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Summary 

Photorhabdus luminescens are Gram-negative bacteria that live in symbiosis with soil 

nematodes and are simultaneously highly pathogenic towards insects. The bacteria exist 

in two phenotypically different forms, designated as primary (1°) and secondary (2°) 

cells. After prolonged cultivation up to 50% of 1° convert into 2° cells. An important 

difference between the two phenotypic forms is that 2° cells are unable to live in 

symbiosis with nematodes, and therefore are believed to remain in the soil after a 

successful infection cycle. Furthermore, as a 100% switching frequency would be fatal 

for the bacteria’s life cycle the switching process has to be tightly controlled. Therefore, 

the fate of 2° cells in soil as well as the regulation mechanism of phenotypic 

heterogeneity were the main focuses of this work. 

The P. luminescens subsp. laumondii TT01 strain as well as its rifampicin resistant 

mutant (TT01Rif) are the most common P. luminescens strains used in scientific 

research. However, the genome of TT01Rif has never been sequenced and referring to it 

as only TT01 in literature causes difficulties in clear assignment. As a first step of this 

work, both strains were compared genetically as well as phenotypically. Thereby, the 

TT01Rif strain could be identified as an independent isolate rather than a TT01 mutant 

and was therefore renamed into P. luminescens subsp. laumondii DJC. 

The new DJC reference genome enabled comparative transcriptome analysis of P. 

luminescens DJC 1° and 2°. Thereby, mediation of 1°-specific features such as e.g. 

bioluminescence, antibiotic production or pigmentation at transcriptional level could be 

proven as the respective genes were found to be down-regulated in 2° cells. 

Furthermore, we found initial evidence for 2° cells being adapted to an alternative 

environment. Metabolic changes and increased motility as well as chemotactic activity of 

2° cells towards molecules presumably derived from the rhizosphere suggest an 

adaptation to alternative nutrients. Additionally, by up-regulation of several genes 
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involved in stress resistance including starvation-related genes and modification of the 

LPS via changed O-antigen synthesis, 2° cells seem to be well-prepared for a live 

outside the host(s). Moreover, the P. luminescens-specific quorum sensing system 

PpyS/PluR was found to be down-regulated in 2° cells indicating an alternative way of 

cell-cell communication and putatively inter-kingdom signaling. 

Finally, two novel XRE-like transcriptional regulators, XreR1 and XreR2, could be 

identified, which play an important role in phenotypic switching of P. luminescens. Both 

inserting additional copies of xreR2 and deleting xreR1 in 1° cells, respectively, induced 

the 2° phenotype. In contrast, deletion of xreR2 or insertion of extra copies of xreR1 in 2° 

cells led to the 1° phenotype. The exact mode of action of both proteins still remains 

unclear. However, xreR2 appears to be directly repressed by XreR1 while xreR1 seems 

not to be under the control of XreR2. As XreR1 and XreR2 were also shown to interact 

with each other evidence is given that those two regulators constitute an epigenetic 

switch whereby XreR2 induces and maintains the 2° phenotype. 

Lastly, XreR2 was shown to bind to the promoter region of an operon encoding a 

putative toxin-antitoxin system (TAS), CcdAB-like, which was also up-regulated in 2° 

cells. Since the putative toxin is C-terminally truncated its toxic effect is presumably 

abolished indicating another function of the system. TAS in general are known to be 

involved in the process of persister cell formation in other bacteria. Thus, the putative 

role of CcdAB-like in phenotypic switching of P. luminescens DJC is discussed. 

In conclusion, the compiled data provides evidence that 2° cells of P. luminescens are 

better adapted to a life outside the host(s), presumably feeding from plant root exudates. 

Furthermore, two novel transcriptional regulators, XreR1 and XreR2, could be identified. 

These regulators were found to play a major role in the process of phenotypic switching 

and initial insights about their molecular mechanisms were gained.  
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Zusammenfassung 

Photorhabdus luminescens sind Gram-negative Bakterien, die in Symbiose mit 

Bodennematoden leben und gleichzeitig hoch pathogen gegenüber Insekten sind. Die 

Bakterien existieren in zwei phänotypisch unterschiedlichen Formen, die als primäre und 

sekundäre Zellen bezeichnet werden. Nach längerer Kultivierung entstehen aus bis zu 

50% der Primärzellen, Sekundärzellen. Ein wichtiger Unterschied zwischen den beiden 

phänotypischen Formen besteht darin, dass Sekundärzellen nicht in der Lage sind, in 

Symbiose mit Nematoden zu leben, und daher nach einem erfolgreichen Infektionszyklus 

vermutlich im Boden verbleiben. Da eine 100-prozentige Konvertierung in 

Sekundärzellen den Lebenszyklus der Bakterien zum Erliegen brächte, muss diese 

streng reguliert sein. Daher wurde in dieser Arbeit das Schicksal der Sekundärzellen 

sowie die regulatorischen Abläufe die zu phänotypischer Heterogenität führen näher 

untersucht. 

Der Stamm P. luminescens subsp. laumondii TT01 sowie seine Rifampicin-resistente 

Mutante (TT01Rif) sind die in der wissenschaftlichen Forschung am häufigsten 

verwendeten P. luminescens Stämme. Die Tatsache, dass das TT01Rif Genom bisher 

nicht sequenziert wurde, beide Stämme jedoch in der Literatur als TT01 bezeichnet 

werden führt häufig zu Schwierigkeiten eindeutiger Zuordnung. Daher wurden als erster 

Schritt dieser Arbeit beide Stämme sowohl genetisch als auch phänotypisch verglichen. 

Dadurch konnte der TT01Rif-Stamm als unabhängiges Isolat und nicht als TT01-Mutante 

identifiziert werden und aufgrund dessen in P. luminescens subsp. laumondii DJC 

umbenannt. 

Mit dem korrekten DJC Genom konnte dann eine vergleichende Tanskriptomanalyse von 

P. luminescens DJC Primär- und Sekundärzellen durchgeführt werden welche beweisen 
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konnte, dass primär-spezifische Merkmale wie z.B. Biolumineszenz, Pigmentierung, 

Antibiotikasynthese und Zellverklumpung auf Transkriptionsebene vermittelt werden. 

Darüber hinaus wurden erste Hinweise gefunden, dass Sekundärzellen an eine 

alternative Umgebung adaptiert sind. Stoffwechselveränderungen und erhöhte Motilität 

sowie chemotaktische Aktivität von Sekundärzellen gegenüber Molekülen, die vermutlich 

aus der Rhizosphäre stammen, legen eine Anpassung an alternative Nährstoffe nahe. 

Darüber hinaus scheinen Sekundärzellen durch Hochregulierung mehrerer Gene, die an 

Stressresistenz beteiligt sind. einschließlich Gene für Nährstoffdefizit, und Modifikation 

des LPS durch veränderte O-Antigen-Synthese gut auf ein Leben außerhalb des Wirts 

vorbereitet zu sein. Außerdem wurde festgestellt, dass während das P. luminescens-

spezifische Quorum-Sensing-System PpyS/PluR in Sekundärzellen herunterreguliert ist, 

mehrere andere LuxR solos hochreguliert, was auf eine alternative Art der Zell-Zell-

Kommunikation oder gar Inter-kingdom Signaling hinweist. 

Schließlich konnten zwei neuartige Transkriptionsregulatoren der XRE-Familie, XreR1 

und XreR2, identifiziert werden, die eine wichtige Rolle beim phänotypischen 

Phasenwechsel von P. luminescens DJC spielen. Das Einfügen zusätzlicher Kopien von 

xreR2 oder das Deletieren von xreR1 in Primärzellen reichten aus, um den sekundären 

Phänotyp zu induzieren. Im Gegensatz dazu führte die Deletion von xreR2 bzw. die 

Insertion zusätzlicher Kopien von xreR1 in Sekundärzellen zum primären Phänotyp. Der 

genaue Wirkmechanismus beider Proteine verbleibt noch aufzuklären. Die Bindung an 

ihre jeweiligen Promotorregionen lässt allerdings eine positive Auto-Regulation beider 

Proteine vermuten. XreR1 zeigte zusätzlich eine Bindung an den xreR2-Promotor. 

Außerdem konnte ein erhöhtes xreR2 Level in dem DxreR1 Stamm nachgewiesen 

werden. Diese zwei Ergebnisse lassen auf eine Inhibierung der xreR2-Expression 

schließen. Bei hohem xreR1-Spiegel könnte so der primäre Phänotyp aufrechterhalten 

werden. XreR2 zeigte zwar keine Bindung an PxreR1, dafür aber an die Promotorregion 
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eines mutmaßlichen Toxin-Antitoxin-Systems (TAS), CcdAB-like, welches auch in 

Sekundärzellen hochreguliert war. Die Funktion dieses Systems konnte in dieser Arbeit 

nicht gelöst werden. Da das mutmaßliche Toxin allerdings C-terminal verkürzt ist 

wodurch die toxische Wirkung vermutlich aufgehoben wurde, und bekannt ist, dass TAS 

am Prozess der Bildung persistierender Zellen in anderen Bakterien beteiligt ist wird die 

mutmaßliche Rolle von CcdAB-like beim phänotypischen Phasenwechsel von 

P. luminescens DJC diskutiert. 

Zusammenfassend zeigen die Daten dieser Arbeit, dass P. luminescens Sekundärzellen 

besser an ein Leben außerhalb des Wirts angepasst sind und sich vermutlich von 

Pflanzenwurzelexsudaten ernähren. Darüber hinaus konnten zwei neue 

Transkriptionsregulatoren, XreR1 und XreR2, identifiziert und erste Einblicke in ihre 

molekularen Mechanismen gewonnen werden 
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1 Introduction 

1.1 The genus Photorhabdus 

In 1979 a new bacterium associated with Heterorhabditis nematodes was discovered. It 

was specified as a member of the Xenorhabdus genus, which belongs to the family of 

Enterobacteriaceae and comprises Gram-negative bacteria that usually live in mutualistic 

symbiosis with nematodes of the genus Steinernema. Because of its ability to produce 

light it was termed Xenorhabdus luminescens. However, some bacteria of the 

Xenorhabdus genus differed a lot in their phenotypic characteristics and had big 

mismatches regarding their DNA. Therefore, in 1993 the genus Photorhabdus was 

invented and the bioluminescent bacterium was renamed as Photorhabdus luminescens 

(Thomas & Poinar, 1979; Boemare et al., 1993). 

Based on biomolecular analyses the genus has been divided into three species. Besides 

P. luminescens, the two other species are P. temperata and P. asymbiotica (Fischer-Le 

Saux et al., 1999). Recently, genomes of 11 new isolates as well already described 

strains were sequenced. Thereby, 14 new Photorhabdus subspecies were identified and 

a re-organization of the taxonomy by raising several subspecies to species level was 

proposed (Machado et al., 2018). 

However, all Photorhabdus species share the same complex life cycle. They live in a 

symbiotic mutualism with nematodes of the Heterorhabditidiae family and are highly 

pathogenic towards insect larvae such as e.g. Galleria mellonella or Manduca sexta 

(Akhurst, 1980). P. asymbiotica is furthermore the only Photorhabdus species that is 

additionally able to interact with human soft tissue causing skin infections (Gerrard et al., 

2004, Gerrard et al., 2006). 
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The most common P. luminescens strain used in scientific research is P. luminescens 

subsp. laumondii TT01. Here, usually the laboratory strain described as spontaneously 

rifampicin resistant mutant (TT01Rif) is used (Bennett & Clarke, 2005). Although both 

strains differ in some phenotypic traits, they are both commonly referred to as TT01 in 

literature causing difficulties in assignment (Bager et al., 2016; Engel et al., 2017; Langer 

et al., 2017). However, as the TT01Rif strain has not been sequenced yet, no proper 

comparison for clear distinction of TT01 and TT01Rif is available so far. 

1.1.1 The life cycle of Photorhabdus luminescens 

Photorhabdus species colonize the upper gut of soil-living Heterorhabditis nematodes 

that are in the nonfeeding infective juvenile (IJ) stage (Fig. 1-1). In this stage the IJs 

actively seek out for insect prey to infect them by invading into the haemocoel. To do so, 

the nematodes enter insect larvae by either entering through mouth, anus or spiracles or 

by slicing the cuticle via a dorsal tooth-like appendage (Kaya & Gaugler, 1993; Bedding 

& Molyneux, 1982). Once inside the larvae, the Photorhabdus bacteria are regurgitated 

from the gut of the nematodes into the hemolymph of the insect (Ciche & Ensign, 2003) 

where they start to proliferate exponentially, reaching cell densities of up to 109 colony 

forming units (CFU) per insect within 48 hours (Watson et al., 2005). Upon release into 

the hemolymph the bacteria are exposed to the fast-acting innate immune system of the 

insect (Hoffmann & Hoffmann,1990). To overcome this immune response Photorhabdus 

luminescens developed different approaches. First, the bacteria inhibit the central 

enzyme, phenol oxidase, in the invertebrate immune system via the secretion of the 

small molecule rhabduscin. Furthermore, they manage to prevent being taken up 

phagocyticly by the insect macrophage cells, via a type three secretion system (TTSS) in 

combination with the effector protein LopT (Crawford et al., 2012; Brugirard-Ricaud et al., 

2005). To kill the insect host the bacteria begin to produce a wide variety of virulence 

factors, such as the Makes caterpillars floppy (Mfc) toxins and Toxin complexes (Tc’s) or 
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the metalloprotease PrtA (Daborn et al., 2001; Daborn et al., 2002). The Mcf toxins owe 

their naming to the fact that they cause apoptosis in the midgut epithelium and 

hemocytes and thereby lead to a rapid loss of the insect’s body turgor (Daborn et al., 

2002). In contrast, the Tc toxins display oral toxicity as it consists of proteins with high 

molecular weight (Waterfield et al., 2001). Additionally, by secreting various lipases and 

proteases, Photorhabdus bioconverts the insect body into a rich food source, which is 

used for growth by the bacteria as well as by the nematodes (ffrench-Constant et al., 

2003). At this point, the bacteria are switching back to the symbiotic lifestyle again and 

are support the growth of the nematodes. 

 

Figure 1-1: Life cycle of Photorhabdus luminescens. At the beginning of the life 
cycle, the bacteria colonize the upper gut heterorhabditid nematodes, which search for 
insect larvae in the soil. The nematodes infect an insect larva by invading into the 
hemocoel and regurgitate the bacteria into the hemolymph of the insect. Once inside, the 
bacteria start to rapidly grow and produce toxins, exoenzmyes, antibiotics and 
bioluminescence. After the death of the larva, the cadaver serves as a nutrient source for 
the nematodes and bacteria. When all nutrients are depleted the nematodes and 
bacteria re-associate and emerge from the insect carcass (Waterfield et al., 2009). 
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Although the exact mechanism is still unknown, it seems likely that Photorhabdus 

provides essential nutrients that are required for efficient nematode proliferation (Han & 

Ehlers, 2000). To defend the carcass against other bacteria Photorhabdus produces 

several structurally different antibiotics (Akhurst, 1982). To assert themselves against 

Gram-positive bacteria they produce e.g. a stilbene antibiotic (3,5-dihydroxy-4-

isopropylstilbene). On the other hand, the chemical nature of another compound was 

solved: carbapenem, a β-lactam antibiotic, shows antimicrobial activity against some 

Gram-positive but especially against Gram-negative bacteria (Derzelle et al., 2002).  

When all nutrients of the larva are depleted, IJs are formed, Photorhabdus and the 

nematodes re-associate and emerge from the cadaver (ffrench-Constant et al., 2003). 

Two or three generations of nematodes develop during infection. In one larva infected 

with a single IJ >100,000 new IJs develop within 2 to 3 weeks, underlining the high 

efficiency of Photorhabdus-Heterorhabditis interaction (Forst et al., 1997; Clarke, 2008; 

Waterfield et al., 2009). 

1.2 Phenotypic heterogeneity 

To persist against the selection pressure, bacterial populations have to develop different 

phenotypes that differ in their ability to adapt to changing environmental conditions. Here, 

well-established strategies are e.g. genetic rearrangements or DNA modifications, e.g. 

via DNA methylation (Smits et al., 2006).  

However, under evolutionary pressure, many bacteria evolved another strategy that 

results in a fitness benefit termed as phenotypic heterogeneity. Thereby, single cells of a 

genetically identical population in one microenvironment differ in their phenotypic traits 

only by exhibiting alterations in gene expression levels (Elowitz et al., 2002).  

One key determinant of phenotypic heterogeneity is the stochastic variation of 

biochemical reactions in a biological system, referred to as noise. According to the ‘finite 
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number effect’, noise is predicted to have the highest impact when the number of 

involved molecules is small (Veening et al., 2008). 

During the last decades research on this “nongenetic” variations increased rapidly. 

Phenotypic heterogeneity is widely spread among Gram-negative as well as Gram-

positive bacteria. Nowadays well-known examples are antibiotic resistance and persister 

cell formation, sporulation, bacterial competence and quorum sensing (QS)-mediated 

processes (Grote et al., 2015).  

QS-dependent bioluminescence of the marine bacterium Vibrio fischerii was one of the 

first reports for a heterogeneous QS response. Unlike the theory of homogenous light 

production at high cell density, individual cells differed not only in their onset of 

bioluminescence but also in its intensity (Perez & Hagen, 2010).  

Another well-studied phenotypically different system is the formation of persister cells. 

This phenomenon describes the conversion of a small fraction within an initial 

homogenous population upon antibiotic treatment. The respective fraction enters a 

distinct physiological state in which they can persist against the antibiotic activity 

(Helaine et al., 2014). Here, toxin-antitoxin systems are thought to play an important role 

(Schuster & Bertram, 2013).  

One explanation of phenotypic variation is the so-called bet-hedging or risk-spreading 

strategy. Thereby, regardless of the environmental conditions some single individuals are 

properly adapted to certain impacts while the majority of the population is not. This 

results in an increased overall fitness of the genotype although not every cell is optimally 

suited (Cohen, 1966; Veening et al., 2008) and allows organisms to persist fluctuating 

environmental conditions with no need to ‘sense and respond’. Persister cell formation, 

described above, is one of the best-documented examples for bet-hedging. Furthermore, 

sporulation bistability of B. subtilis also forms a good example. Under nutrient limiting 

conditions some cells utilize alternative metabolites for growth while some cells start to 
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form spores. While the spore forming cells are able to resist various environmental 

conditions the remaining vegetative cells can easily resume growth when new nutrients 

are provided (Veening et al., 2008). 

Bet-hedging is a well-studied strategy to benefit of phenotypic heterogeneity. However, 

another important strategy which is fundamentally different from bet-hedging is division 

of labor. Hereby, the benefit is mostly asymmetrical, meaning that one cell type 

expresses a behavior from which the second cell type in the same microenvironment 

benefits from without getting a direct benefit in return (Ackermann, 2015). One example 

is the expression of the type three secretion system 1 (tss-1) of Salmonella enterica 

subsp. enterica serovar Typhimurium. Here the subpopulation tss-1 ON invades the 

human gut tissue and causes inflammation but grows slowly and rarely survives. In 

contrast, the ttss-1 OFF subpopulation benefits from the inflammation caused by tss-1 

ON cells and grows quickly (Ackermann, 2015). 

Well-established methods for analyzing phenotypic heterogeneity within a population at 

single-cell levels are e.g. fluorescence microscopy or flow cytometry using fluorescent 

reporter strains (Brehm-Stecher & Johnson, 2004). Furthermore, microfluidic devices and 

cell traps are often used for data evaluation and single-cell tracking (Probst et al., 2013a; 

Probst et al., 2013b). 

1.2.1 Phenotypic heterogeneity in P. luminescens 

P. luminescens exists in two phenotypically different cell forms designated as primary 

(1°) and secondary (2°) cells. Initially, phenotypic switching of P. luminescens has been 

referred to as phase variation (Boemare & Akhurst, 1988). However, comparative 

genomic studies are available which confirm that the differences between 1° and 2° cells 

are really due to phenotypic and not genotypic heterogeneity as macrorestriction and 

DNA microarray experiments did not reveal any differences (Gaudriault et al., 2008). At 
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the beginning of the bacteria’s life cycle the population exclusively consists of 1° cells but 

during the infection of the insect larva some of the bacterial cells switch and turn into 2° 

cells. When nutrients are depleted, and the bacteria-nematode association is formed 

again, up to 50 % of the cells have converted into 2° cells. After one successful infection, 

only 1° cells re-associate with the nematodes and emerge from the cadaver to search for 

a new prey (Fig. 1-2A). This phenotypic switch can also be observed after prolonged 

cultivation under laboratory conditions (Fig. 1-2B). 

 

Figure 1-2: Model of phenotypic switching process of P. luminescens in vivo and 
in vitro. A) The nematodes are colonized by a 100% population of primary (1°) cells. 
During the infection of the larvae some of the 1° cells switch and convert into secondary 
(2°) cells. As only 1° cells are able to re-associate with the nematodes, 2° cells are left 
behind in soil after the nutrients of the larvae are depleted. B) The phenotypic switch also 
appears under laboratory conditions. Here, after prolonged cultivation 2° cells can be 
observed. Among several phenotypic differences 2° cells lack the red pigmentation 
shown by 1° cells as well as the production of light (depicted as yellow flashes).  

The two cell forms not only differ in their cell morphology as 1° cells are long-shaped 

rods while 2° cells are smaller short rods (Wang, et al., 2006), 1° cells also exhibit 

several other characteristics that are absent or diminished in 2° cells. Among these, most 

apparent is the lack of bioluminescence as well as the production of antibiotics, 

proteases and crystalline inclusion proteins CipA and CipB in 2° cells. Furthermore, 1° 

cells are red pigmented while 2° cells are non-colored (Akhurst, 1980, Boemare & 

Akhurst, 1988; Richardson et al., 1988; You et al., 2006). Recently, the production of the 
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cell clumping factor PcfA was discovered to also be a 1°-specific feature (Langer et al., 

2017). Remarkably, while both cell forms are equally pathogenic towards insect larvae 2° 

cells lost their ability to support growth and development of the nematodes and therefore 

cannot live in mutualistic symbiosis anymore (Han & Ehlers, 2001; Fig. 1-3). 

 

Figure 1-3: Phenotypic differences of the primary (1°) and secondary (2°) cell form 
of P. luminescens. In contrast to 1° cells, 2° cells only slightly produce 
bioluminescence. Furthermore, they are non-pigmentation and do not produce any 
proteases, antibiotics or crystal proteins anymore. Also, cell clumping only occurs in 1° 
not in 2° cells. 1° and 2° cells are equally pathogenic towards insects, but 2° cells are not 
capable to live in symbiosis with the nematodes anymore. The table was modified after 
ffrench-Constant et al., 2003 and Langer et al., 2017. 

To the current state of knowledge phenotypic switching in Photorhabdus only appears 

unidirectional, occurring from the 1° to the 2° cell form. However, for the closely related 

genus Xenorhabdus infrequent reversion of the switching process has been reported 

(Forst & Clarke, 2002). Therefore, the switch back from 2° to 1° cells in P. luminescens 
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might be induced by specific environmental conditions or the presence of a specific 

signal absent under laboratory conditions.  

In addition to 1° and 2° cells two heterogenous colony forms of P. luminescens are 

described designated as M- and P-forms. The small colony variant referred to as M-form 

got its naming as it initiates mutualism by colonizing the IJs gut. In contrast, the larg-

colony variant, the P-form, causes pathogenicity. The switch between the two forms is 

controlled by a single promoter inversion of the mad fimbrial locus and therefore no true 

phenotypic heterogeneity (Somvanshi et al., 2012, Moxon et al., 1994). In 1° and 2° cells 

both directions of the Pmad promoter are found indicating no difference between the two 

cell forms (Eckstein & Heermann, 2019). 

The sociobiological aspects and thus the advantages of the whole cell population to exist 

in two different cell forms are still unknown. Furthermore, how 1° cells decide to become 

2° also remains unclear. 

1.2.2 Phase-specific features of P. luminescens 1° cells 

One of the most apparent differences between the two phenotypic cell forms of P. 

luminescens is the reddish brown pigmentation of 1° cells. This coloring is caused by the 

production of so called anthraquinones (AQs) (Richardson et al., 1988). AQ production 

usually occurs in plants, fungi and Streptomyces. Until today, Photorhabdus is the only 

known Gram-negative bacterium which produces AQs. Beside its weak antimicrobial 

activity, AQs are supposed to deter birds or scavenger insects in order to protect the 

nutrient source (Hilker & Köpf, 1994; Gulcu et al., 2012). In 2007, the respective operon 

antABCDEFGHI was identified to encode a type II polyketide synthase and several 

modifying enzymes responsible for AQ biosynthesis (Brachmann et al., 2007). The 

current model supposes ligand-dependent activation of AntJ by a specific, yet unknown, 
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metabolite only present in 1° cells which leads to heterogenous activation of the PantA 

promoter and thereby to AQ production (Heinrich et al., 2016).  

In contrast to 2° cells, 1° cells produce antibiotics such as e.g. stilbenes (Derzelle et al., 

2002). Stilbenes are polyketide molecules that are usually produced by plants upon 

infection or under various stress conditions. Beside plants, Photorhabdus is the only 

organism known to produce stilbene so far. However, the production was found to 

significantly differ from that observed in plants (Williams et al., 2005; Joyce et al., 2008). 

As it was found that genes involved in stilbene synthesis are not clustered a complex 

regulation is supposed (Bode 2009). Stilbenes not only exhibit antimicrobial activity 

against fungi and Gram-positive bacteria but also play a role in overcoming the insect’s 

immune system by suppressing the phenol oxidase. Furthermore, stilbene is also 

necessary for nematode development (Eleftherianos et al., 2007; Joyce et al., 2008) 

which is again only supported by 1° cells.  

Another 1°-specific feature is the high bioluminescence. The biochemistry and 

physiological regulation of bioluminescence in P. luminescens has been well studied. 

The bacterial luminescence results from a typical luciferase reaction. The respective lux 

operon comprises five genes luxCDABE. The luxC, luxD and luxE genes code for 

enzymes for the faddy acid reductase complex which produces the long-chain aldehyde 

substrate. The two subunits of the luciferase are encoded by luxA and luxB (Forst, 1997). 

However, the reason and need of this bacterial light production is still unclear. 

Recently, production of the Photorhabdus clumping factor, PcfA, has been found to be 

also 1°-specific. Expression of the pcfABCDEF operon is directly activated by the LuxR 

solo PluR. This LuxR solo is part of the novel PluR/PpyS QS system present in P. 

luminescens. It recognizes photopyrones (PPYs) which are synthesized by the 

ketosynthase-like protein PpyS (Brachmann et al., 2013). 
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The exact mechanism of how P. luminescens supports the nematode’s growth and 

development is not clear. However, the crystal inclusion bodies CipA and CipB were 

reported to be essential as single deletions of each cip gene led to an abolishment of 

nematode development. (Bintrim & Ensign, 1998; You et al., 2006). This fits into theory 

as both, nematode support as well as crystal inclusion body formation is 1°-specific. 

Both phenotypically heterogeneous cell forms of P. luminescens are genetically identical. 

However, whether the phenotypic traits are mediated at transcriptional level or regulated 

post-transcriptionally has not been described yet. 

1.2.3 The role of P. luminescens 2° cells 

2° cells of lack many characteristics important for the life cycle of P. luminescens. It is 

still not known which function they fulfill and what happens to them after the 1° cells re-

associated with the nematodes to re-enter the life cycle. 

The current theory suggests an adaption of 2° cells to a nematode-independent life in 

soil (Smigielski et al., 1994). This idea is supported by several findings: It was shown that 

upon adding nutrients after periods of starvation, 2° cells recovered faster and restarted 

growth 2 to 4 hours while it took about 14 hours until 1° cells grew again. Thus, 2° cells 

seem to be more efficient in the uptake of nutrients than 1° cells. Furthermore, proteome 

analysis revealed an up-regulation of metabolic enzymes. Here, higher levels of major 

respiratory enzymes as well as an up-regulation of the transmembrane proton motive 

force were found (Smigielski et al., 1994; Turlin et al., 2006). However, if 2° cells truly 

have developed methods to persist in soil has not been proven yet and it also still 

remains unclear what genes might be involved. Finally, so far nothing is known about the 

biology of 2° cells being somehow able to become 1° again or if they might have found 

another way to re-enter the life cycle.  
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Thus, the sociobiological aspects to exist in two different cell forms and therefore the 

advantages for the whole cell population are still unclear. Furthermore, the bacteria-

nematode complex is used as bio-insecticide to prevent crop failure and thereby spread 

onto agricultural fields. Therefore, knowledge about putative interactions with soil living 

organisms or plants would be of great interest but neither of it has been investigated yet. 

1.3 Regulation of phenotypic switching in P. luminescens 

Since 2° cells of P. luminescens are not known to have the capability to re-enter the 

nematodes after one complete cycle of insect infection, phenotypic switching of the 

whole cell population would lead to a breakdown of the bacteria’s life cycle. Therefore, 

the switching process has to be tightly controlled. Since the 2° variant also occurs after 

prolonged cultivation under laboratory conditions, a response to metabolic or 

environmental stress is suggested (Joyce et al., 2006). Low osmolarity triggered 

phenotypic switching in some strains of P. luminescens (Krasomil-Osterfeld, 1995). The 

complex regulatory network has not been solved yet. However, to the current state of 

knowledge at least two pathways are suggested to be involved in controlling phenotypic 

switching: a HexA-dependent pathway and an O2-dependent pathway via the AstS/AstR 

system. Although they both seem to be activated by global stress factors, no direct 

connection between the two regulation pathways is known so far (Joyce et al., 2006). 

1.3.1 HexA – a master repressor of 1°-specific features 

The LysR-type transcriptional regulator (LTTR) HexA has been identified as a mastor 

regulator of phenotypic heterogeneity of P. luminescens (Joyce & Clarke 2003). In E. 

coli, LrhA, to which HexA is homologous, is responsible for the negative regulation of 

flagella, motility and chemotaxis. Since deletion of the hexA gene in 2° cells was 

sufficient to restore the 1°-specific phenotype including the ability to support growth and 

development of the nematodes it is assumed to act as master repressor of 1°-specific 
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features (Joyce & Clarke 2003). Furthermore, overexpression of hexA in 1° cells led to 

the 2° phenotype indicating that high levels of HexA are needed to maintain the 2° form 

(Joyce et al., 2006). Notably, virulence against insect larvae was weakened in the 2° 

DhexA strain, implying an involvement of HexA in pathogenicity of the bacteria (Joyce & 

Clarke 2003). As LrhA is known to positively autoregulate expression of its own gene 

(Lehnen et al., 2002) a positive feedback loop causing hexA expression seems very 

likely. Like all LTTRs HexA consists of a N-terminal DNA-binding domain and a C-

terminal co-factor binding domain separated by a short linker region (Schell, 1993). Until 

now no substrate ligand has been identified yet. However, recent studies identified the 

pcfABCDEF operon, which is responsible for production of the 1°-specific cell clumping 

factor, as the first direct target of negative regulation by HexA, (Langer et al., 2017). 

Bioluminescence is also affected in the hexA mutant. However, the respective luxCDABE 

operon is not directly targeted by HexA but seems to be repressed at the post-

transcriptional level (Langer et al., 2017). In E. coli LrhA acts via regulation of translation 

of the alternative sigma factor RpoS, the chaperone Hfq and small RNAs (Peterson et 

al., 2006). Thus, HexA might also comprises complex regulatory functions including 

small RNAs (Joyce & Clarke 2003; Peterson et al., 2006). In summary, HexA directly and 

indirectly fulfills the task as repressor of 1 ̊-specific features in 2 ̊cells. However, the 

complete regulatory mechanism still remains elusive.  

1.3.2 The AstS/R system – a timer of phenotypic switching 

It has been shown that the AstS/AstR system of P. luminescens which is homologous to 

the Rcs phosphorelay system of E. coli, controls timing of phenotypic switching. In P. 

luminescens cells that lack the response regulator AstR phenotypic switching was 

premature by 7 days compared to the respective wild-type strain. Proteome analysis of 

the ΔastR strain revealed positive regulation of the gene encoding UspA, the universal 

stress protein by AstS/AstR (Derzelle et al. 2004). As such proteins are induced during 
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stress situations like oxidative or osmotic stress it is suggested that the AstS/AstR 

pathway protects the cell from stress and therefore delays phenotypic switching (Joyce 

et al., 2006). This in turn supports the theory of global stress as major signal to induce 

the switching process. 

In Photorhabdus HexA seems to have a different regulatory mode of action as in contrast 

to E. coli, where the hexA homolog lrhA is under control of Rcs, hexA is not regulated by 

AstS/AstR (Derzelle et al. 2004). Furthermore, HexA does not control motility (Joyce & 

Clarke, 2003) while flagella formation is directly repressed by LrhA in E. coli (Gibson & 

Silhavy, 1999). In Photorhabdus the functional AstS/AstR system represses flagella 

formation (Derzelle et al., 2004) as the ΔastR mutant was shown to be hypermotile. 

However, this was only true under anaerobic conditions (Hodgson et al., 2003).  

Thus, only little is known about how P. luminescens cells decide to become different and 

the molecular mechanisms behind. 

1.4 Scope of the thesis 

The phenomenon of phenotypic heterogeneity in P. luminescens cell populations is still 

puzzling. So far, no specific function of 2° cells could be determined and the exact 

regulatory processes of the switching remain elusive. Therefore, to understand the 

purpose of the complex life cycle of Photorhabdus, it is of main interest to shed led onto 

those queries.  

As both P. luminescens subsp. laumondii TT01 as well as TT01Rif are easy to access, 

the first step should be to perform a genomic and phenotypic comparison in order to 

eliminate ambiguities in naming of the two strains. Furthermore, insights about genes 

involved in phenotypic heterogeneity of P. luminescens cell populations might be 

provided. 
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The investigation of genes involved in phenotypic switching as well as putative functions 

of 2° cells requires a detailed knowledge of genes differentially expressed in both cell 

forms. For that purpose, comparative transcriptome analysis (RNA-Seq) should be 

performed. Analysis of the resulting genes according to their function and fold change 

yield might reveal insights into the fate of 2° cells as well as provide information about 

genes involved in regulation of phenotypic switching. Furthermore, RNA-Seq data could 

clarify if the 1°-specific traits are mediated at transcriptional level 

The current theory purposes an adaption of 2° cells to a free-living state in soil. Here, it 

would be crucial for the cells to be more resistant against nutrient limitation. Browsing 

comparative transcriptomics data could reveal an up-regulation of the respective genes 

in 2° cells. Furthermore, 2° cells would have to adapt to different nutrients compared to 

those provided by the larvae, which are not always available in close proximity. 

Therefore, increased steady-state motility of 2° cells as well as chemotactic response 

towards alternative nutrients should be investigated. As the majority of compounds 

present in the rhizosphere is derived by plants, the response of 2° cells to root exudates 

should be examined.  

To enlighten the regulation process of phenotypic heterogeneity regulatory genes with 

highly different expression levels in 1° and 2° cells, respectively, should be selected and 

their putative effect on phenotypic switching should be investigated. Therefore, deletion 

as well as overexpressing strains should be generated and the most predominant 

phenotypes of 1° and 2° cells should be analyzed. If an effect can be observed, the 

properties of the regulators should be examined by determining their respective 

superfamily, domains and structural properties. Furthermore, screening for interaction 

partners and DNA targets might provide insights into the mode of action and regulatory 

functions of the proteins. 

. 
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Phenotypic Heterogeneity of the Insect Pathogen Photorhabdus
luminescens: Insights into the Fate of Secondary Cells
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ABSTRACT Photorhabdus luminescens is a Gram-negative bacterium that lives in
symbiosis with soil nematodes and is simultaneously highly pathogenic toward in-
sects. The bacteria exist in two phenotypically different forms, designated primary
(1°) and secondary (2°) cells. Yet unknown environmental stimuli as well as global
stress conditions induce phenotypic switching of up to 50% of 1° cells to 2° cells. An
important difference between the two phenotypic forms is that 2° cells are unable
to live in symbiosis with nematodes and are therefore believed to remain in the soil
after a successful infection cycle. In this work, we performed a transcriptomic analy-
sis to highlight and better understand the role of 2° cells and their putative ability
to adapt to living in soil. We could confirm that the major phenotypic differences
between the two cell forms are mediated at the transcriptional level as the corre-
sponding genes were downregulated in 2° cells. Furthermore, 2° cells seem to be
adapted to another environment as we found several differentially expressed genes
involved in the cells’ metabolism, motility, and chemotaxis as well as stress resis-
tance, which are either up- or downregulated in 2° cells. As 2° cells, in contrast to 1°
cells, chemotactically responded to different attractants, including plant root exu-
dates, there is evidence for the rhizosphere being an alternative environment for the
2° cells. Since P. luminescens is biotechnologically used as a bio-insecticide, investiga-
tion of a putative interaction of 2° cells with plants is also of great interest for agri-
culture.

IMPORTANCE The biological function and the fate of P. luminescens 2° cells were
unclear. Here, we performed comparative transcriptomics of P. luminescens 1° and 2°
cultures and found several genes, not only those coding for known phenotypic dif-
ferences of the two cell forms, that are up- or downregulated in 2° cells compared
to levels in 1° cells. Our results suggest that when 1° cells convert to 2° cells, they
drastically change their way of life. Thus, 2° cells could easily adapt to an alternative
environment such as the rhizosphere and live freely, independent of a host, puta-
tively utilizing plant-derived compounds as nutrient sources. Since 2° cells are not
able to reassociate with the nematodes, an alternative lifestyle in the rhizosphere
would be conceivable.

KEYWORDS bacterium-host interaction, cell-cell communication, entomopathogenic
bacteria, PpyS/PluR

Photorhabdus luminescens is a Gram-negative, entomopathogenic bacterium belong-
ing to the family Enterobacteriaceae (1, 2). The bacteria undergo a dualistic life cycle

including mutualistic symbiosis with Heterorhabditidae nematodes and a pathogenic
relationship in which they infect and kill insects (1). P. luminescens was first isolated
from the gut of Heterorhabditis bacteriophora nematodes, found in temperate climates.
The bacteria exist in two phenotypically different forms, which are designated primary
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(1°) and secondary (2°) cells. After prolonged cultivation, a large portion of single 1° cells
undergo phenotypic switching and convert into 2° cells, which differ from 1° cells in
various phenotypic traits (3) (Table 1). Most predominant is that 2° cells are less
bioluminescent than 1° cells, do not produce red pigments, and are unable to live in
symbiosis with the nematode partner (4–7). So far, phenotypic switching of P. lumine-
scens cells has been observed only unidirectionally from the 1° to the 2° cell form (1, 3;
our unpublished observations). Previously, phenotypic switching of Photorhabdus has
been referred to as phase variation (8). However, this phenomenon differs from classical
bacterial phase variation as both variants are genetically identical (1; our own unpub-
lished observations) and has therefore been termed phenotypic heterogeneity (9). The
exact regulatory mechanism behind phenotypic switching and the biological role of P.
luminescens 2° cells still remain elusive. As 2° cells are known not to be capable of
reassociating with nematodes and support their growth and development (6), it has

TABLE 1 Genes corresponding to 1° cell-specific features downregulated in 2° cellsa

Phenotype and gene 1° cells 2° cells

FC by growth phase
(2° wt/1° wt)b

Exp Stat
Bioluminescence !!! !

luxC NS "11.56
luxD NS "10.85

Pigmentation ! "
antA "19.71 "25.95
antB "19.52 "57.15
antC "36.69 "15.25
antD "35.16 "13.11
antE "20.61 NS
antF "30.46 "26.52
antG "20.86 NS
antH "12.11 "10.52
antI "12.73 "30.02

Crystal proteins ! "
cipA "5.01 "27.91
cipB NS "16.21
PluDJC_07765 "4.20 "47.76

Antibiotic production ! "
PluDJC_04580 "11.29 NS
PluDJC_045805 "5.06 NS
PluDJC_04590 "4.90 NS
PluDJC_15990 NS "5.47
PluDJC_16670 "5.58 NS
stlA "4.95 NS

Cell clumping ! "
pcfA NS "64.84
pcfB NS "87.19
pcfC NS "110.61
pcfD NS "100.05
pcfE NS "10.98
pcfF NS "10.52

Protease production !! !
prtA "8.47 NS

Lipase production ! "
pdl NS "6.33

aGenes were differentially transcribed between 1° and 2° cells in exponentially growing or stationary phase
cultures. The presence (!) or absence (") of the phenotype as it is described in the literature is indicated.

bFold change (FC) was calculated as the level of expression in wild-type 2° cells/expression in wild-type 1°
cells. An FC value of less than "3 or greater than 3 was considered significant (P ! 0.05). NS, not
significant. Exp, exponential growth phase; Stat, stationary growth phase; wt, wild type.
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been assumed that they might be better adapted to a life in soil (10, 11). However, 2°
cells have thus far not been isolated from soil. The fact that they are found only after
prolonged cultivation of 1° cells led to the assumption that the switch occurs as a
response to environmental or metabolic stress (12). It was also observed that, after a
period of starvation, 2° cells adapted faster to the addition of nutrients and grew faster
than 1° cells. Furthermore, proteome analysis demonstrated that 2° cells experience an
upregulation of several metabolic enzymes (11). According to this observation, major
respiratory enzymes and also the transmembrane proton motive force were found to
be upregulated in 2° cells, supporting the assumption that this cell variant might be
more adapted for a life in soil (11, 13).

The purpose of the present study was to shed light on the general function of P.
luminescens 2° cells and their fate when they are left behind in the soil after an infection
cycle. For that reason, we compared the transcriptomes of P. luminescens DJC 1° and 2°
cells. Based on the description of the transcriptomic variation observed, we performed
various follow-up investigations and bring evidence for an alternative life cycle of 2°
cells in soil.

RESULTS AND DISCUSSION
Phenotypic heterogeneity of P. luminescens DJC 1° and 2° cells. As a first step,

we analyzed the phenotypic differences between P. luminescens strain DJC 1° and 2°
cells with respect to symbiosis, insect pathogenicity, anthraquinone (pigment) produc-
tion, and antibiotic, lipase, and protease activities. As also observed for other
Photorhabdus strains (6, 14, 15), 2° cells were no longer able to support nematode
development (Fig. 1A), whereas insect pathogenicity was comparable to that of 1° cells
(Fig. 1B). Furthermore, pigment (anthraquinone) as well as light production was absent
from 2° cells (Fig. 1C and D). Antibiotic production and proteolytic activity were strongly
decreased while lipase activity, cell clumping, and crystal inclusion proteins were not
detectable in 2° cells (Fig. 1E, G, and H). In contrast to the rod-shaped 1° cells that form
mucoid colonies, 2° cells are smaller coccoid rods forming nonmucoid colonies (Fig. 1F).
The different phenotypes of P. luminescens DJC 1° and 2° cells show that they are
comparable to the phenotypic heterogeneity that has been described previously for
other Photorhabdus species, such as Photorhabdus temperata (15).

Comparative transcriptome analysis of P. luminescens 1° and 2° cells. To gain
more insights into the differences between P. luminescens 1° and 2° cells, we performed
transcriptome sequencing (RNA-Seq) analysis. Thereby, 638 differentially expressed genes
(DEGs) were found in 1° and 2° cells, including 373 genes present during exponential
growth phase, 178 in early stationary phase, and 87 in both growth phases (see Table S1
in the supplemental material). Ignoring the genes whose function is unclear, the remaining
DEGs were divided into 18 subgroups corresponding to their specific functions (Fig. 2A).
The subgroup referred to as “others” contains genes that were predicted to be truncated
or even pseudogenes, together with genes not yet classified.

First, we looked for genes that correlate with the distinct phenotypic differences of
1° and 2° cells described above. We found genes responsible for all phenotypic traits
mentioned above, such as bioluminescence (luxCD), pigmentation (antABCDEFGHI),
crystal inclusion proteins (e.g., cipA), cell clumping (pcfABCDEF), antibiotic production
(e.g., PluDJC_04580), proteases (prtA), and lipases (pdl), to be downregulated in 2° cells
(Table 1).

2° cells of P. luminescens DJC are unable to reassociate with the nematodes and are
therefore left behind in the soil. Thus, phenotypic switching has to be tightly regulated
as a switching frequency of 100% would lead to a breakdown of the bacterium’s life
cycle. However, the exact mechanism is still unclear. Our transcriptome analysis re-
vealed 35 DEGs encoding transcriptional regulators, of which two-thirds are of un-
known function (Table S1). Consequently, one or more of these regulatory genes could
be involved in the regulation of phenotypic heterogeneity in P. luminescens DJC cell
populations.
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FIG 1 Phenotypic comparison of P. luminescens DJC 1° and 2° cells. (A) Nematode bioassay. Fifty axenic Heterorhabditis bacteriophora
IJs were spotted on 1° or 2° cells grown on lipid agar plates. After 7 days the number of developed hermaphrodites was counted. (B)
Pathogenicity assay. Approximately 2,000 of the 1° or 2° cells were injected into 10 G. mellonella larvae each. Mortality was monitored
over 48 h. (C) Pigmentation of both phenotypic cell forms was visually monitored over 5 days, and anthraquinone production was
quantified from culture supernatant extracts via HPLC. (D) Bioluminescence of 1° and 2° cells was monitored over 24 h using a
luminescence plate reader. Additionally, single colonies were streaked, and light production was visually analyzed by taking pictures
with 5 min of exposure time. (E) To test for antibiotic production both 1° and 2° cells were spotted onto B. subtilis germ-agar plates.
Furthermore, lipolytic or proteolytic activity was tested by spotting both phenotypic cell forms onto Tween agar or skim milk agar
plates, respectively. (F) The colony morphology of both cell forms was analyzed by streaking single colonies with a toothpick. The
shape of the cells as well as formation of cell clumps (G) and crystal inclusion proteins (H) was investigated via phase-contrast
microscopy. Error bars represent standard deviations of three independently performed experiments.
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FIG 2 Overview of genes differentially expressed in 2° cells compared to levels in 1° cells. (A) Division of the 638 DEGs according to their
functionality into 19 subgroups. (B) Negative (red) and positive (green) FCs of all DEGs obtained at the exponential (Exp; striped bars) as well as
stationary (Stat; plain bars) growth phase.
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2° cells of Photorhabdus sp. are commonly described as cell variants that lack several
phenotypes. However, our transcriptome analysis revealed that several of the DEGs
were upregulated in 2° cells, including genes involved in the cells’ metabolism, stress
response, motility, and chemotaxis (Fig. 2B). This indicates that 2° cells are adapted to
living in an environment other than that of the symbiotic host. Due to the incapability
of 2° cells to reassociate with the nematodes, it seems likely that they are adapted to
a free life in soil or the rhizosphere.

As the fate of 2° cells is a crucial missing piece to understanding phenotypic
heterogeneity of P. luminescens, we therefore focused on genes that could support 2°
cells to deal with alternative environmental conditions such as those of the soil and the
rhizosphere.

Changes in signaling and cell-cell communication. Among the genes with af-
fected expression in 2° cells were various genes encoding regulators involved in
signaling and cell-cell communication. Two of these are pluR and ppyS, which code for
the LuxR solo (16) and the photopyrone synthase, respectively, were also downregu-
lated in 2° cells. PpyS/PluR is the quorum sensing system used by P. luminescens to
control expression of the pcfABCDEF operon and, therefore, cell clumping via PluR (17).
This explains the diminished pcfABCDEF transcription and therefore the absence of cell
clumps in 2° cells, since PluR positively regulates expression of the pcf operon. However,
downregulation of pluR would also affect the cells’ ability to communicate with each
other. Since P. luminescens harbors 40 LuxR solo receptors, which are supposed to be
involved in cell-to-cell communication as well as interkingdom signaling (18, 19), it is
likely that 2° cells use an alternative to the PpyS/PluR communication system.

Transcriptome analysis revealed upregulation of 12 LuxR solo genes in 2° cells: the
8 genes of the PluDJC_10415-PluDJC_10460 operon, which are part of the largest
PAS4-LuxR solo cluster of P. luminescens; two single PAS4-LuxR solos (PluDJC_04850 and
PluDJC_18380); and the only two LuxR solos with a yet undefined signal binding
domain (SBD) (PluDJC_09555 and PluDJC_21150). The LuxR solos of P. luminescens can
be divided into four subgroups corresponding to their SBDs. The largest group com-
prises 34 LuxR solos harboring a PAS4 signal binding domain (19). PAS4 domains of P.
luminescens are homologous to the PAS3 domain of the fruit fly Drosophila melano-
gaster, in which it has been shown that this domain acts as a juvenile hormone (JH)
receptor (20). Therefore, it is suggested that PAS4 domains of P. luminescens play an
important role in interkingdom signaling and also bind hormone-like molecules (21).
Moreover, it has also been shown that LuxR solos of plant-associated bacteria can
respond to plant signaling molecules (22, 23), which might also be true for one or
more LuxR solos upregulated in 2° cells. However, no specific signal sensed by the
PAS4-LuxR solos of P. luminescens has been identified yet.

In summary, the DEGs encoding LuxR receptors strongly suggest that 2° cells utilize
other cell-cell communication systems for intra- as well as interkingdom signaling than
1° cells and thereby are able to adapt to an alternative lifestyle. Future work will
investigate to which signals the LuxR solos respond and if they support the adaptation
of 2° cells to a life in the soil and the rhizosphere.

Differences in LPS composition. We observed an alteration in expression of six wbl
genes, which were either up- or downregulated, that play a role in the O-antigen
biosynthesis of lipopolysaccharide (LPS) in the cells (24) (Table S1). For host-associated
microbes, changes in LPS composition have previously been associated with differ-
ences in host niche (25, 26). Therefore, we hypothesize that the change in LPS
composition in 2° cells strongly indicates a specificity for environmental conditions
other than those to which 1° cells are adapted. Whether the differences in LPS
composition could support the idea that the 2° cells live free in soil that is in contact
with plants remains to be tested.

Metabolic changes. Our transcriptome analysis of 1° and 2° cells revealed a large
set of DEGs involved in the cells’ metabolism, which already gives hints of an adaption
of 2° cells to alternative nutrients. Among these DEGs were, e.g., genes playing a role
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in cobalamin biosynthesis or fumarate degradation (Table S1). The complete set of
genes involved in hydroxyphenylacetate (HPA) metabolism were expressed at higher
levels in 2° cells. 4-HPA is a common fermentation product of aromatic amino acids.
Several bacteria, such as Escherichia coli, are able to degrade 4-HPA over several
converting steps to finally metabolize it to pyruvate and succinate. Furthermore, it is
also often found in soil as a result of plant material degradation by animals (27).
Therefore, an enhanced capability to degrade 4-HPA could help 2° cells to grow in soil
as it can be used as a carbon source.

In contrast, 2° cells seem to have less affinity for phenylpropanoid compounds than
1° cells as we found the respective cluster (hcaCFE, hcaB, and hcaD) (28) to be
downregulated. However, as phenylpropanoids most commonly originate from pro-
teins (28), which are the main nutrient source inside the larvae, reorientation of 2° cells
after leaving the cadaver would be obligatory.

Furthermore, the genes astABDE and PluDJC_15875, encoding enzymes for arginine
degradation (29), are upregulated in 2° cells. In E. coli the arginine succinyltransferase
(AST) pathway is induced when nitrogen is limited and aspartate and arginine are
present (30). Again, this could be a mechanism allowing 2° cells to overcome starvation
in soil as in the rhizosphere large amounts of amino acids, which are secreted, e.g., from
plant roots, are present (31).

As the bacterium-nematode complex, which comprises only 1° cells, emerges from
the cadaver when all nutrients of the larvae are depleted, 2° cells might be exposed to
starvation. An increase in motility and a higher sensitivity to nutrients and, therefore,
enhanced chemotaxis would be an essential strategy for the bacteria to overcome
nutrient limitation.

Increased motility and chemotaxis of 2° cells. The general function of P. lumine-
scens 2° cells is still unclear, but it is assumed that they might be better adapted to a
life in soil (10, 11). Since the nutrients present in the rhizosphere differ from the those
present in the bioconverted insect cadaver and may not always be easily available, an
increase in motility and a higher sensitivity to alternative nutrients could therefore be
of great advantage for the whole cell population.

As flagellum formation and directed or nondirected motility are highly complex,
including many different operons, we evaluated this group of data considering fold
change (FC) values above 1.5 or below !1.5 to include all DEGs involved in these
processes. Indeed, we found several DEGs involved in motility and chemotaxis that
were upregulated in 2° cells.

(i) Motility. The transcriptome analysis demonstrated increased expression of 22
genes involved in flagellum formation with an FC of "3 and an additional 13 genes
with fold changes ranging from 2.0 to 2.98. We found flhD and flhC, the two parts of the
transcriptional activator complex FlhDC (32), to be upregulated in 2° cells (Table 2).
Furthermore, we found that several structural genes involved in flagellar hook-basal
body complex assembly, which are designated class 2 flagellar genes, (32) were
upregulated. In detail, expression levels of either parts of or the complete operons
flgBCDEFGHIJ, flhBAE, fliFGHIJK, and fliLMNOPQR as well as the gene encoding FliE were
higher in 2° cells. Furthermore, two class 3a structural gene clusters, fliDST and flgKL, as
well as fliC (class 3b), which encodes flagellin, exhibited increased expression in
exponentially growing 2° cells (Table 2) (32).

As a representative for motility genes, fliC, the major driving force for flagellum
formation, was chosen for RNA-Seq data validation via reverse transcription-
quantitative PCR (RT-qPCR). Thereby, we could confirm upregulation of fliC in 2° cells
during the exponential growth phase (Fig. 3).

Previously, for Xenorhabdus nematophila and Photorhabdus temperata strains, mo-
tility was described to be a specific feature of 1° cells (33). However, we found
upregulation of motility-related genes in P. luminescens 2° cells and therefore analyzed
whether motility is truly increased in 2° cells. For that purpose, we performed swim-
ming assays by spotting the respective cell forms onto soft-agar swimming plates and
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measuring the zone of colonization at two different time points. Previously, growth
rates of 1° and 2° cells were confirmed to be similar in the medium that was used for
the swimming assays (data not shown). In fact, 2° cells exhibited a significantly
increased swimming motility compared to that of 1° cells after 18 h of incubation.
However, after 36 h the difference between the two cell forms decreased to a
nonsignificant level (Fig. 4). This is in accordance with the transcriptome data, which

TABLE 2 Motility- and chemotaxis-related genes transcribed at higher levels in 2° cells than in 1° cells in exponential or stationary
growth phasea

Category and locus tag Operon Gene Protein(s)

FC by growth phase
(2° wt/1° wt)b

Exp Stat
Flagellum formation

Class 1
PluDJC_09685 flhDC flhD Flagellar transcriptional activator 3.15 NS
PluDJC_09685 flhC Flagellum biosynthesis transcription activator 2.09

Class 2
PluDJC_09860 flhBA flhB Flagellar biosynthesis protein 3.41 NS
PluDJC_09865 flhA Flagellar biosynthesis protein 2.78
PluDJC_09935 flgAMN flgN Flagellar synthesis protein 2.97
PluDJC_09940 flgM Negative regulator of flagellin synthesis 2.00
PluDJC_09945 flgA Flagellar basal body P-ring formation protein precursor 2.17
PluDJC_09950 flgBCDEFGHIJ flgB Flagellar basal body rod protein 6.74 NS
PluDJC_09955 flgC Flagellar basal body rod protein 6.63 NS
PluDJC_09960 flgD Basal body rod modification protein 5.76 NS
PluDJC_09965 flgE Flagellar hook protein 5.35 NS
PluDJC_09970 flgF Flagellar basal body rod protein 4.87 NS
PluDJC_09975 flgG Flagellar basal body rod protein 4.95 NS
PluDJC_09980 flgH Flagellar L-ring protein precursor 3.26 NS
PluDJC_09985 flgI Flagellar P-ring protein precursor 3.28 NS
PluDJC_09990 flgJ Peptidoglycan hydrolase 2.66
PluDJC_10070 fliLMNOPQR fliO Flagellar protein 2.39
PluDJC_10075 fliN Flagellar motor switch protein 2.56
PluDJC_10080 fliM Flagellar motor switch protein 2.98
PluDJC_10085 fliL Flagellar protein 3.71 NS
PluDJC_10090 fliFGHIJK fliK Flagellar hook-length control protein 2.97
PluDJC_10095 fliJ Flagellar protein 3.06 NS
PluDJC_10100 fliI Flagellum-specific ATP synthase 3.31 NS
PluDJC_10105 fliH Flagellar assembly protein 2.83
PluDJC_10110 fliG Flagellar motor switch protein 3.04 NS
PluDJC_10115 fliF Flagellar basal body M-ring protein 4.00 NS
PluDJC_10120 fliE fliE Flagellar hook-basal body 11-kDa protein 4.75 NS

Class 3a
PluDJC_09935 flgMN flgN Flagellar synthesis protein 2.97
PluDJC_09940 flgM Negative regulator of flagellin synthesis 2.00
PluDJC_09995 flgKL flgK Flagellar hook-associated protein 1 (HAP1) 8.57 4.53
PluDJC_10000 flgL Flagellar hook-associated protein 3 (HAP3) 8.92 NS
PluDJC_10140 fliDST fliT Flagellar protein FliT 5.08 NS
PluDJC_10145 fliS Flagellar protein FliS 8.56 NS
PluDJC_10150 fliD Flagellar hook-associated protein 2 (HAP2) 15.77 4.21

Class 3b
PluDJC_09695 mocha motA Chemotaxis protein, motor rotation 2.70
PluDJC_09700 motB Chemotaxis protein, motor rotation 2.68
PluDJC_09705 cheA Chemotaxis protein 1.83
PluDJC_09710 cheW Purine-binding chemotaxis protein 2.19
PluDJC_10155 fliC fliC Flagellin 25.47 (32.42) NS (2.48)

Chemotaxis
PluDJC_09715 cheD Methyl-accepting chemotaxis protein I (MCP-I),

highly similar to serine chemoreceptor tsr
5.93 (4.79) NS (1.40)

PluDJC_09720 MCP-I, highly similar to tar (maltose/aspartate chemoreceptor) 4.01 NS
aA set of flagellum formation genes and chemoreceptor homologues were differentially expressed between 1° and 2° cells in exponentially growing or stationary
phase cultures. Gray-shaded rows indicate genes that belong to the respective structural operon whose transcriptional changes did not fit into our initial filter criteria
of fold change values greater than 3 or less than !3 (P " 0.05). The genes chosen for qRT-PCR validation are in boldface.

bFold change (FC) was calculated as the level of expression in wild-type 2° cells/expression in wild-type 1° cells. Values in parentheses indicate the fold change after
qRT-PCR validation. Exp, exponential growth phase; Stat, stationary growth phase; wt, wild type; NS, not significant.
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showed that changes in expression of almost all motility-related genes occurred only in
the exponential growth phase and were not significant during the stationary growth
phase (Table 2).

As the transcriptome analysis was performed under noninducing conditions, in-
creased motility seems to be a specific feature of 2° cells of the P. luminescens DJC
strain. In E. coli the master activator of flagella formation, flhDC, is directly repressed by
lrhA (34). P. luminescens harbors a homologue of this LysR-type transcriptional regula-
tor, HexA, which was identified to act as a master repressor of 1°-cell-specific genes and
is highly upregulated in 2° cells of P. temperata (15). However, in X. nematophila, which
is closely related to P. luminescens, lrhA positively regulates motility (35). Thus, the flhDC
operon might also be activated by hexA in P. luminescens 2° cells. High levels of flhDC,
in turn, could cause the increased swarming of 2° cells as positive regulation of
swarming motility via FlhDC was observed for X. nematophila (36). We also found hexA
upregulated in P. luminescens DJC 2° cells. However, due to the strong cutoff criteria we
used, it is not listed.

(ii) Chemotaxis. As motility and chemotaxis go hand in hand, we next analyzed if
increased motility in 2° cells subsequently leads to an enhanced chemotactic behavior
of the cells. We found upregulation of the complete mocha operon described for E. coli
(37) with fold changes in 2° cells of between 1.83 and 2.7 (Table 2). This operon (class
3b flagellar genes) comprises four genes, motA, motB, cheA, and cheW, and is an
important part of the chemotaxis systems as it drives motor rotation and attractant
sensing (38, 39).

In E. coli the last part of the chemotaxis system is the meche or tar operon, which
consists of four sensory (cheRBYZ) and two receptor (tar and tap) genes (40, 41).
Transcriptome analysis of P. luminescens DJC 1° and 2° cells revealed one homologue of
tar, PluDJC_09720, as upregulated in 2° cells. Despite that, PluDJC_09715, which is highly
similar to tsr of E. coli, was also expressed at a higher level in 2° cells (Table 2). Tsr, a type

FIG 3 RT-qPCR data on fliC and cheD displaying higher transcription in 2° than in 1° cells. RT-qPCR
revealed a higher level of transcription of fliC and cheD in 2° cells than in 1° cells either in the exponential
growth phase (red) or in the stationary phase (green); the fold change is significantly higher in the
exponential growth phase for both genes. The data are presented as the fold change ratio of 2° cells to
1° cells with recA used as the housekeeping gene. Values are means of three independent biological
replicates and were calculated using the Pfaffl method. wt, wild type.

FIG 4 Enhanced swimming motility of 2° cells in comparison to that of 1° cells. Upon spotting 5 ! 106

1° or 2° cells onto semisolid swimming agar plates, 2° cells showed significantly increased swimming
activity compared to that of 1° cells after 18 h of incubation. Error bars represent standard deviations of
three independently performed experiments. ***, P " 0.001.
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I methyl-accepting chemotaxis protein (MCP-I), is a primary chemoreceptor for the
transduction of the attractant serine, while Tar, a type II MCP, is a chemoreceptor for the
transduction of aspartate and maltose in E. coli (42). Gene expression of PluDJC_09715
was exemplarily verified via RT-qPCR (Fig. 3).

In order to investigate the difference in the chemotaxis-driven motilities of P.
luminescens 1° and 2° cells, swarming assays were performed. For that purpose, a single
bacterial colony was spotted onto the center of a semisolid agar plate containing 1 mM
or 10 mM serine or maltose, respectively. E. coli MG1655 wild type served as a positive
control for chemotactic swarming, while the nonmotile P. luminescens 2° ∆fliC strain
was used as a negative control.

P. luminescens 1° cells showed only a low response to both concentrations of serine
as well as 1 mM maltose. However, there was increased movement on the soft-agar
plates containing 10 mM maltose. In contrast, 2° cells showed a significantly stronger
response to both serine and maltose. Here, a higher sensibility to serine was observed
as the swarming diameter on serine plates was significantly bigger than the diameters
on plates supplemented with maltose. E. coli MG1655 cells were slightly more motile
than P. luminescens 2° cells with 1 mM serine as well as with both concentrations of
maltose (Fig. 5 and Fig. S1).

By increasing the serine concentration, a negative effect could be perceived for E.
coli. Here, supplementing the plates with 10 mM instead of 1 mM serine led to a 30.9%
shrinkage of the swimming diameter. This effect could be observed only for E. coli and
has been reported before as a result of saturation of the serine-sensing transducer Tsr
in E. coli (43). However, the swimming diameter of 2° cells did not increase by raising
the serine concentration from 1 mM to 10 mM but was similar to the value obtained
with the lower serine concentration (Fig. 5 and Fig. S1). Therefore, the Tsr homolog of
P. luminescens PluDJC_09715 might be able to cope with a higher concentration of
serine. The 2° cells of the ∆fliC strain, which does not produce any flagellin, served as
a negative control and were nonmotile upon addition of any putative attractant (data
not shown).

The putative role of plants in the life cycle of 2° cells. The main producers of
nutrients in the soil are plants, as the majority of compounds in the rhizosphere, such
as amino acids or sugars as organic acids peptides, proteins, or lipids, derive from root
exudates (44–46). Therefore, we investigated whether P. luminescens cells also respond
to plant root exudates. For that purpose, we used soft-agar swimming plates supple-
mented with root exudates of the pea plant Pisum sativum extracted in methanol
(MeOH-Ex) and spotted P. luminescens 1° and 2° cells on the plates. The plant-
pathogenic strain Pseudomonas fluorescens WS1750 served as a positive control. Effects
of methanol on swimming activity were excluded by solely adding the solvent (data not
shown). Analysis of the swimming diameters after 24 h or 48 h revealed a significantly
higher response of 2° cells to MeOH-Ex than that of 1° cells (Fig. 6A and B). The
compositions of compounds contained in the root exudates are unknown. Comparing

FIG 5 Swimming diameters after addition of different putative attractants. Attractant-dependent motility
of P. luminescens DJC 1° and 2° cells and E. coli MG1655 cells, as indicated, was determined. Error bars
represent standard deviations of at least three independently performed experiments. *, P ! 0.05; **, P !
0.01.
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the swimming activities in the presence of MeOH-Ex to those in the presence of serine
and maltose showed them to be comparable or even higher for 2° cells. However, we
already applied serine and maltose in excess, as this amino acid and sugar are usually
excreted from plants in micromolar or nanomolar amounts (47, 48). Thus, a stronger
response of 2° than 1° cells toward other compounds derived from the plant seems
likely. Here, further evaluation of the exudate ingredients to resolve the structure and
thus the specific signal to which 2° cells respond is needed.

The sensing of plant root exudates by 2° cells might be attributable to
PluDJC_09715 and PluDJC_09720, as they are MCPs not only for serine and maltose but
also for the amino acids alanine/glycine and aspartic acid/glycine, respectively. Fur-
thermore, fruAB was upregulated in 2° cells, which indicates a higher affinity for taking
up and utilizing fructose. In addition to galactose, arabinose, raffinose, rhamnose,
xylose, and sucrose, fructose and also maltose are the dominant sugars found in root
exudates (49). Therefore, a higher-level response of 2° cells than of 1° cells to maltose
underlines the suggestion of an increased affinity of 2° cells toward compounds
primarily derived from plants.

However, in addition to sugars, vitamins, and amino acids, plants also secrete a wide
variety of organic acids that are known to attract bacteria and serve as a nutrient source
(50). Thus, additional, as-yet-unknown MCPs involved in the response of 2° cells to plant
root exudates might be present in P. luminescens.

Increased temperature tolerance of 2° cells. Our findings that P. luminescens 2°
cells are better adapted to different nutrients than 1° cells support the theory of

FIG 6 Effects of plant root exudates on swimming motility of P. luminescens 1° and 2° cells. On plates
containing MeOH-Ex, 2° cells showed a significantly stronger response in terms of increased swimming
activity than 1° cells. The recorded swimming diameters were even bigger than those observed with the
positive-control P. fluorescens WS1750. (A) Pictures of soft-agar swimming plates supplemented with
MeOH-Ex after 24 h and 48 h. (B) Graphical depiction of swimming diameters of 1° and 2° cells as well
as the WS1750 strain. Error bars represent standard deviations of three independently performed
experiments. **, P ! 0.01.
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free-living 2° cells in soil. Additionally, although cultures were grown in rich medium,
our transcriptome analysis revealed that several genes involved in the stress response
were upregulated in 2° cells (Fig. 1B). Among them, the majority of genes we found are
usually induced upon starvation (e.g., dppABCDF, phoH, cstA, or cspD).

However, it has already been described that 2° cells recover faster from periods of
starvation than 1° cells (11), although outside the host, 2° cells would also be more
exposed to changing temperatures. Therefore, we attempted to examine whether 2°
cells show a higher tolerance to low and high temperatures. As we performed the
RNA-Seq analysis under noninducing conditions, no relevant genes were found. For
that purpose, we cultivated both cell forms at low temperatures. Here, neither 1° nor 2°
cells showed growth when cultivated at 4°C (data not shown). However, we observed
an advantage for 2° cells upon storing LB plates with colonies of each cell form at 4°C
for 30 days. Every 4 to 5 days, a single colony was inoculated into LB medium and
cultivated at 30°C to determine whether the cells were able to recover and to restart
growth. While 2° cells grew perfectly well at all tested time points (Fig. 7A), 1° cells were
not able to grow after 30 days. Furthermore, although the 1° cells grew after 25 days of
incubation at 4°C, we observed a loss of pigmentation (Fig. 7A), which indicates
decreased fitness of the cells, as they remained 1° cells with respect to all other
phenotypes (data not shown). Even though we did not find upregulation of any genes
encoding heat shock proteins, we also tested the capability of both cell forms to deal
with higher temperatures. We found that 2° cells grew significantly better in terms of
reaching higher cell densities than 1° cells when they were cultivated at 37°C (Fig. 7B,
panels i and ii). Furthermore, only 2° and not 1° cells formed colonies when plated onto
LB plates and incubated at 37°C (Fig. 7B, panel iii). Growth at different temperatures is
much more important for a free life in soil than for a life inside a host. Night and day
as well as the different seasons have a great impact on soil temperature. Therefore, the
larger temperature tolerance of 2° cells further supports the idea that they are better
adapted for a life in soil than 1° cells.

Conclusion. We could confirm that the most prominent phenotypic traits of P.
luminescens DJC 1° and 2° cells are mediated at the transcriptional level. Furthermore,

FIG 7 Growth and phenotype of 1° and 2° cells at high and low temperatures. (A) 1° cells do not recover
growth after being incubated for 30 days at 4°C and already show loss of pigmentation after 25 days at
4°C. In contrast, 2° cells restart growth after 30 days of exposure to cold and are not affected at all in their
fitness or phenotype. (B) 2° cells were capable of growing at 37°C when cultivated in liquid culture while
growth of 1° cells was highly decreased under this condition (i and ii). Upon streaking both cell forms
onto agar plates and incubating them at 37°C, only 2° cells were able to form colonies (iii). All
experiments were independently performed three times. Error bars represent standard deviation.
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our transcriptome data support the idea that 2° cells are better adapted to an
alternative environment outside insect hosts. We found evidence that 2° cells change
their metabolism in order to be better adapted to alternative nutrients. Furthermore, 2°
cells highly express genes that deal with stress situations, and we could show that they
are less sensitive to high or low temperatures than 1° cells. These data thereby strongly
support the theory of free-living 2° cells in soil where they withstand challenging
environmental conditions and feed from nutrients present in the soil (Fig. 8). Further-
more, we found evidence that 2° cells might somehow be associated with plants or
feed on plant-derived nutrients in the rhizosphere.

If and how 2° cells can reenter the pathogenic life cycle or can convert to the 1°
phenotype again still remain elusive. However, since the bacteria are already used as a
bio-insecticide in agriculture, further investigation of a putative interaction of Photo-
rhabdus sp. 2° cells with plant roots is of great importance for biotechnology and
agriculture.

MATERIALS AND METHODS
Bacterial strains and growth conditions. E. coli strains MG1655 and DH5! "pir were used in this

study. They were routinely grown at 37°C in LB medium [1% (wt/vol) NaCl, 1% [wt/vol] tryptone, 0.5%
[wt/vol] yeast extract]. If necessary, 50 #g/ml antibiotic was added into the medium. P. luminescens DJC
(2) 1° and 2° cells were obtained from the lab of David Clarke (University College Cork, Ireland) and were
cultivated aerobically in either LB medium or CASO medium (0.5% [wt/vol] NaCl, 0.5% [wt/vol] peptone
from soy, 1.5% [wt/vol] tryptone) at 30°C. If necessary, the growth medium was supplemented with
50 #g/ml rifampin (Sigma-Aldrich). For preparation of agar plates, 1.5% (wt/vol) agar was added to the
respective medium.

Bioluminescence bioassays. Luminescence measurements were performed by cultivation of P.
luminescens DJC 1° and 2° cells in black 96-well plates with transparent bottoms (Corning, Bodenheim,
Germany) and recording of optical density (OD) as well as luminescence using an Infinite-500 reader
(Tecan, Salzburg, Austria). Additionally, single colonies of the respective P. luminescens variants were
streaked onto LB plates and incubated at 30°C for 48 h. Subsequently, bioluminescence was monitored
using a chemiluminescence imager (Peqlab, Erlangen, Germany) with a 5-min exposure time.

Pathogenicity bioassays. Fifth-instar larvae of Galleria mellonella (reared in our lab) were incubated
on ice for 10 min to reduce movement and surface sterilized in a 70% (vol/vol) ethanol bath, followed
by a bath of sterile water. Larvae were infected via subcutaneous injection of approximately 2,000 P.
luminescens DJC 1° or 2° cells using a sterilized microsyringe (1702 RN, 25 #l; Hamilton). The infected
larvae were then incubated at 30°C, and the mortality rate was determined by counting dead and live
animals after 24 h and 48 h.

FIG 8 Model of extended life cycle of 2° cells in soil. As only 1° cells are able to reassociate with the nematodes
and emerge from the cadaver, 2° cells are left behind in the soil. Based on our transcriptome data, it seems likely
that 2° cells are better adapted to free living in soil and thereby are able to survive changing and challenging
environmental conditions but also develop strategies to utilize alternative nutrients which are present in soil and
which are most likely derived from plants. Eventually, they may find a yet unknown way to reenter the life cycle
of P. luminescens.
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Protease bioassays. P. luminescens DJC 1° and 2° cells were grown overnight in LB medium at 30°C.
Then, an aliquot of 50 !l (OD at 600 nm [OD600] of 1.0) was dropped onto the middle of a skim-milk agar
plate (1% [wt/vol] skim milk, 0.3% [wt/vol] yeast extract, 1.2% [wt/vol)] agar), and the plates were
incubated for 2 days at 30°C.

Lipase activity bioassays. P. luminescens DJC 1° and 2° cells were grown overnight in LB medium
at 30°C. Then, an aliquot of 50 !l (OD600 of 1.0) was dropped onto the middle of a Tween 20 agar plate
(1% Tween 20 [vol/vol)], 1% [wt/vol] tryptone, 0.5% [wt/vol] NaCl2, 0.1% [wt/vol] CaCl2·2 H2O, 2% [wt/vol]
agar], and the plates were incubated for 2 days at 30°C. The precipitation of the calcium salt was visually
monitored.

Antibiotic bioassays. For testing antibiotic activity, we used soft-agar plates supplemented with
Bacillus subtilis as a test strain. For that purpose, an overnight culture of B. subtilis at an OD600 of 2 to 3
in a 1:100 dilution was added to liquid hand-warm LB agar medium (0.8% [wt/vol] agar). After the plates
were polymerized, an aliquot of 30 !l (OD600 of 1.0) of the respective P. luminescens DJC 1° or 2° cells was
dropped onto the middle of the agar plate and incubated for 48 h at 30°C.

Symbiosis bioassays. An aliquot of 50 !l of an overnight culture of P. luminescens DJC 1° and 2° cells,
diluted to an OD600 of 1.0, was spread in a Z pattern onto the surface of a lipid agar plate (1% [vol/vol]
corn syrup, 0.5% [wt/vol] yeast extract, 5% [vol/vol] cod liver oil, 2% [wt/vol] MgCl2·6 H2O, 2.5% [wt/vol]
Difco nutrient agar [Becton, Dickinson, Heidelberg, Germany]) using an inoculating loop. The plates were
incubated at 30°C for 3 days before addition of 50 surface-sterilized axenic Heterorhabditis bacteriophora
infective juvenile (IJ) nematodes to the bacterial biomass. Nematodes were surface sterilized by washing
in a solution (0.4% [wt/vol]) of hyamine (Sigma-Aldrich, Deisenhofen, Germany). The plates were kept at
room temperature. Nematode recovery was assessed 7 to 8 days after addition of IJ nematodes by
counting the number of hermaphrodites on the lipid agar plate.

Pigmentation. The development of red pigments was visually noted after 3 days of growth of P.
luminescens DJC 1° and 2° cells on LB plates at 30°C or 3 days after injection of the bacteria into G.
mellonella larvae. Additionally, pigmentation was quantified by determining the anthraquinone (AQ)
production via high-performance liquid chromatography (HPLC). To this end, 100 ml of LB medium was
inoculated to an OD600 of 0.1 using overnight cultures of P. luminescens DJC 1° and 2° cells. After 72 h
of growth at 30°C, 15 ml of each culture was centrifuged for 5 min at 5,000 rpm (at room temperature
[RT]). Then, 10 ml of the resulting supernatant was transferred into a new reaction tube and mixed with
10 ml of ethyl acetate plus 0.1% (vol/vol) formic acid (FA) and shaken for 1 h at RT. Subsequently, the
reaction tube was kept standing for 1 h and briefly centrifuged in order to separate the organic (upper
phase) from the hydrophilic phase. The latter was removed with a vacuum evaporator (Heidolph) at
240 ! 105 Pa at 42°C. The extracts were resuspended in 750 !l of methanol and analyzed by HPLC-UV
(Thermo Scientific) using a C18 Hypersil Gold column (particle size, 5 !m; 250 by 4.6 mm), with detection
achieved by measuring UV absorbance at 430 nm. Acetonitrile (ACN) plus 0.1% (vol/vol) FA was used as
the mobile phase. With that, a gradient from 5% (vol/vol) to 95% (vol/vol) ACN– 0.1% (vol/vol) FA in a
period of 25 min was followed by an isocratic step (95% [vol/vol] ACN plus 0.1% FA) with a flow rate of
0.5 ml/min. The column temperature was set at 30°C. The resulting peak areas were normalized against
the optical density of the culture measured at the harvesting step.

RNA preparation. Total RNA from three independent cultures of DJC 1° or DJC 2° cells in the
exponential growth phase (6-h culture, 3 ! 109 CFU/ml) and early stationary phase (18-h culture,
10 ! 109 CFU/ml) grown at 30°C was extracted. The pellets of harvested cells were resuspended in 500 !l
of ice-cold AE buffer (20 mM NaAc, pH 5.2; 1 mM EDTA, pH 8.0), and then 500 !l of Roti-Aqua-P/C/I
(where P/C/I is phenol, chloroform, and isoamyl alcohol) (Roth) and 25 !l of 10% SDS were added. After
vortexing, the mixture was incubated for 30 min at 60°C with shaking. Subsequently, the samples were
placed into a refrigerator for one night. On the next day, the samples were centrifuged at 16,100 relative
centrifugal force units (rcf) for 20 min at 0°C. Afterwards, the supernatant was transferred into 5PRIME
Phase Lock gel tubes (Quantabio), supplemented with 500 !l of P/C/I and 50 !l of 3 M NaAc, pH 5.2, and
after mixing the tubes were centrifuged at 16,100 rcf for 10 min at 0°C. Then the supernatants were
mixed with 1 ml of 96% ethanol (EtOH) and held at "80°C for overnight precipitation. On day 3 samples
were again centrifuged at 16,100 rcf for 30 min at 0°C, but this time the supernatant was discarded. To
wash the pellet, 1 ml of 80% EtOH was added and subsequently removed by centrifugation at 16,100 rcf
for 10 min at 0°C. This washing step was repeated two times. Then the pellet was air dried for 60 min with
an open lid and resolved in 100 !l of diethyl pyrocarbonate (DEPC)-treated water. Five micrograms of
RNA was then treated with DNase I (ThermoFisher) to remove genomic DNA. Integrity and quantity of
total RNA samples were tested with an Agilent 2100 Bioanalyzer system. To eliminate rRNA, a Ribo-Zero
rRNA removal kit for Gram-negative bacteria was used according to the protocol provided by the
manufacturer (Illumina). Afterwards, an additional quality check with the Agilent 2100 Bioanalyzer system
was performed.

Transcriptome analysis. To sequence RNA samples, cDNA libraries were generated using an
NEBNext Ultra II RNA Library Prep kit for Illumina (New England Biolabs [NEB]), according to the
manufacturer’s instructions, starting from 50 ng of rRNA-depleted RNA. The libraries were quality
controlled by analysis on an Agilent 2000 Bioanalyzer with an Agilent High Sensitivity DNA kit (Agilent
Technologies) for fragment sizes of around 200 to 500 bp. Libraries were pooled, and sequencing on a
MiSeq sequencer (2- by 75-bp paired-end sequencing; version 3 chemistry [Illumina]) was performed at
the Genomics Service Unit (Ludwig-Maximilians-Universität [LMU] Biocenter, Martinsried, Germany). CLC
Genomics Workbench (version 11.0.0; Qiagen) was used to analyze the data. Raw reads were trimmed for
quality and adapter sequences, mapped to the reference genome (P. luminescens DJC; GenBank
accession number NZ_CP024900.1), and analyzed using an RNA-Seq analysis tool. We selected differen-
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tially expressed genes having a P value of !0.05, and the filter for the fold change was set to values of
less than !3 or greater than 3. To exclude single outliers, the limit for the maximum group mean was
set to "20. The functions of the genes of interest were extracted from the UniProt (https://www.uniprot
.org) and NCBI (https://www.ncbi.nlm.nih.gov) databases.

RT-qPCR. To validate the whole-transcriptome data, reverse transcription-quantitative PCR (RT-qPCR)
was carried out on three independent total RNA preparations, in each case in triplicate. cDNAs were
synthesized during the run using a Luna Universal One-Step RT-qPCR kit (NEB), and the reactions were
performed according to the protocol provided by the manufacturer. Reactions and melting curves
were monitored in a LightCycler (Bio-Rad). Differences in gene expression levels were calculated using
the Pfaffl method (51) with recA serving as a housekeeping gene. All data are presented as a ratio of three
independent biological replicates. Values are means " the standard deviations.

Generation of knockout mutants. The fliC gene was deleted in P. luminescens 2° cells as described
previously (52). In brief, 500 bp upstream and downstream of genomic fliC (PluDJC_10155) were amplified
by PCR using the primer pair BamHI_fliC FA fwd (ACGGGATCCGGCAACGAATGCATCATG) and FliC FA ovl
FB rev (CCCTAGCTGAGCGATTAACGTGCCATAGTTAGAGTTCC) and the pair FliC FB ovl FA fwd (GGAACT
CTAACTATGGCACGTTAATCGCTCAGCTAGGG) and fliC FB_EagI rev (ACTCGGCCGCAATCACGGCTCCTTA
AC), introducing BamHI and EagI restriction sites (underlined) into the 5= end of the upstream fragment
and the 3= end of the downstream fragment, respectively. Overlap extension PCR was used to fuse the
two PCR products, which were then cloned into pNPTs138-R6KT using the BamHI and EagI restriction
sites, resulting in pNPTS-FAB ∆fliC. Correctness of the plasmid was confirmed by PCR using primers Check
pNPTS-FA FB FWD (TGCTTCCGGCTCGTATG) and Check pNPTS-FA FB REV (GTAAAACGACGGCCAGTCC).
This plasmid was then conjugated from E. coli S17-1 #pir into 2° cells, and exconjugants were selected
as Rifr Kmr colonies. The pNPTs138-R6KT plasmid contains the sacB gene, and after growth in LB broth
(with no selection), putative mutants were identified by screening for Rifr Sucr Kms colonies. The deletion
of fliC was confirmed by PCR using the primer pair BamHI_fliC FA fwd/fliC FB_EagI rev, followed by DNA
sequencing.

Swimming assays. Swimming assays were performed using soft-agar plates containing 0.3% (wt/vol)
agar, 1% tryptone (wt/vol), and 0.5% NaCl (wt/vol). Overnight cultures of 1° and 2° cells were set to an
OD600 of 1, and 5 $l was spotted into the center of a soft-agar swimming plate. Without any further
movement, the plates were incubated at RT. After 18 and 36 h the diameters of the colonies representing
swimming were documented and evaluated using the ImageJ tool for measuring distances. The data
were obtained from three independently performed biological and technical replicates.

Chemotaxis movement assays. Soft-agar swarming assays were performed using agar plates
containing 0.3% (wt/vol) agar, 1% tryptone (wt/vol), 1% NaCl (wt/vol), and the putative attractant. After
autoclaving, the soft agar was kept at 60°C. Right before use, 20 ml of soft agar was supplemented with
either 1 mM or 10 mM L-serine or maltose. As the concentration of the plant root exudate was unknown,
600 $l of exudate dissolved in methanol (MeOH-Ex) was added to 20 ml of 0.3% soft agar. After the plates
were polymerized, 10 $l of P. luminescens DJC 1° and 2° wild-type (WT), DJC 2° ∆fliC, and E. coli MG1655
cells at an OD600 of 0.1 were spotted into the center of the soft-agar plates. Swarming plates were
incubated for 24 h and at 30°C without motion. The swimming diameters, representing chemotaxis-
dependent movement, were documented and analyzed via the ImageJ tool for measuring distances. The
data were obtained from three independently performed biological and technical replicates.

Extraction of plant root exudates. To extract plant root exudates, 75 Pisum sativum plants were put
in flasks containing 250 ml of methanol. After 16 h of shaking at RT, the liquid was collected, filter
sterilized, and stored at 4°C until further use.
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Abstract 

The insect pathogenic bacterium Photorhabdus luminescens exists in two phenotypically 

different forms, designated as primary (1°) and secondary (2°) cells. Upon yet unknown 

environmental stimuli as well as global stress conditions phenotypic switching of up to 

50% of 1° to 2° cells is initiated. Among others, an important difference between the 

phenotypic forms is that 2° cells are unable to live in symbiosis with nematodes, and 

therefore are not able to re-associate with the nematodes. As a 100 % switching of 1° to 

2° cells of the whole population would lead to a break-down of the bacteria’s life cycle 

the switching process must be tightly controlled. However, the regulation mechanism of 

phenotypic switching is still puzzling. Here we describe two novel transcriptional 

regulators, XreR1 and XreR2, that play a major role in the switching process. Deletion of 

xreR1 in 1° or xreR2 in 2° cells as well as insertion of extra copies of xreR1 into 2° or 

xreR2 into 1° cells, respectively, was sufficient to induce the respective other phenotype. 

Furthermore, both regulators specifically bind to different promoter regions putatively 

fulfilling a positive auto-regulation. We found initial evidence that XreR1 and XreR2 

constitute an epigenetic switch whereby XreR1 represses xreR2 expression and XreR2 

self-reinforces its own gene by binding to XreR1. However, how expression of both 

transcriptional regulators is regulated still remains elusive. 

Introduction 

Photorhabdus luminescens subsp. laumondii DJC is a Gram-negative, 

entomopathogenic bacterium of the family of Enterobacteriaceae (Forst et al., 1997, 

Zamosa & Eckstein et al., 2018). P. luminescens harbors a complex dualistic life cycle 

including two hosts. Initially, the bacteria live in mutualistic symbiosis with infective 

juvenile (IJ) Heterorhabditidae nematodes colonizing their upper gut. These nematodes 

invade insect larvae such as Galleria mellonella where P. luminescens is released into 

the hemolymph and switches to its pathogenic part killing the insects (Forst et al.,1997). 
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The bacteria exist in two phenotypically different cell forms referred to as the primary (1°) 

and the secondary (2°) cells (Akhurst, 1980). These two cell forms are easy to 

distinguish as 1° cells exhibit specific phenotypic features that are absent in 2° cells. 

These properties include the biosynthesis of antibiotics or production of anthraquinones 

which results in reddish-brown pigmentation as well as bioluminescence, or the formation 

of crystalline inclusion proteins and cell clumps (Akhurst, 1980, Heinrich et al., 2016, You 

et al., 2006, Langer et al., 2017, Eckstein et al., 2019). Importantly, while both cell forms 

are equally pathogenic towards insects, 2° cells are not able to re-associate with the 

nematodes after depletion of nutrients derived by the insect host (Han & Ehlers, 2001, 

Eckstein et al., 2019). Since phenotypic switching also takes place after prolonged 

cultivation under laboratory conditions, a response to metabolic or environmental stress 

is suggested (Joyce et al., 2006). So far, the switch has only been observed 

unidirectional occurring from 1° to 2° cells suggesting that a key signal which is missing 

under laboratory conditions (Forst & Clarke, 2002). 

Since 2° cells of P. luminescens are not known to have the capability to re-associate with 

the nematodes after one cycle of insect infection phenotypic switching of the whole cell 

population would lead to a breakdown of the bacteria’s life cycle. Therefore, the 

switching process has to be tightly controlled. To the current state of knowledge at least 

two pathways are suggested to be involved in controlling phenotypic switching: a HexA-

dependent pathway and an O2-dependent pathway via the AstS/AstR system. HexA ist a 

LysR-type transcriptional regulator which has been shown to suppress 1°-specific 

features in a versatile way, directly or indirectly (Joyce & Clarke 2003; Langer et al., 

2017). In contrast, AstS/AstR reacts to global stresses and was shown to delay 

phenotypic switching. Although they both seem to be activated by global stress factors, 

no direct connection between the two regulation pathways is known so far (Joyce et al., 

2006). However, the complex regulatory network has not been fully understood yet. The 

nematode-bacteria complexes are used in agricultural industry where they are cultivated 
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in liquid media and then spread onto fields to prevent crop failure caused by insects. 

Hereby, the nematodes are pre-incubated with the bacterial symbiont as they essentially 

support their development and reproduction. Thus, phenotypic switching is one of the 

major reasons for process failure in industrial mass production (Han & Ehlers, 2001) and 

therefore the regulatory mechanism needs to be elucidated. 

Recently, comparative transcriptome analysis of 1° and 2° cells was performed. Thus, in 

total up about 640 genes were found to be differentially expressed in 2° cells. Among 

these some predicted regulators with yet unknown function were either highly up- or 

down-regulated in 2° cells (Eckstein et al., 2019). In this study demonstrate that two of 

these transcriptional regulators, PluDJC_21235 (XRE-transcriptional Regulator up-

regulated in 2° cells, xreR2) and PluDJC_21265 (XRE-transcriptional Regulator up-

regulated in 1° cells, xreR1) play an important role in the phenotypic switching process in 

P. luminescens DJC cell populations. Here we show that XreR1 and XreR2 play an 

important role in the control of phenotypic switching in P. luminescens as deletion or 

insertion of either xreR2 or xrerR1 in 1° as well as 2° cells, respectively, was sufficient to 

induce the respective other phenotype. Furthermore, we could prove a DNA-binding 

function as we identified promoter regions to that both, XreR2 and XreR1 specifically 

bind to. Lastly, we found first evidence that XreR1 and XreR2 constitute an epigenetic 

switch whereby the 2° phenotype is maintained by high xreR2 levels. 
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Results 

Effect of ∆xreR2 and ∆xreR1 on P. luminescens 1° and 2° cells The high differences 

in expression of xreR1 and xreR2 in 2° compared to 1° cells indicate an importance of 

those two transcriptional regulators in the process of phenotypic switching of P. 

luminescens. After we confirmed an up-regulation of xreR2 in 2° cells and higher 

transcription of xreR1 in 1° cells via RT-qPCR (Fig. 4-1), we attempted to analyze the 

putative impacts of xreR2 or xreR1 on phase variation in P. luminescens cell 

populations.  

 

Figure 4-1 Validation of gene expression levels via qRT-PCR To analyze gene 
expression levels of xreR1 and xreR2 in 1° as well as 2° cells qRT-PCR was performed. 
Therefore, RNA was collected from the respective P. luminescens strains during 
exponential (Exp, dark grey bars) as well as stationary (Stat, light grey bars) growth 
phase via P/C/I extraction and gene expression was depicted comparatively (fold 
change) from 2° to 1° cells. Error bars represent standard deviation of three 
independently performed experiments.  

To do so, we deleted xreR1 and xreR2 in the respective cell form. As xreR2 was higher 

expressed in 2° cells we generated 2° cells lacking this gene (2° DxreR2) as well as 1° 

cells lacking xreR1 (1° DxreR1) since this gene was higher expressed in 1° cells. The 

two cell forms of P. luminescens are easily to distinguish as they differ in many 
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phenotypic traits (Fig. 4-2A). Hereby, we observed red pigmentation of 2° DxreR2 cells 

which usually is a 1°-specific feature and a loss of pigmentation in the 1° DxreR1 strain 

(Fig. 4-2B). 

Upon these findings we went on analyzing other 1°-specific traits. And indeed, we 

observed the 1°-specific phenotype in the 2° DxreR2 strain as it not only started to 

produce pigments but also light as well as antibiotics. Additionally, 2° DxreR2 cells 

formed mucoid colonies on agar-plates, which is also specific for 1° cells. In contrast, 

cells of the 1° DxreR1 strain were not bioluminescent anymore and stopped to produce 

antibiotics as well forming mucoid colonies and thereby exhibited the 2°-specific 

phenotypes (Fig. 4-2B). Therefore, both deletion strains exhibit the phenotype of the 

respective other cell form, in the most predominant phenotypes of 1° and 2° cells (Tab. 

4-1).  

 

Figure 4-2 Overview of phenotypic differences in 1° and 2° wt cells as well as XRE-
mutation strains. A While 1° cells are red pigmented, produce bioluminescence and 
antibiotics and form mucoid colonies, 2° cells lack all of these features. B These specific 
phenotypes could be reversed by deleting xreR2 in 2° cells or xreR1 in 1° cells, 
respectively. Here both created knock-out strains developed the phenotype of the 
respective other cell form. C The same effect of turning 2° into 1° and the other way 
around was gained by inserting extra copies of xreR1 into 2° cells and extra copies of 
xreR2 into 1° cells.  
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We went on investigating the effects of increased xreR2 or xreR1 levels. Therefore, we 

chromosomally integrated extra copies of xreR1 into 2° cells (2° + PconstxreR1) and of 

xreR2 into 1° cells (1° + PconstxreR2), respectively, each under the control of the 

constitutive promoter Ptac. As seen before in the knock-out strains, 2° cells 

overexpressing xreR1 switched to the 1° phenotype while 1° cells containing increased 

xreR2 levels exhibited 2°-specific characteristics (Tab. 4-1) both regarding pigmentation, 

bioluminescence, antibiotic synthesis and colony morphology (Fig. 4-2C). 

The induced phenotypic switch in the deletion strains could successfully be reversed by 

chromosomally inserting extra copies of the respective gene (not shown) leading to three 

strains per phenotype, which were generated by solely altering xreR2 or xreR1 levels 

(Tab. 4-1). 

Table 4-1 List of resulting phenotypes caused by xreR1 or xreR2 expression 
levels. The 1° wt strain as well as the strains 2° DxreR2, 2° + PconstxreR1 and 
1°DxreR1 + PconstxreR1 exhibit the 1° phenotype while 2° wt cells as well as the 
strains 1° DxreR1, 1° + PconstxreR2 and 2° DxreR2 + PconstxreR2 show the 2° 
phenotype. 

1° phenotype 2° phenotype 

1° wt 2° wt 

2° DxreR2 1° DxreR1 

2° + PconstxreR1 1° + PconstxreR2 

1° DxreR1 +  

PconstxreR1 

2° DxreR2 +  

PconstxreR2 

 

Structural properties of XreR2 and XreR1 To get more insights about the function of 

XreR1 and XreR2 the amino acid composition of both were analyzed using Phyre2 

(Kelley et al., 2015). It turned out, that both xreR1 and xreR2 encode lambda (λ) 
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repressor-like proteins of the same superfamily, the XRE-transcriptional regulators. For 

XreR2 the highest homology was found to the DNA-binding protein Ner of the 

Enterobacteria phage Mu with the fold library ID d1nera_1. With coverage of 97%, 100% 

confidence and 59% sequence identity a structure XreR2 was predicted. According to 

this model it consists of five a-helices and no b-strands. Domain predictions revealed 

that the 69 amino acid long transcription factor solely consists of a lambda repressor like 

helix-turn-helix (HTH), also called Cro/C1 HTH DNA-binding domain. A signaling domain 

was not identified (Fig. 4-3A).  

 
Figure 4-3 Structure and domain prediction of XreR2 and XreR1. A According to 
predictions the 69 amino acids (AA) long XreR2 comprises 5 helices and contains a 
lambda repressor-like (Cro/C1) HTH DNA-binding domain ranging from position 2 to 68. 
B XreR1 comprising 78 AA was predicted to belong to the same superfamily and also 
forms 5 helices with a Cro/C1 HTH domain reaching from AA 12 to 69.  

 
Structure prediction for the slightly bigger 78 amino acid long protein XreR1 revealed a 

highly similar pattern. It is also built out of five a-helices and is predicted to only harbor a 

DNA-binding domain. With a coverage of 97%, 99.7% confidence and 42% sequence 

identity XreR1 was identified to belong to the SinR domain-like family (fold library ID: 
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d2b5aa1) which, according to prediction, also exclusively harbors a Cro/C1-type HTH-

domain (Fig. 4-3B).  

Putative DNA targets of XreR1 and XreR2 Alteration of both, xreR1 and xreR2 levels 

were able to induce the respective other phenotype. However, the regulation mechanism 

was still unclear. As both transcriptional regulators exclusively harbor an HTH DNA-

binding domain, we attempted to identify direct DNA targets. Here, we started with 

promoter regions of two of the most predominant 1°-specific traits: PluxC the promoter of 

the lux operon that is responsible for bioluminescence or to PantA, the promoter of the ant 

operon, responsible for AQ production. Additionally, we analyzed binding of XreR1 and 

XreR2 to both PxreR1 as well as PxreR2 to investigate auto-regulatory functions as well as 

putative effects of one protein onto the expression of the respective other protein. Lastly, 

we examined interaction of XreR1 or XreR2 with the promoter region of the operon 

PluDJC_21235/40 (PpTAS). With 70% or 64% of identity those two genes respectively 

encode homologs of CcdA and CcdB a toxin/anti-toxin system (TAS) in E. coli and were 

thereby termed ccdA-like (PluDJC_21235, putative antitoxin) and ccdB-like 

(PluDJC_21240, putative toxin) for this study. However, CcdB-like seems to be truncated 

resulting in only 71% coverage of E. coli CcdB. In general, TAS are known to be involved 

in persister cell formation of different bacterial species another kind of phase variation 

(Wood et al., 2013). Since both genes of this putative TAS (pTAS) CcdAB-like are also 

known to be up-regulated in 2° compared to 1° cells (Eckstein et al. 2019) and because 

of its close proximity to xreR2 as well as xreR1 the pTAS might play a role in the 

phenotypic switching process of P. luminescens.  

Binding kinetics of XreR1 and XreR2 with different target regions Initial MST 

analysis (data not shown) indicated binding of XreR2 to PxreR2, PpTAS as well as PxreR1. On 

the other XreR1 seemed to bind to its own promoter PxreR1 as well as to PxreR2. However, 
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none of both displayed binding to PluxC or PantA indicating no direct regulation of 

bioluminescence or AQ production by XreR1 and XreR2, respectively.  

Next, we investigated the binding kinetics of XreR2 with the three identified DNA targets 

PxreR2, PpTAS and PxreR1 and of XreR1 with PxreR1 and PxreR2 using surface plasmon 

resonance (SPR) analysis. To do so, the respective promoter regions were immobilized 

onto streptavidin chips using biotin labeled DNA. Hereby, again binding of XreR2 to 

PxreR1 (Fig. 4-4A), to its own promoter PxreR2 (Fig. 4-4B) as well as to PpTAS (Fig. 4-4C) 

was indicated.  

 

Figure 4-4 Binding kinetics of XreR2 and XreR1 with different promoter regions via 
SPR. The three promising promoters PxreR2, PxreR1 and PpTAS were respectively 
immobilized to a sensor chip and various concentrations of XreR2 and XreR1 were 
applied. Blue – 5000 nM; green - 2000 nM; yellow - 1000 nM; dark red - 500 nM; 
turquoise - 50 nM.; red - 25 nM; orange - 10 nM; grey - 5 nM; brown - 1 nM. All 
interactions show a strong on rate. Kinetics of XreR2 with PxreR2 (A), and PpTAS (B) and 
PxreR1 (C) indicate binding of the protein to all of the promoters while XreR1 strongly binds 
to its own promoter (D) as well as to PxreR2 (E). 

However, even upon applying 5000 nM of protein no saturation could be observed 

indicating a highly complex mode of action. The profile of the binding curves lets 

presume that the protein forms oligomers and is thereby able to bind to the DNA. 
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Consequently, no KD value could be calculated as the common algorithm does not fit this 

kind of binding profile.  

XreR1 in turn bound with high affinity (KD = 5.04 nM; ka= 1.54E+06 1/Ms; kd= 6.16E-3 

1/s) to its own promoter (Fig. 4D) and even stronger to PxreR2 displaying a KD value of 

3.67 nM (ka= 6.35E+05 1/Ms; kd= 1.47E-3 1/s; Fig. 4E). Both interactions seem to be 

very stable as the disassociation rate is very low. 

The XreR1/XreR2 network SPR analysis revealed a high affinity of XreR1 to bind PxreR2 

as well as hints of XreR2 interacting with PxreR1. Consequently, we attempted to 

investigate whether these bindings have activating or repressing effects using qRT-PCR.  

 

Figure 4-5 Relative expression levels of xreR2 and xreR1 in wildtype and XRE-
deletion strains. To respectively compare gene expression of xreR2 (blank bars) and 
xreR1 (striped bars) in 1° (orange), 2° (yellow), 2°DxreR2 (blue) and 1° DxreR1 cells 
(green) mRNA was harvested during exponential growth phase and analyzed via qRT-
PCR. Expression levels are depicted in percent, relative to expression of the 
housekeeping gene recA. The asterisks (***) indicate statistically significant differences 
with a p-value smaller than 0.001. Error bars represent the standard deviation of three 
independently performed experiments. N.s. not significant. 
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Here, xreR2 seems to be negatively controlled by XreR1 as xreR2 levels increased in the 

DxreR1 strain (Fig. 4-5). On the other hand, no significant difference of xreR1 expression 

between 2° wildtype and the 2° DxreR2 strain could be observed (Fig. 4-5). Thus, 

although 2° DxreR2 cells display the 1° phenotype, xreR1 levels of 1° wildtype were not 

restored here. This leads to the assumption that xreR1 is not under the control of XreR2 

and that solely the absence of xreR2 is sufficient to induce the 2° phenotype. 

In addition to protein-DNA interaction we also analyzed a putative interaction between 

both proteins, XreR1 and XreR2. Therefore, we conducted bacterial two hybrid assays. 

And indeed, blue colored colonies of the E. coli BTH101 cells harboring both plasmids 

(pUT18-xreR2 and pKT25-xreR1) indicate interaction of XreR1 and XreR2, or vice versa 

(Fig. 4-6). 

 

Figure 4-6 Bacterial two hybrid assay of XreR1 and XreR2. To analyze putative 
binding of both proteins E. coli BTH101 cells were co-transformed with pUT18-xreR2 
and pKT25-xreR1 and plated on LB agar plates containing X-Gal and IPTG. The 
empty plasmids as well as pUT18-zip and pKT25-zip served as negative or positive 
controls, respectively. The blue color of the BTH101 cells pUT18-xreR2 and pKT25-
xreR1 strongly indicates an interaction. 

 
Functionality of the putative toxin CcdB-like The binding profiles of XreR2 with 

PpTAS obtained via SPR analysis strongly indicate interaction. However, the pTAS 

CcdAB-like is similar to the CcdAB TAS of E. coli where in absence of the anti-toxin 

(CcdA), the toxin (CcdB) targets the bacterial DNA-gyrase causing cell death by inducing 

DNA breaks (Bernard & Couturier, 1992). Therefore, we attempted to investigate if 

CcdB-like of P. luminescens still induces cell death or if it might has changed in 
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functionality and therefore could have assumed other regulatory tasks e.g. phenotypic 

switching of P. luminescens. 

 

Figure 4-7 Analysis of impaired growth caused by ccdB-like. To analyze whether 
ccdB-like also acts as as a toxin we overexpression of ccdB-like in P. luminescens 1° as 
well as 2° cells. Furthermore, we deleted the cognate putative anit-toxin ccdA-like in both 
cell forms. and measured growth. Putative effects on the bacterias’ fitness was analyzed 
by measuring growth over time comparing A 1° wt to the toxin overexpressing strain 
(1°+PtacccdB-like) and the strain lacking the anti-toxin 1° DccdA-like as well as B 2° wt to 
the toxin overexpressing strain (2°+PtacccdB-like) and the strain lacking the anti-toxin 2° 
DccdA-like. Additionally, we overexpressed ccdB-like in E. coli cells and monitored 
growth in agar plates (C). 

To do so, we created knock-in strains overexpressing the ccdB-like gene in 1° and 2° 

cells. Additionally, we generated strains lacking the anti-toxin by deleting ccdA-like in 1° 

and 2°, respectively. 

Neither toxin overexpressing 1° + PtacccdB-like cells nor the antitoxin knock-out strain 

1 DccdA-like exhibited a decrease in fitness as they grew perfectly fine when cultivated in 

liquid media (Fig. 4-7A). Furthermore, there were also no hints of increased cell death in 

the 2° + PtacccdB-like as well as the 2°DccdA-like strain as they also showed growth 

behavior comparable to the wild type (Fig. 7B).  

As the pTAS is similar to the CcdAB system of E. coli we then overproduced the toxin 

homolog CcdB-like in Dh5a-lpir cells using the pBAD24 vector which harbors an 

arabinose inducible promoter. Upon arabinose addition we could not observe a 



Two novel XRE-transcriptional regulators play a major role in regulation of phenotypic 
heterogeneity in Photorhabdus luminescens cell populations 

 73 

disadvantage in growth compared to the non-induced cells on agar-plates (Fig. 4-7C) as 

well as in liquid culture (not shown). 

Discussion 

The appearance of two distinct phenotypically different cell forms makes P. luminescens 

a perfect model organism to study phenotypic heterogeneity. However, the regulation of 

phenotypic heterogeneity is still not completely understood. Two novel transcriptional 

regulators, XreR2 as well as XreR1, were identified to have major impact on phenotypic 

switching in P. luminescens. Both belong to the XRE (xenobiotic response element) -

superfamily which is the second most frequently occurring regulator family in bacteria 

(Barragán et al. 2005). Proteins of this family are usually activated by interaction with 

environmental signals ranging from small effector molecules to large proteins (Bai et al., 

1993; Fisher and Wray, 2002). Though, XreR2 and XreR1 were predicted to exclusively 

harbor a helix-turn-helix (HTH) DNA-binding domain similar to the Cro/C1 repressor 

protein of λ phage, comprising five a helices without any additional domain. In XRE-

regulators this Cro/C1-HTH domain, always located N-terminally, (Roberts et al., 1977; 

Sauer et al., 1982; Barragán et al., 2005) is highly conserved, while the C-terminal 

regulatory domain is variable (Kulinska et al., 2008). However, the XRE subfamily of λ-

like repressors is one of the best examples for simplest architectures as they almost 

entirely consist of a standalone HTH (Gehring et al. 1994). Several structures of Cro/C1-

type transcriptional regulators have been resolved in the past. Here, just like for XreR2 

and XreR1 the DNA-binding domain consists of five a helices which are highly 

conserved inside but much less at the extremities. Usually, the HTH which binds the 

DNA comprises the 2nd and 3rd helices. The remaining ones are involved in DNA-

contacts and are referred to as recognition helices (Aggarwal et al., 1988).  

We could successfully show that XreR2 binds to its own promoter. As expression of 

xreR2 is essential to maintain the 2° phenotype of P. luminescens, it seems likely that 
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XreR2 positively auto-regulates itself - also taking into account that the regulator is about 

500-fold up-regulated in 2° cells (Eckstein et al. 2019). Furthermore, we could show 

binding of XreR2 to PpTAS, the promoter of the putative TAS system CcdAB-like 

(PluDJC_21245/50). Since both of these genes are also higher expressed in 2° than 1° 

cells (Eckstein et al. 2019) the system is also presumably activated by XreR2. However, 

this still has to be proven. Lastly, XreR1 also binds to its own promoter again suggesting 

a positive feedback loop. 

Transcriptional regulators with phage-like HTH domains have usually repressing 

functions. However, in Corynebacterium glutamicum a member of the XRE family, ClgR, 

activates an operon encoding Clp proteases which then in turn recognize and degrade 

defective proteins (Gottesman et al., 1998). Furthermore, very recently an XRE 

transcriptional regulator of Streptococcus suis, SrtR, was found to be enhance the cells 

tolerance towards oxidative stress and high temperature (Hu et al., 2019).  

Binding kinetics of XreR2 via SPR did not go into saturation for none of the tested 

promoters indicating no 1:1 binding of XreR2. Phage repressor-like proteins of the XRE 

superfamily are one example of proteins with the simplest HTH architecture. Almost 

every member of this family is built up by a standalone HTH. Among them some proteins 

harbor short extensions that are used to support protein folding and DNA contact 

(Aravind et al. 2005). Therefore, the initiate binding of XreR2 to its DNA targets could 

allow the protein to fold properly and so enables binding the specific site.  

One of the best-studied XRE transcriptional regulators with a DNA-binding domain 

similar to that of the phage repressor proteins, C1 and Cro, is SinR of Bacillus subtilis 

(Lewis et al., 1998) which represses biofilm formation by binding to the respective eps 

promoter. It has been shown that SinR represses the expression of slrR that encodes 

another XRE-family member, SlrR, which in turn represses SinR via direct binding. Thus, 

SinR and SlrR create a double negative feedback loop directly controlling genes involved 
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in cell separation and motility. Upon activation of that loop the cell gets time dependently 

locked in a high SlrR state (Chai et al., 2010). The binding of XreR1 to PxreR2 and the 

increase of xreR2 levels in the 1°DxreR1 strain also indicate a repression o xreR2 by 

XreR1. Furthermore, both proteins seem to interact with each other. Therefore, XreR1 

and XreR2 might also constitute an epigenetic switch comparable to the one of SinR and 

SlrR of B. subtilis (Fig. 4-8).  

No binding of XreR2 or XreR1 to the PluxC or PantA promoter could be detected indicating 

no direct repression of bioluminescence or AQ-production. Here, it is worth mentioning 

that interaction assays were performed using either only XreR1 or XreR2. In the 

SinR/SlrR model of B. subtilis the respective genes are regulated by a complex of both 

proteins (Chai et al., 2010). Therefore, a mixture of both, XreR1 and XreR2, might be 

needed to enable binding to promoter regions of phase specific phenotypes and thereby 

repressing or activating gene expression (Fig. 4-8). 

 

Figure 4-8 Model of gene regulation via XreR1 and XreR2. XreR1 binds to its own 
promoter - most probably leading to a positive feedback loop. Furthermore, it represses 
the expression of xreR2 and thereby maintains the 1° phenotype. XreR2 in turn binds to 
XreR1 thereby putatively re-enforcing its own expression. The built XreR1-XreR2 
complex might directly represses 1°-specific features inducing the 2° phenotype. 
Additionally, XreR2 most probably activates expression of the TAS-derived ccdAB-like 
system which could maintain the 2° phenotype by e.g. activating 2°-specific features. 
Green: activation; red: inhibition. 
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In B. subtilis the antagonist of SinR, SinI, gets activated during stationary phase and 

binds to SinR thereby releasing Peps and promoting biofilm formation (Gaur et al., 1991; 

Bai et al., 1993). This suggests that the phenotypic switch is also reversible in P. 

luminescens DJC. However, the respective signal to trigger that conversion is still 

unknown.  

Lastly, the role of the putative TAS CcdAB-like still remains elusive. There are 

several TAS which are described to be involved in persistence. Persister cell 

formation is one of the best-studied phenotypic heterogeneity forms using the bet-

hedging strategy. Hereby, upon antibiotic treatment, single cells reversibly switch into 

a transient growth arrested state which allows them to survive the stress situation 

(Veening et al. 2008).  

The CcdB protein of E. coli owes its toxicity to the last three C-terminal amino acid 

residues tryptophan (99), glycine (100) and isoleucine (Bahassi et al., 1995). 

Sequence analysis revealed that CcdB-like is also C-terminally truncated including 

the respective amino acids and thereby lost the amino acid residues responsible for 

CcdB toxicity in E. coli. This could explain the absence of an obvious phenotype in 

DccdA-like or PtacccdB-like strains indicates that the CcdAB-like system arose from a 

TAS but owns a new function. The facts that the pTAS originates from another 

phenotypic heterogeneity inducing system, lies in close proximity to xreR2 and xreR1 

and that XreR2 directly binds to its promoter strongly indicates an involvement in the 

process of phenotypic switching. As ccdA-like as well as ccdB-like were found to be 

up-regulated in 2° cells (Eckstein et al., 2019) a positive regulation of it via XreR2 

seems likely. The CcdAB-like system might help to maintain the 2° phenotype by e.g. 

activating 2°-specific features (Fig. 4-8). 
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Taken together, we identified two novel XRE-transcriptional regulators, XreR1 and 

XreR2, which play a major role in the process of phenotypic switching in 

P. luminescens. Both proteins interact with each other and are able to bind DNA and 

thereby display a complex regulatory network putatively including a double negative 

feedback loop. However, whether phase specific features are directly regulated via a 

XreR1-XreR2 complex or by some other proteins that are under the control of XreR1 

or XreR2 has to be elucidated.  
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Material and Methods 

Bacterial strains and growth conditions E. coli strains MG1655 and DH5αλpir 

were used in this study. They were routinely grown at 37° C in LB medium [1% (w/v) 

NaCl; 1% (w/v) tryptone; 0.5% (w/v) yeast extract]. If necessary, 50 μg/ml antibiotic 

was added into the medium. All P. luminescens strains were cultivated aerobically in 

either LB medium or CASO medium [0.5% (w/v) NaCl, 0.5% (w/v) peptone from soy; 

1.5% (w/v) tryptone] at 30°C. If necessary, the growth medium was supplemented 

with 50 μg/ml rifampicin (Sigma Aldrich). For preparation of agar plates, 1.5% (w/v) 

agar was added to the respective medium. 

RNA preparation Total RNA from three independent cultures of DJC 1° or DJC 2° 

cells grown to optical densities at 600 nm (OD600) of 3 (mid-exponential growth 

phase) and 10 (early stationary growth phase) was extracted. Therefore, the pellets 

of harvested cells were resuspended in 500 µl ice-cold AE-buffer [20 mM NaAc pH 

5.2, 1mM EDTA pH 8.0] then 500 µl Roti®-Aqua-P/C/I (Roth) and 25 µl 10% SDS 

was added. After vortexing the mixture was incubated for 30 min at 60° C with 

shaking. Subsequently the samples were placed into the fridge for one night. On the 

next day the samples were centrifuged with 16.100 rcf for 40 min at 0° C. Afterwards 

the supernatant was transferred into 5PRIME Phase Lock Gel Tubes (Quantabio), 

supplemented with 500 µl P/C/I and 50 µl 3M NaAc pH 5.2 and after mixing the tubes 

were centrifuged with 16.100 rcf for 10 min at 0°C. Then the supernatants were 

mixed with 1 ml 96% EtOH and put on -80° C for overnight precipitation. On day 3 

samples were again centrifuged with 16.100 rcf for 30 min at 0°C but this time the 

supernatant was discarded. To wash the pellet 1 ml 80% EtOH was added and 

subsequently removed by centrifugation with 16.100 rcf for 10 min at 0°C. This 

washing step was repeated 2 times. Then the pellet was air dried for 60 min with 
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open lid and resolved in 100 µl DEPC-treated water. 5 µg of RNA were then treated 

with DNaseI to remove genomic DNA.  

qRT-PCR To validate the whole-transcriptome data, quantitative reverse 

transcription-PCR (qRT-PCR) was carried out on three independent total RNA 

preparations, in each case in triplicates. cDNAs were synthesized during the run 

using Luna® Universal One-Step RT-qPCR Kit (NEB biolabs) therefore, the reactions 

were performed according to the protocol provided by the manufacturer. Reactions 

and melting curves were monitored in the LightCycler (BioRad). Differences in gene 

expression levels were calculated using the Pfaffl-Method (Pfaffl, 2001) with recA 

serving as housekeeping gene. All data are presented as a ratio of three independent 

biological replicates. Values are means ± the standard deviation. 

Generation of plasmids To generate pNPTS-FAB-DxreR2 500 bp upstream (FA) 

and downstream (FB) of genomic xreR2 were amplified by PCR using the primer 

pairs BamHI-xreR2-FA fwd + xreR2-FA-ovl-FB rev and xreR2-FB-ovl-FA fwd + 

xreR2-FB-EagI rev introducing a BamHI and a EagI restriction site to the 5′ end of the 

upstream fragment and the 3′ end of the downstream fragment, respectively. Overlap 

extension PCR was used to fuse the two PCR products which were then cloned into 

the pNPTs138-R6KT backbone using the BamHI and EagI restriction sites. 

Correctness of the plasmid was confirmed by PCR using primers check-pNPTS fwd 

and check-pNPTS rev.  

pNPTS-FAB-DxreR1 was generated the same way, however with different restriction 

sites. Here EcoRI and EagI were used. Therefore, the respective primer pairs were 

EcoRI-xreR1-FA fwd + xreR1-FA-ovl-FB rev and xreR1-FB-ovl-FA fwd + xreR1-FB-

EagI rev. 
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For pPINT-Ptac-xreR2 and pPINT-Ptac-xreR1 generation a lacI-Ptac fragment (PstI-

lacI_Ptac fwd: + Ptac-ovl-blank rev) was fused to either genomic xreR2 (xreR2-ovl-

Ptac fwd: + xreR2-EagI rev) or genomic xreR1 (xreR1-ovl-Ptac fwd + xreR1-EagI rev) 

via overlap PCR, respectively, resulting in Ptac-xreR2 and Ptac-xreR1 each harboring 

a 3’-PstI and 5’-EagI restriction site. Afterwards the single fragments were cloned into 

the empty pPINT backbone. Correctness of the plasmids were checked by 

sequencing using the primers check-pPINT fwd and check-pPINT rev.  

To generate pPNPTS-FAB-DccdA-like the up- and downstream flanking regions of 

genomic ccdA-like were amplified using the primer pairs BamHI-FA ccdA-like fwd + 

FA ovl FB ccdA-like rev and FB ovl FA ccdA-like fwd + FB ccdA-like-EagI rev. The 

resulting amplicons were then fused via overlap extension PCR and thereby FAB 

harboring a 5’-BamHI and 3’-EagI restriction site was generated. Using the 

respective restriction enzymes FAB was cloned into the empty pNPTs138-R6KT 

backbone.  

pNPTS-FAB-DccdB-like was achieved by the same procedure. FA was amplified 

using the primer pair BamHI-FA ccdB-like fwd + FA ovl FB ccdB-like rev and FB was 

achieved by using primers FB ovl FA ccdB-like fwd and FB ccdB-like-EagI rev. Again, 

both flanking regions were fused via overlap extension OCR and the resulting FAB 

fragment was cloned into the pNPTs138-R6KT backbone using the restriction 

enzyme sites BamHI and EagI.  

For pPINT-Ptac-ccdB-like generation again the lacI-Ptac fragment was fused to 

genomic ccdB-like amplified with the primers ccdB-like ovl Ptac fwd and ccdB-like-

EagI rev via overlap extension PCR. The resulting fragment was then cloned into the 

empty pPINT vector by utilizing the restriction enzymes PstI and EagI. 
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To gain the plasmid pBAD24-ccdB-like, genomic ccdB-like was amplified using the 

primers NheI-ccdB-like fwd and ccdB-like-XmaI rev. The thereby introduced 

restriction sites were used to clone the gene into the pBAD24 backbone downstream 

of the Para promoter. 

Correctness of all plasmids based on the pNPTs138-R6KT backbone were checked 

by sequencing using the primers: check-pNPTS fwd and check-pNPTS rev. 

Integrational plasmids with pPINT backbone were sequenced with the primer pair 

check pPINT fwd + check-pPINT rev. 

Rightness of the pBAD24-ccdB-like plasmid was confirmed by sequencing with the 

following primers: check-pBAD24 fwd + check-pBAD24 rev. 

(For a list of all oligo sequences used in this study see Supplementary Table S1) 

Generation of knock out strains For deletion of genomic xreR2 in 2° cells or xreR1 

in 1° cells the plasmids pNPTS-FAB-DxreR2 and pNPTS-FAB-DxreR1 were used, 

respectively. The genes were depleted via double homologous recombination as 

described previously (Easom & Clarke, 2008). Therefore, the respective plasmid was 

conjugated from E. coli S17-1 λpir into 1° or 2° cells and exconjugants were selected 

as RifRKmR colonies. The pNPTS138-R6KT plasmid contains the sacB gene and, 

after growth in LB broth (with no selection), putative mutants were identified by 

screening for RifR SucR KmS colonies. Successful deletion of xreR2 or xreR1 was 

confirmed by PCR using either the primer pair BamHI-xreR2-FA fwd/ xreR2-FB-EagI 

rev or EcoRI-xreR1-FA fwd/ xreR1-FB-EagI, respectively, followed by DNA 

sequencing.  

Insertion of extra gene copies into P. luminescens genome To chromosomally 

insert constitutive expressed copies of either xreR2, xreR1 or ccdB-like into 1° or 2° 
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cells, respectively, the non-coding intergenic region between the two genes glmS and 

rpmE was utilized. Therefore, the respective plasmids pPINT-Ptac-xreR2, pPINT-

Ptac-xreR1 or pPINT-Ptac-ccdB-like were used. Insertion and backbone depletion 

were obtained via double homologous recombination as described above. Successful 

insertion of each gene was checked using again the primers check-pPINT fwd and 

check-pPINT rev followed by DNA sequencing. 

Bioluminescence bioassays To analyze bioluminescence 1 ml LB were inoculated 

to an OD600=1 with overnight cultures of the respective P. luminescens variant. 

Subsequently, 5 µl of were spotted onto LB plates and incubated at 30°C. After 48 

hours bioluminescence was monitored using a Chemiluminescence Imager (Peqlab, 

Erlangen) using 5 min exposure time.  

 
Antibiotic bioassays For testing antibiotic activity, soft agar plates supplemented 

with Bacillus subtilis as test strain were used. Briefly, an overnight culture of B. 

subtilis (OD600 = 2–3) was added in 1:100 dilution to liquid hand-warm LB agar 

medium 0.8% (w/v) agar. After the plates were polymerized, 30 μl (OD600 = 1.0) of 

the respective P. luminescens DJC strain, was dropped onto the middle of the agar 

plate and incubated for 48 h at 30 °C.  

 
Pigmentation The development of red pigments was visually noted after 3 days of 

growth of P. luminescens DJC 1° and 2° cells on LB plates at 30°C  

 
Heterologous expression of ccdB-like in E. coli E. coli Dh5a-lpir cells were 

transformed with the pBAD24-ccdB-like plasmid. To induce gene expression, Para 

was activated by adding 0.2 % arabinose to the medium. 

Bioinformatical analysis Structure prediction of XreR2 and XreR1 was performed 

by Phyre2 (Kelley et al., 2015) and visualized using USCF Chimera 1.13.1 (Resource 
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for Biocomputing, Visualization, and Informatics). Additional domain prediction was 

performed by using InterPro (https://www.ebi.ac.uk/interpro/). 

Heterologous overproduction of recombinant XreR1 and XreR2  

E. coli BL21(DE3) pLysS harboring plasmid pET28-His-SUMO-XreR1 or pET28-His-

SUMO-XreR1 was grown to exponential phase at 37°C. Expression of genes encoding 

N-terminally His-SUMO-tagged XreR1 (His6-SUMO-XreR1) or XreR2 (His6-SUMO-

XreR2) was induced with 0.5 mM isopropyl-b-D-thiogalactopyranoside (IPTG) and the 

bacteria were incubated at 18°C over night. Subsequently, the cells were harvested and 

washed with at 6000 rpm for 30 minutes at 4°C. The cell pellet was frozen in liquid 

nitrogen and stored at -80°C until further use. Cells were resuspended in 0.2 ml/g lysis 

buffer [50 mM Tris/HCl pH 7.5, 5% glycerol (v/v), 10 mM MgCl2, 0.5 mM phenylmethane 

sulfonyl fluoride (PMSF), 1 mM dithiotreitol (DTT), 10 ng/ml DNAse] and lysed by 

passage through a high-pressure cell disrupter (Constant Systems). After centrifugation 

(1 hour at 45000 rpm and 4°C) of the disrupted cells, the supernatant containing the 

respective cytosolic His6-SUMO-protein was incubated with Ni2+-nitrilotriacetic acid (NTA) 

resin (Qiagen) preequilibrated with lysis buffer. After 1 h of incubation, the protein-resin 

complex was washed twice with washing buffer (50 mM Tris/HCl pH 7.5, 10% glycerol 

(v/v), 500 mM NaCl, 10 mM imidazole, 2 mM b-Mercaptoethanol (MeOH)). Finally, the 

His-SUMO-tagged protein was eluted in several fractions with buffer containing 250 mM 

imidazole, 50 mM Tris/HCl pH 7.5, 10% glycerol (v/v), 500 mM NaCl, 2 mM b-MeOH. 

Both proteins were dialyzed against XreR protein buffer (50 mM Tris/HCl pH 7.5, 10% 

glycerol (v/v), 500 mM NaCl, 2 mM b-MeOH) over night at 4°C. To cleave off the His-

SUMO tag, 1 mg of the protease Senp2 per 500 mg protein was added to the respective 

dialysed His-SUMO-tagged protein and another 4 h step of dialysis against the XreR 

protein buffer was performed. Subsequently, the Ni2+-NTA based affinity chromatography 

was repeated. As the tag was separated from the protein, the protein eluted in the flow 



Two novel XRE-transcriptional regulators play a major role in regulation of phenotypic 
heterogeneity in Photorhabdus luminescens cell populations 

 84 

through while only the tag bound to the beads and were eventually eluted using elution 

buffer. Protein concentrations were determined using NanoDrop (ThermoFisher). 

Surface plasmon resonance (SPR) spectroscopy SPR analysis was performed in 

a Biacore T200 (GE Healthcare, München) using carboxymethyl dextran sensor 

chips that were pre-coated with streptavidin (XanTec SAD500L, XanTec Bioanalytics 

GmbH, Düsseldorf). Promoter regions were 5’-biotinylated via PCR using the primers 

Btn-PxreR2 fwd and PxreR2 rev. for genomic Btn-PxreR2 amplification. Genomic Btn-

PxreR1 was achieved using the primer pair Btn-PxreR1 fwd + PxreR1 rev. Lastly, Btn-

PpTAS was amplified using Btn-Ptas fwd and Ptas rev. 

Before immobilization of the DNA fragment, the chip was equilibrated by three injections 

using 1 M NaCl/50 mM NaOH at a flow rate of 10 μl/min. 10 nM of the respective 

biotinylated promoter DNA was injected using a contact time of 420 seconds and a flow 

rate of 10 μl/min. 1 M NaCl/50 mM NaOH/50 isopropanol was injected as a final wash 

step. Approximately 600 RU of PxreR1 was captured onto flow cell 2, PxreR2 onto flow cell 3 

and PpTAS onto flow cell 4, respectively, of the chip. XreR2 or XreR1 were diluted in 

dialysis buffer and passed over flow cells 1 to 4 in different concentrations (0 nM, 0.1 nM, 

1 nM, 5 nM, 10 nM, 25 nM, 50 nM, 100 nM, 250 nM, 500 nM, 1000 nM, 2000 nM and 

5000 nM) using a contact time of 180 sec followed by a 240 sec dissociation time before 

the next cycle started. The experiments were carried out at 25°C at a flow rate of 30 

μl/min. After each cycle, regeneration of the surface was achieved by injection of 2.5 M 

NaCl for 60 sec at 30 μ/min flow rate. Sensorgrams were recorded using the Biacore 

T200 Control software 2.0 and analyzed with the Biacore T200 Evaluation software 2.0 

(GE Healthcare, München). The surface of flow cell 1 was used to obtain blank 

sensorgrams for subtraction of bulk refractive index background. The referenced 

sensorgrams were normalized to a baseline of 0. The 1:1 binding algorithm was used for 

calculation of the binding affinity.  
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6 Concluding Discussion 

Phenotypic heterogeneity is widespread within bacteria. As Photorhabdus luminescens 

exists in two distinct phenotypic forms, the primary (1°) and secondary (2°) cells it is an 

ideal organism to study the molecular mechanisms of this phenomenon. So far, only little 

is known about the regulation mechanism of phenotypic switching as well as of the 

advantages for the cell population to exist in two different forms. In this work, the 

regulation of phenotypic switching in P. luminescens and the general function of 2° cells 

was investigated. The laboratory strain P. luminescens subsp. laumondii TT01Rif is 

commonly used for scientific research. So far, it only has been described as 

spontaneous rifampicin resistant mutant of TT01. However, its genome has never been 

sequenced before. As a first step of this work, TT01 as well as TT01Rif were evaluated by 

performing comparative whole genome sequencing and analysis of phenotypic traits. 

Due to big differences in sequence and phenotypic characteristics the TT01Rif strain 

could be raised to the status of an independent isolate and has been renamed into P. 

luminescens subsp. laumondii DJC (Chapter 2). In the course of this work comparative 

transcriptome analysis of DJC 1° and 2° cells could proof the mediation of phenotypic 

differences at transcriptional level (Chapter 3). Furthermore, the obtained data suggest a 

better adaption of 2° cells to different stress conditions and alternative nutrients. Thus, 

they might be better adapted to a free living in soil (Chapter 3, Chapter 5). Via RNA-Seq 

analysis also two transcriptional regulators, XreR2 and XreR1, were identified to play a 

major role in phenotypic heterogeneity of P. luminescens. Altering the gene levels of 

xreR2 or xreR1 could induce a 100% switch to the respective other cell form (Chapter 4). 
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6.1 The complex regulation of phenotypic heterogeneity in P. 

luminescens 

One of the most important characteristics that is absent in 2° cells of P. luminescens is 

the ability to support nematode growth and development (Boemare & Akhurst, 1988, Fig. 

3-1A). Thereby, 2° cells cannot re-associate with the nematodes after the nutrients of the 

insect larvae are depleted. As a 100 % switching frequency would lead to a break-down 

of the bacteria’s life cycle the switching process has to be tightly regulated. The LysR-

type transcriptional regulator HexA was found to act as repressor of 1°-specific features 

(Joyce & Clarke 2003). Recently, it could be shown that hexA directly represses cell 

clumping and presumably indirectly inhibits bioluminescence at post-transcriptional level 

putatively involving small RNAs (Langer et al., 2017). By comparing the genomes of P. 

luminescens TT01 and DJC, among others, six new mobile genetic elements comprising 

inverted repeats (MITEs) were identified. Those repeats are related to transposases and 

can thereby be mobilized in trans by the cognate transposase (Filée et al., 2007). As 

they are considered to be non-coding these MITEs and their respective RNA might also 

play a role in the phenotypic switching of P. luminescens. However, this could not be 

proven so far. 

Thus, the complete regulation mechanism of phenotypic heterogeneity is still puzzling. In 

the course of this work, two genes encoding two transcriptional regulators were found to 

be involved in the phenotypic switching process of P. luminescens. Both proteins belong 

to the superfamily of XRE-like transcriptional regulators which is the second most 

frequently occurring regulator family in bacteria (Barragán et al. 2005) and are therefore 

termed XreR1 (XRE-like regulator higher expressed in 1° cells) and XreR2 (XRE-like 

regulator higher expressed in 2° cells). 
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6.1.1 Regulation of phenotypic switching by XreR2 and XreR1 

Comparative transcriptome analysis of 1° and 2° cells revealed up-regulation of xreR2 in 

2° cells while xreR1 was higher expressed in 1° cells (Fig. 4-1). Domain prediction 

revealed that both proteins exclusively contain a l phage repressor-like (Cro/C1) HTH 

DNA-binding domain and thus no SBD (Fig. 4-3). However, as phage repressor-like 

proteins harbor one of the simplest HTH DNA-binding architecture, in almost every 

protein of this family a standalone HTH is found (Aravind et al. 2005).  

Proteins harboring such phage like repressor domain usually directly repress certain 

traits. However, some exceptions have already been described in literature. In 

Corynebacterium glutamicum e.g. the XRE-transcriptional regulator ClgR, activates an 

operon encoding Clp proteases which then in turn recognize and degrade defective 

proteins (Gottesman et al., 1998). Furthermore, very recently SrtR of Streptococcus suis 

was described to increase oxidative stress and high temperature tolerance (Hu et al., 

2019).  

Deletion of xreR1 in 1° cells induced the switch to the 2° phenotype. Subsequently, 

overexpression of the same gene in 2° cells restored the 1° phenotype. Both with respect 

to the most predominant phenotypic characteristics like bioluminescence, pigmentation, 

antibiotic production and colony morphology (Fig. 4-2B and 2C). Therefore, an activation 

of such 1°-specific features via XreR1 seems likely (Fig. 6-1).  

2° cells occur after prolonged cultivation whereby a signal derived by metabolic or 

environmental stress is thought to play a role (Joyce et al., 2006). Upon recognition of 

the yet unknown signal the respective receptor could then directly activate or repress the 

expression of xreR2 and/or xreR1. Thus, conversion to the 2° phenotype is initiated. 

Here, high levels of xreR2 are present while xreR1 expression is low (Fig. 6-1). Since the 

2° DxreR2 strain exhibits 1°-specific features and 1° cells containing extra copies of 

xreR2 become secondaries (Fig. 4-2B and 2C), XreR2 seems to repress 1°-specific 
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traits. Taken into account that xreR2 is about 500-fold higher expressed in 2° cells than 

in 1° cells and its function to maintain the 2° phenotype, positive auto-regulation seems 

most likely (Fig. 6-1). 

In Bacillus subtilis two XRE-transcriptional regulators constitute a double negative 

feedback loop directly controlling genes for e.g. motility and thereby creating an 

epigenetic switch. Here, SinR, a repressor of Peps and therefore biofilm formation during 

exponential growth inhibits expression of another XRE-transcriptional regulator SlrR. 

SlrR in turn binds to SinR thereby indirectly de-represses its own gene slrR as well as 

other SinR targets. Once that loop gets activated the cells are time dependently locked in 

a high SlrR state (Chai et al., 2010). XreR1 seems to inhibit xreR2 expression by directly 

binding to PxreR2 (Fig. 4-4E and Fig. 4-5) thereby presumably maintaining the 1° 

phenotype. Furthermore, both proteins interact with each other (Fig. 4-7). Whether this 

interaction has inhibitory or activating effects has to be elucidated, however these 

findings lead to the assumption that that XreR1 and XreR2 constitute a comparable 

epigenetic switch as SinR and SlrR (Fig. 6-1). Though, no binding of XreR2 or XreR1 to 

the PluxC or PantA promoter could be detected revealing no direct repression of 

bioluminescence and AQ-production, respectively. In B. subtilis the genes like such for 

autolysin or motility are regulated by a SinR/SlrR complex but neither by SinR nor by 

SlrR alone (Chai et al., 2010). Therefore, a mixture of XreR1 and XreR2 might be 

needed to observe binding activity. Furthermore, in B. subtilis binding of SinR to Peps is 

reversed during stationary phase as its antagonists SinI and SlrA get activated and 

thereby biofilm formation is promoted (Gaur et al., 1991; Bai et al., 1993). Assuming a 

similar mode of action of XreR1 and XreR1 gives hints that the switch is also reversible 

in P. luminescens. However, the respective signal to trigger that conversion is still 

unknown. 

Certainly, there are other putative molecular mechanisms for phenotypic switch-

regulation via XreR1 and XreR2. As no direct targets with respect to 1°-specific 
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characteristics could be identified so far, it could be possible that they either activate 

other regulatory proteins or that they regulate expression at post-transcriptional level. 

Post-transcriptional regulation in prokaryotes is commonly achieved via small RNAs 

(sRNAs) or RNA-binding proteins (RBPs). Usually the activity both types is regulated by 

again sRNAs. However, there are some RBPs which are activated by other regulatory 

proteins. The TRAP protein of B. subtilis e.g. is regulated by an anti-TRAP protein which 

binds near to the RNA-binding domain of the TRAP and thereby prevents its binding to 

mRNA targets (Snyder et al., 2004). Another example is the FliW protein from B. subtilis 

which is regulated the CsrA RBP by binding near to is active site (Assche et al., 2015). 

As XreR1 and XreR2 are of small size (8,800 or 7,760 kDa, respectively) and only harbor 

an HTH-DNA binding domain, they could act similar to histone-like proteins whereby they 

would bind to specific DNA regions to enable or inhibit gene expression. As the name 

implies, histone-like proteins play the key role in re-arranging the chromosome involving 

the maintenance of the topological homeostasis of the cell as well as the organization of 

certain supercoiled loops (Dame et al., 2002). However, it has been shown that some of 

these proteins also fulfill regulatory functions. HU of E. coli e.g. binds to GalR, enabling a 

looped tetramer formation at the target galP2 promoter and thereby inhibiting 

downstream expression (Aki & Adhya, 1997). Bacterial histone-like proteins can be 

divided into four major groups: HU (histone-like proteins E. coli, U93), H-NS (histone-like 

nucleoid structuring proteins), IHF (integration host factors) and FIS (factors for inversion 

stimulation) (Anuchin et al., 2010). However, neither XreR1 nor XreR2 show homology to 

any of the four groups. But as there are also histone-like proteins that cannot be put in 

any of those groups (Anuchin et al., 2010) a comparable function of XreR1 and XreR2 is 

still possible. 
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Figure 6-1: Model of regulation of phenotypic switching in P. luminescens via 
XreR1 and XreR2. In P. luminescens 1° cells high amounts of XreR1 inhibit expression 
of xreR2 and therefore, XreR2 levels are low. Furthermore, 1°-specific features might get 
activated either directly or indirectly by XreR1. Upon recognition of a yet unknown signal 
or stochastic determination xreR2 gets up-regulated. Binding of XreR2 to XreR1 
putatively reinforces xreR2 expression and thereby induces the 2° phenotype. Now, 1°-
specific traits are presumably repressed by the XreR1-XreR2 complex. Furthermore, 
expression of the ccdAB-like is initiated by XreR2 thereby putatively maintaining the 2° 
phenotype. During free life in soil, rhizosphere-derived signals e.g. plant root exudates 
could be recognized by a specific LuxR-solo which in turn could reverse the switch back 
to the 1° phenotype. 

Anyway, it still remains unclear how the expression of xreR1 and xreR2 is regulated. The 

LysR-type transcriptional regulator HexA has already been identified to act as a 

repressor of 1°-specific traits (Clarke & Joyce, 2003). Here, deletion of the hexA gene in 

2° cells restored the 1° phenotype while extra copies of hexA in 1° cells were sufficient to 

induce the 2° phenotype. This is similar to the effects of XreR2 and contrary to those of 

XreR1. Therefore, a similar mode of action might take place. However, unlike HexA, 
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XreR2 seems not to be repressed by the RNA-chaperone Hfq since mRNA levels of 

xreR2 were not altered in the Dhfq strain (Nick Tobias, Helge Bode, personal 

communication) while hexA expression is about 60-fold increased (Tobias et al., 2017). 

Furthermore, the up-regulation of hexA in the Dhfq strain did neither lead to an activation 

of xreR2 nor to a repression of xreR1 expression. Additionally, expression levels of both 

xreR2 and xreR1 were not altered in the DhexA strain (Nick Tobias, Helge Bode, 

personal communication). However, an interaction cannot be completely ruled out 

because although hexA is higher expressed, it could be inactive by the lack of a signal 

since the cognate signal for its SBD has not been identified yet.  

Assuming an epigenetic switch, it could also be possible that up-regulation of xreR2 or 

down-regulation of xreR1, respectively, is determined stochastically upon environmental 

signals. A model describing the xreR1/xreR2-dependent regulation of phenotypic 

switching is shown in Fig. 6-1. 

6.1.2 The role of the CcdAB-like system in phenotypic phase 

variation  

RNA-Seq analysis of 1° and 2° cells revealed an up-regulation of ccdA-like as well as 

ccdB-like in 2° cells. As described above XreR2 bound to the ccdAB-like promoter (Fig. 

4-4C). These findings and the chromosomally close proximity to both xreR2 and xreR1 

suggest a putative role in the process of phenotypic switching. Some TASs are described 

to be involved in persister cell formation which is one of the best-studied forms of 

bacterial phenotypic heterogeneity using the bet-hedging strategy. Hereby, usually upon 

antibiotic treatment, single cells change into a transient growth arrested state which 

allows them to survive the stress situation (Veening et al., 2008).  

The most prominent example of a TAS controlling persistence is the HipAB system of E. 

coli. Here, once a threshold concentration of the toxin HipA is reached cells turn into 
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persister cells. HipA inactivates GltX (a Glu-tRNA synthetase) which activates RelA 

mediated (p)pp(G)pp synthesis. Increased (p)pp(G)pp levels in turn indirectly result in 

multidrug tolerance (Germain et al., 2013, Schumacher et al., 2009).  

However, the ccdAB-like operon is highly similar to the ccdAB encoded TAS of E. coli. 

This F-plasmid based system is one of the first identified, and therefore well-established, 

TAS in E. coli. CcdAB is involved in plasmid maintenance via post-segregational killing 

(Maki et al., 1996). Recently, chromosomal homologs of ccdAB were found in different E. 

coli strains including pathogenic ones. Here, it could be shown that these homologs as 

well as the ccd operon from the F plasmid, when chromosomally inserted, lead to 

persister cell formation while the plasmid encoded CcdB caused cell death to due 

inhibition of the DNA gyrase (Gupta et al., 2017). P. luminescens harbors no plasmids. 

Upon overexpression of the putative toxin ccdB-like in P. luminescens as well as in 

E. coli no decrease in fitness could be observed. Furthermore, deletion of the putative 

antitoxin ccdA-like in P. luminescens 1° as well as 2° cells did not lead to an obvious 

phenotype (Fig. 4-7). As TAS in general are described to be functional redundant (Dörr 

et al., 2010) and P. luminescens encodes for about 90 TAS it could be possible that 

another system compensated the phenotype. Indeed, another ccdAB homologous 

operon is found in the genome of P. luminescens. However, there are some hints that 

the CcdAB-like system evolved from a TAS but then changed in functionality. In E. coli 

the essential region of CcdB to fulfill the toxic activity lies C-terminally. The protein 

consists of 102 amino acids and only changes within the three amino acids (Trp99, 

Gly100 and Ile101) led to a non-cytotoxic protein (Bahassi et al., 1995). CcdB-like of P. 

luminescens only consists of 74 amino acids homologous to the N-terminal part of CcdB. 

From these data the current theory arose that the CcdAB-like system in P. luminescens 

originates from a TAS, which is another phenotypic heterogeneity inducing regulatory 

system, but then developed another mode of action to contribute to phenotypic switching 

from 1° to 2° cells in P. luminescens. One possibility would be that the system gets 
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activated by high levels of XreR2 and then either directly or indirectly activates 2°-

specific features (Fig. 6-1) to maintain the 2° phenotype. 

6.2 The fate of P. luminescens 2° cells 

In contrast to 1° cells, 2° cells lack most of the P. luminescens characteristic features 

such as bioluminescence, pigmentation or antibiotic production. Most important for 

studying the life cycle of P. luminescens is the fact, that 2° cells lost the ability to support 

the nematode’s growth and development and are therefore not able to live in symbiosis 

anymore (Boemare & Akhurst, 1988). As a consequence, 2° are not able to re-associate 

with the nematodes and are therefore left behind in the nutrient-depleted carcass. The 

function of 2° cells and their fate in soil would be essential to understand the 

sociobiological aspects of the two phenotypic different cell forms of P. luminescens. 

RNA-Seq analysis performed in this work could not only confirm that all phenotypic 

differences of the 1° and 2° cell form are truly mediated at transcriptional level (Tab. 3-1) 

but also identified in total 638 genes that were differentially expressed (DEGs) in 2° 

compared to 1° cells. 

6.2.1 Adaption of P. luminescens 2° cells to an alternative 

environment 

A high portion of the DEGs including e.g. genes for metabolic functions as well as motility 

and stress related genes were higher expressed in 2° than in 1° cells (Fig. 3-2) indicating 

that 2° cells exhibit some yet unknown functions and might be better adapted to an 

alternative environment.  

It has been shown already, that after experiencing a period of starvation 2° cells are able 

to restart growth after 3-4 hours and thus recover about 10 hours faster in comparison to 

1° cells (Smigielski et al., 1994). Consequently, earlier proteome analysis revealed an 
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up-regulation of proteins that could provide advantages under nutrient limiting and 

stressful conditions such as e.g. iron-scavenging proteins, chaperones or the 

transcriptional regulator Lrp (Turlin et al., 2006). Gene expression analysis revealed a 

higher expression of starvation related genes in 2° compared to 1° cells (Supplementary 

Table 3-S1). 

The ability of 2° cells to deal with periods of starvation could be essential when they are 

left behind in soil and the nutrients of the carcass are depleted. All genes of the AST-

pathway (astABDE and PluDJC_15875) are up-regulated in 2° cells. This pathway is 

induced in the presence of aspartate and arginine and under nitrogen limitation (Easom 

& Clarke, 2012; Schneider et al., 1998) and could help 2° cells to overcome starvation as 

in the rhizosphere high amounts of amino acids are present e.g. secreted by plant roots 

(Badri & Vivanco, 2009). 

However, at some point they have to find a new source to feed on. Certainly, the nutrient 

composition present in the soil or rhizosphere differs from the one inside the insect larva. 

Indeed, we found DEGs indicating adaption of 2° cells to alternative nutrients. E.g. the 

HPA metabolism seems to be increased in 2° cells as all respective genes were up-

regulated. Several bacteria as like E. coli are able to degrade 4-HPA to eventually 

metabolize it to pyruvate and succinate. As it is a common fermentation product of 

aromatic amino acids 4-HPA is also often found in soil as a result of plant material 

degradation by animals (Díaz et al., 2001). Therefore, enhanced capability to degrade 4-

HPA could help 2° cells to grow in soil as it can be used as carbon source. 

On the other hand, the respective gene cluster to degrade phenylpropanoids (hcaCFE, 

hcaB, hcaD) (Díaz et al., 1998) is down-regulated in 2° cells. Phenylpropanoid 

compounds most commonly derive from proteins (Díaz et al., 1998) which are in turn the 

main nutrient source inside the larvae. This indicates less affinity of 2° cells to this food 

source and thereby supports the theory of an alternative life style. 
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In soil new food resources might not occur right next to the insect carcass. Therefore, the 

capability of being motile would be of great benefit, especially for 2° cells. In the closely 

related strains P. temperata and Xenorhabdus nematophila motility was found to be a 1°-

specific feature (Hodgson et al., 2003). However, P. luminescens DJC 2°cells appeared 

to have an increased expression of the complete flagella formation apparatus (Tab. 3-2) 

resulting in an increased swimming motility on soft-agar plates compared to 1° cells (Fig. 

3-4). Thus, contrary to the situation in its close relatives, motility in P. luminescens DJC 

seems to be a 2°-specific feature. Furthermore, only 2° but not 1° cells chemotactically 

responded to serine as well as maltose (Fig. 3-5) presumably caused by the up-

regulation of two genes encoding chemoreceptors (PluDJC_09715 and PluDJC_09720).  

PluDJC_09715 and PluDJC_09720 are homologous to the methyl-accepting proteins 

(MCPs) Tsr and Tar of E. coli, which sense serine and Ala/Gly or maltose and Asp/Gly, 

respectively (Springer et al., 1977). This indicates that 2° cells are not only able to utilize 

these nutrients but can also actively move towards them.  

In contrast to 1° cells, 2° cells exhibited increased swimming behavior upon addition of 

plant root exudates. As the majority of compounds in the rhizosphere such as amino 

acids or sugars as organic acids peptides, proteins or lipids directly derive from plant 

roots (Bais et al., 2006; Walker, 2003; Lesuffleur et al., 2007) re-orientation of 2° cells 

towards this nutrient source makes totally sense. The wide variety of organic acids 

secreted by plants is known to serve bacteria as a nutrient source and initiate 

chemotactic movement (Haichar et al., 2014). Thus, some additional MCPs involved in 

the response of 2° cells to other plant derived nutrients might be present in P. 

luminescens DJC. 
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Figure 6-2 Model for extended life cycle of P. luminescens and putative fate of the 
2° cells in nature. Since 2° cells are not able to support symbiosis and therefore cannot 
re-associate with the nematodes, they remain in the soil when the infection cycle is 
finished, and all nutrients of the larvae are depleted. In the new environment, they have 
to adapt to several stress conditions like variation in temperature and starvation and to 
compete with other bacteria. To survive in the rhizosphere, it is possible that the 2° cells 
are adapted to plant root exudates as alternative nutrient source. 

Besides motility flagella are also described play a role in adhesion, invasion, or in the first 

steps of biofilm formation (Givaudan & Lanois, 2000; Josenhans & Suerbaum, 2002). For 

bacteria of the genus Pseudomonas involvement of fliC in plant root colonization has 

been shown already (Berg & Smalla, 2009; Lugtenberg et al., 2001). Furthermore, 

ectopic expression of flhDC led to hypermotility of P. fluorescens which directly 

correlated with the ability to colonize roots (Barahona et al., 2016; Redono-Nieto et al., 

2013). As fliC as well as flhDC was also found to be up-regulated in 2° cells they might 

also be able to colonize plant roots. In the plant pathogen Pseudomonas fluorescens 

three MCPs CtaA, B and C, sensing amino acids, have been described to be involved in 

plant root colonization. However, additional chemotattractants seem to be involved since 

the P. fluorescens DctaABC strain was still more competitive for root colonization than 
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non-motile P. fluorescens cells (Oku et al., 2012). Blast analysis revealed that 

PluDJC_09720 of P. luminescens is highly similar to an MCP of Pseudomonas simiae, 

which is described to be involved in plant root colonization (Cole et al., 2017). However, 

if PluDJC_09720 is involved in sensing plant-specific metabolites has not been proven 

yet. 

Beside the importance of finding new nutrient sources in soil 2° cells would also have to 

deal with challenging environmental conditions different to those present inside the host. 

Certainly, the microbiome in the rhizosphere differs from that present in the insect. Gram-

negative bacteria harbor a unique class of glycoconjugates, the so-called 

Liposaccharides (LPS) present on top of the outer membrane. LPS consist of three 

different components the lipid A, the core oligosaccharide region and O-polysaccharide 

(O-antigen). The bacterial specificity is achieved by changes in the O-antigen region 

(Lerouge & Vanderleyden, 2002). LPS not only differs between bacterial species but also 

depends on environmental conditions. It has been shown previously that host-associated 

bacteria change their lipopolysaccharide (LPS) composition depending on the host niche. 

The gastritic disease causing bacterium Helicobacter pylori e.g. changes O-antigens 

synthesis depending on the pH (McGowan et al., 1998) and is thereby able to colonize 

different parts of the stomach. Furthermore, in some bacteria the O-antigen profile 

changes depending if they are inside or outside their host like e.g. the legume symbiont 

Rhizobium etli CE3 antigenically alters its LPS during growth outside of the plant (Duelli 

et al., 2001). 

In 2° cells six wbl genes that play a role in the O-antigen biosynthesis of LPS in the cells 

(Derzelle et al., 2004) were either up- or down-regulated. This strongly indicates a 

specificity for environmental conditions other than those to which 1° cells are adapted.  
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Furthermore, the ability of 2° cells to deal with low (4°C) as well as high (37°C) 

temperatures is also of great benefit as the climate changes have a greater effect on the 

cells when living outside of the host. 

Taken together, 2° cells seem to be well prepared for a life outside the larvae including 

challenging conditions such as nutrient limitation and temperature switches (Fig. 6-2). 

This sociobiology of two different cell forms could be a classical way of bed-hedging to 

ensure the bacteria’s survival inside the host as well as when no host is available. 

6.2.2 Rhizosphere-derived signals as trigger to become 1° again? 

From the current state of knowledge phenotypic switching of P. luminescens only occurs 

unidirectional from the 1° to the 2° phenotype. However, as for the closely related genus 

X. nematophila a switch back from 2 ° to 1° cells was observed (Owuama, 2018) it 

seems likely that there is also a signal for Photorhabdus to reverse the switching 

process. This particular signal might be missing when working under laboratory 

conditions. 2° cells seem to be well prepared for an alternative environment such as e.g. 

soil. Therefore, the stimulus for reversing the switching might be found in the rhizosphere 

(Fig. 6-1) and sensed by a receptor specifically expressed by 2° cells. Transcriptome 

analysis revealed 14 LuxR solos being up-regulated in 2° cells. This type of 

transcriptional regulators consists of a LuxR-type receptor which lacks the cognate LuxI 

synthase (Subramoni & Venturi, 2009). P. luminescens harbors 40 LuxR solos which had 

been classified into four subgroups corresponding to their C-terminal signal binding 

domain. Comprising 34 clusters the group of LuxR solos with a PAS4 domain presents 

the biggest one (Brameyer et al., 2014). However, until today no signal specifically 

sensed by a PAS4-LuxR-solo of P. luminescens has been identified yet. 12 of the LuxR 

solos that are higher expressed in 2° cells harbor a PAS4 domain while the SBDs of the 

other two are still undefined (Brameyer et al., 2014).  
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It has been shown that LuxR-solos of plant-associated bacteria can respond to plant 

signaling molecules (Covaceuszach et al., 2013; Venturi & Fuqua, 2013), which might 

also be true for one or more LuxR solos up-regulated in 2° cells. Putatively, plant-derived 

signals might be the missing piece and trigger 2° cells to become 1° cells again. As 2° 

cells chemotactically respond to nutrients most possibly provided by plant root exudates 

(Fig. 3-5), they would be in proximity to the roots and thereby also be able to sense e.g. 

plant hormones. This could then cause either activation of other regulatory genes or 

direct repression of xreR2 or promotion of xreR1 expression could be initiated, 

respectively (Fig. 6-1). As heterorhabditid nematodes infect insect larvae, whose natural 

habitat is the rhizosphere as they devour plant roots, the newly re-switched 1° cells 

would be in the right spot to associate with the nematodes again and thereby re-enter the 

life cycle.  

Another possibility is that the missing signal derives from insects instead of plants. In the 

fruit fly Drosophila melangonaster a PAS4-homologous domain has been shown to bind 

insect juvenile hormones (JHs) (Dubrovsky, 2005). Thus, PAS4 domains of P. 

luminescens are thought to also act as hormone or hormone-like receptors and therefore 

play an important role in inter-kingdom signaling (Heermann & Fuchs 2008). Upon stress 

situations insects release a several hormones and neurotransmitters like e.g. 

glucocorticoids and norepinephrine to mediate the stress response (Sternberg, 2006). 

The best-studied neurotransmitter in insects is the neurohormone octopamine (OA). The 

octopaminergic system of invertebrates is described as homolog of the noradrenergic 

systems of vertebrates (Roeder 1999). It was shown that upon infection with 

X. nematophila high concentrations of OA were released into the hemolymph to increase 

the activity of haemocytes (Dunphy & Downer 1994). After the larva’s death the OA also 

diffuses into the soil. The ability to sense and maybe then move towards the source of 

the OA could lead to an activation of one of the PAS4-LuxR solos and induce the switch 

from the 2° to 1° phenotype. The possibility to re-enter the life cycle would be increased 
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as the reversed switching would occur near to dead larvae ideally containing nematodes. 

However, direct injection of only 2° cells into living G. mellonella larvae did not lead to a 

conversion into 1° cells (S.E., R.H. unpublished). Therefore, e.g. signals from 1° cells or 

the nematodes might be necessary. 

6.3 Outlook 

Phenotypic heterogeneity in P. luminescens DJC cell populations still poses a 

challenging field of research which has to be unraveled. It is of major interest to identify 

the signal which triggers 1° cells to convert into 2° cells and how the switching process is 

regulated.  

XreR1 and XreR2 were found to play an important role in regulation of the switching. 

However, their mode of action remains elusive and needs to be investigated more 

deeply. As none of the proteins directly regulate any phenotype the downstream targets 

of the DNA binding proteins should be identified. This could be achieved by performing 

e.g. Chip-Seq analysis or DNase I footprinting assays. Furthermore, it should not be 

excluded that small RNAs are involved in phenotypic switching which could be adressed 

by conducting a high-throughput sequencing of small RNAs (Liu & Camilli, 2011). 

Additionally, XreR1 and XreR2 might control genes by forming a complex. Therefore, 

MST and SPR analysis with promoter regions of specific phenotypes should be repeated 

using a mixture of both proteins. On the other hand, XreR1 and XreR2 may regulate 

specific features indirectly rather than by direct binding. Therefore, transcriptome and/or 

proteome analysis of the deletion mutants compared to the wildtype could help to identify 

genes and proteins affected by one of the transcriptional regulators. 

Do 2° cells actively interact with plants? Since the bacteria are used as bio-insecticide in 

agriculture, a putative interaction of 2° cells with plants and their fate in the soil is of great 

importance for biotechnology. Therefore, the impact of 2° cells on the growth of plants 
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and vice versa should be investigated. This can be achieved by either setting up native-

like conditions with soil and plants or by directly inoculating the bacteria onto plant roots 

growing on plant-agar. Here, not only growth but also colonization of the roots by the 

bacteria can be monitored using microscopy, ideally using fluorescently labeled 2° cells. 

Native-like conditions could then also be expanded by adding insect larvae and/or 

nematodes as well as 1° cells. In the latter scenario both cell forms should be labeled 

with a resistance cassette to track them back to their origin as they might switch inside 

the soil.  

A change of environment might also require a change of the cell-cell communication 

system. Both parts of the QS system found in P. luminescens, ppyS and the LuxR solo 

encoding pluR, were down-regulated in 2° cells. However, 16 other LuxR solos with yet 

unsolved function showed higher expression. It would be of great interest to analyze if 

one of these systems serves 2° cells as an alternative cell-cell communication system 

than PpyS/PluR. 

Furthermore, it should be investigated if one or more of these LuxR solos respond to 

plant-derived compounds such as hormones, and if so, which genes are involved. 

Potential candidates might then be tested via SPR or a thermal stability assay. The latter 

enables high throughput screening and is based on the principle that the thermal stability 

of a protein enhances upon ligand binding due to conformational changes (Boivin et al., 

2013). 

Concludingly, as nematodes containing P. luminescens are already commercially used 

as bio-insecticide preventing crop failure, investigation on the fate of 2° cells in the soil 

including a putative interaction of 2° cells with plants is of great interest for agriculture. 

Further, the understanding of the complex regulation of phenotypic heterogeneity in P. 

luminescens might help to prevent enormous losses in industrial mass production of 

nematodes caused by phenotypic switching of 1° cells that should support the 
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nematode’s development. Additionally, global principles of heterogeneous behavior could 

be transferred to other clinically and biotechnologically relevant microorganisms. 
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