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Abstract 
The neurodegenerative disease amyotrophic lateral sclerosis (ALS) is clinically characterized 

by the progressive loss of upper and lower motoneurons and pathologically by the presence of 

Tar DNA-binding protein of 43 kDa (TDP-43) positive aggregates. The cause of this fatal and 

rapidly progressing disease, for which effective treatments are lacking, remains still unknown. 

Increasing evidence points to altered RNA metabolism as a potential pathomechanism due to 

the high percentage of RNA binding proteins (RBP) encoded by disease causing genes and their 

aggregation in ALS patients. Mutations in the RBPs Heterogeneous nuclear ribonucleoproteins 

A1 (HNRNPA1) and HNRNPA2B1 were identified in ALS and Multisystem proteinopathy 

(MSP) patients. Another member of the HNRNPA family, HNRNPA3, was also linked to ALS 

due to its ability to bind Chromosome 9 open reading frame 72 (C9ORF72) repeats, and its 

localization to p62 positive TDP-43 negative C9ORF72 inclusions. The structural similarity of 

HNRNPA proteins to TDP-43, their ability to bind one another, and the presence of TDP-43 

aggregates in HNRNPA1 and HNRNPA2 mutation carriers, suggest common pathomechanisms 

of these proteins. To unravel the physiological function of HNRNPA1, HNRNA2B1, and 

HNRNPA3, and their association to ALS, this study aims to establish zebrafish loss of function 

mutants lacking the orthologues of the corresponding genes. Genetic analysis revealed that due 

to the teleost specific genome duplication zebrafish possess two HNRNPA1 orthologues named 

hnrnpa1a and hnrnpa1b, but no HNRNPA2B1 orthologue. In this thesis hnrnpa1a, hnrnpa1b, 

and hnrnpa3 zebrafish mutants were generated and characterized, and compared to the tardbp-

/-; tardbpl-/- mutant, which lacks the zebrafish TDP-43 orthologues.  

While single hnrnpa1a, hnrnpa1b, and hnrnpa3 knockout (KO) zebrafish are viable and fertile, 

double hnrnpa1a and hnrnpa1b KO mutants are embryonically lethal. Moreover, the double 

mutants are developmentally delayed, have shortened motoneuron axons, muscle defects, show 

vascular mispatterning with reduced or absent blood flow, have a thinned yolk extension and 

increased neutral lipid uptake from the yolk. Some of these phenotypic alterations, such as 

shortened motoneurons and degenerated muscles, are also present in tardbp-/-; tardbpl-/- mutants 

and are presumably a general phenomena preceeding the embryonic lethality. The impaired 

intersomitic vessels observed in both mutants show distinct characteristics, since hnrnpa1a-/-; 

hnrnpa1b-/- mutants only develop dorsal lateral lamellopodia, diverting from their physiological 

migration path and misconnect, whereas tardbp-/-; tardbpl-/- mutants additionally have ectopic 

endothelial sprouts from the dorsal aorta. 

RNA sequencing of hnrnpa1a-/-; hnrnpa1b-/- embryos revealed apolipoprotein (apoda.1) as one 

of the top downregulated genes. APOD is a lipid transporter and was previously shown to be 
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neuroprotective. Upon knockdown of apoda.1 in wildtype embryos we could mimic the lipid 

phenotype observed in hnrnpa1a-/-; hnrnpa1b-/- mutants. This finding points to a direct link 

between HNRNPA1 loss of function and downregulation of APOD. We hypothesize that 

HNRNPA1 ALS patients lack the neuroprotective upregulation of APOD, which contributes to 

disease progression and neurodegeneration.  
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Zusammenfassung 
Die neurodegenerative Erkrankung Amyotrophe Lateralsklerose (ALS) ist klinisch durch den 

Verlust der oberen und unteren Motorneuronen und pathologisch durch die Präsenz von 

Tar DNA-binding protein of 43 kDa (TDP-43) positiven Aggregaten gekennzeichnet. Die 

Ursache dieser unheilbaren und schnell fortschreitenden Krankheit ist bisher nicht bekannt. 

Mehrere Forschungsergebnisse, wie zum Beispiel der große Anteil an aggregierenden RNA 

bindenden Proteinen (RBPs) und Mutationen in den entsprechenden Genen als 

Krankheitsursache in ALS Patienten, deuten darauf hin, dass veränderter RNA Metabolismus 

eine große Rolle in der Krankheitspathogenese spielt. Mutationen in den RBPs Heterogeneous 

nuklear ribonukleoprotein A1 (HNRNPA1) und HNRNPA2B1 wurden in Multisystem 

Proteinopathy (MSP) und ALS Patienten identifiziert. Ein weiteres Mitglied der HNRNPA 

Protein Familie, HNRNPA3, wurde zudem mit ALS assoziiert, da es an Chromosome 9 open 

reading frame 72 (C9ORF72) Wiederholungssequenzen bindet und mit p62 positiven TDP-43 

negativen C9ORF72 Aggregaten kolokalisiert. Die strukturelle Ähnlichkeit der HNRNPA 

Proteine zu TDP-43, deren direkte Interaktion miteinander, sowie TDP-43 Aggregate in 

HNRNPA1 Patienten, suggerieren gemeinsame Pathomechanismen dieser Proteine.  

Zur Studie der physiologischen Funktion von HNRNPA1, HNRNPA2B1 und HNRNPA3, und 

deren Beitrag zu ALS, wurden Zebrafischmutanten generiert, in welcher die jeweiligen 

orthologen Gene defekt sind. Die genetische Analyse ergab, dass durch die Teleost spezifische 

Genomduplikation im Zebrafish zwei HNRNPA1 Orthologe existieren: hnrnpa1a und 

hnrnpa1b, jedoch kein HNRNPA2B1 Ortholog. Diese Dissertation widmet sich der Erstellung 

und Charakterisierung der hnrnpa1a, hnrnpa1b und hnrnpa3 Mutanten, sowie deren 

Gegenüberstellung mit der tardbp-/-; tardbpl-/- Mutante, in welcher die Zebrafisch TDP-43 

Orthologe defekt sind. 

Während die Einzelmutanten von hnrnpa1a, hnrnpa1b, und hnrnpa3 keine Auffälligkeiten 

zeigen, ist die Doppelmutante von hnrnpa1a und hnrnpa1b embryonal letal. Die 

Doppelmutante ist zudem entwicklungsverzögert, hat kürzere Motoneurone und degenerierte 

Muskeln, fehlentwickelte Gefäße mit stark verminderter oder fehlender Durchblutung, sowie 

eine dünnere Dottersackverlängerung und erhöhte Aufnahme von neutralen Lipiden aus dem 

Dottersack. Einige dieser phenotypischen Veränderungen, wie zum Beispiel die verkürzten 

Motoneurone und degenerierten Muskeln, sind auch in tardbp-/-; tardbpl-/- Mutanten präsent. 

Allerdings, kann man davon ausgehen, dass diese Veränderungen eine unspezifische Folge des 

sterbenden Embryos darstellen. Die in beiden Mutanten beobachtete Fehlbildung der Gefäße 

unterscheidet sich zudem, da hnrnpa1a-/-; hnrnpa1b-/- Mutanten laterale Lamellopodien dorsal 
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ausbilden, welche ihren physiologischen Migrationsweg verlassen und fehlerhafte 

Verbindungen bilden, wohingegen zusätzliche ektopische Endothelzellprozesse aus der 

dorsalen Aorta charakteristisch für tardbp-/-; tardbpl-/- Mutanten sind.  

RNA Sequenzierung der hnrnpa1a-/-; hnrnpa1b-/- Doppelmutante identifizierte apolipoprotein 

(apoda.1) als eines der Gene, dessen Expression am meisten reduziert ist. APOD ist ein 

Lipidtransporter und besitzt neuroprotektive Eigenschaften zu besitzen. apoda.1 knockdown in 

Wildtyp-Embryonen führte zu dem gleichen Lipidphenotyp, welcher in hnrnpa1a-/-; hnrnpa1b-

/- Mutanten beobachtet wurde. Diese Erkenntnis stellt eine direkte Verbindung zwischen 

HNRNPA1 Funktionsverlust und reduzierter APOD Expression dar. Wir nehmen an, dass 

HNRNPA1 ALS Patienten die neuroprotektiv wirkende vermehrte Expression von APOD fehlt, 

was zur Krankheitheitsenticklung und Neurodegeneration beisteuert. 
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1 Introduction 
 
According to a report by the United Nations in 2015, the world’s population age increased so 

drastically that the number of people aged 60 and over is predicted to more than double in the 

next 35 years [1]. This aging society is accompanied by an increased number of people 

suffering from neurodegenerative diseases, as aging represents the main risk factor for 

neurodegeneration. While Alzheimer’s disease (AD) is the most prevalent neurodegenerative 

disease, Parkinson’s disease (PD), Huntington’s disease (HD), prion disorders, tauopathies, 

Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia (FTLD) are also 

becoming more common [2]. Interestingly, in all these neurodegenerative diseases a subset of 

neurons becomes particularly susceptible to neurodegeneration, and most of them share the 

presence of distinct proteins aggregates [3] [4]. 

Thanks to enormous progress in the past years in identifying genetic variants, which modify 

or cause various diseases, exon sequencing and genome-wide association studies (GWAS) led 

to the discovery of thousands of phenotype-associated loci. Although several pathways, such 

as protein degradation or RNA metabolism could be associated with neurodegenerative 

diseases, little is known about the involved proteins’ role in disease and their physiological 

functions. Investigating the disease genes’ physiological functions and the impact of patient-

associated mutations in cell culture and animal models will help us to better understand the 

pathomechanisms in the future.  

Although many advances were made in the field, effective therapies are currently lacking, and 

drug development remains slow as clinicians and researchers are still challenged by the 

diversity of potential underlying disease mechanisms and overlapping clinical symptoms of 

different neurodegenerative diseases. While only 10% of the cases are familial, also in 

sporadic cases susceptibility genes are occasionally affected. In addition, there is evidence 

that not only single gene mutations cause neurodegeneration, but that environmental risk 

factors can also play a role in disease development [5]. Risk factor genes and environmental 

factors can for example act on a local level by affecting cell adhesion or neurotransmission; or 

influence the broader system by altering, for example, inflammation or metabolism [6] [7]. 

New approaches aim to specify patient subgroups and to identify the pathological 

mechanisms that are upstream and causative for pathology and clinical symptoms. Thereby 

individually tailored therapeutics depending on the underlying genetic causes and aggregated 

disease proteins may be established [8]. The identification of disease-related genes’ function 
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and their involvement in disease mechanisms allows for successful implementation of this 

goal.  

1.1 Aim of the project 
 

The aim of this PhD thesis is to characterize the functions and downstream targets of the 

ALS-associated proteins Heterogeneous nuclear ribonucleoprotein (HNRNP) HNRNPA1 and 

HNRNPA2B1 and HNRNPA3 in vivo. Mutations in HNRNPA1 and HNRNPA2B1 were 

found to be causative for ALS. Moreover, these two proteins mislocalize to the cytoplasm in 

muscle biopsies of Multisystem proteinopathy (MSP) patients and colocalize with the main 

ALS-associated protein Tar DNA-binding protein of 43 kDa (TDP-43) [9]. HNRNPA3 is 

linked to ALS due to its ability to bind Chromosome 9 open reading frame 72 (C9ORF72) 

repeats, the most common genetic cause of ALS, and the identification of HNRNPA3 

pathology in ALS patients with C9ORF72 repeat expansions [10] [11]. It is not clear yet 

whether the mutations and/or the mislocalization of these predominantly nuclear proteins to 

the cytoplasm resemble a gain or loss of function, or both. By generating loss of function 

zebrafish of the HNRNPA1 orthologues hnrnpa1a and hnrnpa1b, and the HNRNPA3 

orthologue hnrnpa3, I aim to generate an animal model that mimics the potential HNRNPA1, 

HNRNPA2B1 or HNRNPA3 loss of function scenario in ALS.  

First, general tools were established, such as zebrafish Hnrnpa1a, Hnrnpa1b, and Hnrnpa3 

specific antibodies, to provide the basis for this study. Next, I generate single hnrnpa1a, 

hnrnpa1b, and hnrnpa3 knockout (KO) zebrafish by genome editing, using the Clustered 

regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas)9/Cas9 

system. As these genes are highly similar in sequence and overlapping functions for the 

respective proteins were described, I incross the single KO to generate double or triple loss of 

function mutants. Zebrafish Hnrnpa1a, Hnrnpa1b, and Hnrnpa3 specific antibodies will 

demonstrate if the mutants are full loss of function alleles. After successful generation of 

these lines, I analyze them for phenotypical, biochemical and molecular alterations. My focus 

will be to thoroughly describe the obtained phenotype, analyze molecular changes, and 

correlate these findings with previously established Hnrnpa animal models. HNRNPA and 

TDP-43 are both members of the HNRNP protein family, are involved in ALS, and are 

structurally and functionally very similar. For successful comparison of molecular changes 

associated with Hnrnpa1a, Hnrnpa1b, Hnrnpa3 or TDP-43 loss of function in zebrafish, RNA 

sequencing is performed on the corresponding KO mutants. By determining the similarities 

between the Hnrnpa1 KO zebrafish and the previously generated Tdp-43 loss of function
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zebrafish I aim to identify disease related commonalities [12]. These might be ultimately used 

to design novel treatment options.  

1.2 Amyotrophic lateral sclerosis  
 

ALS, also known as Lou Gehrig disease, is an adult-onset neurodegenerative disease, which 

is characterized by the loss of upper (UMN) and lower motoneurons (LMN). The name 

derives from both the degeneration of corticospinal motoneurons, of which the descending 

axons in the lateral spinal cord are scarred (lateral sclerosis), and the loss of spinal 

motoneurons with secondary denervation and muscle wasting (amyotrophy) [13]. With an 

incidence varying from 0.3 to 2.5 cases per 100.000 people per year, ALS represents the most 

frequent motoneuron disease (MND) [14].  

1.2.1 ALS and closely associated diseases  

 
Neurodegenerative diseases are often characterized by the aggregation of proteins. This 

feature also helps to differentiate among other diseases, which is hardly possible according to 

clinical symptoms. Besides clinically pure forms of ALS, patients are often diagnosed with 

additional symptoms and there is significant clinical and pathological overlap to other disease 

entities. With advancing genome sequencing, clinical and pathological examination of ALS 

and other diseases it became clear, that ALS patients most frequently show additional features 

of FTLD and MSP. 

1.2.1.1 Frontotemporal lobar degeneration 
 

Historically, ALS and FTLD were thought two represent two distinct neurodegenerative 

disorders. With the discovery of common clinical, genetic, and pathological characteristics 

ALS and FTLD are now considered to be two extreme ends of a disease spectrum [15, 16]. 

FLTD describes a heterogenous group of diseases, which all primarily affect the frontal and 

temporal lobes of the brain, but are divers on a clinical, pathological, and genetic level. There 

are three major associated disorders including semantic dementia (SD), progressive non-

fluent aphasia (PNFA), and behavioral variant frontotemporal dementia (bvFTD), which is 

the most frequent variant accounting for 50% of FTLD patients. FTLD represents the second 

most common dementia after AD in patients under 65 years of age and has an incidence of 

3.5-4.1 per 100.000 people per year [17]. Next to FTLD related clinical features, neurological 

imaging obtained from magnetic resonance imaging (MRI), computed tomography (CT), and 
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positron-emission tomography (PET) allows FTLD diagnosis[18]. FTLD is characterized by 

behavioral changes such as neuropsychological, speech, and language deficits typical of 

frontotemporal dysfunction, and neuropathologically by deposits of mostly TDP-43 or Tau 

[19]. In few cases other proteins aggregate in FTLD patients leading to the establishment of 

FTLD subtypes according to the main deposited protein. Patients with Tau positive inclusions 

are referred to as FTLD-TAU, which make up 45% of all FTLD cases. Tau pathology 

negative cases include FTLD-TDP patients (45%), who show TDP-43 positive inclusions, and 

FTLD-FUS patients (9%) with Fused in Sarcoma (FUS) positive inclusions. Approximately 

1% of FTLD cases show inclusions for proteins of the ubiquitin-proteasome pathway, lacking 

TDP-43, FUS, or Tau pathology and are referred to as FTLD-UPS [20]. Patients with 

C9ORF72 mutations show apart from TDP-43 inclusions also aggregation of dipeptide repeat 

proteins (DPR) proteins [21] [22]. As TDP-43, DPRs, and FUS aggregates are likewise found 

in ALS cases, ALS and FTLD were pathologically connected [20]. This connection is further 

supported by the patients’ symptom overlap, as around 14% of ALS patients exhibit FTLD 

like symptoms and 30-50% of FTLD patients suffer from ALS associated movement 

disorders. Symptomatic subclasses reflecting ALS or FLTD or mixed forms were defined, 

such as ALS with cognitive and behavioral impairment (ALS-Ci/Bi), FTLD-MND for FTLD 

with motoneuron dysfunction, and ALS-FTLD for patients with similar portions of ALS or 

FLT related symptoms [23] [24] [25] [26]. The genetic overlap of ALS and FTLD is further 

supported by genetic studies, which revealed diseases causing mutations in the same genes, 

such as TDP-43 and FUS. The ultimate link is provided by C9ORF72 mutations, which cause 

ALS, FTLD, or ALS-FTLD in a similar frequent manner [21] [22]. Despite overlapping 

characteristics regarding ALS and FTLD genetics and pathology, some disease mutations and 

proteins exist that can be uniquely assigned to one of the diseases. Mutations in the 

microtubule-associated protein tau (MAPT) encoding the microtubule-associated protein Tau 

result in FTLD characterized by Tau positive aggregates, while mutations in SOD1 encoding 

the copper/zinc superoxide dismutase 1 are associated with pure ALS [29].  

1.2.1.2 Multisystem proteinopathy 
 

MSP is an inherited pleiotropic degenerative disorder that affects multiple tissues and organs, 

such as the muscle, bone, or the nervous system. The phenotype is highly variable and shares 

symptoms with inclusion body myopathy (IBM), FTLD, ALS or Paget’s disease of bone 

(PDB). Clinically, MSP is defined to include the diagnosis of at least two of the diseases 

IBM, PDB, and ALS/FTLD [30]. GWAS studies have for the first time linked ALS/FTLD to 
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MSP by the identification of Valosin-containing-protein (VCP) mutations in MSP and ALS 

patients [31] [32] [33]. Additionally, mutations in p62 were described for patients suffering 

from PDB, ALS, or FTLD providing another gene that links these diseases together [34]. 

Recently, rare mutations in HNRNPA1 and HNRNPA2B1 were identified in MSP families, 

which are also present in sporadic (sALS) and familial (fALS) cases of ALS. Postmortem 

tissues obtained from MSP patients show ubiquitin-positive inclusions that contain RBPs, 

such as TDP-43, HNRNPA1, or HNRNPA2B1 [35] [36]. Additionally, aggregates of proteins 

involved in ubiquitin-dependent autophagy, including P62/SQSTM1, VCP, OPTINEURIN, 

and UBIQUILIN-2 were found in these patients [37]. These findings support the involvement 

of disturbed RNA metabolism and autophagy as key contributors to pathogenesis related to 

HNRNPA1 or HNRNPA2B1 mutations. 

 

The common genetic mutations together with the overlapping clinical symptoms, and 

aggregated proteins among the disease spectra point to shared molecular mechanisms in ALS, 

FTLD and MSP. The phenomenon of ALS and its overlap to other diseases raises 

fundamental questions for seemingly distinct diseases, but also presents important 

opportunities for developing therapeutics for a broad spectrum of degenerative diseases.  

1.2.2 ALS clinical classification  

 

ALS belongs to the group of MNDs. Apart from ALS this category comprises several other 

diseases all sharing the characteristic of sequential degeneration of LMNs or UPMs. In 

contrast to ALS, in Primary lateral sclerosis (PLS) and Pseudobulbar palsy only UMN are 

affected, whereas Progressive muscular atrophy (PMA) and Progressive bulbar palsy (PBP) 

result only in LMN loss. ALS is a heterogeneous disease from a clinical point of view and 

subsets of the disease are classified by the degeneration of different sets of motoneurons and 

impairment of different body regions [38]. Most of the patients’ (approximately 70%) disease 

starts as degeneration of UMNs and LMNs in the limbs, resulting in limb muscle weakness 

and locomotion deficits. Around 25% of the patients present bulbar onset including UMNs 

and LMNs dysfunction of cranial nerve nuclei, causing in dysarthria and dysphagia. The 

remaining 5% of the patients show initial trunk or respiratory dysfunction [39]. Although, the 

clinical presentation and the disease course of ALS vary among patients, the mean onset is at 

55 years of age and the symptoms progressively spread to other parts of the body ultimately 

resulting in dysfunction of all voluntary muscle control. At late disease stage wasting of 
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respiratory muscles leads to patients death approximately three years after symptom onset due 

to respiratory failure [40].  

In order to diagnose a disease as ALS the El Escorial World Federation of Neurology Criteria 

of the Diagnosis of Amyotrophic Lateral Sclerosis developed standard criteria that have to be 

fullfilled [41]. The core of these criteria are the degeneration of LMN and UMN and the 

exclusion of other underlying diseases [42] [43]. The involvement of LMN is depicted by 

increasing muscle atrophy, muscle failing or muscle twitching (fasciculations) caused by 

spontaneous discharges of motor neurons. Fasciculations are often initially present at hand 

muscles, but electromyography (EMG) analysis is indispensable for final diagnosis. Signs of 

UMN degeneration are spasticity and degeneration in the motor cortex, which can be assessed 

by MRI and PET. Exclusion of other diseases via electrophysiology and cognitive testing 

leads to final ALS diagnosis [44].  

After the first description of ALS in 1869 by Jean Martin Charcot, nowadays there is still no 

cure for ALS and the majority of patients are treated with the FDA approved drug Riluzole 

(Rilutek, Sanofi-Aventis) or by symptomatic orientated therapy. Riluzol is a sodium channel 

blocker lowering glutamate effects and acts as a neuroprotector by decreasing glutamate 

mediated excitotoxicity. Upon Riluzole treatment the disease course of ALS is slightly 

modified and achieves only a modest improvement in survival of 3-6 months [45].  

1.2.2.1 Molecular pathology and genetics in ALS 

 
Over the past years ALS research lead to better understanding of disease mechanism by 

characterization of protein inclusions and the identification of their key components. While 

ubiquitin immunoreactive inclusions are found in all ALS cases [46, 47], pathological 

subtypes were established according to the major aggregating protein. TDP-43, which is 

found in inclusions in 97% of ALS, represents the most abundant aggregated protein (ALS-

TDP), while SOD-1 inclusion pathology is only seen in approximately 2% of ALS cases 

(ALS-SOD1). Approximately 1% of ALS cases (ALS-FUS) show inclusions of FUS protein 

[48] [19] (reviewed in [49]).  

Genetic studies further contributed to identify mutations in several genes that cause ALS. 

fALS is inherited by a dominant trait with high penetrance, while the remaining 90% are 

sALS patients who do not show a family history. Even though a high number of ALS genes 

was identified, understanding the precise mechanisms causing the disease remains a 

challenge.  
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The first genetic mutations, which were found to cause ALS, were identified in the SOD1 

gene in 1993 and account for about 12-20% of fALS cases and 1-2% of sALS cases [50]. 

SOD1 mutations cause pure ALS with SOD1 and ubiquitin aggregates, devoid of TDP-43 and 

FUS inclusions [51] [52]. The discovery of mutations in TARDBP (which encodes TDP-43) 

in autosomal dominant ALS and FTLD families identified the pathological hallmark of FTLD 

and ALS and make up to ~4% of fALS cases, which show TDP-43 positive inclusions [19]. 

FUS mutations account for 4% of fALS and 1% of sALS cases, which show FUS positive 

inclusions [53].  

As protein aggregates are the major hallmark of ALS pathology, defects in protein 

homeostasis were early suggested as a potential pathomechanism. Indeed, many mutations 

that cause ALS are involved in the protein degradation pathway. These mutations are thought 

to lead to a loss of function resulting in impaired protein degradation, which ultimately leads 

to pathological protein aggregates. Examples are mutations in the genes Sequestosome 

(SQSTM1), Optineurin (OPTN), Ubiquilin (UBQLN2), Valosin-containing protein (VCP) and 

Cyclin-F (CCNF) [54] [55] [56] [31] [57]. All these ALS cases share a common pathology 

characterized by inclusions of ubiquitinated proteins and TDP-43 aggregates. 

With the recent discovery of a GGGGCC (G4C2) hexanucleotide repeat expansion in the 

noncoding region of the C9ORF72 the most common genetic cause of ALS could be 

identified being responsible for 40%-50% of fALS cases and 8%-10% of sALS cases [21] 

[22]. While healthy individuals have 2 to 30 repeats, the repeat number expands to hundreds 

and thousands in C9ORF72 patients (C9-ALS) [58] [59]. C9ORF72 protein has been 

proposed to be a DENN (differentially expressed in normal and neoplastic cells) protein with 

a guanine exchange factor function for small GTPases based on sequence homology. 

Moreover, recent studies suggested a function for C9ORF72 in autophagy and stress granule 

(SG) formation [60] [61] [62] [63]. Loss of C9ORF72 function was early suggested as an 

underlying pathomechanism. While the repeat expansion suppresses the production of 

C9ORF72 protein by inhibiting transcription, several disease models could not identify a 

direct correlation between reduced C9ORF72 levels and neurodegeneration [21] [22], e.g. 

C9ORF72 deficient mice do not display neurodegenerative phenotypes [64] [65]. Moreover, 

no study could so far identify a pathway that links C9ORF72 activity to neuronal survival. 

Apart from C9ORF72 loss of function in ALS, two other disease mechanisms are under 

debate to cause C9-ALS. First, the repeat expansion generates DPRs that arise from non-ATG 

translation (RAN translation). Hereby all possible reading frames of the sense and anti-sense 

strand are translated giving rise to five different DPRs: GA, GR, GP, PR and PA [66] [67] 
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[68] [62]. The accumulation of transcripts with the long repeat sequence in RNA foci suggests 

toxic RNA gain-of-function pathomechanisms as these RNA foci are suggested to disrupt 

RNA metabolism and sequester RBPs. This is supported by the finding that RBPs, with the 

biggest group being HNRNPs including HNRNPA1, HNRNPA2/B1 and HNRNPA3, bind to 

G4C2 repeats and are sequestered in RNA foci in the spinal cord of ALS/FTLD patients, 

resulting in their cellular depletion and perturbed cellular RNA metabolism [21] [69] [70] 

[71]. Second, the DPR proteins are found in protein deposits, which are p62 positive and 

TDP-43 negative [62] [72] and are to different extents neurotoxic (reviewed in [73]). Poly GA 

aggregates, for example were found to recruit 26S proteasome complexes, providing a link of 

C9ORF72 repeats and protein aggregation due to an impaired proteasome function [72]. 

Additionally, in all C9-ALS cases pathological aggregation of TDP-43 can be found in the 

cortex and cerebellum [74]. So far only HNRNPA3 was identified to be contained in some 

p62 positive TDP-43 negative C9ORF72 specific inclusions [67]. Further evidence for a 

relationship between HNRNPA3 and C9ORF72 comes from in vitro studies. These showed 

that knockdown (KD) of HNRNPA3 in cell culture and primary fibroblasts from C9-ALS 

patients lead to DPR accumulation and an increase of repeat RNA foci [11]. Most likely all 

the C9 associated pathomechanisms are not mutually exclusive. 

1.2.2.2 The role of RBPs in ALS 

 

Apart from mutations in TDP-43 and FUS, mutations in other RBPs were identified, 

including TATA box-binding protein associated factor 15 (TAF15) [75], Ewing sarcoma 

breakpoint region 1 (EWSR1) [76], Matrin-3 (MATR3) [77], HNRNPA1, HNRNPA2B1 [9], 

and T-cell intracytoplasmic antigen (TIA1) [78]. In most of the cases these mutations cause 

aggregates of the respective protein in ALS patients’ brains. Motoneurons are the main 

affected cells in ALS and with their axons reaching lengths up to 1m they are dependent on 

transport of mRNAs along the cytoskeleton and local translation. Moreover, due to their non-

dividing nature they are dependent on tight mRNA homeostasis regulation [79]. These 

features make motoneurons especially vulnerable to dysfunctional RNA metabolism and 

potentially link the selective motoneuron degeneration observed in ALS to mutated and 

aggregated RBPs. 
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1.2.2.2.1 TDP-43 

 
TDP-43 is able to shuttle between the nucleus and the cytoplasm and has a variety of 

important functions in RNA metabolism ranging from transcription regulation, splicing, to 

microRNA (miRNA) processing [80]. TDP-43 was found to bind thousands of mRNAs by 

which it regulates their splicing and RNA stability suggesting potential impact on RNA 

metabolism on a broad scale [81] [82]. Additionally, TDP-43 regulates its own transcript 

levels through an autoregulatory feedback loop by binding to its own 3’ UTR [81] [83] [84]. 

Cytoplasmic mislocalized TDP-43 as observed in ALS, is heavily post-translationally 

modified via cleavage, phosphorylation, acetylation, and ubiquitination, and forms granular 

pathology that assembles to large inclusions [85]. These pathogenic variants are mostly 

located in the C-terminus of the protein, which allows ribonucleoprotein binding and is 

involved in splicing. At the C-terminus a prion like domain (PrLD) is present, which is 

enriched in uncharged polar amino acids and drives protein aggregation. The nuclear 

clearance of TDP-43 and its accumulation into aggregates suggests that loss of nuclear TDP-

43 function may lead to deleterious abnormal RNA metabolism [86]. Alternatively, toxic gain 

of function from increased normal TDP-43 activity or from a novel toxic cytoplasmic 

function may be culprit [87].  

1.2.2.2.2 TIA1 

 
TIA1 is structurally very similar to TDP-43 and HNRNPAs. Under normal conditions TIA1 is 

predominantly localized in the nucleus and functions in RNA metabolism including RNA 

splicing, and mRNA silencing [88]. Upon stress TIA1 translocates to the cytoplasm, where it 

suppresses RNA translation and functions in SG formation through self-association of its 

PrLD [89] [90]. Mutations in TIA1 were recently found in ALS patients, whereby all the 

mutations are found in the PrLD domain and cause impaired SG disassembly and promote 

accumulation of non-dynamic SGs that sequester TDP-43 [91] [92]. Patients with TIA1 

mutations do also show TDP-43 positive cytoplasmic inclusions in the CNS, however no 

aberrant accumulation was reported for TIA1 [93]. 

1.2.2.2.3 FET proteins 

 
Based on their similar structure - a zinc finger domain, a RNA recognition motif (RRM), and 

a N-terminal low complexity PrLD - FUS, EWSR1, and TAF15 proteins are grouped together 

and termed FET family [94]. The FUS protein is also a member of the HNRNP protein family 



Introduction 

 10 

(sometimes referred to as HNRNP P2) and mutations in FUS are therefore hypothesized to 

lead to neuronal death via disturbed RNA metabolism. The majority of FUS mutations cluster 

at the C-terminus of the protein in the PY-NLS domain [95] and these mutations are thought 

to impair transport mediated nuclear import leading to redistribution of FUS to the cytosol 

[96] [97] where it  accumulates together with other FET proteins in SG as a cellular stress 

response [98]. Eventually, accumulated FUS transitions to stable inclusions, which represent 

the pathological hallmark in patients [95]. As FUS acts as a transcriptional regulator and 

controls RNA splicing of many genes, nuclear loss of function due to redistribution may lead 

to impaired RNA metabolism and detrimental effects in neurons. Due to the high similarity of 

its genomic sequence and protein structure to the previously identified FUS gene in ALS, 

EWSR1 was considered as a potential disease gene, of which two mutations were 

subsequently identified in sALS cases [78]. Moreover, mutations in sALS and fALS 

associated mutations were identified in TAF15, which functions in DNA repair, alternative 

splicing, transcription and RNA transport [75].  

1.2.2.2.4 HNRNPA proteins 

 
The latest discovery of mutations in RBPs was in 2013 in two other members of the HNRNP 

family – HNRNPA1 and HNRNPA2B1. Three HNRNPA1 mutations were linked to ALS 

(D262N; P288S) or MSP (D262V). Only one mutation in HNRNPA2B1 (D290V) was 

reported in a family with MSP, which is surprisingly homologue to the ALS associated 

HNRNPA1D262V mutation [9] [99]. Mutations in HNRNPA1 and HNRNPA2B1 show an 

autosomal dominant mode of inheritance in fALS and account for <1% of fALS and sALS 

cases, while they are also associated with the broader disease spectrum MSP [100]. The 

underlying disease mechanism connecting HNRNPA1 or HNRNPA2B1 mutations to 

neurodegeneration is not clear yet, but loss of function by mislocalization and/or aggregation 

or gain of function due to toxic aggregates or a combination of both was suggested. A loss of 

function mechanism was suggested by a group, which reported increased aggregation and 

localization of mutant HNRNPA2B1 to SGs in a cell-based system [101]. Evidence for only 

partial loss of function is supported by a study from Martinez et al., which revealed that the 

HNRNPA2B1D290V mutation is not equivalent to loss of HNRNPA2B1 protein in regard to 

alternative splicing changes [102].  

Evidence for a functional link between HNRNPA1 or HNRNPA2B1 and the main ALS 

associated protein TDP-43 comes from a study showing that the expression of HNRNPA1 

and HNRNPA2/B1 is altered in patients with FTLD-TDP, suggesting that perturbations in 
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RNA metabolism are not exclusively driven by TDP-43 loss of function [103]. Moreover, a 

direct interaction between HNRNPA1 and UBQLN1 was determined, which is dependent on 

the HNRNPA1 PrLD domain and reduced by HNRNPA1D262V mutations [104]. Lastly, 

HNRNPA1 and HNRNPA2 were linked to the ALS gene VCP as they were identified as 

VCP-associated phenotype suppressors when knocked down in a Drosophila VCP mutant 

model [105].  

The majority of the so far identified mutations in HNRNPA1 and HNRNPA2/B1 are localized 

in the PrLD. Under physiological conditions these HNRNPs were shown to self-aggregate 

and this behavior is increased by the disease-causing mutations. The mutated HNRNPA1 and 

HNRNPA2B1 form self-seeding fibrils that can recruit wildtype protein, which suggests 

prion-like properties [9]. RNA binding to HNRNPA1 further enhances fibrillization and 

formation of protein-rich droplets suggesting that HNRNPA1 interacts with RNA to mediate 

phase transition and that mutations promote fibrillization and alter the dynamics of 

membraneless organelles ultimately leading to SG formation [106]. An exception to these 

mutations is the P288S mutation, which was identified in a Chinese family with “Flail arm 

ALS”, an atypical ALS subtype with severe wasting and weakness of the arms without 

significant functional involvement of other regions [107]. The mutation localizes to the PY-

domain at the C-terminus of the protein [99]. It can be concluded that HNRNPA1 and 

HNRNPA2/B1 were clearly linked to ALS, while their genetic mutation frequency is low 

[108]. 

 

Disease causing mutations in the TDP-43, FUS, HNRNPA1, HNRNPA2B1, EWSR1, TAF15 

and TIA1 suggest that disturbed biology of RBPs plays a central role in ALS pathology 

(reviewed in [109]). The RBPs TDP-43, FUS, HNRNPA1, HNRNPA2B1, MATR3, and 

TIA1 in particular share common features. They are ubiquitously expressed and contain 

multiple RNA binding domains and a PrLD, which makes them aggregation prone. The 

majority of disease causing mutations is localized in the PrLD and impacts the domain’s 

aggregation potential inducing liquid-liquid phase transition and leading to altered SG 

kinetics [110]. By phase separation the local protein concentration is quickly increased, which 

causes recruitment of other proteins, and promotes their interaction within the SG. This 

process is very dynamic and can return into resting state quickly. Interestingly, disease-

causing mutations clustered in the PrLDs of TDP-43, FUS, HNRNPA1, and HNRNPA2B1 

enhance the prion like state of the protein, which promotes assembly into SG under stressors. 

During this process the prion domains form an abnormally strong interaction, which persists 
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after stress relieve [111] [112] [113]. This leads to persistent sequestration of mRNA and 

impedes their translation [114]. Interestingly, increased formation of aggregates by liquid-

liquid phase transition was also observed by elevated protein concentrations due to 

cytoplasmic mislocalization linking nuclear loss of function and prion like behavior of the 

ALS associated proteins [115] [111].  

In conclusion, under physiological conditions the RBPs are found in RNA granules in the 

nucleus, but they mislocalize to the cytoplasm in disease state where they form inclusions 

[116] [117]. Due to their common nature and their similar behavior in disease state, 

researchers suggested a common pathogenic mechanism for these proteins in ALS, which 

causes loss or gain of function or a combination of both (reviewed in [109] [118]. 

1.3 HNRNP proteins 
 
HNRNP proteins are nuclear proteins that bind to nascent transcripts produced by RNA 

polymerase II and are mostly associated in RNA-protein complexes [119]. Historically,  

 
Figure 1.1 - Schematic illustration of the HNRNP family. Except of hnRNP E, K and U all members possess 
one or more RRM domains, which are involved for RNA/ssDNA binding. Glycine rich domains, which are 
found in HNRNPA/B, HNRNP H, HNRNP L, HNRNP U, FUS and TDP-43 and are highly aggregation prone. 
(Adapted from [120]) 

 
HNRNP proteins were grouped according to their RNA binding domains (RBD) composition 

[119]. The first list of HNRNPs was ultimately generated by co-immunopurification with 

monoclonal antibodies against HNRNPC, followed by two-dimensional gel electrophoresis, 

generating a group of 20 proteins that were named HNRNPs A-U (see Figure 1.1) [121]. 

Apart from various structural differences, all HNRNPs contain RBDs, many contain RGG 

boxes, consisting of repeats of Arg-Gly-Gly tripeptides, and most HNRNPs contain auxiliary 
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domains, such as proline-, glycine- or acid-rich domains [119] [122]. HNRNPs participate in 

many steps of nucleic acid processing, such as telomere maintenance, chromatin remodeling 

and DNA repair. Overall, HNRNPs can have overlapping functions, but some also have very 

specialized roles that are dependent on specific RNA-protein or protein-protein interactions 

[120]. As their function highly depends on their cellular localization, mechanisms that 

regulate their nucleo-cytoplasmic shuttling are of extreme importance [123]. 

1.3.1 Physiological function of HNRNPA proteins 

 

The HNRNPA/B subfamily consists of the proteins HNRNPA0, HNRNPA1, HNRNPA2B1 

and HNRNPA3. HNRNPA1, HNRNPA2B1, and HNRNPA3 (all three together are herein 

referred to as HNRNPA) proteins contain two N-terminal RRMs followed by a C-terminal 

Gly-rich domain (see Figure 1.1) [124] [125]. The RRM allows HNRNPA proteins to interact 

with single stranded nucleic acids, including RNA and single stranded DNA (ssDNA) to 

regulate transcription and splicing [126]. The RGG domain has a distinctive amino acid (aa) 

composition and allows protein-protein interactions. HNRNPA/Bs are present in molar excess 

over their high affinity binding targets and have multiple roles in RNA processes such as 

alternative pre-mRNA splicing, nuclear import, cytoplasmic trafficking of mRNA, mRNA 

stability and turnover, and translation [120]. They package nascent transcript in a non-

sequence specific manner, but have also distinct preferences for RNA sequences [119] [127, 

119]. HNRNPA1 and HNRNPA2/B1 have been well characterized as splicing repressors and 

promote distal splice site selection to regulate splicing of many mRNAs [128]. Like many 

other HNRNP proteins, HNRNPA proteins are predominantly located in the nucleus at 

steady-state but can shuttle between the nucleus and cytoplasm, which is controlled by the M9 

nuclear localization signal near the Gly-rich domain [129] [130]. Most studies have 

investigated the functions of HNRNPA1 and HNRNPA2/B1, while less is known about 

HNRNPA3. HNRNPA1 is one of the most abundant nuclear proteins and two gene variants 

generated by alternative splicing were so far experimentally validated: A1-B, which 

represents the full-length isoform and encodes a protein of 372 aa, and A1-A, the shorter 

variant, translates into a protein that lacks exon 8 resulting in a 320 aa protein. The shorter 

isoform was found to be 20-fold more abundant than the full-length transcript [120]. 

HNRNPA1 is able to negatively modulate its own pre-mRNA alternative splicing by 

inhibiting splicing of intron 10 [131]. It also has a role in stress response as it was shown to 

accumulate in cytoplasmic SG, in stress-activated cell, and is required for recovery from 

stress [132] [133].  
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HNRNPA2B1 is present in two distinct isoforms, A2 (341 aa) and B1 (353aa), which are both 

transcribed from the HNRNPA2B1 gene. Apart from its shared functions with HNRNPA1 and 

HNRNPA3 in RNA metabolism, HNRNPA2B1 has a role in trafficking mRNAs to neuronal 

dendrites, where HNRNPA2/B1 recognizes a 21-nucleotide A2 response element (A2RE) in 

target transcripts [134] [135]. HNRNPA3 and HNRNPA2/B1, but not HNRNPA1 act as 

mRNA trafficking trans-acting factors in neurons [136]. All three HNRNPAs bind to single 

stranded telomere DNA and telomerase RNA, and interact with telomere-binding factors, 

which suggests that they regulate access to telomeres to protect telomeres from degradation 

and thereby maintain genome stability [137] [138] [139] [140].  

1.3.2 Clinical significance of HNRNPAs 

 

Given their central role in gene expression and their multiple functions, it is not surprising 

that HNRNPAs were associated with a variety of diseases apart from ALS or MSP, such as 

cancer, Multiple Sclerosis (MS) [141] [141], and AD [142]. Sporadic AD (sAD) patients for 

example show a reduced expression of HNRNPA1 and HNRNPA2B1 in the entorhinal cortex 

and in an AD mouse model loss of HNRNPA1 or HNRNPA2B1 was associated with reduced 

cognitive function [143]. Additionally, HNRNPA1 was discovered to modulate alternative 

splicing of the APP gene, promoting the generation of toxic amyloid beta peptide, which is 

the core protein of amyloid plaques in AD brains [144].  

HNRNPAs were associated with cancer as they show aberrant expression in certain cancer 

types, e.g. HNRNPA1 expression is highly increased in lung cancer samples and is associated 

with tumor proliferation [145] [146]. Moreover, several oncogenes were identified as direct 

targets of HNRNPA1 [147]. Also HNRNPA2B1 was associated with cancer, as its KD in 

breast cancer cells induces apoptosis [148]. This data links HNRNPA mutations and protein 

levels to multiple diseases and hence implies a strong connection between HNRNPA 

homeostasis, neurological dysfunction, and cell proliferation. 

1.3.3 The interaction of HNRNPAs and TDP-43 in health and disease state 

 

TDP-43 and HNRNPA proteins belong to the large and complex HNRNP protein family and 

were both associated with ALS. While it is not yet understood how misfunction of these 

proteins causes the same disease, several lines of evidence point to cross-regulation among 

these proteins and suggest common disease pathways. The most striking finding is the 

similarity in structure of HNRNPAs and TDP-43 (see Figure 1.1). Buratti et al. could show 
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that HNRNPA proteins interact directly with TDP-43, and function cooperatively to regulate 

RNA metabolism. Moreover, an unbiased screen for disease modifiers of VCP-related 

degeneration in a Drosophila model of MSP identified the fly homologues of TDP-43, 

HNRNPA1, and HNRNPA2B1, pointing to a common physiological requirement in VCP 

associated neurodegeneration [149]. Functional interaction between HNRNPA1 and TDP-43 

was shown by Deshaies et al., who demonstrated that TDP-43 binds HNRNPA1 pre-mRNA 

and controls HNRNPA1 splicing. TDP-43 depletion thereby results in a longer HNRNPA1 

isoform, named HNRNPA1-B, which includes exon 8 and is hence aggregation-prone and 

negatively impacts cell survival [150]. The specific interaction between TDP-43 with 

HNRNPA1 and HNRNPA2B1 is further supported by the finding that pathological 

aggregation of these proteins was found in a MSP patient with the HNRNPA1D262V mutation, 

in the absence of FUS pathology. Double staining revealed that muscle tissue with TDP-43 

pathology typically also shows HNRNPA1 and HNRNPA2B1 pathology. In most instances 

the proteins were also colocalizing [101]. This is further evidenced by the finding that TDP-

43 redistribution to the cytoplasm and aggregation in spinal motor neurons (SpMN) from 

ALS patients was accompanied by loss of nuclear HNRNPA1 [151]. Interestingly, the 

majority of mutations so far identified in HNRNPA1, HNRNPA2B1, and TDP-43 locate 

within the C-terminal glycine-rich domain that has previously been found to be the site of 

HNRNP protein interaction [149] [152]. 

These findings further demonstrate cross-regulation between these ALS/FTLD relevant RBPs 

and supports the concept of impaired RNA metabolism in ALS/FTLD.  

1.3.4 The role of HNRNPA1 in the cell cycle 

 

The cell cycle is a highly regulated process, which involves complex feedback mechanisms 

and regulations of many proteins in order to control chromosome replication. The cell cycle 

control is highly conserved among eukaryotes [153] and its deregulation results in severe 

consequences for the cell resulting in hypoproliferation and apoptosis upon cell cycle arrest or 

in hyperproliferation ultimately leading to tumor formation. The somatic cell cycle is divided 

into two main phases: S-phase, during which DNA replication takes place and M-phase, 

during which mitosis occurs. These two main phases are separated by two so-called gap 

phases (G1 and G2), respectively. Another gap phase is assigned to non-dividing cells, such as 

neurons, known as G0. Cells that have entered G0 are terminally differentiated and are not re-

entering the cell cycle [154]. The crucial proteins that regulate the cell cycle are the cyclins 

and their associated cyclin-dependent kinases (CDK), whose expression and activity fluctuate 
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as the cell transitions from one cell cycle stage to the other [155]. For example, the activation 

of CyclinD-CDK4/6 complex is triggered by the presence of mitotic growth factors and 

controls the re-entry of resting cells into the G1 cell cycle phase. In order to transit from G1 to 

S-phase the CyclinE-CDK2 complex needs to be activated to phosphorylate Retinoblastoma-

like 2 (RBL2) upon which it dissociates from the transcription factor E2F2. The freed E2F2 

shuttles to the nucleus where it binds promoters that initiate transcription of S-phase genes 

[156]. The G1/S transition is tightly controlled by the CDK inhibitors p21 and p27, which 

inactivate the CyclinE-CDK2 and whose accumulation results in G1 arrest. In the presence of 

CyclinA, the cell divides and progresses to G2, whereas the cell goes down an apoptotic 

pathway in the absence of CyclinA [157]. Ultimately, the CyclinB-CDK1 complex initiates 

mitosis (see Figure 1.2).  

 

 
Figure 1.2 - Schematic illustration of the cell cycle. For explanation see text. 

 

HNRNPAs are associated with cell cycle abnormalities due to their role in cancer 

development (see section 1.3.2). It was shown that HNRNPA1 and HNRNPA2B1 but not 

HNRNPA3 are modulated during cell cycle progression with the most abundant expression of 

HNRNPA2B1 in G1 and S-phase and a high expression of HNRNPA1 during G2/M phase 
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transition [120]. Further evidence for a vital role of HNRNPA1 in cell cycle derives from 

studies demonstrating that KD of HNRNPA1 results in cell cycle arrest [146] [158].  

Several pathways are considered to mediate the arrest in cell cycle progression upon 

HNRNPA1 depletion. HNRNPA1 interacts with telomerase RNA and maintains length of 

telomeres, which is important for cell cycle progression [159]. Additionally, HNRNPA1 

reduction may inactivate the NF-κB pathway, which has been linked to cancer [160].  

1.3.5 Animal models of HNRNPA1 and HNRNPA2B1 

 

Some animal models of HNRNPA1 were so far generated to better understand the 

physiological function of HNRNPA1 and to thereby gain insights of molecular 

pathomechanisms that underlie HNRNPA associated ALS and MSP. The experimental 

approach and associated phenotypes of these models are summarized in Table 1.1. Drosophila 

null mutants for the HNRNPA1 orthologues Hrp36 and Hrp38 show slowed development 

with significant reduction in adult life span, decreased female fecundity, and high sensitivity 

to starvation [161]. So far no genetic zebrafish model lacking the HNRNPA orthologues was 

established, but two studies are published using hnrnpa1b specific morpholinos (MOs) that 

lead to phenotypic abnormalities in zebrafish upon hnrnpa1b KD [162, 163]. Chang et al. 

described vascular mispatterning and dorsal axis abnormalities, while Cartealy et al. report 

small and undeveloped embryos, which lack the midbrain-hindbrain boundary. The zebrafish 

KD models target only one hnrnpa1 orthologue and show conflicting results. This might 

potentially be due to off target effects, which are often seen with MO experiments. Also, so 

far no double KD or double KO has been generated. The generation of stable genetic loss of 

HNRNPA1 mutants lacking Hnrnpa1a and Hnrnpa1b will better capitulate full loss of 

HNRNPA1 in vivo. Chang et al. also established a mouse HNRNPA1 KO model by deletion 

of exon 2-7 with the Cre-loxP system. The majority of the homozygous HNRNPA1 KO mice 

are embryonically lethal. Further investigation of HNRNPA1 KO mice shows shortened body 

length, irregular tongue muscles, myofibril hypoplasia, and urinary bladder defects [162]. A 

mouse KD model for HNRNPA2B1 was published by Martinez et al., which lacks 75% 

HNRNPA2B1 protein after targeting of the HNRNPA2B1 transcript with antisense oligo 

nucleotides (ASO). Subsequent RNA sequencing revealed alterations in alternative splicing, 

including the skipping of an exon in the ALS-associated D-amino acid oxidase (DAO) that 

reduces D-serine metabolism [102]. Altogether, the lethality of HNRNPA1 KO mice points to 

an essential role of HNRNPA1 in embryonic development. This is further supported by the 

two independent zebrafish studies revealing severe phenotypes upon hnrnpa1b KD and 
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reduction in lifespan of drosophila upon KO of the two HNRNPA1 orthologues. Concluding, 

the animal models suggest a vital role of HNRNPA1 in embryonic development and so far no 

stable HNRNPA1 KO zebrafish model has been established. 

 

Publication Modification Phenotype 

Liu et al., 

2017 [162] 

Zebrafish:  

ATG MO 

hnrnpa1b KD; 0.15 mM 

- abnormal dorsal axis 

- heart edema 

- lateral asymmetry 

- intersegmental vessel defects 

Cartealy, 

2008 [163] 

Zebrafish:  

ATG MO 

hnrnpa1b KD; 3.5, 5, and 

7 ng 

- I: small and underdeveloped embryos 

- II: kinked body axis and disorganized somite 

- III: lack of midbrain-hindbrain boundary 

Liu et al., 

2017 [162] 

Mouse:  

HNRNPA1 KO Cre-loxP 

deletion of exon 2-7 

- embryonically lethal (62%) 

- shorter body length 

- hypoplasia of tongue muscles 

- dilation of ventricles 

- urinary bladder defects 

Martinez et 

al., 2016 

[102] 

Mouse:  

HNRNPA2B1 KD ASOs in 

lateral ventricles of mice 

- alternative splicing changes 

- skipping of a DAO exon  

- limited changes in gene expression 

Singh et al., 

2012 [161] 

Drosophila: 

P-element insertion 

hrp36 and hrp38 KO 

- delay in development 

- reduction in life span 

- decreased female fecundity 

- high sensitivity to starvation and thermal 

stress 
Table 1.1 - Overview of HNRNPA KD and KO animal models 

1.4 Zebrafish as a model organism 
 

Starting in the 1930s zebrafish (Danio rerio) as a small vertebrate has emerged to a classical 

developmental and embryological model in biomedical research [164]. The most important 

breakthrough in the 1980s was the production of clones of homozygous diploid zebrafish, 

which was the beginning of using this vertebrate model in genetics research [165]. In 2013 

sequencing of the zebrafish genome by the UK Sanger Institute was completed revealing 
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homology of approximately 70% in functionality of human and zebrafish genes [166]. Most 

importantly, about 80% of risk genes that are associated with human disorders have zebrafish 

orthologues [167]. These findings validate the approach of modeling human disease 

pathogenesis in zebrafish.  

The rapid development of zebrafish paired with high fecundity giving hundreds of eggs per 

spawning, promoted the rise of the zebrafish to an attractive research model. A zebrafish 

embryo completes its gastrulation within ten hours after fertilization and the heart beat starts 

at the end of one day post fertilization (dpf). Most organs are functionally developed within 

the first five days of development and zebrafish are fertile within three months. Apart from its 

advantages shared with invertebrates, such as inexpensive husbandry and the possibility of 

high-throughput drug screens, the zebrafish can be used for imaging studies due to the 

possibility to obtain transparent embryos and larvae by treating them with phenylthiourea 

(PTU). The existence of several fluorescent reporter lines labeling a specific cell type or 

subcellular structure via a fluorescent tag makes it possible to perform live imaging 

experiments and investigate cellular and subcellular processes in vivo [168]. Moreover, 

chemical screens can be easily performed by adding compounds to the water. Hereby, 

compounds of clinical relevance can be identified and their potential toxicity and 

teratogenicity can be determined [169]. The external development and thereby easy 

accessibility of the embryos allows minimally invasive manipulations, such as targeted 

mutagenesis and introduction of exogenic DNA or RNA. To date, zebrafish models for a 

variety of human diseases have been established, including cancer, inflammation, wound 

healing and regeneration, metabolic disorders, muscle diseases, and neurodegeneration 

(reviewed in [170]).  

Taken together, zebrafish have emerged to a great model system for studying vertebrate 

development, to examine the effect of mutagenesis, to investigate disease aspects, and to 

perform high-throughput chemical screens, due to zebrafish’ ease of genetic manipulation and 

its biological features.  

1.4.1 Genome editing in zebrafish 

 

In the past years a variety of genome editing tools were applied in fish mutagenesis with 

Zinc-finger nucleases (ZFNs), Transcription activator-like effector nucleases (TALENs) and 

CRISPR/Cas9 being the most successful ones for gene inactivation [171] [172] [173]. All 

these approaches share the feature of being nuclease-based genome editing tools as a nuclease 

is guided to a specific genomic region using different recognition modules where it then 
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induces a double strand break (DSB). Due to error-prone DNA repair at the site of interest by 

non-homologous end joining (NHEJ), insertion or deletion (indel) mutations are introduced, 

which can lead to frameshift mutations generating a KO allele. For knockin (KI) approaches, 

sequence templates, that carry homology arms and the desired genetic sequence (e.g. a patient 

mutation) can be co-injected and inserted at the targeted genomic site by the process of 

homology directed repair (HDR) [174] [175].  

As part of the CRISPR system, first a conserved set of genes adjacent to the spacers and 

repeats, named Cas genes, were identified, which serve as an antiviral defense mechanism in 

prokaryotes [176] [177] [178, 179]. Later, the last key component in CRISPR activation was 

identified, a non-coding trans-activating complementary RNA (tracRNA) allowing RNA-

guided binding to the nuclease Cas9 by base pairing to mature tracRNA [180]. Following 

research has further simplified the system for genome editing purposes to a single RNA 

system (instead of the two RNA system consisting of tracRNA and crRNA by identifying key 

components and thereby solely used an engineered 20 nucleotide (nt) long single guide RNA 

(gRNA), for sequence specific DSB by Cas9 [181]. The only sequence requirement for the 

gRNA target site is a three nucleotide NGG motif (for the Streptococcus pyogenes Cas9 

(SpCas9) protein), called protospacer adjacent motif (PAM) adjacent to the 20 nt target 

sequence (see Figure 1.3) [182]. The CRISPR/Cas9 system is a highly effective genome 

editing system, which differs from previous genome editing approaches since it uses an RNA 

entity to bind to the DNA. By specificity of the Watson and Crick base pairing the gRNA 

specifically directs the most widely used SpCas9 nuclease to the targeted genetic locus where 

it induces a DSB.  

The most common technique used in zebrafish for genome editing is microinjection of the 

Cas9 protein and a gRNA into the embryonic cell at the one cell stage. Upon injection into 

zebrafish embryos Cas9 and the gRNA form a complex with the targeted DNA site and Cas9 

protein induces a DSB at the targeted genomic site. In the past years generating specific KOs 

by NHEJ or KIs by HDR were successfully carried out in zebrafish (see section 1.4.2 for ALS 

related examples). Due to the ease of programmability of the gRNAs and the low workload, 

the CRISPR/Cas9 system is the most preferable genome editing system. Many websites give 

additional support for the design of sgRNAs with minimized off-target effects and closely 

located restriction endonuclease (RE) for easy analysis of successful genome editing. Suitable 

design websites include CHOPCHOP (www.chopchop.cbu.uib.no/), CRISPR Multitargeter 

(www.multicrispr.net/), and CRISPRdirect (www.crispr.dbcls.jp). The concern of a high 

probability of off target effects has been often raised due to the short target sequence. 
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However, the zebrafish model allows to eliminate unspecific side effects caused by off-target 

genomic modifications by outcrossing the mutated fish.  

In conclusion, the use of CRISPR/Cas9 in zebrafish allows fast, cheap, and high throughput 

genotype-phenotype correlations for candidate genes obtained from clinical genetics. 

 

 
Figure 1.3 - Schematic illustration of the CRISPR/Cas9 system. The Cas9 nuclease (green) is recruited to the 
genomic site via binding to a 20 nt long target sequence containing gRNA (yellow) next to the PAM. The red 
arrowheads indicate the approximate position of the induced double strand break. Upon creation of a DSB at the 
targeted site the site can be either repaired through NHEJ sometimes producing indel mutations leading to frame-
shift and loss of function mutants. Alternatively the double strand break can be repaired by HDR. For precise KI 
approaches sequence templates with homology arms can be co-injected and inserted at the targeted genomic site 
by the process of HDR. 
 

1.4.2 Modeling ALS in zebrafish 

 
Apart from the intensive research on ALS associated genes over the past years and the great 

advances in characterizing the pathological signature of the proteins derived from mutated 

genes, the physiological function of the encoded proteins remains largely unknown. Up to 

now a variety of model organisms were used in order to study genetic risk and disease-

causing genes in vivo by applying three main strategies. First, the gene of interest can be 

overexpressed in its wildtype or mutated form via RNA or DNA expression. However, this 

approach is highly critical due to the associated toxicity effects that may arise from 

abnormally high expression of proteins and protein mislocalization by ubiquitous expression 

of a protein that is normally only present in specific cellular compartments or cell types. 

Alternatively, the gene of interest can be transiently knocked down using MOs or stably 

knocked out using targeted mutagenesis (see section 1.4.1) in order to create a loss of function 

situation and hence determine the encoded protein’s physiological function. Lastly, the gene 
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of interest can be edited in such a way that it carries a specific patient mutation, to address the 

function of the encoded mutant protein in vivo.  

So far several studies have been performed in zebrafish that specifically address ALS 

associated genes and aim to recapitulate hallmarks of ALS. An overexpression (OE) model of 

SOD1 protein shows ALS like phenotypes, such as motoneuron loss, muscle atrophy, 

paralysis, and premature death [183]. A targeted induced local lesions in genomes (TILLING) 

zebrafish mutant expressing mutant Sod1 (T70I) protein at physiological levels, confirmed 

this finding, as it also showed key features of ALS: early neuromuscular junction (NMJ) 

phenotype, susceptibility to oxidative stress (OS), and an adult-onset MND phenotype [184]. 

In contrast to SOD1, many ALS associated genetic KD and KO models were established over 

the past years that lead to non-identical phenotypes upon KD or KO of the same gene. For 

example, KD of zebrafish Fus resulted in a motor phenotype that could be rescued by OE of 

wildtype human FUS but not with FUS carrying ALS-related mutations [185]. However, KO 

of Fus using ZFN mediated genome editing did not cause shortened motoneuron axons or 

related pathology [186]. KO of the two TARDBP orthologues tarbp and tardbpl in zebrafish 

by CRISPR/Cas9 resulted in lethality and embryos show shortened motoneurons, vascular 

mispatterning, and muscle defects [12]. While single tardbp or tardbpl KO zebrafish show no 

phenotypic abnormalities [12], MO-mediated KD of zebrafish tardbp only performed by 

another group, was shown to result in shortened SpMN axons [187]. Injection of wildtype and 

mutant TDP-43 mRNA into zebrafish embryos elicits similar motoneuron effects, with 

mutant TDP-43 causing more severe phenotypes [188]. A mutant zebrafish model carrying 

three ALS patient mutations (M337V, G348C, G290A) in the tardbp gene was recently 

generated in our laboratory. The zebrafish embryos are vital and elicit no motoneuron defects 

contrasting the severe phenotype observed in tardbp-/-; tardbpl-/- KO mutants. These 

preliminary results suggest that TDP-43 patient mutations do not cause a full Tdp-43 loss of 

function in zebrafish (personal communication, Özge Burhan and A. Hruscha and A. 

Gierson). Also, C9orf72 deficient zebrafish were generated using CRISPR/Cas9 system. The 

C9orf72 KO embryos show no difference in axon outgrowth length, but swimming behavior 

analysis revealed a higher locomotor activity upon darkness induced stimulation indicating a 

physiological requirement of C9orf72 for neuronal function [189] and (personal 

communication A.Hruscha). Another study established a Granulin (GRN) loss of function 

model in zebrafish by knocking out the zebrafish GRN orthologues grna and grnb using 

ZFNs. These fish contrast the phenotype of a previously MO induced grna and grnb KD 

embryos that shows SpMN axonopathies and a reduced number of myogenic progenitor cells 
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number. The phenotype discrepancy may probably be caused by unspecific toxicity of MOs 

[190] [191]. 

Overall, many zebrafish models for ALS associated genes were generated, including OE, KO, 

KD, and KI models. However, as described, transient KD or OE studies often display distinct 

phenotypes from persistent KO of the same gene. These discrepancies may arise from 

unspecific toxicity, due to off-target effects or global degradation machinery breakdown upon 

MO KD [192]. Rossi et al. revealed by KD or KO of two different genes that compensatory 

network are activated to buffer against deleterious mutations upon KO, but not KD. If this is 

the case in the ALS models, KD versus KO discrepancies remain to be resolved. Potentially, 

these discrepancies can also be eliminated by correct experiment design and using proper 

controls. Stanier et al have written a manual for MO usage that illustrates recommended 

guidelines for MO usage [193].  
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2 Material and Methods 

2.1 Material 

2.1.1 Zebrafish lines 

 

The following zebrafish lines were used in this study: 

Zebrafish line Origin (Reference) 

wildtype-line AB G. Streisinger, Institute of Neuroscience, 

University of Oregon, Eugene, USA  

wildtype-line TLF C. Nüsslein-Vollhard, MPI for 

Developmental Biology, Tübingen, Germany  

Tardbpmde159-/- (tardbp-/- in this thesis) B. Schmid & Hruscha, DZNE and LMU 

Munich, Germany [12]  

Tardbplmde222-/- (tardbpl-/- in this thesis) B. Schmid & Hruscha, DZNE and LMU 

Munich, Germany [12] 

Tg(fli1a:EGFP)y1Tg J. Bussmann, MPI for Molecular 

Biomedicine, Münster, Germany [194] 

2.1.2 Cell lines 

 

Cell line Origin 

HeLa cells DSMZ, #ACC 57 

2.1.3 Morpholinos 

 
MOs were purchased from GeneTools. Sequences are given in 5’-3’ orientation; e: exon; 
i: intron. 
 
apoda.1-e2i2 TCCATTGACTTGGTACTCACAGAAT 

2.1.4 Vectors and plasmids 

 

Vector Insert Origin Schmid laboratory 

database # 

pCS2+GW-GFP Apoda.1 L.Jansen N31 
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pcr8/GW/TOPO - Invitrogen - 

pCS2+GW-GFP HNRNPA1 L. Jansen N32 

pCS2+GW-GFP HNRNPA1D262V L. Jansen N33 

pCS2+ hnrnpa1a hnrnpa1a L. Jansen N34 

pCS2+ hnrnpa1+HA HA+hnrnpa1a L. Jansen N35 

pCS2+hnrnpa1b Hnrnpa1b L. Jansen N36 

pCS2+hnrnpa1b+HA HA+hnrnpa1b L. Jansen N37 

pCS2+ hnrnpa3 hnrnpa3 L. Jansen N38 

pCS2+ hnrnpa3+HA HA+hnrnpa3 L. Jansen N39 

2.1.5 Oligonucleotides 

 

Oligonucleotides were synthesized by Thermo Scientific. The sequences are shown in 5’-3’ 

orientation. The abbreviation letters and numbers in the oligonucleotide name refer to the 

Schmid laboratory database.  

 

Primer for cloning  

LJ-A01 hnrnpa1b F  GTCGGTAGGATGTCCAAAGAG 

LJ-A02 hnrnpa1b STOP R  TTAAAACCGTCTACCGCCAGAG 

LJ-A03 HA+hnrnpa1b F  TACCCATACGATGTTCCAGATTACGCTGCT

GGTAGGATGTCCAAAG 

LJ-A04 hnrnpa1b noStop R  GCTCTGGCGGTAGACGGTTT 

LJ-A05 hnrnpa1a F  CGTGACCGCCATGTCCAAAG 

LJ-A06 hnrnpa1a STOP R  ATCTAAAACCTCCGTCCGCC 

LJ-A07 HA+hnrnpa1a F  ATGTACCCATACGATGTTCCAGATTACGC

TGTGACCGCCATGTCCAAAGA 

LJ-A08 hnrnpa1a noStop R  GCTCTGGCGGACGGAGGTTT 

LJ-A09 hnrnpa3 F  GCGCAAAAGCTACAGCATGG 

LJ-A10 hnrnpa3 STOP R  ACTTACCACTCCAATTAATCTGCT 

LJ-A11 HA+hnrnpa3 F  ATGTACCCATACGATGTTCCAGATTACGC

TCGCAAAAGCTACAGCATGGA 

LJ-A12 hnrnpa3 noStop R  GTTACGGCTCCAGGAGATAT 

LJ-A13 apoda.1 F ATGAAGGTGTTTCTGGTCGTG 

LJ-A14 apoda.1 R TCAAAGTTTTTGGTCGCATC 
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Primer for Sequencing  

GATC M13-FP TGTAAAACGACGGCCAGT 

GATC M13-RP CAGGAAACAGCTATGACC 

GATC SP6 ATTTAGGTGACACTATAGAA 

GATC T7 TAATACGACTCACTATAG 

  

Primer for Genotyping  

LJ-B01 hnrnpa1b.ex2.KO.F – gRNA 1 CCTTGGTTTGATCTCCGTTACC 

LJ-B02 hnrnpa1b.ex2.KO.R – gRNA 1 TGTGTTTGGATCTTTCATCACCT 

LJ-B03 hnrnpa1b.ex9.KO.F – gRNA 2 GGCAATGGAAACTTTGGAGGT 

LJ-B04 hnrnpa1b.ex9.KO.R – gRNA 2 TCACGTCATTTATGCCTTTAGGA 

LJ-B05 hnrnpa1a.ex1.KO.F – gRNA 3 CCTTATTTGGGGGTAAAAACGTA 

LJ-B06 hnrnpa1a.ex1.KO.R – gRNA 3 CCTTATTTGGGGGTAAAAACGTA 

LJ-B07 hnrnpa1a.ex8.KO.F gRNA 4 GGCGGCGGCTATGATAACT 

LJ-B08 hnrnpa1a.ex8.KO.R gRNA 4 GCATTGCTCTGAATAAACCACTACA 

LJ-B09 hnrnpa3.ex2.F – gRNA 5 AGCATTATGCAACACATGGAGC 

LJ-B10 hnrnpa3.ex2.R – gRNA 5 CACGCAGTCTGTGAGTTTGC 

LJ-B11 hnrnpa3.Sanger.F CTGCAACAGGCTTCCATACA 

LJ-B12 hnrnpa3.Sanger.Wt.R TCCTCTCTTCTTCCCAGTCG 

LJ-B13 hnrnpa3.Sanger.Mu.R TCCTCTCTTCTTCCCAGTCT 

  

Primer for semiquantitative polymerase chain reaction (PCR) 

LJ-D01 pkma.exon203 F  CGGAGAGACCGCTAAAGGAGAT 

LJ-D02 pkma.exon203.R CCGGACCCAGTGAGCACTATAA 

LJ-D03 pkma.exon202.F AGTGATGTGGCCAATGCAGTTC 

LJ-D04 pkma.exon202.R CAGCATTTGAAGGAAGCCTCGAC 

  

Primer for quantitative realtime-PCR (qRT-PCR) 

KS-A11 Rpl13a_E3-4a_F ATTGTGGTGGTGAGGTGTGA 

KS-A12 Rpl13a_E3-4a_R CATTCTCTTGCGGAGGAAG 

KS-A13 Elf1a_2F AGCAGCAGCTGAGGAGTGAT 

KS-A14 Elf1a_2R GTGGTGGACTTTCCGGAGT 

KS A42 dr-vcam1 ex9-10 F CAAACGACCTGGGTTACGAA  

KS A43 dr-vcam1 ex9-10 R CAGCAGAACCTCCCAAGAAA 
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KS A45 dr-itga4-ex2-3 F TGCAGTATGTTGAACAGCCAG 

KS A46 dr-itga4-ex2-3 R CAAACTCACACCCAGCCAC 

KS A47 dr-fn1a-ex3-4 F  TGTACTTGCATTGGCTCTGC  

KS A48 dr-fn1a-ex3-4 R GTCTCTGCCATGTGTCTCCA 

KS A49 dr-fn1b-ex39-40 F CATTGCCCTTCTGAATAACCA 

KS A50 dr-fn1b-ex39-40 R ATGACTGGGCAGGCTAGGTA  

LJ-C01 hnrnpa1b.F CCGTGTCTAGAGAGGATTCCAG 

LJ-C02 hnrnpa1b.R GTGACGAAGGCAAAGCCTCT 

LJ-C03 hnrnpa1a.F AAAGAGCAACAGACCCCTCG 

LJ-C04 hnrnpa1a.R TGACGAAGCCAAATCCCCTC 

LJ-C05 hnrnpa3.F TGGAGAGTCGCGACAGTAAG 

LJ-C06 hnrnpa3.R GAGTCCTCTCTGGAAACGGC 

LJ-C07 cdkn2a/b-F CAGCAGCCACCGGAAACATT 

LJ-C08 cdkn2a/b-R TCATCACCTGTATAGGCGTTCTTCT 

LJ-C09 rbl-F CCGCTTCTACAACCACGTCT 

LJ-C10 rbl-R GGAGTTTCAGCCTGCCCATT 

LJ-C11 cdkn1a-F TCCCGAAAACACCAGAACGA 

LJ-C12 cdkn1a-R TGGTAGAAATCTGTGATGTTGGTCT 

LJ-C13 gadd45-F ACTCGGTGATTAAGGCTCTGG 

LJ-C14 gadd45-R TCAGGGTCCACATTGAGGGA 

LJ-C15 ccne-F ACTTGCAGCTTCAGCACTCT 

LJ-C16 ccne-R ACCACTTCAGCCCTGAAACTT 

LJ-C17 gpnmb-F ACTTCATTACAGATAAGATTCCACT 

LJ-C18 gpnmb-R CCCTCTGACAAAGATGTTTCTG 

LJ-C19 p53-F ACTCAGGAAGGTCAGTTGCTG 

LJ-C20 p53-F TACGTTTGGTCCCAGTGGTG 

LJ-C21 apod-F AAAACAATTGACGGGACGGC 

LJ-C22 apod-R GCGTGTAGGGCAAAACATAGG 

LJ-C23 nampt-F TCAGCGACAGCTACGACATC 

LJ-C24 nampt-R TCCAGGACCTTGAGCACG 

  

Primer for gRNA synthesis  

M64 GCGTAATACGACTCACTATAG 
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gRNA oligo  

hnrnpa1a gRNA 3 ATGGCGGGTGGCATTGCTGCTGG 

hnrnpa1a gRNA 4 GCAGGAAACTTCGGAGGTGGCGG 

hnrnpa1b gRNA 1 CACGTGAGCCAGAGCAGCTGCGG 

hnrnpa1b gRNA 2 GGTGGTGGTGGCGGCAACAGTGG 

hnrnpa3 gRNA 5 GAGTCGCGACAGTAAGGAGCCGG 

N20: targeting oligo, bold letters indicate the PAM motif 

2.1.6 Bacteria 

 

Name Company 

One Shot TOP10 Chemically competent 

E. coli, C4040 

Invitrogen 

2.1.7 Antibodies 

 

For Western blotting (WB) and whole mount immunofluorescence stainings (IF) the 

following antibodies were used: 

Primary antibodies:   

Antibody (Species) Dilution Origin (Reference) 

α-Actinin IHC: 1:100 Sigma-Aldrich 

α-tubulin, T6199 (mouse) WB: 1:10.000 Sigma-Aldrich 

Calnexin, SPA-860 (rabbit) WB: 1:7000 Stressgen 

HA (mouse), MMS-101R WB: 1:200 Covance  

HNRNPA1 (rabbit),HA1-CT 

(VM) AN351 

WB: 1:1000 Gift from Douglas Black lab 

Myosin (ZE-BO-1F4) IHC: 1:1 Kremmer [195] 

Pcna (mouse) WB: 1:1000 

IHC: 1:100 

Santa Cruz 

TDP-43 N-term, SAB4200006 

(rabbit) 

WB: 1:10.000 Sigma-Aldrich 

znp-1 (mouse) 1:100 DSHB [196] 

 

Primary peptide antibodies generated by the IMI, Helmholtz Center Munich: 

Antibody (Species) Dilution Epitope 
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Hnrnpa1b Z1A1-2A7 (rat 

IgR2a) 

WB: 1:1 

IHC: 1:50 

MSKEGQPREPEQLR 

Tardbp antibody, 4A12-111 

(rat IgR2a) 

WB: 1:1 

IHC: 1:300 

TSTSGTSSSRDQAQTY 

Tarbpl antibody, 5F5-11 (rat 

IgR2a) 

WB: 1:1 FERSQYQFPSSHV 

Tardbpl_tv1 antibody, 16C8-

11 (rat IgR2a) 

WB: 1:1 SRQMMDRGRFGGYG 

Anti-rat (IgG2a), HRP 

conjugated 

WB: 1:10.000  

Secondary antibodies: 

Antibody Dilution Origin 

Alexa Fluor 488 anti-mouse 

A-11029 

IHC: 1:500 Invitrogen 

Alexa Fluor 488 anti-rabbit IHC: 1:10.000 Invitrogen 

A-11034   

Alexa Fluor 488 anti-rat 

A11006 

IHC: 1:10.000 Invitrogen 

Anti-mouse-HRP, W4021 WB: 1:10.000 Promega 

Anti-rabbit-HRP, W4011 WB: 1:10.000 Promega 

2.1.8 Chemicals 

2.1.8.1 Chemicals and reagents 

 

Acridine Orange, 235474 Merck 

Acrylamide / bis solution, 10681.03 Serva 

Agarose, 15510-027 Invitrogen 

Ammonium persulfate (APS), 9592.2 Roth 

Ampicillin, K029.2 Roth 

β-Mercaptoethanol, 4227.1 Roth 

Boric acid, 100165.1000 Merck 

Bromo phenol blue, 18030 Fluga 

Calcium chloride (CaCl2), 102382.0500 Merck 

Chloroform RothRoth 
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Citric acid monohydrate Sigma-Alrich 

Collagenase, C9891 Sigma-Aldrich 

DanKlorix Colgate-Palmolive 

Deoxynucleoside triphosphates (dATP, dCTP, dGTP, 

dTTP) 

Thermo Fisher Scientific 

Diethylpyrocarbonate (DEPC), D5758 Sigma-Aldrich 

Dimethyl sulfoxide (DMSO), 317275 Merck 

Disodium hydrogen phosphate (Na2HPO4), 106580.5000 Merck 

Dithiothreitol (DTT) (100mM), Y00147 Invitrogen 

6x DNA loading dye, R0611 Thermo Fisher Scientific 

Dry ice - 

ECLplus (RPN2132) Amersham 

Ethylenediaminetetraactic acid (EDTA), 108418.1000 Merck 

80% Ethanol, UN1170 CLN 

Ethanol p.a., 100989.1011 Merck 

Fetal bovine serum (FBS), F7524 Sigma-Aldrich 

Formamide, F9037 Sigma-Aldrich 

Gelatin, 104080.0100 Merck 

GelRed, 41003 Biotium 

GeneRuler DNA ladder mix, SM0331 Thermo Fisher Scientific 

Glycerol p.a., 3783.2 Roth 

Glycine p.a., 04943 Roth 

5x GoTaq buffer Promega 

GoTaq DNA Polymerase, M830B Sigma-Aldrich 

I-Block (T2015) Thermo Fisher Scientific 

Isopropanol p.a., 109634.2511 Invitrogen 

Liquid nitrogen (liq. N2) Linde 

Magnesium chloride (MgCl2), 105833.1000 Merck 

Methanol p.a., 106059.2511 Merck 

MethaPhor agarose, 50185 Lonza 

Methyl cellulose, M0387 Sigma-Aldrich 

Milk powder, T145.2 Roth 

M-MLV reverse transcriptase, 28025013 Thermo Fisher Scientific 

5x M-MLV reverse transcriptase buffer, 18057018 Thermo Fisher Scientific 
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Monopotassium phosphate (KH2PO4), 104877.1000 Merck 

Natrium Chloride  Roth 

Natriumhydrogencarbonat, S5761 Sigma-Aldrich 

Newborn calf serum (NCS), N4762 Sigma-Aldrich 

Oil Red O, O1391 Merck 

Oligo(dT)12-18 Primer, 18418012 Thermo Fisher Scientific 

Opti-MEM, 51985-026 Gibco 

Paraformaldehyde (PFA), P6148 Sigma-Aldrich 

PCR nucleotide Mix, 11581295001 Sigma-Aldrich 

Phenol/chloroform/isoamylalcoohol, A156.1 Roth 

Potassium Chloride (KCl), 104936.1000 Merck 

Protease Inhibitor (PI) mix, 05056489001 Roche 

Pronase, 11459643001 Roche 

Proteinase K (PK), 03115852001 Roche 

Precision Plus Protein All Blue Standard, 161-0373 Bio-Rad 

PTU, P7629 Sigma-Aldrich 

Random hexamer primer, S0142 Thermo Fisher Scientific 

Random primer mix, S1330S NEB 

RiboLock RNase inhibitor (40U/µl), EO0382 Thermo Fisher Scientific 

RNAsecure, AM7010 Thermo Fisher Scientific 

RNase H, 18021071 Invitrogen 

SeeBlu Plu2 pre-stained standard, LC5925 Invitrogen 

SOC-Medium, 15544-034 Invitrogen 

Sodium chloride (NaCl), 3975.2 Roth 

Sodium dodecyl sulfate (SDS), 20765.03 Serva 

SP6 Polymerase, EP0131 Fermentas 

Spectinomycin, 85555 Fluka 

T7 Polymerase, EP0111 Fermentas 

Tetramethylethylenediamine (TEMED), 2367.3 Roth 

Tricaine, A5040 Sigma-Aldrich 

Tris, 08003 AppliChem 

Trisodium citrate Sigma-Aldrich 

Trizol Reagent, 15596026 Thermo Fisher Scientific 

Tropix I-block, T2015 Applied Biosytems 
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Turbo DNAse Thermo Fisher Scientific 

Tween 20, 822184.0500 Merck 

Xylene, 108681.1000 Merck 

2.1.8.2 Solutions and buffer 

 

All solutions and buffers were prepared by using H2O that was purified and desalted by a 

Milli-Q system (electric resistance 18.2Ωcm at 25°C). 

 

1-2% agarose 1%-2% agarose 

1xTBE 

Acridine Orange stock solution 3 mg/ml in dH2O 

Ampicillin stock 100 mg/ml dissolved in dH2O and sterile filtered 

10% APS (stock 10% APS in dH2O stored at -20°C 

Bleaching solution 600 ml tap water,  

 280 µl DanKlorix 

10x BSA stock 0.1 g/ml 

DEPC-dH2O 200 µl DEPC per 100ml dH2O 

incubate overnight (o/n) at 37°C and autoclave 

Deyolking buffer 55 mM NaCl 

1.8 mM KCl 

1.25 mM NaHCO3 

DMEM Glutamax, 61965 Gibco 

I-Block 0.2% Tropix I-Block 

0.1% Tween 

in 1xPBS 

4x Lämmli sample buffer 4 ml 20% SDS 

4 ml glycerol 

1 ml β-mercaptoethanol 

1.25 ml 1M Tris, pH 7.6 

1 pinch bromophenol blue 

0.2-1% low melting agarose (LMA) 

 

1%-2% MethaPhor agarose 

1xTBE 

Lysis buffer 10% PK stock in TE, pH 8.0 
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3% methyl cellulose 3% methyl cellulose in prewarmed H2O 70°C 

shake o/n at 4°C and centrifuge until every bubble is 

gone 

NCST 10% NCS stock 

0.1% Tween in 1xPBS 

PBS 0.14 M NaCl 

10 mM Na2HPO4 

2.8 mM KH2PO4 

2.7 mM KCl 

pH 7.4 

10x PBS 80 g NaCl 

17.8 g Na2HPO4x2H2O 

2.4 g KH2PO4 

2g KCl 

add dH2O up to 1l 

PBST 0.1% Tween in 1x PBS 

PBST milk 3% milk powder 

0.1% Tween in 1x PBS 

10x PCR buffer 100 mM Tris, pH8.3 

500 mM KCl 

15 mM MgCl2 

0.1% (w/v) gelatin 

in dH2O 

PCR mix 60 µl 100mM dATP 

60 µl 100mM dCTP 

60 µl 100mM dGTP 

60 µl 100mM dTTP 

6 ml 10x PCR buffer 

36.3 ml dH2O 

4% PFA 4% PFA in 1x PBS 

incubate approx. 5min at 80°C until PFA is 

dissolved 

cool to 4°C prior to usage or store at -20°C 

Proteinase K stock 17 mg/ml Proteinase K in dH2O 
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Pronase stock 30 mg/ml pronase in dH2O 

10x PTU 0.3 mg/ml in E3 

Ringer solution 55 mM NaCl 

1.8 mM KCl 

1.25 mM NaHCO3 

RIPA 50 mM Tris-HCL, pH 8.0 

150 mM NaCl 

5 mM EDTA 1% NP-40 

0.5% Deoxycholat 

0.1% SDS 

10x running buffer 29 g Tris 

144 g glycine 

add dH2O up to 1l  

and autoclave 

SDS running buffer 0.1% SDS in 1x running buffer 

Spectinomycin stock 30 mg/ml dissolved in dH2O and sterile filtered 

Stacking gel buffer 1M Tris, pH6.8 

Stripping buffer 62.5 mM Tris 

2% SDS 

350 µl β-Mercaptoethanol 

adjust to pH6.7 

10x TBE 1080 g Tris 

550 g Boric acid 

400 ml 0.5M EDTA, pH8.0 

add 10l dH2O 

TE pH8.0 10 mM Tris 

1 mM EDTA 

adjust to pH 8.0 and autoclave 

10x transfer buffer 30.3 g Tris 

144 g glycine 

add dH2O up to 1l  

adjust to pH8.3 and autoclave 

50x tricain 2 g tricain 

 10.5 ml 1M Tris pH9.0 
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 Add 500 ml with dH2O 

 Adjust to pH 7.0 

Wash Buffer  110 mM NaCl 

3.5 mM KCl 

2.7 mM CaCl2 

10 mM Tris/Cl 

Adjust to pH 8.5 

2.1.8.3 Media 

 

Bacteria cultivation media was autoclaved before usage to prevent growth of undesired 

organisms. Sterile filtered antibiotics were added in the indicated concentration to the medium 

after cooling. 

Cell culture medium DMEM 

10% FBS 

1% Penicillin-Streptomycin 

E3 5 mM NaCl 

0.17 mM KCl 

0.33 mM CaCl2 

LB-Agar 1.5% Bacto Agar 

1% Bacto Trypton 

0.5% Yeast extract 

17.25 mM NaCl 

in dH2O 

Ampicillin 100 µg/ml or Spectinomycin 

100 µg/ml 

LB-Medium 1% Bacto Trypton 

0.5% Yeast 

17.25 mM NaCl 

in dH2O 

Ampicillin 100 µg/ml or Spectinomycin 

100 µg/ml 

Opti-MEM, 51985-026  Gibco 

SOC-Medium, 15544-034 Invitrogen 
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2.1.9 Kits 

 

BC Assay Protein Quantitation Kit, UP40840A Uptima 

Gateway LR Clonase II Enzyme Mix, 11791100 Invitrogen 

GoTaq DNA Polymerase, M3001 Promega 

iQ SYBR Green supermix, 170-8891 BioRad 

M-MLV Reverse Transcriptase, 28025-013 Invitrogen 

MEGAshortscript T7 Transcription Kit Ambion 

mMESSAGE Machine SP6 Kit, AM1340 Ambion 

mMESSAGE Machine T7 Kit, AM1344 Ambion 

NucleoBond Xtra Midi, 740410 Macherey-Nagel 

NucleoSpin Gel and PCR Clean-up, 740609 Macherey-Nagel 

NucleoSpin Plasmid, 740588 Macherey-Nagel 

pCR8/GW/TOPO TA Cloning Kit Invitrogen 

Pierce ECL Plus Western Blotting Substrate, 32132 Thermo Scientific 

RNAse-free DNase Set, 79254 Quiagen 

RNeasy Mini Kit, 74104 Quiagen 

SsoFast Eva Green Supermix, 172-5204 BioRad 

TRIzol Plus RNA Purification Kit, 12183555 Thermo Scientific 

2.1.10 Consumables 

 

0.2 ml Strip tubes, AB-0266 Thermo Fisher Scientific 

96-Well PCR Plate, AB-0600 Thermo Fisher Scientific 

Blotting Paper, MN 218 B Macherey-Nagel 

Borosilicate glass capillaries, 1B100F-4 World Precision Instruments 

Centrifuge tubes 15 ml, 50 ml Sarstedt 

Combitips Plus 0.5 ml, 5 ml Eppendorf 

Cover slip Thermo Fisher Scientific 

Hard-Shell 384-Well PCR Plates, HSP-3805 BioRad 

Microcentrifuge tubes 1.5 ml, 2.0 ml Sarstedt 

Microscope slide Thermo Fisher Scientific 

Microscope slide with wells Thermo Fisher Scientific 

Multi-well plates (12, 24, 48) Thermo Fisher Scientific 

PCR Film, AB-0558 Thermo Fisher Scientific 
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Petri dishes (60 mm, 100 mm) Sarstedt 

Pipette tips (10 µl, 10 µl long, 200 µl, 

1000 µl) 

Sarstedt 

Pipette tips with filter (10 µl, 20 µl, 100 µl, 

300 µl, 1000 µl) 

Sarstedt 

Polyvinylidenfluorid (PVDF) Membrane, 

Immobilon-P, IPVH00010IPVH00010 

Millipore 

Sterile serological pipettes (5 ml, 10 ml, 

25 ml) 

Sarstedt 

Transfer pipettes Sarstedt 

X-ray films Super RX, 47410 19236 Fujifilm 

2.1.11 Equipment 

 

Accu jet pro Brand 

Agarose gel documentation device Intas 

Agarose gel systems Peqlab 

Benchtop centrifuge Biofuge pico Heraeus 

Benchtop cool centrifuge 5427 R Eppendorf 

Benchtop cool centrifuge 5430 R Eppendorf 

C1000 Thermal Cycler Bio-Rad 

Cassette for x-ray film exposure Radiographic Products 

Casting stands Bio-Rad 

Casting frames Bio-Rad 

DMZ-Universal (needle) Puller Zeitz Instrumente 

Forceps Fine Science Tools FST 

Foam Pads Bio-Rad 

Freezer -20°C Liebherr 

Freezer -80°C Heraeus 

Fridge Liebherr 

Incubator 37°C, 55°C Binder or B. Braun Biotech International 

Kontes Pellet Pestle, 1.5 ml Thermo Fisher Scientific 

Kontes Pellet Pestle Cordless Motor, 

K749540-0000 

Thermo Fisher Scientific 

Microwave Sharp 
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Microinjector (Femto Jet) Eppendorf 

Microinjection molds Eppendorf 

Micro scales BP2215 Sartorius 

MilliQ academics Millipore 

Mini gel holder cassette, 180-3931 Bio-Rad 

Mini-PROTEAN Comb, 10-well  Bio-Rad 

Mini-PROTEAN 3 cell Bio-Rad 

Mini-PROTEAN Tetra cell Bio-Rad 

Mini trans-blot central core, 170-3812 Bio-Rad 

Multipipette plus Eppendorf 

NanoDrop IMPLEN 

PCR Plate Sealer Eppendorf 

PCR Thermocycler, nexus GSX1  Eppendorf 

pH Meter WTW 

Pipette 2.5 µl, 10 µl, 100 µl, 200 µl, 1000 µl Eppendorf 

Plate reader PowerWaveXS BioTek 

Rotors (A-2-MTP, Fa-45-48-11, F-35-6-30) Eppendorf 

Scales BP3100S Sartorius 

Schott bottles Schott 

Shaker cold room Bachofer 

Shaker RT Duomax 1030 Heidolph 

Short plates, 165-3308 Bio-Rad 

Spacer plates 1.5 mm 165-3312  Bio-Rad 

Stereo Microscope Stemi 2000 Zeiss 

Tea nets - 

Thermomixer comfort Eppendorf 

Thermomixer compact Eppendorf 

UV Detectionsystem Intas 

Vortexgenie2 Scientific Industries 

Waterbath GFL 

2.1.12 Microscopes 

 

Cell Observer CSU-X1 Yokogawa Spinning 

Disc AxioCam MRm 

Zeiss 
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Confocal laser scanning microscope LSM 

710 

Zeiss 

Fluorescence-Stereomicroscope Discovery 

V8 Aciocam 503 color/ Aciocam 506 mono 

Zeiss 

Stereomicroscope Zeiss Stemi 2000-C Zeiss 

Light microscope Axioscope A1 Zeiss 

2.1.13 Hardware and software 

 

Adobe Illustrator CS5 Adobe Systems Software 

Axiovision 4.0 Zeiss 

Bio-Rad CFX Manager 2.0 Bio-Rad 

CLC Main Workbench 6 CLC bio 

FileMaker Pro FileMaker 

GraphPad Prism 7 GraphPad Software 

ImageJ/Fiji NIH, USA 

LAS 400 Image Reader GE Healthcare Bio-Sciences AB 

iMac Apple 

Microsoft Office for Mac 2011 Microsoft 

ReadCube Labtiva 

EndNote Clarivate Analytics 

Zen Blue 2011 Carl Zeiss Microimaging 

  

2.2 Methods 

2.2.1 Zebrafish specific methods 

 
The following methods were mostly performed according to the Schmid laboratory methods 

manual. 

2.2.1.1 Zebrafish husbandry and handling of embryos 

 

Zebrafish husbandry, breeding, and mating were performed as described by Mullins et al. 

[197]. Until 5 dpf embryos and larvae were kept in an incubator holding 28.5°C in petri 

dishes containing E3 medium and no more than 30 embryos/larvae per dish. Zebrafish 

development stages were assigned as described previously by Kimmel et al. [198]. For in vivo 
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imaging and whole mount immunofluorescence experiments, zebrafish larvae and embryos 

were treated with 1xPTU before 24 hpf to prevent pigmentation [199].  

2.2.1.2 Bleaching of fertilized zebrafish eggs 

 

Bleaching of zebrafish eggs destroys pathogens, which may reside on the outer side of the 

chorion, to prevent contamination of the fish facility. Bleaching can be performed without 

harming the embryo in the time frame after epiboly until 1.5 dpf. The fertilized eggs were 

placed in a tea net and were held in bleaching solution for 5 min followed by a 5 min wash in 

tap water. This procedure was repeated once and bleaching solution was replaced every four 

runs. Afterwards the embryos were placed in a petri dish containing E3 medium with 10 µl 

pronase stock solution, which allows the embryos to hatch from the denatured chorion.  

2.2.1.3 Mating of adult zebrafish 

 
In the evening pairs of one female and one male adult zebrafish were transferred from tanks to 

mating boxes containing dividers to separate males and females overnight. In the following 

morning dividers were removed in parallel allowing simultaneous spawning of several pairs 

yielding age matched zebrafish embryos. Eggs were transferred to a petridish containing E3 

medium. In the afternoon unfertilized and debris eggs were removed and the fertilized eggs 

were kept in the incubator at 28.5°C until further analysis or raising.  

2.2.1.4 Microinjection into zebrafish eggs 

 

Injection needles were pulled using a needle puller with the program P(A)60. By filling a 

petri dish with 1.5% agarose in E3 and placing the microinjection molds into the drying 

agarose, injection dishes with agarose rills were generated. In the morning freshly laid eggs 

were placed into the agarose rills and were injected at a 1-cell stage with a mix of each 1.5 µl 

Cas9 protein (0.5 µg/µl) and 1.5 µl gRNA (1-3 µg/µl). Alternatively a plasmid or a MO was 

injected. The rest of the spawned eggs was placed in a separate petri dish containing E3 

medium and served as a control for proper development. DNA and RNA with Cas9 protein 

were injected into the cell, while RNA only was injected into the yolk. After injection the 

eggs were kept in the incubator at 28.5°C in E3 medium. In the afternoon the eggs were 

screened for normal development and unfertilized eggs and debris were removed. 
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2.2.1.5 KD of genes in zebrafish embryos using morpholinos 
 

Establishment of apolipoprotein d (apoda.1) KD A MO targeting the exon 2-intron 2 

junction was ordered at GeneTools. 1 mM stocks were prepared by solubilizing the 

lyophilized solid in sterile dH2O. 10 µl aliquots were prepared and stored at RT for immediate 

injection or at -20°C for later injections. 1 mM, 0.5 mM or 0.25 mM concentrations were 

injected into 1-cell stage AB embryos as described in section 2.2.1.4 The MO was designed to 

block the exon-intron boundary. Thereby three scenarios are possible depending on the 

sequence: Intron retention, skipping of an exon, or usage of a cryptic splice site resulting in 

either intron retention or partial intron inclusion. The altered transcripts are in most cases 

degraded by nonsense-mediated decay. Alternative, the transcripts are transcribed and result 

in the synthesis of a truncated protein [200]. The injected embryos were observed for 

phenotypic abnormalities from 1 dpf to 5 dpf and KD efficiency represented by exon 

exclusion or intron retention was evaluated by PCR. RNA was extracted from a pool of 10 

embryos and transcribed into cDNA, which was amplified by apoda.1 full length spanning 

primer. The obtained PCR product was separated by gel electrophoresis, bands were excised 

and DNA was purified, followed by sequencing. Injection of 1 mM led to the greatest KD 

efficiency, without causing unspecific toxicity, and was thereby chosen for conduction of the 

following experiments.  

2.2.1.6 Quantification of rescue capacity of Apoda.1 and KD of Apoda.1 to mimic the 
Hnrnpa1 loss of function phenotype 

 
1 mM apoda.1 MO was injected into AB embryos for KD of apoda.1. After 30 hpf, the 

timepoint when hnrnpa1a-/-; hnrnpa1b-/- embryos can be firstly distinguished from their 

wildtype looking siblings, images were taken using the Axioscope. To address the previously 

observed lipid phenotype the yolk extension area of injected embryos and their uninjected 

siblings was measured using Fiji. The average area size was calculated and subjected to 

statistical analysis.  

2.2.1.7 Fin biopsies of adult zebrafish 

 

Fin biopsies are taken from adult zebrafish to genotype single fish. Adult zebrafish were 

individually anesthetized in fish facility water containing 3% tricaine stock solution.  After 

confirming successful anesthetization, which can be tested by touching of the fish gently and 

confirmation of lack of movement, the fish was placed on a cutting board and a small piece 
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from the most caudal part of the tail fin was cut and fixed in 100% methanol. Immediately 

after the zebrafish was transferred into a labeled single box allowing to specifically attribute 

the fish to its fin until completion of genomic analysis. The fish was observed until full 

recovery.  

2.2.1.8 Fixation and storage of zebrafish samples 

 

For protein analysis or mRNA isolation embryos, larvae and dissected tissue were placed in a 

microcentrifuge tube and after having removed all liquid they were quickly frozen in liq. N2. 

Snap frozen samples were stored at -80°C until usage.  

For whole-mount immunohistochemistry 30 hpf anesthetized PTU treated and dechorionated 

embryos were transferred to 4% PFA in microcentrifuge tubes and were fixed o/n at 4°C. The 

PFA solution was then removed and samples were washed four times for 5 min with PBST at 

room temperature (RT). For immunofluorescence stainings samples were serially washed for 

10 min in increasing concentrations of methanol (25% methanol in PBST, 50% methanol in 

PBST, 75% methanol in PBST, 100% methanol) followed by two additional washes for 10 

min in 100% methanol prior to being stored in 100% methanol at -20°C until usage. Embryos, 

larvae and fin tissue biopsies for individual genotyping were stored at -20°C in 100% 

methanol until usage.  

2.2.1.9 Lämmli lysis of zebrafish samples 

 

For protein isolation from embryos or zebrafish brains, shock frozen samples were 

homogenized in 4x Lämmli Buffer using a tissue homogenizer. Brains were lysed in 250 µl, 

one embryo was lysed in 15 µl and more embryos in an equivalent volume. Samples were 

then boiled for 5 min at 95°C and centrifuged for 15 min at 13000 rpm to pellet debris. 

Samples were stored at -20°C and were reused after 5 min boiling at 95°C and followed 

centrifugation of 1 min at 13000 rpm.  

2.2.1.10 In vivo imaging of zebrafish embryos  

 

For live imaging PTU treated anesthetized embryos were embedded in 0.8% LMA in E3 

containing 1x tricaine. To prevent drying out the agarose was covered with 1x PBST 

containing 1x tricaine. For long term imaging 24 hpf old embryos were then imaged with the 

spinning disc cell observer for 20 h. Acridine Orange stained embryos were imaged with the 

confocal laser scanning microscope using the 488 nm laser.  
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2.2.1.11 Whole mount immunofluorescence staining 
 
For whole mount immunofluorescence (IF) stainings PFA fixed embryos stored in methanol 

were used. Samples were washed 2x 10 min in PBST and were serially rehydrated by 

washing them 5 min at RT in decreasing methanol concentrations (75% methanol in PBST, 

50% methanol in PBST, 25% methanol in PBST, 100% PBST). The samples were then 

washed 3x5 min in PBST at RT. 30 hpf embryos used for caudal primary (CaP) motoneuron 

staining with Znp-1 antibody were permealized for 10 min with 1 mg/ml collagenase in PBST 

at RT. Collagenase was removed by washing in PBST for 3x5 min at RT. For Proliferating 

cell nuclear antigen (Pcna) staining, embryos were kept in 100% aceton for 20 min at -20°C 

instead of collagenase treatment. After the samples were blocked for 1 h in NCST on a shaker 

at RT. Then the primary antibodies were added in NCST followed by an overnight incubation 

step on a shaker at 4°C. The next day the primary antibodies were removed and kept for 

further usage at 4°C. Samples were then washed for 3x40 min with PBST on a shaker at RT 

followed by a blocking step with NCST for 2x30 min at RT. Afterwards the secondary 

antibody diluted in NCST was added and incubated at 4°C on a shaker o/n. After removal of 

the secondary antibody samples were washed with PBST for 3x40 min. The samples were 

imaged with the spinning disc cell observer microscope using the 488 nm laser. 

2.2.1.12 Motoneuron analysis 
 

After whole mount IF stainings with Znp-1 antibody, which detects CaP motoneurons, SpMN 

axons were analyzed. To correlate genotypes of the embryos to the motoneuron analysis, the 

heads of 30 hpf embryos were biopsied after the IF staining and individually collected in 

microcentrifuge tubes containing TE/Proteinase K buffer to lyse them. The extracted DNA 

was subject for genotyping procedure using allele specific primers or restriction digest. 

Immunostained tails of the embryos were stored in PBST until completion of the genotyping. 

10 embryos per genotype in 3 different clutches were imaged and morphology and length 

analysis were done for motoneuron axons.  

2.2.1.13 Lysis of zebrafish samples 

 

For the extraction of protein RIPA lysis was used. After shock freezing embryos, larvae or 

adult tissue in microcentrifuge tubes, these were kept on ice until radioimmunoprecipitation 

assay buffer (RIPA) buffer containing 1x Proteinase and Phosphatase Inhibitor (PI) was 

added to the samples and tissues. They were immediately homogenized using a pestle mixer 
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and centrifuged for 15 min at 4°C at 13.000 rpm. The supernatant containing the protein was 

transferred to a microcentrifuge tube and was used in a BCA assay to determine the protein 

concentration. As a next step ½ volume of 2x Lämmli buffer was added prior to incubation 

for 5 min at 95°C and centrifuged for 15 min at 13.000 rpm to pellet debris. 5-20 mg sample 

was used for SDS-page. Samples were stored at -20°C and reused after incubating them for 5 

min at 95°C and centrifuging for 1 min at 13.000 rpm.  

2.2.1.14 Deyolking of zebrafish embryos and sample preparation for mass spectrometry  

 

For the proteomic analysis the yolk was removed from the embryos to prevent that the 

abundant yolk proteins mask the detection of proteins. 30 hpf embryos were dechorionated 

and pools of 10 embryos were transferred to a microcentrifuge tube filled with deyolking 

buffer. By pipetting up and down with a 200 µl pipette the yolk was mechanically removed. 

Deyolked embryos were then transferred to a new microcentrifuge tube containing 200 µl 

deyolking buffer. The embryos were shaken at 1100 rpm for 5 min at 4°C on a thermoblock 

followed by a 30 sec centrifugation at 300 g. The supernatant was discarded and 1 ml washing 

buffer was added. The washing and centrifugation steps were repeated three times before 

transferring the embryos to a Protein LoBind tube. Embryos were then frozen in liq. N2 and 

stored for further usage at -80°C.  

Sample preparation for mass spectrometry was performed as described by Sielaff et al. [201]. 

An amount of 20 µg of protein per sample was subjected to proteolytic digestions using a 

modified protocol with an additional benzonase digest step in the beginning for single-pot 

solid-phase enhanced sample preparation (SP3). The protein lysate was diluted 1:2 with 

water. A volume of 10 µL 100 mM MgCl2, and 25 units Benzonase (Sigma Aldrich, US) were 

added followed by an incubation for 30 min at 37°C at 1400 rpm in a Thermomixer 

(Eppendorf, Germany).  

2.2.1.15 Acridine Orange staining 

 

To estimate the number of cells undergoing cell death in the zebrafish embryos Acridine 

Orange staining was performed [202]. Dechorionated anaesthetized 30 hpf PTU treated 

embryos were incubated for 30 min in 3 µg/ml Acridine Orange in E3 containing 1x tricaine. 

After 3 washes for 5 min in E3 1x tricaine the embryos were embedded in 0.8% LMA and 

imaged immediately by the confocal laser-scanning microscope using a 488 nm laser.  
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2.2.1.16 Oil-Red-O staining 

 

For staining of lipids in zebrafish, PTU treated embryos at 30 hpf were fixed by placing them 

in a microcentrifuge tube containing 4% PFA at 4°C o/n. On the next day the embryos were 

rinsed 3x10 min in PBST. Afterwards 0.5% oil red O (ORO) solution (diluted in 100% 

isopropanol) was diluted to 0.3% in sterile H20 and centrifuged for 5 min at 11.000 rpm. 

Subsequently, 500 µl Osolution taken from the top of the microcentrigue tube were added to 

stain the embryos for 1 h at RT on a shaker. The embryos were then washed 3x10 min with 

1xPBST before they were embedded in in 1.5% LMA in PBST and imaged using the Axio 

Scope A1 microscope.  

2.2.2 Cellbiological methods 

 
The following methods were mostly performed according to the Schmid laboratory methods 

manual. 

2.2.2.1 Cell cultivation 

 

Human cervical carcinoma cells (HeLa) were cultured in Dulbecco’s modified Eagle’s 

medium (DMEM) with Glutamax supplemented with 10% fetal calf serum (FCS) and 1% 

penicillin/streptomycin at 37°C and 5% CO2.  

2.2.2.2 Transfection of cells 

 

After plating the cells they were kept for 24 h before they were transfected. The cells were 

seeded in 12 well cell culture dishes and transfected by inverse transfection. Per well, 2 µl 

lipofectamin 2000 and 125 µl optiMEM were incubated for 5 min before the mix was 

combined with 0.8 µg of DNA mixed with 125 µl optiMEM. Next, the DNA/lipofectamin 

transfection mix was transferred to a new 12 well plate prior splitting cells to 150000 cells in 

500 µl per well. Cells were incubated in transfection mix o/n followed by an exchange of 

media by DMEM/Glutamax/FCS/penicillin/streptomycin the next day. Cells were culture and 

harvested 48 hpf later (see section 2.2.2.3) 

2.2.2.3 Harvesting of HeLa cells and whole cell lysis 

 
Cells were washed 2x in PBS prior to being detached from the dish using a cell culture 

spatula. Cells were then centrifuged at 3500 x g and the pellet was lysed in 250 µl ice-cold 
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RIPA lysis buffer containing 1x Proteinase and PI by incubation on ice for 10 min. 

Afterwards the DNA was sheared by vortexing and after a centrifugation step for 15 min at 

13000 rpm at 4°C the remaining debris was pelleted. The supernatant was transferred to a 

new microcentrifuge tube and protein concentration was determined by BCA assay 

measurement. Next, cell lysates were mixed with 4x Lämmli sample buffer, boiled at 95°C 

for 5 min and centrifuged for 1 min at 11000 rpm. Until usage for immunoblotting, cell 

samples were stored at -20°C.  

2.2.3 Molecular biological methods 

The following methods were mostly performed according to the Schmid laboratory methods 

manual. 

2.2.3.1 Isolation of genomic DNA 

 

For genotyping of individual embryos or adult fish, genomic DNA from embryos or fin 

biopsies was isolated (for fin biopsies see section 2.2.1.7). The methanol from fin biopsies 

was removed and the remaining methanol evaporated by incubating the samples at 55°C. 

Embryos were anesthetized in 1x tricaine.  Fin biopsies or embryos were then lysed in each 

50 µl lysis buffer containing 10% PK. Samples were first digested at 55°C at 750 rpm for 1 h 

before inactivating PK at 95°C for 10 min. To pellet remaining tissue debris the samples were 

centrifuged for 5 min at 13.000 rpm. The genomic DNA containing supernatant was used for 

further analysis by PCR.  

2.2.3.2 Isolation of RNA 

 
Isolation of RNA using RNeasy Mini Kit For isolation of RNA from zebrafish embryos or 

adult brain the RNeasy Mini Kit including on column DNase treatment (RNase-free DNase 

Set) was used according to the technical handbook. 30 embryos were pooled or one brain was 

placed in one microcentrigue tube. For RNA sequencing of hnrnpa1a-/-; hnrnpa1b-/- and their 

wildtype siblings 20 embryos were pooled respectively. After removal of the water, 2x 350 µl 

RLT buffer containing 10% β- mercaptoethanol was added and embryos were disrupted with 

a tissue homogenizer. RNA was eluted in 30 µl RNase free water, and RNA quality was 

evaluated by gel electrophoresis (2 µl loaded), and the concentration was measured with a 

NanoDrop device. RNA was then stored at -80°C. 
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Isolation of RNA using Trizol RNA from zebrafish adult brains derived from hnrnpa1a-/-, 

hnrnpa1b-/- or hnrnpa3-/- mutant fish that was sent for RNA sequencing was isolated 

according to the TRIzol Plus RNA Purification Kit. This method allows the extraction of a 

variety of RNA species of large and small molecular size. Each brain was homogenized in 

1 ml TRIzol. RNA was eluted in 30 µl RNAse free water, RNA integrity was checked by gel 

electrophoresis (2µl loaded), and RNA concentration was determined with a NanoDrop 

device. RNA was stored at -80°C. 

2.2.3.3 cDNA synthesis 

 

cDNA was synthetized as described in the M-MLV Reverse Transcriptase Kit. Additionally 

RiboLock RNase Inhibiter was used for RNase inhibition. For cDNA, which is later used in 

qRT-PCRs 0.5 µg of total RNA was mixed with 2.5 µl random hexamer primers and 1 µl 10 

mM dNTPs in a volume of 12 µl H2O. For cDNA used for cloning of hnrnpa constructs 5 µg 

of total RNA were mixed with 2.5 µl of oligo (dT) primers instead that selectively enrich for 

mature mRNAs. The cDNA transcription was followed by 20 min RNase H digest at 37°C to 

remove RNA-DNA hybrids. Efficient cDNA transcription was determined by performing a β-

actin PCR according to section 2.2.3.4.1 on the samples.  

2.2.3.4 PCR 

 

Oligonucleotides used for PCR are listed in section 2.1.5. Pairs of oligonucleotides were 

designed to have a similar annealing temperature not differing more than 2°C in the range of 

50°C to 70°C to allow successful amplification of the spanned genomic region. The following 

components were mixed in a PCR tube: 

 PCR mastermix / reaction 17.5 µl PCR mix 

     0.5 µl forward primer (10 µM) 

     0.5 µl reverse primer (10 µM) 

     0.1 µl GoTag DNA Polymerase 

     

1 µl DNA or cDNA was added to 17.5 µl mastermix and the following PCR program was 

used after identifying the optimal oligonucleotide annealing temperature using a gradient PCR 

(see section 2.2.3.4.5). The number of cycles was initially set to 34 and adjusted depending on 

the band intensity:  
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PCR products were analyzed by agarose gel electrophoresis. 

2.2.3.4.1 Control PCR 

 

To proof efficient synthesis of cDNA a β-actin PCR was performed. The PCR mix was used 

in combination with primers oA03 β-actin F and oA04 β-actin R, which specifically amplify 

β-actin. In one reaction 1 µl of cDNA and 17.5 µl of mastermix were used in the following 

PCR program:  

 

PCR products were analyzed by agarose gel electrophoresis. 

2.2.3.4.2 PCRs for sequencing hnrnpa1a, hnrnpa1b, and hnrnpa3 

 

To verify published hnrnpa1a, hnrnpa1b, and hnrnpa3 sequences in our AB fish line and to 

identify naturally occurring single nucleotide polymorphisms (SNPs) in our fish population, 

hnrnpa1a, hnrnpa1b, and hnrnpa3 genes were sequenced from 2 dpf AB cDNA. For 

amplification of full-length hnrnpa genes the following primer combinations were used:  

Cycle Step Temperature Time No. of cycles 

Initial Denaturation 95°C 2 min 1 

Denaturation 95°C 30 s xz 

Annealing 50-70 °C 30 s xz 

Extension 72°C xy min  xz 

Final extension 72°C 5 min 1 

 

Cycle Step Temperature Time No. of cycles 

Initial Denaturation 95°C 2 min 1 

Denaturation 95°C 30 s 34 

Annealing 65.3 °C 30 s 34 

Extension 72°C 1 min  34 

Final extension 72°C 5 min 1 
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Amplicon F Primer R-Primer Annealing Temp 

hnrnpa1a LJ-A05 LJ-A06 70.0 

hnrnpa1b LJ-A01 LJ-A02 66.4 

hnrnpa3 LJ-A09 LJ-A10 63.8 
 

The primer pairs listed in the table were used in combination with the PCR mix whereby each 

reaction contained 1 µl genomic cDNA and 17.5 µl mastermix. The annealing temperature 

was specifically selected for each primer pair as shown in the above table. The extension time 

was 1 min and 30 sec and the number of cycles was 34. PCR products were analyzed by 

agarose gel electrophoresis prior to purification and being sent for sequencing to GATC.  

2.2.3.4.3 Screening/ genotyping PCR for hnrnpa CRISPR/Cas9 mutants 

 
For screening/genotyping PCRs the PCR mastermix was used with the respective primer pairs 

listed in the table below. The annealing temperature and number of cycles for each primer 

pair are listed in the table below. For sequencing of the mutant allele the PCR product was 

digested by RE digest and separated on an agarose gel. The mutant band was cut out from the 

gel, purified according to the NucleoSpin Gel Clean-up protocol and sent for GATC 

sequencing.  
 

Amplicon F-Primer R-Primer Annealing 

Temp 

(°C) 

Cycle 

# 

RE T 

(°C) 

Buffer 

hnrnpa1a ex2 LJ-B05 LJ-B06 58.0 32 Fnu4HI 37.0 Cutsmart 

(CS) 

hnrnpa1a ex8 LJ-B07 LJ-B08 64.0  36 MnlI 37.0 CS 

hnrnpa1b ex2 LJ-B01 LJ-B02 68.3 34 PvuII 37.0 CS 

hnrnpa1b ex9 LJ-B03 LJ-B04 68.3 34    

hnrnpa3 ex2 LJ-B09 LJ-B10 58.8 34 Fnu4HI 37.0 CS 

hnrnpa3 Sa LJ-B11 LJ-B12 

/LJ-B13 

68.8 30    
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2.2.3.4.4 PCRs for cloning HA tagged wildtype hnrnpa1a, hnrnpa1b, and hnrnpa3  

 

For amplification of wildtype HA-tagged hnrnpas, referred to as HA+hnrnpa1a, 

HA+hnrnpa1b, HA+hnrnpa3, the primer pairs listed in the table were used in combination 

with the general mastermix. The annealing temperature was specifically selected for each 

primer pair as shown in the table below. The extension time was 1 min and 30 sec and the 

number of cycles was 34. PCR products were analyzed by agarose gel electrophoresis prior to 

purification and being sent for sequencing to GATC.  
 

2.2.3.4.5 Gradient PCR 

 

In order to determine the optimal annealing temperature of a primer pair gradient PCRs were 

performed using the general mastermix. Thereby a temperature gradient for the annealing 

temperature with a range from 50-70°C was tested. The extension time was adjusted 

according to the expected PCR product size. As a last step the PCR products were analyzed 

by agarose gel electrophoresis.  

2.2.3.4.6 Colony PCR 

 

Single clones from a previously plated agar plate were picked with pipette tips and inoculated 

with 30 µl LB medium containing the appropriate antibiotic. Bacterial colonies were then 

incubated at RT for 30 min and stored at 4°C. Appropriate primers, which allow the 

verification of the successful integration of the insert in the plasmid and its orientation, were 

selected for the PCR. For one reaction 1 µl colony LB culture and 17,5 µl mastermix were 

used. Annealing temperature and extension time were adjusted according to the temperatures 

of the primers used and the expected PCR fragment size. PCR products were analyzed by 

agarose gel electrophoresis.  

2.2.3.4.7 qRT-PCR 

 

The primers used for qRT-PCR all spanned an exon-exon junction with an intron longer than 

1 kb to exclude amplification of genomic DNA and had an amplicon size of 80-150 bp. To 

Amplicon F Primer R-Primer Annealing Temp 

HA+hnrnpa1a LJ-A03 LJ-A06 66.2 

HA+hnrnpa1b  LJ-A07 LJ-A02 78.3 

HA+hnrnpa3 LJ-A11 LJ-A10 60.0 
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test the specificity of the primers they were analyzed on wildtype cDNA and validated by the 

presence of a single band of the predicted size upon agarose gel electrophoresis. The obtained 

PCR products were additionally sent for sequencing and aligned to their target sequence. 

qPCR was performed in 384-well format on a C1000 Thermal Cycler. One reaction contained 

2 ng cDNA, 2.5 µl SYBR Green, 0.25 µl 10 µM forward primer, and 0.25 µl 10 µM reverse 

primer. To establish a standard curve total cDNA of all samples were pooled and a dilution 

series of 1:1, 1:10, 1:100, 1:1000 was set up. Each reaction was conducted as a technical 

triplicate and for each primer pair a no reverse transcriptase and no template control were 

included. The PCR program was run on a C1000 Thermal Cycler with the following steps: 

30 s at 95°C, 55 cycles of 5 s at 95°C and 10 s at 60°C and a melting curve from 60°C to 

95°C with an increase of 0.5°C every 5 s. Relative gene expression of each gene was 

calculated by ∆∆CT-method and the normalized fold expression was determined by 

normalizing individual gene expression to the reference genes rflp13a and elf1a2.  

2.2.3.4.8 Semiquantitative PCR 

 

Semiquantitative PCR was performed for pkma. 1 µl cDNA, 17.5 µl PCR mix, 0.5 µl 10 µM 

forward primer, and 0.5 µl 10 µM reverse primer were subjected to the following PCR 

program:  

 

Cycle Step Temperature Time No. of cycles 

Initial Denaturation 95°C 2 min 1 

Denaturation 95°C 30 s  

Annealing 63.8 °C 30 s 25/29/33/27 

Extension 72°C xy min   

 

Four PCRs were set up with different cycle numbers (25, 29, 33, 37) to identify the number of 

cycles that leads to accumulation of the PCR product just below saturation level so that 

linearity is fullfilled. For all PCR products the same volume was analyzed via agarose gel 

electrophoresis.  
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2.2.3.5 Cloning of zebrafish hnrnpa1a, hnrnpa1b, and hnrnpa3 constructs 

 

A variety of hnrnpa1a, hnrnpa1b, and hnrnpa3 constructs were cloned using TOPO cloning 

(see section 2.2.3.8) and Gateway technology (see section 2.2.3.9). For cloning full-length 

hnrnpa1a, hnrnpa1b, and hnrnpa3, primers were designed that specifically amplify the full-

length gene. After amplification of the genes via PCR from 2 dpf AB zebrafish cDNA pools, 

the genes were cloned into pCR8/GW/TOPO vectors, which serve as entry vectors. The 

sequence of the vector insert was verified via GATC sequencing. Subsequently, expression 

vectors were generated via gateway reaction with pCS2+ plasmids, which contain pCS2+ 

cytomegalovirus (CMV) promoter as an expression control. Also, destination vectors with a 

GFP tag 5’ of the gateway sites allow for N-terminal fusion of the gene of interest with GFP. 

These vectors were utilized to N-terminally tag HNRNPA1 and HNRNPA1D262V with GFP. 

These plasmids were used to analyze the localization of HNRNPA1 protein in zebrafish in 

wildtype form or when carrying the D262V patient mutation in vivo. 

 

2.2.3.6 Agarose gel electrophoresis 

 

For separation of PCR products by their size to analyze restriction enzyme digests for 

genotyping, or to determine RNA quality, agarose gel electrophoresis was performed. A 1-2% 

agarose gel (agarose in 1xTBE buffer) depending on the size of the PCR product analyzed 

was poured containing Gel Red (1:20000) to visualize the DNA. The samples were mixed 

with 5 µl loading dye and 1 µl DNA-ladder was placed next to the samples. Electrophoresis 

was run in 1xTBE buffer until PCR bands of interest were fully separated. The gel was then 

documented using a UV detection system. 

2.2.3.7 DNA gel extraction and PCR purification 

 

DNA extraction from an agarose gel was performed according to the NucleoSpin Gel Clean-

up protocol. Purified DNA was eluted in 30 µl water and was either used for cloning into 

TOPO vector or analyzed by sequencing.  

2.2.3.8 TOPO cloning 

 

Entry clones were cloned using the pCR8/GW/TOPO TA Cloning Kit. The topoisomerase 

reaction in the kit requires the existence of sticky ends on the PCR product. Freshly generated 
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PCR products can be directly used for further cloning when kept on ice whereas stored PCR 

or cut out PCR bands from agarose gels need addition of adenosines at the ends. Adenosine 

overhangs were added in the following reaction: 20 µl PCR product, 5 µl 5x GoTaq Buffer, 

0.5 µl 10 mM dATP, 0.3 µl GoTaq DNA Polymerase were incubated for 15 min at 72 °C. 1-4 

µl of this fresh PCR product were then used in a TOPO cloning reaction according to the 

cloning kit’s manual. The TOPO cloning reaction was incubated at RT before being 

transformed in chemically competent E. coli cells (see 2.2.5.10). 

2.2.3.9 Gateway cloning 

 

For transfer of DNA fragments from entry clones to expression clones the Gateway cloning 

system was used. 150-500 ng pCR8/GW/TOPO vector containing the DNA insert was used as 

an entry clone and 150 ng of pCS2+GW vector containing a Gateway cassette served as a 

destination vector. The Gateway cloning reaction was performed according to the user manual 

of the Gateway LR clonase II Enzyme Mix. Subsequently 2 µl LR Clonase reaction were 

utilized for transformation to chemically competent E. coli cells (see section 2.2.3.10).  

2.2.3.10 Chemical transformation of bacteria 

 

For transformation of plasmid DNA into bacteria, chemically competent TOP10 E.coli cells 

were used. E. coli cells were thawed on ice prior to adding 2-4 µl of TOPO cloning reactions, 

2 µl of LR Gateway cloning reactions, or 10 pg- 100 ng plasmid DNA. In the next step, the 

cells were incubated on ice for 30 min, heat-shocked at 42°C for 30 s and then quickly chilled 

on ice for 3 min. To allow growth of bacteria, 250 µl SOC medium were added and bacteria 

were incubated at 37°C for 1 h at 200 rpm. Then 10-200 µl of the transformed cells were 

plated out on a pre-warmed LB agar plate containing the appropriate antibiotic to allow 

growth of cell clones expressing resistance genes due to successful integration of the desired 

DNA fragment. LB agar plates were incubated o/n at 37°C. The following day bacteria 

colonies were selected if present and analyzed for correct plasmid integration by colony PCR 

(see section 2.2.3.4.6).  

2.2.3.11 Cultivation of bacteria and plasmid DNA isolation 

 

For plasmid isolation bacteria carrying the plasmid of interest were cultivated in different 

scales depending on the subsequent usage. For miniprep plasmid isolation single clones were 

picked from an LB-agar plate and individually transferred to 3-5 ml LB medium containing 
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the appropriate antibiotic.  The bacteria culture was then incubated o/n at 37°C at 200 rpm. 

The next day plasmid DNA was isolated according to the NucleoSpinPlasmid protocol.  

For midiprep plasmid isolation a single clone from an LB agar plate was inoculated in 200 ml 

LB medium containing the appropriate antibiotic and incubated o/n at 37°C at 200 rpm. On 

the following day plasmid DNA extraction was performed as described by the NucleoBond 

Xtra midi protocol. The concentration was measured with a NanoDrop device and stored for 

later usage at -20°C. Plasmids were sent for sequencing at GATC and entered to the Schmid 

laboratory plasmid database. 

2.2.3.12 RE digest 

 

RE digest is a useful tool for plasmid linearization, screening and genotyping. The optimal 

buffer and temperature were chosen according to the manufacturers protocol.  

For plasmid linearization 10 µg of DNA were digested in 50 µl H2O reaction containing 5 µl 

buffer and 1 µl RE. For screening and genotyping 3 µl PCR product were added to 7 µl of the 

following RE mastermix: 

RE mastermix / reaction  1.0 µl buffer 

      0.1 µl RE 

      6.0 µl sterile dH2O 

The digestion reaction for any of the above applications was incubated for at least 2 h at the 

optimal temperature and was subsequently analyzed by agarose gel electrophoresis. 

Linearized plasmids were purified with Nucleospin PCR clean up, eluted in 25 µl H2O, 

treated with RNA secure, and the concentration determined by NanoDrop. 

2.2.3.13 In vitro mRNA synthesis and purification 

 

gRNAs for injection were transcribed from a gRNA template oligonucleotide. First, the 

gRNA oligonucleotide (oligo) was annealed to the T7 oligo by setting up the following 

reaction in a microcentrifuge tube: 4.3 µl of 100 mM T7 oligo, 1 µl 10x Annealing Buffer, 

0.4 µl RNA secure and 4.3 µl gRNA oligo. After RNA secure treatment of the reaction for 10 

min at 60°C the oligos were denatured in a 95°C waterbath for 5 min. The waterbath was 

slowly cooled down over three hours. In the next step the in vitro transcription was set up in a 

microcentrifuge tube containing the following reagents: 2 µl T7 10x reaction Buffer, 4 µl 

H2O, 2 µl ATP, 2 µl CTP, 2 µl GTP, 2 µl UTP, 4 µl annealed oligos and 2 µl T7 enzyme mix. 

The reaction was mixed and spun down before being incubated for 4 hours at 37°C.  
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RNA that was used for OE of human HNRNPA1D262V and H2B1 was transcribed from a 

linearized template pCS2+ plasmid containing a CMV promoter. 1 µg linearized plasmid was 

mixed in a microcentrifuge tube with 10 µl 2xNTP/CAP, 2 µl 10x reaction buffer, filled up 

with nuclease free H2O to 20 µl, and 2 µl enzyme mix (SP6/T7). The reaction was then 

incubated for 2h at 37°C.  

For degradation of remaining DNA 2 µl TURBO DNAse were added to the reaction followed 

by another incubation step for 15 min at 37°C. Next, for gRNAs used for injection, 115 µl 

nuclease-free H2O and 15 µl ammonium acetate stop solution were added before RNA was 

precipitated by the addition of 300 µl 100% ethanol. In the case of RNAs used for OE, the 

reaction was stoped by adding 30 µl nuclease free H2O and 30 µl lithium chloride. For better 

RNA yields RNA was precipitated overnight at -20°C. On the next day, the reaction was 

centrifuged for 30 min at 4°C at 14.000 xg and the supernatant was discarded. The remaining 

RNA pellet was washed with 800 µl 70% ethanol and centrifuged for another 30 min at 4°C 

at 14.000 x g. Next, the supernatant was discarded and the remaining ethanol was removed by 

evaporation. The RNA was then resuspended in 10 µl RNAse-free H2O and RNA 

concentration was measured using a NanoDrop. Additionally, RNA integrity was analyzed by 

agarose gel electrophoresis. RNA was immediately divided to 1.5 µl aliquots and kept for 

later use at -80°C.  

2.2.3.14 Determination of protein concentration 

 

Protein concentration of zebrafish brain lysates was measured by a BC assay according to the 

user manual of the BC Assay Protein Quantification Kit. To set up a standard curve BSA was 

taken. The reaction was measured with a plate reader at 562 nm.  

2.2.3.15 SDS-polyacrylamide gel electrophoresis 

 

Proteins were separated on a SDS-polyacrylamide gel according to their molecular weight 

(MW). The percentage of the gel was chosen according to the expected MW of the studied 

protein (https://www.thermofisher.com/content/dam/LifeTech/global/Forms/PDF/protein-gel-

electrophoresis-technical-handbook.pdf). 

Gels were prepared according to the following recipe (calculated for three separating gels and 

three stacking gels): 

 10% 12% Stacking gel 

40% acrylamide 6.3 ml 7.6 ml 560 µl 
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The polyacrylamide gel electrophoresis (PAGE) equipment was assembled according to the 

manufacturer’s instruction (Mini Protean Tetra Cell System, BioRad) and SDS running buffer 

was added to the chamber. Before loading the protein samples gel wells were rinsed with SDS 

running buffer. For determination of protein molecular weight Precision Plus ProteinTM All 

Blue Standard was loaded. Electrophoresis was started at 80 V until proteins started to 

separate and continued at 120 V until the proteins of interest were separated sufficiently. Gels 

were subsequently used for Western blotting (see section 2.2.3.16).  

2.2.3.16 Protein transfer to PVDF-membrane (Western blotting) 

 

For transfer immobilization of proteins on a PVDF membrane wet Western blotting was 

performed. Prior to blotting, the PVDF membrane was activated by pre-wetting the 

membrane in methanol. The membrane was then washed in dH20 before being incubated in 

1x transfer buffer. The gel together with the membrane was assembled between Whatman 

paper and foam pads in a holder cassette. Transformation of proteins from the gel to the 

membrane was performed in 1x transfer buffer at 400 mA for 60 min before membranes were 

used for immunodetection.  

2.2.3.17 Immunodetection of proteins 

 

After successful transfer of proteins to the membrane, the Western blotting membranes were 

incubated at RT for 1 h on an orbital shaker in I-Block. The membrane was then incubated in 

primary antibody undiluted or diluted in I-Block on a shaker at 4°C o/n. On the next day, the 

primary antibody was removed and kept for further use at 4°C. Remaining antibody was 

removed by washing 4x15 min in PBST. The secondary antibody was applied diluted in 

PBST for 1 h at RT. After removal of the secondary antibody the membrane was washed 6x 

for 15 min with PBST. Immunodetection was performed using ECL Plus as indicated in the 

manual. Hereby ECL Plus substrate reacts with the HRP conjugate of the secondary antibody 

1M Tris pH 8.8 12.5 ml 12.5 ml - 

1M Tris pH 6.8  - 750 µl 

10% SDS 0.25 ml 0.25 ml 60 µl 

dH2O 5.7 ml 4.4 ml 4,54 ml 

10% APS 67.5 µl 67.5 µl 22.5 µl 

TEMED 67.5 µl 67.5 µl 22.5 µl 
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and produces a strong chemiluminescent signal that can be detected upon exposure of X-ray 

films. After immunodetection the membrane was washed 3x5 min with PBST and dried for 

storage or later reusage between Whatman papers. Before immunodetection of a previously 

used and stored membrane the membrane was reactivated in methanol. The membrane was 

then incubated in 50 ml stripping buffer containing 350 µl β-mercaptoethanol in a shaking 

water bath at 50°C for 30 min. After rinsing the membrane 4x5 min in PBST on a shaker at 

RT the membrane was ready for another round of immunodetection, which was performed as 

described above. 

2.2.4 General methods 

2.2.4.1 Generation of zebrafish specific Hnrnpa specific monoclonal antibodies 

 

Zebrafish specific monoclonal antibodies detecting Hnrnpa1a, Hnrnpa1b and Hnrnpa3 

proteins were generated by the service unit monoclonal antibodies at the Core Facility 

Monoclonal Antibodies, Institute for Molecular Immunology, Helmholtz Center Munich. Rats 

and mice were immunized using peptides that are N- or C-terminally conjugated with 

ovalbumin by the Specialty Laboratories GmbH. The screening process for monoclonal 

antibodies (mAbs) is described in further detail in the result section. 

2.2.4.2 Databases, alignments and primer design 

 

The Ensembl Genome Browser (http://www.ensembl.org/index.html) or NCBI 

(http://ncbi.nlm.nih.gov/) was used for genome and transcript analysis. Sequence alignments, 

mapping of restriction enzymes. and construction of plasmids maps and knockin constructs 

were performed using the CLC Main Workbench. For primer design, Primer 3 

(http://primer3.ut.ee/) was applied followed by a specificity analysis by Primer-BLAST 

(http://www.ncbi.nlm.nih.gov/tools/primer-blast/). Blast searches of unknown gene and 

transcript sequences were performed on NCBI (https://blast.ncbi.nlm.nih.gov/Blast.cgi). 

2.2.4.3 gRNA design 

 

For successful generation of KO lines a suitable gRNA sequence, which specifically targets 

the genomic region of interest, is suitable for CRISPR/Cas9 genome editing and which allows 

genotyping by restriction fragment length polymorphism (RFLP) needs to be designed. A 20 

nucleotide long sequence followed by a NGG PAM motif for Cas9 recognition was chosen, 
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which lies close the genomic locus of interest. Additionally, a RE site should be present close 

to the NGG motif for convenient genotyping purposes. Ultimately, the chosen gRNA 

sequence was blasted against the zebrafish genome on the NCBI website 

(https://blast.ncbi.nlm.nih.gov/) to identify potential off targets. gRNAs with a low number of 

off targets were then in vitro transcribed as stated in section 2.2.3.13 and used for zebrafish 

zygote injection. The results section depicts further evaluation of gRNAs and their usage for 

mutant generation in vivo. 

2.2.4.4 Image acquisition, processing and analysis 

 
Images were taken by Zeiss spinning disc cell observer, Zeiss Axio Scope A1 microscope, 

Zeiss Stereo discoveryV8, and Zeiss confocal laser scanning microscope. Zebrafish embryos 

were embedded in 1.5% (for fixed embryos) or 0.8% (for live imaging) LMA in PBST for 

immobilization and imaged on glass bottom microscope dishes.  

Images were processed using ZEN blue and Fiji to linearly adjust image brightness, contrast, 

and size. For quantification of Western blots, the LAS 400 image reader was used to depict 

band intensities in a linear manner for later analysis in Fiji.  

2.2.4.5 Statistics 

 
GraphPad Prism was used for calculations and for generating the graphs, which are shown in 

this thesis. The statistical tests used in specific experiments are indicated in the respective 

figure legend. The level of significance shown in the graphs is depicted by asterisks: *p<0.05; 

**p<0.01; ***p<0.001. In case no significant difference was observed, the abbreviation n.s. is 

used.  

 

Western Blot analysis: 

In order to quantify western blot bands, all protein levels to be quantified were adjusted to the 

corresponding control protein levels (Calnexin or Tubulin). To be able to compare different 

blots to each other the mean of all wildtype values on a blot was set on the same level with a 

specific multiplication factor for each blot as these are considered to be the same in each 

experiment. According to the calculated factor all loaded KO values on the blot were 

multiplied to obtain comparable values from one blot to the other. As a next step the means of 

wildtype and KO samples from technical replicates were taken. Ultimately, all values were 

divided by the wildtype mean, to obtain the change from wildtype to KO values.  
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3 Results 

3.1 Characterization of zebrafish Hnrnpas 

3.1.1 HNRNPA orthologues and their expression in zebrafish 

 

Zebrafish has become a popular organism for genetic studies of vertebrate gene function due 

to its short generation time, transparency and other features that facilitate and accelerate 

genetic studies. However, for effective modeling of the human gene function, it is important 

to understand the extent to which orthologues zebrafish genes are related to human genes. 

Zebrafish belong to the teleostei class, which underwent an additional round of whole genome 

duplication (WGD) called the teleost-specific genome duplication (TSD) [203]. According to 

Ensembl Compara 71.4% of human genes have at least one zebrafish orthologue and 

reciprocally 69% of zebrafish genes have at least one human orthologue [204].  

The Ensembl database (http://www.ensembl.org/index.html) indicates that the Hnrnpa/b 

family in zebrafish consists of several proteins: two Hnrnpa0, two Hnrnpab, two Hnrnpa1, 

and one Hnrnpa3. The two Hnrnpa1, referred to as Hnrnpa1a and Hnrnpa1b, are both the 

orthologues of human HNRNPA1 and the orthologue of human HNRNPA3 is Hnrnpa3. 

There is no zebrafish orthologue for HNRNPA2. Zebrafish Hnrnpa1a, Hnrnpa1b, and one 

Hnrnpa3 share the main protein domains, such as two RRM domains followed by a RGG 

domain, with HNRNPA1 and HNRNPA3 (see Figure 3.1). 

 

 
Figure 3.1 - Schematic illustration of the human HNRNPA and zebrafish Hnrnpa domain structures. 

Black numbers: amino acids. RRM: RNA recognition motif 1 and 2. RGG: Arginine-Glycine-Glycine rich 

domain. The M9 domain, which is required for nuclear shuttling is indicated in pink. 

 

I amplified hnrnpa1a, hnrnpa1b, and hnrnpa3 from cDNA of 2 dpf embryos to verify the 

genetic sequence of respective genes and to identify SNPs in our zebrafish population. 

Hnrnpa1a is located on chromosome 11 and consists of 10 exons with an open reading frame
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 (ORF) of 1167 bp that encodes a 388 aa protein with a theoretical molecular weight of 

38.5 kDa. The longer hnrnpa1a isoform encoding 411 aa (with additional 23 aa at the N-

terminus) with an ORF of 1236 bp and a theoretical MW of 41.02 kDa could also be 

amplified. hnrnpa1b is located on chromosome 23 and consists of 11 exons with an ORF of 

1269 bp coding for 422 aa protein with a calculated MW of 42.6 kDa. A shorter isoform that 

lacks 19 aa at the N-terminal part was also amplified and has a calculated MW of 40.5 kDa. 

Hnrnpa3 is located on chromosome 9 and consists of 11 exons with an ORF of 1023 bp, and 

is translated into a 340 aa protein with a theoretical molecular weight of 35.6 kDa. Hnrnpa1a, 

hnrnpa1b and HNRNPA1 share a conserved genome environment, a phenomenon described 

as synteny [205]. The shared synteny between hnrnpa1a and hnrnpa1b with HNRNPA1 is 

depicted in Figure 3.2. indicates that hnrnpa1a and hnrnpa1b are orthologues of HNRNPA1. 

Additionally, the shared synteny between hnrnpa3 and HNRNPA3 is 

 

 

Figure 3.2 - Synteny between human and zebrafish HNRNPA1 and HNRNPA3. A: Human HNRNPA1 is 

located on chromosome 12. In zebrafish two hnrnpa1 genes have evolved by genome duplication: hnrnpa1a and 

hnrnpa1b that are located on chromosome 11 and chromosome 23, respectively. The neighbouring genes of 

human HNRNPA1 are SMUG1 and CBX5 at the 5’ site and NFE2 and COPZ1 at the 3’ site. In zebrafish smug1 

is located 5’ of hnrnpa1a,  cbx5 is located 5’ of hnrnpa1b, and nfe2 is located 3’ of hnrnpa1b. B: Human 

HNRNPA3 is located on chromosome 2 and zebrafish hnrnpa3 is located on chromosome 9. The genes situated 

5’ and 3’ of HNRNPA3 and hnrnpa3 are highly similar (HOXD and hoxd, NFE2l2 and nfe2l2a, AGPS and agps) 

indicating shared synteny.  

shown, providing the evidence that hnrnpa3 is the HNRNPA3 orthologue (see Figure 3.2). 

Sequence analysis revealed 67% sequence identity between human HNRNPA3 and zebrafish 

Hnrnpa3. In human two HNRNPA1 forms exist, which are generated by alternative splicing: 
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A1-B, which represents the full-length isoform of 372 aa, and A1-A, the shorter variant, 

which lacks exon 8 resulting in a 320 aa long portein. Alignment of Hnrnpa1a and Hnrnpa1b 

to HNRNPA1-A or HNRNPA1-B using the UniProt alignment tool (www.uniprot.org/align) 

gave sequence identity percentages. The analysis revealed the highest sequence identity 

between hnrnpa1a (63-66 %) and hnrnpa1b (61-65 %) when compared to HNRNPA1-B. 

Comparison of zebrafish hnrnpa1a and hnrnpa1b to HNRNPA1-A revealed only 55-58 % 

and 53-57 % sequence identity, respectively. Based on sequence comparison, the zebrafish 

hnrnpa1s are more similar to human Human HNRNPA1-B.  

3.1.2 Screening for zf-Hnrnpa antibodies 

 

In order to detect Hnrnpa proteins by Western blotting and to thereby confirm the absence of 

protein in our mutants and to analyze changes in protein expression levels, monoclonal 

antibodies were generated. Hnrnpa proteins are similar in their amino acid sequence, 

especially Hnrnpa1a and Hnrnpa1b. To reduce the likelihood of cross-reactivity of these 

antibodies I selected unique sequences as specific epitopes for immunization (see Figure 3.3).  

 

 
 

Figure 3.3 - Schematic illustration of the Hnrnpa1a, Hnrnpa1b, and Hnrnpa3 antibody epitope. The 

location of the antibody epitopes are indicated by a red line. 

The monoclonal antibody (mAb) unit (IMI, Helmholtz Center Munich) used conjugated 

peptides to immunize mice and rats (peptides and their conjugates are listed in table 3.1). 

Subsequently, lymphocytes were taken from these animals and fused with myeloma cells to 

hybridomas to generate mAbs [206]. Pooled supernatants of the hybridoma cells were 

screened by an enzyme-linked immunosorbent Assay (Elisa) using bovine serum albumin 

(BSA) or biotin-conjugated peptides for positive mAbs.  

I then tested positive pools by Western blotting of HA-tagged zf-Hnrnpa proteins, which were 

derived from OE in HeLa cells. Successful OE of these constructs was confirmed by Western 

blot with the HA antibody and I found HA-Hnrnpa1a migrating on a SDS-PAGE at a MW of 

approximately 40 kDa, HA-Hnrnpa1b migrating on a SDS-PAGE at a MW of approximately 
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40 kDa and HA-Hnrnpa3 at a MW of approximately 38 kDa (see Figure 3.4). All three 

proteins run at a slightly higher MW than expected probably due to the HA tag (3.56 kDa) or/ 

and posttranslational modifications. The different splice variants of Hnrnpa1a and Hnrnpa1b 

could not be detected as they run at similar molecular heights, which require greater 

separation by a higher percentage gel. 

 

 

 
Figure 3.4 - HA-tagged Hnrnpa1a, Hnrnpa1b and Hnrnpa3 are successfully overexpressed in HeLa cells. 

Hnrnpa1a, Hnrnpa1b, and Hnrnpa3 run at a slightly higher MW than expected probably due to the HA tag and/or 

posttranslational modification. Hnrnpa1a is detected at approximately 40 kDa and Hnrnpa3 runs at 

approximately 38 kDa. Hnrnpa1b is lower expressed and can be only detected after longer exposure time at 

approximately 40 kDa. 

As a next step, the hybridoma supernatant pools were tested on their ability to detect 

overexpressed zf-Hnrnpa1a, zf-Hnrnpa1b, or zf-Hnrnpa3. 24 out of 151 tested pools directed 

to Hnrnpa1b and 31 out of 44 pools directed to Hnrnpa3 detect Hnrnpa1b or Hnrnpa3 in cell 

culture, respectively (see Figure 3.5 and Table 3.1). Unfortunately, none of the Hnrnpa1a 

antibodies was positive for Western Blotting  

Taken together, zebrafish specific mAbs detecting overexpressed Hnrnpa1b and Hnrnpa3 in 

HeLa cells were successfully generated, while no mAb could be established that specifically 

detects Hnrnpa1a. 

 

Peptide name Peptide sequence No. of positive / No. of all 

hybridoma tested 

Z1A2 (Hnrnpa1a) OVA-C- MTEKNSDKRRGF  0/16 

Z1A1 (Hnrnpa1b) MSKEGQPREPEQLR-C-OVA  24/151 

Z1A3 (Hnrnpa3) OVA-C-KALPKQEMQSSSNQRYRGG 31/44 

Table 3.1 - Peptides for mAb generation and summary of hybridoma pools tested. Peptides for 

immunization were conjugated to OVA N- or C-terminally via an added cysteine (-C-). 
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Figure 3.5 - Overexpressed HA tagged Hnrnpa1b and Hnrnpa3 are specifically detected on Western Blot. 

Hnrnpa1b is detected at approximately 40 kDa and Hnrnpa3 runs at approximately 38 kDa. Absence of a band in 

the control untransfected cells show specificity of the antibodies.  

Hnrnpa3 antibody 
 

While an antibody was identified that detects overexpressed Hnrnpa3 protein, none of the 

positive mAbs directed to Hnrnpa3 detected endogenous zebrafish Hnrnpa3. However, I 

identified an antibody (Tardbpl_tv1 16C8-11), which next to its targeted protein Tardbpl_tv1 

also seemed to detect Hnrnpa3. To further confirm this initial observation I conducted several 

control experiments. First the cross-specificity of the antibody was tested on adult Hnrnpa3 

KO brains compared to wildtype brains. While in Western blots a band was present at the 

expected height of 35.6 kDa in samples obtained from wildtype brains, this band was absent 

 
Figure 3.6 - The monoclonal antibody raised against Tardbpl_tv1 detects also Hnrnpa3 but not Hnrnpa1a 

or Hnrnpa1b A: anti-Tardbpl_tv1 16C8-11 detects a band at the expected size of Hnrnpa3 at 35.6 kDa in the 

zebrafish wildtype brain but not in the brain of hnrnpa3-/- fish. B: No crossreactivity of the antibody with 

Hnrnpa1a or Hnrnpa1b on hnrnpa1a-/- and hnrnpa1b-/- brains. No band at the expected size for Hnrnpa3 was 

detected in hnrnpa3-/- brains, while this band was unchanged in hnrnpa1a-/- and hnrnpa1b-/- brains. C: Hnrnpa3 

was detected in hnrnpa3 transfected HeLa cells at a higher molecular weight (38 kDa) due to HA tag. No band 

was detected in hnrnpa1a or hnrnpa1b transfected HeLa cells.  

in samples derived from Hnrnpa3 KO brains (see Figure 3.6A). No cross-reactivity with 

Hnrnpa1a or Hnrnpa1b was further confirmed by the presence of this band in hnrnpa1a-/- and 

hnrnpa1b-/- mutant brains (see Figure 3.6B). Moreover, the antibody was tested on HeLa cells 

overexpressing HA tagged hnrnpa3, which was clearly detected at the expected size. No 
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bands at the expected height were detected in HeLa cells overexpressing HA tagged 

Hnrnpa1a or Hnrnpa1b (see Figure 3.6C). It can be concluded that the antibody directed to 

Tardbpl_tv1 (16C8-11) also specifically detects zebrafish Hnrnpa3 but not Hnrnpa1a or 

Hnrnpa1b. 

3.1.3 Hnrnpa1b and Hnrnpa3 expression throughout development 

 

Having identified Hnrnpa1b and Hnrnpa3 specific mAbs, these were used to determine 

Hnrnpa1b and Hnrnpa3 protein expression throughout development by immunoblotting. A 

distinct Hnrnpa1b band was clearly visible above 37 kDa at all developmental stages that 

were analyzed upon immunoblotting with the Hnrnpa1b antibody.  

 
 

Figure 3.7 - Hnrnpa1b and Hnrnpa3 protein expression during development. A: Hnrnpa1b protein is 

expressed at 2 hpf to 4 dpf visualized by Hnrnpa1b mAb marked by a black arrow B: Hnrnpa3 protein levels 

were below the detection limit from 2 hpf to 4 dpf. Calnexin served as a loading control. Note that the Calnexin 

band was masked by huge amounts of yolk proteins at 1 dpf. One embryo per lane was loaded. Asterisk marks 

longer exposure time. 

Hnrnpa3, which runs at approximately 37.5 kDa could not be detected at any analyzed 

developmental stage from 2 hpf to 4 dpf. This may be due to low expression of Hnrnpa3 

during development, which is below detection limit of the antibody. The protein expression 

levels of Calnexin served as a loading control.  

Concluding one can say that Hnrnpa1b protein is expressed at all developmental stages 

analyzed (2 hpf, 1 dpf, 2 dpf, 3 dpf, and 4 dpf). Hnrnpa3 is not detectable by Western blot in 

early developmental stages pointing to either low Hnrnpa3 expression, absence of Hnrnpa3 

during early developmental stages or masking of the epitope during development due to 

posttranslational modifications.  
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3.2 HNRNPA1D262V protein localization 
 

HNRNPA1 shuttles between the nucleus and cytoplasm under normal conditions with a 

predominant nuclear localization [207]. In healthy muscles, HNRNPA1 is predominantly 

localized to the nucleus. In contrast, mutations in HNRNPA1, including the D262V patient 

mutation, cause depletion from nuclei and are found in sarcoplasmic inclusions of HNRNPA1 

in degenerating muscle of sporadic IBM and MSP patients [208]. Moreover, the 

 
Figure 3.8 - HNRNPA1D262 does not mislocalize or aggregate in vivo. A: Schematic illustration of HNRNPA1 

expression constructs in neurons. HNRNPA1 coding sequences (blue) are fused to GFP (green) under the control 

of the CMV promoter (grey). H2B1 coding sequence (light brown) is fused to mRFP (red) under the control of 

the CMV promoter (grey). B: Representative images of HNRNPA1wildtype and HNRNPA1D262V protein 

expression and RFP nuclear labeling in 2 dpf zebrafish embryos. Scalebar=10 µm. 

 

HNRNPA1D262V disease mutation is located in the PrLD of HNRNPA1 and is predicted to 

enhance aggregation propensity according to prion domain prediction algorithms [101].  

To investigate whether the patient mutation affects nuclear transport of human HNRNPA1 

protein resulting in HNRNPA1 redistribution to the cytosol and/or HNRNPA1 aggregation, 
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localization of HNRNPA1 wildtype and mutant protein was analyzed in vivo. Therefore, I 

cloned two reporter constructs fusing human HNRNPA1wildtype or HNRNPA1D262V to a GFP 

tag. Additionally, I cloned a reporter construct fusing H2B1 to a RFP tag, which stains the 

nuclei in red. All three constructs were under the control of a CMV promoter (see 

Figure 3.8A). These plasmids were injected in 1-cell stage zebrafish embryos resulting in a 

mosaic expression pattern and immunofluorescence staining was performed at 2 dpf. Stained 

cells were analyzed for HNRNPA1 localization changes or aggregation. From the staining it 

becomes evident that HNRNPA1wildtype and HNRNPA1D262V are both restricted to the nucleus 

in neurons (see Figure 3.8B) and do not differ in their subcellular localization.  

It can be concluded that the D262V patient mutation does not seem to cause nuclear shuttle 

defects and HNRNPA1D262V expression is indistinguishable from HNRNPA1wildtype.  

3.3 Generation of hnrnpa1a, hnrnpa1b, hnrnpa3 loss of function mutants 
 

Mutations in HNRNPA1 and HNRNPA2B1 were identified in patients suffering from ALS and 

MSP, but the effect of these mutations on protein function is not clear [101]. In order to study 

their protein function in zebrafish, I generated hnrnpa1a and hnrnpa1b loss of function 

zebrafish. As another member of the HNRNPA protein family, HNRNPA3 was associated 

with ALS as it was found to aggregate in motoneurons of patients carrying C9ORF72 repeats 

[70]. Hnrnpa3 is furthermore highly similar in structure to HNRNPA1 and HNRNPA2B1 and 

was shown to bind G4C2 repeats found in ALS patient’s C9ORF72 gene [70]. I therefore 

generated an additional zebrafish line that is deficient of Hnrnpa3. In this study I generate 

protein loss of function mutants by CRISPR/Cas9 genome editing, as these are stable and 

inherited so that studies can be also performed in adult zebrafish.  

3.3.1 gRNAs targeting hnrnpa1a, hnrnpa1b, and hnrnpa3 

 

To generate mutations, I targeted hnrnpa1a, hnrnpa1b, and hnrnpa3 with a gRNA that was 

designed as described in section 2.2.6.3 and Cas9, and screened injected embryos for indel 

mutations by RFLP. I designed two gRNAs for each gene to target two different loci of each 

gene and to thereby create two independent loss of function lines for the hnrnpa1a and 

hnrnpa1b. An additional fish line was obtained from the Sanger center, which was N-ethyl-N-

nitrosourea (ENU) mutagenized. It contains a point mutation in the hnrnpa3 gene at aa 140 

that is predicted to result in a premature termination codon (PTC). 
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For each gene one gRNA targets the 5’ end of the ORF as frame shift mutations in this region 

are likely to result in loss of function as mutated mRNAs may be recognized by the NMD 

machinery leading to translation of a truncated protein. The second gRNA targets the gene 

close to the patient mutation site more towards the 3’ end of the ORF and was initially 

designed to introduce patient mutations at this locus by targeted KI. By targeting the genes at 

two different loci at distinct ends of the gene (one at the 5’ end and the other towards the 3’ ed 

of the ORF) independent KO lines for the same genes were generated (see Figure 3.9). Two 

independently generated alleles reduce the probability of identical off-target effects. gRNAs 

 

 
 

Figure 3.9 - Localization of gRNA target sequences in hnrnpa1a, hnrnpa1b, and hnrnpa3 A: Schematic 

illustration of the hnrnpa1a genomic exon/intron structure. gRNA3 targets the first coding exon. Induced 

mutations are detected with the restriction endonuclease (RE) Fnu4HI. gRNA4 targets the ninth coding exon 

close to the patient mutation site and induced mutations are detected with the RE MnlI. B: Schematic illustration 

of the hnrnpa1b genomic exon/intron structure. gRNA1 targets the second coding exon and induced mutations 

are detected with the RE PvuII. gRNA2 targets the ninth coding exon close to the patient mutation site and 

induced mutations are detected with the RE Fnu4HI. C: Schematic illustration of the hnrnpa3 genomic 

exon/intron structure. gRNA5 targets the second coding exon and induced mutations are detected with the RE 

Fnu4HI. Red lines: binding and cut sites of the RE. Purple: gRNA target sequence. Bold: PAM motif. Scale bar: 

100 bp – Schematic illustrations were genered with http://wormweb.org/exonintron 

were designed manually in CLC by choosing the target locus and designing the gRNA close 

to the next available PAM NGG motif. For later genetic screening purposes only those NGG 
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motifs were chosen that additionally have a RE cutting site close to them with the additional 

limitation that the chosen enzyme does only cut once in the region in such manner 

(approximately 150 bp up- and downstream of the NGG site) that the digested (wildtype 

unmodified allele) and undigested (modified KO allele) PCR product can be separated 

according to their length by gel electrophoresis). Selected gRNAs were then checked for their 

GC content using the online tool Multiple Primer Analyzer by Thermofischer and a GC 

content of 40 to 60% was considered suitable. Furthermore, the gRNA was tested for 

specificity in a BLAST search (http://blast.ncbi.nlm.nih.gov/blast.cgi). All the chosen gRNAs 

had off-target coverage below 70% upon Blast search against the zebrafish genome, thereby 

reducing the likelihood of off-target binding. As a next step the gRNAs were injected together 

with Cas9 protein by microinjection into the cell of zebrafish eggs at the 1-cell stage (see 

Figure 3.10).  

 

 
 
Figure 3.10 - Schematic illustration of gRNA+Cas9 protein injection into zebrafish eggs. Injection of 

hnrnpa1a, hnrnpa1b, or hnrnpa3 targeting gRNAs with Cas9 protein and the resulting mosaic P0 generation. 

Colored dots in P0 fish indicate mosaic expression of different induced mutations.  

3.3.2 Screening for hnrnpa1a, hnrnpa1b, and hnrnpa3 mutations 

 

For identification of successfully edited zebrafish eggs, screening assays were established that 

allow the detection of mutations that are induced by the cell`s error prone repair mechanism 

NHEJ after induction of a DSB. The screening assay not only functions as a read out of the 

gRNAs` efficiency can additionally be used for screening of edited alleles. Genomic DNA of 

2 dpf old injected fish or finclip material of adult fish was amplified by PCR using primer that 

span the target site of the gRNA. Subsequently, the PCR product was digested with the 

respective RE (see Table 3.2) and separated on an agarose gel side by side to the undigested 
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Table 3.2 – PCR band pattern for screening CRISPR/Cas9 induced hnrnpa mutations. For explanation see 

text. 

PCR product. In the wildtype situation the PCR product that was treated with the respective 

RE is completely digested resulting in digested bands that run at a lower MW than the 

undigested PCR product. In case that the RE cuts once in the PCR product two bands are 

present in the digested PCR product (see Figure 3.11C+D+E), whereas more smaller bands 

are present in case that the enzyme cuts multiple times in the PCR product (see Table 3.2). 

Mutations altering the RE recognition motif prevent binding of the enzyme and the PCR 

product remains undigested. The amoung of undigested PCR product is proportional to the 

amount of edited alleles deleting the restriction recognition site. In embryos that were injected 

with gRNA3 (see Figure 3.11A) and gRNA 4 (see Figure 3.11B) targeting hnrnpa1a, the PCR 

band at 296 bp or 396 bp respectively was only partially digested showing successful 

induction of mutations in the P0 generation in the hnrnpa1a gene. The PCR product at 346 bp 

and 305 bp is also only partially digested in embryos that were injected with gRNA1 and 

gRNA2, respectively, pointing towards successfully induced hnrnpa1b mutations in the P0 

generation (see Figure 3.11C+D). Additionally, in embryos injected with gRNA5, which 

targets hnrnpa3, the PCR band at 232 bp was only partially digested from which it can be 

concluded that some cells of the P0 embryos carry mutations in the hnrnpa3 gene (see Figure 

3.11E).  

Altogether, I established genotyping assays to introduce and screen for mutation. Moreover, I 

generated hnrnpa1a, hnrnpa1b, and hnrnap3 mutations in injected P0 fish. Next, these 

mutation carrier fish will be screened for successful germline transmission. 

 

 

gRNA set PCR 

product 

[bp]  

RE RE (No. of 

cut sites) 

Band pattern in 

digested wt [bp] 

Band pattern in 

digested mutant 

[bp] 

gRNA1 346 PvuII 1 108+238 346 

gRNA2 305 Fnu4HI 1 126+179 305 

gRNA3 296 Fnu4HI 2 201+7+88 289+7 

gRNA4 P0 

gRNA4 F1 

396 

396 

AciI 

MnlI 

1 

10 

297+99 

32+3+3+3+12+3+ 

153+65+7+21+90  

396 

32+3+3+3+12+3+2

18+7+21+90 

gRNA5 232 Fnu4HI 1 98+136 232 
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Figure 3.11 - Screening assays for CRISPR/Cas9 P0 induced hnrnpa mutations. Uninjected and injected P0 2 

dpf embryos were tested. PCR and corresponding RE-digested samples were separated on agarose gels A: 

Injection with hnrnpa1a gRNA3 targeting exon 1. RE: Fnu4HI. B: Injection with hnrnpa1a gRNA4 targeting 

exon 8. RE: AciI. C: Injection with hnrnpa1b gRNA1 targeting exon 1. RE: PvuII. D: Injection with hnrnpa1b 

gRNA 2 targeting exon 9. RE: Fnu4HI. E: Injection with hnrnpa3 gRNA5 targeting exon 1. RE: Fnu4HI. The 

red asterisks (*) mark the band size in the RE-digested sampled that remained in gRNA injected samples only 

indicative of an undigested band due to an induced mutation by CRISPR/Cas9. 

3.3.3 Screening for hnrnpa1a, hnrnpa1b, and hnrnpa3 mutants 

 

Genetically edited P0 fish are mosaic, meaning that not every cell has the same mutation 

and/or that some cells have no mutation at all. In order to obtain a F2 zebrafish that carries a 

single mutation in every cell the following screen (see Figure 3.12) was performed: 

Having identified a mosaic P0 fish using the RFLP assay after injection of hnrnpa1a, 

hnrnpa1b or hnrnpa3 targeting gRNA and Cas9, this fish was outcrossed to a wildtype fish. 

The heterozygous F1 generation was analyzed for successful germline transmission of 

mutations and the region around the target site of the mutant allele was sequenced to 

determine the introduced mutation. For each of the targeted loci frameshift mutations were 

identified resulting in mutations leading to either a PTC, deletion of the translation initiation 

codon ATG, or deletion of splice target sites.  
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Figure 3.12 - Schematic illustration of breeding P0 mosaic mutation carrier to homozygousity. The Figure 

shows the process of generating hnrnpa1a, hnrnpa1b and hnrnpa3 homozygous mutation carriers from mosaic 

mutation carriers obtained by CRISPR/Cas9 genome editing in zebrafish. 

 

The ratio of frameshift mutations in contrast to in frame mutations was quite variable for each 

locus (see Table 3.3). Upon identification of mosaic founder fish, these were outcrossed with 

a wildtype fish and the offspring was analyzed using finclip material for genotyping. 

hnrnpa1a exon 1 targeted founder fish resulted in 23 % mutation carrying offspring of which 

67% had frameshift mutations. hnrnpa1a exon 8 targeted founder fish resulted in 14 % 

mutation carrying offspring of which only 40% had frameshift mutations. All offspring of 

hnrnpa1b exon 2 targeted founder fish had mutations (100 % germline efficiency), of which 

60% caused frameshifts. The majority of offspring (79%) obtained from hnrnpa1b exon 9 

targeted founder fish had mutations, which resulted in frameshift mutations in 67% of the 

fish. Only a small part (13%) of the offspring obtained from hnrnpa3 exon 2 targeted founder 

fish showed mutations of which 67% caused a frameshift. With the assumption that the 

identified mutations will result in nonfunctional protein, zebrafish siblings carrying the same 
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mutation were incrossed to obtain a homozygous F2 generation and outcrossed to wildtype 

fish to establish the line. For each gRNA target site one allele was chosen for further 

experiments (see Figure 3.13) and was bred to homozygosity. For these alleles genotyping 

assays were established, which are depicted in Figure 3.14. Primer flanking the mutation site 

are used for PCR amplification followed by an analytic RE digest. A wildtype allele becomes 

fully digested while a mutated allele stays undigested. The digestion pattern depicts 

homozygous wildtype (fully digested PCR product), heterozygous (50% digested PCR 

product), or homozygous KO (undigested PCR product).  

 

Gene 

(exon#) 

# tested for 

mutation 

# positive 

for mutation 

% positive 

for mutation 

% inframe 

alleles 

% 

frameshift 

alleles 

hnrnpa1a (1) 291 68 23 33 67 

hnrnpa1a (8) 257 37 14 60 40 

hnrnpa1b (2) 94 94 100 40 60 

hnrnpa1b (9) 48 38 79 33 67 

hnrnpa3 (2) 120 15 13 33 67 
Table 3.3 - Allele frequencies in F1 after targeting hnrnpa loci – For explanation see text. 

The genotypes were detected by the same readout used for detection of mutations in P0 

generation (see Table 3.3, Figure 3.14A+C+E+F). Two exceptions are mutants that carry 

mutations in exon 9 of hnrnpa1 or mutations in exon 8 of hnrnpa1b. For these fish new 

screening assays were developed as either the mutation cannot be detected by the initial RE 

assay or the mutation induced such large deletion that can be already detected by a band shift 

in the PCR product (see Figure 3.18B+D). The genotype of hnrnpa1a exon 9 targeted 

zebrafish can be detected by mutation spanning PCR amplification resulting in a 396 bp PCR 

product. Upon digest of the PCR product with the RE MnlI a band is obtained at 218 bp and 

and some small digest products in the wildtype allele. In the homozygous allele one enzyme 

binding site is mutated resulting in a band at 218 bp and some small digest products (see 

Figure 3.14B). The genotype of hnrnpa1b exon 8 targeted zebrafish can be detected by 

mutation spanning primer that amplify the wildtype and mutated allele resulting in a 305 bp 

PCR product in the wildtype allele and a 252 bp PCR product in the mutated allele carrying a 

53 bp deletion (see Figure 3.14D). The hnrnpa3 allele obtained from the Sanger Center can be 

genotyped by mutation specific primer pairs, which specifically either amplify the wildtype or 

the mutated allele. Only in heterozygous samples each PCR reaction results in a PCR product, 
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whereas in homozygous mutation carriers or wildtype, only the mutation or wildtype specific 

PCR reaction results in a PCR product (see Figure 3.14F).  

 

 
 

Figure 3.13 - Genomic sequences of selected alleles. (A-F): Top rows depict the wildtype nucleotide and aa 

sequence. The lower sequence depicts the respective mutant allele. A: hnrnpa1a wildtype exon 1 region and the 

mutated allele leading to ATG deletion B: hnrnpa1a wildtype exon 9 region and the mutated allele containing a 

10 bp insertion C: hnrnpa1b wildtype exon 2 region and the mutated allele contains a 5 bp deletion. D: 

hnrnpa1b wildtype exon 9 region the mutant allele has a 53 bp deletion spanning an exon-intron site and leads to 

translation of the previous intron and a PTC stop. E: hnrnpa3 wildtype exon 2 region the mutant allele contains 

a 7 bp deletion. F: hnrnpa3 wildtype exon 4 region the sanger mutant containing point mutation that leads to a 

PTC codon. Blue: exonic sequence.. black: intronic sequence. ∆: deletion. +: insertion. Exon-intron boundary 

underlined. *: Stop.  
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Figure 3.14 - Genotyping assays in F2 to discriminate between different genotypes. A: hnrnpa1a edited 

exon 1 locus. Mutation spanning primer amplify the wildtype and mutated allele. Wildtype alleles are fully 

digested by the RE resulting in a fully digested PCR product. The mutation results in loss of the RE cutting site 

whereby an undigested PCR product remains. Heterozygous mutation carriers are recognized by a partially 

digested PCR product. RE: Fnu4HI. B: hnrnpa1a edited exon 8 locus. RE: MnlI. C: hnrnpa1b edited exon 2 

locus. RE: PvuII. D: hnrnpa1b edited exon 9 locus. Mutation spanning primer allow to distinguish between the 

wildtype and mutated allele. The mutated allele carrying a 53 bp deletion can be detected by a band shift of 53 

bp downwards on an agarose gel. E: hnrnpa3 edited exon 2 locus. RE: Fnu4HI F: hnrnpa3 edited exon 4 locus. 

Mutation specific primer either recognize the mutant or wildtype allele. For each sample two PCR reactions 

were performed. Only in heterozygous samples each PCR reaction results in a PCR product, whereas in 

homozygous mutation carriers or wildtype only the mutation or wildtype specific PCR reaction results in a PCR 

product, respectively. The red asterisks (*) mark the band that remains in the edited allele only. 

In summary, gRNAs led to mutations in the germline, which are thereby transmitted to the 

next generation. Zebrafish carrying mutations that result in a frameshift or splice alterations 

leading to a PTC, or delete the translation initiation ATG codon, were identified using the 
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screening assay described in Table 3.2 and were bred to homozygousity. These mutations are 

likely to result in loss of protein function.  

3.3.4 hnrnpa1b and hnrnpa3 mutants are loss of function mutants 

 

The generated KO lines required confirmation that they are loss of function alleles and that no 

functional protein is produced by the selected alleles. The mutant mRNA containing a PTC is 

likely to be degraded by NMD [209]. If mutant mRNA is targeted to NMD was assayed by 

qRT-PCR and loss of protein by immunoblot. 

As no Hnrnpa1a specific antibody is available, mRNA levels of brains derived from 

hnrnpa1ains10-/- brains were analysed by qRT-PCR, which revealed that hnrnpa1a mRNA 

levels are reduced to 30% compared to wildtype siblings, which is a significant decrease (see 

Figure 3.15A). The remaining 30% of hnrnpa1a mRNA point to partial degradation of 

hnrnpa1a mRNA by NMD. It has to be further confirmed whether the remaining hnrnpa1a 

 

 
 

Figure 3.15 - The selected hnrnpa1a, hnrnpa1b, and hnrnpa3 alleles are loss of function alleles A: hnrnpa1a 

mRNA levels were measured in hnrnpa1ains10-/- mutants as no Hnrnpa1a specific antibody is available. 

Hnrnpa1a mRNA levels are significantly reduced in the brains of hnrnpa1b-/- mutants. (*p<0.02) n=4. Error bar 

indicates S.E.M. Normalized to rflp13a and elf1a2. Student’s t-test. B: The Hnrnpa1b specific band is absent in 

all brain samples derived from hnrnpa1b-/- mutants, whereas an Hnrnpa1b specific signal was detected in brain 

samples of hnrnpa1b+/+ siblings. C: The Hnrnpa3 specific band was absent in all brain samples derived from 

hnrnpa3-/- mutants, whereas an Hnrnpa3 specific signal was detected in brain samples of hnrnpa3+/+ siblings. 

mRNA levels are translated into a functional protein. Antibodies against Hnrnpa1b and 

Hnrnpa3 were used in Western blot analysis in order to confirm Hnrnpa1b absence in the 

hnrnpa1b∆5-/- and hnrnpa1b∆53-/- zebrafish and Hnrnpa3 absence in hnrnpa3∆7-/- and 

hnrnpa3Sa-/- zebrafish brains, respectively. On immunoblots against Hnrnpa1b a band is 

present at 42.6 kDa in wildtype brain samples, which is not detectable in brain samples from 

hnrnpa1b-/- mutants. The Hnrnpa3 specific signal is present in wildtype brain samples at 35.6 
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kDa but not in hnrnpa3-/- mutant brain samples. Given the absence of the Hnrnpa1b and 

Hnrnpa3 specific band in brain samples of hnrnpa1b-/- and hnrnpa3-/- mutants it can be 

concluded that the respective proteins are no longer produced or degraded (see Figure 

3.15B+C).  

In summary, Hnrnpa1a loss of function could only be assessed on mRNA level and revealed a 

70% decrease in hnrnpa1a mRNA levels compared to wildtype. All selected alleles for 

hnrnpa1b and hnrnpa3 are loss of function alleles whereby the respective protein is no longer 

produced or degraed.  

3.4 Basic characterization of single hnrnpa1a-/-, hnrnpa1b-/- and hnrnpa3-/- 

mutants 

 
The aim of this study was to establish stable KO lines for Hnrnpa1a, Hnrnpa1b and Hnrnpa3 

to study the function of these proteins in vivo. Having generated these lines I next addressed 

the consequences of protein loss of function in single and double mutants. For further analysis 

only one allele of each gene was taken: hnrnpa1ains10; hnrnpa1b∆53, and hnrnpa3Sa. 

3.4.1 hnrnpa-/- single mutants are viable and fertile 

 

Single hnrnpa1a-/-, hnrnpa1b-/-, and hnrnpa3-/- mutants were examined for viability from 

hatching until adulthood. For all in- and outbreedings natural occurring egg lay numbers were 

obtained with a majority of fertilized eggs. Among all the crosses, expected ratios of 

Mendelian inheritance were obtained (see Table 3.4). All embryos were raised to adulthood 

with an indistinguishable lifespan between mutants and wildtype siblings.  
 

Incross of hnrnpa1a +/-, (n=302 

Genotype hnrnpa1a +/+ hnrnpa1a +/- hnrnpa1a -/- 

Examined Ratio 24,42% ± 0.04 52,94% ± 0.04 22,64% ± 0.02 

Expected ratio 25% 50% 25% 
 

Incross of hnrnpa1b +/-, (n=150) 

Genotype hnrnpa1b +/+ hnrnpa1b +/- hnrnpa1b -/- 

Examined Ratio 21.88% ± 0.02 48.25%  ± 0.02 29.87% ± 0.03 

Expected ratio 25% 50% 25% 
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Incross of hnrnpa3 +/-, (n=156) 

Genotype hnrnpa3 +/+ hnrnpa3 +/- hnrnpa3 -/- 

Examined Ratio 23.96% ±0.01 48.89% ± 0.03 27.15% ± 0.02 

Expected ratio 25% 50% 25% 

Table 3.4 - Mendelian laws apply for incrosses of single hnrnpa-/- mutants - for each clutch 40 eggs 
analyzed. n=number of embryos analyzed (obtained from at least 3 different clutches). ± : standard deviation. 
 

To analyze the single mutants in further detail I examined them for obvious morphological 

changes. Thereby the body shape, body length, eye, brain and yolk were observed throughout 

the development from embryo stage up to adult hood. The analysis revealed no morphological 

differences among mutants and wildtype siblings. Representative images are depicted in 

Figure 3.16. In summary, hnrnpa1a-/-, hnrnpa1b-/-, and hnrnpa3-/- single mutants are hetero- 

and homozygous viable and fertile and have no obvious morphological phenotype.  

 

 
Figure 3.16 - hnrnpa-/- single mutants show no obvious morphological phenotype. Images of 5 dpf old 

wildtype, hnrnpa1a-/-, hnrnpa1b-/- and hnrnpa3-/- mutants. Lateral view. Anterior to the left. Images were taken 

with Axio Scope A1. Scalebar represents 500 µm. 

3.4.2 hnrnpa-/- single mutants have no morphological phenotype in ALS associated cells 

or tissues 

 

One central characteristic for ALS is the degeneration of upper and lower motoneurons and 

subsequent muscle wasting [41]. As a first step hnrnpa1a-/-, hnrnpa1b-/-, and hnrnpa3-/- single 

mutants were therefore analyzed for changes in ALS related tissues, such as motoneurons and 

muscles. Maternal mRNA, provided to the eggs by the mother allows embryos to synthesize 

proteins before the onset of their own zygotic transcription. Therefore Hnrnpa1a, Hnrnpa1b, 

or Hnrnpa3 protein translation from maternal mRNA at the earliest stages of development 

could potentially preclude identification of early phenotypes [210]. To exclude maternal 

contribution embryos used for the analysis of ALS related phenotypes originate from 

incrosses of homozygous mutants.  
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3.4.2.1 hnrnpa-/- single mutants mutants have no motoneuron phenotype 

 

The SpMN axon of the Cap motoneuron axon, which project ventrally from the spinal cord to 

innervate muscles, is frequently used as a neuron vulnerability readout in zebrafish. In the 

past a variety of zebrafish KO models were analyzed for SpMN axon morphology by 

quantifying the SpMN axonal outgrowth length and branching [211] [212] [12] [190].  

 

 
 

Figure 3.17 - hnrnpa-/- single mutants show normal SpMN axon outgrowth. A: Schematic illustration of a 

30 hpf embryo with the analyzed region in detail (red box). SpMNs and their axons are illustrated in white and 

the red line marks the measured axon length for SpMN axon 1. Grey: spinal cord. B: Examples of whole-mount 

IF stainings of 30 hpf wildtype, hnrnpa1a-/-, hnrnpa1b-/-, and hnrnpa3-/- mutants stained with znp-1 antibody. 

The four SpMN axons anterior to the end of the yolk extension are shown. Images are taken with the spinning 

disk cell observer. Maximum intensity projection. Lateral view. Anterior to the left. Scale bar: 25 µm C: A 

comparison of the SpMN axon lengths of wildtype (orange), hnrnpa1a-/- (turquoise) (p(1-4)>0.34, n=7), 

hnrnpa1b-/- (blue) (p(1-4)>0.23, n=7), and hnrnpa3-/- (green) (p(1-4)>0.99, n=7) embryos at 30 hpf revealed no 

significant difference in the SpMN axon length when compared to wildtype. S.E.M. Two-way ANOVA. 

Bonferroni post-test.  

SpMN were visualized by immunohistochemical staining of 30 hpf old PTU treated embryos 

using a znp-1 antibody. Quantification of the SpMN axon length of the Cap, which is defined 

as the length from the ventral side of the spinal cord to the end of the growth cone, revealed 
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no significant length difference in hnrnpa1a-/-, hnrnpa1b-/- and hnrnpa3-/- mutants compared 

to age matched wildtypes (see Figure 3.17), indicating normal SpMN axon outgrowth in 

hnrnpa1a-/-, hnrnpa1b-/- and hnrnpa3-/- mutants.  

3.4.2.2 hnrnpa-/- single mutants mutants have no muscle defects 

 

 
Figure 3.18 - hnrnpa-/- single mutants show no morphological muscle defects A: Schematic illustration of the 

assayed region (red box) B: Antibody staining of 30 hpf wildtype, hnrnpa1a-/-, hnrnpa1b-/-, and hnrnpa3-/- 

mutants with the Actinin specific antibody (green). C: Antibody staining of 30 hpf wildtype, hnrnpa1a-/-, 

hnrnpa1b-/-, and hnrnpa3-/- embryos with the myosin specific antibody ZE-BO-1F4 (green). B and C: Pictures 

taken by confocal laser scanning microscopy using the 488 nm laser. Lateral view. Anterior to the left. Scale bar 

represents 25 µm. 
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To visualize the muscle fibers I performed immunohistochemistry on 30 hpf old PTU treated 

hnrnpa1a-/-; hnrnpa1b-/- and hnrnpa3-/- embryos using α-actinin and ZE-BO 1F4 antibodies. 

α-actinin is a marker for Z-discs, while ZE-BO 1F4 binds to smooth muscles, striated skeletal 

and heart muscles (fast-twitch muscle fibers) [213] [195]. hnrnpa1a-/-, hnrnpa1b-/- and 

hnrnpa3-/- mutants showed no difference in muscle patterning using α-actinin (see Figure 

3.18B) and ZE-BO 1F4 (Figure 3.18C) antibodies compared to age-matched wildtype 

embryos. These findings implicate normally developed Z-discs and fast-twitching muscle 

fibers and that the muscle is morphologically wildtype at 30 hpf in hnrnpa1a-/-, hnrnpa1b-/- 

and hnrnpa3-/- mutants.  

3.4.3 Tdp-43 variant protein levels are not changed in hnrnpa-/- single mutants 

 

The lack of any obvious phenotype in single hnrnpa1-/-, hnrnpa1b-/-, and hnrnpa3-/- mutants 

prompted us to investigate potential crossregulation of HNRNP family members. Since TDP-

43 is the key aggregating protein in ALS we asked if TDP-43 levels change upon depletion of 

 

 
 

Figure 3.19 – Tdp-43 variant levels are not changed in brains of hnrnpa-/- single mutants A: Tardbp levels 

were not changed in hnrnpa1a-/- (p>0.13, n=4), hnrnpa1b-/- (p>0.52, n=8), and hnrnpa3-/- (p>0.51, n=4) 

mutants. B: Tardbpl levels were not changed in hnrnpa1a-/- (p>0.99, n=8), hnrnpa1b-/- (p>0.57, n=4), and 

hnrnpa3-/- (p>0.76, n=8) mutants. C: Tardbpl_tv1 levels were not changed in hnrnpa1a-/- (p>0.90, n=8), 

hnrnpa1b-/- (p>0.09; n=8), and hnrnpa3-/- (p>0.93; n=4) mutants. Normalized to control. Student’s t-test. Error 

bars indicate S.E.M. Calnexin served as a loading control. 
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HNRNPA proteins. In order to address this question Tdp-43 protein levels were examined in 

brain samples derived from hnrnpa1a-/-, hnrnpa1b-/- and hnrnpa3-/- mutant zebrafish. In 

zebrafish two isoforms of TDP-43, named tardbp and tardbpl, are present. Furthermore, our 

group and others described another tdp-43 transcript variant, named tardbpl_tv1, which is 

generated by alternative splicing of tardbpl upon tardbp depletion [12]. Our laboratory 

developed antibodies that specifically detect Tardbp, Tardbpl, and Tardbpl_tv1. Upon usage 

of these antibodies by immunoblotting no differences in Tardbp, Tardbpl or Tardbpl_tv1 

protein levels were observed in hnrnpa1a-/-, hnrnpa1b-/- or hnrnpa3-/- brain samples (see 

Figure 3.19).  

It can be concluded that loss of Hnrnpa1a, Hnrnpa1b, or Hnrnpa3 protein function does not 

affect the protein levels of Tdp-43 in zebrafish.  

3.4.4 Differentially expressed RNAs in single mutants 

 

In order to identify differentially expressed genes in hnrnpa1b-/- and hnrnpa3-/- mutants an 

unbiased approach was chosen by sending hnrnpa1b-/- and hnrnpa3-/- brains (six months) for 

RNA sequencing (total RNA including small and noncoding RNAs, paired end, 35 Million 

reads/sample).  

3.4.4.1 Differentially expressed genes in hnrnpa1b-/- zebrafish brain 
 

NGS revealed 45 genes with p-value smaller than 0.01 and a positive or negative fold change 

greater than one between mutants and wildtype siblings. Of these genes 26 were upregulated 

and 19 were downregulated. hnrnpa1b itself is downregulated by 1.23 (p-adj.=2.91E-41), 

supporting the successful KO of hnrnpa1b previously shown by Western blot. Interestingly, 

nine lincRNAs were identified with these settings whereby all of them were upregulated.  

 

Gene Ensembl ID 
Human 

Orthologue 

log2fold 

change 
p-adjusted 

CU929061.1 ENSDARG00000107933 n.a. 5.10 8.07E-4 

si:dkey-240n22.3 ENSDARG00000095013 n.a. 3.70 1.28E-6 

si:ch211-196h24.2 ENSDARG00000100341 n.a. 3.53 1.08E-3 

si:dkey-165o8.1 ENSDARG00000098369 n.a. 2.45 4.44E-3 

si:ch211-227e10.1 ENSDARG00000104968 n.a. 2.17 1.87E-5 

si:ch211-205a14.1 ENSDARG00000102713 n.a. 2.04 3.791E-7 
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cyp2aa6 ENSDARG00000103590 n.a. 1.68 4.00E-10 

si:ch211-106j21.2 ENSDARG00000102575 n.a. 1.52 4.74E-3 

si:ch211-232d10.2 ENSDARG00000100348 n.a. 1.49 1.70E-6 

BX322575.1 ENSDARG00000095595 n.a. 1.42 6.13E-3 
 

si:dkey-207l24.2 ENSDARG00000101688 n.a. -7.70 3.48E-6 

BX649431.1 ENSDARG00000098522 n.a. -7.19 5.68E-5 

BX004873.8 ENSDARG00000108677 n.a. -2.91 5,38E-7 

N.A. ENSDARG00000102102 n.a. -2.78 1.46E-3 

rnf17 ENSDARG00000056387 RNF17 -2.50 4.85E-6 

si:dkey-14o6.1 ENSDARG00000098383 n.a. -2.44 8.90E-4 

BX004873.5 ENSDARG00000101310 n.a. -2.40 3.74E-3 

si:dkey-16p6.1 ENSDARG00000088245 n.a. -2.37 5.33E-3 

si:dkey-16b10.1 ENSDARG00000096139 n.a. -2.26 2.61E-3 

znf1105 ENSDARG00000104887 n.a. -2.09 1.78E-05 
Table 3.5 – Top 10 differentially expressed genes and the respective human orthologues in hnrnpa1b-/- brains. 

For zebrafish genes lacking a human orthologue the abbreviation not available (n.a.) is used.   

3.4.4.2 Differentially expressed genes in hnrnpa3-/- zebrafish brain 
 

Upon Hnrnpa3 KO NGS revealed 343 differentially expressed genes with a p-value smaller 

than 0.01 and a upwards or downwards fold change greater than one between mutants and 

wildtype siblings. Of these genes 263 are upregulated and 80 downregulated. hnrnpa3 itself is 

1.86 fold downregulated (p-adj.=3,50E-29) supporting the successful KO of hnrnpa1b 

previously shown by Western blot. Interestingly, 16 linc RNAs are changed.  

 

Gene Ensembl ID 
Human 

Orthologue 

log2fold 

change 
p-adjusted 

si:dkey-200c24.1 ENSDARG00000104305 n.a. 9.02 2.15E-10 

CR848784.1 ENSDARG00000096895 n.a. 7.96 1.45E-7 

myhc4 ENSDARG00000035438 MYH1 6.63 2.64E-3 

CABZ01002522.1 ENSDARG00000107775 n.a. 5.93 5.45E-3 

zgc:175177 ENSDARG00000102296 n.a. 3.27 2.63E-7 

slc16a5b ENSDARG00000102668 SLC16A5 3.21 7.31E-9 
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hsp90aa1.1 ENSDARG00000010478 HSP90 3.03 1.56E-3 

FO834829.1 ENSDARG00000099605 n.a. 2.98 2.22E-5 

hbaa2 ENSDARG00000069735 n.a. 2.83 6.33E-5 

slc6a5 ENSDARG00000067964 SLC6A 2.74 2.18E-11 

 

N.A. ENSDARG00000102915 HIN2 -7.06 4.72E-6 

BX000534.2 ENSDARG00000102489 n.a. -3.44 2.28E-7 

cryabb ENSDARG00000101380 CRYABB -3.41 5.89E-13 

CU856343.1 ENSDARG00000099073 n.a. -2.99 5.60E-3 

sesn2 ENSDARG00000070012 SESN2 -2.76 1.09E-3 

si:rp71-80o10.4 ENSDARG00000094316 n.a. -2.69 1.25E-4 

BX649622.2 ENSDARG00000105085 n.a. -2.54 6.41E-05 

slc1a4 ENSDARG00000000551 SLC1A4 -2.16 3.60E-3 

mars ENSDARG00000034396 MARS -2.06 8.75E-3 

asns ENSDARG00000016375 ASNS -2.03 3.75E-3 
Table 3.6 - Top 10 differentially expressed genes and the respective human orthologues in hnrnpa3-/- brains 

3.4.5 Hnrnpa1a and Hnrnpa1b compensate for each other loss of function, which is not 

compensated by Hnrnpa3 

 

Since hnrnpa1a and hnrnpa1b are duplicated genes and both orthologues of human 

HNRNPA1 (see Figure 3.2), the lack of a phenotype in single hnrnpa1a-/- and hnrnpa1b-/- 

mutant zebrafish could be due to compensational mechanisms. Hnrnpa1b could take over the 

function of Hnrnpa1a upon Hnrnpa1a KO or vice versa. Alternatively, there could be 

functional compensation within the larger Hnrnpa family and Hnrnpa3 could take over the 

function of the Hnrnpa1 proteins. To investigate potential crossregulatory mechanisms, I 

performed immunoblotting of Hnrnpa1a and Hnrnpa3 on brain samples of the hnrnpa1a-/-, 

hnrnpa1b-/- and hnrnpa3-/- mutants. Due to the lack of a Hnrnpa1a specific antibody, 

compensation of Hnrnpa1a protein in hnrnpa1b-/- and hnrnpa3-/- mutants could not be 

addressed. Instead, hnrnpa1a mRNA levels were measured in hnrnpa1b-/- and hnrnpa3-/- 

zebrafish brain samples by qRT-PCR. The analysis revealed significant upregulation of 

hnrnpa1a mRNA upon KO of Hnrnpa1b or Hnrnpa3 (see Figure 3.20A). Hnrnpa1b protein 

levels showed no change in Hnrnpa1a or Hnrnpa3 deficient zebrafish brain samples by 

immunoblotting (see Figure 3.20B). Interestingly, Hnrnpa1b levels were highly increased in 

brains derived from hnrnpa1a-/- mutants compared to age-matched wildtype (see Figure 
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3.20B). This upregulation was observed in two independent KO lines, hnrnpa1a∆16 and 

hnrnpa1ains10 pointing to the specificity of the upregulatory effect (see Figure 3.20B). 

Immunoblotting for Hnrnpa3 revealed no change in protein levels in brain samples of 

hnrnpa1a-/- or hnrnpa1b-/- mutants compared to age matched wildtype (see Figure 3.20C). 

 

 
 

Figure 3.20 – Hnrnpa1a and Hnrnpa1b compensate for each others loss of function, which is not 

compensated by Hnrnpa3. A: mRNA levels of hnrnpa1a were significantly upregulated in brains of hnrnpa1b-/- 

(***p<0.001; n=4) and hnrnpa3-/- (***p<0.001; n=4) mutants. . Normalized to rflp13a and elf1a2. Error bar 

indicates SEM. Student’s t-test. Results by qRT-PCR were reproduced twice using the same cDNA. B: 

Hnrnpa1b levels were significantly upregulated in brains of hnrnpa1a mutants (hnrnpa1a∆16-/-: ***p<0.0001, 

n=8; hnrnpa1ains10-/-: ***p<0.0001, n=8) and not changed in brains of hnrnpa3-/- mutants (p>0.69, n=4) 

compared to their wildtype siblings. C: Hnrnpa3 levels were not changed in brains of hnrnpa1a-/- mutants 

(p>1.1, n=8) and hnrnpa1b-/- mutants (p>0.64, n=8) compared to their wildtype siblings. Student’s t-test. Error 

bars indicate S.E.M. Calnexin served as a loading control. 

It can be concluded that Hnrnpa3 protein levels are not changed upon hnrnpa1a or hnrnpa1b 

KO. Upon KO of Hnrnpa1a a high increase in Hnrnpa1b protein was observed, which was 

confirmed in two independent hnrnpa1b KO lines. Vice versa, hnrnpa1a mRNA levels were 

upregulated upon hnrnpa1b KO. Moreover, slight hnrnpa1a mRNA upregulation was 

observed upon Hnrnpa3 KO. 
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3.5 Analysis of hnrnpa1a-/-; hnrnpa1b-/- mutants 
 

Hnrnpa1a, Hnrnpa1b, and Hnrnpa3 have multiple functions of which some are overlapping 

but others are specific to one particular protein. The previous analysis revealed 

crossregulation among Hnrnpas shown by upregulation of Hnrnpa1b upon loss of Hnrnpa1a 

protein and vice versa. While Hnrnpa3 protein levels were not changed upon Hnrnpa1a or 

Hnrnpa1b loss of function, Hnrnpa1b was slightly upregulated upon Hnrnpa3 loss of function. 

In order to address potential Hnrnpa redundancy and functional compensation in single KO, I 

generated double KO fish. 

3.5.1 hnrnpa1a-/-; hnrnpa3-/- and hnrnpa1b-/-; hnrnpa3-/- mutants are viable 

 
Double homozygous KO fish obtained from a homozygous hnrnpa1a-/-; hnrnpa3-/- or 

hnrnpa1b-/-; hnrnpa3-/- incross were viable and did not show any obvious morphological 

phenotype (see Figure 3.21). Also, these fish reached adulthood and showed Mendelian 

inheritance pattern (data not shown).  

It can be concluded that combined loss of Hnrnpa1a or Hnrnpa1b and Hnrnpa3 protein 

function does not result in obvious morphological abnormalities in zebrafish. This result 

points to either non-essential functions of these proteins or further redundancy in the zebrafish 

genome. 
 

 
Figure 3.21 - hnrnpa1a-/-; hnrnpa3-/- and hnrnpa1b-/-; hnrnpa3-/- mutants show no obvious morphological 

phenotype. Representative images of 5 dpf old wildtype, hnrnpa1a-/-; hnrnpa3-/-, and hnrnpa1b-/-; hnrnpa3-/- 

embryos. Lateral view. Anterior to the left. Images were taken Axio Scope A1. Scalebar represents 500 µm.  

3.5.2 hnrnpa1a-/-; hnrnpa1b-/- mutants are not viable 

 

Interestingly, no adult hnrnpa1a-/-; hnrnpa1b-/- fish were obtained from an incross of 

hnrnpa1a+/-; hnrnpa1b+/- mutant fish. The Mendelian ratios obtained from genotyping adult 

offspring from this incross show that all possible genotypes are present in the expected ratio 

apart from hnrnpa1a-/-; hnrnpa1b-/- fish, of which no fish was obtained (see Table 3.7). To 

address the question whether hnrnpa1a-/-; hnrnpa1b-/- fish die while breeding them to 

adulthood, or as embryos until they are transferred to the breeding system at 5 dpf, or whether 
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Incross of hnrnpa1a +/-; hnrnpa1b +/-, (n=4) 

Genotype a+/+ 

; b+/+ 

a+/-

;b+/+ 

a+/+; 

;b+/- 

a+/-

;b+/- 

a-/- 

;b+/+ 

a+/+ 

;b-/- 

a-/- 

;b+/- 

a+/- 

;b-/- 

a-/- 

;b-/- 

Examined 

Ratio 

(%, s.d.) 

3.92  

± 0.01 

13.30 

± 0.03 

13.71

± 0.03 

33.38 

± 0.03 

7.70  

±0.01 

4.94  

± 0.02 

10.33 

± 0.06 

12.73 

± 0.05 

0  

 

Expected 

ratio (%) 

6.25 12.5 12.5 25 6.25 6.25 12.5 12.5 6.25 

Table 3.7 - hnrnpa1a-/-; hnrnpa1b-/- mutants do not reach adulthood. Clutch number of minimum 40 eggs. 

n=number of clutches analyzed. 

they are not even born, offspring obtained from a hnrnpa1a+/-; hnrnpa1b+/- incross were 

genotyped at 2 dpf. At this point all genotypes were present in the expected ratios (data not 

shown) showing that hnrnpa1a-/-; hnrnpa1b-/- mutants are born but die before reaching 

adulthood (see Table 3.7). Careful analysis of newborn embryos obtained from a hnrnpa1a+/-; 

hnrnpa1b+/- incross from 0 hpf until 5 dpf showed that some embryos have reduced blood 

flow, a thinned yolk extension, cell death, and develop severe heart edema at 4 dpf until they 

die at around 5 dpf (see Figure 3.22). Those embryos were present at the expected ratio of 

around 6.25% pointing towards loss of both Hnrnpa1a and Hnrnpa1b causing the 

morphological abnormalities. This was confirmed by genotyping the phenotypic embryos 

from the clutch. 
 

 
 

Figure 3.22 - hnrnpa1a-/-; hnrnpa1b-/- mutants are embryonically lethal and show blood circulation defects. 

After 48 hpf hnrnpa1a-/-; hnrnpa1b-/- mutants show reduced blood flow and a thinned yolk extension (left panel). 

After 72 hpf hnrnpa1a-/-; hnrnpa1b-/- mutants develop severe heart edema (right panel). Scalebar represents 

200 µm. 

 
 



Results 

 87  

3.5.2.1 hnrnpa1a-/-; hnrnpa1b-/- mutants are full loss of protein function mutants 
 

While no antibody is available that specifically detects Hnrnpa1a, full protein loss of function 

in hnrnpa1a-/-; hrnnpa1b-/- mutants was assessed by immunoblot with an antibody that detects 
 

 

Figure 3.23 - hnrnpa1a-/-; hnrnpa1b-/- mutants are loss of protein mutants. The antibody HA1-CT (VM) 

AN351 detects Hnrnpa1a and Hnrnpa1b since a band at the expected size of Hnrnpa1a and Hnrnpa1b appears in 

wildtype, hnrnpa1a-/- and hnrnpa1b-/- zebrafish brains. Slight upregulation of Hnrnpa1b in hnrnpa1a-/- mutants is 

also detected as previously observed. No band appears at the expected size in hnrnpa1a-/-, hnrnpa1b-/- embryos. 

Tubulin serves as a loading control. 

Hnrnpa1 and Hnrnpa1b (kind gift from Julia Nikolic, Douglas black lab). Immunoblotting 

showed a band at the expected size on brain samples obtained from Hnrnpa1a and Hnrnpa1b 

single KO showing that the antibody detects both proteins. Moreover, the antibody could 

detect Hnrnpa1a and Hnrnpa1b in 30 hpf wildtype embryos and can hence be used already in 

early developmental stages. No band was detected in hnrnpa1a-/-; hrnnpa1b-/- whole embryo 

samples demonstrating loss of Hnrnpa1a and Hnrnpa1b protein in the double mutants (see 

Figure 3.23). Concluding, it was shown that hnrnpa1a-/-; hrnnpa1b-/- mutants do not express 

Hnrnpa1a or Hnrnpa1b protein and are thereby full double protein loss of function mutants. In 

combination with the phenotypic analysis of these mutants, this finding further shows that 

loss of these two proteins leads to the observed phenotypes.  

3.5.2.2 Further characterization of hnrnpa1a-/-; hnrnpa1b-/- mutants 
 

hnrnpa1a-/-; hnrnpa1b-/- mutants are not viable and die around 5 dpf with a severe heart 

edema. The cellular abnormalities causing premature death are though unknown. For further 

analysis I focused on the difference of morphologically affected hnrnpa1a-/-; hnrnpa1b-/- 
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mutants and morphologically wildtype looking siblings, obtained from an hnrnpa1a+/-; 

hnrnpa1b-/- incross. hnrnpa1a-/-; hnrnpa1b-/- mutant embryos become first distinguishable 

from their wildtype looking siblings at 30 hpf. At this point wildtype looking embryos start to 

have blood flow, whereas hnrnpa1a-/-; hnrnpa1b-/- mutants do not have developed blood flow 

yet (data not shown). Furthermore, hnrnpa1a-/-; hnrnpa1b-/- mutants have a thinned yolk 

extension (see Figure 3.27A), whereas wildtype looking embryos have a healthy looking yolk 

extension with a roundish shape. Lastly, apoptotic tissue can be observed in the entire body in 

hnrnpa1a-/-; hnrnpa1b-/- mutants (data not shown). The phenotype is progressive and 

accompanied by secondary effects due to advanced cell death (data not shown). In order to 

minimize secondary morphological and cellular phenotypes, the timepoint at 30 hpf when 

hnrnpa1a-/-; hnrnpa1b-/- mutants can be firstly morphologically distinguished from their 

siblings, was chosen for further analysis. Three criteria were developed to reproducibly 

identify hnrnpa1a-/-; hnrnpa1b-/- mutants and to minimize missorting. The criteria are the 

following: absence of blood flow, thinned yolk extension, and indication of cell death.  

3.5.2.2.1 hnrnpa1a-/-; hnrnpa1b-/- mutants are developmentally delayed 

 

Several points of evidence suggest involvement of Hnrnpa1 in development [214] [162]. The 

developmental stage of the embryos was assessed using the head-trunk angle that was firstly 

described by Kimmel et al. [198]. The head trunk angle is assessed by drawing a line through 

the middle of the ear and the eye, and a second line from the middle of the ear to the point 

where the yolk extension grows out from the yolk (see Figure 3.24A). The head-trunk angle 

increases throughout development between 20 hpf and 70 hpf as a consequence of 

morphogenesis of the embryo. Upon identification of the head-trunk angle a specific 

developmental stage can be determined given that the embryos were kept at 28.5° [198]. At 

30 hpf the head-trunk angle accounts 90° under normal conditions and was averaged at 86° in 

age matched wildtype, and 81° in hnrnpa1a-/-; hnrnpa1b-/- mutants. At 48 hpf the head-trunk 

angle accounts 138° under normal conditions and was averaged at 139° in wildtype controls 

and 121° in hnrnpa1a-/-; hnrnpa1b-/- mutants (see Figure 3.24B). At both time points the angle 

was significantly smaller hnrnpa1a-/-; hnrnpa1b-/- mutants than in age matched controls 

pointing to developmental delay of hnrnpa1a-/-; hnrnpa1b-/- mutants (see Figure 3.24D). 

Developmental delay in hnrnpa1a-/-; hnrnpa1b-/- mutants is further evidenced by a delay in 

melanin pigmentation (see Figure 3.24B).  
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Figure 3.24 - hnrnpa1a-/-; hnrnpa1b-/- mutants are developmentally delayed. A: Schematic illustration of the 

head-trunk angle and its dependency on developmental stage. B: At 30 hpf the head angle of wildtype embryos 

was measured at 86° and for hnrnpa1a-/-; hnrnpa1b-/- mutants at 81°. The reference angle at 30 hpf is 90°. C: At 

48 hpf the head angle of wildtype embryos was measured at 139° and for hnrnpa1a-/-; hnrnpa1b-/- mutants at 

121°. The reference angle at 48 hpf is 138°. Lateral view. Anterior to the left. Images taken by Axio Scope A1 

microscope. D: The head trunk angle is significantly smaller in hnrnpa1a-/-; hnrnpa1b-/- mutants at 30 hpf 

(p<0.02; n=6) and 48 hpf (p<0.02; n=6) compared to age matched wildtype. Student’s t-test. Error bar indicates 

S.E.M. 

3.5.2.2.2. hnrnpa1a-/-; hnrnpa1b-/- mutants have shortened SpMN axon length  

 

SpMN of hnrnpa1a-/-; hnrnpa1b-/- mutants were visualized as previously described for single 

KOs (see section 3.4.2.1). The SpMN axonal length was measured and quantification 

revealed that hnrnpa1a-/-; hnrnpa1b-/- mutants have significantly shorter SpMN axons (see 
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Figure 3.25). However, no abnormal migration pattern or aberrant branching was observed in 

hnrnpa1a-/-; hnrnpa1b-/- mutants.  
 

 
 

Figure 3.25 - hnrnpa1a-/-; hnrnpa1b-/- mutants show impaired SpMN axon outgrowth. Examples of whole-

mount IF stainings of 30 hpf wildtype and hnrnpa1a-/-; hnrnpa1b-/- embryos stained with znp-1 antibody. The 

four SpMN axons anterior to the end of the yolk extension are shown. Images are taken with the spinning disk 

cell observer. Maximum intensity projection. Lateral view. Anterior to the left. Scale bar: 25 µm. A comparison 

of the SpMN axon lengths of wildtype (orange) and hnrnpa1a-/-; hnrnpa1b-/- mutants (red) at 30 hpf revealed 

reduced SpMN axon outgrowth in hnrnpa1a-/-; hnrnpa1b-/- mutants (**p(1)<0.001; ***p(2-4)<0.0001; n=16;. 

Error bar indicates S.E.M. Two-way ANOVA. Bonferroni post-test. 

3.5.2.2.3 hnrnpa1a-/-; hnrnpa1b-/- mutants show muscle defects 

 

Muscle integrity of hnrnpa1a-/-; hnrnpa1b-/- embryos was analyzed since muscle degeneration 

is a pathological hallmark of ALS [40]. Muscle fibers of hnrnpa1a-/-; hnrnpa1b-/- mutants 
 

 
 

Figure 3.26 - hnrnpa1a-/-; hnrnpa1b-/- mutants show morphological muscle defects A: Antibody staining of 

30 hpf wildtype and hnrnpa1a-/-; hnrnpa1b-/- mutants with the α-actinin specific antibody (green). B: Antibody 

staining of 30 hpf wildtype and hnrnpa1a-/-; hnrnpa1b-/- mutants with the myosin specific antibody ZE-BO-1F4 

(green). A and B: White arrow indicates areas that show loss of muscle integrity. Pictures taken by confocal 

laser-scanning microscopy using the 488 nm laser. Lateral view. Anterior to the left. Scale bar represents 25 µm. 
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were visualized as described in section 3.4.2.2. Loss of muscle integrity can be observed at 

30 hpf at variable sites of the trunk. Immunohistochemical analysis with the α-actinin 

antibody and the myosin specific antibody ZE-BO-1F4 shows defects in muscle integrity (see 

Figure 3.26). From the actin staining it becomes evident that the thin filaments in fast muscle 

fibers are disorganized. Likewise the thick muscle filaments in fast muscle fibers stained by 

the myosin specific antibody are disarrayed.  

3.5.2.2.4 hnrnpa1a-/-; hnrnpa1b-/- mutants have yolk extension and lipid uptake defects  

 

A prominent feature of the hnrnpa1a-/-; hnrnpa1b-/- mutants is the abnormally thinning yolk 

extension during development This phenotype becomes first detectable at 24 hpf as the yolk 
 

 
 

Figure 3.27 - hnrnpa1a-/-; hnrnpa1b-/- mutants have a thinned yolk extension. A: Images of wildtype (upper 

panel) and hnrnpa1a-/-; hnrnpa1b-/-  (lower panel) mutants at 24 hpf, 30 hpf, and 48 hpf. At 24 hpf hnrnpa1a-/-; 

hnrnpa1b-/- mutants can be hardly distinguished from their wildtype siblings apart from a small bulge in the yolk 

extension. After 30 hpf the yolk extension of hnrnpa1a-/-; hnrnpa1b-/- embryos starts to thin, which becomes 

more severe over time resulting in an severely reduced yolk extension after 48 hpf up to 72 hpf. Lateral view. 

Anterior to the left. Images were taken with Axio Scope A1. Scalebar represents 200 µm. B: Schematic 

illustration of the measured area of the yolk extension (indicated in red) at 30 hpf. C: Quantification of the two-

dimensional yolk extension area at 30 hpf shows significant reduction in yolk extension area in hnrnpa1a-/-; 

hnrnpa1b-/- mutants compared to wildtype. Student’s t-test (n=13; ***p<0.0001). Error bars indicate S.E.M. 
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extension shows a small bulge at the site where it connects to the yolk. Over time (30 hpf to 

48 hpf) the yolk extension becomes thinner until it is almost completely absent at 72 hpf (see 

Figure 3.27A). Quantification of two-dimensional area of the yolk extension (see Figure 

3.27B) revealed a significant reduction in size in 30 hpf hnrnpa1a-/-; hnrnpa1b-/- mutants (see 

Figure 3.27C). In order to assess a potential lipid phenotype in further detail ORO staining, 

which labels neutral lipids, was performed. Upon staining neutral fat distribution can be 

detected. ORO stain was detectable in the wildtype embryos in the yolk, the yolk extension, 

and the head. This lipid staining pattern correlates with previously reported ORO staining 

[215]. In contrast, in the hnrnpa1a-/-; hnrnpa1b-/- mutants strikingly lower levels of lipid were 

detected in the yolk extension. Additionally, more neutral lipid staining appeared to be 

present in the embryo`s body (see Figure 3.28).  

It can be concluded that loss of Hnrnpa1 leads to thinning of the yolk extension, which 

initiates at 24 hpf and becomes more severe during development. Also, neutral lipids are 

detected more prominently in the body compared to age matched wildtype embryos. 
 

 

 

 

 
 

Figure 3.28 - hnrnpa1a-/-; hnrnpa1b-/- mutants show altered neutral lipid distribution. ORO stained the head 

structures, the yolk, yolk extension and around the spinal cord. Reduced amounts of neutral lipids in the yolk 

extension are present in hnrnpa1a-/-; hnrnpa1b-/- mutants at 30 hpf. Additionally, hnrnpa1a-/-; hnrnpa1b-/- 

mutants show increased amounts of neutral lipid in the trunk (black arrow). Lateral view. Anterior to the left. 

Images were taken with Axio Scope A1 microscope. Scalebar represents 200 µm. 

3.5.2.2.5 hnrnpa1a-/-; hnrnpa1b-/- mutants show no alteration in pkma splicing 

 

The yolk sac extension thinning and the increased uptake of neutral lipids from the yolk 

extension to the zebrafish trunk point to misregulated metabolic pathways, such as fatty acid 

(FA) and amino acid metabolism. As a potential molecular candidate responsible for this 

phenotype we tested Pyruvate kinase muscle 2 (PKM2), which is a limiting glycolytic 

enzyme that catalyzes the final step in glycolysis. This protein is not only involved in tumor 
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metabolism and growth, which could explain the potential metabolic phenotype in hnrnpa1a-/-

; hnrnpa1b-/- mutants, but it was also previously shown that HNRNPA1 and HNRNPA2/B1 

bind and control PKM1 alternative splicing giving rise to PKM1 and PKM2 [216] [217].  

In human PKM1 is mainly expressed in adult tissues, while PKM2 is expressed in embryonic 

and adult tissues and is also enriched in many cancers . PKM1 is predominantly active and 

expressed in terminally differentiated tissues, which require a large supply of ATP. In 

contrast, PKM2 is expressed in proliferating cells, which have anabolic function. In zebrafish 

two isoforms exist, pkma202 and pkma201, which were identified to have high conservation 

in gene structure with human PKM1 and PKM2 isoforms, respectively [219]. The zebrafish 

pkma202 and pkma201 isoforms share the mutually exclusive exons 10 and 11 with the 

human PKM1 and PKM2, which have mutually exclusive exons 9 and 10 (see Figure 3.29A).  

Semiquantitative PCR was performed on hnrnpa1a-/-; hnrnpa1b-/- mutants and wildtype 

siblings to amplify pkma exon 202 and exon 203. No significant difference in expression of 

the two transcripts was detected upon Hnrnpa1 KO (see Figure 3.29B+C).  

 

 

 

Figure 3.29 - hnrnpa1a-/-; hnrnpa1b-/- mutants show no alteration in pkma splicing. A: Schematic illustration 

of alternative splicing pattern of pkma exon 202 (Primer pair: LJ-D03 + LJ-D04) and exon 203 (Primer pair: LJ-

D01 + LJ-D02) usage. B: Semiquantitative PCR products produced by exon 202 and exon 203 specific primer 

on cDNA of 30 hpf hnrnpa1a-/-; hnrnpa1b-/- mutants and wildtype siblings. C: pkma exon 202 inclusion was not 

changed in hnrnpa1a-/-; hnrnpa1b-/- mutants compared to their wildtype siblings (p>0.78, n=4). Student’s t-test. 

Error bars indicate S.E.M. Pools of 20 embryos of independent clutches at 30 hpf were used. 
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One can conclude that the mechanism whereby HNRNPA1 controls the splicing of PKM1 is 

not conserved in zebrafish as depletion of Hnrnpa1 does not have an effect on the alternative 

splicing of pkma exon 10 or 11 of in zebrafish.  

3.5.2.2.6 hnrnpa1a-/-; hnrnpa1b-/- mutants show increased cell death 

 

Death of the upper and lower motoneurons is the ultimate cause for muscle wasting, muscle 

weakness, and aberrant motor unit activity in ALS patients [40]. Given the shortened SpMN 

axon length, the muscle impairment, and the lethality of the hnrnpa1a-/-; hnrnpa1b-/- mutants, 

I assayed for cell death via the incorporation of the DNA intercalating dye Acridine Orange, 

which marks apoptotic and necrotic cells and serves as a marker to detect cell death in 

zebrafish in vivo [202]. The dye was applied at 30 hpf. The spinal cord was imaged and the 

Acridine Orange positive cells in this region were counted using Fiji. Quantification identified 

a significantly increased number of Acridine Orange stained cells in hnrnpa1a-/-, hnrnpa1b-/- 

mutants compared to wildtype (see Figure 3.30). 
 

 
 

Figure 3.30 - hnrnpa1a-/-; hnrnpa1b-/- mutants show increased cell death in the spinal cord. Images of 

wildtype and hnrnpa1a-/-; hnrnpa1b-/- mutants stained with Acridine Orange (green), which is taken up by 

apoptotic and necrotic cells (only part of the spinal cord is shown). Lateral view. Anterior to the left. Maximum 

intensity projection of stacks of ten 0.9 µm images. Images were taken with laser scanning confocal microscope 

using the 488 nm laser. Quantification of Acridine Orange positive cells within the spinal cord of wildtype and 

hnrnpa1a-/-; hnrnpa1b-/- mutants. Number of Acridine Orange positive cells is significantly increased in 

hnrnpa1a-/-; hnrnpa1b-/- mutants. Error bars indicate S.E.M; n=9 embryos per experiment; ***p<0.0001; 

Student’s-t-test. Scalebar represents 40 µm. 

It can be concluded that loss of Hnrnpa1 increases cell death in the spinal cord illustrated by 

an increased number of Acridine Orange stained cells. This provides further evidence for 

neuronal cell death, which could explain the shortened SpMN axons in the hnrnpa1a-/-; 

hnrnpa1b-/- mutants. Furthermore, the high levels of cell death may be the cause of the 

ultimate lethality of the hnrnpa1a-/-; hnrnpa1b-/- mutants. 
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3.5.2.2.7 hnrnpa1a-/-; hnrnpa1b-/- mutants show vascular mispatterning 

 

Some ALS patients were described to show signs of dysfunctional circulation effects like 

hypoperfusion [220] [221]. Moreover, tardbp-/-; tardbpl-/- mutants display vascular 

mispatterning. 

 
Figure 3.31 - hnrnpa1a-/-; hnrnpa1b-/- mutants show vascular outgrowth delay and mispatterning. 

Representative whole mount images of single wildtype and hnrnpa1a-/-; hnrnpa1b-/- mutants. The shown 

embryos are Tg(fli1a:EGFP) highlighting the vasculature. The area dorsal of the yolk sack extension is 

displayed. A: Schematic illustration of the assayed region (red box) B: At 30 hpf the hnrnpa1a-/-; hnrnpa1b-/- 

mutants display reduced length of intersomitic vessels compared to their wildtype siblings but the correct 

number of sprouts is formed. Scale bar represents 25 µm. Anterior to the left. Lateral view. Maximum intensity 

projection. Images were taken with cell observer spinning disc microscope C: At 46 hpf the hnrnpa1a-/-; 

hnrnpa1b-/- mutants display vascular mis-patterning reflected by intersomitic vessels that are misconnected 

(white arrow) or ISVs that are still unconnected (black arrow). Scale bar represents 25 µm. Anterior to the left. 

Lateral view. Maximum intensity projection. Images were taken by confocal laser scanning microscopy. D: 

Quantification of the number of sprouts that have formed per somite at 30 hpf in wildtype and hnrnpa1a-/-; 

hnrnpa1b-/- mutants. No difference in sprout number was observed. No statistical analysis was performed as 

always one sprout formed per somite in all analyzed embryos.  
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I therefore investigated vessel morphology in hnrnpa1a-/-; hnrnpa1b-/- mutants by crossing 

them to the transgenic line Tg(fli1a:EGFP). In this line the blood vessels are visible as the line 

expresses GFP under the control of the blood vessel specific promoter fli1a [194]. hnrnpa1a-/-

; hnrnpa1b-/- mutants and their wildtype siblings were PFA fixed to keep the analysis time 

points among the embryos as similar as possible, and imaged at 30 hpf and 46 hpf. In contrast 

to tardbp-/-; tardbpl-/- mutants, hnrnpa1a-/-; hnrnpa1b-/- mutants form the correct number of 

sprouts per somite (see Figure 3.31D). However, growing sprouts extend lateral lamellipodia, 

which correctly form a lumen and expand, and are developmentally delayed resulting in 

reduced length of intersomitic vessels (ISV) compared to wildtype at 30 hpf (see Figure 

3.31B). The growing sprouts occasionally fail to connect with their neighboring sprouts or 

misconnect to other sprouts (see Figure 3.31B+C). To better follow the vasculature 

development, age matched embryos obtained from a hnrnpa1a-/-; hnrnpa1b+/- incross were 

recorded in a movie for 20 h starting at 24 hpf and were afterwards genotyped. The movie 

showed that endothelial sprouts follow their physiological path, but that this process is 

delayed, which becomes evident already at the beginning of the recording (24 hpf). 

Ultimately, the endothelial sprouts divert their physiological path and fail to connect or 

misconnect.  

In summary, hnrnpa1a-/-; hnrnpa1b-/- mutants and tardbp-/-; tardbpl-/- mutants have distinct 

vascular mispatterning defects in early development. They share the vascular defect of 

mislead lamellipodia that ultimately misconnect or stay unconnected. However, the vascular 

phenotype is more severe in tardbp-/-; tardbpl-/- mutants with the additional defect of 

increased endothelial sprouting from the dorsal aorta at the very early event of sprout 

formation.  

3.5.2.2.8 hnrnpa1a-/-; hnrnpa1b-/-  and tardbp-/-; tardbpl-/- mutants show significantly 

increased levels of fn1b 

 

It was previously shown that vascular defects, represented by hypersprouting, in tardbp-/-; 

tardbpl-/- mutants arise from increased levels of the extracellular matrix protein fibronectin1b 

(fn1b). FN1A and Vascular cell adhesion molecule 1 (VCAM1) signal through the 

INTEGRIN ALPHA4 4 (ITGA4) receptor. Genes for these three proteins were identified to 

be highly upregulated upon TDP-43 KD in Human umbilical vein endothelial cells (HUVEC) 

[222]. I therefore tested whether a member of this ligand-receptor complex is also responsible 

for the vascular defects observed in hnrnpa1a-/-, hnrnpa1b-/- mutants. To address changes in 
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mRNA levels of these genes I performed qRT-PCR on hnrnpa1a-/-, hnrnpa1b-/- mutants using 

fn1a, fn1b, itga4, or vcam1 specific primer pairs.  

 

 
Figure 3.32 - mRNA expression of fn1b is increased in hnrnpa1a-/-; hnrnpa1b-/- mutants. Relative mRNA 

expression of fn1b (*p<0.04; n=4), but not fn1a (p>0.06; n=4), itg4 (p>0.44; n=4), or vcam1 (p>0.79; n=4) is 

increased in hnrnpa1a-/-; hnrnpa1b-/- embryos (red) compared to their wildtype siblings (orange). n=4 pools of 

embryos of independent clutches at 30 hpf, Student’s t-test. Results by qRT-PCR were reproduced twice using 

the same cDNA. Error bars indicate S.E.M. 

While fn1a, itga4 and vcam1 mRNA levels are not significantly changed in hnrnpa1a-/- and 

hnrnpa1b-/- mutants, fn1b levels are significantly upregulated (see Figure 3.32). The same 

result was previously obtained in tardbp-/-; tardbpl-/- mutants [222]. It can be concluded that 

Hnrnpa1 and Tdp-43 both control fn1b mRNA levels and loss of Tdp-43 or Hnrnpa1 leads to 

increased fn1b mRNA levels.  

3.5.2.3 Differentially expressed genes and proteins in hnrnpa1a-/-; hnrnpa1b-/- mutants 
 

In order to identify differentially expressed genes and proteins upon Hnrnpa1 deficiency, 

which potentially lead to the observed phenotype in hnrnpa1a-/-; hnrnpa1b-/- mutants, two 

unbiased approaches were chosen. As hnrnpa1a-/-; hnrnpa1b-/- mutants are not viable, 30 hpf 

old embryos were used for NGS and proteomic analysis. The mutant embryos were selected 

according to the criteria described in section 3.5.2.2. 

3.5.2.3.1 Differentially expressed RNAs of hnrnpa1a-/-; hnrnpa1b-/- mutants 

 

NGS (total RNA, transcriptome sequencing, paired end, 35 Million reads/sample) revealed 

615 differentially expressed genes of an adjusted p-value smaller than 0.01 and an up- or 

downregulated fold change greater than one. 235 of these genes were upregulated and 282 

were downregulated. Genes of a p-value smaller than 0.001 and with a more than 2 fold 
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change in expression were analyzed in further detail. Functional annotation clustering using 

the annotation tool DAVID (david.ncifcrf.gov/home.jsp) revealed that many of the total 517 

differentially expressed genes are involved in “cell cycle”, “p53 signaling”, “FoxO 

signaling”, or “Notch signaling” (see Figure 3.33).  

 

Gene Ensembl ID 
Human 

Orthologue 

log2fold 

change 
p-adjusted 

BX323459.3 ENSDARG00000115555 n.a. 6.10 2,28E-06 

drd6b ENSDARG00000040765 n.a. 5.26 1,07E-04 

isg15 ENSDARG00000086374 ISG15 4.58 1,08E-12 

cdkn2a/b ENSDARG00000037262 CDKN2A 4.53 5,91E-23 

ifit8 ENSDARG00000057173 IFIT3 4.37 3,21E-13 

btr07 ENSDARG00000105558 n.a. 4.33 4,50E-06 

cacna2d4b ENSDARG00000023886 CANA2D4 4.32 6,03E-19 

si:dkey-

145c18.3 
ENSDARG00000078738 NAMPT 4.06 5,74E-14 

CT583625.5 ENSDARG00000110288 n.a. 3.98 5,74E-05 

si:ch211-

132b12.8 
ENSDARG00000055250 CNTD2 3.72 8,42E-15 

 

si:ch211-

256m1.8 
ENSDARG00000055172 n.a. -3.74 4.06E-18 

lctla ENSDARG00000036139 LCTL -3.21 1.64E-10 

apoda.1 ENSDARG00000060345 APOD -3.16 2.24E-15 

defbl1 ENSDARG00000075161 n.a. -3.15 9.75E-11 

crygm2d15 ENSDARG00000069826 n.a. -3.11 1.40E-04 

crygm2d2 ENSDARG00000086917 CRYGD -2.98 3.25E-05 

crygm2d16 ENSDARG00000076790 n.a. -2.97 2.61E-06 

cyb561a3b ENSDARG00000028257 CYB561A3 -2.77 6.17E-10 

cryaa ENSDARG00000053502 CRYAA -2.66 4.34E-15 

cpa5 ENSDARG00000021339 CPA1 -2.62 2.40E-04 
Table 3.8 - Top 10 differentially expressed genes and the respective human orthologues in hnrnpa1a-/-; 

hnrnpa1b-/- mutants 
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Figure 3.33 – Top affected pathways based on RNA sequencing in hnrnpa1a-/-; hnrnpa1b-/- mutants. The 

numbers represent gene numbers involved in the process. 

The top genes with interesting function and potential disease relevance were analyzed by 

qRT-PCR to confirm differential gene expression in hnrnpa1a-/-; hnrnpa1b-/- mutants. 

Decreased expression of apoda.1 (~6 % remaining apoda.1) and glycoprotein nonmetastatic 

melanoma b (gpnmb) was verified by qRT-PCR, while increased expression of nampt could 

not be reproduced by qRT-PCR (see Figure 3.34). gpnmb encodes Gpnmb ,which is a type I 

transmembrane protein and is involved in a variety of processes including osteoplast 

differentiation and function, and regulation of autoimmune responses [223]. GPNMB was 

shown to exert a neuroprotective role and was linked to ALS due to its higher expression 

levels in sporadic ALS patients [224]. 
 

 

  
 
Figure 3.34 - mRNA expression of apoda.1 and gpnmb is decreased in hnrnpa1a-/-; hnrnpa1b-/- mutants. 

Relative mRNA expression of apoda.1 (***p<0.0001) and gpnmb (***p<0.0001), is decreased in hnrnpa1a-/-, 

hnrnpa1b-/- mutants (red) compared to their wildtype siblings (orange) while nampt (p>0.83) expression is not 

changed. n=4 pools of embryos of independent clutches at 30 hpf, Student’s t-test. Results by qRT-PCR were 

reproduced twice using the same cDNA. Error bars indicate S.E.M. 
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The expression of genes linked to ALS and/or FTD were only mildly changed in hnrnpa1a-/-, 

hnrnpa1b-/- mutants and were mostly not significant (see Table 3.9). grn2 shows the largest 

change with a 4.23 fold decrease, which is though not significant. fus and ccnf show 

significant changes, though with a small fold change of approximately 0.7. 

 

Gene Ensembl ID log2 fold change p-adjusted 

c9orf72 ENSDARG00000011837 0.32 0.21 

ccnf ENSDARG00000105046 -0.71 5.12E-5 

ewsr1a ENSDARG00000113252 n.a. n.a. 

ewsr1b ENSDARG00000117011 -0.53 0.35 
grn1 ENSDARG00000089362 -0.31 0.88 

grn2 ENSDARG00000088641 -4.23 0.69 

fus ENSDARG00000037968 -0.78 5.96E-9 

sod1 ENSDARG00000043848 -0.30 0.08 

taf15 ENSDARG00000070019 -0.33 0.015 
tardbp ENSDARG00000040031 -0.24 0.09 

tardbpl ENSDARG00000004452 -0.40 0.82 

tia ENSDARG00000052536 -0.46 0.01 

vapb ENSDARG00000070435 0.07 0.78 

vcp ENSDARG00000020008 0.13 0.50 
Table 3.9 - Expression of ALS and/or FTD related genes in hnrnpa1a-/-; hnrnpa1b-/- mutants. 

 

3.5.2.3.2 Expression of the cell cycle regulators cdk1a, cdk2a/b, gadd45, p53, and rbl2 is 

increased in hnrnpa1a-/-; hnrnpa1b-/- mutants 

 

RNA sequencing hits involved in cell cycle were reanalyzed by qRT-PCR. As depicted in 

Figure 3.35 the levels of cdkn1a, cdkn2a/b, gadd45, p53 and rbl2, but not ccne1, were 

significantly increased in hnrnpa1a-/-; hnrnpa1b-/- mutants compared to their wildtype 

siblings. It can be concluded that the majority of genes, which were found by RNA 

sequencing to be differentially expressed in hnrnpa1a-/-; hnrnpa1b-/- mutants and are involved 

in cell cycle are upregulated. This finding makes it highly possible that cell cycle alterations 

contribute to the observed phenotypic abnormalities in hnrnpa1a-/-; hnrnpa1b-/- mutants. 
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Figure 3.35 - mRNA expression of cdkn1a, cdkn2a/b, gadd45, p53, and rbl2 is increased in hnrnpa1a-/-; 

hnrnpa1b-/- mutants. Relative mRNA expression of cdkn1a (**p<0.004), cdkn2a/b (***p<0.0004), gadd45 

(**p<0.005), p53 (***p<0.0003), and rbl2 (***p<0.0007) but not ccne (p>0.40) is increased in hnrnpa1a-/-, 

hnrnpa1b-/- embryos (red) compared to their wildtype siblings (orange). n=4 pools of embryos of independent 

clutches at 30 hpf. Student’s-t-test. Results by qRT-PCR were reproduced twice using the same cDNA. Error 

bars indicate S.E.M. 

3.5.2.3.3 Splice analysis of hnrnpa1a-/-; hnrnpa1b-/- mutants  

 

A list of interesting potential splice targets of HNRNPA1 was analyzed for changes in 

splicing pattern in hnrnpa1a-/-; hnrnpa1b-/- mutants. The splice analysis was performed by 

Özge Pelin, a PhD student from our group. No splicing differences were detected in cell cycle 

related genes, such as ccne1, ccne2, or cdk2. Also, splicing of apod.a1, fn1b or pkma was not 

affected in hnrnpa1a-/-, hnrnpa1b-/- mutants (data not shown). While the splicing of tardbp 

was not affected, tardbpl was differentially spliced upon Hnrnpa1 KO. The analysis further 

revealed that one of the alternative 3’UTR of apoeb shows significantly higher expression 

levels in hnrnpa1a-/-; hnrnpa1b-/- embryos leading to higher usage of a longer 3’UTR version 

(personal communication with Özge Pelin). Interestingly, HNRNPA1 KO was previously 

shown to regulate Apolipoprotein E (APOE) promoter activity, which is important in the 

development of AD [142].  

3.5.2.4 Differentially expressed proteins of hnrnpa1a-/-; hnrnpa1b-/- mutants 

 

To identify altered protein expression in hnrnpa1a-/-; hnrnpa1b-/- mutants quantitative mass 

spectrometry was performed. Due to the richness of yolk proteins, which may mask detection 

of other proteins at this early stage, the yolk was manually removed from the embryos. 
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Protein NCBI accession log2 fold change p-value 

vitellogenin 4 precursor NP_001038759 1.75 7.69E-3 

vitellogenin 1 precursor NP_001038362 1.54 3.18E-3 

retinoic acid receptor 

RXR-beta-A isoform X9 
XP_009292301 0.65 4.00E-3 

ADP-ribosylation 

factor-like protein 3 

isoform 2 

NP_001017827 0.58 5.75E-3 

tumor necrosis factor 

receptor type 1-

associated DEATH 

domain protein 

NP_571682 0.56 7.86E-3 

serine/threonine-protein 

kinase tousled-like 1 

isoform X1 

XP_009302714 0.54 9.99E-3 

putative RNA-binding 

protein 15 
XP_001335820 0.53 5.53E-3 

N-lysine 

methyltransferase 

SMYD2-A 

NP_001013568 0.46 9.57E-3 

tumor protein D52 NP_001038486 0.41 4.65E-3 

S-formylglutathione 

hydrolase 
NP_001017796 0.41 6.59E-3 

 

heterogeneous nuclear 

ribonucleoprotein A1 

isoform X3 

XP_021335236.1 -6.16 6.88E-7 

hemoglobin embryonic 

subunit alpha 
XP_001333555.1 -5.35 4.49E-6 

GTP cyclohydrolase 1 NP_571742.1 -3.37 4.26E-4 

immunoglobulin 

superfamily DCC 

subclass member 3-like 

XP_009292645.2 -5,94 1.15E-6 
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wu:fc46h12 precursor NP_001278276.1 -2,16 6.89E-3 

proliferation marker 

protein Ki-67 isoform 

X1 

XP_021335806.1 -2.09 8.18E-3 

hemoglobin beta 

embryonic-3 
NP_001015058.1 -2.57 2.67E-3 

lymphoid-specific 

helicase 
NP_001032178.1 -2.60 2.53E-3 

40S ribosomal protein 

S30 
NP_957031.1 -2.76 1.74E-3 

ribonucleoside-

diphosphate reductase 

subunit M2 

NP_571525.1 -4.72 1.90E-5 

Table 3.10 - Top 10 differentially expressed proteins in hnrnpa1a-/-; hnrnpa1b-/- mutants.  

Only those samples were considered for further analysis that had a minimum coverage of 

4.000 proteins and had less than 10% remaining Hnrnpa1a protein. The p-value cut off was 

set to p<0.05 and only those values were included for further analysis that had an upwards or 

downwards fold change greater than one. The remaining 240 proteins met these criteria and 

were analyzed using the annotation tool DAVID (david.ncifcrf.gov/home.jsp), which revealed 

that most of the differentially expressed proteins are involved in the “ribosome”,  

 

 
Figure 3.36 - Top affected pathways based on proteomics in hnrnpa1a-/-; hnrnpa1b-/- mutants. The numbers 

represent protein numbers involved in the process. 

“spliceosome”, “cell cycle”, or “purine metabolism” pathway (see Figure 3.36). Even though 

these top pathways highly overlap with those found by RNA sequencing, the comparison with 
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the RNA sequencing data revealed little overlap of the most significant targets, most likely 

because the top RNA sequencing hits were below protein detection level. 

3.5.2.5 hnrnpa1a-/-; hnrnpa1b-/- mutants show no altered Pcna levels or distribution 

pattern 

 

Several lines of evidence point to cell cycle misregulation in the G1 to S-phase transition in 

hnrnpa1a-/-; hnrnpa1b-/- mutants. First, The RNA sequencing revealed the cell cycle as the 

most affected pathway in hnrnpa1a-/-; hnrnpa1b-/- mutants. I could further verify upregulation 

of the G1/S-phase related genes cdkn1a, cdkn2a/b, gadd45, p53, and rbl2 by qRT-PCR. 

Second, the proteome analysis of hnrnpa1a-/-; hnrnpa1b-/- mutants revealed cell cycle as one 

of the main affected pathways. Third, a previous study identified cell cycle S-phase as one of 

the top 10 affected processes upon Hnrnpa1 KO in mice [162]. To address cell cycle 

progression the protein levels and distribution pattern of Pcna in hnrnpa1a-/-; hnrnpa1b-/- 

mutants was investigated. PCNA is an evolutionary well-conserved protein, which is involved 

in many steps of cell division, such as processivity of DNA polymerase, chromatin 

remodeling, DNA replication control, and DNA repair. Furthermore, expression of the PCNA 

gene correlates with cell proliferation [225] [226] [227]. A decrease in Pcna in zebrafish 

mutants would thereby be an indicator of reduced cell proliferation [228]. Western blotting 

with a Pcna specific antibody on hnrnpa1a-/-; hnrnpa1b-/- mutants revealed unchanged Pcna 

protein levels compared to wildtype (see Figure 3.37A). Moreover, PCNA staining is suitable 

to discriminate the cell cycle stages G1 and S-phase. During G1-phase PCNA is equally 

distributed over the whole nucleus. In S-phase PCNA accumulates to small, equally 

distributed foci, which are located at the nuclear periphery or the center of the nuclei 

depending whether it is mid S-phase or late S-phase, respectively [229]. Upon whole mount 

staining of 30 hpf hnrnpa1a-/-; hnrnpa1b-/- mutants with Pcna, the embryos were imaged with 

the cell observer spinning disc microscope. The different Pcna staining patterns revealing the 

cell cycle stage (G1 and S-phase) of the specific cells are visible. There was no difference 

detected in cells undergoing G1 or S-phase between hnrnpa1a-/-; hnrnpa1b-/- mutants and 

wildtype (see Figure 3.37C).  

It can be concluded that Pcna protein levels are not changed upon Hnrnpa1 KO. Moreover, 

loss of Hnrnpa1 does not seem to alter the number of cells undergoing G1 or S-phase. 
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Figure 3.37 - hnrnpa1a-/-; hnrnpa1b-/- mutants show no change in Pcna levels or distribution pattern. A: 
Immunoblotting of Pcna on hnrnpa1a-/-; hnrnpa1b-/- mutants and wildtype embryos. Tubulin served as a loading 
control.  B: Quantification revealed no significant differences in Pcna levels among hnrnpa1a-/-; hnrnpa1b-/- 

mutants and wildtype embryos (p>0.20; n=8). Student’s t-test. Error bars indicate S.E.M. C: Pcna whole mount 
staining in wildtype and hnrnpa1a-/-; hnrnpa1b-/- mutants. In the enlarged view the cell stage can be detected by 
the Pcna pattern. Equally grey stained cells undergo G1-phase (white arrowhead) and cells with white punctae 
are in S-phase (black arrowhead). Lateral view of the tail. Anterior to the left. Scalebar represents 50 µm. Images 
were taken by cell observer spinning disc microscope using the 488 nm laser. 
 

3.5.2.6 Hnrnpa1 KO vs. Tdp-43 KO 
 

TDP-43 and HNRNPA1 belong to the HNRNP protein family, share similar protein structure, 

and mutations in these proteins were associated with ALS. Interestingly, the phenotype of 

hnrnpa1a-/-; hnrnpa1b-/- mutants is quite similar at first to that observed in tardbp-/-, tardbpl-/- 

mutant embryos. [12]. I therefore asked myself whether loss of function of these proteins in 

zebrafish causes similar phenotypes and overlapping molecular signatures.  

3.5.2.6.1 Phenotype analysis  

 

tardbp-/-; tardbpl-/- and hnrnpa1a-/-; hnrnpa1b-/- mutants share some phenotypic overlap, such 

as lethality, development of heart edema, shortened SpMN axons, muscle defects, and 

vascular development defects [12] [222]. However, the vascular phenotype shows distinct 

characteristics in the two mutants. hnrnpa1a-/-; hnrnpa1b-/- mutants develop lateral 

lamellopodia, diverting from their physiological migration path and misconnect, whereas 

ectopic sprouting from the dorsal aorta is characteristic for tardbp-/-; tardbpl-/- mutants. 
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Moreover, hnrnpa1a-/-; hnrnpa1b-/- mutants show a thinned yolk extension (see Figure 3.27), 

increased lipid uptake from the yolk extension to the trunk (see Figure 3.28), a higher number 

of dying cells in the spinal cord (see Figure 3.30) and developmental delay (see Figure 3.24) - 

all features that were so far not specifically addressed in tardbp-/-; tardbpl-/- mutants.  
 

 

 
Figure 3.38 - tardbp-/-; tardbpl-/- mutants are not developmentally delayed, show no changed neutral lipid 
distribution or cell death. A: Representative images of 30 hpf old wildtype and tardbp-/-; tardbpl-/- mutants 
with head trunk angle measurement. Lateral view. Anterior to the left. Images taken by Axio Scope A1 
microscope. Scalebar represents 200 µm. B: Quantification of head trunk angle of 30 hpf old wildtype (88°) and 
tardbp-/-; tardbpl-/- (88°) embryos revealed no significant difference; n=8 embryos; p>0.91; Student’s-t-test. 
Error bars indicate S.E.M. C: Representative images of 30 hpf wildtype and tardbp-/-; tardbpl-/- mutants stained 
with ORO. Slightly increased neutral lipid uptake is observed in tardbp-/-; tardbpl-/- mutants (black arrow) 
Lateral view. Anterior to the left. Scalebar represents 200 µm. D: Quantification of the 2-dimensional yolk 
extension area of wildtype and tardbp-/-; tardbpl-/- mutants reveals no significant difference. n=10 embryos; 
p>0.41; Student’s-t-test. Error bars indicate S.E.M. E: Representative images of 30 hpf wildtype and tardbp-/-; 
tardbpl-/- mutants stained with Acridine Orange (green), which is taken up by apoptotic and necrotic cells (only 
part of the spinal cord is shown). Lateral view. Anterior to the left. Maximum intensity projection. Images were 
taken with laser scanning confocal microscope using the 488 nm laser. Scalebar represents 40 µm. F: 
Quantification of Acridine Orange positive cells is unchanged in tardbp-/-; tardbpl-/- mutants. n=5 embryos per 
experiment; p>0.54; Student’s-t-test. Error bars indicate S.E.M.  
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Assessment of the head trunk angle revealed no significant change pointing to no or very little 

developmental delay in tardbp-/-; tardbpl-/- mutants (see Figure 3.38A+B). Upon staining of 

tardbp-/-; tardbpl-/- mutants with ORO, it becomes evident that tardbp-/-; tardbpl-/- mutants do 

neither have a thinned yolk extension nor do they show highly augmented neutral lipid uptake 

from the yolk extension to the body as depicted in hnrnpa1a-/-; hnrnpa1b-/- embryos (see 

Figure 3.38C+D). The occurrence of cell death was addressed by staining 30 hpf tardbp-/-; 

tardbpl-/- mutants with Acridine Orange. No increase in Acridine Orange positive cells was 

observed in tardbp-/-; tardbpl-/- mutants (see Figure 3.38E+F). 

3.5.2.6.2 Comparison between RNA sequencing datasets from tardbp-/-; tardbpl-/- and 

hnrnpa1a-/-; hnrnpa1b-/- mutants 

 

In order to identify whether loss of Tdp-43 or Hnrnpa1 affect common downstream targets in 

zebrafish and to thereby determine whether they may act in similar pathways, I compared the 

RNA sequencing data obtained from hnrnpa1a-/-; hnrnpa1b-/- mutants to RNA sequencing 

data of tardbp-/-; tardbpl-/- mutants with bioinformatic help from Özge Pelin. The two data 

sets were analyzed in the same manner to allow for better comparison between the two data 

 

 
Figure 3.39 - Venn diagram showing shared and distinct differentially expressed genes upon Hnrnpa1 or 
Tdp-43 KO. 615 genes are differentially expressed in hnrnpa1a-/-; hnrnpa1b-/- mutants compared to their 
wildtype siblings. 56 genes are differentially expressed in tardbp-/-; tardbpl-/- mutants. 15 among these two data 
sets were found to overlap. p-value was adjusted to p<0.01. 

sets. The p-value was adjusted to 0.01 as the Tdp-43 dataset did not contain as many hits as 

the Hnrnpa1 data, and only those values were included that have an up- or downward fold 

change greater than one. With these settings 615 genes were differentially expressed in 

hnrnpa1a-/-; hnrnpa1b-/- mutants compared to wildtype. In tardbp-/-; tardbpl-/- mutants 56 

genes were differentially expressed compared to wildtype (see Figure 3.39). 15 genes were 
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changed in both datasets among which 8 genes were changed in the same direction (see Table 

3.11).  

 

 
Table 3.11 - Shared differentially expressed genes upon Hnrnpa1 or Tdp-43 KO. For explanation see text. 

 

3.6 KD of apoda.1 phenocopies the observed yolk extension thinning observed in 
hnrnpa1a-/-; hnrnpa1b-/- mutants in a dose-dependent manner 

 

apoda.1 was identified by RNA sequencing as one of the main downregulated genes in 

hnrnpa1a-/-; hnrnpa1b-/- mutants. One of the most striking phenotypes in hnrnpa1a-/-; 

hnrnpa1b-/- mutants is the thinned yolk extension and increased neutral lipid uptake, pointing 

to lipid metabolism defects. In order to test whether reduction in apoda.1 is involved in 

causing the lipid phenotype, I knocked down apoda.1 in AB wildtype fish using a splice site 

targeting MO as the KD efficiency can be easily assessed by PCR (see Figure 3.40A+B). 

Gene 

symbol 
Human gene 

log2 

foldchange 

hnrnpa1 

p-adj. 

hnrnpa1 

log2 fold 

change 

tardbp 

p-adj. 

tardbp 

Same 

direction 

ace AC113554.1 0,61 6,69E-06 -0,94 5,19E-04 no 

ankrd1a ANKRD1 0,69 4,54E-06 0,62 1,02E-4 yes 

chrng CHRNG -0,48 1,27E-04 1,16 5,29E-4 no 

ctgfa CTGF -2,50 1,16E-06 -0,61 2,18E-05 yes 

flnca FLNC 0,65 3,05E-07 1,92 3,44E-10 yes 

gli2b / 1,63 3,62E-07 -0,99 6,75E-10 no 

hspb11 / 1,03 7,16E-08 2,03 1,94E-22 yes 

mylpfb MYLPF 0,79 1,72E-05 1,02 7,74E-17 yes 

npr1a NPR2 -0,98 3,09E-04 1,18 2,64E-06 no 

plxnb3 PLXNB3 0,63 6,29E-07 1,01 5,46E-06 yes 

pvalb1 / 0,66 3,43E-04 1,12 9,77E-06 yes 

rnf44 RNF44 -4,32 3,67E-06 0,90 8,04E-05 no 

tcap TCAP -0,66 2,25E-05 1,24 4,33E-14 no 

wfikkn1 / 0,34 9,55E-3 -0,87 1,77E-03 no 

zmp:0000

001082 
ITGAX 0,62 1,08E-05 0,63 6,39E-04 yes 
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Binding of the apoda.1 MO leads to inclusion of intron 2 resulting in a longer RNA. This was 

verified by sequence analysis (data not shown) of the resulting higher band appearing in 

apoda.1 MO injected embryos at about 630 bp (see Figure 3.40B). Bands were cut, DNA  
 

 

 

 
Figure 3.40 – KD of apoda.1 mimics the yolk extension thinning observed in hnrnpa1a-/-; hnrnpa1b-/- 
mutants. A: Schematic illustration the four exons and three introns of apoda.1. Binding of the apoda.1 MO 
(indicated in red) leads to inclusion of intron 2 resulting in a longer RNA (see A). Primers used for amplification 
are indicated by black arrows. B: PCR products of cDNA from MO injected AB (+) embryos and uninjected 
siblings (-) shown in C. Injection of apoda.1 MO leads to appearance of a second, higher migrating band 
representing apoda.1 RNA with partial intron 2 inclusion. The lower band represents the normally spliced 
apoda.1 RNA. C: Images show the thinned yolk extension of AB embryos injected with 1 µM apoda.1 MO. 
Upper picture shows uninjected wildtype control with a normally developed roundish yolk extension. The 
middle picture shows an embryo with a mild phenotype showing little thinning of the yolk extension. The 
bottom picture shows an embryo with a severe phenotype characterized by a greatly thinned yolk extension. 
Lateral view. Anterior to the left. D: The two-dimensional yolk extension area is significantly reduced in 
embryos showing mild (n=11; ***p<0.0001) and severe (n=8; ***p<0.0001) thinning of the yolk extension 
caused by low and high KD levels of apoda.1, respectively. The analysis demonstrates that apoda.1 reduction 
phenocopies the yolk extension thinning observed in hnrnpa1a-/-; hnrnpa1b-/- mutants. Student’s t-test. Error 
bars indicate S.E.M. 
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purified and sent for sequencing, revealing a frameshift resulting from partial intron inclusion 

leading to a PTC at 79 aa. To quantify the phenocopy effect of apoda.1 KD in AB embryos, 

the average two-dimensional yolk area was measured at 30 hpf (see section 3.5.2.2.1). 

Strikingly, upon injection of the apoda.1 MO into wildtype embryos the majority of injected 

embryos showed a thinned yolk extension. Since the severity of this phenotype was variable 

among the injected embryos, embryos were divided into two classes (mild and severe) 

depending on the severity of the yolk extension thinning. Both groups showed a significantly 

smaller two-dimensional yolk extension area than wildtype embryos. Moreover, the 

efficiency of the MO KD correlates to the severity of the lipid phenotype (mild: 50% 

remaining apoda.1; severe: 25 % remaining apoda.1; see Figure 3.40 B+C+D).  

I conclude that reduction in apoda.1 phenocopies the lipid phenotype observed in hnrnpa1a-/-; 

hnrnpa1b-/- embryos in a dose dependent manner. This suggests that Apoda.1 reduction is 

causative for the lipid phenotype.  
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4 Discussion 

4.1 Evolution of HNRNPA proteins 
 

HNRNPA proteins are among the most abundant HNRNP proteins and are highly conserved 

across species [230]. In contrast to a single HNRNPA1 gene in mammals, two Hnrnpa1 

orthologues are present in zebrafish named Hnrnpa1 and Hnrnpa1b. The shared synteny of 

hnrnpa1a and hnrnpa1b with HNRNPA1 supports that these genes are orthologues. The 

presence of Hnrnpa1 and Hnrnpa1b can be explained by the TSD that lead to an additional 

round of WGD in zebrafish during evolution [231]. WGDs generates complexity by 

generating genes without preassigned essential function that can serve as genetic raw material 

for evolutionary innovation [232]. WGD-derived genes can undergo different fates: one of the 

duplicates may be lost (non-functionalization), both duplicates may acquire changes so that 

the ancestral gene’s function is shared by the duplicates (subfunctionalization), or one of the 

duplicated genes may acquire a new function (neofunction) [231]. These events are not 

mutually exclusive and each of them was observed in the past. Two questions arise in this 

context: First, whether Hnrnpa1a and Hnrnpa1b share common functions and second, which 

one of them better resembles Human HNRNPA1. Interestingly, no orthologue of HNRNPA2 

is described in zebrafish whereas it is found in lamprey and coelacanth. Since Hnrnpa1 is 

duplicated in zebrafish it is possible that Hnrnpa2 is lost due to functional redundancy [203] 

as it has been previously suggested that upon WGD many genes are deleted so that the gene 

content is only slightly increased [233]. Alternatively, Hnrnpa1a and/or Hnrnpa1b may have 

taken over HNRNPA2 functions. 

Regarding the first question whether Hnrnpa1a and Hnrnpa1b share common functions, the 

lab of J. Trimarchi shed more light on Hnrnpa1a and Hnrnpa1b function by studying their 

expression pattern in zebrafish. They found hnrnpa1a and hnrnpa1b to be expressed mainly 

in the head with a fainter expression in the trunk and in the retina at 2 dpf, 3 dpf and 4 dpf. 

hnrnpa1a showed ubiquitous expression in the head, while hnrnpa1b was only expressed in a 

subset of cells at these development stages. hnrnpa1a was slightly detected in the trunk at 

2 dpf and 3 dpf, while it was strongly expressed at 4 dpf. hnrnpa1b was absent at 2 dpf and 

was only faintly expressed in the trunk at 3 dpf and 4 dpf [234]. The in situ hybridization 

(ISH) expression pattern points to an important role of hnrnpa1a and hnrnpa1b in brain 

development [234]. The different temporal and spatial expression pattern of hnrnpa1a and
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 hnrnpa1b imply unique functions in zebrafish development, whereas the partial overlap in 

localization also suggests shared functions. The latter could speak in favor of compensatory 

mechanisms. Functional compensation is supported by the finding that Hnrnpa1b protein 

levels are significantly upregulated in hnrnpa1a-/- mutants. Correspondingly, hnrnpa1a 

mRNA levels were significantly upregulated in hnrnpa1b-/- mutants. These findings clearly 

show that Hnrnpa1a and Hnrnpa1b compensate for one another’s function by upregulating 

their protein or mRNA levels, respectively. Similarly, the Hnrnp family member tardbp 

shows compensational mechanisms by alternative splicing of tardbpl upon KO of its paralog 

tardbp [12]. Moreover, HNRNPA1 was shown to compensate for HNRNPA2/B1 function in 

mouse spinal cord, and HNRNPA2/B1 upregulation was observed upon HNRNPA1 loss of 

function in HeLa cells but not mice [235] [102] [162]. This could be because regulation of 

HNRNPA2/B1 upon HNRNPA1 may be much more complicated in an animal than a cell. It 

seems that in the mouse HNRNPA1 has a unique function that cannot be compensated by 

HNRNPA2/B1. The compensation among Hnrnpa1a and Hnrnpa1b observed in zebrafish 

presents a different scenario as these genes are both orthologues and are likely to both possess 

HNRNPA1 related function and/or acquired new ones. As zebrafish lack the Hnrnpa2 

orthologue compensation among Hnrnpa1 and Hnrnpa2 cannot be addressed. Furthermore, 

single hnrnpa1a-/- or hnrnpa1b-/- mutants lack any morphological abnormalities. More 

detailed analysis of ALS related phenotypes revealed neither a change in SpMN axon length 

nor muscle defects. Based on this finding it seems unlikely that one of these genes became 

nonfunctional as in this case the double KO would have been also phenotypically normal, but 

instead these mutants were embryonically lethal. We hypothesize that these genes became 

subject of subfunctionalization with each gene taking over essential functions in zebrafish 

development. The functions are though not fully complementary as in this scenario loss of 

either of them would result in a phenotype.  

In order to address the second question, which hnrnpa zebrafish orthologue is more closely 

realted to human HNRNPA1, sequence homology analysis using UniProt was performed and 

revealed a higher sequence homology of Hnrnpa1a and Hnrnpa1b to HNRNPA1-B, which is 

the minor isoform, than to HNRNPA1-A. Moreover, the full-length gene sequence of 

hnrnpa1a shows greater similarity with HNRNPA1-B than with hnrnpa1b. These findings 

imply that rather hnrnpa1a correlates with HNRNPA1 on a structural basis, while no 

conclusions on the functional relation can be drawn.  

Hnrnpa3 is highly identical to Human HNRNPA3 in its sequence and seems to be 

functionally more distinct from Hnrnpa1, based on the following observations. First, Hnrnpa3 
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RNA and protein levels in hnrnpa1a-/- and hnrnpa1b-/- single mutants are unchanged. Second, 

hnrnpa1a-/-; hnrnpa3-/- and hnrnpa1b-/-; hnrnpa3-/- double mutants were viable and did not 

show phenotypic abnormalities. Hnrnpa3’s sequence differs more from Hnrnpa1a and 

Hnrnpa1b than Hnrnpa1a and Hnrnpa1b to each other. The function of Hnrnpa3 is not well 

characterized in the literature. However, there is some evidence that points to a distinct 

function of HNRNPA3 compared to HNRNPA1 and HNRNPA2B1. He et al. showed that the 

levels of HNRNPA1 and HNRNPA2B1, but not HNRNPA3 are modulated during cell cycle 

in Colo16 squamous carcinoma cells, suggesting that HNRNPA1 and HNRNPA2B1 are 

required at specific stages of the cell cycle, while HNRNPA3 functions in a more generalized 

manner [236]. While no KO or KD animal was generated so far and no study did address 

compensation by HNRNPA3 upon loss of another HNRNP family member, the finding that 

Hnrnpa3 KO fish are viable but not Hnrnpa1 deficient zebrafish, gives further evidence that 

Hnrnpa3 is functionally distinct from Hnrnpa1.  

Taken together the expression pattern and sequence homology analysis shows that Hnrnpa1a 

and Hnrnpa1b have functional overlap while also having distinct roles. This suggests that 

subfunctionalization split the HNRNPA1 function to Hnrnpa1a and Hnrnpa1b. Hnrnpa1a and 

Hnrnpa1b have the greatest sequence similarity with the human minor form HNRNPA1-B. 

There is no HNRNPA2 homologue in zebrafish and only one HNRNPA3 homologue.  

4.2 What underlying mechanisms may cause the different phenotypes observed 
upon Hnrnpa1 KO or KD? 

 

KD studies are a powerful tool to study the physiological function of genes in zebrafish 

during development [237]. KD of hnrnpa1b by MO injection in zebrafish embryos was 

previously shown by Liu et al. to result in abnormalities of the dorsal axis and vessels, and 

development of heart edema. Upon usage of a higher MO concentration 77.7% of the 

hnrnpab1 MO injected embyos were lethal before 24 hpf [162]. In contrast, MO induced 

hnrnpa1b KD in zebrafish described by Cartealy et al. resulted in three different classes of 

phenotypes: (I) small and underdeveloped embryos, (II) kinked body and disorganized 

somites, and (III) lack of midbrain-hindbrain boundary. From the diversity of observed 

phenotypes upon KD of the same gene using two different MOs (one against the ATG, the 

other targeting the 5’UTR) a high level of discrepancy is observed. Contrasting these KD 

studies, the KO of Hnrnpa1a or Hnrnpa1b by CRISPR/Cas9 did not result in any 

developmental abnormalities. Discrepancies among the observed KD or KO phenotypes were 
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also previously observed for other genes [238]. In the following the potential underlying 

reasons for the observation of different phenotypes upon hnrnpa1b KD or KO are discussed. 

The usage of MOs to transiently KD genes has been highly criticized over the past years due 

to the high rate of divergent phenotypes upon KO of the same gene by genome editing. The 

high frequency of off-target effects makes it difficult to determine how much of an antisense 

mediated phenotype results from the KD of the actual gene of interest, and how much derives 

from the KD of other genes [237]. To validate MO specificity, Stanier et al. provided 

guidelines for the usage of MO in the generation of genetic KDs and recommended the 

following: Usage of multiple MOs, rescue experiments, control MOs, dose-response curves, 

comparison with existent mutant, loss of protein confirmation, and minimization of off-target 

effects. 

Both hnrnpa1b KD studies used a translation blocking MO by either targeting the ATG 

directly or the 5’UTR. The gold standard to address efficient MO KD is the usage of a 

specific antibody [237]. Both MO hnrnpa1b KD studies lack a verification of Hnrnpa1b 

protein loss by Western blot using an antibody that specifically recognizes the protein of 

interest. Cartealy et al. used the approach of coinjecting a plasmid containing GFP tagged to 

5’UTR including the target site of the MO and take the relative decrease in GFP signal as an 

indicator of the overall genetic MO KD efficiency [163]. This approach was determined to be 

of little value, as suppression of GFP expression was observed to be a general phenomenon 

[239]. Liu et al. performed qRT-PCR using hnrnpa1b specific primer to determine the 

hnrnpa1b MO KD efficiency and showed 50% reduction in hnrnpa1b mRNA [162]. To 

control for toxicity effects both studies used scrambled MO. However, none of the studies 

performed rescue experiments by which specificity of the MO could be determined.  

Another possible explanation for the phenotype in MO induced KD of hnrnpa1b could be the 

simultaneous translation blocking of maternal RNA, whereas mutants derived from a 

heterozygous hnrnpa1a or hnrnpa1b incross contain remaining maternal RNA. As incrosses 

from homozygous KO mutants gave healthy offspring the possibility that maternal 

contribution rescues the early phenotype can be ruled out for single Hnrnpa1a or Hnrnpa1b 

KOs. Moreover, a study by Carla Neugebauers lab states that translation blocking MO usage 

is not applicable. Due to the large maternal contribution of Hnrnpa1a and Hnrnpa1b protein 

the maternally deposited Hnrnpa1a or Hnrnpa1b protein may still be sufficient carry out 

essential functions preventing sufficient KD efficiency [214]. Another explanation for the 

existence of a phenotype in hnrnpa1b morphants are off target effects. Both studies lack 

thorough analysis using an unbiased approach or analyzing educated guesses due to sequence 
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similarity, to identify off target effects. Due to the high sequence similarity of hnrnpa1a and 

hnrnpa1b the MO directed to hnrnpa1b could target hnrnpa1a as well, blocking the 

translation of both genes and leading to generation of a double KD. To clarify KD specificity 

and uncover compensatory mechanisms, it would have been interesting to see whether 

hnrnpa1a levels are reduced upon KD of hnrnpa1b and whether the hnrnpa1b morphant 

phenotype can be observed upon hnrnpa1a KD. Lastly, we cannot rule out that the lack of 

compensatory upregulation of hnrnpa1a upon KD of hnrnpa1b (as seen in the KO) and vice 

versa might be causing the discrepancy seen in KD vs. KO.  

It can be concluded that zebrafish mutants provide several advantages over morphants, such 

as reduction of hitting off targets. Outcrossing can eliminate mutations introduced in other 

loci than the gene of interest. Furthermore, mutants possess complete long-lasting KO of a 

gene, compared to MO generated KD models, which are mostly only partial loss of function 

and restricted to the first days of development. Taken together the discrepancy among 

hnrnpa1b KD models and the lack of appropriate controls raises concerns about the 

specificity of the described MOs. The lack of any phenotypic abnormalities in the generated 

hnrnpa1a-/- and hnrnpa1b-/- mutants again confirms this. As hnrnpa1a and hnrnpa1b were 

targeted with two different gRNAs and several alleles were raised to homozygosity, which all 

lack a phenotype, this observation can be considered to be specific. 

4.3 Is there evidence for ALS associated phenotypes in hnrnpa1a-/-; hnrnpa1b-/- 

mutants? 
 
Having identified compensatory mechanisms among Hnrnpa1a and Hnrnpa1b but not 

Hnrnpa3, and having observed lethality only upon Hnrnpa1a and Hnrnpa1b double KO, we 

focused our further analysis on hnrnpa1a-/-; hnrnpa1b-/- mutants. Moreover, in contrast to 

HNRNPA3, HNRNPA1 was directly linked to ALS and MSP patients by mutations that are 

causative for these diseases. The identification of HNRNPA1 mutations and the associated 

HNRNPA1 cytoplasmic mislocalization in ALS and MSP patients suggest that animal models 

lacking HNRNPA1 might recapitulate ALS and MSP associated phenotypes, which I 

analyzed in the hnrnpa1a-/-; hnrnpa1b-/- mutants. ALS is defined by the degeneration of upper 

and lower motoneuron, ultimately leading to muscle degeneration [38] [40] [40]. In some 

cases ALS patients were described to show signs of dysfunctional circulation effects like 

hypoperfusion [220] [221]. Muscle integrity is hereby particularly relevant as MSP patients 

suffer from myopathies and HNRNPA1 KO mice show a prominent muscle phenotype [162].  
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4.3.1 hnrnpa1a-/-; hnrnpa1b-/- and  tardbp-/-, tardbpl-/- mutants show partially 

overlapping phenotypes  

 
The identified phenotypes, such as shortened motoneuron axons, muscle defects, and to a 

limited extend vasculature mispatterning in hnrnpa1a-/-; hnrnpa1b-/- mutants are similarly 

present in tardbp-/-; tardbpl-/- mutants [12] and suggest common underlying mechanisms upon 

loss of these proteins. Both proteins belong to the HNRNP family, have similar structure, and 

were shown to functionally and physically interact with one another to regulate RNA 

metabolism [240] [149] [150]. Also, HNRNPA1 and HNRNPA2/B1 MSP patients show 

nuclear clearance and cytoplasmic inclusions of TDP-43 in muscle tissue next to HNRNPA1 

or HNRNPA2/B1 pathology [101]. Therefore, we compared our Hnrnpa1 KO model to the 

previously established Tdp-43 KO zebrafish regarding their phenotypes and molecular 

signature. 

4.3.1.1 Shortened SpMN in hnrnpa1a-/-; hnrnpa1b-/- mutants 
 
The HNRNPA1 KO mouse was not analyzed for neurodegeneration phenotypes specifically. 

However, several findings suggest a role of HNRNPA1 in neuron development. The top 

affected process comparison based on differentially expressed genes between wildtype, 

homozygous and heterozygous HNRNPA1 KO mice revealed “developmental neurogenesis”, 

“axonal guidance”, “synaptogenesis”, “neurophysiological processes”, and 

“neurotransmission” among the top 10 affected pathways. Likewise, top 10 process network 

analysis based on alternative splicing genes of these mice revealed neurodevelopment specific 

pathways, such as “neurogenesis”, “neurohormone signaling”, “neuropeptide signaling”, and 

“axonal guidance” [162]. As HNRNPA1 has its highest expression levels in the mouse CNS, 

followed by the liver and placenta, HNRNPA1 seems to play a crucial role in neuronal 

processes. Likewise, a role for Hnrnpa1 in neurodevelopment in zebrafish is supported by the 

expression pattern analysis by J. Trimarchi, who found that hnrnpa1a and hnrnpa1b are 

mainly expressed in the zebrafish head. Also, Cartealy et al. previously showed that hnrnpa1b 

mRNA is mainly localized to the brain, the forebrain, midbrain, hindbrain, and spinal cord 

neurons at 24 hpf [163]. Moreover, hnrnpa1a-/-; hnrnpa1b-/- mutants show vascular 

mispatterning accompanied by reduced blood flow, which leads us to the assumption that 

cerebral blood flow is similarly dysregulated. This finding is in line with the observation that 

hypoperfusion is present in ALS patients and models, which correlates with disease severity 

[241] [242] [243]. 
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Our finding that hnrnpa1a-/-; hnrnpa1b-/- mutants have shortened SpMN can be explained by 

the previously identified role of Hnrnpa1 in neurodevelopment, which seems to be conserved 

among zebrafish and mice. It remains though elusive at this point what mechanism underlies 

the neuronal impairment. Alternatively, the developmental delay observed in hnrnpa1a-/-; 

hnrnpa1b-/- mutants could account for the reduced SpMN axon length.  

4.3.1.2 Loss of muscle integrity in hnrnpa1a-/-; hnrnpa1b-/- mutants 
 

HNRNPA1 heterozygous KO mice show muscle development defects, such as irregular 

tongue muscle, and diaphragm skeletal muscles with fibrous tissue infiltration. The muscle 

phenotype is further supported by global expression changes in genes related to muscle and 

an exon array study that identified muscle contraction as the second most affected process 

[162]. Moreover, alternative splicing pattern of muscle development-related genes was 

changed upon heterozygous KO of HNRNPA1 in mice. Likewise, hnrnpa1a-/-; hnrnpa1b-/- 

zebrafish mutants show muscle disintegrity at 30 hpf pointing to a conserved role of Hnrnpa1 

in muscle development. Altogether these findings point to a crucial role of HNRNPA1 in 

muscle development. An additional role of HNRNPA1 in muscle maintenance could 

contribute to muscle wasting later in life as observed in HNRNPA1 associated ALS patients 

due to loss of HNRNPA1 function. 

From the observed neuronal impairment and loss of muscle integrity upon Hnrnpa1 and Tdp-

43 KO paired with findings from previous studies, it seems plausible that these proteins play a 

vital role in neuronal and muscle development. Due to the drastic phenotype in both mutants 

leading to premature death after few days, these morphological abnormalities may though not 

be highly specific to Hnrnpa1 or Tdp-43 loss of function. The hnrnpa1a-/-; hnrnpa1b-/- 

mutants shows high levels of cell death in the spinal cord at the time analyzed, which is not 

present in tardbp-/-; tardpl-/- mutants. It is therefore difficult to say whether these 

developmental defects are a direct consequence of Hnrnpa1 loss of function or whether the 

apoptotic tissue environment disrupts the correct formation of muscles and neurons. 

Motoneuron shortening especially is a commonly observed phenotype upon KD of genes, and 

is in most cases accompanied by general atrophy in the developing embryo or a 

developmental delay due to toxicity [244] [245] [246] [247]. Our previous study in tardbp-/-; 

tardbpl-/- mutants linked these phenotypes to upregulation of Filamin C (FLNC), which codes 

for FLNC, an actin cross-linking protein that provides anchors for membrane proteins and 

structural components, has important signaling functions, and was linked to FTLD-TDP 

patients due to its upregulation in these patients’ brains [12] [248]. Strikingly, flnca 
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upregulation was likewise found in hnrnpa1a-/-; hnrnpa1b-/- mutants. The link between 

upregulated flnca upon TDP-43 or HNRNPA1 loss of function paired with Filamin C 

upregulation in ALS patients supports loss of function disease mechanisms and common 

pathomechanisms leading to HNRNPA1 and TDP-43 pathology. It will be relevant in the 

future to determine whether upregulated Filamin C levels are also found in HNRNPA1 

associated ALS/MSP cases. 

Concluding, Filamin C is a molecular link between Hnrnpa1 and Tdp-43 KO muscle 

phenotype and muscle deficits in ALS patients in line with a potential common 

pathomechanism.  

4.3.1.3 Vasculature abnormalities hnrnpa1a-/-; hnrnpa1b-/- mutants 
 
Vascular phenotypes were not investigated in HNRNPA1 KO mice, but the network analysis 

between wildtype and heterozygous or homozygous HNRNPA1 KO mice revealed regulation 

of angiogenesis and development of blood vessels among the top 10 affected processes. 

Moreover, recent research suggests a role of HNRNPA1 in vascular smooth muscle cell 

(VSMC) function by regulating VSMC-specific gene expression, proliferation, and migration 

[249]. Similarly, hnrnpa1a-/-; hnrnpa1b-/- mutants show vascular mispatterning with impaired 

and delayed sprouting starting at 30 hpf. A vascular phenotype is also present in tardbp-/-; 

tardbpl-/- mutants sharing certain commonalities and differences with hnrnpa1a-/-; hnrnpa1b-/- 

mutants. Both mutants show vasculature misspatterning displayed by supernumerous sprouts 

that leave their physiological path, and ultimately misconnect or stay unconnected. However, 

in hnrnpa1a-/-; hnrnpa1b-/- mutants this hypersprouting is restricted to the intersegmental 

vessels dorsal to the horizontal mypseptum and the correct number of one sprout from the 

dorsal aorta per somite ventral to the horizontal myoseptum is formed (see Figure 3.31D). In 

contrast, tardbp-/-; tardbpl-/- mutants grow approximately 1.5 sprouts per somite and 

hypersprout also ventral to the horizontal myoseptum [222]. Moreover, the intersegmental 

sprouts of hnrnpa1a-/-; hnrnpa1b-/- mutants that extend along their physiological path up to 

the horizontal myoseptum and form a lumen, while the sprouts of tardbp-/-; tardbpl-/- mutants 

hyperbranch already ventral to the horizontal myoseptum show a thinned lumen restricting 

constant blood flow.  

Sprouting blood vessels are formed by angiogenesis, a process that includes regulation of 

endothelial cells (EC) migration, proliferation, and adhesion. The leading cell senses stimuli 

that cause extension of one lamellipodium and several filopodia to the direction of migration. 

Thus, pro-angiogenic signaling cues have to be provided locally at the correct time and place 
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to ensure sprout growth along defined paths at distinct sites and developmental stages [250]. 

In hnrnpa1a-/-; hnrnpa1b-/- mutants the high level of cell death may disrupt this highly 

specialized signaling pattern. Also, vascular sprouting starts later in development than in 

wildtype embryos since the mutants are generally developmentally delayed.  

Concluding, the delay in vasculature formation and the mispatterning of ISV upon Hnrnpa1 

KO are in accordance with previous findings that suggest an essential role for Hnrnpa1 in 

vasculature development. As the observed phenotype may be additionally influenced by cell 

death and developmental delay that is present in these mutants, we cannot determine whether 

the vascular phenotype is a primary or secondary effect. Lastly, the vascular phenotype is for 

the most part distinct to that observed in Tdp-43 deficient embryos, suggesting distinct 

underlying mechanisms leading to vascular mispatterning. 

 

fn1b upregulation: a potential link to vasculature defects observed upon Hnrnpa1 or 
TDP-43 KO 
 
Endothelial hypersprouting in tardbp-/-; tardbpl-/- mutants was linked to upregulation of fn1b, 

vcam1 and itgα4/β1. Likewise, hnrnpa1a-/-; hnrnpa1b-/- mutants show increased fn1b levels 

potentially linking the commonalities of the vascular phenotype present in Hnrnpa1 and Tdp-

43 deficient embryos. Interestingly, vcam1 and itgα4/β were not upregulated in hnrnpa1a-/-; 

hnrnpa1b-/- mutants. FN1 is a high molecular weight glycoprotein of 250 kDa and is involved 

in cell adhesion, growth, and migration [251]. FN1 KO mice are embryonically lethal with 

heart defects in heart and blood vessel development, pointing to an essential role of FN1 

during embryonic development [252] [253] [254]. Zebrafish have two FN1 genes, fn1a and 

fn1b [255], which were both shown to be required for somite boundary formation and 

maintenance [256]. While having overlapping functions, loss of fn1a or fn1b function point to 

distinct roles during zebrafish embryo development. fn1a deficiency results in mild somite 

boundary defects in the anterior somites, whereas fn1b KD zebrafish show normal somite 

formation but tail extension defects and disruption of the regular somite morphology by the 

15-20 somite stage [257]. Correct formation of somite boundaries is particularly important 

during development [256]. Once the somites are formed, distinct areas of each somite are 

subregionalized in various tissues and cell types, which are important for bone, musculature, 

and nervous system development [258]. Any disruption of somite formation can hence result 

in anomalies affecting various tissues, such as vasculature or muscle. 

Upregulation of fn1b, vcam1 and itgα4/β1 in tardbp-/-; tardbpl-/- mutants was causative for the 

vasculature hypersprouting, and increased FN1 expression was detected deposited around 
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ectopically sprouting EC. The contribution of fn1b, vcam1 and itgα4/β1  to the phenotype 

could be further verified by a partial MO KD to wildtype levels in these mutants that were 

sufficient to rescue the phenotype. Moreover, FN1 was found among the top 30 bound 

transcripts by individual nucleotide resolution cross-linking immunoprecipitation-high-

throughput sequencing (iCLIPs) [259]. Prominent binding of TDP-43 to the entire RNA of 

FN1 suggests regulation of transcript stability or translation [260] [261]. It remains elusive 

how fn1b upregulation causes the vasculature mispatterning in hnrnpa1a-/-; hnrnpa1b-/- 

mutants as the phenotype is different than that observed in tardbp-/-; tardbpl-/- mutants, which 

additionally show hypersprouting ventral to the horizontal myoseptum. As Fn1b has a direct 

role in extracellular matrix (ECM) signalling and somite formation, Fn1b upregulation may 

contribute to common characteristics of the vascular phenotypes, such as hypersprouting 

dorsal to the horizontal myoseptum and mispatterning of ISV, in several ways. FN1 is 

secreted by EC, deposited in the ECM and functions in multiple aspects of EC behavior [262]. 

The ECM-EC interaction induces several signaling events, which are crucial for directed 

migration of EC during vascular development. Upon increased levels of fn1b the ECM-EC 

signaling may be impaired leading to impaired EC migration and sprout formation. 

Alternatively, somite boundaries, which are key for shaping the basic structure for later 

vasculature formation, may be disrupted due to FN1’s importance in somite formation. As a 

consequence growing sprouts lack their guidance, divert from their physiological path, and 

misconnect.  

It would be interesting to perform FN1 staining in these mutants as performed previously in 

tardpb-/-; tardbpl-/- mutants to detect Fn1 expression pattern and determine potential 

differences observed in Tdp-43 and Hnrnpa1 KO zebrafish that could explain the distinct 

vascular phenotypes with common increase in fn1b. Moreover, a MO rescue approach could 

be performed to identify whether reduced fn1b is sufficient to restore normal vasculature 

development also in hnrnpa1a-/-; hnrnpa1b-/- mutants. While no direct binding between FN1 

and HNRNPA1 was described yet, it is possible that these two proteins either directly or 

indirectly interact via TDP-43, as HNRNPA1 and TDP-43 are direct interaction partners 

[149]. Alternatively, the different vascular phenotypes may arise from secondary effects as 

both HNRNPA1 and TDP-43 have hundreds of targets that may influence vasculature 

development.  

One can conclude that Hnrnpa1 or Tdp-43 causes largely different vascular phenotypes but 

share the upregulation of fn1b, which could contribute to the few common aspects of the 

phenotype. 
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4.3.2 Shared genes that are differentially expressed genes in hnrnpa1a-/-; hnrnpa1b-/- 

mutants 

 

We wondered if besides fn1b and flnca there are more shared misregulated genes contributing 

to the partially overlapping phenotypes of hnrnpa1a-/-; hnrnpa1b-/- and tardpb-/-; tardbpl-/- 

mutants. We performed RNA sequencing of hnrnpa1a-/-; hnrnpa1b-/- mutants and compared 

the dataset to the previously obtained RNA sequencing dataset of tardpb-/-; tardbpl-/- mutants 

in order to identify potential overlap of differentially expressed genes upon KO of Hnrnpa1 or 

Tdp-43. The overlap analysis revealed 15 genes whose expression is changed in both datasets 

of which 8 genes are changed in the same direction. It has to be noted that RNA sequencing 

of hnrnpa1a-/-; hnrnpa1b-/- mutants revealed far more differentially expressed genes (615 in 

total) with a more than one fold change and a p-value<0.01 than RNA sequencing data 

obtained from tardpb-/-; tardbpl-/- mutants (56 in total). Interestingly, the majority of 

commonly differentially expressed genes encode proteins that are present in the ECM or 

encode membrane proteins pointing to overlapping differentially expressed genes related to 

structure. Other genes were related to muscle integrity, which links HNRNPA1 and TDP-43 

loss of function with the muscle phenotype observed upon their KO and muscle deficits in 

ALS patients.  

4.3.3 Regulation among Hnrnpas and Tdp-43 

 
The overlapping findings of shared phenotypes and common differentially expressed genes 

upon Hnrnpa1 or Tdp-43 deficiency, prompted us to investigate whether protein levels of any 

of the three Tdp-43 zebrafish paralogues are changed upon Hnrnpa KO. Upon single loss of 

Hnrnpa1a, Hnrnpa1b, or Hnrnpa3 no differences in Tardbp, Tardbpl or Tardbpl_tv1 protein 

levels were detected. Similar results were obtained in hnrnpa1a-/-; hnrnpa1b-/- mutants. Apart 

from TDP-43 and HNRNPA1 being well-known splicing factors that control the expression 

of many different target genes, and the finding that HNRNPA1 and TDP-43 control their own 

splicing and/or transcript levels in zebrafish [12], there is also evidence that they regulate the 

splicing of each other. It was previously shown that upon loss of nuclear TDP-43 the splicing 

pattern of HNRNPA1 is altered resulting in a longer and more aggregation prone HNRNPA1 

isoform, named HNRNPA1-B [150]. We could further determine that upon loss of Hnrnpa1, 

tardbpl is alternatively spliced leading to the integration of a longer exon 6 isoform, most 

probably functioning as an alternative 3’UTR, which plays a crucial role in transcript 

stability, control of gene expression, or nuclear export [263]. Differentially used 3`UTRs 
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upon Hnrnpa1 KO may therefore have widespread effects and contribute to disease 

pathogenesis. The finding needs further research to determine whether the alternative 3’ UTR 

usage is linked to increased expression of Tardbpl_tv1 or Tardbp protein. While the 

proteomic analysis revealed no difference in Tardbp or Tardbpl levels, the changes may be 

either too subtle to detect or be restricted to the Tardbpl_tv1 isoform, which was neither 

identified by mass spectrometry nor studied on Western blot. It will be of relevance to 

determine whether HNRNPA1 loss of function in ALS leads to such alterations in TDP-43 as 

it has been described vice versa.  

One can conclude that Hnrnpa1 and Tdp-43 control their own splicing/transcription, which 

results in compensatory mechanisms among the different paralogues. Moreover, Hnrnpa1 and 

Tdp-43 influence each other by controlling each other’s splicing and we could show here for 

the first time that loss of Hnrnpa1 has an effect on Tdp-43 splicing. 

 

 
 
Figure 4.1 - Schematic illustration of transcriptional and alternative splicing regulation between Hnrnpa1 

and Tdp-43. Hnrnpa1 (depicted in orange) has two different orthologues in zebrafish, Hnrnpa1a and Hnrnpa1b, 

that regulate each other on transcriptional level. Upon loss of Tardbp, Tardbpl is differentially spliced resulting 

in another transcript variant, tardbpl_tv1. Alternative splicing regulation among Hnrnpa1 and Tardbp in 

zebrafish and human could be also shown. Upon Loss of Hnrnpa1, tardbpl is differentially spliced resulting in 

expression of a variant possessing a longer exon 6, which likely resembles an alternative 3’UTR. Vice versa, 

upon TDP-43 depletion in human cells, HNRNPA1 is differentially spliced causing inclusion of exon 8 that 

results in higher levels of the HNRNPA1-B isoform. Red indicates transcriptional regulation. Turquoise 

indicates alternative splicing regulation. Dashed line represents findings from human samples.  

 

4.3.4 What causes the partial overlap in phenotype and differentially expressed genes 

upon Hnrnpa1 or Tdp-43 loss of function? 

 
HNRNPA1 and TDP-43 both belong to the HNRNP family, are nuclear shuttle proteins, and 

are ubiquitously expressed. The high degree of complexity among HNRNPs and their splicing 

targets results in some combinations of HNRNPs that exhibit significant synergy while others 
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act antagonistically [264]. While having many overlapping features regarding structure and 

function, certain characteristics are unique to HNRNPA1 and TDP-43, respectively. 

HNRNPA1 does not contain a classical nuclear localization signal (NLS) as TDP-43, but a 

specialized M9 domain and a PY-NLS like FUS [265]. RNA specificity is particularly 

determined by the terminal region of the RMM and the variable regions of the loops that give 

structure to the beta strands [266]. Also the binding motif preferences of HNRNPA1 and 

TDP-43 are different. While HNRNPA1 binds preferentially to AU-rich sequences with its 

most prominent binding motif being UUAGGG, TDP-43 binds to UG repeats [267]. The 

binding of TDP-43 mostly occurs in introns and 3`UTRs [268, 269], while HNRNPA1 

preferentially associates with exons and introns [270] [271]. Their binding in most cases leads 

to splicing repression, but no studies have compared the effect of HNRNPA1 or TDP-43 loss 

of function on their overall effect on their target genes to identify potential overlap and 

differences. While we could identify 15 commonly differentially upregulated genes upon 

Hnrnpa1 or Tdp-43 loss of function, it will be interesting to determine if and how these genes 

contribute to disease pathogenesis and whether some of these genes can be verified in other 

model systems to show conservation.  

It can be concluded that the majority of the underlying mechanisms upon Hnrnpa1 or Tdp-43 

deficiency are diverse while some overlap is present shown by some common differentially 

expressed genes.  

4.4 Could metabolic impairment be the underlying cause of premature death of 
hnrnpa1a-/-; hnrnpa1b-/- mutants 

 
The most striking phenotype in hnrnpa1a-/-; hnrnpa1b-/- mutants is the thinned yolk extension 

phenotype, which is not present in tardbp-/-; tardbpl-/- mutants and points to a specific 

phenotype upon Hnrnpa1 KO. Paired with the significant developmental delay we 

hypothesize metabolic deficits upon Hnrnpa1 KO.  

4.4.1 Developmental delay in hnrnpa1a-/-; hnrnpa1b-/- mutants 

 

Apart from being lethal after 5 dpf, hnrnpa1a-/-; hnrnpa1b-/- mutants are developmentally 

delayed. Likewise, HNRNPA1 KO mice are partially embryonically lethal, which was shown 

by a reduced number of homozygous HNRNPA1 KO mice after incrossing HNRNPA1 

heterozygous mice. Genotyping of E18.5 embryos showed that HNRNPA1 KO mice develop 

in the expected numbers but die before being born [162]. Early lethality of HNRNPA1 

deficient mice and zebrafish points to a crucial role of HNRNPA1 in early development. The 
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lab of Karla Neugebauer performed a detailed study on the role of Hnrnpa1 (Hnrnpa1a and 

Hnrnpa1b) in early developing zebrafish as it was found among other nuclear pre-mRNA 

processing factors to be highly enriched before zygotic genome activation (ZGA). As 

embryos are transcriptionally silent at the preZGA state an unconventional function of 

Hnrnpa1 during this phase was suggested. Hnrrnpa1 plays a role in RNA metabolism during 

embryogenesis as is regulates poly(A) tail length before ZGA through 3’ UTR binding and 

encourages translation of maternal transcripts [214]. Based on the finding of the Karla 

Neugebauer’s lab one can assume that upon loss of Hnrnpa1 translation of maternal 

transcripts is decreased, which may have widespread consequences on general protein 

synthesis. Given the dependence of early embryos on RNA-based regulation of gene 

expression, major roles for RBPs in developmental transitions are anticipated. RBPs are of 

critical importance to regulate every step of RNA metabolism through their association with 

RNA sequences [261] [272]. Despic et. al further reported a developmentally essential nuclear 

function of Hnrnpa1 at ZGA. Hnrnpa1 was found to bind basal, single-stranded segments of 

pri-miR-430a and thereby regulates miR-430 biogenesis [214]. miR-430 comprises an 

evolutionary conserved miRNA family, whose absence results in disrupted neural tube 

formation and brain morphogenesis [273] [274].  

It can be concluded that Hnrnpa1 plays a vital role already in very early development, 

especially before ZGA, which fits to our finding that hnrnpa1a-/-; hnrnpa1b-/- mutants are 

developmentally delayed and die at larval stage. It remains to be determined whether embryos 

become developmentally delayed and go down the detrimental path already before ZGA due 

to lack of transcription of maternal RNAs or after ZGA. Moreover, it is not clear which 

precise mechanism leads to developmental delay, but a previous study could show that 

developmental delay may arise from slowed down cell cycle [275]. It may be therefore 

interesting to assess cell cycle progression in these mutants. This model may be further used 

to better identify the role of Hnrnpa1 in preZGA state and to thereby elucidate how Hnrnpa1 

regulates poly(A) tail length and controls transcription.  

4.4.2 Alterations in pkma splicing do not cause metabolic defects in hnrnpa1a-/-; 

hnrnpa1b-/- mutants 

 
A potential molecular candidate that links HNRNPA1 loss of function and metabolic defects 

is PKM. The two isoforms, PKM1 and PKM2, are generated by alternative splicing of the 

primary RNA transcript of the PKM gene, by differential usage of exon 9 and 10, 

respectively. The non-allosteric isoform PKM1 is constitutively active, and expressed in 
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terminally differentiated tissues, including the muscle and the brain, which require a large 

supply of ATP. PKM2 is expressed in tissues with anabolic functions, including proliferating 

cells and cancer cells. The OE of PKM2 in cancer cells is controlled by the oncoprotein c-

Myc, which activates the transcription of HNRNPA1 and HNRNPA2/B1 [276]. Upon binding 

of these HNRNPA proteins to exon 9 of PKM1, the splicing of PKM1 mRNA is inhibited, 

which allows the synchronous expression of the PKM2 isoform [216] [217]. Upon loss of 

HNRNPA1 function splicing is no longer inhibited and less PKM2 is expressed. The effect of 

HNRNPA1 KD in HeLa cells was previously reported to result only in minor changes in 

PKM splicing pattern. In contrast, depletion of both HNRNPA1 and HNRNPA2/B1 resulted 

in an increase in PKM1 mRNA from 2% to 29%, and a concomitant decrease in PKM2 

mRNA [277]. PKM2 is a limiting glycolytic enzyme that catalyzes the final step in 

glycolysis, which is key in growth. Reduced expression of PKM2 due to loss of HNRNPA1 

could thereby explain the developmental delay observed in hnrnpa1a-/-; hrnnpa1b-/- mutants. 

In zebrafish two PKM orthologues exist: Pkma and Pkmb. Of these pkma is alternative 

spliced resulting in different isoforms of which pkma202 and pkma201 were identified to 

have a high conservation in gene structure and sequence with human PKM1 and PKM2 

isoforms, respectively [219]. 

We did not observe alternative splicing of pkma in zebrafish upon Hnrnpa1 KO, which 

indicates that this splice regulation is not conserved between human cells and zebrafish. The 

growth retardation seems therefore not result from changes in expression of pkma201 and 

pkma202. Interestingly, upon generation of a liver tumor zebrafish model the pkm2 isoform 

was found to be highly enriched and hnrnpa1 (no information available whether this refers to 

hnrnpa1a or hnrnpa1b or both) was greatly upregulated [219]. Discrepancies between these 

findings can be explained in several ways: potentially, loss of Hnrnpa1 function is not enough 

to induce increased pkm201 expression in zebrafish as only minor changes were observed in 

HeLa cells and the tumor zebrafish represents a quite aggressive model. Alternatively, gain 

and loss of Hnrnpa1 function might not simply have opposite function in zebrafish or pkma 

alternative splicing may highly depend on the developmental stage and may thus not occur at 

30 hpf. Furthermore, increased PKM2 expression was only observed in HeLa cells after 

depletion of both HNRNPA1 and HNRNPA2/B1. Since zebrafish lack an HNRNPA2/B1 

orthologue, other genes may be involved to control pkma splicing in zebrafish.  
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4.4.3 Identification of dysregulated candidate genes by NGS 

 
Having excluded expression alterations in the candidate gene pkma as being responsible for 

the impaired metabolism phenotype in hnrnpa1a-/-; hnrnpa1b-/- mutants, I aimed for an 

unbiased approach to identify differentially expressed genes involved in metabolism upon 

Hnrnpa1 KO. NGS revealed 615 differentially expressed genes with more than a two-fold 

change in differential expression and a p-value smaller than 0.01 in 30 hpf hnrnpa1a-/-; 

hnrnpa1b-/- mutants. The only other RNA sequencing data available for HNRNPA1 KO 

comes from a mouse study. The number of genes with altered expression upon HNRNPA1 

KO in mouse and zebrafish are quite different. While Liu et al. report 4355 upregulated genes 

and 4968 downregulated genes in HNRNPA1 KO mouse (foldchange>3; p-value<0.05), with 

the same settings only 121 genes were downregulated and 174 genes upregulated in 

hnrnpa1a-/-; hnrnpa1b-/- mutants. HNRNPA1 dependent regulation of specific mRNAs seems 

to vary in different tissues, organisms, and stages of development. While differentially 

expressed genes upon HNRNPA1 KO were analyzed from the mouse heart, for the analysis of 

zebrafish genes the whole embryos were taken. Moreover, the mouse study compared 

heterozygous HNRNPA1 KO mice to wildtype, while we compared hnrnpa1a-/-; hnrnpa1b-/- 

mutants to wildtype looking embryos, which are a mix of the genotypes of hnrnpa1a+/- and 

hnrnpa1a+/+. 

Functional annotation clustering revealed that the majority of the differentially expressed 

genes in zebrafish are involved in “cell cycle”, “p53 signaling pathway”, “FoXo signaling”, 

and “Notch signaling pathway”. As p53 signaling, FoXo signaling [278], and Notch signaling 

[279] all affect cell cycle progression, I focused on the cell cycle for further analysis.  

4.4.4 Could impaired cell cycle at G1/S-phase be responsible for the metabolic slow 

down in hnrnpa1a-/-; hnrnpa1b-/- mutants? 

 

RNA sequencing of hnrnpa1a-/-; hnrnpa1b-/- mutants revealed cell cycle as one of the most 

altered processes based on differentially expressed genes. The differentially expressed genes 

involved in cell cycle are ccne1, cdkn1a, cdkn2a/b, gadd45, p53, and rbl2. Their increased 

mRNA expression could be verified by qRT-PCR, with the exception of ccne1, which was 

found to be unchanged. Interestingly, genetic profiling studies of ALS patients and ALS 

animal models revealed gadd45, cdkn1a, and rb1 among the top upregulated genes, which 

were also detected in G86R SOD1 mice before symptom onset or motoneuron death [280] 

[281]. The corresponding proteins are all involved in G1/S-phase transmission pointing to 
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impairment of this specific cell cycle step upon Hnrnpa1 KO. Impairment of the cell cycle is 

further supported by the developmental delay and the increased cell death observed in 

hnrnpa1a-/-; hnrnpa1b-/- mutants. Moreover, additional lines of evidence support a role of 

Hnrnpa1 in cell cycle progression. First, Hnrnpa1 has been highly linked to cancer due to the 

finding of increased Hnrnpa1 levels in colorectal cancers and lymphoma [282]. Furthermore, 

one study reported cell cycle arrest at G2/M stage [158], while others showed cell cycle arrest 

at G0/G1 phase upon HNRNPA1 KD [146]. Even though current studies reveal non-

overlapping results, it can be agreed on that reduced HNRNPA1 levels are associated with 

low proliferating or resting cells [283].  

The G1/S transition is tightly controlled by the tumor suppressor protein RB and the E2F 

family of transcription factors. E2F family members bind cell cycle gene promoters and 

thereby control the temporal expression of genes required for the G1/S transition. 

Phosphorylated RB results in the release of the transcription factor E2F and the transcription 

of target genes. In contrast, unmodified RB binds to the E2F transcription factor preventing 

the transcription of target genes [284]. The RBL2/E2F2 is controlled by the p53 pathway. 

During G1/S-phase transition p53 levels are below the threshold that induces activation of 

Cdkn1a and Cdkn1b, which are potent inhibitors of the Ccne/Cdk2 complex. The active 

Ccne/Cdk2 complex phosphorylates Rbl2 upon which it dissociates from E2F2, which 

becomes free and shuttles into the cytoplasm where it binds promoters that initiate 

transcription of S-phase genes. Upon Hnrnpa1 KO, p53 levels are highly upregulated causing 

transcriptional enhancement of cdkn1a and cdkn2b, whose encoded proteins are active 

inhibitors of Cdk2. At the same time p53 directly regulates transcription of gadd45, which is a 

tumor suppressor gene, and induces upregulation that causes inhibition at G1/S-phase by 

interaction with Cdkn1a and Cdkn2b [285]. The inhibition of Cdk2 activity prevents 

phosphorylation of Rbl2 and hence dissociation of E2F2. As a result, E2F2 does not shuttle to 

the cytoplasm to initiate transcription of its target genes and the cell remains in G1 phase (see 

Figure 4.2) [286]. Reduced G1/S-phase transition can occur in response to several initiators, 

such as cellular stress or DNA damage.  

We addressed cell cycle progression of hnrnpa1a-/-; hnrnpa1b-/- mutants by analyzing the 

protein levels of Pcna, which was previously reported to label actively dividing cells, and did 

not observe any difference between hnrnpa1a-/-; hnrnpa1b-/- and wildtype looking siblings. 
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Figure 4.2 - Scheme illustrating the hypothetical cell cycle impairment in G1/S-phase transition in 
hnrnpa1a-/-; hnrnpa1b-/- mutants. For explanation see text.  
 

Likewise, Western blotting with a Pcna specific antibody was not substantially altered in the 

mutants. However, for the analysis of Pcna protein levels the whole embryo was taken. 

Therefore, lower levels of Pcna in a specific region that may be affected by reduced 

proliferation could be masked by other region showing greater proliferation. The changes in 

cell proliferation may also be below detection limit and small changes in the size of the 

analyzed embryos may cover subtle changes in Pcna protein levels. The staining pattern of 

Pcna is not clear, as many cells cannot be assorted to a specific cell cycle phase according to 

their staining. Quantification of cells undergoing a specific cell cycle phase is therefore not 

possible and no conclusion can be drawn whether more cells remained in G1 phase upon 
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Hnrnpa1 KO. For a more detailed and clear analysis, the transgenic Dual Fucci zebrafish 

carrying reporters that permit in vivo imaging of the cell cycle by labeling each cell cycle 

stage at a different fluorescence would be a more suitable model [287]. The finding of 

differentially expressed cell cycle associated genes upon Hnrnpa1 loss of function suggest a 

crucial role of Hnrnpa1 in controlling important mediators of the cell cycle, which is 

particularly important during development. However, functional impairment of the cell cycle 

in hnrnpa1a-/-; hnrnpa1b-/- mutants could not be directly shown and would require further 

crossings to a transgenic reporter fish. The upregulation of some genes in cell cycle control 

upon Hnrnpa1 KO can also promote apoptotic pathways, which also plays an important role 

during normal development. It remains to be determined whether p53 activation is a direct 

effect of Hnrnpa1 loss of function. As a follow up one could examine when p53 activation 

starts by measuring p53 RNA levels throughout embryo development at various time points 

earlier than the currently selected 30 hpf. Moreover, it would be interesting to examine if the 

expression of p53 and its target genes is localized to specific regions in the hnrnpa1a-/-; 

hnrnpa1b-/- mutants by performing an ISH and if MO mediated KO of p53 rescues the 

developmental delay or apoptosis.  

4.4.5 Lipid metabolism defects in hnrnpa1a-/-; hnrnpa1b-/- mutants 

 
While we could not pinpoint cell cycle defects to the observed metabolic deficits we aimed 

for other pathways that may be altered and ultimately lead to cell cycle impairment. The 

thinned yolk extension of hnrnpa1a-/-; hnrnpa1b-/- mutants points to impaired lipid 

metabolism upon Hnrnpa1 KO. There is so far little evidence of involvement of HNRNPA1 

in lipid metabolism and no alterations in lipid related genes were reported upon HNRNPA1 

KO in mice [162]. One study revealed an indirect role of HNRNPA1 in metabolism as the 

liver of high-fat-diet fed mice contained decreased nuclear HNRNPA1 compared to the liver 

of standard-diet-fed mice. The authors propose endoplasmatic reticulum (ER) stress related 

HNRNPA1 translocation to the cytosol where it mediates the activation of the transcription 

factor SREBP-1, which modulates expression of several enzymes involved in lipid synthesis 

[288]. Due to the fact that dysregulated energy metabolism is frequently linked to ALS, we 

focused on the phenotype in more detail. Hyperlipidaemia in particular was proposed as one 

of the reasons for energy imbalance in ALS patients and current literature suggests that the 

lipid metabolism plays a crucial role in ALS progression. However, the findings are still 

controversial and the underlying mechanisms linking lipid metabolism defects and ALS 

remain unclear.  
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A standard approach to assess lipid expression in the developing zebrafish embryo is to 

perform ORO staining that labels the neutral lipids and triglycerides. Under healthy 

conditions ORO staining in the yolk gradually decreases over time, meaning that less neutral 

lipids are present in the yolk. The lipids were then either used up by the embryo or were 

stored in the embryo body. In hnrnpa1a-/-; hnrnpa1b-/- mutants, ORO stain revealed lower 

amount of neutral lipids in the yolk extension and increased uptake from the yolk extension to 

the zebrafish trunk, suggesting that the yolk extension thinning arises from increased uptake 

of lipids. This finding implies an important role for Hnrnpa1 in lipid transport and metabolism 

during zebrafish development. The underlying mechanisms remain unclear raising the 

question how increased neutral lipid transport is mediated.  

During the first four days of development, zebrafish are lecithotrophic and rely on their yolk 

sac for the nutrients needed to sustain growth and survival. The developing embryo receives 

vital fat-solube vitamins from the yolk, as well as triacylglyerol and cholesterol, which is an 

essential component of cell membranes. The yolk syncytial layer (YSL) is implicated in yolk 

lipid metabolism and lipoprotein biogenesis, to transport yolk nutrients to the developing 

embryos [289]. Upon formation of the circulatory system, lipoproteins transport the yolk 

lipids to their specific target site via the bloodstream [290]. Defective lipoprotein assembly 

during embryogenesis was demonstrated to result in unabsorbed yolk phenotype suggesting 

that yolk lipids are assembled into lipoproteins for transport to the developing embryo [291] 

[292] [293].  

It is of particular interest to identify how lipids are being transported through the living 

embryo and at what point of development lipid usage becomes impaired in hnrnpa1a-/-; 

hnrnpa1b-/- mutants. As a next step, to assess lipid absorption and metabolism during 

zebrafish development, one can inject BODIPY labeled fluorescent FA analogs that closely 

resemble native FAs.  

4.4.6 Identification of a lipid transporter gene as the main hit 

 
Analysis of differential expression of genes that may be responsible for lipid processing in 

hnrnpa1a-/-; hnrnpa1b-/- mutants revealed the genes apoda.1, nampt and gpnmb as promising 

candidates. qRT-PCR confirmed downregulation of gpnmb and apoda.1, but not nampt. The 

reduction in apoda.1 and gpnmb paired with their involvement in metabolism suggest that 

reduction the corresponding proteins could be responsible for the metabolic defects observed 

in hnrnpa1a-/-, hnrnpa1b-/- mutants. Since Apoda.1 is a lipid processing protein and the 

hnrnpa1a-/-, hnrnpa1b-/- mutants show striking lipid processing defects, I focused my further 
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analysis on Apoda.1. APOD belongs to the lipocalin family of glycoproteins, binds small 

hydrophobic ligands, and was associated with lipid metabolism and metabolic syndrome 

[294] [295] [296] [297]. These studies clearly indicate an important role of APOD in energy 

and lipid homeostasis. However, the precise role of APOD remains unclear. No splicing 

alteration of apoda.1 mRNA was detected, indicating regulation of transcription itself or 

RNA degradation by Hnrnpa1.  

4.5 Apoda.1 as a potential link of the distinct lipid phenotype in hnrnpa1a-/-; 
hnrnpa1b-/- mutants 

 
Apoda.1 is downregulated by 8.9 fold upon KO of HNRNPA1 in zebrafish and is involved in 

lipid transport. Due to the lack of a zebrafish specific antibody, the protein levels of Apoda.1 

could not be analyzed. If decreased expression of apoda.1 is responsible for the metabolic and 

lipid phenotype observed in hnrnpa1a-/-; hnrnpa1b-/- mutants, KD of apoda.1 in AB wildtype 

embryos should mimic the Hnrnpa1 associated loss of function phenotype. Upon MO KD we 

could not only identify a specific role for apoda.1 to cause a similar lipid phenotype as upon 

Hnrnpa1 deficiency, but also determine a dosage dependent phenotype severity. Moreover, 

we could show that a certain threshold of at least 75% apoda.1 reduction has to be reached in 

order to fully phenocopy the observed thinning of the yolk extension in hnrnpa1a-/-; 

hnrnpa1b-/- mutants. For making the final link between the phenotype observed upon Hnrnpa1 

KO and Apoda.1 loss of function it will be interesting to determine whether Apoda.1 

overexpression can rescue the lipid phenotype in the hnrnpa1a-/-; hnrnpa1b-/- mutants.  

4.5.1 How could reduced Apoda.1 cause increased lipid transport across the YSL? 

 
Having identified apoda.1 as one of the most downregulated genes upon Hnrnpa1 KO the 

question remains whether and how apoda.1 is involved in causing the observed lipid 

phenotype. APOD is a small glycoprotein of 29 kDa with a high degree of sequence 

conservation among different species. It is a soluble carrier protein and has many functions 

including protection from oxidative stress and lipid transport. Both the different structure of 

APOD compared to the other apolipoprotein family members, such as APOB and APOC, as 

well as its allocation to the lipocalin family suggest a distinct role of APOD in lipid transport. 

While the APOD gene has been thoroughly studied in humans and mice, linking its abnormal 

expression to human diseases, such as PD and AD, only little is known about the role of 

APOD in zebrafish [298] [299] [300]. In zebrafish there are three copies of the apod gene: a1, 

a2, and b2. apoda.1 KD in AB wildtype embryos results in a thinned yolk extension, 

indicating that Apoda.1 is required for proper lipid processing in zebrafish. Moreover, KO 
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studies from mice demonstrated a correlation between APOD expression and healthy plasma 

lipid profiles. We can only speculate about its role in the developing embryo based on our 

findings and other previous animal studies. The hnrnpa1a-/-; hnrnpa1b-/- mutants show 

increased neutral lipid transport from the yolk extension to the trunk combined with highly 

decreased levels of Apoda.1. A direct role for Apoda.1 in YSL mediated lipid transport seems 

therefore unlikely as one would expect decreased YSL transport upon Apoda.1 loss of 

function as observed in mutants for typical apolipoproteins, such as ApoB and ApoC [301] 

[302]. The KO zebrafish mutant stalactite, lacking the gene encoding microsomal triglyeride 

transfer protein (mtp), which is involved in biosynthesis of apolipoproteinB (ApoB)-

containing lipoproteins, shows defects in yolk absorption pointing to decreased neutral lipid 

transport (characterized by retention of yolk volume and a reduction in neutral lipids in the 

body) and dies after approximately 6 dpf. A similar phenotype is observed upon KD of apoc2 

in zebrafish. No difference in these genes was found in hnrnpa1a-/-; hnrnpa1b-/- mutants, 

implying that lipid transport across the YSL is not directly impaired. It remains though 

unclear whether other proteins are similarly involved in this process. It should be noted at this 

point that the stalactite and apoc2 mutant show, apart from their delay in yolk consumption, 

also an underdeveloped vasculature or ectopic hypersprouting through up- or downregulation 

of vasculature endothelial growth factor (vegf), respectively. These mutants provide a link 

between the lipid impairment and vasculature mispatterning, as observed in hnrnpa1a-/-; 

hnrnpa1b-/- mutants. In contrast, Ear et al. developed a MO KD of the ribosomal protein L11 

(RPL11) that shows a similar thinned yolk extension as hnrnpa1a-/-; hnrnpa1b-/- mutants and 

developmental delay through an increased p53 dependent apoptotic response [303]. It is not 

clear how reduction of RPL11 leads to increased lipid uptake. It is though plausible that due 

to the function of RPL11 in ribosome biogenesis, a process, which is a key component in 

cellular growth [304], RPL11 indirectly regulates the p53 pathway leading to impairment of 

cell cycle progression and metabolic processes, hence providing a phenotypic overlap to the 

hnrnpa1a-/-; hnrnpa1b-/- mutants. The levels of rpl11 are not changed in hnrnpa1a-/-; 

hnrnpa1b-/- mutants, suggesting another link to the p53 pathway activation. Alternatively, 

RPL11 expression may be changed due to alternative splicing or posttranslational 

modifications, both features that were not addressed in our analysis.  

Increased lipid transport and cell cycle impairment may be connected in the following way: 

During embryonic development the yolk, containing mainly lipids, serves as an energy source 

to support growth by keeping the cell cycle going once they are transported to the zebrafish 

body. As a cell divides it undergoes a highly energy demanding transformation, which it will 
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only continue in the presence of the required nutrients, such as lipids that provide the basis for 

membranes. We could show that neutral lipids are effectively transported to the embryo body, 

but we speculate that due to Apoda.1 downregulation these are not being metabolized or 

transported to their target locations and thus accumulate leading to cell cycle progression 

impairment. Lipids are taken up as triglycerides from the yolk, are transported through the 

body, and need to be broken down to FAs for further processing. In case that Apoda.1 is 

required for transport through the body, triglycerides that are taken up from the yolk will 

remain at the YSL where they cannot be further processed. Alternatively, the lipid processing 

itself may be impaired leading to successful lipid transport through the body but ineffective 

break down to FAs. A previous study showed increased peroxisome proliferator-activated 

gamma (PPARγ) mRNA levels, which is a key regulator of lipid metabolism [305], in mice 

overexpressing APOD. The interaction between PPARγ and APOD is directly mediated by 

arachidonic acid (AA), the main ligand of APOD [306]. Likewise, we can assume that upon 

KD of APOD, PPARγ activity is reduced leading to a slow down of lipid metabolism and 

reduced FA uptake and/or processing. The inability of efficient nutrient usage upon APOD 

loss of function is further supported by an APOD KO mouse that shows augmented food 

intake without increase in body weight pointing to enhanced energy expenditure [307]. We 

assume that a similar phenomenon is present in hnrnpa1a-/-; hnrnpa1b-/- mutants. In order to 

compensate the nutrient deficiency more lipids are transported to the zebrafish body from the 

yolk and the embryo uses up its yolk nutrient reservoir ultimately starving to death. Lastly, it 

may be possible that a higher rate of beta-oxidation and usage of fats as a primary energy 

source is present resulting in increased lipid mobilization from the yolk to the trunk. The 

detected increase in neutral lipids in the trunk may reflect the lipids being transported to their 

sites of further processing. The ability of Apoda.1 deficient embryos/larvae to grow and 

survive to 5 dpf suggests that some lipid must be successfully transported to their target sites 

and are effectively used or that other nutrient sources keep the metabolism going at a reduced 

rate.  

We can conclude that Apoda.1 seems to play a distinct role in lipid metabolism compared to 

other apolipoproteins and seems to be not involved in yolk to body lipid transport directly but 

potentially in transporting lipids through the body to the organs. In this scenario, loss of Apod 

function may lead to cells lacking essential nutrients in form of lipids leading to increased 

lipid uptake from to embryonic yolk and ultimate starvation of the embryo. 
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4.5.2 Possible effects of dysregulated APOD in HNRNPA1 ALS/MSP patients 

 

apoda.1 is downregulated upon loss of Hnrnpa1 and seems to be indirectly causative for 

increased lipid transport from the yolk extension to the zebrafish trunk. A loss of HNRNPA1 

function disease mechanism in HNRNPA1 associated ALS is supported by several lines of 

evidence. First, HNRNPA1 essentiality was shown by the lethality of previous loss of 

function animal models. Second, HNRNPA1 has widespread functions by regulating various 

RNAs, and third, HNRNPA1 is cleared from nuclei in cells of HNRNPA1 ALS mutation 

carriers. Likewise, misregulation of apoda.1 may also contribute to disease causing 

mechanisms. The resulting possible effects in the context of neurodegeneration are discussed 

below. APOD is the most robust age dependent upregulated gene in the brain and several 

lines of evidence support a highly neuroprotective role, such as decrease in the number of 

cortex neurons in APOD KO mice [308]. Moreover, APOD is among the top 10 most 

significantly upregulated proteins in CSF obtained from AD, HD, and PD patients [309]. Due 

to its involvement in a variety of cellular functions, APOD may be neuroprotective on several 

levels, e.g. protecting from reactive oxygen species, sustaining lipid transport to neurons, and, 

maintaining astrocyte health.  

First, APOD was shown to protect the aging brain from OS, which is supported by studies in 

mice and flies demonstrating APOD’s ability to decrease lipid peroxides, which are a major 

source of OS, in membranes. Likewise, KO of the APOD drosophila or plant homologue 

results in higher sensitivity to OS [310]. McCarthy et al. could further show a brain specific 

acute APOD upregulation in mice after induction of OS related neurodegeneration [311], 

suggesting a specific function of APOD in the response of the nervous system to oxidative 

injury [312]. These findings clearly support the hypothesis that APOD is an acute response 

protein with a protective function against physiological and pathological OS. Interestingly, 

OS is evident in sALS and fALS [313] [314], and often resembles an early contributor to 

pathology that promotes tissue damage ultimately leading to motoneuron degeneration.  

Second, APOD has a well-established function in transport and modification of lipids, which 

play a critical role in CNS structure, particularly at the cell membrane as lipids control 

membrane fluidity, improve transmission of electric signals, and stabilize synapses [315]. As 

membrane fluidity is directly determined by enrichment of sphingolipids and cholesterol, 

which are known transport targets of APOD, reduced APOD levels are linked to impaired 

membrane integrity [316], a characteristic that was shown to precede ALS disease onset in 

G93A SOD1 mice [317]. Lipid transport becomes particularly important upon exposure to 
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OS, as damaged peroxidized lipids need to be removed from neurons and be transported to 

astrocytes that can oxidize these and generate energy [318].  

Third, APOD was shown to control astrocytes’ reactivity upon stress since lack of APOD 

renders astrocytes more vulnerable to OS [319] and APOD KO mice have higher levels of 

reactive astrogliosis in the cortex [320]. These data suggest that APOD is important to 

maintain astrocyte health, particularly upon exposure to OS, possibly by promoting removal 

of peroxidized lipids. Protecting astrocytes against OS is important as OS triggers astrocyte 

reactivity, lowering neuronal protection over time [321] [319]. In ALS astrocytes change their 

shape and molecular expression pattern indicating a reactive astrocyte state, and interaction 

between motoneurons and astrocytes was shown to be impaired (reviewed in [322]). The 

involvement of APOD in astrogliosis paired with reactive astrocytes in ALS provides a direct 

link between APOD loss of function and motoneuron degeneration by impaired astrocytic 

support.  

Taken together, APOD loss of function is linked to aging, degeneration, and injury of the 

nervous system, all features that are present in ALS patient brains. Due to its neuroprotective 

function APOD plays a vital role in maintaining brain metabolism and loss of APOD function 

may resemble a very early event in disease pathology leading to impaired lipid transport and 

membrane integrity, which over time causes motoneuron degeneration in ALS. Owing to the 

high evolutionary conservation of APOD and its neuroprotective effects, the downregulation 

of APOD upon HNRNPA1 KO may resemble the failure of HNRNPA1 deficient brains to 

protect themselves against age-dependent challenges. It is unlikely that APOD loss of 

function alone causes ALS, but that other environmental or pathological events contribute to 

disease progression. As previously proposed by Dorman et al. as the “two hit model” one 

pathogenic event may not be enough to cause the disease even in the presence of a disease 

associated mutation [323]. In HNRNPA1 ALS cases, the combinatory effect of loss of 

HNRNPA1 function due to mislocalization and aggregation in the cytoplasm resulting in loss 

of neuroprotective APOD function and increased OS may provide the detrimental 

combination leading to ALS pathogenic process initiation. Currently, the late diagnosis allows 

disease mechanism to override regenerative mechanisms leading to accelerated motoneuron 

death.  

Like APOD, the AD associated APOE protein, is a member of the apolipoprotein family, and 

highly expressed in the mammalian system. [324]. As lipid transporters are considered to play 

a role in the nervous system metabolic homeostasis, our findings prompted us to think 

whether APOD may play a similarly important role in ALS as APOE does in AD. In humans 
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three allelic variants of APOE are present, of which the APOE4 allele is the most common 

AD susceptibility locus [325], while APOE2 is considered to be neuroprotective as it 

decreases an individual’s risk for developing AD [326]. While APOD neuroprotection is 

dependent on its expression levels, the presence of one or the other APOE variant determines 

neuroprotective effects in AD patients. Overall, APOD seems to mostly resemble APOE2 

function in AD, since both proteins are beneficial through neuroprotection. 

4.5.3 Therapy 

 
In this study we could identify APOD, which was previously found to have neuroprotective 

capacity, as an interesting highly downregulated gene upon Hnrnpa1 loss of function. The 

identification of the underlying pathogenic mechanisms in ALS, will provide essential 

support in developing effective therapies against this devastating disease. In case that 

decreased APOD levels are an early cause of mutated HNRNPA1 one can design therapies 

much earlier and support regenerative mechanisms. In order to abolish one of the two hits, 

therapeutic approaches could on the one hand aim to reduce OS either by increasing 

endogenous levels of antioxidants or by lowering the generation of OS by stabilizing 

mitochondrial energy production [327]. On the other hand compensation of the lipid 

metabolism defects by providing nutritional support could prevent onset of or at least alleviate 

ALS symptoms. The second approach has been previously realized by providing high caloric 

diet to ALS patients and animal models leading to delayed disease onset and extended 

survival [328] [329] [330].  

Moreover, restoring APOD function seems to be a realistic approach. An interesting link 

between APOD and clozapine, which binds to multiple neurotransmitter receptors and is 

currently used in Schizophrenia treatment, was found [331]. Upon clozapine treatment of 

mice, APOD increased both at the mRNA and protein level in the mouse brain [332]. In the 

case that, as we propose, HNRNPA1 ALS/MSP patients lack APOD upregulation as a 

neuroprotective effect, it will be interesting to determine whether clozapine can restore 

endogenous or increase APOD levels to enhance neuroprotective mechanisms. As a first step, 

we could perform a drug screen in the hnrnpa1a-/-; hnrnpa1b-/- mutants and determine 

whether decreased APOD levels can be upregulated resulting in rescue of the loss of function 

phenotypes of these mutants.  
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5 Conclusion and Outlook 
 

Currently suggested disease pathomechanisms for HNRNPA1 related ALS and MSP include 

loss of HNRNPA1 function due to nuclear clearance or gain of function by HNRNPA1 

deposits that are neurotoxic in ALS and MSP patients. Resolving that question is of 

fundamental importance for understanding the underlying cellular mechanisms of ALS and 

MSP, but also to better develop future therapeutic strategies. My findings demonstrate that 

Hnrnpa1 plays an important role in zebrafish development. We identify a crucial 

physiological requirement of Hnrnpa1 in vessel patterning, muscle maintenance, and 

motoneuron integrity, ultimately leading to premature death if missing. This is in line with 

previous HNRNPA1 KO models in mice and flies, which also showed early lethality or 

reduction in life span, respectively [162] [333]. Due to the early lethality of the HNRNPA1 

KO mouse the consequences of HNRNPA1 loss of function in mammalian development is 

difficult to address. The wide range of cells affected in different HNRNPA1 KO animal 

models associated with cellular toxicity is consistent with a loss of function pathomechanism. 

It will be therefore interesting to determine whether HNRNPA1 patient mutations cause a full 

or partial loss of protein function, or lead to toxic gain of function as previously shown for 

HNRNPA2B1 mutations [102]. The next step will be to rescue the mutant phenotype with 

either wildtype or mutant HNRNPA1 to determine whether mutant HNRNPA1 is sufficient to 

carry out essential functions in zebrafish development. Furthermore, novel animal models 

with KI of the patient mutations need to be developed to additionally address the possibility 

of (toxic) gain of function mechanisms. Alternatively, a combination of loss and gain of 

function could synergistically lead to disease.  

The most striking finding is that Hnrnpa1 regulates lipid transport from the yolk extension to 

the trunk in zebrafish. The direct or indirect mediator of this function is Apoda.1, which is an 

important transporter of lipids and is among the top 10 downregulated genes upon Hnrnpa1 

KO. Interestingly, APOD is highly upregulated upon injury and is greatly expressed in ALS 

and AD patients suggesting a neuroprotective role. It will be interesting to find out whether 

HNRNPA1 directly binds to APOD to regulate its expression levels or which alternative 

pathway connects Hnrnpa1 loss of function to apoda.1 downregulation. To examine whether 

lack of APOD induced neuroprotection is involved in the disease mechanism of ALS/MSP, 

the following questions need to be addressed. First, do HNRNPA1 ALS/MSP lack the APOD 

neuroprotection observed in other neurodegenerative diseases such as AD? Second, are the 
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identified HNRNPA1 targets also differentially expressed in HNRNPA1 ALS patients? So far 

only few HNRNPA1 ALS/MSP cases were identified making it difficult to obtain patient 

material and to address whether they show increased levels of ROS, impaired membrane 

integrity, or defects in their lipid metabolism. The second question can be answered by the 

examination of APOD expression levels and expression pattern of neurons derived from 

HNRNPA1 ALS/MSP patients. Alternatively, one can perform RNA sequencing on 

HNRNPA1 ALS/MSP derived spinal cord/brain tissue or iPSC derived motoneurons to 

determine whether the identified HNRNPA1 targets are also up- or downregulated upon 

HNRNPA1 induced pathology [334]. With the advanced technology it would further be 

possible to utilize cells from healthy individuals and induce HNRNPA1 patient mutations by 

CRISPR/Cas9 technology. These experiments will reveal a potential involvement of APOD in 

HNRNPA1 associated ALS/MSP disease pathomechanisms and provide a new step for the 

ultimate goal of developing a drug for HNRNPA1 specific ALS and potentially sALS.  

 



 

 139  

References 
	

[1] UNITED NATIONS, D. O. E. A. S. A., POPULATION DIVISION 2015. World population aging. 

[2] ARTHUR, K. C., CALVO, A., PRICE, T. R., GEIGER, J. T., CHIÒ, A. & TRAYNOR, B. J. 2016. Projected 

increase in amyotrophic lateral sclerosis from 2015 to 2040. Nature Communications, 7, 12408. 

[3] AGUZZI, A. & HAASS, C. 2003. Games played by rogue proteins in prion disorders and Alzheimer's 

disease. Science, 302, 814-8. 

[4] HAASS, C. & SELKOE, D. J. 2007. Soluble protein oligomers in neurodegeneration: lessons from the 

Alzheimer's amyloid beta-peptide. Nat Rev Mol Cell Biol, 8, 101-12. 

[5] OSKARSSON, B., HORTON, D. K. & MITSUMOTO, H. 2015. Potential Environmental Factors in 

Amyotrophic Lateral Sclerosis. Neurol Clin, 33, 877-88. 

[6] BOILLEE, S., VANDE VELDE, C. & CLEVELAND, D. W. 2006. ALS: a disease of motor neurons and 

their nonneuronal neighbors. Neuron, 52, 39-59. 

[7] RAMANAN, V. K. & SAYKIN, A. J. 2013. Pathways to neurodegeneration: mechanistic insights from 

GWAS in Alzheimer's disease, Parkinson's disease, and related disorders. American journal of 

neurodegenerative disease, 2, 145-175. 

[8] TURNER, M. R., HARDIMAN, O., BENATAR, M., BROOKS, B. R., CHIO, A., DE CARVALHO, M., 

INCE, P. G., LIN, C., MILLER, R. G., MITSUMOTO, H., NICHOLSON, G., RAVITS, J., SHAW, P. 

J., SWASH, M., TALBOT, K., TRAYNOR, B. J., DEN BERG, L. H. V., VELDINK, J. H., VUCIC, S. 

& KIERNAN, M. C. 2013. Controversies and priorities in amyotrophic lateral sclerosis. The Lancet. 

Neurology, 12, 310-322. 

[9] KIM, H. J., KIM, N. C., WANG, Y.-D., SCARBOROUGH, E. A., MOORE, J., DIAZ, Z., MACLEA, K. S., 

FREIBAUM, B., LI, S., MOLLIEX, A., KANAGARAJ, A. P., CARTER, R., BOYLAN, K. B., 

WOJTAS, A. M., RADEMAKERS, R., PINKUS, J. L., GREENBERG, S. A., TROJANOWSKI, J. Q., 

TRAYNOR, B. J., SMITH, B. N., TOPP, S., GKAZI, A.-S., MILLER, J., SHAW, C. E., KOTTLORS, 

M., KIRSCHNER, J., PESTRONK, A., LI, Y. R., FORD, A. F., GITLER, A. D., BENATAR, M., 

KING, O. D., KIMONIS, V. E., ROSS, E. D., WEIHL, C. C., SHORTER, J. & TAYLOR, J. P. 2013. 

Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and 

ALS. Nature. 

[10] FIFITA, J. A., ZHANG, K. Y., GALPER, J., WILLIAMS, K. L., MCCANN, E. P., HOGAN, A. L., 

SAUNDERS, N., BAUER, D., TARR, I. S., PAMPHLETT, R., NICHOLSON, G. A., ROWE, D., 

YANG, S. & BLAIR, I. P. 2017. Genetic and Pathological Assessment of hnRNPA1, hnRNPA2/B1, 

and hnRNPA3 in Familial and Sporadic Amyotrophic Lateral Sclerosis. Neurodegener Dis, 17, 304-

312. 

[11] MORI, K., NIHEI, Y., ARZBERGER, T., ZHOU, Q., MACKENZIE, I. R., HERMANN, A., HANISCH, 

F., KAMP, F., NUSCHER, B., OROZCO, D., EDBAUER, D. & HAASS, C. 2016. Reduced hnRNPA3 

increases C9orf72 repeat RNA levels and dipeptide-repeat protein deposition. EMBO Rep, 17, 1314-25. 

[12] SCHMID, B., HRUSCHA, A., HOGL, S., BANZHAF-STRATHMANN, J., STRECKER, K., VAN DER 

ZEE, J., TEUCKE, M., EIMER, S., HEGERMANN, J., KITTELMANN, M., KREMMER, E., CRUTS, 

M., SOLCHENBERGER, B., HASENKAMP, L., VAN BEBBER, F., VAN BROECKHOVEN, C., 



References 

 140 

EDBAUER, D., LICHTENTHALER, S. F. & HAASS, C. 2013. Loss of ALS-associated TDP-43 in 

zebrafish causes muscle degeneration, vascular dysfunction, and reduced motor neuron axon outgrowth. 

Proc Natl Acad Sci U S A, 110, 4986-91. 

[13] TAYLOR, J. P., BROWN, R. H., JR. & CLEVELAND, D. W. 2016. Decoding ALS: from genes to 

mechanism. Nature, 539, 197-206. 

[14] SATHASIVAM, S. 2010. Motor neurone disease: clinical features, diagnosis, diagnostic pitfalls and 

prognostic markers. Singapore Med J, 51, 367-72; quiz 373. 

[15] COURATIER, P., CORCIA, P., LAUTRETTE, G., NICOL, M. & MARIN, B. 2017. ALS and 

frontotemporal dementia belong to a common disease spectrum. Rev Neurol (Paris), 173, 273-279. 

[16] FERRARI, R., KAPOGIANNIS, D., HUEY, E. D. & MOMENI, P. 2011. FTD and ALS: a tale of two 

diseases. Current Alzheimer research, 8, 273-294. 

[17] VAN LANGENHOVE, T., VAN DER ZEE, J. & VAN BROECKHOVEN, C. 2012. The molecular basis of 

the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum. Annals of medicine, 44, 

817-828. 

[18] GORNO-TEMPINI, M. L., HILLIS, A. E., WEINTRAUB, S., KERTESZ, A., MENDEZ, M., CAPPA, S. 

F., OGAR, J. M., ROHRER, J. D., BLACK, S., BOEVE, B. F., MANES, F., DRONKERS, N. F., 

VANDENBERGHE, R., RASCOVSKY, K., PATTERSON, K., MILLER, B. L., KNOPMAN, D. S., 

HODGES, J. R., MESULAM, M. M. & GROSSMAN, M. 2011. Classification of primary progressive 

aphasia and its variants. Neurology, 76, 1006-14. 

[19] LING, S.-C., POLYMENIDOU, M. & CLEVELAND, D. W. 2013. Converging mechanisms in ALS and 

FTD: disrupted RNA and protein homeostasis. Neuron, 79, 416-438. 

[20] MACKENZIE, I. R., NEUMANN, M., BIGIO, E. H., CAIRNS, N. J., ALAFUZOFF, I., KRIL, J., 

KOVACS, G. G., GHETTI, B., HALLIDAY, G., HOLM, I. E., INCE, P. G., KAMPHORST, W., 

REVESZ, T., ROZEMULLER, A. J., KUMAR-SINGH, S., AKIYAMA, H., BABORIE, A., SPINA, 

S., DICKSON, D. W., TROJANOWSKI, J. Q. & MANN, D. M. 2010. Nomenclature and nosology for 

neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathol, 119, 1-4. 

[21] DEJESUS-HERNANDEZ, M., MACKENZIE, I. R., BOEVE, B. F., BOXER, A. L., BAKER, M., 

RUTHERFORD, N. J., NICHOLSON, A. M., FINCH, N. A., FLYNN, H., ADAMSON, J., KOURI, 

N., WOJTAS, A., SENGDY, P., HSIUNG, G. Y., KARYDAS, A., SEELEY, W. W., JOSEPHS, K. A., 

COPPOLA, G., GESCHWIND, D. H., WSZOLEK, Z. K., FELDMAN, H., KNOPMAN, D. S., 

PETERSEN, R. C., MILLER, B. L., DICKSON, D. W., BOYLAN, K. B., GRAFF-RADFORD, N. R. 

& RADEMAKERS, R. 2011. Expanded GGGGCC hexanucleotide repeat in noncoding region of 

C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron, 72, 245-56. 

[22] RENTON, A. E., MAJOUNIE, E., WAITE, A., SIMON-SANCHEZ, J., ROLLINSON, S., GIBBS, J. R., 

SCHYMICK, J. C., LAAKSOVIRTA, H., VAN SWIETEN, J. C., MYLLYKANGAS, L., KALIMO, 

H., PAETAU, A., ABRAMZON, Y., REMES, A. M., KAGANOVICH, A., SCHOLZ, S. W., 

DUCKWORTH, J., DING, J., HARMER, D. W., HERNANDEZ, D. G., JOHNSON, J. O., MOK, K., 

RYTEN, M., TRABZUNI, D., GUERREIRO, R. J., ORRELL, R. W., NEAL, J., MURRAY, A., 

PEARSON, J., JANSEN, I. E., SONDERVAN, D., SEELAAR, H., BLAKE, D., YOUNG, K., 

HALLIWELL, N., CALLISTER, J. B., TOULSON, G., RICHARDSON, A., GERHARD, A., 

SNOWDEN, J., MANN, D., NEARY, D., NALLS, M. A., PEURALINNA, T., JANSSON, L., 



References 

 141  

ISOVIITA, V. M., KAIVORINNE, A. L., HOLTTA-VUORI, M., IKONEN, E., SULKAVA, R., 

BENATAR, M., WUU, J., CHIO, A., RESTAGNO, G., BORGHERO, G., SABATELLI, M., 

HECKERMAN, D., ROGAEVA, E., ZINMAN, L., ROTHSTEIN, J. D., SENDTNER, M., DREPPER, 

C., EICHLER, E. E., ALKAN, C., ABDULLAEV, Z., PACK, S. D., DUTRA, A., PAK, E., HARDY, 

J., SINGLETON, A., WILLIAMS, N. M., HEUTINK, P., PICKERING-BROWN, S., MORRIS, H. R., 

TIENARI, P. J. & TRAYNOR, B. J. 2011. A hexanucleotide repeat expansion in C9ORF72 is the cause 

of chromosome 9p21-linked ALS-FTD. Neuron, 72, 257-68. 

[23] SWINNEN, B. & ROBBERECHT, W. 2014. The phenotypic variability of amyotrophic lateral sclerosis. 

Nat Rev Neurol, 10, 661-70. 

[24] RINGHOLZ, G. M., APPEL, S. H., BRADSHAW, M., COOKE, N. A., MOSNIK, D. M. & SCHULZ, P. 

E. 2005. Prevalence and patterns of cognitive impairment in sporadic ALS. Neurology, 65, 586-90. 

[25] BAK, T. H. 2010. Motor neuron disease and frontotemporal dementia: One, two, or three diseases? Annals 

of Indian Academy of Neurology, 13, S81-S88. 

[26] COOPER-KNOCK, J., KIRBY, J., HIGHLEY, R. & SHAW, P. J. 2015. The Spectrum of C9orf72-

mediated Neurodegeneration and Amyotrophic Lateral Sclerosis. Neurotherapeutics, 12, 326-39. 

[27] RADEMAKERS, R., CRUTS, M. & VAN BROECKHOVEN, C. 2004. The role of tau (MAPT) in 

frontotemporal dementia and related tauopathies. Hum Mutat, 24, 277-95. 

[28] POORKAJ, P., BIRD, T. D., WIJSMAN, E., NEMENS, E., GARRUTO, R. M., ANDERSON, L., 

ANDREADIS, A., WIEDERHOLT, W. C., RASKIND, M. & SCHELLENBERG, G. D. 1998. Tau is a 

candidate gene for chromosome 17 frontotemporal dementia. Ann Neurol, 43, 815-25. 

[29] TAKAZAWA, T., IKEDA, K., HIRAYAMA, T., KAWABE, K., NAKAMURA, Y., ITO, H., KANO, O., 

YOSHII, Y., TANAKA, F., SOBUE, G. & IWASAKI, Y. 2010. Familial amyotrophic lateral sclerosis 

with a novel G85S mutation of superoxide dismutase 1 gene: clinical features of lower motor neuron 

disease. Intern Med, 49, 183-6. 

[30] TAYLOR, J. P. 2015. Multisystem proteinopathy: intersecting genetics in muscle, bone, and brain 

degeneration. Neurology, 85, 658-60. 

[31] JOHNSON, J. O., MANDRIOLI, J., BENATAR, M., ABRAMZON, Y., VAN DEERLIN, V. M., 

TROJANOWSKI, J. Q., GIBBS, J. R., BRUNETTI, M., GRONKA, S., WUU, J., DING, J., 

MCCLUSKEY, L., MARTINEZ-LAGE, M., FALCONE, D., HERNANDEZ, D. G., AREPALLI, S., 

CHONG, S., SCHYMICK, J. C., ROTHSTEIN, J., LANDI, F., WANG, Y. D., CALVO, A., MORA, 

G., SABATELLI, M., MONSURRO, M. R., BATTISTINI, S., SALVI, F., SPATARO, R., SOLA, P., 

BORGHERO, G., GALASSI, G., SCHOLZ, S. W., TAYLOR, J. P., RESTAGNO, G., CHIO, A. & 

TRAYNOR, B. J. 2010. Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron, 

68, 857-64. 

[32] WONG, T. H., POTTIER, C., HONDIUS, D. C., MEETER, L. H. H., VAN ROOIJ, J. G. J., MELHEM, S., 

VAN MINKELEN, R., VAN DUIJN, C. M., ROZEMULLER, A. J. M., SEELAAR, H., 

RADEMAKERS, R. & VAN SWIETEN, J. C. 2018. Three VCP Mutations in Patients with 

Frontotemporal Dementia. J Alzheimers Dis, 65, 1139-1146. 

[33] KOPPERS, M., VAN BLITTERSWIJK, M. M., VLAM, L., ROWICKA, P. A., VAN VUGHT, P. W., 

GROEN, E. J., SPLIET, W. G., ENGELEN-LEE, J., SCHELHAAS, H. J., DE VISSER, M., VAN DER 

KOOI, A. J., VAN DER POL, W. L., PASTERKAMP, R. J., VELDINK, J. H. & VAN DEN BERG, L. 



References 

 142 

H. 2012. VCP mutations in familial and sporadic amyotrophic lateral sclerosis. Neurobiol Aging, 33, 

837.e7-13. 

[34] TEYSSOU, E., TAKEDA, T., LEBON, V., BOILLEE, S., DOUKOURE, B., BATAILLON, G., 

SAZDOVITCH, V., CAZENEUVE, C., MEININGER, V., LEGUERN, E., SALACHAS, F., 

SEILHEAN, D. & MILLECAMPS, S. 2013. Mutations in SQSTM1 encoding p62 in amyotrophic 

lateral sclerosis: genetics and neuropathology. Acta Neuropathol, 125, 511-22. 

[35] WEIHL, C. C., TEMIZ, P., MILLER, S. E., WATTS, G., SMITH, C., FORMAN, M., HANSON, P. I., 

KIMONIS, V. & PESTRONK, A. 2008. TDP-43 accumulation in inclusion body myopathy muscle 

suggests a common pathogenic mechanism with frontotemporal dementia. J Neurol Neurosurg 

Psychiatry, 79, 1186-9. 

[36] SALAJEGHEH, M., PINKUS, J. L., TAYLOR, J. P., AMATO, A. A., NAZARENO, R., BALOH, R. H. & 

GREENBERG, S. A. 2009. Sarcoplasmic redistribution of nuclear TDP-43 in inclusion body myositis. 

Muscle Nerve, 40, 19-31. 

[37] PINKUS, J. L., AMATO, A. A., TAYLOR, P. J. & GREENBERG, S. A. 2014. Abnormal distribution of 

heterogeneous nuclear ribonucleoproteins in sporadic inclusion body myositis. Neuromuscular 

Disorders, 24, 611-616. 

[38] ROWLAND, L. P. & SHNEIDER, N. A. 2001. Amyotrophic lateral sclerosis. N Engl J Med, 344, 1688-

700. 

[39] KIERNAN, M. C., VUCIC, S., CHEAH, B. C., TURNER, M. R., EISEN, A., HARDIMAN, O., 

BURRELL, J. R. & ZOING, M. C. 2011. Amyotrophic lateral sclerosis. The Lancet, 377, 942-955. 

[40] KIERNAN, M. C., VUCIC, S., CHEAH, B. C., TURNER, M. R., EISEN, A., HARDIMAN, O., 

BURRELL, J. R. & ZOING, M. C. 2011. Amyotrophic lateral sclerosis. Lancet, 377, 942-55. 

[41] MILLER, R. G., MUNSAT, T. L., SWASH, M. & BROOKS, B. R. 1999. Consensus guidelines for the 

design and implementation of clinical trials in ALS. World Federation of Neurology committee on 

Research. J Neurol Sci, 169, 2-12. 

[42] BROOKS, B. R. 1994. El Escorial World Federation of Neurology criteria for the diagnosis of amyotrophic 

lateral sclerosis. Subcommittee on Motor Neuron Diseases/Amyotrophic Lateral Sclerosis of the World 

Federation of Neurology Research Group on Neuromuscular Diseases and the El Escorial "Clinical 

limits of amyotrophic lateral sclerosis" workshop contributors. J Neurol Sci, 124 Suppl, 96-107. 

[43] WILBOURN, A. J. 1998. Clinical neurophysiology in the diagnosis of amyotrophic lateral sclerosis: the 

Lambert and the El Escorial criteria. J Neurol Sci, 160 Suppl 1, S25-9. 

[44] ANDERSEN, P. M., BORASIO, G. D., DENGLER, R., HARDIMAN, O., KOLLEWE, K., LEIGH, P. N., 

PRADAT, P. F., SILANI, V. & TOMIK, B. 2007. Good practice in the management of amyotrophic 

lateral sclerosis: clinical guidelines. An evidence-based review with good practice points. EALSC 

Working Group. Amyotroph Lateral Scler, 8, 195-213. 

[45] MILLER, R. G., MITCHELL, J. D., LYON, M. & MOORE, D. H. 2002. Riluzole for amyotrophic lateral 

sclerosis (ALS)/motor neuron disease (MND). Cochrane Database Syst Rev, Cd001447. 

[46] LEIGH, P. N., WHITWELL, H., GAROFALO, O., BULLER, J., SWASH, M., MARTIN, J. E., GALLO, J. 

M., WELLER, R. O. & ANDERTON, B. H. 1991. Ubiquitin-immunoreactive intraneuronal inclusions 

in amyotrophic lateral sclerosis. Morphology, distribution, and specificity. Brain, 114 ( Pt 2), 775-88. 



References 

 143  

[47] ARAI, T., HASEGAWA, M., AKIYAMA, H., IKEDA, K., NONAKA, T., MORI, H., MANN, D., 

TSUCHIYA, K., YOSHIDA, M., HASHIZUME, Y. & ODA, T. 2006. TDP-43 is a component of 

ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral 

sclerosis. Biochem Biophys Res Commun, 351, 602-11. 

[48] DORMANN, D. & HAASS, C. 2013. Fused in sarcoma (FUS): an oncogene goes awry in 

neurodegeneration. Mol Cell Neurosci, 56, 475-86. 

[49] AL-CHALABI, A., JONES, A., TROAKES, C., KING, A., AL-SARRAJ, S. & VAN DEN BERG, L. H. 

2012. The genetics and neuropathology of amyotrophic lateral sclerosis. Acta Neuropathol, 124, 339-

52. 

[50] ROSEN, D. R., SIDDIQUE, T., PATTERSON, D., FIGLEWICZ, D. A., SAPP, P., HENTATI, A., 

DONALDSON, D., GOTO, J., O'REGAN, J. P., DENG, H. X. & ET AL. 1993. Mutations in Cu/Zn 

superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature, 362, 59-

62. 

[51] ROBERTSON, J., SANELLI, T., XIAO, S., YANG, W., HORNE, P., HAMMOND, R., PIORO, E. P. & 

STRONG, M. J. 2007. Lack of TDP-43 abnormalities in mutant SOD1 transgenic mice shows disparity 

with ALS. Neurosci Lett, 420, 128-32. 

[52] URWIN, H., JOSEPHS, K. A., ROHRER, J. D., MACKENZIE, I. R., NEUMANN, M., AUTHIER, A., 

SEELAAR, H., VAN SWIETEN, J. C., BROWN, J. M., JOHANNSEN, P., NIELSEN, J. E., HOLM, I. 

E., DICKSON, D. W., RADEMAKERS, R., GRAFF-RADFORD, N. R., PARISI, J. E., PETERSEN, 

R. C., HATANPAA, K. J., WHITE, C. L., 3RD, WEINER, M. F., GESER, F., VAN DEERLIN, V. M., 

TROJANOWSKI, J. Q., MILLER, B. L., SEELEY, W. W., VAN DER ZEE, J., KUMAR-SINGH, S., 

ENGELBORGHS, S., DE DEYN, P. P., VAN BROECKHOVEN, C., BIGIO, E. H., DENG, H. X., 

HALLIDAY, G. M., KRIL, J. J., MUNOZ, D. G., MANN, D. M., PICKERING-BROWN, S. M., 

DOODEMAN, V., ADAMSON, G., GHAZI-NOORI, S., FISHER, E. M., HOLTON, J. L., REVESZ, 

T., ROSSOR, M. N., COLLINGE, J., MEAD, S. & ISAACS, A. M. 2010. FUS pathology defines the 

majority of tau- and TDP-43-negative frontotemporal lobar degeneration. Acta Neuropathol, 120, 33-

41. 

[53] KWIATKOWSKI, T. J., JR., BOSCO, D. A., LECLERC, A. L., TAMRAZIAN, E., VANDERBURG, C. 

R., RUSS, C., DAVIS, A., GILCHRIST, J., KASARSKIS, E. J., MUNSAT, T., VALDMANIS, P., 

ROULEAU, G. A., HOSLER, B. A., CORTELLI, P., DE JONG, P. J., YOSHINAGA, Y., HAINES, J. 

L., PERICAK-VANCE, M. A., YAN, J., TICOZZI, N., SIDDIQUE, T., MCKENNA-YASEK, D., 

SAPP, P. C., HORVITZ, H. R., LANDERS, J. E. & BROWN, R. H., JR. 2009. Mutations in the 

FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science, 323, 1205-8. 

[54] FECTO, F., YAN, J., VEMULA, S. P., LIU, E., YANG, Y., CHEN, W., ZHENG, J. G., SHI, Y., 

SIDDIQUE, N., ARRAT, H., DONKERVOORT, S., AJROUD-DRISS, S., SUFIT, R. L., HELLER, S. 

L., DENG, H. X. & SIDDIQUE, T. 2011. SQSTM1 mutations in familial and sporadic amyotrophic 

lateral sclerosis. Arch Neurol, 68, 1440-6. 

[55] MARUYAMA, H., MORINO, H., ITO, H., IZUMI, Y., KATO, H., WATANABE, Y., KINOSHITA, Y., 

KAMADA, M., NODERA, H., SUZUKI, H., KOMURE, O., MATSUURA, S., KOBATAKE, K., 

MORIMOTO, N., ABE, K., SUZUKI, N., AOKI, M., KAWATA, A., HIRAI, T., KATO, T., 



References 

 144 

OGASAWARA, K., HIRANO, A., TAKUMI, T., KUSAKA, H., HAGIWARA, K., KAJI, R. & 

KAWAKAMI, H. 2010. Mutations of optineurin in amyotrophic lateral sclerosis. Nature, 465, 223-6. 

[56] DENG, H. X., CHEN, W., HONG, S. T., BOYCOTT, K. M., GORRIE, G. H., SIDDIQUE, N., YANG, Y., 

FECTO, F., SHI, Y., ZHAI, H., JIANG, H., HIRANO, M., RAMPERSAUD, E., JANSEN, G. H., 

DONKERVOORT, S., BIGIO, E. H., BROOKS, B. R., AJROUD, K., SUFIT, R. L., HAINES, J. L., 

MUGNAINI, E., PERICAK-VANCE, M. A. & SIDDIQUE, T. 2011. Mutations in UBQLN2 cause 

dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature, 477, 211-5. 

[57] WILLIAMS, K. L., TOPP, S., YANG, S., SMITH, B., FIFITA, J. A., WARRAICH, S. T., ZHANG, K. Y., 

FARRAWELL, N., VANCE, C., HU, X., CHESI, A., LEBLOND, C. S., LEE, A., RAYNER, S. L., 

SUNDARAMOORTHY, V., DOBSON-STONE, C., MOLLOY, M. P., VAN BLITTERSWIJK, M., 

DICKSON, D. W., PETERSEN, R. C., GRAFF-RADFORD, N. R., BOEVE, B. F., MURRAY, M. E., 

POTTIER, C., DON, E., WINNICK, C., MCCANN, E. P., HOGAN, A., DAOUD, H., LEVERT, A., 

DION, P. A., MITSUI, J., ISHIURA, H., TAKAHASHI, Y., GOTO, J., KOST, J., GELLERA, C., 

GKAZI, A. S., MILLER, J., STOCKTON, J., BROOKS, W. S., BOUNDY, K., POLAK, M., MUNOZ-

BLANCO, J. L., ESTEBAN-PEREZ, J., RABANO, A., HARDIMAN, O., MORRISON, K. E., 

TICOZZI, N., SILANI, V., DE BELLEROCHE, J., GLASS, J. D., KWOK, J. B., GUILLEMIN, G. J., 

CHUNG, R. S., TSUJI, S., BROWN, R. H., JR., GARCIA-REDONDO, A., RADEMAKERS, R., 

LANDERS, J. E., GITLER, A. D., ROULEAU, G. A., COLE, N. J., YERBURY, J. J., ATKIN, J. D., 

SHAW, C. E., NICHOLSON, G. A. & BLAIR, I. P. 2016. CCNF mutations in amyotrophic lateral 

sclerosis and frontotemporal dementia. Nat Commun, 7, 11253. 

[58] RENTON, A. E., CHIÒ, A. & TRAYNOR, B. J. 2013. State of play in amyotrophic lateral sclerosis 

genetics. Nature Neuroscience, 17, 17-23. 

[59] CRUTS, M., GIJSELINCK, I., VAN LANGENHOVE, T., VAN DER ZEE, J. & VAN BROECKHOVEN, 

C. 2013. Current insights into the C9orf72 repeat expansion diseases of the FTLD/ALS spectrum. 

Trends Neurosci, 36, 450-9. 

[60] YANG, M., LIANG, C., SWAMINATHAN, K., HERRLINGER, S., LAI, F., SHIEKHATTAR, R. & 

CHEN, J. F. 2016. A C9ORF72/SMCR8-containing complex regulates ULK1 and plays a dual role in 

autophagy. Sci Adv, 2, e1601167. 

[61] MAHARJAN, N., KUNZLI, C., BUTHEY, K. & SAXENA, S. 2017. C9ORF72 Regulates Stress Granule 

Formation and Its Deficiency Impairs Stress Granule Assembly, Hypersensitizing Cells to Stress. Mol 

Neurobiol, 54, 3062-3077. 

[62] MORI, K., ARZBERGER, T., GRASSER, F. A., GIJSELINCK, I., MAY, S., RENTZSCH, K., WENG, S. 

M., SCHLUDI, M. H., VAN DER ZEE, J., CRUTS, M., VAN BROECKHOVEN, C., KREMMER, E., 

KRETZSCHMAR, H. A., HAASS, C. & EDBAUER, D. 2013. Bidirectional transcripts of the 

expanded C9orf72 hexanucleotide repeat are translated into aggregating dipeptide repeat proteins. Acta 

Neuropathol, 126, 881-93. 

[63] CHITIPROLU, M., JAGOW, C., TREMBLAY, V., BONDY-CHORNEY, E., PARIS, G., SAVARD, A., 

PALIDWOR, G., BARRY, F. A., ZINMAN, L., KEITH, J., ROGAEVA, E., ROBERTSON, J., 

LAVALLEE-ADAM, M., WOULFE, J., COUTURE, J. F., COTE, J. & GIBBINGS, D. 2018. A 

complex of C9ORF72 and p62 uses arginine methylation to eliminate stress granules by autophagy. Nat 

Commun, 9, 2794. 



References 

 145  

[64] O'ROURKE, J. G., BOGDANIK, L., YANEZ, A., LALL, D., WOLF, A. J., MUHAMMAD, A. K., HO, R., 

CARMONA, S., VIT, J. P., ZARROW, J., KIM, K. J., BELL, S., HARMS, M. B., MILLER, T. M., 

DANGLER, C. A., UNDERHILL, D. M., GOODRIDGE, H. S., LUTZ, C. M. & BALOH, R. H. 2016. 

C9orf72 is required for proper macrophage and microglial function in mice. Science, 351, 1324-9. 

[65] KOPPERS, M., BLOKHUIS, A. M., WESTENENG, H. J., TERPSTRA, M. L., ZUNDEL, C. A., VIEIRA 

DE SA, R., SCHELLEVIS, R. D., WAITE, A. J., BLAKE, D. J., VELDINK, J. H., VAN DEN BERG, 

L. H. & PASTERKAMP, R. J. 2015. C9orf72 ablation in mice does not cause motor neuron 

degeneration or motor deficits. Ann Neurol, 78, 426-38. 

[66] ASH, P. E., BIENIEK, K. F., GENDRON, T. F., CAULFIELD, T., LIN, W. L., DEJESUS-HERNANDEZ, 

M., VAN BLITTERSWIJK, M. M., JANSEN-WEST, K., PAUL, J. W., 3RD, RADEMAKERS, R., 

BOYLAN, K. B., DICKSON, D. W. & PETRUCELLI, L. 2013. Unconventional translation of 

C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS. Neuron, 77, 

639-46. 

[67] MORI, K., WENG, S. M., ARZBERGER, T., MAY, S., RENTZSCH, K., KREMMER, E., SCHMID, B., 

KRETZSCHMAR, H. A., CRUTS, M., VAN BROECKHOVEN, C., HAASS, C. & EDBAUER, D. 

2013. The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in 

FTLD/ALS. Science, 339, 1335-8. 

[68] MAY, S., HORNBURG, D., SCHLUDI, M. H., ARZBERGER, T., RENTZSCH, K., SCHWENK, B. M., 

GRASSER, F. A., MORI, K., KREMMER, E., BANZHAF-STRATHMANN, J., MANN, M., 

MEISSNER, F. & EDBAUER, D. 2014. C9orf72 FTLD/ALS-associated Gly-Ala dipeptide repeat 

proteins cause neuronal toxicity and Unc119 sequestration. Acta Neuropathol, 128, 485-503. 

[69] LEE, Y. B., CHEN, H. J., PERES, J. N., GOMEZ-DEZA, J., ATTIG, J., STALEKAR, M., TROAKES, C., 

NISHIMURA, A. L., SCOTTER, E. L., VANCE, C., ADACHI, Y., SARDONE, V., MILLER, J. W., 

SMITH, B. N., GALLO, J. M., ULE, J., HIRTH, F., ROGELJ, B., HOUART, C. & SHAW, C. E. 2013. 

Hexanucleotide repeats in ALS/FTD form length-dependent RNA foci, sequester RNA binding 

proteins, and are neurotoxic. Cell Rep, 5, 1178-86. 

[70] MORI, K., LAMMICH, S., MACKENZIE, I. R. A., FORNÉ, I., ZILOW, S., KRETZSCHMAR, H., 

EDBAUER, D., JANSSENS, J., KLEINBERGER, G., CRUTS, M., HERMS, J., NEUMANN, M., 

BROECKHOVEN, C., ARZBERGER, T. & HAASS, C. 2013. hnRNP A3 binds to GGGGCC repeats 

and is a constituent of p62-positive/TDP43-negative inclusions in the hippocampus of patients with 

C9orf72 mutations. Acta Neuropathologica, 125, 413-423. 

[71] COOPER-KNOCK, J., HIGGINBOTTOM, A., STOPFORD, M. J., HIGHLEY, J. R., INCE, P. G., 

WHARTON, S. B., PICKERING-BROWN, S., KIRBY, J., HAUTBERGUE, G. M. & SHAW, P. J. 

2015. Antisense RNA foci in the motor neurons of C9ORF72-ALS patients are associated with TDP-43 

proteinopathy. Acta Neuropathol, 130, 63-75. 

[72] GUO, Q., LEHMER, C., MARTÍNEZ-SÁNCHEZ, A., RUDACK, T., BECK, F., HARTMANN, H., 

PÉREZ-BERLANGA, M., FROTTIN, F., HIPP, M. S., HARTL, F. U., EDBAUER, D., 

BAUMEISTER, W. & FERNÁNDEZ-BUSNADIEGO, R. 2018. <em>In Situ</em> Structure of 

Neuronal <em>C9orf72</em> Poly-GA Aggregates Reveals Proteasome Recruitment. Cell, 172, 696-

705.e12. 



References 

 146 

[73] FREIBAUM, B. D. & TAYLOR, J. P. 2017. The Role of Dipeptide Repeats in C9ORF72-Related ALS-

FTD. Frontiers in molecular neuroscience, 10, 35-35. 

[74] NONAKA, T., MASUDA-SUZUKAKE, M., HOSOKAWA, M., SHIMOZAWA, A., HIRAI, S., OKADO, 

H. & HASEGAWA, M. 2018. C9ORF72 dipeptide repeat poly-GA inclusions promote: intracellular 

aggregation of phosphorylated TDP-43. Hum Mol Genet. 

[75] TICOZZI, N., VANCE, C., LECLERC, A. L., KEAGLE, P., GLASS, J. D., MCKENNA-YASEK, D., 

SAPP, P. C., SILANI, V., BOSCO, D. A., SHAW, C. E., BROWN, R. H., JR. & LANDERS, J. E. 

2011. Mutational analysis reveals the FUS homolog TAF15 as a candidate gene for familial 

amyotrophic lateral sclerosis. Am J Med Genet B Neuropsychiatr Genet, 156b, 285-90. 

[76] NEUMANN, M., BENTMANN, E., DORMANN, D., JAWAID, A., DEJESUS-HERNANDEZ, M., 

ANSORGE, O., ROEBER, S., KRETZSCHMAR, H. A., MUNOZ, D. G., KUSAKA, H., YOKOTA, 

O., ANG, L. C., BILBAO, J., RADEMAKERS, R., HAASS, C. & MACKENZIE, I. R. 2011. FET 

proteins TAF15 and EWS are selective markers that distinguish FTLD with FUS pathology from 

amyotrophic lateral sclerosis with FUS mutations. Brain, 134, 2595-609. 

[77] JOHNSON, J. O., PIORO, E. P., BOEHRINGER, A., CHIA, R., FEIT, H., RENTON, A. E., PLINER, H. 

A., ABRAMZON, Y., MARANGI, G., WINBORN, B. J., GIBBS, J. R., NALLS, M. A., MORGAN, 

S., SHOAI, M., HARDY, J., PITTMAN, A., ORRELL, R. W., MALASPINA, A., SIDLE, K. C., 

FRATTA, P., HARMS, M. B., BALOH, R. H., PESTRONK, A., WEIHL, C. C., ROGAEVA, E., 

ZINMAN, L., DRORY, V. E., BORGHERO, G., MORA, G., CALVO, A., ROTHSTEIN, J. D., 

DREPPER, C., SENDTNER, M., SINGLETON, A. B., TAYLOR, J. P., COOKSON, M. R., 

RESTAGNO, G., SABATELLI, M., BOWSER, R., CHIO, A. & TRAYNOR, B. J. 2014. Mutations in 

the Matrin 3 gene cause familial amyotrophic lateral sclerosis. Nat Neurosci, 17, 664-666. 

[78] COUTHOUIS, J., HART, M. P., ERION, R., KING, O. D., DIAZ, Z., NAKAYA, T., IBRAHIM, F., KIM, 

H. J., MOJSILOVIC-PETROVIC, J., PANOSSIAN, S., KIM, C. E., FRACKELTON, E. C., SOLSKI, 

J. A., WILLIAMS, K. L., CLAY-FALCONE, D., ELMAN, L., MCCLUSKEY, L., GREENE, R., 

HAKONARSON, H., KALB, R. G., LEE, V. M., TROJANOWSKI, J. Q., NICHOLSON, G. A., 

BLAIR, I. P., BONINI, N. M., VAN DEERLIN, V. M., MOURELATOS, Z., SHORTER, J. & 

GITLER, A. D. 2012. Evaluating the role of the FUS/TLS-related gene EWSR1 in amyotrophic lateral 

sclerosis. Hum Mol Genet, 21, 2899-911. 

[79] KOLB, S. J., SUTTON, S. & SCHOENBERG, D. R. 2010. RNA processing defects associated with 

diseases of the motor neuron. Muscle Nerve, 41, 5-17. 

[80] BARALLE, M., BURATTI, E. & BARALLE, F. E. 2013. The role of TDP-43 in the pathogenesis of ALS 

and FTLD. Biochem Soc Trans, 41, 1536-40. 

[81] POLYMENIDOU, M., LAGIER-TOURENNE, C., HUTT, K. R., HUELGA, S. C., MORAN, J., LIANG, 

T. Y., LING, S. C., SUN, E., WANCEWICZ, E., MAZUR, C., KORDASIEWICZ, H., SEDAGHAT, 

Y., DONOHUE, J. P., SHIUE, L., BENNETT, C. F., YEO, G. W. & CLEVELAND, D. W. 2011. Long 

pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. 

Nat Neurosci, 14, 459-68. 

[82] TOLLERVEY, J. R., CURK, T., ROGELJ, B., BRIESE, M., CEREDA, M., KAYIKCI, M., KONIG, J., 

HORTOBAGYI, T., NISHIMURA, A. L., ZUPUNSKI, V., PATANI, R., CHANDRAN, S., ROT, G., 



References 

 147  

ZUPAN, B., SHAW, C. E. & ULE, J. 2011. Characterizing the RNA targets and position-dependent 

splicing regulation by TDP-43. Nat Neurosci, 14, 452-8. 

[83] AVENDANO-VAZQUEZ, S. E., DHIR, A., BEMBICH, S., BURATTI, E., PROUDFOOT, N. & 

BARALLE, F. E. 2012. Autoregulation of TDP-43 mRNA levels involves interplay between 

transcription, splicing, and alternative polyA site selection. Genes Dev, 26, 1679-84. 

[84] AYALA, Y. M., DE CONTI, L., AVENDANO-VAZQUEZ, S. E., DHIR, A., ROMANO, M., 

D'AMBROGIO, A., TOLLERVEY, J., ULE, J., BARALLE, M., BURATTI, E. & BARALLE, F. E. 

2011. TDP-43 regulates its mRNA levels through a negative feedback loop. Embo j, 30, 277-88. 

[85] BURATTI, E. 2018. TDP-43 post-translational modifications in health and disease. Expert Opin Ther 

Targets, 22, 279-293. 

[86] LAGIER-TOURENNE, C., POLYMENIDOU, M. & CLEVELAND, D. W. 2010. TDP-43 and FUS/TLS: 

emerging roles in RNA processing and neurodegeneration. Hum Mol Genet, 19, R46-64. 

[87] VANDEN BROECK, L., CALLAERTS, P. & DERMAUT, B. 2014. TDP-43-mediated neurodegeneration: 

towards a loss-of-function hypothesis? Trends Mol Med, 20, 66-71. 

[88] LOPEZ DE SILANES, I., GALBAN, S., MARTINDALE, J. L., YANG, X., MAZAN-MAMCZARZ, K., 

INDIG, F. E., FALCO, G., ZHAN, M. & GOROSPE, M. 2005. Identification and functional outcome 

of mRNAs associated with RNA-binding protein TIA-1. Mol Cell Biol, 25, 9520-31. 

[89] WARIS, S., WILCE, M. C. & WILCE, J. A. 2014. RNA recognition and stress granule formation by TIA 

proteins. Int J Mol Sci, 15, 23377-88. 

[90] GILKS, N., KEDERSHA, N., AYODELE, M., SHEN, L., STOECKLIN, G., DEMBER, L. M. & 

ANDERSON, P. 2004. Stress granule assembly is mediated by prion-like aggregation of TIA-1. Mol 

Biol Cell, 15, 5383-98. 

[91] ITO, D., HATANO, M. & SUZUKI, N. 2017. RNA binding proteins and the pathological cascade in 

ALS/FTD neurodegeneration. Sci Transl Med, 9. 

[92] MACKENZIE, I. R., NICHOLSON, A. M., SARKAR, M., MESSING, J., PURICE, M. D., POTTIER, C., 

ANNU, K., BAKER, M., PERKERSON, R. B., KURTI, A., MATCHETT, B. J., MITTAG, T., 

TEMIROV, J., HSIUNG, G. R., KRIEGER, C., MURRAY, M. E., KATO, M., FRYER, J. D., 

PETRUCELLI, L., ZINMAN, L., WEINTRAUB, S., MESULAM, M., KEITH, J., ZIVKOVIC, S. A., 

HIRSCH-REINSHAGEN, V., ROOS, R. P., ZUCHNER, S., GRAFF-RADFORD, N. R., PETERSEN, 

R. C., CASELLI, R. J., WSZOLEK, Z. K., FINGER, E., LIPPA, C., LACOMIS, D., STEWART, H., 

DICKSON, D. W., KIM, H. J., ROGAEVA, E., BIGIO, E., BOYLAN, K. B., TAYLOR, J. P. & 

RADEMAKERS, R. 2017. TIA1 Mutations in Amyotrophic Lateral Sclerosis and Frontotemporal 

Dementia Promote Phase Separation and Alter Stress Granule Dynamics. Neuron, 95, 808-816.e9. 

[93] HIRSCH-REINSHAGEN, V., POTTIER, C., NICHOLSON, A. M., BAKER, M., HSIUNG, G. R., 

KRIEGER, C., SENGDY, P., BOYLAN, K. B., DICKSON, D. W., MESULAM, M., WEINTRAUB, 

S., BIGIO, E., ZINMAN, L., KEITH, J., ROGAEVA, E., ZIVKOVIC, S. A., LACOMIS, D., 

TAYLOR, J. P., RADEMAKERS, R. & MACKENZIE, I. R. A. 2017. Clinical and neuropathological 

features of ALS/FTD with TIA1 mutations. Acta Neuropathol Commun, 5, 96. 

[94] TAN, A. Y. & MANLEY, J. L. 2009. The TET family of proteins: functions and roles in disease. J Mol Cell 

Biol, 1, 82-92. 



References 

 148 

[95] RADEMAKERS, R., NEUMANN, M. & R MACKENZIE, I. 2012. Advances in understanding the 

molecular basis of frontotemporal dementia. 

[96] DENG, H., GAO, K. & JANKOVIC, J. 2014. The role of FUS gene variants in neurodegenerative diseases. 

Nat Rev Neurol, 10, 337-48. 

[97] DORMANN, D., RODDE, R., EDBAUER, D., BENTMANN, E., FISCHER, I., HRUSCHA, A., THAN, 

M. E., MACKENZIE, I. R., CAPELL, A., SCHMID, B., NEUMANN, M. & HAASS, C. 2010. ALS-

associated fused in sarcoma (FUS) mutations disrupt Transportin-mediated nuclear import. Embo j, 29, 

2841-57. 

[98] ANDERSON, P. & KEDERSHA, N. 2008. Stress granules: the Tao of RNA triage. Trends Biochem Sci, 33, 

141-50. 

[99] LIU, Q., SHU, S., WANG, R. R., LIU, F., CUI, B., GUO, X. N., LU, C. X., LI, X. G., LIU, M. S., PENG, 

B., CUI, L. Y. & ZHANG, X. 2016. Whole-exome sequencing identifies a missense mutation in 

hnRNPA1 in a family with flail arm ALS. Neurology, 87, 1763-1769. 

[100] SHORTER, J. & TAYLOR, J. P. 2013. Disease mutations in the prion-like domains of hnRNPA1 and 

hnRNPA2/B1 introduce potent steric zippers that drive excess RNP granule assembly. Rare Diseases, 

1, e25200. 

[101] KIM, H. J., KIM, N. C., WANG, Y. D., SCARBOROUGH, E. A., MOORE, J., DIAZ, Z., MACLEA, K. 

S., FREIBAUM, B., LI, S., MOLLIEX, A., KANAGARAJ, A. P., CARTER, R., BOYLAN, K. B., 

WOJTAS, A. M., RADEMAKERS, R., PINKUS, J. L., GREENBERG, S. A., TROJANOWSKI, J. Q., 

TRAYNOR, B. J., SMITH, B. N., TOPP, S., GKAZI, A. S., MILLER, J., SHAW, C. E., KOTTLORS, 

M., KIRSCHNER, J., PESTRONK, A., LI, Y. R., FORD, A. F., GITLER, A. D., BENATAR, M., 

KING, O. D., KIMONIS, V. E., ROSS, E. D., WEIHL, C. C., SHORTER, J. & TAYLOR, J. P. 2013. 

Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and 

ALS. Nature, 495, 467-73. 

[102] MARTINEZ, F. J., PRATT, G. A., VAN NOSTRAND, E. L., BATRA, R., HUELGA, S. C., KAPELI, K., 

FREESE, P., CHUN, S. J., LING, K., GELBOIN-BURKHART, C., FIJANY, L., WANG, H. C., 

NUSSBACHER, J. K., BROSKI, S. M., KIM, H. J., LARDELLI, R., SUNDARARAMAN, B., 

DONOHUE, J. P., JAVAHERIAN, A., LYKKE-ANDERSEN, J., FINKBEINER, S., BENNETT, C. F., 

ARES, M., JR., BURGE, C. B., TAYLOR, J. P., RIGO, F. & YEO, G. W. 2016. Protein-RNA 

Networks Regulated by Normal and ALS-Associated Mutant HNRNPA2B1 in the Nervous System. 

Neuron, 92, 780-795. 

[103] MOHAGHEGHI, F., PRUDENCIO, M., STUANI, C., COOK, C., JANSEN-WEST, K., DICKSON, D. 

W., PETRUCELLI, L. & BURATTI, E. 2016. TDP-43 functions within a network of hnRNP proteins 

to inhibit the production of a truncated human SORT1 receptor. Hum Mol Genet, 25, 534-45. 

[104] GILPIN, K. M., CHANG, L. & MONTEIRO, M. J. 2015. ALS-linked mutations in ubiquilin-2 or 

hnRNPA1 reduce interaction between ubiquilin-2 and hnRNPA1. Hum Mol Genet, 24, 2565-77. 

[105] RITSON, G. P., CUSTER, S. K., FREIBAUM, B. D., GUINTO, J. B., GEFFEL, D., MOORE, J., TANG, 

W., WINTON, M. J., NEUMANN, M., TROJANOWSKI, J. Q., LEE, V. M., FORMAN, M. S. & 

TAYLOR, J. P. 2010. TDP-43 mediates degeneration in a novel Drosophila model of disease caused by 

mutations in VCP/p97. J Neurosci, 30, 7729-39. 



References 

 149  

[106] MOLLIEX, A., TEMIROV, J., LEE, J., COUGHLIN, M., KANAGARAJ, A. P., KIM, H. J., MITTAG, T. 

& TAYLOR, J. P. 2015. Phase separation by low complexity domains promotes stress granule 

assembly and drives pathological fibrillization. Cell, 163, 123-133. 

[107] HU, M. T. M., ELLIS, C. M., AL-CHALABI, A., LEIGH, P. N. & SHAW, C. E. 1998. Flail arm 

syndrome: a distinctive variant of amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery 

&amp;amp; Psychiatry, 65, 950. 

[108] LE BER, I., VAN BORTEL, I., NICOLAS, G., BOUYA-AHMED, K., CAMUZAT, A., WALLON, D., 

DE SEPTENVILLE, A., LATOUCHE, M., LATTANTE, S., KABASHI, E., JORNEA, L., 

HANNEQUIN, D. & BRICE, A. 2014. hnRNPA2B1 and hnRNPA1 mutations are rare in patients with 

"multisystem proteinopathy" and frontotemporal lobar degeneration phenotypes. Neurobiol Aging, 35, 

934.e5-6. 

[109] KAPELI, K., MARTINEZ, F. J. & YEO, G. W. 2017. Genetic mutations in RNA-binding proteins and 

their roles in ALS. Human Genetics, 136, 1193-1214. 

[110] HOFWEBER, M., HUTTEN, S., BOURGEOIS, B., SPREITZER, E., NIEDNER-BOBLENZ, A., 

SCHIFFERER, M., RUEPP, M. D., SIMONS, M., NIESSING, D., MADL, T. & DORMANN, D. 

2018. Phase Separation of FUS Is Suppressed by Its Nuclear Import Receptor and Arginine 

Methylation. Cell, 173, 706-719.e13. 

[111] PATEL, A., LEE, H. O., JAWERTH, L., MAHARANA, S., JAHNEL, M., HEIN, M. Y., STOYNOV, S., 

MAHAMID, J., SAHA, S., FRANZMANN, T. M., POZNIAKOVSKI, A., POSER, I., MAGHELLI, 

N., ROYER, L. A., WEIGERT, M., MYERS, E. W., GRILL, S., DRECHSEL, D., HYMAN, A. A. & 

ALBERTI, S. 2015. A Liquid-to-Solid Phase Transition of the ALS Protein FUS Accelerated by 

Disease Mutation. Cell, 162, 1066-77. 

[112] PAUL, K. R., MOLLIEX, A., CASCARINA, S., BONCELLA, A. E., TAYLOR, J. P. & ROSS, E. D. 

2017. Effects of Mutations on the Aggregation Propensity of the Human Prion-Like Protein 

hnRNPA2B1. Mol Cell Biol, 37. 

[113] LI, H. R., CHIANG, W. C., CHOU, P. C., WANG, W. J. & HUANG, J. R. 2018. TAR DNA-binding 

protein 43 (TDP-43) liquid-liquid phase separation is mediated by just a few aromatic residues. J Biol 

Chem, 293, 6090-6098. 

[114] KING, O. D., GITLER, A. D. & SHORTER, J. 2012. The tip of the iceberg: RNA-binding proteins with 

prion-like domains in neurodegenerative disease. Brain Res, 1462, 61-80. 

[115] MURAKAMI, T., QAMAR, S., LIN, J. Q., SCHIERLE, G. S., REES, E., MIYASHITA, A., COSTA, A. 

R., DODD, R. B., CHAN, F. T., MICHEL, C. H., KRONENBERG-VERSTEEG, D., LI, Y., YANG, S. 

P., WAKUTANI, Y., MEADOWS, W., FERRY, R. R., DONG, L., TARTAGLIA, G. G., FAVRIN, G., 

LIN, W. L., DICKSON, D. W., ZHEN, M., RON, D., SCHMITT-ULMS, G., FRASER, P. E., 

SHNEIDER, N. A., HOLT, C., VENDRUSCOLO, M., KAMINSKI, C. F. & ST GEORGE-HYSLOP, 

P. 2015. ALS/FTD Mutation-Induced Phase Transition of FUS Liquid Droplets and Reversible 

Hydrogels into Irreversible Hydrogels Impairs RNP Granule Function. Neuron, 88, 678-90. 

[116] GITLER, A. D. & SHORTER, J. 2011. RNA-binding proteins with prion-like domains in ALS and FTLD-

U. Prion, 5, 179-87. 

[117] LI, Y. R., KING, O. D., SHORTER, J. & GITLER, A. D. 2013. Stress granules as crucibles of ALS 

pathogenesis. J Cell Biol, 201, 361-72. 



References 

 150 

[118] PURICE, M. D. & TAYLOR, P. J. 2018. Linking hnRNP Function to ALS and FTD Pathology. Frontiers 

in Neuroscience, 12, 326. 

[119] DREYFUSS, G., MATUNIS, M. J., PINOL-ROMA, S. & BURD, C. G. 1993. hnRNP proteins and the 

biogenesis of mRNA. Annu Rev Biochem, 62, 289-321. 

[120] HE, Y. & SMITH, R. 2009. Nuclear functions of heterogeneous nuclear ribonucleoproteins A/B. Cell Mol 

Life Sci, 66, 1239-56. 

[121] PINOL-ROMA, S., CHOI, Y. D., MATUNIS, M. J. & DREYFUSS, G. 1988. Immunopurification of 

heterogeneous nuclear ribonucleoprotein particles reveals an assortment of RNA-binding proteins. 

Genes Dev, 2, 215-27. 

[122] GÖRLACH, M., WITTEKIND, M., BECKMAN, R. A., MUELLER, L. & DREYFUSS, G. 1992. 

Interaction of the RNA-binding domain of the hnRNP C proteins with RNA. The EMBO Journal, 11, 

3289-3295. 

[123] GEUENS, T., BOUHY, D. & TIMMERMAN, V. 2016. The hnRNP family: insights into their role in 

health and disease. Human genetics, 135, 851-867. 

[124] DANGLI, A., GUIALIS, A., VRETOU, E. & SEKERIS, C. E. 1988. Autoantibodies to the core proteins 

of hnRNPs. FEBS Lett, 231, 118-24. 

[125] KAMMA, H., HORIGUCHI, H., WAN, L., MATSUI, M., FUJIWARA, M., FUJIMOTO, M., YAZAWA, 

T. & DREYFUSS, G. 1999. Molecular characterization of the hnRNP A2/B1 proteins: tissue-specific 

expression and novel isoforms. Exp Cell Res, 246, 399-411. 

[126] MARIS, C., DOMINGUEZ, C. & ALLAIN, F. H. 2005. The RNA recognition motif, a plastic RNA-

binding platform to regulate post-transcriptional gene expression. Febs j, 272, 2118-31. 

[127] VENABLES, J. P., KOH, C. S., FROEHLICH, U., LAPOINTE, E., COUTURE, S., INKEL, L., 

BRAMARD, A., PAQUET, E. R., WATIER, V., DURAND, M., LUCIER, J. F., GERVAIS-BIRD, J., 

TREMBLAY, K., PRINOS, P., KLINCK, R., ELELA, S. A. & CHABOT, B. 2008. Multiple and 

specific mRNA processing targets for the major human hnRNP proteins. Mol Cell Biol, 28, 6033-43. 

[128] MARTINEZ-CONTRERAS, R., CLOUTIER, P., SHKRETA, L., FISETTE, J. F., REVIL, T. & 

CHABOT, B. 2007. hnRNP proteins and splicing control. Adv Exp Med Biol, 623, 123-47. 

[129] PINOL-ROMA, S. & DREYFUSS, G. 1992. Shuttling of pre-mRNA binding proteins between nucleus 

and cytoplasm. Nature, 355, 730-2. 

[130] SIOMI, M. C., EDER, P. S., KATAOKA, N., WAN, L., LIU, Q. & DREYFUSS, G. 1997. Transportin-

mediated nuclear import of heterogeneous nuclear RNP proteins. J Cell Biol, 138, 1181-92. 

[131] SUZUKI, H. & MATSUOKA, M. 2017. hnRNPA1 autoregulates its own mRNA expression to remain 

non-cytotoxic. Molecular and Cellular Biochemistry, 427, 123-131. 

[132] GUIL, S., LONG, J. C. & CACERES, J. F. 2006. hnRNP A1 relocalization to the stress granules reflects a 

role in the stress response. Mol Cell Biol, 26, 5744-58. 

[133] CAMMAS, A., PILEUR, F., BONNAL, S., LEWIS, S. M., LEVEQUE, N., HOLCIK, M. & VAGNER, S. 

2007. Cytoplasmic relocalization of heterogeneous nuclear ribonucleoprotein A1 controls translation 

initiation of specific mRNAs. Mol Biol Cell, 18, 5048-59. 

[134] RAJU, C. S., FUKUDA, N., LOPEZ-IGLESIAS, C., GORITZ, C., VISA, N. & PERCIPALLE, P. 2011. 

In neurons, activity-dependent association of dendritically transported mRNA transcripts with the 

transacting factor CBF-A is mediated by A2RE/RTS elements. Mol Biol Cell, 22, 1864-77. 



References 

 151  

[135] SHAN, J., MORAN-JONES, K., MUNRO, T. P., KIDD, G. J., WINZOR, D. J., HOEK, K. S. & SMITH, 

R. 2000. Binding of an RNA trafficking response element to heterogeneous nuclear ribonucleoproteins 

A1 and A2. J Biol Chem, 275, 38286-95. 

[136] MA, A. S., MORAN-JONES, K., SHAN, J., MUNRO, T. P., SNEE, M. J., HOEK, K. S. & SMITH, R. 

2002. Heterogeneous nuclear ribonucleoprotein A3, a novel RNA trafficking response element-binding 

protein. J Biol Chem, 277, 18010-20. 

[137] DING, J., HAYASHI, M. K., ZHANG, Y., MANCHE, L., KRAINER, A. R. & XU, R. M. 1999. Crystal 

structure of the two-RRM domain of hnRNP A1 (UP1) complexed with single-stranded telomeric 

DNA. Genes Dev, 13, 1102-15. 

[138] LABRANCHE, H., DUPUIS, S., BEN-DAVID, Y., BANI, M. R., WELLINGER, R. J. & CHABOT, B. 

1998. Telomere elongation by hnRNP A1 and a derivative that interacts with telomeric repeats and 

telomerase. Nat Genet, 19, 199-202. 

[139] TANAKA, E., FUKUDA, H., NAKASHIMA, K., TSUCHIYA, N., SEIMIYA, H. & NAKAGAMA, H. 

2007. HnRNP A3 binds to and protects mammalian telomeric repeats in vitro. Biochem Biophys Res 

Commun, 358, 608-14. 

[140] MORAN-JONES, K., WAYMAN, L., KENNEDY, D. D., REDDEL, R. R., SARA, S., SNEE, M. J. & 

SMITH, R. 2005. hnRNP A2, a potential ssDNA/RNA molecular adapter at the telomere. Nucleic Acids 

Res, 33, 486-96. 

[141] DOUGLAS, J. N., GARDNER, L. A., SALAPA, H. E., LALOR, S. J., LEE, S., SEGAL, B. M., 

SAWCHENKO, P. E. & LEVIN, M. C. 2016. Antibodies to the RNA-binding protein hnRNP A1 

contribute to neurodegeneration in a model of central nervous system autoimmune inflammatory 

disease. J Neuroinflammation, 13, 178. 

[142] CAMPILLOS, M., LAMAS, J. R., GARCIA, M. A., BULLIDO, M. J., VALDIVIESO, F. & VAZQUEZ, 

J. 2003. Specific interaction of heterogeneous nuclear ribonucleoprotein A1 with the -219T allelic form 

modulates APOE promoter activity. Nucleic Acids Res, 31, 3063-70. 

[143] BERSON, A., BARBASH, S., SHALTIEL, G., GOLL, Y., HANIN, G., GREENBERG, D. S., KETZEF, 

M., BECKER, A. J., FRIEDMAN, A. & SOREQ, H. 2012. Cholinergic-associated loss of hnRNP-A/B 

in Alzheimer's disease impairs cortical splicing and cognitive function in mice. EMBO Mol Med, 4, 

730-42. 

[144] DONEV, R., NEWALL, A., THOME, J. & SHEER, D. 2007. A role for SC35 and hnRNPA1 in the 

determination of amyloid precursor protein isoforms. Mol Psychiatry, 12, 681-90. 

[145] CARPENTER, B., MACKAY, C., ALNABULSI, A., MACKAY, M., TELFER, C., MELVIN, W. T. & 

MURRAY, G. I. 2006. The roles of heterogeneous nuclear ribonucleoproteins in tumour development 

and progression. Biochim Biophys Acta, 1765, 85-100. 

[146] LIU, X., ZHOU, Y., LOU, Y. & ZHONG, H. 2016. Knockdown of HNRNPA1 inhibits lung 

adenocarcinoma cell proliferation through cell cycle arrest at G0/G1 phase. Gene, 576, 791-7. 

[147] JEAN-PHILIPPE, J., PAZ, S. & CAPUTI, M. 2013. hnRNP A1: the Swiss army knife of gene expression. 

Int J Mol Sci, 14, 18999-9024. 

[148] HU, Y., SUN, Z., DENG, J., HU, B., YAN, W., WEI, H. & JIANG, J. 2017. Splicing factor hnRNPA2B1 

contributes to tumorigenic potential of breast cancer cells through STAT3 and ERK1/2 signaling 

pathway. Tumor Biology, 39, 1010428317694318. 



References 

 152 

[149] BURATTI, E., BRINDISI, A., GIOMBI, M., TISMINETZKY, S., AYALA, Y. M. & BARALLE, F. E. 

2005. TDP-43 binds heterogeneous nuclear ribonucleoprotein A/B through its C-terminal tail: an 

important region for the inhibition of cystic fibrosis transmembrane conductance regulator exon 9 

splicing. J Biol Chem, 280, 37572-84. 

[150] DESHAIES, J. E., SHKRETA, L., MOSZCZYNSKI, A. J., SIDIBE, H., SEMMLER, S., FOUILLEN, A., 

BENNETT, E. R., BEKENSTEIN, U., DESTROISMAISONS, L., TOUTANT, J., DELMOTTE, Q., 

VOLKENING, K., STABILE, S., AULAS, A., KHALFALLAH, Y., SOREQ, H., NANCI, A., 

STRONG, M. J., CHABOT, B. & VANDE VELDE, C. 2018. TDP-43 regulates the alternative splicing 

of hnRNP A1 to yield an aggregation-prone variant in amyotrophic lateral sclerosis. Brain, 141, 1320-

1333. 

[151] HONDA, H., HAMASAKI, H., WAKAMIYA, T., KOYAMA, S., SUZUKI, S. O., FUJII, N. & IWAKI, 

T. 2015. Loss of hnRNPA1 in ALS spinal cord motor neurons with TDP-43-positive inclusions. 

Neuropathology. 

[152] KABASHI, E., VALDMANIS, P. N., DION, P., SPIEGELMAN, D., MCCONKEY, B. J., VANDE 

VELDE, C., BOUCHARD, J. P., LACOMBLEZ, L., POCHIGAEVA, K., SALACHAS, F., PRADAT, 

P. F., CAMU, W., MEININGER, V., DUPRE, N. & ROULEAU, G. A. 2008. TARDBP mutations in 

individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet, 40, 572-4. 

[153] BERTOLI, C., SKOTHEIM, J. M. & DE BRUIN, R. A. M. 2013. Control of cell cycle transcription 

during G1 and S phases. Nature reviews. Molecular cell biology, 14, 518-528. 

[154] MCSHEA, A., WAHL, A. F. & SMITH, M. A. 1999. Re-entry into the cell cycle: a mechanism for 

neurodegeneration in Alzheimer disease. Med Hypotheses, 52, 525-7. 

[155] GRANA, X. & REDDY, E. P. 1995. Cell cycle control in mammalian cells: role of cyclins, cyclin 

dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs). 

Oncogene, 11, 211-9. 

[156] SHERR, C. J. 1994. G1 phase progression: cycling on cue. Cell, 79, 551-5. 

[157] MEIKRANTZ, W. & SCHLEGEL, R. 1995. Apoptosis and the cell cycle. J Cell Biochem, 58, 160-74. 

[158] YU, C., GUO, J., LIU, Y., JIA, J., JIA, R. & FAN, M. 2015. Oral squamous cancer cell exploits hnRNP 

A1 to regulate cell cycle and proliferation. J Cell Physiol, 230, 2252-61. 

[159] ZHANG, Q.-S., MANCHE, L., XU, R.-M. & KRAINER, A. R. 2006. hnRNP A1 associates with telomere 

ends and stimulates telomerase activity. RNA (New York, N.Y.), 12, 1116-1128. 

[160] BALDWIN, A. S., JR. 1996. The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu 

Rev Immunol, 14, 649-83. 

[161] SINGH, A. K. & LAKHOTIA, S. C. 2012. The hnRNP A1 homolog Hrp36 is essential for normal 

development, female fecundity, omega speckle formation and stress tolerance in Drosophila 

melanogaster. J Biosci, 37, 659-78. 

[162] LIU, T.-Y., CHEN, Y.-C., JONG, Y.-J., TSAI, H.-J., LEE, C.-C., CHANG, Y.-S., CHANG, J.-G. & 

CHANG, Y.-F. 2017. Muscle developmental defects in heterogeneous nuclear Ribonucleoprotein A1 

knockout mice. Open Biology, 7, 160303. 

[163] CARTEALY, I. 2008. Characterization and knockdown of zebrafish Hnrnpa1. Master of Philosophy, 

University of Queensland. 



References 

 153  

[164] GRUNWALD, D. J. & STREISINGER, G. 1992. Induction of recessive lethal and specific locus 

mutations in the zebrafish with ethyl nitrosourea. Genet Res, 59, 103-16. 

[165] STREISINGER, G., WALKER, C., DOWER, N., KNAUBER, D. & SINGER, F. 1981. Production of 

clones of homozygous diploid zebra fish (Brachydanio rerio). Nature, 291, 293-6. 

[166] HOWE, K., CLARK, M. D., TORROJA, C. F., TORRANCE, J., BERTHELOT, C., MUFFATO, M., 

COLLINS, J. E., HUMPHRAY, S., MCLAREN, K., MATTHEWS, L., MCLAREN, S., SEALY, I., 

CACCAMO, M., CHURCHER, C., SCOTT, C., BARRETT, J. C., KOCH, R., RAUCH, G.-J., WHITE, 

S., CHOW, W., KILIAN, B., QUINTAIS, L. T., GUERRA-ASSUNÇÃO, J. A., ZHOU, Y., GU, Y., 

YEN, J., VOGEL, J.-H., EYRE, T., REDMOND, S., BANERJEE, R., CHI, J., FU, B., LANGLEY, E., 

MAGUIRE, S. F., LAIRD, G. K., LLOYD, D., KENYON, E., DONALDSON, S., SEHRA, H., 

ALMEIDA-KING, J., LOVELAND, J., TREVANION, S., JONES, M., QUAIL, M., WILLEY, D., 

HUNT, A., BURTON, J., SIMS, S., MCLAY, K., PLUMB, B., DAVIS, J., CLEE, C., OLIVER, K., 

CLARK, R., RIDDLE, C., ELLIOTT, D., THREADGOLD, G., HARDEN, G., WARE, D., BEGUM, 

S., MORTIMORE, B., KERRY, G., HEATH, P., PHILLIMORE, B., TRACEY, A., CORBY, N., 

DUNN, M., JOHNSON, C., WOOD, J., CLARK, S., PELAN, S., GRIFFITHS, G., SMITH, M., 

GLITHERO, R., HOWDEN, P., BARKER, N., LLOYD, C., STEVENS, C., HARLEY, J., HOLT, K., 

PANAGIOTIDIS, G., LOVELL, J., BEASLEY, H., HENDERSON, C., GORDON, D., AUGER, K., 

WRIGHT, D., COLLINS, J., RAISEN, C., DYER, L., LEUNG, K., ROBERTSON, L., AMBRIDGE, 

K., LEONGAMORNLERT, D., MCGUIRE, S., GILDERTHORP, R., GRIFFITHS, C., 

MANTHRAVADI, D., NICHOL, S., BARKER, G., et al. 2013. The zebrafish reference genome 

sequence and its relationship to the human genome. Nature, 496, 498. 

[167] HOWE, K., CLARK, M. D., TORROJA, C. F., TORRANCE, J., BERTHELOT, C., MUFFATO, M., 

COLLINS, J. E., HUMPHRAY, S., MCLAREN, K., MATTHEWS, L., MCLAREN, S., SEALY, I., 

CACCAMO, M., CHURCHER, C., SCOTT, C., BARRETT, J. C., KOCH, R., RAUCH, G. J., WHITE, 

S., CHOW, W., KILIAN, B., QUINTAIS, L. T., GUERRA-ASSUNCAO, J. A., ZHOU, Y., GU, Y., 

YEN, J., VOGEL, J. H., EYRE, T., REDMOND, S., BANERJEE, R., CHI, J., FU, B., LANGLEY, E., 

MAGUIRE, S. F., LAIRD, G. K., LLOYD, D., KENYON, E., DONALDSON, S., SEHRA, H., 

ALMEIDA-KING, J., LOVELAND, J., TREVANION, S., JONES, M., QUAIL, M., WILLEY, D., 

HUNT, A., BURTON, J., SIMS, S., MCLAY, K., PLUMB, B., DAVIS, J., CLEE, C., OLIVER, K., 

CLARK, R., RIDDLE, C., ELLIOT, D., THREADGOLD, G., HARDEN, G., WARE, D., BEGUM, S., 

MORTIMORE, B., KERRY, G., HEATH, P., PHILLIMORE, B., TRACEY, A., CORBY, N., DUNN, 

M., JOHNSON, C., WOOD, J., CLARK, S., PELAN, S., GRIFFITHS, G., SMITH, M., GLITHERO, 

R., HOWDEN, P., BARKER, N., LLOYD, C., STEVENS, C., HARLEY, J., HOLT, K., 

PANAGIOTIDIS, G., LOVELL, J., BEASLEY, H., HENDERSON, C., GORDON, D., AUGER, K., 

WRIGHT, D., COLLINS, J., RAISEN, C., DYER, L., LEUNG, K., ROBERTSON, L., AMBRIDGE, 

K., LEONGAMORNLERT, D., MCGUIRE, S., GILDERTHORP, R., GRIFFITHS, C., 

MANTHRAVADI, D., NICHOL, S., BARKER, G., et al. 2013. The zebrafish reference genome 

sequence and its relationship to the human genome. Nature, 496, 498-503. 

[168] BEIS, D. & STAINIER, D. Y. 2006. In vivo cell biology: following the zebrafish trend. Trends Cell Biol, 

16, 105-12. 



References 

 154 

[169] TAN, J. L. & ZON, L. I. 2011. Chapter 21 - Chemical Screening in Zebrafish for Novel Biological and 

Therapeutic Discovery. In: DETRICH, H. W., WESTERFIELD, M. & ZON, L. I. (eds.) Methods in 

Cell Biology. Academic Press. 

[170] XI, Y., NOBLE, S. & EKKER, M. 2011. Modeling neurodegeneration in zebrafish. Current neurology 

and neuroscience reports, 11, 274-282. 

[171] DOYON, Y., MCCAMMON, J. M., MILLER, J. C., FARAJI, F., NGO, C., KATIBAH, G. E., AMORA, 

R., HOCKING, T. D., ZHANG, L., REBAR, E. J., GREGORY, P. D., URNOV, F. D. & AMACHER, 

S. L. 2008. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat 

Biotechnol, 26, 702-8. 

[172] HUANG, P., XIAO, A., ZHOU, M., ZHU, Z., LIN, S. & ZHANG, B. 2011. Heritable gene targeting in 

zebrafish using customized TALENs. Nat Biotechnol, 29, 699-700. 

[173] JAO, L. E., WENTE, S. R. & CHEN, W. 2013. Efficient multiplex biallelic zebrafish genome editing 

using a CRISPR nuclease system. Proc Natl Acad Sci U S A, 110, 13904-9. 

[174] AUER, T. O., DUROURE, K., DE CIAN, A., CONCORDET, J. P. & DEL BENE, F. 2014. Highly 

efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome 

Res, 24, 142-53. 

[175] LI, J., ZHANG, B.-B., REN, Y.-G., GU, S.-Y., XIANG, Y.-H., HUANG, C. & DU, J.-L. 2015. Intron 

targeting-mediated and endogenous gene integrity-maintaining knockin in zebrafish using the 

CRISPR/Cas9 system. Cell Research, 25, 634. 

[176] DEVEAU, H., GARNEAU, J. E. & MOINEAU, S. 2010. CRISPR/Cas system and its role in phage-

bacteria interactions. Annu Rev Microbiol, 64, 475-93. 

[177] HORVATH, P. & BARRANGOU, R. 2010. CRISPR/Cas, the immune system of bacteria and archaea. 

Science, 327, 167-70. 

[178] WRIGHT, A. V., NUNEZ, J. K. & DOUDNA, J. A. 2016. Biology and Applications of CRISPR Systems: 

Harnessing Nature's Toolbox for Genome Engineering. Cell, 164, 29-44. 

[179] JANSEN, R., EMBDEN, J. D., GAASTRA, W. & SCHOULS, L. M. 2002. Identification of genes that are 

associated with DNA repeats in prokaryotes. Mol Microbiol, 43, 1565-75. 

[180] DELTCHEVA, E., CHYLINSKI, K., SHARMA, C. M., GONZALES, K., CHAO, Y., PIRZADA, Z. A., 

ECKERT, M. R., VOGEL, J. & CHARPENTIER, E. 2011. CRISPR RNA maturation by trans-encoded 

small RNA and host factor RNase III. Nature, 471, 602-607. 

[181] JINEK, M., CHYLINSKI, K., FONFARA, I., HAUER, M., DOUDNA, J. A. & CHARPENTIER, E. 2012. 

A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337, 

816-21. 

[182] MOJICA, F. J., DIEZ-VILLASENOR, C., GARCIA-MARTINEZ, J. & ALMENDROS, C. 2009. Short 

motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology, 155, 

733-40. 

[183] RAMESH, T., LYON, A. N., PINEDA, R. H., WANG, C., JANSSEN, P. M. L., CANAN, B. D., 

BURGHES, A. H. M. & BEATTIE, C. E. 2010. A genetic model of amyotrophic lateral sclerosis in 

zebrafish displays phenotypic hallmarks of motoneuron disease. Disease Models & Mechanisms, 3, 

652-662. 



References 

 155  

[184] DA COSTA, M. M. J., ALLEN, C. E., HIGGINBOTTOM, A., RAMESH, T., SHAW, P. J. & 

MCDERMOTT, C. J. 2014. A new zebrafish model produced by TILLING of SOD1-related 

amyotrophic lateral sclerosis replicates key features of the disease and represents a tool for 

&lt;em&gt;in vivo&lt;/em&gt; therapeutic screening. Disease Models &amp;amp; Mechanisms, 7, 73. 

[185] KABASHI, E., BERCIER, V., LISSOUBA, A., LIAO, M., BRUSTEIN, E., ROULEAU, G. A. & 

DRAPEAU, P. 2011. FUS and TARDBP but not SOD1 interact in genetic models of amyotrophic 

lateral sclerosis. PLoS Genet, 7, e1002214. 

[186] HASENKAMP, L. 2015. ALS and FTLD associated FUS in zebra� sh - 

 investigating disease mechanisms in vivo. PhD thesis, Munich. 

[187] KABASHI, E., LIN, L., TRADEWELL, M. L., DION, P. A., BERCIER, V., BOURGOUIN, P., 

ROCHEFORT, D., BEL HADJ, S., DURHAM, H. D., VANDE VELDE, C., ROULEAU, G. A. & 

DRAPEAU, P. 2010. Gain and loss of function of ALS-related mutations of TARDBP (TDP-43) cause 

motor deficits in vivo. Hum Mol Genet, 19, 671-83. 

[188] KABASHI, E., LIN, L., TRADEWELL, M. L., DION, P. A., BERCIER, V., BOURGOUIN, P., 

ROCHEFORT, D., HADJ, S., DURHAM, H. D., VELDE, C., ROULEAU, G. A. & DRAPEAU, P. 

2010. Gain and loss of function of ALS-related mutations of TARDBP (TDP-43) cause motor deficits 

in vivo. Human Molecular Genetics, 19, 671-683. 

[189] CORRADI, L. 2016. Functional analysis of the ALS/FTD-related C9orf72  

 gene in zebrafish PhD thesis, Munich. 

[190] SOLCHENBERGER, B., RUSSELL, C., KREMMER, E., HAASS, C. & SCHMID, B. 2015. Granulin 

knock out zebrafish lack frontotemporal lobar degeneration and neuronal ceroid lipofuscinosis 

pathology. PLoS One, 10, e0118956. 

[191] LI, Y.-H., CHEN, H.-Y., LI, Y.-W., WU, S.-Y., WANGTA, L., LIN, G.-H., HU, S.-Y., CHANG, Z.-K., 

GONG, H.-Y., LIAO, C.-H., CHIANG, K.-Y., HUANG, C.-W. & WU, J.-L. 2013. Progranulin 

regulates zebrafish muscle growth and regeneration through maintaining the pool of myogenic 

progenitor cells. Scientific reports, 3, 1176-1176. 

[192] ROSSI, A., KONTARAKIS, Z., GERRI, C., NOLTE, H., HÖLPER, S., KRÜGER, M. & STAINIER, D. 

Y. R. 2015. Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature, 

524, 230. 

[193] STAINIER, D. Y. R., RAZ, E., LAWSON, N. D., EKKER, S. C., BURDINE, R. D., EISEN, J. S., 

INGHAM, P. W., SCHULTE-MERKER, S., YELON, D., WEINSTEIN, B. M., MULLINS, M. C., 

WILSON, S. W., RAMAKRISHNAN, L., AMACHER, S. L., NEUHAUSS, S. C. F., MENG, A., 

MOCHIZUKI, N., PANULA, P. & MOENS, C. B. 2017. Guidelines for morpholino use in zebrafish. 

PLoS Genet, 13, e1007000. 

[194] LAWSON, N. D. & WEINSTEIN, B. M. 2002. In vivo imaging of embryonic vascular development using 

transgenic zebrafish. Dev Biol, 248, 307-18. 

[195] PRENGEL Jan. 2000. Entwicklung und immunmorphologische Charakterisierung monoklonaler 

 Antikörper gegen Proteine des Zebrabärblings (Danio rerio). PhD thesis, Munich. 

[196] TREVARROW, B., MARKS, D. L. & KIMMEL, C. B. 1990. Organization of hindbrain segments in the 

zebrafish embryo. Neuron, 4, 669-79. 



References 

 156 

[197] MULLINS, M. C., HAMMERSCHMIDT, M., HAFFTER, P. & NUSSLEIN-VOLHARD, C. 1994. Large-

scale mutagenesis in the zebrafish: in search of genes controlling development in a vertebrate. Curr 

Biol, 4, 189-202. 

[198] KIMMEL, C. B., BALLARD, W. W., KIMMEL, S. R., ULLMANN, B. & SCHILLING, T. F. 1995. 

Stages of embryonic development of the zebrafish. Dev Dyn, 203, 253-310. 

[199] KARLSSON, J., VON HOFSTEN, J. & OLSSON, P. E. 2001. Generating transparent zebrafish: a refined 

method to improve detection of gene expression during embryonic development. Mar Biotechnol (NY), 

3, 522-7. 

[200] TIMME-LARAGY, A. R., KARCHNER, S. I. & HAHN, M. E. 2012. Gene knockdown by morpholino-

modified oligonucleotides in the zebrafish (Danio rerio) model: applications for developmental 

toxicology. Methods in molecular biology (Clifton, N.J.), 889, 51-71. 

[201] SIELAFF, M., KUHAREV, J., BOHN, T., HAHLBROCK, J., BOPP, T., TENZER, S. & DISTLER, U. 

2017. Evaluation of FASP, SP3, and iST Protocols for Proteomic Sample Preparation in the Low 

Microgram Range. J Proteome Res, 16, 4060-4072. 

[202] PAQUET, D., BHAT, R., SYDOW, A., MANDELKOW, E. M., BERG, S., HELLBERG, S., FALTING, 

J., DISTEL, M., KOSTER, R. W., SCHMID, B. & HAASS, C. 2009. A zebrafish model of tauopathy 

allows in vivo imaging of neuronal cell death and drug evaluation. J Clin Invest, 119, 1382-95. 

[203] MEYER, A. & SCHARTL, M. 1999. Gene and genome duplications in vertebrates: the one-to-four (-to-

eight in fish) rule and the evolution of novel gene functions. Curr Opin Cell Biol, 11, 699-704. 

[204] VILELLA, A. J., SEVERIN, J., URETA-VIDAL, A., HENG, L., DURBIN, R. & BIRNEY, E. 2009. 

EnsemblCompara GeneTrees: Complete, duplication-aware phylogenetic trees in vertebrates. Genome 

Res, 19, 327-35. 

[205] DURAN, C., EDWARDS, D. & BATLEY, J. 2009. Genetic maps and the use of synteny. Methods Mol 

Biol, 513, 41-55. 

[206] MILSTEIN, C. 1999. The hybridoma revolution: an offshoot of basic research. Bioessays, 21, 966-73. 

[207] PIÑOL-ROMA, S. & DREYFUSS, G. 1992. Shuttling of pre-mRNA binding proteins between nucleus 

and cytoplasm. Nature, 355, 730. 

[208] SHORTER, J. & TAYLOR, J. P. 2013. Disease mutations in the prion-like domains of hnRNPA1 and 

hnRNPA2/B1 introduce potent steric zippers that drive excess RNP granule assembly. Rare Dis, 1, 

e25200. 

[209] ISKEN, O. & MAQUAT, L. E. 2007. Quality control of eukaryotic mRNA: safeguarding cells from 

abnormal mRNA function. Genes Dev, 21, 1833-56. 

[210] PELEGRI, F. 2003. Maternal factors in zebrafish development. Dev Dyn, 228, 535-54. 

[211] LAIRD, A. S., VAN HOECKE, A., DE MUYNCK, L., TIMMERS, M., VAN DEN BOSCH, L., VAN 

DAMME, P. & ROBBERECHT, W. 2010. Progranulin is neurotrophic in vivo and protects against a 

mutant TDP-43 induced axonopathy. PLoS One, 5, e13368. 

[212] PAQUET, D., BHAT, R., SYDOW, A., MANDELKOW, E.-M., BERG, S., HELLBERG, S., FÄLTING, 

J., DISTEL, M., KÖSTER, R. W., SCHMID, B. & HAASS, C. 2009. A zebrafish model of tauopathy 

allows in vivo imaging of neuronal cell death and drug evaluation. The Journal of Clinical 

Investigation, 119, 1382-1395. 



References 

 157  

[213] ZHANG, R., YANG, J., ZHU, J. & XU, X. 2009. Depletion of zebrafish Tcap leads to muscular dystrophy 

via disrupting sarcomere-membrane interaction, not sarcomere assembly. Hum Mol Genet, 18, 4130-40. 

[214] DESPIC, V., DEJUNG, M., GU, M., KRISHNAN, J., ZHANG, J., HERZEL, L., STRAUBE, K., 

GERSTEIN, M. B., BUTTER, F. & NEUGEBAUER, K. M. 2017. Dynamic RNA–protein interactions 

underlie the zebrafish maternal-to-zygotic transition. Genome Research, 27, 1184-1194. 

[215] FRAHER, D., ELLIS, M. K., MORRISON, S., MCGEE, S. L., WARD, A. C., WALDER, K. & GIBERT, 

Y. 2015. Lipid Abundance in Zebrafish Embryos Is Regulated by Complementary Actions of the 

Endocannabinoid System and Retinoic Acid Pathway. Endocrinology, 156, 3596-609. 

[216] ALTENBERG, B. & GREULICH, K. O. 2004. Genes of glycolysis are ubiquitously overexpressed in 24 

cancer classes. Genomics, 84, 1014-20. 

[217] DAVID, C. J., CHEN, M., ASSANAH, M., CANOLL, P. & MANLEY, J. L. 2010. HnRNP proteins 

controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature, 463, 364-8. 

[218] BONNAL, S., VIGEVANI, L. & VALCARCEL, J. 2012. The spliceosome as a target of novel antitumour 

drugs. Nat Rev Drug Discov, 11, 847-59. 

[219] LI, Z., ZHENG, W., LI, H., LI, C. & GONG, Z. 2015. Synergistic Induction of Potential Warburg Effect 

in Zebrafish Hepatocellular Carcinoma by Co-Transgenic Expression of Myc and xmrk Oncogenes. 

PLoS One, 10, e0132319. 

[220] ISHIKAWA, T., MORITA, M. & NAKANO, I. 2007. Constant blood flow reduction in premotor frontal 

lobe regions in ALS with dementia - a SPECT study with 3D-SSP. Acta Neurol Scand, 116, 340-4. 

[221] TANAKA, M., KONDO, S., HIRAI, S., SUN, X., YAMAGISHI, T. & OKAMOTO, K. 1993. Cerebral 

blood flow and oxygen metabolism in progressive dementia associated with amyotrophic lateral 

sclerosis. J Neurol Sci, 120, 22-8. 

[222] STRECKER, K. 2015. Linking Neurodegeneration to Vascular Dysfunction – Loss of ALS/FTD-

Associated TDP-43 causes angiogenic defects. PhD thesis. 

[223] ABDELMAGID, S. M., SONDAG, G. R., MOUSSA, F. M., BELCHER, J. Y., YU, B., STINNETT, H., 

NOVAK, K., MBIMBA, T., KHOL, M., HANKENSON, K. D., MALCUIT, C. & SAFADI, F. F. 2015. 

Mutation in Osteoactivin Promotes Receptor Activator of NF�B Ligand (RANKL)-mediated 

Osteoclast Differentiation and Survival but Inhibits Osteoclast Function. The Journal of Biological 

Chemistry, 290, 20128-20146. 

[224] TANAKA, H., SHIMAZAWA, M., KIMURA, M., TAKATA, M., TSURUMA, K., YAMADA, M., 

TAKAHASHI, H., HOZUMI, I., NIWA, J., IGUCHI, Y., NIKAWA, T., SOBUE, G., INUZUKA, T. & 

HARA, H. 2012. The potential of GPNMB as novel neuroprotective factor in amyotrophic lateral 

sclerosis. Sci Rep, 2, 573. 

[225] MAGA, G. & HUBSCHER, U. 2003. Proliferating cell nuclear antigen (PCNA): a dancer with many 

partners. J Cell Sci, 116, 3051-60. 

[226] BRAVO, R., FRANK, R., BLUNDELL, P. A. & MACDONALD-BRAVO, H. 1987. Cyclin/PCNA is the 

auxiliary protein of DNA polymerase-delta. Nature, 326, 515-7. 

[227] TAN, C. K., CASTILLO, C., SO, A. G. & DOWNEY, K. M. 1986. An auxiliary protein for DNA 

polymerase-delta from fetal calf thymus. J Biol Chem, 261, 12310-6. 

[228] STRZALKA, W. & ZIEMIENOWICZ, A. 2011. Proliferating cell nuclear antigen (PCNA): a key factor in 

DNA replication and cell cycle regulation. Annals of Botany, 107, 1127-1140. 



References 

 158 

[229] SCHÖNENBERGER, F., DEUTZMANN, A., FERRANDO-MAY, E. & MERHOF, D. 2015. 

Discrimination of cell cycle phases in PCNA-immunolabeled cells. BMC Bioinformatics, 16, 180. 

[230] HAN, S. P., TANG, Y. H. & SMITH, R. 2010. Functional diversity of the hnRNPs: past, present and 

perspectives. Biochem J, 430, 379-92. 

[231] GLASAUER, S. M. & NEUHAUSS, S. C. 2014. Whole-genome duplication in teleost fishes and its 

evolutionary consequences. Mol Genet Genomics, 289, 1045-60. 

[232] OHNO, S. 1970a. Evolution by gene duplication, Springer, New York. 

[233] JAILLON, O., AURY, J. M., BRUNET, F., PETIT, J. L., STANGE-THOMANN, N., MAUCELI, E., 

BOUNEAU, L., FISCHER, C., OZOUF-COSTAZ, C., BERNOT, A., NICAUD, S., JAFFE, D., 

FISHER, S., LUTFALLA, G., DOSSAT, C., SEGURENS, B., DASILVA, C., SALANOUBAT, M., 

LEVY, M., BOUDET, N., CASTELLANO, S., ANTHOUARD, V., JUBIN, C., CASTELLI, V., 

KATINKA, M., VACHERIE, B., BIEMONT, C., SKALLI, Z., CATTOLICO, L., POULAIN, J., DE 

BERARDINIS, V., CRUAUD, C., DUPRAT, S., BROTTIER, P., COUTANCEAU, J. P., GOUZY, J., 

PARRA, G., LARDIER, G., CHAPPLE, C., MCKERNAN, K. J., MCEWAN, P., BOSAK, S., 

KELLIS, M., VOLFF, J. N., GUIGO, R., ZODY, M. C., MESIROV, J., LINDBLAD-TOH, K., 

BIRREN, B., NUSBAUM, C., KAHN, D., ROBINSON-RECHAVI, M., LAUDET, V., SCHACHTER, 

V., QUETIER, F., SAURIN, W., SCARPELLI, C., WINCKER, P., LANDER, E. S., WEISSENBACH, 

J. & ROEST CROLLIUS, H. 2004. Genome duplication in the teleost fish Tetraodon nigroviridis 

reveals the early vertebrate proto-karyotype. Nature, 431, 946-57. 

[234] LABOISSONNIERE, L. A., SMITH, C. L., MESENBRINK, J., CHOWDHURY, R., BURNEY, A., 

LANG, M., SIERRA, M., STARK, A., MALDONADO-CASALDUC, G., MULLER, M. & 

TRIMARCHI, J. M. 2018. ALS-associated genes display CNS expression in the developing zebrafish. 

Gene Expression Patterns. 

[235] HUTCHISON, S., LEBEL, C., BLANCHETTE, M. & CHABOT, B. 2002. Distinct sets of adjacent 

heterogeneous nuclear ribonucleoprotein (hnRNP) A1/A2 binding sites control 5' splice site selection in 

the hnRNP A1 mRNA precursor. J Biol Chem, 277, 29745-52. 

[236] HE, Y., BROWN, M. A., ROTHNAGEL, J. A., SAUNDERS, N. A. & SMITH, R. 2005. Roles of 

heterogeneous nuclear ribonucleoproteins A and B in cell proliferation. Journal of Cell Science, 118, 

3173. 

[237] EISEN, J. S. & SMITH, J. C. 2008. Controlling morpholino experiments: don't stop making antisense. 

Development, 135, 1735-43. 

[238] SCHMID, B. & HAASS, C. 2013. Genomic editing opens new avenues for zebrafish as a model for 

neurodegeneration. Journal of Neurochemistry, 127, 461-470. 

[239] STAINIER, D. Y. R., RAZ, E., LAWSON, N. D., EKKER, S. C., BURDINE, R. D., EISEN, J. S., 

INGHAM, P. W., SCHULTE-MERKER, S., YELON, D., WEINSTEIN, B. M., MULLINS, M. C., 

WILSON, S. W., RAMAKRISHNAN, L., AMACHER, S. L., NEUHAUSS, S. C. F., MENG, A., 

MOCHIZUKI, N., PANULA, P. & MOENS, C. B. 2017. Guidelines for morpholino use in zebrafish. 

PLOS Genetics, 13. 

[240] MIKULA, M., DZWONEK, A., KARCZMARSKI, J., RUBEL, T., DADLEZ, M., WYRWICZ, L. S., 

BOMSZTYK, K. & OSTROWSKI, J. 2006. Landscape of the hnRNP K protein-protein interactome. 

Proteomics, 6, 2395-406. 



References 

 159  

[241] RULE, R. R., SCHUFF, N., MILLER, R. G. & WEINER, M. W. 2010. Gray matter perfusion correlates 

with disease severity in ALS. Neurology, 74, 821-827. 

[242] ISHIKAWA, T., MORITA, M. & NAKANO, I. 2007. Constant blood flow reduction in premotor frontal 

lobe regions in ALS with dementia – a SPECT study with 3D-SSP. Acta Neurologica Scandinavica, 

116, 340-344. 

[243] ZHONG, Z., DEANE, R., ALI, Z., PARISI, M., SHAPOVALOV, Y., O'BANION, M. K., STOJANOVIC, 

K., SAGARE, A., BOILLEE, S., CLEVELAND, D. W. & ZLOKOVIC, B. V. 2008. ALS-causing 

SOD1 mutants generate vascular changes prior to motor neuron degeneration. Nat Neurosci, 11, 420-2. 

[244] CIURA, S., LATTANTE, S., LE BER, I., LATOUCHE, M., TOSTIVINT, H., BRICE, A. & KABASHI, 

E. 2013. Loss of function of C9orf72 causes motor deficits in a zebrafish model of amyotrophic lateral 

sclerosis. Annals of Neurology, 74, 180-187. 

[245] KABASHI, E., BERCIER, V., LISSOUBA, A., LIAO, M., BRUSTEIN, E., ROULEAU, G. A. & 

DRAPEAU, P. 2011. FUS and TARDBP but Not SOD1 Interact in Genetic Models of Amyotrophic 

Lateral Sclerosis. PLOS Genetics, 7, e1002214. 

[246] KABASHI, E., LIN, L., TRADEWELL, M. L., DION, P. A., BERCIER, V., BOURGOUIN, P., 

ROCHEFORT, D., BEL HADJ, S., DURHAM, H. D., VELDE, C. V., ROULEAU, G. A. & 

DRAPEAU, P. 2010. Gain and loss of function of ALS-related mutations of TARDBP (TDP-43) cause 

motor deficits in vivo. Human Molecular Genetics, 19, 671-683. 

[247] LATTANTE, S., DE CALBIAC, H., LE BER, I., BRICE, A., CIURA, S. & KABASHI, E. 2015. Sqstm1 

knock-down causes a locomotor phenotype ameliorated by rapamycin in a zebrafish model of 

ALS/FTLD. Human Molecular Genetics, 24, 1682-1690. 

[248] FENG, Y. & WALSH, C. A. 2004. The many faces of filamin: a versatile molecular scaffold for cell 

motility and signalling. Nat Cell Biol, 6, 1034-8. 

[249] ZHANG, L., CHEN, Q., AN, W., YANG, F., MAGUIRE, E. M., CHEN, D., ZHANG, C., WEN, G., 

YANG, M., DAI, B., LUONG, L. A., ZHU, J., XU, Q. & XIAO, Q. 2017. Novel Pathological Role of 

hnRNPA1 (Heterogeneous Nuclear Ribonucleoprotein A1) in Vascular Smooth Muscle Cell Function 

and Neointima Hyperplasia. Arterioscler Thromb Vasc Biol, 37, 2182-2194. 

[250] GERHARDT, H., GOLDING, M., FRUTTIGER, M., RUHRBERG, C., LUNDKVIST, A., 

ABRAMSSON, A., JELTSCH, M., MITCHELL, C., ALITALO, K., SHIMA, D. & BETSHOLTZ, C. 

2003. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol, 161, 1163-

77. 

[251] PROCTOR, R. A. 1987. Fibronectin: a brief overview of its structure, function, and physiology. Rev Infect 

Dis, 9 Suppl 4, S317-21. 

[252] GEORGE, E. L., GEORGES-LABOUESSE, E. N., PATEL-KING, R. S., RAYBURN, H. & HYNES, R. 

O. 1993. Defects in mesoderm, neural tube and vascular development in mouse embryos lacking 

fibronectin. Development, 119, 1079-91. 

[253] GEORGES-LABOUESSE, E. N., GEORGE, E. L., RAYBURN, H. & HYNES, R. O. 1996. Mesodermal 

development in mouse embryos mutant for fibronectin. Dev Dyn, 207, 145-56. 

[254] GEORGE, E. L., BALDWIN, H. S. & HYNES, R. O. 1997. Fibronectins are essential for heart and blood 

vessel morphogenesis but are dispensable for initial specification of precursor cells. Blood, 90, 3073-81. 



References 

 160 

[255] ZHAO, Q., LIU, X. & COLLODI, P. 2001. Identification and characterization of a novel fibronectin in 

zebrafish. Exp Cell Res, 268, 211-9. 

[256] KOSHIDA, S., KISHIMOTO, Y., USTUMI, H., SHIMIZU, T., FURUTANI-SEIKI, M., KONDOH, H. & 

TAKADA, S. 2005. Integrinalpha5-dependent fibronectin accumulation for maintenance of somite 

boundaries in zebrafish embryos. Dev Cell, 8, 587-98. 

[257] JULICH, D., GEISLER, R. & HOLLEY, S. A. 2005. Integrinalpha5 and delta/notch signaling have 

complementary spatiotemporal requirements during zebrafish somitogenesis. Dev Cell, 8, 575-86. 

[258] DERUITER, C. 2010. Somites: formation and role in developing the body plan. Embryo Project 

Encyclopedia. Arizona State University. School of Life Sciences. 

[259] KATRIN HIPKE, B. P., ALEXANDER HRUSCHA, MIHA MODIC, VIKAS BANSAL, SEBASTIAN A. 

LEWANDOWSKI, DENISE OROCZCO, DIETER EDBAUER, STEFAN BONN, CHRISTIAN 

HAASS, ULRICH POHL, ELOI MONTANEZ, BETTINA SCHMID 2018. Loss of TDP-43 causes 

ectopic endothelial sprouting and migration defects through  increased fn 1, vcam 1 and itg �4/�1 

DZNE Munich. 

[260] COSTESSI, L., PORRO, F., IACONCIG, A. & MURO, A. F. 2014. TDP-43 regulates beta-adducin 

(Add2) transcript stability. RNA Biol, 11, 1280-90. 

[261] GLISOVIC, T., BACHORIK, J. L., YONG, J. & DREYFUSS, G. 2008. RNA-binding proteins and post-

transcriptional gene regulation. FEBS Lett, 582, 1977-86. 

[262] MAGNUSSON, M. K. & MOSHER, D. F. 1998. Fibronectin: structure, assembly, and cardiovascular 

implications. Arterioscler Thromb Vasc Biol, 18, 1363-70. 

[263] BRAY, N. 2018. The power of 3� UTRs. Nature Reviews Neuroscience, 19, 319-319. 

[264] HUELGA, S. C., VU, A. Q., ARNOLD, J. D., LIANG, T. Y., LIU, P. P., YAN, B. Y., DONOHUE, J. P., 

SHIUE, L., HOON, S., BRENNER, S., ARES, M., JR. & YEO, G. W. 2012. Integrative genome-wide 

analysis reveals cooperative regulation of alternative splicing by hnRNP proteins. Cell reports, 1, 167-

178. 

[265] GAMA-CARVALHO, M. & CARMO-FONSECA, M. 2001. The rules and roles of nucleocytoplasmic 

shuttling proteins. FEBS Lett, 498, 157-63. 

[266] GORLACH, M., WITTEKIND, M., BECKMAN, R. A., MUELLER, L. & DREYFUSS, G. 1992. 

Interaction of the RNA-binding domain of the hnRNP C proteins with RNA. Embo j, 11, 3289-95. 

[267] AYALA, Y. M., PANTANO, S., D'AMBROGIO, A., BURATTI, E., BRINDISI, A., MARCHETTI, C., 

ROMANO, M. & BARALLE, F. E. 2005. Human, Drosophila, and C.elegans TDP43: Nucleic Acid 

Binding Properties and Splicing Regulatory Function. Journal of Molecular Biology, 348, 575-588. 

[268] PASSONI, M., DE CONTI, L., BARALLE, M. & BURATTI, E. 2012. UG repeats/TDP-43 interactions 

near 5' splice sites exert unpredictable effects on splicing modulation. J Mol Biol, 415, 46-60. 

[269] BURATTI, E. & BARALLE, F. E. 2001. Characterization and functional implications of the RNA binding 

properties of nuclear factor TDP-43, a novel splicing regulator of CFTR exon 9. J Biol Chem, 276, 

36337-43. 

[270] BLANCHETTE, M. & CHABOT, B. 1999. Modulation of exon skipping by high-affinity hnRNP A1-

binding sites and by intron elements that repress splice site utilization. Embo j, 18, 1939-52. 



References 

 161  

[271] NASIM, F. U., HUTCHISON, S., CORDEAU, M. & CHABOT, B. 2002. High-affinity hnRNP A1 

binding sites and duplex-forming inverted repeats have similar effects on 5' splice site selection in 

support of a common looping out and repression mechanism. Rna, 8, 1078-89. 

[272] JANKOWSKY, E. & HARRIS, M. E. 2015. Specificity and nonspecificity in RNA-protein interactions. 

Nat Rev Mol Cell Biol, 16, 533-44. 

[273] TAKACS, C. M. & GIRALDEZ, A. J. 2016. miR-430 regulates oriented cell division during neural tube 

development in zebrafish. Dev Biol, 409, 442-50. 

[274] GIRALDEZ, A. J., CINALLI, R. M., GLASNER, M. E., ENRIGHT, A. J., THOMSON, J. M., 

BASKERVILLE, S., HAMMOND, S. M., BARTEL, D. P. & SCHIER, A. F. 2005. MicroRNAs 

regulate brain morphogenesis in zebrafish. Science, 308, 833-8. 

[275] DHANRAJ, S., RAO GUNJA, S. M., DEVEAU, A. P., NISSBECK, M., BOONYAWAT, B., COOMBS, 

A. J., RENIERI, A., MUCCIOLO, M., MAROZZA, A., BUONI, S., TURNER, L., LI, H., JARRAR, 

A., SABANAYAGAM, M., KIRBY, M., SHAGO, M., PINTO, D., BERMAN, J. N., SCHERER, S. 

W., VIRTANEN, A. & DROR, Y. 2015. Bone Marrow Failure and Developmental Delay Caused By 

Mutations in Poly(A)-Specific Ribonuclease. Blood, 126, 2404. 

[276] DONG, G., MAO, Q., XIA, W., XU, Y., WANG, J., XU, L. & JIANG, F. 2016. PKM2 and cancer: The 

function of PKM2 beyond glycolysis. Oncology letters, 11, 1980-1986. 

[277] CHEN, M. 2011. Regulation of alternative splicing and its connections to cancer. Columbia University. 

[278] FURUKAWA-HIBI, Y., KOBAYASHI, Y., CHEN, C. & MOTOYAMA, N. 2005. FOXO transcription 

factors in cell-cycle regulation and the response to oxidative stress. Antioxid Redox Signal, 7, 752-60. 

[279] JOSHI, I., MINTER, L. M., TELFER, J., DEMAREST, R. M., CAPOBIANCO, A. J., ASTER, J. C., 

SICINSKI, P., FAUQ, A., GOLDE, T. E. & OSBORNE, B. A. 2009. Notch signaling mediates G1/S 

cell-cycle progression in T cells via cyclin D3 and its dependent kinases. Blood, 113, 1689-1698. 

[280] GONZALEZ DE AGUILAR, J. L., NIEDERHAUSER-WIEDERKEHR, C., HALTER, B., DE TAPIA, 

M., DI SCALA, F., DEMOUGIN, P., DUPUIS, L., PRIMIG, M., MEININGER, V. & LOEFFLER, J. 

P. 2008. Gene profiling of skeletal muscle in an amyotrophic lateral sclerosis mouse model. Physiol 

Genomics, 32, 207-18. 

[281] SHTILBANS, A., CHOI, S. G., FOWKES, M. E., KHITROV, G., SHAHBAZI, M., TING, J., ZHANG, 

W., SUN, Y., SEALFON, S. C. & LANGE, D. J. 2011. Differential gene expression in patients with 

amyotrophic lateral sclerosis. Amyotroph Lateral Scler, 12, 250-6. 

[282] USHIGOME, M., UBAGAI, T., FUKUDA, H., TSUCHIYA, N., SUGIMURA, T., TAKATSUKA, J. & 

NAKAGAMA, H. 2005. Up-regulation of hnRNP A1 gene in sporadic human colorectal cancers. Int J 

Oncol, 26, 635-40. 

[283] LESTOURGEON, W. M., BEYER, A. L., CHRISTENSEN, M. E., WALKER, B. W., POUPORE, S. M. 

& DANIELS, L. P. 1978. The packaging proteins of core hnRNP particles and the maintenance of 

proliferative cell states. Cold Spring Harb Symp Quant Biol, 42 Pt 2, 885-98. 

[284] SUN, A., BAGELLA, L., TUTTON, S., ROMANO, G. & GIORDANO, A. 2007. From G0 to S phase: a 

view of the roles played by the retinoblastoma (Rb) family members in the Rb-E2F pathway. J Cell 

Biochem, 102, 1400-4. 

[285] SALVADOR, J. M., BROWN-CLAY, J. D. & FORNACE, A. J., JR. 2013. Gadd45 in stress signaling, 

cell cycle control, and apoptosis. Adv Exp Med Biol, 793, 1-19. 



References 

 162 

[286] ISRAELS, E. D. & ISRAELS, L. G. 2000. The cell cycle. Oncologist, 5, 510-3. 

[287] BOULDIN, C. M. & KIMELMAN, D. 2014. Dual fucci: a new transgenic line for studying the cell cycle 

from embryos to adults. Zebrafish, 11, 182-3. 

[288] DAMIANO, F., ROCHIRA, A., TOCCI, R., ALEMANNO, S., GNONI, A. & SICULELLA, L. 2013. 

hnRNP A1 mediates the activation of the IRES-dependent SREBP-1a mRNA translation in response to 

endoplasmic reticulum stress. Biochem J, 449, 543-53. 

[289] CARVALHO, L. & HEISENBERG, C. P. 2010. The yolk syncytial layer in early zebrafish development. 

Trends Cell Biol, 20, 586-92. 

[290] YOGANANTHARJAH, P., BYREDDY, A. R., FRAHER, D., PURI, M. & GIBERT, Y. 2017. Rapid 

quantification of neutral lipids and triglycerides during zebrafish embryogenesis. Int J Dev Biol, 61, 

105-111. 

[291] SCHLEGEL, A. & STAINIER, D. Y. 2006. Microsomal triglyceride transfer protein is required for yolk 

lipid utilization and absorption of dietary lipids in zebrafish larvae. Biochemistry, 45, 15179-87. 

[292] BABIN, P. J., THISSE, C., DURLIAT, M., ANDRE, M., AKIMENKO, M. A. & THISSE, B. 1997. Both 

apolipoprotein E and A-I genes are present in a nonmammalian vertebrate and are highly expressed 

during embryonic development. Proc Natl Acad Sci U S A, 94, 8622-7. 

[293] PICKART, M. A., KLEE, E. W., NIELSEN, A. L., SIVASUBBU, S., MENDENHALL, E. M., BILL, B. 

R., CHEN, E., ECKFELDT, C. E., KNOWLTON, M., ROBU, M. E., LARSON, J. D., DENG, Y., 

SCHIMMENTI, L. A., ELLIS, L. B., VERFAILLIE, C. M., HAMMERSCHMIDT, M., FARBER, S. 

A. & EKKER, S. C. 2006. Genome-wide reverse genetics framework to identify novel functions of the 

vertebrate secretome. PLoS One, 1, e104. 

[294] RASSART, E., BEDIRIAN, A., DO CARMO, S., GUINARD, O., SIROIS, J., TERRISSE, L. & MILNE, 

R. 2000. Apolipoprotein D. Biochim Biophys Acta, 1482, 185-98. 

[295] PERDOMO, G. & DONG, H. H. 2009. Apolipoprotein D in Lipid Metabolism and Its Functional 

Implication in Atherosclerosis and Aging. Aging (Albany NY), 1, 17-27. 

[296] PERDOMO, G., KIM, D. H., ZHANG, T., QU, S., THOMAS, E. A., TOLEDO, F. G. S., SLUSHER, S., 

FAN, Y., KELLEY, D. E. & DONG, H. H. 2010. A role of apolipoprotein D in triglyceride 

metabolism. Journal of Lipid Research, 51, 1298-1311. 

[297] VIJAYARAGHAVAN, S., HITMAN, G. A. & KOPELMAN, P. G. 1994. Apolipoprotein-D 

polymorphism: a genetic marker for obesity and hyperinsulinemia. J Clin Endocrinol Metab, 79, 568-

70. 

[298] CHEN, Y., JIA, L., WEI, C., WANG, F., LV, H. & JIA, J. 2008. Association between polymorphisms in 

the apolipoprotein D gene and sporadic Alzheimer's disease. Brain Res, 1233, 196-202. 

[299] WALDNER, A., DASSATI, S., REDL, B., SMANIA, N. & GANDOLFI, M. 2018. Apolipoprotein D 

Concentration in Human Plasma during Aging and in Parkinson's Disease: A Cross-Sectional Study. 

Parkinsons Dis, 2018, 3751516. 

[300] HELISALMI, S., HILTUNEN, M., VEPSALAINEN, S., IIVONEN, S., CORDER, E. H., LEHTOVIRTA, 

M., MANNERMAA, A., KOIVISTO, A. M. & SOININEN, H. 2004. Genetic variation in 

apolipoprotein D and Alzheimer's disease. J Neurol, 251, 951-7. 

[301] AVRAHAM-DAVIDI, I., ELY, Y., PHAM, V. N., CASTRANOVA, D., GRUNSPAN, M., 

MALKINSON, G., GIBBS-BAR, L., MAYSELESS, O., ALLMOG, G., LO, B., WARREN, C. M., 



References 

 163  

CHEN, T. T., UNGOS, J., KIDD, K., SHAW, K., ROGACHEV, I., WAN, W., MURPHY, P. M., 

FARBER, S. A., CARMEL, L., SHELNESS, G. S., IRUELA-ARISPE, M. L., WEINSTEIN, B. M. & 

YANIV, K. 2012. ApoB-containing lipoproteins regulate angiogenesis by modulating expression of 

VEGF receptor 1. Nat Med, 18, 967-73. 

[302] QUINLIVAN, V. H. & FARBER, S. A. 2017. Lipid Uptake, Metabolism, and Transport in the Larval 

Zebrafish. Front Endocrinol (Lausanne), 8, 319. 

[303] EAR, J., HUANG, H., WILSON, T., TEHRANI, Z., LINDGREN, A., SUNG, V., LAADEM, A., 

DANIEL, T. O., CHOPRA, R. & LIN, S. 2015. RAP-011 improves erythropoiesis in zebrafish model of 

Diamond-Blackfan anemia through antagonizing lefty1. Blood, 126, 880-90. 

[304] DEISENROTH, C. & ZHANG, Y. 2011. The Ribosomal Protein-Mdm2-p53 Pathway and Energy 

Metabolism: Bridging the Gap between Feast and Famine. Genes & cancer, 2, 392-403. 

[305] SCHOONJANS, K., PEINADO-ONSURBE, J., LEFEBVRE, A. M., HEYMAN, R. A., BRIGGS, M., 

DEEB, S., STAELS, B. & AUWERX, J. 1996. PPARalpha and PPARgamma activators direct a distinct 

tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. Embo j, 15, 5336-48. 

[306] LABRIE, M., LALONDE, S., NAJYB, O., THIERY, M., DANEAULT, C., DES ROSIERS, C., 

RASSART, E. & MOUNIER, C. 2015. Apolipoprotein D Transgenic Mice Develop Hepatic Steatosis 

through Activation of PPAR� and Fatty Acid Uptake. PLOS ONE, 10, e0130230. 

[307] JIMENEZ-PALOMARES, M., COZAR-CASTELLANO, I., GANFORNINA, M. D., SANCHEZ, D. & 

PERDOMO, G. 2011. Genetic deficiency of apolipoprotein D in the mouse is associated with 

nonfasting hypertriglyceridemia and hyperinsulinemia. Metabolism, 60, 1767-74. 

[308] DASSATI, S., WALDNER, A. & SCHWEIGREITER, R. 2014. Apolipoprotein D takes center stage in the 

stress response of the aging and degenerative brain. Neurobiology of Aging, 35, 1632-1642. 

[309] BEREMAN, M. S., BERI, J., ENDERS, J. R. & NASH, T. 2018. Machine Learning Reveals Protein 

Signatures in CSF and Plasma Fluids of Clinical Value for ALS. Scientific Reports, 8, 16334. 

[310] SANCHEZ, D., LOPEZ-ARIAS, B., TORROJA, L., CANAL, I., WANG, X., BASTIANI, M. J. & 

GANFORNINA, M. D. 2006. Loss of glial lazarillo, a homolog of apolipoprotein D, reduces lifespan 

and stress resistance in Drosophila. Curr Biol, 16, 680-6. 

[311] MCCARTHY, S., SOMAYAJULU, M., SIKORSKA, M., BOROWY-BOROWSKI, H. & PANDEY, S. 

2004. Paraquat induces oxidative stress and neuronal cell death; neuroprotection by water-soluble 

Coenzyme Q10. Toxicol Appl Pharmacol, 201, 21-31. 

[312] GANFORNINA, M. D., DO CARMO, S., LORA, J. M., TORRES-SCHUMANN, S., VOGEL, M., 

ALLHORN, M., GONZALEZ, C., BASTIANI, M. J., RASSART, E. & SANCHEZ, D. 2008. 

Apolipoprotein D is involved in the mechanisms regulating protection from oxidative stress. Aging 

Cell, 7, 506-15. 

[313] SHAW, P. J., INCE, P. G., FALKOUS, G. & MANTLE, D. 1995. Oxidative damage to protein in sporadic 

motor neuron disease spinal cord. Ann Neurol, 38, 691-5. 

[314] FERRANTE, R. J., BROWNE, S. E., SHINOBU, L. A., BOWLING, A. C., BAIK, M. J., MACGARVEY, 

U., KOWALL, N. W., BROWN, R. H., JR. & BEAL, M. F. 1997. Evidence of increased oxidative 

damage in both sporadic and familial amyotrophic lateral sclerosis. J Neurochem, 69, 2064-74. 

[315] SCHMITT, F., HUSSAIN, G., DUPUIS, L., LOEFFLER, J. P. & HENRIQUES, A. 2014. A plural role for 

lipids in motor neuron diseases: energy, signaling and structure. Front Cell Neurosci, 8, 25. 



References 

 164 

[316] COOPER, R. A. 1978. Influence of increased membrane cholesterol on membrane fluidity and cell 

function in human red blood cells. J Supramol Struct, 8, 413-30. 

[317] MIANA-MENA, F. J., PIEDRAFITA, E., GONZALEZ-MINGOT, C., LARRODE, P., MUNOZ, M. J., 

MARTINEZ-BALLARIN, E., REITER, R. J., OSTA, R. & GARCIA, J. J. 2011. Levels of membrane 

fluidity in the spinal cord and the brain in an animal model of amyotrophic lateral sclerosis. J Bioenerg 

Biomembr, 43, 181-6. 

[318] AUESTAD, N., KORSAK, R. A., MORROW, J. W. & EDMOND, J. 1991. Fatty acid oxidation and 

ketogenesis by astrocytes in primary culture. J Neurochem, 56, 1376-86. 

[319] BAJO-GRANERAS, R., GANFORNINA, M. D., MARTIN-TEJEDOR, E. & SANCHEZ, D. 2011. 

Apolipoprotein D mediates autocrine protection of astrocytes and controls their reactivity level, 

contributing to the functional maintenance of paraquat-challenged dopaminergic systems. Glia, 59, 

1551-66. 

[320] SANCHEZ, D., BAJO-GRANERAS, R., DEL CANO-ESPINEL, M., GARCIA-CENTENO, R., 

GARCIA-MATEO, N., PASCUA-MAESTRO, R. & GANFORNINA, M. D. 2015. Aging without 

Apolipoprotein D: Molecular and cellular modifications in the hippocampus and cortex. Exp Gerontol, 

67, 19-47. 

[321] WATTS, L. T., RATHINAM, M. L., SCHENKER, S. & HENDERSON, G. I. 2005. Astrocytes protect 

neurons from ethanol-induced oxidative stress and apoptotic death. J Neurosci Res, 80, 655-66. 

[322] YAMANAKA, K. & KOMINE, O. 2018. The multi-dimensional roles of astrocytes in ALS. Neurosci Res, 

126, 31-38. 

[323] BENTMANN, E., HAASS, C. & DORMANN, D. 2013. Stress granules in neurodegeneration – lessons 

learnt from TAR DNA binding protein of 43 kDa and fused in sarcoma. The FEBS Journal, 280, 4348-

4370. 

[324] UHLEN, M., FAGERBERG, L., HALLSTROM, B. M., LINDSKOG, C., OKSVOLD, P., 

MARDINOGLU, A., SIVERTSSON, A., KAMPF, C., SJOSTEDT, E., ASPLUND, A., OLSSON, I., 

EDLUND, K., LUNDBERG, E., NAVANI, S., SZIGYARTO, C. A., ODEBERG, J., DJUREINOVIC, 

D., TAKANEN, J. O., HOBER, S., ALM, T., EDQVIST, P. H., BERLING, H., TEGEL, H., MULDER, 

J., ROCKBERG, J., NILSSON, P., SCHWENK, J. M., HAMSTEN, M., VON FEILITZEN, K., 

FORSBERG, M., PERSSON, L., JOHANSSON, F., ZWAHLEN, M., VON HEIJNE, G., NIELSEN, J. 

& PONTEN, F. 2015. Proteomics. Tissue-based map of the human proteome. Science, 347, 1260419. 

[325] MAHLEY, R. W., WEISGRABER, K. H. & HUANG, Y. 2006. Apolipoprotein E4: a causative factor and 

therapeutic target in neuropathology, including Alzheimer's disease. Proc Natl Acad Sci U S A, 103, 

5644-51. 

[326] CONEJERO-GOLDBERG, C., GOMAR, J. J., BOBES-BASCARAN, T., HYDE, T. M., KLEINMAN, J. 

E., HERMAN, M. M., CHEN, S., DAVIES, P. & GOLDBERG, T. E. 2014. APOE2 enhances 

neuroprotection against Alzheimer's disease through multiple molecular mechanisms. Mol Psychiatry, 

19, 1243-50. 

[327] POLJSAK, B. 2011. Strategies for reducing or preventing the generation of oxidative stress. Oxidative 

medicine and cellular longevity, 2011, 194586-194586. 



References 

 165  

[328] DUPUIS, L., OUDART, H., RENE, F., GONZALEZ DE AGUILAR, J. L. & LOEFFLER, J. P. 2004. 

Evidence for defective energy homeostasis in amyotrophic lateral sclerosis: benefit of a high-energy 

diet in a transgenic mouse model. Proc Natl Acad Sci U S A, 101, 11159-64. 

[329] COUGHLAN, K. S., HALANG, L., WOODS, I. & PREHN, J. H. M. 2016. A high-fat jelly diet restores 

bioenergetic balance and extends lifespan in the presence of motor dysfunction and lumbar spinal cord 

motor neuron loss in TDP-43(A315T) mutant C57BL6/J mice. Disease Models & Mechanisms, 9, 

1029-1037. 

[330] PATEL, B. P., SAFDAR, A., RAHA, S., TARNOPOLSKY, M. A. & HAMADEH, M. J. 2010. Caloric 

restriction shortens lifespan through an increase in lipid peroxidation, inflammation and apoptosis in the 

G93A mouse, an animal model of ALS. PLoS One, 5, e9386. 

[331] CIAPPARELLI, A., DELL'OSSO, L., PINI, S., CHIAVACCI, M. C., FENZI, M. & CASSANO, G. B. 

2000. Clozapine for treatment-refractory schizophrenia, schizoaffective disorder, and psychotic bipolar 

disorder: a 24-month naturalistic study. J Clin Psychiatry, 61, 329-34. 

[332] THOMAS, E. A., DANIELSON, P. E., NELSON, P. A., PRIBYL, T. M., HILBUSH, B. S., HASEL, K. 

W. & SUTCLIFFE, J. G. 2008. Clozapine increases apolipoprotein D expression in rodent brain: 

towards a mechanism for neuroleptic pharmacotherapy. Journal of Neurochemistry, 76, 789-796. 

[333] SINGH, A. K. & LAKHOTIA, S. C. 2012. The hnRNP A1 homolog Hrp36 is essential for normal 

development, female fecundity, omega speckle formation and stress tolerance in Drosophila 

melanogaster. Journal of Biosciences, 37, 659-678. 

[334] FUJIMORI, K., ISHIKAWA, M., OTOMO, A., ATSUTA, N., NAKAMURA, R., AKIYAMA, T., 

HADANO, S., AOKI, M., SAYA, H., SOBUE, G. & OKANO, H. 2018. Modeling sporadic ALS in 

iPSC-derived motor neurons identifies a potential therapeutic agent. Nature Medicine, 24, 1579-1589. 

	

 



 

 166 

List of Figures 
1.1 Schematic illustration of the HNRNP family ............................................................... 12	

1.2 Schematic illustration of the cell cycle. For explanation see text. ............................... 16	

1.3 Schematic illustration of the CRISPR/Cas9 system. .................................................... 21	

3.1 Schematic illustration of the human HNRNPA and zebrafish Hnrnpa domain 

structures ....................................................................................................................... 59	

3.2 Synteny between human and zebrafish HNRNPA1 and HNRNPA3 ............................ 60	

3.3 Schematic illustration of the Hnrnpa1a, Hnrnpa1b, and Hnrnpa3 antibody epitope .... 61	

3.4 HA-tagged Hnrnpa1a, Hnrnpa1b and Hnrnpa3 are successfully overexpressed in  

 HeLa cells ..................................................................................................................... 62	

3.5 Overexpressed HA tagged Hnrnpa1b and Hnrnpa3 are specifically detected on 

Western Blot ................................................................................................................. 63	

3.6 The monoclonal antibody raised against Tardbpl_tv1 detects also Hnrnpa3 but not 

Hnrnpa1a or Hnrnpa1b ................................................................................................. 63	

3.7 Hnrnpa1b and Hnrnpa3 protein expression during development ................................. 64	

3.8 HNRNPA1D262 does not mislocalize or aggregate in vivo ............................................ 65	

3.9 Localization of gRNA target sequences in hnrnpa1a, hnrnpa1b, and hnrnpa3 .......... 67	

3.10 Schematic illustration of gRNA+Cas9 protein injection into zebrafish eggs ............... 68	

3.11 Screening assays for CRISPR/Cas9 P0 induced hnrnpa mutations .............................. 70	

3.12 Schematic illustration of breeding P0 mosaic mutation carrier to homozygousity ...... 71	

3.13 Genomic sequences of selected alleles ......................................................................... 73	

3.14 Genotyping assays in F2 to discriminate between different genotypes ........................ 74	

3.15 The selected hnrnpa1a, hnrnpa1b, and hnrnpa3 alleles are loss of function alleles ... 75	

3.16 hnrnpa-/- single mutants show no obvious morphological phenotype .......................... 77	

3.17 hnrnpa-/- single mutants show normal SpMN axon outgrowth .................................... 78	

3.18 hnrnpa-/- single mutants show no morphological muscle defects ................................ 79	

3.19 Tdp-43 variant levels are not changed in brains of hnrnpa-/- single mutants ............... 80	

3.20 Hnrnpa1a and Hnrnpa1b compensate for each others loss of function, which is not 

compensated by Hnrnpa3 ............................................................................................. 84	

3.21 hnrnpa1a-/-; hnrnpa3-/- and hnrnpa1b-/-; hnrnpa3-/- mutants show no obvious 

morphological phenotype ............................................................................................. 85	

3.22 hnrnpa1a-/-; hnrnpa1b-/- mutants are embryonically lethal and show blood  

 circulation defects ......................................................................................................... 86	

3.23 hnrnpa1a-/-; hnrnpa1b-/- mutants are loss of protein mutants. ...................................... 87	



List of Figures  

 167  

3.24 hnrnpa1a-/-; hnrnpa1b-/- mutants are developmentally delayed. .................................. 89	

3.25 hnrnpa1a-/-; hnrnpa1b-/- mutants show impaired SpMN axon outgrowth .................... 90	

3.26 hnrnpa1a-/-; hnrnpa1b-/- mutants show morphological muscle defects ........................ 90	

3.27 hnrnpa1a-/-; hnrnpa1b-/- mutants have a thinned yolk extension .................................. 91	

3.28 hnrnpa1a-/-; hnrnpa1b-/- mutants show altered neutral lipid distribution. .................... 92	

3.29 hnrnpa1a-/-; hnrnpa1b-/- mutants show no alteration in pkma splicing ........................ 93	

3.30 hnrnpa1a-/-; hnrnpa1b-/- mutants show increased cell death in the spinal cord. ........... 94	

3.31 hnrnpa1a-/-; hnrnpa1b-/- mutants show vascular outgrowth delay and mispatterning . 95	

3.32 mRNA expression of fn1b is increased in hnrnpa1a-/-; hnrnpa1b-/- mutants. .............. 97	

3.33 Top affected pathways based on RNA sequencing in hnrnpa1a-/-; hnrnpa1b-/-  

 mutants ......................................................................................................................... 99	

3.34 mRNA expression of apoda.1 and gpnmb is decreased in hnrnpa1a-/-; hnrnpa1b-/- 

mutants ......................................................................................................................... 99	

3.35 mRNA expression of cdkn1a, cdkn2a/b, gadd45, p53, and rbl2 is increased in 

hnrnpa1a-/-; hnrnpa1b-/- mutants ................................................................................ 101	

3.36 Top affected pathways based on proteomics in hnrnpa1a-/-; hnrnpa1b-/- mutants ..... 103	

3.37 hnrnpa1a-/-; hnrnpa1b-/- mutants show no change in Pcna levels or distribution pattern

 .................................................................................................................................... 105	

3.38 tardbp-/-; tardbpl-/- mutants are not developmentally delayed, show no changed  

 neutral lipid distribution or cell death ........................................................................ 106	

3.39 Venn diagram showing shared and distinct differentially expressed genes upon 

Hnrnpa1 or Tdp-43 KO .............................................................................................. 107	

3.40 KD of apoda.1 mimics the yolk extension thinning observed in  

 hnrnpa1a-/-; hnrnpa1b-/- mutants ................................................................................ 109	

4.1 Schematic illustration of transcriptional and alternative splicing regulation between 

Hnrnpa1 and Tdp-43 ................................................................................................... 122	

4.2 Scheme illustrating the hypothetical cell cycle impairment in G1/S-phase transition 

  in hnrnpa1a-/-; hnrnpa1b-/- mutants ........................................................................... 128	

5.1 Sequences of CRISPR/Cas9 induced mutations that were detected in the  

 F1 generation. .............................................................................................................. 179	

5.2 Alignement of Hnrnpa1a, Hnrnpa1b and Hnrnpa3 .................................................... 180	

 
 

 



 

 168 

List of tables 
1.1 Overview of HNRNPA KD and KO animal models .................................................... 18	

3.1 Peptides for mAb generation and summary of hybridoma pools tested ....................... 62	

3.2 PCR band pattern for screening CRISPR/Cas9 induced hnrnpa mutations ................. 69	

3.3 Allele frequencies in F1 after targeting hnrnpa loci ..................................................... 72	

3.4 Mendelian laws apply for incrosses of single hnrnpa-/- mutants. ................................. 77	

3.5 Top 10 differentially expressed genes and the respective human orthologues in 

hnrnpa1b-/- brains. ........................................................................................................ 82	

3.6 Top 10 differentially expressed genes and the respective human orthologues in 

hnrnpa3-/- brains ............................................................................................................ 83	

3.7 hnrnpa1a-/-; hnrnpa1b-/- mutants do not reach adulthood ............................................. 86	

3.8 Top 10 differentially expressed genes and the respective human orthologues in 

hnrnpa1a-/-; hnrnpa1b-/- mutants .................................................................................. 98	

3.9 Expression of ALS and/or FTD related genes in hnrnpa1a-/-; hnrnpa1b-/- mutants. . 100	

3.10 Top 10 differentially expressed proteins in hnrnpa1a-/-; hnrnpa1b-/- mutants. .......... 103	

3.11 Shared differentially expressed genes upon Hnrnpa1 or Tdp-43 KO ........................ 108	

 



 

 169  

List of Abbreviations 
 

+/+ wildtype 

+/- heterozygous 

-/- homozygous 

A2RE A2 response element 

AA arachidonic acid 

aa amino acid 

AD Alzheimer`s Disease 

ALS amyotrophic lateral sclerosis 

APS ammonium persulfate 

ASO antisense oligonucleotide 

BCA bicinchoninic acid 

BMI body mass index 

Bp base pair 

CaP Caudal primary  motoneuron 

Cas9 CRISPR-associated 9 

CDK Cycling dependant kinase 

cDNA Complementary DNA 

CMV cytomegalovirus 

CNS central nervous system 

CRISPR clustered regularly interspaced short palindromic repeats 

cRNA complementary RNA 

crRNA CRISPR RNA 

CS Cutsmart buffer 

CSF cerebrospinal fluid 

dATP deoxyadenosine triphosphate 

dCTP deoxycytosine triphosphate 

DENN differentially expressed in normal and neoplastic cells 

DEPC diethylpyrocarbonate 

dGTP deoxyguanosine triphosphate 

DLAV dorsal longitudinal anastomotic vessel 

DNA deoxyribonucleic acid 

dNTP deoxynucleoside triphosphates 



List of Abbreviations 

 170 

DPR dipeptide repeat protein 

DSB double strand break 

dsDNA double stranded DNA 

DTT dithiothreitol 

dTTP desoxythymidintriphosphat 

dpf days post fertilization 

DSB double strand break 

EC endothelial cells 

ECM extracellular matrix 

e.g. exempli gratia 

ELISA enzyme-linked immunosorbent assay 

ENU N-ethyl-N-nitrosourea 

ER endoplasmatic reticulum 

FA fatty acid 

FCS fetal calve serum 

GFP green fluorescent protein 

GTP guanosine triphosphate 

gRNA guide RNA 

HDR homology directed repair 

HNRNP heterogeneous nuclear ribonucleoprotein  

Hnrnpa zebrafish Hnrnpa1a, Hnrnpa1b, Hnrnpa3  

H2O water 

hpf hours post fertilization 

HRP horseradish peroxidase 

HUVEC human umbilical vein endothelial cells 

IHC immunohistochemistry 

Indels insertions and deletions 

iPSCs induced pluripotent stem cells 

ISH in situ hybridisierung 

kDa kilo-Dalton 

KD knockdown 

KI knockin 

KO knockout 

liq. N2 liquid nitrogen 
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LCD low complexity domain 

lincRNA long non coding RNA 

LMN lower motoneuron 

mAb monoclonal antibody 

miRNA microRNA 

mRNA messenger RNA 

MW molecular weight 

MND motoneuron disease 

MO morpholino 

MSP Multisystem proteinopathy 

MZT maternal to zygotic transition 

n.a. not available 

NCS newborn calf serum 

ND neurodegenerative disease 

NGS next generation sequencing 

NHEJ non homologous end joining 

NLS nuclear localization signal 

NMD nonsense-mediated mRNA Decay 

Nt nucleotide 

o/n overnight 

ORO oil red O 

OS oxidative stress 

OVA  ovalbumin 

PAGE polyacrylamide gel electrophoresis 

PAM protospacer-adjacent motif 

PB phosphate buffer 

PBS phosphate buffered saline 

PCNA proliferating cellular nuclear antigen 

PCR polymerase chain reaction 

PTC premature termination codon 

PFA paraformaldehyd 

PI proteinase inhibitor 

PTU phenylthiourea 

PrLD prion like domain 
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qRT-PCR quantitative Realtime- PCR 

RAN repeat-associated non-ATG 

RBD RNA binding domain 

RBP RNA binding protein 

RE restriction endonuclease 

RFLP restriction fragment length polymorphism 

RGG arginine-glycine-glycine  

RIPA radioimmunoprecipitation assay buffer 

RNA ribonucleic acid 

ROS reactive oxygen species 

RRM RNA recognition motif 

RT room temperature 

sALS sporadic ALS 

SD standard deviation 

SDS sodium dodecyl sulfate 

S.E.M. standard error of the mean 

SG stress granules 

SNP single nucleotide polymorphism 

SpCas9 Streptococcus pyogenes Cas9 

SpMN spinal motoneuron 

SZ Schizophrenia  

TALEN transcription activator-like effector nucleases 

TARDBP TAR-DNA-binding protein (human gene name) 

Tardbp zebrafish TAR-DNA-binding protein (zebrafish orthologue) 

Tardbpl zebrafish TAR-DNA-binding protein like (zebrafish orthologue) 

TDP-43 TAR-DNA-binding protein of 43kDa (used here for human protein) 

Tdp-43 TAR-DNA-binding protein of 43kDa (used here for zebrafish protein) 

TEMED tetramethylethylenediamine 

TILLING targeted induced local lesions in genomes 

tracRNA trans-activating cRNA 

TSD teleost specific duplication 

UAS upstream activation sequence 

UMN upper motoneuron 

UTR untranslated region 
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wt wildtype 

YSL yolk syncytial layer 

zf-Hnrnpas Zebrafish Hnrnpas (Hnrnpa1a, Hnrnpa1b, Hnrnpa3) 

ZFN zinc-finger nucleases 

ZGA zygotic genome activation 

 

The herein listed abbreviations of genes and proteins are modified throughout the thesis 

according to the nomenclature guidelines of the respective species 

(http://www.genenames.org, http://www.informatics.jax.org, http://www.zfin.org)
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Figure 5.1- Sequences of CRISPR/Cas9 induced mutations that were detected in the F1 generation. A: Offspring from founder fish injected with gRNA 
targeting hnrnpa1a exon1 9 different mutations were identified. B: Offspring from founder fish injected with gRNA targeting hnrnpa1a exon9 resulted in 5 
different mutations C: In offspring from founder fish injected with gRNA targeting hnrnpa1b exon2 5 different mutations were identified D: Offspring from 
founder fish injected with gRNA targeting hnrnpa1b exon9 3 different mutations were identified E: Offspring from founder fish injected with gRNA targeting 
hnrnpa3 exon2 4 different mutations were identified  +: deletion, + insertion, green: ATG start codon, red: mutations (deletion/insertion), blue: ORF 
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Figure 5.2 – Alignement of Hnrnpa1a, Hnrnpa1b and Hnrnpa3. Hnrnpa1a388 (ENSDART00000018131.8), Hnrnpa1a411 (NP_001349307.1), Hnrnpa1b422 
(ZFIN:ZDB-GENE-030912-14), Hnrnpa1b403 (ENSDART00000053267.6), and Hnrnpa3340 (ENSDART00000102934.4) were aligned with CLC Main 
Workbench. Red highlighted letters: aa that are different.  
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