse effects 

by enhancing tumor invasion or alternative angiogenic signaling. Thus, a more comprehensive 

understanding of all the mechanisms co-operating in the tumor microenvironment is crucial for 

an optimal anti-angiogenic intervention in GBM.  
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Figure 21: Analysis of APLN/APLNR expression after administration of anti-VEGF agents. (A) 
qPCR analysis of GBM samples resected before and after bevacizumab treatment. The pre-treatment 
sample shows upregulation of both APLN and APLNR expression in comparison to the healthy controls. 
APLN upregulation is maintained after the treatment while APLNR expression is down-regulated. 
Results are normalized on GAPDH, n=6; healthy brain n=12. One-way ANOVA with Newman Keuls 
post-hoc, **p £ 0,005, ***p £ 0,0005; (B) qPCR analysis of gene expression in GBM mouse xenografts 
obtained by the RCAS/t-va GBM model and treated with anti-VEGFA antibodies or a vehicle control. 
While APLN and KDR expression is lower after the treatment, APLNR expression is significantly 
higher in comparison to the vehicle-treated samples. The upper graphs show the single results, which 
are grouped and analyzed with Student’s t-test in the bottom graphs; *p £ 0,05, 16 replicates. 
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Figure 21 (continued): Analysis of APLN/APLNR expression after administration of anti-VEGF 
agents. (C) These samples derived from a subcutaneous U87 tumor model treated with a combination 
therapy of sunitinib and TMZ. The upper graphs show the single samples, which are group in the lower 
graphs. APLNR expression is upregulated in the tumor microenvironment after the combined treatment 
with sunitinib and temozolomide, in comparison to the treatment with a single-agent or the vehicle 
control. Results are normalized on GAPDH and analyzed with one-way ANOVA with Newman Keuls 
post-hoc test, *p £ 0,05, number of replicates ³ 9. 
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The	role	of	the	APLN-APLNR	signaling	in	the	recruitment	of	
GBM-associated	myeloid	cells	
 

7.9 	The	infusion	of	the	antagonistic	peptide	apelin-F13A	does	not	
reduce	the	intratumoral	accumulation	of	myeloid	cells	in	

murine	GBM	models	

 

Previous studies have demonstrated that OPN, which is strongly upregulated in GBM-

associated myeloid cells, has a tumorigenic role [131, 160] and induces myeloid cells migration 

[131]. In addition, OPN expression is stimulated by different chemokines, APLN included [130, 

132].  

The role of TAMs in supporting tumor growth and angiogenesis has been extensively shown 

[61, 120, 121]. Our research group had already found by qPCR that cultured primary myeloid 

cells and the myeloid cell lines BV2 and J774 express APLNR, hence being directly responsive 

to APLN (data not shown). I verified by fluorescent staining the presence of APLNR in TAMs 

in vivo: as shown in figure 22A, myeloid cells were positive for iba1 (green) and APLNR (red). 

Thus, I confirmed that also in vivo myeloid cells express APLNR and may be responsive to its 

blockade or activation.  

Therefore, to assess whether the in vivo blockade of APLNR may affect TAM migration to the 

tumor, I quantified the number of Iba1-positive cells [161] in two mouse models originated by 

the implantation of either GBM14 NSC or p53-KO PDGFB cells and treated with the 

intratumoral infusion of apelin-F13A for four and two weeks, respectively, before sacrifice. 

The administration of apelin-F13A was able to significantly reduce tumor volume, tumor 

angiogenesis, and tumor invasion in both GBM models in vivo. 

The quantification of Iba1-positive cells was performed in three different areas per slice, which 

were defined in relation to their position compared to the tumor mass: intratumoral, in the tumor 

mass; peritumoral, lining the tumor mass; contralateral, in the tumor-free hemisphere. 

In both models, when comparing the absolute densities of Iba1+ cells quantified in the 

intratumoral and peritumoral areas, I did not detect any significant differences between 

treatments (Figure 22B and C). Moreover, in the p53KO-PDGFB model a tendency for an 

increased number of intratumoral TAMs was found after administration of the APLNR 

antagonist (Figure 22C).  

Therefore, even though the administration of apelin-F13A showed beneficial effects on the 

reduction of tumor growth, tumor vessel density, and tumor invasion, it did not decrease the 
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accumulation of TAMs, whose attraction instead tended to increase. In future experiments, the 

casual or consequential relation between TAM accumulation and the variation in tumor volume 

and invasion must be addressed by quantifying the number of Iba1-positive cells at different 

time points during in vivo tumor growth. 

 

 

 

 

 

 

10 μm

Iba1 APLNR

Iba1
APLNR

A 



98 
 

 
 

Figure 22: The effects of the blockade of the APLNR on TAMs accumulation. (A) Fluorescent 
immunostaining for the detection of iba1-positive cells (red) co-stained for APLNR (green). Scale bar 
in the overviews = 20µm; (B) Tumor-associated myeloid cells were quantified in the GBM14 NSC 
mouse model after 4 weeks of treatment with apelin-F13A. The graph shows that the accumulation of 
TAMs in the intratumoral compartment tends to increase, but not significantly, after administration of 
the antagonist apelin-F13A. The overview pictures show an example of the HRP staining (scale bar = 
500µm), the close-ups show examples of the intratumoral staining (scale bar = 200µm). Student’s t-test, 
n= 4;4; (C) Tumor-associated myeloid cells were quantified in the p53-KO PDGFB mouse model after 
2 weeks of treatment with apelin-F13A. The graph shows that the accumulation of TAMs in the 
intratumoral compartment is almost significantly increased after administration of the antagonist apelin-
F13A. The overview pictures show an example of the HRP staining (scale bar = 500µm), the close-ups 
show examples of the intratumoral staining (scale bar = 200µm). Student’s t-test, n= 7;7 
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8. Discussion	
 
In this doctorate thesis I present my research on the cellular expression analysis of the ligand 

APLN and its receptor APLNR, their histological characterization in human and mouse GBM 

specimens, and the role of the APLN-APLNR signaling pathway in driving GBM and myeloid 

cell invasion. 

After a complete screening of the cultured primary GBM cells available in our laboratory, I 

confirmed that the expression of both ligand and receptor was detectable in vitro (Figure 4). 

The expression levels of APLN and APLNR did not correlate with any of the GBM subgroups; 

however, the p53 gene status had an impact on APLNR expression in our mouse GBM cells 

(see supplementary data figure 2): GBM cells deriving from p53-KO NPCs had a significantly 

higher expression of APLNR in comparison with the NPC-derived GBM cells transduced with 

a WT or mutated p53 construct. Notably, p53-KO PDGFB cells, which express high levels of 

APLNR and low levels of APLN compared to other NPCs, generate more invasive tumors than 

other mouse primary GBM cells when implanted in vivo.   

Next, I confirmed the presence of ALPNR expression in WT NPCs in vivo by performing 

immunofluorescent staining on brain sections of a murine model where GFP is expressed under 

the nestin promoter, thus labelling the NPCs in the neurogenic niches (Figure 5). APLNR 

expression was detectable in some of the NPCs in the SVZ, hence indicating a possible 

physiological role of the APLN-APLNR signaling in controlling NPC proliferation and 

migration, and/or the vascular organization and maintenance of the neurogenic niche [162, 

163]. As I demonstrated by qPCR and fluorescent staining, the NPCs of the SVZ express both 

APLN and APLNR, thus they may engage in autocrine/paracrine APLN signaling. 

The histological characterization of APLN and APLNR by in situ hybridization in mouse GBM 

xenografts and in a human-derived GBM sample confirmed their expression in vivo in the tumor 

and their upregulation in the tumor microenvironment, in comparison to the tumor-free brain 

parenchyma (Figure 6 and 7). In addition, in the GBM mouse model, I confirmed the co-

localization of APLN and VEGFA expression in the GBM tissue, as previously reported in 

human samples [55]. In the human GBM sample I observed differences in the expression 

patterns of ligand and receptor: APLN signal was particularly intense in the ECs of tumor 

vessels, while APLNR signal, even though detectable on vessels, was very strong in the tumor 

cells across the tumor mass. These differences in their distribution may indicate that ligand and 

receptor cover distinct roles in the processes of tumor growth and angiogenesis. 
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Next, I analyzed the expression of APLN and APLNR in a set of tumor samples that underwent 

the invasive-to-angiogenic switch [142, 143] (Figure 8): both ligand and receptor were up-

regulated in the brain parenchyma of the xenografts that switched to an angiogenic phenotype, 

in comparison with the invasive ones. Thus, the expression of APLN and APLNR, in addition 

to be up-regulated in the GBM tissue, appeared to be in direct correlation with the level of GBM 

neo-angiogenesis.  

To better understand the function of the APLN-APLNR signaling in the context of GBM 

growth and progression, I generated a new GBM model with APLN loss by transducing three 

different primary human GBM cell types with lentiviral particles carrying shRNA against the 

human APLN gene (Figure 9). The characterization of the transduced cells confirmed the 

specificity of the knock-down and their ability to proliferate at comparable levels to the control 

and parental groups. The analysis for stem cell frequency with the Extreme Limiting Dilution 

Analysis (ELDA) software [137] confirmed that the APLN-KD and the NSC cells presented no 

differences in their stem cell frequency. Similar findings on the maintenance of the stem cell 

frequency were reported in GBM cells with APLNR-loss-of-expression, when exposed to the 

standard culturing medium [164]. Therefore, according to my results and the results of others 

[164], APLN-APLNR signaling is not responsible for the preservation of the stemness pool in 

vitro. However, when added to the culturing medium, apelin was able to act as mitogen and 

increase the stem cell population of primary GBM cells, in comparison to the administration of 

supplement-free medium only [164]. 

The in vivo implantation of the generated APLN-KD cells was essential to evaluate the 

contribution of APLN, derived from the tumor or from the tumor microenvironment, to GBM 

angiogenesis and invasion: APLN-loss directly correlated with a reduction of GBM 

angiogenesis and indirectly correlated with GBM invasion [147] (Figure 10). Notably, the 

finding on reduced angiogenesis is in support of my results on the GBM rat model of angiogenic 

switch, where I demonstrated that the expression of both APLN and APLNR was up-regulated 

in the angiogenic GBM xenografts. 

The in vivo experiments revealed that the implantation of APLN-KD cells into APLN-KO mice 

generated the most invasive tumors; the ability of the implanted GBM cells to invade an APLN-

KO brain might rely not only on parallel molecular pathways that are activated in an 

environment with low APLN, but also on apela, which is another ligand of APLNR [165] and 

may be able to exert tumor invasion. The qPCR analysis performed on mouse APLN-WT, 

APLN-KO, and K14-APLN brain tissues confirmed the presence of apela in all three samples 
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(Figure 10). Further characterization is necessary to evaluate the role of apela-APLNR signaling 

in triggering GBM invasion. 

By performing in situ hybridization for APLN and APLNR in patient-derived GBM samples, I 

demonstrated that APLN and APLNR are detectable with different distribution patterns 

throughout the tumor tissue (Figure 12 and 13). In particular, the ligand APLN was mainly 

upregulated in the tumor core cells in association with microvascular proliferations and in ECs; 

its receptor, although detectable in the tumor core in tumor cells and ECs, was strongly 

expressed on the tumor borders as well, where single invading tumor cells were present.  

In conclusion, not only the staining patterns of APLN and APLNR differ at the cellular level 

(Figure 7), but they also have different distributions across the tumor tissue. These findings, 

together with the in vivo results on the effects of the modulation of the APLN-APLNR signaling 

on tumor invasion (Figure 10), indicate a possible additional role of the pathway, aside from 

being a driver of tumor angiogenesis.  

In addition, to further characterize APLNR and verify its expression at the tumor margins in 

our mouse GBM models, I assessed its distribution by immunofluorescence in the xenografts 

generated by the implantation of different primary GFP-expressing GBM cells (Figure 14): the 

fluorescent signal of APLNR showed a characteristic pattern that differentiated the healthy 

brain parenchyma from the tumor mass. In particular, in the brain parenchyma, APLNR had a 

nuclear localization; on the contrary, the GBM mass showed an irregular and increased staining 

that was heterogenous between cell nucleus and cytoplasm. The peculiarity of the APLNR 

distribution in the tumor mass may indicate a different and specific role of the APLN-APLNR 

signaling in the context of GBM. 

To gain deeper insights on the role of the APLN-APLNR pathway in driving tumor invasion, I 

tested the ability of the APLN-KD cells to invade in vitro (Figure 15 and 16). Confirming the 

in vivo results, I observed that the presence of an autocrine APLN-APLNR signaling reduced 

the invasive ability of the GBM-NSC cells, in comparison with the APLN-KD cells, when 

exposed to apelin-13 or to an U87 MG sphere. 

The role of APLNR in driving a GBM invasive phenotype was confirmed in vivo and in vitro 

with the administration of its antagonistic peptide apelin-F13A (Figure 17). In vivo, the 

administration of apelin-F13A was able to reduce both cell invasion and tumor angiogenesis; 

in vitro, I observed a decreased invasion of the GBM cells tested when exposed to the antagonist 

alone or to the antagonist applied together with an external stimulus.  
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In conclusion, this demonstrates that the APLN-APLNR signaling drives tumor angiogenesis 

and invasion, and that the blockade of the receptor APLNR may be a promising strategy to 

inhibit GBM progression. 

Next, in collaboration with the group of Prof. Dr. Wagner of the Department of Pharmacy, 

LMU Munich, I demonstrated that APLNR-expressing GBM14 cells are able to selectively 

bind and up-take GFP-linked apelin-13 in comparison to the peptide apelin-13scr, and that the 

level of the bound GFP-apelin-13 decreased when applied in competition with apelin-13 

(Figure 20). This experiment demonstrated the possibility to specifically target APLNR-

expressing cells (here GBM cells) by administration of the unaltered apelin-13 peptides.  

Moreover, the confocal analysis of GBM14 cells exposed to GFP-apelin-13 demonstrated that 

the internalized peptides could undergo nuclear translocation in vesicular complexes, thus 

supporting observations of receptor intracellular circulation following stimulation with apelin-

13. Further characterization of the up-take abilities of GBM cells will elucidate the possibilities 

to target APLNR-expressing tumor cells for therapeutic purposes.  

 

Follow-up studies on the use of anti-angiogenic therapies reported an upregulation of 

alternative angiogenic signaling pathways [54, 56] and of an aggressive invasive behavior of 

the tumor [52]. After demonstrating a functional role of the APLN-APLNR pathway in GBM 

angiogenesis and invasion, I explored its expression after the administration of anti-angiogenic 

agents against VEGFA signaling (Figure 21). I analyzed three different sets of samples obtained 

by independent experiments where an anti-VEGFA antibody or a VEGFR-blocking small 

chemical compound had been used. In all samples, the blockade of VEGFA signaling resulted 

in unchanged or decreased expression of APLN in comparison with the pre-treatment or control 

groups. In two of these sets of samples, I observed a significant increase of APLNR expression 

in the tumor cells and in the tumor microenvironment, respectively, in response to the anti-

VEGFA treatment (Figure 21B and C). The increased APLNR expression may indicate two 

different mechanism of tumor resistance to anti-angiogenic therapies: as I demonstrated in this 

thesis, APLNR expression is upregulated at the tumor invasive borders (Figueres 12 and 13) 

and its increased expression in tumor cells may correlate with an invasive behavior consequent 

to reduced tumor angiogenesis, as previously observed in other GBM mouse models treated 

with anti-VEGF signaling therapies [50-53]; on the other side, increased APLNR expression in 

the tumor microenvironment may indicate vascular resistance and the upregulation of 

angiogenic pathways alternative to VEGF. These scenarios are supported by the findings 

describing the two models of figure 21B and C respectively [24, 162]. 
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An enhanced APLNR expression was not observed in one of the set of samples (Figure 21A), 

where APLNR expression in the tumor was strongly reduced after administration of 

bevacizumab, thus suggesting a better response to the therapy. This finding would not 

contradict the previous ones: a better outcome following anti-angiogenic treatments is observed 

in some patients and it is demonstrated to be subtype-dependent. In fact, previous results 

identified a correlation between tumor responsiveness to anti-angiogenic therapies and GBM 

subtype, where the proneural group is associated with a better survival outcome [49].  

 

In addition to the up-regulation of alternative angiogenic pathways [54-57], it is believed that 

tumor-associated myeloid cells modulate the tumor response to anti-angiogenic therapies [166]. 

In this study I quantified the number of TAMs in two GBM mouse models therapeutically 

treated with apelin-F13A (Figure 22), which in vivo significantly reduced tumor volume, tumor 

invasion, and angiogenesis, in comparison with the control solution aCSF. The quantification 

of TAMs in both GBM models treated with the APLNR antagonist demonstrated that the 

number of tumor-infiltrating myeloid cells was unchanged, or rather tended to increase, in 

response to APLNR blockade. An anti-inflammatory function of the accumulated TAMs might 

explain the reduction in tumor volume observed in the treated animals, in comparison with 

controls [147]. On the other side, however, their accumulation may be  due to an upregulation 

of attractive cues or the normalization window of tumor vessels [167] and, in a long-term 

perspective, translate into tumor rebound. All these are important questions that have to be 

addressed in future studies, by comparing the accumulation of TAMs at different stages post-

implantation to follow the evolution of the process in vivo and verify its relation (as casual or 

consequential) with the variations in tumor volume.  

 

In the present doctorate thesis, I did not only demonstrate that APLN and APLNR are 

overexpressed in GBM tissue, but also that the signaling and its manipulations have direct 

effects on tumor phenotype and on microenvironment, by regulating GBM angiogenesis and 

invasion.  

The urgency for the discovery of efficient therapies for glioblastoma multiforme is a medical 

topic of high concern and numerous are the attempts (in phase I, II, and III trials) to target 

specific molecular pathways in combination with chemotherapy. Despite the efforts, a 

generalized successful strategy is not yet available and the standard regimen relies on the 

combined treatment of Temozolomide, radiotherapy, surgical resection, and bevacizumab, 

when approved [58, 168]. Unfortunately, this treatment does not give a long survival 



104 
 

expectancy and tumor generally recurs [169]. At more advanced stages of the disease, even 

though drugs extravasate in the brain parenchyma through a disrupted BBB [30], their delivery 

is not optimal due to the aberrant and leaky vasculature caused by an imbalanced angiogenic 

signaling instructed by the hypoxic regions of the tumor bulk [170]. The use of anti-angiogenic 

agents in a tumor such as glioblastoma multiforme, which is characterized by numerous 

microvascular proliferations and co-opts the existing vasculature to grow [31], seemed a 

promising strategy to inhibit its progression [167]. Unfortunately, the treatment of GBM with 

a single anti-angiogenic agent did not give the expected results [60], but, despite tumor 

resistance, it is thought that the inhibition of the unbalanced angiogenic signaling may have a 

positive effect by inducing a window of vessel normalization that allows a better delivery of 

other medical interventions [33].  

In addition, mouse studies on GBM and in other well-vascularized tumors demonstrated an 

improved efficacy of the administration of a combination of anti-angiogenic drugs, which target 

parallel pathways like PIGF and ang-2, thus blocking possible alternative routes for tumor 

rebound [54, 171, 172]. In our study we demonstrated how the administration of the anti-

VEGFR2 antibody DC101 in combination with apelin-F13A was able to significantly reduce 

both angiogenesis and invasion in vivo, in comparison to the single- or the control treatments 

[147]. Support comes from a recent study on the administration anti-angiogenic therapy in 

TMZ-resistant GBMs: the knock-down of the APLNR and its pharmacological blockade with 

a novel bi-cyclic peptide led to impaired in vitro and in vivo tumor growth and improved mouse 

survival [164].  

To improve the outcome of GBM therapies the tumor subtype must be taken into consideration: 

the proneural and classical subtypes are characterized by the expression of numerous 

angiogenic markers and APLN expression level correlates with angiogenesis in both groups, 

but not in the mesenchymal one [147]. As previously discussed, the proneural GBM subtype 

gives a better outcome in patient OS after treatment with bevacizumab [49]. Therefore, further 

efforts must be done to identify and test different possible combined targets and a personalized 

therapy that takes into account the individual genetic variability [173].  
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8.1 	Outlook	
 
The promising results that I obtained in the study of APLN-APLNR signaling must be further 

extended in order to complete the characterization of the pathway and to fully understand the 

consequences of its targeting. The human primary GBM14 cells with APLNR loss, which I 

generated by transducing human primary GBM cells with lentiviral particles carrying shRNAs 

against the APLNR gene (Figure 19), will be an important tool to further explore the role of the 

receptor in driving tumor invasion, in vivo and in vitro. Moreover, the evaluation of the apela-

APLNR signaling pathway as a possible alternative route for tumor rebound might open new 

unexpected strategies for GBM treatments.  

In addition, the study of receptor internalization and re-distribution following apelin binding 

may lead to new information on a possible correlation between receptor localization and an 

observed cellular phenotype, e.g. tumor invasion. Furthermore, the specific targeting of tumor 

cells that overexpress APLNR might reveal alternative therapeutic approaches for the treatment 

of GBMs. 

The differences in the expression pattern of APLNR between tumor mass and brain parenchyma 

could be investigated more in depth to be exploited as a future diagnostic tool to identify GBM 

tissue. 

The results obtained in the GBM mouse models demonstrated that the blockade of the APLN-

APLNR signaling is an efficient strategy to treat glioblastoma multiforme and to achieve not 

only a reduction of tumor angiogenesis, but also of tumor invasion. Notably, this double-

efficiency in the reduction of both tumor processes is a fundamental step, which many current 

therapies fail to achieve, in order to avoid tumor rebound.  

All in all, I believe that to pursue the study of the APLN-APLNR signaling will provide 

important insights to develop successful strategies for GBM treatment. 
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9. Supplementary	Information	
 

9.1 	Quality	assessment	of	extracted	RNA	
		

To verify the reliability of the Trizol RNA extraction method and the quality of the extracted 

RNA, I ran some of the samples with the Agilent Bioanalyzer, which interprets RNA integrity 

depending on its migration pattern. The analysis assigns an RNA integrity score (RIN) that goes 

from 0 (bad quality) to 10 (excellent quality) for a quantitative conclusion in relation to the 

shape of the bands displayed along the migration path. A concentration of the extracted RNA 

is also indicated to verify the quantification measured with the standard photometer method. 

As shown in the example of figure S1, the electropherogram presents numerous peaks of 

reference used by the software to calculate the RNA concentration, which is measured 

according to the total area covered by the migrated RNA. The two highest peaks on the right 

represent the ribosomal RNA 18s and 28s, respectively. On the left of those peaks, the so called 

“fast-region” contains small RNA-fragments, including digested RNA and the ribosomal 

subunits 5S, 5.8S. A signal in this region indicates low-quality RNA. Instead, a broad peak in 

the post-region or the detection of peaks in the inter-region may indicate genomic DNA 

contamination. The RIN value is obtained taking all these variables into consideration. 

The elecropherogram of my cellular samples confirmed the good quality of the Trizol extraction 

protocol and of the extracted RNA (RIN between 9.4 and 9.7) (Figure S1). In the analyzed 

samples obtained from the cultured primary GBM cells (GBM13, GBM14, and NCH644) and 

the GBM cell line U87, very low RNA digestion and no genomic DNA contamination were 

detectable. The peaks of the ribosomal subunits 18s, 28s, and 5S were clearly depicted in the 

migration paths.  

The RNA extraction was successfully performed and gave intact RNA to be further process for 

analysis by qPCR. 
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Figure S1: Quality assessment of the extracted RNA. On the top left, an illustrative example of an 
electropherogram of a high-quality RNA sample obtained with the Agilent Bioanalyzer. The high peaks 
in the center represent the ribosomal subunits 18s and 28s, respectively. On their left, the fast-region 
shows possible degraded RNA, while between the peaks and in post-region possible contamination with 
genomic DNA is displayed. The other four electropherograms represent the analysis of high-quality 
RNA (RINs between 9.4 and 9.7) that I extracted from four different cell pellets of the human primary 
GBM cells GBM13, GBM14, NCH644, and the human GBM cell line U87. The migration patterns do 
not show any RNA degradation or genomic DNA contamination, thus indicating that the extraction 
protocol was correctly performed and was a reliable method for gene expression analysis. 
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9.2 	APLNR	expression	in	p53-KO	mouse	GBM	cells	

 

Figure S2: qPCR analysis of APLN and APLNR expression in primary GBM cultures. APLNR 
expression in mouse GBM cells shows a correlation with their p53 status: in tumor cells transduced 
with a mutated or WT p53 gene, APLNR expression is significantly low in comparison with the p53-
KO GBM cells. Interestingly, GBM cells p53-KO in vivo originate higher invasive tumors in 
comparison to the other mouse GBM cell types represented in the two columns on the right. The graph 
is originated by pulling together the single data represented in figure 4D: the panels on the right list 
what mouse GBM cells are represented in the columns “hs p53 WT or mutated” and “mm p53 WT or 
mutated”. All results were analyzed with one-way ANOVA with Newman Keuls post-hoc test, 
***p<0.0005.GAPDH was used as housekeeping gene for all the experiments. 
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