
 

 

 

DISSERTATION ZUR ERLANGUNG DES DOKTORGRADES 

DER FAKULTÄT FÜR CHEMIE UND PHARMAZIE 

DER LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN 

SYNTHESIS AND CHARACTERIZATION OF NEW AND 

ADVANCED ENERGETIC MATERIALS BASED ON 

AZOLES AND DIAZINES 

 

IVAN GEORGIEV GOSPODINOV 

AUS 

DOBRICH, BULGARIEN 

2019 



 
II 

 

Erklärung 

Diese Dissertation wurde im Sinne von § 7 der Promotionsordnung vom 28. November 2011 von Herrn 

Professor Dr. Thomas M. Klapötke betreut. 

 

 

Eidesstattliche Versicherung 

Diese Dissertation wurde eigenständig und ohne unerlaubte Hilfsmittel erarbeitet. 

 

 

München, den 12. September 2019 

 

 

                      ____________________________ 

                IVAN GEORGIEV GOSPODINOV 

 

 

 

 

Dissertation eingereicht am:      12. September 2019 

1. Gutachter:        Prof. Dr. Thomas M. Klapötke 

2. Gutachter:        Prof. Dr. Konstantin Karaghiosoff 

Mündliche Prüfung am:     24. Oktober 2019 

 



 
III 

 

 

 

 

 

 

 

ГЕОРГИ ГОСПОДИНОВ ГАНЧЕВ 

 

 



 
IV 

 

First of all, I would like to show my gratitude to and thank Prof. Dr. Thomas M. Klapötke for giving me 

the opportunity to do my Ph.D. thesis under his guidance. I am deeply grateful for the given freedom 

during my research and allowing me to investigate my own topics and ideas. I would like to thank Prof. 

Dr. Thomas M. Klapötke for the given opportunities to present my scientific results at many different 

international conferences during my time in his research group. Prof. Dr. Thomas M. Klapötke is not only 

a great mentor and scientist but also an incredible leader for which I thank him! 

Secondly, I would like to express my gratitude to Prof. Dr. Konstantin Karaghiosoff who I met for the 

first time in the beginning of my education as a chemist. I would like to thank Prof. Dr. Konstantin 

Karaghiosoff not only for the endless NMR and crystal structure measurements, but also for the great 

conversations and all the shared wisdom during the years of my education. Prof. Dr. Konstantin 

Karaghiosoff is one of the sincerest and heartily professors I have ever met. In addition, I am very grateful 

to Prof. Dr. Konstantin Karaghiosoff for being the second supervisor of this thesis. 

I would also to thank Dr. Jörg Stierstorfer for the provided help by solving all crystal structures, making 

all calculations for the heats of formation and also for proof reading all of my publications and this thesis. 

I would like to thank Dr. Jörg Stierstorfer for great discussions regarding chemistry and giving me advices 

with synthetic work. 

I would like to thank also Ms. Irene Scheckenbach, which is the “beating hearth” of Prof. Dr. Thomas M. 

Klapötke`s group. I am deeply grateful for her help with all bureaucracy, which a Ph.D. student has to 

face at the university. 

I want to express my gratitude to all members of the research groups of Prof. Klapötke and 

Prof. Karaghiosoff. We had some great conversations during our lunch and coffee breaks. In addition, I 

cannot forget to mention our “crazy, but funny” talks with Dr. Johann Glück, Dr. Marc Bölter, Cornelia 

Unger, Teresa Küblböck, Marcel Holler, Dr. Thomas Reith, Anne Friedrichs and Maximilian 

Wurzenberger. I share some precious and memorable moments with this incredible ladies and gentlemen. 

I will never forget our trips to Prague. I thank Dr. Johann Glück for organizing all mountain tours, Dr. 

Marc Bölter for organizing all ski trips and forcing me to buy ski gear and also Marcel Holler for helping 

me better understand complex energetic formulations and energetic systems. Cornelia Unger, Teresa 

Küblböck, Anne Friedrichs, Elena Reinhardt and Alicia Dufter must be thanked for being so kind and 

great toward me. 

Marco Reichel is thanked for the great discussions regarding synthetic work and for being a great and 

friendly colleague.  



 
V 

 

To my former (Dr. Johann Glück, Dr. Benedikt Stiasny, Dr. Martin Härtel) and current (Marcel Holler, 

Anne Friedrichs, Maximilian Benz, Stefanie Heimsch, Greta Bikelyte, Marcus Lommel and Michael 

Gruhne) lab mates I want to thank for the great atmosphere in the laboratory and all great conversations 

in the early morning. 

Stefan Huber is thanked for all sensitivity measurements during the course of this thesis and for proof 

reading some parts of this work. 

Of course, I am very grateful to my bachelor and “F-Praktikum” students Maximilian Benz, Thaddäus 

Koller, Johannes Singer, Gustav Wulff, Jan Wilhelm Cremers, Daniel Axthammer, Marvin Ertelt and 

Stefan Wiedemann for their help during all synthetic work. 

Last, but not least, I want to show my gratitude to the people who made this work possible: my family. I 

thank my mother for her support during my whole life and education and for believing in my potential. I 

want to thank my sister for her support and help during my whole education in Germany. At the end I 

would like to thank my beloved father, who showed me what it means to be a man, a husband and a father. 

 

 

 

 

 

 

 

 

Thank you! 

 

 

  



 
VI 

 

Table of Content 

1. Introduction ....................................................................................................................................... 1 

1.1. Overview ..................................................................................................................................... 1 

1.1.1. Definition ............................................................................................................................. 1 

1.1.2. Classification ........................................................................................................................ 2 

1.2. Design of New Secondary Explosives ......................................................................................... 6 

1.2.1. Physico-chemical Properties ................................................................................................ 6 

1.2.2. Project Origin ....................................................................................................................... 7 

1.3. Objectives .................................................................................................................................. 11 

1.4. References ................................................................................................................................. 14 

2. Summary and Conclusions ............................................................................................................. 18 

2.1. Chapter 3: 3,4-Bis(4-nitramino-1,2,5-oxadiazol-3-yl)-1,2,5-furoxan (BNAFF) ....................... 20 

2.2. Chapters 4 and 5: Energetic Materials Based on the Pyridazine Scaffold ................................ 21 

2.3. Chapter 6: 3,3'-Diamino-4,4'-dinitramino-5,5'-bi-1,2,4-triazole ............................................... 23 

2.4. Chapter 7: Polynitrated Derivatives Based on the 4,4-Bipyrazole Scaffold ............................ 24 

2.5. Chapters 8 and 9: Energetic Derivatives Based on TriNBPz and TNBPzH2O ........................ 25 

2.6. Chapter 10: 1,2,4-Triazol-3-yl-1,3,4-oxadiazole Based Energetic Materials ............................ 28 

2.7. Chapter 11: Toward the Synthesis of 3,5-Diamino-4,6-dinitropyridazine ................................ 29 

2.8. References ................................................................................................................................. 29 

3. Energetic Compounds Based on 3,4-Bis(4-nitramino-1,2,5-oxadiazol-3-yl)-1,2,5-furoxan 

(BNAFF) .................................................................................................................................................. 30 

3.1. Introduction ............................................................................................................................... 31 

3.2. Experimental Section ................................................................................................................. 32 

3.2.1. General procedures ............................................................................................................. 32 

3.2.2. Synthesis ............................................................................................................................. 32 

3.3. Results and Discussion .............................................................................................................. 38 

3.3.1. Crystal structures ................................................................................................................ 39 

3.3.2. NMR Spectroscopy ............................................................................................................ 43 



 
VII 

 

3.3.3. Physicochemical properties ................................................................................................ 44 

3.3.4. Thermal behavior ............................................................................................................... 46 

3.3.5. Sensitivities ........................................................................................................................ 46 

3.3.6. Detonation parameters ........................................................................................................ 46 

3.4. Conclusion ................................................................................................................................. 47 

3.5. Acknowledgement ..................................................................................................................... 47 

3.6. References ................................................................................................................................. 47 

3.7. Supporting Information ............................................................................................................. 50 

3.7.1. X-ray Diffraction ................................................................................................................ 50 

3.7.2. Computations ..................................................................................................................... 53 

3.7.3. NMR Spectra ...................................................................................................................... 55 

3.7.4. References .......................................................................................................................... 56 

4. Energetic Functionalization of the Pyridazine Scaffold: Synthesis and Characterization of 3,5-

Diamino-4,6-dinitropyridazine-1-oxide ................................................................................................ 58 

4.1. Introduction ............................................................................................................................... 59 

4.2. Results and Discussion .............................................................................................................. 60 

4.2.1. X-ray diffraction ................................................................................................................. 62 

4.2.2. 15N NMR spectroscopy ...................................................................................................... 64 

4.2.3. Physical and detonation properties ..................................................................................... 65 

4.3. Conclusions ............................................................................................................................... 69 

4.4. Experimental Section ................................................................................................................. 69 

4.4.1. General Considerations ...................................................................................................... 69 

4.5. Acknowledgements ................................................................................................................... 74 

4.6. References ................................................................................................................................. 74 

4.6. Supporting Information ............................................................................................................. 76 

4.6.1. Synthesis and general considerations ................................................................................. 76 

4.6.2. X-ray diffraction ................................................................................................................. 78 

4.6.3. Small-scale shock reactivity test (SSRT) ........................................................................... 82 

4.6.4. Computations ..................................................................................................................... 82 

4.6.5. Detonation parameters ........................................................................................................ 84 



 
VIII 

 

4.6.6. DTA .................................................................................................................................... 85 

4.6.7. 1H and 13C NMR spectra .................................................................................................... 86 

4.6.8. References ........................................................................................................................ 100 

5. The Pyridazine Scaffold as a Building Block for Energetic Materials: Synthesis, 

Characterization and Properties ......................................................................................................... 102 

5.1. Introduction ............................................................................................................................. 103 

5.2. Results and Discussion ............................................................................................................ 104 

5.2.1. Synthesis ........................................................................................................................... 104 

5.2.2. Crystal structures .............................................................................................................. 106 

5.2.3. 15N NMR spectroscopy .................................................................................................... 112 

5.2.4. Detonation properties ....................................................................................................... 112 

5.3. Conclusions ............................................................................................................................. 115 

5.4. Experimental Section ............................................................................................................... 115 

5.5. Acknowledgements ................................................................................................................. 118 

5.6. Supporting Information ........................................................................................................... 119 

5.6.1. Synthesis and general considerations ............................................................................... 119 

5.6.2. X-ray diffraction ............................................................................................................... 119 

5.6.3. Computations ................................................................................................................... 122 

5.6.4. Detonation parameters ...................................................................................................... 124 

5.6.5. Literature .......................................................................................................................... 124 

6. Metal Salts of 3,3'-Diamino-4,4'-dinitramino-5,5'-bi-1,2,4-triazole in Pyrotechnic 

Compositions ......................................................................................................................................... 126 

6.1. Introduction ............................................................................................................................. 126 

6.2. Results and Discussion ............................................................................................................ 128 

6.2.1. Syntheses .......................................................................................................................... 128 

6.2.2. Crystal Structures ............................................................................................................. 129 

6.2.3. Thermal and energetic properties ..................................................................................... 133 

6.2.4. Pyrotechnical formulations .............................................................................................. 134 

6.3. Conclusions ............................................................................................................................. 136 

6.4. Experimental Section ............................................................................................................... 136 



 
IX 

 

6.5. Acknowledgments ................................................................................................................... 139 

6.6. References ............................................................................................................................... 139 

6.7. Supporting Information ........................................................................................................... 141 

6.7.1. Crystallographic data ........................................................................................................ 141 

6.7.2. References ........................................................................................................................ 144 

7. Facile and Selective Polynitrations at the 4-Pyrazolyl Dual Backbone: A Straightforward 

Access to a Series of High-Density Energetic Materials ................................................................... 145 

7.1. Introduction ............................................................................................................................. 146 

7.2. Results and discussion ............................................................................................................. 147 

7.2.1. Synthesis ........................................................................................................................... 147 

7.2.2. Single crystal X-ray diffraction studies ............................................................................ 149 

7.2.3. Physical and detonation properties ................................................................................... 152 

7.3. Experimental ............................................................................................................................ 155 

7.3.1. General Information ......................................................................................................... 155 

7.3.2. Crystallography ................................................................................................................ 156 

7.4. Conclusions ............................................................................................................................. 159 

7.5. Conflicts of interest ................................................................................................................. 160 

7.6. Acknowledgements ................................................................................................................. 160 

7.7. Notes and references ................................................................................................................ 160 

7.8. Supporting Information ........................................................................................................... 162 

7.8.1. Experimental Procedures .................................................................................................. 162 

7.8.2. X-ray Diffraction .............................................................................................................. 163 

7.8.3. Computations ................................................................................................................... 183 

7.8.4. Detonation Parameters ..................................................................................................... 184 

7.8.7. 1H and 13C NMR spectra .................................................................................................. 191 

7.8.8. 15N NMR spectroscopy .................................................................................................... 196 

7.8.9. References ........................................................................................................................ 197 

8. On a Midway Between Energetic Molecular Crystals and High-Density Energetic Salts: 

Crystal Engineering with Hydrogen Bonded Chains of Polynitro Bipyrazoles ............................. 200 

8.1. Introduction ............................................................................................................................. 201 



 
X 

 

8.2. Results and Discussion ............................................................................................................ 204 

8.2.1. Synthesis ........................................................................................................................... 204 

8.2.2. Single crystal X-ray diffraction studies ............................................................................ 204 

8.2.3. Toxicity assessment .......................................................................................................... 214 

8.2.4. Physical and detonation properties ................................................................................... 214 

8.3. Conclusions ............................................................................................................................. 218 

8.4. Experimental ............................................................................................................................ 218 

8.4.1. Crystallography ................................................................................................................ 218 

8.5. Conflicts of interest ................................................................................................................. 219 

8.6. Acknowledgements ................................................................................................................. 219 

8.7. References ............................................................................................................................... 219 

8.8. Supporting Information ........................................................................................................... 222 

8.8.1. General Information ......................................................................................................... 222 

8.8.2. Synthesis ........................................................................................................................... 223 

8.8.3. Crystallography ................................................................................................................ 233 

8.8.4. Computations ................................................................................................................... 254 

8.8.5. References ........................................................................................................................ 255 

9. Energetic Derivatives of 3,3,5,5-Tetranitro-4,4-bipyrazole (TNBPz): Synthesis, 

Characterization and Properties ......................................................................................................... 259 

9.1. Introduction ............................................................................................................................. 259 

9.2. Results and discussion ............................................................................................................. 261 

9.2.1. Synthesis ........................................................................................................................... 261 

9.2.2. Single crystal X-ray diffraction studies ............................................................................ 262 

9.2.3. 15N NMR spectroscopy .................................................................................................... 268 

9.2.4. Toxicity assessment .......................................................................................................... 269 

9.2.5. Physical and detonation properties ................................................................................... 270 

9.3. Conclusions ............................................................................................................................. 274 

9.4. Experimental Part .................................................................................................................... 275 

9.4.1. General Information ......................................................................................................... 275 

9.4.2. Synthesis ........................................................................................................................... 275 



 
XI 

 

9.5. Conflicts of interest ................................................................................................................. 281 

9.6. Acknowledgements ................................................................................................................. 281 

9.7. References ............................................................................................................................... 282 

9.8. Supporting Information ........................................................................................................... 284 

9.8.1. Synthesis and general considerations ............................................................................... 284 

9.8.2. X-ray diffraction ............................................................................................................... 284 

9.8.3. Computations ................................................................................................................... 287 

9.8.4. References ........................................................................................................................ 289 

10. Combination of Different Azoles – 1,2,4-Triazolyl-1,3,4-Oxadiazoles as Precursor for Energetic 

Materials ............................................................................................................................................... 291 

10.1. Introduction ............................................................................................................................. 292 

10.2. Results and Discussion ............................................................................................................ 293 

10.2.1. Synthesis ........................................................................................................................... 293 

10.2.2. NMR and Vibrational Spectroscopy ................................................................................ 295 

10.2.3. X-Ray crystallography ..................................................................................................... 295 

10.2.4. Thermal Analysis, Sensitivities and Physicochemical properties .................................... 298 

10.3. Conclusions ............................................................................................................................. 300 

10.4. References ............................................................................................................................... 300 

10.5. Supplementary Information ..................................................................................................... 303 

10.5.1. X-ray Diffraction .............................................................................................................. 303 

10.5.2. Heat of formation calculations ......................................................................................... 305 

10.5.3. Experimental Part ............................................................................................................. 306 

10.5.4. Crystal Structures ............................................................................................................. 312 

10.5.5. References ........................................................................................................................ 313 

11. Toward the Synthesis of 3,5-Diamino-4,6-dinitropyridazine .................................................... 316 

11.1. Introduction ............................................................................................................................. 316 

11.2. Results and Discussion ............................................................................................................ 317 

11.2.1. Synthesis ........................................................................................................................... 317 

11.2.2. NMR Spectroscopy .......................................................................................................... 319 

11.2.3. Crystal Structures ............................................................................................................. 321 



 
XII 

 

11.2.4. Physico-chemical Properties ............................................................................................ 328 

11.3. Conclusions ............................................................................................................................. 331 

11.4. Experimental Part .................................................................................................................... 331 

11.4.1. General Information ......................................................................................................... 331 

11.4.2. Synthesis ........................................................................................................................... 332 

11.5. References ............................................................................................................................... 335 

12. Appendix ........................................................................................................................................ 338 

1. List of Abbriviations ................................................................................................................ 338 

2. Curriculum Vitae ..................................................................................................................... 341 

 

 



Introduction 

 
1 

1. Introduction 

1.1. Overview 

1.1.1. Definition 

With progressing advances in modern science, the design and synthesis of novel energetic materials are 

evolving to develop a new set of high-energy density materials which combine desirable characteristics 

(e.g. excellent performance, vulnerability, insensitivity, stability and environmental safety) with the 

modern even more challenging application purposes. A more general definition for an energetic material 

is “a metastable chemical compound or mixture which contains both fuel and oxidizer and can undergo a 

chemical reaction which results in a rapid release of the stored energy in form of gas and pressure.”[1-3] 

This interpretation of an energetic material is derived from the definition given by the American Society 

for Testing and Materials (“chemical compounds or mixtures that contain both fuel and oxidizer and 

rapidly react to release energy and gas”).[4] 

The history and development of energetic materials has been extensively reported in the literature and 

therefore only a short overview over the most important breakthroughs in this filed will be given.[5] The 

accidental discovery of black powder in China (220 BC), a mixture of potassium nitrate, sulfur and 

charcoal,  was most likely the first energetic composition to be ever made.[6] It was not until the 19th 

century where with the vastly advancing industrialization, the demand for new more powerful energetic 

materials was needed. This resulted in the synthesis of numerous new energetic compounds during the 

course of the next century. Firstly, the syntheses of nitroglycerine (NG),[7] mercury fulminate 

(Hg(CNO)2),
[8] nitrocellulose (NC)[9] and picric acid[10] were reported and used for civil and military 

applications. These milestones were followed with the development of the next generation of energetic 

materials 2,4,6-trinitrotoluene (TNT),[11-16] N-methyl-N-2,4,6-tetranitroanilin (Tetryl)[17] and 

pentaerythrittetranitrat (PETN, Nitropenta).[18] Finally, the next big achievement was the preparation of 

the still in use high performing explosives 1,3,5-trinitro-1,3,5-triazine (RDX),[19-22] 1,3,5,7-tetranitro-

1,3,5,7-tetrazocine (HMX),[23-26] 6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20),[27-29] 

1,2,3,4,5,6,7,8-octanitro-pentacyclo-[4.2.0.02,5.03,8.04,7]octan (ONC)[30] and the insensitive and heat 

resisting explosives 1,3,5-triamino-2,4,6-trinitrobenzene (TATB)[31-35] and 1,2-bis(2,4,6-

trinitrophenyl)ethylen (HNS).[36] Modern trends in research are focused on using nitrogen- and oxygen-

rich heterocycles (e.g. azoles, pyridines, diazines, triazines and tetrazines) which exhibit high heat of 

formation and low percentage on C and H atoms.[37-39] This class of energetic materials in which a 

heterocyclic compound is the backbone and is used for energy storage is going to be the main topic in 

this thesis. Figure 1 shows few of the above mentioned energetic materials.  
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Figure 1. Overview of well-known energetic materials, their Lewis structures and the used acronyms for 

the structures. 

1.1.2. Classification  

A various number of classifications for energetic materials can be found in the literature.[40] Depending 

on the application purpose of the compound, energetic materials can be generally subclassified in three 

main branches; explosives, propellants and pyrotechnics. Additionally, there are many criteria that have 

to be considered by the classification of an explosive material and few important ones are: 

 according to their chemical nature/ingredient; 

o carbon based 

o based on nitrogen-rich heterocycles 

 according to their use, for example military or civil application; 

o general purpose missiles 

o deep oil drilling 

 according to their behaviour toward outer stimuli for example mechanical stress or thermal 

stimuli.[40] 

o explosives which are able to undergo a fast DDT when confined or unconfined (primary 

explosives), secondary and tertiary explosives 

Explosives can be divided into primary and secondary explosives, where the former are usually a very 

sensitive less performing compound, which is used to initiate a more potent and less sensitive secondary 
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explosive. On the other hand, depending on the application purpose secondary explosives can be further 

divided into main charge explosives and booster explosives. In comparison to explosives which are 

generally used for detonation purposes, propellants are compounds which should not detonate. Latter 

usually deflagrate in a closed chamber with the release of a significant amount of gases, which leads to 

increase in pressure in the vessel and can provide propulsion and can accelerate an object (e.g. missile, 

projectiles, rockets).[2,41-43] Pyrotechnics are usually mixtures which are used for audio or visual effects 

(gas emission, heat/light generation, explosion, fire, sound generation). Figure 2 shows the classification 

for energetic materials. 

 

Figure 2. Classification of energetic materials into the main branches: Explosives, Propellants and 

Pyrotechnics. The red marked sections are going to be the main topic of this thesis. 

1.1.2.1. Primary Explosives 

Compounds or mixtures that can be easily initiated by a non-explosive impulse (impact, friction, spark, 

flame or heat) are assigned to the class of primary explosives. Such explosives exhibit high sensitivity 

towards destructive stimuli in comparison to secondary explosives and the shock wave generated from 

the sensitive explosive has the desired efficiency to initiate propellants or main charge explosives. For an 

primary explosive to be efficient in its application, it should show a fast deflagration-to-detonation 

transition also known in the literature as DDT.[5,6,40] The term deflagration is used to describe the 

propagation of a flame with less than the speed of sound throughout the unreacted material. Typical values 

for the burn rate of a deflagration are about 102 m s−1. Under some conditions, a deflagration can evolve 

to detonation, when the reaction front reaches the speed of sound in the unreacted material and the 
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generated explosive impulse (shock wave) is used for the initiation of a more insensitive explosive. 

Typical values for detonation velocity and heat of explosion of primary explosives are in the range of 

3500–5000 m s−1 and 1000–2000 kJ kg−1, respectively.[5] One of the first ever reported primary explosives 

are mercury fulminate (Hg(CNO)2), lead azide (Pb(N3)2), silver azide (AgN3), cadmium azide (Cd(N3)2) 

and lead styphnate (Pb(C6HN3O8)). Nowadays used primary explosives in initiation devices (blasting 

caps, detonators and etc.) are still heavy metal based explosives (e.g. Pb(N3)2, AgN3 and Pb(C6HN3O8)).  

 

Figure 3. Commonly used primary explosives and new generation of primary explosives: mercury 

fulminate (MF), lead azide (LA), cadmium azide (CA), lead styphnate (LS), 2-diazo-4,6-dinitrophenol 

(DDNP), 1,3,5-triazido-2,4,6-trinitrobenzol (TATNB), tetrammin-cis-bis(5-nitrotetrazolato-

N2)cobalt(III) perchlorate (BNCP) and pentammin(1,5-cyclopentamethylentetrazolato-N3)cobalt(III) 

perchlorate (PAC). 

The advantages of this heavy metal based primary explosives are low cost of production, good 

performance, easy ignitability and a small amount of the material is required for the initiation of the 

booster charge. However, the main disadvantage of the most in use primary explosives is the high toxicity 

of the heavy metal cations (Pb, Ag or even Cd elements). These metals have a major negative impact on 

humans and nature.[44-46] A study from 1991 on a FBI shooting range showed that employs suffered from 

a lead poisoning.[47] These studies raised the concern on the negative impact of primary explosives, which 

led to extensive increase on new research in this field. New heavy metal free explosives like DDNP and 

TATNB have been reported and show promising properties as possible replacements. However, a still 

remaining problem with this type of organic based primary explosives like DDNP and TATNB is their 

long-term stability. Prolonged studies show slow decomposition of TATNB and loss of energetic groups.  



Introduction 

 
5 

A new emerging branch that could solve the toxicity problem of primary explosives is the laser ignitable 

energetic complex systems.[48-54] BNCP and PAC are two prominent examples for laser ignitable primary 

explosives based on Co(III) metal.[55] The most important and modern primary explosives are shown in 

Fig. 3. 

1.1.2.2. Secondary Explosives 

As before mentioned secondary explosives are in comparison to primary explosives less sensitive to 

insensitive to destructive stimuli, cannot be easily initiated, show in general slower DDT and are in 

general more powerful. General performance data for secondary explosives are in the range of 6500–9000 

m s−1 for the detonation velocity, 5000–6000 kJ kg−1 for the heat of explosion and the sensitivity values 

are as followed IS = ≥ 4 J, FS = ≥ 50 N and ESD = ≥ 0.1 J.[5] The performance of a high (secondary) 

explosive depends mainly on the density, oxygen balance (OB) and the heat of formation. The main 

performance criteria for high explosive depending on ths application are detonation energy (−ΔEU), 

detonation temperature (TC-J), detonation pressure (pC-J), detonation velocity (DC-J) and volume of gas 

released per kg explosives (V).  

In addition to the previously reported classification, secondary explosives can be divided into three main 

branches when it comes to the research purpose of the material: high performance, low sensitivity and 

low toxicity.[5] A common problem in this field is the difficulty to combine all these three parameters in 

one molecule or mixture. Usually high performing secondary explosives show high sensitivity toward 

destructive stimuli (impact, friction, electrostatic discharge), which is not desired and can result in 

accidential initiation. Whereas, less sensitive explosives show lower performance, but more safety and 

can be easily handled. The problem with insensitive munition is the difficulty to initiate them and therefor 

more powerfull initiators are required. Combining performance with sensitivity in one molecule is the 

“holy grail” for an EM synthetic chemist. Third and recently arising topic in this field is also the high 

toxicity of currently used explosives such as RDX, TNT and TATB.[56,57] New eco-friendly materials are 

required, which should show no toxicity and their degradation products should also be not dangerous for 

humans and nature. 

1.1.2.3. Propellants 

Propellants can be divided into gun propellants and rocket propellants. In comparison to explosives, which 

detonate and generate a shock wave, propellants combust or deflagrate and are used for their propulsive 

force. Solid gun propellants can be subclassified into single-, double- and triple-based propellants. In the 

case of single-based propellants nitrocellulose (NC) is used as the main energetic ingredient.[5] The 

application spectrum of single-based propellants extends from pistols to artillery weapons. Double-based 
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propellants charges consist of NC and nitroglycerine (blasting oil), which increases the performance. In 

addition, insensitive plasticizers can be used in different amounts depending on the application purpose. 

Triple-based propellants consist of NC, NG and nitroguanidine (NQ) or other energetic ingredients. NQ 

lowers the burning temperature and affects the CO/N2 ration. This reduces the formation of iron carbide 

and preserves the barrel wear from erosion. 

Rocket propellants can be divided into liquid and solid rocket propellants. Examples for liquid propellants 

are non-hypergolic mixtures (H2/O2) and hypergolic mixtures (N2O4 with unsymmetrical 

dimethylhydrazine or HNO3 with N2H4).
[58] The classical solid rocket propellants are based on ammonium 

perchlorate (AP) and ammonium nitrate (AN) metal mixtures. The common problem with these mixtures 

is the toxicity of AP and the needed phase-stabilization of AN. In addition, the perchlorate anion in AP is 

biomimetic to the iodide in our thyroid which can result to hyperthyroidism.[59,60] Besides during the 

burning process of AP based rockets hydrochloric acid is formed, which leaves white smoke trail.[61] A 

promising replacement for AP is ammonium dinitramide (ADN). ADN has excellent properties e.g. high 

heat of formation, good oxygen balance, high nitrogen content and moderate sensitivities. These qualities 

of ADN makes it a good replacement for commonly used solid state propellants.  

1.1.2.4. Pyrotechnics 

In comparison to explosives, pyrotechnics usually do not contain oxidizer and fuel in one molecule. 

Pyrotechnics can be divided into light, noise, smoke and chemical product generating pyrotechnics.[62-64] 

To the fuel and oxidizer other additives like colorant and binders are added to the pyrotechnic mixture 

depending on the application purpose. Commonly used oxidizers in pyrotechnic mixtures are potassium 

perchlorate (KClO4, PP) and ammonium perchlorate (NH4ClO4, AP). As previously mentioned, 

perchlorate based energetic materials have a negative environmentally impact. Both salts show moderate 

solubility in water and can result to a groundwater contamination.[61] Although AP and PP show a negative 

impact and are not eco-friendly they are still used in current mixtures due to good stability, oxygen 

balance and low cost of production. 

1.2. Design of New Secondary Explosives 

1.2.1. Physico-chemical Properties 

As previously mentioned there are few important parameters which have to be considered when designing 

and synthesizing new secondary explosives. The detonation velocity (D), the heat of explosion (Q) and 

the detonation pressure (pC-J) are three of the most crucial performance criteria for high explosives. These 

performance parameters can be influenced by altering the heat of formation (HOF) of the explosive, by 
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increasing the oxygen balance (OB) and - the most important parameter - by raising the density of the 

material. Kamlet and Jacobs suggested empirical equations which show the relationship between the 

detonation velocity and the detonation pressure. According to Eq. I and II the detonation velocity of an 

explosive is proportional to the loading density, whereas the detonation pressure is square of the loading 

density.[2,5]  

  pC-J [kbar] = Kρo
2Ф    (Eq. I) 

D [mm µs−1] = AФ0.5(1+Bρo)   (Eq. II) 

with K = 15.88, A = 1.01, B = 1.30, ρo = loading density, Ф = N(M)0.5(Q)0.5 with N = number of moles of gas released per gram 

of explosive [mol/g], M = mass of gas in gram per mole of gas [g/mol], Q = heat of explosion [cal/g];  

In addition, to these physico-chemical properties a good oxygen balance (Ω) is desired for explosives. 

The oxygen balance is defined as the relative amount of oxygen in deficit or excess in order to achieve a 

complete oxidation of the C/H/N/O-based explosive to carbon monoxide (or carbon dioxide), water and 

elemental nitrogen. Equation 3 shows how the Ω can be calculated according to CO2 or CO in percentage 

(%) for a CaHbNcOd based explosive. The letter M represents the molecular mass of the explosive.  

𝛺CO2
=

[d − (2a) − 
𝑏

2
] × 1600

M
   𝛺𝐶𝑂 =

[d − a −
 𝑏

2
] × 1600

M
               (Eq. III) 

1.2.2. Project Origin 

Central goal in the design of new energetic materials is the synthesis of monomolecular compounds such 

as TNT, which contain an oxidizing component and a fuel component. As above mentioned the 

performance of an explosive generally depends on a high density, good oxygen balance and high heat of 

formation. All these three parameters can be easily manipulated by selectively choosing the right synthetic 

backbone and using the right explosophore groups (–NO2, –ONO2, –NNO2, –N3, etc.). Commonly known 

secondary explosives are based on a carbon backbone (fuel), which is oxidized during the reaction to 

CO/CO2. Traditional C/H/N/O based explosives within this class are TNT, RDX, HMX, HNS, TATB, 

TNAZ, ONC, CL-20 and TEX. The last four mentioned compounds (TNAZ, ONC, CL-20 and TEX) 

exhibit their excellent properties and performance due to the high ring strain or a high cage strain. The 

additional energy stored in the small ring or compact cage compound can be released upon decomposition. 

CL-20 is currently the benchmark molecule for high performing secondary explosive. However, still a 

major throwback is their complicated and extensive synthesis, which makes scale-up reactions difficult. 

Although many of the above explosives exhibit good properties, can be easily synthesized or can be used 
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for special applications, they show a negative ecological impact and are strongly polluting agents. In the 

case of TNT, RDX, HMX and TATB it has been shown that their degradation products can be toxic and 

lead to the following diseases jaundice, kidney diseases and methemoglobinemia.[2,56,65,66] In addition, this 

type of aromatic/nitramino based explosives exhibit high toxicity which can range from mutagenic to 

carcinogenic activitiy.[67,68] Additionally RDX, HMX and CL-20 show reductive decomposition of the 

nitramino moiety, which forms reactive mutagenic N-nitroso derivatives.[2]  

For the past few decades the research on high nitrogen containing explosives has received a great deal of 

interest as possible solution for the high toxicity of already in use materials. Compounds containing high 

amount of nitrogen (e.g. azoles, diazines, triazines, tetrazines and etc.) have a large number of C–N and/or 

N–N bonds, which results usually in high positive heats of formation. Nitrogen-rich high explosives 

obtain their good performance from the large heat of formation and not from the oxidation of the carbon 

backbone. Additionally, these materials show often excellent thermal stability, low sensitivity toward 

destructive stimuli (impact, friction and spark) and can be easily synthesized. An excellent property of 

nitrogen-rich based explosives is the high amount of nitrogen in the molecule, which can be released in 

form of nitrogen gas (N2) upon decomposition. The big advantage of nitrogen is that the bond energy for 

single (N–N 160 kJ/mol), over double (N=N 418 kJ/mol) to triple bonds increases (N≡N 954 kJ/mol), 

whereas for carbon exactly the opposite is true.[2,69,70] During the decompositions this large 

thermodynamic driving force can be used, thus making nitrogen-rich heterocycles excellent candidates as 

a core structures for explosives. An interesting class of heterocycles are the azoles, which are five 

membered heterocycles. Azoles have also usually high densities, allow good oxygen balance, exhibit high 

thermal stability and upon decomposition release a large amount of gaseous products (N2, CO, CO2, NOx, 

H2O). 

The arising challenge in the field of secondary explosives lies in the emerging necessity of improving 

some desirable characteristics like performance, stability, ignitability and lowering of the toxicity impact. 

Combining all these molecular properties in one compound has been a great deal of interest. Many 

synthesized high performing secondary explosives exhibit excellent performance (in terms of detonation 

velocities and detonation pressure), high densities and high heats of formation. However, a major 

drawback of the latter are high sensitivities e.g. toward impact, flame, friction, electrostatic discharge, 

low thermal stability and also high toxicity. Whereas highly insensitive and thermally stable secondary 

explosives show low performance and low ignitability. Finding suitable synthetic ways to design new 

secondary explosives with excellent performance like HMX and excellent sensitivities like TATB has 

been of major interest in the HEDM community.  
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There are different possibilities for a synthetic chemist to try to combine good performance with low 

sensitivity in a monomolecular based explosive. There are many alternatives that can be used in order to 

increase or improve the performance of a secondary explosive. The first possibility is to introduce as 

much explosophoric groups as possible (–NO2, –ONO2, –NNO2,) to the carbon backbone. Prominent 

examples for this type of explosives are RDX, HMX and PETN. The biggest disadvantage is, however, 

the high sensitivity of the materials, which is attributed to the unstable moieties in the molecule like the 

nitramino groups in RDX and HMX. The second strategy that can be used in order to increase the 

performance of a newly synthesized explosive is to use a small ring system or a cage compound as a 

building block. These systems not only show high densities, and high heats of formation, but also store 

an enormous amount of energy in the small ring or cage which can be used upon decomposition. Excellent 

examples are TNAZ, CL-20 and ONC. The third strategy to increase the performance of explosives is to 

use nitrogen- and oxygen-rich heterocycles as a building system. As previously mentioned the latter 

systems exhibit the desired properties for an explosive; high heat of formation, high densities and in 

addition show good stabilities toward external stimuli. In addition, the combination of different 

heterocycles in an annulated system results in materials with excellent properties.[71]  

Increasing the stability of new explosives is the second important necessity when it comes to the design 

of new materials. In order to achieve these difficult task, scientists have developed many different 

strategies and reported them in the literature. Agrawal reported four different ways on how to increase 

the stability of an secondary explosive:[40] 

1) introduction of amino groups 

2) ionic salt formation. 

3) introduction of conjugation 

4) condensation with a triazole ring 

There are many examples of reported high explosives, which have been synthesized by using one of the 

above mentioned strategies. The first approach covers high explosives which contain amino groups, 

which if used properly can result in stabilization of the intra- and intermolecular structure. This work will 

extend this strategy by introducing NO2 and NH2 groups selectively to specific heterocyclic systems. In 

addition, the conversation of tertiary amines to their N+–O− derivative can be investigated. The 

combination of alternating NO2/NH2 system (push/pull system) into a nitrogen-rich heterocycle with an 

N+–O− moiety results in high performing, insensitive and thermally resistant secondary explosives. 
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Excellent examples from the literature are TATB, LLM-116, LLM-119, FOX-7, ANPyO, ANPZ, LLM-

105 and TKX-50. Their Lewis structures are shown in Figure 4. 

 

Figure 4. Prominent examples for explosives based on benzene and different heterocycles containing 

push/pull systems and the N+–O− moiety. 1,3,5-Triamino-2,4,6-trinitrobenzene (TATB), 4-amino-3,5-

dinitropyrazole (LLM-116), 1,4-diamino-3,6-dinitropyrazolo[4,3-c]pyrazole (LLM-119), 1,1-diamino-

2,2-dinitroethene (FOX-7), 2,4,6-triamino-3,5-dinitropyridine-1-oxide (TANPyO), 2,6-diamino-3,5-

dinitropyrazine (ANPZ), 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105) and 

dihydroxylammonium 5,5-bistetrazole-1,1-dioxide (TKX-50). 

Energetic salts have received a great amount of attention in the last two decades. These materials often 

exhibit high heats of formation, low vapor pressure in comparison to the nonionic precursor, good stability 

toward thermal shock and high densities.[2,5,72] The class of five membered aromatic heterocycles (azoles) 

has been extensively investigated in this regard. Major advances in the chemistry of imidazoles, pyrazoles, 

triazoles, tetrazoles and pentazoles, have been achieved as possible core for energetic salts.[73] Introducing 

explosophoric groups to these heterocycles can result in good precursors for energetic salts. 

1,2-Bis(2,4,6-trinitrophenyl)ethylene (HNS) and 4,6-bis(5-amino-3-nitro-1,2,4-triazolyl)5-

nitropyrimidine (DANTNP) are good examples for explosives based on a conjugated system or condensed 

nitrotriazole explosives. HSN is a thermally insensitive explosive that finds application in the civil sector 

(deep oil drilling).  
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Figure 5. Lewis structures of 1,2-bis(2,4,6-trinitrophenyl)ethylene (HNS) and 4,6-bis(5-amino-3-nitro-

1,2,4-triazolyl)5-nitropyrimidine (DANTNP). 

1.3. Objectives 

The necessity to combine good performance with excellent stability in one molecule continues to be the 

highest priority, when it comes to the synthesis and design of new explosives. Desired performance of 

new secondary explosives should be in the range of commonly known RDX and HMX, or even greater 

than DC-J = > 8500 m s−1, pC-J = > 340 kbar, whereas the desired sensitivities should be in the range of 

LLM-105 and TATB (IS = >20 J, FS = >360 N). The main purpose of this thesis is to investigate various 

oxygen- and nitrogen-rich heterocycles as possible precursors for new explosives. As previously 

explained nitrogen-rich heterocycles exhibit attractive properties like high densities, high positive heats 

of formation, excellent thermal stabilities and low sensitivity toward destructive stimuli. Thus making 

heterocycles perfect precursor for high explosives. This work investigates five-membered and six-

membered nitrogen- and oxygen-rich heterocycles as possible starting materials for high performing, 

insensitive secondary explosives. Different heterocycles (such as 1,3,4-oxadiazole, 1,2,5-oxadiazole, 

1,2,5-oxadiazole-1-oxide, pyrazole, 1,2,4-triazole) were synthesized and selectively functionalized with 

explosphoric groups. Additionally, the N-functionalization (methylation and amination) and the 

formation of nitrogen-rich ionic compounds based on the previously mentioned azoles was investigated. 

Figure 6 shows the calculated gas phase enthalpies for various five-membered rings. All investigated 

derivatives in this work are marked with a red arrow. 
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Figure 6. Calculated enthalpies of formation for various azole derivatives. Gas phase enthalpies of 

formation were calculated using the atomized method (ΔfH°(g,M,298) = H(g,M,298) – ∑H°(g,Ai,298) + 

∑ΔfH°(g,Ai,298)) using Gaussian09 computed CBS-4M electronic enthalpies.  

In addition to the five-membered heterocycles, the relative unexplored 1,2-diazine scaffold (pyridazine) 

was also synthesized and investigated as possible energetic precursor. The diazines can be deduced from 

benzene by replacing two of the ring carbon atoms with nitrogen. There are three possible diazine isomers 

respectively to the position of the nitrogen atoms to each other in the ring system, giving rise to pyridazine, 

pyrimidine and pyrazine. The pyrazine scaffold is easily accessible and has been already modified by 

scientists and new pyrazine energetic materials with tailored properties have been already reported 

(ANPZ and LLM-105). However, the selective modification of the pyridazine scaffold has not been 

reported and it appears that the electrophilic nitration on this heterocycle is very complex. In this work 

the selective electrophilic nitration, the selective introduction of alternating push/pull (NH2/NO2) groups 

and the introduction of the N+–O− moiety into the pyridazine heterocycle is investigated. Figure 7 displays 
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all studied systems in this work. The different colored arrows represent specific functionalization of the 

desired scaffold. 

 

Figure 7. Lewis structures of all investigated heterocycles in this thesis. Under every molecule the 

performed functionalization of the corresponding heterocycle is presented: introduction of a nitramino 

moiety (orange arrow), introduction of amino groups, secondary and tertiary amines (blue arrow), N-

oxidation (black arrow), direct electrophilic C-nitration (red arrow), formation of ionic derivatives and/or 

N-functionalization (green arrow). 
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2. Summary and Conclusions 

During the course of this work, extensive research was undertaken to investigate oxygen- and nitrogen-

rich heterocycles as possible precursors for energetic materials. During this time, a great number of new 

and novel energetic materials were synthesized and their energetic properties were extensively studied. 

The main goal of this thesis was to investigate different synthetic approaches toward new high performing 

but insensitive secondary explosives. For this purpose, target-oriented functionalization of five different 

heterocycles (pyrazole, 1,3,4-oxadiazole, 1,2,5-oxadiazole, 1,2,4-triazole and pyridazine) is reported. 

These results are all presented in Chapters 3–11, whereas Chapters 3–8 have been published in peer-

reviewed scientific journals, Chapter 9 will be submitted to a scientific journal and Chapters 10 and 11 

consist of unpublished results. Every Chapter consists of completed research topic with introduction, 

results and discussion, conclusion, experimental section and supporting information. A short overview 

and summary will be given for every single chapter. 

Chapter 3 investigates the synthesis of various energetic salts based on the unstable molecule 3,4-bis(4-

nitramino-1,2,5-oxadiazol-3-yl)-1,2,5-furoxan (BNAFF). BNAFF was synthesized by direct nitration of 

3,4-bis(4-amino-1,2,5-oxadiazol-3-yl)-1,2,5-furoxan (BAFF) in 100% nitric acid. The nitramino 

derivative BNAFF as a free acid is not stable and has to be directly converted to the potassium salt 

K2BNAFF after the nitration. By using K2BNAFF a number of different energetic derivatives were 

synthesized and investigated.  

Chapters 4 and 5 discuss novel energetic materials based on the unexploited 1,2-diazine scaffold. The 

desired introduction of a N+–O− moiety and an alternating push/pull (NH2/NO2) system into the pyridazine 

heterocycle was successfully reported. The accompanying problems with the electron-deficient 

heterocycle are discussed and the solution for a successful electrophilic nitration on the pyridazine 

scaffold is presented. 

In Chapter 6 the synthesis and characterization of new alkali and alkaline salts with the 3,3'-diamino-4,4'-

dinitramino-5,5'-bitriazolate anion (ANAT2−) is reported. In addition, the SrANAT salt was investigated 

in different formulations as possible colorant for red-light-producing signal flares. 

The chemistry of different polynitrated derivatives based on the 4,4-bipyrazole backbone is presented in 

Chapters 7, 8 and 9. A great number of electrophilic nitration reactions on the 4,4-bipyrazole are 

discussed and presented in Chapter 7. Additionally, all experimentally and theoretically determined 

properties of the synthesized polynitro derivatives have been displayed. Chapters 8 and 9 study further 

functionalization of 3,3,5-trinitro-4,4-bipyrazole (TriNBPz) and 3,3,5,5-tetranitro-4,4-bipyrazole 
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monohydrate (TNBPzH2O). Neutralization reactions with TriNBPz and TNBPzH2O and further N-

functionalization of TNBPzH2O are reported. 

Chapter 10 combines the heterocycles 1,2,4-triazole and 1,3,4-oxadiazole in one molecule. The 

synthesized 2-amino-5-(5-amino-1H-1,2,4-triazol-3-yl)-1,3,4-oxadiazole and 2-amino-5-(5-nitro-1H-

1,2,4-triazol-3-yl)-1,3,4-oxadiazole were synthesized and the properties of these energetic materials are 

reported.  

A new possible approach toward the synthesis of 3,5-diamino-4,6-dinitropyridazine was investigated in 

Chapter 11.  

In addition, four compounds from all chapters were selected and their performance on the small scale was 

evaluated. The small scale shock reactivity test (SSRT) was used in order to investigate the shock 

reactivity (explosiveness) of the four selected materials. The set-up and preparation of the samles for the 

SSRT are shown in details in the corresponding chapters. The selected compounds 3,5-diamino-4,6-

dinitropyridazine-1-oxide (7), 3,3,5-trinitro-4,4-bipyrazole (13), 3,3,5,5-trinitro-4,4-bipyrazole (14) 

and 1,1-diamino-3,3,5,5-trinitro-4,4-bipyrazole (20) are shown in Figure 1 and were compared to the 

commercially used RDX, HNS, PYX and TKX-55. 

Table 1. SSRT results for compounds 7, 13, 14 and 20 compared to RDX, HNS, PYX, TKX-55. 

Compound 7 13 14 20 RDX[1] HNS PYX TKX-55 

mE [mg][a] 496 500 491 472 504 469 474 496 

m [mg] [b] 694 640 811 786 858 672 637 641 

[a] Mass of the explosive: mE = Vs ρ 0.95; [b] Mass of SiO2. 

 

Figure 1. Lewis structures of all investigated materials with the small scale shock reactivity test 

compared to RDX, HNS, PYX and TKX-55. 
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The obtained results are listed in Table 1. The obtained values are compared to the high performing RDX 

and to the heat resisting explosives HNS, PYX, TKX-55. The results for compound 13 (640 mg) are in 

the range of PYX (637 mg) and TKX-55 (641 mg). DADNP (9, 694 mg) and (NH2)2TNBPz (20, 786 

mg), consisting of alternating push/pull system, exceed the performance of HNS (672 mg), PYX (637 

mg) and TKX-55 (641 mg), however they do not outperforme RDX (858 mg). The performance of TNBPz 

(14, 811 mg) in the small scale is slightly lower but in the range of RDX (858 mg).  

2.1. Chapter 3: 3,4-Bis(4-nitramino-1,2,5-oxadiazol-3-yl)-1,2,5-furoxan (BNAFF) 

The nitration of 3,4-bis(4-amino-1,2,5-oxadiazol-3-yl)-1,2,5-furoxan (BAFF) to the desired nitramino 

derivative is reported. 3,4-Bis(4-nitramino-1,2,5-oxadiazol-3-yl)-1,2,5-furoxan (BNAFF) is unstable at 

room temperature for a long time and has to be directly converted after the nitration to the potassium salt 

K2BNAFF. Using the latter, the free acid can be generated in situ and different nitrogen-rich salts can be 

synthesized. The nitroamino moiety in the 3,4-bis(1,2,5-oxadiazol-3-yl)-1,2,5-furoxan backbone can be 

directly stabilized via acid-base reactions.  

 

Figure 2. Structure stabilization of the nitramino moiety in 3,4-bis(1,2,5-oxadiazol-3-yl)-1,2,5-furoxan 

trough salt formation. 
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Figure 3. Molecular units of K2BNAFF (1, top), (AG)2BNAFF (2, middle) and Lewis structure of 

(NH4)2BNAFF (3, bottom), respectively and their energetic properties.  

2.2. Chapters 4 and 5: Energetic Materials Based on the Pyridazine Scaffold 

Five new energetic pyridazine derivatives were synthesized and completely characterized by using 3,5-

dimethoxy-4,6-dinitropyridazine-1-oxide (DMDNP, Scheme 1) as starting material. The difficulty in this 

topic was the challenging nitration of the electron-poor pyridazine system. This problem was resolved by 

introducing electron-donating groups (−OMe) into the pyridazine scaffold followed by the insertion of a 

N+–O− moiety, which eventually allowed electrophilic nitration with 20% oleum and 100% nitric acid.  

 

Scheme 1. Overview of all synthesized pyridazine derivatives. 

Nitrogen-rich based salts of BNAFF are 

superior in detonation parameters over the 

potassium salt. In addition, the 

aminoguanidinium (2, IS = 8 J, FS = 360 N) 

and ammonium (3, IS = 7 J, FS = 216 N) 

salts show lower sensitivity toward outer 

stimuli (impact and friction). In regards to 

the thermal stability the K2BNAFF (1) ionic 

derivative exhibits the highest thermal 

stability with 245 °C, while the nitrogen-

rich compounds decompose below 200 °C. 
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The most promising compound in this study is 3,5-diamino-4,6-dinitropyridazine-1-oxide (Figure 5). 

DADNP is an excellent example for a high explosive based on a heterocycle functionalized with push/pull 

(NH2/NO2) systems and N-oxidized tertiary amine (N+–O−) moiety. With good sensitivity values (IS = 

18 J, FS = 360 N) and good thermal stability (215 °) DADNP is the first pyridazine based secondary 

explosive to be synthesized. Compound 5 is an excellent example for the increase of sensitivity and 

performance in comparison to the precursor 4, when the nitroamino moiety is introduced to the parent 

molecule. 

                 

 

 

 

 

Figure 4. Molecular units of 3,5-bis(methylamino)-4,6-dinitropyridazine-1-oxide (4, left), 3,5-

bis(methylnitramino)-4,6-dinitropyridazine-1-oxide (5, middle), 3,5-bis(dimethylamino)-4,6-

dinitroypridazine-1-oxide (6, right) and their energetic properties. 

IS = 10 J 

FS = 360 N 

Tdec. = 250 °C 

ρ = 1.63 g cm−3 

DC-J = 7365 m s−1 

pC-J = 204 kbar 

IS = 5 J 

FS = 120 N 

Tdec. = 120 °C 

ρ = 1.68 g cm−3 

DC-J = 8276 m s−1 

pC-J = 291 kbar 

IS = 30 J 

FS = 360 N 

Tdec. = 217 °C 

ρ = 1.54 g cm−3 

DC-J = 6994 m s−1 

pC-J = 176 kbar 
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Figure 5. Molecular units of 3,5-diamino-4,6-dinitropyridazine-1-oxide (7, DADNP, left), 3,5-bis((2-

(hydroxyethyl)amino)-4,6-dinitropyridazine-1-oxide (8, right) and their energetic properties. 

2.3. Chapter 6: 3,3'-Diamino-4,4'-dinitramino-5,5'-bi-1,2,4-triazole 

In this chapter several alkali and alkaline energetic salts with the 3,3'-diamino-4,4'-dinitramino-5,5'-

bitriazolate anion (ANAT2−) were synthesized and extensively characterized. The results are focused on 

the strontium salt and its possible application as an eco friendly colorant for red-light-producing signal 

flares. Different formulations with the SrANAT (9) salt were investigated and it was shown that a strong 

dominant wavelength can be obtained (620±20 nm). However, all SrANAT based formulations lack on 

spectral purities (< 76%) and further investigations have to be made. 

 

Figure 6. Molecular unit of strontium 3,3-diamino-4,4-dinitramino-5,5-bitriazolate hexahydrate (9) and 

its sensitivity values. 

IS = 18 J 

FS = 360 N 

Tdec. = 215 °C 

ρ = 1.84 g cm−3 

DC-J = 8486 m s−1 

pC-J = 302 kbar 

IS = 18 J 

FS = 360 N 

Tdec. = 170 °C 

ρ = 1.69 g cm−3 

DC-J = 7389 m s−1 

pC-J = 202 kbar 

IS = 40 J 

FS = > 360 N 

Tdec. = 160 °C 
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2.4. Chapter 7: Polynitrated Derivatives Based on the 4,4-Bipyrazole Scaffold 

In the present study different nitration reactions have been investigated on the 4,4-bipyrazole scaffold. 

This resulted in the formation of five different derivatives containing one, two, three and four NO2 groups, 

respectively. All nitro derivatives were obtained in good to excellent yields and their physico-chemical 

properties are shown in Figure 8. Compounds 12H2O and 14H2O were obtained as monohydrates. Both 

samples can be dried at elevated temperatures (180 °C) to yield the solvate free compounds. Increasing 

the number of explosophore groups (NO2) in the 4,4-bipyrazole scaffold results in increase of the 

performance (10: DC-J = 6506 m s−1, pC-J = 144 kbar → 14: DC-J = 8520 m s−1, pC-J = 311 kbar), however 

it also increases the sensitivity of the materials toward outer stimuli (10: IS = 40 J, FS = > 360 N → 14: 

IS = 4.5 J, FS = 192 N). Additionally, compounds 10–14 exhibit excellent thermal stability from 298 °C 

(14) up to 382 °C (11), thus making the 4,4-bipyrazole backbone an interesting building block for heat 

resisting secondary explosives. 

 

Figure 7. Structural relation between molecular stability and detonation properties for compounds 10–

14. 
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Figure 8. Energetic materials based on the 4,4-bipyrazole scaffold and their physico-chemical properties. 

2.5. Chapters 8 and 9: Energetic Derivatives Based on TriNBPz and TNBPzH2O 

In this study different ionic energetic materials based on 3,3,5-trinitro-4,4-bipyrazole (TriNBPz) and 

3,3,5,5-tetranitro-4,4-bipyrazole monohydrate (TNBPzH2O) were synthesized and investigated. In 

addition, the N-functionalization of TNBPzH2O to (Me)2TNBPz, K(NH2)TNBPz and (NH2)2TNBPz was 

reported. Unfortunatelly the formation of nitrogen-rich salts with TriNBPz resulted in decrease of stability 

and only one of the synthesized compounds ((NH3OH)HTriNBPz) showed better theoretically calculated 

performance. The hydroxylammonium (15) and the hydrazinium (16) salts of the TriNBPz− anion showed 

the best performance according to the EXPLO5 code. In addition, the sensitivity values for the ionic 

compounds (NH3OH)HTriNBPz (15, IS = 10 J, FS = > 360 N) and (N2H5)HTriNBPz (16, IS = 15 J, FS = 

> 360 N) do not show improvement in comparison to the nonionic parent compound TriNBPz (IS = 20 J, 

FS = > 360 N). 
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Figure 9. Molecular unit of hydroxylammonium 4-(3-nitropyrazolyl)-3,5-dinitropyrazolate (15, left) and 

hydrazinium 4-(3-nitropyrazolyl)-3,5-dinitropyrazolate (16, right) and their energetic properties. 

From all synthesized TNBPz ionic derivatives, compounds (NH3OH)HTNBPz (17), (NH3OH)2TNBPz 

(18), K(NH2)TNBPz (19) and (NH2)2TNBPz (20) show the most promising properties. The 

hydroxylammonium salt 17 (DC-J = 8673 m s−1, pC-J = 328 kbar) exceeds in performance the nonionic 

parent molecule TNBPz (DC-J = 8520 m s−1, pC-J = 311 kbar). However, at the same time the stability 

toward outer stimuli of the ionic compound 17 (Tdec. = 201 °C, IS = 2 J) is decreased in comparison to 

TNBPz (Tdec. = 298 °C, IS = 4.5 J). The energetic derivatives (NH3OH)2TNBPz (18, DC-J = 8456 m s−1, 

pC-J = 302 kbar), K(NH2)TNBPz (19, DC-J = 8517 m s−1, pC-J = 318 kbar) and (NH2)2TNBPz (20, DC-J = 

8469 m s−1, pC-J = 305 kbar) exhibit similar performance as the starting material. However, after the N-

amination of the 4,4-bipyrazole scaffold in TNBPz the stability of the new formed energetic materials 

increases toward external stimuli. Sensitivity values of 15 J and 324 N were measured for the diamino 

compound 20. The obtained results support furtherly the thesis that alternating push/pull systems 

(NH2/NO2) in an energetic heterocycle can result in increase of stability in the molecular structure. In 

addition, the toxicity for three different energetic salts (KHTriNBPz, K2TNBPz, G2TNBPz) toward 

aqueous bacteria Vibrio fischeri was determined. The investigated polynitro derivatives showed no 

toxicity. 

IS = 10 J 

FS = > 360 N 

Tdec. = 230 °C 

ρ = 1.76 g cm−3 

DC-J = 8271 m s−1 

pC-J = 286 kbar 

IS = 15 J 

FS = > 360 N 

Tdec. = 218 °C 

ρ = 1.75 g cm−3 

DC-J = 8223 m s−1 

pC-J = 272 kbar 
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Figure 9. Molecular unit of hydroxylammonium 4-(3,5-dinitropyrazolyl)-3,5-dinitropyrazolate 

(17, left) and bis(hydroxylammonium) 3,3,5,5-tetranitro-4,4-bipyrazolate (18, right) and their 

energetic properties. 

                                     

 

 

 

 

 

Figure 10. Molecular structures of potassium 4-(1-amino-3,5-dinitropyrazolyl)-3`,5`-

dinitropyrazolate (19, left) and 1,1-diamino-3,3,5,5-tetranitro-4,4`-bipyrazole (20, right) and 

their energetic properties. 

IS = 2 J 

FS = 216 N 

Tdec. = 201 °C 

ρ = 1.81 g cm−3 

DC-J = 8673 m s−1 

pC-J = 328 kbar 

IS = 5 J 

FS = 324 N 

Tdec. = 194 °C 

ρ = 1.72 g cm−3 

DC-J = 8456 m s−1 

pC-J = 302 kbar 

IS = 10 J 

FS = 48 N 

Tdec. = 280 °C 

ρ = 2.00 g cm−3 

DC-J = 8517 m s−1 

pC-J = 318 kbar 

IS = 15 J 

FS = 324 N 

Tdec. = 244 °C 

ρ = 1.75 g cm−3 

DC-J = 8469 m s−1 

pC-J = 305 kbar 
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2.6. Chapter 10: 1,2,4-Triazol-3-yl-1,3,4-oxadiazole Based Energetic Materials 

In this study, the synthesis of energetic precursors based on the heterocycles 1,2,4-triazole and 1,3,4-

oxidadiazole is reported. 2-Amino-5-(5-amino-1H-1,2,4-triazol-3-yl)-1,3,4-oxadiazole and 2-amino-5-

(5-nitro-1H-1,2,4-triazol-3-yl)-1,3,4-oxadiazole were synthesized by using 5-amino-1H-1,2,4-triazole-3-

carboxylic as the starting material. In addition, four different energetic salts were synthesized with 2-

amino-5-(5-nitro-1H-1,2,4-triazol-3-yl)-1,3,4-oxadiazole. 

 

Figure 11. Synthesis of 2-amino-5-(5-amino-1H-1,2,4-triazol-3-yl)-1,3,4-oxadiazole (21) and 2-amino-

5-(5-nitro-1H-1,2,4-triazol-3-yl)-1,3,4-oxadiazole (22). 

 

 

 

 

 

 

Figure 12. Molecular structures of guanidinium 5-(5-amino-1,3,4-oxadiazol-2-yl)-3-nitro-1,2,4-

triazolate (23, left) and aminoguanidinium 5-(5-amino-1,3,4-oxadiazol-2-yl)-3-nitro-1,2,4-triazolate 

(24, right) and their energetic properties. 

IS = 40 J 

FS = 360 N 

Tdec. = 246 °C 

ρ = 1.66 g cm−3 

DC-J = 7500 m s−1 

pC-J = 197 kbar 

 

IS = 40 J 

FS = 360 N 

Tdec. = 246 °C 

ρ = 1.64 g cm−3 

DC-J = 7672 m s−1 

pC-J = 206 kbar 
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2.7. Chapter 11: Toward the Synthesis of 3,5-Diamino-4,6-dinitropyridazine 

During this work an attempt was made to synthesize 3,5-diamino-4,6-dinitropyridazine. For this purpose, 

3,5-diaminopyridazine acetate (26) was synthesized from 7-azidotetrazolo[1,5-b]pyridazine (25) by using 

the Staudinger reaction. Further nitration of 26 resulted only in the formation of 5-nitramino-3-

nitriminopyridazine dihydrate (272H2O) and 3,5-diamino-4-nitropyridazine (28). Further 

functionalization of both compounds to the desired 3,5-diamino-4,6-dinitropyridazine was not successful.  

                             

 

 

 

Figure 13. Molecular units of 7-azidotetrazolo[1,5-b]pyridazine (left, 25) and 3,5-diamino-4-

nitropyridazine (right, 28). 

2.8. References 

[1] A. Preimesser, Dissertation, Ludwig-Maximilians-Universität München, 2015, p. 156. 

 

IS = 1.5 J 

FS = 6 N 

Tdec. = 143 °C 

ρ = 1.61 g cm−3 

DC-J = 7290 m s−1 

pC-J = 184 kbar 

 

IS = 40 J 

FS = > 360 N 

Tdec. = 260 °C 

ρ = 1.67 g cm−3 

DC-J = 7222 m s−1 
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Abstract: 3,4-Bis(4-amino-1,2,5-oxadiazol-3-yl)-1,2,5-furoxan (BAFF, 1) was nitrated in 100% HNO3 

at −10 °C and then reacted with KOH to give the corresponding energetic dipotassium salt of 3,4-bis(4-

nitramino-1,2,5-oxadiazol-3-yl)-1,2,5-furoxan (2, K2BNAFF). The neutral nitramino-furoxan compound 

(3, H2BNAFF) is unstable at room temperature and can be obtained from K2BNAFF with 2 M HCl and 

ether as H2BNAFF•0.5Et2O. Several nitrogen-rich salts (e.g. ammonium, guanidinium, 

aminoguanidinium, hydrazinium and hydroxylammonium) were prepared from K2BNAFF. The 

potassium, guanidinium, aminoguanidinium, hydroxylammonium and silver salts of BNAFF were 

characterized by low-temperature X-ray diffraction. In addition, all compounds were analyzed by 

vibrational spectroscopy (IR and Raman), multinuclear (1H, 13C, 14N) NMR spectroscopy, differential 

thermal analysis (DTA) and elemental analysis. The heats of formation for the anhydrous compounds 

were calculated using the atomization method based on CBS-4M enthalpies. Several detonation 

parameters were predicted by using the EXPLO5 code (V6.03). In addition, the sensitivities of all BNAFF 

salts toward friction, impact and electrostatic discharge were determined.  
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3.1. Introduction 

“High energy density materials” (HEDMs) have not only found use for military purposes but also for 

civilian applications e.g. mining and pyrotechnics.[1] In the last century there have been a large number of 

publications that describe the chemistry, synthesis and properties of new explosive materials.[2] Higher 

performance has always been a main requirement in the development of explosives. Hence explosives are 

required for even more demanding applications (deep oil drilling or missiles for space missions); new 

advances in the technology of energetic materials have to be made.[3] In addition, newly designed 

explosives should meet the future environmental requirements, exhibit lower sensitivities toward external 

stimuli (such as impact, friction and electrostatic discharge) and show high performance.[4–8] 

Five membered heterocycles containing nitrogen and oxygen have shown promising application as 

building blocks for energetic materials.[9–11] Derivatives of nitro/nitramino substituted furazanes (1,2,5-

oxadiazole) and furoxanes (1,2,5-oxadiazole-2-oxide) have been of particular interest in the development 

of new HEDMs since they usually possess good oxygen balance, high heat of formation and high 

density.[12–15] Some well-known explosives based on furazanes and furoxanes are shown in Figure 1. 

 

Figure 1. Literature known explosives based on furoxanes and furazanes: DNBAF (4,4´-dinitramino-

3,3´-bifurazan),[12] DNAF (3,4-dinitraminofurazan) [16] and BNFF (3,4-bis(4-nitro-1,2,5-oxadiazol-3-yl)-

1,2,5-furoxan).[17] 

Recently, the combination of both, the furazan and furoxan rings with nitro or nitramino groups in the 

molecule has proven to be a good strategy for the synthesis of new high-nitrogen containing explosives.[17] 

A good example of a new high-density energetic material with good thermal stability and performance 

based on the furazan and furoxan rings is 3,4-bis(4-nitro-1,2,5-oxadiazol-3-yl)-1,2,5-furoxan (BNFF, also 

known as DNTF). BNFF can be synthesized by oxidizing 3,4-bis(4-amino-1,2,5-oxadiazol-3-yl)-1,2,5-

furoxan (BAFF) with 50% hydrogen peroxide and trifluoroacetic acid.[18] BNFF has a crystal density of 

1.93 g cm−3 with a heat of formation of 657 kJ mol‒1 and its energetic performance is 168% better than 

trinitrotoluene (TNT). It melts at 108–110 °C and decomposes at 292 °C, which makes the compound of 

special interest as a possible TNT replacement.[17,19] All these physico-chemical properties make BNFF a 
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promising candidate to use not only as a melt-castable ingredient in detonators but also as a high 

performing explosive.[20,21] Replacement of the amino groups in BAFF with nitro groups to form BNFF 

improves the detonation parameters of the energetic material. Surprisingly, the nitration of 3,4-bis(4-

amino-1,2,5-oxadiazol-3-yl)-1,2,5-furoxan (BAFF) has not been reported and the nitramino compound is 

unknown. In this contribution the nitration of BAFF to the nitramino compound (H2BNAFF) is described 

as well as the formation and characterization of some nitrogen-rich salts. 

3.2. Experimental Section 

3.2.1. General procedures 

1H, 13C, 14N and 15N NMR spectra were recorded on JEOL 270 and BRUKER AMX 400 instruments. The 

samples were measured at room temperature in standard NMR tubes (Ø 5 mm). Chemical shifts are 

reported as δ values in ppm relative to the residual solvent peaks of d6-DMSO (δH: 2.50, δC: 39.5). Solvent 

residual signals and chemical shifts for NMR solvents were referenced against tetramethylsilane (TMS, 

δ = 0 ppm) and nitromethane. Unless stated otherwise, coupling constants were reported in hertz (Hz) and 

for the characterization of the observed signal multiplicities the following abbreviations were used: s 

(singlet), d (doublet), t (triplet), q (quartet), quint (quintet), sept (septet), m (multiplet) and br (broad). 

Low resolution mass spectra were recorded on a JEOL JMS-700 MStation mass spectrometer (FAB+/−). 

Infrared spectra (IR) were recorded from 4500 cm−1 to 650 cm−1 on a PERKIN ELMER Spectrum BX-

59343 instrument with a SMITHS DETECTION DuraSamplIR II Diamond ATR sensor. The absorption 

bands are reported in wavenumbers (cm−1). Raman spectra were recorded using a Bruker MultiRAM 

FT-Raman instrument fitted with a liquid-nitrogen cooled germanium detector and a Nd:YAG laser (λ = 

1064 nm). Elemental analysis was carried on a Elementar Vario el by pyrolysis of the sample and 

subsequent analysis of the formed gases. Decomposition temperatures were measured via differential 

thermal analysis (DTA) with an OZM Research DTA 552-Ex instrument at a heating rate of 5 °C min−1 

and in a range of room temperature to 400 °C. Melting points were determined in capillaries with a Büchi 

Melting Point B-540 instrument and are uncorrected. All sensitivities toward impact (IS) and friction (FS) 

were determined according to BAM (German: Bundesanstalt für Materialforschung und Prüfung) 

standards using a BAM drop hammer and a BAM friction apparatus. All energetic compounds were tested 

for sensitivity towards electrical discharge using an Electric Spark Tester ESD 2010 EN from OZM. 

3.2.2. Synthesis 

CAUTION! All investigated compounds are potentially explosive materials, although no hazards were 

observed during preparation and handling these compounds. Nevertheless, safety precautions (such as 
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wearing leather coat, face shield, Kevlar sleeves, Kevlar gloves, earthed equipment and ear plugs) should 

be drawn. 

3,4-Bis(4-amino-1,2,5-oxadiazol-3-yl)-1,2,5-furoxan (BAFF) 

BAFF was synthesized according to the known literature.[17,18,20] 

Dipotassium 3,4-bis(4-nitramino-1,2,5-oxadiazol-3-yl)-1,2,5-furoxan K2BNAFF (2) 

100% HNO3 (9.0 mL) was placed in a round bottom flask and 3,4-bis(4-amino-1,2,5-oxadiazol-3-yl)-

1,2,5-furoxane (BAFF, 4.0 g, 15.9 mmol) was added in small portions at −10 °C . The reaction was stirred 

for 1.5 h at the same temperature and then for 1.5 h at −5 °C. The reaction mixture was poured into ice 

and stirred at room temperature for 2 h. The solution was basified with potassium hydroxide to pH 11. 

The formed solid material was filtered, washed with small amount of cold water and dried on air to give 

K2BNAFF (6.0 g, 90 %). 

DTA (5 °C min−1): 245 °C (dec.); BAM: drop hammer: 3 J (100–500 μm); friction tester: >72 N (100–

500 μm); ESD: 0.19 J (100–500 μm); IR (ATR), ṽ (cm−1) = 2323 (vw), 1630 (s), 1587 (m), 1518 (m), 

1492 (w), 1453 (m), 1436 (m), 1397 (s), 1336 (s), 1290 (ws), 1159 (m), 1049 (w), 990 (m), 963 (m), 928 

(m), 910 (m), 872 (w), 864 (w), 829 (w), 813 (s), 796 (s), 777 (s), 754 (m), 741 (m), 713 (m), 696 (w), 

602 (vw). Raman (1064 nm, 200 mW, 25 °C): ṽ (cm−1) =1633 (11), 1590 (82), 1519 (59), 1492 (38), 1455 

(50), 1437 (100), 1413 (13), 1404 (11), 1385 (29), 1214 (12), 1063 (24), 1049 (30), 1013 (61), 816 (19), 

519 (22), 503 (17), 326 (17), 239 (12), 196 (24), 131 (93), 90 (52), 78 (26). 13C NMR (d6-DMSO, 101 

MHz, ppm) δ = 158.6, 157.8, 146.6, 140.4, 137.4, 106.8. 14N NMR (d6-DMSO, 29 MHz, ppm) δ = −14. 

15N NMR (d6-DMSO, 41 MHz, ppm) δ = 34.1, 31.8, 5.8, 5.5, −6.7, −13.3, −13.8, −24.3, −151.7, −152.8. 

Elem. Anal. (C6K2N10O8, 418.32g mol−1) calcd.: C 17.23, N 33.48, H 0.00 %. Found: C 17.50, N 33.36, 

H 0.00 %. m/z (FAB+): 39 (cation) m/z (FAB−): 341 (anion + H+); 

3,4-Bis(4-nitramino-1,2,5-oxadiazol-3-yl)-1,2,5-furoxan H2BNAFF (3) • 0.5 Et2O 

K2BNAFF (277 mg, 0.65 mmol) was dissolved in 2 M hydrochloric acid (5 mL) at 50 °C. The water phase 

was extracted with Et2O (4 x 50 mL) and after drying over MgSO4 the solvent was removed under reduced 

pressure. 3,4-Bis(4-nitramino-1,2,5-oxadiazol-3-yl)-1,2,5-furoxan (3) was obtained with 0.5 Et2O solvent 

as an oily liquid (247 mg, 100 %). 

DTA (5 °C min−1): 72 °C (dec.); IR (ATR), ṽ (cm−1) = 2981 (w), 2883 (br), 2733 (br), 2002 (vw), 1612 

(s), 1552 (m), 1536 (m), 1467 (m), 1449 (m), 1385 (w), 1298 (vs), 1212 (w), 1184 (vw), 1153 (m), 1094 
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(m), 1067 (m), 990 (s), 968 (m), 905 (m), 863 (w), 811 (s), 760 (m), 679 (w), 610 (vw), 488 (vw), 

462 (vw). 1H NMR (d6-DMSO, 400 MHz, ppm) δ = 12.87 (s, 2H, -NHNO2), 3.34 (q, 4H, -CH2CH3), 1.04 

(t, 6H, -CH2CH3). 
13C NMR (d6-DMSO, 101 MHz, ppm) δ = 154.1, 152.8, 145.6, 141.1, 137.1, 106.2, 

65.2, 15.4. 14N NMR (d6-DMSO, 29 MHz, ppm) δ = −26. 15N NMR (d6-DMSO, 41 MHz, ppm) δ = 38.7, 

37.5, 14.4, 10.9, −5.6, −22.9, −28.3, −29.1, −183.6, −190.4.  

Bis(guanidinium) 3,4-bis(4-nitramino-1,2,5-oxadiazol-3-yl)-1,2,5-furoxan G2BNAFF (4) 

K2BNAFF (2.00 g, 4.80 mmol) was dissolved in 2 M hydrochloric acid (16 mL) at 50 °C. The water phase 

was extracted with Et2O (4 x 60 mL) and after drying over MgSO4 the solvent was removed under reduced 

pressure. The residue was suspended in H2O (8 mL) and guanidinium carbonate (0.85 g, 4.70 mmol) was 

added in small portions. The reaction mixture was heated until all solid material was dissolved. After 

cooling to room temperature the separated solid material was filtered, washed with water and dried on air 

to give 4 (1.76 g, 80 %). 

DTA (5 °C min−1): 189 °C (dec.); BAM: drop hammer: 15 J (100–500 μm); friction tester: 360 N (100–

500 μm); ESD: 0.75 J (100–500 μm); IR (ATR), ṽ (cm−1) = 3499 (m), 3447 (s), 3322 (m), 3269 (m), 3187 

(m), 1651 (s), 1584 (m), 1517 (m), 1491 (w), 1455 (m), 1433 (w), 1396 (s), 1338 (m), 1290 (vs), 1157 

(m), 1014 (w), 985 (m), 958 (m), 927 (m), 919 (m), 919 (m), 874 (w), 820 (m), 799 (s), 775 (m), 738 (w), 

703 (w), 687 (w), 609 (w). Raman (1064 nm, 200 mW, 25 °C): ṽ (cm−1) = 1627 (10), 1585 (100), 1520 

(42), 1490 (29), 1456 (47), 1430 (64), 1404 (11), 1385 (16), 1207 (14), 1045 (25), 1016 (86), 821 (12), 

516 (20), 493 (10), 462 (10), 338 (12), 312 (10), 254 (10), 243 (10), 170 (20), 96 (89), 71 (36). 1H NMR 

(d6-DMSO, 400 MHz, ppm) δ = 6.90 (s, 6H, ) 13C NMR (d6-DMSO, 101 MHz, ppm) δ = 158.6, 157.9, 

157.8, 146.6, 140.5, 137.3, 106.8. 14N NMR (d6-DMSO, 29 MHz, ppm) δ = −14. Elem. Anal. 

(C8H12N16O8, 460.29 g mol−1) calcd.: C 20.88, H 2.63, N 48.69 %. Found: C 20.28, H 2.74, N 48.93 %. 

m/z (FAB+): 60 (cation); m/z (FAB−): 341 (anion + H+); 

Bis(aminoguanidinium) 3,4-bis(4-nitramino-1,2,5-oxadiazol-3-yl)-1,2,5-furoxan AG2BNAFF (5) 

K2BNAFF (1.50 g, 3.60 mmol) was dissolved in 2 M hydrochloric acid (12 mL) at 50 °C. The water phase 

was extracted with Et2O (4 x 60 mL) and after drying over MgSO4 the solvent was removed under reduced 

pressure. The residue was suspended in H2O (10 mL) and aminoguanidinium carbonate (0.98 g, 7.20 

mmol) was added in small portions. The reaction mixture was heated until all solid was dissolved. After 

cooling to room temperature the separated solid material was filtered, washed with water and dried on air 

to give 5 (1.50 g, 85 %). 
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DTA (5 °C min−1): 128 (m.p.), 156 °C (dec.); BAM: drop hammer: 8 J (100–500 μm); friction tester: 360 

N (100–500 μm); ESD: 1.00 J (100–500 μm); IR (ATR), ṽ (cm−1) = 3426 (m), 3347 (m), 3188 (br), 1651 

(s), 1607 (m), 1578 (s), 1519 (m), 1494 (m), 1449 (w), 1410 (w), 1389 (m) 1335 (m), 1298 (vs), 1208 

(m), 1091 (m), 1012 (w), 989 (m), 961 (s), 929 (m), 835 (m), 819 (m), 804 (m), 769 (m), 736 (w), 696 

(vw). Raman (1064 nm, 200 mW, 25 °C): ṽ (cm−1) = 1610 (38), 1583 (29), 1561 (24), 1521 (32), 1496 

(100), 1448 (45), 1411 (69), 1365 (15), 1215 (10), 1163 (14), 1072 (13), 1041 (40), 1014 (95), 993 (18), 

971 (32), 818 (14), 523 (10), 499 (18), 487 (18), 340 (22), 250 (28), 200 (10), 121 (80), 72 (78). 1H NMR 

(d6-DMSO, 400 MHz, ppm) δ = 7.00 (br, 4H), 4.67 (s, 2H). 13C NMR (d6-DMSO, 101 MHz, ppm) δ = 

158.8, 158.6, 157.9, 146.6, 140.5, 137.4, 106.8. 14N NMR (d6-DMSO, 29 MHz, ppm) δ = −13. Elem. 

Anal. (C8H14N18O8, 490.32 g mol−1) calcd.: C 19.60, H 2.88, N 51.42 %. Found: C 20.08, H 2.86, N 

51.05 %. m/z (FAB+): 75 (cation); m/z (FAB−): 341 (anion + H+); 

Bis(ammonium) 3,4-bis(4-nitramino-1,2,5-oxadiazol-3-yl)-1,2,5-furoxan (NH4)2BNAFF (6) 

K2BNAFF (1.67 g, 4.00 mmol) was dissolved in 2 M hydrochloric acid (20 mL) at 50 °C. The water phase 

was extracted with Et2O (4 x 50 mL) and after drying over MgSO4 the solvent was removed under reduced 

pressure. The residue was dissolved in methanol (10 mL) and aqueous ammonia (25 %, 0.64 mL) with 

methanol (3 mL) was added. The solution was stirred for 1 h at room temperature and the solvent was 

removed under reduced pressure. Compound 6 was obtained as white powder (1.41 g, 94 %). 

DTA (5 °C min−1): 161 °C (dec.); BAM: drop hammer: 7 J (100–500 μm); friction tester: 216 N (100–

500 μm); ESD: 0.70 J (100–500 μm); IR (ATR), ṽ (cm−1) = 3194 (br), 1624 (m), 1580 (m), 1519 (m), 

1492 (w), 1402 (s), 1283 (vs), 1157 (m), 1047 (vw), 1007 (m), 989 (m), 962 (m), 927 (m), 911 (m), 875 

(w), 865 (w), 832 (w), 814 (s), 795 (s), 772 (s), 753 (m), 741 (m), 712 (m), 694 (w). Raman (1064 nm, 

200 mW, 25 °C): ṽ (cm−1) = 1627 (11), 1590 (100), 1520 (57), 1494 (42), 1455 (45), 1439 (37), 1427 

(37), 1401 (25), 1213 (14), 1064 (31), 1048 (28), 1011 (79), 817 (20), 518 (26), 501 (19), 330 (17), 185 

(26), 126 (68). 1H NMR (d6-DMSO, 400 MHz, ppm) δ = 7.10 (s, 4H, NH4
+). 13C NMR (d6-DMSO, 101 

MHz, ppm) δ = 158.6, 157.8, 146.6, 140.5, 137.4, 106.8. 14N NMR (d6-DMSO, 29 MHz, ppm) δ = −13. 

Elem. Anal. (C6H8N12O8, 376.21 g mol−1) calcd.: C 19.16, H 2.14, N 44.68 %. Found: C 19.36, H 2.12, 

N 44.48 %. m/z (FAB+): 18 (cation); m/z (FAB−): 341 (anion + H+); 

Bis(hydrazinium) 3,4-bis(4-nitramino-1,2,5-oxadiazol-3-yl)-1,2,5-furoxan (N2H5)2BNAFF (7) 

K2BNAFF (1.67 g, 4.00 mmol) was dissolved in 2 M hydrochloric acid (20 mL) at 50 °C. The water phase 

was extracted with Et2O (4 x 60 mL) and after drying over MgSO4 the solvent was removed under reduced 

pressure. The residue was dissolved in methanol (10 mL) and hydrazinium hydroxide (0.40 mL) was 
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added dropwise. The solution was stirred at room temperature for 1 h. The solvent was removed in vacuo 

and the yellowish solid was dried on air to give 7 (1.52 g, 93 %). 

DTA (5 °C min−1): 170 °C (dec.); BAM: drop hammer: 8 J (100–500 μm); friction tester: 216 N (100–

500 μm); ESD: 0.50 J (100–500 μm); IR (ATR), ṽ (cm−1) = 3352 (m), 3186 (m), 3042 (br), 2639 (br), 

2048 (vw), 1644 (m), 1608 (m), 1582 (m), 15163 (m), 1492 (m), 1449 (m), 1435 (w), 1401 (m), 1357 

(m), 1288 (vs), 1155 (m), 1089 (s), 1009 (w), 992 (m), 962 (s), 925 (m), 873 (w), 821 (m), 795 (s), 770 

(s), 755 (m), 738 (m), 708 (w), 697 (m). Raman (1064 nm, 200 mW, 25 °C): ṽ (cm−1) = 1591 (28), 1579 

(42), 1569 (24), 1561 (23), 1518 (71), 1491 (27), 1450 (43), 1437 (93), 1402 (12), 1374 (11), 1336 (10), 

1209 (18), 1060 (33), 1045 (16), 1011 (100), 969 (11), 821 (23), 596 (10), 515 (19), 480 (10), 408 (11), 

287 (12), 243 (22), 85 (99). 1H NMR (d6-DMSO, 400 MHz, ppm) δ = 6.24 (s, 5H, N2H5
+). 13C NMR (d6-

DMSO, 101 MHz, ppm) δ = 158.6, 157.9, 146.6, 140.5, 137.4, 106.8. 14N NMR (d6-DMSO, 29 MHz, 

ppm) δ = −13. Elem. Anal. (C6H10N14O8, 406.24 g mol−1) calcd.: C 17.74, H 2.48, N 48.27 %. Found: 

C 18.20, H 2.78, N 47.70 %. m/z (FAB+): 33 (cation); m/z (FAB−): 341 (anion + H+); 

Bis(hydroxylammonium) 3,4-bis(4-nitramino-1,2,5-oxadiazol-3-yl)-1,2,5-furoxan hexahydrate 

(NH3OH)2BNAFF (8) • 6 H2O 

K2BNAFF (1.50 g, 3.60 mmol) was dissolved in 2 M hydrochloric acid (16 mL) at 50 °C. The water phase 

was extracted with Et2O (4 x 60 mL) and after drying over MgSO4 the solvent was removed under reduced 

pressure. The residue was suspended in H2O (8 mL) and hydroxylamine solution (50 wt % in H2O, 0.45 

mL) was added dropwise. The reaction was cooled down to 0 °C and the separated crystalline powder 

was filtered and dried on air to give compound 8 as a hexahydrate (1.16 g, 63 %). 

DTA (5 °C min−1): 134 °C (dec.); BAM: drop hammer: 25 J (100–500 μm); friction tester: 360 N (100–

500 μm); ESD: 1.00 J (100–500 μm); IR (ATR), ṽ (cm−1) = 3577 (m), 3252 (br), 3014 (br), 2743 (s), 1634 

(s), 1611 (m), 1527 (s), 1503 (s), 1463 (m), 1421 (w), 1402 (m), 1333 (vs), 1305 (vs), 1224 (m), 1168 

(m), 1075 (vw), 1041 (vw), 1007 (m), 989 (m), 962 (m), 916 (vw), 878 (vw), 827 (w), 800 (m), 768 (m), 

696 (w). Raman (1064 nm, 200 mW, 25 °C): ṽ (cm−1) = 1630 (36), 1612 (36), 1597 (24), 1583 (39), 1527 

(28), 1502 (100), 1464 (55), 1440 (16), 1420 (54), 1404 (23), 1169 (14), 1076 (13), 1042 (36), 1014 (78), 

990 (23), 880 (12), 825 (10), 599 (12), 517 (10), 498 (18), 492 (20), 448 (11), 346 (22), 119 (15), 160 

(32), 121 (91), 93 (91). 1H NMR (d6-DMSO, 400 MHz, ppm) δ = 10.02 (s, H, NH3OH+) 13C NMR (d6-

DMSO, 101 MHz, ppm) δ = 158.7, 157.9, 146.6, 140.5, 137.5, 106.9. 14N NMR (d6-DMSO, 29 MHz, 

ppm) δ = −14. Elem. Anal. (C6H20N12O16, 516.29 g mol−1) calcd.: C 13.96, H 3.90, N 32.56 %. Found: 

C 14.64, H 3.86, N 32.61 %. m/z (FAB+): 34 (cation); m/z (FAB−): 341 (anion + H+); 
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Bis(3,6,7-triamino-[1,2,4]triazolo[4,3-b][1,2,4]triazolium) 3,4-bis(4-nitramino-1,2,5-oxadiazol-3-

yl)-1,2,5-furoxan trihydrate (TATOT)2BNAFF (9) • 3 H2O 

K2BNAFF (428 mg, 1.02 mmol) was dissolved in 2 M hydrochloric acid (5 mL) at 50 °C. The water phase 

was extracted with Et2O (4 x 30 mL) and after drying over MgSO4 the solvent was removed under reduced 

pressure. The residue was dissolved in MeOH/H2O (5:5 mL) and TATOT (316 mg, 2.05 mmol) was 

added. The reaction mixture was heated until the solid material was dissolved. The reaction mixture was 

stirred for an additional 1 h and then cooled down to room temperature. The separated solid was filtered 

and dried on air to yield 9 as trihydrate (482 mg, 68 %). 

DTA (5 °C min−1): 190 °C (dec.); BAM: drop hammer: 40 J (100–500 μm); friction tester: 360 N (100–

500 μm); ESD: 0.70 J (100–500 μm); IR (ATR), ṽ (cm−1) = 3643 (vw), 3457 (w), 3303 (m), 3124 (br), 

1691 (m), 1652 (s), 1513 (m), 1425 (m), 1395 (m), 1288 (vs), 1164 (w), 1042 (m), 1014 (w), 959 (m), 

933 (m), 881 (w), 848 (w), 823 (m), 772 (m), 753 (w), 724 (w), 708 (m), 684 (m), 619 (w). Raman 

(1064 nm, 200 mW, 25 °C): ṽ (cm−1) = 1591 (35), 1584 (37), 1515 (41), 1456 (18), 1433 (56), 1263 (20), 

1042 (17), 1016 (40), 852 (24), 620 (12), 602 (15), 400 (14), 236 (11), 108 (100), 85 (80). 1H NMR (d6-

DMSO, 400 MHz, ppm) δ = 8.12 (2, 2H, NH2), 7.20 (2, 2H, NH2), 5.76 (2, 2H, NH2). 
13C NMR (d6-

DMSO, 101 MHz, ppm) δ = 160.1, 158.7, 157.9, 147.4, 146.6, 141.1, 140.4, 137.3, 106.8. 14N NMR (d6-

DMSO, 29 MHz, ppm) δ = −13. Elem. Anal. (C12H20N26O11, 704.46 g mol−1) calcd.: C 20.46, H 2.86, N 

51.70 %. Found: C 20.80, H 2.81, N 51.36 %. m/z (FAB+): 155 (cation); m/z (FAB−): 341 (anion + H+); 

Disilver 3,4-bis(4-nitramino-1,2,5-oxadiazol-3-yl)-1,2,5-furoxan dihydrate (Ag)2BNAFF• 2 H2O 

(10) 

K2BNAFF (420 mg, 1.00 mmol) was dissolved in 2 M hydrochloric acid (5 mL) at 50 °C. The water phase 

was extracted with Et2O (4 x 30 mL) and after drying over MgSO4 the solvent was removed under reduced 

pressure. The residue was dissolved in MeOH/H2O (6:3 mL) and AgNO3 (340 mg, 2.00 mmol) was added. 

The reaction mixture was stirred for 30 min at room temperature. The solid material was then filtered and 

dried on air to give 10 as a dihydrate (395 mg, 67 %) as white solid. 

DTA (5 °C min−1): 82 °C (dec.); BAM: drop hammer: 1 J (100–500 μm); friction tester: 60 N (100–500 

μm); ESD: 50 mJ (100–500 μm); IR (ATR), ṽ (cm−1) = 3562 (br), 3242 (br), 1636 (m), 1595 (w), 1563 

(m), 1516 (m), 1501 (m), 1432 (s), 1364 (m), 1324 (s), 1290 (vs), 1170 (m), 1072 (w), 1009 (m), 995 (s), 

974 (m), 941 (m), 911 (w), 871 (m), 817 (s), 768 (m), 748 (w), 693 (m), 598 (vw), 582 (vw), 521 (w). 

Raman (1064 nm, 200 mW, 25 °C): ṽ (cm−1) = 1646 (15), 1599 (65), 1576 (22), 1531 (70), 1506 (37), 

1439 (56), 1372 (20), 1171 (11), 1067 (65), 1014 (32), 926 (12) 815 (16), 773 (11), 762 (15), 753 (25), 
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598 (15), 552 (11), 505 (44), 460 (17), 434 (11), 321 (20), 308 (15), 248 (19), 98 (100). 13C NMR (d6-

DMSO, 101 MHz, ppm) δ = 157.9, 156.9, 145.9, 140.1, 137.1, 106.6. 14N NMR (d6-DMSO, 29 MHz, 

ppm) δ = −15. Elem. Anal. (C6H4Ag2N10O10, 591.89g mol−1) calcd.: C 12.18, H 0.68, N 23.66 %. Found: 

C 12.11, H 0.51, N 23.69 %. 

3.3. Results and Discussion 

The synthesis of the starting material BAFF has been performed as reported previously in the literature. 

Initially 4-amino-1,2,5-oxadiazole-3-carboxamidoxime (AFCAO) was synthesized by reacting 

commercially available malononitrile with aqueous nitrous acid and then with 50% aqueous 

hydroxylamine. AFCAO was treated with sodium nitrite in aqueous HCl to give 4-amino-1,2,5-

oxadiazole-3-carbohydroximoyl chloride (AFCHC) which is then reacted with Ag2CO3 in THF to give 

BAFF.[17,20,22] The synthesis and nitration of BAFF are displayed in Scheme 1.  

Scheme 1. A) Literature known synthesis of 3,4-bis(4-amino-1,2,5-oxadiazol-3-yl)-1,2,5-furoxan (1, 

BAFF); B) Nitration of compound 1 and synthesis of new nitrogen-rich salts with BNAFF (3).
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The amino groups of 3,4-bis(4-amino-1,2,5-oxadiazol-3-yl)-1,2,5-furoxan are nitrated with 100% HNO3 

at −10 °C and the formed, unstable dinitramino derivative (H2BNAFF) is converted with potassium 

hydroxide to the dipotassium salt (2, K2BNAFF) in a good yield (90 %). The neutral compound 3 can be 

isolated by dissolving K2BNAFF (2) in 2 M hydrochloric acid and then extracting with diethyl ether giving 

an oily liquid. H2BNAFF is only stable at room temperature only with 0.5 equivalents ether as a solvate 

(BNAFF (3) • 0.5 Et2O).  

However, H2BNAFF is unstable at room temperature without Et2O and decomposes with the release of 

nitrous gases. Using other solvents as extraction medium resulted in decomposition of the neutral 

compound. Using K2BNAFF (2) as the starting material nitrogen-rich salts of BNAFF can be synthesized. 

For this purpose, compound 2 is dissolved in a small amount of 2 M HCl and the in situ generated neutral 

compound (3) is reacted with the desired base giving compounds 4–10 (Scheme 1). 

3.3.1. Crystal structures 

During this work the crystal structures of compounds 2, 4, 5, 8 and 10 were determined by low-

temperature X-ray diffraction. Compounds 2, 4 and 5 crystallize anhydrously whereas compound 8 

crystallizes with six molecules of water. The crystal structure of 10 was determined of single crystals 

from conc. ammonia solution containing two molecules NH3. Selected data and parameters for the low-

temperature X-ray data collection and refinements are given in the Supporting Information. A distortion 

of the N-oxide moiety in the furoxan ring of the BNAFF2‒ anion can be observed in the obtained crystal 

structures for compounds 4, 5, 8 and 10. 

Dipotassium 3,4-bis(4-nitramino-1,2,5-oxadiazol-3-yl)-1,2,5-furoxane (2) crystallizes from water, 

without inclusion of solvent molecules, in the triclinic space group P‒1 with two molecules per unit cell 

and a cell volume of 651.80 · 106 pm3. The density of 2 at a temperature of 103 K is 2.132 g cm‒3. Figure 

2 illustrates the molecular unit of the potassium salt (2). The torsion angle of C1–C2–C3–N5 and N6–

C4–C5–C6 in BNAFF2− anion are –63.0(5) and 18.1(6)° respectively, showing that both furazan rings are 

not coplanar to the furoxan ring. 
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Figure 2.  Molecular unit of 2, showing the atom-labeling scheme and bond lengths (pm) with 

standard deviations. Thermal ellipsoids represent the 50 % probability level and hydrogen atoms are 

shown as small spheres of arbitrary radius. 

Bis(guanidinium) 3,4-bis(4-nitramino-1,2,5-oxadiazol-3-yl)-1,2,5-furoxan (4) crystallizes in the 

monoclinic space group P2/c with a cell volume of 1761.43·106 pm3 and four molecules per unit cell. The 

density at a temperature of 123 K is 1.736 g cm‒3. The furoxan and furazan rings in the BNAFF2− anion 

have a planar structure (O4–N6–C4–C3 0.5°, N2–O1–N1–C1 −0.3° and O6–N7–C5–C6 0.2°). However, 

both furazan rings in the anion are not coplanar to the furoxan ring as indicated by the torsion angle of 

C2–C3–C4–C5 −14.6°. Both nitramino groups in BNAFF2− are slightly tilted against the furazan rings as 

shown by the torsion angles of N10–N9–C6–N8 6.4° and N4–N3–C1–N1 –5.4°. The bond distances of 

the furoxan ring (C3–C4 1.418 Å and N5–C3 132.0 pm), furazan rings (C1–C2 143.6 pm and N8–C6 

131.1 pm) and the nitramino moiety (N3–N4 131.5 pm, N9–N10 132.2 pm, O2–N4 125.5 pm and O7–

N10 125.7 pm) are in accordance with similar nitramino oxadiazoles reported in the literature.[23] 
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Figure 3.  Representation of the molecular unit of 4, showing the atom-labeling scheme. Thermal 

ellipsoids represent the 50 % probability level and hydrogen atoms are shown as small spheres of arbitrary 

radius. Selected bond distances (pm) and angles [°]: C3–C4 141.8(4), N5–C3 132.0(3), C1–C2 143.6(3), 

N8–C6 131.1(3), N3–N4 131.5(3), N9–N10 132.2(3), O7–N10 125.7(2), O4–N6–C4–C3 0.5(3), N2–O1–

N1–C1 −0.3(2), O6–N7–C5–C6 0.2(2), C2–C3–C4–C5 −14.6(6), N10–N9–C6–N8 6.4(4), N4–N3–C1–

N1 –5.4(4). 

Bis(aminoguanidinium) 3,4-bis(4-nitramino-1,2,5-oxadiazol-3-yl)-1,2,5-furoxan (5) crystallizes from 

water, without inclusion of solvent molecules, in the monoclinic space group P2/c with four molecules 

per unit cell and a cell volume of 1863.35·106 pm3. The density of 5 at a temperature of 123 K is 

1.748 g cm‒3. Figure 4 illustrates the molecular unit of 5. The torsion angle of C1–C2–C3–C3i in 

BNAFF2− anion is –39.6°, showing that both furazan rings are not coplanar to the furoxan ring. The 

connecting C–C bond of the oxadiazoles (C2–C3) with a length of 145.9 pm is significantly shorter than 

a C–C single bond (154.0 pm). The nitramino moiety is slightly twisted from the furazan plane with 

torsion angle of –177.45° (C1–N3–N4–O3). The bond distances of the furoxan ring (O4–N5 139.8 pm 

and N5–C3 131.8 pm), furazan rings (O1–N2 136.5 pm and C1–C2 143.5 pm) and the nitramino moiety 

(N3–N4 131.42 pm, N3–C1 137.9 pm, O3–N4 126.68 pm) are in accordance with similar nitramino 

oxadiazoles reported in the literature.[23] 
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Figure 4.  Molecular unit of 5, showing the atom-labeling scheme and bond lengths (pm) with 

standard deviations. Thermal ellipsoids represent the 50 % probability level and hydrogen atoms are 

shown as small spheres of arbitrary radius. Symmetry codes: (i) x, y, z, (ii) 1-x, y, 0.5-z, (iii) 1-x, 0.5+y, 

1-z. Selected bond distances (pm) and angles [°]: C2–C3 145.9(2), O4–N5 139.8(2), N5–C3 131.8(2), 

O1–N2 136.5(2), C1–C2 143.5(2), C1–C2–C3–C3i –39.6(3), C1–N3–N4–O3 –177.45(13). 

Disilver 3,4-bis(4-nitramino-1,2,5-oxadiazol-3-yl)-1,2,5-furoxan (10) is crystallized from hot water with 

conc. ammonia solution, with inclusion of two molecules ammonia, in the triclinic space group P‒1 with 

two molecules per unit cell and a cell volume of 784.58(12)·106 pm3. The density of 10 at a temperature 

of 173 K is 2.497 g cm‒3. Figure 5 illustrates the molecular unit of Ag2BNAFF•2NH3. 
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Figure 5.  Molecular unit of 10, showing the atom-labeling scheme and bond lengths (pm) with 

standard deviations. Thermal ellipsoids represent the 50 % probability level and hydrogen atoms are 

shown as small spheres of arbitrary radius. 

3.3.2. NMR Spectroscopy 

All synthesized compounds were characterized with multinuclear NMR (1H, 13C and 14N) spectroscopy. 

In addition, 15N NMR spectra of 2 and 3•0.5Et2O were recorded. Compound 3•0.5Et2O shows three 

different resonances in the 1H NMR spectrum; one at 12.87 ppm for the acidic protons of the nitramine 

groups (–NHNO2) and two at 3.34 (–OCH2CH3) and 1.04 (–OCH2CH3) ppm for the ether solvate (1H, 13C 

and 14N NMR spectra of compound 3•0.5Et2O are displayed in the Supporting Information). All six 

observed resonances in 13C spectrum of the neutral nitramine compound 3•0.5Et2O are high-field shifted 

in comparison to all observed resonances in the 13C spectra of all energetic salts with the BNAFF2– anion. 

The 14N resonances for the nitro groups in compound 3 are detected at –26 ppm and the nitro groups of 

the energetic salts are observed in the range of –13 to –15 ppm. The values for all 1H, 13C and 14N 

resonances of compounds 2 and 3•0.5Et2O are listed in Table 1. 

Table 1. 1H, 13C and 14N NMR shifts of compounds 2 and 3•0.5Et2O. 

Compound 
1H NMR 

δ [ppm] 
13C NMR δ [ppm] 

14N NMR 

δ [ppm] 

2 – 158.6, 157.8, 146.6, 140.4, 137.4, 106.8. –14 

3 
12.87, 

3.34, 1.04 
154.1, 152.8, 145.6, 141.1, 137.1, 106.2, 65.2, 15.4 –26 
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Figure 6 shows the comparison between both recorded 15N NMR spectra for compounds 2 and 3. In the 

spectrum of the neutral nitramine compound 3 the nitro groups are found at –28.3 and –29.0 ppm and the 

NH groups at –183.9 and –190.4 ppm (no coupling to hydrogen due to exchange with the solvent d6-

DMSO). Upon formation of the potassium salt (deprotonation) all resonances in 15N NMR show strong 

low-field shift as observed in the case of the nitro (to –13.3 and –13.8 ppm) and NH groups (–151.7 and 

152.8 ppm). 

 

Figure 6. Recorded 15N NMR spectra of K2BNAFF (2) and BNAFF (3) • 0.5 Et2O in d6-DMSO. 

3.3.3. Physicochemical properties 

Since all synthesized compounds can be considered as energetic materials, their energetic behaviors were 

investigated. However, only the physicochemical properties of compounds 2, 4, 5, 6 and 7 are discussed 

because they were obtained as anhydrous compounds. All theoretical calculated and experimentally 

determined values for compounds 2, 4–7 compared to the high explosive RDX are listed in Table 2.  
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Table 2. Physico-chemical properties of 2, 4–7 in comparison to RDX. 

 2 4 5 6 7 RDX 

Formula C6K2N10O8 C8H12N16O8 C8H14N18O8 C6H8N12O8 C6H10N14O8 C3H6N6O6 

IS[a] [J] 3 15 8 7 8 7.5 

FS[b] [N] > 72 360 360 216 216 120 

ESD[c] [J] 0.19 0.75 1.00 0.70 0.50 0.2 

Ω[d] [%] −19.12 −48.66 −48.95 −34.02 −35.45 −21.6 

Tm
[e] [°C] − − 128 − − − 

Tdec
[f] [°C] 245 189 156 161 170 210 

ρ[g] [g cm−3] 2.07 1.692 1.703 1.735(pyc) 1.535(pyc) 1.806[24] 

ΔHf°[h] [kJ 

kg−1] 
689 1275 1650 1635 2239 387 

EXPLO5 

6.03 [25] 
      

−ΔEU°[i] [kJ 

kg−1] 
5483 4721 4981 5701 5953 5798 

TC-J
[j] [K] 3772 3318 3389 3922 4169 3831 

pC-J 
[k] [kbar] 299 253 269 305 257 354 

Vdet.
[l] [m s−1] 8263 8099 8364 8579 8105 8834 

V0
[m] [dm3 

kg−1] 
470 796 819 779 846 792 

[a] Impact sensitivity (BAM drophammer, method 1 of 6); [b] friction sensitivity (BAM 

drophammer, method 1 of 6); [c] electrostatic discharge device (OZM research); [d] oxygen 

balance; [e] melting point (DTA, β = 5°C∙min−1); [f] temperature of decomposition (DTA, 

β = 5°C∙min−1); [g] density at 298 K; [h] standard molar enthalpy of formation; [i] detonation 

energy; [j] detonation temperature; [k] detonation pressure; [l] detonation velocity; [m] volume 

of detonation gases at standard temperature and pressure conditions. 
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3.3.4. Thermal behavior 

The thermal behavior of compounds 2, 4–10 was investigated with an OZM Research DTA 552-Ex 

instrument at a heating rate of 5 °C min−1. Critical temperatures are given as the onset temperature. The 

neutral compound 3 decomposes simultaneously as soon as the ether solvate is removed from the 

molecule. The neutral nitramine (3) exhibits only one sharp exothermal signal at 72 °C in the DTA plot. 

Additional data can be found in the Supporting Information. From all synthesized salts of BNAFF, 

compound 2 has the highest decomposition point at 245 °C. All formed nitrogen-rich salts with the 

BNAFF2− anion decompose in the range of 150–200 °C, whereas the guanidinium salt (4) has the highest 

decomposition temperature of 189 °C. 

3.3.5. Sensitivities  

In addition, the sensitivities for all compounds toward friction, impact and electrostatic discharge were 

explored using the BAM standards.[26,27] The silver (10, IS = 1 J, FS = 60 N and ESD = 50 mJ) and 

potassium salts (2, IS = 3 J, FS = > 72 N and ESD = 0.19 J) are the most sensitive compounds from all 

synthesized energetic materials formed with the BNAFF2− anion. From all nitrogen-rich compounds the 

ammonium salt (6) is the most sensitive compound (IS = 7 J and FS = 216 N) toward friction and impact. 

The impact and friction sensitivities for the others range from 7 J to 15 J and from 216 N to 360 N. 

3.3.6. Detonation parameters 

The detonation parameters for compounds 2, 4, 5, 6 and 7 were calculated using the EXPLO5_V6.03 

computer code.[25] The EXPLO5 detonation parameters of compounds 2, 4–7 were calculated by using 

the room-temperature density values obtained from the X-ray structures (compounds 2, 4 and 5) as 

described in reference[28] or by using pycnometrical measured densities of compounds 6 and 7. The 

densities range from 1.535 g cm−3 (7, pyc) to 2.07 g cm−3 (2). All compounds reported in Table 2 exhibit 

a highly positive heat of formation from 689 kJ kg−1 (2) to 2239 kJ kg−1 (7), which exceed the value for 

the heat of formation of RDX (387 kJ kg−1). Compounds 2, 4–7 show good calculated detonation 

parameters with detonation velocities (Vdet.) between 8000–8600 m s−1 and detonation pressure (pC-J) 250–

310 kbar. Compound 6 shows the highest calculated detonation velocity (8579 m s−1) and detonation 

pressure (305 kbar), whereas the guanidinium salt (4) exhibits the lowest values (Vdet. = 8099 m s−1
 and 

pC-J = 253 kbar). 
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3.4. Conclusion 

In summary, 3,4-bis(4-nitramino-1,2,5-oxadiazol-3-yl)-1,2,5-furoxan (3) was synthesized for the first 

time by nitration of 3,4-bis(4-amino-1,2,5-oxadiazol-3-yl)-1,2,5-furoxan (1) with 100% nitric acid. 

Compound 3 is only stable at room temperature with 0.5 equivalents ether as a solvate. The stability of 

the BNAFF2− anion can be tamed by forming alkali metal salts or by reacting it with nitrogen-rich bases. 

Starting from the potassium salt (2, K2BNAFF), different metal and nitrogen-rich salts with the BNAFF2− 

anion were synthesized and characterized using multinuclear NMR spectroscopy, vibrational 

spectroscopy (IR and Raman), X-ray single-crystal diffraction, DTA, BAM sensitivity methods and 

elemental analysis. In addition, the heats of formation and detonation properties of all anhydrous energetic 

compounds were calculated. Salt formation leads to the stabilization of the BNAFF2− anion and increase 

of the thermal stability up to 245 °C. High detonation velocities (8000–8600 m s−1) were calculated for 

the anhydrous compounds 2, 4–7. 
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3.7. Supporting Information 

3.7.1. X-ray Diffraction 

The low-temperature single-crystal X-ray diffraction measurements were performed on an Oxford 

XCalibur3 diffractometer equipped with a Spellman generator (voltage 50 kV, current 40 mA) and a 

KappaCCD detector operating with MoKα radiation (λ = 0.7107 Å). Data collection was performed using 

the CRYSALIS CCD software.[S1]
 

The data reduction was carried out using the CRYSALIS RED 

software.[S2] The solution of the structure was performed by direct methods (SIR97)[S3] and refined by 

full-matrix least-squares on F2 (SHELXL)[S4] implemented in the WINGX software package[S5] and 

finally checked with the PLATON software.[S6] All DIAMOND2 plots are shown with thermal ellipsoids 

at the 50% probability level and hydrogen atoms are shown as small spheres of arbitrary radius. 

 

Figure 1. Representation of the molecular unit of 8, showing the atom-labeling scheme. Thermal 

ellipsoids represent the 50 % probability level and hydrogen atoms are shown as small spheres of arbitrary 

radius. Symmetry code: (i) 1-x, y, 0.5-z; (ii) 1-x, 1-y, 1-z; (iii) -0.5+x, -0.5+y, z; (iv) 1.5-x, 1.5-y, 1-z; (v) 

-0.5+x, 1.5-y, 0.5+z; (vi) 1-x, 2-y, 1-z; 

Bis(hydroxylammonium) 3,4-bis(4-nitramino-1,2,5-oxadiazol-3-yl)-1,2,5-furoxan (8) hexahydrate 

crystallizes with inclusion of six molecules of crystal water per molecular unit in the monoclinic space 

group C2/c. The measured density at 123 K of 1.665 g cm‒3 is rather low due to the six molecules water 

in the crystal structure. 
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Table S1. Crystallographic datails of compounds 2, 4 and 5. 

Compound 2 4 5 

Formula C6K2N10O8 C8H12N16O8 C8H14N18O8 

Form. Mass [g mol−1] 418.36 460.29 490.32 

Crystal system triclinic monoclinic orthorhombic 

Space Group P−1 (No. 2) P2/c (No. 13) C2/c (No. 15) 

Color / Habit colorless block colorless block colorless block 

Size [mm] 0.01 x  0.03 x  0.04 0.26 × 0.18 × 0.12 0.20 × 0.15 × 0.10 

a [pm] 

b [pm] 

c [pm] 

α [°] 

 [°] 

γ [°] 

453.13(3) 

693.55(5) 

2156.75(16) 

91.561(3) 

91.303(3) 

105.748(3) 

1787.44(5) 

775.80(2) 

1356.32(4) 

90 

110.523(3) 

90 

1561.13(10) 

826.35(4) 

1480.72(8) 

90 

102.714(7) 

90 

V [pm3] 651.80(8) · 106 1761.43(9) · 106 1863.35(19) · 106 

Z 2 4 4 

calc. [g cm−3] 2.132 1.736 1.748 

 [mm−1] 0.805 0.153 0.153 

F(000) 416 944 1008 

λMoKα[pm] 71.073 71.073 71.073 

T [K] 103 123(2) 123(2) 

ϑ min-max [°] 3.2,  26.3 4.1, 26.5 4.6,  30.5 

Dataset h; k; l 
−5:5; −8:8;0:26 −22:22;−9:9;−17:17 −19:19;−10:9;−18:

18 

Reflect. coll. 2272 26218 7036 

Independ. refl. 2272 3626 1928 

Rint 0.079 0.029 0.028 

Reflection obs. 2272 3150 1591 

No. parameters 236 347 187 

R1 (obs) 0.0295 0.0484 0.0378 

wR2 (all data) 0.0716 0.0996 0.0872 

S 1.20 1.22 1.08 
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Resd. Dens. [e pm−3] −0.33, 0.29 · 10−6 −0.35, 0.26 · 10−6 −0.32, 0.20 · 10−6 

Device type 
Oxford Xcalibur3 

CCD 

Oxford Xcalibur3 

CCD 

Oxford Xcalibur3 

CCD 

Solution SIR-92 SIR-92 SIR-92 

Refinement SHELXL-97 SHELXL-97 SHELXL-97 

Absorpt. corr. multi-scan multi-scan multi-scan 

CCDC 1589059 1589062 1589063 

 

Table S2. Crystallographic datails of compounds 8 and 10. 

Compound 8· 6 H2O 10 · 2 NH3 

Formula C6H20N12O16 C8H6Ag2N12O8 

Form. Mass [g mol−1] 516.34 589.97 

Crystal system monoclinic triclinic 

Space Group C2/c (No. 15) P−1 (No. 2) 

Color / Habit colorless block colorless block 

Size [mm] 0.25 × 0.15 × 0.10 0.02 x  0.08 x  0.17 

a [pm] 

b [pm] 

c [pm] 

α [°] 

 [°] 

γ [°] 

2118.44(12) 

751.25(3) 

1333.39(7) 

90 

103.849(6) 

90 

706.07(6) 

1046.69(8) 

1191.19(9) 

64.293(8) 

81.963(7) 

88.871(7) 

V [pm3] 2060.37(19) · 106 784.58(12) · 106 

Z 4 2 

calc. [g cm−3] 1.665 2.497 

 [mm−1] 0.162 2.572 

F(000) 1072 568 

λMoKα[pm] 71.073 71.073 

T [K] 123(2) 173(2) 

ϑ min-max [°] 4.4, 27.0 4.3,  26.0 

Dataset h; k; l −21:26;−9:9;−17:15 −8:8 ;−12:12;−14:12 
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Reflect. coll. 8343 5774 

Independ. refl. 2247 3073 

Rint 0.030 0.031 

Reflection obs. 1898 2403 

No. parameters 199 287 

R1 (obs) 0.0356 0.0322 

wR2 (all data) 0.0772 0.0710 

S 1.08 1.01 

Resd. Dens. [e pm−3] −0.38, 0.33 · 10−6 −0.67, 0.90 · 10−6 

Device type 
Oxford Xcalibur3 CCD Oxford Xcalibur3 

CCD 

Solution SIR-92 SIR-92 

Refinement SHELXL-97 SHELXL-97 

Absorpt. corr. multi-scan multi-scan 

CCDC 1589061 1589060 

3.7.2. Computations 

Quantum chemical calculations were carried out using the Gaussian G09 program package.[S7] The 

enthalpies (H) and free energies (G) were calculated using the complete basis set (CBS) method of 

Petersson and co-workers in order to obtain very accurate energies. The CBS models use the known 

asymptotic convergence of pair natural orbital expressions to extrapolate from calculations using a finite 

basis set to the estimated CBS limit. CBS-4 begins with an HF/3-21G(d) geometry optimization; the zero-

point energy is computed at the same level. It then uses a large basis set SCF calculation as a base energy, 

and an MP2/6-31+G calculation with a CBS extrapolation to correct the energy through second order. An 

MP4(SDQ)/6-31+ (d,p) calculation is used to approximate higher order contributions. In this study, we 

applied the modified CBS. 

Heats of formation of ionic compounds were calculated using the atomization method (equation 1) using 

room temperature CBS-4M enthalpies summarized in Table S3.[S8,S9]  

ΔfH°(g, M, 298) = H(Molecule, 298) – ∑H°(Atoms, 298) + ∑ΔfH°(Atoms, 298)  (1) 

Table S3. CBS-4M electronic enthalpies for atoms C, H, N and O and their literature values for atomic 

Δ fH°298 / kJ mol–1 

 –H298 / a.u. NIST [S10] 
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H 0.500991 218.2 

C 37.786156 717.2 

N 54.522462 473.1 

O 74.991202 249.5 

In the case of the ionic compounds, the lattice energy (UL) and lattice enthalpy (ΔHL) were calculated 

from the corresponding X-ray molecular volumes according to the equations provided by Jenkins and 

Glasser.[S11] With the calculated lattice enthalpy the gas-phase enthalpy of formation was converted into 

the solid state (standard conditions) enthalpy of formation. These molar standard enthalpies of formation 

(ΔHm) were used to calculate the molar solid state energies of formation (ΔUm) according to equation 2. 

ΔUm  =  ΔHm – Δn RT  (2) 

(Δn being the change of moles of gaseous components) 

The calculation results are summarized in Tables S4 and S5. 

Table S4. CBS-4M results and calculated gas-phase enthalpies. 

Ion 
M [g mol–1] 

[a] 
–H298 [b] / a.u. 

ΔfH°(g,M) 

/ kJ mol–1 [c] 

BNAFF2– 340.1 1375.855059 563.9 

K+ 39.1 599.03597 487.7 

G+ 60.1 205.453192 571.2 

AG+ 75.1 260.701802 671.6 

NH4
+ 18.1 56.796608 635.8 

N2H5
+ 66.1 112.030523 774.5 

[a] Molecular weight; [b] CBS-4M electronic enthalpy; [b] gas phase enthalpy of formation;  

Table S5. Calculation results. 

Compound 
ΔfH°(g,M) 

/ kJ mol–1 [a] 

VM / nm3 

[b] 

ΔUL kJ 

mol–1 [c] 

ΔHL kJ 

mol–1 [d] 

ΔfH°(s) 

kJ mol–1 

[e] 

Δn [f] 
ΔfU(s) kJ 

kg–1 [g] 

2 1539.3 0,3479348 1243.8 1251.2 288.1 9 742.4 

4 1707.7 0.4641811 1113.4 1120.9 586.8 18 1371.8 
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5 1907.1 0.4894795 1090.8 1098.2 808.9 20 1750.9 

6 1835.6 0.3714202 1213.1 1220.6 614.9 14 1726.9 

7 2112.2 0.3861776 1195.2 1202.6 909.6 16 2336.7 

[a] gas phase enthalpy of formation; [b] molecular volumes taken from X-ray structures and corrected to 

room temperature; [c] lattice energy (calculated using Jenkins and Glasser equations); [d] lattice enthalpy 

(calculated using Jenkins and Glasser equations); [e] standard solid state enthalpy of formation; [f] change 

of moles of gaseous components when formed; [g] solid state energy of formation. 

3.7.3. NMR Spectra 

1H, 13C and 14N NMR Data for H2BNAFF • 0.5 Et2O 

 

Figure 2. Recorded 1H NMR spectrum of H2BNAFF • 0.5 Et2O (3) in d6-DMSO. 
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Figure 3. Recorded 13C NMR spectrum of H2BNAFF • 0.5 Et2O (3) in d6-DMSO. 

 

Figure 4. Recorded 14N NMR spectrum of H2BNAFF • 0.5 Et2O (3) in d6-DMSO. 
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Abstract: The synthesis of 3,5-diamino-4,6-dinitropyridazine-1-oxide (8) is reported. It is prepared in a 

six step synthetic procedure starting from the acyclic compounds and shows good properties (detonation 

velocity DC-J = 8486 m∙s−1, detonation pressure pC-J = 302 kbar and sensitivity toward mechanical stimuli). 

Compound 8 and its precursor (7, 3,5-dimethoxy-4,6-dinitropyridazine-1-oxide) were characterized by 

means of multinuclear (1H, 13C, 14N, 15N) NMR spectroscopy, mass spectrometry, vibrational 

spectroscopy (IR and Raman), elemental analysis and DTA measurements. Compounds 4, 5, 6, 7, 8 and 

9 were also characterized by low-temperature single-crystal X-ray diffraction. The heats of formation for 

7 and 8 were calculated using the atomization method based on CBS-4M enthalpies. With the 

experimentally determined (X-ray) densities and the calculated standard molar enthalpies of formation, 

several detonation parameters such as the detonation pressure, energy and velocity were predicted by 

using the EXPLO5 code (V6.03). The sensitivities of 3,5-dimethoxy-4,6-dinitropyridazine-1-oxide (7) 

and 3,5-diamino-4,6-dinitropyridazine-1-oxide (8) toward impact, friction and electrical discharge were 

tested according to BAM standards. In addition, the shock reactivity of 8 was measured by applying the 

small-scale shock reactivity test, showing similar values to HNS, PYX and TKX-55. 
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4.1. Introduction 

Due to increasing safety regulations the research on new energetic materials based on nitrogen-rich 

heterocycles has attracted considerable interest in the past decades, not only for military application but 

also for industrial.[1] The arising challenge on combining good detonation performance and sensitivity for 

the synthesis of new high-energy density materials has come into focus.[2] There are different strategies 

reported in the literature for achieving this goal; introduction of conjugation into the system, formation 

of nitrogen-rich salts or introduction of an alternating C−NH2/C−NO2 into the system, which leads to the 

formation of intra- and intermolecular hydrogen bonds.[3] A well-known example for a heat resisting and 

insensitive explosive is 2,4,6-triamino-1,3,5-trinitrobenzene (TATB) consisting of alternating amino and 

nitro groups on the benzene scaffold.[4] In recent years, the synthesis of new energetic materials based on 

nitrogen-rich heterocycles has received great interest.[5] Some synthesized and well known heterocyclic, 

energetic materials based on pyridines (TANPyO)[6] and 1,4-diazines (ANPZ and LLM-105)[7,8] are 

shown in Figure 1. LLM-105 and TANPyO exhibit good thermal stability and sensitivity combined with 

good detonation performance. The introduction of the N-oxide moiety to the energetic backbone has been 

proven to increase not only the performance of the energetic material, but also its oxygen balance and 

improves the crystal packing, leading to higher density of the material.[9] For example, 2,6-diamino-3,5-

dinitropyrazine-1-oxide (LLM-105, ρ = 1.92 g∙cm−3 and D = 8516 m∙s−1) shows higher energetic 

performance compared to its precursor 2,6-diamino-3,5-dinitropyrazine (ANPZ, ρ = 1.84 g∙cm−3 and D = 

7892 m∙s−1).[5,10] 
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Figure 1. Energetic compounds TATB, TANPyO, ANPZ, LLM-105 and the investigated pyridazine 

derivatives. 

Although 1,4-diazines have been well investigated in the literature as energetic materials, 1,3- and 1,2-

diazines are relatively unexploited systems. This can be explained by the fact that electrophiles directly 

attack the ring N-atoms in the pyridazine/pyrimidine system resulting for instance in protonation, 

alkylation or N-oxidation, thus hindering nitration attempts.[11] In addition, the nitro group is an excellent 

leaving group and can be easily substituted even by weak nucleophiles.[12] However, recently reported 

literature shows that 1,2-diazine (pyridazine) derivatives and their N-oxides can be synthesized and may 

be interesting new building blocks for the synthesis of new energetic materials.[13]  The idea of this work 

was to synthesize 3,5-diamino-4,6-dinitropyridazine-1-oxide and 4,6-diamino-3,5-dinitropyridazine-1-

oxide (Figure 1); two structural isomers to LLM-105 which are based on the pyridazine scaffold. Due to 

the additional N–N bond both pyridazine derivatives should exhibit even higher heat of formation 

compared to LLM-105. 

4.2. Results and Discussion 

Herein, we report the selective functionalization of the pyridazine scaffold (Scheme 1). 
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Scheme 1. Synthesis of 3,5-dimethoxy-4,6-dinitropyridazine-1-oxide (7) and 3,5-diamino-4,6-

dinitropyridazine-1-oxid (8). 

The target molecules 3,5-dimethoxy-4,6-dinitropyridazine-1-oxide (7) and 3,5-diamino-4,6-

dinitropyridazine-1-oxide (8) were synthesized by using 3,5-dichloropyridazine (4) as the starting 

material. Initially, compound 4 was synthesized according to the literature.[14] Treatment of chloral 

hydrate (1) with chloroacetaldehyde (2) in the presence of ammonium acetate and p-

toluenesulfonic acid monohydrate on the DEAN-STARK apparatus gave (Z)-2,4,4,4-tetrachlorobut-

2-enal (3). The cyclization of compound 3 with semicarbazide hydrochloride yielded 3,5-

dichloropyridazine (4). Subsequently, compound 4 was converted into 3,5-dimethoxypyridazine-

1-oxide (6)[15] by first reacting it with potassium hydroxide in methanol, which gave 3,5-

dimethoxypridazine (5),[16] followed by oxidation of the pyridazine nitrogen with 30% hydrogen 

peroxide in glacial acetic acid. The introduction of the N-oxide was also accomplished by using 

HOF increasing the yield of the reaction up to 90%.[17] The insertion of the N-oxide and the 

introduction of electron-donating functional groups (−OMe) into the pyridazine scaffold allowed 

the nitration with 20% oleum and 100% nitric acid of compound 6 to the desired product 3,5-

dimethoxy-4,6-dinitropyridazine-1-oxide (7). Nitration of 6 was also possible with a mixture of 

20% oleum and sodium nitrate at elevated temperature. The second nitro group in compound 7 was 

able to be introduced only when the N-oxide was present in the parent molecule. Finally, 3,6-

diamino-4,6-dinitropyridazine-1-oxide (8) was synthesized by reacting compound 7 with 

concentrated ammonia solution in acetonitrile. 
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Scheme 2. Nitration reactions with 3,5-dimethoxypyridazine (5). 

The first step in the synthesis of 4,6-diamino-3,5-dinitro-pyridazine-1-oxide was the nitration of 

3,5-dimethoxypridazine (5). As shown in Scheme 2 the nitration of compound 5 gave only 3,5-

dimethoxy-4-nitropyridazine (9) and not the desired product 3,5-dimethoxy-4,6-dinitropyridazine. 

Further nitration of compound 9 was not successful and yielded either the starting material or 

decomposition products. The crystal structure of compound 9 is reported in the Supporting 

Information. As it seems without the N→O moiety the introduction of the second nitro group into 

the pyridazine system cannot be achieved. Different strategies toward the synthesis of 4,6-diamino-

3,5-dinitropyridazine-1-oxide are currently under investigation. 

4.2.1. X-ray diffraction 

Suitable crystals of 7 and 8 for X-ray diffraction analysis were obtained by slow evaporation from 

a solution of 7 in dichloromethane and a solution of 8 in water, respectively.  In addition, the crystal 

structures of compounds 4–6 are shown in the Supporting Information. CCDC-1590457 (4), 

CCDC-1590458 (5), CCDC-1590459 (6 • 3 H2O), CCDC-1590461 (7), CCDC-1590460 (8) and 

CCDC-1816507 (9) contain the supplementary crystallographic data for this paper. These data can 

be obtained free of charge from The Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/data_request/cif. Compound 7 crystallizes in the orthorhombic space group 

Pbcn and has a calculated density of 1.637 g∙cm−3 at 123 K (Figure 2). The bond angles and bond 

lengths in the pyridazine ring are between typical C−N/N−N single and C=N/N=N double bonds 
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due to the aromaticity. Among them, the bond lengths of N2−C1 and N1−N2 are 1.329(3) and 

1.347(3) Å, respectively. The N−O bond length in the N→O moiety is 1.268(2) Å. 

 

Figure 2. Molecular structure of compound 7 in the solid state. Ellipsoids correspond to 50 % 

probability levels. Selected bond distances [Å] and angles [°]: O1–N1 1.268(2), N1–N2 1.347(3), 

N1–C4 1.341(3), C3–C4 1.401(3), N4–C4 1.468(3), O2–C1 1.323(2), N2–N1–C4 121.75(17), N3–

C2–C1 117.48(18), C5–O2–C1–N2 −2.6(3), O1–N1–N2–C1 178.22(17), O3–N3–C2–C3 

−120.9(2), C6–O5–C3–C4 −160.6(2); 

Compound 8 crystallizes in the monoclinic space group P21/c and has a calculated density of 

1.888 g∙cm−3 at 123 K (Figure 3). Compared to compound 7 (N1−O1 1.268(2) Å) the N−O bond 

length in the N→O moiety of 8 does not shown any significant difference (N1−O1 1.2681(19) Å). 

Compound 8 is almost planar in the crystal structure with a small aberration for the nitro group 

next to the N→O with torsions angle of 36.5(2) and −144.95(17)° for O2−N3−C1−N1 and 

O3−N3−C1−N1, respectively. Both amino groups and the second nitro group are in the same plane 

as the pyridazine ring. The C−C (C1–C2 1.422(2) Å) lengths in compound 8 are in the range of 

those reported for LLM-105 (C–C 1.417 Å); however, the C−N (N1–C2 1.357(2) Å) bond lengths 

for compound 8 are slightly shorter than those reported for LLM-105 (C–N 1.374 Å). In addition, 

the N−O bond length (1.3172 Å) in the N→O moiety for LLM-105 is longer than the determined 

value (N1−O1 1.2681(19) Å) for compound 8.[20b] 
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Figure 3. A) Molecular structure of compound 8 in the solid state. Ellipsoids correspond to 50 % 

probability levels. Selected bond distances [Å] and angles [°]: O1–N1 1.2681(19), N1–N2 

1.323(2), N1–C1 1.357(2), C1–C2 1.422(2), N6–C4 1.322(2), O3–N3 1.229(2), O1–N1–N2 

114.67(15), N1–N2–C4 118.94(15), O2–N3–C1 119.99(15), O1–N1–C1–N3 4.9(2), O2–N3–C1–

N1 36.5(2), O5–N5–C3–C2 −168.62(15), N4–C2–C3–N5 −5.5(2); B) View of the unit cell of 

compound 8 along the b-axis. 

4.2.2. 15N NMR spectroscopy 

All synthesized compounds were characterized by vibrational spectroscopy (IR and Raman), mass 

spectrometry, multinuclear NMR (1H, 13C and 14N) spectroscopy and elemental analysis. In 

addition, 15N and 15N{1H} NMR spectra of compound 8 were recorded (Figure 4). 15N NMR 

spectrum of 8 exhibits only five signals; both nitro groups are observed at −15.6 and −26.0 ppm, 

the N-oxide has a resonance at −69.5 ppm and the pyridazine nitrogen at −100.3 ppm. Only one 

amino group can be observed at −286.7 ppm (1JNH = 92.9 Hz) in the proton coupled 15N NMR 

spectrum of 8. All six resonances for the nitrogen atoms can be observed in the proton decoupled 

15N NMR spectrum of 8. Both nitro groups (−15.6 and −26.0 ppm) and the pyridazine nitrogen 

atoms (−69.5 and −100.3 ppm) exhibit the same chemical shift as listed bevor. Both amino groups 

can be observed as singlets at −286.7 and −292.9 ppm. 
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Figure 4. 15N{1H} and 15N NMR spectra of compound 8. 

4.2.3. Physical and detonation properties 

Since compounds 7 and 8 can be classified as energetic materials, their energetic behavior was 

investigated. All theoretically calculated and experimentally determined values for 7 and 8 

compared to the insensitive explosive LLM-105 are listed in Table 1. The thermal behavior for 

both compounds was investigated with an OZM Research DTA 552-Ex instrument at a heating rate 

of 5 °C min−1. Compound 7 decomposes at 151 °C, while 3,6-diamino-4,6-dinitropyridazine-1-

oxide (8) decomposes first at 215 °C. The increased stability of compound 8 compared to the 

precursor, compound 7, can be explained by the intra-and intermolecular hydrogen bonds in the 

structure of 8. This observation of change in the thermal behavior from compound 7 to compound 

8 verifies that the introduction of alternating C−NH2/C−NO2 functionalities into the pyridazine 

system not only improves the energetic properties of the material, but also increases the thermal 

stability. The difference in the thermal stability of 8 (215 °C) compared to LLM-105 (342 °C) is 
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significant. This can be explained with the weakening of the N−N bond in the pyridazine with the 

introduction of the N-oxide and its position next to the NO2 group. 

In addition, the sensitivities for both compounds were determined according the BAM standards 

and the detonation parameters were calculated using the EXPLO5_V6.03 computer code.[18] The 

EXPLO5 detonation parameters of 7 and 8 were calculated by using the room-temperature density 

values obtained from the X-ray structures as described in reference.[19] The density at room 

temperature for compound 7 is 1.591 g∙cm−3 and for 8 is 1.837 g∙cm−3. The determined 

experimental sensitivities toward friction and impact for 7 (IS = 20 J and FS = 360 N) and 8 (IS = 

18 J and FS = 360 N) are in the range for those of the insensitive explosive LLM-105 (IS = 20 J 

and FS = 360 N). The synthesized compounds 7 (0.65 J) and 8 (0.75 J) are even less sensitive than 

LLM-105 (0.60 J) toward electrostatic discharge. The calculated physico-chemical properties of 

compound 8 compared to those of LLM-105 are quite surprising (Table 1). Although the room 

temperature density of 3,5-diamino-4,6-dinitropyridazine-1-oxide (8, ρ = 1.837 g∙cm−3) is lower 

than those of LLM-105 (ρ = 1.919 g∙cm−3),[20] the calculated detonation parameters for 8 are similar 

to those of LLM-105. The detonation pressure (pC-J = 302 kbar) and detonation velocity (DC-J = 

8486 m∙s−1) of 8 are in the range of those for LLM-105 (pC-J = 317 kbar and DC-J = 8639 m∙s−1). 

However, the values of 8 for the detonation energy (4913 kJ∙kg−1) and for the detonation 

temperature (3470 K) exceed those values for LLM-105 (4506 kJ∙kg−1 and 3202 K). 

Table 1. Physico-chemical properties of compounds 7 and 8 in comparison to LLM-105. 

 7 8 LLM-105 

Formula C6H6N4O7 C4H4N6O5 C4H4N6O5 

IS[a] [J] 20 18 20* 

FS[b] [N] 360 360 360* 

ESD[c] [J] 0.65 0.75 0.60* 

Ω[d] [%] −52 −37 −37 

Tm
[e] [°C] − − − 

Tdec
[f] [°C] 151 215 342[20a] 

ρ[g] [g∙cm−3] 1.59 1.84 1.92[20b] 

ΔfH°[h] [kJ∙kg−1] −465 511 51 
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ΔfH°[h] [kJ∙mol−1] −114 110 11 

EXPLO5 6.03    

−ΔEU°[i] [kJ∙kg−1] 4767 4913 4506 

TC-J
[j] [K] 3442 3470 3202 

pC-J 
[k] [kbar] 208 302 317 

DC-J
[l] [m∙s−1] 7227 8486 8639 

V 
[m] [L3∙kg−1] 722 720 706 

[a] Impact sensitivity (BAM drophammer, method 1 of 6); [b] friction sensitivity (BAM 

drophammer, method 1 of 6); [c] electrostatic discharge device (OZM research); [d] oxygen 

balance with respect to CO2; [e] melting point (DTA, β = 5°C∙min−1); [f] temperature of 

decomposition (DTA, β = 5°C∙min−1); [g] density at 298 K; [h] standard molar enthalpy of 

formation; [i] detonation energy; [j] detonation temperature; [k] detonation pressure; [l] 

detonation velocity; [m] volume of detonation gases at standard temperature and pressure 

conditions. *experimentally determined values for LLM-105 (grain size 100–500 μm). 

The evaluation of the explosive performance of compound 8 on a small scale was investigated with 

the smalls-scale shock reactivity test (SSRT). With this test the shock reactivity (explosiveness) of 

the investigated explosive is measured below the critical diameter, without requiring a transition to 

detonation.[21] The set-up for the smalls-scale shock reactivity test (SSRT) has been prepared as 

previously reported in the literature (Figure 5).[22] Compound 8 was pressed at a consolidation dead 

load of 3 t with a dwell time of 5 s into a perforated steel block. Initiation of the tested explosive 

was performed by using a commercially available detonator. 
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Figure 5. SSRT results: A) schematical illustration; B) photograph of the setup; C) aluminum block 

and steel block filled with compound 8; D) dented aluminum block after initiation of the explosive 

with a commercial detonator. 

The results of the SSRT are displayed in Figure 5 (D). The dent sizes were measured by filling 

them with finely powdered SiO2 and measuring the resulting weight. The result of 8 is compared 

with the corresponding values for HNS, PYX and TKX-55 (Table 2).[22] The measured dent volume 

for compound 8 (694 mg) compared to HNS (672 mg), PYX (637 mg) and TKX-55 (641 mg) 

shows that the performance of 8 on a small scale is slightly higher than the known heat resistant 

explosives. 

Table 2. The SSRT for compound 8 compared to HNS, PYX and TKX-55. 

SSRT for 8 compared to HNS, PYX and TKX-55 

 HNS PYX TKX-55 8 

mE [mg][a] 469 474 496 496 

m [mg] [b] 672 637 641 694 

  [a] Mass of the explosive: mE = Vs ρ 0.95; [b] Mass of SiO2. 
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4.3. Conclusions 

In summary, we report the synthesis of new selectively functionalized pyridazine derivative 

consisting of alternating amino/nitro groups and N-oxide moiety. Compounds 7 and 8 were 

synthesized by starting from the acyclic compounds chloral hydrate and chloroacetaldehyde. The 

introduction of the N-oxide was achieved by reacting 3,5-dimethoxypyridazine (5) either with a 

mixture of glacial acetic acid and 30% H2O2 or by reacting 5 with HOF solution. Nitration of 3,5-

dimethoxypyridazine-1-oxide (6) to 3,5-dimethoxy-4,6-dinitropyridazine-1-oxide (7) was 

achieved with 20% oleum and 100% nitric acid. The key step in the synthesis was the introduction 

of electron-donating groups (−OMe) and the N-oxide moiety into the pyridazine scaffold allowing 

successful nitration. Amination of 7 with concentrated ammonia solution yielded 3,5-diamino-4,6-

dinitropyridazine-1-oxide (8). Compound 8 shows good detonation properties similar to LLM-105 

and also low sensitivities (IS = 18 J; FS = 360 N and ES = 0.75 J). In addition, the small-scale 

shock reactivity test (SSRT) with compound 8 was performed and compared to other energetic 

materials (HNS, PYX, TKX-55). Further functionalization of the pyridazine scaffold is currently 

under investigation in our laboratories. 

4.4. Experimental Section 

4.4.1. General Considerations 

1H, 13C, 14N and 15N NMR spectra were recorded on JEOL 270 and BRUKER AMX 400 

instruments. The samples were measured at room temperature in standard NMR tubes (Ø 5 mm). 

Chemical shifts are reported as δ values in ppm relative to the residual solvent peaks of CDCl3 (δH: 

7.26, δC: 77.1), d6-Acetone (δH: 2.05, δC: 29.8 and 206.3) and d6-DMSO (δH: 2.50, δC: 39.5). 

Solvent residual signals and chemical shifts for NMR solvents were referenced against 

tetramethylsilane (TMS, δ = 0 ppm) and nitromethane. Unless stated otherwise, coupling constants 

were reported in hertz (Hz) and for the characterization of the observed signal multiplicities the 

following abbreviations were used: s (singlet), d (doublet), t (triplet), q (quartet), quint (quintet), 

sept (septet), m (multiplet) and br (broad). Low resolution mass spectra were recorded on a JEOL 

JMS-700 MStation mass spectrometer (EI+/DEI+). Infrared spectra (IR) were recorded from 

4500 cm−1 to 650 cm−1 on a PERKIN ELMER Spectrum BX-59343 instrument with SMITHS 
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DETECTION DuraSamplIR II Diamond ATR sensor. The absorption bands are reported in 

wavenumbers (cm−1). Elemental analysis was carried out by the department’s internal micro 

analytical laboratory on a Elementar Vario el by pyrolysis of the sample and subsequent analysis 

of the formed gases. Decomposition temperatures were measured via differential thermal analysis 

(DTA) with an OZM Research DTA 552-Ex instrument at a heating rate of 5 °C min−1 and in a 

range of room temperature to 400 °C. Melting points were determined in capillaries with a Büchi 

Melting Point B-540 instrument and are uncorrected. All sensitivities toward impact (IS) and 

friction (FS) were determined according to BAM (German: Bundesanstalt für Materialforschung 

und Prüfung) standards using a BAM drop hammer and a BAM friction apparatus.[23] Compounds 

7 and 8 were tested for sensitivity towards electrical discharge using an Electric Spark Tester ESD 

2010 EN. 

3,5-Dimethoxypyridazine (5) 

3,5-Dichloropyridazine (16.26 g, 109.15 mmol) was dissolved in MeOH (400 mL) and potassium 

hydroxide (20.82 g, 371.1 mmol, 3.36 eq.) was added. The resulting reaction mixture was stirred 

at room temperature for 3 days. The suspension was filtrated and the solvent was removed under 

reduced pressure. The solid material was dissolved in a mixture of DCM (350 mL)/ H2O (150 mL) 

and the water phase was extracted again with DCM (2 × 150 mL). The combined organic layers 

were dried over MgSO4 and the solvent was evaporated in vacuo to yield compound 5 (12.40, 88.49 

mmol, 81 %) as a yellowish solid. 

m.p. 73 °C; IR (ATR), ṽ (cm−1) = 3322 (br), 3056 (w), 3020 (vw), 2962 (w), 1595 (vs), 1554 (vw), 

1468 (s), 1447 (s), 1419 (vw), 1387 (vs), 1345 (vs), 1297 (w), 1247 (vw), 1218 (vs), 1191 (s), 1170 

(vs), 1092 (m), 1043 (s), 1016 (vs), 986 (m), 926 (m), 898 (m), 876 (s), 861 (vw), 750 (m), 659 

(m). Raman (1064 nm, 200 mW, 25 °C): ṽ (cm−1) = 3088 (20), 3046 (28), 3022 (53), 2993 (17), 

2965 (35), 2945 (23), 2584 (17), 2826 (10), 1602 (9), 1468 (10), 1445 (13), 1418 (11), 1348 (31), 

1245 (33), 1190 (13), 1179 (9), 1093 (11), 1046 (11), 1016 (22), 992 (17), 750 (39), 459 (21), 250 

(9), 220 (13), 73 (100). 1H NMR (d6-DMSO, 400 MHz, ppm) δ = 8.63 (d, 4J = 2.50 Hz, 1H), 6.69 

(d, 4J = 2.50 Hz, 1H), 3.99 (s, 3H), 3.86 (s, 3H). 13C NMR (d6-DMSO, 101 MHz, ppm) δ = 165.9, 

159.7, 141.1, 96.9, 55.8, 54.5. Elem. Anal. (C6H8N2O2, 140.14 g mol−1) calcd.: C 51.42, H 5.75, N 

19.99 %. Found: C 51.46, H 5.79, N 19.85 %. m/z (DEI+): 140 (100) [M]+, 139 (92), 69 (55), 68 

(84); 
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3,5-Dimethoxypyridazine-1-oxide (6) 

Procedure 1: 

To a solution of 3,5-dimethoxypyridazine (6.00 g, 42.8 mmol) in acetic acid (60 mL) was added 

30% H2O2 (8 mL) and the reaction mixture was stirred at 75 °C. After 2.5 h 30% H2O2 (8 mL) was 

added to the reaction dropwise and stirring was continued for another 2.5 h at 75 °C. After cooling 

down, the reaction mixture was diluted with H2O (250 mL) and basified with Na2CO3. The water 

phase was extracted with DCM (3 × 250 mL) and the combined organic layers were washed with 

H2O (250 mL). After draying over MgSO4 the solvent was removed in vacuo and compound 6 

(4.94 g, 75 %) was obtained as white solid. 

Procedure 2: 

3,5-Dimethoxypyridazine (0.51 g, 3.27 mmol) was dissolved in DCM (15 mL) and the reaction 

was cooled to –5–0 °C. To the solution was slowly added freshly prepared HOF in acetonitrile 

solution (0.26 M, 63 mL, 5.0 eq.) and the reaction mixture was stirred for 1 h at 0 °C and overnight 

at room temperature. The excess of acid was quenched with saturated sodium carbonate solution 

and the reaction was extracted with DCM (5 × 150 mL). The combined organic layers were dried 

over MgSO4 and the solvent was removed in vacuo. Compound 6 was obtained as a white solid in 

a good yield (0.46 g, 90%). 

m.p. 131 °C; IR (ATR), ṽ (cm−1) = 3114 (w), 3059 (w), 2948 (w), 1567 (s), 1457 (m), 1379 (s), 

1212 (vs), 1175 (s), 1080 (m), 1043 (m), 965 (w), 927 (m), 855 (m), 825 (s). Raman (1064 nm, 200 

mW, 25 °C): ṽ (cm−1) = 3115 (15), 3061 (16), 3025 (43), 2991 (15), 2943 (22), 2840 (14), 1572 

(35), 1475 (11), 1447 (9), 1430 (15), 1232 (35), 1221 (30), 1200 (15), 1176 (18), 1054 (12), 1003 

(11), 970 (25), 624 (52), 397 (19), 258 (15), 203 (14), 117 (100). 1H NMR (d6-DMSO, 400 MHz, 

ppm) δ = 7.98 (d, 4J = 1.65 Hz, 1H), 6.55 (d, 4J = 1.65 Hz, 1H), 3.88 (s, 3H), 3.86 (s, 3H). 13C 

NMR (d6-DMSO, 101 MHz, ppm) δ = 165.6, 165.2, 118.8, 90.9, 56.9 55.0. Elem. Anal. 

(C6H8N2O3, 156.14 g mol−1) calcd.: C 46.15, H 5.16, N 17.94 %. Found: C 46.17, H 5.11, N 

17.86 %. m/z (DEI+): 156 (100) [M]+, 85 (29), 69 (21), 68 (16); 

 



Energetic Functionalization of the Pyridazine Scaffold: Synthesis and Characteriaztion of 

3,5-Diamino-4,6-dinitropyridazine-1-oxide 

 
72 

3,5-Dimethoxy-4,6-dinitropyridazine-1-oxide (7) 

Procedure 1: 

3,5-Dimethoxypyridazine-1-oxide (3.00 g, 19.2 mmol) was dissolved in 20% oleum (20 mL) at 

5 °C and sodium nitrate (8.50 g, 100 mmol) was added in a small portions by maintaining the 

temperature of the solution below 5 °C. The reaction mixture was stirred for 1 h and then brought 

to room temperature slowly. Subsequently, the reaction was stirred overnight at 60 °C and 

afterwards quenched on crushed ice. The resulting suspension was stirred until all ice dissolved 

and the resulting precipitate was filtered. The crude product was dissolved in conc. H2SO4 (13 mL), 

stirred at 60 °C for 3 h, then quenched on ice and the resulting precipitate was filtered. The product 

was washed with ice-water until the filtrate was acid free and dried on air (0.62 g, 13%). 

Procedure 2: 

3,5-Dimethoxypyridazine-1-oxide (6.70 g, 42.9 mmol) was dissolved in 20-25% oleum (35 mL) at 

10 °C and 100% HNO3 (26 mL) was added dropwise by maintaining the temperature of the solution 

below 8 °C. After the addition was complete the reaction mixture was first stirred for 1.5 h at 0 °C, 

then for 2 h at room temperature and finally for 20 h at 45-50 °C. After cooling down the reaction 

was poured onto crushed ice. The resulting suspension was stirred for 2 h and then the yellowish 

precipitate was filtered off, washed with water until the filtrate was acid free and dried on air. The 

crude product was dissolved in conc. H2SO4 (35 mL) and stirred at 60 °C for 2 h. The reaction 

mixture was quenched on crushed ice. The resulting precipitate was filtrated, washed with ice-

water until the filtrate was acid free and dried on air (2.94 g, 28 %). 

DTA (5 °C min−1): 151 °C (dec.); BAM: drop hammer: 20 J (100–500 μm); friction tester: 360 N 

(100–500 μm); ESD: 0.65 J (100–500 μm); IR (ATR), ṽ (cm−1) = 3000 (w), 2962 (m), 2906 (w), 

2890 (w), 1563 (s), 1541 (s), 1504 (m), 1443 (m), 1416 (m), 1379 (s), 1343 (s), 1285 (s), 1252 (m), 

1214 (s), 1136 (m), 1082 (m), 1016 (m), 985 (m), 942 (w), 828 (m), 784 (m), 760 (w), 711 (vs), 

648 (m), 614 (w). Raman (1064 nm, 200 mW, 25 °C): ṽ (cm−1) = 3052 (10), 2963 (22), 1564 (32), 

1528 (9), 1452 (12), 1419 (27), 1379 (22), 1346 (41), 1253 (40), 830 (21), 642 (10), 616 (9), 403 

(8), 333 (12), 313 (24), 230 (15), 186 (17), 158 (23), 96 (100). 1H NMR (d6-DMSO, 400 MHz, 

ppm) δ = 3.98 (s, 3H), 3.87 (s, 3H). 13C NMR (d6-DMSO, 101 MHz, ppm) δ = 156.8, 155.6, 144.4, 

124.1, 62.1, 55.5. 14N NMR (d6-DMSO, 29 MHz, ppm) δ = −18, −82. Elem. Anal. (C6H6N4O7, 
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246.14 g mol−1) calcd.: C 29.28, H 2.46, N 22.76 %. Found: C 29.25, H 2.69, N 22.78 %. m/z 

(DEI+): 246 (100) [M]+, 216 (24), 140 (39), 83 (10); 

3,5-Diamino-4,6-dinitropyridazine-1-oxide (8) 

3,5-Dimethoxy-4,6-dinitropyridazine-1-oxide (1.40 g, 6.69 mmol) was dissolved in acetonitrile (50 

mL) and an aqueous 25% NH3 solution (5.0 mL) was added dropwise at room temperature. The 

solution was then refluxed for 24 h. After cooling down the solvent was removed in vacuo and the 

residue was dissolved in acetone. After removing the solvent under reduced pressure the product 

was obtained as yellow solid (1.20 g, 90 %). 

DTA (5 °C min−1): 215 °C (dec.); BAM: drop hammer: 18 J (100–500 μm); friction tester: 360 N 

(100–500 μm); ESD: 0.75 J (100–500 μm); IR (ATR), ṽ (cm−1) = 3419 (w), 3280 (m), 1600 (s), 

1573 (s), 1513 (vs), 1381 (m), 1271 (s), 1219 (s), 1181 (vs), 1078 (s), 1034 (s), 891 (w), 834 (m), 

775 (w), 754 (w), 726 (w), 699 (m), 659 (w), 638 (w), 559 (s). Raman (1064 nm, 200 mW, 25 °C): 

ṽ (cm−1) = 3287 (7), 1514 (52), 1456 (23), 1395 (16), 1311 (67), 1284 (73), 1200 (15), 1133 (8), 

1042 (9), 896 (10), 836 (29), 667 (23), 633 (8), 582 (29), 417 (7), 204 (10), 122 (100), 107 (100). 

1H NMR (d6-DMSO, 400 MHz, ppm) δ = 8.75 (br, 2H), 8.64 (br, 2H). 13C NMR (d6-DMSO, 101 

MHz, ppm) δ = 154.3, 142.2, 133.9, 110.9. 14N NMR (d6-DMSO, 29 MHz, ppm) δ = −15, −26, 

−70. 15N NMR (d6-DMSO, 41 MHz, ppm) δ = −15.6, −26.0, −69.5, −110.3, −286.7 (t, JNH = 92.9 

Hz, 2N). 15N{H} NMR (d6-DMSO, 41 MHz, ppm) δ = −15.6, −26.0, −69.5, −110.3, −286.8, 

−292.9. Elem. Anal. (C4H4N6O5, 216.11 g mol−1) calcd.: C 22.23, H 1.87, N 38.89 %. Found: 

C 22.60, H 1.97, N 38.61 %. m/z (DEI+): 216 (94) [M]+, 200 (47), 186 (28), 110 (36); 

3,5-Dimethoxy-4-nitropyridazine (9) 

Procedure 1: 

3,5-Dimethoxypyridazine (1.60 g, 11.4 mmol, 1.0 eq.) was dissolved in 25% oleum (7 mL) and 

100% HNO3 (1.30 mL) was added dropwise at 0-10 °C. The reaction mixture was stirred for 1 h at 

0 °C and then at room temperature for 2 h. Subsequently, the reaction was stirred for 4 h at 80-

85 °C and afterwards quenched on crushed ice. The resulting precipitate was filtered and washed 

with ice-water until the filtrate was acid free to yield 3,5-dimethox-4-nitroypyridazine (554 mg, 

26%) as a pale-yellow solid. 
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Procedure 2: 

3,5-Dimethoxypyridazine (1.80 g, 12.8 mmol, 1.0 eq.) was dissolved in 40% oleum (9 mL) and 

KNO3 (1.29 g, 12.8 mmol, 1.0 eq.) was added at 15–20 °C. The reaction mixture was slowly heated 

to 40 °C and KNO3 (1.95 g, 19.2 mmol, 1.5 eq.) was added. The reaction was stirred at 80 °C 

overnight. The reaction mixture was poured on ice and the precipitate was filtrated, washed with 

ice water and dried on air to yield compound 9 (1.07 g, 5.76 mmol, 45%) as a pale-yellow solid. 

IR (ATR), ṽ (cm−1) = 3091 (vw), 3047 (vw), 3012 (vw), 2960 (vw), 2863 (vw), 1608 (s), 1531 (s), 

1490 (m), 1454 (m), 1429 (w), 1362 (vs), 1336 (m), 1241 (s), 1178 (w), 1135 (vs), 1058 (m), 997 

(m), 910 (m), 882 (m), 865 (s), 776 (w), 754 (m), 650 (m), 617 (w) 579 (m), 507 (vw). 1H NMR 

(d6-DMSO, 400 MHz, ppm) δ = 9.38 (s, 1H), 4.15 (s, 3H), 4.15 (s, 3H). 13C NMR (d6-DMSO, 101 

MHz, ppm) δ = 154.9, 149.0, 139.5, 125.7, 58.8, 56.2. 14N NMR (d6-DMSO, 29 MHz, ppm) δ = 

−20. Elem. Anal. (C6H7N3O4, 185.14 g mol−1) calcd.: C 38.93, H 3.81, N 22.70 %. Found: C 38.73, 

H 3.74, N 22.78 %. m/z (DEI+): 185 (62) [M+], 96 (100), 53 (24). 
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4.6. Supporting Information 

4.6.1. Synthesis and general considerations 

General procedure for the preparation of HOF: 

A 10% F2 mixture (mixed with 90% N2) was bubbled through a mixture of acetonitrile (120 mL) 

and water (12 mL) at −15 °C in a dry-ice bath for 2–3 h. The oxidizing power of the HOF solution 

was monitored by reacting aliquots (1 mL) with an acid aqueous 0.1 M KI solution (5 mL). The 

formed iodine was titrated with 0.1 M thiosulfate solution. Concentrations of the oxidizing agent 

were in the range of 0.20 M to 0.30 M. 

Compounds 3 and 4 were synthesized according the known literature.[S1] 
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(Z)-2,4,4,4-Tetrachlorobut-2-enal (3) 

Chloral hydrate (1, 164.5 g, 1.00 mol) and ammonium acetate (4.94 g, 0.064 mol) were dissolved 

in toluene (225 mL) and heated to reflux on a water separator. Chloroacetaldehyde (2, 102.5 g, 

0.65 mol) was added dropwise within 1 h, while the reaction mixture was stirred vigorously. The 

solution was refluxed for 3 h on the water separator. Then p-toluenesulfonic acid monohydrate 

(10.84 g, 0.057 mol) was added to the reaction and refluxing was further continued for 5 h. The 

resulting suspension was allowed to cool down to room temperature, was filtered off and the filtrate 

was concentrated under reduced pressure. The residue was subjected to vacuum distillation (1.1 

mbar, 83–85 °C) to give compound 3 (44.0 g, 32 %) as yellowish oily liquid. The product was used 

for further reactions without any purification. 

IR (ATR), ṽ (cm−1) = 3048 (vw), 2849 (vw), 1703 (vs), 1614 (m), 1389 (w), 1302 (vw), 1349 (w), 

1201 (vw), 1141 (s), 1120 (vw), 1090 (vw), 1055 (vs), 988 (vw), 923 (vw), 841 (vs), 811 (vs), 724 

(vs), 663 (vs). 1H NMR (d6-Acetone, 400 MHz, ppm) δ = 9.58 (s, 1H), 8.01 (s, 1H). 13C NMR (d6-

Acetone, 101 MHz, ppm) δ = 186.0, 149.2, 138.1, 90.0. 

3,5-Dichloropyridazine (4) 

(Z)-2,4,4,4-Tetrachlorobut-2-enal (3, 22.0 g, 106 mmol) was dissolved in DMF (100 mL) and the 

resulting solution was cooled down to 15 °C. Semicarbazide hydrochloride (14.17 g, 127 mmol, 

1.2 eq.) was dissolved in a mixture of H2O (45 mL)/ DMF (16 mL) at room temperature. The 

resulting semicarbazide hydrochloride solution was then added dropwise to the (Z)-2,4,4,4-

tetrachlorobut-2-enal solution by maintaining the reaction temperature between 15–20 °C. After 

the addition was completed the reaction temperature was kept in the same range for 1 h. The 

reaction mixture was stirred for 2 days at room temperature giving a dark brown solution. The 

solution was given in H2O (600 mL) and stirred at room temperature for 30 min. The brown 

suspension was extracted with Et2O (3 × 500 mL). The organic phase was first washed with H2O 

(4 × 200 mL) and then with brine (4 × 200 mL). The combined organic layers were dried over 

MgSO4, filtered and the solvent was removed in vacuo. Recrystallizing the crude product from n-

hexane yielded compound 4 (8.63 g, 55 %) as yellowish solid. Single crystals were obtained from 

n-hexane as yellow plates. 
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m.p. 61 °C; IR (ATR), ṽ (cm−1) = 3102 (vw), 3013 (s), 2924 (w), 1545 (vs), 1389 (w), 1350 (vs), 

1200 (m), 1171 (vs), 1171 (vs), 1101 (vs), 1058 (vs), 993 (s), 938 (m), 895 (s), 849 (m), 816 (vs), 

726 (m), 693 (w). Raman (1064 nm, 200 mW, 25 °C): ṽ (cm−1) = 3078 (12), 3056 (11), 3017 (47), 

1548 (16), 1519 (14), 1390 (15), 1204 (15), 1175 (52), 1062 (19), 998 (80), 695 (46), 452 (21), 402 

(55), 372 (21), 220 (30), 206 (54), 178 (54), 120 (100), 95 (44). 1H NMR (CDCl3, 400 MHz, ppm) 

δ = 9.12 (d, 4J = 2.10 Hz, 1H), 7.60 (d, 4J = 2.10 Hz, 1H). 13C NMR (CDCl3, 101 MHz, ppm) δ = 

156.7, 150.6, 139.4, 127.7. 1H NMR (d6-DMSO, 400 MHz, ppm) δ = 9.44 (d, 4J = 2.10 Hz, 1H), 

8.35 (d, 4J = 2.10 Hz, 1H). 13C NMR (d6-DMSO, 101 MHz, ppm) δ = 155.9, 151.1, 139.0, 128.2. 

Elem. Anal. (C4H2Cl2N2, 148.97 g mol−1) calcd.: C 32.25, H 1.35, N 18.80 %. Found: C 32.29, H 

1.61, N 19.07 %. 

4.6.2. X-ray diffraction 

The low-temperature single-crystal X-ray diffraction measurements were performed on an Oxford 

XCalibur3 diffractometer equipped with a Spellman generator (voltage 50 kV, current 40 mA) and 

a KappaCCD detector operating with MoKα radiation (λ = 0.7107 Å). Data collection was 

performed using the CRYSALIS CCD software.[S2]
 

The data reduction was carried out using the 

CRYSALIS RED software.[S3] The solution of the structure was performed by direct methods 

(SIR97)[S4] and refined by full-matrix least-squares on F2 (SHELXL)[S5] implemented in the 

WINGX software package[S6] and finally checked with the PLATON software.[S7] All DIAMOND2 

plots are shown with thermal ellipsoids at the 50% probability level and hydrogen atoms are shown 

as small spheres of arbitrary radius. 

 

Figure S1. Molecular structures of 3,5-dichloropyridazine (4, left) and 3,5-dimethoxypyridazine 

(5, right) in the solid state. Ellipsoids correspond to 50 % probability levels. 
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Figure S2. Molecular structures of 3,5-dimethoxypyridazine-1-oxide trihydrate (6 • 3 H2O, left) 

and 3,5-dimethoxy-4-nitropyridazine (9, right) in the solid state. Ellipsoids correspond to 50 % 

probability levels. 

Table S1. Crystallographic details of compounds 4, 5 and 6 • 3 H2O. 

Compound 4 5 6 • 3 H2O 

Formula C4H2Cl2N2 C6H8N2O2 C6H14N2O6 

Form. Mass 

[g/mol] 
148.98 140.14 210.19 

Crystal system monoclinic monoclinic monoclinic 

Space Group P21/m (No. 11) P21/c (No. 14) P21/c (No. 14) 

Color / Habit yellow plate colorless plate colorless plate 

Size [mm] 
0.09 × 0.15 × 

0.23 
0.03 × 0.27 × 0.31 0.05 × 0.15 × 0.35 

a [Å] 

b [Å] 

c [Å] 

α [°] 

 [°] 

γ [°] 

6.0629(9) 

6.3152(11) 

7.9343(11) 

90 

110.955(17) 

90 

3.9195(3) 

10.7140(7) 

15.9858(10) 

90 

93.025(7) 

90 

4.4956(2) 

24.0168(10) 

9.3979(4) 

90 

90.284(4) 

90 

V [Å 3] 283.70(8) 670.37(8) 1014.68(8) 

Z 2 4 4 

calc. [g cm−3] 1.744 1.389 1.376 
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 [mm−1] 1.017 0.106 0.123 

F(000) 148 296 448 

λMoKα[Å ] 0.71073 0.71073 0.71073 

T [K] 173 173 123 

ϑ min-max [°] 4.2, 26.0 4.3, 26.5 4.3, 26.0 

Dataset h; k; l −7:7;−7:6;−9:7 −4:4;−13:13;−20:19 −5:5;−29:27;−9:11 

Reflect. coll. 1035 4223 7295 

Independ. refl. 613 1376 1988 

Rint 0.025 0.045 0.022 

Reflection 

obs. 
474 877 1649 

No. 

parameters 
55 123 166 

R1 (obs) 0.0387 0.0498 0.0365 

wR2 (all data) 0.0849 0.1129 0.0949 

S 1.07 1.06 1.05 

Resd. Dens. 

[e Å−3] 
−0.34, 0.32 −0.19, 0.23 −0.19, 0.21 

Device type 

Oxford 

Xcalibur3 

CCD 

Oxford Xcalibur3 

CCD 

Oxford Xcalibur3 

CCD 

Solution SIR-92 SIR-92 SIR-92 

Refinement SHELXL-97 SHELXL-97 SHELXL-97 

Absorpt. corr. multi-scan multi-scan multi-scan 

CCDC 1590457 1590458 1590459 

 

Table S2. Crystallographic details of compounds 7, 8 and 9. 

Compound 7 8 9 

Formula C6H6N4O7 C4H4N6O5 C6H7N3O4 
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Form. Mass 

[g/mol] 

246.15 216.13 185.15 

Crystal system orthorombic monoclinic monoclinic 

Space Group Pbcn (No.60) P21/c (No. 14) C2/c (No. 15) 

Color / Habit colorless plate orange block colorless plate 

Size [mm] 0.05 x 0.30 x 0.40 0.10 x 0.15 x 0.20 0.09 x 0.36 x 0.48 

a [Å] 

b [Å] 

c [Å] 

α [°] 

 [°] 

γ [°] 

8.0548(5) 

8.6809(4) 

28.5759(19) 

90 

90 

90 

18.6988(7) 

5.2697(2) 

16.4946(6) 

90 

110.647(6) 

90 

17.1783(12) 

7.6006(3) 

14.4345(16) 

90 

122.085(11) 

90 

V [Å 3] 1998.1(2) 1520.94(11) 1596.8(3) 

Z 8 8 8 

calc. [g cm−3] 1.637 1.888 1.540 

 [mm−1] 0.152 0.173 0.131 

F(000) 1008 880 768 

λMoKα[Å ] 0.71073 0.71073 0.71073 

T [K] 123 123 173 

ϑ min-max [°] 4.3, 26.5 4.1, 26.5 4.5, 26.0 

Dataset h; k; l −10:9;−5:10;−35:35 −23:23;−6:6;−20:18 −21:21;−9:9;−17:17 

Reflect. coll. 15731 12156 11183 

Independ. refl. 2054 3150 1570 

Rint 0.060 0.028 0.023 

Reflection obs. 1570 2641 1377 

No. parameters 178 303 146 

R1 (obs) 0.0490 0.0359 0.0325 

wR2 (all data) 0.1182 0.0942 0.0861 

S 1.04 1.02 1.07 

Resd. Dens. 

[e Å−3] 

−0.25, 0.25 −0.40, 0.41 −0.17, 0.21 
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Device type 
Oxford Xcalibur3 

CCD 

Oxford Xcalibur3 

CCD 

Oxford Xcalibur3 

CCD 

Solution SIR-92 SIR-92 SIR-92 

Refinement SHELXL-97 SHELXL-97 SHELXL-97 

Absorpt. corr. multi-scan multi-scan multi-scan 

CCDC 1590461 1590460 1816507 

4.6.3. Small-scale shock reactivity test (SSRT) 

To evaluate the shock reactivity (explosiveness) of 8 a small-scale shock reactivity test (SSRT) 

was performed. The SSRT measures the shock reactivity of potentially energetic materials, often 

below critical diameter, without requiring a transition to detonation. The amount ms of compound 8 

was calculated using the following formula: ms = Vs · ρ · 0.95, (where: Vs = 284 mm3). Compound 8 

was pressed at a consolidation dead load of 3 t with a dwell time of 5 s into a perforated steel block. 

Neither attenuator (between detonator and sample) nor air gap (between sample and aluminum 

block) were applied. Initiation of the tested explosive was performed using a commercially 

available detonator (Orica-DYNADET C2-0ms). The dent sizes were measured by filling them 

with powdered SiO2 and measuring the resulting weight. 

4.6.4. Computations 

All calculations were carried out using the Gaussian G09W (revision A.02) program package.[S8] 

The enthalpies (H), were calculated using the complete basis set (CBS) method of Petersson and 

coworkers. The CBS models use the known asymptotic convergence of pair natural orbital 

expressions to extrapolate from calculations using a finite basis set to the estimated complete basis 

set limit. CBS-4 begins with a HF/3-21G(d) structure optimization and the zero point energy 

computation. Subsequently, applying a larger basis set a base energy is computed. A MP2/6-31+G 

calculation with a CBS extrapolation gives the perturbation-theory corrected energy (takes the 

electron correlation into account). A MP4(SDQ)/6-31+(d,p) calculation is used to correlate higher 

order contributions. In this study we applied the modified CBS-4M method (M referring to the use 

of minimal population localization) which is a re-parameterized version of the original CBS-4 

method and also includes some additional empirical corrections.[S9] The gas-phase enthalpies 
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(ΔfH°(g, M,298)) of the species were computed according to the atomization energy method (equation 

1).[S10] 

ΔfH°(g, M,298) = H(g,M,298) – ∑H°(g,Ai,298) + ∑ΔfH°(g,Ai,298)   (1) 

ΔfH°(g,Ai,298) for the corresponding atoms (Ai) were determined experimentally and are reported 

in the literature while H°(g,Ai,298) were calculated theoretically (Table S3).[S11] 

Table S3. CBS-4M electronic enthalpies for atoms C, H, N and O and their literature values for 

atomic Δ fH°298 / kJ mol–1 

Atom –H298 / a.u. ΔfH°(g,Ai,298)[kcal mol−1] 

H 0.500991 52.103 

C 37.786156 171.29 

N 54.522462 112.97 

O 74.991202 59.56 

Standard molar enthalpies of formation were calculated using and the standard molar enthalpies of 

ΔfH°(g, M,298)  sublimation (estimated using Trouton’s rule, equation 2).[S12] 

ΔfH°M = ΔfH°(g,M,298) – ΔsubH°M = ΔfH°(g,M,298K) – 188·T [
𝐽

𝑚𝑜𝑙
]  (2) 

Where [K] is either the melting point or the decomposition temperature (if no melting occurs prior 

to decomposition). 

The calculation results are summarized in Tables S4. 

Table S4. Calculation results. 

Compound 
–H298 [a] 

a.u. 

ΔfH°(g,M) 

kJ mol–1 [b] 

ΔfH°(s) 

kJ mol–

1 [c] 

ΔfU(s) 

kJ kg–1 

[d] 

7 976.28483 –34.6 –114.4 –379.1 

8 858.141084 202.2 110.5 597.2 
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LLM-105 858.170557 126.7 11.0 137.0 

[a] CBS-4M electronic enthalpy; [b] gas phase enthalpy of 

formation; [c] standard solid state enthalpy of formation; [d] solid 

state energy of formation. 

4.6.5. Detonation parameters 

The Chapman-Jouguet (C-J) characteristics, (i.e. heat of detonation, ΔEU°; detonation temperature, 

TC-J; detonation pressure, PC-J; detonation velocity DC-J) based on the calculated ΔfH°M values, and 

the theoretical maximum densities were computed using the EXPLO5 V6.03 thermochemical 

computer code.[S13] Calculations for explosives assume ideal behavior. The estimation of 

detonation parameters is based on the chemical equilibrium steady-state model of detonation. The 

Becker-Kistiakowsky-Wilson equation of state (BKW EOS) with the following sets of constants: 

α = 0.5, β = 0.38, κ = 9.4, and Θ = 4120 for gaseous detonation products and the Murnaghan 

equation of state for condensed products (compressible solids and liquids) were applied. The 

calculation of the equilibrium composition of the detonation products uses modified White, 

Johnson and Dantzig’s free energy minimization technique. The specific energies of explosives (ƒ) 

were calculated according to the ideal gas equation of state assuming isochoric conditions 

(equation 3). 

ƒ = рe · V = n · R · Tc [
𝐽𝑘𝐽

𝑚𝑜𝑙𝑘𝑔
]   (3) 

Where рe is the maximum pressure through the explosion, V is the volume of detonation gases 

(m3∙kg–1), n is the number of moles of gas formed by the explosion per kilogram of explosive 

(Volume of Explosive Gases), R is the ideal gas constant and Tc is the absolute temperature of the 

explosion.[S13,S14]
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4.6.6. DTA  

 

Figure S3. DTA plot of 3,5-diamino-4,6-dinitropyridazine-1-oxide (8). 
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4.6.7. 1H and 13C NMR spectra 
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Abstract: In the present studies, the synthesis of new energetic materials based on the pyridazine 

scaffold and their characterization is the main subject. For this purpose, literature known 3,5-dimethoxy-

4,6-dinitropyirdazine-1-oxide (7) was synthesized in the first instance. The persubstituted pyridazine 

precursor laid the groundwork for further preparative modification. The targeted functionalization 

through the regioselective introduction of various smaller amine nucleophiles such as methylamine or 

2-aminoethan-1-ol gave several new energetic materials. Among them are 3,5-bis(methylamino)-4,6-

dinitropyridazine-1-oxide (8), 3,5-bis(methylnitramino)-4,6-dinitropyridazine-1-oxide (9), 3,5-bis(di-

methylamino)-4,6-dinitropyridazine-1-oxide (10) and 3,5-bis((2-hydroxyethyl)amino)-4,6-dinitro-

pyridazine-1-oxide (11). With the aim of increasing the detonation performance, compound 8 was 

additionally nitrated and 3,5-bis(methylnitro)amino)-4,6-dinitropyridazine-1-oxide (9) was obtained. 

These new energetic materials were characterized and identified by multi-nuclear NMR (1H, 13C, 14N, 

15N) and IR spectroscopy, elemental analysis and mass spectrometry. In addition, their sensitivities 
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towards impact, friction and electrostatic discharge were thoroughly examined. Furthermore, obtained 

single-crystals of the substances were characterized by low-temperature single-crystal X-ray diffraction. 

5.1. Introduction 

During the last decades, extensive work and efforts have been made to discover highly efficient and 

performing new energetic materials with high thermal stability and good sensitivities toward accidental 

stimuli.[1] In addition, the production of new environmental benign energetic materials is desired process, 

due to the fact that mostly of the nowadays synthesized HEDM (RDX, TATB and TNT) are either 

carcinogenic or toxic.[2] For this purpose scientists worldwide have been developing modern approaches 

for the synthesis of new energetic materials. An emerging approach is the use of polyfunctionalized 

nitrogen-rich heterocycles as a building block for new materials. In several instances, azole and diazine 

based energetic materials have been found to have promising physico-chemical properties e.g. 3,4,5-

trinitropyrazole,[3] bis(4-amino-3,5-dinitropyrazolyl)-methane[4] and 2,6-diamino-3,5-dinitropyrazine-1-

oxide (LLM-105).[5] It appears that the combination of nitrogen-rich heterocycles with an alternating C–

NH2/ C–NO2 and N+–O− moiety results in the formation of thermally stable, insensitive materials with 

good detonation parameters. The introduction of an N+–O− moiety to the energetic materials results in 

an increase of the density,[6] improves the oxygen balance[7], increases the stability in the molecular 

structure[8] and in addition improves the detonation properties.[9] Good examples for this class of N-

oxidized energetic materials are dihydroxylammonium 5,5-bistetrazole-1,1-diolate (TKX-50) and 2,6-

diamino-3,5-dinitropyrazine-1-oxide (LLM-105). In comparison to its O-free analogue, 

dihydroxylammonium 5,5-bistetrazolate, the density of TKX-50 increases from 1.74 to 1.88 g cm−3,and 

its calculated detonation velocity increases from 8854 m s−1 to 9698 m s−1.[10,11] The same effect is 

observed with LLM-105 (ρ = 1.92 g cm−3, DC-J = 8516 m s−1) and its precursor 2,6-diamino-3,5-

dinitropyrazine (ANPZ, ρ = 1.84 g cm−3, DC-J = 7892 m s−1).[7,12]  
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Figure 1. Literature known N-oxidized energetic materials. 

Recently, in our research group we managed to functionalize the 1,2-diazine scaffold by synthesizing 

3,5-diamino-4,6-dinitropyridazine-1-oxide and its precursor 3,5-dimethoxy-4,6-dinitropyridazine-1-

oxide.[13] For this purpose, a selective functionalization of the pyridazine scaffold was carried out by 

introducing explosophore NO2 groups and selectively introducing an N+–O− moiety. In this present work 

we reacted 3,5-dimethoxy-4,6-dinitropyridazine-1-oxide (7) with different amines and investigated the 

physico-chemical properties of the newly synthesized derivatives 8–11. The detonation properties and 

the sensitivities of the energetic pyridazines can be adjusted depending on the used amine for the 

reaction. 

5.2. Results and Discussion 

5.2.1. Synthesis 

Herein, we report the synthesis of new pyridazine based energetic materials. The target molecules 3,5-

bis(methylamino)-4,6-dinitropyridazine-1-oxide (8), 3,5-bis(methylnitramino)-4,6-dinitropyridazine-1-

oxide (9) 3,5-bis(dimethylamino)-4,6-dinitroypridazine-1-oxide (10) and 3,5-bis((2-

(hydroxyethyl)amino)-4,6-dinirtopyridazine-1-oxide (11) were synthesized by using 3,5-dimethoxy-

4,6-dinitropyridazine-1-oxide (7) as starting material. Compound 7 was prepared according the literature 

known five step procedure and will not be discussed in this work.[13] The exact synthetic path for 7 is 

shown in Scheme 1. 
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Scheme 1. Literature known synthesis for 3,5-dimethoxy-4,6-dinitropyridazine-1-oxide. 

Compound 7 was used as the starting material for further functionalization of the pyridazine scaffold. 

Further nucleophilic substitution of the methoxy groups allows regioselectiv functionalization of 

compound 7. As appropriate nucleophiles various smaller amines e.g. methylamine, dimethylamine and 

2-aminoethanol were reacted with compound 7. Compounds 8–11 were obtained in good yields 76–

91 %. To enhance the performance of the newly synthesized pyridazine based energetic materials 

compounds 8 and 11 were further nitrated. Nitration of compound 8 resulted in the formation of 3,5-

bis(methylnitramino)-4,6-dinitropyridazine-1-oxide (9) in 91 % yield. Nitration of compound 11 

resulted in decomposition of the starting material and the polynitrated compounds 12 was not obtained. 

All obtained energetic materials were thoroughly characterized and further examined regarding their 

sensitivities toward mechanical and electrostatic stimuli. All reactions are displayed in Scheme 2. 
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Scheme 2. Synthesis of new energetic pyridazine derivatives by functionalizing the 3,5-dimethoxy-4,6-

dinitropyridazine-1-oxide scaffold (7). 

5.2.2. Crystal structures 

During this work the crystal structures of all four synthesized compounds (8–11) were obtained. Selected 

data and parameters from the low-temperature X-ray data collection are given in the Supporting 

Information (Tables S1 and S2). Single-crystals of compound 8 were obtained by evaporating a solution 

of 8 in acetone and water. Compound 8 crystallizes in the orthorhombic space group P b c a (no. 61) 

with eight formula units per cell and has a cell volume of 1941.40(7) Å3. The cell constants are a = 

9.7734(2) Å, b = 13.5583(3) Å and c = 14.6509(3) Å. The calculated density at 143(2) K is 1.67 g cm−3.  

Looking at the determined bond lengths 1.3276(18) Å (N1–N2), 1.3506(19) Å (C4–N1), 1.352(2) Å 

(N2–C1), 1.432(2) Å (C1–C2), 1.433(2) Å (C2–C3) and 1.412(2) Å (C3–C4), the existing aromaticity 

inside the ring structure can be comprehended (Figure 2). They are all between the typical values for 

single and double bonds concerning these involved elements.[14,15,16] The interatomic distances of N3–

C1 (1.329 Å) and N5–C3 (1.332(2) Å) also display a participation of these bonds in aromatic resonance. 

The bond in the N+–O− moiety is 1.2635(17) Å and herewith slightly shorter than that of its precursor 

3,5-dimethoxy-4,6-dinitropyridazine-1-oxide (7) with 1.268(2) Å.[13] The slight deformation of the 

planar ring structure can be recognized by the observed divergent dihedral angles 4.5(2)° (N1–N2–C1–

C2) and −6.6(2)° (N2–C1–C2–C3). The C4-connected nitro group is twisted against the ring plane 
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according to the O5–N6–C4–N1 torsions angle of −74.69(18)°. Its significant rotation can be understood 

by both the high spatial demand of the voluminous methylamine neighbor, which even shows only a 

moderate displacement regarding the ring plane, and especially the high electrostatic repulsion between 

the vicinal-located N+–O− moiety and the nitro-oxygens. As a result of its noticeable turn, the C4–N6 

bond length of 1.4637(19) Å is elongated compared that of the other intramolecular nitro group with 

1.4157(19) Å.  

 

Figure 2. Molecular unit of compound 8 in the crystalline state. Ellipsoids correspond to 50% probability 

levels. Hydrogen radii are arbitrary. Selected bond lengths reported in [Å] and angles reported in [°]: 

N1–N2 1.3276(18), C4–N1 1.3506(19), N2–C1 1.352(2), C1–C2 1.432(2), C2–C3 1.433(2), C3–C4 

1.412(2), O1–N1 1.2635(17), N3–C1 1.329(2), N5–C3 1.332(2), N4–C2 1.4157(19), O2–N4 

1.2401(19), N6–C4 1.4637(19), O4–N6 1.2229(18), N2–N1–C4 123.90(13), N1–C4–N6 111.94(13), 

O1–N1–N2–C1 −177.94(14) N1–N2–C1–C2 4.5(2), N2–C1–C2–C3 −6.6(2), C2–C3–C4–N1 2.7(2), 

C5–N3–C1–N2 −2.6(2), C6–N5–C3–C4 −9.1(3), O2–N4–C2–C1 12.6(2), N5–C3–C4–N6 −0.2(2), O5–

N6–C4–N1 −74.69(18).  

Single-crystals for 9 were obtained by evaporating a solution of compound 9 in a mixture of acetone and 

water. Compound 9 crystallizes in the orthorhombic space group P 2 2 2 (no. 16) with four formula units 

per cell and has a cell volume of 1287.01(10) Å3. The cell constants are a = 6.6245(3) Å, b = 

10.1031(5) Å and c = 19.2297(8) Å. The calculated density at 143(2) K is 1.73 g cm−3, which is higher 

than the density of its precursor 8 with 1.67 g cm−3. 
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Figure 3. Molecular unit of compound 9 in the crystalline state. Ellipsoids correspond…to 50% 

probability levels. Hydrogen radii are arbitrary. Selected bond lengths reported in [Å] and angles 

reported in [°]: N1–N2 1.335(2), C4–N1 1.358(2), N2–C1 1.325(2), C1–C2 1.399(3), C2–C3 1.384(3), 

C4–C3 1.372(2), O1–N1 1.2561(17), N3–C1 1.403(2), N3–N4 1.408(3), N4–O2 1.215(2), N3–C5 

1.462(3), N5–C2 1.465(2), O4–N5 1.221(2), N6–C3 1.417(2), N6–N7 1.385(2), C4–N8 1.459(2), O1–

N1–N2 118.26(15), N2–C1–N3 112.77(16), N2–C1–C2 124.01(18), N4–N3–C5 116.68(18), N1–N2–

C1–C2 −0.1(3), N2–C1–C2–C3 −2.7(3), C1–C2–C3–C4 3.4(2), C5–N3–C1–N2 −26.0(2), C5–N3–N4–

O2 −17.0(3), N3–C1–C2–N5 −5.4(3), O4–N5–C2–C1 −40.3(2), N5–C2–C3–N6 9.4(3), N7–N6–C3–C2 

−58.0(2), C3–N6–N7–O6 −17.2(2), N8–C4–N1–O1 1.9(2), C3–C4–N8–O8 81.8(2). 

The N–O distance 1.2561(17) Å in the N+–O− moiety is distinctly shortened compared to those values 

found in precursor 8 (1.2635(17) Å) and related 3,5-diamino-4,6-dinitropyridazine-1-oxide 

(1.2681(19) Å).[13] These differences in length can be understood by comparing the mesomeric impacts 

of the different amino substituents to the aromatic system in each compound. With increasing the degree 

of substitution regarding the amino substituents their +M character is diminished. In consequence, the 

less electron density inside the aromatic ring causes the observed bond contractions. In molecule 9 this 

effect attains an extra dimension due to the nitration of the respective amino substituents because of the 

strong electron-withdrawing nitro groups. In contrast, the N–N distances in the pyridazine ring structure 

show an opposing trend. The N–N bond lengths in DADNP with 1.323(2) Å and compound 

8.1.3276(18) Å are shorter than that found in pyridazine 9 with 1.335(2) Å (N1–N2).[13] All remaining 

N–C and C–C bonds in the ring are with slightly divergence to each other in the aromatic range.[14,15,16] 

The ring-internal dihedral angles such as C1–C2–C3–C4 with 3.4(2)° and N2–C1–C2–C3 with −2.7(3)° 

show only slight aberration. This reflects the high planarity of the aromatic backbone. The nitro groups 
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connected to the backbone exhibit different amounts of rotation against the ring plane according to the 

torsions angles O4–N5–C2–C1 with −40.3(2)° and C3–C4–N8–O8 with even 81.8(2)°. The eminently 

twist of latter substituent, which is surprisingly near to 90°, restricts the pz-orbital of the N8-nitrogen to 

participate in aromaticity because of the slim π-overlap. In further consequence, the considerable 

elongation of the interatomic distance between N8 and C4 results. In its precursor 8 the bond length of 

the analogous nitro group is 1.4157(19) Å with a twist of −74.69(18)°. In comparison, this bond in 

pyridazine derivative 9 is 1.459(2) Å and thus slightly elongated. The dihedral angles for the tertiary 

amino substituents are −58.0(2)° (N7–N6–C3–C2) und −26.0(2)° (C5–N3–C1–N2). The distances of 

the N3–N4 and N5–N6 bonds in the nitramine moieties are 1.408(3) Å and 1.385(2) Å, respectively. 

The bond angle 123.21(17)° included from C2–C1–N3 is somewhat widened, while the adjacent N2–

C1–N3 bond angle with 112.77(16)° is noticeably compressed (Figure 3). 

Single-crystals from compound 10 were obtained by evaporating a solution of 10 in acetone and water. 

Compound 10 crystallizes in the monoclinic space group P 21/c (no. 14) with four formula units per cell 

and has a cell volume of 1144.00(8) Å3. The cell constants are a = 9.7162(4) Å, b = 13.6057(5) Å and c 

= 8.7037(4) Å with β = 96.137(4)°. The calculated density at 143(2) K is 1.58 g cm−3.  

 

Figure 4. Molecular unit of compound 10 in the crystalline state. Ellipsoids correspond to 50% 

probability levels. Hydrogen radii are arbitrary. Selected bond lengths reported in [Å] and 

angles reported in [°]: N1–N2 1.3289(17), N1–C4 1.3645(18), N2–C1 1.3553(18), C1–C2 1.4408(19), 

C2–C3 1.432(2), C3–C4 1.4057(19), O1–N1 1.2577(15), N3–C1 1.3238(19), N3–C5 1.4717(19), N4–

C2 1.4234(18), O2–N4 1.2403(17), O4–N6 1.2215(17), N5–C7 1.4611(19), N1–N2–C1 116.76(12), 

C4–C3–C2 113.49(12), O1–N1–N2 117.12(11), C1–N3–C5 120.74(13), C6–N3–C5 115.07(13),  C7–

N5–C8 113.46(12), N1–N2–C1–C2 −14.7(2), N2–C1–C2–C3, C1–C2–C3–C4 −19.07(19), N2–C1–C2–

C3 28.2(2), N1–N2–C1–N3 166.97(13), C5–N3–C1–N2 5.0(2), N3–C1–C2–N4 50.1(2), O2–N4–C2–

C1 −17.9(2), C7–N5–C3–C2 −21.6(2), N5–C3–C4–N6 −2.5(2), O4–N6–C4–C3 −71.22(19).  
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Compared to 3,5-diamino-4,6-dinitropyridazine-1-oxide (DADNP) with 1.89 g cm−3 and related 3,5-

bis(methylamino)-4,6-dinitropyridazine-1-oxide (8) with 1.67 g cm−3 its crystal-structure is clearly less 

dense.[13] The N–N bond length in the pyridazine ring is 1.3289(17) Å (Figure 4). The ring-internal N–

C bonds are 1.3645(18) Å and 1.3553(18) Å and the remaining C–C distances are 1.426 Å on average. 

These length values are all in the aromatic range and show no significant difference to the bonds inside 

the pyridazine ring of 8.[13,14,15,16] Indeed, despite the existing aromaticity the expected flat pyridazine 

ring is drastically deformed. The C1–C2–C3–C4 and N2–C1–C2–C3 torsions angles aberrate from the 

ring plane with −19.07(19)° and even 28.2(2)°, respectively. Compared to the dihedral angles C1–C2–

C3–C4 with 2.8(2)° and N2–C1–C2–C3 −6.6(2)°, the aberration of planarity found for related 8 is 

eminently smaller. Also, the ring-internal bond angles diverge from the regular angle of 120° for sp2-

hybridized bond centers. Among them is the C4–C3–C2 bond angle with the divergence of 6.5°. The 

bond length between the nitrogen and oxygen inside the N+–O− function is 1.2577(15) Å (N1–O1). In 

comparison, this N–O distance is markedly shorter than those found in precursor 7 (1.268(2) Å), 3,5-

diamino-4,6-dinitropyridazine-1-oxide (1.2681(19) Å, DADNP) and even 3,5-bis(methylamino)-4,6-

dinitropyridazine-1-oxide (8, 1.2635(17) Å).[13] Besides, the N–C bonds connecting the spatially 

demanding dimethylamino substituents to the molecular backbone of 10 have no significant difference. 

Against this, the amount of rotation noticeably differs. The dimethylamino substituent connected to the 

C1-carbon shows only a slight turn against the ring plane, whereas the other one in between of both nitro 

groups is significantly more rotated against the plane according to the C7–N5–C3–C2 torsions angle of 

−21.6(2)°. The medium length of the four bonds between the methyl groups and the tertiary substituted 

amino groups is 1.463 Å, which is in the typical range for N–C single bonds.[14] Despite the relatively 

high spatial demand of dimethylamino substituents, the nitro group in between is slightly rotated against 

the molecule plane (O2–N4–C2–C1 −17.9(2)°). In contrast, the torsions angle of O4–N6–C4–C3 with 

−71.22(19)° displays the very high aberration of the other nitro group. In spite of the higher spatial need 

concerning the vicinal tertiary amino substituent, the amount of rotation for this substituent is even lower 

than that found in compound 8 (−74.69(18)°). 

Single crystals of 11 were obtained by evaporating a solution of compound 11 in acetone. Compound 

11 crystallizes in the monoclinic space group P 21/c (no. 14) with four formula units per cell and has a 

cell volume of 1165.20(11) Å3. The cell constants are a = 6.6388(4) Å, b = 22.0275(12) Å and c = 

8.0977(4) Å with β = 100.271(5)°. The calculated density at 416(2) K is 1.73 g cm−3. 



The Pyridazine Scaffold as a Building Block for Energetic Materials: Synthesis, 

Characterization and Properties 

 
111 

 

Figure 5. Molecular unit of compound 11 in the crystalline state. Ellipsoids correspond to 50% 

probability levels. Hydrogen radii are arbitrary. Selected bond lengths / [Å] and angles / [°]: N1–N2 

1.328(2), N1–C1 1.353(2), N2–C4 1.358(2), C1–C2 1.411(2), C2–C3 1.428(2), C3–C4 1.433(2), O1–

N1 1.2603(17), N6–C4 1.329(2), N6–C8 1.462(2), C8–C9 1.513(3), C9–O7 1.422(2), N5–C3 1.420(2), 

O4–N5 1.2423(18), N2–N1–C1 122.74(14), C2–C3–C4 119.07(15), N2–C4–C3 122.14(15), C4–N6–

C8 122.87(15), N6–C8–C9 111.10(15), O7–C9–C8 112.11(16), C2–N4–C5 129.24(15), O6–C6–C5 

109.28(15), C1–N1–N2–C4 1.7(2), N1–N2–C4–C3 −0.6(2), C1–C2–C3–C4 −0.1(2), O1–N1–N2–C4 

179.54(14), N2–N1–C1–N3 174.94(14), O2–N3–C1–N1 70.1(2), N1–C1–C2–N4 −179.50(16), C5–

N4–C2–C1 14.6(3), C2–N4–C5–C6 150.46(18), N4–C2–C3–N5 3.6(3), O4–N5–C3–C2 2.5(2), N1–

N2–C4–N6 179.21(15), C8–N6–C4–N2 6.5(2), C4–N6–C8–C9 82.1(2). 

The N–N, N–C and C–C distances inside the pyridazine ring are all in the range for typical single and 

double bond lengths concerning these elements (Figure 5).[13,14,15,16] Among them, the N1–N2 distance 

is 1.328(2) Å and the N2–C4 distance is 1.358(2) Å.  Also, the internal bond angles such as N2–N1–C1 

of 122.74(14)°), C2–C3–C4 of 119.07(15)° and N2–C4–C3 of 122.14(15)° are all near to the 

characteristic 120° for sp2 hybridized bond centers. All of these bond lengths and angles indicate the 

existing aromaticity.[14] The N–O bond lengths in the N+–O− moiety is 1.2603(17) Å, which is somewhat 

shorter than that found in precursor 7 (1.268(2) Å) and related compound 8 (1.2635(17) Å).[13] The 

interatomic distances between the nitrogen atoms of the (2-(hydroxyl)ethyl)amino substituents and the 

pyridazine backbone also show an aromatic participation. All torsions angles between the ring-internal 

atoms show only slight deformation (|Θout of plane| ≤ 2.1(3)°) and is lower than that in precursor 7 (|Θout of 

plane| ≤ 6.6°)) and even 10 (|Θout of plane| ≤ 28.2(2)°). The nitro group next to the N-oxide shows the 

significant twist of 70.1(2)° (O2–N3–C1–N1). This amount of rotation is in the range of those found for 

the analogous substituents in 8 (−74.69(18)°) and 10 (−71.22(19)°). 
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5.2.3. 15N NMR spectroscopy 

In addition, 15N NMR spectra of compounds 8 and 11 were recorded (Figure 6). Compound 8 exhibits 

six resonances in the 15N spectrum; both NO2 groups are observed at −17.1 and 22.2 ppm, the pyridazine 

nitrogen atoms at −69.8 (N+–O−) and −113.2 ppm. Both methylamine nitrogen atoms show a low 

intensity and can be observed at −317.9 and −323.1 ppm as singlet.  

Figure 6. 15N NMR spectra of compounds 8 and 11. 

Six resonances can be observed in the 15N spectrum of compound 11. The nitro groups appear at −17.0 

and −22.6 ppm and the pyridazine nitrogen atoms exhibit similar shift as compound 8 −69.5 (N-oxide) 

and 113.5 ppm. Both duplets at −282.4 (JNH = 95.4 Hz) and −287.4 (JNH = 92.8 Hz) ppm can be assigned 

to both NH atoms. 

5.2.4. Detonation properties 

Compounds 8–11 can be classified as energetic materials, therefore their energetic properties were 

investigated. All theoretically and experimentally determined values for all four compounds are reported 

in Table 1. In addition, the thermal behavior was investigated with an OZM Research DTA 552-Ex 

instrument with a heating rate of 5 °C min−1. All compounds show sharp decomposition in the DTA 

plots and decompose without melting prior. Compound 8 decomposes at 250 °C, whereas the nitrated 
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derivative 9 shows sharp decomposition at 120 °C. The reason for the drastic change in the thermal 

behavior from compound 8 to 9 can be explained with the formation of the thermally sensitive −NHNO2 

moiety in 3,5-bis(methylnitramino)-4,6-dinitropyridazine-1-oxide (9). DTA plots of compounds 8, 9 and 

11 are shown in Figure 7. Compounds 10 and 11 decompose at 217 and 170 °C, respectively.  

 

Figure 7. DTA plots of compounds 8, 9 and 11. 

Further, the sensitivities of all compounds were determined toward external stimuli (friction and impact) 

by using the BAM standards and the theoretical detonation properties were calculated by using the 

EXPLO5_V6.03 computer code.[17] For all computer calculations with the EXPLO5 code the room 

temperature densities of all compounds were calculated by using the obtained X-ray structures as 

reported in the literature.[18]  

The highest room temperature density was measured for compound 11 with 1.69 g cm−3 and the lowest 

was determined for 10 with 1.54 g cm−3. The sensitivity values of all four compounds toward impact, 
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friction and electrostatic discharge were determined. Compounds 8, 10 and 11 exhibit impact sensitivity 

of 10, 30 and 18 J, respectively. The determined friction sensitivity for all three compounds is 360 N. 

Compound 9 is the most sensitive compound with values of IS = 5 J, FS = 120 N and ESD = 0.033 J. 

Compound 9 contains the nitramino moiety (−NHNO2), which leads to lower thermal stability of the 

molecule and lower sensitivity toward external stimuli. This is supported with the obtained physic-

chemical properties for the pyridazine derivative 9. According to the EXPLO5 calculations compound 

9 shows the best performance with detonation pressure and detonation velocity of 29.1 kbar and 8276 

m∙s−1, respectively. Compounds 8 and 11 have similar properties with pC-J =20.4 kbar and DC-J = 7365 

m∙s−1 for 8 and pC-J =20.2 kbar and DC-J = 7389 m∙s−1 for 11. The calculated detonation properties for 9 

in comparison to its precursor 8 and compound 11 can be explained again with the introduced nitramino 

groups, which result in a good performance but decreases the stability of the molecule. 

Table 1. Physico-chemical properties of compounds 8–11. 

 8 9 10 11 

IS[a] [J] 10 5 30 18 

FS[b] [N] 360 120 360 360 

ESD[c] [J] 0.203 0.033 0.37 0.25 

Ω[d] [%] −72 −29 −100 −79 

Tm
[e] [°C] − − − − 

Tdec
[f] [°C] 250 120 217 170 

ρ[g] [g∙cm−3] 1.63 1.68 1.54 1.69 

ΔfH°[h] [kJ∙kg−1] 420.6 892.7 574.6 824.4 

ΔfH°[h] [kJ∙mol−1] 102.7 298.3 156.4 −250.8 

EXPLO5 6.03     

−ΔEU°[i] [kJ∙kg−1] 4403 5844 4267 3828 

TC-J
[j] [K] 3036 4164 2790 2632 

pC-J 
[k] [kbar] 204 291 176 202 

DC-J
[l] [m∙s−1] 7365 8276 6994 7389 

V 
[m] [L3∙kg−1] 756 753 767 757 

[a] Impact sensitivity (BAM drophammer, method 1 of 6); [b] friction sensitivity (BAM 

drophammer, method 1 of 6); [c] electrostatic discharge device (OZM research); [d] 

oxygen balance with respect to CO2; [e] melting point (DTA, β = 5°C∙min−1); [f] 

temperature of decomposition (DTA, β = 5°C∙min−1); [g] density at 298 K; [h] standard 

molar enthalpy of formation; [i] detonation energy; [j] detonation temperature; 
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[k] detonation pressure; [l] detonation velocity; [m] volume of detonation gases at 

standard temperature and pressure conditions.  

5.3. Conclusions 

In conclusion, we report the synthesis of four new N-oxidized pyridazine based energetic materials (8–

11). For this purpose, 3,5-dimethoxy-4,6-dinitropyridazine-1-oxide (7) was reacted with methylamine, 

dimethylamine and 2-aminoethanol to result in the formation of 3,5-bis(methylamino)-4,6-

dinitropyridazine-1-oxide (8), 3,5-bis(methylnitramino)-4,6-dinitropyridazine-1-oxide (10) and 3,5-

bis((2-hydroxyethyl)amino)-4,6-dinitropyridazine-1-oxide (11). Further, the acidity of the protons in the 

–NHMe moiety of compound 8 was used and 8 was nitrated in 100% nitric acid to give 3,5-

bis(methylnitramino)-4,6-dinitropyridazine-1-oxide (9) in excellent yields. The synthesized energetic 

pyridazine derivatives (8–11) were characterized extensively using multinuclear NMR spectroscopy, 

vibrational spectroscopy, DTA, elemental analysis and BAM sensitivity methods. In addition, the crystal 

structures of all four compounds were obtained an extensively discussed. The experimentally and 

theoretically determined energetic properties were well investigated. Compounds 8 (IS = 10 J; FS = 360 

N), 10 (IS = 30 J; FS = 360 N) and 11 (IS = 18 J; FS = 360 N) exhibit similar properties toward impact 

and friction, whereas compound 9 with the nitramino moiety exhibits higher sensitivity toward external 

stimuli (IS = 5 J; FS = 120 N). 

5.4. Experimental Section 

CAUTION! All investigated compounds are potentially explosive materials, although no hazards were 

observed during preparation and handling these compounds. Nevertheless, safety precautions such as 

(wearing leather coat, face shield, Kevlar sleeves, Kevlar gloves, earthed equipment and ear plugs) 

should be drawn. 

1H, 13C, 14N and 15N NMR spectra were recorded on JEOL 270 and BRUKER AMX 400 instruments. 

The samples were measured at room temperature in standard NMR tubes (Ø 5 mm). Chemical shifts are 

reported as δ values in ppm relative to the residual solvent peaks of d6-DMSO (δH: 2.50, δC: 39.5). 

Solvent residual signals and chemical shifts for NMR solvents were referenced against tetramethylsilane 

(TMS, δ = 0 ppm) and nitromethane. Unless stated otherwise, coupling constants were reported in hertz 

(Hz) and for the characterization of the observed signal multiplicities the following abbreviations were 

used: s (singlet), d (doublet), t (triplet), q (quartet), quint (quintet), sept (septet), m (multiplet) and br 

(broad). Infrared spectra (IR) were recorded from 4500 cm−1 to 650 cm−1 on a PERKIN ELMER 



The Pyridazine Scaffold as a Building Block for Energetic Materials: Synthesis, 

Characterization and Properties 

 
116 

Spectrum BX-59343 instrument with a SMITHS DETECTION DuraSamplIR II Diamond ATR sensor. 

The absorption bands are reported in wavenumbers (cm−1). Elemental analysis was carried on a 

Elementar Vario el by pyrolysis of the sample and subsequent analysis of the formed gases. 

Decomposition temperatures were measured via differential thermal analysis (DTA) with an OZM 

Research DTA 552-Ex instrument at a heating rate of 5 °C min−1 and in a range of room temperature to 

400 °C. All sensitivities toward impact (IS) and friction (FS) were determined according to BAM 

(German: Bundesanstalt für Materialforschung und Prüfung) standards using a BAM drop hammer and 

a BAM friction apparatus.[19] All energetic compounds were tested for sensitivity towards electrical 

discharge using an Electric Spark Tester ESD 2010 EN from OZM. 

3,5-Bis(methylamino)-4,6-dinitropyridazine-1-oxide (8) 

3,5-Dimethoxy-4,6-dinitropyridazine-1-oxide (7, 1.00 g, 4.06 mmol, 1.0 eq.) was dissolved in 

acetonitrile (50 ml) and an aqueous methylamine solution (40%, 2.5 mL, 29 mmol, 7.1 eq.) was added 

dropwise. The reaction mixture was stirred at room temperature overnight. The solvent was removed in 

vacuo. The residue was suspended in a small amount of water, filtered and washed with ice-water. 

Drying on air yielded compound 8 as yellow solid (841 mg, 3.44 mmol, 85%). 

BAM: drop hammer: 10 J (100–500 μm); friction tester: 360 N (100–500 μm); ESD: 203 mJ (100–

500 μm). IR (ATR), ṽ (cm−1) = 3351 (m), 3236 (m), 2955 (vw), 1573 (s), 1537 (s), 1403 (s), 1327 (s), 

1244 (s), 1189 (s), 1135 (s), 1037 (s), 986 (m), 799 (m), 768 (s), 715 (s), 649 (s), 625 (s), 510 (m). 1H 

NMR (d6-DMSO, 400 MHz, [ppm]): δ = 9.71 (s, 1H), 9.27 (d, 3J = 4.8 Hz, 1H), 2.95 (d, 3J = 4.9 Hz, 

3H), 2.86 (s, 3H). 13C NMR (d6-DMSO, 101 MHz, [ppm]): δ = 152.2, 142.5, 133.9, 112.1, 30.0, 29.1. 

14N NMR (d6-DMSO, 29 MHz, [ppm]): δ = –24, –71. 15N NMR (d6-DMSO, 41 MHz, [ppm]): δ = –17.1, 

–22.2, –69.7, –113.0, –288.7, –291.1. Elem. Anal. (C6H8N6O5, 244.06 g∙mol-1): Calc.: C 29.56, H 3.30, 

N 34.42%. Found: C 29.56, H 3.20, N 34.42%. 

3,5-Bis(methylnitramino)-4,6-dinitropyridazine-1-oxide (9) 

3,5-Bis(methylamino)-4,6-dinitropyridazine-1-oxide (8, 500 mg, 2.05 mmol, 1.0 eq.) was added in 

small portions to 100% HNO3 (3.33 mL) at 0 °C and stirred for 3.5 h. After pouring onto crushed ice 

and stirring until the ice had melted, the resulting suspension was filtered and washed with ice-water 

until the filtrate was acid free. Drying on air gave compound 9 as yellow solid (625 mg, 1.87 mmol, 

91%). 
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BAM: drop hammer: 5 J (100–500 μm); friction tester: 120 N (100–500 μm); ESD: 33 mJ (100–

500 μm). IR (ATR), ṽ (cm−1) = 1573 (s), 1557 (s), 1453 (w), 1426 (w), 1386 (vw), 1336 (m), 1301 (m), 

1260 (vs), 1150 (vw), 1094 (w), 1064 (w), 999 (m), 911 (w), 799 (m). 1H NMR (CDCl3, 400 MHz, 

[ppm]): δ = 3.94 (s, 3H), 3.74 (s, 3H). 13C NMR (CDCl3, 101 MHz, [ppm]): δ = 162.6, 148.0, 132.9, 

121.8, 41.7, 39.4. 14N NMR (CDCl3, 29 MHz, [ppm]): δ = –30, –38, –40, –42, –71. Elem. Anal. 

(C6H6N8O9, 334.14 g∙mol-1): Calc.: C 21.57, H 1.81, N 33.53%. Found: C 21.83, H 1.98, N 33.29%. 

3,5-Bis(dimethylamino)-4,6-dinitropyridazine-1-oxide (10) 

3,5-Dimethoxy-4,6-dinitropyridazine-1-oxide (7, 500 mg, 2.03 mmol, 1.0 eq.) was dissolved in 

acetonitrile (25 mL) and an aqueous dimethylamine solution (40%, 0.600 mL, 4.74 mmol, 2.3 eq.) was 

added dropwise. The reaction was stirred at room temperature overnight. The resulting suspension was 

filtered and the solvent was removed under reduced pressure. The residue was resuspended in water, 

filtered and washed with ice-water. After drying on air compound 10 was obtained as orange solid 

(503 mg, 1.85 mmol, 91%). 

BAM: drop hammer: 30 J (100–500 μm); friction tester: 360 N (100–500 μm); ESD: 0.37 mJ; IR (ATR), 

ṽ (cm−1) = 1573 (s), 1521 (m), 1484 (m), 1464 (w), 1431 (w), 1378 (m), 1334 (w), 1250 (vs), 1210 (s), 

1184 (s), 1135 (m), 1072 (s), 933 (vw), 906 (vw), 841 (w), 823 (w), 798 (w), 760 (m). 1H NMR (d6-

DMSO, 400 MHz, [ppm]): δ = 3.15 (s, 6H), 3.07 (s, 6H). 13C NMR (d6-DMSO, 101 MHz, [ppm]): δ = 

155.1, 145.5, 137.7, 111.6, 43.8, 41.1. 14N NMR (d6-DMSO, 29 MHz, [ppm]): δ = –20, –69. Elem. Anal. 

(C8H12N6O5, 272.22 g∙mol-1): Calc.: C 35.30, H 4.44, N 30.87%. Found: C 34.78, H 3.99, N 30.24%. 

m/z (DEI+): 272(100) [M]+. 

3,5-Bis((2-hydroxyethyl)amino)-4,6-dinitropyridazine-1-oxide (11) 

3,5-Dimethoxy-4,6-dinitropyridazine-1-oxide (7, 632 mg, 2.57 mmol, 1.0 eq.) was dissolved in 

acetonitrile (30 mL) and 2-aminoethanol (0.330 mL, 5.39 mmol, 2.1 eq.) was added dropwise. The 

solution was stirred at room temperature overnight. The solvent was removed in vacuo. Subsequently, 

the residue was suspended in a small amount of water, filtered and thoroughly washed with ice-water. 

Drying on air yielded compound 11 as yellow solid (709 mg, 2.33 mmol, 91%). 

BAM: drop hammer: 15 J (100–500 μm); friction tester: 360 N (100–500 μm); ESD: 250 mJ (100–

500 μm). IR (ATR), ṽ (cm−1) = 3411 (w), 3327 (m), 3209 (w), 2950 (vw), 2887 (vw), 1593 (m), 1525 

(s), 1427 (m), 1411 (m), 1337 (s), 1281 (m), 1236 (s), 1180 (s), 1123 (m), 1047 (s), 943 (w), 866 (m), 

767 (s), 715 (s), 632 (s), 517 (m). 1H NMR (d6-DMSO, 400 MHz, [ppm]): δ = 9.90 (t, 3J = 4.8 Hz, 1H), 
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9.35 (t, 3J = 5.3 Hz, 1H), 5.25 (t, 3J = 5.0 Hz, 1H), 4.96 (t, 3J = 5.2 Hz, 1H), 3.63–3.56 (m, 4H), 3.53 (q, 

3J = 5.3 Hz, 2H), 3.15 (q, 3J = 5.0 Hz, 2H). 13C NMR (d6-DMSO, 101 MHz, [ppm]): δ = 152.1, 142.2, 

133.9, 112.2, 58.5, 58.4, 45.4, 44.1. 14N NMR (d6-DMSO, 29 MHz, [ppm]): δ = –23, –71. 15N NMR (d6-

DMSO, 41 MHz, [ppm]): δ = –17.0, –22.6, –69.5, –113.5, –282.4, –287.4. Elem. Anal. (C8H12N6O7, 

304.22 g∙mol-1): Calc.: C 31.59, H 3.98, N 27.63%. Found: C 31.58, H 3.87, N 27.43%. m/z (DEI+): 

305(100) [M+H]+. 
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5.6. Supporting Information 

5.6.1. Synthesis and general considerations 

3,5-Dimethoxy-4,6-dinitropyridazine-1-oxide (7) was prepared according the known literature.[S1] 

5.6.2. X-ray diffraction 

The low-temperature single-crystal X-ray diffraction measurements were performed on an Oxford 

XCalibur3 diffractometer equipped with a Spellman generator (voltage 50 kV, current 40 mA) and a 

KappaCCD detector operating with MoKα radiation (λ = 0.7107 Å). Data collection was performed 
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using the CRYSALIS CCD software.[S2]
 

The data reduction was carried out using the CRYSALIS RED 

software.[S3] The solution of the structure was performed by direct methods (SIR97)[S4] and refined by 

full-matrix least-squares on F2 (SHELXL)[S5] implemented in the WINGX software package[S6] and 

finally checked with the PLATON software.[S7] All DIAMOND2 plots are shown with thermal ellipsoids 

at the 50% probability level and hydrogen atoms are shown as small spheres of arbitrary radius. 

Table S1. Crystallograpci details for compounds 8 and 9. 

Compound 8 9 

Formula 

Molar mass / [g mol–1] 

Crystal system 

Space group 

Color / Habit 

Size / [mm] 

Lattice constants / [Å] 

 

 

Lattice angle / [°] 

 

 

Cell volume / [Å3] 

Formula per unit cell 

Calc. density. / [g cm–3] 

Abs. coefficient / [mm–1] 

F(000) 

Wavelength (λMoKα) / [Å] 

Meas. temperature / [K] 

Diff. range min-max / [°] 

Index range 

 

 

Parameters/restraints 

Total no. of reflections 

Independent reflections 

C6H8N6O5 

244.18 

orthorhombic 

P bca (no. 61) 

yellow block 

0.15 × 0.28 × 0.35 

a = 9.7734(2) 

b = 13.5583(3) 

c = 14.6509(3) 

a = 90 

β = 90 

γ = 90 

1941.40(7) 

8 

1.67 

0.146 

1008 

0.71073 

143(2) 

4.170 ≤ Θ ≤ 26.500 

–12 ≤ h ≤ 12 

–17 ≤ k ≤ 17 

–18 ≤ l ≤ 18 

186/0 

27841 

8839 (Rint = 0.0308) 

C6H6N8O9 

334.19 

orthorhombic 

P 2 2 2 (no. 16) 

yellow platelet 

0.20 × 0.15 × 0.10 

a = 6.6245(3) 

b = 10.1031(5) 

c = 19.2297(8) 

a = 90 

β = 90 

γ = 90 

1287.01(10) 

4 

1.73 

0.162 

680 

0.71073 

143(2) 

4.2360 ≤ Θ ≤ 27.4010 

–7 ≤ h ≤ 7 

–12 ≤ k ≤ 12 

–23 ≤ l ≤ 20 

210/1 

9368 

2337 (Rint = 0.0404) 
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Obs. reflection I > 2σ(I) 

Goodness of fit (GooF) 

R indices for I > 2σ(I) (all data) 

Res. dens. max/min / [e Å–3] 

Device type 

Solution 

Refinement 

Absorption correction 

 

CCDC 

2003 

1.075 

R1 = 0.0374 (0.0425) 

wR2 = 0.0997 (0.0964) 

0.315/–0.220 

Oxford Xcalibur3 CCD 

SIR-92 

SHELXL-2013 

multi-scan 

1917212 

2073 

1.019 

R1 = 0.0379 (0.0299) 

wR2 = 0.0666 (0.0628) 

0.145/–0.145 

Oxford Xcalibur3 CCD 

SIR-92 

SHELXL-97 

multi-scan 

1917211 

 

Table S2. Crystallographic details for compounds 10 and 11. 

Compound 10 11 

Formula 

Molar mass / [g mol–1] 

Crystal system 

Space group 

Color / Habit 

Size / [mm] 

Lattice constants / [Å] 

 

 

Lattice angle / [°] 

 

 

Cell volume / [Å3] 

Formula per unit cell 

Calc. density. / [g cm–3] 

Abs. coefficient / [mm–1] 

F(000) 

Wavelength (λMoKα) / [Å] 

Meas. temperature / [K] 

Diff. range min-max / [°] 

C8H12N6O5 

272.24 

monoclinic 

P 21/c (no. 14) 

orange platelet 

0.50 × 0.50 × 0.05 

a = 9.7162(4) 

b = 13.6057(5) 

c = 8.7037(4) 

a = 90 

β = 96.137(4) 

γ = 90 

1144.00(8) 

4 

1.58 

0.133 

568 

0.71073 

143(2) 

4.219 ≤ Θ ≤ 25.999 

C8H12N6O7 

304.24 

monoclinic 

P 21/c (no. 14) 

yellow plate 

0.50 × 0.25 × 0.05 

a = 6.6388(4) 

b = 22.0275(12) 

c = 8.0977(4) 

a = 90 

β = 100.271(5) 

γ = 90 

1165.20(11) 

4 

1.73 

0.153 

632 

0.71073 

416(2) 

4.176 ≤ Θ ≤ 32.357 
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Index range 

 

 

Parameters/restraints 

Total no. of reflections 

Independent reflections 

Obs. reflection I > 2σ(I) 

Goodness of fit (GooF) 

R indices for I > 2σ(I) (all data) 

Res. dens. max/min / [e Å–3] 

Device type 

Solution 

Refinement 

Absorption correction 

CCDC 

–11 ≤ h ≤ 9 

–15 ≤ k ≤ 16 

–10 ≤ l ≤ 10 

176/0 

8565 

2236 (Rint = 0. 0270) 

1802 

1.054 

R1 = 0.0474 (0.0351) 

wR2 = 0.0956 (0.0887) 

0.219/–0.220 

Oxford Xcalibur3 CCD 

SIR-92 

SHELXL-2013 

multi-scan 

1917213 

–5 ≤ h ≤ 9 

–32 ≤ k ≤ 32 

–12 ≤ l ≤ 11 

238 / 0 

12846 

3852 (Rint = 0.0624) 

2329 

1.016 

R1 = 0.1061 (0.0529) 

wR2 = 0.1207 (0.0991) 

0.391 /–0.309 

Oxford Xcalibur3 CCD 

SIR-92 

SHELXL-2013 

multi-scan 

1917211 

5.6.3. Computations 

All calculations were carried out using the Gaussian G09W (revision A.02) program package.[S8] The 

enthalpies (H), were calculated using the complete basis set (CBS) method of Petersson and coworkers. 

The CBS models use the known asymptotic convergence of pair natural orbital expressions to extrapolate 

from calculations using a finite basis set to the estimated complete basis set limit. CBS-4 begins with a 

HF/3-21G(d) structure optimization and the zero-point energy computation. Subsequently, applying a 

larger basis set a base energy is computed. A MP2/6-31+G calculation with a CBS extrapolation gives 

the perturbation-theory corrected energy (takes the electron correlation into account). A MP4(SDQ)/6-

31+(d,p) calculation is used to correlate higher order contributions. In this study we applied the modified 

CBS-4M method (M referring to the use of minimal population localization) which is a re-parameterized 

version of the original CBS-4 method and also includes some additional empirical corrections.[S9] The 

gas-phase enthalpies (ΔfH°(g, M,298)) of the species were computed according to the atomization energy 

method (equation 1).[S10] 

ΔfH°(g, M,298) = H(g,M,298) – ∑H°(g,Ai,298) + ∑ΔfH°(g,Ai,298)   (1) 



The Pyridazine Scaffold as a Building Block for Energetic Materials: Synthesis, 

Characterization and Properties 

 
123 

ΔfH°(g,Ai,298) for the corresponding atoms (Ai) were determined experimentally and are reported in the 

literature while H°(g,Ai,298) were calculated theoretically (Table S3).[S11] 

Table S3. CBS-4M electronic enthalpies for atoms C, H, N and O and their literature values for atomic 

Δ fH°298 / kJ mol–1 

Atom –H298 / a.u. ΔfH°(g,Ai,298)[kcal mol−1] 

H 0.500991 52.103 

C 37.786156 171.29 

N 54.522462 112.97 

O 74.991202 59.56 

Standard molar enthalpies of formation were calculated using and the standard molar enthalpies of 

ΔfH°(g, M,298)  sublimation (estimated using Trouton’s rule, equation 2).[S12] 

ΔfH°M = ΔfH°(g,M,298) – ΔsubH°M = ΔfH°(g,M,298K) – 188·T [
𝐽

𝑚𝑜𝑙
]  (2) 

Where [K] is either the melting point or the decomposition temperature (if no melting occurs prior to 

decomposition). 

The calculation results are summarized in Tables S4. 

Table S4. Calculation results. 

Compound –H298 [a] a.u. 
ΔfH°(g,M) 

kJ mol–1 [b] 

ΔfH°(s) 

kJ mol–1 

[c] 

ΔfU(s) 

kJ kg–1 

[d] 

8 936.595874 201.1 102.3 517.1 

9 1345.112057 372.3 298.3 978.1 

10 1015.032129 248.5 156.4 679.2 

11 1165.3628 –167.5 –250.8 –722.5 

[a] CBS-4M electronic enthalpy; [b] gas phase enthalpy of formation; 
[c] standard solid state enthalpy of formation; [d] solid state energy of 

formation. 
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5.6.4. Detonation parameters 

The Chapman-Jouguet (C-J) characteristics, (i.e. heat of detonation, ΔEU°; detonation temperature, TC-

J; detonation pressure, PC-J; detonation velocity DC-J) based on the calculated ΔfH°M values, and the 

theoretical maximum densities were computed using the EXPLO5 V6.03 thermochemical computer 

code.[S13] Calculations for explosives assume ideal behavior. The estimation of detonation parameters is 

based on the chemical equilibrium steady-state model of detonation. The Becker-Kistiakowsky-Wilson 

equation of state (BKW EOS) with the following sets of constants: α = 0.5, β = 0.38, κ = 9.4, and Θ = 

4120 for gaseous detonation products and the Murnaghan equation of state for condensed products 

(compressible solids and liquids) were applied. The calculation of the equilibrium composition of the 

detonation products uses modified White, Johnson and Dantzig’s free energy minimization technique. 

The specific energies of explosives (ƒ) were calculated according to the ideal gas equation of state 

assuming isochoric conditions (equation 3). 

ƒ = рe · V = n · R · Tc [
JkJ

molkg
]   (3) 

Where рe is the maximum pressure through the explosion, V is the volume of detonation gases (m3∙kg–

1), n is the number of moles of gas formed by the explosion per kilogram of explosive (Volume of 

Explosive Gases), R is the ideal gas constant and Tc is the absolute temperature of the explosion.[S13,S14] 
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Abstract: The synthesis of alkali and alkaline earth salts of 3,3'-diamino-4,4'-dinitramino-5,5'-bi-1,2,4-

triazole (H2ANAT) is reported. The fast and convenient three steps reaction toward the target compounds 

does not require any organic solvents. In addition to an intensive characterization of all synthesized 

metal salts, the focus was on developing chlorine and nitrate-free red-light-generating pyrotechnical 

formulations. Strontium 3,3'-diamino-4,4'-dinitramino-5,5'-bitriazolate hexahydrate served as colorant 

and oxidizer in one molecule. The energetic properties of all developed pyrotechnical formulations 

assure safe handling and manufacturing.  

6.1. Introduction 

In recent years the development of environmental friendly pyrotechnics for both military and civilian 

application became more and more important.[1] This affected all ingredients of a typical light-producing 

pyrotechnical formulation such as the oxidizer, fuel, colorant, and additives.[2] One of the first steps 

toward this goal is correlated with the commonly used oxidizers ammonium perchlorate (NH4ClO4) and 

potassium perchlorate (KClO4).Next to their advantageous properties, like a high oxygen balance, 
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stability, low cost and low hygroscopicity, both were identified as environmental and human health 

hazards.[3] The high solubility makes them a successful groundwater contaminant, which is addressed 

by American authorities resulting in increasing regulations regarding the permissible concentration in 

the water supply.[3,4] In the case of red-light-emitting pyrotechnics, additional chlorine sources like PVC 

are usually combined with strontium salts, typically strontium nitrate (colorant) to produce the 

metastable red light emitter Sr(I)Cl.[5] During the combustion of chlorine-containing pyrotechnic 

formulations, hi ghly carcinogenic polychlorinated biphenyls, polychlorinated dibenzofurans, and 

polychlorinated dibenzo-p-dioxins are formed.[6]  

In 2015, Sabatini et al. reported first about a chlorine-free red light composition based on strontium 

nitrate, which meets the U.S. Army performance requirements for red light (dominant 

wavelength (DW) = 620±20 nm; spectral purity (SP) ≥ 76%) and at the same time prevents the 

formation of toxic chlorine-containing compounds (Figure 1).[7] In addition to the perchlorate issue, a 

new environmental issue may arise. In November 2016, the European Union sued Germany for excessive 

nitrate concentrations in the groundwater. According to the new regulations, the groundwater 

concentration of nitrates between 2012–2014 exceeded the threshold value of 50 mg/L in 28% of the 

checkpoints. Further 8.5 % were already in between 40–50 mg/L. Such a high value may harm expectant 

mothers and young children. Even though the candidate to blame is clearly identified as the intensive 

agriculture, military practice grounds and civilian fireworks are a source of environmental pollution, 

too.[5d,8] A possible solution for “greener” pyrotechnics is the application of high-nitrogen 

compounds.[5a,5b, 9] High-nitrogen energetic salts derive their energy from their high positive heat of 

formation upon release of non-toxic dinitrogen gas as a main combustion product.[10] This is beneficial 

to achieve brilliant colors and a good color performance.[11]  

Introducing additional nitro, nitramino or N-oxide moieties to high-nitrogen compounds such as 

tetrazoles or triazoles may optimize the energetic performance and the oxygen balance of the target 

Figure 1. CIE 1931 chromaticity diagram of A, B and the reference formulation by Sabatini. 
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molecule.[12] As a consequence, no further oxidizers like nitrates would be needed. Since future 

applications of new environmentally friendly compounds in the pyrotechnic sector are often cost 

forbidden, we focused on the recently reported 3,3'-diamino-4,4'-dinitramino-5,5'-bi-1,2,4-triazole and 

the corresponding alkali/alkaline earth metal salts thereof.[13] The target metal salts can be synthesized 

in a simple three steps synthesis starting from commercially available compounds. No organic solvents 

are needed. The new developed chlorine/nitrate free red-light-emitting pyrotechnical formulations based 

on the newly synthesized strontium salt achieve a dominant wavelength (DW) = 616 nm and a 

spectral purity (SP) = 75%. The present paper discusses the syntheses of the corresponding metal salts 

and the results of DW and SP for the developed strontium-containing formulations. In addition, 

sensitivity measurements have been carried out to secure safe handling. 

6.2. Results and Discussion 

6.2.1. Syntheses 

The starting material 3,3'-diamino-4,4'-dinitramino-5,5'-bi-1,2,4-triazole (2) was synthesized according 

to a literature procedure by stepwise condensation of 1,3-diamino-guanidine monohydrochloride with 

oxalic acid and further selective N-amino nitration (Scheme 1).[13a] The preparation of 2 and its energetic 

salts 3–9 is displayed in Scheme 1. 1,3-Diaminoguanidine hydrochloride and oxalic acid were dissolved 

in polyphosphoric acid and heated to give 4,4',5,5'-tetraamino-3,3'-bi-1,2,4-triazole (1). 1 was slowly 

added to ice-cooled 100% HNO3 and stirred at 0 °C for 1.5 h. Afterward the solution was quenched with 

ice-water and the formed precipitate was filtered off yielding pure 2. Compound 2 can be used as 

obtained and does not require further purification such as chromatography, or recrystallization.  

 

Scheme 1. Synthetic route toward compounds 1–9. 
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The alkali and alkaline earth salts of 2 were obtained by the reaction of compound 2 with the 

corresponding metal hydroxides. Therefore 2 was suspended in water and the corresponding base was 

added. The suspension was heated until a clear solution appeared and then left for crystallization to 

obtain compounds 3–9. Compound 9 was obtained as a brown powder. The corresponding lithium salt 

was reported earlier.[13b] 

6.2.2. Crystal Structures 

The crystal structures of compounds 3–8 were determined. The crystal structures were uploaded to the 

CSD database[14] and can be obtained free of charge with the CCDC nos. 1837414 (3), 1837411 (4), 

1837410 (5), 1837413 (6), 1837409 (7), and 1837412 (8). In addition, selected data and parameters of 

the X-ray measurement can be found in the Supporting Information. 

The molecular structures of compounds 3–8 are similar to the neutral compound 1. All bond lengths and 

angles are similar to the neutral compound. Also, the anion of 3–8 is in plane except for the two nitramino 

groups. The two nitramino groups are tilted out of the plane by 70–73°. Only compound 5 slightly differ 

from the neutral compound.  

Disodium 3,3'-diamino-4,4'-dinitramino-5,5'-bitriazolate tetrahydrate (3) crystallizes from water in the 

triclinic space group P-1 with two molecules per unit cell and a density of 1.716 g cm-3 at 293 K. The 

molecular unit of 3 is illustrated in Figure 2. The sphere of atom Na1 is characterized by distorted 

tetrahedral coordination of four atoms (O3i, O3ii, N1, N5i). A dimeric motif is formed by two bridging 

water molecules O3ii/O3 and the atoms Na1/Na1ii (Figure 2). The dimeric motif is in plane and revealed 

a distance between the atoms Na1-O3 of approximately 2.45 Å. The observed angles between the atoms 

Na1-O3ii-Na1ii and O3ii-Na1-O3 are approximately 90 °. The coordination distance between the atoms 

Na1-O3 (2.43 Å) is in good agreement with the literature reported values (2.37 Å).[15] 
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Figure 2. Molecular unit of 3 showing the atom-labeling scheme. Ellipsoids represent the 50% 

probability level. Symmetry codes: (i = -x, -y, 1 – z; ii = -x, -y, 2–z). Selected bond length (Å): Na1-O3ii 

2.4525(2), Na1-O3 2.2525(2). Selected bond angles (°): O3ii-Na1-O3 90.300(6), Na1-O3-Na1ii 

89.700(6).  

Dipotassium 3,3'-diamino-4,4'-dinitramino-5,5'-bitriazolate (4) crystallizes from water in the monoclinic 

space group P21/n with four molecules per unit cell and a density of 2.001 g cm-3 at 294 K. The structure 

of 4 is illustrated in Figure 3. The view of multiple unit cells along the b axis indicates a stacking of 

both the anions and the potassium atoms. Two potassium atoms (Ki, Kiii) are connected to each other 

via the oxygen atom O2vi of the nitramino group and form alternating potassium-oxygen chains. The 

observed coordination distance between the atoms K1ii-O2vi is approximately 2.78 Å.  

 

Figure 3. View on the structure of 4 showing the atom-labeling scheme. Ellipsoids represent the 50% 

probability level. Symmetry codes: (i = 1–x, 2–y, -z; ii = 1.5–x, -0.5 + y, 0.5–z; iii = 1.5–x, 0.5 + y, 0.5–

z; iv = 1.5–x, -1.5 + y, 0. –z, v = 1.5–x, 1.5+y, 0.5–z; vi = 1+x, -1+y, vii = 1+x, -1+y, z). Selected bond 

length (Å): K1i – N4i 3.0536(1), K1iv-N1 3.0664(1), K1ii-O2vi 2.7388(1), O2vi-K1iii 2.17812(1), O2vi-

N6vi 1.2675(1). Selected bond angles (°): K1ii-O2vi-K1iii 126.962(3).  

Dicesium 3,3'-diamino-4,4'-dinitramino-5,5'-bitriazolate (5) crystallizes from water in the orthorhombic 

space group Pca21 with four molecules per unit cell and a density of 2.670 g cm-3 at 296 K. The 

molecular unit of 5 is illustrated in Figure 4. The molecular structure slightly differs from the 

corresponding structures, e.g. the neutral and guanidinium salt. The aromatic triazole rings are not 

coplanar and twisted approximately 2 ° (N3-C2-C3-N9) to each other. The observed bond length of the 
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atoms C1-C3 is in the range of the neutral and the guanidinium compound (1.45 Å). The nitramino 

moiety is twisted out of plane (N3-N5-N6-O1 = 71 °).  

The cesium atom (Cs1) is coordinated by one oxygen atom (O1). The observed distance between the 

atoms Cs1-O1 is 3.20 Å and is in good agreement with literature reported values.[16] 

 

Figure 4. Molecular unit of 5 showing the atom-labeling scheme. Ellipsoids represent the 50% 

probability level. Selected bond length (Å): Cs1-O1 3.292(9), Cs2-O1 3.375(8). Selected torsion angles 

(°): N2-C2-N3-N5 2.275(9), N3-N5-N6 108.521(1).  

Dirubidium 3,3'-diamino-4,4'-dinitramino-5,5'-bitriazolate (6) crystallizes from water in the monoclinic 

space group P21/n with two molecules per unit cell and a density of 2.424 g cm-3 at 173 K. The 

molecular unit of 6 is illustrated in Figure 5. The rubidium atom is distorted coordinated by one oxygen 

atom of the nitro group. The observed distance between the atoms Rb1-O2 is approximately 2.85 Å. 

 

Figure 5. Molecular unit of 6 showing the atom-labeling scheme. Ellipsoids represent the 50% 

probability level. (i =1-x,1-y, 2-z). Selected bond length (Å): Rb1-O2 2.8519(1).  

Calcium 3,3'-diamino-4,4'-dinitramino-5,5'-bitriazolate pentahydrate (7) crystallizes from water in the 

monoclinic space group C2/c with five molecules per unit cell and a density of 1.737 g cm-3 at 173 K. 

The molecular unit of 7 is illustrated in Figure 6. The calcium atom (Ca1) is distorted coordinated by 

four water molecules (O3, O3i, O4, O4i) and two times by one oxygen atom (O2) and one nitrogen atom 

(N5) of the nitramino group. The observed coordination distance between the atoms Ca1-O3, Ca1-O3i, 
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Ca1-O4, Ca1-O4i is approximately 2.37 Å. The distance between the atoms Ca1-O2, Ca1-O2i, and Ca1-

N5, Ca1-N5i is 2.48 Å and 2.58 Å respectively. The view of multiple unit cells along the a axis indicates 

a stacking of both the anions and the calcium atoms.  

 

Figure 6. Molecular unit of 7 showing the atom-labeling scheme. Ellipsoids represent the 50% 

probability level. Symmetry codes: (i = 0.5+x, 0.5+y, z). Selected bond length (Å): Ca1-O2 2.4801(14), 

Ca1-O3 2.3797(14), Ca1-O4 2.3614(1), Ca1-N5 2.5785(1).  

Strontium 3,3'-diamino-4,4'-dinitramino-5,5'-bitriazolate hexahydrate (8) crystallizes from water in the 

monoclinic space group P21/m with two molecules per unit cell and a density of 1.908 g cm-3 at 295 K. 

The molecular unit of 8 is illustrated in Figure 7. The bond lengths between all the atoms in the triazole 

ring are in the range of the reported guanidinium salt.[13a] The observed bond length of the ring nitrogen 

atoms are between the values for a N-N single bond (1.47 Å) and a N=N double bond (1.25 Å).[17]  

The strontium atom (Sr1) is distorted septahedral coordinated by five water molecules (O2, O3, O6, O5i, 

O5, O4), as well as by one oxygen atom (O2) and one nitrogen atom (N5) of the nitramino group. The 

observed distances between the atoms Sr1-O2, Sr-O3, Sr1-O4, Sr1-O5 is in the range of 2.53–2.66 Å. 

The coordination distance between the atoms Sr1-O2 and Sr1-N5 is 2.77 Å.  

The view of multiple unit cells along the a axis indicates a stacking of both the anions and the strontium 

atoms. Two strontium atoms are connected to each other via two hydrogen bridges Sr1-O6-H7a (2.76 Å) 

and O7-H7b-O4 (2.25 Å).  
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Figure 7. Molecular unit of 8 showing the atom-labeling scheme. Ellipsoids represent the 50% 

probability level. Symmetry codes: (i = 1+x, 0.5-y, z). Selected bond length (Å): Sr1-O2 2.7687(18), 

Sr1-O3 2.582(3), Sr1-O4 2.531(3), Sr1-O5 2.601(2), Sr1-O6 2.624(3), Sr1-N5 2.765(2).  

6.2.3. Thermal and energetic properties 

The decomposition temperatures Tdec of compounds 2–9 was determined by means of differential 

thermal analysis (DTA) with a heating rate of 5 °C min-1. The decomposition temperatures are given as 

onset temperatures (Table 1/Table 2). 

Table 1. Thermal and energetic properties of compounds 2–5. 

 2[13] 3 4 5 

FS [N] 120 360 360 360 

IS [J] 9 40 3 8 

Tonset [°C] 259 287 250 220 

Annotation: BAM standard; FS = friction sensitivity; IS = 

impact sensitivity; Tonset = decomposition temperature 

(heating rate of 5 °C min–1). 

All tested metal salts are completely insensitive toward friction. Compounds 3, 7, 8 and 9 contain at least 

two water molecules per unit cell and are insensitive toward impact. In contrast, the crystal water-free 

compounds 4, 5 and 6 are categorized as impact sensitive. Compound 4 is very sensitive toward impact 

(Table 1/Table 2). 

Table 2. Thermal and energetic properties of compounds 6–9. 

 6 7 8 9 
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FS [N] 360 360 360 360 

IS [J] 10 40 40 40 

Tonset [°C] 250 150dehdyr.-dec. 160dehdyr.-dec 280 

Annotation: BAM standard; FS = friction sensitivity; IS = impact sensitivity; Tonset = decomposition 

temperature (heating rate of 5 °C min–1). 

All tested metal salts show high decomposition temperatures in the range from 250 °C to 287 °C. Only 

compound 7 and 8 showed an earlier dehydration-decomposition transition at 150 °C and 160 °C 

(Table 1/Table 2).  

6.2.4. Pyrotechnical formulations 

In this project, we focused on the use of strontium salt 8 as a colorant for red-light-producing signal 

flares. The obtained formulations were compared to a chlorine-free strontium containing formulation 

published by Sabatini et al. in 2015 which meets the US Army requirement for the spectral purity (SP) 

and dominant wavelength (DW) (Table 3). A major goal was to achieve comparable good red light 

applying no chlorine and nitrate compounds in our formulations to meet potential future regulations.  

Table 3. Reference formulation by Sabatini.[7] 

Mixture/ wt% Sr(NO3)2 

Mg 

50/100 

Mesh 

5-AT Epoxy Binder[a] 

Sabatini 48.0 33.0 12.0 7.0 

[a] = Epon 813/Versamid 140 (80:20). 

The current US Army in-service M158 red star cluster formulation consists of strontium nitrate 

(48 wt%), Mg (30/50 Mesh, 33 wt%), PVC (15 wt%) and Laminac 4116 /Lupersol (4 wt%). Starting 

from this formulation, Sabatini et al. replaced the Laminac 4116/Lupersol binder system with a simple 

“drop-in” of Epon 813/Versamid 140 for environmental reasons.[7] 

Table 4. New formulations based on 8. 

Mixture/ wt% 
Mg 

30/50 Mesh 
8 5-AT 

Epoxy 

Binder[a] NC[b] 

A 35.3 47.1 11.7 3.9 2.0 

B 33.0 50.0 13.0 – 4.0 
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[a] = Epon 813/Versamid 140 (50:50); [b] = Nitrocellulose solution (4–8%) in ethanol/diethyl ether 

(2 wt% = 1 mL on 1 g scale). 

Compound 8 served as an oxidizer and colorant in one molecule. Mg and 5-AT act as fuel (Table 4). 

Formulation A applied a mixture of two binders (NC and epoxy binder); however, NC may also act as 

fuel in this formulation. In contrast, only the epoxy binder system was applied in formulation B.  

Table 5. Performance values of tested formulations. 

 BT [s] DW [nm] SP [%] 

US Army 

requirement[7] 
– 620±20 ≥76 

Sabatini 5 607 79 

A 8 616 75 

B 8 612 71 

[a] = Epon 813/Versamid 140 (50:50); [b] = Nitrocellulose solution (4-8%) in ethanol/diethylether (2 

wt% = 1 mL on 1 g scale). 

Testing the new developed formulations, A and B on a 1 g scale revealed an increased DW compared to 

the reference formulation. However, both formulations failed to meet the SP requirement. 

Table 6. Sensitivities of the tested formulations. 

 IS [J] FS [N] Tonset [°C] 

Sabatini 9 240 231 

A 30 360 156 

B 30 360 156 

Annotation: BAM standard; FS = friction sensitivity; IS = impact sensitivity; Tonset = decomposition 

temperature (heating rate of 5 °C min–1). 

The safe handling of formulations A and B can be guaranteed by low sensitivities compared to Sabatini´s 

formulation (Table 6). Applying a binder mixture of NC and an epoxy binder system in A resulted in 

the same sensitivity toward mechanical stimuli as measured for formulation B. Formulation A and B 

displayed identical decomposition temperatures at 156 °C which is close to the decomposition 

temperature of the pure compound 8. 
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6.3. Conclusions 

Several alkali and alkaline earth salts of 3,3'-diamino-4,4'-dinitramino-5,5'-bi-1,2,4-triazole (H2ANAT) 

were synthesized and intensively characterized. Crystal structures with the exception of the barium salt 

were determined and discussed. The herein presented synthesis is free of organic solvents, which helps 

to reduce solvent and other wastes in flare manufacturing. The energetic and thermal investigations 

revealed low sensitivities toward mechanical stimuli and high decomposition temperatures of the 

corresponding metals salts. Future investigations will focus on improving the spectral purities while 

maintaining the high dominant wavelengths of the developed red-light-emitting pyrotechnical 

formulations. Since all pyrotechnical formulations are to some extent scale-sensitive, the investigation 

of the luminous intensity is postponed to full-scale test, which will also show the compatibility with 

other requirements such as burn time and ignition reliability of the prototype device. 

6.4. Experimental Section 

CAUTION! The compounds described in this work are potential explosives, which are sensitive to 

external stimuli such as impact, friction, heat or electrostatic discharge. While no issues in the handling 

of these materials were encountered, appropriate precautions and proper protective measures (safety 

glasses, face shields, leather coat, Kevlar gloves and ear protectors) should be taken when preparing and 

manipulating these materials.  

General: All reagents and solvents were purchased from Sigma-Aldrich, Fluka, and Acros Organics. 

Decomposition temperatures were measured with a OZM Research DTA 552-Ex Differential Thermal 

Analyzer using heating rates of 5 °C min–1. 1H and 13C NMR spectra were measured with a JEOL Eclipse 

400, JEOL Eclipse 270 or JEOL EX400 instrument at an ambient temperature. All chemical shifts are 

quoted in ppm relative to TMS (1H, 13C) as external standards. Infrared spectra were measured using a 

Perkin-Elmer Spectrum One FT-IR spectrometer. Elemental analyses were performed with an Elementar 

Vario EL or an Elementar Vario EL micro cube. The impact and friction sensitivities were determined 

using a BAM drophammer and a BAM friction tester. The sensitivities of the compounds were indicated 

according to the UN Recommendations on the Transport of Dangerous Goods. (+): impact: insensitive 

>40 J, less sensitive >35 J, sensitive >4 J, very sensitive <4 J; friction: insensitive >360 N, less 

sensitive=360 N, sensitive <360 N, very sensitive <80 N, extreme sensitive <10 N.[19] The values 

represent the lowest impact energy at which the result “explosion or deflagration” is obtained from at 

least one out of at least six trials.  The controlled burn down of the pyrotechnic formulations was filmed 

with a digital video camera recorder (SONY, DCR-HC37E). Spectrometric measurements of the 
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formulations were performed with a HR2000+ES spectrometer with an ILX511B linear silicon CCD-

array detector and included software from Ocean Optics with a detector-sample distance of 1 meter. The 

dominant wavelength and spectral purity were measured based on the 1931 CIE method using illuminant 

C as the white reference point. Four samples were measured for each formulation. 

Preparation of pyrotechnic formulations: The samples were weighed out according to their weight 

percentages (max. 1 g total) into a mortar. After grinding by hand for 3 min, both the Epon 813 

(20 mg/mL) and the Versamid 140 solution (10 mg/mL) in ethyl acetate were added using a syringe. 

The mixture was blended with a spatula every 10 min until the solvent was evaporated. The solid 

material was stored over night at 70 °C in the drying oven for curing. Before consolidation, the 

pyrotechnic material was ground again by hand for 3 min. The formulations were pressed with the aid 

of a tooling die (inner diameter 12.9 mm) into a cylindrical shape. The formulation powders were pressed 

at a consolidation dead load of 2 t with a dwell time of 3 s. 

Metal 3,3'-Diamino-4,4'-dinitramino-5,5''-bi-1,2,4-triazole Salts: The 3,3'-diamino-4,4'-dinitramino-

5,5'-bi-1,2,4-triazole (2) salts were synthesized by suspending 2 (300 mg, 1.05 mmol) in water. The 

corresponding metal bases were added in stoichiometric amounts and heated until a clear solution 

appeared. After cooling to ambient temperatures, the solution was left for crystallization. The obtained 

solids were recrystallized from a solvent mixture of ethanol/water (1:2).  

Disodium 3,3'-diamino-4,4'-dinitramino-5,5'-bitriazolate tetrahydrate (3) 

3 was obtained as a brown powder. Recrystallization leads to yellow crystals. Yield: 363 mg (0.902 

mmol, 86 %). 1H NMR ([D6]DMSO): δ = 5.26 (s, 4 H, -NH2) ppm. 13C NMR ([D6]DMSO): δ = 138.1 

(2C, CC), 153.4 (2C, -CNO2) ppm. C4H4N12O4Na2 · 4H2O (402.19): calcd. C 11.95, H 3.01, N 41.79%; 

found C 12.13, H 2.99, N 41.29%. IR (ATR): ν˜ = 3455 (m), 3390 (m), 3292 (m), 3225 (m), 1687 (w), 

1618 (s), 1558 (m), 1465 (m), 1393 (s), 1286 (s), 1221 (s), 1093 (w), 1031 (m), 972 (m), 887 (m), 738 

(w), 707 (w) cm–1. IS (grain size <100μm): 40 J. FS (grain size <100μm): 360 N. DTA: 287 °C (onset.). 

Dipotassium 3,3'-diamino-4,4'-dinitramino-5,5'-bitriazolate (4) 

4 was obtained as a brown powder. Recrystallization leads yellow crystals. Yield: 353 mg (0.973 mmol, 

93 %). 1H NMR ([D6]D2O): δ = 9.55 (s, 4 H, -NH2) ppm. 13C NMR ([D6]DMSO): δ = 137.6 (2C, CC), 

153.7 (2C, -CNO2) ppm. C4H4N12O4K2 (362.35): calcd. C 13.26, H 1.11, N 46.93%; found C 13.36, H 

1.47, N 45.36%. IR (ATR): ν˜ = 3373 (m), 3291 (w), 3218 (w), 3079 (m), 1639 (s), 1561 (m), 1467 (m), 
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1426 (w), 1372 (s), 1286 (s), 1101 (m), 1030 (m), 1004 (w), 965 (m), 879 (m), 782 (m), 717 (m), 653 

(w) cm–1. IS (grain size <100μm): 3 J. FS (grain size <100μm): 360 N. DTA: 250 °C (onset.). 

Dicesium 3,3'-diamino-4,4'-dinitramino-5,5'-bitriazolate (5) 

5 was obtained as yellow crystals. Yield: 541 mg (0.983 mmol, 94 %).  1H NMR ([D6] D2O): δ = 9.57 

(s, 4 H, -NH2) ppm. 13C NMR ([D6]D2O): δ = 137.7 (2C, CC), 154.0 (2C, -CNO2) ppm. C4H4N12O4Cs2 

(549.96): calcd. C 8.74, H 0.73, N 30.56%; found C 8.73, H 0.91, N 29.51%. IR (ATR): ν˜ = 3343 (w), 

3291 (w), 3080 (w), 1636 (m), 1554 (m), 1465 (m), 1367 (s), 1281 (s), 1219 (m), 1119 (w), 1029 (m), 

997 (w), 964 (w), 876 (m), 833 (w), 779 (w), 715 (m), 696 (m), 653 (w) cm–1. IS (grain size <100μm): 

8 J. FS (grain size <100μm): 360 N. DTA: 220 °C (onset.). 

Dirubidium 3,3'-diamino-4,4'-dinitramino-5,5'-bitriazolate (6) 

6 was obtained as a brown powder. Recrystallization leads to colorless crystals. Yield: 430 mg (0.945 

mmol, 90 %). 1H NMR ([D6]D2O): δ = 9.55 (s, 4 H, -NH2) ppm. 13C NMR ([D6]DMSO): δ = 138.37 

(2C, CC), 154.6 (2C, -CNO2) ppm. C4H4N12O4Rb2 (455.09): calcd. C 10.65, H 0.89, N 36.93%; found 

C 10.94, H 1.28, N 37.40%. IR (ATR): ν˜ = 3376 (m), 3289 (w), 3215 (s), 3096 (m), 1740 (w), 1635 

(s), 1559 (m), 1465 (m), 1374 (s), 1283 (s), 1220 (s), 1105 (m), 1026 (m), 1105 (w), 1026 (m), 964 (m), 

877 (m), 782 (w), 717 (w), 650 (w) cm–1. IS (grain size <100μm): 10 J. FS (grain size <100μm): 360 N. 

DTA: 250 °C (onset.). 

Calcium 3,3'-diamino-4,4'-dinitramino-5,5'-bitriazolate pentahydrate (7) 

7 was obtained as a brown powder. Recrystallization leads to yellow crystals. Yield: 383 g (924 mmol, 

88 %). 1H NMR ([D6]DMSO): δ = 5.33 (s, 4 H, -NH2) ppm. 13C NMR ([D6]DMSO): δ = 138.0 (2C, 

CC), 153.4 (2C, -CNO2) ppm. C4H4N12O4Ca · 5H2O (414.31): calcd. C 11.60, H 3.41, N 40.57%; found 

C 11.93, H 3.42, N 40.39%. IR (ATR): ν˜ = 3435 (m), 3346 (m), 1739 (w), 1616 (s), 1554 (m), 1470 

(m), 1435 (m), 1418 (m), 1283 (s), 1247 (m), 1102 (w), 1035 (w), 1017 (m), 973 (m), 904 (m),776 (w), 

756 (w), 719 (w), 677 (w), 653 (w) cm–1. IS (grain size <100μm): 40 J. FS (grain size <100μm): 360 N. 

DTA: 150 °C (onset.).  

Strontium 3,3'-diamino-4,4'-dinitramino-5,5'-bitriazolate hexahydrate (8) 

8 was obtained as an orange powder. Recrystallization leads to colorless crystals. Yield: 459 mg (0.957 

mmol, 91 %).  1H NMR ([D6]DMSO): δ = 6.00 (s, 4 H, -NH2) ppm. 13C NMR ([D6]DMSO): δ = 138.1 

(2C, CC), 153.0 (2C, -CNO2) ppm. C4H4N12O4Sr · 6H2O (479.86): calcd. C 10.01, H 3.31, N 35.03%; 
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found C 9.94, H 3.19, N 34.62%. IR (ATR): ν˜ = 3549 (m), 3292 (s), 3229 (s), 3176 (s), 17139 (w), 

1621 (s), 1566 (s), 1472 (m), 1412 (s), 1299 (s), 1234 (s), 1130 (m), 1050 (m), 1024 (w), 976 (m), 900 

(m), 779 (w), 714 8w), 658 (w) cm–1. IS (grain size <100μm): 40 J. FS (grain size <100μm): 360 N. 

DTA: 250 °C (onset.). 

Barium 3,3'-diamino-4,4'-dinitramino-5,5'-bitriazolate dihydrate (9) 

9 already precipitated in boiling water and was obtained as a brown powder. Due to solubility issues, no 

further NMR analysis or recrystallization was possible since even boiling DMSO (Reflux 170 °C / 2h) 

failed to dissolve the crude product. Yield: 355 mg (0.770 mmol, 73 %). C4H4N12O4Ba · 2H2O (461.54): 

calcd. C 10.41, H 2.62, N 36.42%; found C 10.55, H 1.92, N 36.22%. IR (ATR): ν˜ = 3608 (w), 3410 

(m), 3316 (m), 3252 (m), 3187 (m), 3000 (m), 2190 (w), 1629 (s), 1566 (s) 1472 (m)1442 (s), 1417 (s), 

1291 (s) 1229 (s) 1092 (m) 1034 (m), 966 (m), 898 (s), 772 (m), 721 (w), (667 (w), 637 (w) cm–1. IS 

(grain size <100μm): 40 J. FS (grain size <100μm): 360 N. DTA: 280 °C (onset.).  
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6.7. Supporting Information 

6.7.1. Crystallographic data 

The crystal structures were uploaded to the CSD database[1] and can be obtained free of charge with the 

CCDC nos. 1837414 (3), 1837411 (4), 1837410 (5), 1837413 (6), 1837409 (7), and 1837412 (8). 

 

Table S1. Crystallographic data of 3–5. 

Compound 3 4 5 

Formula C4H4N12O4Na2 · 4H2O C4H4N12O4K2 C4H4N12O4Cs2 

Form. Mass [g/mol] 201.12 181.20 550.01 

Crystal system triclinic monoclinic orthorhombic 

Space Group P-1 (No. 2) P21/n (No. 14) Pca21 (No. 29) 

Color / Habit yellow block yellow block yellow needle 

Size [mm] 0.10 × 0.20 × 0.25 0.10 × 0.10 × 0.35 0.05 × 0.06 × 0.40 
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a [Å] 

b [Å] 

c [Å] 

α [°] 

 [°] 

γ [°] 

5.7190(7) 

8.0939(10) 

9.4531(10) 

111.276(11) 

103.533(10) 

94.954(10) 

8.7758(4) 

4.9394(2) 

14.3239(7) 

90 

104.426(5) 

90 

15.4025(9) 

4.9514(3) 

17.9392(9) 

90 

90 

90 

V [Å 3] 389.28(9) 601.32(5) 1368.11(13) 

Z 2 4 4 

calc. [g cm−3] 1.716 2.001 2.670 

 [mm−1] 0.201 0.836 5.372 

F(000) 206 364 1016 

λMoKα[Å ] 0.71073 0.71073 0.71073 

T [K] 293 294 296 

ϑ min-max [°] 4.2, 26.0 4.4, 26.0 4.1, 26.0 

Dataset h; k; l -6:7; -7:9; -11:11 -10:10; -6:6; -17:17 -19:13; -6:5; -9:22 

Reflect. coll. 2812 8041 3419 

Independ. refl. 1516 1178 1820 

Rint 0.024 0.026 0.024 

Reflection obs. 1157 1178 1857 

No. parameters 142 108 200 

R1 (obs) 0.0394 0.0254 0.0327 

wR2 (all data) 0.1099 0.0683 0.0854 

S 1.03 1.06 1.09 

Resd. Dens. [e Å−3] -0.20, 0.41 -0.22, 0.35 -1.24, 1.87 

Device type Oxford Xcalibur3 CCD Oxford Xcalibur3 CCD Oxford Xcalibur3 CCD 

Solution SIR-92 SIR-92 SIR-92 

Refinement SHELXL-97 SHELXL-97 SHELXL-97 

Absorpt. corr. multi-scan multi-scan multi-scan 

CCDC 1837414 1837411 1837410 

 

Table S2. Crystallographic data of 6–8. 

Compound 6 7 8 

Formula C4H4N12O4Rb2 C4H4N12O4Ca · 5H2O C4H4N12O4Sr · 6H2O 

Form. Mass [g/mol] 455.13 414.31 479.91 

Crystal system monoclinic monoclinic monoclinic 

Space Group P21/n (No. 14) C2/c (No. 15) P21/m (No. 11) 

Color / Habit colorless needle yellow crystals colorless block 

Size [mm] 0.08 × 0.08 × 0.18 0.4 x 0.4 x 0.4 0.10 × 0.16 × 0.20 
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a [Å] 

b [Å] 

c [Å] 

α [°] 

 [°] 

γ [°] 

8.8652(4) 

5.1322(2) 

14.1922(6) 

90 

105.030(4) 

90 

11.4009(8) 

13.7933(5) 

11.5508(7) 

90 

119.273(9) 

90 

6.3002(5) 

13.4566(9) 

10.1845(7) 

90 

104.650(8) 

90 

V [Å 3] 623.63(5) 1584.5(2) 835.36(11) 

Z 2 4 2 

calc. [g cm−3] 2.424 1.737 1.908 

 [mm−1] 7.894 0.473 3.308 

F(000) 436 856 484 

λMoKα[Å ] 0.71073 0.71073 0.71073 

T [K] 173 173 295 

ϑ min-max [°] 4.2, 26.0 4.6, 26.0 4.3, 27.0 

Dataset h; k; l -8:10; -6:6; -17:17 -12:14; -16:15 ; -14:14 -7:8; -17:16; -13:5 

Reflect. coll. 4270 5873 3577 

Independ. refl. 1226 1546 1880 

Rint 0.025 0.021 0.030 

Reflection obs. 1226 1366 1880 

No. parameters 108 147 164 

R1 (obs) 0.0223 0.0286 0.0315 

wR2 (all data) 0.0557 0.0767 0.0694 

S 1.08 1.05 1.04 

Resd. Dens. [e Å−3] -0.89, 0.37 -0.21, 0.43 -0.38, 0.72 

Device type Oxford Xcalibur3 CCD Oxford Xcalibur3 CCD Oxford Xcalibur3 CCD 

Solution SIR-92 SIR-92 SIR-92 

Refinement SHELXL-97 SHELXL-97 SHELXL-97 

Absorpt. corr. multi-scan multi-scan multi-scan 

CCDC 1837413 1837409 1837412 
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CIE 1931 chromaticity diagram 

 

 

An easy way to show or compare the spectral purity and dominant wavelength of various formulations 

is CIE 1931 chromaticity diagram. The color purity of a visible flare with the chromaticity (x, y) is its 

difference from the illuminant´s white point (WP) relative to the furthest point on the chromaticity 

diagram with the same hue (dominant wavelength for monochromatic sources). The color purity can be 

calculated by dividing the distance WP to A (x, y) = d(WP, A) by the distance WP to B = d(WP, B). B 

is the point with the maximum purity of 100% for the dominant wavelength of formulation A.[2] The 

higher the spectral purity of A, the more the point moves to the right until it ends up having the 

coordinates of B. 

6.7.2. References 

[1] Crystallographic data for the structures have been deposited with the Cambridge 

Crystallographic Data Centre. Copies of the data can be obtained free of charge on application 

to The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: int. code (1223)336-

033; e-mail for inquiry: fileserv@ccdc.cam.ac.uk; e-mail for deposition: 

(deposit@ccdc.cam.ac.uk).  

[2] T. M. Klapötke, Chemistry of High-Energy Materials, 4th ed., De Gruyter, Berlin, Boston, 2017. 
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Abstract: Nitro-functionalized energetic materials are still needed to meet new safety, performance 

and chemical accessibility demands. The problem of multiple C-nitrations on N-containing 

heterocycles was resolved successfully for the 4,4-bipyrazole scaffold. A progression of gradually 

functionalized 3-nitro-4,4-bipyrazole (2), 3,3-dinitro-4,4-bipyrazole (3), 3,5-dinitro-4,4-

bipyrazole (4), 3,3,5-trinitro-4,4-bipyrazole (5) and 3,3,5,5-tetranitro-4,4-bipyrazole (6) was 

obtained in excellent yields by highly selective direct nitrations of 4,4-bipyrazole (1). All 

synthesized polynitro derivatives 3–6 exhibit high decomposition temperatures of above 290 °C. 

The introduction of three (5) and four nitro groups (6) into the 4,4-bipyrazole scaffold yields 

insensitive and thermally stable high explosives with excellent densities and detonation properties. 
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The anhydrous structures of compounds 2–6 were obtained by low-temperature XRD. In addition, 

the performance of compounds 5 and 6 was investigated with the small scale shock reactivity test 

7.1. Introduction 

Practical uses of high energy density materials, in particular those based on common 

explosophore nitro groups, imply needs for performance in a combination with thermal stability 

and insensitivity toward external stimuli.[1] Environmental benign energetic materials, either in 

the view of green decomposition products or safety of production and storage, is also recognized 

as an important limitation.[2] The development of such materials is an ongoing challenge since 

many of the above issues are inherently hardly compatible and the compounds, which fulfill the 

sensitivity, stability, and performance requirements are still rare.[1] Recent years indicate an 

enormous interest toward design of such materials, while utilizing polynitrogen heterocycle 

platforms for accommodation of multiple explosophore groups.[3] In this respect, the nitro-

functionalized pyrazole backbone offers many special and valuable possibilities, with such key 

inputs as high nitrogen content, good thermal stability, chemical robustness and versatility of 

structural functions due to original protolytic behavior. The prototypical 3,4,5-trinitropyrazole 

reveals detonation velocity comparable to RDX and HMX and impact sensitivity value close to 

TNT,[4] while 3,4-dinitropyrazole could be used as a melt-castable explosive, alternatively to 

TNT.[5] Rapid extension of the nitropyrazole family provided further attractive examples of N-

functionalized and N,N′-bridged compounds,[6] bis-pyrazoles,[7,8a] ring-fused systems,[8] amino-

, nitramino- and other derivatives[9] used also for production of energetic ionic 

nitropyrazolates,[1a,10] MOFs,[11] molecular co-crystals[12] and eutectics.[13] 

In spite of the satisfactory and promising properties of nitropyrazole materials, their practical 

impact is still limited in the view of typically insufficient synthetic protocols. All-carbon-nitrated 

pyrazoles are inaccessible by direct reaction since the initial electrophilic substitution at the 4-

position of the ring totally inactivates the substrate.[14] Thus the accumulation of multiple nitro-

functions at the pyrazole platform claims for a cascade of sequential reactions, such as N-

nitrations and thermal rearrangements to 3-nitropyrazoles,[15] oxidation, diazotization, and direct 

nitration, which have been involved towards the syntheses of any of the highly substituted 

species, such as 3,4,5-trinitropyrazole,[3,4] 4,4,5,5-tetranitro-3,3-bipyrazole,[7b] etc. (Fig. 1). 
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Figure 1. Controlling the energetic properties via hypothetical link-up of nitro-pyrazoles based energetic 

materials: A) 3,4,5-trinitropyrazole; B) bis(3,4,5-trinitropyrazolyl) methane; C) 4,4,5,5-tetranitro-3,3-

bipyrazole. 

In the present study, we introduce a paradigm resolving these disadvantages, while providing 

direct access to a series of high-density polynitropyrazole compounds 2–6 by very simple 

procedures, which do not extend beyond common nitration in mixed acid. Coupling of two 

pyrazole rings, with a mutual interlock of reactive 4,4-positions, is a key prerequisite for 

subsequent easy substitution at every of the four C3(5)-positions left. Therefore, the system is 

especially suited for accumulation of multiple nitro groups and generation of polynitrated 

species, in particular of exhaustively substituted backbone combining two 3,5-dinitropyrazolyl 

groups. Energetic potency of such the dual could be referred to a simple prototype of 3,5-

dinitropyrazole, possessing higher heat effect of decomposition than that one for HMX.[16]  

7.2. Results and discussion 

7.2.1. Synthesis 

Reactivity of the 4,4-bipyrazole (1) supports special prospects for gradual nitro-

functionalization, while all five nitration products (including two isomeric dinitro derivatives) 

may be prepared highly selectively and in excellent yields (Scheme 1). This reflects versatile 

behavior of the substrate, which is susceptible either to electrophilic substitutions or 

unconventional reactions in very dilute HNO3 media, similar to reactions of phenol.[17] The latter 

case is illustrated by surprisingly ease mononitration of 1 in 1-5% acid, which presumably may  
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Scheme 1. Reaction pathways for selective nitro functionalization of the 4,4-bipyrazole scaffold. 

Reagents and conditions: [a] 4% HNO3, 95 °C, 6 h; [b] HNO3, 82% H3PO4, 135 °C, 3 h; [c] 2.2 eq. 

HNO3, 91% H2SO4, 100 °C, 3 h; [d] excess HNO3, 91% H2SO4, 100 °C, 8 h; [e] 170 °C, 48 h. 

not be associated with common electrophilic substitution. Under these conditions, pyrazole itself as well 

as 4-methyl- and 4-(pyridyl-4)-pyrazoles are completely inert giving corresponding nitrates only 

whereas similar 4,4-bipyrazolium dinitrate was obtained by heating in concentrated acid.[18] With more 

drastic reaction conditions, such as heating at 140 oC in autoclave, further substitution occurs at the 

second pyrazole ring yielding symmetric 3,3-dinitro-4,4-bipyrazole (3). From preparative view, the 

latter reaction is more convenient in the media of 80% phosphoric acid, as high-boiling inert 

solvent. The observed selective mononitration of every pyrazole ring is strictly contrary to the 

behavior of 1 in the respect of typical electrophilic nitration in mixed acid. In this case, two 

pyrazole rings gradually undergo exhaustive C-nitration with the formation of 3,5-dinitro- (4) or 

3,3,5,5-tetranitro-4,4-bipyrazoles (6), depending on the ratio of the reagents. Selective 

dinitration at the same ring (compound 4), leaving the second ring unaffected, could be viewed 

as a chemical paradox, which is highly illustrative for general reactivity and protolytic properties 

of azoles. In fact, for the intermediate 2, the nitro group formally activates the carrier ring towards 

further substitution since nitration of the N-unsubstituted pyrazoles occurs on the conjugate 

acids[19] whereas weakly basic 3-nitropyrazoles undergo substitution as more reactive free bases. 

The normal deactivating (by over 8 log units) effect of nitro group was observed for 1,4-
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dimethylpyrazole nitrating as free base only.[20] When combined, the above selective mono- and 

dinitrations suggest a reliable two-stage reaction sequence toward the only remaining 

trinitroderivative 5. In this way, 1 is first converted to intermediate 3 and then to the desired 4 

(94%) by successive nitrations in the media of H2SO4 and H3PO4, respectively. Compound 6H2O 

was previously mentioned in the conference proceedings without preparative details.[21] Our 

findings provide much wider versatility of the nitration reactions and the complete synthesis of 

the nitro derivatives 2–6 is shown in Scheme 1. 

7.2.2. Single crystal X-ray diffraction studies 

The solid-state structures of compounds 2–6 and 6H2O were determined by XRD (Fig. 2). A 

particular example of 4 suggests that the basic pyrazole and appreciably acidic dinitropyrazole 

sites (pKa = 3.14 for 3,5-dinitropyrazole[22]) are incompatible within the molecule and the latter 

exists rather as a peculiar pyrazolium/pyrazolate zwitter-ion. 

Impact of progressive nitro substitution on molecular conformation of the bipyrazole core is best 

detected by gradual growth of the twist angle  across the central C-C bond, as the number of 

nitro groups increases. Unlike exactly planar 4,4-bipyrazole itself,[23] and nearly planar 2 [ = 

5.63(12)o], two isomeric dinitro compounds essentially lose coplanarity of two pyrazole halves 

and this effect is even more pronounced for 5 and 6 (Table 1). 

 

Figure 2. Molecular structures of 2–6 with atom labels and the thermal ellipsoids representing the 50% 

probability level. 
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Table 1. Selected parameters for structures of nitro 4,4-bipyrazoles 2-6. 

 NO2 groups Twist angle/o 

a) 

Density/ g cm-3 Packing index H-bonded 

connectivity 

1[23] 0 0 1.424 69.9 Flat layer 

2 1 5.63(12) 1.668 74.5 3D framework 

3 2 46.48(4) 1.817 76.5 Flat layer 

4 2 50.28(5) 1.836 76.6 Flat layer 

5 3 58.58(9) 1.880 75.4 Corrugated layer 

6 4 71.44(5) 1.847 72.2 Supramolecular tube 

6H2O 4 78.99(6) 1.857 73.6 3D framework 

a) The dihedral angle subtended by mean planes of two rings; for 4,4-bipyrazole these rings were related 

by inversion. 

However, the actual spread of twist angles for 3–6 is relatively small and the introduction of the 

third and fourth nitro groups does not provoke significant strains. Moreover, probably 

counterintuitive conformation of 3 (Fig. 2), which maintains short nitro-nitro stack [NO = 

3.019(14) Å], invokes certain attractiveness of intramolecular nitro-nitro interactions, as a special 

kind of π-hole/lone pair bonding.[24] 

At the first glance, the twisted conformation of the molecules mitigates against dense molecular 

packings and thus the density of exhaustively nitrated 6 (1.847 g cm-3) is even slightly less that 

of 5 (1.880 g cm-3). However, a variety of supramolecular interactions in the structures contribute 

to the high packing indices [72.2-76.6%], at the upper limit of the 65–75% range expected for 

organic solids.[25] Pyrazole π-stacking is relevant only for pack of planar molecules of 2, with 

two distinct H-bonded patterns segregating pyrazole or nitropyrazole sites within complicated 

3D topology (further details can be found in the Supporting Information). It is worth noting that 

the conventional NHN hydrogen bonds to nitropyrazole moiety commonly appear as 

bifurcated, with a second branch to the adjacent nitro-O acceptor [NO = 2.8808(16)–

3.1849(16) Å, for 2–6] (Fig. 3). Evolution of supramolecular patterns, which coincides with 

progressive nitro substitution at the molecular frame, reflects increased role of nitro groups for 

H-bonding and π-hole/lone pair interactions. 

Energetics and structural significance of the latter ones are comparable with weak CHO 

bonding[24] and therefore the layered structures of 3-5 are very similar. In particular, the layers 

seen in the structure of 3 remain intact even with substitution at the third CH group thus yielding 
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corrugated layers of 5 with short π-hole/lone pair NO2/NO2 stacks [NO = 2.947(2) Å] instead 

of the CHO bonds found in 3 (Fig. 3).  

 

Figure 3. Inheritance of supramolecular motifs with increased number of nitro functionalities: the layers 

of 3 (a) and 5 (b) show comparable significance of CHO and NO2/NO2 bonding [N5O3iii = 2.947(2) 

Å]. 

Effect of fourth nitro group is rather spectacular (6): with a larger twist angle imposed by the molecular 

frame and loss of interlayer CHO linkage, the 2D array of H-bonded molecules collapses forming 

supramolecular tubes, i.e. one-periodic 2D structure (Fig. 4). The short NHO bonds [2.8457(14) Å], 

generated in the replace of more common NHN bonding, maintain tetramers of 6, while bifurcate 

NHO,N bonds extend the connectivity in one dimension. With a total elimination of competitive 

CHO and stacking interactions, the role of nitro groups becomes crucial even beyond the hydrogen 

bonding: in total twelve short π-hole/lone pair NO contacts (with a cut-off limit of 3.25 Å) of NO2/NO2 

and NO2/pyrazole types [shortest separations are 2.9115(15) and 2.8015(16) Å, respectively] 

contribute to the dense packing of this energetic material. These interactions approach the 

shortest reported contact of that type (2.80 Å) in the structure of the highly explosive 

heptanitrocubane[26] and they are relevant also for co-crystal 6H2O. Moreover, the water 

molecule also follows the trend by establishing its own π-hole/lone pair contact [N(nitro)OH2 

= 3.058(2) Å], in addition to directional H-bonds and particularly strong NHO bond [NO = 

2.6470(16) Å] with pyrazole (for further details on structure of 6H2O see the Supporting 

Information). 
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Figure 4. Structure of 6: a supramolecular tube by interplay of hydrogen bonding and π-hole/lone pair 

interactions of nitro groups [N1O8i = 2.8457(14) Å; O2N8iii = 2.9115(15) Å]. 

7.2.3. Physical and detonation properties 

Since all synthesized nitro pyrazoles can be viewed either as important precursors for the 

synthesis of energetic materials (compounds 2, 3 and 4) or can be already classified as energetic 

materials (compounds 5 and 6), their energetic behavior was investigated. All theoretically 

calculated and experimentally determined values for 2–6 compared to the thermally stable 

explosive HNS are listed in Table 2. Compound 6 (Tdec. = 298 °C) decomposes slightly under 

300 °C, whereas compounds 2 (Tdec. = 303 °C), 3 (Tdec. = 382 °C), 4 (Tdec. = 302 °C) and 5 

(Tdec. = 314 °C) decompose above 300 °C. Although compounds 3 and 4 are structural isomers 

with only two NO2 groups on the 4,4-bipyrazole exoskeleton the difference in the decomposition 

temperature is significant. Increasing the number of NO2 groups from three to four on the 

bipyrazole scaffold leads to only small decrease of the decomposition temperature from 314 °C 

to 298 °C for compounds 5 and 6, respectively. All DTA and TGA plots for compounds 5 and 6 

are depicted in the Supporting Information. The room temperature density values for compounds 

5 and 6 are 1.855 g cm−3 and 1.820 g cm−3, respectively. Experimentally determined sensitivity 

values toward impact and friction of 5 (IS = 20 J, FS = >360 N) exceed the reported values for 

PYX (IS = 10 J, FS = 360 N), HNS (IS = 5 J, FS = 240 N) and TKX-55 (IS = 5 J, FS = >360 N). 

Although the impact sensitivity of compound 6H2O (IS = 9 J) is in the range of PYX (IS = 10 J), 

this value changes drastically for the anhydrous 6 (IS = 4.5 J). Figure 5 shows the change of the 

physico-chemical properties for the polynitrated pyrazoles 2–6 with increasing NO2 groups in 

the 4,4-bipyrazole scaffold. 



Facile and Selective Polynitrations at the 4-Pyrazolyl Dual Backbone: A Straightforward Access 

to a Series of High-Density Energetic Materials 

 
153 

Table 2. Energetic properties and detonation parameters of compounds 2–6 compared to HNS. 

Compound 2 3 4 5 6 6H2O HNS 

IS[a] [J] 40 30 30 20 4.5 9 5 

FS[b] [N] >360 >360 >360 >360 192 324 240 

ESD[c] [J] 0.74 0.63 0.54 0.50 0.30 0.40 0.80 

Ω[d] [%] −111.64 −71.38 −71.38 −44.58 −25.46 −24.08 −67.60 

Tm
[e] [°C] 284 377 284 306 292 292 − 

Tdec
[f] [°C] 303 382 302 314 298 298 318 

ρ[g] [g cm−3] 1.635 1.794 1.813 1.855 1.820 1.830 1.74 

ΔHf°
[h] [kJ mol−1] 224.6 203.5 371.7 224.9 227.8 −11.0 78.2 

EXPLO5 6.03        

−ΔEU°[i] [kJ kg−1] 3116.4 4036.4 4742.0 4821 5287 5039 5142 

TC-J
[j] [K] 2367 3000 3357 3565 4054 3724 3677 

pC-J 
[k] [kbar] 144 221 249 286 311 307 243 

DC-J
[l] [m s−1] 6506 7528 7873 8256 8520 8451 7612 

V 
[m] [dm3 kg−1] 481 436 430 417 419 418 602 

[a] Impact sensitivity (BAM drophammer, method 1 of 6); [b] friction sensitivity (BAM drophammer, 

method 1 of 6); [c] electrostatic discharge device (OZM research); [d] oxygen balance; [e] melting point 

(DTA, β = 5°C∙min−1); [f] temperature of decomposition (DTA onset points, β = 5°C∙min−1); [g] density 

at 298 K; [h] standard molar enthalpy of formation; [i] detonation energy; [j] detonation temperature; 

[k] detonation pressure; [l] detonation velocity; [m] volume of detonation gases at standard temperature 

and pressure conditions. 

For compounds 5 and 6 were estimated positive enthalpies of formation (5 = 225 kJ mol−1 and 6 

= 228 kJ mol−1). Using these values, several detonation parameters for 2–6 were calculated (see 

the Supporting Information for details). The detonation pressure and velocity for 5 (pC-J = 286 

kbar, DC-J = 8256 m s−1) and 6 (pC-J = 311 kbar, DC-J = 8520 m s−1) surpass the reported values 

for PYX (pC-J = 251 kbar, DC-J = 7757 m s−1), HNS (pC-J = 243 kbar, DC-J = 7612 m s−1) and TKX-

55 (pC-J = 273 kbar, DC-J = 8020 m s−1).27 
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Figure 5. Bar charts for compounds 2–6 showing the change of the energetic behavior with increasing 

NO2 groups in the 4,4-bipyrazole scaffold. Impact Sensitivity [J], Friction Sensitivity [N], Density 

[g cm−3] and Calculated Detonation Velocity [m s−1]. 

In addition, the explosive performance of 5 and 6 on a small scale was investigated with the 

small scale shock reactivity test (SSRT, Fig. 6). The dent sizes were measured volumetrically by 

filling them with finely powdered SiO2 and measuring the resulting weight.  

 

Figure 6. SSRT results for 5 and 6; A) schematical illustration; B) photograph of the setup; C) aliminum 

block and steel block filled with the desired compound; D) dented aluminum block after initiation of 
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compound 6 with a commercial detonator; E) dented aluminum blocks after initiation of compound 5 

with a commercial detonator. 

The obtained results for 5 and 6 are gathered in Table 3. The measured dent volume for 5 (640 

mg) is in the range for the reported value for TKX-55 (641 mg) and slightly lower than the 

reported value for HNS (672 mg).[27] However, the solvent free 6 (811 mg) outperforms HNS, 

PYX and TKX-55 in the small scale shock test. 

Table 3. The SSRT for 5 and 6 compared to HNS, PYX and TKX-55. 

 HNS PYX TKX-55 5 6 

mE [mg][a] 469 474 496 500 491 

m [mg] [b] 672 637 641 640 811 

[a] Mass of the explosive: mE = Vs ρ 0.95; [b] Mass of SiO2. 

7.3. Experimental 

7.3.1. General Information 

All reagents and solvents were used as received. The synthesis of 4,4-bipyrazole 1 was 

performed by the previously published method.[23] Decomposition temperatures were measured 

via differential thermal analysis (DTA) with an OZM Research DTA 552-Ex instrument at a 

heating rate of 5 °C min−1 and in a range of room temperature to 400 °C and in addition thermal 

gravimetric analysis (TGA) of compounds 5, 6 and 6H2O was performed. The NMR spectra 

were recorded with a 400 MHz instrument (1H 399.8 MHz, 13C 100.5 MHz, 14N 28.9 MHz, and 

15N 40.6 MHz) at ambient temperature. Chemical shifts are quoted in parts per million with 

respect to TMS (1H, 13C) and nitromethane (14N, 15N). Infrared spectra (IR) were recorded from 

4500 cm−1 to 650 cm−1 on a Perkin Elmer Spectrum BX-59343 instrument with Smiths Detection 

DuraSamplIR II Diamond ATR sensor. The absorption bands are reported in wavenumbers 

(cm−1). Raman spectra were recorded in glass tubes with Nd:YAG laser excitation up to 300 mW 

(at 1064 nm) in the range between 200 and 4000 cm−1. The intensities are reported as percentages 

of the most intense peak and are given in parentheses. The sensitivities toward friction and impact 

of compounds 2-6 were determined according the BAM standards and the detonation parameters 

were calculated using the EXPLO5-V6.03 computer code.[28] All detonation parameters for the 

polynitro derivatives 2–6 were calculated by using the room-temperature densities obtained from 
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the X-ray structures as described in the reference.[29] Compounds 2–6 and 6H2O were tested for 

sensitivity towards electrical discharge using an Electric Spark Tester ESD 2010 EN. 

7.3.2. Crystallography 

Single-crystal X-ray diffraction data were collected with graphite-monochromated Mo K 

radiation ( = 0.71073 Å) using a Stoe Image Plate Diffraction System ( oscillation scans). The 

structures were solved by direct methods and refined by full-matrix least-squares on F2 using the 

programs SHELXS-97 and SHELXL-2014/7.[30] All hydrogen atoms were located and freely 

refined with isotropic thermal parameters. Crystallographic data for the reported structures in 

this contribution have been deposited with the Cambridge Crystallographic Data Centre as 

supplementary publication numbers (CCDC 1836403-1836408 for 2-6 and 6H2O). These data 

can be obtained free of charge from the Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/data_request/cif. 

3-Nitro-4,4-bipyrazole (2): 4,4-Bipyrazole (1, 8.04 g, 60.0 mmol) was added to 4.5% aqueous solution 

of HNO3 (820 mL, d = 1.023 g cm-3; 0.6 mol) and the mixture was stirred at 95 oC for 6 h. The initially 

formed colorless crystalline deposit of 4,4-bipyrazolium dinitrate dissolved for the first 30-40 min and 

during the next 2-3 h the mixture developed yellow color. The solution, while hot, was neutralized with 

49.5 g (0.59 mol) of solid NaHCO3 and then cooled to r.t. Orange crystalline product (9.56 g, 89%) was 

filtered, washed with 20 mL water and dried on air. Pure material was obtained after recrystallization 

from hot water (3.5 g per 1 L).  

2: Bright-orange platelets. DTA (5 °C min−1): 256 °C (endo), 284 °C (melt.), 303 °C (exo.); BAM: drop 

hammer: 40 J (100–500 μm); friction tester: >360 N (100–500 μm); ESD: 0.74 J (100–500 μm). IR 

(ATR), ṽ (cm−1) = 3268 (m), 3233 (s), 3124 (m), 2923 (m), 2871 (m), 1698 (vw), 1609 (m), 1540 (w), 

1502 (m), 1478 (w), 1406 (m), 1398 (m), 1334 (s), 1320 (s), 1297 (m), 1274 (m), 1241 (m), 1193 (m), 

1208 (m), 1162 (m), 1106 (w), 1076 (m), 1034 (w), 960 (w), 943 (s), 877 (m), 851 (w), 829 (m), 796 

(s), 762 (s), 649 (w), 640 (w), 614 (s), 504 (vw). Raman (1064 nm, 200 mW, 25 °C): ṽ (cm−1) = 3136 

(4), 1614 (79), 1518 (18), 1409 (53), 1371 (5), 1341 (100), 1323 (3), 1301 (3), 1246 (5), 1223 (3), 1211 

(5), 1164 (3), 1109 (3), 1085 (14), 929 (3), 831 (7), 506 (4), 400 (3), 222 (8). 1H NMR (d6-DMSO, 400 

MHz, ppm) δ = 13.98 (s, 1H), 13.00 (s, 1H), 8.26 (s, 1H), 8.09 (s, 1H), 7.85 (s, 1H). 13C NMR (d6-

DMSO, 101 MHz, ppm) δ = 151.7, 138.6, 130.3, 127.9, 109.9, 109.1. 14N NMR (d6-DMSO, 29 MHz, 

ppm) δ = −18. Anal. Calcd for C6H5N5O2: C 40.23, H 2.81, N 39.10 %. Found: C 40.21, H 2.75, N 38.80 

%. m/z (DEI+): 179.04 (4) [M]+, 149.07 (32), 119.05 (31), 106.04 (20). 



Facile and Selective Polynitrations at the 4-Pyrazolyl Dual Backbone: A Straightforward Access 

to a Series of High-Density Energetic Materials 

 
157 

3,3-Dinitro-4,4-bipyrazole (3). Method A: 4,4-Bipyrazole (1, 6.70 g, 50.0 mmol) and 35.0 mL (0.5 

mol) of 65% nitric acid (d = 1.389 g cm-3) were added to concentrated phosphoric acid (400 mL, 82%, 

d = 1.646 g cm-3) held in 1 L round-bottom flask equipped with short air-cooled reflux condenser. The 

flask was placed into a pre-heated oil bath and the mixture was stirred at 130-135o C for 3 h. The mixture 

containing deposit of the reaction product was transferred onto 1.5 kg of crushed ice, the solid was 

filtered, washed with two portions of water and dried in air to yield compound 3 (8.85 g, 79%). The 

product was recrystallized from boiling water (0.4 g per 1 L) or, better, from 20% aqueous 

dimethylformamide (6.5 g per 1 L). Method B: 4,4-Bipyrazole (1, 26.8 mg, 0.2 mmol), Al(NO3)39H2O 

(93.8 mg, 0.25 mmol) and 15% HF (6 mL) were placed in a teflon-lined steel autoclave, heated at 140oC 

for 24 h and then cooled to r.t. over the period of 48 h. Large pale-yellow crystals of 3 (31.8 mg, 71%) 

were filtered, thoroughly washed with water and dried in air. The product is identical to the product of 

nitration by method A. 

3: light yellow prisms. DTA (5 °C min−1): 377 °C (melt.), 382 °C (exo.); BAM: drop hammer: 30 J (100–

500 μm); friction tester: >360 N (100–500 μm); ESD: 0.63 J (100–500 μm).  IR (ATR), ṽ (cm−1) = 3198 

(m), 3130 (m), 2960 (m), 1637 (vw), 1541 (w), 1532 (w), 1512 (m), 1482 (m), 1377 (s), 1351 (s), 1307 

(m), 1246 (m), 1214 (m), 1140 (w), 1095 (m), 993 (m), 939 (w), 861 (w), 838 (m), 824 (s), 758 (s), 679 

(w), 643 (s), 610 (w), 572 (m). Raman (1064 nm, 200 mW, 25 °C): ṽ (cm−1) = 1637 (49), 1551 (9), 1537 

(13), 1496 (5), 1427 (3), 1398 (100), 1390 (13), 1377 (10), 1356 (26), 1308 (38), 1249 (6), 1209 (16), 

1143 (8), 942 (19), 838 (17), 772 (6), 397 (6), 253 (7), 234 (18), 218 (7). 1H NMR (d6-DMSO, 400 MHz, 

ppm) δ = 14.13 (s, 2H), 8.20 (s, 2H). 13C NMR (d6-DMSO, 101 MHz, ppm) δ = 153.0, 132.5, 106.9. 14N 

NMR (d6-DMSO, 29 MHz, ppm) δ = −20. Anal. Calcd for C6H4N6O4: C 32.15, H 1.80, N 37.50 %. 

Found: C 32.10, H 1.94, N 37.35 %. m/z (DEI+): 224.03 (99) [M]+, 194.06 (41), 179.05 (47), 119.05 

(100). 

3,5-Dinitro-4,4-bipyrazole (4): Fuming HNO3 (5.65 mL, 98%, d = 1.501 g cm-3) was added to a warm 

solution of 1 (8.04 g, 60 mmol) in 91% H2SO4 (240 mL, d = 1.820 g cm-3). The mixture was placed into 

pre-heated oil bath and the clear solution was stirred at 100 oC (bath temperature) for 3 h. When cold, 

the mixture was poured into 0.5 kg of crushed ice giving clear pale-yellow solution. This was neutralized 

to pH = 4-5, with external ice cooling, by slow addition of concentrated ammonia (approximately 670 

mL). The voluminous light-yellow precipitate of 4H2O (13.36 g, 92%) was filtered and thoroughly 

washed with two 50 mL portions of ice water. Pure compound was obtained by recrystallization from 

boiling water (5.9 g per 1 L). The anhydrous material was obtained by recrystallization from ethanol. 

4H2O: Light-yellow platelets. DTA (5 °C min−1): 118 °C (H2O, endo), 284 °C (melt.), 302 °C 

(exo.); IR (ATR), ṽ (cm−1) = 3578 (m), 3307 (w), 3142 (m), 2416 (m), 1806 (w), 1606 (w), 1523 
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(m), 1490 (s), 1401 (s), 1329 (s), 1241 (m), 1155 (m), 1097 (w), 1018 (w), 939 (m), 882 (s), 841 

(s), 767 (m), 691 (w), 672 (vw), 619 (m), 560 (m). Raman (1064 nm, 200 mW, 25 °C): ṽ (cm−1) 

= 3142 (6), 1611 (100), 1525 (17), 1495 (23), 1383 (92), 1299 (14), 1245 (14), 1214 (87), 1163 

(6), 1112 (17), 941 (43), 822 (28), 761 (8), 674 (7), 404 (4), 384 (2), 374 (8), 335 (5), 283 (6), 

264 (9). 1H NMR (d6-DMSO, 400 MHz, ppm) δ = 7.93 (s, 2H). 13C NMR (d6-DMSO, 101 MHz, 

ppm) δ = 148.2, 135.6 107.2, 104.5. 14N NMR (d6-DMSO, 29 MHz, ppm) δ = −24. Anal. Calcd 

for C6H4N6O4H2O: C 29.76, H 2.50, N 34.71 %. Found: C 29.86, H 2.48, N 34.85 %. m/z (DEI+): 

224.03 (100) [M]+, 194.06 (75), 105.03 (54). 

4: Pale-yellow prisms. DTA (5 °C min−1): 284 °C (melt.), 302 °C (exo.); BAM: drop hammer: 

30 J (100–500 μm); friction tester: >360 N (100–500 μm); ESD: 0.54 J (100–500 μm). Anal. 

Calcd for C6H4N6O4: C 32.15, H 1.80, N 37.50 %. Found: C 32.03, H 1.90, N 37.49 %. 

3,3,5-Trinitro-4,4-bipyrazole (5): Fuming HNO3 (24.0 mL, 98%, d = 1.501 g cm-3) was added 

to a slurry of 4H2O (6.05 g, 25 mmol) in 82% H3PO4 (270 mL, d = 1.646 g cm-3). The mixture 

was placed into pre-heated oil bath and the clear solution formed was stirred at 150oC (bath 

temperature) for 10 h. Precipitation of the reaction product was observed after first 5-6 h. The 

mixture was cooled, poured into 0.5 kg of crushed ice and left overnight at 5-10 oC. Pale-yellow 

deposit (5.64 g) was filtered and twice washed with 30 mL portions of water. Additional portion 

of the product (0.68 g) was isolated by extraction of the filtrates with EtOAc (3  300 mL). The 

combined yield was 6.32 g (94%). Pure 5 was obtained by crystallization from boiling water (8.0 

g per 1 L). 

5: Pale-yellow prisms. DTA (5 °C min−1): 306 °C (melt.), 314 °C (exo.); BAM: drop hammer: 

20 J (100–500 μm); friction tester: >360 N (100–500 μm); ESD: 0.50 J (100–500 μm). IR (ATR), 

ṽ (cm−1) = 3329 (m), 3156 (w), 3051 (w), 2801 (w), 1639 (w), 1549 (m), 1512 (m), 1478 (m), 

1400 (s), 1334 (vs), 1298 (s), 1260 (m), 1228 (m), 1212 (m), 1167 (m), 1100 (m), 995 (m), 945 

(w), 871 (w), 847 (s), 834 (s), 764 (m), 685 (vs), 629 (m), 604 (m), 587 (m), 546 (w), 518 (vw). 

Raman (1064 nm, 200 mW, 25 °C): ṽ (cm−1) = 1640 (31), 1562 (5), 1544 (7), 1426 (11), 1399 

(100), 1390 (13), 1340 (11), 1299 (5), 1265 (9), 1227 (6), 1210 (10), 947 (9), 833 (15), 754 (5), 

519 (2), 360 (4), 316 (3), 270 (6), 237 (5), 209 (28). 1H NMR (d6-DMSO, 400 MHz, ppm) δ = 

14.27 (br, 1H), 10.34 (br, 1H), 8.31 (s, 1H). 13C NMR (d6-DMSO, 101 MHz, ppm) δ = 153.2, 

149.0, 134.4, 103.5, 102.6. 14N NMR (d6-DMSO, 29 MHz, ppm) δ = −24. 15N NMR (d6-DMSO, 

41 MHz, ppm) δ = −20.3, −25.8, −82.8, −121.9, −170.5. Anal. Calcd for C6H3N6O6: C 26.78, H 

1.12, N 36.43 %. Found: C 26.82, H 1.23, N 36.15 %. m/z (DEI+): 269 (4) [M]+, 239 (14), 223 

(31), 93 (34), 77 (100). 
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3,3,5,5-Tetranitro-4,4-bipyrazole (6): Fuming HNO3 (43.7 mL, 98%, d = 1.501 g cm-3) was 

added to a warm solution of 1 (8.04 g, 60 mmol) in 91% H2SO4 (350 mL, d = 1.820 g cm-3). The 

mixture was placed into pre-heated oil bath and the clear solution formed was stirred at 98-100 

oC (bath temperature) for 8 h. After cooling, the mixture containing colorless solid reaction 

product was poured into 1.2 kg of crushed ice and left overnight at 5-10 oC. Crystalline deposit 

of 6H2O (18.32 g, 92%) was filtered, washed with 40 mL of ice water and dried. It was purified 

by crystallization from boiling water (45.0 g per 1 L). The compound crystallizes as monohydrate 

6H2O from a variety of wet solvents (alcohols, ethylacetate, aceton, 1,4-dioxane etc.). 

Anhydrous material 6 was obtained by crystallization from hot 1,2-dichlorobenzene (3.0 g per 

1 L). 

6H2O: Colorless prisms. DTA (5 °C min−1): 115 °C (H2O), 292 °C (melt.), 298 °C (exo.); BAM: 

drop hammer: 9 J (100–500 μm); friction tester: 324 N (100–500 μm); ESD: 0.40 J (100–500 

μm). IR (ATR), ṽ (cm−1) = 3619 (w), 3520 (w), 3096 (w), 2954 (w), 2352 (w), 1844 (vw), 1574 

(m), 1544 (s), 1512 (s), 1488 (s), 1421 (s), 1352 (s), 1329 (s), 1310 (s), 1288 (m), 1215 (m), 1198 

(w), 1022 (m), 1004 (m), 951 (w), 839 (vs), 814 (m), 798 (m), 772 (m), 691 (m), 643 (vw), 613 

(vw), 589 (vw), 514 (w). Raman (1064 nm, 200 mW, 25 °C): ṽ (cm−1) = 1660 (7), 1565 (5), 1423 

(4), 1400 (100), 1370 (4), 1313 (2), 1289 (2), 1226 (9), 1200 (2), 1007 (2), 829 (16), 756 (4), 

590 (4), 374 (2), 269 (4). 1H NMR (d6-DMSO, 400 MHz, ppm) δ = 10.07 (s, 2H). 13C NMR (d6-

DMSO, 101 MHz, ppm) δ = 149.7, 101.0. 14N NMR (d6-DMSO, 29 MHz, ppm) δ = −18. 15N 

NMR (d6-DMSO, 41 MHz, ppm) δ = −25.9, −114.8. Anal. Calcd for C6H2N8O8H2O: C 21.70, 

H 1.21, N 33.74 %. Found: C 21.89, H 1.46, N 33.57 %. 

6: Colorless needles. DTA (5 °C min−1): 292 °C (melt.), 298 °C (exo.); BAM: drop hammer: 4.5 

J (100–500 μm); friction tester: 192 N (100–500 μm); ESD: 0.30 J (100–500 μm). IR (ATR), ṽ 

(cm−1) = 3740 (vw), 3208 (m), 2967 (w), 1567 (s), 1519 (vs), 1482 (s), 1416 (s), 1348 (s), 1320 

(vs), 1274 (w), 1207 (m), 1018 (w), 994 (m), 842 (vs), 758 (m), 744 (m), 712 (m), 675 (m), 635 

(m), 580 (w), 518 (m). Anal. Calcd for C6H2N8O8: C 22.94, H 0.64, N 35.67 %. Found: C 23.04, 

H 0.85, N 35.66 %. 

7.4. Conclusions 

Our findings are important for a reliable approach towards facile accumulation of nitro 

functionalities at the pyrazole platform. C-nitrations at the 4,4-bipyrazole (1), were performed 

under very simple, cost-effective and environmentally benign reaction conditions. The step-wize 

nitration causes a significant change increasing impact sensitivity and density and therefore 
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energetic performance. Compounds 2–4 are especially promising intermediates, while exhibiting 

excellent thermal stability and low sensitivity towards external stimuli. Moreover, compounds 5 

and 6 can be already classified as explosive materials showing excellent thermals stability and 

good sensitivities. Further functionalization of the 4,4-bipyrazole scaffold is currently under 

investigation in our laboratories.  
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7.8. Supporting Information 

7.8.1. Experimental Procedures 

7.8.1.1.General Procedures  

1H and 13C NMR spectra were recorded on JEOL 270 and BRUKER AMX 400 instruments. The samples 

were measured at room temperature in standard NMR tubes (Ø 5 mm). Chemical shifts are reported as 

δ values in ppm relative to the residual solvent peaks d6-DMSO (δH: 2.50, δC: 39.5). Solvent residual 

signals and chemical shifts for NMR solvents were referenced against tetramethylsilane (TMS, 

δ = 0 ppm) and nitromethane. Unless stated otherwise, coupling constants were reported in hertz (Hz) 

and for the characterization of the observed signal multiplicities the following abbreviations were used: 

s (singlet), d (doublet), t (triplet), q (quartet), quint (quintet), sept (septet), m (multiplet) and br (broad). 

Low resolution mass spectra were recorded on a JEOL JMS-700 MStation mass spectrometer 

(EI+/DEI+). Infrared spectra (IR) were recorded from 4500 cm−1 to 650 cm−1 on a PERKIN ELMER 

Spectrum BX-59343 instrument with SMITHS DETECTION DuraSamplIR II Diamond ATR sensor. The 

absorption bands are reported in wavenumbers (cm−1). Elemental analysis was carried out by the 

department’s internal micro analytical laboratory on an Elementar Vario el by pyrolysis of the sample 

and subsequent analysis of the formed gases. All sensitivities toward impact (IS) and friction (FS) were 

determined according to BAM (German: Bundesanstalt für Materialforschung und Prüfung) standards 

using a BAM drop hammer and a BAM friction apparatus.[S1] Compounds 2–6 and 6H2O were tested 

for sensitivity towards electrical discharge using an Electric Spark Tester ESD 2010 EN. 

7.8.1.2.Synthesis 
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The synthesis of 1 was performed by the literature known method[S2] starting with readily available and 

inexpensive industrial product 2-butyne-1,4-diole. This simple (and easily scalable for bulk 

preparations) procedure was essentially a compilation of literature methods for preparation of 1,4-

dichloro-2-butyne, either with SOCl2
[S3] or POCl3

[S4] as the reagents; preparation of 1,4-

bis(dimethylamino)butyne[S5,6] and its rearrangement into the conjugated cis-trans-butadiene over Na 

metal dispersion[S6] and the subsequent Vilsmeier-Haack-Arnold formylation providing symmetric bis-

trimethinium salt (isolated and purified as perchlorate salt).[S7] The latter was hydrolyzed to bis-

dialdehyde and then converted into the desired 4,4-bipyrazole (1).  

 

Scheme S1. Performed synthesis for 4,4-bipyrazole (1) according the known literature. 

7.8.2. X-ray Diffraction 

The diffraction data were collected with graphite-monochromated Mo K radiation ( = 0.71073 Å) 

using a Stoe Image Plate Diffraction System,  oscillation scans (typically,  0180o;   = 0.8-0.9o; 

exposure times 7-8 min per frame).[S8] For 1 and 5, the data were collected with IPDS-2T diffractometer. 

The structures were solved by direct methods and refined by full-matrix least-squares on F2 using the 

programs SHELXS-97 and SHELXL-2014/7.[S9] All the CH-hydrogen atoms were located and freely 

refined with isotropic thermal parameters. Table S1 lists main crystallographic data and parameters of 

crystal structure refinement. Graphical visualization of the structure was made using the program 

Diamond 2.1e,[S10] and the topological analysis was performed using TOPOS 4.0.[S11] 

The most important molecular geometry parameter, which is sensitive to the progressive nitro 

substitution at the 4,4-bipyrazole platform, is dihedral angle (twist angle)  subtended by mean planes 

of two pyrazole halves. Unsubstituted 4,4-bipyrazole is exactly planar, while lying across a center of 

inversion in the crystal,[S2] and the molecule of mononitro derivative 2 retains appreciably flat structure 
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[ = 5.63(12)o] as well. With the second nitro group, either in the case of 3,5- or 3,3-derivatives, the 

bipyrazole core lose planarity [ =  46.48(4) and 50.28(5)o, for 2 and 3, respectively], but similar effect 

from further substitution (2, 3  4   5) is much weaker (Table S2). Moreover, the mutual orientation 

of two pyrazole rings for 4 and 5 does not differ significantly [ = 50.28(5) vs. 58.58(9)o] and thus the 

third and fourth NO2 groups installed at the molecular frame do not lead to essential steric strains. This 

situation may be compared with conformations of 4,4-bipyrazole and its 3,3-dimethyl- [ = 5-30o] and 

3,3,5,5-tetramethyl [ = 60-90o] derivatives in many examined salts[S12] and coordination 

compounds.[S13] 
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Table S1. Crystal data for compounds 2-6 and 6H2O. 

       

 2 3 4 5 6 6H2O 
       
Formula C6H5N5O2 C6H4N6O4 C6H4N6O4 C6H3N7O6 C6H2N8O8 C6H4N8O9 

M 179.15 224.15 224.15 269.15 314.16 332.17 

T/ K 173 213 213 213 203 213 

Color and habit Orange plate Pale-yellow prism Pale-yellow plate Colorless prism Colorless prism Colorless block 

Size / mm 0.26  0.24  0.22 0.26  0.24  0.20 0.27  0.25  0.22 0.22  0.18  0.17 0.28  0.22  0.20 0.27  0.24  0.23 

Crystal system Tetragonal Monoclinic Monoclinic Monoclinic Tetragonal Monoclinic 

Space group   P41212 (No. 92) C2/c (No. 15) C2/c (No. 15) P21/c (No. 14) P42/n (No. 86) Cc (No. 9) 

Z 8 4 4 4 8 4 

a/ Å 5.4831(2) 15.9744(9) 6.1653(7) 8.6064(8) 16.4281(13) 11.1017(9) 

b/ Å 5.4831(2) 6.5428(8) 15.7789(12) 11.9636(9) 16.4281(13) 13.9227(10) 

c/ Å 47.463(3) 8.9414(8) 8.7387(10) 10.1200(9) 8.3705(6) 8.2166(8) 

α/ o 90 90 90 90 90 90 

/ o 90 118.739(10) 107.434(10) 114.148(10) 90 110.654(10) 

γ/ o 90 90 90 90 90 90 

V/ Å3 1426.95(12) 819.41(13) 811.06(14) 950.81(14) 2259.1(3) 1188.38(17) 

(Mo-K)/ mm-1 0.132 0.156 0.157 0.170 0.172 0.175 

Dcalc/ g cm-3 1.668 1.817 1.836 1.880 1.847 1.857 

2max/ 
o 27.95 28.03 27.94 28.01 28.28 27.99 

Measd/ Unique reflns 6517 / 1701 3236 / 986 3458 / 959 8130 / 2294 9974 / 2783 5099 / 2319 

Completeness/ % 98.8 99.0 98.5 997 992 982 

Reflns with I > 2(I) 1584 829 835 1365 2122 2059 

Rint 0.035 0.023 0.024 0.043 0.041 0.017 

Parameters refined 138 81 82 184 207 224 

R1, wR2 (I > 2(I))   0.032, 0.078 0.037, 0.094 0.034, 0.090 0.038, 0.081 0.034, 0.080 0.021, 0.049 

R1, wR2 (all data) 0.034, 0.079 0.042, 0.097 0.039, 0.091 0.070, 0.086 0.049, 0.083 0.024, 0.050 

Goof on F2 1.102 1.045 1.089 0.814 1.001 0.936 

Max, min peak/ e Å-3 0.16, -0.13 0.29, -0.24 0.34, -0.19 0.22, -0.20 0.23, -0.24 0.15, -0.11 

CCDC 1836403 1836404 1836405 1836406 1836407 1836408 
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Unlike these very individual conformational features, the bond lengths and bond angles are less 

sensitive to the progressive nitro substitution and the corresponding parameters for 4,4-

bipyrazole,[S2] 2-6 and 6H2O appear to be actually uniform. In particular, the central C-C bond 

lenghts are nearly identical for all the species, when lying within the narrow range of 1.4589(19)-

1.467(2) Å (Table S2). These bonds are very similar even in the case of 3 and 4 (existing as 

pyrazolium/pyrazolate zwitterion) [1.4589(19) and 1.4621(19) Å, respectively]. Very subtle 

differences in the bond lengths parameteres may be detected for the pyrazole N-N bonds, which 

experience certain shortening as the number of nitro group increased [1.32-1.33 Å for 

dinitropyrazole rings and 1.34-1.35 Å for unsubstituted pyrazole rings, see Table S2]. 

Table S2. Selected geometry parameters for 4,4-bipyrazole 1,[S2] 2-6 and 6H2O. 

     

 
NO2 

groups 

Twist 

angle/o 
d(C-C)/ Å d(N-N)/ Å for the rings: 

    pyrazole nitropyrazole dinitropyrazole 

       

1 0 0 1.464(2) 
1.3462(15)  

2 
- - 

2 1 5.63(12) 1.462(2) 1.350(2) 1.333(2) - 

3 2 46.48(4) 1.4589(19) - 
1.3334(15)  

2 
- 

4 2 50.28(5) 1.4621(19) 1.341(2) - 1.3352(17) 

5 3 58.58(9) 1.468(2) - 1.339(2) 1.323(2) 

6 4 71.44(5) 1.4644(15) - - 
1.3263(16); 

1.3321(16) 

6H2O 4 78.99(6) 1.467(2) - - 
1.320(2); 

1.322(2) 

7.8.2.1.Crystal structure of 3-nitro-4,4-bipyrazole (2) 

The compound crystallizes in a chiral group P41212 (enantiomorphous to P43212) (with relatively 

long period c of the unit cell of 47.463(3) Å) and it adopts complicated 3D supramolecular 

structure, dominated by conventional hydrogen bonding of pyrazole NH donors. These interactions 

reveal some kind of segregation: two sites of the molecules establish two distinct supramolecular 

patterns incorporating either pyrazole or nitropyrazole groups only.  
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The latter motif involves multiple set of bifurcate and weaker interactions (Fig. S1). The N3H 

group adopts H-bond to nitropyrazole moiety: it utilizes pyrazole N4ii and nitro O1ii [symmetry 

code (ii)  y, -1+x, -z] atoms as acceptors and the N3HO1ii branch of this bifurcate bond is slightly 

stronger and more directional (Table S3). 

 

Figure S1. Hydrogen bonded motif of the structure of 2 involving nitropyrazole sides of the 

molecules. Note the bifurcation of the NHN,O bonds and double CHO bonding to nitro acceptor 

[Symmetry codes: (ii) y, -1+x, -z;  (iii) -1+x, -1+y, z.]. 

 

Figure S2. Hydrogen bonded motif of the structure of 2 involving pyrazole sides of the molecules, 

in the form of catemer [Symmetry code: (i) -1.5-x, 0.5+y, 0.25-z].  
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Weaker CHO bonds are found between the adjacent pyrazole cycles and nitro group [symmetry 

code (iii) -1+x, -1+y, z]. These interactions connect the molecular into strips, which pack one on 

the top of another and are interconnected by H-bonds through unsubstituted pyrazole sites of the 

molecules. This pyrazole connectivity is sustained with relatively short and directional N1HN2i 

bonds [NN = 2.8665(17) Å; NHN = 152.1(11)o; symmetry code (i) -1.5-x, 0.5+y, 0.25-z] and 

it exists in the form of catemer (Fig. S2), very similar to the structure of 4,4-bipyrazole itself.[S2]  

The entire H-bonded structure represents 3D framework of exceptional topology. When 

considering only the strongest interactions of conventional NH donors, every molecule is bonded 

with four closest neighbors, and thus the uninodal four-coordinated 3D framework with a point 

(Schläfli) symbol {63.83} is found [extended point symbol: 6.6.6.8(8).8(4).8(4)] (See Fig. S3). 

Alternatively, with a single pyrazole cycle as three-connected net node, two NH-hydrogen bonds 

and central covalent C-C bonds as the net links, the topology may be regarded as binodal 3,3-

cooordinated net with a a point (Schläfli) symbol {102.12}{103}. 

 

Figure S3. Supramolecular connectivity in the structure of 2:  Blue sticks represent molecules of 

the bipyrazole, thin blue lines are NHN links of unsubstituted pyrazole sides whereas thin red 

lines are NHN,O bonds of nitropyrazole sides. Note very long period of translation along c axis 

[47.463(3) Å].  

Table S3. Hydrogen-bond geometry (Å, o) for the structure of 3-nitro-4,4-bipyrazole (2). 

Donor (D) 
Hydrogen 

(H) 

Acceptor 

(A)a) D-H HA DA DHA 
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N1 H1N N2i 0.87(2) 2.07(2) 2.8665(17) 152.1(11) 

N3 H2N N4ii 0.89(2) 2.463(19) 3.1272(16) 131.8(15) 

N3 H2N O1ii 0.89(2) 2.04(2) 2.8808(16) 157.6(16) 

C1 H1 O2 0.92(2) 2.314(18) 2.8784(18) 119.3(13) 

C3 H3 O1iii 0.95(2) 2.76(2) 3.6786(18) 162.1(15) 

C3 H3 O2iii 0.95(2) 2.53(2) 3.3657(18) 146.7(15) 

C4 H4 O1iii 0.933(19) 2.42(2) 3.3478(17) 175.7(16) 

a) Symmetry codes: (i) -1.5-x, 0.5+y, 0.25-z; (ii) y, -1+x, -z;  (iii) -1+x, -1+y, z. 

 

Figure S4. Weak stacking interactions in the structure of 2: slipped π/π interaction of two 

nitropyrazole groups and π-hole/π contact involving nitro group [Symmetry codes: (iv) y, x, -z; (v) 

-1+x, y, z]. 

Structure of 2 is the only example for stacking interactions, within a full set of the examined nitro-

4,4-bipyrazoles. Very weak slipped π/π interactions is observed between the nitropyrazole rings 

(Fig. S4) whereas nitro group establishes contact with the pyrazole ring. The latter one may be 

attributes to a very weak π-hole/π interaction, with the nitro-N atom situated almost exactly above 

the ring centroid [Nπ = 3.226(2) Å; slippage angle is 5.07o]. It is not surprising that such kind of 

interactions occurs for unsubstituted pyrazole ring, but it is totally eliminated for more electron 

deficient nitropyrazoles (3-6). 

Table S4. Geometry parameters of stacking interactions in the structure of 2.a) 

Type Group 1 Group 2 
Shortest 

contact/ Å 
IPD/ Å CCD/ Å SA/ o 
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π/π (C4C5C6N3N4) (C4C5C6N3N4)iv 3.254(2) 3.265(2) 3.562(2) 23.58 

NO2/π (C1C2C3N1N2) (N5O1O2)v 3.322(2) 3.213(2) 3.226(2) 5.07 

a) See Fig. S4. IPD is the interplanar distance (distance from one plane to the neighboring centroid), 

CCD is the centre-to-centre distance (distance between ring centroids), SA is the slippage angle 

(angle subtended by the intercentroid vector to the plane normal). For NO2/π stacking, IPD and 

CCD refer to distances between plane of Group 1 and N5v; and distance between centroid of Group 

1 and N5v, respectively [Symmetry codes: (iv) y, x, -z; (v) -1+x, y, z.] 

7.8.2.2.Crystal structure of 3,3-dinitro-4,4-bipyrazole (3) 

The compound crystallizes in space group C2/c and the molecule resides on a two-fold axis passing 

through the centroid of the central C-C bond. Thus two pyrazole halves of the molecules are 

symmery equivalent. This causes significant simplification of the supramolecular array, as may be 

compared with the previous structure. Loss of the coplanarity of two pyrazole rings, now 

subtending dihedral angle of 46.48(4)o, is also an important factor. First, this eliminates stacking 

interactions, which are favorable for packing of flat molecules. Second, the twisted structure 

mitigates against efficiency of double CHO bonding from two pyrazole rings to a nitro acceptor 

seen in the structure of 2. The primary supramolecular pattern in 3 exists as 2D flat four-connected 

network parallel to a ab plane, which is sustained with a set of bifurcate NHN,O bonds (Fig. S5). 

Two branches of such bonds are nearly identical in the view of DA separations [NN = 

3.0433(13) vs. NO = 2.9946(13) Å], although interaction with N-acceptor is more directional 

[NHN = 160.9(16)o vs. NHO = 128.4(15)o, Table S5]. This is accompanied with a set of 

very weak CHO bonds [CO = 3.5742(17) and 3.6982(16) Å], which are also bifurcated and one 

of these branches is involved for connection of successive layers, separated at 3.92 Å (Fig. S6). It 

worths noting that within the single layer the orientation of the molecules is identical and therefore 

the layer is polar. However, polarities of separate layers compensate each other by anti-alignment.   
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Figure S5. Fragment of the structure of 3 showing the flat hydrogen bonded network, which is 

parallel to a ab plane. [Symmetry codes: (ii) 0.5-x, -0.5+y, 0.5-z; (iii) -x, -1+y, 0.5-z].   

 

Figure S6. Projection on a ac plane: Packing of successive layers in the structure of 3, with a set 

of very weak interlayer CHO bonding [Symmetry code (v) x, -y, 0.5+z]. 

Table S5. Hydrogen-bond geometry (Å, o) for structure of 3,3-dinitro-4,4-bipyrazole 3. 

Donor (D) Hydrogen (H) Acceptor (A)a) D-H HA DA DHA 

N1 H1N N2ii 0.869(18) 2.208(18) 3.0433(13) 160.9(16) 
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N1 H1N O2ii 0.869(18) 2.376(18) 2.9946(13) 128.4(15) 

C1 H1 O1iii 0.951(16) 2.803(16) 3.6982(16) 157.2(11) 

C1 H1 O1iv 0.951(16) 2.794(16) 3.5742(17) 139.9(11) 

a) Symmetry codes: (ii) 0.5-x, -0.5+y, 0.5-z; (iii) -x, -1+y, 0.5-z;  (iv) x, -y, -0.5+z. 

7.8.2.3.Crystal structure of 3,5-dinitro-4,4-bipyrazole (4) 

3,5-Dinitrocompound presents a particular example, since basic pyrazole site and appreaciably 

acidic 3,5-dinitropyrazole (pKa = 3.14 for 3,5-dinitropyrazole[S14]) site appear incompatible within 

the molecule and the latter exists rather in a peculiar pyrazolium/dinitropyrazolate zwitter-ionic 

form. The compound crystallizes in C2/c space group and the molecule lies on a 2-fold axis passing 

through the central C-C bond and centroids of pyrazolium and dinitropyrazolate N-N bonds. That 

the symmetry equivalence of two nitrogen sites for every of the rings is not an apparent effect of 

equal disorder of two protons, may be illustrated by the results of mean-square displacement 

amplitude analysis, which provides a sensitive parameter for anambiguous detection of subtle 

effects of the disorder.[S15] Absolute differences of ADPs along the directions of the bonds are 

calculated using THMA11[S16] and they essentially fit a limit of 0.0010 Å2 suggested by Hirshfeld 

for rigid bonds (in particular, for N1-C1 and N2-C4 |ADP| are 0.0012(7) and 0.0002(7) Å2, 

respectively).  

The zwitter-ionic pyrazolium/dinitropyrazolate structure of the molecule has clear impact for the 

hydrogen bonding: instead of a set of weaker H-bond donors and acceptors in the structure of 3, 

one can find now a combination of very potent functionalities in the form of highly acidic polarized 

pyrazolium-NH+ and anionic pyrazolate-N- sites. Such difference is essential for more strong 

hydrogen bonding in the structure of 4. First, bifurcation of the bonding between N and O acceptors 

disappears and actually only strong and directional bond to a more competitive N-site is established 

[NHN = 165.4(19)o vs. NHO = 120.2(16)o, Table S6]. Second, this NHN bond is 

significantly stronger than the one in the structure of 3 (NN separations are 2.8410(14) and 

3.0433(13) Å, respectively). Therefore, in spite of a somewhat greater molecular twist angle, 

packing of 3,5-isomer (4) is even slightly more dense than the packing of 3,3-isomer (3), as is 

suggested by crystal densities (1.836 and 1.817 g cm-3) and packing indices (76.6 and 76.5, 

respectively). 
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Figure S7. Fragment of hydrogen bonded layer in the structure of 4, with dotted lines indicating 

H-bonds and intermolecular π-hole/lone pair interactions. [Symmetry codes: (iii) 1-x, y, 0.5-z; (v) 

0.5-x, 0.5+y, 0.5-z]. 

Second important consequence of the zwitter-ionic pyrazolium/dinitropyrazolate structure of 4 is 

strict mutual orientation of the molecules (head-to-tail) imprinted into their supramolecular 

connectivity. The latter one exists in the form of flat four-connected network (similar to the network 

in the structure of 3) and the orientation of all integrated molecular dipoles is concerted and additive 

(Fig. S7). Thus the polar hydrogen bonded layer is generated, although bulk polarity of the entire 

structure is eliminated by anti-alignment of the polarities from successive layers (Fig. S8). 

Nevertheless, the hydrogen bonding scheme in 4 could be viewed as important paradigm for the 

developing of polar crystals. 
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Figure S8. The interlayer interactions, bifurcate CHO bonding, seen in the structure of 4. Note 

that the polarity of the successive layers is opposite.   

Table S6. Hydrogen-bond geometry (Å, o) for structure of 3,5-dinitro-4,4-bipyrazole 4.a) 

Donor (D) Hydrogen (H) Acceptor (A)a) D-H HA DA DHA 

N1 H1N N2ii 0.97(2) 1.89(2) 2.8410(14) 165.4(19) 

N1 H1N O1ii 0.97(2) 2.45(2) 3.0522(13) 120.2(16) 

C1 H1 O2iii 0.951(17) 2.652(17) 3.5292(16) 153.7(12) 

C1 H1 O2iv 0.951(17) 2.742(16) 3.5093(17) 138.3(12) 

a) The bond N1HN2ii is considered as strong and directional; the parameters for N1HO1ii are 

given for comparison with bifurcate bonding in the structure of 3. b) Symmetry codes: (ii) 0.5-x, -

0.5+y, 0.5-z; (iii) 1-x, y, 0.5-z; (iv) x, -y, -0.5+z. 

7.8.2.4.Crystal structure of 3,3,5-trinitro-4,4-bipyrazole (5) 

Supramolecular structure of the compound is very similar to the above layered structures of 3 and 

4. Primary intermolecular linkage is provided by bifurcate NHN,O hydrogen bonding (Table S7), 

which connects the molecules to four closest neighbors. It worths noting that the most acidic and 

polarized NH site of the dinitropyrazole moiety establishes the bond to the most basic of the N-

sites (i.e. mononitropyrazole) (Fig. S9). For this bond, the effect of bifurcation is only very minor, 

and the branch to nitro-O acceptor is very weak (if present) as may be found from comparison of 

N1N4i and N1 O5i separations (2.877(2), 3.107(2) Å, respectively) and N1HN4i and 

N1HO5i bond angles (157(2), 124(2)o, respectively) [symmetry code: (i) -1+x, y, z]. For the 
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second H-bond, nitropyrazole NH donor to dinitropyrazole-N,O acceptor, two branches are 

comparable, and the N O5 separation is even shorter (Table S7).  

In addition to these stronger hydrogen bonds, the layer comprises also weaker CHO interactions 

[C4O4iii = 3.353(2) Å; Symmetry code: (iii) x, 0.5-y, 0.5+z], very similar to 4. However, with the 

increased number of the NO2 groups at the expense of number of the CH groups (3 to 5), the CHO 

bond network thins out and, instead of the hydrogen bonds present in 3, short π-hole/lone pair 

between the adjacent NO2 groups are generated [NO = 2.947(2) Å, See Fig. S9]. That the overall 

supramolecular structure actually remains intact under such a substitution, suggests comparable 

energetics and steric demands for these two kinds of interactions. Recently we have illustrated such 

inheritance of the motifs sustained by CHO and π-hole/lone pair NO2/NO2 bonding, for a series 

of non-covalent frameworks formed by 1,4-dinitrobutadienes.[S17] The layers in the structure of 5 

pack in the ac plane and weak interlayer interactions are provided by a second branch of bifurcate 

CHO bond [C4O2iv = 3.260(3) Å;  C4HO2iv = 140.4(15)o; Symmetry code: (iv) 1-x, -y, 1-

z.]. This pack visualizes clear scheme for evolution of supramolecular patterns in the structures of 

polynitro-4,4-bipyrazoles, as depicted in Fig. S10. With the increased number of NO2 groups and 

larger molecular twist angle (2, 3  4), the flat four-connected nets observed in 2 and 3 experience 

corrugation yet preserving either dimensionality or topology. Such feature as bent along the chain 

of the molecules (already accumulated in 5) is a major stept towards disintegration of favorable 

stack of successive layers. With further increase in a number of NO2 groups, even larger molecular 

twist angle (5  6) and loss of any CHO bonding, the present array collapses into one-periodic 

four-connected net, which is described below for the structure of 6. 
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Figure S9. Fragment of hydrogen bonded layer in the structure of 5, with dotted lines indicating 

H-bonds and intermolecular π-hole/lone pair interactions. [Symmetry codes: (i) -1+x, y, z; (ii) 1+x, 

0.5-y, 0.5+z; (iii) x, 0.5-y, 0.5+z]. 

 

Figure S10. Evolution of supramolecular organization of polynitro-4,4-bipyrazoles (blue sticks 

represent four-connected molecules and dotted lines refer to principal hydrogen bonding): a) Flat 

layers in the structures of 3 and 4; b) Corrugated layers in the structure of 5; c) One-periodic 

arrangement in the structure of 6.  
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Table S7. Hydrogen-bond geometry (Å, o) for structure of 3,3,5-trinitro-4,4-bipyrazole 5. 

Donor (D) Hydrogen (H) Acceptor (A)a) D-H HA DA DHA 

N1 H1N N4i 0.78(2) 2.15(2) 2.877(2) 157(2) 

N1 H1N O5i 0.78(2) 2.61(2) 3.107(2) 124(2) 

N3 H2N O3ii 0.81(2) 2.33(2) 2.996(2) 138.9(19) 

N3 H2N N2ii 0.81(2) 2.65(2) 3.202(2) 126.2(18) 

C4 H4 O4iii 0.93(2) 2.54(2) 3.353(2) 145.8(15) 

C4 H4 O2iv 0.93(2) 2.49(2) 3.260(3) 140.4(15) 

a) Symmetry codes: (i) -1+x, y, z; (ii) 1+x, 0.5-y, 0.5+z; (iii) x, 0.5-y, 0.5+z; (iv) 1-x, -y, 1-z. 

7.8.2.5.Crystal structure of 3,5,3,5-tetranitro-4,4-bipyrazole (6) 

The compound crystallizes in a tetragonal space group P42/n and it exhibits very original 

supramolecular structure, while providing further evolution of general trends observed for 2-5. In 

particular, interactions with the nitro oxygen atoms appear to be most crucial for organization of 

hydrogen bonded framework, while bonding to pyrazole N-acceptor is present only as a less 

directional branch of bifurcate NHO,N bond [N3HO3ii = 166.4(18)o vs. N3HN2ii = 

124.7(16)o; symmetry code: (ii) x, y, -1+z] . This indicates weak basicity of pyrazole-N atoms and 

their less steric accessibility. 

As may be compared to 5, with a larger twist angle imposed by the molecular frame and loss of 

interlayer CHO linkage, the 2D array of H-bonded molecules collapses forming supramolecular 

tubes, i.e. one-periodic 2D structure. First, the strongest and very directional bonds N1H O8i 

[NO = 2.8457(14) Å;  NHO = 171.7(16)o; symmetry code: (i) y, 0.5-x, 0.5-z] assemble the 

molecules into tetramers, possessing shape of the Figure eight (Fig. S11). Second, weaker 

bifurcate bonding of the second pyrazole NH-donor donor (Table S8) itself leads to a connection 

of the molecules into linear chains along c axis (within the chain the molecules are related by a 

simple translation). With this bifuracate hydrogen bonding, the tetramers shown in Fig. S11 

aggregate forming supramolecular tubes down the c axis (See Fig. S12 and Fig. 3 of the main text).  



Facile and Selective Polynitrations at the 4-Pyrazolyl Dual Backbone: A Straightforward 

Access to a Series of High-Density Energetic Materials 

 
178 

 

Figure S11. Structure of 6: A finite arrangement of four molecules, in the form of Figure eight, 

which is maintained by a set of strongest hydrogen bonds N1H O8i [Symmetry code: (i) y, 0.5-x, 

0.5-z].  

With a total elimination of competitive CHO and stacking interactions seen in 2-5, the role of 

nitro groups becomes crucial even beyond the hydrogen bonding: in total twelve short π-hole/lone 

pair NO contacts (with a cut-off limit of 3.25 Å) of NO2/NO2 and NO2/pyrazole types contribute 

to the dense packing. The shortest nitro/nitro contacts in the structure of 6 [N8O2iv = 

2.9115(15) Å; symmetry code (iv) 0.5-y, x, -0.5-z] (Fig. S13) approach the parameters of stongest 

NO2/NO2 interactions observed in the structure of the energetic material heptanitrocubane 

(2.80 Å).[S18] These contacts constitute the most notable environment of the N8O7O8 group, which 

supports interactions at both axial sides simultaneously (Fig. S13, a). 
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Figure S12. A schematic representation of the structure of 6 (the bipyrazole molecules are shown 

as sticks and their hydrogen bonding to four closest neighbors as dotted lines): a) Supramolecular 

tubes running down c axis. The tetramer presented in the previous Figure is marked in red. b) View 

down the c direction, showing packing of four neighboring tubes.  

 

Figure S13. a) Short NO (nitro/nitro) contacts in the structure of 6, which are marked with dotted 

lines; b) Significance of π-hole/lone pair interactions for the packing of 6: Grey squares distinguish 

supramolecular tubes and green lines indicate the arising short NO contacts (cut-off limit is 3.25 

Å), either of nitro/nitro or nitro/pyrazole types [Symmetry codes (iv) 0.5-y, x, -0.5-z; (v) 0.5+y, -x, 

0.5+z; (vi) y, 0.5-x, -0.5-z]. 
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Table S8. Hydrogen-bond geometry (Å, o) for structure of 3,5,3,5-tetranitro-4,4-bipyrazole 6. 

Donor (D) Hydrogen (H) Acceptor (A)a) D-H HA DA DHA 

N1 H1N O8i 0.904(18) 1.949(18) 2.8457(14) 171.7(16) 

N3 H2N O3ii 0.87(2) 2.33(2) 3.1849(16) 166.4(18) 

N3 H2N N2ii 0.87(2) 2.418(19) 3.0027(15) 124.7(16) 

a) Symmetry codes: (i) y, 0.5-x, 0.5-z; (ii) x, y, -1+z. 

7.8.2.6.Crystal structure of 3,3,5,5-tetranitro-4,4-bipyrazole hydrate 6H2O 

Formation of this molecular adduct dominates isolation and purification of 6 from aqueous 

solutions and a variety of wet solvents. The hydrate possesses higher packing index [73.6%] and 

slightly higher density [1.857 g cm-3] than the unhydrous material [72.2% and 1.847 g cm-3], which 

is suggestive for stronger intermolecular interactions. Thus, the acidic dinitropyrazole moiety is a 

very strong donor, but only weak acceptor for conventional H-bonding and therefore one can 

rationalize benefit from the formation of NHO bonds with appropriate guests rather than the 

weaker NHO interactions with nitro-groups. This factor could be favorable for crystallization of 

molecular adducts incorporating 6.  

In fact, the role of water molecules is crucial for sustaining the entire supramolecular structure, as 

revealed by evolution of the hydrogen bonding patterns from 6 to 6H2O. The weak interactions 

involving pyrazole and nitro-O acceptors are eliminated at all. Instead, one strong and directional 

bond to O1w atom [N1O1wi = 2.6470(16) Å;  N1HO1wi = 176.2(18)o; Symmetry code: (i) -

1+x, y, z;] (Fig. S14) is established and, although the second NH group still secures bonding to the 

adjacent pyrazole acceptor, the bifurcation of this interaction (compare with the one present in 5) 

dissapears. As a result, relatively short and directional N3HN2ii bonds are formed [Symmetry 

code: 0.5+x, 0.5-y, -0.5+z] (Table S9) and these bonds connect the bipyrazole molecules into linear 

chains (Fig. S15). 
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Figure S14. a) Molecular structure of 6H2O showing the atom labeling scheme and thermal 

ellipsoids drawn at 50% probability level; b) Structural role of water molecule, which establishes 

three directional H-bonds and one short π-hole/lone pair contact [N(nitro)OH2 = 3.058(2) Å].  

Such chains are the clearly distinguishable common motif for both the structures, 6 and 6H2O. 

The water molecules unite the chains into the slightly corrugated layers parallel to the ac plane, 

while providing “extended bridges” between the pyrazole-NH and pyrazole-N sites [NHOHN]. 

The only remaining OH hydrogen bond donor is used for interlayer linkage, which involves the 

nitro-O acceptor [O1wO6iii = 2.9300(18) Å;  O1wHO6iii = 146(2)o; Symmetry code: (iii) x, -

y, -0.5+z]. Thus the entire hydrogen bonded structure represents 3D framework of complex (and 

new) topology. When considering the bipyrazole (linked to two bipyrazoles and three water 

molecules) and water (linked to three bipyrazoles) molecules as the net nodes, the three- and five- 

coordinated binodal net with a point (Schläfli) symbol {63}{67.83} is found. 

However, the role of water molecule is important even beyond the conventional hydrogen bonding. 

In the environment of multiple nitro groups, in addition to the above bonds, it adopts relatively 

short π-hole/lone pair contact with nitro-N acceptor [N(nitro)OH2 = 3.058(2) Å], which 

completes nearly tetrahedral environment of O1w (N1iv, N4, O6iii and N6ii, see Fig. S14b). 

Therefore the aqua guest exactly follows the trend for generation of multiple π-hole/lone pair 

interactions, as already mentioned for structures of 5 and 6. As may be compared with a latter 

example, significance of such interactions in 6H2O is slightly diminished in a favor of more 

competitive conventional hydrogen bonding. However, the pack still generates nine short NO 

contacts (with a cut-off limit of 3.25 Å) corresponding to the NO2NO2, NO2pyrazole and 
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H2ONO2 types, with a shortest separations found for two interacting nitro groups [N7O2v = 

2.9714(18) Å; Symmetry code: (v) 0.5+x, 0.5-y, 0.5+z] (Fig. S14b). 

Table S9. Hydrogen-bond geometry (Å, o) for structure of 6H2O. 

Donor (D) Hydrogen (H) Acceptor (A)a) D-H HA DA DHA 

N1 H1N O1Wi 0.828(18) 1.821(19) 2.6470(16) 176.2(18) 

N3 H2N N2ii 0.85(2) 2.083(19) 2.9058(16) 161.7(17) 

O1W H1W N4 0.85(3) 2.22(3) 3.0479(16) 166(2) 

O1W H2W O6iii 0.82(3) 2.21(3) 2.9300(18) 146(2) 

a) Symmetry codes: (i) -1+x, y, z; (ii) 0.5+x, 0.5-y, -0.5+z; (iii) x, -y, -0.5+z. 

 

Figure S15. Fragment of the structure of 6H2O, in a projection nearly to ac plane: Hydrogen 

bonded layer comprising chains of NHN bonded bipyrazole molecules (indicated with grey 

strips), which are interlinked with water molecules [NHOH N].  
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Figure S16. Projection of the structure of 6H2O on a ab plane, showing packing of three 

successive layers (marked in green, grey and green) and interlayer hydrogen bond interactions of 

water molecules to NO2 acceptors [Symmetry code: (iii) x, -y, -0.5+z.] 

7.8.3. Computations 

All calculations were carried out using the Gaussian G09W (revision A.02) program package.[S19] 

The enthalpies (H), were calculated using the complete basis set (CBS) method of Petersson and 

coworkers. The CBS models use the known asymptotic convergence of pair natural orbital 

expressions to extrapolate from calculations using a finite basis set to the estimated complete basis 

set limit. CBS-4 begins with a HF/3-21G(d) structure optimization and the zero-point energy 

computation. Subsequently, applying a larger basis set a base energy is computed. A MP2/6-31+G 

calculation with a CBS extrapolation gives the perturbation-theory corrected energy (takes the 

electron correlation into account). A MP4(SDQ)/6-31+(d,p) calculation is used to correlate higher 

order contributions. In this study we applied the modified CBS-4M method (M referring to the use 

of minimal population localization) which is a re-parameterized version of the original CBS-4 

method and also includes some additional empirical corrections.[S20] The gas-phase enthalpies 

(ΔfH°(g, M,298)) of the species were computed according to the atomization energy method 

(equation 1).[S21] 

ΔfH°(g, M,298) = H(g,M,298) – ∑H°(g,Ai,298) + ∑ΔfH°(g,Ai,298)   (1) 
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ΔfH°(g,Ai,298) for the corresponding atoms (Ai) were determined experimentally and are reported 

in the literature while H°(g,Ai,298) were calculated theoretically (Table S10).[S22] 

Table S10. CBS-4M electronic enthalpies for atoms C, H, N and O and their literature values for 

atomic Δ fH°298 / kJ mol–1. 

Atom –H298 / a.u. ΔfH°(g,Ai,298)[kcal mol−1] 

H 0.500991 52.103 

C 37.786156 171.29 

N 54.522462 112.97 

O 74.991202 59.56 

Standard molar enthalpies of formation were calculated using and the standard molar enthalpies of 

ΔfH°(g,M,298) sublimation (estimated using Trouton’s rule, equation 2).[S23] 

ΔfH°M = ΔfH°(g,M,298) – ΔsubH°M = ΔfH°(g,M,298K) – 188·T [
𝐽

𝑚𝑜𝑙
]  (2) 

Where [K] is either the melting point or the decomposition temperature (if no melting occurs prior 

to decomposition).The calculation results are summarized in Tables S11. 

Table S11. Calculation results. 

Compound –H298 [a] a.u. 
ΔfH°(g,M) 

kJ mol–1 [b] 
ΔfH°(s) kJ mol–1 [c] ΔfU(s) kJ kg–1 [d] 

6 1267.704422 334.0 227.8 796.1 

5 1063.413895 333.6 224.9 909.3 

4 859.068778 476.5 371.7 1735.9 

3 859.126194 325.7 203.5 985.4 

2 654.836114 324.1 224.6 1337.0 

[a] CBS-4M electronic enthalpy; [b] gas phase enthalpy of formation; [c] standard solid state enthalpy 

of formation; [d] solid state energy of formation. 

7.8.4. Detonation Parameters 

The Chapman-Jouguet (C-J) characteristics, (i.e. heat of detonation, ΔEU°; detonation temperature, 

TC-J; detonation pressure, PC-J; detonation velocity VC-J) based on the calculated ΔfH°M values, 

and the theoretical maximum densities were computed using the EXPLO5 V6.03 thermochemical 
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computer code.[S24] Calculations for explosives assume ideal behaviour. The estimation of 

detonation parameters is based on the chemical equilibrium steady-state model of detonation. The 

Becker-Kistiakowsky-Wilson equation of state (BKW EOS) with the following sets of constants: 

α = 0.5, β = 0.38, κ = 9.4, and Θ = 4120 for gaseous detonation products and the Murnaghan 

equation of state for condensed products (compressible solids and liquids) were applied. The 

calculation of the equilibrium composition of the detonation products uses modified White, 

Johnson and Dantzig’s free energy minimization technique. The specific energies of explosives (ƒ) 

were calculated according to the ideal gas equation of state assuming isochoric conditions 

(equation 3). 

ƒ = рe · V = n · R · Tc [
𝐽𝑘𝐽

𝑚𝑜𝑙𝑘𝑔
]   (3) 

Where рe is the maximum pressure through the explosion, V is the volume of detonation gases 

(m3∙kg–1), n is the number of moles of gas formed by the explosion per kilogram of explosive 

(Volume of Explosive Gases), R is the ideal gas constant and Tc is the absolute temperature of the 

explosion.[S24,S25] 

 

Figure S17. Depiction of the calculated [B3LYP/6-31G(d,p)] electrostatic potentials of 2–6 (a:2, 

b:3, c:4, d:5, e:6). The 3D isosurface of electron density is shown between –0.05 hartree (electron-

rich regions) and +0.05 hartree (electron-poor regions). 

7.8.5. Small-scale shock reactivity test (SSRT) 

To evaluate the shock reactivity (explosiveness) of a small-scale shock reactivity test (SSRT) was 

performed. The SSRT measures the shock reactivity of potentially energetic materials, often below 

critical diameter, without requiring a transition to detonation.[26] The test setup combines the 

benefits from a lead block test and a gap test. The experimental setup for the small-scale shock 
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reactivity test has been prepared as previously reported in the literature.[27] The amount ms of the 

was calculated using the following formula: ms = Vs · ρ · 0.95, (where: Vs = 284 mm3). Compounds 

5 and 6 were pressed at a consolidation dead load of 3 t with a dwell time of 5 s into a perforated 

steel block. Neither attenuator (between detonator and sample) nor air gap (between sample and 

aluminum block) were applied. Initiation of the tested explosive was performed using a 

commercially available detonator (Orica-DYNADET C2-0ms).  

7.8.6. Thermal stability  

Decomposition temperatures were measured via differential thermal analysis (DTA) with an OZM 

Research DTA 552-Ex instrument at a heating rate of 5 °C min−1 and in a range of room 

temperature to 400 °C. 
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Figure S18. DTA plot for compounds 3-nitro-4,4-bipyrazole (2), 3,3-dinitro-4,4-bipyrazole (3) 

and 3,5-dinitro-4,4-bipyrazole monohydrate (4H2O). 
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Figure S19. DTA plot for compound 5. 

 

Figure S20. DTA plot for compound 6H2O. 
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Figure S21. DTA plot for compound 6. 

 

Figure S22. TGA plot for compound 5. 
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Figure S23. TGA plot for compound 6H2O. 

 

Figure S24. TGA plot for compound 6. 
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7.8.7. 1H and 13C NMR spectra 

 

 

Figure S25. 1H and 13C NMR spectra for 3-nitro-4,4-bipyrazole (2). 
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Figure S26. 1H and 13C NMR spectra for 3,3-dinitro-4,4-bipyrazole (3). 
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Figure S27. 1H and 13C NMR spectra for 3,5-dinitro-4,4-bipyrazole (4). 
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Figure S28. 1H and 13C NMR spectra for 3,3,5-trinitro-4,4-bipyrazole (5). 
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Figure S29. 1H and 13C NMR spectra for 3,3,5,5-tetranitro-4,4-bipyrazole (6). 



Facile and Selective Polynitrations at the 4-Pyrazolyl Dual Backbone: A Straightforward 

Access to a Series of High-Density Energetic Materials 

 
196 

7.8.8. 15N NMR spectroscopy 

 

Figure S30. 15N NMR spectrum of 3,3,5-trinitro-4,4-bipyrazole (5). 

 

Figure S31. 1H, 15N HMBC spectrum of 3,3,5-trinitro-4,4-bipyrazole (5). 
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Figure S32. 15N NMR spectrum of 3,3,5,5-tetranitro-4,4-bipyrazole monohydrate (6H2O). 
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Abstract: A new strategy for supramolecular synthesis of energetic salts is reported. It is still a 

challenge to address packing patterns and crystal morphologies of such materials due to lack of 

reliable supramolecular synthons, which are applicable to polynitro substituted species. 3,5-

Dinitro-4,4-bipyrazole (1), 3,3,5-trinitro-4,4-bipyrazole (2) and 3,3,5,5-tetranitro-4,4-

bipyrazole (3) are excellent functional models those provide higher degree of control over the 

structure by manipulating robust self-assembly molecular building blocks of lower dimensionality. 

A variety of K+, Cs+ and nitrogen-rich salts (e.g. ammonium, aminoguanidinium, hydrazinium, and 

hydroxylammonium) 4-18, prepared by single deprotonation of NH-acidic 1-3,  are based upon 

polar anionic chains sustained with strong NHN bonding of conjugated acidic and basic 

pyrazole/pyrazolate sites. Gradual increase of NH-acidity (dinitropyrazolyl  nitropyrazolyl  

pyrazolyl) productively contributes to the strenght of NHN bonds and reliability of such 

supramolecular synthon. New synthesized energetic materials 9-17 were fully characterized by 
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NMR (1H, 13C and 14N) spectroscopy, infrared spectroscopy, differential thermal analysis (DTA), 

elemental analysis and the heats of formation were calculated using the atomization method based 

on CBS-4M enthalpies. Several detonation parameters, such as detonation pressure, velocity and 

energy, were calculated by using the X-ray room temperature densities and the calculated standard 

molar enthalpies of formation. The sensitivities toward external stimuli were tested according to 

the BAM standards. 

8.1. Introduction 

Synthesis of energetic co-crystals[1] and high-density energetic salts[2,3] is a particular issue for the 

development of new materials, which meet current criteria for performance, thermal stability and 

insensitivity toward external stimuli.[4] This approach receives a growing attention for especially 

rich and versatile possibilities of the control over a range of properties those are relevant to the 

solid state. Rational combination of chemically different counterparts, for sustaining integrity of 

the crystal lattice, may be viewed as a major step towards materials with valuable energetic 

characteristics.[5] For example, ionic derivatives are suited for proper handling of unstable, liquid 

or deliquescent, acidic and corrosive species.[6] This may be relevant to many common types of 

nitro-functionalized molecules (e.g. polynitroazoles, nitroamines), since accumulation of 

explosophore nitro groups results in dramatic increase of the acidity.[7] Such components as 

hydroxylammonium cations productively contribute to energy release of the salts due to inherently 

high nitrogen and oxygen contents and high heat of formation. From the perspective of crystal 

structure, higher energies of ionic lattices, together with extensive hydrogen bonding typically 

mediating structures of nitrogen-rich salts, are beneficial for higher densities and thermal stabilities 

of energetic materials.[2] Subtle features of supramolecular interactions, packing patterns and 

morphologies of the structures are particularly prevalent. 
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Figure 1. Selected literature known fully C-nitrated bis-heterocyclic compounds (a) and proposed 

approach toward generation of self-assembly molecular building block, with supramolecular 

synthon indicated in blue (b). 

For example, recent findings provide insights into the sensitivity mechanism and allow 

some correlation of impact sensitivity and crystal packing, while suggesting ability of 

layered patterns to buffer against external mechanical stimuli.[8] This paradigm is applicable 

for high-performance insensitive materials, including NH3OH+ salts.[9] 

In this view, methodology of crystal engineering presents a promising avenue for 

developing of energetic materials.[10] Aakeröy et al. succeeded in generation of hydrogen 

bonded chains by combining ethylenedinitramine (EDNA) and common bitopic N-donor 

spacers.[11] However, supramolecular synthesis of energetic materials was hitherto 

complicated due to the inherently inappropriate molecular functionalities of many relevant 

species. Common explosophore NO2 groups are only weak acceptors of hydrogen bonds,[12] 

which are the primary forces (beyond the Coulomb attraction) for construction of nitrogen-

rich salts. At the same time, availability of many closely separated acceptor N-atoms at the 

framework of polynitrogen azole, azine and acyclic species mitigates against efficient 
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control over hydrogen bonding, which is particularly the case of energetic salts with small 

multiple H-bond donor cations (NH4
+, N2H5

+, NH3OH+, etc).[2] Therefore, a suite of high-

probability supramolecular interactions for crystal engineering of energetic materials is 

relatively scarce.[11] 

Taking into account numerous examples of strongest hydrogen bonds, typically sustained 

by conjugate acids and bases[12a] (ranging from simple inorganic systems of HF2
- and 

hydrogen oxoanions[13] to organic hydrogen carboxylates, oximates,[14] etc.), one may 

anticipate a special self-assembly scenario. The elements of reliable supramolecular 

synthons are already present at the molecular frameworks for vast variety of energetic 

species combining several acidic sites, e.g. nitroderivatives of 2,2-bisimidazole,[15] 3,3-

bipyrazole,[16] 4,4-bipyrazole,[17] pyrazolo[4,3-c]pyrazole,[18] 3,3-bi(1,2,4-triazole)[19] and 

etc. The conjugated acidic and basic functions, such as pyrazole-NH and pyrazolate-N sites 

in the case of bipyrazoles, arise with partial deprotonation of the molecule to form singly 

charged “hydrogen bipyrazolate” anions. This is a key pre-requisite for higher degree of 

control over the structure. Instead of the common case of charge diffuse dianions held by 

multiple (and often weak, less directional or bifurcated) hydrogen bonds, linear polar chains 

could actualize by head-to-tail self-assembly of single charged anions by strong hydrogen 

bonding (Figure 1). A suitable prototype may be found with a series of 5,5-bitetrazole 

“mono salts” reported by Sundermeyer.[20] In addition to the evident benefit from strong 

primary NHN- bonds, antiparallel pairing of polar elements of lower dimensionality could 

also contribute to the density of the crystal packing. As well, such pairing favors generation 

of stacks and layers rather than 3D frameworks and this feature may facilitate construction 

of layered energetic materials.  

With this in mind we explored family of 4,4-bipyrazole tectons. A full library of C-nitro 4,4-

bipyrazoles was recently accessible by straightforward and selective reaction sequences.[17] 

Evolution of their protolytic properties follows progressive nitro-substitution at the bipyrazole 

platforms and this results in different combinations of basic pyrazole, amphoteric nitropyrazole 

and acidic dinitropyrazole sites. 
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8.2. Results and Discussion 

8.2.1. Synthesis 

Either in the case of 3,5-dinitro- or 3,3,5-trinitro-4,4-bipyrazoles, significant 

differentiation of two pyrazole sites in the view of acidity (pKa = 14.63 for the parent 

pyrazole; 9.81 for 3(5)-nitro and 3.14 for 3,5-dinitropyrazoles)[7] provides total selectivity 

in the formation of singly charged anions. When combined with relatively weak bases, these 

bipyrazoles act as monobasic acids only, retaining weakly acidic pyrazole (nitropyrazole) 

group neutral. Reactions of acidic 3,3,5,5-tetranitro-4,4-bipyrazole are less predictable 

due to easy formation of dianions. Nevertheless, two salts of the desired composition 

Cat+(TNBbpz) were successfully prepared (Scheme 1). 

 

Scheme 1. Synthesis of the energetic compounds based on 3,5-diinitro-4,4-bipyrazole 

H(DiNBpz) 1, 3,3,5-trinitro-4,4-bipyrazole H(TriNBpz) 2 and 3,3,5,5-tetranitro-4,4-bipyrazole 

H(TNBpz) 3. 

8.2.2. Single crystal X-ray diffraction studies 

The solid-state structures of compounds 4–18 were determined by XRD. Presence of anionic 

pyrazolate groups is best detected by nearly identical angles at the ring N-atoms [106.4-108.4o], 

which is contrary to the neutral pyrazole (nitropyrazole) groups [CN(H)N = 110.9-113.0o; CNN(H) 

= 103.2-104.7o] constituting second part of the singly charged anions. The dihedral angles between 

these two rings are similar for all compounds [ = 34.09(4)-66.53(7)o] and therefore introduction 

of third and fourth nitro group makes no significant impact to the molecular conformation. In fact, 
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the intramolecular NO2/NO2 interactions may be regarded as attractive,[21] as a special case of lone 

pair- hole bonding,[22] which in effect decreases the steric strain. Moreover, with formation of 

singly charged anions, the twist angles within molecular frameworks decrease [ = 50.3; 58.6 and 

71.4o for 1-3, respectively][17] and this may be favorable for sustaining more dense packing. The 

nitro groups are nearly coplanar with the atoms of carrier rings (Table 1). 

 

Figure 2. Polar hydrogen-bonded chains in the structure of 6 (indicated with blue strips) (A) and 

the side-view showing bonding of N2H5
+ cations and stacking of dinitropyrazolate groups (B). 

Even a more important consequence of deprotonation is stronger and more directional 

hydrogen bonding NHN, which is superior to weaker and bifurcated H-bonds in the 

structures of parent molecular species 2 and 3 [NN = 2.88 and 3.00 Å, respectively]. This 

bonding represents one of the strongest intermolecular interactions in the structures, being 

a basic supramolecular synthon for assembly of polar anionic chains. Reliability of this 

synthon coincides with strength of the bonds with different kinds of pyrazole-NH donors 

and therefore the optimal configuration of molecular functionalities may be easily derived.  
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The bonds of less polarized pyrazole-NH donors, as they occur for DiNBpz- series, are 

somewhat weaker [mean NN = 2.870(3) Å]. It is not surprising that this system is more 
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flexible and less appropriate for the needs of crystal design. With examples of polar anionic 

chains observed for 4-6, failure of the above supramolecular synthon in ammonium (7H2O) 

and bipyridinium (8) salts should be also noted. This is contrary to the compounds of 

(TriNbpz)- and (TNbpz)-. Increased acidity of pzH sites enhances hydrogen bonding with 

dinitropyrazolate sites. This is indicated by perceptible shortening of NN separations 

[mean 2.808(3) Å] in chains subtended by (TriNbpz)- anions, but for (TNbpz)- this effect is 

even stronger [mean NN = 2.764(2) Å] (Table 1). The latter approaches value for very 

strong NHN bond between conjugated acid and base pair in morpholinium hydrogen 3,5-

dinitroindazolate [2.727 Å].[23] As a result of more competitive pzHpz- bonding, polar 

anionic chains become prevalent for the entire series, including very different alkali metal 

and H-bond donating cations. In the monopotassium salt of isomeric tetranitro-3,3-

bipyrazole reported by Shreeve,[16] double pzHpz- bonds led to discrete dimers only.  

Structures of potassium (4H2O) and hydrazinium (6) salts exhibit dense packing of the 

above chains of (DNBpz)-, with a set of slipped / stacking interactions between two kinds 

of identical rings and lone pair- hole interactions of NO2 groups (Table 1). In addition to 

pzHpz interactions, the primary hydrogen bonds in 6 concern three most polarized –NH3
+ 

donors (with a distinct subtopology of N2H5
+ cations, in the form of polar chains, Fig. 2) 

whereas weaker interactions of –NH2 donors are restricted to less directional bonds with 

nitro groups. Chain of N2H5
+ cations is a predictable motif for the systems lacking H-bond 

O-acceptors and it is well-known for energetic hydrazinium salts.[24,25] 

 

Figure 3. A) Fragment of the crystal structure of 5H2O showing hydrogen bonding of 

dinitropyrazolate group and CsN bonding of pyrazole group. Note the antialignment of polar 
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anionic chains. Structures of 7H2O (B) and 8 (C): disintegration of the anionic chains in the favour 

of stronger hydrogen bonding. 

Packing pattern in 4H2O is almost identical, with a set of KO(N) ion-dipole interactions 

(2.6608(17)-3.2959(18) Å) instead of the hydrogen bonds. Cesium analog 5H2O retains 

most features of morphology, but in total three more MO2N contacts are generated in 

addition to two MN, two MOH2 and three MO2N bonds seen in 4H2O. One can 

conclude that ion-dipole interactions with K+ or Cs+ are less competitive with respect to the 

conventional hydrogen bonding. The metal cations coordinate pyrazole-N atoms only (as 

weaker acceptors of hydrogen bonds), while pyrazolate-N sites accept H-bonds with water 

molecules. This allows to rationalize disintegration of the (DiNBpz)- chains, in combination 

with stronger H-bond donors. In the structure of 8, the chain embeds singly charged Hbipy+ 

cations, as complementary H-bond donor and acceptor links between the anions (Fig. 3). 

Interaction of the type PyH+pz- (NN = 2.671(2) Å) is far stronger with respect to the 

other kinds of bonding. More complicated pattern in 7 is based upon supramolecular cubes, 

with a double set of pyrazolate and pyrazole rings, NH4
+ cations and water molecules. 

As stated above, increased acidity of pyrazole-NH group has striking impact on crystal 

chemistry of (TriNbpz)- series. With stronger pzHpz- bonding (Table 1), polar anionic 

chains invariably survive significant changes in the crystal environment and nature of 

supramolecular interactions. Such morphology is relevant for very similar frameworks in 

structures of 9-13 (Fig. 4, 5). When consider the H-bonded NH3OH+ and N2H5
+

 cations as 

simple links between the chains, nearly uniform planar nets are found for isomorphous 

compounds 11 and 12. 
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Figure 4. Inheritance of the supramolecular motifs for 11 (A), 12 (B) and 9H2O (C). Note the 

unexpected bonding mode of N2H5
+ cations, which establish the NH2N bonds to the pyrazolate 

acceptors, but NH3
+N bond to the neutral pyrazole. 

Bonding of NH3OH+ follows the common trend: the strongest bond is established with OH 

donor[26] and most polarized pyrazolate-N acceptor (NO = 2.7202(18) Å). Nevertheless, 

in the case of N2H5
+

 cations in 12, much weaker and less directional bond with –NH2 site is 

surprisingly formed [NN = 3.082(3) Å; NHN = 139(3)o] instead of the anticipated –

NH3
+N- pattern, which is known for hydrazinium 3,5-dinitropyrazolate.[25] This unusual 

mode is likely influenced by lone pair- hole bonding of the cations and nitro groups 

[H2NNO2 = 3.106(2) Å in 12 vs. HONO2 = 3.267(2) Å in 11], which complements the 

primary bonds of N2H5
+

 and enables clear discrimination of the -NH2 and –NH3
+ sites. The 

CHO and lone pair- hole NO2/NO2 interactions act in a synergy with strong hydrogen 
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bonds for sustaining the structure of the nets, while XNH3O2N bonds (X = OH, NH2) links 

the above nets into bilayers. 

 

Figure 5. Delicate variations of the bilayer patterns in the structures of 13H2O (A) and 12 (B), 

with two successive bilayers marked in blue and red and stacks of dinitropyrazole groups indicated 

by light-blue strips. Lone pair- hole bonds of the type H2NNO2 are shown as dotted blue 

bonds (B). Note that hosting of the large [(NH4)2(H2O)2] ensemble is a result of mutual shift of two 

layers with loss of some stacking interactions. (C) Infinite stacking observed in the structure of 12. 

Three other salts, Cat+(TriNbpz)H2O [Cat+ = K+  9, Cs+ 10, and NH4
+ 13] reveal 

comparable bilayer pattern based upon interconnection of the polar anionic chains (Fig. 5). 

However, relatively distal ion-dipole interactions of K+ and Cs+ cations are largely 

destructive for the network of supramolecular interactions involving NO2 groups. In 

particular, distal NO contacts (3.30 Å) indicate loss of NO2/NO2 interactions within the 

layers in 9 and 10.  In the case of 13H2O, strong hydrogen bonding of NH4
+ cations and 

water molecules is even more crucial. Unlike NH4(DiNbpz)H2O, it does not affect 

disintegration of 1D polar chains. However, formation of centrosymmetric rhombs of two 

NH4
+ cations and two water molecules results in mutual shift of the layers, with loss of 

stacking interactions between dinitropyrazolate groups (Fig. 5). This kind of 

[(NH4)2(H2O)2]
2+ ensembles is well known for energetic ammonium salts.[27]  

Structures of 14MeOH and 15 demonstrate new possibility for crystal engineering with 

polar chains of (TriNBpz)-. With 1,3-separated NH-donors of the cations, double NHN 

bonds are generated across stack of the anions (Fig. 6). Although both these NHN bonds 

are directional, the interaction of triazole NH and dinitropyrazolate acceptor in 15 is 
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essentially stronger than bond of NH2 and pyrazole groups (NN = 2.810(2) and 

2.932(2) Å, respectively). Such combination of two different acceptors, to complement the 

NH/NH2 sites of the cation, is accessed with formation of antiparallel stack of the anions. 

The antialignment compensates polarities of the individual chains. Dense packing of the 

chains is indicated by a set of very short contacts between NO2 groups (Table 1), which are 

comparable with shortest reported contact of that type (2.80 Å) in the structure of the highly 

explosive heptanitrocubane.[28] However, the resulting dense layers of the anions are 

separated by ca. 11.3 Å, while intercalating strips of hydrogen bonded cations (Fig. 6). Such 

strips are actually fragments of 1D H-bonded connectivity seen in the structure of the parent 

free base,[29] and in this sense 15 is a hybrid collecting some features of both components.  

 

Figure 6. (A) Cross-linking of antiparallel anionic chains in the structure of 15. (B) Two layers of 

anionic chains (indicated in blue and red), running in mutually orthogonal directions, are connected 

through 1D strips of hydrogen bonded cations. 
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The polar chains of singly charged (TNbpz)- anions in 17 are cross-linked by NH3OH+ 

cations into polar nets, which are topologically identical to the nets in trinitro analog 11 

(Fig. 7). The bonding preferences of the ionic counterparts are unaltered since the strong 

OHN bonds, to the same kind of dinitropyrazolate acceptor, are actually invariant [ON 

= 2.6909(18) and 2.7202(17) Å, respectively]. This similarity, however, does not shed rather 

appreciable impact of fourth NO2 group: the primary pzHpz bonds are stronger (Table 1) 

and NHN bonds of NH3OH+ cations to weakly basic dinitropyrazole are much weaker 

(NN = 3.081(2) and 2.8879(19) Å for 17 and 11, respectively). With loss of CHO 

bonding seen in 11, the anionic layer collapses to give dense stack of chains. The cations 

are exruded to the interlayer space and produce own 1D subtoplogies in the form of polar 

chains [NO = 3.241(3) Å, see Fig. 7], running above and below the anionic layer. These 

chains unite NH3OH+ from two successive layers and thus polarity of every next layer is 

identical. 

 

Figure 7. (A) Primary bonding in structure of 17: Dense stack of polar anionic chains (individual 

chains are marked in red, green and blue) those are linked through polar chains of NH3OH+ cations. 



On a Midway Between Energetic Molecular Crystals and High-Density Energetic Salts: 

Crystal Engineering with Hydrogen Bonding Chains of Polynitro Bipyrazoles 

 
213 

(B) Side-view of the stack; grey background indicates NH3OH+ moieties corresponding to the 

neighboring symmetry-related stacks. 

Such extension of the structure in a second dimension, when combining anionic pyrazolate 

with cationic chains (e.g. chains of N2H5
+ in 6 or NH3OH+ in 17) may be achieved even in 

a more predictable manner. A closer match of two kinds of chains, in the view of metrics 

and H-bond donor/acceptor functionality, is important. Therefore, the “mixed bipyrazole” 

structure of 18 is especially illustrative. Unlike formation of two-component 

(Hbipy)+/(DiNBpz)- chains in 8, combination of acidic tetranitrobipyrazole and basic 

tetramethylbipyrazole yields two sorts of polar chains sustained by identical moieties only, 

namelly singly charged (TNBpz)- anions or (HMe4Bpz)+ cations (Fig. 8). Such polar 

cationic chains are known for 4,4-bipyrazole itself,[30] and different organic salts of 

tetramethylbipyrazole.[31] Hydrogen bonding of two kinds of conjugate acidic and basic 

sites (i.e. pyrazole/pyrazolate and pyrazole/pyrazolium) is equally strong and it is 

comparable in geometry [NN = 2.7618(19) and 2.7776(19) Å, respectively]. The anionic 

and cationic chains are metrically equivalent (translation periods are 8.57 Å). This facilitates 

their connection into Lincoln-log bilayers, with third kind of strong NHN bonds [NN = 

2.823(2) Å] established between the pyrazolium and pyrazolate sites (Fig. 8). Very weak 

acceptor properties of dinitropyrazole-N atom (cf. weakness of the corresponding NHN 

bonds in 17) preclude further aggregation of the bilayers into the 3D framework. 

 

Figure 8. Two kinds of polar anionic pyrazolate (A) and cationic pyrazolium (B) chains in the 

structure of 18H2O. Their linkage (C), via the strongest H-bond donor and acceptor sites available 
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[N9-H and N2], with generation of Lincoln-log bilayes (D). Anionic and cationic chains are 

presented in red and blue, respectively. Weaker pyrazole donor N11-H establishes bond to the 

water molecule [NO = 2.814(2) Å]. 

8.2.3. Toxicity assessment 

The aquatic toxicity of the nitrated bipyrazole 4 was determined using bioluminescent gram-

negative Vibrio fischeri NRRL-B-11177 bacteria strains, which naturally are found in the 

seas. The measurements were carried out according to DIN/EN/ISO 11348 (without G1 

level), starting with the preparation of a solution of the compounds with a specific 

concentration in 2% NaCl stock solution and adjustment of the pH value to 6–8, followed 

by a dilution series ranging from the concentrated solution to 1:16.[32] For the measurements 

a LUMI-Stox 300 spectrometer obtained by HACH LANGE GmbH was used, furthermore 

a cooling block from the same supplier was used to ensure a test-temperature of 

15 °C±0.3 °C. The bioluminescence of untreated reactivated Vibrio fischeri bacteria was 

determined first, after addition of the possible toxicant the bioluminescence is determined 

again after 15 and 30 minutes exposure time. At the concentration level where the 

bioluminescence is decreased by 50%, the effective concentration (EC50) is obtained. 

According to the EC50 value at 30 minutes a classification as non-toxic (> 1.00 g/L); toxic 

(0.10–1.00 g L−1) and very toxic (< 0.10 g L−1) was made.[33] The potassium salt 9 of the 

TriNBPz anion, hence is considered as not toxic (EC50 (15 min) = 2.86 g L−1; 

EC50 (30 min) = 1.42 g L−1). Compared to the common used secondary explosive RDX 

salt 9 is less toxic according to Vibrio fischeri bacteria (EC50 (15 min) = 0.33 g L−1; 

EC50 (30 min) = 0.24 g L−1).[33,34] 

8.2.4. Physical and detonation properties 

Derivatives of tri- and tetranitrobipyrazoles, which possess appropriate oxygen balance, can 

be already classified as energetic materials and therefore we have examined their energetic 

behavior. All theoretically and experimentally determined detonation properties for the 

investigated compounds are reported in Table 2. The thermal behavior of the selected 

compounds was determined with OZM Research DTA 552-Ex instrument at a heating rate 

of 5 °C min−1 (Fig. 9). From all synthesized derivatives with the TriNBPz− anion the 
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potassium (9H2O, Tdec. = 333 °C), the ammonium (13H2O, Tdec. = 286 °C) salts show the 

highest thermal stability, while hydrazinium salt 12 decomposes at 218 °C. Thermal 

stability of 9H2O is higher than that of parent 2 (Tdec. = 314 °C). Comparison of the 

hydroxylammonium derivatives 11 (Tdec. = 230 °C) and 17 (Tdec. = 201 °C) shows that the 

TriNBPz− anion based salt exhibits better thermal stability.  

 

Figure 9. DTA Plots for potassium (9H2O), hydroxylammonium (11) and hydrazinium (12) 

derivatives of (TriNBpz)-. 

The lowest room temperature density for the TriNBPz- derivatives is 1.66 g cm−3 for 

compound 15. Relatively high density for salt 17 (1.81 g cm−3) approaches density of the 

parent H(TNBPz) (1.820 g cm−3). Experimentally determined sensitivities toward impact, 

friction and electrostatic discharge are also reported in Table 2. The determined sensitivities 

vary for impact from 2 to > 40 J, for friction from 216 to > 360 N and for electrostatic 

discharge from 0.10 J up to 1.50 J. The most impact sensitive material is the 

hydroxylammonium salt 17 with 2 J, which is below the value for H(TNBPz). The energetic 

materials 9 (7 J), 11 (10 J), 12 (15 J) and 15 (10 J) exhibit moderate impact sensitivity. In 

addition, the most synthesized derivatives exhibit low sensitivity toward friction. Only 
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compound 17 show friction sensitivity with value of 216 N. Ammonium salt 13H2O is the 

most insensitive material, either toward impact (40 J), friction (> 360 N) or ESD (1.50 J) 

(Table 2). This case is particularly interesting since structures of 9H2O, 11, 12 and 13H2O 

are very similar and therefore lower sensitivity of 13H2O may be, at least in part, associated 

with subtle features of the packing pattern. As stated above, evolution of 9H2O, 11 and 12 

to 13H2O concerns mutual shift of hydrogen bonded layers and loss of stacking interactions 

between dinitropyrazolate groups (Fig. 3). 
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For the most synthesized energetic materials positive standard molar enthalpies of 

formation were calculated, except for compounds 9H2O (−197.6 kJ mol−1) and 13H2O 

(−50.4 kJ mol−1). The highest calculated enthalpy of formation for a TriNBPz based 

derivative is 740.7 kJ mol−1 (15). Using the room temperature densities (obtained from the 
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X-ray structures as described in the reference[37]) and the determined enthalpies of 

formation, several detonation properties were calculated by using the EXPLO5 code (6.03 

Version).[36] The calculated values for the detonation energy (−ΔEU°) range from 4225 to 

5682 kJ kg−1 (for TNBpz- salt 17). The latter salt is also the best performing compound 

regarding calculated detonation pressure (pC-J = 328 kbar) and detonation velocity (DC-J = 

8673 m s−1), which are superior to the performance values of the parent H(TNBPz) 

(Table 2). From all characterized TriNBPz- based ionic derivatives compounds 11 (pC-J = 

286 kbar, DC-J = 8271 m s−1) and 12 (pC-J = 272 kbar, DC-J = 8223 m s−1) exhibit the best 

performance values. 

8.3. Conclusions 

Our study extends strategies toward supramolecular synthesis of energetic materials, while 

establishing a useful link between molecular crystals and typical nitrogen-rich energetic 

salts. The reported ionic lattices still retain distinct organic/organic subtopologies related to 

the parent molecular compounds. Therefore, our approach supports engineering in a very 

rational way, by generation of low-dimensional self-assembly molecular building blocks 

and their subsequent extension to a variety of supramolecular motifs. It is worth noting that 

assembly of suitable building blocks, e.g. 1D polar chains in the present study, may be 

granted by inherent protolytic properties of common energetic molecules, without the needs 

for special functionalization. Currently we explore supramolecular synthesis and 

performance of layered energetic material based upon bipyrazole chains. 

8.4. Experimental 

8.4.1. Crystallography 

CCDC 1949728-1949741 contain the supplementary crystallographic data for this paper. These 

data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing 

data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12, 

Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033. 
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8.8. Supporting Information 

 

8.8.1. General Information 

1H, 13C, 14N and 15N NMR spectra were recorded on JEOL 270 and BRUKER AMX 400 

instruments. The samples were measured at room temperature in standard NMR tubes (Ø 5 mm). 

Chemical shifts are reported as δ values in ppm relative to the residual solvent peaks of d6-DMSO 

(δ H: 2.50, δ C: 39.5). Solvent residual signals and chemical shifts for NMR solvents were 

referenced against tetramethylsilane (TMS, δ = 0 ppm) and nitromethane. Unless stated otherwise, 

coupling constants were reported in hertz (Hz) and for the characterization of the observed signal 

multiplicities the following abbreviations were used: s (singlet), d (doublet), t (triplet), m 

(multiplet) and br (broad). Low resolution mass spectra were recorded on a JEOL JMS-700 

MStation mass spectrometer (EI+/DEI+). Infrared spectra (IR) were recorded from 4500 cm−1 to 

650 cm−1 on a PERKIN ELMER Spectrum BX-59343 instrument with SMITHS DETECTION 

DuraSamplIR II Diamond ATR sensor. The absorption bands are reported in wavenumbers (cm−1). 

Elemental analysis was carried out by the department’s internal micro analytical laboratory on a 

Elementar Vario el by pyrolysis of the sample and subsequent analysis of the formed gases. 

Decomposition temperatures were measured via differential thermal analysis (DTA) with an OZM 

Research DTA 552-Ex instrument at a heating rate of 5 °C min−1 and in a range of room 
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temperature to 400 °C. All sensitivities toward impact (IS) and friction (FS) were determined 

according to BAM (German: Bundesanstalt für Materialforschung und -prüfung) standards using 

a BAM drop hammer and a BAM friction apparatus. All energetic compounds were tested for 

sensitivity towards electrical discharge using an Electric Spark Tester ESD 2010 EN. 

8.8.2. Synthesis 

CAUTION! All investigated compounds are potentially explosive materials, although no hazards 

were observed during preparation and handling these compounds. Nevertheless, safety precautions 

(such as wearing leather coat, face shield, Kevlar sleeves, Kevlar gloves, earthed equipment and 

ear plugs) should be drawn. 

8.8.2.1. 4,4-Bipyrazole and its nitroderivatives 

The synthesis of starting 4,4-bipyrazole was performed by compilation of the literature known 

methods (Scheme S1).[S1-S6] 1,4-Bis(dimethylamino)-cis-trans-butadiene undergoes standard 

Vilsmeier-Haack-Arnold formylation to give symmetric bis-vinamidinium salt (isolated and 

purified as perchlorate salt).[S6] The latter was hydrolyzed to bis-dialdehyde and then converted 

into the desired 4,4-bipyrazole. Key intermediate of the synthesis, 1,4-bis(dimethylamino)-2-

butyne, may be prepared by a two-stage reaction sequence starting with inexpensive industrial 

product 2-butyne-1,4-diole. Its reactions with SOCl2
[S2] or POCl3

[S3] yield 1,4-dichloro-2-butyne, 

which undergoes amination by action of excess dimethylamine in benzene solution.[S4] This method 

was not sufficient for large scale preparations. Alternative synthesis of 1,4-bis(dimethylamino)-2-

butyne was based upon direct aminomethylation of acetylene, as reported by Fegley et al.[S5] Main 

disadvantages of this attractive method concern handling of compressed acetylene gas as well as 

extra pressure applied during the reaction. In our work, we have found that extra pressure is not 

required for the synthesis and acetylene may be conveniently generated using industrial product 

calcium carbide. This allowed us to improve the preparation of 1,4-bis(dimethylamino)-2-butyne, 

making it accessible in a kilogram scale by very simple procedure denoted below. 
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Scheme S1. Synthesis of 4,4-bipyrazole. 

Three nitrosubtituted 4,4-bipyrazoles used in the present work were synthesized by nitration of 

4,4-bipyrazole in mixed acid, following previously published procedures (Scheme S2).[S7] 

Recently, we have found that all five possible C-nitro derivatives of 4,4-bipyrazole may be 

 

Scheme S2. Synthesis of 3,5-dinitro-4,4-bipyrazole (1), 3,5,3-trinitro-4,4-bipyrazole (2) and 

3,5,3,5-tetranitro-4,4-bipyrazole (3). 

prepareted selectively and in high yields.[S7] In particular, 3,5-dinitro-4,4-bipyrazole (1) is a sole 

product of nitration in mixed acid (100oC) when 2.2 eq of HNO3 is used. With excess of HNO3 

(8 eq.), 3,5,3,5-tetranitro-4,4-bipyrazole (3) was isolated in high yield under the same conditions. 
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3,5,3-Trinitro-4,4-bipyrazole (2) was prepared also selectively, by nitration of 1 in the media of 

80% H3PO4. 

8.8.2.2. Improved synthesis of 1,4-bis(dimethylamino)-2-butyne 

 

Scheme S3. Improved synthesis for 1,4-bis(dimethylamino)-2-butyne. 

780 mL of 37% aqueous formaldehyde solution (d = 1.09 g cm-3; 850 g) was added dropwise to 

stirred and water-cooled net 1200 mL bis(dimethylamino)methane (900 g) [Note 1]. Heat effect of 

the reaction is very small and therefore the addition was completed within 1 h. The mixture was 

stirred for 30 min and then it was divided into three portions by weights of 700, 600 and 450 g, 

which were transferred into three 1 L reaction flasks. To these three portions of the mixture, 

respectively, 15.0 g, 12.8 g and 9.6 g portions of copper(I) chloride [Note 2] were added at once 

with stirring. These three flasks were connected successively, in decreasing weight of the reaction 

mixture. For the first two flasks, the gas outlet, through the Dimroth reflux condencer, led to the 

gas inlet of the next flask. Medium to fast stream of acetylene gas (about 1.0 to 1.5 moles per hour) 

was passed through the well-stirred mixtures for 7 h [Note 3], with the occasional water-cooling to 

maintain temperature below 40o C. Nearly complete absorption of acetylene was observed when 

passed through the present battery of three flasks. After 7 h, the temperature of the reaction 

mixtures slowly decreased. At this moment, the reaction mixtures were heated to 40-45 o C, and 

passing of acetylene gas was continued for additional 3 h. During course of the reaction, color of 

the mixtures changed from orange-red to crimson-red.  

The reaction mixtures were left overnight at r.t. and then red copper catalyst was filtered and 

discarded. To the ice-cooled filtrate, solid NaOH was added in portions, as long as it dissolves 

(1.2 kg). The undissolved NaOH was filtered. The organic phase was separated and dried over 

NaOH pellets for 2 d at 5o C. After separation of NaOH, the resulting clear light-yellow colored 

liquid was distilled in vacuum. Any volatiles were removed at 200 mbar and bath temperature of 

110-120o C. Then the bath temperature was decreased and the reaction product destilled at 73-

74 oC/ 19 mbar or 86-87 o C / 35 mbar. Yield: 1037 g (84 %). 
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NMR 13С (CDCl3, δ, ppm): 42.63, 42.96, 78.80. 

 

Figure S1. Synthesis of 1,4-bis(dimethylamino)-2-butyne, showing two of three connected flasks, 

with red-colored reaction mixtures.  

Note 1. bis(Dimethylamino)methane was prepared reacting 37% aqueous formaldehyde and 38% 

aqueous dimethylamine solution.[S8] 

Note 2. Copper(I) chloride was freshly prepared as colorless crystalline powder. However, old 

green-colored sample of CuCl served equally well due to the fast reduction of Cu(II) ions in the 

reaction medium. 

Note 3. Acetylene gas was generated by adding pieces of industrial calcium carbide to large volume 

of saturated NaCl solution, with external ice-water cooling. Sufficient purification of the gas was 

achieved by passing it through solution of CuCl2, FeCl3 and HCl (5:1:1 v/v mixture of 30% aqueous 

solutions), then through conc. H2SO4 and finally through short column with KOH pellets. 
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8.8.2.3. Salts of 3,5-dinitro-, 3,5,3-trinitro- and 3,5,3,5-tetranitro-4,4-bipyrazoles 

Potassium and caesium 4-(pyrazol-4-yl)-3,5-dinitropyrazolates monohydrates (4H2O and 

5H2O) 

3,5-Dinitro-4,4-bipyrazole 1 (448 mg, 2.00 mmol) and K2CO3 (139 mg, 1.00 mmol) were 

dissolved in 10 mL water with stirring and heating to 70-80 °C. Yellow solution was cooled to r.t. 

and thin needle-like light-yellow crystals of the product 4H2O were filtered and dried in air. Yield: 

432 mg (77 %). Salt 5H2O, light-yellow needles, was prepared similarly in 83 % yield, reacting 1 

(448 mg, 2.00 mmol) and Cs2CO3 (326 mg, 1.00 mmol). 

DTA (5 °C min−1): 120 (H2O), 269 (melt.), 299 °C (exo.); BAM: drop hammer: 30 J (100–500 

μm); friction tester: > 360 N (100–500 μm); ESD: 0.75 J (100–500 μm). IR (ATR), ṽ (cm−1) = 3545 

(m), 3162 (br), 2949 (w), 1602 (m), 1530 (w), 1497 (w), 1468 (s), 1393 (s), 1331 (vs), 1291 (s), 

1267 (s), 1222 (m), 1159 (m), 1034 (m), 1011 (m), 932 (s), 876 (m), 845 (s), 766 (m). 1H NMR 

(d6-DMSO, 400 MHz, ppm) δ = 12.84 (s, 1H), 7.87 (s, 1H), 7.57 (s, 1H). 13C NMR (d6-DMSO, 

101 MHz, ppm) δ = 154.1, 140.1, 129.4, 108.4, 105.4. 14N NMR (d6-DMSO, 29 MHz, ppm) δ = 

−16. Elem. Anal. (C6H6KN6O5, 280.24 g mol−1) calcd.: C 25.71, H 1.80, N 29.99 %. Found: 

C 25.92, H 2.02, N 29.71 %.  

DTA (5 °C min−1): 87 (H2O), 337 (melt.), 241 °C (exo.); BAM: drop hammer: 30 J (100–500 μm); 

friction tester: > 360 N (100–500 μm); ESD: 0.84 J (100–500 μm). IR (ATR), ṽ (cm−1) = 3378 (br), 

2779 (vw), 1681 (w), 1605 (m), 1504 (m), 1475 (s), 1391 (s), 1322 (vs), 1288 (s), 1265 (m), 1222 

(m), 1143 (m), 1027 (m), 941 (s), 908 (s), 847 (s). 1H NMR (d6-DMSO, 400 MHz, ppm) δ = 12.84 

(s, 1H), 7.87 (s, 1H), 7.57 (s, 1H). 13C NMR (d6-DMSO, 101 MHz, ppm) δ = 154.1, 140.1, 129.4, 

108.4, 105.4. 14N NMR (d6-DMSO, 29 MHz, ppm) δ = −15.  Elem. Anal. (C6H6CsN6O5, 374.05 g 

mol−1) calcd.: C 19.26, H 1.35, N 22.47 %. Found: C 19.37, H 1.25, N 22.60 %. 

Hydrazinium 4-(pyrazol-4-yl)-3,5-dinitropyrazolate (6) 

Hydrazine hydrate (100 L, 2.06 mmol) was added to the suspension of 1 (448 mg, 2.00 mmol) in 

10 mL water and the mixture was stirred and heated to 70-80 °C until total dissolution of the starting 

material was observed. After cooling to r.t., yellow crystals of the product (359 mg, 70 %) were 

collected and dried in air.  
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DTA (5 °C min−1): 250 °C (exo.); BAM: drop hammer: 8 J (100–500 μm); friction tester: > 360 N 

(100–500 μm); ESD: 0.48 J (100–500 μm). IR (ATR), ṽ (cm−1) = 3353 (m), 3298 (w), 3122 (vw), 

2952 (vw), 1657 (vw), 1622 (w), 1601 (m), 1538 (w), 1477 (s), 1389 (s), 1322 (vs), 1295 (s), 1268 

(s), 1224 (m), 1159 (m), 1093 (s), 1039 (m), 1008 (m), 967 (m), 939 (s), 879 (m), 843 (s), 806 (m). 

1H NMR (d6-DMSO, 400 MHz, ppm) δ = 7.72 (s), 7.23 (br). 13C NMR (d6-DMSO, 101 MHz, ppm) 

δ = 154.1, 135.2 (br), 108.4, 105.4. 14N NMR (d6-DMSO, 29 MHz, ppm) δ = −16. Elem. Anal. 

(C6H8N8O4, 256.18 g mol−1) calcd.: C 28.13, H 3.15, N 43.75 %. Found: C 28.29, H 3.08, N 

43.52%. 

Ammonium 4-(pyrazol-4-yl)-3,5-dinitropyrazolate monohydrate (7H2O) 

3,5-Dinitro-4,4-bipyrazole 1 (448 mg, 2.00 mmol) was dissolved at 70-80 °C in 10 mL water 

containing 1 mL of 25 % aqueous ammonia solution (excess). After cooling to r.t., yellow cotton-

like crystalline deposit of 7H2O (342 mg, 66 %) was filtered and dried in air. 

Anal. Calcd for C6H9N7O5: C 27.80, H 3.50, N 37.84 %. Found: C 28.01, H 3.47, N 37.71%. 

4-(Pyridine-4-yl)pyridinium 4-(pyrazol-4-yl)-3,5-dinitropyrazolate (8) 

3,5-Dinitro-4,4-bipyrazole 1 (67 mg, 0.30 mmol) and 4,4-bipyridine (55 mg, 0.35 mmol) were 

dissolved in 10 mL water. Yellow crystals of 8 (51 mg, 45 %) were obtained by slow evaporation 

of the solution to a half-volume.     

Anal. Calcd for C16H12N8O4: C 50.52, H 3.18, N 29.47 %. Found: C 50.29, H 3.16, N 29.26 %. 

Potassium and caesium 4-(3-nitropyrazol-4-yl)-3,5-dinitropyrazolate monohydrates (9H2O 

and 10H2O) 

3,3,5-Trinitro-4,4-bipyrazole (539 mg, 2.00 mmol) was solved in ethanol (20 mL) and potassium 

carbonate (139 mg, 1.0 mmol, 0.5 eq.) dissolved in water (5 mL) was added. The resulting solution 

was heated to 75 °C for 30 min. After cooling the solvent was removed in vacuo and the obtained 

solid was dried on air to yield compound 9H2O as yellow solid (613 mg, 1.89 mmol, 95 %). 

10H2O, yellow prisms, was prepared similarly, reacting 2 (539 mg, 2.00 mmol) and Cs2CO3 (326 

mg, 1.00 mmol). 



On a Midway Between Energetic Molecular Crystals and High-Density Energetic Salts: 

Crystal Engineering with Hydrogen Bonding Chains of Polynitro Bipyrazoles 

 
229 

9H2O: DTA (5 °C min−1): 333 °C (exo.); BAM: drop hammer: 7 J (100–500 μm); friction tester: 

324 N (100–500 μm); ESD: 0.10 J (100–500 μm). IR (ATR),  (cm−1) = 3662 (m), 3139 (w), .2799 

(w), 1552 (w), 1532 (m), 2486 (s), 1377 (s), 1332 (vs), 1230 (s), 1098 (m), 1016 (m), 993 (m), 

851 (s), 834 (s), 819 (s), 769 (m); 1H NMR (d6-DMSO, 400 MHz, ppm) δ = 14.00 (s), 8.11 (s), 

7.00 (br). 13C NMR (d6-DMSO, 101 MHz, ppm) δ = 154.1, 153.5, 133.2, 106.8, 102.0. 14N NMR 

(d6-DMSO, 29 MHz, ppm) δ = −15. Elem. Anal. (C6H4KN7O7, 325.24 g mol−1) calcd.: C 22.16, H 

1.24, N 30.15 %. Found: C 22.24, H 1.25, N 30.03 %. 

10H2O: Anal. Calcd for C6H4CsN7O7: C 17.20, H 0.96, N 23.40 %. Found: C 17.02, H 1.08, N 

23.28 %. 

Hydroxylammonium 4-(3-nitropyrazol-4-yl)-3,5-dinitropyrazolate (11) 

A solution of 2 (404 mg, 1.50 mmol, 1.0 eq.) in 20 mL ethanol was heated to 75 °C and aqueous 

hydroxylamine solution (250 mg, 3.78 mmol) was added. Filtration and removing the solvent at 

room temperature results the product as yellow crystals (420 mg, 1.39 mmol, 93 %). 

DTA (5 °C min−1): 230 °C (exo.); BAM: drop hammer: 10 J (100–500 μm); friction tester: >360 

N (100–500 μm); ESD: 0.50 J (100–500 μm). IR (ATR),  (cm−1) =3189 (w), 3118 (w), 3823 (m), 

2688 (m), 1742 (vw), 1611 (w), 1521 (m), 1489 (s), 1420 (m), 1385 (s), 1338 (vs), 1306 (s), 1199 

(m), 1107 (m), 1022 (w), 998 (s), 936 (w), 906 (w), 854 (s), 835 (s), 820 (s), 768 (m), 672 (w), 626 

(m), 589 (w), 552 (w), 524 (vw). 1H NMR (d6-DMSO, 400 MHz, ppm) δ = 13.77 (br), 10.02 (br), 

8.11 (s). 13C NMR (d6-DMSO, 101 MHz, ppm) δ = 154.0, 153.4, 133.2, 106.8, 102.0. 14N NMR 

(d6-DMSO, 29 MHz, ppm) δ = −17. Elem. Anal. (C6H6N8O7, 302.16 g mol−1) calcd.: C 23.85, H 

2.00, N 37.08 %. Found: C 24.00, H 2.08, N 36.84 %. 

Hydrazinium 4-(3-nitropyrazol-4-yl)-3,5-dinitropyrazolate (12) 

3,3,5-Trinitro-4,4-bipyrazole (404 mg, 1.50 mmol) was dissolved in 20 mL of ethanol. The 

solution was heated to 75 °C and hydrazine hydrate (160 mg, 3.20 mmol) was added. Filtration and 

removing the solvent at room temperature results the product as yellow crystals (426 mg, 

1.41 mmol, 94 %). 

DTA (5 °C min−1): 218 °C (exo.); BAM: drop hammer: 15 J (100–500 μm); friction tester: >360 

N (100–500 μm); ESD: 0.55 J (100–500 μm). IR (ATR),  (cm−1) = 3349 (w), 3154 (m), 2799 (m), 
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2685 (m), 2596 (m), 1597 (w), 1520 (m), 1487 (s), 1374 (s), 1329 (vs), 1301 (m), 1192 (m), 1089 

(s), 1017 (m), 993 (m), 929 (m), 854 (s), 834 (s), 819 (s), 768 (m), 703 (m), 671 (m), 629 (m), 589 

(m), 551 (w). 1H NMR (d6-DMSO, 400 MHz, ppm) δ = 8.07 (s), 4.54 (br). 13C NMR (d6-DMSO, 

101 MHz, ppm) δ = 154.1, 153.5, 133.5, 106.8, 102.2, 99.6. 14N NMR (d6-DMSO, 29 MHz, ppm) 

δ = −15. Elem. Anal. (C6H7N9O6, 301.18 g mol−1) calcd.: C 23.93, H 2.34, N 41.86 %. Found: 

C 24.13, H 2.56, N 41.49 %. 

Ammonium 4-(3-nitropyrazol-4-yl)-3,5-dinitropyrazolate monohydrate (13H2O) 

To a solution of 2 (404 mg, 1.50 mmol) in ethanol (20 mL) heated to 75 °C, ammonium carbonate 

(144 mg, 1.50 mmol) was added. Filtration and removing the solvent at room temperature results 

the product as yellow crystals (432 mg, 1.42 mmol, 95 %). 

DTA (5 °C min−1): 251 °C (melt.), 286 °C (exo.); BAM: drop hammer: 40 J (100–500 μm); friction 

tester: >360 N (100–500 μm); ESD: 1.50 J (100–500 μm). IR (ATR),  (cm−1) = 3631 (w), 3283 

(m), 3136 (m), 3054 (m), 2832 (m), 1557 (m), 1520 (w), 1492 (m), 1454 (m), 1417 (s), 1381 (s), 

1336 (vs), 1302 (s), 1223 (m), 1190 (m), 1102 (w), 1021 (m), 996 (m), 947 (vw), 849 (m), 832 (s), 

817 (m), 769 (m), 702 (w), 673 (w), 626 (m), 592 (w), 548 (w), 526 (vw). 1H NMR (d6-DMSO, 

400 MHz, ppm) δ = 13.96 (br), 8.11 (s), 7.11 (t). 13C NMR (d6-DMSO, 101 MHz, ppm) δ = 154.0, 

153.5, 133.1, 106.8, 102.0. 14N NMR (d6-DMSO, 29 MHz, ppm) δ = −18, −359. Elem. Anal. 

(C6H8N8O7, 304.18 g mol−1) calcd.: C 23.69, H 2.65, N 36.84 %. Found: C 23.77, H 2.67, N 

36.39 %. 

Aminoguanidinium 4-(3-nitropyrazol-4-yl)-3,5-dinitropyrazolate monohydrate (14H2O) 

3,3,5-Trinitro-4,4-bipyrazole (403 mg, 1.50 mmol, 1.0 eq.) was dissolved in EtOH (15 mL) and 

water (6 mL). Aminoguanidinium carbonate (204 mg, 1.50 mmol, 1.0 eq.) was added and the 

mixtures was heated to reflux for 30 min. After cooling down to room temperature, the solvent was 

removed in vacuo to yield 14H2O (493 mg, 1.36 mmol, 67 %). 

DTA (5 °C min−1): 92°C (-H2O), 209 °C (melt.), 220 °C (exo.); BAM: drop hammer: 35 J (100–

500 μm); friction tester: > 360 N (100–500 μm); ESD: 0.48 (100–500 μm). IR (ATR),  (cm−1) = 

3588 (m), 3425 (w), 3354 (w), 3327 (w), 3147 (w), 1673 (s), 1626 (w), 1547 (s), 1482 (s), 1410 

(w), 1381 (vs), 1336 (vs), 1317 (s), 1299 (m), 1169 (m), 994 (m), 848 (s), 835 (s), 817 (s), 490 (s). 
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1H NMR (d6-DMSO, 400 MHz, ppm) δ = 14.00 (br, 1H), 8.55 (s, 1H), 8.11 (s, 1H), 7.23 (br, 2H), 

6.71 (br, 2H), 4.68 (br, 2H). 13C NMR (d6-DMSO, 101 MHz, ppm) δ = 158.7, 154.1, 153.5, 133.1, 

106.9, 102.0. 14N NMR (d6-DMSO, 29 MHz, ppm) δ = −16. Elem. Anal. (C7H11N11O7, 361.24 g 

mol−1) calcd.: C 23.27, H 3.07, N 42.65 %. Found: C 23.55 H 3.20, N 43.13 %. 

Crystals of 14MeOH were obtained by recrystallization of the above product from methanol. Anal. 

Calcd for C8H13N11O7: C 26.60, H 3.49, N 41.06 %. Found: C 26.35, H 3.47, N 40.89 %. 

3,6,7-Triamino-[1,2,4]triazolo[4,3-b][1,2,4]triazolium 4-(3-nitropyrazol-4-yl)-3,5-

dinitropyrazolate (15) 

3,3,5-Trinitro-4,4-bipyrazole (500 mg, 1.86 mmol) was dissolved in a mixture of EtOH (20 mL) 

and water (10 mL) and the solution was heated to 80 °C. 3,6,7-Triamino-[1,2,4]triazolo[4,3-

b][1,2,4]triazole (154 mg, 1.86 mmol) was added in one portion and the mixture was stirred for 30 

min at the same temperature. After cooling to ambient temperature the solvents were removed in 

vacuo to yield compound 15 as yellow powder (782 mg, 1.85 mmol, 99 %). 

DTA (5 °C min−1): 240 °C (exo.); BAM: drop hammer: 10 J (100–500 μm); friction tester: 360 N 

(100–500 μm); ESD: 0.20 J (100–500 μm). IR (ATR),  (cm−1) = 3453 (w), 3340 (vw), 3089 (w), 

2683 (vw), 1650 (s), 1570 (w), 1524 (m), 1486 (s), 1421 (w), 1387 (vs), 1339 (vs), 1305 (s), 1190 

(w), 1001 (m), 853 (s), 833 (s), 711 (m). 1H NMR (d6-DMSO, 400 MHz, ppm) δ =13.99 (s, 1H), 

13.31 (br, 1H), 8.18 (s, 2H), 8.11 (s, 1H), 7.23 (s, 2H), 5.77 (s, 2H). 13C NMR (d6-DMSO, 101 

MHz, ppm) δ = 160.2, 154.1, 153.4, 147.5, 141.2, 133.2, 106.9, 102.0. 14N NMR (d6-DMSO, 29 

MHz, ppm) δ = −18. Elem. Anal. (C9H9N15O6, 423.27 g mol−1) calcd.: C 25.54, H 2.14, N 49.64 %. 

Found: C 25.74, H 2.21, N 49.37 %. 

3,5-Diamino-1,2,4-triazolium 4-(3-nitropyrazolyl)-3,5-dinitropyrazolate (16) 

3,3,5-Trinitro-4,4-bipyrazole (404 mg, 1.50 mmol, 1.0 eq.) was dissolved in a mixture of abs. 

EtOH (10 mL) and water (5 mL) and the solution was heated to 80 °C. 3,5-Diamino-1,2,4-triazole 

(150 mg, 1.50 mmol, 1.0 eq.) was added and the reaction mixture was stirred for 30 min. After 

cooling the solvent was removed in vacuo and compound 16 was obtained as yellow solid (520 

mg, 1.41 mmol, 94 %). 
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DTA (5 °C min−1): 237 °C (melt.), 273 °C (exo.); BAM: drop hammer: 15 J (100–500 μm); friction 

tester: 360 N (100–500 μm); ESD: 0.23 (100–500 μm). IR (ATR), ṽ (cm−1) = 3454 (m), 3425 (m), 

3359 (m), 3195 (br), 1678 (m), 1654 (s), 1546 (s), 1494 (m), 1477 (m), 1378 (vs), 1325 (vs), 1298 

(s), 1179 (m), 1021 (m), 993 (s), 855 (s), 835 (s); 1H NMR (d6-DMSO, 400 MHz, ppm) δ = 14.00 

(s), 8.12 (s), 7.00 (br). 13C NMR (d6-DMSO, 101 MHz, ppm) δ = 154.0, 153.4, 151.6, 133.2, 106.8, 

102.0. 14N NMR (d6-DMSO, 29 MHz, ppm) δ = −19. Elem. Anal. (C8H8N12O6, 368.23 g mol−1) 

calcd.: C 26.09, H 2.19, N 45.65 %. Found: C 26.19, H 2.11, N 45.38 %. 

Hydroxylammonium 4-(3,5-dinitropyrazol-4-yl)-3,5-dinitropyrazolate (17) 

3,3,5,5-Tetranitro-4,4-bipyrazole monohydrate 3H2O (499 mg, 1.50 mmol) was dissolved in 

ethanol (12 mL). The solution was heated to 75 °C. Aqueous 50 % hydroxylamine solution 

(200 mg, 3.0 mmol) was added. Filtration and removing the solvent at room temperature gave 

compound 17 as yellow crystals (27, 520 mg, 1.50 mmol, 100 %). 

DTA (5 °C min−1): 201 °C (exo.); BAM: drop hammer: 3 J (100–500 μm); friction tester: 216 N 

(100–500 μm); ESD: 0.25 J (100–500 μm). IR (ATR),  (cm−1) = 3213 (w), 3148 (w), 2874 (w), 

2470 (w), 1916 (vw), 1739 (vw), 1603 (vw), 1552 (m), 1482, 1423 (m), 1388 (s), 1349 (vs), 1323 

(s), 1309 (s), 1216 (m), 1179 (s), 1022 (m), 1003 (s), 846 (vs), 769 (m), 757 (m), 699 (m), 664 (w), 

637 (w), 594 (w), 527 (w). 1H NMR (d6-DMSO, 400 MHz, ppm) δ = 10.16 (s, 3H). 13C NMR (d6-

DMSO, 101 MHz, ppm) δ = 153.1, 103.6. 14N NMR (d6-DMSO, 29 MHz, ppm) δ = −16. Elem. 

Anal. (C6H5N9O9, 347.16 g mol−1) calcd.: C 20.76, H 1.45, N 36.31 %. Found: C 19.63, H 1.96, 

N 37.27 %. 

4-(3,5-Dimethylpyrazol-4-yl)-3,5-dimethylpyrazolium 4-(3,5-dinitropyrazol-4-yl)-3,5-

dinitropyrazolate monohydrate (18H2O) 

3H2O (332 mg, 1.00 mmol) and 3,3,5,5-tetramethyl-4,4-bipyrazole semihydrate (199 mg, 1.00 

mmol) were dissolved in 15 mL of boiling water. The solution was cooled and allowed to stand 

over 3-4 d. Yellow prisms of the product were filtered and dried (220 mg, 40 %).   

Anal. Calcd for C16H18N12O9: C 36.78, H 3.47, N 32.18 %. Found: C 36.70, H 3.34, N 32.39 %. 
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8.8.3. Crystallography  

Single-crystal X-ray diffraction data were collected with graphite-monochromated Mo K 

radiation ( = 0.71073 Å) using a Stoe Image Plate Diffraction System ( oscillation scans) for 

4H2O to 8, 10H2O and 18H2O (face-indexed numerical absorption correction using X-RED and 

X-SHAPE).[S9] Data for 9H2O and 11-17 were collected using Oxford Xcalibur3 diffractometer 

equipped with a CCD area detector. The structures were solved by direct methods and refined by 

full-matrix least-squares on F2 using the programs SHELXS-97 and SHELXL-2014/7 (Table 

S1).[S10] For the heavy-atom structures 5H2O and 10H2O, the hydrogen atoms were located and 

then refined as riding with CH = 0.97 Å, NH = 0.87 Å,  OH = 0.85 Å, and with Uiso(H) = 

1.2Ueq(C) or 1.5Ueq(N, O). For other structures, all hydrogen atoms were located and freely refined 

with isotropic thermal parameters. A set of similarity restraints was applied to the NH bond 

distances of the hydrazinium cation in 6. In the case of 18H2O, the hydrogen atoms of methyl 

groups were refined as riding with CH = 0.98 Å and with Uiso(H) = 1.5Ueq(C). Crystallographic 

data for the reported structures in this contribution have been deposited with the Cambridge 

Crystallographic Data Centre as supplementary publication numbers (CCDC 1949728-1949741 for 

4-18H2O, respectively). These data can be obtained free of charge from the Cambridge 

Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. 
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Table S1. Crystal data for K(DiNBpz)H2O (4H2O), Cs(DiNBpz)H2O (5H2O), N2H5(DiNBpz) (6), NH4(DiNBpz)H2O (7H2O) and 

(BipyH)(DiNBpz) (8).  

      

 4H2O 5H2O 6 7H2O 8 
      

Formula C6H5KN6O5 C6H5CsN6O5 C6H8N8O4 C6H9N7O5 C16H12N8O4  

M 280.26 374.07 256.20 259.20 380.34 

T/ K 213 173 213 213 173 

Diffractometer IPDS Stoe IPDS Stoe IPDS Stoe IPDS Stoe IPDS-2T Stoe 

Color and habit yellow needle yellow needle yellow prism yellow prism yellow prism 

Size / mm 0.15  0.12  0.12 0.20  0.17  0.14 0.25  0.24  0.19 0.24  0.24  0.19 0.27  0.25  0.20 

Crystal system Monoclinic Monoclinic Monoclinic Monoclinic Monoclinic 

Space group,   Z Pn, 2 P21/n, 4 Pn, 2 I2/a, 8 P21/c, 4 

a/ Å 3.7606(3) 7.5056(9) 3.6839(3) 13.8084(11) 13.2099(4) 

b/ Å 8.5150(4) 18.4706(14) 8.3746(7) 10.5769(6) 7.5313(2) 

c/ Å 16.2611(12) 8.5938(11) 16.259(2) 14.3961(13) 17.3941(5) 

α/ o 90 90 90 90 90 

/ o 91.230(8) 112.168(9) 93.800(13) 96.286(10) 107.603(2) 

γ/ o 90 90 90 90 90 

V/ Å3 520.58(6) 1103.3(2) 500.51(9) 2089.9(3) 1649.47(8) 

(Mo-K)/ mm-1 0.539 3.383 0.144 0.143 0.116 

Dcalc/ g cm-3 1.788 2.252 1.700 1.648 1.532 

2max/ 
o 27.965 28.311 27.964 27.930 26.946 

Measd/ Unique reflns 4507/ 2306 8278/ 2717 4270/ 2214 8875/ 2482 14466/ 3532 

Completeness/ % 99.1 99.2 94.5 98.9 98.5 

Reflns with I > 2(I) 2052 2303 1804 1399 2581 

Rint 0.0249 0.0561 0.0207 0.0317 0.0532 

Parameters refined 183 164 195 199 301 

R1, wR2 (I > 2(I))   0.0288, 0.0654 0.0268, 0.0618 0.0296, 0.0630 0.0323, 0.0711 0.0472, 0.1302 

R1, wR2 (all data) 0.0328, 0.0663 0.0334, 0.0633 0.0363, 0.0638 0.0617, 0.0751 0.0662, 0.1430 

Goof on F2 0.953 1.000 0.914 0.783 1.050 

Max, min peak/ e Å-3 0.288, -0.202 1.144, -1.036 0.332, -0.175 0.302, -0.157 0.307, -0.286 

CCDC number 1949728 1949729 1949730 1949731 1949732 
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Table S2. Crystal data for K(TriNBpz)H2O (9H2O), Cs(TriNBpz)H2O (10H2O),  NH3OH(TriNBpz) (11),  N2H4(TriNBpz)(12),  

NH4(TriNBpz)H2O (13H2O) 

      

 9H2O 10H2O 11 12 13H2O 
      

Formula C6H4KN7O7 C6H4CsN7O7  C6H6N8O7 C6H7N9O6 C6H8N8O7 

M 325.26 419.07 302.19 301.21 304.20 

T/ K 130 213 143 143 143 

Diffractometer Xcalibur Sapphire3 IPDS-2T Stoe Xcalibur Sapphire3 Xcalibur Sapphire3 Xcalibur Sapphire3 

Color and habit yellow block yellow prism yellow block yellow block yellow prism 

Size / mm 0.38  0.19  0.10 0.20  0.17  0.15 0.30  0.25  0.15 0.25  0.15  0.15 0.22  0.14  0.06 

Crystal system Triclinic Triclinic Triclinic Triclinic Triclinic 

Space group,   Z P-1, 2 P-1, 2 P-1, 2 P-1, 2 P-1, 2 

a/ Å 7.6299(8) 7.5655(5) 7.6736(6) 7.6797(8) 7.7412(5) 

b/ Å 8.5549(10) 8.5672(6) 8.6244(6) 8.5684(5) 8.5278(6) 

c/ Å 8.9257(9) 10.1918(6) 8.6380(6) 8.7353(7) 9.0812(5) 

α/ o 100.138(9) 112.225(7) 77.845(6) 76.964(6) 78.785(5) 

/ o 90.416(8) 95.707(7) 87.993(6) 88.498(8) 85.558(5) 

γ/ o 92.544(9) 90.708(8) 87.851(6) 88.023(7) 87.716(5) 

V/ Å3 572.88(11) 607.58(7) 558.24(7) 559.56(8) 586.10(7) 

(Mo-K)/ mm-1 0.519 3.100 0.164 0.159 0.156 

Dcalc/ g cm-3 1.886 2.291 1.798 1.788 1.724 

2max/ 
o 25.997 27.944 26.496 26.497 26.493 

Measd/ Unique reflns 4258/ 2241 6585/ 2870 4375/ 2305 4243/ 2309 4453/ 2423 

Completeness/ % 99.5 98.6 99.6 99.5 99.6 

Reflns with I > 2(I) 1836 2488 1977 1790 1787 

Rint 0.0289 0.0214 0.0205 0.0311 0.0288 

Parameters refined 206 190 214 218 222 

R1, wR2 (I > 2(I))   0.0369, 0.0866 0.0180, 0.0423 0.0341, 0.0808 0.0410, 0.0917 0.0398, 0.0801 

R1, wR2 (all data) 0.0474, 0.0942 0.0220, 0.0428 0.0413, 0.0871 0.0582, 0.1013 0.0654, 0.0903 

Goof on F2 1.060 0.937 1.060 1.025 1.011 

Max, min peak/ e Å-3 0.302, -0.389 0.889, -0.344 0.279, -0.243 0.267, -0.237 0.243, -0.258 

CCDC number 1949733 1949734 1949735 1949736 1949737 
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Table S3. Crystal data for (AG)(TriNBpz)MeOH (14MeOH), (TATOT)(TriNBpz) (15),  NH3OH(TNBpz) (17), and 

(Me4BpzH)(TNBpz)H2O (18H2O).  

     

 14MeOH 15 17 18H2O 
     

Formula C8H13N11O7 C9H9N15O6 C6H5N9O9 C16H18N12O9 

M 375.29 423.31 347.19 522.42 

T/ K 143 143 130 173 

Diffractometer Xcalibur Sapphire3 Xcalibur Sapphire3 Xcalibur Sapphire3 IPDS-2T Stoe 

Color and habit Colorless block Colorless block Colorless block yellow prism 

Size / mm 0.40  0.40  0.20 0.30  0.30  0.25 0.28  0.19  0.16 0.24  0.23  0.20 

Crystal system Monoclinic Tetragonal Monoclinic Tetragonal 

Space group,   Z I2/a, 8 P43212, 8 Cc, 4 P43, 4 

a/ Å 16.3433(4) 8.5520(2) 11.2031(4) 8.5740(4) 

b/ Å 8.4692(2) 8.5520(2) 15.3611(5) 8.5740(4) 

c/ Å 22.3564(5) 45.1136(8) 7.6669(3) 29.928(2) 

α/ o 90 90 90 90 

/ o 90.825(2) 90 109.478(5) 90 

γ/ o 90 90 90 90 

V/ Å3 3094.13(13) 3299.46(17) 1243.90(9) 2200.1(3) 

(Mo-K)/ mm-1 0.140 0.145 0.174 0.131 

Dcalc/ g cm-3 1.611 1.704 1.854 1.577 

2max/ 
o 25.989 28.280 27.998 26.553 

Measd/ Unique reflns 22435/ 3028 33075/ 4069 10304/ 3005 8144/ 3952 

Completeness/ % 0.996 0.991 0.997 0.993 

Reflns with I > 2(I) 2742 3881 2822 3579 

Rint 0.0215 0.0490 0.0275 0.0341 

Parameters refined 287 305 237 362 

R1, wR2 (I > 2(I)) 0.0287, 0.0750 0.0389, 0.0861 0.0286, 0.0670 0.0287, 0.0644 

R1, wR2 (all data) 0.0319, 0.0776 0.0410, 0.0871 0.0313, 0.0684 0.0330, 0.0656 

Goof on F2 1.047 1.092 1.019 0.988 

Max, min peak/ e Å-3 0.263, -0.187 0.229, -0.206 0.185, -0.206 0.137, -0.191 

CCDC 1949738 1949739 1949740 1949741 
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8.8.3.1. ORTEP Drawings, atoms labeling schemes and geometry of hydrogen bonding 

 

Figure S2. Molecular structure of 4H2O, showing the atom labeling scheme and thermal ellipsoids 

drawn at 50% probability level. Symmetry code: (i) -0.5+x, 1-y, 0.5+z.  

 

Figure S3. Coordination environment of the potassium ion, in the form of capped trigonal prism 

(CN = 7), in the structure of structure of 4H2O. Symmetry codes: (ii) -1+x, y, z; (iii) -1+x, 1+y, z; 

(iv) x, 1+y, z; (v) 1+x, y, z.  
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Table S4. Hydrogen-bond geometry (Å, o) for structure of K(DiNBPZ)H2O (4H2O). 

Donor (D) H-Atom Acceptor (A) D-H HA DA DHA 

       

N5 H1N N1 (-0.5+x, 1-y, 0.5+z) 0.88(4) 2.03(4) 2.898(3) 169(4) 

N5 H1N O1 (-0.5+x, 1-y, 0.5+z) 0.88(4) 2.57(4) 3.095(3) 119(3) 

O1W H1W N2 (-0.5+x, 1-y, 0.5+z) 0.92(5) 1.94(5) 2.819(3) 160(4) 

O1W H2W O2 (0.5+x, 2-y, 0.5+z) 0.83(4) 2.09(4) 2.926(3) 174(4) 

C4 H4 O1 (-0.5+x, 1-y, 0.5+z) 0.89(4) 2.60(3) 3.148(4) 120(3) 

C6 H6 O3 (x, 1+y, z) 0.91(3) 2.71(3) 3.498(4) 146(2) 

 

Figure S4. Molecular structure of 5H2O, showing the atom labeling scheme and thermal ellipsoids 

drawn at 50% probability level. Symmetry code: (i) x, y, 1+z.   

Table S5. Hydrogen-bond geometry (Å, o) for structure of Cs(DiNBPZ)H2O (5H2O). 

Donor (D) H-Atom Acceptor (A) D-H HA DA DHA 

       

N5 H1N N2 (x, y, -1+z) 0.88 1.97 2.836(3) 169 

O1W H1W N1 0.85 2.12 2.943(3) 163 

O1W H2W O1 (x, y, 1+z) 0.85 2.75 3.304(3) 124 

C6 H6 O3 (-x, 1-y, 1-x) 0.95 2.78 3.298(3) 115 
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Figure S5. Coordination environment of the caesium ion, in the form of distorted bicapped cube 

(CN = 10), in the structure of structure of 5H2O. Symmetry codes: (ii) -x, -y, 2-z; (iii) -0.5+x, 0.5-

y, 0.5+z;  (iv) -0.5-x, -0.5+y, 0.5-z; (v) -0.5+x, 0.5-y, -0.5+z; (vi) -x, -y, 1-z; (vii) -0.5-x, -0.5+y, 1.5-

z; (viii) 0.5-x, -0.5+y, 1.5-z.  

 

Figure S6. Molecular structure of N2H5(DiNBPZ) (6), showing the atom labeling scheme and 

thermal ellipsoids drawn at 50% probability level. Symmetry code: (i) -0.5+x, -y, 0.5+z. 
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Table S6. Hydrogen-bond geometry (Å, o) for structure of N2H5(DiNBPZ) (6). 

Donor (D) H-Atom Acceptor (A) D-H HA DA DHA 

       

N5 H1N N1 (-0.5+x, -y, 0.5+z) 0.86(3) 2.02(3) 2.878(3) 172(3) 

N7 H2N N6 0.975(17) 1.81(2) 2.781(3) 174(4) 

N7 H3N N2 (-0.5+x, -y, 0.5+z) 0.974(17) 2.06(3) 2.862(3) 139(3) 

N7 H4N N8 (1+x, y, z) 0.974(17) 1.96(2) 2.888(4) 158(3) 

N8 H5N O4  (x, 1+y, z) 0.970(17) 2.21(3) 3.080(3) 149(4) 

N8 H6N O1 (0.5+x, 1-y, 0.5+z) 0.974(18) 2.44(4) 3.239(3) 139(4) 

N8 H6N O2  (0.5+x, 1-y, 0.5+z) 0.974(18) 2.47(2) 3.384(3) 156(3) 

C4 H4 O4 (-1+x, y, z) 0.90(3) 2.59(3) 3.367(4) 144(2) 

C6 H6 O3  (x, 1+y, z) 0.95(3) 2.75(3) 3.628(4) 155(2) 

 

 

Figure S7. Molecular structure of NH4(DiNBPZ)H2O (7H2O), showing the atom labeling 

scheme and thermal ellipsoids drawn at 50% probability level. Symmetry code: (i) x, 1+y, z; (ii) 

0.5-x, y, -z. 

Table S7. Hydrogen-bond geometry (Å, o) for structure of NH4(DiNBPZ)H2O (7H2O). 

Donor (D) H-Atom Acceptor (A) D-H HA DA DHA 

       

N5 H1N O1W (-x+0.5, -1+y, -z) 0.856(17) 2.037(17) 2.8911(17) 176.2(17) 

N7 H2N N1 0.94(2) 1.96(2) 2.8973(18) 170.9(17) 

N7 H3N O1W 0.96(2) 1.99(2) 2.908(2) 159.9(16) 
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N7 H4N O1W (-x+0.5, -y+1.5, -z+0.5) 0.89(2) 2.60(2) 3.3764(18) 146.1(16) 

N7 H4N O1 (x, -y+1.5, z+0.5) 0.89(2) 2.52(2) 3.1704(19) 130.8(16) 

N7 H5N N6 (x, 1+y, z) 0.99(2) 1.87(2) 2.8451(18) 170.3(17) 

O1W H1W O2 (x+0.5, y+0.5, z+0.5) 0.93(2) 2.00(2) 2.9130(15) 166.4(16) 

O1W H2W N2 (-x+0.5, y, -z) 0.84(2) 1.91(2) 2.7468(16) 171(2) 

C4 H4 O4 (-x+0.5, y, -z) 0.913(15) 2.692(15) 3.294(2) 124.2(12) 

C6 H6 O2 (x, -y+0.5, z+0.5) 0.980(14) 2.783(15) 3.6960(18) 155.3(12) 

 

Figure S8. Molecular structure of [BipyH](DiNBPZ) (8), showing the atom labeling scheme and 

thermal ellipsoids drawn at 40% probability level.  

Table S8. Hydrogen-bond geometry (Å, o) for structure of [BipyH](DiNBPZ) (8). 

Donor (D) H-Atom Acceptor (A) D-H HA DA DHA 

       

N5 H1N N8 (1+x, y, 1+z) 0.82(3) 2.10(3) 2.902(2) 167(2) 

N7 H2N N1 1.01(4) 1.70(4) 2.671(2) 162(3) 

C7 H7 O4 (1-x, 1-y, 1-z) 1.01(3) 2.24(3) 3.205(2) 159(2) 

C8 H8 O1 (1-x, y+0.5, -z+0.5) 1.01(3) 2.73(3) 3.501(3) 134(2) 

C8 H8 O2 (1-x, y+0.5, -z+0.5) 1.01(3) 2.53(3) 3.544(3) 178(2) 

C13 H13 N2 (x, -y+0.5, z-0.5) 1.05(3) 2.56(3) 3.600(2) 171(2) 

C15 H15 N6 (-1+x, -y+0.5, z-0.5) 1.00(3) 2.74(3) 3.612(3) 145.7(19) 

C16 H16 O2 (-1+x, -y+0.5, z-0.5) 0.97(3) 2.35(3) 3.253(3) 154(2) 
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Figure S9. Molecular structure of K(TriNBPZ)H2O (9H2O), showing the atom labeling scheme 

and thermal ellipsoids drawn at 50% probability level. Symmetry code: (i) x, 1+y, z; (ii) 1-x, 1-y, 

1-z. 

 

Figure S10. Coordination environment of the caesium ion, in the form of distorted capped 

tetragonal antiprism (CN = 9), in the structure of structure of 9H2O. Symmetry codes: (ii) 1-x, 1-

y, 1-z; (iii) -x, -y, 1-z; (iv) 1+x, y, 1+z; (v) 1-x, -y, 1-z.  

Table S9. Hydrogen-bond geometry (Å, o) for structure of K(TriNBPZ)H2O (9H2O). 

Donor (D) H-Atom Acceptor (A) D-H HA DA DHA 

       

N6 H2 N2 (x, 1+y, z) 0.87(3) 1.95(3) 2.809(2) 169(2) 
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O7 H7B O1 (-x, 1-y, 1-z) 0.93(5) 2.23(5) 3.152(3) 171(4) 

C6 H1 O6  (-1+x, y, z) 0.90(2) 2.41(2) 3.286(3) 164.5(19) 

 

Figure S11. Molecular structure of Cs(TriNBPZ)H2O (10H2O), showing the atom labeling 

scheme and thermal ellipsoids drawn at 50% probability level. Symmetry code: (i) x, 1+y, z.   

 

Figure S12. Coordination environment of the caesium ion, in the form of distorted bicapped cube 

(CN = 10), in the structure of structure of 10H2O. Symmetry codes: (i) x, 1+y, z; (ii) 1-x, 1-y, -z; 

(iii) 1-x, 1-y, 1-z; (iv) -x, 1-y, -z; (v) 1+x, 1+y, z. 

Table S10. Hydrogen-bond geometry (Å, o) for structure of Cs(TriNBPZ)H2O (10H2O). 

Donor (D) H-Atom Acceptor (A) D-H HA DA DHA 
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N6 H1N N1 (x, 1+y, z) 0.87 2.00 2.813(2) 155 

N6 H1N O2  (-x, 1-y, 1-z) 0.87 2.83 3.332(2) 119 

O1W H1W N2  (1+x, 1+y, z) 0.85 2.13 2.885(3) 148 

O1W H2W O4 (1+x, y, z) 0.85 2.49 3.201(3) 141 

C6 H6 O2 (-x, 1-y, 1-z) 0.94 2.71 3.273(3) 120 

C6 H6 O5 (-1+x, y, z) 0.94 2.55 3.417(3) 153 

 

 

Figure S13. Molecular structure of (NH3OH)(TriNBPZ) (11), showing the atom labeling scheme 

and thermal ellipsoids drawn at 50% probability level. Symmetry code: (i) x, y,-1+z.  

Table S11. Hydrogen-bond geometry (Å, o) for structure of (NH3OH)(TriNBPZ) (11). 

Donor (D) H-Atom Acceptor (A) D-H HA DA DHA 

N6 H2 N2 (x, y,-1+z) 0.912(17) 1.942(17) 2.8474(18) 172.0(17) 

O7 H7 N1 (1+x, y, -1+z) 0.96(2) 1.77(2) 2.7202(18) 170(2) 

N8 H8A N5 0.98(3) 1.92(2) 2.888(2) 167(2) 

N8 H8B O1 (-x, -y, 1-z) 0.93(2) 2.01(3) 2.9255(19) 169(2) 

N8 H8C O3 (1-x, 1-y,1-z) 0.913(19) 2.433(18) 3.3439(19) 175.6(15) 

N8 H8C O4 (1-x, 1-y,1-z) 0.913(19) 2.310(19) 2.8998(19) 122.1(14) 

C6 H1 O6 (-1+x, y, z) 0.950(15) 2.361(15) 3.297(2) 168.4(14) 
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Figure S14. Molecular structure of N2H4(TriNBPZ) (12), showing the atom labeling scheme and 

thermal ellipsoids drawn at 50% probability level. Symmetry code: (i) x, -1+y, z.  

Table S12. Hydrogen-bond geometry (Å, o) for structure of N2H4(TriNBPZ) (12). 

Donor (D) H-Atom Acceptor (A) D-H HA DA DHA 

       

N6 H1 N2 (x, 1+y, z) 0.90(3) 1.92(3) 2.810(2) 171(3) 

N8 H8A O3 (1-x, 1-y, -z) 0.92(3) 2.42(3) 3.317(2) 163(2) 

N8 H8A O4 (1-x, 1-y, -z) 0.92(3) 2.33(3) 2.916(2) 121.4(19) 

N8 H8A N4 (1-x, 1-y, -z) 0.92(3) 2.69(3) 3.499(3) 148(2) 

N8 H8B N5 (1+x, -1+y, z) 0.94(3) 1.99(3) 2.920(3) 167(2) 

N8 H8C O1 (2-x, 1-y, 1-z) 0.93(3) 2.01(3) 2.914(2) 166(2) 

N9 H9A N1 1.05(4) 2.21(4) 3.082(3) 139(3) 

N9 H9B O6 (1+x, -1+y, z) 0.96(3) 2.34(4) 3.158(3) 143(3) 

C6 H2 O4 (1-x, 2-y, -z) 0.96(2) 2.62(2) 3.234(2) 122.2(15) 

C6 H2 O6 (1+x, y, z) 0.96(2) 2.38(2) 3.314(3) 164.6(16) 
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Figure S15. Molecular structure of NH4(TriNBPZ)H2O (13H2O), showing the atom labeling 

scheme and thermal ellipsoids drawn at 50% probability level. Symmetry code: (i) x, -1+y, z.  

Table S13. Hydrogen-bond geometry (Å, o) for structure of NH4(TriNBPZ)H2O (13H2O). 

Donor (D) H-Atom Acceptor (A) D-H HA DA DHA 

       

N7 H7 N2 (x, 1+y, z) 0.89(3) 1.89(3) 2.760(2) 166(2) 

O7 H71 O1 (x, -1+y, z) 0.78(3) 2.60(3) 3.369(2) 171(3) 

O7 H72 N1 0.91(3) 1.97(3) 2.843(2) 162(2) 

N9 H9A O3 (-x, 1-y, 1-z) 0.87(3) 2.30(3) 3.138(2) 161(2) 

N9 H9B O7 (1-x, 1-y, -z) 0.88(3) 2.00(3) 2.856(2) 163(2) 

N9 H9C N6 (x, -1+y, z) 0.98(3) 1.98(3) 2.931(3) 165(2) 

N9 H9D O7 (-1+x, y, z) 0.94(3) 1.99(3) 2.912(3) 169(2) 

C6 H6 O6 (1+x, y, z) 0.987(19) 2.367(19) 3.348(2) 172.2(15) 
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Figure S16. Molecular structure of (AG)(TriNBPZ)MeOH (14MeOH), showing the atom 

labeling scheme and thermal ellipsoids drawn at 50% probability level. Symmetry codes: (i) 0.5-x, 

0.5-y, 0.5-z; (ii) x, 0.5-y, 0.5+z; (iii) 0.5+x, 1-y, z.  

Table S14. Hydrogen-bond geometry (Å, o) for (AG)(TriNBPZ)MeOH (14MeOH). 

Donor (D) H-Atom Acceptor (A) D-H HA DA DHA 

       

N6 H6 N2 (x-0.5, 1-y, z) 0.919(19) 1.923(19) 2.8294(15) 168.4(16) 

N8 H8 O7 (-x+0.5, y, -z) 0.852(17) 2.073(18) 2.8970(16) 162.4(15) 

N9 H9A O2 (-x+0.5, y, -z) 0.88(2) 2.27(2) 3.0740(15) 151.2(17) 

N10 H10B N1 0.863(19) 2.164(19) 3.0261(16) 176.6(16) 

N11 H11A N5 (-x, y-0.5, -z+0.5) 0.863(19) 2.191(19) 2.9959(16) 155.2(16) 

N11 H11B O3 (-x+0.5, -y+0.5, -z+0.5) 0.84(2) 2.469(19) 3.0490(16) 126.7(15) 

N11 H11B O7 (-x+0.5, y, -z) 0.84(2) 2.45(2) 3.1863(18) 146.6(16) 

O7 H7 O1 (-x, 1-y, -z) 0.80(2) 2.52(2) 3.0746(14) 127.4(18) 

O7 H7 O4 (x, -y+0.5, z-0.5) 0.80(2) 2.34(2) 3.0528(14) 147.8(19) 

C6 H5 O5 (-x, y-0.5, -z+0.5) 0.937(15) 2.473(15) 3.2640(15) 142.1(11) 

C8 H8A O2 (x, -1+y, z) 0.97(3) 2.65(3) 3.4036(19) 134(2) 
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Figure S17. Molecular structure of (TATOT)(TriNBPZ) (15), showing the atom labeling scheme 

and thermal ellipsoids drawn at 50% probability level. Symmetry codes: (i) x, 1+y, z; (ii) -1+x, y, 

z. 

Table S15. Hydrogen-bond geometry (Å, o) for structure of (TATOT)(TriNBPZ) (15). 

Donor (D) H-Atom Acceptor (A) D-H HA DA DHA 

       

N5 H5 N2 (-1+x, y, z) 0.90(4) 1.89(4) 2.784(3) 169(3) 

N9 H9 O5 (x, -1+y, z) 0.90(3) 2.66(3) 3.123(3) 113(2) 

N9 H9 N1 (-x+1.5,y-0.5, -z+1.75) 0.90(3) 1.93(3) 2.810(3) 165(3) 

N10 H101 O4  (-1+x, -1+y, z) 0.85(5) 2.49(5) 2.935(3) 113(4) 

N10 H102 N6 (x, -1+y, z) 0.83(4) 2.12(4) 2.932(3) 166(3) 

N14 H141 N12 (y, 1+x, 2-z) 0.96(5) 2.41(4) 3.302(4) 153(3) 

N14 H142 O4 (-1+x, y, z) 0.88(4) 2.55(4) 3.272(3) 141(3) 

N15 H151 N8 (-1+y, x, 2-z) 0.90(4) 2.20(4) 3.090(4) 169(3) 

N15 H152 O1 (-1.5+y, -x+1.5, z+0.25) 0.85(4) 2.63(4) 3.043(3) 111(3) 

N15 H152 O3  (-1+y, x, 2-z) 0.85(4) 2.60(4) 3.342(3) 147(3) 

N15 H152 N14 0.85(4) 2.44(3) 2.851(4) 110(3) 
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Figure S18. Molecular structure of NH3OH(TNBPZ) (17), showing the atom labeling scheme and 

thermal ellipsoids drawn at 50% probability level. Symmetry code: (i) 0.5+x, 0.5-y, -0.5+z.  

Table S16. Hydrogen-bond geometry (Å, o) for structure of NH3OH(TNBPZ) (17). 

Donor (D) H-Atom Acceptor (A) D-H HA DA DHA 

       

N1 H1 N6 (-0.5+x, -y+0.5, z+0.5) 0.92(4) 1.89(4) 2.766(3) 158(3) 

O9 H9 N5 0.89(4) 1.80(5) 2.691(3) 175(4) 

N9 H91 O1 (x+0.5, -y+0.5, -0.5+z) 0.90(6) 2.50(5) 3.190(3) 134(4) 

N9 H91 O7 (x+0.5, -y+0.5, z+0.5) 0.90(6) 2.43(5) 3.106(3) 132(4) 

N9 H91 N2 (1+x, y, z) 0.90(6) 2.48(5) 3.081(3) 125(4) 

N9 H92 O6 0.85(4) 2.57(4) 3.168(3) 128(3) 

N9 H92 O9 (x, -y, z+0.5) 0.85(4) 2.42(4) 3.241(3) 162(3) 

N9 H93 O3 (1+x, y, z) 0.88(5) 2.47(5) 2.979(3) 118(4) 

N9 H93 O7 (x+0.5, -0.5+y, z) 0.88(5) 2.19(5) 3.002(3) 153(4) 
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Figure S19. Molecular structure of (Me4BpzH)(TNBPZ)H2O (18H2O),  showing the atom 

labeling scheme and thermal ellipsoids drawn at 45% probability level. Symmetry code: (i) (i) 1+x, 

1+y, z; (ii) x, 1+y, z.  

Table S17. Hydrogen-bond geometry (Å, o) for (Me4BpzH)(TNBPZ)H2O (18H2O). 

Donor (D) H-Atom Acceptor (A) D-H HA DA DHA 

       

N4 H1N N1 (x, -1+y, z) 0.93(4) 1.84(4) 2.763(3) 171(4) 

N9 H2N N2 (-1+x, -1+y, z) 0.96(4) 1.87(4) 2.823(3) 178(3) 

N10 H3N N12 (-1+x, y, z) 0.92(3) 1.86(3) 2.778(3) 173(3) 

N11 H4N O1W 0.88(4) 1.97(4) 2.814(3) 159(4) 

O1W H1W N3 (1-y, x, -0.25+z) 0.94(4) 2.62(6) 3.297(3) 130(5) 

O1W H2W O1 (2-y, x, -0.25+z) 0.94(4) 2.02(5) 2.880(3) 152(6) 

C7 H7A O7 (-1+x, y, z) 0.98 2.78 3.499(3) 130 

C7 H7B N3 0.98 2.58 3.488(3) 155 

C7 H7C O6 (x, -1+y, z) 0.98 2.55 3.346(3) 138 

C11 H11A O7 (-y, -1+x, -0.25+z) 0.98 2.70 3.665(3) 168 

C11 H11B O8 (1-y, -1+x, -0.25+z) 0.98 2.61 3.555(3) 162 

C12 H12B O5 0.98 2.81 3.425(4) 122 
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C12 H12B O3 (-1+x, y, z) 0.98 2.79 3.615(3) 142 

C12 H12C O2 (1-y, x, -0.25+z) 0.98 2.70 3.335(3) 123 

C16 H16B O2 (1-y, -1+x, -0.25+z) 0.98 2.42 3.358(3) 161 
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Table S18. A survey of crystal structures exhibiting very strong hydrogen bonding between conjugate acid/base pyrazole pairs (pyrazolium 

cation to neutral pyrazole,  pzH2
+pzH or neutral pyrazole to pyrazolate anion, pzHpz-) 

       

Type Pyrazole   Compound NN/ Å CSD Refcode Ref. 

       

pzH2
+pzH Pyrazole I [H(I)+][I] (Picrate)-  2.663 ENINIA S1 

 3,5-Dimethylpyrazole II [H(II)+][II](2-Hydroxybenzoate)- 2.709 ODOHIZ S2 

   [H(II)+][II](CF3SO3)- 2.634 WEHDET S3 

 3,4,5-Tribromopyrazole III [H(III)+][III] Br- 2.609 XIRVAX S4 
 1H-Indazole IV [H(IV)+][IV] (Ru(IV)(CO)Cl4 2.685 OKACEK S5 

 3-Methyl-4,5-dihydro-2H-naphtho(1,2-

d)-pyrazole 
V [H(V)+][V] Br- 2.714 GUFKOH S6 

 

 

H(VI)+ [H(VI)+]Br- H2O 2.712 YASTAO S7 

  [H(VI)+](ClO4)- H2O 2.742 YASTES S7 
       

 

 

H(VII)+ [H(VII)+](2,5-

dicarboxyterephthalate) 

2.691 ZEBDIW S8 

  2.705 ZEBDIW01 S9 

  [H(VII)+] (Picrate)- MeCN 2.785 SASLAB S10 

 

 

H(VIII)+ [H(VIII)+] (I3)- 2.664 KUBHEW S11 

  [H(VIII)+][VIII] 

(HO2CCH2PO3H)- MeOH 

2.698 NOLVIV S12 

  [H(VIII)+] (HO2CCH2PO3H)-  2.764 NOLVUH S12 
       

 

 

H(IX)+ [H(IX)+]2 (UCl6)2- 2.734 IJUYIX S13 

 

 

H(X)+ [H(X)+]2 (FeCl4)2- 2.668 CINTAX S14 
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Type Pyrazole   Compound NN/ Å CSD Refcode Ref. 

       

 1,2-Bis(1H-pyrazol-1-yl)benzene XI [H(XI)+] (ClO4)- 2.712 SUNTUR S15 

 

 

XII XII 2.719 SOKNEL S16 

 

 

XIII XIII 2.773 WEQPEN S17 

       

pzHpz- 

 

XIV+ [(XIV)+][H(XIV)2+] (PF6
-)3 2.635 VUPGUJ S18 

 3,5-Dinitroindazole XV (Morpholinium)+ [XV] [(XV-H)-

] 

2.727 VUXTAJ S19 

 

 

XVI- K+ (XVI-) H2O 2.815  S20 
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8.8.4. Computations 

Quantum chemical calculations were carried out using the Gaussian G09 program package.[S31] The 

enthalpies (H) and free energies (G) were calculated using the complete basis set (CBS) method of 

Petersson and co-workers in order to obtain very accurate energies. The CBS models use the known 

asymptotic convergence of pair natural orbital expressions to extrapolate from calculations using a 

finite basis set to the estimated CBS limit. CBS-4 begins with an HF/3-21G(d) geometry 

optimization; the zero point energy is computed at the same level. It then uses a large basis set SCF 

calculation as a base energy, and an MP2/6-31+G calculation with a CBS extrapolation to correct 

the energy through second order. An MP4(SDQ)/6-31+ (d,p) calculation is used to approximate 

higher order contributions. In this study, we applied the modified CBS. 

Heats of formation of ionic compounds were calculated using the atomization method (equation 1) 

using room temperature CBS-4M enthalpies summarized in Table S19.[S32,S33]  

ΔfH°(g, M, 298) = H(Molecule, 298) – ∑H°(Atoms, 298) + ∑ΔfH°(Atoms, 298)  (1) 

Table S19. CBS-4M electronic enthalpies for atoms C, H, N and O and their literature values for 

atomic Δ fH°298 / kJ mol–1 

 –H298 / a.u. NIST [S34] 

H 0.500991 218.2 

C 37.786156 717.2 

N 54.522462 473.1 

O 74.991202 249.5 

In the case of the ionic compounds, the lattice energy (UL) and lattice enthalpy (ΔHL) were 

calculated from the corresponding X-ray molecular volumes according to the equations provided 

by Jenkins and Glasser.[S35] With the calculated lattice enthalpy the gas-phase enthalpy of 

formation was converted into the solid state (standard conditions) enthalpy of formation. These 

molar standard enthalpies of formation (ΔHm) were used to calculate the molar solid state energies 

of formation (ΔUm) according to equation 2. 

ΔUm = ΔHm – ΔnRT  (2) 

 

(Δn being the change of moles of gaseous components) 

The calculation results are summarized in Tables S20 and S21. 
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Table S20. CBS-4M results and calculated gas-phase enthalpies. 

Ion 
M [g mol–1] 

[a] 
–H298 [b] / a.u. 

ΔfH°(g,M) 

/ kJ mol–1 [c] 

TriNBPz– 268.13 1062.92568 82.0 

HTNBPz– 313.12 1267.22419 61.5 

K+ 39.1 599.03597 487.4 

NH4
+ 18.1 56.796608 635.3 

N2H5
+ 66.1 112.030523 773.4 

NH3OH+ 34.04 131.863249 686.4 

TATOT+ 155.14 555.474133 1080.0 

      [a] Molecular weight; [b] CBS-4M electronic enthalpy; [b] gas phase enthalpy of 

formation;  

 

Table S21. Calculation results. 

Compound 

ΔfH°(g,M) 

/ kJ mol–1 

[a] 

VM / nm3 

[b] 

ΔUL kJ 

mol–1 [c] 

ΔHL kJ 

mol–1 [d] 

ΔfH°(s) 

kJ mol–1 

[e] 

ΔfU(s) 

kJ kg–1 

[f] 

9H2O – 0.293545 521.5 525.2 –197.6 –538.9 

11 771.4 0.286040 459.9 464.8 303.7 1091.1 

12 858.4 0.286720 459.6 464.5 390.9 1388.6 

13H2O – 0.300320 518.5 525.9 –50.4 –72.0 

15 1166.0 0.422661 416.4 421.4 740.7 1837.9 

17 751.4 0.318688 447.3 452.2 295.7 934.0 

[a] gas phase enthalpy of formation; [b] molecular volumes taken from X-ray structures and 

corrected to room temperature; [c] lattice energy (calculated using Jenkins and Glasser 

equations); [d] lattice enthalpy (calculated using Jenkins and Glasser equations); [e] standard 

solid state enthalpy of formation; [f] solid state energy of formation. 
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9. Energetic Derivatives of 3,3,5,5-Tetranitro-4,4-

bipyrazole (TNBPz): Synthesis, Characterization and 

Properties 

Ivan Gospodinov, Kostiantyn V. Domasevitch, Cornelia C. Unger, Thomas M. Klapötke and Jörg 

Stierstorfer 

To Be Submitted to New J. Chem. 

Abstract: 3,3,5,5-tetranitro-4,4-bipyrazole monohydrate (TNBPz, 1H2O) is an excellent 

precursor for the synthesis of new energetic materials (2–12). Several nitrogen-rich salts (e.g. 

guanidinium, aminoguanidinium, hydrazinium, ammonium and hydroxylammonium) were 

prepared from 1H2O by neutralization reactions. In addition, the N-methylation and N-amination 

of compound TNBPz was investigated and is reported. All new synthesized energetic materials 

were fully characterized by NMR (1H, 13Ca, 14N, and 15N) spectroscopy, infrared spectroscopy, 

differential thermal analysis (DTA) and elemental analysis. Compounds 2, 4–8 and 10 were 

characterized with single crystal X-ray diffraction. The heats of formation for compounds 2, 4–6, 

8, 11 and 12 were calculated using the atomization method based on CBS-4M enthalpies. Several 

detonation parameters, such as detonation pressure, velocity and energy, were calculated by using 

the X-ray densities and the calculated standard molar enthalpies of formation. The sensitivities of 

all energetic materials toward external stimuli were tested according to the BAM standards. In 

addition, the toxicity toward vibrio fischeri bacteria of few energetic salts (3 and 4) is reported. 

9.1. Introduction 

The research on new energetic materials has increased in the last decades due to arising 

safety regulations.[1] The key in the development of new energetic materials is to design 

high energy density materials with good detonation parameters and low sensitivity.[2] 

Currently used high explosives (e.g. TNT and RDX) show high toxicity which makes the 

research on new energetic materials based on nitrogen-rich heterocycles very attractive. The 

functionalization of azoles with different explosphore groups (e.g. –NO2, –ONO2, –

NHNO2, –C(NO2)3) is a good approach for the synthesis of new high energy dense 
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materials.[3] There are few strategies that can be used by the design of new energetic 

materials in order to combine performance with sensitivity; formation of nitrogen-rich salts, 

introduction of alternating NO2/NH2 groups in the molecule and the introduction of a 

conjugation.[4,5]  

The chemistry of C-nitrated nitrogen-rich heterocyclic rings has been extensively 

investigated in the last decade.[6] Figure 1 shows few examples of polynitrated nitrogen-

rich heterocycles which exhibit very interesting properties, such as high detonation 

velocities and pressure, but show also good stability toward external stimuli. The formation 

of nitrogen-rich salts with polynitrated pyrazole derivatives leads mostly to the formation 

of energetic materials with high densities and good thermal stability as a result of their high 

lattice energy.[7,8] Using nitrogen-rich cations for the formation of energetic salts leads to a 

stabilization of the structure, due to high positive heat of formation of the cation and the 

potential intra- and intermolecular hydrogen bond formation.[9,10]  

 

Figure 1. Literature known fully C-nitrated heterocyclic compounds and the investigated nitro 

pyrazole 1H2O during this work. 

However, the functionalization of 3,3,5,5-tetranitro-4,4-bipyrazole monohydrate 

(TNBPz, 1H2O) has not been reported and their energetic derivatives are not known. The 

extensive synthesis of compound 1H2O have been recently reported and it exhibits 

excellent properties to be starting material for new energetic materials.[11] In our study the 

formation of energetic salts with 1H2O and the N-methylation and N-amination of 1H2O 

was investigated. Many energetic materials were reported 2–12 and fully characterized. All 

new synthesized energetic materials were experimentally and theoretically investigated. 
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9.2. Results and discussion 

9.2.1.  Synthesis 

The starting material 3,3,5,5-tetranitro-4,4-bipyrazole monohydrate (TNBPz, 1H2O) was 

obtained by nitration of the 4,4-bipyrazole scaffold. The synthesis of 1H2O has been 

reported previously in the literature.[11] Numerous new energetic compounds (2–12) were 

obtained by reacting TNBPz (1H2O) with several nitrogen-rich bases or further N-

functionalizing TNBPz (Scheme 1). The resulting salts were isolated in good yields and are 

stable at room temperature.  

The N-functionalization of TNBPz (1H2O) e.g. N-methylation and N-amination was extensively 

investigated. The synthesis of 1,1-dimethyl-3,3,5,5-tetranitro-4,4`-bipyrazole ((Me)2TNBPz, 2) 

has been previously reported in the literature, however we present a new and simpler procedure.[12] 

Hence, compound 2 was obtained by simple N-methylation of 1H2O with excess of dimethyl 

sulfate in the presence of a weak base. In addition, the N-amination of compound 1H2O was 

investigated and the effect of the amination reagent was extensively investigated. For this type of 

reactions, the well-known amination reagents hydroxylamine-O-sulfonic acid (HOSA) and O-p-

toluenesulfonylhydrohylamine (TOSA) were selected. The reaction of compound 1H2O with 

HOSA in the presence of a buffer solution (NaOH/KH2PO4) did not yield the expected 1,1-

diamino-3,3,5,5-tetranitro-4,4-bipyrazole ((NH2)2TNBPz, 12) but resulted in the formation of the 

potassium salt of 4-(1-amino-3,5-dinitropyrazolyl)-3,5-dinitropyrazolate (11). Further study of 

this reaction did not provide the desired compounds 12. Hence, TNBPz was reacted furtherly with 

TOSA in an CH3CN/DCM solution with the presence of a weak organic base 1,8-

diazabicyclo[5.4.0]undec-7-en (DBU). This resulted in 1,1-diamino-3,3,5,5-tetranitro-4,4-

bipyrazole ((NH2)2TNBPz, 12). All reactions are shown in Scheme 1. 
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Scheme 1. Synthesis of the energetic compounds 2–12 based on 3,3`,5,5`-tetranitro-4,4`-

bipyrazole monohydrate (1H2O). 

9.2.2. Single crystal X-ray diffraction studies 

During this work the crystal structures of 2, 4–8 and 10 were determined by low-temperature 

X-ray diffraction. Selected data and parameters from the low-temperature X-ray data 

collection and refinements are given in the Supporting Information (Tables S1 and S2). 

Compounds 2, 4–6, 8 and 10 crystallize anhydrously whereas compound 7 crystallizes as a 

hemihydrate. 

Compound 2 crystallizes monoclinic space group Cc with 4 formulas per unit cell. The lattice 

parameters are a = 8.9141(5) Å, b = 22.3417(15) Å, c = 7.8114(4) Å and β = 124.432(2)°, giving 

a cell volume of 1283.13(13) Å3 with calculated density of 1.771 g cm-3. The asymmetric unit 

includes one unit of 2. It itself consists out of two planar pyrazole-rings (|Θout of plane| ≤ 1.1°) with 

averaged dihedral angle of 73.2° between both. This twist is higher compared to that found in 

solventfree TNBPz (71.44(5)°), but lower in comparison to TNBPz⋅H2O (1H2O) (78.99(6)°).[11] 

The bond lengths and angles found in the pyrazole-rings are similar to those of the ionic detivatives 

of the TNBPz−1 anion (e.g. compound 6), but are generally more distinct in each ring due to the 

abolished indistinguishability of the nitrogen through the methyl-groups. The lengths of the 

nitrogen-nitrogen bonds are 1.330 Å and 1.340 Å. In comparison the carbon-nitrogen bonds closer 

to the methyl-group are longer with each having a length of 1.355 Å, while the other carbon-
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nitrogen bonds are shorter (1.325 Å, 1.329 Å). In return the carbon-carbon bonds closer to the 

methyl-group with lengths of 1.382 Å and 1.384 Å are shorter compared to the other carbon-carbon 

bonds with lengths of 1.399 Å and 1.403 Å. The angles at the ring-nitrogen are not similar 

anymore, with methylated nitrogen are widened (110.58°,111.72°) and the angles at the other 

nitrogen are compressed (104.56°, 104.91°) compared to those found in 6. The bond angles at the 

nitro-carbon more distant to the methyl-group are very similar to those of compound 6 (113.9°, 

114.1°), while the nitro-carbon closer to the methyl-group are slightly compressed (109.4°, 109,6°). 

The carbon-carbon bond between the rings and the carbon-nitrogen bonds of the nitro-groups have 

aromatic character with a length of 1.465 Å and 1.438−1.447 Å, respectively. Compared to the 

nitro-groups the carbon-nitrogen bonds of the methyl-groups possess higher length of 1.469 Å and 

1.472 Å, showing that they are in contrast not a part of the aromatic system. The nitrogen of the 

nitro-groups and carbon of the methyl-groups lie in the plane of its pyrazol ring (|Θout of plane| ≤ 3.8°).  

 

Figure 2. Molecular unit of 1,1-dimethyl-3,3,5,5-tetranitro-4,4-bipyrazole (2) in the 

crystalline state. Ellipsoids correspond to 50% probability levels. Hydrogen radii are 

arbitrary. Selected bond lengths (Å) and angles [deg.]: N1–N2 1.329(3), N1–C1 1.356(4), 

N1–C4 1.466(4), C1–C2 1.382(3), C2–C6 1.465(4), C6–C7 1.399(3), O1–N3 1.231(3), N3–

C1 1.438(3), N2–N1–C1 110.7(2), N2–N1–C4 118.1(2), C1–N1–C4 131.2(2), N2–C3–N4 

118.6(2), O1–N3–C1 118.2(3), C1–C2–C6 129.2(2), C2–C6–C7 129.2(3), C1–N1–N2–C3 

-0.8(3), C4–N1–N2–C3 178.2(2), C4–N1–C1–N3 1.6(4), N2–N1–C1–C2 1.1(3), C1–C2–

C6–C7 –104.2(3), C1–C2–C6–C5 74.4(4), O1–N3–C1–N1 –13.7(4). 
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The crystal structure of bis(guanidinium) 3,3,5,5-tetranitro-4,4-bipyrazolate (4) is shown 

in Figure 3 with bond lengths and angles. Compound 3 crystalizes in the monoclinic space 

group P21/c with four molecules in the unit cell. The volume of the unit cell is 1721.9(4) Å3 

with lattice constants a = 10.7792(15), b = 17.441(12), c = 9.6177(15) Å and β = 

107.766(15)°. The calculated density at 298 K is 1.63 g/cm3. The molecule of 4 can be 

divided in two components: the biyprazolate anion and the guanidinium cations. The bond 

lengths between the carbon and the nitrogen atoms in the guanidinium cation exhibit similar 

values of 1.32 Å and 1.34 Å. The average bond angle between the carbon atom and the 

nitrogen atoms in the cation is around 120°. Both pyrazole rings and their nitro groups have 

a similar arrangement. The planes which are defined through each ring are twisted by 

63.4(3)° (C3−C2−C5−C6) to each other. The N−O bonds of the nitro groups show the 

standard length for nitro groups of 1.24 Å.[13] The bond lengths between N3−C1 of 

1.433(3) Å, N4−C3 of 1.431(3) Å, N7−C4 of 1.432(3) Å and N8−C6 of 1.434(3) Å are 

close to the standard value for C−N single bonds of 1.47 Å.[13] The bonds between N1−N2 

(1.346(3) Å), N1−C1 (1.347(3) Å) and N2−C3 (1.349(3) Å) all have similar lengths. The 

bonds between C1−C2 and C2−C3 have lengths of 1.393(3) Å and 1.391(3) Å. So, they all 

have the standard length for aromatic systems of these elements. The bond lengths and 

angles differ slightly from the ones of the anhydrous pyrazole.[14] The distance between C2 

and C5, the atoms which connect both rings, is with 1.467(3) Å between the standard length 

for C=C double bonds and C−C single bonds. A comparable C−C bond length between two 

nitrogen-rich aromatic rings can be observed in TKX-50 with 1.444(3) Å.[15] The angles in 

the ring (106.96(18)° (N2−N1−C1), 113.36(19)° (N1−C1−C2)) coincide with the different 

bond lengths (1.346(3) Å (N1−N2), 1.391(3) Å (C2−C3)). This means the rings are slightly 

deformed. The angles in the nitro groups and between the nitro groups and the ring differ 

just very slightly among the four nitro groups (O3−N4−O4 123.0(2)°, O3−N4−C3 

119.70(19)°, O5−N7−O6 122.82(19)°, O5−N7−C4 118.86(18)°, O1−N3−O2 123.1(2)°, 

O1−N3−C1 118.59(19)°, O7−N8−O8 123.03(19)°, O7−N8−C6 118.58(18)°. The torsion 

angles show that both pyrazole rings are twisted to eachother.  
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Figure 3. Molecular unit of bis(guanidinium) 3,3,5,5-tetranitro-4,4-bipyrazolate (4) in the 

crystalline state. Ellipsoids correspond to 50% probability levels. Hydrogen radii are arbitrary. 

Selected bond lengths (Å) and angles [deg.]: O1–N3 1.229(3), N1–N2 1.346(3), N1–C1 1.347(3), 

C1–C2 1.393(3), C2–C5 1.467(3), N2–C3 1.349(3), N3–C1 1.433(3), N9–C7 1.320(3), N10–C7 

1.316(4), N2–N1–C1 106.96(18), N1–C1–N3 118.7(2), O1–N3–C1 118.3(2), C1–C2–C5 

129.60(19), N10–C7–N11 119.6(2), C1–N1–N2–C3 –0.8(2), N2–N1–C1–N3 –179.87(17), N2–

N1–C1–C2 1.4(2), O1–N3–C1–C2 170.0(2), C1–C2–C5–C6 –115.4(3), C3–C2–C5–C4 –122.1(3), 

C3−C2−C5−C6 63.4(3). 

Compound 5 (Figure 4) crystallizes in the orthorhombic space group P ccn with a cell volume of 

1802.61(6) Å3 and four formula units per cell. The cell constants are a = 10.2845(2) Å, 

b = 18.8916(4) Å and c = 9.2779(2) Å. The calculated density at 298 K is 1.66 g/cm3. The different 

cation has no influence on the structure of the bipyrazolate, compared to compound 4. The rings 

are twisted by 56.04° (C1−C2−C2−C3) against each other. The bonds between N1−N2 

(1.3398(13) Å), N1−C1 (1.3475(13) Å), N2−C3 (1.3441(14) Å), C1−C2 (1.3934(15) Å) and 

C2−C3 (1.3964(14) Å) have aromatic character.[13] The bonds between N1−N2, N1−C1, 

N2−C3, C1−C2 and C2−C3 have the same length. The bond between C2 and C2 is with 

1.4623(14) Å between the standard length for C−C double bonds and C−C single bonds.[13] The 

rings are slightly deformed and the oxygens are slightly displaced out of the plane. The bonds 

between C4 and the surrounding nitrogens N5, N7 and N8 have the typical length for aromatic 
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bonds. The N5−N6 bond is with a length of 1.4062(16) Å between a single and an aromatic 

bond.[13] The bond angles between N5−C4−N8, N7−C4−N8, N5−C4−N7 and N6−N5−C4 defer 

slightly from 120°. 

 

Figure 4. Molecular unit of bis(aminoguanidinium) 3,3,5,5-tetranitro-4,4-bipyrazolate (5) in the 

crystalline state. Ellipsoids correspond to 50% probability levels. Hydrogen radii are arbitrary. 

Selected bond lengths (Å) and angles [deg.]: N1–N2 1.3398(13), N1–C1 1.3475(13), C1–C2 

1.3934(15), C2–C2 1.4623(14), N8–C4 1.3280(18), N2–N1–C1 106.98(9), N1–N2–C3 106.87(9), 

C1–C2–C3 99.11(8), C1–C2–C2 130.42(9), N7–C4–N8 119.66(13), C1–N1–N2–C3 0.34(11), 

C1–C2–C2–C1 130.13(13), C61–N5–C4–N8 –176.91(13). 

Compound 6 crystallizes orthorhombic space group Pca21 with 16 formulas per unit cell. The 

lattice parameters are a = 17.1257(5) Å, b = 9.8507(3) Å and c = 33.8680(11) Å, giving a cell 

volume of 5713.5(3) Å3. The calculated density is 1.768 g cm-3, which is slightly lower than the 

density of anhydrous TNBPy (1.820 g cm-3) and TNBPy⋅H2O (1H2O) (1.830 g cm-3).[11]  

The asymmetric unit includes four units of 6. The anions consist each out of two planar pyrazole-

rings (|Θout of plane| ≤ 2.2°) with averaged dihedral angle of 70.8° between both. This twist is lower 

compared to that found in anhydrous TNBPy (71.44(5)°) and TNBPy⋅H2O (1H2O) (78.99(6)°).[11] 

The carbon-carbon bond in the pyrazole-rings have an medium length of 1.388 Å. The carbon-
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nitrogen and nitrogen-nitrogen bond lengths are very similar with 1.342 Å and 1.345 Å on average, 

respectively. The medium bond length between the ring-connecting carbon is 1.465 Å, which 

sustainably smaller than a typical carbon-carbon single bond, displaying its aromatic character. 

Similarly, the carbon-nitrogen bond to the nitro-groups have a reduced length of 1.430 Å on 

average, also showing their affiliation to the aromatic system. The medium bond angle located at 

one nitrogen of the pyrazole-rings is 106.9°, nearly matching the angle of an equilateral pentagon 

(108°). In comparison the bond angles at the nitro-carbons are widened (averaged 113.3°), while 

bond angles located at the ring-connecting carbon are compressed (averaged. 99.8°). All nitrogen 

of the nitro-groups nearly lies in the plane of its pyrazole-ring (|Θout of plane| ≤ 6.9°), while the oxygen 

shows different amount of rotation against this plane (0.2° ≤ |Θout of plane| ≤ 30.7°) (Figure 5). 

 

Figure 5. Molecular unit of bis(hydroxylammonium) 3,3,5,5-tetranitro-4,4-

bipyrazolate (6) in the crystalline state. Ellipsoids correspond to 50% probability levels. 

Hydrogen radii are arbitrary. Selected bond lengths (Å) and angles [deg.]: N1–N2 1.348(7), 

N1–C1 1.341(7), C1–C2 1.395(7), C2–C5 1.461(7), N3–C1 1.424(7), N4–C3 1.430(7), 

O39–N39 1.408(7), O3–N4 1.243(6), N2–N1–C1 107.4(5), N3–C1–C2 128.2(5), C1–C2–

C5 131.2(5), C3–C2–C5 129.2(5), C3–C2–C5 129.2(5), C1–N1–N2–C3 1.2(6), N2–N1–

C1–N3 179.9(5), N2–N1–C1–N3 179.9(5), N1–N2–C3–N4 178.8(4), C1–C2–C5–C4 

117.6(8), C1–C2–C5–C6 –66.3(9). 
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9.2.3. 15N NMR spectroscopy 

All synthesized compounds were characterized via multinuclear 1H, 13C and 14N NMR 

spectroscopy, elemental analysis, vibrational spectroscopy (IR), mass spectrometry. In addition, 

the 15N NMR spectra of potassium 4-(1-amino-3,5-dinitropyrazolyl)-3,5-dinitropyrazolate (11) 

and 1,1-diamino-3,3,5,5-tetranitro-4,4`-bipyrazole (12) were recorded and the spectrum is shown 

in Figure 6. Compound 11 exhibits nine resonances in the 15N NMR spectrum. All eight resonances 

for the nitro groups and the pyrazole nitrogen atoms are observed in the range between −16.1 and 

165.2 ppm. The amino group is oserved at −284.4 ppm as a triplet with a coupling constant of 1JNH 

= 73.6 Hz. 15N NMR spectrum of 12 exhibits five resonances; both nitro groups show resonances 

at −26.1 (N1) and −32.4 (N2) ppm, both N atoms of the pyrazole ring-system are observed at −81.4 

(N3) and −163.0 (N4) ppm, whereas the amino groups are visible at −283.3 (N5) ppm. The NH2 

groups are observed as a singlet resonance in the 1H coupled 15N spectrum and not as the expected 

triplet resonance. Possible reason for this result is the potential 1H/2D exchange of 

(NH2)2TNBPz (12) with the d6-DMSO solvent, in which the sample was measured. 
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Figure 6. 15N NMR spectra of potassium 4-(1-amino-3,5-dinitropyrazolyl)-3,5-

dinitropyrazolate (11) and 1,1-diamino-3,3,5,5-tetranitro-4,4-bipyrazole (12) in d6-

DMSO. 

9.2.4. Toxicity assessment 

To get a first impression how toxic the nitrated bipyrazole salts 11 and 12 act towards the aquatic 

environment, they were exposed to Vibrio fischeri bacteria strains. These bioluminescent bacteria 

strains are naturally found in the seas, therefore the measurements with different concentrations of 

the desired compounds are carried out in a stock solution of 2% NaCl at 15 °C±0.3 °C.[16] The 

bioluminescence of the bacteria was measured after 15 and 30 minutes exposure time with the 
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compounds again and leads to the EC50 (effective concentration, were the bioluminescence is 

decreased to 50%). At first, they were classified as non-toxic (> 1.00 g/L); toxic (0.10–1.00 g L−1) 

and very toxic (< 0.10 g L−1).[17] For the guanidinium salt 4, EC50 values of 2.09 g L−1 (15 min) and 

1.49 g L−1 (30 min) were measured, the potassium salt 3 of the same TNBPz anion led to values of 

1.66 g L−1 and 1.27 g L−1. Therefore, this anion is considered as not-toxic. This is in quite good 

agreement with the potassium salt of the TriNBPz anion (EC50 (15 min) = 2.86 g L−1; 

EC50 (30 min) = 1.42 g L−1).[18] Eventually, compared to the corresponding monomer, the 

potassium salt of the 3,4-dinitropyrazole, this is an interesting finding, because it has an EC50 value 

of 1.21 g/L and 0.95 g/L, respectively and is considered as toxic.[19] The values for the potassium 

salts of the corresponding N-oxides are suggesting that they are even more toxic.[20] The common 

used secondary explosive RDX is more toxic towards the bacteria strain compared to the herein 

presented compounds (EC50 (15 min) = 0.33 g L−1; EC50 (30 min) = 0.24 g L−1).[17,21] 

Table 1. Toxicity assessment resuls for compounds 3 and 4. 

Compound 
EC50 [g L−1] 

(15 min) 

EC50 [g L−1] 

(30 min) 
Toxicity level[a] 

3 >>1.64 >>1.64 + 

4 2.06 1.49 + 

[a] Toxicity level (incubation 30 min): very toxic () < 0.10 g L−1; toxic (o) 0.10–1.00 g L−1; less toxic (+) 

> 1.00 g L−1. 

9.2.5. Physical and detonation properties 

Since all synthesized compounds (2–12) in this work are energetic materials their properties were 

investigated. In addition, all theoretically and experimentally determined detonation properties for 

compounds 2, 4–6, 8 11, and 12 are reported in Table 2. The thermal behavior of all compounds 

was determined with OZM Research DTA 552-Ex instrument at a heating rate of 5 °C min−1. In 

the case of all TNBPz based energetic materials compounds 2 (Tdec. = 270 °C), 4 (Tdec. = 300 °C), 

8 (Tdec. = 276 °C) and 11 (Tdec. = 280 °C) show the highest thermal stability, whereas 2 and 4 

decompose prior melting at 186 °C and 251 °C, respectively. Comparison of the 

hydroxylammonium salts (NH3OH)HTriNBPz (6 Tdec. = 230 °C), (NH3OH)HTNBPz (15 Tdec. = 

201 °C) and (NH3OH)2TNBPz (16 Tdec. = 194 °C) to each other shows that the TNBPz− anion based 

salt exhibits better thermal stability than the related hydroxylammonium salts.[18]  



Energetic Derivatives of 3,3,5,5-Tetranitro-4,4-bipyrazole (TNBPz): Synthesis, 

Characterization and Properties 

 
271 

 

Figure 7. DTA plots for selected compounds. 

The plotted DTAs of compounds 7–9, 11 and 22 are presented in Figure 7. The ionic compounds 

7 (215 °C), 8 (276 °C), 9 (250 °C) and 11 (280 °C) show sharp decomposition signals in the DTA 

plots, whereas the organic compound (NH2)2TNBPz (12) decomposes at 244 °C prior melting 

(234 °C). 

The lowest room temperature densities for the TNBPz based ionic derivatives are 1.66 g 

cm−3 for compound 5 and 1.63 g cm−3 for compound 4. The highest reported density for the 

TNBPz based energetic derivatives is of the potassium salt 11 with 2.00 g cm−3, followed 

by 1.75 g cm−3 for compound 12. 

Table2. Physico-chemical properties of 2, 4–6, 8, 11, and 12. 

Compound 2 4 5 6 8 11 12 

IS[a] [J] 10 40 10 5 10 10 15 

FS[b] [N] 350 > 360 > 360 324 360 48 324 

ESD[c] [J] 0.041 1.50 1.25 0.20 0.50 0.025 0.013 

Ω[d] [%] −51.4 −51.8 −51.9 −25.3 −36.8 −23.9 −27.9 
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Tm
[e] [°C] 186 251 179 − − − 234 

Tdec
[f] [°C] 270 300 210 194 276 280 244 

ρ[g] [g cm−3] 1.72 1.63 1.66 1.72 1.69 2.00 1.75* 

ΔHf°[h] [kJ mol−1] 200.9 88.8 308.5 236.7 108.7 139.3 464.5 

EXPLO5 6.03        

−ΔEU°[i] [kJ kg−1] 4795 3903 4224 5657 4759 5172 5540 

TC-J
[j] [K] 4041 2909 3009 3934 3421 3633 4114 

pC-J 
[k] [kbar] 242 208 231 302 258 318 305 

DC-J
[l] [m s−1] 7711 7484 7866 8456 8003 8517 8469 

V 
[m] [dm3 kg−1] 693 474 467 770 452 560 738 

[a] Impact sensitivity (BAM drophammer, method 1 of 6); [b] friction sensitivity (BAM drophammer, method 1 of 6); [c] 

electrostatic discharge device (OZM research); [d] oxygen balance; [e] melting point (DTA, β = 5°C∙min−1); [f] temperature of 

decomposition (DTA, β = 5°C∙min−1); [g] density at 298 K; [h] standard molar enthalpy of formation; [i] detonation energy; [j] 

detonation temperature; [k] detonation pressure; [l] detonation velocity; [m] volume of detonation gases at standard temperature 

and pressure conditions. *pycnometric density measurement. 

Experimentally determined sensitivities toward impact, friction and electrostatic discharge 

are also reported in Table 2. The determined sensitivities vary for impact from 5 to 40 J, 

for friction from 48 to > 360 N and for electrostatic discharge from 0.013 J up to 1.50 J. 

The most impact sensitive material is the hydroxylammonium salt 6 with 5 J. The most 

impact insensitive compound with 40 J is the guanidinium salt 4. The energetic materials 

2 (10 J), 5 (10 J), 8 (10 J), 11 (10 J) and 12 (15 J) exhibit moderate impact sensitivity values. 

In addition, the most synthesized ionic and neutral polynitrated bipyrazole derivatives 

exhibit low sensitivity toward friction. Only compound 12 shows high friction sensitivity 

with value of 48 N. In contrast to this results, the most sensitive compound to ESD is 12 

with 0.013 J, followed by the potassium salt 11 with 0.025 J. 

For the most synthesized energetic materials positive standard molar enthalpies of 

formation were calculated. The highest calculated enthalpy of formation for a TNBPz based 

derivative is 464.5 kJ mol−1 (12). The lowest positive enthalpy of formation was observed for the 

guanidinium salt 4 (88.8 kJ mol−1). Using the room temperature densities[22] and the determined 

enthalpies of formation, several detonation properties were calculated for compounds 2, 4–6, 8, 11, 

and 12 by using the EXPLO5 code (6.03 Version).[23] The calculated values for the detonation 

energy (−ΔEU°) range from 3900 to 5700 kJ kg−1. The highest values were calculated for 

compounds 5 (5657 kJ kg−1), 11 (5172 kJ kg−1) and 22 (5540 kJ kg−1), whereas the lowest were 

determined for the guanidinium salt 4 with 3903 kJ kg−1. In addition, the best performing 
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compounds regarding calculated detonation pressure (pC-J) and detonation velocity (DC-J) are the 

ionic compounds 6 (pC-J = 328 kbar, DC-J = 8673 m s−1), 11 (pC-J = 318 kbar, DC-J = 8517 m s−1) 

and the N-aminated compound 12 (pC-J = 305 kbar, DC-J = 8469 m s−1). 

Additionaly, he explosive performance (explosiveness) of 1,1-diamino-3,3,5,5-tetranitro-4,4`-

bipyrazole ((NH2)2TNBPz, 12) was investigated in the small scale by the small-scale shock 

reactivity test (SSRT). For this purpose, a specific amount of the sample was put in a calendric 

whole in a steel block on the top of an aluminum block. Compound 12 was pressed at a 

consolidation dead load of 3 t with a dwell time of 5 s into a perforated steel block. The sample 

was initiated by a commercially available detonator (Orica-DYNADET C2-0ms). The set-up for 

this test is shown in Figure 8 and has been previously reported in the literature.[24] 

 

Figure 8. SSRT results: A) schematical illustration; B) photograph of the setup; C) aluminum block 

and steel block filled with compound 12; D) dented aluminum block after initiation of the explosive 

with a commercial detonator. 

The obtained results after the initiation of compound 12 are shown in Figure 8 (D). The 

dent size was filled with a fine powdered SiO2 sand and the resulting weight of SiO2 was 

reported. The results for 12 are shown together with the corresponding value for HNS, PYX 
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and TKX-55 in Table 3. The obtained value for (NH2)2TNBPz (12, 786 mg) compared to 

HNS (672 mg), PYX (637 mg) and TKX-55 (641 mg) shows that the explosive performance 

of double aminated 12 higher is than the heat resisting explosives HNS, PYX and TKX-55. 

Table 3. The SSRT for 12 compared to HNS, PYX and TKX-55.[24] 

 HNS PYX TKX-55 12 

mE [mg][a] 469 474 496 472 

m [mg] [b] 672 637 641 786 

[a] Mass of the explosive: mE = Vs ρ 0.95; [b] Mass of SiO2. 

9.3. Conclusions 

During this work the energetic functionalization of TNBPz (1H2O) was achieved. We report 

the neutralization reactions of TNBPz with different nitrogen-rich bases, which yielded many 

different ionic based energetic materials. In addition, the N-methylation and N-amination of 1H2O 

is reported. All new synthesized compounds were obtained from good to excellent yields. The N-

methylation of TNBPz (1H2O) was achieved with dimethyl sulfate at elevated temperatures. The 

mono N-amination of TNBPz (1H2O) was obtained by reacting 1H2O with hydroxylamine-O-

sulfonic acid (HOSA) in a NaOH/KH2PO4 buffer solution at 60 °C. Whereas, the double N-

amination of TNBPz was obtained by reacting 1H2O with O-p-toluenesulfonylhydrohylamine 

(TOSA). All synthesized compounds were extensively investigated and the physico-chemical 

properties of the following compounds 2, 4–6, 8, 11 and 12 are reported. From all synthesized 

energetic compounds, the ionic derivatives 6 (pC-J = 302 kbar, DC-J = 8456 m s−1), 11 (pC-J = 318 

kbar, DC-J = 8517 m s−1) and the N-aminated 12 (pC-J = 305 kbar, DC-J = 8469 m s−1) show the 

best performance. The hydroxylammonium salt 6 (IS = 5 J) exhibits the highest impact sensitivity, 

whereas the potassium salt 11 (FS = 48 N) is the most friction sensitive compound. Finally, the 

toxicity of compounds 3 and 4 toward aquatic bacteria (Vibrio fisheri) was investigated and the 

obtained results show that the ionic derivatives based on TNBPz are not toxic. 
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9.4. Experimental Part 

9.4.1. General Information 

1H, 13C, 14N and 15N NMR spectra were recorded on JEOL 270 and BRUKER AMX 400 

instruments. The samples were measured at room temperature in standard NMR tubes (Ø 

5 mm). Chemical shifts are reported as δ values in ppm relative to the residual solvent peaks 

of d6-DMSO (δ H: 2.50, δ C: 39.5). Solvent residual signals and chemical shifts for NMR 

solvents were referenced against tetramethylsilane (TMS, δ = 0 ppm) and nitromethane. 

Unless stated otherwise, coupling constants were reported in hertz (Hz) and for the 

characterization of the observed signal multiplicities the following abbreviations were used: 

s (singlet), d (doublet), t (triplet), q (quartet), quint (quintet), sept (septet), m (multiplet) and 

br (broad). Low resolution mass spectra were recorded on a JEOL JMS-700 MStation mass 

spectrometer (EI+/DEI+). Infrared spectra (IR) were recorded from 4500 cm−1 to 650 cm−1 

on a PERKIN ELMER Spectrum BX-59343 instrument with SMITHS DETECTION 

DuraSamplIR II Diamond ATR sensor. The absorption bands are reported in wavenumbers 

(cm−1). Elemental analysis was carried out by the department’s internal micro analytical 

laboratory on a Elementar Vario el by pyrolysis of the sample and subsequent analysis of 

the formed gases. Decomposition temperatures were measured via differential thermal 

analysis (DTA) with an OZM Research DTA 552-Ex instrument at a heating rate of 5 °C 

min−1 and in a range of room temperature to 400 °C. All sensitivities toward impact (IS) 

and friction (FS) were determined according to BAM (German: Bundesanstalt für 

Materialforschung und -prüfung) standards using a BAM drop hammer and a BAM friction 

apparatus.[25] All energetic compounds were tested for sensitivity towards electrical 

discharge using an Electric Spark Tester ESD 2010 EN. 

9.4.2. Synthesis 

1,1-Dimethyl-3,3,5,5-tetranitro-4,4-bipyrazole (2) 

3,3,5,5-Tetranitro-4,4-bipyrazole monohydrate (500 mg, 1.51 mmol) was dissolved in 

water (10 mL) and NaHCO3 (260 mg, 3.1 mmol) was added. The yellow solution was then 

heated to 65 °C and dimethyl sulfate (0.60 mL, 6.0 mmol) was added dropwise. The reaction 
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mixture was stirred for 12 h at 85 °C. The white precipitate was filtered, washed with small 

amount of ice-water and tried on air to yield 2 (450 mg, 1.32 mmol, 88 %) as a white solid. 

DTA (5 °C min−1): 186 (melt.), 270 °C (exo.); DTA (5 °C min−1): 186 °C (melt.), 270 °C 

(exo.); BAM: drop hammer: 10 J (100–500 μm); friction tester: 360 N (100–500 μm); ESD: 

41 μJ (100–500 μm). IR (ATR), ṽ (cm−1) = 1566 (s), 1553 (w), 1504 (vs), 1428 (s), 1328 

(vs), 1292 (s), 1011 (m), 890 (m), 876 (m), 767 (m), 767 (m), 694 (m). 1H NMR (d6-DMSO, 

400 MHz, ppm) δ = 4.40 (s, 6H). 13C NMR (d6-DMSO, 101 MHz, ppm) δ = 149.4, 144.0, 

101.8. 14N NMR (d6-DMSO, 29 MHz, ppm) δ = −32. Elem. Anal. (C6H6N8O8, 342.18 g 

mol−1) calcd.: C 28.08, H 1.77, N 32.75 %. Found: C 27.97, H 1.61, N 32.52 %. 

Dipotassium 3,3,5,5-tetranitro-4,4-bipyrazolate monohydrated (3H2O) 

3,3,5,5-Tetranitro-4,4-bipyrazole monohydrate (665 mg, 2.0 mmol, 2.0 eq.) was 

dissolved in a mixture of EtOH (10 mL) and water (5 mL) and to the solution was added 

potassium carbonate (277 mg, 2.00 mmol, 2.0 eq.). The mixture was heated to reflux for 30 

min and after cooling down to room temperature the solvent was removed in vacuo to yield 

compound 3H2O as yellow solid (716 mg, 1.75 mmol, 97 %). 

BAM: drop hammer: 1.5 J (100–500 μm); friction tester: 120 N (100–500 μm); ESD: 0.16 J 

(100–500 μm).IR (ATR), ṽ (cm−1) = 3454 (m), 3425 (m), 3359 (m), 3195 (br), 1678 (m), 

1654 (s), 1546 (s), 1494 (m), 1477 (m), 1378 (vs), 1325 (vs), 1298 (s), 1179 (m), 1021 (m), 

993 (s), 855 (s), 835 (s); 1H NMR (d6-DMSO, 400 MHz, ppm) δ = 3.33 (s, H2O). 13C NMR 

(d6-DMSO, 101 MHz, ppm) δ = 153.9, 104.4. 14N NMR (d6-DMSO, 29 MHz, ppm) δ = −14.  

Compound 3H2O was dried in vacuo for 6 hours to yield the anhydrous dipotassium 

3,3,5,5-tetranitro-4,4-bipyrazolate (3). 

Elem. Anal. (C6K2N8O8, 390.31 g mol−1) calcd.: C 18.46, H 0.00, N 28.71 %. Found: 

C 18.15, H 0.00 N 27.82 %. 

Bis(guanidinium) 3,3,5,5-tetranitro-4,4-bipyrazolate (4) 

3,3,5,5-Tetranitro-4,4-bipyrazole monohydrate (166 mg, 0.5 mmol, 1.0 eq.) was solved in 

ethanol (10 mL) and the solution was heated to 75 °C. Guanidine carbonate (91 mg, 

0.5 mmol, 1.0 eq.) was added. Filtration and removing the solvent at room temperature 

yielded the product as yellow crystals (23, 216 mg, 0.50 mmol, 100 %). 
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DTA (5 °C min−1): 251 (melt.), 300 °C (exo.); BAM: drop hammer: 40 J (100–500 μm); 

friction tester: >360 N (100–500 μm); ESD: 1.50 J (100–500 μm). IR (ATR), ṽ (cm−1) = 

3430 (s), 3375 (m), 3154 (m), 2797 (w), 1634 (s), 1574 (w), 1528 (m), 1474 (s), 1402 (m), 

1377 (m), 1336 (vs), 1310 (s), 1300 (vs), 1166 (w), 1001 (m), 846 (s), 772 (vw), 713 (w), 

692 (w), 614 (vw), 549 (vw), 524 (vw). Raman (1064 nm, 200 mW, 25 °C): ṽ (cm−1) = 1631 

(13), 1505 (11), 1478 (5), 1385 (72), 1360 (45), 1321 (26), 1282 (13), 1216 (7), 1169 (100), 

1009 (17), 830 (35), 816 (3),776 (2), 761 (5), 671 (4), 526 (6), 381 (3), 307 (5), 277 (9), 121 

(35). 1H NMR (d6-DMSO, 400 MHz, ppm) δ = 6.93 (s, 12H). 13C NMR (d6-DMSO, 101 

MHz, ppm) δ = 157.9, 153.8, 104.3. 14N NMR (d6-DMSO, 29 MHz, ppm) δ = −17. Elem. 

Anal. (C8H12N14O8, 432.27 g mol−1) calcd.: C 22.23, H 2.80, N 45.36 %. Found: C 22.51, 

H 2.84, N 45.31 %. 

Bis(aminoguanidinium) 3,3,5,5-tetranitro-4,4-bipyrazolate (5) 

3,3,5,5-Tetranitro-4,4-bipyrazole monohydrate (332 mg, 1.00 mmol, 1.0 eq.) was solved 

in ethanol (20 mL) and water (10 mL). The solution was heated to 75 °C. Aminoguanidine 

bicarbonate (273 mg, 2.0 mmol, 2.0 eq.) was added. Filtration and removing the solvent at 

room temperature results the product as yellow crystals (5, 463 mg, 1.00 mmol, 100 %). 

DTA (5 °C min−1): 179 (melt.), 210 °C (exo.); BAM: drop hammer: 10 J (100–500 μm); 

friction tester: >360 N (100–500 μm); ESD: 1.25 J (100–500 μm). IR (ATR), ṽ (cm−1) = 

3476 (w), 3430 (m), 3354 (m), 3319 (m), 3167 (w), 2827 (w), 1670 (s), 1532 (m), 1478 (s), 

1405 (w), 1379 (m), 1338 (vs), 1309 (s), 1217 (w), 1160 (w), 1078 (vw), 998 (m), 844 (s), 

759 (vw), 708 (w), 633 (w), 517 (vw). Raman (1064 nm, 200 mW, 25 °C): ṽ (cm−1) = 1627 

(17), 1506 (11), 1481 (8), 1407 (29), 1388 (100), 1362 (49), 1318 (26), 1312 (23), 1280 

(15), 1215 (11), 1178 (80), 1162 (60), 1023 (5), 1000 (6), 971 (7), 832 (48), 814 (4), 761 

(7), 667 (4), 633 (3), 501 (5), 307 (4), 293 (6), 279 (9), 194 (8), 155 (13). 1H NMR (d6-

DMSO, 400 MHz, ppm) δ = 8.58 (s, 2H), 7.27 (s, 4H), 6.76 (s, 4H), 4.69 (s, 4H). 13C NMR 

(d6-DMSO, 101 MHz, ppm) δ = 159.2, 154.3, 104.7. 14N NMR (d6-DMSO, 29 MHz, ppm) 

δ = −19. Elem. Anal. (C8H14N16O8, 462.30 g mol−1) calcd.: C 20.78, H 3.05, N 48.48 %. 

Found: C 21.04, H 3.07, N 48.25 %. 
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Bis(hydroxylammonium) 3,3,5,5-tetranitro-4,4-bipyrazolate (6) 

3,3,5,5-Tetranitro-4,4-bipyrazole monohydrate (500 mg, 1.50 mmol, 1.00 eq.) was 

dissolved in Et2O (20 mL) and EtOH (5 mL). Aqueous NH2OH (241 mg, 50-wt%, 

6.00 mmol, 4.00 eq.)  was added dropwise and the resulting reaction mixture was stirred for 

1 h at room temperature. Removal of the solvents in vacuo afforded compound 6 as a yellow 

solid (570 mg, 1.50 mmol, 100%). 

DTA (5 °C min−1): 194 °C (exo.); BAM: drop hammer: 5 J (100–500 μm); friction tester: 

324 N (100–500 μm); ESD: 200 mJ (100–500 μm). IR (ATR), ṽ (cm−1) = 3138 (br), 2605 

(br), 1538 (m), 1481 (s), 1393 (s), 1341 (vs), 1311 (vs), 1191 (m), 1028 (m), 1004 (s), 850 

(vs), 769 (w), 692 (w). 1H NMR (d6-DMSO, 400 MHz, ppm) δ = 10.13 (s, 6H), 9.96 (s, 

2H). 13C NMR (d6-DMSO, 101 MHz, ppm) δ = 153.6, 104.1. 14N NMR (d6-DMSO, 29 

MHz, ppm) δ = −14. Elem. Anal. (C6H8N10O10, 380.19 g mol−1) calcd.: C 18.95, H 2.12, N 

36.84 %. Found: C 19.40, H 2.00, N 36.34 %. 

Bis(hydrazinium) 3,3,5,5-tetranitro-4,4-bipyrazolate (7) 

3,3,5,5-Tetranitro-4,4-bipyrazole monohydrate (499 mg, 1.5 mmol, 1.0 eq.) was solved in 

ethanol (12 mL). The solution was heated to 75 °C. Hydrazine hydrate (150 mg, 3.0 mmol, 

2.0 eq.) was added. Filtration and removing the solvent at room temperature results the 

product as yellow crystals (7, 567 mg, 1.50 mmol, 100 %). 

BAM: drop hammer: 4 J (100–500 μm); friction tester: 216 N (100–500 μm); ESD: 0.25 J 

(100–500 μm). IR (ATR), ṽ (cm−1) = 3339 (vw), 3205 (w), 2592 (m), 1610 (w), 1530 (m), 

1474 (s), 1374 (m), 1340 (vs), 1315 (vs), 1303 (s), 1284 (s), 1180 (m), 1089 (m), 1002 (m), 

947 (m), 845 (vs), 772 (w), 760 (w), 713 (w), 689 (w), 630 (w), 591 (w), 521 (w). Raman 

(1064 nm, 200 mW, 25 °C): ṽ (cm−1) = 1625 (32), 1514 (7), 1478 (5), 1395 (100), 1364 

(68), 1327 (28), 1320 (27), 1286 (17), 1217 (10), 1192 (94), 1182 (90), 1025 (6), 1003 (5), 

951 (3), 833 (57), 814 (2), 775 (3), 761 (12), 668 (5), 596 (2), 526 (2), 375 (4), 309 (8), 282 

(9), 175 (9), 113 (4). 1H NMR (d6-DMSO, 400 MHz, ppm) δ = 6.33 (s, 10H). 13C NMR (d6-

DMSO, 101 MHz, ppm) δ = 153.0, 103.6. 14N NMR (d6-DMSO, 29 MHz, ppm) δ = −17. 

Elem. Anal. (C6H10N12O8, 378.22 g mol−1) calcd.: C 19.05, H 2.67, N 44.44 %. Found: 

C 19.31, H 2.98, N 42.06 %. 
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Bis(ammonium) 3,3,5,5-tetranitro-4,4-bipyrazolate (8) 

3,3,5,5-Tetranitro-4,4-bipyrazole monohydrate (332 mg, 1.00 mmol, 1.0 eq.) was solved 

in ethanol (10 mL). The solution was heated to 75 °C. Ammonium carbonate (96 mg, 

1.0 mmol, 2.0 eq.) was added. Filtration and removing the solvent at room temperature gave 

the product as yellow crystals (25, 368 mg, 1.00 mmol, 100 %). 

DTA (5 °C min−1): 276 °C (exo.); BAM: drop hammer: 10 J (100–500 μm); friction tester: 

>360 N (100–500 μm); ESD: 0.50 J (100–500 μm). IR (ATR), ṽ (cm−1) = 3635 (vw), 3482 

(vw), 3246 (w), 2897 (w), 2775 (w), 1824 (vw), 1645 (vw), 1540 (m), 1483 (s), 1422 (s), 

1401 (s), 1341 (vs), 1310 (s), 1182 (m), 1080 (vw), 1046 (vw), 1026 (w), 1003 (s), 841 (s), 

772 (w), 758 (w), 696 (m), 591 (m), 513 (w). Raman (1064 nm, 200 mW, 25 °C): ṽ (cm−1) 

= 1644 (12), 1526 (10), 1397 (100), 1318 (20), 1288 (8), 1216 (9), 1186 (75), 1025 (4), 

1003 (5), 829 (38), 760 (7), 669 (3), 592 (4), 527 (4), 374 (4), 278 (12). 1H NMR (d6-DMSO, 

400 MHz, ppm) δ = 5.65 (s, 8H). 13C NMR (d6-DMSO, 101 MHz, ppm) δ = 151.7, 102.4. 

14N NMR (d6-DMSO, 29 MHz, ppm) δ = −17, −357. Elem. Anal. (C6H8N10O8, 348.19 g 

mol−1) calcd.: C 20.70, H 2.32, N 40.23 %. Found: C 20.59, H 2.46, N 39.33 %. 

Bis(3,6,7-triamino-[1,2,4]triazolo[4,3-b][1,2,4]triazolium) 3,3,5,5-tetranitro-4,4-

bipyrazolate (9) 

3,3,5,5-Tetranitro-4,4-bipyrazole monohydrate (450 mg, 1.36 mmol, 1.0 eq.) was 

dissolved in a mixture of abs. EtOH (20 mL) and water (10 mL). The solution was heated 

to 80 °C and 3,6,7-triamino-[1,2,4]triazolo[4,3-b][1,2,4]triazole (TATOT, 419 mg, 2.72 

mmol, 2.0 eq.) was added. The reaction mixture was stirred at the same temperature for 30 

min and then cooled to room temperature. The solvent was removed in vacuo to yield 

compound 9 as a yellow powder (812 mg, 1.31 mmol, 96 %). 

BAM: drop hammer: > 40 J (100–500 μm); friction tester: 360 N (100–500 μm); ESD: 63 

mJ (100–500 μm). IR (ATR), ṽ (cm−1) = 3462 (m), 3349 (m), 3228 (vw), 3117 (w), 1673 

(s), 1642 (s), 1594 (vw), 1571 (vw), 1547 (m), 1496 (m) 1418 (vw), 1387 (m), 1328 (vs), 

1303 (vs), 1178 (m), 1120 (vw), 1080 (vw), 1026 (s), 1002 (m), 921 (m), 839 (vs), 770 

(vw), 707 (m), 593 (m). 1H NMR (d6-DMSO, 400 MHz, ppm) δ =13.36 (s, 2H), 8.18 (s, 

4H), 7.23 (s, 4H), 5.77 (s, 4H). 13C NMR (d6-DMSO, 101 MHz, ppm) δ = 160.2, 153.8, 
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147.4, 141.2, 104.3. 14N NMR (d6-DMSO, 29 MHz, ppm) δ = −17. Elem. Anal. 

(C12H14N24O8, 622.40 g mol−1) calcd.: C 23.16, H 2.27, N 54.01 %. Found: C 23.43, H 2.08, 

N 53.78 %. 

Bis(3,5-diamino-1,2,4-triazolium) 3,3,5,5-tetranitro-4,4-bipyrazolate (10) 

3,3,5,5-Tetranitro-4,4-bipyrazole monohydrate (416 mg, 1.25 mmol, 1.0 eq.) was 

dissolved in a mixture of abs. EtOH (10 mL) and water (5 mL) and the solution was heated 

to 80 °C. 3,5-Diamino-1,2,4-triazole (248 mg, 2.50 mmol, 2.0 eq.) was added and the 

reaction mixture was stirred for 30 min. After cooling the solvent was removed in vacuo 

and compound 10 was obtained as yellow solid (631 mg, 1.23 mmol, 99 %). 

DTA (5 °C min−1): 252 °C (melt.), 289 °C (exo.); BAM: drop hammer: > 40 J (100–500 

μm); friction tester: > 360 N (100–500 μm); ESD: 0.61 (100–500 μm). IR (ATR), ṽ (cm−1) 

= 3456 (m), 3359 (m), 1682 (w), 1659 (s), 1610 (vw), 1596 (vw), 1538 (m), 1489 (m), 1412 

(w), 1390 (m), 1338 (vs), 1300 (s), 1180 (w), 1019 (m), 1002 (m), 845 (s); 1H NMR (d6-

DMSO, 400 MHz, ppm) δ = 7.37 (br, 4H). 13C NMR (d6-DMSO, 101 MHz, ppm) δ = 153.7, 

151.7, 104.2. 14N NMR (d6-DMSO, 29 MHz, ppm) δ = −17. Elem. Anal. (C10H12N18O8, 

512.32 g mol−1) calcd.: C 23.44, H 2.36, N 49.21 %. Found: C 23.29, H 2.25, N 48.20 %. 

Potassium 4-(1-amino-3,5-dinitropyrazolyl)-3,5-dinitropyrazolate (11) 

Sodium hydroxide (1.02 g, 25.0 mmol) and potassium dihydrogen phosphate (3.77 g, 28.0 

mmol) were dissolved in water (15 mL) and TNBPz • H2O (500 mg, 1.50 mmol) was added. 

The reaction mixture was heated to 60 °C and hydroxylamine-O-sulfonic acid (1.70 g, 15.0 

mmol, 10.0 eq.) was added slowly. The suspension was stirred overnight at 60 °C. The 

formed precipitate was filtered, washed with small amount of water and dried on air to yield 

compound 11 (377 mg, 69 %) as a yellow powder. 

DTA (5 °C min−1): 280 °C (exo.); BAM: drop hammer: 10 J (100–500 μm); friction tester: 

48 N (100–500 μm); ESD: 25 μJ (100–500 μm). IR (ATR), ṽ (cm−1) = 3347 (w), 3043 (br), 

1534 (s), 1481 (s), 1399 (s), 1368 (s), 1325 (vs), 1310 (vs), 1007 (m), 847 (vs), 756 (m), 

741 (m). 1H NMR (d6-DMSO, 400 MHz, ppm) δ =7.86 (s, 2H). 13C NMR (d6-DMSO, 101 

MHz, ppm) δ =153.9, 153.7, 145.3, 139.7, 106.1, 97.9. 14N NMR (d6-DMSO, 29 MHz, 

ppm) δ = −33. 15N NMR (d6-DMSO, 41 MHz, ppm) δ = −16.1, −17.3, −24.7, −30.8, −32.4, 
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−45.3, −81.6, −165.2, −284.4 (1JNH = 73.6 Hz) Elem. Anal. (C6H2KN9O8, 367.24 g mol−1) 

calcd.: C 19.62, H 0.55, N 34.33 %. Found: C 19.72, H 0.74, N 33.95 %. 

1,1-Diamino-3,3,5,5-tetranitro-4,4-bipyrazole (12) 

3,3,5,5-Tetranitro-4,4-bipyrazole monohydrate (2.00 g, 6.00 mmol, 1.0 eq.) was dissolved 

in acetonitrile (100 mL) and 1,8-diazabicyclo[5.4.0]undec-7-en (DBU, 1.85 mL, 12.3 

mmol, 2.05 eq.) was added. The resulting solution was stirred for 1 h at room temperature 

and a freshly prepared solution of O-p-toluenesulfonylhydrohylamine (TOSA, 2.8 eq.) in 

DCM was added in one portion. The resulting reaction mixture was stirred for 2 d at room 

temperature and the solvent was removed in vacuo. The resulting crude product was 

recrystallized from EtOH/H2O to result in compound 12 (1.80 g, 87 %) as a pale yellow 

solid. 

DTA (5 °C min−1): 234 °C (melt.), 244 °C (exo.); BAM: drop hammer: 15 J (100–500 μm); 

friction tester: 324 N (100–500 μm); ESD: 13 μJ (100–500 μm). IR (ATR), ṽ (cm−1) = 3338 

(m). 3273 (m), 1551 (s), 1490 (s), 1430 (m), 1380 (m), 1324 (vs), 1132 (m), 1104 (w), 1012 

(m), 932 (w), 869 (s), 731 (m). 1H NMR (d6-DMSO, 400 MHz, ppm) δ = 8.03 (s, 4H). 13C 

NMR (d6-DMSO, 101 MHz, ppm) δ = 145.5, 140.1, 100.5. 14N NMR (d6-DMSO, 29 MHz, 

ppm) δ = −32. 15N NMR (d6-DMSO, 41 MHz, ppm) δ = −26.1 (N1), −32.4 (N2), −81.4 

(N3), −163.0 (N4), −283.3 (N5). Elem. Anal. (C8H4N10O8, 344.16 g mol−1) calcd.: C 20.94, 

H 1.17, N 40.70 %. Found: C 21.21, H 1.25, N 40.50 %. m/z (DEI+): 344.03 [M]+, 210.02, 

103.00, 77.00; 
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9.8. Supporting Information 

9.8.1. Synthesis and general considerations 

3,3`,5,5`-Tetranitro-4,4`-bipyrazole monohydrate (TNBPz, 1H2O) was prepared as previously 

reported in the literature.[S1] 

9.8.2. X-ray diffraction 

The low-temperature single-crystal X-ray diffraction measurements were performed on an Oxford 

XCalibur3 diffractometer equipped with a Spellman generator (voltage 50 kV, current 40 mA) and 

a KappaCCD detector operating with MoKα radiation (λ = 0.7107 Å). Data collection was 

performed using the CRYSALIS CCD software.[S2]
 

The data reduction was carried out using the 

CRYSALIS RED software.[S3] The solution of the structure was performed by direct methods 

(SIR97)[S4] and refined by full-matrix least-squares on F2 (SHELXL)[S5] implemented in the 

WINGX software package[S6] and finally checked with the PLATON software.[S7] All DIAMOND2 

plots are shown with thermal ellipsoids at the 50% probability level and hydrogen atoms are shown 

as small spheres of arbitrary radius. 

 

Figure S1. Representation of the molecular unit of 70.5H2O. 
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Figure S2. Representation of the molecular unit of 10. 

Table S1. Crystallographic details of compounds 2, 4 and 5. 

Compound 2 4 5 

Formula C8H6N8O8 C8H12N14O8 C6H14N16O8 

Form. Mass [g/mol] 342.18 432.32 462.35 

Crystal system monoclinic monoclinic orthorhombic 

Space Group Cc (No. 9) P21/c (No. 14) Pcnn (No. 56) 

Color / Habit Colorless platelet yellow plate yellow block 

Size [mm] 0.02 × 0.06 × 0.09 0.09 × 0.29 × 0.55 0.16 × 0.41 × 0.48 

a [Å] 

b [Å] 

c [Å] 

α [°] 

 [°] 

γ [°] 

8.91415)  

22.2317(15)  

7.8114(4)  

90 

124.432(2) 

90 

10.7792(15)  

17.441(2) 

9.6177(15)  

90 

107.766(15)  

90 

10.2845(2) 

 18.8916(4) 

9.2779(2)  

90 

90 

90 

V [Å 3] 1283.13(13) 1721.9(4) 1802.61(6) 

Z 4 4 4 

calc. [g cm−3] 1.771 1.668 1.704 

 [mm−1] 0.160 0.147 0.150 

F(000) 696 888 952 

λMoKα[Å ] 0.71073 0.71073 0.71073 

T [K] 111 143 130 

ϑ min-max [°] 2.917, 28.321 4.3, 26.0 4.3, 27.0 

Dataset h; k; l −11:11;−29:29;−10:10 −13:13;−21:814;−11:11 −13:13;−24:24;−11:11 

Reflect. coll. 6935 13507 26392 

Independ. refl. 3126 3367 1958 

Rint 0.0265 0.063 0.030 

Reflection obs. 3014 2279 1779 
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No. parameters 241 319 173 

R1 (obs) 0.0303 0.0438 0.0305 

wR2 (all data) 0.0772 0.1022 0.0834 

S 1.08 1.04 1.06 

Resd. Dens. [e Å−3] 0.195/−0.215 −0.23, 0.25 −0.26, 0.29 

Device type Oxford Xcalibur3 CCD Oxford Xcalibur3 CCD Oxford Xcalibur3 CCD 

Solution SIR-92 SIR-92 SIR-92 

Refinement SHELXL-97 SHELXL-97 SHELXL-97 

Absorpt. corr. multi-scan multi-scan multi-scan 

CCDC − − − 

 

 

Table S2. Crystallographic details of compounds 6, 70.5H2O and 10. 

Compound 6 70.5H2O 10 

Formula C6H8N10O10 C12H38N24O17 C10H12N18O8 

Form. Mass [g/mol] 380.19 774.54 512.38 

Crystal system orthorhombic triclinic monoclinic 

Space Group Pca21 (No. 29) P-1 P21/n (No. 14) 

Color / Habit colorless block colorless block colorless block 

Size [mm] 0.15 × 0.15 × 0.20 0.07 × 0.12 × 0.18 0.10 × 0.15 × 0.25 

a [Å] 

b [Å] 

c [Å] 

α [°] 

 [°] 

γ [°] 

17.1257(5) 

9.8507(3) 

33.8680(11) 

90 

90 

90 

9.0304(15)  

9.9677(15)  

10.3061(13) 

102.719(12)  

106.417(13)  

115.425(15) 

6.0153(3) 

15.5729(8) 

21.203(1) 

90 

93.851(4) 

90 

V [Å 3] 5713.5(3) 738.6(3) 1981.72(17 

Z 16 1 4 

calc. [g cm−3] 1.768 1.741 1.717 

 [mm−1] 0.167 0.159 0.148 

F(000) 3104 398 1048 

λMoKα[Å ] 0.71073 0.71073 0.71073 

T [K] 127 143 143 

ϑ min-max [°] 4.1, 26.0 4.1, 27.0 4.2, 26.0 

Dataset h; k; l −9:21;−12:12;40:42 −11:10;−12:12;−13:13 −7:7;−19:18;−26:26 

Reflect. coll. 30449 6076 16624 

Independ. refl. 11501 3208 3896 

Rint 0.072 0.050 0.076 

Reflection obs. 8228 2035 2626 
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No. parameters 954 292 373 

R1 (obs) 0.0513 0.0552 0.0478 

wR2 (all data) 0.0820 0.1196 0.1208 

S 0.99 1.01 1.03 

Resd. Dens. [e Å−3] −0.31, 0.54 −0.43, 0.29 −0.27, 0.67 

Device type 
Oxford Xcalibur3 

CCD 
Oxford Xcalibur3 CCD Oxford Xcalibur3 CCD 

Solution SIR-92 SIR-92 SIR-92 

Refinement SHELXL-97 SHELXL-97 SHELXL-97 

Absorpt. corr. multi-scan multi-scan multi-scan 

CCDC − − − 

 

9.8.3. Computations 

Quantum chemical calculations were carried out using the Gaussian G09 program package.[S8] The 

enthalpies (H) and free energies (G) were calculated using the complete basis set (CBS) method of 

Petersson and co-workers in order to obtain very accurate energies. The CBS models use the known 

asymptotic convergence of pair natural orbital expressions to extrapolate from calculations using a 

finite basis set to the estimated CBS limit. CBS-4 begins with an HF/3-21G(d) geometry 

optimization; the zero point energy is computed at the same level. It then uses a large basis set SCF 

calculation as a base energy, and an MP2/6-31+G calculation with a CBS extrapolation to correct 

the energy through second order. An MP4(SDQ)/6-31+ (d,p) calculation is used to approximate 

higher order contributions. In this study, we applied the modified CBS. 

Heats of formation of ionic compounds were calculated using the atomization method (equation 1) 

using room temperature CBS-4M enthalpies summarized in Table S3.[S9,S10]  

ΔfH°(g, M, 298) = H(Molecule, 298) – ∑H°(Atoms, 298) + ∑ΔfH°(Atoms, 298)  (1) 

Table S3. CBS-4M electronic enthalpies for atoms C, H, N and O and their literature values for atomic 

Δ fH°298 / kJ mol–1 

 –H298 / a.u. NIST [S11] 

H 0.500991 218.2 

C 37.786156 717.2 

N 54.522462 473.1 

O 74.991202 249.5 

In the case of the ionic compounds, the lattice energy (UL) and lattice enthalpy (ΔHL) were 

calculated from the corresponding X-ray molecular volumes according to the equations provided 
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by Jenkins and Glasser.[S12] With the calculated lattice enthalpy the gas-phase enthalpy of 

formation was converted into the solid state (standard conditions) enthalpy of formation. These 

molar standard enthalpies of formation (ΔHm) were used to calculate the molar solid state energies 

of formation (ΔUm) according to equation 2. 

ΔUm  =  ΔHm – ΔnRT  (2) 

 

(Δn being the change of moles of gaseous components) 

The calculation results are summarized in Tables S4 and S5. 

Table S4. CBS-4M results and calculated gas-phase enthalpies. 

Ion M [g mol–1] [a] –H298 [b] / a.u. 
ΔfH°(g,M) 

/ kJ mol–1 [c] 

TNBPz2– 312.12 1266.63391 78.0 

(NH2)TNBPz– 328.14 1322.46768 177.3 

K+ 39.1 599.03597 487.4 

G+ 60.1 205.453192 571.2 

AG+ 75.1 260.701802 671.6 

NH3OH+ 34.04 131.863249 686.4 

NH4
+ 18.1 56.796608 635.3 

      [a] Molecular weight; [b] CBS-4M electronic enthalpy; [c] gas phase enthalpy of formation;  

 

Table S5. Calculation results. 

Compound 
ΔfH°(g,M) 

/ kJ mol–1 [a] 
VM / nm3 [b] 

ΔUL kJ mol–1 

[c] 

ΔHL kJ mol–1 

[d] 

ΔfH°(s) kJ 

mol–1 [e] 

ΔfU(s) kJ 

kg–1 [f] 

2 287.0 0.3207825 – – 200.9 666.7 

4 1224.5 0.4419661 1124.1 1131.5 88.8 303.0 

5 1423.9 0.4627750  1103.4 1110.9 308.5 769.2 

6 1450.8 0.3668638 1206.6 1214.1 236.7 713.9 

8 1348.6 0.3471325 1232.4 1239.8 108.7 404.8 

11 665.0 0.2887 525.9 525.7 139.3 443.5 

12 660.1 – – – 464.5 1429.0 

[a] gas phase enthalpy of formation; [b] molecular volumes taken from X-ray structures and corrected to 

room temperature; [c] lattice energy (calculated using Jenkins and Glasser equations); [d] lattice enthalpy 

(calculated using Jenkins and Glasser equations); [e] standard solid state entha lpy of formation; [f] solid 

state energy of formation. 
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10. Combination of Different Azoles – 1,2,4-Triazolyl-1,3,4-

Oxadiazoles as Precursor for Energetic Materials 

Marc F. Bölter, Ivan Gospodinov, Thomas M. Klapötke and Jörg Stierstorfer 

Unpublished Results 

 

Abstract: Two new bisheterocyclic compounds 2-amino-5-(5-amino-1H-1,2,4-triazol-3-yl)-1,3,4-

oxadiazole (5) and 2-amino-5-(5-nitro-1H-1,2,4-triazol-3-yl)-1,3,4-oxadiazole (6) were 

synthesized and compared to each other. Further, four energetic salts of compound 6 were 

synthesized in order to improve the energetic performance and sensitivity values. The obtained 

compounds were characterized using IR, NMR (1H, 13C, 14N), mass, elemental analysis and thermal 

analysis (DSC). Crystal structures could be obtained of five compounds (3, 7−10) by low 

temperature single crystal X-ray diffraction. Impact, friction and ESD values were determined 

according to Bundesamt für Materialforschung (BAM) standard methods. Both bisheterocyclic 

compounds and obtained salts are not sensitive toward external stimuli and show a thermal stability 

up to 296 °C. The energetic performance of the energetic salts was calculated using recalculated 

X-ray densities, heats of formation and the EXPLO5 code. Their detonation velocity and pressure 

lie in the range of 6965–7672 m s–1 and 179–206 kbar. Both bisheterocycles (5 and 6) are suitable 

as precursors for new energetic materials indicating a high thermal stability. 
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10.1. Introduction 

The research on new powerful explosives is an ongoing field of study due to their application in 

military and civilian areas.[1] Depending on their usage, high energetic dense materials (HEDMs) 

have to fulfil different requirements such as a safe handling, high detonation properties or high 

thermal stability.[2] The main goal is to substitute the current mostly used secondary explosive RDX 

and TNT due to its high toxicity to the environment and humans.[3] Modern research for alternatives 

to RDX and TNT focus on nitrogen-rich azoles, which show good sensitivity values, possess high 

positive heats of formation and mainly generate environmentally friendly dinitrogen gas during 

decomposition.[4] The heats of formation increase with the number of nitrogen atoms within the 

ring from imidazoles to tetrazoles (Figure 1).[5] 1,2,4-Triazoles are suitable heterocycles as 

building blocks for energetic materials due to the high nitrogen content, positive heat of formation 

and good thermal stability.[6] The introduction of oxygen to an azole leads to oxadiazoles, which 

combine a good oxygen balance, high energetic performance and likewise high thermal 

stability.[2c,7] 

 

Figure 1. Overview of the heat of formation in kJ mol–1of selected azoles. 
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A huge number of C–C bonded bisheterocyclic nitrogen-rich compounds combining triazoles, 

tetrazoles, pyrazoles and oxadiazoles have been synthesized in the past showing promising 

physicochemical and energetic properties (Figure 2).[6b, 7b, 8]  

 

 

Figure 2. Different energetic materials based on bisheterocyclic compounds: A) 4-nitro-5-(5-

amino-1,2,4-triazol-3-yl)-2H-1,2,3-triazole[6a], B) 3,3-dinitro-5,5-bis(1H-1,2,4-triazole)[6b], C) 

2,2-dinitramino-5,5-bi(1-oxa-3,4-diazole)[7b], D) 3-nitro-4-(5-nitramino-1,2,4-triazol-3-

yl)furazane[8a]. 

Bisheterocyclic compounds consisting of a 1,2,4-triazole and a 1,3,4-oxadiazole have not been 

reported in the literature yet. This contribution reports on the synthesis and intensive 

characterization of 3-amino-5-(5-amino-1H-1,2,4-triazol-3-yl)-1,3,4-oxadiazole (5) and 3-amino-

5-(5-nitro-1H-1,2,4-triazol-3-yl)-(3-amino1,3,4-oxadiazole (6). In addition, four energetic salts 

with the derivative 6 were obtained. Both compounds 5 and 6 can be used as suitable precursors 

for the synthesis of energetic materials. 

10.2. Results and Discussion 

10.2.1. Synthesis 

5-Amino-1H-1,2,4-triazole-3-carboxylic acid was used as the starting material for the synthesis of 

the heterocyclic compounds 5 and 6 (Scheme 1). The concept for the synthesis of 2-amino-5-(5-

amino-1H-1,2,4-triazol-3-yl)-1,3,4-oxadiazole (5) was to obtain the triazole carboxylate, convert 

this compound into the triazole carbohydrazine (3) and perform a ring closure to yield the triazole-

oxadiazole product. The first step was performed according to the know literature by reacting the 

starting material with thionyl chloride in abs. EtOH which lead to the formation of the carboxylic 

acid ester (1).[9] The reaction of compound 1 with hydrazine hydrate in MeOH was carried out 



Combination of Different Azoles – 1,2,4-Triazolyl-1,3,4-Oxadiazoles as Precursor for 

Energetic Materials 

 
294 

similar to the work of Metelkina et al. leading to the formation of the triazole carbohydrazone 

derivative (3).[10] 2-Amino-5-(5-amino-1H-1,2,4-triazol-3-yl)-1,3,4-oxadiazole (5) was obtained 

by reacting 3 with the base KOH followed by the ring closure with BrCN.[11,12] 2-Amino-5-(5-

nitro-1H-1,2,4-triazol-3-yl)-1,3,4-oxadiazole (6) was obtained similar to the synthesis of 5. For this 

purpose, compound 1 was nitrated with NaNO2 and H2SO4 according to the modified literature 

method to yield the nitro derivative 2.[13,14] Subsequent reaction first with hydrazine hydrate leads 

to the formation of compound 4 which can be further converted to the desired product 6 with BrCN 

and KOH. 

 

Scheme 1. Synthesis of 2-amino-5-(5-amino-1H-1,2,4-triazol-3-yl)-1,3,4-oxadiazole (5) and 2-

amino-5-(5-nitro-1H-1,2,4-triazol-3-yl)-1,3,4-oxadiazole (6) and energetic salts (7–10). 

Different methods for improving the energetic character of azoles are known such as salt formation, 

N-oxidation, N or C functionalization, methylene or ethylene bridging, methylation or azo 

bridging.[2a,8b,16] The bisheterocylic compounds (5 and 6) are suitable to serve as precursors for 

improving their energetic characteristics by synthesizing nitrogen-rich salts, N-oxidation or N-

functionalization. For this purpose, compound 6 was reacted with the four different bases 

potassium carbonate, ammonia, guanidinium carbonate and aminoguanidinium carbonate. 
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10.2.2. NMR and Vibrational Spectroscopy  

All compounds (1–10) were characterized by 1H, 13C NMR spectroscopy, elemental analysis and 

IR spectroscopy. In the 1H NMR spectra, four signals were observed for compound 1 (12.60, 6.20, 

4.22 and 1.26 ppm) and two for compound 2 (4.43 and 1.35 ppm). The carbohydrazide derivative 

3 shows four signals (12.48–3.66 ppm) in the 1H spectrum whereas compound 4 only two signals 

at 9.35 and 4.11 ppm. The desired heterocycle 5 exhibit three signals (12.61, 7.21 and 6.27 ppm) 

in the 1H spectrum, whereas compound 6 shows only one resonance at 7.70 ppm. Both ester 

compounds 1 and 2 exhibit five resonances in the 13C NMR spectrum in the range of 162.2–13.9 

ppm and the carbohydrazides 3 and 4 show only three resonances. The heterocyclic compounds 5 

and 6 show four resonances in the 13C NMR spectra. For the energetic salts 7 and 8 were observed 

only four resonances in the 13C NMR spectrum whereas for the compounds 9 and 10 exhibit five 

signals.  

IR spectra of compounds 1–10 were measured and all observed frequencies are reported in the 

Supporting Information. The deformation vibration of the amino groups for the guanidinium and 

aminoguanidinium salts 9 and 10 were observed at 1655 and 1652 cm−1, respectively. In addition, 

the asymmetric and symmetric vibration of the amino groups of compound 10 were observed at 

3380 and 3328 cm−1.[15] 

10.2.3. X-Ray crystallography 

Suitable crystals of compounds 3 and 7–10 were obtained by recrystallization. The structures are 

shown in Figures 3–5 and the structure of 3 and 8 can be found in the Supporting Information. 

Further information regarding the crystal-structure determinations have been deposited with the 

Cambridge Crystallographic Data Centre as supplementary publication Nos. 1869975 (3), 1869977 

(7), 1869976 (8), 1869978 (9) and 1869979 (10). 
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Figure 3. Molecular unit of compound 7 in the crystalline state. Ellipsoids correspond to 50% 

probability levels. Hydrogen radii are arbitrary. Selected bond lengths (Å) and angles [deg]: O1–

C2 1.362(2), O1–C1 1.376(2), O1–K1 3.3846(13), N6–K1 2.7756(15), K1–O4 2.7078(15), N2–

C2 1.305(2), N1–N2 1.414(2), N1–C1 1.286(2), N4–N5 1.364(2), O3–N7 1.2280(19), O2–N7 

1.232(2), N6–C4 1.334(2), C1–C3 1.454(3), C1–N1–N2 106.09(14), C2–N2–N1 106.10(14), N2–

C2–O1 112.46(15), C4–N6–C3 98.80(14), C2–O1–C1 102.32(13), O3–N7–O2 123.55(16), C1–

N1–N2–C2 –0.1(2), C3–N4–N5–C4 –0.01(18), N2–N1–C1–C3 –179.28(18), N2–N1–C1–O1 

0.1(2), C2–O1–C1–C3 179.44(15), N1–N2–C2–N3 –176.45(18), C1–O1–C2–N3 176.87(16), C4–

N6–C3–N4 0.48(19), C4–N6–C3–C1 –179.62(16), O3–N7–C4–N5 –171.11(16). 

The crystal structure of potassium 5-(2-amino-1,3,4-oxadiazolyl)-(3-nitrotriazolate) monohydrate 

7 is shown in Figure 3 with bond length and angles. Compound 7 crystallizes as colorless rods in 

the monoclinic space group P 21/n with four molecules in the unit cell. The volume of the unit cell 

is 898.68(5) Å3 and lattice constants are a = 6.6407(2) Å, b = 11.2308(4) Å, c = 12.3709(3) Å and 

β = 103.0810(10) °. The density is 1.872 g cm-3 measured at a temperature of 100(2) K. The 

potassium salt of 5-(5-nitro-4H-1,2,4-triazol-3-yl)-2-amino-1,3,4-oxadiazole crystallize with one 

molecule water. Looking on the torsion angles, it is visible that the triazole-oxadiazole scaffold is 

planar. Furthermore, the oxygen atom of the oxadiazole, nitrogen N6 of the triazole and one oxygen 

atom of the nitro group are aligned at the potassium cation, what leads to a torsion of the nitro 

group against the plane. The oxygen atom of the crystal water is coordinating the cation, too. The 

distances to the potassium atom vary from 2.7078(15) Å (K1–O4) up to 3.3846(13) Å. The bond 

lengths and angles in the triazole correspond to the known values, while the bond angle of the nitro 

group O3–N7–O2 123.55(16) ° is a bit reduced compared to the expected value of about 125 °.[18,20] 
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The bond between the triazole and the oxadiazole has a length of 1.454(3) Å. Further to enhance 

the stability of the molecule small deformation of the oxadiazole scaffold are observable. This can 

be seen for example at elongation of N1–N2 (1.414(2) Å) or the reduction of N1–C1 (1.286(2) Å). 

The bond angles also differ a bit from the known values for 1,3,4-oxadiazoles, also the bond angle 

of the crystal water molecule is enlarged up to 108(3) °.[21,22] 

 

Figure 4. X-ray structure of compound 9. Ellipsoids are drawn at the 50% probability level. 

Selected distances [Å]: C1–C3 1.448 (2), C4–N7 1.444 (2), C2–N3 1.329 (2). Selected bond angles 

[°]: O2–N7–C4 117.95 (15), N10–C5–N 9 120.12 (18), N3–C2–O1 118.65 (16). Selected torsion 

angles [°]: O1–C1–C3 N4 −0.8 (3), N6–C4–N7 O3 1.7 (3). 

Compound 9 crystallizes in the monoclinic space group C2/c with a cell volume of 1991.0(3) Å3 

and eight formula units per cell. The cell constants are a = 20.3525(18) Å, b = 5.4863(4) Å and c 

= 18.5795(14) Å, while the density is 1.709 g cm-3. The distance between the two heterocycles of 

the molecule is C1–C3 1.448(2) Å. It is in the range of single and double bond like in all the other 

heterocycle atoms.[23] One guanidinium cation is bound by two hydrogen bonds to the N1-atom 

and the N6-atom of the anion. The angle N10–C5–N9 is at 120.12(18) ° which is means the 

guanidine is planar and the positive charge is split over the whole cation. The torsion angles O1–

C1–C3–N4 with 0.8(3)° and N6–C4–N7–O3 with 1.7(3) ° are close to zero, why the anion is almost 

planar. 
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Figure 5. Crystal structure of aminoguanidinium 5-(5-amino-1,3,4-oxadiazol-2-yl)-3-nitro-1,2,4-

triazolate (10). Ellipsoids of non-hydrogen atoms are drawn at the 50 % probability level. Selected 

distances [Å]: C4–N7 1.346(4), C2–N3 1.303(4), N7–C4 1.442(4), C2–N3 1.335(5). Selected bond 

angles [°]: C3–C1–O1 120.4(3), O1–C2–N3 118.0(3), C4–N6–C3 98.5(2), C1–O1–C2 101.6(2). 

Selected torsion angles [°]: N4–C3–C1–N2 176.5(3), O2–N7–C4–N5 −1762(3), N3–C2–N1–N2 

−179.0(3), N6–C3–C1–N2 −1.0(5). 

Compound 10 crystallizes in the monoclinic space group P21/n with a cell volume of 1061.8 (2) Å3 

and four formula units per cell. The cell constants are a = 13.4494 (17) Å, b = 5.2321 (6) Å and c 

= 15.302 (2) Å, while the density is 1.697 g cm-3. The distance between the two heterocycles of the 

molecule is C1-C3 1.454 (5) Å. It is in the range of single and double bond like in all the other 

heterocycle atoms.[23] One aminoguanidinium cation is bound by two hydrogen bonds to the N1-

atom and the N2-atom of the anion. The angle N10 C5 N11 is at 120.5 (3) ° which means the 

aminoguanidine is planar and the positive charge is split over the whole cation. Also the torsion 

angle N11–C5–N8–N9 with -178.7(3) ° reinforces the assumption of a planar cation. The torsion 

angles O1–C1–C3–N4 with 0.3(5) ° and N6–C4–N7–O3 with 4.4(5) ° are close to zero which 

means that the anion is almost planar. 

10.2.4. Thermal Analysis, Sensitivities and Physicochemical properties  

Since compounds 7–10 can be classified as energetic materials their energetic behaviour was 

extensively investigated. All theoretical and experimentally determined values for the energetic 

salts of compound 6 are reported in Table 1. The thermal behaviour was investigated with a 

LINSEIS DSC PT10 instrument at a heating rate of 5 °C min−1. The decomposition point of the 

energetic salts is in the range of 240 to 300 °C, whereas the lowest decomposition (onset) was 
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observed for the aminoguanidinium salt (10, 246 °C) and the highest for the guanidinium salt (9, 

296 °C). The sensitivities of all four compounds (7–10) were measured according the BAM 

standards.[24] The energetic salts show no sensitivity toward external stimuli with sensitivity values 

for friction of < 360 N and impact < 40 J, for each compound, and can be classified as insensitive. 

The reported detonation parameters were calculated using the EXPLO5_V6.03 computer code.[25] 

The EXPLO5 detonation parameters of the energetic salts 7–10 were calculated by using the room-

temperature density values obtained from the X-ray structures as described in reference.[26] The 

potassium (7) and ammonium (8) salts were obtained as monohydrates with recalculated room 

temperature densities of 1.84 and 1.61 g cm–3, respectively. The highest detonation pressure was 

calculated for the aminoguanidinium salt 10 (VD = 7672 m s−1) and the lowest for the potassium 

monohydrate salt 7 (VD = 6965 m s−1). 

Table 1. Physicochemical properties and detonation parameters of 5–10 compared to RDX. 

 5 6 7 ·H2O 8 ·H2O 9 10 RDX[1d] 

IS [J]a 40 40 40 40 40 40 7.5 

FS [N]b 360 360 360 360 360 360 120 

ESD [J]c 1.5 1.5 1.5 1.5 1.5 1.5 0.2 

N [%]d 58.7 49.7 41.7 52.3 54.7 56.8 37.8 

Ω [%]e –90.9 –52.8 –41.1 –55.1 –68.7 –67.8 –21.6 

Tdec. [°C]f 309 

(melt.) 
245 254 276 296 246 205 

ρ [g cm–3] 

(298K)g 1.90 1.92o 1.84 1.61 1.66 1.64 1.81 

ΔfH°  

[kJ mol–1]h 
140.3 224.2 –277.1 –123.6 133.4 241.0 70.3 

ΔfU° [kJ kg–1]i 935.6 1219.2 –1020.7 –425.5 622.2 993.7 417.0 

EXPLO5 V6.03: 

–ΔEU° [kJ kg–1]j 1996 3933 3099 3153 2982 3281 5845 

TE [K]k 1737 2936 2446 2440 2334 2462 3810 

pCJ [kbar]l 238 285 179 190 197 206 345 

VD [m s–1]m 8265 8477 6965 7337 7500 7672 8861 

V0 [L kg–1]n 429 413 438 485 473 478 785 

a impact sensitivity (BAM drophammer, 1 of 6); b friction sensitivity (BAM friction tester, 1 of 6); c electrostatic 

discharge device (OZM); d nitrogen content; e oxygen balance; f decomposition temperature from DTA (β = 5°C); g 

recalculated from low temperature X-ray densities (ρ298K = ρT / (1+αV(298-T0); αV = 1.5 10–4 K–1); h calculated 

(CBS-4M) heat of formation; i calculated energy of formation; j energy of explosion; k explosion temperature; l 

detonation pressure; m detonation velocity; n assuming only gaseous products; o measured pycnometrically at room 

temperature. 
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10.3. Conclusions 

In conclusion, we reported on the synthesis of two new energetic derivatives based on the 

heterocycles 1,2,4-1H-triazole and 1,3,4-oxadiazole. 2-Amino-5-(5-amino-1H-1,2,4-triazol-3-yl)-

1,3,4-oxadiazole (5) can be synthesized in a three-step procedure and 2-amino-5-(5-nitro-1H-1,2,4-

triazol-3-yl)-1,3,4-oxadiazole (6) in a four-step procedure by using 5-amino-1H-1,2,4-triazole-3-

carboxylic acid as the starting material. The ring closing toward the 1,3,4-oxadiazole was carried 

out using cyanogen bromide and the corresponding triazole-carbohydrazides. Compounds 5 and 6 

show high thermal stabilities, high densities (ρ = 1.90 and 1.92 g cm–3) and accetable detonation 

performances (VD = 8265 and 8477 m s–1). Both heterocycles are not sensitive toward impact 

friction or ESD. Compound 6 was further functionalized by reacting it with four bases to yield the 

potassium (7), ammonium (8), guanidinium (9) and aminoguanidinium (10) salt. The synthesized 

ionic derivatives of compound 6 are insensitive toward external stimuli with sensitivity values for 

impact of 40 J and for friction with 360 N, each. The thermal stability of all four compounds ranges 

from 246 °C for the aminoguanidinium salt (10) to 296 °C for the guanidinium salt (9). 2-Amino-

5-(5-amino-1H-1,2,4-triazol-3-yl)-1,3,4-oxadiazole (5) and 2-amino-5-(5-nitro-1H-1,2,4-triazol-

3-yl)-1,3,4-oxadiazole (6) can be used as precursors for the synthesis of new energetic materials. 
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10.5. Supplementary Information 

10.5.1. X-ray Diffraction 

Single crystals were picked and measured on an Oxford Xcalibur3 diffractometer with a Spellman 

generator (voltage 50 kV, current 40 mA) and a CCD area detector for data collection using Mo-

Kα radiation (λ = 0.71073 Å). The crystal structures of compound 5 was determined on a Bruker 

D8 Venture TXS diffractometer equipped with a multilayer monochromator, a Photon 2 detector, 

and a rotating-anode generator (MoKα radiation). The data collection was carried out using 

CRYSALISPRO software[S1] and the reduction were performed. The structures were solved using 

direct methods (SIR-92,[S2] SIR-97[S3] or SHELXS-97[S4]) and refined by full-matrix least-squares on 

F2 (SHELXL[S4]): The final check was done with the PLATON software[S5] integrated in the WinGX 

software suite. The non-hydrogen atoms were refined anisotropically and the hydrogen atoms were 

located and freely refined. The absorptions were corrected by a SCALE3 ABSPACK multiscan 

method.[S6] The DIAMOND2 plots are shown with thermal ellipsoids at the 50% probability level 

and hydrogen atoms are shown as small spheres of arbitrary radii. The SADABS program 

embedded in the Bruker APEX3 software has been used for multi-scan absorption corrections in 

all structures.[S7] 

Table S1. Crystallographic data and refinement parameters of compound 3, 7, 8, 9 and 10. 

 3 7 8 9 10 

Formula C3H6N6O C4H4N7O4K C7H4N8O8 C5H8N10O3 C5H9N14O3 

FW [g mol−1] 142.14 253.24 232.18 256.21 271.23 

Crystal system Monoclinic Monoclinic Monoclinic Monoclinic Monoclinic 

Space Group P-21/n P21/c P21/n C2/c P21/n 

Color / Habit Colorless Orange Orange Yellow Colorless 

Size [mm] 
0.09 × 0.10 × 

0.59 

0.06 × 0.14 × 

0.34 

0.01 × 0.05 × 

0.3 

0.10 × 0.25 × 

0.5 

0.01 × 0.03 × 

0.05 
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a [Å] 

b [Å] 

c [Å] 

α [°] 

β [°] 

γ [°] 

5.1775(5) 

8.5646(7) 

13.1752(12) 

90 

97.917(11) 

90 

6.6407(2) 

11.2308(4) 

12.3709(3) 

90 

103.081(1) 

90 

6.690(5) 

11.426(5)    

12.614(5) 

90 

104.623(5) 

90 

20.3525(18) 

5.4863(4) 

18.5795(14) 

90 

106.316(9) 

90 

13.4494(17) 

5.2321(6) 

15.302(2) 

90 

99.583(5) 

90 

V [Å 3] 
578.66(9) 898.69(5) 933.0(9) 1991.0(3) 1061.8(2) 

Z 
4 4 4 8 4 

ρcalc. [g cm−3] 
1.632 1.872 1.653 1.709 1.697 

μ [mm−1] 
0.130 0.608 0.145 0.143 0.142 

F(000) 
296 512 480 1056 560 

λMoKα[Å] 
0.71073 0.71073 0.71073 0.71073 0.71073 

T [K] 
173 100 123 130 100 

ϑ min-max [°] 
4.5, 26.2 3.1, 26.0 4.3, 26.5 4.2, 26.5 2.7, 25.4 

Dataset h; k; l −6:6;−10:10; 

−16:16 

−8:8;−13:13; 

−15:15 

−8:8;−14:13; 

−15:15 

−25:25;−6:6; 

−23:16 

−16:15;−6:5; 

−18:18 

Reflect. coll. 
4314 10517 7208 7599 6058 

Independ. refl. 
1171 1757 1925 2051 1946 

Rint 0.032 0.040 0.057 0.042 0.049 

Reflection obs. 
943 1487 1398 1622 1566 

No. parameters 
115 161 177 195 208 

R1 (obs) 
0.0394 0.0279 0.0531 0.0391 0.0613 

wR2 (all data) 
0.1091 0.0682 0.1445 0.1020 0.1580 

S 
1.04 1.06 1.05 1.05 1.09 

Resd. Dens.[e Å−3] 
−0.19, 0.30 −0.25, 0.23 −0.29, 0.44 −0.22, 0.27 −0.26, 0.47 

Device type Oxford 
Xcalibur3 

Bruker D8 
Venture TXS 

Oxford 
Xcalibur3 

Oxford 
Xcalibur3 

Bruker D8 
Venture TXS 

Solution 
SIR-92 SIR-92 SIR-92 SIR-92 SIR-92 

Refinement 
SHELXL-2013 SHELXL-2013 SHELXL-2013 SHELXL-2013 SHELXL-2013 

Absorpt. corr. 
multi-scan multi-scan multi-scan multi-scan multi-scan 

CCDC 1869975 1869977 1869976 1869978 1869979 
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10.5.2. Heat of formation calculations 

All quantum chemical calculations were carried out using the Gaussian G09 program package.S8 

The enthalpies (H) and free energies (G) were calculated using the complete basis set (CBS) 

method of Petersson and coworkers in order to obtain very accurate energies. The CBS models are 

using the known asymptotic convergence of pair natural orbital expressions to extrapolate from 

calculations using a finite basis set to the estimated CBS limit. CBS-4 starts with an HF/3-21G(d) 

geometry optimization; the zero-point energy is computed at the same level. It then uses a large 

basis set SCF calculation as a base energy, and an MP2/6- 31+G calculation with a CBS 

extrapolation to correct the energy through second order. A MP4(SDQ)/6-31+ (d,p) calculation is 

used to approximate higher order contributions. In this study, we applied the modified CBS-4M. 

Heats of formation of the synthesized ionic compounds were calculated using the atomization 

method (equation E1) using room temperature CBS-4M enthalpies, which are summarized in 

Table S3.[S9,S10]  

ΔfH°(g, M, 298) = H(Molecule, 298) – ∑H°(Atoms, 298) + ∑ΔfH°(Atoms, 298)         (E1) 

Table S2. CBS-4M enthalpies for atoms C, H, N and O and their literature values for atomic 

ΔH°f
298 / kJ mol–1 

 –H298 [a.u.] NIST S11 

H 0.500991 218.2 

C 37.786156 717.2 

N 54.522462 473.1 

O 74.991202 249.5 

For neutral compounds the sublimation enthalpy, which is needed to convert the gas phase enthalpy 

of formation to the solid state one, was calculated by the Trouton rule.S12 For ionic compounds, the 

lattice energy (UL) and lattice enthalpy (ΔHL) were calculated from the corresponding X-ray 

molecular volumes according to the equations provided by Jenkins and Glasser.S13 With the 

calculated lattice enthalpy the gas-phase enthalpy of formation was converted into the solid state 

(standard conditions) enthalpy of formation. These molar standard enthalpies of formation (ΔHm) 

were used to calculate the molar solid state energies of formation (ΔUm) according to equation E2. 

ΔUm  =  ΔHm – Δn RT      (E2) 

(Δn being the change of moles of gaseous components) 
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The calculation results are summarized in Table S3. 

Table S3. Heat of formation calculation results. 

 –H298 [a] [a.u. ] ΔfH°(g,M) 

[kJ mol–1] [b] 
VM [Å3 ][c] 

ΔUL, ΔHL ;[d] 

[kJ mol–1] 

ΔfH°(s) [e] 

[kJ mol–1] 
Δn [f] 

ΔfU(s) [g] 

[kJ kg–1] 

5  59.6   140.3 6.5 935.6 

6  275.6   224.2 6.5 1219.2 

6 anion 761.565028 41.7      

K+ 
599.035967 

487.4      

NH4+ 56.796608 635.8      

G+ 
205.453192 

571.9      

AG+ 260.701802 
671.6 

     

7 hydrate   898.69 599.1, 562.9 –277.1 –7.5 –1020.7 

8 hydrate   933.00 553.6, 557.3 –123.6 –10 –425.5 

9  613.6 1991.0 476.8, 480.2 133.4 10.5 822.2 

10  713.3 1061.8 468.8, 472.3 241.0 11.5 993.7 
[a] CBS-4M electronic enthalpy; [b] gas phase enthalpy of formation; [c] molecular volumes taken from X-ray 

structures and corrected to room temperature; [d] lattice energy and enthalpy (calculated using Jenkins and Glasser 

equations); [e] standard solid state enthalpy of formation; [f] Δn being the change of moles of gaseous components 

when formed; [g] solid state energy of formation. 

10.5.3. Experimental Part 

10.5.3.1. General Procedures 

Differential Scanning Calorimetry (DSC) was recorded on a LINSEIS DSC PT10 with about 1 mg 

substance in a perforated aluminum vessel with a heating rate of 5 K∙min−1 and a nitrogen flow of 

5 dm3∙h−1. The NMR spectra were carried out using a 400 MHz instruments JEOL Eclipse 270, 

JEOL EX 400 or a JEOL Eclipse 400 (1H 399.8 MHz, 13C 100.5 MHz, 14N 28.9 MHz, and 

15N 40.6 MHz). Chemical shifts are given in parts per million (ppm) relative to tetramethylsilane 

(1H, 13C) and nitromethane (14N, 15N).  

Infrared spectra were measured with a Perkin-Elmer Spectrum BX-FTIR spectrometer equipped 

with a Smiths DuraSamplIR II ATR device. Transmittance values are qualitatively described as 

“very strong” (vs), “strong” (s), “medium” (m), and “weak” (w). Raman spectra were recorded 

using a Bruker MultiRAM FT-Raman instrument fitted with a liquid-nitrogen cooled germanium 

detector and a Nd:YAG laser (λ = 1064 nm). The intensities are quoted as percentages of the most 

intense peak and are given in parentheses. DTA spectra were carried out using a OZM DTA 551-

EX with a heating rate of 5  K∙min−1. Low-resolution mass spectra were recorded with a JEOL 
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MStation JMS 700 (DEI+ / FAB+/−). Elemental analysis (C/H/N) was carried out using a Vario 

Micro from the Elementar Company. Impact sensitivity tests were performed according to 

STANAG 4489[S14] modified instruction[S15] using a Bundesanstalt für Materialforschung (BAM) 

drophammer.[S16] Friction sensitivity tests were carried out according to STANAG 4487[S17] 

modified instruction[S18] using a BAM friction tester. The grading of the tested compounds results 

from the “UN Recommendations on the Transport of Dangerous Goods”.[S19] ESD values were 

carried out using the Electric Spark Tester ESD 2010 EN.[S20]  

Ethyl 5-amino-1H-1,2,4-triazole-3-carboxylate (1)[S21] 

5-amino-1H-1,2,4-triazole-3-carboxylic acid (20.0 g, 137 mmol, 1.00 eq.) was suspended in 

ethanol (300 mL) and cooled down to 0 °C. Then thionyl chloride (26.2 g, 220 mmol, 1.60 eq.) 

was added dropwise at 0 °C and the mixture was stirred for 1 h at this temperature. Subsequently 

the solution was stirred for 3 d at 75 °C. The solvent was evaporated under reduced pressure and 

then saturated sodium acetate solution (180 mL) was added. The resulting solid was filtered and 

washed with water (50 mL) to yield compound 1 as a white powder (20.7 g, 133 mmol, 85 %). 

1H-NMR (400 MHz, DMSO-d6): δ(ppm) = 12.60 (s, 1H, NH), 6.20 (s, 2H, NH2), 4.21 (q, 2H, 3J = 

7.1 Hz, CH2), 1.26 (t, 3H, 3J = 7.1 Hz, CH3);
13C NMR (101 MHz, DMSO-d6): δ(ppm) = 160.4 

(C=O), 157.4 (C(triazole)), 151.9 (C(triazole)), 60.3 (CH2), 14.1 (CH3); IR (ATR, rel. int.): ѵ (cm-1) = 

3447 (m), 3029 (w), 3000 (w), 2971 (w), 2918 (w), 1723 (s), 1635 (s), 1579 (w), 1507 (m), 1464 

(m), 1443 (m), 1389 (m), 1356 (m), 1228 (s), 1155 (w), 1120 (s), 1051 (m), 1028 (s), 876 (w), 855 

(m), 793 (m), 756 (m), 718 (s), 659 (m), 630 (m), 544 (w), 528 (w), 515 (w), DSC (5 °C min-1): 

Tmelt.= 239 °C. 

Ethyl 5-nitro-1H-1,2,4-triazole-3-carboxylate (2) 

Compound (1) (5.00 g, 32.0 mmol, 1.00 eq.) was dissolved in water (40 mL) and sodium nitrate 

(21.1 g, 320 mmol, 10.0 eq.) was added. Sulfuric acid (20 %, 34.0 mL) was added dropwise over 

4 h. Afterwards the mixture was stirred 2 h at 50 °C. The mixture was cooled down to room 

temperature and sulfuric acid (50 %, 50 mL) was added. The product was extracted with ethyl 

acetate (3 x 100 mL), the organic layer was separated and saturated NaHCO3 solution (100 mL) 

was added. The organic layer was separated and the hydrous layer was extracted with ethyl acetate 

(2 x 70 mL). The combined organic layers were dried over anhydrous MgSO4 and the solvent was 
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evaporated under reduced pressure to yield compound 2 as a yellow solid (23.70g, 19.8 mmol, 

62 %). 

1H-NMR (400 MHz, DMSO-d6): δ(ppm) = 4.43 (q, 2H, 3J = 7.1 Hz, CH2), 1.35 (t, 3H, 3J = 7.1 Hz, 

CH3);
13C NMR (101 MHz, DMSO-d6): δ(ppm) = 162.2 (C=O), 156.1 (C(triazole)), 147.6 (C(triazole)), 

62.7 (CH2), 13.9 (CH3); 
14N NMR (29 MHz, DMSO-d6): δ(ppm) = –26; IR (ATR, rel. int.): ѵ (cm-1) 

= 3564 (w), 3433 (w), 1920 (m), 1722 (s), 1552 (s), 1485 (m), 1462 (m), 1424 (m), 1382 (m), 1319 

(s), 1244 (s), 1185 (m), 1091 (m), 1038 (m), 1016 (s), 842 (m), 801 (m), 759 (m), 652 (s), 601 (s), 

550 (s); Mass spectrometry: m/z (FAB-) = 185.1 [M-]; 

5-Amino-1H-1,2,4-triazole-3-carbohydrazide (3) 

Compound (1) (12.0 g, 76.8 mmol, 1.00 eq.) was dissolved in methanol (80 mL), hydrazine-

monohydrate (11.4 g, 230 mmol, 3.00 eq.) was added slowly. The mixture was stirred for 24 h at 

75 °C and cooled down to room temperature. Hydrochloric acid (37 %, 20.0 mL) was added, the 

solid was filtered and the residue was washed with water (3 x 30 mL), ethyl acetate (2 x 30 mL) 

and diethylether (2 x 30 mL) to yield compound 3 as a white solid (9.60 g, 55.8 mmol, 72 %). 

1H-NMR (400 MHz, DMSO-d6): δ(ppm) = 12.48 (s, 1H, NH(triazole)), 9.30 (m, 1H, NH-NH2), 6.07 

(s, 2H, NH2(triazole)), 3.66 (br s, 2H, NH2-NH);13C NMR (101 MHz, DMSO-d6): δ(ppm) = 159.4 

(C=O), 157.6 (C(triazole)), 153.2 (C(triazole));
 14N NMR (29 MHz, DMSO-d6): δ(ppm) = –26; IR (ATR, 

rel. int.): ѵ (cm-1) = 3412 (w), 3311 (m), 3196 (w), 2938 (w), 2893 (w), 2571 (w), 2453 (w), 2265 

(w), 2204 (w), 2166 (w), 2063 (w), 2051 (w), 2023 (w), 2004 (w), 1982 (w), 1955 (w), 1941 (w), 

1921 (w), 1720 (w), 1681 (s), 1648 (s), 1621 (s), 1584 (s), 1533 (m), 1499 (s), 1388 (m), 1355 (m), 

1294 (m), 1253 (s), 1132 (s), 1094 (m), 1047 (s), 1011 (m), 969 (m), 862 (s), 822 (s), 757 (m), 723 

(s), 661 (m), 631 (m), 569 (s), 532 (s); Mass spectrometry: m/z (DEI+) = 142.1 [M+], DSC (5 °C 

min-1): Tmelt.= 175 °C. 

5-Nitro-1H-1,2,4-triazole-3-carbohydrazide (4) 

Compound (2) (4.20 g, 24.4 mmol, 1.00 eq.) was dissolved in methanol (50 mL), hydrazine-

monohydrate (3.80 mL, 73.2 mmol, 3.00 eq.) was added slowly. The mixture was stirred for 24 h 

at 75 °C and cooled down to room temperature. Hydrochloric acid (37 %, 12.0 mL) was added, the 

solid was filtered and the residue was washed with water (3 x 20 mL), ethyl acetate (2 x 20 mL) 

and diethylether (2 x 20 mL) to yield compound 4 as a brownish solid (3.20 g, 18.6 mmol, 76 %). 
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1H-NMR (400 MHz, DMSO-d6): δ(ppm) = 9.35 (s, 1H, NH-NH2), 4.11 (br s, 2H, NH-NH2); 
13C 

NMR (101 MHz, DMSO-d6): δ(ppm) = 165.2 (C=O), 160.3 (C(triazole)), 156.5 (C(triazole)); IR (ATR, 

rel. int.): ѵ (cm-1) = 3336 (w), 3312 (w), 3209 (w), 3119 (w), 2995 (w), 2861 (w), 2741 (w), 2637 

(w), 1669 (m), 1623 (m), 1600 (m), 1540 (m), 1513 (m), 1468 (s), 1383 (s), 1332 (m), 1301 (m), 

1280 (m), 1128 (m), 1102 (s), 1056 (m), 1033 (w), 986 (m), 967 (s), 892 (w), 871 (w), 838 (m), 

803 (w), 785 (w), 770 (w), 720 (w), 640 (s), 585 (w), 520 (w), 502 (w); DSC (5 °C min-1): Tmelt..= 

275 °C, Tdec. = 295 °C. 

2-Amino-5-(5-amino-1H-1,2,4-triazol-3-yl)-1,3,4-oxadiazole (5) 

Compound (3) (3.00 g, 21.1 mmol, 1.00 eq.) was suspended in water (20 mL) and KOH (1.18 g, 

21.1 mmol, 1.00 eq.) was added. The solution was cooled to 0 °C and cyanogen bromide (3.38 g, 

31.7 mmol, 1.50 eq) was added slowly. The solution was stirred at 0 °C for 2 h and was further 

stirred at room temperature for 72 h. The formed residue was filtered under reduced pressure to 

yield compound 5 as a yellow solid (2.93 g, 17.5 mmol, 83 %). 

1H-NMR (400 MHz, DMSO-d6): δ(ppm) = 12.48 (s, 1H, NH), 7.42 (s, 2H, NH2(oxodiazole)), 6.25 (s, 

2H, NH2(triazole)); 
13C NMR (101 MHz, DMSO-d6): δ(ppm) = 163.5 (C-NH2(oxodiazole)), 159.3 (C-

NH2(triazole)), 157.8 (C(oxodiazole)), 153.1 (C(triazole)); IR (ATR, rel. int.): ѵ (cm-1) = 3310 (m), 3153 (m), 

2198 (w), 2166 (w), 2140 (w), 2050 (w), 2004 (w), 1979 (w), 1731 (w), 1635 (s), 1589 (s), 1518 

(s), 1491 (m), 1394 (s), 1362 (s), 1288 (m), 1235 (m), 1192 (m), 1094 (m), 1043 (m), 1011 (m), 

956 (w), 898 (w), 813 (m), 732 (s), 695 (s); Mass spectrometry: m/z (DEI+) = 167.1 [M+], DSC 

(5 °C min-1): Tmelt. = 309 °C 

2-Amino-5-(5-nitro-1H-1,2,4-triazol-3-yl)-1,3,4-oxadiazole (6) 

Compound (4) (4.11 g, 24.2 mmol, 1.00 eq.) was suspended in water (50 mL) and KOH (1.55 g, 

26.6 mmol, 1.10 eq.) was added. The solution was cooled to 0 °C and cyanogen bromide (3.57 g, 

33.9 mmol, 1.40 eq.) was added slowly. The solution was stirred at 0 °C for 2 h and was further 

stirred at room temperature for 72 h. The formed residue was filtered to yield compound 6 as a 

yellow solid (3.08 g, 19.3 mmol, 80 %). 

1H-NMR (400 MHz, DMSO-d6): δ(ppm) = 7.70 (s, 2H, NH2);
13C NMR (101 MHz, DMSO-d6): 

δ(ppm) = 164.5 (C-NO2), 162.9 (C-NH2), 148.8 (C(oxodiazole)), 144.5 (C(triazole)); 
14N NMR (29 MHz, 

DMSO-d6): δ(ppm) = –25; IR (ATR, rel. int.): ѵ (cm-1) = 3593 (w), 3496 (w), 3440 (w), 3365 (m), 
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3248 (w), 3129 (w), 2464 (w), 2209 (w), 2182 (w), 2051 (w), 2027 (w), 2004 (w), 1980 (w), 1693 

(s), 1632 (m), 1584 (m), 1547 (s), 1477 (m), 1445 (m), 1413 (m), 1379 (m), 1346 (w), 1308 (s), 

1196 (w), 1179 (w), 1100 (m), 1063 (m), 1032 (m), 1009 (m), 957 (m), 933 (w), 842 (s), 770 (w), 

745 (w), 728 (w), 668 (w), 646 (m), 598 (w); Mass spectrometry: m/z (FAB-) = 196.0 [M-], DSC 

(5 °C min-1): Tdec. = 245 °C. 

10.5.3.2. General procedure for the synthesis of salts  

To a water/methanol 1:1 solution (7 mL/7 mL) of 6 (300 mg, 1.52 mmol) the corresponding base 

(K2CO3: 210 mg, 1.52 mmol; ammonia solution: 0.5 mL, 25 %, 1.52 mmol; guanidine carbonate: 

136 mg, 1.52 mmol; aminoguanidine bicarbonate: 207 mg, 1.52 mmol;) was added and heated 

until everything was dissolved. The solutions were filtered and left for crystallization.  

Potassium 3-(5-amino-1,3,4-oxadiazol-2-yl)-5-nitro-1,2,4-triazolate hydrate (7) 

Yield: (334 mg, 1.32 mmol, 87 %) as a dark red solid. 

1H-NMR (400 MHz, DMSO-d6): δ(ppm) = 7.13 (s, 2H, NH2); 
13C NMR (101 MHz, DMSO-d6): 

δ(ppm) = 165.9 (C-NO2), 163.4 (C-NH2), 153.3 (C(oxadiazole)), 150.4 (C(triazole)); 
14N NMR (29 MHz, 

DMSO-d6): δ(ppm) = –27; IR (ATR, rel. int.): ѵ (cm-1) = 3288 (w), 3127 (w), 1647 (m), 1614 (m), 

1589 (m), 1560 (w), 1521 (m), 1455 (m), 1393 (m), 1325 (m), 1301 (m), 1250 (m), 1197 (m), 1172 

(m), 1098 (m), 1046 (m), 1017 (m), 960 (m), 844 (m), 799 (m), 732 (s), 683 (s), 657 (s), 642 (s), 

590 (s), 525 (m); Elemental analysis: calc. (%) for C4H4N7O4 (M = 253.22 g mol-1): C 18.97, N 

38.72, H 1.59; found: C 23.13, N 52.68, H 3.37; DSC (5 °C min-1): Tdec. = 254 °C; Sensitivities: 

ESD: 1.5 J, Friction: 360 N, Impact: 40 J. 

Ammonium 3-(5-amino-1,3,4-oxadiazol-2-yl)-5-nitro-1,2,4-triazolate hydrate (8) 

Yield: (220 mg, 1.03 mmol, 68 %) as a dark red solid. 

1H-NMR (400 MHz, DMSO-d6): δ(ppm) = 7.13 (s, 2H, NH2); 
13C NMR (101 MHz, DMSO-d6): 

δ(ppm) =  165.8 (C-NO2), 163.4 (C-NH2), 153.3 (C(oxadiazole)), 150.4 (C(triazole)); IR (ATR, rel. int.): 

ѵ (cm-1) = 3142 (w), 1652 (s), 1583 (w), 1528 (m), 1461 (m), 1425 (m), 1397 (s), 1327 (w), 1304 

(m), 1107 (w), 1051 (w), 1016 (w), 843 (m), 734 (w), 655 (m); Elemental analysis: calc. (%) for 
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C4H8N8O4 (M = 232.18 g mol-1): C 20.69, N 48.27, H 3.47; found: C 20.51, N 47.21, H 3.19; DSC 

(5 °C m in-1): Tdec. = 276 °C; Sensitivities: ESD: 1.5 J, Friction: 360 N, Impact: 40 J. 

Guanidinium 3-(5-amino-1,3,4-oxadiazol-2-yl)-5-nitro-1,2,4-triazolate (9) 

Yield: (210 mg, 0.82 mmol, 54 %) as a brown solid. 

1H-NMR (400 MHz, DMSO-d6):δ(ppm) = 7.31 (s, 2H, NH2(oxodiazole)), 6.92 (s, 6H, 

3 x NH2(guanidine)); 
13C NMR (101 MHz, DMSO-d6): δ(ppm) = 164.9 (C-NO2), 162.7 (C-NH2), 

157.8 (C(guanidine)), 151.9 (C(oxodiazole)), 148.6 (C(triazole)); IR (ATR, rel. int.): ѵ (cm-1) = 3565 (w), 

3442 (m), 3130 (m), 2167 (w), 2003 (w), 1981 (w), 1655 (s), 1579 (m), 1517 (m), 1490 (m), 1436 

(m), 1378 (s), 1317 (s), 1300 (s), 1201 (m), 1135 (w), 1092 (m), 1054 (m), 1036 (m), 1011 (m), 

973 (w), 839 (s), 752 (m), 684 (m), 645 (s), 534 (s), 513 (s), Elemental analysis: calc. (%) for 

C5H8N10O3 (M = 256.18 g mol-1): C 22.44, N 54.68, H 3.15; found: C 23.13, N 52.68, H 3.37; DSC 

(5 °C min-1): Tdec. = 296 °C; Sensitivities: ESD: 1.5 J, Friction: 360 N, Impact: 40 J. 

Aminoguanidinium 3-(5-amino-1,3,4-oxadiazol-2-yl)-5-nitro-1,2,4-triazolate (10) 

Yield: (310 mg, 1.13 mmol, 74 %) as a brown solid. 

1H-NMR (400 MHz, DMSO-d6): δ(ppm) = 8.57 (s, 1H, NH), 7.25 (m, 2H, NH2(aminoguanidine)), 7.13 

(s, 2H, NH2(oxodiazole)), 6.76 (m, 2H, NH2(aminoguanidine)), 4.68 (s, 2H, NH2(aminoguanidine)); 
13C NMR (101 

MHz, DMSO-d6): δ(ppm) = 165.8 (C-NO2), 163.3 (C-NH2), 158.7 (C(aminoguanidine)), 153.3 

(C(oxodiazole)), 150.4 (C(triazole)); IR (ATR, rel. int.): ѵ (cm-1) = 3461 (m), 3380 (m), 3329 (m), 3303 

(m), 3200 (s), 3152 (m), 3089 (s), 3076 (m), 1652 (s), 1602 (m), 1573 (m), 1551 (m), 1493 (m), 

1439 (m), 1395 (m), 1325 (m), 1304 (m), 1199 (m), 1099 (m), 1057 (m), 1037 (m), 1021 (m), 974 

(m), 952 (m), 839 (s), 686 (m), 648 (m), 613 (m), 592 (w), 544 (m), 522 (s); Elemental analysis: 

calc. (%) for C5H9N11O3 (M = 271.23 g mol-1): C 22.14, N 56.81, H 3.34; found: C 22.30, N 55.81, 

H 3.32; DSC (5 °C min-1): Tdec. = 246 °C; Sensitivities: ESD: 1.5 J, Friction: 360 N, Impact: 40 J. 
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10.5.4. Crystal Structures 

 

Figure S1. Crystal structure of 3. 

 

Figure S2. Crystal Structure of 8 as monohydrate. 
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11. Toward the Synthesis of 3,5-Diamino-4,6-

dinitropyridazine 

Ivan Gospodinov, Thomas M. Klapötke and Jörg Stierstorfer 

Unpublished Results 

11.1. Introduction 

Pyridazines, together with pyrimidines and pyrazines, belong to an important class of heterocyclic 

compounds known as diazines. These are present in many natural products and can be found in 

variety of medicinal agents. The diazines can be derived from benzene by replacing two of the ring 

carbon atoms with nitrogen. There are three possible diazine isomers respectively to the position 

of the nitrogen atoms to each other in the ring system, giving rise to pyridazine, pyrimidine and 

pyrazine (Figure 1).[1] 

 

Figure 1.  Diazine isomers: a) pyridazine, b) pyrimidine and c) pyrazine. 

Diazine derivatives are interesting not only for their pharmaceutical properties, but also for their 

possible application in the field of energetic materials. The positive heat of formation of N-

heterocycles and the formation of N-oxides which leads to higher density of the material, make 

nitrogen-rich heterocyclic compounds one of the most important structural motifs for the design of 

new high-energy dense materials.[2] There are already some examples for energetic pyrimidines 

and pyrazines reported by Millar et al.[3,4] 

Even though there are examples for energetic pyrimidines and pyrazines, like pyridine they are 

electron deficient systems and even more resistant than pyridine toward electrophilic aromatic 

substitution.[5] For efficient electrophilic nitration on diazine derivatives an electron donating group 

has to be introduced to activate the N-heterocyclic backbone.[6] In this work, the chemistry of the 
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pyridazine backbone will be investigated. Specifically, a synthetic approach toward 3,5-diamino-

4,6-dinitropyridazine and 4,6-diamino-3,5-dinitropyridazine-1-oxide will be investigated. 

11.2. Results and Discussion 

11.2.1. Synthesis 

To achieve this goal 3,5-dichloropyridazine was used as starting materials. The idea of this 

synthesis is to increase the electron denisity in the pyridazine backbone by synthesizing 3,5-

diaminopyridazine. Which will be followed by direct nitration of to yield the desired 3,5-diamino-

4,6-dinitropyridazine. Direct displacement of the chlorine atoms in compound 1 with conc. 

ammonia or liquid ammonia was investigated, however with no success. In both cases the starting 

material was obtained or a decomposition was observed. Further amination with sodium amide in 

liquid ammonia was also investigated, however compound 1 decomposed during the reaction. 

Finally, 3,5-dichloropyridazine (1) was reacted with liquid ammonia at 85 °C in a steel tube for 

15 h, which resulted in a mixture of 3-amino-5-chloropyridazine (byproduct) and 5-amino-3-

chloropyridazine (main product). All reactions are shown in Scheme 1. 

 

Scheme 1. Failed direct amination reactions of compound 1. 

Since direct amination of compound 1 was not possible, a different more complex synthetic routh 

was investigated. First both chlorine atoms will be displaced with azido groups and then by using 

the Staudinger reaction both iminophosphorane groups will by hydrolysed to the desired amino 

groups. Similar procedure has been reported in the literature for a related compound.[7] The 

displacement of both chlorine atoms in compound 1 was successfully achieved with an inorganic 

azide such as sodium azide. Refluxing 3,5-dichloropyridazine (1) in H2O/EtOH with NaN3 (4.5 eq.) 

gave the desired product. Compound 7-azidotetrazolo[1,5-b]pyridazine (2) was obtained in a 
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moderate yield (49 %). The reduction of an azide group to an amino group can be performed 

catalytically by using hydrogen or using inorganic reducing agents.[8] However heterocyclic 

compounds having an azide group adjacent to annular nitrogen atom show the so-called azido-

tetrazole tautomerism.[9] A possible method for the conversion of the “masked” azide (tetrazole 

ring) to amino group is to use the Staudinger reduction.[10,11] For this purpose, the organic azides 

are reacted with tertiary phosphines, like triphenylphosphine, to give iminophosphoranes as 

intermediates, which can be hydrolyzed with aqueous acids to the desired amines and 

triphenylphosphine oxide. This type of reaction has been already used in the literature to convert 

8-azidotetrazolo[1,5-b]pyridazine into 3,6-diaminopyridazine as acetate.[7] 

 

Scheme 2. Toward the synthesis of 3,5-diamino-4,6-dinitropyridazine (8). 

All performed Staudinger reactions with 7-azidotetrazolo[1,5-b]pyridazine (2) are shown in 

Scheme 2. The reaction of both azide groups can be performed in one step by refluxing compound 

2 in chlorobenzene with an excess of triphenylphosphine (PPh3). This method gives, however, 3,5-

bis(triphenylphosphoranylideneamino)pyridazine (4) in a low yield. Then again reacting 

compound 2 with PPh3 (2.0 eq.) in benzene at room temperature gives 5-

(triphenylphosphoranylidenamino)tetrazolo[1,5-b]pyridazine (3) in an excellent yield (95 %). 

For the reduction of the “masked” azide, compound 3 had to be refluxed in chlorobenzene for at 

least 24 h with PPh3 (1.15–1.30 eq.). After removing the solvent and trituration with c-hexane 3,5-

bis(triphenylphosphoranylideneamino)pyridazine (4) was obtained as a gray solid. 1H and 31P 

NMR spectroscopy showed that compound 4 was received with some impurities. 3,5-
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Bis(triphenylphosphoranylideneamino)pyridazine (4) was hydrolyzed by using 80 % acetic acid as 

described in the literature for the 3,6-pyridazine isomer.[7] For this purpose, compound 4 was added 

to 80 % HOAc and refluxed for 2.5–4 h. After cooling down, H2O was given to the reaction to 

form triphenylphosphine oxide. The suspension was extracted with EtOAc do remove POPh3 and 

the water phase was evaporated to dryness to give a dark brown oily liquid. Trituration with small 

amount of Et2O gave compound 5 as acetate salt.  

Further nitration of compound 5 did not result in the desired 3,5-diamino-4,6-dinitropyridazine, 

but instead 5-nitramino-3-nitriminopyridazine dihydrate (62H2O) was obtained in a good yield 

(79 %). Even with two amino groups the pyridazine system in compound 5 is deactivated toward 

an electrophilic nitration and instead the amino groups are nitrated. However, compound 62H2O 

can be heated in conc. H2SO4 , which results in the cleavage of both nitramino and nitrimino groups 

and results in 3,5-diamino-4-nitrpyridazine (7). The nitration of similar compound 3,5-

diaminopyridazine hydrochloride has been previously reported in the literature. However, the 

reported product is 5-amino-3-nitraminopyridazine mononitrate, which can be converted to 3,5-

diamino-4-nitropyridazine (7).[12] In this case we report that the obtained intermediate is not 5-

amino-3-nitraminopyridazine mononitrate but 5-nitramino-3-nitriminopyridazine dihydrate 

(6  2H2O). 

11.2.2. NMR Spectroscopy 

Compound 2 was characterized by using various spectroscopic methods such as 1H, 13C, 15N NMR, 

elemental analysis, infrared and mass spectrometry. 1H NMR spectrum of 2 exhibits two signals at 

8.84 ppm (d) and 8.60 ppm (d) with a coupling constant (4J) of 2.60 Hz for the aromatic pyridazine 

hydrogen protons. A 13C NMR spectrum was also measured in d6-DMSO and shows four signals 

for the pyridazine carbon atoms at 143.8, 143.7, 139.3 and 110.6 ppm. 15N NMR spectrum of 

compound 2 was also recorded and is shown in Figure 2. The assignment of the signals is based 

on comparison with the literature values for 8-azido-tetrazolo[1,5-b]pyridazine and on the analysis 

of the observed 15N-1H coupling constants.[13] 15N NMR spectrum of compound 2 taken in d6-

DMSO solution shows only eight signals which are in typical range for both azide and tetrazole 

forms, excluding the presence of an tetrazole-azide equilibrium and indicating only the presence 

of 7-azidotetrazolo[1,5-b]pyridazine.[14-16] As shown in Figure 2 all three signals at −140.7 (Nγ), 

−143.8 (Nβ) and −283.6 (Nα) ppm can be assigned to the nitrogen atoms of the azide group. The 
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pyridazine nitrogen atoms are observed at −70.0 ppm (d) with 2J coupling constant of 14.30 Hz 

(N1) and at −106.6 ppm (dd) with two different 3J coupling constants of 9.60 Hz and 2.73 Hz (N2). 

The remaining three proton resonances at 15.0 (N4), −28.0 (N3) and −68.9 (N5) ppm are assigned 

to the tetrazole ring nitrogen atoms. 

 

Figure 2. 15N NMR spectrum of 7-azidotetrazolo[1,5-b]pyridazine (2) in d6-DMSO. 

In addition to the 15N NMR spectrum of 7-azidotetrazolo[1,5-b]pyridazine (2),  the 15N{1H} 

spectrum was also recorded in d6-DMSO. The comparison of both spectra is shown in Figure 3, in 

which the coupled 15N spectrum is stacked over the 1H decoupled 15N spectrum of compound 2. 

The only difference in both NMR spectra is the change of the multiplicity for the two pyridazine 

nitrogen protons from doublet for N1 to singlet and from dd (doublet of doublet) for N2 to singlet 

due to the 1H decoupling. 
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Figure 3. Stacked 15N and 15N{1H} NMR spectra of compound 2 in d6-DMSO. 

5-(Triphenylphosphoranylidenamino)tetrazolo[1,5-b]pyridazine (3) has been characterized by 1H, 

13C, 31P NMR, infrared spectroscopy and elemental analysis. 31P NMR spectrum of 3 shows only 

one signal at 13.1 ppm. 1H NMR spectrum of compound 3 exhibits five signals, two for the 

aromatic pyridazine hydrogen protons at 8.55 ppm and 6.47 ppm and three multiplet signals at 

7.90–7.82 ppm, 7.76–7.70 ppm and 7.67–7.60 ppm. The two pyridazine protons and all four 

pyridazine carbon protons experience an additional splitting associated with scalar spin–spin 

interactions J (31P, 1H and 31P, 13C).[13] This can be explained with the introduction of the 

iminophosphoranes group (NPPh3) into the molecule. 

11.2.3. Crystal Structures 

For further support of all maintained NMR measurements, single crystals of compound 2 were 

grown for X-ray determination from abs. ethanol. The crystal structure of 7-azido-tetrazolo[1,5-

b]pyridazine (2) is shown in Figure 4, with bond lengths and angles. Compound 2 crystalizes as 
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colorless plates in the monoclinic space group P21/n with four molecules in the unit cell. The 

volume of the unit cell is 652.93(8) Å3 with lattice constants a = 10.8080(8), b = 5.5640(3), c = 

11.2689(7) Å and β = 105.527(7) °. The molecule of 2 can be divided in three components: the 

pyridazine scaffold, the tetrazole ring (“masked azide”) and the azide group. All three fragments 

are coplanar to each other. The formation of the bicyclic moiety tetrazolo[1,5-b]pyridazine leads 

to small deformation of the pyridazine ring expressed with the elongation of the N2–C4 

(1.3562(16) Å), N1–N2 (1.3483(18) Å) and C3–C4 (1.408(2) Å) bond lengths. This adjustment of 

the pyridazine scaffold can be observed also with the augmentation of the N1–N2–C4 bond angle 

(127.95(12) °) and reduction of the N2–N1–C1 (112.84(12) °) and N2–C4–C3 (118.46(13) °) 

angles, allowing the bicyclic structure to be stable. The smallest bond length in the tetrazole ring 

is between the nitrogen atoms N3 and N4 with 1.3055(18) Å and the largest between N4 and N5 

with 1.3587(16) Å. The N–N and N–C bond lengths in the tetrazole ring are in the range with the 

known values for bicyclic tetrazole derivatives and vary between the corresponding values for 

single and double bond lengths for heterocyclic aromatic compounds containing sp2 hybridized 

carbon and nitrogen atoms.[17,18] The bond angles and lengths for the azide group correlate with the 

known values for covalent organic azides.[19] The bond length between C2 and N6 is 1.4143(19) Å 

and compared to a C–N single bond (1.47 Å) is shorter than expected. The bond angle N7–N6–C2 

is 113.99(12) ° and the angle between the atoms N6, N7 and N8 is 173.55(16) ° which deviates 

from the expected 180 °. Further deviations from the expected values are observed for the bond 

lengths between N6–N7 and N7–N8. The measured value for the N6–N7 bond length is 1.2566(16) 

Å and it is shorter compared to the expected value for an N–N single bond. Vice versa the N7–N8 

bond (1.1245(17) Å) is longer than expected for N≡N bond with 1.10 Å.[20] Possible reason for the 

deviation in the values for bond lengths and angles in the azide group can be the hyperconjugation 

between the C2–N6 single bond and the π* N7–N8 double bond.[21,22] 
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Figure 4. Molecular unit of 7-azidotetrazolo[1,5-b]pyridazine (2) in the crystalline state. Ellipsoids 

correspond to 50% probability levels. Hydrogen radii are arbitrary. Selected bond lengths (Å) and 

angles [deg.]: N1–N2 1.3483(18), N1–C1 1.303(2), N2–N3 1.3536(18), N2–C4 1.3562(16), N3–

N4 1.3055(18), N4–N5 1.3587(16), N5–C4 1.332(2), N6–N7 1.2566(16), N6–C2 1.4143(19), N7–

N8 1.1245(17), C1–C2 1.431(2), C2–C3 1.359(2), C3–C4 1.408(2), N2–N1–C1 112.84(12), N1–

N2–N3 122.60(11), N1–N2–C4 127.95(12), N3–N2–C4 109.45(12), N2–N3–N4 104.90(11), N3–

N4–N5 112.41(12), N4–N5–C4 105.44(11), N7–N6–C2 113.99(12), N6–N7–N8 173.55(16), N1–

C1–C2 124.80(15), N6–C2–C1 113.84(13), N6–C2–C3 125.90(12), C1–C2–C3 120.26(14), C2–

C3–C4 115.68(13), N2–C4–N5 107.80(12), N2–C4–C3 118.46(13), N5–C4–C4 133.74(12), C1–

N1–N2–N3 178.52(13), C4–N2–N3–N4 –0.13(14), N1–N2–C4–N5 179.95(11), N1–N2–C4–C3 –

0.2(2), N3–N2–C4–C3 –179.61(12). 

In addition, single crystals of compound 3 were obtained from THF for an X-ray measurement. 

The crystal structure of 5-(triphenylphosphoranylidenamino)tetrazolo[1,5-b]pyridazine (3) is 

shown in Figure 5, with bond lengths and angles. Compound 3 crystallizes as colorless blocks in 

the triclinic space group P–1. The volume of the unit cell is 944.99(16) Å3 and contains two 

molecules of 3. The lattice constants of the unit cell are a = 8.9584(10), b = 9.6241(6), c = 

13.3220(11) Å and α = 68.892(7) °, β = 70.518(8) ° and γ = 64.476(8) °. 5-(Triphenyl-

phosphoranylidenamino)tetrazolo[1,5-b]pyridazine (3) can be divided in three fragments: the 

pyridazine scaffold, the tetrazole ring and the iminophosphorane group (NPPh3). Similar to the 

starting material the formation of the bicyclic moiety tetrazolo[1,5-b]pyridazine leads to 

deformation of the pyridazine ring. This adjustment can be observed with the elongation of the N3–



Toward the Synthesis of 3,5-Diamino-4,6-dinitropyridazine 

 
324 

C4 (1.357(2) Å), C1–C2 (1.452(3) Å) and C3–C4 (1.401(3) Å) bond lengths. Further changes are 

observed with the deviation of the N2–N3–C4 (127.39(17) °), N3–N2–C1 (112.78(16) °) and N2–

C1–C2 (127.04(18) °) bond angles from the ideal case of 120 °. The longest N–N bond in the 

tetrazole ring is between N4–N5 (1.362(2) Å) and the shortest is between N5–N6 (1.299(2) Å). All 

N–C, P–N and P–C bond lengths in NPPh3 are in the range for reported values of iminophosphorane 

derivatives.[23] N1–C2 bond length lies between the literature reported values for N–C single and 

double bonds[24] with 1.367(3) Å. The angle of 124.11(13) ° between the three P1, N1 and C2 atoms 

indicates a sp2 hybrid character of the N1 atom. The P1–N1 bond length of 1.5990(17) Å 

corresponds to the reported values for P=N bond lengths (1.57 Å) in iminophosphorane 

derivatives.[25] Angles N1–P1–C5 (112.93(10) °), N1–P1–C11 (114.10(9) °), N1–P1–C17 

(106.33(8) °), C5–P1–C11 (109.72(9) °) and C5–P1–C17 (106.03(9) °) indicate a small deviation 

from the tetrahedral coordination of the P1 atom. All three phenyl groups exhibit the literature 

known pyramidal arrangement on the P1 atom. 

 

Figure 5. Molecular unit of compound 3 in the crystalline state. Ellipsoids correspond to 50% 

probability levels. Hydrogen radii are arbitrary. Selected bond lengths (Å) and angles [deg.]: P1-

N1 1.5990(17), P1−C5 1.804(2), P1−C11 1.805(2), P1−C17 1.796(2), N1−C2 1.367(3), N2−N3 

1.347(2), N2−C1 1.303(3), N3−N6 1.360(2), N3−C4 1.357(2), N4−N5 1.362(2), N4−C4 1.334(2), 

N5−N6 1.299(2), C1−C2 1.452(3), C2−C3 1.382(3), C3−C4 1.401(3), N1−P1−C5 112.93(10), 

N1−P1−C11 114.10(9), N1−P1−C17 106.33(8), C5−P1−C11 109.72(9), C5−P1−C17 106.03(9), 
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C11−P1−C17 107.19(9), P1−N1−C2 124.11(13), N2−N3−C4 127.39(17), N6−N3−C4 109.71(15), 

N3−N6−N5 104.67(15), N2−C1−C2 127.04(18), C2−C3−C4 117.88(17), C5−P1−N1−C2 

57.58(19), C11−P1−N1−C2 −68.6(2), C17−P1−N1−C2 173.45(17), P1−N1−C2−C1 −175.96(15), 

P1−N1−C2−C3 5.4(3) N2−N3−C4−C3 −0.1(3), N4−N5−N6−N3 0.3(2), N2−C1−C2−C3 1.6(3). 

Single crystals were obtained from c-hexane for an X-ray measurement. 3,5-Bis-

(triphenylphosphoranylideneamino)pyridazine (4) crystallizes with one molecule c-hexane in the 

monoclinic space group C2/c. The unit cell contains eight molecules of compound 4 and has lattice 

constants a = 48.676(2), b = 8.7758(4), c = 16.1653(10) Å, β = 91.291(4) ° and a cell volume of 

6903.6(6) Å3. The crystal structure of compound 4 is shown in Figure 6 together with bond lengths 

and angles. Both P1–N2 (1.583(3) Å) and P2–N1 (1.584(3) Å) correspond to the expected value 

for P=N bond length (1.57 Å) in iminophosphoranes.[25] Both P1–N2–C19 with 124.9(2) ° and P2–

N1–C22 with 122.5(2) ° indicate for sp2 hybrid character of the N1 and N2 atoms. Both P1 and P2 

atoms are tetrahedral coordinated with small deviations from the ideal case. 

 

Figure 6. Molecular unit of compound 4 in the crystalline state. Ellipsoids correspond to 50 % 

probability levels. Hydrogen radii are arbitrary. Selected bond lengths (Å) and angles [deg]: P1–

N2 1.583(3), P1–C1 1.802(3), N2–C19 1.382(4), N3–N4 1.350(4), N1–C22 1.377(4), P2–N1 

1.584(3), N2–P1–C1 106.59(14), N2–P1–C7 116.10(14), P1–N2–C19 124.9(2), N2–C19–C21 

128.6(3), N3–N4–C22 119.0(3), P2–N1–C22 122.5(2), P1–N2–C19–C20 176.6(2), C20–N3–N4–

C22 1.1(4), P2–N1–C22–C21 169.6(2). 
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Compound 62H2O (Figure 7) crystallizes in the monoclinic space group C 2/c with a cell volume 

of 1832.75(16) Å3 and eight formula units per unit cell. The cell constants are a = 13.3872(6) Å, 

b = 9.1939(5) Å and c = 14.9838(8) Å with β = 96.393(5)°. The calculated density at 298 K is 

1.67 g/cm3. The bond lengths in the pyridazine ring, the nitramino and the nitrimino group are all 

between the standard values for single and double bonds for these elements. This shows, that the 

species has an aromatic system across the entire molecule.[26] The bond lengths between N3−C1 

(1.361(2) Å) and N5−C3 (1.379(2) Å) differ slightly. The bond between C2 and C3 has a length of 

1.364(2) Å. This is close to the standard value for C−C double bonds.[26] The ring is slightly 

deformed (124.66(14)° (N1−N2−C1), 118.67(14)° (C1−C2−C3)) but in one plane (−0.5(2)° 

(N1−N2−C1−C29), −0.4(2)° (C2−C3−C4−N1)). The nitrimino group is in this plane too 

(179.50(13)° (N4−N3−C1−C2)), but the nitramino group slightly defers (176.53(14)° 

(N6−N5−C3−C4)). Both have very similar bond angles. The contact distance between oxygen and 

hydrogen is with approximately 2.0 Å far from the standard value for single bonds. Hydrogen 

bridge bonds occur between O1 and H3 (1.94(2) Å), O5·and H3 (2.08(2) Å), O2·and H4 

(2.586(18) Å), O3·and H2 (2.24(2) Å) and O6·and H1 (1.93(2) Å).  

 

Figure 7. Molecular unit of compound 62H2O in the crystalline state. Ellipsoids correspond to 

50% probability levels. Hydrogen radii are arbitrary. Selected bond lengths (Å) and angles [deg.]: 

O1−N4 1.2386(18), N3−C1 1.361(2), O2−N4 1.2433(18), N3−N4 1.3494(19), O3−N6 1.2225(17), 

N5−N6 1.3689(19), O4−N6 1.2193(18), N5−C3 1.379(2), C1−C2 1.416(2), C2−C3 1.364(2), 

N1−C4 1.294(2), C3−C4 1.421(2), N1−N2 1.3510(19), N2−C1 1.342(2), N2−N1−C4 117.03(14), 

N2−C1−N3 127.72(14), N1−N2−C1 124.66(14), N4−N3−C1 118.68(13), N2−C1−C2 118.05(14), 
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C1−C2−C3 118.67(14), C2−C3−C4 117.65(14), O1−N4−N3 123.39(13), N6−N5−C3 125.33(13), 

N5−C3−C2 128.42(15), N1−C4−C3 123.93(15), O3−N6−N5 118.95(13), C4−N1−N2−C1 1.1(2), 

N2−N1−C4−C3 −0.6(2), N1−N2−C1−N3 178.21(15), N1−N2−C1−C2 −0.5(2), C1−N3−N4−O1 

0.4(2), C1−N3−N4−O2 −178.52(14), N4−N3−C1−C2 179.50(13), C3−N5−N6−O3 −8.2(2), 

C3−N5−N6−O4 173.25(14), N6−N5−C3−C4 176.53(14), N3−C1−C2−C3 −179.46(14), 

N5−C3−C4−N1 179.50(15), C2−C3−C4−N1 −0.4(2), O1·H3 1.94(2), O5·H3 2.08(2), O2·H4 

2.586(18), O3·H2 2.24(2), O6·H1 1.93(2). 

Compound 7 (Figure 8) crystallizes in the monoclinic space group P 21/c with a cell volume of 

1193.31(14) Å3 and eight formula units per cell. The cell constants are a = 6.9987(5) Å, 

b = 11.7416(8) Å and c = 15.0305(10) Å with β = 104.955(4)°. The calculated density at 298 K is 

1.67 g/cm3. The bond lengths between O1−N4 (1.239(3) Å), O2−N4 (1.240(3) Å), N1−N2 

(1.328(4) Å), N1−C4 (1.316(4) Å), N2−C1 (1.352(4) Å), N3−C1 (1.328(4) Å), C1−C2 

(1.432(4) Å), N5−C3 (1.331(4) Å), C2−C3 (1.404(4) Å) and C3−C4 (1.430(4) Å) are in the typical 

range for aromatic systems. The bond between C2−N4, which has a length of 1.433(3) Å, is just 

slightly shorter than a single bond.[26] The angles between N2−N1−C4 (121.5(2) Å) and C2−C3−C4 

(114.5(2) Å) show, that the pyridazine ring is slightly deformed. The torsion angles 

N1−N2−C1−C2 of −0.3(5)° and C2−C3−C4−N1 of −1.8(5)° show, that the pyridazine ring is 

almost in one plane. 

 

Figure 8. Molecular unit of compound 7 in the crystalline state. Ellipsoids correspond to 50% 

probability levels. Hydrogen radii are arbitrary. Selected bond lengths (Å) and angles [deg.]: 
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O1−N4 1.239(3), O2−N4 1.240(3), N1−N2 1.328(4), N1−C4 1.316(4), N2−C1 1.352(4), N3−C1 

1.328(4), N4−C2 1.433(3), C1−C2 1.432(4), N5−C3 1.331(4), C2−C3 1.404(4), C3−C4 1.430(4), 

N2−N1−C4 121.5(2), C2−C3−C4 114.5(2), N1−C4−C3 123.9(3), C4−N1−N2−C1 1.5(5), 

N2−N1−C4−C3 −0.4(5), N1−N2−C1−N3 179.3(3), N1−N2−C1−C2 −0.3(5), C2−C3−C4−N1 

−1.8(5). 

11.2.4. Physico-chemical Properties 

During the course of this work three different energetic pyridazine derivatives were synthesized: 

7-azido-tetrazolo[1,5-b]pyridazine (2), 5-nitramino-3-nitriminopyridazine dihydrate (62H2O) and 

3,5-diamino-4-nitropyridazine (7). The experimentally and theoretically energetic properties of 2 

and 7 were extensively investigated and all values are reported in Table 1. In addition, the DTA 

plots for both compounds are shown in Figures 9 and 10. 7-Azidotetrazolo[1,5-b]pyridazine (2) 

sharp decomposition peak at Tonset = 143 °C, prior to melting and 134 °C. The low decomposition 

temperature of compound 2 can be attributed to the present azido groups in the pyridazine 

molecule. The dehydrate 6 looses both water molecules at 73 °C and decomposes sharply at 118 

°C. 3,5-Diamino-4-nitropyridazine (7) shows sharp decomposition at 260 °C. 
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Figure 9. DTA plot for 7-azidotetrazolo[1,5-b]pyridazine (2). 

 

Figure 10. DTA plot for 3,5-diamino-4-nitropyridazine (7). 
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The extrapolated room temperature densities of compounds 2 and 7 are 1.61 and 1.67 g∙cm−3, 

respectively. The experimentally determined sensitivity values toward impact, friction and 

electrostatic discharge for both compounds are reported in Table 1. Compound 2 is highly sensitive 

toward external stimuli with IS = 1.5 J, FS = 6 N and ESD = 0.022 J, whereas compound 7 is 

insensitive material with values of IS = 40 J, FS = > 360 N and ESD = 1.00 J. The high sensitivity 

of 2 is attributed again to the azido groups which are highly sensitive toward mechanical stimuli. 

Whereas the stability of compound 7 can be explained with the intra- and intermolecular hydrogen 

bonding throughout the structure. For both compounds were calculated positive standard molar 

enthalpies of formation (2, 817.1 kJ∙mol−1) and (7, 112.4 kJ∙mol−1). Using the room temperature 

demsities several detonation properties were calculated for compounds 2 and 7 by suing the 

EXPLO5 code (6.03 Version). The calculated values for the detonation energies of 2 and 7 are 

4569 and 3253 kJ∙kg−1, respectively. The detonation pressure and velocity values are pC-J = 

184 kbar, DC-J = 7290 m∙s−1 for 2 and pC-J = 185 kbar, DC-J = 7222 m∙s−1 for 7. 

Table 1. Physico-chemical properties of compounds 2 and 7. 

 2 7 

Formula C4H2N8 C4H5N5O2 

IS[a] [J] 1.5 40 

FS[b] [N] 6 > 360 

ESD[c] [J] 0.022 1.00 

Ω[d] [%] −88.8 −88.8 

Tm
[e] [°C] 134 − 

Tdec
[f] [°C] 143 260 

ρ[g] [g∙cm−3] 1.61 1.67 

ΔfH°[h] [kJ∙kg−1] 5040.1 724.61 

ΔfH°[h] [kJ∙mol−1] 817.1 112.4 

EXPLO5 6.03   

−ΔEU°[i] [kJ∙kg−1] 4569 3253 

TC-J
[j] [K] 3377 2426 

pC-J 
[k] [kbar] 184 185 

DC-J
[l] [m∙s−1] 7290 7222 

V 
[m] [L3∙kg−1] 676 742 

[a] Impact sensitivity (BAM drophammer, method 1 of 6); [b] friction sensitivity (BAM 

drophammer, method 1 of 6); [c] electrostatic discharge device (OZM research); [d] oxygen 

balance with respect to CO2; [e] melting point (DTA, β = 5°C∙min−1); [f] temperature of 
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decomposition (DTA, β = 5°C∙min−1); [g] density at 298 K; [h] standard molar enthalpy of 

formation; [i] detonation energy; [j] detonation temperature; [k] detonation pressure; [l] 

detonation velocity; [m] volume of detonation gases at standard temperature and pressure 

conditions. *experimentally determined values for LLM-105 (grain size 100–500 μm). 

 

11.3. Conclusions 

During this work we report a possible approach toward the synthesis of 3,5-diamino-4,6-

dinitropyridazine. For this purpose, 3,5-dichloropyridazine (1) was reacted to 7-azidotetrazolo[1,5-

b]pyridazine (2) and the Staudinger reaction was used to convert 2 into 3,5-diaminoypridazine 

acetate (5). Nitration reactions with 5 resulted only in 5-nitramino-3-nitriminopyridazine dihydrate 

(62H2O) in a good yield, which was then subsequently converted into 3,5-diamino-4-

nitropyridazine (7). Further nitration attempts with compounds 5 and 7 were not succesfull and 

either only decomposition products or the starting material were obtained. Another synthetic 

approach has to be investigated in order to obtain the desired material 3,5-diamino-4,6-

dinitropyridazine. In addition, during this work two energetic materials were synthesized and 

completely characterized. The intermediate azido compound 2 is a highly energetic material with 

sensitivity values of IS = 1.5 J, FS = 6 N and ESD = 0.022 J and can be classified as a primary 

explosive. Whereas compound 7 shows excellent thermal stability (Tonset = 260 °C) and is also 

insensitive toward external stimuli (IS = 40 J, FS = > 360 N and ESD = 1.00 J). 

11.4. Experimental Part 

11.4.1. General Information 

All reagents and solvents were used as received. The synthesis of 3,5-dichloropyridazine (1) 

was performed by the previously published method.[27] Decomposition temperatures were 

measured via differential thermal analysis (DTA) with an OZM Research DTA 552-Ex 

instrument at a heating rate of 5 °C min−1. The NMR spectra were recorded with a 400 MHz 

instrument (1H 399.8 MHz, 13C 100.5 MHz, 14N 28.9 MHz, and 15N 40.6 MHz) at ambient 

temperature. Chemical shifts are quoted in parts per million with respect to TMS (1H, 13C) 

and nitromethane (14N, 15N). Infrared spectra (IR) were recorded from 4500 cm−1 to 650 

cm−1 on a Perkin Elmer Spectrum BX-59343 instrument with Smiths Detection 
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DuraSamplIR II Diamond ATR sensor. The absorption bands are reported in wavenumbers 

(cm−1). The sensitivities toward friction and impact of compounds 2, 62H2O and 7 were 

determined according the BAM standards and the detonation parameters were calculated 

using the EXPLO5-V6.03 computer code.[28] All detonation parameters for the polynitro 

derivatives 2–6 were calculated by using the room-temperature densities obtained from the 

X-ray structures as described in the reference.[29] Compounds 2, 62H2O and 7 were tested 

for sensitivity towards electrical discharge using an Electric Spark Tester ESD 2010 EN. 

11.4.2. Synthesis 

CAUTION! All investigated compounds are potentially explosive materials, although no 

hazards were observed during preparation and handling these compounds. Nevertheless, 

safety precautions such as (wearing leather coat, face shield, Kevlar sleeves, Kevlar gloves, 

earthed equipment and ear plugs) should be drawn. 

7-Azidotetrazolo[1,5-b]pyridazine (2) 

3,5-Dichloropyridazine (1, 8.07 g, 54.2 mmol, 1.0 eq.) was dissolved in ethanol (70 mL) and NaN3 

(15.84 g, 243.8 mmol, 4.5 eq.) dissolved in H2O (50 mL) was added at room temperature. The 

reaction mixture was refluxed for 24 h. The resulting solution was cooled down and crystalline 

material precipitated. The precipitate was filtrated, washed with ice water and dried on air overnight 

to give compound 2 (4.27 g, 26.3 mmol, 49%). 

DTA (5 °C min−1): 134 (melt.), 143 °C (exo.); BAM: drop hammer: 1.5 J (100–500 μm); friction 

tester: 6 N (100–500 μm); ESD: 0.022 J (100–500 μm).  IR (ATR), ṽ (cm−1) = 3037 (m), 2346 

(vw), 2225 (vw), 2133 (vs), 1613 (m), 1530 (w), 1507 (vw), 1396 (s), 1380 (s), 1357 (s), 1315 

(vw), 1293 (vw), 1272 (s), 1261 (s), 1236 (vs), 1110 (m), 1087 (m), 991 (m), 938 (w), 894 (s), 849 

(m), 769 (m), 701 (vw), 676 (m). 1H NMR (d6-DMSO, 400 MHz, ppm) δ = 8.85 (d, 4J = 2.6 Hz, 

1H), 8.61 (d, 4J = 2.6 Hz, 1H). 13C NMR (d6-DMSO, 101 MHz, ppm) δ = 143.8, 143.7, 139.3, 

110.6. 15N NMR (d6-DMSO, 41 MHz, ppm) δ = 15.0, −28.0, −68.9, −70.0 (d, 2J = 14.30 Hz), 

−106.6 (dd, 3J = 9.60 Hz, 3J = 2.73 Hz), −140.7, −143.8, −283.6. 15N{1H} NMR (d6-DMSO, 41 

MHz, ppm) δ = 15.0, −28.0, −68.9, −70.0, −106.6, −140.7, −143.8, −283.6. Elem. Anal. (C4H2N8, 

162.12 g·mol−1) calcd.: C 29.64, H 1.24, N 69.12%. Found: C 29.87, H 1.52, N 69.13%. m/z 

(DEI+): 162 (77) [M]+. 
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5-(Triphenylphosphoranylidenamino)tetrazolo[1,5-b]pyridazine (3) 

Azidotetrazolo[1,5-b]pyridazine (2, 4.27 g, 26.3 mmol, 1.0 eq.) was suspended in benzene 

(130 mL) and triphenylphosphine (13.8 g, 52.6 mmol, 2.0 eq.) was added. The reaction mixture 

was stirred overnight. After filtration and washing with cold ethanol the product was obtained as a 

light beige powder (3, 10.30 g, 25.97 mmol, 99%). 

IR (ATR), ṽ (cm−1) = 3064 (vw), 1598 (s), 1512 (m), 1495 (s), 1478 (m), 1437 (m), 1407 (vs), 

1332 (vw), 1302 (w), 1284 (s), 1249 (vw), 1228 (vs), 1178 (vw), 1159 (vw), 1109 (s), 1081 (m), 

1027 (vw), 1009 (m), 998 (m), 937 (s), 925 (w), 863 (vw), 820 (s), 763 (w), 752 (w), 739 (m), 720 

(vs), 693 (vs). 1H NMR (d6-DMSO, 400 MHz, ppm) δ = 8.54 (dd, 4J = 2.6, 5J = 1.0 Hz, 1H), 7.85 

(ddd, 2J = 12.4, 3J = 8.3, 4J = 1.4 Hz, 6H), 7.76 – 7.70 (m, 3H), 7.67 – 7.59 (m, 6H), 6.47 (dd, 4J = 

2.6, 5J = 0.6 Hz, 1H). 13C NMR (d6-DMSO, 101 MHz, ppm) δ = 152.0, 151.7, 150.0, 145.12, 

133.6, 133.6, 132.9, 132.8, 130.0, 129.9, 127.6, 126.6, 100.6, 100.4. 31P NMR (d6-DMSO, 162 

MHz, ppm) δ = 13.6. Elem. Anal. (C22H17N6P, 396.39 g·mol−1) calcd.: C 66.66, H 4.32, N 21.20%. 

Found: C 66.70, H 4.38, N 21.18%. m/z (DEI+): 396 (27) [M]+. 

3,5-Bis(triphenylphosphoranylideneamino)pyridazine (4) 

(Triphenylphosphoranylidenamino)tetrazolo[1,5-b]pyridazine (3, 10.30 g, 25.97 mmol, 1.0 eq.) 

was suspended in chlorobenzene (290 mL) and triphenylphosphine (8.17 g, 31.2 mmol, 1.2 eq.) 

was added. The reaction mixture was refluxed for 3 d. The solvent was removed under reduced 

pressure and the crude product was resuspended in c-hexane. Filtration and washing with c-hexane 

gave compound 4 as a brown solid (16.37 g, 25.95 mmol, 100%). 

IR (ATR), ṽ (cm−1) = 3056 (vw), 2923 (m), 2848 (m), 1599 (vw), 1576 (m), 1560 (s), 1497 (vw), 

1482 (w), 1449 (vw), 1436 (m), 1409 (w), 1370 (s), 1352 (m), 1253 (vs), 1230 (w), 1184 (w), 1106 

(s), 1027 (w), 997 (w), 938 (vw), 866 (s), 821 (vw), 739 (m), 716 (vs), 690 (vs). 1H NMR (d6-

DMSO, 400 MHz, ppm) δ = 8.54 (dd, 4J = 2.7, 5J = 0.9 Hz, 1H), 7.77 – 7.55 (m, 30H), 6.47 (dd, 

4J = 2.6, 5J = 0.6 Hz, 1H), 5.93 (s, 1H). 13C NMR (d6-DMSO, 101 MHz, ppm) δ = 151.45, 151.2, 

149.5, 144.7, 134.5 – 125.0 (m), 100.1, 99.9, 26.3. 31P NMR (d6-DMSO, 162 MHz, ppm) δ 25.5, 

12.4, 11.2, 7.1, −6.77. 
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3,5-Diaminopyridazine acetate (5) 

3,5-Bis(triphenylphosphoranylideneamino)pyridazine (4, 13.80 g, 21.88 mmol, 1.0 eq.) was 

dissolved in acetic acid (80%, 250 mL) and refluxed for 4.5 h. The resulting solution was poured 

on water (750 ml) and washed with ethyl acetate (3 × 300 mL). The water layer was evaporated to 

dryness in vacuo and the product was triturated with Et2O. Filtration and washing with diethyl ether 

yielded the product as brown solid (5, 2.90 g, 17.0 mmol, 78%). 

IR (ATR), ṽ (cm−1) = 3360 (w), 3183 (m), 3057 (m), 1917 (vw), 1679 (m), 1651 (s), 1620 (s), 1534 

(s), 1451 (s), 1426 (s), 1399 (vs), 1336 (m), 1271 (m), 1165 (w), 1045 (w), 1013 (m), 983 (s), 918 

(w), 887 (w), 838 (s), 766 (m), 729 (vw), 652 (s), 581 (w), 557 (vw), 531 (s). 1H NMR (D2O, 400 

MHz, ppm) δ = 7.87 (d, 4J = 2.4 Hz, 1H), 6.12 (d, 4J = 2.4 Hz, 1H), 1.93 (s, 3H). 13C NMR (D2O, 

101 MHz, ppm) δ = 181.3, 154.2, 150.5, 136.2, 92.0, 23.2. Elem. Anal. (C6H10N4O2, 170.17 

g·mol−1) calcd.: C 42.35, H 5.92, N 32.92%. Found: C 42.16, H 5.62, N 32.78%. m/z (FAB+): 221 

[2M+H]+, 111 (cation); m/z (FAB−): 59 (anion); m/z (DEI+): 111 (6) [M+H+]+, 110 (100) [M]+. 

5-Nitramino-3-nitriminopyridazine dihydrate (62H2O) 

3,5-Diaminopyridazine acetate (5, 1.50 g, 8.81 mmol, 1.0 eq.) was dissolved in conc. H2SO4 

(4.9 mL) at 0 °C and 100% HNO3 (1.35 mL, 31.5 mmol, 3.6 eq.) was added dropwise over the 

period of 1 h. The reaction mixture was stirred for 2 h at 0 °C, then for 1.5 h at room temperature 

and subsequently poured on ice. The resulting suspension was filtered, the formed precipitate was 

washed with a small amount of ice water and dried on air to yield 62H2O as beige solid (1.63 g, 

6.92 mmol, 79%). 

DTA (5 °C min−1): 73 °C (endo, H2O.), 118 °C (exo.); BAM: drop hammer: 12.5 J (100–500 μm); 

friction tester: >360 N (100–500 μm); ESD: 0.55 J (100–500 μm). IR (ATR), ṽ (cm−1) = 3095 (m), 

2821 (m), 1629 (s), 1569 (s), 1515 (vw), 1451 (vs), 1381 (m), 1332 (m), 1296 (s), 1279 (s), 1229 

(w), 1173 (vs), 1114 (s), 1055 (m), 997 (m), 957 (m), 896 (m), 860 (m), 779 (m), 750 (m), 711 (m), 

693 (m), 641 (w). 1H NMR (d6-DMSO, 400 MHz, ppm) δ = 8.38 (d, 4J = 2.5 Hz, 1H), 8.22 (d, 4J 

= 2.5 Hz, 1H), 5.19 (br, 6H). 13C NMR (d6-DMSO, 101 MHz, ppm) δ = 157.9, 145.3, 137.5, 107.0. 

14N NMR (d6-DMSO, 29 MHz, ppm) δ = −15, −27. Elem. Anal. (C4H8N6O6, 236.14 g·mol−1) 

calcd.: C 20.35, H 3.41, N 35.59%. Found: C 20.74, H 3.61, N 35.56%. m/z (DEI+): 200 (5) [M]+. 
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3,5-Diamino-4-nitropyridazine (7) 

5-Nitramino-3-nitriminopyridazine dihydrate (6  2H2O, 1.63 g, 6.92 mmol, 1.0 eq.) was added to 

conc. H2SO4 (8.5 mL) at 0 °C. The solution was stirred for 30 min at 0 °C, 45 min at r.t. and 3 h at 

50 °C. The resulting solution was poured on ice and neutralised with NaHCO3. Filtration of the 

suspension and washing with ice water yielded the product as yellow solid (7, 871 mg, 5.62 mmol, 

81%). 

DTA (5 °C min−1): 260 °C (exo.); BAM: drop hammer: 40 J (100–500 μm); friction tester: >360 N 

(100–500 μm); ESD: 1.00 J (100–500 μm). IR (ATR), ṽ (cm−1) = 3449 (m), 3316 (m), 3062 (m), 

2993 (m), 1610 (s), 1581 (s), 1521 (m), 1504 (m), 1470 (m), 1267 (s), 1138 (m), 1095 (m), 1013 

(m), 778 (m), 578 (m), 553 (m). 1H NMR (d6-DMSO, 400 MHz, ppm) δ = 8.33 (s, 2H), 8.20 (s, 

1H), 7.55 (s, 2H). 13C NMR (d6-DMSO, 101 MHz, ppm) δ = 152.4, 142.1, 136.4, 114.8. 14N NMR 

(d6-DMSO, 29 MHz, ppm) δ = −12. Elem. Anal. (C4H5N5O2, 155.12 g·mol−1) calcd.: C 30.97, H 

3.25, N 45.15%. Found: C 30.76, H 3.78, N 43.27%. m/z (DEI+): 155 (100) [M]+, 156 (6) [M+H+]+, 

157 (1) [M+2H+]+. 
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12. Appendix 

1. List of Abbriviations 

°C    degree Celsius 

δ    chemical shift in ppm 

ADN    ammonium dinitramide 

AG    aminoguanidium 

ANPyO   4,6-diamino-3,5-dinitropyridine-1-oxide 

AP    ammonium perchlorate 

AN    ammonium nitrate 

BC    Before Christ 

BNCP     tetramin-cis-bis(5-nitrotetrazolato-N2)cobalt(III) perchlorate 

br    broad 

brine    saturated solution of sodium chloride 

CA    cadmium azide 

c-hexane   cyclohexane 

Cl-20    6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane 

DCM    dichloromethane  

DDNP    2-diazo-4,6-dinitrophenol 

DDT    deflagration-to-detonation transition 

DMF    dimethylformamide 

EI    electron ionisation 

EM    energetic material 

eq.    equivalent 

EtOAc    ethyl acetate 
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et al.    et alii (and others) 

FAB    fast atom bombardment 

g    gram 

h    hour 

HEDM    high-energy density material 

HMX    1,3,5,7-tetranitro-1,3,5,7-tetrazocine 

HNAB    hexanitroazobenzene 

HNS    1,2-bis(2,4,6-trinitrophenyl)ethylen 

Hz    Hertz 

in vacuo   under pressure 

IR    infrared 

LA    lead azide 

LLM-105   2,6-diamino-3,5-dinitropyrazine-1-oxide 

LLX-112   3,6-diamino-1,2,4,5-tetrazine-1,4-dioxide 

MF    mercury fulminate 

mL    millilitre 

mm    millimetre 

NC    nitrocellulose 

NG    nitroglycerine 

NMR    nuclear magnetic resonance 

NONA    2,2',2'',4,4',4'',6,6',6''-nonanitroterphenyl 

ONC    1,2,3,4,5,6,7,8-octanitro-pentacyclo-[4.2.0.02,5.03,8.04,7]octan 

PAC    pentammin(1,5-cyclopentamethylentetrazolato-N3)cobalt(III)  

   perchlorate 

PETN    pentaerythrittetranitrat 
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PP    potassium perchlorate 

ppm    parts per million 

pTsOH    p-toluenesulfonic acid 

PYX    2,6-bis(picrylamino)-3,5-dinitropyridine 

RDX    1,3,5-trinitro-1,3,5-triazine 

STP    standard temperature and pressure 

r.t.    room temperature 

TACOT   tetranitro dibenzo-1,2a,4,4a-tetraazapentalene 

TATB    1,3,5-triamino-2,4,6-trinitrobenzene 

TATNB   1,3,5-triazido-2,4,6-trinitrobenzol 

Tetryl    N-methyl-N-2,4,6-tetranitroanilin 

TNAZ    1,3,3-trinitroazetidine 

TNT    2,4,6-trinitrotoluene 

vw    very weak (IR) 

w    weak (IR) 
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