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1 Introduction 

1.1 Combination chemotherapy 

Several studies have demonstrated the superiority of combination chemotherapy over 

monotherapy in cancer treatment. Two drugs with different intracellular targets can act 

additively or synergistically in their mechanisms of action.1, 2 This can lead to an overall 

improvement in the therapeutic outcome. Additionally, due to the increased efficacy of 

the combination, lower doses can be administered and thus, overall systemic toxicity 

can be reduced.3, 4 Furthermore, the risk for chemoresistance formation is lowered.5 

The first combination chemotherapy approach, referred to as POMP regimen, was 

successfully administered in 1965. It contained methotrexate (MTX), 6-

mercaptopurine, vincristine and prednisone and resulted in long-term remission in 

children with acute lymphocytic leukemia. 6-8 This chapter gives a brief overview of the 

different therapeutic modalities used in combination in this thesis. 

 

 Pretubulysin 

Given its central role in cell division, the microtubule system represents a major target 

for chemotherapeutic drugs. Microtubule targeting drugs can be assigned to two 

groups, the microtubule-stabilizing agents, e.g. taxanes, or microtubule-destabilizing 

agents, such as vinca alkaloids or colchicine. Drugs like the vinca alkaloids, paclitaxel 

and epothilone, exhibit highly effective anticancer properties and are widely used in 

the clinics. The complex chemical synthesis of these compounds, the resistances that 

frequently occur with Vinca alkaloids and their neurotoxicity necessitate the search for 

other microtubule binding drugs.9-12  

The tubulysins, a group of microtubule- destabilizing agents, were first discovered by 

Sasse et al. in 2000 and are produced by myxobacteria. They are biosynthetically 

assembled by the hybrid polyketide synthase/non-ribosomal peptide synthetase and 

consist of the proteinogenic amino acid isoleucine (Ile), and three non-proteinogenic 

amino acids namely N-methyl pipecolic acid (Mep), tubuvaline (Tuv), and a chain 

extended analog of either phenylalanine or tyrosine called tubuphenylalanine (Tup) or 

tubutyrosine (Tut).13 Tubulysins prevent tubulin polymerization by binding to the vinca 
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domain of ẞ-tubulin, which results in G2/M arrest. This ultimately leads to microtubule 

depletion and apoptosis of the treated cells. Importantly, the ability of the tubulysin 

family to suppress cancer cell growth exceeds that of other tubulin binding drugs, like 

epothilones, vinblastine and paclitaxel, by 20- to 100-fold. 11, 14, 15 The biosynthetic 

yields after fermentation and isolation, however, are low and the chemical synthesis of 

the tetrapeptide derivative is challenging.  

Pretubulysin (PT) is a chemically accessible biosynthetic precursor of the tubulysins 

with similar biological properties.10, 11, 16 It has been shown to have antitumoral8, 10, 17,18 

and antiangiogenic properties, vascular disrupting effects19 as well as antimetastatic 

potential.9 The chemical structures of the native Tubulysin A and PT are depicted in 

Scheme 1  

 

Scheme 1. Chemical structures of myxobacterial compounds tubuylsin A and pretubulysin. 

 

 Methotrexate 

Antifolates were among the first chemotherapeutic drugs to be investigated for the cure 

of metastatic cancer. Methotrexate (MTX) represents one of the most prominent anti-

folates and has already been used in early approaches of anticancer drug therapy.7 

Already in 1956, Li et al. reported that MTX produced complete responses in women 

suffering from choriocarcinoma.20 A follow-up study 5 years later showed that many of 

these women had been cured.21 

As a folate antagonist, MTX enters the cell via the reduced folate carrier (RFC) or the 

folate receptor (FR).22, 23 MTX is mainly taken up by the RFC. Nevertheless, substantial 

influx can also occur via the FR even though the affinity of the FR to MTX is much 

lower than towards its native ligand FolA.24 The FR is overexpressed in many epithelial 
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tumors and can therefore be used for targeted cancer therapy.25, 26 Upon cell entry, 

MTX is polyglutamylated with up to five glutamate residues. In its active form it 

competitively inhibits the enzyme dihydrofolate reductase (DHFR) and by that the 

conversion of folic acid to dihydrofolic acid and tetrahydrofolic acid. These steps are 

crucial for thymidylate, purine as well as methionine and serine biosynthesis.27, 28  

MTX is still widely used in cancer chemotherapy, e.g. as a modulator to increase the 

effectiveness of other drugs. Acquired resistance to MTX, however, represents a 

common problem of monotherapeutic approaches.29-31 The four major mechanisms of 

MTX resistance are a decrease in cell uptake, a decrease in intracellular retention due 

to ineffective polyglutamylation, an increase in DHFR activity or a decrease in binding 

of MTX to the enzyme.32 This hurdle can possibly be overcome by combining MTX with 

a second antitumoral agent. A beneficial combination effect of another tubulin-binding 

agent, vinblastine, and low-dose MTX was reported in a recent clinical study, 

highlighting the possible advantage of this type of drug combination.33 In this work, the 

novel microtubule inhibitor PT was combined with MTX to elucidate possible 

combination benefits.  

In addition to cancer chemotherapy, MTX is used in lower doses for the treatment of 

autoimmune diseases, like psoriasis, rheumatoid arthritis and Morbus Crohn.34 

 

 

 

 

Scheme 2. Chemical structures of the antimetabolite methotrexate (MTX) and folic acid (FolA).  

 

 Eglin 5 siRNA 

Small interfering RNA (siRNA) facilitates the specific silencing of genes involved in 

disease pathogenesis. Craig Mello first discovered Gene silencing by RNA interference 

(RNAi) in 1998 in C. elegans. By 2001, Elbashir et al. had reported on the basic 

principles of siRNA structure, RNAi mechanism and used synthetic siRNA for silencing.  

Methotrexate                   Folic Acid 
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Since then, selective gene silencing using synthetic siRNAs has been widely used for 

the study of gene function.35, 36 Since siRNAs can theoretically be tailored to target any 

gene of interest, RNAi based gene silencing can be applied to a great number of 

human diseases.35 The first RNAi based drug was approved by the FDA in 2018. 

Alnylam Pharmaceuticals developed Onpattro (patisiran) for the treatment of 

polyneuropathy caused by transthyretin amyloidosis. Several further therapeutic 

siRNAs are currently investigated in late stage clinical trials and expected to gain 

approval soon.37 Designed siRNAs against targets promoting tumor survival, like Ran 

or Eg5, present an emerging class of therapeutics for tumor therapy. 38-41 The EG5 

gene encodes a kinesin-5 subclass protein (KSP or Eg5) which is essential for the 

organization of the mitotic spindle apparatus. Gene knockdown therefore inhibits 

mitosis and induces cancer cell death.42, 43 

However, the successful intracellular delivery of siRNA into the target cell presents a 

major challenge in the field of siRNA therapy. Naked siRNA has limited extracellular 

stability in biological fluids since it is rapidly degraded by nucleases. The half-life of 

naked siRNA in serum is usually less than one hour.35 Additionally, its negative charge 

and its high molecular weight prevent the efficient cellular internalization.38, 44, 45 Since 

siRNAs are taken up into the cell via endocytosis, sufficient release from the endosome 

is crucial for them to exert their effects.46 To circumvent these issues siRNA can be 

incorporated into delivery systems, like liposomes, polymeric or inorganic 

nanoparticles.47 Also, various polycations or cationic lipids were shown to successfully 

form polyplexes for efficient intracellular siRNA delivery in vitro and in vivo.48-51 

Onpattro uses cationic amino MC3 lipid nanoparticles (MC3: heptatriaconta-6,9,28,31-

tetraen-19-yl 4-(dimethylamino)butanoate) for siRNA encapsulation.37  

Even though the field of siRNA therapeutics holds great potential in cancer therapy, 

several studies have shown that downregulation of gene expression can only partially 

inhibit tumor progression. Cross-talk between oncogenic pathways and compensatory 

activation of signal transduction have been observed.40 As a result, therapeutic siRNAs 

are often combined with chemotherapeutic drugs to increase the therapeutic 

efficacy.52, 53  
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In a previous study, we demonstrated an enhanced combined cytotoxicity of a cytotoxic 

siRNA, namely poly (I:C), and synthetic, polyglutamylated MTX ligands.54 In this thesis, 

PT and siEG5 were co-incorporated into a polyplex.  

 

1.2 Tumor targeted drug delivery systems 

The major limitation of traditional anticancer drugs is their lack of selectivity and 

specificity. After systemic application, the cytotoxicity of these compounds is not 

confined to their target cell, namely a cancer cell, but also healthy tissue is destroyed. 

This limits their applicability in the clinics.55 Nanoparticulate incorporation or 

conjugation to a targeting ligand or antibody facilitates the targeted delivery of the 

anticancer compound to the tumor site via passive and active targeting (Scheme 3) 

and could therefore help circumvent their narrow safety profile and facilitate their 

clinical use. Furthermore, nanosized drug delivery systems can improve the 

bioavailability of drugs. Most anticancer therapeutics are water-insoluble small 

molecules with low molecular weights. Nanoformulation can facilitate their 

solubilization and prevent their rapid excretion from systemic circulation.56  

One major hurdle in combination therapy is the different pharmacokinetic behavior of 

two drugs after in vivo administration.57 The interactions of two drugs with blood 

components, like albumin, determine their biological fate and distribution. Instability 

under physiological conditions, unspecific biodistribution and rapid clearance render 

many anticancer drugs unsuitable for clinical application. Nanoparticulate incorporation 

of drugs may enable the controlled and simultaneous delivery of two drugs at specific 

molar ratios, which achieve maximal synergy, to the tumor site and prolong their 

circulation time.58-62 The first liposomal formulation which co-delivers a synergitstic 

molar ratio of daunorubicine and cytarabine was approved by the European Medicines 

Evaluation Agency (EMA) in 2018 for the treatment of therapy-related acute myeloid 

leukemia (t-AML) or AML with myelodysplasia-related changes.63 

 Passive tumor targeting 

When nanosized delivery systems accumulate in the tumor via extravasation through 

the leaky tumor capillary fenestration they reach their target tissue by passive targeting. 

Moreover, due the absence of lymphatic system, the delivery systems are inefficiently 
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removed and thus, remain in the tumor tissue. This effect was discovered by 

Matsumara et al. and is termed enhanced permeability and retention (EPR) effect, It 

enables the tumor selective delivery of nanoparticles.61, 64, 65 The clinical relevance of 

the EPR effect is controversially debated today. Firstly, the extent of passive targeting 

is highly dependent on tumor pathophysiology. The applicability of a tumor type for 

nanoparticulate drug delivery systems varies highly from one tumor cell type to the 

other.66 Secondly, nanoparticles frequently show higher tumor accumulation relative to 

controls, but only a small fraction (5 %) of the overall administered dose is actually 

delivered to the target side, while a majority accumulates in the liver and spleen.67 

Nevertheless, several nanomedicine based drug delivery systems are routinely used 

in tumor therapy. Notably, Abraxane, albumin bound paclitaxel, has demonstrated 

superiority over paclitaxel and is approved for the treatment of breast, lung and 

pancreatic cancer.68 

For a nanoparticle to reach its target side via the EPR effect, they need to circulate for 

a long period and evade recognition by the immune system and subsequent 

opsonization by the reticulo-endothelial system (RES). The biophysical properties of a 

delivery system can be optimized by covalent functionalization with shielding agents, 

like polyethylene glycol (PEG), to minimize the risk of unspecific interactions with 

biological components. Several studies have shown a > 100 % increase in tumor 

accumulation of nanoparticles following PEGylation.67 One of the first nanomedicines 

approved by regulatory authorities, Doxil, is a PEGylated liposomal formulation of 

doxorubicine. In addition to a prolonged circulation time, it has been shown to display 

a lower cardiotoxicity than free doxorubicine.64   

 Active tumor targeting  

After the delivery system has reached the tumor tissue by passive targeting, active 

tumor targeting enables the selective uptake of the delivery system into the target celI. 

Therefore, the nanocarrier surface is equipped with a targeting ligand which binds to 

the appropriate receptors overexpressed on the tumor cell. The ligand is chosen to 

bind a receptor which is selectively overexpressed by the target cell and not a healthy 

cell.64  
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Scheme 3. Passive and active targeting of nanoparticulate delivery systems to tumor cells. Due to the 

leaky capillary fenestration, nanosized delivery systems can extravasate into the tumor tissue (passive 

tumor targeting). After reaching their target tissue, nanoparticles can be internalized into the cell through 

active tumor targeting. 

1.2.2.1 FR targeting  

The folic acid receptor (FR) is overexpressed on many tumor types.23, 69 It offers a 

prominent approach to selectively target FR-positive cancer cells in targeted drug 

delivery approaches by binding folic acid (FolA) and FolA-derivatives with very high 

affinity.70-76 The reduced folate carrier (RFC) constitutes another common transport 

protein involved in the membrane transport of folic acid metabolites. Therefore, FolA 

and MTX can serve as targeting ligands for tumor selective therapy 54, 70-78 and facilitate 

the transport of FolA- or MTX-derivatives into cancer cells. In contrast to FolA, MTX 

does not only possess ligand properties but, in its polyglutamylated form, shows 

increased inhibition of the enzyme dihydrofolate reductase (DHFR), which is vital in 
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the nucleotide biosynthesis pathway, evades efflux transport mechanisms and can 

induce cellular impairment.7 Therefore, in FR selective drug delivery, MTX can serve 

both as targeting ligand and as an additional drug agent for combinatorial tumor 

therapy.54, 74-79 

1.2.2.2 EGFR targeting  

The epidermal growth factor receptor (EGFR), a protein-tyrosine kinase, is 

overexpressed on different cancer cell types. Its positive signaling causes increased 

proliferation, decreased apoptosis, enhanced tumor cell motility and angiogenesis. 

Therefore, the EGFR is considered an important target for receptor-mediated drug 

delivery. Its native ligand EGF has strong mitogenic and neoangiogenic activity and is 

therefore not a suitable targeting ligand.80 The peptide GE11 has a high affinity to the 

EGFR, is not immunogenic and synthetically easily accessible and can therefore be 

considered an effective targeting ligand for EGFR directed nanoparticles.81-84 Several 

studies have demonstrated the successful systemic delivery of GE11 coated 

nanoparticles to EGFR overexpressing tumors.83-86 

 

1.3 Solid-phase derived carriers 

Our lab developed a delivery platform facilitating the intracellular transport of different 

cargos, like siRNA, proteins and drugs.87, 88 These oligoaminoamides (OAAs, also 

called oligomers or oligoamides) consist of natural α-amino acids, artificial amino acids 

and fatty acids and are sequentially assembled via solid-phase assisted peptide 

synthesis (SPS).89 The sequence-defined nature of the synthesis route facilitates the 

manufacturing of tailored delivery vehicles and offers the option to incorporate multiple 

environment-responsive delivery functions. The artificial amino acid succinyl 

tetraethylenepentamine (Stp) for instance, facilitates the delivery of therapeutic cargo 

to the cytosol by causing endosomal escape via the proton sponge effect.89, 90 

Furthermore, the cationic nature of Stp enables the complex formation with negatively 

charged cargo, like nucleic acids or MTX. Various topological oligomer subclasses, like 

linear, 2-arm, 4-arm or T-shaped structures, have been developed.89 

Together with their therapeutic payload, the oligomers form a delivery system with 

custom-made properties. In several studies, the oligomers were optimized towards 
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their respective payload e.g. nucleic acids, proteins or drugs.48, 91, 92  This chapter 

outlines the different kinds of oligomers which were used in this thesis to co-deliver PT 

and MTX or PT and siEG5, respectively. 

 Small molecule drug conjugates  

Small molecule drug conjugates (SMDCs) for the targeted delivery of potent drugs to 

the tumor site can be manufactured by the above-described SPS method. They 

typically consist of three domains (Scheme 4): the therapeutic payload, a targeting 

ligand and a linker. The linkers can on the one hand be cleavable bridges, which are 

stable during circulation, and release the cargo after it reaches its therapeutic 

destination, e.g. disulfide bonds. On the other hand, they can contain hydrophilic 

sequences, e.g. PEG spacers, which facilitate the solubility of the often hydrophobic 

anticancer compound.55, 93 Prominent targeting ligands for SMDCs, which have 

previously been investigated in clinical studies, are folic acid (FolA) and the prostate-

specific membrane antigen (PSMA). Endocyte has investigated several FR-targeted 

SMDCs, containing vinblastine, tubulysins and epothilones as payloads in clinical 

studies.94 However, vintafolate, a FolA-conjugate of vinblastine, was evaluated in 

combination with PEGylated liposomal doxorubicin (PLD) for the therapy of FR positive 

platinum-resistant ovarian cancer (Proceed study) and in combination with docetaxel 

for non-small-cell lung cancer (NSCLC, Target study) and failed in the clinical studies 

phase III (Proceed) and phase II (Target).95 Despite these negative results, five FR-

targeted delivery systems are currently investigated in phase I, with one of them being 

an SMDC.96 

 

 

Scheme 4. Schematic representation of SMDC. 

 

 Nanoparticulate drug delivery systems  

The cationizable nature of the oligomers, which can be introduced by including Stp into 

the oligomer sequence, enables the formation of nanoparticles with oppositely charged 

cargo. Polyelectrolyte complexes (PECs) formed through cooperative electrostatic 
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interactions upon mixing of two oppositely charged molecules have already attracted 

a great deal of interest for drug delivery.97, 98  

Several studies describe the favorable properties of the T-shape lipo-oligomer 454 and 

related cationizable lipo-OAAs as carriers in siRNA delivery.49, 87, 91, 99, 100 The linear 

backbone of 454 contains four Stp units which facilitate nanoparticle formation with 

negatively charged siRNA. Upon cell uptake, protonation under acidifying endosomal 

conditions promote endosomal escape.51 N- and C-terminal cysteines stabilize 

nanoparticle complexes due to their disulfide crosslinking potential.87, 89 Additionally, 

454 contains two oleic acid chains (OleA), and tyrosine tripeptide units which serve as 

further stabilizing domains of polyplexes.91, 101   

Steinborn et al. have recently reported on the nanoparticle formation properties of 

cationic lipo-oligomer 454 with the negatively charged drug MTX and various 

polyglutamylated polyanionic MTX analogs, and applied it for siRNA and MTX co-

delivery.48 In this thesis, 454 and its analog 1198 were used to co-incorporate PT in 

nanosized delivery vehicles, based on electrostatic interactions with either MTX or 

siEG5. 

 

1.4 Aim of the thesis 

The combination of different therapeutic modalities has become the gold standard in 

cancer chemotherapy. By combining drugs, which address different intracellular 

targets, the therapeutic efficiency can be increased and the risk for resistance 

formation is reduced. The major problems of cancer chemotherapy are the lack of drug 

selectivity, unfavorable bioavailability, and the rapid clearance of the small molecules 

from the bloodstream. Targeted drug delivery systems aim at selectively delivering 

drugs to their target side, namely the tumor tissue, by passive and active targeting. 

Nanoparticulate combination therapy can unify different pharmacokinetic behavior of 

two drugs and facilitate a spatially and temporarily controlled delivery to the tumor site. 

In this thesis, two combination chemotherapies based on the novel microtubule binding 

drug PT and the established antifolate MTX or the therapeutic siRNA siEG5 were 

evaluated. The therapeutic combinations were co-incorporated into different delivery 



   Introduction 

   21 

systems. Their in vivo and in vitro properties were assessed in comparison to the free 

drugs. 

The first chapter of the thesis focuses on the development of SMDCs as a co-delivery 

system which contains PT derivatives as a therapeutic payload, a hydrophilic spacer 

and the targeting moiety FolA or the antimetabolite MTX, which has targeting as well 

as cell killing properties. A set of FR targeted oligoamides with varied topology and 

different numbers of ligands was to be synthesized by SPS. The oligomers were 

designed to contain a cysteine for conjugation to thiol activated PT. Structure activity 

relationships were to be investigated regarding different demands of the SMDCs, such 

as DHFR inhibition, cellular uptake and effect of viability on FR-overexpressing KB 

cervix carcinoma and L1210 leukemia cells.  After subsequent chemical conjugation of 

PT to the oligoamides, the SMDCs were to be screened for their intracellular delivery 

of PT. Structure activity relationship studies aimed at identifying an ideal SMDC with 

favorable combinatorial, antitumoral properties in vitro. Additionally, the most 

promising SMDC was to be evaluated in an intratumoral treatment study in comparison 

to unmodified PT. 

Secondly, based on the beneficial effect of the conjugated PT-derivative and MTX in 

the SMDCs, the combination effect of the free drugs PT+MTX was assessed in 

different assays. Besides thorough investigations into the antitumoral effect of the 

combination PT+MTX, its effect on the cell cycle as well as cellular architecture, 

namely the tubulin and actin skeleton, had to be evaluated in comparison to both free 

drugs.  

The aim of third chapter of the thesis was the development of nanosized drug delivery 

vehicles containing PT+MTX. Polyelectrolyte complexes were to be formed from the 

cationizable lipo-oligomer 454 and the anionic drug MTX; PT was to be co-

incorporated. The biophysical nanoparticle characteristics, like size and drug 

incorporation, had to be determined. The stability of the PECs was to be evaluated in 

different media. Furthermore, cellular effects of the delivery system, like uptake, 

antitumoral efficiency and influence on the cell cycle had to be investigated. Finally, 

the effect of nanoparticulate incorporation of PT+MTX on tumor growth was assessed 

in vivo in subcutaneous L1210 tumors. 
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The final aim of the thesis was the co-delivery of PT and therapeutic siRNA. Polyplexes 

were formed from siEG5 and azide containing lipo-oligomer 1198. Payload 

incorporation of the dual delivery systems had to be determined. The polyplex surface 

was modified by click chemistry to introduce a PEG shielding agent (DBCO-PEG) or 

the EGFR targeting peptide GE11 (DBCO-PEG-GE11).  The biological effects of the 

unmodified and functionalized nanoparticles were to be investigated. The ligand-

mediated intracellular delivery of the siRNA had to be assessed in uptake experiments, 

GFP gene silencing as well EG5 specific mRNA downregulation experiments. Lastly, 

the antitumoral activity of the combination formulation had to be evaluated in 

comparison to the free drug PT and the siEG5 containing polyplex.  
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2 Materials and Methods 

2.1 Materials 

The solvents, reagents and buffers used for the experiments are summarized in Table 

1, Table 2 and Table 3, together with their CAS numbers and sources of supply. 

Solvent CAS-No. Supplier 
Acetonitrile1 75-05-8 VWR Int. (Darmstadt, Germany) 

Chloroform-d2 865-49-6 Euriso-Top (Saint-Aubin Cedex, France) 

Deuterium oxide2 7789-20-0 Euriso-Top (Saint-Aubin Cedex, France) 

Dichloromethane3 75-09-2 Bernd Kraft (Duisburg, Germany) 

N,N-Dimethylformamide4 68-12-2 Iris Biotech (Marktredewitz, Germany) 

Dimethylsulfoxide5  67-68-5  Sigma-Aldrich (Munich, Germany) 

n-Hexane6 110-54-3 Brenntag (Mülheim/Ruhr, Germany) 

Methanol3 67-56-1 Fisher Scientific (Schwerte, Germany) 

Methyl-tert-butyl ether7 1634-04-4 Brenntag (Mülheim/Ruhr, Germany) 

N-Methyl-2-pyrrolidone4 872-50-4 Iris Biotech (Marktredewitz, Germany) 

Water8 7732-18-5 In-house purification 

Table 1. Solvents used for experimental procedures 

1 HPLC grade; 2 NMR grade (> 99.9 %); 3 analytical grade; 4 peptide grade; 5 BioReagent grade (> 99.9 %); 

6 purissimum; 7 synthesis grade; 8 purified, deionized 

 

Chemicals and Reagents CAS-No. Supplier 
1-Hydroxybenzotriazole hydrate 123333-53-9 Sigma-Aldrich (Munich, Germany) 

2-Chlorotritylchloride resin 42074-68-0 Iris Biotech (Marktredewitz, Germany) 

4-[[(2,4-diamino-6-pteridinyl) methyl] 
methylamino] benzoic acid 

19741-14-1 Niels Clauson-Kaas A/S (Farum, 
Denmark) 

4′,6-Diamidin-2-phenylindol (DAPI) 50-63-5 Sigma-Aldrich (Munich, Germany) 

Agarose NEEO Ultra 9012-36-6 Carl Roth (Karlsruhe, Germany) 

Ammonia solution 25 % 1336-21-6 Carl Roth (Karlsruhe, Germany) 

Boc-L-Cys(Trt)-OH 76880-29-0 Bachem (Bubendorf, Switzerland) 

Boric acid 10043-35-3 Sigma-Aldrich (Munich, Germany) 

Collagen - Biochrom (Berlin, Germany) 

Coenzyme A - Sigma-Aldrich (Munich, Germany) 

D-(+)-Glucose monohydrate 28718-90-3 Sigma-Aldrich (Munich, Germany) 

D-luciferin sodium - Promega (Mannheim, Germany) 

Dibenzocyclooctyne-acid 1353016-70-2 Sigma-Aldrich (Munich, Germany) 

Dibenzocyclooctyne-NHS ester 1353016-71-3 Sigma-Aldrich (Munich, Germany) 

DBU 14431-43-7 Merck Millipore (Darmstadt, Germany) 

Dihydrofolate reductase (assay kit) - Sigma-Aldrich (Munich, Germany) 

EDTA disodium salt dihydrate 156648-40-7 Iris Biotech (Marktredewitz, Germany) 

Fmoc-L-Asn(Trt)-OH 132388-59-1 Iris Biotech (Marktredewitz, Germany) 
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Fmoc-L-Cys(Trt)-OH 103213-32-7 Iris Biotech (Marktredewitz, Germany) 

Fmoc-L-Gln(Trt)-OH 132327-80-1 Iris Biotech (Marktredewitz, Germany) 

Fmoc-L-Gly-OH 29022-11-5 Iris Biotech (Marktredewitz, Germany) 

Fmoc-L-His(Trt)-OH 109425-51-6 Iris Biotech (Marktredewitz, Germany) 

Fmoc-L-Ile-OH 71989-23-6 Iris Biotech (Marktredewitz, Germany) 

Fmoc-L-Lys(Dde)-OH 204777-78-6 Iris Biotech (Marktredewitz, Germany) 

Fmoc-L-Lys(Fmoc)-OH 78081-87-5 Iris Biotech (Marktredewitz, Germany) 

Fmoc-L-Lys(N3)-OH 159610-89-6 Iris Biotech (Marktredewitz, Germany) 

Fmoc-L-Pro-OH 71989-31-6 Iris Biotech (Marktredewitz, Germany) 

Fmoc-L-Thr-OH 73731-37-0 Iris Biotech (Marktredewitz, Germany) 

Fmoc-L-Trp(Boc)-OH 43824-78-6 Iris Biotech (Marktredewitz, Germany) 

Fmoc-L-Tyr(tBu)-OH 71989-38-3 Iris Biotech (Marktredewitz, Germany) 

Fmoc-L-Val-OH 68858-20-8 Iris Biotech (Marktredewitz, Germany) 

Fmoc-N-amido-dPEG12-acid 756526-01-9 Quanta Biodesign (Powell, Ohio, USA) 

Fmoc-N-amido-dPEG24-acid 756526-01-9 Quanta Biodesign (Powell, Ohio, USA) 

Fmoc-STODTA-OH 172089-14-4 Sigma-Aldrich (Munich, Germany) 

Fmoc-Stp(Boc3)-OH - In-house synthesis 89, 90 

Folic acid 59-30-3 Sigma-Aldrich (Munich, Germany) 

GelRed - Biotium Inc. (Hayward, CA, USA) 

HBTU 94790-37-1 Multisyntech (Witten, Germany) 

Heparin sodium 5000 I.E/mL 9041-08-1 ratiopharm GmbH (Ulm,.Germany) 

HEPES 7365-45-9 Biomol (Hamburg, Germany) 

Hydrazine monohydrate 7803-57-8 Merck Millipore (Darmstadt, Germany) 

Hydrochloric acid solution (1 M)     7647-01-0 Sigma-Aldrich (Munich, Germany) 

Magnesium chloride hexahydrate 7791-18-6 AppliChem (Darmstadt, Germany) 

MTT 298-93-1 Sigma-Aldrich (Munich, Germany) 

MTX 59-05-2 Sigma-Aldrich (Munich, Germany) 

N10-Pteroic acid 37793-53-6 Sigma-Aldrich (Munich, Germany) 

N,N-Diisopropylethylamine 7087-68-5 Iris Biotech (Marktredewitz, Germany) 

Ninhydrin 485-47-2 Sigma-Aldrich (Munich, Germany) 

Oleic acid 112-80-1 Sigma-Aldrich (Munich, Germany) 

Paraformaldeyhde 30525-89-4 Sigma-Aldrich (Munich, Germany) 

Phenol 108-95-2 Sigma-Aldrich (Munich, Germany) 

Piperidine 110-89-4 Iris Biotech (Marktredewitz, Germany) 

Potassium cyanide 151-50-8 Sigma-Aldrich (Munich, Germany) 

Propidium Iodide (PI) 25535-16-4 Sigma-Aldrich (Munich, Germany) 

PyBOP® 128625-52-5 Multisyntech GmbH (Witten, Germany) 

Sephadex® G-10 9050-68-4 GE Healthcare (Freiburg, Germany) 

Sodium citrate  6132-04-3 Sigma-Aldrich (Munich, Germany) 

Sodium hydroxide (anhydrous) 1310-73-2 Sigma-Aldrich (Munich, Germany) 

Triethylamine 121-44-8 Sigma-Aldrich (Munich, Germany) 

Trifluoroacetic acid 76-05-1 Iris Biotech (Marktredewitz, Germany) 

Triisopropylsilane 6485-79-6 Sigma-Aldrich (Munich, Germany) 

Triton™ X-100 9002-93-1 Sigma-Aldrich (Munich, Germany) 

Trizma® Base 77-86-1 Sigma-Aldrich (Munich, Germany) 

Table 2. Chemicals and reagents used for experimental procedures 
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Buffer Composition 

10 mM HCl SEC solvent 693 mL water, 300 mL acetonitrile, 7 mL 1M HCl solution 

HBG 20 mM HEPES, 5 % glucose, pH 7.4 

LAR buffer 1 M glycylglycine, 100 mM MgCl2, 500 mM EDTA, DTT, 
ATP, coenzyme A) 

Microtubule Stabilizing Buffer 80 mM PIPES pH 6.8, 1 mM MgCl2, 5mM EGTA-K, and 
0.5% Triton X-100 

TBE buffer 89 mM Trizma® base, 89 mM boric acid, 2 mM EDTA-
Na2 

Table 3. Buffers used for experimental procedures 

 

 Equipment for solid-phase synthesis  

A Biotage Syro Wave (Biotage, Uppsala, Sweden) peptide synthesizer was used for 

synthesis supported with microwave irradiation. Disposable polypropylene (PP) 

syringe microreactors with the volume sizes 2 mL, 5 mL, and 10 mL were purchased 

from Multisyntech (Witten, Germany). It was conducted with polytetrafluoroethylene 

(PTFE) filters. The recommended size of the reactors was chosen according to the 

amount of resin. Microreactors with polyethylene filters (Multisyntech, Witten, 

Germany) were used for manual solid-phase synthesis. Reactions were carried out 

under steady shaking with an overhead shaker. 

 

 Nucleic acids  

2.1.2.1 siRNA 

All siRNAs and modified siRNA compounds used are presented in Table 4. They were 

synthesized by Roche Kulmbach GmbH (now Axolabs GmbH, Kulmbach, Germany).  

siRNA Target Sequence 

Cy5-siAHA1 AHA1 5’-(Cy5)(NHC6)GGAuGAAGuGGAGAuuAGudTsdT-3’ (sense) 

5’-ACuAAUCUCcACUUcAUCCdTsdT-3’ (antisense) 

 
Cy7-siAHA1 AHA1 5’-(Cy7)(NHC6)GGAuGAAGuGGAGAuuAGudTsdT-3’ (sense) 

5’-ACuAAUCUCcACUUcAUCCdTsdT-3’ (antisense) 

 

siCtrl    - 5’-AuGuAuuGGccuGuAuuAGdTsdT-3’ (sense) 

5’-CuAAuAcAGGCcAAuAcAUdTsdT-3’(antisense) 
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siEG5 EG5/KSP 5’-ucGAGAAucuAAAcuAAcudTsdT-3’ (sense) 

5’-AGUuAGUUuAGAUUCUCGAdTsdT-3’ (antisense) 

 

siGFP eGFP-Luc 5’-AuAucAuGGccGAcAAGcAdTsdT-3’ (sense) 

5’-UGCUUGUCGGCcAUGAuAUdTsdT-3’ (antisense) 

Table 4.Small letters: 2’-methoxy-RNA, s: phosphorothioate. All nucleic acids were synthesized by 

the Roche Kulmbach GmbH (now Axolabs GmbH, Kulmbach, Germany).  

  

2.1.2.2  Cell culture  

Cell culture media, antibiotics and fetal bovine serum (FBS) were purchased from 

Invitrogen (Karlsruhe, Germany), Sigma Aldrich (Munich, Germany) or Life 

Technologies (Carlsbad, USA). The individual media used for the different cell cultures 

are summarized in Table 5. All media were supplemented with 10 % FBS, 100 U/mL 

penicillin and 100 μg/mL streptomycin. Cell lines were cultured at 37 °C and 5 % CO2 in 

an incubator with a relative humidity of 95 %.  

Exponentially growing cells were detached from the culture flasks using Millipore 

water, supplemented with 0.05 % trypsin-EDTA (Invitrogen, Karlsruhe, Germany), and 

followed by resuspension in the required culture media. Cell suspensions were seeded 

at the desired density for each experiment. Luciferase cell culture lysis buffer and D-

luciferin sodium salt were purchased from Promega (Mannheim, Germany). 

Cell line Description Medium 

KB Human cervix carcinoma cells 
DMEM, low glucose; 

RPMI-1640, folate free 
 

KB-eGFP-Luc Human cervix carcinoma cells 
DMEM, low glucose; 

RPMI-1640, folate free  
Huh7 Human hepatocellular carcinoma cells DMEM, low glucose  

L1210 Mouse lymphocytic leukemia cells 
RPMI-1640, +/- folate 

 

Table 5. Overview cell lines and culture media  
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2.2 Methods 

 Synthesis of oligomers and post-modification agents via solid phase 

synthesis (SPS) 

2.2.1.1 Loading of a 2-chlorotrityl chloride resin with an Fmoc protected 

amino acid 

The desired amount of 2-chlorotrityl chloride resin (1.6 mmol/g chloride loading) was 

weighed in a syringe reactor and swelled in dry DCM for 30 min. After swelling, the first 

Fmoc protected amino acid of the respective topology as well as a threefold molar 

excess of DIPEA were added to the resin and incubated for 1 h at room temperature 

(rt) (see Table 6 for the different topologies and molar amounts of respective amino 

acids).The reaction solvent was drained and the resin was incubated with 

DCM/MeOH/DIPEA (80/15/5) for at least 30 min at rt to cap residual reactive functions 

on the resin. After the removal of the mixture, the resin was washed with DMF (10 mL/g 

resin) and DCM (10 mL/g resin) 5 times each. 

 

Topology Amino acids Molar amounts 

linear Fmoc-L-Cys(Trt)-OH 0.4 eg. 

2-arm Fmoc-L-Cys(Trt)-OH 0.4 eq. 

4-arm Fmoc-L-Cys(Trt)-OH 0.3 eq.  

T-shape Fmoc-L-Cys(Trt)-OH 0.3 eq. 

PEGylation reagent Fmoc-dPEG24-OH 0.3 eq. 

GE11-targeted 
PEGlyation agent 

Fmoc-Ile-OH 0.4 eq. 

Table 6. Molar amounts of amino acids used for different oligomer topologies 

 

The resin loading was determined by quantification of released fluorenyl derivative 

after piperidine deprotection. About 50 mg of the resin were removed and dried in 

vacuo to determine the loading of the resin. Therefore, an exact amount of resin was 

treated with 1 mL deprotection solution (20 % piperidine in DMF) for 1 h. Afterwards, 

the solution was diluted, and absorption was measured at 301 nm. The resin loading 

was calculated according to the equation: resin load [mmol/g] = (A*1000)/(m 

[mg]*7800*df) with df as dilution factor. 
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The resin was treated four times with 20 % piperidine in DMF to remove the Fmoc 

protection group. Reaction progress was monitored by Kaiser test (cf. 2.2.2). 

Afterwards, the resin was washed with DMF and DCM and dried in vacuo. 

2.2.1.2 General description of solid-phase synthesis procedure  

The sequential synthesis on solid phase was carried out in defined steps of a synthesis 

cycle. Oligomers were either synthesized manually or automatically. General steps of 

the manual and automated synthesis procedure are shown in Table 7 and Table 8. 

Under manual synthesis conditions, the presence or absence of free amines was 

confirmed qualitatively by Kaiser test (cf. 2.2.2) after each coupling or deprotection 

step. In case of an ambiguous result (negative after deprotection or positive after 

coupling), the respective deprotection or coupling step was repeated. Since an 

automated synthetic procedure does not offer the possibility of an in-process Kaiser 

test, deprotection and coupling steps were extended. For amino acid coupling, the 

resin was incubated with a 4-fold excess of an Fmoc protected amino acid (Fmoc-AA) 

predefined by the oligomer sequence. During manual synthesis, activation of the 

carboxylic acid function was achieved with equimolar amounts of HOBt (1-

Hydroxybenzotriazole), equimolar amounts of PyBOP (Benzotriazol-1-yl-

oxytripyrrolidinophosphonium hexafluorophosphate) and a twofold molar excess of 

DIPEA. For automated synthesis, PyBOP was exchanged with HBTU (2-(1H-

benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate). Incubation 

times during a coupling cycle were 60 min at RT or 10 min at 60 °C (microwave 

irradiation). Fmoc-deprotection was accomplished by 4 × 10 min incubation with 20 % 

piperidine in DMF (10 mL g−1 resin).  

 

Step Description Solvent Volume Time 
1  Coupling DCM/DMF 50/50 5 mL/g resin 60 min 

2  Wash DMF and DCM 10 mL/g resin 3 x 1 min each 

3  Kaiser test - - - 

4  Fmoc deprotection 20 % piperidine/DMF 10 mL/g resin 4 x 10 min 

5  Wash DMF and DCM 10 mL/g resin 3 x 1 min each 

6  Kaiser test - - - 

Table 7. General steps of a manually conducted synthesis cycle 
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Step Description Solvent Volume Time 
1  Coupling NMP/DMF 5 mL/g resin 12 min at 50 °C 

2  Double-coupling NMP/DMF 5 mL/g resin 12 min at 50 °C 

3  Wash DMF 8 mL/g resin 5 x 1 min 

4  Fmoc deprotection 20 % piperidine/DMF 7 mL/g resin 4 x 10 min 

5  Wash DMF and DCM 10 mL/g resin 3 x 1 min each 

Table 8. General steps of an automatically conducted synthesis cycle. 

 

2.2.1.3 Synthesis of linear, 2-arm and 4-arm structures 

Oligoamides were synthesized using a 2-chlorotrityl resin preloaded with the first C-

terminal amino acid cysteine (C) of the respective topology as solid support. They were 

synthesized manually under standard Fmoc SPS conditions using syringe 

microreactors. Coupling steps were carried out using 4 eq. Fmoc-amino acid, 4 eq. 

HOBt, 4 eq. PyBOP and 8 eq. DIPEA in dichloromethane (DCM)–DMF 1 : 1 (10 mL 

g−1 resin) for 90 min. Equivalents were calculated relative to free resin-bound amines 

(1 eq.). Fmoc deprotection was accomplished by 4 × 10 min with 20 % piperidine in 

DMF (10 mL g−1 resin). A washing procedure comprising 3 × 1 min DMF, 3 × 1 min 

DCM incubation (10 mL g−1 resin) and a Kaiser test102 were performed after each 

coupling and deprotection step. Symmetrical branching points were introduced using 

Fmoc-Lys(Fmoc)-OH. As (anti)folates are composed of a glutamate substructure and 

a pteroic acid derivative, the ligand structure was generated by a two-step procedure: 

Fmoc-Glu-OtBu was coupled, followed by Fmoc deprotection and subsequent coupling 

of N10-(trifluoroacetyl) pteroic acid. The TFA protection group was removed by 4 x 30 

min incubation with ammonia solution (25 %) - DMF 1 : 1 (10 mL g−1 resin). MTX was 

assembled analogously using the pteroic acid derivative 4-[[(2,4-diamino-6-

pteridinyl)methyl]methylamino]benzoic acid.  

Finally, all oligoamides were cleaved off the resin by incubation with TFA - TIS - H2O - 

EDT 94 : 2.5 : 2.5 : 1 (10 mL g−1 resin) for 90 min. The cleavage solution was 

concentrated by flushing nitrogen and oligoamides were precipitated in 40 mL of pre-

cooled MTBE–n-hexane 1 : 1. All oligoamides were purified by size exclusion 

chromatography using an Äkta purifier system (GE Healthcare Bio-Sciences AB, 

Uppsala, Sweden), a Sephadex G-10 column and water–acetonitrile 7 : 3 as solvent. 

All oligoamides were lyophilized. Oligoamide sequences were validated by mass 
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spectrometry and 1H-NMR. Purity was evaluated via HPLC analysis (Silica C-18, 

ACN/H2O gradient with 0.1 % TFA, 5 % ACN - 100 % ACN). 

2.2.1.4 Synthesis of T-shapes 454 and 1198 

The published lipo-oligomer 45491 was modified by introducing the azide containing 

azidolysine at the N-terminal site of the peptide. 1198100 was synthesized using a 2-

chlorotrityl resin preloaded with the first C-terminal amino acid cysteine (C). The 

sequence C(Trt)-[Y(tBu)]3-[Stp(Boc)3]2-K(Dde)-[Stp(Boc)3]2-[Y(tBu)]3-C(Trt) was 

synthesized using a SyroWaveTMsynthesizer  (Biotage, Uppsala, Sweden). Coupling 

steps were carried out using 4 eq. Fmoc-amino acid, 4 eq. HOBt, 4 eq. HBTU, and 8 

eq. DIPEA in NMP/DMF (5 mL g-1 resin) twice for 12 min at 50 °C. The Fmoc protection 

group was removed by 5 x 10 min incubation with 20% piperidine in DMF (7 mL g-1 

resin). After every coupling or deprotection step, the resin was washed six times with 

DMF (6 x 1 min, 8 mL g-1 resin). All further synthesis steps were performed manually 

under standard Fmoc solid-phase peptide synthesis conditions using syringe 

microreactors. Coupling steps were carried out using 4 eq. Fmoc-amino acid, 4eq. 

HOBt, 4 eq. PyBOP, and 8 eq. DIPEA in DCM : DMF (1:1; 10 mL g-1 resin) for at least 

60 min. Fmoc deprotection was accomplished by 4 × 10 min incubation with 20% 

piperidine in DMF (10 mL g-1 resin). The resin was washed with DMF (3 x 1 min, 10 mL 

g-1 resin) and DCM (3 x 1 min, 10 mL g-1 resin) after each coupling and deprotection 

step, followed by a Kaiser Test. Fmoc-Lys(N3)-OH was coupled to the backbone and 

after the removal of the Fmoc protecting group, the N-terminal NH2-group was 

protected with 10 eq. Boc anhydride and 10 eq. DIPEA in DCM/DMF. Dde-deprotection 

was accomplished using a hydrazine - DMF solution (3 x 5 min). Afterwards, the resin 

was washed with 5 x 1 min DMF 5 x 1 min 10% DIPEA/DMF and 3 x 1min DCM (10 

mL g-1 resin). A symmetrical branching point was introduced using Fmoc-Lys(Fmoc)-

OH. In the final coupling step oleic acid was coupled to yield lipo-oligomer 1198. The 

lipo-oligomer was cleaved off the resin using the optimized cleavage protocol for oleic 

acid containing structures, i.e., TFA cleavage condition with pre-cooling to avoid 

hydroxylation of the oleic acid double bonds.103 Lipo-OAA 1198 was then purified by 

size exclusion chromatography (SEC) using a Äkta purifier system (GE Healthcare Bio-

Sciences AB, Uppsala, Sweden), a Sephadex G-10 column (60 cm) and 10 mM 

hydrochloric acid solution : acetonitrile (7:3) as solvent. The lipo-oligomer 1198 was 
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lyophilized. The identity of the synthesized structures was confirmed by MALDI mass 

spectrometry. 

Oligomer 454 was synthesized on a 2-chlorotrityl chloride resin preloaded with Fmoc-

L-Cys(Trt)-OH. The backbone sequence C(Trt)-[Y(tBu)]3-[Stp(Boc)3]2-K(Dde)-

[Stp(Boc)3]2-[Y(tBu)]3-C(Trt) was synthesized automatically. To introduce the 

hydrophobic domains, Dde removal was conducted with 2 % hydrazine in DMF (v/v) 

for 15 cycles lasting 3 min each. Finally, Fmoc-L-Lys(Fmoc)-OH was coupled to 

introduce a symmetrical branching prior to attaching oleic acids on both arms. The 

deprotected oligomer was obtained after cleavage, following the protocol for oleic 

acids.103  

 

2.2.1.5 Synthesis of shielding agent DBCO-PEG  

The DBCO-PEG shielding agent was synthesized by manual SPS. The 2-chlorotrityl 

resin was preloaded with Fmoc-dPEG24-OH. After Fmoc deprotection (4 × 10 min with 

20 % piperidine in DMF, 10 mL g−1 resin), DBCO was conjugated using 4 eq. DBCO-

COOH, 4 eq. HOBt, 4 eq. HBTU and 8 eq. DIPEA in dichloromethane DCM–DMF 1 : 

1 (10 mL g−1 resin) for 90 min. A washing procedure comprising 3 × 1 min DMF, 3 × 1 

min DCM incubation (10 mL g−1 resin) and a Kaiser test were performed after each 

coupling and deprotection step. The structure was cleaved off the resin by incubation 

with TFA-TIS-H2O - 95: 2.5: 2.5 (10 mL g−1 resin) for 90 min. DBCO-PEG was purified 

by SEC (see 1198 purification procedure). 

 

2.2.1.6 Synthesis of DBCO-PEG-GE11 structures 

For the synthesis of DBCO-PEG-GE11, a 2-chlorotrityl resin was preloaded with Fmoc-

Ile-OH, the first C-terminal amino acid of the GE11 sequence. After deprotection, the 

GE11 sequence was completed via automated SPS. After the final automated 

deprotection step, Fmoc-dPEG24-OH was coupled manually under the above 

described conditions. Finally, the sequence was cleaved off the resin by incubation 

with TFA - TIS - H2O -  95 : 2.5 : 2.5 (10 mL g−1 resin) for 90 min followed by immediate 

precipitation in 40 mL of pre-cooled MTBE - n-hexane (1:1).  
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Next, DBCO-NHS was conjugated to the free N-terminus. The cleaved structure was 

dissolved in PBS, the pH was adjusted to 8 using 1 M NaOH. DBCO-NHS was 

dissolved in DMSO and added at 1 eq. to the free primary amine of the oligomer. After 

1 h coupling time, the mixture was purified via preparative HPLC (LaPrep system, VWR 

International GmbH, Darmstadt, Germany) and a Waters SymmetryPrep C18 column 

(7μm, 19x150mm) with an ACN/H2O gradient with 0.1% TFA (5 % ACN to 100 % ACN 

over 20 min). The targeting ligand conjugate was lyophilized, the successful coupling 

reaction was confirmed via MS. 

 

 Kaiser test102 

Free amines of deprotected amino acids on the resin were determined qualitatively by 

Kaiser test. To that extent, a small sample of DCM washed resin was transferred into 

an Eppendorf reaction tube. One drop of 80 % phenol in EtOH (w/v), 5 % ninhydrin in 

EtOH (w/v) and 20 μM potassium cyanide (KCN) in pyridine (mixture of 1 mL aqueous 

0.001 M KCN solution and 49 mL pyridine) each were added. The mixture was 

incubated at 99 °C for 4 min under steady shaking. The presence of free amines was 

indicated by a deep blue color. 

 

 Cleavage conditions 

2.2.3.1 General cleavage conditions 

Oligomers were cleaved off the resin by incubation with TFA - EDT - H2O - TIS (94 : 

2.5 : 2.5 : 1.0; 10 mL g−1 resin) for 90 min. The cleavage solution was concentrated 

by flushing nitrogen. Oligomers were precipitated in 50 mL of pre-cooled MTBE–n-

hexane (1 : 1). All oligomers were purified by size exclusion chromatography (SEC) 

using an Äkta purifier system (GE Healthcare Bio-Sciences AB, Uppsala, Sweden), a 

Sephadex G-10 column and 10 mM hydrochloric acid solution - acetonitrile (7 : 3) as 

solvent. The relevant fractions were lyophilized, obtaining HCl salts of all oligomers. 

2.2.3.2 Cleavage of oligomers containing oleic acid 

Due to reactive double bonds in the structure the cleavage of oligomers containing 

oleic acid was optimized by Reinhard et al..103 The resin was incubated with a mixture 
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of TFA - EDT - H2O - TIS (94 : 2.5 : 2.5 : 1.0; 10 mL g−1 resin, cooled to 4 °C prior to 

addition) for 30 min, followed by immediate precipitation in 50 mL of pre-cooled MTBE 

- n-hexane (1 : 1). The oligomers were purified by SEC as described above. 

 

 Synthesis of PT-H-SS-Py (2) 

PT-H-SS-Py was synthesized by Dr. Jan Gorges (Organic Chemistry, Saarland 

University). Pretubulysin TFA salt (134 mg, 0.17 mmol, 1.0 eq.) was dissolved in 4 mL 

dry DCM. At room temperature 2-(pyridin-2-yldisulfanyl)ethyl hydrazinecarboxylate104 

(44 mg, 0.18 mmol, 1.05 eq.), HOBt (29 mg, 0.19 mmol, 1.1 eq.), N-methylmorpholine 

(42 mg, 0.41 mmol, 2.4 eq.) and N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide 

hydrochloride (36 mg, 0.19 mmol, 1.1 eq.) were added. The reaction mixture was 

stirred at room temperature for 21 hours. Subsequently, 1 mL of saturated NaHCO3 

solution and 5 mL of DCM were added, the layers were separated, and the solvent of 

the organic phase was evaporated under reduced pressure. The crude product was 

purified by reversed-phase column chromatography (silica C-18, ACN/H2O gradient, 0 

% ACN → 35 % ACN). The product was isolated as a colourless amorphous solid (70 

mg, 0.078 mmol, 46%). For analytical data (1H-NMR, 13C-NMR) see Appendix. 

 

 Synthesis of PT-O-SS-Py (3) 

PT-O-SS-Py was synthesized by Dr. Jan Gorges (Organic Chemistry, Saarland 

University). Pretubulysin TFA salt (20 mg, 0.026 mmol, 1.0 eq.) was dissolved in 0.3 

mL dry DCM and cooled with an ice bath. At 0 °C 2-(pyridin-2-yldisulfanyl)ethan-1-ol 

(6 mg, 0.032 mmol, 1.25 eq.), DMAP (N,N-dimethylpyridin-4-amine) (3 mg, 0.026 

mmol, 1.0 eq.), and N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride (5 

mg, 0.028 mmol, 1.1 eq.) were added. The reaction mixture was stirred at room 

temperature for 20 hours. Subsequently, the solvent was evaporated under reduced 

pressure and the crude product was purified by column chromatography (silica 

DCM/MeOH, 10 % MeOH). The product was isolated as a colorless amorphous solid 

(18 mg, 0.019 mmol, 75 %). For analytical data (1H-NMR, 13C-NMR) see Appendix. 
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 Synthesis of PT-H-oligomer conjugates 

Oligoamides were dissolved in HBG and conjugated to the activated PT-hydrazide-

molecule PT-H-SS-Py (2) by stoichiometric mixing of 10 µM solutions in HBG for in situ 

disulfide exchange. The mixture was incubated on a shaker for 1 hour. Incubation time 

of 1 hour was established to be sufficient for conjugation by photometric measurement 

of the released pyridine-2-thiol. Formation of oligoamide PT conjugates was 

demonstrated by HPLC analysis for the 2-arm E4-MTX-H-PT construct (Figure 7). 

 

 Fluorescein labeling of oligomers  

For fluorescein-5-maleimide labeling, the sulfhydryl containing oligoamides, which are 

prone to disulfide formation, were reduced with TCEP reducing gel (Pierce™ 

Immobilized TCEP Disulfide Reducing Gel, Thermo Fisher Scientific). The reduction 

was conducted according to the manufacturer’s protocol. The oligoamides were 

dissolved in 10 mM EDTA in water to prevent oxidation of the generated sulfhydryl 

groups, added to the prewashed gel and incubated for 1h. The supernatant contained 

the reduced oligoamides and was immediately used for the coupling reaction.  

Fluorescein-5-maleimide (Thermo Scientific Fisher) was used at a 15-fold molar 

excess and dissolved in DMF. For the coupling reaction the pH was adjusted to 6.8. 

After 2 h incubation the conjugate was purified by size exclusion chromatography using 

an Äkta purifier system (GE Healthcare Bio-Sciences AB, Uppsala, Sweden), a 

Sephadex G-10 column and water - acetonitrile 7 : 3 as solvent. The successful dye 

coupling was validated by MS. 

 

 Cy5 labeling of oligomer 454  

Lipo-oligomer 454 were labeled using Cy5-NHS ester. To that extent, 454 (2.5 mg, 0.8 

µmol) was dissolved in 0.5 mL of HEPES buffer (pH7.4). The pH was adjusted to 8.3 

using 1 M NaOH. Cy5-NHS ester (0.4 mg, 0.6 µmol) was dissolved in DMSO and 

added to the lipo-oligomer solution. After 4 h reaction time at room temperature, the 

454-Cy5 conjugate was purified by dialysis using a 1000 Da cut off membrane. The 

solution was lyophilized to yield 454-Cy5 as a blue powder. 

 



Materials and Methods 

   35 

 Formation of drug incorporating 454 nanomicelles  

Lipo-OAA 454 was dissolved in HEPES-buffered glucose (HBG, 20 mM HEPES, 5 % 

glucose [w/w], pH 7.4) at a concentration of 10 mg/mL. PT and MTX were dissolved in 

10% DMSO, 90% HBG at a stock concentration of 10 mM. The drug solution was 

further diluted with HBG to final concentrations of 1 mM for MTX and 0.5 mM PT. The 

nanomicelle was formed by adding an equal volume of drug solution PT+MTX (0.5 mM 

+ 1 mM) to the oligomer solution (10 mg/mL, 3 mM), and the solution was mixed by 

vigorous pipetting (Method A). This resulted in final concentrations of 250 µM PT, 500 

µM MTX and 5 mg/mL (1.5 mM) lipo-oligomer 454 in the nanoparticle. Nanomicelles 

started to form immediately. Ratios of oligomer to drug concentrations and their effects 

on particle formation as described below are crucial for particle properties. 

Alternatively, micelles can be formed by dissolving dry lipo-OAA in a drug solution in 

HBG (Method B). Particle sizes and drug incorporations were comparable to particles 

formed from solution.105 

 

 Polyplex preparation  

For polyplex formation, the siRNA was dissolved in 20 mM HEPES buffered 5% 

glucose pH 7.4 (HBG) at a concentration of 500 ng/μL. All polyplexes were prepared 

at a nitrogen/phosphate (N/P) ratio of 10, only protonatable nitrogens were considered 

in the N/P calculation. The lipo-oligomer 1198 solution was prepared in a separate tube 

in HBG. An equal volume of siRNA was added to the oligomer. The mixture was rapidly 

pipetted at least 5 x and incubated for 45 min at room temperature. The resulting 

polyplex solution contained 250 ng of siRNA/μL.  

For PT containing polyplexes, PT in HBG was added to the siRNA solution to yield a 

PT+siRNA solution containing 0.156 ng PT/µL and 500 ng siRNA/µL. The siRNA+PT 

solution was added to the oligomer and again, the mixture was rapidly pipetted and left 

to incubate for 45 min. The polyplex contained 250 ng of siRNA/µL and 0.078 ng PT/µL. 

For further experiments, e.g. MTT assays, the solution was further diluted. Twenty µL 

of polyplex solution containing 250 ng of siRNA and 0.078 ng of siRNA were added to 

80 µL of medium in the well. This corresponded to molar concentrations of 185 nM 

siRNA and 1 nM of PT per well. 
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 Post-modification of polyplexes with DBCO-PEG agents 

For post-functionalization of 1198 siRNA polyplexes with click agents DBCO-PEG or 

DBCO-PEG-GE11, reagent solutions were prepared in ¼ of the volume of the polyplex 

solution. The concentration of the solution was calculated according to the respective 

equivalents (eq). Equivalents represent the molar ratio of shielding agents to oligomers 

in the polyplex solution. All polyplexes were modified with 0.75 eq. of click agent. The 

reaction time was 4 h.  

 

 Particle size and zeta potential 

To determine particle size, nanomicelle complexes were formed as described above. 

454 PT+MTX particles contained 250 µM PT, 500 µM MTX and 1500 µM lipo-OAA 

454. 1198 polyplexes were freshly prepared as described above. Nanoparticle solution 

(60 µL) was transferred to a capillary cell (DTS1070) and measured using a Zetasizer 

Nano ZS with backscatter detection (Malvern Instruments, Worcestershire, UK). 

For size measurements, the equilibration time was 0 min, the temperature was 25°C 

and an automatic attenuator was used. The refractive index of the solvent was 1.337 

and the viscosity was 1.0336 mPa x s. Each sample was measured 3 times.  

 

 Transmission electron microscopy (TEM) 

Transmission electron microscopy (TEM) images were taken by Dominik Loy 

(Pharmaceutical Biotechnology, LMU München). Carbon coated copper grids (300 

mesh, 3.0 mm O. D.; Ted Pella, Inc. USA) were activated by plasma cleaning (420 V, 

1 min, argon atmosphere). Afterwards, 5 µL of nanomicelle solution (250 µM PT, 500 

µM MTX and 1500 µM lipo-OAA 454) were incubated on the grids for 3 min before it 

was removed and stained by a 1.0 % uranyl formate solution according to the following 

procedure: First, 5 µL uranyl formate solution were placed on the grid and removed 

immediately, second, 5 µL of the same solution were left on the grid for five seconds 

before removal. Afterwards, the grids were dried for 30 min at room temperature. The 

stained nanomicelles were visualized by a JEM/1011 transmission electron 

microscope with 80 kV acceleration voltage. 
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 Drug incorporation efficiency 

Incorporation efficiency was determined by ultrafiltration of nanoparticles and 

subsequent HPLC analysis of the filtrate. Nanoparticles were formed (454 PT+MTX: 

250 µM PT, 500 µM MTX and 1500 µM lipo-OAA 454; 1198 siEG5+PT: N/P 10, 50 µg 

siRNA and 0.3 ng PT in 200 µL polyplex solution). Amicon Ultra – 0.5 mL (Ultracel 3 

K) centrifugal filters were used according to the manufacturer’s protocol. The filters 

were pre-rinsed with 200 µL of Millipore water. Particle solution in HBG (140-200 µL) 

was added to the filter, the filled device was inserted into a microcentrifuge tube and 

centrifuged at 18 000 g for 30 min. The filtrate was subjected to HPLC analysis (C-

column, YMC column, HS-302, HS12S05-1546WT, 150 x 4.6 mm I.D., S-5 µm, 12 nm, 

YMC Europe GmbH, Dinslaken, Germany) with a gradient of 5% to 100% acetonitrile 

with 0.1 % TFA in 20 min. Unincorporated drugs PT and MTX were detected at 214 

nm. Incorporation efficiency was calculated by comparing the peak areas of 

ultrafiltered, incorporated drug to the peak areas of ultrafiltered free drug. All 

experiments were performed in triplicates. 

 

 Stability of drug incorporation in HBG, 154 mM NaCl and FBS containing 

HBG. 

The stability of drug incorporation in 454 PT+MTX nanomicelles incubated in HBG, 

154 mM HBG and 10 % - 50 % FBS in HBG was determined at different temperatures 

and incubation time points. Nanomicellar PECs were prepared in HBG as previously 

described (250 µM PT, 500 µM MTX, 1500 µM lipo-OAA 454). Particle solution (100 

µL) was added to the respective incubation medium (HBG, 308 mM NaCl and 20 – 100 

% FBS in HBG). After incubation at room temperature or 37°C in a shaker for 1 h or 

12 h, nanomicelles were ultrafiltered at 18 000 g for 30 min. Depending on the 

incubation medium, filtration devices with different cut offs were used. Amicon Ultra – 

0.5 mL (Ultracel 3 K) were used to measure drug release upon incubation in serum-

free HBG or NaCl solution. Due to interactions of PT and FBS components, filtration 

devices with a 100 K cut off (Amicon Ultra – 0.5 mL, Ultracel 100 K) were used in case 

of FBS containing solutions. Control experiments demonstrated that MTX or PT, only 

if released from nanomicelles, would be detectable in the filtrates in both settings. The 

filtrates were subjected to HPLC analysis (C18-column, YMC column, HS-302, 
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HS12S05-1546WT, 150 x 4.6 mm I.D., S-5 µm, 12 nm, YMC Europe GmbH, Dinslaken, 

Germany) with a gradient of 5% to 100% acetonitrile with 0.1 % TFA in 20 min. The 

amount of released drug upon incubation was determined for MTX and PT and 

calculated in relation to free PT+MTX which was incubated under the same conditions. 

The detection wavelength was 214 nm for PT and MTX monitoring. All experiments 

were performed in triplicates. 

Alternatively, the release of MTX upon incubation of 454 PT+MTX in the different 

media was determined photometrically at 340 nm. Particles were formed to contain 

125 µM PT, 250 µM MTX and 750 µM 454 and 100 µL particle solution was diluted 

with 100 µL of HBG, 308 mM NaCl and 20 % FBS in HBG. After ultrafiltration (Amicon 

Ultra – 0.5 mL Ultracel 3 K), 100 µL of filtrate were filled in a micro cuvette and the 

amount of released MTX was determined photometrically at 340 nm. Drug release was 

calculated in relation to ultrafiltered, free MTX.  

 

 Agarose gel shift assay 

An agarose gel (1%) was prepared by dissolving agarose in TBE buffer (10.8 g of 

trizma base, 5.5 g of boric acid, 0.75 g of disodium EDTA, and 1 L of water) and 

subsequent boiling. After cooling down, GelRed™(Biotium, Inc., Hayward, CA, USA 

was added for siRNA detection. 1198 siEG5 polyplexes were prepared as described 

above containing 250 ng/µL and loading buffer, siRNA electrophoresis was performed 

at 80 V for 40 min.   

 

 Dihydrofolate reductase activity assay 

The enzymatic activity of the enzyme dihydrofolate reductase (DHFR) in the presence 

of various MTX and FolA containing oligoamides was determined using a dihydrofolate 

reductase assay kit (Sigma-Aldrich) based on the NADPH dependent reduction of 

dihydrofolic acid to tetrahydrofolic acid. The assay was conducted according to the 

manufacturer’s protocol. All tested compounds were dissolved in the provided assay 

buffer at final concentrations of 1000, 100, 10 and 1 nM. The reaction progress was 

monitored photometrically over a period of 5 min by measurement of NADPH 

absorption at 340 nm each 15 s. Control reactions in the absence of inhibitors were 
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carried out. Data points were fitted by linear regression and the gradient was 

determined. Relative enzyme activity was calculated as the ratio between the gradient 

of the reaction with test compound to the gradient of the control reaction without 

inhibition. The assay was carried out in triplicates for each oligoamide. 

 

 Cellular internalization determined by flow cytometry 

2.2.18.1 Cellular internalization of oligoamide conjugates  

Flow cytometry experiments to determine the uptake of the FR-targeted oligoamide-

fluorescein conjugates were performed by Jasmin Kuhn (Pharmaceutical 

Biotechnology, LMU München). 

KB cells were seeded on collagen-coated 24-well plates at a density of 5 x 104 

cells/well 1 day before the experiment, medium was replaced with 450 µL of fresh 

growth medium either FolA-free or FolA-substituted at a concentration of 1.5 mM and 

cells were incubated for 30 min at 37 °C. L1210 cells were seeded 2 h prior to 

experiments at a density of 2 x 105 cells/well in 450 µL of FolA-free or FolA-substituted 

medium. Solutions of 20 µL oligoamide-fluorescein conjugates (at 1 µM calculated for 

the oligoamide), HBG or STOTDA-FITC (negative control) were added and incubated 

for 30 min. Medium was removed and cells were treated twice with PBS containing 

100 IU heparin/mL for 15 min to remove non-internalized oligoamides. Cells were 

detached with Trypsin/EDTA, suspended in FACS buffer (PBS with 10 % FCS), 

centrifuged (2000 rpm, 5 min, 4 °C) and resuspended in 600 µL of FACS buffer. 

Internalization of the conjugates was measured by flow cytometry with CyanTM ADP 

(Dako, Hamburg, Germany) through excitation at 635 nm, and detection of emission 

at 665 nm. Dead cells were excluded by DAPI fluorescence detection. Data were 

analyzed by FlowJo® 7.6.5 flow cytometric analysis software.2.1.X. All experiments 

were performed in triplicates. 

2.2.18.2 Cellular internalization of 1198 polyplexes 

Flow cytometry experiments to determine the cellular internalization of 1198 polyplexes 

were performed by Dr. Wei Zhang and Dr. Yanfang Wang (Pharmaceutical 

Biotechnology, LMU München.) KB cells (5 x 104 cells/well) or Huh7 cells (8 x 104 

cells/well) were seeded in 24-well plates at 24 h before the experiment. Medium was 
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changed. Subsequently, polyplexes (containing 1.5 µg siRNA per well including 20% 

Cy5 labeled siRNA) modified with DBCO-PEG-GE11 or DBCO-PEG were added into 

each well for 45 min at 37 °C in 5% CO2. Cells were washed with PBS twice, then with 

500 I.U. heparin to remove polyplexes non-specifically associated to the cell surface. 

After washing with PBS, cells were collected and resuspended in FACS buffer (PBS 

buffer with 10 % FBS). Internalization of the polyplexes was measured by flow 

cytometry with CyanTM ADP (Dako, Hamburg, Germany) through excitation at 635 

nm, and detection of emission at 665 nm. Dead cells were excluded by DAPI 

fluorescence detection. Data were analyzed by FlowJo® 7.6.5 flow cytometric analysis 

software.2.1.X. All experiments were performed in triplicates. 

 

 Cellular internalization determined by confocal laser scanning 

microscopy  

2.2.19.1 Cellular internalization of 454 PT+MTX 

Confocal light scattering microscopy (CLSM) images were taken by Miriam Höhn 

(Pharmaceutical Biotechnology, LMU München). L1210 cells were seeded at a density 

of 1 × 105 cells/well (12-well plate, 960 µL cell suspension per well) 4 h prior to 

treatment. The cells were treated with 40 µL drug solution containing 454/454-Cy5 

PT+MTX in HBG to a final drug concentration of 1 µM PT, 2 µM PT and 6 µM 454/454-

Cy5 (50 % 454, 50 % 454-Cy5) on cells. After 4 h incubation time, cells were collected 

by centrifugation and washed with phosphate buffered saline (PBS). KB cells were 

seeded into eight-well µL-slides at a density of 1 x 102 in 300 µL of growth medium. 

After 4 h treatment with 454/454-Cy5 PT+MTX particles, medium was removed, and 

cells were washed with PBS. Cells were fixed with 4 % paraformaldehyde (PFA) in 

PBS for 45 min. After a PBS wash, the nucleus was stained with 4,6-diamidino-2-

phenylindole (DAPI) and the actin skeleton with phalloidin-rhodamine for 45 min. The 

staining solution was removed, PBS was added to the KB cells in the chamber slides, 

which were then used for microscopy. L1210 cells were centrifuged and washed with 

PBS after the last staining step. PBS was removed and the cells were resuspended in 

20 µL of mounting medium (Roti®-Mount FluorCare, Carl Roth). Five µL of the viscous 

cell suspension were added to a microscope slide, the cover slip was carefully placed 

on top of the drop. The cover slip was sealed with nail polish. After drying, the prepared 
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microscope slides were used for microscopy. Cellular internalization was observed by 

laser scanning confocal microscopy (Leica TCS SP8, Germany). 

2.2.19.2 Cellular internalization of 1198 polyplexes 

CLSM measurements to determine cellular internalization of 1198 polyplexes were 

performed by Dr. Wei Zhang, Dr. Yanfang Wang and Miriam Höhn (Pharmaceutical 

Biotechnology, LMU München). KB cells (2 x 104 cells/well) or Huh7 cells (2 x 104 

cells/well) were seeded 24 h before the experiment in 8-well Ibidi µ-slides in 300 µL 

growth medium. Cells were incubated with polyplexes (containing 500 ng siRNA per 

well including 20% Cy5 labeled siRNA) for 45 min at 37 °C in 5% CO2 after fresh 

medium was changed. Cells were washed twice with PBS and fixed with 4% 

paraformaldehyde solution for 30 min at room temperature. DAPI was used as nucleus 

staining probe, and actin cytoskeleton was stained with rhodamine phalloidin. Cellular 

internalization was observed by laser scanning confocal microscopy (Leica TCS SP8, 

Germany). 

 

 Influence of PT+MTX treatment on intracellular actin and tubulin 

determined by CLSM 

CLSM images were taken by Miriam Höhn (Pharmaceutical Biotechnology, LMU 

München). L1210 cells were seeded at a density of 1 × 105 cells/well (12-well plate, 

960 µL cell suspension per well) 4 h prior to treatment. The cells were treated with 40 

µL drug solution containing PT, MTX and PT+MTX in HBG to a final drug concentration 

of 200 nM PT and 600 nM MTX on cells. After 24 h, 48 h or 72 h incubation time, cells 

were collected by centrifugation and washed with PBS. KB cells were seeded into 

eight-well µL-slides at a density of 1 x 102 in 300 µL of growth medium. After the 

respective incubation time, medium was removed and cells were washed with PBS. 

L1210 and KB cells were then extracted in Microtubule Stabilizing Buffer (80 mM 

PIPES pH 6.8, 1 mM MgCl2, 5mM EGTA-K, and 0.5% Triton X-100) for 30 seconds to 

remove monomeric and dimeric tubulin subunits. Glutaric aldehyde was added to a 

final concentration of 0.5% and cells were fixed for 10 minutes. A 0.1% solution of 

NaBH4 in PBS was used for subsequent quenching of unreacted glutaric aldehyde (7 

min). Next, cells were washed with PBS: L1210 cells were collected by centrifugation 

before washing, KB cells were washed in the chamber slides. To block unspecific 
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binding sites, cells were incubated with antibody dilution (AbDi)l solution (TBS-0.1% 

Triton X-100, 2% BSA 0.1% Azide) for 10 min. The cells were incubated with the 

primary α-tubulin antibody (Sigma-Aldrich, T9026) in AbDil solution for 45 min. After a 

TBS wash, the secondary antibody (Alexa Fluor 488) was added and left on the cells 

for another 45 min. Cells were washed with TBS and incubated with a solution of DAPI 

(nucleus staining reagent) and phalloidin-rhodamine (F-actin staining reagent) in AbDil 

for 15 min. The staining solution was removed, cells were washed with TBS and 100 

µL of AbDil solution was added to the KB cells in the chamber slides, which were then 

used for microscopy. L1210 cells were centrifuged and washed with TBS after the last 

staining step. TBS was removed and the cells were resuspended in 20 µL of mounting 

medium (Roti®-Mount FluorCare, Carl Roth). 5 µL of the viscous cell suspension were 

added to a microscope slide, the cover slip was carefully placed on top of the drop. 

The cover slip was sealed with nail polish. After drying, the prepared microscope slides 

were used for microscopy. 

 

 GFP gene silencing 

GFP gene silencing experiments were performed by Dr. Wei Zhang and Dr. Yanfang 

Wang (Pharmaceutical Biotechnology, LMU München). KB-eGFP-Luc cells (4 x 103 

cells/well) or Huh7-eGFP-Luc cells (5 x 103 cells/well) were seeded in 96 well plates at 

24 h before transfection. Cells were placed in fresh medium and incubated with 20 µL 

polyplex solution containing control siRNA or GFP siRNA (500 ng siRNA/well or 370 

nM, N/P 10), alternatively siRNA co-formulated with 0.78 ng PT (results in elevated 

final concentration of 10 nM PT in well). Due to the short incubation time of 4+44 h, the 

concentration of PT was increased 10-fold in these experiments. Cells were cultured 

for 4 h, then the polyplex containing medium was replaced with fresh medium. Cells 

were incubated for a further 44 h. Afterwards, luciferase activity of cell lysates was 

measured using a Centro LB 960 plate reader luminometer (Berthold Technologies, 

Bad Wildbad, Germany) and a luciferin-LAR (1 M glycylglycine, 100 mM MgCl2, 500 

mM EDTA, DTT, ATP, coenzyme A) buffer solution at 48 h after transfection. The 

relative light units (RLU) were presented as percentage of the eGFP-luciferase gene 

expression obtained with buffer treated control cells. All experiments were performed 

in triplicates. 
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 EG5 mRNA expression by qRT-PCR  

To determine the mRNA level of the EG5 gene in transfected cells quantitative real 

time polymerase chain reactions (qRT-PCR) were performed by Dr. Yanfang Wang 

(Pharmaceutical Biotechnology, LMU München). KB cells (1.2 x 105 cells/well) and 

Huh7 cells (1.5 x 105 cells/well) were seeded in 2 mL of medium onto 6-well plates. 

After 24 h, medium was replaced with 900 μL of fresh medium. Cells were treated with 

100 μL of polyplex solution containing 5 µg siEG5 or siCtrl (N/P 10) and incubated for 

2 h. The medium was replaced with 1 mL of fresh growth medium. 24 h after 

transfection the total RNA was isolated with peqGOLD Total RNA Kit (Peqlab, 

Germany) followed by a reverse transcription using qScriptTM cDNA Synthesis Kit 

(Quanta Biosciences, USA) according to the manufacturers' protocols. Quantitative 

RT-PCR was performed in triplicates on a LightCycler 480 system (Roche, Mannheim, 

Germany) using UPL Probes (Roche, Mannheim, Germany) and Probes Master 

(Roche, Mannheim, Germany) with GADPH as housekeeping gene. The following 

probes and primer sequences were used: EG5, UPL Probe #53, left primer: 

CATCCAGGTGGTGGTGAGAT, right primer: TATTGAATGGGCGCTAGCTT; 

GAPDH, UPL Probe #45, left primer: TCCACTGGCGTCTTCACC, right primer: 

GGCAGAGATGATGACCCTTTT. Results were analyzed by the ΔCT method. CT 

values of GAPDH were subtracted from CT values of EG5. ΔCT values of siRNA-

transfected cells were calculated as percentage relative to untreated control cells. All 

experiments were performed in triplicates. 

 Cell viability 

L1210 suspension cells were seeded at a density of 5 x 103 cells/well (96-well plate) in 

80 µL growth medium 4 h prior to addition of 20 µL treatment solution (refer to 2.2.23.1-

4). KB cells were seeded at a density of 2.5 × 103 cells/well (96-well plate) in 100 µL 

of growth medium. Huh7 cells were seeded at a density of 5 x 103 cells/well (96-well 

plate) in 100 µL of growth medium. For KB and Huh7 cells, medium was replaced with 

80 µL of fresh medium 1 h before treatment with 20 µL of treatment solution in 20 mM 

HBG. Cells were treated with free or formulated drugs for 2, 4, 24, 48 or 72 h in a cell 

culture incubator at 37 °C. After 2 and 4 h treatment, the cells were washed once with 

fresh medium. L1210 cells were washed by centrifuging the 96 well plate (1000 rpm, 7 

min) and careful removal of the supernatant. Fresh medium (100 µL) was added, the 

plate was centrifuged again, and the medium was once more exchanged. After the 
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respective incubation times (see 2.2.23.1-4) 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT, 10 µL, 5 mg/mL in PBS) was added to each well 

and cells were incubated for 2 h. For cell lysis of L1210 cells, a solution of 10 % sodium 

dodecyl sulfate (SDS) in 0.01 M hydrochloric acid (HCl) was added and incubated 

overnight. For KB cells and Huh7 cells, the medium was removed, cells were frozen at 

-80 °C for at least 30 min and DMSO was added to dissolve the formed formazan dye. 

In both cases, absorption was measured at a wavelength of 590 nm against a 

reference wavelength of 630 nm using a SpectraFluor™ Plus microplate reader 

(Tecan, Groedig, Austria). Cell viability was calculated as percentage of absorption 

compared to wells treated with HBG only. All experiments were performed in 

quintuplicates. 

2.2.23.1 Cell viability of PT-oligoamide treated KB and L1210 cells 

KB and L1210 cells were treated with PT-H-SS-Py, PT-H-C, PT-COOH (also known 

as PT) and PT-O-SS-Py, as well as PT-H oligoamide conjugates for 72 h. See x-axis 

label for treatment concentrations. 

2.2.23.2 Cell viability of PT+MTX treated KB and L1210 cells 

PT, MTX or PT+MTX in HBG were added, and plates were left to incubate for 72 h. 

See x-axis label for treatment concentrations. 

2.2.23.3 Cell viability of 454 PT+MTX treated KB and L1210 cells 

Cells were treated with free drug (PT, MTX, PT+MTX) or formulated drugs (454 PT, 

454 MTX, 454 PT+MTX) for 4, 48 or 72 h. After 4 h treatment, the cells were washed 

once with fresh medium. L1210 cells were washed by centrifuging the 96 well plate 

(1000 rpm, 7 min) and careful removal of the supernatant. Fresh medium (100 µL) was 

added, the plate was centrifuged again, and the medium was once more exchanged. 

Cells were left to incubate for a further 44 or 68 h. KB cells treated for 4 h were also 

washed once with fresh medium, before being incubated for another 44 or 68 h.  

2.2.23.4 Cell viability of 1198 PT+siEG5 treated KB and Huh7 cells 

Twenty µL of free PT (0.078 ng) or the polyplexes containing 250 ng siRNA co-

formulated with 0.078 ng PT were added to yield final concentrations of 185 nM siRNA 

and 1 nM PT and left on the cells for 48 h, 72 h or 2 h. In the last case, the treatment 

solution was replaced with fresh medium and cells were incubated for 70 h. 
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 Cell cycle analysis 

For cell cycle analysis, L1210 were seeded at a density of 1 x 105 L1210 (12-well plate, 

940 µL cell suspension per well) 4 h prior to addition of 60 µL treatment solution (see 

2.2.24.1 and 2.2.24.2 for specified content of treatment solution). Cells were incubated 

for 24 or 48 h, collected by centrifugation and washed with PBS. KB cells were seeded 

at a density of 5 x 104 cells/well. After 24 h, medium was changed and 960 µL of fresh 

medium were added, 30 min prior to addition of 40 µL drug solution. Cells were 

incubated for 24 or 48 h. KB cells were detached with T/E prior to collection and 

washed with PBS. Then, 100 µL of propidium iodide treatment solution (0.1% sodium 

citrate, 0.1% Triton-X100, 50 μg x mL−1 propidium iodide in Millipore water) were 

added and cells were incubated for 3 h on ice in dark. Cells were centrifuged after 

adding 1 mL of PBS, resuspended in 500 μL of PBS, and measured with the CyanTM 

ADP flow cytometer. Data were analyzed by FlowJo 7.6.5 flow cytometric analysis 

software. All experiments were performed in triplicates. 

2.2.24.1 Cell cycle analysis of PT+MTX treated L1210 and KB cells  

The cells were treated with PT, MTX and PT+MTX in HBG to a final drug concentration 

of 200 nM PT and 600 nM MTX on cells.  

2.2.24.2 Cell cycle analysis of 454 PT+MTX treated L1210 cells 

The treatment solution contained free or formulated drug or free oligomer at the 

following final concentrations on cells: 200 nM PT, 400 nM MTX, 800 nM lipo-OAA 454. 

 

 Apoptosis analysis  

L1210 cells were seeded at a density of 1 × 105 cells/well (12-well plate, 960 µL cell 

suspension per well) 4 h prior to treatment. The cells were treated with 40 µL drug 

solution containing PT, MTX and PT+MTX in HBG to a final drug concentration of 200 

nM PT and 600 nM MTX on cells. KB cells were seeded at a density of 5 × 104 

cells/well (12-well plate, 1 mL cell suspension per well). After 24 h, medium was 

changed and 960 µL of fresh medium were added, 30 min prior to addition of 40 µL 

drug solution containing PT, MTX and PT+MTX in HBG to a final drug concentration 

of 200 nM PT and 600 nM MTX on cells. The cells were incubated for 24, 48 or 72 h. 
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L1210 cells were collected by centrifugation, KB cells were detached using T/E prior 

to collection. After a PBS wash, apoptosis was detected with an Annexin V-FITC/PI 

assay (BioVision) by Cyan ADP flow cytometry. Data were analyzed by FlowJo 7.6.5 

flow cytometric analysis software. Cells in different apoptotic stages were visualized 

with the dyes annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI). 

Annexin V has a high affinity for membrane phosphatidylserine (PS), thus FITC-labeled 

annexin V can be used for the detection of outer membrane translocated PS in 

apoptotic cells. PI can intercalate in the DNA. It can reach the DNA as soon as the cell 

membrane has started to disintegrate. No dye can bind to healthy cells, they are 

therefore Annexin V-FITC –/PT – (Q4). When cells start to undergo apoptosis, annexin 

V binds PS. PI, however, cannot yet reach the DNA. Cells are Annexin V-FITC +/PI – 

(Q3). In late apoptosis or necrosis, cells are Annexin V-FITC +/ PI + (Q2). When the 

cell membrane is very badly deformed, Annexin V cannot bind PS anymore even 

though PI can still stain the DNA (Annexin V-FITC –/PI +, Q1). All experiments were 

performed in triplicates. 

 

 In vivo experiments 

Animal experiments were performed by Dr. Sarah Kern (Pharmaceutical 

Biotechnology, LMU München). Mice were housed in isolated ventilated cages under 

specific pathogen-free conditions with a 12 h day/night interval and food and water ad 

libitum. After a minimum of 7 days of acclimation time, tumor cells were subcutaneously 

injected into the left flank of female, 6-week-old mice, RJ: NMRI-nu (nu/nu) (Janvier, 

Le-Genest-St-Isle, France). After tumor cell inoculation, weight and general well-being 

were monitored continuously. Tumor size was measured with a caliper and determined 

by formula a × b² / 2 (a = longest side of the tumor; b = widest side vertical to a). All 

animal experiments were performed according to the guidelines of the German law for 

the protection of animal life and were approved by the local animal ethics committee. 

2.2.26.1 Murine leukemia tumor model 

L1210 cells (0.5 × 10⁶ cells in 150 µL PBS) were injected subcutaneously into the left 

flank of female 6-week-old mice, RJ: NMRI-nu (nu/nu) (Janvier, Le-Genest-St-Isle, 

France) after a minimum of 7 days of acclimation time prior to experiments.  
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2.2.26.2 Xenograft animal model 

KB-wt cells (5 × 106) suspended in 150 μL PBS were injected subcutaneously into the 

left flank of female 6-week-old mice, RJ: NMRI-nu (nu/nu) (Janvier, Le-Genest-St-Isle, 

France) after a minimum of 7 days of acclimation time prior to experiments.  

2.2.26.3 4-arm MTX-H-PT treatment study 

The animals were randomly divided into 4 groups (n=8). Two days after inoculation of 

tumor cells, the animals were injected intratumorally with 50 μL of  native PT (PT-

COOH), the 4-arm structure 4-arm E4-MTX and the corresponding conjugate with PT-

hydrazide 4-arm E4-MTX-H-PT. Treatments were repeated on days 2, 5, 7, 9, 12 and 

14. Tumor sizes of the animals were monitored daily. Animals were sacrificed after the 

tumor size reached 1000 mm3 in the control and 4-arm E4-MTX groups. 

2.2.26.4 Treatment experiment in L1210 tumor model 

Three days after tumor cell inoculation, animals were randomly divided into 3 groups 

(n = 6). Intravenous treatments were performed 8 times (on days 3, 5, 7, 10, 12, 14, 

17 and 19). Animals were injected via tail vein injection with 250 µL of PT+MTX (PT: 2 

mg/kg, MTX: 2.5 mg/kg), the corresponding nanomicelle 454 PT+MTX or HBG buffer 

control. Mice were sacrificed by cervical dislocation once their tumor reached 1500 

mm3 or in case of severely affected well-being (e.g. continuous weight loss, apathy, 

visibly enlarged lymph nodes or spleen) for reasons of animal welfare. 

 

 MALDI-TOF mass spectrometry 

One µL matrix consisting of a saturated solution of Super-DHB (mixture of 2,5-

dihydroxybenzoic acid and 2-hydroxy-5-methoxybenzoic acid) in acetonitrile / water 

(1:1) containing 0.1% (v/v) trifluoroacetic acid was applied on a MTP AnchorChip 

(Bruker Daltonics, Bremen, Germany). After the Super-DHB matrix dried and 

crystalized, one µL of the sample solution (10 mg/mL in water) was added to the matrix 

spot. Samples were analyzed using an Autoflex II mass spectrometer (Bruker 

Daltonics, Bremen, Germany). Spectra were partly recorded by Dr. Sören Reinhard 

and Dr. Stephan Morys (Pharmaceutical Biotechnology, LMU München) after positive 

or negative ionization. 
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 Proton NMR spectroscopy 

1H-NMR spectra were recorded using an AVANCE III HD500 (500 MHz) by Bruker with 

a 5 mm CPPBBO probe. Spectra were recorded without TMS as internal standard and 

therefore all signals were calibrated to the residual proton signal of the deuterium oxide 

(D2O) solvent. Chemical shifts are reported in ppm and refer to the solvent as internal 

standard (D2O at 4.79). Integration was performed manually. The spectra were 

analyzed using MestreNova (Ver.9.0 by MestReLab Research). Integrals were 

normalized to the succinic acid peaks.  

 

 Analytical RP-HPLC 

Reversed-phase HPLC (RP-HPLC) was carried out with a VWR-Hitachi Chromaster 

5160 Pump System (VWR, Darmstadt, Germany), VWR-Hitachi Chromaster 5260 

Autosampler (VWR, Darmstadt, Germany) and a Diode Array Detector (VWR-Hitachi 

Chromaster 5430; VWR, Darmstadt, Germany) at 214 nm detection wavelength. As a 

column either a YMC Hydrosphere 302 C18 (YMC Europe, Dinslaken, Germany) or a 

Waters Sunfire C18 (Waters, Saint-Quentin en Yvelines Cedex, France) was used. A 

gradient starting at 95 : 5 (water / acetonitrile) to 0 : 100 within 20 min was applied. All 

solvents were supplemented with 0.1% trifluoroacetic acid. 

 

 Statistical analysis 

The results are presented as mean values of experiments performed in at least 

triplicates. Unless stated otherwise, error bars display standard deviation (SD). 

Statistical analysis of the results (mean ± SD) was evaluated by unpaired t test: *p < 

0.05; **p<0.01; ***p < 0.001; ****p < 0.0001. Calculations and graphical presentation 

were performed with Prism 6 (GraphPad Software Inc.).  
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3 Results 

3.1 Sequence-defined oligoamide drug conjugates of pretubulysin and 

methotrexate for folate receptor targeted cancer therapy 

This chapter was adapted from: 

Truebenbach, I.; Gorges, J.; Kuhn, J.; Kern, S.; Baratti, E.; Kazmaier, U.; Wagner, E.; 

Lächelt, U., Sequence-Defined Oligoamide Drug Conjugates of Pretubulysin and 

Methotrexate for Folate Receptor Targeted Cancer Therapy. Macromol Biosci 2017, 

17 (10). 

The novel tubulin binding drug PT was shown to have antitumoral9-11, 16 and 

antiangiogenic properties, vascular disrupting effects19 as well as antimetastatic 

potential.9 Nevertheless, medium sized drugs can suffer from short systemic circulation 

time, suboptimum intracellular uptake and undesired toxicity at non-target sites.106, 107 

The conjugation of small molecule drugs to receptor targeted, sequence-defined 

oligoamides can help overcome some of these obstacles. 

In this chapter, a set of FolA- and MTX-oligoamides with varied topology (linear, 2-arm, 

4-arm) and different numbers of FolA or MTX as ligands was synthesized by solid-

phase-assisted synthesis. All oligoamides contained a cysteine for conjugation with 

thiol-reactive drug cargos to serve as a module in SMDC. In the first part, structure 

activity relationships of the sole oligoamides was assessed in different in vitro assays. 

The identification of MTX derivatives with high affinity toward the FR and cytotoxic 

potency despite covalent modification was the main objective. Promising compounds 

were then used for subsequent covalent attachment of PT to generate FR-targeted 

combination therapy drug conjugates.  In case of the MTX containing molecules, their 

combination therapy effect was assessed.   

 

 Oligoamide design and synthesis 

Several structural motifs were crucial in the design of the drug delivery vehicles (see 

Scheme 5). To couple thiol containing drug cargos to the carrier system via a disulfide 

bond, a C-terminal cysteine (C) was introduced as the starting point for solid-phase 

supported oligoamide synthesis. Next, the monodisperse PEG12 unit (with amine and 
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carboxylic acid functional end groups) was incorporated into the linear oligoamides to 

increase the size and hydrophilicity, thus also solubility of the constructs, and to 

decrease unspecific cellular interactions. The N-Fmoc-N″-succinyl-4,7,10-trioxa-1,13-

tridecanediamine (Fmoc-STOTDA) was included in the 2- and 4-arm structures. The 

STOTDA building block contains three ethylene glycol units and has therefore similar 

functions as the PEG block. The derivatization with a Fmoc protection group as well 

as a carboxylic acid functionality enables direct usage for solid phase synthesis. 

 

 

Scheme 5. Schematic illustration of synthesized, sequence-defined FR-targeting oligoamides: The 

linear structures contain one targeting ligand, ligand multivalency is introduced in the 2-arm and 4-

arm structures. C, K, E indicate α-amino acids in one letter code; STOTDA abbreviates the short 

ethylene glycol linker N-succinyl-4,7,10-trioxa-1,13-tridecanediamine; PEG12 indicates a discrete 

polyethylene glycol unit assembled from 12 ethylene oxide units; FolA and MTX indicate ligands. 

 

Next, lysine (K) was introduced in the assembly of 2-arm and 4-arm structures. 

Containing two primary amines, K can act as a symmetrical branching point in the 

synthesis of the branched structures. One K was integrated in case of 2-arm structures, 

in case of 4-arm structures two consecutive K couplings were conducted. The targeting 

ligands MTX and FolA were also introduced as their tetraglutamatylated forms (E4) 

since the polyglutamylated derivatives of free low molecular weight MTX/FolA are 

generated intracellularly by the enzyme folylpolyglutamate synthase and represent the 

biologically active metabolites.7, 54 The glutamates were linked via the γ-carboxylic acid 

function of the glutamate molecule since this corresponds to the naturally occurring γ-
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linkage. In the last step, the targeting ligand FolA, consisting of glutamate and pteroic 

acid, or the corresponding MTX were also introduced on solid phase. 

 

 Effect of MTX and FolA containing oligoamides on DHFR activity 

Aside from intracellular transport, the inhibition of the target enzyme of MTX, the 

dihydrofolate reductase (DHFR), can influence the effects of linear and branched 

polymers on cells. The DHFR catalyzes the reduction of dihydrofolate (DHF) to 

tetrahydrofolate (THF), which is vital for nucleotide biosynthesis. This explains the 

mechanism of action and the wide applicably of the drug MTX in diseases associated 

with rapid cell division.7 

Figure 1 shows the influence of the number of MTX ligands on cell-free enzyme 

inhibition.  

  

 

Figure 1. DHFR inhibition. The effect of oligoamides on DHFR activity was investigated in a cell 

free enzymatic assay. At high concentrations, all MTX-oligoamides inhibit the DHFR-catalyzed 

NADPH dependent reduction of dihydrofolic acid to tetrahydrofolic acid (left). The 2-arm E4-MTX 

molecule shows the highest enzyme inhibition potency. All FolA counterparts mediate lower DHFR 

inhibition (right).  

 

The enzyme’s activity was inhibited by all MTX containing oligoamides. The 2-arm 

oligoamide exhibited the strongest inhibition potential, reducing the enzyme activity to 

13 %, even at a low concentration of 10 nM. The elevated MTX-concentration of the 4-

arm oligoamide did not increase the inhibitory effect. To inhibit the enzyme, the MTX 

molecules have to reach the active site of the DHFR. The spacious 4-arm structure 

might therefore not fit into the enzyme pocket as good as the linear and 2-arm 



   Results 

   52 

counterparts. The 2-arm structure in turn increased enzyme inhibition with its doubled 

MTX-content, compared to the linear derivatives. Comparing lin MTX and lin E4-MTX, 

we could see an effect of polyglutamylation on enzyme inhibition, which has already 

been shown by Lächelt et al..54 Also the analogous FolA derivatives affected enzyme 

activity to some extent. Especially the 2-arm and 4-arm structure seemed to bind the 

active site of the enzyme and influenced the reduction reaction, however with much 

lower potency than the MTX containing analogues. 

 

 Cellular uptake and FR-specificity of MTX and FolA containing 

oligoamides 

To evaluate the impact of structural variation, such as type of ligand and valency, on 

receptor binding and cellular uptake, the latter was evaluated in FR and RFC 

expressing cell lines by flow cytometry. All oligoamide structures were therefore 

labeled with fluorescein-5-maleimide.  

Figure 2 A depicts the cellular uptake of the different oligoamides into KB cells. When 

comparing FolA and MTX as targeting ligands, the natural ligand of the FR, FolA, was 

clearly the better receptor ligand than its structural derivative. This can be seen for all 

structures and has already been shown in previous work.54, 79 The lin FolA molecule 

showed the best receptor uptake, the inclusion of another FolA molecule did not 

increase intracellular delivery. In contrast, for the MTX containing oligoamides 

introduction of multivalent ligands clearly improved internalization of the conjugates. 

Also on L1210 cells, the FolA ligand was superior to MTX (Figure 2 B). Here however, 

we found an additional impact of the introduction of another ligand. The 2-arm and the 

4-arm FolA or MTX derivatives were taken up better than the linear structures. Since 

L1210 cells are suspension cells, the FR can be accessed by the ligands from all sites 

and can eventually facilitate a better binding of bigger structures. In both cases of FolA- 

or MTX-oligoamides, the representative 2-arm structure was taken up to a slightly 

higher extent than the 4-arm counterpart was.  
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Figure 2. Cellular uptake of fluorescein labelled FR-targeted oligoamides after 30 min incubation 

determined by flow cytometry. HBG buffer is used as control. (A) On KB cells the FolA ligand is superior 

to MTX, the lin FolA structure shows the highest cellular uptake compared to the branched oligoamides. 

For MTX containing oligoamides, multivalent ligands improve cellular uptake. (B) Also on L1210 cells, 

the FolA ligand is superior to MTX. The branched structures, however, mediate a stronger uptake 

compared to the linear structure. The 2-arm oligoamides exhibit highest cellular uptake. (C) FR uptake 

is blocked by pre-incubation with FolA substituted medium on KB (left) as well as L1210 cells (right). 

Flow cytometry experiments were performed by Jasmin Kuhn (Pharmaceutical Biotechnology, LMU 

München). 

 

To block the FR-specific uptake of the oligoamides, both cell lines were preincubated 

with 1.5 mM FolA in RPMI-1640 medium. Here, the receptors bind their natural ligand 

FolA and the uptake of the oligoamides is blocked. The complete blockage of oligomer 

uptake by FolA competition supported the expected FR-specific uptake route of the 

compounds. Additionally, STOTDA-FITC (fluorescein isothiocyanate) served as a 

A) 

B) 

C) 
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negative control without FR ligand and did not mediate observable cellular uptake into 

any of the two cell lines (see Figure 3).  

 

Figure 3. Cellular uptake of non-targeted control oligomer STOTDA-FITC on KB cells (left) and 

L1210 cells (right). The labelled conjugate, which does not contain the ligands FolA or MTX, is not 

internalized into KB or L1210 cells. Flow cytometry experiments were performed by Jasmin Kuhn 

(Pharmaceutical Biotechnology, LMU München). 
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 Cytotoxicity of differently branched MTX and FolA containing 

oligoamides 

The effects of FolA- and MTX-oligoamides on FR-overexpressing cell lines were 

evaluated on KB and L1210 cells and can be seen in Figure 4.  

 

Figure 4. (A) Viability of KB cells after 72 h treatment with different FolA and MTX containing 

oligoamides determined by MTT assay. Overall MTX sensitivity of the cell line is low. Nevertheless, 

the tetravalent construct 4-arm E4-MTX exhibits highest toxicity. The folate analogs show no 

obvious effect on cell viability. (B) Viability of L1210 cells after 72 h treatment with different FolA 

and MTX containing oligoamides determined by MTT assay. The MTX-sensitivity is very high, the 

2-arm structure 2-arm E4-MTX show the greatest effect on cell viability as can be seen especially 

at a concentration of 1 nM. The linear FolA structure exhibits low toxicity at the highest 

concentrations. 

 

Figure 4 A, left, depicts the low MTX-sensitivity of the KB cell line. Cell viability was not 

reduced to any further than 50% even at a high concentration of 1000 nM. Comparing 

the MTX containing oligoamides, the effect on cell viability seemed to correlate with 

ligand multivalency and polyglutamylation. At a concentration of 1 nM, the toxic effect 

followed the order 4-arm E4-MTX > 2-arm E4-MTX > lin E4-MTX > lin MTX, 

presumably due to an increased number and therefore concentration of the anti-folate 

drug MTX. In accordance with previous findings from Lächelt et.al.54, the glutamate 

B) 

A) 
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unit was beneficial for the activity of MTX conjugates since no effect of the lin MTX-

oligoamide on cell viability could be observed. The FolA-oligoamides (Figure 4 A right) 

seemed to be fairly non-toxic, only the 4-arm E4-FolA showed a very low effect on KB 

cells at highest concentration of 1000 nM. 

The effect of the oligoamides on cell viability of L1210 cells looked very differently 

(Figure 4 B). The general MTX-sensitivity was high: cell viability was decreased to 

around 10 % for almost all MTX-containing oligoamides at 1000 nM and even to around 

40 % at a very low concentration of 1 nM of 2-arm E4-MTX. The comparably higher 

concentration of MTX in the 4-arm did not lead to an increase in toxicity. This 

corresponded to the lack of additional inhibitory effect of the 4-arm in the DHFR activity 

assay (Figure 1). Interestingly, polyglutamylation did not have a beneficial effect on the 

efficiency of the linear oligoamides on this cell line. Cytotoxicity is the result of several 

independent processes, such as cellular absorption and target interaction. The results 

of the cell viability assay in comparison to the previously examined cellular uptake and 

DHFR-inhibition, that help elucidate the potential of the oligoamides in individual 

delivery stages in an isolated fashion, showed this clearly. The high potency of the 2-

arm E4-MTX correlated with the highest DHFR inhibition (Figure 1) and most efficient 

uptake of the MTX containing analogs into L1210 cells (Figure 2). While we saw 

accordance in the case of L1210 cells, the highest effect of the 4-arm E4-MTX on KB 

cells seemed to be independent from DHFR inhibition and cellular uptake. 
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 The conjugation chemistry influences the toxicity of PT 

The potent cancer chemotherapeutic PT was selected as possible cargo for FR-

targeted conjugates and MTX oligoamide combinations. Figure 5 A shows the different 

PT derivatives used in this study.  

 

 

 

Figure 5. (A) Chemical structures of the four PT-derivatives that were used in the study. Structure (1) 

depicts the native PT-molecule. The carboxyl group was functionalized either by  hydrazide (2) or ester 

(3) linker containing an activated disulfide bond. Structure (4) represents the cysteine (C)-coupled PT-

hydrazide. (B) Synthesis scheme of the PT-hydrazide (2) and PT-ester (3) from the PT-COOH TFA salt. 

PT derivatives were synthesized by Dr. Jan Gorges (Organic Chemistry, Saarland University). 

 

The naturally occurring PT-COOH (1) was derivatized chemically to provide an anchor 

point for covalent conjugation of carrier systems. A disulfide bond facilitated selective 

intracellular cleavage of a PT-carrier conjugate and drug release due to an increased 

B) 

A) 
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concentration of cytosolic glutathione.108, 109 A thiol reactive disulfide bond was 

introduced via the conjugation of 2-mercaptoethanol to the carboxylic acid function of 

the PT molecule via an ester or hydrazide bond. Previous studies have shown that 

structural alterations of the PT basic structure lead to a loss in functionality. 

Nevertheless, derivatizations at the carboxylic acid position can still leave PT with 

substantial anticancer activity.16 

  

 

 

 

 

 

 

 

 

Figure 6. MTT assay to examine the influence of linker chemistry on cell viability of (A) KB cells and (B) 

L1210 cells. The native PT-COOH (1) exhibits the highest effect on both cell lines. The ester 

derivatization leads to a loss of cytotoxicity whereas the hydrazide moiety still induces concentration 

dependent cytotoxicity. 

 

The MTT assay shows the great influence of the chosen linker chemistry on the toxicity 

of PT on L1210 as well as KB cells (Figure 6). An ester functionalization (PT-O-SS-Py) 

led to a complete loss of toxicity of derivative (3), presumably due to a higher stability 

of an ester bond compared to a hydrazide bond (PT-H-SS-Py) as in derivative (2). The 

beneficial hydrazide linker is similar to the linker strategy of a published folate-tubulysin 

conjugate which was investigated in a phase I clinical trial.72, 93, 110, 111 The hydrazine 

carbamate unit constituted a second breaking point which facilitated the release of 

active PT at the target site. Nevertheless, the hydrazide derivatization (PT-H) 

diminished PT’s activity compared to the naturally occurring PT-COOH to some extent. 

B) 

A) 
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This was especially visible for KB cells, with relative IC50 values of 66.12 nM for PT-H-

SS-Py (2) and 4.34 nM for PT-COOH (1), and to a lesser extent for L1210 cells with 

relative IC50 values of 13.21 nM for PT-H-SS-Py (2) and 2.53 nM for PT-COOH (1) 

(Figure 6). The hydrazide derivatized PT-H-SS-Py (2) was used for further experiments 

and coupled to different oligoamide structures. 

 

 Toxicity of PT oligoamide conjugates 

Additionally to examining the structure activity relationships of the individual oligoamide 

structures, they were tested for their effects on toxicity after conjugation with the 

activated PT derivative. 

 

 

Scheme 6. Representative reaction scheme of PT-H-SS-Py (2) conjugation with C-containing 

oligoamide 2-arm E4-MTX. 

 

PT-H-SS-Py was coupled to FolA- and MTX-containing oligoamides (Scheme 6) to 

facilitate FR-specific PT delivery and, for MTX, to exploit combinatorial therapeutic 

effects. The successful conjugation was verified by RP-HPLC monitoring of the 

reaction between PT-H-SS-Py and the 2-arm E4-MTX oligomer (Figure 7) as well as 

detection of the conjugation product by mass spectrometry (Figure 8). The resulting 

conjugate showed stability in phosphate-buffered saline during 24 hours incubation 

(Figure 9) but rapid cleavage upon incubation with the reducing agent tris(2-

carboxyethyl)phosphine (TCEP) (Figure 10).  
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Figure 7. RP-HPLC monitoring of PT-oligomer conjugation reaction with oligomer 2-arm E4-MTX. The 

compounds PT-H-SS-Py and oligomer 2-arm E4-MTX were analyzed before and after conjugation by 

RP-HPLC using a VWR Hitachi Chromaster HPLC system (5160 pump module, 5260 auto sampler, 

5310 column oven, 5430 diode array detector), a C18-column (YMC column, HS-302, HS12S05-

1546WT, 150 x 4.6 mm I.D., S-5 µm, 12 nm, YMC Europe GmbH, Dinslaken, Germany) column and a 

gradient of 5 % to 100 % acetonitrile with 0.1 % TFA in 30 min. Elution was monitored photometrically 

at 214 nm. The PT-oligomer conjugate was then purified by HPLC under the conditions mentioned 

above. The retention time of PT-H-SS-Py is 18.6 min (top), the retention time of the oligomer is 12.9 min 

(middle). After conjugation and purification, the isolated construct has a retention time of 14.7 min 

(bottom). 
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Figure 8. MS-spectrum of 2-arm E4-MTX-H-PT and its chemical structure. Additionally to the HPLC-

analysis of construct 2-arm E4-MTX-H-PT, the conjugation reaction was verified via MS. 

 

 

 

 

 

 

 

 

 

 

Figure 9. Stability of the 2-arm E4-MTX-H-PT construct in PBS over 24h: 2-arm E4-MTX-H-PT was 

dissolved in PBS and immediately (top) or after 24 h incubation at room temperature (bottom) the 

solution was diluted in HPLC solvent H2O with 0.1% TFA and analyzed with the RP-HPLC system that 

is described in Figure 7. According to the HPLC spectrum, no degradation occurred over the course of 

24h. 
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Figure 10. Reductive cleavage of the 2-arm E4-MTX-H-PT construct upon incubation with the reducing 

agent tris(2-carboxyethyl)phosphine (TCEP). 

 

Cell viability after 72 h incubation was assessed for the constructs on KB and L1210 

cells and results can be seen in Figure 11. PT reduced cell viability to below 10 % at 

its highest concentrations for both cell lines and therefore, strongly increased MTX-

effects on cells, especially on KB cells (see Figure 11 A and Figure 4 A). Comparing 

the conjugates to PT-hydrazides (2) and (4) on KB cells (Figure 11 A), the conjugation 

to the 2-arm and 4-arm MTX structures affected the anticancer potential with significant 

higher tumor cell killing at 1 nM concentration. Also on L1210 cells, the conjugation of 

PT to the 2-arm and 4-arm MTX structures strongly increased the antitumoral activity 

of PT (Figure 11 B). Especially the 2-arm structure seemed to be a valid candidate for 

PT-MTX codelivery, as it induced substantial cell killing even at a low concentration of 

1 nM. In both cell lines, the identification of most potent candidates (4-arm E4-MTX-H-

PT in KB cells, 2-arm E4-MTX-H-PT in L1210 cells) correlated with the previous 

cytotoxicity evaluation of oligoamides alone. PT conjugates with the FolA containing 

oligoamides did not show an increased cytotoxic effect compared to the PT derivative 

without conjugation (Figure 12). The data indicates that the covalent linkage of MTX 

and PT yields conjugates of two drugs with combined activity and potential for FR-

targeted combination therapy approaches. 
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Figure 11. Cell viability after 72 h treatment with MTX-oligoamide PT conjugates. Effects of all MTX 

containing oligoamides (left panel) and rearranged overview over the results (same experiment) 

achieved with the 2-arm E4-MTX-H-PT and 4-arm E4-MTX-H-PT only (right panel). (A) KB cells: The 4-

arm E4-MTX-H-PT construct exhibits highest effects on cell viability, especially compared to PT-

hydrazides (PT-H-C and PT-H-SS-Py) and 4-arm E4-MTX (Figure 4 A) (B) L1210 cells. The 2-arm E4-

MTX-H-PT is superior to all other MTX containing PT-conjugates. 

 

 

Figure 12. Viability of KB cells (left) and L1210 cells (right) after 72 h treatment with FolA-oligomer PT 

conjugates. The FolA-containing oligomers were conjugated to PT and the conjugates were compared 

to free PT (as PT-H-SS-Py or PT-H-C) for their cytotoxic effect. In KB cells (left) no increased cytotoxicity 

of FolA-oligomer PT conjugates was observed. In L1210 cells, cell viability was slightly decreased for 

the targeted conjugates compared to the free PT especially at 100 and 10 nM. This could be due to 

receptor specific PT-uptake into the L1210 suspension-cells. 

 

B) 

A) 
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 Combinatorial treatment with 4-arm E4-MTX-H-PT conjugate in vivo 

To investigate the antitumoral potency of E4-MTX-H-PT conjugate in an in vivo 

situation, a mouse xenograft model with subcutaneous FR-overexpressing KB tumors 

was chosen. The mice were divided into four groups of 8 mice; intratumoral injections 

were started at day 2 after tumor inoculation and repeated at days 5, 7, 9, 12 and 14. 

The conjugate of PT-H-SS-Py and the 4-arm E4-MTX oligomer, 4-arm E4-MTX-H-PT 

was compared to the natural PT-COOH and the bare oligomer 4-arm E4-MTX. The 4-

arm construct was chosen as it showed the best combination effects and highest 

potency in the cell viability assay on KB-cells (see Figure 11 A). Figure 13 shows the 

tumor volume over the time course of the experiment.  

 

Figure 13. Growth of subcutaneous KB tumors in a murine xenograft model after repeated treatments 

with bare 4-arm E4-MTX oligomer, native PT-COOH and the 4-arm E4-MTX-H-PT conjugate (n=8 per 

group). Intratumoral injections were administered at day 2, 5, 7, 9, 12 and 14 after tumor cell inoculation 

(arrows) whereas the untreated mice were not injected. Tumor volumes were determined based on 

caliper measurements. Animal experiments were performed by Dr. Sarah Kern (Pharmaceutical 

Biotechnology, LMU München). 

 

The 4-arm E4-MTX oligomer alone did not inhibit tumor growth. The size difference 

compared to the untreated group could be explained by the absence of post-injection 

swelling of untreated tumors as well as the coincidentally slow initial tumor growth 
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within the control group. However, the absence of an inhibitory effect of the MTX 

oligomer alone in the KB tumor model correlated with previous findings from Lee et 

al.79 In contrast, both PT formulations mediated distinct antitumoral effects and clearly 

attenuated tumor growth during the treatment phase. After the last treatment, tumors 

showed a relapse and increase in tumor volume over time again. Native PT-COOH 

has been shown to have a growth retarding effect on several tumor types when applied 

systemically before9, 19, which was now confirmed also in the case of local injections 

into KB tumors. The FR-targeting conjugate 4-arm E4-MTX-H-PT showed a 

comparable therapeutic effect on tumor growth as the native PT-COOH. Since the 

conjugate contained the chemically modified hydrazide PT-derivative which has been 

found to be less potent in vitro (Figure 6), with an approximately 15-fold higher IC50-

value in KB cells, the therapeutic effect in vivo was considered to be a promising result. 

Both the native and conjugated PT-H derivative showed similar effects on tumor growth 

after direct local intratumoral injection and there can be hope for an additional 

advantage due to receptor targeting of the conjugate in case of a systemic route of 

administration, as it was reported for the folate-tubulysin conjugate.72, 110, 111 However, 

in the current study, no advantage over the native drug could be shown in this 

experimental setup. Finally, monitoring of body weights resulted in no obvious signs 

for adverse effects or pathological findings; all treatments seemed to be well tolerated 

by the animals (Figure 14). 

 

 

 

 

 

 

Figure 14. The body weight of the animals (n=8) receiving different formulations was monitored on a 

daily basis throughout the experiment. The treatments were tolerated well, no drastic loss in body weight 

could be observed. Animal experiments were performed by Dr. Sarah Kern (Pharmaceutical 

Biotechnology, LMU München). 

 

injections 
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3.2 Combined antitumoral effects of pretubulysin and methotrexate 

This chapter was adapted from: 

Kern, S.;  Truebenbach, I.;  Höhn, M.;  Gorges, J.;  Kazmaier, U.;  Zahler, S.;  Vollmar, 

A. M.; Wagner, E., Combined antitumoral effects of pretubulysin and methotrexate. 

Pharmacol Res Perspect 2019, 7 (1), e00460. 

 

In the previous chapter, the novel tubulin inhibitor PT was conjugated with 

MTX-containing oligomers for FR-targeted delivery. The native PT was functionalized 

via a hydrazide bond to enable covalent linkage of PT to the SMDC. The dual delivery 

systems displayed a clear antitumoral combination effect. 

In this chapter, the free drug combination of PT+MTX was evaluated against both free 

PT and MTX in different in vitro experiments to elucidate possible reasons for the 

combinatorial behavior. 

 

 In vitro antitumoral activity of PT, MTX or PT+MTX 

L1210 and KB cells were treated with PT and MTX for 72 h at a set drug molar ratio of 

1 to 3, and cell viability of drug-treated cells was determined by MTT assay (Figure 

15). In case of L1210 cells (Figure 15 A) both the single drugs as well as their 

combination induced strong effects already at low nanomolar concentrations. The IC50 

values of the single drugs in the 96-well format were around 1 nM (PT: 1.3 ± 0.067; 

MTX: 1.984 ± 0.49; PT+MTX: 0.215 ± 0.01), and a beneficial effect of PT+MTX over 

PT and MTX alone was visible. The combination effect was especially predominant at 

a concentration of 1 nM of PT and 3 nM MTX, and could also be seen when comparing 

the IC50 values.  

As stated in the previous chapter, KB cells (Figure 15 B) were partly resistant to MTX, 

with a minimum cell viability of 40% remaining at high MTX concentrations. PT alone 

exhibited strong antitumoral effects on KB cells, with an IC50 in the low nanomolar 

region. The combination formulation was similarly potent as the single drug PT, as can 

be seen for the IC50 values in Table 14 B.  At doses below 40 nM of PT, the combination 

PT+MTX was significantly more potent than PT alone.  
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Figure 15. Combination effect of PT and MTX on cultured L1210 cells but not KB cells. Cell viability and 

IC50 values of drug-treated (A) L1210 cells and (B) KB cells. Cell viability was measured with an MTT 

assay after 72 h treatment and is presented as the mean + SD (n = 5) in % relative to buffer (HBG) 

treated cells. c [nM] refers to the concentration of PT, the concentration is 3-fold higher for MTX, due 

the 1:3 molar drug ratio (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001). 

 

Furthermore, also different molar ratios of MTX to PT were investigated. While the PT 

dose was left constant, the MTX dose was gradually increased from equimolar to a 10-

fold molar surplus of MTX to PT. Figure 16 A depicts the MTT data of drug treated 

L1210 cells at the different ratios. As expected, an increase in the MTX dose led to a 

reduction in cell viability of the MTX sensitive L1210 cells when looking at the graphs 

B) 

A) 
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from left to right. For all dose ratios, the combination of PT+MTX exceeded PT and 

MTX in terms of cell killing.  

Cell viability after drug treatment of KB cells with different molar ratios of PT, MTX or 

PT+MTX is shown in Figure 16 B. Also here, a steady increase of MTX increased the 

number of dead cells. The cell viability of MTX resistant KB cells, however, could not 

be reduced to less than 40% cell viability, even at the highest dose of 1 µM of MTX. At 

the low molar ratios (1 to 1 and 1 to 3) the combination seemed to be slightly superior 

to the single drugs. That effect was not observed for the higher MTX concentrations at 

the ratios 1 to 5 and 1 to 10 though. The dose ratio of 1 to 3 was chosen for all further 

experiments due to the treatment study described in the previous chapter where said 

ratio led to a promising retardation in tumor growth.17 

 

 

 

  

 

 

 

Figure 16. Evaluation of different dose ratios of MTX to PT by MTT assay. Cell viability of drug treated 

(A) L1210 and (B) KB cells. Cells were treated with PT, MTX and the combination PT+MTX at different 

molar ratios. Cell viability was measured with an MTT assay after 72 h incubation time and is presented 

as the mean + SD (n = 5) in % relative to HBG treated cells. 

 

Different conditions were used to determine the in vitro effects of PT, MTX and 

PT+MTX. The MTT assays to determine IC50 values of drugs and their possible 

combination effects were performed in 96 well plates in accordance to previous work 

on cellular effects of PT, with drug concentrations ranging from 0.0001 nM up to 100 

nM of PT.9, 17, 18 

A) 

B) 
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For flow cytometry experiments, higher numbers of cells were needed. Hence, 

experimental conditions were modified. Cells were seeded in 12-well plates and 

suitable concentrations of PT and MTX were determined. The effect of 200 nM PT and 

600 nM MTX on L1210 and KB cells were determined by MTT-assay. Figure 17 A 

depicts the time-dependent effects of drugs on L1210 cells. As expected, cell viability 

decreased over the time course of the experiment; with only 11% viable L1210 cells 

left after 72 h of PT+MTX treatment, 16% viable cells after PT treatment and 17% 

viable cells after MTX treatment.  The antitumoral effect of PT was already well visible 

after 24 h, whereas the onset of MTX toxicity could be seen after 48 h. The combination 

effect of PT+MTX over PT was already prominent after 24 h treatment. 

The weaker overall effect of the drugs on KB cells could be seen in Figure 17 B. After 

72 h incubation, cell viability was reduced to 22% (PT+MTX), 20% (PT) or 57% (MTX). 

No significant combination effect is visible in this setting. A time-dependent effect of 

drugs on cell viability could also be determined here. 

 

 

 

 

 

 

 

 

 

 

Figure 17. MTT assay of drug treated L1210 (A) and KB cells (B) at 24, 48 and 72 h incubation time. 

Cell viability is presented as mean + SD (n = 5) in % relative to buffer (HBG) treated cells. 

B) 

A) 
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 The effect of PT, MTX or PT+MTX treatment on tumor cell cycle 

L1210 and KB cells were treated with HBG, PT, MTX or PT+MTX and left to incubate 

for 24 h or 48 h. Time points and drug concentrations were adjusted to the 12-well 

plate culture conditions. Cells were stained with the DNA intercalating dye propidium 

iodide and measured by flow cytometry (Figure 18). After 24 h treatment of L1210 cells 

(Figure 18 A), PT induced the expected strong G2/M arrest (83% arrest in G2/M), 

whereas MTX induced a strong G1/S arrest (86% in G1). With regard to PT+MTX co-

treatment, the pattern at 24 h (81% arrest in G2/M) equaled treatment with only PT. 

Interestingly, after 48 h the G2/M effect of PT treated cells was reduced (55% G2/M, 

30% G1), whereas MTX still induced a strong 75% G1/S arrest. In contrast, no 

comparable G1/S arrest was found in the PT+MTX combination group, but a stronger 

G2/M arrest of cells (64% G2/M, only 11% G1) was seen when compared to the single 

drug PT. In sum, in the combination group, the G2/M effect of PT seemed to be 

predominant, and the effect was even supported by MTX co-treatment.  

For KB cells (Figure 18 B), changes in cell cycle are in general delayed as compared 

with the faster growing L1210 cells. No significant alterations could be noted after 24 

h incubation. With time, PT treatment started to build up some G2/M arrest (41% G2/M 

at 48 h), MTX treated cells were largely in G1 phase. In sharp contrast to the single 

drug treatments, the PT+MTX combination induced a strong G2/M arrest already after 

24 h, and much stronger (78% G2/M) also after 48 h than PT alone. 
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Figure 18. Cell cycle analysis of drug-treated cells. (A) L1210 cells and (B) KB cells were treated with 

HBG buffer control, 200 nM PT, 600 nM MTX, or the combination PT+MTX (200+600 nM). Cells were 

incubated for 24 h, respectively 48 h. Cells were stained with propidium iodide and analyzed by flow 

cytometry. Treatments were performed in triplicates. 

 

 Induction of apoptosis by PT, MTX or PT+MTX 

The effect of drug treatment on apoptosis of L1210 (Figure 19 A and Figure 20) and 

KB cells (Figure 19 B and Figure 21) was monitored with an annexin V-fluorescein 

isothiocyanate (FITC)/propidium iodide (PI) assay. L1210 and KB cells were treated 

with HBG control buffer, PT, MTX or PT+MTX and left to incubate for 24, 48 or 72 h. 

Cells were collected, stained with annexin V-FITC and PI and analyzed by flow 

cytometry. For L1210 cells (Figure 19 A and Figure 20), HBG and MTX treatment for 

24 h did not trigger any signs of apoptosis (Q4), whereas PT and PT+MTX induced 

apoptosis in 10% of cells (Q1-Q3). After 48 h, 30% of MTX treated and 30-40% of PT 

or PT+MTX treated L1210 cells were apoptotic. After 72 h incubation time, 80% of MTX 

treated cells and 70% of PT or PT+MTX treated cells showed signs of apoptosis. 

B) 

A) 
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Combining PT and MTX did not increase the number of apoptotic cells in comparison 

to the single drugs. Apoptotic cells are mainly in the Q2 quadrant, reflecting that cells 

are in the late apoptotic or necrotic phase. 

After treatment of KB cells (Figure 19 B and Figure 21) for 24 h, MTX treated cells did 

not show apoptotic signs (Q4), whereas PT and PT+MTX treated cells were 20% or 

30% apoptotic (Q1 Q3). The number of PT or PT+MTX treated apoptotic cells steadily 

increased over the time course of the experiment, with only around 15% of healthy 

cells remaining. In contrast to L1210 cells, the majority of apoptotic KB cells were FITC 

– / PI + (Q1), indicating that the cell membrane of KB cells was too heavily destroyed 

to bind annexin V. Consistent with MTT and cell cycle data, the MTX resistance of KB 

cells was also noted in the apoptosis analysis; only 20% of MTX treated cells had 

undergone apoptosis after 72 h treatment. Like for L1210 cells, the combination 

PT+MTX did not enhance the number of apoptotic KB cells over the single drug 

treatments. 

 

Figure 19. Apoptosis in drug-treated L1210 cells (A) or KB cells (B). Cells were treated with control 

buffer HBG, PT, MTX or PT+MTX and incubated for 24, 48 and 72 h, respectively. Cells were stained 

with annexin V-FITC and propidium iodide and analyzed by flow cytometry. Treatments were performed 

in triplicates. Q1: Annexin V-FITC – / PI +; Q2: Annexin V-FITC +/PI + ; Q3: Annexin V-FITC +/PI – ; 

Q4: Annexin V-FITC –/PI – 

B) 

A) 
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Figure 20. Flow cytometric analysis of apoptosis in drug treated L1210 cells. L1210 cells were treated 

with HBG, PT, MTX and PT+MTX and incubated for 24, 48 and 72 h respectively. Cells were stained 

with annexin V-FITC and propidium iodide and analyzed by flow cytometry. Treatments were performed 

in triplicates (n = 3). Q1: FITC – / PI +   Q2: FITC +/PI +  Q3: FITC +/PI –    Q4: FITC –/PI – 

 

 

 

. 
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Figure 21. Flow cytometric analysis of apoptosis in drug treated KB cells. KB cells were treated with 

HBG, PT, MTX or PT+MTX and incubated for 24, 48 and 72 h respectively. Cells were stained with 

annexin V-FITC and propidium iodide and analyzed by flow cytometry. Treatments were performed in 

triplicates (n = 3). Q1: FITC – / PI +      Q2: FITC +/PI +       Q3: FITC +/PI – Q4: FITC –/PI – 

 

 

 Confocal laser scanning microscopy of drug-treated cells 

The effects of PT, MTX and PT+MTX on the DNA, the actin cytoskeleton and on the 

microtubules of L1210 and KB cells were determined by confocal laser scanning 

microscopy (CLSM). Figure 21 depicts the disruption of the microtubule network of 

L1210 and KB cells caused by PT treatment, already after 24 h treatment (see also 

Figure 22 for non-merged images). L1210 cells (Figure 22 A) have lost their structural 

integrity, the microtubule network seems to be located extracellularly. PT also induced 

nuclear fragmentation of L1210 cell nuclei. Moreover, a change in the F-actin 

cytoskeleton upon MTX treatment could be seen especially for KB cells (Figure 22 B). 
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Cell morphology changed, as cells became elongated over the 72 h time course. In 

comparison to HBG treatment, MTX treatment led to an accumulation of actin in the 

cell periphery and the formation of pseudopodia. L1210 cells treated with MTX have 

completely lost their structural integrity after 72 h. Furthermore, L1210 cell morphology 

was changed. Cells were shaped less spherical in comparison to HBG treated cells. 

This effect was, however, less pronounced than for KB cells. PT+MTX treated L1210 

cells displayed signs of apoptosis already after 24 h. Cell integrity was lost, nuclei are 

fragmented and the microtubule network was destroyed. The toxic effects of the drug 

combination were equally pronounced on KB cells. 

 

 

 

 

 

 

 

 

 

 

 



   Results 

   76 

Figure 22. Fluorescence microscopy 

images of drug-treated L1210 (A) or KB 

(B) cells. DNA was stained with DAPI 

(blue), the F-actin was stained with 

phalloidin-rhodamine (red) and tubulin 

was visualized using an α-tubulin primary 

antibody and an AlexaFluor 488 coupled 

secondary antibody (green). Pictures 

show the merged staining, scale bar is 25 

μm. CLSM images were taken by Miriam 

Höhn (Pharmaceutical Biotechnology, 

LMU München). 
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Figure 23. Confocal laser scanning microscopy 

images of drug treated L1210 (A) and KB cells (B). 

DNA was stained with DAPI (blue), tubulin was 

visualized using an α-tubulin primary antibody and an AlexaFluor 488 coupled secondary antibody 

(green), the actin cytoskeleton was stained with phalloidin-rhodamine (red). CLSM images were taken 

by Miriam Höhn (Pharmaceutical Biotechnology, LMU München). 

B) 
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3.3 Combination chemotherapy of L1210 tumors in mice with 

pretubulysin and methotrexate lipo-oligomer nanoparticles 

This chapter was adapted from: 

Truebenbach, I.;  Kern, S.;  Loy, D. M.;  Höhn, M.;  Gorges, J.;  Kazmaier, U.; Wagner, 

E., Combination Chemotherapy of L1210 Tumors in Mice with Pretubulysin and 

Methotrexate Lipo-Oligomer Nanoparticles. Mol Pharm 2019,16 (6), 2405-2417. 

Copyright (2019) American Chemical Society. 

 

The beneficial properties of the drug combination PT+MTX were evaluated in the 

second chapter of this thesis. To unify the different pharmacokinetic behavior of two 

drugs after in vivo administration, drugs can be co-delivered to the tumor site by 

formulation into a nanoparticle. In the third chapter of this thesis, PT and MTX were 

co-incorporated into a delivery system using the previously established lipo-

oligoaminoamide (lipo-OAA) 454. Containing hydrophobic and hydrophilic segments, 

the cationizable lipo-OAA 454 spontaneously self-assembles into micellar structures 

in aqueous solution. Four units of the artificial amino acid succinoyl tetraethylene 

pentamine (Stp) serve as a hydrophilic protonatable segment in 454. Being partially 

protonated at physiological pH, the Stp units facilitate the polyelectrolyte complex 

(PEC) formation with negatively charged cargo molecules, such as MTX, via 

electrostatic interaction. The zwitterionic lipophilic PT interacts with 454 independently 

from PEC formation, presumably via hydrogen bonding, hydrophobic, or other 

interactions.98 Upon cell uptake, additional protonation of the Stp units under acidifying 

endosomal conditions promote escape of complexes out of these intracellular 

vesicles.51 In addition to the ionic building blocks, lipo-OAA 454 contains two oleic acid 

chains (OleA), and tyrosine tripeptide units which might serve as a further stabilizing 

domain of the micellar structures by hydrophobic or aromatic π-π stacking 

interactions.91, 101 N- and C-terminal cysteines were shown to stabilize siRNA 

containing complexes due to their disulfide crosslinking potential.87, 89  
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 Formation and characterization of 454 nanomicelle complexes 

In this study, lipo-OAA 454 and antimetabolite MTX were used to form polyelectrolyte 

complexes (PECs) which were co-loaded with the potent tubulin binding drug PT 

(Scheme 7).  

 

 

 

Scheme 7. Schematic representation of nanomicelle complex formation based on lipooligomer 

454, MTX, and PT. The positively charged sequence-defined lipo-oligoamino amide 454 self-

assembles into nanomicellar structures with particle sizes of 20 nm. The zwitterionic natural product 

PT can incorporate into the amphiphilic structures without detectable change in nanomicelle size. 

Upon addition of the negatively charged MTX to 454, a polyelectrolyte complex (PEC) of 150 nm 

is formed. PEC formation in the presence of MTX and PT results in co-incorporation of the 

zwitterionic PT by noncovalent interactions, such as hydrogen bonding, or hydrophobic forces.53 

The different structural segments of the lipo-oligomer are represented in different colors: hydrophilic 

regions: blue (Stp), hydrophobic: purple (oleic acid) and aromatic: green (tyrosine). Additional 

nanoparticle stabilization is facilitated by disulfide crosslinkages (yellow: cysteine).  

 

To enable the successful formation of PECs it is crucial to determine an ideal ratio of 

both oppositely charged components. Thus, different ratios of oligomer to MTX were 

investigated to determine a composition that yielded reproducible particles (Figure 24 

A). Steinborn et al. have previously examined the particle properties of MTX and 454 
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or polyglutamylated analogs of MTX.48 In the current study, dynamic light scattering 

(DLS) measurements revealed that a 10-fold molar surplus of oligomer 454 over MTX 

led to the formation of a heterogeneous mixture of two nanoparticle populations, one 

small at 24 nm, and another big one at 540 nm (Figure 24 A). By decreasing the ratio 

of oligomer to MTX, particle properties could be optimized. At a 5-fold surplus of 

oligomer, 454 MTX were found to be of 150 nm in size with a polydispersity index (PDI) 

of 0.2. By further lowering oligomer amounts to a molar ratio of 3 to 1 or 1 to 1, the PDI 

of the 454 MTX particles decreased further to < 0.2. The particle size slightly increased 

to 160 nm. The ratio of oligomer to drug was inversed using a 3-fold excess of MTX. 

This however, led to particle agglomeration and precipitation (not shown).  Therefore, 

a 3:1 molar ratio was used for subsequent 454 MTX PEC formation studies. 

Before PEC formation studies, several different ratios of 454 to PT were screened 

(Figure 24 A). Different from 454 MTX PECs and similar as empty 454 nanomicelles, 

454 PT particle sizes ranged from 15-20 nm with PDIs of 0.3-0.4 independently of the 

oligomer ratios tested. A ratio of 6 to 2 to 1 of oligomer 454 to MTX to PT was finally 

selected, since Kern et al. described that an excess of MTX over PT was favorable for 

the drug combination in terms of antitumoral activity and tumor growth in vivo.8  

Nanoparticle sizes and morphology of the 454 MTX scaffold and its PT loaded 

counterpart 454 PT+MTX at the optimized oligomer to drug ratio were compared by 

DLS (Figure 24 B) and transmission electron microscopy (TEM, Figure 24 C). While 

the particle size of 454 MTX nanoparticles at a 3 to 1 ratio (150 nm) slightly increased 

upon co-assembly with PT (170 nm), the PDI stayed unchanged. TEM images show 

454 MTX and 454 PT+MTX PECs to be uniform and spherical in shape. Data 

correspond well with DLS measurements in terms of particle size. MTX particles 

revealed sizes around 100 nm. 454 PT+MTX particles were considerably bigger than 

100 nm. The particle size and morphology of lipo-oligomer 454, which can assemble 

into particle-like structures in aqueous medium due to its zwitterionic character, and 

454 PT is depicted in Figure 25. Furthermore, the influence of the addition of MTX to 

existing 454 PT particles was investigated. This resulted in the formation of PECs of 

165 nm (Figure 26). 

Particles which are smaller than 5-10 nm are reported to be rapidly cleared by the 

kidneys, whereas particles with sizes above 200 nm are recognized by the 
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reticuloendothelial system (RES) and degraded by macrophages.112, 113 Particle sizes 

between 10 and 200 nm have previously been shown to passively target tumors by the 

EPR effect.65 Klein et al. demonstrated that targeted and shielded siRNA polyplexes 

of 190 nm can reach subcutaneous L1210 tumors in vivo after systemic administration, 

which is the same in vivo model as used in the current studies.49 Hence, 454 PT+MTX 

particles with a size of 175 nm should be applicable for intravenous delivery into L1210 

leukemia tumors in vivo. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24. Size and morphology of 454 MTX and PT loaded 454 PT+MTX. (A) PEC sizes and 

uniformities are dependent on molar ratios of lipo-OAA to MTX. 454 MTX scaffolds were formed in HBG, 

particle size (z-average) and polydispersity index (PDI) were determined by DLS. (B) Hydrodynamic 

B) 

A) 

C) 
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diameter (z-average) and PDI of 454 MTX and the PT loaded counterpart 454 PT+MTX were determined 

by DLS and are shown as mean ± SD (n=3). (C) TEM images of nanoparticles. The scale bar in the left 

pictures is 200 nm, in the right 100 nm. TEM images were taken by Dominik Loy (Pharmaceutical 

Biotechnology, LMU München). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25. (A) Different ratios of lipo-OAA 454 to PT were tested towards its influence on particle size 

and polydispersity. Nanoparticle size (z-average) and uniformities (PDI) were determined by DLS and 

are independent from molar ratios of lipo-OAA to PT. (B) Hydrodynamic diameter (z-average) and 

polydispersity index (PDI) of 454 and the PT loaded counterpart 454 PT were determined by DLS and 

are shown as mean ±SD (n=3). Measurements reveal particle sizes of 12 – 20 nm and relatively high 

PDIs of 0.4. (C) TEM images of nanoparticles. While no uniform particles can be detected on the grid 

B) 

A) 

C) 
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for an aqueous 454 solution, TEM images depict 454 PT particles to be homogenous and spherical. The 

scale bar in the left pictures is 200 nm, in the right 100 nm. TEM images were taken by Dominik Loy 

(Pharmaceutical Biotechnology, LMU München). 

 

 

Figure 26. Influence of subsequent MTX addition on particle size of pre-formed 454 PT nanoparticles. 

454 PT particles were formed as described before. After 30 min incubation time, 30 µL of 454 PT solution 

where diluted with 30 µL MTX solution to yield 454 PT+MTX particles at a final concentration of 250 µM 

PT, 500 µM MTX and 1500 µM 454. Alternatively, 30 µL of HBG were added to 454 PT. Hydrodynamic 

diameters (z-average) were determined by DLS and revealed particle sizes of 15 nm for 454 PT. Upon 

addition of the anionic MTX, polyelectrolyte complex (PEC) formation resulted in particle sizes of 165 

nm. The hydrodynamic diameter is presented as mean ±SD (n=3). 

 

 Drug incorporation efficiency of 454 

A nanoparticle system with maximal drug loading and a high incorporation efficiency 

will reduce the quantity of carriers required for the administration of sufficient amount 

of active compound and is crucial for the therapeutic effect.114 The incorporation of 

MTX and PT+MTX into 454 nanomicelles was determined by ultrafiltration. 

Nanoparticles were formed and ultrafiltered using centrifugal filters with a cut off of 3 

kDa. The filtrate, containing non-incorporated drug, was analyzed by HPLC for drug 

content. Figure 27 represents the amounts of incorporated drug. At the optimized molar 

ratio (454: MTX : PT – 6:2:1), lipo-OAA 454 incorporates 84% of MTX and 71% of PT.  

Upon increasing the amount of PT to ratios of 3:1:1, the incorporation efficiency of the 

PECs stays unchanged. At higher doses of PT (ratio 3:1:3) however, the incorporation 

efficiency decreases.  
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Figure 27. Drug incorporation efficiency of 454. Nanomicelle PECs were formed at a fixed molar ratio 

of oligomer 454 to MTX of 3:1, and the PT ratio was increased stepwise. Incorporation efficiency of 

drugs was determined by analytical reverse phase HPLC (C18 column of 5% to 100% gradient of 

acetonitrile in 0.1 % aqueous TFA, detection wavelength 214 nm) of the filtrate after removal of 

nanomicelles by ultrafiltration (Amicon Ultracel 3K) in HBG and is presented as mean ± SD (n=3). 

 

The ability of lipo-OAA 454 to incorporate MTX (454 MTX) and PT (454 PT) is shown 

in Figure 28. Additionally, the drug loading capacity, i.e. the amount of incorporated 

drug per nanoparticle, was calculated (Table 9). One mg of 454 PT+MTX contained 

0.028 mg of PT and 0.038 mg of MTX. 

 

 

 

 

 

 

 

Figure 28. Drug incorporation efficiency of 454 PT and 454 MTX. Incorporation efficiency was 

determined by analytical reverse phase HPLC (C18 column of 5% to 100% gradient of acetonitrile in 0.1 

% aqueous TFA, detection wavelength 214 nm) of the filtrate after ultrafiltration of 454 PT and 454 MTX 

nanoparticles (Amicon Ultracel 3K) in HBG and is presented as mean ± SD (n=3). The incorporation 

efficiency of the single drug formulations does not differ from the PT loaded 454 MTX+PT nanoparticles. 
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Table 9. Drug loading capacity of 454 PT, 454 MTX and 454 PT+MTX in [w/w %]. The drug loading 

capacity was calculated as the amount of incorporated drug divided by the total nanoparticle weight. For 

454 PT+MTX, 1 mg of nanoparticle contains 0.028 mg of PT and 0.038 mg of MTX. 

 

 Stability of 454 PT+MTX Nanomicelle PECs  

It is essential to ensure the stability of a micelle under physiological conditions. 

Different parameters, like salt changes and contact with numerous proteins, endanger 

its structural integrity.115 To determine whether 454 particles were stable upon 

exposure to different media, 454 PT+MTX nanomicelles were incubated in HBG, 

physiological NaCl solution (154 mM NaCl) and 10% FBS in HBG. After the respective 

incubation time points, the particles were ultrafiltered. Different filtration devices were 

used to separate released PT+MTX from the nanomicelle-bound forms. To determine 

stability in HBG or physiological NaCl solution, filters with a cut off of 3 K served to 

investigate the drug release for both MTX and PT. For FBS containing media, filters 

with a 100 K cut off were used to determine amounts of free PT+MTX. Since PT binds 

to FBS components (Figure 29), it cannot pass an ultrafiltration membrane with a small 

cut off of 3 K.  
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Figure 29. HPLC chromatogram of free PT+MTX incubated with 90% FBS. In order to determine 

possible interactions of free drugs PT and MTX with serum components, the drug solution in HBG was 

incubated with 90% FBS at room temperature for 1 h. The sample was ultrafiltered and the filtrate was 

evaluated by HPLC for free, unbound drug.  (A) Chromatogram of ultrafiltered, free drugs PT+MTX at 

monitoring wavelength 214 nm.  (B) Chromatogram of FBS incubated and ultrafiltered PT+MTX at 214 

nm. Free MTX does not interact with serum components and can therefore be recovered in the filtrate. 

Free PT however binds to FBS and can thus not pass the ultrafiltration membrane. Some serum 

components (‘FBS’), which are small enough to pass the 3 kDa molecular weight cut-off ultrafiltration 

membrane, appear in the HPLC trace at a monitoring wavelength of 214 nm. 

 

In contrast, released PT, even if FBS bound, can pass the ultrafiltration barrier of the 

100 K cut off filters and can be detected in the filtrate. The amount of released PT+MTX 

in the respective filtrates was determined by HPLC analysis and compared to drug 

content of analogously treated free drug solution incubated in the presence of the 

respective medium (upper chromatogram of Figure 30 A and B).  
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Figure 30. Stability of PT+MTX drug incorporation into 454 nanomicelles upon exposure to (A) 154 mM 

NaCl solution and (B) 10% serum containing HBG at room temperature. HPLC chromatograms (C18 

column, 5% to 100% acetonitrile gradient in 0.1 % aqueous TFA in 20 min, detection wavelength 214 

nm) of PT+MTX or 454 PT+MTX particles after ultrafiltration. Nanoparticle solution (250 µM PT, 500 µM 

MTX, 1500 µM 454; 100 µL) was diluted with 100 µL of incubation medium (308 mM NaCl, 20 % FBS 

containing HBG). PECs were incubated at final concentrations of 154 mM NaCl and 10 % FBS for 1 h 

or 12 h at room temperature and ultrafiltered. For nanoparticles incubated in physiological NaCl solution 

(A), filters with a 3 K cut off (Amicon Ultracel 3K) were used to separate the nanoparticle from free, 

unincorporated drug. In case of 10 % FBS as the stability medium (B), filters with a 100 K cut off (Amicon 

Ultracel 100 K) served to separate the free drug. The respective filtrates were evaluated by HPLC for 

released drug. (A) Stability of 454 PT+MTX under physiological salt conditions (154 mM NaCl). The 

upper chromatogram serves as a concentration standard to calculate free, unincorporated drug. The 

two bottom chromatograms depict the amount of released drug upon exposure to 154 mM NaCl for 1 or 

12 h. (B) Stability of 454 PT+MTX in 10 % FBS containing HBG. The upper chromatogram serves as a 

concentration standard to calculate free, unincorporated drug. The two bottom chromatograms depict 

the amount of released drug upon exposure to 10 % FBS for 1 or 12 h. 
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Upon incubation with physiological NaCl solution (Figure 30 A), only 5 % of MTX and 

PT were freed over the incubation duration of 12 h. Exposure to 10 % FBS led to a 

release of 9 % of MTX and PT alike over the 12 h time course of the experiment at 

room temperature (Figure 30 B). Hence, more than 90 % of PT+MTX were stably 

incorporated into the delivery system. Upon incubation of 454 PT+MTX in NaCl 

solution and 10 % FBS at body temperature, 10 – 15 % of drug was released (Figure 

31). 

 

 

 

 

 

 

 

 

 

Figure 31. Stability of PT+MTX drug incorporation into 454 nanomicelles upon exposure to (A) 154 mM 

NaCl solution and (B) 10% serum containing HBG at 37 °C. HPLC chromatograms (C18 column, 5% to 

100% acetonitrile gradient in 0.1 % aqueous TFA in 20 min, detection wavelength 214 nm) of 454 

PT+MTX particles after ultrafiltration. Nanoparticle solution (250 µM PT, 500 µM MTX, 1500 µM 454; 

100 µL) was diluted with 100 µL of incubation medium (308 mM NaCl, 20 % FBS containing HBG). 

PECs were incubated at final concentrations of 154 mM NaCl and 10 % FBS for 1 h or 12 h at 37 °C 

and ultrafiltered with filtration devices with a cut off of 3 K for 154 mM NaCl (Amicon Ultracel 3K) or 100 

K (Amicon Ultracel 100 K) for FBS containing buffer. The respective filtrates were evaluated by HPLC 

for released drug. (A) Stability of 454 PT+MTX under physiological salt conditions. The chromatograms 

depict the amount of released drug upon exposure to 154 mM NaCl for 1 or 12 h at 37 °C. Less than 5 

% of PT+MTX were released at both time points. (B) Stability of 454 PT+MTX in 10 % FBS containing 

HBG. The chromatograms show the released drug upon exposure to 10 % FBS for 1 or 12 h. 

Approximately 10 % of PT+MTX were released upon incubation in FBS containing HBG. 

 

B) A) 
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An increase in FBS content to 50 % in the incubation medium led to an elevated drug 

release for both drugs (Figure 32). While particles were stable upon exposure to 20 % 

FBS for 1 h at 37 °C, an increase in FBS levels to 50 % induced a release of 80 % of 

MTX and 71 % of PT. The anionic nature of MTX might facilitate the lower stability of 

MTX incorporation than PT incorporation since anionic albumin molecules in FBS 

might replace MTX.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   Results 

   91 

Figure 32. Stability of PT+MTX drug incorporation into 454 nanomicelles upon exposure to increasing 

concentrations of FBS. HPLC chromatograms (C18 column, 5% to 100% acetonitrile gradient in 0.1 % 

aqueous TFA in 20 min, detection wavelength 214 nm) of 454 PT+MTX particles (PECs) after incubation 

in FBS containing media and ultrafiltration. Nanoparticle solution (250 µM PT, 500 µM MTX, 1500 µM 

454; 100 µL) was diluted with 100 µL of incubation medium (40% FBS, 60 % FBS, 80 % FBS and 100 

% FBS). PECs were incubated at final concentrations of 20 %, 30 %, 40 % and 50 % FBS in HBG at 37 

°C and 1 h incubation time. The solution was ultrafiltered using a filtration device with a 100 K cut off 

(Amicon Ultracel 100 K), the respective filtrates were evaluated by HPLC for free PT+MTX. Drug release 

increased with elevated levels of FBS. Particles were stably incorporating 90 % of PT+MTX at 20 % 

FBS. Upon exposure to 30 % FBS, drug incorporation levels decreased to 74 % for both drugs. Only 36 

% of PT+MTX were stably incorporated into 454 PT+MTX upon incubation in 40 % FBS. A final increase 

to 50 % FBS in HBG led to a further particle destabilization. 20 % of MTX and 29 % of PT remained 

incorporated into PECs. FBS components, which are smaller in size than 100 K, also pass the 

ultrafiltration membrane and are visible in the HPLC trace. With increasing amounts of FBS, more FBS 

components appear in the HPLC spectra. 

 

Several serum components, which are smaller than 100 K Da, also pass the 

ultrafiltration membrane and are visible in the HPLC trace. Nanoparticles were stable 

in HBG buffer for at least 12 h (Figure 33). 
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Figure 33. Stability of 454 PT+MTX nanoparticles in HBG at 37 °C. In order to determine the stability of 

454 PT+MTX nanomicelles in HBG, 100 µL of nanoparticle solution (250 µM PT, 500 µM MTX, 1500 

µM 454) was diluted with 100 µL HBG. Particles were incubated at 37 °C for 1 h or 12 h, respectively. 

Samples were ultrafiltered (Amicon Ultracel 3K) and the filtrate was evaluated by HPLC for released 

free PT+MTX. HPLC chromatograms (C18 column, 5% to 100% acetonitrile gradient in 0.1 % aqueous 

TFA in 20 min, detection wavelength 214 nm) show no release of both drugs over the time course of 12 

h. 

 

The MTX release of 454 PT+MTX PECs upon incubation at 1 h, 12 h and 24 h in HBG, 

154 mM NaCl and 10 % FBS was additionally determined in a photometric assay, as 

shown in Figure 34. MTX release was examined after ultrafiltration and subsequent 

photometric analysis of the filtrate for MTX at 340 nm. Over the duration of 24 h, 

nanoparticles were stably incorporating MTX in HBG. A burst release of 10 % MTX 

occurred upon incubation with 10 % FBS. Nevertheless, 90 % of MTX were stably 

incorporated for a further 24 h. Also in NaCl solution, no more than 10 % MTX were 

released in 24 h. 

 

 

 

 

 

 

 

 

Figure 34. MTX release over time upon incubation of 454 PT+MTX in HBG, 154 mM NaCl and 10 % 

FBS in HBG at 37 °C. 454 PT+MTX particles (125 µM PT, 250 µM MTX, 750 µM 454) were formed in 

HBG. Nanoparticle formulations (100 µL) were added to the respective incubation medium (100 µL of 

HBG, 308 mM NaCl or 20 % FBS in HBG). Upon incubation for 1 h, 12 h or 24 h the solution was 

transferred to the ultrafiltration device (Amicon Ultracel 3K) and ultrafiltered. The amount of released 

MTX in the filtrate was determined UV-metrically at a wavelength of 340 nm. Drug release was 

calculated in comparison to drug content of the filtrate of free PT+MTX, incubated under the same 
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conditions and subsequently ultrafiltered. In HBG, particles were stable for at least 24 h. Upon incubation 

of 454 PT+MTX in physiological NaCl solution, 10 % MTX was released. No further release occurred 

over the duration of 24 h. In a solution containing 10 % FBS and 90 % HBG, 10 % of MTX were released 

upon 1 h incubation time. Throughout the duration of the release study, the MTX release increased to 

17 %. 

 

 Cellular uptake studies of 454 nanomicelle complexes  

The cellular internalization of 454 PT+MTX was determined by confocal light scattering 

microscopy (CLSM) of Cy5 labeled nanoparticles (Figure 35). In the first step, the lipo-

oligomer 454 was covalently conjugated to Cy5-NHS ester. The secondary amines of 

the Stp units react readily with the dye. After purification, nanoparticles were formed 

from 50 % 454 and 50 % 454-Cy5 as well as the drug combination PT+MTX. L1210 

(Figure 35 A) and KB cells (Figure 35 B) were treated with 454/454-Cy5 PT+MTX for 

4 h. The nanoparticle-containing medium was removed; cells were washed with PBS 

and fixed with PFA (4 % in PBS). After staining the nucleus with DAPI and the actin 

skeleton with rhodamine-phalloidin, cellular uptake was determined. The CLSM 

images show the successful intracellular delivery of the nanoparticles into L1210 and 

KB cells alike.  

The incorporation of drugs inside a carrier system enables the delivery of high amounts 

across the cell membrane to their target site.116 The successful uptake of 454 PT+MTX 

facilitates the drugs to exercise an increased therapeutic effect intracellularly. 
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Figure 35. Fluorescence microscopy images of 454 PT+MTX PECs treated L1210 cells (A) and KB 

cells (B). Cells were treated with Cy5 labeled PECs for 4 h. Cells were washed with PBS, fixed with 

PFA, the nucleus was stained with DAPI, the actin cytoskeleton with rhodamine-phalloidin. CLSM 

images were taken by Miriam Höhn (Pharmaceutical Biotechnology, LMU München). 

 

 In vitro antitumoral activity of free or formulated PT, MTX or PT+MTX 

PT has a strong antiproliferative effect on L1210 leukemia and KB cervix carcinoma 

cells in vitro and in vivo. L1210 cells are very sensitive to MTX treatment and the 

combination effect of PT+MTX has already been demonstrated.8 While KB cells have 

been shown to be partly MTX resistant,8, 54 PT+MTX however, also displays 

considerable toxicity.8 The antitumoral effect of PT+MTX loaded nanomicelle PECs 

was evaluated in comparison to the free drugs by MTT assay (Figure 36) at different 

incubation time points. In a short time incubation time set up, PECs were incubated on 

cells for 4 h. After a wash with fresh medium, the nanoparticles were left on cells for a 

further 44 or 68 h. Under these conditions, most the free drugs are washed off the cells, 

while the positively charged 454 PT+MTX particles which are associated to the 

negatively charged cell membrane stay on the cells. In a long time incubation time set 

up, L1210 and KB cells were treated with 454 PT+MTX or PT+MTX for 48 or 72 h 

respectively. The IC50 values were calculated upon 72 h incubation and are shown in 

Table 9.  

For PT+MTX, 454 incorporation strongly increased the antitumoral effects on L1210 

cells and KB cells alike, especially at lower concentrations (Figure 36). As expected, 

the overall antitumoral effect is higher, if drugs are left on cells for a longer time (48 h, 

72 h). The IC50 value PT+MTX (0.2 nM) could be lowered by more than a factor of ten 

to 0.0195 nM (Table 10). 454 PT+MTX killed 50% of KB cells at 0.48 nM, as opposed 

to the free drug combination PT+MTX (2.773 nM). 
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Figure 36. Cell viability of (A) L1210 or (B) KB cells upon treatment with free or formulated drugs. 

Different incubation conditions were used to determine the effect of nanoparticulate incorporation on 

antitumoral activity of PT+MTX. Cells were either treated with nanoparticles for 4 h. After non-associated 

PECs were washed away with fresh medium, medium was added and cells were left to incubate for a 

further 44 or 68 h. In the second case, 454 PT+MTX or PT+MTX remained on the cells for a full 48 or 

72 h. Cell viability was measured with an MTT assay and is presented as the mean ± SD (n= 5) in % 

B) 

A) 
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relative to buffer (HBG) treated cells. c [nM] refers to the concentration of PT. The molar ratios of 

oligomer to drugs are 6 : 2 : 1 (454 : MTX : PT).  

 

 

Table 10. IC 50 values of free and formulated drugs on (A) L1210 or (B) KB cells. 

 

Figure 37 shows the antitumoral efficiency of 454 PT, 454 MTX and 454 PT+MTX after 

72 h incubation time at lower concentrations. The increased tumor cell killing effects of 

the 454 formulations over the free drugs could not be attributed to lipo-OAA toxicity, 

which was negligible (Figure 38).  

 

 

 

 

 

 

 

 

 

Figure 37. Cell viability of (A) L1210 leukemia or (B) KB cervix carcinoma cells upon treatment with free 

or formulated drugs. Cell viability was measured with an MTT assay 72 h after treatment and is 

presented as the mean ± SD (n= 5) in % relative to buffer (HBG) treated cells. c [nM] refers to the 

concentration of PT and MTX; their concentrations are set at an equimolar ratio. The molar ratios of 

oligomer to drugs are 6 : 2 : 1 (454 : MTX : PT). The data in this graph was used for calculation of IC 50 

values (Table 10 and Table 11). While nanoparticulate formulation strongly enhanced antitumoral 

activity for PT and PT+MTX, it stayed unchanged for MTX. 

B) 
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Table 11. IC 50 values of PT, MTX, 454 PT and 454 MTX on L1210 and KB cells. IC 50 values were 

determined upon 72 h treatment, see Figure 37. For PT, incorporation into a delivery system increased 

its antitumoral potency to nanomolar regions. Incorporation of MTX affected the cytotoxic effects of MTX 

only slightly. Since KB cells are partly MTX resistant, no IC 50 values were calculated for MTX treated 

KB cells.   

 

 

 

 

 

 

 

 

 

 

 

Figure 38. Cell viability of (A) L1210 or (B) KB cells treated with free lipo-OAA 454. Cell viability was 

measured with an MTT assay after 72 h treatment and is presented as the mean ± SD (n= 5) in % 

relative to buffer (HBG) treated cells, c [nM] refers to the concentration 454. Toxic effects were not 

observed in both cell lines. 

 

The successful delivery of a drug into the cytosol is crucial. An effective strategy is 

necessary which enables the therapeutic agent to cross the biological membranes and 

B) 
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subsequently protects it against the hostile environment of the endosome and 

lysosome.117 Even though PT already displays a considerable antitumoral activity on 

its own, the formulation with 454 strongly increases its potency. Up to date, very little 

is known about the intracellular uptake mechanism of the peptide-like drug PT. Since 

454 particles are efficiently loaded with high amounts of PT, particles display a positive 

surface charge of 30 mV (Figure 39), and Figure 35 shows that PT loaded PECs are 

readily internalized into L1210 and KB cells, nanomicellar formulation might facilitate 

an increased uptake of larger quantities of PT and thereby account for the higher 

antitumoral potency of the nanoparticle over the free drug.118-120 Free MTX is mainly 

taken up into the cell via the reduced folate carrier (RFC).121 The nanomicellar 

incorporation does not seem to increase the intracellular amount of drug and does 

therefore not enhance the therapeutic effect of MTX alone (see Figure 37). 

 

 

 

 

 

 

 

 

Figure 39. Zeta potential of 454 nanomicelles as measured by DLS. The zeta potential for 454 

nanomicelles is positive (between 20 and 35 mV). 

 

 

 Effect of nanomicellar formulation on cell cycle changes induced by 

PT+MTX  

The effect of PT, MTX and PT+MTX on the cell cycle of different tumor cell lines has 

recently been investigated.8 While the tubulin binding agent PT leads to considerable 

G2/M arrest8, 9, 18 cells remain in the G1/S phase upon MTX treatment, as the 
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antimetabolite inhibits the de novo synthesis of nucleotides. For the drug combination 

PT+MTX at a 3-fold surplus of MTX, the effect of PT on the cell cycle is more 

prominent. Hence, a considerable G2/M arrest could be observed for PT+MTX treated 

cells.8 Also at a 2-fold excess of MTX over PT, the G2/M arrest inducing effect of PT 

was predominant (Figure 40). In order to determine a possible change in cellular effects 

due to the incorporation of the drugs into a delivery system, the effect of the 

nanoformulation 454 PT+MTX on the cell cycle was investigated next to the free drug 

combination PT+MTX. Formulation of PT+MTX did neither impact the cell cycle upon 

24 h treatment, nor after 48 h treatment. Additionally, also lipo-OAA 454 alone and the 

incorporation of PT and MTX into 454 PT or 454 MTX did not affect the cell cycle 

(Figure 41). The predominant G2/M-effect of PT and PT+MTX or G1/S-effect of MTX 

was still observed for the drug formulation. 
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Figure 40. Influence of 454, the free drug combination PT+MTX and its nanoparticulate formulation on 

L1210 cells after 24 h or 48 h treatment. L1210 cells were treated with HBG buffer control, the 

combination PT+MTX (200+400 nM) or the PT loaded 454 MTX nanomicelle complexes (454 PT+MTX). 

Nanomicelles were formed as previously described, at a dose ratio of 6 : 2 : 1 of oligomer : MTX : PT. 

Cells were incubated for 24 h or 48 h, respectively. Cells were stained with propidium iodide and 

analyzed by flow cytometry. Treatments were performed in triplicates (n=3), results are presented as 

the mean ± SD. 

 

 

Figure 41. Influence of 454, free drugs PT and MTX and their nanomicellar formulations on L1210 cells 

after 24 h or 48 h treatment. L1210 cells were treated with HBG buffer control, 200 nM PT, 400 nM MTX, 

or drug containing nanoparticles. Nanomicelles were formed as previously described, at a dose ratio of 

6 : 1 for 454 : PT or 3 : 1 for 454 MTX. Cells were incubated for 24 h or 48 h, respectively. Cells were 

stained with propidium iodide and analyzed by flow cytometry. Treatments were performed in triplicates 

(n=3), results are presented as the mean ± SD. While PT induces a strong G2/M arrest, MTX induces a 

strong S phase arrest. Nanoparticulate incorporation does not affect the cellular effects of both drugs. 
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 Treatment of L1210 leukemia bearing mice with 454 nanomicelles  

The 454 PT+MTX nanomicelle PECs and the free drug counterpart PT+MTX were 

investigated in vivo for their effects on tumor growth in a subcutaneous L1210 model 

(Figure 42 A). Due to the high sensitivity of L1210 cells towards PT and MTX in vitro, 

they were chosen over KB cells for the in vivo treatment study. L1210 tumor bearing 

mice were injected intravenously with buffer control (HBG), free drug combination 

PT+MTX or 454 PT+MTX. The dose of PT was set at 2 mg/kg. In case of MTX, a dose 

of 2.5 mg/kg was chosen as higher doses led to precipitation of the formulation. 

Treatments were repeated three times per week, with a maximum of 8 injections in 

total. Animals were sacrificed after reaching the criteria critical tumor size of 1500 mm3 

and Kaplan Meier survival was analyzed. To monitor animal well-being mice were 

weighed daily. Considerable weight loss occurred in several animals of the 454 

PT+MTX group after the first treatment. Nevertheless, mice tolerated all further 

injections well and the weight development was unobtrusive throughout the rest of the 

experiment. Animals displayed a rather constant weight whereas after the end of 

treatments, all surviving mice started to steadily gain weight (Figure 43).  

The tumor growth throughout the treatments with buffer control (HGB), 454 PT+MTX 

and PT+MTX is shown in Figure 42 A. Tumors of the HBG group started to grow 8 

days after tumor cell inoculation. Several animals reached the critical tumor size of 

1500 mm3 already 4-5 days later. Tumors of PT+MTX treated animals started growing 

on day 14. Encouragingly, mice treated with 454 PT+MTX exhibited the strongest 

tumor growth delay as tumor growth onset did not start before day 18. The beneficial 

effect of 454 PT+MTX over PT+MTX was most prominent on day 20 (Figure 42 B). 

The Kaplan-Meier curve (Figure 42 C) demonstrates a statistically significant longer 

survival of the mice in the 454 PT+MTX nanoparticle group. Nanoparticle formulation 

of PT+MTX with 454 increased survival of mice by more than 100% compared to the 

HBG treated group. Overall survival of animals of the 454 PT+MTX group was 

significantly longer compared to animals of PT+MTX group (log rank test of Kaplan 

Meier curve PT+MTX vs. 454 PT+MTX: 0.013) longer than mice of all other groups 

with the last animal being sacrificed on day 38 after tumor cell inoculation (Figure 42 

C).  
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Figure 42. Treatment of subcutaneous L1210 tumors. (A) Tumor volume of subcutaneous L1210 tumors 

throughout the experiment (mean + SEM; n = 6 mice per group). Animals were treated intravenously 

with 250 µL of HBG, PT+MTX or 454 PT+MTX (2 + 2.5 mg/kg). (B) Tumor volume of PT+MTX and 454 

PT+MTX on day 20 after tumor inoculation. (C) Kaplan Meier survival curve of animals treated with 

HBG, PT+MTX or 454 PT+MTX (n = 6 mice per group). Significance of the results was evaluated using 

log rank test (*: p = 0.0131). Animal experiments were performed by Dr. Sarah Kern (Pharmaceutical 

Biotechnology, LMU München). 

 

B) 

A) C) 
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Figure 43. Weight development of mice during systemic treatment with HBG, PT+MTX and 454 

PT+MTX in L1210 tumor bearing animals, starting on day 0 with tumor cell inoculation. Represented is 

the mean weight + SEM of 6 mice per group. Some weight loss occurred in several animal of the 454 

PT+MTX group after the first treatment. Nevertheless, mice of the 454 PT+MTX group tolerated all 

further injections well and the weight development was unobtrusive throughout the rest of the 

experiment. After the last injection, the surviving mice (454 PT+MTX) gained weight steadily. Animal 

experiments were performed by Dr. Sarah Kern (Pharmaceutical Biotechnology, LMU München). 
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3.4 Co-delivery of pretubulysin and siEG5 to EGFR overexpressing 

carcinoma cells 

This chapter was adapted from: 

Truebenbach, I.;  Zhang, W.;  Wang, Y.;  Kern, S.;  Höhn, M.;  Reinhard, S.;  Gorges, 

J.;  Kazmaier, U.; Wagner, E., Co-delivery of pretubulysin and siEG5 to EGFR 

overexpressing carcinoma cells. Int J Pharm 2019, 569, 118570. 

 

The final chapter of this thesis examines the combination of PT with the therapeutic 

siRNA siEG5. Several different drug combinations with siRNA polyplexes have already 

been investigated. In a first study, siEG5 was combined with the well-established 

antimetabolite drug methotrexate.48 Even though the combination exhibited a 

beneficial antitumoral efficiency, acquired resistances to MTX are common. Therefore, 

MTX was substituted with the potent tubulin binding drug PT; Klein et al. investigated 

a combination of free drug PT and folate receptor targeted polyplexes containing 

siEG5.49 This drug combination displayed antitumoral effects. In the current work as a 

next step, PT and siEG5 were co-incorporated into a nanoparticle to enable their 

controlled and simultaneous delivery to the target cell. The polyplexes containing the 

two antitumoral entities, i.e. the microtubule inhibitor PT and the mitotic arrest inducing 

EG5 siRNA, were formed using lipo-oligomer 1198, the azide bearing analog of the 

previously described 454. This sequence-defined lipo-oligoaminoamide was 

sequentially assembled via SPS and optimized towards intracellular delivery of nucleic 

acids. The different structural units of 1198, which facilitate the successful co-

incorporation of siEG5 and PT, are shown in Scheme 8. The lipo-oligomer contains the 

cationizable artificial amino acid Stp for complexation of the siRNA component and 

endosomal buffering.90 Tyrosine tripeptide motifs (Y3) provide polyplex stabilization via 

π-stacking effects.91, 122, 123 C- and N-terminal cysteines (C) stabilize the polyplex 

through disulfide crosslinking potential.87, 89 T-shaped lipo-oligomers such as 1198 

contain a further hydrophobic domain branching off the cationic backbone. Two fatty 

acids, oleic acid in this case, improve polyplex stability via hydrophobic stabilization 

and cause endosomal membrane destabilization.87, 100 The different structural units of 

the polymer 1198 enable the successful co-incorporation of the rather lipophilic 

peptide-like natural product derivative PT. Hydrophobic interactions with the oleic acid 
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domains, possibly also aromatic interactions, with the Y3 motif, and also hydrogen 

bonds with the oligoaminoamide Stp units may facilitate a successful incorporation of 

PT inside the polyplex.  

The azide moiety enables the covalent attachment of a shielding and/ or targeting 

agent onto the surface of the polyplex (Scheme 8 A) via copper free click chemistry.49 

The reaction partner dibenzocyclo-octyne (DBCO) was successfully incorporated into 

the shielding agent DBCO-PEG and the targeting agent DBCO-PEG-GE11 via SPS. A 

bifunctional monodisperse PEG molecule with 24 ethylene oxide monomer units was 

used in the current study. The orthogonal nature of the click reaction enables the 

selective and efficient modification of the polyplex surface.49, 124, 125 The chemical 

structures of the shielding agent DBCO-PEG and the targeting agent DBCO-PEG-

GE11 are shown in Scheme 8 B. The 1198 polyplexes, containing either siRNA or the 

siRNA and drug combination, were thus functionalized with PEG or PEG-GE11 

respectively.  
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Scheme 8. (A) Illustration of polyplex formation. Azide containing lipo-oligomer 1198 and siEG5 and PT 

form a lipo-polyplex. In the second step, the lipo-polyplex surface is functionalized via click-chemistry; 

(B) chemical structures of the DBCO containing shielding agent DBCO-PEG and targeting agent DBCO-

PEG-GE11. 

 

 Drug incorporation efficiency and siRNA binding  

As PT on its own already shows great potential as a new microtubule inhibitor in cancer 

therapy, the combined incorporation of PT with antitumoral siRNA into a delivery 

system aims at elevating the therapeutic effect. To this effect, PT needs to be 

sufficiently incorporated into the siRNA lipopolyplex. Thus, the drug incorporation 

efficiency of the 1198 siEG5+PT particles was determined. Polyplexes were formed as 

described above and ultrafiltered (using a membrane with a molecular weight cut-off 

of 3 kDa) to separate residual, unincorporated PT. The filtrate was then analyzed by 

HPLC to determine the amount of free PT. As a concentration standard, a solution 

containing free PT was ultrafiltered and the filtrate was subjected to HPLC analysis 

(Figure 44 A, upper chromatogram). After polyplex incorporation, only small amounts 

of free PT were determined in the filtrate (Figure 44 A, bottom chromatogram). By 

relating the peak areas of the PT peaks at 12.5 nm, the drug incorporation efficiency 

of the 1198 siEG5+PT polyplex was calculated to be 84%. 

Cationizable oligomers are able to complex nucleic acids into polyplexes via 

electrostatic interactions and thus enable the intracellular delivery of the negatively 

charged cargo across the cell membrane.126 Ensuring a sufficient binding affinity 

between siRNA and the delivery material is crucial. The siRNA compaction efficiency 

of the 1198 oligomer was determined with a gel shift experiment (Figure 44 B). The 

1198 siEG5 polyplex, PEG-GE11 targeted 1198 siEG5 and the PEGylated 1198 siEG5 

all sufficiently bind siRNA at an N/P ratio of 10. In summary, 1198 facilitated the 

successful incorporation of both the natural product PT and siEG5.  
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Figure 44. Drug incorporation efficiency and siRNA binding of 1198 polyplexes. (A) The incorporation 

efficiency of PT into 1198 siEG5 polyplexes (N/P ratio 10, 50 µg siRNA, 0.3 ng PT in 200 µL HBG) was 

determined by ultrafiltration of drug loaded polyplexes and subsequent HPLC analysis (C18 column, 5% 

to 100% acetonitrile gradient in 0.1 % aqueous TFA in 20 min, detection wavelength 214 nm) of the 

filtrate for free PT. A solution containing free, ultrafiltered PT served as the concentration standard 

(upper chromatogram). After formation of the PT loaded polyplexes (1198 siEG5+PT), ultrafiltration was 

performed to remove residual, unincorporated free PT. The filtrate was analyzed by HPLC for the 

residual drug (lower chromatogram). The amount of free PT was determined in relation to the 

concentration standard.    (B) The siRNA binding of 1198 siEG5 polyplexes was determined by gel shift 

assay for the unshielded, PEG modified or PEG-GE11 functionalized polyplexes. 1198 polyplexes were 

formed at an N/P ratio of 10 and contained 250 ng siRNA. Polyplexes were post-functionalized with 0.75 

eq. of PEG or PEG-GE11 and incubated for 4 h. For the unshielded formulation, the respective amount 

of HBG was added. A 1% agarose gel was prepared in TBE buffer, GelRed was added for siRNA 

detection. Gels were run at 80 mV for 45 min. 

A) 

B) 
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 Particle size, polydispersity and zeta potential 

The particle size, polydispersity and zeta potential of the polyplexes containing siEG5 

or siEG5+PT were determined by dynamic light scattering (DLS). Furthermore, the 

effect of post-functionalization on the biophysical particle properties was evaluated. 

Figure 45 A depicts the hydrodynamic diameter of the polyplexes. Particle sizes ranged 

from 185 nm to 200 nm (Figure 45 A). While the additional incorporation of PT slightly 

decreased particle size, functionalization of the polyplex with PEG and PEG-GE11 did 

not impact particle size. The PDI of PT containing particles (1198 siEG5+PT) was 

slightly lower in comparison to siEG5 formulations (1198 siEG5, Figure 2b) ranging 

from 0.16 (1198 siEG5+PT PEG-GE11) to 0.25 (1198 siEG5 unshielded). Post-

modification of the 1198 polyplexes with PEG or PEG-GE11 did not considerably 

influence the polydispersity. The zeta potential of 1198 polyplexes is shown in Figure 

45 B. Here, PT incorporation slightly increased the positive surface charge of the 

polyplexes, albeit not significantly. The zeta potential of the unshielded formulation was 

22 mV (1198 siEG5), respectively 24 mV (1198 siEG5+PT). The efficient shielding 

effect of PEG is clearly visible here, with zeta potentials decreasing to 6 mV (1198 

siEG5) or 7 mV (1198 siEG5+PT). Post-functionalization of particles with PEG-GE11 

led to an increase in positive surface charge to values of 18 mV (1198 siEG5) and 20 

mV (1198 siEG5+PT) negating the shielding effect of PEG. 
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Figure 45. Drug incorporation efficiency and siRNA binding of 1198 polyplexes. (A) The incorporation 

efficiency of PT into 1198 siEG5 polyplexes (N/P ratio 10, 50 µg siRNA, 0.3 ng PT in 200 µL HBG) was 

determined by ultrafiltration of drug loaded polyplexes and subsequent HPLC analysis (C18 column, 5% 

to 100% acetonitrile gradient in 0.1 % aqueous TFA in 20 min, detection wavelength 214 nm) of the 

filtrate for free PT. A solution containing free, ultrafiltered PT served as the concentration standard 

(upper chromatogram). After formation of the PT loaded polyplexes (1198 siEG5+PT), ultrafiltration was 

performed to remove residual, unincorporated free PT. The filtrate was analyzed by HPLC for the 

residual drug (lower chromatogram). The amount of free PT was determined in relation to the 

concentration standard.    (B) The siRNA binding of 1198 siEG5 polyplexes was determined by gel shift 

assay for the unshielded, PEG modified or PEG-GE11 functionalized polyplexes. 1198 polyplexes were 

formed at an N/P ratio of 10 and contained 250 ng siRNA. Polyplexes were post-functionalized with 0.75 

eq. of PEG or PEG-GE11 and incubated for 4 h. For the unshielded formulation, the respective amount 

of HBG was added. A 1% agarose gel was prepared in TBE buffer, GelRed was added for siRNA 

detection. Gels were run at 80 mV for 45 min. 

 

 

A) 

B) 

C) 



   Results 

   110 

 Cellular internalization of 1198 siRNA polyplexes 

The incorporation of siRNA into a nanoparticle facilitates the intracellular delivery of 

the spacious and negatively charged cargo. The functionalization of the nanoparticle 

surface with the shielding agent PEG or the EGFR targeting peptide GE11 influences 

the uptake profile of the nanoparticles into the EGFR overexpressing cell lines. The 

effect of the shielding agent PEG and the targeting ligand PEG-GE11 on cellular 

internalization of the 1198 siRNA polyplexes was determined by flow cytometry (Figure 

46 A-B) and confocal laser scanning microscopy (CLSM) (Figure 46 C-D). Several 

studies have demonstrated the GE11 peptide to be an effective active targeting agent 

in nanoparticle delivery.81, 82, 127-130 Polyplexes containing Cy5 labeled siRNA (red) 

were prepared, left unshielded or equipped with the shielding agent (PEG) or the 

targeting agent (PEG-GE11) and incubated on the cells for 45 min to enable the cells 

to actively internalize polyplexes bound to their surface. Subsequently, cellular uptake 

was determined.  

For flow cytometry studies, cells were washed with PBS and heparin before quantifying 

the Cy5 intensity. The wash with negatively charged heparin largely dissociates 

remaining lipopolyplex material from the cell membranes and thus, only internalized 

Cy5 siRNA is detected. The mean fluorescence intensity (MFI) of the targeted 

formulation (PEG-GE11) over the shielded formulation (PEG) and the unshielded 

formulation was significantly increased on KB cells (Figure 46 A) and Huh7 cells 

(Figure 46 B) proving the effectiveness of the GE11 ligand. Additionally, PEG 

functionalization decreased cellular uptake compared to the unshielded formulation for 

both cell lines. 

The functionalization with the GE11 targeting peptide increased polyplex uptake into 

KB cells, especially in comparison to the PEG group (Figure 46 C). PEG shielding 

decreased the cellular internalization of the polyplexes in comparison to both the 

unshielded and targeted group. On Huh7 cells (Figure 46 D), the CLSM images 

confirmed a higher intracellular delivery of the PEG-GE11 group over the PEG group 

and also the unshielded group. In summary, by functionalization of the particle surface 

with EGFR targeting GE11 peptide, the receptor mediated uptake of 1198 siRNA 

polyplexes into KB and Huh7 cells was increased.  
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A) 

C) 

D) 

B) 
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Figure 46. Internalization of polyplexes was monitored with flow cytometry (A-B) or confocal laser 

scanning microscopy (CLSM, C-D). For flow cytometry experiments, polyplexes were incubated on cells 

for 45 min in a cell culture incubator. Cells were washed with PBS and heparin. Cellular uptake was 

determined by flow cytometry; (A) Cellular internalization of 1198 polyplexes into KB cells; (B) Cellular 

internalization of polyplexes into Huh7 cells. Polyplexes contained 1.5 µg siRNA per well (1 mL) 

including 20% Cy5 labelled siRNA. Mean fluorescence intensity (MFI) is presented as the mean ± SD 

(n=3). For CLSM experiments, KB cells (C) or Huh7 cells (D) were incubated with 300 µL of polyplex 

solution containing 500 ng siRNA per well including 20% Cy5-siRNA (red color) for 45 min at 37 °C. 

Nuclei were stained with DAPI (blue) and the actin cytoskeleton was stained with rhodamine phalloidin 

(green); polyplexes are visualized by Cy5 labeled siRNA (red). The white scale bars indicate 25 μm. 

Flow cytometry experiments were performed by Dr. Wei Zhang and Dr. Yanfang Wang (Pharmaceutical 

Biotechnology, LMU München). CLSM images were taken by Miriam Höhn (Pharmaceutical 

Biotechnology, LMU München). 

 

 GFP gene silencing 

Gene silencing experiments were performed using the KB-eGFP-Luc or Huh7-eGFP-

Luc cells (Figure 47). Polyplexes were formed from GFP siRNA (siGFP) or control 

siRNA (siCtrl) and lipo-oligomer 1198. They were further equipped with the shielding 

agent PEG or the targeting peptide PEG-GE11. Cells were incubated with polyplexes 

for 4 h, GFP gene silencing was quantified after 48 h by reduced luciferase activity of 

the eGFP-Luc fusion protein. The influence of the functionalization on GFP gene 

silencing was investigated. 

The 1198 siGFP polyplex facilitated successful silencing of the GFP gene in KB-eGFP-

Luc cells (Figure 47 A). The unmodified polyplex reduced luciferase activity to below 

40 %. PEGylation decreased GFP gene silencing activity, probably due to reduced 

cellular uptake of the shielded formulations. The introduction of the EGFR targeting 

peptide PEG-GE11 strongly increased the silencing efficiency to below 20% luciferase 

activity. The luciferase expression activity in cells treated with 1198 siCtrl was not 

altered, which ruled out potential intrinsic cytotoxicity of the polyplex. 

Also on Huh7 cells, 1198 siGFP reduced luciferase activity to below 60 % (Figure 47 

B). The PEG shielded formulation was not internalized and did therefore not silence 

the GFP gene. The introduction of the GE11 targeting peptide only slightly improved 

the gene silencing activity of the polyplex.  
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Figure 47. GFP gene silencing in A) KB-eGFP-Luc and B) Huh7-eGFPLuc cells with 1198 siGFP or 

siCtrl polyplexes. Polyplexes were formed at an N/P of 10 and either left unshielded or post-modified 

with 0.75 eq. of PEG or PEG-GE11. For transfections, 20 µL of polyplexes (500 ng siRNA) were 

incubated with the cells for 2 h in 100 µL medium. Medium was changed and the eGFP-luciferase marker 

gene expression was measured at 48 h after transfection using a standard luciferase assay. Marker 

gene activities are presented as the mean ± SD (n= 3) in % relative to untreated cells. GFP gene 

silencing experiments were performed by Dr. Yanfang Wang (Pharmaceutical Biotechnology, LMU 

München). 

 

Theoretically, PT as a microtubule inhibitor might interfere with cellular dynamics such 

as nanoparticle delivery and subsequent processes in gene silencing. Therefore, a 

potential influence of co-incorporation of PT into the 1198 polyplex on GFP gene 

silencing was investigated (Figure 48).  The concentration of PT was increased 10-fold 

in comparison to the cell viability determination since polyplexes were left on the cells 

for only 4 h. Under these short time conditions, 1 nM of PT would be unlikely to affect 

cellular mechanisms. Also at an elevated concentration of 10 nM, PT did not influence 

luciferase gene silencing activity of 1198 siGFP polyplexes.   

A) 

B) 
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Figure 48. Influence of PT on GFP gene silencing of 1198 siGFP or siCtrl polyplexes on (A) KB and (B) 

Huh7 cells. Polyplexes were formed at an N/P of 10 and were either left unshielded or post-modified 

with 0.75 eq. of PEG or PEG-GE11. For transfections, 20 µL of polyplexes containing 500 ng siRNA 

and 0.78 ng PT were incubated on the cells in a final volume of 100 µL, which yielded concentrations of 

370 nM siRNA and 10 nM PT, for 4 h. Medium was changed and the eGFP-luciferase marker gene 

expression was measured at 48 h after transfection using a standard luciferase assay. Marker gene 

activities are presented as the mean ± SD (n= 3) in % relative to untreated cells. PT does not influence 

the GFP gene silencing activity of 1198 siGFP. GFP gene silencing experiments were performed by Dr. 

Yanfang Wang (Pharmaceutical Biotechnology, LMU München). 

 

 qRT-PCR  

The successful intracellular delivery of EG5 siRNA leads to the degradation of the 

respective EG5 mRNA. To determine the influence of 1198 siEG5 on EG5 expression 

in KB and Huh7 cells, they were incubated with siEG5 or siCtrl containing 1198 

polyplexes for 2 h. EG5 mRNA expression was determined 22 h later by quantitative 

real time polymerase chain reaction (qRT-PCR).  

Figure 49 A represents the relative EG5 mRNA expression of transfected KB cells. The 

mRNA expression was efficiently downregulated by treatment with all EG5 containing 

polyplexes. EGFR targeted polyplexes (siEG5 PEG-GE11) induced an almost 

A) 

B) 
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complete downregulation of EG5 to mRNA levels below 3 %. The respective 

PEGylated formulation (siEG5 PEG) still facilitated an mRNA knockdown of almost 70 

%. The effect of the targeted control formulation (siCtrl PEG-GE11) was negligible. 

Effects of 1198 polyplexes on Huh7 followed a similar trend (Figure 49 B). EG5 mRNA 

expression was sufficiently downregulated to 24 % by transfection with siEG5 

containing 1198 polyplexes, PEG functionalization hindered the uptake of the shielded 

formulations and therefore EG5 expression was higher. Targeted control formulation 

did not induce any unspecific effects. 

The target specific gene silencing activity of EG5 siRNA could be demonstrated on the 

mRNA level for both cell lines. Additionally, a beneficial effect of the targeting agent 

PEG-GE11 could be demonstrated. 

 

Figure 49. qRT-PCR experiments were performed to determine siEG5 gene silencing activity on the 

mRNA level. KB cells (A) or Huh 7 cells (B) were treated with siEG5 or siCtrl containing 1198 polyplex 

(N/P ratio of 10, 0.75 eq. of functionalization agent, 5 µg of siRNA in 2 mL growth medium per well) for 

2 h. After 24 h incubation, mRNA expression levels were determined. GAPDH was used as housekeeper 

for all experiments. EG5 mRNA expression is depicted as the mean ± SD (n=3). QRT-PCR experiments 

were performed by Dr. Yanfang Wang (Pharmaceutical Biotechnology, LMU München). 

B) 

A) 
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 Antitumoral efficiency  

The motor protein EG5 is crucial for centrosome separation during mitosis. Thus, EG5 

gene silencing induces tumor cell apoptosis through cell cycle arrest in the G2 stage.131 

The tubulin inhibitor PT binds to the β-subunit of tubulin inhibiting tubulin 

polymerization. The resulting G2 arrest by PT has been demonstrated on several cell 

lines.8, 9, 18, 19 Huh7 and KB cells were chosen for the cytotoxicity assessment due to 

their overexpression of EGFR48, 82 and their sensitivity towards siEG5 and PT (Figure 

50). Different concentrations of siEG5 and PT were tested on KB (Figure 50 A) and 

Huh7 cells (Figure 50 B) to determine optimum doses for the combination formulation. 

For siEG5, 250 ng of siRNA induced potent cell killing in both cell lines. The nanomolar 

potency of PT on KB cells has been demonstrated before.8 A low dose of 1 nM was 

chosen since higher concentrations, such as 10 nM, displayed potent antitumoral 

activity on their own. At the selected doses, formulated 250 ng siEG5 and 1 nM PT 

already showed substantial cell killing activity on their own, whilst leaving sufficient 

margin to elucidate a possible combination effect of both therapeutic modalities.  

 

 

Figure 50. Cell killing of (A) KB and (B) Huh7 cells by 1198 siEG5 polyplexes or PT. Cells were treated 

with different concentrations of unshielded 1198 siEG5, 1198 siCtrl or PT. Cell viability was measured 

with an MTT assay after 72 h treatment and is presented as the mean ± SD (n= 5) in % relative to buffer 

(HBG) treated cells. Interestingly, after these long-term incubations for 3 days, in KB cells a siEG5 

B) 

A) 
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specific dose dependent cell killing was observed; in Huh7cells dose dependent cell killing was also 

observed with siCtrl formulations.  

 

Higher doses of PT were combined with a dose of 250 ng siEG5 (see Figure 51) but 

led to an early onset of cytotoxicity and were therefore not applicable to investigate a 

combinatorial effect of the two therapeutic modalities. 

 

Figure 51. The antitumoral activity of free PT or polyplexes containing siEG5 and siEG5+PT was 

determined by MTT assay at 48 h and 72 h incubation time using (A) KB cells or (B) Huh7 cells. 

Polyplexes were formed in 20 µL of HBG at an N/P ratio of 10, contained 250 ng siRNA and 0.78 ng PT 

(10 nM per well) or 1.56 ng PT (20 nM per well) and were left unshielded or post-functionalized with 

0.75 eq. of targeting ligand PEG-GE11 or shielding agent PEG. Twenty µL of polyplex solution or free 

PT were added to 80 µL growth medium for 48 h or 72 h. Cell viability was measured with an MTT assay 

after 72 h incubation time and is presented as the mean ±SD (n= 3) in % relative to buffer (HBG) treated 

cells. After 48 and 72 h treatment, the PT induced toxicity is too strong to determine combinatorial 

activity.  

 

KB and Huh7 carcinoma cells were treated with polyplexes containing the single 

formulations 1198 siEG5 and 1198 siCtrl, the combination formulation 1198 siEG5+PT, 

the control formulation 1198 siCtrl+PT, as well as the equivalent dose of 1nM free drug 

B) 

A) 
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PT. Cell viability was assessed after 48 h and 72 h incubation time by MTT assay 

(Figure 52). On KB cells (Figure 52 A), siEG5 formulations (third bars in each group) 

displayed a time-dependent cell killing activity leading to a reduction of cell viability to 

less than 10 % for the last time point. The control formulation siCtrl did not induce cell 

killing, indicating no 1198 related toxicity. The functionalization of the polyplexes with 

PEG did not significantly alter the antitumoral activity of the siRNA polyplexes. The 

introduction of the targeting agent GE11, however, enhanced cell killing for 1198 siEG5 

after 48 h incubation time. The low dose of free 1 nM PT showed only a moderate cell 

killing effect. In contrast, co-formulation with siCtrl (second bar of each group) resulted 

in substantial cell killing, similar or slightly less than the siEG5 groups, presumably due 

to an increased intracellular uptake of PT. The combination of siEG5 plus incorporated 

PT (first bar of each group) in general resulted in the best cell killing, with a combination 

effect demonstrated for the unshielded and PEGylated groups. 

Treatment with siEG5 containing polyplexes also facilitated time-dependent killing of 

Huh7 hepatocarcinoma cells (Figure 52 B). The polyplex functionalization with PEG 

decreased levels of cell killing upon 48 h treatment, whereas the targeting peptide 

agent PEG-GE11 strongly increased the antitumoral potential of the siEG5 containing 

groups. Upon 72 h treatment, cell viability levels were reduced to below 10 %. 

Interestingly however, at the longest incubation time point all groups post-

functionalized with PEG-GE11 were cytotoxic, even the siCtrl without PT group. 

 

 

 

 

 

 

 

A) 

B) 
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Figure 52. The antitumoral activity of free PT or polyplexes containing siEG5 and siEG5+PT was 

determined by MTT assay at 48 h and 72 h incubation time using (A) KB cells or (B) Huh7 cells. 

Polyplexes were formed in HBG at an N/P ratio of 10, and left unshielded or post-functionalized with 

0.75 eq. of targeting ligand PEG-GE11 or shielding agent PEG. Cells were seeded in 96-well plates in 

100 µL medium. After a medium change (80 µL fresh medium), 20 µL of polyplex solution containing 

250 ng siRNA and 0.078 ng PT were added to the cells, which resulted in a final concentration of 185 

nM siRNA and 1 nM PT per well. Cells were treated with polyplexes or free PT for 48 h or 72 h. Cell 

viability was measured with an MTT assay after 72 h incubation time and is presented as the mean ±SD 

(n= 3) in % relative to buffer (HBG) treated cells. 

 

The unexpected long-term toxicity of the PEG-GE11 modified 1198 polyplexes on 

Huh7 cells was further investigated. Huh7 cells were treated with lipo-oligomer 1198 

and the conjugates PEG 1198 or PEG-GE11 1198 without siRNA for 72 h (Figure 53 

A). Only the PEG-GE11 1198 conjugate group induced a mild cytotoxicity. The 

functionalization agents PEG and PEG-GE11 alone did not reduce cell viability (Figure 

53 B). Thus, improved intracellular uptake of the lipo-oligomer 1198 was suspected to 

cause the time-dependent toxic effects. Since the modification of the lipo-oligomer 

1198 or its polyplexes with the GE11 targeting construct induced an increased 

intracellular delivery of 1198, the EGFR targeted groups displayed the highest 

cytotoxic effects. After 72 h incubation time, this effect was most obvious as large 

quantities of oligomer were internalized. Figure 51 supports the hypothesis, that higher 

intracellular levels of 1198 cause cell death of Huh7 cells. The dose titration showed 

that with higher amounts of siRNA, and hence also higher levels of 1198, cell viability 

decreased in a dose-dependent manner in this particular Huh7 cancer cell line but not 

in KB cells.      
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Figure 53. The cytotoxicity of (A) lipo-oligomer 1198, lipo-oligomer 1198 DBCO-PEG conjugate or 1198 

DBCO-PEG-GE11 conjugate, and alternatively (B) DBCO-PEG and DBCO-PEG-GE11 on Huh7 cells 

as determined by MTT assay. Amounts of 1198 and functionalization agents DBCO-PEG and DBCO-

PEG-GE11 were equivalent to those in the corresponding siRNA polyplexes. Cells were treated for 72 

h, cell viability is shown as the mean ± SD (n=3) relative to HBG treated controls. Only 1198 DBCO-

PEG-GE11 conjugate induced a mild toxicity. The conjugate of the lipo-oligomer with the GE11 targeting 

construct presumably induces an increased uptake of the lipo-oligomer which induces cytotoxic effects 

in Huh7 cells. Cytotoxicity was assessed by Dr. Wei Zhang (Pharmaceutical Biotechnology, LMU 

München). 

 

The cytotoxicity of 1198 siRNA polyplexes was compared to the respective pDNA 

formulations (Figure 54). Neither 1198 siCtrl nor the respective pDNA formulation 

induced cytotoxicity. On Huh7 cells however, polyplexes of the 1198 PEG-GE11 were 

toxic. Even though siRNA polyplexes led to an overall higher cell killing, also the pDNA 

polyplex induced cytotoxicity. In pDNA polyplexes, the nucleic acid cargo is more firmly 

compacted into the nanoparticle than in siRNA formulation. Thus, we speculate that 

less oligomer 1198 might be released upon cellular pDNA polyplex internalization, as 

a possible explanation for the differing cytotoxicity.   

B) 

A) 
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Figure 54. The cytotoxicity of 1198 siRNA polyplexes was compared to the respective pDNA 

formulations. Polyplexes were formed at N/P 10 and contained 500 ng siRNA or 200 ng pDNA. KB cells 

(A) or Huh 7 cells (B) were treated with 20 µL of polyplex solution for 72 h. Cell viability was determined 

by MTT assay and is depicted as the mean ± SD. On KB cells, 1198 siEG5 displayed efficient antitumoral 

activity. Neither 1198 siCtrl nor the respective pDNA formulation induced cytotoxicity. On Huh7 cells 

however, polyplexes of the 1198 PEG-GE11 were toxic. Even though siRNA polyplexes led to an overall 

higher cell killing, also the pDNA polyplex induced cytotoxicity. In pDNA polyplexes, the nucleic acid 

cargo is more firmly compacted into the nanoparticle than in siRNA formulation. Thus, we speculate that 

less oligomer 1198 might be released upon cellular pDNA polyplex internalization, as a possible 

explanation for the differing cytotoxicity. Cytotoxicity was assessed by Dr. Wei Zhang (Pharmaceutical 

Biotechnology, LMU München). 

 

A time-dependent cell killing by PT effect was also found for Huh7 cells. Also here, 

polyplex formulation into 1198 siCtrl+PT increased the antitumoral potency of PT for 

the unshielded, PEGylated and EGFR targeted group. The combination activity of 

siEG5 and PT is less pronounced, a beneficial combination effect is only visible after 

72 h treatment in the unshielded and PEGylated group.  

 

B) 

A) 
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In summary, siEG5 and PT upon lipopolyplex formulation displayed antitumoral 

potency on KB and Huh7 cells. A combination effect of both therapeutics could be 

demonstrated. The introduction of the targeting-peptide GE11 increased antitumoral 

efficacy, presumably by facilitating an increased intracellular delivery of both 

compounds. On Huh7 cells, the functionalization with the GE11 targeting peptide 

induced an additional cytotoxic effect, most likely based on enhanced cell-associated 

oligomer dose. 
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4 Discussion 

4.1 Sequence-defined oligoamide drug conjugates of pretubulysin and 

methotrexate for folate receptor targeted cancer therapy 

This chapter was partly adapted from: 

Truebenbach, I.; Gorges, J.; Kuhn, J.; Kern, S.; Baratti, E.; Kazmaier, U.; Wagner, E.; 

Lächelt, U., Sequence-Defined Oligoamide Drug Conjugates of Pretubulysin and 

Methotrexate for Folate Receptor Targeted Cancer Therapy. Macromol Biosci 2017, 

17 (10). 

  

In the first chapter, several FolA and MTX containing oligoamides for potential 

conjugation with drug payloads were synthesized and differences in structure-activity 

properties concerning target enzyme DHFR inhibition, FR-specific cellular uptake and 

cytotoxicity, were investigated. Interestingly, the studies on adherent human KB 

carcinoma cells and murine leukemia L1210 suspension cells resulted in identification 

of diverging most promising compounds. In KB cells, the 4-arm E4-MTX with a 

tetravalent tetraglutamyl-MTX ligand exhibited highest cytotoxic activity in MTT assays, 

whereas 2-arm E4-MTX with a divalent tetraglutamyl-MTX ligand was most promising 

in L1210 cells. Potency of the latter directly correlated with the results of the DHFR 

activity assay and cellular uptake experiments. Notably, cellular uptake of all 

oligoamides could be blocked by FolA competition, which supports the FR-specific 

endocytosis pathway. The FolA containing analogues did not mediate distinct effects 

on cell viability, despite a remarkably high cellular uptake. The cysteine containing 

oligoamides were used for conjugation to a PT hydrazide derivative with an activated 

thiol and beneficial combined potency was observed with 4-arm E4-MTX-H-PT in KB 

tumor bearing mice and 2-arm E4-MTX-H-PT in L1210 cells. An in vivo experiment in 

KB cells showed a growth retarding effect of the 4-arm E4-MTX-H-PT conjugate and 

the native PT-COOH when administered intratumorally.  
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4.2 Combined antitumoral effects of pretubulysin and methotrexate 

This chapter was adapted from: 

Kern, S.; Truebenbach, I.; Höhn, M.; Gorges, J.; Kazmaier, U.; Zahler, S.; Vollmar, A.; 

Wagner, E., Combined Antitumoral Effects of Pretubulysin and Methotrexate. 

Pharmacology Res Perspect 2019, e00460. 

 

Based on the previous chapter examining conjugates of PT with MTX-containing 

oligomers17, the drug combination was further characterized. The effects of the free 

drugs PT, MTX and the combination PT+MTX were assessed in terms of cytotoxicity 

in MTT assays and apoptosis analyses. Cell cycle changes as well as differences in 

cytoskeleton architecture upon drug treatment were evaluated. 

The in vitro cytotoxicity studies demonstrated the favorable combination effect of PT 

and MTX on both cell lines at different drug ratios. The only moderate cytotoxic effects 

of MTX on KB cells are not surprising, as chemoresistance of KB cells to MTX has 

previously been reported.132, 133  

Regarding the effects of the drugs on the cell cycle, our experiments confirm the 

expected G2/M arrest of PT treated cells9, 10, 19 and G1/S arrest by MTX.134, 135 

Remarkably, G2/M arrest mediated by PT+MTX combination went far beyond the 

effect of PT alone. One explanation for the predominance of the PT effect on the cell 

cycle might be its more direct way of interference. PT binds to tubulin and thereby 

directly affects the working of the cell division cycle. MTX on the other hand influences 

the G1/S stage of the cell cycle more indirectly. MTX is essentially a prodrug. In order 

to bind its target enzyme DHFR, MTX must be polyglutamylated intracellularly. After 

polyglutamylation, MTX inhibits the synthesis of the co-factor tetrahydrofolate and thus, 

the C1 metabolism. As a result, no nucleotides are synthesized which would be 

essential for DNA synthesis. Furthermore, PT does not have to be converted into its 

active form before carrying out its toxic effect. The earlier onset in toxicity leads to a 

G2/M arrest, and arrested cells cannot in turn be affected by MTX anymore. 

With regard to drug-induced apoptotic events in L1210 or KB cells, treatment with PT 

or MTX alone resulted in a steady increase of apoptotic cells, which is in accordance 
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with previous work.9, 10, 136, 137 Yet, apoptosis could not be further enhanced by 

combining both agents.  

Previous studies show PT induced depolymerization of microtubules in different cell 

lines9, 19, which could be confirmed for L1210 and KB cells using CLSM. Encouragingly, 

the combination was equally potent as PT alone. Furthermore, we could show the 

impairment of the cellular actin skeleton mediated by MTX. This is in line with various 

reports about MTX influence on the actin cytoskeleton.138, 139 Furthermore, levels and 

distribution of globular actin (G-actin) and/or filamentous actin (F actin) and total actin 

were changed upon MTX treatment. Mazur et al. postulate that polyglutamylated MTX 

inhibits specific enzymes, resulting in increased levels of adenosine.140 These have in 

turn been shown to inhibit actin polymerization.139, 141 It has been demonstrated 

previously that microtubule inhibitors can influence the actin cytoskeleton.142-144 

Treatment with microtubule depolymerizing drugs increases contractility in fibroblasts. 

Additionally, rapid restoration of actin-containing stress fibers is induced, even after 

their previous disruption.142 The authors offer several possible explanations. Firstly, 

they postulate that cellular forces are redistributed due to the drug-induced imbalance 

where the pushing force of microtubules is decreased. This might lead to increased 

tension and could cause actin to become bundled in stress fibers. Secondly, 

microtubules may modulate and exert inhibitory control over actin architecture. 

Microtubules can weaken contractility and organization of actin. Microtubule disruption 

releases actin from inhibition.142 As to a PT+MTX combination effect, one may 

hypothesize that actin stress fibers might be required in the cellular survival response 

upon microtubule inhibition by PT. MTX treatment has been shown to prevent such 

actin stress fibers. Thus, in the PT+MTX combination, one can assume that the cell 

rescue effect by actin is prevented by MTX, leading to a combined loss in microtubule 

as well as actin cytoskeleton function and thus enhanced cell killing. In addition to the 

qualitative analysis of CLSM, more quantitative experiments will be required to further 

analyze the underlying molecular mechanisms. 

To investigate whether the combination effect could be translated to in vivo 

experiments, the drug combination PT+MTX was tested in both the L1210 and KB 

tumor models.145 In contrast to cell culture cytotoxicity on L1210 cells, a lack of 

antitumoral activity of MTX was observed in vivo at the applied dosage of 5 mg/kg. An 

acquired chemoresistance against MTX could be excluded, since the MTX treated 
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tumors are still MTX sensitive in cell culture.8 PT on the other hand exhibited a clear 

antitumoral effect on L1210 tumors in vivo at 2 mg/kg. The favorable PT effect was 

further enhanced by co-administration with a low dose of 5 mg/kg MTX which resulted 

in a significantly retarded tumor growth in the combination group. Considering the lack 

of antitumoral effects, the boosting effect of low dose MTX is remarkable. 

The first chapter of the thesis already demonstrated the antitumoral effect of PT in the 

KB human cervix carcinoma tumor model.  Kern et al. confirmed the antitumoral activity 

of 2 mg/kg PT, while MTX only slightly inhibited KB tumor growth. This is consistent 

with the known in vitro chemoresistance of KB cells to MTX and in vivo studies.54 

Importantly, also in this tumor model, the co-administration of 5 mg/kg MTX resulted in 

a significantly enhanced antitumoral effect of PT+MTX over PT alone. Very similar 

findings were made in a subcutaneous Huh7 hepatocellular model in NMRI-nude mice, 

with MTX showing negligible effects, whereas both PT containing groups exhibited 

significantly inhibited tumor growth and survival of all animals for 22 days for PT vs. 25 

days for PT+MTX.145  

The combination of MTX with Vinca alkaloids as another class of tubulin binders has 

been demonstrated as favourable for cancer therapy both in a leukemia mouse model 

and in the clinics.33, 146 Thus, the combination of the novel potent tubulin inhibitor PT 

with MTX might present a new interesting clinical direction in cancer chemotherapy. 
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4.3 Combination chemotherapy of L1210 tumors in mice with 

pretubulysin and methotrexate lipo-oligomer nanoparticles 

This chapter was adapted from: 

Truebenbach, I.;  Kern, S.;  Loy, D. M.;  Höhn, M.;  Gorges, J.;  Kazmaier, U.; Wagner, 

E., Combination Chemotherapy of L1210 Tumors in Mice with Pretubulysin and 

Methotrexate Lipo-Oligomer Nanoparticles. Mol Pharm 2019, 16 (6), 2405-2417. 

Copyright (2019) American Chemical Society. 

 

In the next study, the drug combination PT+MTX was co-incorporated into a 

nanoparticulate delivery system to enable the controlled co-delivery of both 

compounds to the tumor site. Polyelectrolyte complexes were formed through 

electrostatic interactions between the anionic MTX and cationizable 454, PT was co-

incorporated by different hydrophobic and hydrophilic interactions. Particle sizes 

ranged from 20 nm to 175 nm which rendered nanoparticles applicable for intravenous 

delivery into L1210 leukemia tumors in vivo. Drug incorporation into PECs was 

determined to be slightly higher for MTX than for PT. Electrostatic interactions between 

454 and MTX seemed to facilitate higher levels of drug incorporation. In the next step, 

stability of nanomicelles was investigated upon exposure to physiological NaCl solution 

and FBS. Upon incubation with FBS containing buffer, PT was more stably 

incorporated into the nanoparticles. The anionic nature of MTX might explain the lower 

stability of MTX incorporation since anionic albumin molecules in FBS might replace 

MTX. The overall stability of the delivery system in FBS containing media was, 

unfortunately, rather low.  

The beneficial combination effect of PT+MTX, which is described in the previous 

chapter of this thesis, could be further improved both in vitro and in vivo by 

incorporating PT+MTX into nanomicellar PECs. While 454 incorporation strongly 

increased the in vitro antitumoral effects of PT+MTX and PT on L1210 cells and KB 

cells alike, nanomicellar incorporation did not improve antitumoral properties of MTX. 

While MTX uptake via the RFC is well characterized, nothing is known about the 

cellular uptake route of PT. Nanomicellar formulation might facilitate an increased 

uptake of larger quantities of PT.118-120 In vivo, the formulation of PT+MTX into 454 
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PT+MTX PECs slowed down tumor growth. Furthermore, mice of the 454 PT+MTX 

group demonstrated a statistically significant longer survival. The mechanism behind 

the favorable effect of drug nanoformulation on tumor size and mouse survival is 

currently still unclear. Nanoparticle based combination therapy could unify the different 

pharmacological profiles of PT+MTX and enable their joint delivery.57 An increase in 

drug accumulation at the tumor site via the EPR effect65 is rather unlikely due to lack 

of surface shielding of the current nanomicelle PECs. Another explanation could be a 

prolonged systemic availability of the drugs by the nanoformulation.147-149 To clarify the 

mechanism, future efforts will be required to study the pharmacokinetics of PT in the 

current or further stabilized and shielded systems. One obvious opportunity to further 

optimize the PEC system in terms of in vivo antitumoral potency will be improved 

stabilization through strengthened electrostatic interactions, such as by replacing MTX 

by polyglutamylated analogs or including polyanionic siRNA.48 Furthermore, drug 

incorporation and stability might be increased by including further hydrophobic 

stabilization domains, like extended tyrosine motifs.101 A further option presents the 

provision of 454 PT+MTX nanomicelle PECs with targeting ligands150 or shielding 

agents.64, 151, 152 For example, Klein et al.49 have demonstrated that an introduction of 

a folate ligand plus PEG shield can substantially improve the biodistribution and tumor 

targeting of a siRNA lipo-polyplex. 
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4.4 Co-delivery of pretubulysin and siEG5 to EGFR overexpressing 

carcinoma cells 

Building on the work of Klein et al.49, PT was combined with the potent antitumoral 

siEG5. To enable a joint intracellular delivery of both compounds, a suitable co-delivery 

system was developed. SiEG5 and azide bearing lipo-oligomer 1198 formed 

polyplexes by electrostatic interactions, PT was co-incorporated. While the stability of 

454 PT+MTX PECs upon exposure to FBS was problematic, the polyanionic nature of 

siEG5 was thought to yield a more stable co-delivery vehicle. The polyplexes were 

functionalized further by click chemistry to introduce a PEG shielding domain and the 

GE11 peptide as an EGFR targeting moiety. While the PEG shielding domain 

successfully reduced particle surface charge as well as cellular internalization, the 

GE11 peptide facilitated higher cellular internalization of polyplexes into EGFR 

overexpressing KB and Huh7 carcinoma cells. The activity of both antitumoral 

components was demonstrated separately and in combination. While siEG5 on its own 

mediated EG5 gene silencing and cell killing, it increased the antitumoral efficacy of 

the co-delivered microtubule inhibitor PT, and a combination effect could be shown on 

both investigated carcinoma cell lines. 

Klein et al. successfully combined FR-targeted, siEG5 containing polyplexes and free, 

unincorporated PT to treat L1210 tumor bearing mice resulting in significant tumor 

growth inhibition and prolonged survival.49 Therefore, the co-delivery system based on 

1198 and the GE11-targeting peptide was tested for an in vivo antitumoral effect in a 

subcutaneous Huh7 model, against the targeted 1198 siEG5 and 1198 siCtrl and free 

PT.145 Tumor growth could be stopped throughout treatments in all PT containing 

groups. Nevertheless, differences in tumor sizes were less pronounced within these 

groups. The important effect of PT on the Huh7 tumor model in vivo has previously 

been demonstrated.19 While treatment of L1210 tumors with siEG5 successfully 

slowed down tumor growth, this effect could not be reproduced for Huh7 tumors. 

Further investigations in the in vivo co-delivery of PT and siEG5 to other tumor models 

are necessary to evaluate the full potential of the promising co-delivery system. 

A surprising GE11-mediated toxic effect on Huh7 cells was demonstrated. This effect 

seemed to be related to a higher intracellular concentration of the cationizable lipo-

oligomer 1198 in the targeted group. Although cationic polymers, like poly 
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ethyleneimine (PEI), enable the efficient intracellular delivery of their payload, they 

often show toxicity in a time- and concentration-dependent manner.126, 153 Additionally, 

fatty acid containing carrier systems can have membrane lytic activity. Their 

cytotoxicity can be reduced by introducing biodegradable motifs which facilitate 

degradation of the toxic material upon successful entry into the cytosol.100  Reinhard 

et al. introduced enzymatic cleavage sides into the oligomers via SPS, which reduced 

the cytotoxic activity of siRNA containing polyplexes, whilst enabling sufficient gene 

silencing ability.154 The introduction of an enzymatic cleavage site into co-delivery 

system might negate the oligomer related cytotoxic effects seen for the GE11-targeted 

group and help better characterize the combination effect of PT and siEG5 on this cell 

line. 
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5 Summary 

Combinations of drugs with different intracellular targets are routinely used in tumor 

chemotherapy due to their increased efficiency and reduced risk for chemoresistance. 

In this thesis, the novel tubulin binding drug pretubulysin (PT) was investigated in 

combination with two different therapeutic modalities. To enable tumor-specific 

delivery, the drugs were co-incorporated in delivery systems. 

In the first chapter, folic acid (FolA) and methotrexate (MTX) containing oligoamides 

were synthesized and differences in structure-activity properties concerning 

dihydrofolate reductase (DHFR) inhibition, folic acid receptor (FR)-specific cellular 

uptake and cytotoxicity, were investigated. In KB cells, the 4-arm E4-MTX exhibited 

highest cytotoxic activity, whereas the 2-arm E4-MTX was most promising in L1210 

cells. Potency of the latter directly correlated with the results of the DHFR activity assay 

and cellular uptake experiments. Oligoamines were conjugated to a PT hydrazide 

derivative. A beneficial combined potency was observed with 4-arm E4-MTX-H-PT in 

KB cells and 2-arm E4-MTX-H-PT in L1210 cells. An in vivo experiment in KB tumors 

showed a growth retarding effect of the 4-arm E4-MTX-H-PT conjugate and the native 

PT-COOH when administered intratumorally. 

In the second part of the study, the free drugs PT and MTX were further evaluated for 

a combination effect on KB and L1210 cells. While both PT and MTX alone showed a 

potent antitumoral effect on L1210 cells in vitro, the drug combination PT+MTX 

exceeded the effects of single drugs. A slight combination effect was also visible on 

L1210 cells. Cell cycle analysis confirmed the expected arrest in G1/S for MTX 

treatment and G2/M for PT. In both cell lines, the PT+MTX combination induced a 

stronger G2/M arrest than free PT. The combination PT+MTX did not increase rates of 

apoptotic L1210 and KB cells compared to the single drug applications. CLSM images 

show the microtubule disruption and nuclear fragmentation associated with PT 

treatment on both cell lines. MTX treatment seemed to change F-actin structure. 

PT+MTX combined the effects of both drugs on tubulin and actin architecture.  

In the third chapter, the previously investigated combination PT+MTX was co-

formulated into nanoparticles. Polyelectrolyte complexes (PECs) were formed from the 

cationizable lipo-oligomer 454 and the anionic drug MTX, PT was co-incorporated via 
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different hydrophobic and hydrophilic interactions. Particle sizes were determined to 

be favorable for passive tumor targeting. Both drugs were co-incorporated to a high 

extent. Nanoparticles were stable in up to 20 % fetal bovine serum (FBS) containing 

buffer and physiological NaCl solution. Cellular internalization of 454 PT+MTX into 

L1210 and KB cells was confirmed by confocal laser scanning microscopy (CLSM). 

The incorporation of PT+MTX into the delivery systems strongly increased the 

antitumoral efficiency of the free drug combination. Systemic treatment of NMRI nun/nu 

mice bearing subcutaneous L1210 tumors with 454 PT+MTX resulted in a more 

efficient delay in tumor growth and a significant increase in mice survival compared to 

the free drug combination PT+MTX.  

In the fourth chapter, small interfering RNA (siRNA) against the kinesin related mRNA 

eglin 5 gene (siEG5) and the microtubule inhibitor PT were co-formulated into 

polyplexes using azide-containing lipo-oligomer 1198. Nanoparticle surfaces were 

further modified by click reaction using shielding agent DBCO-PEG or EGFR targeting 

peptide GE11 (DBCO-PEG-GE11). Polyplexes displayed efficient payload 

incorporation and homogenous particle sizes of 200 nm. The biological effects of the 

unmodified and surface-functionalized polyplexes were investigated. The successful 

GE11-mediated intracellular delivery of siRNA into the EGFR overexpressing KB and 

Huh7 cell lines facilitated potent silencing of an EGFP-luciferase reporter gene by GFP 

siRNA. Specific downregulation of EG5 mRNA by siEG5 resulted in the expected 

antitumoral activity. The combination formulation 1198 siEG5+PT provided superior 

antitumoral activity over free PT and 1198 siEG5. 

Overall, two pretubulysin-based combination chemotherapies were evaluated in this 

thesis. Both PT+MTX and PT+siEG5 were co-incorporated into delivery systems and 

investigated for combination benefits in vitro and in vivo. All dual delivery vehicles 

showed beneficial combination effects in different in vitro and in vivo settings. 
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6 Appendix 

6.1 Abbreviations 

AbDil  Antibody dilution 

ACN  Acetonitrile 

ATP  Adenosine Triphosphate 

BSA  Bovine serum albumin 

CLSM  Confocal laser scanning microscopy 

Cy5  Cyanine 5 

DAPI  4′,6-diamidino-2-phenylindole 

DBCO  Dibenzo cycloocytne 

DCM   Dichloromethane  

DDS  Drug delivery system 

DHFR  Dihydrofolate reductase 

DIPEA  N,N-Diisopropylethylamine  

DLS  Dynamic light scattering 

DMEM  Dulbecco’s modified Eagle’s medium  

DMF   N,N-Dimethylformamide  

DMSO Dimethyl sulfoxide 

DNA   Desoxyribonucleic acid  

DTT  Dithriothreitol 

EDC  1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide 

EDT  1,2-Ethandithiol 

EDTA  Ethylenediaminetetraacetic acid 

EG5  Eglin 5 

EGF  Epidermal growth factor 

EGFR  Epidermal growth factor receptor 

EPR  Enhanced permeation and retention 

FBS  Fetal bovine serum 

FITC  Fluorescein isothiocyanate 

Fmoc   Fluorenylmethoxycarbonyl protecting group  

FolA   Folic acid  
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FR   Folate receptor  

G1   Gap phase 1 

G2  Gap phase 2 

GFP  Green fluorescent protein 

GSH  Glutathion 

HCl  Hydrochloric acid 

HBG   Hepes-buffered glucose  

HBTU  2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium 

hexafluorophosphate  

HEPES  N-(2-hydroxethyl) piperazine-N‘-(2-ethansulfonic acid)  

HOBt   1-Hydroxybenzotriazole  

IC 50  Half maximal inhibitory concentration 

kDa  Kilodalton 

MALDI-MS Matrix-assisted laser desorption/ionization mass spectrometry 

mM  Millimolar 

mRNA  Messenger RNA 

MTBE  Methyl tert-butyl ether  

MTT  3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide  

MTX  Methotrexate 

MWCO Molecular weight cut-off  

NaBH4 Sodium borohydride 

NaOH  Sodium hydroxide 

NADPH Nicotinamide adenine dinucleotide phosphate 

N/P   Nitrogen to phosphate ratio  

NHS   N-Hydroxysuccinimide 

nm  Nanometer 

NMP   N-Methyl-2-pyrrolidone  

NMR   Nuclear magnetic resonance  

OAA   Oligoaminoamide 

OleA  Oleic acid 

PBS  Phosphate buffered saline 

PDI   Polydispersity index 

PEC  Polyelectrolyte complex  

PEI  Polyethylenimine 
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PEG   Polyethylene glycol  

PI  Propidium iodide 

PIPES Piperazine-N,N’-bis(2-ethanesulfonic acid) 

Poly (I:C) Polyinosinic:polycytidylic acid 

PS  Phosphatidyl serine 

PT  Pretubulysin 

PyBOP  Benzotriazol-1-yloxy-tripyrrolidinophosphonium hexafluorophosphate  

RFC   Reduced folate carrier 

RLU   Relative light units  

RNA   Ribonucleic acid 

RNAi  RNA interference  

RP-HPLC  Reversed-phase high-performance liquid chromatography  

RPMI  Rosewell Park Memorial Institute 

RT   Room temperature  

S  Synthesis phase 

SDS  Sodium dodecyl sulfate 

SEC   Size-exclusion chromatography  

siRNA  Small interfering RNA 

SMDC  Small molecule drug conjugate 

SPAAC  Strain-promoted alkyne-azide cycloaddition  

SPS   Solid-phase synthesis  

Stp   Succinoyl-tetraethylene pentamine  

STOTDA N-Fmoc-N″-succinyl-4,7,10-trioxa-1,13-tridecanediamine  

TBE   Tris-boric acid-EDTA buffer 

TBS  Tris-buffered saline 

TCEP  Tris(2-carboxyethyl)phosphine 

TFA   Trifluoroacetic acid  

TEM  Transmission electron microscopy 

TIS   Triisopropylsilane 

qRT-PCR Quantitative real time polymerase chain reaction 
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6.2 Analytical data 

 NMR spectra of PT derivatives 

6.2.1.1 Pretubulysin hydrazide (PT-H-SS-Py, 2) 

 

 

1H-NMR (500 MHz, CDCl3): δ = 0.77 (d, J = 6.6 Hz, 3 H, 19-H), 0.88 (t, J = 7.3 Hz, 3 

H, 25-H), 0.96 (m, 6 H, 19-H', 26-H), 1.10  (d, J = 6.6 Hz, 3 H, 10-H), 1.17 (m, 2 H, 24-

Ha, 30-Ha), 1.36 (m, 1 H, 29-Ha), 1.59 (m, 6 H, 3-Ha, 18-H, 24-Hb, 30-Hb, 31-H), 1.84 

(m, 3 H, 16-Ha, 23-H, 29-Hb), 2.00 (m, 2 H, 3-Hb, 32-Ha), 2.11 (m, 1 H, 16-Hb), 2.22 (s, 

3 H, 33-H), 2.39 (m, 1 H, 2-H), 2.49 (dd, J = 11.0 Hz, 3.2 Hz, 1 H, 28-H), 2.88 (m, 5 H, 

5-H, 15-H, 32-Hb), 3.01 (s, 3 H, 20-H), 3.05 (m, 2 H, 36-H), 4.38 (m, 3 H, 17-H, 35-H), 

4.72 (m, 1 H, 4-H), 4.77 (dd, J = 9.3 Hz, 8.4 Hz, 1 H, 22-H), 6.85 (s, 1 H, N-H), 7.07 

(m, 2 H, 40-H, N-H), 7.21 (m, 5 H, 7-H, 8-H, 9-H), 7.56 (d, J = 9.5 Hz, 1 H, N-H), 7.67 

(m, 2 H, 38-H, 39-H), 7.91 (s, 1 H, 13-H), 8.45 (m, 1 H, 41-H), 9.83 (s, 1 H, N-H). 

13C-NMR (125 MHz, CDCl3): δ = 10.9 (C-25), 15.9 (C-26), 17.7 (C-10), 19.6 (C-19), 

20.1 (C-19'), 23.2 (C-30), 24.6 (C-24), 25.0 (C-31), 29.3 (C-16), 29.7 (C-20), 30.0 (C-

15), 30.1 (C-18), 30.4 (C-29), 35.1 (C-2), 37.1 (C-23), 37.3 (C-3), 37.6 (C-36), 41.6 (C-

5), 44.8 (C-33), 48.6 (C-4), 53.0 (C-22), 55.3 (C-32), 58.5 (C-17), 63.5 (C-35), 69.6 (C-

28), 119.7 (C-38), 120.8 (C-40), 123.2 (C-13), 126.6 (C-9), 128.5 (C-8), 129.3 (C-7), 

137.0 (C-39), 137.2 (C-6), 148.9 (C-41), 149.6 (C-12), 155.9 (C-34), 159.7 (C-37), 

162.2 (C-11), 170.1 (C-14), 173.3 (C-21), 174.3 (C-27), 176.2 (C-1). 
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1H-NMR spectrum 
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13C-NMR spectrum 
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6.2.1.2 Pretubulysin ester (PT-O-SS-Py, 3) 

 

 

 

 

 

 

 

 

1H-NMR (400 MHz, CDCl3): δ = 0.77 (d, J = 6.6 Hz, 3 H, 19-H), 0.88 (t, J = 7.4 Hz, 3 

H, 25-H), 0.96 (d, J = 6.3 Hz, 3 H, 19-H'), 0.98 (d, J = 6.6 Hz, 3 H, 26-H), 1.16 (d, J 

=7.1 Hz, 3 H, 10-H), 1.17 (m, 1 H, 24-Ha), 1.35 (m, 2 H, 29-Ha, 30-Ha ), 1.59 (m, 6 H, 

3-Ha, 18-H, 24-Hb, 30-Hb, 31-H ), 1.84 (m, 3 H , 16-Ha, 23-H, 29-Hb), 2.01 (m, 2 H, 3-

Hb, 32-Ha), 2.10 (dtd, J = 14.2 Hz, 8.2 Hz, 3.5 Hz, 1 H, 16-Hb), 2.23 (s, 3 H, 33-H), 2.49 

(dd, J =10.8 Hz, 2.6 Hz, 1 H, 28-H), 2.62 (m, 1 H, 2-H), 2.89 (m, 5 H, 5-H, 15-H, 32-

Hb), 2.98 (m, 2 H, 35-H), 3.01 (s, 3 H, 20-H), 4.25 (dt, J =11.4 Hz, 6.5 Hz, 1 H, 34-Ha), 

4.32 (dt, J =11.4 Hz, 6.3 Hz, 1 H, 34-Hb), 4.40 (m, 2 H, 4-H, 17-H), 4.78 (dd, J = 9.4 

Hz, 8.1 Hz, 1 H, 22-H), 7.05 (m, 1 H, N-H), 7.08 (ddd, J = 7.2 Hz, 4.9 Hz, 1.1 Hz, 1 H, 

39-H ), 7.22 (m, 5 H, 7-H, 8-H, 9-H), 7.41 (d, J = 9.3 Hz, 1 H, N-H), 7.62 (ddd, J = 8.1 

Hz, 7.3 Hz, 1.8 Hz, 1 H, 38-H), 7.68 (ddd, J = 8.1 Hz, 1.0 Hz, 1.0 Hz, 1 H, 37-H), 7.88 

(s, 1 H, 13-H), 8.45 (ddd, J = 4.7 Hz, 1.6 Hz, 0.8 Hz, 1 H, 40-H).13C-NMR (100 MHz, 

CDCl3): δ = 11.0 (C-25), 15.9 (C-26), 18.0 (C-10), 19.6 (C-19), 20.1 (C-19'), 23.3 (C-

30), 24.6 (C-24), 25.1 (C-31), 29.4 (C-16), 29.6 (C-20), 30.0 (C-15), 30.2 (C-18), 30.5 

(C-29), 36.6 (C-2), 37.2 (C-23), 37.3 (C-3), 37.8 (C-35), 41.6 (C-5), 44.0 (C-33), 48.5 

(C-4), 53.0 (C-22), 55.4 (C-32), 58.4 (C-17), 62.0 (C-34), 69.7 (C-28), 119.7 (C-37), 

120.7 (C-39), 122.3 (C-13), 126.4 (C-9), 128.4 (C-8), 129.5 (C-7), 137.0 (C-38), 137.7 

(C-6), 149.7 (C-40), 149.8 (C-12), 159.8 (C-36), 160.7 (C-11), 169.6 (C-14), 173.2 (C-

21), 174.3 (C-27), 175.8 (C-1). 
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1H-NMR spectrum 
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 Analytical data of oligomers and post-modification agents 

 

 

Table 11. summarizing mass data of oligomers. Mass data were recorded with a Bruker MALDI-TOF 

instrument. 

 

6.2.2.1 45491 

Sequence (C→N): C-Y3-Stp2-K-ε[K-α,ε(OleA)2]αStp2-Y3-C 

 

Oligomer Molecular formula [M+H]+ calc. [M+H]+ found 

454 C72H119N19O12S2 3072.9 3069.9 

883 (lin FolA) C49H78N9O20S 1144.5 1143.5 

884 (lin MTX) C50H81N10O19S 1157.5 1156.5 

948 (lin E4-MTX) C70H109N14O31S 1673.7 1672.3 

950 (2-arm E4-MTX) C157H248N31O66S 3655.7 3654.5 

951 (4-arm E4-MTX) C303H474N61O125S 7014.2 7007.1 

1002 (2-arm E4-FolA) C155H242N29O68S 3628.6 3623.8 

1052 (4-arm E4-FolA) C300H466N57O130S 6979.1 not found 

1198  C162H264N36O28S2 3229.2 3226.7 

1138 (DBCO-PEG) C72H120N2O28 1483.7 1483.4 

 1415 (DBCO-PEG-
GE11) 

C145H210N18O47 2955.5 2952.96 
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MALDI-MS 

 

 

 

 

6.2.2.2 883 (linFolA):  

Sequence (C→N): C-STOTDA-E4-FolA 
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MALDI-MS 

 

1H-NMR (400 MHz, D2O): δ (ppm) = 2.1-2.6 (6H, βγH glutamate, -CO-CH2- PEG12), 

3.2-3.7 (52H, βH cysteine, -C-CH2- PEG12, -N-CH2- PEG12), 4.3-4.5 (4H αH glutamate/ 

cysteine, -CH2- pteroic acid), 6.7 (d, 2H, Ar-H pteroic acid), 7.6 (d, 2H, Ar-H pteroic 

acid), 8.6 (s, 1H, Ar-H pteroic acid) 

 

HPLC 
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6.2.2.3 884 (linMTX): 

Sequence (C→N): C-STOTDA-MTX 

  

 

 

 

MALDI-MS 

 

 

 

 

 

 

 

 

 

 

 

1H-NMR (400 MHz, D2O): δ (ppm) = 2.0-2.6 (6H, βγH glutamate, -CO-CH2- PEG12), 

3.2-3.7 (52H βH cysteine, -C-CH2- PEG12, -N-CH2- PEG12), 4.3-4.5 (4H, αH glutamate/ 

cysteine, -CH2- pteroic acid), 6.7 (d, 2H, Ar-H pteroic acid), 7.7 (d, 2H, Ar-H pteroic 

acid), 8.6 (s, 1H, Ar-H pteroic acid) 
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HPLC 

 

 

 

 

 

 

 

6.2.2.4 948 (linE4MTX): 

Sequence (C→N): C-STOTDA-E4-MTX 
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MALDI-MS 

 

1H-NMR (400 MHz, D2O): δ (ppm) = 1.95-2.6 (22H, βγH glutamate, -CO-CH2- PEG12), 

3.3-3.6 (52H, βH cysteine, -O-CH2- PEG12, -N-CH2-  PEG12), 4.0-4.4 (8H, αH 

glutamate/ cysteine, -CH2- pteroic acid), 6.8 (d, 2H, Ar-H pteroic acid), 7.7 (d, 2H, Ar-

H pteroic acid), 8.6 (s, 1H, Ar-H pteroic acid) 

 

HPLC 
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6.2.2.5 1002 (2-arm E4-FolA): 

Sequence (C→N): C-STOTDA-K-α,ε[PEG12-E4-FolA]2 

 

MALDI-MS 

 

1H-NMR (400 MHz, D2O): δ (ppm) = 1.7-2.4 (56H, βγH glutamate, βγδH lysine, -CO-

CH2- PEG12, -C-CH2-C- STOTDA, -CO-CH2-CH2-CO- STOTDA), 3.3-3.6 (120H, βH 

cysteine, εH lysine,  -O-CH2- PEG12, -N-CH2- PEG12, -O-CH2- STOTDA, -N-CH2- 

STOTDA), 4.0-4.4 (16H, αH glutamate/ cysteine/ lysine, -CH2- pteroic acid), 6.73 (d, 

4H, Ar-H pteroic acid), 7.6 (d, 4H, Ar-H pteroic acid), 8.6 (s, 2H, Ar-H pteroic acid) 
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HPLC 

 

 

 

 

 

 

 

 

 

 

 

 

6.2.2.6 950 (2-arm E4-MTX): 

Sequence (C→N): C-STOTDA-K-α,ε[PEG12-E4-MTX]2 
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MALDI-MS 

 

1H-NMR (400 MHz, D2O): δ (ppm) = 1.8-2.4 (56H βγH glutamate, βγδH lysine, –CO-

CH2- PEG12, -C-CH2-C- STOTDA, -CO-CH2-CH2-CO- STOTDA), 3.2-3.6 (120H, βH 

cysteine, εH lysine,  -O-CH2- PEG12, -N-CH2-  PEG12, -O-CH2- STOTDA, -N-CH2-

STOTDA), 4.0-4.4 (16 αH glutamate/ cysteine/ lysine, -CH2- pteroic acid), 6.6 (d, 4H, 

Ar-H pteroic acid), 7.5 (d, 4H, Ar-H pteroic acid), 8.6 (s, 2H, Ar-H pteroic acid) 

 

HPLC 
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6.2.2.7 951 (4-arm E4-MTX): 

Sequence (C→N): C-STOTDA-K-α,ε[K-α,ε(PEG12-E4-MTX)4]2 

 

MALDI-MS 

 

 

 



   Appendix 

   150 

HPLC 

 

 

 

 

 

 

 

 

6.2.2.8 1052 (4-arm E4-FolA): 

Sequence (C→N): C-STOTDA-K-α,ε[K-α,ε(PEG12-E4-MTX)4]2 

1H-NMR (400 MHz, D2O): δ (ppm) = 1.7-2.4 (114H βγH glutamate, 18H βγδ lysine, -

CO-CH2- PEG12, -C-CH2-C- STOTDA, -CO-CH2-CH2-CO- STOTDA), 3.4-3.7 (224H, 

βH cysteine, εH lysine, -O-CH2- PEG12, -N-CH2-  PEG12, -O-CH2- STOTDA, -N-

CH2- STOTDA), 4.0-4.3 (32H, αH glutamate/ cysteine/ lysine, -CH2- pteroic acid), 6.8 

(d, 8H, Ar-H pteroic acid), 7.6 (d, 8H, Ar-H pteroic acid), 8.5 (s, 4H, Ar-H pteroic acid) 

HPLC 
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6.2.2.9 1198 (T-shape) 155 

Sequence (C→N): C-Y3-Stp2-K-ε[K-α,ε(OleA)2]αStp2-Y3-C-K(N3)  

 

 

MALDI-MS 
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6.2.2.10 1138 (DBCO-PEG) 

Sequence (C→N): PEG24-DBCO 

 

 

 

 

 

MALDI-MS 
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6.2.2.11 1415 (DBCO-PEG-GE11) 

Sequence (C→N): IVNQPTYGYWHY-PEG24-DBCO 

 

 

 

MALDI-MS 
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