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1 SUMMARY 
Cancer is a tremendously heterogeneous and dynamic disease and for that reason 

challenging to treat. Classical, broad-spectrum therapies like surgery, radiation, 

chemotherapy and combinations thereof contributed greatly to increased life 

expectancy of cancer patients. The universality of these therapies makes them applicable 

for a broad range of cancer types and patients but comes along with the risk of severe 

side effects or diminished efficacy. The desire for cancer-type-specific drugs and patient-

personalized therapies has spurred the development of novel therapeutic concepts. Two 

very prominent targeted concepts, both inspired by the immune system, are antibody 

based drugs and immune cell therapy. Antibodies form the structural basis for multiple 

therapeutic molecules. Three salient formats are addressed in this thesis, namely 

antiproliferative monoclonal antibodies, bispecific antibodies and antibody-drug 

conjugates (ADCs). First, a high content assay for parallel investigation of 

antiproliferative potency and mode of action combining base-analog incorporation and 

DNA content quantification is described. Second, Tub-tag mediated C-terminal protein-

protein-ligation (TuPPL) using complementary click-chemistry handles is demonstrated 

as a convenient method for bispecific antibody generation. Especially screening of 

bispecific antibody pairs could be streamlined by combinatorial linkage of individual 

candidates after protein production. Modification of proteins after expression is 

currently promoted by the advance of bioorthogonal conjugation strategies. 

Modification of endogenous amino acids, incorporation of unnatural amino acids and 

enzymatic modification are widely used for the introduction of universal bioorthogonal 

handles or direct attachment of functional groups. Along this line, a novel cysteine 

selective modular bioconjugation method using phosphonamidate electrophiles to 

generate stable cysteine conjugates is described here. The method was further applied to 

stably attach cytotoxic drug molecules to antibodies. The resulting ADCs show 

promising in vitro as well as in vivo efficacy and increased serum stability compared to 

standard maleimide conjugation. Although antibody based drugs indeed open the 

therapeutic window by lowering off-target effects as well as increasing tumor specific 

toxicity they still face limitations. Degradation and systemic clearance of the 

biomolecule require administration in regular intervals and tissue penetrance is limited 

by passive diffusion. In contrast, the use of cells as “living drugs” is a revolutionary new 

concept bypassing some limitations of “dead drugs”. The use of tumor specific immune 
cells, especially T cells, for cancer therapy shows promising results, however, the “living” 
nature of these drugs requires thorough characterization of the cell product. Along this 

line a novel T cell characterization agent, called FLEXamer, is described in this thesis 

that allows isolation and characterization of antigen specific T cells and associated T cell 

receptors. FLEXamers retain the high precision of conventional multimer reagents but 

unite the individual multimers in a single versatile reagent that can be functionalized on 

demand for the specific need. Taken together this work presents site-specific 

conjugation methods and novel sensitive tools for production and comprehensive 

characterization of sensitive and patient-specific next-generation cancer therapeutics. 
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2 ZUSAMMENFASSUNG 
Die Behandlung von Krebs stellt Wissenschaftler vor eine große Herausforderung, da es 

sich um eine sehr heterogene und dynamische Erkrankung handelt. Mit klassischen 

Methoden wie operativen Eingriffen, Bestrahlung, Chemotherapie und deren 

Kombination konnte die Lebenserwartung von Krebspatienten deutlich verlängert 

werden. Diese Therapieoptionen sind zwar über ein weites Spektrum an 

Krebserkrankungen einsetzbar, jedoch birgt die geringe Spezifität ein hohes Risiko für 

Nebenwirkungen oder verminderte Wirksamkeit. Der Wunsch nach Therapeutika, die 

eine höhere Spezifität für die unterschiedlichen Krebsarten aufweisen und gleichzeitig 

eine personalisierte Behandlung des einzelnen Patienten erlauben, hat die Entwicklung 

von neuen therapeutischen Konzepten vorangetrieben. Zwei aktuelle Konzepte, die 

beide Komponenten des Immunsystems als Grundlage nutzen, sind antikörperbasierte 

Wirkstoffe und Immunzelltherapie. Antikörper bilden den strukturellen Kern bei einer 

Vielzahl von therapeutischen Molekülen. Wachstumshemmende monoklonale 

Antikörper, bispezifische Antikörper und Antikörper-Wirkstoff-Konjugate stellen 

hierbei die drei Hauptformate dar und werden in dieser Arbeit adressiert. Zuerst wird 

ein high-content Verfahren beschrieben, welches den Einbau von DNA-Basenanaloga 

und anschließende Quantifizierung des DNA-Gehalts nutzt, um das Potential eines 

wachstumshemmenden Antikörpers zu bestimmen. Zusätzlich ermöglicht es Einblicke 

in dessen Wirkmechanismus zu gewinnen. Ferner wird der Einbau komplementärer 

Klick-Gruppen mittels Tub-tag Konjugation zur C-terminalen Verknüpfung von 

Proteinen beschrieben und dessen Eignung zur Herstellung von bispezifischen 

Antikörpern demonstriert. Vor allem bei der Selektion von geeigneten Antikörperpaaren 

bietet eine solch modulare Ligationsmethode die Möglichkeit viele Kandidaten 

kombinatorisch zu verknüpfen nachdem sie individuell exprimiert wurden, um so 

komfortabel eine Bibliothek von bispezifischen Molekülen zu generieren. Im 

Allgemeinen wird durch die Entwicklung und Optimierung einer Vielzahl von 

bioorthogonaler Konjugationsmethoden die Modifikation von Proteinen aktuell stark 

vorangetrieben. Weit verbreitet ist die Modifikation von endogenen natürlichen 

Aminosäuren, der Einbau von unnatürlichen Aminosäuren und die enzymatische 

Modifikation, um entweder direkt eine funktionelle Einheit anzuheften oder um 

universelle bioorthogonale Gruppen einzubringen. In diesem Zusammenhang wird in 

dieser Arbeit eine neue cystein-selektive, modulare Biokonjugationsmethode 

beschrieben, die elektrophile Phosphonamidate verwendet, um stabile Cysteinkonjugate 

herzustellen. Ferner wird diese Methode zur stabilen Verknüpfung von cytotoxischen 

Molekülen und Antikörpern verwendet. Die daraus resultierenden Antikörper-

Wirkstoff-Konjugate sind sowohl in vitro als auch in vivo aktiv und zeigen darüber 

hinaus eine erhöhte Plasmastabilität im Verglichen zur standardmäßigen 

Maleimidkonjugation. Antikörperbasierte Wirkstoffe erweitern zwar wie erwartet das 

therapeutische Fenster indem sie off-target Effekte reduzieren und zugleich tumor-

spezifische Toxizität erhöhen, stoßen jedoch auch auf Limitationen. Biomoleküle 

werden aktiv abgebaut und aus dem Körper entfernt und erfordern somit eine 

wiederholte Verabreichung des Therapeutikums in regelmäßigen Zeitabständen. 

Außerdem ist die Verteilung im Körper hauptsächlich durch passive Effekte bestimmt, 
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wodurch die Penetration in das Gewebe erschwert wird. Im Gegensatz hierzu steht der 

revolutionär neue Ansatz “lebendige Medikamente” zu verwenden, die aktiv im Körper 

proliferieren, und somit Limitationen von “leblosen Medikamenten” umgehen. 
Vielversprechend zeigt sich hier der Einsatz von Immunzellen, allen voran von T Zellen 

für die Krebstherapie. Die “lebendige” Natur dieser zellbasierten Medikamente erfordert 

jedoch eine umfassende Charakterisierung bevor sie dem Patienten verabreicht werden. 

In diesem Zusammenhang wird in dieser Arbeit ein neues Multimerreagenz, namens 

FLEXamer, zur Isolierung und Charakterisierung von T Zellen und deren T 

Zellrezeptoren beschrieben. FLEXamere erhalten die hohe Präzision von 

konventionellen Multimerreagenzien, vereinen jedoch die unterschiedlichen Multimere 

in einem einzigen vielseitigen Reagenz, das bedarfsgerecht, individuell funktionalisiert 

werden kann. Zusammenfassend beschäftigt sich diese Arbeit mit ortsgerichteten 

Biokonjugationsmethoden und neuen sensitiven Werkzeugen zur Herstellung und 

umfassenden Charakterisierung von sensitiven und patientenspezifischen 

Krebstherapeutika der nächsten Generation. 
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3 INTRODUCTION 

3.1 NEXT-GENERATION CANCER THERAPEUTICS 

Cancer is one of the leading causes of death in developed countries and with 22 % of 

total the second most cause in the United States in 2016 just behind chronic heart 

diseases (Heron, 2018). Even more alarming are the numbers for the world wide 

projections with an expected increase in cancer cases and deaths of approximately 50 % 

until 2035 (Ferlay et al., 2019; Ferlay J, 2018). Heart diseases on the contrary are on the 

decline due to effective prevention and treatment (Mensah et al., 2017). For cancer the 

situation is very different since up till now we lack effective tools to cure the disease. 

One striking reason for this is the substantial diversity of cancer resulting from the 

evolutionary character of its pathogenesis. Basically every organ or tissue in the body 

can be affected, some more susceptible than others. Furthermore, cancer arises from a 

body's own cells and therefore will be different in each and every patient even if the 

same organ is affected. This observation already hints to a major problem in cancer 

treatment which is heterogeneity (Alizadeh et al., 2015). Nevertheless, cells need to 

acquire some common traits that allow them to form a malignant tumor (Hanahan & 

Weinberg, 2011). Most of these so called “hallmarks of cancer” are related to 
uncontrolled proliferation such as resisting cell death and sustaining proliferative 

signaling. However, which underlying molecular mechanism is altered to gain those 

traits can be very different and adds further to the complexity of cancer. In addition, 

cancer cells evolve over time and therefore diversify over the course of disease and 

treatment (Falzone, Salomone, & Libra, 2018; Mel Greaves & Carlo C. Maley, 2012; 

Janiszewska & Polyak, 2015; McGranahan & Swanton, 2017). All those facts make “the 
cancer” a tremendously heterogeneous disease which is extremely challenging to 

diagnose, treat or even cure. 

Consequently, the treatment of cancer has undergone constant development (Arruebo 

et al., 2011; DeVita & Rosenberg, 2012). A straightforward approach for solid tumors is to 

physically remove the malignant tissue by surgery. However, it is likely that not all 

cancer cells are removed, thus increasing the chance for relapse. On that account, 

additional treatment options such as radiation, chemotherapy and hormone treatment 

have been developed in the last century and considerably advanced cancer therapy. 

Chemotherapy is administered systemically but preferentially kills fast dividing cells, 

thereby suppresses the growth of cancer cells (Chabner & Roberts Jr, 2005). Although 

this strategy allows the treatment of inoperable tumors and leukemia, severe side effects 

occur by unspecific toxicity to healthy, strongly proliferating cells such as the 

hematopoietic system (Maxwell & Maher, 1992). This issue was addressed by targeted 

therapy approaches that aimed for specifically manipulating cancer cells but leaving 

healthy tissue unaffected. In recent years this novel therapeutic concept has been 

realized in many different ways but two approaches draw particular strong attention and 

have made their way to clinical application. Both approaches harness the immune 

system’s outstanding capability of detecting and fighting foreign or degenerate objects. 

The first approach relies on the use of antibodies as targeting probes to manipulate the 

cancer cell directly, deliver a toxic payload or redirect the immune system to clear 
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marked cancer cells (Sawyers, 2004; Shuptrine, Surana, & Weiner, 2012). The second 

approach relies on the administration of immune cells as living drugs that 

autonomously identify and specifically eliminate cancer cells (June, Riddell, & 

Schumacher, 2015; Perica, Varela, Oelke, & Schneck, 2015). Although the two concepts 

are quite different, both aim for higher targeting precision which, on the one hand, 

increases treatment efficacy but, on the other hand, also allows for more personalized 

therapy.  

3.1.1 THERAPEUTIC ANTIBODIES 

For the most time pharmaceuticals have predominantly been small molecules, mainly 

produced by extraction from natural sources or chemical synthesis (Jones, 2011). When 

in 1922, at the University of Toronto, Banting and Best isolated insulin from cow 

pancreas and used it for diabetes therapy, a new era of drugs began (Banting & Best, 

1990; Karamitsos, 2011; Lewis, 2002). For the first time a protein has been used as a 

therapeutic agent. With the development of recombinant protein techniques 

proteinaceous drugs could not only be produced in large scale by fermentation but also 

became editable (Tobin, Richards, Callender, & Wilson, 2014; Young, Britton, & 

Robinson, 2012). Structure and function of proteins could now be designed to fulfill 

specific needs of particular applications. Owing to this development antibodies have 

become available as a versatile scaffold for biological probes to target and manipulate 

disease related antigens (Chames, Van Regenmortel, Weiss, & Baty, 2009; Ecker, Jones, 

& Levine, 2014; Hudson & Souriau, 2003). Three important antibody formats that are 

used for therapeutic applications will be outlined in the following paragraphs. 

3.1.1.1 MONOCLONAL ANTIBODIES 

Antibodies are an essential part of the humoral, adoptive immune system. They are 

produced by B cells to label pathogens or pathogenic substances for clearance. 

Antibodies exist in two forms, either membrane bound to B cells, also referred to as the 

B cell receptor (BCR), or in a free soluble form in blood and extracellular space. The BCR 

serves to recognize specific antigens and activate the respective B cell to i) differentiate 

into antibody secreting plasma B cells or memory B cells and ii) internalize, process and 

present antigens to other immune cells such as T cells. Antibodies share a common 

overall structure comprising of two heavy chains and two light chains (Figure 1). The 

chains arrange in a Y-shaped structure where each light chain pairs with one heavy 

chain and the two heavy chains with each other. The pairing is mediated by matching 

hydrophobic patches on pairing domains and further stabilized through interchain 

disulfide bonds. The overall structure can be divided into three functional units. The 

two identical Fab fragments responsible for antigen binding and the glycosylated Fc 

fragment responsible for mediating immune effector functions. Whereas only constant 

domains of the heavy chain are part of the Fc fragment and determine the isotype of the 

antibody the variable domains of heavy and light chains comprise hypervariable regions 

that form the epitope binding site (also called paratope). Consequently, the binding 

specificity of an antibody to its antigen is determined and mediated by the Fab-arms, 

whereas the isotype specific Fc-arm determines which components of the immune 

system recognize the antibody and thereby defines the immunological response. Human 
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Igs can be assigned to five different isotypes (IgA, IgD, IgG, IgE, IgM) (Schroeder & 

Cavacini, 2010). IgG is the most abundant isotype in blood serum and is involved in 

pathogen clearance. IgG does so through multiple mechanisms. For example, the 

binding to an extracellular structure of the pathogen can directly manipulate the target’s 

function, such as binding to transmembrane receptors can block their signaling and 

render the pathogen benign. Another mechanism called complement dependent 

cytotoxicity (CDC) includes the decoration of pathogens with IgGs (opsonization), 

subsequent complement activation and phagocytosis by phagocytes. In a similar 

process, antibody-dependent cellular cytotoxicity (ADCC), the antibody recruits 

immune cells, predominantly natural killer cells, that promote lysis of pathogens or 

induce programmed cell death (apoptosis) in pathogen infected cells (L. L. Lu, 

Suscovich, Fortune, & Alter, 2017).  

All these modes of action have been used in one or another way for therapeutic 

purposes (Schürch, 2018). However, in cancer therapy two mechanisms are especially 

important (Redman, Hill, AlDeghaither, & Weiner, 2015; Scott, Wolchok, & Old, 2012). 

Firstly, monoclonal antibodies have been selected or designed to specifically interfere 

with the function of critical cell surface receptors on cancer cells. For example, certain 

cancer types acquire enhanced proliferation by overexpression of growth factor 

Figure 1 Y-shaped structure of an IgG antibody. Two heavy chains and two light chains associate into a Y-shaped 

tertiary structure. Association is mediated by surface patch interaction and interchain disulfide bridges (S-S). The heavy 

chain (HC) is built from three constant domains (CH1, CH2 and CH3) and one variable domain (VH). The light chain 

comprises one constant domain (CL) and one variable domain (VL). Each individual domain is stabilized by an 

intramolecular disulfide bridge. The two paired variable domains (VL+VH) form the antigen binding sites (paratope). The 

flexible hinge region is susceptible to proteolytic digest by papain, yielding two antigen binding fragments (Fab) and one 

crystallizable fragment (Fc). The CH2 domain is post translationally glycosylated with branched N-glycan chains. 
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receptors (e.g. epidermal growth factor receptor, EGFR or human epidermal growth 

factor receptor 2, HER2)(Masuda et al., 2012) or immune checkpoint receptors (e.g. 

programmed cell death protein 1 ligand1, PD-L1) (X. Wang, Teng, Kong, & Yu, 2016). On 

the one hand, overexpressed receptors can serve as markers that make cancer cells 

distinguishable from normal body cells, yet, specifically targetable. On the other hand, 

enhanced proliferation or immune cell evasion can be dependent on the signaling of 

these receptors (Browne, O'Brien, Duffy, Crown, & O'Donovan, 2009), thus providing a 

weak point for therapeutic agents to interfere. Along this line several therapeutic 

antibodies have been developed that inhibit receptors e.g. by i) blocking ligand binding 

sites, ii) blocking dimerization sites crucial for downstream signaling or iii) depleting 

receptors from the cell surface by crosslinking-induced internalization. However, only a 

subset of cell surface markers can be manipulated in a way that directly reduces cancer 

cell growth or leads to cell death. Therefore, the second very important mode of action 

of monoclonal antibodies in cancer therapy is tagging cells for ADCC. Virtually any cell 

surface structure, such as transmembrane proteins, glycosylation patterns or lipid 

composition, can be recognized by antibodies. If these structures are either exclusively, 

preferentially or differentially present on cancer cells these markers can be targeted by 

antibodies and tag those cells for clearance. Besides these two mechanisms therapeutic 

antibodies can act in many more ways and in most cases the anti-proliferative activity 

results from a combination of multiple modes of action (Hudis, 2007).  

During development of therapeutic monoclonal antibodies it is important to evaluate 

the anti-proliferative potency of potential candidates early on in vitro. This can be done 

in the presence (Lallemand et al., 2017) or absence of immune cells and will give insight 

into the predominant mode of action. For the detection of proliferating cells several 

methods are available (Aysun, Yağmur, & Yusuf, 2016). These differ from each other, on 

the one hand, in the generated signal (e.g. colorimetric, fluorimetric or radioactive) but 

more importantly also in the detected feature (e.g. surviving cell count, metabolic 

activity or DNA replication) (X. Lu & Bergelson, 2014; Vega-Avila & Pugsley, 2011). 

Independent of the working principle a suitable assay has to be sensitive and adaptable 

to high throughput handling to allow accurate comparison of a large number of 

antibody candidates in parallel. 

3.1.1.2 BISPECIFIC ANTIBODIES 

Although very promising treatment results could be achieved with monoclonal 

antibodies, relapse of tumors after prolonged treatment has been observed in many 

cases (Iwamoto et al., 2009). Several reasons for this observation have been proposed in 

recent studies (Reslan, Dalle, & Dumontet, 2009). For one, a tumor is a heterogeneous 

mixture of cancer cells that forms its own microenvironment. Consequently, individual 

cancer cells can be quite different from each other depending on many factors such as 

stage of tumor development, exact localization in the tumor or proliferative state. 

Therefore already from the beginning of treatment some cells will be more susceptible 

to a specific antibody than others due to differences in marker expression, accessibility 

and proliferative activity. In addition, upon treatment a selective pressure is exerted on 

the tumor that can cause adaption of individual cells by actively downregulating the 

marker antigen or survival of the unsusceptible, inaccessible population of cancer cells 
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within the tumor. After prolonged treatment or termination these cells may outgrow 

again and cause disease relapse (Chatterjee & Bivona, 2019; Gillies, Verduzco, & Gatenby, 

2012; M. Greaves & C. C. Maley, 2012; Sotillo, Schvartzman, Socci, & Benezra, 2010). 

Consequently, the efficacy of monoclonal antibodies is, among other factors, dependent 

on accessibility of target cells, constant expression of the antigen and the ability to 

initiate immune responses. Since those aspects are susceptible to evasion by cancer cells 

many attempts have been made to address the related treatment resistance and resulted 

in alternative treatment strategies such as combination therapies and the design of new 

therapeutic molecules. One example is a novel class of antibody therapeutics that 

combines the binding specificity of multiple antibodies into a single biomolecules, so 

called bispecific or multispecific antibodies. With advancing recombinant antibody 

production and protein engineering a whole zoo of such multispecific formats has been 

designed in the recent past (Brinkmann & Kontermann, 2017). Although these formats 

are quite diverse in their specific architecture they follow general principles. They 

combine two or more different antigen-binding units into a single molecule which can 

in addition be equipped with an Fc-arm or other effector domains. Whereas monoclonal 

antibodies bind only one antigen, bispecifics bind two different antigens. This can be 

two antigens of the same cell, e.g. two tumor markers, or two antigens on different cells, 

e.g. a tumor marker and an immune cell marker (Husain & Ellerman, 2018). A bispecific 

of the first type can increase binding specificity if the two individual binding sites alone 

Figure 2 Exemplary formats of antibody fragments and bispecific antibodies. Upper panel: full IgG molecule; 

Fragment antigen binding (Fab); single chain Fragment variable (scFv) built by genetic fusion of VH and VL; Variable 

domain of heavy chain antibodies (VHH) e.g. nanobodies from camelid antibodies; alternative proteins with engineered 

binding sites (antibody mimetics) e.g. DARPins, anticalines and affimers. Lower panel: Chemically cross-linked bispecific 

antibody (IgG2); bispecific IgG (bsIgG) with knob into hole guided hetero-paired heavy chains; disulfide linked 

heterologous Fab fragments (F(ab’)2); tandem scFvs formed by genetic or chemical fusion of two scFvs. 



Introduction 

Page | 17 

 

exhibit low binding affinity towards their respective antigen but in combination strong 

avidity towards cells presenting both antigens. This approach has been used to achieve 

tissue specific targeting of less differentially expressed tumor markers to reduce off-

target toxicity (Gantke et al., 2017; N. K. Lee et al., 2018; McGaraughty et al., 2017). 

Furthermore, simultaneous targeting of two markers can reduce the chance for tumor 

evasion since two markers would need to be downregulated simultaneously. Besides 

increasing specificity bispecifics can also be used to crosslink (Brunker et al., 2016) or 

prevent cross linking (McDonagh et al., 2012) of two cell surface receptors in order to 

manipulate their signaling or enhance receptor internalization (Andreev et al., 2017; J. Y. 

Li et al., 2016). As opposed to this, bispecifics that target two antigens of two different 

cells follow a very different mechanistic concept. In this case, the antibody serves as a 

physical adaptor that brings and holds two cells in close proximity. Much like the Fc-

arm of a monoclonal antibody recruits immune cells, the second binding site of a 

bispecific can also be designed to bind immune cell markers. However, by the choice of 

targeted markers one can i) control which type of immune cell is redirected to the 

tumor (Kellner, Peipp, & Valerius, 2011), ii) induce immune cell activation (Dreier et al., 

2002; P. Hoffmann et al., 2005) or iii) override inhibitory immune checkpoint signaling 

(Knudson, Gameiro, Lo, & Schlom, 2017). Such bispecific formats are commonly 

designed omitting the Fc-arm since its immune effector function is expandable or 

undesirable. Yet, besides its effector function, the Fc-arm increases the overall size of 

the molecule, thus, reduces renal clearing of the molecule. Furthermore, it also 

promotes active recycling of antibodies via the FcRn receptor primarily in the liver. Both 

mechanisms significantly increase plasma half-life, and allow less frequent dosing of the 

drug which inspired the development of Fc-mutants lacking FcRn interaction. But, the 

larger molecular size also has disadvantages such as slow diffusion in the extravascular 

space and reduced tumor penetrance. Thus, besides the classical IgG format many more 

alternative architectures have been developed. These range from antibodies augmented 

with additional binding or effector domains, trimmed antibodies, antibody fragments 

such as Fab or scFv fragments over alternative antibodies such as cameloid single chain 

antibodies and fragments thereof (e.g. nanobodies) to non-antibody derived binding 

modules called antibody mimetics (e.g. affimers, anticalins and DARPins) (Brinkmann & 

Kontermann, 2017). Researchers have mixed and matched all those building blocks in 

manifold ways providing a variety of different bi- and multispecific molecules (Figure 2). 

However, some building blocks are used more frequently than others. For example Fab 

fragments originating from different antibodies can be combined to generate bispecific 

antibodies. Fab fragments are built from one light chain and one truncated heavy chain 

comprising the variable and first constant domain. Both chains are linked via a disulfide 

bridge. Since the two chains are not associated during expression it has to be ensured 

that the right chains pair. scFv (single chain Fragment variable) fragments on the other 

hand circumvent this issue by covalently linking the two variable domains. A scFv is a 

single polypeptide consisting of the two variable domains (VH and VL) joined by a 

flexible linker sequence. By covalently linking two scFvs either by genetic fusion or 

chemical conjugation a bispecific can be generated which comprises only antigen 

binding domains, therefore represents a very condensed bispecific format (Huehls, 

Coupet, & Sentman, 2015). This format has several advantages such as straightforward 
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recombinant production (Hornig & Farber-Schwarz, 2012), rapid diffusion and good 

tumor penetrance (Xenaki, Oliveira, & van Bergen En Henegouwen, 2017). scFvs are the 

structural basis for a therapeutic bispecific antibody format called Bispecific T cell 

Engagers (BiTE’s). BiTE’s combine a scFv specific for a tumor antigen with a scFv 

specific for a T cell antigen. For example, the first approved BiTE Blinatumomab 

(Przepiorka et al., 2015) binds CD19 on malignant B-cells and CD3, a subunit of the T cell 

receptor complex, on cytotoxic T cells (Loffler et al., 2000). By binding both antigens 

simultaneously the patient's own T cells are recruited to malignant cells. Subsequently, 

activated cytotoxic T cells induce apoptosis in the target cancer cell by the release of 

cytotoxins such as perforin and granzymes (Dreier et al., 2002). Based on i) the recent 

success of approved BiTEs in therapy, ii) evermore bispecifics in clinical trials showing 

promising results and iii) growing pharmaceutical research interest (Dahlén, 

Veitonmäki, & Norlén, 2018) more alternative bispecific formats are currently evaluated 

for their therapeutic applicability and will expand the set of therapeutic antibodies. 

3.1.1.3 ANTIBODY-DRUG CONJUGATES 

Targeted therapy with monoclonal or bispecific antibodies had a great impact on the 

treatment options for cancer patients. However, up till now these therapies are not used 

as standalone treatments but rather in combination with other antibodies or 

conventional radiation-/chemotherapy (Marrocco, Romaniello, & Yarden, 2019). A very 

recent development in this field was the combination of targeted- and chemotherapy in 

a single molecule called antibody-drug conjugate (ADC) (Diamantis & Banerji, 2016). 

ADCs physically link a very potent cytotoxic agent to a very specific probe - an antibody. 

This so called magic bullet allows specific accumulation of the toxin at the tumor site 

while sparing healthy tissue. Unlike fusion proteins such as bispecific antibodies the 

functional entities in ADCs are, usually, not two proteins but rather one large 

biomolecule - the antibody - and a small chemical compound - the toxin. Quite different 

from monoclonal or bispecific antibodies that are either cytotoxic by merely binding to 

the cancer cell or by recruiting cytotoxic immune cells, ADCs directly deliver the toxin 

to the cancer cell. Targeted delivery allows the use of very potent toxins that so far could 

not be used in classical chemotherapy. Different compounds such as auristatines, 

maytansinoids, calicheamicins, duocarmycin and doxorubicin derivatives have been 

successfully used as payloads. These compounds induce DNA damage, interfere with 

DNA replication or inhibit tubulin polymerization, thereby prohibiting cell division and 

causing cell death (Dan et al., 2018). A major requirement resulting from these modes of 

action is the delivery of the drug to the cytoplasm. Consequently, internalization is a 

crucial feature of antibodies used for ADCs and has been implemented in antibody 

production and selection strategies but is also addressed by antibody engineering 

approaches (R. M. Hoffmann et al., 2017). Furthermore, advances in antibody 

engineering put forth less immunogenic and more stable antibody scaffolds. For 

example immunogenicity of antibodies has been reduced by chimerization and 

humanization of animal-derived antibodies or the generation of fully human antibodies 

by in vitro selection strategies (Almagro, Daniels-Wells, Perez-Tapia, & Penichet, 2018).  
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Since antibody and toxin have rather opposing biophysical properties and require very 

different production strategies both components are usually produced separately and 

joined afterwards. The coupling of a small chemical entity to a large biomolecule is not 

trivial but several strategies have been developed since the idea of ADCs (Agarwal & 

Bertozzi, 2015b; Dominik Schumacher, Hackenberger, Leonhardt, & Helma, 2016). So 

besides the antibody and the cytotoxic payload an ADC has a third critical component - 

the linker (Figure 3). This adapter serves the main purpose of covalently linking 

antibody and payload (Tsuchikama & An, 2018). Although high stability of the linkage in 

circulation is a desirable feature for ADCs, most drugs need to be released from the 

antibody molecule to perform their cytotoxic action (Figure 3). Thus, the ideal linkage 

for such drugs is stable in the extracellular space but is labile intracellularly. Several 

cleavable linker designs have been described and used for ADCs. One strategy uses pH 

sensitive linkages cleaved under acidic conditions, thus, triggering drug release during 

endosomal and lysosomal processing of the internalized antibody. A second mechanism 

makes use of protease cleavable peptide sequences incorporated in the linker structure. 

For example a valine-citrulline (VC) motif recognized by the endosomal protease 

cathepsin B has been used for brentuximab vedotin. Furthermore, the composition and 

structure of the linker can also be designed to manipulate the ADC’s overall properties. 

One such feature, tunable by linker composition, is the hydrophilicity of the assembled 

ADC. Surface exposed hydrophobic groups reduce the water solubility of the antibody 

and contribute to increased aggregation. Both are important parameters impacting 

stability and distribution of the ADC in the body. Commonly used cytotoxic agents are 

hydrophobic and destabilize the antibody when attached to its surface. On the one 

hand, this issue has been addressed by the design of hydrophilic linker sequences such 

as stretches of polyethylene glycol (PEG) that increase hydrophilicity of the attached 

moiety or the design of more hydrophilic toxins (Lyon et al., 2015). On the other hand, 

Figure 3 Structure of an antibody-drug conjugate (ADC) (left) and exemplary mechanism of action (right). Left 

panel: The three components of an ADC: A) the antigen targeting monoclonal antibody B) the linker connecting the drug 

to the antibody and, if applicable, facilitating triggered release C) the highly potent cytotoxic drug mediating cell killing. 

Right panel: The ADC binds to a cell surface antigen followed by internalization into endosomes and shuttling to 

lysosomes. Low pH and/or the presence of proteases in the lysosome triggeres release of the the cytotoxin. Toxins acting 

on microtubule organization hinder mitotic spindle formation, consequently, prohibiting cell division and inducing cell 

death.  
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hydrophobicity can be controlled by the number of drugs attached to the antibody 

molecule - the drug to antibody ratio (DAR) (Ross & Wolfe, 2016). 

First and second generation ADCs like gemtuzumab ozogamicin (Hamann et al., 2002), 

trastuzumab emtansine (Lewis Phillips et al., 2008) and brentuximab vedotin (Senter & 

Sievers, 2012) were generated by conjugation via amine or thiol reactive groups, linking 

the drug to the antibodie’s lysines or cysteines, respectively (Tsuchikama & An, 2018). 

The relative high abundance of surface exposed lysines leads to high heterogeneity in 

number and position of attached drugs (Figure 4) (L. Wang, Amphlett, Blattler, 

Lambert, & Zhang, 2005). ADCs generated by lysine-conjugation range from 

unconjugated, thus, unfunctional to highly conjugated, but unstable ADCs and 

encompass a large set of moderately conjugated ADC species modified at different 

positions. This heterogeneity has been shown to reduce functionality of the generated 

ADC (Lyon et al., 2015). Targeting less abundant side chains like interchain cysteines 

reduces heterogeneity and leads to a more defined product. For brentuximab vedotin, 

the first approved ADC generated by cysteine labeling, a maleimide was used to 

covalently link the drug to reduced interchain disulfides. However, the ADC suffered 

from poor in vivo stability due to premature drug release. Instability of the maleimide 

thioether bond allows attack of the linkage by other free thiol groups and thus the 

transfer of the drug by retro-Michael-addition to other reactive thiol-containing 

proteins such as serum albumin (Ponte et al., 2016; Shen et al., 2012). These insights have 

fostered the development of more stable cysteine-conjugation strategies (J. M. Chalker, 

G. J. Bernardes, Y. A. Lin, & B. G. Davis, 2009; Szijj, Bahou, & Chudasama, 2018b), 

however, a reduced IgG1 antibody presents a maximum of eight thiol groups, thus still 

Figure 4 Conjugation methods for ADC generation. Left panel: Conjugation to amines of lysine residues leads to 

broad distribution of the drug to antibody ratio (DAR) and to high heterogeneity in the site of attachment. Although high 

DAR species are generated by lysine conjugation these are generally unstable in solution. Center panel: Conjugation to 

reduced interchain disulfides reduces the number of available conjugation sites, thus narrowing the DAR distribution. 

Right panel: The introduction of engineered conjugation sites allows the conjugation of a defined number of drugs at a 

desired site. Adapted from (Herrera & Molina, 2018) 
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leading to a considerable heterogeneous DAR distribution (Figure 4) (Sun et al., 2005). 

The quest for more stability, efficacy and homogeneity of ADCs has inspired the use of 

site-specific conjugation strategies for drug attachment (Agarwal & Bertozzi, 2015b). In 

contrast to endogenous lysine or cysteine conjugation these strategies are more specific 

since they either target less abundant reactive sites (e.g. glycan engineering (Qasba, 

2015)) or rely on the introduction of a defined number of bioorthogonal handles at a 

specific position in the antibody sequence. A number of site-specific strategies such as 

engineered cysteines (Junutula et al., 2008), unnatural amino acid incorporation by 

amber suppression (Axup et al., 2012) or enzyme-mediated conjugation (Lotze, 

Reinhardt, Seitz, & Beck-Sickinger, 2016) in combination with bioorthogonal reactions 

such as oxime ligation, copper catalyzed (VanBrunt et al., 2015) or strain promoted 

alkyne-azide cycloaddition (Zimmerman et al., 2014) (CuAAC and SPAAC) and Inverse 

electron demand Diels–Alder reaction (Oller-Salvia, Kym, & Chin, 2018) have been used 

to generate site-specific conjugated ADCs with a defined DAR. The third generation of 

ADCs uses these techniques in combination with stability and specificity engineered 

antibodies and more potent toxins to further open up the therapeutic window implying 

reduced off-target and increased on-target toxicity (Dominik Schumacher et al., 2016).  

3.1.2 ADOPTIVE T CELL THERAPY 

Antibodies, whether monoclonal, bispecific or equipped with toxins have become an 

important pillar in current clinical cancer therapy. However, once administered these 

drugs disseminate in the body and are cleared or degraded over time by various 

mechanisms (Ryman & Meibohm, 2017). Although, characteristics such as molecular 

size, hydrophobicity, susceptibility to proteolytic digestion and recycling via FcRn can 

be modulated to increase dwell time of the drug in the body, it is necessary to re-

administer the drug in certain time intervals to maintain an effective concentration 

(Haraya, Tachibana, & Igawa, 2019; Presta, 2008). A radically different concept has been 

developed in the last decades; the use of living drugs that proactively detect and kill 

cancer cells and ideally persist in the body long after administration for continuous 

protection (Kalos et al., 2011; Kochenderfer et al., 2010; S. A. Rosenberg, Spiess, & 

Lafreniere, 1986). Immune cells are known for their capability to detect foreign or 

degenerate cells and mediate their elimination. Thus, especially T lymphocytes are being 

explored for therapeutic use, summarized under the term adoptive cell therapy (ACT) 

(Steven A. Rosenberg, Restifo, Yang, Morgan, & Dudley, 2008).  

Tumor infiltrating lymphocytes (TILs) are immune cells that accumulate in and around 

tumor tissue. These cells often have the capability of recognizing cancer cells but are 

frequently silenced or rendered nonfunctional by the tumor microenvironment. TIL 

therapy consists of the surgical removal of tumor tissue, outgrowth and ex vivo 

expansion of TILs by addition of stimulatory factors such as Il-2, αCD3-antibody and 

irradiated feeder cells and subsequent reintroduction into the patient (Riddell & 

Greenberg, 1990; Rohaan, van den Berg, Kvistborg, & Haanen, 2018). These procedures 

still result in a heterogeneous cell population, however, CD8+ T cells have been 

identified as the driving force of anti-tumoral activity in TILs (Radvanyi et al., 2012). To 

improve efficacy and increase response rates, several strategies have been developed. On 

the one hand, preconditioning of the patient for TIL therapy e.g. by high dose IL-2 
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treatment and lymphodepletion has been used (Andersen et al., 2016; Dudley et al., 

2008). On the other hand, enrichment for tumor reactive T cells has also been 

investigated for TIL production. Several markers such as IFNγ secretion and CD137 

expression upon coculture with tumor material, PD-1 expression and a high degree of T 

cells with T cell receptors specific for tumor antigen correlate positively with anti tumor 

activity and were used to generate more reactive TIL products (Inozume et al., 2010; 

Kelderman et al., 2016; S. A. Rosenberg et al., 2011; Ye et al., 2014). Despite promising 

results of this strategy in the treatment of melanoma, TIL therapy also has its 

limitations. TIL therapy is so far limited to few cancer types, it is a highly personalized 

concept, thus cost and time consuming and prone to heterogeneity in the product 

resulting in varying efficacy and safety (S. Lee & Margolin, 2012). Furthermore, this 

approach is limited by the selectivity, specificity and quality of the patient’s T cell 

repertoire.  

Much like protein engineering allowed the alteration and augmentation of antibodies to 

create recombinant monoclonal antibodies, bispecific antibodies and ADCs with 

enhanced or completely novel functions, genetic engineering has opened the door for 

alteration and augmentation of T cells. Genetically engineered T cells can be equipped 

with alternative TCRs or chimeric antigen receptors (CARs) to acquire desired new 

antigen specificity. Consequently, these techniques are not limited to quality and 

breadth of a patient's T cell repertoire. This approach has gained considerable 

momentum by the recent US Food and Drug Administration (FDA) approval of 

Tisagenlecleucel (KYMRIAH®) for the treatment of acute lymphocytic leukemia (ALL), 

the first gene edited autologous T cell therapy (O'Leary et al., 2019). CAR-T cell therapy 

includes the isolation and expansion of T cells from the patient, their transduction with 

a chimeric antigen receptor and subsequent reintroduction into the patient. In general, 

CARs are composed of intracellular T cell signaling domains, a transmembrane domain 

and an extracellular scFv fragment derived from a tumor antigen specific antibody 

(Dotti, Gottschalk, Savoldo, & Brenner, 2014). Tisagenlecleucel uses an antiCD19 CAR 

construct that redirects transduced T cells to detect and kill CD19 positive cells. CD19 is 

a B-cell lineage specific marker also expressed on ALL B-cells that have undergone 

neoplastic transformation (K. Wang, Wei, & Liu, 2012). AntiCD19 CAR-T cells have been 

used with great success for the treatment of ALL demonstrating remission in 81 % of 

patients treated with Tisagenlecleucel in a global, multicenter phase 2 trail (Maude et 

al., 2018). Despite the great efficacy in eliminating CD19+ B-cell lymphomas, current 

CAR-T cell therapy goes together with total B-cell ablation (Kochenderfer et al., 2010). 

Although, this is per se not a life threatening condition, the effects of long term B-cell 

ablation are not known and the absence of adoptive humoral immunity makes patients 

more susceptible to infections. Furthermore, this strong on-target/off-tumor activity 

might hamper the translation of CAR-T cell therapy to other malignancies with markers 

that are also expressed on vital tissues. Various strategies to overcome these limitations 

are currently explored in many research groups. Today’s CARs use antibody derived scFv 
fragments as binding units which naturally have high binding affinities. Binding units 

with lower affinity might curb CAR T cell reactivity and allow fine tuning of the required 

antigen density for successful T cell activation (X. Liu et al., 2015). Also CAR T cells 

targeting two antigens in combination with logic gates that only allow activation when a 



Introduction 

Page | 23 

 

cell simultaneously binds both antigens could increase specificity (Davies & Maher, 

2016). The concept of multiple low affinity interactions in close proximity resulting in 

avidity gain is also found in the natural interaction of T cells with target cells via TCR-

MHC (major histocompatibility complex) interaction (Lanzavecchia, Iezzi, & Viola, 

1999). The transduction of TCRs may allow physiological interaction and potentially 

more controlled activation of genetically engineered T cells. A major difference between 

CAR and TCR transgenic T cells results from the category of epitopes recognized by 

their binding units. CARs are based on antibodies that are selected to recognize a 

structure on a cell’s surface but are excluded from accessing intracellular proteins, 

whereas, TCRs bind to MHC presented intracellular peptides. Depending on MHC class, 

these peptides originate from proteolytic digest of either cytosolic or internalized 

proteins. Thus, TCRs are very suitable for targeting intracellular disease markers. 

Furthermore, in comparison to TIL therapy, TCR transgenic T cells yield a more defined 

homogeneous cell product since their characteristics can be modulated by the choice of 

the transgenic TCR and comprehensively assessed before application. TCR transgenic T 

cells can be equipped with specificities that would not naturally occur in the patient. For 

example, self antigen reactive T cells are cleared from the body by negative selection in 

the thymus (L. Klein, Kyewski, Allen, & Hogquist, 2014). By genetic engineering 

specificity against self antigens can be introduced into T cells by transduction of 

selected or engineered TCRs exhibiting the desired specificity and affinity. However, 

complications from on-target/off-tumor toxicity linked with targeting self antigens are 

hard to predict, but can be avoided by targeting neoantigens that arise from tumor 

specific mutations (Yarchoan, Johnson, Lutz, Laheru, & Jaffee, 2017). However, the 

selection of suitable receptors proofs challenging due to factors such as low abundance 

of high avidity T cell clones and HLA diversity (Alanio, Lemaitre, Law, Hasan, & Albert, 

2010; Schendel & Frankenberger, 2013; Zhang et al., 2016). These obstacles have fostered 

the recent development of sensitive tools and strategies for selection and 

characterization of T cell receptors with potential application in adoptive T cell therapy. 

3.1.2.1 THE T CELL RECEPTOR AND ITS LIGAND THE PEPTIDE MAJOR 

HISTOCOMPATIBILITY COMPLEX 

Effector T cells play a crucial role in executing and orchestrating cell-mediated 

immunity. Antigen specific activation of T cells is mediated by the T cell receptor (TCR) 

specific interaction with peptide antigens presented on major histocompatibility 

complexes (MHC) (Dustin, 2003). The TCR is a heterodimeric transmembrane protein 

consisting of α and β chain linked by a disulfide bond (Figure 5). The extracellular 

domain is structurally similar to the Fab arm of an antibody with one variable and one 

constant domain per chain. The hypervariable regions of the variable domains 

determine binding specificity and affinity (Garcia et al., 1996). The transmembrane 

domain facilitates interaction with CD3 and CD247 subunits of the TCR complex that is 

essential for intracellular downstream signaling (Wucherpfennig, Gagnon, Call, Huseby, 

& Call, 2010). This signaling is further modulated by TCR co-receptors CD4 and CD8. 

CD4 is expressed on T helper cells and regulatory T cells whereas CD8 is expressed on 

cytotoxic T cells. These co-receptors also define the MHC specificity of the TCR complex 

by binding to the constant domains of MHC class II or MHC class I molecules, 
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respectively (Rudolph, Stanfield, & Wilson, 2006). Thus, depending on the MHC context 

of a presented antigen either CD4+ or CD8+ T cells are recruited triggering distinct 

immunological cascades (Miceli & Parnes, 1991). MHC class II is predominantly found 

on professional antigen presenting cells (APCs) and presents peptide fragments of 

processed extracellular proteins (Holling, Schooten, & van Den Elsen, 2004). MHC class 

I is expressed on almost all nucleated cells and presents peptide fragments of 

proteolytically digested intracellular proteins (Hewitt, 2003). 

Whereas MHC class II consists of two non-covalently associated, structurally similar 

transmembrane proteins (α and β chain) that both contribute to peptide binding, MHC 
class I proteins are made of a three-domain α chain, containing the peptide binding site 

and the noncovalently bound β2 microglobulin (β2m) (Bjorkman et al., 1987). Only the 

association of all three components, 1) membrane anchored α chain, 2) soluble β2m and 
3) antigenic peptide, forms a stable trimeric complex (T. N. M. Schumacher & Ploegh, 

1994). The peptide binding groove formed by the α1 and α2 domain consists of six 
binding pockets that interact with side chains of the loaded peptide. Certain anchor 

residues and the overall biophysical properties of peptide and binding groove define the 

peptide-MHC affinity and therefore the stability of the peptide-MHC complex.  

The rather unspecific, low affinity and generic peptide-MHC interaction and the large 

polymorphism of MHC α chain coding genes ensures the comprehensive display of 
intracellular peptides (J. Klein & Sato, 2000). Despite the large genetic polymorphism, 

MHCs - also referred to as human leukocyte antigens (HLAs) - can be grouped into 

classical MHCs (HLA-A, -B and -C) and less abundant non-classical MHCs (HLA-E, -F 

and G) (Halenius, Gerke, & Hengel, 2014). The TCR:pMHC contact surface is, on the one 

side, formed by the TCR’s hypervariable region and, on the other side, by peptide loaded 

MHC α1 and α2 domains. Binding specificity of a TCR complex to its cognate peptide-

MHC is consequently defined by i) the sequence of the loaded peptide ii) the HLA type 

Figure 5 Structure of the peptide major histocompatibility complexes (MHCs) and T cell receptor (TCR) 

complex and their interaction. Peptide loaded class I MHCs present peptides of proteolytically digested intracellular 

proteins on the surface of nucleated cells. TCR presented on T cells binds pMHCs and by interaction with CD3 and CD247 

co-receptors mediates intracellular signaling. T cell coreceptors CD8 and CD4 allow the discrimination between MHC 

class I or class II by interaction with the respective constant domains. 
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of the MHC and iii) the presence of complementary co-receptors such as CD4 or CD8 

(Garcia et al., 1996). This interaction is typically rather weak compared to e.g. antibody-

antigen interactions (Stone, Chervin, & Kranz, 2009). Multiple simultaneous TCR:pMHC 

binding events are necessary for strong interaction between T cell and APC and 

subsequent T cell activation. The total strength of this multipoint, multi-protein, 

multiple TCR:pMHC interaction is collectively described as binding avidity. Binding 

avidity is a critical factor for T cell activation and furthermore a modulator of T cell 

response (Corse, Gottschalk, & Allison, 2011). Avidity is a multifactorial component of T 

cell activation and is influenced by receptor binding affinities but also by copy number 

of the interaction partners (Labrecque et al., 2001). TCR avidity can be defined by the 

functional effects that are triggered upon antigen binding such as cytokine release, T cell 

proliferation/anergy or cytotoxic potential (functional avidity) or by the interaction 

strength of the TCR complex to a peptide MHC (structural avidity) (Viganò et al., 2012). 

3.1.2.2 PMHC MULTIMER REAGENTS FOR T CELL CHARACTERISATION 

Several strategies to asses TCR binding affinity or structural avidity have been described 

in recent years (Ioannidou et al., 2017). These methods usually involve the recombinant 

expression of at least one interaction partner. Whereas recombinant TCR production 

proves difficult (Gunnarsen et al., 2018), soluble peptide-MHC complexes have been 

efficiently refolded from bacterially expressed proteins. Still, analysis by classical affinity 

measurement methods such as SPR, ITC or ELISA is challenging due to the weak affinity 

of monomeric pMHC molecules and the lack of co-receptor interactions. 

Multimerization of pMHC molecules on scaffolds allows analysis of weak and transient 

interactions and mimics the avidity gain of natural multivalent binding. For example, 

soluble pMHC monomers, biotinylated e.g. via an Avi-tag, can be multimerized on a 

dye-conjugated streptavidin backbone ('tetramer') and enable sensitive labeling of 

matching TCR complexes and isolation of antigen-specific T cells (Altman et al., 1996). 

The implementation of reversibly multimerizable pMHC reagents – such as 

‘Streptamers’ – allow triggered release of pMHC reagents and traceless isolation of T 

cells (Knabel et al., 2002). Besides T cell identification and isolation, reversibly 

multimeriziable pMHC reagents are also used for the characterization of TCR:pMHC 

Figure 6 pMHC multimer reagents used for T cell characterization and isolation. Left: Non-reversible labeling of 

antigen specific TCRs with soluble pMHC molecules multimerized on a fluorescent backbone. Center: Reversibility of the 

multimerization allows triggered dissociation of the complex, thus removal of the label. Right: Fluorescently labeled 

pMHCs can be used to trace the dissociation of pMHC monomers after backbone dissociation. The dissociation kinetics 

(koff rates) can be used to describe a TCR’s structural avidity. 
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interactions. When reversible pMHC monomers themselves are labeled with a 

fluorophore, their dissociation from TCRs on living T cells can be tracked over time and 

allows measurement of TCR koff-rates, and thereby the assessment of TCR structural 

avidity in its endogenous T cell surface context (Figure 6) (Nauerth et al., 2013). 

Although it is yet unclear what an optimal koff rate is, it has been shown that TCR avidity 

is predictive for T cell functionality. It is agreed upon that interaction strength between 

T cell and antigen presenting cell has a strong influence on the subsequent immune 

response. On the one hand, too low avidity prevents sufficient T cell activation, on the 

other hand, too high avidity leads to overstimulation and T cell exhaustion. 

Consequently, avidity must be in a certain range to allow optimal activation of T cells. 

Furthermore, avidities leaning to the lower end of this spectrum might trigger different 

functional responses other than those leaning towards the higher end (Corse et al., 2011; 

Viganò et al., 2012). In a clinical setting the avidity and specificity of transgenic T cells 

can be crucial characteristics that significantly influence on-target efficacy but also off-

target toxicity (Kunert, Obenaus, Lamers, Blankenstein, & Debets, 2017). Thus, pMHC 

multimer assisted selection of T cell receptors with beneficial properties might 

contribute to safer and more efficient transgenic T cells for therapeutic applications. 

Ideally, such reagents should, just like ADCs, be precise, well defined and stable. Thus, 

sensitive pMHCs also require gentle and robust modification strategies that yield 

homogeneous products with high efficacy. 
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3.2 SITE-SPECIFIC MODIFICATION AND BIOORTHOGONAL 

CONJUGATION OF RECOMBINANT PROTEINS 

The thrive of ADCs was accompanied with growing interest in bioconjugation 

techniques. The fusion of biomolecule and toxin created the need for gentle conjugation 

strategies that are orthogonal to naturally occurring protein modification mechanisms. 

Historically bioorthogonal reactions also encompass specific modification of naturally 

occurring functional groups of biomolecules such as amines on lysine side chains or 

thiols on cysteine side chains, however, with orthogonal reaction mechanisms. More 

recently the understanding of bioorthogonality focuses on reactions involving reactive 

groups that are rare or absent in biological systems. The later demands the introduction 

of one of the reactive groups in the biomolecule to allow subsequent bioorthogonal 

modification. Initially, such techniques were developed for the labeling of endogenous 

biomolecules to investigate their function in the cellular context. Today bioorthogonal 

reactions are evermore used for site-specific functionalization of recombinant proteins 

(Bertozzi, 2011). Especially, the demanding requirements for therapeutic bioconjugates, 

such as ADCs, have promoted the latest interest in bioorthogonal site-specific 

bioconjugation techniques (Agarwal & Bertozzi, 2015a). Although antibodies conjugated 

to toxins are en vogue representatives of bioconjugates that attract attention owing to 

their clinical application, many more proteins are routinely modified with entities 

ranging from small reporter compounds (e.g. fluorophores, radioisotopes or biotin) over 

synthetic polymers (e.g. PEG), peptides, proteins or other macromolecules (e.g. DNA, 

sugars or lipids) all the way to even larger structures such as scaffolds (e.g. dextrans or 

dendrimers) or solid supports.  

3.2.1 MODIFICATION OF PROTEINOGENIC AMINO ACIDS  

The 20 canonical amino acids can be grouped by the physico-chemical properties of 

their side chain residues. Non-polar aliphatic amino acids are mainly buried in the 

hydrophobic core of proteins and thus inaccessible for conjugation reactions. On the 

contrary, amino acids with polar or charged side chains are exposed to the polar solvent 

water, thus commonly found on the protein’s surface. The side chains of serine, 

threonine, asparagine and glutamine carry polar hydroxyl or amide groups that can act 

as nucleophiles in conjugation reactions. These side chains are commonly modified by 

enzymes in the cellular context, however, their nucleophilic character is similar to that 

of water and thus hardly selectively addressable in aqueous environments. Polar, 

ionizable side chains are of particular interest for bioconjugation. In their unprotonated 

form the ionizable groups; thiol (cysteine), amine (lysine, arginine, histidine and N-

terminus), carboxyl (aspartate, glutamate and C-terminus) and phenol (tyrosine) groups 

are strong nucleophiles listed with descending nucleophilicity (Figure 7). Although the 

reactivity of these nucleophiles is guided by their pKa values, the very reactivity of each 

amino acid side chain is strongly dependent on the microenvironment surrounding the 

reactive group (e.g. active center of enzymes). In addition, carboxyls and amines, as 

opposed to thiols and phenols, are present in their charged form at neutral pH, thus 

frequently found on the solvent exposed protein surface and readily accessible for 

modification reactions. The relatively low pKa of carboxyl groups leaves them in their 
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less reactive unprotonated form at physiological pH values, thus only reactive under 

harsh pH conditions or by applying intermediate activating reactions (Hermanson, 

2013a). 

3.2.1.1 AMINE MODIFICATION 

On the contrary, primary amines such as the N-terminal α-amines and lysines’ ε-amines 

can be directly addressed by alkylation or acylation at neutral or slightly basic pH. 

Several amine reactive moieties have been described for protein modification or 

crosslinking. For example, isocyanates, acyl azides, aldehydes and phosphine derivatives 

are used, however, the most widely applied amine-acylating reagents are N-

hydroxysuccinimide (NHS) esters. The NHS-activated carboxylates are attacked by 

nucleophilic amines to form a stable amide bond between protein and attached entity 

(Figure 8) (Hermanson, 2013b). Although amines of lysines and N-terminus are 

ubiquitous in proteins and peptides and thus allow the modification of virtually any 

protein (Gunnoo & Madder, 2016), their high abundance mostly impedes control over 

stoichiometry and site of conjugation. By minute optimization of reaction conditions, 

the average number of attached molecules per protein can be directed (Matos et al., 

2018), however, individual proteins will still differ in extend and position of conjugation. 

For example, amine containing functional sites, such as antibody paratopes, can thus be 

compromised by conjugation (L. Wang et al., 2005). 

3.2.1.2 THIOL MODIFICATION 

The thiolat of cysteines is a less frequent nucleophile and allows for more homogeneous 

conjugation. Free cysteines are scarcely present on protein surfaces, however, 

predominantly exist in enzyme active site pockets or in the oxidized form as 

intermolecular or intramolecular disulfides. Disulfide bridges stabilize the three 

dimensional fold of proteins. Cysteine disulfides are relative hydrophobic, therefore 

mostly found in the hydrophobic core of proteins (intramolecular) or on the surface 

linking two individual peptide chains (intermolecular). Buried disulfides are relatively 

Figure 7 Reactive groups of proteinogenic amino acids commonly used for protein modification. Reactive groups 

are ordered by decreasing nucleophilicity. Adapted from (Hermanson, 2013a) 
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inaccessible under aqueous buffer conditions. Intermolecular disulfides, such as the 

hinge-disulfide bridges of antibodies, are more readily accessible for reduction and 

subsequent conjugation reactions. Thiol reactive groups include, for example, haloacetyl 

or aryloyl derivatives, vinyl sulfones, thiol-exchange reagents and maleimides (J. M. 

Chalker, G. J. L. Bernardes, Y. A. Lin, & B. G. Davis, 2009). Maleimides are very 

commonly used for thiol modification. Their double bond is attacked by the 

nucleophilic thiol group to form a relatively stable thioether bond. At neutral pH, 

maleimides react specifically with thiols over amines (1000-fold faster) making it a 

convenient modification strategy for cysteine containing proteins (Ravasco, Faustino, 

Trindade, & Gois, 2019). However, reduction of disulfide bridges can affect protein 

stability and function, the thioether bond is prone to hydrolysis and thiol exchange 

(Shen et al., 2012) and eventually, a great number of proteins do not contain accessible 

cysteines. Yet, the recombinant production of proteins allows sequence manipulation 

and thus deletion, insertion or substitution of amino acids. For example, introduction of 

an engineered cysteine residue has been used for site-specific thiol-modification of 

antibodies (THIOMABs) (Bhakta, Raab, & Junutula, 2013). In this approach, a large set of 

positions has been screened for an exposed reactive cysteine residue that can be 

addressed selectively. The microenvironment dependent reactivity of the thiol group 

can be significantly different for the engineered cysteine than for the native disulfide 

cysteines. This allows specific modification of the engineered cysteine under optimized 

reduction/oxidation conditions (Figure 8) (Shen et al., 2012).  

The installation of reactive groups with discriminative or orthogonal reactivity is a 

concept that underlies most site-specific bioconjugation methods. A large variety of 

engineering strategies has been developed for the introduction of bioorthogonal handles 

(Prescher & Bertozzi, 2005). For example, the substitution of amino acids has been 

Figure 8 Modification of naturally occurring or engineered proteinogenic amino acids. Left panel: ε-amines of 

lysine side chains can be targeted by conjugation of N-hydroxysuccinimide (NHS) activated carboxylates. NHS is released 

as a leaving group and a stable amide bond is formed between the lysine and attached entity. Upon reduction, the thiol 

groups of disulfide cysteines are potent nucleophiles that can be addressed selectively, for example, with maleimide 

functionalized entities. Right panel: Proteinogenic amino acids, e.g. free unpaired cysteines can be introduced at solvent 

exposed positions by protein engineering and modified selectively with thiol reactive reagents. 
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expanded from natural to unnatural, bioorthogonally reactive amino acids and site-

specificity has been improved, for instance, by chemoenzymatic approaches. These two 

concepts will be described in more detail in the following paragraphs. 

3.2.2 INCORPORATION AND MODIFICATION OF UNNATURAL AMINO ACIDS 

Besides the 20 canonical amino acids incorporated into proteins, many more amino 

acids have been isolated or generated by chemical synthesis (Wagner & Musso, 1983). 

However, these are not recognized by the natural protein biosynthesis machinery since 

they lack a matching anticodon and the necessary tRNA/tRNA-synthetase pair. 

Ribosomal incorporation of unnatural amino acids (UAAs) has been achieved by the 

selection of orthogonal tRNA/tRNA-synthetase pairs that i) recognize the unnatural 

amino acid and ii) covalently link it to a tRNA displaying an unused anti-codon (W. Liu, 

Brock, Chen, Chen, & Schultz, 2007; L. Wang, Brock, Herberich, & Schultz, 2001). Most 

approaches use an anti-codon matching the infrequent amber stop codon (TAG). This 

codon can be placed at any desired position in the protein sequence and, in expression 

hosts equipped with the matching orthogonal tRNA/tRNA synthetase pair, triggers the 

incorporation of the UAA (Chin, 2017; C. C. Liu & Schultz, 2010). By now, many different 

UAAs, carrying commonly used bioorthogonal handles, have been synthesized and 

incorporated by amber suppression (K. Lang & J. W. Chin, 2014). A great advantage of 

this technique is that UAAs can be placed at virtually any site in the protein and by 

introducing multiple orthogonal tRNA/tRNA synthetase pairs more than one 

bioorthogonal handle can be installed at different sites (Xiao et al., 2013). However, 

amber suppression is limited by the selection of a suitable pair for each new UAA and 

struggles with low protein expression yields compared to standard recombinant 

expression. Efficacy and fidelity of UAA incorporation during protein expression are 

crucial factors affecting expression yield.  

3.2.3 CHEMOENZYMATIC APPROACHES 

Reduced expression yields can be addressed by incorporation of UAAs or other entities 

carrying bioorthogonal handles subsequent to recombinant expression. The great 

majority of these techniques rely on enzymatic incorporation of handles at either 

naturally occurring recognition sites (e.g. glycans) or at recombinantly introduced 

recognition sites (e.g. peptide tags). Glycosylation is a posttranslational modification of 

proteins and involves the assembly of oligosaccharides and their enzymatic linkage to 

the amide group of asparagine (N-linked) or the hydroxyl group of serine and threonine 

(O-linked) (Ohtsubo & Marth, 2006; Schachter, 2000). For example antibodies are N-

glycosylated at asparagine 297 of the heavy chain (Abel, Spiegelberg, & Grey, 1968; Higel, 

Seidl, Sörgel, & Friess, 2016). These oligosaccharides have been used to site-specifically 

install bioorthogonal handles by enzymatic incorporation of modified sugar entities. For 

example, azido-sialic acid can be incorporated by α2,6-sialyltransferase whereas the 

azide can serve as a bioorthogonal handle for drug attachment by click chemistry (Du et 

al., 2009). Furthermore, mutant β1,4-galactosyltransferases, were developed that accept 

a variety of modified galactoses as substrates to modify degalactosylated antibodies 

(Figure 9) (Qasba, 2015). Although this approach does not require sequence 

manipulation it is limited to glycosylated proteins and the effects of glycan 
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manipulation regarding stability, function or immunogenicity of the modified protein 

are to be fully evaluated (H. Li & d’Anjou, 2009). 
An approach with a larger scope is the introduction of recognition sequences, such as 

peptide tags. One of the first peptide tags used for site specific protein modification is 

the 15 amino acid long AviTag. The AviTag is derived from the recognition sequence of 

the bacterial biotin ligase BirA. BirA catalyzes the conjugation of biotin to a lysine 

residue in the recognition sequence. The strong affinity of biotin to avidin allows 

immobilization of biotinylated proteins on surfaces or the assembly of multimeric 

complexes on avidin scaffolds (Beckett, Kovaleva, & Schatz, 1999; Fairhead & Howarth, 

2015). Besides natural biotin, BirA also ligates biotin derivatives that have altered affinity 

to avidin or derivatives carrying bioorthogonal handles. The later has been used for site-

specific attachment of functionalities such as fluorophores or toxins to AviTagged 

proteins (I. Chen, Howarth, Lin, & Ting, 2005; Slavoff, Chen, Choi, & Ting, 2008).  

Following the same two-step principle, 1.) site-specific enzymatic incorporation or 

generation of a reactive handle and 2.) bioorthogonal conjugation of molecule of 

interest, several more tag-enzyme pairs have been developed such as Q-tag and 

transglutaminase (TGase) (Dennler et al., 2014; Jeger et al., 2010; Lin & Ting, 2006), 

Aldehyde-tag and formylglycine-generating enzyme (FGE) (I. S. Carrico, B. L. Carlson, & 

C. R. Bertozzi, 2007; Dierks et al., 2005; Drake et al., 2014), Sortag and Sortase A (SrtA) 

(Mao, Hart, Schink, & Pollok, 2004; Williamson, Fascione, Webb, & Turnbull, 2012) or 

Tub-tag and tubulin-tyrosine ligase (TTL) (D. Schumacher et al., 2015; D. Schumacher et 

al., 2017). SrtA is a streptococcal transpeptidase that recognizes the C-terminal sorting 

motif LPXTG and catalyzes the transfer of the LPXT motif to a pentaglycine acceptor 

peptide on the cell wall. SrtA cleaves the peptide bond between threonine and glycine 

Figure 9 Exemplary (chemo)enzymatic site-specific protein modification strategies. Left: β1,4-

galactosyltransferases (GalT) catalyzed introduction of modified galactoses in degalactosylated glycosylated proteins. 

Center: Tubulin-tyrosine ligase (TTL) catalyzed site-specific introduction of tyrosine derivatives in C-terminally Tub-

tagged proteins and subsequent bioorthogonal conjugation of functional entities. Right: SortaseA (SrtA) catalyzes 

transpeptidation of poly-glycine- and LPXTG-recognition sequences. Terminal LPXTG serve as an acceptor sequence for 

the site-specific ligation of poly-glycine modified functional entities. 
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and forms a new peptide bond between the threonine and the N-terminal amine of the 

acceptor sequence (Spirig, Weiner, & Clubb, 2011). This reaction was first used by Mao et 

al (2004) to modify recombinant proteins. In general, the two components to be joined 

have to contain either a C-terminal LPXTG motif or a N-terminal (Gly)n motif. 

Consequently, N- or C-terminal modification of proteins can be realized by adding the 

respective motif. It should be noted that the product also contains an LPXTG motif and 

SrtA also catalyzes the reverse reaction removing the attached modification. However, 

sortagging has been developed further by many research groups resulting in optimized 

reaction conditions, engineered enzymes for faster reaction rates and a variety of 

applications (Antos, Truttmann, & Ploegh, 2016). Noteworthy, the transpeptidation 

reaction can also be used directly to assemble linear protein-protein fusions without an 

intermediate bioorthogonal reaction step (Levary, Parthasarathy, Boder, & Ackerman, 

2011). However, the C-terminal installation of (Gly)n peptides carrying functional groups 

is a frequently used example that has also been applied for antibody modification and 

ADC generation (Figure 9) (Beerli, Hell, Merkel, & Grawunder, 2015; Stefan et al., 2017).  

In contrast to SrtA, the tag-enzyme pair used in Tub-tag labeling is inspired by a 

eukaryotic system. In eukaryotes, α/β-tubulin heterodimers polymerize to form 

microtubules. Their assembly and disassembly is a highly dynamic process and is among 

others regulated by modification of the C-terminal tail of tubulins. α-tubulin is 

expressed with a C-terminal tyrosine which can be removed and added enzymatically 

after expression. Tyrosinated α-tubulin is found in more stable microtubules and serves 

as a signal for stabilization (Janke, 2014; Yu, Garnham, & Roll-Mecak, 2015). The enzyme 

responsible for retyrosination is tubulin-tyrosine ligase (TTL) an ATP-dependent 

peptide synthase that catalyzes peptide bond formation between the C-terminal 

glutamate and free L-tyrosine (Prota et al., 2013; Rudiger, Wehland, & Weber, 1994). 

Although TTL activity is influenced by binding to tubulin distinct from the tail region, 

recombinantly expressed TTL also catalyzes tyrosination of other proteins equipped 

with the 14 amino acid tail sequence (the Tub-tag) (D. Schumacher et al., 2015). Despite 

the high specificity for the tag sequence TTL is less specific regarding the amino acid to 

be attached. Besides incorporation of other natural amino acids like phenylalanine, 

more importantly, the TTL also tolerates a large set of tyrosine derivatives carrying 

diverse functionalities. Accordingly, Tub-tag labeling was used to C-terminally install 

bioorthogonal handles for subsequent site-specific attachment of a variety of small 

molecules (Figure 9) (D. Schumacher et al., 2017). 

3.2.4 BIOORTHOGONAL CONJUGATION REACTIONS 

Bioorthogonal reactions were initially developed for modification of biomolecules in 

complex mixtures such as the cellular cytoplasm. Thus, they use reactive groups that are 

rare or not present in biomolecules and follow orthogonal reaction mechanisms to avoid 

unspecific modification. Many such reaction mechanisms are routinely applied in order 

to organic chemistry, yet the great majority of biomolecules do not tolerate the harsh 

reaction conditions applied in chemical synthesis such as high temperature or organic, 

non-polar solvents. Consequently, only a subset of those reactions can be carried out 

efficiently under mild conditions such as ambient temperature and use of aqueous 

solvents (Carell & Vrabel, 2016). 
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Although aldehydes and ketones are present in biomolecules such as saccharides, they 

are absent from proteins. Thus, aldehydes can serve as a bioorthogonal handle for site-

specific modification of recombinant proteins (Isaac S. Carrico, Brian L. Carlson, & 

Carolyn R. Bertozzi, 2007). Alkoxylamines or hydrazines react with carbonyl groups 

under acidic conditions to form oximes or hydrazones, respectively. Oximes are more 

stable than hydrazones, hence, oxime ligation is generally preferred for bioconjugation. 

Carbonyls are small in size and may serve as a handle that minimally perturbates 

proteins. However, aldehydes can be attacked by many nucleophiles present in 

biological systems, the reaction is generally reversible and stability is strongly 

Figure 10 Exemplary bioorthogonal reactions. Oxime ligation of aldehydes and alkoxylamines. Staudinger-

phosphonite reaction (SPhR) between azides and phosphonites. Click reactions: copper(I)-catalyzed alkyne-azide 

cycloaddition (CuAAC) and strain-promoted alkyne-azide cycloaddition (SpAAC) between azides and (strained) alkynes. 

Inverse electron-demand Diels-Alder reaction (IEDDA), also known as tetrazine ligation, between tetrazines and strained 

alkenes. 
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dependent on pH and substituents in vicinity of the linkage (Foillard, Rasmussen, 

Razkin, Boturyn, & Dumy, 2008; Kölmel & Kool, 2017; Ulrich, Boturyn, Marra, Renaudet, 

& Dumy, 2014). Another very frequently used reaction mechanism is the Huisgen 1,3-

dipolar cycloaddition between an azide and a terminal alkyne (Huisgen, 1963). Since 

both reactive groups are small and do not occur in natural systems, this reaction is very 

suitable for bioorthogonal conjugation, however, the reaction proceeds relatively slowly 

in biological systems. It was found that copper(I) can serve as a catalyst for the 

cycloaddition and drastically increases reaction rates (Rostovtsev, Green, Fokin, & 

Sharpless, 2002). Copper catalyzed azide alkyne cycloaddition (CuAAC) is a fast and 

specific reaction also known as “click chemistry”. It’s ease of use has initiated wide 
spread use of click chemistry and the development of many azide and alkyne handles 

that can be introduced in proteins by above mentioned techniques (Hein & Fokin, 2010; 

L. Li & Zhang, 2016). Yet, in living systems, the toxicity of copper(I) is problematic and 

reactive groups of proteins can be oxidized which can cause structural and functional 

damage (Kennedy et al., 2011). In this regard copper complexing ligands like Tris(3-

hydroxypropyltriazolylmethyl)amine (THPTA), can be applied to reduce oxidation 

effects (Hein & Fokin, 2010; Hong, Presolski, Ma, & Finn, 2009). In addition, copper free 

alternatives such as strain promoted azide alkyne cycloaddition (SpAAC) have been 

developed (Agard, Prescher, & Bertozzi, 2004). Instead of metal-ion catalysis, SpAAC 

relies on activated alkynes which inherently exhibit higher reactivity towards azides. 

This is achieved by embedding the alkyne group in a strained ring system. The first 

strained alkyne used for SpAAC was cyclooctyne (OCT) followed by alkynes with higher 

reaction rates and/or increased water solubility like dibenzocyclooctyne (DBCO) and 

bicyclononyne (BCN) (Ramil & Lin, 2013). SpAAC circumvents the toxicity accompanied 

with copper catalysts, proceeds without the need of further additives and tolerates a 

range of biological buffer systems, pH values and temperatures. Thus, two entities 

carrying complementary SpAAC-handles can virtually be “clicked” together by simply 
mixing them. A variety of functional moieties such as fluorophores, affinity ligands, 

amino acids, nucleotides, crosslinkers, polymers or toxins are commercially available as 

azide or alkyne derivatives and have made click chemistry a standard tool for 

conjugation of biomolecules (Pickens, Johnson, Pressnall, Leon, & Berkland, 2018).  

Azides also undergo bioorthogonal reactions with other reactive groups. For example, 

the reaction with trapped phosphines yields stable amide bonds and is termed 

Staudinger ligation (Staudinger & Meyer, 1919). Besides phosphines also phosphites and 

phosphonites react specifically with azides and have been used as an alternative to click 

chemistry for azide-directed site-specific bioconjugation of intracellular and 

recombinant biomolecules (Serwa et al., 2009; van Berkel, van Eldijk, & van Hest, 2011) 

(Vallée et al., 2011). 

Another bioorthogonal pair that has become very prominent are 1,2,4,5-tetrazines and 

strained alkenes that react exceptionally fast in an inverse electron demand Diels–Alder 

cycloaddition (iEDDA) (Blackman, Royzen, & Fox, 2008; Devaraj, Weissleder, & 

Hilderbrand, 2008). The reaction releases gaseous N2 which makes it practically 

irreversible in biological systems. Commonly used alkenes include trans-cyclooctene 

(TCO)(W. Chen, Wang, Dai, Hamelberg, & Wang, 2012), norbornene (Lang, Davis, 

Torres-Kolbus, et al., 2012) and cyclopropene (Patterson, Nazarova, Xie, Kamber, & 
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Prescher, 2012). Both alkene and tetrazine derivatives of amino acids have been 

incorporated in proteins (Lang, Davis, Wallace, et al., 2012; Mayer & Lang, 2017; Plass et 

al., 2012). The fast reaction kinetics allow efficient labeling of proteins even in living cells 

and in vivo which is why tetrazine ligation has found widespread application (Kathrin 

Lang & Jason W. Chin, 2014; Sečkutė & Devaraj, 2013). 

Besides the mentioned popular mechanisms, many more bioorthogonal reactions have 

been described for bioconjugation in the recent past. Their application for site-specific 

protein modification presupposes the site-specific introduction or generation of the 

required bioorthogonal handle. Several pairs of incorporation techniques and 

bioorthogonal reactions have lately been used for a variety of applications ranging from 
in vivo labeling to precise modification of recombinant proteins. The later contributed to 

more sophisticated, more stable and better defined protein reagents used in research, 

diagnostic and therapy. Among the multitude of protein conjugate reagents this work 

focuses on antibody conjugates, bispecific antibodies and T cell characterization 

reagents. 
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4 RESULTS  

4.1 A SIMPLE AND SENSITIVE HIGH-CONTENT ASSAY FOR THE 

CHARACTERIZATION OF ANTIPROLIFERATIVE THERAPEUTIC 

ANTIBODIES 
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Technical Note

Introduction
Biological drugs such as therapeutic antibodies are in the pro-
cess of replacing chemical compounds as the major class of 
future medicines. Therapeutic antibodies are often character-
ized by complex modes of action, such as inhibition of cell 
proliferation, induction of apoptosis, and targeted immune 
recruitment. Moreover, antibody drug conjugates (ADCs) 
that combine chemotherapeutic cytotoxicity with antibody-
mediated tumor specificity even increase the diversity of 
potential modes of action.1 Thus, the functional characteriza-
tion during early drug development requires sensitive cell-
based high-throughput assays that address this complexity 
and measure multiple cellular parameters.2 One of the major 
modes of action of therapeutic antibodies is based on inhibi-
tion of target cell growth by, for example, blocking growth 
signaling pathways in cancer cells.3 For assessing the antip-
roliferative potency of such candidates, several methods have 
been described.4 A simple approach to quantify the number 
of cells that survive treatment consists of automated cell 
counting.5 However, a significant proportion of remaining 
cells is likely to have entered apoptosis or cell cycle arrest, 
leading to an overestimation of the proliferating cell 

population. A more precise approximation of proliferation 
can be achieved by detecting metabolic activity in viable 
cells and thus excluding apoptotic cells. Compounds such as 
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 
(MTT) are converted to a colored product by NAD(P)H- 
dependent cellular oxidoreductases, providing a quantifiable 
measure for metabolic activity.6 An alternative approach to 
assess viability is the detection of intracellular adenosine tri-
phosphate (ATP), which is maintained only at high levels in 
metabolically active cells and declines rapidly upon cell 
death or apoptosis. The release of intracellular ATP and its 
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A Simple and Sensitive High-Content Assay 
for the Characterization of Antiproliferative 
Therapeutic Antibodies

Andreas Stengl1, David Hörl1, Heinrich Leonhardt1, and Jonas Helma1

Abstract
Monoclonal antibodies (mAbs) have become a central class of therapeutic agents in particular as antiproliferative compounds. 
Their often complex modes of action require sensitive assays during early, functional characterization. Current cell-based 
proliferation assays often detect metabolites that are indicative of metabolic activity but do not directly account for cell 
proliferation. Measuring DNA replication by incorporation of base analogues such as 5-bromo-2′-deoxyuridine (BrdU) 
fills this analytical gap but was previously restricted to bulk effect characterization in enzyme-linked immunosorbent assay 
formats. Here, we describe a cell-based assay format for the characterization of antiproliferative mAbs regarding potency 
and mode of action in a single experiment. The assay makes use of single cell–based high-content-analysis (HCA) for 
the reliable quantification of replicating cells and DNA content via 5-ethynyl-2′-deoxyuridine (EdU) and 4′,6-diamidino-
2-phenylindole (DAPI), respectively, as sensitive measures of antiproliferative mAb activity. We used trastuzumab, an 
antiproliferative therapeutic antibody interfering with HER2 cell surface receptor-mediated growth signal transduction, 
and HER2-overexpressing cell lines BT474 and SKBR3 to demonstrate up to 10-fold signal-to-background (S/B) ratios 
for treated versus untreated cells and a shift in cell cycle profiles indicating antibody-induced cell cycle arrest. The assay 
is simple, cost-effective, and sensitive, providing a cell-based format for preclinical characterization of therapeutic mAbs.

Keywords
therapeutic antibodies, cell-based assays, high-content screening, EdU, proliferation
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detection via ATP-dependent luciferase activity is widely 
used in proliferation assays.7

However, cells that have undergone cell cycle arrest are still 
metabolically active and consequently not distinguishable 
from proliferating cells by above-described assays. A major 
characteristic of proliferating cells is the replication of DNA 
during S phase. Thus, the incorporation of nucleotide ana-
logues such as 5-bromo-2′-deoxyuridine (BrdU) into chromo-
somal DNA during replication allows for the distinction 
between proliferating and arrested cells. BrdU can be detected 
by antibodies and thus may be implemented with highly sensi-
tive enzyme-linked immunosorbent assay (ELISA)–based 
multiwell assays.8 It has been shown that a wider separation 
between signals from treated and untreated samples (signal-to-
background [S/B] ratio) can be achieved with BrdU incorpora-
tion compared with assays detecting metabolic activity.9 
5-Ethynyl-2′-deoxyuridine (EdU), an alternative nucleotide 
analogue, enables a simpler, milder, and more efficient detec-
tion via copper-catalyzed azide alkyne cycloaddition (CuAAC) 
of fluorescent dyes, such as 6-FAM–azide. The use of EdU 
coupled to fluorescent dyes simplifies the assay procedure and 
in addition improves compatibility with other nuclear stains 
such as 4′,6-diamidino-2-phenylindole (DAPI), thus represent-
ing the method of choice for sensitive microscopy-based 
detection of proliferation.

Accurate distinction between proliferating and nonpro-
liferating cells improves the sensitivity of an antiprolifera-
tive potency assay (Fig. 1). Changing the mode of signal 
detection, on one hand, can further improve sensitivity but 
also provide additional information about the antiprolifera-
tive effect. Plate reader–based readouts are commonly used 
in screening experiments to validate lead candidates and 
produce statistically relevant data. Commonly used colori-
metric multiwell proliferation assays are restricted to single- 
course parameters such as mean metabolic activity per well. 
To better understand the mode of action underlying an 

antiproliferative effect, cellular or subcellular information 
on signal localization and intensity may prove useful, which 
is usually not accessible with plate reader systems. 
Fluorescence microscopy is the method of choice to gain 
information about single cells with a variety of microscopic 
high-content screening (HCS) platforms developed in 
recent years that allow for automated image acquisition and 
analysis in a high-throughput manner.10

In the present study, we describe a simple and sensitive 
microscopic high-content assay for the quantification and 
characterization of the antiproliferative potency of thera-
peutic antibodies. The quantification of replicating cells, 
via EdU incorporation, as a measure for proliferation allows 
for most sensitive distinction between proliferating and 
nonproliferating cells. In addition to quantifying the antip-
roliferative potency of a monoclonal antibody (mAb), the 
mode of action can be investigated in the course of the same 
experiment. For example, potential induction of cell cycle 
arrest can be studied by cell cycle profiling based on nuclear 
DNA content quantification.

Materials and Methods

Cell Lines and Cell Culture
Antibodies were produced in FreeStyle HEK 293-F cells 
(Thermo Fisher Scientific, Waltham, MA, USA) cultured in 
FreeStyle 293 Expression Medium and maintained at cell 
densities from 3 × 105 to 3 × 106 cells/mL in a shaker flask 
at 37 °C, 5% CO2, shaking at 120 rpm.

HER2 overexpression cell lines BT474 (ATCC HTB20) 
and SKBR3 (ATCC HTB30) and a control cell line with 
neglectable HER2 expression levels (1000-fold less than 
SKBR3), MDA-MB-468 (ATCC HTB-132), were cultured 
in Dulbecco’s modified Eagle’s medium (DMEM)/F12 + 
Gibco Glutamax-I (Thermo Fisher Scientific, Waltham, 

Figure 1. Addressing proliferation at different layers. Antiproliferative antibodies interfere with a cell’s ability to replicate. Directly, 
detecting replicating cells (green) allows for the largest separation between maximal and minimal number of affected cells. Indirectly, 
restrained DNA replication also reduces the amount of metabolically active cells and the total number of cells remaining after 
treatment. However, the detection of metabolically active cells (magenta) includes arrested cells, resulting in an overestimation of 
proliferating cells. This effect is even more drastic when further generalizing the detection to all remaining cells (orange), which also 
includes apoptotic cells.
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MA, USA) supplemented with 10% fetal calf serum (FCS) 
at 37 °C, 5% CO2.

Protein Expression and Purification
Trastuzumab was expressed in FreeStyle HEK 293-F cells as 
described previously from the pVITRO1-trastuzumab-IgG1/κ 
vector (Addgene plasmid 61883; Addgene, Cambridge, MA, 
USA).11

Antibody purification from cleared and sterile filtered cell 
culture supernatants was performed with an Äkta purifier 
system equipped with a 1-mL HiTrap Protein A HP column 
(GE Healthcare, Piscataway, NJ). The system was operated 
with a constant flow rate of 1 mL/min. After sample applica-
tion, the column was washed with 10 column volumes (CVs) 
of wash buffer (20 mM phosphate buffer, 150 mM NaCl, pH 
7.3). Bound antibody was eluted with a one-step pH decrease 
to 3.0 (10 mM Na-citrate buffer, pH 3.0). Eluted fractions of 
size 0.2 mL or 0.5 mL were collected followed by immediate 
neutralization of the pH with one-third volume 1 M Tris HCl, 
pH 8.0. Peak fractions were pooled and concentrated using 
an Amicon Ultra 4-mL Centrifugal Filter NMWL 10 kDa 
(Merck Millipore, Billerica, MA, USA) and stored at 4 °C or 
snap frozen in liquid nitrogen and transferred to −80 °C for 
long-term storage.

Antibody Treatment, EdU Incorporation, and 
Nuclear Staining
In total, 1 × 104 cells were seeded in each well of a 96-well 
optical cell culture plate supplemented with 100 µL culture 
media. To ensure proper attachment, cells were incubated for 
4 h prior to addition of antibody. The 1:3 serial dilutions of 
trastuzumab in culture media were performed at threefold the 
desired final concentration, ranging from 50 nM to 0 nM. 
Then, 50 µL of each dilution was added in triplicates to indi-
vidual wells. Cells were incubated with antibody for 4 days 
followed by the addition of EdU to a final concentration of 10 
µM. To guarantee labeling of all proliferating cells, EdU 
treatment was done for 20 h followed by fixation of cells in 
phosphate-buffered saline (PBS) + 4% paraformaldehyde 
(PFA), permeabilization in PBS + 0.5% Triton X-100, and 
blocking of the well surface with PBT (PBS, 2% BSA, and 
0.02% Tween 20). EdU was labeled via CuAAC by the addi-
tion of 30 µL of staining reagent (4 mM CuSO4, 20 µM 
6-FAM–azide, 50 µM Na-ascorbate in 100 mM Tris/HCl, pH 
7.0) per well and incubated for 30 min at room temperature. 
Remaining unconjugated dye was removed by washing three 
times with 100 µL PBST (PBS + 0.02% Tween 20). Then, 
100 ng/mL DAPI in PBST was added for 10 min at room 
temperature to counterstain nuclear DNA, followed by three 
washing steps with PBST and one additional wash with 
ddH2O.

Image Acquisition and Data Analysis
Images were acquired with an Operetta High-Content 
Imaging system (PerkinElmer, Waltham, MA, USA) 
equipped with a 40× high NA objective. The 380/40-nm 
excitation and 410- to 480-nm emission filters were used to 
image DAPI, and the 475/30-nm excitation and 500- to 
550-nm emission filters were used to image 6-FAM–EdU.

DAPI images were used to segment and count the total 
number of nuclei for each well, representing the total cell 
count. Each antibody concentration was tested in technical 
triplicates. Total cell counts of triplicates were averaged and 
normalized to the cell count of an untreated control 
(c(trastuzumab) = 0). Averaged and normalized cell counts 
were plotted against log10-transformed antibody concentra-
tions. Fitting a nonlinear four-parametric model equation 
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curves with the descriptive parameters IC50 (concentration 
of half-maximal inhibition) and Hill slope.
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modeling S phase, were fitted to the DAPI intensity proba-
bility densities px and histogram bin centers x to model the 
DNA content distribution throughout the cell cycle. The 
function was fitted by globally minimizing the squared 
error via simulated annealing using the GenSA package in 
R. By integrating over the respective term of the derived fit 
equation representing the G1, S, or G2/M phase, the relative 
proportion of each phase of the whole cell population was 
calculated—for example,
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Based on 6-FAM–EdU signal, nuclei were classified as pro-
liferating or nonproliferating. Data averaging, normaliza-
tion, and curve fitting were done in a similar manner as 
described above for total cell counts.

All image processing was performed with the Harmony 
software (PerkinElmer); data analysis and curve fitting were 
done in MATLAB and R (2016, https://www.R-project.org). 
The R script used for the estimation of cell cycle distribu-
tions from DAPI intensity distributions is available at https://
github.com/hoerldavid/CellCycleFit.

Results and Discussion
In the field of biologics, therapeutic antibodies have 
emerged as an especially promising drug format over the 
past years.2 A role model for this class of drugs is trastu-
zumab, which binds the extracellular domain of the HER2 
cell surface receptor. In a subset of breast cancers, the 
growth factor receptor HER2 is overexpressed and medi-
ates increased proliferation.12 Trastuzumab counteracts this 
accelerated growth by reducing HER2-mediated signaling 
and therefore acting as an antiproliferative drug on HER2-
overexpressing cells.13 To assess the antiproliferative potency 
of a therapeutic antibody, cells are subjected to a range of 
antibody concentrations. Higher antibody concentrations 
are expected to lead to lower numbers of viable cells and  
an even more pronounced decrease in proliferating cells 
(Fig. 1).

In the described assay, HER2-overexpressing cells (BT474 
and SKBR3) and control cells (MDA-MB-468) were supple-
mented with EdU after 4 days of trastuzumab treatment. The 
proliferating fraction of the cell population incorporates EdU 
molecules into newly synthesized DNA during S phase. 
Surviving cells are stained with DAPI, whereas the incorpo-
rated EdU is labeled by CuAAC-mediated coupling of the 
fluorescent dye 6-FAM–azide. Imaging of stained cells on an 
Operetta system facilitates the detection and segmentation of 
nuclei, DNA content analysis using the DAPI signal, and 
definition of the proliferation status according to the EdU sig-
nal. Testing multiple antibodies over a range of concentra-
tions is conveniently done in a multiwell tissue culture plate, 
which is compatible with the Operetta HCS imaging system. 
With this setup, an inhibition curve with 10 data points as 
technical triplicates can easily be generated for two individ-
ual antibodies in a 96-well format. Quantification of counted 
nuclei and detected proliferating cells can readily be done 
with the built-in software package of the Operetta system 
(Harmony), whereas statistical analysis and curve fitting are 
conveniently handled with respective MATLAB toolboxes. 

Besides the quantification of total cell counts and proliferat-
ing cells, the relative intensities of the DAPI and/or EdU sig-
nal per nucleus provide additional information with regard to 
cell cycle phase distributions.

Cell Survival and Cell Cycle Progression
Treatment of HER2-overexpressing cell lines with trastu-
zumab leads to a reduction in cell growth, but BT474 cells 
have been reported to be more susceptible than SKBR3 
cells.14 After 4 days of treatment, fluorescence microscopy 
of DAPI-stained nuclei indicates a clear reduction in cells 
with increasing concentrations of trastuzumab for BT474 
(Fig. 2A) as well as SKBR3 cells. Next, we performed 
high-content image analysis by nuclei segmentation and 
subsequent quantification of surviving cells as a function of 
antibody concentration. By fitting a four-parametric nonlin-
ear model to the obtained data points, we calculated inhibi-
tion curves. These fits revealed a decrease in total cell 
number with increasing antibody concentration and S/B 
ratios lower than 3 for BT474 (Fig. 2B) and SKBR3 (Fig. 
2C). The maximal induction of cell death is 64% with a 
concentration of half maximal inhibition (IC50) of 1.8 nM 
for BT474 cells and 65% with an IC50 value of 1.9 nM for 
SKBR3 cells. The low S/B values can be explained by the 
specific mode of action mediated by trastuzumab, deceler-
ating cell proliferation rather than actively promoting cell 
death.14 Therefore, cells that have already passed G1 phase 
will further progress in cell cycle. With BT474 and SKBR3 
cells exhibiting long doubling times (2–3 days), S/B ratios 
greater than 4 (two doublings) are not to be expected in the 
time course of the assay, which holds also true for other 
assays merely detecting survival or viability.9 Moreover, a 
very low Hill slope could be observed for SKBR3 cells 
compared with BT474, which is linked to the lower suscep-
tibility of SKBR3 to trastuzumab.9,14 Consistently, an 
unsusceptible cell line (MDA-MB-468) showed no differ-
ence in the number of viable cells between treated and 
untreated conditions (Fig. 2B,C). These results indicate that 
exclusively measuring cell survival is limiting the S/B ratio 
of proliferation assays, since arrested cells, which are still 
metabolically active, cannot be distinguished from prolifer-
ating cells.

High-content image analysis of DAPI-stained nuclei allows 
not only segmentation and quantification of nuclei but also 
the measurement of relative nuclear DNA contents. Since the 
amount of chromosomal DNA doubles through S phase from 
G1 to G2 phase, the absolute DAPI signal per nucleus can be 
used to analyze changes in cell cycle distributions. In this 
line, we generated frequency histograms of the absolute 
DAPI intensity per nucleus (Fig. 3A and Suppl. Fig. S1). 
Fitting a three-term model function to the data allowed us to 
determine the proportion of cells within each cell cycle phase 
(Fig. 3B). SKBR3 cells exhibited a clear change in cell cycle 
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profiles upon trastuzumab treatment. The quantification of 
these data shows a decrease in the G2 phase population with 
increasing antibody concentration, which suggests an arrest 
in either G1 or S phase. This is consistent with the proposed 
G1 arrest induced by trastuzumab.15

Cell cycle profiles are an additional readout of the 
described assay and provide supplementary information 

about the mode of action of an antiproliferative antibody. 
Investigation of potency and mode of action in a single exper-
iment was facilitated by increasing resolution to the single-
cell level combined with high-throughput sample and data 
handling implemented in HCS systems. Cell cycle analysis of 
the less susceptible SKBR3 cell line showed that we are able 
to analyze an antibody’s mode of action even if the overall 

Figure 2. Quantification of antiproliferative potency by counting nuclei of surviving cells. 4′,6-Diamidino-2-phenylindole (DAPI)–
stained nuclei were imaged with an Operetta high-content screening (HCS) system. Representative images of BT474 cells for four 
different antibody concentrations are shown in (A). Scale bar represents 100 µm. The observed decrease in surviving cells was 
quantified from technical triplicates for nine individual antibody concentrations (0.008–50 nM) and an untreated control. Averaged 
triplicates normalized to untreated control were plotted against log10-transformed trastuzumab concentrations for BT474 (B) and 
SKBR3 (C) and fitted to a four-parametric inhibition curve model equation (solid lines). Proliferation of a negative control cell line, 
MDA-MB-468, was unaffected by trastuzumab treatment (dashed line). The maximal difference in the number of surviving cells was 
2.7-fold for BT474 as well as for SKBR3 cells.

Figure 3. Shift in cell cycle distribution of trastuzumab-treated SKBR3 cells. Nuclear 4′,6-diamidino-2-phenylindole (DAPI) intensities 
were analyzed to categorize cells into cell cycle phases according to their relative DNA content. Probability density histograms of 
DAPI intensities were used to fit a model equation to the observed distribution. An exemplary histogram for c(trastuzumab) = 16 nM 
is given in (A) with the fitted curve in cyan and respective cell cycle phase terms in red (G1), blue (S), and green (G2/M). Integration 
over the individual terms yields the proportion of cells in each cell cycle phase treated with different trastuzumab concentrations (B). 
High concentrations of trastuzumab lead to a reduction in the G2/M phase proportion, indicating cell cycle arrest.
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antiproliferative effect is weak. Nevertheless, it is also 
desirable to detect this weak proliferation inhibition with 
greater resolution. To address this need, we chose EdU 
incorporation for sensitive detection of proliferating cells.

Increased Assay Sensitivity via Quantification of 
EdU Incorporating Cells
Since DNA replication is a major characteristic of prolifera-
tion, we decided to use EdU incorporation as a marker for 
proliferating cells. Labeling EdU with a fluorescent dye 
allowed the distinction between proliferating and nonprolif-
erating cells by fluorescence microscopy. Automated quan-
tification of EdU-positive cells increased the S/B ratio to 10 
for treated versus untreated BT474 cells (Fig. 4B). A con-
centration of half maximal inhibition (IC50) of 4.9 nM was 
obtained from the fitted inhibition curve, whereas the 

maximal induction of proliferation inhibition was 90%. For 
SKBR3 cells, we observed a maximal induction of prolif-
eration inhibition of 64% and IC50 of 3.9 nM. To ensure that 
the detected inhibition of proliferation was due to trastuzumab-
mediated effects, we subjected a control cell line, 
MDA-MB-468, to the same treatment. As expected, we 
could not observe any difference in the proliferating frac-
tion upon addition of trastuzumab (Fig. 4B,C). We could 
show that EdU incorporation-based detection of proliferat-
ing cells by microscopy greatly increases the S/B ratio com-
pared with detecting surviving cells and improves the 
inhibition curve parameters such as Hill slope in the case of 
SKBR3 (Fig. 4C). A 10-fold change in proliferation has 
recently also been demonstrated with a DELFIA-BrdU–
based assay.9 However, the assay described in the present 
article uses the more sensitive and mild EdU staining 
method, provides the possibility for multiplexed readout of 

Figure 4. Improving assay sensitivity by detecting proliferating cells via 5-ethynyl-2′-deoxyuridine (EdU) incorporation. EdU, 
incorporated into chromosomal DNA during replication, was labeled by copper-catalyzed azide alkyne cycloaddition (CuAAC) with 
6-FAM and imaged with an Operetta high-content screening (HCS) system. Representative images of BT474 cells are shown in (A). 
Scale bar represents 100 µm. Segmented nuclei from Figure 2A were classified as proliferating (green) or nonproliferating (red) 
based on EdU signal presence. It is clearly visible that only a small fraction of all surviving cells is still proliferating at high antibody 
concentrations. Results of quantification of proliferating cells and data fitting similar to data in Figure 2 are shown for BT474 cells 
(B) and SKBR3 cells (C). The signal to background (S/B) ratio could be greatly improved for BT474 cells from 2.7 to 10 compared 
with surviving cell quantification (Fig. 2). SKBR3 cells exhibit an S/B ratio of 2.8, which is comparable to the value derived from 
4′,6-diamidino-2-phenylindole (DAPI)–based quantification of surviving cells (2.7).
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various parameters, and increases the assay resolution by 
the detection of single cells instead of averaging over a bulk 
population.

In summary, we could show that EdU-based labeling of 
proliferating cells with subsequent automated imaging and 
analysis combined with DAPI-based cell cycle profiling is 
a simple and sensitive way for parallel investigation of anti-
proliferative potency and mode of action of therapeutic 
antibodies.
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Figure S1 Histograms of total nuclear DAPI intensities and fitted cell cycle 

phase curves. Total DAPI intensities per nucleus were calculated for SKBR3 cells 

and plotted as probability density histograms at four different trastuzumab 

concentrations. A prominent peak for G1 phase was observed, a plateau 

representing S phase and a smaller peak at approximately two times the DNA 

content of G1 phase cells, consisting of cells in G2/M phase. Solid line graphs 

represent either the G1 phase term (red), S phase term (blue) or G2/M phase term 

(green) of the resulting fit (cyan). Integration over the individual terms yielded relative 

quantities for each cell cycle phase (see Figure 2). 

  



 

Figure S2 Quantification of proliferating cells improves assay sensitivity 

compared to counting total surviving cells. Total cell count (orange) and 

proliferating cell fraction (green) are depicted for different trastuzumab 

concentrations. With increasing antibody concentration the number of cells surviving 

treatment is decreased for BT474 as well as for SKBR3 cells. Even more pronounced 

is the decrease in proliferating cells of the surviving cell population illustrating the 

increased sensitivity demonstrated with the described assay. These data reflect the 

assay schematic given in Figure 1. 
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We introduce a chemoenzymatic strategy for straightforward

in vitro generation of C-terminally linked fusion proteins. Tubulin

tyrosine ligase is used for the incorporation of complementary click

chemistry handles facilitating subsequent formation of functional

bispecific antibody-fragments. This simple strategy may serve as

central conjugation hub for a modular protein ligation platform.

Recombinant fusion proteins have recently emerged as highly
promising biopharmaceuticals.1,2 A prominent example are
therapeutic antibody formats, such as Bispecific T-cell
Engagers (BiTEs), a novel class of therapeutics, combining
the antigen binding domains of two different antibodies to
redirect immune cells to tumor cells.3,4 Individual proteins and
their functionalities can be combined into a single bio-
molecule, however, how these proteins are connected is crucial
but not trivial.1,5 Commonly, proteins are genetically fused as a
single polypeptide. Even though genetic fusions are straight-
forward to construct, this approach comes with limitations
such as strict C- to N-terminal linkage or the necessity of a
mutual expression and purification strategy for both fusion
partners.6 To circumvent these limitations alternative strategies
have been described for in vitro conjugation. Although, amine
or thiol reactive crosslinking reagents can serve as adaptors to
covalently link proteins,7 occurring heterogeneity in conju-
gation site and stoichiometry can be detrimental to protein
function. Chemical ligation methods like native chemical lig-
ation (NCL) or expressed protein ligation (EPL) form native
amide bonds and are established methods to increase conju-
gate homogeneity.8,9 However, like genetic fusions, they are

also limited to N- to C-terminal linkage. The site of linkage and
the relative orientation of the fusion partners can influence
conjugation efficiency and functional activity.10 Therefore,
different connections, such as N-to-N, C-to-C or AAx-to-AAy
fusions are of high interest and became available by the devel-
opment of several site-specific, bioorthogonal methods,11 for
example, the incorporation of unnatural amino acids (UAAs) by
amber suppression.12 Alternatively, peptide-tag based systems,
have been developed for enzyme catalyzed, site-specific incor-
poration of bioorthogonal handles13 and applied for protein–
protein-ligation.14–17 In contrast to amber suppression, tag-
based systems do not require engineered expression systems
and often allow the incorporation of bioorthogonal reporters of
choice after expression, resulting in highly modular ligation
platforms.18,19 We have recently developed the Tub-tag techno-
logy for site-specific modification of recombinant proteins.20,21

The Tub-tag system utilizes the tubulin tyrosin ligase (TTL) and
an alpha-tubulin derived C-terminal recognition sequence for
the incorporation of unnatural tyrosine derivatives for chemo-
selective conjugation.22 For example, 3-azido-L-tyrosine was
efficiently ligated to several proteins and enabled their modifi-
cation by strain promoted click chemistry. Moreover, we were
able to show that TTL is promiscuous towards a number of
different bioorthogonal handles including O-propargyl-L-tyro-
sine allowing the ligation of compounds complementary for
copper catalyzed click chemistry (copper(I)-catalyzed alkyne–
azide cycloaddition (CuAAC)) (Fig. 1A).23 Whereas incorpor-
ation efficiency of 3-azido-L-tyrosine to a fluorescently labeled
14-mer C-terminal tubulin peptide (Tub tag peptide) is reported
as >90%, under identical reaction conditions the incorporation
of O-propargyl-L-tyrosine is less efficient.23 To improve incor-
poration on the Tub-tag peptide we investigated its dependence
of the tyrosine derivative concentration. While the already high
incorporation efficiency of 3-azido-L-tyrosine is only slightly
improved, we observe a pronounced enhancement for
O-propargyl-L-tyrosine from 25% to 95% when increasing the
concentration from 1 mM to 16 mM (Fig. 1B and C). In a sub-
sequent CuAAC reaction, O-propargyl-L-tyrosine is efficiently

†Electronic supplementary information (ESI) available. See DOI: 10.1039/
c9ob00508k

aDepartment of Biology II and Center for Integrated Protein Science Munich (CIPSM),
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conjugated to 3-azido-L-tyrosine-modified Tub-tag peptide.
After 32 minutes full conversion was achieved as monitored by
RP-UPLC (Fig. S2†). Based on these observations, we decided to
examine 3-azido- and O-propargyl-L-tyrosine as orthogonal
handles for the generation of C-terminal fusion proteins.
Therefore, we evaluated the TTL catalyzed incorporation of
3-azido- and O-propargyl-L-tyrosine on C-terminally Tub-tagged
GFP-Binding Protein (GBP)24–26 and the reactivity of the
installed handles in subsequent CuAAC reactions. We observed
improved incorporation at 4 mM 3-azido-L-tyrosine, whereas
1 mM is sufficient to achieve full conversion after 3 h at 37 °C.
Again, we found a strong concentration dependence on the
incorporation efficiency of O-propargyl-L-tyrosine as monitored
by SDS-PAGE and validated using MS analysis (Fig. S3 and S4†).
Based on these findings we decided to perform all subsequent
experiments with 1 mM 3-azido- and 10 mM O-propargyl-L-tyro-
sine for 3 h at 37 °C.

To validate reactivity of installed handles, we used
CuAAC to conjugate 6-Carboxyfluorescein-azide (N3-6FAM)
to O-propargyl-L-tyrosine modified GBP (alkynyl-GBP).
Conversion from unlabeled to 6FAM labeled GBP was
determined by band shifts in Coomassie stained SDS-gels
and in-gel fluorescence (Fig. 2A). Quantitative formation
of GBP-6FAM in 60 min demonstrated that O-propargyl-L-

tyrosine can efficiently be ligated to Tub-tagged proteins and
that the installed alkyne-handle is reactive for the subsequent
CuAAC conjugation. In the same manner, efficient incor-
poration of 3-azido-L-tyrosine and reactivity was demonstrated
by generating 3-azido-L-tyrosine modified GBP (azido-GBP)
and subsequent labeling with biotin-PEG4-alkyne at >99%
efficiency in ≤10 min (Fig. 2B). These results show that
C-terminally Tub-tagged proteins can be equipped with
highly CuAAC-reactive alkyne- and azide-handles by incorpor-
ation of respective tyrosine derivatives.

Encouraged by these observations we set out to generate a
homodimeric fusion protein consisting of two GBP entities. In
this regard, Tub-tagged GBP was functionalized either with
3-azido- or O-propargyl-L-tyrosine in two individual, but
procedural similar, TTL-catalyzed reactions. In a second
step, CuAAC of alkynyl-GBP and azido-GBP generated the
C-terminally linked GBP-homodimer, as illustrated in Fig. 3A.
We followed the click reaction over time by SDS-PAGE analysis
and observed the formation of the homodimeric product
GBP-GBP (Fig. 3B). Since our initial coupling conditions (2 h,
30 °C in PBS) gave only moderate conversion (∼20%) we set
out to optimize the CuAAC conditions (Fig. S5†). From this
screen two conditions turned out to be beneficial; firstly,
lowering the pH to 5.5 with MES as buffer component and,

Fig. 1 Tub-tag mediated protein–protein ligation (TuPPL) process and TTL catalyzed ligation of 3-azido- and O-propargyl-L-tyrosine with a Tub-
tag peptide. (A) Schematic depiction of TuPPL. Tubulin tyrosine ligase (TTL) catalyzes the site-specific incorporation of tyrosine derivatives on a
C-terminal peptide tag (Tub-tag). Incorporation of derivatives carrying complementary click chemistry handles on Tub-tagged proteins enables their
C-terminal ligation by CuAAC, (B) ligation of 3-azido- and (C) O-propargyl-L-tyrosine to the Tub-tag peptide (CF-VDSVEGEGEEEGEE). Samples were
taken at different time points of the TTL reaction and analyzed with RP-UPLC. Quantitation of substrate and product was performed through peak
integration as described before.17 The mean values and standard deviations of three replicate reactions are shown.
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secondly, the addition of 10% DMSO when using PBS, pH 7.4
as buffer component. At 30 °C GBP-dimer formation reaches
∼60% conversion (pH 5.5, MES) or ∼50% conversion (PBS/
10% DMSO) after 10 min (Fig. 3B). We observed a slight loss of
protein over time in MES, pH 5.5 presumably due to protein
aggregation; however, this effect was not observed in PBS/10%
DMSO. At 4 °C we also observe efficient coupling with ∼50%
conversion after 90 min without any significant loss of protein.
Control reactions confirm that dimer formation is dependent
on the presence of both complementary functionalized GBP
monomers and Cu(I) as a catalyst. These results show that by
using the TuPPL workflow C-terminally linked homodimers
can be generated efficiently at equimolar protein concen-
trations. We confirmed homodimer formation by MS-analysis
(Fig. S6†). To evaluate the preserved binding of the GBP-
dimers to their antigen eGFP, GBP-dimers were purified by pre-
parative size exclusion chromatography (Fig. 4A). Due to the
C-terminal linkage, both N-terminal eGFP binding sites of the
GBP-dimer face opposite directions, thus, functional GBP-
dimers bind two eGFP molecules.15 To test this bivalent eGFP-
binding we performed analytic size exclusion chromatography

of GBP-dimer incubated with eGFP at different molar ratios. At
a 1 : 1 molar ratio of eGFP to GBP-dimer we observed three pro-
ducts: (i) GBP-dimer, (ii) GBP-dimer bound to a single eGFP
and (iii) to two eGFP molecules (Fig. 4B). A molar excess of
4 : 1 eGFP over GBP-dimer leads to saturation of all binding
sites, confirming functional bivalency of the purified GBP-
homodimer. Furthermore, we would like to emphasize the
near-quantitative eGFP binding of almost all GBP-dimer mole-
cules. This highlights that the C-terminal linkage allows quan-
titative bivalent binding of two molecules which has been
reported to be problematic in genetic N-to-C fusions of anti-
bodies27 and that the mild conjugation procedure fully pre-
serves the antibodies’ antigen binding properties.

In vitro ligation is especially beneficial for fusing proteins
that require different production strategies. Thus, we finally
set out to ligate two different antibody fragments isolated from
different bacterial compartments. On the one hand we purified
GBP from whole cell lysate and on the other hand a
trastuzumab derived single chain Fragment variable (TscFv)
from the periplasm. Subsequently, we functionalized both pro-
teins with O-propargyl- or 3-azido-L-tyrosine, respectively, to

Fig. 2 CuAAC reactivity of alkynyl-GBP and azido-GBP with complementary small molecules 6FAM-azide or biotin-PEG4-alkyne, respectively.
(A) Alkynyl-GBP reactivity in CuAAC reactions is demonstrated by conjugation of 6FAM-azide. The increase in molecular weight upon conjugation is
observed as a band shift in SDS-PAGE analysis and detection of 6FAM fluorescence. Over 95% conversion is reached after 60 min estimated by
densitometric analysis, (B) azido-GBP reactivity in CuAAC reactions is demonstrated by the conjugation of biotin-PEG4-alkyne with over 99%
efficacy in ≤10 min.

Fig. 3 GBP-homodimer formation by CuAAC mediated ligation of alkynyl-GBP and azido-GBP. (A) Schematic of Cu(I) catalyzed C-terminal ligation
of alkynyl-GBP (GBP-CC) and azido-GBP (GBP-N3) to form a covalently linked GBP-homodimer. (B) SDS-PAGE time course analysis of GBP-homo-
dimer formation at 30 °C or 4 °C. The monomeric substrates, alkynyl-GBP and azido-GBP(∼17 kDa) form a dimeric product (GBP–GBP, ∼35 kDa). At
30 °C the reactions reach ∼60% conversion (pH 5.5, MES) or ∼50% conversion (PBS/10% DMSO) after 10 min with a loss of total protein observable
in MES, pH 5.5 but not in PBS/10% DMSO. At 4 °C we also observe efficient coupling with ∼50% conversion after 90 min without any significant loss
of protein. Control reactions confirm that dimer formation is dependent on the presence of (i) both complementary functionalized GBP monomers
and (ii) Cu(I) as a catalyst.
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generate alkynyl-GBP and azido-TscFv (MS analysis see
Fig. S4†). Ligation of alkynyl-GBP and azido-TscFv by TuPPL
was achieved by CuAAC (Fig. 5B) with a conjugation efficacy of
62% after 30 min and generated heterodimers (GBP-TscFv)
were purified by SEC. Removal of residual copper ions was
achieved by dialysis against EDTA containing buffer and con-
firmed by ICP-OES (Table S1†). A functional GBP-TscFv hetero-
dimer is bispecific, whereas one paratope binds eGFP and the

other the extracellular domain of the Her2-receptor.
Fluorescence microscopy, shows that GBP-TscFv heterodimers
recruit eGFP to the plasma membrane of Her2 overexpressing
cells (SKBR3), but not to Her2 low expressing cells
(MDAMB468) (Fig. 5C). These results demonstrate the func-
tional integrity of both fusion partners after ligation, thus,
confirming the applicability of TuPPL for the generation of
C-terminally linked bispecific fusion proteins.

Fig. 4 Purification of GBP-homodimer and confirmation of bivalent antigen binding. (a) Size exclusion chromatogram of GBP-homodimer prepa-
ration after TuPPL and SDS-PAGE analysis of pooled peak fractions. (b) Size exclusion chromatogram of eGFP incubated with GBP-homodimer in a
molar ratio of 0 : 1 (black), 1 : 1 (cyan) or 4 : 1 (magenta). At a 1 : 1 molar ratio the following species can be observed: GBP–GBP bound to (i) no,
(ii) one or (iii) two eGFP molecules, whereas, complexes containing eGFP can be identified by following the absorbance at 488 nm (dashed line).
A molar excess of 4 : 1 eGFP over GBP–GBP leads to saturation of all binding sites, confirming functional bivalency of the purified GBP-homodimer.
Impurities of monomeric GBP (‡) and GBP : eGFP complex (‡‡) are present.

Fig. 5 C-Terminally linked GBP-TscFv heterodimer recruits eGFP to the plasma membrane of Her2 overexpressing (SKBR3) but not Her2 low
expressing cells (MDAMB468). (A) Schematic of Cu(I)-catalyzed C-terminal ligation of alkynyl-GBP and azido-TscFv (single-chain fragment variable
derived from the Her2 binding antibody trastuzumab) to form a bispecific heterodimer. (b) SDS-PAGE time course analysis of GBP-TscFv hetero-
dimer formation at 30 °c. (C) eGFP recruitment of GBP-TscFv heterodimer to fixed Her2 overexpressing cells is demonstrated by fluorescence
microscopy and verifies the functional integrity of both paratopes of the heterodimer. No recruitment can be observed when either (i) the hetero-
dimer is excluded or (ii) Her2 low expressing cells (MDAMB468) are used. Scalebars represent 10 µm.
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Herein, we describe TuPPL as a modular site-specific conju-
gation approach for the C-terminal ligation of proteins post
expression. The modularity of TuPPL allows parallel generation
of azido- and alkynyl-functionalized proteins as well as
straightforward ligation of proteins that are produced in
different expression systems. We showed that TTL catalyzed
incorporation of 3-azido-L- and O-propargyl-L-tyrosine in com-
bination with CuAAC chemistry enables the convenient gene-
ration of homodimeric and heterodimeric antibody-fragments
without diminishing the protein’s function and no residual
copper contaminants. Since the relative orientation of binding
sites in a multimeric complex has been shown to influence
their binding ability,10 fusion proteins in general might
benefit from C-to-C-terminal linkage generated by TuPPL.
Especially for antibodies this C-to-C linkage will be beneficial
since N-terminal fusion, as generated by standard genetic
fusion or EPL, can impair antigen binding due to steric
obstruction of the paratope.27 In addition, our approach may
readily be combined with other site-specific protein modifi-
cation techniques due to the use of universal bioorthogonal
handles. Future work may include the use of alternative
bioorthogonal handles and conjugation reactions to expand
TuPPL’s modularity. Moreover, the use of TuPPL can be
expanded to many more proteins such as antibodies, enzymes
or proteinaceous toxins. In this case, a set of pre-functiona-
lized proteins could serve as building blocks for a modular
and scalable protein ligation platform in which TuPPL serves
as a central conjugation hub.
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Supplementary Figures and Tables

Figure S1. TTL mediated ligation of O-propargyl-L-tyrosine to the Tub-tag peptide (CF-
VDSVEGEGEEEGEE). Exemplary chromatogram recorded at 220 nm (black: 1 mM, red: 4 mM 
O-propargyl-L-tyrosine. The product peptide with O-propargyl-L-tyrosine elutes at 3.94 min and 
the sample with a substrate concentration of 4 mM showed an increased product-yield.

Figure S2. CuAAC model-reaction with Tub-tag peptide. 3-azido-L-tyrosine was 
incorporated C-terminally at the Tub-tag peptide (VDSVEGEGEEEGEE) using previously 
described conditions (Schumacher et al. 2015). A) After purification with RP-HPLC a pure azide-
containing peptide tR = 2.99 min was isolated. B) O-propargyl-L-tyrosine has an elution time of tR 

= 2.82 min. The progress of the CuAAC reaction of these two educts was analyzed with RP-
UPLC. C) Chromatogram of the reaction after two (black) and 32 minutes (red). Full conversion 
of the azide-containing peptide was achieved after 32 minutes.



Figure S3. Concentration dependent, TTL catalyzed, ligation of O-propargyl-L-tyrosine to 
Tub-tagged GBP. Increasing O-propargyl-L-tyrosine concentration leads to increased 
incorporation efficacy using 5 µM TTL and 100 µM GBP at 30 °C after 3 h. Incorporation is 
demonstrated by CuAAC of 6FAM-azide and subsequent SDS-PAGE analysis. Complete 
conversion is reached at all tested O-propargyl-L-tyrosine concentrations when increasing the 
TTL concentration to 20 µM.

Figure S4. Intact MS analysis of tyrosine derivative modified proteins. Raw (left) and 
deconvoluted (right) MS spectra of GBP-Tub conjugated with 3-azido-L-tyrosine (GBP-N3) or O-
propargyl-L-tyrosine (GBP-CC) and TscFv-Tub conjugated with 3-azido-L-tyrosine (TscFv-N3). 
GBP-N3 expected: 15232 Da = 15028 Da (GBP-Tub) + 222 Da (3-azido-L-tyrosine) – 18 Da 



(H2O). GBP-CC expected: 15229 Da = 15028 Da (GBP-Tub) + 219 Da (O-propargyl-L-tyrosine) 
– 18 Da (H2O). TscFv-N3 expected: 29066 Da

Figure S5. Optimization of CuAAC reaction conditions for protein-protein conjugation. 
SDS-PAGE analysis of GBP-homodimer formation under various conditions. Conversion 
efficacy was estimated by densitometric analysis. A) We observed a clear effect of buffer 
component as well as pH value on conjugation efficacy. Citrate almost completely abolished 
conjugation most probably due to its Cu ion complexation potential. Tris also has been shown to 
complex Cu ions which might explain the observed low conjugation efficacy in our experiment. 
When using MES or MOPS (two non-chelating compounds) we observe an increase in 
conjugation efficacy and in addition a clear pH dependence. Lower pH values are favored with 



pH 5.5 giving the best results of all tested conditions. However, we observed slight aggregation 
at low pH this effect was reversible upon pH neutralization. B) Since this low pH might not be 
tolerated by all proteins we also assessed the effect of the miscible organic solvent DMSO 
under physiological buffer conditions (1x PBS, pH 7.4). Addition of 10 % (v/v) DMSO doubled 
the conjugation efficacy whereas higher concentrations did not further increase efficacy. C) 
NaCl concentration did not significantly influence the conjugation in the tested range and also D) 
the combination of the two beneficial conditions, MES pH 5.5 and 10 % (v/v) DMSO did not 
have an additive effect. E) We also could not observe a further beneficial effect of low 
concentrations of SDS which has been shown to increase protein protein conjugation involving 
ubiquitin (Schneider, Schneider et al. 2016). 5 mM and 10 mM SDS seemed to completely 
prevent conjugation.

Figure S6. Raw (left) and deconvoluted (right) MS spectrum of GBP-GBP. Calculated 
Mass: 30461 Da = 15232 Da (GBP-N3) + 15229 Da (GBP-CC)



Figure S7. GBP-TscFv heterodimer formation by CuAAC at 4 °C. SDS-PAGE time course 
analysis of GBP-TscFv heterodimer formation. The monomeric substrates, alkynyl-GBP and 
azido-TscFv, of approx. 17 kDa and 30 kDa respectively, form a dimeric product (GBP-TscFv) in 
CuAAC.

Table S1. Copper content analysis by ICP-OES. Samples were diluted 1:5 in dialysis buffer. 
Samples were prepared by addition of 5 volumes 3 % HNO3 and copper emission was recorded 
at two wavelengths (224.7 nm and 324.8 nm) on a Varian Vista-PRO CCD Simultaneous ICP-
OES instrument. No residual copper was detected in the dialyzed sample. The same sample 
spiked with 0.25 mM CuSO4 (equals CuSO4 concentration in click reaction) served as a positive 
control. Measurements were performed by J. Obel (Dept. of Chemistry, LMU Munich)



Experimental Section

Chemical synthesis
The Carboxyfluorescein–Tub-tag peptide (CF-VDSVEGEGEEEGEE) was synthesized as 
previously described1 using standard Fmoc based SPPS. The synthesis of O-propargyl-L-
tyrosine was carried out according to a known procedure in literature.2

Cell lines
HER2 overexpression cell line SKBR3 (ATCC HTB30) and a control cell line with neglectable 
HER2 expression levels (1000 fold less than SKBR3), MDA-MB-468 (ATCC HTB-132), were 
cultured in DMEM/F12 + Glutamax-I (Gibco) supplemented with 10 % FCS at 37 °C, 5% CO2.

Protein expression, purification and SDS-PAGE analysis
TTL was expressed and purified according to a published protocol as follows 1. TTL was 
expressed from a pET28 vector in E. coli BL21(DE3) as Sumo-TTL fusion protein with an N-
terminal His-Tag. Cells were induced with 0.5 mM IPTG and incubated at 18°C for 18 h. Lysis 
was performed in presence of Lysozyme (100 µg/ml), DNAse (25 µg/ml) and PMSF (2 mM) 
followed by sonification (Branson® Sonifier; 5 times 7 x 8 sec, 40 % amplitude) and debris 
centrifugation at 20.000 g for 30 min. His-SUMO-TTL was purified using a 5 ml His-Trap (GE 
Healthcare). Purified protein was desalted on a PD10 column (GE Healthcare) by buffer 
exchange to MES/K pH 7.0 (20 mM MES, 100 mM KCl, 10 mM MgCl2) supplemented with 50 
mM L-glutamate, 50 mM L-arginine and 3 mM β-mercaptoethanol. Protein aliquots were shock-
frozen and stored at -80°C. 

Tub-tagged GBP (GFP binding protein) nanobody was expressed with a N-terminal His-tag in 
E.coli JM109 as described previously.1 

N-terminally His-tagged eGFP (enhanced green fluorescent protein) was expressed from a 
pRSET5D expression vector in E.coli JM109 following the GBP expression and purification 
protocol. 

Tub-tagged TscFv, a single chain Fragment variable of the variable domains of the Her2 
binding antibody Trastuzumab, was assembled from VL and VH coding PCR fragments and 
cloned into a pNE phagmid vector suitable for periplasmatic expression3 (kindly provided by 
Andreas Ernst) with standard molecular cloning techniques adopted from 4. The construct has 
the following topology: SS---His-tag---T(VL-(G4S)4-VH)---Tub-tag with an N-terminal signal 
sequence (SS) for periplasmatic expression. Expression in E. coli BL21 (DE3) was induced at 
OD600 = 0.6 - 0.8 with 1 mM IPTG. Cells were incubated at 30 °C overnight. For periplasmic 
extraction cells were pelleted, resuspended in periplasmic extraction buffer I (20 % w/v Sucrose, 
100 mM Tris.HCl, 1mM EDTA, pH 8.0) and incubated for 10 min at 4 °C. Cells were pelleted 
again, resuspended in periplasmic extraction buffer II (5 mM MgCl2 in H2O) and incubated for 20 
min at 4 °C. Both extraction fractions were pooled and His-tagged TscFv-tub was purified using 
a 1 ml His-Trap column (GE Healthcare) followed by gel filtration on a Superdex 200 Increase 
10/300 GL (GE Healthcare) using PBS as a running buffer. Protein preparation was 
concentrated with Amicon ultra filter units (MWCO 10 kDa, Merck Millipore) and stored at 4 °C.



Intact protein MS
Intact proteins were analyzed using a Waters H-class instrument equipped with a quaternary 
solvent manager, a Waters sample manager-FTN, a Waters PDA detector and a Waters column 
manager with an Acquity UPLC protein BEH C4 column (300 Å, 1.7 µm, 2.1 mm x 50 mm). 
Proteins were eluted with a flow rate of 0.3 mL/min and a column temperature of 80°C. The 
following gradient was used: A: 0.01% FA in H2O; B: 0.01% FA in MeCN. 5-95% B 0-6 min. 
Mass analysis was conducted with a Waters XEVO G2-XS QTof analyzer. Proteins were 
ionized in positive ion mode applying a cone voltage of 80 kV. Raw data was analyzed with 
MaxEnt 1 and deconvoluted between 10.000 and 40.000 Da with an accuracy of 1 Da/channel 
and 0.1 Da/channel for the GBP dimer. 

Chemoenzymatic labeling of Tub-tag peptide with O-propargyl-L-tyrosine or 3-azido-L-
tyrosine
TTL reactions with the substrate peptide CF-VDSVEGEGEEEGEE (0.2 mM) were performed in 
MOPS/K buffer (20 mM MOPS/K, 100 mM KCl, 10 mM MgCl2, 2.5 mM ATP, 5 mM reduced 
GSH) at pH 7. The concentration of the respective tyrosine derivative was varied from 1 mM to 
20 mM. To start the reaction 1 μM TTL was added and the reaction was incubated at 37°C. 
Aliquots (25 µL) were taken at defined time points and mixed with equal volume of ACN/ddH2O 
1:1, 0.2% TFA, thereupon subjected to RP-UPLC analysis. 

Analytical RP-UPLC
RP-UPLC analysis was conducted on a Vanquish Flex UHPLC System with a DAD detector, 
Split Sampler FT, Column Compartment H and binary pump F (Thermo Fisher Scientific, USA) 
using a Hypersil Gold Vanquish 1.9 µM, 150 x 2.1 mm RP-UPLC-column (Thermo Fisher 
Scientific, USA) with a flow rate of 0.5 mL/min. The following gradient was used: (A= H2O + 
0.1% FA, B = ACN + 0.1% FA) 5% B -1.0 - 0.0 min, 5% B 0.0 – 0.5 min, 5-95% B 0.5 - 5.5 min, 
95% B 5.5 – 6.5 min, 95-5% B 6.5 – 7.0 min, 5% B 7.0 – 8.0 min. UV chromatograms were 
recorded at 220 nm. 

Preparative HPLC
Preparative HPLC was conducted on a Dionex Ultimate 3000 HPLC System with a UltiMate 
3000 AFC automated fraction collector (Thermo Fisher Scientific, USA) using a ReproSil-XR 
120 C18, 5 µM, 250 x 6,5 mm column (Dr. Maisch, Germany) with a flow rate of 2 mL/min. The 
following gradient was used: (A= H2O + 0.1% TFA, B = ACN + 0.1% TFA) 5% B -5.0 - 0.0 min, 
5% B 0.0 – 1 min, 5-95% B 1 - 60 min, 95% B 60 – 64 min, 95-5% B 64 – 65 min, 5% B. UV 
chromatograms were recorded at 220 nm. 



Chemoenzymatic labeling of GBP-tub and TscFv-tub with 3-azido-L-tyrosine
TTL catalyzed ligation of 3-azido-L-tyrosine (Watanabe Chemical Industries LTD) to Tub-tagged 
proteins was performed in 25 - 500 uL reactions consisting of 50 µM TscFv-tub or 100 µM GBP-
tub , 1/5 equivalent TTL and 1 mM 3-azido-L-tyrosine in TTL-reaction buffer (20 mM MES, 100 
mM KCl, 10 mM MgCl2, 2.5 mM ATP and 5 mM reduced glutathione) at 30°C for 3 h. TTL and 
excess 3-azido-L-tyrosine was removed by size exclusion chromatography on a Superdex 200 
Increase 10/300 GL column (GE Healthcare) using PBS as a running buffer.

Chemoenzymatic labeling of GBP-tub with O-propargyl-L-tyrosine
TTL catalyzed ligation of O-propargyl-L-tyrosine to GBP-tub was performed in 25 - 500 uL 
reactions consisting of 100 µM GBP-tub, 20 µM TTL and 10 mM O-propargyl-L-tyrosine in TTL-
reaction buffer (20 mM MES, 100 mM KCl, 10 mM MgCl2, 2.5 mM ATP and 5 mM reduced 
glutathione) at 30°C for 3 h followed by size exclusion chromatography on a Superdex 200 
Increase 10/300 GL column (GE Healthcare). For optimization experiments the reactions were 
carried out in the same manner with O-propargyl-L-tyrosine concentration ranging from 1 mM to 
20 mM and TTL concentrations of 5 µM and 20 µM. Reaction mixtures were desalted by buffer 
exchange to PBS with Zeba Spin desalting columns (7K MWCO, Thermo Scientific).

CuAAC for small molecule labeling of azido-GBP and alkynyl-GBP
CuAAC reactions were performed with 100 µM azido-GBP or alkynyl-GBP and 1 mM biotin-
PEG4 -alkyne (Sigma-Aldrich) or 1 mM 6-FAM-azide (6-Carboxyfluorescein azide, baseclick), 
respectively, 0.25 mM CuSO4, 1.25 mM THPTA (Tris(benzyltriazolylmethyl)amine), 5 mM 
aminoguanidine, 5 mM sodium ascorbate in 1x PBS at room temperature. Reactions were 
quenched at different timepoints by buffer exchange to PBS. Proteins were separated by SDS-
PAGE and stained with Coomassie stain. 6-FAM-conjugates were additionally visualized by 
detection of in-gel fluorescence on an Amersham Imager 600 system (GE Healthcare).

CuAAC for GBP-GBP homodimer formation
CuAAC reactions for GBP homodimer formation were performed with 20 µM azido-GBP, 20 µM 
alkynyl-GBP, 0.25 mM CuSO4, 1.25 mM THPTA, 5 mM aminoguanidine, 5 mM sodium 
ascorbate in either 100 mM MES pH 5.5 or 1x PBS/10 %(v/v) DMSO at 4 °C and 30 °C. 
Reactions were quenched at different timepoints by addition of 125 mM EDTA and buffer 
exchange to PBS. Proteins were separated by SDS-PAGE and stained with Coomassie stain. 
Conversion efficacy was estimated by densitometric analysis of coomassie stained SDS-PAGE 
gels. For preparative isolation of GBP-GBP dimers CuAAC reactions were quenched with 125 
mM EDTA (Ethylenediaminetetraacetic acid) after 3 h and subjected to size exclusion 
chromatography as described above. To optimize the CuAAC reaction various buffer 
components, pH values and additives were tested. The common set up of these reactions was 
15 µM azido-GBP, 15 µM alkynyl-GBP, 0.25 mM CuSO4, 1.25 mM THPTA, 5 mM 
aminoguanidine, 5 mM sodium ascorbate, 100 mM buffer component X, pH X at 25 °C for 2 h. 
The effect of DMSO was assessed in 1x PBS, of NaCl in 20 mM Tris pH 7.5 and of SDS in 100 
mM MES pH 5.5. CuAAC reactions were quenched with 125 mM EDTA and buffer exchanged 
to PBS with Zeba Spin desalting columns (7K MWCO, Thermo Scientific). Samples were 
analysed by SDS-PAGE as described above. 



Conjugation efficiencies were assessed from scanned Coomassie stained SDS-PAGE gels. For 
this, the Gel Analyzer plugin of the Fiji software was used to quantify band intensities. For small 
molecule conjugation efficiency was calculated using the following equation: Intensity conjugate 
/ (intensity conjugate + intensity unconjugated protein). For protein-protein conjugation the 
following equation was used: Intensity conjugate x (Mw(protein A)/Mw(protein A+B)) / (intensity 
protein A + intensity conjugate x (Mw(protein A)/Mw(protein A+B))), where protein B was used in 
excess to protein A.

CuAAC for GBP-TscFv heterodimer formation
CuAAC reactions for TscFv-GBP heterodimer formation were performed with 15 µM azido-
TscFv, 60 µM alkynyl-GBP, 0.25 mM CuSO4, 1.25 mM THPTA 
(Tris(benzyltriazolylmethyl)amine), 5 mM aminoguanidine, 5 mM sodium ascorbate in 100 mM 
MES pH 5.5 at 4 °C and 30 °C. Reactions were quenched at different timepoints by addition of 
125 mM EDTA and buffer exchange to PBS. Proteins were separated by SDS-PAGE and 
stained with Coomassie stain. Conversion efficacy was estimated by densitometric analysis of 
coomassie stained SDS-PAGE gels. GBP-TscFv samples were dialyzed two times against 2 L 
20 mM Tris, 50 mM EDTA, pH 8.0 over night at 4 °C to remove copper ions. 

eGFP binding assay and analytic size-exclusion chromatography
9 µM purified GBP-GBP was mixed with 0, 1 or 4 equivalents of eGFP in PBS and incubated for 
10 min at room temperature. Complex formation was assessed by size exclusion 
chromatography on an Aekta Pure system equipped with a Superdex 200 Increase 10/300 GL 
column. Absorption at 280 nm and 488 nm was monitored to detect proteins and eGFP 
containing complexes. 

Her2 binding assay and fluorescence microscopy
SKBR3 and MDAMB468 cells were seeded on sterile coverslips and incubated overnight at 37 
°C, 5 % CO2 for cell attachment. Cells were washed three times with 1x PBS prior to fixation for 
10 min in 1x PBS/4% PFA (formaldehyde). Fixation was stopped by addition of an equal volume 
1x PBST (PBS + 0.05 % Tween20) followed by two more washes with PBST. TscFv-GBP 
heterodimer was added and incubated for 1 h at room temperature (RT). Unbound TscFv-GBP 
was removed by three washes with PBS. eGFP was added and incubated for 30 min at RT 
followed by three washes with PBS. Coverslips were mounted on glass slides and images were 
acquired on a Leica SP5 confocal microscopy system equipped with a 63x1.40 oil immersion 
objective. Laserlines 405 nm and 488 nm were used in combination with standard DAPI and 
GFP filter settings. Image processing was carried out with ImageJ 1.5.1h software extended by 
the Fiji processing package.
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Abstract: We describe a new technique in protein synthesis that
extends the existing repertoire of methods for protein modifi-
cation: A chemoselective reaction that induces reactivity for
a subsequent bioconjugation. An azide-modified building
block reacts first with an ethynylphosphonite through a Stau-
dinger-phosphonite reaction (SPhR) to give an ethynylphos-
phonamidate. The resulting electron-deficient triple bond
subsequently undergoes a cysteine-selective reaction with
proteins or antibodies. We demonstrate that ethynylphospho-
namidates display excellent cysteine-selective reactivity com-
bined with superior stability of the thiol adducts, when
compared to classical maleimide linkages. This turns our
technique into a versatile and powerful tool for the facile
construction of stable functional protein conjugates.

Chemical attachment of synthetic molecules to a distinct site
of a protein is essential for a plethora of applications in the life
sciences, in particular for the investigation of biological
processes and the development of targeted therapeutics.[1]

Protein modification can in principle be achieved by one of
two strategies: incorporation of unnatural amino acids or
peptide sequences, which possess distinct reactivities to
chemical or enzymatic reactions, or reactions that rely on
specific chemical properties of the side chains of proteino-
genic amino acids.[2] The former requires sometimes tedious

biochemical manipulations such as amber suppression or
additional enzymatic transformations, while the latter is only
residue-specific and can produce protein mixtures with
a different degree of modification and several regioisomers
being formed.[3] Despite recent advancements in the engi-
neering of new residue-specific reactions, including the
modification of tyrosine,[4] tryptophan,[5] and methionine,[6]

the targeting of cysteine (Cys) residues for chemical protein
modification still offers many advantages. Cys residues have
a low natural abundance in a reduced form on accessible
protein surfaces and can be readily incorporated into a given
protein or antibody through facile mutagenesis.[7] Moreover,
the unique nucleophilic properties of its sulfhydryl group
have been exploited in the development of several Cys-
selective modification techniques,[7, 8] including metal-cata-
lyzed reactions[9] and radical transformations.[10] Several
compound classes have been employed, including the prom-
inent electrophilic maleimides[11] and a-halo acetamides,[8] as
well as a recent report on perfluorophenyl reagents.[12]

Among other techniques, maleimides remain the most
widely used method for chemical modification on Cys
residues,[7] mostly due to their rapid kinetics in reactions
with sulfhydryl groups.[13] However, one of the biggest
drawbacks of maleimide conjugates is their instability
caused by a retro-Michael addition in the presence of external
thiols.[14] Recently developed alternatives include self-hydro-
lyzing maleimides,[15] structurally refined Michael-type
acceptors such as carbonyl acrylic derivatives,[16] or exocyclic
maleimides.[17] These Michael-type acceptors yield stable
sulfhydryl adducts; however, challenges remain, since
stereo- or regioisomers are formed[18] and their incorporation
into functional molecules usually requires protecting-group
manipulations.

Previous work from our laboratory has shown that
phosphonamidates can be chemoselectively installed into
a given azide-containing protein with high functional-group
tolerance through a Staudinger-phosphonite reaction
(SPhR).[19] By taking advantage of this, we have used
borane-protected ethynylphosphonites for the sequential
coupling of two azide-containing molecules, including
probes, polymers, or proteins.[20] Based on these findings, we
now report a method that enables the chemoselective
installation of a highly Cys-selective handle into a given
azide-containing molecule through SPhR with unprotected
ethynylphosphonites. Most importantly, the chemoselective
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SPhR turns the electron-rich triple bond of an ethynylphos-
phonite into an electron-poor ethynylphosphonamidate and
thereby induces reactivity for subsequent thiol addition
(Figure 1a). With this unique reaction sequence of two
subsequent chemoselective transformations, we developed
a modular method that simplifies the attachment of functional
molecules to proteins and antibodies with superior stability.

At the outset of our studies, we validated our proposed
concept by reacting readily available diethyl ethynylphos-
phonite with different azides containing various functional
groups. In comparison to other PIII species such as phosphites,
auto-oxidation of phosphonites is more rapid.[21] This issue
was previously addressed by isolating air-stable borane
protected phosphonites that had to be deprotected with
strong bases prior SPhR.[19, 20] Now, we developed a one-pot
synthesis starting from commercially available diethyl chlor-
ophosphite and ethynylmagnesium bromide followed by
azide addition and hydrolysis without isolation of the
phosphonite intermediate (Figure 1b. We observed that
polar aprotic solvents generally worked best for the SPhR

as they gave the best yields and ensured solubility of all tested
azides. The desired ethynylphosphonamidates 1–6 were iso-
lated in good overall yields, with a better performance in the
formation of N-phenylphosphonamidates compared to the
alkyl derivative 6. Nucleophilic functional groups such as
amines, alcohols, carboxylic acids, and electrophilic NHS
esters were well tolerated. Even unprotected azide-containing
peptides, including cyclic RGD and cyclic cell-penetrating
peptides (cCPPs) could be converted into the desired
ethynylphosphonamidates 7–9 in very good yields of isolated
product, with HPLC analysis verifying the formation of
a single reaction product.

The purified ethynylphosphonamidates showed excellent
stability in solution at neutral pH over several days (Figure S1
in the Supporting Information) and could be stored at 4 8C for
several months without any observable decomposition. Fur-
thermore, we were able to demonstrate that compounds 3 and
4 can be further used as modular building blocks to attach
ethynylphosphonamidates to other functional modules in
high yields, as exemplified by the synthesis of phosphonami-

Figure 1. a) Principle of chemoselective reactivity induction for Cys. b) Yields of isolated product from one-pot SPhR with different unprotected
azides. Unless stated otherwise 1.2 equiv of phosphonite were used with respect to the azide; reactions were carried out in THF at room
temperature overnight. * 4 equiv phosphonite were used, reactions were carried out in DMSO. c) Modular building blocks (3, 4) to attach
ethynylphosphonamidates to other functional modules via amide bonds.
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date derivatives of the fluorescent dyes EDANS (10) and Cy5
(11) in 70 % and 94% yield of isolated product, respectively
(Figure 1c).

Previously, Gao et al. observed that vinylphosphonami-
dates do not undergo thiol addition under their tested
conditions.[22] Since we envisioned ethynylphosphonamidates
to be more reactive, we carried out model reactions with the
N-phenyl derivative 1 and glutathione under varying pH
conditions and monitored the progress by UPLC-UV. It was
observed that the conversion rate increases from pH 7.4 to 9.0
with only a slight increase from pH 8.5 to 9.0 (Figure S2 in the
Supporting Information). Considering decreased protein
stability at higher pH, we decided to continue our studies at
pH 8.5. Full conversion to the desired thiol adduct was
observed at pH 8.5 after 30 minutes at a concentration of
10 mm N-phenyl derivative 1 (Figure 2a and Figure S2 in the
Supporting Information). The second-order rate constant for
the thiol addition reaction was determined by fluorescence
HPLC with the N-phenyl-EDANS-phosphonamidate deriva-
tive 10 at a concentration of 0.1 mm to 0.62! 0.01m"1 s"1

(Figure S3 in the Supporting Information). It should be
noted that the thiol adduct is formed with a high Z selectivity
(> 97%) in aqueous systems, as studied for the addition of
ethanethiol to 1 (Figure S4 in the Supporting Information).
Similar observations for the formation of the Z isomer have
been made for other electron-deficient alkynes earlier.[23]

DFT calculations revealed a higher activation barrier for
the E product and can therefore explain the high Z selectivity
(Figure S5 in the Supporting Information).

To test the applicability of our reaction to the construction
of protein conjugates, we proceeded in a proof-of-principle
study with the Her2-addressing IgG monoclonal antibody
trastuzumab. For antibody modification, we applied a previ-
ously described protocol, which reduces and alkylates inter-
chain disulfide bonds of IgG antibodies.[24] In our studies, we
probed the modification of trastuzumab with different
electrophilic biotin derivatives, including a maleimide, an
iodoacetamide, and the ethynylphopshonamidate 5. All anti-
body modifications were carried out at concentrations
between 3 and 6 mm. Anti-biotin western-blot analysis
revealed labeling of the light and heavy chains with DTT-
reduced trastuzumab for all of the tested biotin derivatives
when using the reported conditions of 1.1 equiv. of labeling
reagent per free Cys.[24] Probably due to slower reaction
kinetics (0.62m"1 s"1 for phosphonamidates vs. 734m"1 s"1 for
maleimides),[25] decreased labelling efficiency was observed
for 5 compared to the maleimide derivative (Figure S6 in the
Supporting Information). Therefore, we screened various
phosphonamidate equivalents and monitored the degree of
modification by intact protein MS. Optimal conditions for the
phosphonamidate labelling were identified with 10 equiv of
phosphonamidate per free Cys, which corresponds to 80 equiv
with respect to the antibody (Figure S7 in the Supporting
Information). Side reactions of other nucleophilic amino acid
residues with common Cys-labeling techniques have been
reported earlier[26] and have been shown to be very problem-
atic in certain applications.[27, 26b] To confirm the chemo-
selectivity of the phosphonamidate labeling technique, reac-
tions were carried out without prior reduction of the antibody

disulfide bonds. Compared to other Cys-conjugation tech-
niques at neutral pH, outstanding selectivity for Cys residues
was observed for the labeling reaction with 1.1 equiv ethy-
nylphosphonamidate per free cysteine residue at pH 8.5 when
carried out without prior reduction of the antibody disulfide
bonds (Figure S6 in the Supporting Information). In contrast
to a maleimide reagent, even a larger excess of 10 equiv
ethynylphosphonamidate per free cysteine did not lead to any
unspecific labeling (Figure 2b). The selectivity was further
confirmed by mass spectrometry (LC-MS/MS) after trypsin
digestion of the modified antibody. Only interchain-disulfide-
forming cysteines were modified after reduction and alkyla-
tion with an excess of 1, and no modification on any amino
acid was found without prior reduction (Figure S8 in the
Supporting Information). Taken together, the intrinsic Cys
selectivity of this reaction allows ethynylphosphonamidates
to be employed in bioconjugation reactions even in larger

Figure 2. a) Reaction of glutathione (GSH) with phosphonamidate 1.
10 mm phosphonamidate were reacted with 20 mm GSH at pH 8.5
(NH4HCO3-buffer). Concentrations of the starting material 1 (cyan)
and product 12 (black) over time are sown as a mean and error from
three independent measurements, as monitored by UPLC-UV. b) Tras-
tuzumab modification with three different Cys-reactive biotin deriva-
tives. Reactions were carried out with 80 equiv biotin derivative.
Western-blot analysis: Lanes 1 and 5: untreated antibody. Lanes 2–4:
prior DTT treatment. Lanes 6–8: Control reactions without prior DTT
treatment. HC =Antibody heavy chain, LC= light chain.
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excess without running into the risk of unselective labeling,
which is advantageous when the exact concentration of the
protein or antibody probe is difficult to determine.

The linkage stability of the Cys conjugates is crucial for
many applications and in particular for drug delivery appli-
cations to prevent hazardous off-target effects, especially
during circulation in the blood stream.[7] To test the stability of
our phosphonamidate–thiol adducts a fluorescence-quench-
ing assay was carried out in which a fluorescent signal was
generated upon cleavage of the conjugates (Figure 3a).
Quenched probes were synthesized through the addition of
a DABCYL-modified peptide to the fluorescent phosphona-
midate 10. The phosphonamidate adducts show a high
stability in PBS buffer, HEK cell lysate, and human serum
over several days. Since P!N bonds are generally susceptible
to hydrolysis under acidic conditions,[28] very harsh conditions

of pH 0 were applied, which led to to cleave the phosphona-
midate adduct within 24 h (Figure 3b). Previously, thiol
adducts of electron-deficient alkynes such as propynamides
were described as susceptible to exchange with other thiols.[23]

However, with the ethynylphosphonamidates, high stability
upon exposure to excess thiols was observed, with a superior
performance in a direct comparison to a maleimide conjugate
(Figure S9 in the Supporting Information). Next, we probed
the stability of phosphonamidite- versus maleimide-labelled
antibodies under physiologically relevant concentrations of
serum proteins. This is of particular importance, since the
transfer of maleimide-modified drugs to serum albumin has
been described before and poses a serious risk for off-target
toxicity when applied to drug delivery.[14, 29] Biotin-modified
antibodies were exposed to bovine serum albumin (BSA) at
37 8C under physiological conditions and the potential trans-
fer to BSA was monitored by western blotting (Figure 3 c and
Figure S10 in the Supporting Information). After several days
of incubation, a significant transfer of the biotin to BSA was
observed for the maleimide linkage whereas the phosphona-
midate linkage was stable under the tested conditions. Taken
together with the previously described stability experiments
with quenched fluorescent probes, these results clearly point
to excellent stability of the phosphonamidate conjugates,
especially when compared to conventional maleimide-linked
conjugates.

Encouraged by the outstanding thiol selectivity and the
high stability of the Cys–phosphonamidate adducts, we
proceeded with the functional evaluation of phosphonami-
dite-based antibody conjugates. We modified trastuzumab, an
anti-Her2 antibody, with the fluorescent Cy5 phosphonami-
date 11 to generate an antibody–fluorophore conjugate
(AFC). Trastuzumab modification was carried out by using
the above-mentioned reduction and alkylation of the inter-
chain disulfide bonds (Figure 4 a). Successful modification
was confirmed by in-gel fluorescence measurements of the
antibody heavy and light chains (Figure S11 in the Supporting
Information). Immunostaining experiments with the AFC
constructs show excellent target selectivity for the Her2-
receptor on the outer cell membrane (Figure 4b). This
experiment clearly shows that our modification strategy
does not affect the antibody!s performance and provides
a simple conjugation approach for diagnostic reagents.

Finally, we applied our strategy to the attachment of
cCPPs to eGFP for functional protein delivery into living
cells, in a manner similar to that previously described.[30] An
eGFP mutant with a single addressable cysteine was obtained
by consecutive point mutation of Cys 70 to Met and Ser 147 to
Cys, and the mutant protein was almost quantitatively
modified with 20 equiv of the phosphonamidate cTAT or
cR10 peptides 8 and 9 after reaction for three hours at 37 8C in
PBS at a protein concentration of 100 mm (Figure 4c,d). With
the eGFP–cCPP conjugates in hand, we performed cellular
uptake studies monitored by live-cell microscopy in HeLa
cells. Unconjugated eGFP was not taken up, whereas a green
fluorescence signal was detected in the cytosol and the
nucleoli for both eGFP–cCPP conjugates following incuba-
tion with 50 mm of the constructs, which is in accordance with
previous observations using CuAAC conjugation for the

Figure 3. a) Set-up of the fluorescence-quenching assay for stability
measurements of the thiol adducts. b) Fluorescence increase was
monitored over time. Measurements were performed at least in
triplicate. Cyan: PBS, green: pH 0 (1n HCl), brown: cell-lysate,
blue: GSH (1000 equiv of glutathione in PBS), red: human serum.
c) Transfer of the antibody modification to serum proteins. Trastuzu-
mab–biotin conjugates were incubated at a concentration of 3 mm with
500 mm BSA in PBS at 37 8C. Lane 1: Untreated maleimide conjugate.
Lanes 2–5: BSA-exposed maleimide adduct after 0, 1, 2 and 5 days.
Lane 6: Untreated phosphonamidate conjugate. Lanes 7–10: BSA-
exposed phosphonamidate adduct after 0, 1, 2 and 5 days.
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attachment of cTAT (Figure 4e).[30a] With these results, we
demonstrated that our method enables the straightforward
synthesis of functional protein–cCPP conjugates for intra-
cellular protein delivery.

In summary, we present a unique reaction sequence that
first incorporates a thiol-reactive ethynylphosphonamidate
into a given molecule through an initial chemoselective SPhR
and subsequently modifies Cys residues smoothly in aqueous
systems with outstanding selectivity towards sulfhydryl
groups. This approach enables the facile conjugation of
complex molecules to proteins, as exemplified by the
conjugation of biotin, fluorophores, and peptides to anti-
bodies and proteins. In contrast to the widespread maleimide
labeling, our thiol adducts showed excellent stability to thiol
exchange with GSH and albumin in the presence of human
serum and cell lysate. The applicability of our method was
demonstrated by the synthesis of a functional AFC for
selective staining of antigen-presenting cells and eGFP–CPP
conjugates for efficient protein delivery into cells. This
method combines facile synthetic access with high flexibility,
chemoselectivity, and superior linkage stability and is there-
fore a powerful and versatile tool for selective protein
conjugation.
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Figure 4. a) Synthetic scheme for phosphonamidate attachment of the Cy5 fluorophore to trastuzumab (anti-Her2 antibody) to generate an AFC.
b) Immunostaining of fixed cells either over-expressing the cell-surface receptor Her2 (BT474) or exhibiting low Her2 expression levels
(MDAMB468). The merged images show the signal from the DNA stain DAPI in blue and the Cy5 signal in red. Scale bar: 10 mm. c) Synthetic
scheme for the attachment of phosphonamidite-modified cCPPs 8 and 9 to a eGFP mutant with a single addressable cysteine. d) Fluorescence
imaging of HeLa cells after incubation with eGFP alone and eGFP–cTat at 50 mm. Images show the GFP channel in green and the Hoechst 33342
nuclear stain in blue. Scale bar: 20 mm. For further information see the Supporting Information.
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1. Supplementary	Figures		
1.1. Figure	S1	

pH-dependent	stability	of	ethynylphosphonamidate	8	(0.3	mM).	Stability	was	monitored	by	UPLC-UV	

by	integration	of	the	UV	peaks	in	relation	to	an	internal	standard	(tryptophan,	0.15	mM)	over	several	

days.	Shown	are	mean	and	error	of	three	independent	measurements	(n=3).	Conditions:	pH	1.0:	0.1	M	

HCl;	pH	2.0:	TFA	in	H2O;	pH	7.4:	PBS;	pH	9.0:	100	mM	NH4HCO3,	pH	12:	0.01	M	NaOH.	

	

time [h]

in
ta

ct
 p

ep
tid

e 
[%

]

0 24 48 72 96 120 144
0

20

40

60

80

100

pH 2.0

pH 9.0

pH12.0

pH 1.0

pH 7.4

		



4	

	

1.2. Figure	S2	

Glutathione	addition	to	phosphonamidates.	A)	Concentration	of	starting	material	Ethyl-N-phenyl-P-
ethynylphosphonamidate	(1)	under	varying	pH	conditions	over	time	monitored	by	UPLC/MS	(pH	8.0,	

8.5	and	9.0:	50mM	NH4HCO3,	1mM	EDTA;	pH	7.4:	Dulbecco’s	PBS,	1mM	EDTA).	Values	were	calculated	

by	integration	of	the	peaks	in	relation	to	an	internal	standard	(inosin).	Sample	were	drawn	from	the	

reaction	mixture	and	immediately	diluted	into	50	mM	NaOAc	buffer	at	pH	3.5	to	stop	the	reaction	and	

subjected	 to	 UPLC	 analysis.	 Peaks	 were	 assigned	 by	 MS.	 Shown	 are	 mean	 and	 error	 of	 three	

independent	measurements	(n=3).	B)	Exemplaric	UPLC/UV	trace	(254	nm)	of	the	addition	reaction	at	

pH	 8.5	 after	 0,	 1,	 5	 and	 30	min.	 Extinction	 of	 the	 starting	material	 is	 lower	 than	 extinction	 of	 the	

glutathione	adduct	at	254	nm.	C)	Concentration	of	starting	material	1	(black)	and	glutathione	adduct	
(red)	 over	 time.	 Reaction	 performed	 at	 pH	 8.5.	 Shown	 are	mean	 and	 error	 of	 three	 independent	

measurements	(n=3).		

	

time [min]

co
nc

en
tra

tio
n 

[m
M

]

0 20 40 60
0

2

4

6

8

10

pH 8.5

pH 9.0

pH 8.0
pH 7.4

A)

	

	



5	
	

time [min]

co
nc

en
tra

tio
n 

[m
M

]

0 10 20 30
0

2

4

6

8

10

starting
material

glutathione
adduct

C)

	

1.3. 	Figure	S3	

Determination	 of	 the	 second-order	 rate	 constant	 of	 the	 reaction	 between	 glutathione	 and		
EDANS	phosphonamidate	11.	A)	Reaction	conditions.	Reactions	were	performed	in	a	volume	of	0.5	ml.	
The	first	sample	(t=0)	was	drawn	before	the	addition	of	glutathione.	Samples	were	taken	after	15,	30,	
60,	120,	240	and	480	min.	Samples	were	drawn	in	a	volume	of	20	µl	and	immediately	diluted	into	80	
µl	of	50	mM	NaOAc	buffer	at	pH	3.5	to	stop	the	reaction.	Those	samples	were	subjected	to	fluorescent	
HPLC	analyses,	injecting	20	µl	each.	B)	Mathematic	consideration	for	the	determination	of	a	second	
order	 rate	 constant	 with	 equal	 concentrations	 of	 the	 two	 reactants.	 C)	 Concentration	 of	 starting	
material	over	time.	Calculated	by	integration	of	the	peaks	in	relation	to	the	internal	standard	(EDANS).	
Shown	are	mean	and	error	of	three	independent	measurements.	(n=3)	D)	Graph:	1/c	over	time	and	
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linear	plot.	Slope	is	the	second	order	rate	constant.	Shown	are	mean	and	error	of	three	independent	
measurements.		
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1.4. Figure	S4	

E/Z-selectivity	of	the	thiol	addition	in	dependence	of	the	solvent	system	and	different	bases.	a)	Values	
measured	by	31P-NMR-signal	integration	of	the	crude	reaction	mixtures.	b)	31P	peaks	were	assigned	by	
comparison	to	spectra	of	isolated	E-	and	Z-products	(See	chapter	4.18,	4.19	and	5	for	synthesis	details	
and	 NMR-spectra).	 The	 E-Product	 was	 synthesized	 via	 radical	 mediated	 thiol	 addition.	 Here,	 we	
measured	almost	identical	H-H	and	H-P-coupling	constants	in	comparison	to	a	previously	described	E-
thiol	 adduct	 of	 a	 phosphonate.[1]	 For	 the	 Z-product	 that	 was	 synthesized	 via	 base	mediated	 thiol	
addition	on	the	other	hand,	a	lower	3JHH	and	a	much	higher	3JPH	coupling	constant	was	measured.	

	

	 	 DMSO	 DMF/H2O	(1:1)	

Entry	 Base	 E/Z	 E/Z	

1	 MeNH2	 5:95	 3:97	

2	 Li2CO3	 3:97	 2:98	

3	 Na2CO3	 6:94	 1:99	

4	 K2CO3	 12:88	 2:98	

5	 Cs2CO3	 17:83	 2:98	

	

	

a)	

b)	
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1.5. Figure	S5	

Computed	 E	 (red)	 and	 Z	 (blue)	 reaction	 paths	 for	 the	 addition	 of	 sodium	 methylthiolate	 to	
methylphosphonamidate.	Calculations	were	performed	with	O-methyl	substituted	phosphonamidates	
and	methyl	thiol	to	simplify	the	calculations.	The	E	addition	pathway	exhibits	a	6.9	kcal/mol	higher	
activation	barrier	than	the	Z	pathway.	(See	chapter	6	for	details)		
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1.6. Figure	S6	

Trastuzumab	modification	with	 three	different	Cys-reactive	biotin	derivatives,	 applying	 the	general	
procedure	described	in	3.2.	Disulfide	reduction	was	carried	out	with	1000	eq.	DTT	in	50	mM	borate	
containing	 PBS	 for	 30	min	 at	 37°C.	 Excess	 DTT	was	 removed	with	 Zeba™	 Spin	 Desalting	 Columns.	
Labelling	was	conducted	with	8.8	eq.	biotin	derivative	with	a	 final	DMSO	content	of	1%	 in	a	Buffer	
containing	 50	 mM	 NH4HCO3	 and	 1mM	 EDTA,	 pH	 8.5	 at	 14°C	 for	 the	 phosphonamidate	 and	 PBS	
containing	1mM	EDTA,	pH	7.4	at	4°C	 for	 the	maleimide	and	 iodoacetamide	 labelling.	Western	blot	
analysis:	 Lane	 1:	 untreated	 antibody.	 Lane	 2-4:	 prior	 DTT	 treatment.	 Lane	 5-7:	 Control	 reactions	
without	prior	DTT	treatment.	See	chapter	3.1	for	trastuzumab	expression	details)	
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1.7. Figure	S7	

Influence	of	 the	phosphonamidate	equivalents	on	 the	degree	of	antibody	modification.	Reactions	

were	carried	out,	applying	the	general	procedure	described	in	3.2	with	varying	equivalents	of	5.	The	
degree	of	modification	was	calculated	with	the	MS	intensities	with	intact	protein	MS	(See	chapter	

2.11)	after	deglycosylation	and	reduction	(See	chapter	3.3).	An	exemplary	spectrum	of	the	reaction	

with	80	eq.	5	is	shown	below	(left:	raw	spectrum,	right:	deconvoluted).	It	should	be	noted	that	the	

degree	 of	 modification	 does	 not	 exceed	 1	 for	 the	 LC	 and	 3	 for	 the	 HC,	 clearly	 underlining	 the	

selectivity	for	inter-chain	forming	Cys-residues	LC:	Light	Chain;	HC:	Heavy	Chain,	mod:	modification	

with	5	(See	chapter	3.1	for	trastuzumab	expression	details).	
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1.8. Figure	S8	

MS/MS	experiments	of	trastuzumab,	modified	with	Ethyl-N-phenyl-P-ethynylphosphonamidate	(1),	
with	and	without	prior	reduction	of	the	antibody	as	described	in	general	procedure	2.	In-gel	digest	of	
heavy	 and	 light	 chain	 separately	 after	 reducing	 SDS/Page	 as	 described	 earlier.[2]	 Oxidation	 of	
methionine,	alkylation	of	cysteine	via	iodoacetamide	and	the	phosphonamidate	on	Y,	S,	T,	C,	K,	H	&	
R	were	searched	as	variable	modifications.	(See	chapter	2.9.	for	MS/MS	details).	

	

Light	Chain:	Sequence	coverage:	94.39%;	MS/MS	recorded	
Modifications:	O:	Methionine	oxidation;	C:	Carbamidomethyl;	p5:	N-phenyl-phosphonamidate	

Peptide	spectrum	match	of	the	modified	peptide	SFNRGEp5C	(HCD	MS/MS	spectrum):	

 

   O                  C                                                                                             
DIQMTQSPSSLSASVGDRVTITCRASQDVNTAVAWYQQKPGKAPKLLIYSASFLYSGVPSRFSGSR 
                     C 
SGTDFTLTISSLQPEDFATYYCQQHYTTPPTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASV 
 C                                                           C 
VCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTH 
               p5 
QGLSSPVTKSFNRGEC 
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Peptide	spectrum	match	of	the	modified	peptide	SFNRGEp5C	(EthcD	MS/MS	spectrum):	

	

Heavy	chain:	Sequence	coverage:	64.52%;	MS/MS	recorded	
Modifications:	O:	Methionine	oxidation;	C:	Carbamidomethyl;	p5:	N-phenyl-phosphonamidate	

Peptide	 spectrum	 match	 of	 the	 modified	 peptide	 THTp5CPPcamCPAPELLGGPSVFLFPPKPK	 (EThcD	
MS/MS	spectrum)	

	

                     C 
EVQLVESGGGLVQPGGSLRLSCAASGFNIKDTYIHWVRQAPGKGLEWVARIYPTNGYTRYADSVKGRFTISA 
          O            C 
DTSKNTAYLQMNSLRAEDTAVYYCSRWGGDGFYAMDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAA 
  C 
LGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDK 
             C  C 
       C     p5 p5                     O        C 
KVEPPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEV 
 
HNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE 
         C 
LTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMH 
 
EALHNHYTQKSLSLSPGK 
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Peptide	 spectrum	 match	 of	 the	 modified	 peptide	 THTcamCPPp5CPAPELLGGPSVFLFPPKPK	 (EThcD	
MS/MS	spectrum)	

	

	

Light	Chain:	Sequence	coverage:	92.06%	
Modifications:	O:	Methionine	oxidation;	C:	Carbamidomethyl;	p5:	N-phenyl-phosphonamidate	

Heavy	Chain:	Sequence	coverage:	64.52%	
Modifications:	O:	Methionine	oxidation;	C:	Carbamidomethyl;	p5:	N-phenyl-phosphonamidate	

   O                  C                                                                                             
DIQMTQSPSSLSASVGDRVTITCRASQDVNTAVAWYQQKPGKAPKLLIYSASFLYSGVPSRFSGSR 
                     C 
SGTDFTLTISSLQPEDFATYYCQQHYTTPPTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASV 
 C                                                           C 
VCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTH 
               C 
QGLSSPVTKSFNRGEC 

                     C 
EVQLVESGGGLVQPGGSLRLSCAASGFNIKDTYIHWVRQAPGKGLEWVARIYPTNGYTRYADSVKGRFTISA 
          O            C          O 
DTSKNTAYLQMNSLRAEDTAVYYCSRWGGDGFYAMDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAA 
  C 
LGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDK 
       C     C  C                      O        C 
KVEPPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEV 
 
HNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE 
         C                                                         C  O 
LTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMH 
 
EALHNHYTQKSLSLSPGK 
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1.9. Figure	S9	

Fluorophore-quencher	based	assay	to	investigate	the	stability	of	phosphonamidate-thiol	adducts.	A:	
Structure	 of	 the	phosphonamidate	 linked	dye-quencher	 conjugate.	 B:	 Structure	 of	 the	maleimide	
linked	dye-quencher	conjugate	C:	Principle	of	the	fluorescence-quencher	based	readout.	Conjugates	
were	incubated	at	room	temperature	at	a	concentration	of	10	µM.	Measurements	were	performed	
at	 least	 in	 triplicates	 in	 a	 96-well	 plate	 (n≥3).	 Normalization	 of	 the	 graphs	 by	 subtraction	 of	 the	
intensity	at	t=0min	for	each	value.	D:	Fluorescence	measurements	for	the	phosphonamidate	linkage	
(blue)	and	the	maleimide	linkage	(orange)	lysate	was	freshly	prepared	from	HEK-cells,	lysed	in	PBS.	
Serum	originated	from	human	blood.	Glutathione	was	dissolved	in	10	mM	in	PBS	and	pH	was	adjusted	
to	7.4.	(See	chapter	3.4	for	details)	
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1.10. Figure	S10	

Stability	 of	 trastuzumab-biotin-conjugates	 towards	 modification	 transfer	 to	 serum	 proteins.	
Conjugates	were	incubated	at	a	concentration	of	3	μM	in	PBS	with	a	final	concentration	of	3	µM	and	
0.5	mM	BSA	at	37	°C.	Samples	were	drawn	after	0,	1,	2	and	5	days,	deep	frozen	in	liquid	N2	and	finally	
subjected	to	SDS/Page	and	western	blot	analysis.	(See	Chapter	3.5	for	details)	

	

1.11. Figure	S11	

SDS-Page	 analysis	 and	 fluorescence	microscopy	 of	 trastuzumab-phosphonamidate-Cy5	 conjugates.	
Depicted	are	immunostainings	of	fixed	cells	over	expressing	the	cell	surface	receptor	Her2	(SKBR3).	
The	 antibody-flurophore-conjugate	 (AFC)	 Tras-P5-Cy5	 shows	 clear	 localization	 to	 the	 plasma	
membrane	 for	 Her2+	 cell	 lines.	 The	 merged	 images	 show	 the	 DAPI	 signal	 in	 blue	 and	 the	 Tras-
phosphonamidate-Cy5	signal	in	red.	Scale	bar	represents	10	μM.	(See	Chapter	3.6	for	conjugation	and	
microscopy	details)																											
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1.12. Figure	S12	

Fluoresence	imaging	of	HeLa-cells	after	incubation	with	eGFP	alone	and	eGFP-cR10	at	50	μM.	Images	
show	GFP	channel	in	green	and	Hoechst	33342	in	blue.	Scale	bar	represents	20	μm.		

	

	

2. General	Information	
2.1. Chemicals	and	solvents	

Chemicals	and	solvents	were	purchased	 from	Merck	 (Merck	group,	Germany),	TCI	 (Tokyo	chemical	
industry	CO.,	LTD.,	Japan)	and	Acros	Organics	(Thermo	Fisher	scientific,	USA)	and	used	without	further	
purification.	Dry	solvents	were	purchased	from	Acros	Organics	(Thermo	Fisher	scientific,	USA).	

2.2. Flash-	and	thin	layer	chromatography		

Flash	 column	 chromatography	 was	 performed,	 using	 NORMASIL	 60®	 silica	 gel	 40-63	 µm	 (VWR	
international,	USA).	Glass	 TLC	plates,	 silica	 gel	 60	W	 coated	with	 fluorescent	 indicator	 F254s	were	
purchased	from	Merck	(Merck	Group,	Germany).	Spots	were	visualized	by	fluorescence	depletion	with	
a	254	nm	lamp	or	manganese	staining	(10	g	K2CO3,	1.5	g	KMnO4,	0.1	g	NaOH	in	200	ml	H2O),	followed	
by	heating.	

2.3. Preparative	HPLC	

Preparative	HPLC	was	performed	on	a	Gilson	PLC	2020	system	(Gilson	Inc,	WI,	Middleton,	USA)	using	
a	VP	250/32	Macherey-Nagel	Nucleodur	C18	HTec	Spum	column	(Macherey-Nagel	GmbH	&	Co.	Kg,	
Germany).	The	following	gradients	were	used:	Method	C:	(A	=	H2O	+	0.1%	TFA	(trifluoroacetic	acid),	B	
=	MeCN	(acetonitrile)	+	0.1%	TFA,	flow	rate	30	ml/min,	5%	B	0-5	min,	5-90%	B	5-60	min,	90%	B	60-65	
min.	Method	D:	0.1%	TFA,	flow	rate	18	ml/min,	5%	B	0-5	min,	5-90%	B	5-60	min,	90%	B	60-65	min,	
using	a	VP	250/21	Macherey-Nagel	Nucleodur	C18	HTec	Spum	column	(Macherey-Nagel	GmbH	&	Co.	
Kg,	Germany)	

2.4. Semi-preparative	HPLC	

Semi-preparative	 HPLC	was	 performed	 on	 a	 Shimadzu	 prominence	 HPLC	 system	 (Shimadzu	 Corp.,	
Japan)	with	a	CBM20A	communication	bus	module,	a	FRC-10A	fraction	collector,	2	pumps	LC-20AP,	
and	a	SPD-20A	UV/VIS	detector,	using	a	VP250/21	Macherey-Nagel	Nucleodur	C18	HTec	Spum	column	
(Macherey-Nagel	GmbH	&	Co.	Kg,	Germany).	The	following	gradients	were	used:	Method	E:	(A	=	H2O	
+	0.1%	TFA,	B	=	MeCN	+	+0.1%	TFA),	flow	rate	10	ml/min,	5%	B	0-5	min,	5-99%	B	5-65	min,	99%	B	65-
75	min.			
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2.5. NMR	

NMR	spectra	were	recorded	with	a	Bruker	Ultrashield	300	MHz	spectrometer	and	a	Bruker	Avance	III	
600	MHz	spectrometer	(Bruker	Corp.,	USA)	at	ambient	temperature.	Chemical	shifts	δ	are	reported	in	
ppm	 relative	 to	 residual	 solvent	 peak	 (CDCl3:	 7.26	 [ppm];	 DMSO-d6:	 2.50	 [ppm];	 acetone-d6:	 2.05	
[ppm];	CD3CN	1.94	 [ppm];	4.79	D2O	 [ppm]	 for	 1H-spectra	and	CDCl3:	77.16	 [ppm];	DMSO-d6:	39.52	
[ppm];	acetone-d6:	29.84	[ppm];	CD3CN	1.32	[ppm];	for	13C-spectra	.	Coupling	constants	J	are	stated	
in	Hz.	Signal	multiplicities	are	abbreviated	as	follows:	s:	singlet;	d:	doublet;	t:	 triplet;	q:	quartet;	m:	
multiplet.		

2.6. UPLC-UV/MS	

UPLC-UV/MS	traces	were	recorded	on	a	Waters	H-class	instrument	equipped	with	a	quaternary	solvent	
manager,	a	Waters	autosampler,	a	Waters	TUV	detector	and	a	Waters	Acquity	QDa	detector	with	an	
Acquity	UPLC	BEH	C18	1.7	μm,	2.1	x	50	mm	RP	column	with	a	flow	rate	of	0.6	mL/min	(Waters	Corp.,	
USA).	The	following	gradient	was	used:	A:	0.1%	TFA	in	H2O;	B:	0.1%	TFA	in	MeCN.	5%	B	0	-	0.5	min,	5-
95%	B	0.5-3	min,	95%	B	3-3.9	min,	5%	B	3.9-5	min.	

2.7. Analytical	HPLC	

Analytical	fluorescence	HPLC	was	conducted	on	a	Shimadzu	prominence	HPLC	system	(Shimadzu	Corp.,	
Japan)	with	a	CBM-20A	communication	bus	module,	a	SIL-20A	auto	sampler,	2	pumps	LC-20AT,	and	a	
SPD-M20A	UV/VIS	detector,	a	CTO-20A	column	oven	and	a	RF-10AXL	fluorescence	detector,	using	an	
Agilent	Eclipse	C18	5	μm,	250	x	4.6	mm	RR-HPLC	column	(Agilent	Technologies,	USA)	with	a	flow	rate	
of	1.0	ml/min.	The	following	gradients	were	used:	(A	=	H2O	+	0.1%	TFA,	B	=	MeCN	+	+0.1%	TFA),	flow	
rate	1.0	ml/min,	2%	B	0-5	min,	2-45%	B	5-35	min,	45-95%	B	35-36	min,	95%	B	36-40	min,	95	to	2%	B	
40-41	min,	2%	B	41-45	min.	Fluorescence	spectra	with	Ex/Em	336/490	were	recorded.	

2.8. HR-MS	

High	resolution	ESI-MS	spectra	were	recorded	on	an	Agilent	6220	TOF	Accurate	Mass	coupled	to	an	
Agilent	1200	LC	(Agilent	Technologies,	USA)	and	were	measured	at	35°C	between	100-	2000	m/z.	The	
used	column	was	an	Accucore	RP-MS	(30	x	2,1	mm;	2.6	µm	particle	size)	eluted	with	a	 flow	of	0.8	
mL/min	and	the	following	gradient	(A	=	water,	B	=	acetonitrile):	95%A	+	5%B	for	0.2	min,	then	95%	A	
+	5%	B	to	1%	A	+	99%	B	until	1.1	min,	then	1%	A	+	99%	B	until	2.5	min.	

2.9. Analytical	HPLC-MS/MS	

After	 in-gel	 digestion	peptides	were	dissolved	 in	water	 and	analyzed	by	 a	 reversed-phase	 capillary	
liquid	chromatography	system	(Dionex	Ultimate	3000	NCS-3500RS	Nano,	Thermo	Scientific)	connected	
to	an	Orbitrap	Fusion	mass	spectrometer	 (Thermo	Fisher	Scientific,	Germany).	LC	separations	were	
performed	with	 an	 in-house	 packed	 C18	 column	 for	 reversed	 phase	 separation	 (column	material:	
Poroshell	120	EC-C18,	2.7	μm	(Agilent	Technologies,	USA)	at	an	eluent	flow	rate	of	300	µL/min	using	a	
gradient	of	2-40%	B	in	38	min.	Mobile	phase	A	contained	0.1%	formic	acid	in	water,	and	mobile	phase	
B	0.1%	formic	acid	in	acetonitrile.	FT	survey	scans	were	acquired	in	a	range	of	350	to	1500	m/z	with	a	
resolution	of	60000	(FMHM)	and	an	AGC	target	value	of	4e5.	Precursor	 ions	with	charge	states	2-4	
were	 isolated	 with	 a	 mass	 selecting	 quadrupole	 (isolation	 window	 m/z	 1.6).	 Precursor	 ions	 were	
fragmented	in	alternating	mode	using	EThcD	and	HCD.	HCD	MS/MS	spectra	were	acquired	with	30%	
NCE.	 EThcD	 fragmentation	 was	 performed	 using	 charge	 dependent	 ETD	 parameters	 and	 the	
supplemental	activation	 (sa)	was	 set	 to	30%.	For	both	 fragmentation	 types	 the	maximum	 injection	
time	was	 set	 to	 500	ms	 to	 collect	 5e4	 precursor	 ions.	 Fragment	 ion	 spectra	were	 acquired	with	 a	
resolution	of	15000	(FWHM).	
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MS	 raw	 data	 were	 processed	 with	 Proteome	 Discoverer	 2.2	 software	 (Thermo	 Fisher	 Scientific,	
Germany).	The	non-fragment	filter	was	applied	with	following	parameters:	Precursor	ions	and	charged	
reduced	precursors	were	removed	within	a	1	Da	window	and	neutral	losses	within	a	0.5	Da	window.	
MS/MS	 spectra	were	 search	 against	 a	 database	 containing	 trastuzumab	heavy	 and	 light	 chain	 and	
some	common	contaminants	using	Sequest.	Precursor	mass	tolerance	and	fragment	mass	tolerance	
were	 set	 to	 6	 ppm	 and	 0.02	 Da,	 respectively.	 Oxidation	 of	 methionine,	 alkylation	 of	 cysteine	 via	
iodoacetamide	and	the	phosphonamidate	(Y,	S,	T,	C,	K,	H	&	R)	were	searched	as	variable	modifications.	
Target	Decoy	PSM	Validator	was	used	to	filter	peptide	spectrum	matches	(PSMs)	with	a	false-discovery	
rate	(FDR)	of	0.05.	Peptide	spectrum	matches	displaying	modification	sites	were	manually	verified.	

2.10. Size-exclusion	chromatography	

Protein	purification	by	size-exclusion	chromatography	was	conducted	with	an	ÄKTA	FPLC	system	(GE	
Healthcare,	 United	 States)	 equipped	with	 a	 P-920	 pump	 system,	 a	 UPC-900	 detector,	 a	 FRAC-950	
fraction	collector	and	a	5	ml	HiTrap®	desalting	column,	with	a	flow	of	1.5	ml/min.			

2.11. Intact	protein	MS	

Intact	proteins	were	analyzed	using	a	Waters	H-class	instrument	equipped	with	a	quaternary	solvent	
manager,	a	Waters	sample	manager-FTN,	a	Waters	PDA	detector	and	a	Waters	column	manager	with	
an	Acquity	UPLC	protein	BEH	C4	column	(300	Å,	1.7	µm,	2.1	mm	x	50	mm).	Proteins	were	eluted	at	a	
clomun	temperature	of	80°C	with	a	flow	rate	of	0.3	mL/min.	The	following	gradient	was	used:	A:	0.01%	
FA	in	H2O;	B:	0.01%	FA	in	MeCN.	5-95%	B	0-6	min.	Mass	analysis	was	conducted	with	a	Waters	XEVO	
G2-XS	QTof	analyzer.	Proteins	were	ionized	in	positive	ion	mode	applying	a	cone	voltage	of	40	kV.	Raw	
data	was	analyzed	with	MaxEnt	1.	

2.12. MALDI-TOF	MS	

MALDI-TOF	MS	of	intact	protein	samples	was	conducted	with	a	Bruker	Microflex™	LT	benchtop	system	
(Bruker,	 United	 States).	 Using	 a	 matrix	 of	 saturated	 DHAP	 (2ʹ,6ʹ-Dihydroxyacetophenone)	 in	
acetonitrile.	

2.13. Solid-Phase-Peptide	Synthesis	(SPPS)	

SPPS	was	carried	out	manually	or	on	a	Tribute-UV	peptide	synthesizer	(Protein	technologies,	USA)	via	
standard	Fmoc-based	protocols.	

	

3. Experimental	procedures	
3.1. Trastuzumab	production	

Trastuzumab	expression	and	purification	was	executed	as	previously	published	with	an	additional	final	
purification	by	gel	filtration	on	a	Superdex	200	Increase	10/300	from	GE	(GE	life	sciences,	USA)	with	
PBS	and	flow	rate	of	0.75	ml/min.[3]	

3.2. General	 procedure	 for	 antibody	 modification	 with	 phosphonamidates	 via	 reduction	 and	
alkylation	of	inter-chain	disulfides	

Trastuzumab	 modification	 was	 carried	 out	 by	 incubating	 freshly	 expressed	 antibody	 (typical	
concentration	c	=	0.5	to	1.0	mg/ml)	with	1000	eq.	of	DTT	in	a	buffer	containing	50	mM	sodium	borate	
in	PBS	(pH	8.0)	with	a	total	volume	of	80	μl	at	37	°C	for	40	min.	Excess	DTT	removal	and	buffer	exchange	
to	a	solution	containing	50	mM	NH4HCO3	and	1mM	EDTA	(pH	8.5)	was	conducted	afterwards	using	0.5	
mL	 Zeba™	 Spin	 Desalting	 Columns	 with	 7K	 MWCO	 (Thermo	 Fisher	 Scientific,	 USA).	 The	 desired	
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phosphonamidate,	dissolved	in	DMSO	was	added	quickly	to	reach	a	final	DMSO	content	of	no	more	
than	5%.	The	mixture	was	shaken	at	850	rpm	and	14	°C	for	16	hours.	Excess	reagent	was	again	removed	
by	buffer	exchange	to	sterile	PBS	using	0.5	mL	Zeba™	Spin	Desalting	Columns	with	7K	MWCO	or	size	
exclusion	chromatography.	

3.3. Deglycosylation,	reduction	and	MS-analysis	of	trastuzumab	conjugates	

40	µl	 of	 the	 crude	 antibody	modification	mixture	were	purified	 by	 size-exclusion	 chromatography,	
eluting	with	100	mM	NaHCO3	and	500	mM	NaCl.	The	antibody	containing	fractions	were	pooled	and	
concentrated	by	spin-filtration	to	40	µl	(MCWO:	10	kDa,	0.5	ml,	Sartorius,	Germany).	2	μl	RapiGest™	
solution	(1%	in	H2O)	(Waters	Corp.,	USA)	were	added	and	the	solution	was	heated	to	60	°C	for	30	min.	
The	solution	was	allowed	to	cool	to	room	temperature,	1	μl	PNGase-F	solution	(Pomega,	Germany,	
Recombinant,	cloned	from	Elizabethkingia	miricola	10	u/μl)	was	added	and	the	solution	was	incubated	
at	37	°C	over	night.	Disulfide	bridges	were	reduced	by	addition	of	2	μl	DTT	solution	(70	mM	in	H2O)	
and	incubation	at	37°C	for	30	min.	Samples	were	diluted	with	120	µl	1%	HCl	and	subjected	to	intact	
protein	MS.		

3.4. Stability	studies	of	the	Dabcyl-EDANS	adducts	

Stability	studies	were	conducted	in	96-well	plate	(Corning	3615,	black	with	clear,	flat	bottom)	at	least	
in	triplicates.	5	μl	of	a	200	μM	Stock	solution	of	the	Dabcyl-EDANS	adducts	and	95	μl	of	the	respective	
test	solutions	were	added	to	each	well.		

HEK	cell	lysate	was	generated	from	approximately	3,9*107	cells,	lysed	in	2	mL	PBS	by	sonification	(final	
protein	concentration:	1.7	mg/ml).	Cells	were	grown	on	three	75	cm2	cell	culture	plates,	washed	twice	
with	 PBS	 and	 harvested	 with	 a	 cell	 scraper.	 Human	 serum	 was	 purchased	 from	 Sigma	 Aldrich.	
Glutathione	was	dissolved	at	a	concentration	of	10	mM	in	PBS	and	the	pH	was	adjusted	to	7.4.	1N	HCl	
studies	were	conducted	at	200	μM,	neutralized	 to	pH	7	and	diluted	 to	10	μM	before	 fluorescence	
measurements.	

Fluorescence	was	measured	on	a	Tecan	Safire	plate	 reader.	Excitation:	360	nm,	emission:	508	nm,	
bandwidth:	5nm	at	20	°C.	

3.5. Incubation	of	trastuzumab-biotin	conjugates	with	BSA	

Trastuzumab-biotin	 conjugates	 were	 incubated	 at	 a	 concentration	 of	 3	 μM	 in	 PBS	 with	 a	 final	
concentration	of	0.5	mM	BSA	at	37	°C.	Samples	were	drawn	after	0,	1,	2	and	5	days,	deep	frozen	in	
liquid	nitrogen	and	finally	subjected	to	SDS-Page	and	western	blot	analysis.		

3.6. Synthesis	of	trastuzumab-Cy5	conjugates	and	fluorescence	microscopy		

Trastuzumab-Cy5	conjugates	were	synthesized	according	to	the	general	procedure	1	with	the	following	
slight	 modifications:	 the	 phosphonamidate	 equivalents	 (Cy5-O-ethyl-P-alkynyl-phosphonamidate)	
were	 raised	 to	 130,	 and	 the	DMSO	 content	was	 raised	 to	 5%	 to	 solubilize	 the	 Cy5.	 Samples	were	
subjected	to	SDS-Page	analysis	and	fluorescence	microscopy.																							

BT474,	SKBR3	and	MDAMB468	were	seeded	on	sterile	cover	slips	and	incubated	ON	at	37	°C,	5	%	CO2	
for	cell	attachment.	Cells	were	washed	three	times	with	1x	PBS	prior	to	fixation	for	10	min	in	1x	PBS/4%	
PFA	(formaldehyde).	Fixation	was	stopped	by	the	addition	of	an	equal	volume	1	x	PBST	(PBS	+	0.05	%	
Tween20)	 followed	by	two	more	washes	with	PBST.	AFCs	were	added	to	a	 final	concentration	of	5	
μg/mL	and	incubated	for	1	h	at	rt.	Unbound	AFC	was	removed	by	three	washes	with	PBS.	Images	were	
acquired	on	a	Leica	SP5	confocal	microscopy	system	equipped	with	a	63x1.40	oil	immersion	objective.	
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Laserlines	405	nm	and	594	nm	were	used	in	combination	with	standard	DAPI	and	Cy5	filter	settings.	
Image	processing	was	carried	out	with	ImageJ	1.5.1h	software	extended	by	the	Fiji	processing	package.	

3.7. 	eGFP	C70M	S147C	production	

The	eGFP	mutant	C70MS147C	was	generated	allowing	 for	single	cysteine	conjugation	experiments.	
Even	though	this	mutant	obtains	two	cysteines	(C48	and	C147),	the	cysteine	at	position	48	was	shown	
to	be	not	addressable	for	different	conjugation	methods	(data	not	shown).		
For	construction	of	the	bacterial	expression	constructs	coding	for	His-tagged	eGFPC70MS147C,	eGFP	
was	cloned	from	pGEXeGFP	(provided	by	Roland	Kühne,	FMP	Berlin)	into	pET28a	using	XhoI	and	NdeI	
restriction	 endonuclease	 sites.	 The	 mutations	 were	 introduced	 with	 classical	 PCR	 by	 the	 use	 of	
complementary	 primer	 pairs	 (GTACAACTACAACTGCCACAACGTC	 and	 GACGTTGTGGCAGTTGT	
AGTTGTAC).	
The	 protein	was	 expressed	 in	 E.	 coli	 BL21(DE3)	 using	 LB	medium	 containing	 100	 μg/mL	 ampicillin	
(LBAMP).	Cells	were	grown	at	37	°C,	180	rpm	until	OD600	reached	approx.	0.8,	induced	with	0.3	mM	
IPTG	and	incubated	at	18	°C	for	19	h.	Lysis	was	performed	in	Dulbecco’s	PBS	(137	mM	NaCl,	2.7	mM	
KCl,	10	mM	Na2HPO4	and	1.8	mM	KH2PO4)	using	a	high-pressure	homogenizer	(Microfluidics	LM10	
Microfluidizer)	and	debris	centrifuged	at	20.000	g	for	30	min.	The	protein	was	purified	with	a	BioRad	
NGC	system	(BioRad,	USA)	using	a	5	mL	HisTrap	FF	(GE	Healthcare,	USA)	column,	peak	fractions	were	
collected	and	desalted	to	Dulbecco’s	PBS	using	a	HiPrep	26/10	Desalting	column	(GE	Healthcare,	USA).	
Thrombin	(1	μL/mL;	Thrombin	restriction	grade,	Merck	Millipore,	Germany)	was	added	to	the	protein	
fractions	and	incubated	for	16	h	at	16	°C.	The	protein	was	concentrated	to	1	mL	using	Vivaspin	20	(cut-
off	19	kDa;	Merck	Millipore,	Germany)	and	subjected	to	a	final	size	exclusion	chromatography	using	a	
Superdex	75	10/300	GL	column	(GE	Healthcare,	USA).	The	protein	concentration	was	determined	by	
NanoDrop®	at	280	nm	(ε	=	21890	M-1	cm-1).	The	expressed	protein	was	isolated	in	15-20	mg	yield	for	
1	L	expression.	Peak	fractions	were	pooled,	0.1	mM	PMSF	added	and	aliquots	were	shock-frozen	and	
stored	at	-80	°C	until	further	use.	

Deconvoluted	HRMS:	27765	Da	(calcd.	MW:	27766	Da)	

	

Protein	sequence:	His-tag	highlighted	in	green;	protease	cleavage	site	highlighted	in	blue;	eGFP	
highlighted	in	grey;	C70M	and	S147C	highlighted	in	red.	
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MGSSHHHHHHSSGLVPRGSHMGSIQMVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTT
GKLPVPWPTLVTTLTYGVQMFSRYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIEL
KGIDFKEDGNILGHKLEYNYNCHNVYIMADKQKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYL
STQSALSKDPNEKRDHMVLLEFVTAAGITLGMDELYK	
	
3.8. 	Addition	of	the	CPP-phosphonamidate	peptides	8		and	9	to	eGFP	

To	eGFP	C70M	S147C	buffered	in	PBS,	ethynylphosphonamidate-peptides	(20	eq.)	were	added	to	give	
the	final	protein	concentration	of	100	µM	protein	and	2	mM	peptide.	The	reaction	mixture	was	shaken	
at	37°C	and	800	rpm	for	3	h.	The	excess	peptide	was	removed	by	spinfiltration	using	Amicon	Spin	filters	
with	a	10	kDa	MWCO	(Sartorius,	Germany).	The	sample	was	filtered	five	times	with	PBS	at	14000	rpm	
for	5	min	to	remove	excess	Peptide.		

Cyclic-(Tat)-eGFP		

Peptide	8	 (3.06	mg	as	TFA-salt,	1.13	µmol,	20	eq.)	was	reacted	with	eGFP	C70M	S147C	(56.3	nmol)	
according	to	the	above	stated	procedure.		After	removal	of	excess	peptide	by	spin	filtration	the	sample	
was	 analyzed	 by	 MALDI-TOF	 after	 acetone	 precipitation	 and	 re-solvation	 in	 10	 mM	 ammonium	
bicarbonate	buffer.	Quantitative	conversion	to	the	product	was	observed.	

MALDI	TOF:	expected	(in	Da):	29795.2	(M+H+);	found	(in	Da):	29851.4	(M+H+)	

	

Cyclic-(R10)-eGFP		

Peptide	9	 (3.94	mg	as	TFA-salt,	1.13	µmol,	20	eq.)	was	reacted	with	eGFP	C70M	S147C	(56.3	nmol)	
according	to	the	above	stated	procedure.	After	removal	of	excess	peptide	by	spin	filtration	the	sample	
was	 analyzed	 by	 MALDI-TOF	 after	 acetone	 precipitation	 and	 re-solvation	 in	 10	 mM	 ammonium	
bicarbonate	buffer.	Quantitative	conversion	to	the	product	was	observed.	
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MALDI	TOF:	expected	(in	Da):	30106.4	(M+H
+
);	found	(in	Da):	30128.0	(M+Na

+
).	

	

3.9. Cellular	uptake	experiments	

All	cellular	uptake	experiments	were	carried	out	with	HeLa	(ATCC	CCL-2)	cells	cultured	in	Dulbecco’s	

MEM	medium	supplemented	with	10%	FBS	and	1%	Penicillin	Streptomycin.	70	000	cells	were	seeded	

in	an	uncoated	glass	bottom	8-well	µ-slide	(Ibidi)	24	hours	prior	to	treatment.	The	cellular	uptake	was	

carried	out	by	gently	washing	cells	three	times	with	HEPES	buffer	pH	7.5	(5	mM	HEPES,	140	mM	NaCl,	

2.5	mM	KCl,	5	mM	glycine).	The	peptide-protein	conjugate	buffered	 in	 the	same	HEPES	buffer	was	

added	to	the	cells	in	200	µl	at	50	µM	and	incubated	for	at	37°C	in	a	5%	CO2	atmosphere.	After	one	hour	

cells	were	gently	washed	with	25	mM	HEPES	in	Dulbecco’s	MEM	supplemented	with	10%	FKS	and	cells	

were	rested	for	30	minutes	at	37°C.	The	cell	nucleus	was	stained	with	Hoechst	33342	and	cells	imaged	

with	a	Zeiss	710	confocal	microscope.		

4. Organic	Synthesis	
4.1. General	procedure	1	for	the	synthesis	of	O-ethyl-ethynylphosphonamidates	

A	25-ml	Schlenk	flask	was	charged	with	173	µl	diethyl	chlorophosphite	(1.20	mmol,	1.2	eq.)	under	an	

argon	atmosphere,	cooled	to		̶	78	°C	and	2.00	ml	ethynylmagnesium	bromide	solution	(0.5	M	in	THF,	

1.00	mmol,	1.0	eq.)	was	added	drop	wise.	The	solution	was	allowed	to	warm	to	room	temperature	

and	1.00	mmol	of	azide	(1.0	eq.)	dissolved	in	3.0	ml	of	THF	or	DMF	was	added	and	stirred	over	night	

at	room	temperature.	5	ml	of	water	were	added	and	stirred	for	another	2	h.	The	reaction	mixture	

was	extracted	with	EtOAc,	the	combined	organic	fractions	dried	(MgSO4)	and	solvents	were	removed	

under	reduced	pressure.	The	crude	product	was	purified	by	flash	column	chromatography	on	silica	

gel	or	preparative	reversed	phase	HPLC.	
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4.2. Ethyl-N-phenyl-P-ethynylphosphonamidate	(1)	

	

The	 compound	 was	 synthesized	 according	 to	 the	 general	 procedure	 1	 from	 1.45	 ml	 diethyl	
chlorophosphite	(10.07	mmol)	and	1.00	g	phenyl	azide	(8.39	mmol).	The	crude	phosphonamidate	was	
purified	 by	 flash	 column	 chromatography	 on	 silicagel	 (50%	 n-hexan	 in	 EtOAc)	 and	 obtained	 as	 a	
yellowish	solid.	(1.4	g,	6.74	mmol,	80.3%)	

1H	NMR	(600	MHz,	Chloroform-d)	δ	=	7.33	–	7.25	(m,	2H),	7.20	(d,	J=7.6,	1H),	7.16	–	7.10	(m,	2H),	7.05	
–	 6.94	 (m,	 1H),	 4.35	 –	 4.10	 (m,	 2H),	 2.91	 (d,	 J=12.9,	 1H),	 1.39	 (t,	 J=7.1,	 3H).	 13C	 NMR	 (151	MHz,	
Chloroform-d)	δ	=	139.18,	129.28,	122.23,	118.16	(d,	J=7.6),	87.77	(d,	J=48.8),	76.39	(d,	J=272.9),	62.13	
(d,	J=5.1),	16.17	(d,	J=7.4).	31P	NMR	(243	MHz,	Chloroform-d)	δ	=	-8.75.	HR-MS	for	C10H13NO2P+	[M+H]+	
calcd.:	210.0678,	found	210.0680.	

4.3. Ethyl-N-(4-carboxy-phenyl)-P-ethynylphosphonamidate	(2)	

	

The	 compound	 was	 synthesized	 according	 to	 the	 general	 procedure	 1	 from	 1.06	 ml	 diethyl	
chlorophosphite	(7.36	mmol)	and	1.00	g	4-azidobenzoic	acid	(6.13	mmol).	The	crude	phosphonamidate	
was	purified	by	flash	column	chromatography	on	silicagel	(5	to	20%	MeOH	in	EtOAc)	and	obtained	as	
a	white	solid.	(0.68	g,	2.67	mmol,	43.5%)	
1H	NMR	(300	MHz,	Acetone-d6)	δ	8.11	–	8.00	(m,	1H),	7.97	(d,	J	=	8.6	Hz,	2H),	7.30	(d,	J	=	8.6	Hz,	2H),	
4.32	–	4.11	(m,	2H),	3.87	(d,	J	=	12.9	Hz,	1H),	1.36	(t,	J	=	7.1	Hz,	3H).13C	NMR	(75	MHz,	Acetone-d6)	δ	=	
167.65,	145.51	(d,	J=1.5),	131.93,	124.63,	118.04	(d,	J=7.8),	90.15	(d,	J=47.6),	77.28	(d,	J=267.2),	62.98	
(d,	 J=5.1),	16.38	 (d,	 J=7.1).31P	NMR	(122	MHz,	Acetone-d6)	δ	 -11.05.	HR-MS	 for	C11H13NO4P+	[M+H]+	
calcd.:	254.0577,	found	254.0586.	

4.4. Ethyl-N-(4-(2,5-dioxo-1-pyrrolidinyl)oxy-carbonyl-phenyl)-P-ethynylphosphonamidate	(3)	

	

The	 compound	 was	 synthesized	 according	 to	 the	 general	 procedure	 1	 from	 173	 µl	 diethyl	
chlorophosphite	 (1.20	 mmol)	 and	 260	 mg	 4-azidobenzoic-acid-N-hydroxysuccinimide	 ester	
1.00	mmol).	The	crude	phosphonamidate	was	purified	by	flash	column	chromatography	on	silicagel	
(100%	EtOAc)	and	obtained	as	a	yellowish	solid.	(225	mg,	0.64	mmol,	64.3%)	
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1H	NMR	(300	MHz,	Chloroform-d)	δ	=	8.05	(d,	J=8.6,	2H),	7.37	(d,	J=7.4,	1H),	7.16	(d,	J=8.6,	2H),	4.38	–	
4.13	(m,	2H),	2.96	(d,	J=13.2,	1H),	2.90	(s,	4H),	1.40	(t,	J=7.1,	3H).13C	NMR	(75	MHz,	Chloroform-d)	δ	=	
169.59,	161.51,	145.64,	132.55,	118.38,	117.59	 (d,	 J=8.0),	88.69	 (d,	 J=50.2),	62.93	 (d,	 J=5.2),	25.82,	
16.24	(d,	J=7.3).31P	NMR	(122	MHz,	Chloroform-d)	δ	=	-10.65.	HR-MS	for	C15H16N2O6P+	[M+H]+	calcd.:	
351.0740,	found	351.0749.	

Synthetic	route	to	2-(4-Azidophenyl)-ethylamine	hydrochloride	

	

4.5. 2-(4-Azidophenyl)-ethyl	phtalimide	

	

A	50-ml	 round-bottom	flask	was	charged	with	4.11	g	of	2-(4-Azidophenyl)-ethyl-4-toluenesulfonate	
(12.95	 mmol,	 1.00	 eq.),	 together	 with	 3.60	 g	 potassium	 phtalimide	 (19.42	 mmol,	 1.50	 eq.)	 and	
dissolved	in	60	ml	DMF.	The	brown	solution	was	stirred	over	night	at	100	°C.	All	volatiles	were	removed	
under	reduced	pressure,	50	ml	of	water	were	added	extracted	three	times	with	EtOAc,	the	combined	
organic	 fractions	were	washed	 two	 times	with	water,	 the	 organic	 layer	was	 dried	 (MgSO4)	 and	 all	
volatiles	were	removed	under	reduced	pressure.	The	product	was	used	in	the	next	step	without	further	
purification.	Pure	product	was	obtained	by	 flash	 column	chromatography	on	 silicagel	 (10%	 to	20%	
EtOAc	in	n-hexan)	as	a	yellow	solid	(1.75	g,	5.99	mmol,	46.2%).	1H	NMR	(600	MHz,	Chloroform-d)	δ	=	
7.85	(dd,	J=5.4,	3.1,	2H),	7.73	(dd,	J=5.4,	3.1,	2H),	7.25	(d,	J=8.4,	2H),	6.96	(d,	J=8.4,	2H),	3.93	(dd,	J=8.3,	
6.8,	2H),	3.00	(dd,	J=8.3,	6.8,	2H).	13C	NMR	(151	MHz,	CDCl3)	δ	=	168.12,	138.43,	134.76,	133.96,	132.00,	
130.22,	123.26,	119.17,	39.14,	33.92.	

4.6. 2-(4-Azidophenyl)-ethylamine	hydrochloride	

	

A	 100-ml	 round-bottom	 flask	 was	 charged	 with	 722	 mg	 of	 2-(4-Azidophenyl)-ethyl	 phtalimide	
(2.47	mmol,	1.00	eq.),	144	µl	hydrazine	hydrate	(2.96	mmol,	1.20	eq.),	dissolved	in	20	ml	of	dry	ethanol	
under	argon	atmosphere	and	the	solution	was	refluxed	for	4	h.	Most	of	the	solvent	was	removed	under	
reduced	pressure,	 50	ml	water	was	 added	 and	 the	 suspension	was	 basified	with	 1N	NaOH.	 It	was	
extracted	three	times	with	EtOAc,	the	combined	organic	fractions	were	washed	two	times	with	water,	
the	organic	 layer	was	dried	 (MgSO4)	 and	all	 volatiles	were	 removed	under	 reduced	pressure.	 Pure	
product	was	obtained	by	flash	column	chromatography	on	silicagel	(10%	MeOH	in	CH2Cl2	+	0.5%	N,N-
ethyldimethylamine)	and	lyohilisation	from	1N	HCl	as	yellowish	solid	(224	mg,	1.14	mmol,	46.2%	over	
two	steps).	1H	NMR	(600	MHz,	Deuterium	Oxide)	δ	=	7.29	(d,	J=7.6,	2H),	7.05	(d,	J=7.6,	2H),	3.22	(t,	
J=7.2,	2H),	2.94	(t,	J=7.2,	2H).	13C	NMR	(151	MHz,	D2O)	δ	=	138.81,	133.24,	130.32,	119.40,	40.51,	32.13.	
NMR	data	was	in	accordance	with	literature	values.[4]	
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4.7. Ethyl-N-(4-(2-aminoethyl)phenyl)-P-ethynylphosphonamidate	TFA	salt	(4)	

	

The	 compound	 was	 synthesized	 according	 to	 the	 general	 procedure	 1	 from	 181	 µl	 diethyl	
chlorophosphite	(1.25	mmol)	and	322	mg	2-(4-azidophenyl)ethyl	amine	hydrochloride	(1.05	mmol).	
The	crude	phosphonamidate	was	purified	by	preparative	RP-HPLC	(Method	C)	and	obtained	as	brown	
oil.	(88	mg,	0.24	mmol,	22.9%)	

1H	NMR	(300	MHz,	Acetonitrile-d3)	δ	=	7.58	(s,	3H),	7.20	–	7.01	(m,	4H),	6.96	(d,	J=8.5,	1H),	4.26	–	4.05	
(m,	2H),	3.42	(d,	J=12.8,	1H),	3.08	(d,	J=7.8,	2H),	2.88	(dd,	J=9.0,	6.4,	2H),	1.31	(t,	J=7.1,	3H).	13C	NMR	
(75	MHz,	Acetonitrile-d3)	δ	=	161.38	(q,	J=34.7),	139.20	(d,	J=1.3),	131.75,	130.66,	119.63	(d,	J=7.3),	
90.09	(d,	J=47.2),	77.02	(d,	J=265.0),	63.54	(d,	J=5.3),	41.92,	33.19,	16.41	(d,	J=7.3).	31P	NMR	(122	MHz,	
Acetonitrile-d3)	δ	=	-9.71.	HR-MS	for	C12H18N2O2P+	[M+H]+	calcd.:	253.1100,	found	253.1095.	

4.8. N-(4-azidophenyl)	biotinamide	

	

A	50-ml	round-bottom	flask	was	charged	with	642	mg	of	D-biotin	(2.63	mmol,	1.50	eq.)	and	1.00	g	of	
HATU	(2.63	mmol,	1.50	eq.)	under	argon,	dissolved	in	5	ml	of	dry	DMF	and	cooled	to	0°C.	920	µl	DIPEA	
(5.25	mmol,	 3.0	 eq.)	were	 added	and	 stirred	 for	 several	min.	A	 solution	of	 235	mg	4-azido	aniline	
(1.75	mmol,	1.00	eq.)	in	4	ml	of	dry	DMF	was	added,	the	yellow	solution	was	allowed	to	warm	to	room	
temperature	and	stirred	for	additional	2	h.	The	solvents	were	removed	under	reduced	pressure	and	
the	crude	product	was	purified	by	flash	column	chromatography	on	silicagel	(5	to	12%	MeOH	in	CH2Cl2).	
The	product	was	obtained	as	white	powder.	(617	mg,	1,72	mmol,	98%)	

1H	NMR	(600	MHz,	DMSO-d6)	δ	=	9.96	(s,	1H),	7.64	(d,	J=8.9,	2H),	7.07	(d,	J=8.9,	2H),	6.44	(s,	1H),	6.37	
(s,	1H),	4.42	–	4.28	(m,	1H),	4.21	–	4.08	(m,	1H),	3.21	–	3.07	(m,	1H),	2.84	(dd,	J=12.4,	5.1,	1H),	2.60	(d,	
J=12.4,	1H),	2.31	(td,	J=7.4,	1.8,	2H),	1.70	–	1.57	(m,	3H),	1.55	–	1.47	(m,	1H),	1.44	–	1.32	(m,	2H).	13C	
NMR	(151	MHz,	DMSO)	δ	=	171.60,	163.20,	137.09,	134.00,	121.00,	119.83,	61.53,	59.69,	55.85,	40.31,	
36.64,	28.70,	28.56,	25.55.	HR-MS	for	C16H21N6O2S+	[M+H]+	calcd.:	361.1441,	found	361.1447.	

4.9. Ethyl-N-(4-biotinamido-phenyl)-P-ethynylphosphonamidate	(5)	

	

The	 compound	 was	 synthesized	 according	 to	 the	 general	 procedure	 1	 from	 239	 µl	 diethyl	
chlorophosphite	 (1.66	mmol)	 and	 150	mg	N-(4-azidophenyl)	 biotinamide	 (0.416	mmol).	 The	 crude	
phosphonamidate	was	purified	by	 flash	column	chromatography	on	silicagel	 (12%	MeOH	 in	CH2Cl2)	
and	obtained	as	white	solid.	(134	mg,	0.30	mmol,	71.5	%).	
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1H	NMR	(600	MHz,	DMSO-d6)	δ	=	9.74	(s,	1H),	8.27	(d,	J=8.6,	1H),	7.45	(d,	J=8.6,	2H),	7.00	(d,	J=8.6,	2H),	
6.45	(bs,	2H),	4.39	–	4.30	(m,	2H),	4.19	–	4.01	(m,	3H),	3.17	–	3.10	(m,	1H),	2.84	(dd,	J=12.4,	5.1,	1H),	
2.60	(d,	J=12.4,	1H),	2.28	(t,	J=7.1,	2H),	1.73	–	1.55	(m,	3H),	1.55	–	1.46	(m,	1H),	1.44	–	1.32	(m,	2H),	
1.29	(t,	J=7.0,	3H).	13C	NMR	(151	MHz,	DMSO-d6)	δ	=	171.21,	163.25,	135.56,	134.03,	120.64,	118.72	
(d,	J=7.4),	91.15	(d,	J=44.8),	77.76	(d,	J=257.8),	61.92	(d,	J=3.6),	61.56,	59.72,	55.86,	40.31,	36.56,	28.71,	
28.55,	25.65,	16.43	(d,	J=6.8).	31P	NMR	(243	MHz,	DMSO)	δ	=	-9.37.	HR-MS	for	C20H28N4O4PS+	[M+H]+	
calcd.:	451.1563,	found	451.1565.	

4.10. Ethyl-N-(3-phenyl-propyl)-P-ethynylphosphonamidate	(6)	

	

The	 compound	 was	 synthesized	 according	 to	 the	 general	 procedure	 1	 from	 346	 µl	 diethyl	
chlorophosphite	 (2.40	 mmol)	 and	 322	 mg	 3-phenyl-propyl	 azide	 (2.00	 mmol).	 The	 crude	
phosphonamidate	was	purified	by	flash	column	chromatography	on	silicagel	(50%	n-hexan	in	EtOAc)	
and	obtained	as	colourless	oil.	(180	mg,	0.72	mmol,	35.8%)	
1H	NMR	(300	MHz,	Chloroform-d)	δ	=	7.33	–	7.25	(m,	2H),	7.24	–	7.16	(m,	3H),	4.20	–	4.05	(m,	2H),	3.31	
(dd,	J=11.8,	5.9,	1H),	3.07	–	2.93	(m,	2H),	2.88	(d,	J=12.2,	1H),	2.68	(dd,	J=8.7,	6.8,	2H),	1.88	(p,	J=7.2,	
2H),	1.35	(t,	J=7.1,	3H).	13C	NMR	(75	MHz,	Chloroform-d)	δ	=	141.30,	128.33,	128.30,	125.87,	86.96	(d,	
J=45.5),	76.90	(d,	J=257.0),	61.57	(d,	J=5.1),	40.29,	32.84	(d,	J=6.4),	32.78,	16.08	(d,	J=7.3).	31P	NMR	
(122	MHz,	Chloroform-d)	δ	=	-2.23.	HR-MS	for	C13H19NO2P+	[M+H]+	calcd.:	252.1148,	found	252.1154.	

4.11. c(RGDfK)-azide		

	

The	cyclic	RGDfK-azido	peptide	was	synthesized	manually	on	a	NovaSynTGT	alcohol	resin	with	a	loading	
of	0.26	mmol/g.	First	the	resin	was	activated	by	stirring	480.7	mg	resin	in	2.5	ml	toluene	and	480	μl	
acetylchloride	at	60°C	for	3	h.	Double	coupling	of	Fmoc-Asp(OAll)-OH	(123.56	mg,	0.3125	mmol,	2.5	
eq)	was	performed	in	CH2Cl2	using	DIPEA	(212.6	μl,	1.25	mmol,	10	eq.)	as	activating	base	each	for	1	h.	
Further	amino	acid	couplings	were	performed	by	mixing	amino	acid	(0.25	mmol,	2	eq.),	HATU	(0.25	
mmol,	2	eq.)	and	DIPEA	(0.5	mmol,	4	eq.)	in	DMF	and	coupling	once	for	30	min	and	once	for	one	hour.	
Fmoc	deprotection	was	accomplished	with	20	%	piperidine	in	DMF.	After	the	final	amino	acid	coupling	
the	alloc	deprotection	was	achieved	by	treating	the	resin	with	Pd(P(Ph3)4)	(433	mg,	0.375	mmol,	3	eq.)	
in	 chloroform/acetic	 acid/NMM	 (37:2:1;v:v:v)	 for	 2	 h	 in	 an	 argon	 atmosphere,	 followed	 by	 Fmoc	
deprotection	and	cyclisation	with	HATU	(0.25	mmol,	2	eq.)	and	DIPEA	(0.5	mmol,	4	eq.)	in	DMF	for	16	
h.	To	be	able	to	install	the	aromatic	azide	on	the	lysine	residue	Fmoc-Lys(dde)-OH	was	used	in	the	solid	
phase	synthesis	and	was	orthogonally	deprotected	on	resin	using	2%	hydrazine	in	DMF	three	times	for	
3	min,	followed	by	coupling	of	4–azidobenzoic	acid	(81.65	mg,	0.5	mmol,	4	eq.)	with	HATU	(190mg,	0.5	
mmol,	4eq.)	and	DIPEA	(1	mmol,	8	eq.)	in	DMF	for	2	h.	Cleavage	from	the	resin	was	performed	using	
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TFA/	CH2Cl2	(75:25;v:v)	for	2.5	h.	Precipitation	was	carried	out	in	cold	and	dry	ether.	The	crude	was	
purified	by	preparative	HPLC	(Method	C).	LR-MS	for	C34H45N12O3

+	[M+H]+	calcd.:	749.35,	found	749.67.	

	

4.12. General	procedure	2	 for	 the	 synthesis	of	O-ethyl-alkynyl	phosphonamidates	 from	diethyl	
chlorophosphite	with	peptides	

A	25-ml	Schlenk	flask	was	charged	with	144	µl	diethyl	chlorophosphite	(1.00	mmol,	5.0	eq.)	under	an	
argon	atmosphere,	cooled	to		̶	78	°C	and	2.00	ml	ethynylmagnesium	bromide	solution	(0.5	M	in	THF,	
1.00	mmol,	 5.0	 eq.)	 was	 added	 drop	 wise.	 The	 yellowish	 solution	 was	 allowed	 to	 warm	 to	 room	
temperature	and	0.20	mmol	of	peptidic	azide	(1.0	eq.)	dissolved	in	5.0	ml	of	DMF	or	DMSO	was	added	
and	stirred	over	night	at	room	temperature.	5	ml	of	water	were	added	and	stirred	for	another	2	h.	
Solvents	 were	 removed	 under	 reduced	 pressure.	 The	 crude	 product	 was	 purified	 by	 preparative	
reversed	phase	HPLC.	

4.13. Synthesis	of	c(RGDfK)-ethynylphosphonamidate	7	

	

	

The	 compound	 was	 synthesized	 according	 to	 the	 general	 procedure	 2	 from	 8.95	 µl	 diethyl	
chlorophosphite	(0.036	mmol,	4.0	eq.),	72	µl	ethynylmagnesium	bromide	solution	(0.5	M	in	THF,	0.036	
mmol,	4.0	eq.)	and	6.9	mg	c(RGDfK)-azide	(9.14	μmol,	1	eq.)	.	The	crude	phosphonamidate	was	purified	
by	preparative	HPLC	(Method	D)	and	obtained	as	a	white	solid	after	lyophilisation.	(4.1	mg,	4.89	μmol,	
53.5	%	yield).	HR-MS	for	C38H45N10O10P+	[M+H]+	calcd.:	839.3606,	found	839.3636.	
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4.14. c-(Tat)-azide	

	

The	cyclic-(Tat)-azido	peptide	was	synthesized	in	a	0.1	mmol	scale	on	a	Rink	amide	resin	with	a	loading	
of	0.78	mmol/g.	The	synthesis	was	carried	out	on	a	PTI	synthesizer	with	single	couplings	of	each	amino	
acid	(10	eq.	amino	acid	for	40	min)	in	DMF.	After	the	final	PEG	building	block	coupling	the	peptide,	still	
Fmoc	protected,	was	treated	with	Pd(PPh3)4	(24	mg,	20	µmol,	20	mol%)	and	phenylsilane	(308	µl,	2.5	
mmol,	2.5	eq.)	in	4	ml	dry	CH2Cl2	for	1	h	in	order	to	cleave	the	alloc	and	allyl	protecting	groups	in	one	
step.	After	confirmation	of	full	deprotection	by	test	cleavage,	cyclization	with	2	eq.	HATU	4	eq.	DIPEA	
was	carried	for	4	h	in	DMF.	The	peptide	was	then	Fmoc-deprotected	using	20%	piperidine	in	DMF	and	
the	4-azidobenzoic	acid	(81.6	mg,	0.5	mmol,	5	eq.)	was	coupled	to	the	N-terminus	with	HATU	(190.1	
mg,	0.5	mmol,	5	eq.)	and	DIPEA	(170	µl,	1.0	mmol,	10	eq.)	for	1	h.	Finally	the	peptide	was	cleaved	from	
the	resin	by	treatment	with	4	ml	of	a	TFA:TIS:H2O	(95:2.5:2.5)	mixture	for	3	h	and	precipitated	in	cold	
diethylether.	The	crude	peptide	was	purified	by	preparative	HPLC	(Method	D).	The	product	was	gained	
as	white	powder	(30.0	mg	as	TFA-salt,	11.4	µmol,	11.4%	yield)	MS:	m/z:	648.49	[M+3H]3+	(calcd.	m/z:	
648.0569).	
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4.15. c-(Tat)-ethynylphosphonamidate	8	

	

The	 compound	 was	 synthesized	 according	 to	 the	 general	 procedure	 2	 from	 8.95	 µl	 diethyl	
chlorophosphite	(0.030	mmol,	4.0	eq.),	72	µl	ethynylmagnesium	bromide	solution	(0.5	M	in	THF,	0.030	
mmol,	4.0	eq.)	and	20	mg	c(Tat)-azide	(7.6	μmol,	1	eq.).	The	product	was	gained	after	semi-preparative	
HPLC	(Method	D)	as	white	powder	 (13	mg,	4.8	µmol,	62.9%	yield).	HRMS:	m/z:	678.0569	[M+3H]3+	
(calcd.	m/z:	678.0610).	

	

4.16. c(R10)-azide		

	

The	cyclic-(R10)-azido	peptide	was	synthesized	in	a	0.1	mmol	scale	on	a	Rink	amide	resin	with	a	loading	
of	0.78mmol/g.	The	synthesis	was	carried	out	on	a	PTI	synthesizer	with	double	couplings	of	each	amino	
acid	(5	eq.	amino	acid	for	40	min)	in	DMF.	After	the	final	PEG	building	block	coupling	the	peptide,	still	
Fmoc	protected,	was	treated	with	Pd(PPh3)4	(24	mg,	20	µmol,	20	mol%)	and	phenylsilane	(308	µl,	2.5	
mmol,	2.5	eq.)	in	4	ml	dry	CH2Cl2	for	1	h	in	order	to	cleave	the	alloc	and	allyl	protecting	groups	in	one	
step.	After	confirmation	of	full	deprotection	by	test	cleavage,	cyclization	with	2	eq.	HATU	4	eq.	DIPEA	
was	carried	out	overnight	in	DMF.	The	peptide	was	then	Fmoc-deprotected	using	20%	Piperidine	in	
DMF	and	the	4-azidobenzoic	acid	(81.6	mg,	0.5	mmol,	5	eq.)	was	coupled	to	the	N-terminus	with	HATU	
(190.1	mg,	0.5	mmol,	5	eq.)	and	DIPEA	(170	µl,	1.0	mmol,	10	eq.)	for	1	h.	Finally	the	peptide	was	cleaved	
from	the	resin	by	treatment	with	4	ml	of	a	TFA:TIS:H2O	(95:2.5:2.5)	mixture	for	3	h	and	precipitated	in	
cold	diethylether.	The	crude	peptide	was	purified	by	preparative	HPLC	(Method	D)	and	gained	as	white	
powder	(62	mg	as	TFA-salt,	18.3	µmol	18.3%	yield).	MS:	m/z:	752.35	[M+3H]3+	(calcd.	m/z:	751.7879)	
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4.17. c-(R10)-ethynylphosphonamidate	9	

	

The	 compound	 was	 synthesized	 according	 to	 the	 general	 procedure	 2	 from	 8.95	 µl	 diethyl	
chlorophosphite	(0.041	mmol,	4.0	eq.),	72	µl	ethynylmagnesium	bromide	solution	(0.5	M	in	THF,	0.041	
mmol,	4.0	eq.)	and	35	mg	c(R10)-azide	(7.6	μmol,	1	eq.).	The	product	was	gained	after	semi-preparative	
HPLC	(Method	D)	as	white	powder	(13	mg,	4.79	µmol,	62.9%	yield).	HRMS:	m/z:	781.7965	[M+3H]3+	
(calcd.	m/z:	781.7920).	
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4.18. 5-((2-(O-Ethyl-P-ethynyl-phosphonamidato-N-benzoyl)ethyl)amino)naphthalene-1-sulfonic	
acid	(10)	

	

The	 reaction	 was	 carried	 out	 in	 DMF.	 265	 µl	 of	 a	 100	 mM	 solution	 of	 Ethyl-N-(4-(2,5-dioxo-1-
pyrrolidinyl)oxy-carbonyl-phenyl)-P-ethynylphosphonamidate	(0.0265	mmol,	1.00	eq.)	and	1.06	ml	of	
a	 50	 mM	 solution	 of	 5-((2-Aminoethyl)aminonaphthalene-1-sulfonate	 (EDANS)	 (0.0530	 mmol,	
2.00	 eq.)	 together	 with	 795	 µl	 DMF	 was	 premixed	 and	 530	 µl	 of	 a	 solution	 of	 200	 mM	 DIPEA	
(0.1060	mmol,	4.00	eq.)	was	added.	The	mixture	was	shaken	for	2	h	at	room-temperature,	all	volatiles	
were	removed	under	reduced	pressure,	the	crude	mixture	was	purified	by	semi-preparative	HPLC	using	
method	 D	 and	 the	 desired	 compound	 obtained	 as	 a	 white	 solid	 after	 lyophilisation.	 (9.30	 mg,	
0.0186	mmol,	70.0%)	
1H	NMR	(600	MHz,	DMSO-d6)	δ	=	8.78	(d,	J=8.5,	1H),	8.57	(t,	J=5.7,	1H),	8.36	(d,	J=8.6,	1H),	8.11	(d,	
J=8.4,	1H),	7.99	(d,	J=7.0,	1H),	7.80	(d,	J=8.7,	2H),	7.43	(dd,	J=8.5,	7.1,	1H),	7.38	(t,	J=8.1,	1H),	7.14	(d,	
J=8.7,	2H),	6.92	(d,	J=7.5,	1H),	4.43	(d,	J=12.7,	1H),	4.21	–	4.05	(m,	2H),	3.62	(q,	J=6.3,	2H),	3.46	(t,	
J=6.6,	2H),	1.31	(t,	J=7.0,	3H). 13C	NMR	(151	MHz,	DMSO-d6)	δ	=	167.03,	144.64,	143.48,	141.01,	
130.59,	128.98,	127.65,	126.47,	125.13,	124.62,	123.86,	123.13,	119.62,	117.34	(d,	J=7.8),	107.91,	
91.69	(d,	J=45.5),	77.26	(d,	J=260.8),	62.31	(d,	J=5.0),	45.51,	38.15,	16.42	(d,	J=6.9). 31P	NMR	(243	
MHz,	DMSO)	δ	=	-10.35.	HR-MS	for	C23H25N3O6PS+	[M+H]+	calcd.:	502.1196,	found	502.1195.	

4.19. Cy5-O-ethyl-P-alkynyl-phosphonamidate	11	

	

The	Cy5-COOH	was	synthesized	according	to	a	procedure,	previously	published	by	our	lab.[5]	A	5-ml-	
round	bottom	 flask	was	 charged	with	 33.2	mg	Cy5-COOH	 (0.0628	mmol,	 1.00	 eq.),	 35.8	mg	HATU	
(0.0942	mmol,	1.5	eq.)	and	200	µl	DMF.	The	deep	blue	solution	was	cooled	to	0	°C	and	32	µl	DIPEA	
(0.1884	mmol,	3.0	eq.)	were	added.	After	5	min	a	solution	of	23	mg	Ethyl-N-(4-(2-aminoethyl)phenyl)-
P-ethynylphosphonamidate	TFA	salt	 (0.0628	mmol,	1.00	eq.)	 in	300	µl	DMF	were	added	drop-wise.	
The	solution	was	allowed	to	warm	to	room-temperature	and	stirred	for	2	h.	All	volatiles	were	removed	
under	 reduced	 pressure	 and	 the	 crude	 product	 was	 purified	 by	 flash	 column	 chromatography	 on	
silicagel	(0%	to	5%	MeOH	in	CH2Cl2)	and	obtained	as	blue	solid.	(45	mg,	0.0590	mmol,	93.9	%).	
1H	NMR	(600	MHz,	Chloroform-d)	δ	=	7.88	(td,	J=13.0,	4.9,	2H),	7.43	–	7.33	(m,	4H),	7.23	(t,	J=7.4,	2H),	
7.15	–	7.07	(m,	4H),	7.01	(d,	J=8.4,	2H),	6.72	(t,	J=12.5,	1H),	6.46	(bs,	1H),	6.18	(dd,	J=13.6,	8.5,	2H),	
6.11	(q,	J=7.6,	1H),	4.27	–	4.09	(m,	2H),	3.98	(t,	J=7.6,	2H),	3.56	(s,	3H),	3.43	(q,	J=6.9,	2H),	2.97	(d,	
J=12.8,	1H),	2.75	(t,	J=7.5,	2H),	2.25	(t,	J=7.3,	2H),	1.81	(p,	J=8.0,	2H),	1.73	–	1.67	(m,	2H),	1.70	(s,	6H),	
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1.69	(s,	6H),	1.55	–	1.42	(m,	2H),	1.35	(t,	J=7.1,	3H).	13C	NMR	(151	MHz,	CDCl3)	δ	=	173.64,	173.19,	
173.11,	 153.34,	 152.99,	 142.72,	 141.90,	 141.17,	 140.89,	 136.88,	 133.32,	 129.69,	 128.78,	 128.66,	
126.32,	126.22,	125.34,	125.15,	122.21,	122.13,	118.60,	118.53,	110.83,	110.36,	103.77,	103.64,	88.54,	
88.23,	75.27,	62.46,	49.40,	49.17,	44.22,	41.03,	35.94,	34.78,	27.96,	27.90,	27.84,	27.09,	26.32,	25.24,	
16.17,	16.11,	16.04.	31P	NMR	(243	MHz,	CDCl3)	δ	=	-9.08.	HR-MS	for	C44H54N4O3P

+	[M]+	calcd.:	717.3928,	
found	717.3895.	

4.20. Ethyl-N-phenyl-P-(Z-ethylthioethenyl)	phosphonamidate	

	

A	 5-ml	 round	 bottom	 flask	 was	 charged	 with	 50	 mg	 Ethyl-N-phenyl-P-ethynylphosphonamidate	
(0.239	mmol,	1.0	eq.),	13.2	mg	potassium	carbonate	(0.096	mmol,	0.4	eq.),	0.5	ml	DMF	and	0.5	ml	
water.	26.5	µl	ethane	 thiol	 (0.359	mmol,	1.5	eq.)	were	added	through	a	microliter	 syringe	and	 the	
solution	was	stirred	for	3	h	at	room	temperature.	All	volatiles	were	removed	under	reduced	pressure	
and	 the	crude	product	was	purified	by	 flash	 column	chromatography	on	 silicagel	 (70%	EtOAc	 in	n-
hexan	to	100%	EtOAc)	and	obtained	as	a	yellowish	solid.	(56.0	mg,	0.206	mmol,	86.3%)	

1H	NMR	(600	MHz,	Chloroform-d)	δ	7.22	(t,	J	=	7.9	Hz,	2H),	7.12	(dd,	J	=	46.4,	12.5	Hz,	1H),	7.05	–	6.99	
(m,	2H),	6.92	(t,	J	=	7.4	Hz,	1H),	6.65	(d,	J	=	6.1	Hz,	1H),	5.77	(dd,	J	=	16.5,	12.5	Hz,	1H),	4.40	–	3.97	(m,	
2H),	2.73	(q,	J	=	7.4	Hz,	2H),	1.35	(t,	J	=	7.1	Hz,	3H),	1.26	(t,	J	=	7.4	Hz,	3H).	13C	NMR	(75	MHz,	Chloroform-
d)	δ	149.92,	140.44	(d,	J	=	1.0	Hz),	129.07,	121.03,	117.39,	117.30,	113.32,	110.94,	60.25	(d,	J	=	6.0	Hz),	
29.42,	16.30	(d,	J	=	7.0	Hz),	15.40.	31P	NMR	(122	MHz,	CDCl3)	δ	14.73.	HR-MS	for	C12H19NO2PS

+	[M+H]+	
calcd.:	272.0869,	found	272.0856.	

4.21. Ethyl-N-phenyl-P-(E-ethylthioethenyl)	phosphonamidate	

	

A	 5-ml	 round	 bottom	 flask	 was	 charged	 with	 40	 mg	 Ethyl-N-phenyl-P-ethynylphosphonamidate	
(0.191	 mmol,	 1.0	 eq.),	 12.6	 mg	 azobisisobutyronitrile	 (0.076	 mmol,	 0.4	 eq.),	 16.5	 µl	 ethane	 thiol	
(0.229	mmol,	1.2	eq.)	and	0.8	ml	toluene.	The	brownish	solution	was	heated	to	80	°C	over	night.	The	
reaction	mixture	was	purified	by	flash	column	chromatography	on	silicagel	(70%	EtOAc	in	n-hexan	to	
100%	EtOAc)	and	obtained	as	a	yellowish	solid.	(22.0	mg,	0.081	mmol,	42.1%)	

1H	NMR	(300	MHz,	Chloroform-d)	δ	7.44	(dd,	J	=	21.6,	16.8	Hz,	1H),	7.28	–	7.20	(m,	2H),	7.03	–	6.90	(m,	
3H),	6.33	(d,	J	=	6.0	Hz,	1H),	5.74	(t,	J	=	16.8	Hz,	1H),	4.40	–	3.85	(m,	2H),	2.75	(q,	J	=	7.4	Hz,	2H),	1.34	
(t,	J	=	7.0	Hz,	3H),	1.28	(t,	J	=	7.4	Hz,	3H). 13C	NMR	(75	MHz,	Chloroform-d)	δ	148.42	(d,	J	=	9.1	Hz),	
140.34,	129.34,	121.23,	117.25,	117.16,	111.53,	109.13,	60.55	(d,	J	=	6.0	Hz),	25.76,	16.27	(d,	J	=	7.1	
Hz),	13.64. 31P	NMR	(122	MHz,	CDCl3)	δ	15.42.	HR-MS	for	C12H19NO2PS

+	[M+H]+	calcd.:	272.0869,	found	
272.0856.	
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4.22. DABCYl-Cys	peptide	

	

DABCYl-Cys	peptide	was	synthesized	by	standard	Fmoc-based	chemistry	in	a	linear	synthesis	by	manual	
coupling.	 0.1	 mmol	 of	 Rink	 amide	 resin	 (subst:	 0.4	 mmol/g)	 was	 added	 to	 a	 reaction	 vessel	 and	
synthesis	was	performed	with	 five-fold	amino	acid	excess.	Fmoc	de-blocking	was	achieved	by	resin	
treatment	 with	 20%	 piperidine	 in	 DMF	 twice	 for	 5	 min.	 Coupling	 was	 achieved	 by	 addition	 of	
HOBt/HBTU/DIPEA	(5	eq./5	eq./10	eq)	 in	DMF	for	45	min.	After	the	final	Cys	coupling,	5	eq.	of	the	
DABCYL	acid	was	 coupled	with	5	eq.	HATU	and	10	eq.	DIPEA	 in	DMF	 for	45	min.	 The	peptide	was	
cleaved	of	 the	 resin	 by	 addition	 of	 TFA/DTT/TIS	 (95/2.5/2.5,	w,w,w)	within	 3	 h.	 Subsequently,	 the	
peptide	was	precipitated	by	the	addition	of	 ice-cold	diethyl	ether.	The	precipitate	was	collected	by	
centrifugation,	dried	and	purified	by	preparative	HPLC	(method	C).	The	peptide	was	obtained	as	a	red	
solid	in	a	yield	of	35.8%	(38.2	mg,	35.8	μmol).	ESI-MS	for	C48H66N12O14S+	[M+2H]+	calcd.:	533.23,	found	
533.34.	

4.23. DABCYl-Cys	peptide	phosphonamidate	EDANS	adduct	

	

A	1.5-ml	Eppendorf	tube	was	charged	with	263	μl	of	a	solution	of	DABCYL-Cys	peptide	(20	mM)	in	50	
mM	NH4HCO3	at	a	pH	of	8.5.	158	μl	50	mM	NH4HCO3	at	a	pH	of	8.5	and	105	μl	of	a	solution	of	EDANS	
phosphonamidate	(100	mM)	in	DMF	was	added	to	give	a	final	concentration	of	20	mM	peptide	and	
10	mM	phosphonamidate	in	20%	DMF/Buffer.	The	tube	was	shaken	at	800	rpm	at	room	temperature	
for	3	h.	All	volatiles	were	removed	under	reduced	pressure	and	the	crude	product	purified	by	semi-
preparative	HPLC	(method	E).	The	peptide	was	obtained	as	a	red	solid.	HR-MS	for	C71H90N15O20PS22+	
[M+2H]2+	calcd.:783.7827,	found	783.7804.	
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4.24. DABCYl-Cys	peptid	maleimide	EDANS	adduct	

	

A	1.5-ml	Eppendorf	tube	was	charged	with	188	μl	of	a	solution	of	DABCYl-Cys	peptide	(20	mM)	in	PBS.	
188	μl	of	a	solution	of	EDANS	maleimide	(40	mM)	in	DMF	was	added	to	give	a	final	concentration	of	
10	mM	peptide	and	20	mM	maleimide	in	50%	DMF/buffer.	The	tube	was	shaken	at	800	rpm	at	room	
temperature	for	3	h.	All	volatiles	were	removed	under	reduced	pressure	and	the	crude	product	purified	
by	 semi-preparative	 HPLC	 (method	 E).	 The	 peptide	 was	 obtained	 as	 a	 red	 solid.	 HR-MS	 for	
C66H83N15O20S22+	[M+2H]2+	calcd.	734.7685,	found.	734.7698.	
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5. NMR	spectra	

Diethyl	ethynylphosphonite	(crude	reaction	mixture)	
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Ethyl-N-phenyl-P-ethynylphosphonamidate	(1)	
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Ethyl-N-(4-carboxy-phenyl)-P-ethynylphosphonamidate	(2)	
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Ethyl-N-(4-(2,5-dioxo-1-pyrrolidinyl)oxy-carbonyl-phenyl)-P-ethynylphosphonamidate	(3)	
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2-(4-Azidophenyl)-ethyl	phtalimide	
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Ethyl-N-(4-(2-aminoethyl)phenyl)-P-ethynylphosphonamidate	TFA	salt	(4)	
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N-(4-azidophenyl)	biotinamide		
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Ethyl-N-(4-biotinamido-phenyl)-P-ethynylphosphonamidate	(5)	
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Ethyl-N-(3-phenyl-propyl)-P-ethynylphosphonamidate	(6)	
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5-((2-(O-Ethyl-P-ethynyl-phosphonamidato-N-benzoyl)ethyl)amino)naphthalene-1-sulfonic	acid	(10)	
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Cy5-O-ethyl-P-alkynyl-phosphonamidate	(11)	
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50	
	

Ethyl-N-phenyl-P-(Z-ethylthioethenyl)	phosphonamidate		
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Ethyl-N-phenyl-P-(E-ethylthioethenyl)	phosphonamidate	
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6. Computational	Details	

All	 DFT	 calculations	 were	 carried	 out	 with	 the	ORCA	 program	 package	 (Version	 3.0.3).[6]	 The	M06	
functional[7]	as	well	as	the	polarized	and	minimally	augmented	ma-def2-TZVPP[8]	basis	set	was	chosen	
for	 geometry	 optimizations	 and	 frequency	 calculations.	 This	 functional	 performed	 very	 well	 in	 a	
comparative	study	of	different	functionals	for	modelling	Michael-type	additions	of	thiols	to	olefins.[9]	
Minima	and	transition	states	were	confirmed	by	frequency	calculations,	giving	no	or	one	 imaginary	
frequency	for	minima	or	transition	states,	respectively.	Connectivity	of	minima	and	transition	states	
were	verified	by	IRC	calculations.	

Free	enthalpies	G	at	298	K	and	1	atm	were	obtained	as	follows:	

!298 = # − % ∙ '	 	 	 	 	 	 (1)	

!298 = ( + *B ∙ % − % ∙ '	 	 	 	 	 (2)	

!298 = + el + + ZPE + +(therm.) + *B ∙ % − % ∙ '	 (3)	

with	*B ∙ %	=	0.00094421	Eh	=	0.59	kcal/mol.	Electronic	energies	E(el)	were	obtained	from	single-point	
calculations	using	the	M06	 functional,	the	ma-def2-QZVPP	basis	set	and	the	COSMO(water)	solvent	
model.	 Zero	 point	 energy	 E(ZPE)	 and	 thermal	 E(therm.)	 corrections	 to	 E(el)	 as	 well	 as	 entropy	
contributions	T·S	were	taken	from	the	performed	frequency	calculations.	

	

E(el)		 -895.458852624575	Eh	

E(ZPE)	 0.17525247	Eh	

E(therm.)	 0.01160533	Eh	

T·S		 0.05031000	Eh	

	

Cartesian	Coordinates	

P			-0.59808667893139					-0.79193299214631					-1.06157798293773	

O			-0.84191595202287						0.20450774235482					-2.09483537170814	

N			0.96965046103202					-1.19665078849081					-0.73992993344396	

C			1.99671875829470					-0.31544052832699					-0.37033877145969	

H			1.14036383293728					-2.17313573738952					-0.55927517552338	

C			1.89123801209630						1.05546376836423					-0.58359136071128	

C			3.14889631025628					-0.82858616203342						0.21610731821571	

C			2.92669060040681						1.88986229494945					-0.20212312754092	

C			4.18015324474254						0.01547912488830						0.58365963473391	

C			4.07510913902655						1.38144998402923						0.38100548454480	

H			3.23330177068336					-1.89685038938847						0.38329533780969	

H			1.01060893451755						1.46055785984276					-1.06628035885925	

H			2.83278599539945						2.95489222405636					-0.37390872197060	

H			5.07181513090782					-0.40034204259692						1.03595841074113	
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H			4.88134685920472						2.04221125327538						0.67109348259601	

O			-1.15697000366242					-2.25036866555863					-1.30763992232812	

C			-2.51475846045912					-2.39856369228203					-1.70357045233556	

H			-2.65961815297741					-3.44474888140695					-1.95998675137036	

H			-2.73201335378030					-1.77390355104223					-2.57057450876158	

C			-1.31886812180330					-0.30262653032260						0.46907926519826	

C			-1.79617744806682						0.05443290614241						1.51156949293613	

H			-2.21899399028480						0.37459086644969						2.43436972006966	

H			-3.18410688751695					-2.13096806336774					-0.88296570789472	

	

	

E(el)		 -600.465161259222	Eh	

E(ZPE)	 0.03757793	Eh	

E(therm.)	 0.00502206	Eh	

T·S		 0.03488390	Eh	

	

Cartesian	Coordinates	

H							1.014080					-6.973725					-1.066760	

C							0.011793					-6.782643					-1.450494	

S						-0.119700					-5.011348					-1.874077	

H						-0.137387					-7.422987					-2.320414	

Na					-2.417433					-4.527406					-2.723502	

H						-0.699582					-7.073231					-0.676803	

	

	

E(el)		 -1495.926988297768	Eh	

E(ZPE)	 0.21416977	Eh	

E(therm.)	 0.01870608	Eh	

T·S		 0.06791930	Eh	

	

Cartesian	Coordinates	

P			-0.15990138938735					-0.42890133226999						1.68066421387234	

O			1.28905431940470					-0.55998260868668						1.44642303776843	

N			-0.74787526262474						1.10218910608974						1.50582083119721	

C			-0.52822641827539						1.78503626389223						0.27743199719787	

H			-1.66132340572990						1.24877770195440						1.91111596027621	
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C			0.76633721846293						2.10196909523885					-0.11765538579724	

C			-1.60038884359792						2.12557736147711					-0.53543827557891	

C			0.97826992231358						2.74033788382037					-1.32837944090304	

C			-1.38004766219673						2.78496999331815					-1.73198549524531	

C			-0.09099391207539						3.08638351329645					-2.13706654720796	

H			-2.60646344300938						1.85678843069678					-0.23397889204412	

H			1.59224452939677						1.86231059178470						0.53967127485290	

H			1.98857018908750						2.98144316166376					-1.63438353947903	

H			-2.22100737873071						3.04213351296220					-2.36284710454076	

H			0.08048729214691						3.58216808562844					-3.08332310574765	

O			-0.67085571220736					-0.77331734645779						3.12410918190957	

C			-0.36692682120073					-2.05110826576515						3.67686392339406	

H			-0.80006172961555					-2.07716500499186						4.67267189974559	

H			0.71272288944299					-2.18856873486798						3.74272427469574	

C			-0.98868493807023					-1.45840366849309						0.54569293109351	

H			-0.80346894473742					-2.84645787195382						3.06917486956848	

C			-1.26145146444185					-2.03482879195294					-0.48034991707923	

S			0.73169552106387					-1.89499206904874					-3.01729149891012	

H			-1.45066474890741					-2.53967157647509					-1.40552983404055	

C			-0.09891401953583					-0.31412096883020					-3.40818125130681	

H			0.61109376202893						0.42462717350397					-3.78525876785612	

H			-0.60339473757962						0.12309476988667					-2.53957185208112	

H			-0.85154840840719					-0.47223873416687					-4.18221098601402	

Na		1.72387359698248					-1.18076967125357					-0.73155250173993	

	

	

E(el)		 -1495.928557055642	Eh	

E(ZPE)	 0.21391460	Eh	

E(therm.)	 0.01829736	Eh	

T·S		 0.06755280	Eh	

	

Cartesian	Coordinates	

P			-0.36037976685003						0.13355232188078						0.61123685218097	

O			1.10235359348308						0.02642981787580						0.46057187745980	

N			-0.95877437078580						1.65959785670547						0.72183742296938	
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C			-0.75197407908927						2.72718413905645					-0.16305004559664	

H			-1.60585506357871						1.82193129669133						1.47650460215438	

C			0.01723713541010						2.58824521126833					-1.31288993602354	

C			-1.33864275829865						3.95638608830814						0.11797571991568	

C			0.18949356256277						3.66711486370590					-2.16182508042082	

C			-1.15807743273044						5.02739170971521					-0.73649982473076	

C			-0.39322013811892						4.89105122844698					-1.88308685914572	

H			-1.93739974278876						4.06991078580137						1.01482005029815	

H			0.48952203104070						1.64213148843627					-1.54383059140264	

H			0.78957899076340						3.54381275378197					-3.05463164392604	

H			-1.62027743256610						5.97774827229369					-0.50139049320000	

H			-0.25302745117682						5.72980968695513					-2.55187755734917	

O			-0.98351571778120					-0.46914587529734						1.91801829236482	

C			-0.73167681332266					-1.84193492925137						2.25322153955814	

H			-1.42667223794100					-2.10057363121747						3.04678733806946	

H			0.29239616168492					-1.95143670560393						2.61028408911116	

C			-1.10456297074447					-0.72790637966886					-0.70807884820319	

C			-1.44888768891447					-1.53401809800798					-1.53234833648837	

H			-0.88265875618574					-2.50016357178798						1.39253193013356	

H			0.54192328428941					-6.36834119671117					-0.87890319109539	

C			1.28667788503706					-5.57597213453699					-0.95686385438022	

S			0.46916664296550					-3.95465138018539					-0.78960212308365	

H			2.02881433482387					-5.73691151477983					-0.17444196993379	

Na		1.91503910679568					-1.83187459415343					-0.55107612222325	

H			1.77994767978370					-5.67348824456517					-1.92436664841333	

H			-1.73817798776714					-2.25598926515594					-2.26140658859900	

	

	

E(el)		 -1495.903404154544	Eh	

E(ZPE)	 0.21390115	Eh	

E(therm.)	 0.01678484	Eh	

T·S		 0.06301100	Eh	

	

Cartesian	Coordinates	

P			0.00432476169549						0.07439378080378						0.03483007911912	
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O			1.48979535952874						0.11784780285387						0.05205064051289	

N			-0.67939745823217						1.60611201619863						0.04828214663593	

C			-0.60945443107929						2.38124384695229					-1.12325255303219	

H			-1.58117886616957						1.63058322624726						0.50200213429641	

C			0.61360622824937						2.59007445787278					-1.75713533565964	

C			-1.76173141661530						2.92304785645567					-1.68206632484857	

C			0.66683917801570						3.29477411233949					-2.94627840900653	

C			-1.69540030100169						3.64486249115244					-2.86070121379741	

C			-0.48416662485819						3.82339269203808					-3.50826265088159	

H			-2.71687440673611						2.76079990236050					-1.19505440196975	

H			1.51362190011937						2.20057594014165					-1.29809859626996	

H			1.62286197828597						3.44212827435099					-3.43379068812924	

H			-2.60262773972388						4.05759098770230					-3.28387002267648	

H			-0.43645805864117						4.37478281746018					-4.43807287728148	

O			-0.67986115113054					-0.48578617052310						1.34579071774600	

C			-0.36821074667098					-1.79693562996775						1.78523738148224	

H			-0.89967750996454					-1.95741435947259						2.72024013978589	

H			0.70462159416630					-1.90018077055168						1.95876675060872	

C			-0.46684704394486					-0.83690250386103					-1.32368975748261	

H			-0.69335476386363					-2.53821695305871						1.05206019661377	

C			-0.65045308587053					-0.77389615595494					-2.55662789634114	

S			0.57484080092058					-2.15153498080379					-3.99758282840588	

H			-1.12272463635685					-0.26894759844267					-3.38904406858779	

C			0.39887429035098					-1.08246105636445					-5.44454504796888	

H			1.36623393151158					-0.82762080576871					-5.87393774378108	

H			-0.09934965201922					-0.14697401098467					-5.16093725008649	

H			-0.20435215622752					-1.57063932689784					-6.20876000056083	

Na		2.01296002626197					-1.07716988227795					-1.87014252003342	

	

	

E(el)		 -1495.916470890467	Eh	

E(ZPE)	 0.21408209	Eh	

E(therm.)	 0.01678282	Eh	

T·S		 0.06297910	Eh	
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Cartesian	Coordinates	

P			0.08297664804403						0.01268079694422						0.22619410842859	

O			1.56057219538901					-0.00338119524710						0.37643233521234	

N			-0.56131069757442						1.53901847869489						0.16657459276146	

C			-0.38205278561491						2.44900896831032					-0.87821970791492	

H			-1.37807676278223						1.68115426670683						0.73861484454082	

C			0.71168435902738						2.36424981461287					-1.73521917347702	

C			-1.31212103575827						3.46635483447016					-1.07089924698579	

C			0.85279059993369						3.26938892224779					-2.77142945366212	

C			-1.15503187877306						4.37246352691388					-2.10239923438397	

C			-0.07514511209937						4.27801349231498					-2.96516596984354	

H			-2.16699069977524						3.53872335758424					-0.40766352238659	

H			1.45990779365444						1.59917728214409					-1.57382389319361	

H			1.70668486306791						3.18578123447073					-3.43245835172661	

H			-1.88993671422970						5.15625113648516					-2.23692905018631	

H			0.04255052797643						4.98346325688275					-3.77697343661031	

O			-0.72996702979485					-0.50343803831498						1.48141929991982	

C			-0.54961782805538					-1.85137983206765						1.90346833831624	

H			-1.22791876008619					-2.01703308233649						2.73643218877581	

H			0.47688815158217					-2.01316906107841						2.23895533356830	

C			-0.38491055143777					-0.92171674722083					-1.13745404367154	

C			-0.27345422903572					-2.01721683261896					-1.71147087021387	

H			-0.77961069471334					-2.54897751532011						1.09459529782401	

H			0.50510643116304					-5.79725391568251					-2.20873160404509	

C			0.98085515385962					-4.83442500913788					-2.38898907820844	

S			1.02831584219300					-3.87211507839207					-0.85882302422860	

H			1.97508043723897					-5.00945647481630					-2.79676115252502	

Na		2.51917646309879					-1.66806334169796					-0.73028272176178	

H			0.39157338639573					-4.30801916887146					-3.14974246849609	

H			-0.53108807289377					-2.63278407598016					-2.55630033582618	
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E(el)		 -1495.936211350094	Eh	

E(ZPE)	 0.21581204	Eh	

E(therm.)	 0.01667476	Eh	

T·S		 0.06278790	Eh	

	

Cartesian	Coordinates	

P			0.13190445789879					-0.39544362431027						1.57341806811963	

O			1.36785884049088						0.09034133108148						2.26095635068092	

N			-0.93135278554734						0.85227434258795						1.17561996490530	

C			-0.67872828045422						1.78788077381042						0.17275917567321	

H			-1.90385327488597						0.63980157528976						1.33386716151470	

C			0.61049718258318						2.26786757669032					-0.05456872676165	

C			-1.71749117563628						2.25139721012141					-0.63265842295178	

C			0.84888729023589						3.15950796470553					-1.08437854437916	

C			-1.46995653888793						3.15342698095931					-1.65055748902673	

C			-0.18318994680054						3.60755675202598					-1.89288833332116	

H			-2.72318705316351						1.88094155926185					-0.46441044945607	

H			1.41374943050895						1.94175802639791						0.59440802495773	

H			1.85817552566784						3.51671560494053					-1.25063517369336	

H			-2.29146864117551						3.49570346169783					-2.26777009581932	

H			0.01109557855656						4.30571687865122					-2.69635952136178	

O			-0.86003157005055					-1.14793682555242						2.58076094913618	

C			-0.36587481618504					-2.25707682981987						3.30054725818283	

H			-1.14901518529915					-2.58235391798314						3.98252489117598	

H			0.51628084442688					-1.97937510569729						3.88426003682387	

C			0.59077743055756					-1.43843113282618						0.26996702126070	

H			-0.11224971395133					-3.08044158849582						2.62773652612117	

C			-0.03227714421668					-1.28865458763087					-0.89600355826189	

S			0.39512405652662					-2.19890790235265					-2.34438024281346	

H			-0.86276963520567					-0.60054862296691					-1.09834472771805	

C			-0.55261708171232					-1.29416626908217					-3.58643971354119	

H			-0.33667484130893					-1.74869211596690					-4.55119913393233	

H			-0.25492070220577					-0.24628406750522					-3.61212847846134	

H			-1.62227381905404					-1.36888855869870					-3.39438648209920	
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Na		2.80115156828766					-1.22266888933307						1.12326366504626	

	

	

E(el)		 -1495.931615683340	Eh	

E(ZPE)	 0.21522419	Eh	

E(therm.)	 0.01776208	Eh	

T·S		 0.06575200	Eh	

	

Cartesian	Coordinates	

P			-0.18746350698823					-0.31429005717662					-0.55022791305267	

O			1.23368130751095					-0.39773105025972					-1.02326320659152	

N			-0.98909665388179						1.04344395489395					-1.08088584831332	

C			-0.74115610021521						2.38451397898745					-0.80933236204473	

H			-1.82740640102437						0.82595786330311					-1.59449350373988	

C			0.44200790749066						2.81211498752494					-0.20929217096651	

C			-1.69760166578076						3.33640027058733					-1.15854109816395	

C			0.64031730345613						4.15600967308731						0.05133453584731	

C			-1.48335078238488						4.67738586797046					-0.90431787582489	

C			-0.31530095258042						5.09910366240952					-0.29017961091239	

H			-2.61823022948042						3.01131792433970					-1.63059286051503	

H			1.21054583782706						2.09090878508211						0.03869324231180	

H			1.56276585713255						4.47042569490638						0.52450609010491	

H			-2.24125186109238						5.39851926183271					-1.18499978047360	

H			-0.15073786737756						6.14863916487608					-0.08416827162059	

O			-0.22742307789983					-0.07019933209949						1.03166202204200	

C			0.79761671524305					-0.55597249009913						1.87173218857205	

H			0.54507038199053					-0.26186258882679						2.88892687412815	

H			1.76277605441774					-0.12374126356874						1.59906964868359	

C			-1.18034267585157					-1.59125524227056					-1.12832951288644	

C			-1.12267508952716					-2.89001583208522					-0.95573478213874	

H			0.87247015431527					-1.64704554211805						1.83057439639872	

H			-1.33721520688497					-5.80489322230161					-0.01107463455198	

C			-0.32398567144947					-5.54438060852389					-0.31159147736897	

S			0.04483694350864					-3.83415699792097						0.14745026856292	

H			0.37674632226972					-6.18749519182302						0.21668753872025	
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Na		1.37186982811735					-2.39354045190515					-1.88053935040992	

H			-0.21142761901564					-5.70278395256589					-1.38368274787106	

H			-1.76227925184500					-3.62812726625621					-1.44908979792551	
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4.4 ETHYNYLPHOSPHONAMIDATES FOR THE RAPID AND CYSTEINE 

SELECTIVE GENERATION OF EFFICACIOUS ANTIBODY-DRUG-

CONJUGATES  
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Abstract 
Requirements for novel bioconjugation reactions for the synthesis of Antibody-Drug-

Conjugates (ADCs) are exceptionally high, since conjugation selectivity as well as 

stability and hydrophobicity of linkers and payloads drastically influence the 

performance and safety profile of the final product. Herein we describe Cys-selective 

ethynylphosphonamidates as new reagents for the rapid generation of efficacious ADCs 

from native non-engineered monoclonal antibodies, applying a simple one-pot 

reduction and alkylation protocol. Ethynylphosphonamidates can be easily substituted 

with hydrophilic residues, giving rise to electrophilic labeling reagents with tunable 

solubility properties. We demonstrate that ethynylphosphonamidate-linked ADCs have 

excellent properties for next generation antibody therapeutics in terms of serum 

stability and in vivo antitumor activity.   
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Introduction 
Antibody-conjugates consisting of a drug linked to a tumor selective antibody, so called 

Antibody Drug Conjugates (ADCs), represent an emerging class of targeted 

therapeutics.[1] While most of the ADCs in clinical development contain cytotoxic 

molecules, recent studies also include the treatment of infectious diseases by Antibody 

Antibiotic Conjugates (AACs).[2] ADCs are particular interesting for the treatment of 

cancer, since they combine the high potency of cytotoxic molecules with the tumor 

specificity of monoclonal antibodies. Thus, ADCs have the potential to significantly 

broaden the therapeutic window compared to standard chemotherapy.[1, 3] Recent 

progress in clinical development include the approval of inotuzumab ozogamicin 

(Besponsa™)[4] and the re-approval of gemtuzumab ozogamicin (Mylotarg™).[5] In 
total, there are four ADCs currently on the market and more than 80 candidates in 

clinical trials, which clearly underlines the high potential of this compound class.[6] 

Still, challenges remain especially in improving the linkage between drug and 

antibody.[7] Commonly used linker systems face problems such as insufficient serum 

stability and undesired aggregation behavior, limiting the number of drug molecules 

linked to an antibody and leading to undesired off-target toxicity.[8]  

Maleimides have become the prime linker reagents for the generation of ADCs including 

two approved ADCs – Kadcyla® (trastuzumab emtansine) and Adcetris® (brentuximab 

vedotin).[6] Maleimides can be applied to either modify native IgG antibodies via 

interchain-disulfide reduction and alkylation[9] or to engineered antibodies via addition 

to an additionally incorporated cysteine (Thiomab™).[8a] Nevertheless, one of the 
biggest drawbacks of maleimide-linkages is their susceptibility towards retro-Michael-

additions leading to premature drug cleavage during circulation and reattachment to 

cysteine containing proteins like albumin.[8a, 10] Even though consequences arising 

from such payload transfer are not yet fully understood, it is anticipated that the anti-

tumor efficacy might be lowered due to a decreased drug delivery to targeted cells. 

Furthermore toxic side effects might occur.[11] Several compound classes have been 

developed to overcome this issue, including self-hydrolyzing-maleimides[11] and 

structurally refined Michael-type acceptors such as carbonyl acrylic derivatives[12] or 

exocyclic maleimides[13]. All of these methods yield stable sulfhydryl-adducts; however, 

synthetic incorporation of these electrophiles into functional molecules remains 

challenging..[14] 

Undesired aggregation of ADCs is another challenge, since many drugs used in the 

context of ADCs are hydrophobic.[15] The addition of organic co-solvents to the 

conjugation mixture is commonly employed to enable conjugation of hydrophobic 

drugs, which however may affect the structural integrity of the antibody.[16] 

Additionally, the hydrophobic nature of drugs increases the formation of High 

Molecular Weight Species (HMWS) in the final product.[17] Those aggregates impair the 

pharmacokinetic profile and efficacy[18] of ADCs and often limit the Drug to Antibody 

Ratio (DAR) to a maximum of 4.[19] To overcome this issue, hydrophilic PEG linkers 

have been developed that compensate the lipophilic nature of the drug.[20] However, it 

has recently been shown that PEG can negatively affect pharmacokinetics when 

incorporated as a linear spacer between antibody and drug.[21] Increasing the solvent 

exposure of the drug most likely facilitates unspecific hydrophobic interactions. This 
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unwanted effect was successfully mitigated by side-chain attachment of the solubilizing 

polymer.[21] 

In this study we apply ethynylphosphonamidates as a novel compound class for the 

generation of stable Cys-linked ADCs. We demonstrate that our previously reported 

phosphonamidate based labelling protocol[22] is suitable for conjugation of cytotoxic 

payloads to two model antibodies, brentuximab and trastuzumab which form the basis 

of two marketed ADCs, facilitating the construction of ADCs that efficiently and 

selectively kill targeted cells in vitro. In addition, we introduce 

ethynylphosphonamidates, modified with a side-chain ethylene glycol unit promoting 

improved payload solubility under aqueous conditions without increasing linker length 

between antibody and drug in the final conjugate. With this, we synthesized a vedotin 

analog and conjugated it to brentuximab, furnishing a phosphonamidate-linked ADC 

that is structurally analogous to Adcetris®. Our protocol enables straightforward ADC 

synthesis, starting from non-engineered native antibodies that can be labelled in a one 

pot protocol with only minimal reagent excess. In extensive profiling of our 

ethynylphosphonamidate linked ADC we were able to demonstrate an excellent linkage 

stability in rat serum and in vivo antitumor activity, as investigated in two xenograft 

mouse model experiments. 

  



Results 

Page | 149 

 

Results and Discussion 
We initiated our studies by conjugating the antimitotic agent Monomethyl auristatin F 

(MMAF) [23] to Her2 targeting trastuzumab using a phosphonamidate functionalized 

cathepsin B cleavable linker 4, which was synthesized based on previously published 

procedures for Fmoc-protected Val-Cit dipeptides (Figure S1 in the supporting 

information).[24] In a first proof-of-concept study, we conjugated 4 to trastuzumab 

following our previously established protocol applying 10 eq. labeling reagent per 

Cys.[22], giving an average DAR of 4.6 (Figure 1a and S2 in the supporting information). 

To validate the functionality of trastuzumab-4 it was evaluated in a Her2-based 

proliferation assay with two Her2-overexpressing cell lines BT474 and SKBR3 as well as a 

Her2-negative cell line as a control (MDAMB468).[25] Since trastuzumab alone exhibits 

antiproliferative potency, cell viability was measured via a sensitive, high content assay 

to asses retained antibody functionality after exposure to the conjugation procedure. 

Antibody concentrations leading to fifty percent of maximal growth inhibition (IC50) 

was decreased by 81-fold from 900 to 11 pM for SKBR3 cells (Her2++) with trastuzumab-4 

and by 42-fold from 800 to 19 pM for BT474 cells (Her2+). An effect on the proliferation 

of the control cell line MDAMB468 was only observed at very high ADC concentrations 

(IC50 > 100 nM). Notably, trastuzumab-4 inhibits the proliferation close to 100% of cell 

population for SKBR3 cells, while trastuzumab alone only inhibits up to 50%. As an 

additional control, trastuzumab was treated with 4 without prior disulfide reduction. 

Those constructs behaved similar to the non-modified antibodies, highlighting the high 

Cys-selectivity, efficient removal of excessive toxin and gentle reaction conditions of our 

method (Figure 1b). We additionally validated our measured IC50-values in a standard 

cell viability assay and obtained similar IC50-growth inhibition constants for 

trastuzumab-4 (Figure S3 in the supporting information). The mode of action of MMAF 

is destabilizing microtubules by inhibition of tubulin polymerization.[26] Along this line 

we observed by fluorescence microscopy a disturbance of tubulin organization in BT474 

cells upon treatment with 0.3 nM trastuzumab-4 for 4 days in contrast to proper spindle 

formation in untreated mitotic control cells (Figure 1c and Figure S4 in the supporting 

information). 

As mentioned above, introducing a polar side chain into a linker-drug molecule was 

shown to be beneficial compared to adding linear solubilizing units that increase the 

distance of the drug to the antibody.[21] Ethynylphosphonamidates, bearing O-

substituents with increased hydrophilicity might serve as powerful building blocks to 

increase the polarity of the whole linker system without increasing the overall linker 

length. Since the Staudinger-phosphonite reaction (SPhR) comprises a very convenient 

synthetic route to incorporate the ethynylphosphonamidate moiety into a given 

molecule, we focused on the synthesis of a hydrophilic phosphonite. Following our 

previous protocols bis(diisopropylamino)chlorophosphine was first treated with 

ethynylmagnesium bromide followed by the addition of diethylene glycol and tetrazole 

to yield phosphonite 5 in a one-pot procedure.[27] Subsequent Staudinger-phosphonite 

reaction was performed with the NHS-modified azide 6 and yielded the desired 

diethyleneglycol-phosphonamidate 7 in 31% yield (Figure 2a).  

To demonstrate the versatility of our method we proceeded with the construction of a 

second antibody-drug pair. Since we wanted to directly compare our linkage technology 
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with the maleimide linkage used in Adcetris® we continued our studies with 

phosphonamidate-linked ADCs, structurally as close to Adcetris® as possible. In addition 

to the MMAF constructs used in the previous study, two ethynylphosphonamidate 

MMAE-derivatives were synthesized, one with an ethyl substituent at phosphorous in 9 

and one with the diethylene glycol substituent in 10 (Figure 2b). RP-HPLC analysis 

showed a reduced retention time for compound 10, when compared to 9 or vedotin 

(Figure 2c). Solubility measurements revealed that the aqueous solubility of 9 is 

drastically increased by the PEG substituent in 10 from 95 to 298 µM. Aqueous solubility 

of 10 is also twice as high compared to vedotin (Figure 2d and Figure S5 in the 

supporting information) Based on these observations we decided to proceed with the 

hydrophilic compound 10 for subsequent conjugation studies to antibodies. Taken 

together, we demonstrated that our method enables facile incorporation of hydrophilic 

substituents to the phosphonamidate via the SPhR, thus improving solubility properties 

of the linker-payload construct.  

Next, we tried to optimize our conjugation protocol to reduce the drug equivalents 

needed for sufficient conjugation. Since Adcetris® is modified with an average of four 

vedotin molecules per antibody [28], we started by screening different equivalents of 10 

to achieve similar modification and analyzed the DAR by intact protein MS (Figure S6 in 

the supporting information). We estimated that 16 eq. of 10 per antibody (2 eq. per Cys-

residue) are needed to reach a DAR of 4 at 1 mg/ml antibody concentration. We 

attribute the required excess of phosphonamidate to slower reaction kinetics of 

ethynylphosphonamidates when compared to maleimides.[22] To compensate for the 

slower kinetics, we increased the antibody concentration in the conjugation reaction to 

5 mg/ml, a concentration that was previously also used for maleimide conjugations.[9] 

With this, we were able to use as little as 4.5 eq. of 10 per antibody to achieve a DAR of 

4.0 (Figure S7 in the supporting information). After this, upscaling of the conjugation 

reaction to 2.4 mg brentuximab was performed, at 1 or 5 mg/ml followed by a 

preparative size-exclusion chromatography step to ensure complete removal of the toxin 

prior to subsequent functional evaluations, yielding 1.6 mg of the desired ADC 

brentuximab-10 with a DAR of 3.8-4.0. Another approach to achieve control over the 

number of drug molecules attached to an antibody is partial reduction of the interchain 

disulfide bonds with few equivalents of TCEP.[29] By screening TCEP equivalents 

needed to modify brentuximab, we found out that a partial reduction protocol with 3 eq. 

TCEP, 5 eq. 10 and 5 mg/ml brentuximab, applied in a one pot process, produces an ADC 

with a DAR of 3.9 without the need for removal of reducing agent prior payload 

conjugation (Figure S8 in the supporting information). This simplified reduction and 

alkylation one-pot process can be problematic with other cysteine labeling reagents, 

since it has been shown that maleimides and vinyl sulfones for instance, irreversibly 

react with TCEP.[30]  

Taking advantage of our ADC synthesis protocols we then evaluated commercially 

available Adcetris® and our analog brentuximab-10 (Figure 3a) in in vitro and in vivo 

experiments. We started with a cell-based viability assay with a CD30-overexpressing 

cell line Karpas299 and a CD30-negative cell line HL60 as a control. Both ADCs showed 

similar toxicities of below 1 ng/mL in the antigen positive cell line. Whereas, Adcetris® 
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slightly affected the antigen negative cell line at high ADC concentrations we observed 

no such effect for brentuximab-10 (Figure 3b).  

As mentioned earlier, stability of the linkage between drug and antibody in serum might 

improve the properties of ADCs in terms of off-target toxicity and anti-tumor 

efficacy.[11] It has been shown in recent experiments that maleimidocaproyl linked 

ADCs significantly lose payloads in rat serum.[31] Although hydrolysis of maleimides 

was shown to improve conjugate stability and generates ADCs with increased in vivo 

potency,[11, 32] the occurrence of incomplete hydrolysis of many maleimides may limit 

this approach.[33] In our experiment, we observed that 90% of the phosphonamidate-

linked MMAE was still connected to brentuximab after 7 days of incubation in rat serum 

at 37°C as measured by intact protein MS after pulldown of the ADC from serum. Under 

the same incubation conditions, Adcetris® lost more than 70% of its payload, already 

after three days. (Figure 3c). This data is in accordance, with previous observations, that 

describe a drastic DAR decrease of similar maleimide linked ADCs following 6 days of 

incubation in serum at 37°C.[31] From the MS-spectra we concluded complete hydrolysis 

of maleimides to the open ring form at day 3, resulting in no further retro-Michael 

addition and associated payload loss until day 7 (Figure S9 in the supporting 

information). Taken together, the stability experiments in serum clearly underlines our 

previously reported data on excellent phosphonamidate linkage stability [22] in 

particular when compared to maleimide linked ADCs. Additionally, we performed 

storage tests with brentuximab-10 to analyze the formation of HMWS, similarly as 

reported previously.[34] Size-exclusion chromatography revealed less than 9% HMWS 

formation with respect to the monomeric species after storage at 40°C over two weeks. 

No significant increase of HMWS was observed after two weeks of storage at 4°C (Figure 

S10 in the supporting information).  

Finally, brentuximab-10 was evaluated in vivo in a Karpas 299 derived tumor xenograft 

model in immune-deficient female CB17-SCID mice similar as previously reported.[35] 

In a first study, four mice were treated with brentuximab-10 twice, at day 7 and day 10, 

with 1 mg ADC per kg bodyweight. In addition, we used commercially available 

Adcetris® as a reference to compare the performance of brentuximab-10 in this in vivo 

model. Mice in the control group were treated with PBS only. All 4 mice treated with 

brentuximab-10 or Adcetris® showed an excellent response to the treatment. Treated 

mice were in tumor remission already a few days after ADC injection and no relapse was 

observed over the whole observation period of 58 days, while the untreated control 

showed an uncontrolled tumor growth and had to be sacrificed within three weeks after 

tumor transplantation (Figure 3d and S10 in the supporting information). It was 

previously reported, that an ADC with an average of four MMAE molecules connected 

to brentuximab via maleimides is significantly less efficacious in a tumor xenograft 

model when the dosing is lowered from 1 to 0.5 mg/kg.[35] From our serum stability 

studies (Figure 3c), we anticipated that phosphonamidate linked ADCs might still be 

active at lower doses due to a prolonged drug delivery in circulation. Therefore, we 

initiated a second in vivo study with eight mice, treated with either 0.5 mg/kg 

brentuximab-10 or Adcetris® twice at day 8 and day 12. As expected, we observed 

decreased antitumor activity for both constructs when compared to the first study, 

leading to tumor remission in two mice for brentuximab-10 and only one for Adcetris®. 
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However, five out of eight mice did not show any observable response to the treatment 

with Adcetris®. Here, the tumor growth was as fast as in the PBS treated control group. 

In contrast, this was only observed in two mice treated with brentuximab-10 (Figure 3f 

and S10 in the supporting information). Hence, we were able to show a drastic increase 

in median survival from 21 days for commercial Adcetris® to 48 days for brentuximab-10 

(Figure 3g). We strongly believe that this increase by a factor of 2.3 in comparison to 

Adcetris® indicates a promising antitumor activity of our novel phosphonamidate-linked 

ADCs. It should be noted that all of the mice, treated with both constructs did not 

significantly change in bodyweight over the whole observation period (Figure S10 in the 

supporting information). 

In summary, we present ethynylphosphonamidates as cysteine reactive handles for the 

construction of next generation cancer therapeutics. We obtained a new modular 

hydrophilic ethynylphosphonamidate building block for the synthesis of hydrophilic, 

Cys-selective linker systems for the conjugation of unpolar payloads. With this, we 

synthesized an ADC from brentuximab and MMAE, and demonstrated appropriate 

linkage stability combined with beneficial in vivo antitumor activity, resulting in an 

increased median survival from 21 days for Adcetris® to 48 days for the 

phosphonamidate linkage. The conjugation protocol is straightforward, using only 

minimal drug excesses and facilitates a one-pot synthesis of an ADC starting from native 

antibodies. Taken together, we believe that ethynylphosphonamidates described herein 

facilitate the straightforward construction of ADCs for cancer therapeutics with great 

promise for other pharmacological targets. 
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Figures 

 

Scheme 1. Synthesis of a phosphonamidate modified, cathepsin B cleavable MMAF 4. 
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Figure 1. a) Synthetic scheme for the attachment of 4 to trastuzumab b) Deconvoluted 

spectrum of deglycosylated and reduced trastuzumab-4. LC: Light chain, HC: Heavy 

Chain. DAR: Drug to Antibody Ratio c) Antiproliferative potency of trastuzumab-4 on 

two Her2 overexpressing cell lines (SKBR3, BT474) and a control (MDAMB468). Plots 

depict the number of proliferating cells after 4 days of antibody treatment in 

dependency of the antibody concentration. Trastuzumab alone (magenta), trastuzumab-

4 (green) and trastuzumab without disulfide reduction prior incubation with 4 (cyan). 

d) Effect of trastuzumab-4 treatment on mitotic tubulin organization in BT474 (Her2+) 

cells. Shown are representative images of mitotic BT474 cells after 4 days of treatment 

with 0.3 nM trastuzumab-4 and untreated. 
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Figure 2. a) Synthesis of an ethylene glycol substituted ethynylphosphonamidate NHS-

ester containing building block 7 and structural comparison to the corresponding ethyl 

substitute 8.[22] b) Structure of vedotin and synthesis of ethyl- and diethylene glycol 

phosphonamidate-based vedotin analogs. c) RP-HPLC analysis of vedotin (cyan) and the 

analogs 9 (red) and 10 (green). Shown are normalized absorption spectra at 254 nm. d) 

Solubility in PBS with 5% DMSO of vedotin (cyan) and the analogs 9 (red) and 10 

(green) in µM. Error bars originate from three independent measurements.  

  



Results 

Page | 157 

 

 

Figure 3. a) Structural comparison of Adcetris® with brentuximab-10 b) Cell viability 

assays with a CD30 overexpressing cell line (Karpas299, top) and a control (HL60, 

bottom) for brentuximab-10 (green) and Adcetris® (cyan) and brentuximab alone 

(magenta) c) Linkage-stability studies in rat serum. ADCs were incubated in rat serum 

for 0, 3 and 7 days at 37 °C and analyzed by MS after pulldown, deglycosylation and 

reduction. Shown is the DAR relative to the average DAR of day 0 for brentuximab-10 

(green) and Adcetris® (cyan). d) Antitumor activity of brentuximab-10 (green) and 

Adcetris® (cyan) and a PBS control (magenta) in a Karpas 299 tumor xenograft model in 

SCID mice. Treatment of 1 mg/kg was administered twice at day 7 and day 10 after tumor 

transplantation Shown are tumor volumes of four mice per group separately. e) Kaplan-

Meier survival analysis of the study described in d. f) Antitumor activity of brentuximab-

10 (green) and Adcetris® (cyan) and a PBS control (magenta) in a Karpas 299 tumor 

xenograft model in SCID mice. Treatment of 0.5 mg/kg was administered twice at day 8 

and day 12 after tumor transplantation Shown are tumor volumes of eight mice per 

group separately. g) Kaplan-Meier survival analysis of the study described in f. Median 

survival is 21 days for Adcetris® and 48 days for brentuximab-10. 
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1. Supplementary Figures 
1.1. Figure S1  

Synthetic route to compound 1 

 

 

1.2. Figure S2 

Increased cytotoxicity of MMAF linked trastuzumab on a Her2 overexpressing cell line 
(SKBR3) and a control (MDAMB468), demonstrated in a Resazurin assay. Plots depict cell 
viability after antibody treatment in dependency of the antibody concentration. Trastuzumab 
alone (pink) and trastuzumab-4 (green). (See chapter 3.4 for details) 

 



1.3. Figure S3 

Effect of trastuzumab-4 treatment on mitotic tubulin organization in BT474 (Her2+) cells. 
Shown are three representative images of mitotic BT474 cells after 4 days of treatment with 
0.3 nM trastuzumab-4 (a) and untreated (b). DAPI stain visualizes DNA condensation. Anti α-
tubulin immunostaining visualizes spindle organization in untreated mitotic cells. Cells treated 
with trastuzumab-4 show DNA condensation but a strongly altered and distorted α-tubulin 
pattern. 

 

1.4. Figure S4 

Solubility measurements of 9 (red), 10 (green) and vedotin (cyan) in PBS with 5% DMSO 
and Inosine as an internal standard. (See chapter 3.5 for details) a) Calibration curves of 
different analyte concentrations (5, 10, 50, 100 and 200 µM) were recorded by UPLC/UV by 
peak integration of the analyte in relation to Inosin as an internal standard. Shown are error 
bars from three independent measurements (black) and a linear fit. Values that were out of 
the concentration range and therefore not in the linear region were excluded from the fit 
(grey). b) Three independent measurements of saturated solutions and concentration 
calculation with the linear equation, estimated in a.  

 



1.5. Figure S5 

Modification of brentuximab at 1 mg/ml with varying equivalents of the vedotin analog 10 
delivers ADCs with different DARs. (See chapter 3.7 for details) a) SDS-PAGE and DAR-
analysis of brentuximab, reduced with 1000 eq. DTT and alkylated with 10. Modification was 
carried out under the same conditions for every reaction: 1 mg/ml antibody, 50 mM tris-
buffer, 1 mM EDTA pH 8.5 and 5% DMSO; reaction over-night at 14°C as described in 
chapter 3.6. DAR-analysis was carried as described in chapter 3.9. b) Exemplary MS-
spectrum and calculated DAR of sample in lane 5 (modification carried out with 10 eq. 10). 
HC: heavy chain, LC: light chain. *deconvolution artefacts (half mass of HC species and 
double mass of LC species) c) Plot of phosphonamidate equivalents against the measured 
DAR. Shown are results of 20 independent experiments (dots) and an exponential fit (solid 
line, R2= 0.9540). Red line marks the theoretical equivalents (16 in this case) to reach a DAR 
of 4. 

 

 



1.6. Figure S6 

Increased conjugation efficiency can be observed at 5 mg/ml brentuximab. (See chapter 3.8 
for details) a) DAR-analysis of brentuximab, reduced with 200 eq. of DTT and alkylated with 
10. Modification was carried out under the same conditions for every reaction: 5 mg/ml 
antibody, 50 mM tris-buffer, 1 mM EDTA pH 8.5 and 5% DMSO; reaction over-night at 14°C 
as described in chapter 3.7. DAR-analysis was carried as described in chapter 3.9. b) 
Exemplary MS-spectrum and calculated DAR of sample in lane 2 (modification carried out 
with 6 eq. 10). HC: heavy chain, LC: light chain. 

 

1.7. Figure S7 

Partial reduction of the interchain disulfides with small excess of TCEP yields ADCs with a 
high conjugation effiency in a one-step procedure. (See chapter 3.9 for details)  a) DAR-
analysis of brentuximab, reduced and alkylated with 10. Modification was carried out under 
the same conditions for every reaction with varying equivalents of TCEP: 5 mg/ml antibody, 
50 mM tris-buffer, 100 mM NaCl, 1 mM EDTA pH 8.5, 167 µM 10 (5.0 eq.) and 5% DMSO; 
reaction over-night at 14°C as described in chapter 3.8. DAR-analysis was carried as 
described in chapter 3.9. b) Exemplary MS-spectrum and calculated DAR of sample in lane 3 
(modification carried out with 3 eq. TCEP). HC: heavy chain, LC: light chain. 

 

 



1.8. Figure S8 

DAR analysis of brentuximab-10 (a, green) and Adcetris® (b, cyan) after incubation in rat 
serum for 0, 3 and 7 days as described in chapter 3.12. Shown are values from three 
independent measurements for each time point. We measured a DAR of 3.05 (mean of three 
measurements) for Adcetris at Day 0, even though, Adcetris is known to be modified with an 
average of 4 drug molecules.[1] We attribute this to a loss of modification during the analysis 
process of pulldown, deglycosylation, reduction and MS-analysis. Since this sample-
preparation was conducted in the same way for day 0, 3 and 7, this should not influence the 
relative values, given in the main manuscript. c) MS analysis of two Adcetris® measurements 
(day 0 top and day 3 bottom) indicating hydrolysis of the vedotin molecules that are still 
attached to the antibody.   

 

 



1.9. Figure S9 

Size-exclusion HPLC analysis of Brentuximab-10 after storage at different temperatures in 
PBS. Chromatograms were recorded after 0, 7 and 14 days. Chromatograms are normalized 
to the maximal intensity. (See chapter 3.13 for details) 

 



1.10. Figure S10 

Changes in bodyweight and tumorvolumes of SCID mice with a Karpas 299 tumor xenograft 
after treatment with PBS (magenta), Brentuximab-10 (blue) or PBS (green). Shown are 
tumor volumes of eight mice per group separately. a) 1. Study: Shown are tumor volumes of 
four mice per group separately treated at day 7 and 10 with 1 mg/kg ADC. b) 2. Study: 
Shown are tumor volumes of eight mice per group separately treated at day 8 and 11 with 
0.5 mg/kg ADC. (See chapter 3.14 for details) 

 

 



2. General Information 
2.1. Chemicals and solvents 

Chemicals and solvents were purchased from Merck (Merck group, Germany), TCI (Tokyo 
chemical industry CO., LTD., Japan) and Acros Organics (Thermo Fisher scientific, USA) 
and used without further purification. Dry solvents were purchased from Acros Organics 
(Thermo Fisher scientific, USA). 

2.2. Flash- and thin layer chromatography  

Flash column chromatography was performed, using NORMASIL 60® silica gel 40-63 µm 
(VWR international, USA). Glass TLC plates, silica gel 60 W coated with fluorescent indicator 
F254s were purchased from Merck (Merck Group, Germany). Spots were visualized by 
fluorescence depletion with a 254 nm lamp or manganese staining (10 g K2CO3, 1.5 g 
KMnO4, 0.1 g NaOH in 200 ml H2O), followed by heating. 

2.3. Preparative HPLC 

Preparative HPLC was performed on a Gilson PLC 2020 system (Gilson Inc, WI, Middleton, 
USA) using a VP 250/32 Macherey-Nagel Nucleodur C18 HTec Spum column (Macherey-
Nagel GmbH & Co. Kg, Germany). The following gradients were used: Method C: (A = H2O + 
0.1% TFA (trifluoroacetic acid), B = MeCN (acetonitrile) + 0.1% TFA, flow rate 30 ml/min, 5% 
B 0-5 min, 5-90% B 5-60 min, 90% B 60-65 min. Method D: (A = H2O + 0.1% TFA, B = 
MeCN + +0.1% TFA), flow rate 30 ml/min, 5% B 0-5 min, 5-25% B 5-10 min, 25%-45% B 10-
50 min, 45-90% 50-60 min, 90% B 60-65 min. Method E: 0.1% TFA, flow rate 18 ml/min, 5% 
B 0-5 min, 5-90% B 5-60 min, 90% B 60-65 min, using a VP 250/21 Macherey-Nagel 
Nucleodur C18 HTec Spum column (Macherey-Nagel GmbH & Co. Kg, Germany) 

2.4. Semi-preparative HPLC 

Semi-preparative HPLC was performed on a Shimadzu prominence HPLC system 
(Shimadzu Corp., Japan) with a CBM20A communication bus module, a FRC-10A fraction 
collector, 2 pumps LC-20AP, and a SPD-20A UV/VIS detector, using a VP250/10 Macherey-
Nagel Nucleodur C18 HTec Spum column (Macherey-Nagel GmbH & Co. Kg, Germany). 
The following gradients were used: Method F: (A = H2O + 0.1% TFA, B = MeCN + +0.1% 
TFA), flow rate 5 ml/min, 30% B 0-5 min, 30-99% B 5-65 min, 99% B 65-75 min.   

2.5. NMR 

NMR spectra were recorded with a Bruker Ultrashield 300 MHz spectrometer and a Bruker 
Avance III 600 MHz spectrometer (Bruker Corp., USA) at ambient temperature. Chemical 
shifts δ are reported in ppm relative to residual solvent peak (CDCl3: 7.26 [ppm]; DMSO-d6: 
2.50 [ppm] for 1H-spectra and CDCl3: 77.16 [ppm]; DMSO-d6: 39.52 [ppm] for 13C-spectra . 
Coupling constants J are stated in Hz. Signal multiplicities are abbreviated as follows: s: 
singlet; d: doublet; t: triplet; q: quartet; m: multiplet.  

2.6. HR-MS 

High resolution ESI-MS spectra were recorded on a Waters H-class instrument equipped 
with a quaternary solvent manager, a Waters sample manager-FTN, a Waters PDA detector 
and a Waters column manager with an Acquity UPLC protein BEH C18 column (1.7 µm, 
2.1 mm x 50 mm). Samples were eluted with a flow rate of 0.3 mL/min. The following 
gradient was used: A: 0.01% FA in H2O; B: 0.01% FA in MeCN. 5% B: 0-1 min; 5 to 95% B: 
1-7min; 95% B: 7 to 8.5 min. Mass analysis was conducted with a Waters XEVO G2-XS 
QTof analyzer. 



2.7. UPLC-UV/MS 

UPLC-UV/MS traces were recorded on a Waters H-class instrument equipped with a 
quaternary solvent manager, a Waters autosampler, a Waters TUV detector and a Waters 
Acquity QDa detector with an Acquity UPLC BEH C18 1.7 μm, 2.1 x 50 mm RP column with 
a flow rate of 0.6 mL/min (Waters Corp., USA). The following gradient was used for purity 
analyses: A: 0.1% TFA in H2O; B: 0.1% TFA in MeCN. 5% B 0 - 1.5 min, 5-95% B 1.5-11 
min, 95% B 11-13 min, 5% B 13-15 min. The following gradient was used in the solubility 
assay: A: 0.1% TFA in H2O; B: 0.1% TFA in MeCN. 5% B 0 - 0.5 min, 5-95% B 0.5-3 min, 
95% B 3-3.9 min, 5% B 3.9-5 min. 

2.8. Intact protein MS (trastuzumab conjugates only) 

Reduced antibody subunits were analyzed using a reversed-phase liquid chromatography 
system (Dionex Ultimate 3000 NCS-3500RS Nano, Thermo Scientific) connected to an 
Orbitrap Fusion mass spectrometer (Thermo Scientific). Chromatographic separation was 
performed with an Acquity UPLC protein BEH C4 column (300 Å, 1.7 µm, 2.1 mm x 50 mm). 
Component A of the mobile phase was 0.01% formic acid in water and component B consist 
of Acetonitrile with 0.01% formic acid. Separation was performed with a flow rate of 300 
µL/min within 7.5 min linear gradient starting with 0% and ending with 40% of component B, 
followed by a flushing step until 80% of component B. Proteins were ionized in positive ion 
mode applying a spray voltage of 4.5 kV, using sheath gas (75 Arb), aux gas (12 Arb), sweep 
gas (1 Arb) and a vaporizer temperature of 300°C. Ionized proteins were analyzed in intact 
protein mode with a resolution of 15000 (FWHM), 10 microscans and a scan range of m/z 
500-3000. The maximum injection time was set to 100 ms to reach an AGC-Target value of 
5e5. 

Raw data were analyzed with ProteinDeconvolut version 3.0 (Thermo Scientific), considering 
a m/z range of 800-3000 and charge states ranging from 10-100. 30000 was used as a 
targeted mass and the intact protein model was chosen. The output mass range was 10000-
70000. 

2.9. Intact protein MS (all brentuximab conjugates) 

Intact proteins were analyzed using a Waters H-class instrument equipped with a quaternary 
solvent manager, a Waters sample manager-FTN, a Waters PDA detector and a Waters 
column manager with an Acquity UPLC protein BEH C4 column (300 Å, 1.7 µm, 2.1 mm x 
50 mm). Proteins were eluted with a flow rate of 0.3 mL/min. The following gradient was 
used: A: 0.01% FA in H2O; B: 0.01% FA in MeCN. 5-95% B 0-6 min. Mass analysis was 
conducted with a Waters XEVO G2-XS QTof analyzer. Proteins were ionized in positive ion 
mode applying a cone voltage of 40 kV. Raw data was analyzed with MaxEnt 1. 

2.10. Preparative size-exclusion chromatography 

Protein purification by size-exclusion chromatography was conducted with an ÄKTA FPLC 
system (GE Healthcare, United States) equipped with a P-920 pump system, a UPC-900 
detector and a FRAC-950 fraction collector. 

2.11. Analytical size-exclusion chromatography 

Analytical size-exclusion chromatography (A-SEC) of the ADCs was conducted on a 
Vanquish Flex UHPLC System with a DAD detector, Split Sampler FT (4°C), Column 
Compartment H (25°C) and binary pump F (Thermo Fisher Scientific, USA) using a MAbPac 
SEC-1 300 Å, 4 x 300 mm column (Thermo Fisher Scientific, USA) with a flow rate of 0.15 
mL/min. Separation of different ADC/mAb populations have been achieved during a 30 
minute isocratic gradient using a phosphate buffer at pH 7 (20 mM Na2HPO4/NaH2PO4, 



300 mM NaCl, 5% v/v isopropyl alcohol as a mobile phase. 8 µg ADC/mAb where loaded 
onto the column for A-SEC analysis. UV chromatograms were recorded at 220 and 280 nm. 
Quantification of monomer and HMWS was achieved after integration of the peak area at 
220 nm. 

 

3. Experimental procedures 
3.1. Trastuzumab production 

Trastuzumab expression and purification was executed as previously published with an 
additional final purification by gel filtration on a Superdex 200 Increase 10/300 from GE (GE 
life sciences, USA) with PBS and flow rate of 0.75 ml/min.[2]  

3.2. Synthesis and analysis of trastuzumab-MMAF conjugates 

Trastuzumab modification was carried out by incubating freshly expressed antibody (0.5 
mg/ml, 3.33 μM) with 1000 eq. of DTT in a buffer containing 50 mM sodium borate in PBS 
(pH 8.0) with a total volume of 80 μl at 37 °C for 40 min. Excess DTT removal and buffer 
exchange to a solution containing 50 mM NH4HCO3 and 1mM EDTA (pH 8.5) was conducted 
afterwards using 0.5 mL Zeba™ Spin Desalting Columns with 7K MWCO (Thermo Fisher 
Scientific, USA). 4 μl of O-Ethyl-P-ethynyl-phosphonamidate-VC-PAB-MMAF 4, dissolved in 
DMSO (5.33 mM) were added quickly to reach a final DMSO content of 5% and 80 eq. 
phoshonamidate with respect to the antibody. The mixture was shaken at 850 rpm and 14 °C 
for 16 hours. Excess reagent was again removed by buffer exchange to sterile PBS using 0.5 
mL Zeba™ Spin Desalting Columns with 7K MWCO.  

For SDS-page-analysis, 2 μl of the crude reaction mixture were mixed with 10 μl of ultrapure 
water and 4 µl Laemmli sample buffer (Bio-Rad Laboratories, USA) containing 0.4 µl 2-
mercaptoethanol. Samples were heated to 95 °C for 15 minutes and completely loaded to 
the SDS-PAGE gel.  
 
For MS analysis: The modified antibody was rebuffered to 100 mM NH4HCO3 and 500 mM 
NaCl using 75 μL Zeba™ Spin Desalting Columns with 7K MWCO (Thermo Fisher Scientific, 
USA). 8 μl of this solution were treated with 1 μl RapiGest™ (Waters Corp., USA) solution 
(1% in H2O) and heated to 60 °C for 30 min. The solution was allowed to cool to room 
temperature, 1 μl PNGase-F solution (Pomega, Germany, Recombinant, cloned from 
Elizabethkingia miricola 10 u/μl) was added and the solution was incubated at 37 °C over 
night. Remaining disulfide bridges were reduced by addition of 1 μl DTT solution (50 mM in 
H2O) and incubation at 37°C for 30 min. Samples were diluted with 1% HCl subjected to MS 
analysis with the Orbitrap Fusion system. (See chapter 2.8) 

MS spectrum shows the ion series, which was deconvoluted to obtain the spectrum in Figure 
1b.  



  

3.3. Cell based antiproliferation assays  

Antiproliferation assays were conducted as previously reported[2] with the following minor 
changes:  

- For MDAMB468 cells, a reduced amount of 2*103 cells were seeded in each well of a 96-
well optical cell culture plate supplemented with 100 μL culture media.  
- Images were acquired with an Operetta High-Content Imaging system (PerkinElmer, 
Waltham, MA, USA) equipped with a 20× high NA objective.  
- Cell counts were calculated from duplicates  

3.4.  Resazurin assay 

HL60 and Karpas cell lines were cultured in RPMI-1640 supplemented with 10% FCS and 
0.5% Penicillin-Streptomycin. SKBR3 and MDAMB468 cell lines were cultured in DMEM/F12 
supplemented with 10% FCS and 0.5% Penicillin-Streptomycin. Cells were seeded at a 
density of 5*10^3 cells/well (SKBR3, HL60 and Karpas) or 1*10^3 cells/well (MDAMB468) in 
96-well cell culture microplate. 1:4 serial dilutions of ADCs or antibodies were performed in 
cell culture medium starting at 3 µg/mL final concentration and transferred in duplicates to 
respective wells on the microplate. Plates were incubated for 96 h at 37°C 5 % CO2. 
Subsequently, resazurin was added to a final concentration of 50 µM followed by incubation 
for 3 – 4 h at 37°C, 5% CO2. Metabolic conversion of resazurin to resorufin is quantified by 
the fluorescent signal of resorufin (λEX = 560 nm and λEM = 590 nm) on a Tecan Infinite 
M1000 micro plate reader. Mean and standard deviation was calculated from duplicates, 
normalized to untreated control and plotted against antibody concentration. Data analysis 
was performed with MatLab R2016 software. 

3.5. Solubility assay 

The aqueous solubility of compounds 9, 10 and vedotin was determined using a shake flask 
solubility assay. Saturated solutions of the compounds in 5% DMSO/PBS at pH 7.4 were 
prepared in triplicates by adding 2 µL of compound (40 mM in DMSO) to 38 µL PBS, pH 7.4 
containing 50 µM inosine as internal standard. The samples were incubated at 25°C for 2h 
and subsequently subjected to high-speed centrifugation (10 minutes, 16873 rcf). The 
supernatant was analyzed by UPLC/UV and the concentration was determined using a 
standard curve. For the standard curves, serial dilutions in 5% DMSO/PBS at pH 7.4 
containing 50 µM Inosine were prepared in triplicates with final compound concentrations of 
5 µM, 10 µM, 50 µM, 100 µM and 200 µM. The samples were incubated at 25°C for 2 h and 
subsequently subjected to high-speed centrifugation (10 minutes, 16873 rcf). The 
supernatant was analyzed by UPLC/UV and the peak area of compound and internal 
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standard were integrated. The normalized peak areas (integrated area compound divided by 
integrated area standard) were plotted against the concentration and a linear fit was applied 
within the respective solubility range. 

3.6.  Brentuximab production 

Brentuximab expression and purification was executed in analogy to trastuzumab with final 
purification by gel filtration on a Superdex 200 Increase 10/300 from GE (GE life sciences, 
USA) with PBS and flow rate of 0.75 ml/min.  

3.7.  Procedure for the modification of brentuximab (1mg/ml) with different 
equivalents of 10 

35 μl of a 70 mM solution of DTT in 50 mM sodium borate in PBS (pH 8.0) was added to 
350 μl of a brentuximab solution of 1.0 mg/ml in 50 mM sodium borate in PBS (pH 8.0) and 
the mixture was incubated at 37 °C for 40 min. Excess DTT removal and exchange to the 
conjugation buffer (50 mM Tris, 1 mM EDTA, 100 mM NaCl, pH 8.5 at 14°C) was conducted 
afterwards using 2 mL Zeba™ Spin Desalting Columns with 7K MWCO (Thermo Fisher 
Scientific, USA). 50 μl of the reduced antibody solution (0.91 mg/ml, 6.07 μM antibody) were 
mixed quickly afterwards with the desired amount of O-2-(2-Hydroxyethoxy)ethyl-P-ethynyl-
phosphonamidate-VC-PAB-MMAE 10 dissolved in DMSO to give a final amount of 5% 
DMSO. The mixture was shaken at 850 rpm and 14 °C for 16 hours. For SDS-page-analysis, 
2 μl of the crude reaction mixture were mixed with 10 μl of ultrapure water and 4 µl Laemmli 
sample buffer (Bio-Rad Laboratories, USA) containing 0.4 µl 2-mercaptoethanol. Samples 
were heated to 95 °C for 15 minutes and completely loaded to the SDS-PAGE gel.  
 

3.8. Procedure for the modification of brentuximab (5.0 mg/ml) with different 
equivalents of 10 

 
5 μl of a 70 mM solution of DTT in 50 mM sodium borate in PBS (pH 8.0) was added to 50 μl 
of a brentuximab solution of 5.0 mg/ml in 50 mM sodium borate in PBS (pH 8.0) and the 
mixture was incubated at 37 °C for 40 min. Excess DTT removal and exchange to the 
conjugation buffer (50 mM Tris, 1 mM EDTA, 100 mM NaCl, pH 8.5 at 14°C) was conducted 
afterwards using 0.5 mL Zeba™ Spin Desalting Columns with 7K MWCO (Thermo Fisher 
Scientific, USA). 50 μl of the reduced antibody solution (4.55 mg/ml, 30.30 μM antibody) 
were mixed quickly afterwards with desired amount of O-2-(2-Hydroxyethoxy)ethyl-P-ethynyl-
phosphonamidate-VC-PAB-MMAE 10 dissolved in DMSO to give a final amount of 5% 
DMSO. The mixture was shaken at 850 rpm and 14 °C for 16 hours. 
 

3.9. Procedure for the partial reduction of brentuximabs interchain disulfide 
bonds with TCEP 
 

50 μl of a brentuximab solution of 5.0 mg/ml in conjugation buffer (50 mM Tris, 1 mM EDTA, 
100 mM NaCl, pH 8.5 at 14°C) were mixed with 5 µl of a TCEP solution in conjugation buffer 
containing the appropriate amount of TCEP. Directly afterwards, 2.75 µl of a 3.03 mM 
solution of O-2-(2-Hydroxyethoxy)ethyl-P-ethynyl-phosphonamidate-VC-PAB-MMAE 10 (5.0 
eq. with respect to the antibody) dissolved in DMSO were added to give a final amount of 5% 
DMSO. The mixture was shaken at 850 rpm and 14 °C for 16 hours. 
 
 

3.10. Procedure for DAR determination of brentuximab conjugates by intact 
protein MS 

a) 



40 µl of the crude antibody modification mixture were purified by size-exclusion 
chromatography with a 5 ml HiTrap® desalting column and a flow of 1.5 ml/min eluting with 
100 mM NaHCO3 and 500 mM NaCl over two column volumes. An exemplary chromatogram 
is shown below. 

 
The antibody containing fractions were pooled and concentrated by spin-filtration to 40 µl 
(MWCO: 10 kDa, 0.5 ml, Sartorius, Germany).  

b) 

2 μl RapiGest™ solution (1% in H2O) (Waters Corp., USA) were added and the solution was 
heated to 60 °C for 30 min. The solution was allowed to cool to room temperature, 1 μl 
PNGase-F solution (Pomega, Germany, Recombinant, cloned from Elizabethkingia miricola 
10 u/μl) was added and the solution was incubated at 37 °C for at least 2 hours. Disulfide 
bridges were reduced by addition of 2 μl DTT solution (70 mM in H2O) and incubation at 
37°C for 30 min. Samples were diluted with 120 µl 1% HCl and subjected to intact protein MS 
(see chapter 2.9), injecting 5 µl for each sample.  

c) For Adcetris pulldown samples from serum, 1 μl PNGase-F solution (Pomega, Germany, 
Recombinant, cloned from Elizabethkingia miricola 10 u/μl) was added to 20 µl of Adcetris in 
PBS and the solution was incubated at 37 °C for at least 2 hours. Disulfide bridges were 
reduced by addition of 2 μl DTT solution (70 mM in H2O) and incubation at 37°C for 30 min. 
10 µl of the samples were diluted with 190 µl of pure water and subjected to intact protein MS 
(see chapter 2.9), injecting 3 µl for each sample.  

After deconvolution of the crude spectra, the DAR was determined with the following formula, 
were I corresponds to the mass intensities of the respective species.  



 
3.11.  Synthesis and purification of an ADC from brentuximab and 10.  

240 μl of a 70 mM solution of DTT in 50 mM sodium borate in PBS (pH 8.0) were added to 
2.4 ml of a brentuximab solution of 1.0 mg/ml in 50 mM sodium borate in PBS (pH 8.0) and 
the mixture was incubated at 37 °C for 40 min. Excess DTT removal and exchange to the 
conjugation buffer was conducted afterwards using 10 mL Zeba™ Spin Desalting Columns 
with 7K MWCO (Thermo Fisher Scientific, USA). The reduced antibody solution (0.91 mg/ml, 
6.07 μM) was mixed quickly afterwards with 132 μl of a 1.94 mM solution of O-2-(2-
Hydroxyethoxy)ethyl-P-ethynyl-phosphonamidate-VC-PAB-MMAE 10 dissolved in DMSO to 
give a final amount of 5% DMSO and 16 eq. phosphonamidate. The solution was shaken at 
850 rpm and 14 °C for 16 hours. Afterwards, the mixture was concentrated to 900 μl by spin-
filtration (MWCO: 10 kDa, 0.5 ml, Sartorius, Germany) 

Alternatively, 48 μl of a 70 mM solution of DTT in 50 mM sodium borate in PBS (pH 8.0) was 
added to 480 µl of a brentuximab solution of 5.0 mg/ml in 50 mM sodium borate in PBS (pH 
8.0) and the mixture was incubated at 37 °C for 40 min. Excess DTT removal and exchange 
to the conjugation buffer was conducted afterwards using 2 mL Zeba™ Spin Desalting 
Columns with 7K MWCO (Thermo Fisher Scientific, USA). The reduced antibody solution 
(4.55 mg/ml, 30.35 μM) was mixed quickly afterwards with 27.5 μl of a 2.73 mM solution of 
O-2-(2-Hydroxyethoxy)ethyl-P-ethynyl-phosphonamidate-VC-PAB-MMAE 10 dissolved in 
DMSO to give a final amount of 5% DMSO and 4. eq. phosphonamidate. The solution was 
shaken at 850 rpm and 14 °C for 16 hours. 

The reaction mixtures were purified in two portions by size-exclusion chromatography with a 
25 ml Superose™ 6 Increase 10/300GL (GE healthcare, United States) and a flow of 0.8 
ml/min eluting with sterile PBS (Merck, Germany). The antibody containing fractions were 
pooled and concentrated by spin-filtration (MWCO: 10 kDa, 6 ml, Sartorius, Germany). For 
DAR analysis, 10 μl of this sample were mixed with 30 μl of a buffer containing 500 mM NaCl 
and 100 mM NaHCO3and the sample was processed further as described under 3.9b. The 
final concentration was determined in a 96-well plate with a Pierce™ Rapid Gold BCA 
Protein Assay Kit (Thermo Fisher Scientific, USA) and a Bradford reagent B6916 (Merck, 
Germany) with pre-diluted protein assay standards of bovine gamma globulin (Thermo Fisher 
Scientific, USA). Results of both Assays were arithmetically averaged. 



The ADC was analyzed by analytical size exclusion chromatography (a) and intact protein 
MS (b) before subsequent experiments. HC: heavy chain, LC: light chain. *deconvolution 
artefacts (half mass of HC species and double mass of LC species). It should be noted that 
no species was detected in the MS that could be assigned to any form of unconjugated 
MMAE. 

 

3.12. Stability studies in rat serum: ADC incubation serum and analysis of the 
DAR after antibody pulldown 

In an Eppendorf-tube, 200 μl rat serum (Sigma Aldrich, United States) were mixed with 50 μl 
Brentuximab-10 (2.0 mg/ml) or Adcetris® for each sample individually to give a final solution 
of 0.4 mg/ml ADC in 80% rat serum. Samples were sterile filtered with UFC30GV0S 
centrifugal filter units (Merck, Germany) and incubated at 37°C for 3 and 7 days. Samples for 
day 0 were directly processed further.  

The supernatant of 50 Pl anti human igG (Fc-Specific) agarose slurry (Sigma Aldrich, United 
States) was removed by centrifugation and the remaining resin washed three times with 
200 Pl PBS. The resin was incubated with 240 μl of the serum-ADC mix for 30 min at room 
temperature. Afterwards, the supernatant was removed and the resin washed 5 times with 
200 Pl PBS. Following by incubation for 5 minutes with 200 μl IgG elution buffer (Thermo-
Fisher, United States) at room temperature. Now the supernatant was transferred into a Spin 
filter (MWCO: 10 kDa, 0.5 ml, Sartorius, Germany), rebuffered to a buffer containing 500 mM 
NaCl and  100 mM NaHCO3, concentrated to 40 μl and processed further as described under 
3.9b for the Brentuximab-10 samples. Since we observed decomposition of the maleimide 
linkage in Adcetris® under our standard deglycosylation conditions, all Adcetris® samples 
were rebuffered to PBS, concentrated to 100 µl and processed further as described under 
3.9c. All measurements were performed in triplicates (n=3). MS Spectra that were obtained 
after 0, 3 and 7 days are shown below. HC: heavy chain, LC: light chain. 

 

0 days of incubation of brentuximab-10 in rat serum at 37°C: 
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3 days of incubation of brentuximab-10 in rat serum at 37°C: 

 



7 days of incubation of brentuximab-10 in rat serum at 37°C: 

 

 

0 days of incubation of Adcetris® in rat serum at 37°C: 

 



3 days of incubation of Adcetris® in rat serum at 37°C: 

 

7 days of incubation of Adcetris® in rat serum at 37°C: 

 

3.13. Stability assessment of ADCs with A-SEC 

Brentuximab-10 was adjusted to a protein concentration of 1 mg/mL in PBS (Dulbeccos 
Phospahte Bufferd Saline, Sigma-Aldrich Merck KGaA) and filtered sterile (Ultrafree-MC 
Centrifugal filter units, Merck Millipore). Samples were stored at 4-8°C, 37°C and 40°C for up 
to 14 days. For samples stored at elevated temperatures, it was ensured that no condensate 
was formed. Before analysis via A-SEC the samples where centrifuged at 4°C, 4000 x g for 4 
minutes.  

3.14. In vivo xenograft model 
 
The in vivo evaluations were performed at EPO GmbH. All animal experiments were 
conducted in accordance with German animal welfare law and approved by local authorities. 
In brief, 1x107 Karpas 299 cells were subcutaneously injected to CB17-Scid mice at day 0. 
Treatment was initiated when tumors reached a mean tumor volume of 0.136±0.087 cm3 at 



day 7 (study 1) and day 8 (study 2). Following randomization of mice into treatment and 
control groups, 1 mg/kg of brentuximab-10 or Adcetris as well as vehicle (PBS) were 
administered as intravenous injection on days 7 and 10 for the first study and 0.5 mg/kg of 
brentuximab-10 or Adcetris as well as vehicle (PBS) on days 8 and 12 for the second study. 
Tumor volumes, body weights and general health conditions were recorded throughout the 
whole study. 
 

4. Organic synthesis 
4.1. N-(4-azidobenzoyl)-L-valine 

 

A 50-ml Schlenk-flask was charged with 1.00 g of 4-azidobenzoic acid (6.13 mmol, 1.00 eq.) 
and suspended in 8.5 ml of dry CH2Cl2 together with a drop of DMF under argon. 630 µl of 
oxalylchloride were added drop-wise at 0 °C and the reaction mixture was stirred at room 
temperature for 2 h until the solution became clear. All volatiles were removed under reduced 
pressure and the corresponding solid was redissolved in 4 ml of DMF. The corresponding 
solution was added drop-wise at 0 °C to a solution of 720 mg L-valin (6.13 mmol, 1.00 eq.) 
and 612 mg sodium hydroxide (15.33 mmol, 2.50 eq.) in 8 ml water and stirred for 2 more 
hours. The solution was acidified with 1 N HCl and extracted three times with diethylether. 
The organic fractions were pooled, dried (MgSO4) and the solvents were removed under 
reduced pressure. Pure product was obtained by flash column chromatography on silicagel 
(30% EtOAc, 0.5% formic acid in n-hexane) as colourless fume. (954 mg, 4.96 mmol, 80.9%) 
1H NMR (600 MHz, Chloroform-d) δ = 10.12 (s, 1H), 7.79 (d, J=8.6, 2H), 7.05 (d, J=8.6, 2H), 
6.79 (d, J=8.5, 1H), 4.76 (dd, J=8.5, 4.9, 1H), 2.33 (pd, J=6.9, 4.9, 1H), 1.03 (d, J=6.9, 3H), 
1.01 (d, J=6.9, 3H). 13C NMR (151 MHz, CDCl3) δ = 175.82, 167.28, 144.03, 130.17, 129.13, 
119.20, 77.16, 57.79, 31.40, 19.16, 17.99. HR-MS for C12H15N4O3

+
 [M+H]+ calcd.: 263.1139, 

found 263.1151. 

4.2. N-(4-azidobenzoyl)-L-valine-anhydride 

 

In a 100-ml round-bottom flask, 954 mg N-(4-azidobenzoyl)-L-valine (3.64 mmol, 1.00 eq.), 
750 mg dicyclohexylcarbodiimide (3.64 mmol, 1.00 eq.), 418 mg N-hydroxysuccinimide 
(3.64 mmol, 1.00 eq.) and 9 mg 4-(dimethylamino)-pyridine (0.07 mmol, 0.02 eq.) were 
dissolved in 25 ml of THF and stirred over night at room temperature. The reaction mixture 
was filtered, the solids were washed several times with THF, the solvent was removed under 
reduced pressure and the crude product was purified by flash column chromatography on 
silicagel (20 to 40% EtOAc in n-hexane). The compound was isolated as white powder 
(513 mg, 1.01 mmol, 55.7%) 
1H NMR (600 MHz, Chloroform-d) δ = 8.01 (d, J=8.7, 2H), 7.13 (d, J=8.7, 2H), 4.29 (d, J=4.6, 
1H), 2.39 (heptd, J=6.9, 4.6, 1H), 1.16 (d, J=6.9, 3H), 1.03 (d, J=6.9, 3H). 13C NMR (151 
MHz, CDCl3) δ = 177.52, 160.90, 144.51, 129.60, 122.43, 119.30, 70.68, 31.28, 18.76, 
17.57. 



4.3. N-(4-azidobenzoyl)-L-valine-L-citrulline 

 

In a 50-ml round-bottom flask, 380 mg N-(4-azidobenzoyl)-L-valine-anhydride (0.75 mmol, 
1.00 eq.) were dissolved in 2 ml of 1,2-Dimethoxyethane and cooled to 0 °C. A solution of 
351 mg L-citrulline (1.50 mmol, 2.00 eq.) and 144 mg sodium hydrogencarbonate 
(2.25 mmol, 3.00 eq.) in 4 ml H2O and 2 ml THF was added dropwise and stirred over night 
at room temperature. All volatiles were removed under reduced pressure and the crude 
product was purified by flash column chromatography on silicagel (10% MeOH, 0.5% formic 
acid in CH2Cl2). The compound was isolated as colourless oil (312 mg, 0.74 mmol, 99.0%). 
1H NMR (600 MHz, DMSO-d6) δ = 8.31 (d, J=8.8, 1H), 8.27 – 8.21 (m, 1H), 7.96 (d, J=8.6, 
2H), 7.20 (d, J=8.6, 2H), 6.05 (t, J=5.5, 1H), 5.47 (s, 2H), 4.37 (t, J=8.3, 1H), 4.18 (td, J=8.1, 
5.1, 1H), 2.98 (q, J=6.4, 2H), 2.15 (dq, J=13.6, 6.8, 1H), 1.78 – 1.68 (m, 1H), 1.68 – 1.56 (m, 
1H), 1.51 – 1.35 (m, 2H), 0.96 (d, J=6.8, 3H), 0.94 (d, J=6.8, 3H). 13C NMR (151 MHz, 
DMSO) δ = 174.09, 171.54, 165.99, 159.40, 142.77, 131.36, 129.93, 119.23, 59.31, 52.57, 
49.07, 30.77, 29.01, 27.07, 19.75, 19.28. HR-MS for C18H26N7O5

+
 [M+H]+ calcd.: 420.1990, 

found 420.1990. 

4.4. N-(4-azidobenzoyl)-L-valine-L-citrulline-4-aminobenzyl alcohol (1) 

 

In a 50-ml round-bottom flask, 330 mg N-(4-azidobenzoyl)-L-vaine-L-citrulline (0.787 mmol, 
1.0 eq.) and 107 mg 4-aminobenzyl alcohol (0.866 mmol, 1.10 eq.) were dissolved in 8 ml 
CH2Cl2 and 4 ml MeOH under an argon atmosphere and cooled to 0 °C. 390 mg N-
Ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (1.574 mmol, 2.00 eq.) were added portion-
wise and the resulting solution was allowed to warm to room temperature overnight. All 
volatiles were removed under reduced pressure and the crude product was isolated by flash 
column chromatography on silicagel (10% to 15% MeOH in CH2Cl2) and obtained as white 
solid (164 mg, 0.313 mmol, 39.8%). Enantiomeric pure compound was isolated by 
preparative HPLC (Method D) and obtained as a white solid after lyophilisation.  
1H NMR (600 MHz, DMSO-d6) δ = 9.93 (s, 1H), 8.32 (d, J=8.4, 1H), 8.21 (d, J=7.6, 1H), 7.96 
(d, J=8.6, 2H), 7.55 (d, J=8.6, 2H), 7.24 (d, J=8.6, 2H), 7.21 (d, J=8.6, 2H), 6.12 (bs, 2H), 
4.44 (s, 2H), 4.46 – 4.40 (m, 1H), 4.36 (t, J=8.1, 1H), 3.09 – 2.93 (m, 2H), 2.24 – 2.04 (m, 
J=6.7, 1H), 1.84 – 1.58 (m, 2H), 1.55 – 1.34 (m, 2H), 0.95 (d, J=6.7, 3H), 0.94 (d, J=6.7, 3H). 
13C NMR (151 MHz, DMSO) δ = 171.62, 170.79, 166.15, 159.46, 142.83, 137.95, 137.91, 
131.29, 129.96, 127.38, 119.34, 119.26, 63.07, 59.56, 53.64, 39.20, 30.61, 29.88, 27.16, 
19.79, 19.37. HR-MS for C25H33N8O5

+ [M+H]+ calcd.: 525.2568, found 525.2563. [α]D24 = 
─49.6 (c = 0.81; MeOH) 



4.5. N-(4-(O-Ethyl-P-ethynyl-phosphonamidato-N-benzoyl)-L-valine-L-
citrulline-4-aminobenzyl-4-nitrophenyl carbonate (2) 

 

A 5-ml round-bottom flask was charged with 31 mg N-(4-(O-Ethyl-P-ethynyl-
phosphonamidato-N-benzoyl)-L-valine-L-citrulline-4-aminobenzyl alcohol (1) (0.050 mmol, 
1.00 eq.) and 31 mg Bis(4-nitrophenyl) carbonate (0.101 mmol, 2.00 eq.). The solids were 
dissolved in 140 µl of DMF and 17.4 µl DIPEA (0.101 mmol, 2.00 eq.) were added. The 
yellow solution was stirred for 1 h at room temperature and the solution was added to 30 ml 
of ice-cold diethyl ether. The precipitate was collected by centrifugation, redissolved in DMF 
and again precipitated with ether. The procedure was conducted three times in total and 
finally the solid was dried under high vacuum conditions. The compound was isolated in 
quantitative yields and sufficiently pure for the next step. Analytical pure material was purified 
by preparative HPLC using method C.  
1H NMR (600 MHz, DMSO-d6) δ = 10.10 (s, 1H), 8.79 (d, J=8.5, 1H), 8.32 (d, J=9.1, 1H), 
8.23 (d, J=7.4, 1H), 8.07 (dd, J=8.5, 2.2, 1H), 7.81 (d, J=8.7, 2H), 7.66 (d, J=8.5, 2H), 7.57 
(d, J=9.1, 1H), 7.42 (d, J=8.5, 2H), 7.13 (d, J=8.7, 2H), 5.25 (s, 2H), 4.47 – 4.40 (m, 2H), 
4.34 (t, J=8.0, 1H), 4.20 – 4.05 (m, 2H), 3.01 (ddt, J=47.1, 13.4, 6.8, 2H), 2.20 – 2.09 (m, 
J=6.8, 1H), 1.80 – 1.59 (m, 2H), 1.55 – 1.35 (m, 2H), 1.30 (t, J=7.0, 3H), 0.95 (d, J=6.7, 3H), 
0.93 (d, J=6.7, 3H). 13C NMR (151 MHz, DMSO-d6) δ = 171.79, 171.17, 166.58, 159.44, 
155.75, 152.42, 145.63, 143.50, 139.83, 129.95, 129.77, 129.30, 127.59, 125.86, 123.08, 
119.51, 117.24 (d, J=7.8), 91.67 (d, J=45.6), 77.26 (d, J=261.0), 70.71, 62.26 (d, J=5.0), 
59.31, 53.68, 39.14, 30.71, 29.76, 27.19, 19.80, 19.30, 16.41 (d, J=6.9). 31P NMR (243 MHz, 
DMSO) δ = -10.39, -10.44. HR-MS for C36H43N7O11P+ [M+H]+ calcd.: 780.2753, found 
780.2744. 

4.6. N-(4-(O-Ethyl-P-ethynyl-phosphonamidato-N-benzoyl)-L-valine-L-
citrulline-4-aminobenzyl-4-nitrophenyl carbonate (3) 

 

A 5-ml round-bottom flask was charged with 31 mg N-(4-(O-Ethyl-P-ethynyl-
phosphonamidato-N-benzoyl)-L-valine-L-citrulline-4-aminobenzyl alcohol (2) (0.050 mmol, 
1.00 eq.) and 31 mg Bis(4-nitrophenyl) carbonate (0.101 mmol, 2.00 eq.). The solids were 
dissolved in 140 µl of DMF and 17.4 µl DIPEA (0.101 mmol, 2.00 eq.) were added. The 
yellow solution was stirred for 1 h at room temperature and the solution was added to 30 ml 
of ice-cold diethyl ether. The precipitate was collected by centrifugation, redissolved in DMF 
and again precipitated with ether. The procedure was conducted three times in total and 
finally the solid was dried under high vacuum conditions. The compound was isolated in 



quantitative yields and sufficiently pure for the next step. Analytical pure material was purified 
by preparative HPLC using method C.  
1H NMR (600 MHz, DMSO-d6) δ = 10.10 (s, 1H), 8.79 (d, J=8.5, 1H), 8.32 (d, J=9.1, 1H), 
8.23 (d, J=7.4, 1H), 8.07 (dd, J=8.5, 2.2, 1H), 7.81 (d, J=8.7, 2H), 7.66 (d, J=8.5, 2H), 7.57 
(d, J=9.1, 1H), 7.42 (d, J=8.5, 2H), 7.13 (d, J=8.7, 2H), 5.25 (s, 2H), 4.47 – 4.40 (m, 2H), 
4.34 (t, J=8.0, 1H), 4.20 – 4.05 (m, 2H), 3.01 (ddt, J=47.1, 13.4, 6.8, 2H), 2.20 – 2.09 (m, 
J=6.8, 1H), 1.80 – 1.59 (m, 2H), 1.55 – 1.35 (m, 2H), 1.30 (t, J=7.0, 3H), 0.95 (d, J=6.7, 3H), 
0.93 (d, J=6.7, 3H). 13C NMR (151 MHz, DMSO-d6) δ = 171.79, 171.17, 166.58, 159.44, 
155.75, 152.42, 145.63, 143.50, 139.83, 129.95, 129.77, 129.30, 127.59, 125.86, 123.08, 
119.51, 117.24 (d, J=7.8), 91.67 (d, J=45.6), 77.26 (d, J=261.0), 70.71, 62.26 (d, J=5.0), 
59.31, 53.68, 39.14, 30.71, 29.76, 27.19, 19.80, 19.30, 16.41 (d, J=6.9). 31P NMR (243 MHz, 
DMSO) δ = -10.39, -10.44. HR-MS for C36H43N7O11P+ [M+H]+ calcd.: 780.2753, found 
780.2744. 

4.7. O-Ethyl-P-ethynyl-phosphonamidate-VC-PAB-MMAF 4 

 

A screw-cap vial was charged with 14.35 mg N-(4-(O-Ethyl-P-ethynyl-phosphonamidato-N-
benzoyl)-L-valine-L-citrulline-4-aminobenzyl-4-nitrophenyl carbonate (3) (0.0184 mmol, 1.00 
eq.), 0.50 mg 1-Hydroxybenzotriazol (0.0037 mmol, 0.20 eq.) and 13.15 mg MMAF 
(0.0184 mmol, 1.00 eq.). The solids were dissolved in 250 μl dry DMF and 25 μl pyridine and 
heated to 60 °C over-night. All volatiles were removed under reduced pressure, the crude 
product was purified by preparative HPLC using method E and the desired compound 
obtained as a white solid after lyophilization. (4.84 mg, 0.0035 mmol, 19.2 %). HR-MS for 
C69H104N11O16P2+ [M+2H]2+ calcd.: 686.8695, found 686.8694. 

 
4.8. Di-(2-(2-Hydroxyethoxy)ethyl) ethynylphosphonite (5) 

 

A 25-ml Schlenk flask was charged with 267 mg bis(diisopropylamino)chlorophosphine (1.00 
mmol, 1.00 eq.) under an argon atmosphere, cooled to 0 °C and 2.20 ml ethynylmagnesium 
bromide solution (0.5 M in THF, 1.10 mmol, 1.10 eq.) was added drop wise. The yellowish 
solution was allowed to warm to room temperature and stirred for further 30 minutes. 1.06 g 
diethylene glycol (10.00 mmol, 10.00 eq.), dissolved in 5.56 ml 1H-tetrazole solution (0.45 M 



in MeCN, 2.50 mmol, 2.50 eq.) were added and the white suspension was stirred over night 
at room temperature. The reaction mixture was directly placed on a silica gel flash column for 
purification (5% MeOH in CH2Cl2). The desired compound was obtained as a yellowish oil. 
(112 mg, 0.421 mmol, 42.1%). 
1H NMR (300 MHz, Chloroform-d) δ = 4.14 – 3.98 (m, 4H), 3.65 – 3.59 (m, 4H), 3.58 – 3.49 
(m, 8H), 3.15 (d, J=2.4, 1H) 13C NMR (75 MHz, Chloroform-d) δ = 92.51 (d, J=1.4), 84.30 (d, 
J=46.8), 72.60, 70.72 (d, J=4.0), 67.20 (d, J=6.0), 61.44. 31P NMR (122 MHz, CDCl3) δ = 
131.97. 

4.9. 2-(2-Hydroxyethoxy)ethyl-N-(4-benzoic-acid-N-hydroxysuccinimideester)-
P-ethynyl phosphonamidate (8) 

 
In a 5 ml round-bottom-flask, 93 mg Di-(2-(2-Hydroxyethoxy)ethyl) ethynylphosphonite (5) 
(0.192 mmol, 1.00 eq.) and 91 mg 4-azidobenzoic-acid-N-hydroxysuccinimide ester (6) 
(0.192 mmol, 1.00 eq.) were dissolved in 1 ml of DMF and the solution was stirred overnight. 
All volatiles were removed under reduced pressure and the residue purified by column 
chromatographie on silicagel (100% EtOAc). The compound was obtained as colourless oil. 
(45 mg, 0.109 mmol, 31.4%).  
1H NMR (300 MHz, Chloroform-d) δ 8.02 (d, J = 8.7 Hz, 2H), 7.79 (d, J = 7.6 Hz, 1H), 7.21 
(d, J = 8.8 Hz, 2H), 4.30 (dp, J = 13.6, 4.5 Hz, 2H), 3.89 – 3.67 (m, 6H), 3.09 (d, J = 13.3 Hz, 
1H), 2.89 (s, 4H). 13C NMR (75 MHz, Chloroform-d) δ 169.67, 161.45, 145.78 (d, J = 1.6 Hz), 
132.32, 118.04, 117.66 (d, J = 8.1 Hz), 89.29 (d, J = 50.1 Hz), 75.34 (d, J = 294.4 Hz), 72.59, 
69.44 (d, J = 5.1 Hz), 66.19 (d, J = 5.9 Hz), 61.35, 25.68. 31P NMR (122 MHz, CDCl3) δ -9.66. 
HRMS for C17H20N2O8P+ [M+H]+ calcd.: 411.0952, found: 411.0951. 

4.10. O-ethyl-P-ethynyl-phosphonamidate-VC-PAB-MMAE 9 

 

In a screw-cap-vial equipped with a stirring bar, 5 mg of H2N-Val-Cit-PAB-MMAE 11 
(4.452 μmol, 1.00 eq.) and 3.12 mg 2-ethyl-N-(4-benzoic-acid-N-hydroxysuccinimideester)-P-
ethynyl phosphonamidate (7) (8.904  μmol, 2.00 eq.) were dissolved in 50 μl DMF. 3.1 μl 
DIPEA (17.808  μmol, 4.00 eq.) were added and the solution was stirred overnight at room 
temperature. The solution was diluted with 4 ml 30% MeCN in H2O and subjected to semi-
preparative HPLC purification using method F and the desired compound obtained as a 
white solid after lyophilization. (5.00 mg, 3.681 μmol, 82.7%). HR-MS for C69H105N11O15P+ 
[M+H]+ calcd.: 1358.7524, found 1358.7518. 
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4.11. O-2-(2-Hydroxyethoxy)ethyl-P-ethynyl-phosphonamidate-VC-PAB-MMAE 
10 

 

In a screw-cap-vial equipped with a stirring bar, 5 mg of H2N-Val-Cit-PAB-MMAE 11 
(4.452 μmol, 1.00 eq.) and 3.65 mg 2-(2-Hydroxyethoxy)ethyl-N-(4-benzoic-acid-N-
hydroxysuccinimideester)-P-ethynyl phosphonamidate (8) (8.904  μmol, 2.00 eq.) were 
dissolved in 50 μl DMF. 3.1 μl DIPEA (17.808  μmol, 4.00 eq.) were added and the solution 
was stirred overnight at room temperature. The solution was diluted with 4 ml 30% MeCN in 
H2O and subjected to semi-preparative HPLC purification using method F and the desired 
compound obtained as a white solid after lyophilization. (2.73 mg, 1.589 μmol, 35.7%). HR-
MS for C71H109N11O17P+ [M+H]+ calcd.: 1418.7735, found 1418.7729. 
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5. NMR spectra 
N-(4-azidobenzoyl)-L-valine 

 

 



N-(4-azidobenzoyl)-L-valine-anhydride 

 

 



N-(4-azidobenzoyl)-L-valine-L-citrulline 

 

 



N-(4-azidobenzoyl)-L-valine-L-citrulline-4-aminobenzyl alcohol (2) 

 

 



N-(4-(O-Ethyl-P-ethynyl-phosphonamidato-N-benzoyl)-L-valine-L-citrulline-4-aminobenzyl 
alcohol (2) 

 

 



 

 
 
N-(4-(O-Ethyl-P-ethynyl-phosphonamidato-N-benzoyl)-L-valine-L-citrulline-4-aminobenzyl-4-
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Di-(2-(2-Hydroxyethoxy)ethyl) ethynylphosphonite (5) 
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FLEXamers: A Double Tag for Universal Generation of
Versatile Peptide-MHC Multimers

Manuel Effenberger,*,1 Andreas Stengl,†,1 Kilian Schober,*,1 Maria Gerget,*
Maximilian Kampick,* Thomas R. Müller,*,‡ Dominik Schumacher,† Jonas Helma,†

Heinrich Leonhardt,† and Dirk H. Busch*,‡,x

Peptide-MHC (pMHC) multimers have become a valuable tool for immunological research, clinical immune monitoring, and
immunotherapeutic applications. Biotinylated tetramers, reversible Streptamers, or dye-conjugated pMHC multimers are distinct
pMHC reagents tailored for T cell identification, traceless T cell isolation, or TCR characterization, respectively. The specific
applicability of each pMHC-based reagent is made possible either through conjugation of probes or reversible multimerization in
separate production processes, which is laborious, time-consuming, and prone to variability between the different types of pMHC
reagents. This prohibits broad implementation of different types of pMHC reagents as a standard toolbox in routine clinical
immune monitoring and immunotherapy. In this article, we describe a novel method for fast and standardized generation of any
pMHC multimer reagent from a single precursor (“FLEXamer”). FLEXamers unite reversible multimerization and versatile
probe conjugation through a novel double tag (Strep-tag for reversibility and Tub-tag for versatile probe conjugation). We demon-
strate that FLEXamers can substitute conventional pMHC reagents in all state-of-the-art applications, considerably accelerating and
standardizing production without sacrificing functional performance. Although FLEXamers significantly aid the applicability of
pMHC-based reagents in routine workflows, the double tag also provides a universal tool for the investigation of transient molecular
interactions in general. The Journal of Immunology, 2019, 202: 2164–2171.

A Tcell’s function is determined largely through the affinity
of the TCR to Ags presented on the MHC (peptide-MHC
[pMHC]) of cells. Analyses of TCR:pMHC interactions

have been challenging as the affinity of monomeric pMHC mole-
cules is not strong enough for stable binding. Scaffolds allowing
multimerization enable analyses of weak and transient interactions
of molecules through a gain in avidity through multivalent binding.
Soluble pMHC monomers (biotinylated, e.g., via an Avi-tag) can
be multimerized on a dye-conjugated streptavidin backbone
(“tetramer”) (1). This enables sensitive identification and isola-
tion of Ag-specific T cells and has opened up new avenues for in-
depth T cell analysis in basic research and immune monitoring
in a clinical setting (2).

However, stable binding of pMHC tetramers can also deteriorate
T cell functionality in vivo (3, 4). The fact that pMHC ligand
binding to the TCR is stable in its multivalent form but can be
reversed upon monomerization has been exploited for the devel-
opment of clinical cell selection and processing technologies (5–8)
and is further used for in-depth characterization of TCR:pMHC
interactions. Reversible pMHC multimer reagents, such as “Strep-
tamers,” allow traceless isolation of cell products with no functional
difference compared with cells that have never bound pMHC
multimers (5–9). When reversible pMHC monomers themselves are
labeled with a fluorophore, their dissociation from TCRs on living
T cells can be tracked over time (10, 11). Through this, absolute and
reproducible measurements of TCR:pMHC dissociation (koff) rates
can be achieved in a relatively easy and high-throughput compatible
manner. TCR-ligand koff rates indicate TCR avidity and are pre-
dictive of T cell functionality (10).
Until now, the versatility of pMHC multimer reagents comes at

the cost of distinct generation processes for each application
(Supplemental Fig. 1). Separate recombinant protein expression,
in vitro refolding, and pMHC purification processes make the
synthesis of pMHC-based reagents laborious, time-consuming,
and prone to batch-to-batch variability. The cumbersome and
expensive effort to generate distinct pMHC constructs for each
application has so far prevented many laboratories to make broad
use of the versatility of pMHC multimer reagents. Ideally, the
three distinct constructs should emerge from one common
pMHC precursor, thus streamlining the production process while
simultaneously providing full flexibility to generate all other
pMHC multimer types. Flexibility can be achieved by enzymatic
functionalization tags (12, 13). In addition, Strep- and His-tags
can be used to generate reversible pMHC multimer reagents
(14). So far, however, no approach has provided an all-in-one
solution to produce versatile pMHC-based reagents within a
simple generation process. In this article, to our knowledge, we
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present a novel approach to generate distinct pMHC multimer
reagents from a single, highly functional, double-tagged pMHC
precursor protein (“FLEXamer”). FLEXamers can be used without
further modification for traceless isolation of T cells but can also be
conjugated 1) with biotin for stable identification of Ag-specific
T cells, 2) with fluorescent dyes to track dissociation of mono-
meric pMHC molecules for TCR avidity measurement, or 3) with
any probe of interest.

Materials and Methods
Tubulin tyrosine ligase expression and purification

Tubulin tyrosine ligase (TTL) was expressed and purified as follows,
according to a published protocol (15). The TTL (Canis lupus) coding
sequence was amplified from a mammalian expression vector (16),
cloned into a pET28-SUMO3 (EMBL-Heidelberg, Protein Expression
Facility), and expressed in Escherichia coli BL21(DE3) as a Sumo-TTL
fusion protein with an N-terminal His-tag. Expression was induced with
0.5 mM isopropyl b-D-thiogalactoside and incubated at 18˚C for 18 h.
Lysis was performed in the presence of lysozyme (100 mg/ml), DNAse
(25 mg/ml), and PMSF (2 mM), followed by sonication (Branson
Sonifier; five times, 7 3 8 s, 40% amplitude) and debris centrifugation
at 20,000 3 g for 30 min. His-Sumo-TTL was purified using a 5 ml
HisTrap (GE Healthcare). Purified protein was desalted on a PD10
column (GE Healthcare); buffer was exchanged to MES/K (pH 7.0; 20 mM
MES, 100 mM KCl, 10 mMMgCl2) supplemented with 3 mM 2-ME, 50 mM
L-glutamate, and 50 mM L-arginine. Protein aliquots were shock frozen and
stored at 280˚C.

Cloning of Tub- and sortase A tag into Streptamer
expression vector

pET3a expression vectors containing the coding sequence of Strep-tagged
HLA allotypes, including murine H2-Kb, served as parental plasmid to
insert the Tub-tag or sortase A (SrtA)-tag sequence seamlessly downstream
of Strep-tag. All insertions were performed using the Q5 Site-Directed
Mutagenesis Kit (New England BioLabs) following manufacturer’s pro-
tocol. Insertion primers (Sigma-Aldrich) contained 18 bp of plasmid
binding sequence flanking the integration site and encoded one-half of the
Tub- or SrtA-tag sequence.

Generation of pMHC monomers

All pMHC monomers described in this report, including the double-tagged
pMHC molecules, were generated as previously described (2, 5). In brief,
recombinantly expressed and purified human as well as murine MHC H
chain (HC) and b2 microglobulin were denatured in urea and subsequently
refolded into the heterotrimeric pMHC complex in the presence of an
excess of peptides (synthetic peptides purchased by Peptides and Ele-
phants). Correctly folded pMHC monomers were purified using size ex-
clusion chromatography, concentrated, and stored at 280˚C or in liquid
nitrogen. All conventional dye-conjugated Streptamers used for koff rate
measurements were generated by Maleimide chemistry using a solvent-
exposed artificial cysteine residue as described (10, 17).

TTL reaction on Tub-tagged FLEXamers

TTL-catalyzed ligation of 3-azido-L-tyrosine (Watanabe Chemical Indus-
tries) to Tub-tagged FLEXamers was performed in 25–100 ml consisting of
20 mM FLEXamer, 5 mM TTL, and 1 mM 3-azido-L-tyrosine in TTL-
reaction buffer (20 mM MES, 100 mM KCl, 10 mM MgCl2, 2.5 mM ATP,
and 5 mM reduced glutathione) at 25˚C for 3 h followed by buffer ex-
change to 20 mM Tris HCl and 50 mM NaCl (pH 8) by size-exclusion
chromatography (Zeba Spin desalting columns, 7K MWCO; Thermo
Scientific). Azido-FLEXamers were stored at 4˚C or directly used for click
functionalization.

Click functionalization of azido-FLEXamers

Azido-FLEXamers were functionalized by incubation of 20 mM azido-
FLEXamer with either 400 mM DBCO-PEG4-Biotin, 400 mM DBCO-
sulfoCy5, or 200 mM DBCO-PEG4-Atto488 (Jena Bioscience) for 18 h
at 16˚C followed by buffer exchange to 20 mM Tris, 50 mM NaCl (pH 8),
and storage at 280˚C. Conjugation was analyzed by reducing SDS-PAGE
and Coomassie staining. Conjugation efficacies were assessed from scan-
ned Coomassie-stained SDS-PAGE gels. For this, the Gel Analyzer plugin
of the Fiji software was used to quantify band intensities of unconjugated and
conjugated HC. The efficiency was calculated using the following equation:

intensity-labeled HC/(intensity-labeled HC + intensity-unlabeled HC). To
confirm the identity of the attached functional groups, biotinylated
FLEXamers were plotted on a nitrocellulose membrane, stained with a
streptavidin-Alexa Fluor 594 (Dianova) conjugate, and detected on an
Amersham Imager 600 system (GE Healthcare). In-gel fluorescence
of fluorophore-labeled FLEXamers was directly detected using the same
instrumentation.

Functionalization of SrtA-tagged FLEXamers

A total of 10 mM SrtA-tagged FLEXamer was incubated with 1 mM Gly5-
FITC or 1 mM Gly5-biotin peptide (JPT Peptide Technologies GmbH) and
30 mM SrtA (kindly provided as purified enzyme derived from Staphylo-
coccus aureus by Dr. H. Meyer; Technical University of Munich) in
20 mM HEPES and 5 mM CaCl2 (pH 7.5) at 25˚C for 18 h. Ni-NTA
Agarose–based pulldown (Quiagen) in PBS and 20 mM imidazole (pH 8)
at 4˚C for 30 min was used to remove His-tagged SrtA and SrtA-tagged
FLEXamer educts still carrying the His-tag. Purified functionalized SrtA-
tagged FLEXamers were buffer exchanged after functionalization to
20 mM Tris and 50 mM NaCl (pH 8). Conjugation and purification were
analyzed by SDS-PAGE, followed by detection of in-gel fluorescence and
Coomassie staining.

CMV-reactive primary T cells and T cell clones

CMV-reactive T cell clones were generated and cultured as described
previously (10). Primary T cells reactive for CMV were derived from
healthy CMV-seropositive donors. Written informed consent was obtained
from the donors, and usage of the blood samples was approved according
to national law by the local Institutional Review Board (Ethikkommission
der Medizinischen Fakultät der Technischen Universität München). Blood
was diluted 1:1 with sterile PBS and PBMCs isolated by density gradient
centrifugation using Leucosep tubes (Greiner Bio-One) following manu-
facturer’s protocol.

pMHC multimer and Ab staining

All reversible pMHC monomers (with and without dye) were multimerized
on Strep-Tactin APC or Strep-Tactin PE (IBA) by incubating 1 mg of re-
versible pMHC monomer and 1 ml of Strep-Tactin APC or PE in a total
volume of 50 ml of FACS buffer for 30 min on ice in the dark. Conven-
tionally biotinylated pMHC monomers for generation of nonreversible
multimers were generated as described (2). Subsequently, all biotin func-
tionalized pMHC monomers described in this report were multimerized
by incubation of 0.4 mg of biotinylated pMHC monomers with 0.1 mg
of streptavidin-BV421 (BioLegend), 0.25 mg of streptavidin-PE
(eBioscience), or 0.1 mg of streptavidin-APC (BioLegend) in a total vol-
ume of 50 ml of FACS buffer for 30 min on ice in the dark. For koff rate
measurements, up to 5 3 106 cells were incubated with dye-conjugated
reversible pMHC multimers for 45 min on ice in the dark. Ab staining
(CD8 eF450 eBioscience, Thermo Scientific) was added after 25 min, and
cells were incubated for an additional 20 min. If combinatorial staining
with nonreversible pMHC multimers was performed, cells were washed
and incubated for 10 min with nonreversible pMHC multimers on ice in
the dark. For live/dead discrimination, cells were washed in propidium
iodide solution. When solely performing pMHC multimer staining with a
combination of nonreversible pMHC multimers, staining was incubated
for 30 min on ice in the dark. We routinely stain the pMHC multimer
conjugated to the smaller dye first. After incubation, cells were washed
and stained with the second pMHC multimer for 30 min. Ab staining
was added after 10 min, and cells were incubated for an additional 20 min.
When cells were stained with reversible pMHC multimers for traceless
cell isolation, samples were incubated for 45 min with the multimer re-
gent. After 25 min, Ab staining was added, and cells were incubated for
an additional 20 min. All FACS data were analyzed with FlowJo software
(FlowJo).

FACS analysis and flow sorting

Acquisition of FACS samples was done on a CyAn ADP Px9 color flow
cytometer (Beckman Coulter). Flow sorting was conducted on a MoFlo
legacy (Beckman Coulter). koff rate measurements were performed as
described (18). In brief, samples were transferred into precooled FACS
tubes containing a total volume of 1 ml of FACS buffer and placed into a
Peltier cooler (qutools GmbH) set to 5.5˚C. After 30 s acquisition, 1 ml
of cold 2 mM D-biotin was added into the ongoing measurement. Dis-
sociation kinetics were measured for 15 min. For analysis of koff rate
data, fluorescence data of Ag-specific cells were exported from FlowJo to
PRISM (GraphPad Software). The t1/2 was determined by fitting a one-
phase exponential decay curve.
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Results
A double tag enables generation of both reversible and
functionalizable pMHC monomers from one
precursor construct

We hypothesized that combining a site-specific functionalization
tag with a reversible multimerization tag to a double-tagged
FLEXamer will unite reversibility with the opportunity to equip
the pMHC with any desired additional functionality (Fig. 1,
Supplemental Fig. 1). For site-specific conjugation, we first
chose a new chemoenzymatic system, termed Tub-tag (15),
which is based on a short hydrophilic, unstructured sequence
recognized by TTL (19). TTL-catalyzed attachment of tyrosine
derivatives, such as 3-azido-L-tyrosine, allows subsequent ad-
dition of a variety of functional groups, such as biotin or dyes, by
highly efficient and mild click chemistry (15). Similar to other
chemoenzymatic approaches, the TTL reaction is not reversible;
however, the product does not suffer from hydrolysis, and the
substrate tyrosine derivatives represent compounds that are easy
to synthesize (15) or commercially available (see Materials and
Methods).
We performed proof-of-concept experiments to test if we could

use this strategy to conjugate biotin or dyes to Strep- and Tub-
tagged FLEXamers. We generated two different FLEXamers
for the HLA class I HC B*07:02 and B*08:01, which present
CMV pp65 and IE1, respectively (Fig. 2A). Enzymatic activation
of the common precursor FLEXamer and subsequent conjuga-
tion with biotin, Atto488, or sulfo-cyanine5 was highly efficient,

with conversion rates .95% based on Coomassie-stained SDS-
PAGE gel band intensities (Fig. 2B; see Materials and Methods).

FLEXamers are highly functional pMHC reagents

We then tested whether the nonreversible biotinylated FLEXamer,
the reversible dye-conjugated FLEXamer, and their reversible
FLEXamer precursor could fulfill their distinct functions. Bio-
tinylated FLEXamers stained B*07:02/pp65417–426–specific T cells
from peripheral blood of a CMV-seropositive donor with high
sensitivity and no difference to conventionally biotinylated tetra-
mers (Fig. 3). An irrelevant epitope/MHC combination (A*02:01/
Her2neu369–377) served as control for unspecific staining (Fig. 3).
To test for possible interference of the functionalization tag with

reversibility, we stained and flow sorted B*07:02/pp65417–426–
specific CD8+ T cells from peripheral blood of a CMV-seropositive
donor either with conventional Streptamers or FLEXamers (Fig. 4).
FLEXamers could stain B*07:02/pp65417–426-specific T cells and
allowed high purity flow cytometric sorting like conventional
Streptamers (Fig. 4B). Upon addition of D-biotin, the pMHC label
could be detached. Complete removal of pMHC monomers from
the cells is demonstrated by the inability to restain the cells by
solely adding the Strep-Tactin backbone, whereas addition of the
multimerized FLEXamer resulted in efficient restaining (Fig. 4B).
Conjugation of dyes to Streptamer pMHCs allows direct

tracing of pMHC monomer dissociation kinetics after addition of
D-biotin, to measure TCR:pMHC koff rates for TCR structural
avidity estimation (10, 18) (Fig. 5). When a B*07:02/pp65417–426
T cell clone was stained with dye-conjugated Streptamers or

FIGURE 1. Double-tagged pMHC FLEXamers streamline generation process of distinct pMHC reagents. Schematic depiction of pMHC generation from
“FLEXamers” and their respective application in T cell immunology. pMHC FLEXamer complexes are assembled from combinations of double-tagged
HC, peptide Ags, and b2 microglobulin. The double tag consists of a Strep-tag for reversible multimerization and a Tub-tag for site-specific function-
alization. This allows functionalization and multimerization of nonreversible, reversible, or dye-conjugated reversible pMHCs from the same precursor
molecule for T cell identification, traceless T cell isolation, or TCR avidity measurement respectively.
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FLEXamers, the dye-conjugated pMHC molecules showed mo-
nomeric pMHC dissociation after initial dye dequenching, as
previously described (10) (Fig. 5B). The koff rates determined
by fitting of exponential decay curves were identical for dye-
conjugated Streptamers and FLEXamers (Fig. 5D). We next
tested the functionality of murine FLEXamers and therefore
generated FLEXamers for H2-Kb/OVA257–264. We measured koff rates
of OT-I transgenic T cells, which were as fast as expected (20) and did

not differ between conventionally generated dye-conjugated Strep-
tamers and dye-conjugated FLEXamers (Supplemental Fig. 2A).
Using double staining with a nonreversible biotinylated pMHC

multimer and a reversible dye-conjugated pMHC Streptamer,
dissociation kinetics can be tracked without previous purification
on a flow cytometer through continuous gating on the nonreversible
pMHC multimer+ T cell population (18). This emphasizes that
not only the different pMHC constructs themselves but also their

FIGURE 2. Efficient functionalization of double-tagged FLEXamers with biotin or fluorophores. (A) Schematic depiction of FLEXamer-mediated
functionalization into distinct pMHC reagents. (B) SDS-PAGE, followed by Coomassie and Western blot analysis of site-specific labeling of B*07:02/
pp65(417–426) and B*08:01/IE1(199–207K) HC by TTL-mediated incorporation of 3-azido-L-tyrosine (lane “-”) and subsequent click conjugation of
DBCO-PEG4-biotin (Bio), DBCO-PEG4-Atto488 (A488), or DBCO-sulfoCy5 (sCy5). HC+X indicates the m.w. after conjugation of HC. Presence of
the respective functional group is shown by streptavidin-Alexa495–based detection of Bio or in-gel fluorescence of A488 and sCy5. Lane “L” re-
presents the m.w. marker.

FIGURE 3. T cell identification: comparing nonreversible biotinylated double-tagged FLEXamers versus conventional tetramers. (A) Schematic depiction
comparing generation of nonreversible pMHC monomers using FLEXamer or BirA technique. (B) pMHC multimer staining of B7/pp65(417–426)-specific
CD8+ T cells from peripheral blood of a CMV-seropositive donor. pMHCs were conventionally biotinylated (Tetra) and multimerized on streptavidin-PE
or biotinylated via Tub-tag technique (FLEX) and multimerized on streptavidin-APC. Relevant epitope: B7/pp65(417–426); irrelevant control epitope:
A2/Her2neu(369–377). Pregated on single, living CD8+ T cells.
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combinatorial use enable in-depth T cell characterization. We cos-
tained a heterogeneous B*07:02/pp65417–426–specific T cell pop-
ulation directly ex vivo with both nonreversible pMHC conjugated
to biotin and reversible pMHC conjugated to Atto488 (Fig. 5C).
Nonreversible pMHC multimers allowed continuous gating on the
Ag-specific T cell population after the addition of D-biotin
(Supplemental Fig. 2B), whereas the reversible fluorophore-
conjugated pMHC monomers dissociated over time (Fig. 5C,
Supplemental Fig. 2E). The heterogeneous T cell populations
specific for B*07:02/pp65417–426 entailed two distinct kinetics
(Fig. 5C, Supplemental Fig. 2D). We retrieved T cell clones from
both kinetics and stained them with dye-conjugated Streptamers
and FLEXamers. Again, we obtained highly comparable dissoci-
ation rates resembling those of the parental T cell population
(Supplemental Fig. 2D). After 60 min of D-biotin addition, both
kinetics reached baseline, validating that both populations repre-
sented true dissociation kinetics (Supplemental Fig. 2C). The
combinatorial use of pMHC reagents therefore allows visualiza-
tion of subpopulations with different dissociation kinetics from a
common native heterogeneous T cell population directly ex vivo.
FLEXamers enable universal generation of these different pMHC
constructs from a common precursor protein.

FLEXamers can be generated with different
functionalization tags

Next, we set out to test the general applicability of our double-tag
approach. Therefore, we cloned and refolded an HLA-A*02:01

FLEXamer harboring a SrtA recognition tag for versatile protein
conjugation via transpeptidation (13). This construct is addition-
ally equipped with a His-tag for fast and efficient protein purifi-
cation after transpeptidation (Supplemental Fig. 3A). We stained
PBMCs with a transgenic TCR specific for A*02:01/pp65495–503
with Tub-tag– or SrtA-biotinylated tetramers (Supplemental Fig. 3B)
and also tested reversibility of the SrtA-tag carrying FLEXamer
precursor (Supplemental Fig. 3C). Furthermore, Tub- or SrtA-tag
dye-conjugated reversible FLEXamers were tested for character-
ization of TCR:pMHC koff rates (Supplemental Fig. 3D, 3E). In
each case, SrtA FLEXamers, Tub-tag FLEXamers, and their
biotin- or dye-conjugated downstream pMHC products per-
formed equally well (Supplemental Fig. 3B–E) independent of
the respective functionalization strategy. However, compared
with Tub-tag, SrtA-mediated pMHC functionalization is less
efficient overall, which had to be compensated by significantly
increased educt consumption. We therefore focused on Tub-tag
technology to generate FLEXamers.

Double-tagging of pMHC monomers allows highly efficient
and flexible functionalization independent of HLA allotype
and Ag peptide

Encouraged by the much simpler generation process of different
pMHC multimer reagents from a single double-tagged FLEX-
amer precursor, we also generated FLEXamers for other epitope–
HLA combinations. For B*08:01 presenting IE1199–207K, we
validated the equal functionality of nonreversible, reversible, and

FIGURE 4. Traceless T cell isolation: comparing unmodified reversible double-tagged FLEXamers versus Streptamers. (A) Schematic depiction
comparing generation of reversible pMHC monomers using FLEXamer or Streptamer technique. (B) Flow sort purification and restaining of B7/pp65
(417–426)-specific CD8+ T cells from peripheral blood of a CMV-seropositive donor with FLEXamers or conventional Streptamers. Pregated on single,
living lymphocytes.
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fluorophore-conjugated FLEXamers (Supplemental Fig. 4). To
even further extend the set of available FLEXamers, we folded
26 FLEXamers in total, covering nine HLA class I HC as well as
the murine HC H2-Kb (Fig. 6A). The conjugation efficacy with
fluorophore or biotin was consistently high for all FLEXamers
(Fig. 6B). Because of the skewed frequency distribution of HLA
class I alleles, the nine human HLA HC together cover 76.5% of
the European Caucasian population (Fig. 6C, 6D) and also entail
two allotypes (A*24:02 and A*11:01), which are highly prevalent
in Asian populations. This set of FLEXamers can serve as pre-
cursors for any kind of pMHC reagent.

Discussion
The heterogeneity of infectious agents and cancers is met by the
adaptive immune system’s ability to present and recognize many
different targets. The total epitope repertoire has been estimated to
be between 106 and 1011 in mice (21) and is likely similarly, if not
even more diverse in humans. More than 13,000 HLA class I alleles
have now been described for humans (22), and the total human TCR

repertoire encompasses more than 108 unique clonotypes (23).
Customized monitoring of Ag-specific immune responses and in-
dividualized immunotherapy therefore require streamlined methods
that allow flexible adaptation for each patient and disease in terms
of target-specific epitopes as well as patient-specific HLA (24).
The versatile applicability of pMHC multimer reagents (for T cell
identification, traceless isolation, or TCR avidity measurement)
makes them particularly valuable tools for the investigation and
therapeutic use of T cells (25) but consequently adds even a third
level of complexity as so far as the specific reagents needed to be
produced separately.
To be compatible with the extreme diversity of epitopes, UV

exchange (26) or dipeptide (27) technologies have been devel-
oped that can be used to load HLA class I with any epitope of
interest. In addition, combinatorial pMHC staining (28, 29) and
DNA barcoding (30) have massively enhanced the throughput of
screening Ag-specific T cell populations and their respective
TCR repertoires. Despite this progress, difficulties to generate
distinct pMHC multimer reagents appropriate for each individual

FIGURE 5. TCR avidity measurement: comparing dye-conjugated double-tagged FLEXamers versus dye-conjugated Streptamers. (A) Schematic de-
piction comparing generation of dye-conjugated reversible pMHC monomers using FLEXamer technique or maleimide dye chemistry on Streptamers. (B)
Dissociation kinetics of a B7/pp65(417–426)-specific CD8+ T cell clone measured with dye-conjugated Streptamers or dye-conjugated FLEXamers. Red
dotted line indicates D-biotin addition. (C) Dissociation kinetics of B7/pp65(417–426)-specific CD8+ T cells from peripheral blood of a CMV-seropositive
donor, stained with a combination of nonreversible biotinylated pMHCs and reversible dye-conjugated pMHCs. Nonreversible pMHC multimer+ CD8+

T cells are gated for dissociation kinetics of dye-coupled pMHCs after D-biotin addition (red dotted line). (D) Quantification of technical triplicates of
representative experiment shown in (B) and (C). One symbol represents one dissociation. Unpaired, non parametric Kolmogorov-Smirnov test. Pregated on
single, living CD8+ T cells in (B) and pregated on single, living lymphocytes in (C).
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setting in a fast and reliable manner remain a significant chal-
lenge to personalized cell therapy and T cell–based diagnostics.
Importantly, for broad applicability of pMHC multimer re-
agents, the production process of different kinds of pMHC
multimer reagents needs to also be feasible for many different
HLA class I HC.
FLEXamers combine the provision of versatility through distinct

pMHC constructs with a simple generation process from a single
precursor protein (Fig. 1). FLEXamers are highly functional
while being produced in a faster and more standardized manner
compared with conventionally generated pMHC reagents. A core
feature of FLEXamers is a novel double tag that allows reversible
multimerization as well as functionalization with any probe of
interest. In this study, we provide proof of concept to generate
biotinylated tetramers, reversible Streptamers, or reversible dye-
conjugated pMHC multimer reagents from a common FLEXamer
precursor protein. Notably, the use of FLEXamers is not limited
to these specific reagents as the functionalization tag also allows
conjugation, for example, of DNA oligonucleotide sequences,
toxins (Fig. 1), and many more entities. Furthermore, FLEXamers
can be readily combined with epitope exchange technologies (27,
31). Because of the combination of a simple generation process
with versatile application, FLEXamers facilitate implementation
of different types of pMHC reagents in routine clinical immune
monitoring and immunotherapy.

The effort and costs needed to generate distinct pMHC multimer
reagents for each application has so far been a key obstacle
for laboratories to fully exploit the versatility of pMHC-based
reagents. Double-tagged pMHC FLEXamers can be easily gen-
erated and applied. Furthermore, although the double tag is a
general concept readily compatible with the use of alternative
functionalization tags (e.g., SrtA-tag). Notable advantages of Tub-
tag technology are mild reaction conditions combined with high
conjugation efficiencies using click chemistry, whereas function-
alization via artificial solvent-exposed cysteine residues generates
the risk of dimer formation via disulfide bridges and changes in
tertiary structure because of the introduction of a polar amino acid.
Finally, we used Tub-tag technology to generate a comprehensive
set of versatile pMHC FLEXamers for nine different human HLA
as well as murine H2-Kb.
Multivalent binding can serve as an “on switch” to stabilize

otherwise transient binding of weak interaction partners. In
turn, receptor–ligand binding can be switched off via disruption
of the multimeric complex, which requires that the multi-
merization is reversible. Versatile functionalization thereby
allows further stabilization of the interaction or tracking via
fluorescent dyes. The field of T cell immunology has made ex-
tensive use of this trick through multimerization of pMHC
monomers. Our double-tag approach enables universal genera-
tion of different pMHC constructs, but also constitutes a flexible

FIGURE 6. Double-tagged FLEXamers allow highly efficient functionalization irrespective of HLA allotype and presented peptide epitope and can
also be transferred to murine MHC. (A) SDS-PAGE analysis of site-specific labeling of HLA and MHC monomers by TTL. Incorporation of 3-azido-
L-tyrosine (-) and subsequent click conjugation of DBCO-PEG4-Atto488. HC-Atto488 indicates the m.w. after conjugation of HC. Presence of
Atto488 was proven by in-gel fluorescence. L indicates the m.w. marker. (B) Conjugation efficacy of all 26 HLA-FLEXamers and murine FLEXamer
H2-Kb/OVA coupled to Biotin or Atto488. (C) Fifty most frequent HLA class I alleles of European Caucasian population in descending order, with
HC used for FLEXamer generation, shown in red. (D) Cumulative coverage of 50 most frequent HLA class I alleles (area under the curve in gray) or
selected nine FLEXamer H chains.
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tool for investigation of transient protein–protein interactions in
general.
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Figure S1. Generation of conventional pMHC reagents and corresponding tags for functionalization.A) Non-
reversible pMHC reagents ('tetramers') are generated by refolding of pMHC molecules harboring an Avi-tag
at the C-terminus of the heavy chain for biotinylation. Biotinylated pMHC monomers can be non- reversibly
multimerized on streptavidin. Reversible pMHCs carry an affinity-tag, e.g. a Strep-tag at the C- terminus of
the heavy chain, that allows stable multimerization on Strep-Tactin, which can be reversed upon addition of
higher affine competitor molecules. Reversible dye-conjugated pMHC reagents can be generated through the
introduction of an artificial solvent-exposed cysteine in the pMHC (e.g. mβ2m Y67C or hβ2m S88C), which
allows dye coupling via maleimide chemistry after folding. B) Tags used for pMHC functionalization.
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5 DISCUSSION 
Therapeutic drugs have undergone constant development since the dawn of modern 

medicine. Some changes were incremental improvements of contemporary concepts, 

others were radical shifts to revolutionary approaches. Common goals of all 

developments were, on the one hand, more effective and safer therapy and, on the other 

hand, treatment of previously incurable diseases. Cancer has become apparent as a 

particularly challenging disease due to its inherent heterogeneity, evolutionary adaption 

mechanisms of cancer cells and the intricate similarity of cancerous and healthy cells. 

These challenges stringently require sophisticated drugs, hence, have moved cancer in 

the spotlight of applied pharmaceutical as well as basic biomedical research. This 

attention established cancer as a role model for the development of novel classes of 

therapeutics. Namely, therapeutic antibody formats and cell therapy concepts have 

recently gained strong momentum. In this context, the present work addresses assays 

for comprehensive analysis, of anti-proliferative antibodies, methods for the generation 

of antibody-drug conjugates, bispecific antibodies and protein conjugates in general as 

well as reagents for the identification and characterization of therapeutic T cells. 

5.1 QUANTIFICATION OF REPLICATING CELLS AND DNA CONTENT AS 

SENSITIVE MEASURES OF ANTI-PROLIFERATIVE ANTIBODY 

ACTIVITY  

Monoclonal antibodies (mAbs) have become a central class of therapeutic agents, in 

particular as anti-proliferative compounds. Their often complex modes of action require 

sensitive assays already during early, functional characterization. Current cell-based 

proliferation assays often detect metabolites that are indicative of metabolic activity, but 

do not directly account for cell proliferation. Measuring DNA replication by 

incorporation of base analogues fills this analytical gap but was previously restricted to 

bulk effect characterization in ELISA formats. DNA replication can be visualized by the 

incorporation of 5-ethynyl-2′-deoxyuridine (EdU) and subsequent conjugation of 

flourophores by click chemistry. Single-cell high-content-analysis (HCA) offers the 

possibility of quantifying EdU incorporation of individual cells in an automated, high 

throughput manner. This allows the analysis of thousands of cells per well and hundreds 

of wells in a multi-well format. Thus, the combination of EdU incorporation with high 

content imaging is suitable for sensitive but convenient quantification of replicating 

cells, hence, can provide a sensitive measure for anti-proliferative mAb activity. 

Furthermore, parallel quantification of single cell DNA content by DAPI staining allows 

additional insight into cell cycle distributions in a single experiment. Using 

trastuzumab, an anti-proliferative therapeutic antibody interfering with HER2 signaling, 

this strategy demonstrated increased signal to background ratios compared to merely 

counting surviving cells and, additionally, revealed a shift in cell cycle profiles indicating 

antibody induced cell cycle arrest (see chapter 4.1). Increased signal to background ratio 

has recently also been demonstrated with a DELFIA-BrdU assay (X. Lu & Bergelson, 

2014). However, EdU incorporation, subsequent staining by click chemistry and 

microscopy based evaluation i) is more sensitive and mild, ii) provides the possibility for 
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multiplexed readout of various parameters and iii) increases the assay resolution by the 

detection of single cells instead of averaging over a bulk population. Microscopic 

detection of the proliferative state of individual cells might also allow assessment of an 

antibodie’s penetrance in multi-cell aggregates. Additionally, antibody uptake could be 

visualized for each cell of a multi-cell aggregate in the same experiment. Furthermore, 

the fate of individual cells can be assessed and their individual microenvironment can be 

taken into account. Along this line, additional cell types like stromal cells or immune 

cells could be cocultured to simulate tumor environments or asses the role of ADCC or 

CDC in an antibodie’s mode of action. EdU based labeling of proliferating cells with 

subsequent automated imaging and analysis combined with DAPI based cell cycle 

profiling is a simple and sensitive way for parallel investigation of anti-proliferative 

potency and mode of action of therapeutic antibodies. The described assay is simple, 

cost-effective and sensitive, hence, might provide a cell-based format for preclinical 

characterization of therapeutic mAbs. 

5.2 MODULAR ASSEMBLY OF BISPECIFIC ANTIBODIES BY SITE-SPECIFIC 

PROTEIN LIGATION 

Bispecific antibodies have recently emerged as highly promising therapeutic antibody 

format. The combination of two (or more) binding units in a single molecule opens up 

the possibilities for completely new modes of action. The bispecific format can, for 

example, increase specificity by simultaneously targeting two individual markers on a 

target cell. Furthermore, bispecific constructs can also act as a sort of heterobifunctional 

crosslinker. For example, two different cell types can be linked with a bispecific 

targeting two antigens of either one of the two cells. In a therapeutic setting such linker 

molecules can serve as adaptors for the recruitment of immune cells to malignant cells. 

Especially for the treatment of cancer, such immune cell redirection emerges as a 

promising strategy. For example, it allows the recruitment of immune cells to the 

immunesuppressive microenvironment of tumors. Although the combinatorial 

possibilities for bi- and multispecific antibodies and resulting novel modes of action are 

tremendous, it is crucial but not trivial how one connects the individual antibodies. 

Chemical crosslinking of IgGs was one of the first methods applied for the construction 

of bispecific antibodies since it does not require recombinant protein techniques and is 

compatible with early on antibody production methods like hybridoma technology. 

Amine or thiol reactive crosslinking reagents can readily be used as adaptors to 

covalently link antibodies, however, resulting heterogeneity in conjugation 

stoichiometry and site can be detrimental to antibodies’ function. Alternatively, chains 

of two antibodies can be shuffled by reduction and reoxidation of interchain disulfides 

to create an asymmetric IgG with two different binding units. However, random 

shuffling of chains also yields unwanted pairings and reduces the yield of functional 

bispecific antibodies. The correct pairing can be fostered by the introduction of 

asymmetric mutations (e.g.: knob-into-hole), CH1-CL domain exchange or common 

light chains. These approaches have the advantage of retaining the natural IgG 

architecture, however, are limited to two binding domains and consequently restricted 

to monovalent binding of a maximum of two antigens. The expansion of valency and 
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number of different paratopes can be achieved by appending the natural IgG structure 

with additional binding units. In this regard predominantly antibody fragments and 

single domain antibody mimetics have proven suitable for genetic fusion to either end 

of heavy or light chains. Even though genetic fusions are straightforward to construct, 

this approach comes with limitations such as strict C- to N-terminal linkage or the 

necessity of a mutual expression and purification strategy for both fusion partners. To 

circumvent these limitations alternative strategies like chemical ligation methods have 

been described for in vitro conjugation. Yet, just like genetic fusions, they are also 

limited to N- to C-terminal linkage. This structural constraint can influence conjugation 

efficiency and functional activity since the orientation of the fusion partners and their 

flexibility. Alternative connections, such as N-to-N or C-to-C fusions became available 

by the development of several site-specific, bioorthogonal conjugation methods. For 

example, peptide-tag based systems have been applied for protein-protein-ligation and 

have the advantage that they do not require engineered expression systems and 

generally allow flexible incorporation of bioorthogonal handles after protein production. 

Along this line we developed Tub-tag mediated C-terminal protein-protein-ligation 

(TuPPL) as a modular site-specific conjugation approach for the C-terminal ligation of 

proteins post expression. The modularity of TuPPL allows parallel functionalization of 

antibody fragments with bioorthogonal handles as well as straightforward conjugation 

of proteins that are produced in different expression systems. TTL catalyzed 

incorporation of 3-azido-L- and O-propargyl-L-tyrosine in combination with CuAAC 

chemistry enables the convenient generation of homodimeric and heterodimeric 

antibody-fragments (see chapter 0). Prominent examples of the later are Bispecific T cell 

Engagers (BiTEs). They combine two different antigen binding domains in a genetically 

fused tandem scFv to redirect immune cells to tumor cells. Especially in such cases 

where the combination product might not be sufficiently described by the 

characteristics of the individual binding units but rather by the novel synergistic effects 

it is crucial to screen early on in the final bispecific format. The great advantage of 

conjugating the individually expressed units lies in the convenient generation of 

combinatorial libraries. For example, multiple alternative tumor antigen binder can be 

criss-cross ligated to multiple alternative immune marker binder to find the most 

suitable combination. Since, contemporary antibody development strategies are mainly 

focused on the characterization of monospecific antibodies a modular ligation platform 

might prove as a useful complement. Moreover, especially for antibodies the C-to-C 

linkage generated by TuPPL can be beneficial since N-terminal fusion, as generated by 

standard genetic fusion or EPL, can impair antigen binding due to steric obstruction of 

the paratope. The relative orientation of binding sites in a multimeric complex has been 

shown to influence binding properties, hence, fusion proteins in general might benefit 

from the C-to-C-terminal linkage generated by TuPPL. In addition, TuPPL may readily 

be combined with other site-specific protein modification techniques due to the use of 

universal bioorthogonal handles. Moreover, the use of TuPPL can be expanded to many 

more proteins such as full length antibodies, enzymes or proteinaceous toxins. In this 

case, sets of pre-functionalized proteins could be used as building blocks for a modular 

and scalable protein ligation platform in which TuPPL serves as a central conjugation 

hub (Stengl et al., 2019). 
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5.3 ETHYNYLPHOSPHONAMIDATES FOR ADVANCED THIOL-SELECTIVE 

BIOCONJUGATION AND GENERATION OF ANTIBODY-DRUG 

CONJUGATES 

Site-specific modification of proteins has drawn great attention in recent years and put 

forth a set of novel functionalization strategies. Thiols have ever since been very 

attractive due to their strong nucleophilic character and the low abundance of cysteines 

on protein surfaces. Especially proteins with natural cysteines can thus be fairly 

specifically modified without the need for sequence manipulation or recombinant 

production. Alternatively, thiols can also be introduced recombinantly as a relatively 

compact handle for site-specific modification. As a proteinogenic amino acid, cysteine is 

readily inserted at a desired position in a protein sequence by standard molecular 

cloning and protein expression techniques. Both strategies have their benefits and either 

one might be more suitable depending on the specific application. Both strategies have 

been used successfully for the modification of antibodies, however, the conjugation to 

reduced interchain disulfide bridges allows very convenient yet relatively site-specific 

modification of non-recombinant antibodies, e.g. isolated from hybridoma clones, 

animals or humans. Although recombinant screening platforms are on the rise, 

immunization of animals and subsequent isolation of antibodies or antibody producing 

plasma cells is still widely used for antibody production. For those cases, the antibody 

sequences are not readily accessible or editable. Thus, cysteine conjugation is a 

convenient method to modify those antibodies for early on functional screening of 

conjugated antibody clones. For example, antibodies developed for the use in antibody-

drug conjugates can readily be tested for cytotoxic activity, potency and specificity. 

Several cysteine-selective modification techniques applying various compound classes 

have been employed. Maleimides still remain the most widely used method for chemical 

modification on cysteine residues (Gunnoo & Madder, 2016) mostly due to their rapid 

kinetics in the reaction with sulfhydryl groups. However, one of the biggest drawbacks 

of maleimide-conjugates is their instability caused by a retro Michael-addition in the 

presence of external thiols (Shen et al., 2012). Recently developed alternatives including 

self-hydrolyzing-maleimides (Shen et al., 2012; Szijj, Bahou, & Chudasama, 2018a) yield 

stable sulfhydryl-adducts; however, challenges remain, since stereo- or regioisomers are 

formed and their incorporation into functional molecules usually requires protecting 

group manipulations.  

Phosphonites and phosphonamidates are known as reactive groups for the modification 

of azide containing proteins. On the one hand, borane-protected ethynyl-phosphonites 

can react sequentially with two different azide containing entities by CuAAC coupling to 

their alkyne group and subsequent Staudinger-phosphonite reaction (SPhR) with the 

second azide. Using unprotected ethynyl-phosphonites, the conjugation of azides via 

SPhR turns the electron-rich ethynyl triple bond into a thiol-reactive electron-poor 

triple bond in the resulting phosphonamidate. Along this line, we used ethynyl-

phosphonamidates to chemoselectively incorporate functionalities such as biotin, 

fluorophores, and peptides with highly selective toward cysteine residues of proteins 

(see chapter 0). The generated cysteine adducts show superior stability compared to 

maleimides. Proof of concept experiments confirmed stable linkage and successful 
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conjugation of fluorophores to native antibody interchain cysteines and a cyclic cell 

penetrating peptide (cCPP) to an engineered cysteine on the surface of eGFP. The 

concept was further applied for the generation of antibody-drug conjugates (see chapter 

4.4). The conjugates also displayed superior stability properties in blood serum. Linkage 

stability is crucial for ADCs since drug loss on the one hand reduces the drug load of the 

ADC and thus its potency, on the other hand, free toxin can lead to off-target effects. In 

addition, phosphonamidate conjugated ADCs also proved efficacious in vitro as well as 

in vivo. Furthermore, the described conjugation strategy allows the introduction of 

hydrophilic moieties like polyethylene glycol (PEG) units together with the toxin. 

However, the PEG group is not attached as a linear spacer between antibody and toxin 

but rather attached as a second functional group to the phosphonamidate. This 

architecture allows counteracting the hydrophobicity introduced by the toxin but does 

not space the toxin farther from the antibody. The latter increases the solvent exposure 

of the drug and can negatively impact pharmacokinetic properties of an ADC. Cysteine-

selective protein modification by phosphonamidates is a valuable alternative to 

maleimide conjugation and might prove as an elegant strategy for the generation of 

antibody-drug conjugates in early-on screening of antibody candidates. Apart from 

antibody modification, it could also serve as a more stable alternative to maleimide 

conjugation for a large variety of proteins equipped with engineered cysteines.  
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5.4 SITE-SPECIFIC BIOCONJUGATION IN COMBINATION WITH 

REVERSIBLE MULTIMERIZATION FOR THE CHARACTERIZATION OF 

WEAK LIGAND-RECEPTOR INTERACTIONS 

Novel bioconjugation strategies commonly use bioorthogonal reactions and unite 

characteristics such as robustness, outstanding specificity, fast reaction kinetics, 

tolerance of complex solvents, high linkage stability in biological systems and 

compatibility with a great range of proteins and functional groups. Advanced thiol-

reactive reagents like ethynylphosphonamidates discussed in chapter 5.3 can readily be 

used to improve conjugate quality for already established cysteine conjugation pipelines. 

This can be beneficial if a large reagent set with engineered cysteines already exists or 

the protein to be modified contains targetable endogenous cysteines. Site-specific 

(chemo)enzymatic approaches are conceptually different in that they mostly require 

sequence manipulation, but allow convenient use of novel bioorthogonal reactions like 

click chemistry. However, these methods come with benefits such as mild reaction 

conditions, stable linkage and a defined number of attached functional groups. The 

former two can increase the overall quality of reagents generated by bioconjugation. The 

latter yields homogeneous reagents with defined properties. For example, fluorophores 

can be attached to affinity reagents in a defined number presumably resulting in a 

quantitative relation between fluorescent signal and bound antigen for each individual 

molecule. Advanced detection reagents may prove useful in the study of biomolecular 

interactions in general and the quantification of interaction stoichiometry and affinity in 

particular. Biomolecular interactions can be categorized by their binding strength. 

Binding affinity can range from low picomolar to millimolar values and a relative 

distinction between low affinity and high affinity biomolecular interactions can be 

made. Although one cannot define a clear cut-off value to discriminate the two groups, 

the associated molecular and cellular functions are different. High affinity binding is 

predominantly found in processes that require stable interaction between two or more 

molecules over an extended period of time or such that need to withstand physical 

forces. For example, structural complexes like actin and myosin filaments in muscle cells 

necessarily require strong protein-protein interaction. Another well known example is 

the binding of an antibody to its antigen. Antibodies can fulfill their immunological 

function by sequestration of harmful substances or tagging of pathogens. Hence, the 

stable attachment of such tags is desirable and requires high binding affinity. Notably, in 

the case of antibodies, interaction strength is further increased by the avidity effect 

generated by the presence of two binding units in close proximity in a single molecule. 

Avidity is a general concept found in many biomolecular interactions. Multiprotein 

complexes can be very stable although the individual interactions of the subunits are 

rather weak. In this case, the simultaneous interaction of all entities results in high 

avidity. Low affinity binding is generally less stable over time and is associated with 

transient contact of molecules. This short lived interaction can be found in processes 

that transmit information such as the binding of ligands to cell surface receptors or in 

dynamic cellular processes like motion. Furthermore, transient cell-cell contact can be 

mediated by low affinity interaction of proteins that are present in multiple copies on 

each cell. In this case, the cell surface serves as a backbone for the receptors resulting in 
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a stabilizing avidity effect. Intensity and duration of cell-cell contacts can thus be 

regulated on a molecular level by the affinity of the individual receptor-receptor 

interaction or by the number of receptor molecules. An example for this would be the 

interaction of T cell with target cell via TCR-MHC interaction. The recombinant 

production and manipulation of one interaction partner, generally the MHC complex, 

allows the investigation of the other interaction partner in its natural context. To mimic 

multivalent display on cell surfaces, recombinant ligands can be equipped with 

multimerization sequences or handles. In this setting, individual ligand molecules are 

assembled on a scaffold protein to form so called multimers. Multimers equipped with 

reversible multimerization sequences allow the triggered release of the backbone, thus, 

the dissociation of the individual molecules. Labeled with traceable markers such as 

fluorophores, this procedure can be used to follow dissociation over time and 

measurement of koff rates, a characteristic for interaction strength. Combining 

reversibility with versatile, facile and gentle site-specific bioconjugation in a universal 

double-tag, yields a very handy tool for the characterization of weak biomolecular 

interactions.  
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5.5 FLEXAMERS: A DOUBLE-TAG FOR UNIVERSAL GENERATION OF 

VERSATILE PMHC MULTIMERS 

The interaction between T cell and antigen presenting cell is a prominent example for 

transient cell-cell contact mediated by weak receptor-ligand interactions discussed in 

chapter 5.4. A variety of pMHC reagents has been designed for T cell and TCR 

characterization to cope, firstly, with the enormous number of peptide-MHC complexes 

and, secondly, with the diversity of applications. The former becomes evident when 

looking at the total epitope repertoire that has been estimated between 106 and 1011 in 

mice (Cohn, 2016) and is likely similar, if not even more diverse in humans. 

Furthermore, 13.000 HLA class I alleles have now been described for humans (Cohn, 

2016). To handle this extreme diversity of epitopes, UV exchange or di-peptide 

technologies have been developed to load primed recombinant MHCs with any epitope 

of interest. Just as diverse as the presented epitopes are, so numerous are the TCR 

variants. The total human TCR repertoire encompasses more than 108 unique clonotypes 

(Qi et al., 2014). To analyze diverse T cell populations, combinatorial pMHC staining and 

DNA barcoding have massively enhanced throughput in screening T cell populations 

and their respective TCR repertoires. Identification of antigen specific TCRs from large 

repertoires is a common strategy for isolation of therapeutic TCR candidates. In this 

regard, pMHC multimer reagents have been developed for T cell identification, traceless 

isolation or TCR avidity measurement. The applicability of pMHCs for all those different 

tasks underscores their versatile applicability. pMHCs for the individual applications 

have been developed sequentially. This development entailed the use of different 

technologies to produce, functionalize and multimerize the individual reagents. Uniting 

different variants of the same functionality (e.g. multimerization or conjugation 

method), reducing the architecture to the essential elements and using versatile 

elements, could result in a generic pMHC molecule that can be conveniently modified 

for the desired application.  

Within this scope, FLEXamers represent universal pMHC multimer constructs that 

combine versatility with simple generation from a single precursor protein. FLEXamers 

maintain high functionality although produced in a more standardized manner 

compared to conventionally generated pMHC reagents (see chapter 4.5). The essential 

features of various conventional multimers are condensed in a novel double-tag that 

allows reversible multimerization as well as stable and versatile functionalization. 

Starting with a common FLEXamer precursor, we produced biotinylated tetramers, 

reversible Streptamers and reversible dye-conjugated pMHC multimer reagents to 

generate a comprehensive set of versatile pMHC FLEXamers for 9 different human HLAs 

as well as murine H2-Kb (see chapter 5.5). Since novel bioorthogonal conjugation 

methods like Tub-tag labeling, sortagging and click chemistry are used, FLEXamers can 

readily be conjugated with other entities such as DNA oligonucleotides or toxins. Since 

FLEXamers are structurally based on conventional MHCs, they can additionally be 

combined with further extensions such as epitope exchange technologies. Customized 

monitoring of antigen-specific immune responses and individualized immunotherapy 

require streamlined methods that allow flexible adaptation for each patient and disease 

in terms of first, target-specific epitopes, and second, patient-specific HLAs. Difficulties 
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to generate distinct pMHC multimer reagents for each setting in a fast and reliable 

manner remain a significant challenge to personalized cell therapy and T cell-based 

diagnostics. FLEXamers for instance could become a condensed multimer platform that 

implements different types of pMHC reagents for use in routine clinical immune 

monitoring and immunotherapy. Additionally, they might reduce effort and costs 

associated with generating distinct pMHC multimer reagents for each application that 

has so far been an impediment to fully exploit the versatility of pMHC based reagents. 

Furthermore, the double tag is a general concept that can also be realized with 

alternative functionalization or multimerization tags. 

The combination of multimerization and versatile functionalization might also prove 

useful for the study of many other receptor-ligand pairs. Especially in the case of weak 

interactions, multivalent binding can serve as an 'on-switch' to stabilize the transient 

binding. Reversible multimerization allows triggered switching off of the interaction by 

disruption of the multimeric complex. Versatile functionalization, on the other hand, 

allows further stabilization of the interaction, or tracking via fluorescent dyes. In T cell 

immunology, this mechanism has found widespread use and the described double-tag 

approach enables universal generation of different pMHC reagents, but might more 

generally also serve as a flexible tool for the investigation of transient protein-protein 

interactions (Effenberger et al., 2019). 
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7 APPENDIX 

7.1 ABBREVIATIONS 

ACT Adoptive cell therapy 

ADC Antibody-drug conjugate 

ADCC Antibody dependent cellular cytotoxicity 

ALL Acute lymphocytic leukemia 

APC Antigen presenting cells 

BCN Bicyclononyne 

BCR B cell receptor 

BiTE Bispecific T cell engager 

bsIgG Bispecific IgG 

CAR chimeric antigen receptor 

cCPP cyclic cell penetrating peptide 

CD Cluster of differentiation 

CDC Complement dependent cytotoxicity 

CH Constant heavy (chain) 

CL Constant light (chain) 

CuAAC Copper(I)-catalyzed azide-alkyne cycloaddition 

DAPI 4′,6-diamidino-2-phenylindole 

DAR Drug to antibody ratio 

DARPin designed ankyrin repeat protein 

DBCO Dibenzocyclooctyne 

DIBAC Aza-dibenzocyclooctyne 

DMSO Dimethyl sulfoxide 

DNA Deoxyribonucleic acid 

EdU 5-ethynyl-2′-deoxyuridine 

eGFP Enhanced green fluorescent protein 

EGFR Epidermal growth factor receptor 

ELISA Enzyme-linked immunosorbent assay 

EPL Expressed Protein Ligtion 

Fab Fragment antigen binding 

Fc Fragment crystallizable 

FcRn neonatal Fc receptor 

FDA US food and drug administration 

FGE Formylglycine-generating enzyme 

HCA High-content analysis 

HER2 Human epidermal growth factor receptor 2 

HLA Human leukocyte antigen 

HMWS High-molecular-weight species 

IC50 Half maximal inhibitory concentration 

IEDDA Inverse electron-demand Diels-Alder reaction 

IFNγ Interferon γ 

Ig Immunoglobulin 
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IL Interleukine 

ITC Isothermal titration calorimetry 

koff rate Dissociation konstant 

mAb Monoclonal antibody 

MHC Major histocompatibility complex 

MMAE Monomethyl auristatin E 

MMAF Monomethyl auristatin F 

MS Mass spectrometry 

NHS N-hydroxysuccinimide 

OCT Cyclooctyne 

PD-L1 Programmed cell death protein 1 ligand1 

PEG polyethylene glycol 

pKa negative log of the acid dissociation constant 

pMHC Peptide major histocompatibility complex 

RP-HPLC Reverse-phase high-performance liquid chromatography 

scFv Single chain fragment variable 

SpAAC Strain-promoted azide-alkyne cycloaddition 

SPhR Staudinger-phosphonite reaction 

SPR Surface plasmon resonance 

SrtA Sortase A 

TCEP Tris(2-carboxyethyl)phosphine 

THPTA Tris(3-hydroxypropyltriazolylmethyl)amine 

TIL Tumor infiltrating lymphocyte 

tRNA Transfer ribonucleic acid 

TTL Tubulin tyrosine ligase 

TuPPL Tub-tag mediated C-terminal protein-protein-ligation 

UAA Unnatural amino acids 

VC valine-citrulline 

VH Variable heavy (chain) 

VHH VH of heavy chain only antibodies 

VL Variable light (chain) 

β2m β2 microglobulin 

 

  



Appendix 

Page | 239 

 

7.2 DECLARATION OF CONTRIBUTION 

A SIMPLE AND SENSITIVE HIGH-CONTENT ASSAY FOR THE CHARACTERIZATION 

OF ANTIPROLIFERATIVE THERAPEUTIC ANTIBODIES 

 

This study was conceived by Heinrich Leonhardt, Jonas Helma and Andreas Stengl. 

Andreas Stengl performed all experiments and data analysis, wrote the manuscript and 

handled the submission process. David Hörl assisted in DNA content quantification and 

developed the script for DNA content analysis. Jonas Helma assisted in manuscript 

writing and manuscript submission. Jonas Helma and Heinrich Leonhardt and David 

Hörl proofread the manuscript. 

 

 

TUPPL: TUB-TAG MEDIATED C-TERMINAL PROTEIN-PROTEIN-LIGATION USING 

COMPLEMENTARY CLICK-CHEMISTRY HANDLES 

 

This study was conceived by Andreas Stengl, Heinrich Leonhardt, Jonas Helma and 

Dominik Schumacher. Andreas Stengl designed and performed experiments 

corresponding to protein production, functionalization, conjugation, analysis and 

binding assays. Marc Andre Kasper performed LC-MS experiments and corresponding 

data analysis. Marcus Gerlach performed peptide conjugation experiments, 

corresponding data analysis and provided graphs for the corresponding data (Figure 1B, 

1C, S1 and S2). Andreas Stengl evaluated all remaining data and generated corresponding 

graphs and figures. The manuscript was written by Andreas Stengl with assistance of 

Dominik Schumacher and Jonas Helma. The manuscript was proofread by Dominik 

Schumacher, Jonas Helma, Markus Gerlach, Marc Andre Kasper, Heinrich Leonhardt 

and Christian Hackenberger. 

 

 

CYSTEINE-SELECTIVE PHOSPHONAMIDATE ELECTROPHILES FOR MODULAR 

PROTEIN BIOCONJUGATIONS 

Christian Hackenberger conceived this study. Andreas Stengl generated HEK293F pools 

stably expressing trastuzumab, expressed and purified trastuzumab, designed and 

performed cellular imaging experiments with AFCs and generated corresponding figure 

4B. Andreas Stengl assisted in manuscript writing and proofreading. 

 

 

__________________________ 

Andreas Stengl 

__________________________ 

Prof. Dr. Heinrich Leonhardt 

 

 

  



Appendix 

Page | 240   

 

ETHYNYLPHOSPHONAMIDATES FOR THE RAPID AND CYSTEINE SELECTIVE 

GENERATION OF EFFICACIOUS ANTIBODY-DRUG-CONJUGATES 

 

Christian Hackenberger designed and conceived this study. Andreas Stengl expressed 

and purified trastuzumab, performed all cell-based proliferation assays and cytotoxicity 

assays including trastuzumab, conceived and performed fluorescence imaging 

experiments visualizing tubulin disorder. Andreas Stengl analyzed data and generated 

figures 1c, 1d, S2 and S3 and assisted in manuscript writing and proofreading. 

 

 

__________________________ 

Andreas Stengl 

__________________________ 

Prof. Dr. Heinrich Leonhardt 

 

 

FLEXAMERS: A DOUBLE-TAG FOR UNIVERSAL GENERATION OF VERSATILE PMHC 

MULTIMERS 

This study was conceived by Manuel Effenberger, Andreas Stengl, Heinrich Leonhardt 

and Dirk Busch. Manuel Effenberger performed recombinant pMHC production, 

multimer generation, reversible and irreversible T cell staining and koff-rate 

measurements. Andreas Stengl performed FLEXamer functionalization, recombinant 

production of TTL, SrtA catalyzed labeling reactions, SDS PAGE analysis and 

determination of conjugation efficacy. Andreas Stengl analyzed conjugation data and 

generated corresponding figures 2, 6A, 6B, S3A and schematics depicted in figures 1, 2A, 

3A, 4A, 5A and S1A. Manuel Effenberger, Andreas Stengl and Kilian Schober wrote the 

manuscript and jointly handled the submission and revision process. Dominik 

Schumacher, Jonas Helma, Heinrich Leonhardt and Dirk Busch assisted in manuscript 

revision and proofreading. 

 

 

__________________________ 

Manuel Effenberger 

__________________________ 

Andreas Stengl 

  

 

__________________________ 

Dr. med. Kilian Schober 

 

__________________________ 

Prof. Dr. Heinrich Leonhardt 

 

  


