
From the  

Walter-Brendel-Zentrum für Experimentelle Medizin  

of the Ludwig-Maximilians-Universität München 

Interim Director: Prof. Dr. med. Markus Sperandio 

 

Neural Regulation of Lymph Node Immune Responses  

Dissertation 

zum Erwerb des Doctor of Philosophy (PhD) 

an der Medizinischen Fakultät der  

Ludwig-Maximilians-Universität 

submitted by 

陳建炘 Chien-Sin Chen 

from 

臺灣基隆 Keelung, Taiwan 

On 

07/08/2019 

  



 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

Supervisor: Prof. Dr. Christoph Scheiermann 

Second evaluator: PD. Dr. Naoto Kawakami 

 

Dean: Prof. Dr. med. dent. Reinhard Hickel 

 

 

Date of oral defense: 03/12/2019 



  



 

Acknowledgement 

We are trained to be independent scientists but I am sure I would not have been able to 

finish this work alone. I have gotten help from many people for my study and living in 

Germany. These are the three most important people to help me on this wonderful 

journey. My beloved parents, Cheng-Kuo Chen and Shu-Hua Chang keep supporting me 

and have encouraged me to study abroad since I was a kid. This tiny seed had been 

dormant for very long time until years ago. This dream came true when I met my 

supervisor Christoph Scheiermann. I thank him for offering me this fantastic opportunity 

to do my doctoral study in his lab. It is not just a scientific training but a great experience 

to broaden my vision and make many friends.  

I am glad that my colleague Louise Ince and I got onboard the lab the same day. We have 

a lot of fun and explored many things together including science and issues for expats in 

Germany. She is such a nice and supportive friend. Notably, she also read, corrected the 

language and gave plenty of critical comments on this thesis. Alba de Juan, another very 

good friend, told me in two weeks after I started that I am always welcome to join her 

Spanish folks if I have not had friends to hang out, yet. That totally warmed my heart. Of 

course, she taught me very expressive Spanish terms, which I will never forget. It is 

absolutely enjoyable to work with my labmates Sophia Hergenhan, Stephan Holtkamp, 

Jasmin Weber and Robert Pick. They are reliable, relaxed and cool friends and of course 

very detailed and organized as they are Germans. I am so glad to have my lab life with 

these fun guys. My collaborators and TAC members, Susan Brain, Susanne Stutte, Rainer 

Haas and Naoto Kawakami supported me with invaluable resources and knowledge. 

Without them, I could not complete this study. 

Outside of the lab, there are many friends enriching my life abroad. Alex Chen is not only 

my first landlord in Munich, but also a good friend who brought me into the Taiwanese 

network. I met Bai-Lee Liu, Hsin-Yi Chiu and Tsun-Ning Chung with whom we organized 

many events together and could talk a lot about ideas and dreams. Tim Kuo, Julie Su, 

Annie Lee, Jay Hsieh, Ava Feng and Julia Hsu are my favorite jetsetter-mates. We visited 

so many places together, although none of them lives in Munich. Atsuki, Maria, Ben and 



Adrian were my best flatmates in the student housing, together with my beautiful tea-mate, 

Tanitas, who joined us from another flat. There were so many wonderful evenings we 

cooked, drank and talked together. In the same period, I met Annie Cheng and Jonathan 

Garcia. Years later, our friendship brought me to visit them in Mexico and had a fabulous 

trip together. Initially, I did not expect playing badminton in Munich. Luckily enough, I still 

found some rare racket geeks apart from excessive football fans. I enjoy playing with Olaf, 

Oliver, Sherry, Thomas, William and Katherine in our badminton club. That is to me the 

best way to balance my life from work. There are still many friends I cannot list them all 

here. These people do not directly support my study but they make my Munich life full of 

fun and really make this city another home of mine. 

This is indeed a great journey. I do not mean there is no pressure at all, but I have gone 

through it with support. I did not expect so many travels for work or leisure on top of my 

study, but I like them so much because I see how much I benefit from them. I did not 

imagine of making so many friends but fortunately they have come into my life. I 

appreciate that I could do my doctoral study in this environment. I hope the findings of the 

project push the front of knowledge a bit forward.  

 

  



Abstract 

Nerve-controlled immune homeostasis can be altered by infections or neural injuries and 

lead to local or systemic effects. However, immune outcomes of losing innervation in the 

lymph node, a critical organ for adaptive immunity development, are still unclear. In this 

study, surgeries were applied to locally manipulate neural tones in the popliteal lymph 

node (popLN) or its drainage area to study nerve-regulated immune functions and local 

immunity via innervating lymph node.  

Sciatic denervation led to ipsilateral acute paw swelling and nodal expansion with 

increased leukocytes. In contrast, surgeries which denervate the drainage area but spare 

the popLN, such as femoral or ankle denervation, did not cause comparable expansion, 

suggesting that denervation sensitized the popLN. Nodal expansion was repressed after 

cetirizine treatment, indicating that histamine signaling is required. This nodal expansion 

consisted of an increase in every examined stromal and immune subset in company with 

upregulation of Cxcl12, Cxcl13, Il1a, Il1b, Il6, Il10, Il17a and Il17f, which accurately 

mirrored the microenvironment in denervated paws. Neutrophils, natural killer (NK) cells 

and migratory dendritic cells were early expanding, but depletion of neutrophils or NK cells 

did not prevent nodal expansion. Pertussis toxin treatment or neutralization of L-selectin, 

4- and L-integrin inhibited the nodal expansion. Denervation drove vigorous germinal 

center formation in the popLN as well as elevated serum immunoglobulin G (IgG) which 

was not auto-reactive to nuclear antigens. Nodal expansion was inhibited upon MHCII 

blockade, afferent lymphatics disconnection or conducting denervation in OT-II mice, 

suggesting a pathway of T cell-dependent B cell response with lymph-borne antigens. To 

simulate loss of neural tones, neural functions were ablated. However, sympathectomy or 

antagonism of neuropeptides, substance P (SP) and/or calcitonin gene-related peptides 

(CGRP), did not alter the nodal cellularity but systemic sympathectomy boosted Il1a and 

Il4. Restoration of SP and/or CGRP after denervation partially relieved nodal expansion. 

In conclusion, loss of innervation induced peripheral inflammation and reduced the popLN 

responding threshold, co-contributing to an excessive B cell response and IgG production 

which potentially causes long-term immune concerns to patients with neural injury. 
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 1 

1 Introduction 

 Importance and rationale 

The nerve and the immune system are two distinct but mutually interacting units. 

Interactions between them can tune their functionalities and/or cause diseases. In one 

direction of the interactions, secreted neural substances modulate functions of the 

immune system; in the other direction, a misdirected immune system causes neural 

damage such as autoimmunity against neural components. A typical human autoimmune 

disorder in the nervous system is multiple sclerosis. Recently, neuro-reactive 

autoimmunity has been intensively studied using mouse experimental autoimmune 

encephalomyelitis models [1], and compared with clinical multiple sclerosis pathology [2]. 

However, the influence of nerves on the immune system in homeostatic and pathologic 

conditions and subsequent immune outcomes are overlooked. Studies of neurally injured 

patients have suggested that disturbed neural tones affect immunity at the regional and 

systemic levels [3-7]. Investigation of immune responses and the underlying mechanism 

in neural injury scenarios can not only help to understand molecular and cellular dialogs 

between the nervous and the immune systems but possibly predict long-term immune 

issues in neurally injured patients.  

Brain, spinal cord and peripheral nerves are three sectors of the nervous system, which 

control bodily processes at different levels. Globally, traumatic brain injury (TBI) [8] and 

spinal cord injury (SCI) [9] affect millions of people, causing premature death and 

significant economic burden to the individual and to society. Neural modulation of immune 

organs is not as obvious and urgent as the issues of survival, mobility, pain and loss of 

senses to the patients, but can potentially cause long-term problems. 

Lymph nodes (LN) are secondary lymphoid organs where adaptive immunity develops to 

create immune specificity and memory. Because LNs are territorial structures, every LN 

is in charge of immune responses in specific areas depending on its location. There are 

28 to 36 LNs in mice [10] and the number of human LN has a wide range from 500 to 700 

[11]. To fulfill their functions, lymph nodes possess a specialized network of blood and 

lymphatic vessels, stromal cells, leukocytes and, last but not least, nerves. This thesis 
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aims to study how nerves interact with the immune system in the LN and what the effects 

are, especially on adaptive immune responses. 

 

1.1.1 Overview 

There are four parts in this introduction. The first one aims to provide a broad overview of 

neural injury or action-driven immune responses. It starts from immune alterations after 

different injuries of the central nervous system (CNS) (1.2), followed by the physiology 

and immunology due to injury of the peripheral nervous system (PNS) (1.3), and finishes 

with neurogenic inflammation which is derived from neural activities (1.4). The second 

part introduces the lymph node (1.6), the target organ investigated, following a section 

about adaptive immunity (1.5), which usually takes place in secondary lymphoid organs. 

The third part briefly gives a general overview of the PNS, points out the nerves studied 

in this project (1.7) and puts the spotlight on immune functions of multiple neural 

substances and actions (1.8). The last section highlights the potential impacts and the 

objectives (1.9) and then specifies the model used in this study to fill the knowledge gap 

(1.10).  

 

 Effects of neural injury on the immune system 

Brain and spinal cord injury (SCI) can suppress or activate the immune system but by 

different mechanisms. Neural injury-mediated immunosuppression mostly involves loss of 

neural substances, which directly or indirectly have immune functions. However, immune 

stimulating cases in experimental settings due to loss of neural substances are still absent. 

Excessive immunity induced by neural injuries is rather an autoimmune response which 

mainly results from exposure of leukocytes to massive amount of neural antigens during 

the injury [12]. Examples of brain and spinal cord injury affecting immune functions are 

provided below. 
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1.2.1 Stroke-induced immune modulation 

There are many clinical observations linking neural injuries to altered immune function. A 

multicenter study following stroke patients showed infection is one of the most common 

complications suggesting compromised immunity in these cases [3]. Most likely due to 

neural and humoral connections, the regional damage of the brain can cause systemic 

immunosuppressive effects [13, 14]. Systemic ablation of sympathetic tone by 

administration of the neurotoxin, 6-hydroxydopamine shows protective effects against 

infections in a mouse stroke model – midcerebral artery occlusion (MCAO) - via preventing 

conversion of hepatic invariant natural killer T (iNKT) cells into immunosuppressive status 

[14]. This study identifies the sympathetic tone to be the key messenger connecting the 

brain and functional iNKT cells in the liver. 

 

1.2.2 Spinal cord injury-induced immune modulation  

Brain and spinal cord injuries (SCI) are damages at different levels in the central nervous 

system with outcomes depending on innervation territories. Effects of SCI are normally 

determined by the level of damage, and unlike to some brain injuries compromise global 

immunity. Although differences exist, SCI still shares commonality with brain-damaged 

cases in the sense that infection is the leading cause of death of SCI patients, mainly by 

septicemia and pneumonia [6, 7], indicating there are multiple mechanisms leading to a 

convergent immunosuppressive outcome. These patients show reduced immunity 

possibly because of less proliferation of progenitor cells [5] and lower levels of leukocyte 

adhesion molecules that impairs migratory capacity [15]. Interestingly, lesion to the spinal 

cord at higher thoracic level causes higher susceptibility to pneumonia in a mouse 

pneumonia model [16]. This level of dependence of susceptibility is not due to denervation 

of solely the spleen [16], but dysregulation of the sympathetic-neuroendocrine adrenal 

reflex [17].  

Classical understanding of high level SCI-induced immune suppression involves excess 

neurogenic local norepinephrine (NE) in the spleen and humoral glucocorticoids via 

hypothalamus-pituitary-adrenal (HPA) axis [18, 19]. A recent study introduces a new 

concept called the sympathetic-neuroendocrine adrenal reflex in the SCI scenario [17]. In 
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this reflex, loss of sympathetic innervation to adrenal gland after SCI leads to repressed 

NE and increased cortisol in plasma resulting in leukocyte depletion and lymphoid atrophy 

[17]. Unlike the classical model stimulating the adrenal gland via a humoral pathway, this 

alternative mechanism does not involve the HPA axis activation but works by direct 

sympathetic innervation [17]. Because of dependence on direct innervation, the reflex 

shows level dependence of SCI as well [17]. However, mouse hepatitis virus exhibits 

higher infectivity to SCI mice but it does not exhibit level dependence of SCI [20], 

rendering the level dependence a pathogen-specific feature. 

 

 Neural physiology and immunology after traumatic injury 

Neural injury causes long-term immune effects due to an imbalance of functional 

substances as discussed, but the injury itself can also result in drastic physiological 

change and transiently activated immune responses. Complete break of a nerve 

separates the nervous fiber into proximal and distal ends. The latter is segregated from 

the rest of the nervous system, while the former remains connected. Within the first few 

minutes after trauma of the mouse spinal nerve, the proximal and distal ends undergo an 

acute axon degeneration (AAD) which occurs as they die back 200 to 300 micrometers to 

reach a stable distance from the lesion [21]. After AAD, divergent fates of two ends exhibit 

multi-phasic processes for either regeneration or degeneration. 

 

1.3.1 The distal end – Wallerian degeneration 

Wallerian degeneration (WD) is the process that when an axon is cut describes how the 

distal end of the nerve gradually loses its integrity (Figure 1.1). It involves multiple 

functional steps and occurs in both central and peripheral nervous systems (CNS and 

PNS, respectively) after axotomy to avert further damage to intact nerves and shape the 

microenvironment for repair [22]. Although WD can occur in both CNS and PNS, different 

types of cells are involved in the process, for example, Schwann cells and macrophages 

in the PNS and oligodendrocytes and migroglia in the CNS [22].  The progression rate of 

WD shows a great range of variation based on species, as well as on the types and 
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thickness of the injured nerve [22]. Discovery of the “Slow Wallerian degeneration” (WldS) 

mouse line exhibiting extremely slow development of WD stirs understandings of 

mechanistic details of WD [23]. Using this mouse line and advanced microscopic 

techniques, WD has been shown to occur in several stages from latency, fragmentation 

to clearance. 

 

 

Figure 1.1 Process of Wallerian degeneration  

This figure is originally in Rotshenker’s review article [22]. It shows development of Wallerian degeneration 

in several stages with their signature events. Stage A is the uninjured state, a normal intact axon. Stage B 

is the latency marked by undisrupted structure of the distal end (1.3.1.1). Stage C involves onset of axon 

fragmentation but still maintains the myelin sheath (1.3.1.2). Stage D and E are most immunological stages 

in which large amount of hematogenic (bone marrow-derived) macrophages, neutrophils and T cells are 

recruited for clearance of ejected myelin (1.3.1.3). Lengths of stages are different between experimental 

settings and systems. Galectin-3+ macrophages are believed to be hematogenic and galectin-3 is important 

for their phagocytosis because loss of galectin-3 compromises clearance of antibody-opsonized apoptotic 

cells [24].  
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1.3.1.1 Latency  

Shortly after AAD, there is a latent phase lasting from hours to days in which the distal 

end of the nerve retains its morphology and conductivity so that it is still excitable [25]. It 

is about 1-3 day(s) in wild-type mice [26, 27], albeit with progressively losing membrane 

potential [28]. By the time of complete loss of conductivity, more than half of nerves appear 

still to be morphologically normal, indicating that the electrophysiological integrity 

degrades quicker than the cytoskeleton in the case of axotomy [26]. In this phase, the 

content of calcium ions in the distal end of the nerve rises and increased calcium then 

activates calpain, a protease for cytoskeletal dissolution, to potentiate the degeneration 

[29]. This pathway strongly relies on the influx of calcium, which is increased by 

dysregulation of voltage-gated ion channels and sodium/calcium exchangers [30, 31]. 

This spreads imbalanced calcium along the distal axon rather than confined at the injured 

site [32] so that it primes the following axon fragmentation. 

 

1.3.1.2 Fragmentation of the axon 

Activation of the protease starts to drive fragmentation of the axon in the distal end. This 

is characterized by dissolution of structural proteins, destruction of mitochondria and 

destabilization of cytoplasmic vesicles. Axon fragmentation is observed even in an in vitro 

culture of explanted sciatic nerves, indicating it is an intrinsic process depending on only 

the axon itself and the associated Schwann cells [33]. Schwann cells associated with the 

axon are stimulated and result in axon fragmentation, which is a local granular breakdown 

of axons with decreasing length of each fragment over time [34]. In fact, Schwann cells 

seem to be very important in this process because inhibition of their dedifferentiation (via 

endoneurial injection of PD0325901), transcription (via endoneurial injection of 

actinomycin D) or actin polymerization (via endoneurial injection of Cytochalasin-D) 

dampens axon fragmentation [34]. Mouse sciatic nerve transection latency is about 37-42 

hours [35]. Sciatic axotomy in YFP-H mice, whose motor and sensory nerves in the PNS 

are labeled with yellow fluorescent protein in the whole axon, reveals that axons start to 

fragment in an anterograde manner between 36-44 hours after lesion in mice and rats [22, 
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33]. It exhibits strong correspondence temporally and spatially with formation of myelin 

ovoid, which is a hallmark of myelin disintegration [33, 34]. 

 

1.3.1.3 Demyelination and myelin clearance 

In WD, demyelination of nerves involves Schwann cells unwrapping from the axon and 

ejecting myelin. A classical study using electron microscopy to analyze intramembranous 

particles in Schwann cells and the distal axon revealed that the pattern of 

intramembranous particles in Schwann cells changes 12 hours after transection of the 

sciatic nerve in mice, which is even faster than the axon which reacts in 24 hours, 

suggesting that Schwann cells are the initiators of the process [36]. In addition to induction 

of axonal fragmentation, Schwann cells begin dedifferentiation which stops synthesizing 

myelin [37] and converts the cells to the unmyelinated glial cells (Remak cells) in a repair-

specialized mode [38]. Schwann cells then proliferate and form a structure termed 

“Bünger bands” to keep and concentrate the regenerative factors for guiding neural 

regrowth [39]. Mitosis in Schwann cells was initially thought to rely on recruited 

myelomonocytic cells – macrophages [40]. However, other studies show the proliferative 

feature without presence of macrophages [41], and depletion of macrophages by 

clodronate does not alter Schwann cell number in a neural compression injury model [42]. 

Myelin debris contains myelin-associated glycoprotein and oligodendrocyte-myelin 

glycoprotein, which are inhibitory substances against axonal growth [43]. Therefore, 

elimination of myelin debris as soon as possible is essential. Interestingly, endogenous 

antibodies against myelin are preexisting to quickly neutralize and opsonize the released 

myelin [44]. Detached Schwann cells play a role in phagocytosis of myelin debris at the 

early stage and macrophages from monocytes or resident macrophage actively remove 

the majority of myelin at the late stage [45, 46]. Between these two stages, neutrophils, 

as the first responders from blood, infiltrate to the injured site within 8 hours and reach 

their peak in a day to clean myelin debris [47]. Endoneurial resident macrophages are 

then reactivated within 2 days after injury and begin to clean myelin debris [46, 48]. Then 

large amount of monocytes are recruited to the lesion in 4 days and differentiate into 

macrophages [49]. These C-C chemokine receptor 2 (CCR2)+ monocyte-derived 



 8 

macrophages are the major myelin cleaners [40], and they secrete interleukin-1 (IL1) to 

reactivate Schwann cells [50] and neuron growth factor (NGF) to facilitate neural regrowth 

[51]. However, CCR2-deficient mice show the same rate of WD in which the myelin 

cleaner role of macrophages is compensated by another phagocyte: neutrophils [52]. 

Phagocyte recruitment is critical for myelin ejection and removal. The mouse mutant with 

Ube4b fused with Nmnat1 (the slow WD, WldS mouse line) [23] or pharmacological 

blockade of type 3 complement receptor [53] does not exhibit recruitment of macrophages 

and WD demyelination is efficiently delayed.   

 

1.3.2 The proximal side – sprouting tips for regeneration 

In contrast to undergoing WD on the distal side, the proximal end is in a healing-regrowth 

program. Normally on the proximal side of the nerve, the nerve sprouts from the tip of 

transection and nodes of Ranvier for potential reconnection. In a mouse spinal nerve injury 

model, the earliest sprouting begins between 6-24 hours and 30% of nerves sprout within 

2 days after axotomy [21]. The rate of regeneration largely depends on the type of nerve. 

Independent to the speed of regrowth, extended regrown nerves are unlikely to return to 

the lesion site and rejoin the distal end because diffusion-driven travel of growth factors 

lacks precise directionality [21]. 

Proximal ends are not always on the safe side. Retrograde degeneration of axons features 

in neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS), Alzheimer’s 

disease and Parkinson’s disease. It is considered as a proximal stump undergoing WD, 

and therefore defined as “Wallerian-like degeneration” because of high similarity, albeit 

opposite directionality [54]. This renders studying WD a useful proxy to assess 

mechanistic details of neurodegenerative disorders.   

 

1.3.3 Immune reactions to neural injury 

While regeneration or degeneration takes place in the proximal or distal end respectively, 

immune components are activated to assist the processes, especially for the myelin 

clearance on the distal side. Severance of nerves activates Schwann cells and so initiates 
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reactions for myelin clearance and neural recovery. These processes require a responsive 

network consisting of cells, vessels and soluble compounds. 

 

1.3.3.1 Vessels and cytokines  

Plasma leakage from blood to nerves is defined as perineural permeability, which shows 

a bimodal pattern in WD. Soluble factors rely on enhanced permeabilization to reach the 

nerve, likely used to be for repair. Early breakdown of this barrier (within 48 hours) enables 

infiltration of monocytes to the injured site [46]. The first peak in perineural permeability 

occurs 4-7 days after sciatic nerve transection in rat, and matches the dynamics of acute 

inflammation [55]. Perineural permeability then declines from the first peak, reaches the 

trough in 2 weeks and bounces back in 4 weeks for recovery of homeostasis after WD 

[56]. T cells, as the last arriving cells, are recruited after 3 days and keep increasing until 

week 2-3 when they reach their peak [57].  

Cytokines produced by these T cells are important for regeneration. CNS injury skews the 

systemic cytokines towards a cluster of differentiation 4 (CD4) T helper cells type 2 (Th2) 

profile which involves increased IL4, IL5 and IL13 cytokine levels, normally associated 

with eosinophilic responses and allergy. This Th2 shift is associated with higher 

susceptibility to infection, better neuroprotection against experimental autoimmune 

encephalomyelitis (EAE) and pro-regeneration in CNS injury models [58]. Th2 cytokines 

and some anti-inflammatory cytokines such as IL10 and transforming growth factor beta 

(TGF) promote neural healing [59], but controversially, only adoptively transferred Th1 

but not Th2 and Th17 – conditioned cells promote the neural recovery program via 

activation of M2 macrophages in the SCI model [60]. Nowadays, it seems that Th1 

cytokines such as interferon gamma (IFN), IL1 and IL12 are beneficial for WD but 

inhibitory to recovery, which relies more on Th2 cytokines. Further studies on the temporal 

and spatial profile of cytokines and the status of macrophages during the transition 

between WD and recovery phases are required for further clarification of the role of 

cytokines. 

In the nerve sheath after unilateral sciatic nerve transection, the allergic cytokine 

histamine increases in the proximal end and the contralateral intact nerve but decreases 
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in the distal stump [61], suggesting protective or healing functions of infiltrating mast cells 

in nerves which are still alive after injury. Histamine seems to play a role in neural 

pathology driven by microglia, whose activation and infiltration are signs of 

neurodegenerative diseases. Histamine in the brain activates microglial migration, but 

inhibits their lipopolysaccharide (LPS)–driven migration and IL1 release by the same 

histamine receptor, histamine H4 receptor (H4R) [62]. However, treating neuron-microglia 

co-culture with histamine and LPS reduces the survival rate of dopaminergic neurons 

(tyrosine hydroxylase, TH+) by 30%, and this effect requires the presence of microglia 

[63]. This highlights the importance of histamine receptors and phagocytes in 

neuroinflammation in CNS.  

 

1.3.3.2 Toll-like receptors 

Mouse sciatic nerve transection activates Schwann cells to produce interleukin 6 (IL6) 

within 3 hours [64], tumor necrosis factor alpha (TNF) and IL1 alpha (IL1) within 5 hours 

and IL1 beta (IL1) within 24 hours [65]. Secretion of these pro-inflammatory cytokines 

might link to activation of Schwann cells via toll-like receptors (TLRs). Schwann cells 

express TLR3 (senses double-stranded RNA), TLR4 (senses lipopolysaccharide (LPS), 

heat shock proteins, heparan sulfate and hyaluronic acid fragments) and TLR7 (senses 

single-stranded RNA) continuously and express TLR1 (senses bacterial lipoproteins) after 

axotomy [66]. Deficiency of the key adaptor protein Myeloid differentiation primary 

response 88 (Myd88), TLR2  (senses bacterial peptidoglycans and heat shock protein 

70), or TLR4 reduces the pro-inflammatory cytokines and macrophage infiltration and thus 

delays WD [67], suggesting the existence of endogenous ligands of TLRs during WD. 

Weather these endogenous ligands are recognized as antigens for induction of more 

specific responses is unclear. 

 

1.3.3.3 Antigen-specific immunity 

Given that the induction of autoimmune responses requires the ingestion, processing and 

the presentation of self-antigens, are the macrophages and Schwann cells, which 
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phagocytose myelin debris able to induce autoimmunity against myelin after peripheral 

neural injury?  

A facial nerve injury has shown that injury of myelinated nerves induces autoreactive T 

cells recognizing myelin basic protein (MBP) and secreting IFN in superficial cervical LNs 

[68]. This autoimmunity seems to be beneficial, as counteracting post-injury autoimmunity 

by injection of CD4+CD25+ regulatory T cells (Tregs) is detrimental for neuronal survival 

after injury [69]. Rag1 deficiency compromises neither WD (also true in Prkdc-/- and Foxn1-

/-) [70] nor recovery of motor function [71]. Interestingly, boosting immunity by adoptively 

transferring activated wild-type lymphocytes to wild-type or Rag1-/- recipients accelerates 

the motor recovery [71]. These evidences point to that mild activation of adaptive immune 

responses is neuro-protective and beneficial for regeneration on the post-injury stage. 

Afterwards, this induced immunity is eventually restricted and terminated by Schwann 

cells via expression of Fas ligand (FasL) [72]. 

Adaptive immune responses are driven by antigen presentation, which relies on the 

presentation machinery, major histocompatibility complex class II (MHCII). 

Hematogenous macrophages, endoneurial macrophages [48], and Schwann cells [73] 

express MHCII, phagocytose and present myelin. The former two are the professional 

antigen presenting cells (APCs) and the latter, Schwann cell, is the facultative APCs, 

expressing low level of MHCI (a protein complex on the surface of all nucleated cells for 

presenting intracellular peptides to cytotoxic lymphocytes) but no MHCII until they are 

activated by IFNand TNF [72, 74].  After the antigen acquisition and presentation, 

adaptive immunity is commenced (explained in 1.5).  

Peripheral neural autoimmune disorders are usually caused by molecular mimicry of 

pathogens [75]. Prevention of being harmed by autoimmunity to healthy myelin depends 

on a molecular insulation mechanism. This inhibitory mechanism relies on the signaling 

pathway of signal-regulatory-protein- (SIRP, also known as CD172 and SHPS1) 

expressed on phagocytes. CD47 (also known as integrin-associated protein, IAP) is 

expressed on various cell types and binds to SIRP to inhibit phagocytosis [76]. Under 

normal conditions, the myelin sheath presents CD47 to prevent itself from being 

phagocytosed [77]. 
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 Neurogenic inflammation  

In addition to neural injury-induced immune reactions, stimulation of some nerves can 

lead to inflammation too. This process is called neurogenic inflammation because the 

response is triggered by an activation of the nerve, which drives the secretion of 

neuropeptides and subsequent inflammation (Figure 1.2). The cascade is initiated by 

activation of noxious signal receptors, and the sensory neural substances are important 

mediators which have effects on immune, endothelial, epithelial or smooth muscle cells to 

initiate inflammation [78]. A symptom of this phenomenon was first described in the late 

19 century as skin vasodilation after electric stimulation to the dorsal roots. Recently, 

increasing studies revealed that these substances have not only effects on the blood 

vessel but directly modulate the activation status of both resident and circulating immune 

cells including macrophages [79], dendritic cells [80], Langerhans cells [81, 82], mast cells 

[83], neutrophils [84, 85], and T cells [80, 86]. As calcitonin gene-related peptide (CGRP) 

and substance P (SP) from nociceptors are now recognized to be the major neurogenic 

inflammatory mediators, neurogenic inflammation is viewed as neural substance-

mediated vaso-immune responses to various environmental cues sensed by sensory 

nerves (reviewed in [78]). Unlike sympathetic and parasympathetic nerves with relatively 

simple profiles of secretary neural substances, sensory nerves produce a variety of 

neuropeptides (database: http://www.neuropeptides.nl/). Two of the most studied ones, 

CGRP and SP, are introduced below. 
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Figure 1.2 The milieu of neurogenic inflammation 

This figure is originally in the review article from Steinhoff et al [87]. It clearly illustrates the key players in a 

neurogenic inflammation including the receptors of noxious signals, functional neuropeptides and target 

cells. After stimulation of those receptors, the sensory nerve releases neuropeptides, which are the critical 

mediators for driving inflammation. These substances vasodilation, leakage of plasma and activation of 

immune cells such as mast cells and macrophages. The most characterized neuropeptides are CGRP 

(1.4.1) and SP (1.4.2). 

 

1.4.1 Calcitonin gene-related peptide  

CGRP is one of the most investigated secreted peptidyl neural substances. It consists of 

37 amino acids (the full length peptide) and has two forms ( and ) via alternative RNA 

processing [88]. This peptide is widely expressed in the CNS and PNS and closely relates 

to pain sensation, vasodilation and immune modulation. It is mainly synthesized in and 
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secreted by C and A fibers in the PNS [88]. The receptors of CGRP consist of a main 

receptor, calcitonin receptor-like receptor (CLR), and an auxiliary unit, receptor activity 

modifying protein 1 (RAMP1), for full functionality [89]. These two proteins form a 

functional dimer complex with CLR capable to bind CGRP and adrenomedullin and 

RAMP1 providing ligand selectivity.  

Neural damage such as peripheral axotomy [90], activation of nociceptive receptor such 

as transient receptor potential cation channel subfamily V member 1 (TRPV1) [91] or 

reception of NGF  [92] can stimulate release of CGRP from nociceptors (sensory neurons 

specialized in sensing noxious environmental signals) to drive neurogenic inflammation. 

This CGRP secretion can be inhibited by NE due to 2-adrenoreceptor signaling [93], 

pointing out a dialog between the SNS and nociceptors. 

A part of CGRP’s pro-inflammatory activity is attributed to its vasodilation function, which 

locally induces edema and leukocyte infiltration. CGRP is by far the most potent 

vasodilator and has relatively high acting duration of 5 hours even at picomole level in 

skin [94, 95]. The CGRP-mediated vasodilation has endothelium-dependent and 

independent (via acting on smooth muscle cells directly) pathways depending on whether 

nitric oxide from the endothelial cells is required [96, 97]. However, CGRP is not always 

pro-inflammatory. There are actually many cases showing its anti-inflammatory functions 

(this will be mentioned below). Therefore, in the scheme of neurogenic inflammation, 

CGRP acts on the vessels and facilitates inflammation but it negatively regulates local 

immunity in other scenarios (reviewed in [98]). 

 

1.4.2 Substance P 

Substance P (SP) is a neurotransmitter, neuromodulator and immune modulator, 

containing 11 amino acids. It is synthesized in the soma of neurons and released either 

at the neuronal soma or the axon terminal after transported [99]. Its bioactivity is mediated 

by a G-protein-coupled receptor, neurokinin 1 receptor (NK1R) signaling. Therefore, the 

presence of membrane-bound NK1R and the stability of SP determines the duration and 

sensitivity of SP reactivity. The NK1R is expressed in the CNS and PNS, endothelial cells, 

smooth muscle cells, mucosal tissues including gastrointestinal and genitourinary tracts 
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and pulmonary tissues. The NK1R signaling is regulated by -arrestin which uncouples 

the receptor with the associated G-protein followed by receptor internalization [100] and 

the level of soluble SP is controlled by endothelin-converting enzyme 1 mediating SP 

degradation [101].  

SP resembles CGRP in many ways – for example, they are both involved in pain sensing 

and are widely present in the CNS and PNS. They are often co-localized in the same 

nerves and are released together upon capsaicin treatment [102]. The activity of SP on 

vessels is closely associated with induction of nitric oxide which then controls vascular 

smooth muscle cell relaxation [103]. In addition to vasodilation, the SP-nitric oxide axis 

promotes migration and proliferation of endothelial cells [104] and mobilization of CD29+ 

stromal cells in an alkali burn model [105], highlighting SP’s role in wound healing [106] 

and cancer metastasis [107].  

In the neurogenic inflammatory scenario, compared with CGRP, SP is about 10,000-fold 

less potent in vasodilation activity [103] but it strongly increases vessel permeability, 

promoting plasma leakage and leukocyte extravasation [108]. These two concurrently 

secreted neural substances thus differentially facilitate distinct processes acutely on the 

vessel while neurogenic inflammation occurs. SP then induces secondary effects in late 

phase by binding to mast cells and other leukocytes to trigger release of pro-inflammatory 

cytokines such as histamine, prostaglandins and leukotrienes [108]. Notably, SP-treated 

mast cells balance the effect of CGRP by producing proteases which degrade CGRP and 

thus control the duration of vasodilation [109]. On the other hand, mast cells are induced 

to degranulate when treated with SP [110]. These compose a well-regulated network of 

neurogenic inflammation. 

  

 Adaptive immunity 

The main organ investigated in this project is the lymph node, which is a secondary 

lymphoid organ important for the development of adaptive immunity. Adaptive immunity, 

initially called “acquired immunity”, was found to be the mechanism conferring protection 

against smallpox by cowpox vaccination. In 1890s, discussion of acquired immunity 

highlighted its two important features – specificity and memory [111]. Unlike innate 
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immunity which recognizes common elements of pathogens by pattern recognition 

receptors and reacts quickly, adaptive immunity requires a longer time to produce effector 

cells or antibodies which are highly specific and long-lasting [112]. T and B cells are the 

major effectors, which differentiate after priming and activation by APCs and helper cells. 

This process mainly takes place in secondary lymphoid organs and involves antigen 

presentation, clonal selection and expansion of lymphocytes. 

Adaptive immunity eventually results in generation of either CD8 cytotoxic T cells or 

antibody-producing plasma cells (PCs), depending on the types of antigen exposed. 

These two pathways are not mutually exclusive but are usually negatively correlated [113]. 

In fact, priming rats with higher antigenic activity of Salmonella Adelaide flagellin skews 

the recall immune reaction toward antibody production rather than cell-mediated 

responses [113]. The balance between types of immunity is determined and supported by 

different types of immunogens and CD4 T helper (Th) cells [114, 115]. Naïve CD4 T helper 

cells have plasticity to differentiate into activated subsets such as Th1, Th2, Th17 and 

regulatory T (Treg) cells upon cytokine stimulation [114, 115]. Th cell polarization in 

adaptive immunity affects the direction of responses so that it carries out either cell-

mediated or humoral immunity via shaping the favored microenvironment. 

 

1.5.1 Cell-mediated immunity 

Cell-mediated immunity involves elimination of pathogen-infected cells by the cytotoxic 

function of CD8 T cells. To fully activate CD8 T cells, engagement of the T cell receptor 

(TCR) and the co-stimulatory molecule CD28 [116, 117] is required, along with the 

presence of inflammatory cytokines such as IL12 and IFN [118]. During infection, CD8 T 

cells are recruited to the LN to acquire antigen-specific TCR activation and co-stimulation 

of CD28 [119]. These signals are normally provided by APCs when the pathogen comes 

in the form of a whole pathogen; however, these APCs are less likely to be fully activated 

by epitopes of pathogens (for example, viral infection) so that this process then requires 

additional help from CD4 T helper cells – so called “licensing” [120]. In a type I immune 

response, Th1 cells release IL12 and IFNto maximize the activation of CD8 T cells via 

licensing of APCs [120]. Outside of the LN, CD4 T cells can direct armed CD8 T cells to 
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the infected tissue for elimination of infected cells [121]. T-box transcription factor (T-bet) 

is the key factor for Th1 differentiation from naïve CD4 T cells because T-bet expression 

counteracts GATA3 (GATA binding protein 3), the core transcription factor of Th2 so that 

it channels the fate decision of naïve helper cells toward Th1 [122]. T-bet is important for 

not only Th1 development but also CD8 cytotoxic and memory T cell differentiation in type 

I immunity [123, 124]. IL2 was considered as a growth factor of CD8 T cells but is recently 

viewed as a differentiation factor relating to the cytotoxic function [125] and capability of 

secondary expansion of CD8 memory T cells via autocrine signaling [126, 127].  

 

1.5.2 Humoral immunity  

Humoral immunity results in production of antibody from plasma cells (PCs). PCs and 

memory B cells are terminal subsets in the B cell differentiation pathway [128, 129]. There 

are T-cell-dependent (TD) and T-cell-independent (TI) B cell responses depending on 

whether Th2 cells are required [130].  

 

1.5.2.1 T-cell-dependent response 

In TD response, binding of protein antigens to B cell receptors (BCR) leads B cells to 

endocytose, process and present the digested peptide on their MHCII [131, 132]. Antigen-

primed B cells need three signals from Th2 cells for full activation: MHCII-TCR cognate 

engagement [133], CD40-CD40L co-stimulation [134] and IL4 reception [135]. After 

interaction with cognate B cells, antigen-experienced follicular helper T (Tfh) cells together 

with activated B cells form germinal centers (GCs) in B cell follicles [136, 137]. Activated 

B cells enter GC in secondary or tertiary lymphoid organs to undergo affinity maturation 

and class switching, which diversifies antibody classes and improves antibody affinity 

[138]. Interestingly, in germ-free animals, although the number of GC is lower in 

homeostasis [139], substantial quantities of antibodies are produced after challenge, and 

class switching still occurs, indicating that these animals are still capable to form GCs [140, 

141]. The extent of GC B cell (GCB) expansion is proportional to the amount of antigen 

presented by GCBs to Tfh cells and positively relates to antibody affinity [142]. However, 
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overloading antigen generates bystander GCBs and Tfh cells causing the formation of 

auto-antibodies [143]. High affinity antibody-bearing B cells surviving from clonal selection 

in the GCs differentiate into either PCs or memory B cells. Memory B cell development in 

the lymph node requires (1) B cells expressing IL9 receptor (IL9R) with intrinsic 

responsiveness to IL9 and (2) IL9 secreted by Tfh cells [144]. Long-lived PCs residing in 

bone marrow and spleen secrete antibody persistently for more than 120 days or longer 

to maintain humoral immunity independent of antigen re-boost [145, 146].  

Th2 cells typically secrete IL4, IL5, IL9 and IL13 and are associated with TD B cell 

responses and allergy [147]. They can be activated by dendritic cells (DCs), basophils, 

epithelial cells and innate lymphoid cells (ILCs) [147, 148]. To classify Th2-promoting DCs 

by transcription factors, they express interferon regulatory factor 4 (IRF4) and Krüppel-

like factor 4 (KLF4) [149-151]. To categorize these DCs by surface marker, CD301b+DC 

seems important for Th2 responses. In a model using ovalbumin and different adjuvants 

to elicit immune responses in the draining LN (dLN), depletion of CD301b+DCs prevents 

the Th2 response and reduces the Th1 response [152]. However, although depletion of 

CD301b+DCs abolishes the Th2 response, it does not affect frequencies of Tfh cells and 

GCBs or production of IgG and IgE [152]. TCR signaling together with IL4 reception drives 

Th2 polarization by inducing GATA3 expression, which further promotes Th2 cytokines 

[147, 153, 154]. Unlike the canonical Th polarization, which requires IL4 reception initially, 

a low dose of cognate peptide triggers GATA3 expression and IL2 production, which then 

induces production of IL4 for type 2 immune response [155].  

 

1.5.2.2 T-cell-independent response 

The TI B cell response, can be subdivided into two subtypes depending on the antigen. 

Antigens that trigger BCR and Toll-like receptors (TLRs) signaling activate the type 1 

response while the type 2 reaction is driven by antigens capable of cross-linking multiple 

BCRs [156-158]. TLR signaling is still required for initial B cell proliferation and survival in 

type 2 TI response, and is essential for antibody secretion [157]. TI responses 

predominantly involve production of immunoglobulin M (IgM) by B1 cells in the peritoneal 

cavity or by marginal zone (MZ) B cells in the spleen [159, 160]. TI responses were 
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thought of only producing short-lived PCs, but this has been proven wrong by observing 

the presence of Streptococcus pneuomoniae-induced PCs for 180 days after B cell 

depletion [161]. In T cell-deficient mice, albeit GC formation fails, generation of long-lived 

PC is not affected [162]. These studies show long-lived PC differentiation is not an 

exclusive outcome of TI or TD responses and is independent of GC formation.  

 

1.5.2.3 Somatic hypermutation and class switch recombination 

The goal of somatic hypermutation (SHM) is to diversify antibody specification for broad 

coverage of antigens or affinity maturation. This process requires activation-induced 

deaminase (AID), which converts cytosine to uracil by deamination in the Ig loci [163, 

164]. Normally this reaction is lymphocyte specific and occurs the first time during 

lymphocytogenesis in order to have a wide spectrum of clones. The second time it 

happens after activation by epitope exposure. Activated clones of B cells then express 

AID and undergo SHM in GCs to further diversify the variation region of the antibody (B 

cell receptor) [164]. After that, these B cells survey again the epitopes presented by 

follicular dendritic cells (FDCs) in the LN [165]. A parabiosis study revealed that FDCs do 

not have characteristics of the parabiosis partner, suggesting local progenitor 

replenishment [166]. FDCs interact with B cells by antigen-antibody or antigen-

complement immune complexes in the GC [165, 167]. B cells with high affinity receptors 

then survive while the others undergo apoptosis because insufficient survival factors were 

received. This process can run repetitively to obtain the clones with extremely high affinity 

to presented epitopes. 

Class switch recombination (CSR) aims to generate multiple subtypes of antibody, which 

are specialized, to work with different immune cells and molecules and protect different 

body compartments. It also requires AID [164]. The CSR program of B cell is turned on 

with engagement of CD40 to CD40L and ligation of TLR4 (by LPS, for example). IL4 

synergistically enhances CD40 signaling for CSR via nuclear factor kappa B (NFB) and 

signal transducer and activator of transcription 6 (STAT6) activation [168]. B cell CSR 

mainly takes place in GC in the LN [164, 169]. In extrafollicular B cells, transmembrane 

activator and calcium-modulator and cytophilin ligand interactor and B cell activating factor 
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receptor (BAFF-R) mediate class switching [170] due to Myd88 signaling [171]. In Myd88-

deficient B cells, IgG1 and IgM production is impaired after TD immunization [172], 

indicating Myd88 plays a role in both TI and TD responses. Taken together, SHM and 

CSR are two major events activated B cells experience in GCs in order to refine antibody 

affinity and diversify subtypes of antibody. 

 

 Lymph node 

In order to form quality responses, the lymph node (LN) requires structural, cellular and 

molecular components. It is composed by (1) structural components such as blood and 

lymphatic vessels, stromal cells and conduits, (2) resident cells such as resident DCs and 

subcapsular macrophages, (3) motile cells such as B and T cells, migratory DCs, and 

many other leukocytes and (4) nerves (Figure 1.3). These components reside in different 

areas of the LNs for their functionality. The majority of cells in LNs are dynamic and 

maintained in a steady state. Its local environment can be dramatically changed after 

receiving immune stimulation, which quickly turns on events in the LN such as leukocyte 

recruitment, proliferation and nodal remodeling.  

 

 

Figure 1.3 Vasculature and cell zones of the lymph node 

This figure is originally in the review article from Miyasaka and Tanaka [173]. It presents a concise view of 

vessels and compartments of the lymph node. The LN associated vasculature consists of lymphatic vessels 
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and blood vessels (1.6.1.1). Afferent lymphatics bring cells and soluble factors from the drainage area to 

the LN. These cells or substances arriving at the subcapsular space (SCS) either enter the LN parenchyma 

via fibroblastic reticular cell conduits or flow to efferent lymphatics and leave from the LN medulla. The other 

route for cellular trafficking is entry via high endothelial venules (HEVs), which are specialized hubs for 

immune cells to transmigrate. This route enables recruitment of cells from blood. The LN has very organized 

compartments including the SCS layer, the cortex (containing B cell follicles nearby the SCS and T cell area 

between follicles) the medulla (1.6.1.3). Although nerves are missing in this figure, they should be 

associated and innervate the capsule and enter the LN along blood vessels (1.6.1.2). 

 

1.6.1 Structure of lymph node 

LNs are associated with lymphatic vessels, blood vessels, and nerves. They 

geographically access LNs differently and connect LNs with their drainage area, 

circulation and the nervous system. 

 

1.6.1.1 Vasculature  

Cell trafficking from/to the lymph node occurs via vasculatures including blood and 

lymphatic vessels. Arterioles enter lymph nodes at the hilum, which is a slightly sunken 

area on the LN surface. They branch into smaller hierarchal vessels inside LNs including 

high endothelial venules (HEVs) where circulating leukocytes infiltrate from blood [174, 

175]. After HEVs, blood vessels converge and exit LNs as a single vein. Lymphatic 

vessels attached to LNs are either efferent or afferent, depending on the direction of lymph 

flow. A LN has only one or two efferent lymphatic vessel(s) bringing lymph from the 

medulla of one LN to the next LN. The last efferent lymphatic vessel of this chain leads to 

the thoracic and right lymphatic ducts and rejoins the blood stream. Afferent lymphatic 

vessels bring LNs “soluble immune factors” from the drainage area and serve as fast 

tracks to get immune cells in. The subcapsular space (SCS) of LNs is the first stop for 

soluble antigens and pathogens transported from afferent lymphatics. Soluble factors 

there either diffuse further along the conduits in LNs or are phagocytosed by macrophages 

lining the wall of the SCS (included in 1.6.2). 
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1.6.1.2 Nerves  

Nerves ramify the vessels and capsule as well as the parenchyma of LNs [176]. Early 

findings of LN innervation largely focused on the sympathetic nervous system (SNS). 

Sympathetic nerves are found associated with the capsule, blood vessels, internodular 

regions and the border of B cell follicles in rodents [177, 178]. Sympathetic nerves in 

human LNs have a very similar distribution pattern which densely touches the hilar region 

and goes in mainly along blood vessels and is absent in follicles [179]. Co-localization of 

an anterograde tracking dye injected via superior cervical ganglion (SCG) and S100 

staining reveals sympathetic innervation of S100+ cells, a DC subset in the LN [180]. 

Beside classical catecholamines, neuropeptide Y (NPY) immunoreactive fibers co-

localized with sympathetic nerves in the LN [181]. Neuropeptides SP and CGRP, usually 

found in sensory nerves, are also present and overlap with each other in the LN. These 

nerves are closely associated with vessels [181, 182]. Although innervation of lymphoid 

tissues has been characterized [183], high definition systemic scans of neural anatomy in 

LNs have not been performed. 

 

1.6.1.3 Cell zones 

Lymph nodes contain many types of immune cells, which locate in distinct areas. 

Structurally from the outer layer to its core, there are capsule, SCS, cortex, paracortex 

and medulla. CD169+ macrophages are not present in the parenchyma but cover the SCS 

and internodular lymphatic vessels. They form a network, which functions as a filter and 

presents antigens taken from the lymph to B cells [184]. In the cortex, there are multiple 

B cell follicles located close to the SCS. Another major cell type, T cells, resides in the 

paracortical area and the regions between B cell follicles. T and B cell areas and functions 

are tightly regulated by chemokine expression of stromal cells, which is dictated by TNF 

and lymphotoxin /(LT/) [185]. Fibroblastic reticular cells (FRCs) expressing C-X-C 

motif ligand 12 (CXCL12) form a network for T cell migration and FDCs expressing 

CXCL13 populate B cell follicles, position B cells and define B cell areas [186]. The 

medulla is a complex area in LN. There are dense blood and lymphatic vessels, covered 

by CD169+ macrophages, along with PCs, DCs, mast cells and lymph [187]. 
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1.6.2 Afferent lymphatics 

Each LN has its specific drainage area it is responsible for, facilitating immune surveillance 

of that region. Afferent lymphatics, which direct cells and soluble factors into the LN as 

well as conduits channeling soluble factors inside the LN, are critical for fulfillment of this 

function. Cytokines, chemokines, immune cells, viruses and free soluble antigens can be 

brought by lymphatics from the drainage area to the draining LN and induce immune 

responses (Figure 1.4). In addition to lymph-based leukocyte trafficking, circulating 

leukocytes can also migrate to the LN via blood vessels. These facts depict LNs as an 

interface between resident cells, regional migratory leukocytes and circulating immune 

cells to achieve and optimize immune responses. 
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Figure 1.4 Lymphatic and conduit systems of the lymph node 

This figure is originally in the review article from Schudel et al [188]. This figure focuses on lymphatic vessels 

and conduits. The LN can collect lymph from its drainage area (1.6.2.1). This process enables entry of 

immune cells and soluble factors into the LN and induce immune responses. The first place they arrive at 

is the subcapsular space (SCS), which is covered by a CD169+ macrophage network serving as a filter. 

SCS is also the interface between the lymphatic and the conduit systems. The latter can be viewed as an 

intra-nodal lymphatic network in which soluble factors are strictly controlled by physical properties such as 

molecular size and cellular factors, for example, macrophages and B cells (1.6.2.2). 
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1.6.2.1 From periphery to the lymph node 

Afferent lymphatics bring cells, pathogens and free molecules to LNs, and the region they 

cover defines the LN’s drainage area. Molecules can enter LNs via passive diffusion. This 

route is mainly determined by the molecule size. Molecules less than 10 nm can freely 

diffuse into blood or lymph but they are predominantly transported via blood because of 

higher fluid velocity which maintains a concentration gradient, driving diffusion [189]. 

Substances with increasing size can no longer pass barriers freely and so preferentially 

leave through lymphatics which is more permeable structurally [189]. Alternatively, instead 

of crossing the vascular wall, they can alternatively enter lymphatic vessels with interstitial 

fluid via the terminal of lymph capillaries [190]. These transportation routes to LNs have 

been intensively studied from angles of immunology and drug delivery. Once the 

substance enters the lymphatic vessel, muscle contraction-driven lymph flow carries it 

toward the LN [191]. Similar to blood vessels, lymphatics have hierarchy so small lymph 

capillaries eventually converge to a few collective lymphatics before reaching LNs.  

 

1.6.2.2 Conduits, filtration function and maintenance of lymph node physiology  

After arrival at the SCS in LNs, small molecules less than 4 nm can easily diffuse in the 

conduit system in the lymph node to reach local DCs and this way is much quicker than 

entering LNs via antigen carrier DCs [192], but larger molecules rely on phagocytosis or 

other processes. Molecules larger than 70-80 kDa are endocytosed by CD169+ 

macrophages and the smaller molecules (less than 70-80 kDa) can reach resident DCs 

in T cell area via conduits [192], or enter B cell follicles via conduits [193] or via diffusion 

across SCS . Additionally, while substances travel from afferent to efferent lymphatics in 

SCS, only these smaller molecules can be channeled to the lumen of HEVs via conduits 

[194]. By contrast, molecules larger than 70-80 kDa, if they do not flow through SCS 

directly to efferent lymphatics [194], are trapped by CD169+ macrophage mesh lining the 

SCS for antigen acquisition by B cells [184, 195, 196]. SCS CD169+ macrophages, acting 

as gatekeepers, screen soluble substances in afferent lymph at the SCS to set a 
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reasonable threshold of immune activation [197] and prevent systemic dissemination of 

pathogens [198].  

Afferent lymphatic flow not only has immune surveillance functions but is also required for 

LN maintenance. Occlusion of afferent lymphatics of popliteal lymph nodes changes LN 

cell composition and HEV morphology, wipes out CD169+ macrophages and reduces the 

number of interdigitating DCs [199]. In longer term experiments of over 15 weeks, surgical 

blockade of afferent lymphatic flow eliminates GCs [200]. This evidence highlights the 

importance of lymphatic flow to LNs in homeostasis and during immune perturbation, 

suggesting mechanisms of functional circulation of immune cells or molecules between 

LNs and their drainage area.  

 

1.6.3 Leukocyte trafficking to lymph nodes 

Leukocyte trafficking to LNs via HEVs relies firstly on chemotaxis, and then interaction 

with the vessel walls. In addition to migration through blood, leukocytes can also migrate 

to the lymph node via afferent lymphatics. In general, it is believed that DCs are the 

commanders which infiltrate the lymph node and initiate the immune cascades [201], such 

as lymph node remodeling and further leukocyte recruitment. In general, C-C chemokine 

ligand 19 (CCL19) and CCL21 attract leukocytes from the periphery or circulation to the 

LN, and CXCL12 and CXCL13 position these cells at specific sites inside the LN. In 

contrast to having multiple chemoattractants to achieve recruitment, egress is mainly 

mediated by sphingosine-1-phosphate (S1P). Receptors, producers, responders and 

functions of them are discussed below and summarized in Table 1.1. 
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Table 1.1 Chemotactic compounds for leukocyte trafficking to the lymph node 

Centering on the soluble compounds mediating chemotaxis, their respective producers, receptors 

responders and main functions are summarized. These mediators are the most investigated chemokines 

involving in leukocyte trafficking to/from the LN. Details are included in the text below. ELC: EBI1 ligand 

chemokine; SLC: secondary lymphoid-tissue chemokine; SDF1: The stromal cell-derived factor 1; BLC: B 

lymphocyte chemoattractant. 

 

1.6.3.1 Chemotaxis   

Chemokines CXCL12, CXCL13, CCL19 and CCL21 are critical for leukocyte homing to 

LNs and are produced by lymphatic endothelial cells (LECs), FDCs and other stromal cells 

[202]. FDCs and fibroblastic reticular cells (FRCs) can secrete CCL19, CCL21 [203], and 

CXCL13 [204]. CXCL13, also known as B lymphocyte chemoattractant (BLC), is essential 

for B cell homing and responses and is highly expressed by FDCs [205, 206]. In addition 

to CXCL13, FDCs express B cell survival factors as well [205]. However, although 

depletion of FDCs abolishes B cell responses, this does not dramatically deplete CXCL13 

in the LN, suggesting contribution from other cell types. Marginal reticular cells (MRCs) 

express CXCL13 and B cell survival ligands too, but they cannot rescue the failure of B 

cell responses after FDC ablation [207]. A newly characterized cell type versatile stromal 

cells (VSCs) also produce CXCL13 for directing B cells [208]. Initially, CXCL13 via binding 

to its receptor CXCR5 was described as a chemotaxis driver selectively for B cells [206], 

Compound A.k.a. Producers Major location Receptors Responding cells Fucntions

CCL19 ELC
FDCs, FRCs 

and LECs

widely presence 

in the LN CCR7
lymphocytes and 

migratory DCs

lymphocytes and 

migratory DCs 

trafficking to the LN

CCL21 SLC
FDCs, FRCs 

and LECs

widely presence 

in the LN CCR7
lymphocytes and 

migratory DCs

lymphocytes and 

migratory DCs 

trafficking to the LN

CXCL12 SDF1 CRCs

T cell zones and 

dark zones of B 

cell follicles

CXCR4, 

CXCR7
widely expressed

leukocyte homing to 

the LN and 

positioning

CXCL13 BLC
FDCs, MRCs 

and VSCs

B cell follicles
CXCR5 B, Tfh

B cell and Tfh 

positioning

S1P many
blood and lymph

S1PR1 lymphocytes
lymphocyte egress 

from the LN

Table 1.1 Chemotactic compounds for leukocyte trafficking to the lymph node
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but not for other circulating leukocytes such as T cells, neutrophils and monocytes [209]. 

Nowadays, it is well accepted that a specific subset of T cell, Tfh cells, also express 

CXCR5 [210] and this activation-driven expression and the recruitment of Tfh cells are 

closely tied to B cell responses in the GCs [143, 205]. 

CXCL12, also known as stromal cell derived factor 1 (SDF1), is expressed by stromal 

cells and mediates B and T cell homing to LNs and Peyer’s patches [211], as well as 

bronchus-associated lymphoid tissue (BALT) in the lung [212]. However, the identity of 

the cells producing CXCL12 there is still not clearly defined. They are only vaguely known 

as stromal cell types inducibly expressing podoplanin [212]. The CXCL12-expressing 

population of reticular stroma (CRCs) is described closely associated with the T cell area 

and in the dark zone of GCs [213]. The canonical receptor of CXCL12 is CXCR4 [214, 

215], which is widely expressed on many leukocyte subsets and together with other 

adhesion molecules shapes leukocyte trafficking behavior to different tissues [216-218]. 

Recently, CXCR7 was identified as an alternative receptor of CXCL12 [219], and is 

expressed by T and B cells and DCs [220, 221]. In an EAE model, IL17 stimulates brain 

endothelial cells to greatly express CXCR7 to scavenge abluminal CXCL12 so that it 

further promotes EAE via facilitating lymphocyte extravasation to brain parenchyma [222]. 

Although FRCs express both CCL19 and CCL21, they preferentially make more CCL21 

[203]. Together with FDCs, these LN stromal cells generate a gradient of mixed 

chemoattractants centered at the LN. In the periphery, LECs in afferent lymphatics 

produce chemokine CCL19 and CCL21 that serve as key drivers to draw DCs to the LN 

from the drainage area [223]. They present CCL21 on heparan-sulfate (a linear 

polysaccharide abundant on surface proteins and extracellular matrix that binds a wide 

range of ligands) and mice lacking heparan-sulfate have reduced numbers of lymphocytes 

and DCs homing to LNs [224]. CCL19 and CCL21 both bind to CCR7 with similar affinity 

[225] and direct DC migration to the LN [226, 227]. CCL21 in FRCs is found to be produced 

in the membrane-bound form, which triggers integrin-mediated adhesion of DCs and 

cleavage of CCL21 after engagement of CCR7 on DCs [227]. Released free CCL21, 

together with CCL19, drives gradient-based DC swarming [227]. This observation 

suggests afferent lymphatics, another CCL21 producing unit, might exploit the same 

mechanism to attract DCs in the periphery. In contrast to CCL21, CCL19 does not have a 
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membrane anchoring domain so it is freely diffused [228]. CCL19 can be placed in the 

HEV lumen by “transcytosis” to attract lymphocytes in the circulation [229]. A spontaneous 

mutation causing loss of CCL19 and CCL21-ser occurs in ‘paucity of lymph node T cells’ 

(plt) mice [230, 231]. In plt mice, the T cell response is shifted from the LN to the spleen, 

and is delayed but enhanced [232]. These mice have much fewer DCs in most subtypes 

but the monocyte-derived lineage in LNs during inflammation [233]. In plt mice, monocytes 

are still recruited to LNs and become inflammatory dendritic cells with capability of Th1 

response induction, relying on CCR2 (but not CCL2 or CCR7) [233]. In contrast, CCR7-

deficient mice, losing the receptor of CCL19 and CCL21, have impaired B cell, T cell, and 

DC migration, disorganized B and T cell zones in LNs, spontaneously activated B cells, 

and impaired humoral response [226]. These findings suggest that (1) CCL19/CCL21-

CCR7 signaling is at the very upstream of adaptive immune response, which broadly 

affect the structure, or the responding kinetics of naïve or inflammatory LNs respectively, 

(2) Ablation of this axis (via losing ligand or receptor) greatly compromises LN sensation 

of immune stimulation at periphery via disabling recruitment of activated mature DCs and 

(3) Dissolving this axis skews the type of responses towards Th1 responses (via only 

allowing LN infiltration of monocyte-derived DCs but not the other type of DCs). 

 

1.6.3.2 Egress  

Lymphocyte egress from lymphoid organs depends on the surface receptor sphingosine-

1-phosphate receptor 1 (S1PR1) controlling the transit time of lymphocytes [234, 235]. 

S1PR1 signaling is Gi-dependent so it can be inhibited by pertussis toxin [235, 236]. The 

egress process is basically an ordinary chemotactic response but directed from the 

lymphoid tissues to blood and lymph, directly controlling the dwell time [237]. This is 

achieved by the fact that the concentration of the ligand of S1PR1, sphingosine-1-

phosphate (S1P), exists at high levels (100-300 nM) in blood and lymph driving 

lymphocyte egress from LNs via efferent lymphatics [238]. Egress can be inhibited by 

fingolimod (FTY720) treatment, preventing lymphocytes from migrating to medullary 

sinusoids in the LN [239]. Sustained blockade of egress is immunosuppressive, and 

Fingolimod has been developed as a drug to combat multiple sclerosis, effectively 

reducing the rate of relapses in relapsing-remitting MS over a two-year period [240, 241]. 
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Cell residence time in the LN relies on the net effect of recruitment/retention signals and 

egress forces. After PCs mature in the LN, the domination of CCR7 and CXCR4 as 

retention signals or S1PR1 as an egress driver determines whether cells remain in the LN 

or migrate out into the circulation [242, 243].  

 

1.6.3.3 Migration for functions 

After immune challenge, the egress force is inhibited [244], suggesting lymphocytes stay 

longer in secondary lymphoid organs for mounting immune responses. This egress 

restriction mechanism depends on interference of S1PR1 functions by direct inhibitory 

interaction with the activation marker CD69 [245], or CD69-mediated type I interferon 

signaling [246], suggesting activation-driven mechanisms temporally restrain egress for 

providing enough time for leukocytes to get sufficient immune cues. Some cells migrate 

to the LN for functional optimization. For example, during inflammation, circulating Treg 

cells infiltrate the inflamed site, migrate to the draining LN and reenter the inflamed skin 

to exert their functions [247]. Lymphocyte numbers in LNs can affect the amplitude of 

adaptive immunity with the evidence that immunization given at the time LNs have more 

lymphocytes generates higher antibody titer [248]. Immunization is not the only case of 

LN cellularity-dependent responsiveness, which seems to be a ubiquitous phenomenon. 

Similar observation was found in EAE disease progression [249]. These evidences tie 

functions and trafficking behavior together, indicating the importance to position specific 

immune cells at certain sites and timing for maximizing their functionality. 

 

1.6.3.4 Leukocyte vessel interactions 

Leukocyte recruitment to LNs requires transmigration through the vessel walls at HEVs 

[174, 175, 250]. This process is known as the adhesion cascade, which involves many 

adhesion molecules including integrins, selectins, and intercellular adhesion molecules 

(ICAMs). Different immune subsets exploit different sets of adhesion molecules for 

vascular adhesion and transmigration, indicating a cell type-specific adhesion mechanism 

(reviewed in [251, 252]). The expression of these molecules on vessel walls of different 

organs at different times of day, along with the interacting partners on leukocytes, shapes 
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the global chrono-migratory profile of immune cells [217, 252]. Major adhesion molecules 

mediating leukocyte homing to LNs are summarized below (Table 1.2) [217, 250]. 

Blockade of CD11a in combination with CD49d [249] or L-selectin or ICAM1 alone [217] 

efficiently interferes with homing and causes lymph node atrophy due to targeting T and 

B cell homing pathways to LNs. Except from these major cell types, pre-conventional 

dendritic cells (pre-cDCs) [253] and natural killer (NK) cells [254] also migrate into LNs via 

L-selectin mediated recruitment. 

 

  

Table 1.2 Adhesion molecules for leukocyte vessel interaction 

Multiple steps are required for leukocytes to migrate from circulation to the LN via HEVs. This table lists 

some critical molecules on the endothelial cell side as well as their interaction partners on leukocytes. 

Blockade of these molecules on leukocytes can effectively interfere with this migration cascade and prevent 

leukocyte recruitment to the LN. 

 

HEVs are ports for immune cells to migrate into the LN, so their morphology and integrity 

are essential for functionality. During an immune response, large numbers of leukocytes 

transmigrate through HEVs and cause physical disruption of the junctions between 

endothelial cells. In a physiological setting, this damage is normally rescued by 

podoplanin-Clec2 engagement with platelets, which then release S1P to promote 

endothelial junction repair [255]. Unlike this passive mechanism accompanying leukocyte 

infiltration, DCs actively control the HEV phenotype to gate lymphocyte entry via LT 

signaling [175].  

Endothelial cells

common name common name CD name integrin name Blocking Ab

LFA1 CD11a/CD18 L2 M17/4

Mac1 CD11b/CD18 M2

VCAM1 VLA4 CD49d/CD29 41 PS/2

P-selectin (CD62P)

E-selectin (CD62E)

CD34

GlyCAM1

MadCAM1

Table 1.2 Adhesion molecules for leukocyte vessel wall interaction

Leukocytes

ICAM1

MEL-14L-selectin CD62L

PSGL1
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 Structure of the peripheral nervous system 

Peripheral tissues are innervated by three kinds of nerves – motor, sensory and autonomic 

nerves [256]. The autonomic nerves can be further subdivided into sympathetic and 

parasympathetic nerves [257]. The SNS has short preganglionic nerves which go to three 

sites (1) the paravertebral sympathetic trunk [258], (2) celiac ganglion [259] or (3) 

mesenteric ganglia [260]. Those preganglionic nerves originate in the brain, and end up 

at those three sites via the spinal cord; the postganglionic neuronal soma of the SNS 

reside in these compartments and project their fibers to target organs [258]. 

Parasympathetic innervation of the periphery is mainly contributed by the 10th cranial 

nerve, the vagus nerve [257, 261, 262]. Additionally, the pelvic nerve from the sacral spinal 

cord also delivers parasympathetic tone to bladder and gonads [263-265]. The 

organization of sensory nerves is very similar to the SNS but instead of transit via ganglia 

in the sympathetic trunk, sensory postganglionic neurons are located in dorsal root ganglia 

by the spinal cord [266]. Motor nerves innervate muscles and have little immune functions 

identified so far.  

 

1.7.1 Classification by neural substances  

The unique feature of sensory nerves is their afferent functions, which transmit peripheral 

stimuli to the brain. However, they also conduct efferent functions using neural substances 

such as SP, CGRP, NGF and vasoactive intestinal peptide (VIP) to exert immune 

modulation. Sympathetic nerves are mostly using norepinephrine (NE) as a functional 

molecule, but there is also a minor population of cholinergic sympathetic nerves, meaning 

they secrete acetylcholine (ACh) [267]. Parasympathetic nerves widely innervate visceral 

organs and release ACh as the major compound and VIP and nitric oxide as minor 

messengers. A subset of these nerves is reported to be catecholaminergic [268]. Some 

examples about how these neural substances regulate immune functions are presented 

in 1.8 and details are reviewed in [269-272] for sensory neuropeptides, [273-275] for the 

SNS substances, and [275-277] for the general neural-controlled immunity. 
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1.7.2 The sciatic nerve 

The mouse leg is innervated by the femoral and sciatic nerves. Both nerves are 

myelinated, but the latter is thicker and controls most parts of the leg. The sciatic nerve is 

a mixed nerve, with sensory fibers as the most abundant and sympathetic nerves as the 

second largest population [278]. These sensory and sympathetic fibers are derived from 

lumbar dorsal root ganglia and sympathetic ganglia in the sympathetic trunk, respectively. 

Although it controls many muscles, it only contains 6% of motor nerves [279].  

 

 Immune regulatory functions of neural substances 

Neural substances were initially identified as neurotransmitters to convey messages 

between nerves. Immune cells express receptors of neural substances from the 

autonomic nervous system [275, 280] and sensory fibers [271, 272]. In addition to that, 

increasing studies have shown that some immune cells even produce neural substances, 

such as ACh and SP [281, 282]. This fact enables cooperation between the nervous and 

immune systems for immune functions. Neural substances have divergent regulatory 

functions depending on the targeting cell types, receptors and local context.  

 

1.8.1 The autonomic nervous system 

The majority of studies of immune and sympathetic crosstalk have found that beta 

adrenergic receptors (ARs), especially the 2AR, are controlling immune functions [283]. 

2AR is widely expressed on immune cells such as B cells, T cells, and macrophages. Its 

activation mostly inhibits T cell proliferation but affects B cell proliferation differently 

depending on co-stimulatory mitogens [273, 284]. 2AR signaling is usually 

immunosuppressive due to activation of the cyclic adenosine monophosphate (cAMP) – 

protein kinase A (PKA) pathway, but it can alternatively trigger the mitogen-activated 

protein kinase (MAPK) pathway for stimulatory functions [283]. Following activation, Th1, 

but not Th2, cells express 2AR enabling negative modulation of IL2 production by 2AR 
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agonists, suggesting that different polarizations of T cells have distinct sensitivity to NE 

due to differences in 2AR expression level [285]. Activation of 2AR on NK cells reduces 

their frequency [286] and suppresses tumor-killing functions [287]. In addition to ARs, 

alpha adrenergic receptors (ARs) also exert immune modulation [178], but have been 

less investigated. Their activation on NK cells e.g. enhances their cytotoxic activity [288]. 

These studies show examples that sympathetic nerves can differentially modulate 

immune functions depending on cell type and receptor expression. In fact, sympathetic 

nerves and the immune system form a functionally interwoven and anatomically 

complicated network at levels of cell development, trafficking and activation (reviewed in 

[274]). Compared with the SNS, the parasympathetic nervous system (PSNS) is less 

explored at the point of immune regulation. Most findings of immune modulation by the 

PSNS focus on a well-defined mechanism called the “anti-inflammatory reflex” described 

in 1.8.4.  

 

1.8.2 The sensory nervous system 

Although sensory nerves convey messages back to the CNS, they also have efferent 

functions involving the secretion of several neuropeptides. The two most studied 

neuropeptides in the context of immune modulation are CGRP and SP whose neurogenic 

inflammation functions were discussed in section 1.4. To simulate the release of CGRP 

in skin, endothelial cells were treated with CGRP followed by co-cultured with Langerhans 

cells and CD4 T cells. In this setting, IL6 production from endothelial cells is induced and 

bias the outcome of antigen presentation by Langerhans cells to T cells [289]. However, 

in general it is immune inhibitory because RAMP1 (a subunit of the receptor of CGRP)-

deficient mice exhibit higher levels of inflammatory cytokines and hypertension [290]. 

From the cell migration perspective, CGRP can facilitate the adhesion of neutrophils to 

the vessel wall [291, 292]. Moreover, it inhibits the production of the chemokines CXCL1, 

CXCL8 and CCL2 from LPS-treated human endothelial cells [293]. CGRP also changes 

fundamental cell functions. For example, it turns on the anti-inflammatory program of 

macrophages during Staphylococcus aureus infection [79], inhibits TNF production from 

peritoneal macrophages after LPS stimulation [294], and dampens the bacteria-killing 
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capability of neutrophils [84]. Cutting corneal nerves in corneal transplant surgery results 

in the release of SP and causes immune rejection due to suppression of Treg cell 

functions [295]. Further discussion of the immune functions of sensory neural substances 

is included in 1.8.4 and 1.8.5 below.  

 

1.8.3 Neural injury, autoimmunity and homeostasis 

Neural injuries in the CNS usually compromise the systemic immune system. Release of 

NE in liver triggered by experimental stroke programs the iNKT cells for global immune 

tolerance [14]. Similarly, spinal cord injury causes activation of sympathetic nerves, which 

directly facilitate glucocorticoid production in the adrenal gland and results in overall 

immune suppression [17]. In addition to regulating immune cell activity, the neuromuscular 

reflex can control the access of myelin autoreactive T cells to the CNS. By suspending 

mice by their tails, which impairs gravity-induced activation of sensory neurons, mice are 

protected from CNS infiltration of pathogenic T cells via restricting CCL20 on dorsal blood 

vessels at particularly the fifth lumbar spinal cord [296]. Apart from models of trauma and 

pathology, sympathetic nerves also control cell migratory behavior in homeostasis. During 

activation of sympathetic nerves, noradrenergic tone mobilizes hematopoietic stem cells 

(HSCs) by controlling 3AR signaling in bone marrow stromal cells [297], and cholinergic 

cues reduces adhesion and homing to support HSCs mobilization [298]. These examples 

clearly demonstrate how a neural event at one site affects immune cells remotely and 

controls systemic immune sensitivity or chemotaxis. 

 

1.8.4 Infections 

Immune regulatory effects of nerves have been shown to be beneficial, preventing 

excessive or inappropriate inflammatory responses. To avoid the cytokine storm 

generated by macrophages during infection, the vagus nerve can be activated by bacterial 

endotoxin and secretes ACh to attenuate inflammatory cytokines in the serum [299]. This 

process requires the splenic nerve to convey the message from the vagus-innervated 

celiac ganglion to the spleen by releasing NE [300]. Splenic nerve-derived NE engages 
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2AR on T cells expressing acetylcholine transferase (AChT) to stimulate ACh production 

[281]. Released ACh then binds to nicotinic acetylcholine receptor alpha 7 (7nAChR) on 

the splenic macrophages and inhibits their secretion of inflammatory cytokines [301, 302]. 

This cascade has been recognized as an anti-inflammatory reflex. This reflex has been 

tested clinically to reduce elevated pathogenic TNF in rheumatoid arthritis patients [303]. 

Nerve-mediated immune modulation is not always systemic, though. Gut infected by Spib 

(a Salmonella Typhimurium mutant whose proliferation is impaired) activates local 

sympathetic nerves, which stimulates the macrophages in the muscularis layer of the gut 

to reinforce their tissue protective functions via 2AR signaling [304]. In this case, the 

nerves only affect the area nearby. 

However, pathogens can leverage these regulatory mechanisms. During Staphylococcus 

aureus infection, bacterial components can stimulate nociceptors for pain perception and 

in parallel CGRP release, which represses the pro-inflammatory activity of macrophages 

[79]. In the skin, Streptococcus pyogenes infection-mediated local release of CGRP 

attenuates the bacteria killing function of neutrophils and leads to more severe tissue 

damage by the bacteria [84]. Blocking the nociceptors by Botulinum Neurotoxin A or a 

CGRP receptor antagonist rescues defensive functions of neutrophils [84]. A similar 

nociceptor-CGRP-immunosuppression mechanism was discovered in the lung with 

neutrophils and T cells in the context of Staphylococcus aureus pneumonia [85]. These 

findings imply that neural substances are likely fine tuning immune responses, and this 

function sometimes get hijacked by pathogens. 

 

1.8.5 Allergic immunity 

Inflammation with type 2 cytokines results in allergic responses in mucosal tissues. ILC2s 

are important producers of type 2 cytokines, and can react to NE [305], neuromedin U 

(NMU) [306, 307] and CGRP [308] belonging to adrenergic, cholinergic and nociceptive 

neural substances respectively. Stimulation of 2ARs on ILC2s represses type 2 

inflammation and ILC2s lacking 2ARs exhibit higher allergic responses in lung and gut 

[305], suggesting negative regulation of ILC2 responses by sympathetic nerves. In 

contrast to sympathetic nerves, CGRP, a nociceptive neural substance, enhances ILC2 
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responses in lungs in a ovalbumin/alum inhalation model [308]. The CGRP-ILC2-

mediated immune responses, together with -aminobutyric acid (GABA)-induced goblet 

cell hyperplasia in lungs, are coordinated by an innervated cell type – pulmonary 

neuroendocrine cells (PNECs) [308, 309]. Complete depletion of PNECs in mice, using 

Shh-driven Ascl1-knockout mice which eliminate PNEC precursors during the 

developmental stage, greatly compromises the mucosal type 2 immune response [308]. 

Single cell RNA expression profiles of ILC2s in lungs identifies expression of neuromedin 

U receptor 1 (NMUR1) at the unstimulated state and after IL25 stimulation whereas after 

stimulation of IL33, another ILC2 activator, ILC2s reduces NMUR1 [307]. Ligation of 

NMUR1 maintains division and functions of ILC2s and enhances allergic responses after 

IL25 stimulation [307]. A similar mechanism exists in the gut, where ILC2s intrinsically 

expressing NMUR1 were found co-localized with cholinergic nerves [306]. These studies 

mark the importance of neural regulation of immunity centering on ILC2 and PNEC in 

mucosal barriers. 

 

1.8.6 In spleen and lymph node 

Secondary lymphoid organs are important for generating cellular immunity and antibodies. 

How nerves affect immune functions particularly in secondary lymphoid organs are still 

unclear. A study in rhesus macaques showed that social stress causes sympathetic 

hyper-innervation of LNs via NGF signaling and further interferes with the type I interferon 

response [310]. Chemical ablation of sympathetic nerves compromises primary antibody 

responses, and is particularly effective in C3H and BALB/c mice [177]. This evidence 

points toward local sympathetic innervation of LNs inhibiting inflammation. However, 

sympathetic tone can also be associated with inflammatory diseases. In arthritis, LN-

associated adipose tissues were found to have greater sympathetic innervation which 

promotes lipolysis via stimulating 3-adrenoreceptor on adipocytes, [311], suggesting 

indirect effects on LN via metabolically controlling surrounding fat.  

The humoral immune response in capsaicin-pretreated rats is compromised but can be 

restored by subcutaneous SP infusion [312]. Moreover, contact hypersensitivity is 

dampened when the skin or its draining LN is locally blocked of SP but not CGRP signaling 
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[313]. These examples indicate the importance of neural substances in secondary 

lymphoid organs. However, the concrete functional connection between these secondary 

lymphoid organs and associated nerves are still unknown. 

 

 Objectives  

Ample examples from patients or animal studies show that immune functions can be 

affected by neural perturbations including injury responses, hyper-activation of nerves or 

loss of functional neural substances. These cases have highly various profiles due to 

tissue diversity and models used. A lymph node exhibits only local immune surveillance 

but as a secondary lymphoid organ capable of forming adaptive immunity it can have 

global and long-term immune effects. This relies on sophisticated vascular networks and 

organized nodal structure. However, immune regulatory effects of lymph node-associated 

nerves on adaptive immunity has yet to be explored even though lymph nodes are 

innervated and some hints showing neural substances might modulate adaptive immunity 

via affecting secondary lymphoid organs. This project is designed to study lymph node 

and the local immunity of its drainage area in the context of losing local neural tones. The 

results shed light on the mechanistic details of neural immune interactions and provide 

insights into the management of potential undesired immune responses in patients 

suffering from neural injuries. 

 

 Model used 

To investigate whether peripheral neural inputs affect physiology of LNs and their 

drainage area, an in vivo system with clear lymphatic drainage and an uncomplicated 

innervation pattern is desired. The mouse hind limb at hip level has a relative simple neural 

structure, which mainly consists of the sciatic and femoral nerves. This renders 

manipulation of neural tones locally in the hind limb surgically feasible. The popliteal lymph 

node (popLN), located in the popliteal fossa behind the knee, drains the lower leg and 

paw [314], and is innervated by the sciatic nerve [198]. With the advantage of accessibility, 

simplicity and defined drainage area, the mouse hind limb was selected to be an ideal 
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model to study the dialog between the immune and nervous systems (Figure 1.5). By 

cutting the sciatic and femoral nerves unilaterally, neural tones can be removed from one 

leg, but remain in the other. This enables paired comparisons between the denervated 

and innervated legs in the same animal.  

 

 

 

 

 

 

 

Figure 1.5 Anatomy of the model investigated  

Mouse hind limb was selected as the working model due to being innervated by two main nerves and 

possessing one distal LN. The femoral nerve runs on the ventral side and the sciatic nerve ramifies to the 

dorsal and lateral sides. Popliteal LNs drain the paw area and are innervated by sciatic nerves [198, 314]. 

Clear drainage and innervation provide advantages for studying the interactions between the nervous and 

immune systems. 

 

The mouse sciatic nerve divides above the popliteal fossa into three branches in order of 

descending size, the common peroneal nerve (CPN), the tibial nerve (TN) and the sural 

nerve (SN) (Figure 1.6). To understand the relationship between LN enlargement, paw 

swelling and degree of denervation, systematic cutting of sciatic nervous branches can 

be performed and the paw thickness and cellularity of popLNs can be assessed.  
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Figure 1.6 Three branches of the sciatic nerve  

In this dorsal view of the mouse leg, the sciatic nerve diverges into, from thickest to thinnest, the common 

peroneal nerve, the tibial nerve and the sural nerve. They divide above the popliteal fossa and innervate 

different parts of the leg. 
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2 Material and methods 

 Mice  

8-12 week-old male wild-type C57BL6/N mice were purchased from Charles River for 

denervation experiments. 9-20 week-old OT-II (Thy1.1) mice were kindly provided by Dr. 

Susanne Stutte, LMU Munich. Mice were housed under a 12 hours light:12 hours dark 

illumination cycle with unlimited access to food and water. Cervical dislocation under 

isoflurane was applied at indicated end points for animal euthanized. All experimental 

procedures have been approved by the Regierung of Oberbayern in accordance with 

German legislation. 

 

 Surgeries 

All surgical procedures were performed as recovery surgeries using a stereo microscope 

(SZX7, Olympus). All denervation surgeries were done unilaterally to enable comparison 

with the contralateral, intact, side in the same animal. In all sham surgeries, the target 

structure was exposed but not cut. Afferent lymphatic disconnection was done bilaterally 

serving as a manipulation on lymphatic input in combination with unilateral sciatic 

denervation.  

Mice were anesthetized by intraperitoneal (ip) injection of ketamine (100 mg/kg, Medistar) 

and Xylazine (20 mg/kg, Rompun, Bayer vital GmbH). Prior to surgical procedures, mice 

were regionally shaved at indicated sites using the veterinarian clipper (Aesculap, GT415, 

BRAUN) and depilation cream (Haarentfernungs-Crème, Veet). Hair removal and incision 

site of each surgery was described individually below. It was performed on a heat pad to 

reduce heat loss under anesthesia, and cleaning the incision area with ethanol. 

After surgical procedures, surgical wounds were running sutured with sterile vicryl-coated 

6-0 suture (V991H Ethicon, Johnson & Johnson Medical Ltd). From the surgical day (D0), 

mice received buprenorphine (0.1 mg/kg, Temgesic, Indivior UK Limited) analgesic 

subcutaneously (sc) twice a day for 4 consecutive days. 
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2.2.1 Sciatic denervation 

For sciatic denervation and transplantation, hairs on the dorsal (lateral) side of the thighs 

were shaved along the line of the femur. After opening the skin on the dorsal side along 

the femur (about 1 cm incision) (Figure 2.1A), connective tissues between the biceps 

femoris muscle (BF) and the quadriceps femoris muscle (QF) in the thigh were carefully 

torn to expose the sciatic nerve. The sciatic nerve was then cut twice, 3 mm apart, and 

the section between incisions removed to leave a clear gap close to hip level (Figure 

2.1B). After the surgery, the wound was closed using the absorbable suture (Ethicon, 6-

0, V991H) stated before. The popliteal lymph node (popLN) and/or paw skin were 

harvested at indicated times for examination. 

 

 

Figure 2.1 Anatomy of dorsal side of thigh – muscles, vessels and the sciatic nerve 

(A) After removal of the skin. (B) Distal and cranial ends of the biceps femoris muscle are divided. The 

vascular network in the biceps femoris muscle can be seen in A and B (arrowheads). (1) lateral saphenous 

vein, (2) iscial vein, (3) iliacofemoral artery, (4) lateral proximal genicular artery, (5) popliteal artery, (6) 

cranial gluteal artery, (7) caudal gluteal artery, (8) distal caudal femoral artery, (9) branches to distal part of 

the biceps femoris muscle, (10) terminal branches of the deep femoral artery, (BF) biceps femoris muscle, 

(GM) gluteal muscles, (MH) medial hamstring muscles, (QF) quadriceps femoris muscle, (ScN) sciatic 

nerve. Modified from Kochi et al. PLoS ONE 2013 [315]. 

Red line in (A): the site of incision on the skin. The sciatic nerve was seen after separating the junction 

between BF and QF.  (B) 3 mm resection was made close to hip level (asterisk) to disconnect the distal end 

of the nerve.  

* 
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2.2.2 Femoral denervation 

The femoral nerve is superficial and runs along the femoral artery and vein. For femoral 

denervation, skin on the ventral (inward) side of the thighs was depilated. The vessels and 

the femoral nerve were seen after 1 cm incision of the skin along the vessel bundle seen 

through skin and the nerve was carefully separated from the vessel bundle of femoral 

artery and vein, and cut to leave a 3 mm gap in the nerve fiber. After the surgery, the 

wound was closed using the absorbable suture (Ethicon, 6-0, V991H) stated before. 7 

days later, the popLN was analyzed. 

 

2.2.3 Ankle denervation 

For ankle denervation, skin surrounding the ankle area was depilated. Three major 

branches of the sciatic nerve enter the paw from posterior and bilateral sides of the ankle. 

Incision of the skin was made slightly higher than the joint, and these branches were 

resected for 2 mm individually. Surface tissues on both lateral sides were disrupted to 

access the nerves. After the surgery, the wound was closed using the absorbable suture 

(Ethicon, 6-0, V991H) stated before. 7 days later, the popliteal LN and paw skin were 

analyzed. 

 

2.2.4 Autologous transplantation of the sciatic nerve 

For autologous sciatic transplantation, hair on the dorsal (lateral) side of the thighs was 

removed along the line of the femur. After sciatic denervation (2.2.1), the excised piece of 

the sciatic nerve was transplanted into the space between the BF and QF of the 

contralateral leg (receiving sham surgery). After the surgery, the wound was closed using 

the absorbable suture (Ethicon, 6-0, V991H) stated before. 7 days later, the popLN and 

paw skin were analyzed. 
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2.2.5 Afferent lymphatic disconnection 

For afferent lymphatic disconnection, skin above the popliteal fossa was depilated. 

Afferent lymphatics reaching the popLN can be cut and heat-sealed as described [316]. 

Briefly, popLNs were carefully disconnected from surrounding tissues except the hilar 

region to leave blood connection and the efferent lymphatic(s) intact. An electrocauter 

(GEM-5917, BiosebLab) was then used to coagulate the surface of surrounding tissues 

to prevent them from re-connecting. Afterwards, the popLN was pulled slightly out and 

secured by tying to surrounding connective tissue. To do this, a small loop of fine suture 

thread (T04A10Q07-13, AROSurgical) was made to lasso the popLN from the remaining 

blood vessel connections. After the surgery, the wound was closed using the absorbable 

suture (Ethicon, 6-0, V991H) stated before. The popLN was examined after 7 days. 

On the day of popLN analysis, the connection of the popLN to afferent lymphatics needed 

to be examined right before taking out the popLN. To confirm if afferent lymphatics 

remained disconnected from the popLN, 1% Evans Blue (E2129, Sigma-Aldrich Chemie 

GmbH) in saline was injected intraplantarly (ipl) to mice under anesthesia (by ketamine 

and xylazine, see 2.2). Mice were placed on a 37˚C heating pad and remained 

anaesthetized for 20 minutes to allow the dye to be transported to the lymph nodes 

through afferent lymphatics. The mice were then killed via cervical dislocation and the 

popLNs visualized to check lymphatic integrity. PopLNs turning blue could be witnessed 

if the surgery was not successful or re-connection took place. PopLNs receiving lymph-

borne dye were excluded from experiments. 

 

2.2.6 Superior cervical ganglionectomy  

For superior cervical ganglionectomy (SCGx), skin on the ventral neck area was depilated. 

A standardized method of superior cervical ganglionectomy in rats has been clearly shown 

[317]. Briefly, ventral incision of skin from the anterior tip of the sternum to the chin was 

made to expose two mandibular glands. They were separated by gently tearing the 

connective tissues in the middle and pulled apart. After separation of connective tissues 

at the trigeminal point of the sternohyoid muscles (SHM), the sternomastoid muscles 

(SMM) and the omohyoid muscles (OHM), the carotid bifurcation of the internal and 
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external carotid arteries (ICA and ECA) was exposed (Figure 2.2). The superior cervical 

ganglion (SCG) is located beneath this bifurcation from the ventral view. The bifurcation 

was flipped outwards to the side to expose the SCG and then the ganglion was carefully 

removed by dissection with forceps. After the surgery, the wound was closed using the 

absorbable suture (Ethicon, 6-0, V991H) stated before. The popLN was analyzed after 7 

days.  

 

 

Figure 2.2 Ventral neck anatomy – muscles, vessels and nerves 

The carotid bifurcation and the SCG were found beneath the trigeminal point of the SHM, SMM and OHM. 

(aDM/pDM) the anterior/posterior belly of the digastric muscles; (CCA) the common carotid artery; (VN) the 

vagus nerve; (IJV) the internal jugular vein; (OA) the occipital artery; (HN) the hypoglossal nerve. Modified 

from Savastano et al. J Neurosci Method 2010 [317]. 

 

 Histology – H&E staining 

All steps were carried out at room temperature. Paw samples were harvested by cutting 

at the ankles and fixing the entire foot in 4% paraformaldehyde (PFA, 12777847 Affymetrix) 

for 2 hours. Afterwards, paws were immersed in 0.5 M neutral 

Ethylenediaminetetraacetatic acid (EDTA, 20301 VWR Chemicals) solution (pH = 7) and 

incubated at room temperature with gentle agitation for 10 days for decalcification. 

Decalcified samples were then placed in Cryomolds (4557, Tissue-Tek®, Sakura) with 

OCT™ compound (4583, Tissue-Tek®, Sakura) followed by snap-freezing on dry ice. 
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These samples were cut using a cryostat (CM3050 S, Leica) into coronal sections 20 

microns thick. Before staining, sections were treated with ice-cold acetone for 10 minutes, 

air-dried and rehydrated by adding phosphate-buffered saline (PBS) to samples for 10 

minutes. Samples were then bathed in Harris hematoxylin solution (HHS32, Sigma-

Aldrich Chemie GmbH) for 7 minutes. Before eosin staining, hematoxylin-stained samples 

were rinsed under running water for 15 minutes. Samples were then placed in 0.1% 

acidified eosin solution (0.1 g eosin Y (230251, Sigma-Aldrich Chemie GmbH) and 15 L 

glacial acetic acid (537020, Sigma-Aldrich Chemie GmbH) in 100 mL water) for 3 minutes. 

Afterwards, samples were washed under running water for 20 minutes, and then quickly 

dipped into absolute ethanol (A3678, Pan Reac AppliChem ITW Reagents) and then into 

xylenes (108633, Merck Chemicals GmbH). Finally, samples were air-dried and imaged 

under a Leica DM2500 bright field upright microscope (Zernike, Bioimaging core facility, 

Biomedical center, Ludwig-Maximilians-Universität München). 

 

 Flow cytometry 

To quantify and identify cell subsets, primary cells were isolated from fresh tissues. 

Samples were processed differently to obtain single cell suspensions for identity marker 

labeling by fluorescence-conjugated antibodies. Total cell number was assessed using a 

Coulter counter (Z2 Analyzer, Beckman Coulter). Cell identities were read by flow 

cytometry (Gallios, Beckman Coulter, see Appendix 6.1 for its configuration) and the data 

were analyzed using FlowJo software (FlowJo LLC, Becton Dickinson). Based on different 

tissue nature and cell types of interest, different tissue handlings and staining panels are 

described below individually. 

 

2.4.1 Tissue processing  

To optimize staining, this step aimed to remove red blood cells and release structurally 

bound populations to obtain high quality single cell suspensions.  
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2.4.1.1 Lymph nodes 

To include identification of dendritic cells (DCs) and macrophages, lymph nodes (LNs) 

were chopped with scissors in calcium and magnesium extra-supplied Dulbecco’s PBS 

(DPBS) (14040-083, Gibco) with DNase I (200 g/mL, 11284932001 Roche) and 

collagenase IV (1 mg/mL, C5138, Sigma-Aldrich Chemie GmbH). Digestion units were 

slowly rotated and incubated in 37°C for 30 minutes. Afterwards, the digested sample was 

gently ground against a 70-micron cell strainer (22362648, Fisher Scientific) and rinsed 

with cold PEB (2 mM EDTA and 2% fetal bovine serum (FBS, 10500-064 Gibco) in PBS). 

After centrifugation (300 g, 4 °C, 5 minutes), the single cell suspension was obtained by 

re-suspending cells in the desired volume which was then proceeded to staining in 100 

L PEB with mixed antibodies. 

For certain panels (2.4.2.3), the chopping and digestion steps were skipped in order to 

avoid loss of collagenase-sensitive surface markers such as cluster of differentiation 138 

(CD138). Harvested samples were instead placed in PEB and ground against 70-micron 

cell strainers directly for single cell suspensions and then stained as described in the 

previous paragraph.    

 

2.4.1.2 Paws  

Paws were separated from legs by cutting at ankles. Toes were then cut, leaving only the 

footpads. Soft tissues and skin were separated from bones in the footpads by scraping 

them against the bone using a scalpel. After weighing, soft tissues and skin were then 

chopped and digested in calcium and magnesium-added DPBS with DNase I (40 g/mL), 

collagenase IV (1 mg/mL) and dispase II (2 U/mL, 17105-041, Gibco) with slow agitation 

at 37°C for 1 hour. Single cell suspensions were obtained after grinding digested samples 

against 70-micron cell strainers and washed with cold PEB.  

 

2.4.1.3 Lymph node stromal cells 

LNs were chopped and then digested in calcium and magnesium-added DPBS with 

DNase I (40 g/mL), collagenase IV (1 mg/mL) and collagenase D (3.5 mg/mL, 
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11088858001, Roche) with slow agitation at 37°C for 1 hour. Samples were then allowed 

to settle vertically for 3 minutes, and the supernatant carefully removed by pipette to leave 

the cell pellet. Fresh enzyme mix was then added to the remaining pellets which were 

mechanically disaggregated by pipetting. The enzymatic reaction was terminated by 

pipetting 7.5 L 0.5 M EDTA (AM9261, Invitrogen) to every milliliter to reach the final 

EDTA concentration of 3.75 mM, followed by flushing samples with PEB through 70-

micron cell strainers to obtain a single cell suspension. 

 

2.4.1.4 Spleen 

Spleens were ground directly against 70-micron cell strainers without digestion. After cell 

pellets were obtained by centrifugation, red blood cells (RBCs) were eliminated by re-

suspending samples in RBC lysis buffer (0.154 M NH4Cl, 0.05 mM EDTA, 10 mM KHCO3, 

pH 7.25) at room temperature for 5 minutes. This reaction was stopped by adding an equal 

amount of PBS. Single cell suspensions of the remaining splenic cells were ready for 

staining following centrifugation and re-suspension in PBS. 

 

2.4.1.5 Femoral bone marrow  

Crude femoral bone marrow was flushed out and disaggregated by pipetting. Samples 

were centrifuged and re-suspended in RBC lysis buffer at room temperature for 5 minutes. 

RBC lysis was then stopped by adding PBS. After another centrifugation, cell pellets were 

re-suspended for single cell suspension.  

 

2.4.1.6 Blood  

Approximately 400 L of blood was harvested from the retro-orbital sinus into a collection 

tube with 5 L 0.5 M EDTA using microhematocrit tubes (749311, Brand GmbH + CO KG). 

The concentration of white blood cells was quantified using a ProCyte Dx™ (IDEXX 

Laboratories). The rest of the blood sample was then subjected to RBC lysis twice, 

neutralization and re-suspension for single cell suspension allowing further staining. 
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2.4.2 Staining panels 

Single cell suspensions were stained by different antibody combinations for distinct 

purposes described individually below. All antibodies were recognizing mouse antigens, 

purchased from Biolegend and used at a dilution of 1:200 in PEB unless otherwise 

specified (Appendix 6.2). After the staining process, samples were re-suspended in 100 

L PEB following washing and centrifugation. Right before reading by the flow cytometer, 

50 L of 3 M 4',6-diamidino-2-phenylindole (DAPI, 422801, Biolegend) was spiked into 

samples. 

 

2.4.2.1 General profiling of immune subsets in the LN 

Anti-CD8-PE (53-6.7), anti-CD3-PE/Dazzle™ 594 (17A2), anti-Gr-1-PerCP/Cy5.5 (RB6-

8C5), anti-B220-PE/Cy7 (RA3-6B2), anti-CD169-Alexa 647 (3D6.112), anti-NK1.1-Alexa 

700 (PK136, 56-5941-82, eBioscience), anti-CD11c-APC/Cy7 (N418) and anti-CD4-

BV570 (RM4-5) antibodies were mixed well with single cell suspensions of samples and 

incubated at 4°C for 30 minutes.  

 

2.4.2.2 Dendritic cell subsets in the LN 

Samples were blocked with anti-CD16/CD32 (93, 1:50) antibodies at 4°C for 20 minutes 

before proceeding to staining. Anti-Gr-1-FITC (RB6-8C5, 1:400), anti-CD11b-PE (M1/70, 

1:400), anti-CD45-PE/Dazzle™ 594 (17A2), anti-major histocompatibility complex class II 

(MHCII, I-A/I-E, 1:1000)-PE/Cy5 (M5/114.15.2), anti-CD8-PE/Cy7 (53-6.7, 1:400), anti-

CD4-APC (GK1.5, 1:400) and anti-CD11c-APC/Cy7 (N418) antibodies were mixed well 

with single cell suspensions of samples at 4°C for 30 minutes.  
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2.4.2.3 Digestion-sensitive B cell differentiation markers on splenic and LN cells 

Anti-Gr-1-FITC (RB6-8C5, 1:400), anti-CD138-PE (281-2), anti-FAS-PE-CF594 (Jo2, 

562499, BD Bioscience), anti-B220-PE/Cy7 (RA3-6B2) and anti-GL7-Alexa 647 (GL7) 

antibodies were mixed well with single cell suspensions of samples at 4°C for 30 minutes.  

 

2.4.2.4 Immune subsets in paws 

Samples were blocked with anti-CD16/CD32 (93, 1:50) antibodies at 4°C for 20 minutes 

before proceeding to staining. Anti-CD103-FITC (2E7), anti-Ly6C-PE (HK1.4), anti-CD45-

PE/Dazzle™ 594 (30-F11), anti-Ly6G-PerCP/Cy5.5 (1A8), anti-MHCII-PE/Cy7 

(M5/114.15.2), anti-epithelial cell adhesion molecule (EpCAM)-Alexa 647 (G8.8), anti-

CD11b-Alexa 700 (M1/70) and anti-CD11c-APC/Cy7 (N418) antibodies were mixed well 

with single cell suspensions of samples at 4°C for 30 minutes.  

 

2.4.2.5 Stromal cells in the LN 

Anti-CD45-FITC (30-F11), anti-podoplanin-PE (8.1.1.), and anti-CD31-APC (MEC13.3) 

antibodies were mixed well with single cell suspensions of samples at 4°C for 30 minutes.  

 

2.4.2.6 Verification of cell depletion efficacy 

To verify successful depletion of neutrophils, blood and spleen were examined. Gr-1-

PerCP/Cy5.5 (at 4°C for 30 minutes) staining was used in combination with forward and 

side scatter profiles to determine depletion efficacy.  

To verify successful depletion of natural killer (NK) cells, circulating cells were stained with 

anti-CD49b-PE/Cy7 (DX5) at 4°C for 30 minutes. 

 

 Cell type-specific depletion 

Cell type identity markers were targeted to remove certain cell types specifically using 

neutralizing antibodies. These were injected ip to target cells systemically. 
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2.5.1 Neutrophil 

To deplete neutrophils, each mouse was injected with 200 g of either isotype control 

antibody (LTF-2, BE0090, BioXCell) or anti-Ly6G antibody (1A8, BE0075, BioXCell) at D0 

and D4. When organs were harvested at D7, spleen and blood were taken to verify the 

depletion efficacy (see 2.4.2.6). Leukocytes in popLNs were analyzed by flow cytometry 

at D7. 

 

2.5.2 Natural killer cell 

To eliminate NK cells, each mouse was injected with 200 g either isotype control antibody 

(C1.18.4, BE0085, BioXCell) or anti-NK1.1 antibody (PK136, BE0036, BioXCell) at D-1 

and D4. When organs were harvested at D7, blood was taken to verify the depletion 

efficacy (see 2.4.2.6). Leukocytes in popLNs were analyzed by flow cytometry at D7. 

 

 Recruitment rate and dwell time 

Labeled exogenous cells were used to monitor migratory behaviors of leukocytes in a 

unilaterally denervated system. Splenic and LN single cell suspensions were obtained via 

pushing them against 70-micron cell strainers without digestion. Splenic and LN cells were 

mixed in the ratio of 50:50 and incubated with 1.5 M carboxyfluorescein succinimidyl 

ester (CFSE, 65-0850-84, Thermo Fisher Scientific) in PBS at 37°C for 20 minutes. 

Afterwards, labeled cells were washed 3 times with 37°C PEB. On D7 post-surgery, each 

mouse received 2 x 107 donor cells via iv injection. Remaining donor cells were subjected 

to cell identity staining (2.4.2.1) and flow cytometry to examine the labeling efficacy and 

donor composition. 

 

2.6.1 Homing 

2 hours after labeled donor cells were transferred to unilaterally denervated mice, their 

popLNs were harvested and processed. Cells were analyzed by flow cytometry. 
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2.6.2 Egress   

Denervated mice were divided into 2 groups, with both groups receiving donor cells. 2 

hours later one group was killed and immune subsets in popLNs were quantified and 

served as the basal level. Meanwhile, the other group received homing blockers (anti-

integrin 4 and anti-integrin L, 100 g each/mouse, PS/2 and M17/4, BE0071 and 

BE0006, BioXCell) and kept for another 12 hours. Afterwards, their immune subsets in 

popLNs were quantified by flow cytometry and compared with the other group’s (basal 

level) to obtain the egress rate. 

 

 Treatment of drug or antibody 

In unilateral sciatic denervated (Sx) mice, leukocyte adhesion to the vascular bed, 

chemotaxis, and antigen presentation were inhibited using neutralizing antibodies or a 

bacterial toxin. Leukocytes in popLNs were analyzed by flow-cytometry at D7. 

To target neural substances, neurotoxin or neural substance receptor antagonists were 

administered. 

 

2.7.1 Anti-histamine treatment 

Cetirizine dihydrochloride (20 mg/kg, 2577 Tocris Bioscience) was administered daily from 

the surgery day (D0) to the harvest day (D7). The compound was dissolved in PBS and 

injected ip except at D0 when it was injected sc. Immediately before the surgery, one dose 

was divided equally into 4 portions which were injected to hocks and surgery sites in both 

legs. Leukocytes in popLNs were analyzed by flow cytometry at D7. 
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2.7.2 Homing blockade 

Mice undergoing denervation surgery were treated with different antibodies against 

different adhesion molecules. All blockades were conducted by ip injection at D1 and D4. 

All antibodies used here were diluted in PBS to the working concentration.  

  

2.7.2.1 Integrins  

Either combined anti-integrin 4/L (100 g each/mouse, PS/2 and M17/4, BE0071 and 

BE0006, BioXCell) antibodies or their isotype control antibodies (100 g each/mouse, 

LTF-2 and 2A3, BE0090 and BE0089, BioXCell) was injected. Antibodies were diluted in 

PBS to the working concentration.  

 

2.7.2.2 CD62L 

Either anti-CD62L antibody (200 g/mouse, Mel-14, BE0021, BioXCell) or its isotype 

control antibody (200 g/mouse, 2A3, BE0089, BioXCell) was injected.  

 

2.7.2.3 Peripheral node addressin 

To target Peripheral node addressin (PNAd) on high endothelial venules (HEVs), either 

anti-PNAd antibody (200 g/mouse, MECA-79, 120802, Biolegend) or its isotype control 

antibody (200 g/mouse, RTK2118, 400802, Biolegend) was injected. 

 

2.7.3 Pertussis toxin treatment  

Pertussis toxin (PTX, 1 g/mouse, 516560, Merck) was dissolved in PBS and injected ip 

to the denervated mice at D0 and D4. The control group received only PBS.  
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2.7.4 Antigen presentation blockade 

Either anti-MHCII antibody (500 g/mouse, Y3P, BE0178, BioXCell) or its isotype control 

antibody (500 g/mouse, C1.18.4, BE0085, BioXCell) was injected ip at D0 and D4. The 

antibody was diluted in PBS to the working concentration. 

 

2.7.5 6-hydroxydopamine treatment  

To ablate sympathetic tones in the periphery, a chemical method using 6-

hydroxydopamine (6-OHDA) has been described [318]. Mice were treated ip with 6-OHDA 

100 mg/kg (with ascorbate 20 mg/mL in saline) on D0, 250 mg/kg on D2. Chemically 

sympathectomized mice were ready to be analyzed from D5. 

 

2.7.6 Treatment of neuropeptides or antagonist of neuropeptides  

Calcitonin gene-related peptide (CGRP, 1 g/mouse/day, 1161, Tocris) and substance P 

(SP, 250 g/kg/day, 1156, Tocris) were dissolved in PBS and injected ip separately or 

together to mice. For antagonism of CGRP and SP, their antagonists BIBN4096 (4561, 

Tocris) and SR140333 (4012, Tocris) were dissolved in dimethyl sulfoxide (DMSO, D8418, 

Sigma-Aldrich Chemie GmbH) in 25 mg/mL and 50 mg/mL respectively as stocks and 

stored at -20°C. Working solutions were prepared by diluting the stocks in PBS. BIBN4096 

and SR140333 were treated separately or together at 1 mg/kg/day per compound. The 

treatment was given daily by ip injection. When treatment was applied on the surgery or 

harvest day, it was delivered 4 hours before the operation on D0 and 2 hours before 

harvesting on the last day to fully cover the experimental period. 

 

 Quantitative polymerase chain reaction 

LN or paw samples were immersed in 200 L QIAzol lysis reagent (79306, QIAGEN) in 

innuSPEED Lysis Tubes (845-CS-1020050, AJ Innuscreen GmbH) and homogenized 

using SpeedMill PLUS (Analytik Jena AG). Ribonucleic acid (RNA) was separated from 
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deoxyribonucleic acid (DNA) and protein by mixing QIAzol lysate with 40 L chloroform 

(C2432, Sigma-Aldrich Chemie GmbH). RNA from the aqueous layer was then 

precipitated in isopropanol (A3928, Reac AppliChem ITW Reagents), washed with 75% 

ethanol and dissolved in water. Potential residual DNA in the extract was digested by 

recombinant DNase I (04716728001, Roche) and the remaining RNA was later further 

purified using RNeasy MiniElute Cleanup Kit (74204, QIAGEN). Conversion of RNA to 

complimentary DNA (cDNA) was carried out using High-Capacity RNA-to-cDNA™ Kit 

(4387406, Applied Biosystems™). Reverse transcription program: 25°C 10 minutes, 37°C 

2 hours, 85°C 5 minutes and 4°C hold. 400 ng RNA from each sample was reverse-

transcribed in a 20 L reaction. Samples were then diluted with water to make 1 ng 

RNA/L working cDNA solution. Rest of cDNA samples has been stored at -20°C, and 

Rest of RNA samples has been stored at -80°C. 

19 mouse genes were quantified by quantitative polymerase chain reaction (qPCR) using 

these cDNAs and Fast SYBR™ Green Master Mix (4385614, Applied Biosystems™). 

Reaction solution contained 1 L working cDNA solution from each sample, primers of 

target genes, water and Fast SYBR™ Green Master Mix. Target genes were: Rpl32, 

Ccl19, Ccl21, Cxcl12, Cxcl13, Tnfa, Tgfb, Ifng, Il1a, Il1b, Il2, Il4, Il6, Il7, Il10, Il12, Il13, 

Il17a and Il17f. Primer sequences are listed in Appendix 6.3. qPCR program: 95°C 10 

minutes, 40 cycles of 95°C 15 seconds and 60-62°C 1 minute depending on the primer 

set (indicated in Appendix 6.3). Melting curve was measured using the machine’s built-

in setting.  

Data were analyzed using Ct. Briefly, Ct of target gene minus Ct of Rpl32 (the reference 

gene) to obtain Ct. Each Ct was subtracted by Ct of samples from D0 to have Ct. 

The relative expression was then calculated as 2-Ct with the assumption that the 

amplification of each PCR cycle is 2.   

 

 Immunofluorescence  

PopLN samples were subjected to whole-mount or section staining and the sciatic nerve 

was processed as cross-sectioned slices. To prepare on-slide staining of tissue sections, 
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samples of the sciatic nerve and the popLN were harvested and placed in Cryomolds 

(4557, Tissue-Tek®, Sakura) with OCT™ compound (4583, Tissue-Tek®, Sakura) 

followed by snap-freezing on dry ice. The embedded samples were then sliced using Leica 

CM3050 S. All steps in the staining procedures were done at room temperature except 

primary antibody staining which was performed at 4°C.  

Primary antibodies: rabbit anti-mouse tyrosine hydroxylase (TH, 1:1000, polyclonal, 

AB152, Merck Millipore), rat anti-mouse CD31-Alexa 647 (1:100, MEC13.3, 102516, 

Biolegend), rat anti-mouse CD4-APC (1:100, GK1.5, 100412, Biolegend), rat anti-mouse 

CD8-Alexa 647 (1:100, 53-6.7, 100724, Biolegend), rat anti-mouse B220-Alexa 488 

(1:100, RA3-6B2, 103225, Biolegend), rat anti-mouse Ki67-PE (1:100, SolA15, 12-5698-

92. eBioscience), rat anti-mouse GL7-Alexa 647 (1:100, GL7, 144606, Biolegend), rabbit 

anti-mouse calcitonin gene-related peptide (CGRP, 1:1000, 24112, Immunostar), rabbit 

anti-mouse substance P (SP, 1:1000, 20064, Immunostar), mouse anti-mouse beta 3 

tubulin (3-tubulin)-Alexa 488 (1:200, 2G10-TB3, 54-451082, eBioscience), chicken anti-

mouse neurofilament (NF)-H (1:200, AB5539, Merck Millipore) and chicken anti-mouse 

NF-M (1:200, AB5735, Merck Millipore) were used as primary antibodies.  

Secondary antibodies and streptavidin-conjugated fluorochrome: goat anti-rabbit IgG-

biotin (1:500, polyclonal, BP-9100, Vector Laboratories), goat anti-chicken IgY-Alexa 488 

(1:500, polyclonal, A-11039, Thermo Fisher Scientific) and streptavidin-Cy3 (1:200, 

405215, Biolegend). Details of antibodies are summarized in Appendix 6.2. 

Images were acquired using SlideBook 6 software (3i, Intelligent Imaging Innovation) 

coupled with the spinning-disk confocal microscope (built on Zeiss Axio Examiner Z.1, 

organized by 3i, Intelligent Imaging Innovation). Scans of LN sections and whole mounts 

were taken with 100x magnification (10x ocular and 10x objective). Cross-sections of 

sciatic nerves were imaged with 640x magnification (10x ocular and 64x objective). All 

images were reconstructed using auto-alignment tools of SlideBook 6. Rebuilt volumetric 

scans were flattened by maximum projection method. Brightness, contrast, colors and 

overlay of images were adjusted using Fiji software (ImageJ). 
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2.9.1 Whole-mount staining of the popliteal lymph node 

For whole-mount imaging of sympathetic nerves in the popLN, the popLN was harvested 

and cut in half using a scalpel blade. Samples were placed in 4% PFA for 30 minutes. 

After this fixation step, samples were immersed in the blocking cocktail containing 20% 

goat serum (31872, Invitrogen), 0.5% Triton X100 (M143, Amresco) and 20% (v/v) 

streptavidin solution (SP-2002, Vector Laboratories) in PBS for 2 hours. For primary 

antibody staining, anti-TH and anti-CD31-Alexa 647 antibodies, 2% goat serum and 20% 

(v/v) biotin solution (SP-2002, Vector Laboratories) in PBS were applied on samples for 

staining overnight. The following day, the primary antibody solution was washed off with 

PBS and replaced with goat anti-rabbit-biotin secondary antibody in PBS with 2% goat 

serum. Samples were stained with this secondary antibody solution for 2 hours and 

washed off with PBS prior to incubation with streptavidin-Cy3 in PBS for 30 minutes. All 

the staining procedure were done in dark. 

 

2.9.2 Staining of popliteal lymph node section 

To identify functional processes of cell types in the popLN, 10 m sections were made. 

Samples were fixed with 4% PFA for 10 minutes and then blocked with 20% goat serum 

and 0.5% Triton X100 in PBS for 30 minutes. Fluorescence-conjugated primary antibodies 

recognizing mouse CD4, CD8, B220, Ki67 and GL7 were used in PBS containing 2% goat 

serum to stain samples overnight.  

To map CGRP+ nerves in the popLN, 20 m popLN sections were generated. Samples 

were blocked with 20% goat serum, 0.5% Triton X100 and 20% (v/v) streptavidin solution 

in PBS for 2 hours. For primary antibody staining, antibodies binding to CGRP, CD31 and 

3-tubulin were used in 2% goat serum and 20% (v/v) biotin solution in PBS to stain 

samples overnight. The following day, the primary antibody mix was replaced with 

biotinylated goat anti-rabbit secondary antibody in PBS with 2% goat serum. Samples 

were stained with the secondary antibody for 2 hours and washed off with PBS prior to 

incubation with streptavidin-Cy3 in PBS for 30 minutes. 
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2.9.3 Staining of the sciatic nerve section 

For imaging the sciatic nerve, 20 m cross-section slices were made. Samples were fixed 

with 4% PFA for 10 minutes and then blocked with 20% goat serum, 0.5% Triton X100 

and 20% (v/v) streptavidin solution in PBS for 2 hours. Primary antibodies reacting to 

CD31, CGRP, SP, NF-H, NF-M and TH were used in PBS containing 2% goat serum and 

20% (v/v) biotin solution to staining overnight. The following day, primary antibody solution 

was washed off and secondary antibodies (biotinylated goat anti-rabbit and goat anti-

chicken-Alexa 488) in PBS with 2% goat serum were applied for 2 hours and washed off 

with PBS prior to incubation with streptavidin-Cy3 in PBS for 30 minutes. 

 

 Serology 

To obtain serum, blood samples were incubated at room temperature for 30 minutes to 

coagulate and then spun at 1,500 g. The transparent supernatant (serum) was then 

collected, aliquoted and diluted before use. Practices followed the manufacturer’s 

instructions for each kit. All the buffers, antibodies and solutions are provided with the kits.   

 

2.10.1 Isotyping 

For isotyping, sera were diluted (1:10,000) and applied on the Pierce Rapid ELISA Mouse 

mAb Isotyping Kit (37503, Invitrogen). Briefly, 50 L samples were mixed with 50 L anti-

mouse antibodies-horseradish peroxidase (HRP) solution and transferred to pre-coated 

flat-bottom wells. After 1-hour incubation, sample-antibody solution was discarded and 

washed off with Tris-buffered saline with 0.05% Tween 20. 75 L 3,3′,5,5′-

Tetramethylbenzidine (TMB) substrate solution was added and stood in the wells in room 

temperature for 5 minutes, followed by adding 75 L stop solution. Absorbance of 450 

and 570 (reference wavelength) nm was measured by TECAN plate reader (SPARK 10M, 

TECAN)   
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2.10.2 Antibody titer determination  

For quantification of total circulating Immunoglobulin G (IgG), Mouse IgG total Ready-

SET-Go!® (88-50400-86, Invitrogen) was used with diluted sera (1:10,000 or 1:20,000). 

Briefly, flat-bottom 96-well plates were coated with capture antibody by adding diluted 

capture antibody (250x) to the plates and incubating at 4°C overnight. Next day, the 

coating solution was discarded and the plates were washed with PBS with 0.05% Tween 

20. 250 L blocking solution was added to the plates and left for 2 hours at room 

temperature. The blocking solution was discard and the plates were washed with PBS 

with 0.05% Tween 20. Prior to applying standards and samples, the standards were 

prepared based on 2-fold serial dilution. 200 L standards or samples as well as 50 L of 

detection antibody were added to the plate and incubated in room temperature for 3 hours. 

Following the wash steps using PBS with 0.05% Tween 20, TMB substrate solution was 

added and stood in the wells in room temperature for 15 minutes, followed by adding 100 

L stop solution. Absorbance of 450 and 570 (reference wavelength) nm was measured 

by TECAN plate reader (SPARK 10M, TECAN).   

 

2.10.3 Autoantibody test 

Sera were diluted to 10 g/mL and tested on HEp-2 slides (ORG870, Orgentec) for anti-

nuclear antibodies. Samples of 25 L were added on the pre-coated slides and stood in 

a moisture chamber at 4°C for 30 minutes. After the incubation, the slides were rinsed 

and immersed with PBS for 5 minutes. After drying excessive PBS, the detection 

antibodies were applied on the slides and incubated for 30 minutes. The slides were 

carefully washed with PBS and dried off, followed by being covered by cover-slides. The 

slides were imaged using SlideBook 6 software coupled with the spinning-disk confocal 

microscope and the images were processed with Fiji as described in 2.9. 
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 Statistics  

Data from the same experimental setting were pooled and analyzed as a collective dataset. 

Data were analyzed using Prism 7 (GraphPad). Outliers of each data set were detected 

and eliminated using a built-in function of outlier detection in Prism 7 with false discovery 

rate = 1%. After clearance of outliers, data was presented in mean ± standard error.  

Data comparison between control and experimental group(s): Paired student’s t test was 

applied to compare effects of individual treatments between sham and denervated 

popLNs in the same mouse. To compare effects between two groups, unpaired student’s 

t test was used. To compare effects across multiple groups (more than two), for example, 

different surgeries or antibody titer at different time points, one-way ANOVA and optionally 

Tukey’s post-test was used for further comparison between each two group. Two-way 

ANOVA was used to analyze the effects of multiple independent variables on outcomes 

of the surgery. Šídák’s or Tukey’s post-test was taken depending on the number of 

subgroups compared within the same variable. The former was used for comparison 

between two groups, whereas the latter was used to compare between more than two 

groups. To analyze the correlation between two data sets, Pearson’s correlation was 

used. Correlation coefficient (r, -1 to 1) presented the strength and direction of correlation. 

Determination of correlation (r2) was used to examine how well all data points fit the linear 

regression line of two variables. For example, when r2 is 0.9, it means 90% of data points 

can be explained by the linear regression line. 

The calculated probability of false rejection of the null hypothesis is presented as p – the 

probability of type I error. In a simpler sentence, p shows the probability of recognizing 

datasets as different when they are actually the same due to observation of extreme 

values. When the probability is lower than a common threshold 5% (p < 0.05), the 

difference across datasets is recognized as statistically significant. In this study, as the 

same threshold was taken, once p < 0.05, difference between groups was taken as 

significant. Higher confidence levels of difference were taken when the calculated 

probability was even lower (p < 0.01, 0.001 or 0.0001). These levels were used as 

determinant of significance at different levels. 
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3 Results 

 Denervation in the leg leads to acute swelling of the paw and 

enlargement of popliteal lymph node 

In the first experiment, the sciatic and femoral nerves were cut to deprive the lymph node 

of neural inputs. Cutting the sciatic and femoral nerves led to two major phenotypes – 

swelling of the popLN itself and of its draining area, the paw (Figure 3.1). Paw swelling 

was an acute and transient phenotype, peaking after a day and returning to baseline within 

a week (Figure 3.2A). Swelling of the lymph node, however, persisted over the whole 

investigated timeframe of four weeks. Quantification of cellularity in popLNs after 

denervation clearly showed that the LN phenotype was due to a dramatic increase in 

cellularity, reaching peak levels after two weeks and remaining high four weeks post-

surgery (Figure 3.2B). This result implied that loss of neural tones in the leg leads to 

substantial alterations in lymph node cellularity, potentially due to changes in cell 

migration, proliferation and/or egress dynamics.  

 

 

Figure 3.1 Macroscopic views of main denervation phenotypes  

Denervation led to paw swelling and enlargement of its draining popLN after a week.  

 

 

 

 

sham denervated

2 mm5 mm

Nodal expansionPaw swelling

sham denervated



 62 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Progression of footpad thickness and lymph node expansion after denervation  

(A) Denervation induced a thickened footpad within a day, returning to the basal level within a week. n = 5-

20. Two-way ANOVA, Šídák’s post-test. (B) Denervation raised popLN cellularity in a week which lasted at 

least 4 weeks. n = 4-7. Two-way ANOVA, Šídák’s post-test. ***p < 0.001, ****p < 0.0001. 
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 Sciatic denervation contributes to nodal expansion 

Overall deprivation of neural tone by cutting both femoral and sciatic nerves in the leg 

expanded the popLN. Resection of the sciatic nerve prevents viral dissemination from the 

popLN, so indicating that the sciatic nerve is the only nerve directly innervating the popLN 

[198]. In contrast, the femoral nerve does not directly innervate the popLN  but rather its 

draining area, whereas the sciatic nerve projects to both [198]. This feature allowed testing 

whether loss of direct innervation by the sciatic nerve or indirect innervation via the femoral 

nerve caused the phenotypes observed. Analysis of popLN cellularity showed that sciatic 

denervation (Sx) alone produced a LN phenotype equivalent to that of cutting both femoral 

and sciatic nerves whereas femoral denervation by itself did not (Figure 3.3). This 

indicated that direct innervation was important in regulating the cellular dynamics of 

popLNs.   

 

 

 

 

 

 

 

 

Figure 3.3 Change of popLN cellularity after cutting femoral and/or sciatic nerve(s)  

Cutting the sciatic nerve alone reproduced the phenotype of cutting both femoral and sciatic nerves. This 

phenomenon attributed denervation-induced nodal expansion to loss of direct innervation via the sciatic 

nerve. n = 3-9. One-way ANOVA, Tukey’s post-test. *p < 0.05, **p < 0.01. 
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 Denervated popliteal lymph nodes are more reactive 

Denervation-induced nodal expansion could reflect the primary response of losing 

innervation or a secondary reaction to the paw swelling. To tease apart a direct neural 

effect on the popLN from indirect, peripheral influences, a denervation model targeting the 

draining area of the popLN but bypassing the popLN itself was developed to address this 

point. Unilateral surgical ankle denervation (ANKx) was used to remove neural input to 

the paw but retain intact innervation of the popLN by cutting the three main branches of 

the sciatic nerve at ankle level (Figure 3.4).  

 

 

 

 

 

 

Figure 3.4 Scheme of sciatic denervation surgeries at different levels  

Two sciatic denervation procedures were designed to study the functions of direct innervation in popLNs by 

doing one denervation affecting popLN and the other one bypassing it. 
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With ANKx there could be a concern of cutting lymphatic vessels, which could block the 

recycling of interstitial fluid and leukocyte homing to the popLN via afferent lymphatics. 

Evans Blue was therefore injected intraplantarly to test this. Straight after ANKx, Evans 

Blue solution was injected and was observed reaching the popLN, demonstrating that the 

surgery did not disrupt lymphatic flow from the paw to the popLNs (Figure 3.5).  

 

 

 

 

 

 

 

Figure 3.5 Evaluation of conductivity of afferent lymphatics after ankle denervation  

Right after the surgery, Evans Blue solution was injected intraplantarly into the footpad. The popliteal fossa 

was exposed surgically 10 minutes after the ankle denervation and the popLN was found taking up the dye 

(arrow). 
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The surgical wound was large and proximal to the paw, so ANKx generated some local 

swelling of paw regardless of whether the mice received nerve resection or a sham 

surgery. H&E staining revealed increased hair follicle-like structure in the swollen paws 

on either side (Figure 3.6).  

 

 

 

 

 

 

 

 

 

Figure 3.6 Histology of paw skin tissues  

Paw tissues were harvested, followed by snap freezing in OCT. Sliced specimens went through H&E 

staining and were imaged under a bright-field microscope.  
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In comparison to the popLN cellularity on the sham side, ankle operation brought the 

cellularity to about 2.5-fold to the level reached after Sx surgery, reflecting a higher degree 

of general surgery-induced inflammation due to ANKx (Figure 3.7A). To account for such 

variation in the sham-operated control groups, cell counts in popLNs on the denervated 

side were normalized to the sham side within the same surgical group (Sx or ANKx) and 

plotted as ´fold change´. Although sham ankle operation caused slight nodal expansion 

even without cutting nerves, cutting sciatic nervous branches at ankle level did not drive 

the popLN cellularity to a comparable level to the Sx surgery (Figure 3.7B). Thus, cutting 

sciatic nervous branches below popLNs clearly did not cause nodal expansion to the same 

extent as cutting it above, suggesting a direct regulatory role of the nerve on the popLN. 

Another possible explanation was that ANKx had a lesser degree of effect on the 

significantly smaller draining area.  

  

 

 

 

 

 

 

 

Figure 3.7 PopLN cellularity one week after sciatic or ankle denervation  

(A) PopLN cellularity showed different basal levels in the sham popLN. (B) To be able to compare two 

groups on the same basis, counts were normalized to the counts of sham popLN, and cellularity was 

presented as fold change. n = 5-6. Two-way ANOVA, Šídák’s post-test. *p < 0.05. 
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 Sciatic denervation induces neutrophil infiltration and increases 

dendritic cell numbers in the draining area of the popliteal lymph 

node 

Paw pathology after denervation seemed to be an acute event and shared the 

macroscopic features of edema driven by an increase in interstitial fluid [319]. Indeed, the 

denervated paws exhibited lower cell numbers per milligram of tissue (Figure 3.8), 

indicating that fluid diluted cell density in the swollen paw. However, this dilution of 

cellularity was not recovered when paw thickness came back to baseline in a week 

(Figure 3.2 and Figure 3.8).  

 

 

 

 

 

 

 

 

 

Figure 3.8 Cell density in the paw after sciatic denervation  

Denervation decreased cell density in the paw, indicating tissue swelling due to fluid uptake. n = 5-10. Two-

way ANOVA, Šídák’s post-test for paw cell density and one-way ANOVA, Tukey’s post-test for paw cell 

density change. *p < 0.05, **p < 0.01. 
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Leukocytes were found to infiltrate into denervated paw tissue, with neutrophils being the 

major population (accounting for half of the leukocytes in the first two days after 

denervation) (Figure 3.9). Seven days after Sx, DC populations constituted a quarter of 

leukocytes, which were mainly EpCAM-CD103- (double negative, dn) DCs (Figure 3.9). 

Langerhans cells (LCs) were the second largest DCs subset, initially decreasing but 

recovering by days 2 and 7 (Figure 3.9). EpCAM-CD103+ DC were the smallest population, 

which quickly increased and reached a plateau two days after denervation (Figure 3.9). 

Ly6C+ monocyte counts also increased from 0.05% to about 0.24% of total cells after 

denervation (Figure 3.9).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9 Immune cell subsets in the paw after denervation 

Leukocytes were quantified and sub-divided into monocytes, neutrophils and three DC subsets. Most of 

them except LCs were found to be increased after denervation. n = 5-10. Two-way ANOVA, Šídák’s post-

test. *p < 0.05, **p < 0.01, ***p < 0.001. #: statistical difference between “sham” and “Sx”. 
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 Nodal expansion after denervation partially reflects the size of 

affected nervous branch and does not associate with degree of 

paw swelling  

To understand the relations between nodal expansion, paw thickening and degree of 

denervation of the draining area, mice were divided into seven groups whose sciatic 

nerves received single, dual or complete transection by cutting one, two or all branch(es) 

respectively. Sizes of denervated branches were used as a proxy of degree of 

denervation. The three branches in order of descending size were the common peroneal 

nerve (CPN), the tibial nerve (TN) and the sural nerve (SN) (Figure 1.6). 

Paw swelling was depicted as a curve to show the progress of the phenotype within a 

week after denervation. In terms of maximal paw swelling, every group but SN reached 

the peak one or two days after denervation (Figure 3.10). Cutting the SN alone did not 

cause paw thickening (Figure 3.10). Groups with the SN left intact (CPN, TN and 

CPN+TN) had denervated paw thickness returning to the level of the sham side at day 4 

after denervation (Figure 3.10), indicating a quicker resolution of paw swelling.  

 

 

 

 

 

 

 

 

 

 

Figure 3.10 Footpad thickness change after cutting sciatic nerve branches  

Distance between ventral and dorsal sides of the paw was measured. The solid and dashed lines represent 

the thickness of the denervated and sham paws respectively. n = 5-7. Separated Two-way ANOVA was 

applied to each group, Šídák’s post-test. *p < 0.05, ***p < 0.001, ****p < 0.0001.  
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The integral of the net thickening during this time (area under the curve, AUC) was 

calculated as a comprehensive indicator of net paw thickness change. From the lowest to 

the highest AUC, cutting the SN caused no swelling; leaving the SN intact (CPN+TN) 

resulted in an AUC of 0.5; the CPN, TN and TN+SN denervation resulted in an AUC 

around 1.0; cutting all the branches or the CPN+SN resulted in the highest AUC, over 1.5 

(Figure 3.11). These two groups had similar AUCs (about 1.8) but different degrees of 

denervation (Figure 3.11).  

 

 

 

 

 

 

 

 

 

Figure 3.11 Quantification of footpad thickness over time  

Footpad thickness data from the curve plot was transformed into a bar graph for easier comparison. The 

integral of difference between denervated and sham curves over time was calculated as area under the 

curve (AUC) to represent severity of paw swelling. n = 5-7. One-way ANOVA, Tukey’s post-test. *p < 0.05, 

***p < 0.005. 
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Next, the interaction between the level of nodal expansion and the degree of denervation 

was analyzed. Comparing denervation of single branches with cutting all branches, the 

degrees of nodal expansion positively correlated with the size of the nervous branch 

denervated, reflecting the degree of denervation (Figure 3.12). However, dual branch 

denervations did not follow this principle. Cutting both CPN and SN exhibited the largest 

nodal expansion, showing about 1.5-fold higher than complete denervation (Figure 3.12). 

This may be due to interplay of different nerve interactions that are currently not clear. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12 PopLN cellularity after denervation of distinct branches  

PopLN cellularity after a set of seven surgeries were quantified. The surgical set covered cutting all 

branches, two branches or individual ones. n = 5-7. Two-way ANOVA, Tukey’s post-test. *p < 0.05, **p < 

0.01, ***p < 0.001, ****p < 0.0001. 
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We next addressed whether paw swelling and LN expansion were correlated. In single 

denervation, nodal expansion was proportional to the size of the denervated branch, but 

this was not observed in paw swelling (Figure 3.11 and Figure 3.12). In addition, cutting 

all branches as well as cutting the CPN+SN caused the same level of paw swelling but 

not nodal expansion (Figure 3.11 and Figure 3.12). Lastly, groups of SN, CPN+TN and 

TN+SN had nearly no increase in popLN cellularity after denervation but only the two dual 

denervation groups caused paw swelling (Figure 3.11 and Figure 3.12). According to 

these results, nodal expansion was likely not directly correlated with the severity of paw 

swelling. 

Denervation degrees, paw AUC and cell numbers of leukocytes in paws and popLNs 

under sham and denervated conditions in the sciatic branch denervation dataset were 

compared for correlation analyses. Denervation degree is an arbitrary unit representing 

the innervation area. The actual innervation area of each branch is hard to quantify but 

this unit offers a rough estimation according to the order of thickness of sciatic branches. 

CPN is the thickest one so its denervation was assigned a score of 3, TN a score of 2 and 

SN a score of 1. For multiple denervation these scores were added. For example, cutting 

CPN and TN ends up in the denervation degree of 5 due to 3+2. Paw AUC in general 

positively correlated with all the leukocytes studied but Langerhans cells (Figure 3.13A). 

Although positively related, all the correlation coefficients (r) were less than 0.7, so that 

none of them had the determination of correlation (r2) more than 0.5, indicating limited 

correlations between leukocyte subsets in popLNs and paws and paw swelling degree 

(Figure 3.13). The same conclusion of lacking a strong correlations was made between 

leukocyte subsets and denervation degrees (Figure 3.13B). These comparisons 

confirmed that nodal expansion did not reflect degree of paw swelling and denervation. 

However, denervation degrees were loosely linked to paw swelling levels with r2 slightly 

more than 0.5 (Figure 3.13C), but, according to correlation analysis, these factors did not 

transfer to nodal expansion. 
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Figure 3.13 correlations between paw AUC, leukocytes in paws and popLNs and denervation degree 

(A) Paw AUC and leukocyte counts were put together and estimated the correlation degree using correlation 

coefficient (r) of Pearson’s correlation. (B) Correlation coefficient of Pearson’s correlation of denervation 

degree and leukocyte counts were calculated. (C) Determination of correlation (r2) of Pearson’s correlation 

was used as a correlation indicator. It is shown in the graph. 

 

These findings clarified the associations of three different aspects: the level of nodal 

expansion, paw swelling and thickness of the nerve(s) represented by the size and 

combination of branch(es) cut in the sciatic nerve. The thickness effect was only correlated 

in LN cellularity in the case of single branch cutting. 
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 Infiltration of neutrophils and CD103 dendritic cells in the paw 

correlates to popliteal lymph node cellularity after denervation 

To further define the relation between paw swelling, paw leukocytes and nodal expansion, 

one of the most common and blood-brain-barrier impermeable anti-histamine drugs – 

Cetirizine (CTZ) – was selected to inhibit paw swelling in the denervation model without 

affecting histaminergic signaling in the central nervous system. CTZ was given intra-

peritoneally at the same time as sciatic denervation surgery and heel width was included 

as another parameter in addition to footpad thickness for evaluating the amount of swelling. 

Denervation-induced footpad thickening and heel width were subtly ameliorated after CTZ 

treatment but the effect was not significant (Figure 3.14). Despite lack of significant 

repression of swelling, CTZ substantially and specifically prevented the rise of neutrophils 

and CD103 DCs in the paw after denervation (Figure 3.15). Moreover, CTZ treatment 

blocked Sx-induced nodal expansion (Figure 3.16). These results positively correlated 

the popLN cellularity with the numbers of neutrophils and CD103 DCs in the paws.  

 

 

 

 

 

 

 

 

 

Figure 3.14 Denervation-induced paw swelling under cetirizine treatment  

Footpad thickness and heel width were measured during a week and their pathology curves were converted 

to AUC. n = 6. Unpaired Student’s t-test. 
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Figure 3.15 Leukocytes in paw after sciatic denervation and cetirizine treatment  

Mice were treated with cetirizine daily for a week from the surgery day after which immune cells in the paw 

were analyzed. n = 6. Two-way ANOVA, Šídák’s post-test. *p < 0.05, **p < 0.01. 
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Figure 3.16 Leukocytes in the popLN after denervation in combination with cetirizine treatment  

Effects of cetirizine treatment on denervation-induced nodal expansion were assayed by quantifying total 

cellularity and immune subsets in the popLNs.  n = 6. Two-way ANOVA, Šídák’s post-test. *p < 0.05, **p < 

0.01, ****p < 0.0001. 
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 Sciatic denervation affects immune and stromal cells in the local 

popliteal lymph node 

LNs are hubs for immune cells that in combination with vascular and stromal cells mount 

adaptive immune responses. Denervation-induced LN expansion might dramatically alter 

LN function and its cellular composition. To characterize the nodal immune cell subsets, 

flow cytometry was used to quantify both mobile and resident populations such as CD4 T, 

CD8 T, B, NK, CD169+ and CD11c+ cells, neutrophils, as well as migratory and resident 

DCs within a week after unilateral Sx. In the period of 4 weeks, overall cell number 

increased after denervation as shown (Figure 3.2B), and so did all studied subsets which 

generally reached their peaks at week 2 and/or 3 (Figure 3.17A). There was barely cell 

type-specific expansion pattern in this scale. To look at each subset closer in shorter time 

frame, cell numbers of the immune subsets were monitored after 1, 2 and 7 days after 

scitic denervation. In denervated popLNs, all of the investigated immune cell types were 

increased (Figure 3.17B). Moreover, distinct cell types exhibited different dynamics. One 

of the early peaking cell types, migratory DCs, had a unique dynamics curve which leveled 

at the second post-surgical day while most of the other subsets were still increasing 

(Figure 3.17B). These dynamics aligned well with the typical adaptive immune response, 

in which DCs are the cell type of initiation. Therefore, it strongly suggested an adaptive 

immune response taking place after Sx.  
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Figure 3.17 Dynamics of immune subsets in popLN after sciatic denervation  

(A) Cell numbers of subsets in the popLNs in the sham and denervated sides were quantified and compared 

on different weeks. n = 2-8. (B) Cell numbers of subsets in the popLNs in the sham and denervated sides 

were monitored on different days. n = 3-5. Two-way ANOVA, Šídák’s post-test. **p < 0.01, ***p < 0.001, 

****p < 0.0001. #: statistical difference between “sham” and “Sx.” 
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Propagation of immune responses in the lymph node requires a conducive 

microenvironment. Therefore, also the stromal components were analyzed after 

denervation. Fibroblastic reticular cells (FRCs), blood endothelial cells (BECs) and 

lymphatic endothelial cells (LECs) also increased (Figure 3.18A). Although the absolute 

number of high endothelial venules (HEVs) increased, vascular density decreased, 

indicating that stromal cells did not expand proportionately with leukocytes (Figure 3.18B). 

These results demonstrated that denervation has a broad effect on various cell types and 

might be involved in initiation of an immune program.  

 

 

 

 

 

 

 

Figure 3.18 Stromal compartments in the popLN one week after sciatic denervation  

(A) Blood and lymphatic endothelial cells and fibroblastic reticular cells were isolated and quantified. (B) 

HEVs in the middle of the popLNs were imaged and HEV density was calculated as HEV count per square 

millimeter. n = 5. Unpaired Student’s t-test. *p < 0.05. 

 

In summary, Sx led to overall expansion of cells in the popLN including leukocytes and 

stromal cells but only altered numbers of CD8 T cells and eosinophils in the blood. In the 

popLN, the three earliest responders – neutrophils, NK cells and migratory DCs, were 

possibly the initiators for the enlargement of popLN after denervation. 
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 Neutrophils and natural killer cells are bystanders to popliteal 

lymph node expansion after sciatic denervation 

Among all the investigated immune cells in the LNs, neutrophils, NK cells and migratory 

DCs were three populations peaking earlier than the others (Figure 3.17B). They were 

thus likely to be the pioneer cells initiating the response in the LN. To test the requirement 

of neutrophils for nodal expansion after denervation, an experiment including neutrophil 

depletion and sciatic denervation was conducted. Using an anti-Ly6G antibody, neutrophil 

counts were substantially decreased in spleen and blood, indicating an overall reduction 

of neutrophils in the system (Figure 3.19). However, neutrophil depletion via this 

treatment did not block nodal expansion after the denervation surgery (Figure 3.20).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.19 Verification of efficacy of neutrophil depletion  

Anti-Ly6G (1A8) antibody was injected intraperitoneally (ip) on the day of surgery and the fourth day after. 

(A) Circulating and splenic neutrophils were quantified. n = 3-6. Student’s t-test. **p < 0.01, ****p < 0.0001. 

(B) Neutrophil scatter profiles of blood and splenic samples were checked.   
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Figure 3.20 Effects of neutrophil depletion on popLN cellularity after unilateral sciatic denervation  

PopLN cellularity was assessed one week after denervation. In this period, mice received two doses (day 0 

and 4) of anti-Ly6G or isotype antibody. n = 6. Two-way ANOVA, Šídák’s post-test. 
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Using the same experimental design, an anti-NK1.1 antibody was used to eliminate NK 

cells, and nodal expansion was assessed. As the NK cell identity marker was targeted by 

the depletion antibody, CD49b was used as an alternative marker for NK cell detection. 

NK cell count dropped strongly after depletion (Figure 3.21A). However, lower NK cell 

numbers did not attenuate nodal expansion compared to the isotype-treated group 

(Figure 3.21B). Taken together, although the treatment did not induce a complete lack in 

these cell types, neutrophils and NK cells were likely redundant to nodal expansion after 

sciatic denervation due to lack of influence after depletion.  

 

 

 

 

 

 

 

 

 

Figure 3.21 Effects of NK cell depletion in the unilateral sciatic denervation model  

(A) Mice received two doses of antibody treatment on one and three day(s) after the surgery. Efficacy of NK 

cell depletion was evaluated by checking CD49b+ cells in the blood. n = 2-3. Unpaired Student’s t-test. **p 

< 0.01 (B) PopLN cellularity was counted a week after the unilateral sciatic denervation. n = 2-3. Two-way 

ANOVA, Šídák’s post-test. *p < 0.05. 
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 Nodal expansion after denervation is not due to degradation of 

dead terminal nerves but loss of innervation 

Complete neural resection separates terminal nerves from their central connection and 

thus the rest of the nervous system. These “dead” nerves enter Wallerian degeneration, 

which involves a macrophage response due to traumatic nerve injury [22, 40, 46, 48, 49]. 

Whether this immune reaction triggers the LN phenotype was tested by transplanting a 

small piece of sciatic nerve dissected from the denervated leg into the innervated leg of 

the same mouse (Figure 3.22).  

 

 

 

 

 

 

Figure 3.22 Scheme of auto-transplantation of the sciatic nerve  

A piece of sciatic nerve was transplanted into the other leg of the same mouse. The fragment of the nerve 

was buried between muscle bundles. 
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In this setting, one leg was innervated and the other was not, but both legs contained a 

segment of isolated nerve which could induce Wallerian degeneration on both sides and 

possibly drive a response in the LN. However, popLNs on the innervated side did not 

exhibited an increased LN cellularity despite the presence of an implanted nerve piece. 

PopLNs on the denervated side, on the other hand, enlarged (Figure 3.23). This result 

demonstrated that the denervation-induced LN expansion was likely not due to 

degradation of a dead nerve per se but due to loss of functional innervation.    

 

 

 

 

 

 

 

 

 

Figure 3.23 Cellularity of popLN after auto-transplantation and transection of sciatic nerve  

Transplantation of a piece of the siatic nerve was performed. A week after the surgery, popLN cellularity 

was assessed. The grey bar in the transplant group represents the cellularity of intact popLN with a 

transplanted piece of sciatic nerve. n = 3. Two-way ANOVA, Šídák’s post-test. **p < 0.01. 
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 Denervated popliteal lymph nodes exhibit increased leukocyte 

homing 

Since Sx dramatically altered cellularity in the popLN, we next investigated its effect on 

homing to and egress from the LN, along with local proliferation. Tracing donor cells 

isolated from spleen and LNs, which were adoptively transferred via intravenous injection, 

unveiled a preference of homing to LNs on the denervated side. In the same recipient, a 

4-fold increase of homed cells was obseved in the denervated LN compared to the 

innervated contralateral LN. (Figure 3.24A). Treating mice with antibodies directed 

against integrins or L-selectin prevented denervation-induced expansion of LNs (Figure 

3.24B), highlighting the requirement of cell recruitment from the blood in the denervation 

model. 

 

 

 

 

 

 

 

 

 

Figure 3.24 Enhanced homing to denervated popLNs  

(A) Donor cells were labeled and adoptively transferred i.v. to unilateral denervated recipients. Two hours 

afterwards, labeled cells in the popLNs were quantified. n = 8. Paired Student’s t-test. *p < 0.05. (B) Different 

antibodies to block homing were injected on the first and fourth day after the surgery and the popLN 

cellularity was analyzed on the seventh day. n=4 for groups with blocking antibodies, isotype groups 

behaved similarly and were pooled to give n=15. Two-way ANOVA, Tukey’s post-test. **p < 0.01, ****p < 

0.0001. 
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 Denervated popliteal lymph nodes exhibit unchanged egress rates 

To estimate the egress rate from the lymph node, we blocked homing and investigated 

how LN cellularity declined afterwards. Homing blockers were injected 2 hours after donor 

cell transfer to prevent more donor cells from infiltration. Donor cell numbers were 

quantified at 0 and 12 hours after homing blockade. Egress rate was calculated by dividing 

donor cell fraction at 12 hours from its counterpart at 0 hour (no block) and plotted as the 

remaining fraction in this 12-hour time window. This procedure was performed on mice 

one week after unilateral Sx. Comparison of remaining donor cell number revealed no 

differences between intact and denervated popLNs (Figure 3.25). This result, together 

with observation on homing dynamics (Figure 3.25), indicated that Sx at this stage of the 

response selectively enhanced LN homing but had no effect on egress to drive nodal 

expansion. 

 

 

 

 

 

 

 

 

Figure 3.25 Unchanged egress rate in denervated popLNs   

Remaining donor cells in the popLNs were quantified 12 hours after homing blockade following 2 hours 

homing of labeled donor cells. Prior to donor cell transfer, mice received unilateral sciatic denervation a 

week beforehand. n = 8. Unpaired Student’s t-test.  
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 The microenvironment of the denervated popliteal lymph node is 

pro-inflammatory and supports a germinal center response 

Microenvironmental changes in the popLN after denervation were investigated by the 

quantification of transcripts of messenger RNA (mRNA). Whole tissue quantitative 

polymerase chain reaction (qPCR) was performed to monitor the change of selected 

genes. Rpl32 was selected as the internal housekeeping gene control because of its high 

stability between sham and Sx groups (Figure 3.26).  

 

 

Figure 3.26 Stability of the housekeeping gene, Rpl32  

Expression of Rpl32 in sham and denervated popLNs was investigated one week after the surgery. Cycle 

thresholds (Cts, the minimal number of cycle sufficient to generate fluorescence over the detection limit) 

were compared between the popLNs from sham and denervated sides and the p value at each time point 

was shown above the data point in the graph acting as an indicator of stability across two parameters, 

surgery and time. n = 5. Two-way ANOVA, Tukey’s post-test. 
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The chemokines Ccl19, Ccl21, Cxcl12 and Cxcl13 and the cytokines Tnfa, Tgfb, Ifng, Il1a, 

Il1b, Il2, Il4, Il6, Il7, Il10, Il12, Il13, Il17a and Il17f were chosen for accessing chemotactic 

strength and T helper responses. PopLNs were harvested on 0, 1, 2, 7 days after unilateral 

Sx and their mRNAs were quantified by quantitative PCR.  

Ccl21 had no significant change and Ccl19 only showed an increase at D2 but on the 

sham side (Figure 3.27). Cxcl12 and Cxcl13 are related to germinal center (GC) 

responses. These chemokines peaked at D2, implying the formation of GCs (Figure 

3.27).  

With respect to inflammatory cytokines in denervated popLNs, Tnfa did not change, but 

Il1a, Il1b and Il6 significantly rose within 24 hours and reached a peak at D1 (Figure 3.27). 

Type 1 immunity-related cytokines Ifng and Il12 exhibited contradictory trends after 

denervation. The former went down and the latter went up (Figure 3.27). Il2, exhibited no 

changes in denervated popLNs (Figure 3.27). The type 2 immunity-related cytokine Il4 

did not change but Il13 went down after denervation (Figure 3.27). With respect to anti-

inflammatory cytokines, Tgfb did not change but Il10 went up at D2 after denervation 

(Figure 3.27). Il1, Il6, Il10, Il17a and Il17f are related to a Th17 response and all increased 

after denervation but in different phases (Figure 3.27). By far the strongest response was 

seen in Il1b (~70-fold increase in the Sx side), demonstrating that a strong inflammatory 

response was taking place after surgical denervation. In this denervation model, Il1, Il6 

peaked at D1, Il10 at D2 and Il17a and Il17f at D7 (Figure 3.27).  

This profile revealed several waves of chemokines and cytokines altered after 

denervation. These were strongly pro-inflammatory, and mainly related to Th17 and GC 

responses.  
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Figure 3.27 Gene expression profile of chemokines and cytokines in the popLNs  

PopLNs were harvested before the surgery, on the first, second and seventh day after the surgery. Total 

RNA was extracted and converted to cDNA. Using the Ct method, 18 genes were profiled. Data were 

presented as fold of expression of indicated genes compared with the expression at day 0. n = 5. Two-way 

ANOVA, Tukey’s post-test. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. 
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 Sciatic denervation causes acute inflammation in the paw 

In addition to the popLN, whole tissue qPCR was also performed on paw tissue in the 

same time window after denervation. The same set of chemokines and cytokines were 

investigated. 

Ccl19 and Ccl21 did not  show significant changes but Cxcl12 and Cxcl13 both were 

upregulated after denervation (Figure 3.28). The inflammatory cytokines, Tnfa, Il1a, Il1b 

and Il6, significantly rose at D2 after denervation with Il1b up ~>500-fold but also the anti-

inflammatory cytokine, Il10, rose and reached 6.5-fold a week after denervation (Figure 

3.28). Unlike Il10, Tgfb did not change (Figure 3.28). The peak timing of inflammatory 

cytokines and Il10 illustrated a biphasic profile of the microenvironment in the paws 

(Figure 3.28). With respect to type 1 and 2 immunity-related cytokines, Ifng, Il4, Il12 and 

Il13 did not exhibit significant changes (Figure 3.28), neither did Il2 or Il7 (Figure 3.28). 

Il17a and Il17f expression significantly increased after denervation but with different 

dynamics and amplitudes (Figure 3.28).  

This data set showed a two-wave profile of cytokine after denervation. The first wave was 

dominated by inflammatory cytokines at D1, particularly Il1b. After that, the second wave, 

Il10, Il17a and Il17f kept rising to higher levels. Cxcl12 and Cxcl13 were also induced by 

denervation. 
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Figure 3.28 Gene expression profile of chemokines and cytokines in the paw  

Paws were harvested before and on the first, second and seventh day(s) after the surgery. Bones were then 

removed from soft tissues and skin. Total RNA was extracted and converted to cDNA. Using the Ct 

method, 18 genes were profiled. Data were presented as fold of expression of indicated gene compared 

with the expression at day 0.  n = 5. Two-way ANOVA, Tukey’s post-test. *p < 0.05, **p < 0.01, ***p < 0.001, 

****p < 0.0001. 
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 Denervation shapes the microenvironment in paw and popliteal 

lymph node favoring germinal center formation and Th17 response 

Gene expression profiles of denervated paw and popLN were taken to compare the 

microenvironment in the popLN and its draining area. Their profiles showed strong overlap. 

Specifically, both exhibited upregulation of Cxcl12, Cxcl13, Il1a, Il1b, Il6, Il10, Il17a and 

Il7f (Table 3.1), suggesting a pro-GC formation and pro-Th17 microenvironment.  

There were still differences between denervated popLNs and paws. Upregulation of Tnfa 

was found in the paw but this was absent in popLN (Table 3.1). Ifng, Il7 and Il13 were 

repressed in denervated popLNs but this was not the case in denervated paws (Table 

3.1).  

PopLN should reflect the immunity of it draining area. Therefore, it is considered as the 

place where the ensuing immune reaction occurs. However, looking at the highest/lowest 

point of genes altered after denervation, popLN seemed to reach the point earlier than 

paw (Table 3.1), indicating that denervation might have effects on the popLN preceding 

peripheral inflammation. 

  

 

Table 3.1 Comparison of gene expression profiles of paw and popLN after denervation 

Gene expression profiles after denervation were summarized by the direction of change (up or down) and 

the highest/lowest timing in the progression. Only changes above 2-fold or below 0.5-fold from day 0 were 

included. Red box: upregulation. Grey box: downregulation. Underlined number in the box: the day after 

denervation having highest or lowest expression of indicated gene. Italics: fold-change to sham-operated 

side  
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 Sciatic denervation induces a B cell response in the denervated 

popliteal lymph node 

Apart from the migratory dynamics, local cell proliferation was investigated by staining of 

Ki67 to identify dividing cells. In denervated popLNs, Ki67 signal co-localized with B cells 

(stained by B220) but not T cells (stained by CD4 or CD8) (Figure 3.29A), indicating 

strong B cell proliferation. These proliferation foci were found in denervated but not intact 

popLNs (Figure 3.29B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.29 Identification of B cells as the major proliferating cells in the denervated popLNs  

(A) Sections from the middle of the popLNs were stained with anti-B220 (red), anti-CD4 and anti-CD8 (blue) 

and Ki67 (green), B cell, T cell and proliferating cell marker respectively. (B) Ki67 foci in images of intact 

and denervated popLNs were quantified. Paired Student’s t-test. **p < 0.01.  
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A common B cell reaction in LNs is the formation of germinal centers (GCs) and the 

production of high affinity antibodies, which can be identified by the activation molecule 

GL7. Immunofluorescence imaging showed GL7 co-located with the proliferating B cell 

clusters in the denervated LN (Figure 3.30), indicating that B cells were proliferating to 

form germinal centers in LNs on the denervated side.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.30 Identification of germinal centers in the denervated popLNs  

Sections from the middle of popLNs were stained with anti-B220 (blue), anti-GL7 (green) and Ki67 (red). 

GL7 is a germinal center marker. 
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Because formation of germinal centers requires interactions of antigen-reactive B cells 

with cognate T helper cells via MHCII-TCR and CD40-CD40L engagement [133, 134], 

antigen specific T helper cells are essential. Whether impaired MHCII-TCR interaction 

prevent the denervation-mediated LN phenotype was tested by doing denervation surgery 

in OT-II mice which exhibit mostly monoclonal T helper cells [320]. Unilateral Sx induced 

nodal expansion of popLNs in both WT and OT-II mice, however, to a markedly different 

degree, at 18.6 and 6.3-fold, respectively (Figure 3.31). This implied that loss of antigen 

specific CD4 T cells reduced the degree of nodal expansion after denervation.  

 

 

 

 

 

 

 

 

Figure 3.31 PopLN cellularity in wildtype and OT-II mice after unilateral sciatic denervation  

Age-matched OT-II and WT mice were denervated and their popLNs cellularity was analyzed a week after 

the surgery. n = 7 - 9. Two-way ANOVA, Šídák’s post-test. *p < 0.05, **p < 0.01. 
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Before cognate T cells can interact with B cells, T cells themselves need to be activated 

by antigen presenting cells (APCs) [321]. We tested the relevance of antigen presentation 

by injecting an MHCII-neutralizing antibody. MHCII blockade substantially dampened 

expansion of popLNs after denervation (Figure 3.32).  

 

 

 

 

 

 

 

 

Figure 3.32 PopLN cellularity change after MHCII blockade after unilateral sciatic denervation  

Mice received an anti-MHCII (Y3P) or isotype control antibody on the day of surgery and 4 days after the 

surgery. PopLN cellularity was assessed one after the surgery. n = 6. Two-way ANOVA, Šídák’s post-test.  
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 Afferent lymphatic input is required for denervation-mediated 

nodal expansion 

Afferent lymphatics channel immune cells and soluble molecules from peripheral tissues 

to draining LNs [191, 192, 223, 227]. Whether afferent lymphatic input was required for 

the development of denervation-mediated LN expansion was examined by combining Sx 

with a surgery that severed LNs from afferent lymphatics. Mice receiving unilateral Sx 

were divided into two groups. One group’s afferent lymphatics leading to popLNs were cut 

and those in the other group were left intact. The success of the afferent lymphatic 

disconnection surgery was verified right before sacrificing animals by inability of Evans 

Blue solution to reach popLN given via ipl injection (Figure 3.33).  

 

 

 

 

 

 

 

 

Figure 3.33 Verification of afferent lymphatic disconnection surgery  

Afferent lymphatics entering the popLN were surgically cut and sealed using a hot coagulation needle. A 

week after the surgery, the popLN was shown disconnected from the paw due to the inaccessibility of Evan’s 

Blue solution delivered via ipl injection.  
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Disconnection of afferent lymphatics to popLNs prevented the denervation-induced nodal 

expansion but did not reduce the paw swelling (Figure 3.34). This finding implied, in 

addition to the prerequisite of a LN homing process from blood that afferent lymphatic 

input is essential for the proliferation phenotype of denervated LNs.  

 

 

 

 

 

 

 

 

 

Figure 3.34 Influence of afferent lymphatic disconnection surgery to PopLN cellularity and Paw 

swelling after the unilateral sciatic denervation  

Sx and afferent lymphatic disconnection surgeries were performed on the same day. Paw thickness was 

recorded during the time and popLNs were harvested and analyzed a week after the surgeries. n = 6-13, 

inaccessibility of Evan’s Blue to the popLN was confirmed before sample harvest. Two-way ANOVA, Šídák’s 

post-test for popLN cellularity. Unpaired Student’s t-test for footpad thickness. **p < 0.01. 

 

 

 

  

0

5

10

15

PopLN

cellularity

Afferent lymphatics

C
e

ll
 n

u
m

b
e

r 
(x

1
0

6
)

intact cut
0.0

0.5

1.0

1.5

2.0

2.5

Footpad

thickness

A
U

C

sham
Sx

intact cut

****



 100 

 Sciatic denervation generates local and systemic effects 

Sciatic denervation caused a dramatic increase in cellularity of the affected popLNs 

(Figure 3.17). This response reflected a radical change of the local environment after 

denervation. In addition to producing local influences, whether sciatic denervation could 

further generate systemic responses was examined by investigating cells in the spleen, 

as the secondary lymphoid organ reflecting more systemic responses. The overall splenic 

cellularity increased slightly a week after unilateral denervation albeit being not statistically 

significant (Figure 3.35). At that time, more B cells were found in the spleen and there 

appeared to be a B cell response, aligned with the response in the popLNs, with expansion 

of germinal center B cells (GCBs) and plasma cells (PCs) (Figure 3.35). Higher splenic 

PC numbers can come from more circulating PCs or local de novo PCs generated in the 

spleen. However, the spleen contained not only more PCs, but GCBs (Figure 3.35). GCBs 

normally develop in the local LN whose draining area experiences immune challenges, or 

directly in the spleen in response to circulating antigens [138]. Therefore, increase of 

GCBs suggested an in situ B cell response in the spleen, which was remotely activated 

by sciatic denervation.  

 

 

 

 

 

 

 

Figure 3.35 Splenic neutrophil and B cell dynamic after unilateral sciatic denervation  

After the surgery, splenic cells were followed during the week afterwards. Neutrophils and B cells including 

total B cells, GCBs and PCs were quantified. GCBs and PCs represent the intermediate and final stage, 

respectively, in B cell activation and differentiation. n = 5. One-way ANOVA, Tukey’s post-test. *p < 0.05, 

**p < 0.01. 
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 Sciatic denervation increases antibody titers 

Given that sciatic denervation led to the formation of GCs and an increase of GCBs and 

PCs in spleen, we investigated whether systemic antibody titers were affected. Sera were 

isolated and isotyped from the denervated mice at different times after the surgery. 3 

weeks after sciatic denervation immunoglobulin (Ig) G1 and IgG2b were the major isotypes 

(Figure 3.36A). Therefore, total IgG titers in the blood were assayed and found to increase 

2-3-fold 3 weeks after denervation (Figure 3.36B), indicating that denervation not only 

caused local GC responses but also promoted systemic antibody generation. 

 

 

Figure 3.36 Production of antibodies after sciatic denervation  

(A) Sera taken from denervated mice at distinct times was isotyped. Heat-map value: absorbance of 450 

nm light. (B) Total IgG levels in the sera were quantified. n = 5. One-way ANOVA, Tukey’s post-test. *p < 

0.05. 
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 Antibodies induced by sciatic denervation are not reactive to 

antinuclear antigens 

To investigate whether the antibodies generated were autoreactive, sera from denervated 

mice were harvested at different times and incubated on HEp2 slides. These slides 

contain lysed HEp2 cells, which are engineered to display a broad spectrum of nuclear 

antigens such as double stranded DNA, histones and centromeric antigens [322]. The 

antibodies induced after sciatic denervation did not bind to nuclear antigens on the slide 

(Figure 3.37). This result suggested that antibodies elicited by the denervation process 

were likely not autoreactive. 

 

 

Figure 3.37 Reactivity of sera from denervated mice to antinuclear antigens 

Serum from each mouse was adjusted to 10 g/mL of total IgG. 25 L of adjusted sera were incubated with 

HEp2 slides overnight. The reactivity was imaged by immunofluorescence.  
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 The sciatic nerve possesses sympathetic and sensory properties 

Denervation leads to death and degradation of neural fibers, their separation from the 

neuronal body and loss of neural input in respective ramified areas [22]. The sciatic nerve 

consists predominantly of sensory fibers (70-80%), sympathetic fibers (about 20%) and 

motor fibers (5%) [278, 279]. Using immunofluorescence analyses for tyrosine 

hydroxylase (TH), substance P (SP) and calcitonin gene-related peptide (CGRP), bundles 

of different subsets in terms of compounds secreted were identified in the sciatic neural 

projections (Figure 3.38). This confirmed the sensory and sympathetic majority of nerves 

in the sciatic nerve.  

 

 

 

 

 

 

 

 

 

 

Figure 3.38 Nerve fiber properties of the sciatic nerve  

Cross sections of sciatic nerves were stained with vasculature markers (CD31, blue), neural structural 

markers (NF, green) and functional neural substance markers (TH, CGRP and SP, red). TH is the rate-

limiting enzyme in the catecholamine biosynthesis pathway, marking sympathetic nerves (left). CGRP (top 

right) and SP (bottom right) are secretory neuropeptides from sensory nerves. 
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Additionally, popLNs were imaged for sympathetic nerves, which were mainly found on 

the capsule and associated with vessels (Figure 3.39). CGRP+ peptidergic sensory 

nerves were observed in the popLN hilum region and along central vessels but not much 

on the capsule (Figure 3.40). This indicated that nerves might have functions in LN 

physiology, such as controlling the circulation and communication with immune cells. 

 

 

 

 

 

 

Figure 3.39 Sympathetic innervation of the popLN  

TH and CD31 labeled sympathetic nerves and endothelial cells, respectively. Sympathetic nerves were 

shown along the capsule and vessels in the hilum region of the popLN.   

 

 

 

 

 

 

 

 

Figure 3.40 CGRP+ nerves in the popLN  

Vessels, CGRP+ nerves and neural fibers were labeled by CD31, CGRP and 3-tubulin, respectively. CGRP 

signal was found on the LN capsule (bottom squares) and associated with hilum vessels (top squares). 
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 Sympathectomy does not alter cell number and migratory 

dynamics in lymph nodes but modifies the local microenvironment 

Given that the sciatic nerve possesses multiple and different nerve fibres, additional 

models were needed to ascertain whether sensory or sympathetic signaling was the main 

driver of the phenotype observed. To investigate functions of the sympathetic nervous 

system (SNS) in LN cellularity, two methods were used to manipulate sympathetic tone. 

Chemical sympathectomy by ip injection of 6-hydroxydopamine (6-OHDA) systemically 

abolishes sympathetic nervous functions in the periphery [323]. On the other hand, 

superior cervical ganglionectomy (SCGx) is a local surgical approach depriving 

sympathetic tone in the cervical area [317]. After 6-OHDA treatment, cellularity in popLNs 

was found to be similar to vehicle-treated groups (Figure 3.41A). To focus more on local 

effects, SCGx was performed. However, this did not cause changes in steady cellularity 

in superficial parotid lymph nodes (spLN), the LN directly innervated by the superior 

cerivical ganglion (SCG) (Figure 3.41B). These findings indicated sympathetic nerves by 

themselves to exert minimal effects on LN cellularity.  
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Figure 3.41 LN cellularity after sympathectomy  

(A) Mice were treated by 6-OHDA to chemically and systemically ablate sympathetic nerve functions and 

popLN cellularity was assessed. n = 5. Unpaired Student’s t-test. (B) Superior cervical ganglionectomy was 

performed as local sympathectomy and the cellularity of superficial parotid LNs was quantified afterwards. 

n = 3-4. Paired Student’s t-test.  
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However, since the microenvironment might be modified by sympathectomy we profiled 

the same set of genes as analyzed previously.  

With respect to chemokines no significant changes were observed (Figure 3.42). With 

respect to cytokines Il1a and Il4 were altered (Figure 3.42). These results identified Il1a 

and Il4 as two significantly upregulated genes in sympathectomized popLNs (Figure 3.42), 

indicating that loss of sympathetic tone might create an inflammation and type 2 immunity-

favored microenvironment.  
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Figure 3.42 Gene expression profile in popLNs after systemic sympathectomy  

After chemical sympathectomy, popLNs were harvested and gene expression was profiled based on 

quantitative PCR. n = 3. Unpaired Student’s t-test. *p < 0.05, **p < 0.01.   
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In the SCGx model, homing and egress rates were tested to answer whether sympathetic 

innervation altered cell migration to the LN. SCGx did not affect homing or egress of 

CFSE-labeled to LNs (Figure 3.43AB). These results showed that the homing capacity 

and dwell time were not altered by local sympathectomy alone. In summary, 

sympathectomy did not change migration pattern or cellularity in steady state. 

 

 

 

 

 

 

 

 

Figure 3.43 Homing and egress rates in local sympathectomized spLNs  

(A) Labeled donor cells were transferred and homed to sham or SCGx spLNs in a 2-hour window. Homing 

cells were then quantified.  n = 10. Paired Student’s t-test. (B) After 2 hours of homing, homing blockers 

were applied. Remaining cells were then quantified after indicated periods.  n = 6. Paired Student’s t-test.   
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 Antagonizing neuropeptide receptors is not sufficient to trigger 

nodal expansion 

Sensory nerves compose the biggest portion of the sciatic nerve [278, 279]. Among the 

substances sensory nerves secrete, SP and CGRP are the major neuropeptides with 

immune regulatory effects [78, 98, 106]. Given that loss of innervation caused nodal 

expansion, we assessed whether blockade of sensory neuropeptide signaling generated 

the same phenotype. To mimic conditions of loss of sensory neural tone, antagonists of 

receptors of SP and CGRP, SR140333 (a SP receptor antagonist) and BIBN4096 (a 

CGRP receptor antagonist) were i.p. injected in mice. No obvious effects on cellularity in 

hematopoietic compartments including blood, BM, spleen, popLN and iLN were observed 

(Figure 3.44).  

 

 

Figure 3.44 Cellularity of bone marrow, spleen, popLN, iLN and blood after chronic neuropeptide 

antagonism  

SR140333 and BIBN4096 were given daily individually or in combination for a week. Cellularity in 4 organs 

and circulating leukocyte counts were monitored. n = 3-6. One-way ANOVA, Tukey’s post-test.  
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The only studied population, which changed after neuropeptide antagonism, were 

neutrophils in the popLN (Figure 3.45). However, neutrophils were previously shown to 

be bystanders to the LN phenotype after denervation. This finding showed that sensory 

neuropeptide antagonism did not change popLN cellularity  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.45 Immune subsets in the popLNs after chronic neuropeptide antagonism  

SR140333 and BIBN4096 were given daily individually or in combination for a week. PopLN cellularity was 

analyzed by flow-cytometry. n = 6. One-way ANOVA, Tukey’s post-test. *p < 0.05. 
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 SP and CGRP agonism counteract the nodal expansion induced by 

sciatic denervation 

Sciatic denervation leads to loss of neural substance secretion in the leg. However, 

inhibition of SP and CGRP by themselves did not reproduce the phenotype of nodal 

expansion (Figure 3.45). It was next investigated whether antagonizing or adding SP and 

CGRP could enhance or attenuate denervation-induced nodal expansion. Treatment of 

animals with neither SR140333 or BIBN4096 separately nor combined inhibited 

denervation-induced nodal expansion (Figure 3.46) or spleen cellularity (Figure 3.47).  

 

 

 

 

 

 

 

 

 

 

Figure 3.46 PopLN cellularity after unilateral sciatic denervation surgery in combination with 

neuropeptide antagonism  

Mice were treated with SR140333 and/or BIBN4096 daily until the mice were sacrificed. PopLN cellularity 

was assessed one week after denervation. n = 3. Two-way ANOVA, Tukey’s post-test. *p < 0.05, **p < 0.01, 

***p < 0.001. 
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Figure 3.47 Splenic cellularity after unilateral sciatic denervation surgery in combination with 

neuropeptide antagonism  

Mice were treated with SR140333 and/or BIBN4096 daily until mice were sacrificed. Splenic cellularity was 

checked one week after denervation. n = 3. One-way ANOVA, Tukey’s post-test. 
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On the other hand, giving neuropeptides as agonists together with denervation 

suppressed the amplitude of denervation-induced cellularity, specifically of CD11c cells, 

T cells and neutrophils (Figure 3.48). The smaller increase in CD11c and T cell numbers 

indicated a weaker activation of adaptive immunity which was reflected by inferior 

expansion of B cells in the groups receiving SP and/or CGRP, although not statistically 

significant (Figure 3.48). 

 

 

Figure 3.48 PopLN cellularity after the unilateral sciatic denervation surgery in combination with 

neuropeptide agonism  

Mice were treated daily with SP and/or CGRP until mice were sacrificed. PopLN cellularity was assessed a 

week after denervation. n = 5-6. Two-way ANOVA, Tukey’s post-test. *p < 0.05, **p < 0.01, ***p < 0.001, 

****p < 0.0001.  
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Repressed activation by neuropeptide treatment did not only occur in the popLNs but also 

in the spleen. Mice treated with neuropeptide, despite receiving the same unilateral sciatic 

denervation, exhibited lower numbers of GCBs and PCs in the spleen compared with the 

vehicle-treated group (Figure 3.49).  

 

 

Figure 3.49 Splenic cellularity after the unilateral sciatic denervation surgery in combination with 

neuropeptide agonism  

Mice were treated daily with SP and/or CGRP until mice were sacrificed. Splenic cellularity was assessed 

one week after denervation. n = 6. One-way ANOVA, Tukey’s post-test. *p < 0.05. 
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To conclude, antagonism of SP and CGRP receptors alone did not reproduce nodal 

expansion (Table 3.2), the phenotype after sciatic denervation, indicating the existence 

of contributing factors. However, combining denervation surgery with neuropeptide 

agonism showed an abrogated increase in numbers of key lymphocytes and CD11c cells, 

pointing out the inhibitory effects of neuropeptides in this system (Table 3.2).  

 

 

Table 3.2 Summary of effects of neuropeptide antagonism or agonism on cell numbers in popLNs 

after denervation 

Mice underwent unilateral Sx and were treated by either agonist(s) or antagonist(s) of neuropeptide(s) for a 

week. Numbers of total cells and subsets of popLNs and spleens after denervation are summarized. The 

comparisons were made between vehicle treated and experimental groups. In the original figures, difference 

between groups were evaluated by One-way (spleen) or Two-way ANOVA (popLN) and then Tukey’s post-

test. n = 3-6. Minus symbol (–) notes inhibition of expansion of indicated cell type under particular treatment. 

–p < 0.05, – –p < 0.01. *showing trend, but not statistically significant.  
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4 Discussion  

 Overview  

Interactions between the nervous and immune systems are bidirectional communications. 

Actions from the immune system such as cytokines engagement or pathogenic T cell 

infiltration of the brain, spinal cord and peripheral nerves create sensory perceptions or 

autoimmune responses [324]. Nerves can actively influence immune responses by 

releasing functional neural substances [78, 272, 274, 280, 282]. The latter has been 

observed in the cases of infections [84, 85, 299, 304] and neural injuries [14, 17], in which 

the nervous system takes actions to combat infectious or traumatic perturbations. 

However, whether and how nerve-driven immunomodulation is controlled in a regional 

manner in homeostasis and pathology has not yet been made clear. Furthermore, whether 

neural injury causes long-term immune outcomes has not been assessed. To understand 

the mechanistic details is challenging because there are functionally diverse neural 

substances from different nervous subsets, and various physiological functions controlled 

by nerves, such as muscle contraction, which might in turn affect lymph flow and ensuing 

immune responses.  

In this project, the popliteal lymph node (popLN) was chosen as the research object 

because it can facilitate adaptive immunity (which ties to immune memory), has a clear 

drainage area and is innervated by the sciatic nerve, which can be accessed by surgical 

approaches. This enabled studying the regional immune responses in the popLN and its 

drainage area under local manipulation of neural tones. Immune cell numbers, 

chemokines and cytokines were assessed and quantified after surgical operations. To 

tackle the problem of high complexity of neural substances, nerves were grouped by their 

functional properties, such as sympathetic and sensory nerves, and examined individually 

by surgical or pharmacological methods.  

Paw swelling and popLN expansion were observed after sciatic denervation (Sx) due to 

an increase in leukocyte numbers (Figure 3.1, Figure 3.2, Figure 3.9 and Figure 3.17). 

At the cellular level, different immune subsets exhibited different dynamics of popLN 

infiltration and resulted in vigorous formation of germinal centers (GCs), which leads to 
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increased circulating immunoglobulin G (IgG) levels (Figure 3.24, Figure 3.30 and Figure 

3.36). These antibodies did not recognize general self-nuclear antigens as some 

autoreactive antibodies do (Figure 3.37). Given that blockade of major histocompatibility 

complex class II (MHCII) suppressed nodal expansion after denervation, the reaction was 

likely antigen-dependent (Figure 3.32). To identify causative neural tones, subset-specific 

depletion of nerves was conducted. None of the neural subtype ablations studied drove 

popLN cellularity higher (Figure 3.31, Figure 3.34 and Figure 3.35). However, Sx led to 

lesser nodal expansion once substance P (SP) and calcitonin gene-related peptide 

(CGRP) were given systemically (Figure 3.48 and Figure 3.49). These results suggest 

that denervation causes an antigen-dependent response with excessive serum IgG, which 

can be tuned down by administration of SP and CGRP. 

 

 Main phenotypes of sciatic denervation – popliteal lymph node 

expansion and paw swelling 

To shut down the neural tones in the leg, both femoral and sciatic nerves were resected.  

In this condition, ipsilateral popLNs and paws were found to be expanded (Figure 3.1). 

Paw leukocyte populations and popLN cellularity strongly increased in the denervated 

condition, indicating the steady state was shifted toward inflammation in denervated 

popLNs and paws (Figure 3.2, Figure 3.9 and Figure 3.17). However, a report from 

Kubera et al. studying how nerves influence the host-versus-graft (HvG) and graft-versus-

host (GvH) reactions obtained different results. In that paper, unilateral Sx itself did not 

increase the size of denervated popLNs  after a week to 10 days, but additional 

transference of splenic cells elicited stronger responses in the denervated popLN of both 

HvG and GvH groups [325]. This observation suggests that denervation alone does not 

change popLN cellularity but rather increases its reactivity to further stimulation. 

Compared to the system in this project, the paper applies the same surgical approach but 

uses a different mouse line. The recipient mice in the GvH group are the F1 of 

C57BLxCBA which do not exhibit autonomous denervation-induced nodal expansion, 

whereas the C57BL6/N mice used in this project do. The real reason for differing results 

between the two studies remains unclear but may be mouse-strain dependent. 
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4.2.1 Direct innervation of the popliteal lymph node by the sciatic nerve 

To examine which nerve causes nodal expansion, individual denervation of the sciatic or 

femoral nerve was performed and the Sx successfully reproduced the nodal expansion 

phenotype of double denervation (Figure 3.3). This result shows that sciatic but not 

femoral denervation is required for the nodal expansion phenotype, prompting the next 

question: What makes the sciatic nerve special for the popLN responses? Iannacone et 

al. injected vesicular stomatitis virus (VSV) into the footpad of CD169 macrophage-

deficient mice and found the lethality due to viral dissemination to the central nervous 

system was prevented by sciatic nerve resection [198]. They focused on the antiviral role 

of CD169 macrophages in the popLN but also showed the direct innervation of popLN by 

the sciatic nerve. Based on this study, the direct innervation of popLN by the sciatic nerve 

may be the key to explain why only cutting the sciatic but not femoral nerve contributes 

comparable nodal expansion. A hypothesis that direct innervation is critical for popLN 

responsiveness or sensitivity was therefore proposed. A surgical method – ankle 

denervation (ANKx) – bypassing the popLN but denervating its drainage area was then 

developed to test this hypothesis (Figure 3.4). 

Histology analysis revealed that Sx generated paw inflammation on the denervated side 

but not the sham side whereas ANKx elicited paw inflammation even on the sham side 

(Figure 3.6). ANKx requires opening of skin encircling the ankle to expose three major 

branches of the sciatic nerve and the operation itself causes a certain degree of tissue 

disruption. This resulted in the paw skin thickening regardless of denervation. The popLN 

drains the paw so it in fact responded to this perturbation by having more cells (Figure 

3.7A). This effect was stronger on the denervated side but neither ANKx nor sham of 

ANKx produced comparable nodal expansion to Sx (Figure 3.7A). Given that the ANKx-

sham operation itself generated an inflammatory background, which was substantially 

higher than the Sx-sham group, the denervation data were normalized to their respective 

sham controls for comprehensive comparisons. Sciatic denervation at hip level expanded 

popLN cellularity to about 13-fold but denervation at the ankle level had less than doubled 

(Figure 3.7B). This result, together with individual denervation of the femoral or sciatic 

nerve, highlights the importance of direct innervation of the popLN by the sciatic nerve. 
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However, there is an argument that the limited arousal effects of ANKx on popLN 

cellularity is due to being the relative small portion of popLN’s drainage area. Another 

concern was whether afferent lymphatics were concurrently cut in ANKx, but this was later 

proven wrong (Figure 3.5). To elucidate the relationships between size of denervation 

portion, degree of paw swelling and popLN cellularity, surgeries creating distinct degrees 

of denervation were designed to understand the dependence of these phenotypes 

(discussed in 4.2.4). 

 

4.2.2 Dead nerve-induced immune responses 

Axotomy triggers WD involving demyelination and immune reactions to the distal stump 

[22], indicating that the distal fragment of the nerve activates immune responses. Whether 

the nodal expansion phenotype observed after Sx is a coherent event driven by 

degradation of dead nerves was examined using autologous transplantation of the sciatic 

nerve (Figure 3.22). In that case, both legs contained a separated nervous segment, but 

one leg was intact and the other was denervated. PopLNs receiving both transplant and 

sham surgery of denervation did not develop nodal expansion a week after the surgeries 

(Figure 3.23). This result almost rules out the dead nerve-induced immune response to 

be the key contributor for denervation-induced nodal expansion. The only concern is 

whether the transplant segment has immunogenic competence even if it is not connected 

to recipient vasculature. This might interfere with recruitment of immune cells to the lesion 

via circulation. However, this issue of having isolated vasculature is unlikely to be the 

decisive factor, which prevents nodal expansion because dead nerves left by femoral, and 

ankle denervation with connected vessels did not induce nodal expansion (Figure 3.3 and 

Figure 3.7). Together with previous findings, nodal expansion after denervation is more 

likely to be driven by loss of innervation, and partially associated with peripheral 

inflammatory responses in the drainage area. 
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4.2.3 Causes of paw swelling  

Apart from the nodal expansion, Sx also led to paw swelling which was associated with 

increased leukocyte content (Figure 3.9), but even so, denervation was found to reduce 

cell density in paws (Figure 3.8), meaning that an increase of either cell size or interstitial 

fluid occurred. The former cause of swelling is supported by many clinical cases in which 

patients suffering from trauma-caused muscle denervation develop muscle hypertrophy 

(enlargement of muscle fibers) or pseudohypertrophy (due to an increase of fat tissues 

within muscle bundles) [319]. However, the forward scatter of denervated samples was 

not higher than the forward scatter of sham-operated samples in flow cytometry (data not 

shown), indicating that paw swelling was not driven by alternation of cell size. The latter 

cause can be examined by Evans Blue permeability assay. This assay was conducted but 

unfortunately the photon absorbance levels from such tiny pieces of tissue were below 

the detection limit. Besides, the harvesting method was too disruptive to retain the 

interstitial fluid as bone removal was necessary. However, during harvesting, it was noted 

that denervated paws had less tissue resilience against mechanical pressure and more 

fluid escaped, suggesting the latter reason is more likely. 

Histamine is recognized to associate with allergy and inflammation, creating local edema 

and leukocyte infiltration [326, 327]. Typical histamine-releasing cells are mast cells, 

basophils, enterochromaffin-like cells and neurons. However, histidine decarboxylase, 

which synthesizes histamine, is widely expressed in immune cells such as neutrophils, 

macrophages, dendritic cells (DCs) and T cells [328]. The functions of histamine are 

diverse, and vary according to the receptors stimulated, their coupled G-proteins, and the 

recipient cell types [326-328]. Histamine can bind to 4 receptors with different histamine 

affinities and functions: in general histamine H1 to 4 receptors (H1R, H2R, H3R and H4R) 

fulfill allergic responses, gastric reactions, neurotransmitter’s roles and immune 

modulations respectively [326-328]. These diverse effects are linked to the G protein 

coupled to each receptor – Gq (H1R), Gs (H2R), and Gi (H3R and H4R) (Table 4.1). Paw 

swelling could potentially be a response of the skin due to release of histamine. Using the 

model of Potamotrygon motoro stingray venom (PmV) injection in mouse paws, Kimura 

et al. found H1R, H3R and H4R antagonism and cromolyn – a mast cell granule stabilizer 

– can reduce PmV-induced edema and leukocyte infiltration [329]. Cetirizine (CTZ), 
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initially known as H1R antagonist but later found to have inhibitory functions at H4R as 

well [328], elicited a reduction of paw swelling by roughly 40% (Figure 3.14) and a lower 

paw leukocyte content (particularly of neutrophils) (Figure 3.15), agreeing with the 

findings of Kimura et al. [329]. Therefore, denervation-induced paw swelling is likely due 

to histamine release and H1R and/or H4R signaling.  

 

 

Table 4.1 Histamine receptors: expression, signaling and immune functions 

The original tables are published in [330] and [331]. This table combined the information from those reviews 

to provide an overview of immunological functions of histamine signaling. 

 

Receptor
GPCR 

α-subunit
Expression Intracellular signals Immunological activity

H1R Gαq

Smooth muscle cells, 

endothelial cells, nerve 

cells, epithelial cells, 

neutrophils, eosinophils, 

monocytes, macrophages, 

DCs, T and B cells

PLC, PIP2, DAG, IP3, 

Ca2+, PKC

Allergic reactions and 

inflammation, histamine release, 

eosinophil and neutrophil 

chemotaxis, antigen presentation 

ability, Th1/IFN-γ  activity, and 

recruitment of Th2 cells; decreases 

humoral immunity and IgE 

production

H2R Gαs

Smooth muscle cells, 

endothelial cells, nerve 

cells, epithelial cells, 

neutrophils, eosinophils, 

monocytes, macrophages, 

DCs, T and B cells

Adenylate cyclase, 

cAMP, PKA, CREB, 

EPAC

Increases IL-10 production and 

humoral immunity; decreases 

cellular immunity; inhibits Th2 cells 

and cytokines, chemotaxis of 

eosinophils, and neutrophils; 

suppresses IL-12p70 of MoDCs

H3R Gαi /o

Histaminergic neurons, 

monocytes, eosinophils

Inhibits adenylate 

cyclase and cAMP, 

increases Ca2+ levels

Control of neurogenic 

inflammation, increased 

proinflammatory activity, and 

antigen presentation capacity

H4R Gαi /o

Eosinophils, DCs, 

Langerhans cells, 

neutrophils, T cells, 

basophils, mast cells

Inhibits adenylate 

cyclase and cAMP, 

increases Ca2+ levels

Affects pDC and mDC functions, 

Th1/Th2 differentiation, eosinophil 

and mast cell chemotaxis, IL-6 

production, leukotriene B4, and 

migration of Tγ /δ  cells; increases 

IL-17 secretion by Th17 cells, and 

regulatory T recruitment; 

suppresses IL-12p70 of MoDCs

Table 4.1 Histamine receptors: expression, signaling and immune functions
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In neurogenic inflammation, SP and CGRP released by nerves drive mast cell 

degranulation and histamine secretion which, in return, positively stimulates nerves to 

release SP and CGRP [332]. The sensory events generated by this axis are 

hypersensitivity and itching, which can be blocked by inhibiting H1R and H4R [333]. Loss 

of neural vesicular regulation by cutting nerves results in the release of neural substances 

at distal nervous ends. This mechanism involving the neuropeptide-histamine axis can 

explain the observations of denervation-induced swelling and increase of leukocytes in 

paws. 

Natural killer (NK) cells, B and T cells, neutrophils, macrophages and dendritic cells 

express H1R and/or H4R [326]. Among all the immune subsets investigated in this project, 

CTZ treatment significantly reduced the number of neutrophils and a particular DC subset 

– CD103+ DCs – in the paw after denervation (Figure 3.15). Even so, reduction of total 

leukocytes in denervated paws after CTZ treatment were mild and did not reach significant 

levels (Figure 3.15), indicating that there are other pathways controlling leukocyte 

infiltration in addition to H1R and H4R signaling. Moreover, the vasodilation activity of 

histamine can account for the increased interstitial fluid in denervated paws. These 

findings suggest that histamine, either mast cell-derived or neurogenic, is one of the 

contributors of denervation-induced paw swelling and leukocyte infiltration (Figure 4.1). 

The role of another mast cell mediator, tumor necrosis factor alpha (TNF), in the LN is 

discussed in 4.2.4.5. 
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Figure 4.1 The cascade of neural substance-driven local swelling and lymph node activation 

The neural substances induce vasodilation and plasma leakage directly or indirectly via stimulating mast 

cell-derived histamine. Increased vessel permeability as well as direct actions of histamine on immune cells 

facilitates leukocyte activation and recruitment. TNF and histamine are released concurrently during mast 

cell degranulation. Interestingly, nodal hypertrophy during infection is selectively enhanced by TNF but not 

histamine [314]. However, CTZ treatment blocked denervation-induced nodal expansion (Figure 3.16), 

differentiating the role of histamine between infection and neural injury models. 

 

4.2.4 Dependence of phenotypes  

Looking at the dynamics of these phenotypes, paw thickening was an acute event which 

peaked at day 1, started to recess, and returned to baseline at day 7 (Figure 3.2A). While 

paw swelling had decreased to normal levels by day 7, popLN cellularity was still in the 

growth phase, and began to decline after week 3 (Figure 3.2B). Chronologically, the paw 

phenotype occurred much earlier than the popLN phenotype, making the reaction in the 

paw likely to be a cause of the popLN phenotype. Their dynamics suggest that paw 

swelling and nodal expansion are either independent events with difference paces or that 

the latter depends on the former due to the order of occurrence. To test this, different 
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branches of the sciatic nerve were cut and the degree of paw swelling and level of 

cellularity increase in the popLNs were compared. Moreover, these two phenotypes seem 

not to be sustainable given they showed a trend of recession, suggesting the initiators of 

these phenotypes were acute and transient.  

 

 

 

 

 

 

 

 

Figure 4.2 Magnitude of paw swelling and nodal expansion during the time after denervation 

Data from Figure 3.2 were re-scaled and merged into the same graph for comparison of dynamic of 

phenotypes. Peaks of mean measured values were set as 100% and the mean values of sham group at D0 

were 0%. Grey line: paw thickness; red line: popLN cellularity. Solid line: the denervated side; dash line: the 

sham side. 

 

4.2.4.1 Paw swelling quantification 

Continuous measurement of paw thickness creates a profile of pathology progression 

during a period of time. However, due to having 3 parameters – innervation status, time, 

and branch(es) cut – comparison between groups was difficult (Figure 3.10). By 

integrating the area between lines of intact and denervated over time, these two factors 

were compressed into one with the unit of area under the curve (AUC) for simpler 

comparisons (Figure 3.11). This method is also more intuitive visually. However, it 

sacrifices details of trends at specific times and can overlook important information 

(discussed in 4.2.4.4). 
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4.2.4.2 Single and dual denervation 

In the branch denervation dataset, nodal expansion reflected paw swelling levels in single 

denervation groups but not in dual denervation groups (Figure 3.11 and Figure 3.12). 

Therefore, a simple model that nodal expansion represents size of denervation cannot 

explain cases of two branches denervation, and further suggests cross-talk or 

compensation between nerves once some nerves are cut and others are left intact. The 

idea of interactions between intact nerves and denervated tissues resembles the spared 

nerve injury (SNI) model designed to study peripheral pain by cutting two branches of the 

sciatic nerve. Denervation of the common peroneal nerve (CPN) and the tibial nerve (TN) 

affects mechanical sensitivity and thermal responsiveness of neighboring nerve territories 

[334], indicating that sensory changes in the areas remaining innervated to be driven by 

loss of innervation in the nearby areas. The principle of SNI can be a possible mechanism 

accounting for the relation between popLN cellularity and paw swelling levels in the dual 

denervation groups. 

 

4.2.4.3 Paw swelling levels, denervation degrees and popliteal lymph node cellularity 

In the branch denervation experiments, groups exhibited different denervation areas, paw 

swelling levels and popLN cellularity (Figure 3.11 and Figure 3.12). Correspondence 

analyses showed subtle correlations between nodal cellularity and denervation degree or 

swelling level (Figure 3.13AB), but a substantial link between paw swelling levels and 

denervation degrees (Figure 3.13C). These results together with the chronological 

progression of nodal expansion and paw swelling (Figure 3.2 and Figure 3.13) illustrate 

a plausible conclusion that denervation confers different paw swelling levels by size of the 

nerve, but this correlation only loosely transfers to nodal expansion. PopLN definitely 

reflects local immune status at some degrees but precise regulation of popLN cellularity 

might involve more complicated circuits. Therefore, the theory of SNI involving effects of 

neighboring denervated tissues might be a way to explain the observations here.  

 



 127 

4.2.4.4 A paw swelling resolution model  

Looking at the paw thickness curve rather than the AUC of paw swelling in the branch 

denervation experiments, thickness of the denervated paws in groups All and CPN+SN 

had still not returned to basal level by day 7, graphically appearing like opened jaws 

(Figure 3.10). This pattern seems to relate to the popLN cellularity because these two 

subgroups had the highest popLN cellularity in the dataset and the CPN+SN group with 

the widest opened jaws also had the highest popLN cellularity (Figure 3.12). Based on 

this fact, the popLN cellularity might be influenced by the paw swelling at the last day (day 

7), suggesting groups failing to resolve the swelling have greater nodal expansion. If this 

holds true, the factor controlling this process would be very important to predict nodal 

expansion.  

The paws which had the sural nerve (SN) spared resolved the swelling at D4, quicker than 

those which had the SN cut (Figure 3.10). This observation renders the SN potentially a 

component of resolving paw swelling. Cutting only SN had very little impacts on paw 

swelling (Figure 3.11) and subsequent popLN cellularity (Figure 3.12). Cutting the CPN 

seems to be a driver of paw swelling and nodal expansion. This is compatible with the 

data of groups All, CPN, CPN+SN. In All and CPN+SN groups, losing resolution force (SN) 

and having pro-inflammatory power (CPN) together caused opened jaws and nodal 

expansion. The open jaw was not observed in the CPN group which still retained the SN 

innervation (Figure 3.10 and Figure 3.12). In this assumption, loss of the CPN can drive 

paw swelling but has nothing to do with resolution. Loss of the SN can have little effects 

on initiation of swelling but plays the key role in resolution of swelling which then 

determines level of nodal expansion. This sounds reasonable and fits the data. However, 

the effects of cutting the TN are hard to define.  

Cutting the TN alone caused paw swelling which was resoved early but still caused 

substantial nodal expansion (Figure 3.10 and Figure 3.12), suggesting loss of the TN can 

lead to paw swelling. According to the previous theory, cutting the SN in addition to the 

TN should have sustained the paw swelling and led to nodal expansion. However, this did 

not occur in TN+SN group (Figure 3.10 and Figure 3.12), suggesting that loss of the TN 

regained the resolution power. This can explain the phenomena in CPN+TN group having 

the TN cut and the SN with extra resolution power. If this is true, TN denervation imposes 
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two contridictory forces to paw swelling: one is positively driving it, and the other is 

facilitating resolution. When it comes to single denervation, the pro-inflammatory 

momentum is dominant and in the cases of dual denervation then it depends on the 

balance of swelling drivers and resolvers. Collectively, effects of sciatic branch 

denervation on paw swelling involves complex crosstalk between neural territories and 

different levels of immobility issues. According to the empirical data (Figure 3.10), a two-

factor system consisting of swelling initiation and resolution is proposed (Table 4.2). It 

would be interesting to incorporate neurology to study contributions of each branch on 

peripheral swelling/edema in the future.    

 

 

 

 

Table 4.2 Proposed effects of sciatic branches on paw swelling 

In this model, paw swelling is taken as the outcome of two proposed contributors, swelling initiation and 

resolution, based on the empirical data (Figure 3.10). 

 

This hypothesis of the resolution model takes the paw swelling at day 7 as the net result 

of the two forces and this outcome might decide the level of paw swelling and correlate 

with nodal expansion level. The feature of this model is instead of taking any single branch 

as either pro-swelling or anti-swelling, it divides the influence of branch denervation into 

two factors – driver and resolver. This model can explain the phenomena in the branch 

denervation dataset and using the net result at day 7 to link paw swelling and nodal 

expansion. This requires displaying paw thickness in a time-based plot to see how well 

the swelling resolved, which would not be seen if only the AUC compression method had 

been used. It also implies that the endpoint, rather than the process of paw swelling, is 

more relevant to nodal expansion. This hypothesis of how the paw and the popLN react 

to high level interactions between nerves and their territories might take another whole 

project to study.  

Table 4.2 Proposed effects of sciatic branches on paw swelling

Swelling initiation power Resolution power loss

CPN +++++ +

TN +++ (single denervation) +/-

SN + +++++

Denervation
Nerve
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4.2.4.5 Targeting paw swelling 

To further confirm if paw swelling and increased paw leukocyte numbers are required for 

popLN enlargement, CTZ was selected to treat mice before the denervation operation. 

CTZ treatment reduced tissue swelling by 40% (Figure 3.14) and leukocyte content from 

about 7% to 2.5% (Figure 3.15) in denervated paws. Although these effects were not 

statistically meaningful, nodal cellularity expansion was significantly suppressed by CTZ 

treatment (Figure 3.16). These data positively correlate leukocyte numbers in the 

drainage area and tissue swelling with popLN expansion. Given that CTZ treatment had 

more pronounced effects in the popLN than in its drainage area (Figure 3.14, Figure 3.15 

and Figure 3.16), this dataset points out the importance of histamine, H1R and H4R in 

denervation-induced LN responses. 

How does histamine participate in immune responses, especially adaptive immunity in 

LNs and how does it relate to neural injury? Histamine in nerves has been known for more 

than 70 years decades [335]. The sources of histamine can be neurogenic (histaminergic 

nerves) or non-neural cells (mast cells and basophils). In the peripheral WD model, Olsson 

and Sjöstrand found endoneurial mast cells to start to proliferate in the distal end of the 

resected nerves 3 days after the operation [336]. Those mast cells degranulate to release 

histamine after Sx [337]. Mast cells are believed to facilitate DC activation and create a 

more permeable environment for leukocyte extravasation and cytokine diffusion by 

secreting not only histamine but SP, CGRP, interleukins, prostaglandins, interferons and 

chemokines [338, 339]. Degranulation of mast cells results in concurrent release of 

multiple soluble mediators including tumor necrosis factor alpha (TNF) and histamine. 

These mediators control the magnitude and duration of immune responses. Specific to 

adaptive immunity, TNF but not histamine derived from mast cells in the infection 

condition promotes expression of vascular cell adhesion molecule 1 (VCAM1) which 

drives local recruitment of lymphocytes to the LN [314]. This finding links peripheral mast 

cells to expansion of LNs where the adaptive immunity develops. Notably, histamine 

injection together with bacterial infection to mast cell-deficient mice does not cause the 

nodal hypertrophy [314], but activation of histamine receptors, H1R and H4R, were 

required for denervation-induced nodal expansion (Figure 3.16). These results indicate 
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that histamine has different roles of facilitating adaptive immunity in the LN in infection 

and sterile injury models. Mast cells do not only affect lymph node and further adaptive 

immune responses via TNF but also closely collaborate with DCs for adaptive immunity 

[340]. Mast cells can transfer antigen-bound IgE to DCs, which then induces T cell 

proliferation [341]. Vice versa, DCs can equip mast cells with epitope-loaded MHCII via 

trogocytosis (a process in which immune cells, mostly lymphocytes, acquire surface 

molecules from antigen presenting cells by membrane conjugation) and MHCII-bearing 

mast cells preferably induce a type 1 immune response [342]. Given that MHCII is the key 

molecule for antigen presentation in the secondary lymphoid organs, mast cells might not 

only influence adaptive immune immunity via histamine but also MHCII. It is then important 

to understand what happens in the enlarged popLNs. 

 

 Reactions in the popliteal lymph node 

Denervated popLNs exhibited significant enlargement. This expansion comprised 

substantial increase of the overall cellularity (Figure 3.2B), which was supported by a 

broad-range expansion of analyzed leukocyte subsets (Figure 3.17A). Vigorous 

expansion was observed specifically before the second post-surgical week followed by 

maintenance and recession phases (Figure 3.2B and Figure 3.17A). In a week after Sx, 

the denervated popLN contained 8~30 times more cells than the contralateral one (Figure 

3.3 and Figure 3.17B). Profiling immune subset progression by flow-cytometry on this 

stage revealed cell type-dependent multiphasic expansion behaviors (Figure 3.17B). 

There were a few key features: (1) numbers of all investigated cell types kept increasing 

within the week and reached relatively high levels at day 7; (2) expansion of T and B cells 

and resident DCs began slowly but grew quickly later; (3) CD169 macrophage numbers 

expanded stably; (4) Migratory DCs, NK cells and neutrophils were early peaking cell 

types, meaning their population grew quickly at the beginning and slowed down later 

(Figure 3.17B). These features show that the nodal expansion after Sx is a non-selective 

process, affecting all the cell types, but distinct cell types might play roles at different 

stages because their progression curves are different. Besides, the B cell population was 

the dominant cell type especially at day 7, covering about 50% of popLN cellularity (Figure 
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3.17B). This implies that a reaction involving B cells might be dominant after Sx. Stromal 

populations increased as well (Figure 3.18A). Compared to leukocytes, the stromal 

compartment showed less of an increase (<4-fold) (Figure 3.18A). This leukocyte-stromal 

cell non-proportional expansion was reflected by reduced density of High endothelial 

venules (HEVs), which serve as ports of entry of circulating leukocytes to LNs (Figure 

3.18B). No matter what the reactions in denervated popLNs are, expansion of cells 

requires a change of migratory equilibrium and/or in situ proliferation and these rely on 

driver cells to initiate the scenario and a supportive microenvironment to sustain it. 

 

4.3.1 Migratory momentum 

Intravenously injected cells from spleen and LNs preferably entered the denervated 

popLN rather than the intact one in the same animal (Figure 3.24A). This means 

leukocyte homing via blood is enhanced on the ipsilateral side after Sx. Homing seems to 

be critical for denervation-induced nodal expansion because blockade of adhesion 

molecules such as 4/L-integrins, L-selectin and PNAd reduced the level of expansion 

(Figure 3.24B). These data render HEVs important compartments after Sx because HEVs 

are gates for leukocytes in the circulation to enter LNs [250]. Although LN vessels are well 

accepted to be innervated by several kinds of nerves [179, 181, 182], there is no literature 

directly linking HEV functions with nerves in LNs. However, vagal stimulation is reported 

to promote permeability of postcapillary and collective venules in the lung epithelium [343], 

so there are some precedents for nervous regulation of vascular permeability. Olivier et 

al. found that formation of tertiary lymphoid tissues in a colitis model requires innervation 

by the vagus nerve potentially supporting stromal organizer cells to seed [344]. This 

process seems critical for the development of tertiary lymphoid tissues but functions of 

the vagus nerve afterwards might still be influential given that vagal activation is able to 

control leukocyte trafficking via regulating venular junctions [343]. However, to link HEV 

functions with possibly vagal innervation requires verification of proximal innervation to 

the LN and characterization of the local vagal secretion because venules in the lung 

epithelium are controlled by vagal sensory axons [343]. 
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Apart from homing, egress is the other force affecting leukocyte dwell time in LNs. Decline 

of cells in LNs in certain periods of time mirrors the egress rate. It was not different 

between intact and denervated popLNs at day 7 (Figure 3.25), but this might not be the 

case in the initiation phase. During immune responses, T cell receptor (TCR) activation 

triggers phosphorylation of Myosin IIA protein to slow down T cell motility [345]. This 

activation-associated response potentially increases the dwell time of T cells for better 

antigen recognition in the LNs during immune responses. Therefore, reduced egress after 

Sx might be present at earlier time points once antigen specific responses take place in 

denervated popLNs. 

 

4.3.2 B cell proliferation 

In addition to migratory factors, local proliferation can also contribute to the increase of 

cells. B cells but not T cells were found co-localized with the proliferation marker Ki67, in 

the denervated popLN (Figure 3.29A). Quantification of proliferating B cell clusters 

revealed that only denervated but not intact popLNs contained these clusters (Figure 

3.29B). There are two possible reasons for B cell proliferation. One is due to the 

engagement of mitogenic neural substances such as nerve growth factor (NGF) which 

promotes B cell division and synergizes interleukin 2 (IL2) signaling [346]. The other is 

activation due to antigen exposure. This has been described in the central nervous system 

(CNS) injury models such as traumatic brain injury (TBI) and spinal cord injury (SCI) 

involving antigens such as neurofilaments and myelin basic proteins (MBPs) [347]. In the 

Sx model, these two can happen simultaneously. The example of NGF is positive 

regulation of cell division by neural substances [346], but neurotransmitters can also 

negatively control cell proliferation. Systemic sympathectomy by 6-hydroxydopamine (6-

OHDA) treatment stimulates LN cell proliferation within a week [348]. In a neural resection 

model, peripheral tissues might suffer a storm of neural substances when the nerve is 

newly cut and then lose all the neural inputs later. By 7 days after Sx, denervated popLNs 

should no longer receive neural inputs. However, these responses are sometimes 

antigen- and cell type-dependent, for example, from sympathectomized animals, T cells 

divide less upon concanavalin A stimulation, but B cells proliferate more upon 
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lipopolysaccharide (LPS) challenge [349]. Sx-induced B cell proliferation was then found 

to be a T cell-dependent B cell response, which is discussed in 4.4. 

 

4.3.3 Driver cells 

B cell proliferation and leukocyte recruitment to denervated LNs are the mechanisms 

supporting a denervation-induced nodal expansion phenotype. However, these two 

events cannot occur independently by themselves but need specific triggers to initiate. 

Chronologically, the earlier cell types infiltrating the LN are more likely to be those 

pioneers. From the previous results, neutrophils, NK cells and migratory DCs are 

candidates (Figure 3.17B). 

 

4.3.3.1 Neutrophils  

Effective antibody-based neutrophil depletion was confirmed by surface Gr-1 staining 

(Figure 3.19A) and size-granularity characterization (Figure 3.19B) in spleen and blood. 

Although neutrophils were greatly reduced in the system, this did not attenuate 

denervation-induced nodal expansion (Figure 3.20). Although neutrophils are early 

peaking in denervated popLNs, they seem to be bystanders because a reduction of 

neutrophils by 90% in blood and 80% in spleen did not affect denervation-induced nodal 

expansion. In fact, neutrophils can be recruited to the lesion for myelin removal when 

neural resection takes place [47]. This reaction peaks in a day [47] which fits to its peaking 

time in denervated popLNs (Figure 3.17). Therefore, early recruitment of neutrophils 

might be a part of the neural injury reaction. This finding implies that nodal expansion after 

Sx might consist of several reactions. 

 

4.3.3.2 Natural killer cells 

Using NK1.1 antibody two thirds of NK cells were eliminated (Figure 3.21A). However, 

this did not change the denervation-induced nodal expansion level (Figure 3.21B). 

Expansion of NK cells, similar to neutrophils, is more likely to be an independent event to 
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the nodal expansion. NK cell infiltration is disposable for driving the non-selective 

expansion in all analyzed immune subsets in denervated popLNs. However, NK cells as 

well as neutrophils and T cells are infiltrating to the injured nerve [350]. A later paper from 

Davies et al. further defined the role of these NK cells upon neural injury as cleaners and 

neural regeneration promotors [351]. Like neutrophils, NK cells can be recruited by 

damage signals but not the immune reaction in denervated popLNs. However, given that 

they mediate clearance of neural debris and complement WD [351], should they be 

negatively correlated to denervation-induced nodal expansion? Regarding neutrophils 

and NK cells, they definitely have roles in neural injury responses but their functions in LN 

immune reactions require a non-injury approach to examine, given that sciatic resection, 

the surgical approach, might trigger both injury and immune responses. 

 

4.3.4 The microenvironment 

To further understand the reaction in the popLN after denervation, expression of common 

chemokines and cytokines was profiled by quantitative PCR (qPCR). Rpl32, showing 

stability between sham and denervated operations, was selected as an internal reference 

gene (Figure 3.26). In denervated popLNs, the chemokine (C-X-C motif) ligand 12 

(Cxcl12), Cxcl13, Il1a, Il1b, Il6, Il10, Il12 and Il17f increased after Sx (Figure 3.27). The 

same upregulation signature was found in denervated paws but without Il12 and with Il17a 

and Tnfa (Figure 3.28). Putting these data together revealed that gene expression profiles 

in denervated popLNs and paws were well-aligned with each other (Table 3.1). This 

correlation suggests that reactions in paws and popLNs are likely associated with each 

other and it seems to have an acute inflammation at the beginning and a high IL17A and 

IL17F-driven reaction at the late stage.  

 

4.3.4.1 Pro-inflammatory cytokines 

TNF and IL6 producing cells are largely upregulated in the injured nerves during neural 

injury [350]. There are many cell types that can secrete these cytokines in that condition. 

Schwann cells release IL6 3 hours after Sx [64], TNF and IL1 at hour 5, and IL1 at 
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hour 24 [65]. Circulating monocytes infiltrate to the lesion and differentiate into 

macrophages roughly at day 4 [49], and then these cells release IL1 to stimulate 

Schwann cells [50]. Therefore, these acute inflammatory cytokines form a pro-

inflammatory environment in damaged nerves. However, these are occurring in the 

drainage area but how denervated popLNs establish a similar microenvironment is still 

unclear. Peripheral mast cells in an infection model can release TNF to facilitate 

lymphocyte recruitment to the local LN [314], but this might not be the same in a neural 

injury model which closer to sterile inflammation. 

 

4.3.4.2 Anti-inflammatory cytokines 

IL10 in neural injury is interesting because of it anti-inflammatory activity, but it has been 

found in neural injury for a long time [352, 353]. In contrast to early induction of Il10, 

Dubový et al. found that Schwann cells produce pro- and anti-inflammatory cytokines – 

TNF, IL1, IL4 and IL10, simultaneously 7 days after lesion [354]. Therefore, IL10 might 

balance the inflammatory effects. However, this paper does not provide time-dependent 

data to see how the level changes. Peripheral neural injury in Il10-/- mice results in 

extensive macrophage infiltration to damaged nerves [355]. Besides, macrophages from 

these mice do not downregulate pro-inflammatory cytokines after myelin ingestion in vitro, 

meaning they are unlikely to turn into a repair mode [355]. This observation suggests that 

IL10 participates in the transition between acute inflammation and neural regeneration in 

neural injury.  

 

4.3.4.3 Chemokines  

Chemokines CXCL12 and CXCL13 have not been well-connected to peripheral neural 

injury, but they are discussed intensively in the context of central nervous inflammation to 

attract T and B cells for CNS entry by upregulation [356]. In LNs, these chemokines are 

produced by follicular dendritic cells (FDCs) [205, 206] and the CXCL12-expressing 

population of reticular stroma (CRCs) [213]. They might upregulate CXCL12 and CXCL13 

upon immune stimulation in this model. This can be the case after peripheral neural injury, 
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but the mechanism of upregulation of these two cytokines in denervated paws has 

remained unknown. 

 

4.3.4.4 Late expressed cytokines 

In another neural injury model of sciatic partial ligation, IL17 contributes to neurogenic 

pain, infiltration of T cells and macrophages to lesion sites and responsible dorsal root 

ganglia, and activation of neutrophils and DCs [357]. However, the expression of Il17 

during a period of time was not revealed in that study. In a multiple sclerosis model, TNF 

and IL6 and induce CD4 T helper 17 (Th17) cells to produce IL17, contributing to chronic 

inflammation [358]. This occurs in the CNS and might also be the case in the periphery. It 

can account for the delayed expression of Il17a and Il17f. However, Th17 cells are not the 

only cell type producing IL17. Other local lymphoid cell types such as gamma-delta T (T) 

cells and innate lymphoid cells (ILCs) can release IL17s as well. These cells are closely 

associated with nerves and related to allergic immunity (summarized in 1.8.5). It is also 

possible that loss of neural tones activates their IL17 secretion, but this link seems to be 

indirect because delayed upregulation of Il17 mismatched the standard time, 36-48 hours 

after injury, when a nerve begins to lose its integrity. 

 

 The immune response 

Immunostaining of a B cell germinal center marker – GL7, identified that the proliferating 

B cells in denervated popLNs were forming germinal centers (GCs) (Figure 3.30). GC 

formation is a signature step for T cell-dependent B cell response for affinity maturation 

and class switch of antibody production [136-138]. These processes require CD4 T helper 

cells to create a supportive microenvironment [130, 147] and involve follicular T helper 

(Tfh) cells [138, 142] and FDCs [165, 167] for antibody affinity maturation. At this stage, 

specific antigens are captured and presented by antigen presenting cells (APCs), cognate 

T and B cells interact and FDCs are decorated by the antigens with complements. 

Therefore, Sx can induce an antigen specific response in the popLN likely relying on CD4 

T cells and antigen presenting cells. 
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4.4.1 Upstream: T cell dependence, antigen presentation 

Frequency of CD4 [359, 360] and CD8 [361] T cells in the system controls the quality of 

responses via affecting these T cells’ division and cytokine secretion. Naïve CD4 T cell 

frequency is positively associated with the magnitude of the response [360]. Counts of 

germinal center B cells (GCBs) and Tfh cells highly correlate with each other and 

determine the magnitude of the response [143]. The size of this mutually sustaining unit 

is controlled by the amount of the antigen [143]. These studies provide quantitative 

insights on regulation of immune responsiveness by antigens and cognate CD4 T cells. 

To test whether cognate T cells are required, the OT-II system was selected. OT-II is a 

mouse line in which the predominant portion of CD4 T cells only recognize ovalbumin 

(OVA). This feature renders the OT-II system highly specific to OVA and thus 

compromises its reactivity to other antigens. Although Sx still caused 5 times LN cellularity 

expansion in OT-II mice, their expansion rate was significantly less than wildtype mice 

(Figure 3.31), possibly due to the lower frequency of cognate T cells. This result confirms 

the concept of T cell requirement for the B cell response. 

To examine if denervation-induced nodal expansion relies on antigen presentation, a 

MHCII neutralizing antibody was utilized for prevention of engagement of MHCII and T 

cell receptor (TCR) for T cell activation. Blockade of MHCII substantially reduced the nodal 

expansion level after Sx (Figure 3.32). This suggests participation of antigen presentation 

in the denervation-induced nodal expansion. Although this method can also interfere with 

the interactions between Tfh cells and B cells in GC, this reaction requires Tfh cells to be 

primed by APCs first. It is very unlikely that MHCII blockade only masks B cells but not 

professional APCs. 

Induction of adaptive immunity requires molecular or cellular transportation of antigens to 

the local LN. Soluble antigens can travel through lymphatics to LNs, reach B cell follicles 

[193] and local DCs in the T cell area [192] via conduits, and be captured by B cells or 

FDCs [362, 363]. Otherwise, professional APCs such as DCs [223] or their precursors – 

monocytes [364] – have to enter the LN with antigens. These pathways strongly rely on 

afferent lymphatic vessels bringing peripheral cells and antigens to the LNs [189, 223, 
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224, 365]. This route can be successfully blocked by cutting afferent lymphatics, which 

prevented lymph borne dye from entering the affected popLNs (Figure 3.33). Surgical 

ablation of afferent lymphatic inputs protected the popLN from expansion without affecting 

paw swelling after Sx (Figure 3.34). This suggested lymphatic inputs or their subsequent 

effects to be important mediators of denervation-driven nodal expansion. However, in rats, 

blockade of afferent lymphatics shrinks the LN reducing its size and number of follicles, 

gradually reaching the trough after 16 weeks, albeit this does not change cellular density 

in the parenchyma [366]. Hendriks et al. studied the effects of afferent lymphatic occlusion 

on LNs in rats chronologically and found that (1) subcapsular macrophages were reduced 

after a week and mostly gone after 6 weeks, (2) HEVs were flattened and possibly lost 

their integrity because lymphocyte recruitment was greatly reduced after 3 weeks, and (3) 

immune responsiveness declined and was completely lost after 8 weeks [367]. These 

early studies were based on histological methods. Quantitative analyses revealed that 

afferent lymphatic deprivation non-selectively reduces adherent lymphocytes on HEVs to 

37.8% within a week [368] and this is likely due to loss of MECA-325 antigen [199]. 

Although this method has a flaw in that it gradually depletes immune cells and destabilizes 

HEVs, in fact the LN still retains some leukocytes after a week, so reduced level of nodal 

expansion was expected. However, it effectively abolished nodal expansion (Figure 3.34). 

Therefore, instead of having effects via affecting macrophages and lymphocyte entry, 

prevention of antigen access seems dominant and more likely. 

  

4.4.2 Downstream: antibody production and antigen specificity 

Given that B cells were forming GCs after Sx (Figure 3.30), those GCBs might 

differentiate into plasma cells (PCs) and produce antibody. Circulating immunoglobulins 

were dominated by IgG1 (Figure 3.36A). This indicates that the response is supported by 

a Th2 pathway due to the subclass of antibody. Total serum IgG was increased after Sx 

(Figure 3.36B). These results characterized the outcome of the denervation-driven nodal 

expansion. Therefore, neural injury involving a complete break of the sciatic nerve can 

trigger adaptive immune responses and antibody production.  
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The Hep2 slide is a commercial product with cells expressing several nuclear antigens 

commonly arousing autoimmunity in diseases. Sera after Sx were unable to stain the 

Hep2 slides (Figure 3.37), indicating those increased IgGs were not elicited by nuclear 

antigens. The Hep2 slides are used clinically to quickly evaluate auto-reactivity. It happens 

often when antinuclear antibodies are induced with other self-antigens. However, due to 

the complexity of autoimmune responses, it does not always involve nuclear antigens. 

Therefore, this test does not rule out the possibility of autoantibody generation. In the case 

of neural injury, other highly possible targets are neural components. It would be worthy 

to test the sera on mouse neural tissues. Potentially, these antibodies are polyclonal so 

that an examination platform with a wide spectrum will be favored. 

Regarding the antigen specificity, another hypothesis is that commensal bacterial 

products drive a local immune response after breakdown of barrier function after Sx. This 

hypothesis requires a germ-free facility to address. Given that there is no immunization 

involved in the procedure, autoantigens and components from the microbial community 

are two reasonable types of antigens in this model. Otherwise, the antigen specificity can 

also be identified in an unbiased manner using mass-spectrometry-based proteomics 

analysis of MHCII-bound peptides [369, 370]. 

 

4.4.3 Remote responses 

The LN response in this investigation was classified as a local response because it only 

took place on the ipsilateral but not contralateral side (Figure 3.1). Interestingly, the 

spleen was found to remotely respond to Sx with increased GCBs and PCs (Figure 3.35), 

indicating antigens generated in the trauma were transported to the spleen. Sx-caused 

antigens can potentially be released into blood and captured by splenic B cells and APCs 

that induce this remote response. CD11clo phagocytic cells in blood (blood DCs) are 

capable of inducing a T cell-independent B cell response in the spleen [371]. Would these 

cells or monocytes acquire antigens in blood and induce a T cell-dependent B cell 

response in the spleen? Why do the remote responses in the model of Sx only trigger 

immune responses in the spleen but not in the contralateral LNs? These questions remain 

undefined here. 
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 Neural involvement  

Cross section of the sciatic nerve confirmed its possession of sympathetic nerves and SP- 

and CGRP-positive sensory nerves (Figure 3.38). Immunofluorescence mapped the 

sympathetic (Figure 3.39) and CGRP+ (Figure 3.40) innervations in the popLN. Based 

on the results of staining and the fact that CGRP and SP are geographically close to each 

other in LNs [181, 182], the immune functions of these 3 nerves are discussed below. 

 

4.5.1 Effects of sympathectomy 

Systemic ablation of the SNS by 6-hydroxydopamine (6-OHDA) injection alone did not 

change popLN cellularity (Figure 3.41A). To avoid indirect effects of sympathectomy, 

superior cervical ganglionectomy (SCGx) was applied to locally sympathectomize 

superficial parotid lymph nodes (spLNs), but SCGx did not alter nodal cellularity either 

(Figure 3.41B). These results suggest sympathectomy alone does not substantially alter 

LN cellularity. However, sympathectomy has been reported to enhance recruitment of 

leukocytes to LNs [348] and kidneys [372] and tune the reactivity of lymphocytes [349]. 

Xiao et al. found that denervating the kidney by applying phenol on renal arteries reduced 

total leukocytes and T cell frequencies in the kidney, but this reduction was not observed 

when afferent fibers were selectively ablated by capsaicin [372]. This finding indicates that 

the spared nerves from capsaicin treatment – likely sympathetic nerves – favor leukocyte 

recruitment to kidneys. Interestingly, stimulation of beta 2 adrenergic receptors (2ARs) 

on lymphocytes retains lymphocytes in the LNs and shapes sympathetic input-mediated 

diurnal oscillation of lymphocyte trafficking to the LNs [248], indicating sympathectomy 

should enhance egress but not recruitment. In the same paper, treatment of 6-OHDA 

reduced cell counts in LNs of mice only during the night [248]. The later observation 

reflects the fact of temporal activation of the SNS and accounts for the lack of effects of 

sympathectomy in mice during the day. 

Gene expression profiling revealed upregulation of Il1a and Il4 in popLNs after 6-OHDA 

treatment (Figure 3.42). This result, together with the cellularity result shown previously, 
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indicated that sympathectomy does not change cellularity but the microenvironment, 

which might prime lymphocytes for subsequent responses. This finding agrees with the 

previous study showing altered responses of lymphocytes from 6-OHDA treated donors 

to in vitro stimulation [349]. 

A previous paper shows that recruitment of exogenous lymphocytes to LNs is promoted 

in sympathectomized recipient mice, but cells from sympathectomized mice do not home 

well to LNs [348], revealing different effects of sympathectomy on microenvironment and 

leukocytes in terms of cell recruitment to LNs. To examine how the microenvironment 

affects leukocyte trafficking behavior, adoptive transfer of exogenous cells to unilateral 

SCGx mice were conducted. Exogenous cells homed to sympathectomized and intact 

spLNs equally well (Figure 3.43A). Egress rate did not change either (Figure 3.43B). 

Therefore, local denervation did not alter leukocyte migratory behavior. This result does 

not agree with the previous paper from Madden et al. [348]. However, the study from 

Suzuki et al. showed 2AR signaling of the donor cells but not of recipient mice determines 

LN cellularity [248], favoring a donor-determined mechanism which might explain the 

result observed in the present investigation (Figure 3.43). The effects of sympathectomy 

on LN cellularity is still not clearly defined, but the result here does not show alternation 

of cellular dynamics by sympathectomy. These observations show that nodal expansion 

at the level seen in the sciatic denervation model is insufficiently caused by loss of 

sympathetic innervation but rather that of other neural branches.  

 

4.5.2 Targeting substance P and calcitonin gene-related peptide 

Given that Sx induced nodal expansion (Figure 3.3), which neural tones result in this 

outcome was the next question to address. The sciatic nerve consists mostly of sensory 

nerves [278], and SP and CGRP released by nociceptive nerves are the most studied 

neural peptides from sensory nerves exhibiting immunomodulatory functions [373]. 

Nociceptive nerves are selectively decorated by specific voltage-gated ion channels such 

as Nav1.7, Nav1.8 and Nav1.9. They are all well-established models for the study of 

nociception. Loss of Nav1.8+ nerves – a subset of nociceptors – increases the cellularity 

in popLNs and potentiates stronger immune responses to Staphylococcus aureus 
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infection [79]. This paper shows that activation of Nav1.8+ nociceptors triggered by 

bacterial infection release CGRP which inhibits macrophages from secretion of 

inflammatory cytokines [79]. These findings leave SP and CGRP to be the key molecules 

for preventing denervation-induced nodal expansion. Therefore, results of agonizing or 

antagonizing these neural peptides with or without Sx are discussed below. 

 

4.5.2.1 Neuropeptide antagonism without sciatic denervation 

Neural resection results in loss of neural tones. To simulate the loss of specific neural 

tones, antagonists of CGRP or SP receptors were used to target specific efferent sensory 

neural tones. However, treatments of the SP antagonist (SR140333) and CGRP 

antagonist (BIBN4096), either separately or combined did not alter cellularity in blood and 

multiple hematopoietic organs including popLNs (Figure 3.44). Given that loss of sensory 

neural tones without any denervation surgery did not alter cellularity in these organs, nodal 

expansion could be driven by (1) inflammation/immune challenge and loss of neural tones 

– the “co-contribution” model or (2) “biphasic reaction” with acute neural substance storms 

at the beginning and loss of tones in the late phase (Figure 4.3). These two possibilities 

are not mutually exclusive because the release of neural substances when the nerve is 

resected can also cause inflammation mainly driven by SP and CGRP [373] (summarized 

in intro 1.4). 
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Figure 4.3 Possible models of denervation-driven lymph node enlargement 

The lymph node is associated with blood vessels (artery and vein), lymphatics (afferent and efferent) and 

nerves. The network enables cell and molecule trafficking and modulates adaptive immunity developed in 

the lymph node. In a co-contribution model, inflammatory cues in the drainage area of the LN drive nodal 

expansion, and loss of innervation further exacerbates the level of nodal expansion. This can explain the 

comparison between ankle and sciatic denervation (3.7), indicating innervation control the responsiveness 

of the LN. Focusing more on “time”, the biphasic model describes two stages of neural substance actions. 

The first phase is a neural substance storm caused by loss of vesicle control after denervation (1.3.1.2). 

This wave of release leads to inflammation based on the theory of neurogenic inflammation (1.4). The 

second phase is deprivation of neural substances in the LN. This potentially alters the responsiveness of 

the LN. These models both consist two components, the trigger (inflammation) and development (lack of 

neural tones), and are compatible with each other. 

 

Looking at the subsets in the popLN, only the neutrophil number was reduced by CGRP 

antagonism (Figure 3.45). However, neutrophils were shown to be unlikely to drive B cell 

responses in this model (Figure 3.20). Besides, this result contradicts previous findings. 

CGRP can suppress LPS-induced neutrophil recruitment via inhibiting secretion of TNF 

from macrophages [294]. The inhibitory function of CGRP to local inflammatory 
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macrophages has been confirmed in an infection model [79]. CGRP in these studies 

indirectly regulates neutrophils via macrophages. Pinho-Ribeiro et al. showed local direct 

effects of CGRP as inhibition of neutrophilic recruitment to the infection site and killing 

Streptococcus pyogenes. Therefore, the inhibitory action of CGRP to neutrophils can be 

unlocked by local administration of BIBN4096 (a CGRP receptor antagonist), or botulinum 

neurotoxin A, which ceases secretion of nerves [84]. These studies show direct and 

indirect inhibitory effects of CGRP on neutrophil functions, so antagonism of CGRP should 

enhance neutrophilic activities. Interestingly, BIBN4096 treatment alone for a week 

actually compromised neutrophil recruitment to the LN (Figure 3.45), potentially due to 

retention of neutrophils in the skin. In fact, these models are different in the way of external 

factors challenged, for example, bacterial infection or endotoxin was applied in previous 

publications, but this project did not involve external stimulus but only surgical denervation.   

 

4.5.2.2 Neuropeptide antagonism with sciatic denervation 

The biphasic reaction model hypothesizes that neural peptide storms when nerves are 

injured trigger neurogenic inflammation at the beginning and the inflammation is sustained 

or amplified because of lack of neural tones. Concurrent treatment of BIBN4069 and/or 

SR140333 with sciatic denervation did not rescue popLN expansion (Figure 3.46) or 

numbers of B cell subsets in spleens (Figure 3.47). This result questions the biphasic 

reaction hypothesis by showing the first phase – neurogenic inflammation, which is mainly 

induced by CGRP and SP, is redundant (Figure 4.4). In other words, CGRP or/and SP 

signaling are important to drive neurogenic inflammation, but blocking either one or the 

two of them combined does not prevent denervation-driven nodal expansion. It implies 

that either neurogenic inflammation is driven by other neural substances or other 

immunogenic cues should initiate the response. 
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Figure 4.4 Overlay of the biphasic model and neuropeptide antagonism regimen  

Consecutive treatments of SP and/or CGRP antagonist(s) before tissue harvest and analysis should block 

reception of neuropeptide signal and effects of neural substance storm. This was expected to prevent 

denervation-induced nodal expansion (red dash line). However, nodal expansion still took place (dark yellow 

line). This result suggested this biphasic model is wrong or other neural substances sufficiently induce 

inflammation at the early stage. 

 

4.5.2.3 Neuropeptide agonism with sciatic denervation 

The co-contribution hypothesis consists of two arms. One is local immune perturbation 

and the other is amplification of the immune response due to the lack of neural tones. 

Whether loss of neural tone really exacerbates inflammation or enhances immune 

responses was tested by supplying SP and/or CGRP back to the unilaterally sciatic 

denervated mice. Combined treatment of CGRP and SP significantly suppressed 

expansion of CD11c and T cells in the popLN after Sx (Figure 3.48). Sx elicited lesser 

expansion of CD4 T and CD11c cells when SP was treated alone, and of CD8 T cells and 

neutrophils when CGRP was given (Figure 3.48). Remotely, the spleen also exhibited 

reduced GCBs and PCs when CGRP and SP were treated together (Figure 3.49), 

showing inhibitory effects of these neural peptides.  
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Mouse DCs [374] and T cells [375] express neurokinin 1 receptors (NK1Rs) to sense SP. 

Although SP exhibited inhibitory effects on CD11c and CD8 T cells here, SP is mostly 

reported to be an activator of DCs and T cells [106]. For example, in DCs, SP acts as a 

pro-survival signal as well as sustaining antigen presentation in the LN [376]. Besides, 

stimulation of NK1Rs on T cells promotes proliferation [377]. However, NK1R signaling 

skews DCs toward a Th1 response [378], which does not seem to be the case after Sx 

(Figure 3.27, Figure 3.28 and Table 3.1). Therefore, SP might counteract the cytokine 

microenvironment shaped by denervation. Cell-type specific receptor knockouts will be 

helpful for identifying the target cells and narrow down the possible mechanisms. Notably, 

T cell can synthesize SP [377], so surgical denervation might not entirely remove the local 

SP. In rats, denervation by sciatic resection [379] or capsaicin treatment [380] does not 

deprive the ankle joint of SP and CGRP, suggesting production of SP and CGRP from 

non-neuronal cells. Information of the temporal and spatial distributions of SP will help to 

better delineate the role of SP in the denervation-induced adaptive immune responses. 

Unlike SP, CGRP is mostly inhibitory to immune responses. It can inhibit macrophages 

from releasing TNF [79, 294] and promoting T cell proliferation upon viral immunization 

[381]. In T cells, CGRP suppresses IL2 production via cyclic adenosine monophosphate 

(cAMP) accumulation [382] and suppresses proliferation after specific antigen stimulation 

[383]. CGRP interferes with B cell development in the bone marrow via inhibiting IL7 

signaling [384]. In the B cell line 70Z/3, CGRP suppresses LPS-induced surface 

immunoglobulin expression also via increasing cytosolic cAMP [385]. Stimulated mouse 

splenic cells exhibited a dose-dependent reduction of IL4 and interferon alpha (IFN) 

production after CGRP treatment [386]. CGRP inhibits antigen presentation of 

Langerhans cells in human skin [82]. These findings show the inhibitory functions of 

CGRP in phagocytes, APCs and lymphocytes, and the results here point to a similar 

concept (Figure 3.48 and Figure 3.49). Given that Tnfa was expressed more in paws 

after denervation (Figure 3.28) and peripheral mast cell-derived TNF is critical for 

immune responses in the LN after infection [314], injected CGRP might repress nodal 

expansion by interrupting TNF signaling. Nevertheless, CGRP is a potent vasodilator, 

which facilitates leukocyte extravasation via increasing vessel permeability [94, 95]. 

Therefore, it can also be pro-inflammatory. A good example for this is psoriasis, which is 
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associated with hyper-innervation of the skin by sensory nerves. In a mouse model of 

psoriasis, resection of thoracic cutaneous nerves results in effective disease remission 

accompanied by reduced CGRP and SP-dependent CD11c and CD4 cell infiltration [387]. 

With dual functions in opposite directions, CGRP’s role is much more complicated. The 

data in this project suggests the inhibitory role is dominating in the model.  

 

4.5.2.4 Summary of effects of neuropeptides on denervation-induced nodal expansion 

Regarding denervation-induced nodal expansion, CGRP and/or SP antagonism had little 

effect but their agonism attenuated expansion of some subsets in popLNs and spleen 

(Table 3.2). This phenomenon reveals the repressor role of the neuropeptides in this 

model. Individual treatment of CGRP or SP shows cell type-specific effects, for example, 

SP in CD11c cells and CGRP in neutrophils in popLNs. Reasonably, these cell types 

inhibited by either CGRP or SP were all restricted from expansion when CGRP and SP 

were treated together (Table 3.2). This suggests CGRP and SP to unlikely counteract 

each other albeit functionally different indications were seen in immune responses in 

previous reports. The inhibited cell types in popLNs by combined treatment were CD11c 

cells and T cells (Table 3.2), suggesting that B cell responses might be compromised. 

However, numerically, B cells were unaffected locally in the popLN (Table 3.2). In contrast, 

GCBs and PCs were compromised while total B cell number remained the same in the 

spleen (Table 3.2). This result suggests that CGRP and SP agonism influences counts of 

T and CD11c cells, whereas in B cells, instead of affecting cell number, they might 

attenuate B cell differentiation.  

 

 Conclusion  

Sx causes popLN enlargement and paw swelling. These two major phenotypes seem to 

be acute events as there is a remission trend at the later stage of observation. Peripheral 

inflammation and/or the loss of neural tones are thought to co-contribute to the nodal 

expansion. This is supported by (1) requirement of losing direct innervation for nodal 

expansion because denervation bypassing the popLN such as Fx and ANKx does not 
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induce comparable effects, and (2) peripheral inflammation triggered by denervation. The 

second component can be compromised by blocking histamine sensing. Additionally, 

loose connections between three parameters – sizes of denervation area, degree of paw 

swelling and nodal expansion levels, also suggest nodal expansion might not be simply 

controlled by a single decisive factor but rather by multiple contributors. These 

observations fit a co-contribution model. 

Even though paw swelling is not strictly connected to nodal expansion, these two tissues 

share common gene expression. Although Tnfa, Il12 and Il17a are selectively expressed, 

Cxcl12, Cxcl13, Il1a, Il1b, Il6, Il10 and Il17f are substantially increased in both tissues. 

Highly overlapping expression profiles strengthen the relations between the paw and the 

popLN. Besides, these cytokines and chemokines are supportive of a B cell response, 

acute inflammation, Th2 and Th17 responses. With this microenvironment, denervated 

popLNs attract exogenous cells to home well, mount T cell-dependent B cell responses 

ipsilaterally and boost IgG generation. Different immune subsets have distinct curves of 

expansion in denervated popLNs. Although NK cells, neutrophils and migratory DCs are 

three early peaking cell types, the inflammatory cascade described here does not rely on 

NK cells or neutrophils but on cognate CD4 T cells and requires antigen presentation.  

The sciatic nerve is dominated by sensory and sympathetic fibers, which are also 

innervating the popLN. Mimicry of denervation by pharmacologically or surgically ablating 

either sympathetic signaling or CGRP and/or SP does not reproduce nodal expansion. 

Although sympathectomy has limited effects on popLN cellularity directly, it changes the 

local microenvironment with higher Il1a and Il4 levels, possibly potentiating immune 

responses. Interestingly, compensation of losing CGRP and/or SP by intraperitoneal 

injection of CGRP and/or SP compromises denervation-induced nodal expansion. 

Specifically, CGRP and SP treatments individually in Sx exhibit cell type-specific effects. 

The combined treatment exerts an inclusive and stronger outcome affecting cell types 

responding to separate treatment of CGRP and SP. 

These results reveal a pathway and consequences of an adaptive immune response 

aroused by neural injury, which deprives neural tone and causes inflammation. 

Neuropeptides CGRP and SP show inhibitory effects on the denervation-induced immune 

response indicating them to be potential agents for suppressing immune responses 
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caused by neural injury. This study sheds light on the dialog between the nervous and 

immune systems, albeit there are still many details to be investigated, for example, the 

specific cells sensing the change in neural tone. A better understanding here can identify 

the potential medical values of neural substances to avoid undesired acute immune 

outcomes and perturbation in long-term immune memory after injury. Moreover, the LN is 

an important organ to leverage systemic antigen-specific immune responses with great 

application potential [388]. This field merits further investigation to better illustrate how 

these systems interact to perturbations. 
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6 Appendices  

 Appendix 1 – flow cytometry configuration 

 

Excitation 

laser (nm)

Flurescence 

channel
Default filter

Filter range 

(nm)

9 450/50 425-475

10 550/40 530-570

1 525BP xxx-550

2 575BP/26 562-588

3 620/30 606-635

4 695/30 680-710

5 755LP >755

6 660BP 650-670

7 725/20 715-735

8 755/LP >755

633

488

405

Flow cytometry configuration
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 Appendix 2 – antibody list 

 

 

Continued on the next page  

Purpose Target Fluorochrome Clone Amount Product # Manufacturer Panels

blocking CD16/32 93 1:50 101302 Biolegend 2, 4

staining (flow) CD3 PE/Dazzle™ 17A2 1:200 100246 Biolegend 1, 2

staining (flow) CD4 BV570 RM4-5 1:200 100542 Biolegend 2

staining (flow) CD4 APC GK1.5 1:400 100412 Biolegend 2

staining (flow) CD8 PE 53-6.7 1:200 100707 Biolegend 1

staining (flow) CD8 PE/Cy7 53-6.7 1:400 100722 Biolegend 2

staining (flow) CD11b PE M1/70 1:400 101208 Biolegend 2

staining (flow) CD11b Alexa 700 M1/70 1:200 101222 Biolegend 4

staining (flow) CD11c APC/Cy7 N418 1:200 117323 Biolegend 1, 2, 4

staining (flow) CD31 APC MEC13.3 1:200 102509 Biolegend 5

staining (flow) CD45 PE/Dazzle™ 30-F11 1:200 103145 Biolegend 4

staining (flow) CD45 FITC 30-F11 1:200 103107 Biolegend 5

staining (flow) CD45R/B220 PE/Cy7 RA3-6B2 1:200 103222 Biolegend 1, 3

staining (flow) CD49b PE/Cy7 DX5 1:200 108922 Biolegend

staining (flow) CD103 FITC 2E7 1:200 121419 Biolegend 4

staining (flow) CD138 PE 281-2 1:200 142504 Biolegend 3

staining (flow) CD169 Alexa 647 3D6.112 1:200 142408 Biolegend 1

staining (flow) EpCAM Alexa 647 G8.8 1:200 118212 Biolegend 4

staining (flow) FAS PE-CF594 Jo2 1:200 562499 BD Bioscience 3

staining (flow) GL7 Alexa 647 GL7 1:200 144606 Biolegend 3

staining (flow) Gr-1 PerCP/Cy5.5 RB6-8C5 1:200 108428 Biolegend 1

staining (flow) Gr-1 FITC RB6-8C5 1:400 108406 Biolegend 2, 3

staining (flow) Ly6C PE HK1.4 1:200 128007 Biolegend 4

staining (flow) Ly6G PerCP/Cy5.5 1A8 1:200 127615 Biolegend 4

staining (flow) MHCII PE/Cy5 M5/114.15.2 1:1000 107611 Biolegend 2

staining (flow) MHCII PE/Cy7 M5/114.15.2 1:200 107629 Biolegend 3

staining (flow) NK1.1 Alexa 700 PK136 1:200 56-5941-82 eBioscience 1

staining (flow) podoplanin PE 8.1.1. 1:200 127407 Biolegend 5

Antibodies for Flow-Cytometry

1. general immune subsets in the popliteal lymph node

2. dendritic cells in the popliteal lymph node

3. B cell differentiation subsets 

4. immune subsets in paws

5. stromal cells in the popliteal lymph node
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Purpose Target Fluorochrome Clone Amount Product # Manufacturer Note

staining (IF) TH poly 1:1000 AB152 Merck Millipore 1

staining (IF) CD31 Alexa 647 MEC13.3 1:100 102516 Biolegend 1

staining (IF) CD4 APC GK1.5 1:100 100412 Biolegend 1

staining (IF) CD8 Alexa 647 53-6.7 1:100 100724 Biolegend 1

staining (IF) B220 Alexa 488 RA3-6B2 1:100 103225 Biolegend 1

staining (IF) Ki67 PE SolA15 1:100 12-5698-82 eBioscience 1

staining (IF) GL7 Alexa 647 GL7 1:100 144606 Biolegend 1

staining (IF) CGRP poly 1:1000 24112 Immunostar 1

staining (IF) 3-tubulin Alexa 488 2G10-TB3 1:200 54-4510-82 eBioscience 1

staining (IF) NF-H poly 1:200 AB5539 Merck Millipore 1

staining (IF) NF-M poly 1:200 AB5735 Merck Millipore 1

staining (IF) SP poly 1:1000 20064 Immunostar 1

staining (IF) G anti-Rb IgG biotin poly 1:500 BP-9100 Vector Laboratories 2

staining (IF) G anti-Ch IgY Alexa 488 poly 1:500 A-11039 Thermo Fisher Scientific 2

Purpose Target Clone Product # Manufacturer Pairs

depletion Ly6G 1A8 BE0075 BioXCell 1

depletion NK1.1 PK136 BE0036 BioXCell 2

blocking integrin 4 PS/2 BE0071 BioXCell 3

blocking integrin L M17/4 BE0006 BioXCell 4

blocking CD62L Mel-14 BE0021 BioXCell 5

blocking PNAd MECA-79 120802 Biolegend 6

blocking MHCII Y3P BE0178 BioXCell 7

Purpose Isotype Clone Product # Manufacturer Pairs

isotype Rat IgG2b, κ LTF-2 BE0090 BioXCell 1

isotype Mouse IgG2a, κ C1.18.4 BE0085 BioXCell 2

isotype Rat IgG2b, κ LTF-2 BE0090 BioXCell 3

isotype Rat IgG2a, κ 2A3 BE0089 BioXCell 4

isotype Rat IgG2a, κ 2A3 BE0089 BioXCell 5

isotype Rat IgM, κ RTK2118 400802 Biolegend 6

isotype Mouse IgG2a, κ C1.18.4 BE0085 BioXCell 7500 g/mouse (D-1, D4)

Amount

200 g/mouse (D0, D4)

200 g/mouse (D-1, D4)

100 g/mouse (D1, D4)

100 g/mouse (D1, D4)

200 g/mouse (D1, D4)

200 g/mouse (D1, D4)

200 g/mouse (D-1, D4)

100 g/mouse (D1, D4)

100 g/mouse (D1, D4)

200 g/mouse (D1, D4)

200 g/mouse (D1, D4)

500 g/mouse (D0, D4)

Antibodies for Immunofluorescence

1. primary antibodies

2. secondary antibodies

Antibodies for in vivo  treatments
Amount

200 g/mouse (D0, D4)



 176 

 Appendix 3 – primer list 

  

  

Primer name Species Sequence (5' to 3') Annealing (°C)

Rpl32-F mouse ACAATGTCAAGGAGCTGGAG 60

Rpl32-R mouse TTGGGATTGGTGACTCTGATG 60

CCL19-F mouse ATGTGAATCACTCTGGCCCAGGAA 60

CCL19-R mouse AAGCGGCTTTATTGGAAGCTCTGC 60

CCL21-F mouse TGAACAGACACAGCCCTCAAGA 60

CCL21-R mouse CCTCTTTGCCTGTGAGTTGGA 60

CXCL12-F mouse CAGAGCCAACGTCAAGCA 60

CXCL12-R mouse AGGTACTCTTGGATCCAC 60

CXCL13-F mouse CATAGATCGGATTCAAGTTACGCC 60

CXCL13-R mouse TCTTGGTCCAGATCACAACTTCA 60

TNFa-F mouse GCCTCTTCTCATTCCTGCTTG 60

TNFa-R mouse CTGATGAGAGGGAGGCCATT 60

TGFb-F mouse TAAAATCGACATGCCGTCCC 60

TGFb-R mouse GAGACATCAAAGCGGACGAT 60

IFNg-F mouse TCAAGTGGCATAGATGTGGAAGAA 60

IFNg-R mouse TGGCTCTGCAGGATTTTCATG 60

IL1A-F mouse TTGGTTAAATGACCTGCAACA 62

IL1A-R mouse GAGCGCTCACGAACAGTTG 62

IL1B-F mouse TGTAATGAAAGACGGCACACC 62

IL1B-R mouse TCTTCTTTGGGTATTGCTTGG 62

IL2-F mouse AACCTGAAACTCCCCAGGAT 60

IL2-R mouse CGCAGAGGTCCAAGTTCATC 60

IL4-F mouse GGCATTTTGAACGAGGTCACA 60

IL4-R mouse GACGTTTGGCACATCCATCTC 60

IL6-F mouse ACAAGTCGGAGGCTTAATTACACAT 60

IL6-R mouse TTGCCATTGCACAACTCTTTTC 60

IL7-F mouse GTGCCACATTAAAGACAAAGAAG 60

IL7-R mouse GTTCATTATTCGGGCAATTACTATC 60

IL10-F mouse CCCATTCCTCGTCACGATCTC 60

IL10-R mouse TCAGACTGGTTTGGGATAGGTTT 60

IL12 p35-F mouse TACTAGAGAGACTTCTTCCACAACAAGAG 60

IL12 p35-R mouse TCTGGTACATCTTCAAGTCCTCATAGA 60

IL13-F mouse CAGCAGCTTGAGCACATTTC 60

IL13-R mouse CGGGATACTGACAGACTCATTT 60

IL17A-F mouse GGACTCTCCACCGCAATGA 60

IL17A-R mouse GGCACTGAGCTTCCCAGATC 60

IL17F-F mouse CCCCATGGGATTACAACATCAC 60

IL17F-R mouse CATTGATGCAGCCTGAGTGTCT 60

Primers for qPCR
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