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Foreword 
One of the great scientific breakthroughs at the end of the 20th century was 

the development of methods to directly access single molecules on the 

nanometer scale. Among these have been the scanning probe microscopes 

such as the atomic force microscope (AFM), with which it was possible to 

detect and interact with individual molecules or even atoms on surfaces. At 

the same time, highly sensitive optical techniques such as confocal or wide-

field imaging microscopy have enabled new insights into the fluorescence 

properties of single fluorophores at the ultimate analytical limit of chemistry.  

In the drive towards ever greater miniaturisation, this step down to the 

atomic scale may have appeared inevitable, but science has come a long way 

considering the ancient history of the atomic theory. It was proposed in 

antiquity by the Greek atomistic schools of philosophy, as a solution to 

reconcile the fleeting world of appearances with the desire for a more 

permanent underlying order. Atomism was reborn in chemical terms with 

Lavoisier and Dalton, to be confirmed by the physical experiments of 

Thomson and Rutherford, and finally elaborated by Bohr and quantum 

mechanics. Actually “seeing” an atom in the conventional sense by reflection 

of photons may not be possible, because the wavelength of visible light is 

beyond the atomic dimensions. None of the aforementioned pioneers could 

have dreamed of ever visualising a single atom or even the Platonic 

“shadows” thereof, generated by indirect imaging techniques. New methods 

such as AFM force spectroscopy with which single polymer chains can be 

stretched and their elastic properties determined add an extra dimension to 

the manipulation of particles on the nanometer scale, bringing polymeric 

molecules such as DNA – the blueprint of biological life - closer to the human 

experiences of the macroscopic world. 
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1. Introduction  
With the development of the scanning tunnelling microscope (STM) by Binnig 

and Rohrer in 1981 it became possible to image surfaces with atomic 

resolution [1]. The images were generated by raster scanning a fine metallic 

tip over a conductive surface and measuring the tunnelling current to the tip 

apex. In 1986, Binnig et al. presented the atomic force microscope (AFM), 

with which also insulating surfaces could be scanned and imaged [2]. The 

force microscope detects the sample topography by monitoring the 

mechanical cantilever deflection as the tip is directed over the surface. Atomic 

resolution was achieved on hard crystalline terraces [3, 4]. Importantly, the 

AFM has also enabled significant progress to be made in the imaging of soft 

non-conducting biological material such as single DNA strands [5-8].  

The direct investigation of single molecule mechanical properties - 

single molecule force spectroscopy - has been achieved by various methods. 

Among these were the stretching of individual DNA strands in a fluid shear 

flow [9-11], with the aid of magnetic beads [12-15] or with optical tweezers 

[16-20]. Using these kinds of apparatus it was possible to measure the applied 

forces on single polymers with pN accuracy. The breakthrough for the AFM in 

this field was achieved in 1994 with the construction of a one-dimensional 

vertical pulling AFM. This apparatus enabled the observation of a single 

streptavidin-biotin complex bond rupture [21, 22]. The new method called 

AFM Force Spectroscopy used the cantilever tip to pick up and pull at single 

molecules - most notably polymers. By exploiting the high vertical force 

resolution of the AFM, force-distance curves could be generated which 

describe the mechanical tension on a single polymer in relation to the pulling 

distance [23]. The applications for single molecule AFM force spectroscopy 

have become very diverse, ranging from material science [24] to biology [25]. 

Generally five classes of molecular systems have been examined [24]: 

Ligand-receptor interactions [26, 27], metal complexes [28], polysaccharides 

[29, 30], proteins and conformational analysis [31-35], synthetic organic 

polymers [36, 37] and, finally, polynucleotides such as DNA [38-41]. The 

extremely broad force range from a few pN to several nN has permitted the 

 2



 

measurement of the strength of a single covalent Si-C or S-Au bond to be 

about 1-2nN [42]. 

Single molecule fluorescence spectroscopy has established itself in the 

last 12 years as an optical technique to image individual fluorophores [43]. 

This method is based on the laser excitation and fluorescence detection of 

highly diluted dyes in condensed matter. Although early experiments were 

conducted at cryogenic temperatures [44-48], the room temperature 

examination of, especially, biological systems [49-52] has become 

increasingly significant. The main methods for room temperature 

spectroscopy of single molecules are: confocal scanning microscopy [53-55], 

wide-field imaging [56], scanning near-field microscopy (SNOM) [57] and total 

internal reflection (TIR) imaging [58-62]. 

However, both single molecule force spectroscopy and fluorescence 

imaging have shortcomings. Conventional AFM force spectroscopy, while 

powerful in the analysis of single molecule mechanics, relies on the unspecific 

attachment of polymers to the tip. Fluorescence microscopy, on the other 

hand, can visualise single molecules, but provides no means for mechanical 

interaction. The motivation of this work was therefore to overcome these 

restrictions by combining both established methods and constructing a setup 

with which single molecules could be imaged and specifically manipulated at 

the same time. 

Various approaches to intermarrying optics with an AFM have 

previously been made. Among these are SNOM microscopes that channel 

light through a tip aperture to the sample surface, thus enabling near-field 

optical microscopy [57, 63-65]. Hybrid confocal/AFM scanning microscopes 

[66-68] have also been implemented and the combination of the AFM with a 

wide-field optical microscope was realised as early as 1992 by Putman, who 

examined the topography and optical features of chromosomes [69]. More 

recently, the FRET signal of a single tip-attached acceptor dye has been 

examined, while exciting the sample donor dye by wide-field illumination [70]. 

Finally, the group of H. Gaub used light pulses to switch the conformation of 

AFM-stretched azobenzene polymers and measured the resulting changes in 

molecular extension with force spectroscopy [71].  
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However, these approaches do not allow for an independent 

simultaneous mechanical interaction with the sample during the imaging 

process. The goal was therefore, to construct an integrated setup, including a 

wide-field optical microscope and an AFM, by which the manipulation process 

itself could be viewed in real-time. Finally, with this new apparatus we hope to 

conduct force spectroscopy on single fluorescent polymers with concomitant 

imaging. After a long heuristic process, the main technical challenge was 

overcome by constructing a microscope stage for the AFM head, so that both 

the AFM cantilever and the microscope objective have access to the sample 

coverslip from the top and from below, respectively.  

 First experiments focussed on synthesising organic polymer molecules 

with incorporated single fluorophores. By pulling at these polymers, it was 

hoped that the optical properties of a single dye, e.g. the fluorescence 

spectrum, could be examined under mechanical strain. Although theoretical 

calculations indicated a shift in the spectra for certain dyes [72, 73], the 

experiments proved to be unproductive, due to the low dye photostability and 

difficulties in the surface chemistry at the single molecule level. 

A more promising system for this new apparatus was found in DNA, 

intercalated with the fluorophore TO-PRO®-3. The dye molecules bind to the 

DNA electrostatically and stack between the nucleotides. This intercalation 

greatly enhances the fluorescence of the bound dyes. Although DNA was long 

regarded as being too thin (ca. 2nm) for optically detection, in 1981 Yanagida 

et al. presented fluorescent images of single DNA molecules with similar dyes 

using an optical microscope [74]. Since then, new cyanine dyes have been 

developed that provide better images of individual DNA chains [75, 76]. 

Among these was the dye TO-PRO®-3, which possesses a low photo-

bleaching rate, a high binding affinity to DNA and a high fluorescence 

quantum yield enhancement on binding to the DNA [77]. Furthermore, 

DNA - already ubiquitous in biology - has been of special interest as a 

substrate for examining the mechanical properties of single polymers [40]. 

The unique elasticity and the availability of fluorescing intercalators make 

DNA the ideal candidate for optical detection and simultaneous manipulation 

with a combined AFM/fluorescence setup.  
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Synopsis 
Chapter II begins with a description of the AFM force spectroscopy setup and 

methodology. The force spectra for a series of polysaccharides are presented. 

Furthermore, a second class of force curves, displaying horizontal plateau 

events, is explained with a new model based on the hydration energy of single 

polymer chains in poor solvents. This is followed by the force spectroscopic 

work on DNA, including statistics on the rupture force and rupture length on 

transparent surfaces, such as polylysine-coated and silanised glass, as well 

as the characteristic effect of TO-PRO-3 on DNA force curves. 

Chapter III gives an overview of the optical single molecule imaging 

techniques. These include confocal scanning microscopy, single molecule 

spectroscopy, wide-field imaging and total internal reflection (TIR) imaging 

methods. Experiments on the terrylenediimide (TDI) and cyanine5 systems 

are described, as well as a series of new hemicyanine dyes, which are 

examined for their suitability as single molecule dyes in combined AFM/optics 

experiments. A new setup is used to monitor the evanescent TIR field by 

employing the cantilever as a luminescent probe. 

Chapter IV presents the optical imaging experiments on single DNA 

strands. A detailed analysis of the photophysics of the TO-PRO-3/DNA 

system is provided, followed by the DNA imaging results on various surfaces. 

DNA aggregation on polylysine is explained with the condensating effect of 

charged polycationic chains. The discovery of super-long DNA strands on 

silanised surfaces is discussed with respect to DNA junction formation. 

Chapter V deals with simultaneous optical detection and manipulation 

experiments on the DNA system. This includes a description of the combined 

setup, a study of cantilever luminescence and real-time DNA manipulation 

experiments on polylysine and silane surfaces. A method is presented for 

writing µm-sized letters with DNA ink. The results of the combined optical 

imaging/force spectroscopy experiments are discussed, explaining the 

difficulties encountered. A new method, single molecule lateral force 

spectroscopy, is presented, which enables the analysis of dye fluorescence 

under DNA chain tension – the original goal of this work. 

A conclusion in chapter VI provides an outlook on future experiments. 
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2. AFM force spectroscopy of single molecules 
 

2.1 General principles of AFM force spectroscopy 
The AFM enables a high force resolution. Typical forces range from 

10pN - 10nN (magnetic tweezers: 0.01 - 10pN; optical tweezers: 0.1 - 100pN 

[13]). This sensitivity is achieved by measuring the bending curvature of the 

AFM cantilever through the displacement of a laser beam, which is focussed 

onto the cantilever shank (deflection signal). In this way small changes in the 

curvature can be detected and correlated with the forces acting on the 

cantilever tip. Under low noise conditions, forces of ~3pN can be resolved.  

By comparison, the repulsion experienced through the photonic 

pressure of a 1mW laser pointer is similarly ca. 3.3pN. Furthermore, the 

smallest measurable forces are those responsible for the Brownian motion of 

bacteria in water at room temperature. These forces, which buffet the tiny 

particles about, are comparable to the weight of the bacteria of ca. 10fN 

(assuming mass of bacterium ~1*10-15kg). Molecular motors typically convert 

chemical energy to mechanical work by hydrolysis of ATP. One ATP yields 

about 5.6*10-20J. Over 10nm this corresponds to a force of ca. 6pN. Hydrogen 

bonding forces and those due to hydrophobic interactions occur in the order of 

ca. 100pN [78], whereas the strongest bonds on the molecular level, the 

covalent bonds, can withstand forces of up to a 1-2nN [42]. 

 To enable the analysis of these microscopic forces, the conventional 

scanning AFM is converted into a one-dimensional pulling device, with which 

it is possible to pick up single molecules [79]. By lifting the cantilever away 

from the sample surface, molecules, which are attached to the cantilever tip, 

can be pulled taut and stretched. The resultant tension directly reflects the 

elastic properties of the pulled polymer chain. The exact mechanism or 

chemical background for the attachment, which frequently works 

unspecifically for a whole range of polymers, is to date unclear, although 

electrostatic and hydrophobic interactions are probably involved. 
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Force-distance curves 
The results of the force spectroscopic measurements are expressed in the 

form of force curves (cf. Figure 2), in which the force is plotted against the 

distance moved by the piezo. However, to determine the molecular elasticity 

of a stretched polymer, these force curves must first be converted into force-

distance curves. The difference between the two is a consequence of the 

cantilever curvature. The actual distance between the sample and the tip (cf. 

Z in Figure 1) is not the same as that travelled by the piezo (cf. L in Figure 1), 

because the tip bends downwards under a load. The correction is easily made 

by determining the tip curvature under a certain force - the cantilever 

sensitivity S. A is the deflection signal in Volts. The sensitivity is usually 

calculated from a surface indentation curve, taken prior to the actual 

experiments (cf. stage 2 in Figure 2). Thus, the true tip-sample distance is 

given by: 

 
AZ L
S

= −eq. 1 

 

 

 

Figure 1: Length correction due to cantilever bending. The measured piezo movement 
L is related to the actual tip-sample distance Z through the cantilever sensitivity.  

 

Plotting F(z) against z gives a force-distance curve, from which quantitative 

data concerning polymer mechanics can be gained. However, frequently the 

force curves themselves are sufficient to establish rupture forces or plateau 

heights etc.  
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Figure 2: A typical force-distance curve is characterised by an approach curve (red), (1) 
during which the cantilever descends towards the sample surface. (2) At the point of 
contact the cantilever is bent upwards. (3) During retraction (blue) the tip often adheres 
unspecifically to the surface, thus bending downwards, before snapping off and 
straightening out. (4) If a molecule is attached, the tension in the strand can be 
correlated with the curvature of the tip. (5) Finally the strands rupture. The region 
describing the tip-molecule interaction is given by the dotted area. 

 

A generalised force curve is presented in Figure 2, together with a 

schematic description of the corresponding cantilever position. The region of 

interest in Figure 2 is the dotted area, which provides information on the 

molecular mechanical parameters. A single molecule force curve can be 

divided roughly into three force regions.  

At zero force, the natural conformation of a polymer is a random coil. 

Straightening the chain, results in an entropically driven restoration force. In 

principle, the force to align a polymer of identical rigid units is in the order of 

kBT/b ~ 0.1pN, where b is the length of one unit [8]. However, the entropic 

elasticity required to disentangle a real polymer is usually described by 

models to ca. 5-10pN.  

At medium forces of up to a few hundred pN, enthalpic conformational 

changes become significant, which are the result of bond angle changes 

between the chain segments. The deformation energies of complex 

conformational transitions are difficult to describe by simple models, especially 

for large molecules such as DNA [13]. 
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Finally, in the high force regime of up to 2nN, the intramolecular bonds 

themselves are extended, which eventually leads to strand rupture. Due to the 

long timescale of the pulling experiment as compared to the average lifetime 

of a stretched bond under tension, this bond fracture usually occurs at a lower 

force than theoretically predicted by comparatively fast molecular dynamics 

simulations. 

 

Polymer elasticity models 
Single molecule force experiments provide unique access to the mechanical 

parameters of individual polymers, which would otherwise be hidden by 

ensemble averaging. To extract these factors analytical models have been 

proposed that fit the measured force curves, thus affording parameters for the 

chain elasticity or stiffness. 

 

The freely-jointed chain model 
The FJC model describes the polymer chain as a series of N rigid segments 

of length lk (Kuhn length) that have complete freedom of rotation around the 

segment joints [80] (cf. Figure 3). Thus, the conformations of the chain can be 

described by a random walk in which each step lk is placed randomly with 

respect to its predecessor [81]. In this case the total contour length Lc of the 

polymer is given by:  

 

c kL Nl=eq. 2 

 

According to this model, the probability of a certain end-to-end distance R of a 

polymer follows a Gaussian distribution around the mean value of <R> = 0. 

The quadratic end-to-end distance is proportional to the quadratic Kuhn length 

and the number of segments N: 

 
2 2

kR Nl=eq. 3 
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Figure 3: The FJC chain model assumes a chain of length Lc, with rigid and freely 
rotating, so called Kuhn segments of length lk, each with a specific orientation. Based 

on this model an expression is derived that describes the end-to-end distance R in 
relation to the force F. 

 

With increasing force and pulling distance the probability distribution of R is 

shifted to more extended configurations and thus the entropy of the polymer 

system drops. An entropically driven restoration force F is the result. The 

exact configuration is not known for each time, but an equation for the 

polymer extension R with force F can be derived by expressing the system in 

the form of a configuration state partition function Z(F) [80]. Here, the terms 

l1…lN describe the orientational vectors of the N segments composing the 

chain. The end-to-end distance R is thus the sum of all the segment vectors 

and the energy of an overall polymer configuration state is given by E(l1…lN). 

The applied force attenuates the energy of a given state with an extra term 

F*R such that [82]: 

 E(l ...l ) FR1 N
k TB

1 NZ(F) e dl ...dl
−

−
= ⋅ ⋅ ⋅∫ ∫eq. 4 

 

The energies E(l1…lN) are constant for independent segments with no 

intrachain interaction and the integral of the partition function can be solved by 

using spherical coordinates:  

N
B

B

k T FlZ(F) 4 sinh
Fl k T

⎡ ⎤⎛ ⎞
= π⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
eq. 5 
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Furthermore, the average observable end-to-end distance <R> is related to 

serting eq. 5 into eq. 6, the following expression can be derived for the end-

q. 7 

his is usually expressed with the function L-1 - the inverse of the Langevin 

q. 8 

owever, this model assumes rigid segments and purely entropic restoring 

q. 9 

he assumption made in the FJC model of wholly independent segments 

he effect of the FJC model parameters on the force curve 

a serie

the partition function according to eq. 6 [82]: 

eq. 6 
B

(F)
F

lnZR k T ∂
=

∂ 

In

to-end pulling length x(F): 

 
k B

k
B k

=x(F) Nl coth Fl k T-k T Fl
⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

e

 

T

function (coth(x)-1/x) - to comply with the force-distance curves: 

 
B

k k

-1k T xF(x)
l Nl

L ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
e

 

H

forces. To account for deformations in bond length or other enthalpic 

components a further parameter is introduced: the segment elasticity Ks.  

 
k

c
B s

Fl Nx(F) L F
k T K

L ⎛ ⎞
= +⎜ ⎟

⎝ ⎠
e

 

T

works better for long flexible chains such as simple polysaccharides, RNA or 

organic polymers.   

To describe t

s of hypothetical force curves have been plotted in Figure 4 [83]. The 

black curve shows a polymer with a contour length Lc = 100nm, a Kuhn length 

lk = 1nm and a very high segment elasticity value of Ks= 109pN/nm. An 

increase in the contour length shifts the curve to the right (red 

curve: Lc = 110nm), whereas making the polymer more elastic by reducing the 

segment elasticity value (blue curve: Ks = 104pN/nm) results in the polymer 

extending beyond its contour length. Finally, decreasing the Kuhn length, 
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which is equivalent to an increased number of segments, leads to greater 

entropic restoration forces at low extensions (green curve: lk = 0.1nm). 

 

black curve: 
Lc = 100nm, lk = 1nm 
and Ks= 109pN/nm 
red curve: Lc = 110nm 
blue curve: 
Ks = 104pN/nm 
green curve: lk = 0.1nm 

 
 

 

Figure 4: Force extension relationships for a series of hypothetical polymers 
constructed using the FJC equation [from Fisher et al. [83]]. 

 

Worm-like-chain model 
For continuous semi-flexible (stiff) polymers such as DNA a different model 

has been developed [84]. The worm-like-chain model treats the polymer as a 

series of hypothetical segments along a continuously curving, homogeneous 

rod-like chain. The segments have the length Lp, the persistence length, which 

is the distance along which the molecule can be considered as rigid i.e. the 

distance after which the orientation of a chain segment is no longer correlated 

to that of a previous segment. Enthalpic angle bending costs are taken into 

consideration in this model. 

 

Figure 5: The WLC model describes a polymer as a uniform flexible rod with a 
characteristic length Lp, which is proportional to the chain stiffness. 
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In 1994 Marko and Siggia [85] established an expression for the semi-flexible 

chain, by determining the partition function and forming the derivative with 

respect to the force. Although the exact solution can only be calculated 

numerically, an analytical function can be given that applies asymptotically to 

the limiting low and high force region and only falls short by <10% in the 

middle force range.  

 

eq. 10 

 

 

In a real polymer, the chain contour length Lc is variable and bond lengths can 

be stretched [86]. To incorporate for chain elasticity, the term (X/Lc) is 

substituted for (x/Lc-F/Ko), for which Ko is the specific stiffness of the chain.  

 

eq. 11 

 

For flexible chains with infinitely small chain units the important relationship 

between the Kuhn length and the persistence length can be established: 

2
1 11
4 4

B

p c c

k T x xF(x)
L L L

−⎡ ⎤⎛ ⎞⎢ ⎥= + − −⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

2

0 0

1 11
4 4

B

p c c

k T x F x FF(x)
L L K L K

−⎡ ⎤⎛ ⎞⎢ ⎥= − + − + −⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

2k pl L=

 

eq. 12 

 

Attempts have been made to reduce the discrepancy between the 

Marko/Siggia approximation and the exact numerical solution by extending the 

function with a seventh order polynomial [87].  
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The MFP force microscope 
AFM force pulling experiments were carried out using an Asylum Research® 

Molecular Force Probe™ (MFP). Igor Pro® software controlled the data 

acquisition and analysis. Typically, a 2kHz sampling rate for the deflection 

signal and a pulling velocity of 2µm/s was used. To reduce vibrational noise, 

the MFP stage was placed on an air cushioned laser table and surrounded by 

a wooden, egg-box foam covered acoustic box. 

 

 

Figure 6: Schematic description of the MFP setup. The force on the cantilever was 
determined by the deflection of a diode laser source on the tip, as measured by the 
signal A-B of a photodetector with segments A and B. Movement in the z-axis was 
driven by a piezo-driven motor in the MFP head and regulated by an inductive position 
sensitive device to <2Å RMS. 

 

Si3N4 Microlevers™ (ATOS® GmbH) with a spring constant k of 15mN/m were 

commonly used and mounted on the MFP fluid cell. The cantilevers appear as 

frail “teeth of a key” on the end of the Si3N4 chip (cf. Figure 7).  

 14



 

 

Figure 7: Scanning electron microscope images of the cantilevers [88]. 

 

The laser diode was positioned on the back of the tip with the help of a simple 

home-built microscope, which was composed of a 20x objective and a small 

CCD camera. An optical image taken with this adjustment microscope is 

shown in Figure 8. The arrow indicates the laser focus on the tip shank, as 

seen from below the cantilever chip. The back of the cantilever is gold-coated 

to increase laser reflectivity. 

 

Figure 8: Alignment of the AFM laser onto the gold-coated back surface of the 
cantilever. The red arrow indicates the position of the laser focus on the shank. 

 

Cantilever calibration 
To convert the measured voltage signal from the photodetector into a force in 

newtons, the cantilever must first be calibrated. Depending on the position of 

the laser spot, the deflection signal will be more or less sensitive towards 

forces applied to the tip. This sensitivity (i.e. the change in deflection signal for 

a given cantilever curvature) is measured by pressing the cantilever into a 

hard sample surface and determining the slope of the force curve at the 

indentation region (cf. Figure 2, no.2). The sensitivity S has the units [mV/µm].   
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 The next step is to determine the cantilever spring constant k, which is 

calculated according to the thermal noise method [89]. By approximation, the 

cantilever can be described as a Hookean spring. 

 

F=-kx

AF k *
S

=

eq. 13          
   

According to the equipartition theorem, each degree of freedom in a 

thermodynamic system is assigned the same thermal energy. Therefore a 

freely swinging cantilever eigenmode will be excited with the energy 1/2kBT. 

 

〈 〉2
B

1 1k T = k x
2 2eq. 14 

 

The value <x2> is the time-average square amplitude of the cantilever thermal 

fluctuation. This value is conveniently determined by integration of the 

harmonic oscillation peak in the frequency domain of a power spectrum. 

According to Parseval’s theorem, integrating the power spectral density of a 

thermally excited, resonant oscillation in the frequency domain x(ω)2 is equal 

to x(t)2 in the time domain and thus describes the total energy of that degree 

of freedom. Therefore <x2> can be determined from the resonance peak in the 

power spectrum of a thermally excited cantilever. Inserting <x2> in eq. 14 

affords the spring constant k. A more detailed analysis of the detector 

geometry, which actually measures the curvature of the cantilever and not the 

extension amplitude x, leads to the following corrected relationship [90]: 

 
B

2
k Tk ~ 0.8
xeq. 15 

 

Finally, by bringing the two calibration constants together, the photodetector 

deflection signal A in volts can be converted into a force value: 

 

eq. 16 
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Generally, the force resolution is limited by the thermal noise of the cantilever 

to about 3pN. There are various ways to reduce cantilever noise and increase 

the sensitivity of the experiment below 1pN resolution. One method is to use 

short cantilevers with lower viscous dampening, lower spring constants (softer 

cantilevers), but also persistently high resonance frequencies [91].  

 In practice these improvements are only significant if external noise 

sources, such as low frequency vibrations of the building or acoustic noise in 

the room, e.g. from other electronic equipment or the air conditioning, can be 

excluded. To this end the AFM head was placed on an air cushioned laser 

table and surrounded by an acoustic hood. Furthermore, it was found that 

glass coverslips (thickness 170µm) were the source of a strong perturbation 

frequency when spanned over the large opening of the sample holder 

(cf. Figure 99). Microscope slides, which are thicker (1.2mm), showed no such 

resonant vibration. Fortunately, the microscope oil objective dampened this 

noise source, when brought into contact with the coverslips from below. 

 

Sources of error in AFM force spectroscopy 
Cantilever thermal drift is one of the main difficulties in force experiments that 

last longer than about a second. Due to the different thermal expansion 

coefficients of gold and Si3N4, local temperature changes result in an unequal 

expansion of the two cantilever layers – the bimetal effect. This results in the 

cantilever gradually bending towards one side or the other. By careful 

temperature equilibration of the sample solution prior to the measurement, this 

effect can be reduced significantly, but it remains a source of error for very 

long experiments. 

 On the other hand, fast pulling experiments give rise to hydrodynamic 

drag of the tip, as it is forced through the fluid medium. This is especially 

significant for pulling speeds greater than 5µm/s and can be seen as an offset 

between the approach and retraction curves of the cantilever moving towards 

or away from the sample surface (cf. Figure 2). The various hydrodynamic 

effects become complex in the vicinity of the surface and the offset is no 

longer a constant value. 
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 Piezoelectric crystalline materials, such as those used for positioning 

the AFM z-axis, exhibit a hysteresis in their expansion behaviour when 

reversibly subjected to a voltage signal. However, the AFM can correct for 

these errors by using an inductive coil as a feedback-loop position sensor 

(cf. Figure 6), which determines the piezo position to sub-Ǻngstrom accuracy.  

 Finally, high forces >10nN can bend the cantilever beyond its elastic 

regime so that viscoelastic properties come into play and the cantilever 

requires a certain time lag to regain its original curvature. However, most 

measurements do not reach such high forces. 
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2.2 Force spectroscopy of sugars 
Polysaccharides, such as cellulose and amylose, are one of the main polymer 

classes that can be examined with AFM force spectroscopy [83]. In 

preparation for the experiments on DNA, these well characterised systems 

were chosen for first experiments with the AFM setup. In addition, new 

systems including palladium-complexed cellulose were examined to study the 

effect of the bound metal on the chain elasticity and derive the structure of the 

complex. Pd-cellulose cannot be examined with X-ray crystallography, 

because the long cellulose chains do not form a defined crystal structure.  

Cellulose (β-[1,4]-polyglucose) is the most common polysaccharide. It 

is found naturally in wood and other plants, but also has considerable 

industrial significance in e.g. paper and cotton. Unlike its sugar counterparts 

such as amylose, however, canonical cellulose forms crystalline fibres and is 

thus water insoluble.  
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Figure 9: Cellulose is composed of 1,4-β linked D-Glucose subunits 

 

The chain solubility in water can be increased by introducing carboxymethyl 

groups into the polymer. These have the tendency to break up the 

intermolecular bonds, thus rendering the polymer soluble and also enabling 

single molecule force experiments. Carboxymethylcellulose (CM-cellulose) is 

itself an important industrial product, which is found in foodstuffs as a gelling 

agent or emulsifier.  
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Another traditional method to bring cellulose into solution is by complexation 

with “Schweizer’s reagent” [Cu-NH3 complex]. Ahlrichs et al. have recently 

developed a new method to provide molecularly disperse cellulose by 

complexation with palladium-ethylenediamine [92]. However, these complexes 

tend to form gels and so X-ray crystallography of the structures is impossible. 

In the light of this problem, force spectroscopy may help to elucidate the 

generated structures by providing information on the mechanical properties of 

the chain.  

 

 

 

 

 

Figure 11: Proposed structure of Pd-en cellulose. Additional intramolecular bonding 
due to the complexation with palladium-ethylenediamine could reduce chain flexibility. 

 

Force spectroscopy of the cellulose derivatives 
The force spectrum of CM-cellulose has been measured on numerous 

occasions [30, 93]. Generally cellulose behaves much like an entropic 

polymer, as anticipated by the FJC model. Relatively low entropic forces are 

followed by a sharp increase in force as the extension approaches the contour 

length. CM-cellulose is comparatively stiff with a Kuhn length of Lk = 4nm and 

a segment elasticity of Ks ~ 50 000pN/nm [94].  
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For our experiments, CM-cellulose samples are prepared by overnight 

incubation on a glass coverslip and measuring in PBS buffer the following day 

(cf. Appendix 2: Sample preparation: polysaccharides). The force-distance 

curve in Figure 12 is typical for a single CM-cellulose polymer. Fitting the 

curve with the FJC model affords the mechanical parameters of the chain. 

Generally, the Kuhn lengths measured for about 15 curves varied between 

1.7 - 3.3nm, whereas the segment elasticity of CM-cellulose was between 

30 000 - 40 000pN/nm.  

In Figure 12 the rupture force is 1.8nN, which is exceptionally high and 

in the force range of a covalent bond [42]. Furthermore, the contour length of 

the molecule is ca. 800nm, which is consistent with the average polymer 

Figure 12: CM-cellulose force-distance curve measured in PBS buffer. 

length of 1.4µm (3200 monomer units) for this CM-cellulose sample. 

he Pd-en CM-cellulose samples are prepared according to the procedures 

metal the Kuhn length drops from ~ 1.7 - 3.3nm to ~ 0.5 - 1.0nm. 

 

T

developed in the Klüfers group [92] and measured in PBS buffer under the 

same conditions as the CM-cellulose samples. The resulting force spectra are 

similar in shape to the cellulose curves. The FJC fits give Kuhn lengths of 

Lk = 0.5 - 1nm and a segment elasticity of Ks ~50 000pN/nm. There is a 

certain variance in the determined parameters, which may be due to 

experimental conditions such as the pulling geometries of the molecules. 

However, a general trend is apparent. With introduction of the complexing Pd 
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igure 13: Comparison of the normalised fit functions for CM-cellulose and Pd-en 
ellulose 

to the expected effect of an increased rigidity, due to additional 

trachain bonding, this reduction in stiffness suggests that hydrogen-bond 

ity Ks

For comparison the normalised fitting functions for a CM-cellulose and a 

Pd-cellulose force curve are plotted in Figure 13. The Pd-complex

curves display a higher flexibility as compared to the pulls of CM-cellulose, 

which is reflected in a larger entropic restoration force at extensions below the 

contour length.  
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Contrary 

in

bridges between the chain segments may have been blocked by the metal 

complex, thus increasing chain flexibility. In fact, the resulting Kuhn length of 

0.5nm is approximately the length of a single polysaccharide monomer [95]. 

Furthermore, this result is consistent with gyration radii measurements in light 

scattering experiments performed in the group of Prof. Klüfers, which show a 

decrease in persistence length for complexed Pd-en cellulose [92]. 

 

Polysaccharide Kuhn length Lk Segment elastic

CM-cellulose 1.7 – 3.3nm 30 000 – 40 000 pN/nm 

Pd(en)-cellulose 0.5 – 1.0nm ~ 50 000 pN/nm 

CM-cellulose literature [94] ~4nm ~ 50 000 pN/nm 

t of the mechani for the s. 

 

able 1: Comparison cal parameters cellulose derivative
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Amylose and CM-amylose 
Amylose (α-[1,4]-polyglucose) is commonly found as starch in plants and 

rtant nutritious sugar. In contrast to cellulose, 

 

Figure 14: Amylose has an  helical structures 

he force curves of CM-amylose show an important difference as compared 

 They display a clear enthalpic 

f the CM-amylose sample, followed by measuring the next day in 

aqueo

foodstuffs and is thus an impo

which has a β−C1-4 conformation, the attachment in amylose is α−C1-4. As a 

consequence, cellulose forms flat sheet-like structures, whereas amylose 

tends towards helical configurations. The amylose chains consist of 

1000 - 5000 glucose units. 
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Force spectroscopy of CM-amylose 
T

to purely entropic CM-cellulose chains.

shoulder at ca. 300pN. The Kuhn lengths have previously been determined to 

0.45nm before, and 0.54nm after the shoulder [96] with an increase in 

segment elasticity from 11000pN/nm to 28000pN/nm, i.e. a stiffening of the 

chain [94]. 

Our experiments are conducted on glass coverslips, after overnight 

incubation o

us PBS buffer solution or HPLC-grade water. A typical force curve with 

two single molecule pulling events is shown in Figure 15. The polymers are 

ca. 800nm and ca. 300nm long and both display a clear shoulder at ~300pN.  
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Figure 15: CM-amylose force-distance curve 

unction, the determined Kuhn lengths 

r the curve before the shoulder are between Lk = 0.35nm - 1.5nm 

ructure, which is not fully extended. When stretched, 

 

When fitting CM-amylose with the FJC f

fo

(Lk = 0.68 ± 0.55nm). After the shoulder the chain stiffens and the slope of the 

force curves is steeper, corresponding to an increased Kuhn length 

(Lk = 0.90 ± 0.54nm). Furthermore, some form of enthalpic conformational 

transition occurs in the chain at ca. 300pN. The explanation for this is found in 

the structure of amylose, as compared to cellulose. The β-C1-4 conformation in 

cellulose leads to straight chains that can only expand by stretching bonds 

and bending rigid bond angles. Cellulose is therefore relatively rigid and has a 

high Kuhn length.  

 On the other hand, the corresponding α-C1-4 CM-amylose polymer 

forms a coiled st

CM-amylose can straighten out by undergoing a reversible transition from the 

natural chair form into the boat conformation. Theoretical models predict an 

extension per monomer unit from 0.45nm to 0.54nm, which corresponds well 

with the measured Kuhn lengths [95]. The chair-boat phase transition costs 

energy, which is supplied by the stretching force and corresponds to the area 

under the shoulder in the force-distance curve.  
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Figure 16: Schematic description of the chair-boat transition in CM-amylose under 
force. 

 

Polysaccharide Kuhn length lk and segm. 

elasticity Ks <300pN 

Kuhn length lk and segm. 

elasticity Ks >300pN 

CM-amylose Lk = 0.68nm ± 0.55nm Lk = 0.90 ± 0.54nm 

CM-amylose lit1 

[96] 

Lk = 0.45nm 

Ks  = 5600 pN/nm 

Lk = 0.54nm 

 

CM-amylose lit2 

[94] 

Lk = 0.54nm 

Ks  = 11000 pN/nm 

 

Ks  = 28000 pN/nm 

 

table 2: The mechanical parameters of CM-amylose 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: CM-amylose force curves 
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A single polysaccharide will display a characteristic force curve, which is 

typical of the substance examined and is essentially a force spectroscopic 

fingerprint of the molecule [30]. The graph in Figure 17 shows many 

CM-amylose curves taken from different samples, which all present the 

characteristic shoulder starting at ca. 300pN and can, in principle, be 

distinguished from other polymers in a mixed sample. However, to compare 

polymer force curves of molecules with different lengths these must first be 

normalised to a common extension i.e. by dividing the length axis of each 

curve by the polymer contour length. 

Future chain manipulation experiments require attached molecules that 

can be pulled through successive stretching cycles without falling off the tip. 

For example, to accurately determine the change in fluorescence of a single 

dye molecule under tension, it is important that the stretching process is 

reversible and that any observed effects are reproducible for the same 

molecule. A force curve series of CM-amylose is displayed in Figure 18. By 

gradually increasing the pulling distance the molecule could be stretched 

reversibly up to a length of 3µm, before finally rupturing. 
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Figure 18: Reversible pulling series showing the retraction (blue) and approach (red) 
curves of a CM-amylose molecule. In the last curve (green) the attachment finally 
ruptures. The cumulative force offset between each curve is 50pN. 
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Plateau force curves and the hydration energy of a single polymer 
An interesting discovery during the work on polysaccharides was the 

observation and study of a different type of force curve. The classical peak 

events, termed Langevin force curves [97], are characterised by a constant 

increase in force followed by an abrupt drop as the molecule ruptures. The 

new class of plateau force curves display a constant force height, followed by 

a “digital” drop. In nearly all cases this second type of curve is preceded by a 

large unspecific adhesion peak - the result of multiple overlapping short-range 

rupture events, which are typical for highly concentrated samples. This 

indicates that the plateau events may be long chains being pulled out of a 

large polymer aggregate on the surface.  

 A typical CM-cellulose pulling experiment with plateau type rupture 

events is shown in Figure 19. The unspecific adhesion peak is frequently in 

the range of 1-10nN.  The two plateau events are 135nm and 190nm long. 

Both end abruptly in a step down to a lower force level. The plateau height of 

the first level is 74pN, whereas the second plateau has a force of 132pN. 

Apparently, these force increments are cumulative, with each additional chain 

adding a certain force level to the total plateau height. 
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Figure 19: CM-cellulose force curve with plateau type pulling event. Following a large 
unspecific adhesion peak are two plateaus with constant force values of 132pN and 
74pN.  
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This type of pulling event has been described recently in the literature [98-

100] and various explanations have been suggested to explain the effect. The 

desorption theory [37] proposes that the polymer chain is gradually pulled off 

the surface, thereby rupturing many weak bonds, which sum up to a constant 

force. The rupture length reflects the section of the molecule, which is 

gradually zipped off the surface. The plateau force is therefore the result of 

chain desorption from the adhesive surface. For two molecules the plateaus 

add up and form the observed cascading steps [101]. Under these 

circumstances the plateau height should be proportional to the pulling speed. 

However, our results show that this is not the case. 

 In 2002 a new explanation was put forward based on the solvation of 

the polymers in a poor solvent [97]. In poor solvents the polymers form 

collapsed globules on the surface and the process of pulling-out single or 

multiple strands, monomer-by-monomer, into the solvent requires a constant 

force. On the other hand, in good solvents the classical “Langevin-type” peak 

force events are still observed. Therefore the rupture length corresponds to 

the chain length extracted, when it is debouched from the globule. However, 

insufficient plateau data was available to verify that the plateau heights were 

quantised. In another experiment, force plateaus with up to three steps were 

observed on fused lipid bilayers when they were pulled apart by an AFM tip 

[102].  

For our experiments, the system CM-cellulose in water proved to be 

very fruitful for measuring plateau events. Evidently, the solvent is good 

enough to prevent complete aggregation of the molecules, but poor enough 

for frequent plateau curves. After accumulating tens of thousands of 

CM-cellulose plateau force curves, a thorough statistical analysis reveals that 

the plateau steps are in fact quantised. The graph in Figure 20 shows a 

collage of force curves with multiple plateaus. Curves with up to 8 plateaus 

were registered. 

The plateau heights occur at specific quantised levels. Statistical 

analysis of these levels provides a distribution histogram, which can be fitted 

with a multi-peak Gaussian function. The resulting peaks of this fit are 

summarised in table 3.  
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Evidently the first two steps are higher, after which the successive 

steps converge to approximately the same force increment. This result is not 

compatible with the desorption-model, for which the difference in step levels 

should be the same.  

 

 

 

 

 

 

 

 

 

 

 

Figure 20: CM-cellulose force curves with multiple plateau events. The step heights are 
clearly quantised as indicated by the horizontal lines. 

 

Plateau n Force(n) (pN) ∆Force [n-(n-1)] (pN) ∆Force(n)/Force(n1) %

1 76.6  ± 0.2 76.6 - 

2 138.8 ± 0.2 62.2 81.1 

3 174.3 ±0.3 35.4 46.2 

4 207.9 ±0.4 33.7 43.8 

5 242.4 ±1.2 34.5 45.1 

6 ~277 ~ 35 ~45 

 

table 3: The plateau heights for each step were determined with a multiple-peak 
Gaussian fit of the step height distribution histogram. 

 

Based on the alternative chain-pull-out theory a new model was proposed by 

the author’s colleague C. Zhou, which can account for the differences in step 

height. This solvation energy model describes the plateau force in terms of the 

hydration energy required to extract the polymer chain from an aggregated 
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globule into a poor solvent [97]. Considering the cellulose chain as a tube of 

length L with a surface tension in water of σ [mN/m], the energy of hydration is 

given by: 

2E rLπ= − σ

2F r

eq. 17 

 

The corresponding force is therefore: 

π= − σeq. 18  

 

The surface tension of cellulose in water has been determined independently 

to be 70mN/m [103]. By inserting the plateau forces, a tube radius of 

r = 0.175nm (Ø~0.35nm) can be calculated. This is in fact approximately the 

diameter of a single cellulose chain of Ø ~0.4nm.  

Furthermore, the differences in step height can be explained by the 

reduction in surface area, when bundles of cellulose containing two or more 

strands are extracted. A single chain experiences the full solvation energy, 

whereas two strands shield each other by intersection of the hydration layers. 

The perimeter of two overlapping bundles 2*2π is therefore reduced by 2*β: 

 

2 2 2 2( )F rπ= − ⋅ − β σeq. 19 

 

 

Figure 21: Intersection of hydration layers (blue) in a cellulose bundle with two chains. 

 

Inserting for σ, r and F2 = 62.2pN affords the intersection angle 

β = 35° = 0.63rad.  

For higher order bundles the difference in surface area for each added 

strand can be calculated in a similar manner. To obtain the bundle perimeter 
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for three or more tubes, the enclosed area between the tubes (n-2)*π must be 

subtracted, which is essentially the area enclosed by a polygon formed 

between the centre points of the chains with n angles (cf. Figure 22). In 

addition, the strand overlap is slightly lower for the higher order bundles than 

for the double strand. The intersection angle for the higher order plateau 

heights F>2 can must therefore be reduced to ca. ¾β to correspond to the 

measured values.  

 

Figure 22: Higher order CM-cellulose bundles with multiple chains. 

 

For bundles with 7 tubes the last tube is completely enclosed by the others 

and no additional surface area is gained. The plateau force is therefore 

indistinguishable from a bundle with 6 tubes. By calculating the perimeter of a 

bundle with n tubes, the following equation can be given for the plateau force: 

 

 

( ) ( )2 6
3 32 2
4 4nF n n r n nπ π π= −

⎡ ⎤⎛ ⎞ ⎡ ⎤ r= − − β − − σ = − + 2 − β⎜ ⎟⎢ ⎥ σ⎢ ⎥⎝ ⎠ ⎣ ⎦⎣ ⎦
eq. 20 

 

 

A comparison of the theoretically calculated step heights with the 

experimental values in table 4 shows that the model accurately predicts the 

plateau heights. 
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Step n Force experiment (pN) Force calculated (pN) 

1 76.6 76.9 

2 138.8 138.5 

3 174.3 175.0 

4 207.9 207.7 

5 242.4 240.4 

 

table 4: Comparison of the experimental plateau height forces with the calculated 
theoretical values as determined by the solvation energy model. 

 

Furthermore, the solvation energy of a single CM-cellulose chain of e.g. 1µm 

length (~2200units [96]) in water is the area under the plateau curve: 

E1 = F1*1µm = 7.66*10-17J. This corresponds to a solvation energy per 

cellulose chain of 46 000kJ/mol and per glucose unit of 23kJ/mol, which is 

approximately the energy required to break 2-3 hydrogen bonds with 

9.8kJ/mol [104]. 

 

Conclusion plateau force curves 
In summary, the plateau force statistics on CM-cellulose confirm the 

chain-pull-out theory. Furthermore, a new solvation energy model based on 

the extraction of CM-cellulose bundles with intersecting hydration layers is 

proposed that accurately predicts the quantised plateau forces measured. 

This model is based on the solvation energy of a single polymer chain, as it is 

pulled out of a polymer globule into a poor solvent. For the first time the 

hydration energy of a single molecule can be measured directly. 
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2.3 Force spectroscopy of DNA on transparent surfaces 
The DNA system was chosen as the main substrate for the combined optical 

and AFM experiments for various reasons. First of all, the characteristic 

mechanical properties of the double-helix can be measured with single 

molecule force spectroscopic methods [8, 13, 40, 41]. Secondly, imaging 

techniques to visualise [75, 105] single DNA strands have been established 

during the last 10 years. Although both methods are experimentally 

challenging, in principle, it should be possible to simultaneously visualise the 

DNA, while the strands are manipulated with an AFM tip. However, a 

prerequisite for this combined experiment is a transparent surface that 

enables the recording of AFM force curves of DNA. Conventional gold 

substrates readily provide good force spectroscopic results, but the low 

transparency and fluorescence quenching effects prohibit the use of these 

surfaces for imaging. In the quest for the optimum surface, polylysine coated 

and silanised substrates were compared to gold and bare glass. It was 

possible to achieve characteristic and reversible AFM force spectra of single 

DNA strands on silanised glass and a statistical analysis of the rupture forces, 

plateau heights and rupture lengths was compiled. 

 

The system DNA with TO-PRO-3 
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Figure 23: The monomeric TO-PRO-3 (left) and dimeric YOYO-1 (right) cyanine dyes. 

 

TO-PRO®-3 is a DNA binding fluorescence cyanine dye 

(λabs=642nm, λem=661nm) [77]. When bound to DNA the fluorescence 
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quantum yield of the dye increases 200-fold, thereby enabling high contrast 

imaging of the DNA strand against an essentially non-fluorescing background 

of dye in solution. TO-PRO-3 is a member of a series of cyanine dyes 

including prominent DNA intercalators such as the monomeric dyes  

YO-PRO-1 (oxazole ring), TO-PRO-1 (thiazole ring), PO-PRO-1 and the 

dimeric dyes YOYO-1, TOTO-1 or POPO-1 [106]. By convention the -1 or -3 

in the cyanine dye names indicates the number of carbon atoms in the 

conjugated bridge between the aromatic groups (cf. Figure 23). 

  There is some evidence that TO-PRO-3 intercalates by insertion of the 

planar π-conjugated segments into the DNA together with an additional 

electrostatic stabilisation [107]. Furthermore, although TO-PRO-3 does also 

bind to single stranded ssDNA [8], Chen et. al. have demonstrated that the 

fluorescence from TO-PRO-3 is about two orders of magnitude higher when 

mixed with double stranded DNA than single stranded ssDNA, suggesting a 

far stronger fluorescence enhancement when binding to the latter [108]. 

Nonetheless, unspecific electrostatic interactions between the positively 

charged dyes and the negatively charged DNA background, or groove binding 

modes may also be involved at higher dye/base pair ratios, as has been 

deduced from hole burning experiments [109].  

 

The transparent surfaces 
DNA immobilisation is an important factor for single molecule imaging and 

thus many methods have been devised to fix DNA on transparent 

surfaces [110]. The two basic approaches to DNA immobilisation exploit either 

the hydrophobic nature of the unhybridised free base pairs at the DNA termini 

- the so called sticky ends - [111] or the electrostatic nature of the DNA 

phosphate backbone, due to the overall negative charge [112].  

Similar to single stranded ssDNA, which is known to be very sticky, 

attaching non-specifically to most surfaces [112], the sticky ends are attracted 

to hydrophobic surfaces (cf. Figure 96). Hydrophobic surfaces include 

coatings of gold [113] or vinyl terminated silanes [10, 114-117], whereas 

electrostatically positive surfaces can be generated with ammonium 

functionalised silanes (APTES) [118], cationic fluid support membranes [76, 
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119], polylysine coated glass [112, 120] or by adding divalent cations to 

generate positive charges on mica [121-124]. DNA adsorbs very poorly to 

cleaned silicon surfaces even in the presence of divalent cations [125]. Based 

on these experiences, silanised and polylysine coated surfaces were chosen 

and examined as to their suitability for single molecule force spectroscopy of 

DNA.  

Gas phase adsorption of (7-octen-1-yl)trimethoxysilane has been used 

to prepare silane monolayers with vinyl functionalities [110]. Usually the 

coated substrates are then baked in an oven at 100°C, which leads to 

extensive cross-linking between the silane termini. This curing process 

creates a stable silane network covering the substrate surface. 

 

 

Figure 24: The hydrophobic DNA sticky ends attach to a (7-octen-1-yl)trimethoxysilane 
surface.  

 

Figure 25: Electrostatic attraction of the DNA phosphate backbone to a positively 
charged polylysine surface. 
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In addition, polylysine coated coverslips have been generated that exhibit an 

electrostatically attractive surface [112, 120, 126]. At pH = 8 the ammonium 

scopy  
o date, the mechanical manipulation of single DNA molecules has focussed 

eezers, 

 dye labelled λ-Phage DNA strands in a fluid shear flow [11]. 

Likewi

s possible to stretch single DNA molecules with 

magne

le insights into the mechanical properties of 

individ

function on polylysine is positively charged (iso-electric point pH = 10.0), so 

that it readily binds the oppositely charged DNA filaments. By exploiting 

laminar flow techniques, single DNA molecules could be immobilised and also 

elongated on polylysine coated glass coverslips [127, 128].  

 

Single molecule DNA manipulation and force spectro
T

on stretching the strands with the help of a fluid shear flow, optical tw

magnetic beads or AFM cantilevers [8, 41]. Each of these methods provides a 

different means to interact with single molecules, although a universal tool has 

yet to be found.  

Early experiments by Chu et al. demonstrated that it was possible to 

stretch out single,

se, most of the other aligning procedures for DNA rely on laminar flow 

stream straightening of a terminally attached strand to unwind DNA from its 

natural random coil conformation [127, 128]. An effective method to generate 

the necessary flow is the molecular combing process developed by Bensimon 

and Croquette, which stretches DNA on silanised surfaces, using a receding 

water meniscus [10, 114].  

A different set of experiments pioneered in 1992 by C. Bustamante and 

S. Smith showed that it wa

tic beads [12] and thereby measure the elasticity and force-extension 

curves of the molecule in the force range of 0.1–10pN [13]. The method was 

extended by applying a rotating magnetic field, which enabled twisting and 

stretching of the DNA coil [15].  

Slightly higher forces of up to 100pN can be achieved with optical 

tweezers, providing considerab

ual DNA molecules, such as the force-extension profiles [129] and 

persistence length [87]. Cluzel [16] and Smith [17] showed that, at a stress of 

65pN, dsDNA underwent a reversible transition to a stretched “S-form”, which 

was 1.7 times longer than the canonical B-form DNA. The transition is highly 
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co-operative, occurring within a narrow force regime of 2pN and increasing 

the rise per base pair from 3.4 to 5.8Ǻ. Finally, Kinosita et al. managed to tie 

knots into DNA using two terminally attached polystyrene beads [20]. 

To access stretching forces >100pN atomic force microscopy (AFM) 

has proved to be an invaluable tool [15]. By picking up and applying a vertical 

force t

py 
The control experiments show that DNA cannot be picked up readily on 

ce pulls are observed. However, to first confirm 

nd 

cteristic stages in the force curve, as suggested according to the 

o single DNA chains, the molecular elasticity of DNA can be measured 

and described in the form of a force-distance spectrum [23, 130]. A second 

“melting” transition was observed in these force curves at ca. 150pN, which 

was attributed to the dissociation of the double helix under high tension [38]. 

In addition, the effect of intercalating dyes on the force spectra was tested 

[131, 132]. However, a drawback of AFM force spectroscopy has to date been 

the unspecific random attachment of a molecule to the cantilever tip [31]. To 

increase the chance of picking up a single polymer, the force pulling 

experiments are routinely performed from coated surfaces with high levels of 

coverage. Possibly, the direct optical visualisation of the DNA can improve 

attachment specificity. Finally, scanning AFM setups have also been 

employed to manipulate single DNA chains, albeit without measuring the 

acting forces [133, 134].  

 

DNA force spectrosco

cleaned bare glass and no for

the results achieved by other groups [39], DNA samples were prepared a

examined on gold coated coverslips. A typical DNA force curve pulled on gold 

is shown in  

Figure 26. The schematic DNA images describe the stretching mechanics at 

various chara

standard model [135]. After initial straightening to the full contour length, an 

additional force of 65pN results in a conformational change, the B-S 

overstretching transition, during which the DNA can be extended to ca. 1.7 

times the original length. This plateau is followed by a shorter shoulder at 200-

400pN (the melting transition), which is attributed to the gradual 

dehybridisation of one of the single strands in DNA [39]. 
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igure 26: Force spectrum of λ-phage BSTE II digest DNA on gold and schematic 
escription of the stages in the stretching process.  

old, new transparent surfaces 

ere examined. On positively charged polylysine coated glass a strong 

igure 27: Force spectrum of λ-phage BSTE II digest DNA on polylysine coated glass. 

F
d

 

After having reproduced DNA force curves on g

w

electrostatic DNA adhesion was expected. Nevertheless, characteristic single 

molecule force curves are rare. An example with an exceptionally high rupture 

force of 1.9nN is shown in Figure 27. 
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However, on hydrophobic silanised surfaces reversible pulls are readily 

vailable. The following waterfall graph (cf. Figure 28) shows a series of 

igure 28: Waterfall graph of a reversible 0.5 Hz pulling series of λ-phage BSTE II 
igest DNA on a silanised surface. The surface retraction curve (blue) is followed by a 

subsequent approach curve (red). The final cycle shows the strand rupture event. The 

d that it is possible to reversibly 

tretch DNA on transparent surfaces; especially silanised glass afforded 

o quantify the results, statistics on the B-S plateau force, the rupture force 

 each surface. The plateau heights were 

a

0.5 Hz pulling cycles of the same DNA molecule. By increasing the pulling 

distance for each cycle the DNA could be stretched through the first and 

second transitions, before finally rupturing.  
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d

force offset between each of the curves is 25pN. 

 

These qualitative force curves demonstrate

s

frequent characteristic DNA curves. 

 

Statistics on DNA force curves 
T

and rupture length were compiled for

determined by averaging the points along the B-S transition section of the 

force curve and calculating the difference in force to the baseline (B-DNA). A 
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histogram of the plateau heights for 131 DNA force curves, displaying a clear 

plateau on silanised glass, is shown in Figure 29. Fitting the points of the 

histogram with a Gauss function reveals a peak value of 63.8pN 

(mean value = 67.7pN, σ = ±14.3pN). The distribution of values is probably a 

consequence of cantilever sensitivity and spring constant calibration, which 

both relate directly to the forces measured or of the specific DNA pulling 

geometries. 

 

Figure 29: Dis
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tribution and Gauss fit (Fmax= 63.8pN) of the DNA plateau heights on a 
ilanised surface. 

ture forces were determined and summarised in a histogram 

f. Figure 30). To avoid vitiation of the results due to unspecific adhesion or 

s

 

Likewise, the rup

(c

multiple overlapping rupture events, the events under 50pN were discarded. 

The mean value of 375pN for the rupture force varies considerably with a 

standard deviation of σ = 327pN. This suggests multiple rupture mechanisms, 

which may not necessarily have to do with DNA bond breakage, but could be 

due to desorption of the DNA either from the tip or the surface. 
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igure 30: Histogram of the DNA rupture forces for the events in Figure 29 on silanised 

igure 31: Histogram and Gauss fit (Lmax = 420nm) of the rupture lengths for λ-phage 

he histogram in Figure 31 shows a distribution of the rupture lengths as 
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BSTE II digest DNA on silanised glass. 

 

T

measured for the 131 pulling events with a clear B-S plateau. The λ-phage 

BSTE II digest sample contained a mixture of 14 fragments of the original 

λ-phage DNA (length distribution of 117-8454bp ≈ 40nm-2900nm). Therefore, 

it was no surprise to measure a distribution of contour lengths with an average 

value of 754nm, and a large standard deviation of σ = 775nm. Pulls shorter 
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than 100nm were disregarded because individual events could not be 

distinguished from overlapping multiple events.  

 The statistical distributions of the rupture forces and lengths for 90 

 

 

igure 32

igure 33

pulling events of λ-phage digest DNA on polylysine are shown in Figure 32 

and Figure 33, respectively. 

 

 

 

 

 

 

 

 

 

 

F : Histogram of the DNA rupture forces on polylysine 
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F : Histogram of the DNA rupture lengths on polylysine 
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Similar statistics were put together for gold coated glass surfaces. The results 

Mean value Rupture force [pN] Rupture length [nm] Plateau force [pN]

are summarised in table 5. 

 

Gold 320pN - 65pN ±15pN 

Po e 193 pN 3370nm 800nm lylysin pN ±183 ±2 54pN ±21pN 

Silane 375pN ±327pN 754nm ±775nm 68pN ±14pN 

 

ble 5: Summary of the mean values for rupture force, rupture length and plateau 

he average plateau forces are generally around 65pN for all of the three 

rmore, the average rupture lengths on polylysine (3370nm) are 

far lon

ta

height of λ-phage BSTE II digest DNA on various surfaces. 

 

T

surfaces, which corresponds to the previously proposed plateau height value 

of ca. 65pN for DNA on gold [38]. Apparently, the plateau force of DNA is 

independent of the surface. The mean rupture forces of single DNA strands 

on gold or silanised glass are between 300-400pN, albeit with a large 

standard deviation. The notable exception is polylysine with a value of 

ca. 200pN.  

Furthe

ger than on silane (754nm). In many cases these pulling events even 

exceed the maximum contour length of the longest DNA fragment (2.9µm) in 

the λ-phage BSTE II digest mixture. This cannot be due to erroneous 

stretching of single polylysine strands from the surface. Control experiments 

without DNA on polylysine show no pulls at all and the length of an average 

polylysine strand of ca. 100nm is hardly long enough to explain the pulling 

lengths measured. Furthermore, plateau events are relatively seldom on 

polylysine, occurring in only ca. 5% of the prepared samples, whereas gold 

and silane surfaces readily afford characteristic DNA pulls. Evidently there is a 

marked difference between the force curves achieved on polylysine on the 

one hand and on gold/silane on the other. This effect has been attributed to 

 43



 

the condensating effect of the cationic polylysine chain on DNA and will be 

discussed in detail in the conclusion of the force pulling experiments on DNA. 

 

The effect of TO-PRO-3 on DNA force curves 
Various attempts have been made to establish the mechanical effect exerted 

on a DNA strand by intercalating and groove binding dyes [136]. AFM force 

spectroscopic data show that intercalating agents such as cis-platinum [137], 

proflavine [132] or ethidium bromide [131] expand the contour length and 

shorten the B-S transition region of the DNA, due to a partial unwinding of the 

chain. In addition, a marked reduction in cooperativity of the transition is 

observed, meaning that the plateau no longer occurs at a specific force, but 

increases gradually with the pulling length.  

On the other hand, groove binders such as SYBR green® [138] or 

berenil have less influence on DNA force curves [131, 132]. Cooperativity is 

reduced as with the intercalators, but to a lesser extent. The plateau remains 

prominent and its relative length does not change significantly.  

 For the cyanine dye YOYO-1 a 1.2 fold elongation of the DNA on 

intercalation and a clear hysteresis in the force curves were measured in 

optical tweezers experiments [139]. The fluorescence polarisation for aligned 

strands indicates that two distinct binding modes coexist: intercalation and 

groove binding. Although some optical experiments suggest predominant 

intercalation for the similar cyanine dye TO-PRO-3 [107], groove binding 

modes may play a role at higher dye/base pair ratios [109].  
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Figure 34: Schematic description of TO-PRO-3 intercalation between the base pairs. 

 

To determine the effect of TO-PRO-3 on the mechanics of single DNA strands, 

the AFM force measurements on silanised glass were repeated with a dye 

concentration of 5*10-6M. A superposition of the normalised force curves (cf.  

Figure 35) clearly shows the loss in cooperativity. The clear structure of the 

flat transition at 65pN and the step to the melting transition at 200pN are lost 

to a gradual increase in force with pulling length. This behaviour is typical of 

intercalators and indicates that this binding mode is significant at high 

TO-PRO-3 concentrations, although some simultaneous groove binding 

cannot be excluded.  

Furthermore, due to dye intercalation the DNA is partially unwound, 

thereby increasing the contour length so that the onset of the B-S plateau is 

postponed. However, the dye has no effect on the slope of the force curve 

during and after the melting transition. According to the standard model the 

DNA has denatured into two single strands at this stage [39], possibly having 

extruded the intercalators. Combined optical-AFM experiments may shed light 

on the exact mechanisms of dye binding during DNA stretching.  
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Figure 35: DNA force curves without (black curve) and with TO-PRO-3 (red curve) 
normalised to the contour length. 

 

A summary of the statistics of 141 pulling experiments for DNA with 

TO-PRO-3 is presented in table 6. Although there is a strong qualitative 

change in the shape of the force curves, there is no significant difference in 

the average rupture force or rupture length compared to the curves measured 

without dye. 

 

Mean value Rupture force [pN] Rupture length [nm] Plateau force [pN]

Silane 375pN ±327pN 754nm ±775nm 68pN ±14pN 

Silane + dye 394pN ±301pN 811nm ±629nm - 

table 6: Statistics of the force curves for DNA on silanised glass with TO-PRO-3. 
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Conclusion and discussion DNA force spectroscopy 
With careful handling it is possible to attach and reversibly stretch a single 

DNA molecule through a few hundred characteristic pulling cycles on silanised 

glass surfaces. The plateau forces (68pN ±14pN) are comparable to the 

results previously achieved on gold [38]. Likewise, the rupture forces on silane 

and gold are similar. Applying the intercalating dye TO-PRO-3 has little 

influence on either the rupture force or the rupture length, although a marked 

qualitative loss of cooperativity is observed in the B-S plateau.  

To explain the similarities between gold and silane it is useful to note 

that both surfaces are expected to be hydrophobic [113, 140]. Furthermore, 

DNA is ten times more likely to bind to a hydrophobic surface by an extremity 

than by a mid-section [10]. This effect may have its origin in the 12 bases 

unpaired region at the ends of λ-phage DNA, often referred to as “sticky ends” 

(cf. Figure 24). These termini are of hydrophobic nature, whereas in the paired 

mid-region the negatively charged hydrophilic phosphate-backbone prevails 

(cf. Figure 36). In fact, hydrophobic interactions may be the predominant 

binding mechanism in most force spectroscopic pulling experiments on 

biological or organic polymers. 

 

Figure 36: Hydrophobic attachment of DNA λ-phage “sticky ends” to the cantilever tip 
and the silanised surface. 

 

In the experiments on polylysine few samples afforded characteristic DNA 

force curves with clear B-S and melting transitions. Furthermore, the force 

curves are generally far longer than on gold or silane surfaces. The results 

obtained in the imaging experiments show that the condensating and 
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aggregating effect of polycations on DNA could be responsible for this effect. 

Probably multiple-strand DNA fibres are being pulled, which are held together 

by positively charged polylysine chains. This explains the rare and unusually 

long DNA lengths measured. The electrostatic attraction is so large that it 

leads to DNA agglomeration on the surface, thus reducing the availability of 

the strands for force pulling experiments and resulting in the frequently 

uncharacteristic force curves without a clear plateau. The DNA condensation 

and aggregation process is described in chapter 4.2. 
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3. Single molecule fluorescence microscopy 
The primary goal was to employ the combined optical/AFM setup to study the 

influence of an applied force on the fluorescence properties of single molecule 

dyes. Especially spectral shifts or changes in the overall brightness of the dye 

fluorescence were envisaged as potential properties for investigation. The 

main focus was thereby on the system DNA/TO-PRO-3, but early experiments 

were also conducted on single organic dyes, which could be attached to a 

glass surface and pulled by the AFM via a connected polymer tether. Systems 

such as cyanine5 (Cy5) with polyethyleneglycol (PEG) and also a series of 

hemicyanine dyes were examined.  

To gain a thorough understanding of the required techniques, single 

molecule experiments were conducted on these dyes to determine their 

optical suitability. Although the properties of such common good dyes as 

terrylenediimide (TDI) or cyanine5 (Cy5) could be verified, the new stilbene 

derivatives were inferior in fluorescence quantum yield and could therefore not 

be used for single molecule experiments. Furthermore, the chemical synthesis 

and single molecule attachment of these tethered, highly diluted single 

molecules turned out to be challenging. The experiences gained were 

therefore adapted to study the DNA/intercalator system, for which combined 

experiments were more feasible. 

 

Figure 37: By applying a force with the AFM tip via a polymer tether, single dye 
molecules can be stretched, while their fluorescence is monitored. 
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3.1 General principles  
In this chapter the basic photophysical concepts and the prerequisites for 

good single molecule dyes shall be discussed. It can be shown that the new 

cyanine dyes do not meet the necessary standards, which explains why good 

fluorescence images were not easily attained of these molecules. In 

comparison, the dyes Cy5 and especially TDI fully comply with the 

requirements for good single molecule imaging. 

The convenient optical detection of single fluorescing dye molecules is 

a fairly recent technique [43, 46]. The basic photophysical processes involved 

are described in Figure 38. After exciting a dye with laser-light from the 

electronic ground state S0 to an excited state S1, the absorbed energy is 

typically given off within 1 to 10ns - the fluorescence lifetime of the dye. This 

can occur as fluorescence radiation with the rate krad [s-1]. The fluorescence is 

usually red-shifted compared to the excitation light. This Stokes-shift is the 

result of the radiative transition into higher order vibrational states of the S0 

ground state. Accordingly, the arrow krad is shorter in Figure 38, corresponding 

to a lower energy and a longer emission wavelength. If the molecule relaxes 

to the S0 via a non-radiative transition through internal conversion kIC, no 

fluorescence is emitted. In principle, the intersystem crossing (ISC) transition 

to a triplet state T1 via spin flip is forbidden, but a (usually weak) spin-orbit 

coupling can enable a low transition probability. Likewise, the relaxation from 

T1 to S0 is slow, resulting in a relatively long lifetime of the triplet state (µs-ms). 

 

Figure 38: Jablonski energy scheme of the relevant electronic states and transitions in 
single molecule fluorescence; wavy arrows are non-radiative. 
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Suitable single molecule dyes 
Various consequences for the spectroscopy of single molecule fluorescence 

dyes can be derived from the description in Figure 38. In the ideal case, 

assuming saturated excitation and that all excitation cycles result in radiative 

emission, the dye will emit krad = kFl = 109 photons/sec, corresponding to a 

fluorescence lifetime of τFl = 1/kFl = 1ns. Even assuming a detection efficiency 

of ca. 2%, this is still well in excess of the number of photons/second required 

for single molecule fluorescence detection or spectroscopic analysis. Usually 

however, the radiative emission rate is reduced by the non-radiative 

processes kIC and kISC: 

 

eq. 21 

 

The proportion of radiative emission to total excitation relaxation is given by 

the fluorescence quantum yield ΦFl [%]: 

 

eq. 22 

 

Obviously a high fluorescence quantum yield is desirable for a good single 

molecule dye. As a rule of thumb the practical limit is ca. ΦFl > 10%. 

 Although the triplet rates kISC are usually relatively low, they are 

important for determining of the suitability of a single molecule dye. Since the 

triplet state has a comparatively long lifetime, a molecule that enters a triplet 

state is essentially caught there for µs-ms and cannot continue to produce 

photons through the radiative photocycle. A low triplet quantum yield 

Φtrip < 0.1% is therefore an essential prerequisite for a good single molecule 

dye. 

 Another important factor is the photostability of a dye. This is 

expressed in the photobleaching quantum yield Φd: 

rad Fl IC ISCk k k k= − −

rad
Fl

rad IC ISC

k
k k k

Φ =
+ +

1
d =

no. photocycles before bleaching
Φ

 

eq. 23 
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It is essentially the factor of the total number photocycles that lead to 

irreversible dye bleaching [141]. Typical values for Φd in single molecule dyes 

are in the range of 10-6 to 10-8 [142, 143]. The photostability is related to the 

triplet quantum yield, because the reaction with singlet oxygen is assumed to 

be one of the main pathways leading to dye bleaching. By quenching the dye 

triplet state, the normal triplet oxygen 3O2 is converted into the highly reactive 

singlet 1O2 form, which is a potent photooxidant [141]. In effect, the 

photodestruction quantum yield expresses the total number of photons that 

can be gleaned from a single dye before it bleaches, whether they are 

interrupted by dark states such as T1 or not. Obviously, an uninterrupted 

stream of photons will provide better images with higher signal to background 

ratios but, given breaks, a good single molecule dye should emit at least 

105 photocycles over a time period of 1 sec. 

 Finally, good single molecule dyes have high molar extinction 

coefficients of ε(ν) > 50 000 [lmol-1cm-1] and correspondingly high 

absorption cross-sections. They absorb the excitation light sufficiently well to 

afford enough fluorescence photocycles for imaging with typical laser 

excitation powers of ca. 1-10kW/cm2. Dyes with weaker extinction coefficients 

would require higher laser excitation powers, which bring with them a host of 

adverse effects, such as a higher background signal and faster dye 

photobleaching rates. Examples of good dyes are tetramethylrhodamine 

(TMR) [142], cyanine 5 (Cy5) [144, 145] and especially terrylenediimide (TDI) 

[146]. 

 

Properties of single molecules 
The advent of single molecule fluorescence microscopy has sparked the 

desire to measure the unique photophysics of individual molecules. 

Conventional bulk samples with many molecules can provide only an average 

ensemble picture. For example it was found that single molecules do not 

fluoresce at a constant rate, but instead turn on and off [44, 147] - a 

phenomenon that has been termed blinking [55]. A dye may emit “bunches” of 

photons before jumping into a non-fluorescent “dark state”, such as a triplet 

state [48, 148]. The detectable intervals can range from a few µs in the case 
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of a triplet to several seconds for longer lasting dark-states that may have 

their origin in photochemical reactions or conformational changes in the dye 

[145].  

 On an even shorter time-scale another single molecule phenomenon 

can be observed, termed “antibunching” [149]. Based on the fluorescence 

lifetime (usually a few nanoseconds), a finite time span is required for a dye to 

complete a full photocycle. A single molecule cannot be re-excited until it has 

relaxed back into the starting ground state and the number of photocycles per 

second is limited.  

Furthermore, in contrast to the isotropic polarisation of a bulk sample, 

single dyes absorb the excitation light according to their individual absorption 

transition dipole moments µ , which depend on the orientation of the molecule 

[150]. The observed fluorescence is higher when the excitation light is 

polarised with the same orientation asµ . The fluorescence is thus proportional 

to the angle ϕ  between the electric field vector E  of the excitation light and 

the dipole moment: 

2
fl.I cos∝ ϕeq. 24 

 

Finally, single molecules exhibit abrupt spectral shifts in their 

absorption and emission spectrum – spectral diffusion, which are probably 

related to conformational reorientations or changes in the immediate dye 

environment [48, 151-153].  

These inherent single molecule attributes are relevant to the planned 

pulling experiments. By applying a mechanical force to a single dye molecule, 

the influence of molecular tension on the photophysical properties could be 

investigated. Especially spectral shifts, due to molecular reorientations under 

strain are expected.  

 

3.2 Methods of single molecule microscopy 
This chapter gives a brief comprehensive summary of the common 

fluorescence microscopy techniques, which have been employed previously 

to generate images or spectra of single molecules. This is followed by the 
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conducted experiments on the dye systems Cy5 and TDI using confocal, 

wide-field and TIR imaging, which are presented in detail in the following 

sections.  

 

Spectral isolation of single molecules at low temperatures 
In order to resolve single molecules in a sample they must be separated either 

spatially or spectrally [154]. The latter approach has been achieved in a solid 

matrix at low temperatures of a few K, for which molecules can be identified 

according to their slightly different, i.e. inhomogeneous, narrow-band 

absorption frequencies [43]. A prominent example is pentacene in a 

para-terphenyl solid [44, 47]. Due to its low phonon coupling to the matrix and 

its high absorption cross section of the zero-phonon line, the homogenous 

absorption lines of individual pentacene guest molecules can be identified in 

the host matrix with a narrow line laser beam.  

 

Near-field scanning microscopy 
The alternative approach to resolve individual molecules by spatial separation 

is achieved by preparing highly diluted samples with ~10-10M of dye. The first 

method to use this approach was the scanning near-field optical microscope 

(SNOM) [57]. The resolution of an optical fluorescence experiment is 

generally restricted by the wavelength of the excitation light to ca. λ/2 – the 

diffraction limit. To circumvent this limitation the SNOM microscope was 

developed, which uses a 50-100nm diameter fibre aperture surrounded by a 

thin aluminium coating to illuminate the sample [63]. In effect, the light is 

“squeezed” out of this opening at 5-10nm above the surface. The optical 

resolution is limited to the aperture dimensions of ca. 50nm to 100nm, which 

is 3-5 times better than the optical diffraction limit. A sample image can be 

generated by scanning the tip at a constant height over the sample. 

 

Far-field confocal microscopy 
Confocal microscopy is a far-field illumination technique that generates a 

sample image by scanning a diffraction limited illumination spot over the 

sample and detecting the fluorescence e.g. with an APD (avalanche 
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photodiode) [53-55]. An optical microscope in epi-configuration and a high NA 

(numerical aperture) objective is used to focus a laser beam onto the sample. 

By placing a pinhole in the image plane of the microscope, the fluorescence 

light from out-of-focus illuminated regions is rejected, while most of the 

fluorescence from the focal volume can pass through to the detector. Through 

convolution of the illumination and pinhole-generated detection volumes, a 

relatively high lateral resolution can be achieved [155]:  

 
0 4

FWHM
A

.x
N

λ
∆ ≈eq. 25 

 

Confocal microscopy enables a non-invasive detection and a three 

dimensional sectioning capability. By focussing on a single dye, time-traces 

can be captured with a high time resolution, which show the on-off dynamics 

such as blinking [156]. 

 

Wide-field microscopy 
Using wide-field illumination techniques, sample images can be achieved 

without scanning [56, 157]. By defocussing the illuminating laser beam in an 

epi-fluorescence microscope setup, a wide illumination field can be projected 

onto the sample surface and then detected with a highly sensitive CCD 

camera. This generates immediate images of the whole illumination area with 

time intervals of up to 10ms. Such high frame rates enable studies on single 

molecule movement and diffusion rates [56], such as the monitoring of single 

viruses labelled with ca. 100 fluorescent dye molecules [158] or recently the 

study of single dye labelled viruses [52]. The lateral resolution is 

approximately [155]: 

 
0 51
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N

λ
∆ ≈eq. 26 

 

However, the positioning accuracy of dilute fluorescent molecules is 

significantly higher than the spatial resolution. It is limited by the signal to 

noise ratio. Unfortunately the background fluorescence noise from 

out-of-focus regions is not suppressed in conventional wide-field imaging. 
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Total internal reflection (TIR) microscopy 
One way around the problem of high background noise in imaging is to 

employ evanescent wave excitation by total internal reflection (TIR) of the 

laser light at the glass/liquid or glass/air interface [58-60]. If the illumination 

light hits the glass/sample interface at a glancing angle that is greater than the 

critical angle for the two media, then the beam is totally reflected. However, 

the electromagnetic field does not abruptly drop to zero above the glass, but 

rather penetrates the sample with an exponentially decaying intensity and a 

characteristic decay length of ~100nm. This is sufficient to excite dye 

molecules immediately on the glass surface, but greatly reduces the 

out-of-focus background signal. The two main methods for achieving TIR 

excitation are the prism based geometry and the objective-type TIR geometry, 

which both provide large illumination fields with an extremely thin sample 

excitation thickness [61, 62, 159].  

 

Single molecule spectra at room temperature 
In addition to the imaging techniques, it is also possible to study the spectral 

emission characteristics of a single dye molecule. The fluorescence spectrum 

of a single molecule can be measured by using either a prism or a grating as 

the dispersive element. Although the grating has higher losses, because a 

significant portion of the light is directed into higher diffraction orders, it 

provides a higher spectral resolution and a linear dispersion of the light. 

Gratings have therefore displaced the prism as the primary dispersive 

elements in modern spectroscopy, although the latter are still applied for 

single molecule detection, due to the lower signal losses. The spectra of 

single molecules are unique and can shift as a result of environmental 

influences on the molecular states responsible for the fluorescence [151]. 

Conformational changes or photochemical reaction can also induce single 

molecule spectral diffusion. Single molecule spectra have been investigated 

for various different dyes [145, 146, 152, 153, 160].  

 

 56



 

3.3 The general optical setup 
The laser setup for the imaging experiments is composed of three sections: 

the excitation laser pathway, the inverted optical microscope and the 

fluorescence detection pathway.  

 

 

Figure 39: The optical setup showing the excitation and detection pathway 

 

The excitation pathway and the inverted microscope 
A He-Ne laser (Laser2000®) provides a 4mW 632.8nm laser light source, 

which is expanded with a telescope and trimmed by pinholes to a diameter of 

ca. 8mm – the full objective aperture. The periscope is then used to align the 

excitation beam according to the optical axis of the microscope. For normal 

epi-illumination confocal microscopy, parallel laser light is used, which results 

in a diffraction-limited spot at the objective focus. 

The imaging experiments are achieved by pre-focussing the excitation 

beam with the help of an imaging lens, such that the focus coincides with the 
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microscope objective back-focal-plane. The generated light then reaches the 

mounted glass coverslip as a parallel beam, thus enabling the illumination of a 

wide sample area.  

For objective-type TIR imaging, the periscope and lens are shifted 

laterally, thereby moving the laser beam from the optical axis to the peripheral 

edge of the objective aperture. The resultant parallel light rays exit the 

objective at a sufficiently large angle, so that total internal reflection occurs on 

the sample coverslip surface. A 100x oil immersion objective (Zeiss®, 

NA=1.45) is employed, which enables large exit angles of up to 73.2° 

(cf. section 3.6) for a detailed description of objective numerical aperture and 

beam exit angles). 

 

Figure 40: Nicon TE300 microscope [adapted from Nicon microscope handbook] 

 

The detection pathway 
The sample fluorescence signal is collected by the objective and directed 

back down into the microscope. After passing a dichroic mirror 

(AHFanalysentechnik®, cut-off 645nm), which separates the reflected laser 

light from the transmitted fluorescence, the fluorescence light is guided to the 

side port of the microscope. In the case of confocal microscopy, a pinhole is 

placed in the image plane of the microscope to block out-of-plane background 

from the fluorescence signal. The beam is then sent through a 700/75 or 

 58



 

720/150 band-pass filter (AHFanalysentechnik®). These filters let the 

appropriate fluorescence light pass (662-738nm or 650-790nm), but block all 

other wavelengths. The transmission spectra of the bandpass filters are 

shown in Figure 41. They display a high blocking optical density of ca. OD6 

and a transmission of ca. 95%. The remaining fluorescence is then projected 

either onto the chip of a water cooled back-illuminated charged coupled 

device (CCD) camera (SpectraVideo™ Camera, Pixelvision®) for imaging or 

an avalanche photodiode (APD, EG&G® Canada) for confocal microscopy. 

The CCD chip (1100*330 pixels) has a pixel size of 24µm2. For single 

molecule spectra the fluorescence light is first dispersed by a spectrometer 

(Kaiser optical systems®, Holospec™, linear dispersion 16.0nm/mm) and then 

directed onto the chip of another air cooled CCD camera (Roper Scientific®). 
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Figure 41: Transmission spectra of the fluorescence bandpass filters 
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Experiments using confocal illumination 
Confocal microscopy provides a convenient method to image single 

molecules in a matrix or on a surface. Images are generated by scanning a 

single molecule sample through a focussed laser spot (cf. Figure 42).  

 

Figure 42: Confocal illumination of a single molecule sample. 

 

A piezo system is used to move the sample. The exact position is controlled 

via a LabView® program (cf. Appendix 4: LabView® programs), which 

simultaneously monitors the APD fluorescence signal for each scanned pixel 

through a counter card (National Instruments®, AT-MIO-16XE). Furthermore, 

by directing the illumination spot to a dye position, time-traces with up to 20µs 

time resolution can be taken, which show the temporal development of the 

single molecule fluorescence emission. It is also possible to re-direct the 

fluorescence signal onto a spectrograph to measure the spectral dynamics of 

a single illuminated dye. 

 

Experiments using wide-field illumination 
For wide-field imaging the excitation beam is focussed onto the 

back-focal-plane of the objective, so that a cone of light illuminates the sample 

with a diameter of ca. 20-100µm (cf. Figure 43). Fluorescence from this area 

is captured by the objective and projected onto a CCD camera.  
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Figure 43: Wide-field imaging by focussing on the back-focal plane. 

 

An additional commercial colour camera is mounted on the front exit of the 

microscope and employed to focus the sample prior to the experiment 

(cf. Figure 39). When the sample is in focus, the edges of the illumination 

pinhole are depicted sharply, as can be seen in the laser light reflection image 

in Figure 44. The regular striped pattern is due to interference between the 

light reflected form the coverslip surfaces. These images show condensed 

DNA rods on a polylysine coated glass surface.  

  

0

1270

2539

3809

5000 

 

 

 

 

 

 

Figure 44: Reflection image of DNA rods.  

Figure 45: Fluorescence image of DNA rods. The arrows indicate stretched DNA rods; 
illumination spot Ø~35µm; laser power 20 W/cm2. 
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The imaging camera data is analysed with the image-processing software 

Davis™ (Lavision®, Göttingen, Germany), saved in the IMX format and 

displayed on screen as a pixel image. To speed up data processing, a 

program was written in DAVIS™ script that enables an automated transfer of 

the fluorescence intensity results to a data text file. Davis also offers the 

possibility of displaying consecutive individual image frames as animated 

movies. 

 

3.4 Confocal microscopy and single molecule fluorescence 
spectra 
Ultimately, the aim is to investigate the spectral dynamics of a fluorescent dye 

under mechanical tension. To this end, the common single molecule dyes TDI 

and Cy5 were investigated using confocal microscopy and fluorescence 

spectroscopy. The technique of single molecule confocal microscopy was 

introduced in section 3.2. The following chapter describes the experiments 

and results achieved with this imaging method. 

 

The results of the confocal images and spectra of TDI  
Terrylenediimide (TDI) is the best single molecule dye know to date, with an 

exceptionally high photostability and a fluorescence quantum yield near unity 

[161]. The absorption and fluorescence spectrum of TDI is shown in Figure 46. 
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Figure 46: Absorption (black) and fluorescence (red) spectrum of TDI 
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The single molecule samples are prepared by spin-coating a highly dilute 

(10-9M) dye solution in PMMA (polymethylmethacrylate)/chloroform (10% wt.) 

onto a cleaned glass coverslip. At 3000rpm the chloroform evaporates leaving 

a thin polymer film of ~20nm thickness (determined with a DecTac® thickness 

profiler) in which the dyes are immobilised. The resultant confocal scanning 

images are generated by illumination with 633nm laser light and integrating for 

5ms/pixel. A 60x objective (Nicon®) and a 100µm pinhole is used to capture 

the fluorescence light. For the single molecule spectra, a 633nm notch filter 

blocks the excitation light. The spectrograph is calibrated with the help of 

three laser lines. All spectral series were taken with 50µW illumination 

intensity, which corresponds to ca. 60kW/cm2 (enough for saturated 

excitation). Lower excitation powers could improve dye photostability, 

although a balance with overall dye brightness must be found. 

As can be seen in Figure 47, the TDI molecules outshine the 

background signal. A time-trace of a single TDI molecule reveals on-off 

blinking and a second fluorescent state with about half the fluorescence count 

rate. Finally the dye bleaches irreversibly. 
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Figure 47: left: confocal scanning image of TDI immobilized in PMMA polymer; 
illumination intensity: 30µW. right: time trace of a single TDI molecule showing blinking 
and digital bleaching; illumination intensity: 50µW. 
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Figure 48: Single molecule fluorescence spectrum series of TDI with two states 
(displayed in red and blue). The z-axis shows the spectrum number of the series, for 
which a graph was taken every 200ms (N.B. the change in scale on the time axis 
between graph no.5 and no.10). The jump between the two states occurs between 
graph no.10 and no.11 i.e. between 2.0 and 2.2 seconds. The illumination intensity was 
50µW.  

 

A series of fluorescence spectra from a single TDI molecule is shown in 

Figure 48. Although no spectral shift is observed in this case, two distinct 

fluorescence states with differing brightness can be identified. The switch to 

the darker state occurs after 2 seconds. Such single fluorophore intensity 

jumps have been described previously by Blum et al. [153]. They need not be 

accompanied by a spectral shift, although most emission spectral jumps of a 

molecule lead to some form of intensity change. The jumps have been 

attributed to conformational changes within the molecule, such as the rotation 

of single bond. A similar conformational change may be possible in TDI, in 

which the phenyl group can rotate around the bond to the imide nitrogen. 

These conformational changes distort or shift the ground and excited state 

potentials, thus leading to different fluorescence bands. 
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Jumps into a completely nonemitting state are a special case of an intensity 

jump, which is usually called “blinking” or “reversible photobleaching”. An 

example of this is shown in the second spectrum series in Figure 49. After 

400ms the molecule turns on for ca. 200ms, it then goes out for 4s, only to 

return again for another 500ms. After a total of 5s the dye eventually bleaches 

irreversibly. Although the examples shown here do not display clear spectral 

shifts, in some cases the fluorescence peaks were observed to jump to a 

different wavelength. The second peak at 730nm - the vibronic side band - 

may also be susceptible to spectral dynamics. For example, a narrowing of 

the ground state potential may lead to a larger energetic distance between the 

primary emission maximum and the vibronic side band [153]. These 

phenomena are not observed in bulk samples, for which the averaged 

fluorescence peaks are always at the same wavelength in a given solvent (e.g. 

670nm and 730nm in CHCl3). 
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Figure 49: Graph of the TDI spectrum showing dye blinking; illumination intensity: 
50µW. (N.B. the change in scale on the time axis between 1.2 and 4.4 sec) 
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The results of the confocal images and spectra of Cy5 
Unlike TDI, the cyanine dye Cy5 is water soluble and therefore frequently 

used in biochemical labelling assays. However cis-isomerisation in the double 

bond bridge leads to a reduction in fluorescence yield and the photostability of 

Cy5 is clearly lower than for TDI [142]. 
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Figure 50: Absorption (black) and fluorescence (red) spectrum of Cy5 

 

An example of a single molecule confocal image of Cy5 and a typical 

time-trace with on-off blinking is shown in Figure 51. 
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Figure 51: left: confocal image of Cy5 prepared on a glass coverslip; illumination 
intensity 7.5µW.   

right: Cy5 time-trace with blinking; illumination intensity 7.5µW. 
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The single molecule spectrum series of Cy5 in PMMA (cf. Figure 52) shows 

an intensity jump of the dye after 6 seconds. Finally after 40 seconds the dye 

bleaches. 
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Figure 52: Spectrum series of Cy5 in PMMA; illumination intensity: 50µW.  

 

In principle, it is possible to image single molecules by confocal scanning 

microscopy. TDI molecules, and occasionally Cy5, afford sufficient 

photons/second to generate a spectrum series. Blinking and spectral shifts of 

the dyes can be observed.  

 However, attempts to fix Cy5 to the glass surface by covalent bonding 

to an epoxysilane layer and subsequent attachment to the cantilever tip, via a 

polyethyleneglycol (PEG) spacer, proved to be unsuccessful. Therefore 

different systems were sought after. 

 

3.5 Hemicyanine dyes for combined SM and AFM experiments 
In order to determine the suitability for single molecule experiments, a series 

of hemicyanine dyes was investigated. Based on the known styrene derivative 

(4,4-dimethylaminostyryl)-N-methyl-pyridinium iodide, two new dyes were 

synthesised by Dr. Markus Seitz as part of a collaboration with the group of 
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Prof. H. Gaub to investigate the spectral shifts of dyes under mechanical 

tension. The measured absorption and fluorescence emission spectra of 

these dyes are shown in Figure 53. 
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Figure 53: Normalised absorption and fluorescence emission spectra of the 
hemicyanine dyes in CHCl3. 
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Extinction 
coefficient Lit.

λmax Abs. 
(CHCl3) 

Lit. 
Absorption 

λmax Emi. 
(CHCl3) Lit. Emission 

Styryl dye [162] 37 000 (CHCl3) 504nm 500nm (CHCl3) 592nm 590nm (CHCl3)

Naphthyl dye  486nm  643nm  

Ethenylstyryl dye  528nm  676nm  

Rhodamine 6G 
[142, 163, 164] 

97 000 

(Ethanol) 534nm 

530nm 

(Ethanol) 557nm 556 (Ethanol) 

table 7: Summary of the absorption and fluorescence emission peaks of the 
hemicyanine dyes. 

 

Both new styryl dyes derivatives display a bathochromic shift in the 

fluorescence. Particularly the ethenylstyryl dye is of interest as it can be 

excited at 532nm. Unfortunately, the rather broad emission spectrum of the 

ethenylstyryl dye may be the result of other fluorescent impurities generated 

during the dye synthesis, which were not completely removed during 

purification. Generally dyes that absorb and emit further in the red are 

desirable for single molecule detection, because the background fluorescence 

is lower. 
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Figure 54: In situ generation of the fluorescent dye by reaction of the pyridine 
derivative with a bromine functionality. 
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The final goal was to generate the dye in situ by nucleophilic reaction of the 

pyridine functionality with a bromine group on the surface (cf. Figure 54). Any 

fluorescing molecules are then automatically attached to the cantilever and 

the surface. The absorption maximum of the pyridine derivative is at 368nm, 

which would therefore not be excited by the laser. However, the first single 

molecule confocal scanning experiments failed to afford good images of the 

samples. The reason for this turned out to be the low fluorescence quantum 

yield of the dyes.  

 

Fluorescence quantum yield measurements on the hemicyanines 
A convenient method to measure the quantum yield is by comparison of the 

fluorescence emission of the dye solution with that of another standard dye 

solution of known quantum yield [163].  

 2

2
U US

U S
U S S

A F n
A F n

φ = φ
eq. 27 

 

The formula in eq. 27 gives the ΦFl for an unknown fluorescence dye U in 

terms of the standard dye S. The parameter A stands for the absorbance, n is 

the solvent index of refraction and F is the number of emitted photons. A value 

for F can be calculated by integration of the area under the fluorescence 

emission curve. For quantitative experiments it is important to use a calibrated 

fluorescence spectrometer. Errors can be reduced by exciting all dye solutions 

at the same wavelength and comparing dyes with similar emission spectra. 

Furthermore, to solve for the ΦFl in eq. 27 the number of absorbed 

photons A must be the same for each dye solution. This is achieved by 

adjusting the concentrations so that the extinction coefficients are identical at 

the appropriate excitation wavelength. This has been done for the dyes in 

Figure 55, which have the same absorption at 510nm.  
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Figure 55: Adjustment of the solution optical density to OD = 0.185 at the excitation 
wavelength of 510nm. 

 

Rhodamine 6G was chosen as the standard dye. It has a quantum yield of 

95% in ethanol [161]. The index of refraction for ethanol is n = 1.359 and for 

chloroform n = 1.444.  

 

 Quantum Yield Lit. Calculated Q.Y. 

Rhodamine 6G 95% (Ethanol) [58, 59, 165] - 

Styryl dye 7.1% (CHCl3) [62] 11% 

Naphthyl dye  8% 

Ethenylstyryl dye  28% 

table 8: Summary of the quantum yield calculations for the styryl dyes. 

 

The results of the quantum yield measurements are summarised in table 8. 

Except for the ethenylstyryl derivative the respective quantum yields are 

relatively low. Therefore, the styryl dyes are unsuited for single molecule 

experiments.  
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3.6 Total internal reflection (TIR) imaging 
Total internal reflection microscopy (TIR) is a specific form of wide-field 

imaging that provides a means to image fluorescence samples with an 

extremely shallow excitation depth, thereby reducing the out-of-plane 

background signal [61, 166]. Our results show that cantilever auto-

luminescence is a serious problem for combined AFM/optical experiments. 

However, by employing TIR, the evanescent excitation field is restricted to the 

immediate coverslip surface and the cantilever is not illuminated. In this way 

the relatively strong cantilever luminescence can be avoided. TIR can be 

achieved through various methods [167], such as the prism arrangement [159], 

but since the space above the microscope is reserved for the AFM, the TIR 

excitation must occur through the microscope objective, by the objective-type 

TIR arrangement [167]. 

 

 

Figure 56: Objective-type TIR illumination of an aqueous single molecule sample. Dyes 
in the immediate surface vicinity are excited, whereas dyes outside the evanescent TIR 
field are not illuminated. 
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The principle of TIR 
Total internal reflection can occur when light crosses the interface from a 

medium with a high refractive index n3 to a medium, of lower index n1. If the 

difference is sufficient, then the light is reflected back into the high index 

medium provided it reaches the interface at a minimum obtuse angle of 

incidence. According to Snell’s law, the relationship between the critical 

minimum angle of incidence θc required for total internal reflection and the 

difference in refractive index is described by the following equation: 

 

( )1
1 3C sin n /n−=θeq. 28 

 

Typical materials for TIR are glass (n = 1.515), water (n = 1.330) or air 

(n = 1.000). The critical angle for glass-air is θc = 41.30°, whereas for glass-

water it is θc = 61.39°. 

 However, classical electrodynamics does not allow for the 

electromagnetic wave to vanish discontinuously at an interface. Instead an 

evanescent field is generated above the reflection area that decreases 

exponentially with distance r from the interface. The decline is characterised 

by the penetration depth d, within which the intensity of the field drops to 37% 

(1/e) [159].  
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At the interface glass-water the characteristic penetration depth is 147nm, 

assuming a typical incident angle of θ = 65° and a laser wavelength of 633nm. 

For the interface glass-air d = 53.5nm. The exponential decay curves for the 

water and air samples are shown in Figure 57. Due to the higher difference in 

refractive index, the field decreases faster for the glass/air interface.  
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Figure 57: The decay curve of the evanescent field at the interface between glass/water 
(black curve) and glass/air (red curve) for an incident angle of 65°. 

 

Objective-type TIR 
Parallel beams are generated by focussing the excitation laser light onto the 

back-focal-plane of the objective. As in conventional wide-field imaging, an 

area spot is illuminated on the sample, rather than a diffraction limited focal 

spot in confocal microscopy. Furthermore, by shifting the beam off-axis, it no 

longer exits the objective centrally, but instead at an angle. After reflection at 

the coverslip/sample interface, the excitation beam re-enters the objective (cf. 

Figure 58).  

The beam width at the back focal plane can be calculated according to 

eq. 30 [168]. Given an objective back aperture of ca. 8mm, there is sufficient 

space to place the beam on the outer perimeter of the objective aperture lens, 

thereby achieving a maximum emission angle. 
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Figure 58: Objective-type TIR arrangement. 
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The maximum angle of incidence α at which the objective can emit (and 

collect) is restricted by the numerical aperture NA: 

 

0AN n sinα=eq. 31 

 

To achieve TIR conditions the incident angle must be between α > θ > θc, 

e.g. a critical angle of θc = 61.39° in water. The maximum emission angles for 
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various oil immersion objectives are presented in table 9. For an oil immersion 

objective the index of refraction is no = 1.515 (n(oil) = n(glass) = n(Obj)). 

 

NA 1.30 1.35 1.40 1.45 

α 59.1° 63.0° 67.5° 73.2° 

 

table 9: The relationship between numerical aperture and maximum emission angle of 
a high NA oil immersion objective. 

 

Total internal reflection requires that the objective NA be higher than the 

refractive index of the specimen. Until recently the highest available NA was 

1.40, which is just enough to achieve TIR in an aqueous sample (n = 1.33). 

However, new objectives with numerical apertures of up to 1.65 are now 

available, which facilitate TIR measurements in water, but require a special 

volatile high refractive index immersion oil (no = 1.78) and coverslip glass 

(no = 1.79) [167]. For our measurements objectives with either NA = 1.40 or 

NA = 1.45 are employed, which can be used with conventional glass 

coverslips and immersion oils.  

 A TIR image of single TDI molecules is shown in Figure 59. Compared 

to the spot in conventional imaging, the illuminated area in TIR is slightly oval. 

 

Figure 59: TIR image of single TDI molecules immobilised in a PMMA polymer matrix. 
The illumination intensity is 0.33kW/cm2, with a camera exposure time of 1sec. 
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Measuring the TIR field with the AFM cantilever 
In order to characterise the evanescent field, a method is presented to 

determine the field intensity by using an AFM cantilever as a local probe. The 

luminescence of a Si3N4 tip is proportional to the laser excitation intensity and 

can therefore be used as a measure of the evanescent field strength. A series 

of images is taken of the cantilever during an approach cycle towards the 

glass interface. Then the average signal intensity for the cantilever image is 

plotted against the distance from the surface. The high axial position accuracy 

of the AFM enables an exact plot of the field intensity with distance. By fitting 

the decay graphs with an exponential function the characteristic field 

penetration depth d can be calculated. The graph in Figure 60 shows the 

decay curve of the luminescence signal for a water sample with an oil 

immersion objective NA = 1.45. The mono-exponential fit of the data affords a 

characteristic decay depth of d = 230nm. This is slightly higher than the 

theoretical value of 147nm for θ ~ 65°. The reason for this is probably that the 

65° angle of incidence was not achieved in this experiment, because the 

beam was not exactly on the perimeter of the objective back aperture. A 

penetration depth of 230nm would be expected for an incident angle of 

θ ~ 62° at the glass/water interface. 

0 200 400 600 800 1000 1200
0

500

1000

1500

2000

Lu
m

in
es

ce
nc

e 
(c

ts
)

Distance [nm]

 data
 fit

1/e

d

Figure 60: Plot and exponential fit of the luminescence decay curve for TIR illumination 
at the interface glass/water; objective NA = 1.45. 
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By comparison, the graph in Figure 61 shows the decay curve for TIR at the 

glass/air interface using a 1.40 NA objective. The decay length in this example 

is 232nm. Although a shorter penetration depth is always observed at the 

glass/air interface as compared to glass/water and a value of d = 53.5nm 

could theoretically be achieved for θ ~ 65°, the 1.40NA objective is generally 

restricted to lower angles of incidence than the 1.45 NA objective and the full 

65° is not always accessible. Measuring the TIR field with the 1.40 NA 

objective at the glass/water interface afforded a decay length of 330nm.  

A typical phenomenon observed for AFM measurements in air is the 

“jump to contact”. Electrostatic and capillary water forces pull the cantilever 

onto the coverslip surface. This is one reason why AFM force spectroscopy is 

generally conducted in fluid. 
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Figure 61: Plot and exponential fit of the luminescence decay curve for TIR illumination 
at the interface glass/air; objective NA = 1.45. At ~160nm the cantilever jumps onto the 
surface. 

 

TIR penetration depth and angle of incidence 
According to eq. 32 the characteristic decay depth of the evanescent field 

depends on the angle of incidence of the TIR beam.  

 
1

2 2 2
3 1

633
4

d( ) [n sin n ]−
= ⋅ −θ θ

π
eq. 32 
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A graph of this function is given in Figure 62 for the glass/air and glass/water 

interface. The maximum angle achievable with the high NA objectives is 

plotted as a blue dotted line. 

 

 

 

 

 

 

 

 

 

 

 

Figure 62: Theoretical relationship between the evanescent field penetration depth and 
the angle of incidence for the glass/air and glass/water interface.  

 

By shifting the beam off-axis with respect to the objective back aperture, the 

TIR angle can be increased. The image series in Figure 63 shows the 

qualitative effect on the cantilever luminescence, when the angle of incidence 

is varied. The tip was positioned on the coverslip surface. 

 

Figure 63: The cantilever luminescence as a function of TIR incident angle. By 
decreasing the angle of incidence the TIR mode is converted into conventional 
imaging. 
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The top left image was taken in full TIR mode. Only the cantilever tip apex can 

be seen together with a few single dye molecules. By gradually decreasing 

the angle of incidence the penetration depth of the evanescent field is 

increased and more of the cantilever is illuminated. Finally the TIR condition 

breaks down and the evanescent field is replaced by conventional imaging 

illumination. In this case the whole cantilever shank is illuminated (tip 

length ~ 4µm).  

 The decay curves and the field penetration depths can be measured for 

various angles of incidence and plotted against the incident TIR angle. The 

angle of incidence is thereby calculated from the measured entrance position 

of the beam on the objective back aperture. The results for a NA = 1.45 

objective with water are shown in  

Figure 64. Although the data points conform to the theoretical curve, more 

measurements are required around the critical angle θc = 61.4°. 

 

 

 

 

 

 

 

 

 

 

 

Figure 64: Plot of the evanescent decay lengths for various angles of incidence. Each 
point represents the characteristic decay length of a curve measured at a different 
beam angle of incidence. 

 

Beyond the critical angle the evanescent field breaks down and turns into 

conventional imaging. Moreover, in some cases light scattering structures or 

inhomogeneities on the interface surface can increase the apparent 

penetration depth of the evanescent TIR field. 
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Comparison of TIR and conventional imaging 
The images in Figure 65 show the same cantilever positioned on the glass 

surface in a water sample using either TIR imaging (left) and conventional 

imaging (right). Only the tip apex is visible in TIR mode, whereas the whole 

cantilever shank is illuminated with wide-field excitation. 

 

 

 

 

 

 

 

Figure 65: Comparison of a cantilever image taken in TIR mode (left) and conventional 
imaging mode (right); the red arrow indicates the cantilever position.  

 

The luminescence intensity of a cantilever during an approach curve in 

conventional imaging mode is plotted in Figure 66. 
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Figure 66: The cantilever luminescence decrease with distance in conventional 
imaging mode can be fitted with a quadratic function. 
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In contrast to the TIR exponential decay curves the data points can be fitted 

with a quadratic function. In conventional imaging the illumination light 

propagates in the form of a cone. The cone area will increase with distance 

from the objective in a quadratic manner. If the field intensity is proportional to 

the cone area, then the quadratic relationship found for wide-field imaging can 

be explained. 

 

Conclusion TIR imaging 
Previous experiments by other groups have successfully employed the photon 

pressure on a dielectric sphere [169] or the tip scattering of a Si3N4 cantilever 

[170] to probe the evanescent field generated at an interface. However, due to 

poor signal resolution, the results could not provide a clear exponential decay 

curve or accurate values for the characteristic penetration depth.  

Our experiments show that the decay profile of the evanescent field in 

objective-type TIR illumination can be probed quantitatively with high axial 

resolution by imaging the cantilever luminescence. The characteristic 

exponential penetration depths can be determined for different interfaces and 

compared with the predicted theoretical calculations. Wide-field imaging 

decay curves are fitted with quadratic functions. In addition, the dependency 

of the evanescent field depth on the TIR angle of incidence was measured 

and compared to theory. 

Finally, the objective-type TIR imaging of single molecule samples is 

possible and the background luminescence from a cantilever in the imaging 

spot can be greatly reduced by TIR mode imaging. 
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4. DNA optical experiments 
The results of AFM force spectroscopy on DNA show that it is possible to 

stretch single DNA strands on transparent polylysine coated or silanised 

surfaces. Therefore, a combined optics/AFM experiment with DNA should be 

realisable. However, the next step is to elucidate the optimum imaging 

conditions for single DNA molecules. To this end, the experimental factors 

pertaining to the DNA/TO-PRO-3 system were investigated. These include the 

general photophysical parameters of the DNA-intercalator complex, such as 

the fluorescence quantum yield enhancement of TO-PRO-3 on binding to 

DNA or the effect of salt concentration, laser power and anti-bleaching agents. 

Furthermore, bleaching and dye kinetics studies afforded a description of the 

dye association/dissociation rates and binding constant to DNA.  

Implementing these findings, images of DNA on either polylysine 

coated or silanised surfaces are presented and discussed. There is a marked 

difference in DNA morphology between DNA on polylysine and on silane 

surfaces, which is explained in terms of DNA condensation through the effect 

of positively charged lysine groups in the polylysine chain. In addition, a 

particular preparation protocol for λ-phage DNA, including a change in pH, led 

to the discovery of extremely long DNA strands with up to 300µm length. 

 

4.1 The photophysical parameters of TO-PRO-3® with DNA 
The binding modes of TO-PRO-3 to DNA have been discussed previously (cf. 

2.3 Force spectroscopy of DNA on transparent surfaces). The dye is a 

member of the class of cyanine dyes that fluoresce brightly on intercalation or 

binding to DNA, but are dark in solution. Due to this enhancement in 

fluorescence these dyes can be used to image DNA. 

 

DNA intercalating dyes: ethidium bromide and cyanine dyes 
Among the first DNA intercalator dyes was ethidium bromide, which has 

traditionally been used for DNA staining in gel electrophoresis [171]. Ethidium 

bromide inserts between the DNA base pairs, resulting in a strikingly 

increased fluorescence quantum yield and an extension of the overall DNA 

chain length [172]. The fluorescence enhancement could be due to restricted 
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rotation of the central methane bridge in the dye on intercalation or because 

ethidium bromide is protected from quenching by the aqueous solvent when it 

is immersed in the hydrophobic region of the nucleic acid.  

 

N
+

NH2 NH2

Br

 

 

 

 

 

Figure 67: Ethidium bromide 

 

At high and low pH (3> pH >12) there is an abrupt drop in fluorescence [173] 

(cf. Figure 68). Since this occurs at the same pH values as for the acid and 

alkaline denaturation of DNA there is evidence that double stranded DNA is 

required for binding ethidium bromide. 

Figure 68: The effect of pH on DNA/ethidium bromide fluorescence [173]. 

 

This attribute of intercalated dyes may be used to prove whether the B-S 

transition, observed in DNA force curves, is in fact due to double strand 

melting (denaturation), as has been asserted [174], or merely a co-operative 

conformational change. If melting is involved in the B-S plateau, then, by 

analogy with the high and low pH experiments, a similar drop in TO-PRO-3 
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fluorescence would be observable during mechanical stretching of DNA. The 

results showing that double strand melting is not involved in the B-S plateau 

are presented in chapter V. 

Ethidium bromide stained dyes have been used to image single DNA 

molecules, but contrast and image brightness are poor [175]. However, new 

enhanced cyanine dyes (Molecular Probes®) have been developed, which 

show high molar absorptivity, with extinction coefficients typically greater than 

50 000 cm-1M-1 [106]. They also have large fluorescence quantum yield 

enhancements on binding to DNA and thus enable high contrast imaging of 

individual DNA molecules [176, 177]. Among these is the dimeric cyanine dye 

YOYO-1 (cf. Figure 23) with a fluorescence enhancement factor of 460 upon 

binding and a binding affinity of Ka = 6*108 M-1 [75].  

The cyanine dye family, including YOYO-1, have been used extensively 

to image single DNA molecules for screening [178], DNA restriction analysis 

[118, 179], exonuclease activity [180], DNA conformation analysis on lipid 

bilayers [76, 119] or DNA double strand damage [181]. Interestingly, YOYO-1 

can also prevent polycation induced condensation of large DNA strands [182]. 

Apparently, the intercalator can elongate the chain, increasing the overall 

stiffness and persistence length. By contrast, the minor groove binding DAPI, 

which is also used for DNA staining, shows no such effect [182]. 

 

 

4.1.1 TO-PRO-3 bulk fluorescence spectra 
On binding to DNA the spectra of the cyanine dyes shift to longer wavelengths 

[183] (cf. Figure 69 and Figure 70). This bathochromic shift reflects changes in 

the microenvironment of the dye such as a more hydrophobic surrounding. 

For a TO-PRO-3® solution the absorption and excitation spectra indicate a 

maximum absorption peak at λexc = 632nm, whereas the maximum 

fluorescence in the emission spectrum is at λemi = 652nm (cf. Figure 69). If a 

low DNA concentration of 1*10-10 mol/l is added, the Stokes shift of 20nm is 

maintained, but both maxima are shifted bathochromically by ca.10nm to 

afford: λexc = 643nm and λemi  = 662nm. This is consistent with the literature 

values of λmax = 642/661nm [106]. A solution of 1*10-10 mol/l DNA 
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corresponds to a base pair concentration of 4.85*10-6 mol/l (λ-phage DNA 

contains 48502 bp). This means that in a dye solution of 1.6*10-6mol/l there is 

approximately one dye molecule for every three DNA base pairs, a value 

which is close to the ratio assumed for complete intercalator saturation of the 

DNA [184].  
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Figure 69: 
Excitation and 
emission spectra 
of TO-PRO-3 in 
water (4*10-5 M). 

 

 

 

 

 

 

Excitation spectrum: λdet = 655nm; emission spectrum: λabs = 620nm. 
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Figure 70: 
Excitation and 
emission spectra 
of TO-PRO-3 
(1.6*10-6 M) in 
aqueous DNA 
(1*10-10 M). 

 

 

 

 

Excitation spectrum: λdet = 670nm; emission spectrum: λabs = 620nm. 
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TO-PRO-3 quantum yield enhancement 
Generally, the fluorescence quantum yields (ΦFl) of cyanine dyes are 

enhanced by a factor of ~200-1800 on binding to DNA [183]. Accordingly, free 

TO-PRO-3® shows practically no fluorescence. The literature value for the 

quantum yield of TO-PRO-3® with DNA is 11% [185]. From this, the ΦFl for 

free dye and the enhancement factor on intercalation can be calculated. 

According to eq. 27 and by comparison of the fluorescence emission of the 

bound dye (cf. Figure 70), with the free TO-PRO-3® fluorescence (cf. Figure 

69), ΦFl is 0.06%, which corresponds to a 200fold enhancement on 

intercalation. 

 

4.1.2 Dye photobleaching 
An important problem of these dyes is photo-bleaching and photo-cleavage of 

the bound DNA. Measurements of bleaching rates of YOYO-1 and DNA have 

shown that there are two distinct types of binding of YOYO-1 to DNA [186]. At 

low dye/nucleotide ratios, intercalation is preferred, but above a critical value 

of ca. 0.2 dyes/nucleotide external binding (i.e. groove binding/ electrostatic 

binding) of excess dyes occurs. The externally bound dyes bleach faster than 

the intercalated ones, leading to a bi-exponential decay rate at high dye 

concentrations [186]. At low dye concentrations the decay rate is lower and 

mono-exponential. The mechanisms for bleaching are unclear, but probably 

involve either singlet oxygen (1O2) or hydroxyl radicals (.OH) formed via a 

Fenton reaction.  

Photo-cleavage has been examined and occurs especially at high 

illumination intensities [186]. Free dyes cause negligible cleavage, but both 

externally bound and intercalated dyes generate single strand breaks [187].  

 

Single molecule bleaching rates of TO-PRO-3 
To study the bleaching rates for TO-PRO-3, a new method was developed 

involving single DNA strands and bundles prepared on a polylysine coated 

glass surface and imaged using the wide-field setup with various dye 

concentrations and illumination powers. 
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Photobleaching will result in a drop in concentration of the fluorescing 

dye and thus also a decrease in fluorescence intensity I(t). Under constant 

illumination conditions the photobleaching reaction can be characterised by a 

first-order rate constant kbl [141, 188].  

 

blbl
bl

bl-k t

dI(t) 1= -k I(t) =dt k

I(t)=I(0)exp

, τ
eq. 33 

 

 

 

An experimental prerequisite to measuring the bleaching rates of intercalated 

TO-PRO-3 with sufficient fluorescent signal is that the dye concentration 

adsorbed to the DNA should be maximal: [dyeDNA] = max. Furthermore, to 

reduce the background signal and dye association/dissociation processes, the 

free dye concentration must be kept minimal: [dyesol] = min.  

The fluorescence intensity of the emitting DNA strands can then be 

monitored by a sequence of images, followed by integration of the counts for a 

selected image area containing the DNA strand. In this way the bleaching 

rates for varying laser powers and dye concentrations can be measured. The 

graph in Figure 71 describes the fluorescence bleaching of a DNA sample 

with 5*10-6M TO-PRO-3. Fitting the data shows that a bi-exponential curve is 

required to adequately describe the bleaching process. 

 

1 2
t t- -

+1 2I(t)=I exp I expτ τeq. 34 

 

Two fluorescence decay times τ1 and τ2 are obtained. This is consistent with 

the literature, which describes two processes responsible for DNA-bound dye 

bleaching [186]: a fast process, which originates from 1O2 mediated bleaching 

of externally bound dyes (e.g. groove binding) and a slower process involving 

the intercalated dyes and OH. radicals. Especially for high dye concentrations 

externally bound dyes may become an increasing factor, but the bleaching 

processes of these dyes are likely to be complex and less significant for force 

spectroscopic investigations, so the fast rate is not investigated further. 
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Figure 71: Bleaching curve with bi-exponential decay fit (red); [TO-PRO-3] = 5*10-6M. 

 

Laser power dependence of the bleaching constants 
Assuming an excess of dye and no multi-photon processes, it is expected that 

the bleaching rate should show a linear dependence on laser power [143].  

 

eq. 35 

 

To determine the proportionality factor C, τbl is plotted against 1/Ilaser for a 

series of medium laser powers. The graph in Figure 72 shows the plot for dye 

the concentration [dye] = 10-5M. 

11
Laser

Laser
bl

bl
I CI∝ =⇒ττ

1
Laser

bl C AI= +τ
 

eq. 36 

 

For higher illumination intensities the bleaching rates are faster and the 

bleaching time τ is proportional to the reciprocal of the laser power. For a dye 

concentration of [dye] = 10-5 mol/l the slope is 135 µJ. All dye concentrations 

display a non-zero intercept A (e.g. τ0 = 0.41sec for 10-5 mol/l). This value 

corresponds to a remaining non-zero bleaching rate, even for zero laser 

power. In previous bleaching experiments on single dyes no such underlying 

bleaching has been reported [143], therefore it probably originates from dye 
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dissociation into the solution or non-radiative bleaching processes e.g. 

through radicals in the solution. 
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Figure 72: Typical plot of decay times τbl against 1/Ilaser for [dye] = 10-5M. 

 

The values of C and A vary slightly for each series, but are generally 

independent of the dye concentrations. Therefore, taking also very high and 

low laser powers into account, a summary of the average bleaching rates is 

presented in table 10 and plotted in Figure 73. 

 

Laser power 

ILaser [µW] 

Laser intensity

[W cm-2] 

Average bleaching 

rate kbl [s-1] 

2000 636.6 0.87 

1070 340.6 0.90 

218 69.4 0.42 

102.5 32.6 0.37 

30 9.6 0.19 

15 4.8 0.05 

3 1.0 0.06 

table 10: Summary of the average bleaching rates for different laser powers 
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Figure 73: Average bleaching rates with laser power. 

 

The data can be fitted to an exponential curve as described in eq. 37. 

 

0 (1 )xy k A e−= + −eq. 37 

 

For high laser powers the bleaching rate eventually saturates at an asymptotic 

value of A = 0.82sec-1. Contrary to this result, the photobleaching rate was 

originally assumed to increase linearly with laser power or even non-linearly, 

as multi-photon processes become more important [141]. However, the 

observed asymptotic effect is probably due to the replacement of fresh dyes 

from solution for bleached TO-PRO-3 in the DNA. This eventually levels out 

the bleaching rate, albeit at a relatively high rate.  

 

Conclusions of the bleaching experiments 
Importantly, bleaching is dramatically reduced for low laser powers. Especially 

for long exposure times, fluorescence recovery processes and dye exchange 

with the solution become significant factors. Experience shows that low laser 

intensities of ca. 1-10 W/cm2 give the best results, especially in combination 

with relatively high dye concentrations.  
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For these high dye concentrations, dye replacement balances 

bleaching and a significant reduction in fluorescence signal can be avoided 

altogether, thus enabling prolonged high contrast imaging of single DNA 

strands. A suitable dye concentration with the best signal to background ratios 

is 1*10-6M to 5*10-6M TO-PRO-3. For an estimated DNA concentration on the 

surface of ca. 8*10-12mol/l [c(bp)=3.9*10-7mol/l], this corresponds to ~2.5-12 

dye molecules per base pair, which is in 10-50 fold excess of the 0.2-0.3 dyes 

per base pair theoretically needed for complete intercalation [171, 184]. The 

downturn of using high dye concentrations is an increased fluorescence 

background of free dyes in solution, reducing image contrast, but possibly 

also an increase in the number of unspecifically adsorbed dyes on the DNA 

perimeter. 

 
4.1.3 Anti-bleaching agents 
Oxygen 
Various approaches have been taken to reduce photobleaching and thus 

increase signal to background ratios in fluorescence images. The role of 

oxygen has been investigated extensively [141]. Although triplet oxygen 3O2 

initially quenches the excited triplet states of organic dye molecules, thus 

increasing the number of photocycles available, the by-product of this reaction 

is singlet oxygen 1O2. The latter readily reacts with organic dye double bonds, 

thus destroying dye photo-activity. Therefore it is prudent to choose dyes with 

low triplet quantum yields, which rarely convert to a triplet state [141]. One 

approach is to deoxygenate solutions by the use of catalase or extensive 

bubbling with nitrogen or argon gas. Although these procedures have been 

successful in some cases, the accumulation of dyes in their triplet states often 

balances the reduced photo-destructive effect experienced in the absence of 

oxygen.  

To investigate the effect of oxygen, solutions were bubbled with argon 

or nitrogen gas prior to use. In addition, a hood for the apparatus was 

constructed, which kept the sample under a constant argon stream. However, 

only a slight improvement in fluorescence contrast could be observed in the 

images and so this approach was not pursued further. 
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Stabilisers 
Considerable effort has been made to find effective anti-bleaching agents 

[141]. These stabilisers are often either singlet oxygen quenchers of radical 

scavengers, such as β-mercaptoethanol. However, these additives work best 

in high concentrations, for which they often quench dye fluorescence. In 

addition, high levels of anti-oxidising agents or radical scavengers could have 

a distorting influence on the native properties of DNA. A case by case choice 

of stabiliser concentration must be made. 

Another important factor is DNA photocleavage. The same processes 

by which dyes are bleached are also responsible for nicking of the DNA strand. 

When two single strand (ss) nicks occur in close proximity (ca. 15bp apart), an 

irreversible double strands (ds) break can result [181, 186]. By the same logic 

that prevents dye bleaching, photodamage to the DNA can be avoided with 

stabilising agents. The influence of anti-bleaching agents on DNA damage 

has been reported on other occasions [186].  

For the final optimum conditions used in single DNA strand imaging i.e. 

low laser power and a high dye concentration, no significant deterioration of 

the DNA was observed. However, low salt concentrations led to a very rapid 

fragmentation of the double helix.  

 

Antifade® 

Antifade® and Slowfade® are Molecular Probes® products that inhibit 

bleaching by free radical scavenging [185]. In principle, Antifade works by 

reducing the accumulation of reactive oxygen species. A comparison of the 

bleaching curves for TO-PRO-3 with and without antifade is shown in Figure 

74. For a TO-PRO-3 concentration of 5*10-6 M and a laser power of 

Ilaser = 69 W/cm2, the bleaching time increased from τ1= 2.46 to τ1= 7.02. 

Especially for high dye concentrations, a decrease in the bleaching rate was 

observed. Possibly antifade also induces a slight fluorescence quenching 

effect. 
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Figure 74: Comparison of the bleaching rates for [TO-PRO-3] = 5*10-6mol/l with 
antifade. For clarity the data points have been connected. 

 

Although the bleaching rate could be decreased by the use of antifade, overall 

bleaching remained. In addition, the application of Antifade was cumbersome 

and its high viscosity probably had a significant influence on the native 

DNA-dye environment. Therefore antifade was deemed inadequate for the 

TO-PRO-3/DNA system. 

 

Slowfade®

In contrast to Antifade®, the Slowfade® kit can be applied as a solution without 

prior mixing. To compare the effect of Slowfade on dye fluorescence, the 

bleaching rate was first measured at high laser intensity Ilaser = 637 W/cm2 and 

then left to recover for 30 min. After the recovery time, 20µl of the Slowfade 

solution was added to the sample and the bleaching rate was re-measured. 

The results are presented in Figure 75.  
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Figure 75: Bleaching rates with slowfade® at 637 W/cm2 and 5*10-6mol/l TO-PRO-3. For 
clarity the data points have been connected. 

 

In comparison to the normal bleaching curve shown in black, the samples with 

Slowfade® (blue) rapidly reach an equilibrium fluorescence rate for which 

bleaching is negligible. However, these experiments were conducted with very 

high Slowfade mixtures of ~20%. A lower concentration of Slowfade seems 

prudent. Empirical experience led to the use of a 5*10-6M TO-PRO-3® solution 

in TRIS/EDTA with only 1% slowfade®. It constitutes a compromise between a 

slightly improved fluorescence performance and a low disruption of the native 

DNA environment. 
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4.1.4 The TO-PRO-3/DNA rate kinetics 
To describe the association and dissociation rates, a model of the DNA is 

proposed, for which there are a fixed number of vacant positions between the 

rungs of the double helix, into which free TO-PRO-3 can intercalate. The 

number of base pairs per site, i.e. the base pair occlusion, is ca. 2-3 bp for 

each dye molecule slot [184]. The value is generally reduced for low salt 

concentrations, but increases to about 5bp/dye for 300mM salt, probably due 

to charge shielding effects. 
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Figure 76: The DNA/TO-PRO-3 system rate model 

 

After dye addition, the system will equilibrate according to the rate constants 

and starting concentrations. If the rates of association kAss and dissociation 
kdiss can be measured, it would be possible to calculate the binding constant 

Kbind of TO-PRO-3 to DNA.  

 
Ass

bind
diss

K = k
k

eq. 38 

 

By measuring the dye fluorescence from single DNA strands in a series of 

images, the association, and dissociation rates can be determined. 
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The association rate kAss

The speed of dye association to the DNA can be described by the following 

rate equation: 

 

( ).
[ ] [ ]

[ ] [ ] [ ]Fl DNA
Ass sol DNAbp

d I d Dye k Dye DNA Dyedt dt≈ = −eq. 39 

 

Since the TO-PRO-3 fluorescence is greatly enhanced on intercalation, the 

fluorescence intensity Ifl is directly proportional to the intercalated dye 

concentration [DyeDNA]. Therefore, the association process can be described 

by a second order rate equation. The change in [DyeDNA] is related to the 

association rate kAss, the dye concentration in solution [Dyesol] and the number 

of free intercalation sites on the DNA. The latter is given by the total number 

of sites minus the number of occupied sites [DNAbp]-[DyeDNA].  

Further, taking into account that the concentration of dye in solution is 

not reduced significantly by adsorption to the DNA:  

 
sol

d[Dye ]
0dt ≅eq. 40 

 

Thus [Dyesol] = constant and the rate equation can be simplified to a pseudo 

first order reaction rate, with the new association rate constant k’Ass.

 

Ass Ass solk' k [Dye ]=eq. 41 

 

 

( )DNA
Ass DNAbp

d[Dye ] = k' [DNA ] - [Dye ]dt
eq. 42 

 

 

To determine the association rate k’Ass, any dye-DNA dissociation should be 

avoided. The best way to do this is to begin the experiment with no dye 

[DyeDNA] = 0 and start the measurement immediately after dye addition. Under 

these premises any change in fluorescence due to dissociation is negligible, 

as long as the concentration of [DyeDNA] is low. Eventually sufficient dye will 
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have intercalated and equilibrium between the association and the increased 

dissociation of TO-PRO-3 will be reached. In addition, to circumvent bleaching 

of the sample, relatively low irradiation intensities are used for which kbl is 

marginal. 

Based on the proposed model the following fluorescence intensity 

function can be derived. Reformulating eq. 42 and integrating gives: 

 

eq. 43 

 

At time (t=0) the bound dye concentration is negligible. Inserting for 

[DyeDNA] = 0, provides the constant C’, which corresponds to the [DNAbp] - the 

total number of sites.  

AssDNA bp

'-k t'[Dye ] = [Dye ] -C e

0 0

1

DNA bp

'
AssDNA bp

k t

'[Dye (t )] C [DNA ] const.

[Dye ] [DNA ]( e )−

= = ⇒ = =

⇒ = −

 

 

 

eq. 44 

 

Therefore, the fluorescence eventually reaches an asymptotic value [DNAbp], 

which is proportional to the total number of DNA slots available for 

intercalation. 

The results of the fluorescence measurements for the highest dye 

concentration used [Dye] = 10-5 M (strong fluorescence signal) and the lowest 

laser intensity of 1.0 W/cm2 (low bleaching) are shown in Figure 77. As with 

the bleaching experiments, the DNA samples were prepared on polylysine 

coated glass coverslips and focussed according to the laser reflection image 

Figure 44. A camera image series was then started just prior to addition of the 

dyes droplet, so that the increase in fluorescence could be monitored as the 

dye intercalated into the DNA.  
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Figure 77: Association experiment for [TO-PRO-3] = 10-5M and 1.0 W/cm2; camera 
exposure time 500ms;  

 

According to Figure 77 the association rate is k’Ass = 0.5 s-1. Evidently the 

adsorption of TO-PRO-3 is a relatively rapid process. For a dye concentration 

of [Dye] = 10-5 M (cf. eq. 41) the final value for the association rate is: 

 

kAss = 5*104  s-1mol-1L 
  

These results correspond to previous literature work, which infers similarly 

large association rates for TO-PRO-1 from bulk absorption spectra [184]. 

TO-PRO-1 is the homologue of TO-PRO-3 with only one instead of three 

carbon atoms in the conjugated cyanine chain bridge (cf. Figure 76). 

 

The dissociation rate kdiss

To determine kdiss, a method is needed to measure the dissociation speed of 

TO-PRO-3 from the DNA. Luckily the previous association experiments show 

that kAss is very fast and free binding sites are instantaneously filled with fresh 

dye form solution. The rate determining step for dye exchange is therefore 

given by the dissociation rate kdiss.  

By intense irradiation (637 W/cm2) of an equilibrated, dye saturated 

system the intercalated dyes can be bleached so that any fluorescence signal 
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measured thereafter must originate from fresh dye that has just entered from 

solution. The rate of fluorescence recovery after bleaching will therefore 

correspond to the dissociation rate of the dye. Again bleaching during the 

recovery experiment will falsify the results, so low laser powers are used to 

exclude bleaching in the time frame of the experiment. The rate equation for 

the dye dissociation process is given by: 

 
DNA

diss DNA
d[Dye ] k [Dye ]dt = −eq. 45  

 

In analogy to the association experiment, a limiting maximum fluorescence 

signal is expected, which will be reached when all of the bleached dye 

molecules are exchanged for fresh TO-PRO-3. Consequently the same model 

as described in the previous chapter can be applied for the fluorescence 

recovery experiment. 

Various dye concentrations were examined and fitted to provide the 

parameters for [DyeDNA] and kdiss. 
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Figure 78: Fluorescence recovery experiment with [dye] = 10-7M and; (1.0 W/cm2) 

 

The measured values for kdiss varied by about a factor of ten depending on the 

dye concentration in solution, but with no clear trend (e.g. 6*10-4s-1 for 

[dye] = 10-7M). The individual DNA environment is probably responsible for 
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the distribution of dissociation rates. Loosely bound groove binders and 

electrostatically attached dyes could increase the dissociation rate, especially 

at high dye concentrations, for which these binding modes are favoured. 

However, the dye concentration in solution should not influence the 

dissociation rate. The mean value of the measured rates is:  

 

kdiss = 3.2*10-3  (±4.3*10-3) s-1

 

Summary of the TO-PRO-3 rate kinetics 
The results of the dye kinetics experiments are summarised in table 11. 

 

kbl 0,05 to 0,9 s-1     (ILaser = 1 to 637 W/cm2) 
kAss 5*104 s-1mol-1l       ([Dyesol] = 10-5 M) 
kdiss 3.2*10-3 s-1

table 11: Summary of the rate constants 

 

The association rate kAss is the fastest process, followed by the bleaching rate 

kbl and finally kdiss. On a time scale of seconds, the characteristic dye 

association time is therefore τAss ~2 sec (k’Ass ~0.5 sec for [Dyesol] = 10-5M), 

bleaching occurs at τbl ~15 sec (depending on the laser power), and finally the 

dissociation time from the DNA is τdiss ~ 300 sec (5 min).  

Eventually the fluorescence for the whole system will equilibrate, as 

summarised in eq. 46. For a certain DNA and dye concentration and a given 

laser power the system will be in balance. The aim is to reach this equilibrium 

with high fluorescence intensity and image contrast, but low photobleaching. 

 

 Ass

diss

kDye DNA Dye DNAk+ •

( )'
Ass DNA diss DNA bl DNA hbp

d[I] k [DNA ]-[Dye ] -k [Dye ]- k [Dye ] =0dt ν
⎡ ⎤⎣ ⎦≈

 

 

eq. 46: The complete fluorescence rate equation 
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4.1.5 The binding constant of TO-PRO-3 to DNA 
Insertion of the established values for kAss and kdiss into eq. 38 affords the 

binding constant of TO-PRO-3 to DNA: 

 

4 1

3 1

5 10
3 2 10

Ass
b

diss

K
k * s mol
k . * s

1l− −

− −
= =

7 11 5 10bK . * mol l−=
 

 Equation 1: Binding constant of TO-PRO-3 to DNA 

 

The binding constants of the structurally similar (cf. Figure 23) monomeric 

dyes TO-PRO-1 (3.2*106 M-1) and YO-PRO-1 (7.9*105 M-1) have been 

estimated by relative absorption spectra of the free and bound dye [184]. They 

are dependent on the salt concentration in solution [189]. Probably the sodium 

ions compete with the dye for free DNA binding sites on the negatively 

charged DNA. At low salt concentrations (20mM NaCl) the value for 

TO-PRO-1 increases to Kb = 5*107 M-1. 

The bichromophoric intercalators such as YOYO-1 or TOTO-1 are 

essentially composed of two linked cyanine dye fragments. They have higher 

binding constants such as Kb (YOYO-1) = 6.0*108 M-1 and 

Kb (TOTO-1) = 1.0*109 M-1 [75, 183], which probably reflects their ability for 

co-operative double intercalation into DNA [190]. By comparison the binding 

constant of the strong biotin/streptavidin complex is: Kb = 1015M-1. 

Thus, the binding affinity of the monomeric dye TO-PRO-3 to DNA can 

be measured by a new single molecule method. With Kb = 1.5*107 M-1 the 

binding strength for TO-PRO-3 is somewhat weaker than that of the 

bichromophoric dye TOTO, but still stronger than for the shorter homologue 

TO-PRO-1. 
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4.1.6 Salt dependence   
The effect of ionic strength on fluorescence imaging of DNA has been 

investigated previously [173, 184]. A reduction in binding affinity at higher 

ionic strengths leads to a lower overall fluorescence brightness of the DNA. 

Generally the binding constants of cyanine dyes decrease with increasing 

ionic strength, reflecting the electrostatic interactions between the negatively 

charged DNA backbone and the positively charged dyes. This argument holds 

true for all kinds of binding modes, but is particularly significant for groove 

binders and unspecifically adsorbing dyes, which both rely heavily on 

electrostatic attraction rather than intercalation. In fact, high salt 

concentrations favour intercalation over electrostatic binding [184].  

Furthermore, low salt concentrations reduce DNA stability and lead to 

denaturation. At the same time the DNA persistence length is increased, with 

the negative surface charges no longer balanced by counter ions from 

solution [191]. Consequently, the DNA stretches out to avoid electrostatic 

repulsion in the chain. On the other hand, high salt concentrations can induce 

DNA collapse and agglomeration [192]. A high salt concentration may also 

reduce electrostatic binding of DNA to surfaces, such as polylysine, by 

attenuating the negatively charged DNA phosphate groups. Therefore, there 

are strong arguments for maintaining the physiological salt concentration of 

150mM Na+ for the DNA experiments, although this entails a slightly reduced 

fluorescence signal.  

To confirm this assumption, DNA imaging experiments were conducted 

with low salt concentrations (0.025mM NaCl). In these cases a rapid 

fragmentation of the DNA was observed (c.f. arrows Figure 79), similar to the 

results presented by Bustamante et al. for high illumination powers [75].  
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Figure 79: Rapid DNA strand fragmentation in 0.025mM NaCl; image size 41µm2 on 
polylysine coated glass; illumination intensity 2.4W/cm2.  

 

4.1.7 Conclusion of the imaging experiments 
Through a new method the bleaching, association and dissociation kinetics of 

the fluorescent dye TO-PRO-3 were measured on single DNA molecules. 

Essential to the combined AFM experiments are long observation times with 

low bleaching and also minimum photodamage, which could deteriorate the 

mechanical properties of the DNA. In the light of these requirements, the 

consequences for the single molecule imaging experiments are the following: 

• A 200 fold quantum yield enhancement on intercalation is sufficient for 

imaging DNA against the background of free dye in solution. 

• Low laser intensities of ca. 1-10 W/cm2 significantly reduce the 

bleaching rate. 

• This, in combination with relatively high dye concentrations of 1*10-6M 

to 5*10-6M, provides sufficient fluorescence brightness for imaging 

single DNA strands with negligible bleaching. 

• Addition of 1% Slowfade® reduces photobleaching. Single DNA strands 

can be imaged for minutes to hours without significant bleaching. 

• The original TRIS/EDTA solution (salt: 150mM NaCl, 10mM Tris, 1mM 

EDTA, pH8) provides the best DNA stability and adhesion to polylysine, 

with acceptable losses in dye binding and fluorescence. 
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4.2 Imaging of single molecule DNA strands 
Before it is possible to manipulate single DNA molecules using an AFM tip 

with real-time optical detection, good fluorescence images are required. 

Incorporating the knowledge gained from the single molecule photophysical 

experiments, various surfaces and preparation protocols were tested for 

imaging elongated single DNA strands.  

 

Previous work on imaging DNA 
Scanning AFM microscopy is a useful tool for obtaining high resolution DNA 

images - a field which was pioneered by Hansma [6] and Lyubchenko in 1993 

[5, 193]. Further results describe DNA triplex formation [194], ethidium 

bromide intercalation induced changes in DNA structure [195], increased DNA 

length on binding on drugs [172], and proteins [196], contour length analysis 

of DNA [7], and also AFM images of DNA on gold surfaces [197, 198].   

However, some biological reactions, such as DNA transcription by RNA 

polymerase, are too quick even for fast scanning AFMs with small cantilevers 

and 2s/image frame [199]. In addition, binding biomolecules tightly to flat 

surfaces, as required for good AFM imaging, may interfere with their biological 

activity. These difficulties may be circumvented by real-time optical imaging of 

DNA. Furthermore, force spectroscopy pulls molecules vertically away from 

the bound surface, thus providing a more natural biological environment for 

studying e.g. enzyme kinetics on a single DNA strand. 

Early optical imaging experiments used dyes such as DAPI [74, 200] to  

image DNA filaments. However, new cyanine dyes provide better images of 

individual DNA chains [75, 76]. Particularly YOYO-1 has been used 

extensively. From the photophysical experiments, TO-PRO-3 is expected to 

afford similarly good results. In addition, the dye can be excited in the red 

region of the visible spectrum at 632nm, for which background fluorescence 

from impurities is lower.   

 

DNA immobilisation 
Although DNA adheres to mica surfaces in the presence of divalent cations, it 

will not readily stick to bare glass or silicon [125]. Preparing DNA on bare 
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clean glass leads to DNA globules, which are only weakly absorbed to the 

surface and are difficult to straighten out – an important prerequisite to 

identifying and imaging single DNA strands. Therefore, surface treatment is 

required to increase the adhesiveness of the substrate for DNA. In principle, 

two approaches can be taken. One is to exploit the hydrophobic nature of 

DNA, especially of the terminal sticky-ends. This was achieved on silanised 

surfaces. The other is to bind the DNA by electrostatic interaction of a 

positively charged surface with the negatively charged DNA phosphate 

backbone. To this end, coverslips were coated with polylysine. At pH = 8 the 

ammonium function on polylysine is positively charged. Therefore, a surface 

covered with this polypeptide (in our case with a charge density of ca. 23 000 

moieties/µm2) will be highly attractive for the whole DNA chain. 

 

4.2.1 DNA on polylysine surfaces 
Three experimental parameters determine the outcome of DNA immobilisation 

on polylysine: the polylysine surface density, the DNA concentration and the 

sample preparation method (DNA straightening technique). 

Firstly, the polylysine (PL) concentration is the most critical factor for 

good immobilisation and DNA straightening results. The PL concentrations 

were varied between 1µg/ml and 2000µg/ml to determine the optimum density. 

In a 5µl drop of polylysine (MW 50 000 ≈ 100nm length) spread out over two 

coverslips (2*24*60mm) (cf. Appendix 6: DNA straightening procedures) the 

corresponding surface coverage is between 21 and 42 000 strands/µm2. 

 

Polylysine conc. 

[µg/ml] 

Polylysine surface density 

[PL strands/µm2] 

No. of lysine groups/µm2

(M=227g/mol) 

1 21 4600 

5 105 23 000 

12.5 262 57 500 

2000 42 000 9.2*106

table 12: Polylysine strand density 
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According to the literature, the optimum polylysine (MW = 350 000) surface 

density for stretching DNA is between ~50 strands/µm2 [127] to ~200 

strands/µm2 [128]. This corresponds to 350 strands/µm2 and 1400 

strands/µm2 in our experiments (MW = 50 000). 

 We found that the best results are achieved for the 5 - 12.5 µg/ml PL 

solutions, corresponding to a strand density of ca. 100 - 300 strands/µm2. For 

lower concentrations the DNA attachment is poor. Higher values lead to 

dense DNA coverage, but also an increased agglomeration of the DNA.  

Secondly, the effect of a tenfold increased DNA concentration can be 

seen in Figure 80. Preparing either a 3*10-11M or a 3*10-10M DNA mixture with 

antifade on polylysine and applying the pressure stretching method afforded 

the following images: 
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Figure 80: Fluorescence images of a dilute 3*10-11M (left) concentrated 3*10-10M (right) 

λ−phage DNA solution prepared on a polylysine coated coverslip (image size 38µm2). 

 

DNA straightening methods 
The pressure straightening method is based on the hydrodynamic flow 

procedures, developed by Chu [11] and Bensimon [117]. After terminal 

attachment, the DNA could be stretched by the hydrodynamic frictional forces 

experienced in the fluid shear flow between two pressed coverslips (cf. Figure 

81). This method has been adapted for polylysine coated glass by Lyon [127] 

and Taylor [128].   
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Figure 81: DNA stretching in a shear flow on a PL coated glass 

 

Compared to the samples on bare glass, about half of the DNA balls are at 

least partially stretched out on PL after pressure stretching (cf. Figure 80). A 

few of the strands can be extended to nearly the full contour length of 16µm. 

However, the DNA alignment is random, which suggests that the fluid flow 

experienced by the DNA is possibly turbulent rather than laminar. 

Nevertheless, a preferred alignment direction was usually observed.  

A second method to elongate the DNA is spin coating. The technique 

was first proposed by Yokota et al. [121], who dispensed a small droplet of 

DNA solution on a MgCl2 soaked mica surface, while spinning the sample at 

4000-7000 rpm. By applying a high centrifugal force to the sample, the DNA 

was thrust outwards and aligned according to the acting forces. The shear 

force experienced by the DNA was estimated to be ~10pN, while DNA 

fragmentation occurred at 8000 rpm. 
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Figure 82: Dilute λ-phage DNA (3*10-11) dispensed on a PL coated glass coverslip and 
spun at 5000rpm; image size 41µm2. 
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Our experiments show that a spinning rate of ~3000rpm is sufficient for partial 

elongation of the DNA strands, which attach spontaneously to a polylysine 

covered surface. For full extension, speeds of at least 5000rpm are necessary 

(cf. Figure 82). In contrast to the pressure stretching method, the molecules 

are aligned in the same direction by the centrifugal forces acting on the 

spinning fluid. 

 

4.2.2 DNA condensation on polylysine surfaces 
Lyon [127] and Taylor [128] describe single elongated DNA strands stretched 

out on PL coated glass surfaces. Although these results could be confirmed 

for some cases, DNA imaging on polylysine has turned out to be a complex 

process involving a number of experimental parameters. These include the 

dye and DNA concentration, the PL coverage, the pH and salt concentration, 

the sample preparation method and finally the addition of either antifade or 

slowfade. Depending on the combination of parameters chosen, different 

qualitative imaging results are attained. In particular, an unexpected 

phenomenon is observed: DNA condensation. Instead of forming discrete 

individual chains, the DNA tends to aggregate on polylysine coated surfaces 

to generate higher order structures, such as DNA rods or globules. This 

problem is inherent in all PL coating experiments, but appears to be more 

severe when Slowfade is used instead of Antifade. Possibly the increased 

viscosity in the Antifade sample has a favourable influence on the DNA 

condensation process. 

 

DNA condensation  
DNA is known to collapse and condensate in the presence of polycations or 

high salt concentrations. Due to negative charges along the chain, DNA is 

soluble in water and the energy to bend a DNA strand into a circle is 

ca. 1kBT/µm [201]. Electrostatic screening of Na+ counterions in solution plays 

an important role in determining DNA flexibility and solubility in water. For a 

100mM salt solution the screening length is ca. 1nm [201]. According to 

Mannig’s theory, the cations gradually balance the negatively charged DNA, 

thus reducing strand repulsion [202, 203]. Finally, at a sufficiently high ion or 
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salt concentration, the forces holding the DNA apart break down and the coil 

condenses on itself. If more than one strand is involved many DNA coils may 

further aggregate to form larger conglomerates. 

Polycations can mediate attractive interactions between adjacent 

helices [204]. It has been suggested that Mg2+ ions enhance the binding of 

DNA to a mica surface via salt bridges, because both DNA and mica having 

excess negative charges. This attractive force can be revealed by single 

molecule force spectroscopy of DNA and leads to a plateau in the force-

distance graphs [123]. Furthermore, highly positively charged 

polyamines (>2+) such as spermidine (3+) [205] or also cobalt hexamine have 

the capacity to precipitate DNA from solution [192]. The condensating effect of 

spermidine and Co(NH3)6 on single DNA molecules has been examined with 

optical tweezers force spectroscopy [204]. These reagents provoked DNA 

condensation at low stretching extensions and markedly increase bending 

flexibility i.e. decrease chain persistence length. However, keeping DNA in an 

extended straightened state with optical tweezers appears to prohibit looping 

and nucleation, which are prerequisites for the condensation process [204]. In 

nature, DNA condensation occurs during packaging in the cell nucleus. By 

wrapping the double-helix around positively charged histones, a highly 

compacted chromatin strand is formed [201, 206]. 

 In principle, DNA condensation can also be achieved with sufficiently 

high polylysine concentrations of ca. 5:1 lysine to nucleotide ratios [206]. At 

these mixing ratios circular DNA will coil or fold to form toroids or rod-like 

structures with a six to eightfold reduced contour length, as has been found in 

AFM images. However, compared to other polycations, condensation due to 

polylysine is extremely weak [206, 207]. By mixing λ-Phage DNA with 

polycations such as polylysine or histones, compact globular or rod-like DNA 

complexes can be formed and observed by fluorescence imaging. These 

networks demonstrate the condensating effect of polylysine in solution [208]. 

 However, a thin layer of polylysine should be sufficiently fixed to the 

coverslip, so as not to condense surface bound DNA. No condensation was 

mentioned by Lyon et al. when single DNA strands were immobilised on 

polylysine coated surfaces [127, 128].  
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Nevertheless, in our experience the DNA frequently aggregated to form 

higher order multi-strand structures on the polylysine surfaces. This 

condensation process, from discrete individual chains to globular DNA balls, 

can be characterised by distinct stages, which differ in their morphology. 

Although the actual condensation process was not monitored in real-time, 

images were taken on different samples, which show the DNA with various 

degrees of condensation. After classifying these stages, a model is proposed 

to describe the aggregation process. 

 

The stages of DNA condensation 
Single DNA strands are shown in Figure 83. The samples are generally 

prepared by pressing a (3*10-10mol/l) DNA solution on a 5µg/ml PL surface 

and imaging with 5*10-6M TO-PRO-3 at ~1.2 W/cm2 632.8nm laser light (cf. 

Appendix 5: DNA imaging protocols).  

 

 

 

 

 

 

 

 

 

Figure 83: Single DNA strands on polylysine (image size 25µm2). 

 

These single chains can group together to form thick DNA fibres, which 

display strong fluorescence. The resulting DNA bundles are generally broader 

and longer than the single strands. A good example of a DNA bundle can be 

seen in Figure 84, with single strands on the right interweaving to form a large 

DNA bundle on the left. 
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Figure 84: Fluorescence image of a DNA bundle branching out into many single DNA 
strands (image size 29µm2). 

 

An even higher degree of condensation is seen in the compacted rigid DNA 

rods. These structures are well aligned, indicating a high persistence length 

and rigidity. The rods are brighter than single DNA strands and can be 

detected in the laser scattering reflection image (cf. Figure 44), which 

indicates that their width is larger than that of a single DNA helix. The exact 

nature of the long rod-like structures is not clear, but they are frequently 

observed in conjunction with DNA globules at the ends. This could be an 

indication that the rods are generated by partial unwinding of the DNA 

globules. A thin strand can be observed detaching from a condensed DNA rod 

on the left. Clearly the thick bright DNA rod has a more condensed 

constitution than the thin DNA strand adjacent to it. From the fluorescence 

intensity, the thin strand is probably composed of only one or two single DNA 

chains. 

 
 

Figure 85: DNA rods (image size 26µm2 and 41µm2). 

 112



 

 

Both bundles and rods regularly appeared in conjunction with large DNA 

 

igure 86: DNA “dumbbells” (image size 40µm2). 

ted in Figure 87 (red line) shows 

globules to form typical “dumbbell-like” structures. 

F

A profile cross section of the rod as indica

that the DNA has a FWHM diameter of 738nm, which is much wider than the 

expected diffraction limited length for a single strand of ca. 300nm. 
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Figure 87: DNA dumbbells with image cross-section profile (34µm2) 
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In the final stage of condensation, DNA forms large, globular agglomerates, 

igure 88: DNA dumbbells with fluorescence profile (image size 34µm2). 

he DNA condensation process 
n devised that lists the stages of 

egated DNA 

globule

which display high fluorescence intensities. An image cross section profile 

(red line) through a series of globules is shown in Figure 88. 
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T
A hierarchical flow chart has bee

condensation from the most condensed DNA globules down to the isolated 

individual DNA strand. There is a distinct difference between the dense 

rod-like structures and the more loosely associated bundles. The AFM pulling 

experiments with very long pulling lengths suggest that some form of 

polylysine aggregate involving multiple DNA chains is responsible for these 

effects, although the exact nature of this interaction is unknown.  

The highest order of condensation is achieved in an aggr

. Here many condensed DNA fibres are coiled up on each other to 

form a randomly tangled ball. Given sufficient shear flow, these DNA balls can 

be unravelled to afford dumbbell-like structures. However, the DNA fibres that 

have been extracted from the globules are themselves composed of highly 

condensed strands - termed DNA rods. Similar rod-like DNA structures have 

been observed by scanning AFM microscopy [133]. Occasionally, a few 

relatively uncondensed DNA strands aggregate to form bundles. In this case 
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the chains wrap around each other in a fairly loose manner, quite unlike the 

dense association achieved in DNA rods. Finally, when low polylysine 

concentrations are used and combined with DNA straightening procedures, 

individual DNA strands can be observed.  
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Figure 89: Flow chart of the stages in DNA condensation 
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The roll-stick model 
Although the positively charged polylysine coating does not necessitate the 

mixing and complexation of the negatively charged DNA strands, considerable 

condensation is observed. Possibly some physisorbed PL strands are 

re-dissolved upon addition of the DNA solution. These soluble polylysine 

strands would then bind to the DNA and induce condensation. In order to 

explain the formation of the typical DNA structures, such as the DNA 

dumbbells, a model was devised - the roll-stick model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 90: The roll-stick model to describe DNA (red strand) condensation on 
polylysine (green strands) coated coverslips. By rolling over the surface, the DNA ball 
gradually accumulates sufficient polylysine to condensate into a dense globular 
structure. 

 

The conventional DNA straightening methods generate a fluid shear flow to 

align DNA. In a shear flow, the fluid velocity is zero directly on the coverslip, 

but increases with distance from the surface. The DNA, which coils into a 

statistical ball in solution, will initially be loosely attracted to the oppositely 
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charged polylysine coverslip. It is likely to move along the substrate in a rolling 

fashion, because the parts further from the surface will experience an 

increased fluid velocity. By rolling over the coated surface, the DNA ball will 

gradually recruit sufficient polylysine for condensation before finally attaching 

and straightening out. 

The sticky-ends of the DNA have a higher probability of attachment. In 

the case of a terminal fixation, the DNA will gradually unravel, as parts of the 

fixed end stick to the surface, while the remaining DNA ball is propelled further 

by the fluid flow. The observation of partially extended DNA balls, with 

protruding straightened rods, supports this model. If the initial fixing point is 

not at a terminal sticky-end, then the unwinding process will lead to a globule 

on both sides, as seen in the dumbbell DNA structures. 

Evidence that this kind of process may be involved comes from an 

AFM imaging report of DNA bound to multivalent cationic silane surfaces [125]. 

A positively charged silane covered silicon surface was used to immobilise 

DNA. However, at low salt concentrations, the circular DNA plasmids were 

condensed into toroids or rod-like structures. The authors explained this 

observation with the condensing effect of freely diffusing silanes that had not 

formed covalent bonds during the film generating process and were not rinsed 

off during washing. In fact, curing the substrates at high temperature, a 

common step in silanising surfaces, which drives the formation of covalent 

bonds between the silanes in the film, eliminated the DNA condensation effect. 

 
Conclusion 
DNA condensation turned out to be a complex process, which depended on a 

number of sample parameters, such as the DNA stretching procedure, pH and 

salt concentration etc. However, the key parameter is the polylysine 

concentration. At high PL concentrations the DNA readily adheres to the 

surface, but tends to condense into globules. On the other hand, below 

1µg/ml, DNA adhesion is too rare to be useful for imaging experiments. In 

addition, soluble polylysine chains are probably responsible for the wide 

variety of different DNA condensation products. These higher order DNA 

aggregates are difficult to assess in the optical images. In addition, it is not 
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clear to which extent the free positively charged polylysine moieties compete 

with dye molecules for DNA association, thus reducing the overall 

fluorescence intensity. DNA condensation may also lead to considerable dye 

self-quenching, as the distance between the dyes is reduced in a condensed 

environment [209].  

Moreover, DNA-polylysine aggregates are responsible for the 

non-plateau pulling events with very long stretching lengths, observed in the 

AFM experiments on polylysine covered surfaces (cf. 2.3 Force spectroscopy 

of DNA on transparent surfaces). 

Finally, the DNA is strongly attracted to the polylysine coated surfaces 

by the whole length of the DNA chain, which leads to tightly fixed DNA 

molecules. With respect to retaining the biological activity or the free 

mechanical movement of the DNA chain, strongly clamped down DNA strands 

are undesirable. Therefore, a new immobilisation surface is necessary, which 

should preferably rely on hydrophobic rather than electrostatic DNA attraction. 

 

4.2.3 Silanised surfaces and super-long λ-phage DNA 
Allemand et al. [210] reported that it is possible to immobilise DNA on 

vinyl-silane surfaces. Specific binding by the DNA extremities is observed at 

pH = 5.5 in MES buffer (2-[N-Morpholino]-ethanesulphonic acid sodium salt). 

These results were confirmed, but an unusual discovery was also made: 

incubating λ-phage BSTE digest DNA (enzymatically fragmented DNA) at 

pH = 5.5 and then switching to pH = 8 resulted in the formation of very long 

DNA concatemers.   

 

Images of λ-phage DNA 
Generally images of λ-phage DNA can be achieved with TO-PRO-3 in either 

the acidic MES buffer (pH = 5.5) or the physiological TE (Tris/EDTA) buffer 

(pH = 8). However, MES buffer is not the solution of choice for imaging, as the 

dye intercalated DNA strands are less bright than in the TE buffer. An 

explanation for this could be that at pH = 5.5 the DNA phosphate groups 

commence protonation, which may shield the DNA from cationic dye adhesion. 

Furthermore, imaging DNA with the dye PO-PRO-3 led to rapid bleaching of 
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the strands and brought no gain in contrast or brightness over TO-PRO-3. 

Therefore, the images are generally captured using DNA in the 

TO-PRO-3/TE buffer solution. In some cases preliminary DNA adhesion is 

first achieved by incubation in MES buffer, followed by imaging in TE buffer (cf. 

Appendix 5: DNA imaging protocols). 

DNA is far less susceptible to condensation when prepared on 

silanised glass than on polylysine. In addition, the strands are loosely bound 

to the silane layer. Frequently only one end is attached to the surface, while 

the free end stretches upwards into the solution, i.e. out of the focal plane 

(cf. the long strand in Figure 91). By taking 40 cross-section images at 250nm 

intervals in the z-axis, a 3D fluorescence profile of the DNA is gained, which 

shows that the strand extends up from the surface by ca. 5µm. This can be 

seen more clearly in the solid 3D image in Figure 91 (Zeiss® LSM software), 

which shows the DNA strand as projected from the side. One explanation for 

this behaviour could be the preferred attachment of the λ-phage sticky-ends, 

which are the unhybridised end-groups on asymmetrically restricted DNA (cf. 

Figure 96). There is evidence that the hydrophobic nature of these regions 

accounts for their increased adhesiveness [111]. In fact, completely 

unhybridised single stranded ssDNA is very sticky and attaches non-

specifically to most surfaces [112]. 

 

 

Figure 91: Fluorescence image of a long λ-phage DNA concatemer (image size 30µm2). 
Right: 3D profile image of the same DNA as viewed from the side. The fluorescence 
discrimination level was set to 150 counts. 
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DNA mobility on silane surfaces 
Longer DNA strands are generally less mobile, but terminally attached chains 

of ca. 2-3µm can move more or less freely about their end pivot. The image 

series in Figure 92 shows such a short DNA strand. The loose end rotates 

randomly, as indicated by the red arrows. The latter give the strand orientation 

relative to the first image, but do not signify the direction of the rotation. On 

some occasions the DNA is completely unattached to the silanised surface, in 

which case small DNA particles diffuse freely over the silanised surface. 

 

Figure 92: Rotation of a terminally attached short DNA strand on a silanised coverslip. 
The images show six different randomly orientated positions of the strand. 

 

Super-long λ-phage DNA strands on silanised glass 
Surprisingly, it is possible to generate super-long DNA chains from either the 

original λ-phage DNA or even the BSTE digest DNA, simply by exchanging 

the buffer solution during the preparation procedure. After overnight 

incubation of the DNA in MES buffer (pH = 5.5), the sample is washed and 

imaged in TE buffer (pH = 8). The super-long strands prepared in this way are 

often far longer than an individual 16µm λ-phage DNA - in one documented 

case even >300µm long (cf. Figure 94).  

The strands displayed homogenous fluorescence along the whole 

chain length with the occasional brighter node. Between different strands, the 
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fluorescence is also of uniform intensity, which indicates that these chains are 

single DNA double helices.   

Images of a DNA mesh and a larger DNA knot with four loops are 

shown in Figure 93. Generally, tight bends are rare, suggesting a relatively 

high chain stiffness and persistence length. 
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Figure 93: Images (30µm2) of super-long λ-phage DNA strands on silanised glass. 

 

The longest detected complete DNA chain is shown in Figure 94. By gradually 

moving the sample through the illumination field, an image sequence of the 

whole chain could be generated. The length of the whole chain is ca. 300µm! 

This is nearly half a millimetre, which is far longer than the length of a λ-phage 

DNA unit of 16µm, not to mention the longest BSTE digest fragment of 3µm, 

from which this DNA was generated.  

 

Figure 94: Image collage (240µm*30µm) of a >300µm super-long λ-phage DNA strand.  
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How did the DNA get so long? Possible clues might be the small bright nodes 

noticed along the chains, which may be the result of junctions in the DNA. 

These junctions could fold back on the original DNA thus increasing the local 

fluorescence. A rather thick node can be seen in Figure 95.  

 

Figure 95: Image of a long strand with a bright node, generated from BSTE digest DNA 
(image size 29µm2). 

 

DNA concatemers 
The observed super-long strands are reminiscent of DNA concatemers [128]. 

These are connected sequences of e.g. λ-phage DNA units. They occur 

naturally when restriction enzymes in the phage virus fail to cut the original 

DNA strand into 16µm long units, just prior to packaging into the virus capsule. 

 

Figure 96: λ-Phage DNA concatemers 
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The canonical cut λ-phage units have a 12 base pair (bp) overhang, which 

have been described previously (cf. 2.3 Force spectroscopy of DNA on 

transparent surfaces) and are called “sticky ends” ends. These are probably 

hydrophobic, which may be the reason for the preferred terminal attachment 

of λ-phage DNA to hydrophobic surfaces such as silane covered glass. The 

unpaired ends also have the ability to re-hybridise by forming base pairs to the 

complementary end of another chain. This hydrogen bonding is sufficient to 

connect two chains, which can then be covalently bound by re-ligating the 

strands together with ligase enzymes, thus producing concatemers.  

 However, in the absence of ligating enzymes, explaining the formation 

of super-long DNA strands with hydrogen bonded concatemers seems 

unfeasible. The cohesion between the 12bp hydrogen bonded ends would not 

be strong enough. The force required to unzip DNA was measured by 

Bockelmann et al. to be between 10 - 15pN [211-214]. Higher forces of up to 

50pN were measured by other groups [215-217], when the DNA was 

unzipped by pulling at the opposite 5` ends. However, forces of at least 65pN 

were exerted on the long DNA strands in the AFM manipulation experiments 

(cf. 5. Combined optical imaging and AFM). 

Finally, no super-long DNA is generated when imaging in MES or 

TE buffer alone, which would still permit hybridisation of the sticky ends. 

Therefore another process must be responsible for the long DNA.  

 

DNA polymerisation by interstrand hybridisation 
It is likely that the pH change plays an integral role in the formation of 

super-long DNA. Allemand et al. describe DNA protonation under acidic 

conditions [10]. At pH= 5.5 DNA protonation is already equal to a few percent.  

Decreasing the pH induces partial melting of the double helix and 

frilling at the DNA ends [10]. By bringing the pH back to 8 it might be possible 

to re-hybridise the DNA in an alternative way, thus re-connecting the 

complementary strands of different DNA chains and generating very long 

polymeric DNA fibres. This is shown schematically in Figure 97. 
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Similar DNA junctions were described by Seaman et al. [218]. If the 

overlap is not perfect then DNA loops and folding could occur – an 

explanation for the bright nodes observed occasionally along the DNA chains? 

The process of interstrand hybridisation could also lead to the formation of 

Y-junctions or other DNA constructs [219, 220]. However, these were rarely 

observed (cf. Figure 98). To test for Y-junctions and confirm the interstrand 

hybridisation theory, high resolution AFM scanning images of the connection 

points would be useful [218, 221, 222].  

 

Figure 97: DNA junctions by interstrand re-hybridisation 

 

Figure 98: Fluorescence image of a possible DNA Y-junction; image size 29µm2. 
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Although the generation of super-long DNA strands is unlikely to become a 

new chemical method for polymerising DNA chains, it is an interesting 

discovery that may warrant further investigation. 

 

Conclusion of the DNA imaging experiments 
Our results clearly show that there are fundamental differences in the DNA 

morphology on either polylysine coated or silanised surfaces. 

On polylysine, single DNA strands can, in principle, be prepared and 

aligned using various fluid flow extension methods. However, the 

condensating effect of the electrostatically charged cationic PL surface leads 

to the formation of highly compacted DNA rods and balls. The whole DNA 

body is fixed to the surface. 

 On silanised surfaces the DNA regularly forms uncondensed single 

strands, which are often straightened to their full contour length. The general 

adhesion strength to the surface is weak and large parts of the DNA are 

observed to extend vertically up into the water phase. In addition, the DNA 

displays a high propensity for terminal attachment. Many cases were noted, in 

which the free end of a fixed DNA strand rotated or swivelled in the solution. 

Unattached DNA strands are also observed, as they rapidly diffuse through 

the solution or jitter randomly near the surface.  

Furthermore, super-long DNA strands can be generated on silanised 

surfaces by an exchange of the buffer solution during the sample preparation 

procedure. 
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5. Combined optical imaging and AFM 
So far, the experiments on DNA were done either by AFM force spectroscopy 

or by optical imaging methods. It could be shown, firstly, that it is possible to 

achieve characteristic single DNA force curves on transparent surfaces. 

Secondly, optical images of single DNA strands can be taken using 

TO-PRO-3 as an intercalating dye. In order to combine both experimental 

techniques a new setup is required which places the AFM head on top of the 

inverted optical microscope, thus guaranteeing optical access to the sample 

coverslip from below and simultaneous AFM cantilever access from above. 

Three series of combined experiments are described: 

• Real-time DNA manipulation on polylysine and silane surfaces. 

• Simultaneous AFM force spectroscopy and optical imaging. 

• A new type of lateral force spectroscopy on long DNA strands. 

 

5.1 The combined optics/AFM setup 
A major difficulty encountered in the combined AFM/confocal optical setup is 

co-aligning the optical focus with the position of the AFM tip. This problem is 

circumvented by employing wide-field imaging. In this way the cantilever apex 

can be positioned laterally in the relatively large illumination field (~Ø30µm), 

while the sample is controlled by a high resolution piezo positioning system. 

Manipulation of the sample is achieved by moving the coverslip, while keeping 

the cantilever tip and optical focus in line.  

 

The new microscope stage 
A new home-built microscope stage (cf. Figure 99) was constructed so that 

the AFM head could be accommodated on top of the inverted microscope. 

The new stage is composed of three mechanical positioning systems in the X-

Y plane:  

• The largest brass stage element is screwed onto the microscope 

platform and enables the lateral movement of the whole AFM head and 

sample relative to the objective focus.  

• Next, a piezo-stage (black) is required for the fine lateral displacement 

of the sample, with nm resolution. The piezo-stage position is 
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controlled by a LabView® program (cf. Appendix 4: LabView® 

programs) using the keyboard cursor keys. The high voltages (~100V) 

driving the piezo are provided by the piezo controller, which in turn 

received voltage signals in the range of 0-10V from the National 

Instruments® card in the computer. 

• Finally, the coverslip holder includes provisions for the independent 

lateral movement of the coverslips, which were fastened with two 

magnets. 

 

Figure 99: Microscope sample stage and piezo controller 
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These three lateral displacing units are integrated into the sample stage in a 

compact fashion, because the AFM cantilever can only be lowered down to 

the sample by about a centimetre. At the same time the microscope objective 

needs to be pushed up through all the other mechanical elements to meet the 

sample coverslip from below.  

Furthermore, due to the short working distance of the high NA 

objectives, only 170µm thick coverslips can be used instead of objective 

slides. This has implications for the force spectroscopic measurements, which 

were found to be perturbed by rogue resonant vibrations of the freely swinging 

thin coverslips. The sample holder aperture was therefore reduced to 16mmØ. 

The interfering frequencies are greatly dampened by the oil objective, when 

brought into contact with the glass. 

 

Fluorescence filters 
Unfortunately, the AFM diode IR light, which is used in the AFM head to 

generate the deflection signal, initially passed through the bandpass filters 

and overwhelmed the fluorescence signal. The main bandpass filter used in 

the detection setup is the 720 ±75nm filter, which lets the fluorescence light 

pass from 645nm - 795nm. Importantly, light with a wavelength above 800nm 

is blocked, so the filter provides good protection against IR light. The only 

possible explanation for this leak is, therefore, that the diode light is actually 

bypassing the filters below 800nm.  

A spectrum of the IR diode, which was taken using the detection 

spectrometer (cf. Figure 100), shows that the diode light is spectrally broad. A 

significant amount of light is detectable below 800nm, a region for which the 

filters are transparent. It is therefore impossible to suppress this light by 

conventional spectral filters. Unfortunately, the spectrally broad AFM diode is 

required to prevent interference signals in the AFM setup, so an exchange is 

not an immediate option.  

The only other solution is to cut out the objectionable laser light below 

800nm spectrally, before it reaches the sample. This involves incorporating a 

new bandpass filter 840 ±35nm into the AFM head as a laser clean-up filter. 
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Figure 100: AFM IR-diode spectrum 

 

The final solution is described in Figure 101. By mill-cutting an 8mmØ mould 

into the fluid cell holder, the filter (shown in green) can be positioned in the 

optical path of the IR laser beam (shown in red).  

  

 

Figure 101: AFM head and fluid cell with the new clean-up filter 

 

However, the beam is not completely parallel at this point and so a certain 

shift in the blocking filter spectrum has to be accounted for. The transmission 

spectrum of the new filter at various angles of incidence is shown in Figure 

102. The angle of incidence for the IR laser beam is ca. 9°, which is still 

acceptable. With this filter, the diode laser light below 800nm can be blocked 

completely. 
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Figure 102: Laser clean-up filter transmission spectrum at different angles of incidence 

 

Cantilever tip alignment procedure 
After mounting and calibrating the cantilever, the whole AFM head is 

transferred to the optical microscope stage. The head is then positioned 

laterally with the large stage screws so that the cantilever tip is in line with the 

optical axis of the microscope objective. Due to the relatively small tip 

dimensions and the limited field of view of the high NA objectives (~ a few 

hundred µm) a method is needed to find and zero in on the approximate tip 

position, which may initially be far out the viewing field. Fortunately, the 

intensity gradient of the scattered IR laser light serves this purpose, because 

scattered light from the cantilever could be detected even if the tip was far out 

of the lateral focus. 

The first step in the alignment procedure is to bring the cantilever down 

into contact with the substrate and into the objective z-axis focus. By 

exploiting the IR light, scattered from the cantilever shank, the lateral position 

of the tip can be estimated (N.B. using neutral density filters rather than 

fluorescence blocking filters). By closing in on the highest signal intensity the 

shadow of the cantilever is brought into the field of view of the objective (cf. 

Figure 103). From then on, the tip can be identified through its intrinsic 

cantilever luminescence and directed to the centre of the illumination spot. 
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The tip remains in this lateral position, while the sample manipulation is 

achieved by moving the coverslip underneath. 

Figure 103: (left) Conventional optical microscope image of the cantilever chip. 

(right) The IR diode reflected from the cantilever back surface (image: 283*151µm). 

 

The tip alignment procedure is summarised in Figure 104. After positioning 

the tip in the illuminated area it lights up and can be identified by its intrinsic 

luminescence (cf. figure b, illumination of the tip). Focussing the objective up a 

few µm, the edges of the cantilever pyramid can be brought into view 

(cf. figure c). Figure d shows a tip fluorescence image without the AFM IR 

diode. 

Figure 104: Cantilever alignment procedure (image: 98µm*65µm).  

a) Positioning the cantilever   b) Tip luminescence and AFM laser 

c) Tip edges in focus    d) Only tip luminescence 
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5.2 Cantilever luminescence 
All cantilevers examined emit a spectrally broad, red-shifted luminescence 

when subject to laser light of either 532nm or 632nm. Since the origin of the 

emitted light is unclear, it is termed luminescence to distinguish it from single 

molecule fluorescence. Surprisingly the luminescence of AFM cantilevers has 

hitherto not been described in detail in the literature. The only group to 

mention cantilever luminescence as a non-descript background signal was 

Wild et al. [223], although the group of Seidel et al. has also observed 

cantilever luminescence [224]. Images of the cantilever luminescence are 

shown in Figure 105. By focussing up a few micrometers, the cantilever 

pyramid edges can be identified.  

 

Figure 105: Cantilever luminescence a) slightly off centre b) centered on the 
illumination spot. 

 

Although this luminescence is weak, it is of comparable magnitude to the 

fluorescence emitted by single molecule dyes. Generally, the luminescence 

depends on three factors: 

• The illumination intensity 

• The tip geometry 

• The cantilever material 

Tip cleaning does not make a difference and so the luminescence cannot be a 

contamination artefact. It is also not the result of Rayleigh scattering, as 

experiments with various filters show that it is shifted to longer wavelengths 

and an excitation wavelength blocking efficiency of ~1012 has no influence on 

the luminescence intensity.  
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Tip geometry 
The most striking influence on cantilever luminescence was witnessed for 

different tip lengths. Longer cantilevers do not reduce luminescence per se, 

but since only the tip apex is in focus (~1µm depth) the luminescence 

background from the cantilever shank contributes less to the overall signal. 

Since the Si3N4 Microlever™ cantilevers have a height of 3.3µm the cantilever 

shank is generally visible. The Si Ultralevers™ were 6µm long, which clearly 

reduces background luminescence. The best background signal is achieved 

with the Olympus® Biolevers™ (tip length 11µm). In this case only the very tip 

apex is in focus. The image in Figure 106 shows a Si3N4 cantilever approach 

sequence. The tip is gradually brought down onto the coverslip surface and 

into focus with a speed of 40nm/sec, while consecutive images of the 

fluorescence are taken.  

 

Figure 106: Cantilever approach sequence; z-distance between the images ~1.5µm. 

  

If field enhancement effects are responsible for tip luminescence the actual 

shape of the tip may also play an important role [225]. 

 

The cantilever substrate material 
Various tip materials were tested: Si, Si3N4 and gold. The following images 

were taken with a 20x air objective and illuminated with 532nm light 

(detection: 580-75nm bandpass filter). The images in Figure 107 show a Si 

cantilever (Veeco®, Ultralever™) at relatively high irradiation powers. The 

luminescence is weak. 
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Figure 107: Si cantilever (Veeco® Ultralever™ ULCT-AUHW); illuminated with a) 12mW 
and b) 1.2mW (~100W/cm2). 

 

Illuminating a Si3N4 cantilever (Veeco® Microlever™) with the same laser 

power afforded the images in Figure 108. The Si3N4 tips generally display 

brighter luminescence than the Si cantilevers, although the length of the 

cantilever must be taken into consideration (6µm for Si and 3.3µm for Si3N4).  

 

Figure 108: SiN cantilever (Veeco® Microlever™ model : MLCT-AUHW) at 1.2mW.      
a) focussed on shank; b) focussed on the tip.  

 

Gold coated Si cantilevers (µ-masch®, CSC12™, Anfatec®) were also tested. 

They display very low luminescence, but the tips are 15-20µm long, so only 

the apex is usually visible. Similar results are also achieved for the Olympus® 

Biolevers™, which are 11µm long and gold coated on both sides.  

 

Methods to reduce cantilever luminescence 
A substantial reduction in background luminescence can be achieved by using 

TIR illumination, which limits the irradiation volume to a few hundred nm 

above the coverslip surface. The following images were taken of the same 

sample position. The left image shows a conventional wide-field image of a 

cantilever on a λ−phage DNA sample. The right image was taken in 
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objective-type TIR mode. The greater illumination depth of the wide-field 

arrangement, leads to a stronger signal, because more of the cantilever is 

irradiated. For the TIR image the luminescence is restricted to the tip peak. 

 

Figure 109: Comparison of cantilever luminescence for wide-field and TIR imaging 

(image size 48µm2); λ-phage DNA sample with antifade on polylysine.  

 

Apart from using long cantilevers and imaging in TIR mode, the background 

tip luminescence can be reduced by decreasing the laser power. Generally 

the best approach is to use all three of these methods in combination. 

Applying TIR and long tips can avoid luminescence, but the tip apex is still 

illuminated, which is unfortunately the point of interest for most combined 

optical/AFM experiments. An alternative solution is to maintain constant 

illumination conditions throughout an experiment and subtract the 

“background” control image (including the tip luminescence) from each 

sample image then taken. This approach works well, especially for wide-field 

imaging conditions. If very low illumination intensities (~1W/cm2) are sufficient 

to achieve high sample brightness, then the more complex TIR setup is not 

necessary. On the other hand, if higher laser powers are required, then TIR 

can greatly reduce the background fluorescence and tip luminescence. Finally 

cantilevers of different materials might be found, which lack inherent 

luminescence. 
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The origin of the cantilever luminescence 
The back-scattered light of an AFM tip was measured by Kolodny et al. [68]. 

Furthermore, other experiments describe the quenching of illuminated dyes in 

the proximity of metal tips [226-228]. Quenching occurs near metals over a 

distance of ~10nm and is therefore stronger for Au coated rather than Si 

cantilevers. However, neither of these methods revealed any wavelength 

shifted tip luminescence. Probably the illumination intensity in these 

experiments was too low. 

 Kramer and Trabesinger describe the fluorescence enhancement 

experienced by a single terrylene dye in the vicinity of a gold tip [223, 229]. 

The authors explain the enhanced fluorescence with localised resonant 

plasmon fields [230]. However, a strong cantilever luminescence is also 

observed for different tip materials including Si and Si3N4. Therefore, local 

plasmon resonance falls short of explaining tip luminescence.  

Generally, the tip edges display an increased luminescence. Possibly, 

this is due to a non-resonant field enhancement or the lightning rod effect for 

pointed tip geometries [225]. Although such effects were described for very 

sharp tips with excitation field components along the tip axis, these conditions 

are not met for our imaging experiments [231]. 

Another explanation could be that scattered light from the tip acts as an 

illumination source and is afterwards converted into nondescript fluorescence 

by fluorescent impurities. Light scattering is stronger at the edges, as can be 

seen in the reflected laser light images with neutral density filters. Therefore 

light originating from these scattering hotspots would generate a stronger 

background fluorescence signal. 
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5.3 The manipulation of DNA on polylysine: writing with DNA 
For the real-time manipulation experiments, the AFM cantilever is brought into 

surface contact and centred in the illumination field. A λ-phage DNA sample 

on polylysine is shown in Figure 110. Using the setup described in Figure 99, 

the glass substrate can be moved so that the DNA strands on the surface are 

pushed against the tip. This shows that the strands are firmly stuck to the 

surface by the whole length of the chain. Applying high forces leads to chain 

rupture. Usually the sliced ends retreat a few microns after scission [232], 

suggesting that the straightened chains were initially under tension. 

 

 

 

 

 

 

 

 

 

Figure 110: TIR image (38µm2) of λ-phage DNA prepared on polylysine. The AFM 
cantilever tip position is indicated by the yellow arrow. The sample has just been 
pushed upwards against the tip apex, which resulted in severance of the DNA strand 
and subsequent retraction of the cut ends. 

 

However, on polylysine the DNA is more likely to form aggregated balls or 

condensed structures than single DNA chains. These agglomerated balls can 

be moved or picked up with the AFM tip. It is possible to push the compacted 

DNA bundles sideways. In some cases single DNA chains can be pulled out 

of the DNA balls, but usually the DNA reattaches immediately to the surface in 

the new position. An example of showing these processes is presented in the 

image series in Figure 111. 
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Figure 111: Strand extraction from a DNA globule and deposition on a polylysine 
surface: The red arrow shows the relative movement direction of the tip with respect to 
the surface. The tip is pushed against the DNA strand connecting two globules. The 
DNA strand is extended and pulled out of the two neighboring globules.  

Eventually, one end of the DNA-bridge between the globules ruptures (green arrow). 
After pulling upwards to measure a force curve, the second DNA strand end ruptures 
and much of the DNA remains on the tip (yellow arrow).  

Sample of λ-phage DNA 3.3*10-10M prepared with antifade on polylysine and imaged 
with 69 W/cm2 (image size 28µm2). 

 

Taking these results into account, it is no surprise that the AFM pulling 

experiments on polylysine rarely produced the characteristic single molecule 

force curves typical of DNA (cf. 2.3 Force spectroscopy of DNA on transparent 

surfaces). The chains were attached too strongly to the surface. Moreover, 

they were usually condensed or aggregated and thus necessarily afforded 

uncharacteristic force curves (e.g. without a clear B-S transition plateau). 
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Writing with DNA on polylysine 
By attaching a condensed DNA globule to the cantilever and stroking the tip 

over a polylysine coated surface, thin fluorescent fibres can be unravelled 

from the DNA ball onto the adhesive surface. In this way, defined fluorescent 

structures are written with the DNA “ink”, as is described in Figure 112.  

 

Figure 112: Fluorescence structures written by an AFM tip on polylysine with 

3.3*10-12mol/l λ-phage DNA in TE buffer (image size 25µm2). The tip position is indicated 
by the yellow arrow. The DNA is transferred to the surface at a constant rate. Positions 
at which the cantilever movement is halted are characterised by slightly brighter 
fluorescence spots. 

 

Figure 113: left: Images (25µm2) of DNA letters on a polylysine coated surface. The 
letter Z was completed to form the letters “ZUM”; right: fluorescence intensity profile 
image of the DNA letters. 
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The same method can be used to write DNA letters, such as the letter “Z”, 

which was then completed to “ZUM” (cf. Figure 113). Considering the total 

length of the written letters (>100µm) these structures are certainly not 

composed of single DNA strands, but rather DNA bundles of condensed fibres, 

which are typical on polylysine samples. Eventually the ink begins to wane 

and so the letters “SCI” could not be completed. 

 

Figure 114: DNA writing “SCI”. 

 
The DNA “water-pen” 
“A thousand letters can dance on the head of a pin.”  

By pushing a tip-attached ball of DNA over the polylysine surface, thin DNA 

fibres can be unravelled from the tip onto the surface, much like a pen 

deposits ink on a sheet of paper. By directing the tip over the sample, defined 

structures, such as alphabetical letters are “written” with this “DNA ink”.  

The proposed principle of this method is described schematically in 

Figure 115. Thick condensed DNA fibres can be drawn from a ball of DNA on 

the tip, like a thread from a ball of wool. The written strands are deposited on 

the charged polylysine surface in the form of aggregated bundles. The 

deposition rate is more or less constant, but occasionally larger DNA balls are 

transferred when the tip is kept stationary for more than a few seconds. 

 The strands that are being cast onto the polylysine coated glass 

surface are probably composed of semi-aggregated DNA fibres, rather than 

single DNA strands. The condensating effect of polylysine on DNA was 

described previously (cf. 4.2.2 DNA condensation on polylysine surfaces). 
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Similar to a sticky spiders thread, these fibres can be spun off the tip and fixed 

onto the polylysine surface by a strong electrostatic interaction. 

 

 

Figure 115: Deposition of the DNA thread with the water-pen. 

 

Comparison of the DNA “water-pen” with dip-pen technology 
The DNA writing experiments on polylysine with the “water-pen” are similar to 

the “dip-pen” method devised by Mirkin et al. [233] Their group used an AFM 

tip to deposit small molecules on surfaces in a controlled fashion, thus 

generating nanometer sized patterns [234]. The key to this success is a thin 

water meniscus [235], which is used to regulate the “molecular ink” flow from 

the tip to the sample. The experiments are conducted in air and often involve 

grafting of thiol-functionalised molecules [236-239], or DNA oligomers to a 

gold surface [240, 241]. Recently, the dip-pen method has been used to 

fabricate fluorescent nanopatterns with rhodamine dyes [242] or modified 

DNA oligonucleotides on quartz glass [243]. 

 Although the method employed for writing DNA letters on polylysine 

displays some similarities to the dip-pen technique, there are fundamental 

differences. In contrast to the Mirkin experiments, fluorescence from 

intercalated dyes is used to image the DNA in real-time during the deposition 

process. No subsequent labelling process is necessary.  

In addition, the DNA ink-tip is completely submersed in the water phase. 

The driving force permitting this aqueous deposition is likely to be the highly 

attractive polylysine surface, which pulls the DNA off the tip, rather than the 

capillary forces in the dip-pen water meniscus. 
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DNA nanowires 
Further studies are required to investigate the exact nature of the deposited 

DNA fibres e.g. by AFM scanning experiments. However, the controlled 

deposition of thin DNA fibres may offer the possibility to generate nanometer 

sized patterns of DNA or even nanowires. These could be used in ultra high 

density biochips for fast screening assays or in the construction of nanoscale 

electric or optoelectric devices. Conventional semiconductor technology, 

which is based on lithographic processes, is expected to reach the theoretical 

limit of miniaturisation by 2012 [244]. After that, even smaller nanoelectric 

components are required, which cannot be constructed by conventional 

lithographic processes. Due to its extremely thin diameter of only 2nm, DNA 

could be employed as a conducting nanowire [245]. DNA has a high flexibility 

and can be functionalised at the ends. These are clear advantages over the 

stiff and hard-to-define carbon nanotubes [246, 247]. The low conductivity of 

DNA has been the main hindrance so far, but by metallising the DNA chains 

with Pd the conductivity could be increased [248-250]. In this way deposited 

DNA structures might be converted into conducting nanowires.  

 

5.4 DNA manipulation on silane surfaces 
The scanning AFM microscope has previously been used to manipulate DNA 

on silanised mica surfaces with high spatial resolution [133]. However, no 

real-time manipulation was possible. Here the simultaneous fluorescence 

imaging of DNA is demonstrated during the manipulation. 

In contrast to the experiments on polylysine, the DNA manipulation on 

silanised surfaces is not dominated by an overwhelming electrostatic 

adhesion to the surface. Instead, the DNA is usually loosely adsorbed to the 

silane layer. Furthermore, the nature of the DNA morphology is different, with 

far less aggregated and condensed structures. In most cases, the DNA 

adopted the form of thin uniform strands.  

 This has implications for the manipulation experiments. The DNA can 

be moved horizontally by the motion of the cantilever tip, without necessarily 

cutting the strands. An example is shown in Figure 116. The DNA strand is 
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manipulated with the tip as indicated by the red arrow. Three points of interest 

can be observed:  

Firstly, the tip pushing experiments demonstrate the high rigidity of the 

DNA, which reacts to lateral forces like a “thin tube”, rather than a “fine string”. 

Instead of being forced into a sharp bend, the DNA would escape tension by 

an abrupt reorientation of the whole chain (cf. the loop in images 5 and 6).  

 

  

Figure 116: Zip-like motion of pushed super-long DNA; λ-phage BSTE digest DNA on 
silanised glass; imaged at 1.4W/cm2 (image size 29µm2); red arrow = relative tip motion. 

 

Secondly, the DNA adhesion, although generally much weaker than on 

polylysine, was characterised by local attachment points, especially the ends. 

This led to a zip-like motion as the DNA was torn off the surface bit by bit 

when these anchor points ruptured. In fact, the forces required to sever these 

fixed points were relatively high, at least in the range of a few tens of 

piconewtons (cf. 5.6 Single molecule lateral force spectroscopy of DNA). 
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Frequently the DNA itself ruptured, before one of the attached termini was 

pulled off. 

The reason for this behaviour could be local sticky segments along the 

DNA. Unhybridised regions of the double helix are purportedly hydrophobic 

[10, 111, 112] and completely unhybridised ssDNA is very sticky, attaching 

non-specifically to surfaces [39]. Partially unwound segments of the DNA 

could either be generated by nicks in the helix due to irradiation or be a direct 

consequence of the process involved in forming super-long DNA. The 

junctions thus generated between individual segments of the long DNA would 

provide ample possibilities for unpaired and thus hydrophobic DNA extremities. 

These regions may be adhering to the hydrophobic silane layer, causing the 

zipper-like tearing motion of the DNA. It would be interesting to simultaneously 

measure the forces required for these rip-off events by AFM force 

spectroscopy.  

In retrospect, these results also help to clarify the processes involved in 

the AFM force pulling experiments of DNA on silanised surfaces (cf. 2.3 Force 

spectroscopy of DNA on transparent surfaces). Through terminal or local 

attraction of the sticky regions in an otherwise unattached chain, the DNA is 

far more easily picked up and stretched on a silanised than on a polylysine 

substrate. Furthermore, the strands are less likely to condense and form 

aggregated bundles or globules. Consequently, frequent and characteristic 

single molecule force curves are observed. 

Finally, the images show that DNA is highly elastic, as has also been 

demonstrated previously by single molecule force spectroscopy experiments. 

Under high tension, the DNA chains can be snapped. Rupture occurs at the 

tip, thus cutting the DNA strand into two parts. More examples of DNA 

manipulation on silane layers are provided in the lateral force spectroscopy 

section. 
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5.5 Combined force spectroscopy/optical imaging 
The combined setup is capable of measuring the force spectroscopic 

properties of attached single molecules in the conventional way by stretching 

these molecules upwards off the surface. By correlating the fluorescence 

signal available through simultaneous optical imaging, additional information 

can be gained e.g. on the dynamics of the intercalated dyes under strand 

tension. 

 

5.5.1 Combined experiments on polylysine 
The image series in Figure 118 shows a DNA sample on polylysine with the 

DNA coiled up into large globules, as described in the imaging section. In 

principle, it is possible to attach these DNA balls to the cantilever and pull at 

them. However, the DNA usually sticks strongly to the surface and cannot be 

moved without strand rupture. Occasionally, the whole DNA ball is transferred 

to the tip.  

In Figure 118, a condensed DNA ball is fished up onto the tip by one 

end, while remaining fixed to the surface through the rest of the globule. The 

motion of the cantilever during a typical force curve pulling cycle is explained 

in Figure 117. Since the tip touches the surface at an angle, it is pushed into 

the sample at the end of an approach curve. Likewise, at the start of the 

retraction curve, the tip initially scrapes over the surface before lifting off.  

 

 

 

 

 

 

 

Figure 117: The cantilever is scraped over the surface during a force spectroscopy 
pulling cycle. 
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Figure 118: Image series of DNA on polylysine with simultaneous force spectroscopy 

(image size 12µm2); λ-phage DNA 3*10-10M (1.2W/cm2). 

 

This effect can be seen in Figure 118. After pushing the DNA southwards 

(cf. images 1-3) the tip lifts off the surface stretching the DNA upwards (cf. 

images 4-6). Although a drop in fluorescence can be observed during the 

stretching motion, this is due to the DNA bundle moving up out of focus. In the 

last image the connection to the tip is ruptured and the DNA abruptly drops 

back onto the surface (cf. image 6), immediately bringing back the full 

fluorescence signal. 
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Figure 119: Simultaneous DNA force curve with multiple rupture events. 

 

The simultaneously measured force curve corresponding to the image series 

in Figure 118 clearly shows that there were multiple attachment points of the 

DNA bundle to the tip, which successively ruptured at 8.5µm, 9µm and 12µm. 

The last rupture event occurs after image no.5 in Figure 118, after which the 

DNA bundle falls back onto the surface, thereby immediately restoring the full 

fluorescence signal. The forces reached in this experiment of up to 40pN are 

too low to show the characteristic B-S plateau (65pN) typical of single 

molecule DNA pulling curves. 

These results fit in with the DNA condensation theory put forward to 

explain DNA aggregation on polylysine surfaces. According to this theory, 

DNA can take on the form of an interconnected multi-strand bundle with 

polylysine, so force pulls with consecutive rupture events are to be expected. 

Furthermore, the long rupture lengths measured for these fibres of ca. 10µm 

are typical of DNA on polylysine. A bundle of interwoven DNA strands could 

be longer than the individual DNA chains composing the fibre.  

This experiment showed that in principle it is possible to conduct 

simultaneous AFM and optical imaging experiments. However, the difficulty in 

preparing single strand DNA samples on polylysine and the resulting 

uncharacteristic force curves led to the investigation of different substrate 

surfaces, such as silanised glass coverslips for combined optical/AFM 

experiments. 
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5.5.2 Combined experiments on silanised surfaces 
In the following image series on silanised glass (cf. Figure 120) one end of a 

single DNA strand is attached to the cantilever and pulled, while the other end 

on the right remains fixed to the surface. The position and relative movement 

of the cantilever is indicated by the red arrow. 

Figure 120: The reversible manipulation of a single DNA strand on silanised glass 

(image 30µm2); λ-phage digest DNA imaged at 1.4W/cm2; red arrow = tip movement  

 

The molecule could be stretched through a reversible 1Hz pulling cycle 

(pulling speed ~2µm/sec). This stretching cycle was repeated about 20 times, 

before the attachment finally ruptured. The images in Figure 120 show the 

position of the DNA at various stages in the pulling sequence, although they 

were not taken from one single cycle. After pushing the cantilever southwards 

and up from the surface (first 4 images) the direction is reversed and the DNA 

is pushed back into its original position (last 3 images).  

The corresponding force curves to the images in Figure 120 from this 

same series of consecutive pulling cycles are presented in Figure 121. There 

is only a slight hysteresis between the retraction and the approach curves 

(blue and red respectively). Furthermore, the characteristic second DNA 

plateau can be identified as a shoulder at ca. 800nm. It also displays a slight 

hysteresis. However, the B-S transition plateau at 65pN is converted into a 

gradual increase in force, due to the effect of the intercalating dye TO-PRO-3 

(cf. 2.3 Force spectroscopy of DNA on transparent surfaces). There is still 
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room for speculation as to the severity of the change in the B-S transition in 

this specific experiment, but the high dye concentration may have played a 

role. 
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Figure 121: Reversible force curves of DNA on silane corresponding to the images in 
the last figure. For clarity, the inset graph shows the subsequent pulling cycles with an 
offset in the x and y axis. 

 

By gradually increasing the pulling length, the force was increased with each 

cycle until the DNA-tip connection finally ruptured, as seen in the sharp 

vertical drop at 850pN in the last blue curve. Unfortunately, the slow frame 

rate of the camera only permitted image snapshots with 1 sec intervals and by 

the time the AFM pulling speed could be reduced, the DNA had already fallen 

off the tip. Therefore, no precise correlation between the image sequence and 

the positions in the pulling cycle could be established. A drastic drop in signal 

intensity was not observed, but then the images display the average 

fluorescence signal taken over the whole camera exposure time, so no 

correlated fluorescence/force information could be gained from this 

experiment. 
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5.5.3 Conclusion of the combined experiments 
The silanised coverslips afford samples with isolated DNA molecules that 

show reversible force curves. On rare occasions, these molecules can be 

directed to the cantilever tip and pulled upwards, thereby stretching the DNA. 

The goal is to measure the fluorescence of the DNA strand, at different chain 

tensions during a pulling cycle. However, five major experimental obstacles 

were encountered which complicate the simultaneous imaging and pulling 

experiments. 

Firstly, good samples are required with single, uncondensed and 

straightened DNA chains that can be stretched reversibly. This is possible on 

silanised coverslips.  

Secondly, cantilever fluorescence quenching, although probably 

significant for single dye molecules, is not an obstacle for DNA imaging with 

many intercalated dyes. A clear conclusive answer to the question of 

quenching by cantilever tips has yet to be given [223, 229]. 

The third problem occurs when long DNA strands are pulled upwards, 

out of the focal plane of the objective. Neither TIR nor wide-field imaging or 

confocal microscopy can be employed to circumvent this difficulty. Pulling 

molecules that are longer than ca. 1-2 µm will extend these beyond the laser 

focus, thus automatically decreasing the detection efficiency of the 

fluorescence signal. Under these circumstances it is not possible to determine 

the effect of DNA tension on dye fluorescence alone. An apparent solution is 

to use shorter DNA molecules. For this purpose φX-174 DNA was synthesised 

by standard biochemical linearisation techniques using the unique cutting 

XHO-I restriction enzyme. The φX-174 DNA is 5386 bp long, which 

corresponded to a chain length of merely 1.8µm – about the length of the 

optical z-focus. Although this approach is promising and future experiments 

should follow along this line, the shorter DNA strands turned out to be harder 

to pick up with the cantilever tip and so the attempts so far were fruitless. 

Fourthly, slow force pulling experiments with cycle periods in the range 

of minutes are necessary to gain enough imaging data for each stretching 

position. However, in this case cantilever drift becomes significant. Drift 

usually originates from thermal fluctuations, which lead to tip bending when tip 
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materials are combined with different thermal extension coefficients, as is the 

case for gold and Si3N4 tips [134]. Heating by both laser sources can become 

a problem on a long time scale. Slow force curves are therefore often skewed 

by cantilever drift. A solution would be to speed up the frame rate to ca. 10Hz, 

while pulling with reasonably slow cycles of 0.1Hz. This should provide 50 

images for the approach and retraction cylcle – enough to determine any 

variation in the fluorescence signal at different forces. Incidentally, photon 

pressure, which can exert a force of ~3.3pN from a 1mW laser source through 

conservation of momentum [251], was constant with time and therfore not a 

problem. 

Finally, the toughest nut to crack is that a single molecule is hard to find 

and pick up with the cantilever tip. The synergistic effect of knowing the rough 

position of both the molecule and the tip is a help, but turned out to be 

insufficient to guarantee efficient and specific attachment. Like finding a 

needle in a haystack, picking up a molecule of ~1nm dimensions with a tip of 

~50nmØ is arduous, when the position accuracy of both is determined by 

diffraction limited optics to ca. 300nm. Attaching DNA therefore remained an 

elusive and random event. Merely bringing the cantilever into the vicinity of 

the strand was not enough. The processes governing tip attachment, namely 

hydrophobic interactions, required specific conditions to be met, such as 

sticky ends or unhybridised regions, before a strong tip fixation could occur.  

Therefore, the next step would be to obtain high resolution AFM 

scanning images of the DNA. This may provide details of DNA junctions or 

termini, which could be addressed directly with the tip, thereby increasing the 

probability of attachment. A further promising way to improve the probability of 

attachment would be to silanise the tip surface or even use a layer of 

polylysine to increase the cantilever adhesiveness towards DNA. This was 

attempted, but the polylysine coated tips quickly attracted free floating DNA 

from the solution, rendering them contaminated with a brightly fluorescing 

DNA layer. Carefully washing of the sample surface to remove any free DNA 

from the sample prior to tip immersion could provide a remedy. In general, a 

more specific binding method, possibly even by means of covalent bonds (e.g. 

peptide linkers), would be helpful. 
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5.6 Single molecule lateral force spectroscopy of DNA 
The difficulty of specific tip attachment illustrates the general disjunction in 

intermarrying optical microscopy with conventional AFM force spectroscopy. 

Although reversible force curves of DNA are possible on silane surfaces, they 

are not easy to come by on samples with extremely low DNA coverage. On 

the other hand, for single molecule fluorescence detection, the DNA strands 

must be in low concentration, so as to be discernable against a non-

fluorescing background. Our intention was to overcome this dilemma by 

exploiting the fact that tip attachment should be far more probable, when 

individual strands can be observed optically so that the tip can be directed 

exactly to the DNA position. Unfortunately, this initial assumption was 

thwarted by the fact that the tip radius (25nm) and the DNA diameter (2nm) 

were far smaller than the optical resolution of the detection apparatus (300nm). 

Tip adhesion therefore remained an unpredictable event, with an inherently 

low probability of attachment. On the other hand, picking up targeted DNA 

strands with the help of optical detection did not necessarily lead to 

satisfactory reversible force curves. Until a clear solution could be found, 

additional ways to stretch DNA were sought. 

A prospective solution to the problems discussed in the previous 

chapter is the use of a new method to stretch single DNA chains – termed 

single molecule lateral force spectroscopy. In the past, the lateral forces 

exerted on a cantilever have been used in scanning AFM microscopy to 

determine surface friction. By measuring the lateral twist of the cantilever 

shank during scanning, additional tribological information about the surface is 

provided, whereas the classical vertical cantilever bending gives the height 

profile. Furthermore, in the same way that the stretching force is calculated in 

conventional force spectroscopy from the vertical deflection signal and the 

cantilever spring constant, the lateral force can be determined by establishing 

the lateral spring constant of the cantilever [134]. Rudimentary measurements 

of the lateral tip twist during horizontal cutting of a DNA strand on mica have 

been used to estimate the DNA rupture force to ~500pN [134], albeit with very 

low force resolution. A similar experiment is envisaged, which measures the 
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tension in single molecules during horizontal stretching parallel the substrate 

surface – single molecule lateral force spectroscopy.  

The advantages of this approach for the combined optical imaging 

setup are manifold:  

 

• Pulling the molecules sideways keeps them in the focal plane of the 

objective at all times.  

• Vertical drift of the cantilever is minimised, because the tip remains on 

the surface. 

• The applied force is controlled through the length extension of the 

strand, and thus the experiment has no limiting pulling speed. 

• Horizontal tip stretching does not rely on random tip attachment. Like 

plucking a tripwire or a violin string, long polymer chains can be 

addressed by pushing the tip against the midsection of a strand that is 

fixed to the surface by at least two points.  

 

These advantages make lateral force spectroscopy the method of choice for 

combined optical experiments. By measuring the lateral deflection signal a 

direct measure of the force exerted by the tip on the DNA during lateral 

stretching can be gained.  

 Furthermore, since the graph of force vs. distance is known for a 

standard DNA chain, a given DNA extension length can always be mapped to 

a specific force. Therefore, the tension in the DNA strand can be determined 

indirectly from the stretching length, which is known from the optical images. 

In this way the measurement of the lateral deflection signal is not required and 

the complex lateral mode calibration process is avoided. 

 

Quantitative evaluation of the DNA fluorescence during lateral 
stretching 
With this new method it is possible to analyse the fluorescence from a DNA 

chain during stretching. Super-long single DNA strands are prepared from 

λ-phage BSTE digest DNA on silanised glass coverslips and manipulated with 

the AFM tip, so that they are fixed to the surface by at least two points. This is 
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described schematically in Figure 122. The two fixed points are symbolically 

fastened to the surface with pinheads. In reality unhybridised regions or sticky 

ends are probably responsible for these local adhesion points. In order to 

stretch the DNA, the tip is kept in position, while the sample coverslip is 

moved underneath. In this way the strands can be pushed against the 

stationary tip and thus stretched.  

 

 

Figure 122: Schematic description of the lateral stretching experiment 

 

The camera views the sample from below the glass coverslip, so the 

cantilever is always facing upwards in the following images. The tip is kept in 

the centre of the illumination field.  
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Figure 123 left: Image of a fixed (blue pins) and stretched DNA strand (cantilever tip 
indicated by green arrow). 

right: Line profile fluorescence cross-section of a DNA strand (red line). 
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To establish a representative fluorescence intensity value for the DNA in each 

of the images the average fluorescence is determined for a line profile of 50 

pixels length, taken along the extended DNA strand and starting at the tip 

position (cf. Figure 123). Since the illumination intensity profile decreases 

slightly outwards from the centre, the tip is positioned in the centre of the 

illumination spot. This guarantees that the DNA strands always experience the 

same irradiation intensity gradient, irrespective of the orientation of the chains. 

Thus, the DNA manipulation images provide both the average fluorescence 

intensity and the length of the corresponding stretched DNA. The extension 

factor is the end-to-end distance of the stretched DNA divided by the original 

length (the contour length under zero force). Finally, a graph can be plotted of 

the average strand fluorescence along the chain for each chain extension.  

This has been done for several of the manipulation image series. 

 

Elastic extension of a single DNA chain 
The image series in Figure 124 was taken in total internal reflection (TIR) 

mode. The cantilever is positioned in the centre of the image. A super-long 

DNA strand can be seen to the left of a large DNA ball that has attached itself 

loosely to the cantilever shank and now jitters about in solution. By pushing 

the sample against the tip the strand can be stretched sideways (the direction 

of the sample movement is given by the black arrow). After the third image the 

movement is paused, which fixes the strand at the tip position. The 

mechanism of this attachment process is unclear, but may involve local nicks 

generated by tip friction along the DNA chain. These partially denatured 

sections are particularly adhesive towards the hydrophobic silane surface. 

The strand is then subsequently stretched vertically by moving the sample 

southwards. In the final image the DNA slips away under the tip and snaps 

back into a relaxed conformation.  
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Figure 124: TIR image (28 µm2) series of a super-long DNA strand on a silanised 
surface. By pushing the sample to the left, against the stationary cantilever tip (image 
centre), the strand can be stretched sideways (images 1, 2 & 3). After fixing the DNA, 
the sample is then moved downwards (image 4 and 5). Finally the DNA slips away 
under the cantilever and snaps back into a relaxed conformation (image 6). 

 

In order to analyse the lengths and fluorescence of the DNA in this series a 

small bright node on the DNA chain (cf. green arrow, Figure 125) is used as a 

marker. The node itself may be a DNA knot or some form of DNA junction – a 

remnant of the generation process of super-long DNA.  

 

 

 

 

 

 

 

 

 

Figure 125: Length determination of a DNA strand. The red pin indicates the tip; the 
green arrow gives the position of the DNA node. 
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The respective lengths of the DNA strand can be measured for the sections 

from the tip to the node (top section) and from the node to the lower DNA 

anchor point (lower section). In this way, the extension coefficients during 

stretching for different sections of the DNA can be studied. If the extension is 

uniform along the whole strand, then both top and lower sections should 

display the same extension coefficient. 

The results of these length measurements are summarised in table 13. 

The total length of the strand increased from 76 pixels (9.1µm) to 125 pixels 

(15.0µm) during the stretching process. This corresponds to an extension 

factor of 1.64 or an increase of 64%. However, the original DNA chain was 

probably not fully elongated before stretching. Due to microscopic loops and 

bends, the full contour length was not reached until image no. 41, when the 

last attachment point to the surface was ruptured. From image 41 onwards the 

strand extension increases at a constant pace, as can been seen in Figure 

126.  

 
Total length 

(pix) 

Lower section 

(pix) 

top section 

(pix) 

Length % of 

lower section 

Length % 

of top section 

Extension 

factor 76=1.0

76 39 37 51.3 48.7 1.00 

86 40 46 46.5 53.5 1.13 

93 40 53 43.0 57.0 1.22 

97 41 56 42.3 57.7 1.28 

100 41 59 41.0 59.0 1.32 

106 45 61 42.5 57.5 1.39 

108 45 63 41.7 58.3 1.42 

112 44 68 39.3 60.7 1.47 

119 45 72 37.8 60.5 1.57 

120 47 73 39.2 60.8 1.58 

125 50 75 40.0 60.0 1.64 

table 13: Length of the DNA at different chain extensions 

 

Furthermore, a detailed analysis of the two DNA sections shows that the 

upper section expanded faster than the part below the node (cf. table 13). 

This can be deduced from the relative length percentages. Prior to stretching, 

both sections are about the same length. By the last image the lower part is 

only 40% of the total length.  
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The elastic module of both DNA sections should be the same. However, 

this phenomenon can be explained by the strand gliding along the tip during 

the stretching process, like a rope pulled around a pole. In this case the 

stretched strand is “borrowing” DNA from the remaining chain above the tip. 

Therefore a total extension factor of 1.26, as calculated for the lower section 

of the DNA, is more accurate.  
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Figure 126: The percentage length of the lower section and the extension factor of the 
whole chain at different chain lengths. 

 

Finally, due to the large DNA ball in close vicinity to the strand, a 

representative analysis of the fluorescence intensity is not possible for this 

series. 

 

Reversible stretching of a fixed strand 
The wide-field imaging series in Figure 127 shows the super-long DNA strand 

from the above experiment (cf. Figure 124), which has been pre-aligned and 

fixed at two positions: the lower chain end and at the corner point. The 

extension factor of the strand was previously calculated to be 1.26, so similar 

to a tightened violin string, the DNA between these two points is already under 

significant tension. The black arrow indicates the sample movement direction. 

Now, in analogy to plucking the violin string, the stationary tip is used to 

stretch the strand northwards (image no1-3). If the tension is large enough, 
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the DNA escapes the strain, by slipping away underneath the cantilever apex 

and snapping back to its previous position (image no.5 and no.8). In this 

image series, the DNA could be stretched repeatedly by moving the sample 

against the tip. The last three of these cycles are presented in Figure 127. 

Finally the strand ruptured, as shown in the final image (no. 12). 

 

Figure 127: Manipulation wide-field image series of super-long DNA (28µm2); the red 
arrow indicates the tip position; the black arrow shows the sample movement 
direction.  

 

Although the DNA glides along the tip during stretching, as has been 

demonstrated in the previous imaging series (cf. Figure 126), it was now firmly 

fixed to the corner position. These points of attachment to the surface are 

indicated by the blue pins in Figure 128. In order to prove that the strand is in 

fact immobilised and firmly stuck at these points, the relative extension factors 

for the top and lower sections of the DNA are calculated during an extension 

cycle. If both sections expand at the same rate, thus maintaining the same 

 159



 

relative length, then the DNA must be fixed at the corner position. However, if 

gliding is possible around this corner, then more and more DNA from above 

the corner pin will be pulled down as tension in the stretched strand rises and 

the relative length of the top section will increase compared to the lower 

section.  

 

 

 

 

 

 

 

 

 

 

Figure 128: The DNA was fixed firmly to the sample at the positions indicated by the 
blue pins. The cross shows the tip position and the green arrow points to the DNA 
node. The length increase for the top and lower sections of the DNA is compared 
during stretching. 
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Figure 129: Relative length of the lower DNA section compared to the total extension 
factor. 
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The results of this measurement are shown in Figure 129. Stretching the DNA 

gradually increased the total extension of the chain between the pins. 

However, in contrast to the image series described previously in Figure 126, 

the DNA is now fixed at the corner point and the relative length of both 

sections remains constant. Thus, the whole chain is stretched in a uniform 

manner, with all parts of the strand contributing equally to the increase in 

length. 

 Since the relationship between DNA extension and force is known for a 

single strand and has been described by conventional DNA force curves 

(cf. Figure 26), it is possible to assign a value for the tension in the chain by 

measuring the length of the DNA during the stretching process. However, it 

should be noted that the high dye concentration generally influences the 

characteristic shape of the DNA force curves to the extent that the uniform 

B-S transition is no longer a plateau, but is rather replaced by a gradual 

increase in force (cf. Figure 35). The DNA was frequently stretched to about 

1.6 times the contour length, which is well into the range of the B-S transition, 

but interestingly, not enough to reach the end of the B-S plateau at ~1.7 

extension, after which the chain elastic modulus changes and the tension in 

the strand increases sharply. With or without dye, the force on the strand will 

have reached about 65pN at an extension factor of ~1.6, a level, which was 

repeatedly reached during the stretching cycles. 

  Now that the extension factor of the DNA is known for each image in 

the series, the average fluorescence along the strand can also be measured 

by taking line profiles as described in Figure 123. The graph in Figure 130 

corresponds to the manipulation experiment depicted in the first two image 

rows of Figure 127 and shows an analysis of the fluorescence intensity vs. the 

extension length.  

Both plots of the pulling cycles for the first row (cf. red circles) and 

middle row (cf. black squares) in Figure 127 show a clear inverse linear 

relationship between chain stretching and average fluorescence. Starting at a 

value of about 200, the average fluorescence decreases with strand extension. 

The fluorescence is then regained immediately after the strand snaps back to 

its original position. However, the slope of this decrease changes between 

each of the pulling cycles. The reason for this is not completely clear, but it 
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may be an artefact due to the background luminescence of the cantilever, 

which is often visible in wide-field imaging. In this series the shadow of the 

cantilever can be seen as a striped interference pattern below the tip apex. By 

either pulling towards or away from the cantilever shank, more or less of this 

background signal contributes to the measured fluorescence line profile, thus, 

influencing the slope of the graph. Nevertheless, all of the ~10 fluorescence 

curves measured showed a linear decrease in the fluorescence, albeit with 

variable slopes. 
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Figure 130: Average chain fluorescence vs. extension factor for the top row (red) and 
middle row (black) in Figure 127. 
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Local attachment points 
Another image series is shown in Figure 131. As in the previous examples, 

the DNA tends to adhere to the surface at certain positions, indicated by the 

green arrows. These have been explained by nicks or local unhybridised 

regions along the chain, which stick to the surface through hydrophobic 

interaction. One by one, all of these links are broken and the DNA is zipped 

off the surface. In the last image the DNA has escaped from underneath the 

tip and snapped back into its original conformation.  

 

Figure 131: Zipping a super-long DNA strand off a silanised surface (image size 28µm2). 
The red arrow indicates the tip position and the sample movement is given by the black 
arrow. The green arrows show the points of attachment to the surface.  

 

The results of the fluorescence analysis for this series are shown in Figure 

132. Both parts of the stretched DNA strand (above and below the tip) display 

a linear decrease in average fluorescence counts with strand extension. The 

chain can be stretched to nearly 1.6 times the original length, which is close to 

the extension factor at the end of the B-S transition (1.7). Beyond this value 
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the stretch modulus of the DNA is known to change. The strand stiffens and 

further stretching leads to a rapid build up of chain tension. None of the DNA 

strands in the measured stretching series were observed to extend beyond a 

factor of about 1.65. At this point, the strands either ruptured or slipped under 

the tip. It is interesting to note that the maximum extension observed is about 

the length of the B-S plateau. However, it is not completely clear whether 

greater lengths were ever reached, because the acquisition time for one 

camera image was one second, during which slightly higher extension factors 

could have been achieved. By speeding up the camera frame rate, more 

detailed information could be gained on this crucial stretching region. 
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Figure 132: Fluorescence of the upper (above the tip, black squares) and lower (below 
the tip, red circles) DNA strand section vs. extension. 

 

DNA Rupture 
Shoelaces usually tear at the knot, because at this position the strand 

experiences the highest lateral strains. The same should hold true for DNA. 

From Figure 122, it is clear that during stretching, the tip will locally bend the 

strand beyond the natural curvature expected for a tube-like molecule such as 

DNA (persistence length ~ 50nm). Therefore, the greatest strain will occur 

immediately at the tip and this will be the position with the highest rupture 

probability. In addition, the possibility of roughening the DNA and creating 
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local nicks has been proposed in conjunction with the DNA gliding along the 

cantilever (cf. DNA fixation in Figure 124). This would create predetermined 

breaking points along the DNA chain. In fact, rupture events did often occur 

immediately at the tip position. An example is shown in Figure 133. After 

rupture, the left end of the strand is fixed to the surface, possibly by a newly 

formed sticky end. The other severed end snaps back up into the solution 

(image no.2), before gradually returning to the surface (image no.3). 

 

Figure 133: Consecutive image frames (size 27µm2) from a series showing a typical 
DNA rupture event at the tip (red lightning bolt); the sample movement direction is 
indicated by the black arrow. 

 

However, rupture does not always occur at the tip. The example in Figure 134 

shows a highly stretched strand that snapped at a position along the DNA 

about 3µm from the tip. The rupture position is indicated by the red lightning 

bolt. The two loose ends are then pulled apart as indicated by the red arrows. 

 

Figure 134: DNA rupture event in the middle of the strand (red lightning bolt); the 
sample movement direction is indicated by the black arrow. (image size 27µm2) 
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Summary of the lateral stretching experiments 
DNA strands, which have been fixed to a silanised coverslip by at least two 

points, can be repeatedly stretched parallel to the sample surface, thus 

confirming the high elasticity of single DNA chains, which was predicted by 

single molecule force spectroscopy [17]. The strands are generally extended 

in a uniform fashion, with each section of the chain contributing equally to the 

length increase. Occasionally the DNA chain slides along the tip during 

stretching. Furthermore, the strands stick to the surface at specific points, 

resulting in a non-uniform zipping motion during rupture of these links. Strand 

rupture frequently occurs at the tip position, but the DNA chain has also been 

observed to snap in the middle during stretching. 

An analysis of the fluorescence intensity in the images provides a 

means to compare the fluorescence signal of dyes associated or intercalated 

into a DNA strand for different stretching lengths. As shown previously by 

force spectroscopy, the length of a strand is directly related to a specific chain 

tension. Thus, by simultaneously monitoring the length and fluorescence of a 

single DNA strand in the optical images, the relationship between dye 

fluorescence and force can be evaluated.  

 The results of these measurements indicate that there is a fully 

reversible inverse relationship between average strand fluorescence and 

stretching length. The exact slope of this relationship appears to vary for each 

of the stretching experiments, but this may be due to background signal from 

the cantilever tip. Furthermore, the strands can be stretched to ca. 1.65 times 

the original contour length, before either rupturing or slipping away 

underneath the cantilever tip. Earlier findings by Smith et al. [17] have shown 

that DNA can be overstretched to approximately 1.7 times the contour length 

with a force of 65pN. At larger extensions the stretching force increases 

rapidly. Evidently the forces reached by lateral force extension are therefore at 

least ca. 65pN, corresponding to the B-S plateau region in DNA force curves.  

 166



 

5.7 Discussion of the combined AFM/optical experiments on 
DNA 
 

The nature of DNA adhesion to different surfaces 
The image sequences showing the lateral manipulation and stretching of 

super-long DNA strands provide the profoundest insight into the surface 

adhesion mechanisms of DNA. On polylysine, DNA is rarely mobile enough to 

be displaced and generally adheres strongly to the surface by the whole chain 

body. This can be attributed to the electrostatic interaction between the 

negatively charged DNA phosphate backbone and the positively charged 

lysine moieties on the surface. 

On silane, DNA interacts with the substrate at specific points. By 

exerting an increasing force these can be torn off one by one in a zip-like 

fashion. Strong ionic bonds are lacking on silanised surfaces, but possibly 

local unhybridised regions along the DNA are responsible for the site specific 

surface adhesion. Since these regions are purportedly hydrophobic [115], they 

can interact with the water-repelling silane layer, in contrast to the main chain 

body, which is charged and hydrophilic. The strength of these hydrophobic 

attachment points is variable. Most are broken before the DNA reaches the 

end of the B-S plateau length i.e. at 65pN, but some withstand higher forces, 

even surviving severance of the DNA chain itself. 

Furthermore, the adhesion mechanisms involved in AFM force 

spectroscopy, governing DNA attachment to gold-coated substrates or to the 

Si3N4 cantilever tip, may be of a similar hydrophobic nature. In this context, it 

is not surprising that force spectroscopic data on silane coated surfaces 

strongly resemble the results achieved on gold in terms of rupture force and 

rupture length, whereas DNA on polylysine afforded different pulling curve 

statistics (cf. table 5). 

This conclusion contradicts earlier findings by Bensimon et al., 

suggesting that a covalent bond is responsible for DNA binding to silanes, 

which is formed by the electrophilic addition of the free terminal DNA 

phosphate group to the vinyl end-group of the alkene-silanised surfaces [252].  
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Similar hydrophobic interactions may be the dominant adhesion 

mechanism involved in a greater spectrum of other AFM force pulling 

experiments with different molecules, such as organic polymers or sugar 

chains. Essentially these interactions are based on Van der Waals bonding 

between oleophilic materials and their repulsion to enter into the water phase. 

 

The nature of TO-PRO-3 adhesion to DNA  
The fluorescence bleaching experiments show that there are at least two 

bleaching rates, corresponding to two dye species, for TO-PRO-3 associated 

to DNA. The slow rate is attributed to intercalated dye, for which the 

chromophore is more protected from free radicals. The fast rate could be due 

to electrostatically attached or groove-binding dyes, which are more exposed 

to radicals or singlet oxygen and thus bleach faster.  

The best imaging results are achieved using relatively high dye 

concentrations, for which all intercalation slots are likely to be filled and a high 

degree of external DNA binding has been proposed [190]. To study the DNA 

binding mechanisms and dye dynamics of TO-PRO-3 under tension, the 

fluorescence is compared for different DNA extension forces. Five possible 

results were envisaged:  

Firstly, a higher average fluorescence is detected with increasing 

strand length. However, this solution bears no feasible model and is therefore 

highly unlikely. Secondly, the fluorescence intensity stays constant with 

increasing length. This would mean that the number of dye sites is related to 

the DNA extension length, i.e. more sites are generated as the DNA is 

stretched. For intercalated dyes this is not possible and even externally bound 

dyes are associated to the charge on the DNA surface, which is constant for a 

given number of base pairs. Therefore, this result is not expected. Thirdly, the 

dye fluorescence decreases linearly with length. This dilution scenario 

assumes a fixed number of dye positions, which are merely distributed over 

an increasing length during stretching. Fourthly, dyes could be expunged from 

the DNA with increasing strand tension. If the rate of dye dissociation is 

proportional to the length i.e. the force, then a quadratic decrease in average 

chain fluorescence with length would be observed. Finally, a sharp drop in dye 
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association to the DNA at a certain length/force value would be the 

consequence if processes such as DNA double strand melting or 

dehybridisation were induced during the stretching process.  

The results of the lateral stretching experiments show that there is a 

reversible linear relationship between chain length and fluorescence intensity. 

When the strands are stretched the average fluorescence decreases with 

increasing length. This shows that the number of dyes along the DNA is 

maintained throughout the experiment. Stretching merely leads to a dilution of 

the fluorescence. The fluorescence signal is fully restored, when the DNA 

snaps back into its original conformation.  

Evidently no new dyes are incorporated into the DNA during stretching. 

The association rate for TO-PRO-3 is high and so the limiting factor is the 

number of free dye positions available for association, which is consequently 

not increased during stretching. At the same time the dyes are not expelled 

from the DNA either.  

In summary, although intercalating dyes are known to significantly 

affect the shape of DNA force curves [131, 132], at least up to the B-S 

transition force region, no change in dye dynamics, to and from the DNA, can 

be registered under strand tension.  

This is not necessarily expected, as DNA overstretching might well 

have expunged the intercalated dyes. However, externally bound TO-PRO-3 

could be less sensitive to chain extension than the intercalated dyes. Above a 

concentration ratio of 5:1 bp/dye, cyanine dyes can bind externally to the DNA 

[186]. Thus inhomogeneous binding modes could make an interpretation of 

the results difficult. A possible solution would be to reduce the dye 

concentration below the limit of 5:1 bp/dye, although this would be at the price 

of a reduced image contrast.  

To test the nature of dye adhesion to DNA, the polarisation angle of the 

dye fluorescence was examined. Previous experiments have used optical 

tweezers to stretch tethered DNA strands and measure the polarisation angle 

of the fluorescence for intercalating dyes such as YOYO-1. Their results 

indicate a transmission dipole moment of 69° relative to the strand axis [139]. 

This value could be an average of the two binding modes: intercalation (90°) 

and groove binding (60°). 
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A similar experiment on pre-aligned single DNA strands on a glass 

surface was therefore conducted. The results of these measurements show 

that the fluorescence signal from the aligned and stretched DNA strands is 

randomly polarised. Irrespective of the alignment angle of the strands, no 

clear polarisation of the emitted fluorescence could be detected. The most 

obvious explanation for this finding is that the majority of the dyes are not 

intercalated, but rather loosely adsorbed to the DNA surface.  

Therefore, to establish the behaviour of intercalated TO-PRO-3 alone, 

the dye concentration would have to be reduced, assuming this binding mode 

exists, as suggested by Beisker et al. [107]. 

 

The B-S transition in DNA force spectroscopy 
P. Cluzel [16] and S. Smith [17] were able to show that at a longitudinal stress 

of 65pN, dsDNA B-DNA undergoes a reversible transition to a stretched 

“S-form”, which is 1.7 times longer. The transition is highly co-operative, 

occurring within a narrow force regime of 2pN and increasing the rise per 

base pair from 3.4 to 5.8Ǻ [135]. Gaub et al. have used AFM force 

spectroscopy to pull single DNA molecules to even higher forces and observe 

a second “melting” plateau in the force-extension curves, which is attributed to 

the dissociation of the double helix [130]. By measuring the plateau force 

height in acidic and basic conditions, Williams and Bloomfield have 

alternatively argued that the B-S transition is itself due to melting and 

dissociation of the double helix, rather than a stretched DNA conformational 

change [174].  

With the combined optical/AFM setup it is possible to monitor the DNA 

fluorescence, while imposing a specific force on the strand. Using this new 

approach, the theories of B-S and melting transition can be put to the test. 

The fluorescence signal gives a measure of the degree of dye intercalation 

into DNA. It seems reasonable that the dyes, which are stuck between the 

base pairs, would separate from the DNA double helix during a strain induced 

melting process. Even if the dyes stay with the two single strands as they 

dissociate from another, some kind of local accumulation is expected, which 

could be identified as brighter and darker regions along the remaining fibre. 
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Thus stretching the DNA strand into the 65pN plateau force region should 

show whether the B-S plateau in the force curve can in fact be associated with 

strand separation or is the result of a conformational transition.  

However, no dramatic change in the fluorescence is observed up to an 

extension factor of ~1.65, which is nearly the complete B-S transition length. 

Under tension the fluorescence decreases linearly with the extension length, 

but remains uniform along the whole chain and returns completely when the 

DNA recoils to its original length. The immediate conclusion is that no strand 

dehybridisation is involved in the B-S transition. 

Although this is probably true, there could also be other reasons for the 

lack of dye dissociation during DNA stretching. Firstly, the intercalating dye 

itself, which intercalates into DNA and wraps around the helix with the free 

arm, could be preventing strand dissociation. YOYO-1 prevents folding of 

giant duplex DNA [182]. Possibly these dyes can act as clamps, thereby 

fastening both strands together through electrostatic adhesion.  

 Secondly, it was shown that a high degree of external binding is 

probably involved for the TO-PRO-3 concentrations used. The dye might 

therefore stay with the DNA fibre even if local melting occurred. Other similar 

cyanine dyes also bind to RNA, but with significantly lower binding constants 

and very much decreased fluorescence enhancements [106, 253]. This 

should be noticed in the fluorescence images. 

 Finally, it would be interesting to stretch DNA beyond the B-S plateau 

range. At extensions of more than 1.7 times the contour length, the DNA 

undergoes a second enthalpic transition. This second shoulder in the force 

curve at ca. 250pN has been attributed to double helix denaturation [38, 39]. 

Possibly dye dissociation would set in at these higher forces.  
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6. Conclusion and Outlook  
6.1 Summary and conclusion 
The motivation for this work was to combine the single molecule techniques of 

AFM force spectroscopy and fluorescence microscopy. Through the AFM 

cantilever, a mechanical influence can be exerted on single fluorescent dyes. 

At the same time, the emission spectra of other polymers or dye stained DNA 

strands can be investigated under strain, allowing new insights into the 

physical properties of single molecules. To this end, a combined AFM/optical 

imaging setup was constructed, which enables the real-time manipulation of a 

sample with an AFM tip and the simultaneous optical TIR imaging of the 

fluorescence. 

Early experiments focussed on the fluorescence detection and force 

spectroscopy of polymer tethered molecules such as Cy5 or a range of 

hemi-cyanines. In principle, it is possible to image these fluorophores either by 

confocal, wide-field or TIR methods and single dye spectra were available. 

However, the low fluorescence quantum yield, photostability and difficulties in 

the chemical attachment rendered these dyes unsuitable for the combined 

experiments. Alternatives were sought, although a renaissance of these 

systems is envisioned should the chemical challenges be overcome. 

On the other hand, the preliminary force spectroscopic work led to the 

investigation of various polysaccharides and the influence of complexing 

palladium on the mechanical properties of these polymers. A new type of 

force curve with horizontal plateaus was discovered for these systems and 

investigated in depth. Furthermore, a solvation model was devised, which 

describes the plateau-type force curves based on the hydration energy of a 

single polymer chain.  

 By intercalating TO-PRO-3 into DNA, a more promising fluorescent 

polymer system was established for the combined optical/AFM experiments. 

The following detailed analysis of the photophysics showed that it is feasible 

to image single DNA strands with these dyes. Furthermore, optically 

transparent polylysine-coated or silanised glass surfaces were adapted, which 

permitted characteristic single molecule DNA force spectroscopy.  
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 However, the DNA was strongly fixed to the positively charged 

polylysine layer and displayed a clear propensity towards condensation. The 

morphological stages of condensation, from single chains, over dense rods, to 

aggregated DNA globules, were described extensively. An influence on the 

DNA force curves was also observed, manifesting itself in very long 

uncharacteristic pulling events of DNA on polylysine surfaces. 

 On silanised glass, the DNA is not nearly as liable to condensation. 

Moreover, the single strands attached to the hydrophobic surface at specific 

points, especially the termini. In addition, a chemical preparation protocol, 

involving a pH change, led to the discovery of super-long DNA strands. This is 

attributed to the polymerisation of short DNA fragments by junction formation. 

Using the combined setup, it is possible to manipulate single DNA 

strands. On polylysine, DNA can be displaced and cut. Furthermore, by 

transferring a condensed ball to the tip, patterns or letters of DNA-ink were 

written onto the surface. In contrast, on silanised glass surfaces, long DNA 

strands can be stretched and extended elastically to 1.65 times the contour 

length, leading to successive rupturing of the attachment points. 

 Unfortunately, it turned out that AFM force spectroscopy and 

simultaneous optical imaging experiments are compromised by inherent 

practical limitations. These include the imaging frame rate, cantilever drift for 

slow pulling speeds, restrictions imposed by the optical focus and, most 

importantly, the selective addressing and attachment of a single dye or 

polymer to the cantilever tip. The latter is particularly significant, because 

single molecule microscopy requires dilute samples in order to image an 

individual dye against a non-fluorescent background. On the other hand, 

conventional single molecule force spectroscopy employs the shot-gun 

approach. The improbable event of tip attachment is achieved by repeatedly 

dipping the cantilever tip down into a densely covered sample surface. In 

addition, this incongruity between the two methods could not be resolved by 

utilising the fluorescence images to gain a rough knowledge of the molecule 

position, thereby increasing the attachment probability. 

The solution was found in a new technique, which was termed lateral 

single molecule force spectroscopy. This method circumvents the 

aforementioned difficulties by stretching the polymers parallel to the coverslip 

 173



 

surface instead of vertically away from it. Specific cantilever attachment is no 

longer required. The tip is applied by pulling at the midsection of a strand, 

which is fixed to the surface by at least two points. 

In this way, the overstretching elasticity of DNA can be observed 

optically and in real-time. Similar to a violin string being pulled taught, the 

DNA snaps back into its original conformation when escaping from 

underneath the tip apex. The images also revealed an inverse linear 

relationship between the average strand fluorescence and the stretching 

extension. At least for the B-S plateau force region of up to 65pN, no dramatic 

drop in dye fluorescence is observed. These results refute speculation that the 

B-S transition is the result of double helix dehybridisation.  

 

6.2 Outlook 
Future experiments and improvements are envisaged for the various single 

molecule fields related to this work.  

 

Force spectroscopy on sugars 
The force spectroscopy experiments on sugars could be extended to study 

the in situ reactions with complexing agents such as Pd metal derivatives or 

other reagents. By reversibly measuring the force curves of a stretched 

polymer before, during and after addition of the reactants, the direct influence 

on the mechanics of a single polysaccharide chain may be determined. 

Possibly, new reaction intermediates or pathways could be stabilised by the 

use of chain tension or, alternatively, conformational changes such as the 

chair-boat transition prevented by the action of metal complexes. The reaction 

mechanisms and kinetics of single polymer molecules would be a lucrative 

field to investigate. 

 More research is needed to fully understand the plateau force curves 

observed. Especially a change of sample conditions such as solvent polarity, 

temperature or pH should have an influence on the hydration energies 

experienced by these molecules when pulled from a densely covered sample 

surface into a relatively poor solvent. A quantitative analysis of these factors 
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would corroborate the hydration energy theory put forward to explain plateau 

force pulling events. 

 

Other polymer systems for AFM force spectroscopy 
The application of force spectroscopy to different systems could provide 

macromolecular chemistry with a new tool for the analysis of the mechanical 

properties of macroscopic polymers. Parameters such as enthalpic 

conformational transitions under strain, rupture strengths, desorption or 

chain-pull-out forces may be relevant for tear-propagation or the specific 

surface adhesiveness of polymer materials. Furthermore, dynamic force 

spectroscopy enables an in-depth study of the frictional and visco-elastic 

behaviour of single chains under mechanical strain [217, 254-256]. A 

multitude of organic polymers [37, 99, 257-261] or siloxanes [36, 262-267] 

have already been investigated.  

 

Chemical attachment 
A crucial question for nearly all cantilever manipulation experiments that do 

not rely solely on pushing and pulling is the physical fixation of a single 

molecule to the tip. A strong chemical attachment would be an enormous step 

forward for the whole field. True covalent bonding would enable an accurate 

measurement of the bond rupture forces and greatly facilitate reversible 

pulling, thereby enabling single molecule chemistry on a polymer that never 

falls off the tip. Attempts in this direction have been made [42, 268, 269], but a 

universal solution has yet to be found. 

 

Manipulation of single TDI molecules 
The influence of a cantilever tip brought into the proximity of a single molecule 

has been studied previously and quenching [228, 229, 270] or field 

enhancement [223] effects were proposed. However, a clear improvement 

would be to use the best dye available for these experiments - 

terrylenediimide (TDI). This would provide unequivocal evidence for or against 

quenching. In addition, applying mechanical pressure to the environment of a 
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single fluorophore might lead to spectral shifts in dye fluorescence or other 

new phenomena. 

 

DNA patterning and conducting wires 
The need for new smaller conducting nanowires [244, 245, 271, 272] and the 

potential use of DNA chains [248-250] has been discussed. The new method 

developed, involving a cantilever tip as a DNA water-pen for writing thin 

polynucleotide structures on positively charged surfaces, may have some 

potential in this context, if the practicability can be ameliorated. 

 
The combined optical/AFM force experiment 
The shortcomings of the combined AFM force spectroscopy and optical 

imaging experiment have been discussed. Nevertheless, a range of important 

improvements could still be made. These include: 

• The use of sharp, long cantilever tips. 

• Chemical treatment of the tip surface to improve adhesion. 

• A faster imaging frame rate. 

• Different DNA dyes [106, 176, 183], in particular YOYO-1 [190, 273]. 

• A reduced intercalator dye concentration. 

• AFM scanning of the sample to determine the exact position of the 

DNA chain, before attempting a pulling experiment. 

• The use of short DNA strands such as φX-174. 

• Prior attachment of the DNA to the tip, rather than the surface, before 

surface contact. This would guarantee a number of dangling molecules 

and possibly improve the probability of a successful pulling experiment. 

Tip contamination could be minimised. 

 

Single molecule lateral force spectroscopy 
The DNA strand tension can be calculated from the chain extension length, by 

comparison with a standard DNA force curve. However, it could actually be 

determined directly from the cantilever twisting deflection signal. This would 

require the use of a quadrant photodetector for the AFM deflection signal and 

the calibration of the cantilever lateral spring constant.  
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Electronic switching of a single luminescent polymer 
Finally, a completely new type of experiment is proposed, which combines 

fluorescence detection, AFM force spectroscopy and also single molecule 

electrical conduction.  

An electroluminescent polymer (and fluorescent) could be picked up 

and spanned between the cantilever and a transparent conducting indium tin 

oxide (ITO) surface. Applying a current would drive the molecular 

luminescence, which could be turned on or off at will (artificial blinking). 

 

Figure 135: A single electroluminescent polymer spanned between the tip and a 
conducting surface. 

 

The single molecule fluorescence of conducting polymers has been examined 

previously, most notably of the conjugated polymer MEH-PPV [274-277]. 

These dyes have great industrial significance as light emitting diodes.  

 Preliminary experiments show that it is possible to stretch MEH-PPV 

with an AFM tip, the force curves being similar to those of other organic 

polymers [258]. The main challenge will be to establish a good electrical 

contact between the surfaces and the polymer chain so that current can flow 

without having to apply high voltages, which might short the system [278]. 

Double bond breaks along the chain and a potentially low photo-oxidative 

stability must also be taken into account, but if the experiment succeeds it will 

undoubtedly be the smallest light bulb in the world. 
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Appendix 1: Coverslip surface preparation procedures 
Coverslip cleaning procedures 
Glass coverslips (24mm*60mm) are cleaned by immersion for >1 day in a 

Hellmanex™ solution (Hellma®), which is diluted with ultrapure HPLC water. 

The coverslips are then washed and submersed for another day in HPLC 

water, where they can be stored prior to use. After extraction they are washed 

copiously with HPLC-pure water, dried under vacuum and used expeditiously 

to reduce the density of fluorescent impurities.  

 

Gold coated coverslips 
To prepare gold coated coverslips, first, a 5nm Cr/Ni-layer has to be 

generated on the clean glass surface by vacuum deposition, which is then 

followed by a 35nm thick Au layer. The intermediate Cr/Ni layer increases the 

adhesion of the gold on the glass. 

 

Polylysine coated coverslips 
The thin film coatings of polylysine (Fluka®, poly-L-lysine-hydrobromide; 

mol wt. 30000-70000; 1 PL strand contains ca. 220 lysine groups [112, 120] ) 

on the cleaned coverslips are achieved by compressing a 5µl drop of a 5µg/ml 

aqueous PL solution between two coverslips and then separating the surfaces 

after overnight drying in a evacuated desiccator.  

NH3+

Figure 136: Polylysine 

 

The amino moieties of the polylysine result in a net positive charge on the 

surface, to which the negatively charged DNA can adhere. Assuming 

complete adsorption of the polylysine and a homogeneous distribution on the 

surface, a 5µl polylysine drop corresponds to ~1.1*10-10 mol of lysine 
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groups (M=227g/mol). Evenly distributed over the surface of two coverslips 

(2*24*60mm=2.88*109µm2), this results in a lysine moiety density of 23000 

charged groups per µm2, which is ca. ~105 polylysine strands/µm2.  

 

Alkylsilanised coverslips 
Cleaned and vacuum dried coverslips are silanised by gas-phase adsorption. 

A 1ml drop of 7-octenyl-trichlorosilane (Sigma®) is allowed to evaporate in a 

previously evacuated desiccator containing the coverslips. After >1 day of 

adsorption in the silane-saturated atmosphere, the originally hydrophilic 

coverslips acquire a strongly hydrophobic surface. The surface contact angle 

of the aqueous solutions increases (c.f. 15° for SiO2 [279]), due to the 

formation of a water-repelling silane monolayer on the glass. Coverslips are 

used immediately after silanisation. 

Cl
Si

Cl

Cl

Figure 137: 7-Octenyl-trichlorosilane 

 

The silanisation process 
The choice of silanisation conditions depends on the substrate. Glass, 

oxidised silicon or silica have amorphous surfaces with a variable number of 

Si-O-Si and Si-OH groups exposed on the surface [280, 281]. The silanol 

groups of these substrates are sufficiently reactive to allow substitution 

reactions with alkoxysilanes, such as APTES (aminopropyl-triethoxysilane) 

[282]. Generation of the silane film can occur in solution, in which case 5% 

silane solutions in toluene are used [283], or by gas phase adsorption [279, 

284]. Gas phase adsorption leads to the well ordered monolayers on the 

surface.  

However, the reaction of the surface silanol groups with 

monomethoxysilanes produces poorly stable films [252, 264] and it is not clear 

whether the silane layer is merely physisorbed through hydrogen bonds or 

actually forms covalent bonds to the surface. The stability can be improved by 
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using multiple reactive groups, such as trichloro- [265, 285, 286] or 

trimethoxysilanes [287], which can form cross-links when baked at 100°C.  
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Figure 138: Cross-linking with trichlorosilanes 

 

It has been suggested that water is the decisive agent in this process. Water 

hydrolyses the chlorosilanes to form silanol groups. These then condensate, 

thereby generating a cross-linked layer of silane on the substrate surface 

[287].  

 

Appendix 2: Sample preparation: polysaccharides 
Buffer solutions (MES, PBS) 
The MES (2-[N-Morpholino]-ethanesulphonic acid sodium salt) buffer is 

generated, according to Sigma®, by neutralising 50mmol of the aqueous acid 

with 0.9mmol of a 0.1M NaOH solution to obtain the buffer solution with a pH 

of 5.5. The pH was verified using a pH-meter. Phosphate buffered saline (PBS, 

pH 7.4) ensures a stable physiological pH value of 7.4. It consists of a 10mM 

phosphate solution with 150mM aqueous NaCl (saline).  

 

CM-Cellulose (CMC) and CM-Amylose (CMA) solutions 
The sodium salts of carboxymethyl-cellulose (Sigma®, C5013) and 

carboxymethyl-amylose (Sigma®, C4947) are each dissolved in HPLC-pure 

water or PBS to a concentration of 0.5 or 0.1% wt/vol. For plateau 

measurements the solutions are diluted with HPLC-pure water to 0.01% wt/vol. 
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CM-Cellulose-Pd-en solutions [132] 
The sodium salt of carboxymethyl-cellulose is made by dissolving CMC 

(0.15mM) in an aqueous palladium-ethylenediamine (Pd-en) solution 

(0.15mM). After 30 min the solution becomes transparent, slightly yellow and 

very viscous. It is stored in the fridge at 4°C to stabilise the complex. Prior to 

use, it is diluted to 0.01% wt/vol.  

 

AFM pulling experiments 
Generally, ~30 µl of the 0.1% or 0.5% CMC or CMA solutions are added to a 

glass coverslip with a pipette. The sample is then incubated overnight in a 

humid atmosphere. The following day the moist samples are rinsed copiously 

with HPLC-pure water before use. For the plateau curve measurements ~30µl 

of the 0.01% solution is allowed to dry on the coverslip overnight. The next 

day, the samples are re-wetted with a few drops of water and rinsed again 

after a few hours. Typically, a 2kHz sampling rate for the deflection signal and 

a pulling velocity of between 0.5µm/s to 16µm/s is used (digital filter 

bandwidth 1kHz).  

 

Appendix 3: DNA force spectroscopy 
A 50µl drop of the 20µg/ml λ-phage BSTE digest II (Sigma®) stock solution is 

applied to the corresponding glass, gold or polylysine coated coverslips and 

left to absorb overnight. The following day, unattached DNA fragments and 

precipitated salt are purged from the surface by washing with TE buffer. By 

measuring the UV adsorption spectra of the rinsing buffer it was shown 

previously that approximately 10% of the DNA remained attached to the gold 

surface after washing [258], resulting in a DNA surface density of 

ca. 0,4 µg/cm2. Finally, a 100µl drop of TE buffer is applied to the DNA 

sample and the force curves are measured [121].  

Force curves on silane are measured by first diluting the original 

λ-phage digest DNA by a factor of 1000 in MES buffer to afford a 1µg/ml DNA 

stock solution. A 50µl drop of the DNA solution is then applied to a freshly 

silanised coverslip and left to incubate on the surface overnight without drying. 

Following rinsing the next day with MES buffer, the force curves are taken 
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analogously to the samples on gold or polylysine. To achieve reversible pulls 

it is important not to press too hard into the glass surface when picking up a 

molecule and to gradually increase the pulling length of the tip, to prevent 

early rupture of the attachment. 

To determine the effect of TO-PRO-3 on the force curves, the DNA 

covered silanised surfaces are prepared as described above. A 100µl drop of 

the stock dye solutions with 5*10-6M TO-PRO-3 is then added as the 

measurement medium.  

 

Appendix 4: LabView® programs 
The first LabView® program enables real-time manual control of the 

piezo-driven sample position in the combined AFM/optical imaging 

experiments. This is achieved by reading out the keyboard arrow keys and 

converting this signal into a voltage for the piezo i.e. sample movement.  

 

Figure 139: LabView program for confocal scanning images of fluorescent dyes. 
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The second program is used in confocal microscopy to simultaneously 

monitor the APD fluorescence signal, while controlling the scanning piezo 

position (cf. Figure 139). This allows high speed data acquisition of the 

fluorescence signal with up to 20µs time resolution. Four modes are possible. 

In the calibration mode the APD signal is plotted continuously. This is used for 

maximising signal intensity e.g. for pinhole adjustment. The second mode 

enables time traces of single sample positions e.g. to monitor single molecule 

fluorescence. The third mode generates confocal scanning images with 

variable size and integration time per pixel. The sample may then be directed 

to a user-defined position in the previously scanned image to take a time trace. 

Finally images may be loaded and analysed by plotting the x and y cross 

sections. It is also possible to fit these line profiles, e.g. of a single molecule 

dye, with a Gaussian curve to determine the FWHM of a peak cross-section, 

thus giving a quick estimate of the setup resolution and objective z-focus. 

 

 

Appendix 5: DNA imaging protocols 
DNA solutions 
λ-Phage DNA (250µg, 7.94*10-12 mol) with a length of 48502bp is obtained 

from Sigma®. After 1:20 and 1:200 dilution with TE buffer 

(TRIS/EDTA = 150mM NaCl, 10mM Tris, 1mM EDTA; pH = 8) Fluka® the final 

stock solutions with 3.18*10-10mol/l DNA (10µg/ml; c(bp)1.6*10-5mol/l) and 

3.18*10-11mol/l (1µg/ml; c(bp)1.6*10-6mol/l) DNA are prepared. 

λ-Phage digest BSTE II, with a length distribution of 117-8454bp 

(Sigma®) is diluted with TE buffer (Tris/EDTA), resulting in a stock solution of 

20µg/ml; c(base pairs) = 3.1*10-5mol/l.   

TO-PRO-3® (Molecular Probes®; MW = 671g/mol) stock solutions are 

prepared by diluting the original 1mM DMSO dye solutions in a 7:3 

Glycerol/Water mixture to afford a 1*10-4 M dye concentration. By further 

dilution in TE buffer, working solutions with a final dye concentration of 

5*10-6M and 1*10-7M were generated.  
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DNA imaging 
DNA images are prepared on silanised or polylysine coated glass surfaces by 

overnight incubation of a 50µl drop of the λ-phage or λ-phage BSTE II digest 

DNA solution, in humid atmosphere. After copious washing with the 

corresponding buffer a 100µl drop of aqueous 5*10-6M TO-PRO-3® in TE 

buffer + 1% slowfade® (Molecular Probes®) is added and the sample mounted 

on the inverted microscope stage. Images with 1 sec exposure time are taken 

with an illumination intensity of 1.2 W/cm2. Using this solution, photobleaching 

is avoided and an image series of the DNA can be taken over a period of 

minutes to hours without significant loss of fluorescence. 

The final DNA concentration on the sample depended on the 

adsorption and washing process, so an exact comparison of base pair to dye 

ratio could only be estimated. However, taking the value found for gold 

surfaces of 10% DNA remaining on the surface, the DNA concentration in a 

100µl drop would be c(bp) = 1.6*10-6mol/l. This corresponds to a bp/dye ratio 

of ca. 1:4.  

Silanised and polylysine coated glass surfaces are sufficiently 

transparent for high contrast imaging of DNA. However, gold surfaces were 

rejected, because fluorescence absorption and/or quenching greatly reduced 

the signal detectable through the gold.  

 

Super-long DNA 
To generate super-long DNA, the original λ-phage BSTE digest DNA is diluted 

in MES buffer (pH = 5.5) by a factor of 1000 to yield a 1µg/ml DNA working 

solution. A 50µl drop of this solution is applied to a freshly silanised surface 

and left to incubate overnight. The following day the sample is washed a few 

times with TE buffer (pH = 8) and mounted for imaging in the corresponding 

dye solution. 
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Appendix 6: DNA straightening procedures 
To align the DNA a dried polylysine coated coverslip (5µg/ml) is mounted on a 

spin coating machine and rotated at 3000-5000 rpm . Following washing with 

a few droplets of ultrapure HPLC water, two to five 10µl drops of 3*10-11M 

λ-phage DNA are dispensed on the spinning surface. Finally, the surface is 

rinsed with TE buffer (~300µl). 

 

Figure 140: Spin straightening of a DNA sample 

  

For pressure straightening a 5µl - 50µl drop of the DNA solution is placed on a 

coated coverslip. By quickly placing a second coverslip over the first and 

applying a force, the solution is spread out evenly between the two glass 

surfaces. After pressing, the second coverslip is carefully lifted off again.  

 

Figure 141: Pressure straightening 
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