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Zusammenfassung 

Nach jahrelanger wissenschaftlicher und technischer Vorbereitungszeit wird 

voraussichtlich Ende des Jahres 2020 der Start der orbitalen Phase einer unbemannten 

deutschen Weltraum-Mission initiiert. Das Environmental Mapping and Analysis Program 

(EnMAP) wird an Bord des gleichnamigen Satelliten einen hyperspektralen Sensor zur 

Erfassung terrestrischer Oberflächen tragen. In den Umweltdisziplinen zur Erforschung von 

Ökosystemen, landwirtschaftlicher, forstwirtschaftlicher und urbaner Flächen, im Bereich der 

Küsten- und Inlandsgewässer sowie der Geologie und Bodenkunde bereitete man sich im 

Vorfeld des Starts auf die kommenden Daten vor. Zwar existiert bereits eine Vielzahl an 

Algorithmen zur wissenschaftlichen Analyse von spektralen Daten, allerdings ergeben sich 

auch neue Herausforderungen, da die EnMAP-Mission bislang im weltweiten Kontext der 

Fernerkundung einzigartig ist. Die Abdeckung des vollen optischen Spektrums (420 nm – 2450 

nm) in Verbindung mit einer moderaten räumlichen Auflösung von 30 m und einem hohen 

Signal-Rausch-Verhältnis von mindestens 180 im kurzwelligen Infrarot und über 400 im 

sichtbaren Spektrum, ermöglichen eine Aufnahmequalität, die bislang nur von 

flugzeuggestützten Systemen erreicht werden konnte. 

Die Bemühungen in dieser Dissertation umfassen Aktivitäten in der wissenschaftlichen 

Vorbereitungsphase zu agrargeographischen Fragestellungen. Algorithmen und Tools zur 

Analyse der hyperspektralen Daten werden kostenlos im QGIS-Plugin EnMAP-Box 3 zur 

Verfügung gestellt. Die drängenden Fragen im Agrarsektor drehen sich hierbei um die 

Ableitung biochemischer und biophysikalischer Parameter aus Fernerkundungsdaten, 

weshalb die übergeordnete Problemstellung des Promotionsvorhabens die Entwicklung eines 

wissenschaftsbasierten EnMAP-Tools für bewirtschaftete Vegetationsflächen (EnMAP 

Managed Vegetation Scientific Processor) darstellt.  

Zu Beginn wurde eine umfassende Feldkampagne geplant, welche ab April 2014 

umgesetzt wurde. Neben der spektralen Erfassung von Blatt-, Bestands- und Bodensignaturen 

in einem Winterweizen- und einem Maisfeld erfolgte auch die Messung wesentlicher 

Pflanzenparameter an den exakt gleichen Positionen. Hierzu zählt die non-destruktive 

Ableitung des Blattflächenindex (LAI), des Blattchlorophyllgehalts (Ccab), des 

Blattwassergehalts (EWT oder Cw), des relativen Blatttrockengewichts (LMA oder Cm), des 



Zusammenfassung 

 

II 

mittleren Blattneigungswinkels im Bestand (ALIA) sowie weiterer sekundärer Parameter wie 

Wuchshöhe, das phänologisches Stadium und der Sonnenvektor. Um die Fähigkeit des 

späteren EnMAP-Satelliten sich um bis zu 30° orthogonal zur Flugrichtung zu kippen 

nachzustellen, wurden die spektralen Aufnahmen aus verschiedenen Betrachtungswinkeln 

erstellt, die dieser Aufnahme-Geometrien nachempfunden sind.  

Ein gängiges Verfahren zur Ableitung der relevanten Pflanzenparameter ist die 

Verwendung des Strahlungstransfermodells PROSAIL, welches das spektrale Signal einer 

Vegetationsfläche auf Basis der zugrundeliegenden biophysikalischen und biochemischen 

Parameter simuliert. Bei der Umkehr dieses Prozesses können ebendiese Variablen von 

gemessenen spektralen Daten abgeleitet werden. Hierzu wurde eine Datenbank (Look-Up-

Table, LUT) aus PROSAIL-Modellläufen aufgebaut und die in den Feldkampagnen 

gemessenen Spektren mit dieser abgeglichen. Mit dieser Methode der LUT-Invertierung aus 

unterschiedlichen Aufnahmewinkeln konnten Genauigkeiten bei der LAI-Schätzung von        

18 % und bei Blattchlorophyll von 20 % erzielt werden. Eine starke Anisotropie, also eine 

Reflexionsabhängigkeit von der Beleuchtungs- und Aufnahmerichtung, wurde bei 

Winterweizen vor allem für frühe Entwicklungsstadien festgestellt. 

Bei einer anschließenden Studie zur Unsicherheitsanalyse des Spektralmodells wurden 

PROSAIL-Ergebnisse, bei denen real gemessene Pflanzenparameter als Input dienten, den 

zugehörigen Reflektanzspektren gegenübergestellt. Es zeigten sich hierbei mitunter starke 

Abweichungen zwischen gemessenen und modellierten Spektren, die im Falle des 

Winterweizens einen saisonalen Verlauf zeichneten. Vor allem während frühen 

Wachstumsstadien tendierte das Modell dazu die Reflektanz im nahen Infrarot zu 

überschätzen, während es gegen Ende der Wachstumsperiode eher eine Unterschätzung 

aufwies. Als Unsicherheitsfaktor wurde die Parametrisierung des Modells ausgemacht, wenn 

der ALIA-Parameter als echter physikalische Blattwinkel interpretiert wird. Es wurde 

geschlussfolgert, dass eine Separierung von LAI und ALIA bei der Invertierung von PROSAIL 

eine korrekte Abschätzung der weniger sensitiven Parameter behindert.  

Die Erstellung des Vegetations-Prozessors erforderte die Verwendung von Regressions-

Algorithmen des maschinellen Lernens (MLRA), da eine Verteilung von großen LUTs an die 

User nicht praktikabel wäre. Die MLRAs wurden an synthetischen Datensätzen trainiert, 

wobei zunächst die Optimierung der Hyperparameter im Vordergrund stand, bevor die 

Anwendung an echten Spektraldaten unternommen wurde. Es konnten dabei erst 
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aussagekräftige Ergebnisse produziert werden, als die Trainingsdaten mit einem künstlichen 

Rauschen belegt wurden, da die Algorithmen unter einer Überanpassung an die 

Modellumgebung litten. Mithilfe des Prozessors konnten schließlich LAI, ALIA, Ccab und Cw 

aus hyperspektralen Daten abgeleitet werden. Künstliche neuronale Netze dienen dabei als 

Blackbox-Modelle, die in kurzer Zeit große Datenmengen verarbeiten können und somit einen 

entscheidenden Beitrag zur modernen angewandten Fernerkundung für eine breite User-

Community leisten.  
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Summary 

After years of scientific and technical preparation, the launch of an unmanned German 

space-mission is planned to be initiated in 2020. The Environmental Mapping and Analysis 

Program (EnMAP) is going to provide an equally named hyperspectral imager to map land 

surfaces. Scientists of environmental disciplines of monitoring of ecosystems, agricultural, 

forestry and urban areas as well as coastal and inland waters, geology and soils prepared 

themselves for the upcoming data prior to the actual launch. Although there already exists a 

variety of useful algorithms for a profound analysis of spectral data, new challenges will arise 

given the uniqueness of the EnMAP-mission in the global context of remote sensing; i.e. 

coverage of the full range of the optical spectrum (420 nm – 2450 nm) in combination with a 

moderate spatial resolution of 30 m and a high signal-to-noise ratio of at least 180 in the 

shortwave infrared and above 400 in the visible spectrum. This enables an imaging quality 

which to this date has only been reached by airborne systems. 

The efforts of this dissertation comprise activities in the scientific preparation phase for 

agro-geographical tasks. Algorithms and tools for an analysis of hyperspectral data are being 

provided for free in the QGIS-plugin EnMAP-Box 3. Urgent questions in the agricultural sector 

revolve around the derivation of biochemical and biophysical parameters from remote sensing 

data. For this reason, the overarching objective of this promotion is the development of a 

scientific EnMAP-tool for managed areas of vegetation (EnMAP Managed Vegetation 

Scientific Processor). 

At first, an extensive field campaign was planned and then started in April, 2014. Apart 

from spectral observations of leaves, canopies and soils in a winter wheat and a maize field, 

also relevant plant parameters were acquired at the exact same spots. Namely, they are the 

Leaf Area Index (LAI), leaf chlorophyll content (Ccab), leaf water content (EWT or Cw), relative 

dry leaf weight (LMA or Cm), Average Leaf Inclination Angle (ALIA) as well as other 

secondary parameters like canopy height, phenological stage and the solar vector. Spectral 

measurements were captured from different observation angles to match ground data with 

the sensing geometry of the future EnMAP-satellite, which can be tilted up to 30° orthogonal 

to its direction of flight. 
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A common procedure to derive relevant crop parameters is to make use of the radiative 

transfer model PROSAIL, which simulates the spectral signal of a vegetated surface based on 

biophysical and biochemical input parameters. If this process is reverted, said parameters can 

be derived from measured spectral data. To do so, a Look-Up-Table (LUT) is built containing 

model runs of PROSAIL and then subsequently compared against spectra from the field 

campaigns. With this approach of LUT-inversions from different observation angles, an 

accuracy of 18 % could be achieved for LAI and 20 % for Ccab. Strong anisotropic effects, i.e. 

dependence on illumination geometry and sensor orientation, were identified for winter 

wheat mainly in the early stages of plant development.  

In a consecutive study about uncertainties of the spectral model, PROSAIL results fed 

with in situ measured crop parameters as input, were opposed to their associated reflectance 

signatures. A strong deviation between measured and modelled spectra was observed, which 

– in the case of winter wheat – showed a seasonal behavior. The model tended to overestimate 

reflectances in the near infrared for early phenological stages and to underestimate them at 

end of the growing period. The parametrization of the model was identified as an uncertainty 

factor if the ALIA parameter is interpreted as true physical leaf inclinations. It was concluded 

that a separation of LAI and ALIA at inversion of PROSAIL prevents an adequate estimation 

of the less sensitive parameters. 

The development of the vegetation processor required the use of Machine Learning 

Regression Algorithms (MLRA), since distribution of large LUTs to the user would be 

impracticable. The MLRAs were trained with synthetic datasets with primary importance to 

optimize their hyperparameters, before attempting to apply the algorithms to real spectral 

data. Significant results could not be obtained until training data were altered with artificial 

noise, because algorithms suffered from overfitting to the model environment. Executing the 

processor allowed to derive LAI, ALIA, Ccab and Cw from hyperspectral data. Artificial neural 

networks served as black box models, which digest great amount of data in a short period of 

time and thus make a decisive contribution to modern applied remote sensing with relevance 

for a broad user-community. 
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1. Introduction 

Knowledge about the state of soils and crops have been essential for farming practices at 

all times. However, the way how information is obtained, has drastically changed in the past 

decades. Visual inspection and random sampling are far from being outdated, but they have 

become only an additional component in practical farming, since they are often laborious, 

time-consuming, imprecise and rely on destructive methods (Khan et al. 2018). The 

assimilation of remote sensing data into computer-aided farming caused a major step forward 

for site-specific management (Pinter Jr et al. 2003). Sensing with tractor-mounted devices and 

UAVs represent the closest form of crop monitoring (Adão et al. 2017), other sources embrace 

airborne systems and increasingly also various spaceborne imagery (Hank et al. 2018). The 

additionally acquired information contributes to a smart management of fertilization, plant 

protection, irrigation and harvesting (Mulla 2013). The diversity of biophysical and 

biochemical variables with immediate relevance for modern farming demands practical 

methods to retrieve the desired parameters with decent accuracy.  

The end of hunger and the achievement of food security are essential parts of the second 

Sustainable Development Goal. Their success, however, is endangered by environmental 

degradation and climate change (FAO 2016). These global issues necessitate global solution 

strategies, which clearly emphasizes the suitability of satellite data in this context (Mauser et 

al. 2012). 

1.1. Hyperspectral Remote Sensing 

The literal meaning of remote sensing is recording information about a desired target 

without the requirement of actually being present at the exact location during that time (Sabins 

2007). To this end, remote sensing is opposed to laboratory methods or contact-bound 

measurements in situ. The scientific need for data of large or far-off areas had enforced early 

technical inventions in the field of aerial photography at the dawn of the 20th century 

(Campbell and Wynne 2011). In the following decades, sensors made remarkable progress in 

terms of data quality and accuracy. But even if today’s micro sensors seem to have little in 

common with former analog cameras, they still share the basic physical principles in making 

use of the complex interactions between mass and energy.  
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Electromagnetic waves pass energy from a source to the target without relying on physical 

matter as a transport medium. The frequency at which their magnetic and electric field 

alternate determines how they interact with molecules of different size and structure (Rees 

2013). Remote Sensing means measuring radiation that has been emitted, attenuated, scattered 

or reflected from the target of interest and interpret the result to gain knowledge about its 

physical or chemical nature (Jones and Vaughan 2010).  

There are several ways to categorize sensors depending on their measurement principle, 

field of application, technical specifications or mounting system (Schaepman-Strub et al. 2009). 

In each category of sensors, there is a possible further classification into different spatial, 

spectral, temporal and radiometric resolutions. Sensors which record radiation in many 

contiguous wavebands are called hyperspectral. They are opposed to multispectral systems 

with a broader spectral resolution. Hyperspectral sensors have first been used in laboratories 

and on site for proximal sensing, before NASA’s Johnson Space Center became the first to 

mount an imaging spectrometer on an airborne platform (van der Meer et al. 2001). The 

transition of hyperspectral remote sensing into space, however, took several decades with the 

main issue being that spectral irradiance decreases with smaller bandwidths (Ortenberg et al. 

2011). Splitting the incoming energy into sections of 10 nm and less comes to the expense of a 

lower signal-to-noise ratio if the spatial resolution is to keep up with that of other 

environmental satellites in the low earth orbit. Nevertheless, as of 2019, space agencies are 

making a collective effort in launching satellites with hyperspectral sensors given the reported 

benefits in remote sensing of geology (Ramakrishnan and Bharti 2015), forests and grassland 

(Lopatin et al. 2017; Thenkabail et al. 2004) or agriculture (Hank et al. 2018; Liu et al. 2015) 

arising with that technology.  

A descriptive way of illustrating the quantity of hyperspectral data is by visualizing them 

as a cube. The two-dimensional image (rows, columns) is extended into a spectral axis with 

several hundred or thousand discrete wavelengths. As technical progress advances, slices into 

one or the other direction become finer, increasing not only the informative content but also 

the required memory to transmit, process and store data (Figure 1.1.1). 
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Figure 1.1.1. Concept of the hyperspectral data cube. A hyperspectral image can be envisaged as an 

image with a spatial domain of columns (x) and rows (y) with sensing wavelengths (λ) as an added 

third dimension. The scene shows an AVIRIS image acquired from Moffett Field, San Francisco Bay, 

California on June 20, 1997 as a false-color composite with NIR/Red/Green. Figure adapted from Pu 

2017.  

 

The first hyperspectral spaceborne sensor was Hyperion equipped on EO-1 (Folkman et 

al. 2001), launched in November, 2000. Suffering from a low signal-to-noise ratio, consecutive 

programs sought a better tradeoff between data quality and adequate spatial and spectral 

resolution. While the Italian PRecursore IperSpettrale della Missione Applicativa (PRISMA; 

Candela et al. 2016) has recently been launched, other missions like SHALOM (Feingersh and 

Dor 2015), NASA’s Hyperspectral InfraRed Imager (HyspIRI; Lee et al. 2015) and ESA’s 

Copernicus Hyperspectral Imaging Mission for the Environment (CHIME; Nieke and Rast 

2018) are still in planning phase. In the near future, the German Aerospace Center (DLR e.V.) 

will finish development and production phase of the Environmental Mapping and Analysis 

Program satellite and target its launch for 2020 (EOC 2018a).  
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1.2. An overview of the EnMAP mission 

The Environmental Mapping and Analysis Program (EnMAP) is a German project with 

multinational involvement. It is organized in four project parts (Figure 1.2.1, EOC 2018b): 

• Project Management – led by DLR Space Administration 

• Scientific Principal Investigator and the EnMAP Science Team – led by the 

Deutsches GeoForschungsZentrum (GFZ) with contributions of the EnMAP 

Science Advisory Group 

• Space Segment – led by the OHB System AG 

• Ground Segment – led by DLR’s Remote Sensing Technology Institute  

 

Figure 1.2.1. Organigram of the project management of EnMAP (EOC 2018b). 

The EnMAP Science Teams were formed to cover the most important environmental 

issues and their respective fields of research (Guanter et al. 2016):  

• Natural Ecosystems and Ecological Gradients 

• Forests 

• Agricultural Land 

• Geological Exploitation 

• Digital Soil Mapping 

• Coastal and Inland Waters 

• Urban Areas 



An overview of the EnMAP mission 

 

5 

Each science team contributes to the general scope of hyperspectral remote sensing with 

particular focus on future EnMAP applications. They are assisted by members of the EnMAP 

Science Advisory Group, which is a consolidation of experts in remote sensing and 

environmental subjects. 

The instrument of the mission accommodates one spectrometer for the visible and near 

infrared (VNIR) and another for the shortwave infrared (SWIR), both operating in push-broom 

mode and together covering the full spectral domain from 420 nm – 2450 nm (Guanter et al. 

2015). The system is conceptualized to minimize effects of smile and keystone and offers an 

across-track pointing capability of ± 30° allowing to decrease revisit times down to e.g. 2.3 days 

at 45° latitude. The ground sampling distance (GSD) – often referred to as spatial resolution – 

is 30 m. The mean spectral sampling distance (SSD), i.e. spectral resolution, is 6.5 nm for the 

VNIR and 10 nm for the SWIR sensor (Guanter et al. 2015). In-flight calibration will ensure 

quality criteria such as spectral accuracy < 0.5 nm in the VNIR and < 1.0 nm in the SWIR 

throughout the mission lifetime (Storch et al. 2014). A full sheet of all major characteristics of 

EnMAP is listed in Table 1.2.1.  

Table 1.2.1. Specifications of the planned EnMAP mission and instrument. Adapted from (Guanter et 

al. 2015). 
 

Mission Requirements 
Spectral range  420–2450 nm 

Ground sampling distance  30 m 

Swath width  30 km 

Swath length  up to 1000 km/orbit 

Coverage  Global in near-nadir mode (OZA ≤5°) 

Orbit  Sun-synchronous, 11:00 local time descending node 

Daily coverage  5000 km 

Target revisit time  4 days with 30°across-track pointing 

Instrument Requirements 

Imaging principle  Push-broom-prism 

Spectral range  VNIR: 420–1000 nm/SWIR: 900–2450 nm 

Mean spectral sampling distance  VNIR: 6.5 nm/SWIR: 10 nm 

Spectral oversampling 1.2 

SNR at reference radiance  >400:1 at 495 nm/>180:1 at 2200 nm 

Spectral calibration accuracy  VNIR: 0.5 nm/SWIR: 1 nm 

Radiometric calibration accuracy  <5 % 

Radiometric stability  <2.5 % 

Radiometric resolution  14 bit, dual gain in VNIR 

Sensitivity to polarization  <5 % 

Spectral smile/keystone effect  <20 % of a pixel 

Co-registration VNIR-SWIR  <20 % of a pixel 
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In the years before its launch, EnMAP data need to be available to build and test 

applications. Hyperspectral data of airborne or field based sensors can be processed to 

represent expected future EnMAP-HSI spectra in terms of spectral, spatial and radiometric 

resolution. The correct SSD is obtained by aggregating narrow-band reflectances according to 

the spectral response function, which represents the sensitivities decreasing with distance to 

the central wavelengths of each sensor band (Figure 1.2.2). Since usually original data from 

airplanes or field sensors have a GSD of < 30 m, they have to be spatially aggregated. 

 

Figure 1.2.2. Illustration of the Spectral Response Functions (SRF) of the EnMAP VNIR-sensor with 

the examples of bands 25 to 28. The respective central wavelengths are 543 nm, 548 nm, 553 nm and 

559 nm. This information can be used for a non-linear spectral resampling with weighted average of 

the spectrally adjacent wavelengths. Data source: GFZ Potsdam. 

An even more realistic approach to simulate future EnMAP data is by taking into account 

atmospheric disturbances, sensor inaccuracies like keystone and smile as well as random 

sensing errors of the detectors. The EnMAP end-to-end simulator (EeteS; Segl et al. 2012) 

provides exactly these features and has been used in several studies that assess the future 

impact and capabilities of EnMAP. 
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Another demand of the mission is the development of an open-source toolbox that 

contains applications to work with hyperspectral data. Although it is designed to be usable 

also with hyperspectral images of other sensors, the conceptualization is intentionally geared 

towards EnMAP data and the toolbox is therefore called EnMAP-Box (van der Linden et al. 

2015). After two major versions running on IDL code, the current EnMAP-Box 3 (Rabe et al. 

2018) is embedded in QGIS as a free plug-in. This yields the advantage that all applications 

have access to most python libraries of the QGIS environment, such as PyQt for GUI 

development (Summerfield 2007) or the Geospatial Data Abstraction Library (GDAL; 

Warmerdam 2008).  

All EnMAP Science Teams contribute to the EnMAP-Box, providing a final mixture of 

applications to analyze images in the context of geology, soils, coastal and inland water, and 

vegetation. This set is complemented by tools to adjust meta-data, perform pixel algebra and 

a range of other image processing algorithms.   

1.3. Canopy Reflectance Modelling 

Canopy reflectance modelling is the simulation of the reflectance signature of vegetation 

with multiple scatterers. Different aspects of the structure of canopies are considered, 

depending on the type of model used.  

Geometric-optical models were designed for canopies with singular clusters of vegetation, 

which can be described by a fixed array (Jones and Vaughan 2010). This type of model has 

been mainly used in forestry applications, e.g. by assuming coniferous trees as Lambertian 

cones aligned in a raster grid (Li and Strahler 1985). 

Monte-Carlo ray-tracing models, on the other hand, require a more detailed description 

of the architecture of vegetation and their interaction with landscapes (Lewis 1999). Each 

simulation of a ray is randomly initialized at the light source and interacts with canopy 

elements according to individual probability density functions (Govaerts and Verstraete 1998). 

This task is computationally very demanding, which is why often diffuse irradiance is 

neglected in ray-tracing models. The probably most famous example of a 3D canopy 

reflectance model is the Discrete Anisotropic Radiation-Transfer Model (DART; Martin et al. 

2003), which uses kernel functions to model radiative interactions between earth and its 

atmosphere.  
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The most widely used approach to model canopy reflectance is based on the turbid 

medium assumption. Radiative transfer in vegetation is thus described following the theory 

of radiation propagation in gases (Kubelka and Munk 1931). This approach differs from the 

former mentioned models, as there is no real localization of rays in the medium, but rather a 

statistical description of direct radiant fluxes by distribution functions (Jones and Vaughan 

2010). This principle was extended in the Suits model (Suits 1971) by the directional solar 

radiation and the flux towards the observer to form the first classical four-stream radiative 

transfer model. In the Suits model, two major approximations are used to simplify the complex 

properties of real canopies: 

• Homogeneity – all components that interact with radiation are evenly 

distributed and infinitesimally small 

• Horizontality – canopies consist of horizontal layers with non-overlapping 

leaves 

This somewhat unsatisfying simplification was improved in the first version of Scattering of 

Arbitrarily Inclined Leaves (SAIL; Verhoef 1984), which incorporates a specific leaf angle 

distribution into the modelling approach. In SAIL, leaves follow a random azimuthal and a 

statistical inclination distribution function. The shortcoming of treating leaves as point 

scatterers was overcome by introduction of a hot spot size parameter. There exist several 

adaptations and advancements in the family of SAIL-models, e.g. a multilayer structure 

approach 2M-SAIL (Weiss et al. 2001), a hybrid approach to incorporate discontinuous 

canopies (GeoSAIL) and its speed-optimized two-layer version 4SAIL2 (Verhoef and Bach 

2003). 

Radiative transfer in leaves was originally described in the plate model (Allen et al. 1969). 

Treating leaves as single layer absorbers, however, was soon considered a weak 

approximation of real biochemical processes in plant tissues. The PROSPECT leaf optical 

properties model (Jacquemoud and Baret 1990) describes scattering by a spectral refractive 

index and an arbitrary parameter indicating the number of absorber plates and the air-filled 

spaces between them. Absorption follows the Lambert-Beer law of attenuated radiation with 

wavelength-dependent absorption coefficients for all major biochemical constituents of leaves. 

All versions share the consideration of Equivalent Water Thickness (EWT, or Cw) and Leaf 
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Mass per Area (LMA, or Cm). Leaf pigments were first characterized by a single parameter 

(Ccab) and later split into leaf chlorophyll, xanthophylls/carotenoids (Ccar; Feret et al. 2008) and 

later anthocyanins (Canth; Féret et al. 2017). Brown pigments (Cbrown) are summarized into an 

arbitrary parameter to describe the influence of polyphenols in the red-edge region (Baret and 

Fourty 1997). 

The demand for a coupled PROSAIL model containing both the leaf optical properties and 

a description of the canopy architecture, arose from the need of a model to retrieve biophysical 

variables from canopy reflectance spectra under consideration of a given sun-sensor-target 

geometry. Since the inversion of SAIL leads to an under-determined system of equations, this 

issue is solved with providing the directional and hemispherical radiation from leaf reflectance 

and leaf transmittance by PROSPECT (Jacquemoud et al. 2009b). A description of input 

variables for both models is shown in Table 1.3.1, the coupling is illustrated in Figure 1.3.1. 

Table 1.3.1. Overview of the PROSAIL parameters and their according dimensions. Some parameters, 

e.g. the leaf chlorophyll content, are used in all PROSPECT versions, whereas other parameters were 

included in newer releases. 

Parameter Description Unit 
Model 

versions 

N Leaf structure parameter - Prospect (all) 

Ccab Leaf Chlorophylla+b content µg cm−2 Prospect (all) 

Cw Leaf Equivalent Water Thickness (EWT) cm Prospect (all) 

Cm Leaf Mass per Area g cm−2 Prospect (all) 

Ccar Leaf Carotenoids content μg cm−2 Prospect 5 

Cbrown Leaf Brown Pigments parameter - Prospect Xb 

Canth Leaf Anthocyanins content μg cm−2 Prospect D 

LAI Leaf Area Index m2 m−2 SAIL 

LIDF 

or 

ALIA 

Leaf Inclination Distribution Function 

or 

Average Leaf Inclination Angle 

- 

or 

Deg 

SAIL 

Hspot Hot Spot size parameter - SAIL 

soil Soil Reflectance - SAIL 

Psoil Soil Brightness Parameter - SAIL 

SZA Sun Zenith Angle Deg SAIL 

OZA Observer Zenith Angle Deg SAIL 

rAA relative Azimuth Angle Deg SAIL 

skyl Ratio of diffuse to total incident radiation - SAIL 
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Figure 1.3.1. Flowchart of the coupling between PROSPECT and SAIL to form the PROSAIL model.  

Despite known shortcomings in practical applications, its limited demand in input 

variables and quick processing time renders PROSAIL the most widely used radiative transfer 

model for canopy reflectance modelling in the past decades (Berger et al. 2018). Even today, 

model development prevails on leaf scale, e.g. PROSPECT-DyN (Wang et al. 2015), and canopy 

scale, e.g. Soil-Leaf-Canopy (SLC; Verhoef and Bach 2007) or SCOPE (van der Tol et al. 2009). 

1.4. Machine Learning Regression Algorithms 

Machine learning is a broad term for algorithms and statistical models that perform a 

given task without relying on instructions about the required steps. The idea is merely to let 

the machine find, learn and reproduce certain patterns within the data (Mitchell et al. 1990). A 

software or programming script is needed to fit a mathematical relationship between a vector 

of predictor variables X and target variables Y from training data. This model can then be used 

to predict target variables of unseen data. 

When each X can be mapped to an associated Y in the training process, the task is called 

supervised learning. Semi-supervised methods refer to learning data sets with incomplete 

labels. Unsupervised algorithms finally perform self-organized modelling according to the 

probability densities of the inputs (Murphy 2012). Another way of separating machine 

learning is whether it is used to solve a classification or regression problem. For classification, 

the target variables are called labels and describe the discrete expression of that variable. A 

typical classification problem would be the production of a land use map from remote sensing 
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data, separating between e.g. water, bare soil, built-up area or vegetation cover (Abburu and 

Golla 2015). Regression tasks can be seen as the special cases of a classifications, for which the 

classes become so small that they create a continuous range. Hence, a Machine Learning 

Regression Algorithm (MLRA) is a computer script that learns the non-linear relationship 

between numerical variables by applying a routine of mathematical calculations (Smola and 

Vishwanathan 2008). 

Machine Learning has a long tradition in remote sensing, starting off with automated 

mapping of features identified in optical or radar data (e.g. Conway et al. 1991; Greenspan et 

al. 1994; Kubat et al. 1998) before evolving into the computationally more demanding field of 

parameter estimation (Ali et al. 2015; Mountrakis et al. 2011; Verrelst et al. 2012; Wang et al. 

2016). Even though it may be appealing to use machine learning in all sorts of tasks, it remains 

problematic that most approaches work like black boxes and that only the results but not the 

predictions themselves can be assessed afterwards. So firstly, caution is advised to check for 

causality along with correlation. Secondly, ways must be found to prevent the algorithms from 

overfitting, which happens when they become overspecialized in the training process 

(Dietterich 1995). On the upside, Machine Learning has proven to be particularly useful in 

geosciences by either speeding up deterministic models or by generating empirical 

relationships if there is no deterministic description at all (Lary 2010).  
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2. Publications 

2.1. Framework 

The incentive for this thesis was to analyze a large amount of field data and to use it to 

improve the estimation of biochemical and biophysical variables from future EnMAP images. 

The resulting algorithms will be made available to a broad user community of experts and 

higher-educated audiences. The dissertation started in 2014 at EnMAP project phase II, 

entitled “Monitoring the Phenological Development of Agricultural Crops”, and was 

continued in project phase III “Developing the EnMAP Managed Vegetation Scientific 

Processor”. A first foundation for this dissertation was laid in the author’s master thesis: 

Danner, M. (2013): Development and demonstration of a campaign layout for the field 

measurement of reflectance relevant biophysical parameters with respect to the observation geometry of 

the future EnMAP-HSI. Unpublished master thesis. Munich, Germany. 

In that work, a review of the methodological orientated literature identified a set of 

instruments and approaches for a large-scale measurement campaign. Given the practical 

nature of that document, emphasis was placed on the optimization of the relation between 

effort and benefit on site. The preparation of the thesis included finding optimal methods to 

measure Leaf Area Index, Leaf Chlorophyll Content, Leaf Carotenoid Content, Brown Pigment 

Content, Leaf Water Content, Leaf Dry Matter Content and Average Leaf Inclination Angle. It 

further described the derivation of the Leaf Inclination Distribution Function and the Solar 

Vector as well as the acquisitions of spectra of the leaves, the canopy and of the bare soil. 

Basically, this list has not changed since that date and the parameters as well as most of the 

measurement techniques were still the same at the tentative end of the field campaigns in 2018. 

A 3x3 raster with 10 m grid size was chosen for the preliminary field work, which had been 

done according to a step-by-step instruction (Action Plan) for varying team sizes. Finally, field 

protocols and a spreadsheet pre-print had been conceptualized and tested before the actual 

campaign started.  
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With beginning of the actual Ph.D. studies, the first two years of field campaigns were 

accompanied by a constant improvement of methodology for the data analysis. The achieved 

progress in creating and inquiring Look-Up-Tables was published as 

Locherer, M., Hank, T., Danner, M. & Mauser, W. (2015): Retrieval of Seasonal Leaf Area Index 

from simulated EnMAP data through optimized LUT-based Inversion of the PROSAIL Model. Remote 

Sensing, Vol. 7(8). 

In the following years, the research was geared towards an analysis of the model 

uncertainties and an assessment of the potential synergies between EnMAP and Sentinel-2. 

The results were presented at international conferences and published as proceeding papers 

afterwards (see chapter 2.2). In 2017, 

Danner, M., Berger, K., Wocher, M., Mauser, W. & Hank, T. (2017): Retrieval of Biophysical 

Crop Variables from Multi-Angular Canopy Spectroscopy. Remote Sensing, Vol. 9(7) 

was published, in which again a Look-Up-Table approach was successfully applied for the 

retrieval of LAI and Ccab, but this time from multi-angular data on EnMAP resolution. Over 

the years, the scope of this dissertation had spread out to additionally cover water retrieval 

methods, e.g. 

Wocher, M., Berger, K., Danner, M., Mauser, W. & Hank, T. (2018): Physically-Based Retrieval 

of Canopy Equivalent Water Thickness Using Hyperspectral Data. Remote Sensing, Vol. 10(12), 

advances in hyperspectral data preprocessing, e.g. 

Berger, K., Atzberger, C., Danner, M., Wocher, M., Mauser, W. & Hank, T. (2018): Model-Based 

Optimization of Spectral Sampling for the Retrieval of Crop Variables with the PROSAIL Model. 

Remote Sensing, Vol. 10(12) 

and a long-sought updated review study of the canopy reflectance model PROSAIL, which 

was used for spectral modelling of the gathered field data throughout the thesis: 

Berger, K., Atzberger, C., Danner, M., D'Urso, G., Mauser, W., Vuolo, F. & Hank, T. (2017): 

Evaluation of the PROSAIL model capabilities for the future EnMAP model environment: a review 

study. Remote Sensing, Vol. 10(1). 
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In the next period, the main focus was placed on building the final applications for the 

EnMAP-Box. The tools, their structure and exemplary results were demonstrated on 

international conferences and published as proceedings, before a second scientific paper with 

contribution as first author,  

Danner, M., Berger, K., Wocher, M., Mauser, W. & Hank, T. (2019): Fitted PROSAIL 

Parameterization of Leaf Inclinations, Water Content and Brown Pigment Content for Winter Wheat 

and Maize Canopies. Remote Sensing, Vol. 11(10), 

was published in 2019. It shed light on the performance of PROSAIL to model crop biophysical 

and biochemical parameters. Leaf inclinations were identified as a main source for modelling 

uncertainties with major influence also to the accuracy of PROSAIL inversions. The third 

paper, 

Danner, M., Wocher, M., Berger, K., Mauser, W. & Hank, T. (2019): Training Machine Learning 

Regression Algorithms to predict biophysical & biochemical variables from resampled hyperspectral 

EnMAP data using PROSAIL. ISPRS J. Photogramm. Remote Sens., under review,  

was submitted to the ISPRS Journal of Photogrammetry and Remote Sensing and is currently 

under review. In this concluding publication, appropriate methods towards a scientific 

vegetation processor were evaluated with special focus on optimization of the 

hyperparameters of Machine Learning Regression Algorithms.  
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2.2. Complete list of Scientific Dissemination 

Research Articles 

• Locherer, M., Hank, T., Danner, M. & Mauser, W. (2015): Retrieval of Seasonal Leaf Area 

Index from simulated EnMAP data through optimized LUT-based Inversion of the PROSAIL 

Model. Remote Sensing, Vol. 7(8). 

• Danner, M., Berger, K., Wocher, M., Mauser, W. & Hank, T. (2017): Retrieval of Biophysical 

Crop Variables from Multi-Angular Canopy Spectroscopy. Remote Sensing, Vol. 9(7). 

• Wocher, M., Berger, K., Danner, M., Mauser, W. & Hank, T. (2018): Physically-Based 

Retrieval of Canopy Equivalent Water Thickness Using Hyperspectral Data. Remote Sensing, 

Vol. 10(12). 

• Berger, K., Atzberger, C., Danner, M., Wocher, M., Mauser, W. & Hank, T. (2018): Model-

Based Optimization of Spectral Sampling for the Retrieval of Crop Variables with the PROSAIL 

Model. Remote Sensing, Vol. 10(12). 

• Berger, K., Atzberger, C., Danner, M., D'Urso, G., Mauser, W., Vuolo, F. & Hank, T. (2017): 

Evaluation of the PROSAIL model capabilities for the future EnMAP model environment: a 

review study. Remote Sensing, Vol. 10(1). 

• Danner, M., Berger, K., Wocher, M., Mauser, W. & Hank, T. (2019): Fitted PROSAIL 

Parameterization of Leaf Inclinations, Water Content and Brown Pigment Content for Winter 

Wheat and Maize Canopies. Remote Sensing, Vol. 11(10). 

• Danner, M., Wocher, M., Berger, K., Mauser, W. & Hank, T. (2019): Training Machine 

Learning Regression Algorithms to predict biophysical & biochemical variables from resampled 

hyperspectral EnMAP data using PROSAIL. ISPRS J. Photogramm. Remote Sens., under 

review.  

 

Technical Articles 

• Danner, M., Locherer, M. & Hank, T. (2015): Defining Campaign Layouts & Sampling 

Strategies – Theory – Principles – Problems – Practice. An EnMAP Field Guide. Technical 

Report, GFZ Data Services. Potsdam. 

• Danner, M., Locherer, M., Hank, T. & Richter, K. (2015): Determining Leaf Area Index (LAI) 

with the LI-Cor LAI 2200c or LAI-2200 (+ 2200Clear Kit) – Theory, Measurement, Problems, 

Interpretation. An EnMAP Field Guide. Technical Report, GFZ Data Services. Potsdam. 

• Danner, M., Locherer, M., Hank, T. & Richter, K. (2015): Spectral Sampling with the ASD 

FieldSpec 4 – Theory, Measurement, Problems, Interpretation. An EnMAP Field Guide. 

Technical Report, GFZ Data Services. Potsdam. 
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• Dotzler, S., Danner, M., Locherer, M., Hank, T. & Richter, K. (2015): Measuring Soil 

Moisture with TDR-Probes – Theory, Measurement, Problems, Interpretation. An EnMAP 

Field Guide. Technical Report, GFZ Data Services. Potsdam. 

• Süß, A., Obster, C., Danner, M., Locherer, M., Hank, T. & Richter, K. (2015): Determining 

Leaf Chlorophyll Content with the Konica Minolta SPAD-502Plus – Theory, Measurement, 

Problems, Interpretation. An EnMAP Field Guide. Technical Report, GFZ Data Services. 

Potsdam. 

 

Conference Proceedings 

• Danner, M., Locherer, M., Hank, T. & Mauser, W. (2015): Analyzing Uncertainties in 
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2.3. Preparation of Scientific Publication I 

Before initialization of EnMAP project phase II, scientific objectives for this period had to 

be defined. In the grant proposal, a knowledge gap about the added value of hyperspectral 

remote sensing was exposed regarding the identification of the phenological state of 

agricultural crops from single-look observations (Mauser and Hank 2012). 

The leaf structure parameter (N) in PROSAIL is supposed to be closely correlated with the 

phenological development of agricultural crops, as the leaf mesophyll structure builds up 

more layers of chlorophyll-containing tissue until senescence (Jones and Vaughan 2010). In 

theory, an inversion of N is possible if all other parameters are known and fixed in the process. 

The consecutive field campaign had to be designed to provide all measureable inputs of 

PROSAIL (see Table 1.3.1). Retrieving N by inversion of a Look-Up-table (LUT) with spectra 

of winter wheat gave slight indications of a correlation with the phenology (Danner et al. 2015), 

but the link was too weak and could not be confirmed for maize. Instead, this topic was 

resolved by a multivariate regression to obtain phenology from the development of N together 

with LAI and Leaf Chlorophyll Content (Hank et al. 2017). 

Instead, subsequent project work was continued to gain better insight in LUT inversion 

techniques. Complimentary to existing studies of that topic, the approach was tested with 

special focus on non-nadir observations in constellations that simulate sun-sensor-target 

geometries with observation angles of the future EnMAP platform. Field data of viewer zenith 

angles with ± 30° deflection from nadir were analyzed to calculate the anisotropy factors for 

forward scatter and backscatter. Furthermore, the performance of parameter retrieval from 

PROSAIL was tested for both viewing directions. The results show that winter wheat crops 

reveal stronger anisotropic effects at early growth stages and that LAI inversions on average 

were achieved with highest accuracy from near-nadir observations. In contrast, leaf 

chlorophyll estimations had lower errors when the image of predominant forward scatter was 

used. 
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Abstract: The future German Environmental Mapping and Analysis Program (EnMAP) mission, 

due to launch in late 2019, will deliver high resolution hyperspectral data from space and will thus 

contribute to a better monitoring of the dynamic surface of the earth. Exploiting the satellite’s ±30° 

across-track pointing capabilities will allow for the collection of hyperspectral time-series of 

homogeneous quality. Various studies have shown the possibility to retrieve geo-biophysical plant 

variables, like leaf area index (LAI) or leaf chlorophyll content (LCC), from narrowband 

observations with fixed viewing geometry by inversion of radiative transfer models (RTM). In this 

study we assess the capability of the well-known PROSPECT 5B + 4SAIL (Scattering by Arbitrarily 

Inclined Leaves) RTM to estimate these variables from off-nadir observations obtained during a 

field campaign with respect to EnMAP-like sun–target–sensor-geometries. A novel approach for 

multiple inquiries of a large look-up-table (LUT) in hierarchical steps is introduced that accounts 

for the varying instances of all variables of interest. Results show that anisotropic effects are 

strongest for early growth stages of the winter wheat canopy which influences also the retrieval of 

the variables. RTM inversions from off-nadir spectra lead to a decreased accuracy for the retrieval 

of LAI with a relative root mean squared error (rRMSE) of 18% at nadir vs. 25% (backscatter) and 

24% (forward scatter) at off-nadir. For LCC estimations, however, off-nadir observations yield 

improvements, i.e., rRMSE (nadir) = 24% vs. rRMSE (forward scatter) = 20%. It follows that for a 

variable retrieval through RTM inversion, the final user will benefit from EnMAP time-series for 

biophysical studies regardless of the acquisition angle and will thus be able to exploit the maximum 

revisit capability of the mission. 

Keywords: EnMAP; hyperspectral; PROSAIL; multi-angle; canopy; biophysical variables; 

agriculture; spectroscopy 

 

1. Introduction 

The retrieval of biophysical plant variables from optical imagery has been playing an important 

role in remote sensing and ecosystem modelling for more than 30 years. With ongoing technical 

progress of the sensors, there is also a steady demand for improved extraction of information from the 

gathered data. Especially in the agricultural context, many studies have pointed out the suitability of 

multispectral data (e.g., (Atzberger and Richter 2012; Bontemps et al. 2015; Campos-Taberner et al. 2016; 

Verrelst et al. 2014; Verrelst et al. 2015b)), hyperspectral data (e.g., (Atzberger et al. 2003; Burkart et al. 

2015; Duan et al. 2014; Honkavaara et al. 2012; Locherer et al. 2015; Verger et al. 2011)) and a combination 
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of both (e.g., (Gevaert et al. 2015; Richter et al. 2009; Yang et al. 2013)) for an assessment of crop 

characteristics. In order to make these benefits available to modern farming, scientific tools and 

algorithms need to be directly applicable for a broader user community. Variables like the leaf area 

index (LAI) or leaf chlorophyll content (LCC) are of prime importance for a proper characterization of 

the canopy and plant biochemistry (Schueller 1992). 

Several approaches are known to successfully retrieve hyperspectral canopy variables from 

measured spectra. The approaches can be divided into empirical and generic methods. The former 

builds up a statistical relationship between vegetation spectral signatures and in situ measured 

variables as parametric or non-parametric regressions (Verrelst et al. 2015b). Due to this site-specific 

linkage, empirical methods are not transferable in space or time (Baret and Buis 2008; Danner et al. 

2016). To become independent of in situ measurements, more generic approaches often make use of 

radiative transfer models (RTMs). They are the intermediate link between biophysical characteristics of 

the canopy and its geometry, radiometric interaction and the reflected radiation (Verhoef 1984). 

Location, intensity and quality of the radiation source, atmosphere, vegetation / canopy, soil as well as 

position and properties of the sensor are important subsystems for the remote sensing of vegetation 

(Goel 1988). RTMs separate exterior parameters from the influence of the target itself, allowing 

quantitative analysis and the establishment of distinct relationships between signal and object variables 

(Verhoef 1984). One of the major improvements in RTMs was the incorporation of arbitrarily inclined 

leaves instead of a representation by plates. The resulting SAIL model (Verhoef 1984) (Scattering by 

Arbitrarily Inclined Leaves) was later coupled with the leaf optical properties model PROSPECT 

(Jacquemoud and Baret 1990) to form the new fusion model PROSAIL (Jacquemoud et al. 2009b). 

In the direct or forward mode, PROSAIL simulates synthetic spectra from input variables that 

describe plant physiology and canopy architecture. In the indirect or inverse mode, these variables are 

obtained from spectral signatures. Inversion techniques are either based on optimization methods, 

artificial neural networks (ANN), machine learning algorithms (MLA) or look-up-tables (LUT) (see 

(Kimes et al. 2000) for overview). Their advantages and drawbacks vary with purpose of use. 

Optimization methods aim at minimizing deviations between modelled and measured spectra 

(Jacquemoud et al. 1994). Such minimization algorithms continuously change the input variables of the 

RTM until the modelled result matches the observation as closely as possible, leading to comparatively 

long computation times (Combal et al. 2003). ANNs and MLAs on the other hand are quicker in training 

and execution, but they require a priori information, calibration and lack of mathematical transparency 

(Liang 2007; Richter et al. 2009). Look-up-tables are databases of modelled spectra and their associated 

input parameter configurations. LUTs are known to be fast and robust methods producing reasonable 

results  

(e.g., (Baret et al. 1999; Darvishzadeh et al. 2008; Locherer et al. 2015; Verrelst et al. 2014; Weiss et 

al. 2000)). In a first step, the LUT is built up in forward mode before it can be browsed in inverse mode. 

For the compilation of the LUT, the user has the choice of size (number of simulations), artificial noise 

type and noise level of the spectral model output as well as distribution type and constraints for all 

input parameters. Inversion of RTMs is impeded by the fact that more than one combination of variables 

can lead to the same model result. This effect has become known as equifinality or ill-posed problem 

and is dealt with either by restriction of the input range or by inclusion of the n-best performing results 

rather than just considering the number one fit (Combal et al. 2003). 

For an ideal analysis, communication between sensor and model must be optimal. Since spectral 

models have been developed in the laboratory with the help of ground-based spectrometers, they 

basically are of hyperspectral nature. In order to use the models in combination with multispectral data, 

their spectral resolution normally is toned down using the spectral response functions of the respective 

instruments. Using hyperspectral data as input allows for making full use of the quasi-contiguous 

narrowband output of the RTM in forward mode. The retrieval methods tested in this article thus are 

intended to be applied on hyperspectral data of the Environmental Mapping and Analysis Program 

(EnMAP). EnMAP is a German spaceborne imaging spectroscopy scientific mission carrying the 

EnMAP Hyperspectral Imager (HSI) instrument (Guanter et al. 2015a). Currently under development, 

EnMAP-HSI will deliver data at high spectral resolution of 6.5 nm in the VNIR and 10 nm in the SWIR 
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domain which together cover the full spectral range of 420 to 2450 nm (Guanter et al. 2016a). 

Competition for actual data is expected to be intense, since the data take capacity of EnMAP is limited 

and—as of today—only the Italian hyperspectral mission PRISMA (Loizzo et al. 2016) may be going to 

record comparable data by the estimated time of launch in 2019. Repeat cycles of 23 days in quasi-nadir 

mode will limit the availability of cloud-free scenes (Storch et al. 2013). To mitigate this problem, the 

satellite platform will be capable of a max. ±30° across-track tilt, allowing side looks upon the target 

with revisit times of up to 4 days (Stuffler et al. 2009) near earth’s equator or even less for latitudes of 

central Europe, e.g., 2.5 days for Munich, Germany (Storch et al. 2013). The effects of this off-nadir 

pointing for the retrieval of biophysical variables have not been tested in the EnMAP context. Therefore, 

the objectives of this study are (1) to demonstrate the expected impact of the EnMAP-specific sun–

target–sensor-geometry (s–t–s-geometry) on reflectance spectra, (2) to quantify the effect on 

agriculturally relevant variable retrievals, such as LAI and leaf pigments and (3) to introduce a new 

hierarchical LUT approach for an optimized retrieval of these parameters. 

2. Materials and Methods 

2.1. Study Area & Sampling Layout 

The study area is located in the North of Munich, Bavaria, in Southern Germany. Two study sites 

at 48°17′31.25″N, 11°42′21.53″E (field 517) and 48°14′51.46″N, 11°42′24.10″E (field 509) were visited 

regularly during two field campaigns. Both fields are part of communal farmland belonging to the city 

of Munich. Each was cultivated with winter wheat (triticum aestivum), representing the dominant 

cereal crop in the area and situated within 1.5 km distance to the Isar river. The average cloud cover in 

the Munich-North Isar (MNI) region was a bit higher than usual (5.68 instead of 5.44 okta). This indicates 

the difficulty of recording spectra on a frequent basis, since adequate clear sky conditions occurred only 

on few occasions. Information on the site management was provided via personal communication by 

the farm managers; i.e., dates of seeding, fertilization methods and quantities, harvesting dates, etc.  

During the first campaign, data were collected at almost weekly intervals from 17 April to 25 July 

2014 (14 sampling dates). The second campaign period already started in autumn. Measurements were 

conducted from 28 November 2014, to 21 July 2015 (13 sampling dates). In this way, the complete 

growing cycle of the crop from seeding to harvest could be observed. One elementary sampling unit 

(ESU) was defined as a 10 m × 10 m pixel size. The measurements were then related to a 3 × 3 ESU raster 

with equal distances of 10 m. All nine ESUs were marked with sticks and revisited for each sampling 

date. The row azimuth direction of the winter wheat crops was 170°/350° for 2014 and 150°/330° for the 

2014/15 season, with the angular definition of 0° = N. Table 2.4.1 shows the complete list of sampling 

dates.  

Table 2.4.1. Dates of field visits and corresponding availability of spectral observations nadir/angles as 

well as crop variable measurements, indicated with check marks. Crop variables were measured weekly 

for both growing cycles of 2014 (left) and 2014/2015 (right). The frequency of spectral observations was 

subjected to weather conditions, since reflectance measurements require a cloud-free sky. 

Date 
Spectral 

Nadir 

Spectral 

Angles 

Crop 

Variables 
Date 

Spectral 

Nadir 

Spectral 

Angles 

Crop 

Variables 

17 April 2014 √ √ √ 28 November 2014   √ 

23 April 2014 √ √ √ 12 December 2014 √ √ √ 

30 April 2014   √ 19 March 2015 √  √ 

6 May 2014   √ 10 April 2015 √ √ √ 

14 May 2014   √ 22 April 2015 √ √ √ 

9 May 2014 √ √ √ 5 May 2015   √ 

26 May 2014   √ 8 May 2015 √ √ √ 

2 June 2014 √ √ √ 3 June 2015 √ √ √ 

6 June 2014 √ √ √ 12 June 2015 √  √ 

18 June 2014 √ √ √ 1 July 2015 √ √ √ 

26 June 2014 √ √ √ 10 July 2015 √ √ √ 

3 July 2014 √  √ 16 July 2015 √  √ 

17 July 2014 √  √ 21 July 2015 √ √ √ 

25 July 2014 √ √ √     

Total observations 10 8 14 Total observations  11 8 1 
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2.2. In Situ Measurements 

2.2.1. Spectral Data 

Spectral data were collected with an Analytical Spectral Devices Inc. (ASD) FieldSpec 3 Jr. Five 

separate measurements were carried out per ESU and per observation angle to obtain representative 

values. Outliers were removed and the remaining spectra were averaged and subjected to further 

processing. The post-processing included splice correction, radiometric calibration to absolute 

reflectance values and smoothing with a moving Savitzky-Golay-filter (Savitzky and Golay 1964). Apart 

from nadir measurements, the canopy was also measured under observer zenith angles (OZA) of +30° 

and −30° regarding the solar plane: a sensor inclination towards the sun is defined as a positive OZA, 

whereas an inclination away from the sun is described as a negative OZA (Figure 2.4.1). Due to the 

backscatter effect, spectra with positive OZA are noticeably brighter than nadir views or negative zenith 

angles, as they draw nearer to the spot of increased backscatter, also known as the hot spot (Hapke 

1986). The opposite direction shall accordingly be called cold spot or forward scatter and usually leads to 

reduced reflectances and darker images. For the angular spectral measurements, a microphone stand 

was modified to hold the ASD glass fiber optic. The horizontal rod of the stand could be raised or 

lowered to adjust the viewing angle with help of an attached inclinometer. The observer azimuth angles 

(OAA) matched up with the row azimuth angle of the canopy stands (170° for field 517 and 150° for 

field 509). EnMAP will operate on a sun-synchronous orbit with 97.96° satellite inclination angle 

descending node (Kaufmann et al. 2012) which corresponds to an OAA of 187.96°. The angular effects 

measured in the presented campaign therefore are assumed to adequately represent the angular effects 

expected from future EnMAP data.  

 

Figure 2.4.1. Sun–target–sensor-geometry. The three arrows illustrate the three different observer zenith 

angles (OZA). A positive OZA is associated with backscatter and commonly shows higher rates of 

reflectance than negative OZAs (forward scatter).  

Spectral information from each of the 3 × 3 ESUs was compiled to pseudo-images with a ground 

sampling distance of 10 m. Furthermore, the processed signatures were converted into simulated 

EnMAP spectra via the EnMAP-end-to-end-Simulator (EeteS) (Segl et al. 2012a). In this process, the 

sensor-specific radiometric and spectral properties were adapted. The spatial resolution in this case was 

retained at 10 m to preserve the data population. 

The gap fraction is a measure for the probability of a ray of light to penetrate through the canopy 

undisturbedly (Baret et al. 1995). Accordingly, this parameter decreases with density and/or height of a 

canopy. Canopy height can also be seen as a path length on which energy can interact with plant traits. 
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Assuming identical canopy height, the path length is shortest for nadir views and increases with OZA 

> 0°. For a 30° deflection from nadir, the travelled path is longer by factor cos (30°)−1 which is 15.5%. This 

leads to a weaker influence of soil background and to an apparently higher portion of visible leaf 

surface. 

The anisotropy factor (ANIF) (Sandmeier et al. 1998) yields useful information about the sensitivity 

of different wavebands towards changes in illumination geometry. It is simply defined as Equation (1): 

ANIF =  
Roff−nadir

Rnadir

 (1) 

Since the experimental setup covers two different viewing directions, two ANIFs were obtained: 

one for forward scatter (ANIFfs) and one for backscatter (ANIFbs). Additionally, a third ANIFfs/bs was 

calculated as the ratio between reflectances per waveband in forward and backscatter direction.  

If spectral information of the same target is available for multiple angles, it was found useful to 

combine them and thus raise predictability. This has been done with surface-near spectrometers that 

are handheld (Wang et al. 2013), mounted on a tower (Hilker et al. 2011), on hemispherical devices 

(Tripathi et al. 2012) or UAVs (Burkart et al. 2015).  

A prominent example for multi-angular optical remote sensing from space is CHRIS/Proba which 

allows to record narrowband spectra in the VNIR-domain from five different viewing angles  

(e.g., (Verhoef and Bach 2007)). EnMAP will be able to perform an across-track satellite tilt, but will 

keep up this slanting position for longer time than its view upon the target. If the same target shall be 

observed under different zenith angles, more than just one acquisition will have to be made with a time 

gap of at least several days or possibly several weeks or months. Canopy parameters that are strongly 

influencing the bidirectional reflectance distribution function (BRDF) change diurnally as well as during 

the seasonal growth cycle. For this reason, in this study we concentrated on single looks only, regardless 

of the possible improvement of results for a combined multi-angular approach.  

2.2.2. Biophysical Variables 

Agricultural crop variables were measured at the exact same location where spectral signatures 

were recorded shortly before. The time offset between the variable sampling and the spectral sampling 

was 45 min on average and 60 min at maximum. 

Average Leaf Inclination Angle (ALIA) was measured with a Suunto PM-5/360 inclinometer held 

along the leaf petiole to display its slope against the horizontal plane (Gratani and Ghia 2002). The 

measurement was repeated at different positions of the leaf and for different leaves within the canopy. 

Additionally the Leaf Inclination Distribution Function (LIDF) was noted down for a more detailed 

description of the canopy architecture (Goel and Strebel 1984). Leaf chlorophyll content (LCC) was 

measured with a Konica-Minolta SPAD-502 handheld device at different heights with focus on the 

upper canopy layer. The chlorophyll meter had been individually calibrated in a preceding field 

campaign against destructive measurements of winter wheat leaf chlorophyll content from different 

senescence states. Coefficients of (Lichtenthaler 1987) were used to derive LCC from the samples. Leaf 

senescence (Cbr) was estimated as the fraction of brown leaf parts in the foliage. This variable varies 

between zero (no brown spots = 100% fresh vegetation) and one (no green spots = 100% senescent 

vegetation). For a proper estimation of Cbr, the approach of (Verhoef and Bach 2003) was slightly 

adapted to incorporate the non-linearity of the vertical distribution of brown leaves. The dissociation 

factor between upper and lower layer thus created consistent results. This was achieved by applying a 

cosine function of the brownness in the upper layer to the power of two. Cbr can be written as Equation 

(2): 

Cbr =
bru + brl

2
 − 

|bru − brl|

2
 ∙  cos²(90° ∙ bru) (2) 

with bru as the fraction of brown leaf parts in the upper and brl in the lower layer of the canopy. 

For LAI measurements, a LI-COR Biosciences LAI-2200 instrument was used that had been upgraded 
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with the ClearSky Kit to obtain functionalities of the advanced LAI-2200C. Equipped with a GPS sensor 

and a white diffuser cap, the device allows for nondestructive measurements of leaf area index under 

sunlight conditions. To obtain green LAI, the measured LAI value was multiplied with the factor 1 − Cbr 

to exclude the impact of non-photosynthetic vegetation on LAI measurements. Multiplication of leaf 

variables with the LAI value allows their interpretation on canopy level, e.g., canopy chlorophyll 

content (CCC). 

2.3. Radiative Transfer Modelling 

For this study, PRO4SAIL-5B (PROSPECT 5B + 4SAIL) was used which operates based on the input 

parameters listed in Table 2.4.2 and described in Section 2.2.2:  

Table 2.4.2. Overview of the PROSAIL parameter ranges for creation of the look-up-table. Biophysical 

parameters were varied via uniform distribution, with typical min & max values. Parameters that control 

the sun–target–sensor-geometry were varied in discrete steps, covering all conditions that were observed 

in the field. 

Model Parameter Description Unit Min  Max 

PROSPECT N Leaf structure parameter - 1.0 2.5 

 LCC Leaf Chlorophylla+b content µg cm−2 0.0 80 

 LCarC Leaf Carotenoids content μg cm−2 0.0 20 

 EWT Leaf Equivalent Water content cm 0.001 0.05 

 LMA Leaf Mass per Area g cm−2 0.001 0.02 

 Cbr Fraction of brown leaves - 0.0 1.0 

SAIL LAI Leaf Area Index m² m−2 0.0 8.0 

 ALIA Average Leaf Inclination Angle deg 20 90 

 Hspot Hot Spot size parameter - 0.01 0.5 

 Skyl 
Ratio of diffuse and total incident 

radiation 
- 0.1 0.1 

 γ Soil Brightness Parameter - 0.0 1.0 

Model Parameter Description Unit Min Max | Divisions 

SAIL SZA Sun Zenith Angle deg 30 55  6 

 OZA Observer Zenith Angle deg −30 30  3 

 rAA relative Azimuth Angle deg 0 65  14 

Following the suggestion of (Atzberger and Richter 2012), the Skyl-parameter was kept stable at 

0.1. The soil brightness parameter scales the dominance of the bright and dark canopy background in 

the output signal. By default, standard literature soils are used for this. In this study they were replaced 

by the brightest and the darkest soil spectrum of the campaign, measured directly at the study fields for 

each date. The background signal gains more weight in the simulated reflectance for vegetation that is 

sparse in terms of green LAI. It is important to note that spectral signatures of senescent canopies differ 

from those of small plants that cover the soil only partially, although situations might result in the same 

low value for green LAI. For this reason, another background type is introduced that was calculated as 

the mean senescence signal for ripe wheat crops of both seasons. All other leaf and canopy parameters 

were randomly drawn from uniform distributions with min and max values adjusted according to Table 

2.4.2. Input parameters regulating the s–t–s-geometry uniformly covered all field scenarios. For example, 

the minimum SZA observed in the field was 29.14° and the maximum was 52.63°. As a result, SZAs of 30°, 

35°, 40°, 45°, 50° and 55° were used for generating the LUT. Variations in the OZA of −30°, 0° and +30° 

took account of the three experiments of the simulated EnMAP platform tilt. For winter wheat crops it 

was suggested setting the leaf structure parameter N to a mean of 2.0 with a SD of 0.34 (Atzberger et al. 

2003). Since our study data covered the complete vegetation cycle from seeding to harvest, these values 

were slightly adapted to a wider range of 1.0 to 2.5. 

The size of each LUT (nlut) can be understood as the number of variations of the parameters (npara) 

multiplied by the number of variations of the s–t–s-geometry (nangles). nlut has a linear influence on the 

calculation time for the generation and the inversion of the LUT. On the other hand, larger LUT sizes 

yield more possible parameter constellations, which may improve the quality of the retrieval. Many 
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authors suggest npara = 100,000 as the best trade-off between calculation time and inversion accuracy 

(e.g., (Darvishzadeh et al. 2012; Duan et al. 2014; Richter et al. 2009)). In each of these studies, however, 

angles of sun and observer were fixed. As described in Table 2.4.2, nangles here needed to cover 252 

different geometric constellations which would result in nlut = 25,200,000 for each soil and senescence 

background. A LUT-size of 12,600,000 (npara = 50,000) turned out to perform equally well (ΔRMSE < 1%), 

while allowing a quicker inversion and thus the conduction of more experiments in the same period of 

time. Accounting for the different potential background signals (soil or senescent material respectively) 

the LUTs are duplicated and only varied by a different background signal. This method, therefore, shall 

be called duplex LUT. 

Finally, artificial noise can be applied to make simulated spectra more realistic and to improve the 

inversion accuracy (overview given by (Locherer et al. 2015)). The best performing LUT settings have 

been varied in noise type (Gaussian additive/Gaussian inverse multiplicative) and noise level (0.0%, 

0.1%, 1.0%, 2.0%, 5.0%, 10.0%) respectively. 

2.4. Step-Wise Inversion of the LUT 

Inverting a LUT means comparing measured spectra with all PROSAIL model results and selecting 

the parameters that led to the best performing LUT members. Different cost functions can be used to 

quantify the agreement between measurement and model result. Most authors use the Root Mean 

Squared Error cost function type (RMSEcft), defined as Equation (3): 

RMSEcft =  √
1

n
∙  ∑ (Rmeasured(λ𝑖) − Rsimulated(λ𝑖))

2n

i=1
 (3) 

By squaring the distances before extracting the root, larger deviations gain more influence in this 

term. Consequently, the RMSEcft favors results for which both spectral signatures match rather closely 

for all wavelengths. An alternative cost function tested is the Nash-Sutcliffe-Efficiency (NSEcft 

(Wainwright and Mulligan 2005)) as defined in Equation (4), 

NSEcft = 1 − 
∑ (Rmeasured(λ𝑖) − Rsimulated(λ𝑖))

2n
i=1

∑ (Rmeasured(λ𝑖) − R̅measured)2n
i=1

 (4) 

Weighing the squared sum of distances between measured and simulated reflectance against the 

squared sum of distances between measured reflectance and the average measured reflectance of the 

complete spectrum. The mathematically simplest approach is the mean absolute error (MAE) as defined 

in Equation (5): 

MAE =  ∑ |Rmeasured(λ𝑖) − Rsimulated(λ𝑖)|
n

i=1
 (5) 

In all three cases, Rmeasured(λi) is the measured and Rsimulated(λi) is the modelled reflectance at 

wavelength λ for the ith spectral sensor band, whereas n corresponds to the total number of bands used 

for the optimization.  

For each sampling date, the s–t–s-geometry must be known. Prior to application of the cost 

function, the correct sub-LUT must be selected. At first, by analysis of the observed spectrum, the 

corresponding LUT is inquired, depending on the expected canopy background. Senescent vegetation 

does not only show distinct absorption features by leaf pigments, but also significant features in the 

SWIR domain. A new index that has been optimized for the EnMAP spectral configuration, the 

NPVIEnMAP (Equation (6)) is introduced. NPVIEnMAP is used to classify the background of a pixel as either 

soil (type A) or senescent vegetation (type B) based on a simple threshold. 

NPVIEnMAP =  
R2218

R671

 (6) 
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If NPVIEnMAP < 1.4, the spectrum is classified as type B and classified as type A for all other cases. 

Based on the angular constellation for each pixel a decision is made, which of the remaining 252 sub-

LUTs shall finally be used for the inversion. 

The ill-posedness can be mitigated by narrowing the parameter constraints for the generation of 

the LUT. In this case, the user needs to have access to a priori information about the expected data range. 

These constraints make the approach more empirical and thus inconsistent with the proposed generic 

conviction of the study. For this reason, the ill-posed problem was dealt with by considering more than 

just the one best performing LUT member and its according parameter configuration (Verrelst et al. 

2014). The final results vary with the number of considered best fits (nbf). A tradeoff between singular 

(ill-posed) and multiple (over-balanced) solutions needed to be found for an optimal retrieval setup (nbf 

ϵ {1, 20, 50, 100, 200, 500, 1000}). For nbf > 1, the median is used to get the final parameter value. Figure 

2.4.2 illustrates the necessity to include an adequate amount of LUT-members for the variable retrieval. 

Parameter constraints for the creation of the LUT can be narrowed down to further increase inversion 

performance (e.g., (Tripathi et al. 2012)). In doing so, the model is calibrated to site-specific 

characteristics and might not be able to help retrieve variables for other fields, crop types or 

phenological stages. 

 

Figure 2.4.2. Impact of the choice of number of best fits for the retrieval accuracy. The measured winter 

wheat spectrum was obtained on 10 April 2014, with an Analytical Spectral Devices (ASD) FieldSpec 3Jr 

and then converted into pseudo-EnMAP reflectances. The other signatures are the closest 100 members 

of the LUT, as simulated by the PROSAIL model. The best estimate, i.e., the model run with least distance 

to the measured spectrum, is drawn in green. With increasing statistical distance the colors fade from 

green to yellow until the 100th best estimate is finally plotted in red. 

The step-wise hierarchical variable retrieval was achieved by several consecutive complete LUT-

inversions. A motivation for this approach is the dominance of some parameters (e.g., LAI) that may 

suppress the signal of others (e.g., LCC) affecting similar spectral domains. For the first inversion run, 

all available spectral bands were included except for those influenced by the atmospheric water vapor 

absorptions (1359 nm – 1465 nm and 1731 nm – 1998 nm) and the VNIR-bands in the detector overlap 

of the EnMAP-HSI (911 nm – 985 nm). Although all variables were obtained in this first step, LAI was 

the only one of interest at that time. The average inclination of leaves is an important regulation 

parameter that describes the visibility of photosynthetically active parts of the vegetation for the sensor. 

Erectophile canopies reveal larger parts of the underlying soil, especially for low SZAs. Planophile and 

plagiophile canopies on the other hand cover more of the background and lead to stronger signals just 

like an increased LAI would. ALIA and LAI therefore counterbalance each other. In an attempt to 
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separate their influences on the measured spectra, another pre-selection is investigated for the first 

inversion run, selecting only those LUT members with an ALIA close to the one estimated in the field. 

For the second inversion run, the LAI values resulting from the first run were fixed. A pre-analysis 

selected only those LUT members containing the retrieved LAI ± an absolute tolerance of 0.01 (m² m−2). 

If this pre-selection left fewer members than two times the size of nbf, the valid tolerance was expanded 

by increments of 0.01 until the minimum condition was met. Only then the second run was started 

during which LCC was retrieved by separately applying the cost function to the variable-specific 

sensitive wavelengths (LCC @ 423–705 nm). 

According to the authors of (Richter et al. 2012) the performance of an inversion setting shall ideally 

be assessed by multiple statistical quality criterions when comparing retrieved model parameters to in 

situ measured values. Most importantly, the relative Root Mean Squared Error (rRMSE) and the slope 

of the regression line (m) were considered in this study. The coefficient of determination (R²) played a 

minor role, since it measures the strength of the correlation according to the linear regression rather 

than the 1:1 relationship between model parameter and in situ variable. A regression model was 

calculated nonetheless and its slope served as an indicator of the inversion accuracy. A slope of 1.0 

suggests a perfectly outbalanced relationship. Slopes > 1.0 reveal an underestimation for low and 

overestimation for high values. The reverse relationship applies for slopes < 1.0. For all following 

analyses, model runs with a slope < 0.7 or > 1.3 were not considered in the final results.  

3. Results 

3.1. Impact of the Observer Zenith on Reflectance Spectra 

Analyzing all 3 × 3 images separately would be time consuming and impractical. For this reason, 

the spatial dimension was partially sacrificed in favor of an additional temporal dimension by 

mosaicking all images of one growing season below each other. This principle is explained in Figure 

2.4.3. The combination of several sub-images in one mosaic allows the application of algorithms for all 

observations at once and visualizes seasonal changes in reflectance. 

A strong dependency of the anisotropy factor (ANIF, Equation (1)) towards wavelength can be 

observed (see Figure 2.4.4). A striking anisotropic behavior of the canopy is evident in the short wave 

visible range for both illumination settings, with decreasing impact towards longer wavelengths. The 

experiment was repeated for three different growth stages: (1) Day of year (DOY) 128: stem elongation 

(flag leaf visible, but still rolled), (2) DOY 182: development of fruit (late milk) & (3) DOY 202: Ripening 

(fully ripe). Each of these three growth stages is represented by an average of all adjacent canopy 

spectral signatures of that specific date. For both forward and backscatter the ANIF is highest for 

phenological stage (1). This indicates that during earlier growth stages angular effects in the observer 

zenith have the strongest influence on the spectral signal. An ANIF of value 1.0 means identical 

reflectance for nadir and off-nadir observation. Reflectances of the fully ripe canopy (3) draw closest to 

this equilibrium line for both viewing directions. ANIFfs marginally drops below 1.0 for the VIS-domain 

and from 1500 nm to 2500 nm at growth stage (2), due to lower reflectances in the off-nadir compared 

to nadir observations. For backscatter, ANIFbs of (2) is situated mostly between (1) and (3). Lowest 

impact of angular variations can be assumed for the visible range for forward scatter and for the NIR 

plateau for backscatter observations. For green vegetation, there is a local minimum in ANIFbs around 

550 nm. On the other hand, maximum anisotropy is observed for shortest (450 nm) and longest (680 

nm) visible wavelengths. ANIFfs shows an anisotropic behavior that is exactly reverse to ANIFbs. 

In the special case of ANIFfs/bs, differences between negative and positive observation angles can be 

assessed directly. As expected, backscatter angles generally lead to higher reflectances. The 1.0 line is closest for 

the NIR plateau of green vegetation signatures. For all three settings, the senescent vegetation had a constant 

ANIF that was less sensitive to wavelength, but more sensitive to viewing direction. 
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Figure 2.4.3. Red-green-blue (RGB) composite imagery (left) and colored infrared (right) illustration of 

the spectral image mosaic (standard deviation stretch n = 3.0). Each of the stripes represents the same 

area of interest under a different observer zenith angle (OZA). OZA = −30° is associated with forward 

scatter, OZA = 0° with nadir and OZA = +30° with backscatter observations. The stripes are composed of 

16 sub-images of 3 × 3 pixels, each representing a different field date (nine in 2014 and seven in 2015), as 

indicated by the Julian day of year (DOY). 

   
(a) (b) (c) 

Figure 2.4.4. Illustration of the Anisotropy Factor (ANIF) for three different phenological stages of winter 

wheat (early: bright green, medium: dark green, late: yellow) and observation angles: ANIF for forward 

scatter ((a) ANIFfs), backscatter ((b) ANIFbs) and the off-nadir ratio ((c) ANIFfs/bs). 
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3.2. Impact of the Observer Zenith on the Retrieval of Crop Parameters 

Results for the retrieval of LAI and LCC from different observation angles and two different cost 

functions are shown in Table 2.4.3. For LAI, the lowest rRMSE of 0.18 was obtained for nadir observation 

with MAE cost function. For OZA = −30° (forward scatter) rRMSE was 0.24 and 0.25 for OZA = +30° 

which means an error increase of 30%. The associated scatterplots are shown in Figure 2.4.5. Subplot (c) 

illustrates the instable model inversion for LAI from backscatter spectra. Especially for medium LAI 

values, PROSAIL suggested a widespread variable range and better results for nadir inversion. LCC 

retrieval on the other hand improved for negative observation angles (rRMSE = 0.20), as the clusters of 

high and low chlorophyll content moved closer to the 1:1 line. For the lower reflectances in opposite 

viewing direction, rRMSE = 0.27 was the best possible result. Slope and intercept of the regression line 

nearly reached the optimum of f(x) = x, but the scattergram shows a non-linear behavior and a reduced 

rRMSE. 

Table 2.4.3. Influence of angular spectral measurements, representing the tilt of the EnMAP satellite 

platform of ±30° across track (OZA). Model inversion was conducted with relative root mean squared 

error (RMSE)cft and mean absolute error (MAE) and different sizes of nbf. Best results for leaf area index 

(LAI) and leaf chlorophyll content (LCC) for each angle and cost function type are shown.  

OZA 
RMSE Cost Function MAE Cost Function 

LAI LCC LAI LCC 

(deg) Slope rRMSE Slope rRMSE Slope rRMSE Slope rRMSE 

−30 0.81 0.27 0.95 0.20 0.84 0.24 0.82 0.22 

0 0.94 0.19 0.87 0.24 0.92 0.18 0.89 0.26 

+30 0.83 0.25 0.94 0.27 0.82 0.27 0.79 0.28 

 

 

Figure 2.4.6 compares the map of in situ variables as measured at the study fields with the results 

of the inversion for LAI and LCC. Discrete steps in hue and saturation can be found in both in situ 

values and model results, indicating that the seasonal dynamics were captured in general. Within the 3 

× 3 pixels for each field date, variations could not be fully reproduced by the inversion. For this, model 

uncertainties would have to be lower than the lateral disparity for the 30 × 30 m sub-plots. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 2.4.5. (a–f) Evaluation of best inversion results for LAI (left column) and LCC (right column). 

Nadir is displayed in the top row, backscatter (OZA = +30°) in the middle, forward scatter  

(OZA = −30°) in the bottom row. The slope of the regression line is indicated as m.  
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Figure 2.4.6. Spatial distribution of measured and estimated LCC (left) and LAI (right) for the two 

growing seasons of 2014 and 2015 under different observation angles. 

By subtracting parameter estimations from in situ measurements, residuals for the inversion of LAI 

and LCC are obtained. Figure 2.4.7 is an illustration of these residuals as a map. For the first season in 

2014, the model overestimated LCC most of the time for all angular settings, especially for the beginning 

of the season in April and May. In April and for one sampling date in July 2015, higher chlorophyll 

concentrations were measured than predicted by the model. The latter is especially striking, because 

estimations in nadir were quite close the week before (ΔLCCDOY182 = 2.56 μg cm−2) and after (ΔLCCDOY202 

= 4.24 μg cm−2). Interannual changes in model predictability are represented by the mean standard 

deviation over all 9 pixels and per season. The results are listed in Table 2.4.4. Both LAI and LCC were 

more homogeneously predicted in 2014, whereas in 2015 residuals tended to be more variable 

throughout the growing season. Model inversions from nadir observations were 38% less prone to 

seasonal effects than those from angular observations. The pattern of the residuals for LAI and LCC do 

not show any relation and statistics suggest that they are independent of each other (R² = 0.10). Residuals 

of LAI followed a normal distribution (p > 0.05 for all OZA), but those of the LCC estimation did not (p 

< 0.01 for all OZA). A shift to negative residuals, i.e., an overestimation of LCC by the model, indicated 

a slight systematic bias. 

Retrieval of CCC proved quite successful (see Figure 2.4.8). Concentrations of LCC obtained from 

the second inversion run were multiplied with estimated LAI values and compared to in situ measured 

CCC (i.e., measured LAI × measured LCC). PROSAIL tended to overestimate CCC with an intercept of 

0.31 g cm−2 for nadir spectra. The relative rRMSE = 0.37 was higher than for both, LAI and LCC. From 

forward scatter observations, however, CCC was estimated with an rRMSE of 0.33 meaning an 

improvement of 12%. Retrieval from backscatter spectra suffered from a weaker estimation of LAI and 

LCC, leading to a decrease of relative RMSE of 0.40 accordingly. 
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Table 2.4.4. Mean deviations between estimated and in situ measured LAI and LCC, separated by season 

and angular setting (OZA). 

OZA 
Season 2014 Season 2014/15 

LAI LCC LAI LCC 

(deg) (m² m−2) (μg cm−2) (m² m−2) (μg cm−2) 

−30° 0.62 8.43 0.99 7.44 

0° 0.47 11.86 0.82 7.17 

+30° 0.59 7.38 1.08 11.22 

 

Figure 2.4.7. Visualization of the residuals, i.e., in situ measurements minus parameter estimations. For 

LCC, purple pixels show an underestimation of the model results, green pixels indicate overestimation. 

For LAI, green to blue hues show model underestimations and brown pixels model overestimations. 

Pastel yellow shades indicate a good model agreement with in situ observations. 
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(a) 

 
(b) 

 
(c) 

Figure 2.4.8. Canopy Chlorophyll Content, as a multiplication of LAI and LCC, combines the 

performance of the two underlying parameters. Results are shown for nadir (a), backscatter (b) and 

forward scatter (c) observations. The slope of the regression line is indicated as m. 

3.3. Improved Look-Up-Table Inversions 

Different techniques were explored to find an optimal setting for the inversion of the PROSAIL 

RTM. At first, the number of best fits (nbf) was fixed to 100 and artificial noise was added to the modelled 

spectra (Table 2.4.5). For the LAI retrieval, performance was better, the lower the level of additive noise 

was assumed (rRMSE = 0.19 for σ = 0.0%). LCC on the other hand could be better retrieved with noise 

levels of up to 5% (best rRMSE = 0.27). Inverse multiplicative noise created similar results that were 

almost independent of the absolute level of σ. Interestingly, in contrast to LCC, for LAI inverse 

multiplicative noise yielded slightly better results than the additive noise type. A parameter-specific 

tendency can be assumed. Therefore, by default an inverse multiplicative noise level of σ = 2.0% was 

used for the first and additive noise of the same level for the second inversion run for all analyses. 

In the second experiment, nbf and the cost function type (cft) were varied (Table 2.4.6). For LAI, the 

overall best result was achieved for MAE and 50 ≤ nbf ≤ 200 (rRMSE = 0.18). The MAE generated 3% 

lower rRMSE in average. NSE as a cost function did not pass the slope threshold test for any of the 

experiments and was omitted in the analysis of the results. Also, for LCC, the choice of a merit function 

seemed to be of minor importance in comparison to the number of best fits taken into account for the 

retrieval. The more LUT members were considered, the better the performance in terms of rRMSE at the 
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expense of precision at the extreme ranges, leading to a reduced regression slope. RMSEcft performed 

slightly better than MAE, again suggesting a parameter-specific behavior of the LUT inversion. 

Table 2.4.5. Experimental results for look-up-table (LUT)-based inversion of LAI and LCC with 

application of artificial noise (additive and inverse multiplicative) on modelled spectra for nbf set to 100. 

Noise Level 
Additive Noise Inverse Multiplicative Noise 

LAI LCC LAI LCC 

σ (%) Slope rRMSE Slope rRMSE Slope rRMSE Slope rRMSE 

0.0 0.89 0.19 1.50 0.34 0.89 0.19 1.50 0.34 

0.1 0.89 0.19 1.49 0.33 0.89 0.19 1.33 0.30 

1.0 0.89 0.20 1.40 0.29 0.89 0.19 1.33 0.30 

2.0 0.88 0.22 1.30 0.29 0.89 0.19 1.34 0.30 

5.0 0.80 0.29 1.24 0.28 0.90 0.19 1.32 0.30 

10.0 0.64 0.38 1.68 0.31 0.88 0.20 1.27 0.27 

Table 2.4.6. Experimental results for minimization by different cost function types. Deviations between 

modelled and measured spectra were quantified by either the RMSEcft or the MAE. Additionally, the 

number of best fits to be averaged was increased from 1 to 1000 to find the optimal setup. Artificial 

inverse multiplicative noise is set to a level of 2.0% for all results.  

Number of Best Fits 

RMSE Cost Function MAE Cost Function 

LAI LCC LAI LCC 

Slope rRMSE Slope rRMSE Slope rRMSE Slope rRMSE 

1 0.88 0.28 1.61 0.44 0.88 0.28 1.55 0.42 

50 0.94 0.19 1.44 0.32 0.93 0.18 1.36 0.32 

100 0.89 0.19 1.30 0.29 0.92 0.18 1.18 0.28 

200 0.90 0.20 1.26 0.28 0.89 0.18 1.13 0.28 

500 0.86 0.21 1.03 0.26 0.87 0.20 0.89 0.26 

1000 0.83 0.22 0.87 0.24 0.84 0.20 0.77 0.26 

4. Discussion 

For the interpretation of directional angular effects on spectral reflectance, the anisotropy factor 

(ANIF) can be consulted: due to self-shading effects, forward scatter images appear darker than nadir 

or backscatter images. In the latter case, a greater fraction of incident sunlight is reflected back to the 

direction of its origin and is consequently missing on the opposite viewing direction. This so-called hot 

spot effect leads to a spectral saturation and superimposes parts of the signal of leaf constituents. 

Moreover, ANIF is highly correlated with the magnitude of reflectance itself. If the canopy reflectance 

is higher, discrepancies increase between nadir and forward scatter but decrease between nadir and 

backscatter. On the other hand, if more radiation is absorbed or transmitted by the canopy, anisotropy 

decreases for forward scatter and increases for backscatter. Spectrally, high anisotropy occurs for blue 

and red portions of the solar spectrum from which leaf chlorophyll mainly absorbs radiation to 

photosynthesize. This was also found by (Dorigo 2012) for both directions, but in our study this could 

only be confirmed for backscatter mechanisms. This phenomenon may be the reason why it was more 

difficult for the PROSAIL model to reproduce the measured spectra from this direction, leading to a 

weaker estimation of LCC from backscatter in comparison to forward scatter spectra. 

Our main study objective was to assess the effect of off-nadir observations on the prediction 

accuracy for leaf and canopy variables, namely LAI and leaf chlorophyll content, as it will have major 

implications for the user community of future EnMAP data. Generally, for both off-nadir observations, 

accuracy decreased when estimating LAI: rRMSE = 18% at nadir vs. rRMSE = 25% (backscatter) and 

rRMSE = 24% (forward scatter). For LCC and CCC, the off-nadir mode with forward scatter yielded 

highest accuracies with rRMSE = 20% and rRMSE = 33% respectively. Once again, the complex structure 

of the canopy plays an important role for the output of PROSAIL. Turbid medium assumptions are best 

met for homogeneous crops with least possible complexity in plant structural traits. Winter wheat is 
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thought to be particularly well suited for a representation through RTMs (Goel 1988). Nevertheless, the 

leaf surface of wheat exhibits anisotropic reflectance that is mathematically described by the BRDF [40]. 

Backscattering leads to glare effects and thus complicates the retrieval of LAI. In the opposite direction, 

i.e., forward scatter OZAs, the canopy appears darker which seems slightly better suited for the retrieval 

of LAI. If EnMAP data is only available for backscatter observations, an inversion will still be successful, 

but the user will encounter larger uncertainties.  

Leaf glint generally leads to a reduced accuracy for the inversion of LCC. Senescent plant material 

absorbs less of the incident radiation and is more subjected to hot spot effects (Asner et al. 1998). This 

could be confirmed (see Figure 2.4.5), as LCC > 40 μg cm−2 was poorly estimated from backscatter 

spectral images, but well inverted from forward scatter observations. The findings suggest that LCC is 

best retrieved, the greater the difference of the zenith angle between sun and observer becomes. CCC 

acts like a linear combination of LAI and LCC in any statistical analysis. The rRMSE for nadir appears 

to be comparatively high and the intercept of the linear model is t = 0.20 which is 10.6% of the data 

average. This constant overestimation is caused by the before mentioned overestimation of LAI and 

LCC from nadir spectra reducing the models accuracy. An improvement of the retrieval of these two 

parameters also yields an improvement for CCC, as can be seen for results from the forward scatter 

observations.  

Another focus of this work was to test different LUT-based strategies, while keeping a special focus 

on the zenithal-angular effects for spectral observations from the future EnMAP sensor. Most 

commonly, the RMSEcft is used as a merit function to find the best matching LUT members. In fact, there 

is only a 3.0% mean difference between RMSEcft and MAE in the resulting parameter estimation. The nbf 

to incorporate in the parameter retrieval has a much stronger impact on the success of the inversion. If 

we assess only the rRMSE as a statistical measure for the inversion performance, it could be concluded 

that for LCC there is a steady improvement in predictability for larger nbf. It should be noted, however, 

that the slope responds conversely, decreasing for larger nbf and moving away from the optimal value 

of 1.0. Lower regression slopes indicate that the range of predicted variables becomes more level, cutting 

off lowest and highest inversion results. Sehgal et al. (Sehgal et al. 2016) found an optimal inversion 

routine with nbf = 10% of the LUT-size which, in their case, was 5400 members. For larger nbf the 

inversion approaches the expected value of the variable as specified before the creation of the LUT, so 

RMSE is bound to decrease if field observations served as a reference for the original parameter 

distribution. For all angular settings, statistics deteriorated for nbf > 100 or 0.2% of the compared LUT-

members. This suggests that the LUT composition was optimally set. Accordingly, nbf = 100 is 

considered as the optimal setting in the case of this study. 

A comparison of the performance with other studies is generally difficult, due to the exploration 

of different sensor data, LUT-compositions, inversion techniques, crop types and measurement ranges. 

However, as example, Atzberger et al. (2003) retrieved LAI with an RMSE of 0.83 (m² m−2) and CCC 

with RMSE 0.66 (g m−2) from winter wheat spectra by training artificial neural networks on PROSAIL 

which is roughly in the same accuracy range as our findings for nadir observations.  

Different sources of errors and uncertainties in the whole inversion process must be considered as 

limitations to this study: in situ measurements of biophysical variables, spectral measurements, 

simulation of EnMAP data, model representation and the inversion scheme. For most variables, in situ 

errors can be reduced by choosing an adequate sampling scheme with multiple repetitions. The median 

standard deviation for LAI measurements of two seasons was 0.22 (m² m−2) and 3.16 (μg cm−2) for LCC. 

Repetitions of the ALIA estimation in the field revealed a mean error of ±7°. Senescent canopies yielded 

higher uncertainties for the measurement of most variables. Standard deviation of all EnMAP-end-to-

end simulations was σ = 0.013 (Refl.) at the NIR-plateau which is 0.28% of the mean reflectance at this 

wavelength. In comparison to other error sources, this uncertainty played only a minor role. LAI acts 

as a scaling factor for the leaf constituents. The reflectance signal is ambiguous for substances of lower 

concentrations within a dense canopy or substances of higher concentrations in a sparse canopy 

respectively. The hierarchical approach estimates LAI first, fixates it and then finds the other parameters 

in consecutive inversion steps. This proved to work well for LCC, but not yet for other parameters. For 

instance, ALIA could not be estimated despite its high sensitivity throughout the covered spectral range 
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(Verrelst et al. 2015). Early in the development of PROSAIL it was stated that ALIA and LAI are highly 

correlated and therefore can hardly be separated in the inversion (Jacquemoud 1993). In fact, if LAI is 

inverted with an accuracy of 20%, there is no autocorrelation (R² < 0.01) of the ALIA residuals, although the 

parameter itself could not be retrieved in any acceptable way. For an improvement of leaf pigment 

estimations, the new version of PROSPECT (Prospect-D (Féret et al. 2017a)) is eagerly awaited for a 

more detailed representation of the leaf-biochemistry, namely the consideration of anthocyanins. 

5. Conclusions 

Spectral differences from a change in observation geometry depend on the optical properties of 

foliage and canopy. Complex architecture does not necessarily lead to an increased anisotropy, but the 

photochemistry of the leaf does very much so. With a step-wise hierarchical variable retrieval based on 

the PROSAIL model it was shown that longer path lengths do not lead to a higher accuracy in LAI 

estimation, but still allow a retrieval of this variable with satisfying accuracy. For LCC, on the other 

hand, the retrieval accuracy did increase when using off-nadir observations. Overall, accuracies are still 

in the range of about 20% for LAI and LCC. The look-up-table approach was improved when 

parameters were inverted hierarchically with educated a priori knowledge about the considered 

wavelengths. The implementation of a non-photosynthetic vegetation background improved the 

estimation of biophysical parameters especially for senescent phenology states. We agree with the 

authors of Schlerf and Atzberger (2012) in the assertion that there is no universal convention about the 

zenith view angles best suited to retrieve canopy structure from. For the final user, the following 

findings can be synthesized for winter wheat crops:  

• Effects of anisotropy are strongest for early phenological stages and backscatter observations; 

• LAI is best estimated from near-nadir observations; 

• Optimal results for a retrieval of leaf chlorophyll content is achieved for an observer zenith angle 

opposite to the sun (forward scatter); 

• For both variables (LAI and LCC) feasible results are obtained for all considered EnMAP 

geometrical constellations. 

In summary, the off-nadir capability of the future EnMAP sensor will increase the number of 

available scenes for the user as well as the probability of achieving continuous time-series acquisitions. 
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2.5. Preparation of Scientific Publication II 

Leaf Inclinations, unlike LAI and Ccab, could not be retrieved successfully with the LUT 

approach of Publication I. This led to initial thoughts about the role of canopy structure in 

PROSAIL inversions in general. With field campaigns continuing in parallel to their scientific 

exploitation, a growing set of field data became available. Spectral observations and 

measurements of biochemical and biophysical variables of four seasons of winter wheat and 

three seasons of silage maize were used for further investigations about the capability of 

PROSAIL in retracing field conditions if all major input parameters are filled with actual in 

situ data. A comparison between PROSAIL simulated spectra and crop reflectances was 

facilitated by creating an EnMAP-Box application that allows ad-hoc calculation of any 

combination of PROSPECT and SAIL according to user-defined sets of input parameters. Its 

graphical user interface (GUI) contains sliders representing the values of all input parameters 

and was later extended by the possibility to upload a static spectrum, resample model outputs 

to the desired spectral resolution and calculate error statistics between the graphs on the fly. 

The Interactive Visualization of Vegetation Reflectance Models (IVVRM, see Figure 2.5.1; 

Danner et al. 2018) could be used for a model inversion via manual curve fitting.  
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Figure 2.5.1. Illustration of the Interactive Visualization of Vegetation Reflectance Models (IVVRM) 

main window. Accumulative plotting is activated to draw multiple spectra into the same plotting 

canvas, which enables the studying of local sensitivity of the PROSAIL input parameters for the 

selected setting. 

LAI, ALIA, Ccab, Cw, Cm, information about the sun-sensor-target geometry and the hotspot 

size served as input for 4SAIL + PROSPECT-5B. They were complemented by the leaf structure 

parameter N derived from Cm, the fraction of brown leaf area as an initial guess for the 

arbitrary Cbrown parameter and the ratio between direct and diffuse irradiance (skyl) derived 

from the sun zenith angle. Despite the solid base of in situ data, PROSAIL output revealed 

quite distinct deviations from their associated spectral measurement. These deviations follow 

a seasonal trend for winter wheat with model underestimations until emergence of 

inflorescence where the direction of the gap reverts. The absolute error between modelled and 

measured spectra correlated positively with the share of visible fruit ears as obtained from 

automated segmentation of nadir RGB images.  

The final conclusion of this publication is that the ALIA as considered in SAIL cannot be 

treated as a physical representation of leaf inclinations. With its strong sensitivity mainly in 

the NIR domain of vegetation spectra, the author suggests treating it as a free parameter and 

to couple its inversion to that of the LAI.  
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2.6. Scientific Publication II 

Article 
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Abstract: Decades after release of the first PROSPECT + SAIL (commonly called PROSAIL) versions, 

the model is still the most famous representative in the field of canopy reflectance modelling and has 

been widely used to obtain plant biochemical and structural variables, particularly in the agricultural 

context. The performance of the retrieval is usually assessed by quantifying the distance between the 

estimated and the in situ measured variables. While this has worked for hundreds of studies that 

obtained canopy density as a one-sided Leaf Area Index (LAI) or pigment content, little is known about 

the role of the canopy geometrical properties specified as the Average Leaf Inclination Angle (ALIA). 

In this study, we exploit an extensive field dataset, including narrow-band field spectra, leaf variables 

and canopy properties recorded in seven individual campaigns for winter wheat (4x) and silage maize 

(3x). PROSAIL outputs generally did not represent field spectra well, when in situ variables served as 

input for the model. A manual fitting of ALIA and leaf water (EWT) revealed significant deviations 

for both variables (RMSE = 14.5°, 0.020 cm) and an additional fitting of the brown leaf pigments (Cbrown) 

was necessary to obtain matching spectra at the near infrared (NIR) shoulder. Wheat spectra tend to 

be underestimated by the model until the emergence of inflorescence when PROSAIL begins to 

overestimate crop reflectance. This seasonal pattern could be attributed to an attenuated development 

of ALIAopt compared to in situ measured ALIA. Segmentation of nadir images of wheat was further 

used to separate spectral contributors into dark background, ears and leaves + stalks. It could be shown 

that the share of visible fruit ears from nadir view correlates positively with the deviations between 

field spectral measurement and PROSAIL spectral outputs (R² = 0.78 for aggregation by phenological 

stages), indicating that retrieval errors increase for ripening stages. An appropriate model 

parameterization is recommended to assure accurate retrievals of biophysical and biochemical 

products of interest. The interpretation of inverted ALIA as physical leaf inclinations is considered 

unfeasible and we argue in favour of treating it as a free calibration parameter. 

Keywords: reflectance modelling; hyperspectral remote sensing; radiative transfer model; PROSAIL; 

agriculture 

 

1. Introduction 

Estimation of plant biophysical characteristics is a key factor for agricultural science and 

applications [1]. Knowledge about type and proportions of the constituents in vegetation allows for a 

dedicated analysis of its state of health [2–6], potential photosynthetic activity [7–11] or yield potential 

[12–15]. Plant pigments can be optically measured in vitro with spectrophotometers [16]. Similarly, 
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water content and non-photosynthetic organic compounds like cellulose are obtained in laboratory 

analysis [17,18]. Even though these methods are important for a quantitative characterization of plants, 

they fail to cover larger areas, as they represent the state of individual plants or phyto-elements rather 

than provide an integrative assessment of canopies. A synoptic view of the Earth’s surface can be 

achieved by remote sensing, which makes use of the complex interactions between radiation and 

environment [19]. The amount of transmitted, reflected and absorbed energy from the target of interest 

yields useful information about its structure and inherent substances. Indirect remote measurements of 

these variables from airborne platforms or even from space thus are preferred over time-consuming 

laboratory studies. One way of deriving canopy variables is to create empirical relationships between 

reflectances and known variables. This can be achieved either by parametric regression approaches 

using spectral indices [20–23] or directly via non-parametric approaches by obtaining these variables 

from reflectance data using machine learning regression algorithms (e.g., [24–27]). A comprehensive 

overview of this topic is provided by Verrelst et al. [28]. Although those methods can create reasonable 

results on the training data, they are prone to overfitting and the relationships found are rarely 

transferable in space, time or crop type [29]. Numerical models, on the other hand, allow a generic 

representation of vegetation as 3D-objects via ray tracing Monte Carlo models [30–33] or 1D turbid 

medium layers with intrinsic canopy architecture.  

The most prominent 1D turbid medium Radiative Transfer Model (RTM) for vegetation is 

PROSAIL [34]. It consists of two separate simulation cores: a) one version of the PROSPECT leaf optical 

properties model [35–37] and b) a four-stream Scattering of Arbitrarily Inclined Leaves (e.g., 4SAIL) 

canopy architecture model [38,39]. The inputs of those two models in their respective versions are listed 

in Table 2.6.1.  

Table 2.6.1. Overview of the PROSAIL parameters and their according dimensions. Some parameters, 

for example, the leaf chlorophyll content, are used in all PROSPECT versions, whereas other parameters 

were included in newer releases. 

Parameter Description Unit Model versions 

N Leaf structure parameter - Prospect (all) 

Ccab Leaf Chlorophylla+b content µg cm−2 Prospect (all) 

Cw Leaf Equivalent Water Thickness (EWT) cm Prospect (all) 

Cm Leaf Mass per Area g cm−2 Prospect (all) 

Ccar Leaf Carotenoids content μg cm−2 Prospect 5 

Cbrown Leaf Brown Pigments parameter - Prospect 5b 

Canth Leaf Anthocyanins content μg cm−2 Prospect D 

LAI Leaf Area Index m2 m−2 4SAIL 

LIDF 

or 

ALIA 

Leaf Inclination Distribution Function 

or 

Average Leaf Inclination Angle 

- 

or 

Deg 

4SAIL 

Hspot Hot Spot size parameter - 4SAIL 

soil Soil Reflectance - 4SAIL 

Psoil Soil Brightness Parameter - 4SAIL 

SZA Sun Zenith Angle Deg 4SAIL 

OZA Observer Zenith Angle Deg 4SAIL 

rAA relative Azimuth Angle Deg 4SAIL 

skyl Ratio of diffuse to total incident radiation - 4SAIL 

PROSPECT calculates radiative interactions on leaf level with regard to the absorption coefficients 

of leaf constituents, producing continuous leaf reflectance and transmittance spectra over the optical 

domain (400–2500 nm). The line of published versions of PROSPECT differs in featured parameters, 

their absorption coefficients and the refractive indices. 4SAIL assimilates the output of PROSPECT and 

calculates inner-canopy scattering processes, which mainly depend on plant density, leaf orientation 

and the relative angles of observer and illumination source [34]. 
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The procedure of generating reflectance spectra from a set of predefined input parameters is called 

forward or direct mode. Inverting the model means estimating those parameters from a vegetation 

spectrum that has been measured for example, with a spectrometer. The PROSAIL spectral sampling 

width is 1 nm, so its output normally requires spectral resampling to become comparable with specific 

Earth Observation sensor data. The more bands a sensor provides the less information is lost in 

aggregation. Such hyperspectral data with contiguous bands can be collected either from airborne, 

spaceborne or field-based sensors [40]. Spaceborne hyperspectral sensors, combining high resolution 

spectral and temporal sampling to cover dynamic processes, are especially promising for agricultural 

purposes [41]. Amongst the currently planned hyperspectral spaceborne missions are EnMAP [42], 

PRISMA [43], SHALOM [44], HyspIRI [45] and CHIME [46]. 

The inversion of hyperspectral data via RTMs is a key application of agricultural remote sensing 

[34,47]. For this purpose, the model inputs are changed such that the output spectrum matches the real-

world reflectances as closely as possible. The final parameter set used for that optimum model result 

then is considered as an estimate for the variables of interest of the observed canopy. Common methods 

involve subsequent comparison of the measured spectra with a Look-Up-Table (LUT; for example, 

References [48–52]), systematic modifications of input parameters using iterative minimization – so 

called optimization algorithms (see References [53,54] for overview) – or manual fitting.  

Many studies have used PROSAIL outputs as a substitute for real spectral data, either due to a lack 

of field measurements or to examine spectral responses of canopies of different structure and 

biochemistry [55–58]. When methods are trained on such synthetic data but applied to real data, we 

often observe a systematic bias. Even though PROSAIL is the most prominent canopy reflectance model 

for the inversion of vegetation spectral data [47], only few studies have focused on its capability to 

reproduce field spectral observations [51,59,60]. These observations are instead commonly used as 

validation data for retrieval methods assuming that errors of the inversion indicate a weak model 

performance.  

The parameterization of crop architecture is upscaled to canopy level. Most of this process is driven 

by the well understood Leaf Area Index (LAI) and the Average Leaf Inclination Angle (ALIA, also 

known as Mean Leaf Angle MLA or Average Leaf Angle ALA), which in contrast has been scarcely 

discussed in the literature. Upon adjusting measured ALIA, the Equivalent Water Thickness (EWT) was 

also identified as deviating from the expected behaviour. The objective of our study is to analyse the 

seasonal development of these parameters, their fitted representations and the resulting deviations 

between the modelled and measured spectra of winter wheat and silage maize. 

2. Materials and Methods 

2.1. Study Site 

A database of ground and remotely-sensed field data was obtained from the study area of Munich-

North Isar (MNI), which is located in Bavaria, southern Germany. In the years of 2014, 2015, 2017 and 

2018 the study sites (Figure 2.6.1) were visited regularly during the growing periods from March to 

September. Data were collected on winter wheat and silage maize fields belonging to the communal 

farmlands of Munich, east of the river Isar. The exact sampling sites varied from year to year due to 

crop rotation but all fields are located within a circle of 5 km in diameter, centred around 48°16′04″N, 

11°42′45″E. Soil sampling provided no evidence of significant micro-locational (dis)advantages. An 

overview of all included field campaigns is given in Table 2.6.2. 
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Figure 2.6.1. Overview of the study site Munich North Isar with its test fields for winter wheat and silage 

maize in the years from 2014 to 2018 (left). The image on the right shows the layout of the measurement 

design for the nine sampling units per field. Reference system: WGS84 (EPSG 4326). 

Table 2.6.2. List of field campaigns at the MNI study site in southern Germany. 

Year Crop No. of Field Dates 

2014 Winter wheat 10 

2014 Silage maize 11 

2015 Winter wheat 11 

2017 Winter wheat 12 

2017 Silage maize 8 

2018 Winter wheat 7 

2018 Silage maize 7 

Each site was confined to a 30 × 30 meters area, corresponding to an average pixel size expected 

from hyperspectral satellite sensors and divided into nine elementary sampling units (ESU). Data was 

then aggregated back to the original 30 m resolution to obtain a stable average for that date. The ESUs 

were revisited at each field date to guarantee solid time series. 

2.2. In Situ Measurements 

Canopy reflectance spectra were obtained from nadir view with an ASD FieldSpec 3 Jr. (Boulder, 

CO, USA [61,62]) under clear-sky conditions in the range of 350 nm to 2500 nm. Nine measurements 

were carried out at the same spot, averaged, splice-corrected, converted into absolute reflectance values 

using a white reference panel and were slightly smoothed with a Savitzky-Golay-filter [63]. At last, 

noisy wavelengths, that is, atmospheric water absorption bands (1360 nm–1470 nm and 1790 nm – 2000 

nm), were masked for any further analysis. Apart from top-of-canopy reflectances, one representative 

soil spectrum was recorded for each field date, serving as background information in the modelling 

process. In doing so, the default literature soil spectra of SAIL were temporarily replaced with in situ 

information and Psoil became obsolete. With nadir observations only (observation zenith angle = 0°), the 

sun-sensor-target-geometry is solely represented by the sun zenith angle (SZA), which was calculated 

from the geographical location, date and time of the observation. 

Nadir RGB-photographic images were taken on winter wheat canopy scale with a Panasonic Lumix 

digital camera and a distance of 1.5 m above the ground. Due to the large canopy height of maize crops, 

no continuous series of these photographs were available for analysis of the maize site. 
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Average Leaf Inclination Angles (ALIA) were estimated from random samples of at least 10 leaves 

in vivo, using a Suunto PM-5/360 clinometer [64], which was moved along the flat leaf axis. Inclination 

angles of the single leaves were calculated as length-weighted averages (see Equation (1)) of those 

measurements and then aggregated to a mean ALIA value for the respective sampling unit.  

ALIA =  
1

𝑙𝑡𝑜𝑡

∙ ∑ 𝑙𝑖 ∙ 𝜃𝑖

𝑛

𝑖=1

 (1) 

with l as the length of the i-th of n leaf parts, θi as its associated inclination angle and total leaf 

length ltot. The conformity of that method was estimated by repeated measurements of leaf inclinations 

by different field workers and was found to be in the range of ±8° for the MNI campaigns. In PROSAIL, 

the Leaf Angular Distribution is then calculated from single ALIA values according to Campbell’s 

ellipsoidal distribution [65]. Leaf Area Index (LAI) was measured with a LI-COR Biosciences LAI-2200C 

[66] device as average of 14 measurements from the same location. The suggested sampling procedures 

for row crops were taken into account [67]. For early growth stages, single plants were sampled 

destructively and projected onto one square meter of ground area by multiplication with the factors 

plants per meter and seeding rows per meter. 

Brown pigment (polyphenols; Cbrown), as a PROSPECT input, is rather poorly analysed in the 

literature. Brown leaves are usually either removed before analysis (e.g., [37,68]) or set to fixed values 

[69]. In some studies, it is also labelled as Content of senescent material (Cs). The variable lacks of a 

proper physically meaning and cannot be measured with field instruments [37]. For a start, we used 

Cbrown as the average “browning” of leaves between 0 (fully green leaves) and 1 (fully brown leaves) as 

initial guess. This is in line with Jiang et al. 2018 [70] but ignores the fact that the accumulation of brown 

pigments can happen without visible change of colour, which in contrast is more linked to the 

breakdown of leaf chlorophyll. Total LAI is reduced to green LAI by multiplication with a greenness 

factor 1 – Cbrown.  

A Konica-Minolta SPAD-502 handheld device [71] served to measure internal SPAD-units, which 

were converted into leaf chlorophylla+b contents (Ccab) via an instrument-specific calibration curve. 

Reference data on in vitro Ccab was obtained by applying the coefficients of Lichtenthaler [72] to 

spectrophotometric measurements of the extinction of chlorophyll solutions. From Ccab, the carotenoids 

content Ccar was derived by way of a linear regression model, since Ccab and Ccar showed a stable 

relationship for healthy green vegetation [73]. When the linear relation breaks down for senescent 

stages, errors for Ccar carry only a marginal weight, because the overall biomass – as represented by the 

LAI – is low and has little impact on the reflectance signatures. Equivalent Water Thickness (EWT) was 

determined from the mass difference of sample leaves per unit leaf size before and after dehydration to 

constant weight (minimum 24 hours) in a laboratory oven. Leaf Mass per Area (Cm) is obtained by 

putting the mass of the dried leaves in relation to their one-sided surface area. The structure parameter 

(N) is calculated from Cm according to the inverse of Equation (2), given by Jacquemoud and Baret (1990) 

[37]:  

LSA =  
0.1 ∙ 𝑁 + 0.025

𝑁 − 0.9
 (2) 

which (for N ≠ 0.9) yields 

N =  
𝐿𝑆𝐴 ∙ 0.9 + 0.025

𝐿𝑆𝐴 − 0.1
 (3) 

with LSA as the Leaf Specific Area, which is the inverse of Cm (note the conversion of dimensions): 

LSA [
𝑐𝑚²

𝑚𝑔
] =  𝐶𝑚 [

𝑔

𝑐𝑚2
]

−1

÷  1000 [
𝑚𝑔

𝑔
] (4) 
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The variable distributions of the in situ measured parameters of wheat and maize for all field 

campaigns are summarized in Table 2.6.3. 

Table 2.6.3. Statistics of in-situ measured/estimated canopy variables of the four field campaigns at the 

MNI test sites. 

 Winter wheat Silage Maize 

Variable Year Range Mean Std. Range Mean Std. 

LAI 

(-) 

2014 0.08–6.27 4.82 1.85 0.09–4.03 2.21 1.58 

2015 0.33–6.20 2.82 2.10  

2017 0.76–6.20 4.34 1.79 0.21–3.86 2.29 1.28 

2018 0.01–5.98 3.88 1.98 1.79–3.61 3.05 0.60 

ALIA 

(deg) 

2014 25–75 52 19 36–75 50 11 

2015 35–77 60 13  

2017 45–78 68 9 49–71 63 8 

2018 45–76 64 10 49–75 59 8 

Ccab 

(µg cm−2) 

2014 13.4–49.1 42.7 10.5 27.3–61.8 48.1 11.9 

2015 14.3–53.3 43.2 12.8  

2017 18.2–59.5 50.0 10.7 38.4–55.2 48.8 5.6 

2018 11.6–53.2 43.2 14.3 48.2–60.8 56.8 4.1 

Cbrown 

(-) 

2014 0.0–0.98 0.19 0.30 0.0–0.81 0.08 0.23 

2015 0.0–0.90 0.22 0.34  

2017 0.0–0.80 0.09 0.22 0.0–0.05 0.01 0.02 

2018 0.0–1.0 0.18 0.37 0.0–0.01 <0.00 <0.00 

EWT 

(cm) 

2014 0.012–0.035 0.027 0.006 0.011–0.031 0.027 0.005 

2015 0.008–0.034 0.026 0.007  

2017 0.003–0.020 0.015 0.004 0.012–0.021 0.016 0.003 

2018 0.001–0.019 0.013 0.006 0.020–0.025 0.023 0.002 

Cm 

(g cm−2) 

2014 0.0047–0.0075 0.0063 0.0010 0.0032–0.0056 0.0046 0.0007 

2015 0.0036–0.0061 0.0046 0.0007  

2017 0.0031–0.0059 0.0047 0.0008 0.0027–0.0049 0.0040 0.0007 

2018 0.0043–0.0066 0.0049 0.0008 0.0045–0.0070 0.0058 0.0008 

The N parameter, as derived from Cm, ranges between 1.4 and 4.4 for wheat and between 1.3 and 

3.6 for maize, with an average of 2.2 and 2.0, respectively.  

Quantification of the phenological stages is taken from the BBCH Monograph [74], which is based 

on the perhaps better-known Zadoks scale [75]. No small-scale differences in plant development were 

observed within the 30 × 30 meter pixels. The code attribution is listed in Table 2.6.4. 

Table 2.6.4. Macro stages of the BBCH-scale. Adapted from Table 1 in Bleiholder et al. [74]. 

BBCH-code Associated macro stage 

0 Germination / sprouting / bud development 

1 Leaf development 

2* Tillering / Formation of side shoots 

3 Stem elongation or rosette growth / shoot development 

4* Development of harvestable vegetative plant parts / booting 

5 Inflorescence emergence / heading 

6 Flowering 

7 Development of fruit 

8 Ripening or maturity of fruit and seed 

9 Senescence, beginning of dormancy 

* BBCH 2 and 4 are skipped in the classification of maize. 
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2.3. PROSAIL Environment 

All data analysis was done with Python 3.6. For this reason, PROSAIL was first translated into 

Python code and improved in terms of computational performance by making use of C-based numerical 

python arrays [76] and substitution of recurring function calls by fixed local variables and look-up-

tables. 

For this study, we introduce the Interactive Visualization of Vegetation Reflectance Models 

(IVVRM) tool [77], which is an application in the open source software package EnMAP-Box 3 [78] and 

serves as a graphical user interface to work with data of multiple constellations of PROSPECT and SAIL. 

It was originally designed to offer ad hoc visual response to interactions with the model for educational 

purposes. Sliders can be accessed to change the value of the structural and biochemical input variables 

with each interaction causing an immediate re-calculation of the model output, which is displayed in a 

plot canvas. The tool was further extended with the possibility to overwrite the PROSAIL default 

background spectrum by a user-defined data vector and with an import function for any other in situ 

spectral signature. Those reflectances are then plotted in the same graph and—given an identical set of 

bands—multiple distance measures are instantaneously calculated and returned in the plot. These 

functions combined allow for a manual fitting between model output and in situ spectra, when model 

input is altered such that there is a minimal distance between the two spectra. The success of the spectral 

fitting can either be assessed with statistical measures like the root mean squared distance (RMSD, see 

Equation (5)) or visually with the degree of congruence of the curves in certain wavelength regions. 

RMSD =  √
1

n
∙  ∑ (Rmeasured(λ𝑖) − Rsimulated(λ𝑖))

2n

i=1
 (5) 

In Equation (5), Rmeasured (λi) is the measured and Rsimulated (λi) the modelled reflectance at wavelength 

λ for the ith spectral sensor band. n is the total number of bands analysed. The same equation works for 

the Root Mean Squared Error (RMSE), which was used to denote errors in the estimation of variables. 

By squaring the distances, information is lost about which of the terms is larger, that is, whether the 

model overestimates or underestimates the spectra measured in the field. In such cases, a simple mean 

deviation (Equation (6)) can be calculated alongside to the RMSD. 

Mean Deviation =  
1

n
∙  ∑ (Rmeasured(λ𝑖) − Rsimulated(λ𝑖))

n

i=1
 (6) 

The SAIL parameter skyl controls the ratio of diffuse to total solar radiation incident on the target. 

It is calculated in dependence of the sun zenith angle according to the approach of François et al. (2002) 

[79], which considers an average state of atmospheric conditions aligned to mid-latitudes: 

skyl =  0.847 −  1.61 ∙ sin(90° − 𝑆𝑍𝐴) +  1.04 ∙ sin2(90° − 𝑆𝑍𝐴) (7) 

The dependency between skyl and SZA is non-linear. Lowest SZA (27.8°) results in skyl = 0.24, 

highest SZA (70.5°) in skyl = 0.43. The mean SZA of all dates was 41.1° which corresponds to skyl = 0.23. 

In PROSAIL, skyl is considered uniform over the optical domain, neglecting effects of stronger Rayleigh 

scattering for shorter wavelengths.  

2.4. Variable Fitting 

In situ measured variables that serve as input parameters for PROSAIL were manually adapted to 

match the model output with field spectral data. The altered variables are then called optimize— or opt—

in the sense that they are better suited to represent the spectral behaviour of the analysed crops in the 

model environment of PROSPECT and SAIL. Even though PROSPECT-D has been shown to outperform 

its predecessors [36], in this study we used the previous version of PROSPECT-5b. The main reason for 

this is that anthocyanins (Canth) were not measured in situ and deriving Canth from spectral indices 

retrospectively without the possibility to validate these findings would induce another error source. 

Three main variables were identified for optimization to achieve proper agreement between measured 
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and modelled reflectance signatures: ALIA, EWT and Cbrown. The tuning of PROSAIL canopy geometry 

was necessary to cope with the large deviations that occur when comparing real and synthetic data. A 

global sensitivity analysis (GSA) was performed with the Fourier Amplitude Sensitivity Test (FAST) 

using the GSAT tool [80] in Matlab. This way, the impact on modelled plant reflectivity was assessed in 

the range of 400 nm to 2500 nm with a five nm sampling width for all input variables of the used 

PROSAIL version (see Figure 2.6.2). 

 

Figure 2.6.2. Global Sensitivity Analysis of the coupled PROSPECT-5b and 4SAIL models. The 

dimensions of sensitivity refer to the Sobol score and denote the relative contribution (STi) of each input 

variable, and their interactions, to the variance of the model output. Parameter ranges: N: 1.0–2.5; Cab: 

0.0–80.0 µg cm−2; Ccar: 0.0–15.0 µg cm−2; Cbrown: 0.0–1.0; Cw: 0.0–0.07 cm; Cm: 0.0–0.02 g cm−2; LAI: 0.0–8.0; 

ALIA: 0.0–88.0; Hspot: 0.0–0.1; psoil: 0.0–1.0; SZA: 30, 35, 40, 45, 50, 55°; OZA: 0°; rAA: 0°. 

ALIA was changed to obtain minimal deviations between modelled and measured spectra by using 

the interactive toolbox IVVRM (see Section 2.3). The success of this fitting process was monitored in the 

NIR spectral domain from 760 nm to 1300 nm, where ALIA shows the highest sensitivity and relative 

changes within SAIL. ALIAopt is thus obtained but the exact shape of the measured spectrum could only 

be represented when EWT was changed into EWTopt at the same time. Again, the NIR range was chosen 

for this task, since inversions from the SWIR domain are known for saturation tendencies whereas the 

970 nm feature considers highest radiation penetration depths for stacked leaves in a canopy due to 

strong vegetation reflectance and transmittance [81–83]. Finally, Cbrown was subjected to the same 

calibration process. This does not have an impact on the results of EWTopt, because Cbrown,opt was 

determined by signature matching in the red edge (<900 nm). Manual fitting may seem unusual, given 

the vast majority of studies that use look-up-table inversions or numerical solutions for inversion tasks. 

However, the drawback of possibly iterating into a local minimum is automatically avoided, since 

ALIA, EWT and Cbrown have different spectral responses while all other parameters remain fixed for 

each date. With numerical solutions, on the other hand, slight shifts of the spectra may result in quite 

large deviations, whereas manual fitting yielded the advantage of a combined quantitative (error 

measures) and qualitative (shape) assessment of the agreement between the two spectral curves.  

2.5. RGB Image Segmentation 

Nadir RGB-images of winter wheat were processed to reveal visible fractions of the 

canopy (background, ears and leaves/stalks) as observed from a sensor-like position. The image 

processing was done with Python’s scikit-image package [84]. Images were loaded, transformed into a 

value range of [0,1] and split into red, green and blue bands.  
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For the analysis of the background fraction, threshold values were found for each image, separating 

the data into dark and bright areas. Contour lines then were drawn around the darker pixel clusters and 

compared to the original image. At the end of an iterative process, an optimal threshold value is found 

and used to obtain the share of dark pixels in the image. These include not only soil pixels but also other 

parts of the canopy that show marginal reflectance in the visible spectrum and thus do not contribute 

to the canopy signature (see Figure 2.6.3c). 

 

 Figure 2.6.3. Illustration of the RGB image segmentation of a winter wheat canopy from 16 July 2014. 

From the original image (a), fruit ears (b), dark background (c) and leaves and stalks (d) are extracted. 

Determining the fraction of visible area of ears requires a preceding step, in which the ears of the 

winter wheat canopy are manually masked using standard CAD software. Their share was again 

calculated with the help of scikit-image (see Figure 2.6.3b). All pixels that are classified neither as dark 

background nor as ears are considered leaves and stalks (Figure 2.6.3d). They usually make up the 

greater share of the picture. It should be noted though that these fractions could not be directly 

considered as linear contributors to the total spectral range of the sensor, because the RGB camera only 

captures wavelengths from 400 nm–750 nm, while vegetation transmissivity especially in the NIR 

domain can be higher compared to the VIS part. The share of vegetation pixels from nadir view is often 

referred to as fractional cover (fcover) and the background fraction fbackground = 1 – fcover, as the gap fraction. 

3. Results 

3.1. Deviations between Model and Measurement 

In situ measured variables served as input for the coupled PROSPECT-5b and 4SAIL. The spectral 

output of the model is contrasted with the spectral signatures recorded at the exact same spots. The 

results are shown in Figure 2.6.4 for winter wheat (2014) and silage maize (2017). Results of the other 

seasons can be found in the Supplement (wheat: S1; maize: S2).  
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(a) 

 
(b) 

Figure 2.6.4. Spectral progression of winter wheat (a) and silage maize (b) canopies as shown for the 

seasons of 2014 and 2017, respectively. The measured spectra are drawn in blue, the PROSAIL output 

fed with in situ measured variables in red. The black dashed lines illustrate the model response to a ± 

10% uncertainty of LAI. 

In 2014, the winter wheat field campaign started in mid-April, when green biomass had already 

developed. In the first four field dates spanning one month, measured NIR reflectances increased, before 

revealing a decreasing tendency from June on. The SWIR range in contrast drops continuously until 

beginning senescence. PROSAIL output on the other hand did not capture this pattern. Modelled 

spectra in the NIR rise from date to date, reaching a maximum in early July (3 July 2014). In the SWIR, 

modelled spectra behave exactly opposite to the measured signal with a peak at 1750 nm successively 
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climbing from 0.08 at the beginning of the series to 0.22 at fruit development stage. In this regard, the 

underestimation of spectral signatures by PROSAIL gradually gave way to an overestimation. 

Looking at the data of the other seasons (see Supplement S1), this pattern proves to be recurring. 

In 2015 and 2017, spectral and in situ data was recorded already at early growth stages of leaf 

development and formation of side shoots. At that time, modelled reflectances were constantly higher 

than those measured on site. In summary, two tipping points are observed: (1) from overestimation to 

underestimation (end of March; shoot development) and (2) from underestimation to overestimation 

(beginning of June; inflorescence emergence). Figure 2.6.5 illustrates this pattern by plotting mean 

deviations as PROSAIL output subtracted from field spectra. Aggregation into phenological stages 

allows a comparison independent of the growing conditions of each year. Patterns are similar for 

deviations in the NIR and SWIR, only the absolute values in the NIR were generally higher, thus so are 

the deviations.  

Maize reflectances for 2017 were overestimated by the model for early growth stages, when 

fractional cover was low, and LAI ranged below 0.7. These stages were followed by a period of model-

underestimation in the NIR (with exception of the aberration at the 6 July 2017 date) and signal increase 

in the SWIR that is not present in the model output. In the other seasons, there was no general trend in 

the deviation between model and measurement (see Supplement S2). For 2014, SWIR reflectances are 

captured well by the model but the NIR plateau was overestimated throughout the season. In 2018, a 

massive model-underestimation was recognized for 21 June 2018, which seems to be a single event or 

measurement outlier. The seasonality of deviations is analysed by calculating a simple mean of Rmeasured 

minus Rmodelled (see Figure 2.6.5). This approach may cancel out a non-uniform behaviour of different 

bands of the same spectrum, so the results are separately shown for NIR and SWIR where deviations 

show a generally high coherence. Said deviations are less distinct for maize than for winter wheat. For 

this crop type, a predominant model underestimation is observed in all phenological states instead.  

 

Figure 2.6.5. Mean deviations as the difference between field spectral measurements and PROSAIL 

model output, aggregated into BBCH growth stages. Positive values indicate an underestimation, 

negative values an overestimation of the model. Seasonal patterns are more distinct for winter wheat 

than for silage maize with emphasis on deviations in the NIR region. 
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3.2. Optimized Parameter Sets 

3.2.1. The Fitting Process 

The fitting of ALIA and EWT led to a better agreement for example, for the 2014 winter wheat 

(Figure 2.6.6a) and the 2017 silage maize (Figure 2.6.6b) dataset – illustrations of all seasons are found 

in the Supplement (wheat: S3; maize: S4). But even after the first manual optimization, both crops show 

an overestimation from the red edge to the NIR shoulder. More precisely, PROSAIL models a plateau-

like shape in this region with a distinct convex edge, which is not present in the field spectra. A beneficial 

solution for this occurrence is the fitting of Cbrown into Cbrown,opt. This second step is demonstrated for the 

same example years for wheat (2014, Figure 2.6.7a) and maize (2017, Figure 2.6.7b) The results for the 

final optimization of the other years are found in the Supplement (wheat: S5; maize: S6). 

 
(a) 

 
(b) 

Figure 2.6.6. In the first step of the optimization, ALIA and EWT were fitted in the NIR region. This is 

demonstrated for winter wheat season 2014 (a) and silage maize season 2017 (b). 
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(a) 

 
(b) 

Figure 2.6.7. In the second step of the optimization, Cbrown was fitted in the red edge region. Examples 

demonstrate the final fitting results for winter wheat 2014 (a) and silage maize 2017 (b). 

Even though there were individual differences in the development of deviations between 

measured and modelled spectra for the four growing seasons, there is a greater pattern recognizable. 

To make these independent of the Julian days, those deviations were averaged for all macro stages 

according to the BBCH-scale (Figure 2.6.8) as RMSD values. Deviations for winter wheat are largest for 

the original data with elevated errors in the stages of stem elongation and booting as well as for fruit 

development and ripening (Figure 2.6.8a). After adapting to the measured spectra, deviations stay 

within a narrow boundary below 0.02 reflectance with smaller values for stages of intensive production 

of fresh green biomass and greater ones at crop maturity (Figure 2.6.8b).  
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Figure 2.6.8. Results of the spectral fitting aggregated into BBCH growth stages. RMSD values were first 

calculated for the full range of the spectrum without adaptation (wheat: a, maize: c). A higher accuracy 

was obtained after fitting the spectral curves in the NIR range by changing ALIA, EWT and Cbrown (wheat: 

b, maize: d). 

In contrast to winter wheat, deviations between modelled and measured spectra of silage maize 

showed no seasonal fluctuation neither before nor after ALIA, EWT and Cbrown were altered (Figure 

2.6.8c,d). RMSDs only increase with ongoing phenological development and are on average 18% lower, 

indicating a better predictability for maize canopies than for winter wheat. Please note that macro stages 

2 and 4 do not exist in the BBCH phenological categorization for maize.  

3.2.2. Analysis of the Optimized Variables for Winter Wheat 

To analyse the correspondence between measured and optimized variables, their seasonal progress 

is plotted in Figure 2.6.9 and their correlations are listed in Table 2.6.5. A full comparison between ALIA, 

EWT and Cbrown as observed in situ versus the results of the two-step manual optimization process is 

listed in the Supplement for all field dates of the four seasons of winter wheat field campaigns (see 

Supplement S7).  
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(a) (b) 

  
(c) (d) 

Figure 2.6.9. All values of ALIA (a), EWT (b), Cbrown (c) and Phenology (d) for the four winter wheat field 

campaigns of 2014, 2015, 2017 and 2018. In situ measurements (a & b) and estimations (c) are shown as 

solid lines; optimized parameters are drawn with a dashed line style. 

Table 2.6.5. Distance measures between in situ observations of ALIA, EWT and Cbrown vs. optimized 

values in the manual fitting process for winter wheat. 

Variable Season RMSE rRMSE R² 

ALIA 

2014 18.2° 0.34 0.12 

2015 12.3° 0.20 0.02 

2017 7.7° 0.12 0.47 

2018 12.6° 0.19 0.77 

All 12.9° 0.21 0.18 

EWT 

2014 0.025 cm 0.87 0.65 

2015 0.027 cm 0.96 0.37 

2017 0.027 cm 1.8 0.16 

2018 0.021 cm 1.26 0.47 

All 0.026 cm 1.18 0.02 

Cbrown 

2014 0.21 2.10 0.99 

2015 0.11 1.33 0.69 

2017 0.13 1.48 0.96 

2018 0.12 14.1 0.57 

All 0.15 1.94 0.79 

The development of ALIA is quite stable in all seasons of wheat. After high inclinations at the 

beginning of the growing period, leaves tend to bend down and finally surpass the 0° horizontal line to 

point towards the soil, which again results in increasing angles for senescent stages. These tendencies 

are only partly illustrated in Figure 2.6.9a, because field dates with low LAI were not optimized and are 
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omitted in the graph. Still, winter wheat reveals notable deviations between these findings and the 

calibrated ALIA values. RMSEs range from 8° to 18°, which corresponds to relative RMSEs of 0.19 and 

0.34. Inter-seasonal variation was 29%. A negative slope for the 2018 regression (R² = 0.77, slope = −0.85) 

and the low R² of 0.18 for the complete time series affirm the impression that ALIAopt is independent of 

the original ALIA. 

For EWT, even stronger seasonal patterns are visible. Young wheat leaves hold highest water 

contents but then continuously desiccate with only rare disturbances, for example, in the early growth 

cycle of 2015, when the canopy first had to recover from a particularly dry spring. When approaching 

late senescence, leaf water drops <0.01 cm. After fitting the spectral signatures in the 970 nm and 1060 

nm region and comparing EWT with the fitted EWTopt, relative errors between the two variables range 

between 0.87 and 1.8 and are 1.18 for the complete time series of four years. This means that the distance 

of the optimized EWT to its original field representation on average ranges beyond 100%. EWTopt 

follows a different seasonal pattern connected to the green biomass. In fact, correlation between EWTopt 

and LAI range between R² = 0.27 (2014) and R² = 0.6 (2017), confirming the bias present in the data.  

In situ estimations of Cbrown were 0.0 during the vegetative stages of winter wheat. Canopies 

showed no senescent spots on leaves until beginning of ripening. Once senescence was initiated also in 

the top layer of the canopy at the beginning of July, Cbrown skyrocketed within a few days’ time. With 

these in situ measured values, however, no sufficient fitting was possible in the red edge region. A better 

match with modelled spectra was obtained when Cbrown,opt was continuously increased throughout the 

season. Deviations are in a constant range from 0.1 to 0.2. Similar to EWT, the relative distances to the 

increased optimized variable set reach disproportional magnitudes due to absolute values below 0.1 

(see Figure 2.6.9c). It is worth noting, though, that Cbrown is correlated with Cbrown,opt. The slope of the 

regression for all four seasons is 0.25 and the intercept is 0.13, which can be considered as a significant 

bias (p = 0.017) that occurs right from the beginning of each season and could be accounted for with a 

linear model. 

3.2.3. Analysis of the Optimized Variables for Silage Maize 

In the same manner as it was done for winter wheat, the illustration of the development of the 

measured and adapted maize variables is shown in Figure 2.6.10 and the secondary statistics are 

summarized in Table 2.6.6. In situ records in full are listed in Supplement S8.  

According to the in situ measured variables, ALIA of maize shows an erratic seasonal trend 

towards increased inclinations at ripening stages. Intact leaf tips of younger maize plants pitch over but 

get more and more rigid in their reproductive states. Shortly before vegetation dieback, leaves sag down 

in parallel direction to the stalks resulting in high inclination angles. This pattern is observable for all 

three seasons and partially reflected by ALIAopt. Large deviations in the modelled ALIAopt occur as 

singular events at the end of 2017 and the beginning of 2018.  

Inter-seasonal variability of EWT for maize was higher than the inner-seasonal changes. In contrast 

to winter wheat, water content in maize leaves was stable in all seasons. An intense loss of plant water 

happened only at the very end of the maturity stage beyond the time series used for fitting the spectra 

(not shown). The generally lower EWT in the 2017 data suggests a reduced water availability in that 

year for the respective soil condition of that field despite good meteorological conditions. EWTopt shows 

significant concordance with in situ values for 2018 but the large relative errors indicate the overall 

weak predictive power of a PROSAIL simulation even if based on measured ground data. A bias 

towards biomass is similar to the findings for winter wheat: R² with LAI range between 0.33 in 2014 and 

0.67 in 2018. 
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(a) (b) 

  

(c) (d) 

Figure 2.6.10. All values ALIA (a), EWT (b) and Cbrown (c) and Phenology (d) for the three silage maize 

field campaigns of 2014, 2017 and 2018. In situ measurements (a & b) and estimations (c) are shown as 

solid lines; optimized parameters are drawn with a dashed line style. 

Table 2.6.6. Distance measures between in situ observations of ALIA, EWT and Cbrown vs. optimized 

values in the manual fitting process for silage maize. 

Variable Season RMSE rRMSE R² 

ALIA 

2014 13.1° 0.27 0.44 

2017 19.4° 0.30 0.06 

2018 16.0° 0.27 0.30 

All 16.1° 0.28 0.04 

EWT 

2014 0.008 cm 0.30 0.19 

2017 0.010 cm 0.64 0.25 

2018 0.019 cm 0.83 0.62 

All 0.013 cm 0.58 0.01 

Cbrown 

2014 0.11 14.16 0.32 

2017 0.09 12.37 0.76 

2018 0.15 101.58 0.30 

All 0.12 20.58 0.24 

Cbrown was 0.0 for all phenological stages of maize until cob ripeness. At senescence, water content 

dropped, and little brown spots became visible. Unfortunately, higher values of Cbrown had to be clipped, 

because they coincide with low green LAI and thus cannot be reasonably optimized. Despite this fact, 

Cbrown,opt—as parameterized in PROSPECT—needs to be increased right away at stages of leaf 

development and booting to account for non-visible accumulation of brown pigments within the leaf. 

This is confirmed by the volatile trend of Cbrown,opt particularly in the 2014 season which could not be 

explained by brown leaf spots alone. 
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When comparing the two different crops, deviations from the in situ measured leaf inclinations 

were found to be 20% lower for winter wheat when compared to silage maize. A main reason for that 

can be found in the two striking outliers of 2017 and the one in 2018. When they are excluded from the 

analysis, RMSEALIA for maize drops by 10% to 14.5°. RMSEEWT was twice as high for wheat than for 

maize.  

3.3. Seasonal Development of Winter Wheat Canopy Fractions in Sensor View 

The mean distribution of plant fractions of the winter wheat canopies – as seen from nadir view – 

is shown in Figure 2.6.11. Early observations in March and of pre-winter sprouting (only covered in 

2014/15) reveal a high share of background pixels. Wheat plants are small and aligned in rows at that 

time. After some weeks, the vegetation forms a closed canopy of leaves with only little gaps in between. 

The fraction of dark background fbackground then remains at a constant level of 10–20%, even when ears 

begin to grow. Together they extend their visible fraction up to 50% in the years of 2014, 2015 and 2017 

and even 70% in the season of 2018. 

 

Figure 2.6.11. Seasonal development of plant fractions of winter wheat canopies as they become visible 

to a sensor that is observing the respective field in nadir view, obtained from nadir RGB image 

segmentation for four seasons (2014, 2015, 2017, 2018). 

The meteorological and micro-ecological conditions vary between the four seasons, which limits 

the comparability even for the same days of the year. Similarly to the statistical analysis of the optimized 

sets of variables described in Section 2.4 visible fractions of plant compartments were aggregated in 

their phenological macro stages to derive a representative seasonal pattern (see Figure 2.6.12). A 

strengthening of the trends recognized in Figure 2.6.11 can be observed. Lowest values for fbackground are 

found in the stage of booting, when the green canopy is dense and covers most of the underlying soil. 

When the wheat ears are established, their visible influence grows mainly to the expense of leaves and 

stalks, whereas fbackground increases only slightly. The agreement between the estimations of fbackground was 

highest for low values, for example, an error of 0.3% at stage of emerging inflorescence and 3.4% at 

booting stage and lowest for the tillering stage with an error of 18%. Errors of the visible fraction of fruit 

ears were lowest at emergence of the flowers (σ = 0.8%) and fruit development (σ = 1.5%) and highest 

for flowering (σ = 7.9%) and ripening stages (σ = 7.2%).  
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Figure 2.6.12. Development of plant fractions of winter wheat canopies as they become visible to a sensor 

that is observing the respective field in nadir view at different phenological stages, obtained from nadir 

RGB image segmentation. Black lines within the bars indicate the standard errors of background and 

ears. 

Combining these results with the model deviations, the relationship between RMSD and the 

fraction of visible ears is analysed. As shown in Figure 2.6.13, the R² of that comparison is a mere 0.01 

with a dispersed scatter plot for all data points in which wheat ears were visible in the RGB photography 

(Figure 2.6.13a). After aggregating the data into phenological stages, their representative values form a 

linear model with R² = 0.78 (Figure 2.6.13b). A correlation between the fraction of visible soil and the 

RMSD by contrast could not be found. R² for was 0.02 for all data and 0.1 after aggregation.  

  
(a) (b) 

Figure 2.6.13. Dependency between the fraction of visible ears (fears) and the RMSD of spectral 

measurement vs. PROSAIL output for all winter wheat data (a) and aggregated into phenological macro 

stages (b). Standard deviations of the BBCH-aggregation in b are symbolized by vertical error bars. 
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4. Discussion 

The performance of the parameter retrieval of canopy reflectance models is usually evaluated by 

means of descriptive statistics, comparing measured and estimated variables and assuming that low 

errors indicate high accuracies [85]. This requires that model parameters and in situ variables are 

representing the same natural property. Our study demonstrates that this prerequisite does not apply 

to every case when working with PROSAIL. Model results were significantly different to measured 

spectra, even when in situ measured variables define the input.  

Nevertheless, even reasonable measurement errors of for example, LAI could not explain the 

observed deviations. Remaining errors are expected to be intrinsic uncertainties of the model design 

linked with the degree of abstraction. RMSD between spectral field observations of the winter wheat 

study sites and their model representations reveal that PROSAIL describes canopy properties better for 

early growth stages. Consequently, they are better suited for retrieving canopy variables than later 

stages. Within the non-reproductive stages (BBCH 1 – 5) there is an additional local RMSD minimum 

observed when vegetation initiates the heading of the ears (BBCH 5). This phenomenon is not seen in 

the maize dataset but the tendency towards increased errors with passing phenological stages here 

comes with an overall better agreement between model results and spectral measurements. 

In PROSAIL, the ALIA plays an important role among structural model parameters with high total 

scores in the global sensitivity analysis, particularly in the NIR. The biomass density of the canopy is 

quantified via LAI and manifests in the spectrum through stronger reflectances in the NIR and stronger 

absorbance in the SWIR. For increased LAI, a saturation in the SWIR by water absorption in optically 

thick canopies was mentioned by, for example, Datt et al. [86]. In PROSAIL, high reflectance levels of 

the NIR plateau can only be simulated when assuming low ALIAs. Take note that SAIL is not a 

geometrical but a radiative transfer model. The incorporation of leaf inclination into the preceding Suits 

model [87] allowed accounting for the scattering processes that happen within the canopy. Leaf angle 

densities are calculated according to Campbell [65] representing frequencies of leaf inclinations as 

discrete classes. For each class, the volume scattering is calculated resulting in the Suits system 

coefficients, which denote contributions for each inclination class to the basic radiation transfer 

processes of extinction, attenuation and backscattering from the canopy. The LAI later serves as a 

scaling factor of these processes. This means that in PROSAIL the ALIA is used to estimate probabilities 

for radiation to be absorbed, attenuated or reflected. In reality, wheat fields are densely seeded, and the 

complex canopy structure appears closed from tillering stage (BBCH 3) onwards, even though ALIA at 

that time shows values above 70°. Any kind of minimization between model results and measured 

spectra therefore suggests a lower ALIA to capture high reflectances in the NIR caused by multiple 

scattering in thick canopies, especially in stages of intensive biomass production and growth [88,89]. 

After this period of stretching wheat leaves, the ALIA decreases and is soon overestimated by the model. 

This could be an indication that ALIAopt aims to reproduce vertical canopy structures, that is, stalks or 

fruit ears with high inclinations that make up 18% (flowering) to 30% (ripening) of the nadir view. In 

this regard, winter wheat seems to conflict with the basic turbid medium assumptions of scattering 

objects of infinitesimal size, disallowing shadowing within the canopy. Also in 4SAIL, the finiteness of 

leaves is only accounted for by the hot spot effect [90], while consideration of precise geometrical 

structures is still confined to 3D ray tracing models. Nevertheless, it was conversely expected that 4SAIL 

presumptions would rather fail for maize. It consists of much larger leaves aligned in a more 

heterogeneous canopy than wheat fields. Single plants grow larger and form a distinct row structure. It 

seems that overlapping leaves in the wheat field become stacks of green biomass within the canopy, 

even for erected leaves. Maize plants stand more isolated and allow radiation to penetrate deeper into 

the stand. The consideration of using 4SAIL to retrieve vegetation parameters independently of the 

vegetation type accordingly does not fully hold true. 

The estimation of LAI from hyperspectral data has been sufficiently described by other authors, 

unlike the retrieval of ALIA, which is often treated as a free parameter without final assessment. Few 

studies took up this issue, like Casa et al. [91] who could not achieve adequate estimates of ALIA for 

maize data from PROSAIL optimizations but found lower deviations when leaf inclinations were 
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obtained from measured gap fraction data. The visible fraction of soil as an alternative to the gap fraction 

in this study did not correlate with optimized ALIA and thus turned out to be inefficient for an 

improvement of PROSAIL inversions. Botha et al. [92] retrieved canopy structure variables from 

PROSAIL as a side product to leaf chlorophyll content estimation of wheat canopies, struggling with 

low correlations between measured and estimated ALIA. They further experienced an overestimation 

of LAI except for the first growth stage. This supports our finding that wheat reflectances in the NIR are 

higher than modelled for given LAI in situ data in the essential growing period. 

In the first PROSAIL review by Jacquemoud et al. [34], it was stated that spectral responses of LAI 

and ALIA were closely correlated with each other, making an independent inversion of those 

parameters problematic. Other studies have tried to overcome this deficit by providing statistical 

information as a priori boundaries [55], classifying ALIA within a narrow parameter range [93], 

transforming two-band-indices [94,95] or incorporating the information of pixels in spatial vicinity to 

obtain an object-based result [96]. Our proposed manual calibration of ALIA could potentially serve as 

another separation approach when the LAI has been reliably estimated. In all cases, a successful 

decoupling of canopy structure parameters is aided by integrating multi-angular observations in the 

inversion process [93,97] for example, from CHRIS/PROBA or future EnMAP. 

In situ measured EWT did not agree with the values obtained from the optimization process. One 

reason is the complex canopy structure linked to the type and amount of biomass observed from the 

sensor. In the spectral signal, there is no differentiation between phyto-elements of the crop, whereas 

the model considers EWT as a pure leaf parameter. Figure 2.6.14 shows that wheat stalks contain more 

water than the leaves per unit fresh mass from June onwards (BBCH 4). Thick maize stalks contained 

more water than the leaves at all times in the growth cycle. Errors between EWT and EWTopt were 

conversely higher for wheat than for maize, indicating that EWTopt carries even more residual 

information of canopy features, which is in line with Clevers et al. (2010) [98]. The interleaving of foliage 

may lead to an additional vertical stacking of biomass and exaggeration of biophysical and biochemical 

features in the model. Inversion of PROSPECT alone was shown to produce adequate results for 

estimation of EWT [99–101], whereas the proper retrieval from complex canopy spectra remains a 

difficult task [102,103]. Another solution to this problem could be crop- and phenology-specific 

calibration curves if further research confirms the relationship between EWT and EWTopt found for 

wheat in the four seasons presented.  

 

Figure 2.6.14. Ratio between water in the stalks compared with water in the leaves for winter wheat 

(orange) and maize (green). Water content is standardized to water loss per fresh mass. The grey line 

illustrates the 1:1 ratio between phyto-elements. Data was recorded at the 2017 MNI campaign. 
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The need for a proper parameterization of Cbrown becomes apparent when observing the residual 

deviations in the red edge region and the absence of a distinct shoulder in the field spectra (Figure 2.6.6). 

The same spectral shape is found in other publications that analyse dense crops like winter wheat [104] 

or grassland [51]. Solid assumptions about the biochemical influence of brown leaf pigments are 

necessary to improve the quality of the retrieval of other plant pigments as well as of LAI and ALIA, 

which are all sensitive in the far red and NIR. The variable Cbrown generally lacks a solid scientific study 

basis. There is no evidence of a successful inversion of Cbrown in the literature and for forward mode 

simulations it was often used as a calibration parameter for the spectral region from 500 nm to 1000 nm. 

The authors of PROSPECT state that the disturbance around the NIR plateau occurs at senescence and 

for dry leaves [35]. Results of our study show that brown pigments play an important role even for vital 

green canopies, particularly for maize. Further research should be directed towards proper estimation 

and interpretation of Cbrown, identifying valid ranges for different crop types and the relation of Cbrown 

with crop phenology to assist the estimation process. Treating Cbrown as visible leaf browning proved to 

be insufficient. 

Further improvement of retrieval accuracy could of course be achieved by the use of newer 

versions and more sophisticated modelling approaches. Anthocyanins (Canth) play an important role in 

the photo-protection of plants [105] and their incorporation into PROSPECT-D was shown to 

particularly improve the retrieval of carotenoids [36]. But even if Canth had been considered for this 

study, impact on the calibration of Cbrown is expected to be low, considering that the latter was adjusted 

through spectral matching in the red-edge region (750–900 nm) in which Ccar is not sensitive (see Figure 

2.6.2). The same holds true for the deviations occurring in the RED region, which indicate a potential 

issue in the retrieval of Ccab at crop ripening. Running such fitting procedures with different versions of 

PROSPECT could further identify the role of parameterization of the absorption coefficients and the 

refractive indices used in each model. Implementing the Leaf Inclination Distribution Function (LIDF) 

directly could pose a superior alternative to deriving it from ALIA with the Campbell approach, as it 

allows a more comprehensive description of the canopy geometry. For instance, an ALIA of 45° would 

result in one specific LIDF when using the ellipsoidal model but could be described by several different 

distributions when using for example, Verhoef’s algorithm with the parameters LIDFa and LIDFb (please 

refer to the review of Wang et al. 2007 for an overview of that topic [106]). Splitting the information into 

two parameters increases the probability to encounter ill-posed solutions but could also potentially 

improve the retrieval process, especially in the case of multi-angular observations. Another limitation 

of this study concerns the choice of the parameter set for optimization. The restriction to ALIA, EWT 

and Cbrown leads to an affiliation with the errors of other parameters if their sensitive spectral ranges 

overlap. Apart from LAI, this could also be the case for Cm, which—despite a good retrievability from 

PROSPECT model inversions (e.g., [107,108])—is expected to suffer from similar scaling problems like 

the EWT [109]. On the other hand, it remains problematic that more simultaneously adjusted parameters 

also result in a more severe ill-posedness. An increase in Cm leads to a decrease of the reflectance in the 

NIR, just like an increased ALIA does. Consequently, ALIAopt, as the result of a calibration process, will 

also carry a residual signal about the uncertainties of other, less sensitive parameters like Cm and the 

derived leaf structure parameter N.  

Uncertainties in the quantification of in situ variables vary with experience of the field workers, 

chosen sampling layout, technical equipment and methodology. Matching model output with real 

spectral observations would assume that the illumination is optimally represented in PROSAIL. The 

ratio of diffuse to direct radiation, for instance, is controlled by the skyl parameter, which was applied 

as a flat spectrum instead of a wavelength-dependent data vector. A full description of lighting 

conditions upon the canopy would have to incorporate atmospheric modelling, taking into account the 

aerosol optical depth, precipitable water and O3 content [110]. For the manual fitting process, it is 

assumed that LAI has been correctly measured. In reality, the method of inverting the gap fraction from 

LAI2200C data introduces uncertainties as well, particularly for non-homogeneous canopies [111]. The 

impact of a ±10% error range of LAI on model results shown in Figure 2.6.4 confirms, however, that 

these uncertainties have only a minor influence on the observed deviations between measured and 

modelled spectra. Spectral output based on optimized ALIA conversely suggests that leaf inclination is 
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the most important factor for an accurate parameterization of SAIL and that more research is needed to 

improve its representation in real-life applications. Previous studies have shown that algorithms trained 

with BOA spectra are more valid for spaceborne sensors with higher spatial resolution due to a reduced 

averaging of canopy geometrical effects [112,113]. A re-analysis of the modelled and measured spectral 

observations from space will eventually reveal if the deviations linked to phenological development are 

consistent and robust towards scaling effects.  

5. Conclusion 

Various authors have successfully carried out inversions for LAI and leaf chlorophyll content from 

a variety of crop types using the widely known and applied PROSAIL. However, many studies obtained 

rather large errors in the retrieval of other important biophysical and biochemical variables, indicating 

a disagreement between model input and actual in situ canopy properties. We showed that the manual 

fitting of PROSAIL parameters to match model output with spectra of winter wheat and maize fields 

led to an adjusted set of ALIA, EWT and Cbrown. These adapted values show only marginal correlation 

with the observed in situ values and reveal a distinct crop- and phenology-specific behaviour. It is 

concluded that disturbing effects from phyto-elements like ears or stalks can either be counterbalanced 

by an altered ALIA or simulated in more geometrical detail by 3D-models or adapted PROSAIL versions 

like SLC. Even then, the optimized ALIA cannot be compared to in situ measured leaf angles but rather 

represents a SAIL-internal parameterization. Setting it to measured values would disallow the retrieval 

of other PROSAIL parameters, so it is suggested to leave it as a calibration parameter of plant structural 

traits.  

EWT, as retrieved from PROSAIL inversions from bands in the near infrared, will still carry 

unwanted canopy information. It may thus be useful to investigate the influence of stalks and fruits on 

the inversion and to decouple leaf variables from residual signals of the canopy structure. Similarly, 

Cbrown has a strong impact on the red edge region of vegetation spectra. It cannot be linked to visible leaf 

browning nor can it be measured directly. Fixing it to a single value will conceal dynamics in the 

biochemistry of leaves and corrupt the retrieval of other pigments. Instead, it can be well approximated 

by matching reflectances in the convex NIR shoulder. 

For winter wheat, optimized leaf inclinations were found to be flatter than measured in situ to cope 

with generally high NIR reflectances observed in the field during the peak vegetative stages. After 

finishing length growth, a converse trend is found that overestimates leaf inclinations in the 

reproductive stages. In contrast to that, optimization of the maize variables did not follow seasonal 

patterns but increased towards senescence. Highest accuracies in the parameter retrieval from both 

winter wheat and maize spectra can be expected at the earlier stages of canopy development. In the 

turbid medium approach of PROSAIL, ALIA should be considered as a concept to model scattering 

processes within the canopy. Simply transferring it to real-life situations and ascribing a strict physical 

meaning to it has shown to be problematic. Thus, it is recommended to allow free assignment of ALIA 

within constrained ranges even if true leaf inclinations are known. The retrieval of structural parameters 

from PROSAIL should conversely be performed in one global step instead of decoupling them by 

fixating single parameters. 

Supplementary Materials: Figure S1: Deviations between PROSAIL model and Field Spectral Data; Winter Wheat 

2014, 2015, 2017, 2018—As Measured. Figure S2: Deviations between PROSAIL model and Field Spectral Data; 

Maize 2014, 2017, 2018—As Measured. Figure S3: Deviations between PROSAIL model and Field Spectral Data; 

Winter Wheat 2014, 2015, 2017, 2018—Optimized ALIA & EWT. Figure S4: Deviations between PROSAIL model 

and Field Spectral Data; Maize 2014, 2017, 2018—Optimized ALIA & EWT. Figure S5: Deviations between PROSAIL 

model and Field Spectral Data; Winter Wheat 2014, 2015, 2017, 2018 – Optimized ALIA, EWT & Cbrown. Figure S6: 

Deviations between PROSAIL model and Field Spectral Data; Maize 2014, 2017, 2018—Optimized ALIA, EWT & 

Cbrown. Table S7: Manual fitting of ALIA, EWT and Cbrown for four winter wheat growing seasons. Table S8: Manual 

fitting of ALIA, EWT and Cbrown for three silage maize growing seasons.  
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2.7. Preparation of Scientific Publication III 

In the third publication of this thesis, the initial objective of creating an automated 

scientific processor for the retrieval of biochemical and biophysical variables from 

hyperspectral data was finalized. With the experience of publication II it was decided to 

abandon the idea of a step-wise inversion of different classes of crop variables. This 

hierarchical approach was intended to allow the retrieval of each parameter with a highly 

customized setting of the inversion routine. But even though e.g. LAI and Cw may be optimally 

inverted with individual settings, the fixation of known parameters turned out to prune the 

performance by forcing the inversion outside the ranges in which correct results can be 

obtained. For this reason, the retrieval of LAI, ALIA, Ccab and Cm was aspired in a global 

inversion approach.  

A main driver for the experimental work of publication III were practical challenges in 

making the processor available to the community of users of future EnMAP data. LUT 

inversions have proven to yield satisfying results for the given task, but even when storing 

them in raw binary format, they exceed by far an acceptable size for distribution along with 

the EnMAP-Box. A solution was found in the use of machine learning regression algorithms 

(MLRAs), which were able to learn the link between spectral signatures and underlying 

vegetation properties from massive sets of synthetic training data.  

In the first part of the paper, four MLRAs were set up: Artificial Neural Network (ANN), 

Random Forest Regression (RFR), Support Vector Machine Regression (SVR) and Gaussian 

Process Regression (GPR). Each algorithm was optimized in an individual process by 

maximizing accuracies at learning and predicting PROSAIL synthetic data. Relevant 

hyperparameters of the algorithms were first identified and then optimized in a 

multidimensional grid-search approach.  

In the second part, the optimized algorithms were used to predict structural canopy 

parameters from real-life data. However, none of the models succeeded in this task due to the 

overfitting that happened at training with synthetic data. The issue was solved by adding 

artificial noise to PROSAIL spectra in the training process and by re-calibrating outputs with 

in situ data from the field campaigns.   
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Abstract: With access to an unprecedented stream of remote sensing images, there arises also the need 

for tools and applications to extract relevant information from all this data on an operational basis. 

Algorithms to automatically retrieve biophysical and biochemical plant traits have been published for 

sensors like MODIS or Sentinel-2. In this study, we investigate the potential of a scientific processor of 

managed vegetation from future hyperspectral EnMAP data. Said processor will execute pre-trained 

Machine Learning Regression Algorithms (MLRA) and deliver information about Leaf Area Index, 

Average Leaf Inclination Angle, Leaf Chlorophyll Content and Leaf Mass per Area. Training data 

comprises a synthetic Look-Up-Table (LUT) of PROSAIL modelled vegetation spectra and their 

associated parameterization. Four MLRAs, namely Artificial Neural Networks (ANN), Random Forest 

Regression, Support Vector Machine Regression and Gaussian Process Regression were found to 

predict target biophysical variables with high accuracy of relative error scores between 0.13 and 0.25. 

Applying the models to real-world data turned out to deliver poor results. Predictive power was 

restored by applying additive Gaussian noise of σ = 4 % and re-calibrating results with in situ data 

from winter wheat and silage maize. ANNs excelled in terms of accuracy and – from a practical point 

of view – also in model size and execution time when spectral bands were transformed into 15 

components and their signal scaled by a z-transformation. The optimized ANN algorithms will be 

provided via the EnMAP-Box to feature a Managed Vegetation Scientific Processor. 

Keywords: machine learning; reflectance modelling; hyperspectral remote sensing; EnMAP-Box; 

radiative transfer model; PROSAIL  

 

1. Introduction 

Biophysical and biochemical variables express the state of a plant or canopy. They serve as 

quantified representations necessary to monitor and model biological, chemical and structural 

characteristics of vegetation over space and time (Asner 1998; Hanes 2013). On leaf scale, biochemical 

traits like pigment concentrations or water content affect the very elementary processes such as 

photosynthesis and biomass production (Gitelson 2018; Thenkabail 2017). The architecture of 

photosynthetically active plant parts is described on canopy level, mainly by the Leaf Area Index (LAI; 

Darvishzadeh et al. 2008) and the Leaf Inclination Distribution Function (LIDF; Norman and Campbell 

1989; Wang et al. 2007). Complex 3D canopy models like DART (Gastellu-Etchegorry et al. 1996) or 

HySimCaR (Kuester et al. 2014) need further information about the shape and size of those 

compartments to be able to trace electromagnetic waves as they pass through the canopy and interact 

with biomass. A more feasible way to simulate reflectance and transmittance on an operational basis 
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with fewer input parameters is the use of radiative transfer models based on turbid medium 

assumptions. In the past three decades, the leaf optical properties model PROSPECT (Féret et al. 2017) 

and the canopy architecture model SAIL (Verhoef 1984) have emerged in their respective fields of 

application. There exist several coupled versions of PROSPECT and SAIL which are summarized under 

the term PROSAIL (Jacquemoud et al. 2009a).  

The mentioned biophysical and biochemical variables can be obtained from reflectance signatures 

by inversion of PROSAIL. This means that canopy reflectance models could potentially be used on an 

operational basis to deliver input for e.g. land surface process simulations from remote sensing data. 

Variables like LAI, chlorophylla+b content (Cab) and Leaf Mass per Area (LMA, i.e. dry matter weight) 

are of particular interest for driving crop growth models and improve predictions on harvest yield 

estimations (Hank et al. 2015; Ziliani et al. 2018). In applied ecologies, simulated biophysical and 

biochemical parameters indicate the state of ecosystems (Feilhauer et al. 2018) and their associated 

Essential Biodiversity Variables to which remote sensing makes a major contribution (Kattenborn et al. 

2018; Paganini et al. 2016). 

Approximately 60 % of the earth’s land surface is biologically productive. If we subtract the share 

of forests, a remaining 50,000,000 km² is used for agriculture or provides other ecosystem services (Zabel 

et al. 2014). Operational retrieval of biophysical parameters is sometimes made available alongside with 

the spectral product of spaceborne missions (e.g., Level-4 MODIS Leaf Area Index; Myneni et al. 2000). 

Other data sources rely on software solutions, as is the case with the SNAP toolbox and its Biophysical 

Processor, which retrieves LAI, fraction of Absorbed Photosynthetically Active Radiation (fAPAR), 

fraction of Vegetation Cover (fCover), Cab and canopy water content from Sentinel-2 reflectance data 

(Weiss and Baret 2016). 

In a similar manner, the forthcoming mission EnMAP (Environmental Mapping and Analysis 

Program) shall provide applications to obtain biophysical parameters from hyperspectral signatures 

(Guanter et al. 2015). The algorithms that link reflectance information with ground estimations need to 

be trained beforehand to be distributed with future hyperspectral sensor data. Machine Learning 

Regression Algorithms (MLRA) are able to learn a mathematical relationship between pairs of 

predictors (X) and targets (Y). After a successful training phase, they estimate new targets from unseen 

predictors autonomously and are thus very appealing for applications of operational processing of 

larger data sets. Combining radiative transfer with machine learning opened up a field of hybrid 

regression methods that solve the inverse problem with varying accuracy and computational demand 

(Rivera-Caicedo et al. 2017; Verrelst et al. 2018).  

In this study, we clarify the following research questions in prospect of a future EnMAP Managed 

Vegetation Scientific Processor: (1) Which machine learning algorithm does the best job in learning and 

predicting biophysical and biochemical parameters from PROSAIL synthetic datasets? (2) How do these 

best-performing settings predict target variables from real world data? (3) How do we overcome 

practical challenges in making these algorithms available as an automatic processor?    

2. Materials and Methods 

2.1. Test set data 

Data for the test set are taken from the study area Munich-North Isar (MNI), Bavaria, southern 

Germany (48°16′04″ N, 11°42′45″ E). Full range spectral information was gathered with an ASD 

FieldSpec 3 Jr. (Boulder, CO, USA) in the vegetative phases of winter wheat in 2014, 2015, 2017 and 2018 

as well as of silage maize in 2014, 2017 and 2018. After post-processing of the raw spectral data, they 

were converted into pseudo-EnMAP reflectances by applying band-wise spectral response functions 

(Segl et al. 2012). Spectral bands that coincide with regions of atmospheric water absorption (1359 nm – 

1465 nm and 1731 nm – 1998 nm) as well as noisy far-SWIR bands (2401 nm – 2439 nm) were excluded 

in the subsequent analysis. 

In situ biophysical variables were measured at the same locations right after spectral data was 

recorded. For determination of the LAI, a LI-COR Biosciences LAI-2200C was used with particular 
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attention to the row structure of wheat and maize (LICOR-Biosciences 2015). Average Leaf Inclinations 

(ALIA) were read from a Suunto PM-5/360 inclinometer placed along the leaf petiole axis and averaged 

over multiple observations from different leaves of the same plant and multiple plants altogether. The 

Leaf Inclination Distribution Function was calculated from the ALIA via Campbell’s ellipsoidal 

distribution (Campbell 1986). A Konica-Minolta SPAD-502 was used to sample leaf chlorophylla+b 

content (Cab). Leaf Mass per Area (LMA) was sampled in the nearby laboratory by measuring leaf sizes 

and weighing the samples after dehydration.  

In total, the data archive comprises 40 full sets of canopy reflectances and their related in situ 

variables over four seasons of winter wheat and 26 sets over three seasons of silage maize. A 

comprehensive overview over the layout of the MNI sampling campaigns and the processing of spectral 

data and in situ variables is given in (Danner et al. 2019). 

 All considered MLRAs are able to link spectral input to a set of several target variables at once. 

This opens the opportunity to either learn biophysical and biochemical parameter one after the other, 

or conversely several – or all – at once. The global approach neglects the fact that different classes of 

parameters are better trained with different parameterizations of the MLRA. For this study, the canopy 

structural parameters (LAI & ALIA) were combined into one mutual group and trained in one step, 

whereas Cab and LMA were estimated with individually trained models.  

2.2. Look-up-Table creation 

A data set of synthetic reflectance signatures and biophysical parameters was built with a 

combination of PROSPECT-D and 4SAIL (called PROSAIL hereinafter). Parameters were drawn at 

random from Gaussian normal and uniform distributions (Danner et al. 2019). Assuming that physical 

memory is not a limiting factor, most authors argue in favor of relatively large LUTs of size 50,000 and 

above. On the other hand, it has been observed that also small LUTs allow a proper inversion, as long 

as parameters are well distributed within their ranges. Bearing in mind that algorithms will be 

iteratively optimized to learn the relationship between synthetic spectra and PROSAIL parameters, 

smaller LUTs allow quicker learning and require less memory. For this study, the basic LUT size is first 

set to 2000 members. Six of these LUTs were created, each with a different Sun Zenith Angle (30° - 55° 

in steps of 5°) to cover the range of sun geometries observed in the test data set. The observing sensor 

is considered in nadir position. Two more synthetic data sets with 5,000 and 10,000 members were built 

to quantify the effects of LUT size.  

2.3. Machine Learning Algorithms 

2.3.1. Data pre-processing 

The interlink between spectral and biophysical information is complex and non-linear. MLRAs are 

capable of ‘learning’ from pairs of training data to predict values which they have not seen at that point 

in the process. We used python’s scikit-learn package (Pedregosa et al. 2011) to do the conjoint pre-

processing, fitting, prediction and evaluation of target variables. The models were saved to hard drive 

using binary protocols of the pickle module.  

The diversity of machine learning requires a flexible chain in preprocessing data. All algorithms 

were tested for sensitivity on the following transformations: 

Scaling of the predictors: the predictors in this case are reflectance outputs of PROSAIL. Different 

techniques involve the Standard Scaler as a regular z-transformation (Eq. 1), the Min-Max Scaler 

transforming spectra within a given range (here: Eq. 2 shows the special case of min=0 and max=1), the 

Max-Abs-Scaler which is similar to the Min-Max-Scaler in setting 1.0 as the upper boundary, but 

maintaining sparsity by keeping the center of the data in place (Eq. 3), as well as the Robust Scaler which 

uses the interquartile range to scale the data, making it robust towards outliers (Eq. 4). 
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𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑋 − µ

𝜎
 Equation 1 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 = 𝜔 ∙ (𝑋 − min(𝑋)) 

𝜔 =
1

max(𝑋) −  min (𝑋)
 

Equation 2 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑋

max(|𝑋|)
 Equation 3 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑋 − 𝑄0.25(𝑋)

𝑄0.75(𝑋) −  𝑄0.25(𝑋)
 Equation 4 

Dimensionality reduction: the magnitude of spectral bands in hyperspectral studies hampers the 

training process of MLRAs (Rivera-Caicedo et al. 2017). A subset of bands is found by minimizing the 

covariance of the predictors, namely by a Principal Component Analysis (PCA). The effect of the 

number of components used for calibration is tested on the best performing parameterization of each 

algorithm. 

2.3.2. Artificial Neural Network 

Artificial Neural Networks (ANN) is the umbrella term for all algorithms that learn in layers of 

interconnected neurons. In this study, a MultiLayer Perceptron network Regression (MLPR) was 

trained. This widely used approach makes use of error backpropagation through the network of 

perceptrons without relying on training data of any specific statistical distribution (White 1992). On the 

downside, ANNs depend stronger on the quality of the input and struggle with unseen values outside 

the range in which they were trained (Waske et al. 2009). In search of an optimal ANN environment, 

the following settings were changed: 

Activation Function: The activation function is used to transfer the information from each neuron 

into output signals for the consecutive layer. Activation functions used: Identity function, logistic 

function, hyperbolic tangent (tanh) function, Rectified Linear Unit (ReLU) function (see Karlik and 

Olgac 2011 for overview). 

Solver: The actual mathematical core process of the MLPR is the optimization of the activation 

functions until convergence. Two different solvers were tested, namely the ADAM solver (Kingma and 

Ba 2014) and the L-BFGS solver (Sohl-Dickstein et al. 2014).   

Alpha: The regularization term, also known as L2 penalty. Regularization here means that less 

important features are penalized towards zero, so they gain less weight in the outcome of the regression. 

Alpha is varied to hold control of (over-)fitting the data in the calibration process. Alpha ∈ [0.001, 0.01, 

0.1, 1.0, 10.0, 100.0]. 

Max_iter: Allowing the solver to cycle through a larger number of iterations increases its chance to 

converge but takes longer to calculate. Max_iter was increased in the steps of [100, 300, 500, 1000, 2000, 

5000, 10000]. 
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2.3.3. Random Forest Regression 

The Random Forest Regression (RFR) is an ensemble algorithm based on multiple decision trees. 

The mixture of bootstrapping and random feature selection makes it less sensitive to outliers and noise 

(Waske et al. 2009). RFRs are out-of-bag predictors, meaning that they can only predict values they had 

learned in the training process (Breiman 2001). Not being able to extrapolate, this restricts their field of 

application, but may also serve as an advantage when estimations are supposed to lie within valid 

ranges. The following parameters were identified to hold most of the control over accuracy in learning 

and predicting: 

N_Estimators: The number of decision trees grown in the random forest. Too few trees lead to a 

narrow set of values to pick from; too many trees make the algorithm bulky and slow. In this approach, 

n_estimators was raised in the range of [20, 50, 100, 200, 300, 400, 500]. 

Min_Samples_Leaf: A decision tree will only be split if there are at least n samples in each of the 

branches. This parameter is known to have smoothing effects for regression tasks (Breiman 2001). The 

parameter was increased in the range of [1, 2, 3, 4, 5]. 

Max_Features: Defines the number of best features to analyze and decide about each new split. Since 

absolute values depend on the number of features selected for training beforehand – be it bands or 

components – fractions of one are used to select a relative number of features: [1.0, 0.75, 0.5, 0.25].  

2.3.4. Support Vector Regression 

Support Vector Machine Regression (SVR) do not rely on statistical assumptions of the training 

data, which makes them appealing to statistical learning tasks especially in geosciences (Camps-Valls 

et al. 2009; Mountrakis et al. 2011). Under the right calibration, they were found to produce equally good 

results as neural networks (Pal and Mather 2005). Their biggest strength lies in their contentment in 

terms of size of the trainings data set, since only the values closest to the hyperplane fitted in a higher-

dimensional space are relevant to define the final model (Waske et al. 2009; Wu et al. 2008). For this 

study, we used a radial basis function (RBF) kernel and evaluated the best performing hyperparameters 

by a grid-search with cross-validation: 

γ: The kernel coefficient ‘gamma’ parameter affects the outreach of training samples in influencing 

the model as support vectors of the RBF. Higher γ allow constructing more complex relationships, but 

will eventually lead to an overfitted model, so γ is tried to be kept as low as possible. It was varied in 

decadic logarithmic steps from 1.0  10-5 to 1.0  10-1.  

C: The C-parameter regulates the SVR’s attempt to a) maximize the distance between support 

vectors and hyperplane (lower values of C) and b) correctly estimate as many data points as possible 

(higher values of C). The steps of C were set to the inverse multiplicative of γ, i.e. 1.0  100 to 1.0  105. 

2.3.5. Gaussian Process Regression 

Gaussian Process Regression (GPR) is another example for kernel-based learning. As a probabilistic 

approach, it trains a model that finds individual functions to all training data by fitting a mean and a 

covariance function (Gehler et al. 2009). For this, the marginal likelihood is maximized by changing the 

input function (prior) until an optimum is reached (posterior). Different kernels are frequently used to 

perform this task and while the balance between penalization and data fitting happens automatically, 

each kernel still requires some different parameters to hold control of the processes (Rasmussen 2003). 

All of them share the parameter length-scale, which defines the distance between two points of the 

training data necessary to significantly influence each other in the output dimension. It was varied in 

the range of [1, 2, 3, 4, 5, 10]. The alpha-parameter (αGPR) additionally scales the noise level of the target 
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variables if the GPR is run without a White-Kernel. αGPR was varied in the range of [0.001, 0.01, 0.1, 1.0, 

10.0] for all kernels.  

Radial Basis Function Kernel: The RBF-Kernel, also known as squared exponential kernel, produces 

smooth covariance functions. There are no additional parameters to adjust.  

Matérn Kernel: The Matérn kernel corresponds to the RBF-kernel in a generalized form. The ν-

parameter (“nu”) controls the smoothness of the kernel-function and becomes more like the RBF-kernel 

the higher ν. It was varied in the range of [0.1, 0.2, 0.3, 0.5, 1.5, 2.5].  

Rational Quadratic Kernel: Just like the Matérn kernel, the RQ Kernel is a modification of the basic 

RBF kernel. It is controlled by the scale mixture, which is represented by the alpha-parameter. To avoid 

confusion with αGPR, we will call the scale mixture αRQ and vary it in the range of [0.01, 0.1, 1.0, 10.0]. 

When the GPR is run to predict target variables from input data, the result comes together with an 

estimation of the confidence interval. This option makes the GPR unique among the field of machine 

learning, rendering it very useful for remote sensing tasks. On the downside, GPRs tend to be very 

demanding in terms of memory size, since all pairs of X and Y data need to be stored together with the 

actual mathematical model. 

2.4. Artificial Noise 

Adding an artificial signal to the spectral output of PROSAIL raises the error in the training process, 

but arguably increases the accuracy when dealing with real data that is subjected to a certain degree of 

uncertainty. In this study, we test two different approaches of injecting randomness to the training data: 

additive (Equation 5) and multiplicative Gaussian noise (Equation 6). 

𝑅𝑎𝑑𝑑𝑛𝑜𝑖𝑠𝑒(𝜆) =  𝑅𝑃𝑟𝑜𝑠𝑎𝑖𝑙(𝜆) +  𝜒(0, 𝜎) Equation 5 

𝑅𝑚𝑢𝑙𝑡𝑛𝑜𝑖𝑠𝑒(𝜆) =  𝑅𝑃𝑟𝑜𝑠𝑎𝑖𝑙(𝜆) ∙ (1 +  𝜒(0, 𝜎)) Equation 6 

With 𝜒(0, 𝜎) as the random noise term at wavelength λ, drawn from a Gaussian Normal 

Distribution with µ = 0 and varying values for standard deviation σ, also referred to as noise level. 

3. Results 

3.1. Training and testing with synthetic data 

3.1.1. Effects of data preprocessing 

The number of PCA components needed for an accurate training was very similar for all MLRAs 

(see Figure 2.8.1). A saturation in prediction accuracy for LAI & ALIA is observable for all algorithms. 

RFR and GPR need fewer components for a stable performance than ANN and SVR. A higher number 

of components increased the prediction time for SVR (5.2 % per added component) and GPR (2.5 % per 

added component) but not for ANN and RFR. Basic model size increased with each added component, 

except for RFR. The smallest increase is observed for ANN and the largest for the SVR. 
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Figure 2.8.1. Performance of four MLRAs in predicting PROSAIL LAI and ALIA from a LUT (n=5,000) 

in dependence of the number of PCA components. Each MLRA was initialized with its optimized set 

of hyperparameters. 

The choice of the scaler function for the predictors had little impact on the inversion results (Figure 

2.8.2). The Standard Scaler mostly performed slightly better than the Robust Scaler which in turn had 

little advantage to the Min-Max Scaler. It is evident, though, that there is a general need for scaling the 

input when using ANNs, SVRs or GPRs, whereas the RFR does not rely on scaled data. Scaling the 

targets, i.e. the biophysical parameters, conversely did not have any effect on the quality of the 

inversion. 

 

Figure 2.8.2. Performance of four MLRAs in predicting PROSAIL LAI and ALIA from a LUT (n=5,000) 

for varying scaler types. Each MLRA was initialized with its optimized set of hyperparameters. 
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3.1.2. Performance of ANN 

The choice of solver turned out to be of minor importance for prediction accuracy of the ANNs if 

both model variants are trained well (Figure 2.8.3). ADAM is strongly dependent on the maximum 

number of iterations performed by the algorithm, whereas L-BFGS is more sensitive to 𝛼𝐴𝑁𝑁 . All four 

activation functions were able to produce outputs with relative errors below 20 % and R² above 0.8. The 

overall highest accuracy (rRMSEtraining: 0.11, rRMSEtest: 0.13, R²test: 0.87) was obtained with the following 

setting: 

• Activation: tanh 

• Solver: ADAM  

• 𝛼𝐴𝑁𝑁 : 0.001 

• max_iter: 10,000 

It shall be noted that all other activation functions with both solvers performed nearly equally well, 

except for the identity activation function. The differences in performance are within ranges of slight 

random deviations at initialization.  
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Figure 2.8.3. Optimization results of ANN with different hyperparameters to predict LAI & ALIA 

together from PROSAIL. Each image shows the relative RMSEs for different alpha and max_iter 

values. Simulation runs with a R² < 0.6 are hatched in red.   

The average model size was 76 KB for all runs with the ADAM solver and 18 KB for all runs with 

the L-BFG solver. Relative training time is mostly depending on the maximum number of iterations 

which scales with 𝒪(max_iter) for the L-BFG solver but saturates for ADAM, which was faster by factor 

3.5 for max_iter = 5000 in the training process. Absolute training time for LAI & ALIA with a LUT size 

of 2000 and max_iter of 2000 took 5.2 sec using ADAM as solver method.  

Increasing the size of the LUT to 10,000 members further improved the performance of the 

algorithm up to rRMSETest = 0.11 while the size of the model stayed unaffected. Training time increased 

only by 0.9 sec and prediction time by 0.0007 sec per 1000 additional LUT members in the synthetic 

dataset. 

3.1.3. Performance of RFR 

The variation of Max_features did not have a significant impact on the model performance. Best 

results for estimation of PROSAIL LAI and ALIA were obtained when at least half of the features were 

used for training (max_feature = 0.5). A higher number of estimators in the Random Forest turned out 

to be slightly beneficial for the training success. The minimum number of samples per leaf for each 

decision tree shows a non-linear influence on model accuracy. The best result (rRMSEtraining: 0.23, 

rRMSEtest: 0.25, R²test: 0.72) was obtained with the following parametrization:  

• Max_features: 0.75 

• min_samples_leaf: 1 

• n_Estimators: 500 
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Figure 2.8.4. Optimization results of RFR with different hyperparameters to predict LAI & ALIA 

together from PROSAIL. Each image shows the relative RMSEs for different minimum of samples per 

leaf and number of estimators. Simulation runs with a R² < 0.6 are hatched in red. Max_features was 

increased from 0.25 to 1.0 in each image.  

Max_features does not have any impact on model size, but the minimum number of samples per 

leaf scales with inverse potency. Increasing the number of estimators has a linear effect on the final size 

of the model. A multivariate non-linear regression yielded an exemplary empirical relationship 

(Equation 7) to calculate the resulting model size for Random Forest when trained on the LUT with 2000 

members (R² > 0.99) with scikit-learn and pickle: 

𝑀𝑜𝑑𝑒𝑙 𝑆𝑖𝑧𝑒 [𝐾𝐵] = 134.13 ∙ xmin_leaf_samples
−1.31  ∙  𝑥𝑛_𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 Equation 7 

Training time scales linearly with 𝒪(min_leaf_samples) and 𝒪(n_Estimators). Absolute training 

time for the optimal hyperparameter setting and 2000 LUT-members was 3.9 sec, prediction time was 

0.05 sec.  

Larger synthetic datasets led to a marginal improvement in accuracy (rRMSE for LUT-size 10,000 

= 0.22) but also to very large models. For the best performing parameter set, the physical memory 

demand of a single model increased by 34 MB, training time by 25 sec and prediction time by 0.2 sec 

per 1000 additional LUT-members. 

3.1.4. Performance of SVR 

The grid search for optimized parametrization of the SVR indicates that lower radial outreach (γ) 

and higher degree of regularization (C) yield best results to estimate LAI and ALIA from PROSAIL 

synthetic data (rRMSEtraining: 0.22, rRMSEtest: 0.22, R²test: 0.81). Best results were achieved with: 

• γ: 0.001 

• C: 1000 
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Figure 2.8.5. Optimization results of SVR with different hyperparameters to predict LAI & ALIA 

together from PROSAIL. The relative RMSEs in the γ-C-Feature Space is shown for an RBF kernel. 

Simulation runs with R² < 0.6 are hatched in red. 

Model size was independent of γ and C with a mean size of 399 KB for LUT size of 2000. Calculation 

time scaled linearly with C for very low values of g (R² > 0.98 for g in [0.0001, 0.001, 0.01]), but this 

correlation broke down when g was increased further. Consequently, training time for the SVR grows 

at speed 𝒪(C) when g is parameterized such that the model performs well.  

Larger sets of training data did not improve the accuracy of the SVR, but resulted in an increased 

model size (186 KB), training time (5.4 sec) and prediction time (0.1 sec, each per 1000 additional LUT-

members). 

3.1.5. Performance of GPR 

Best results for the training of GPRs was obtained using Matérn or RBF kernels. Training and 

testing results relied stronger on the exact parameterization than ANN, SVR and RFR did, but offered 

the potential to generate robust results with high accuracy. When using the Matérn kernel, good results 

were achieved for all considered variations of ν and length scales. The noise level of the data, i.e. 𝛼𝐺𝑃𝑅 , 

showed a notable sensitivity in the training process. Low and moderate ranges for 𝛼𝐺𝑃𝑅 between 0.01 

and 0.1 turned out to yield best results. This effect is even stronger for the RBF-Kernel, for which only 

𝛼𝐺𝑃𝑅 = 0.1 led to posteriors with an estimation accuracy of R² > 0.7. 

The best performing parametrization of the GPR was: 

• Kernel: Matérn kernel (ν = 1.5) 

• 𝛼𝐺𝑃𝑅: 0.5 

• length_scale: 3 
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Figure 2.8.6. Results of the optimization of hyperparameters of the GPR with Matérn Kernel to learn 

LAI and ALIA from PROSAIL synthetic data. Each image shows the relative RMSEs for different 𝛼𝐺𝑃𝑅  

and length scale. Smoothness (ν) was increased from 0.1 to 2.5 in each image. Simulation runs with a 

R² < 0.6 are hatched in red. 

Optimal parametrization of all GPR-kernels and their accuracies are listed in Table 2.8.1: 

Table 2.8.1. Hyperparameters of the different GPR kernels and their according errors in conjointly 

predicting the PROSAIL parameters LAI and ALIA. 

Kernel Kernel-parameters GPR-parameters rRMSE R² 

Matérn ν = 1.5 𝛼𝐺𝑃𝑅  = 0.5; length_scale = 3 0.22 0.75 

RBF --- 𝛼𝐺𝑃𝑅  = 0.1; length_scale = 2 0.22 0.75 

RQ 𝛼𝑟𝑞 = 0.5 𝛼𝐺𝑃𝑅  = 0.5; length_scale = 4 0.23 0.70 
 

A bigger issue when dealing with GPR was the size for storing the algorithms on the computer 

drive. Its model size only depends on the size of the training data set and not the parameterization. For 

a LUT-size of 2000, model size was 19,200 KB, which was larger than the actual LUT.  

Training speed is kernel dependent. For Matérn kernels, calculation time is strongly reduced (factor 

10+) when using intermediate values for ν, i.e. 0.5, 1.5 and 2.5. 𝛼𝐺𝑃𝑅 and the length scale do not influence 

training speed. Average calculation time for intermediate ν-values was 2.97 sec for LUT size of 2000. 

GPRs using the RBF-kernel were slightly quicker in training for lower values of 𝛼𝐺𝑃𝑅 and length scales 

of 1 or 10. Average training time was 3.3 sec. The RQ-Kernel training speed was sensitive to the scale 

mixture parameter with longer training times for higher values of 𝛼𝑅𝑄 and 7.00 sec on average for the 

tested setting. 

The GPRs were most sensitive to LUT-size. Training the best performing parameterization of that 

algorithm with 10,000 instead of 2,000 members led to an improvement from rRMSETest = 0.31 to 0.23. 

On the downside, this came to the expense of a massive increase of computational demand. Model size 
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grew with 𝒪²(LUT-size), e.g. 480 MB for 10,000 members and 3 GB for 25,000 members. Training time 

increased even stronger with 𝒪2.6(LUT-size) so that it took more than 30 minutes for one single model 

to be trained and 4.2 sec for one spectrum, i.e. one pixel in the sensor image, to be inverted. 

3.2. Validation and re-calibration on real Spectral Data 

The best performing version of each algorithm was validated using field spectral and in situ data 

of the MNI test site. The results, however, were poor. None of the algorithms were able to reproduce in 

situ LAI observations with acceptable deviations, revealing the discrepancy between intrinsic model 

optimization and the real-world situation (see Figure 2.8.7).  

 

Figure 2.8.7. In situ measured LAI versus LAI estimations of the four MLRAs with optimized 

hyperparameters. 

The GPR showed promising correlations, but the overall estimation error was weak for all 

algorithms shown. Accordingly, they were trained again, but this time a filter of artificial noise was 

applied to the PROSAIL spectra to allow training of more robust models. As shown in Table 2.8.2, 

additive noise is preferred over multiplicative noise in terms of prediction accuracy of real-life data.  
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Table 2.8.2. Impact of artificial noise on biophysical variable estimations by MLRAs. The examples 

represent the R² between output of ANNs fed with PROSAIL synthetic spectra of different levels 

of noise and in situ measured LAI and ALIA 

 LAI ALIA 

Noise σ [%] Additive Multiplicative Additive Multiplicative 

0 0.04 0.04 0.00 0.00 

1 0.45 0.02 0.02 0.00 

2 0.71 0.00 0.00 0.00 

3 0.66 0.16 0.11 0.01 

4 0.81 0.21 0.21 0.00 

5 0.77 0.23 0.18 0.01 

10 0.65 0.43 0.20 0.00 

15 0.41 0.63 0.00 0.07 
 

 

 

Figure 2.8.8. In situ measured LAI versus LAI estimations of the four MLRAs with optimized 

hyperparameters trained on PROSAIL synthetic spectra with 4 % additive noise. 

Additive noise with σ = 4 % drastically improved the correlation for all algorithms except for GPR. 

Relative errors of LAI retrieval, however, were still too high for operational practice, e.g. ANN: 

rRMSELAI = 0.71. For this reason, linear models were fit to a training set of in situ measured variables 

and validated on the remaining data, which in turn served as the test set. The final success was evaluated 

by means of rRMSE between the transformed output of the algorithms and in situ representations. 

The results of that linear regression are summarized in Table 2.8.3. At the end of the process, LAI 

observations could be estimated by calibrated ANNs with an accuracy of rRMSE = 0.24. The linear 

regression model for ALIA had less predictive power (R² = 0.30) but approximated leaf inclinations with 

a relative error of 0.18. The rRMSE for Cab was 0.19 and for LMA it was 0.22. The calibrated SVR outputs 
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show similar ranges of errors for all parameters, but the linear correction model had a slightly higher 

correlation for LAI and ALIA than the ANN could achieve. An illustration of the linear regression is 

shown in Figure 2.8.9, taking the example of SVR. With Random Forest Regression the obtained results 

were poorer except for the estimation of LMA in which a weak linear signal of R² = 0.17 was found in 

the training data. The GPR with Matérn kernel was outperformed by all three algorithms, as it did not 

improve neither with the added noise nor after linear transformation.  

 

 

Table 2.8.3. Summary of the final accuracy measures of the four MLRAs after linear correction. The 

R² is calculated between algorithm output and in situ measured variables of the training set. The 

relative error is calculated after correction with a linear model for the remaining test set of the field 

data. 

Algorithm Parameter 
R²  

(Trainig set) 

Regression 

slope  

(Training set) 

Regression 

intercept 

(Training set) 

rRMSE 

(Test set) 

      

ANN 

LAI 0.75 0.69 -0.60 0.24 

ALIA 0.30 0.78 20.16 0.18 

Cab 0.51 0.78 36.52 0.19 

LMA 0.09 0.32 0.00 0.22 

      

RFR 

LAI 0.71 1.50 -1.04 0.32 

ALIA 0.16 0.55 25.96 0.19 

Cab 0.37 0.59 27.75 0.20 

LMA 0.17 0.88 0.00 0.27 

      

SVR 

LAI 0.81 0.60 -0.23 0.29 

ALIA 0.50 0.75 19.02 0.16 

Cab 0.48 0.75 32.88 0.16 

LMA 0.01 0.06 0.00 0.21 

      

GPR 

LAI 0.23 1.01 0.68 0.58 

ALIA 0.07 0.21 52.97 0.26 

Cab 0.24 0.86 33.63 0.23 

LMA 0.08 -0.22 0.01 0.18 
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a) 

  

b) 

  

c) 
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d) 

  

Figure 2.8.9. Illustration of the calibration of the SVR output on in situ measured variables and the 

validation of the resulting linear model on the test set.  

A separate calculation of the linear models for each crop type did not change the further outcome 

of the inversion. This was tested by a tenfold shuffling of the training subset. Four times maize data was 

fit with higher accuracies than wheat, six times it was the other way around. In four of the ten variations, 

best results were achieved when the model was trained on both crops together.  

4. Discussion 

4.1. Performance of the MLRAs on synthetic data 

All four machine learning regression algorithms tested – Artificial Neural Network, Random Forest 

Regression, Support Vector Regression and Gaussian Process Regression – were successful in learning 

the inverse mode of the PROSAIL model. They were trained to predict biophysical and biochemical 

parameters from corresponding reflectance signatures of a synthetic PROSAIL Look-Up-Table. High to 

very high accuracies could be achieved since training and validation data represented the same 

statistical population, i.e. they were generated from the same model. An indispensable preparation of 

the predictors includes dimensionality reduction and scaling.  

ANNs did particularly well in learning PROSAIL output and predicting the associated set of 

parameters. They benefit from large LUTs and were also the fastest in training and prediction. 

Estimation accuracy for the test set was only marginally lower than for the training set, indicating that 

overfitting could be avoided during training. The ADAM solver was supposed to be computationally 

more efficient (Kingma and Ba 2014), which is confirmed by our analysis. The L-BFGS solver converged 

after fewer iterations, but ADAM performed the minimization task with overall higher accuracies and 

was faster by factor 2.5 on average. The tanh activation function is often used for binary classification 

problems, but has also gained popularity in a variety of regression applications (Karlik and Olgac 2011) 

and worked better than the other activation functions considered in this study. 

RFR is supposed to deliver high accuracy while being unaffected from outliers and noise (Breiman 

2001). Our findings support these assumptions and show an astounding insensitivity towards 

parameterization of the hyperparameters in the considered ranges. A total of 140 variations of the 

minimum samples per leaf, maximum numbers of features and number of estimators was tested, and 

all resulted in rRMSE between 0.25 and 0.32. Neither a poor nor a great result could be achieved with 

RFR when a sufficient number of estimators was considered.  

As expected, the combination of C and γ had a crucial impact on retrieval accuracy of the SVR. 

High regularization combined with a low outreach of the training samples led to second highest 
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accuracies – only outperformed by ANN – but only for the small LUT of size 2000. The algorithm is 

recommended when the size of the training set is limited, as larger data sets lead to very long training 

times but not to better predictions. This is perfect in line with (Waske et al. 2009) who found that in 

many studies SVR performed better or equally well in comparison to other algorithms, but also 

highlighted their advantage especially for small training sets. It is even argued that SVR could 

potentially achieve results of the same quality as an ANN if the right settings were used (Pal and Mather 

2005). This is confirmed for the training of PROSAIL data with an RBF Kernel and properly tuned 

hyperparameters.  

Training of a GPR algorithm mostly means finding the right kernel that suits the given task. In the 

study case, most kernels could be trained to achieve accuracies of rRMSE = 0.30, but it was difficult to 

reach results beyond that line. Interestingly, noise played an important role in the training of all GPRs. 

For the RBF Kernel, the corridor of valid predictions of the algorithm lies between αGPR = 0.1 and 1.0, but 

undercuts the R² threshold of 0.6 for all other instances. The Matérn kernel performed better for higher 

values of ν, i.e. less sharp ridges in the covariance function or smoother realizations of the Gaussian 

process. In doing so, lower noise levels could be applied and the accuracy was raised to rRMSETest = 0.26. 

It remains problematic that there is an infinite amount of possible combinations of kernels and that also 

their combination would have to be optimized to obtain ideal results. Using only one kernel means that 

there is no guarantee an optimal parameterization is found. Confidence intervals can be calculated for 

each GPR prediction to indicate a certainty of the estimation of the target variables. However, for a 

proper evaluation of the final model accuracy, the comparison with validation data is still inevitable. 

Another issue is that GPRs tend to become extremely large and slow with growing size of the training 

data. Even if training success was higher than that of the ANN, the model could hardly be distributed 

to other users and the inversion of image scenes would take disproportionately long. Extrapolating the 

necessary 0.58 seconds per single inversion on the tested system, it would take up to 160 hours for yet 

a small image of 1,000 by 1,000 pixels. 

4.2. Performance of the MLRAs on real data 

The predictive power of the analyzed MLRAs was raised close to optimum by exhaustive 

optimization of the hyperparameters. During this process, the algorithm is improved in its capability to 

link PROSAIL spectral output (X) to PROSAIL vegetation input parameters (Y). Even if the radiative 

transfer model is complex, there is a mathematical relationship between X and Y that can be learned 

and reproduced. It turned out that the resulting model became over-determined in the optimization 

process so that the algorithms were highly specialized on the model setting. When ANN are run on real 

vegetation signatures, they extrapolate if spectral information is out of their training range. This leads 

to the shifted and distorted model outputs shown in Figure 2.8.7. Even though the same happened for 

SVR and GPR, ANNs in particular are well known to react unpredictably upon that issue (Waske et al. 

2009). Adding noise to the synthetic data before training is a popular choice to make the algorithms 

more robust towards unseen data from a different distribution or source (Rivera-Caicedo et al. 2017). 

An additive noise term from a Gaussian Normal Distribution with standard deviation of 4 % reflectance 

best accounted for the uncertainties of PROSAIL simulations as well as the errors of in situ 

measurements of reflectances and crop variables. The same noise level had already been proposed when 

comparing PROSAIL output with real sensor data (Bacour et al. 2006). Comparing the predictions of 

LAI, ALIA, Cab and LMA with the variables as measured in the field, striking deviations are still 

observed. A re-calibration of the MLRA output, as suggested by (Fang and Liang 2003) was the logical 

last step to make the algorithms perform well also on real-life data. Simple linear models were chosen 

over higher degree polynomial or exponential curve fitting to keep control over the ranges of prediction 

in case of extrapolating beyond the observations of the MNI field campaign. Adding noise to spectral 

data did not improve predictions for the GPR, which already uses αGPR to account for noise in the data. 

Winter wheat and maize did not demand individual regressions to reach best accuracies, assuring that 

in this context the inversion of PROSAIL works independently of the crop type.  

The final performance of the retrieval of LAI is lower compared to other studies. Some approaches 

may produce lower relative errors below, but they are hard to compare to our findings for different 
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reasons. Sticking to synthetic data only (Fang and Liang 2003; Koetz et al. 2005; Weiss et al. 2000) relates 

to the first step of this study in which the performance of within-model-predictability was tested. 

Algorithms trained on real data also produce better outputs (Verrelst et al. 2016; Yang et al. 2011), but 

are sensitive to slight variations in illumination, background signal or crop type. In most cases, 

parameter retrievals from real data are realized directly with LUT inversions (Danner et al. 2017; 

Locherer et al. 2015; Verger et al. 2014; Verrelst et al. 2014) with usually higher performance, because 

additional uncertainties of the MLRAs are avoided. The decreased performance of machine learning 

when transferring the algorithm from synthetic to field data is confirmed for LAI e.g. in (Doktor et al. 

2014). 

The retrieval of ALIA was accomplished with relative errors between 0.16 and 0.26. However, this 

means that predicted leaf inclinations are on average 21 % away from the data mean, which is mainly 

attributed to the dense scatter cloud and the clusters of in situ measured ALIA around 50 – 60°. The 

linear models explain between 30 and 50 % of the variations of the in situ measurements. Correcting the 

inversion results of each MLRA accordingly, posed a large improvement in predictive power especially 

for ANN. Chlorophyll contents were underestimated by all algorithms, but a linear model helped to 

correct this offset and reduced relative errors down to 0.16 (SVR) and 0.19 (ANN). The inversion of 

LMA, however, at the moment is still subjected to quite large deviations. In the case of SVR and ANN, 

LMAEstimated and LMAMeasured were weakly correlated, but scattering around their data means, so high 

RMSEs prevailed even after optimization of the training and post-processing of the algorithms.  

4.3. Limitations of the study 

Significance of the performance of each MLRA is restricted to the use of python’s scikit-learn 

module. It should be kept in mind that software solutions of other packages or programming languages 

running on other machines may be faster or produce different output than in this study. Furthermore, 

there is a growing field of research dealing with speed optimization of MLRAs, which is exhaustively 

reviewed in (Camps-Valls et al. 2016). 

For a comprehensive interpretation of the results, there are limitations that must be considered. In 

situ variables from the MNI campaigns were measured in the field, but each of them introduces its own 

error sources. LiCor LAI-Meters invert leaf area from the measured gap fraction. This method is well 

established in the theoretical and practical research of canopy architecture, but is known to saturate for 

values above 5 m2 m-2 (Gower et al. 1999). In fact, the estimations for LAI seem to fit better below that 

value (see Figure 2.8.9a), so the actual accuracy may as well be better than indicated by the scores. 

Average Leaf Inclinations, besides being potentially subjected to a bias at reading of the analogue 

display, are only one factor in the description of crop geometry. For instance, a canopy constructed from 

fully erected and flat leaves only would have the same ALIA as a canopy with perfect medium 

inclinations (both ALIA = 45°) but their spectral signal would be quite different. The deficits in the 

inversion of canopy geometry have been addressed by using a training and test set of ALIA that was 

adjusted by manual fitting (Danner et al. 2019). 

Given that in situ variables were measured with sufficient accuracy, there remains the challenging 

transfer from model findings to applications of the real world. In the global inversion approach, 

PROSAIL parameters not analyzed in this study were inverted together with LAI, ALIA, Cab and LMA 

at the same time. A mismatch for e.g. the leaf structure parameter (N) could not be quantified due to a 

lack of field methods to measure this parameter. It would subsequently affect the inversion of 

parameters with similar spectral ranges of sensitivity, with a suspected influence on e.g. the accuracy of 

LMA estimations.  

The validation of the machine learning approach was done for data from field instruments. An 

operational use of the Biophysical Vegetation Processor will introduce scaling effects from leaf to 

canopy and from proximal to spaceborne spectral observations (Malenovský et al. 2019). Real sensor 

data of hyperspectral satellites will be crucial for a re-calibration of the linear models. Such data should 

also include a larger variety of crops – especially soybean, rice and sorghum – and other types of 

vegetation like grassland and forests to extend validity to the major part of vegetated surfaces around 

the globe. 
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5. Conclusion 

We demonstrated that Artificial Neural Networks (ANN), Random Forest Regression (RFR), 

Support Vector Machine Regression (SVR) and Gaussian Process Regression (GPR) were all able to learn 

the inverse case of PROSAIL in a way that they predict biophysical and biochemical parameters from 

spectral data with accuracies of up to rRMSE = 0.13. Transforming the input data by applying a PCA 

into at least 15 components and a subsequent z-transformation were a prerequisite for good retrieval 

results just like an optimal tuning of hyperparameters of the algorithms. ANNs were best suited for this 

task, but the model could not simply be transferred to real-life observations. Instead, artificial noise and 

re-calibration with a training set of in situ measured variables was needed to account for uncertainties 

occurring outside of the ideal model world. Estimation errors for this approach are higher than for most 

other techniques using synthetic data. These deviations need to be accepted for building a vegetation 

processor that retrieves biophysical and biochemical variables operationally from hyperspectral 

imaging data on its own. Such an application needs to be fast in processing, to take up little memory 

and to be easily distributed to a broad user community. It is concluded that ANNs excel in all these 

scopes. They were outperformed by SVRs in terms of final accuracy of the parameter retrieval, but are 

several orders of magnitude smaller and faster and are thus considered the better choice for the future 

EnMAP Managed Vegetation Scientific Processor. Further development is encouraged to improve the 

performance of the algorithms to estimate also the less sensitive parameters with higher accuracy and 

less prediction time.  
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3. Synthesis & Outlook 

The initial scientific objectives of this thesis were to test and improve approaches to 

retrieve biochemical and biophysical variables from hyperspectral data like that of the future 

EnMAP-HSI. After the experimental work with different LUT inversions it could be concluded 

that parameter estimations with high accuracy are possible not only from nadir but also from 

images recorded in across-track pointing mode. A sought hierarchical approach failed mainly 

because of the separation of the structural canopy variables LAI and Average Leaf Inclination 

Angle. A global retrieval of LAI, ALIA and Ccab was instead achieved with the use of an 

Artificial Neural Networks and a Support Vector Machine Regression when the synthetic 

training data was treated with artificial gaussian noise. Accuracies with this method are lower 

compared to retrieval schemes devoted to all-synthetic or all-real-world data. These studies 

may serve as road signs for the general capability of novel methods, but they are hardly 

realizable in actual practical scopes.  

The integration of a priori information could improve model outputs as well as multi-

temporal or multi-angular observations. These advancements will gain more relevance when 

a stream of spaceborne hyperspectral images becomes available with repetition rates of few 

days. EnMAP, however, is planned as a scientific mission with an expected strong competition 

between institutions and study areas. The EnMAP managed vegetation scientific processor is 

considered to be a practical tool for quick estimation of relevant crop properties, but the 

development of that application will need to persist beyond the completion of this thesis.  

Consecutive field campaigns should include additional crops like sugar beet, rice or 

potatoes to test whether the proposed solutions are indeed independent of crop type. Further 

MLRAs will have to be trained to represent a variety of illumination conditions and sensor 

tilts. The retrieval of Cw from hyperspectral data has been successfully tested by (Wocher et al. 

2018) by using the physical-based approach of the 970 nm domain of liquid water absorption. 

This method will be added to the existing scheme and run in advance of the MLRA to further 

check whether a pixel contains the signal of a vital plant or not. With these refinements ahead, 

an application is evolving that has the potential to be used by a broad user community and 

ultimately contribute another piece to the complex puzzle of modern farming practice. 
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Supplementary Material 

S1. Deviations between the PROSAIL model and field spectral data for winter wheat seasons of 2014, 

2015, 2017, 2018 – as measured. 
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S2. Deviations between the PROSAIL model and field spectral data for maize seasons of 2014, 2017, 

2018 – as measured. 
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S3. Deviations between the PROSAIL model and field spectral data for winter wheat seasons of 2014, 

2015, 2017, 2018 – optimized ALIA & EWT. 
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S4. Deviations between the PROSAIL model and field spectral data for maize seasons of 2014, 2017, 

2018 – optimized ALIA & EWT. 
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S5. Deviations between the PROSAIL model and field spectral data for winter wheat seasons of 2014, 

2015, 2017, 2018 – optimized ALIA, EWT & Cbrown. 
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S6. Deviations between the PROSAIL model and field spectral data for maize seasons of 2014, 2017, 

2018 – optimized ALIA, EWT and Cbrown. 
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S7. Manual fitting of ALIA, EWT and Cbrown for four winter wheat growing seasons. 

Date 
Phenology 

[BBCH] 

ALIA [deg] EWT [cm] Cbrown [-] 

in situ optimized in situ optimized in situ optimized 

2014-04-17 3 75 57 0.035 0.026 0.0 0.10 

2014-04-23 3 74 55 0.032 0.032 0.0 0.08 

2014-05-19 4 74 56 0.028 0.042 0.0 0.1 

2014-06-02 5 67 49 0.025 0.060 0.0 0.1 

2014-06-06 6 58 49 0.026 0.058 0.0 0.15 

2014-06-18 7 40 43 0.027 0.058 0.1 0.25 

2014-06-26 7 25 44 0.026 0.060 0.1 0.28 

2014-07-03 8 28 54 0.030 0.056 0.1 0.33 

2014-07-16 8 39 62 0.026 0.040 0.5 1.00 

2014-07-25 8 40 ** 0.012 ** 1.0 ** 

2014-12-12 1 80 ** 0.030 ** 0.0 ** 

2015-03-19 2 40 55 0.026 0.080 0.0 0.00 

2015-04-10 2 68 66 0.032 0.035 0.0 0.00 

2015-04-22 3 77 52 0.034 0.043 0.0 0.05 

2015-05-08 3 77 67 0.031 0.034 0.0 0.07 

2015-06-02 5 66 70 0.026 0.048 0.0 0.10 

2015-06-12 6 56 66 0.028 0.049 0.0 0.15 

2015-07-01 7 60 69 0.025 0.044 0.1 0.20 

2015-07-10 8 55 63 0.026 0.066 0.5 0.30 

2015-07-16 8 35 ** 0.018 ** 0.9 ** 

2015-07-21 8 70 ** 0.008 ** 0.9 ** 

2017-03-29 2 54 65 0.023 0.018 0.0 0.00 

2017-04-10 2 77 63 0.018 0.037 0.0 0.05 

2017-04-21 2 78 67 0.020 0.031 0.0 0.05 

2017-05-10 3 76 65 0.018 0.035 0.0 0.08 

2017-05-16 3 77 69 0.018 0.037 0.0 0.08 

2017-05-29 4 69 64 0.013 0.043 0.0 0.10 

2017-06-08 6 64 65 0.014 0.052 0.0 0.15 

2017-06-13 6 64 58 0.014 0.050 0.1 0.20 

2017-06-19 6 64 64 0.014 0.048 0.1 0.20 

2017-06-26 7 65 66 0.013 0.050 0.1 0.25 

2017-07-06 8 65 69 0.013 0.037 0.1 0.30 

2017-07-17 8 45 44 0.003 0.032 0.8 1.00 

2018-04-12 2 69 57 0.019 0.027 0.0 0.05 

2018-04-18 3 69 67 0.019 0.031 0.0 0.05 

2018-04-27 3 73 60 0.018 0.038 0.0 0.10 

2018-05-07 3 76 57 0.018 0.036 0.0 0.15 

2018-06-15 6 61 70 0.014 0.045 0.0 0.15 

2018-06-21 6 58 72 0.012 0.038 0.0 0.20 

2018-07-13 8 45 ** 0.001 ** 1.0 ** 

** The low amount of biomass did not allow a proper fitting for this variable and date. 
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S8. Manual fitting of ALIA, EWT and Cbrown for three maize growing seasons. 

Date 
Phenology 

[BBCH] 

ALIA [deg] EWT [cm] Cbrown [-] 

in situ optimized in situ optimized in situ optimized 

2014-06-02 1 40 ** 0.031 ** 0.00 ** 

2014-06-06 3 42 50 0.031 0.022 0.00 0.15 

2014-06-18 3 45 44 0.026 0.036 0.00 0.05 

2014-06-26 3 36 55 0.027 0.031 0.00 0.10 

2014-07-03 3 54 60 0.031 0.035 0.00 0.05 

2014-07-25 6 56 66 0.026 0.037 0.00 0.05 

2014-08-08 7 42 62 0.028 0.025 0.00 0.05 

2014-08-22 7 62 70 0.027 0.023 0.00 0.08 

2014-08-28 7 49 62 0.025 0.037 0.00 0.20 

2014-09-24 8 51 69 0.028 0.017 0.07 0.20 

2014-10-14 9 75 ** 0.011 ** 0.81 ** 

2017-06-13 3 49 ** 0.016 ** 0.00 ** 

2017-06-19 3 51 77 0.021 0.028 0.00 0.05 

2017-06-26 3 71 64 0.012 0.022 0.00 0.10 

2017-07-06 5 65 72 0.014 0.022 0.00 0.06 

2017-07-17 6 70 58 0.018 0.028 0.00 0.06 

2017-08-18 8 64 43 0.014 0.025 0.00 0.10 

2017-08-30 8 64 28 0.017 0.024 0.00 0.10 

2017-09-15 8 68 63 0.014 0.030 0.05 0.18 

2018-06-15 3 51 54 0.025 0.032 0.00 0.10 

2018-06-21 3 49 14 0.025 0.033 0.00 0.10 

2018-07-13 6 60 67 0.023 0.045 0.00 0.08 

2018-07-19 7 60 68 0.020 0.050 0.00 0.15 

2018-07-26 7 65 65 0.025 0.042 0.00 0.15 

2018-08-17 8 55 74 0.022 0.042 0.00 0.20 

2018-08-22 8 75 66 0.022 0.039 0.01 0.20 

 

** The low amount of biomass did not allow a proper fitting for this variable and date. 

 


