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Abstract

The ubiquitous availability of data in today’s manufacturing environments, mainly driven

by the extended usage of software and built-in sensing capabilities in automation systems,

enables companies to embrace more advanced predictive modeling and analysis in order

to optimize processes and usage of equipment. While the potential insight gained from

such analysis is high, it often remains untapped, since integration and analysis of data

silos from different production domains requires high manual effort and is therefore not

economic. Addressing these challenges, digital representations of production equipment,

so-called digital twins, have emerged leading the way to semantic interoperability across

systems in different domains. From a data modeling point of view, digital twins can be

seen as industrial knowledge graphs, which are used as semantic backbone of manufac-

turing software systems and data analytics. Due to the prevalent historically grown and

scattered manufacturing software system landscape that is comprising of numerous pro-

prietary information models, data sources are highly heterogeneous. Therefore, there is

an increasing need for semi-automatic support in data modeling, enabling end-user en-

gineers to model their domain and maintain a unified semantic knowledge graph across

the company. Once the data modeling and integration is done, further challenges arise,

since there has been little research on how knowledge graphs can contribute to the sim-

plification and abstraction of statistical analysis and predictive modeling, especially in

manufacturing.

In this thesis, new approaches for modeling and maintaining industrial knowledge

graphs with focus on the application of statistical models are presented. First, concern-

ing data modeling, we discuss requirements from several existing standard information

models and analytic use cases in the manufacturing and automation system domains

and derive a fragment of the OWL 2 language that is expressive enough to cover the

required semantics for a broad range of use cases. The prototypical implementation en-

iv



CONTENTS

ables domain end-users, i.e. engineers, to extend the basis ontology model with intuitive

semantics. Furthermore it supports efficient reasoning and constraint checking via trans-

lation to rule-based representations. Based on these models, we propose an architecture

for the end-user facilitated application of statistical models using ontological concepts and

ontology-based data access paradigms.

In addition to that we present an approach for domain knowledge-driven preparation

of predictive models in terms of feature selection and show how schema-level reasoning in

the OWL 2 language can be employed for this task within knowledge graphs of industrial

automation systems. A production cycle time prediction model in an example application

scenario serves as a proof of concept and demonstrates that axiomatized domain knowl-

edge about features can give competitive performance compared to purely data-driven

ones. In the case of high-dimensional data with small sample size, we show that graph

kernels of domain ontologies can provide additional information on the degree of variable

dependence. Furthermore, a special application of feature selection in graph-structured

data is presented and we develop a method that allows to incorporate domain constraints

derived from meta-paths in knowledge graphs in a branch-and-bound pattern enumeration

algorithm.

Lastly, we discuss maintenance of facts in large-scale industrial knowledge graphs

focused on latent variable models for the automated population and completion of missing

facts. State-of-the art approaches can not deal with time-series data in form of events that

naturally occur in industrial applications. Therefore we present an extension of learning

knowledge graph embeddings in conjunction with data in form of event logs. Finally,

we design several use case scenarios of missing information and evaluate our embedding

approach on data coming from a real-world factory environment.

We draw the conclusion that industrial knowledge graphs are a powerful tool that can

be used by end-users in the manufacturing domain for data modeling and model validation.

They are especially suitable in terms of the facilitated application of statistical models in

conjunction with background domain knowledge by providing information about features

upfront. Furthermore, relational learning approaches showed great potential to semi-

automatically infer missing facts and provide recommendations to production operators

on how to keep stored facts in synch with the real world.
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Zusammenfassung

Die umfassende Verfügbarkeit von Daten in Produktionsbetrieben, hauptsächlich getrie-

ben durch den erhöhten Einsatz von Sensorik und entsprechender Software in industriellen

Automatisierungssystemen, ermöglicht es Unternehmen vermehrt auf prädiktive statistis-

che Modellierung zu setzen, um damit ihre Prozesse und die Nutzung von Anlagen zu

optimieren. Das große Potential von aus diesen Analysen zu gewinnenden Erkenntnissen

bleibt jedoch weitgehend unerschlossen, da die Integration und Analyse von Datensi-

los aus verschiedenen Produktions-Domänen mit hohem manuellen Aufwand verbunden

und damit nicht ökonomisch ist. Mit dem Ziel die semantische Interoperabilität zwis-

chen Systemen zu erhöhen, hat sich der Trend hin zu digitalen Repräsentationen von

(Teil-)Anlagen, den sogenannten digitalen Zwillingen, etabliert. Aus Sicht der Daten-

modellierung können digital Zwillinge als industrielle Wissensgraphen angesehen werden,

welche damit als umfassendes semantisches Fundament der Produktionsoftware und Anal-

yse fungieren. Mit der vorherrschenden Vielzahl an Datenquellen und bestehenden In-

formationsmodellen in Produktionssystemen herrscht allerdings noch großer Bedarf an

semi-automatisierter Unterstützung für Endanwender bei der semantischen Modellierung

ihrer Produktionsdomäne und bei der unternehmensweiten Wartung von Wissensgraphen.

Neben der Modellierung und Datenintegration ergeben sich neue Herausforderungen, in-

sofern sich bisher wenige Untersuchungen damit beschäftigten, inwiefern Wissensgraphen

die Anwendung von statistischen Analysen und prädiktiven Modellen vereinfachen und

abstrahieren können, speziell in der Produktionsdomäne.

In dieser Arbeit stellen wir neue Ansätze zur Modellierung und Wartung von indus-

triellen Wissensgraphen mit dem Fokus auf der Anwendung von prädiktiven Modellen

vor. Als erstes wird das Problem der Datenmodellierung betrachtet, indem Anforderun-

gen aus verschiedenen standardisierten Informationsmodellen in Produktionsumgebungen

und Automatisierungssystemen gesammelt werden, um daraufhin ein Fragment der OWL

vi
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2 Ontolgiesprache festzulegen, welches die Expressivität der geforderten Semantik für ein

breites Spektrum an Anwendungsfällen abdeckt. Eine prototypische Systemimplemen-

tierung erlaubt es Endanwendern, die Basis-Modelle der Ontologie semantisch intuitiv zu

erweitern. Desweiteren unterstützt es effizientes Reasoning und Constraint-Überprüfung

durch Übersetzung in eine regelbasierte Repräsentation. Auf Basis dieser Modelle wird

eine allgemeine Architektur skizziert, die eine erleichterte Anwendung von prädiktiven

Modellen unter Benutzung von ontologischen Konzepten und dem Paradigma des ontolo-

giebasierten Datenbankzugriffes erlaubt.

Anschließend wird ein Ansatz zur Domänenwissen-gestützten Vorbereitung von statis-

tischen Modellen im Hinblick auf die Auswahl von Variablen vorgestellt. Es wird gezeigt,

wie OWL 2 Reasoning auf Schemaebene für diesen Zweck in industriellen Wissensgraphen

angewendet werden kann. Als Machbarkeitsnachweis dient ein Vorhersage-Modell von

Produktionsdurchlaufzeiten in einem simulierten Beispielszenario, worin sich erweist, dass

axiomatisiertes Domänenwissen über Variablen im Vergleich mit herkömmlichen daten-

getriebenen Ansätzen qualitativ ähnliche Ergebnisse liefern kann. Im Fall von hoch-

dimensionalen Daten mit wenigen Beispielen zeigen wir, dass Graph-Kernel Methoden,

angewandt auf Domänen-Ontologien, wertvolle Informationen zu Abhängigkeiten zwis-

chen Variablen extrahieren können. Weiterhin wird eine spezielle Anwendung des Prob-

lems der Variablenauswahl in graph-strukturierten Daten gezeigt, für die eine Methode

entwickelt wurde, welche die Eingliederung von Domänen-Constraints in Bezug auf einen

Wissensgraphen in eine Branch-and-Bound Mustersuche integriert.

Darauf folgend wird das Problem der Wartung von Fakten in industriellen Wissens-

graphen mit Hilfe von latenten Variablen Modellen zur automatischen Population und

Vervollständigung von fehlenden Fakten untersucht. Der aktuelle Stand der Technik kann

nicht mit Daten in Form von Event-Zeitreihen umgehen, weshalb hier eine Erweiterung

von Repräsentations-Lernverfahren für Wissensgraphen in Verbindung mit Zeitreihen,

Events im speziellen, vorgestellt wird. Abschließend wird dieses Lernverfahren in ver-

schiedenen gezielten Anwendungsfällen von fehlenden Fakten an realen Daten aus einer

Produktionsumgebung evaluiert.

Als Fazit kann festgestellt werden, dass industrielle Wissensgraphen ein mächtiges

Werkzeug sind, das von Endanwendern zur Datenmodellierung und Überfprüfung ver-

wendet werden kann. Vor allem im Hinblick auf die erleichterte Anwendung von prädik-

tiven statistischen Modellen in Verbindung mit formalem Domänenwissen können Wis-
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sensgraphen erfolgreich eingesetzt werden, indem sie Wissen über die Merkmale vorab zur

Verfügung stellen. Weiterhin erweisen sich relationale Lernverfahren in Wissensgraphen

als vielversprechend, um semi-automatisiert fehlende Fakten zu ergänzen und Vorschläge

an Administratoren zu geben, wie sie die Wissensbasis mit der realen Umwelt synchro-

nisieren können.
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Chapter 1

Introduction

We can only see a short distance

ahead, but we can see plenty there

that needs to be done

Alan Turing

1.1 Industrial Knowledge Graphs

Due to the paradigm shift towards mass-customization, manufacturing companies are

challenged by the need to meet high quality demands of customers, while at the same time

higher flexibility of processes, equipment and people is required to enable fast introduc-

tion of new products [Sch14]. Enabling more flexibility comes with the price of entangling

multitudinous inter-dependencies between production engineering and execution, includ-

ing coherent changes of bill of processes, bill of materials and equipment configurations.

Enterprise surveys have shown that this is a complex task that requires novel decision

support and traditional manufacturing execution systems (MES) have not been designed

to hold up to these new standards [JKSB14].

In order to bridge the gap between decision support software applications, i.e. MES,

and physical processes, sensing and communication technologies are increasingly deployed

on production equipment and products, such that it is possible to collect data throughout

their life-cycle and reason about their current context [TCQ+18, LHSS12]. On a high-

level, these developments should serve the “need of enterprises to enhance transparency

1



CHAPTER 1. INTRODUCTION
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Figure 1.1: Digital Twin of an industrial automation system showing the three parts: the
physical system, its digital twin model, and connected data.

and the derivation of short-term production control as well as process optimization based

on near-real time data” [USL+17, p.114]. However, today, for example factory design

engineers spend between 41% to 74% on manual data acquisition and preparation to

design new variants [Paw14, p.357].

The aspiration of facilitated utilization of production data has led to an envisioned

logical separation of real-world physical systems and digital representations – a concept

referred to as the digital twin [Dat16]. Borrowing from its original definition in the product

life-cycle management domain, a digital twin of an industrial automation system consists

of three parts: the actual physical system, the virtual system (model), and connected data

that ties the real and virtual worlds together [MRP+05]. By transferring these ideas to

2



CHAPTER 1. INTRODUCTION

the manufacturing and automation system domain, this can be conceptually visualized as

shown in Figure 1.1. At the top of the figure, the digital twin model represents information

about the product to be manufactured, exemplified here on a simple bill of material as

partonomy. It further contains information about manufacturing processes routing and

sequential relationships between processes, as well as the more detailed manufacturing bill

of process which contains equipment models and their associated process operations. At

the bottom of the figure, the actual physical automation system is depicted. The physical

system generates operational data, i.e. sensor observations, which ties the physical and

the model of the digital twin together.

From a technical point of view, the digital twin concept does not contribute to in-

creased engineering flexibility or decision support. It is merely an analogy that summarizes

the overall data integration and usage problems that the historically grown manufactur-

ing and automation systems face. In this sense, the digital twin model can be seen as a

conceptual data model that serves as a common ground in production data integration,

i.e. the data model is a semantic representation of (fragments of) the digital twin model

that is used to integrate operational data from the physical system.

An example of such a semantic data model is shown in Figure 1.2, reflecting an onto-

logical view of the concepts in the digital twin model of Figure 1.1. As before, the vital

concepts Device, Process, and Material are represented. An example of a specialized

subclass of Device is given here as SensingDevice, which is further defined to have an ex-

istential restriction on the observes object property (relation) to an InformationEntity.

We can further identify that the assembly process in the depicted automation system

above should be an instance of the concept AssemblyProcess.

In most industry domains today, heterogeneous data models are prevalent and massive

amounts of instance data is stored in disparate data sources and in a variety of formats,

collected at high frequency, therefore matching every dimension of the definition of Big

Data [JONK14]. The complexity of Big Data in industry has given rise to facilitated

data integration and access based on semantic data models, which is an active research

field in several industrial domains [KSÖ+14, KHJR+15]. However, in contrast to the

above mentioned works on semantic models for facilitated industrial end-user data access

and works concentrating on semantic interoperability between MES and other production

software systems [SMS11], the focus of this thesis is the application of predictive models

within semantically integrated production data. Thus, in accordance to the machine

3
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Figure 1.2: Excerpt of a semantic data model reflecting the concepts of the digital twin
model in 1.1.

learning community, stressing the importance of the relational instance data, we will

refer to semantically integrated production data in the digital twin model as industrial

knowledge graphs (KGs). When a clear distinction is needed we will use the term semantic

data model or ontology to explicitly refer to the schema only.

The Web Science1 and Semantic Web Community have only recently picked up the

direction of statistical methods on top of such industrial knowledge graphs as research

field [PHGg17]. Further investigations towards the application of predictive models, e.g.

machine learning, within industrial knowledge graphs is needed, especially in decision

1https://industrial-knowledge-graphs.github.io/2017/
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CHAPTER 1. INTRODUCTION

support scenarios that require to predict future behavior or give recommendations to

production engineers based on time-series and operational data [Grö15].

1.2 Operational Data and Industrial KGs

A key characteristic that separates industrial knowledge graphs from general-purpose

ones, such as DBPedia2, is the availability of operational data that reflects the functional

behavior of the underlying physical systems. This poses challenges on how operational

data can be used in combination with KGs in terms of making predictions about the

system’s behavior as well as vice-versa inferring when the KG does not correctly reflect

the physical system. These two points are the different directions of the synchronization

problem, as indicated on Figure 1.1.

Towards the first point, there is a plethora of work on classical predictive models such

as predictive maintenance, quality control, and production scheduling [WIT14, IOA09,

LLBaK13]. However, the definition of predictive models in industry is challenging for data

scientists, who typically lack the engineering knowledge and expertise of the production

devices, processes, and products. To take away the need for specialized data scientists,

domain-specific languages that allow domain experts to define analytic models have been

studied [LNR14]. Although semantic data models are becoming widely adopted for data

access and integration, there has still little research been done in considering how to fur-

ther model concepts that facilitate predictive model preparation, execution and evaluation

in industry. Rule-based approaches for device diagnostics have been studied that try to

remove the dependence on data sources specific characteristics and therefore hide these

details from the domain expert end-users [MKS+17]. However, this has not been done for

more complex machine learning models and industrial KGs.

Concerning the second point, while text data is commonly used to populate and retract

facts of general-purpose KGs, a detailed textual description of devices, processes, and

products is usually not given in industry. There has been little work concerned towards the

usage of operational production data to automatically extract or complete missing facts

within industrial knowledge graphs. One such example is to extract physical dependence

relations between devices given quality control data of production lines [BDMJ17]. These

approaches are still in their infancy and not generic enough to be applied to different

2https://wiki.dbpedia.org/

5
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datasets.

Furthermore, in large-scale general-purpose KGs, it has been shown that overall facts

are usually highly incomplete. For example, the Freebase KG is missing the birthplace

relation for about 71 % of all people entities [NMTG15]. This example shows that even

simple facts that might be thought of as trivially retrievable can not be reliably managed

with common KG construction techniques, whether manual curation or semi-automatic

extraction from text. Exploiting statistical patterns to complete missing facts in general-

purpose KGs has emerged as a big topic in machine learning research. These techniques,

however, have not been sufficiently studied for industrial purposes, where the evolution of

facts over time is much more significant and operational data is vital to understand the

evolution of facts in the KG.

1.3 Research Topics in this Thesis

As mentioned in the above introduction, the focus of this thesis is to study issues related

to predictive modeling in industrial knowledge graphs. This area is further divided into

three concrete research topics.

Topic 1: Requirements analysis of conceptual information models for indus-

trial knowledge graphs The first topic of this work concerns the study of information

model requirements for industrial knowledge graphs with respect to:

Q.1 What kind of conceptual modeling constructs need to be supported in the modeling

language for typical industrial analytic use cases and how can these constructs be

made available in an ontology-agnostic and domain-user friendly editor for industrial

engineers?

Q.2 How can the conceptual model further be used to formulate statistical analysis within

the ontology-based data access paradigm?

For research question Q.1, the aim is to define ontological concepts for the widely adopted

industrial standard information models in ANSI ISA-88/95 (IEC/ISO 62264). This is the

foundation of the Business-To-Manufacturing-Markup-Language (B2MML) 3, and the de

facto standard for the interface between Enterprise Resource Systems (ERP) and MES.

3http://www.mesa.org/en/B2MML.asp

6
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CHAPTER 1. INTRODUCTION

End-user friendly management of these conceptual models is needed for practical ap-

plication in the industrial domain, since concepts evolve over time. This requires to

enable end-users (e.g. industrial engineers) to edit concepts and specify rules, such as

data integrity, without having explicit training in formal description logics.

The next step in Q.2 is to evaluate how the ontology-based data access paradigm can

not only facilitate access to heterogeneous data sources, but also enable further statistical

analysis that goes beyond existing descriptive metrics, such as manufacturing key perfor-

mance indicators. The semantic model makes cross-data source connections explicit and

therefore opens the doors for more holistic statistical analysis across disparate produc-

tion domains. We refer to this as the formulation of advanced manufacturing analytics,

where the goal is to limit the manual effort needed for the preparation and execution of

statistical analysis.

The aim is to assess these requirements for one concrete domain and use case scenario,

since production environments are very diverse and a comprehensive analysis is not in the

scope of this thesis.

Topic 2: Feature selection for predictive models within industrial knowledge

graphs As mentioned above, the definition of predictive models in industry is challeng-

ing for data scientists, because they usually lack the domain expertise and specific insights

into how industrial systems function. The second topic in this thesis is concerned with the

study of how such domain knowledge can be captured and exploited, in order to ensure

that predictive models use the right variables (features).

Q.4 What kind of domain knowledge of industry experts can be captured in semantic data

models to make feature selection more efficient w.r.t a large number of instance data

points?

Q.5 Can domain knowledge-based feature selection prevent overfitting and therefore en-

hance accuracy of predictive models?

We refer to the usage of ontological concept definitions for feature selection as semantic-

guided feature selection. The concepts should allow to capture known physical engineering

dependencies to make feature selection search more efficient. Additionally, it is of interest

to study the effects on the statistical predictive power, i.e. enhance performance by

preventing overfitting.

7



CHAPTER 1. INTRODUCTION

Furthermore, acceptance and trust of domain experts in predictive models can only be

elevated with explainable selection of data. A semantic-guided feature selection should

establishes trust and explicability for domain experts by implicitly removing spurious

correlations.

Topic 3: Completion of missing facts in industrial knowledge graphs The third

topic is concerning the application of relational learning to the task of knowledge graph

completion in industrial scenarios. The following research questions are posed:

Q.6 How can relational learning be applied to the completion of missing facts in industrial

knowledge graphs?

Q.7 What are possible extensions to existing representation learning models such that

they can incorporate operational data into the completion task?

Q.8 Does operational data increase completion performance with regards to accuracy and

can we identify different impact of operational data on different fragments of the

industrial KGs?

Since there have not been any applied studies in this area, the research questions in

this topic are more fundamental. The ultimate goal is to phrase the synchronization of

digital and physical twin as a knowledge graph completion problem. The hypothesis here

is that traditional approaches that do not allow to incorporate operational data are not

sufficient and need to be extended. To this regard, we aim to carry out machine learning

experiments that study the effects on different parts of industrial knowledge graphs based

on data from real-world production facilities.

1.4 Outline

The remainder of this thesis is structured as follows:

Chapter 2 presents an introduction to the information modeling research topic of

this thesis. First, it provides the necessary background on semantic data models and

knowledge graphs in general. Then an overview of related work in semantic industrial

information modeling is presented. Finally, we outline the contribution of this thesis and

refer to the respective publication.

8



CHAPTER 1. INTRODUCTION

Chapter 3 focuses on predictive modeling withing knowledge graphs. A fundamental

overview of statistical predictive modeling is given with related tasks of feature selec-

tion, especially in graph-structured data. Then related work of domain knowledge-driven

feature selection is presented and finally the contributions of this thesis are outlined.

Chapter 4 is concerned with the third research topic of knowledge graph completion in

industrial settings. It introduces necessary background on statistical relational learning

and recent representation learning approaches. Afterwards, a summary of related works

in background-enhanced relational learning is presented and the chapter concludes with

the contribution of this thesis and list the respective publications.

Chapter 5 presents concluding remarks in terms of a short summary that highlights

again the contributions and how they fit into a bigger picture, as well as an outlook that

states promising directions of future work.

9



Chapter 2

Semantic Data Models for Industrial

Knowledge Graphs

Die Grenzen meiner Sprache

bedeuten die Grenzen meiner Welt

Ludwig Wittgenstein

Concerning the first challenge, defining shared vocabularies and concepts across several

manufacturing domains, each connected to a plethora of existing standardized informa-

tion models, is an elaborate task. It has been shown to require the involvement of domain

experts as well as data engineers in data modeling [ALGM13]. Established industrial

standards lack clearly defined semantics and are mostly not compatible to each other.

For example, the OPC Foundation’s Unified Architecture (OPC UA), International Elec-

trotechnical Commission standard (IEC 62541), for platform-independent communication

and information modeling of automation systems, and AutomationML (IEC 62714) for

describing production plants in engineering, both come with pre-defined basis information

models that are not aligned [HS14]. Re-usage of such models is not well supported, since

they often rely on proprietary formats, and further alignment of multiple information

models is expensive as well as failure prone, i.e. leads to inconsistencies. While tooling

support for these models is in its infancy, the Semantic Web technologies have come to a

maturity that is ready to be used at industrial scale by applying state-of-the-art ontology-

based data access (OBDA) modules. The work in this thesis consequently builds upon

existing Semantic Web - World Wide Web Consortium (W3C) standards, such as the

10
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Web Ontology Language, for the development of well-defined data models of industrial

knowledge graphs.

2.1 Knowledge Graphs and the Semantic Web

Knowledge graphs recently have emerged as backbone of many applications, such as ques-

tion answering [BGWB14], web search [DGH+14], and data integration [KSÖ+14]. In

recent years the term knowledge graph has been adopted by the artificial intelligence re-

search community, originally popularized by Google’s work on extending the Freebase

project [Sin12], in order to emphasize the large-scale aspect and refraining from previous

terms such as knowledge base or ontology.

There are several different notions of KGs and therefore no clear formal definition

exists to this date. However, the most commonly accepted characteristics of a knowledge

graph can be given in reference to [Pau15] as follows:

Definition 1 (Characteristics of Knowledge Graphs).

A knowledge graph

i) mainly describes real world entities and their interrelations, organized in a graph,

ii) defines possible classes and relations of entities in a schema,

iii) allows for potentially interrelating arbitrary entities with each other and

iv) covers various topical domains

From this set of characteristics it becomes evident that KGs are typically understood

as databases that store facts about the world as instance data with an optional schema.

Entities are the nodes in the graph and can represent real-world physical things, like per-

sons and locations, or information objects, for example the theory of relativity. However,

the most important feature of KGs are the directed edges, that is the relations between

entities, which represent a certain type of relation. This means that in contrast to or-

dinary directed graphs, the typed relations define the multi-relational graph structure of

KGs. For example person entities may be connected via the relation friendOf, whereas

the bornIn relation may connect persons to locations. A more formal definition of these

graphs is given in 3.1.3.

11
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(a) Search result

Honolulu

Donald	
Trump

Barack	
Obama

USA

succeededBy

New	York	
City

(b) Graph Representation

Figure 2.1: Excerpt of a knowledge graph as part of search engine results

From an application perspective, KGs provide background knowledge that is both

human and machine-readable. Most prominently, the Google search engine not only

suggests websites, but also delivers additional information to the entities that are found

in a given search query. For example, search for “Barack Obama”, would yield a set of

facts, including birthplace and education, about the 44th president of the United States

as shown in Figure 2.1a.

Both graphically and mathematically, these facts can be expressed as a multi-relational

graph with entities as nodes and edges of different labels as the relations that connect

them. An excerpt of the knowledge graph retrieved by the previous example query may

look like the one in Figure 2.1b. Here, facts about birthplaces are denoted by connecting

an edge labeled bornIn from the person entity node to its respective birthplace entity

node.

In the subsequent sections we will introduce the data model behind KGs, see section

2.1.1.1, as well as some of the formal ontology languages for describing KG schemata in

12
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section 2.1.1.2.

2.1.1 Knowledge Representation

Knowledge representation is a research sub-field of artificial intelligence with its roots in

the development of software programs that can answer questions based on declarative

facts about the world, rather than based on procedural computing instructions, therefore

to some extend mimic the human reasoning process. Most prominently the so-called

expert systems were designed to incorporate a knowledge base of facts including rules and

an inference engine that is able to draw conclusions.

More advanced formalism to define facts plus allowing automated reasoning have been

studied, such as semantic networks and frame languages [RN10].

The most recent developments in this area have been made towards the vision of a

machine-readable web of data, the so-called Semantic Web. Pursuing this vision, de-

scription logics (DL) as knowledge representation language have been adopted for the

development of an ontology language to describe resources on the web, which itself was

heavily influenced by the earlier formalisms underlying frames and semantic net sys-

tems, realizing the trade-off between high expressive power and decidability (complexity)

[BCM+03]. Before describing the formal background of DL and ontologies in 2.1.1.2, we

first introduce the basic building block of the Semantic Web, its standard data model –

the Resource Description Framework.

2.1.1.1 The Resource Description Framework

In order to enable the automatic exchange of information on the Web, i.e. unified machine-

readable content, the W3C standardized a data model specification called the Resource

Description Framework (RDF)1. In contrast to other conceptual modeling approaches,

such as the Unified Markup Language (UML) class diagrams, RDF is based on statements

in form of triples (subject, predicate, object), which establish relationships between

resources. These resources need to be uniquely identified by means of so-called Uniform

Resource Identifiers (URIs). Every RDF entity is a resource and linking resources via

triples results in a very loosely coupled structure that does not restrict the data to follow

a specific schema, but rather allows the schema to evolve with the data. In simple terms,

1https://www.w3.org/TR/rdf11-mt/
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subject predicate object
dbr:Barack Obama rdf:type dbo:Politician

dbr:Barack Obama dbo:bornIn dbr:Honolulu

Table 2.1: RDF triples about entity dbr:Barack Obama

an RDF data model is a directed labeled graph, where subjects and objects are nodes

and predicates are labeled edges. There are special cases to this that do not fit this

graph representation. It is allowed that predicates can also act as nodes. Also the notion

of blank nodes is an exception, where an entity does not have to be identified by an

actual URI and it serves mainly the purpose of reification, i.e. making statements about

statements. For machine learning purposes these special characteristics are usually not

considered [RP16a].

Besides the notion of triples, RDF also specifies some general pre-defined vocabulary,

such as the type property, which is itself identified by the URI 2 and is used to indicate

the type of a resource. Full URIs are usually shortened by using prefixes to refer to

certain namespaces. For example, one would specify the RDF vocabulary to resort in

the namespace 3 and define a prefix rdf as shorthand notation. Hence, the RDF type

property can be referred to by simply declaring rdf:type. Other popular vocabularies

for sharing information have been developed by the Semantic Web community, such as

friend-of-a-friend (FOAF) for social relationships, DBPedia for the semantic Wikipedia,

or the Dublin Core for general document properties. Revisiting the presidential example,

Table 2.1 lists two triple statements taken from DBPedia about the entity referred to by

the URI dbr:Barack Obama, specifying its type and birthplace. The prefixes dbr and dbo

define namespaces for instance data and schema-level definitions respectively.

It is important to note that the URI is a symbolic identifier of the entity and does not

have to be connected with the actual surface name (label) of the entity.

Another W3C standard building block is the RDF Schema (RDFS), which extends

RDF to a larger vocabulary. One of the most import features of RDFS is the definition of

classes, class-hierarchies (taxonomies), as well as definitions about relations, such as the

domain and range, i.e. the types of the subject and object entities. In Table 2.2, RDFS

predicates are used to define that dbr:Politician is a sub-class of dbr:Person, that is

2http://www.w3.org/1999/02/22-rdf-syntax-ns#type
3http://www.w3.org/1999/02/22-rdf-syntax-ns#
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subject predicate object
dbo:Politician rdfs:subClassOf dbo:Person

dbo:bornIn rdfs:domain dbo:Person

dbo:bornIn rdfs:range dbo:Place

Table 2.2: RDF triples using RDFS vocabulary for class hierarchy and domain and range
definitions

every entity of type dbr:Politician is also of type dbr:Person, as well as the domain

and range definition of the dbo:bornIn relation. The formal model behind RDFS allows

basic logical inference based on a set of entailment rules, such as in the type inference in

the sub-class example.

Besides logical inference RDF-based knowledge graphs also provide means for query-

ing. The standard language for querying data in RDF-based knowledge graphs is SPARQL

[HS13]. Due to the RDF graph structure, it is conceptually different from other declarative

query languages, as for example SQL, which is based on relational algebra. Similar to the

triple notation of RDF, SPARQL queries are built by specifying graph patterns in form

of RDF triples, where variables can be specified as placeholder for subjects, predicates

and objects. Since the RDF data model represents RDF and RDFS triples likewise in

the same graph, a convenient property of SPARQL is the capability to intertwine queries

on schema and instance-level, also referred to as schema-aware querying. As an example,

the following query defines the variable ?P to retrieve all instances which are of type

dbo:Politician who were born in dbr:Honolulu:

SELECT ?P WHERE {?P rdf:type dbo:Politician . ?P dbo:bornIn dbr:Honolulu .}

, which would bind dbr:Barack Obama as an answer to ?P .

2.1.1.2 Ontologies and Logical Reasoning

Borrowing the term from philosophy, Gruber defines an ontology as an “explicit specifi-

cation of a conceptualization” [Gru93] , which means a formal, explicit way of describing

a simplified model of a domain.

Although RDFS provides some support for the specification of ontologies based on

RDF resources, the Web Ontology Language (OWL) family was introduced to allow more
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expressive definitions building on top of the theories of description logics4, which are

decidable fragments of first-order logic.

In terms of OWL an ontology is made of the following elements:

• concepts (classes)

• taxonomic relations between classes,

• datatype properties, i.e. attributes defined by a simple datatype,

• objects properties, i.e. named relations,

• individuals, i.e. instances of classes and properties,

• restrictions, i.e. constraints on properties.

Due to its DL foundations, in OWL terms the set of instances is referred to as ABox

(assertions, denotedA), whereas the set of concept definitions is called TBox (terminology,

denoted T ). As it is more common outside of the Semantic Web community, also in this

work, the term knowledge graph is by default used to refer to the instances only and the

term ontology is used to explicitly refer to schema-level definitions. The same goes for

the size of a knowledge graph, usually addressing the number of individuals and not the

number of concepts.

Description logics are designed to allow tractable logical reasoning in ontologies under

the so-called open-world assumption (OWA). Contrary to the closed-world semantics of

classical databases, where it is assumed that data is complete, OWA inherently assumes

incompleteness of data, that is the absence of a fact does not consequently mean that it

is not true. This assumption is crucial in order to deal with linked open data that can be

flexibly integrated, so one cannot assume that the knowledge in the KG is complete.

Given a knowledge base KB as the tuple of a TBox and an ABox, KB = 〈T ,A〉, the

standard reasoning tasks in DLs include:

Concept satisfiability: Given concept C: there exists an interpretation of KB in which

the concept C contains a non-empty set of individuals, hence KB |= C. The unsat-

isfiable concept is denoted as ⊥.

4SROIQ for OWL 2 https://www.w3.org/TR/owl2-direct-semantics/
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Instance retrieval: Given concept C retrieve all of its individuals. A sub-task to this

is the instance-check, given an individual a, answer true or false if it is assigned to

C, denoted as KB |= C(a).

Other reasoning tasks, such as axiom entailment and classification (concept subsumption)

can be reduced to concept satisfiability. For an in-depth discussion about DL reasoning,

see [Rud11].

In general, DLs are very expressive and therefore can be complex, both for in terms

of modeling and performing computations. Hence, the second version of the OWL family,

named OWL 2, comprises different profiles with varying degree of expressiveness. For

instance, the OWL 2 QL profile is the basis language for ontology-based data access

(OBDA), see section 2.1.2, as it supports query answering that can be implemented by

rewriting queries into relational query language (e.g. SQL) with efficient data complexity.

Another profile is OWL 2 RL, which allows axioms to be translated into rules, and

therefore can be efficiently implemented in logic programming paradigms and rule systems

based on Horn clauses, such as Datalog, which poses some restrictions on the composition

of rule predicates in terms of recursion and negation. For example, simple type inference

in OWL 2 RL according to its rule specification:

C (?x)← D(?x) ∧ SubClassOf(D,C)

, where the left-hand side of the implication is called the head and the right-hand side is

the body of the rule, in this case on variable ?x.

This leads to rule-based reasoning that is polynomial in the size of the ontology

[MLD+09]. Today, many reasoning systems incorporate a dedicated Datalog engine for

rule-based inference in RDFS and fragments of OWL, such as Jena5 or the RDFOx triple

store [NPM+15].

2.1.2 Ontology-based Data Access

Due to the wide proliferation of relational databases as storage of industrial software

systems, native RDF-based knowledge graphs have only been adopted sporadically in

industrial applications. However, for heterogeneous relational data sources, the ontology-

based data access paradigm has gained increasing attention in industry for the translation

5jena.apache.org/
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of native data sources to a unified KG. The ontology in this case provides a convenient

vocabulary for end-user queries and also allows some basic inference to give results even

for incomplete data.

The main concept of OBDA is based on query rewriting of conjunctive queries over

OWL 2 QL ontologies [RMKZ13]. The TBox T serves as vocabulary abstraction to query

the underlying data source’s schema. Given a query q over T one obtains a first-order

rewriting of q and T , denoted as q′, that is the logically equivalent expansion of q by

entailment. Retrieving the set of individuals a from A as the answers to q′ over 〈T ,A〉,
first the axioms of T are applied to A to retrieve the canonical model, then it is checked

if all interpretations I of 〈T ,A〉 yield I |= q′(a).

In practice, access to the data within the vocabulary of the ontology requires the

definition of so-called mappings, which define a declarative specification of how concepts

of the ontology translate to entities and attributes in the relational schema. Given a

query in the language of the ontology (e.g. SPARQL), OBDA systems employs rewriting

as explained above. In a second step, the rewritten query is translated using the defined

mappings, in order to produce the data sources native query language, e.g. SQL in case

of relational schemata – this is also called query unfolding.

A mapping is a set of rules of the form:

S(x)← q(x)

,where S is a concept or a property of the ontology and q(x) a SQL query. That is,

the answers to the query instantiate concepts or properties in the ontology. The W3C

standard language for the specification of mappings is R2RML [DSC12]. One of the major

OBDA systems is the Ontop 6 framework developed at the University of Bolzano.

2.2 Existing Semantic Modeling Approaches for In-

dustrial Knowledge Graphs

Semantic models for automation systems share a considerable overlap with the semantic

models in the Internet-of-Things (IoT) community. The focus of these works is on the

device modeling end, typically concerned with automated device discovery and capability

6https://ontop.inf.unibz.it/
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matchmaking [HBC17]. Hirmer et al. develop a modeling approach that enables au-

tomated device monitoring based on so-called device blueprints in smart environments.

The authors build on top of the SensorML ontology7 and a publish-subscriber message

broker architecture. Monitoring applications are automatically deployed based on the

semantic device descriptions. However, they do not elaborate on the semantic expressive-

ness of their model and how to facilitate integration with existing industrial information

modeling standards. They further propose the idea of an model editor that uses device

blueprints (templates) to allow end-users to extend the ontology, but it is unclear how

the users would interact with the semantic model, e.g. phrasing of axioms that could be

used for data integrity checks.

Recently, Thuluva et al. [TDW+17a] introduced a layered model approach for au-

tomation systems, building on top of the W3C WoT Thing Description8. For the purpose

of sensing property modeling they employ the Semantic Sensor Network9 and QUDT10.

Their tooling support, however, is very limited. It allows end-users to create rules to

discover devices. The actual semantic models are created by ontology experts using

general-purpose ontology engineering tools, e.g. Protégé. Also the authors do not discuss

how to align existing industry standard information models to their semantics.

Other approaches from the domain of MES have been concerned with building of

ontologies that reflect the ISA-88/95 industrial information model standard for data ex-

change between production machines and the MES [SSF10]. This work is merely a termi-

nological translation of the standard and lacks a detailed analysis of the expressiveness of

the ontology. They describe the mapping of preconditions on data acquisition, however,

using not ontological constructs, but rdfs:comment text attributes.

The work most closely related to the one in this thesis was done by Petersen et al.

[PHGg17]. They have shown a prototypical RDF-based information model specifically

for accessing equipment data in an MES-like application using SPARQL. Their approach

follows a classical data integration methodology. The conceptual model was hand-crafted

by analyzing SQL-dumps and queries, conducting expert interviews, and review of existing

information models, without generalizing their insights. They then also follow the typical

OBDA workflow in designing R2RML mappings for the Ontop framework to access the

7https://www.opengeospatial.org/standards/sensorml
8https://www.w3.org/TR/wot-thing-description
9https://www.w3.org/TR/vocab-ssn

10http://www.qudt.org
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different data sources. Although the use case evaluation gives promising results, a deeper

analysis of the needed expressiveness of the semantic models is missing, which is vital for

data integrity checks.

In conclusion, all of the mentioned works above lack a further description how the

domain knowledge in the semantic model can support the development of analytic (pre-

dictive) models.

2.3 Contribution

The works in this thesis present a modeling approach based on a fragment of the OWL

2 language for the schema-level modeling of industrial KGs, including standard concept

hierarchies as well as the formulation of data integrity constraints that need to be ad-

dressed in common industrial information models. A prototypical system developed on

top of the WebProtégé framework demonstrates how these modeling capabilities can be

realized within an end-user-oriented model editor. The prototype contains an efficient

constraint checking via translation of constraints to Datalog rules, which are injected

into a state-of-the-art Datalog inference engine. Based on the modeling capabilities, the

chapter further introduces an architecture for ontology-based data access in order to ob-

tain semantic end-user access and preparation of predictive models on top of industrial

domain-specific ontologies. These contributions are outlined in the following publications:

[KGJR+16] Evgeny Kharlamov, Bernardo Cuenca Grau, Ernesto Jiménez-Ruiz, Steffen

Lamparter, Gulnar Mehdi, Martin Ringsquandl, Yavor Nenov, Stephan Grimm,

Mikhail Roshchin, and Ian Horrocks. Capturing industrial information models with

ontologies and constraints. In Proceedings of the 15th International Semantic Web

Conference, pages 325–343, 2016

[RLL16] Martin Ringsquandl, Steffen Lamparter, and Raffaello Lepratti. Graph-based

predictions and recommendations in flexible manufacturing systems. In Proceedings

of the IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics

Society, pages 6937–6942, 2016

The modeling approach was developed by main author Evgeny Kharlamov published

in Capturing industrial information models with ontologies and constraints [KGJR+16].

Martin Ringsquandl supported the requirements analysis considering expressiveness of
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conceptual descriptions in the production domain, created a use case and an ontology

with associated instance data and logical constraints. Ernesto Jimenez-Ruiz and Yavor

Nenov were responsible for the prototype implementation. Gulnar Mehdi provided a gas

turbine application case. Steffen Lamparter, Stephan Grimm, Mikhail Roshchin and Ian

Horrocks gave feedback. In the second publication Graph-based predictions and recom-

mendations in flexible manufacturing systems [RLL16], the architecture of ontology-based

preparation for predictive models and the proof-of-concept implementation was done by

Martin Ringsquandl. Steffen Lamparter and Raffaello Lepratti provided feedback on the

use case.
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Chapter 3

Domain knowledge-driven Feature

Selection for Predictive Models

within Industrial Knowledge Graphs

Le présent ne contient rien de plus

que le passé et ce qu’on trouve dans

l’effet etait déjà dans la cause.

Henri Bergson

Besides sensing and communication capabilities of digital twins, the thereby intro-

duced ubiquitous availability of data about the overall manufacturing operations enables

manufacturing companies to embrace more advanced predictive modeling and analysis,

in order to optimize processes and usage of equipment [LLBaK13]. As an example, in

2016 the Robert Bosch GmbH launched a public data science competition on the Internet

platform Kaggle1, challenging participants to predict internal failures of production lines

based on thousands of measurements and tests collected for each component.

However analysis of such data is challenging without extensive domain background

knowledge, since it not only is of great volume and variety, including time-series, graph-

structured and semi-structured [JONK14], but also generated by engineered systems that

exhibit known physical dependencies and constraints which are hard to uncover using

1https://www.kaggle.com/c/bosch-production-line-performance
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common predictive models. Revisiting the example, the aforementioned Kaggle compe-

tition was also featured in the 2016th IEEE Big Data conference and one of the biggest

problems for the participating data scientists was the processing of this dataset into mean-

ingful representations [MK16].

Although there is a clear motivation for using predictive modeling, such as machine

learning, for predictive analysis, the lifecycle management of these models from first ex-

periments to deployment is hard to manage, since each phase must be guided by domain

expert knowledge to ensure proper preparation and execution [LNR14].

3.1 Background on knowledge-based Predictive Mod-

eling

3.1.1 Classification and Regression Models

Statistical classification and regression are among the most common supervised learning

tasks in the field of machine learning for the approximation of an unknown function over a

datasets with existing label information. The goal is to find patterns in the data in order

to predict the label of previously unseen data samples. Given a dataset D = {(xi, yi)}ni=1

where xi ∈ Rp is a p-dimensional feature vector of instance i and yi ∈ Y is the true label

of instance i, formally, a supervised model corresponds to a function f : Rp → Y . The

statistical inference task is to fit the model’s parameters w such that the approximation

error is minimized. In case of a linear regression model, Y = R, and the learned function is

of the form ŷ = f(w) = w>x, where w is the linear model’s parameter vector. In ordinary

classification yi is a categorical variable, e.g. binary yi ∈ {0, 1}, but further tasks extend

this to non-overlapping multiple classes (multi-class classification) and multiple labels

(multi-label classification). The multi-label classification setting, where the label of an

instance can be any subset of a set of labels yi ∈ 2Y , can be formulated as k − 1 distinct

binary classification problems. (in case independence between labels is assumed)

In theory, function approximation is an optimization problem and the quality of the

learned function approximation is typically measured by a certain loss or cost function,
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e.g. mean-squared error (MSE) for regression:

MSE =
1

n

n∑

i=1

(ŷi − yi)2

Unfolding the mean-squarred error for linear regression it is straightforward to solve

this optimization problem by taking the partial derivative of the loss w.r.t. the model

parameters:

ŵ = argmin
w

1

n

n∑

i=1

(w>xi − yi)2

ŵ = argmin
w

(Xw − y)>(Xw − y)

∂

∂w
= 2(Xw − y)>X

= 2X>Xw − 2X>y

Setting the derivative to zero, one can solve for w that minimize the loss:

∂

∂w
= 0

X>Xw = X>y

w = (X>X)−1X>y

In this simple case of ordinary least squares regression, the loss function is quadratic

and there is exactly one global minimum and no further constraints need to be considered

in finding the optimal parameters. When moving to a more complex family of func-

tions, e.g. multi-layer perceptrons with non-linear activations that are the basis of neural

networks, the optimzation problem can no longer be solved in this straightforward way,

because there may be several local minima. With the notion that a ‘good’ local minimum

is still sufficient in most cases, fitting neural networks parameters is usually done with

stochastic gradient descent algorithms.

The theoretical foundations of machine learning algorithms usually come with a proba-

bilistic interpretation, such that the predicted outcome can be interpreted as a probability

and therefore includes uncertainty by nature. The problem statement is formulated as
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finding the parameter setting that maximizes the conditional probability, also called like-

lihood function, P (y|x; w). The optimal parameter values ŵ are then found according to

the maximum likelihood estimate principle.

3.1.2 Feature Selection

Given a dataset of p random variables the task of feature selection for predictive models is

to obtain a subset of these variables (features) that are given for each instance, which are

then input to the predictive model. In the supervised setting, the predictive model is used

to solve a classification or regression problem, that is, the chosen features represent the

independent variables to predict a given dependent variable. The number of variables is

also referred to as dimensionality of the dataset. Feature selection can be seen as search

through the powerset consisting of all 2p − 1 subsets, which is again an optimization

problem on its own.

The importance of feature selection has grown over the last decade due to the increas-

ing availability of high-dimensional datasets. Since generalization of machine learning

models over such data, i.e. the capability of a model to fit the data correctly without

being to biased towards the given samples (training data), becomes exponentially harder

as the number of variables increases [Dom12]. This is closely connected to the problem

of overfitting in machine learning literature, as every learning algorithms come with a

certain bias and variance towards its parameters. Highly biased algorithm need lots of

evidence in the data to change their initial parameter choice, while high-variance algo-

rithms very quickly fit to special peculiarities of datasets. Overfitting happens when the

model parameters are over-specific to the characteristics of the training data and fail to

generalize to unseen samples.

Another related challenge of high-dimensional datasets is the curse of dimensionality,

which holds for a broad family of data distributions and distance measures [HKK+10].

Formally this effect has been shown that with increasing data dimensionality the propor-

tional difference between the farthest-point distance dmax and the closest-point distance

dmin converges to zero: on a dataset consisting of p features D = {x1,x2, . . . ,xn} ∈ Rn×p,

when p → ∞, dmin(D) = min
i,j

dist(xi,xj), then we have dmax−dmin

dmin
= 0. Since a stable

distance or measure is vital for many predictive models, reducing high-dimensionality is

an important challenge.
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Wrapper-based framework

Search strategy
All features

Predictive model

Feature subset
Estimated

performance

Best subset

Figure 3.1: The wrapper-base feature selection framework is an iterative approach to
select the best subset of features according to a search strategy

In order to avoid this problem, it is necessary to develop robust and yet cost-efficient

predictive models by decreasing the data dimensionality beforehand. This reduction of

input feature dimensionality is part of the well-known problem of feature selection. There

are various feature selection methods that try to judge the usefulness of features towards

the objective function of the predictive model. They can be grouped in to the following

categories, cf [TAL14]: filter, wrapper, embedded.

The wrapper -based framework is shown in Figure 3.1. In this iterative approach,

feature selection is performed by a search strategy (e.g. greedy) that selects a subset of

all features. Then the predictive model is evaluated on this subset with respect to some

performance metric, e.g. accuracy. Finally, the best subset according to the metric is

chosen. This generic framework is agnostic of the predictive model and can therefore

be applied universally. In contrast to embedded methods, the wrapper setting uses an

external evaluation criterion that is not built into the predictive model itself. This is why

wrapper approaches are computationally more expensive and the crucial part is to come

up with an efficient search strategy that does not need exhaustive enumeration.

One form of embedded feature selection approaches can be seen as adding constraints

on the model parameters, a technique called regularization. The L1–norm penalty on the

model parameters induces a sparse feature representation. In linear regression models

this is called the Lasso, or Laplacian prior. For very high variance models such as neural

networks with multiple stacked layers of hidden parameters best practices to avoid over-
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fitting are applied to the objective function by introducing a penalty on the magnitude of

parameters. For example, given a parameter matrix W the L2–norm ‖W‖2 is added to

the objective function, therefore favoring solutions with small magnitude of the parame-

ters. To increase accuracy of prediction on unseen data, these regularization techniques

have been applied to linear models as well, e.g. in Ridge or Lasso regression models. Such

linear models are also used in cases when p is greater than the number of data points n

(p > n). Here, further regularization schemes have been developed, especially focused on

collinearity between predictor variables [ZH05]. Removing predictor variables from the

model also has the benefit to increase interpretability of results.

Filter feature selection methods are based on characteristics of the features itself,

such as their variance. This is closely related to dimensionality reduction approaches that

transform the original feature space into a lower-dimensional one that still keeps most of

the original variance in the dataset. This can be accomplished by combining highly cor-

related features, as in principal component analysis (PCA) for example, which computes

the eigenvectors of the feature’s covariance matrix over the whole dataset. Hence, most of

the original variance can be retained by a subset of eigenvectors used as low-dimensional

projection. The shortcoming of techniques like PCA are that they retain only linear cor-

relations within the dataset. Furthermore, the low-dimensional projection can be hard to

interpret in later explanation of the predictive model to domain experts.

In general, both dimensionality reduction as well as feature selection approaches have

been targeted towards traditional tabular, i.e. propositionalized, data structures. How-

ever, the proliferation of complex-structured data has pushed the demand for feature se-

lection approaches that directly deal with these representations, e.g. connected datasets

[GH11], common single-relational graphs (networks) [AW06], and multi-relational graphs

[GLT+16]. Due to the difficulty of applying predictive models to complex-structured data,

the border between pure feature selection and feature extraction vanishes and the result

of applying these methods to graph-structured data again results in a tabular data rep-

resentation, thereby enabling efficient statistical inference, which will be introduced in

Chapter 4.

27



CHAPTER 3. DOMAIN KNOWLEDGE-DRIVEN FEATURE SELECTION FOR
PREDICTIVE MODELS WITHIN INDUSTRIAL KNOWLEDGE GRAPHS

3.1.3 Graph-structured Data

Many real-world datasets are naturally encoded in a graph structure, such as social net-

works, where a node corresponds to an individual and a edges between individuals rep-

resent some form of interaction between two individuals [HKP06]. Mathematically, the

most general definition of a graph is the undirected graph. Formally the graph is denoted

as a tuple G = 〈V,E〉 with vertex (or node set) V and edge set E. A graph consisting of

n nodes defines V = {vi}ni and the corresponding edges as (vi, vj) ∈ E. Another way of

representing graphs is given by the adjacency matrix A ∈ RN×N , where

aij =





1, if(vi, vj) ∈ E
0, otherwise

For undirected graphs this matrix is symmetric, i.e. (vi, vj) =⇒ (vj, vi). In case of

a weighted undirected graph, edges have a weight attribute w attached eij = (vi, vj, wij).

This means that the adjacency matrix is extended from binary values to any real value.

In a statistical sense, edge weights are often used to denote the probability of an edge

to exist with respect to some predictive model. This notion will be further discussed in

section 4.1. Directed graphs are a special form of graphs which no longer posses the

symmetry of edges, i.e. (vi, vj) expresses a directed connection from vi to vj which is

different from (vj, vi).

As mentioned before, the (subject, predicate, object) triples in RDF2 data can be

formulated as labeled directed multi-graph, where there are finite sets of vertex and edge

labels LV , LE and two maps `V , `E assigning labels to vertices and edges respectively.

Hence, G = 〈V,E, LV , LE, `V , `E〉. In this case E is a multiset of ordered pairs of vertices

and lE : E → {LE}, assigning a label to each ordered edge. The set of edge labels is also

referred to as the set of edge or link types.

We further define the notion of a subgraph: H is a subgraph of G (H ⊆ G) if V (H) ⊆
V (G) and E(H) ⊆ E(G).

A graph isomorphism between two graphs G and H is a bijection between the vertices

of the two graphs p : VG → VH , such that if (vi, vj) ∈ EG then (p(vi), p(vj)) ∈ EH . On

labeled graphs, p defines a re-labeling such that adjacency between labels is preserved.

2https://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
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3.1.4 Feature Selection and Extraction for RDF Data

For graphs consisting of only a single edge type where nodes have no labels or attributes

attached, spectral graph theory and the concept of graph Laplacian provides a natural

way to extract continuous representations out of the discrete graph representation. The

Laplacian of a graph is defined as:

L = D−A

where D = diag(
∑

j,j 6=i aij) is the degree matrix. The eigendecomposition of the graph

Laplacian is used in tasks like spectral clustering to extract continuous node represen-

tations as the eigenvectors of the non-zero eigenvalues (spectral embeddings). These

representations allow to solve relaxed versions of the NP-hard graph partitioning prob-

lem.

Moving to more complex graph-structured data, RDF’s labeled directed multi-graphs

or so-called heterogeneous networks with different types of nodes, the spectral theory

does no longer provide a closed framework for extracting node representations. Statistical

classification models in graph-structured data for tasks such as node classification, need

to consider variables attached to an individual node as well as the variables of the nodes

that are connected to it. Therefore common feature selection techniques do not suffice

to capture features in graph-structured data. Simplifications of feature selection like

feature aggregation or propositionalisation may be performed. These techniques compute

some form of aggregation function over node neighborhoods, therefore condensing graph

information into tabular structure. For example in a social network analysis a feature

aggregation approach could be to take the mean value over the age attribute of nodes

in a neighborhood. It has been shown for RDF data that these methods suffer from

substantial loss of information [RP14]. On the other hand, once the notion of first-order

neighborhood is extended to also include attributes of higher order neighbors, it becomes

evident that the feature selection search space grows exponentially.

To this regard, special graph kernel methods have been developed to directly encode

similarity of local graph structures instead of manually engineered features. Kernel meth-

ods are a popular machine learning technique, particularly as part of support vector ma-

chine (SVM) classifiers, because kernels can be readily plugged into the SVM maximum-

margin objective. Since the RDF data model represents data in form of a graph, graph
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A:B,C
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D E

F:D,E

G:A,F

Original graph 1. Iteration re-labeled graph

Figure 3.2: One iteration of Weisfeiler-Lehman re-labeling for graph isomorphism

kernels allow to directly apply machine learning algorithms on RDF data. A nice property

of these methods is that the whole graph, including RDF schema definitions can be taken

into account for similarity calculation.

Weisfeiler-Lehman Subtree graph kernel A graph kernel κ : G×G→ R measures

the similarity between two graphs. In order to apply them to encode features for a

pair of nodes (entities), vi, vj, one first extracts the two subgraphs Gi, Gj ⊂ G up to

a certain depth of neighborhood and then applies an appropriate graph kernel on these

two subgraphs. The Weisfeiler-Lehman subtree graph kernel calculates the number of

matching subtrees based on the Weisfeiler-Lehman test for graph isomorphism. The

isomorphism test performs node iterative node re-labeling, collecting the multi-set of

labels of node neighbors, then computing a hash to compress the multi-set of labels into

a new one. The new label is then used in the next iteration.

As an example of the Weisfeiler-Lehman subtree graph kernel, Figure 3.2 shows a

simplified RDF graph G, without considering edge labels. In this example, the kernel

between nodes vE and vB, node with label B and the node with label E shall be calculated.

Applying one iteration of label propagation, we obtain G′, where the original label is

concatenated with the neighboring ones.

It can be seen that the labels of nodes which do not have any incoming edges (B,D,E)

do not change through iterations.
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Figure 3.3: Subgraphs of nodes B and E up to depth 2 before and after one iteration of
node re-labeling

As a next step, to compute the kernel for nodes E and B, Figure 3.3 presents the

results for extracting the two subgraphs GE and GB and taking the first iteration re-

labeling into account, resulting in G′B and G′E. The feature vector representations of GE

and GB (xE, xB) are then given by counting the number of node labels in each iteration.

Let σl : G → R define the count of label l in graph G, the original node label feature

space is: {σA, σB, σC , σE, σF , σG, σE}. After one iteration of re-labeling, the feature space

is extended with: {σB, σ(F :DE), σ(C:E), σ(G:AF ), σ(A:BC)}. The features can then be regarded

as the size of the intersection set of the iteratively extracted subtrees. Finally, the actual

kernel computation is given via the dot product of the two feature vectors. The following

equations show this computation, where [; ] is the vector concatenation operation:

xB = [(σA(GB), σB(GB), σC(GB), σE(GB), σF (GB), σG(GB), σE(GB));

(σB(G′B), σ(F :DE)(G
′
B), σ(C:E)(G

′
B), σ(G:AF )(G

′
B), σ(A:BC)(G

′
B))]

xE = [(σA(GE), σB(GE), σC(GE), σE(GE), σF (GE), σG(GE), σE(GE));

(σB(G′E), σ(F :DE)(G
′
E), σ(C:E)(G

′
E), σ(G:AF )(G

′
E), σ(A:BC)(G

′
E))]

xB = (1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1)

xE = (1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1)

κ(GB, GE) = x>BxE = 4
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It is known that the task of subgraph isomorphism is NP-complete, and therefore

these kernel methods become computationally very expensive. Despite these limitations,

the graph kernel approach has been extended to the more complex settings, e.g. includ-

ing RDF literal nodes, ontology concept descriptions [BS07, LBR12, De 13]. The best

performing variant of the RDF2Vec model also operates on walks generated at different

iterations of the Weisfeiler-Lehman kernel, however, this is not applicable for large-scale

RDF graphs[RP16a]. An analogy of the recently proposed graph convolutional networks,

which will be discussed in 4.2.2, to graph kernels has been discovered, in the sense that

the neural network is as the hash function to compress node labels of the subtree patterns.

Graph Pattern Mining For the tasks that operate on a database of graphs, D =

{G1, G2, ..., Gn}, such as graph classification, it has been shown that frequent graph pat-

terns can be effectively used as feature vector representations of complete graphs. Given

a set of frequent graph patterns (frequent subgraphs) mined from dataset D, g1, g2, ...gp,

a graph instance xGi
can be represented as xGi

= (fg1 , fg2 , ..., fgp), where fgj = 1 if

gj ⊆ Gi, 0 otherwise. While the pattern search space still grows exponentially with in-

creasing subgraph size, pattern mining approaches can be more scalable compared to

graph kernels when the graph instances are large, when efficient search space pruning is

possible. For example, the gSpan algorithm exploits the anti-monotonicity criterion of

the frequency of subgraphs [YH02]. Further approaches have extended this to mining

of discriminative, rather than pure frequent, patterns, using branch-and-bound search

strategies such as LEAP [YCHY08] and for multi-graphs gMGFL [WZZY14]. A general

qualitative advantage of pattern-based approaches is that they can be more intuitively

interpreted.

3.2 Existing Domain Knowledge-driven Feature Se-

lection Approaches

While ontology-based data integration is a well-understood problem area, exploiting do-

main knowledge contained in ontologies for the application of predictive models has not

been studied extensively thus far. To a limited degreed, it has been argued that a formal

understanding of the predictive modeling (or knowledge discovery) process is helpful for

data and model preparation as well as execution. Few projects have been concerned with
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the development of ontologies that formally describe the knowledge discovery process,

hence allowing to follow best-practices and standard work-flows [KSFB14, PDS08]. Ex-

isting general-purpose ontologies such as OntoDM formally represent the structure of data

mining investigations and datasets, which mainly serves to support the user in creating a

proper data mining process.

Manually engineered features can be extracted from RDF graphs using dedicated

SPARQL queries and transformation (propositionalization) strategies [RP14]. Propo-

sitionalization approaches of knowledge graphs have been built using domain-specific

SPARQL queries as preprocessing, where the presence of a relation is transformed into

a binary feature and numerical attributes are aggregated across the graph. This means

that domain users are responsible for feature selection and generation in order to create

meaningful representations ready for statistical analysis.

In the medical domain, background knowledge in form of rules has been introduced to

select features from diagnostic text documents [BP01]. The authors argue that features

need to be both plausible for a medical domain expert and useful for the predictive model.

In their implementation they enrich the text documents with medical concept definitions

and then use an association rule mining algorithm to extract frequent and high confidence

rules as features.

Instead of feature selection, representation learning models, that represent knowledge

graphs as latent variable models, can be used to extract structure out of RDF graphs.

A more detailed discussion of these models is given in chapter 4. Usually a walk-based

co-occurrence objective is employed to embed the graph-structure into a low-dimensional

vector representation in an unsupervised manor. For example, inspired by the success

of representation learning in natural language processing, the RDF2Vec model embeds

a co-occurrence of random walks into a vector space [RP16a]. These approaches have

proven to be very successful for the task of link prediction. The problem with these

generic similarity-inducing approaches is that the original graph-structure is lost and

results can be difficult to interpret for domain-experts, since they can no longer explain

which components of the graph effectively contributed to the model’s decision.

A general weakness of these approaches is that cannot directly deal with numeric or

text attributes attached to nodes (entities). For example, a machine entity in the digital

twin model may have thousands of sensor measurements attached. Computing corre-

lations between numeric attributes falls in the domain of classical feature selection and
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directly exploiting schema-level information for this task is promising, for example towards

eliminating redundant features in the model’s feature space. Background knowledge in

form of rules can be introduced into the learning objective, however, despite the fact that

lots of knowledge about the data in semantic models is already captured at schema-level

(ontology), logical reasoning has not been applied to feature selection thus far [RP16b].

In the graph pattern mining setting for graph classification, constraints as background

knowledge have been introduced. For example simple label count constraints can be incor-

porated into the graph pattern mining, as they preserve the anti-monotonicity criterion.

In [HKP06] further possible constraints are listed, such as value-sum constraints, where

the sum of node label values must be smaller or higher than a given threshold. For mining

frequent patterns in RDF data it has further been studied on how to introduce constraints

given by the ontology, such as domain and range of object properties in order to reduce

the pattern search space [CGWJ16].

3.3 Contribution

Concerned with the semantic guidance for predictive modeling the work in this thesis

discusses how schema-level reasoning in the OWL 2 language can support feature selection

for statistical classification and regression models within industrial KGs. A cycle time

prediction model as an example application scenario serves as a proof of concept and

demonstrates that axiomatized domain knowledge about features can give competitive

performance compared to purely inductive ones. The ontological concepts allow instance

retrieval reasoning to propagate prior knowledge about feature and label dependence

through the feature space.

For graph-structured event data of a manufacturing system, an approach to incorpo-

rate knowledge graph path constraints in subgraph pattern mining is presented. Domain

experts can specify common paths in the KG that are known to be dependent (must-link),

and such that they are known to be independent (cannot-link) of the classification label.

The mined patterns then serve as features for a system failure classification task. These

contributions are contained in the following publications:

[RLBL15] Martin Ringsquandl, Steffen Lamparter, Sebastian-Philipp Brandt, and Raf-

faello Lepratti. Semantic-guided Feature Selection for Industrial Automation Sys-
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tems. In Proceedings of the 14th International Semantic Web Conference, pages

225–240, 2015

[RLT+16] Martin Ringsquandl, Steffen Lamparter, Ingo Thon, Raffaello Lepratti, and

Peer Kröger. Knowledge Graph Constraints for Multi-label Graph Classification. In

Proceedings of the IEEE 16th International Conference on Data Mining Workshops

(ICDMW), pages 121–127, 2016

In the contribution from Semantic-guided Feature Selection for Industrial Automation

Systems [RLBL15] the idea and the concept for logical reasoning for feature selection as

well as the implementation were developed by main author Martin Ringsquandl. Co-

author Steffen Lamparter supported the formulation of the motivation, Sebastian Brandt

answered questions about the complexity of the OWL reasoning. Thomas Hubauer and

Raffaello Lepratti gave feedback on the industrial application in automation. In Knowl-

edge Graph Constraints for Multi-label Graph Classification [RLT+16], the idea of applying

graph mining to production event data, problem formulation, and constraint evaluation

algorithm were developed by main author Martin Ringsquandl. Ingo Thon provided hints

to related work. Steffen Lamparter and Raffaello Lepratti gave feedback to the application

domain. Peer Kröger gave feedback to the technical concept.
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Chapter 4

Completion of Missing Facts in

Industrial Knowledge Graphs

There is nothing permanent except

change

Heraclitus

The final challenge addressed in this work is concerned with the constant evolution of

industrial manufacturing systems over time. This happens, for example, when a plant’s

layout changes as new devices are deployed at the shop floor. Consequently, the infor-

mation in the system’s digital twin is no longer valid. However, the duality of physical

and digital representation requires to continuously synchronize the digital twin model

to its physical environment. As of today, human experts need to manually align device

data models throughout multiple software systems (engineering tools, control systems,

MES, etc.), which is not only failure prone, but also expensive. Therefore, there is a need

for decision support giving model change recommendations to human operators based

on historical data [KWH13]. This synchronization is vital for applications that rely on

knowledge graphs as unified semantic model, e.g. equipment monitoring and quality con-

trol systems, since these expect all the facts in the KG to be true and consistent. In this

work, the model synchronization problem is phrased in the same spirit as the completion

of missing facts in KGs.

In contrast to general-purpose KGs, the problem of completing missing facts becomes

even more challenging in highly-dynamic environments, e.g. industrial automation sys-
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tems, which are subject to frequent changes of the physical reality. When facts about

real-world entities are modified, the previously known facts in the KG cease to hold true

and get outdated as time progresses. On the other hand, new facts are not automatically

introduced in the KG and therefore missing. Additionally, the automated extraction of

facts from text corpora, e.g. news documents, is usually not an option, since such docu-

ments are not available in industrial domains. The synchronization can again be shown

conceptually using Figure 1.1 in the introduction, where the physical system (at the bot-

tom) generates observations and these have to be integrated into the existing information

models, the digital twin (at the top). Synchronization means that, essentially, the digital

twin model needs to correctly reflect physical reality. In order to deal with the challenges

of dynamic environments, where facts contained in KGs need to be synchronized with

continuously changing physical processes, common approaches for statistical inference in

KGs, e.g. relational learning methods, are not sufficient. Hence, there is a need to extend

these approaches to also consider additional information (background) from the industrial

environment. Operational data and in particular event logs of production machines reflect

the environments dynamics. Therefore, it is desirable to consider these as sources for the

inference of missing facts.

4.1 Statistical Relational Learning

In recent years, a machine learning paradigm for multi-relational labeled graphs, referred

to as relational learning, has gained popularity. It aims to fit statistical models to rela-

tional data, such as knowledge graphs or relational databases. In this chapter we define

a KG as a set of triples K = {〈h, r, t〉}, with a set of entities E (h, t ∈ E) and a set

of relation types (edge labels) R (r ∈ R). In RDF-terminology relations correspond to

predicates, and as mentioned in the definition of a KG in 2.1 the set of triples correspond

to object property assertions in the ABox. In contrast to the Semantic Web community,

in relational learning literature, it is customary to refer to triples as (head, relation, tail).

The notation in this thesis follows this convention.

One of the main tasks of relational learning is link prediction, i.e. the inference of

missing or unobserved edges. Link prediction can be defined as given K, a query relation

type r and two entities h and t to calculate a score f(h, r, t) that represents the likelihood

of h being linked to t via relation r. The score is determined by some notion of proximity
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or similarity. In single edge type networks this can be simple models such as calculating

the length of the shortest path between two nodes.

Rule-based inference has been employed to predict links in KGs, where rules are either

given by human experts or they are obtained by rule mining methods, such as the AMIE

system [GT13] which employs a support-based search for frequent rules. As an example,

a rule mining system might come up with the following rule (expressed as Horn clause)

for the prediction of birthplaces based on parental residency:

bornIn(h, t)← hasParent(h, z) ∧ livesIn(z, t)

However, link prediction in large-scale KGs is challenging due to two problems: in-

complete and imperfect knowledge. For general-purpose KGs it is known that they are

highly incomplete and may also contain contradicting facts [DGH+14]. For example, per-

son entities having two distinct birthplaces), therefore contradicting the functional aspect

of the bornIn relation. High-recall rules are difficult to mine with imperfect facts and

maintaining KGs by applying only high-precision logical inference rules is not satisfactory

[LC10]. To still enable inference in KGs, statistical relational learning approaches have

been proposed that extend classical rule mining approaches and can account for uncer-

tainty and imperfect knowledge. These approaches can be categorized by which kind

of features of the graph are taken into account to model for link prediction: observed

and latent feature models. Observed feature models can be seen as extensions to rule

learning where weight parameters are attached to rules in order to reflect uncertainty.

One of the first approaches to do this was the path-ranking system [LC10, LMC11] which

follows the idea that links can be predicted by learning how to weight a set observed

chains of facts (paths) in the local neighborhood of an entity. Paths P which start at

a certain query entity h are then turned into binary features fh,P (t), and fh,P (t) = true

if query entity h reaches target t via path P . In the original version logistic regression

is then applied to learn a set of so-called experts that weight the path features for link

prediction.

A major benefit of observed feature models is that they are easily interpretable and

can capture local interactions very well.

Other kinds of approaches express the statistical model for link prediction in KGs in

terms of latent (unobserved) variables. The recently emerging representation learning ap-
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tail entity t

head entity h

relation r

Figure 4.1: Knowledge Graph as a 3-dimensional tensor T

proaches fall under this category [NMTG15]. It has been shown that these models outper-

form observed feature approaches by embedding patterns in the relational structure of the

KG into low-dimensional vector representations of entities and relations. Different notions

of these latent representations have emerged using factorization [NTK11, TDW+17b], neu-

ral networks [SCMN13, SW17, KW16], or translation-based approaches [BUWY13].

Since these approaches are not limited to perform link prediction for a given query

relation, but employ a holistic framework that models the likelihood of the overall KG,

we introduce the task of KG completion as an extension to link prediction.

4.1.1 Statistical Relational Learning for KG Completion

A knowledge graph can be defined in a probabilistic way, in a sense that facts do not have

to be restricted to the binary domain of true or unknown. One can define facts to be

modeled as random variables, such that they can take any value in the range from [0, 1].

More precisely, each fact or triple 〈h, r, t〉, with head entity h, relation r, and tail entity

t, is defined to follow a Bernoulli distribution:

Kh,r,t ∼ Ber(ph,r,t)

ph,r,t ≈ f(θh,r,t)
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where f is a scoring function that is proportional to the likelihood of the triple being true

with respect to a set of parameters θ that either weight observed features or represent

latent features of the respective triple. Given these preliminaries, one can define the task

of statistical KG completion as an extension to link prediction that is concerned with

inferring missing links in the overall knowledge graph.

Problem of KG Completion By representing the KG as an adjacency tensor T , see

Figure 4.1, formally:

Th,r,t =

{
1, if 〈h, r, t〉 ∈ K
0, else

Assuming triples are independent given their parameters θ, the KG completion can then

be defined as computing the maximum likelihood estimate:

T̂ = argmax
T

∏

h∈E

∏

r∈R

∏

t∈E
Ber(Th,r,t|f(θh,r,t))

This can be seen as calculating a likelihood over all all possible worlds, as combinations

of E×R×E . For realistic KGs this is a huge space, however, only a small fraction of triples

are likely to be true. Hence, a relational learning model should exploit this sparseness

and find a lower-dimensional representation.

One of the first KG completion approaches was the tensor factorization-based RESCAL

model [NTK11]. It allows a concise definition of the KG completion problem using the

notion of a KG as probabilistic tensor. RESCAL computes a bi-linear model as an ap-

proximation T̂ of the original tensor:

ˆTh,r,t = f(θh,r,t) = h>Wrt

where the parameters of the entities h, t and relations r occurring in K are to be

embedded in a low-dimensional, say d-dimensional, vector space as vectors h, t ∈ Rd as

the entity parameter matrix WE . The relation parameters define the core tensor consisting

of matrices Wr ∈ Rd×d. Hence, relating to the above definitions, θ = {WE}
⋃{Wr}r∈R.

These parameters are typically referred to as latent representations or simply embeddings.

The approximated tensor now holds a probability-like score of all possible facts in the

KG.
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Another major family of models are the so-called vector translation-based models, such

as TransE, which have been one of the forerunners in the representation learning domain.

In the TransE model [BUWY13], given K such f relies on distance or similarity between

vectors of entities and relations. Intuitively, TransE follows the intuition that there is a

linear relation for triples h+r ≈ t, hence the scoring function is defined as a dissimilarity

measure (e.g. `2-norm) f(h, r, t) = ‖h + r − t‖22. This means that translating entity h

with relation r should end up close to its tail entity t in the latent d-dimensional space.

In order to prevent overfitting, the magnitudes of parameters in TransE are normalized

after each mini-batch to unit-norm vectors, i.e. ∀e ∈ E : ‖e‖ = 1.

Interestingly, many of these representation learning model families have been shown

to be effectively trained by using a ranking loss with the objective that true triples should

be ranked before false/unknown ones according to the scoring function. This learning

objective is formulated as minimizing a margin-based ranking loss:

LK=
∑

(h,r,t)∈K

∑

(h′,r,t′)∈N
max(0, γ+f(h, r, t)−f(h′, r, t′)), (4.1)

where h, r, t are observed in K and h′, r, t′ are sampled from N , which is a set of negative

examples, i.e. presumably false triples not contained in K. This loss is minimized when

the true triples outscore the false ones by a constant margin γ. In practice the training is

done using mini-batches of K, instead of iterating over all triples, together with stochastic-

gradient descent (SGD), since this introduces more variance in the embedding parameter

updates and can prevent early convergence in local optima. RESCAL as well as its

simpler variant DistMult can also be formulated within this negative sampling framework

of weight updating, instead of closed-form Alternating-Least-Squares updates.

Note that the closed-form solution of RESCAL corresponds to taking the closed-world

assumption (CWA), since every unobserved fact is considered to be false. In terms of

negative sampling, different assumptions can be made, such as the local-closed world

assumption (LCWA). In LCWA the, for a particular predicate subject pair h and r it is

assumed that any 〈h, r, )〉 that is not observed in the KG is indeed false and can be used

as negative sample [NMTG15].
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4.2 Existing Background-enhanced KG Completion

Approaches

Knowledge graph embedding approaches face issues when dealing with entities for which

only few or no facts at all are present, since no meaningful representation can be calculated

for these entities. This problem is generally known as data sparsity, or specifically KG

sparsity.

4.2.1 Joint Embedding Models

We refer to background-enhanced or joint embedding models as representation learning

models which not only take the KG as input, but also another data source that is in

some way connected to the KG. Most commonly, the additional data source is text data

that describes a subset of the entities in E , such as entity Wikipedia pages. However,

also models that include images or rules that are linked to entities or relations have been

studied [MBXR18].

Due to its simple but effective objective, TransE has been used as a basis embedding

model subject to several extensions of the original triple based embeddings. In terms

of incorporating text corpora as additional source of information, joint embeddings have

been proposed. The assumption here is that by also embedding co-occurrence between

entities mentioned in the text, sparsity in the KG can be partially solved.

In the text-enhanced setting, the TEKE model is state-of-the-art [WL16]. It is an ex-

tension to translation-based approaches by using a joint embedding of the co-occurrence

of entities in text-corpora. It includes n(h) as the weight-averaged neighborhood word

vector embedding and then applies a linear combination ĥ = An(h) + h for final triple

scoring. Furthermore, the relation embeddings are also modified with a merged neighbor-

hood word embedding for pairs of entities h, t to r̂ = Bn(h, t) + r. Further text-enhanced

models are the semantic space projection (SSP) model [XHMZ17] which is a joint embed-

ding approach that projects word embeddings into the TransE space and the convolutional

neural network-based approach by Xie et al. [XLJ+16].

In the rules-enhanced setting, the KALE model [GWW+16] is a state-of-the-art ap-

proach. This model interprets the triple score as a truth value in fuzzy logic I(h, r, t) =

1− 1
3
√
d
‖h+r−t‖22. Then the model applies fuzzy t-norm operators to allow the translation
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objective to incorporate manually defined rules of the form 〈h, r1, t〉∧〈t, r2, t′〉 → 〈h, r3, t′〉.
Further works have incorporated ontological type-constraints and schema definitions to

make negative sampling more efficient [KBT15, MDFE16].

The enhanced models outperform classic translation-based approaches typically in

scenarios with KG sparseness. However, none of the existing background-enhanced models

has been devoted to the study of time-series data such as event logs.

4.2.2 Graph Convolutional Networks

Recent developments in representation learning have brought up a new family of models,

the so-called Graph Convolutional Networks (GCN) [KW16]. Intuitively, these models

apply a smoothing across neighboring node representation in a message-passing fashion.

The node representations are propagated by stacking convolution layers. An extension to

multi-relational data has been proposed [SKB+18]:

h(l+1) = σ

(∑

r∈R

∑

〈h,r,t〉∈K

1

ch,r
W(l)

r t(l) + W
(l)
0 h(l)

)
(4.2)

The number of stacked layers l can be seen as the maximal depth of adjacent nodes

to which message-passing is done. The weight matrices Wr for each relation perform

the message-passing with a linear transformation of the respective neighboring nodes.

The weights W0 can be seen like a skip connection to the node itself through the lay-

ers [HYL17]. One of the benefits of GCN models compared to translation-based and

factorization-based ones is that they can fuse node features and graph structure into a

single node representation. When node features are present, e.g. one-hot-encoded text

data associated to entities in a KG, the initial node representations h(0) contain these

features. This makes them a potential candidate for the background-enhanced KG com-

pletion.

4.3 Contribution

The contribution in this thesis on representation learning models for the automated com-

pletion of industrial KGs is a realistic scenario definition (Q.6) of the digital twin model

synchronization problem as KG completion. An extension of state-of-the-art learning
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models in conjunction with time-series data in form of event logs is developed that takes

time-dependent information into the joint embedding objective, which is in contrast to

existing background-enhanced approaches that are devoted specifically to text corpora,

images, or rules. Multiple novel joint embedding architectures are presented and evalu-

ated this on a real-world industrial KG and factory data (Q.7). We show that this can

significantly improve KG completion metrics and also deal with zero-shot learning, i.e. lift

unseen event entities into the KG. Further a study on the impact of incorporating event

data on different fragments of the KG is carried out (Q.8) demonstrating where machine

event logs impact the completion of missing facts. These contributions are contained in

the following publications:

[RLLK17] Martin Ringsquandl, Steffen Lamparter, Raffaello Lepratti, and Peer Kröger.

Knowledge Fusion of Manufacturing Operations Data using Representation Learn-

ing. In Proceedings of the IFIP International Conference on Advances in Production

Management Systems, pages 302–310, 2017

[RSL+17] Martin Ringsquandl, Daria Stepanova, Steffen Lamparter, Raffaello Lepratti,

Evgeny Kharlamov, Ian Horrocks, and Peer Kröger. On Event-Driven Knowledge

Graph Completion in Digital Factories. In Proceedings of the IEEE International

Conference on Big Data, pages 1676–1681, 2017

[RSL+18] Martin Ringsquandl, Daria Stepanova, Steffen Lamparter, Raffaello Lepratti,

Evgeny Kharlamov, Ian Horrocks, and Peer Kröger. Event-enhanced Learning for

Knowledge Graph Completion. In Proceedings of the 15th Extended Semantic Web

Conference (ESWC), pages 541–559, Heraklion, 2018

In the contribution Knowledge Fusion of Manufacturing Operations Data using Repre-

sentation Learning [RLLK17] the idea to use representation learning to complete missing

facts in semantically integrated production data, the model formulation, and prototypi-

cal implementation were done by main author Martin Ringsquandl. Steffen Lamparter,

Raffaello Lepratti, and Peer Kröger gave feedback on the use case and the evaluation. In

On Event-Driven Knowledge Graph Completion in Digital Factories [RSL+17] the event

data analysis and the various evaluation scenarios as well as the expanded representation

learning models in [RSL+18] were developed by Martin Ringsquandl. Daria Stepanova

supported the problem formulation. Evgeny Kharlamov gave input on the motivation.
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Steffen Lamparter, Raffaello Lepratti, Marcel Hildebrandt, Peer Kröger, and Ian Horrocks

gave general feedback.
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Chapter 5

Conclusion

5.1 Summary

Motivated by the need for flexibility and the upcoming trend of integrating sensor data to

form digital representations of manufacturing systems, this thesis studied new approaches

for modeling and maintaining digital twins in the form of industrial knowledge graphs with

focus on the application of predictive models.

Analogous to knowledge graphs in the Semantic Web, industrial knowledge graphs

need schema-level information models that provide domain concepts and relations, i.e.

ontologies. The development of conceptual models that describe information flow in pro-

duction plants as well as the overall manufacturing operations management is challenging,

since well-established domain information models often lack defined semantics and are not

compatible to each other. In chapter 2, this thesis presented a semantic modeling approach

backed by a prototypical model editor that allows domain experts to intuitively extend

industrial information models grounded in the OWL 2 ontology language.

The vast amounts of data generated by sensors and software systems further moti-

vates the application of statistical models for predictive decision support, such as pre-

dicting when non-conformances are going to happen in production processes. However,

several obstacles remain to effectively enable domain end-users to formulate statistical

models with respect to their background knowledge about the physical dependencies of

equipments and engineering processes. One of the most expertise-intensive tasks to this

date is feature selection. While common feature selection methods rely on computation

of correlation between dependent and independent variables, and therefore grow more
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expensive alongside the number of samples in the data, reasoning about formalized back-

ground knowledge about variables, as presented in Chapter 3, is agnostic of the amount

of samples and provides a static recommendation on which variables to select that only

needs to be re-calculated when the semantic model changes. Similar considerations can

be made for graph-structured data, where domain constraints can speed up selection of

sub-graph patterns and improve precision and recall of graph classification.

Lastly, incompleteness of facts has been shown to be a challenging issue for common

general-purpose knowledge graphs. This effect amplifies for large-scale industrial knowl-

edge graph, because dynamics of manufacturing environments are high and documentation

about changes is scarce. Therefore the task of maintaining all the facts in conjunction

with field device observations that give indication about changes introduced to produc-

tion processes can be seen as synchronizing digital twins with their physical counterpart.

According to this intuition we formulated this synchronization as knowledge graph com-

pletion problem in Chapter 4 and extended state-of-the art representation learning models

to the case of time-series data, discrete events in particular. We showed that jointly em-

bedding events significantly increases KG completion performance, especially in case of

missing links that are closely connected to the process flow. In the zero-shot learning

setting we further demonstrated that this architecture is able to deal with event entities

that have not been observed in the KG.

5.2 Outlook

The proliferation of digital twin models is introducing a new notion on how to exploit

existing knowledge for the integration and alignment of production data sources as well

as making prediction about future behavior. There is great potential in semi-automated

extraction of semantic data models from machine data, including sensor and event logs.

Machine learning-based recommendations could be a fruitful modeling support for domain

experts. Related to the work in this thesis, a particular promising direction seems to be

the conjunction of an automated data scientists approach within ontology-based data

access and analytics systems, where ontologies are used as central analytics and data

repository. For example, by deploying machine learning on top of OBDA, a coupling of

the presented feature selection approach in Chapter 3 and ontology-based queries could

reveal positive synergy effects, both in performance and maintainability.
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Future work on the completion of digital twin knowledge graphs could be the incorpo-

ration of formal concept definitions as well as constraints, for example existential property

or cardinality restrictions, similar to the rule-enhancement [WWG15]. Another interest-

ing application of joint embeddings is to use them not for the KG completion task, but

for event prediction or classification.

In general, digital twins are also perceived to incorporate detailed simulation mod-

els, e.g. finite-element simulation of machine parts. The combination of simulations and

analytics based on data from the physical equipments opens new perspectives on many ap-

plications such as predictive maintenance, process optimizations, and real-time adaption

of simulation models.

Lastly, there is an emerging research direction towards studying the evolution and

generation of KGs over time in the machine learning community [TDWS17, YLY+18].

These models try to capture the generative process that can be used to predict structural

changes in the future. This could be applied to an industrial setting, when taking snap-

shots of digital twin models as engineers modify them over time, thus trying to predict

the next most likely modification to the model.
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Éric Gaussier, and Guillaume Bouchard. Knowledge Graph Completion via

Complex Tensor Factorization. CoRR, abs/1702.0, 2017.

[TDWS17] Rakshit Trivedi, Hanjun Dai, Yichen Wang, and Le Song. Know-Evolve:

Deep Temporal Reasoning for Dynamic Knowledge Graphs. In Proceedings

of the 34th International Conference on Machine Learning, 2017.

[USL+17] Thomas H.J. Uhlemann, Christoph Schock, Christian Lehmann, Stefan

Freiberger, and Rolf Steinhilper. The Digital Twin: Demonstrating the Po-

tential of Real Time Data Acquisition in Production Systems. Procedia Man-

ufacturing, 9:113–120, 2017.

[WIT14] Thorsten Wuest, Christopher Irgens, and Klaus-dieter Thoben. An approach

to monitoring quality in manufacturing using supervised machine learning

on product state data. Journal on Intelligent Manuufacturing, 25:1167–1180,

2014.

[WL16] Zhigang Wang and Juanzi Li. Text-Enhanced Representation Learning for

Knowledge Graph. In Proceedings of the International Joint Conference on

Artificial Intelligence, pages 1293–1299, 2016.

60



BIBLIOGRAPHY

[WWG15] Quan Wang, Bin Wang, and Li Guo. Knowledge base completion using

embeddings and rules. In Proceedings of the International Joint Conference

on Artificial Intelligence, pages 1859–1866, 2015.

[WZZY14] Jia Wu, Xingquan Zhu, Changqi Zhang, and Phillip Yu. Bag Constrained

Structure Pattern Mining for Multi-Graph Classification. IEEE Transactions

on Knowledge and Data Engineering, 26(10):2382–2396, 2014.

[XHMZ17] Han Xiao, Minlie Huang, Lian Meng, and Xiaoyan Zhu. SSP: Semantic

Space Projection for Knowledge Graph Embedding with Text Descriptions.

AAAI, pages 1–10, 2017.

[XLJ+16] Ruobing Xie, Zhiyuan Liu, Jia Jia, Huanbo Luan, and Maosong Sun. Rep-

resentation Learning of Knowledge Graphs with Entity Descriptions. IJCAI

2016, pages 2659–2665, 2016.

[YCHY08] Xifeng Yan, Hong Cheng, Jiawei Han, and Philip S. Yu. Mining significant

graph patterns by leap search. Proceedings of the 2008 ACM SIGMOD Int.

conf. on Management of Data, pages 433–444, 2008.

[YH02] Xifeng Yan and Jiawei Han. gSpan: Graph-Based Substructure Pattern Min-

ing. Proc. of the 2002 IEEE Int. Conf. on Data Mining (ICDM’02)., 1(d):721–

724, 2002.

[YLY+18] Jiaxuan You, Bowen Liu, Rex Ying, Vijay Pande, and Jure Leskovec. Graph

Convolutional Policy Network for Goal-Directed Molecular Graph Genera-

tion. Number 32nd Conference on Neural Information Processing Systems

(NIPS), pages 1–11, 2018.

[ZH05] Hui Zou and Trevor Hastie. Regularization and variable selection via the

elastic net. Journal of the Royal Statistical Society, 67:301–320, 2005.

61



Appendix A

Publications



Capturing Industrial Information Models
with Ontologies and Constraints

Evgeny Kharlamov1(B), Bernardo Cuenca Grau1, Ernesto Jiménez-Ruiz1,
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Abstract. This paper describes the outcomes of an ongoing collabo-
ration between Siemens and the University of Oxford, with the goal of
facilitating the design of ontologies and their deployment in applications.
Ontologies are often used in industry to capture the conceptual informa-
tion models underpinning applications. We start by describing the role
that such models play in two use cases in the manufacturing and energy
production sectors. Then, we discuss the formalisation of information
models using ontologies, and the relevant reasoning services. Finally, we
present SOMM—a tool that supports engineers with little background
on semantic technologies in the creation of ontology-based models and in
populating them with data. SOMM implements a fragment of OWL 2 RL
extended with a form of integrity constraints for data validation, and it
comes with support for schema and data reasoning, as well as for model
integration. Our preliminary evaluation demonstrates the adequacy of
SOMM’s functionality and performance.

1 Introduction

Software systems in the domain of industrial manufacturing have become increas-
ingly important in recent years. Production machines, such as assembly line
robots or industrial turbines, are equipped with and controlled by complex and
costly pieces of software; according to a recent survey, over 40 % of the total
production cost of such machines is due to software development and the trend
is for this number only to continue growing [35]. Additionally, many critical
tasks within business, engineering, and production departments (e.g., control of
production processes, resource allocation, reporting, business decision making)
have also become increasingly dependent on complex software systems.

Recent global initiatives such as Industry 4.0 [9,18,34] aim at the develop-
ment of smart factories based on fully computerised, software-driven, automa-
tion of production processes and enterprise-wide integration of software com-
ponents. In smart factories, software systems monitor and control physical
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processes, effectively communicate and cooperate with each other as well as
with humans, and are in charge of making decentralised decisions. The success
of such ambitious initiatives relies on the seamless (re)development and inte-
gration of software components and services. This poses major challenges to an
industry where software systems have historically been developed independently
from each other.

There has been a great deal of research in recent years investigating key
aspects of software development in industrial manufacturing domains, including
life-cycle costs, dependability, compatibility, integration, and performance (e.g.,
see [41] for a survey). This research has highlighted the need for enterprise-
wide information models—machine-readable conceptualisations describing the
functionality of and information flow between different assets in a plant, such
as equipment and production processes. The development information models
based on ISA and IEC standards1 has now become a common practice in modern
companies [30] and Siemens is not an exception in this trend.

In practice, however, many types of models co-exist, and applications typi-
cally access data from different kinds of machines and processes designed accord-
ing to different models. These information models have been independently
developed in different (often incompatible) formats using different types of pro-
prietary software; furthermore, they may not come with a well-defined seman-
tics, and their specification can be ambiguous. As a result, model development,
maintenance, and integration, as well as data exchange and sharing pose major
challenges in practice.

Adoption of semantic technologies has been a recent development in many
large companies such as IBM [11], the steel manufacturer Arcelor Mittal [2], the
oil and gas company Statoil [21], and Siemens [1,4,19,20,22,25,32]. An impor-
tant application of these technologies has been the formalisation of information
models using OWL 2 ontologies and the use of RDF for storing application data.
OWL 2 provides a rich and flexible modelling language that seems well-suited
for describing industrial information models: it not only comes with an unam-
biguous, standardised, semantics, but also with a wide range of tools that can be
used to develop, validate, integrate, and reason with such models. In turn, RDF
data can not only be seamlessly accessed and exchanged, but also stored directly
in highly scalable RDF triple stores and effectively queried in conjunction with
the available ontologies. Moreover, legacy and other data that must remain in
its original format and cannot be transformed into RDF can be virtualised as
RDF using ontologies following the Ontology-Based Data Access (OBDA) app-
roach [21,23,29].

In this paper, we describe the outcomes of an ongoing collaboration between
Siemens Corporate Technology in Munich and the University of Oxford, with the
goal of facilitating deployment of ontology-based industrial information models.
We start by describing the key role that information models play in two use
cases in the manufacturing and energy production sectors. Then, we present
industrial information models that are used for describing manufacturing and

1 International Society of Automation and International Electrotechnical Commission.
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energy plants, and discuss how they can be captured using ontologies. In our
discussion, we stress the modelling choices made when formalising these models
as ontologies and identify the key OWL constructs required in this setting. Our
analysis revealed the need for integrity constraints for data validation [27,37],
which are not available in OWL 2. Hence, we discuss in detail what kinds of
constraints are needed in industrial use cases and how to incorporate them. We
then illustrate the use of reasoning services, such as concept satisfiability, data
constraint validation, and query answering for addressing Siemens’ application
requirements.

Ontologies are currently being created and maintained in Siemens by qualified
R&D personnel with expertise in ontology languages and ontology engineering.
In order to widen the scope of application of semantic technologies in the com-
pany it is crucial to make ontology development accessible to other teams of
engineers. To this end, we have developed the Siemens-Oxford Model Manager
(SOMM)—a tool that has been designed to fulfil industrial requirements and
which supports engineers with little background on semantic technologies in the
creation and use of ontologies. SOMM provides a simple interface for ontology
development and enables the introduction of instance data via automatically gen-
erated forms that are driven by the ontology and which help minimising errors in
data entry. SOMM implements a fragment of the OWL 2 RL profile [26] extended
with database integrity constraints for data validation; the supported language
is sufficient to capture the main features of ISA and ICE based information mod-
els used by Siemens. SOMM is built on top of Web-Protégé [40], which provides
built-in functionality for ontology versioning and collaborative development. It
relies on HermiT [10] for ontology classification and LogMap [16] to support
model alignment and merging. For query answering and constraint validation,
SOMM requires a connection to a triple store or a rule inference system that
supports Datalog reasoning and stratified negation-as-failure.

We showcase the practical benefits of our tool using two ontologies in the
manufacturing and power generation domains. Both ontologies have been devel-
oped using SOMM by Siemens engineers to capture information models cur-
rently in use. Based on these ontologies, we conducted an empirical evaluation
of SOMM’s performance in supporting constraint validation and query answer-
ing over realistic manufacturing and gas turbine data. In our experiments, we
coupled SOMM with the rule inference engine IRIS [3], which is available under
the LGPL license.2 Our evaluation demonstrates the adequacy of SOMM’s func-
tionality and performance for industrial applications.

2 Industrial Information Models

Conceptual information models can be exploited in a wide range of manufactur-
ing and energy production applications. In this Section, we discuss two concrete
use cases and describe the underpinning models and their limitations.

2 http://www.iris-reasoner.org/.
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2.1 Applications in Manufacturing and Energy Production

In manufacturing and energy production plants it is essential that all processes
and equipment run smoothly and without interruptions.

In a typical manufacturing plant, data is generated and stored whenever a
piece of equipment consumes material or completes a task. This data is then
accessed by plant operators using manufacturing execution systems (MES)—
software programs that steer the production in a manufacturing plant. MESs
are responsible for keeping track of the material inventory and tracing their con-
sumption, thus ensuring that equipment and materials needed for each process
are available at the relevant time [30]. Similarly, turbines in energy plants are
equipped with sensors that are continuously generating data. This data is con-
sumed by remote monitoring systems (RMS), which analyse turbine data to
prevent faults, report anomalies and ensure that the turbines operate without
interruption. In both application scenarios, the use of information models is
twofold.

1. Models are used to provide machine-readable specifications for the data gen-
erated by equipment and processes, and for the data flow across assets and
processes in a plant.

2. Models provide a schema for constructing and executing complex queries. In
particular, monitoring tasks in MESs are realised by means of queries issued
to production machines and data hubs; similarly, anomaly detection in an
RMS relies on queries spanning the structure of the turbines, the readings of
their sensors, and the configuration of turbines within a plant.

2.2 Information Models Based on Industrial Standards

We next describe the information models in Siemens relevant to the aforemen-
tioned applications. These models have been developed in compliance with ISA,
IEC, and ISO/TS international standards.

Manufacturing Models. For many manufacturing applications it is a com-
mon practice to rely on information models that are based on the international
standard ISA-88/95.

The ISA-88/95 standard provides general guidelines for specifying the func-
tionality of and interface between manufacturing software systems. The stan-
dard consists of UML-like diagrammatic descriptions accompanied with tables
and unstructured text, which are used to extend the diagrams with additional
information and examples. Figure 1 presents an excerpt of the ISA-88/95 stan-
dard modelling materials, equipment, personnel, and processes in a plant. For
instance, one of these diagrams establishes that pieces of equipment can be
composed by other pieces of equipment and are described by a number of spec-
ified ‘equipment properties’. The table complementing this diagram indicates
that each piece of equipment must have a numeric ID and may have a textual
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Fig. 1. Fragment of ISA 88/95 and an example model based on it.

description; additional properties of equipment can be introduced by providing
an ID, a textual description of the property, and a value range.

Figure 1 provides a simplified version of an information model based on the
standard ISA-88/95. The model is organised in three layers: product, process,
and execution. On the product level, we can see the specification of two products
and their relationship to production processes; for instance, Product1 consists
of PartA and PartB, which are manufactured by two consecutive processes. The
process segment level provides more fine-grained specifications of the structure of
each process; for instance, Process2 consists of three operations, where the second
one relies on specific kinds of materials and equipment. Finally, at the execution
level, we can see how data is stored and accessed by individual processes.

Energy Plant Models. Information models for energy plants are often based
on the Reference Designation System for Power Plants (RDS-PP) and Kraftwerk-
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Fig. 2. Designation models IEC 81346, ISO/TS 16952-10, and RDS-PP and example
energy information model for an energy plant [31].

Kennzeichensysten (KKS) standards, which are in turn extensions for the energy
sector of the IEC 81346 and ISO/TS 16952-10 international standards.

IEC 81346 and ISO/TS 16952-10 provide a generic dictionary of codes for
designating and classifying industrial equipment. Figure 2 provides an except
of these standards and their dependencies. For instance, in IEC-81346 letters
‘B’ to ‘U’ are used for generically designating systems in power plants. ISO/TS
16952-10 makes this specification more precise by indicating, for example, that
letter ‘M’ refers to systems for generating and transmitting electricity, and that
we can append ‘D’ to ‘M’ to refer to a wind turbine system. RDS PP and KKS
provide a more extensive vocabulary of codes for equipment, their functionality
and locations, as well as a system for combining such codes.

A typical energy plant model describes the structure of a plant by providing
the functionality and location of each equipment component using RDS PP and
KKS codes. Having this information in a machine-readable format is important
for planning and construction, as well as for the software-driven operation and
maintenance of the plant. Figure 2 shows how a specific plant is represented in
a model; for instance, code =G001 MDL10 denotes that the yaw drive system
number 10 of type MDL is located in the wind turbine generator number 001.
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2.3 Technical Challenges

The development and use of information models in practice poses major chal-
lenges.

1. Model development is costly, as it requires specialised training and proprietary
tools; as a result, model development often cannot keep up with the arrival
of new equipment and introduction of new processes.

2. Models are difficult to integrate and share since they are often independently
developed using different types of proprietary software and they are based on
incompatible data formats.

3. Monitoring queries are difficult to compose and execute on top of information
models: they must comply with the requirements of the models (e.g., refer to
specific codes in the energy use case), and their execution requires access to
heterogeneous data from different machines and processes.

In order to overcome these challenges Siemens has recently applied semantic
technologies in a number of applications [13,15,19,22,32]. In particular, OWL 2
has been used for describing information models. The choice of OWL 2 is not
surprising since it provides a rich and flexible modelling language that is well
suited for addressing the aforementioned challenges: it comes with an unam-
biguous, standardised semantics, and a wide range of tools and infrastructure.
Moreover, RDF provides a unified data exchange format, which can be used to
seamlessly access and exchange data, and hence facilitate monitoring tasks based
on complex queries.

3 From Information Models to Ontologies
and Constraints

In this section we describe the ontologies that we have developed to capture
manufacturing and energy production models presented in Sect. 2. The goal of
our ontologies is to eventually replace their underpinning models in applica-
tions. Thus, their design has been driven towards fulfilling the same purposes
as the models they originate from; that is, to act as schema-level templates for
data generation and exchange, and to enable the formulation and execution of
monitoring queries.

The representation of industrial information models and standards using
ontologies has been widely acknowledged as a non-trivial task [5,12,14,36]. In
Sect. 3.1 we discuss the modelling choices underpinning the design of our ontolo-
gies and identify a fragment of OWL 2 RL that is sufficient to capture the basic
aspects of the information models. Our analysis of the models, however, also
revealed the need to incorporate database integrity constraints for data valida-
tion, which are not supported in OWL 2 [27,37]. Thus, we also discuss the kinds
of constraints that are relevant to our applications.

Finally, in Sect. 3.2 we discuss how the OWL 2 RL axioms and integrity
constraints can be captured by means of rules with stratified negation for the
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purpose of data validation and query answering. We assume basic familiarity
with Datalog—the rule language underpinning OWL 2 RL and SWRL—as well
as with stratified negation-as-failure (see [6] for an excellent survey on Logic
Programming).

3.1 Modelling

From an ontological point of view, most building blocks of the the typical indus-
trial information models are rather standard in conceptual design and naturally
correspond to OWL 2 classes (e.g., Turbine, Process, Product), object properties
(e.g., hasPart, hasFunction, locatedIn) and data properties (e.g., ID, hasRotor-
Speed).

The main challenge that we encountered was to capture the constraints of the
models using ontological axioms. We next describe how this was accomplished
using a combination of OWL 2 RL axioms and integrity constraints.

Standard OWL 2 RL Axioms. The specification of the models suggests
the arrangement of classes and properties according to subsumption hierarchies,
which represent the skeleton of the model and establish the basic relationships
between their components. For instance, in the energy plant model a Turbine
is specified as a kind of Equipment, whereas hasRotorSpeed is seen as a more
specific relation than hasSpeed. The models also suggest that certain properties
must be declared as transitive, such as hasPart and locatedIn. Similarly, certain
properties are naturally seen as inverse of each other (e.g., hasPart and partOf ).
These requirements are easily modelled in OWL 2 using the following axioms
written in functional-style syntax:

SubClassOf(Turbine Equipment) (1)
SubDataPropertyOf(hasRotorSpeed hasSpeed) (2)
TransitiveObjectProperty(hasPart) (3)
InverseObjectProperties(hasPart partOf ) (4)

These axioms can be readily exploited by reasoners to support query answering;
e.g., when asking for all equipment with a rotor, one would expect to see all
turbines that contain a rotor as a part (either directly or indirectly).

Additionally, the models describe optional relationships between entities. In
the manufacturing model certain materials are optional to certain processes, i.e.,
they are compatible with the process but they are not always required. Similarly,
certain processes can optionally be followed by other processes ( e.g., conveying
may be followed by packaging). Universal (i.e., AllValuesFrom) restrictions are
well-suited for attaching an optional property to a class. For instance, the axiom

SubClassOf(Conveying ObjectAllValuesFrom(followedBy Packaging)) (5)

states that only packaging processes can follow conveying processes; that is, a
conveying process can be either terminal (i.e., not followed by any other process)
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or it is followed by a packaging process. As a result, when introducing a new
conveying process we are not forced to provide a follow-up process, but if we do
so it must be an instance of Packaging.

All the aforementioned types of axioms are included in the OWL 2 RL profile.
This has many practical advantages for reasoning since OWL 2 RL is amenable
to efficient implementation using rule-based technologies.

Constraint Axioms. In addition to optional relationships, the information
models from Sect. 2 also describe relationships that are inherently mandatory,
e.g., when introducing a new turbine, the energy model requires that we also
provide its rotors.

This behaviour is naturally captured by an integrity constraint: whenever a
turbine is added and its rotors are not provided, the application should flag an
error. Integrity constraints are not supported in OWL 2; for instance, the axiom

SubClassOf(Turbine ObjectSomeValuesFrom(hasPart Rotor)) (6)

states that every turbine must contain a rotor as a part; such rotor, however,
can be possibly unknown or unspecified.

The information models also impose cardinality restrictions on relationships.
For instance, each double rotor turbine in the energy plant model is specified as
having exactly two rotors. This can be modelled in OWL 2 using the axioms

SubClassOf(TwoRotorTurbine ObjectMinCardinality(2 hasPart Rotor)) (7)
SubClassOf(TwoRotorTurbine ObjectMaxCardinality(2 hasPart Rotor)) (8)

Such cardinality restrictions are interpreted as integrity constraints in many
applications: when introducing a specific double rotor turbine, the model requires
that we also provide its two rotors. The semantics of axioms (7) and (8) is not
well-suited for this purpose: on the one hand, (7) does not enforce a double rotor
turbine to explicitly contain any rotors at all; on the other hand, if more than
two rotors are provided, then (8) non-deterministically enforces at least two of
them to be equal.

There have been several proposals to extend OWL 2 with integrity constraints
[27,37]. In these approaches, the ontology developer explicitly designates a sub-
set of the OWL 2 axioms as constraints. Similarly to constraints in databases,
these axioms are used as checks over the given data and do not participate in
query answering once the data has been validated. The specifics of how this
is accomplished semantically differ amongst each of the proposals; however, all
approaches largely coincide if the standard axioms are in OWL 2 RL.

3.2 Data Validation and Query Answering

Our approach to data validation and query answering follows the standard
approaches in the literature [27,37]: given a query Q, dataset D, and OWL
2 ontology O consisting of a set S of standard OWL 2 RL axioms and a set C
of axioms marked as constraints, we proceed according to Steps 1–4 given next.
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Table 1. OWL 2 RL axioms as rules. All entities mentioned in the axioms are named.
By abuse of notation, we use SubPropertyOf and AllValuesFrom to refer to both their
Object and Data versions in functional syntax.

OWL 2 Axiom Datalog Rules

SubClassOf(A B) B(?x) ← A(?x)

SubPropertyOf(P1 P2) P2(?x, ?y) ← P1(?x, ?y)

TransitiveObjectProperty(P ) P (?x, ?z) ← P (?x, ?y) ∧ P (?y, ?z)

InverseObjectProperties(P1, P2) P2(?y, ?x) ← P1(?x, ?y) and

P1(?y, ?x) ← P2(?x, ?y)

SubClassOf(A AllValuesFrom(P B)) B(?y) ← P (?x, ?y) ∧ A(?x)

1. Translate the standard axioms S into a Datalog program ΠS using the well-
known correspondence between OWL 2 RL and Datalog.

2. Translate the integrity constraints C into a Datalog program ΠC with strati-
fied negation-as-failure containing a distinguished binary predicate Violation
for recording the individuals and axioms involved in a constraint violation.

3. Retrieve and flag all integrity constraint violations. This can be done by
computing the extension of the Violation predicate.

4. If no constraints are violated, answer the user’s query Q using the query
answering facilities provided by the reasoner.

Steps 3 and 4 can be implemented on top of RDF triple stores with support
for OWL 2 RL and stratified negation (e.g., [28]), as well as on top of generic
rule inference systems (e.g., [3]). In the remainder of this Section we illustrate
Steps 1 and 2, where standard axioms and constraints are translated into rules.
Standard Axioms. Table 1 provides the standard OWL 2 RL axioms needed to
capture the information models of Sect. 2 and their translation into negation-free
rules. In particular, the axioms (1)–(5) are equivalent to the following rules:

Equipment(?x) ← Turbine(?x) (9)
hasSpeed(?x, ?y) ← hasRotorSpeed(?x, ?y) (10)
hasPart(?x, ?z) ← hasPart(?x, ?y) ∧ hasPart(?y, ?z) (11)
Packaging(?y) ← Conveying(?x) ∧ followedBy(?x, ?y) (12)

Constraint Axioms. Table 2 provides the constraint axioms required to cap-
ture the models of Sect. 2 together with their translation into rules with nega-
tion. Our translation assigns a unique id to each individual axiom marked as an
integrity constraint in the ontology, and it introduces predicates not occurring
in the ontology in the heads of all rules. Constraint violations are recorded using
the fresh predicate Violation relating individuals to constraint axiom ids.

The constraint (6) from Sect. 3.1 is captured by the following rules:

hasPart Rotor(?x) ← hasPart(?x, ?y) ∧ Rotor(?y) (13)
V iolation(?x, α) ← Turbine(?x) ∧ not hasPart Rotor(?x) (14)
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Table 2. Constraints axioms as rules. All entities are named, n ≥ 1, and α is the
unique id for the given constraint. SomeValuesFrom, HasValue, FunctionalProperty,
MaxCardinality and MinCardinality denote both their Object and Data versions.

OWL Axiom Datalog rules

SubClassOf(A SomeValuesFrom(R B)) R B(?x) ← R(?x, ?y) ∧ B(?y) and

V iolation(?x, α) ← A(?x) ∧ not R B(?x)

SubClassOf(A HasValue(R b)) V iolation(?x, α) ← A(?x) ∧ not R(?x, b)

FunctionalProperty(R)
R 2(?x) ← R(?x, ?y1) ∧ R(?x, ?y2) ∧

not owl:sameAs(?y1, ?y2)

and V iolation(?x, α) ← R 2(?x)

SubClassOf(A MaxCardinality(n R B))

R (n+1) B(?x) ← ∧

1≤i≤n+1

(R(?x, ?yi) ∧ B(?yi))

∧

1≤i<j≤n+1

(not owl:sameAs(?yi, ?yj))

and V iolation(?x, α) ← A(?x) ∧ R (n+1) B(?x)

SubClassOf(A MinCardinality(n R B))

R n B(?x) ← ∧

1≤i≤n

(R(?x, ?yi) ∧ B(?yi))

∧

1≤i<j≤n

(not owl:sameAs(?yi, ?yj))

and V iolation(?x, α) ← A(?x) ∧ not R n B(?x)

Rule (13) identifies all individuals with a rotor as a part, and stores them as
instances of the auxiliary predicate hasPart Rotor . In turn, Rule (14) identifies
all turbines that are not known to be instances of hasPart Rotor (i.e., those with
no known rotor as a part) and links them to the constraint α they violate.

Integrity constraints based on cardinalities require the use of the OWL 2
equality predicate owl:sameAs. For instance, the constraint axiom (7) from
Sect. 3.1, to which we assign the id β1, is translated into the following rules:

hasPart 2 Rotor(?x) ←
∧

1≤i≤2

(hasPart(?x, ?yi) ∧ Rotor(?yi))∧

∧ (not owl:sameAs(?y1, ?y2))
V iolation(?x, β1) ←TwoRotorTurbine(?x) ∧ not hasPart 2 Rotor(?x)

The first rule infers an instance of the auxiliary predicate hasPart 2 Rotor if it
is connected to two instances of Rotor that are not known to be equal; in turn,
the second rule infers that all instances of TwoRotorTurbine that are not known
to be instances of the auxiliary predicate violate the constraint (7). Similarly,
axiom (8), to which we assign the id β2, is translated as follows:

hasPart 3 Rotor(?x) ←
∧

1≤i≤3

(hasPart(?x, ?yi) ∧ Rotor(?yi))∧

∧
∧

1≤i<j≤3

(not owl:sameAs(?yi, ?yj))

V iolation(?x, β2) ←TwoRotorTurbine(?x) ∧ hasPart 3 Rotor(?x)

Analogously to the previous case, the first rule infers that an individual is an
instance of hasPart 3 Rotor if it is connected to three instances of Rotor that are
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not known to be equal; in turn, the second rule infers that every such individual
that is also an instance of TwoRotorTurbine violates the constraint axiom (8).

To conclude this section, we note that our translation in Table 2 yields a
stratified program for any set C of constraints. We can always define a stratifica-
tion where the lowest stratum consists of the predicates in C and owl:sameAs,
the intermediate stratum contains all predicates of the form R B, R n B, and
R n, and the uppermost stratum contains the special V iolation predicate.

4 SOMM: An Industrial Ontology Management System

We have developed the Siemens-Oxford Ontology Management (SOMM) tool3

to support engineers in building ontologies and inserting data based on their
information models. The interface of SOMM is restricted to support only the
kinds of standard OWL 2 RL axioms and constraints discussed in Sect. 3.

SOMM is built on top of the Web-Protégé platform [40] by extending its
front-end with new visual components and its back-end to access a Datalog-
based triple store or a generic rule inference system for query answering and
constraint validation, the OWL 2 reasoner HermiT [33] for ontology classifica-
tion, and LogMap [16] to support ontology alignment and merging. Our choice
of WebProtégé was based on Siemens’ requirements for the platform underpin-
ning SOMM, namely that it (i) can be used as a Web application; (ii) is under
active development; (iii) is open-source and modular; (iv) includes built-in func-
tionality for ontology versioning and collaborative development; (v) provides a
form-based and end-user oriented interface; and (vi) enables the automatic gener-
ation of forms to insert instance data. Although we considered other alternatives
such as Protégé-desktop [39], NeON toolkit [8], OBO-Edit [7], and TopBraid
Composer [38], we found that only WebProtégé satisfied all the aforementioned
requirements.

In the remainder of this section, we describe the main features of SOMM.

Insertion of axioms and constraints. We have implemented a form-
based interface for editing standard axioms and constraints. Figure 3 shows
a screenshot of the SOMM class editor representing the following axioms about
SteamTurbine (abbreviated below as ST ), where all but the last axiom represent
constraints.

SubClassOf(ST ObjectSomeValuesFrom(hasState State))
SubClassOf(ST DataSomeValuesFrom(hasId xsd:string))

SubClassOf(ST ObjectMinCardinality(1 hasConfig STConfig))
SubClassOf(ST ObjectMaxCardinality(3 hasConfig STConfig))

SubClassOf(ST ObjectAllValuesFrom(hasProductLine ProductLine))

The interface shows that the class SteamTurbine has three mandatory properties
(hasState, hasID and hasConfig) marked as ‘Required’ and interpreted as con-
straints, and an optional property (hasProductLine) interpreted as a standard
3 http://www.cs.ox.ac.uk/isg/tools/SOMM/.
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axiom. Object and data properties are indicated by blue and green rectangles,
respectively. For each property we can specify their filler using a WebProtégé
autocompletion field. Finally, the fields ‘Min’ and ‘Max’ are used to represent
cardinality constraints on mandatory properties.

Fig. 3. SOMM editor to attach properties to classes.

Fig. 4. Data insertion in SOMM.

Automatically generated data forms.SOMM exploits the capabilities of
the ‘knowledge acquisition forms’ in Web-Protégé to guide engineers during data
entry. The main use of data forms that we envision is ontology validation during
the time of ontology development. The forms are automatically generated for each
class based on its relevant mandatory and optional properties. For this, SOMM
considers (i) the explicitly provided properties; (ii) the inherited properties; and
(iii) the properties explicitly attached to its descendant classes. The latter were
deemed useful by Siemens engineers, e.g., although Turbine does not have directly
attached properties, the SOMM interface would suggests adding data for the prop-
erties attached to its subclass SteamTurbine. Figure 4 shows an example of the
property fields for an instance of the class SteamTurbine, where required fields
(i.e., those for which a value must be provided) are marked with (*).

Extended hierarchies.In addition to subsumption hierarchies, SOMM allows
also for hierarchies based on arbitrary properties. These can be seen as a gener-
alisation of partonomy hierarchies, and assume that the dependencies between
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classes or individuals based on the relevant property are ‘tree-shaped’. Figures 5a
and b show the hierarchy for the follows property, which determines which kinds
of processes can follow other processes; for instance, Conveying follows Loading
and is followed by Testing .

Alignment. SOMM integrates the system LogMap [16] to support model align-
ment and merging. Users can select and merge two Web-Protégé projects, or
import and merge an ontology into the active Web-Protégé project. Although
LogMap supports interactive alignment [17], it is currently used in SOMM in an
automatic mode; we are planning to extend SOMM’s interface to support user
interaction in the alignment process.

Reasoning. SOMM relies on HermiT [10] to support standard reasoning ser-
vices such as class satisfiability and ontology classification. Data validation and
query answering support is currently provided on top of the IRIS reasoner [3],
as described in Sect. 3.2. Figures 5c and d illustrates the supported reasoning
services. The left-hand-side of the figure shows that the class GasTurbineModes
is satisfiable and Process is an inferred superclass. On the right-hand-side we
can see that steam turbine 987 violates one of the integrity constraints; indeed,
as shown in Fig. 4, steam turbine 987 is missing data for the property hasState,
which is mandatory for all steam turbines (see Fig. 3).

(a) Classes (b) Individuals

(c) Classes (d) Individuals

Fig. 5. Above: tree-like navigation of the ontology classes and individuals in SOMM.
Below: reasoning services for ontology classes and individuals in SOMM
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5 Evaluation

We have evaluated the practical feasibility of the data validation and query
answering services provided by SOMM. For this, we have conducted two sets of
experiments for the manufacturing and energy turbine scenarios, respectively.
In the first experiment, we simulated the operation of a manufacturing plant
using a synthetic generator that produces realistic product manufacturing data
of varying size; in the second experiment, we used real anonymised turbine data.4

All our experiments were conducted on a laptop with an Intel Core i7-4600U
CPU at 2.10 GHz and 16 GB of RAM running Ubuntu 14.04 (64 bits). We
allocated 15 GB to Java 8 and set up IRIS with its default configuration.

Manufacturing Experiments. In our experiments for the manufacturing use
case we used the ontology, data and queries given next.

– The ontology capturing the manufacturing model illustrated in Fig. 1 from
Sect. 2.1. The ontology contains 79 standard axioms and 20 constraints.

– A data generator used by Siemens engineers to simulate manufacturing of
products of two types based on the aforementioned model. We used two con-
figurations of the generator: configuration (C1) simulates a situation where
products were manufactured in violation of the model specifications (e.g., they
used too much material of some kind); in (C2), each product is manufactured
according to specifications.

– A sample of three monitoring queries commonly used in practice. The first
query asks for all products that use material from a given lot; the second asks
for all material lots used in a given product; finally, the third one asks for the
total quantity of material in lots of a specific kind.

We generated data for 6 different sizes, ranging from 50 triples to 1 million
triples. For each size, we generated one dataset for each configuration of the
generator. We set up configuration C1 so that 35% of the manufactured products
violate specification. Our experiments follow Steps 1–4 in Sect. 3.2. We checked
validity of each dataset against the ontology using Steps 1–3; then, for each
dataset created using C2 we also answered all test queries (Step 4). We repeated
the experiment 5 times for each dataset and configuration (i.e., 10 times for each
dataset size).

Our results are summarised in Fig. 6. Times for each data size are wall clock
time averages (in ms). Constraint validation time (grey bar) correspond to Step
3 in Sect. 3.2. Query answering times (blue bar) measure the time for answering
the use case queries (Step 4); here, only datasets satisfying the constraints (i.e.,
generated using C2) are considered. The figure also provides the average number
of constraint violations in data generated according to C1, and the number of
triples after constraint validation.

Our results demonstrate the feasibility of our ontology-based approach to
model validation and query answering in realistic manufacturing scenarios. In
4 We are in the process of sorting out the licenses for the ontologies and data used in

our experiments; they cannot be made publicly available at this point.
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Fig. 6. Experimental results

particular, constraint validation and query answering were feasible within 87s
on stock hardware over datasets containing over 1 million triples.

Gas Turbine Experiment. In this experiment we used the following data:

– The ontology capturing the energy plant model illustrated in Fig. 2 from
Sect. 2. The ontology contains 121 standard axioms and 25 constraints.

– An anonymised dataset describing the structure of 800 real gas turbines,
their sensor readings (temperature, pressure, rotor speed and position), and
associated processes (e.g., expansion, compression, start up, shut down). The
dataset was converted from a relational DB into RDF, and contains 25, 090
triples involving 4, 076 individuals.

– Three commonly used test queries. The first query asks for the core parts,
equipment and current state of all turbines of a given type; the second asks
for all components involved in a compression process; the last query asks for
the temperature readings of turbines of a given type.

We followed the same steps as in the previous experiments, with very positive
results. Constraint checking was completed in 2s and generated 27, 007 additional
triples; we found 1, 582 constraint violations, which is especially interesting given
that the data is real. Query answering over the valid subset took 1s on average.

6 Lessons Learned and Future Work

We have studied the use of ontologies to capture industrial information models
in manufacturing and energy production applications.
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Our study of the requirements of information models revealed that many
key aspects of information models naturally correspond to integrity constraints
and hence cannot be captured by standard OWL 2 ontologies. This demonstrates
intrinsic limitations of OWL 2 for industrial modelling and gives a clear evidence
of why constraints are essential for such modelling.

We also learned that even a rather simple form-based interface such as the
one of SOMM is sufficient to capture most of the manufacturing and energy infor-
mation models based on ISA and ICE standards. This was an important insight
for us since at the beginning of this research project it was unclear whether
designing such a simple tool to write ontologies of practical interest to our use
cases would be feasible.

Finally, we have received a very positive feedback from Siemens engineers
about the usability of SOMM at informal workshops organised as part of the
project. This was encouraging since the development of a tool that is accessi-
ble to users without background in semantic technologies was one of the main
motivations of our work.

In the future, we plan to conduct a formal user study where—with the help
of SOMM—Siemens engineers will design elaborate information models and per-
form various tasks on these models, including validation and merging. We also
plan to conduct more extensive scalability experiments. SOMM is a research
prototype and, depending on the outcome these studies, we would like to deploy
it in production departments.
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Abstract—Due to the emerging paradigm of mass-
customization, manufacturing processes are becoming
increasingly complex. Management of this complexity requires
system support that goes beyond traditional MES capabilities,
such as discovery of patterns throughout massive networks of
interdependent processes. As of today, Manufacturing Analytics
offer only limited decision support focused on descriptive metrics
that cannot account for predictive and prescriptive decision
support, such as detection of systematic fault patterns. The
application of predictive models in manufacturing environments
is non-trivial, because they need to reflect system domain
constraints and preserve semantics of manufacturing operations.
Recent approaches of so-called Advanced Manufacturing
Analytics try to fill this gap by applying standard data mining
algorithms with customized data preparation for domain-specific
use cases.

In order to overcome the problem of high customization
efforts, we introduce a graph-based analytics framework derived
from a comprehensive requirements analysis. Additionally, we
demonstrate applicability of the presented framework on two
exemplary manufacturing analytics use cases.

I. INTRODUCTION

Today, manufacturing companies are challenged by the need
to meet high quality demands of customers, while at the
same time shorter product life cycles and mass-customization
require high flexibility of operations and shop floor equipment
to support fast introduction of new products [1]. Due to these
emerging paradigms, manufacturing processes are becoming
increasingly complex by means of various combinations and
interdependencies between production operations, material
definitions, and equipment configurations. It has been shown
that dealing with this growing complexity is beyond capabil-
ities of traditional Manufacturing Execution Systems (MES)
and Enterprise Manufacturing Intelligence (EMI) solutions and
therefore has become a key competitive factor [2].

On the other hand, the trend towards end-to-end digital-
ization of processes makes huge amounts of manufacturing
operations and process data available for new data-centric
applications that can help to reduce complexity by offering
predictive decision support. For example, the detection of
equipment configuration patterns in production program exe-
cution records could be used to diagnose systematic equipment
configuration faults that have historically emerged due to
unmanaged dependencies. These kind of data-driven applica-

tions are sometimes referred to as Advanced Manufacturing
Analytics [3].

While integration of operations data such as inventory
transactions and process data like machine alarms still re-
mains one of the major challenges, the advancement of mas-
sively parallelized data processing has made the application
of advanced analytic models to company-wide networks of
interdependent processes more feasible [4]. Nevertheless, as
of today, there is a lack of research devoted to filling the gap
between MES (and EMI), which are still focused on limited
descriptive metrics, i.e. Key Performance Indicators (KPIs),
and the development of advanced analytic approaches that re-
spect the special requirements of manufacturing environments,
which are heavily influenced by structural dependencies, e.g.
connections between equipment, and engineering knowledge,
e.g. bill of material. We argue that semantic data models
are a natural fit to bridge the gap between domain-specific
requirements for analytics and their integration into existing
manufacturing systems.

Considering the data integration problem, it has been shown
that the strengths of semantic data models can thrive as
common backbone of data integration for industrial application
[5]. One step further, optimally, such a common manufacturing
data model enabling data integration should also facilitate the
formulation of Advanced Manufacturing Analytics, i.e. limit
the manual effort needed for the preparation, execution, and
respect manufacturing-specific environments. Up to now, this
area of research has not been intensively studied yet.

In this paper, we derive four requirements as main enablers
of Advanced Manufacturing Analytics by an examination of
recent literature, see Section III. Based on these findings, we
present a framework that is capable of formulating predic-
tive and recommendation models with domain background
knowledge in a graph-based setting. A semantic data model by
design of this approach allows to respect implicit dependencies
of manufacturing operations and flexible integration of differ-
ent data sources, both structured and unstructured, see Section
IV. Additionally, we show the applicability of the framework
in several exemplary real-world use cases in Section V.

II. RELATED WORK

Recently, there have been a number of works concerned
with to the development of advanced analytic frameworks
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for manufacturing, e.g. for the monitoring of process states
based on cluster prediction using Support Vector Machines
(SVM) [6], Quality Control using Genetic Algorithms [7]
and process optimization on top of a holistic manufacturing
data warehouse and standard Data Mining techniques [3], [8].
Usage of semantics as model guidance has been studied in an
aerospace use case [9].

Other approaches have been suggested for the automatic
learning of abnormal behavior of whole production systems
using Rule Induction [10], [11]. Also Artificial Neural Net-
works (ANN) have been proposed focused on the aspect of
process interdependencies and error propagation in multistage
manufacturing [12].

The shortcoming of all the mentioned approaches is that
they do not respect the domain constrained nature of manufac-
turing operations, e.g. considering known structural dependen-
cies. There is also a lack of interpretability for complex models
(ANN, SVM) since they function more or less as a black
box. Plus these approaches rely on a customized model design
in terms of feature engineering, which usually requires high
domain expertise. This point has also been recently stressed
under the consideration of a domain-specific language for
predictive manufacturing analytics [13].

In this paper, we present a framework that overcomes both
of these problems by using semantic abstraction and a graph-
based representation of the data.

III. REQUIREMENTS ANALYSIS

In this section we want to shed light on what challenges
are still to be met in order to enable efficient execution
of Advanced Manufacturing Analytics. As an introduction,
consider the predictive analytic task:

Example 1: Given a set of operation execution instances
D, where each instance di references a set of equipment
parameters C, e.g. programs loaded onto production machines,
and a set of bill of material (BOM) definition properties B,
e.g. mixing ratio of ingredients. We want to predict, if an
execution will yield an excessive amount of scrap, labeled as
yi = bad. In a highly flexible environment, assuming each
parameter can take on p different values, we have p|D|×|C|

different combinations of equipment and BOM configurations.
A predictive model should be able to find patterns of the
form {S|S ⊆ C ∪ B} ⇒ y, i.e. a systematic combination
of equipment parameters and bill of material properties that
influence quality of produced final material.

Based on a comparison of recent trends and existing ap-
proaches in literature, we gather four major requirements that
should be considered when implementing predictive analytics
in a manufacturing environment [14], [3]. The template in
Table I specifies for each derived requirement the problem
of existing approaches, a possible solution and its benefits.

The importance of Adaptability becomes evident in dynamic
environments with constantly changing configurations where
predictive model must still provide robust and reliable results

TABLE I
REQUIREMENTS OF ADVANCED MANUFACTURING ANALYTICS DERIVED

FROM EXISTING APPROACHES

Requirement 1: Adaptability
Problem Customized realizations of analytics that are con-

strained to certain data models and use cases

Solution Abstracting analytics from predefined sources, fixed
data models and variables

Benefits Reduce manual design effort and speed up introduc-
tion of changes

Requirement 2: Comprehensiveness
Problem Analytics for dedicated process steps ignore potential

interdependencies

Solution Incorporate a holistic view of all available aspects of
manufacturing processes

Benefits Broader range of optimization potential and discov-
ery of unknown dependencies

Requirement 3: Domain-specificity
Problem General-purpose data analytics do not reflect domain

knowledge

Solution Allow specification of manufacturing domain con-
straints

Benefits Increase chance of finding accurate, non-trivial, and
unknown insights

Requirement 4: Interpretability
Problem Lost semantics prohibit interpretation of gained re-

sults for domain experts

Solution Preserve context, domain vocabulary and background
knowledge in results

Benefits Directly actionable insights ensured via preserved
domain vocabulary

[15]. This means, referring to the previous example, new com-
binations of configurations and properties should not require
any changes to pattern detection model. Especially, since there
is a gap between data analytic expertise and manufacturing
domain knowledge, it is needed to limit the amount of manual
work that is put into customization.

The need for Comprehensiveness is widely accepted in
multi-stage manufacturing where interactions between pro-
cesses need to be considered [7]. Plus, with the growing
trend towards increasing availability of data, even of small
manufacturing companies [13], this data should be exploited
as much as possible. For instance in Example 1, including
multiple processes the growing sizes of B and C simply entail
an expanding space of possible explanations, which means
more potential patterns should be detected.

There are some special characteristics of manufacturing
data, due to the fact that MES and also EMI solutions have
been developed using relational schema definitions, usually
based on standards such as ISA-95 (IEC-62264). Common
approaches need to prepare this relational data for analysis
with some form of propositionalisation that flattens entities
linked through multiple relations into one relation, cf. [8].
This is not an efficient representation of manufacturing data,
where equipment structure, material, and process definitions
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shape the way data is generated. Advanced analytics should
respect these dependencies, i.e. support some form of built-in
Domain-specificity. Consider the case in Example 1 when it
is known that two consecutive operation executions di and dj
process the some work piece, there is an implicit connection
in the data that a robust pattern detection algorithm must be
aware of. In order to make analytic results as insightful as
possible, Interpretability is one of the major challenges for
manufacturing. This is why, for example, Decision Trees have
been very popular as predictive models for manufacturing
analytics in the past [8]. However, as stated above, proposition-
alisation of relational data significantly limits interpretation of
relations between entities. Therefore, there is a need for other
approaches that preserve relations with their natural semantics.

In contrast to common approaches, we directly express
Advanced Manufacturing Analytics in a graph-based represen-
tation that keeps natural semantics of the data, does not require
propositionalisation, and facilitates specification of domain
constraints.

IV. ARCHITECTURE

In the following, we present a proposal for the fulfillment
of all requirements described in the previous section, which is
built around a semantic data model that serves as abstraction
to the actual data and the analytic models.

The resulting components of this graph-based architecture
are shown in Figure 1.

A. Semantic Abstraction Layer: Ontology-based Data Access

This component is responsible for mapping instance data
from sources into a common schema described by the ontology
T . For our system, we use an ontology-based data access
(OBDA) technique.

OBDA relies on the definition of mappings, e.g. using the
W3C standard R2RML language. These mappings relate the
signature of T to the vocabulary of each data source. This
allows an OBDA system to take a query q that is formulated
in the abstract signature (terminology) of ontology T and re-
write it into a logically equivalent, but semantically-enriched

query q′. Thus, q′ absorbs parts of the ontology to retrieve
all entailed answers. After re-writing q′ can readily be
translated into an SQL query to the underlying source using
the previously defined mappings.

Example 2: Consider the tables Tags and
OperationExecutiuon in two relational databases.
The following mapping establishes the semantic occursAt
relation between execution records and events:

occursAt ≡ SELECT t.Id, o.Id FROM Tags t
JOIN OperationExecution o ON t.TimeStamp
BETWEEN o.TimeSpan

Further, it is possible to instantiate concepts, e.g. for
the class RFID-Event like follows:

RFID-Event :- SELECT t.Id FROM Tags t WHERE
Message IN [’Glimpsed’, ’Observed’]

Also as part of the ontology we define implicit dependencies
of manufacturing environments that are typically well-known
to operators and engineers.

Definition 1 (Dependency Links): The set of dependency
links L reflects engineering background knowledge about
known causality between two entities ei and ej , as assertion
dependsOn(ei, ej).

Figure 2 gives an overview of these dependency structures.
It can be seen that manufacturing processes are specified
throughout different levels of detail. Starting at high-level
representations including BOM and Process Routing from
engineering up to more detailed Manufacturing BOM. During
the actual execution, when data D is stored, the dependency
information is typically lost. However, by defining these
structures explicitly as part of the semantic abstraction layer,
connections can be restored during data integration.

For example, we can express the dependency between Pro-
cess 4 and Product 2 –since this process step is unique to this
product – by asserting: dependsOn(Process4, Product2).

B. Model Preparation

This component takes care of instance and feature selection.
In contrast to traditional statistical approaches, feature selec-
tion is done directly using dependency links without looking at
actual instance data [16]. For example, if it is known that some
particular equipment configuration properties are always co-
occurring, there is no need to include such redundant variables
as features in the model.

C. Graph-based Representation

After integration and preparation, final data D is represented
in form of a set of multi-graphs – as it is common in Linked
Data, e.g. via Resource Description Framework (RDF).
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Definition 2 (Graph Representation): Instance data in D
is represented as multi-graph G = 〈V,El〉, where entities
are in the vertex set V and pairs of entities connected
through relation l in the edge set Ei. As defined above,
there is a special dependency sub-graph L. The set of these
multi-graphs is denoted as G.

The benefits of a multi-graph representation is that the unique
semantics of entities and relations are preserved.

D. Requirements Discussion

To summarize, we briefly discuss the major pinpoints of
how this framework satisfies requirements of Section III.

First, flexible data integration (Adaptability) is possible by
abstracting from the concrete physical model of each data
source via mappings. This way, instance data can be inte-
grated in an on-demand fashion. In addition to that, concept
definitions of ontology T ensure usage of domain vocabulary
(Interpretability) that is independent of individual schemata,
e.g. table definitions and column identifiers. The benefit of
this is that results of analytics are not presented by using
identifiers, for example, machine tags, but using domain termi-
nology as agreed upon in the concept definitions. Naturally, the
graph representation enables an holistic view over all relevant
manufacturing processes (Comprehensiveness) by being able
to simply integrate additional data sources. This means that
analytics can be scaled from single to multiple processes
without any changes. Furthermore, background knowledge in
form of dependencies can be exploited by analytics (Domain-
specificity). This is important for real-world applications of

Manufacturing Analytics where inferring statistical dependen-
cies between entities that are already known in advance is not
efficient. If background knowledge already indicates causation,
this should be considered by analytic models.

In the following sections, we show how this architecture
can be readily applied for detection of patterns and providing
recommendations.

V. ADVANCED MANUFACTURING ANALYTICS USE CASES

As a running example, we refer to a similar scenario of
production executions as discussed in the introductory example
of section III having different production equipment and bill
of material properties in a flexible manufacturing environment.

A. Predictive Model: Root Cause Analysis
1) Use Case Scenario: Root Cause Analysis (RCA) is the

task of finding the source of an undesirable state or event.
In this scenario, the undesirable state occurs if an excessive
amount of scrap is produced by an automated welding oper-
ation executed with respect to a certain program. Given data
records D consisting of operation execution entities that are
labeled as good or bad, e.g. based on the amount of scrap
produced, RCA is defined as detecting patterns that distinguish
good from bad operation executions.

Figure 3 shows how this scenario looks like in our graph-
based framework. For sake of simplicity, in this example only
equipment structure is used, as defined in IV. From the bottom
of Figure 3, the relational schema of operation executions is
integrated through the semantic abstraction layer. Additionally,
a second data source of events is aligned with the execution
records.
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2) Frequent Pattern Detection: For pattern detection, op-
eration executions are represented in form of positive and
negative labeled graphs G+ and G−, therefore we want to find
frequent sub-graph patterns S w.r.t. the following measure:

S = max
|{g ∈ G+|S 6⊆ g}|+ |{g ∈ G−|S ⊆ g}|

|G+|+ |G−|
(1)

This means interesting patterns are the ones that occur fre-
quently in negatively labeled graphs and rarely in positive
ones. As an example, Figure 4 shows two frequent sub-graph
patterns that occur in bad executions. This pattern suggests
that material check-in did not correctly identify the RFID tag,
i.e. only ”glimpsed” it, and therefore the false program was
loaded onto the welding machine.

3) Causation Patterns: Since some dependency links are
known to the system, it is more efficient to consider patterns
as interesting that only contain causation entities, i.e. the right-
hand side of dependsOn relation.

Through the dependency links, it is possible guide pattern
search, see Figure 4, where pattern S and S′ are separately
detected, but actually only the event pattern is relevant.

RFID-Event

Glimpsed:message

:occursAtProgram

V1.17

:equipment

:property

:value

Welding

Welding-Machine

Pattern S

Pattern S’

Material-CheckIn
:follows

:dependsOn

Fig. 4. Example Pattern Extracted from Operation Executions

B. Equipment Parameter Recommendations
1) Use Case Scenario: Going one step further from pre-

dictions to recommendations, we want to present patterns of
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equipment parameters to the operators that ensure optimal
production.

2) Recommendation Model: Again having a set of discov-
ered positive execution graphs G+, current equipment param-
eters can be evaluated with respect to previously discovered
patterns. If current parameters match one of the negative
patterns, the task is to provide the minimum set of parameter
corrections as recommendation that would yield a positive
pattern. This can be formally defined as graph edit distance
from current execution graph g to its closest positive pattern
g′.

S = argmin
g′⊆G+

κ(g, g′) (2)

where κ is a graph similarity measure. Such recommendations
can reduce complexity by providing decision support to plant
operators and workers.

VI. PRELIMINARY RESULTS

We evaluate our framework with a prototypical implemen-
tation based on gSpan algorithm for frequent graph pattern
detection [17]. Simulated sample data was scaled from one
operation execution graph to 10000, where the average graph
has |V | = 20 entities and |E| = 15 edges. It can be seen that
integrating dependency links significantly reduces runtime of
graph pattern detection. There are other potential optimization
possibilities in exploiting semantics of structure models in
guiding pattern search, for example starting at entities that
are known to have greater variation.

VII. CONCLUSION

In this paper we presented a new graph-based framework
for Advanced Manufacturing Analytic. Referring to recent
literature, we discussed requirements that are not yet or only
partially met by current approaches. Our proposed architecture
represents manufacturing data as a multi-graph with an seman-
tic abstraction layer for flexible data integration. Applicability

of predictive and prescriptive analytic models was shown on
the graph-based representation as well as considering special
characteristics of manufacturing environments specified as
background knowledge. Preliminary results look promising
and we see further research possibilities in the usage of
more extensive background knowledge, such as assigning
constraints to entities and relations in the graph.

REFERENCES

[1] F. Jovane, E. Westkämper, and D. Williams, The ManuFuture road:
Towards competitive and sustainable high-adding-value manufacturing.
Springer, 2009.
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[3] C. Gröger, “Advanced Manufacturing Analytics: Datengetriebene Op-
timierung von Fertigungsprozessen,” Dissertation, Universität Stuttgart,
2015.

[4] V. Jirkovsky, M. Obitko, P. Novak, and P. Kadera, “Big Data Analysis for
Sensor Time-Series in Automation,” in Proc. of Emerging Technology
and Factory Automation (ETFA), 2014, pp. 1–8.

[5] E. Kharlamov, N. Solomakhina, O. L. Özçep, D. Zheleznyakov,
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Abstract. Modern industrial automation systems incorporate a variety
of interconnected sensors and actuators that contribute to the generation
of vast amounts of data. Although valuable insights for plant operators
and engineers can be gained from such data sets, they often remain
undiscovered due to the problem of applying machine learning algo-
rithms in high-dimensional feature spaces. Feature selection is concerned
with obtaining subsets of the original data, e.g. by eliminating highly
correlated features, in order to speed up processing time and increase
model performance with less inclination to overfitting. In terms of high-
dimensional data produced by automation systems, lots of dependencies
between sensor measurements are already known to domain experts. By
providing access to semantic data models for industrial data acquisition
systems, we enable the explicit incorporation of such domain knowledge.
In contrast to conventional techniques, this semantic feature selection
approach can be carried out without looking at the actual data and facil-
itates an intuitive understanding of the learned models. In this paper we
introduce two semantic-guided feature selection approaches for differ-
ent data scenarios in industrial automation systems. We evaluate both
approaches in a manufacturing use case and show competitive or even
superior performance compared to conventional techniques.

Keywords: Semantic data models · Feature selection · Automation sys-
tems · Machine learning

1 Introduction

Processing and mining of large data sets in modern industrial automation sys-
tems is a major challenge due to the vast amount of measurements generated by
several types of field devices (e.g. sensors, controllers, actuators). Deployment of
machine learning models requires upfront feature selection in order to obtain a
reduced feature set, thereby speeding up processing time and preventing over-
fitting, while still preserving inherent characteristics of the original data. Even

c© Springer International Publishing Switzerland 2015
M. Arenas et al. (Eds.): ISWC 2015, Part II, LNCS 9367, pp. 1–16, 2015.
DOI: 10.1007/978-3-319-25010-6 13



2 M. Ringsquandl et al.

in the age of massively distributed data processing, feature selection remains
one of the main problems in automation, since it is a highly domain expertise-
intensive task [7]. On the other hand, data generated by engineered systems
exhibits many structural dependencies that domain experts are well aware of.
This holds especially for industrial automation systems that are systematically
planned and simulated before going into production. For example, for a given
electric motor, it is documented how torque, speed and power measurements
relate to each other. Thus, there is no need to compute correlations between
them for asserting statistical dependence.

These computations are common in most of today’s feature selection tech-
niques, therefore they exhibit some major disadvantages when applied in high-
dimensional data as observed in today’s automation systems [13]. By access-
ing huge proportions of the original data, they quickly become computationally
expensive, plus they are prone to losing valuable information, especially when
transforming the feature space to lower dimensions so that the remaining vari-
ables can no longer be intuitively interpreted. Motivated by the commonly faced
difficulties of a) processing vast amounts of data and b) integrating domain
knowledge into learning models, the semantic guidance approaches of this paper
were developed in order to facilitate what remains the most expertise intensive
task – feature selection.

In general, there are two different types of high-dimensional data that need
to be considered in separation. The first case is present if we are given a huge
number of both features and instances. In this scenario, we argue for an approach,
in analogy to the notion of the usage of OWL 2 QL for ontology-based data
access (OBDA), that makes it possible to perform feature selection on T Box
level rather than instance (data) level [10]. The other case is given when there
are fewer instances than features, also called sparse data (e.g. rare events such
as device failures). For this type of data, embedded feature selection techniques
like Lasso have shown to be very effective [5]. Therefore, we also introduce an
embedded feature selection approach that leverages from engineering background
knowledge in semantic data models. The subsequent sections will describe both
approaches and their application in more detail.

2 Application: Manufacturing Use Case

As an application scenario, consider multiple assembly lines that are part of
a car door production facility. The core of each assembly line is responsible
for welding the window frame and inner door panel, which happens in a semi-
automated fashion, as the actual welding is done by a human worker. The overall
system consists of an automated frame loading station that is responsible for
putting window frames on a conveyor kit. These kits are then routed through the
core assembly process by an electrically-operated conveyor. After the products
have been assembled, they must go through a final quality control that verifies
integrity of certain product characteristics. If quality conforms to specification,
the product is sent to an outgoing packaging station.
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Fig. 1. Door assembly process and associated measurements

Plant operators are responsible for planning and scheduling of operations
based on incoming orders. For this task, the operators have to assess uncertainties
such as varying cycle times of each produced piece. Since production processes
are of stochastic nature, it is non-trivial to get a solid estimate of the time when
a certain product will be finished. In this case, decision support can be given by
training advanced regression models that help to provide more robust and up-
to-date time estimates. During production, all of the devices (e.g. light-barrier
sensors, power meters, etc.) generate task-specific measurement data as shown
in Figure 1. Today, data collection is agnostic of any machine learning tasks, as
it is merely concerned with high-throughput historic data storage. As far as data
analytics is concerned, any (sub-)set of the measurements taken could possibly
be relevant for the time estimate regression task. A kind of brute-force approach
would be to use all present data and try to train, for example, an ordinary
least squares regression (OLS) model. However, this approach has some major
shortcomings, since the OLS will include irrelevant and redundant information
for fitting its coefficients and is very likely to overfit to particular patterns in
the training data, therefore it is not going to generalize well in a live production
scenario.

Consider the two regression models on the left-hand side of Figure 2 that
try to predict cycle times. In this small example, employing five different pre-
dictor variables causes the model to overfit, while after p-value-based feature
selection we obtain a more smoothed fit using only Conveyor1Time. On the
right-hand side it can be seen how constraining the five predictors by a regu-
larization penalty reduces their coefficients until they are effectively set to zero.
For example, LoadingProductWeight quickly gets eliminated due to its small
effect on the regression task. Since it is known that product weight is part of
the overall weight feature, it could have been removed beforehand without any
computation. Throughout this paper, we will relate to this learning problem of
forecasting product-specific cycle times in an automated manufacturing system
given a huge number of different sensor measurements as a running example.

3 Preliminaries

In this section, we first introduce the notion of semantic data models in the
manufacturing domain in 3.1 and how their graph representation is used to
measure structural similarity of feature entities. This is followed by a description
of the general problem of embedded feature selection in linear models in 3.2.
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Fig. 2. Visualization of multiple linear regression model. Left: Overfitted model using
all predictor variables vs. model after feature selection. Right: Coefficient values under
decreasing regularization penalty

3.1 Semantic Representation of Manufacturing Data

Instead of having yet another information model language, we argue for the
usage of the well-established Semantic Web standards to create, link, and share
information models of automation systems in the manufacturing domain. For
the purposes of feature selection, we augmented and tailored the Semantic Sen-
sor Network (SSN) ontology1 to meet the requirements of describing features
in automation data, as can be seen in Figure 3. Here, the Feature concept is
modeled as subclass of ssn : InformationEntity. Resorting to SSN is also ben-
eficial for manufacturing systems, since devices and processes can naturally be
integrated into its schema. Further details of this feature ontology are given in
section 4.1. The graph representation of RDF-based2 ontologies is a suitable
property that we want to exploit for the description of dependencies between
machine learning features. In formal terms, an RDF graph can be defined as a
multi-graph.

Definition 1 (RDF Graph). An RDF graph is a multi-graph G = 〈V,E〉
where each edge ei ∈ E is defined as triple (s,p,o): s, o ∈ V and p is the edge’s
label.

This formal definition allows us to specify the degree of similarity between fea-
ture entities in the graph by means of common structural patterns. Graph kernel

1 http://www.w3.org/2005/Incubator/ssn/ssnx/ssn
2 http://www.w3.org/RDF/
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Fig. 3. Taxonomy of manufacturing feature ontology

functions have been shown to work well for capturing such patterns. The emerg-
ing field of machine learning in Linked Data has brought up a number of graph
kernel functions particularly designed for RDF graph data.

Definition 2 (RDF Graph Kernel). A graph kernel function is any function
κ : G × G → R s.t. for all Gi, Gj ∈ G satisfies κ(Gi, Gj) = 〈φ(Gi), φ(Gj)〉 is a
valid kernel, where G is the space of RDF graphs and φ is a mapping to some
inner product space.

Given n entities, the graph kernel can be denoted as kernel matrix:

κ =

⎡
⎢⎢⎢⎣

κ(G1, G1) κ(G1, G2) . . . κ(G1, Gn)
κ(G2, G1) κ(G2, G2) . . . κ(G2, Gn)

...
...

. . .
...

κ(Gn, G1) κ(Gn, G2) . . . κ(Gn, Gn)

⎤
⎥⎥⎥⎦

In order to get pairwise similarities between all feature entities in our feature
ontology, we can resort to one of the state-of-the-art graph kernels [8]. The idea of
graph kernels is that every entity can be represented as the graph that is spanned
by its adjacent entities up to a certain depth d. Then, similarity between two
graphs is given by some metric, e.g. size of the intersection graph or pairwise
isomorphisms like in the popular family of Weisfeiler-Lehman graph kernels [3].
In Figure 4 a simplified example of the graph spanned by feature
Conveyor1Speed is shown at different levels of depth d. Data properties of enti-
ties like RDF literals (formatted in italic style) are usually considered to belong
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to their respective entity and therefore they do not span a new depth level.
Clearly, quality of similarity calculations depends on the amount of knowledge
put into the ontology creation process. Nevertheless, we expect that already a
small number of annotations can support feature selection.

Fig. 4. Neighborhood graph of feature Conveyor1Speed at different depth values

Before describing how to exploit this notion of similarity between features in
the training procedure of the manufacturing machine learning models, a general
introduction to learning linear models is given.

3.2 Linear Model Embedded Feature Selection

Linear models are still one of the most popular machine learning models, espe-
cially in domains, where the emphasis lies on insights gained from looking at
the model’s coefficients. For example, the coefficients of the cycle time estimator
regression can be interpreted for decision support in order to take action and
reduce their influence on the overall cycle time. In case of sparse data, embedded
feature selection techniques have shown to be very effective compared to other
conventional feature selection. In the subsequent, we will introduce some stan-
dard formal notation of generalized linear models and their sparsity-inducing
feature selection ability.

Given a training set {xi, yi}n
i=1 where xi ∈ Rp is a p-dimensional feature

vector and yi ∈ R is the response, i.e. for regression or classification. We consider
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learning a linear model h : Rp → R with h(w) = wT x, where w is a parameter
vector. The general form of the regularized optimization problem is:

argmin
w

l(y, h(w)) + λΩ(w) (1)

Here, l(·) denotes the loss function and Ω(·) is the regularization term, also called
penalty. The value of λ controls how much weight is given to the penalty, which
is used to prevent overfitting of large parameter values. Setting l(·) to the square
loss and Ω(·) to the �1-regularization results in the standard Lasso model:

ŵLasso = argmin
w

(y − h(w))2 + λ‖w‖1 (2)

The �1-norm can be used for embedded feature selection by increasing the
amount of shrinkage (λ) in the Lasso model, which effectively sets non-influencing
components of w to zero.

Due to their embedded feature selection ability, Lasso models have gained
increasing attention for learning in sparse data sets, where the number of fea-
tures is high, but many of them are irrelevant to the learning task [12]. Further-
more, in some applications, we want to include prior domain knowledge about
relationships between features, for example if we know that motor speed and
torque are depending on each other, they should also have similar influence (i.e.
parameter weight) on the response variable. When features are represented in a
graph structure, this quality is often called the smoothness property. The notion
is as follows: If we specify relationships between features as undirected graph
G = 〈V,E〉, the graph Lasso (Glasso) can be defined as

ŵGLasso = argmin
w

l(y, h(w)) + λ(α‖w‖1 + (1 − α)
∑

i,j∈E

(wi − wj)
2)

= argmin
w

l(y, h(w)) + λ(α‖w‖1 + (1 − α)wT Lw),

(3)

where the second regularization term encourages connected features in the graph
to have similar weights (smoothness). It can be preferably weighted against �1
by decreasing the α parameter. A more convenient formulation of the sum over
squared weight differences is given by wT Lw, where L is the Laplacian matrix
of the graph.

4 Approach

This section presents the main technical discussion of the developed semantic-
guided feature selection approach. First, an introduction to concepts and axioms
in the use case feature ontology is given, followed by a description of the seman-
tic feature selection procedure. Ultimately, we present a custom linear model
designed for embedded feature selection in RDF graphs.
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4.1 Feature Ontology

There is a wide variety of modeling standards for manufacturing data that are
used to facilitate interoperability of different systems, for example the exchange
of material information between warehouse management and manufacturing exe-
cution systems. Recent developments of the OPC UA3 standard are concerned
with a unified information model of field device descriptions, PLC programs,
interfaces to enterprise levels such as ERP systems, and many more. Although
these legacy data models describe several facets (e.g. device topologies, sensor
measurements) of manufacturing systems, they are almost solely used for data
exchange without taking advantage of their contained semantics.

Fig. 5. Feature ontology on top of automation system legacy models

Instead of having another custom information model, our approach makes use
of Semantic Web technologies that integrate existing semantics of legacy models
into a unified ontology as shown in Figure 5. On top of the automation system
and its supervisory control and data acquisition (SCADA), a feature ontology is
deployed that represents domain concepts and relations between devices, events
and information entities, such as taken sensor measurements. In this context
feature means any piece of information that could be used as input to a learning
algorithm. From an ontology engineering perspective, this is rather an ad-hoc
modeling approach without strong axiomatization.

The result of what we call Semantic Feature Selection, i.e. inference about
feature dependencies on a semantic level (rather than data level), is represented
as RDF graph that contains a task-specific, reduced feature set that is tailored
for consumption by machine learning models. These models are then able to
perform preprocessing, training, and evaluation on the reduced feature set. One
of the goals in development of the feature ontology was to keep the complexity
of reasoning as small as possible so that modeling can be done with one of
the OWL 2 profiles that allow scalable reasoning as the number of features in

3 https://opcfoundation.org/about/opc-technologies/opc-ua/



Semantic-Guided Feature Selection for Industrial Automation Systems 9

the automation system grows. As discussed in section 3.1, the feature ontology
references some concepts defined within the SSN ontology. In addition to that, we
introduce some further relations concerning the connection between processes,
devices and measurements in the manufacturing domain. Most importantly, we
allow generic relations dependsOn and independentOf between features that
subsume specific relations in existing engineering models, in case no further
information is given.

Table 1. Main relations of the feature ontology

Relation Description

derivedFrom �
directlyDependsOn

Connects an event or measurement that is derived from an
original source, e.g. threshold overshoot events like

’temperature too high’

follows ≡ precedes−1 Processes or Events that happen in a time-dependent order,
e.g. packaging follows the assembly process

partOf
Partonomy describing device topologies, e.g. temperature

sensor is part of a motor

directlyDependsOn �
dependsOn

A measurement is directly influencing another without
further information, e.g. cycle time directly depends on

failure events

physicalRelation �
directlyDependsOn

Measurements are connected by inherent physical laws, e.g.
current and voltage

apartFrom
Events that happen at different locations, e.g. two assembly

lines operating at separated shop floors

independentOf

A measurement is known to have no (direct) influence on
the other, e.g. product ID does not influence conveyor

motor temperature

observedBy Measurement is sampled by a specific sensing device

observedAt A measurement sampled during a specific process

Table 1 gives an overview of important relations that bear semantics for
feature selection purposes. The independence statement is of statistic nature,
therefore it is also a symmetric relation based on the fundamental probability
theorem P (X|Y ) = P (X) ⇔ P (Y |X) = P (Y ).

The RBox of the feature ontology further specifies some axioms that propa-
gate dependencies through the feature space, as described in Table 2.

4.2 Feature Selection Procedure

Consider that we are given a learning problem of the form y = f(x), where y is
part of the semantic model, such that O |= Response(y), then the feature space
of x can be reduced by excluding everything that is known to be independent of
y. Furthermore, a good choice of features has to include anything that is known
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Table 2. RBox axioms of the feature ontology

Axiom Description

symmetric(independentOf),
symmetric(apartFrom)

Independence and separation of processes
are defined to be symmetric

dependsOn · observedBy · observedBy−1 �
dependsOn

Dependencies propagate between
measurements observed by the same

sensing device

independentOf · dependsOn �
independentOf

If x is independent of y it is also
independent of anything that y depends on

observedAt · apartFrom · observedAt−1 �
independentOf

Assert independence of measurements
taken at physically separated processes

transitive(partOf), transitive(follows)
Process flows and device topologies are

transitive by nature

to directly influence the behavior of the response variable. Hence, the T Box is
accordingly augmented with the following axioms:

T =

∃independentOf.Response 	 ExcludedFeature

∃directlyDependsOn−1.Response 	 MandatoryFeature

ExcludedFeature 
 MandatoryFeature 	 ⊥

Overlap in excluded and mandatory features results in an inconsistent feature
ontology that is most likely due to a feature modeling mistake, since there should
not be independence and direct dependence for two information entities at the
same time.

Algorithm 1 summarizes this schema-level feature selection procedure. First,
the assertion of y as an individual of the class Response must be given. Further
classification of individuals is done by a standard OWL 2 reasoner (e.g. Her-
miT4). In case of an inconsistency, i.e. disjointness of mandatory and excluded
features can not be satisfied, the procedure exits. Otherwise, the sets of excluded
features and mandatory features are collected, respectively. Finally, the algo-
rithm returns the set of mandatory features and the set of optional features for
the learning task. Note that this can be done without looking at the data, but
by relying on engineering domain knowledge. After applying Semantic Feature
Selection learning tasks such as cycle time forecasting can be employed with the
reduced set of mandatory and optional features.

The main advantages of our approach in comparison with common feature
selection procedures are summarized in Table 3.

4 http://hermit-reasoner.com/
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Algorithm 1. Semantic Feature Selection

Input : Learning problem y, feature ontology O, feature space F
Output : Mandatory features Sm, optional subset So

A ← Response(y) � Instantiate response variable
So ← F
Sm ← ∅
if O |= Dis(ExcludedFeature, MandatoryFeature) � ⊥ then

return � Unsatisfiable disjointness, inconsistent ontology
end if
for xi ∈ {x | O |= ExcludedFeature(x)} do

So ← So \ xi

end for
for xi ∈ {x | O |= MandatoryFeature(x)} do

Sm ← xi

end for
return So, Sm

Table 3. Advantages of semantic feature selection

Criterion Today Our approach

Complexity
Grows with dimensionality

and size of data sets

Grows only with
dimensionality (i.e. new

feature entities)

Re-usage
Need to be re-executed for
every incoming instance

Needs only re-execution if
new features are added

Intepretability
Reducing feature spaces

often loses intuitive
interpretability

Explicitly focuses on
facilitated human

interpretation

4.3 Graph Kernel Lasso

In some cases, data sets of automation systems are sparse. For example, if we
want to forecast cycle times of rarely produced products, there will only be very
few instances available for training. For better learning model performance it
would be beneficial to further consider the semantics of the feature space during
model training. In order to tackle this problem, we present a technique that
integrates semantic dependencies into linear model learning and simultaneous
feature selection.

In contrast to the standard graph Lasso defined in (3), where a relation
between two features is either present or not, i.e. the graph’s adjacency matrix
Ai,j ∈ {0, 1}, we want to use a more enhanced notion of dependencies that also
takes semantics into account. In our application, we use RDF-graph kernels to
capture similarities between entities in the manufacturing feature ontology. In
reference to (3), we therefore define a graph kernel-weighted regularization term
that encourages smoothness between similar entities in the RDF graph of the
feature ontology.



12 M. Ringsquandl et al.

Ω(w) = α‖w‖1 + (1 − α)
∑

i,j∈V

κ(Gi, Gj)(wi − wj)
2

(4)

where Gi and Gj are the spanned graphs of entities i, j in the vertex set of the
whole RDF graph V and κ is some RDF graph kernel. It is easy to see that the
second regularization term can be expressed as weighted Laplacian Lκ.

∑

i,j∈V

κ(Gi, Gj)(wi − wj)
2 = wT Lκw (5)

with Lκ = diag(r1, r2, ..., rp) − κ, and ri denoting the ith row sum of the kernel
matrix κ. We refer to this model as the graph kernel Lasso (GraKeLasso). Note
that if the kernel matrix is set to the identity matrix, this model is equivalent
to the ElasticNet [14].

As mentioned above, the regularization penalty induces a smoothing, or
grouping in a sense, that features that are similar with respect to the feature
ontology graph have similar parameter values. Intuitively, if two features are
closely related, e.g. torque and speed measurements of a conveyor motor, they
should have a similar influence (i.e. signal) on the response variable. Addition-
ally, if one feature turns out to be irrelevant, all its closely related features are
also very likely to be irrelevant. The graph kernel Lasso model enforces both of
these properties.

For our use case application, we can resort to a wide variety of graph kernels,
such as the implementations of the mustard framework5.

A visual representation of the feature ontology graph kernels from our use
case data set is given in Figure 6 6a for the full feature space on the left-hand
side and 6b for the reduced feature space after semantic feature selection on
the right-hand side. Every feature is represented by a segment on a circle the
width of the chords connecting two features depicts the strength of similarity
between the two. It can be seen that the full feature space contains some very
dominant feature similarities, while the reduced feature space exhibits a more
uniform distribution.

5 Evaluation

To show the value of semantic guidance in feature selection and the custom Lasso
model, we evaluated the performance of forecasting cycle times, as sketched
in the manufacturing use case scenario. The regression models are trained on
different data sets generated by a discrete-event simulation model that conforms
to the manufacturing process in section 2.

We compare five different regression models for the cycle time estimation
task: Lasso, ElasticNet, Graph Lasso, GraKeLasso, and OLS. For GraKeLasso,
we used a subtree-based variant of the Weisfeiler-Lehman graph kernel, whereas
Graph Lasso incorporates only information about feature individuals connected
via dependsOn, i.e. a simple dependency graph.

5 https://github.com/Data2Semantics/mustard
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(a) Full feature space (b) Reduced feature space

Fig. 6. Visualization of pairwise graph kernel weights between features. (a) Full feature
space, (b) Reduced feature space after semantic feature selection

Set Up. Our simulation set up comprises of a source that generates two different
product types at a specified time interval, each of which has a different distribu-
tion for weight and size. These products are sent to two separated assembly lines,
where first a loading station measures product qualities using a balance and a
barcode scanner. For the conveyor we monitor its electric motor (power, torque,
speed, temperature) and some induced failure events. The simulated quality con-
trol again measures sizes of the products. Finally, the packaging station samples
the cycle times we want to forecast. Each station further observes its current
workload and operating timestamp (seen as soft sensors).

Overall, the final feature ontology consists of 6 processes (one additional
for the separated assembly), 18 sensing devices that sample 47 different mea-
surements, i.e. feature individuals. In addition to that there are 13 concrete
instantiations of relations between two features.

Table 4. Original and reduced variants of product cycle time data set

Data Set n p Reduction
OLS CV
RMSE

Cycle time full 2000 47 - ≈1.36×1011

Cycle time semantic reduced 2000 29 38.3 % 0.08

Cycle time p-value reduced 2000 18 61.7 % 0.06

Cycle time sparse 40 47 - 9.49

Data Sets & Results. Starting from the original cycle time data set, we obtain
three additional variants for evaluation purposes. Table 4 depicts their individual
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Table 5. Embedded model performances on 10-fold cross validation

Data Set Model Reduction CV RMSE

Cycle time full

Lasso 47.4 % 0.42
ElasticNet 34.4 % 0.57

Graph Lasso 4.5 % 0.32
GraKeLasso 4.9 % 0.32

Cycle time sparse

Lasso 51.3 % 0.48
ElasticNet 8.7 % 0.46

Graph Lasso 8.9 % 0.54
GraKeLasso 6.8 % 0.43

characteristics. The full data set consists of 47 dimensions and 2000 instances,
while in the sparse case, the number of instances is kept to 40 so sparseness is
preserved. After applying the reasoning procedure presented in Algorithm 1, the
number of features p reduces to 29 – approximately 38 % reduction. On the other
hand, a common p-value based selection reduces dimensionality to 18 (at 0.05
significance threshold). This means that there are many linear dependencies
in the original data set which can be eliminated by pairwise correlation. The
semantic approach does not eliminate dependencies by correlation, but excludes
features that are inferred to be independent of the response variable by means
of the feature ontology. For each of the data sets an OLS model is trained and
evaluated with respect to the coefficient of variation of the root-mean-square
error (CV RMSE) in cycle time seconds. It can be seen that best performance is
given for the p-value reduced data set, however, the semantic reduced data set
shows competitive results.

The embedded feature selection models are evaluated in a similar setting.
Model performances shown in Table 5 correspond to the overall best value
determined by a grid search over λ, whereas α ∈ ]0, 1] was set to the best of
an inner cross validation, respectively. Final performance results are again aver-
aged over 10-fold cross validation. The reduction column also reports on each of
the embedded model’s average feature selection capabilities, i.e. number of zero
valued coefficients.

Discussion. Overall, our results indicate two main insights. First, compared
to p-value based selection, which does a better job at reducing dimensionality,
semantic feature selection shows competitive performance in a sense that it keeps
the needed features in its original form without any data-intensive computations.
Interestingly, after upfront feature selection the ordinary least squares model
outperforms all the other approaches for this setting and yields the overall lowest
error. Second, our GraKeLasso shows best performance on the full and the sparse
data set, because it can take similarities of the whole feature space into account.
In summary, it can be seen that both of our approaches effectively decrease
prediction errors and show competitive or even superior performance compared
to conventional techniques. Due to this limited simulation scenario, we could not
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show that a combination of both approaches is beneficial. Further evaluations
on large-scale systems, when upfront feature selection alone does not suffice, are
necessary to investigate this.

6 Related Work

Due to the plethora of research concerned with feature selection, we will only
present related works that are closely connected to the one in this paper. For a
general overview of the field, we refer to the survey paper [4].

Coming from a semantic perspective on feature selection, the technique intro-
duced by [6] describes a fuzzy approach to capture implicit semantics of data sets
in order to reduce their dimensionality. They apply fuzzyfication on the degree
of which features are dependent based on their co-occurring consistency with the
decision variable. However, this technique does not rely on any explicit semantics
defined in the data model and also needs preferably access to the full data set. In
the field of biomedical machine learning applications, considering domain knowl-
edge in feature selection has been studied and shown that feature spaces for associ-
ation rules can be greatly reduced when medical domain knowledge about concepts
is introduced, see [1]. The authors introduce dependencies between medical con-
cepts, such as diseases and treatments, in order to learn more compact association
rules. Another kind of related work that has been studied with increasing interest is
the family of Lasso regularization models. Algorithms like the GOSCAR have been
applied to consider dependency knowledge between genes in DNA sequences as
penalty for group regularization in graph Lasso models. These models have shown
to increase classification accuracy in several studies, e.g. [11]. Similarly, for image
classification semantic dependencies between labeled images have been integrated
into a Lasso approach [2].

In summary, including semantics into feature selection has been the concern
of very few research studies outside of text and image processing domains, where
semantics are mostly given through natural language. However, there are certain
knowledge-based approaches that argue for the dynamic adaption of features to
account for changes in the data generation process [9].

7 Conclusion and Future Work

In this work, we introduced the application of semantic feature selection for
machine learning models in modern industrial automation systems. Only few
works have been concerned with the usage of explicit semantics, in order to
facilitate feature selection, which still remains one of the main issues. Especially
in the manufacturing domain, there are many known dependencies between mea-
surements that are cut out to guide this process. In this paper, we show how a
small amount of semantic relations can be used to significantly reduce the size
of feature spaces for exemplary learning problems in manufacturing systems and
still yield good performance. Furthermore, we presented an embedded feature
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selection for linear models that captures feature similarities within RDF graphs
and outperforms conventional approaches when applied to sparse data sets.

In future work, we plan to implement the developed approach in a real-life
automation system. A particular promising direction seems to be the conjunction
of this approach within OBDA systems, where ontologies are used to retrieve
instance data. By deploying machine learning on top of OBDA, a coupling of
our approach and ontology-based queries could reveal some synergy effects.
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Abstract—Graph classification methods have gained increasing
attention in different domains, such as classifying functions of
molecules or detection of bugs in software programs. Similarly,
predicting events in manufacturing operations data can be
compactly modeled as graph classification problem. Feature rep-
resentations of graphs are usually found by mining discriminative
sub-graph patterns that are non-uniformly distributed across
class labels. However, as these feature selection approaches are
computationally expensive for multiple labels, prior knowledge
about label correlations should be exploited as much as possible.

In this work, we introduce a new approach for mining discrim-
inative sub-graph patterns with constraints that are extracted
from links between labels in knowledge graphs which indicate
label correlations. The incorporation of these constraints allows
to prune the search space and ensures extraction of consistent
patterns. Therefore, constraint checking remains efficient and
more robust classification results can be obtained. We evaluate
our approach on both, one public and one custom simulated data
set. Evaluation confirms that incorporation of constraints still
results in efficient pattern mining and can increase performance
of state-of-the-art approaches.

I. INTRODUCTION

Real-world systems often naturally produce data with re-
lational dependency structures, for example, atomic bonds
of molecules, words in text documents, users and posts in
social networks. These structures are commonly represented as
graphs to encode corresponding logical dependencies between
entities. The value of relations can be exploited for classifica-
tion problems with graph-based approaches which have been
shown to outperform traditional representations for tasks such
as text categorization [1].
From a data mining perspective such graphs are treated as
instances, i.e. operational data that is continuously generated.
On the other hand, with the increasing availability of linked
information contained in open knowledge graphs, static graph
data is becoming an interesting objective to take into account
for data mining and machine learning tasks [2]. For example,
a movie classification task might benefit from links contained
in the open Linked Movie Data Base1 that stores facts about

1http://www.linkedmdb.org/

movies, actors, locations connected via different semantic
relations.
By combining these operational and static graph data, it is
desired to use the static logical links in-between instances
and labels in order to increase classification performance of
data mining methods carried out on the operational graph data.
Sometimes knowledge graphs are also referred to as hetero-
geneous information networks in the data mining literature,
since they contain information about entities and relation of
different logical types [3].
In case of multi-label classification, it is crucial to incorporate
known correlations among labels, because of the high number
of possible label combinations (exponential in size of number
of labels) [4]. A direct consequence of this is also that
some labels might only have a small number of positive
examples in the dataset. In order to provide accurate multi-
label classification models, numerous approaches have been
introduced that try to model dependencies between labels by
either considering statistics or by mere assumption. Mining
graphs with respect to statistical correlation is computationally
expensive and might also be incomplete, since some combina-
tions are not observed in the training data. However, already
the mere logical links between labels and instances can be
used to estimate label correlations. This has been studied in the
notion of collective classification [5], where additional features
for drug disease classification are generated based on links in
open knowledge graphs.
In this paper, we introduce a new approach for incorpo-
rating domain constraints based on knowledge graph links
into existing sub-graph mining algorithms with the aim to
increase classification performance. We motivate the approach
by means of a manufacturing operations use case in Section II.
After giving an overview of related work in this area in Section
III, the graph classification problem is defined in Section IV.
The contributions of this paper are presented in Section V and
consequently evaluated in Section VI.
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Fig. 1. Graph instances of manufacturing operations where labels are associated to knowledge graph entities

II. MOTIVATION: MANUFACTURING OPERATIONS

One application domain of multi-label graph classification
is the area of manufacturing operations, where production
equipment, product parts and operations can naturally be
represented as graphs. Non-conformance events often share
common root-causes in the configuration of operations, such
as incompatible parts and equipments. Due to the engineering
design of products and plants, there is an implicit correlation
between non-conformances, e.g. failure propagation between
connected parts in consecutive assembly processes.

These logical dependencies can be modeled as knowledge
graphs consisting of hierarchical structures, such as part-of
relations between equipment, products and processes.

Example: Consider the classification of quality issues in a
manufacturing dataset, where the instances are represented
as graphs of operation, equipment and product part entities,
as shown in Figure 1. The manufacturing knowledge graph
contains facts about product parts, e.g.:

〈PartA, madeOf, PartB〉

This so-called triple notation says that entity PartA is linked
to entity PartB via the named relation madeOf. Each quality
issue (label) can be associated with an entity in the knowledge
graph. Therefore, paths through the knowledge graph give

hints about correlations between labels. We want to incorpo-
rate this knowledge in form of Must-Link and Cannot-Link
constraints for mining discriminative sub-graph patterns.

III. RELATED WORK

Early approaches from the inductive logic programming
community were targeted at the direction of mining discrim-
inative patterns with graph-theoretic representation [6]. Re-
cently, a constraint-based graph pattern mining approach was
considered in [7] with the application of classifying websites
focused on bags of graphs with pairwise must- and cannot-
link constraints. This work can be seen as a specialization
of finding discriminative sub-graph patterns using branch-and-
bound in a heuristic sense, which has also been studied in other
works [8]. The same ideas can be transferred to the task of
multi-label graph classification [9]. The authors suggest to use
a form of the Hilbert-Schmidt Independence Criterion between
the extracted sub-graph patterns and the respective labels.
Since considering all correlations between each combination
of features and labels is computationally expensive, other
approaches have argued that links from heterogeneous in-
formation networks, i.e. semantic knowledge graphs, can be
exploited in a collective classification sense [3], [5]. Here,
the approach is to extract paths from these knowledge graphs
and establish collective links between instances based on
shared paths. Therefore, the extracted paths can be interpreted
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as a form of soft linkage constraints derived from domain
knowledge. Apart from that, there has been little work focusing
on hard constraints specifically for graph classification with
exceptions of the gPrune and LEAP frameworks, which define
constraints for patterns on graph properties such as minimum
density [10] or structural similarity [11]. However, as these
constraints only evaluate structural properties of graphs, they
are not suitable for representing more formal domain knowl-
edge, i.e. constraints for specific relations between certain
types of nodes.
Overall, the motivation of the work presented in this paper is
similar to semantic feature selection [12], where dependencies
between entities in a knowledge graph are used to guide
feature selection process in technical systems.

IV. GRAPH CLASSIFICATION

The multi-label graph classification problem can be formal-
ized by inducing a mapping f(x) : X → Y , from a given
training set D = {〈xi, �yi〉}, where each xi ∈ X is a graph
and �yi is an indicator vector of class labels from Y .

Standard classification algorithms can only be used for
graph classification if the graph instances are transformed
into a numeric vector space. One popular choice is the
transformation of every graph instance into an indicator
vector of sub-graph patterns.

Definition 1 (Vector Representation): Given a set of graph
patterns {g1, g2, ..., gm}, a graph instance xi has vector
representation �xi = [xg1

i , xg2

i , ...xgm

i ], where every x
gj

i = 1,
if the graph xi ⊆ gj , otherwise x

gj

i = 0

As a consequences any classification model that accepts nu-
meric vectors as inputs f(�x) can be trained on the transformed
graph data.
For the remainder of this paper, we focus on graph classifica-
tion approaches that use this vector representation and there-
fore rely on the extraction of sub-graph patterns as features.
Other graph classification methods, for example, graph kernels
or latent space embeddings are not considered.

A. Pattern Mining for Classification

In order to find the best (optimal) set of sub-graph patterns
that can be used as features, an exhaustive search through
all graph instances in D would need to evaluate an objective
function on every possible sub-graph. Since sub-graph
matching itself is an NP-complete problem, it is commonly
desirable to reduce the search space as much as possible
by pruning paths that are known to be non-optimal. Classic
pattern enumeration algorithms like gSpan [13] make use
of the minimum support threshold of a pattern. This is not
sufficient if the objective function of a pattern goes beyond
simple frequency in the dataset.

In case of classification, the optimal patterns need to have
different characteristics, i.e. they should distinguish positive
from negative examples in the dataset. These patterns are

1: Input: D, minsup, ML, CL
2: Output: g
3: S = {1-edge graph}
4: g = ∅
5: while S �= ∅ do
6: for g ∈ S do
7: S = S \ {g}
8: if support(g) < minsup then
9: continue

10: end if
11: if bound(g) > threshold then
12: g = g ∪ g
13: else
14: continue
15: end if
16: S = S ∪ branch(g)
17: end for
18: end while
19: return g

Fig. 2. Basic Branch-and-Bound Search Framework

sometimes called discriminative patterns. Several objective
functions have been proposed for finding discriminative
graph patterns, which most effectively can be used in a
branch-and-bound search.

B. Branch-and-Bound Search

In order to perform branch-and-bound during graph pattern
enumeration, one has to consider an upper-bound as termina-
tion criterion. Let g be a pattern on the current search path
and g′ some possible extension to the current path, i.e. g ⊆ g′.
An upper-bound q̂(g) of the objective function q is defined as
follows:

q̂(g) = maxg⊆g′q(g′) (1)

That is if this criterion is met in the current search path, the
whole branch can be discarded and does not have to be further
explored. In the basic branch-and-bound framework, shown in
Figure 2. First, the algorithm loops through all 1-edge graph
patterns, then checks for minimum support. If this condition
is not met, the current branch is closed. The same holds if the
objective function criterion bound(g) is not fulfilled. In case it
is, the set of patterns g is augmented with the current pattern
g. Finally, the current pattern is extended (branched) with a
new edge and added to the search space S. For the bounding
criterion, there have been several proposals with the aim to
give a high value to patterns that occur frequently in one class
and infrequently in the other [8], [7]. Also for multiple labels
[9]. However, these objective functions do not strictly follow
anti-monotonicity, but are rather based on approximations or
greedy algorithms.

C. Shortcomings of Discriminative Scores

For discriminative scores, it has been argued that especially
for datasets with imbalanced classes they are sensitive to
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outliers in the underrepresented class, since patterns occurring
only in a small number of positive instances rarely occur in
negative ones [14]. This is not however what is generally de-
sired as output. Interesting patterns should cover the majority
of positive cases and only a small fraction of negative ones (the
dominant class). For example, in manufacturing data, there
are often common root-causes to several problems and there-
fore we are more interested in finding generalizing patterns
throughout all positive examples (failure cases) and not overly
sensitive to individual symptoms, i.e. outlier structures.
In order to overcome these issues, domain knowledge can
provide valuable hints about the nature of valid sub-graph
patterns. This motivates the introduction of hard constraints
that are derived from domain knowledge into pattern search.

V. GRAPH-PATTERN CONSTRAINTS

The incorporation of hard constraints during pattern search
means that patterns that violate one of the constraints should
not represent a valid sub-graph feature and therefore be
discarded.

In this section we define – relating to terms in clustering
literature – Must-Link and Cannot-Link constraints on pairs
of graph instances in the following way:

Definition 2 (Must-Link Constraint): A Must-Link
constraint of the form ML(xi, xj) restricts sub-structure
patterns g such that g ⊆ xi ∧ g ⊆ xj must be satisfied,
denoted as g |= ML(xi, xj).

Let φ(g) = |{xi|g ⊆ xi}| denote the number of graph
instances that contain pattern g. It can be seen that Must-Link
Constraints are monotonic for pattern enumeration, since for
each g ⊂ g′, if g is not contained in either xi or xj , i.e.
violates the constraint, then g′ cannot be contained. This
directly follows from φ(g) ≥ φ(g′).

Definition 3 (Cannot-Link Constraint): A Cannot-Link
constraint of the form CL(xi, xj) specifies that each pattern
g must satisfy ¬(g ⊆ xi∧g ⊆ xj), denoted as g |= CL(xi, xj).

Cannot-Link Constraints are not monotonic, since a candidate
pattern g that is contained in both xi and xj , can have a
possible extension g′ that is no longer contained in both graph
instances. Therefore, pattern enumeration must continue to
search for extensions that satisfy all Cannot-Link Constraints.

The augmented version of the branch-and-bound pattern
search algorithm is specified in Figure 3. As basis for our
pattern search, we used the well-known gSpan algorithm,
which was developed to discover frequent subgraphs above a
minimum frequency (support) threshold. We extended gSpan
with state-of-the-art branch-and-bound scoring approaches
and a component for handling Must-Link and Cannot-Link
constraints search strategy.
The handling of constraints works as follows: As soon as
a pattern g violates a Must-Link constraint (g �|= θML),

1: Input: D, minsup, ML, CL
2: Output: g
3: S = {1-edge graph}
4: g = ∅
5: while S �= ∅ do
6: for g ∈ S do
7: S = S \ {g}
8: for θml ∈ ML do
9: if g �|= θml then

10: continue
11: end if
12: end for
13: add = True
14: for θcl ∈ CL do
15: if g �|= θcl then
16: add = False
17: end if
18: end for
19: if bound(g) > threshold ∧ add then
20: g = g ∪ g
21: else
22: continue
23: end if
24: S = S ∪ branch(g)
25: end for
26: end while
27: return g

Fig. 3. Constraint-augmented Branch-and-Bound Search Framework

Must-Link Violation Cannot-Link Violation
|g| = 1
|g| = 2
|g| = 3

Fig. 4. Constrained Search Strategy

the current path is pruned from the search space, continue
statement in line 10. Violations of Cannot-Link constraints
on the other hand only disallow the current pattern to be
added to the set of sub-structure features. In the pseudo-code
in Figure 3, the flag add controls this behavior in line 19.

This constrained search strategy is exemplified in Figure 4.
On level two where the current pattern size is |g| = 2, the
violation of Must-Link constraint discards the current pattern
and prunes every path under the current node, while a Cannot-
Link constraint violation on the right node only discards the
current node, but continues the search on its children.

A. Extraction of Constraints from Knowledge Graphs

Recently, Kong et al. introduced the concept of meta-paths
in knowledge graphs for collective feature extraction [5]. The
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Fig. 5. Cannot-Link and Must-Link constraints based on label dependencies

idea is that instances and their respective labels are connected
to entities in a knowledge graph. Then connections (paths)
between instances are used to augment the feature space.
In this work, instead of manipulating the feature space, we
directly extract constraints from paths in knowledge graphs.

Definition 4 (Knowledge Graph): A knowledge graph is
represented as 4–tuple KG = (V,E, L, l), where V is a set
of vertices, E ⊆ V × V is a set of edges, L is a set of
labels, and l : V ∪ E → L is a mapping that assigns labels to
vertices and edges.

Let vi denote the knowledge graph entity associated to the i-th
label. There is a dependency between label entity vi and vj

if they share a direct link el(vi, vj) or they have a common
ancestor va, i.e. there is a link el(vi, va) and el(vj , va).

A Must-Link constraint between two instances ML(xi, xj)
is specified if all associated labels of both instances are
connected via dependencies. A Cannot-Link constraint
between two instances CL(xi, xj) is specified if their labels
do not share any dependency.

Example: Given the hierarchy induced by knowledge
graph edges 〈Equipment2, partOf, Equipment1〉
and 〈Equipment3, partOf, Equipment1〉. Must-Link
constraints will be extracted for all instances which
have a label set that is associated to any subset of
{Equipment1, Equipment2, Equipment3}, since it is
assumed that these labels have a high correlation.

A graphical description of how these constraints can
look like is depicted in Figure 5, where there is a dependency
for (Label 1, Label 2), and (Label 3, Label 4), respectively.

VI. EXPERIMENTS

In order to demonstrate applicability and effectiveness of
our approach, this section presents performance results for

TABLE I
CHARACTERISTICS OF GRAPH DATA SETS

Dataset |D| avg|Nodes| avg|Edges| |Y|
Movie Summaries 500 32.3 43.3 10

Manufacturing 500 13.2 29.9 6

graph classification experiments with knowledge graph con-
straints in two different settings.

A. Movie Summaries

The first setting is based on the public CMU Movie
Summary Corpus2, which contains description (short text)
and meta-data of movies. In this case, the classification task
is to predict the genres of each movie based on the short
description. We extract a keyword graph for each instance
where two words are linked if they occur within a certain
window. As knowledge graph, we used an excerpt of Wikidata3

that is concerned with facts about movie genre hierarchies,
specifying for example that Science fiction is a sub-genre of
Fantasy.

B. Manufacturing Operations

The second setting is concerned with a dataset from a
simulated manufacturing system. A graph representation of the
execution records is built consisting of interactions between
equipment, parts and operations. The classification task to pre-
dict multiple non-conformance events, such as quality failures,
for each execution. The knowledge graph in this case contains
an equipment and a product part hierarchy conforming to plant
layout and material specifications.

C. Evaluation

Both settings are used for evaluation of the presented
approach via a structured comparison. For each dataset, classi-
fication is done by two One-Vs-Rest classification algorithms:
linear Support-Vector-Machine (SVM) and Naive Bayes (NB).
Both graph datasets were prepared to consist of 500 instances.
Other characteristics, specifically average number of nodes
(edges) and number of labels of both datasets are shown in
Table I.

D. Feature Selection Comparison

As a baseline for graph feature selection we used a
frequency-based top-k scoring as objective function. For
state-of-the-art discriminative feature selection, the greedy
search from [8] and the multi-graph feature based learning
(gMGFL) algorithm with simple soft constraints on graphs
with different labels [7] were considered.
The Cannot-Link and Must-Link constraints of this work can

naturally be added to each of these algorithms. We denote
the augmented feature selection approaches as top-k+cons,
greedy+cons, and gMGFL+cons, respectively. Classification

2http://www.cs.cmu.edu/∼ark/personas/
3https://www.wikidata.org
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Fig. 6. Movies Dataset – Classification Results with different Feature
Selection Models

performance is measured via a weighted F1 score that takes
class label imbalance into account and averaged over a 5-fold
cross-validation.

The graph in Figure 6 shows F1-scores for each feature
selection method against the number of pairwise Must-Link
and Cannot-Link constraints between instances for the movie
summaries dataset. It can be seen that incorporation of
constraints does improve classification performance for the
Naive Bayes classifier, which also has much higher F1-scores
compared to the SVM. In case of the SVM, the constraints
are actually decreasing performance. We assume that the
reason for the performance gain of Naive Bayes is due to
increasing independence among features enforced by the
constraints. The linear SVM does not benefit from this, but
has simply less features for learning of its linear decision
boundary.

From evaluation of the manufacturing dataset, shown in
Figure 7, it can be seen that both Naive Bayes and the SVM
benefit from the knowledge graph constraints. However, for
the gMGFL approach, there is a drop in performance for
some constraints, while the other approaches are not affected.
As for the movies dataset, the biggest increase is observed
in terms of the top-k approach. This is due to the relative
high amount of frequent, but non-discriminative, sub-graph
patterns occurring throughout all class labels.

Fig. 7. Manufacturing Dataset – Classification Results with different Feature
Selection Models

E. Runtime Comparison

In addition to classification performance, we also
investigated the computational efficiency of constraint
incorporation. By measuring runtime of the constraint-guided
search strategies, the question is how expensive the constraint
checking is compared to the reduction of search space via
constraint-based path pruning.

For the movie summaries experiments, runtime results
are shown in Figure 8. As the number of constraints grows,
there seems to be no significant increase in runtime. In this
setting, the extra work of constraint checking is compensated
by the additional pruning capabilities of the constrained
search.

Results obtained for the manufacturing dataset give a
different indication, as shown in Figure 9. Due to the higher
complexity of this dataset, i.e. stronger connectedness of
graph instances, constraint checking becomes more expensive
as the number of constraints grows. However, again there is
a settling point where pruning weighs off these additional
efforts.

VII. CONCLUSION

In this paper, we introduced a new approach to incorporate
Must-Link and Cannot-Link constraints that are extracted
from knowledge graphs, in order to guide the search for
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Fig. 8. Movie Dataset – Runtime Results with increasing number of
constraints

discriminative sub-graph features in multi-label classification.
The constraints can readily be added to existing feature
selection algorithms. We demonstrate the applicability in two
experimental settings and show that classification performance
can be increased by the extracted constraints. In terms of
scalability, we see potential for more efficient constraint
handling, especially for large graph instances.

Future work could be to analyze further possibilities
of how links between instances can be used to derive
constraints, instead of using hierarchical label dependencies
only. We also plan to investigate learning of constraints from
more complex paths through knowledge graphs.
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Abstract. Due to increasingly required flexibility in manufacturing sys-
tems, adaptation of monitoring and control to changing context such
as reconfiguration of devices becomes more important. Referring to the
usage of structured information on the Web, digital twin models of man-
ufacturing data can be seen as knowledge graphs that constantly need
to be aligned with the physical environment. With a growing number
of smart devices participating in production processes, handling these
alignments manually is no longer feasible. Yet, the growing availabil-
ity of data coming from operations (e.g. process events) and contextual
sources (e.g. equipment configurations) enables machine learning to syn-
chronize data models with physical reality. Common knowledge graph
learning approaches, however, are not designed to deal with both, static
and time-dependent data.

In order to overcome this, we introduce a representation learning
model that shows promising results for the synchronization of semantics
from existing manufacturing knowledge graphs and operational data.

Keywords: Representation learning · Digital twin · Knowledge fusion

1 Introduction

The ubiquitous availability of data empowers manufacturing companies to
embrace advanced data analytic technologies that allow to monitor, predict,
and optimize manufacturing operations. Still, ensuring semantic interoperability
within hardware-software integrated cyber-physical systems (CPS) and manage-
ment applications requires extensive manual data modeling effort, thus introduc-
ing and maintaining these technologies is challenging for manufacturers [7]. For
example, today, deploying a new device for machine condition monitoring at a
shop floor means manual effort to model this device and all of its signals through-
out several software applications (e.g. SCADA, MES). Otherwise, physical reality
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is not correctly reflected in existing models and there is no semantic interoper-
ability between applications.

Recently, descriptive data models have been revitalized as part of a digi-
tal representation of physical systems, the so-called digital twin, which allows
systems to discover, inherit, evaluate and share information across different sub-
systems [2]. From a data modeling perspective, structured information of digital
twins can be represented as knowledge graph (KG), where relations and entities
follow well-defined vocabularies and semantics.

Knowledge graphs are commonly understood as publicly-accessible Linked
Data resources – prominent examples are Wikidata1 and WordNet2. Similarly,
Manufacturing Execution Systems (MES) and engineering platforms that are
built upon sizable relational databases can be seen as domain-specific knowledge
graphs, when lifted to a semantic schema [5]. Such a manufacturing knowledge
graph should be able to automatically acquire updated information based on
different operational data sources (e.g. SCADA, PLCs, etc.), even if these data
sources are not aware of their semantics.

Continuing the machine monitoring example: By observing data coming from
the newly added device (e.g. events) the KG should automatically recognize
the type of device, its location, or its capabilities and therefore allow other
applications to adapt to this updated context.

Machine Learning in KGs has emerged recently with the goal to enable auto-
mated integration of new facts into KGs without manual modeling efforts [9].
When multiple data sources are used to extract information, the problem further
extends to so-called knowledge fusion [3]. The same problems apply to models
in manufacturing systems that need to be in-sync with physical reality reflected
by multiple operational data sources [4]. In this paper, we present an approach
to support fusion of information coming from operational data sources with
manufacturing KGs by learning latent representations of entities. The goal is to
offer automated recommendations on how to integrate unknown entities into the
existing structure of the KG and thus keeping the digital twin in-sync without
manual modeling effort. Ultimately, this is beneficial to monitoring and manage-
ment applications that rely on a immediately aligned digital representation of
the manufacturing system.

2 Motivation Scenario

In this section we present an example scenario that motivates the application of
machine learning (knowledge fusion) to manufacturing KGs in conjunction with
operational data sources.

Consider an automated production line at a discrete manufacturing facility,
consisting of multiple production units that can be configured to produce several
variants of a product. The manufacturing KG (e.g. provided by an MES) of this
production line gives information about device topology and processes executed
1 http://wikidata.org.
2 http://wordnet.princeton.edu.
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by each of the production units, whereas a SCADA system observes sequences
of events during operation. As shown in Fig. 1, at the bottom, sequences of
events are continuously generated and aligned to entities in the manufacturing
KG. Entities and their relations are denoted as triples (head-entity, relation,
tail-entity), in the middle of the Figure. The schema (classes and relations) of
the KG is shown on top of the entities using a simplified class diagram notation.
For example, the triple (Event 1, occurs at, Conveyor) in the KG states that
entity Event 1 occurs at entity Conveyor. Additionally the conveyor entity is
modeled as device that is involved in the board assembly process.

Assuming a new device is deployed to the production line to monitor tem-
perature measurements of the conveyor. As production resumes, events of this
new device are continuously observed, but they are lacking semantic alignment
to the existing KG. Figure 2 shows a new sequence of events, where unknown
entities in the triples are denoted with question marks. Here, the class of the
unaligned event Event 2 and its source (device) are unknown, (Event 2, is-a,
?), respectively (Event 2, occurs at, ?).

However, the distribution of events in the sequence data should give an indi-
cation about which device is most likely to be hold responsible (in this case
the conveyor). Since other conveyor events are assumed to co-occur in similar
fashion as the new monitoring events, this information can be exploited to re-
engineer semantics. Presuming one could obtain a vector representation of all
involved entities (events, devices, etc.), it would be possible to calculate a sim-
ilarity between Event 1 and Event 2 that would allow to infer that both are
related to the conveyor entity in the KG. The representation learning approach
in the following is motivated by learning latent entity embeddings that reflect
such similarity.

Event 3Event 2Event 1 Event 5Sequence Data:

Knowledge Graph
Schema:

Device

Production 
Unit

Production 
Process

Process 
Step

involved in

has part follows

Event

occurs at

Triples: (Event 1, occurs at, Conveyor) (Event 2, Is-a, Jam-Alarm) (Conveyor, involved in, Board Assembly)

Event 4

Is-aIs-a Is-a

time

subclass of

relation

Fig. 1. Sequence data entities aligned to triples in the knowledge graph
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Event 3Event 2Event 1 Event 5Sequence Data: Event 4

time

Triples: (Event 1, occurs at, Conveyor) (Event 2, Is-a, ?) (Event 2, occurs at, ?)

Fig. 2. Observing new events with unknown semantics

3 Problem Statement

In this section, we formally define the problem of learning joint representations
of entities in KGs and operations data of manufacturing systems.
A knowledge graph, denoted as KG is a directed graph with labeled edges.
Each edge is represented in form of triples (h, r, t) that indicates the existence
of a relationship between the head entity h and the tail entity t by the labeled
relation r. Head and tail are contained in the set of entities h, t ∈ E and each
relation respectively in the set of relations r ∈ R.
A sequence data set, denoted as D = {(x1, ..., xi, ..., xm)Tj }, is a set of
sequences, where each sequence consists of an ordered set of event entities xi.
The length m of each sequence can vary depending on a sequence window size.
It is implied that there exists a mapping of event entities xi to entities in E , i.e.
event entities are also represented in the KG.

Knowledge Graph Embeddings. Given KG, the problem of learning knowledge
graph embeddings is to encode all entities in E and relations in R in a contin-
uous low-dimensional vector space, i.e. h, t ∈ R

d and relation r ∈ R
d. In order to

learn useful representations, a meaningful distance measure has to be employed,
e.g. in the original TransE model [1], h + r ≈ t. This means that translating
entity h with relation r should end up close at its tail entity t in the latent
d-dimensional space. It has been shown that these translation embeddings can
be effectively learned by using a ranking loss with the intuition that h + r ≈ t
should be close for true triples and far apart for false/unknown ones. Formally,
the learning objective is formulated as minimizing a margin-based ranking loss:

LKG =
∑

(h,r,t)∈KG

∑

(h′,r,t′)∈S′
h,r,t

max(0, 1 + dist(h + r, t) − dist(h′ + r, t′)) (1)

where dist(·) is some distance function (e.g. Euclidian) and S′
h,r,t is a set of

negative samples, i.e. artificially constructed false triples by replacing h or t
with a random entity. This loss is minimized when the translation of correct
triples is closer than that of unknown ones by a constant margin, here 1.

Sequential Data Embeddings. Given D, the problem of learning sequential
embeddings of entities xi is similar to knowledge graphs, i.e. encode all enti-
ties in the same low-dimensional vector space, xi ∈ R

d, where semantically
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similar entities should end up close to each other in this latent space. Learning
this kind of embeddings follows the distributional semantics hypothesis which
states that similar entities occur in similar context. This has been one of the
key ideas in the field of Natural Language Processing (NLP), since these embed-
dings tend to exhibit natural relations between words (e.g. capture synonymous
meanings) [6]. Distributed representations are obtained by assuming that simi-
larity between entities in the data can be modeled with a distribution, formally
P (xi|W ), i.e. the occurrence of entity xi depends on and can be predicted from
its surrounding window events W . Figure 3 displays how Event 3 can be mod-
eled from its surrounding events in a sliding time window of length m through
the event sequences. It is assumed that events having similar causes and effects
share similar semantics.

Event 3Event 2Event 1 Event m…
Event 

Sequence

Distributed 
Representation

window size

Fig. 3. Representations of event entities are learned from surrounding context

Mathematically, the probability distribution of predicting target entity xi

from its surrounding entities can be expressed by a categorical distribution, e.g.
the Softmax function:

P (xi|Wi) =
expS(xi,Wi)∑
j �=i expS(xj,Wi)

, (2)

where xi is the vector representation of entity xi and S(·) is some similarity
function between entities and their surrounding window entities represented as
matrix Wi. The objective function in terms of loss is given by the negative log
likelihood:

LSeq = −
n∑

i

log(P (ei|Wi)) (3)

Joint Embeddings. As the goal of this approach is to jointly model entities in the
knowledge graph as well as in the sequential data, we propose a joint learning
model that is trained by simply adding both loss terms:

LJoint = LSeq + LKG (4)
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Entity Embeddings

x1 x3

x1 x3

= (Event 1, Event 2, Event 3) = (Event 1, occurs at, Conveyor)

x2

Relation Embeddings

xi | Wi

Fig. 4. Architecture of the joint embedding learning model

Minimizing the joint loss LJoint should result in solid embeddings of both, enti-
ties in the knowledge graph and the sequence data set. In reality, joint loss min-
imization is approximated using a state-of-the-art stochastic gradient descent
optimizer. The key idea here is that entity embeddings are shared across both
tasks and therefore the outcome should reflect co-occurrence of sequential data as
well as the structure of the knowledge graph. The architecture of the joint embed-
ding approach is shown in Fig. 4, where the |E|-by-d matrix of entity embeddings
is located in the center. These embeddings are shared with the prediction model
of entities in the sequential data on the left-hand side and the knowledge graph
embedding model on the right-hand side. Note that in the depicted example this
shared aspect is highlighted with Event 1 having the same embedding (represen-
tation) in both models, i.e. h = x1. The |R|-by-d matrix of relation embeddings
on the right-hand side is solely used for the knowledge graph embeddings as it
only influences distance calculation between triples.

4 Prototype Evaluation

We evaluated this approach on a real-world manufacturing KG data set coming
from an automated assembly line. The event sequences are taken from a SCADA-
level Alarms & Events database, whereas the initial KG was extracted from sev-
eral spreadsheet files and CAD models. The final KG ended up with a size of
about 3,700 triples about processes, equipments, and events, whereas the sequen-
tial data consisted of 57 thousand events occurrences. A prototypical implemen-
tation of the representation learning was implemented using the TensorF lowTM

library. For performance evaluation, the usual criteria are (cf. [1]):

– Mean Rank: The average predicted rank of the head or tail entity that would
have been the correct one (1 indicating perfect rank)

– Hits Top–10: The fraction of predicted ranks that were in the top 10
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Fig. 5. Evaluation on hold-out test data (unknown triples) during training

Table 1. Models and data sets with and without sequential data

Model |KG| |D| Test size Mean rank Hits top–10

KG 3.7k - 3% 316.46 27.66

KG+Seq 3.7k 57k 3% 296.16 28.92

We compare two models, KG (knowledge graph embeddings only) and KG+Seq
(joint embeddings). In Fig. 5, the performance of KG and KG + Seq are visu-
alized during model training on a hold-out (unseen) test data set of incomplete
triples, e.g. (Conveyor, involved in, ?). It can be seen that the joint model
performs better in terms of lower mean rank and higher hits top-10 percentage
(Table 1).

5 Related Work

We divide related work into two categories, limited to applications and tech-
niques that are close to the one in this work.

Model Learning in Manufacturing. Machine learning has been used to discover
influencing factors of manufacturing processes [14]. Other works of adapting to
changing context have studied monitoring processing times in flexible production
systems [10,11] and more high-level architecture proposals for context extraction
and self-adaption of production systems [12]. However, the authors do not specify
a concrete methodology on how to extract context knowledge and align it with
existing models.
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Learning of Knowledge Graph Embeddings. Existing learning methods for KGs
such as [1,9] have been extended to include many-to-many relationships [8] and
to incorporate textual information to improve entity representation learning.
Recently, word co-occurrences as sequential data were used in KG completion
tasks [13]. In contrast to our approach, these works are focused on large-scale
knowledge graphs containing noisy information.

6 Conclusion

An approach for automated recommendations for the alignment of semantics
coming from operational data and manufacturing KGs was presented. Our model
allows to predict missing relations introduced from changes in physical environ-
ments and unaligned event semantics, which can be detected and integrated
into a global knowledge graph schema, thus lowering manual modeling effort.
The joint representation of entities shows promising performance, which is vital
for transition to fully automated synchronization, ensuring correct operation of
monitoring and other management applications such as scheduling.
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Abstract—Smart factories are equipped with machines that
can sense their manufacturing environments, interact with
each other, and control production processes. Smooth operation
of such factories requires that the machines and engineering
personnel that conduct their monitoring and diagnostics share
a detailed common industrial knowledge about the factory, e.g.,
in the form of knowledge graphs. Creation and maintenance of
such knowledge is expensive and requires automation. In this
work we show how machine learning that is specifically tailored
towards industrial applications can help in knowledge graph
completion. In particular, we show how knowledge completion
can benefit from event logs that are common in smart factories.
We evaluate this on the knowledge graph from a real world-
inspired smart factory with encouraging results.

Keywords-Industrial Applications, Machine Leaning, Knowl-
edge Graphs, Events, Manufacturing

I. INTRODUCTION

A. Motivation

Digitalisation and automation are among the biggest
trends in manufacturing [RVLB15]. Modern automated, or
smart, factories are equipped with production and assem-
bling machines that are not only capable of sensing their
environments, e.g. reading RFID tags of products, but also
of interacting with each other, e.g. raising a material short-
age warning, and even performing controlling actions, e.g.
turning on a cooling fan. Thus, it is common to distinguish
in a smart factory its physical part, that is, machines and
production lines, and its digital representation, referred to
as the digital twin [Dat16].

The digital twin acts as an interface to the physical system,
offering services such as automated monitoring, optimisa-
tion, and ultimately self-organisation without the need to
interact with its actual physical representation [HBC17]. In
Figure 1 we schematically visualise the separation between
the physical part (in the bottom) and the digital twin (on
top). The physical part consists of several machines for pre-
assembly, assembly, and finishing of manufacturing. The
digital twin consists of a specification of Product1 that says

that the product has two components PartA and PartB and
can be assembled with three operations, where the last two
are conducted by robots RobotA and RobotB that in turn are
located in a manufacturing line.

Development and maintenance of a digital twin poses
significant challenges. In particular, one has to ensure that
the relevant industrial knowledge about the plant is well
captured and maintained. This knowledge representation is
in the heart of the digital twin, upon which applications are
built that rely and refer to it as backbone for communication.
The knowledge should encompass both master and opera-
tional data (which are partially depicted in Figure 1). The
former includes the catalog of plant’s equipment together
with its technical documentation and the topology of its lo-
cation in the manufacturing shop floor, personnel, warehouse
data, and production blueprints. The latter includes log files
of messages generated by individual pieces of equipment
during manufacturing, flow of raw materials and products,
and purchases.

Such industrial knowledge naturally satisfies the Big Data
dimensions. Indeed, first, it is large in volume, e.g., at a mid
size plant this knowledge may contain information about
up to hundreds of machines, processes and materials, and
hundreds of thousands of events. Second, the data velocity is
high, e.g., a daily volume of transaction data generated only
by shop-floor equipment can be up to hundreds of thousands
of messages, master data is also dynamic in this regard:
shop-floor devices may be added, moved, or removed due to
maintenance, system configurations may change according
to the respective production processes and products when,
say, a new product variant requires an additional welding
operation. Finally, the variety across various data sources
is high, e.g., the transaction data is structured according
to numerous relational schemata, technical documentation
comes in flat files, and equipment capabilities are encoded
in various proprietary formats.

Knowledge Graphs (KGs) are considered as a promi-
nent approach to represent and share industrial knowl-
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Figure 1: Schematic split in physical and digital representa-
tion of a factory

edge [KSÖ+14], [RLBL15], [KHS+17], [KMM+17],
[HGKW16] since they offer a flexible mechanism for struc-
turing both master and transaction data as an intercon-
nected network of entities. Knowledge graphs are typically
either available or can be exported as W3C standardised
RDF datasets1 that consist of triples, e.g., of the form
〈entity , predicate, entity〉. This format is well suited for
both knowledge representation and exchange across appli-
cations over the network.

A typical KG in a digital factory consists of several
logical parts that capture the main components of a digital
twin in a smart factory [KGJ+16] and can be found in
Figure 1: Bill of Material (i.e. a partonomy of products
and materials), Process Routings (i.e. sequences of pro-
cesses), the Manufacturing Bill of Process (i.e. assignment
of machines to processes and more detailed operations), and
Process Data (i.e. data collected from the machines during
production). When equipped with rich semantic descriptions,
these entities and their relationships are what constitutes the
digital representation of the factory.

B. Challenges with Knowledge Graphs

Creating and maintaining a KG of good quality is a
challenging task and an important bottleneck for the adop-
tion of digital twins in industry [RLLK17]: due to the Big

1http://www.w3.org/RDF/

Data dimensions of industrial knowledge, the corresponding
KG cannot be manually created and curated. Thus, semi-
automated techniques are needed to create and expand
industrial KGs and a number of machine learning tech-
niques have been proposed to address this challenge (see,
e.g., [NMTG16] for overview). The main idea of these
approaches is to convert entities and relations in a KG into
a low-dimensional vector space and use it to infer missing
information in the KG.

These approaches work better when the vector space is
enhanced with some extra background knowledge, e.g., by
also embedding textual documents attached to entities. We
refer the reader to Section III for more details on existing
machine leaning approaches for KG expansion.

C. Contributions

In this work we show the effectiveness of machine learn-
ing for knowledge graph completion where the learning
method is based on the vector space representation and ac-
counts for background knowledge. In particular we develop
an industrial scenario of a smart factory, a knowledge graph
describing this factory, and how completion of this graph
with the help of machine learning can be enhanced with
a special type of background knowledge: log files of event
messages generated by shop-floor manufacturing equipment.

The results of our evaluation are encouraging, where we
apply the machine learning models to an industrial KG
containing roughly 6,000 facts and create several use case
scenarios of missing information. We show that our approach
yields a boost in the quality of predicting missing links
between digital twin entities and for certain relations we are
able to restore missing information even in scenarios with
highly incomplete relations.

II. USE CASE: INCOMPLETE INFORMATION IN A
DYNAMIC MANUFACTURING SYSTEM

Our use case scenario is focused on synchronizing Digital
Twins with their physical counterparts, more precisely we
focus on a digital representation of automated factories that
exhibit missing information. At the heart of such a digital
factory representation is a data model describing the au-
tomation equipment, i.e. controllers and actuators, and other
entities typically found in manufacturing environments, such
as processes, products, and events.

The rest of the section is organised as follows. In Sec-
tion II-A we describe the factory we study in our use case. In
Section II-B we explain how we turn factory data in a KG.
In Section II-C we describes event data we collected and
why this data is relevant for our use case. Then, we present
three scenarios of missing information in industrial knowl-
edge graphs that we investigate in this work. All scenarios
correspond to real-world situations in a factory that can be
observed in smart factory environments. The scenarios are:
change of factory equipment (Section II-D), introduction of
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new processes in manufacturing (Section II-E), and update of
equipments software that results in new events being emitted
(Section II-F).

A. Factory Description

The factory we studied is a simplified simulation of
a real-world smart factory, and it consists of four simi-
larly structured production lines, each of which produces
a particular variant of a common product family using a
set of connected production equipment. The factory has
180 devices, 4 different products that consist of a total of
59 unique material parts, and 55 different manufacturing
processes. Each device can perform some skills including
drilling, welding, and assembling and operates by inputting
and outputting some of the materials that are part of four
different product variants. In total the devices emitted 728
unique event entities during the collection time period for
this case study, more details on the event data are given in
the subsequent section.

B. Manufacturing Data as a Knowledge Graph

Typically, manufacturing data is scattered throughout di-
verse data sources and formats (relational databases, spread-
sheets, XML files). Since we rely on RDF-based knowledge
graphs, we exploit an ontology driven ETL process, known
as Ontology-Based Data Access (OBDA) in order to translate
these heterogeneous data sources into RDF.

OBDA follows the classical data integration paradigm that
requires the creation of a common ‘global’ schema that con-
solidates ‘local’ schemata of the integrated data sources, and
mappings that define how the local and global schemata are
related [DHI12]. In OBDA the global schema is an ontology:
a formal conceptualisation of the domain of interest that
consists of a vocabulary, i.e., names of classes, attributes
and binary relations, such as connectedTo, hasPart, and
axioms over the terms from the vocabulary that, e.g., assign
attributes of classes, define relationships between classes,
compose classes, class hierarchies, etc. The ontology we
developed encodes generic specifications of manufacturing
equipment, characteristics of sensors, materials, processes,
descriptions of diagnostic tasks, etc. OBDA mappings relate
each ontological term to a set of queries over the underlying
data. OBDA mappings can be used in the same way as ETL
rules for data transformation.

An overview of the KG that we obtained with the help
of OBDA is shown in Table I, where |Ec| is the number of
entities in the given class, avg(In) represents the average
number of incoming, and avg(Out) the average number
of outgoing links for each of the entity classes. Note that
equipment entities are most densely connected in the KG,
while events, although the largest class of entities in the
KG, only have few outgoing links. In summary, the KG
consists of 3,125 entities that are connected through 6,361
facts (triples) in 11 unique named relations (predicates).

Table I: Main entities in the digital twin knowledge graph

Entity Class |Ec| avg(In) avg(Out)
Equipment 180 13.13 5.6
Process 55 4.89 7.0
Material 59 5.9 8.9
Event 728 0 2.17

C. Event Data

Factories, such as the one we simulated, are equipped with
automation systems that continuously generate operational
data, especially events, such as alarm codes or operator
information messages. For a particular point in time, events
from different locations in the factory are collected and later
aggregated in log files. Observing these events enables the
digital twin to trace some of the activity that is carried out
by the physical equipment.

Due to the scattered layout of machines across facto-
ries, two consecutively emitted events are not necessarily
correlated to each other, since their physical sources (i.e.
production machines) may be completely independent. Nev-
ertheless, as we will show in the following sections, co-
occurrence patterns in event logs can be used to infer missing
information contained in the factories KG.

For our use case study, we collected about 60,000 occur-
rences of events from the simulated factory.

D. Scenario: Changing Factory Equipment

The first scenario of completing missing information in
the KG that we consider is related to equipment entities.
More precisely, we study the effectiveness of KG completion
by artificially removing certain links between equipment
entities. Such missing information can naturally occur when
additional devices are deployed at the factory, or existing
devices need to be replaced due to maintenance. Having
background knowledge in form of event sequences, this
scenario studies how well such equipment connections can
be automatically re-established through inference.

For our manufacturing KG, this scenario mainly affects
two relations hasPart and connectedTo, as shown in Figure
2. Both sides of the figure show the same KG consisting of
an assembly line that has two conveyors as parts. Also two
exemplary event entities are related to their respective source
locations. On the left-hand side of the figure the connectedTo
relation is artificially removed, as indicated by the dashed
arrow. On the right-hand side one of the hasPart relations
is removed.

The KG completion task is to obtain a correct recommen-
dation for both types of missing links, such that the missing
information is restored via inference.

E. Scenario: Introduction of New Processes

In this scenario, we consider missing links between pro-
cess entities that emerge when, e.g. new product variants
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are introduced that require a different production process.
Furthermore, in a separate study we consider missing links
from processes to their involved equipment entities, as
shown in Figure 3.

F. Scenario: Observing New Events

This scenario emerges frequently in automated factories
in case the control logic that generates events of machines
is modified, for example a new alarm message needs to
be shown to the operator as soon as a certain oil pressure
threshold is reached.

When new event entities are observed in the log that are
missing annotations in the KG, the completion task can also
be seen as a KG population task, since usually no previous
information about a new event entity is present in the KG.
Thus, predicting missing links means essentially introducing
a completely new entity to the KG. This task corresponds
to a well-known zero-shot learning.

III. MACHINE LEARNING APPROACH

We now briefly describe our machine learning approach.

A knowledge graph K is a set of (positive) facts about
a certain domain of interest represented as a set of triples
of the form 〈h, r , t〉, where h, t ∈ E and r ∈ R. In our
scenario the event-centric data is represented using a subset
X ⊆ E of entities from a given KG. A sequence is an ordered
set of (event) entities si = (e1, . . . , emi

), where ek ∈ X . A
sequence dataset S is a set of sequences S = {s1, . . . , sn}.

Given a triple 〈h, r, 〉 (resp. 〈 , r, t〉) with a missing
entity, a KG K and a sequence dataset S, the event-enhanced
KG completion is to utilize the background knowledge in S
to predict the missing t (resp. h) by retrieving a ranked list
of possible candidate entities from a subset of all entities E .

Following the common practice, we solve the KG com-
pletion problem by reducing it to a representation learning
task, whose main goal is to represent entities h, t and
relations r occurring in K in a low dimensional, e.g., d-
dimensional, vector space as vectors h, t, r ∈ Rd, which
are referred to as embeddings. In contrast to previously
proposed extensions of the standard embedding approach,
which improve the accuracy of the learned representations
by taking into account additional knowledge in the textual
form [WL16], we make use of the background knowledge
represented as sequences of events. Unlike text, sequence
datasets reveal the exact order of event occurrences, they
do not follow any grammatical rules, e.g., miss stop words
and reflect the structure of the process that produced these
sequences.

In this work we are looking for event-enhanced knowledge
graph embeddings to construct representations of h, t, r
that leverage the sequential relationship between entities in
S. We note that despite the fact that S is only directly
connected to entities in X , a collective learning effect is
introduced by incorporating event sequence information into
the learning of KG embeddings that propagates event entity
representations to other parts of the KG.

Our joint model combines the objective of KG em-
beddings LK and the objective of event sequence data
embeddings LS using the joint formulation proposed in
[XHMZ17]:

Ljoint = LK + αLS , (1)

where, α is a hyper-parameter used as a weighting factor.
Simultaneous training of both objective functions within an
aggregated objective allows both models to influence each
other through various parameter interconnections.

We consider three versions of Ljoint.
• EKLSkip follows the intuition of the skipgram model

[MCCD13], which relies on the distributed representa-
tion hypothesis that a word is defined by its surrounding
context. The goal of this model is to predict a context
event given a particular center event in the log.

• EKLConcat accounts for the sequential dependencies
among events: it deals with the characteristics of
short event sequences and preserves the information
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about their order when encoding entity embeddings; we
achieve this by adapting a vector concatenation-based
model that is similar to the paragraph-vector model
[LM14] without the notion of a paragraph.

• EKLRNN employs a many-to-one vanilla RNN and feeds
the m − 1 predecessor events as inputs to make a
prediction for the m-th event based on the last output
state of the RNN.

IV. EVALUATION

A. Evaluation Protocol

We apply and evaluate the three novel approaches for
event-enhanced KG completion, i.e., EKLSkip, EKLConcat and
EKLRNN, on each of the scenarios of Section II. In each
of the experiments, the original KG is split into a training,
validation (10 % of overall KG) and a test set that contains
the artificially removed triples. Final model performance
results are calculated based on the test set, for which we
report a commonly-used evaluation metric:
• Mean Rank: the average rank of the entities (head and

tail) that would have been the correct ones.
The mean rank in our experiments corresponds to the filtered
version that has been originally proposed in [BUG+13], i.e.
in the test set when ranking a particular triple 〈h, r, t〉, all
〈h, r, t′〉 triples with t 6= t′ are removed. Employing grid
search through the hyper-parameters we determine the best
configuration by mean rank on the validation set with early
stopping over a maximum of 100 epochs.

As a baseline, we use the default TransE model. For the
incorporation of event sequence data, the skipgram model
is also already a strong baseline in terms of comparison to
order-preserving embeddings models.

B. Results

In order to evaluate performance of our approach on
the scenarios of Section II-D, we have designed dedicated
test sets corresponding to the triples of the scenarios. For
example, if triples with connectedTo relation are missing,
then the test set contains a controlled proportion of all
〈h, connectedTo, t〉 triples in the KG. We call this propor-
tion the Out-of-KG-size and varied it between 25%, 50% and
75% for each relevant predicate. This way we can simulate
the degree of missing links and therefore can assess how
well the models can handle different amounts of missing
information. The performance results with respect to mean
rank are shown in Figure 5. We now discuss them in details.

For the equipment connections scenario (top of Figure 5),
it can be seen that incorporating events in the KG completion
task does result in a lower mean rank compared to the stan-
dard TransE model as the proportion of missing connections
is increased. On the other hand, this is not the case for
the partonomy relation hasPart, since the event-enhanced
models’ prediction quality is decreasing with growing Out-
of-KG-size.
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Figure 5: Mean rank statistics for KG completion task in
each of the use case scenarios with increasing test set size

For the new process scenario (middle of Figure 5), and fol-
lows and involvedEquipment relations, especially EKLConcat

could robustly predict missing links with low mean rank. At
the same time we observe that EKLRNN and EKLSkip in some
parts perform worse than standard TransE. This supports
our intuition for EKLConcat that it can better capture process
related relations.

For the new event scenario (bottom of Figure 5), one
can see that, as expected, the event isA and hasSource
relations benefit the most from incorporating their sequence
as additional information. Most noticeably, EKLSkip is robust
to increasing size of missing links in both settings.

V. CONCLUSION AND FUTURE WORK

In this paper we presented a concrete industrial scenario
of a Siemens digital twin based on a knowledge graph
that models a physical factory, including its equipments,
processes, and also operational data, such as events. We
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showed how missing knowledge in this graph can be pre-
dicted by relying on machine learning that combines KGs
with background data in the form of log files of events.
In our scenarios the missing data corresponds to common
changes in factories. We evaluated our machine learning
method in these scenarios and showed that with the help of
our event-enhanced learning model it can do a good quality
KG completion and therefore synchronise the digital and
the physical representations of a smart factory. The KG
completion performance results in most of the scenarios
are promising and our models outperform a state-of-the-
art KG completion model. Our approach performs best for
population of KGs with new event entities.
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Abstract. Statistical learning of relations between entities is a popular
approach to address the problem of missing data in Knowledge Graphs.
In this work we study how relational learning can be enhanced with
background of a special kind: event logs, that are sequences of entities
that may occur in the graph. Events naturally appear in many important
applications as background. We propose various embedding models that
combine entities of a Knowledge Graph and event logs. Our evaluation
shows that our approach outperforms state-of-the-art baselines on real-
world manufacturing and road traffic Knowledge Graphs, as well as in a
controlled scenario that mimics manufacturing processes.

1 Introduction

Knowledge Graphs (KGs) nowadays power many important applications includ-
ing Web search1, question answering [3], machine learning [19], data integra-
tion [10], entity disambiguation and linking [5,8]. A KG is typically defined as a
collection of triples 〈entity , predicate, entity〉 that form a directed graph where
nodes are entities and edges are labeled with binary predicates (relations). Exam-
ples of large-scale KGs range from general-purpose such as Yago [24] and DBPe-
dia [12] to domain specific ones such as Siemens [10] and Statoil [9] corporate
KGs.

Large-scale KGs are often automatically constructed and highly incom-
plete [6] in the sense that they are missing certain triples. Due to their size
and the speed of growth, manual completion of such KGs is infeasible. In order
to address this issue, a number of relational learning approaches for automatic
KG completion have been recently proposed, see [6,16] for an overview. Many of
these approaches are based on learning representations, or embeddings, of enti-
ties and relations [4,17,22]. It was shown that the quality of embeddings can
1 https://en.wikipedia.org/wiki/Knowledge Graph.
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https://doi.org/10.1007/978-3-319-93417-4_35



542 M. Ringsquandl et al.

Fig. 1. Excerpt of a manufacturing KG and an event log. (Color figure online)

be significantly improved if the embedding’s vector space is enriched with addi-
tional information from an external source, such as a corpora of natural language
text [27] or structural knowledge such as rules [25] or type constraints [11].

An important type of external knowledge that is common in practice and
to the best of our knowledge has not been explicitly considered so far is event
log data. Events naturally appear in many applications including social net-
works, smart cities, and manufacturing. In social networks the nodes of a KG
can be people and locations, and edges can be friendship relations and places
of birth [30], while an event log for a person can be a sequence of (possibly
repetitive) places that the person has visited. In smart cities a KG can model
traffic [21] by representing cameras, traffic lights, and road topology, while an
event log for one day can be a sequence of traffic signals where jams or accidents
have occurred. In smart manufacturing an event log can be a sequence of pos-
sible states, e.g., overheating or low power of machines such as conveyors, and
these logs can be emitted during a manufacturing process.

In this work we define an event log for a KG as a set of sequences consti-
tuted of entities (possibly with repetitions) that may occur in the KG as nodes.
Moreover, we assume that not every entity from a KG, but only what we call
event entities can occur in logs. In the above: visited cities, traffic signals, and
alarms are event entities. As we see later in the paper this separation of entities
in a KG into event and non-event is important and practically motivated. We
now illustrate an industrial KG and event log.

Example 1. Consider an industrial KG that is inspired by a Siemens auto-
mated factory, that we will use later on for experiments, and that contains
information about factory equipment, products, as well as materials and pro-
cesses to produce the products. The KG was semi-automatically generated
by parsing heterogeneous spreadsheets and other semi-structured data repos-
itories and it is incomplete. In Fig. 1 we depict a small excerpt from this
KG where solid lines denote relations that are in the KG while dashed –
the missing relations. The KG contains the topology of the conveyors A, B,
and C and says that two of them (A and B) are connected to each other:
〈ConveyorA, connectedTo,ConveyorB〉. The KG also stores operator control
specifications, in particular, event entities that the equipment can emit during
operation. For example, CoilJam, is an event entity and it can be emitted by
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conveyor C, i.e., 〈CoilJam, hasSource, ConveyorC〉. Event entities have fur-
ther semantics described by the typing, e.g. CoilJam is of type JamAlarm,
severity levels, and possible emitting source locations. At the same time, the
KG misses the facts that the conveyors A and C are connected in the factory;
that BoardJam is of type JamAlarm, and HighEnergy (HE) has the source
ConveyorA and is of type EnergyEvent.

Additionally, in the example, we assume that an event log recorded during the
operation of the factory consists of three following sequences over event entities:

(HE,LE,LE,BoardJam), (HE,LE,LE,CoilJam), (LE,HE,LE,HE).

Observe that the event log suggests that a jam typically occurs after a sequence
of two consecutive low energy consumption (LE) events. ��

An event log gives external knowledge to the KG by specifying frequent
sequential patterns on the KG’s entities. These patterns capture some processes
that the nodes of a KG can be involved in, i.e., manufacturing with machines
described by the KG, traveling by a person mentioned in the KG, or traffic
around traffic signals. This type of external knowledge has conceptual differ-
ences from text corpora where KG entities are typically described in a natural
language and where occurrences of KG entities do not necessarily correspond to
any process. Events are also different from rules or constraints that introduce
formal restrictions on some relations.

The goal of this work is to understand how event logs can enhance relational
learning for KGs. We address this problem by proposing an Event-enhanced
Knowledge Learning (EKL) approach for KG completion that intuitively has
two sub–steps:

1. Event alignment, where event entities are aligned in a low-dimensional vector
space that reflects sequential similarity, and

2. KG completion, where the KG is extended with missing edges that can be
either event-specific, e.g., such as the type edge between BoardJam and
JamAlarm in Example 1, or not event-specific, e.g., such as connectedTo
between ConveyorA and ConveyorC in Example 1.

Observe, the event logs directly influence the first step while also indirectly the
second step of EKL. Hence, we expect a collective learning effect in a sense that
the overall KG completion can benefit from event alignment, and vice versa.

Example 2. During the first step EKL will align BoardJam and CoilJam to be
similar. In the second step EKL will accordingly adjust entities ConveyorC and
ConveyorB and then predict that ConveyorA is likely to also be connected to
ConveyorC. Intuitively the missing link between the conveyors can be inferred
from the sequential pattern in the event log: the log tells us that both BoardJam
and CoilJam occur as a consequence of two consecutive LE events and therefore
exhibit similar semantics. This similarity is carried to conveyor entities B and
C, which leads to an increased likelihood that they both follow the same entity
ConveyorA. ��
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Note that the prediction of event-specific missing links is not the standard
task for relational learning since we are predicting links within the background.
Moreover, our approach can address the zero-shot scenario, where some event
entities only appear in the event log, but they are novel to the KG (it is marked
with red in Fig. 1). E.g., HE in Example 1 corresponds to an entity that is
missing in the KG, that has to be aligned during the first step of EKL and then
linked to ConveyorA as well as to its type during the second step of EKL. Thus,
EKL can also populate a KG with new (unseen) entities.

The contributions of our work are as follows:

– Several EKL approaches to KG completion that comprise
• two model architectures that allow to combine (representations of) a KG

and an event log for simultaneous training of both representations;
• three models for event logs that reflect different notions of event context.

– An extensive evaluation of our approach and comparison to a state-of-the-art
baseline on real-world data from a factory, on smart city traffic data, and
controlled experiment data. Our results show that we significantly outper-
form two state-of-the-art baselines and the advantages are most visible for
predicting links between entities that reflect the sequential process nature
within the KG.

Finally, note that we presented a very preliminary version of this work as a
short in-use paper [20]. Here we are significantly different from [20] and extend
it, since [20] does not describe our EKL models and it only focusses on several
simple KG extension scenarios that we do not study here.

2 Existing Methods for KG Completion

We now review the problem of KG completion and the existing methods to
address it, following the standard problem definition, c.f. [4,22,26]. Let E be a
finite set of (all possible) entities and R a finite set of relations. A KG K is a set
of triples 〈h, r, t〉, where h, t ∈ E and r ∈ R. Given a KG K and a triple 〈h, r, 〉
(resp. 〈 , r, t〉) where ‘ ’ denotes a missing entity, the KG completion problem is
to predict the missing t (resp. h) by computing for each e∈ E a score f(〈h,r,e〉)
(resp. f(〈e,r,t〉)) that reflects the likelihood of the triple 〈h,r,e〉 (resp. 〈e,r,t〉)
being in the KG.

Statistical Relational Learning for KG Completion. Statistical relational
learning has gained a lot of attention by the research community, including
translation-based models [4,26], latent tensor factorization [18], neural tensor
networks [23] and others (see e.g., [16] for an overview). In this work we focus on
translation-based models. They address the KG completion problem by reducing
it to a representation learning task where the main goal is to represent entities h,
t and relations r occurring in K in a low-dimensional, say d-dimensional, vector
space h, t, r ∈ R

d, which define the model parameter matrices WE ∈ R
|E|×d and



Event-Enhanced Learning for Knowledge Graph Completion 545

WR ∈ R
|R|×d respectively. These parameters are typically referred to as latent

representations or simply embeddings.
Such KG representations have been shown to be effectively learned by using

a ranking loss with the objective that true triples should be ranked before
false/unknown ones according to the scoring function. This learning objective is
formulated as minimizing a margin-based ranking loss:

LK=
∑

(h,r,t)∈K

∑

(h′,r,t′)∈N

max(0, γ+f(h, r, t)−f(h′, r, t′)), (1)

where f(·) is some scoring function that operates on the entity and relation
embeddings h, r, t and h′, r, t′ from N , which is a set of negative examples, i.e.
presumably false triples not contained in K. This loss is minimized when the true
triples outscore the false ones by a constant margin γ. In practice the training
is done using mini-batches of K, instead of iterating over all triples, together
with stochastic-gradient descent (SGD), since this introduces more variance in
the embedding parameter updates and can prevent early convergence in local
optima.

For example, in the TransE model [4], given K such f relies on distance or
similarity between vectors. Intuitively, TransE follows the intuition that there
is a linear relation for triples h + r ≈ t, hence the scoring function is defined
as a dissimilarity measure (e.g. �2-norm) f(h, r, t) = ‖h + r − t‖22. This means
that translating entity h with relation r should end up close to its tail entity t in
the latent d-dimensional space. In order to prevent overfitting, the magnitudes of
parameters in TransE are normalized after each mini-batch to unit-norm vectors,
i.e. ∀e ∈ E : ‖e‖ = 1.

Enhancing KG Learning with Background Knowledge. It was shown
that traditional representation learning can be improved using background
knowledge. Most prominently, external text corpora can be used as back-
ground [27–29,31]. The main approaches follow the idea of computing two sepa-
rate representations of entities: a text-based and a KG-based one. There are two
proposals to combine both representations:

1. include a linear combination layer to directly modify h, r, and t in LK of
Eq. 1, or

2. add a dedicated learning objective for text-based representations to LK.

The TEKE model [27] follows the first proposal, by incorporating textual
context of entities into a KG by exploiting a co-occurrence network of entities
and words in the text thus defining a combination between pre-trained language
model word embeddings and KG entities. It includes n(h) as the weight-averaged
neighborhood word vector representation of an entity h and then applies a linear
combination ĥ = An(h) + h to make up the final entity representation used
in triple scoring. Furthermore, TEKE uses a weighted average of the merged
neighborhood word embeddings for pairs of entities h, t in the text as n(h, t) to
transform the relation embeddings r̂ = Bn(h, t) + r.
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The DKRL [29] follows the second proposal and adds three Li
K to the objec-

tive for text-based representations, where L1
K uses a translation objective within

text-based representations, L2
K is a mixed translation from text-based to KG-

based and L3
K from KG-based to text-based. Intuitively, DKRL considers corre-

lation between entities within K, between K and the text and within the text.
The text embeddings are learned using a continuous bag of words or a deep
convolutional neural network. The KG and the text-based representations are
then jointly optimized.

SSP [28,31] also follow the second proposal and exploit the semantic informa-
tion about KG’s entities given in the form of textual entity descriptions. The SSP
method strengthens the effect of text descriptions by performing the embedding
process in the semantic subspace and a topic model for entity text descriptions.
They combine the objective of KG embeddings LK and of text embeddings LS
using the joint formulation:

Ljoint = LK + αLS , (2)

where, α is a hyper-parameter used as a weighting factor. The main advantage
of this approach is that the simultaneous training of both objective functions
within an aggregated objective allows both models to influence each other.

3 Event-Enhanced KG Completion

In this section we present our approach to KG completion enhanced with event
logs: we start with the problem definition, proceed to limitations of existing
approaches to address the problem, propose our adaptation of the joint model
formulation to the event-based setting based on LK and LS , and define several
ways to combine LK and LS .

3.1 Problem Definition

Let X ⊆ E be a set of event entities. An event log s is a finite sequence (e1 , . . ., em)
of entities from X and a sequence dataset S a set {s1 , . . ., sn} of event logs. E.g.,
an event log (LE ,HE ,BoardJam,ShutdownA) is generated by machines during
operation.

The event-enhanced KG completion problem is, given a KG K, a sequence
dataset S, and a triple 〈h, r, 〉 (resp. 〈 , r, t〉), to predict the missing t (resp. h)
by exploiting both K and S for the computation of a score f(〈h, r, e〉)
(resp. f(〈e, r, t〉)) for each e ∈ E . We consider three variations of the
event-enhanced completion problem with respect to the entities h, t in the
given/predicted triple: the first setting corresponds to the standard KG com-
pletion problem, while the other two are specific for our scenario.
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1. non-event entities : neither given nor predicted entities of 〈h, r, 〉 (resp.
〈 , r, t〉) are from X , as in 〈ConveyorA, connectedTo,ConveyorB〉 from
Example 1,

2. event entities known by KG : each given or predicted event entity of 〈h, r, 〉
(resp. 〈 , r, t〉) is in K, as in 〈BoardJam, type, JamAlarm〉 from Example 1,

3. event entities unknown by KG : either given or predicted event entity of 〈h, r, 〉
(resp. 〈 , r, t〉), does not appear in K, as for HE from Example 1. This corre-
sponds to the problem of zero-shot learning.

3.2 Limitation of Existing Methods

We now discuss why the existing background-enhanced learning approaches are
insufficient or cannot be naturally applied at all to our setting. Approaches of
the first kind such as TEKE rely on the assumption that all entities of the KG
should also appear in the background. This assumption is critical to TEKE’s
enhancement of Bn(h, t), which is undefined if either h or t have no text rep-
resentation. In our setting only the event entities occur in the background and
in applications such as manufacturing only a small fragment of KG entities are
actually event entities. Moreover, TEKE relies only on mere co-occurrences of
words and KG entities in the text corpora and ignores the sequential correla-
tion among entity occurrences. Approaches of the second kind including DKRL
and SSP require that a dedicated piece of background, that is, a text corpus, is
attached to each individual entity of the KG, while in our setting all event enti-
ties share a single event log, i.e. the same background is attached to every event
entity. Although the convolutional version of DKRL is able to respect sequential
correlation between the words in the entity description, it can not be directly
applied to sequences of event entities, since this requires a different embedding
objective. Instead of using the final output of the last convolutional layer as rep-
resentation of the entity, we need to learn representations of the actual tokens in
the sequence. The same limitations hold for the topic model of SSP, which also
requires a dedicated background for each entity in the KG.

We note that that is a body of work on Business Process Mining that we see
as relevant to our work since manufacturing can be seen as a business process.
The exact nature of relation requires further study and it as a future work.

3.3 Adaptation of Joint Model Formulation

Observe that in our setting the KG embedding objective function is dominated
by non-event entities, i.e., pre-trained event embeddings would be continuously
marginalized during training. Thus, we see the joint training objective in Eq. 2
for SSP where there is an explicit definition of the background for learning as
the most natural approach for our context and adapt to the idea of simultaneous
training of both objective functions.

At the same time, adaptation of Eq. 2 to our setting is a non-trivial task that
requires to carefully design three ingredients: (i) an embedding model LK (ii)
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Fig. 2. Architectures: (a) shared entity embeddings (b) combination of separated entity
embeddings.

an embedding model LS (iii) a way to connect the two models for simultaneous
training. In our work we do not develop a new LK and exploit TransE as LK. The
reason is that for our setting it is a good compromise between computational
efficiency and quality of prediction.

In the remaining part of the section we start with our novel proposal on how
to combine the embeddings of LK and LS , and then present our new models
for event embeddings LS that we refer to as event-enhanced knowledge learning
(EKL).

3.4 Combining LK and LS

We now propose two architectures to combine LK and LS . The first, shared,
is specific for our setting and different from what was used for text enhanced
learning, while the second, combined, is inspired by TEKE.

Shared Architecture. In contrast to text-enhanced KG embeddings, in our
setting both the KG and the background contain exclusively entities from E .
Hence, we can directly employ an architecture that uses a single shared entity
representation for both LK and LS . In such a shared architecture one can define
an identity connection between event entity embeddings e and h, t, the entity
embeddings in the KG, i.e. the event embedding matrix WX is the |X |-by-d
submatrix of WE . During training, the gradients of both objective functions are
averaged and therefore simultaneously updated.
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Fig. 3. Context models to predict target: (a) from causes and effects (b) from causes
only

Figure 2a illustrates this approach on a simplistic example. Starting at the
bottom, given an event sequence and a KG we simultaneously proceed with both
objectives LK and LS as follows: The event entities of the event sequence are
directed to the event embedding model using a shared entity representation.
In the example the input event Event1 uses the vector representation e1. In
parallel, head and tail entities h, t of the input triples from the KG on the right-
hand side are also taken from the shared entity embedding matrix resulting
in h and t respectively. The shared aspect is further indicated with the dashed
representations stating that h = e1. Note that the representation of the relation r
in the input triple is not affected, since relation embeddings are used exclusively
in the KG embedding model in f(h, r, t). On top of each embedding model
the calculation of the actual objective function LS and LK is carried out and
combined according to Ljoint with negative event sample eneg and negative
entity sample t′.

Combined Architecture. The shared architecture proposes a very compact
and efficient model with only few parameters. In correspondence to TEKE, we
also propose a more flexible combined architecture that allows two separate
representations of WX and WE , however, without relying on the co-occurrence
of head and tail entity. More precisely, given e from WX and h from WE , we
define ĥ with a custom combination operator denoted as h ⊗ e as follows:

ĥ = h ⊗ e := h � ar + e � br,

where ar and br are trainable weighting vectors for each relation r and � is the
Hadamard product. Intuitively, this allows the model to adjust the influence of
event embeddings on the KG entity embeddings specifically for each relation in
a weighted average fashion. Figure 2b shows this combination leading to ĥ being
fed into the triple scoring functions.

Note that both of the above proposed architectures are very general, as in fact
any KG embedding model, e.g. factorization-based, can be ‘plugged’ in them.
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3.5 Defining LS via Negative Sampling

As for the event embeddings, we first propose to learn event embedding param-
eters that are given by WX using the following negative sampling adapted soft-
max loss objective:

LS =
∑

s∈S

∑

ei∈s

− log σ(ei�ci) − log σ(−eneg�ci), (3)

where σ is the sigmoid function, e, eneg are the vector representations of the
target event and a negative sample event of an additional parameter matrix for
the softmax prediction respectively, whereas c is the representation of the context
of the target event, i.e. some of its predecessors and successors in the event log.
Intuitively, this loss is minimized when the context representations consistently
have higher similarity to the actual target compared to the negative sample. The
notion of context is critical for such definition of LS and we propose two models
of context where we assume that the further an event appears from a given one,
the lower is their dependency. We model this assumption by selecting a sliding
window of size m, which stores only those events that potentially can have effect
on each other.

EKLFull Model. In the full model, we define the context as the target’s pre-
decessors and successors in a sliding window. This is conceptually shown in
Fig. 3a, where a sliding window contains a target event entity in the center and
its neighboring events (i.e., context) are the center event’s possible causes and
effects. The goal is to predict the target event based on the representations of
its causes and effects. Following this intuition, we define the context operation
for a given context target ei in a window of size m:

ci =
�m

2 �⊕

j=1

ei−j ⊕
�m

2 �⊕

j=1

ei+j ,

where ⊕ represents the vector concatenation operation. Since the resulting vector
from the concatenation is of size R

(m−1)·d, the size of the vector that represents
the target entity e for classification in the softmax has to be adapted as well, i.e.,
e ∈ R

(m−1)·d. Note that the actual entity representations preserve their original
size in the d-dimensional space, hence the only additional parameters are needed
for the prediction of each e. Therefore, we can still ensure the efficient training
of event sequence embeddings. The window size m is added as an additional
hyper-parameter.

EKLCause Model. Further we also address the case where only the causing
events may have influence on the target. In order to preserve the predictive
information that a sequence of events inherently possesses, we propose to con-
catenate the representation of the m − 1 event predecessors to predict a given
target event, i.e. the m-th event in the window. Formally this can be denoted as
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ci =
⊕m−1

j=1 ei−j . In Fig. 3b we illustrate this idea again for a generic sequence
window of event entities. Observe that the target event here is always the last
one in the window.

Note that negative sampling in EKLFull and EKLCause should be done with
care. In order to avoid an accidental inclusion of dependent events as negatives,
we make sure that the negative sample is always taken from outside of the
complete sequence, i.e. after a certain time threshold before and after the target
event.

3.6 Defining LS via Autoencoders: EKLAuto Model

Sequence modeling is usually closely related to Recurrent Neural Networks
(RNNs). Based on previous experiments it was known that RNNs do not yield
good representations of the events for our datasets. Another natural way to learn
representations of event sequences is to resort to the family of autoencoder mod-
els. The goal here is to encode the sequence s to a latent representation and
then to try decoding this back, hence, the latent encoding needs to conserve
the sequential information within a low-dimensional vector. Formally, our event
embedding objective is the mean-squared error of the original sequence and its
decoding:

LS =
∑

s∈S
(s − φ(ω(s))2, (4)

where s = [e1, e2, · · · , em] is the stacked vector representation of s and φ◦ω is the
encoder-decoder function chain. In this work we use a convolutional autoencoder
[13] with different filter sizes (adapted to the window size) on the stacked vectors
of the sequence, i.e. for one filter Wf we have: ω(s) = σ(s � Wf + b) and
φ(h) = σ(h � W̃f + c), where � is the convolution operator, σ is the sigmoid
activation function, W̃f is the flipped filter matrix, and b and c are bias terms.

4 Evaluation

We have implemented both of our architectures for event-enhanced KG com-
pletion into a system prototype2 employing the TransE model with the original
max-margin objective and negative sampling techniques in TensorFlow [1]. In
contrast to the original implementation provided by the authors, our TensorFlow
models use a more efficient training technique from [15] exploiting the AdaGrad
variant of stochastic gradient-descent [7], which has been shown to yield good
quality of prediction for other relational learning models, due to its frequency-
adaptive weighting of updates [17].

The AdaGrad technique is beneficial for parameter updates of entities that
are only sparsely connected in the KG, and on the other hand, it prevents overfit-
ting for densely connected entities. As suggested for TransE [4], all embeddings
2 Source code of EKL: http://github.com/NetherNova/event-kge.
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Table 1. Characteristics of two domain-specific datasets

Dataset |K| |S| |E| |R|
Manufacturing 6, 791 56, 000 3,180 (728) 10

Traffic 11, 000 157, 000 13,113 (4,000) 5

were initialized by sampling from a uniform distribution U [− 6√
d
, 6√

d
]. In terms

of negative sampling we employ the random replacement of head or tail entities
relying on the closed-world assumption and the Bernoulli sampling proposed in
[26].

4.1 Evaluation Protocol

We evaluated our three novel approaches for event representations, i.e., EKLAuto,
EKLFull and EKLCause, together with the two architectures (shared and com-
bined) for KG completion by comparing them to plain TransE and the state-of-
the-art TEKE model, precisely the TransE-based TEKE E version, as a baseline
for incorporating events, which are in the TEKE case treated as common text
corpus and pre-trained using the word2vec skipgram model [14]. In each of the
experiments, the original KG is split into a training (70% of the original KG),
validation (10%) and test (20%) sets. Final results on quality of prediction are
calculated based on the test set, for which we report two commonly-used evalu-
ation metrics:

– Mean Rank: the average rank of the entities (head and tail) that would
have been the correct ones;

– Hits@N : the portion of ranks within N highest ranked entities for N ∈
{1, 3, 10}.

The mean rank in our experiments corresponds to the filtered version that has
been originally proposed in [4], i.e. in the test set when ranking a particular
triple 〈h, r, t〉, all 〈h, r, t′〉 triples with t �= t′ are removed. Employing grid search
through the hyper-parameters we determine the best configuration by mean rank
on the validation set with early stopping over a maximum of 100 epochs.

4.2 Dataset Descriptions

Our experiments were performed on two real-world datasets enriched with event
sequences: manufacturing and traffic. The statistical details of these datasets
are presented in Table 1, where we report the total number of triples |K|, the
number of sequences |S|, the total number of entities |E| with the number of
event entities stated in brackets and the number of relations |R|. We made both
datasets and the corresponding sequences available online, see the Github link
above.
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Manufacturing Dataset. The first dataset is an excerpt of a real-world man-
ufacturing KG from an automated factory that stores data about production
equipment, product-part descriptions, and production processes. It models sev-
eral automated production lines and contains entities corresponding to equip-
ments, products, material, and processes connected via different domain-specific
relations, e.g. connectedTo, madeOf, follows. The events are messages collected
from a subset of the production machines, i.e. machine event logs. These are
mostly alarms and warnings reporting about critical states of the production
process, e.g. alarms about jams at the material intake of a machine. Some event
sequences were known not to influence each other; these bring noise to the embed-
dings. To avoid this situation, we pre-processed the raw sequences of events by
splitting them into multiple disjoint ones based on a maximum time gap that
was given by domain experts. This does not bias the embeddings to any of the
models, since it just removes spurious correlations. Then, we set the following
parameters: mini-batch size to 32 samples; d ∈ {40, 60, 80} as embedding size;
and η ∈ {0.01, 0.05, 0.1} as learning rate. For the event embeddings, we set the
context window size m ∈ {2, 3, 4, 5} for EKLCause and EKLAuto, m ∈ {3, 5, 7, 9}
for EKLFull and α ∈ {0.1, 0.5, 1.0}. The number of negative samples for all event
embedding models was empirically set to 8.

Traffic Dataset. Here we took a fragment of the CityPulse data collection3

that was used in the smart city applications [2] for monitoring traffic with sen-
sors placed on several locations in the area of Aarhus in Denmark. From this
dataset we engineered a KG consisting of the sensor locations, streets, routes,
and point of interest locations with typing information crawled from the Google
places API4. The event data is based on the observed vehicle counts for different
routes, e.g. IncreasedTrafficEvent between two streets. Since connected streets as
well as similar localities (e.g., schools) should intuitively exhibit a similar traffic
pattern, the events may be used to complete the data about street connections
and locality information. This dataset is particularly challenging and interesting,
as the number of entities is higher than the number of overall facts, witnessing
the KG sparsity. To cope with the large number of entities and triples in the
KG, we set the mini-batch size to 64 samples and the embedding size d from
{60, 80, 100}, while keeping the rest of the hyper-parameters the same as in the
previous scenario.

4.3 Evaluation Results

Overall KG Completion. In Table 2 we report the results for the variations
(1) and (2) of the event-enhanced KG completion problem from Sect. 3.1. As
expected, our EKL models significantly outperform TEKE and TransE in both
settings. We report that EKLCause in the shared architecture shows the best

3 iot.ee.surrey.ac.uk:8080/datasets.html.
4 developers.google.com/maps/documentation/javascript/places.
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Table 2. KG completion results for EKL and baselines, where m/n denotes completion
results for shared/combined architecture.

Model Mean rank Hits@10 Hits@3 Hits@1

Dataset: Manufacturing

TransE 317 36.1 23.2 7.5

TEKE E 596 24.5 10.8 3.6

EKLFull 285/663 37.9/23.5 25.0/12.3 8.0/4.8

EKLCause 280/691 38.1/21.4 25.8/11.5 7.4/5.2

EKLAuto 302/692 34.5/22.5 23.6/10.1 9.6/2.7

Dataset: Traffic

TransE 4126 26.8 24.6 9.5

TEKE E 897 25.3 22.6 18.9

EKLFull 1118/758 27.0/27.3 25.3/24.5 21.1/20.6

EKLCause 999/783 27.2/27.0 24.7/24.4 20.0/20.5

EKLAuto 944/840 27.5/27.7 24.8/24.8 22.2/20.6

results in terms of mean rank and the first two hits metrics in the manufactur-
ing case. The shared entity embeddings are highly beneficial for the other EKL
models as well and show significant improvements compared to the TEKE E
model. In this case, TEKE E performs even worse than default TransE, con-
firming that mere co-occurrence between events does not contribute to the com-
pletion. However, in the traffic scenario TEKE E shows much stronger results
compared to TransE, but using our combined architecture achieves consistently
better results, as in terms of mean rank EKLFull outperforms the rest. On the
other hand, the EKLAuto model has highest hits@1 for both datasets using the
shared embeddings, therefore it is the most specific model, but cannot generalize
as well as EKLFull and EKLCause.

Impact on Relations. Table 3 (top right and left) contains the mean rank
for every KG relation achieved by the best EKL and TEKE E model on the
manufacturing and traffic data. For the manufacturing scenario the relations
that are semantically closer to events benefit from the sequential embeddings
more than others and we expected this effect. E.g., the improvement for the
connectedTo relation that links equipments to each other is more evident than
for other relations like materials partonomy isPartOf. The additional knowledge
given by the sequences also propagates to the process-oriented follows relation,
for which the significant improvement over TEKE is observed. Similar conclu-
sions can be made about the traffic scenario. Here, again the EKLCause model
performs exceptionally well on the hasStartPoint relation, while for less event-
dependent relations such as locatedAt the difference of EKL compared to TEKE
is less apparent.
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Fig. 4. Meanrank evaluation: (a) zero shot test sets, (b) with increasing branching
factor

Further evaluation is focused on the manufacturing scenario, since this
dataset has richer semantics in terms of relations and typing of event entities.

Impact of Window Size. In Table 3 (bottom, left) we examine the impact of
the window size on the overall mean rank performance of our models. One can
observe that capturing the sequential nature of the event entities is sensitive to
the window size parameter. In our manufacturing scenario the EKLCause model
performs very well for small window sizes, and the results deteriorate after the
window size of 4. In the preparation of EKLFull the window size must always
be an odd number, therefore the window size here is increased by two. It can
be observed that EKLFull needs a slightly larger window to capture the context,
and shows best performance at a window size of 7. In case of EKLAuto we see a
deterioration after window size 3.

Zero-Shot Learning. The zero-shot learning (variation (3) of the event-
enhanced KG completion problem in Sect. 3.1) addresses the case when triples
about event entities present in the test set are not in the training KG, hence their
links to known entities in the KG can only be inferred through their sequential
occurrence.
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Table 3. Evaluation results and controlled experiment statistics

To evaluate the effectiveness of our EKL models in a zero-shot learning set-
ting, we have accordingly designed tailored KG test sets, by varying the percent-
age of the out-of-KG event entities in the test set (10%, 30%, and 50% of the
overall set of event entity triples). Furthermore, we also vary the percentage of
out-of-KG event entities in the event log, where 100% indicates that every out-of-
KG entity of the test set has been observed at least once in one of the sequences.
The results of our experiments are reported in Fig. 4a. Note that in the setting
on the right, when 50% of all event entities are solely present in the test set, the
EKLFull model consistently outperforms all other approaches w.r.t. mean rank.
In other settings, as the sequence dataset proportion is increased, EKLFull shows
best improvement and ends up with the lowest mean rank eventually.

It appears that EKLFull is more stable at capturing typing and location of
events, due to its incorporation of future context, compared to EKLCause and
EKLAuto. On the other hand, all EKL models significantly outperform TEKE in
all zero-shot settings and seem to converge with less data. We argue that this is
due to their ability to capture sequential correlations inside the event logs and
the joint optimization.

Controlled Topology of Processes. In our real-world manufacturing scenario
the process entities reflect the topology of physical equipment in the factory. Since
our experiments witness that EKL does the best predictions for relations that
reflect this topology, we designed a controlled scenario where we can validate
how the changes in topology affect quality of prediction.

To this end we chose six relations that naturally determine manufacturing
topology: follows, isA, hasSource, involvedEquipment, hasComponent, and con-
nectsTo. We scaled the topology in two dimensions: structure of the processes and
number of events. This gave us four KGs, each describing a complex tree-shaped
manufacturing process, where one concrete piece of manufacturing equipment
is attached to each node of the tree and multiple events are attached to each
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piece of equipment. These KGs are described in Table 3 (bottom right), where
BF stands for branching factor.

We now describe the concrete procedure that we followed to generate these
KGs. First, we set the branching factor of the process varying from 2 to 5 and
the depth of the process. The intuition behind the branching factor is that,
starting from a root process step, the successor steps can be partly executed in
parallel and the branching controls this degree of parallelism, which is a common
characteristic of real-world processes in manufacturing, road traffic, etc. E.g., in
a manufacturing case a particular preparation process may have a fixed set of
three successor process steps (branching factor three) each performing a differ-
ent operation in parallel to the others. Second, for each process we iteratively
constructed the process-tree starting from the root, until the process depth,
by randomly selecting the number of children in each node to be at most the
branching factor. Using the process-tree, we generate corresponding equipment
entities participating in the process. Then, using multiple random walks through
the process-tree (with restart) we simulated 50, 000 (|S| = 50, 000) event occur-
rences that are linked to the equipment of the process. Each random walk follows
successor process entities from the root to the end with uniform probability for
all successors and a small probability of staying in the current process. Hence,
we end up with multiple cause and effect event patterns in the sequence data
instead of having a purely linear chaining. Note that the relative amount of event
entities to overall entities in the KG stays roughly at 30%.

Again, we compared our three event-enhanced KG embedding models to
TEKE E. The results are presented in Fig. 4b. Observe that, as the branching
increases, the more all EKL models outperform TEKE E, since the alignment
of process and machine entities no longer follows a linear sequence, which is
hard to capture without considering sequential correlations. In general, EKLFull

seems to be the most effective event embedding model in terms of adapting to
the non-linear process chains, while we conjecture that EKLAuto might be more
prone to overfit to linear sequences.

5 Conclusions

We proposed EKL, a novel method for event-enhanced learning of knowledge
graph embeddings by jointly modeling representations of KGs and event logs
consisting of sequences of event entities. Our approach has many applications
across domains such as manufacturing, smart cities, and social networks. More
specifically, we proposed two different architectures, using a single shared entity
embedding layer and another one using combined embeddings for joint optimiza-
tion. Furthermore, we presented several event embedding models with various
notions of context concatenation and an event sequence Autoencoder model.
Evaluation on two real-world scenarios and a controlled experiment showed the
effectiveness of our approach compared to the state-of-the-art TEKE model.
Especially process-oriented parts of KGs exhibit significantly improved comple-
tion performance when provided with event embeddings. Our EKL models are
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also capable of zero-shot learning, in which event entities are not linked to the
KG. The scaled zero-shot experiments showed that EKL models significantly
improve handling of zero-shot event entities in the KG completion.
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