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Zusammenfassung

Interstellare Filamente sind ein wesentlicher Schritt der Sternentstehung. In den letzten Jahren haben
Beobachtungen die analytischen und numerischen Studien aus mehreren Jahrzehnten bewiesen, die
gezeigt haben, dass Molekiilwolken im interstellaren Medium hochgradig filamentir und Entstehung-
sorte massearmer Sterne sind. Es gibt jedoch noch viele ungeldste Fragen im Zusammenhang mit den
physikalischen Bedingungen in Filamenten und dem genauen Prozess, wie das Gas in einzelne Ster-
nentstehungskerne fragmentiert. Die vorliegende Arbeit tragt zum Verstdndnis dieser Kernbildung bei.
Viele physikalische Prozesse beeinflussen und pridgen die Entstehung der Geburtsorte von zukiinftigen
Sternen. In mehreren Studien untersuchen wir Modelle idealisierter Filamente unter verschiedenen
Bedingungen mittels numerischer Simulationen mit dem adaptive-mesh-refinement code RAMSEs.

Wir wenden das theoretische Modell der Fragmentierung durch schlichte Gravitationskréfte auf
Beobachtungsdaten der L1517-Region des Taurus Sternentstehungsgebietes an, in der auch ein kon-
sistentes Muster in der Geschwindigkeit gemessen wurde. Wir konnen nicht nur die beobachteten
Messwerte der Dichte und der Geschwindigkeit in der Sichtlinie zu einem hinreichendem Mafle re-
produzieren, sondern dariiber hinaus zeigen, dass das Abgleichen von Beobachtungsgrossen es uns
ermoglicht, die Inklination der Filamente und den Umgebungsdruck des umgebenden Mediums zu
bestimmen.

Dariiber hinaus verwenden wir das Modell der Gravitationsfragmentierung zur Vorhersage der
beobachteten Morphologie der Dichtestruktur von Kernen. Die beobachtete Form eines Kernes hiangt
direkt von der Linienmasse eines Filamentes ab und kann von Beobachtern verwendet werden, um
Filamente mit niedriger von Filamenten mit hoher Linienmasse zu unterscheiden. Die entsprechenden
Zeitskalen auf denen Kerne anwachsen, legen ebenfalls nahe, dass nur eine einzige Form zu jedem
Zeitpunkt dominieren sollte.

Ausserdem demonstrieren wir die Relevanz der Akkretion, die von dem Gravitationspotential des
Filamentes verursacht wird. Die Akkretion ist in der Lage durchgehend turbulente Bewegungen in
Filamenten anzutreiben und dies in einem Ausmass, das mit Beobachtungen {ibereinstimmt. Ohne
einem Treiber der Turbulenz wiirde diese auf kurzen Zeitskalen dissipieren. Unsere Ergebnisse zeigen,
dass die Dissipation der Turbulenz in Filamenten mit seiner radialen Entwicklung zusammenhéngt.
Wir analysieren die Eigenschaften der erzeugten Turbulenz und untersuchen ihre Bedeutung fiir das
hydrostatische Gleichgewicht. Obwohl die Turbulenz sich auf die radiale Entwicklung des Filamentes
auswirkt, erhoht es nicht seine Stabilitét, wie so hdufig angenommen.

Kleinskalige Filamentsimulationen sind wichtig fiir die Beurteilung der Auswirkungen einzelner
physikalischer Prozesse. Diese Arbeit befasst sich mit einigen entscheidenden Bestandteilen der Kern-
bildung. Es bleiben jedoch viele unerforschte Voraussetzungen, z.B. die kombinierte Wirkung von
Magnetfeldern und Turbulenz oder der gravitative Kollaps entlang der Hauptachse des Filamentes, die
von zukiinftige Studien ergriindet werden miissen.
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Summary

Interstellar filaments are a crucial step in the star formation process. In the last few years, observa-
tions have proven decades’ worth of analytic and numerical studies which have shown that molecular
clouds in the interstellar medium are highly filamentary and that these filaments host low mass star
formation. However, there are still many unresolved questions with regard to the physical conditions
inside filaments and the mechanism involved in how exactly the gas fragments into individual cores.

The thesis at hand contributes to the understanding of core formation. Many physical processes
influence and shape the creation of the birth-sites of future stars. In a series of studies we explore
models of idealised filaments under different conditions by means of numerical simulations using the
adaptive mesh refinement code RAMSES.

We apply the theoretical model of pure gravitational fragmentation to observational data of the
L1517 region in Taurus where a consistent velocity structure was measured. Not only are we able
to reproduce the observed density and line-of-sight velocity to a reasonable degree, but we can fur-
thermore show that the method of matching observables allows us to determine the inclinations of
filaments and the ambient pressure in the surrounding medium.

In addition, we use the model of gravitational fragmentation to predict the observed morphology
of the density structure of cores. The measured form of a core is directly dependent on the line-mass of
the filament and can be used by observers to distinguish low line-mass from high line-mass filaments.
The timescales involved in the growth of cores also suggest that only one single morphology should
be dominant at any given time.

Furthermore, we demonstrate the importance of accretion triggered by the gravitational potential
of a filament itself. Accretion is able to continuously drive turbulent motions in filaments at a level
which is in agreement with observations. Without a driving mechanism, turbulence would dissipate
on short timescales. Our results show that the dissipation of turbulence in filaments is connected to
its radial evolution. We analyse the properties of the turbulence created and evaluate its importance
for the hydrostatic equilibrium. While turbulence does have an effect on the radial evolution of the
filament, it does not increase its stability as is often assumed.

Small scale filament simulations are important for the evaluation of the impact of individual phys-
ical processes. This thesis addresses some crucial elements of core formation. However, many unex-
plored factors remain such as the combined effect of magnetic fields and turbulence or the gravitational
collapse along the major axis, and future studies will need to address these.
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1 Preface

When the Jesuit mathematician and astronomer Johann Baptist Cysat used a refracting telescope in
1618 and spotted the nebulous gas distribution in the constellation of Orion the Hunter, he first com-
pared it to a comet (Lynnl, [1887):

"one sees how in like manner some stars are compressed into a very narrow space and how
round about and between the stars a white light like that of a white cloud is poured out"

He probably was not the first to spot the gaseous nebula - its discovery is usually credited to the
astronomer Nicolas-Claude Fabri de Peiresc in 1610 - but little did he know that he had observed a
stellar nursery. The idea that stars are not fixed in the night sky but undergo a complex life cycle was
revolutionary and did not come to fruition until much later in history, but the stars inside that stellar
nursery had formed relatively recently, a process that must have taken place innumerable times since
the Big Bang, which did not create the Universe already full of stars, but only filled with gas.

Historically, one can argue that the most important astronomical objects are stars. The first astro-
nomical bodies to be observed by eye were indeed stellar objects, ranging from our own star, the sun,
to the plethora of different stellar constellations in the night sky. While in the beginning a mythologi-
cal meaning was attributed to them, the field of astronomy was driven by the desire to understand the
fundamental processes governing stellar objects. The physics of the life and death of stars has been
explored thoroughly and has been very successful in explaining observations. However, there is still
no comprehensive theory of how stars form out of a reservoir of gas.

In general, star formation theory can be separated into two broad classes. On large scales, the goal
is to understand the formation of stellar systems, from clusters up to individual galaxies. It ranges
from the mass distribution of newly formed stars, the initial mass function, through the formation
of giant molecular clouds and their properties to the overall galactic distribution of star-forming gas.
Tied to the latter are the questions of why star formation only occurs in a fraction of the gas and what
determines the overall rate of star formation on a galactic scale.

On small scales, star formation theory tries to explain the formation of individual stellar objects.
This involves the gravitational collapse of dense cores and the loss of angular momentum, the influence
of the interstellar medium on stellar properties, the formation of massive stars in the presence of their
enormous radiation pressure and the properties of protostellar disks, jets and outflows.

While the formation mechanism of massive stars is still relatively unknown, the formation of low
mass stars is well-supported by observations since the discovery of T Tauri stars (Joyl [1945)) in the
1940s and their recognition as a class of object which condense out of the gas of a dark cloud in which
they currently still reside. Their discovery led to the development of stellar pre-main-sequence models,
and the advent of infrared astronomy in the 1970s allowed observers to lift the veil of obscuring
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dust revealing even younger objects. A relatively modern development is the discovery of extra-
solar planets which form out of proto-planetary discs around young stars. In the last few decades, this
scientific advance has been aided by numerical simulations which allow us to develop and test theories
under controlled physical conditions. While admittedly we are far from a comprehensive theory of star
formation, the thesis at hand is an example of how we can learn more about our Universe utilising the
power of simulations.



2 The interstellar medium

In our galaxy, the Milky Way, the space between stars is not empty. On the contrary, it is filled with
gas, dust and energetic particles which collectively are called the interstellar medium (ISM). The ISM
is essential for the galactic matter cycle as it constitutes the repository out of which stars are born
and into which they deposit their energy, momentum and material over their lifetime and after their
death. Where and how stars are formed is determined by dynamic processes in the ISM. However,
these processes are also interconnected over many scales. The dynamics of the large scale set the local
properties of small scale clouds but are also connected via various feedback processes. Therefore, the
formation of stars in the ISM is truly a multi-scale problem.

2.1 Composition

2.1.1 Gas

The gaseous phase of the ISM consists of a mixture of different elements dominated by around 70%
hydrogen, a smaller amount of 28% helium and traces of about 2% of heavier elements such as carbon,
nitrogen and oxygen. The total amount of gas in the Milky Way cannot by easily determined, but it is
estimated to be close to 10'° Mg, about 1% of the Milky Way’s total mass (Kalberla and Kerp, [2009).
Hydrogen in the ISM exists in different chemical forms, either molecular, atomic or ionised. Most
of the volume of the ISM is made up of ionised gas. However, ionised gas also has the lowest mass
fraction due to its low densities. In contrast, the larger fraction of the mass in the ISM is contained
in the cold neutral and molecular phases which are concentrated in dense clouds that have a volume
filling factor of only a few percent.

Star formation predominantly correlates with the presence of molecular gas which is mostly con-
tained in discrete, non-spherical and clumpy molecular clouds with densities greater than 100 cm™3,
temperatures of around 10 K and individual masses of 10*-10°® M. The total distribution of molecular
clouds has a total mass of about 2 - 10° M, and closely follows the spiral structure. Its surface density
peaks in the central 500 pc which is known as the Central Molecular Zone, has a dip between 0.5 and
3 kpc Galactocentric radius, possibly as a consequence of the Milky Way’s central stellar bar (Morris
and Serabyn, 1996)), and peaks again at around 4 —6 kpc in a structure which is known as the Molecular
Ring, outside of which it declines exponentially (Heyer et al., 1998)).

Molecular clouds are embedded in a cold atomic envelope: the cold neutral medium (CNM), a
component which can also be found in discrete clumps known as HI clouds with densities of 10-
100 cm™ and temperatures of around 50-100 K. However, atomic hydrogen is also observed at much
larger temperatures as the warm neutral medium (WNM) which is distributed throughout the disk
following the spiral arms and having a filamentary morphology in inter-arm regions. It has a density
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of about 0.5 cm™ and a temperature of around 8000 K. Both components are assumed to be in rough
pressure equilibrium due to the thermal instability (Field,|{1965). As the equilibrium temperature drops
drastically between their respective densities, there exists an unstable region between both phases
where the gas either expands and heats up or is compressed and cools down in order to adjust to the
outside pressure. Both phases then represent local stable points for the same equilibrium pressure.

This model of a two phase ISM has been extended to include a third component in pressure equilib-
rium produced by supernovae and OB associations which fill the intercloud regions with large ionised
bubbles of low density gas of about 1073 cm™ and temperatures of around 10° K (McKee and Os-
triker, [1977). Supernova remnants stir the ISM, drive turbulence in molecular clouds and also extend
far above the disk. This so-called hot ionised medium (HIM) has by far the highest volume filling
factor in the Galaxy of at least 50% but also the lowest mass fraction. It is responsible for the observed
soft X-ray radiation and explains the emission of highly ionised species of oxygen such as OVI and
OVIL.

There are also observational indications for an additional ionised phase, the warm ionised medium,
which is evident from lower ionised species such as OII and NII (Mierkiewicz et al., 2006), and the
widespread diffuse emission of He (Reynolds et al.,[1973)). It has approximately the same temperature
and density as the WNM but, by contrast, is highly ionised. Thus, it is assumed to be located in the
coronal gas at the outer surface of neutral clouds which is ionised by stellar radiation. Furthermore,
ionised hydrogen also exists around massive stars as HII regions where the central star provides the
ionizing radiation. HII regions have similar densities and temperatures compared to the WIM, but in
general it is not included as part of the WIM.

No observational technique can give a complete, comprehensive picture of the ISM and it has not
yet been resolved if the ISM shows a distinct division as predicted by the three phase model. Indeed
there have been indications that the CNM and WNM are not as clearly separated and that a significant
fraction of the gas cannot be assigned to one phase or the other in a straightforward manner (Heiles
and Troland, 2003} [Roy et al.,[2013)). This is possibly due to the fact that the ISM is highly turbulent
which tends to mix the distinct phases together.

2.1.2 Dust

There is evidence for an additional component in the ISM which causes a diminution and reddening of
background light sources such as stars. The amount of reddening correlates closely with the hydrogen
column density and not with distance. Moreover, one can observe a widespread continuum emission
with a spectrum similar to a black body in the mid- and far-infrared and whose intensity also correlates
with hydrogen column density. Furthermore, when measuring the elemental abundance in the solar
neighborhood, one can detect a depletion of a number of elements, such as silicon and iron, compared
to the solar gas metallicity. This leads to the conclusion that there are solid grains mixed in with the
gas which are generally called dust.

The reason for a reddening of background light is that dust scatters and absorbs photons with
wavelengths smaller than its physical grain size. This effect is quantified in an extinction curve which
shows that the extinction increases for shorter wavelengths implying a power-law distribution of -3.5
in dust grain sizes between 0.003 — 1.0 um where small grain sizes dominate by number (Mathis et al.,
1977} IDraine and Lee| (1984). The amount of extinction depends on the environment and the exact
distribution of grain sizes, but modeling both allows the determination of the dust opacity x which
is shown in The steepness of the curve is parameterised by the value of the total-to-
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Figure 2.1: Milky Way dust opacity per unit gas mass above the Lyman-break as a function of wavelength A
and frequency v for a value of the total-to-selective extinction of Ry=5.5. Also shown are selected wavelength
coverages of different infrared and sub-millimeter telescopes. Opacity values are taken from Weingartner and
Draine| (2001) and |Draine|(2003)).

selective extinction Ry = Ay/Ep_v), which depends on the dust environment along the line-of-sight.
The total mass of dust is much harder to determine, but the extinction together with metal depletion
measurements give an average value for the Milky Way of the order of 1% and has been shown to
be close to constant independent of density (Bohlin et al., [1978; |Predehl and Schmitt, [1995)). Distinct
broad spectral features in the extinction curve allow the identification of a particular type of dust grain,
e.g. graphite in the case of the 217.5 nm peak (Mathis et al.,|1977) or amorphous silicates in the case of
the 9.7 wm and the 18 um bump (Draine and Lee},|1984)). The absorbed radiation results in an increased
temperature of the dust which then in turn leads to emission of thermal radiation in the infrared.

Another important effect of dust is that it is able to polarise light. This is not only the result of
scattering but in the presence of a magnetic field, the non-spherical, elongated dust grains align their
long axis perpendicular to the magnetic field lines. As absorption and emission of radiation is most
effective parallel to the long axis of the grains, this leads to a linear polarisation which, compared to
the magnetic field lines, is parallel in the case of absorption of background radiation and perpendicular
in the case of emission (Hall, [1949; Hiltner, |1949; Davis and Greenstein,1951)). This makes it possible
to map the magnetic field structure of the Galaxy and even star-forming regions.

Furthermore, dust acts as a catalyst for many chemical reactions which happen on the grain surface.
An example is the formation of H, whose formation in the gas phase is much less efficient than on
grain surfaces (Gould and Salpeter, [1963; Hollenbach and Salpeter, [1971).
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2.1.3 Cosmic Rays

Cosmic Rays are highly energetic, relativistic particles mainly accelerated in magnetised shock waves
of supernova explosions. They are made up of approximately 1% electrons and 99% nuclei, of which
most are protons, some are alpha particles and a few are metal nuclei. Their energies lie in the range
of 10 MeV to more than 100 TeV and follow a broken power-law distribution. As they are bound by
the galactic magnetic field, they scatter repeatedly within the disk and as a result have a high degree
of isotropy and a nearly uniform energy density of the same order as the thermal and magnetic energy
density of the ISM (Amenomori et al., 2006). The main effect of cosmic rays on the ISM is the
ionisation of molecular hydrogen which couples the gas to the internal magnetic field and provides a
source of heat even in the dense interiors of molecular clouds.

2.2 Observing the cold ISM

In atomic form, hydrogen has a hyperfine transition at 21 cm due to a flip of the electron spin from
parallel to anti-parallel in respect to the spin of the proton. This makes atomic hydrogen easily ob-
servable even at temperatures much colder than that of typical star-forming regions of 10 — 100 K.
However, the main constituent of star-forming regions is molecular hydrogen. In contrast to its atomic
form, molecular hydrogen has no permanent dipole moment as it is a homonuclear molecule. The
lowest allowed excited state is a rotational transition at 510 K above the ground state. Thus, at low
temperatures essentially no H, molecules are in an excited state capable of emitting. Therefore, cold,
dense gas is usually observed using other tracers.

2.2.1 Dust emission

One possibility to observe cold material is to use the dust which traces dense gas and emits thermal
radiation in the infrared. In contrast, the gaseous component will only show line emission and never
thermal radiation as its densities are not large enough to be in equilibrium with the radiation field. In
order to calculate the column density one needs to know the dust temperature and the dust opacity,
which itself is independent of temperature. The dust opacity is shown in |Figure 2.1| and has typical
values of around k, ~ 0.01 cm? g~! in the far infrared. Generally, surface densities of molecular clouds
lie around £ ~ 0.1 g cm~2 and no molecular cloud has larger values than 100 g cm™~2. Thus, the optical
depth in the infrared 7, = Xk, is far below one and absorption of radiation from dust grains from the
back of the cloud does not play a role, which simplifies the calculation of the emitted intensity. In
thermal equilibrium, Kirchhoft’s law of thermal radiation states that the emissivity is given by

Jv = kpB(T) (2.1)
where p is the density and B,(T) is the Planck function of temperature 7':

23 1

BAT) = =5 2.2)

with £ being Planck constant, ¢ the speed of light and kp the Boltzmann constant. As almost none
of the radiation is absorbed, the total intensity is then simply the integrated emission throughout the
cloud along the line-of-sight:

I, = fjvds =2k,B,(T) = 7,B,(T). (2.3)
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Figure 2.2: Three colour composite image of the Orion Nebula taken by the PACS and SPIRE instruments
of Herschel. Blue is PACS 100 pm data, green is PACS 160 um data and red is SPIRE 250 um data. Credit:
ESA/Herschel/PACS/SPIRE
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Thus, if one knows the temperature and the properties of the dust grains, one can determine the column
density in each telescope beam from the measured intensity. The uncertainties of this method lie in
the dust opacity and the temperature, which both are known to around a factor of a few. The margin of
error can be substantially reduced by using multi-wavelength observations, as then the column density,
temperature and opacity can be fit simultaneously. An example of this technique is shown in[Figure 2.7]
which was taken by the Herschel satellite which specifically targeted multiple infrared wavelengths
inaccessible from the ground.

2.2.2 Dust extinction

In addition to emitting infrared radiation, dust also absorbs and scatters background starlight, which
makes it possible to measure the column density of molecular clouds by dust extinction as there exists
a direct correlation between the extinction A, and the optical depth

A,1 = 2.5(10g e)‘u = 1.086 ZK,l, (2.4)

from which the column density can be determined if the opacity is known. There are two basic
approaches to measuring the amount of extinction.

One way is the classical star count method (e.g. [Wolf] (1923); Bok| (1956)) where the number
of stars in rectilinear subregions of the image is determined and compared to the number of stars in
unobscured regions. The extinction is then given by

Ay = log(Noft/Non)/b, 2.5

where N is the number density of stars on and off the cloud and b the slope of the logarithmic cumula-
tive luminosity function of the stars in the control field. The major shortcoming of this method is that
it suffers from uncertainties due to Poisson statistics especially at wavelengths with large extinction.

The other approach is to measure the amount of reddening of background stars which is usually
done in the near infrared and therefore called the Near-Infrared Color Excess (e.g. [Lada et al.|(1994)).
In order to determine the colour index, the H (1.65 wm) and K (2.2 um) bands are used as they can be
observed from the ground. In principle one could also measure the change in brightness of stellar light
but the relative intrinsic variation of stellar colour is much smaller than that in brightness if not affected
by extincting. The colour excess is given by the difference of measured colour index compared to the
intrinsic value of main sequence stars:

E(H - K) = (H - K)observed - (H - K)intrinsic- (2-6)

This can be converted into an extinction value by using the constant of proportionality R, given by the
adopted extinction law:
A, =R E(H-K). 2.7)

This method can also be generalised for more than two bands as shown in|Lombardi and Alves|(2001)
which further enhances its accuracy. An example of this technique is shown in [Figure 2.3| which
depicts the Pipe nebula in dust extinction.

Compared to dust emission observations, there are several advantages to this technique: lower
wavelength observations in the near- compared to the far-infrared can be carried out from the ground
and are able to achieve a higher resolution due to a smaller Rayleigh criterion, dust extinction does
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Figure 2.3: Dust extinction map of the Pipe nebula (Lombardi et al., [2006).

not depend on the dust temperature and the opacity in the near-infrared is better known compared to
longer wavelengths. But there are also disadvantages: as the opacity is higher in the near-infrared this
method can only be used for relatively diffuse regions where the background stars are not completely
extincted. Furthermore, in order to obtain a complete map, one needs a clean field of background stars
which is often not the case.

2.2.3 Molecular lines

The most revealing observations, but also the most complicated to interpret, are molecular line obser-
vations. The transitions of lowest energy and therefore the easiest to excite are rotational transitions
where only a change in angular momentum quantum number of J + 1 is allowed for dipole radiation
with J=1-0 being the lowest and therefore most prominent transition. In homonuclear molecules such
as Hp, this transition is forbidden and it can only decay via the J=2-0 quadrupol with a greatly reduced
probability. The most abundant molecule after molecular hydrogen is carbon monoxide (CO) which
is excited at temperatures of around 5.5 K. It comes in several different isotopes of which '>C!%0 is
the most abundant and emits at 2.6 mm, followed by 3C'%0 and '>C!80 which are used as optically
thin tracers for higher density gas. Popular tracers of higher density regions are NH;, HCN, HCO™*
and NoH™.

In order to calculate the energy emission rate of a line, one needs to know the level populations of
the respective line transition. As a simple example, we consider a system with two bound states given
by the upper and lower level u and / with respective statistical weights g, and g;,. They are separated
by the energy AE and the number densities of molecules in the respective state are given by n, and n;.
The species has a number density n = n; + n, in a gas of total number density 7y and temperature
T. We ignore chemical reactions and only consider the optically thin regime. The number density of
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molecules in the upper level changes as individual molecules transition from the lower to the upper
state via collisional excitation and absorption and from the upper to the lower state via spontaneous
emission, stimulated emission and collisional de-excitation. The collisional rates of excitation and
de-excitation are given by ky, nioin, and k,; nyon; and the rate of spontaneous and stimulated emission
as well as absorption are given by the respective Einstein coefficients A,n,,, B,I,n, and By, I,n;, where
I, is the specific intensity of the local radiation field at the frequency of the transition. As radiative and
collisional transitions occur on a much shorter timescale than any timescale of interest in the ISM, we
assume that the level populations have reached an equilibrium. Thus the rates equalise to:

klu Nty + Blulvnl = kul Moty + Bullvnu + Aulnu- (28)

For a high total density ny, radiative transition rates are negligible compared to collisional ones and
the system reaches local thermodynamic equilibrium where the levels are populated according to a
Boltzmann distribution. Thus, we can determine a general relation between the collisional rates:

Ku _ T 8u -nEpsr 2.9)
ka nmo g

Furthermore, we assume that the gas is optically thin which allows us to neglect the ambient radiation
field. Therefore, the rates of stimulated emission and absorption are small in comparison, the radiation

is dominated by spontaneous emission and we can simplify to
ne _ (gu/gDe “ERT (g, [ gem E/keT 2.10)
n 1+ Awr/ (kyi nyor) 1+ nerit/ Mror .

where ngic = Ayi/k, is the critical density. For densities much higher than n, the level population is
close to the thermal equilibrium and for densities much lower than n, the upper state is underpopu-
lated compared to the thermal equilibrium. The fraction of molecules which populate the upper level

is given by
n, gueDE/ksT
— = . 2.11
n 1 + e AEMRBT + pegie /o ( )

For densities much lower than 7., most molecules have time to emit a photon. The second term in
the denominator dominates and the fraction simplifies to

Tu o g e 2ElkaT o 2.12)
n Rcrit
which means that the fraction of molecules in the upper state increases with density. However, for
densities larger than ngi, the system reaches local thermodynamic equilibrium with a fixed level dis-
tribution given by as almost all molecules are de-excited by collisions. The second term
in the denominator goes to zero and the fraction of molecules in the upper state reaches the constant
value
o gue_AE/kBT

) =~ m = const (2.13)

The consequence of the latter is that the emitted flux per molecule reaches a maximum when the total
density reaches the critical density. Thus, assuming that there is a constant fraction of the molecule
throughout the cloud, the total emitted flux becomes proportional to the total column density. For total
densities below the critical density, the emitted flux is negligible and as different isotopes and different
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Figure 2.4: Logarithmic '>C'®O column density map of the Taurus molecular cloud form |Goldsmith et al.

(2008)

molecules have their own distinct critical density. Thus, in the case that one can observe certain
molecules transition already reveals information about the volume density of the gas and allows the
determination of the density structure of the cloud. For instance, the 12¢160(J=1-0) transition is a
low density tracer with a critical density of around 10° cm™ and the HCN(J=1-0) transition a high
density tracer with a critical density of around 10° cm™3. An example of an observation of the Taurus

molecular cloud in '2C'®Q is shown in

Note that this derivation is only valid for optically thin tracers. Many of the strongest lines are
optically thick and one only can observe the surface of the cloud. Another effect of optically thick gas
is that one can no longer ignore stimulated emission and absorption which reduces the effective critical
density. Furthermore, there are also chemical changes which depend on density such as the freeze-out
of molecules onto dust grains at high densities which leads to a depletion of the species. This means
that chemical abundances and excitation conditions can vary drastically throughout a cloud of gas
compared to a relatively constant dust-to-gas ratio.

Another important piece of information one can derive from molecular line observations is the ve-
locity dispersion of the gas, as there is a one-to-one mapping of the line-of-sight velocity and frequency
due to Doppler shifting. For optically thin gas, where other broadening processes do not play a role,
one can determine the range of turbulent motions since they typically produce a Gaussian distribution
around the mean bulk flow. In order to measure the amount of non-thermal motion, one has to subtract
the thermal broadening from the line profile. The thermal broadening is produced by the Maxwellian
velocity distribution of the gas at temperature 7 which gives an additional width of VkgT /m where m
is the molecular mass. Therefore, it is essential to measure the temperature of the gas independently
which is possible by observing multiple lines of the same species.
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2.3 Temperature of the cold ISM

Molecular line observations show that the cold ISM has extremely low temperatures of around 10 K.
There are several heating and cooling processes active in the ISM. The sum of the rates of the different
processes give the equilibrium temperature. This section gives a short overview of the most dominant
processes in the dense ISM.

2.3.1 Heating processes

There are assumed to be two important heating processes, the grain photoelectric effect in the atomic
phase and cosmic ray heating in the molecular phase. In the atomic phase in the outer layers of a
molecular cloud, photons in the far ultraviolet (FUV) with energies of about 8§ — 13.6eV eject fast
electrons from dust grains via the photoelectric effect. These in turn thermalise and heat the surround-
ing gas. The heating rate per hydrogen nucleus is given by (Bakes and Tielens, [1994)

Ipg ~ 4.0 - 1072 ypyyZge ™ erg s~ (2.14)

where yruv is the intensity of the FUV radiation field scaled to its value in the Solar neighborhood,
Z, is the dust abundance scaled to its value in the Solar neighborhood and 7gyy is the dust optical
depth of FUV photons. The optical depth of FUV photons increases rapidly in the interiors of molec-
ular clouds, strongly suppressing photoelectric heating to values of about 1072 erg s~! per hydrogen
nucleus. Therefore, there is a more important heating process in the centre of clouds. As cosmic
rays are relativistic particles they are able to penetrate far into the cloud interiors. They interact with
the molecular gas by ionizing molecular hydrogen and releasing electrons with typical energies of
about 30 eV. These then distribute their energy by secondary ionisation, dissociation and excitation of
hydrogen molecules. Additionally, there is also chemical heating caused by reactions of the ionised
hydrogen molecules (see e.g. |Glassgold et al.|(2012) for a full discussion). In total, the energy released
per cosmic ray ionisation is approximately AE ~ 13 eV and together with an observational cosmic ray
ionisation rate derived from the abundance of H of about i ~ 1071 per hydrogen nucleus (Indriolo
and McCall, 2012) gives the total heating rate per hydrogen nucleus by cosmic ray ionisation as

Icr = HAE ~2.0- 107 ergs™'. (2.15)

2.3.2 Cooling processes

The two main cooling processes in molecular clouds are dust cooling and cooling by molecular line
emission. Dust grains cool by emitting thermal radiation but can only cool the gas if the densities are
high (10* — 10° cm™3) and the dust couples thermally to the gas via collisions. At lower densities, the
main cooling process is molecular line emission and the most important molecule contributing to the
cooling is CO due to its abundance. As stated earlier, at low temperatures the only transitions that are
important are between the rotational levels. Since photons need to leave the molecular cloud in order
to cool the material, line cooling is strongly suppressed for low level transitions as the low rotational
levels of CO are the most highly populated and therefore have the largest optical depths. As the optical
depth depends on the column density of the path of the photon and a large velocity dispersion can shift
the emission due to the Doppler effect and thus reduce the probability of reabsorption, the cooling rate
is a complicated function of position within the cloud and is generally largest at the edge within one
optical depth. Consequently, the cooling rate depends on the cloud geometry and has to be modeled
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numerically. However a good estimate can be given by considering the cooling rate of the transition
which is marginally optically thin as it is still close to a thermal equilibrium but its photons can escape
the cloud. The cooling rate of CO decreases with lower temperature and reaches a value of around
Aco ~ 107 erg s~! at about 10 K where it equalises the heating rate by cosmic rays (Goldsmith and
Langer], |1978). As both photoelectric and cosmic ray heating are approximately independent of the
temperature and the cooling rate changes with T to a power of p ~ 2 — 3, a change in the heating rate
of a factor of a will only change the equilibrium temperature by a factor of a'/?. Therefore, we assume
the cold ISM to be close to isothermal at a temperature of 10 K. Furthermore, we can calculate the time
it takes to reach this temperature after being pushed out of equilibrium for instance by contraction. The
characteristic cooling time is

= €th ~l
‘" Aco 2

3 T
—kT|/Aco = 3.2|—— ] k 2.1
(2k )/ co =327 or (2.16)

where ey, is the thermal energy per hydrogen nucleus and 7 is the temperature of the state out of
equilibrium. Comparing this value to a mechanical time scale for example the sound crossing time in
a filament 7, = 0.2pc/cs; = 0.5 Myr, it becomes clear that heating caused by compressions such as
shocks cannot push the gas significantly out of equilibrium.
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3 Observing filamentary structure

The importance of filaments, i.e. elongated overdensities usually with an aspect ratio greater than 5-
10, in the ISM and their possible connection to prestellar core formation has already been recognised
for more than thirty years. Initial dust extinction observations of interstellar filaments, such as those
by Schneider and Elmegreen| (1979), already showed regular condensation patterns of globules. Since
then, filaments have also been detected in diffuse as well as dense gas not only in actively star forming
molecular clouds, for instance Taurus (Abergel et al.,|1994; Mizuno et al.||1995} [Falgarone et al.,[2001};
Hartmann), 2002} Nutter et al., [2008}; [Goldsmith et al., [2008)) and Orion A (Bally et al.| |1987} |Chini
et al., [1997; Johnstone and Bally, [1999), but also in quiescent regions such as the Polaris flare (Hily-
Blant and Falgarone, 2007). On larger scales and further distances, filamentary structure has also been
observed in dark clouds (Perault et al.l [1996; |Alves et al., |1998; [Egan et al., [1998}; Hennebelle et al.,
2001} [Peretto and Fuller, 2009; Miettinen and Harju, [2010), some of which are considered to host
cluster and massive star formation. Moreover, on a higher hierarchical level, there are filaments which
form "hubs", locations of star forming overdensities where filaments converge and overlap (Myers|
2009).

Recent years have shown a renaissance in the field of filamentary structure led by the observa-
tions of the Herschel Space Observatory (Pilbratt et al., 2010). These were a major improvement on
previous dust emission observations due to its simultaneous access to far infrared and submillimeter
wavelengths (55 — 672 um) and its superior spacial resolution as a result of its larger diameter com-
pared to the former infrared satellite missions such as Spirzer. One goal of its mission was to map the
structure of molecular clouds (> 10 pc) down to the scale of individual cores and protostars (< 0.1 pc)
as done in the Gould Belt study. It revealed a web-like filamentary structure which is omnipresent in
every molecular cloud independent of star-forming activity or mass (André et al., 2010} |Arzoumanian
et al., 2013} [André et al, 2014)), for example in[Figure 3.Twhich shows Aquila together with prestellar
objects. The filaments detected by Herschel all seem to share common properties. It is remarkable
that the prestellar cores predominantly align with the densest filaments, where estimates of the line-
mass exceed the maximum possible value of hydrostatic equilibrium (see [Chapter 4)). This shows that
filaments and cores are two interconnected key steps in the star formation process. While the structure
in low-mass star-forming regions appears in general to be well ordered with filaments being quasi
linear and co-aligned with their parent clouds, the situation is not as clear in high-mass clouds. Here,
filaments seem to form more disorganised networks while being more linear in high column density
regions, as observed in Vela C (Hill et al.|[2011)) and the Rosette cluster (Schneider et al., 2012, where
the latter shows star formation predominantly occurring in filament junctions. Furthermore, filaments
appear to share the same characteristic central width of 0.1 pc |Arzoumanian et al.| (2011), which is

presently an ongoing controversial topic which is discussed in|Section 3.3)).
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Figure 3.1: Column density map of Aquila (André et al.,|2010) where the contrast has been enhanced by using
a curvelet transform (Starck et al.l 2003). The colour scale is in approximate units of the critical line-mass (see
[Chapter 4). The green stars and blue triangles give the positions of Class 0 and prestellar cores identified by
Bontemps et al.|(2010) and [Konyves et al.{(2010), respectively.
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Figure 3.2: Network of filaments in the Aquila cloud complex as detected by the DisPerSE algorithm (Konyves

et all 2013)). The colour scale is the same as in

3.1 Ways to detect filamentary structures

In order to analyse filamentary structure further, e.g. by means of a simple task such as creating
an average density profile perpendicular to its axis, one has to identify the ridge and extent of the
filament independent of its scale, which is not easy in itself given observational data which suffers
from background noise. Although some authors identify filaments by eye and approximate them
by straight lines which often works well enough, considerable effort has been made in identifying
filamentary structure automatically. To this end a filament detection algorithm is typically used. In
principle, these techniques can not only be applied to observational but also simulated data in two and
three dimensions.

One popular example is the DisPErSE algorithm (Sousbie), [2011) which applies discrete Morse
theory. The method uses gradients of the discrete density field obtained using the Delaunay tessella-
tion field estimator (Schaap and van de Weygaert, [2000) to identify critical points (maxima, minima
and saddle points in 2D) defining critical surfaces and volumes in 2D and 3D density fields whose
interfaces determine the filamentary structures. Poisson noise in the data can be handled by setting
a persistence level which smoothes the topology by excluding critical points. A typical result of the
algorithm is shown in[Figure 3.2]

Other methods make use of the local Hessian matrix in order to identify filamentary structure
(Schisano et al.,[2014) as applied by the Hi-GAL survey team (Molinari et al.l [2010). At the ridge of
filamentary structures the eigenvalues of the Hessian matrix are both negative, with the eigenvector
of the smaller and larger curvature giving the direction along and perpendicular to the filament axis,
respectively. The noise of the observation is handled by applying a Gaussian smoothing kernel to the
image.

A different approach is chosen by the GeTriLAMENTS algorithm Men’shchikov| (2013) which dis-
tinguishes filaments by decomposing the original image on different spacial scales. The signal is
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continuously smoothed by an increasing Gaussian kernel and subtracted from the image. Filaments
are then identified as structures which do not significantly increase in length but have widths equal to
the smoothing beam over several spatial scales.

Finally, the FiLFINDER algorithm (Koch and Rosolowskyl 2015)) detects filaments by using adaptive
thresholding on flattened and smoothed data which discards pixels which are not a local maximum
in intensity. This creates a mask of filamentary structure and background noise where the latter is
removed by a globally thresholded mask. The filamentary structures are then broken down to their
skeletal form by using a Medial Axis Transform. This method allows even very faint structures to be
detected.

In general, all methods do give results which agree well with each other. All algorithms reliably
identify the most prominent filaments present in an image. However, there are some differences when
it comes to the sensitivity of detection, for instance in the FILFINDER algorithm, and it is important to
define what physical entities one is interested in.

3.2 Observed density profiles - flatter than expected

The theoretical prediction of the hydrostatic profile of a cylinder of gas is given by a Plummer-like
density profile (Plummer, [1911]) with a central region Rg, of an approximately flat density pga which

drops as a power-law with index 1 = 4 in the envelope (Equation 4.16):

n

o(r) = pfiat | = 7 (3.1)
(R2 + r2)2 (1 + rz/Rﬁm)2

which transforms to a column density profile (Arzoumanian et al.,2011) of

pﬂatRﬂat

X(r)= A, 3.2)

-1
(1+r2/R2,) "
where A, is a finite constant factor which depends on the inclination of the filament on the plane of
the sky. In contrast to the theoretical prediction, fits to the global average density profile of most dust
observations detected a power-low index of n = 1.5 2.5 (Alves et al.,|1998; Lada et al., |1999; |Arzou-
manian et al.| [2011}; |Contreras et al., 2013} |Palmeirim et al.| [2013). An example from |Arzoumanian
et al|(2011)) is given in [Figure 3.3] which shows the column density profile of a high line-mass fila-
ment in IC 5146. Density profiles determined by radiative transfer modeling have found larger best-fit
values (Nutter et al., 2008). The same is true for molecular line observations (Hacar and Tafalla,
2011}; [Pineda et al.| [2011}; Bourke et al., |2012; |Tafalla and Hacar, 2015)), even for identical filaments
measured by dust emission. However, they often cannot distinguish different indices as they do not
trace the filament signal out far enough (Panopoulou et al., 2014} Henshaw et al.l 2017). However,
in high-mass star forming regions such as Orion, the signal is better matched by a Gaussian profile
(Hacar et al., |2018)). There are several possible explanations for the discrepancy between theory and
observation.

One potential reason is that dense filaments are not exactly isothermal but have a polytropic expo-
nent y close to unity and are undergoing gravitational collapse. Models of collapsing filaments predict

a density scaling p « =7 for large radii (Kawachi and Hanawa, [1998}; [Nakamura and Umemura,
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Figure 3.3: Average column density profile of a filament in IC 5146 (Arzoumanian et al., 2011) given by
the black solid line. The yellow error bars show the dispersion of the profile along the filament. The best-fit
Plummer-like profiles are plotted by the dotted red line for an index of 7 = 2 and by the dashed purple line for
an index of n = 4.

1999) and observations of dust temperature profiles indeed show a good agreement with polytropic
indices marginally lower than unity (Arzoumanian et al.,|2011; |Palmeirim et al.,|2013)). Along similar
lines, it has been shown that the observed density profile can be well reproduced by hydrostatic models
with a negative index polytrope with 1/3 < y < 2/3 (Toci and Galli, 2015a), which indicates either
an increasing temperature profile for large radii or a dominant non-thermal contribution to the pres-
sure such as magnetohydrodynamic turbulence. Moreover, theoretical models which include a toroidal
magnetic field with a constant mass to flux ratio predict a flatter density profile of n ~ 1.8 — 2.0 (Fiege
and Pudritz, 2000a). The toroidal magnetic field wraps around the filament and helps to confine the
gas. However, the magnetic field structure inside filaments is unknown and very hard to observe di-
rectly. Another straightforward reason is given by the fact that the density profile of pressure bound
filaments is truncated at the boundary radius. As the theoretical profile varies smoothly from the flat
inner region to a steep 7 = 4 power-law at large radii, the locally measured density profile at the
cut-off radius is indistinguishable from a profile with a flatter index, in particular for filaments at low
line-masses where the inner region is larger (Fischera and Martin, 2012)). However, most observations
show a profile which is wide enough to distinguish both cases. An alternative explanation comes from
simulations of filaments forming in a turbulent medium as they also often exhibit a density drop-off
with indices around 2 (Gémez and Vazquez-Semadeni, 2014; Kirk et al., [2015}; [Smith et al., 2014).
Here, filaments form as a result of two planar shocks either from turbulent initial condition or by con-
tinuous driving of the material. In contrast, if there are no turbulent motions present in the simulation,
filaments formed by gravitational collapse do not show the observed density scaling (Federrath, 2016).

Nevertheless, re-analysis of the Herschel data revealed that the observed index of the filament
profile depends strongly on the position of measurement along the filament, with sections indeed
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Figure 3.4: Histogram of measured FWHM of Gaussian fits to averaged filament profiles observed by Herschel
(Arzoumanian et al.l [2019). The distribution has a sharp peak at 0.10 pc with a standard deviation of 0.05 pc,
which is a much narrower variation than other filament parameters exhibit.

showing an isothermal profile (Howard et al.,[2019). Thus, it cannot be excluded that the isothermal
model is not applicable at least for hydrostatic sections of the filament.

3.3 Is there a universal inner width of filaments?

The existence of a characteristic width, a constant extent of the inner filament region, has been a very
controversial topic as there is no straightforward theoretical basis to support it. Herschel results have
shown evidence that Gaussian fits to the inner profile of observed filaments in dust emission have a
very narrowly peaked distribution of full widths at half maximum (FWHM) with a mean of 0.1 pc and
a very small standard deviation of 0.05 pc over a wide range of column densities (Arzoumanian et al.,
2011}, 2019). This is not only true for low column density, low mass regions independent of their star
formation activity as seen in the different clouds of Chamaeleon (Alves de Oliveira et al., 2014), in
quiescent regions such as the Polaris flare (Men’shchikov et al.l 2010; Miville-Deschénes et al.,[2010;
Ward-Thompson et al.,2010) or in actively star forming regions such as IC 5146 (Arzoumanian et al.,
2011)), Musca (Cox et al., [2016), the Pipe nebula (Peretto et al., [2012) and Taurus (Kirk et al., 2013}
Palmeirim et al. 2013; Marsh et al., 2014, [2016)), but also for high column density, actively cluster
forming, intermediate and high mass regions such as the Aquila rift (Bontemps et al., [2010; Konyves
et al.,[2010; [Men’shchikov et al., 2010; Konyves et al., [2015]) and Orion B (Schneider et al., 2013).
Below a maximum value based on the ambient pressure, theoretical predictions allow a wide range
of values of the scale height for a varying local line-mass. However, there is a valid reason for assum-
ing the existence of a characteristic scale. The observed characteristic scale is roughly in agreement
with the scale where the Larson’s linewidth-size relation (Larson, [1981) breaks down and there is a
transition from supersonic to subsonic motions (Vazquez-Semadeni et al., 2003). Below this sonic
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scale, supersonic turbulence of compressible gas consisting of an ensemble of shocks as described by
Burgers| (1948)), is incapable of producing overdensities and a "transition to coherence" is observed
(Goodman et al., |1998; [Pineda et al., 2010).

Nevertheless, several observations in various environments did not obtain the same characteristic
width as the Herschel measurements, with high density tracers showing thinner widths (Pineda et al.,
2011;|Fernandez-Lopez et al., 2014;|Lee et al., 2014} Dhabal et al.,[2018;|Hacar et al., 2018 [Sur1 et al.,
2019) and low density tracers showing broader widths (Panopoulou et al., 2014) of the inner region.
Moreover, dust observations of massive filaments (Henshaw et al.|,[2017) also obtained differing values,
even for measurements taken by the Herschel satellite (Hennemann et al., 2012} |Schisano et al., 2014)).
The existence of a characteristic filament width has been questioned by the studies of Smith et al.
(2014) and Panopoulou et al.|(2017) which both note that the obtained FWHM depends on the applied
fitting range of the Gaussian to the observed Plummer-like column density profile. However, the
study by [Arzoumanian et al.| (2019) shows that the distribution of inner widths remains the same if
measured by fitting Plummer-like profiles directly. Another important point of criticism is the lack of
a characteristic scale in the power spectrum of the Polaris region (Miville-Deschénes et al., 2010) in
which a characteristic width should leave its imprint. This issue has been addressed in the study of
Roy et al.[(2019) which shows that as long as the total imprint of a characteristic length scale is not
strong enough, which is indeed the case for the Herschel observations, its signal in the power spectrum
can be hidden below the global imprint of the image. Finally, the study of |Panopoulou et al.|(2017) re-
analysed the filament widths in the Polaris, Aquila and IC 5146 maps and conclude that they actually
measure a wide distribution of filament widths along a single filament and only obtain a sharp peak
when plotting the distribution of average filament widths. They argue that this is due to the central
limit theorem and that the sharp peak only represents the mean of filament widths with a large spread
even within a single filament.

Taking everything into account, theory still has to explain why the mean of the distribution is
around 0.1 pc independent of region. If it is not the end of the turbulent cascade, an alternative
straightforward answer would be that the background pressure in all clouds observed by Herschel is
comparable. A similar mean FWHM is then a consequence of its weak dependence on variations of
the background pressure (Fischera and Martin, 2012). However, the background pressure is likely
influenced by several different mechanisms such as accretion and magnetic fields. Therefore, a char-
acteristic width, even if it only represents a mean filament width, still remains an unsolved mystery.

3.4 Fibres and striations - substructure of filaments

Parallel to the novel Herschel observations, there was another discovery which revolutionised our view
of star-forming filaments - the existence of substructure in filaments (Hacar et al.,|2013)), also known as
"fibres". Rather than being single monolithic entities, some filaments show multiple velocity coherent
components in the line-of-sight velocity (Hacar and Tafallal 2011} [Fernandez-Lopez et al.| 2014; Lee
et al., 2014} [Panopoulou et al., [2014; Hacar et al., 2017} 2018). Velocity coherence means that the
velocity structure of the fibre gas does not show the characteristics of a turbulent velocity field, such
as following the linewidth-size relation (Larson, [1981)), and can be correlated over large scales. An
example is given in which shows line-of-sight measurements in position-position-velocity
(PPV) space, where two axes represent the positions in the sky with the third axis showing the line-
of-sight velocity. As one can see, the data points form connected systems in velocity. This means
that the gas has decoupled from the supersonic turbulent cloud regime and formed inherently sub- and
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Figure 3.5: Line-of-sight velocities of the Taurus B211-B213 region in position-position-velocity space (Hacar
et al.,[2013)). The data points are assigned to individual fibres using a friends-of-friends algorithm and coloured
accordingly.

transonic structures matching the picture of the end of the turbulent cascade. However, in contrast to
forming single filaments, fibres often occur in bundles, appearing as a single supersonic entity in the
line-of-sight velocity of lower density tracers due to line blending (Hacar et al., |2016a). How they
form tangled bundles is still unclear but there are several models which describe their formation. One
the one hand, in the "fray and fragment" scenario (Tafalla and Hacar, [2015) the filament first forms
as a result of colliding flows as seen in simulations (Vazquez-Semadenti, |1994; |[Padoan et al., 2001}
Hennebelle, 2013} [Federrath, |2016)) and consequently splits into parallel fibres by the sweep up of
residual turbulent motions while being concentrated by gravitational forces, a process which also has
been observed in numerical simulations (Kirk et al.| [2015; Moeckel and Burkert, 2015} |Clarke et al.,
2017). On the other hand, other numerical studies have found fibres that form independently and are
collected in extended filamentary structures (Smith et al., 2014} 2016} |[Zamora-Avilés et al., 2017).
Independent of the formation mechanism, an important question is whether every velocity coherent
structure found in PPV space has a physical counterpart. Simulations show that this condition only
applies for the densest structures and that there is a substantial contamination of the projection of
distinct physical structures in the line-of-sight (Zamora-Avilés et al., 2017} |Clarke et al., [2018]).

Another fundamental discovery is that of low-density parallel filamentary structures in the diffuse
parts of molecular clouds called striations which are mostly arranged perpendicular to high density
filaments (Goldsmith et al., 2008} Narayanan et alJ, 2008} Palmeirim et al., 2013) as shown in |[Fig-
ure 3.6 The most popular explanation is that they are formed by accretion flows along magnetic field
lines, the path of least resistance (Miville-Deschénes et al. [2010j [Palmeirim et al., 2013 |Alves de
Oliveira et al., 2014} |Cox et al.l 2016} |Shimajiri et al., [2019). Observations of dust polarisation have
shown that filaments often appear either parallel or perpendicular to the magnetic field (Li et al.,|2014)
with low-density striations mainly oriented parallel and higher density star-forming filaments roughly
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Figure 3.6: Herschel map of the Taurus B211/B213/L.1495 region (Palmeirim et al.,[2013) together with optical
and infrared polarisation vectors given by the green lines (Heyer et al), 2008} [Chapman et all, 2011). The
projected magnetic field lines are approximately oriented perpendicular to the dense filament, similar to the
low-density striations in blue.

oriented perpendicular to the field lines (Chapman et al., 2011}, Planck Collaboration et al., 2016)), a
pattern which is well reproduced in simulations (Hennebelle| 2013; [Soler et al., 2013} |Chen and Os-|
triker], 2014} Tnutsuka et al.l 2013}, [Zamora-Avilés et all, 2017} [Gémez et all, [2018)). An alternative
model by [Tritsis and Tassis| (2016)) explains the formation of striations as modes of fast magnetosonic
waves. They further analyse the power-spectrum of these low-density perturbations which allows them
to draw conclusions on the geometry of larger structures such as Musca (Tritsis and Tassis, [2018) and
which acts as an independent measurement of the magnetic field strength (Tritsis et al., 2018) where
other methods usually suffer from instrumental effects (see (2012) for a review).

3.5 Cores and the fragmentation of filaments

Observations have shown that cores, gravitationally bound, local overdensities, form preferentially
along the spine of filaments. Their density usually follows a Bonnor-Ebert-like (Ebert, [1955}; Bonnor,
density profile of an isothermal sphere (Johnstone et al., [2000; [Alves et al.,[2001}; [Tafalla et al.,
2004} Roy et al, [2014) which does not necessarily imply that they are in hydrostatic equilibrium
(Ballesteros-Paredes et al., 2003). Cores are either prestellar or protostellar depending on whether a
protostar has formed or not. As they are dense compact objects, they can usually be identified by
spherical objects of higher column densities, a relation also generally witnessed in simulations
land Ostriker, 2011). Molecular line observations however suffer from the effects of freeze-out
et al [1996; [Caselli et al., [1999), a depletion of the species due to freezing onto the surface of dust
grains, and self-absorption in optically thick gas. Therefore, it is imperative to use low optical depth
tracers which are resistant to freeze-out up to much higher densities, such as NH3 or NoH*.

Dust continuum observations of low-mass filaments in nearby clouds have shown that cores pref-
erentially form in the densest filaments above an extinction threshold of around Ay ~ 8
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2010) or a column density of 7 - 10! cm? which can be translated approximately to the critical line-
mass for a temperature of 10 K, above which a filament is unstable. This suggests that core formation
is tied to the radial collapse of filaments which would result in cores of similar masses and may be a
good explanation for a mean stellar mass as a "base" of the initial mass function (IMF), the distribu-
tion of the number of stars formed with a particular stellar mass (Bastian et al., 2010). Indeed, there
seems to be a close similarity between the prestellar core mass function (CMF) and the IMF (Motte
et al., [ 1998; Johnstone et al.,|2000; |Stanke et al., 2006; Alves et al., 2007; Enoch et al., 2008; Konyves
et al., 2010, 2015), where cores lose ~ 30% of their mass in the protostellar phase, possibly due to
outflows (Matzner and McKee|, [2000). There even seems to be a similarity to a filament mass function
and a filament line-mass function which shows the same Salpeter power-law of -1.5 (Salpeter} |1955))
in the supercritical regime (André et al.,|2019). However, the situation is more complicated. One the
one hand, there are examples of filaments with ongoing core formation which lie below the critical
threshold (Hacar and Tafallal 201 1; [Hacar et al., 2013, [2017). On the other hand, in order to determine
the core mass, one has to distinguish the core material from that of the ambient filament, a task which
introduces large errors in the CMF (Pagani et al., 2015} |Steinacker et al., 2016). Moreover, there are
also many cases of massive filaments which greatly exceed the critical line-mass by factors of ~ 100
and are therefore likely not in equilibrium or supported only by thermal pressure (Beuther et al.,[2015};
Contreras et al.,|2016) and are forming massive stars and stellar clusters.

An interesting theoretical prediction is that of a regular fragmentation pattern which can be seen in
the core distances. As discussed in the next chapter, linear perturbation theory shows that, depending
on the line-mass, there is a fixed separation of a few times the scale height where overdensities grow
fastest, also known as the fastest growing mode (Nagasawa, [1987). If the line-mass along a filament
is uniformly distributed, this prediction leads to the expectation of regularly spaced cores along the
filament axis. However, the observational evidence has been inconclusive. While the Herschel ob-
servations did not reveal a periodic core distance, other measurements not only found evenly spaced
cores but even oscillations in the velocity structure which indicate accretion onto the cores, as shown
in (Hacar and Tafalla, 2011). Although some studies report a mismatch between the the-
oretical expectation and observations where fragments are seen too close together to be explained by
a simple thermal model (André et al.l [2010) or are better fitted by a Jeans length spacing, especially
for high line-mass filaments (Kainulainen et al.| [2013]; [Takahashi et al.l [2013; [Lu et al., 2014} Wang
et al., 2014 Henshaw et al.,[2016}; Teixeira et al., 2016; |[Kainulainen et al.,[2017; [Lu et al., 2018 [Palau
et al., 2018 [Williams et al.| [2018; |Zhou et al., 2019), other filaments match remarkably well (Jack-
son et al.l 2010; Miettinen, [2012; Busquet et al., [2013; Beuther et al., 2015 (Contreras et al., [2016;
Kainulainen et al., 2016). There are obvious effects which can impact the expected core distance and
have to be taken into account, for instance the inclination of the filament in the plane of the sky and
processes which stabilise the filament and alter its radial extent such as turbulence or magnetic fields.
Moreover, filaments are susceptible to gravitational collapse along their axis (Pon et al., 2012} |Clarke
and Whitworth| [2015)) which could not only reduce the distances between cores, but also can lead to
clumps forming at the ends of the filament due to gravitational focussing, an effect known as "edge
effect" (Bastien, |1983; [Burkert and Hartmann), 2004; Pon et al.,|[2012)).
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Figure 3.7: Density and velocity perturbations in two filaments of the L1517 region in Taurus (Hacar and
Tafalla, 2011)). In b) and c) respectively, the upper panel shows the mm continuum flux compared to its mean
in black as a proxy for the density perturbation and the lower panel the variation in the line-of-sight velocity
centroid compared to its mean. The phases of both perturbations are shifted by quarter of a wavelength which
is expected for a flow of material onto the cores as demonstrated by the model in a).
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4 Theoretical filament models

Filaments are mainly thought of as cylindrical configurations of self-gravitating gas. Theoretical mod-
els of filaments have been explored for nearly seven decades, initially due to their relevance for spiral
arms in galaxies (Chandrasekhar and Fermil [1953)). Not only have solutions been found for their hy-
drostatic equilibrium, but also for their fragmentation behaviour under linear perturbations, both of
which will be discussed here.

However, before going into the details of filament fragmentation, we briefly review the theoretical
mechanisms of how filaments are assembled in the ISM themselves. For about thirty years, con-
tinuously driven turbulent box simulations have consistently shown that filamentary and sheet-like
structure develops naturally due to the compression of the gas in the crossing of two planar shocks,
even in the absence of gravity (Porter et al., |1994; |Vazquez-Semadeni, [1994; Padoan et al., 2001).
Gravity then acts on the denser structures which in turn leads to gravitational collapse and star forma-
tion (Ballesteros-Paredes et al., |1999; [Klessen and Burkert, 2000; [Tilley and Pudritz, [2004; Federrath,
2013, 2016). An example is given in which shows that turbulent motions can even cre-
ate filaments with visible fibre-like substructure. The turbulent motions are driven by continuously
inserting kinetic energy artificially on the largest scales in order to build up and maintain a turbulent
spectrum (see [Section 5.2)). Observations of molecular clouds show highly supersonic line profiles
and without driving mechanism, supersonic turbulent motions usually decay within a cloud crossing
time (Mac Low et al., {1998, |Stone et al.| [1998];|Ostriker et al.,[1999; [Padoan and Nordlund, [1999; Mac
Low and Klessen, 2004; |Kitsionas et al., 2009). However, there are many natural sources that drive
turbulence in the ISM via different instabilities, for instance Kelvin-Helmholtz and Rayleigh-Taylor
instabilities or the non-linear thin shell instability. Examples of turbulent drivers include rotational
shear, supernovae, gravitational collapse, stellar winds, cosmic rays and HII regions (Elmegreen and
Scalo), 2004). Many of these processes drive converging flows (Ntormousi et al., 2011 |Dobbs et al.,
2012) which trigger the thermal instability (Field, [1965) in the compressed post-shock regions of the
warm atomic medium, rapidly cooling down the gas which leads to the formation of molecular clouds
(Hennebelle and Pérault, [1999, 2000; Vazquez-Semadeni et al., 2000; Koyama and Inutsuka, 2002}
Heitsch et al., 2006; |Vazquez-Semadeni et al., 2006; [Clark et al., 2012). Not only is the thermal in-
stability able to drive turbulence in molecular clouds (Kritsuk and Norman, [2002), but together with
gravity it also determines the internal structure (Heitsch et al.| 2008; [Ballesteros-Paredes et al., [2011};
Seifried et al., 2017; Kortgen et al., 2019) where the smallest unstable scale of the thermal instability
is limited by thermal conduction (Burkert and Lin|, |2000; Koyama and Inutsuka, [2004).
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Figure 4.1: Example of a decaying turbulent box simulation from Moeckel and Burkert (2015). Shown are
filaments visible in the projected surface density which is converted to an optically thin '>C'80 observation.
The dashed lines show the periodic boundaries of the domain and the orange dots show the positions of sink
particles.

4.1 The appropriate equation of state

The radial density, temperature and pressure profile and, moreover, the fragmentation scale depend on
the equation of state. A more general form is given by the parameterisation of a polytropic equation
of state:

P = Kp» 4.1)

with y, = 1+1/n being the polytropic exponent and n the polytropic index with y, = 1 or equivalently
n = oo being isothermal and y,, = 0 or equivalently n = —1 being logatropic.
Historically, logatropic models have been used to explain observation of the line-width size rela-

tion of molecular clouds 1981) and as a proxy for turbulent motions (Lizano and Shul, [1989;
Gehman et al., [1996a]b; McLaughlin and Pudritz, [1997; [Fiege and Pudritz, [2000a). However, dust

temperature measurements imply an exponent marginally below one (Palmeirim et al., 2013), as is
consistent with the observed radial profiles of a power law of -2 (Kawachi and Hanawa, [1998; [Naka-|
mura and Umemura, [1999) and even flatter observed profiles entail an exponent of 1/3 <y, < 2/3
(Toci and Galli, [20154). Values below one, or equivalently negative indices, imply that the gas temper-
ature increases with lower densities which is consistent with clouds being heated by external radiation
(Viala and Horedt, [1974). While low exponents require an unrealistic large temperature at large fil-
ament radii (Recchi et al., 2013)), this issue can be resolved by assuming that the stabilising source
is non-thermal in nature as it is in the case of hydromagnetic turbulence (Fatuzzo and Adams, [1993
McKee and Holliman| [1999). However, ’softer’ equations of state with lower polytropic indices can
only support a lower density contrast or less and less mass per unit length which is inconsistent with
already observed line-masses exceeding even the maximum isothermal prediction. A solution to this
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issue could be presented by non-isentropic models, where the adiabatic exponent 7y is not equal to the
polytropic exponent y,, (Toci and Galli, 2015a) and which can support much larger masses.

Regarding fragmentation scales, (Gehman et al| (1996b) and Hosseinirad et al.| (2018 showed
that lower exponents usually show larger fragmentation scales. However, observed core separations
are already preferentially even shorter than the predictions of the isothermal model. In absence of a
decisive argument as to which equation of state is applicable, the isothermal model still remains the
one studied in the greatest detail and the most applied one. Therefore it is the one discussed here.

4.2 The isothermal profile

The analytical profile for the isothermal infinite cylindrical configuration of self-gravitating gas was
first determined by [Stoddlkiewicz| (1963)) and almost simultaneously by (Ostriker| (1964). Because of
its importance for filamentary structure, we demonstrate how to solve the cylindrical Lane-Emden
Equation by reproducing the calculation of |Ostriker| (1964). Starting from hydrostatic equilibrium
(Equation 5.17):

1
-V,P=-V,® 4.2)
0
and using the coordinate transform of
C2 1/2
=pee™’ = s 4.3
P =pce€ ", r (47TG,OL) & 4.3)

one can derive the isothermal Lane-Emden Equation
Ay =e™V. 4.9
Using the radial Laplace operator in cylindrical coordinates we can rewrite the equation as

2
dy ldv_ .,

At 4.5
dé* & dé @
The boundary conditions translate to
p(r=0)=p.=>y(¢=0)=0 (4.6)
dp dy dy
—r=0)=0->—@r=0=0->—=¢=0=0 4.7
5, 0=0=0--"0=0) _>d§(§ ) 4.7
With the coordinate transform
y=-¢y+2In¢é=InEe’), t=In¢ (4.8)
we can rewrite equation as
2
4y _ N A —fzeyeln‘f2 =—e. (4.9)

ar
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Multiplying both sides with dy/dt and integrating gives

1 dyz_ y
E(E) __oicC (4.10)

Using the boundary conditions, we obtain C = 2. With the additional coordinate transform
u=e =V = pp! 4.11)

we rewrite the equation as

d

We integrate both sides and choose the integration constant as InD:

V2t + V2InD = — V2 tanh™! (\/1 - u/2) = %mg—\/_ 2_“ (4.13)
+V2-u

This expression transforms to

V2 - V2 -&8pp;!

&£ = , (4.14)
V2 + V2 - &pp;!
which can be rewritten as
8D%p,
pE) = ———. (.15)
(1+D%?)
As p = p, for & = 0, it follows that D> = 1/8 and thus we arrive at the Ostriker profile
pr) = —FH—— (4.16)
(1+ /)
with the scale height
2
HY= =2 (4.17)
nGpe

This profile is illustrated in [Figure 4.2]and in principle extends to infinity but has a maximal mass per
length it can support in hydrostatic equilibrium. It is calculated by integrating the profile outward

M R 2C%
— = 2np(ryrdr = ——— (4.18)
L 2
0 G(1+(H/R?)
and thus for R — co the maximum line mass is given by
M 2¢2 T T
) =% <106 1016(—) -1y 16.4(—) Mo pe-! 4.19
(L)Cm G 10K/ &M 10K/ oPe (4.19)

for a typical molecular weight in the ISM of y = 2.36. Exceeding this line mass inevitably leads to the
collapse of the filament.
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Figure 4.2: Schematic view of the solution to the isothermal filament profile together with the scale height H.
In principle, the profile extends to infinity but can be limited by an ambient pressure. The corresponding radius
and boundary density are then given by the dotted values.
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Figure 4.3: Dependence of the radius R (solid line) and the scale height H (dashed line) on the line-mass of a
filament for a given ambient pressure of 2 - 10* K cm ™.
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4.3 Pressure truncation

In reality, filaments do not extend indefinitely but blend into the background radiation for large radii.
Therefore, [Nagasawal (1987 considered the case of an external pressurised medium which truncates
the radial profile at the radius R where the filament pressure equals the ambient pressure. A pressure-
bound filament is in a stable configuration for all line-masses below the critical threshold as its ex-
pansion is compensated by the ambient pressure. In this case, the amount of mass contained in the
filament is measured by the parameter

o= (TN, = (v ) (420

which is the ratio of the actual line-mass to the maximum line-mass (Fischera and Martin, 2012)). The
ratio of the central and boundary filament density is then equal to

pelpy = (1- fcyl)_z “.21)

and the boundary radius is given by

1/2
Jeyt ) . (4.22)

1_fcyl

In[Figure 4.2]this situation is depicted by the dotted lines which show the position at which the filament
connects to the ambient pressure. As shown in[Figure 4.3] for a given ambient pressure, the radius has
a maximum at fcy1 = 0.5, where it is equal to the scale height H. In the limiting cases of fey1 — 0 and
Jfeyt — 1 the radius decreases to zero. In contrast to a pressure bound isothermal sphere which collapses
for a large enough ambient pressure (Ebert, (1955} | Bonnor, |1956), a filament never loses pressure
support by compression (McCrea, |1957) and always finds a stable configuration. Moreover, magnetic
fields also play a vital role in the value of the maximum line-mass. In general, the magnetic field of a
filament consists of a poloidal component parallel to the filament spine and a toroidal component where
the field lines wrap around the filament axis. By means of a virial analysis, [Fiege and Pudritz| (2000a)
showed that poloidal fields support a filament against radial contraction, thus enhancing the maximum
line mass, but toroidal fields assist gravity by squeezing down onto the surface of the filament and
hence reducing the maximum line mass. This compression effect of toroidal fields has also been found
for increasingly softer equations of state in scale-free models (Toci and Galli, 2015b).

Rt

4.4 Linear perturbation analysis

Pioneering work on the stability of infinite cylindrical configurations of gas was done by Chan-
drasekhar and Fermi (Chandrasekhar and Fermi, |1953), but only for the case of incompressible gas in
which case the filament profile is flat. In order to understand on which length scales filaments frag-
ment, one has to introduce a deviation to the unperturbed hydrostatic quantities g along the axis of
the filament, similar to the derivation of the Jeans length:

q0(r,2,1) = qo(r) + q1(r, 2, 1) = qo(r) + €qo(r) exp(ikz — iwt) (4.23)

where q(r,z,t) is the first order perturbation, € is the perturbation strength, z is the parameter along
the filament axis, k = 2x/A is the perturbation wave vector and w is the perturbation growth rate.
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Figure 4.4: Schematic view of the growth of linear perturbations for large enough perturbation scales. At time
t = 0 the density along the filament spine is given by the gray line. At time ¢t = T the density is given by the
black line. As one can see, the perturbation effectively leads to a redistribution of mass inside the filament with
a corresponding velocity structure from the density minimum to the maximum given in blue.

Perturbations grow for values of k, where the solution to the dispersion relation w?(k) is smaller than
zero. This means that the perturbation wavelength A must be large enough to encompass enough mass
in order to trigger run-away growth. For smaller wavelengths, perturbations will not grow but will
form a density wave propagating back and forth. A schematic view of the growth of perturbations is
shown in[Figure 4.4] where the initial density perturbation is given by the gray line. After some time 7
and for large enough perturbation scales, the density maxima and minima have grown and decreased
respectively to arrive at the black status. As mass is transported from the minima to the maxima, a
corresponding velocity structure emerges, given by the blue dashed line which has the same sinusoidal
form as the density perturbation but is shifted by a value of 7/4.

In order to calculate the dispersion relation, one inserts the perturbed state of into
the mass and momentum equations of the Euler equations and neglects second order
terms:

—iwp1 + V(pouy) =0
. p1+ V(pour) (424)
—iwpou; = —poVD| — p1 VO — VP,
which can be summarised into a single equation
w?pouy = —iwpoV O — V(pguy)Vdo — c; A(pou) (4.25)
Together with the perturbed Poission’s equation
iwAD| = 4nGV(pou;) (4.26)

these two equations form an eigensystem in terms of the perturbed momentum density pou; and the
perturbed gravitational potential @, which can only be solved numerically. The solution to this system
gives two important perturbation scales. As stated before, there is the minimum scale above which
perturbations grow. This is also called the critical scale and was determined to be Ay = 3.96H
for the isothermal case (Stoddlkiewicz, |1963). In addition, there is the scale of the fastest growing
mode Adgom = 7.82H with a growth rate of |wgpm| = 0.339(477Gpc)1/ 2 (Nagasawa, (1987) which, for a
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Figure 4.5: Dependence of the critical and dominant fragmentation scales (left axis) and the dominant growth
rate (right axis) on the line mass of the filament. Data is taken from |[Nagasawal (1987) and interpolated by
Fischera and Martin|(2012). The orange lines represent the fragmentation scales in units of the scale height and
the cyan lines represent the same in the units of the FWHM.

random distribution of initial modes, should dominate at later times and is expected to be the scale on
which cores are distributed along the filament. Both length scales were reproduced by other studies
(Larson), [1985}; Inutsuka and Miyamal [1992; (Gehman et al.| [1996aj; Hosseinirad et al., [2017)) and the
dependence of the fastest growing mode on the scale height is usually simplified by expecting cores to
be separated by four times the filament diameter. This statement, however, depends on the definition
of the filament diameter. As can be seen from|[Equation 4.22] the scale height is not a good estimate of
the filament radius. Moreover, observations often define the filament diameter as the FWHM which is
not necessarily equal to two times the scale height.

Furthermore, [Nagasawa| (1987) showed that the perturbation length- and growth timescale both
depend on fcy. One can distinguish two different types of collapse depending on line-mass. For
feyt — 1 the dispersion relation converges to the radially infinite case. The radius is larger than the
scale height and the ambient medium is negligible due to the already high density contrast in the
filament. This leads to the "compressible instability" where self-gravity drives the compression of the
filament. In contrast, for fe;; — O the dispersion relation is similar to the case of the incompressible
cylinder as there is only a low density contrast in the filament. The radius is much smaller than the
scale hight and the Jeans-like instability leads to a deformation of the filament resembling a string of
sausage and therefore is called "sausage instability". The dependence of the fragmentation length- and
timescale on f.y for intermediate values which was interpolated by |[Fischera and Martin| (2012) is given
in and visualised in Fischera and Martin| (2012)) also estimated the observable
FWHM of filaments depending on their line-mass. The dependence of the fragmentation scales is
therefore given in two different units, in multiples of the scale height in orange and in multiples of the
FWHM in cyan. Consequently, one would expect the fragments to be separated by a factor of about
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Figure 4.6: Expected core mass in dependence of the line-mass for varying external pressures under the as-
sumption that the cores evolve on the dominant fragmentation length.

five times the FWHM for high line-mass filaments.

An interesting aspect of the core formation process is the mass a fragment can potentially accrete
by linear perturbations. A simple estimate is given by the line-mass times the dominant fragmentation
length:

2¢2
Mcore = fcyl : E - Addom- 4.27)

The core mass is shown in in dependence of fc, for various external pressures around an
assumed typical ISM pressure of pext/kp = 2 - 10* K cm™. Note that this represents an upper limit
of the core mass, as high line-mass cores collapse radially before they can accrete all of the material
in the filament and feedback effects can halt accretion. Interestingly, a larger background pressure or
conversely a thinner filament only produces less massive cores. In dense, highly pressurised regions
this mode of star formation, while still possibly important for the formation of low mass stars, cannot
apply to massive stars which typically form in hubs where several filaments combine. [Fischera and
Martin| (2012) also showed that, compared to the Bonnor-Ebert mass, only intermediate line-mass
cores are able to collapse from ambient overpressure alone and form prestellar objects. This, however,
does not apply to the high line-mass end, as here collapse is driven by the radial instability as soon as
the local line-mass reaches supercritical values.
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4.5 Additional influences

The picture of linear fragmentation growth is further complicated by the effects of magnetic fields.
For fey1 — 1, a uniform poloidal magnetic field reduces the growth rate while the fastest growing
mode stays relatively constant. This effect saturates when the magnetic pressure is of the order of
the thermal pressure or equivalently when the Alvén speed v, = B/ \/AFp is comparable to the sound
speed (Nagasawa, |1987; Gehman et al., |1996b; Hosseinirad et al., 2017). Conversely, when f.y; — 0,
stronger uniform poloidal magnetic fields not only strongly suppress the growth but also increase
the perturbation length (Chandrasekhar and Fermi, (1953} Nagasawa, [1987). This stabilizing effect of
magnetic fields can, however, be suppressed if ambipolar diffusion is significant (Hosseinirad et al.,
2018)). Moreover, the effect of magnetic fields on the fragmentation depends on the field configuration.
For instance, if the field is not uniform but drops off as B ~ p~!/2, a stronger magnetic field reduces the
stability of the filament, shortening fragmentation lengths and increasing growth rates (Stoddlkiewicz,
1963} |[Nakamura et al., [1993)). There can be even more complicated magnetic field configurations, as
in the case of the field lines being perpendicular to the filament axis (Hanawa et al., 2017). Here, a
stronger magnetic field again suppresses the growth of perturbations.

Another important issue is the longitudinal collapse of filaments (Pon et al., 2012 [Toala et al.,
2012) which leads to an end-dominated mode where two prominent cores form at both ends of the
filament due to gravitational focusing (Bastien, |1983; Burkert and Hartmann, [2004; (Clarke and Whit-
worth, 2015)). [Pon et al.|(2011)) predicted that the local collapse timescales are shorter than the overall
global collapse and [Bastien et al.| (1991) found fragmentation in simulations of finite filaments with
the result that the fragments typically lie closer together than the predicted value for infinite filaments
with a separation of about four times less.

Finally, core growth is also influenced by the filament geometry, where the gravitational straight-
ening of bends can lead to cores on the scale of the displacement (Gritschneder et al., 2017). It is
also unclear how turbulence and the asymmetric displacement of material with different initial pertur-
bation strengths can influence core growth as non-linear effects can become important (Inutsuka and
Miyama, [1997; [Seifried and Walch, 2015). A more general approach was taken by [Inutsukal (2001)
who applied a well known cosmological method, the so-called Press-Schechter formalism (Press and
Schechter, 1974)), which predicts the mass function of cores from the initial power spectrum of density
perturbations. They find that observed power spectra with indices of —1.5 (Roy et al.} 2015), close to
the Kolmogorov scaling (see[Section 5.2)), reproduce the observed mass function of cores with a power
of -2.5.

In summary, it is not easy to determine the length scale filaments should fragment on or if there
even is a dominant wavelength. While individual filaments can be fitted well by theoretical models
(Heigl et al., 2016), giving insight into which physical processes are important for core formation,
idealised conditions are not likely to apply often and a statistical approach needs to be found to obtain
a general picture of the star formation process.



S Principles of hydrodynamics and nu-
merical implementation

This chapter discusses the physical foundations as well as the numerical implementation of the equa-
tions that govern the dynamic behavior of fluids, namely hydrodynamics. To this end, it loosely follows
the book "The physics of astrophysics volume II - gas dynamics" by Frank Shu (Shu, [1992).

First and foremost, we want to treat the gas as a continuum with a velocity and not calculate the
path of individual gas atoms and molecules. In order to do so, the condition is that the mean free path
of the particles is much smaller than the scale of the system we are interested in. This means that for
particles moving with velocities

V=u+Ww, 5.1

the displacements due to scattering with random motions w are unimportant and the particles tend to
move around a mean bulk motion u. The mean free path [ is given by

I = (no)! (5.2)

where n is the mean number density of the particles and o is the average cross section. For proton-
proton collisions the cross section is typically of the order of the size of a proton, e.g. o ~ 1071% cm?.
For a molecular cloud with a density of n = 100cm™ the mean free path is / = 10'3 cm which is
several magnitudes smaller than the typical size of a molecular cloud of 10 — 100 pc. In the centre of
cores, densities can rise up to n = 10°cm™ and thus the mean free path is / = 10° cm which is also
much smaller than the typical core size of 0.1 pc. Thus, we can treat the gas as a continuum at all

times.

5.1 [Euler equations

In order to connect the continuum treatment to the microscopic collection of particles, we define a
distribution function f(x, p,t) where the number of identical particles inside a phase space element is
given by

N = ff(x, p, tydxdp. (5.3)
In the absence of collisions, every particle at time ¢ at the position x and with the momentum p expe-

riencing an external force f will be at the position x + (p/m)dt with a momentum p + fdt at the time
t + dt and the particle number will be conserved. Taking collisions into account, the change in particle
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number is then equal to the number of particles scattering into and out of the phase space element
under consideration:

0
dNeon = (—J:) dxdpdt = f(x + %dt, p + fdt, t + dt)dxdp — f(x, p, t)dxdp. 5.4
coll

Dividing by dxdpdt and taking the limits, we obtain the Boltzmann Equation

or  ore _ 0ro® _ (‘9_1”) (5.5)
coll

o T oxm opox  \at

where we rewrite the force as the gradient of a scalar potential ®. As we want to derive the equations
for the evolution of a fluid in relation to space and time, we multiply by a function y
which takes the form of the first few velocity moments, e.g. mass, momentum and kinetic energy, and
integrate over the velocity space to obtain the mass density, the momentum density and the energy

density:
P m
[ppu ] = f[ mv ]f(x, p, tydv (5.6)
Clot miv[>/2

where ey is the specific total energy, e.g. the total energy per unit mass, and u is the average velocity
of v. Thus, we arrive at the equation:

of  af a0 af\ , f A
— +xyVi— —x——|dv= -] d 5.7
f (X o X oxe Naxeave) YT ) Ma) 0 ©-7)
We assume that the particle collisions are elastic. This means that mass, momentum and energy are

conserved and that collisions only change the velocity and not the positions of the particles. As we
integrate over the velocity space the changes in velocity do not contribute to the change of f(x,¢) in

time and therefore it must be zero:
of 3
- d’v =0. 5.8
f X( ot )coll i 69

Defining the average value of a quantity as

(Qy=n"! f Of(x, v, 1)dv (5.9)
where n = f fdv is the particle volume density, we can rewrite the Boltzmann equation as
0 0 0D [ oy
el - —(Z2)=0 5.10
3 ) + - (n{vix)) +n - < avk> (5.10)

where we apply the divergence theorem to the last term and use the fact that every distribution function
goes faster to zero than any power of v as v — oo.

fXa_fd3V = f [M _ fﬁ_)(} d3v = fodZV _n<6_X> (5.11)
v Ovg v 0vg ovy S ovy
N———

=0
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5.1.1 Mass conservation

Substituting y = m in[Equation 5.10]and applying that the mean of the velocity vy is u, we obtain the
continuum equation:

dp
—+ — 5.12
o oxg (Puk) (5.12)
5.1.2 Momentum conservation
Using y = mv; in equation we arrive at the equation of momentum conservation:
3CD
—(P i)+ (P(V Vk))"‘P6 ik = 0 (5.13)

We can rewrite the particle velocity v; as the sum of the bulk velocity u; and the random motion w;
and as the mean of the random motion is zero, terms with only one order in w disappear:

(ViVk) = Uy + (W;Wi) (5.14)
Now we can separate out the trace of the symmetric dyadic w;wy:
PAWiWi) = Pojx — mig (5.15)

where P is the gas pressure and 7 is the viscous stress tensor. The former is connected to the density
p and the specific internal energy e, = 1/2(|w|?) via the equation of state (EOS), which for an ideal
gas takes the form:

P = pein(y - 1), (5.16)
where v is the adiabatic index of the gas. Therefore we can rewrite the momentum equation as
0 oP 9 0D
o (o) + 2 (pu w) + o — 2Ky 2 (5.17)
ot 0X; 8xk Bx,

5.1.3 Energy conservation

Inserting y = m|v|?>/2 in equation [Equation 5.10| we obtain the equation of energy conservation:

P oD
+ 2B g+ wo) (i + WD | + pupem = 0 (5.18)

d[p 2 2
at[z('“' +(w) oxe 12 %k

Again, as the mean of terms containing only one order of the random motion is zero we can simplify
the equation using:

((ug + wi) (g + w)?) = [afug + 20, (wwi) + urdIwl?) + (wilwl®) (5.19)

By applying and the definition of the specific kinetic energy given by
1 oo
€kin = §|11| ; €t = €in + Ekin (5.20)

and defining the conduction heat flux by

1
HEMWTM% (5.21)
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we can rewrite the equation of energy conservation as

0 0 oD
— (peror) + ——(perotux + P + Fr — wimyr) + pug— =0 (5.22)
ot OXy OXy

5.1.4 Closure conditions

The moment equations are a system of five linearly independent equations, but they contain thirteen
variables: the density p, the three velocity components of u, the pressure P, five due to the viscous
stress tensor 7 and three for the conduction heat flux F. In order to obtain a closed set of equations
we need to introduce closure conditions which is achieved by a Chapman-Enskog procedure in the
limit / <« L. We expand the distribution function in orders of 6 = [/L:

f=fo+6fi+6f... (5.23)
To zeroth order, f is given by the local Maxwellian:
fo = n(m/27kT)> *exp(—m|w|*/2kT) (5.24)

Using this distribution, it is possible to show that the non-ideal terms, the viscous stress tensor and the
conduction heat flux, are both zero:

ﬂik:() Fk=0 (525)

This leaves us with the remaining equations, also known as the Euler equations, which in our example
includes an external force on the right hand side:

0
ap +V(ou) =0
%(pu) +V-(ou®u+ Pl) = —pVO (5.26)

0
6—t(petot) + V- [u(peior + P)] = —puVD

Neglecting the external force, these equations form a system of hyperbolic conservation laws of the

form

0

—U+V-F@U) =0. (5.27)
ot

Hyperbolic means that as long as the initial and boundary conditions are known, we can determine

the state of the system at any later time. For a higher-order distribution function, we would obtain

the Navier-Stokes equations, which do contain the extra viscous and heat conduction terms. However,

under normal conditions inside molecular clouds the dynamic viscosity and the thermal conductivity

are close to zero and both effects can be neglected.
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5.2 Fully developed turbulence

As mentioned above, the dynamic viscosity in the ISM is close to zero. However, this depends on
the scale under consideration. A way to quantify the importance of viscosity is the dimensionless
Reynolds number

Re = E, (5.28)

v

where the dynamic viscosity u is rewritten as the diffusion-like term of the kinetic viscosity, v = u/p.
V and L are typical velocities and length scales of the system, where the velocity is given by the order
of random fluctuations. For Reynolds numbers above ~ 10° viscous effects can be ignored and the
flow is highly turbulent. On molecular cloud scales the Reynolds number reaches typical values of
~ 10°. However, one can define the Reynolds number for any given scale as

Re, = m (5.29)

v

When A becomes similar to the mean free path, the Reynolds number reaches a value of order one
and viscous effects dominate. This is called the dissipation scale 1o where kinetic energy is converted
into heat. The closest model for a theory of turbulence was developed by Kolmogorov| (1941) and is
only truly valid for subsonic incompressible gas. It describes turbulence as a locally homogeneous and
isotropic series of eddies where energy is cascaded from the largest scale, where turbulent motions are
generated, down to the dissipation scale. This cascade is called the inertial regime and here turbulent
energy is neither produced nor lost. The constant rate at which energy is transferred to smaller scales
is given by

E vV V]
e=—ol =12 (5.30)
t t A
Solving this equation for the velocity gives the relation
VyoceBA13, (5.31)

which directly corresponds to the Larson linewidth-size relation (Larson, [1981). Furthermore, one can
derive the energy power-law scaling in k-space with k oc 1/1 known as Kolmogorov-scaling:

E(k)dk oc V3 — E(k) o« Vak™! oc €378, (5.32)

Assuming isotropy, one can transform the one-dimensional —5/3 scaling to higher dimensions by
reducing the exponent by one for each dimension. Thus, three-dimensional turbulence has a scaling
of —11/3.

In contrast to subsonic turbulence, the energy in supersonic turbulence decays via the formation
of shocks. Due to shock formation, the velocity field is dominated by a series of step functions. This
leads to a power-law scaling of —2 in one dimension as shown by Burgers| (1948)). This is due to the
fact that the power spectrum of a step function is proportional to k2 as the Fourier transformation is
only non-zero where the signal changes with an amplitude proportional to the length of the change. An
isotropic system of overlapping shocks, therefore, should follow a corresponding power-law scaling.
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5.3 Magnetohydrodynamics (MHD)

Zeeman measurements in molecular clouds have shown that magnetic fields are an important compo-
nent of the energy density budget of the ISM (Crutcher, 2012). Thus, we cannot neglect the effects
of electromagnetic forces and have to expand the fluid equations. In electrodynamics, the Maxwell
equations describe the evolution of the electric E field and magnetic B field:

10B
VXE=—-———
c ot’

47 10E
VXB=—j+——
% c']+c8t’ (5.33)
V-E =4np,,

V-B=0,

where c is the speed of light, p, is the electric charge density and j is the electric current. As electric
fields cancel out almost instantaneously in a plasma, the electric field is weak compared to the magnetic
field and thus we can neglect the electric displacement current and derive the induction equation

B =VxuxB) (5.34)
ot
As the ionisation fraction in molecular clouds is relatively low, the gas does not behave as a good
plasma. The magnetic field only exerts forces on the ions and electrons. The neutral particles, however,
can drift freely across field lines and couple only through collisions with ions, diffusing magnetic
energy into heat. For low ionisation fractions this coupling is imperfect and thus we have to include
non-ideal diffusive terms in the induction equation

68—]: =VxmxB)-Vx[na(VxB)+ng{(VxB)xB}+napBx{(VxB)xB}]. (5.35)
The first non-ideal term is the Ohmic dissipation, which is caused by the drift between electrons
and ions/neutrals. It dominates at very high densities and weak magnetic fields when both, electrons
and ions, are not coupled dynamically to the magnetic field. The second non-ideal term is the Hall
effect, which is important at intermediate densities when only the electrons couple dynamically to the
magnetic field and which is caused by the drift between electrons and ions. Finally, the third non-ideal
term describes the effect of ambipolar diffusion, the drag due to collisions between the neutrals and
ions. It dominates at low densities and high magnetic field strengths for lightly ionised gas, conditions
usually found in star-forming regions, where both electrons and ions couple to the magnetic field.
The respective resistivities n are functions of the respective microscopic collision frequencies (see e.g.
Wardle| (2007)) for a full discussion). Non-ideal terms are likely to have an influence on the system
where magnetic fields are dynamically important. A crude estimate of the dynamical importance of
non-ideal effects is given by the magnetic Reynolds number

VL
-

Re,, (5.36)

On cloud scale, a typical value for the magnetic Reynolds number is 100 — 1000 and thus magnetic
dissipation does not play a major role. However, on small scales the dissipation scale of the magnetic
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field is similar to the size of prestellar cores. The relative importance of the respective diffusion
processes is given by the magnetic Prandtl number as the ratio of the viscous to magnetic diffusion:

Py =- (5.37)

which is usually smaller than one on prestellar core scales. This means that the magnetic field dissi-
pates on a larger scale and the velocity dispersion on scales below the magnetic dissipation scale is
dominated by thermal motions.

For the ideal MHD equations it is assumed that all dissipation terms are zero and the magnetic
field is perfectly frozen into the plasma. This means we can also neglect non-ideal heating terms in
the energy equation. Thus, together with the induction equation, the zero divergence of the magnetic
field and including the Lorentz force, the Euler equations are extended to the ideal MHD equations as

]
—p+V(ou) =0
pra (pu)
] 1
6—t(pu) +V-(pu®u-— EB ®B + Pol) = —pVOd (5.38)

0 1
—(pewr) + V- |u(peor + Proy) — —BB -u)| = —puVO
ot 4r
where Py, now also includes the magnetic pressure
1.
PtOt =P+ —B (539)
81
and the total specific energy now includes the magnetic energy

1
€ot = €in t €kin T —B? (5.40)
8r

5.4 Numerical implementation

There are two well-established concepts for solving gas dynamics in numerical simulations. On the
one hand, there is the smooth-particle hydrodynamics (SPH) approach which represents the fluid by
moving integration points. Note that these so-called particles are not a real physical representation of
matter but only have fluid variables in a weighted spacial distribution associated with them and purely
serve as integration positions. On the other hand, there are grid codes which have fixed integration
positions and represent the fluid variables as contained inside a fixed cell volume. Both methods
have advantages and disadvantages, which largely depend on which processes are simulated. As the
integration points move with the flow of the fluid in the SPH method, the resolution is automatically
increased in regions where matter converges and where a higher resolution is desired while decreasing
the resolution in empty regions. However, grid codes are numerically less diffusive and naturally
capture discontinuities and shocks in the fluid flow, a property SPH methods only achieve by using
artificial viscosity. Here, we discuss the numerical implementation of solving the fluid dynamics in
grid codes. Notable examples of grid codes are the zeus code (Stone and Norman, 1992) and its
successor ATHENA (Stone et al., 2008)), the pLuto code (Mignone et al. 2007), FLasH (Fryxell et al.,
2000) and ramses (Teyssier, 2002), of which the last was used in this work. Recent developments
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have seen the implementation of hybrid schemes: the so-called moving mesh codes, for example
AREPO (Springel, 2010), and meshless schemes. The idea behind these hybrid approaches is that in a
similar manner to traditional grid codes, the domain is partitioned into separate regions and a Riemann
solver is applied at the boundaries to solve the equation of hydrodynamics, whereby the cell defining
positions are no longer fixed but move with the flow of the gas which reduces numerical diffusion.

5.4.1 The Godunov Method

As the Euler equations are conservation laws, we can discretise the computational volume in fixed
volume elements of any form and size. The flow of conserved quantities is then determined by a
summation of the net fluxes over the volume boundaries which allows the conserved quantities to be
discontinuous. The most popular numerical technique for doing so is the Godunov method (Godunov,
1959). In contrast to the Finite Difference approach, which defines values at single points in order to
calculate the flux between cells, this Finite Volume method uses cell-averaged quantities:

U = % f U(x, )dV (5.41)

where the index i is the ordering of the cells and the index 7 is the ordering in time. By using the time
averaged flux function

tn+l

_ 1
F=— F(x, rdt 5.42
A7 f; (x,1) (5.42)
and the divergence theorem, the exact solution of the conservation laws in integral form is
At _
Ut =0+ — | F-nds. (5.43)
Vi Js,

This method can in principle be used for any kind of grid geometry (Harten et al.,|1983)). However, the
advantage of using a regularly spaced grid is that it allows the construction of numerical schemes of
higher order than for irregular meshes due to the exact cancellation of terms in the Taylor expansion.
As the flux is orthogonal to the faces of each cell in the case of a cartesian mesh geometry, the above
equation simplifies to the sum of the in- and outgoing fluxes over all faces of each cell, for example in
one spatial dimension:

ln+1

At
1
U;H— = U:l + A__x

1

l.l1+l
1
F i— 5 - F i 5 =
_Al L (U(X 1/2 l)) dr AL L (U(x +1/2 l‘)) dr

(5.44)
At = _
=U! + Ax [Fi—l/Z - Fi+1/2] .

5.4.2 Riemann problem

The first-order Godunov scheme assumes that the fluid variables are piecewise constant in each cell
as shown in This means at each cell interface, we have a discontinuity and in order to
calculate the flux function we can define a so-called Riemann problem of which we can determine the
exact solution. As the Euler equations are a set of nonlinear differential equations, the exact solution
involves non-linear features such as shock and rarefaction waves. The solution is self-similar in the
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Figure 5.1: Schematic view of the first order Godunov method. The fluid variables are represented by piecewise
constant cell-averaged quantities which are used to determine the fluxes between the cells.

variable x/t and thus the time average is equal to its value at x/¢ = 0. This simplifies the calculation
as the flux function is then simply determined by the adjacent states at x/r = 0:

Fii12 = Fiy120(U;, Upp). (5.45)

As the exact solution involves an iterative scheme and therefore is too computationally expensive,
an approximate Riemann solver is used in practice. The book by [Toro| (1999) gives an overview
of the various implementations of different approximate Riemann solvers. Many Riemann solvers
approximate the solution by finding a linearisation to the Euler equations and representing the non-
linear features such as the shock and rarefaction waves by jumps. A popular example is the Roe solver
(Roel [1981) where the wave propagation speeds are determined from the eigenvectors and eigenvalues
of the linearisation. Here we discuss the example of the HLLC Riemann Solver (Toro et al.l [1994)
which is a modification of the HLL Riemann solver developed by Harten, Lax and van Leer (Harten
et al., [1983). In contrast to the Roe solver, the family of HLL solvers represent the solution by two
waves whose propagation speed is estimated using physical arguments. The waves split the solution
into different regions: a left and right unaffected region Uy, and Uk, to either side of the boundary and
a central region U*. The HLLC solver restores the contact discontinuity in the central region and thus
splits the solution into four regions

Uy ifx/t<SL
U, ifSp<x/t<S*
U, ifS"<x/t<Spg
Ur ifx/t>Skr

Unric = (5.46)

with the left, right and central wave speeds S, Sg and S* as represented in The respective
fluxes are calculated by applying the Rankine-Hugoniot jump conditions across each wave

Fz = FL +SL(U2 —UL)
Fi =F; +S*(U; - U)) (5.47)
F; = FR +SR(U; —UR)
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Figure 5.2: Structure of the approximate solution of the HLLC Riemann solver. The vertical axis shows the
advancement in time. The thick lines represent the outer waves, the dashed line the contact discontinuity.

where the middle states are determined by using the fact that the velocity in the propagation direction

u; and pressure P* in the central region are constant:

1
S*
S —
Us, = px (K—”K) ty K (5.48)
Sk=5 Uz K
., f
—UxK)

Couk + (S* =) [S* + =

where K represents either the left or right middle region. Thus, the HLLC flux used in the Godunov

scheme is
F, if0<S,
F; =F,+5,U; -U ifS; <0<S§*
Frrc(UL, Ug) = f . L(i ) 1 f (5.49)
FRZFR+SR(UR—UR) ifS*<0<Sp
if 0 > Sg

Fr

where the flux function is determined in this case along the x-axis by

PUx
ou’ + P
(5.50)

F.(U) = pltylty
PUxUz
Eu, + Pu,

The real difference between various implementations is given by different physically motivated ex-
pressions for the wave speeds. In ramsEs this is done by using the velocities of the fastest moving

Signal:
L { X,L X,R} { S‘,L X‘,R} (5.5 )

Sr = max{u,,uyr} + max{csr, Csr}
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where c, g is the respective sound speed. The central wave speed is then determined by the implemen-
tation by [Batten et al.| (1997):

_ Pr—Pr+pruxi(Sp —uxr) — pRUxR(SR — UxR)

S Ed
pL(St — uxr) — prR(S R — uxRr)

(5.52)
The maximum wave speed is also a limiting factor in evolving individual time steps. As the waves
are not allowed to travel further than one grid cell in order to ensure a stable algorithm, the maximum

integration time step is limited by

A
Ar < =% (5.53)

max

where S ;4 1s the maximum wave speed in any spatial dimension. This condition can be rewritten to

C. A
Ar = —12L (5.54)

S max

where Cy is the Courant-Friedrichs-Lewy (CFL) condition (Courant et al., |1928) with
0< Ccfl <1 (5.55)

in order to ensure a stable code. Typically there are further time step constraints in codes when
gravitational collapse or cosmological evolution is involved. The maximum time step is then set by
the most limiting factor.

The diffence between the various approximate Riemann solvers lies in the amount of numerical
diffusion they create. The evolution of quantities along a grid inevitably leads to numerical diffusion
as the content of cells is not transported uniformily but the flux between two cells leads to an interpo-
lation of the states after the time At. Indeed, some level of numerical diffusion is necessary in order
to stabilise the numerical integration and methods which are overly suppressive can create spurious
features. For first-order schemes numerical diffusion is proportional to the cell size, but can be sig-
nificantly reduced with higher-order schemes. In the limit of zero cell size the numerical diffusion
also reduces to zero which is why numercal methods do not solve the ideal Euler equations but are
referred to as the weak solution of the non-ideal Euler equations where the viscous terms tend to zero.
Numerical diffusion also has implications for the dissipation of energy in simulations. As the mean
free path of individual particles is not resolved, energy is dissipated numerically at the resolution limit.

5.4.3 Higher-order extensions

The numerical diffusion of the first-order Godunov scheme is usually too large in practice and any
features are quickly smoothed out. The leading error terms are proportional to the grid spacing and
thus only converge slowly for a higher resolution. Therefore, higher-order schemes were developed
such as the first second-order algorithm: the MUSCL-Hancock scheme ("Monotonic Upwind-centred
Scheme for Conservation Laws" (van Leer, [1976, [1984))). Here, the cell-averaged quantities are no
longer piecewise constant but are represented by piecewise linear functions which conserve the integral
average of the cell as illustrated by The local reconstruction of the quantities is then given
by

U(x)=U; + MA,-, x € [0, Ax] (5.56)
Ax
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Figure 5.3: Illustration of the MUSCL-Hancock method. The piecewise constant data states are replaced with
piecewise linear functions.

with the slope A; defined as
1 1
A= 5(1 +w)(U; - Uip) + 5(1 —w)( Uiy — Uy, we [-1,1]. (5.57)

For w = 0, A; is a central finite difference approximation of the slope. The boundary extrapolated
values are then given by

Uf =U; - -A,

1
2

; (5.58)
U =U; + 4

Note that here left and right does not represent the left and right state of the boundary as in the Riemann
solver but the left and right extrapolated value inside a single cell as shown in[Figure 5.3] As now the
flux function is not self-similar anymore and in order to stabilise the scheme, these values are evolved
for half a time-step similar to a predictor-corrector scheme:

) 1 Ar
U =ut+ 5 7 [FUD) ~ F(Uf)]

| A)t‘ (5.59)
0F = UR + -2 [F(UY) - FUR))

2 Ax

This evolution step is entirely carried out in a single cell and the evolved values are then used in the
Riemann problem at the cell boundaries:

Fiiijo = Fioy (08, 05 ). (5.60)

The MUSCL-Hancock scheme is second-order in time and space but Godunov’s theorem states that
any scheme higher than first-order will produce oscillations at large gradients (Godunovl, (1959). This
is due to the fact that the linear reconstruction can introduce maxima in the gradient over several cells
as is the case on the left boundary in In order to reduce the occurrence of maxima, the
slopes are limited to a maximum incline by a slope limiter. The maximum value is set locally for every
cell and in order to have a total variance diminishing scheme (Harten, [1983) the condition is that the
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Figure 5.4: Illustration of the MUSCL-Hancock method after applying a slope limiter. The slope limiter de-
creases the incline of the slopes in order to reduce the occurrence of maxima.

updated state in the cell is bounded by the initial adjacent average states. This is ensured by various
different slope limiters, less rigorously for instance by the minmod slope limiter where the boundary
extrapolated values must be monotonous:

A; = minmod(U; — U;_, Uy — U)) (5.61)
with
0 ifab<0
minmod(a, b) = {a if|a| < |b| and ab > 0 (5.62)

b if|b| <|aland ab >0

This method sets the slope to the lower value of the differences to the neighboring cells or to zero if
the differences have different signs as illustrated in A slope limiter effectively reduces the
order of the scheme locally where large gradients are present. In order to reduce numerical diffusion, it
is more effective to use even higher-order schemes (ENO, WENO or discontinuous Garlekin methods)
for smooth regions, while discontinuities are better treated by a local increase in resolution which
is achieved for instance by adaptive mesh refinement (AMR) (Berger and Oliger, [1984; Berger and
Colella, [1989).

AMR works by splitting existing cells usually by a factor of two (or eight in three dimensions)
which leads to a finer resolution. In principle there are three different approaches to refining cells.
The block-based method refines large regions of the code as soon as one cell of the region has reached
the refinement criteria which results in a simple data structure but also in a larger amount of refined
cells than necessary, which increases computational time and storage. The cell-based approach re-
fines individual cells on a cell-by-cell basis, leading to a minimal refinement which can reduce the
computational cost dramatically but also necessitates a complex data structure to store the cells. A
compromise between the two methods is the patch-based method where rectangular refined regions
are adapted to the geometry of the cells needing refinement, leading to a lower number of refined cells
than the block-based method while still having a relatively easy data structure. Special care has to be
taken when defining the refinement criteria in order to actually improve the solution. Typical criteria
are the cell density or the density gradient. The flux at the boundary of the coarse cell is replaced by
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the sum of the fluxes on the fine level and the boundary values have to be interpolated down to the
refined cells. As the CFL condition depends on the spatial resolution, highly refined cells can dictate
the time advancement of the whole simulation. In order to reduce the impact of highly refined cells,
subcycling is employed where the code is advanced separately on each refinement level according to
the respective timestep size.

5.4.4 Gravity source terms

Source terms refer to all terms which are added to the right-hand side of the Euler equations as done

for a generic external force in The general equation including a source term S(U) has
the form

ou

a0 + V- FU) = S(U). (5.63)

While various physical processes exist which are included via source terms, e.g. radiation, with their
respective numerical techniques, for astrophysical applications the most important source term is the
force of gravity which is given by the gradient of the gravitational potential which is calculated by
solving the Poisson equation:

Fgay = —pVO  with  A® = 47Gp. (5.64)

There are various numerical methods for solving the Poisson equation, ranging from Particle-In-Cell
methods over Fast Fourier solvers to relaxation methods or some combination thereof which we will
not discuss in detail. If the characteristic timescale to reach an equilibrium state with the source terms
is much larger than the typical timescale associated with the hydrodynamic evolution

Ax

tHD = , (5.65)

Smax
as is usually the case with gravity, the source terms are called non-stiff and can be implemented by
using the so-called operator split approach where the overall equation is split into two successive
separate steps. First the hyperbolic equation is solved without the source term as done by the Godunov

. . —n+1 .
scheme in order to obtain the temporary state U, Thereafter, in a second step, the evolved temporary
solution is updated by either a first-order scheme:

—n+1
Un+1 -U +
—_— = S(U"* 5.66
A7 U (5.66)
or a second-order scheme: o
Un+1 _ ﬁn S(Un) + S(U}’l+1)
A7 = 5 (5.67)

where, in the case of gravity, the final update is performed after solving the Poisson equation for the
evolved temporary state:

——n+l
(ew™! —(pu) (VD) + (pVD)"H!
v =— 5 (5.68)

(pew)™! - (petot)nH (puV®)" + (puVd)"!
At - ) (5.09)
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Figure 5.5: Example of the domain decomposition using a Peano-Hilbert curve. The two-dimensional domain
of a 32 x 32 grid is filled by a one-dimensional line. The colour coding shows the ideal partitioning of the
domain on eight processors.

AD"! = 47Gp™H! (5.70)

When self-gravity is involved, it is important to be aware of the effects of numerical fragmentation
which can lead to the artificial formation of dense gas clumps. This issue was explored in a study by
Truelove et al|(1997) who noted that the Jeans length of the gas must be resolved locally at least by
four cells at all times in order to prevent artificial fragmentation.

5.4.5 Parallelisation

Executing serial, computationally demanding simulations on a single processor is not very efficient
and is not a viable option in many situations. The computation can be significantly accelerated by
spreading the workload over several processors using MPI (Message Passing Interface). The three-
dimensional domain is split into sections which are each computed by a separate processor respec-
tively. The sectioning is done by using the one-dimensional Peano-Hilbert space-filling curve. This
guarantees well-balanced processes as the curve optimises the geometry of the sub-domains by creat-
ing continuous sections of cells. Each individual sub-domain has its own boundary conditions given by
copies of the adjacent cells of neighboring sections, so-called ghost cells, which have to be exchanged
after every time-step. Therefore, the Peano-Hilbert curve reduces the amount of communication nec-
essary between the processors. An example in two-dimensions is given in[Figure 5.5| which shows the
partitioning of sections onto separate processors as given by the different colours.
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6 Paper I: Non-linear dense core for-
mation in the dark cloud L1517

S. Heigl, A. Burkert, A. Hacar, 2016, Monthly Notices of the Royal Astronomical Society,
463, 4301-4310

We present a solution for the observed core fragmentation of filaments in the
Taurus L1517 dark cloud which previously could not be explained (Hacar and
Tafalla, 2011). Core fragmentation is a vital step for the formation of stars. Ob-
servations suggest a connection to the filamentary structure of the cloud gas, but
it remains unclear which process is responsible. We show that the gravitational
instability process of an infinite, isothermal cylinder can account for the exhibited
fragmentation under the assumption that the perturbation grows on the dominant
wavelength. We use numerical simulations with the code RAMSES, estimate
observed column densities and line-of-sight velocities, and compare them to the
observations. A critical factor for the observed fragmentation is that cores grow
by redistributing mass within the filament and thus the density between the cores
decreases over the fragmentation process. This often leads to wrong dominant
wavelength estimates, as it is strongly dependent on the initial central density.
We argue that non-linear effects also play an important role on the evolution of
the fragmentation. Once the density perturbation grows above the critical line-
mass, non-linearity leads to an enhancement of the central core density in com-
parison to the analytical prediction. Choosing the correct initial conditions with
perturbation strengths of around 20%, leads to inclination corrected line-of-sight
velocities and central core densities within the observational measurement error
in a realistic evolution time.

Key words: stars:formation — ISM:kinematics and dynamics — ISM:structure
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6.1 Introduction

Individual or binary stars are formed in dense cores (Benson and Myers, |1989; |di Francesco
et al., 2007) which are condensations within larger molecular cloud complexes. The critical
process of how a tens of parsec sized cloud fragments into a few 0.1 pc sized cores never-
theless remains an unresolved challenge for star formation. Especially, as core formation
appears to be tied to the low efficiency of the star-formation process (Evans et al., 2009).

The recent large-scale cloud images taken by the Herschel Space Observatory show that
molecular clouds exhibit a ubiquity of complex filamentary structures, forming a network
over several size scales (André et al., [2010; Molinari et al., 2010; |Arzoumanian et al., 2011}
Schneider et al., | 2012) and dense cores being aligned with large-scale filaments like pearls in
a string. This is a strong indication that core formation is tied to some kind of filament frag-
mentation process, a connection which has long been proposed (Schneider and Elmegreen,
1979; [Larson,, |1985)).

Recent observations however have shown that filamentary clouds with trans-sonic inter-
nal motions are not one single entity, but consist of fibers: velocity-coherent structures of
subsonic gas (Hacar et al., 2013} /Arzoumanian et al., 2013} Tanaka et al., 2013} Tatalla and
Hacar, [2015). The existence of filamentary substructure has also been found recently in nu-
merical simulations (Moeckel and Burkert, 2015;/Smaith et al.,[2016). Dense cores are embed-
ded within these fibers and often show similar kinematic properties with a smooth transition
from fiber to core gas. This suggests that turbulence does not dissipate at the scale of dense
cores, but at the typical scale of the velocity-coherent fibers of about 0.5 pc. Tatalla and Hacar
(20135) propose a model they call "fray and fragment": At first, the filament forms through
a colliding flow. Over time, residual turbulent motions together with gravity form velocity-
coherent fibers. Finally, some of the fibers form dense cores through gravitational instability.
The model suggests that cores form by subsonic motions and gives rise to the question of the
exact mechanism that leads to core formation in fibres and filaments. The key to understand-
ing the core fragmentation process and to distinguish between different models, such as a
pure gravitational fragmentation, dissipation of turbulence due to supersonic shocks (Padoan
et al., 2001} Klessen et al., 2005 Vazquez-Semadeni et al., 20035)) or the loss of magnetic
support due to ambipolar diffusion (Shu et al., |1987), is the internal velocity structure of the
filaments, as well as their kinematic properties.

A detailed study of the L1517 dark cloud in Taurus and its core population was presented
by Hacar and Tafalla (2011). They observed the cloud in four different molecular transitions,
ranging from N,H*(J = 1-0) and SO(Jy = 3,-2;) to C'*O(J = 1-0) and CO(J = 1-0) as
well as in dust continuum emission. This allows them to study different density regimes, from
the less dense filament gas to the very dense core interior, in great detail. In addition they show
that the cores are in different evolutionary states, with more evolved cores having increasing
N,H* abundance and anti-correlated, depleted SO emission (Tafalla et al., 2006). The region
is made up of four velocity coherent filaments consisting predominantly of subsonic gas. In
two of the filaments, two cores are forming separately and the interior motion of the filaments
show a smooth transition to the core gas kinematics. The line-of sight velocity centroid shows
an oscillatory motion with a periodicity that matches the periodicity of the cores and is clearly
associated with the core positions. This oscillatory motion is expected from the gravitational
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instability model and suggests that the cores form by gravitational contraction of the filament
gas. Nevertheless, the authors claim that the fragmentation distance is not consistent with the
model of pure gravitational fragmentation, a claim we want to test using numerical methods
as the model is strongly dependent on its initial condition and the inclination of the filament.

In the following sections, we recapitulate the filament and core population of L1517
tion 6.2) and the characteristic properties our models have to replicate. We also summarise
the theory of the fragmentation of pressure-bound isothermal filaments (Subsection 6.3.1J),
the basis of our models and how we use it in our simulations (Subsection 6.3.2). Next, we
discuss the simulation set-up and present our numerical results (Section 6.5).
We start by comparing our data to the observations (Subsection 6.5.1)), then we discuss the
evolution of the core growth in the linear and non-linear regime (Subsection 6.5.2)). Finally,
we finish with an analysis of the external pressure in the dark cloud (Subsection 6.5.3) which
is a crucial part of the model of a pressure-bound isothermal filament.

6.2 Filaments and cores in L1517

The L1517 dark cloud has several properties in favour of an idealised analysis. The cloud is
relatively isolated, only to be disturbed by the near PMS stars AB Aurigae and SU Aurigae,
which are physically associated with L1517 and are heating the near-by gas (Nachman, |1979;
Duvert et al., |1986; Heyer et al., 1987), although no influence on the dense gas can be seen.
Furthermore, the filament gas is predominantly subsonic. Thus, turbulence only plays a minor
role in the dynamics of the gas.

The density profiles of three of the four filaments can be reproduced by an isothermal
cylinder in pressure equilibrium with its self-gravity. This profile was first described by
Stoddlkiewicz (1963) and Ostriker| (1964), and is given by the analytic form

p(ry= —FP ©.1)
(1+ (/HY)

where r is the cylindrical radius, py is the central density. The radial scale height H is given
by

H> = —¢ 6.2
G (6.2)

where c; is the isothermal sound speed and G the gravitational constant. The gas is assumed
to have a temperature of approximately 10 K (Tafalla et al., 2004) and assuming a molecular
weight of 1 = 2.36 gives the isothermal sound speed of ¢, ~ 0.2km s™'. Integrating the
profile to r — oo gives a line mass of
M 2c2
—| ===%164M,pc”’ 6.3
( L )crit G o be ( )
This is called the critical line-mass, as it determines the threshold above which a filament will
collapse under its self-gravity.
It is important to note that the observations do not extend out far enough in radius to dis-
tinguish between different outer density profiles. The filaments could also be reproduced by
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a shallower softened power law and it is practically impossible to say if they are in pressure
equilibrium. Although, the fact that they form well-separated cores (Inutsuka and Miyama,
1997) and do not show supersonic motions (Burkert and Hartmann, 2004) are good indicators
that they indeed are in pressure equilibrium. Only one of the filaments can be better repro-
duced by using a softened power law and does not follow the isothermal profile. We will
concentrate on filaments 1 and 2, following the nomenclature of [Hacar and Tafalla (2011)),
both of which show an agreement with a profile in pressure equilibrium. They exhibit a
prominent core fragmentation for which detailed measurements of densities and line-of-sight
velocities along the filament are available.

Filament 1 has a total mass of My = 8.0 My and an observed projected length L,s =
0.52 pc. It contains the cores A2 and C with central number densities of 6.0 - 10* cm™ and
4.7-10* cm~ which, assuming a molecular weight of = 2.36, correspond to 2.4-10™"° g cm™
and 1.8 - 107" g cm™3, respectively. The filament profile fit provides a central number den-
sity between the cores of about 10*cm™ or 3.9 - 1072° g cm™. The observed projected core
distance is about 340 arcsec or 0.23 pc, assuming a distance of 144 pc to AB Aur (van den
Ancker et al., |1998). The line-of-sight velocity centroid variation along the filament shows
a core forming motion following a sinusoidal pattern with an amplitude of 0.04km s™" after
subtracting a smooth linear gradient of 1.0km s™' pc~!.

Filament 2 is measured to have a total mass of Mgy = 7.2 Mg and an observed projected
length L, = 0.42pc. It contains the cores Al and B, which have a central density of 7.0 -
10*cm™ and 2.2 - 10° cm™3, which corresponds to 2.7 - 107" gcm™ and 8.6 - 107 g cm™
respectively. The central density between the cores is determined to be 7.0 - 103 cm™ which
is equivalent to 2.7 - 1072° g cm™>. The observed core distance is about 270 arcsec or 0.19 pc.
In contrast to filament 1, the line-of-sight velocity centroid variation does not follow a well
defined pattern as filament 1. Nevertheless, Hacar and Tafalla (2011) fit a linear gradient of
1.4km s~ pc™! and a sinusoidal pattern with an amplitude of 0.04km s™' to the data. While
it does match the observed velocity pattern in certain regions, it fails to explain the overall
form.

6.3 Filament fragmentation

6.3.1 Theory of filament fragmentation

There has been extensive theoretical work on the fragmentation of infinite, isothermal fila-
ments over the last fifty years. In reality, filaments are neither infinite nor isothermal. The
approximation of isothermality is probably a valid approach in the case of L1517 as the
density profiles match the isothermal profile. Also the typical dust temperature gradients in
filaments are smaller than a few Kelvin (Arzoumanian et al., [2011} [Palmeirim et al., [2013)).
The bigger caveat is that filaments have a finite length. It has already been shown that fil-
aments collapse globally via the end-dominated mode where clumps form at both ends of
the filament due to gravitational focusing (Bastien, |1983; Burkert and Hartmann, |2004; Pon
et al., [2012)). But it still remains unclear how equilibrium filaments fragment exactly under
global collapse. While solutions have been found for a radial equilibrium of non-isothermal
filaments (Recchi et al, 2013), they only apply to infinite filaments. This is also true for the
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above mentioned radial solution found by Stoddlkiewicz (1963). There is still a lack of de-
tailed theoretical studies on the structure and fragmentation of finite filaments. Bastien et al.
(1991)) looked at the fragmentation of finite cylinders with a uniform density profile. They
discover a similar behaviour as for the pressure truncated infinite equilibrium case presented
below and also find a critical wavelength beneath which density perturbations will not grow.
It differs by a factor of four from the infinite filament case predicting more fragments in finite
filaments. They also find that in most cases it is possible to form growing fragments along the
cylinder before a complete collapse and that the dominance of the end fragments decreases
for a higher mass of the clouds. But the study still misses a detailed numerical prediction of
dominant fragmentation scales and its dependence on the line-mass. We therefore stress the
fact that due to a lack of a better theory we use the approximation of an infinite, isothermal
filament which we present here.

We introduce a small density perturbation in the linear regime along the filament axis of
the form:

p(r,z,1) = po(r) + p1(r,2,1) = po(r) + €po(r) exp(ikz — iwt) (6.4)
In this case, z is the filament axis, w is the growth rate, k = 27/ A the wave vector and € the
perturbation strength. Neglecting second order terms, perturbations will grow for values of &
where the solution of the dispersion relation w?(k) is smaller than zero. This will also lead to
a perturbation in velocity, pressure and potential of the form:

q1(r, z, 1) oc exp(ikz — iwt) (6.5)

It was shown that there are two important parameters for the fragmentation of an infinite,
isothermal filament: the critical and the dominant wavelength. On the one hand, the critical
wavelength determines the separation above which a small perturbation will grow. It was
first determined by Stoddlkiewicz (1963) to be Aoy = 3.94H for a filament extending to
infinite radius. The dominant wavelength, on the other hand, gives the separation of the
perturbation which will grow the fastest. It is therefore the most likely perturbation length
a filament will show after letting random perturbations grow. It was first determined by
Larson| (1985) to be about twice the critical wavelength: A4,,, = 7.82H with a growth rate of
|Waom| = 0.339 (47erC)1/ 2 (Nagasawa, 1987; Inutsuka and Miyama, |1992; Nakamura et al.}
1993t |(Gehman et al., [19964)).

Nagasawa| (1987)) was the first to also consider the more realistic situation of a pressure
truncated filament. In this case the filament follows the pressure equilibrium profile until it
extends to the radius where the internal pressure matches the external pressure. The external
pressure stabilises the filament against expansion and filaments below the critical line-mass
do not extend to infinity and are stable. The factor of line-mass to critical line-mass is given

by
M\|(M
1= 1= /= 6.6
fyl ( L )/( L )crit ( )
This leads to the boundary radius of
o )1 /2
R=H|—— (6.7)
( I- nyl
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Table 6.1: Constants of polynomial approximations by [Fischera and Martin|(2012). FWHM is the approximated
full width half maximum of the filament. 74om = 1/w4om 1S the growth timescale of the dominant mode given in

units of +/4nGp,.

ao ai az as aq as
Tdom \47Gp,  4.08  0.00  -2.99 146 040  0.00
Aeit/FTWHM 339 0.00 -2414 1588 0.016 0.00
Adgom/FWHM 625 0.00 -6.89 9.18 -344 0.00
FWHM/H 0.00 1.732 0.00 -0.041 0.818 -0.976

and the boundary density of
2
Py = Po (1 - fcyl) (6.8)

For f.,,;1 — 1 the dispersion relation tends to the same dispersion relation as for the non-
truncated filament. In the case that the filament exceeds the critical line-mass (fe,1 > 1),
Inutsuka and Miyama (1992) demonstrated that the filament collapses faster to the axis than
perturbations can grow.

Nagasawa (1987) chose an external density of zero for the computation of dominant
length- and timescales, corresponding to an infinite temperature. But even for a non-infinite
external temperature of ten times greater than the filament temperature, Fiege and Pudritz
(2000b)) found no difference to the case of an infinite external temperature. In the isothermal
case this is equal to setting the external density to a value of ten times less than the bound-
ary density. We also follow this approach and set the external density even lower in order
to reduce the effect of accretion onto the filament. A more realistic approach would con-
sider that observations show a smooth transition of filaments into the surrounding medium
(Arzoumanian et al., 2011}; [Palmeirim et al., 2013)).

The findings on dominant fragmentation lengthscales and growth timescales for pressure
truncated filaments by Nagasawa (1987)) were summarised and interpolated by Fischera and
Martin| (2012) using a fifth-order polynomial function with vanishing derivatives at the ex-

tremes:
5

Y0 = > aifl; (6.9)
i=0

They find the interpolation values given in As one can see the dominant timescale
T4om, the critical wavelength A and the dominant wavelength A4, are all polynominals of
different power of f.,,. FWHM is the approximated full width half maximum of the filament.
makes it possible to express the dominant timescale and the dominant wavelength as
a factor of the scale height H. We also use this interpolation for our simulations to define our
initial density perturbation length and to find the expected growth timescale of the dominant
mode.

6.3.2 Analytical prediction for L1517

The linear model relies on an exponential growth of a sinusoidal density and velocity per-
turbation as seen from This implies that the perturbation is symmetrical in
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the sense that as the density enhancement grows, the density minimum depletes on the same
timescale. Thus, as soon as the peak density reaches twice the initial density, the gas between
the cores should be completely accreted and the model has to break down. Therefore, it is not
clear how long a sinusoidal redistribution of mass is maintained.

For a first test, we adopt an initial central density that is the simple average between the
filament and maximum core density, where we take the average of both cores respectively as
density maximum. This leads to the values of about 1.2-107"° ¢ cm™ for filament 1 and about
2.9-107 g cm™ for filament 2, corresponding to the number densities of 3.1 - 10* cm™ and
7.4 - 10* cm™ respectively. In the case we do not achieve a minimum density as low as the
observed minimum density when running the fragmentation simulation, we use the mean of
our guess value and the observed minimum central density to calculate a new initial central
density and iterate until a good agreement with the observation is found.

We expect the cores to grow on the dominant wavelength and thus the observed core sep-
aration is the dominant wavelength affected by inclination. We use the inclination angle ¢
where the projected dominant wavelength A4om, - cOs(¢) corresponds to the observed fragmen-
tation length. The value of A4, is computed using where H is calculated according
to and the line-mass fraction f is determined by using the filament mass Mg
and the observed filament length L, which is corrected for inclination:

My, - cos(¢)

Jeyr =
Cy Lobs

[(16.4 Mo pe™) (6.10)
With the central density and f,,; determined, we have everything we need to set-up a filament
in pressure equilibrium.

6.4 Simulation set-up

The numerical simulations were executed with the Ramses code (Teyssier, 2002). The code is
capable of solving the discretised Euler equations in their conservative form on an Cartesian
grid in 1D, 2D and 3D with a second-order Godunov scheme. For our simulation we used the
MUSCL scheme (Monotonic Upstream-Centred Scheme for Conservation Laws, [van Leer
(1976)) in combination with the HLLC-Solver (Toro et al., [1994) and the multidimensional
MC slope limiter (van Leer, 1979) was applied in order to achieve a total variation diminish-
ing scheme. The gravity is solved using the built-in multigrid solver.

We place the filament axis in the x-direction of a 3D box and use periodic boundary
conditions in this dimension in order to simulate an infinite filament. We set the boxsize to
twice the dominant perturbation length in order to resolve it correctly and to stay close to the
observations. The boundaries in perpendicular directions of the filament are set as outflow
condition. The potential of the ghost cells has to be set to zero in order to not introduce a
gravitational focus to the box centre due to the mixed boundary conditions.

The filament gas is set to be isothermal with a temperature of 10 K and a molecular weight
of u = 2.36. The external gas surrounding the filament is fixed to be isobaric at all times and
in pressure equilibrium with the boundary pressure of the filament:

Py = pyc? 6.11)
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Figure 6.1: Density slice in the x-y plane through the centre of the simulation of filament 2 in log-space. Only
the filament gas is plotted (o > 1072 g cm™). The upper panel shows the filament at the beginning which
we define to be 1 Myr before the final state. The lower panel shows the final state that is compared with the
observations. The timestep of the middle panel is exactly in between the two. The contours show equi-density
levels normalised on the maximum density of the respective timestep and increase linearly in log-space to always
show five contours. As one can see, the form of the emerging density clump changes from prolate in the linear
evolution phase to becoming more and more roundish in the non-linear phase, a behavior which was also seen
in SPH-simulations executed by [nutsuka and Miyama|(1992).
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In order to minimise the effect of accretion we set the external density to a very low value of
10~* times the filament boundary density. Real physical accretion would affect the growth of
perturbations, but to quantify this is above the scope of this paper.

As the boxsize is larger than the filament diameter, we employ adaptive mesh refinement
(AMR), which allows us to keep the resolution low in the low-density external gas. We en-
force a refinement of the central region to give us an effective resolution of 256 for the dense
filament gas, which is enough to fulfill the Truelove criterion for the maximum occurring
density within a factor of 16 at all times (Truelove et al., |1997) aside from the late core col-
lapse in filament 2 where we still fulfill the Truelove criterion within a factor of 8. In order to
check for consistency and rule out a limitation by resolution we also repeat the simulations
with half the resolution and look for mayor differences between the results.

The density perturbation is set according to with a very small amplitude of
1% of the initial density, as the velocity has to adjust to the perturbed state. The phase of the
density perturbation is set at random, but as the box is periodic in the direction of the filament
axis, it has no influence on the solution.

6.5 Simulations

6.5.1 Comparison with the observation

We let the simulations run until the maximum density matches the observed central core
density. An example of a simulation can be seen in where we plot a density slice
through the centre of the filament with overlaying density contours. The timescale is restricted
by the lifetime of a molecular cloud, which is estimated to be of the order of a few Myr,
especially for Taurus (Palla and Stahler, 2000; |Hartmann, 2001} |White and Ghez, 2001)). It is
therefore reasonable to assume 1 Myr as typical timescale for filament fragmentation. This
timescale also coincides with the average lifetime of a core with typical densities of 10* cm™
(Lee and Myers, |1999; Jessop and Ward-Thompson, 2000; Nakamura and Li, [2005), which
serves as a good approximation for the total starless core phase. In our case, as the evolution
should be effectively self-similar in the linear phase, the evolution timescale is then a function
of the initial amplitude of the perturbation. Starting with a very small initial perturbation and
running the simulation until the observed state is reached, allows us to actually determine the
most likely initial amplitude as the perturbations strength reached one Myr before the finale
state.

In order to compare our simulation result with the observations, we assume an inclination
as described in [Subsection 6.3.2] We then use this inclination to determine the line-of-sight
velocity distribution for each spatial pixel. In order to get the centroid velocity, we treat every
volume element of the computational grid as an emitter of a discrete line-of-sight velocity
value. These are converted to Gaussian line profiles with a dispersion of o = 0.0526 km s™*,
corresponding to the thermal linewidth of C'80, and are weighted with the respective density.
The line profiles are binned into histograms with a bin width of 0.05 km s™' in order to get a
complete line emission for each observed spatial pixel and we measure the velocity centroid
by fitting a Gaussian to the line, as an observer would do.

The result for our converged models is shown in for filament 1 and
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Figure 6.2: Results of the simulation for filament 1 in a line-of-sight projection of 57°along the axis of the
filament. The upper panel shows the central volume density along the filament with two distinct cores also
marked by the dashed, vertical lines. The density maximum and minimum matches the observation within a
factor of two. The second panel shows the surface density summed up along the line-of-sight for a gas with a
molecular weight of 4 = 2.36. The third panel shows the velocity centroid variation as blue squares. Our fit to
the data is given by the light blue line and the true projected central axis velocity is shown by the dashed, red
line. As one can see, the true central velocity pattern is hidden with the maxima being damped by the velocity
structure inside the filament. The velocity centroid pattern shows nearly the same amplitude of 0.05 km s™!
compared to the observed amplitude of 0.04 km s~'. The lower panel shows the non-thermal velocity dispersion
in units of the sound speed. The dispersion is subsonic throughout with a mean value of (o) /c; = 0.17 which
is about a third of what is observed in filament 1 ({o ) /¢y = 0.57 + 0.15 (Hacar and Tafalla, [2011)).
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Figure 6.3: Asin but for filament 2 in a line-of-sight projection of 66°. Again, the upper panel shows
that the volume density matches the observation within a factor of two. The cores are more pronounced than
for filament 1 and the volume density does not follow a sinusoidal pattern along the filament but shows a flat
decreased density between the cores. This feature is harder to see in the surface density in the second panel.
The amplitude of the velocity centroid variation is somewhat higher than the fit of the observations, 0.08 km s~
compared to 0.04km s~', but the original observed velocity data of filament 2 does not follow a well defined
sinusoidal curve (Hacar and Tafalla, [2011). The true central velocity structure is even more damped than in
filament 1. It shows more pronounced slopes which indicates that matter from a broader region is pulled onto
the density maxima. The non-thermal velocity dispersion in the lower panel is about twice that of the simulation
of filament 1 with a mean value of (o) /c; = 0.40 which is around a factor of 1.5 lower compared to the
observed value of (o) /c; = 0.63 £0.16.
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for filament 2 together with the central volume density, the column density in the line-of-sight
and the non-thermal velocity dispersion of the Gaussian fit. Filament 1 has an unprojected
wavelength of 0.43 pc, an inclination angle of 57°and an initial line-mass of f.,; = 0.51. Fil-
ament 2 has an unprojected wavelength of 0.46 pc, an inclination angle of 66°and an initial
line-mass of f.,; = 0.43. The projected core distances of 0.23 pc and 0.19 pc respectively
match the observed spacing and the maximum central volume densities of 2.07 - 10™"° g cm™
and 5.74 - 107! g cm™ also agree with the observations. The minimum central volume den-
sities of 4.98 - 1072 g cm™ and 3.37 - 1072° ¢ cm ™ match the observed densities between the
cores within a factor of two, which is the estimated error of measurement of Hacar and Tatalla
(2011).

The spacial distribution of the line-of-sight centroid velocities is in good agreement with
the observations. Especially filament 1 where the observed velocity data shows a sinusoidal
curve with an amplitude of 0.04km s™" is well matched. Our fit, given by the solid light
blue line, has an amplitude of 0.05km s™' but this is still within the measurement error of
0.01 km s~!. Hacar and Tafalla (2011) also fitted an amplitude of 0.04 km s7! to the line-
of-sight centroid velocity distribution of filament 2 but the observed velocity structure is
ambiguous. The observed centroid velocity of filament 2 varies up to a value of 0.1 km s™!
and does not follow a sinusoidal pattern very well. Contrarily to the observation, we see a
sinusoidal pattern in the centroid velocity variation. We find an amplitude about twice as large
as the observed fit, namely 0.08 km s™'. Why the observed centroid velocity does not follow
a clear pattern is not clear and could be due to more complex motions inside the filament. The
velocity patterns of both filaments show a clear 4/4 shift in phase compared to the density
perturbation, as they do in the observations, which is an indicator of the core-forming motions
(Gehman et al., [1996a)).

The dashed, red lines in [Figure 6.2| and [Figure 6.3| show the true, inclination corrected,
central axis velocity in longitude direction of the filament. Due to the central axis being
the densest component, we would have expected that this velocity agrees with the projected
line-of-sight velocity pattern as we only see weak radial infall motions in the majority of the
filament. However, contrarily to our expectation, the true motion differs significantly from the
line-of-sight velocity structure. Its maxima are large with a difference that is almost a factor
of 2 in filament 2. In addition, the location of the maxima is shifted towards the clumps. In
the strong non-linear case of filament 2 the true velocity pattern cannot be modeled well by
a sinusoidal pattern. Interestingly, however, the projected velocity structure still resembles a
sinusoidal pattern well.

The lowest panel shows the non-thermal velocity dispersion in the line of sight through
the centre of the filament. It is calculated by measuring the FWHM, here denoted by Av, of
the Gaussian fit to the line-of-sight velocity data and by using the fact that the contribution
of the thermal and non-thermal gas motions to the linewidth add in quadrature (e.g. Myers,

1983):
AVZ kBT

= _ L 6.12

Tt 8In2  m (6.12)

where m is the mass of the observed molecule, in this case C'80. We find that the gas is very
subsonic throughout the filaments, with variations due to higher velocity dispersions inside
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Figure 6.4: Evolution of the maximum central density (blue, left axis) and x-velocity (red, right axis) of filament
1. Both follow the analytic prediction until the density reaches a perturbation strength of about 100% where a
non-linear evolution in density sets in. The dashed-dotted vertical line gives the point in time of the observation.

and between the cores. We find that the higher velocity dispersion inside the cores is not only
due to the radial collapse of the filament but is dominated by the infall of gas coming from
the bulk of the filament. It is interesting to note that, although we do not model subsonic
turbulence, the ordered motions inside the filament already lead to a considerable amount of
non-thermal velocity dispersion. The mean of the dispersion in units of the sound speed is
about (o) /¢y, = 0.17 for filament 1 and (o) /c; = 0.40 for filament 2. Comparing the
modeled velocity dispersion to the observed values of (o) /c; = 0.57 £ 0.15 and (o) /¢ =
0.63 +0.16 respecitvely and taking into account that velocity dispersions add in quadrature it
becomes clear that in the case of the observations subsonic turbulence still dominates the non-
thermal component of the velocity dispersion even with strong underlying ordered motion.

In the end, we find that the initial, unperturbed central density of the filaments was
8.2-1072° g cm™3 for filament 1 and 6.1-1072° g cm™ for filament 2. Both lie considerably be-
low the mean value of the maximum and minimum observed density of about 1.2-107"° g cm™
for filament 1 and 2.9 - 107'° g cm™ for filament 2. This signifies that there is a considerable
amount of asymmetrical evolution where more mass is transferred to the density maxima
than is taken from the density minima. This leads to an enhancement of the maximum den-
sity while leading to a slower density decrease between the cores. This effect is stronger in
filament 2 than in filament 1 as can be seen from the bigger discrepancy of the initial central
density and the observed density mean.
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Figure 6.5: As in [Figure 6.4, but for filament 2. Filament 2 shows the same evolutionary characteristics as
filament 1, but in order to fulfill the time constraint of about 1 Myr, we need an initial density perturbation of
around 20%. One can see that the observed state lies far deeper in the non-linear regime than for filament 1.

6.5.2 Dynamical evolution

In order to understand the asymmetrical evolution of the maximum and minimum density, we
take a closer look at the time evolution of the perturbed quantities. Each perturbation of every
variable should follow Thus, they should follow a linear evolution in log-space.
This is shown for the central maximum density and central maximum velocity in the filament
axis in for filament 1 and in for filament 2. In order to stay close to a
reasonable limit of 1 Myr (see previous subsection), we start the evolution of filament 1 at
about 10% perturbation strength and of filament 2 at about 20%. Both the maximum density
and maximum velocity follow the linear prediction for the majority of the evolution with
the density showing some oscillation around the linear prediction. In the late phase of the
evolution, both filaments show a clear non-linear growth of the maximum density. It is worth
noting that this non-linear phase is not short in the sense that all the mass of the filament
collapses into a core in a fast period of time, but it is a smooth process, which can easily take
up to 0.4 Myr or nearly half of the whole formation time of a core and still leaves diffuse
gas to make up the filament. Also note that the velocity does not follow the same non-linear
evolution initially. Only when we let the simulations run further, we see that the velocity
follows with a delay of about 0.3 Myr. At that point in time, the cores are in a much more
developed state and the simulations brake down due to resolution issues.

In order to have a deeper look into the non-linear phase we look at the line-mass in the
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Figure 6.6: Evolution of the maximum density perturbation in log-space (blue, left axis, logarithmic scale) of
filament 2 together with the evolution of f, (violet, right axis, linear scale) in the maximum density filament
slice. One can see that the non-linear evolution of the maximum density is tied to the fact that the line-mass
enters the critical regime (fcy; > 1). This means the maximum density evolution is driven primarily by the radial
collapse of the filament in this section.

slice of the maximum density. The line-mass of a pressure-bound filament is given by:

M R
— = f 2rtrp(r)dr (6.13)
L Jo

Inserting one can show, as the perturbation is independent of radius and the

integration just gives the initial line-mass, that the time evolution is given by:

(%)(z) = (%)0 [1 + eexp(ikz — iwt)] (6.14)

This indicates that, not only is there a redistribution of mass inside the filament, but that the
line-mass also follows exactly the same evolution as the density.

We plot the time evolution of the maximum density together with its respective line-mass
ratio fiy of filament 2 in The scale of f,; is linear in order to see when the line-
mass becomes supercritical. One can clearly see that f.,; exceeds 1.0 after about 0.85 Myr.
This coincides more or less with the maximum central density entering the non-linear part
of its evolution and dominates the late evolution. This indicates that the reason for the non-
linear evolution of the maximum central density is that the region containing the cores are
supercritical in the line-mass. This leads to a radial collapse of the filament at the position of
the core as it cannot sustain hydrodynamical equilibrium which in turn enhances the central
density.
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Figure 6.7: Evolution of the maximum and absolute minimum value of the density perturbation (left axis)
of filament 2 together with the evolution of the absolute value of the perturbation in f, (right axis) in the
respective filament slice. The minimum density perturbation evolves slower as predicted, growing even slower
as time progresses. This means that the cores are not feeded symmetrically by the density minima, but accrete
mass from over the whole filament.

This effect can account for the majority of the asymmetry but we also observe a reduced
growth of the perturbation of the density minimum. In we plot the evolution of the
maximum and the minimum density as well as the evolution of the maximum and minimum
line-mass, both on a logarithmic scale to show the linear evolution. Note that, not only does
the density follow the linear prediction but also the line-mass as predicted by
One can also see the non-linear evolution of the maximum density in the line-mass maximum
but it does not grow as fast as the density. As radial collapse of the filament would not lead
to a difference in line-mass, this indicates that the density growth is not fed by radial collapse
alone.

An interesting effect is that the evolution of the minimum density, as well as the minimum
line-mass, flattens as the perturbation of the maximum becomes non-linear. This implies that
the mass is not redistributed from the minimum to the maximum anymore but that the cores
accrete mass from all over the bulk of the filament, which can be seen in the central volume
density of filament 2 in[Figure 6.3] The area between the cores shows a flat decreased density,
with the cores being very pronounced and peaked, indicating that the cores also pull in mass
from the filament axis. This means that as we approach the supercritical state of the cores,
the accretion changes from a simple linear enhancement and reduction of the maximum and
minimum respectively to a radial, spherical symmetric accretion onto the cores. This effect
has also been shown and studied by [[nutsuka and Miyama (1992)) in SPH-simulations where
they see the same behavior in the non-linear phase.

The change from linear to non-linear evolution also leads to a difference in core morphol-
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ogy and has an important implication for observed cores. This change can be seen in [Fig-]
where the density contours show the cores initially forming to have a prolate shape,
as matter is only transferred from the minimum to the maximum density. This changes dras-
tically in the non-linear phase at the end of the simulation where the dense cores clearly show
a generally round form in the density distribution. This was also seen in the simulations of
Inutsuka and Miyama (1992)) where the cores approached a near spherical form for late times
in the non-linear phase. If one were to observe a dense core that displays an elongated, pro-
late form, it could be a strong hint that it is situated in the linear evolutionary phase. Indeed,
observed cores typically show an elongated form (Benson and Myers, |1989) which is consis-
tent with the fact that cores spend the bigger part of their lifetime in the linear evolutionary
phase. However, it is obvious that there is an observational bias to detect dense cores which
are likely to be in the non-linear phase already as they would not easily stand out of the fila-
ment gas otherwise. For instance, at the beginning of the non-linear phase of the simulation
of filament 2 the cores only have an over-density of a factor of about two with respect to the
filament gas.

The factor of two difference in the initial perturbation of the density maximum and the
density minimum in stems from the fact that we start the simulation at an even
earlier time with a very small perturbation strength in order to let the filament adjust to the
perturbation. Although it is a relatively small difference, it highlights the fact that the density
minimum already evolved slower than the density maximum. Starting with different values
for the initial perturbation strength shows that the factor of two is robust and seems to be
hard to avoid. Nevertheless, it is of relatively minor impact, since a factor two is also the
inherent error in the observation and would not lead to an offset of the mean density as initial
condition.

6.5.3 External pressure

From [Equation 6.8} it is possible to determine the boundary density of the filaments. This
value can then be used in to get an estimate of the pressure of the surrounding
material. Using our derived values of py = 8.18 - 107 g cm™ and f,1 = 0.51 for filament
1 and pp = 6.12-10* gem™ and f,1 = 0.43 for filament 2, both filaments give nearly
the exact same value for the external pressure of P /kz = 5.01 - 10*K cm™ and Py /kp =
5.08 - 10* K cm™ where kj is the Boltzmann constant. The consistency of both values could
be a coincidence, but is reassuring and shows the power of the pressure truncated filament
method to predict the environmental pressure.

However, the source of the external pressure is not clear and is open to debate. It is
larger than the usually assumed total (thermal + turbulent) gas pressure of the interstellar
medium, which is estimated to be of the order of Pisy/ks = 10° — 10°K cm™, e.g. by
Bertold1 and McKee, (1992), although they also estimate the gravitational pressure of the
weight of the overlying material of different molecular clouds on cores and get values in a
range of Pg/kg ~ 10*~10° K cm™. While this pressure is more important in quiescent clouds
and not necessarily as high for turbulent clouds, gravitational pressure can add to the overall
external pressure.

In addition, warm ionised gas can also lead to a supportive pressure, as has been shown
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for the Pipe Nebula (Gritschneder and Linl, 2012). They also determine pressure values in the
range of Pj,,/kg ~ 10* - 10°K cm™. A possible source for ionizing radiation is AB Aurigae,
which has been shown to heat the diffuse gas component while having nearly no influence
on the dense gas (Duvert et al., |[1986; Ladd and Myers, [1991). However, for the estimated
environmental densities of order 5 - 10> cm™ we would require a temperature of around 100
K which is not observed in the external medium.

Another source of external pressure is turbulent ram pressure P, = pdfurb where oy 18
calculated according to The relevant velocity dispersion o, for an external
ram pressure is not the intrinsic velocity dispersion of the filaments but that of the whole
region. The observations of |[Hacar and Tafalla (2011) show that the C'80 gas is measured
over the range of Av = 1.2km s™'. Assuming an external density of p, ~ 5- 10?> cm™ leads to
an external pressure of about Py, /kz ~ 4 - 10* K cm ™ which is in excellent agreement with
our external pressure estimate.

Although the source of the external pressure still remains unclear, a good candidate is
therefore turbulent ram pressure. The theoretical model does not allow for a big leeway in
the external pressure estimate and further observations are required to confirm this conjecture
and determine the origin of the external pressure.

6.6 Discussion and conclusions

Even though we can reproduce the observational data well, some caveats remain. First and
foremost, we simulate an infinite filament by using periodic boundary conditions. This is not
a perfect representation of reality and our choice of boundary prevents the global collapse and
edge-effects expected in finite filaments. A future study must include effects of a non-periodic
boundary. It was shown by |Clarke and Whitworth| (2015) using semi-analytical methods and
simulations that the global timescale for collapse of filaments with greater aspect ratios than

Az2is 0.49 + 0.25A
49 +0.
feol = ———— (6.15)
G ML

7R?

Using this formula, we find that the timescales for global collapse of our filaments are around
1.5 Myr. Thus, although fragmentation is physically possible, the filament will also change
its form on a Myr scale. This will definitely influence fragmentation length- and timescales
and if it is not possible to find other stabilizing processes, e.g. rotation or magnetic fields, this
effect has to be taken into account.

Furthermore, although we can explain the observed densities, some differences to the
observations remain. Most notably, the cores in [Figure 6.2] and |Figure 6.3| are more peaked
than the observed cores. Also the observed filaments have a diameter of about 0.2 pc in
contrast to our simulations where the filaments have a diameter of about 0.14 pc. The reason
for this could be that we do not include the intrinsic turbulence. [Hacar and Tafallal (2011)) do
find that a considerable amount of sub-sonic turbulence of about 0.5 times the sound speed
dominates the filaments. This will naturally lead to puffed-up cores and a wider filament
itself. Turbulence could indeed also change the form of the filament and fragmentation length-
and timescales and is a factor to take into account but as it does not change the line-mass
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that regulates the fragmentation the impact should be relatively small. Still, a detailed study
on the effect of turbulence would be interesting in order to understand better whether the
fragmentation presented here is still possible.

Additionally, the observed cores are not symmetrical. For an idealised analysis we treat
them as symmetric with a central density corresponding to their mean, but in reality their
central density differs up to a factor of about three for filament 2. This could be either an
effect of a clumpy or uneven initial mass distribution or of an asymmetrical evolution out of
an evenly mass-distributed idealised filament. In an extended study, it should be possible to
break their symmetrical evolution by introducing a power spectrum on the initial perturbation
instead of only using the dominant wavelength.

Nevertheless, we have shown that the fragmentation length scale can indeed be explained
by subsonic gravitational fragmentation of the filament, assuming an idealised model. To-
gether with a constraint on the inclination we can estimate line-of-sight centroid velocity
variations and compare them to the observations. Our models give the most likely properties
to be:

Filament 1

¢ an unprojected length of 0.95 pc

an inclination of 57°

a line-mass of f.,; = 0.51

an initial central density of py = 8.18 - 1072 g cm™

an external pressure of Py /kz = 5.01 - 10* K cm™

Filament 2

e an unprojected length of 1.03 pc

an inclination of 66°

a line-mass of f.,; = 0.43

an initial central density of py = 6.12- 107 g cm™>

an external pressure of Py /kz = 5.08 - 10* K cm™

Moreover, we demonstrated that cores can spend a considerable amount of their lifetime in
a non-linear phase where their central density grows faster than a simple symmetrical mass
transfer from the density minimum to the core. This is due to the fact that the densest regions
of a filament exceed the line-mass where a radial hydrodynamic equilibrium is possible. This
does not lead to an instant radial collapse, but the cores accrete matter radially, as well as
from the whole filament. This makes them live long enough to be observed in the non-linear
phase.
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Most importantly, the change from linear to non-linear evolution is indicated in a change
of core morphology. While a symmetrical redistribution of material from the minimum to
maximum density leads to a prolate form, the radial collapse in all directions of the cores in
the non-linear phase makes the core roundish in appearance. The high density contrasts from
core to filament gas which are only achieved in the non-linear evolution makes cores more
likely to be observed in the non-linear phase.
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7 Paper 11: Accretion-driven turbulence
in filaments - I. Non-gravitational ac-
cretion

S. Heigl, A. Burkert, M. Gritschneder, 2018, Monthly Notices of the Royal Astronomical
Society, 474, 4881-4893

We study accretion driven turbulence for different inflow velocities in star form-
ing filaments using the code ramses. Filaments are rarely isolated objects and
their gravitational potential will lead to radially dominated accretion. In the non-
gravitational case, accretion by itself can already provoke non-isotropic, radi-
ally dominated turbulent motions responsible for the complex structure and non-
thermal line widths observed in filaments. We find that there is a direct linear
relation between the absolute value of the total density weighted velocity disper-
sion and the infall velocity. The turbulent velocity dispersion in the filaments is
independent of sound speed or any net flow along the filament. We show that the
density weighted velocity dispersion acts as an additional pressure term support-
ing the filament in hydrostatic equilibrium. Comparing to observations, we find
that the projected non-thermal line width variation is generally subsonic indepen-
dent of inflow velocity.

Key words: stars:formation — ISM:kinematics and dynamics — ISM:structure



74 PaPER II: ACCRETION-DRIVEN TURBULENCE IN FILAMENTS - I. NON-GRAVITATIONAL ACCRETION

7.1 Introduction

Turbulent motions are ubiquitous on all astrophysical scales. There is evidence for highly
complex non-thermal motion from the intergalactic medium to the interstellar medium (ISM)
and individual molecular clouds down to even the smallest scales of protostellar discs. Like-
wise, as part of the ISM, star forming filaments are no exception to this observational fact. In
contrast to its importance the origin of turbulence is still not fully understood and there are
numerous potential sources for turbulent motions in the ISM (Mac Low and Klessen, 2004;
Elmegreen and Scalo, 2004} Elmegreen and Burkert, |2010; Klessen and Glover, 2016). On
cloud scale, molecular line observations are dominated by supersonic motions and show a
direct correlation between size and line width (Larson, 1981). This is usually interpreted
as the direct result of a turbulent cascade from the scale of a tens of parsec sized molecu-
lar cloud down to the scale of parsec sized filaments (Kritsuk et al., 2013; Federrath, 2016;
Padoan et al., 2016). Filaments then inherit their internal velocity dispersion from the mo-
tions on larger scales. This model is also favoured by Herschel observations which show
that filamentary structures are ubiquitous in molecular clouds (André et al., 2010; |/Arzouma-
nian et al., 2011, 2013; |André et al., 2014). This picture has recently been challenged by the
discovery that more massive filaments are actually complex bundles of fibers whose line-of-
sight superposition create the observed supersonic linewidths (Hacar et al., 2013)) and which
were also found to form in numerical simulations (Smith et al., 2014; Moeckel and Burkert,
2015). Independent of the formation process, we argue that accretion driven by the gravita-
tional potential of the filaments alone can be enough to stimulate turbulent motions that are
in agreement with the observations (see also Ibanez-Mejia et al., 2016).

Recent images of the high column density gas, traced by the usually optically thin C'30
line of nearby filaments have shown that the non-thermal linewidth is predominantly sub-
and transsonic along filaments. This is true for L1517 in Taurus (Hacar and Tafalla, [2011)),
where the mean is about half the sound speed, as well as for the fibre-like substructure of
the 1.1495/B213 region in Taurus (Hacar et al., 2013)), where the mean is about the sound
speed. Moreover, even in the Musca filament, a 6 pc long structure, subsonic non-thermal
linewidths dominate along the filament (Hacar et al., 2016b). Larson was the first to connect
the velocity dispersion to the size of molecular clouds (Larson,|1981). While not strictly valid
for filamentary structures, it predicts a factor of about three times higher velocity dispersion
corresponding to the supersonic regime for a filament like Musca with a width of 0.14 pc
(Cox et al.,[2016). Although still within the spread of the overall relation, Musca is definitely
an outlier in terms of its length and it is unclear which process leads to a structure of that size
and that low velocity dispersion. In this paper we explore a possible origin of turbulence in
filaments.

In the following sections, we introduce the basic concepts we use to constrain our model
(Section 7.2). We then discuss the code and the numerical set-up (Section 7.3). Thereafter,
we present our results of the simulations and discuss them in detail (Section 7.4). Addition-
ally, we show that turbulence plays a role in creating a hydrostatic equilibrium (Section /.5)).
Finally, we compare our data to the observations and investigate the dependence
on filament inclination.



7.2 BASIC CONCEPTS 75

7.2 Basic concepts

In order to sustain turbulence inside a filament there has to be an external driving mecha-
nism. Otherwise, turbulent motions decay on the timescale of a crossing time (Mac Low
et al., [1998}; |Stone et al., [1998}; |Padoan and Nordlund, [1999; Mac Low, [1999; Mac Low and
Klessen, [2004). Here, we discuss a possible source of the external driving and the theoretical
prediction.

7.2.1 Gravitational accretion onto a filament

Although there are different ways to accrete mass onto a filament, e.g. a converging flow,
these processes are typically limited in time. A counterexample for a radial converging flow
which is stable over longer timescales is the gravitational attraction of the filament itself. If
we assume that the filament is isothermal and in hydrostatic equilibrium, then it has a density
profile first described by Stodolkiewicz (1963) and Ostriker (1964):

Pe

S (7.1)
(1+G/H7)

p(r) =

where r is the cylindrical radius and p, is its central density. The radial scale height H is given
by
He = (7.2)
~ 7Gp, '

where c; is the isothermal sound speed and G the gravitational constant. We assume that the
gas has an isothermal temperature of 10 K. Using a molecular weight of u = 2.36 gives the
isothermal sound speed of ¢, = 0.19km s™'. One can integrate the profile to r — o to get the
critical line mass of

2

M 2
(f) =25 £1.06-100gem™! & 16.4 M, pe! (7.3)
crit

above which a filament will collapse under its self-gravity. Following |[Heitsch et al.| (2009),
for a given line mass M/ L the gravitational acceleration of the filament is:

2GM/L
r

(7.4)

a =

One can calculate the potential energy which a gas parcel of mass m loses in free-fall starting
with zero velocity at a distance Ry to the filament radius R by integrating over r:

Epo = 2G(M/LymIn (%) (7.5)

Therefore, the inflow velocity at the point of accretion R is:

v, =2 \/G(M/L) ln(%) (7.6)
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Note that similar to the free fall velocity, the value does not depend on the mass of the gas
parcel. It is also not sensitive to neither the starting position nor the line mass while depending
stronger on the latter. As the filament accretes mass and increases in line-mass, the inflow
velocity grows. However, as we want to analyse accretion driven turbulence in an equilibrium
state we keep the inflow velocity constant. Therefore we choose to neglect the effects of
gravity and use an artificial but constant mass inflow where we set the inflow velocity also to
a constant value. The effects of gravity will be discussed in a subsequent paper. Assuming
the extreme case of a filament with a gravitational influence of a hundred times the filament
radius, which for a typical radius of 0.05 pc (Arzoumanian et al., 2011) is the size of a typical
molecular cloud, we still need a line mass which is several times higher than the critical line-
mass to achieve an inflow velocity of even Mach 10.0. Thus, we limit our maximum inflow
velocity to Mach 10.0.

A consequence of a constant inflow velocity is a constant mass accretion rate. The ab-
solute value is set by the radius of the inflow region R, and the density at that radius py:

M = pyv,2nR,L (7.7)

This should stay constant for every radial shell and thus leads to the following density profile
outside of the filament:

R
p(r) = p07° (7.8)

As there is an isothermal accretion shock formed at the filament boundary, pressure equilib-
rium requires that the mean density inside the filament is the outside density times a factor of
the Mach number M squared. This leads to the following filament mass-radius relation:

M(R) = poM*nRR,L (7.9)

This has to be the same as the accreted mass given by the mass accretion rate given by
Equation 7.7|times the time 7. Therefore the radius of the filament evolves as:

2¢t
R(f) = (7.10)

r

7.2.2 Turbulence driven by accretion

Following Klessen and Hennebelle (2010), Heitsch| (2013) derived an analytical expression
for the velocity dispersion depending on the inflow velocity. We expect turbulence to decay

on the timescale of a crossing time:

Ly
Tg R —

(7.11)
(o2

where o is the velocity dispersion in three dimensions and L, is the driving scale of the sys-
tem. |Klessen and Hennebelle (2010) use the approach that the change in turbulent kinetic
energy is given by the balance of the accretion of kinetic energy and the dissipation of turbu-
lent energy:

E =E,-E;= (1 -¢L, (7.12)
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with the energy accretion rate

. 1.
E, = szf (7.13)
and the loss by dissipation as
. E, 1Mo?
E;j~ —=— . 7.14
a Td 2 Ld ( )

They also introduce an efficiency factor € as fraction of accreted energy which can sustain the
turbulent motions:

E

E,

Thus, if the driving scale is the filament diameter L; = 2R, Heitsch (2013) predicted a turbu-
lent velocity dispersion of

(7.15)

€ =

M 1/3
o= (ZER(Z)Vr M(Z)) (7.16)
This assumes that € is independent of the inflow velocity. In our simple case the radius
depends on the constant inflow velocity as 1/v, and the radial accretion leads to a radius and
mass growing linear in time. Therefore, we expect a constant level of velocity dispersion
which should behave as

o~ vl (7.17)

This is the relationship we want to confirm or disprove using numerical methods.

7.3 Numerical set-up

We executed the numerical simulations with the code ramses (Teyssier, 2002). The code
uses a second-order Godunov scheme to solve the conservative form of the discretised Euler
equations on a cartesian grid. For the simulations we applied the MUSCL scheme (Monotonic
Upstream-Centred Scheme for Conservation Laws, |van Leer|(1977)) together with the HLLC-
Solver (Toro et al., [1994) and the multidimensional MC slope limiter (van Leer, |1979).

We simulate a converging radial flow onto a non-gravitating filament in order to study the
generated turbulence. We use a 3D box with periodic boundary conditions in the x-direction
and outflow boundaries in the other directions. The periodic boundary prohibits the loss of
turbulent motions in x-direction. As RAMSEs cannot use a radial inflow boundary we define
a cylindrical inflow zone which lies at the edges of the box and has a thickness of two cells
from where material flows onto the central x-axis of the box. The initial gas density inside of
the box is set to a mean of 3.92 - 107! ¢ cm™3, corresponding to about 10? particles per cubic
centimeters for a molecular weight of u = 2.36. Additionally, a random perturbation is added
inside of the inflow zone at the beginning of the simulation. This is illustrated in
where we show a density slice through the y-z plane. The inflow has a constant density of
3.92-1072! g cm™ and a constant velocity. Thus, it leads to a build-up of material in form of
a filament with a radius that grows over time as it is not restricted by gravity. Consequently,
one has to ensure a big enough box that an equilibrium can be established. The surrounding
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Figure 7.1: Density cut through the y-z plane of the initial conditions for all simulations. The material inside
the inflow zone is perturbed with a random perturbation and has a constant velocity directed to the central line
of the box as shown by the black arrows.

cells around the inflow zone are given a constant density with the same value as the inflow
zone and pressure and do not affect the simulation.

The complete box is set to be isothermal with a temperature of 10K and a molecular
weight of u = 2.36. In general, the boxsize is 0.8 pc. For the control runs with a higher
temperature the boxsize is doubled to ensure enough space to reach a velocity dispersion
equilibrium.

As the inflow initially leads to a thin, compressed central filament with a high density, we
employ adaptive mesh refinement (AMR) to resolve high density regions while keeping the
resolution low in the remainder of the box. We test different refinement strategies by varying
the maximum resolution to fulfill the Truelove criterion for the maximum occurring density
(Truelove et al., [1997) while keeping the minimum resolution constant at 256° cells. Our
initial approach is to resolve the Jeans length by 16 cells. We also test a more conservative
criterion suggested by [Federrath et al.| (2011) using 32 cells to resolve the Jeans length in
order to sufficiently resolve the turbulent cascade. However, we cannot detect a quantitative
difference in the velocity dispersion to the previous case with lower maximum resolution.
Furthermore, even a lower maximum resolution of 8 cells per Jeans length does not show any
difference in the value of the velocity dispersion. Despite there being no change in behavior
for the maximum resolved density, we see a difference for a varying minimum resolution. We
present the details and a resolution study in the next section.
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Figure 7.2: Evolution of the density weighted total velocity dispersion for the reference case with and without
an initial density perturbation and for varying minimum resolution. After a short settling phase an equilibrium
is established where the value of the velocity dispersion is constant. The simulations which do not include
an initial density perturbation converge to the same equilibrium level as the ones including an initial density
perturbation. Our later analysis is based on the case represented by the solid lines.

7.4 Simulations

In this section we present the outcome of our simulations. In order to measure the velocity
dispersion and the mass of the filament one has to distinguish between filament material and
ambient medium. As the inflowing material is shocked at the filament surface there is a clear
increase in density and a clear drop in radial velocity. As the internal density of the filament
decreases over time due to we use the radial velocity to distinguish inflowing
material from filament material instead of a density threshold. To measure the filament radius
we use the mean position of the highest density gradient which traces the general shock
position.

7.4.1 Initial perturbation

As a reference test case we set up a converging flow with a velocity of Mach 5.0 with and
without a perturbation of the initial density field. As material streams in, it is compressed
on the central axis of the box. In order to avoid unphysical densities in the initial phase of
the case without initial perturbation we add an already existing filament to the initial condi-
tions with a radius of 0.05 times the boxlength and with a constant density of ten times the
ambient density corresponding to a total mass of 0.23 M. Note that we do not need to in-
clude an initial filament for the simulations including an initial perturbation, as the generated
turbulence prevents the density from reaching values which cannot be resolved. For a low
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resolution there is a stark contrast in the structure between both cases. An initial perturbation
leads to a considerable amount of substructure which resembles observed filaments. The case
lacking an initial perturbation does not obviously exhibit signs of turbulence being present.
The motions are purely angular and radial and the little substructure which is generated is
obscured due to the projection. However, as the inflow is perfectly symmetrical, only radial
motions should exist. In order to understand this effect we vary the minimum resolution of
the simulation and calculate the velocity dispersion over time. The volume weighted velocity
dispersion is defined as the standard deviation of the spatial velocity distribution. We calcu-
late the total velocity dispersion by taking the square root of the sum of the variances of the
spatial components. For the density weighted velocity dispersion we normalise the velocities
with the density of its respective cell divided by the average density before calculating the
variance. Note that we use the central axis of the box to define the centre of the filament. As
we use a cartesian grid code this can lead to a wrong split-up in the cylindrical components
if the filament axis lies not exactly in the centre of the box. We analysed the error in the
total velocity dispersion using a cartesian and a cylindrical calculation and the difference is
at most one per cent and therefore negligible. We show the evolution of the density weighted
velocity dispersion in One can see that an equilibrium is established after about
two Myr where the velocity dispersion becomes almost constant. We observe this behavior
in all our simulations, with and without initial perturbation, and it is also found in turbu-
lent smooth-particle-hydrodynamical simulations of filaments forming in a turbulent medium
(Clarke et al., 2017). Varying the minimum resolution, one can see that the equilibrium level
of the simulations including a perturbation decreases for higher resolution showing no more
substantial change going from 5123 to 1024° in minimal resolution. In contrast, the simula-
tions without an initial perturbation develop higher and higher values of turbulence the better
the resolution and begin to converge to a similar value as the cases with an initial perturbation.
Moreover, even the visual impression of the turbulent structure for the cases with and without
initial perturbations becomes increasingly similar with higher resolution. This is shown in
where we compare the cases of highest minimal resolution. We interpret this in
such a way that there is an inherent physical level of generated turbulence from accretion.
As long as there is a source of perturbation the growth in turbulence will tend to this value.
In the case of a smooth initial inflow the perturbation is given by numerical noise which is
smeared out for lower minimal resolutions due to numerical viscosity. For higher resolution,
numerical viscosity is low enough that the numerical noise can grow to the same level of
turbulence as in the case containing an added perturbation. The interstellar medium is not
completely smooth and will always contain density fluctuations. In order to validate if the
generated velocity dispersion depends on the initial density perturbation we vary the initial
density perturbation in strength and form for a constant minimum resolution. Using a flat,
"white noise" perturbation on the one hand and a Gaussian perturbation on the other shows
no quantitative difference in magnitude of the intrinsic filament velocity dispersion. Varying
the perturbation strength also shows no dependence on the initial perturbation. In
we show that even changing the perturbation amplitude over five orders of magnitude, the
resulting value of velocity dispersion varies only minimally. As there is no more significant
change for a minimum resolution of 10242 all following analysis is carried out for a minimum
resolution of 5123.
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Figure 7.3: Projection of the highest minimum resolution test cases of a filament without initial perturbation on
the left compared to one including an initial perturbation on the right after 1.5 Myr. Both cases have an inflow
of Mach 5.0. The horizontal dashed lines indicate the analytical prediction for the radius.
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Figure 7.4: Value of the generated velocity dispersion with varying perturbation strength for the same res-
olution. The points show simulations including an initial density perturbation. The crosses give the volume
weighted and the pluses the density weighted velocity dispersion.
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Figure 7.5: Evolution of the mass accretion rate (blue) and the filament radius (red) for the reference case with
an initial density perturbation. The analytical predictions are given by the light blue and orange dashed lines
respectively. The mass accretion rate is higher than the prediction but matches it if we take the radial expansion
of the filament into account, as shown by the dotted line. Correcting both terms with a radial turbulent pressure
overpredicts the measured evolution as can be seen by the dashed-dotted lines.

We also evaluate the radial evolution and mass accretion rate of the filament including an
initial perturbation in order to verify if [Equation 7.7 and [Equation 7.10] hold. In
we show both of them together with the analytical expectations. As our analytical prediction,
the measured mass accretion rate is constant. Despite being close to the predicted value given
by the blue dashed line, it has a small but measurable constant offset. This effect can be
explained if we add the increase in mass accretion given by the expansion of the filament.
Adding the radial growth velocity to gives the blue dotted line. This effect
itself also should lead to a faster radial growth but the effect is minimal as we cannot see
a significant offset of the analytical expectation for filament radius R(f). We also consider
that radial turbulent motions could increase the radial growth. Correcting the velocity for the
radial expansion given by as 2¢?/v, by including the contribution of the density
weighted radial turbulence as 2(c? + 0%)/v, and adding this term to the inflow velocity in the
mass accretion rate gives an overestimation for the radial growth and a mass
accretion rate (dashed-dotted lines in [Figure 7.5)). At about 3.5 Myr the filament reaches the
limits of the box and its maximum numerically resolved extent. This means that mass cannot
be effectively accreted and the mass accretion rate goes to zero which leads to a decay in
velocity dispersion seen in later evolution plots.

We show a detailed analysis in the next subsections where we present the cases of an
inflow velocity generating a super- and subsonic internal velocity dispersion. This leads to
the following conclusion: As long as one includes a symmetry breaking perturbation, either
numerical or artificial the amount of generated turbulence is robust as long as the minimal
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scaled velocities in the plane. In the inflow region their length corresponds to Mach 5.0 and they are normalised

to zero at Mach 0.01. The filament shows clear signs of ongoing turbulent motions.
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Figure 7.7: Evolution of the velocity dispersion of a Mach 5.0 inflow with an initial density perturbation. The
volume weighted values are given by the cyan lines, the density weighted values by the orange lines. As in the
reference case, an equilibrium is established after two Myr. The dotted vertical line shows the timestep when
the filament radius reaches the domain boundary.

resolution is high enough.

7.4.2 Trans- and supersonic turbulence

In we plot the evolution of a Mach 5.0 inflow with an initial density perturbation.
The filament shows every indication of turbulent motions rearranging material constantly.
The bubbling and sloshing in the filament forms temporary ridges and overdensities, the most
prominent on the central line at the beginning of the simulation. Over time the central over-
density weakens as the lack of gravity allows the material to spread freely. Nevertheless, the
visual impression is that of an observable filament albeit the filament broadens to an unre-
alistic width. The velocity dispersion settles to an equilibrium as shown in The
volume weighted velocity dispersion is in the supersonic regime and dominated by the ra-
dial velocity dispersion. Interestingly, the longitudinal and angular velocity dispersions, both
volume and density weighted, settle to the same level of about half the sound speed. Further-
more, their values are at about 2/3 of the radial and about half the total velocity dispersion.
This relation between the radial velocity dispersion and the other components remains ro-
bust and true for all cases of generated velocity dispersion, not only in the supersonic case.
As the filament reaches the boundary of the box earlier than the reference case, the velocity
dispersion decays after 3.5 Myr. Additionally, we show the build-up of the kinetic energy
power spectrum of the filament in As the filament grows, the maximum of the
distribution shifts to bigger scales. It always follows closely the filament radius, given by the
dashed vertical lines. Thus, the radius is the scale for the driving mechanism. Included in
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Figure 7.8: The kinetic energy power spectrum of the filament with Mach 5.0 inflow at different times. The
black dashed-dotted line shows the expectation from Kolmogorov’s theory and the black dotted line the expecta-
tion of Burgers turbulence. The vertical dashed lines show the respective filament radius and the vertical dotted
lines the filament diameter.
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Figure 7.9: Volume weighted PDF of the logarithmic density s = In(pp~!). The density follows largely a
log-normal distribution. The Gaussian fit leads to a standard deviation of 0.56.
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the plot are the predicted scaling relations for the power spectrum. In the supersonic regime,
numerical studies (Kritsuk et al., 2007}; |[Federrath et al., 2010; [Federrathl, 2013)) have shown
that a pure velocity power spectrum should follow Burgers turbulence (Burgers, 1948)) with
a scaling of —2. In the subsonic regime, Kolmogorov’s theory of incompressible turbulence
(Kolmogorov, |1941) predicts a decay to smaller scales with a power law of —5/3. As one
can see, the geometrical form of the filament limits the power on large scales. Nevertheless,
the power spectrum follows the expectation quite well on intermediate scales. However, it
is impossible to distinguish between supersonic and Kolmogorov decay as both of them lie
too close together. In we show the volume weighted probability density function
(PDF). As expected for fully developed, supersonic turbulence it follows a log-normal distri-
bution (Vazquez-Semadeni, 1994} Padoan et al., [1997; Passot and Vazquez-Semadeni, 1998)).
The width of the distribution is correlated to the Mach number as

o2 =In(1+HM?). (7.18)

The parameter b depends on the ratio of solenoidal to compressional driving of the turbulent
motions, varying smoothly from b = 1/3 for purely solenoidal to b = 1 for purely compres-
sive driving with a value of b ~ 0.4 for a natural mix of modes Feomp/(Fso1 + Feomp) = 1/3
(Federrath et al., 2008, 2010). All of our simulations with supersonic turbulence show about
the same value of b ~ 0.55 but there is also some variation over time.

7.4.3 Subsonic turbulence

In contrast to the turbulent motions of the Mach 5.0 inflow, a slower inflow velocity is only ca-
pable of generating subsonic turbulent motions despite itself being supersonic. In[Figure 7.10|
we show the visual impression of a Mach 3.0 inflow. It is not strong enough to generate
substructure inside the filament. Only the surface is mildly perturbed. The lack of internal
motions can also be seen in the velocity dispersion evolution in [Figure 7.T1] At all times it is
below the sonic line. Nevertheless, it again reaches an equilibrium after about 2.0 Myr which
decays after reaching the size of the box at about 3.4 Myr. We also show the kinetic energy
power spectrum for the subsonic turbulent case in The power spectrum shows a
similar behavior to the supersonic case and again the maximum of the cascade, the indicator
of the driving scale, corresponds to the filament radius. As in the supersonic case, it is not
easy to distinguish between a Kolmogorov and an k=2 cascade but at later times the power
law seems more similar to the former one which is to be expected for subsonic turbulence. In
contrast to the supersonic case, we see a strong lack of compressional modes in the split-up

of the power spectrum. This is also confirmed by where we get a value of
b=1/3.

7.4.4 Dependence on inflow velocity

The crucial question of accretion driven turbulence is how much internal velocity dispersion
in a filament is generated in dependence of the inflow velocity. Therefore, we repeat the
simulation for inflow velocities of Mach number 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0, 6.0, 7.5
and 10.0 for a minimum resolution of 512°. We show the resulting values of the velocity
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Figure 7.10: Density cut through the centre of the filament with a Mach 3.0 inflow. The velocities are again

given by log-scaled arrows. Only the surface of the filament is mildly perturbed.
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Figure 7.11: Evolution of the velocity dispersion of a Mach 3.0 inflow. As in the case of a Mach 5.0 inflow an
equilibrium is established where the velocity dispersion is quasi constant albeit there is a slight increase over
time. After the filament reaches the domain boundary (dotted vertical line) the velocity dispersion decays.
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dispersion in where we plot them against their inflow velocity. The errorbars
are given by the inherent variance of the velocity dispersion for different initial seeds of the
perturbation spectrum and is about five per cent of the measured turbulence. In[Figure 7.14we
also show the dependence of the Mach number squared on the inflow Mach number squared
as this is the measure of the turbulent and inflowing energy. Both the accreted kinetic energy
and the turbulent energy depend on the total accreted mass of the filament. Nevertheless, one
does not have to account for mass as all the accreted material also has to be set into turbulent
motions and thus the mass term cancels from both energy terms. This is illustrated later in
In both figures we show the volume weighted velocity dispersion on the left
hand side and the density weighted velocity dispersion on the right hand side. One can see
that the measurement method has a major impact on the results. First, we look at the volume
weighted velocity dispersion in[Figure 7.13] We observe three distinct regimes: A high inflow
velocity (light blue) leads to supersonic turbulence, an intermediate inflow velocity (medium
blue) generates subsonic turbulence and a low inflow velocity (dark blue) results in nearly
no turbulence. All of these regimes can be well fitted by linear relationships which do not
necessarily go through the zero point. The fitting parameters are always given in the legend.
Striking is the break at the sonic line (dashed horizontal line) going from the intermediate
subsonic regime to the high velocity supersonic regime. This break does not appear in the
density weighted velocity dispersion on the right hand side of Now the high and
medium inflow velocity values follow one and the same relation. Thus, we now can fit the
data by one single linear relationship that connects both regimes and that is shown by the
dashed orange line with the parameters:

o = 0.30v, — 0.60c;. (7.19)

The fact that we can fit a single line from the high supersonic end down to low subsonic
turbulent velocities shows that there is no difference in the physics at work in both regimes.
The break in the volume weighted relation also occurs for the squared volume weighted
velocity in Although the slope stays roughly the same there is a gap between
the supersonic and the subsonic regime. Contrarily, the density weighted velocity dispersion
squared shows a smooth transition from nearly no turbulence to a constant slope. The density
weighted velocity dispersion is also a measurement of the kinetic energy in the turbulence of
the filament, a fact that we have confirmed by calculating the kinetic energy. The break in
the volume weighted velocity dispersion results from the fact that the nature of the velocity
and density distribution changes from the subsonic to the supersonic regime. Supersonic
turbulence is shock dominated and due to compression most of the kinetic energy is in high
densities. The information about the high densities is lost if one only measures the volume
weighted velocity dispersion.

In the right panel of we also overplot Despite being a linear
correlation between velocity dispersion and infall speed it fits the numerical results remark-
ably well and deviates only slightly for very low Mach numbers. We also attempt to fit a
parabola to all of the density weighted data but are not able to get a good match. Therefore,
we conclude that the linear relation of provides the best analytical description
of the underlying physics. While the data points could also be fitted reasonable well with an
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offset power law of 1/3rd, they do not follow the simple prediction of |[Heitsch| (2013), given
by We discuss the implication of this in

We repeat a subset of the simulations for a higher temperature of 40 and 100 K and get
similar results, all lying on the analytical relation given by [Equation 7.19] Thus our results are
independent of the temperature. We also repeat a subset of the simulations with an additional
longitudinal velocity component in the inflow. The result in velocity dispersion is unchanged
and the only difference is that the whole filament now begins to move in x-direction with
constant velocity.

7.5 Pressure equilibrium

In order to see the impact of turbulence on the pressure we analyse its components as function
of radius and time. In we show the different contributions to the pressure calcu-
lated in radial bins for the Mach 5.0 case with an initial density perturbation. We calculate
the velocity dispersion, the average density and average thermal pressure in each slice along
the filament and in radial bins which are chosen to be four cells wide. We use these values
to calculate the respective pressure terms and take the mean along the filament in order to
determine an average value for the whole filament. There is an overlap region where filament
gas and environment gas mix due to the filament not being completely straight and round.
Therefore, we only use the filament gas to calculate the pressure components in the overlap
region. We determine the turbulent pressure component with the density weighted velocity
dispersion. Thus, the turbulent pressure is given by

P = {p) 0, (7.20)

where the braket notation represents the expectation value. The average ram pressure is
calculated by the average density and radial velocity as:

Pram = {0) <Vr>2 (7.21)

One can see in that outside of the filament the turbulent pressure (dashed-
dotted line) is zero and the thermal pressure (dashed line) is negligible. As material streams
towards the filament the ram-pressure (dotted line) increases as the density increases. When
the accretion flow reaches the filament the ram-pressure breaks down and some of the energy
is converted into turbulent motions giving rise to a turbulent pressure component. In the over-
lap region of filament and environment gas we see both a contribution of turbulent pressure
and ram pressure due to our split-up of components. As one can see the average pressure
inside the filament given by the average thermal pressure together with the average turbulent
pressure (solid line) has nearly the same value as the average ram pressure. The filament is
compressed and restrained by the accretion flow. Before the filament has settled there is quite
an overpressure in the centre of the filament. As the filament grows outward, it adjusts to
the outside ram-pressure and a constant pressure inside the filament is established. Note that
there is a gradient in the pressure components inside the filament where the thermal pressure
decreases and the turbulent pressure increases towards the edge of the filament. Most of the
turbulent motions are created at the boundary and propagate inwards. This also explains why
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Figure 7.15: Radial pressure profile of the Mach 5.0 case with an initial density perturbation for different
times. Inside the filament a pressure equilibrium is established through the combination of thermal and turbulent
pressure.
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there is no turbulent component supporting the filament radially as the turbulence acts in a
localized region.

7.6 Observable velocity dispersion

In order to compare our simulations to observations we derive the line-of-sight velocity by
sending a ray through the computational domain. We vary the inclination of the filament
and treat every crossed volume element with its respective density as a discrete emitter of a
line-of-sight velocity value. These are converted to density weighted Gaussian line profiles
with a dispersion width corresponding to the thermal linewidth of C!'80 at 10K with a given
value of o = 0.0526km s™'. We bin the resulting line profiles into histograms with a bin
width of 0.05km s™' to get a complete line emission for each observed spatial pixel. We
then measure the velocity centroids and the linewidths as an observer would do by fitting
Gaussians to the line. As several line profiles show multiple components in velocity space,
we fit multiple Gaussians to a single line. In contrast, fitting only one Gaussian to a line
overestimates the velocity dispersion as multiple components are grouped together to form
one broad line. To prevent false detections we discard peaks which are smaller than a quarter
of the maximum line profile and closer together than 1.5 times their respective width. To
obtain the non-thermal velocity dispersion we have to subtract the contribution of the thermal
gas motions of the full width half maximum (FWHM) of the line as e.g. Myers| (1983)):

FWHM? kT
ONT = _ -k (7.22)
81In2 m

We show the non-thermal linewidth along a filament through its centre for the case of tur-
bulence forming due to inflows of Mach 3.0, 5.0 and 10.0 in [Figure 7.16] [Figure 7.17] and
all of which include an initial perturbation. At a first glance it is important to
note the striking similarity to real observations (Hacar and Tafalla, 2011} Hacar et al., 2013;
Tafalla and Hacar, 2015 |Hacar et al., 2016b). As in the actual measurements we see an in-
herent spatial variation due to the non-homogeneous nature of the turbulence. The variation
is also not stationary but changes with time, mimicking the sloshing motions of the total fil-
ament. However, the mean of the data distribution stays relatively stable, only varying by
about 10%. Comparing the mean to the analytical value of the velocity dispersion it becomes
clear that an observer cannot see the full picture of the internal motions of the filament. The
observer will preferentially see the density weighted radial velocity dispersion (dashed line)
as filaments are more likely to be detected for small inclinations. Thus, the line-of-sight is
parallel to the radial motions. While the subsonic case shows mean values which lie below
any velocity dispersion typically observed, it is also the only one where the mean of the ob-
served distribution lies above the expected value of the radial velocity dispersion. Going to
higher inflow speeds, the mean of the observed distribution generally lies below the expected
value. The situation becomes even worse for cases of high turbulence as shown in[Figure 7.1§|
where the discrepancy can be even as large as a factor of two. Moreover, the discrepancy be-
tween the observed mean and the total velocity dispersion is even larger. Despite having a
supersonic total density weighted velocity dispersion, most of the data points of the Mach
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Figure 7.16: The measured non-thermal linewidth along the central axis of the filament for the case with a
Mach 3.0 inflow for different inclinations. Data points are given by the blue squares and their mean by the
blue dotted line. The solid, dashed and dashed-dotted black lines show the total, the radial and the longitudinal
density weighted velocity dispersion respectively.

10 inflow show a subsonic or at best a transsonic non-thermal line width. This means that
the interpretation of the inherent motions in an observed filament can be severely flawed. A
filament dominated by supersonic motions will be classified as only having subsonic motions.
With the addition of gravity the problem will become even worse as there is an internal den-
sity gradient enhancing the signal of the central region. This leads to an overall thinner line
as the outer region, which contains a high radial velocity component, is neglected and thus
the measured line width becomes even smaller. There is not even a constant correction factor
as for example assumed for isotropic turbulence of V3. The measured mean is relatively con-
stant for different inclinations, going from zero to sixty degrees, but if one does not split the
individual components in the line its broadness is overestimated the more the filament is seen
from the side. The larger the inclination, the more is the filament dominated by longitudinal
motions which give only one thin component. Therefore, the observable mean decreases and
finally approaches the longitudinal velocity dispersion. This can be seen to some degree in
the subsonic case. If one fits one component to the line-of-sight this effect is stronger and
can also be observed in the cases of higher inflow velocity. It is even possible for the mean
to be below the longitudinal velocity dispersion as a single line-of-sight does not contain
the complete information on the total line-of-sight velocity dispersion of the whole filament.
Striking is also the fact that the variance of the distribution decreases for a higher inclination.
This behavior could potentially be used to determine the inclination of a filament. We will
study the effect of the inclination angle on the measurements of the turbulent velocity and its
variance in a subsequent paper.

7.7 Discussion and conclusions

We have presented a numerical study on accretion driven turbulence in filaments. The focus
of this paper was to analyse the dependence of the velocity dispersion on the inflow velocity.
We deliberately neglected the effects of gravity in order to have a constant inflow velocity
and to be able to follow the driving of turbulence long enough without the radial collapse of
the filament or its condensation into collapsing clumps. The formation of turbulent filament,
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Figure 7.17: The same as in|Figure 7.16|but for an inflow of Mach 5.0.
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Figure 7.18: The same as in|Figure 7.16|but for an inflow of Mach 10.0.

including self-gravity will be discussed in a subsequent paper. We find that there is a linear
dependency of the density weighted velocity dispersion on the inflow velocity. Below Mach
2.0 the relationship flattens as shown in the right panels of [Figure 7.13| and [Figure 7.14]
Why there is a break in the relation is not completely clear. One possibility is that the low
inflow velocity region is an artifact of numerical noise. In this case it must be dominated
by perturbations on small scales. Therefore, we smooth our data to remove the small scale
signal and recalculate the velocity dispersion. The result shows that the velocity dispersion
is unchanged. Therefore, the measured velocity dispersion is in the large scale structure.
Even for a high degree of smoothing the velocity dispersion remains the same. Thus, there
must be a physical reason for the break in the slope. An explanation could be that filaments
have a bottom level of minimal velocity dispersion comparable to a basic eigenmode which
is exited by the constant inflow. In the subsonic regime sound waves are supposed to be very
inefficient in dissipating energy and indeed if one sets up a filament with a random velocity
perturbation there is a level of velocity dispersion below which the kinetic energy does not
decay. Its dependence on form and density of the filament is out of the scope of this paper
and will be discussed elsewhere.

We now want to focus on the form of the linear fit. As shown in we measure
a linear relationship of

o = 0.30v, — 0.60c; (7.23)

It is possible to show that this is equivalent to an energy balance. In order to get a kinetic
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energy we take the square of the equation and multiply it with half of the mass accretion rate
which gives

1. 1. : .
EM& =0.09 - 5va ~0.18Mc,v, + 0.18Mc? (7.24)

with the restriction that
v, > 2.0cq. (7.25)

For a constant velocity dispersion the term on the left hand side is the change in turbulent
energy and the first term on the right hand side the rate of accreted kinetic energy. To show
the meaning of the remaining terms we use the equation of change in turbulent energy given
by

E =aE,-E, (7.26)

where E, is the change in turbulent energy, E,, is the kinetic energy accretion rate and Ej; is the
energy dissipation rate. In the case of a constant velocity dispersion, the change in turbulent
energy is due to the change in total mass of the filament. The same is true for a constant
accretion velocity where the change in total accreted kinetic energy is due to the change in
the total accreted mass. We also consider that energy is lost in the isothermal accretion shock
and is radiated away. As the fraction of the lost energy should be roughly constant per time
we introduce a constant efficiency @ which has a value between zero and one. Comparing

Equation 7.26|to [Equation 7.24] we determine the efficiency to be:
a = 0.09. (7.27)

This means that the energy lost to dissipation is given by the remaining terms

N

E, = 0.18Mc,v, — 0.18Mc? = 0.18M (c,v, - c}) (7.28)

A possible explanation for both terms is the assumption that turbulence is mainly dissipated
in an inner region of the filament where radial waves travelling inwards interact. We assume
that this region is proportional to the total radius of the filament:
2c%t
R, =bR(t) =D (7.29)

v,

The proportionality b has to be constant for a single run but can vary with accretion velocity.
The mass contained in the inner region is then the density given by the shock times the
volume:

M; = p(R)nR?L = poM*Ronb*RL = b* M(R) (7.30)

This means that the mass contained in a region proportional to the radius is also proportional
to the total mass. Thus, if we use the definition of the energy dissipation rate given by
assume that the scale relevant for the crossing time is the radius of the inner region
and assume that the speed for the crossing time is the sound speed we get:

I M3 bMcv, b .
= _ =2 = _Mecyv, 7.31
2R 4 a4 (73D

E
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As the inner region should be larger for greater inflow Mach number M we assume that:
b=a(l-1/M) (7.32)

where a is a constant. Thus the energy decays as:
) a . a . )
Eq =7 (1=cfv) Mey, = 2 M(cov, = c5) (7.33)
If we compare our result to [Equation 7.28| we find this fits both terms with a = 0.72.

Our results can be summarized as follows:

1. The accretion of material leads to non-isotropic, sub- and supersonic turbulence de-
pending on the energy accretion rate as long as the symmetry is broken. The efficiency
of transferred energy is independent of the accretion rate and equal to 9%.

2. The amount of turbulence generated is independent of the perturbation strength of the
initial density field and independent of an additional velocity component parallel to the
filament.

3. The turbulence reaches an equilibrium level which scales linearly with the accretion
rate.

4. The filament radius grows linearly with time and is the driving scale of the turbulence.

5. The density weighted velocity dispersion contributes to the pressure equilibrium inside
the filament.

6. In most situations, an observer cannot measure the true velocity dispersion and will even
misinterpret the level of turbulence to be subsonic while the intrinsic velocity dispersion
could still be supersonic.
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8 Paper III: Morphology of prestellar
cores in pressure-confined filaments

S. Heigl, M. Gritschneder, A. Burkert, 2018, Monthly Notices of the Royal Astronomical
Society, 481, L1-L5

Observations of prestellar cores in star-forming filaments show two distinct mor-
phologies. While molecular line measurements often show broad cores, submil-
limeter continuum observations predominantly display pinched cores compared
to the bulk of the filament gas. In order to explain how different morphologies
arise, we use the gravitational instability model where prestellar cores form by
growing density perturbations. The radial extent at each position is set by the
local line-mass. We show that the ratio of core radius to filament radius is deter-
mined by the initial line-mass of the filament. Additionally, the core morphology
is independent of perturbation length scale and inclination, which makes it an
ideal diagnostic for observations. Filaments with a line-mass of less than half its
critical value should form broad cores, whereas filaments with more than half its
critical line-mass value should form pinched cores. For filaments embedded in
a constant background pressure, the dominant perturbation growth times signif-
icantly differ for low and high line-mass filaments. Therefore, we predict that
only one population of cores is present if all filaments within a region begin with
similar initial perturbations.

Key words: stars:formation - ISM:kinematics and dynamics - ISM:structure
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8.1 Introduction

It has long been proposed that core formation in filaments is tied to some kind of fragmenta-
tion process (Schneider and Elmegreen, |1979; Larson, [1985). This connection has only been
reinforced by observations of the Herschel Space Observatory (André et al., [2010; Konyves
et al., 2010; Men’shchikov et al., 2010; Ward-Thompson et al., 2010; Arzoumanian et al.,
2011}, 2013, Kirk et al., 2013 |André€ et al., 2014}, which show that dense cores are contained
in an ubiquitous filamentary structure in molecular clouds. As cores are the birth-site of stars
(Benson and Myers, |1989; Klessen et al., 1998 McKee and Ostriker, 2007), it is essential
to understand the process of core formation in order to develop a coherent model for stellar
formation. Different models of core formation have been proposed, e.g. by the dissipation of
turbulence (Padoan et al., 2001} Klessen et al.,|2005) or by collapse of density enhancements
due to intersecting filaments, so called "hubs" (Myers, |2009). The complexity of core for-
mation has increased with the observations of fibres (Hacar et al., 2013}, Tafalla and Hacar,
2015), trans- and subsonic velocity coherent substructures in filaments, again opening the
possibility that cores form by subsonic motions due to gravitational instabilities, potentially
modified by magnetic fields either hindering core formation due to magnetic pressure (Naga-
sawa, |1987;|(Gehman et al.,|1996b; |[Fiege and Pudritz, 2000b) or facilitating core formation in
a magnetically stabilized filament by ambipolar diffusion (Shu et al., 1987; |[Hosseinirad et al.,
2017).

A possible indicator to validate this model is the comparison of observed cores with the
analytical predictions of overdensities forming by gravitational instabilities. High dynamic
range observations in the submillimeter continuum, for instance in the Taurus region, show
very thin cores compared to the filament radius (Marsh et al., 2014)). Contrarily, molecular
line observations, which often only trace the dense gas, have mainly revealed cores which
are broader than the filament (Hacar and Tafallal, 2011} [Hacar et al., [2013];[Tafalla and Hacar,
2015). Thus, the interpretation of core radius is complex and core morphology obviously
depends on the tracer of observation.

Numerical predictions by Nagasawa (1987) showed that there are two regimes of the pertur-
bation. One for low line-mass filaments, called deformation instability or "sausage" insta-
bility, where the forming cores bulge out and one for high line-mass, named compressional
instability, where cores form by compression and thus pinch in. Both morphologies exist in
simulations throughout the literature (Gehman et al., |1996a.bj Inutsuka and Miyamal, [1997;
Fiege and Pudritz, 2000b). However, in order to determine the morphology of cores it is
important to not only predict the radius evolution of the core itself, but also the radius evo-
lution of the material making up the rest of the filament. For a growing perturbation, both
evolve simultaneously. We expand on the picture by Nagasawa (1987) and show an analytical
prediction for the evolution of the radius ratio.

8.2 Basic concepts

In order to be able to calculate the radial extent of a filament, it is necessary to define the un-
derlying density structure. The basic hydrostatic, isothermal model predicts a profile which
drops off as r* (Stoddlkiewicz, 1963 |Ostriker, |1964). Observationally, filaments often show
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a shallower power law exponent of -1.6 to -2.5 at large radii (Arzoumanian et al., 2011}
Palmeirim et al.l [2013). Several processes can explain this difference: truncation of the fila-
ment radius in pressure equilibrium (Fischera and Martin, 2012), magnetic fields (Fiege and
Pudritz, 2000b), the equation of state (Gehman et al., [ 1996a; Toci and Galli, [2015a) or fila-
ments formed by shock interaction (Federrathl, 2016)). As the physical reason for the observed
profile and how it would impact the radial stability is still unclear, we use the basic isothermal
model. In this case the density goes as:

p(r) = pe(1+ (/HY) (8.1)

where r is the cylindrical radius and p, is its central density. It has the radial scale height H
given by
e = 26 (8.2)
~ 7Gp '

where c; is the isothermal sound speed and G is the gravitational constant. Integrating the
density profile to r — oo, one can calculate the critical line-mass, e.g. the line-mass at which
a filament is marginally stable, of
M 2c?
(7) =2 (8.3)
crit

L G
If the line-mass of a filament is above this value, there is no hydrostatic solution and the
filament will collapse to a spindle. If the line-mass is below this value the filament will
expand freely unless it is bound by an additional outside pressure (Nagasawa, |1987). In this
case, the filament follows the hydrostatic equilibrium profile until it extends to the radius
where the internal pressure matches the external pressure. Following Fischera and Martin
(2012), the integral of the density profile then is given by

M K M -1
== fo 2rrp(Fdr = (f)cm (1+H/RY) (8.4)
and the factor of line-mass to critical line-mass becomes
M\ (M -l
o= (T ), = (1 )™ ®5)
This allows us to derive the filament radius as
fon )1 /2
R=H . (8.6)
( 1 - ﬁ:yl

For a fixed external pressure the scale height is not set by the central density but by the
ambient pressure via the boundary density p, = pex/ cf. It is related to the central density by

o =pc(1- fon) (8.7)

and therefore the scale height adjusts as

2 4
H = (1= f) = o (1= £) 88
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Subsequently, the radius has a maximum at f.,; = 0.5 and declines to zero as f.,; approaches
Oorl.
Linear perturbation analysis introduces a perturbation along the filament axis of the form

p(r,z,t) = po(r) + p1(r, z,1) = po(r) + €po(r) exp(ikz — iwt) (8.9)

where z is the filament axis, w = 2x/7 is the perturbation growth rate with 7 being the
perturbation growth time, k = 27/ is the wave vector with A being the perturbation length
scale and e is the perturbation strength. This also leads to a perturbation in velocity, pressure
and potential of the form:

q:1(r,z,1) < exp(ikz — iwt). (8.10)

Solving the mass and momentum conservation as well as Laplace’s equation for the gravi-
tational potential while second order terms are ignored, perturbations grow for values of k
where the solution of the resulting dispersion relation w?(k) is smaller than zero. As the per-

turbation term of does not depend on radius, one can insert it into the definition
of the line-mass and easily show that the line-mass
Fi(@ 1) = fo (1 + eexp (ikz — iw?) (8.11)

evolves analogous to the density with f; being the initial line-mass. Therefore, the filament
radius now depends on the local line-mass at the position z.

8.3 Core morphology

While Nagasawal (1987) already pointed out the two different core formation regimes, it is
important to look at the dynamical evolution of both core and filament radius. As the radius
has its maximum at half the critical line-mass, it can both grow or shrink for an increase or
decrease in the local line-mass, depending on the initial line-mass. In low line-mass filaments,
where the mean line-mass is below half the critical value, the growing core will first increase
in radius. But as soon as its local line-mass exceeds a value of f.,; = 0.5, the radius will
decrease again. At the same time, in absence of accretion the core is fed by filament gas, thus
reducing the line-mass and the radius of the rest of the filament. Contrarily, in a filament with
initially high line-mass, where the mean line-mass is above half the critical value, the radius
of the core decreases as it grows. As mass is accreted from the rest of the filament, the overall
filament radius will at first increase but then also decrease as soon as the local line-mass is
below a value of f,; = 0.5.

In order to determine the core morphology, one has to compare the radius Ry, of the slice
with the maximum line-mass to the radius R, of the slice with the minimum line-mass. In a
perturbed filament both evolve simultaneously and determine how a core appears visually. If
Rinax > Ruin then the core will bulge out and will be broader than the rest of the filament gas.
If Ryax < Rmin the core will be narrower than the filament gas and will pinch in. The radii are
given by the respective scale height and line-mass as shown in The ratio of the
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two is given by

Hunas (fona /(1 = frow)'?

Runax/Rmin = Ty =
Huin (fnin/ (1 = ﬁﬂn)) / 8.12)
_ ([ Smax(1 = finax)
B (fmin(l ~ finin) )
with
Jmax = fo(l + €exp(wr)) = foc (8.13)
and
Jmin = fo(1 — eexp(wi)) = foc-. (8.14)
Note that c. = 2 — ¢,. This means that
¢ = foc\”
Rinax/Runin = (m) . (8.15)

Setting this equation equal to 1, one can calculate the line-mass where cores stay exactly
as broad as the filament to be half the critical line-mass. For smaller line-masses the ratio
between the radii will at all times be larger than one and vice versa. This means that for a
filament which has a line-mass of less than half the critical value, the decrease in radius of the
core when it reaches a local line-mass greater than half the critical value will always be slower
than the overall decrease of radius due to the loss of mass in the rest of the filament. There-
fore, the core will bulge out at all times. The inverse is true for filaments with a line-mass
above half the critical line-mass, where the core will always pinch in. This fact is illustrated
in the top panel of where we show the evolution of the ratio between core to fila-
ment radius over time for a fixed initial central density of 10* cm~ and an initial perturbation
strength of 1%. As the central density and the external pressure are not independent of each
other, a constant central density with a varying initial line-mass means that we vary the exter-
nal pressure from pey/kz ~ 10° K cm™ for low line-masses to Pexi/kp ~ 10°K cm™ for high
line-masses. The perturbation growth times are taken from Fischera and Martin/ (2012) where
we assume the perturbation grows on the dominant wavelength. For the same initial density
the growth time only depends weakly on the line-mass. Thus at the same point in time they
have evolved by approximately the same factor. Note that although the radius in general does
depend on the initial central density the ratio does not.

Interestingly, for filaments below half the critical line-mass the radius ratio does not de-
pend much on the line-mass itself at a specific point in its evolution. As long as the cores
have grown by about the same amount we do not expect a significant difference in core to
filament radius. As fi, goes to zero as soon as the core has accreted nearly all material, the
radius ratio diverges to infinity. Note that |[Fischera and Martin| (2012) predicted that cores
could form an unstable Bonnor-Ebert sphere (Ebert, |1955; |Bonnor, 1956) depending on the
perturbation length. We do not include this effect in our analytical model but note that it can
lead to the collapse of an initially broad core and therefore also could lead to a pinched, albeit
protostellar core.

The evolution of cores is significantly different for filaments with a line-mass above half
the critical value. They tend to evolve much faster than their counterparts in low line-mass
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Figure 8.1: The top figure shows the analytical prediction of the ratio between the core radius (at the maximum
central density) and filament radius (at the minimum central density) for a constant initial central density of
po = 10*cm™, starting with a perturbation of 1%. The bottom figure shows the same for the FWHM. From
top to bottom the curves show different values of the line-mass in values of f;, starting at 0.1 (solid orange) and
incrementally increased by 0.1. The stars symbolize the time when the line-mass locally becomes supercritical
and the core collapses. Note that the radius ratio of cores in low line-mass filaments diverges to infinity as all

the gas of the filament is accreted.
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Figure 8.2: Column density plots of simulated cores forming in filaments with different line-masses. A low
line-mass filament forms a broad core while a core forming in a high line-mass filament causes the radius to
pinch.
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filaments. As soon as they come close to the limit of hydrostatic equilibrium, their radius
collapses away quite rapidly. This restricts their lifetime and the chance to actually observe
pinched cores.

Additionally, we test our predictions by simulating the evolution of cores which start with
a one per cent perturbation in filaments with a central density of 10*cm™ and a line-mass
of fo1 = 0.2 and 0.8 in order to show the qualitative difference in morphology. We use the
grid code RAMSES (Teyssier), 2002) to set up boxes with the size of the respective dominant
perturbation length with periodic boundary condition in the filament axis and open boundaries
perpendicular to the filament. In order to test our prediction independent of accretion onto the
filaments, they are embedded in a low-density warm medium in pressure equilibrium. The
simulation set-up is similar to that of Heigl et al. (2016). Both results of the simulations are
shown in projection in at the same time, shortly before the high line-mass filament
collapses. The difference in morphology is clearly visible. The core in the low line-mass
filament is broader then the filament, whereas the core in the high line-mass filament causes
the radius to decrease. We only see a divergence of the Ostriker profile at late times, where
both cores profiles become softer and closer to the radial dependence of an isothermal sphere.

Therefore, our analysis provides observers with a useful tool to determine the line-mass
a filament, independent of inclination and perturbation scale, by identifying the cores. If a
core bulges out of the filament, the mean line-mass is below 0.5. If a core pinches inwards,
the mean line-mass is above 0.5. A caveat of this method is the way the radius is determined
in the observations. The filament width is often determined by measuring the full-width at
half maximum (FWHM) of the radial profile. If the filament follows an Ostriker profile,
the FWHM is not a perfect tracer of the radius and a correction term has to be taken into
consideration. This correction was derived in [Fischera and Martin| (2012)) and changes the
analytical prediction of the radius ratio as shown in the bottom of In general,
using the FWHM will underestimate the core radius and therefore introduces a bias to lower
radius ratios. This effect does not change the predicted curves significantly except for cores
forming in filaments with f.,; = 0.5, which would be observed as a pinched core.

We assume that filaments in the same region of a molecular cloud are embedded in a
constant background pressure. In this case, filaments with different line-masses will vary
substantially in central density and therefore also in the perturbation growth time as it goes
as Tgom ~ 1/ +/pc. This fact is illustrated in [Figure 8.3| where we show the same evolution of
the core to filament radius ratio as in |Figure 8.1funder the assumption that the cores grow on
the dominant timescale now for a constant external pressure of pe/kz = 10°K cm™. Con-
sequently the central density varies from p. ~ 10* cm™ for low line-masses to p. ~ 10®cm™
for high line-masses. There is an interesting dichotomy visible in the state of evolution of the
cores. High line-mass filaments forming pinched cores evolve much faster than low line-mass
filaments which form broad cores. This implies that, as long as there is not much spread in
initial perturbation strength in filaments, a region will most likely only contain one population
of cores. Either there are mainly pinched cores and broad cores will not have had enough time
to grow or there are mainly broad cores and their high line-mass counterparts have already
collapsed away and formed stars. Varying the value of the external pressure only shifts the
evolutionary tracks in (higher external pressure imply larger central densities and
thus faster growth times) and does not change the general behavior.
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Figure 8.3: The same as in but now for a constant external pressure of pey/kp = 10° K cm™. For
varying central densities there is a broad spread in perturbation growth time. The line properties are the same
as in Starting at fy = 0.1 for the curve with the longest perturbation growth time (solid orange), f;
increases incrementally by 0.1 going to faster perturbation growth times.
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8.4 Discussion and conclusions

The gravitational instability model has several shortcomings. The main assumption is that
filaments are very idealized cylindrical entities where the mean initial line-mass does not vary
much along its length. Moreover, the filament profile requires a certain timescale to adjust to
density changes. If the local line-mass varies faster than the radius can adjust, a broad core
could be embedded in a filament with a line-mass larger than half the critical value. There are
two processes which can lead to a major change in local line-mass on a short timescale. On
the one hand, mass accretion increases the overall line-mass. Observed rates are estimated
to be on the order of 10 — 100 Mg, pc™! Myr~! (Palmeirim et al., 2013). On the other hand,
a filament will longitudinally contract due to self-gravity. In addition, the rapid formation of
two cores at the ends of the filament seems to be a typical outcome of the edge-effect (Burkert
and Hartmann, [2004).

A different equation of state or additional physical contribute to the radial stability and
can change the morphology of cores. Observed radial density profiles are better matched by
polytropic indices lower than one (Toci and Galli, 2015a). As long as there is a maximum
radius in dependence of the line-mass we still expect a dichotomy in morphology but with
the division not necessarily at half the critical line-mass.

Observationally, it is important to not only include the dense gas in order to reliably
measure both filament and core radius. As the density of the outer filament gas is lower than
the core gas, the filament radius has to be determined with a tracer of low gas density. If only
the dense gas is observed, e.g. NoH", even cores which are nominally pinched can appear
broader than the dense gas in the rest of in filament.

Moreover, projection effects can reduce the length of a filament and thus increase the
apparent line-mass by a substantial factor. This effect is limited by the fact that higher inclined
filaments will not resemble a filamentary structure.

Additionally, more cores are observed which are thinner than the average widths of star-
forming filaments (Palmeirim et al., [2013; Marsh et al., 2014; Roy et al., 2014)), indicating
that most filaments have high line-masses. Nevertheless, higher number statics on the local
ratio of core-to-filament radius are desirable in order to estimate line-masses.

All in all, our model allows for the following predictions:

e The morphology of cores embedded in filaments is set by the initial line-mass. Fila-
ments with an initial line-mass below half the critical value will develop broad cores.
Filaments with an initial line-mass above half the critical value will develop pinched
cores.

e For filaments which are embedded in the same constant background pressure, the per-
turbation growth times for low and high line-masses are drastically different. If all fila-
ments start with similar perturbation strengths we expect only one population of cores
to be present, only pinched cores at early times and broad cores at late times.

e Using the FWHM to determine the radius underestimates the extent of high density
regions of the filament and thus underestimates the ratio of core to filament radius.
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e The phase where the radius of pinched cores is significantly different from the overall
filament radius is very short and indicates an imminent collapse due to loss of hydro-
static equilibrium.
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9 Paper IV: Accretion-driven turbulence
in filaments - I1. Effects of self-gravity

S. Heigl, A. Burkert, M. Gritschneder, 2019, submitted to Monthly Notices of the Royal
Astronomical Society

We extend our previous work on simulations with the code RAMSES on accretion
driven turbulence by including self-gravity and study the effects of core forma-
tion and collapse. We show that radial accretion onto filaments drives turbulent
motions which are not isotropic but radially dominated. Low accretion rate fil-
aments decay to an equilibrium velocity dispersion which does not differ from
their non-gravitational counterparts. Filaments with high mass accretion rates,
despite roughly showing the same amount of driven turbulence, continually dis-
sipate their velocity dispersion until the onset of core formation. This difference
is connected to the evolution of the radius as it determines the dissipation rate.
In the non-gravitational case filament growth is not limited and its radius grows
linearly with time. In contrast, there is a maximum extent in the self-gravitational
case resulting in an increased dissipation rate. Furthermore, accretion driven tur-
bulence shows a radial profile which is anti-correlated with density. This leads to
a constant turbulent pressure throughout the filament. As the additional turbulent
pressure does not have a radial gradient it does not contribute to the stability of
filaments and does not increase the critical line-mass. However, this radial tur-
bulence does affect the radius of a filament, adding to the extent and setting its
maximum value. Moreover, the radius evolution also affects the growth timescale
of cores which compared to the timescale of collapse of an accreting filament
limits core formation to high line-masses.

Key words: stars:formation — ISM:kinematics and dynamics — ISM:structure
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9.1 Introduction

Turbulent motions are a key feature in the highly complex dynamics of the interstellar medium
(ISM) as demonstrated by the famous "Larson’s Laws" (Larson, [1981). Line observations of
molecular clouds show a direct correlation between size and molecular linewidth which is
usually interpreted as a consequence of a Kolmogorov-like turbulent cascade from super-
sonic motions on the scale of a tens of parsec sized molecular cloud down to the sonic point
on the scale of parsec sized filaments (Kolmogorov, [1941; Kritsuk et al., 2013}; Federrath,
2016; Padoan et al., 2016). As density structures are formed by the collision of supersonic
flows in the turbulent cascade, the transition from supersonic to subsonic motions is essen-
tial for setting the scale at which turbulence stops to dominate and the first subsonic density
structures form.

Dust observations show that filamentary structure is ubiquitous on parsec sized scales
in star-forming as well as quiescent molecular clouds and directly associated with core for-
mation for supercritical line-masses (Andre et al., 2010; Arzoumanian et al., 2011; |André
et al., [2014). The fact that these supercritical filaments show an increasing supersonic inter-
nal velocity dispersion for larger line-masses, has been interpreted as a consequence of their
gravitational collapse (Arzoumanian et al., 2013). However, molecular line observations have
shown that some filaments are actually made up of bundles of velocity coherent subcompo-
nents in the line-of-sight velocity called fibres (Hacar et al., 2013}, 2018) which also form in
numerical simulations (Smith et al., 2014} [Moeckel and Burkert, 2015} (Clarke et al., 2017)).
While these subcomponents show trans- or subsonic linewidths, here relative motions create
supersonic linewidths in spectrally low resolved superposition. Moreover, filaments which do
not show any substructure are observed to be inherently subsonic (Hacar and Tafalla, 2011}
Hacar et al., 2016b). This motivated the "fray and fragment" scenario (Tafalla and Hacar,
2015) where the formation of fibres is explained by the sweep-up of residual motions in a
filament. Together with gravity, these motions concentrate material into subsonic velocity
coherent entities in which core fragmentation takes place.

However, in the absence of a driving source, turbulent motions decay on the timescale of
a crossing time (Mac Low et al., 1998 Stone et al., 1998; |Padoan and Nordlund, [1999; Mac
Low, [1999; Mac Low and Klessen, 2004). This timescale can be very short for filaments
if one assumes the driving scale is given by the filament diameter. In a first study (Heigl
et al. (2018a), hereafter called paper I), we used an external accretion flow motivated by
the filaments self-gravity to provide a driving source of turbulence. While we explored the
effects of accretion driven turbulence on non self-gravitating filaments, we now take self-
gravity and core formation into account. Observationally, accreting material is expected to
flow along striations, weak filamentary density enhancements perpendicular to the filaments
and aligned with the magnetic field, and have accretion rates of the order of 10-100 M, pc~!
Myr‘1 (Palmeirim et al., [2013;|Cox et al., 2016). Independent of their formation process, we
show that as long as a filament is embedded in surrounding material, self-gravity leads to a
continuous inflow onto the filament which causes the creation of turbulent motions.

In the following sections, we first introduce the basic concepts that we apply to our model

(Section 9.2). Thereafter, we discuss the numerical set-up of our simulations (Section 9.3)).
Then we present our findings (Section 9.4)) and discuss the implications for core formation
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(Section 9.5)). Finally, we summarize our findings (Section 9.6).

9.2 Basic concepts

This section presents the fundamental principles which we use to derive our models. We
discuss the theoretical hydrostatic profile of filaments and how filaments behave in an ambient
medium. Then we derive expected accretion rates onto filaments motivated by their self-
gravity and how the accretion affects their radii. Finally, we present a simple model of how
accreted kinetic energy is transformed into turbulent velocities and how they are able to add
pressure support.

9.2.1 Hydrostatic equilibrium

We use the isothermal and hydrostatic equilibrium model of a filament with a density profile
described by Stodolkiewicz (1963) and Ostriker (1964):

Pe

P ©.1)
(1+G/H7)

p(r) =

where r is the cylindrical radius and p. is its central density. The radial scale height H is given
by the term:

= 2 9.2)
~ 7Gp. '

where c; is the isothermal sound speed and G the gravitational constant. For our simulations
we assume that the isothermal gas has a temperature of 10 K. With a molecular weight of
u = 2.36 the isothermal sound speed is ¢, = 0.19km s™'. The critical line mass above which a
filament will collapse under its self-gravity is calculated by integrating the profile to r — oo:

M 2¢?
(f) - é ~ 1.06- 10 g cm™ ~ 16.4 M, pc. 9.3)
crit

Filaments with less line-mass than the critical value expand as long as there is no outside
pressure. If one now assumes the filament is embedded in an ambient medium with a source
of external pressure pey, the filament radius and line-mass are limited and one can introduce
the parameter f.,; which is a measure of how close to the critical value the filament is:

o= (),

It varies from O for a non-existing filament to 1, where a filament has exactly its critical
line-mass. The radius R of the filament is then given by (Fischera and Martin, 2012)):

fou )1/2
1 _nyl .

R H( 9.5)
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Together with the relation between the central density p. and the density on the boundary of
the filament,

p(R)
=T (9.6)
Pem =y
one can write the radius as function of the boundary density:
R= (=22 (- 1) ©.7)
- ﬂ'Gp(R) cyl cyl . .

For a given boundary density, the radius has a maximum at f.,; = 0.5 with a symmetric drop-
off to zero at f.;; = 0.0 and f.,; = 1.0. The boundary density p(R) depends on the outside
pressure and thus on the mechanism responsible for the pressure. One possible source of
pressure is the thermal pressure of the surrounding medium itself. If the density on the outside
of the surface is given by pex and the medium can be assumed to be isothermal with sound
speed c;, the pressure acting onto the surface is:

Pext = PexiC> (9.8)

If both, the filament and the surrounding gas, have the same temperature then the boundary
density p(R) and the density of the surrounding gas are the same. Different temperatures
however, lead to a jump in density in order to establish hydrostatic equilibrium.

9.2.2 Filament accretion

Another possible source of outside pressure is accretion of material onto the filament. We are
particularly interested in accretion by the gravitational potential of the filament itself. The
gravitational acceleration of a cylindrical distribution of mass with a given line-mass M/L is

(Heitsch et al., [2009)):

q= - 2CMIL (9.9)

’
The potential energy that a gas parcel with mass m loses in free-fall when starting with zero
velocity at a distance R, and accreting to the filament radius R is given by integrating the
acceleration over r:

Epo = 2Gm(M/L) ln(%) 9.10)

This leads to the accretion velocity v, at the surface R in the case of cylindrical free-fall:

— \/G(M/L) ln(%)

M/L )”2(1n(R0/R))”2
16.4 Mg, pc! In(100) '

(9.11)

=1.1kms™! (

Assuming a reasonable filament with a radius of order 0.1 pc and a large region of gravita-
tional influence on the scale of a molecular cloud (a factor of a hundred times its own radius)
allows us to estimate an upper limit on the accretion velocity. A filament at 10 K needs
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a line mass several times larger than the critical line-mass to achieve an inflow velocity of
even Mach 10.0. In our simulations, we set the inflow velocity to a fixed value at the inflow
boundary. As the simulated domain is relatively small compared to the filament itself and the
filament is not massive enough to accelerate accreting gas over the time it takes to reach the
filament, we can assume a constant accretion rate set by the radius of the inflow region R,
and the density at that radius py:

M
I = 27Tp()R()Va. (912)

This leads to a time-independent density profile outside of the filament,

R
p(r) = po7° (9.13)

with the outside density at the filament radius R being

R
Pext = Po—. (9.14)

R
If the inflow onto the filament is fast enough, ram pressure will dominate over the isothermal
boundary pressure. Comparing to[Equation 9.8] this is the case if the inflow velocity is greater
than the isothermal sound-speed. The total external pressure is then given by

poRoC? (1 + Mi)

Pext = Pext (C? + V(zl) = R . (9.15)

where M, is the Mach number of the accretion flow. The external pressure is balanced by the
internal pressure of the filament at the position of the boundary. If there are turbulent motions
inside the filament, the internal pressure is not only given by the isothermal part but also has
an additional turbulent contribution. The pressure equilibrium can then be written as:

poRQC? (1 + Mg)
R >

p(R)C: (1 + M) = (9.16)

where M, is the Mach number of the turbulent motions within the filament at the boundary.
Solving for the boundary density and inserting the result into gives the radius of
a filament with an additional accretion pressure and internal turbulent motions as:

2¢2(1+ M)
~ mpoRG (1 + M2)

(fen(1 = fe)) 9.17)

Although the radius evolution has now lost its dependence on the square root, the general
shape of the curve remains unchanged. There still is a maximum at f.,; = 0.5 which only
differs in its maximum value. Note that for G — 0, transforms to the non-

gravitational counterpart of
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9.2.3 Accretion driven turbulence

The analytical prediction of accretion driven turbulence is based on the energy budget of
accreted kinetic energy being converted to turbulent energy and its subsequent dissipation.
Following Elmegreen and Burkert (2010) and |[Klessen and Hennebelle| (2010), the change in
turbulent energy E, is given by the energy accretion rate £, and the energy dissipation Ej:

E =E,-E;=(l - €L, (9.18)

The energy accretion rate is given by the accreted kinetic energy

L1
E, = ing (9.19)

and the energy loss through dissipation by

. E, 1Md?
E;j~ —=— , 9.20
d Tda 2 Ld ( )
where the turbulent energy is expected to decay on the timescale of a crossing time:
L
Ty 2, (9.21)
ag

Elmegreen and Burkert (2010) also introduce the efficiency factor € as fraction of accreted
energy used to sustain the turbulent motions:

E,

€=|—]|. 9.22
E, (9.22)

Heitsch| (2013) used this approach together with a driving scale of the filament diameter
L, = 2R to calculate the velocity dispersion in dependence of inflow velocity:

-\ 1/3
a':(ZER(t)vi%) : (9.23)

For a linear evolution in time of the radius and mass, this relation predicts a constant level
of velocity dispersion which is determined by the inflow velocity. While our simulations do
find an equilibrium in velocity dispersion, we cannot match the scaling of the prediction. In
contrast, our simulations show a linear relation of the density weighted velocity dispersion
and inflow velocity as shown in paper I. Note that any model for the scaling of velocity
dispersion and inflow velocity or even an equilibrium is directly tied to the evolution of the
radius. This is due to the fact that the energy dissipation rate depends on the crossing time.
Rewriting the energy dissipation rate as

_1Mo? 1Mot
2 Ly 22R®)’

E, (9.24)
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all terms in depend on the mass accretion rate and can be simplified to
3
= - : 9.25
o’ =ay, 0 ( )

Here we introduce the factor a to account for energy losses in the isothermal oblique accretion
shocks at the surface of the filament where the turbulent motions are created. In order to reach
an equilibrium velocity dispersion, all terms must be independent of time. This is only the
case under two conditions. Either the radius grows linear in time as then the dissipation
rate is constant or the radius evolves superlinear in time for which the last term vanishes at
large timescales. This explains why we have an equilibrium in the non self-gravitational case
as we find a linear time evolution of the radius. We revisit the equilibrium level and give an
explanation for the scaling in the appendix. In the case including self-gravity discussed in this
paper, the radius evolves as a complicated function of time and core formation
could impact the velocity dispersion substantially.

9.2.4 Effect of turbulence on radial stability

An important question that we want to answer is if turbulence can increase the stability of
filaments. Previous studies modeled the effects of turbulence on the equation of state either
by logatropic models based on the scaling relations of molecular clouds (Larson, 1981) where
Pury ~ Inp (Lizano and Shu, 1989; |Gehman et al., 1996alb; McLaughlin and Pudritz, 1997
Fiege and Pudritz, 2000a), or negative index polytropes, where the polytropic exponent is
between zero and one, as is the case for Alfénic turbulence (Maloney, |1988}; Fatuzzo and
Adams, (1993, McKee and Zweibel, [1995). One could also assume that isotropic turbulence
behaves as an additional component to the thermal pressure and add it to the scale height:

262 (1 + M?)
nGp.

H? = (9.26)

Integrating over the filament profile as done for [Equation 9.3| leads to an adjustment of the
critical line-mass:

(M)Crit - M 9.27)

L G

Thus, turbulence would be able to increase the maximum line-mass a filament could sustain.
Note that this adjustment does not affect the formula for the radius in |[Equation 9.17| as the
additional turbulent term not only enters directly over the scale height, but also over f.;
and thus cancels out. However, an increased maximum line-mass would lead to an offset to
the point of the maximum radial extent from the value 0.5 if plotted against the unadjusted
maximum thermal line-mass. In addition, an increased stability would lead to a delayed
collapse of cores in a filament as long as they do not dissipate their turbulence on a much
faster timescale. Therefore, we will also directly test the impact of turbulence by investigating
the radial evolution and core collapse in filaments.
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9.3 Numerical set-up

All our simulations were executed with the code rRamsEs (Teyssier, 2002) which uses a second-
order Godunov scheme to solve the conservative form of the discretised Euler equations on an
Cartesian grid. For our runs we applied the MUSCL scheme (Monotonic Upstream-Centred
Scheme for Conservation Laws, [van Leer| (1977)) together with the HLLC-Solver (Harten-
Lax-van Leer-Contact (Toro et al.,|1994)) and the multidimensional MC slope limiter (mono-
tonized central-difference (van Leer, [1979)).

Our simulations cannot resolve the evolution of the molecular cloud and the detailed ve-
locity dispersion inside the filament at the same time. Therefore we focus on a preset con-
verging radial flow onto a self-gravitating, isothermal filament in the centre of the box. We
use a 3D box with a periodic boundary condition in the x-direction and outflow boundaries
in the other two directions. As RaMSES has no radial boundary we define a cylindrical inflow
zone with a radius of the boxsize and a thickness of two cells from which we drive a radial
inflow onto the central x-axis of the box. The inflow zone has a fixed density and inflow
velocity which is continuously renewed every timestep. The inflow leads to a build-up of a
filament with a radius which is limited by gravity. The periodic boundary prevents the fila-
ment from collapsing along its axis and prohibits the loss of turbulent motions. As the radius
does not grow to large values, we can often optimize the resolution of our simulations and use
a boxsize of 0.4 pc which is half as large as the standard boxsize used in paper I. We adjust
the outer boundary density to set the mass accretion rate and for most of the simulations we
use the same rate as in paper I of M/L = 16.8 M, pc™! Myr~! by doubling the density in
the inflow region to a value of py = 7.84 - 10722 g cm™3, which corresponds to about 2 - 102
particles per cubic centimeters for a molecular weight of ¢ = 2.36. For simulations where we
show the equilibrium level of turbulence, we reduce the density in the inflow region in order
to have enough time to allow the equilibrium to settle without the filament collapsing. We
also use the density in the inflow region as a mean density inside of the box together with a
random perturbation of 50%. The gas is set to be isothermal with a temperature of 10 K and
the cells surrounding the inflow zone are given the same constant density and do not affect
the simulation.

The minimum resolution is set to 256°, which at this boxsize is equivalent to the minimum
resolution used in paper I. We employ adaptive mesh refinement (AMR) in order to resolve
higher densities. Over the evolution of the simulation the filament stays unrefined and AMR
only plays a role in the high density cores. The maximum resolution is set to 5123 and in such
a way that we terminate the simulation as soon as we do not fulfill the Truelove criterion for
the maximum density within a factor of 16 in all simulations (Truelove et al., 1997).

9.4 Simulations

As in paper I we study the velocity dispersion and radius of the filament. We show the typical
evolution of a simulation in where we plot slices through the central axis of the
filament. As the filament grows in mass it first expands, reaches a maximum in radius and
decreases again in radius. Towards reaching the critical line-mass of f.,; = 1.0, usually one
or more cores can be seen to condense inside the filament. Our simulation ends when we
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Figure 9.1

8.4 My, pc™! Myr~!. The image shows four slices at different evolutionary times through the centre of the fila-

ment. The cylindrical accretion induces obvious turbulent motions until a core is formed where the dominant

motions change to an accretion onto the core.
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Figure 9.2: Evolution of the velocity dispersion for a Mach 6.0 inflow with varying accretion rate. We include a
filament without gravity given by the dashed-dotted line as a reference case. The solid lines show filaments with
different accretion rates. The dashed lines are the same initial values but with a pre-existing 1/r profile inside
the box which smooths out the initial accretion shock.

reach the maximum allowed density due to the Truelove criterion of around 1077 g cm™

or 107 particles per cubic centimeter where we would need to insert a sink particle. As
the subsequent core collapse happens on much shorter timescales than the evolution of the
filament and we do not model expected feedback from protostellar outflows, we terminate
our simulations as soon as we reach this threshold.

9.4.1 Evolution of the velocity dispersion

In order to calculate the velocity dispersion of the filament gas, we need to distinguish it from
the accretion flow. Due to the formation of an accretion shock at the filament boundary, there
is a clear jump in density and a drop in radial velocity of the material. As the density inside
the filament still varies considerably, we use the change in radial velocity as an indicator of
filament material.

For the determination of the velocity dispersion in paper I, we used the standard deviation
of the density weighted velocity:

m;v; Nmiv,- Nmiv,-
u;, = = =
(m) 2 m; M

(9.28)

where N is the total number of cells and () indicates the mean of a distribution. A more com-
mon way of defining the velocity dispersion of gas with zero mean velocity is by calculating
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f 1
o= % Z mivl.z. (9.29)

In the limit that the density is constant, both ways of calculating the velocity dispersion are
equivalent as the velocity mean is zero and the standard deviation then is given by

Nz fmz?
7= ) — () = \/ %AZV - \/m AZ/ (9.30)

where we use the definition of the total mass M = Nm;. As the density inside a filament is not
constant in our simulations, we expect different measured values of the velocity dispersions
for the different methods. Especially for large values of turbulence the differences should
increase as more and more shocks form inside the filament with larger density contrasts. For
this study we use the method of the total kinetic energy (Equation 9.29).

In paper I we found that without self-gravity the velocity dispersion settles to a constant
equilibrium value over time. This behavior was also found in a similar study by Clarke et al.
(2017) which used the Smooth Particle Hydrodynamic code anpaLr (Hubber et al., 2018])
and which included gravity but in addition also an initially perturbed velocity field. We want
to test if it is possible to reproduce the transition to equilibrium in RAMSEs if we include
self-gravity. For very low mass accretion rates, there should be no difference to the non self-
gravitational case as this would be just the limit of a zero mass accretion flow. This can be
seen in[Figure 9.2] where we show the evolution of the velocity dispersion for the same inflow
velocity of Mach 6.0 but for different mass accretion rates. The black dashed-dotted line is the
evolution of the velocity dispersion of the non-gravitational case and ends in the equilibrium
value presented in paper I, where we also show that the equilibrium continues on for much
longer timescales. The solid light blue curve shows a filament with an accretion rate which
is ten times lower than that of the reference case. Its velocity dispersion ends at the same
equilibrium value, within the usual spread of simulations, as the non-gravitational reference
case. It’s accretion rate is essentially so low that the total mass build-up in the filament is not
enough for it to be affected by gravity.

This behavior changes for a filament with an accretion rate of five times the original rate,
given by the medium blue line. It shows no such equilibrium value. At all times its velocity
dispersion is less than the one for a low accretion rate and continually drops off until core
formation sets in where it increases due to collapse motions onto the core. The same is true
for even higher accretion rates shown by the solid dark blue line which we use as our fiducial
case for further analysis. The filament accretes mass with ten times the original rate and
therefore as fast as the non-gravitational case. Here, the velocity dispersion is even lower and
core formation sets in earlier.

We also test if our initial condition influences the evolution of the velocity dispersion.
Therefore, we change our initial density profile in the box from a flat distribution to a 1/r
profile, consistent with as if the accretion flow has already been established.
The corresponding lines are shown in [Figure 9.2] by the dashed lines. We see that it does not

the total kinetic energy in the gas:
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Figure 9.3: Evolution of the velocity dispersion of all components for a Mach 6.0 inflow with mass accretion
rate of 16.8 My, pc™! Myr~!. The total velocity dispersion is shown by the blue solid line, the Cartesian com-
ponents in y and z direction by the red and orange dashed-dotted lines and the cylindrical components in radial
direction and in angular direction by the dashed red and orange lines respectively. The x-component, which is
valid for both geometries is given by the blue dotted line.

influence the equilibrium level of the low accretion rate case but does remove the initial spike
in velocity dispersion. For higher accretion rates the initial value from where the velocity
dispersion decays is lower and therefore it drops off to lower values.

We also split up the velocity dispersions into its cylindrical components by splitting the
respective velocities into the x-component along the filament axis, the azimuthal and the
radial velocities. Their evolution is shown in together with the Cartesian y and z
component of the velocity dispersion. One can see that the turbulent motions are dominated
by the radial velocity component and also only decay in the radial component while the other
two stay constant over time. This is due to the difference in crossing times. Not only is the
initial radial dispersion more than twice as large as the other components but it has also the
lowest driving scale, with the azimuthal driving scale being a factor & larger and the driving
scale along the filament being the boxsize in theory.

Therefore, albeit the equilibrium velocity dispersion is robust for filaments which are not
dominated by gravity, gravitational collapse does influence the velocity dispersion by reduc-
ing it over time until the point of core collapse where collapse motions increase it again. This
result is in agreement with as for the non self-gravitational case, the radius
evolves linearly, setting a constant dissipation rate and allowing for the velocity dispersion
to settle to an equilibrium value. However, for self-gravitational filaments the radius has a
maximum value and decreases again for large line-masses. This leads to a constant change in
dissipation rate and thus no equilibrium can be achieved.
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Figure 9.4: Turbulent Mach number averaged in radial bins of our fiducial filament with a Mach 6.0 accretion
flow and an accretion rate of 16.8 Mg pc™! Myr~! measured at 0.5 Myr which corresponds to time where the
filament reaches its maximum radius. The total velocity dispersion is shown by the red dashed-dotted curve, the
radial velocity dispersion by the orange dashed-dotted line.

9.4.2 Radial evolution

We showed that in the non self-gravitational case, the radius evolves linearly in time and is
supported by the radial turbulent motions (see also Appendix A). According to|Equation 9.7]
the radial expansion is limited in the self-gravitational prediction, reaching a maximum at
Jfeyr = 0.5, followed by a subsequent decrease. In order to assess the impact of turbulent
motions on the radial extent, we compare [Equation 9.17]to the measured radius. If turbulence
has an impact on the scale height, one would see an off-set in the radius maximum. This off-
set can be substantial, e.g. a factor of two in the case where the velocity dispersion is larger
than the order of the sound speed. Thus, by measuring the radial evolution, we can not only
test the impact of turbulence on the radius but also if it acts as additional pressure support.
Before we compare the measured radius to we have to determine the turbu-
lent Mach number at the filament boundary, as M, in the above equation is not the total Mach
number, but the one determining hydrostatic equilibrium at the boundary. In order to do that,
we show the radial profile of the turbulent Mach number in As the filament is very
thin we increase the resolution by re-simulating our fiducial case with a four times smaller
box with a size of 0.1 pc. In order to keep the accretion rate constant, we increase the inflow
density by a factor of four. We take each slice of the filament, split the domain in radial bins
with a width of 4 cells, subtract the mean velocity of the bin, determine the total kinetic en-
ergy in the bin and finally average over all slices along the filament. The Mach number of the
total turbulence is shown in red and the Mach number of the radial turbulence in orange. As
one can see, the velocity dispersion is not constant throughout the filament, but is minimal at
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Figure 9.5: Evolution of the measured average radius of a filament with a Mach 6.0 accretion flow and an
accretion rate of 16.8 Mg pc™! Myr~! compared to the average line-mass. The curve ends as soon as the core
reaches the critical line-mass and collapses. The analytical evolution of the radius without
turbulent pressure contribution is shown by the dashed line, with radial turbulence support as the black dashed-
dotted line and with total turbulence support as the black dashed-dotted line.

the filament centre and has its maximum at the boundary. This shows how turbulent motions
are stirred at the surface of the filament and dissipate in the higher density layers. In order
to calculate the predicted radius we need to use the boundary value. In principle, one would
need to determine this value at every time step but we do not see a significant change and it
stays close to constant over time. We use both boundary values, the total and the radial Mach
number, in[Equation 9.17]and plot the predicted radius as well as the average measured radius
against the average line-mass in The measured radial evolution is shown by the
solid black line, the case of no turbulent support as the dashed curve, the case of radial turbu-
lent pressure support as the dashed-dotted line and the case of total turbulent pressure support
as the dotted curve. The measured radius follows closely the radial turbulent support model.
Note that the same is true in the non self-gravity case in[Figure 9.A.1] Only the radial motions
contribute to the hydrostatic equilibrium. One can see that the curve reaches its maximum
value at about f.,; = 0.5. It is important to note, that while turbulence does influence the max-
imum radius, it does not, or at most only marginally, affect the maximum line-mass and thus
the point of where the radius reaches its maximum. According to we would
expect a maximum line-mass of twice the isothermal maximum mass for an inflow velocity
of Mach 6.0. Thus, the radial evolution should peak at a unadjusted value of about f.,; = 1.0.
Therefore, there is no indication of radial pressure support against gravity by turbulence as is
consistent with the radial collapse discussed in the next section.
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Figure 9.6: Time evolution of the maximum line-mass for different inflow Mach numbers. Due to the increasing
mass in the filament, the maximum line-mass grows linearly. As soon as it reaches the unmodified critical line-
mass at a value of 1.0, the core at this position collapses radially as can be seen in the non-linear evolution.

9.4.3 Core formation

We showed that turbulence does not have an effect on where the radial evolution has its max-
imum with respect to the filament line-mass. Therefore, we assume that there is no additional
support against radial collapse which we test by analysing the growth of the forming core and
whether or not it collapses at the critical line-mass. We plot the line-mass at the position of
the core against time in In Heigl et al.| (2016) we showed that the radial collapse
of the core is visible in the non-linear evolution of the line-mass. If turbulence indeed plays
a role for the stability of a filament, we expect an offset from f.;; = 1.0 with respect to the
line-mass growth change from linear to non-linear. If we adapt we predict a
shift in the critical line-mass to at least double the usual value for turbulent Mach numbers of
the same order as the sound speed. As one can see from the form of the curves, a non-linear
evolution sets in as soon as the local line-mass at the position of the core exceeds the criti-
cal line-mass determined without turbulent support. This shows again that turbulence in our
simulations does not have a supporting effect on the line-mass, consistent with the findings
of the radial evolution.

9.4.4 Why is there no pressure support?

In order to determine why there is no pressure support, we analyse the pressure profile of our
high resolution fiducial filament as we did for the turbulent Mach number in We
distinguish between cells that are part of the filament and others which trace the accretion
flow by using the same method of determining the filament radius by the jump in radial



126 PaPER IV: ACCRETION-DRIVEN TURBULENCE IN FILAMENTS - II. EFFECTS OF SELF-GRAVITY

25
== Thermal pressure
= Ram pressure
= Total turbulent pressure
20 1 Radial turbulent pressure
o —— Thermal + total turbulence pressure
]E Thermal + radial turbulence pressure
o ~
v 15 \\\
2 AN
2 ~
) RN
— -
3 10
§ o~
a /
5 h -
o PP FITTITPTTTTTIT pozzrrzest : 1 :
0.00 0.01 0.02 0.03 0.04 0.05

Radius [pc]

Figure 9.7: The different pressure contributions averaged in radial bins of our fiducial filament with an accretion
flow of Mach 6.0 and an accretion rate of 16.8 Mg pc™' Myr~!' measured at 0.5 Myrs. The black dashed line
shows the thermal pressure of the filament gas and the black dotted line the ram pressure in the accretion flow.
The turbulent pressure is given by the dashed-dotted lines and the sum together with the thermal pressure to
show the total filament pressure by the solid lines: for the total velocity dispersion in red and for the radial
velocity dispersion in orange.

velocity as mentioned above. As the filament radius is not uniform, we get an overlap region
where cells of both regions are present. We calculate the respective pressures with cells of
the respective region. For the turbulent pressure we use only cells tracing the filament and
determine the average density and kinetic energy in each bin i from which we calculate the
pressure as {p;) o7 and then average over all slices. For the ram pressure we determine the
average density and radial velocity in the accretion flow and calculate the ram pressure as

2
(pi) (V™) and then average over all slices. The resulting pressure components are shown
in [Figure 9.7l The thermal pressure is given by the black dashed line, the ram pressure by

the black dotted line, the total and radial turbulent pressure by the red and orange dashed-
dotted line respectively and the combined thermal plus turbulent pressure by the respective
solid line. We already showed in the last subsection that the radial turbulent motions provide
the hydrostatic equilibrium together with the ram pressure. This can be seen also in the
pressure directly, where the combined thermal plus radial turbulent pressure given by the
orange solid line exactly balance the ram pressure in the overlap region. In contrast, the total
turbulent pressure provides a pressure which is too large for an equilibrium. Moreover, one
can see that the accretion driven turbulence, given by the dashed-dotted lines, distributes itself
over the filament in a way that the turbulent pressure component is constant throughout the
filament. This leads to the fact that the pressure profile of the filament is only shifted to a
larger pressure due to turbulence by a constant value. One can interpret this as a shift in the
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isothermal equation of state to include a constant offset:

p = pci + po, 9.31)

which does not change the solution of the isothermal, cylindrical Lane-Emden equation, as
the hydrostatic equilibrium depends only on the gradient of the pressure. The scaling of the
profile does not change and thus the maximum line-mass remains the same. As the boundary
pressure of the filament is larger, it extends further into the surrounding medium. Note that
turbulence thus can influence the absolute value of the scale height by setting the central
density, but it is not added as isotropic pressure contribution to the sound speed.

9.5 Implications for core formation

The radial velocity dispersion at the filament boundary amounts to about 0.85 times the total
equilibrium velocity dispersion of the non self-gravitational case independent of the inflow
Mach number. Thus, we can calculate the theoretical radius of the filament at every line-mass
and therefore we can make predictions on the fragmentation length and time-scales of cores
forming in an accreting filament. Small density perturbations in the linear regime along the
filament axis of the form:

o(r, x, 1) = po(r) (1 + e exp(ikx — iwt)) (9.32)

will grow for values of k where the dispersion relation w?(k) is negative. Here p, is the
unperturbed initial density, k = 27/ is the wave vector with A being the perturbation length,
x is the filament axis, w = 1/7 is the growth rate with 7 being the growth timescale, ¢ the time
variable and € the perturbation strength. The fastest growing, or dominant, fragmentation
length scale A4, as well as the growth timescale of the dominant mode 74,,, depend on the
current line-mass of the filament and are given by the pre-calculated (Nagasawal [1987) and
interpolated values in |[Fischera and Martin (2012), shown by their table E.1. We use these
values to determine the length scale of the fastest growing mode at every line-mass for the
same mass accretion rate but for different inflow Mach numbers as shown in As
one can see, the dominant fragmentation length changes over the evolution of the line-mass.
At the boundary values it vanishes to zero and it has a maximum at about f.,; = 0.4. The
figure is self-similar for different mass accretion rates, with a lower rate leading to a larger
dominant fragmentation length. For a constant accretion rate, the fragmentation length does
not vary much for different inflow Mach numbers. Only for large and for very low inflow
Mach numbers, the fragmentation length is slightly larger. As the dominant fragmentation
length constantly changes as f.,; grows, it is hard to make predictions of what will be the final
distance between forming cores. But the curves have a maximum which allows us to make a
prediction about the minimum number of cores that will form. For instance, a filament with
an inflow Mach number of 4.0 and a length of 0.2 pc will form at least one core. As soon as
the first core forms, the further evolution of the filament is also influenced by the gravitational
attraction of the core. This makes the formation of additional cores even more unpredictable.

We can get some further constrains by calculating the time a core needs to double its local
line-mass and therefore clearly forms a visible over-density if it would continue to grow on
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Figure 9.8: The dominant fragmentation length as a function of the line-mass for the same mass accretion rate
of 16.8 My, pc™! Myr~! but for different inflow Mach numbers.

the fastest growing mode and compare it to the time, the overall filament needs to reach the
critical line-mass and to collapse. As a core only condenses out of the filament if it can grow
considerably in mass and the fastest growing mode is constantly changing, this time threshold
gives the best case scenario of a core being able to form. If it takes longer to double the local
line-mass than the filament takes time to collapse, the core will not have enough time to grow
and either the fastest growing mode will change too fast or the filament will collapse before it
can form. Note that this is the maximum limit in line-mass a core forming in a filament with
a line-mass below 0.5 can reach in the non-linear phase as then all mass from the under-dense
evacuating region has been transferred to the core. It only can reach larger local line-masses
in the non-linear phase where it could accrete mass from all over the filament (Heigl et al.,
2016). In filaments with line-masses larger than 0.5, the core collapses radially as soon as
it reaches the critical line-mass locally and thus fixes the position of the core. Therefore, in
reality the core formation timescales for large line-masses are shorter as they reach the critical
line-mass before they double their local line-mass.
The result of this calculation is shown in The filament is accreting mass at
a constant rate, thus the time for it to reach the maximum line-mass is decreasing linearly
as shown by the black dashed line. To determine the time a core needs to double its local
line-mass, one only has to solve for the time ¢ where the dominant growth of the line-mass
reaches a value of two times the initial line-mass:
far @ = fou (1 + €exp(t/Taom)) = 2 (9.33)
where f, Oy1 is the unperturbed line-mass at the beginning of the growth of the respective fastest
growing mode. One also has to assume a perturbation strength € which we set to 5%, the
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Figure 9.9: The dominant fragmentation time compared to the collapse time of a filament as a function of the
line-mass. The dashed line shows the remaining time to reach a value of f.y; = 1.0 compared to the time it takes
a growing core to reach the same value at each line-mass. Only at values of f.,; ~ 0.7 and above, cores have
time to form before the filament collapses.

typical variation in the line-mass we measure along the filament in the simulations. As one
can see, the growth timescale of a core is larger than the filament collapse time for the majority
of its evolution. The dominant growth timescale is shorter for large central densities as is the
case at very low and high values of f,; where the filament is centrally concentrated. The upper
value of fc,; where the growth time curves intersect the collapse timescale of the filament is
approximately where we also typically observe core formation in our simulations. For lower
values of f.,; we never see any core formation occurring. We do see local overdensities on
very small length scales similar to random noise but no real core forms. This is probably due
to the fact that for line-mass values below 0.5, cores cannot collapse in the regime of linear
perturbation and further growth is limited due to a limited mass reservoir. As the dominant
length scale changes over time, any pre-existing overdensity is washed out. This changes for
high line-masses as here the cores form local overdensities which large gravitational attraction
suppresses the further change of the dominant mode. The timescale to reach the critical line-
mass is very small and the collapse of the core is irreversible.

As in the case of the fragmentation length, the growth timescale is self-similar. A larger
mass accretion rate only shortens the growth time as well as the time for the filament to reach
the maximum line-mass in the same manner. Note that this relation therefore also holds true
for an increasing inflow velocity due to a growing line-mass. This implies that if cores are
observed in a filament it is more likely to have a line-mass closer to the maximum line-mass.
From the results of Heigl et al| (2018b) which show that cores forming in high line-mass
filaments lead to a reduced filament radius at the position of the core, we also expect the
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cores to have a thinner morphology than the filament itself.

9.6 Discussion and conclusions

This work presents a numerical study on accretion driven turbulence in filaments. We have
shown that accretion flows with expected inflow velocities and observed mass accretion rates
can drive relatively fast supersonic motions. However, our model relies on several assump-
tions.

First of all, our simulations lack magnetic fields which could suppress turbulent motions.
Although magnetic fields are thought of channelling accretion flows along striations, den-
sity enhancements perpendicular to the filament (Goldsmith et al., 2008; Palmeirim et al.,
2013; Cox et al., 2016), they have been shown to stabilise filament against fragmentation
depending on the field configuration (Stodolkiewicz, |1963}; Nagasawa, 1987; (Gehman et al.,
1996b;, [Fiege and Pudritz, 2000b). They can act as an additional pressure support and also
suppress motions perpendicular to the field lines. The effects of magnetic fields therefore will
be explored in a future paper.

Furthermore, while we do include an initial density perturbation in order to break the
symmetry, our accretion flow is very smooth. It could be that accretion is better treated by
the infall of clumpy material or even with initial turbulent velocity distributions as in Clarke
et al. (2017). Filaments do not form in isolation and driven turbulent box simulations show
filaments forming as transient entities (Federrath, 2016). To that end, large scale simulations
with realistic inflows in a molecular cloud environment are needed which are out of the scope
of this work.

Observations of the massive filament DR21 show an increasing velocity dispersion toward
the central axis of the filament (Schneider et al., 2010). While our model shows a decreasing
velocity dispersion towards the centre of the filament, one has to take projection effects into
account. In mock observations of our models we do not see an obvious increase. However,
we do not see any systematic drop of velocity dispersion to the centre of the filament either.

Nevertheless, our simulations all show the lack of turbulent pressure support against radial
collapse. This constitutes an interesting case where turbulence does not act as an additional
pressure. We can summarise our findings as the following:

e A smooth radial accretion onto filaments drives turbulent motions which are radially
dominated and decay over time.

e The turbulent pressure has a radial profile which is anti-correlated to the density as the
low density outer layers are easier to stir.

e This leads to a constant turbulent pressure component which does not add radial stability
as the stability relies on pressure gradients.

e We predict that cores usually form for higher line-mass in accreting filaments (fe,; >

0.6) as only then their growth is fast enough to outpace the collapse of the entire fila-
ment.
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9.A Non self-gravitational radius evolution revisited

While we found a linear relation between the inflow velocity and the equilibrium velocity
dispersion in paper I, we could not find a reasonable explanation for the offset of the linear
fit. As we have refined our measurement techniques and updated our model, we want to
discuss the implications of this study on our previous work.

9.A.1 Radial evolution without self-gravity

As the density inside the filament is constant in the non self-gravitational case, we formerly
modeled the radius by the mass accretion rate assuming that the mean density
inside the filament is given by the exterior density times the square of the Mach number in an
isothermal shock:

O = pexth- (9.34)
The mass accretion rate together with the total mass of the filament
M = nR’L{p)s = AR*L pex M2 = nRLpoRoM?, (9.35)
then leads to a radius evolution given by
2c%t
R(f) = ——. (9.36)
%

a

While we found a good agreement, this does not take into account the effect of turbulence on
the radius. A better model is to consider the pressure equilibrium at the filament boundary,

analogous to|Equation 9.15| supported internally by the turbulent pressure (o) o> and by the
ram pressure pextvg on the outside:

o (cf + 0'2) = Pext (c? + vi) . 9.37)

This gives the internal mean density

(1+ M)
P = pext—(l " M?) (9.38)
which leads to the radius evolution of
(1+M0)
R(t) =2v,t—= (9.39)

(1+M2)
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Figure 9.A.1: Radial evolution of a filament with a Mach 6 inflow without gravity. The solid black line is the
measured radius at each time step. The theoretical predictions are given by [Equation 9.39| with the full, radial
and no turbulent support is given by the dotted, dashed-dotted and dashed line respectively.

As we have shown in the turbulence inside the filament is not isotropic. Thus, it
is not necessarily the total velocity dispersion which supports the internal pressure. Further-
more, it is important to note that the hydrostatic equilibrium is given by the turbulent pressure
at the boundary. As the non self-gravitating velocity dispersion has a similar radial profile as
shown for the self-gravitating case in we would need to use the boundary velocity
dispersion value in[Equation 9.39] However, for the non self-gravitational case, the boundary
velocity dispersion is very similar to the velocity dispersion calculated from the total filament
as it does not have a density profile. Therefore, we do not see an anti-correlation between
density and velocity dispersion and the latter is then dominated by the largest value which
is at the boundary. We plot the radial evolution as solid line in together with
the expected evolution including no turbulent support as dashed line, only radial support as
dashed-dotted line and total turbulence support as dotted line. Compared to paper I, we im-
proved our measurement method of the radius by not using the largest density jump but by
using the same methodology as we do for the velocity dispersion which distinguishes filament
material from the surrounding by using the drop in radial velocity. We found that the density
inside the filament can vary substantially and the largest density jump does underestimate the
filament radius. Moreover, sometimes the filament can be deformed, having an more ellipti-
cal formed cross-section. We reduce the impact of this effect by using the mean radius of two
perpendicular cuts through the centre of the filament. The expected evolution follows from

together with the measured velocity dispersion at every time-step. Note that
the no turbulent support case is indistinguishable from the isothermal shock radial evolution

of for large inflow Mach numbers.
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Figure 9.A.2: Equilibrium values of accretion driven turbulence in dependence of the inflow Mach number.
Both plots show the same data points. On the left hand side we directly plot the values which we calculate from
the kinetic energy. The gray data points are the values of the density weighted standard deviation we used in
paper 1. On the right hand side we show the same data points with squared values in log-log scale.

As one can see, the radius is best fitted by a support of the radial component of the velocity
dispersion. This shows that only radial motions of the filament are important in setting the
boundary pressure against the radial inflow.

9.A.2 Equilibrium velocity dispersion

We now want to use the information about the non self-gravitational radius evolution to ex-
plain the linear relationship we found in paper I between the inflow velocity and the cre-
ated turbulence. We measure the equilibrium value which we plot as red data points in
The left panel shows the direct relationship between the inflow velocity and the
generated turbulence. On the right hand side we plot the same values but squared in order to
compare the inflow energy to the turbulent energy. Additionally, we show the values of the
radial turbulence as blue squares. The error bars indicate that different seeds in the random
density distribution result in slightly different equilibrium values with a spread of about 10%.
In gray, we also plot the data values of paper I which where calculated using the density
weighted standard deviation. One can see that for low values the differences are not huge but
they become increasingly larger for higher inflow Mach numbers, as discussed at the begin-
ning of Compared to paper I, we also extend the range of inflow velocities to
Mach 15 which is already much greater than the expected values but serves as a good upper
limit.

The reason why in general there is an equilibrium level in the velocity dispersion in the

non-gravitational case is due to If the radius is growing linearly with time as
shown in and if the equilibrium has been established, the dissipation rate is

constant in time (Equation 9.20):

N 1M(l)0'3 _ 1Ml0'3(1 +M§) B M0'3(1 +M§) (9.40)

B0 T (1o A8)  Su (15 A)
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If the velocity dispersion is greater than the equilibrium value, the excess is dissipated away,
if it is lower, less energy is dissipated. Thus it will settle at a value where the dissipation is
constant.

In order to compare to theoretical models we first discuss the prediction by Heitsch/(2013)).
It assumes that one can express the dissipation rate as a constant fraction of the constant
energy inflow (Equation 9.22):
E,
E,
Note that € can only be constant in time for a constant mass accretion rate if the dissipation
rate is constant in time. For a non-linear radial evolution this is not the case. Furthermore,
the model assumes that € is independent of the inflow velocity which is not necessarily true
as the fraction of accreted energy converted to turbulent motions can change with the inflow

velocity. Nevertheless, in the non-gravitational case transforms to
M deM;
(1+r8) G+ M)

) (9.41)

€ =

(9.42)

As turbulence is generated in oblique shocks on the surface of the filament, we need su-
personic inflow motions. Below an inflow velocity of Mach 1.0 we do not generate turbu-
lent motions or even form a pressure bound filament. Therefore, we shift the zero point of
to an inflow velocity of Mach 1.0 by effectively applying the transformation
M, = M, — 1. Note that this transformation only affects the energy accretion term and not to
the evolution of the radius. Thus, the equation is now:

M AeMIM,
(1 +Mt2) (L+M2)

A realistic estimate of € is expected to lie between 5% and 10% (Klessen and Hennebelle,
2010) which we plot as the dashed-dotted light blue and red lines respectively. As one can
see the curves do not fit the measured points and fit even worse if we do not apply the trans-
formation. The shape of the curve cannot be matched to the data points even if we fit different
values of €. This leaves us with the conclusion that € is only a constant in time for a certain
inflow velocity but varies with the inflow velocity.

As we clearly cannot apply the model by Heitsch| (2013), we try to fit
directly. If we insert the evolution of the non self-gravitational radius, it transforms to

(9.43)

M (1+ M)
AM(1+ M)

We fit this relation in as solid, orange line and get the best fitting value of
a = 0.085. As one can see it follows the data points well and has the same scaling for large
M,. Only for low inflow Mach numbers there is some discrepancy where the data points lie
not exactly on the relation. Therefore, our model seems to reasonably explain the connection
of accretion driven turbulence an inflow Mach number.

M= aM? -

(9.44)
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Nevertheless, our simulations show that most of the inflow energy is lost and only about
3% is retained in turbulent motions at equilibrium for large inflow Mach numbers. Only 8,5%
is kept in the shock phase and the remaining difference is dissipated continuously.
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10 Final remarks

As the thesis draws to a close, this final section gives a summary of our main findings and
provides a direction for further investigations. Although the big questions of filament physics
remain, such as the existence of a universal filament width and the creation of fibres, this
thesis has contributed to and questioned our understanding of filaments. Many unresolved
challenges remain and detailed studies on the various physical processes influencing filaments
are important in order to and form a more comprehensive theory of star formation.

First, we investigated whether we can apply the idealised model of gravitational filament
fragmentation to a real-world observation. Indeed, the L1517 region in Taurus seems to be
an ideal candidate as two filaments are actively forming two cores respectively and show the
consistent predicted velocity structure. Not only can we reproduce all observable quantities
to a reasonable degree, our method also allows us to predict the inclination of filaments in the
plane of the sky and to determine the local ambient pressure of the ISM. While many star-
forming regions may not exhibit the same ideal conditions, our study is a proof of concept
that shows the validity of the gravitational fragmentation mechanism.

Second, we demonstrated the importance of accretion flows with regard to generating
turbulence in filaments. While this connection has always been assumed, we showed in a
numerical study that expected gravitationally driven inflows with velocities consistent with
observations can easily provide a source of turbulent motions similar to the observed non-
thermal broadening. For non self-gravitating filaments we find that the velocity dispersion
settles to an equilibrium value with a linear relation between inflow velocity and generated
turbulence. However, only a fraction of the accreted energy is converted to turbulent mo-
tions. Furthermore, while the generated turbulence is non-isotropic and radially dominated,
it does contribute to the hydrostatic equilibrium as a source of pressure. The driving of tur-
bulence via accretion could be a viable alternative to the inheritance of non-thermal motions
via a turbulent cascade and provides a source of turbulence which can be sustained over long
timescales.

Third, we extend the model of the two different core formation modes discussed by Na-
gasawa (1987). Not only do we show that the effect of a broad or pinched morphology of
the core with respect to the filament applies as soon as the initial line-mass of the filament
is not exactly half the critical line-mass, but also that it should lead to an observable tracer
in the column density. In principle, the difference in morphology should allow observers
to determine the line-mass of a filament independent of inclination and perturbation length.
Moreover, the timescales involved in the fragmentation at different line-masses for the same
ambient pressure should lead to a predominant morphology being present in a particular re-
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gion, as high line-mass filaments fragment and form stars much faster than their low line-mass
counterparts.

Fourth, we include the effects of self-gravity in our model of accretion driven turbulence
in filaments. In contrast to the non self-gravitating model, the velocity dispersion does not
settle to an equilibrium but continuously dissipates. We show that the dissipation is connected
to the evolution of the filament radius which is not only limited to a maximum value but also
set by the level of turbulence inside the filament. As before, the turbulence is non-isotropic
and radially dominated but shows an anti-correlation to the radial density profile of the fil-
ament. This leads to a constant pressure contribution of the turbulent pressure which does
not change its scale height. Therefore, non-thermal motions do not increase the maximum
line-mass of hydrostatic equilibrium but only affect the maximum value of the radius. As
the filament is constantly accreting mass, its lifetime is limited to the time it takes to reach
the maximum line-mass. We demonstrate how the radial evolution influences the core growth
timescale and show that only cores which form in high line-mass filament grow fast enough to
form significant overdensities. This constraint could be a possible explanation for the trend in
Herschel observations which shows that cores tend to form only in high line-mass filaments.

There are several methods by which our model can be extended. In addition there are
several open questions which arise naturally from this thesis:

e A major shortcoming of our simulations is the exclusion of magnetic fields. We know
from observations and theoretical models that magnetic fields can be dynamically rel-
evant. Not only can they change the fragmentation scales of filaments but also alter
the flow of gas. A particularly interesting aspect would be the interplay of magnetic
fields with the turbulent motions driven by accretion, as this could change the hydro-
static structure of the filament. Including magnetic fields would be a straightforward
approach towards a more realistic model.

e Including a chemical and radiative model could prove to be useful in establishing the
observational implications of our simulations. As different densities are followed by
distinct tracers, features detected in observations could be influenced by the chemical
structure of a filament. In the case of gravitational accretion especially one would expect
a significant footprint of the accretion shock. Another interesting study could focus
on the chemical and velocity structure of a forming core, as here freeze-out of CO is
expected to influence the observed signal. This could not only have implications for the
observed velocity dispersion but also on the observed morphology of cores.

e An interesting question is the effect of a finite length on the fragmentation of fila-
ments. Over time a filament will collapse along its axis and the formation of two
end-dominating cores is expected. However, we were able to show that this process
can be prevented by including a radial accretion flow onto the filament. The accretion
not only leads to a continuous increase in mass, but also pushes material along the fil-
ament from its centre to either end of the filament from where it is distributed into the
surrounding medium. This effectively halts the longitudinal collapse and prevents the
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Figure 10.1: Density slice through the centre of a finite filament with an accretion flow. The accretion leads to an
outflow at the ends of the filament which prevents its longitudinal collapse and the formation of end-dominating
cores.

formation of cores at both ends of the filament. An example is shown in
We will investigate this case in detail in a future numerical study.

e Finally, simulations with higher resolutions could provide a self-consistent model of
protoplanetary disc formation inside cores which form out of a filamentary environment.
Not only is it necessary to redistribute the accreted angular momentum in order to form
a thin disc, but resolving the accretion flow onto the disc could enable us to assess
whether discs are formed smoothly from a continuous accretion or whether clumpy
accretion plays an important role. However, this requires our physical model to include
feedback processes from the forming young star.

While small scale isolated simulations can provide an insight into different physical pro-
cesses, a long-term goal would be to connect highly resolved filament models to large scale
simulations of molecular clouds. This would not only provide more realistic initial conditions
but also provide feedback from young stellar objects onto larger scales. The tasks of observa-
tional studies will be to gather even higher resolution data in order to explore the formation
mechanisms and substructure of filaments, eventually connecting high density to low density
star forming regions. Research in the field of star formation has never been as active as it
is today and it will be the task of future studies to refine our theoretical model and collect
additional observational data.
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