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Abstract  

Successful pathogens use complex signaling mechanisms to monitor their environment and 

reprogram global gene expression during specific stages of infection. Group A Streptococcus 

(GAS) is a major human pathogen that causes significant disease burden worldwide. A secreted 

cysteine protease known as streptococcal pyrogenic exotoxin B (SpeB) is a key virulence factor 

that is produced abundantly during infection and is critical for GAS pathogenesis. Although 

identified nearly a century ago, the molecular basis for growth phase control of speB gene 

expression remains unknown. We have discovered that GAS uses a previously unknown peptide -

mediated intercellular signaling system to control SpeB production, alter global gene expression, 

and enhance virulence. GAS produces an eight amino acid leaderless peptide [SpeB-inducing 

peptide (SIP)] during high cell density and uses the secreted peptide for cell-to-cell signaling to 

induce population-wide speB expression. The SIP signaling pathway includes peptide secretion, 

reimportation into the cytosol, and interaction with the intracellular global gene regulator regulator 

of Protease B (RopB), resulting in SIP-dependent modulation of DNA binding and regulatory 

activity of RopB. Notably, SIP signaling causes differential expression of ∼14% of GAS core 
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genes. Several genes that encode toxins and other virulence genes that enhance pathogen 

dissemination and infection are significantly up-regulated. Using three mouse infection models, 

we show that the SIP signaling pathway is active during infection and contributes significantly to 

GAS pathogenesis at multiple host anatomic sites. Together, our results delineate the molecular 

mechanisms involved in a previously undescribed virulence regulatory pathway of an important 

human pathogen and suggest new therapeutic strategies. 

 

Publication 2 

Makthal N, Do H, VanderWal AR, Olsen RJ, Musser JM, Kumaraswami M. Signaling by a 

Conserved Quorum Sensing Pathway Contributes to Growth Ex Vivo and Oropharyngeal 

Colonization of Human Pathogen Group A Streptococcus. Infection and Immunity 86:e00169-18. 

Abstract 

Bacterial virulence factor production is a highly coordinated process. The temporal pattern of 

bacterial gene expression varies in different host anatomic sites to overcome niche-specific 

challenges. The human pathogen group A streptococcus (GAS) produces a potent secreted 

protease, SpeB, that is crucial for pathogenesis. Recently, we discovered that a quorum sensing 

pathway comprised of a leaderless short peptide, SpeB-inducing peptide (SIP), and a cytosolic 

global regulator, RopB, controls speB expression in concert with bacterial population density. The 

SIP signaling pathway is active in vivo and contributes significantly to GAS invasive infections. 

In the current study, we investigated the role of the SIP signaling pathway in GAS-host interactions 

during oropharyngeal colonization. The SIP signaling pathway is functional during growth ex vivo 

in human saliva. SIP-mediated speB expression plays a crucial role in GAS colonization of the 

mouse oropharynx. GAS employs a distinct pattern of SpeB production during growth ex vivo in 



  LIST OF PUBLICATIONS 

10 | P a g e  
 

saliva that includes a transient burst of speB expression during early stages of growth coupled with 

sustained levels of secreted SpeB protein. SpeB production aids GAS survival by degrading LL37, 

an abundant human antimicrobial peptide. We found that SIP signaling occurs during growth in 

human blood ex vivo. Moreover, the SIP signaling pathway is critical for GAS survival in blood. 

SIP-dependent speB regulation is functional in strains of diverse emm types, indicating that SIP 

signaling is a conserved virulence regulatory mechanism. Our discoveries have implications for 

future translational studies. 
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ABSTRACT 

Quorum sensing (QS) is a process in which bacteria use diverse signaling molecules to 

monitor their population density and regulate population-wide expression of genes involved in 

several key bacterial processes such as virulence, biofilm formation, and antibiotic resistance. 

Gram-positive bacteria typically use oligopeptides as intercellular signaling molecules. The 

secreted oligopeptides modulate gene expression by either activating the sensor kinase of a two-

component system on the bacterial surface or by interacting with cognate transcription regulator 

in the bacterial cytosol. The gram-positive bacteria Group A Streptococcus (GAS) is a major 

human pathogen responsible for over 700 million infections annually worldwide. GAS produces a 

wide spectrum of virulence factors that play crucial roles in disease pathogenesis. Among the many 

toxins produced by GAS, Streptococcal pyrogenic exotoxin B (SpeB) is one of the well-studied 

virulence factor. SpeB is a secreted cysteine protease that is produced abundantly during infection 

and is critical for GAS pathogenesis. Although SpeB is extensively studied for a century, the 

precise regulatory events that govern speB gene expression are not fully understood. In this study, 

we have discovered that GAS employs a previously unknown peptide-mediated quorum sensing 

pathway to control speB expression during high bacterial population density. GAS genome 

encodes a novel class of leaderless peptide signal, SpeB-Inducing Peptide (SIP). SIP lacks several 

characteristic features that are hallmarks of bacterial peptide signals. Contrary to all the 

characterized bacterial peptide signals, SIP is produced in its mature form and lacks amino acid 

sequences in the amino terminus required for secretion. Nevertheless, SIP functions as an effective 

intercellular signal. SIP is secreted and reinternalized into GAS cytosol where it interacts with its 

cognate regulator, Regulator of proteinase B (RopB). SIP binding to RopB induces allosteric 

changes in the regulator, which leads to high affinity RopB-DNA interactions, RopB 
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oligomerization and activation of speB gene expression. Importantly, we demonstrate that the SIP 

signaling pathway is active in vivo and contributes significantly to GAS virulence in multiple 

mouse models of GAS infection. We also show that the SIP signaling occurs during GAS growth 

ex vivo in human saliva and blood and SIP-mediated speB expression is crucial for GAS survival 

in both saliva and blood. Together, our discoveries in this study identify a novel bacterial signaling 

pathway and suggest new therapeutic strategies for future translation studies.    
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INTRODUCTION 

The discovery of antibiotics and the ability to treat bacterial infections have revolutionized 

human health care in many respects (5). Since the discovery of penicillin in 1928, several natural 

or synthetic antimicrobial agents have been developed (6). However, abuse and overuse of 

antibiotics in the subsequent decades have endangered the efficacy of antibiotics due to the rapid 

emergence of drug-resistant bacteria (7-9). New drugs are being developed by the pharmaceutical 

industry to overcome bacterial antimicrobial resistance. However, the pipeline began to dry out in 

the recent years, posing an imminent threat to human health care (6, 10). Thus, novel approaches 

are needed to identify and characterize new antimicrobials to prevent/treat drug-resistant bacterial 

infections. In this regard, a complete understanding of bacterial virulence mechanisms is crucial 

in our efforts to devise targeting strategies and develop future antimicrobials (5).   

 

1.1 Group A Streptococcus and its pathogenesis  

Streptococcus pyogenes, also known as Group A Streptococcus (GAS), is a gram-positive, 

non-spore forming, cocci bacterium (11). GAS is an exclusive human pathogen that causes a vast 

spectrum of pyogenic disease conditions in oropharyngeal (throat) and skin mucosal surfaces, 

resulting in pharyngitis (commonly known as “strep throat”) and impetigo respectively (Fig. 1) (2, 

12-16). Pharyngitis is the most common GAS disease manifestation with over 600 million cases 

worldwide, affecting approximately 20 – 40% of children and 10 – 15% of adults every year (17, 

18). GAS persists in human saliva by overcoming the host innate and acquired immune system. 

The survival of GAS in saliva is crucial for person-to-person disease transmission, presumably via 

saliva droplets (18-20). Impetigo is a highly contagious skin disease spread through direct skin 
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contact resulting in approximately 111 million global cases every year, mostly in children from 

developing countries (19, 21).  

Recurring untreated pharyngitis can lead to post-infection auto immune disorders such as 

acute rheumatic fever (ARF), rheumatic heart disease (RHD), and acute post-streptococcal 

 
Figure 1. Overview of diseases caused by GAS infections. Common disease manifestations caused by 

GAS infections in human. Adapted from (1).     
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glomerulonephritis (APSGN) (Fig. 1) (19, 22, 23). ARF and RHD constitute the major cause of 

morbidity and mortality caused by GAS infections. Globally, approximately 2.4 million children 

develop heart disease as a result of RHD every year (15, 24). Consequently, RHD is the most 

preventable pediatric heart disease in the world (25, 26). APSGN is an autoimmune disorder of 

kidneys, sequelae of GAS pharyngitis or impetigo. The most common clinical features include 

edema, hypertension, proteinuria, urinary sediment abnormalities (19, 27). Half a million cases are 

recorded every year worldwide that results in approximately 1% mortality (13).  

In complicated cases, GAS invades epithelial barriers and penetrates into deeper tissues, 

which can lead to severe life-threatening invasive infections (11, 28). Bacteremia and cellulitis are 

the most common GAS invasive diseases. GAS infections can also lead to less common, but 

difficult to treat invasive diseases such as necrotizing fasciitis (also known as “flesh-eating 

disease”), and streptococcal toxic shock syndrome (STSS) (also known as “bacterial sepsis”) (15, 

19, 29-31). Invasive infections are responsible for approximately 500,000 deaths every year 

worldwide (19, 32). Due to the global disease and economic burden caused by GAS infections, 

GAS is listed as one of the top ten infectious causes of mortality (19, 33). 

 Though mild GAS infections can be treated with penicillin and cephalosporin, recent 

studies have reported a 20 – 40% failure rate of penicillin in treating pharyngitis (34, 35). 

Moreover, GAS resistance to other antibiotics in developing countries is on the rise and is a 

worldwide concern (19). Contrary to mild infections, invasive infections are unresponsive to 

antibiotics treatment and often require surgical intervention for infection control. Similarly, RHD 

disease control requires expensive long-term antibiotics administration, and/or surgical 

debridement of infected valves (15, 19). Thus, a human GAS vaccine will be highly beneficial in 

GAS disease prevention. A great deal of work has been done in the last 70 years on M protein 
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(encoded by emm gene) as a potential candidate for the development of a vaccine. However, the 

existence of more than 200 emm type variations in GAS and the associated antigenic diversity pose 

a major roadblock for the development of single effective universal M protein based GAS vaccine 

(20). Furthermore, the antibodies developed against M protein cross-react with human heart tissue 

and trigger the development of ARF and RHD. Thus, the need for the identification of novel 

vaccine or antimicrobial targets to treat or prevent GAS diseases is urgent (36-38). As a result, 

continued investigations into basic virulence pathways is imperative to elucidate novel therapeutic 

and/or prophylactic strategies toward GAS infection control.  

 

 

2. Virulence factors  

The ability of GAS to successfully colonize, evade the immune system and invade different 

host niches depends on the spatiotemporal production of wide array of virulence factors (Fig. 2) 

(37). GAS virulence factors are categorized into two groups depending on their location; cell 

surface-associated and secreted toxins (2, 16, 37). 

 

2.1 Cell-associated virulence factors  

GAS genome encodes multiple adhesins such as collagen binding proteins, fibronectin (Fn) 

binding proteins (Sfb1, SfbII, SOF, PrtF2, FbpA, FbaB and Pfbp), lipoteichic acids (LTA), and 

plasminogen binding proteins that play a crucial role in host cell attachment (Fig. 2) (37, 39, 40). 

Virulence factors such as the immunoglobulin binding proteins (M protein superfamily, SibA), 

C5a peptidase, hyaluronic acid capsule, lipoprotein (Lsp), streptococcal protective antigen (Spa), 

heme-binding protein, HtrA protease, streptococcal collagen-like surface proteins (Scl1 and Scl2), 
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CD15s-related antigen, plasminogen binding proteins and serum opacity factor cleave host 

immune factors and aid GAS in immune evasion (Fig. 2) (37). Amongst the many cell-associated 

virulence factors, M protein and hyaluronic acid capsule (produced by hasABC gene cluster) are 

the two best-studied factors (15, 37). M protein confers phagocytosis resistance by binding to host 

immune effectors such as complement-inhibitory proteins C4BP, factor H, and factor H-like 

protein (41-43). Similarly, hyaluronic acid capsule also provides antiphagocytic function by 

restricting the access of GAS surface to opsonins (44, 45).  

Figure 2. Virulence factors encoded in GAS genome. GAS produces several virulence factors that 

contributes to disease pathogenesis by facilitating host cell attachment, anti-phagocytosis, immune invasion, 

and immune evasion. Cell-associated factors are shown on the surface of GAS and secreted factors are 

indicated by black arrows. Blue boxes show the list of virulence factors. Orange boxes show the list of 
virulence factors participating in the indicated cellular process.  
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2.2 Extracellular secreted virulence factors  

 GAS produces several major secreted virulence factors such as hemolysins, DNAses, 

superantigens (SAgs), and proteases (Fig. 2) (46). Streptolysin O (SLO) is a major pore-forming 

hemolysin that disrupts the integrity of host cell membrane and induces apoptosis (47). 

Streptolysin S (SLS), a second hemolysin encoded by GAS, contributes to GAS virulence in 

several ways that include host cell cytotoxicity, activation of inflammatory responses, and 

antiphagocytosis (46, 48). The host innate immune system deploys neutrophil extracellular traps 

(NETs) to control bacterial growth. NETs contain bactericidal proteases on webs of DNA (49). To 

counter this, GAS produces several secreted DNAses, such as streptodornase (Sdn), and 

streptodornase- (Sda). GAS-encoded DNAses degrade NETs by digesting DNA and aid immune 

evasion (46, 49). Streptococcal inhibitor of complement (SIC) contributes to GAS pathogenesis 

by degrading several host cells, including lymphocyctes and erythrocyctes (50). SIC can also 

disrupt the host signals involved in producing antimicrobial peptides (AMPs) and facilitate GAS 

survival in the host (51, 52). GAS superantigen proteins such as SPE A, SPE C, SPE G-M, 

streptococcal mitogenic exotoxin Z (SmeZ) and streptococcal superantigen A (SSA) belong to a 

family of highly mitogenic exotoxins (53, 54). SAgs share the ability to trigger overstimulation of 

T lymphocytes, which leads to the release of pro-inflammatory cytokines and development of 

STSS (53). GAS secretes many proteases such as SpeB, PrtS, IdeS, and SpyCEP that contribute 

significantly to GAS pathogenesis by facilitating host tissue degradation and disease dissemination 

(46). In addition, GAS produces secreted esterases such as SsE, CAMP factor, hyaluronidases such 

as HlyP, HlyA, and soluble M proteins that contributes significantly towards the success of GAS 

pathogenesis (46). 
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3. Major virulence factor - Streptococcal pyrogenic exotoxin B 

Among the several virulence factors produced by GAS, SpeB is a major secreted toxin that 

plays a critical role in GAS disease pathogenesis (55). Streptococcal pyrogenic exotoxin B (SpeB), 

also known as streptopain, is one of the most extensively studied GAS virulence factors (2, 14). 

SpeB is the predominant extracellular virulence factor in GAS culture supernatant during growth 

in vitro (56). Although the established name for this enzyme is SpeB, SPE B is still occasionally 

used in the literature (2, 14). Two separate branches of investigation independently identified the 

same molecule but classified it differently (2). Nearly a century ago, a secreted protease activity 

was observed in streptococcal growth (57). Subsequent biochemical studies demonstrated that the 

protease activity in the secreted component of streptococcal growth was similar to cysteine 

protease papain and classified it as a cysteine protease (2, 14, 58). In a parallel line of investigation, 

exotoxins were identified in the streptococci culture filtrates obtained from patients with scarlet 

fever and were designated as superantigens SPE A, SPE B, and SPE C (53, 59). Significant 

technological advances in the molecular techniques later revealed that the observed superantigen 

activity of SPE B was likely the result of other streptococcal contaminants (60). In subsequent 

years, detailed genetic analysis revealed that SPE B and cysteine protease are the same protein 

encoded by the GAS genome. Importantly, it was concluded that SpeB is not a superantigen, it is 

rather a cysteine protease (61). Although SpeB is neither pyrogenic nor exotoxin, the designation 

is widely employed by researchers over the years and retained in the current literature. 

 

3.1 Role of SpeB in GAS pathogenesis  
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Several lines of study have provided evidence that SpeB is a critical player in GAS 

pathogenesis (62-66). The chromosomally encoded speB gene is highly conserved in virtually all 

disease-causing GAS isolates (67-69). Inactivation of SpeB attenuated GAS virulence in multiple 

mouse models and non-human primate model of GAS infection (70-75). SpeB is crucial for GAS 

survival and proliferation ex vivo in human saliva and blood (76-81), suggesting that the protease 

activity of SpeB is critical for GAS virulence. SpeB contributes to GAS pathogenesis in two major 

ways, immune evasion by degrading immune molecules and disease dissemination by proteolytic 

degradation of host tissue matrix proteins and GAS surface proteins (Fig. 3) (14).   

The substrate profile of SpeB includes a myriad of host and bacterial proteins. 

Immunoglobulins (Ig), secreted by B cells of the host adaptive immune system plays a critical role 

in neutralizing pathogens. SpeB aids GAS immune evasion by degrading multiple classes of 

immunoglobulins including IgA, IgM, IgD, and IgE (82). SpeB-mediated cleavage of IgG results 

in decreased opsonophagocytosis (14, 83). In addition to Ig, SpeB also cleaves several host 

immune effectors such as complement component C3b (84), signals required for the activation of 

antimicrobial cytokines (14, 85), host interleukin I β (IL-1β) (63), and kininogen (86), resulting in 

induction of inflammatory responses. SpeB can degrade the antimicrobial peptide (AMP) LL-37 

directly (87) or indirectly by promoting the release of dermatan sulfate from decorin (88). The 

proteolytic activity of SpeB contributes indirectly to GAS immune evasion by releasing several 

GAS surface associated virulence factors (14, 89, 90). SpeB releases the mature form of M protein 

from GAS surface to confer resistance to phagocytosis (90, 91). SpeB-dependent cleavage of 

protein H aids GAS immune evasion by the binding of protein H fragment to host IgG and 

inhibition of host complement activation (92). C5a peptidase is an important virulence factor 
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anchored to GAS surface and C5a released by SpeB-mediated cleavage inhibits chemotactic 

recruitment of phagocytic cells to the site of infection (90, 93). 

The proteolytic activity of SpeB contributes to GAS dissemination into deeper host tissues  

by enzymatic degradation of host tissue (72, 74, 75, 94-96). SpeB cleaves major host tissue matrix 

proteins fibronectin and degrades vitronectin and contributes to tissue destruction (97). The 

Figure 3. SpeB biogenesis and its contribution to GAS pathogenesis. SpeB is produced and secreted in 

an inactive zymogen precursor form (SpeBZ). Auto-cleavage of SpeBZ results in the release of mature active 

cysteine protease (SpeBM). The title of individual gray boxes represents the SpeBM activity on host factors. 

Left column in each grey box indicates the identity of SpeBM substrate, whereas the right column represents 

the consequences of SpeBM activity on those factors. Adapted from (2) 
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protease activity of SpeB has been implicated in the induction of caspase-dependent apoptosis in 

host epithelial cells (98). 

GAS produces SpeB during human infection (99, 100). Infected humans produce anti-SpeB 

antibodies (101, 102) and low antibody titers correlate with severe invasive disease (102, 103), 

suggesting that SpeB participates in GAS pathogenesis during natural infection. Consistent with 

this, immunization of mice with SpeB reduced mortality caused by experimental GAS infections 

(104-107). Similarly, mice treated with a small molecule protease inhibitor conferred protection 

against GAS invasive diseases (62), suggesting that SpeB is an ideal therapeutic or prophylactic 

target to treat GAS infections. Collectively, these observations indicate that SpeB is a major GAS 

virulence factor that contribute to GAS pathogenesis in the host.  

 

3.2 Biogenesis of SpeB protease  

The full-length SpeB is a 398 amino acid long protein with a molecular mass of 43 kilo 

daltons (kDa) (Fig. 4). The first 27 amino acids in the amino terminus of SpeB harbor the secretion 

signal sequence that facilitates its transport out of the cytosol. SpeB is initially made in an inactive 

form, known as zymogen (SpeBZ) (amino acids 28 – 398) (Fig. 3 and 4). The pro-domain (amino 

acids 28 – 145) is inserted into the active site of SpeB in the zymogen form and keeps the protease 

Figure 4. Schematic diagram showing the domain architecture of SpeB. The individual domains and 
motifs in the full-length SpeB are marked and labeled as follows: grey box represents the secretion signal 

sequence; orange box indicates the pro-domain; and green box represent the mature cysteine protease 

(SpeBM). The structural elements color coded in orange and green boxes represent the inactive pre-cursor 

SpeB zymogen form. The numbers above indicate the amino acids that constitute each highlighted SpeB 

domain. Adapted from (2).    
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enzymatically inactive in GAS cytosol. Upon secretion to the extracellular environment, SpeBZ 

undergoes several autocatalytic steps, which results in the cleavage of pro-domain and release of 

the mature active cysteine protease (amino acids 146 – 398, SpeBM) (Fig. 3 and 4) (2). Genetic 

and structural studies identified the active site of the protease that is comprised of amino acids 

cysteine 192, histidine 340 and tryptophan 357. The catalytic site of SpeBM is essential for SpeB 

maturation and its proteolytic activity (2, 108, 109). In accordance with the role of SpeB as a major 

GAS virulence factor, the biogenesis of SpeB is a multistage process that is controlled by several 

GAS factors at transcriptional, post-transcriptional and translational levels (Fig. 5) (2, 68). 

Figure 5. Schematic diagram showing the factors involved in the regulation of SpeB. Boxes to the left 

represent the level of SpeB regulation. Corresponding color-coded boxes to the right show the factors 

involved and their known effect on the respective level of regulation.   
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3.3 Transcription regulation of speB 

GAS-encoded factors as well as environmental factors such as pH and NaCl were 

implicated in the regulation of speB expression (Fig. 5) (2, 89, 110-112). Although the 

environmental signals contribute to transcription regulation of speB, the molecular mechanisms of 

how pH and salt mediate transcription regulation of speB are yet to be elucidated. It is possible 

that specific pH and salt requirements for speB expression may mimic host niche environments 

GAS encounters during infection (110). Expression of speB is under the control of 13 different 

GAS-encoded transcription factors (Fig. 5) (2). The GAS global transcription regulator, the 

Regulator of proteinase B (RopB), is located in the genetic vicinity of speB gene and is essential 

for speB expression (2, 71, 113, 114). The ropB and speB genes are divergently transcribed and 

separated by a 940 nt intergenic region (Fig. 6) (71, 114). Expression of speB is driven from two 

individual transcription start sites (TSS), P and P1, located 842 nt and 697 nt upstream of the speB 

gene (115, 116). A third TSS, P2 located at 137 nt upstream of speB gene was previously 

identified, however, it was recently re-annotated as a RNase Y processing site of speB mRNA 

(Fig. 6) (114, 116). In addition to the complex transcription process (Fig. 5), the intergenic region 

also harbors several important regulatory factors and small open reading frames (orf) whose 

functions are yet to be elucidated (Fig. 6) (2, 114-116). 

 SpeB production is growth phase-dependent and speB expression predominantly occurs 

during stationary phase of GAS growth or high GAS population density (110, 117). Similar to 

speB, maximum expression of ropB also occurs during late exponential phase (114).  Transcription 

of speB is under the direct control of RopB. The speB promoter has binding sites for RopB and the 

occupancy of RopB at speB promoter is critical for the upregulation of speB expression (2, 114). 

Although RopB is essential for the activation of speB transcription, ectopic expression of ropB 
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from a constitutive promoter during early exponential phase of growth or low population density 

was not sufficient to activate speB expression (2, 114). This observations suggest that additional 

high population density-specific regulatory factors are required to activate RopB-dependent speB 

expression. Consistent with this, the addition of cell-free culture supernatant obtained from high 

GAS population density to cells grown to low bacterial population density induced speB 

expression, suggesting the presence of unidentified high population density-specific secreted 

activation factor(s) (71). 

  

4. Quorum-sensing in bacteria 

Bacteria communicate with each other by a process called quorum sensing (118, 119). It 

involves the production and secretion of small molecules known as autoinducers (AIs), and sensing 

of the AIs by cognate receptors in the neighboring cells (118-120). At low bacterial population 

density, the concentration of AIs is below the threshold concentration required to elicit responses 

in the neighboring cells. However, at high bacterial population density, AIs reach critical threshold 

concentration and evoke transcriptional responses in a population-wide fashion (118, 120-122). 

Figure 6. Schematic diagram showing the genetic organization of ropB and speB genes. Promoter 

region of speB (PspeB) and ropB (PropB) are marked by bent arrows above and below the line, respectively. 

The coding regions of ropB, speB and predicted open reading frames, orf-2 and orf-3, are shown as block 
arrows. The start codon of SpeB coding region is marked as +1 and the number below the line indicate the 

location of identified genetic elements relative to speB start codon.   
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The AIs at high concentrations are recognized by their cognate sensory receptors and control the 

expression of genes involved in several bacterial traits, including virulence (120, 121, 123). Gram-

negative bacteria uses small chemical molecules as intercellular signals (121), whereas Gram-

positive bacteria uses either linear or modified oligopeptides to communicate with each other 

(120). The secreted extracellular peptides are sensed by either a membrane-bound sensor kinase 

of two-component signaling system or by intracellular transcription regulators (124). The 

intracellular quorum-sensing transcription regulators belong to the RRNPP family of regulators 

(4, 125-128). RRNPP family regulators comprises of the Rap phosphatases from Bacillus subtilis, 

Rgg from Streptococcus species, NprR from B. cereus group, PlcR from B. cereus group, and 

PrgX from Enterococcus faecalis (4, 71, 125, 126, 129). 

 

5. RopB  

RopB belongs to Rgg subfamily of RRNPP super family of transcription regulators. RopB 

influences the transcription of approximately 25% of the GAS genome during stationary phase of 

growth (71). Consistent with its role in SpeB regulation, genetic inactivation of ropB results in the 

attenuation of GAS virulence in animal models of GAS infection (4, 70, 130).  

RopB shares significant structural homology with the RRNPP family regulators (Fig. 7) 

(4, 71). All the characterized RRNPP family regulators use high bacterial population density-

specific linear oligopeptides as cognate signals and mediate target gene regulation (131, 132). The 

RRNPP regulators control several bacterial traits such as biofilm formation, virulence, sporulation, 

necrotrophic lifestyle, and antibiotic resistance (4, 133-135). Structurally, RRNPP family 

regulators are characterized by a two-domain architecture: an amino-terminal DNA binding 

domain, and a C-terminal peptide binding and oligomerization domain. The amino-terminal and 
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C-terminal domains are connected by a linker helix (Fig. 7) (125, 129, 132, 136, 137). With the 

exception of Rap phosphatases, all RRNPP regulators contain a helix-turn-helix (HTH) DNA 

binding motif in the amino-terminal domain that binds DNA. Contrary to this, the amino-terminal 

domain of Rap proteins contains a 3-helix bundle that directly interacts with a target transcription 

regulator and modulates gene expression by blocking the interactions between regulator-DNA (4, 

138-142). The C-terminal domain of the RRNPP family regulators are characterized by the 

Figure 7. Domain architecture of the RRNPP-family regulators. Overall architecture of the crystal 

structure of RapF bound to its cognate peptide signal ComA (pdb code: 3ULQ) (A), Rgg (pdb code: 4YV6) 

(B), RopB-CTD (pdb code: 5DL2) (C), NprR-CTD bound to its cognate peptide signal NprX (pdb code: 
4GPK) (D), PlcR bound to its cognate peptide signal PapR and DNA (pdb code: 3U3W) (E), PrgX bound 

to its cognate peptide signal cCF10 (pdb code: 2AXZ) (F) are shown. Residues colored in green represent 

the N-terminal domain, blue represent the C-terminal domain and the linker helix connecting both the 

domains are shown in orange. In panels B-F, ribbons colored in pink represent the second subunit of the 

dimer molecules. Black rectangle boxes show the concave peptide binding pockets. The cognate peptide 

signals of the respective regulator is shown as spheres located inside the box. Note: Surface residues on top 
of the peptide binding pocket are removed for panels A, D, E and F. Figure generated using Pymol (3). 

Adapted from (4).  
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presence of tandem repeats of tetratricopeptide repeat (TPR)-motifs. Each TPR motif is comprised 

of a pair of antiparallel helices, and TPR domains typically contain 5 TPR motifs (4). TPR domain 

of the RRNPP family regulators forms a right handed super helical structure which results in a 

convex exterior and a peptide or protein binding concave interior surface (Fig. 7) (4, 143). 

Typically, TPR motifs identified in eukaryotic and prokaryotic proteins are involved in protein-

protein or protein-peptide interactions (144, 145). Consistent with its structural homology, the C-

terminal domain of RopB also contain a TPR domain comprised of 5 TPR motifs (71). Given that 

RopB shares high degree of structural homology with RRNPP family regulators (4) and its role in 

population density-specific regulation of speB, it is likely that RopB uses GAS population density-

specific peptide signals to control speB expression. 

 

5.1 Peptide signals controlling the regulatory activity of RRNPP regulators 

The cognate mature peptide signals of the RRNPP regulators are linear, hydrophobic and 

short 5-8 amino acids long oligopeptides (4, 125). The peptide signals are synthesized as inactive 

pre-peptides in the bacterial cytosol (4, 146). The pre-peptides of cognate RRNPP regulators are 

encoded by small open reading frame (sORF) genes. The pre-peptides of Rap, NprR and PlcR are 

typically 40 – 50 amino acids in length, whereas the pre-peptides of Rgg regulators are 15 to 35 

amino acids long (125, 147). The peptide signals of the RRNPP family share several amino acid 

sequence traits: i) the peptides are made in their longer, pre-cursor form, ii) contain a recognizable 

amino-terminal secretion signal sequence required for the peptide secretion, iii) contain amino acid 

sequences that function as processing sites for intramembrane and/or secreted proteases, iv) during 

secretion, the pre-peptides undergo intramembrane and extracellular proteolytic processing that 

result in the release of mature active peptide signals (4, 118, 120, 146). The mature peptide signals 
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are imported back to the bacterial cytosol by the highly conserved oligopeptide transporter, Opp 

permeases (4, 125). The cytosolic cognate receptors senses the reinternalized peptides and the 

peptide-bound receptors mediate gene regulation (4, 125). Typically, the sORF encoding the 

cognate peptide signals of RRNPP family regulators are located in the immediate genetic vicinity 

of their respective regulators (Fig 8) (4, 125). However, our initial nucleotide sequence analysis of 

the genetic vicinity of ropB gene failed to identify a peptide signal-like sORF. As a result, RopB 

was considered as an orphan regulator.   

 

Figure 8. Genetic location of RRNPP family regulators and their cognate peptide signals. Blue arrows 

indicate the gene encoding the regulator and yellow arrows indicate the gene encoding the cognate peptide 

signal of the respective regulator. Transcription direction is indicated by the direction of the arrow.   
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AIM AND SCOPE OF THE STUDY  

 Despite the significant advances in the understanding of structure and function of SpeB 

protease and its contribution to GAS pathogenesis, the precise molecular mechanisms governing 

speB gene regulation remain poorly understood (2). Given that the gene regulatory activity of 

RopB requires stationary growth phase-specific regulatory factor(s) and RopB shares structural 

homology with peptide-sensing RRNPP family of quorum-sensing regulators, we hypothesized 

that the factor responsible for stationary phase or high GAS population density-specific activation 

of speB expression is a peptide signal. Thus, the major goal of this study was to identify the peptide 

signal and characterize signaling mechanism during GAS growth in vitro and during infection.  

 To that end, the work presented in chapter 1 identifies and characterizes a novel peptide 

signal in the genetic vicinity of ropB that controls speB expression. However, the identified peptide 

signal is a leaderless peptide as it lacks several amino acid characteristics of characterized peptide 

signals. This lack of conformity hampered our initial efforts in the identification of peptide signal. 

Despite the lack of several traits of bacterial peptide signals, the cognate peptide signal for RopB 

is secreted, reimported into GAS cytosol, sensed by RopB, and control RopB-dependent speB gene 

expression. We further show the global impact of the peptide signal on the GAS transcriptome 

using RNA-sequencing studies. Finally, we show that the peptide signal pathway is active during 

infection and crucial for GAS virulence in multiple mouse models of infection.  

 In chapter 2, using ex vivo gene expression, mouse infection, and immunological studies , 

we show that the peptide signal pathway is active and control speB expression during GAS growth 

ex vivo in human saliva and blood. Importantly, we show that the peptide signaling pathway 
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contributes significantly to GAS survival ex vivo in human saliva and blood, and is critical for 

mouse oropharyngeal GAS colonization. 
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CHAPTER 1 

 

Leaderless secreted peptide signaling molecule alters global gene expression 

and increases virulence of a human bacterial pathogen 

Do H*, Makthal N*, VanderWal AR, Rettel M, Savitski MM, Peschek N, Papenfort 

K, Olsen RJ, Musser JM, Kumaraswami M. 

*Equal contribution 

Published: September 18th 2017. PNAS 114:E8498-E8507  
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CHAPTER 2 

 

Signaling by a Conserved Quorum Sensing Pathway Contributes to Growth Ex 

Vivo and Oropharyngeal Colonization of Human Pathogen Group A 

Streptococcus.  

Makthal N, Do H, VanderWal AR, Olsen RJ, Musser JM, Kumaraswami M. 

Published: March 12th 2018. Infect Immun 86:e00169-18. 

 



  CHAPTER 2 

92 | P a g e  
 



  CHAPTER 2 

93 | P a g e  
 



  CHAPTER 2 

94 | P a g e  
 



  CHAPTER 2 

95 | P a g e  
 



  CHAPTER 2 

96 | P a g e  
 



  CHAPTER 2 

97 | P a g e  
 



  CHAPTER 2 

98 | P a g e  
 



  CHAPTER 2 

99 | P a g e  
 



  CHAPTER 2 

100 | P a g e  
 



  CHAPTER 2 

101 | P a g e  
 



  CHAPTER 2 

102 | P a g e  
 



  CHAPTER 2 

103 | P a g e  
 



  CHAPTER 2 

104 | P a g e  
 



  CHAPTER 2 

105 | P a g e  
 

 



  CHAPTER 2 

106 | P a g e  
 



  CHAPTER 2 

107 | P a g e  
 



  CHAPTER 2 

108 | P a g e  
 



  CHAPTER 2 

109 | P a g e  
 



  DISCUSSION 

110 | P a g e  
 

DISCUSSION  

The emergence of bacterial multidrug resistance against existing antibiotics and lack of 

new antibiotics in the pipeline pose a major threat to public health (5, 148-150). Thus, novel 

targeting strategies are urgently required to identify new antimicrobial targets to combat 

complicated infections caused by multidrug resistant bacteria. In this regard, the toxins produced 

by bacteria or signaling pathways controlling toxin production are ideal targets for antimicrobia l 

development as they contribute significantly to disease pathogenesis. An ideal antimicrobial target 

must be expressed during infection, participate in disease pathogenesis, and accessible in the host 

for therapeutic targeting (151-153). Given that cysteine protease SpeB is produced abundantly 

during human GAS infection (99, 100), and SpeB protease activity is a key contributor to GAS 

pathogenesis due to its role in various bacterial processes during infection (1, 2, 68, 72, 73, 96, 

154), it is a plausible candidate for antimicrobial targeting studies. Consistent with this, SpeB 

protease has been previously targeted for vaccine and antimicrobial development (104, 106). 

Although preclinical protection studies showed significant promise, the success has not translated 

to clinical trials (155). In this study, we have discovered that GAS produces a novel quorum-

sensing signal, a leaderless peptide SIP, which acts as an intercellular signal to control the 

expression of speB in concert with high bacterial population density. Contrary to all the 

characterized bacterial peptide signals, SIP amino acid sequence lacks several classical features 

that are required for peptide secretion and maturation. Nevertheless, SIP functions as an effective 

intercellular signal (chapter 1). In addition to SIP identification, we have deduced several 

mechanistic steps in the SIP signaling pathway that includes production of SIP in its mature form, 

and secretion and reinternalization of SIP to GAS cytosol by yet to be identified mechanisms. The 

reinternalized SIP is recognized by its cognate receptor, transcription regulator RopB, in the 
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cytosol. Binding of SIP induces allosteric changes in RopB that are crucial for activation of speB 

gene expression. Importantly, we showed that the SIP signaling pathway is active in vivo and 

contributes significantly to GAS virulence in mouse models of infection. We also showed that SIP 

signaling occurs during GAS growth ex vivo in human saliva and blood, and SIP-mediated speB 

expression is important for GAS survival in both saliva and blood. Given that SIP-dependent gene 

regulation is the primary signaling pathway that controls speB expression during infection, we 

propose that the molecular components of peptide signaling pathway may present alternate targets 

for therapeutic or prophylactic possibilities to treat GAS infections. However, further 

investigations are required to identify various components of this pathway for successful 

antimicrobial targeting.   

 

1. Mechanism of SIP export  

Without exception, the bacterial quorum sensing signals must be secreted to coordinate 

population-wide gene regulation (120, 126, 133-135). Gram-positive bacteria typically use 

oligopeptides as secreted signals, commonly referred to as peptide signals or auto-inducing 

peptides. The peptide signals are initially produced as inactive pre-peptides (125). Biogenesis of 

active (mature) peptide signals is a multi-step process involving secretion and proteolytic 

processing of the inactive pre-peptides. (4, 156). Generally, the peptide signals have three regions: 

the amino-terminus segment (n-region) rich in positively-charged amino acids, central core part 

(h-region) containing hydrophobic amino acids, and the C-terminus (c-region) fragment that has 

the protease recognition and cleavage region (107, 157). The basic n-region contains the 

characteristic secretion signal sequence that directs the translocation of the peptide signal to 



  DISCUSSION 

112 | P a g e  
 

bacterial membrane for secretion via the general secretory pathway (Sec) (4, 156, 158). The 

membrane-bound signal peptidase I then cleaves the secretion signal sequence as the peptide 

signals emerge from the Sec pathway (158). The c-region of the peptide signal typically contains 

one or more protease cleavage sites that are processed in the membrane by the intramembrane 

protease, enhanced expression of pheromone (Eep), and various secreted proteases (4, 125, 159). 

The extracellular peptide signals are subjected to additional processing by the secreted proteases 

before releasing the active (mature) peptide signal (127).   

 The biogenesis of mature SIP is unique compared to the hall marks of characterized 

bacterial peptide signals in other gram-positive bacteria. SIP is encoded in GAS genome as an 8-

amino acid peptide in its mature form. SIP lacks the amino acid sequence characteristics in the n-

region required for secretion (Fig. 3A of chapter 1). The lack of secretion signal sequence raises 

an important question – is SIP secreted? However, we demonstrated that the cell-free culture 

supernatant from peptide-producing WT GAS growth has regulatory activity, whereas the cell-

free culture supernatant obtained from the peptide non-producing sip* (start codon ATG mutated 

to stop codon TAG to disrupt the translation) mutant does not have the regulatory activity  (Fig. 

3D of chapter 1). These results showed that only the SIP-producing strains contain regulatory 

activity in the secreted component of GAS growth, thus establishing direct causation between the 

presence of intact sip gene in GAS genome and extracellular regulatory activity. Our efforts to 

provide direct evidence demonstrating the extracellular presence of SIP by mass-spectrometry are 

unsuccessful so far, likely due to the hydrophobic nature of SIP. In conclusion, despite the lack of 

a secretion signal sequence, SIP is secreted.  

SIP amino acid sequence also lacks protease cleavage sites in the c-region (Fig. 3A of 

chapter 1). SIP does not require proteolytic processing by Eep as the genetic inactivation of eep in 
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∆eep mutant did not affect speB expression (Fig. 3B and 3C of chapter 1), indicating that SIP is 

produced in its mature form.  

The dedicated PptAB exporter was previously shown to be required for the export of SHP, 

cognate peptide signals of Rgg regulators in Streptococcus (160, 161). However, our findings 

indicated that PptAB is not required for SIP signaling (unpublished data). Collectively, our 

analyses demonstrate that SIP is the founding member of a new class of leaderless peptide signals 

and is likely exported out of GAS cytosol by a yet-to-be identified novel secretion pathway.  

 

2. Import of extracellular SIP to the GAS cytoplasm   

The general paradigm of bacterial peptide signaling requires that the secreted mature 

peptide signals are recognized either extracellularly by the membrane-bound sensor kinase of two 

component systems or by the cytosolic transcription regulators (4, 125). The members of RRNPP 

family regulators are cytosolic peptide receptors that differentially regulate target gene expression 

upon their interactions with the cognate peptide signals (4, 125). Invariably, the import of cognate 

peptide signals of RRNPP family regulators into the cytosol is mediated by the membrane-bound 

peptide permeases, oligopeptide permeases (Opp) or dipeptide permeases (Dpp) (4, 125, 162-164). 

Both Opp and Dpp permeases are five subunit complexes that belong to the family of ATP-binding 

cassette (ABC) transporters (165-170). Typically, the opp and dpp genes are transcribed as a five-

gene operon and highly conserved across Gram-positive bacteria (165-170). Opp mediates the 

uptake of longer peptides (up to 35 residues), independent of their amino acid composition (165-

168), whereas Dpp permeases import dipeptides into the bacterial cytosol (171). As in other 

bacteria, two different five-gene operons, oppABCDF and dppABCDE, encoding Opp and Dpp 
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permeases, respectively, are present in the GAS genome. Previously, both Opp and Dpp permeases 

were implicated in the regulation of speB expression (164, 172). The role of peptide permeases in 

speB regulation combined with our discovery of SIP suggested that Opp or Dpp may influence 

speB expression due to their role in SIP reimport. However, our results revealed that genetic 

inactivation of opp (∆oppDF), or dpp (∆dppA) permeases in GAS M3 serotype did not affect speB 

expression (Fig. 3B of chapter 1). Given that the two permeases are highly conserved, we 

considered the possibility that the two importers may be functionally redundant, and inactivation 

of one importer may be compensated by the presence of second importer. To test this possibility , 

we generated a ΔoppDF/ΔdppA double mutant strain and measured speB transcript levels. 

Surprisingly, speB gene expression in the ΔoppDF/ΔdppA double mutant strain was comparable 

to that of WT GAS (Fig. 3B of chapter 1). Furthermore, addition of synthetic SIP to 

∆oppDF/∆dppA mutant restored WT-like speB expression in the ∆oppDF/∆dppA/∆sip strain (Fig. 

3B of chapter 1). Collectively, these observations suggest that Opp/Dpp permeases are not 

involved in SIP reimport. Importantly, the lack of a role for peptide permeases in SIP reimport 

raises a fundamental question: is SIP imported back to GAS cytoplasm? Our supplementation 

studies with fluorescein isothiocyanate (FITC)-labelled SIP unambiguously demonstrated that 

exogenously added SIP is internalized in GAS cytosol (Fig. 3F of chapter 1). Thus, it is likely that 

novel mechanisms are involved in SIP import. However, additional investigations will be required 

to fully elucidate the molecular details of SIP transport mechanisms.   

 

3. Binding of SIP to RopB and its implications in speB expression  

Despite the vast differences in the biogenesis, secretion and import mechanism between 

SIP and other RRNPP family signaling peptides, our results indicate that the underlying molecular 



  DISCUSSION 

115 | P a g e  
 

mechanism by which SIP influences speB regulation is consistent with the other members of the 

family. Typically, the mature peptide signals are 5 – 8 amino acid long, highly hydrophobic and 

modulate the expression of target genes by binding to their respective regulators with a high degree 

of specificity (4). Consistent with this, our protein-peptide binding studies (chapter 1) indicate that 

the intact SIP in its native order of amino acid sequence is engaged in high affinity and sequence-

specific interactions with RopB (dissociation constant Kd ~ 2.6 nM). Truncation of SIP by single 

amino acid disrupted RopB binding (Fig. 4A and 4B of chapter 1), indicating that full-length SIP 

is require for RopB interactions. The in vitro observations were recapitulated in vivo as single 

amino acid truncation of SIP failed to induce speB expression in sip* mutant strain (Fig. 2B of 

chapter 1). Thus we conclude that the binding of SIP to RopB regulator is a crucial step for the 

activation of speB expression. These findings were further corroborated by our structural studies 

in which we delineated the chemical basis for SIP recognition by RopB (173). We showed that 

SIP binds to the concave surface in the C-terminal domain of RopB. The SIP binding pocket is 

composed of hydrophobic and aromatic amino acids as well as asparagines that are characteristics 

of TPR domains (4). Importantly, the SIP-contacting RopB residues are crucial for the in vivo 

expression of SpeB and GAS virulence (173). Collectively, these results demonstrate that SIP 

recognition by RopB is crucial for the transcription regulation of speB. 

 The influence of environmental pH on the expression of speB is known for several decades 

(2). Caparon and group have reported that the speB expression was maximum when the in vitro 

culture medium was acidified to pH 6.0 and repressed at pH 7.5 (110). GAS auto-acidifies its 

growth conditions due to lactic acid production (from pH 7.5 during exponential growth phase to 

pH 6.0 during stationary phase) (2). Interestingly, the auto-acidification coincides with both high 

GAS population density and the onset of speB expression. These observations suggest the presence 
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of an interplay between environmental pH and SIP signaling. In accordance with this, our recent 

findings demonstrated that the binding affinity of SIP to RopB is sensitive to pH and high affinity 

interactions are favored under below neutral pH conditions (pH 6.0) (accepted manuscript). These 

results suggest that environmental pH controls SIP recognition by RopB. Compared to binding 

affinity (Kd value) in pH 6.0, the affinity was significantly reduced in buffer with pH 7.5 and pH 

9.0 by 23-fold and 177-fold, respectively (data not shown). Intriguingly, when environmental 

acidification occurs, GAS cytosol also acidified (pH 5.8), indicating that the cytosolic environment 

during high population density is the conducive for high affinity RopB-SIP interactions. We 

further demonstrated that a pH-sensing histidine switch is present in RopB that monitors 

environment pH and controls SIP binding to the pocket in RopB (173).  

In addition to pH, other GAS factors such as the two-component CovRS system, major 

transcription regulator Mga, transcription regulator CcpA also (Fig. 5 of Introduction) regulate 

SpeB production. However, how all these factors work, either individually or in tandem, to tightly 

modulate the production of SpeB is poorly understood (2). Given that SIP is the primary 

mechanism controlling speB expression and environmental pH is integrated into SIP pathway, it 

is possible that other GAS factors may exert their influence on speB expression by modulating SIP 

signaling pathway. Such discoveries would significantly advance our current understanding of the 

complex signaling peptide functions in GAS, and other pathogenic bacteria.     

 

4. Allosteric changes in RopB upon SIP binding 

Typically, the RRNPP family cognate peptides induce allosteric changes upon binding to 

their respective regulator, and these conformational changes in the regulators are crucial to the 
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target gene regulation (4). Among the RRNPP regulators, the binding of activation peptide cCF10 

disrupts PrgX tetramerization, which is crucial for the activation of gene expression. On the other 

hand, in Bacillus cereus, the binding of NrpX peptide to NrpR induces NrpR tetramerization which 

represents the transcriptionally active state of NprR (132, 174). Similarly, the binding of PapR to 

PlcR releases the otherwise masked N-terminal DNA binding domain of PlcR which leads to 

promoter binding and gene regulation (175). Our results indicate that SIP induces unique allosteric 

changes in RopB to activate speB expression. SIP facilitates high-affinity RopB-DNA interactions 

and subsequent polymerization of RopB on speB promoter to control gene expression. Although 

two different promoter sequences P1 and P2 have been implicated to be the involved in starting 

the transcription of speB (114), the role of P2 has been in question for several years now. Hence, 

we included the probe containing the sequence of P2 in our EMSA experiment to deduce its role 

in RopB regulatory activity. Our results show that both apo-RopB and RopB-SIP complex do not 

bind to the probe containing the promoter sequence of P2 (Fig. S6D of chapter 1) and these findings 

are consistent with the recent re-annotation of P2 promoter as a Rnase Y processing site of speB 

mRNA (116). Importantly, we show that SIP promotes RopB binding to two binding sites, site 1 

and site 2, in speB promoter. The two sites are located upstream of P1 and are separated by a 121-

bp-long spacer region (Fig. 4 and S6 of chapter 1). SIP also induces RopB oligomerization on the 

promoter sequences, however the DNA binding event precedes RopB oligomerization (Fig. 4I and 

S9 of chapter 1). Based on these findings, we propose that SIP promotes high affinity interactions 

between RopB and the two binding sites in P1. Using these interactions as nucleation event, RopB 

polymerizes between the spacer region of the two sites and the polymerization event of RopB 

results in the activation of speB transcription. Our future structural studies will be directed to 
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identify SIP-induced allosteric changes in RopB that contribute to RopB-DNA interactions and 

RopB oligomerization on DNA.  

 

5. Role of SIP in GAS pathogenesis 

The production/protease activity of SpeB has been extensively studied (2). The role of 

SpeB in GAS disease pathogenesis in animal models of infection and during natural human 

infections is well established (71, 72, 74, 75, 94, 95). Our in vitro analyses demonstrate that SIP 

signaling pathway is the primary regulatory mechanism controlling speB expression. However, the 

findings in the laboratory medium do not fully recapitulate the conditions encountered by GAS in 

the complex host environment (2). This led us to ask a three-part question (i) whether SIP is 

produced during GAS infection, ii) whether SIP signaling pathway is active during GAS infection 

in the host, and iii) whether SIP signaling pathway contributes to GAS pathogenesis. Our findings 

in chapter 2 show that the serum samples obtained from 5 convalescing patients with prior invasive 

GAS infections and 5 pediatric patients with GAS pharyngitis had anti-SIP antibodies, suggesting 

that SIP is produced by GAS in the host during infection (Table 1 of chapter 2). To answer the 

second and third part of the question, we compared the in vivo speB expression levels in mice 

infected subcutaneously with one of the following strains: WT, sip* mutant, and sip* mutant trans-

complemented with sip.  We have used WT GAS strain grown to late-exponential phase in the 

laboratory medium as the reference. We observed a ~ 3000-fold increase in speB transcript levels 

in WT GAS compared to the reference.  However, the sip* mutant strain had speB transcript levels 

comparable to that of reference (Fig. 6A of chapter 1), indicating that SIP signaling pathway is 

active and controls speB expression in vivo during infection. Overall, these results (Fig. 1D of 
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chapter 1) demonstrate that SIP is produced during infection and intercellular SIP signaling 

pathway activates GAS virulence gene regulation in the complex host environment.  

GAS is a versatile pathogen that infects several host niches. Given the variations in the 

complex host milieu at different host anatomical sites, it is remarkable that GAS possess 

mechanisms to colonize and establish infections in diverse host environments (12, 19). In this 

regard, we raised the question whether SIP signaling pathway contributes to GAS pathogenesis at 

different host anatomical sites (Fig. 5 of chapter 1).   

The host oropharynx is the most common site for GAS colonization and pharyngitis is the 

common form of GAS disease manifestation (13, 176). GAS employs unique transcriptional 

program to survive in human saliva and colonize oropharynx. Among the GAS genes upregulated 

during growth in saliva, SpeB is critical for optimum GAS growth ex vivo in human saliva (77, 

177). This is not surprising considering the fact that saliva is the first line of host defense and 

contains antimicrobial peptides such as LL37 to control pathogen growth (76, 178). Using the ex 

vivo growth conditions, we demonstrated that addition of synthetic SIP activates speB expression 

in the sip* mutant during growth ex vivo in human saliva and blood. These observations suggest 

that SIP signaling occurs during growth in human body fluids and SIP signaling pathway is the 

primary regulatory mechanism that controls speB expression. Furthermore, when comparing the 

growth kinetics of WT, sip*, and trans-complemented strains for survival in human saliva and 

oropharyngeal colonization, the SIP non-producing strains were significantly impaired in growth 

ex vivo in human saliva and oropharyngeal colonization compared to SIP-producing strains (Fig. 

4A and Fig. 5B of chapter 2). Given that the oropharynx is the primary route of GAS entry, our 

discovery that the SIP-mediated speB regulation is critical for GAS colonization in the host is of 
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particular importance as this can lead to translational strategies targeting SIP signaling pathway to 

control GAS survival in the oropharynx (Fig. 4B of chapter 2).  

 

6. General model of quorum sensing mediated regulation of SpeB 

 The ability of bacterial pathogens to sense environmental cues and mediate spatiotemporal 

regulation of virulence factors is crucial for successful survival in the host (107, 120, 121, 179, 

180). In this regard, GAS employs multilayered regulatory mechanisms to coordinate speB 

expression in concert with high bacterial population density. We have previously demonstrated 

that the transcription of speB is negatively influenced by the N-terminal secretion signal peptide 

of virulence factor related (Vfr) protein during low bacterial population density (107). Although 

the exact identity of the peptide sequence was not determined, our results indicated that the mature 

peptide resides in the N-terminal 40 amino acids of Vfr and modulates speB expression by binding 

to RopB (107). Based on these observations, we propose the following model (Fig. 6E of chapter 

1) for population density-dependent regulation of speB expression. The mature Vfr peptide 

produced during low GAS population density binds to RopB and negatively influences speB 

expression. Conversely, during high GAS population density, the expression of vfr is 

downregulated and sip expression is induced. Once SIP reaches the threshold concentration, it 

binds to RopB and induces RopB-dependent activation of speB expression (Fig. 6E of chapter 1). 

SIP production also activates the positive feedback loop causing robust induction of sip and speB 

expression. Similar mode of gene regulation was observed in PrgX from Enterococcus faecalis. 

As in RopB, PrgX has two cognate peptides, an inhibitory peptide, iCF10 and an activation 

peptide, cCF10. Both peptides compete to bind to the PrgX protein and modulate the gene 

regulation activity of PrgX (181).  
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7. Perspectives and future directions  

 The Rgg/Rap/NprR/PlcR/PrgX proteins constitute the founding members of RRNPP 

family of regulators in gram-positive bacteria. However, bioinformatics analyses of bacterial 

genomes suggest that a large number of RRNPP homologs exist in different bacteria (125, 129). 

The cognate signaling peptides of the prototypical RRNPP family regulators have been identified. 

However, the cognate signaling peptides for most of these homologs are yet to be identified. RopB 

forms a subfamily of Rgg regulators. A major challenge in identifying the cognate peptide signals 

for RopB-like regulators is that the sORFs encoding non-canonical SIP-like bacterial peptide 

signals that are produced in its mature form. Thus, identification of such bacterial peptide signals 

using the criteria for classical bacterial peptide signals can be unsuccessful (125, 182). In this 

regard, our discovery of SIP provides a roadmap for the identification of SIP-like leaderless 

peptide signals and accelerate the discovery of the similar leaderless peptide signals in other 

bacteria. Furthermore, identification of SIP also underscores the complexities associated with 

bacterial intercellular communication pathways and expands the repertoire of bacterial languages.  

 In pathogenic bacteria, quorum sensing pathways play a significant role in the regulation 

of crucial traits such as virulence, sporulation, biofilm formation, and antibiotic resistance (71, 

133-135, 183). Although we have elucidated the identity of the peptide signal controlling virulence 

gene regulation in GAS, several steps of this pathway remain poorly understood. Specifically, the 

molecular mechanisms by which SIP is secreted and brought back to the GAS cytosol are 

unknown. Thus, investigations into other aspects of SIP signaling will establish the basic principles 

of leaderless peptide signaling and will likely identify previously unknown therapeutic targets and 

strategies.      
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