New Approaches in Statistical
Network Data Analysis

Dissertation

an der Fakultat fir Mathematik, Informatik und Statistik

der Ludwig-Maximilians-Universitat Minchen

vorgelegt von

Michael Lebacher

Eingereicht am 05.09.2019



Dissertation an der Fakultat fiir Mathematik, Informatik und Statistik der Ludwig-Maximilians-
Universitat Miinchen

1. Berichterstatter: Prof. Dr. Goéran Kauermann (LMU Miinchen)
2. Berichterstatter: Prof. Dr. Paul W. Thurner (LMU Miinchen)
3. Berichterstatter: Prof. Dr. Thomas A. B. Snijders (Rijksuniversiteit Groningen)

Tag der Einreichung: 05.09.2019
Tag der Disputation: 15.11.2019



New Approaches in Statistical
Network Data Analysis

Dissertation

an der Fakultat fir Mathematik, Informatik und Statistik

der Ludwig-Maximilians-Universitat Minchen

vorgelegt von

Michael Lebacher

Eingereicht am 05.09.2019



Dissertation an der Fakultat fiir Mathematik, Informatik und Statistik der Ludwig-Maximilians-
Universitat Miinchen

1. Berichterstatter: Prof. Dr. Goéran Kauermann (LMU Miinchen)
2. Berichterstatter: Prof. Dr. Paul W. Thurner (LMU Miinchen)
3. Berichterstatter: Prof. Dr. Thomas A. B. Snijders (Rijksuniversiteit Groningen)

Tag der Einreichung: 05.09.2019
Tag der Disputation: 15.11.2019



Acknowledgment

Many persons, directly and indirectly, contributed to the realization of this thesis. First
and foremost, I want to thank my supervisor Goéran Kauermann for shaping my view on
statistical matters, his guidance and advice. Furthermore, I want to express my gratitude
to Paul Thurner who helped me with input and encouragement through many dark hours of
major revisions.

I also want to thank Tom Snijders who kindly agreed to be part of my examination
committee and to review this thesis. Further thanks go to Christian Heumann and Helmut
Kiichenhoff for their willingness to steer the examination committee.

I want to thank Aude Fleurant and the other employees of the Stockholm International
Peace Research Institute for explaining the arms trade data and inviting me to Stockholm to
visit their institute. Additionally, my gratitude goes to Nic Marsh from the Norwegian Initia-
tive on Small Arms Transfers for helping me understanding the small arms and ammunition
data set. Thanks for fruitful cooperation go to Samantha Cook and Nadja Klein.

Many people from the statistics department in Munich gave me assistance and contributed
to a good atmosphere at the institute. Thank you, Michael Windmann, for being a sociable
room-mate and for withstanding the strange sounds my computer made under computational
overload. Thank you, Benjamin Sischka, for sharing cigarettes on “Smokey Friday” and thank
you, Cornelius Fritz, for providing me again and again with a new enthusiasm for frequentist
statistics. Thank you, Sevag Kevork, for the many discussions about statistical network
data analysis and controversial discussions about politics. Thank you, Marc Schneble, for
your administrative help in organizing exercises and partnering me as “civilian service” in
Portugal. Thank you, Christoph Striegel, for sharing your dust-dry opinions about books,
statistics, economics, and finance with me. Thank you, Verena Bauer, for valuable insights
about the drawbacks of canteen food. And thank you, Iris Burger, for kind help whenever I
was overwhelmed by organizational stuff.

After this non-exhaustive list, I certainly have to thank my parents Hermann and Hilde
and especially my beloved girlfriend Diana.



ii

Kurzfassung

Diese kumulative Dissertation beschéftigt sich mit der statistischen Analyse von Netzwerk-
daten. Der generelle Ansatz, interdependente Systeme als Netzwerke zu konzeptualisieren um
sie anschlieffend mit statistischer Methodik zu analysieren, hat in den vergangenen Jahren
deutlich an Relevanz gewonnen. Insbesondere die Flexibilitdt der Methodik, zusammen mit
der Moglichkeit komplexe Abhangigkeitsstrukturen zu modellieren, hat zu ihrer Popularitét
beigetragen.

Ein Netzwerk ist ein System, das sich aus Knoten und Kanten zusammensetzt. Dabei sind
die Knoten generelle Einheiten, die durch die Kanten miteinander in Verbindung gebracht
werden. Je nach Forschungsfrage interessieren entweder die Abhéangigkeiten zwischen den
Knoten oder die Verteilung der Kanten mit gegebenen Knoten. Diese Arbeit greift mit
insgesamt sechs Artikeln den zweiten Ansatz auf. Unter Zuhilfenahme von statistischen
Modellen werden die Kanten in verschiedenen binédren und gewichteten Netzwerken analysiert,
beziehungsweise rekonstruiert.

Um der Arbeit einen generellen Kontext zu geben, wird den angehdngten Artikeln ein
Mantelteil vorangestellt. In diesem wird auf zentrale Konzepte und Modelle der statistischen
Netzwerkanalyse eingegangen. Dabei werden die Vorteile als auch die Nachteile der Modelle
diskutiert und potenzielle Erweiterungen und Modifikationen beschrieben.

Die in dieser Dissertation enthaltenen Artikel lassen sich grob in zwei verschiedene Pro-
jekte einordnen. In einem Projekt steht die statistische Modellierung des internationalen
Waffenhandels im Fokus. Zwei Artikel untersuchen den globalen Austausch von Grofiwaf-
fen (Major Conventional Weapons), dabei wird sowohl die dynamische Struktur als auch
das gehandelte Waffenvolumen analysiert. Fin weiterer Artikel widmet sich den latenten
Strukturen im internationalen Kleinwaffenhandel (Small Arms and Ammunition). Weiterhin
werden die Waffenhandelsdaten in einem Ubersichtsartikel, der sich mit dynamischen Net-
zwerkmodellen beschéftigt, verwendet. Das zweite Projekt befasst sich, verteilt iiber zwei
Artikel, mit der Rekonstruktion von finanziellen Netzwerken basierend auf den Randsummen
von Netzwerkmatrizen.

Alle in dieser Dissertation angehingten Artikel befinden sich in der Form, in der sie
als Vorabversion veroffentlicht wurden. Bei Veroffentlichungen in Fachjournalen wird die
jeweilige Quelle angegeben. Zudem wird vor jedem Artikel der Beitrag des jeweiligen Autors
angegeben. Samtliche Analysen wurden mit der statistischen Software R durchgefiihrt. Der
dazugehorige Code ist iiber Github verfiigbar.
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Summary

This cumulative dissertation is dedicated to the statistical analysis of network data. The
general approach of combining network science with statistical methodology became very
popular in recent years. An important reason for this development lies in the ability of
statistical network data analysis to provide a means to model and quantify interdependencies
of complex systems.

A network can be comprehended as a structure consisting of nodes and edges. The nodes
represent general entities that are related via the edges. Depending on the research question
at hand, it is either of interest to analyze the dependence structure among the nodes or the
distribution of the edges given the nodes. This thesis consists of six contributed manuscripts
that are concerned with the latter. Based on statistical models, edges in different dynamic
and weighted networks are investigated or reconstructed.

To put the contributing articles in a general context, the thesis starts with an introduc-
tory chapter. In this introduction, central concepts and models from statistical network data
analysis are explained. Besides giving an overview of the available methodology, the advan-
tages and drawbacks of the models are given, supplemented with a discussion of potential
extensions and modifications.

Content-wise it is possible to divide the articles into two projects. One project is focused
on the statistical analysis of international arms trade networks. Two articles are devoted to
the global exchange of major conventional weapons with a focus on the dynamic structure of
the system and the volume traded. A third article explores latent patterns in the international
trade system of small arms and ammunition. Additionally, the arms trade data is used in a
survey paper that is concerned with dynamic network models. The second project regards
the reconstruction of financial networks from their marginals and includes two articles.

All contributing articles are attached in the form as published as a preprint. For publi-
cations in scientific journals the respective sources are given. Additionally, the contributions
of all authors are included. All computations were done with the statistical software R and
the corresponding code is available from Github.
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Chapter 1

Introduction

Science may be described as the art of systematic oversimplification.
Karl Popper (Popper, |1992, p. 44)

1.1 Overview

The methodology from statistical network data analysis provides a toolbox for investigating
various kinds of interdependent systems. Taken as a conceptional framework, it allows to
analyze phenomena that can be described in terms of a graph, consisting of a set of nodes and
a set of edges. In this setting, the nodes are general entities, e.g. persons, countries or simply
things, and the edges represent relations between them. This connectivity typically implies a
non-trivial dependence structure among the edges. Additionally, most network systems are
characterized not only by static interdependencies but often exhibit a temporal dependence
structure. Quantifying these dependencies and drawing inference on it is the goal of the
respective statistical analysis and the focus of the models and applications that constitute
the contributing manuscripts of this thesis. To do so, different tools from statistical network
data analysis are employed to model the dynamic evolution of binary networks, investigate
dependence structures of valued edges and to reconstruct networks from limited information.

The first chapter of this thesis is intended to serve as a general introduction to the articles
and embeds them in a wider context. Obviously, such an overview is subjectively influenced
and, therefore, far from encompassing everything relevant in this broad area. The focus lies
on models that are, to a certain degree, of practical importance to the contributing articles.
For a general overview and survey articles about the state of the art in statistical network
data analysis, refer to |Goldenberg et al.| (2010), Fienberg| (2012)), Kolaczyk! (2009, 2017)) and
Squartini et al.| (2018)).

Section introduces static binary networks and gives central definitions and explana-
tions. Based on that, the exponential random graph model (ERGM) is motivated, followed
by a brief outline of alternative binary network models. Building on the description of the
ERGM,, its dynamic extensions, the temporal ERGM (TERGM) and the separable TERGM
(STERGM), are explained in Section Both sections can be thought of as being related to
Chapters 2] and [3] that are concerned with dynamic binary network models. Apart from that,
comments and literature for other models designed for analyzing dynamic binary networks
are given.

Section is focused on weighted networks and models designed for analyzing network
flow data. In the first part of Section standard models for weighted networks are de-
scribed. The second part relates to Chapters [4] and [ and introduces the gravity model as
well as two spatial econometric models: the spatial autocorrelation (SAR) model and the



spatial error model (SEM). Based on that, it is explained how spatial econometric models
can be used for modeling network flow data.

The main topic of Chapters [f] and [7] reconstructing networks from incomplete informa-
tion, is picked up in Section [1.5] This comes with a general introduction to the problem
of network reconstruction and a discussion of models from the network tomography liter-
ature. Additionally, maximum-entropy probability distributions for network reconstruction
and density-adjusted methods are motivated. Section [1.6|concludes the introductory chapter.

In Chapters all manuscripts are included in their original forrrﬂ as published as a
preprint together with a description of the authors contributions. For the manuscripts that
are published in scientific journals the respective sources are given.

!Note that the notation of the original manuscripts partly differs from the notation in the introductory
chapter.



1.2 Static binary networks

The difficulty of describing these systems lies partly in their topology: Many of
them form rather complex networks whose vertices are the elements of the system
and whose edges represent the interactions between them.

Barabasi and Albert, (1999, p. 509)

Network analysis has its theoretical fundamentals in graph theory and is, therefore, sometimes
dated back to Euler’s “Konigsberger Briickenproblem” (also known as “puzzle of Konigsberg’s
bridges”, |[Fortunato, 2010, p. 76) in 1736. Although modern statistical network data analysis
has emancipated to a certain degree from mathematical graph theory, it is a good starting
point to introduce networks by the notion of a graph.

Formulation as a graph

A graph is a mathematical structure consisting of nodes and edges. In short, a graph allows
to describe systems that can be characterized in terms of relations between entities. In this
thesis, exclusively directed graphs are treated and the terms graph and network are used
interchangeably. Formally, a graph with directed edges can be represented as a tuple

G=(V,E),
where V' = {v1,...,v,} is a set of |[V| = n nodes and

B C{(ij):i,j € Vii+#j} (1)

represents a set of directed edges with |F| = Ng. An edge (i,j) can be understood as a
directed relation from v; to v;. General relations between two nodes, irrespective of the
presence or absence of an edge, are referred to as dyads. As formalized in the edge set ,
no self-loops are considered in this thesis. Therefore, the analysis is restricted to directed
networks without edges originating and ending at the same node. As a consequence, the edge
set E' may contain a maximum of N = n(n — 1) edges. If N edges are present, the graph is
said to be fully connected.

Formulation as an adjacency matrix

Graph G can be summarized in a (random) n x n adjacency matrix Y = (Yj;)ij=1,.n € Y,
where Y represents the set of all 2 possible directed binary networks with n nodes. For
equivalence to graph G set
1 ,if(i,j) ek
v =4t (Gj) e B
0 ,else

Hence, the matrix Y contains information about the presence of edges that originate from
the nodes of the corresponding rows and direct to the nodes in the respective columns. In
a setting without self-loops, the diagonal elements can be set to zero as a convention, i.e.
Y;; =0V ¢ € V. Considering a directed graph implies that Y is not symmetric in general.
Typically, binary networks are represented graphically as a network graph with circles
(the nodes) and arrows between them (the edges). In Figure [l a simple directed binary
network with n = 3 nodes and N = 4 directed edges is shown formally as a graph in subplot
(a), as an adjacency matrix in subplot (b) and as a network graph in the last subplot (c).



G = (V,E) 01 1
V ={1,23} Y=<0 0 1)

E={(12),(1,3),(23),(3.2)}

(a) (b) (c)

Figure 1: Three different representations of a binary, directed network. Formal representa-
tion as a graph (a), as an adjacency matrix (b) and a plot of the network graph (c).

Descriptive network statistics

Although graphical representations of networks can be very conclusive, network graphs often
become very chaotic with increasing network size (sometimes called “hairball effect”, Rottjers
and Faust, |2018) and demand complex visualization algorithms (e.g. (Csardi and Nepusz,
2006)). Therefore, network topologies, are often described in terms of network statistics, i.e.
functions ¢(Y) defined on the adjacency matrix, that quantify network properties of interest.

One of the most important basic measures is given by the number of edges within a
network. The edge count is defined as

gedges(Y) = Z sz] (2)
i#]

If the number of edges is scaled to the unit interval, by dividing the edge count by the number
of possible edges, the statistic is called density

1
gdensity(Y) = N g YVZ] (3)
i#£]

Using this measure, a network with a high density is called dense, while a network with a
low one is called sparse.

As a general philosophy in network analysis, it is often argued that complex global network
patterns can be decomposed into simple local ones (Morris et al., |2008]). In Figure [2[ some
stylized local network structures are visualized. As illustrated in the subplots (a) and (b),
edges (either outgoing, ingoing or both) might cluster at certain nodes. This can be measured
with the so-called degrees, a quantity often used as a centrality measure for the nodes. In a
network with directed edges, the outdegree of node i is defined as

YGoutdeg,i (Y) X Z Yik (4)

and the indegree of node j is given by

Gindeg.j(Y) o< > Yij. (5)
keV, k#j

Based on these network statistics, it is possible to construct the degree distribution, i.e. the
share of nodes that comes with a certain degree. Although this is a very simple description,
networks are very often characterized by the shape of their degree distributions (see Barabasi
and Albert, (1999).
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Figure 2: Scheme representing different local network structures. Outdegree of node i (a),
indegree of node j (b), reciprocity between nodes i and j (c) and directed two-paths between
nodes i and j (d).

Another important topological factor is reciprocity as shown in subplot (c¢) of Figure
In many real-world networks, the number of reciprocated edges is quite high (Garlaschelli
and Loffredo| |2004). Reciprocal structures in a network can be measured by counting the
number of mutual edges

grecip(Y) X Z YZ]Y]@
i#j

Often, more complicated network statistics that go beyond dyadic relations are considered.
They are sometimes called hyperdyadic statistics and can be used to measure clustering in a
network. Frequently used hyperdyadic measures are triadic statistics that count triangle-like
structures in the network. An example is shown in the subplot (d) of Figure 2| The statistic

Gdpath,ij(Y) X Z YiiYikYi;. (6)
keV ki j

counts the number of directed two-paths that indirectly relate the nodes ¢ and j. A two-path
refers to two edges, the first starts at node 7 and goes to node k and the second one goes
from node k to node j. This can be interpreted as the number of directed triangles that are
closed by the edge (i, 7).

There exists an abundance of further statistics that allow to describe many different
topologies. See|Csardi and Nepusz| (2006) for an implementation of many descriptive network
statistics in R.

Remarks on network statistics

Note that in the last four equations, the network statistics are shown with proportionality
signs. Similar to the density , being a scaled version of the edge count , it can be
useful to norm network statistics for ease of interpretation. For example, the outdegree can
be normalized by (n — 1), the highest possible outdegree, or the reciprocity statistic could be
normed with Ng, giving the share of reciprocated edges among all edges. This can also be
of importance to compare networks with differing node sets or dynamic networks where the
node set varies with time.

The network statistics introduced above are defined on different levels, i.e. some are
global and some are local. While the density gives a description of the whole network, the
degree statistics refer to specific nodes and the directed path statistic @ relates to one edge.
Depending on their usage and the model employed, local statistics can be aggregated to
global ones, for example by summing the statistic @ over all edges.



The presented network statistics hint on a crucial feature of statistical network data
analysis. If there is a high share of reciprocity in the network or if the edges cluster at certain
nodes, it seems to be unrealistic that the edges are distributed randomly in the network.
Hence, they are almost certainly not independent. Therefore, network statistics are not only
useful for describing topologies but also important for building models that are intended to
take into account network interdependencies appropriately. This motivates the construction
of models that can reproduce topologies that are reflected by network statistics.

1.2.1 Exponential random graph model

In this section, one of the most popular binary network models, the exponential random
graph model (ERGM) is introduced (see |[Frank and Strauss, 1986, [Wasserman and Pattison,
1996, [Robins et al., [2007| and Lusher et al., 2013/ for a book-length treatment). The ERGM is
very attractive for motivating model-based network data analysis because it provides a good
example of how binary network dependencies can be modeled with network statistics.

In the following, random variables are denoted in upper case letters while realizations
are denoted in lower case. For notational clarity, the dependence on potential covariates is
suppressed.

Model motivation

A very simple starting point for analyzing binary networks is the Bernoulli random graph
model also known as the Gilbert model (Gilbert,|1959). This model assigns equal probabilities
to all edges, such that

P(Y;; = 1;p) = p for all i # j.

The resulting probability distribution for the whole network
P(Y =y;p) = p>i#s ¥ (1 — p)N "2z ¥, (7)

is an exponential family model (e.g. Fahrmeir et al., [2007) with the edge count (2)) as sufficient
statistic. To see this, define § = logit(p) := log(p/(1 — p)). Then it holds that

( s )Zi;&j Yij
P(Y =y;0) = pXizi Vi (1 — p)N "2z vis = l(Ip—p)‘N
eXp{egedgeS(Y)} N eXp{egedgeS(Y)}

(1 +exp{0H)N K(0) ’

with () denoting the normalization constant.

However, in practice it is often very unlikely that the edge probabilities are all equal and
hence, this model is much too simplistic for explaining the topologies of complex real-world
networks. Technically, this means that the expected values for certain network statistics
under model do not match with the observed ones. This motivates an extension of the
model by incorporating more network statistics

9(Y) = (91(Y), ..., gp(Y))7,

including for example reciprocity or triadic structures (see Morris et al 2008 for a broad
range of statistics). Extending the simple model results in the ERGM as typically defined
in the literature T a(y))
expif” gy
PY =y;0) = ————. 8
(¥ =yi0) = 0 )



Here, 6 € O represents a p-dimensional column vector of coefficients. Because the ERGM is
an exponential family model, it holds that

Esl01(Y)] = ai(y), for I =1,....p

with @ being the maximum likelihood estimator for 8. Therefore, the model provides a prob-
ability distribution for the graph that, in expectation, replicates the topological structures of
the observed network.

Local interpretation

Although model can be said to be global, in the sense that it gives a probability distribu-
tion with, e.g. an expected number or reciprocated edges in the network, it is also possible
to derive a local interpretation. Define y_;; to be the network y, excluding the dyad (i, j),
and y; as the network y with element y;; = 1 and y_ correspondingly with y;; set to zero.
Then, the conditional logarithmic odds are given by

_ P(Y =y.;0
logit(P(Yi; = 1|Y 5 = y—i5;0)) = log (M)

=60"{g(y1) — g(y-)} =0"4(y).

The change statistics §(y) measure how g(y) changes if the edge (4, j) is switched from zero to
one, leaving the rest of the network untouched. Equation @ bears similarities to the logistic
regression model but comes with the caveat that the change statistics vary with changes of the
network and the logarithmic odds interpretation is valid only conditional on the remaining
state of the network.

(9)

Estimation

The seemingly simple mathematical form of the ERGM might lead to the tempting
conclusion that maximum likelihood provides a straightforward solution to the problem of
obtaining parameter estimates. The log-likelihood

0(0;y) = 0"g(y) — log(k(6)),

looks innocent but if endogenous network statistics are considered, the normalization constant

K(0) =) exp{0Tg(y)}

yeY

becomes intractable, except for very small networks (Yon and de la Haye, [2019), impeding
direct maximization of the log-likelihood. Consider the comparison of |[Chandrasekhar and
Jackson| (2014). Given a small network with n = 17 nodes, calculating the normalization
constant requires to sum 2272 terms, while the estimated number of atoms in the universe is
roughly 2258,

One very popular solution to the problem is given by approximations of the log-likelihood.
This becomes possible by fixing a parameter vector 6y and noting that

£0;y) — (0o y) = (0 — eo)Tg(y) — log <:((;0))>

= (0~ 600)" g(y) — log{Eg,exp{(6 — 00)" g(Y)}]}

~ (6 —60)" g(y) — log {nl,b > expf(6 - 90)T9(y29)}} :
=1



By the law of large numbers, the log-likelihood £(6;y) can be approximated if it is possible
to sample network realizations yf , ...,y;gn from distribution parameterized with 6 = 6.
This can be done based on Monte Carlo Markov Chain (MCMC) methods, see |Geyer and
Thompson| (1992)) for MCMC maximum likelihood and [Hunter and Handcock (2006) as well
as [Hummel et al.| (2012) for a more detailed description of the fitting procedure for ERGMs.
Further approaches include Bayesian inference (Caimo and Friel, 2011]) and maximum pseu-
dolikelihood estimation (MPLE, [Strauss and Ikedal (1990) that can be seen as a local approx-
imation of the log-likelihood, building on a logistic regression model using equation @]) See
Chapter [3| for further notes and literature concerning estimation.

Degeneracy

An endemic problem to this model class is called degeneracy (see e.g. |Snijders et al., 2006,
Schweinberger, 2011 or |Chatterjee et al.l 2013) and describes the circumstance that many
regions from the parameter space © may lead to distributions where most probability mass
is concentrated either to an empty or a full network. This poses a substantial problem for
simulation-based fitting procedures and might prevent convergence of MCMC algorithms.
Certain statistics or combinations of statistics are especially prone to degeneracy. For exam-
ple, the inclusion of triadic structures is often impossible without running into degeneracy
issues. A potential way out of this problem is the usage of geometrically weighted statistics,
see Snijders et al.| (2006), Hunter and Handcock (2006) and Chapter [3| The inclusion of the
statistic stabilizes the fitting procedure but comes at the cost of simplicity and interpretabil-

ity.

Node-specific heterogeneity

In the model formulation above, it is assumed that the network statistics are sufficient to
capture the heterogeneity of the nodes. Hence, given the included network statistics all nodes
are assumed to be equal in a statistical sense. This might not be a very realistic assumption.
One possibility to give up this assumption is to incorporate nodal heterogeneity via nodal
random effects. This direction is taken by Duijn et al. (2004)) in an approach called pa model.
For further discussion on nodal heterogeneity and appropriate modeling with random effects,
see [Thiemichen et al.| (2016) and Chapter

1.2.2 Further models for static binary networks

Although the ERGM can be said to be the workhorse for modeling static binary networks,
there exist further important model classes applicable to binary network data. Two very
popular ones are latent space (latent factor) models, introduced by Hoff et al. (2002) (see
also Hoff, 2005/ and Handcock et al., [2007) and stochastic block models (SBM, Holland et al.|
1983, [Wang and Wong, (1987, [Nowicki and Snijders, [2001)). Although they are not applied
in the contributing articles, some general notes on these models help to gain a broader
understanding of the different approaches in the field.

Latent space model

Latent space models are very general and can be interpreted as an approach that tries to
transfer the flexibility of generalized linear models (GLM, e.g. Fahrmeir et al.,|2007) to models
designed for network data. Given this generality, it is possible to analyze various kinds of
networks, including binary networks as well as network with continuous edge values or edges
with count values. In contrast to the motivation of the ERGM, the model class does not



explicitly quantify network topologies by utilizing network statistics but assumes that the
network dependencies can be represented by positions Z = (Z1, ..., Z,)" in a latent space.
Conditional on the position in the latent space, and potentially covariates, the edges are
assumed to be independent

]P)(Y = y‘Z = 2;9) = HP(E] = y7,]|Zz = Zi,Zj = zj;Q).
i#]
The probability model is an exponential family distribution, allowing to use a logit model for

binary networks
logit(P(Yy; = 1|Z; = i, Zj = 2;;0)) = nij(2i, 25)

and the central idea of latent space models is described best in terms of the predictor
Mij (is 2j) = pij — d(zi, 2j)- (10)

Here, p;; gives a dyad-specific term that can be expressed as a linear combination of covari-
ates. The function d(-,-) evaluates the distance between the latent space positions z; and
zj. This function can be any distance measure satisfying the triangle inequality, for example
Euclidean with d(z;, z;) = ||2; — zj]|2 or the absolute distance, d(z;, zj) = ||z; — 2z;||1. With
increasing distance in the latent space, the predictor decreases, leading to a reduction of the
probability associated with the occurrence of an edge. Hence, nodes that are close in the
latent space are more probable to connect. Hoff et al. (2002)) explain that the positions in
the latent space capture many network dependencies, for example, reciprocity or transitivity.
Estimation is possible via maximum likelihood or Bayesian methods and the authors also
provide methodology for making inference on the latent positions Z.

Stochastic block model

Stochastic block models (SBM) have their roots in mixture models (e.g. McLachlan and Peel,
2004) and in their basic form, they can be understood as a mixture of simple random graph
models. As a general foundation, it is assumed that the nodes V' = {vy, ..., v, } can be assigned
into @ different blocks (also called classes). Within each block, the nodes are homogeneous
and only between the blocks they are heterogeneous. An intuitive way to think about SBMs
is imagining a re-ordering of the adjacency matrix such that it contains dense blocks on the
diagonal while the off-diagonal blocks are sparse.

Define K; = (K1, ..., K; )T to be a vector containing indicators, with Kj;, equal to one if
node v; belongs to block ¢ € Q). The probability of node i belonging to block ¢ is given by

P(Kig=1) =0y, forg=1,...,Q

together with Zqul ag = 1. Conditional on the block membership K; and K, the edges Yj;
are assumed to be independent Bernoulli random variables with

P(Yi; = 1|Kig = 1, Kjr = 1) = 7y,

Consequently, the edge probabilities are equal within the blocks and differ for the connections
between the blocks. In case, the block membership K = (K7, ..., K},) is known, the model
is a non-stochastic block model that can be fitted with maximum likelihood. Obviously,
this is very unrealistic and the block membership is unobserved in most real applications.
The traditional estimation method in mixture models, the Expectation-Maximization (EM,
Dempster et al., [1977) algorithm is not always applicable in its standard form but the SBM
can be estimated via variational EM algorithms. Additionally, there exist other methods as
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Bayesian estimation based on Gibbs sampling. Hunter et al.| (2012)) provides further overview
on available methodology for estimation. The number of blocks can be chosen by information

criteria. |Airoldi et al| (2011) and (2015) provide extensions with covariates. See

\Goldenberg et al.| (2010) for further descriptions and references as well as a comparison of
latent space models and SBMs.
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1.3 Dynamic binary networks

The line it is drawn; The curse it is cast; The slow one now; Will later be fast;
As the present now; Will later be past; The order is rapidly fadin’; And the first
one now; Will later be last; For the times they are a-changin.

Bob Dylan (“The Times They Are a-Changin’ in 1964)

In Kolaczyk! (2017, p. 98) modeling dynamic networks is highlighted as one of the important
emerging topics of statistical network data analysis: “Most complex systems are dynamic in
nature. So, realistically, the corresponding network graphs and processes thereon are dynamic
as well and, ideally, should be analyzed as such”. From a general statistical perspective,
incorporating dynamics can be viewed as adding another dependence structure that either
supplements or even replaces the static network dependencies (see e.g. Almquist and Butts,
2014]).

1.3.1 Dynamic exponential random graph models

The static ERGM introduced in Section can be extended very naturally to models suit-
able for dynamic networks. In the following, two popular approaches for modeling dynamic
networks building on the ERGM class are introduced.

In this section it is assumed that the observed network data is recorded over time, i.e. the
binary networks Y; = (Y,ij)ij=1,..n» under study are observed at discrete equidistant time
pointst=1,...,T.

Temporal exponential random graph model

The temporal ERGM (TERGM) as proposed by Hanneke et al.| (2010) combines an ERGM
with a first-order Markov dependence structure to model the transition from ¢ — 1 to ¢ via

exp{67g(yt,yt-1)}
Pyey exp{0Tg(y*, yi-1)}

P(Yt = Yt|Yt71 =Yit-1; 9) =

The network statistics g(y, y:—1) can be evaluated on the network in ¢ but also topologies
from the network in t—1 can be incorporated. This gives the possibility to include interactions
between the network in ¢t — 1 and the network in t. As an example, consider the visualization
of a dynamic network with n = 4 nodes at T" = 3 time points in Figure

The exemplary network appears to be relatively stable. Over time, most edges stay present
and only two edges are added and deleted, respectively. This pattern can be interpreted as
an autoregressive dependence structure that can be measured for example with the statistic

gautreg th Yt 1 Z }/t Zj}/t 1,35
i#]

meaning that the occurrence of an edge between ¢ and j in ¢t — 1 influences the probability of
observing an edge between ¢ and j in ¢.

Another dynamic interpretation of network patterns in Figure |3| could be dynamic mu-
tuality because the mutual edges between nodes ¢ and k are stable over time. This can be
quantified with delayed reciprocity

YGdrecip Yt; Yt 1 Z Y;t zngt 1,5i
i#]

and helps to investigate whether an edge (j,7) in ¢ — 1 alters the edge probability for (7, ) in
t.
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Figure 3: Scheme representing a dynamic network. Three snapshots of a network at different
time points.

It also can be proposed that edges that originate at a node with a high outdegree have a
low tendency to dissolve over time because the outdegree of node i stays equal to three for
all time points in Figure|3] Such a pattern can be covered by including the lagged outdegree
of the nodes in a statistic

gloutdeg Ytth 1 Z Y;f Ky Z Y;ffl,ik . (11)
i#£j keV,k#i

Additionally, it could be investigated whether triadic structures contribute to the stability of
edges. Again, there exist many possibilities to define dynamic network statistics, see [Leifeld
et al.| (2018) for further examples.

Separable temporal exponential random graph model

The concept of the TERGM was refined further by Krivitsky and Handcock (2014). Taking
again Figure [3| as an example, it might be plausible to assume that the persistence of edges,
for example, the reciprocal relation between ¢ and k is governed by mechanisms that differ
from those that lead to the appearance of the edges (h,k) in t or (h,j) in ¢t + 1. In their
separable TERGM (STERGM) the authors formalize this idea and propose to separate the
transition from Y;_ 1 to Y; into two processes, the formation, that allows to investigate the
occurrence of edges in ¢t without a preceding one in ¢t — 1 and the dissolution of edges in t,
already present in the network in t — 1. See Chapters [2] and [3| for further explanations and a
comparison between the TERGM and the STERGM.

Changes in the process

When modeling dynamic networks it is important to consider the possibility of changes in
the data generating process. Both models, the TERGM and the STERGM allow for different
layers of flexibility regarding their parameters. Most restrictively, it can be assumed that the
parameter vector 6 remains constant for all transitions in the whole time period. However,
especially if a long series of networks is investigated, this might be an unrealistic assumption.
Given the first-order Markov assumption, this restriction can be relaxed by allowing the
parameter vectors to differ for each transition. The obtained parameters can then be plotted
against time to show changes in the generative process. Another possibility is the usage of
time-varying coefficients (Hastie and Tibshirani, [1993) as proposed in Chapter In such
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a framework, the coefficients are allowed to change with time but a penalization on the
difference between sequential parameter estimates ensures that these changes are smooth.

Conditional dyadic independence

Similar as in the static ERGM, estimation of 6 is possible by approximating the log-likelihood
of the TERGM and the STERGM via MCMC sampling. Although these models are less af-
fected by the degeneracy problem (Hanneke et al., 2010) the fitting procedure can be tedious
and even infeasible for big and for medium-sized networks. Further, they rely on nodal
homogeneity. In Chapter 2| a variant of the STERGM is proposed that circumvents the
simulation-based fitting procedure and allows for the inclusion of random heterogeneity com-
ponents and time-varying effects. This is possible if the network statistics are restricted to
the following structure

gyt ye—1) = Zyt,ijﬁl,z’j(}’t—l), forl=1,...,p (12)
i#]

with g;;; being a network statistic evaluated on y;_1 for dyads (7,5). An example for such
a statistic is the lagged outdegree but also delayed reciprocity and the autoregressive
statistic. Given this restriction, the model collapses to a logit model. This can be illustrated
using arguments from |Strauss and Ikedal (1990) building on the conditional logarithmic odds
from @D with y; _;; being the network y;, excluding the dyad (¢,j). Matrix y; gives the
network y; with element y;;; = 1 and y; — with y;;; = 0:

1ogit(P(Yeij = 1Yi-1 = ¥e-1, Ye—ij = ¥1,-i5:0) = 0" {g(ye+,¥e-1) = 9(ye, ye-1)}. (13)
Inserting now the restricted statistics in results in

logit(P(ysij = Y1 = ¥i-1, Ye—ij = ¥t.—ij;0)) = 07 Gij(y1-1)

, (1)
= loglt(IP’(Yt,ij = 1|Yt_1 =¥Yi-1; 0))7

with i (ye—1) = (91,ij(¥t=1)s -, Gp.ij (yt—1))T . Clearly, the resulting change statistic is invari-
ant to changes of y; and the model can be represented as a logit model, conditional on the
network in t — 1. This approach has many advantages, including the possibility to fit big
networks very quickly without the need to apply simulation-based fitting procedures. On top
of that, all popular extensions of generalized linear models, for example random effects or
smooth covariate effects can be employed in network analysis without any difficulties. Never-
theless, assuming effectively implies that conditioning on the network embedding in £ —1
is sufficient for assuming dyadic independence in ¢t which may be questionable (e.g. Lerner
et al., [2013).

1.3.2 Further models for dynamic binary networks
Stochastic actor-oriented model

Especially for the analysis of social networks, stochastic actor-oriented models (SAOM, |Sni-
jders| [2017, |Snijders et all |2010|) are very popular. Most importantly, they differ from the
TERGM family because in the SAOM it is explicitly assumed that the observed networks
y:—1 to y: are in fact realizations of a time-continuous process that governs the dynamic
evolution of the network over time. Within the continuous time intervals actors (nodes), are
selected and get a chance to alter the state of one outgoing dyadic relation.

Although being different models with different assumptions, designed for different data
situations, there is a growing (partially even controversial) literature that draws comparisons
between the (T)ERGM and the SAOM, see |[Desmarais and Cranmer| (2012al), Block et al.
(2018), Block et al.| (2019), Leifeld and Cranmer| (2019).
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Dynamic latent space model

The latent space models as introduced in Section can be extended toward dynamic net-
works. In this model class, the difficulties of modeling dynamics come with the handling of
the latent space over time. If separate positions in the latent space are estimated for each
time point, the representation might become unstable and does not necessarily yield an inter-
pretable pattern. Different solutions are proposed in the literature. Sarkar and Moore (2006])
propose to extend the static latent space model by allowing for an autoregressive structure
of the latent positions. Hoff| (2015)) gives a very pragmatic approach and proposes to assume
constant latent space positions over time. In Ward et al.| (2013)), the latent space positions
in t — 1 can affect the response in ¢ and in [Sewell and Chen| (2015) much effort is put into
providing a meaningful dynamic latent space representation with temporal trajectories.

Dynamic stochastic block model

In stochastic block models, group-level heterogeneity is assumed to be captured with the
blocking but dynamics necessarily imply that the assignment of individual nodes to different
blocks may change with time. In|Yang et al. (2011) a discrete-time SBM is proposed where the
nodes can change their blocks but the edge probabilities remain constant with time. This is
extended by Xu and Hero| (2013) with a state-space model where both, the edge probabilities
and the block membership, can vary with time. In Matias and Miele (2017) SBMs combined
with Markov chains for the time-varying block memberships are investigated. The authors
also note that at present the dynamic block assignments can be very hard to compare and
often suffer from identifiability issues.
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1.4 Weighted networks

What nature hath joined together, multiple regression analysis cannot put asunder.
Richard E. Nisbett (Nisbett, 2015, p. 187)

While many models designed for network data are suited very well to investigate complex
network interdependencies between binary edges, network data very often comes with valued
edges. The edge values usually convey meaningful properties of the system under study and
hence binarization of the network typically implies a loss of information. This motivates the
need for models that can extract information from the edge values.

This section starts with some brief definitions. Further, it introduces models designed
for networks with valued edges. The last part of this section is devoted to the analysis of
network flow data, including the gravity model and models from spatial econometrics.

Definitions

Weighted networks can be formalized by supplementing the graph G = (V, E), as defined in
Section with values W((i, 7)) for each edge (i,7) € E. In the following, this is character-
ized by defining the weighted adjacency matrix Y = (ﬁj)i7j:17_,,7n. As a convention, diagonal
elements are not regarded and edges not present in the edge set are set to zero:

ﬁ_{wwmn,ﬁmﬁeE
1) .

0 , else

Similar as in the binary case, the density gdensity(?) of a weighted network can be defined by
dividing the number of edges within E by the number of all potential edges N. Also other
concepts from binary networks can be translated directly to weighted networks but potentially
come with a different interpretation. While it is possible to define measures like weighted
degrees or reciprocity for weighted networks, the task becomes much more complicated for
hyperdyadic statistics. Once the network is not binary anymore, many of the appealing and
accessible properties of statistics that encode for example triadic structures are lost.

1.4.1 Models for weighted networks

It is fair to say that the development of models for weighted networks is still in its infancy
and a canonical model is not found yet. In the following, three network models that are
capable to analyze weighted adjacency matrices are presented. Two of them are offspring
of the ERGM family: the generalized ERGM (GERGM, Desmarais and Cranmer, [2012b,
Wilson et al) [2017) and the valued ERGM by Krivitsky (2012)). The third model class are
latent space models (Hoff et al.l 2002) as already presented in Section

Generalized exponential random graph model

One of the main challenges of generalizing the ERGM towards valued edges comes with the
problem that convergence of the normalization constant is no longer ensured if the edge
values are unbounded. However, continuous edge values within the unit interval ensure a
convergent normalization constant. Assuming that X represents a restricted network with
edges X;; € [0,1] allows to define the model

Cxp— epl0TR)
X0 = (T
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where g(-) gives a vector of network statistics. The central model ingredient of the GERGM
is given by an one-to-one monotone transformation Y;; = R_I(Xij, B) that maps the edge
values X;; € [0,1] to Yj; € R. The transformation is parameterized with the vector § and

the function R (5. 6)
ij\Ys Y

= = Tij }/i'7

v, rij(Yij, )

gives the partial derivatives with respect to 17” Using standard results on transformed
random variables, it holds that

exp{0"g(R(y,
P(Y = ;60,08 = = | |7’z 5
( Y ) f[o 1N exp{0 9( y }d itj ! y]

The choice of R(y, ) is left to the researcher but |Desmarais and Cranmer| (2012b) suggest
to use cumulative distribution functions for the transformation. Following their advice, r;;
is simply the corresponding density. If a network with real-valued edges is to be analyzed,
choosing a cumulative normal distribution for R(y, ) might be an appropriate choice. This
leads to an attractive interpretation in the case the data does come without endogenous
network dependencies (# = 0). Then, the GERGM collapses into a standard linear regression
model with independent observations ﬁ-j (potentially conditional on further covariates). For
model inference and log-likelihood approximation via MCMC, see |Wilson et al.| (2017)).

The GERGM is an attractive model for small and fully connected networks. On the other
hand, these two properties also represent the major limitations of the approach. It is hard
or even infeasible to work with zero-inflated data (i.e. networks with a density less than one)
and the estimation procedure does not scale well to big networks. See the articles by [Simpson
et al. (2013), |Simpson and Laurienti (2015), Ward et al.| (2013]), Boivin and D’Eliaj (2017)
and Schoeneman et al.| (2017)) for comments on the shortfalls of the GERGM for networks
that are big or come with a low density.

Valued exponential random graph model

Another direction, but also starting from the ERGM family, is taken by Krivitsky| (2012).
The author presents a model, called valued ERGM, that is most suitable for count-valued
edges, i.e. Y;; € Ng. The model is defined by the following probability mass function

~ 7 T (< ~ T [~
PY —5.0) = — &) eip{@ 9(3;)} S M) expld” 9(y)}
> geey MY*) exp{6Tg(y*)} r(6)
with h(y) being the reference measure. Given that convergence of the normalization constant

is not generally ensured for valued edges, the parameter space © must be restricted to finite
normalization constants

O C{H" e RP: K(0") < o0}.

In order to get a better understanding for the role of the reference measure, regard an example
by |Krivitsky| (2012). He proposed the reference measure

h@) =11 .

i Vi

In a simplistic network model, including only the sum of the edge values as network statistic,
this results in

)

(Y = Hu 0)vii e;ip{ 1(0)}
i#j "
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being the distribution of independently, identically distributed Poisson random variables with
expectation p(0) = exp{f}. Although the reference measure determines the general shape of
the distribution, this does not necessarily imply that a model with more complicated network
statistics also results in a Poisson regression model. Selecting network statistics can be tricky
because they must be constructed such that a convergent normalization constant is ensured.

Krivitsky (2012) also discusses the possibility of using the valued ERGM for continuous
edge values but so far such extensions are neither implemented in software, nor applied or
extensively discussed in the literature.

Latent space model

Although already discussed in Section [1.2] it is appropriate to mention here again that the
flexibility of the latent space models allows for investigating weighted networks. Since latent
space models build on the generalized linear model infrastructure, different data structures
can be modeled by simply choosing an adequate distribution from the exponential family. For
example a Normal distribution for continuous edge values or a Poisson distribution for count
data associated with the edges. Otherwise, the same basic equation for the predictor is
valid.

While the approach can be criticized for not relying on interpretable network statistics,
in a setting with a weighted network this is actually an advantage. Because the network
dependencies must not be specified explicitly, the problem of defining statistics for weighted
networks can be circumvented. However, similar to in the GERGM, the model class is limited
to fully connected networks and cannot handle zero-inflated data.

1.4.2 Models for network flow data

Depending on the system of interest, the values associated with the edges have plenty of
interpretations. Very often these values can be interpreted as flows between the nodes.
The flows might be physical, representing transfers of goods in trade networks or traffic in
transportation networks. Further, the flows can be digital, for example in computer networks
or financial networks. Because network flow data emerges in many disciplines and comes
with a very specific interpretation, there is a long history of analyzing network flow data (see
Kolaczyk, 2009). In Chapters |§| and |7| physical and digital network flow data is analysed
which motivates the introduction of some related models that are important for these articles.

Gravity model

A model specifically designed for network flow data is the so-called Gravity Model. The
general idea is rather old and early versions can be found for example in the social sciences
(Stewartl 1941) or economics (Tinbergen, |1963). As a general motivation, the model borrows
from the Newtonian law of universal gravitation and postulates that the edge (flow) values
Yij € R, can be described as follows

Yj o< GSPSRIRDIP, (15)
with S; being a sender-related factor, R; a receiver-related factor, D;; gives a factor on the
dyadic level and G is a constant. The parameters pg, pr and pp give the strengths of the
factors. Taking the original (undirected) model of Newton’s law of universal gravitation, the
sender- and receiver-related factors represent the masses of objects ¢ and j with pg = pr = 1,
the sender-receiver related factor gives the distance between them with pp = —2 and G gives
the gravitational constant.
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While relation is assumed to hold exactly in physics, in social science applications
typically a stochastic component ¢;; is added and the factors of the model are exchanged with
suitable covariates. Furthermore, most often a linearized representation

log(Y;;) = Y;; =1og(G) + pslog(S;) + prlog(R;) + pplog(Dij) + €ij, (16)

is considered for estimationE] For example in economics, the model is amended such that the
economic “mass” of countries is measured with the gross domestic product and for D;; again
physical distance is taken (Head and Mayer} 2014} Disdier and Head) 2008)).

In most applications of the gravity model to trade networks, endogenous network depen-
dencies are not considered and it is assumed that exogenous covariates are sufficient to justify
conditional independence of the edge values }713 However, one research strand, originating in
spatial econometrics (LeSage and Pace, [2009) has started to doubt this assumption. |LeSage
and Pace (2008) write in their widely accepted textbook on spatial econometrics on page
211: “[...] assuming independence between flows is heroic [...]” and propose to add origin-,
destination- and origin-destination dependence to international flows of commercial goods.

Taking a network perspective, the analog to this model is a representation that allows for
the dependence of edge values based on the network structure.

Spatial econometric models

Spatial econometric models are used for decades in statistical network data analysis but they
are typically not considered for modeling edge values. Most often, the approach is employed
for characterizing real-valued variables that embedded in binary networks, i.e. they are used
to investigate node-specific characteristics. In this literature, the models are called network
autocorrelation models and have found many applications in sociology, political sciences and
other fields (see Doreian, (1980, Dow et al., 1982, |Franzese Jr and Hays, [2007, Hays et al.,
2010, Metz and Ingold, [2017| and |Silk et al., 2017).

There are two canonical models in spatial econometrics (Kauermann et al., [2012)) that
allow formalizing spatial dependence structures. In the spatial autocorrelation (SAR) model
the dependence is assumed to directly affect the response and in the spatial error model (SEM)
the dependencies are related to the error terms. In the general discussion of these models,
a real-valued (after suitable transformation) response vector Y is used without explicitly
defining whether Y represents edge values or node-specific values.

Spatial error model

The SEM can be characterized by the following set of equations

Y =XB+u
u=W(p)u+e (17)
e ~ Ny (0,0%1Iy),

with X being a N x k design matrix of covariates, Iy is the N x N identity matrix, 8 € R¥
represents the vector of coefficients for the covariates and W (p) is a N x N weight matrix that
depends on one or more parameters p, encoding the strength of the spatial correlation. In this
model, it is assumed that covariates determine the “correct” conditional expectation while
the correlated errors lead to deviations from it (Leenders, |2002). An advantage of the model

2Another version is to model the logarithm of the expectation instead of the expected logarithm. See
Kolaczyk| (2009, Chap. 9.2) for a discussion.
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-1

is given by its straightforward interpretation. To see this, define B(p) := (Iy — W (p))~" and

note that model is equivalent to
Y =XB+u
u~ N (0,02 B(p) B(p)").
Hence, the whole dependence structure can be shifted into the variance-covariance matrix

and
E[Y|X]= X2

with g8 providing simply the effect of changes in the covariates on the conditional expectation
as in a standard linear model.

Spatial autoregressive model

Turning to the SAR model, similar but re-arranged ingredients are used in order to define
the model

Y = XB+W(p)Y +e
€ ~ Nn(0,0%Iy).
The main difference in comparison to the SEM comes with the assumption that the response
variables are directly related, leading to so-called spill-over effects. Again this can be demon-
strated with an alternative representation of the model:
Y = B(p)X5+u
u~ Nn(0,0*B(p)B(p)").

Now, the conditional expectation
E[Y|X] = B(p)Xf

is slightly more involved because B(p) can be thought of as acting like a “filter” on the
covariates. Consequently, if some covariates of a certain variable change, close neighbors (in
the spatial or the network sense) get affected. To be precise, if an explanatory variable changes
for one entity, the effect “spills over” to all related neighbors and again to the neighbors of
the neighbors and so forth. This holds because B(p) is an infinite sum

Blp) = (In = W(p)) ™" = Iy + W(p) + W2(p) + W3(p) + ...
and typically, the spatial weight matrix comes with the simple parametric form
W(p) = pW
with p € (—=1,1) and hence the spill over effects get weaker, the more one moves away from
the direct neighbors.

Spatial econometric models for valued edges

Assume now that the response is explicitly defined to represent logarithmically transformed
edge values Y € RVE. Based on that, it can be illustrated, how to formulate the SAR model
or the SEM in such a way that it can be utilized for analyzing the edges instead of the nodes.

In the subplot (a) of Figure {4 a weighted network with three nodes and edges ¥ =
(}712,}713,1723,}7},2)71 is illustrated. Following the “gravity hypothesis” introduced above, it
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Figure 4: Illustrative scheme. Exemplary network (a) and dependence structure among
edges: Sender-related dependence (b), receiver-related dependence (c) and dyadic dependence

(d).

could be plausible to assume that edges originating from the same node, pointing to the
same node, or those that are mutual are correlated. To model these structures, the spatial
weight matrix can be extended to incorporate edge dependencies

W(p) = psWs + prWr + ppWp

0100 000 1 0000
100 0 0010 0000 (18)

=Sl ooo0oo0 | PRl o1 00| 00 01
000 0 1000 0010

A graphical representation is shown in the subplots (b), (c¢) and (d) of Figure 4. The sender-
related dependence (b) assumes the two transfers }712 and 1713 to be related because both
originate at node 1. Similar, the receiver-related dependence (c) relates }713 and 3723 as well
as 1712 and 3732 because the share they same receiver nodes 3 and 2, respectively. The dyadic
dependence (d) allows for a correlation of the mutual edges Yy3 and Yio.

Estimation

In contrast to many other network models, direct maximization of the log-likelihood is possible
if spatial econometric models are used. Therefore, the model is, in principle, scalable to big
networks. For fitting and inference in the SEM, see the supplementary material of Chapter
However, for more complex models time-consuming simulation-based methods might be
necessary. This is the case in Chapter [5] where a censored SAR model is estimated using
Monte Carlo Expectation Maximization (MCEM, Wei and Tanner, |1990).

Types of network dependencies

The SAR model and the SEM are restrictive in the sense that exclusively linear relations
between endogenous variables are possible. Linear means here, that the model only allows
for relating Y to W(p)f/, i.e. it is not possible to model, for example, an association between
}713 and 17123723. Depending on the application, the lack of ability to include non-linear
relations may not necessarily be a serious shortcoming because hyperdyadic structures are
typically very hard to interpret anyway. Nevertheless, this is a drawback in comparison to the
GERGM, which can include triadic network statistics evaluated at the transformed network.
Similarly, the linear endogenous relations that can be covered are potentially not as rich as
the ones that can be captured in the latent space of latent space models.
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Model specification

In comparison to spatially related data, network data has the drawback of lacking a clear
physical measure for distance or closeness. Hence, the construction of the weight matrices can
be regarded as somewhat arbitrary. Although the dependence structure represented by the
weight matrices follows clear rules that derive from the original network, there are myriads
of possible combinations that can be defined on a given network, potentially even including
weight matrices constructed from interactions with exogenous covariates. These are issues
that raise the need for carefully specifying the model or using model selection techniques.
The two articles of Chapters [4] and [f] differ in the way network dependencies are included.
While in Chapter |4}, three rather abstract structures are defined and then compared using the
Akaike Information Criterion (AIC, [Claeskens and Hjort} [2008), Chapter [5] builds on defining
three interpretable weight matrices, similar to the decomposition shown in equation .

Sparsity

Weighted networks are often sparse, leading to zero-inflated data. In such a case, modeling
the whole weighted adjacency matrix is clearly in conflict with the assumption of multivariate
normality. Unlike the GERGM or latent space models, the problem can be dealt with in a
rather simple way with spatial econometric models. One approach is to use a conditional
model, i.e. including only observations where an edge value is given. This approach also
corresponds to the example illustrated in Figure |4| with equation referring only to non-
zero edges. Another approach is pursued in Chapter [5| where a censored regression model
is applied, i.e. a latent, fully connected network with continuous edge values is assumed to
lie behind the observed one and all edge values below a certain threshold are assumed to be
censored.
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1.5 Networks with limited information

There are things we know we know. We also know there are known unknowns;
that is to say we know there are some things we do not know. But there are also
unknown unknowns - the ones we don’t know we don’t know.

Donald Rumsfeld in February, 2012 during the Pentagon news briefing

In the previous sections, it was simply assumed that networks, either binary or weighted, are
fully observed over all time points and all network properties of interest can be investigated
with suitable models. Nevertheless, dyadic data is expensive to collect, or even impossible to
obtain, for various reasons. It is, therefore, not surprising that in many cases the observed
network data is incomplete and only partial information is available, for example only node-
specific information, only relatively high edge values or only the binary structure without
information on the corresponding edge values.

In this section, a special case of studying networks with partial information is considered.
It is assumed that interest is in the specific edge values but only the sum of out- and ingoing
edge values of the nodes are observed. In the literature, this problem is often called net-
work reconstruction, see Squartini et al.| (2018) for a recent overview from a methodological
perspective.

Formulation of the problem

To illustrate the problem it is helpful to regard an exemplary weighted network y with n =7
nodes and edge values 7;; € Ry shown in Table Unlike the settings discussed in the pre-
vious sections, neither the binary structure nor the corresponding values are observed. This
means, the data available to the researcher is the one given in Table and the information
is restricted to the row and column sums, shown on the rightmost column and the last row
of the table. The task is then to make the best use of the available information in Table [I.2]
to reconstruct the edge values as accurate as possible.

The row and column sums can be defined in analogy to the binary in- and outdegree from
equations and . The weighted outdegree is given by

Jwoutdeg,i (Y) = Z Y/zk (19)

and the weighted indegree of node j can be defined as

gwindeg,j(Y) = Z Y/vlfj- (20)
keV,k#j
Using these definitions and denoting § = wvec(y) to be a vectorized network realization

(excluding the diagonal elements), the stacked unknown matrix elements § and the known
weighted degrees can be related linearly via

Gwoutdeg,1 (S’)

Sy gwoutdeg,n(y) — 7. = AQ 21
Gudegs(Y) : Guimdon1(3) Y+ Y, (21)

Guwindeg,n (Y)

with g4 representing the stacked 2n row- and column sums of the weighted adjacency matrix
and A is a 2n x N routing matrix. The routing matrix is assumed to be deterministic and
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Table 1.1: Unobserved real network y with matrix entries y;;. Row- and column sums in

the rightmost column and last row, respectively.

1

2

3

4

2

10.17

- 35.26
- 10.54
13.16
- 18.99
- 69.49
7 - 51.64

[ > [3438 3031 43.60 32.77 31.90 18.47 17.82 | |

S T W N~
1

Table 1.2: Observed information gy+. Row- and column sums of the unobserved matrix
entries in the rightmost column and last row, respectively.

simply extracts and sums up the elements of the vector 4 according to the weighted out- and
indegrees.

1.5.1 Network tomography

One research strand that evolved in parallel to network reconstruction originates in computer
science and is called network tomography (Vardi, 1996). Network tomography is concerned
with the estimation of origin-destination traffic matrices. The edge values are assumed to
represent known flows. The difficulties enter the problem because the traffic volumes are
allowed to pass through the nodes, i.e. some nodes are only inter-stations. It is then the goal
to predict the traffic volume between arbitrary origin and destination nodes that potentially
passes intermediate nodes.

Although the problem appears to be different, the mathematical formulation is almost
identical to the reconstruction problem formulated above. Therefore, some of the methodol-
ogy developed for network tomography applies to the network reconstruction problem. There
are, nevertheless, some subtle differences. Most importantly, in network tomography, many
edges are known to be zero which can greatly reduce the dimensionality of the problem (i.e. a
lower number of columns in the routing matrix A). Consequently, not all methods from net-
work tomography can be translated to network reconstruction problems. Here, the popular
approach of regularized least squares, that applies to both fields, is presented.
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Regularized least-squares

Looking at equation , it seems natural to approach the problem in terms of a linear model
Uy = Ap+e,

where € is an error term and p = (pi2, ..., yn(n_l))T gives the vector of non-negative expected
values. However, AT A is singular and yields an infinite number of solutions. This funda-
mental identification problem can be tackled using a regularized least-squares model with the
following loss function

L(p) = (§+ — A)" (52 — Ap) + 0 J (), (22)

together with the restriction p;; > 0 for ¢ # j. Typical regularization terms in statistics (e.g.
Hastie et al., 2009)) are for example

J(p) = p"p

yielding a ridge regression model or

T(1) = ]
i#j

resulting in the least absolute shrinkage and selection operator (LASSO) regression model.
For example |Chen et al.| (2017)) combine elements of the LASSO and ridge regression to re-
construct traffic in biking networks. In Meinshausen et al. (2013) a LASSO-type penalty is
recommended for network tomography and |Castro et al. (2004)) introduces shrinkage estima-
tors for network tomography in a wider context. A model with J(u) based on information-
theoretic reasoning is proposed by |Zhang et al.| (2003).

All of these approaches rely on finding good parameter values for the penalization strength
1 which is apparently a hard task if no training set is available and hence some authors
simply recommend values based on simulation experiments or assume training data to be
available. Another potential shortfall of these approaches is given by the shrinkage property
of regularized models, i.e. the reconstructed edge values sum up to marginals that are smaller
than the observed ones.

1.5.2 Maximum-entropy network reconstruction

Instead of viewing network reconstruction as an ill-posed least-squares problem, it can be
considered as a task that requires to find a distribution for the edges that is consistent
with the given limited information. From that point of view, the maximum-entropy (ME)
probability distribution formalism (see e.g. Squartini et al., [2018, Koller et al., 2009)) provides
a very useful tool and allows to express the available information with the least-informative
distribution. In short, the ME approach tries to find the probability distribution with the
maximum entropy among all distributions that match pre-specified expectation-constraints.

Model derivation

In the exemplary case of Table the edge values are defined on the space ) = Rf .
Therefore, the continuous Shannon entropy functional must be considered

Sif] = - /y £(5) log(f(3))d, (23)
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where the argument f of the functional is a continuous density function. The requirement
that a density integrates to one is formalized by the constraint

/ f(y)dy =1. (24)
y

For the given network reconstruction problem, equation (21)) provides 2n restrictions that
can be used to specify the expectation-constraints

E[gwdegS,l(Y)] =Yt forl=1,...,2n (25)

with g4 ; being the /th element of g.

Then, the maximum-entropy solution (see Chapter@for concrete derivation) can be found
by maximizing with respect to f and conditional on the constraints and . The
resulting maximum-entropy distribution is an exponential family distribution

A exp { = S, Mg |

fg;A) = =y ,

with parameters A = (\q,..., A2,)7 and normalization constant &(\) satisfying restriction

).

Estimation

The maximum likelihood principle, implies that the moment equations

]Ej\[gwdegs,l(Y)] = ng,lv for | = 17 ceey 2n (26)

must be satisfied at the maximum likelihood estimator A. This can be achieved by employing
iterative proportional fitting (IPF, Deming and Stephanl {1940, Kolaczyk, 2009). Denote k
to be the iterator and define E,x[Y;;] =: ufj with starting values ,u% =1 for all 7 # j. Then,
the IPF algorithm iterates by adjusting with respect to the weighted outdegree

k-1 Yt i

k . .
Hij = Mg 1 for i # J,
2 jeviii Mij
and with respect to the weighted indegree
k kYt .
Mz‘jJrl:Mz‘jz o, for j £
ieV,i#j Mij

After convergence, the procedure ensures that the moment equations hold, i.e. the pa-
rameters A\ are set implicitly in such a way that the expected values sum up to the observed
weighted in- and outdegree. In the special case, where diagonal elements are allowed (with
self-loops), the solution is especially easy to find and the IPF algorithm converges in two
steps. The first iteration leads to

1 Yt
Mg = N
and the second one gives
2 = Uti Ytm+i  Y+i¥+mti .
ij = e S g, P
NS iz Ui

This is a variant of the gravity model with S; = Y44, Rj = Y4 mts, G =30 4+ and
Dij =1.
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Extensions

Combining both ideas, i.e. searching for the ME solution and the gravity model from equa-
tion is the basic motivation for the model derived in Chapter @ The proposed model
parametrizes the expectation of the matrix entries as a log-linear gravity model such that

. _ QPS pPRYPD
pij = S Ry D

This formulation extends the standard IPF model from above because it adds an exogenous
dyadic factor D;; and parametric weights pg, pr and pp. If the dyadic factor D;; is reasonably
well associated with the unknown matrix entries, the predictive quality can be increased
relative to the standard IPF solution.

1.5.3 Approaches for sparse networks

In the explanations above, it was implicitly assumed that the network under study is fully
connected and N edge values are to be predicted. As long as all elements of gydegs(y) are
greater than zero, any maximum-entropy method will allocate strictly positive values to all
edges. This is a clear drawback because most weighted networks come with less than N
valued edges and in some applications, it is of vital interest to obtain good estimates for
the binary network structure. However, from a theoretical point of view, it is not possible
to infer the number of edges from the weighted degrees and hence, further information or
assumptions are needed to overcome this lack of identifiability (Gandy and Veraart, [2017,
Proposition 3.1).

Minimum density

One approach is to assume that the network is very (very) sparse. This is proposed by Anand
et al| (2015) in a model, called minimum density with the goal of reducing the number of
edges as far as possible. The model also can be understood in terms of penalized least-squares
(22)) with penalty
T() = 3" (g > 0).
i#]

Hence, the algorithm seeks a solution with a minimal amount of edges with the smallest
deviation from the weighted in- and outdegree.

Density-calibrated approaches

Other approaches build on the assumption that the real density, or at least a good guess for
the density, is known. This allows to provide edge probabilities p;;(7;6) as a function of the
marginals and potentially exogenous covariates. Given a target density, the parameter 6 is
chosen such that ]
N Zpij(g-k; 9) = Gdensity (S’)
i#]

The respective models can be constructed as two-step procedures (Cimini et al., 2015, |Gandy
and Veraart, |2019)). In the first step, the probabilities are calibrated to the target density
and in the second step, a model for the edge values is applied conditional on a sampled
binary network structure. Another approach that relies on joint estimation, based on adding
a density constraint to the ME problem, is proposed by Bargigli (2014). See Chapter [7| for
more details regarding sparse network reconstruction and density calibration.
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1.6 Lessons learned

There are no routine statistical questions;
there are only questionable statistical routines.
David R. Cox (found in Havranek et al., 2013, p. 250)

Statistical network data analysis provides, without doubt, a powerful framework that allows
uncovering relations and dependencies that would remain hidden otherwise. From a statistical
perspective, the most important aspect of the network data analysis literature is probably
the explicit focus on dependent observations. This strong emphasis can be seen as a vital
step towards modeling complex real-world processes more appropriately.

Alas, statistical network data analysis as a methodological toolkit is also a good example
for the fact that allowing for more complexity can open many trapdoors. Regarding models
for binary networks, for example the ERGM and its dynamic extensions, it becomes obvious
that the appealing flexibility is bought at a high price. This includes tedious and painfully
slow computation as well as laborious interpretability. Therefore, Chapter [2] tries to escape
these shortcomings with the assumption of dyadic independence conditional on the past state
of the network and in the survey article of Chapter [3] much effort is spent on the explanation
and interpretation of different network statistics. Still the ERGM and its temporal extensions
are among the most established models.

Regarding weighted network analysis, most proposals in the literature appear to be some-
what unfinished and incomplete concerning scalability and interpretation. While there exist
some ambitious and carefully constructed approaches, one is still tempted to conclude that
the question of how to model real-world weighted networks appropriately is unresolved so
far. Regarding the network applications of Chapters [4] and [5] common models for weighted
networks haven even proved to be infeasible, forcing the authors to circumvent the inade-
quacy of these models by a rather unusual choice of modifying spatial econometric models
for investigating edges in weighted networks.

In the case of network reconstruction (Chapters |§| and , neither interpretability nor
feasibility is that much of an issue. However, network reconstruction has a focus on prediction
rather than interpretation. Furthermore, in settings where networks are to be reconstructed,
most of the complicated network dependence structure is already lost and the reconstruction
depends only on simple network statistics like the weighted degrees or the density.

As a consequence, some of the contributing articles can be regarded to be “workarounds”
trying to bypass the problems that come with complex networks. A less cynic description of
these approaches would be that the articles show how recycling and re-arrangement of estab-
lished concepts and models can be fruitfully combined with the ideas of statistical network
data analysis.

Having said this, two conclusions can be drawn. First, there is certainly still a lot of
room for improvement in the field of statistical network data analysis. Second, it seems like
much of the answers to this challenge can be found in already established and long-standing
methods scattered over the whole literature of quantitative research and statistics.
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Abstract

In this paper we propose to extend the separable temporal exponential random graph
model (STERGM) to account for time-varying network- and actor-specific effects. Our
application case is the network of international major conventional weapons transfers,
based on data from the Stockholm International Peace Research Institute (SIPRI). The
application is particularly suitable since it allows to distinguish the potentially differing
driving forces for creating new trade relationships and for the endurance of existing
ones. In accordance with political economy models we expect security- and network-
related covariates to be most important for the formation of transfers, whereas repeated
transfers should prevalently be determined by the receivers’ market size and military
spending. Our proposed modelling approach corroborates the hypothesis and quantifies
the corresponding effects. Additionally, we subject the time-varying heterogeneity
effects to a functional principal component analysis. This serves as exploratory tool
and allows to identify countries that stand out by exceptional increases or decreases of
their tendency to import and export weapons.
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1. Introduction

In this paper we present a data-driven extension of the separable temporal exponential ran-
dom graph model (STERGM, Krivitsky and Handcock 2014) applied appropriately to a
highly relevant case: The international weapons exchange. The STERGM allows to differen-
tiate between the formation, i.e. new arms trades, and the persistence of existing edges, i.e.
continued arms transfers. To introduce into the field, we first sketch and motivate network
analysis for (arms) trade data. We then put the model in a broader context of statistical
network models, supplemented by a description and discussion of international arms trade.
Trade networks

Statistical network analysis provides a good framework to conceptualize international trade
systems. Schweitzer et al. (2009) highlight the enormous interdependencies of economic
transactions and propose a network approach for capturing the systemic complexity. Grav-
ity models, as standard approach in econometrics for modelling trade data (Head and Mayer
2014), are usually focussed on dyadic relations. Hence, the models exclude highly impor-
tant hyper-dyadic dependencies, and especially indirect relations. Squartini et al. (2011a,b)
showed that gravity models of international trade are, therefore, necessarily incomplete. In
particular, they demonstrated that analysing the determinants of link creation is highly
important as the binary network carries information that goes beyond the classical grav-
ity model representation. Barigozzi et al. (2010) demonstrated that trade networks are
commodity-specific, i.e. their topologies are quite different across commodities - leading us
to conclude that there is also a need to consider arms transfers separately. This is theo-
retically challenging since arms transfers constitute a very special trade relationship. The
transferred products and services can potentially lead to deadly quarrels between or within
states, or they may contribute to stabilization and deterrence. The delivery is not always a
purely economic exchange but may also serve the support of aligned countries or groups. In
sum, the exchange of weapons is a politically sensible and security-related, but also an eco-
nomically beneficial relationship. For this reason, we make use of flexible statistical models
for network data that allow us to investigate the special incentives in the international arms
trade network.

Statistical network models

Statistical models that are suitable for temporal networks have been developed just in the
recent years, and different techniques have been proposed. Robins and Pattison (2001)
were the first to extend the static exponential random graph model (ERGM, Holland and
Leinhardt 1981; Lusher et al. 2012) to discrete-time Markov chain models, see also Snijders
et al. (2010). Hanneke et al. (2010) or Leifeld et al. (2018) also consider network dynamics
on a discrete time scale. They propose the temporal exponential random graph model
(TERGM) which makes use of a Markov structure conditioning on previous network statistics
as covariates in the model. A related approach is presented by Almquist and Butts (2014),
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discussing assumptions that allow for circumventing the often computationally intractable
fitting process of dynamic network models by applying logistic regression models. Koskinen
et al. (2015) expand the model using Bayesian methods which allows the parameters in the
dynamic network model to change with time. A general perspective on dynamic networks
is provided by Holme (2015). It also includes models for continuous time, such as stochastic
actor-oriented models (SAOM, see Snijders et al. 2010) or dynamic stochastic block models
(SBM, see for instance Xu 2015).

A recent novel modelling strategy for networks observed at discrete time points has been
proposed by Krivitsky and Handcock (2014). They do not model the state of the network
itself but rather focus on network changes which either occur because of the formation of new
edges or because of the (non-)persistence of existing ones. Assuming independence between
the two processes, conditional on the previous network, leads to the so called separable
TERGM. The separation is motivated by the fact that the two processes under study are
highly likely to be driven by different mechanisms and factors. The authors argue that the
inclusion of a stability term (being mathematically equivalent to the inclusion of the lagged
edge values as explanatory variable) in a TERGM could lead to ambiguous conclusions
because it is not clear whether a positive stability parameter means that non-existing ties
remain non-existent (no formation) or whether existent ties remain existent (persistence).

For many real world dynamic networks the process change with time and therefore the
assumption of stationarity seems to be inappropriate. This is especially the case for network
data that span a long time period and potentially subject to structural breaks. Under such
conditions it appears necessary to allow the model parameters to change with time. We
take up this idea and extend the STERGM by allowing for time-varying coefficients. More
specifically, we propose to rely on so called generalized additive models (GAM). This model
class has been proposed by Hastie and Tibshirani (1987) and extended fundamentally by
Wood (2017) to allow for smooth, semi-parametric modelling of time-varying parameters in
a generalized regression framework (see also Ruppert et al. 2009).

Furthermore, the assumption of node homogeneity must be regarded as questionable. We
therefore allow for heterogeneity in the model (see Thiemichen et al. 2016 for a discussion
on node heterogeneity). Accordingly, we follow the p,-model developed by Duijn et al.
(2004) and enrich the STERGM with functional time-varying random effects (Durban et al.
2005) which leads to smooth node-specific effects. We propose to investigate the fitted
functional heterogeneity effects with techniques from functional data analysis (FDA), see for
instance Ramsay and Silverman (2005). This allows to identify countries (nodes) that have
fundamentally changed their role in the arms-trading network over the observation period.
Global weapons transfers
At present, there are only a few empirical binary network analyses of the international arms
trade. Akerman and Seim (2014) pioneered in analysing topological features of the binary
arms trade network. Their descriptive network analysis is supplemented by an empirical
investigation using a binarized gravity model without considering network dependencies. In
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this article we build on the recently published paper by Thurner et al. (2018) that uses a
TERGM. However, our approach extends the TERGM in many aspects. Most importantly,
we treat dynamic dependencies in a fundamentally different way. In Thurner et al. (2018), the
authors found that previous arms trading has a highly determining impact on the occurrence
of subsequent transfers due to the enormous inertia. This finding implies that the information
whether trade happened in the preceding time period(s) has a considerable impact on the
probability to trade again, leading to the same ambiguities as mentioned in the stability term
example by Krivitsky and Handcock (2014). In order to disentangle the driving network
formation forces due to pure inertia, we propose to incorporate this distinction directly in
the model. More precisely, the STERGM allows us to investigate whether the mechanisms
that result in transfers being formed without immediate predecessor differ from those that
lead to consecutive transfers. This is also of practical importance because governments
carefully reflect the decision whether to authorize arms transfers based on economic and
security considerations. Furthermore, they continuously reconsider this decision whether
to maintain such trade relations or whether to dissolve because the importer potentially
jeopardises strategic interests or violates once shared normative standards (see Garcia-Alonso
and Levine 2007 for the general model and for Blanton 2005 as well as Erickson 2015 for
normative considerations).

We expect several necessary conditions to hold for the formation of transfers: the receiving
country must be considered at least marginally trustworthy and politically and economically
reliable. Hence, passing a threshold of trustworthiness is required for formation, i.e building
new trades. The special role of trustworthiness in arms transfers stems from the fact that
security concerns play an important role when governments decide whether to license the
delivery. We expect network statistics, as well as regime dissimilarity and formal alliances
to play a prominent role in the formation stage to raise a relationship above the minimum
threshold level of reservation. Follow-up trades and their repetition should then be rather
dominated by economic considerations like the size of a receiver economy and by the size of
the military expenditures (see Schulze et al. 2017).

While differentiation between formation and repetition, respectively, legitimates the use
of the STERGM per se, our extensions of the model towards time-varying coefficients are
important and in our view inevitable because the observational time covers more than 65
years. Hence, the introduction of smooth dynamic effects is needed to build a realistic model.
Given the dynamic evolution of the network, the historical developments and the presence
of at least one system-wide structural break with the collapse of the Soviet Union, we expect
that the generative mechanisms change over time and differ with respect to the included
variables if we compare the pre- and post cold war time period (see also Akerman and Seim
2014 and Thurner et al. 2018).

Finally, we argue that not all network activities and trades can be explained by ob-
servables and, thus, unobserved heterogeneity remains. We expect primarily actor-specific
heterogeneity which is accentuated by systematic historical accounts (Harkavy 1975; Krause
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Figure 1: Degree distributions of the included countries for the outdegree (number of out-
going edges) on the left and indegree (number of ingoing edges) on the right. Averages over
all years are represented by the solid line. The whiskers in grey show the minimum and
maximum Values realized in all years. Both axes are in logarithmic scale.

1995). This highlights the self-reinforcing tendencies of technological advantages of highly
developed countries which results in strong heterogeneity of the countries’ abilities to export
(and import). Therefore, the inclusion of actor-specific random effects seems necessary and
we expect strong heterogeneity among the countries with respect to imports and exports.

We proceed as follows. Section 2 presents the data provided by the Stockholm Interna-
tional Peace Research Institute (SIPRI). Section 3 introduces the statistical models used to
analyse the data. Section 4 provides the results and their interpretation. Section 5 concludes
the paper.

2. Data description and preprocessing

Data on the international trade of major conventional weapons (MCW) are provided by
the Stockholm International Peace Research Institute (see SIPRI 2017a). They include for
example aircrafts, armoured vehicles and ships (see Table 1 in the Appendix A.1 for an
overview of the types of arms). The countries included and their three-digit country codes
are given in Table 2 of Appendix A.1. Note that we have excluded all non-state organizations
like the Khmer Rouge or the Lebanon Palestinian Rebels from the dataset as well as countries
with no reliable covariate information available.
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Figure 2: Share of subsequent arms transfers (left) and cumulative share of subsequent
arms transfers (right). Number of subsequent transfers on the horizontal axis and share of
observations on the vertical axis.

Figure 9 in the Appendix A.1 shows binary networks for the years 2015 and 2016 and
Figure 10 in the Appendix A.1 provides a collection of summary statistics for the networks.

We focus on the binary occurrence of trade thereby disregarding the exact transfer vol-
umes and follow Akerman and Seim (2014) and Thurner et al. (2018) in setting the edge
value to one if there is a trade flow greater zero between two countries and zero else. Addi-
tionally, we re-estimated our model with different thresholds and found that the results are
quite robust, for details see the Supplementary Material.

The analysis of the degree distributions is of vital interest in statistical network analysis
(Barabdsi and Albert 1999) and gives important insights into the basic properties of the
network under study. With more than 65 networks to analyse, we compute the period-
average degree distribution and provide information on the minimal and maximal value of
the realized degree distribution. This is represented in a log-log version in Figure 1 for both,
outdegree and indegree. The plot shows the enormous heterogeneity in the networks. Most of
the countries have no exports at all with a time-average share of 78% of countries exhibiting
outdegree zero, while the outdegree distribution has a long tail, indicating that there are a
few countries, having a very high outdegree. The highest observed outdegree in a year is 66
and is observed for the United States. Other countries with exceptional high outdegree for
almost the whole time period are Russia (Soviet Union), France, Germany, United Kingdom,
China, Italy and Canada. In the right plot, the indegree distribution can be seen. Here the
pattern is different. The highest value observed in a year is 16 and corresponds to Saudi
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Arabia. In contrast to the outdegree distribution, the countries with a high indegree are
changing with time. In the beginning of the observational period the countries with the
highest indegree were Germany, Indonesia, Italy, Turkey and Australia, but in more recent
times these are the United Arab Emirates, Saudi Arabia, Singapore, Thailand and Oman.

In Figure 2 we provide a graphical representation of the change and stability patterns
in the network. On the left hand side we present the share of observations (vertical axis)
against the number of subsequent transfers (i.e. repeated transfers) on the horizontal axis.
Out of roughly 19, 000 recorded trading instances only 33% do not have at least one consec-
utive transfer in the follow-up year of a trade. Looking on the right hand side of Figure 2
we visualize the share of observations (vertical axis) that has at least as much subsequent
transfers as indicated by the horizontal axis. It can be seen that roughly the same share of
observations (35%) lasts at least five periods and almost 10% of all dyadic relations last more
than 20 consecutive years without any interruption. Therefore, a differentiated approach to
the explanation of formation and persistence could be fruitful in this application case.

3. Model

3.1. Dynamic formation and Persistence model

In this section we formalize our network model. Let Y be the network at time point ¢, which
consists of a set of actors, labelled as A® and a set of directed edges, represented through the
index set E' = {(i,5) : i,j € A'}. Note that this is a slight misuse of index notation since
Yzz does not necessarily refer to the (i, j)-th element if we consider Y as adjacency matrix.
This is because the actor set A! is allowed to change with time, so that ¢ and j are not
running indices from 1 to n;, where n; is the number of elements in A*. Instead indices i and
j represent the ¢-th and j-th country, respectively. We define Ylg = 1 if country ¢ exports
weapons to country j and since self-loops are meaningless, elements Y;; are not defined.

We aim to model the network in ¢ based on the previous year network in ¢t — 1. To do so
we have to take into account that the actor sets A*~! and A’ may differ. In particular we have
to consider the case of newly formed countries. New countries of interest are those that are
present in ¢ but do not provide information about their network embedding in the previous
period. For exports this is not a concern as it is almost never the case that a new country
starts sending arms immediately after entering the network. Notable exceptions are Russia,
the Czech Republic and Slovakia. However, these countries have clear defined predecessor
states (the Soviet Union and Czechoslovakia) which can be used in order to gain information
about the position of these countries in the precedent network. Regarding the imports,
there is a share of countries that start receiving arms immediately with entering the network.
Notwithstanding, those transactions represent a share of less then 0.3% of the observed trade
flows. Therefore, we regard this cases as negligible and include in the model only countries
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where information on the current and previous time period is available. We formalize this
approach by defining Y%'~! as the subgraph of Y with actor set B%~1 = A'NA'"! containing
nes—1 = |BY"!] elements. Accordingly, Y'~!* represents the subgraph of Y*~! with actor
set B! Note that both subgraphs share the same set of actors and Y*=! = Y=t if At-1
and A’ coincide.

From a modelling perspective, we follow Hanneke et al. (2010) and assume that the
network in ¢ can be modelled given preceding networks, using a first-order Markov structure
to describe transition dynamics for those actors included in the set B%~!. Furthermore, we
want to identify the driving forces of a transfer in ¢ if there was a preceding transfer in t — 1
in the persistence model while the formation model considers the process of forming a trade
relationship without a preceding transfer, i.e. biannual data. The notion of formation and
persistence can be amended by using broader time windows. We demonstrate the robustness
of our results with respect to broader time windows in the Supplementary Material.

Let YT = Y41 UYLt represent the formation network, that consists of edges that are
either present in ¢ or in t — 1. For the persistence network, we define Y~ = Y41 nyi-bi,
being the network that consists of edges that are present in ¢t and in t — 1. Based on the
actor set B%'~! and given the formation and persistence network as well as the network in
t — 1 the network in ¢ is uniquely defined by

Y-l — yR\(YELY ) = YO U (Y H\ YL, (1)

Note that both, Y as well as Y~ depend on time ¢ as well, which we omitted in the notation
for ease of readability. We assume that for each discrete time step, the processes of formation
and persistence are separable. That is, the process that drives the formation of edges does
not interact with the process of the persistence of the edges conditional on the previous
network. Formally this is given by the conditional independence of Y™ and Y ~:

P(Yt’t_l — yt,t—1|Yt—1,t — yt—l,t; 9) —
PYT =y [y =y 0N P(Y T =y YT =y ),

where the lower case letters denote the realizations of the random networks and 6 = (6%,67)
gives the parameters of the model. We will also include non-network related covariates in
our analysis, but we suppress this here in the notation for simplicity.

Note that it is not possible to use the lagged response as predictor, as by construction
Yiz-_l’t =1= Y;j =1 and Y;;._l’t =0=Y,; =0. That is, an edge that existed in ¢ —1 cannot
be formed newly and an edge that was not existent in £ — 1 cannot be dissolved. It follows
that the formation model exclusively focuses on the binary variables ;7" with (i,j) € E* =
{(i,9) 14,5 € Bt’t_l,Y;;-_l’t = 0}. This assures that in ¢ — 1 no edge between actors i and j
was present and both actors are observable at both time points. Equivalently, the model for
Y~ consists of observations Y;; with (i,j) € B~ = {(i,7) : i,j € Bt’t_l,YiE._l’t = 1}, assuring
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that only edges that could potentially persist enter the model. The time-dependence of E*
and £~ is omitted for ease of readability.

If we use an ERGM for the transition, this would yield the following probability model
for the formation

0+ g(ut =1t
P(Y* =yt [yt = gLt gt = exp{0*tg(y 711 ~)} .
Zngewa(ytfl,t) eXp{H g(y'*" yt=b )}

The sum in the denominator is over all possible formation networks from the set of potential
edges that can form given the network y*~%. The inner product 07g(y*,y*™!), relates a
vector of statistics g(+) to the parameter vector . The analogous model is assumed for the
persistence of edges and not explicitly given here for the interest of space.

We will subsequently work with a simplified model which is computationally much more
tractable. We assume that the formation or persistence of an edge at time point ¢ does solely
depend on the past state but not on the current state of the network. This is achieved by
restricting the statistics such, that they decompose to

g(y t 1t Z yz_]gl] t 1t)

(i,))eET

for some statistics g(-). This assumption is extensively discussed by Almquist and Butts
(2014) and can be well justified by the notion that the lagged network accounts for the
major share of the dependency among the edges in the current network. It also allows for
intuitive interpretations as can be seen as follows. Let Y7; represent the formation network
Yt excluding the entry YJr Then, for (i,7) € E the following logistic model holds

P( _ 1| vy _ yi_w7yt71’t — ytfl,t;eJr) (Y;;r _ Hyt 1t yt 1.t. 0+)
log _ t— 1t — o t—1t. = log + _ -1t — 1t

P(Y; =0|Y S, =y, YU = yt= 1t 6+) P(Y;; =0y y!=ht o)
t— 1,t)

= 0+§i] (y
(2)

Note that model (2) describes network dynamics, but the model itself is static. Hence we
model dynamics but do not allow for dynamics in the model itself. This is a very implausible
restriction which we give up by allowing the model parameters to change with time ¢, that
is we replace the parameter 7 by 07 (¢), representing a smooth function in time. In other
words, we allow the parameters in the model to smoothly interact with time. This leads to
a time-varying coefficient model in the style as proposed by Hastie and Tibshirani (1993).
The focus of interest is therefore not only on the formation and persistence of edges (trade
flows) but also on how these effects change in the 67 years long observation period.
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3.2. Network statistics and explanatory variables

From a statistical point of view, network statistics are required in order to capture network
dependencies. However, as social network literature has shown, network statistics usually
are not just statistical controls but convey substantial meaning (see e.g. Snijders 2011). In
the given context, they can be motivated by political, strategic and economic arguments
that refer to real-world processes (see Thurner et al. 2018). Note, that we norm all network
statistics (with the exception of Reciprocity) to be within a percentage range between 0 and
100, this is necessary in order to make the statistics independent from the varying network
size and allows to compare them.

Outdegree: The outdegree of a node is a standard statistic in network models. Formally, the
outdegree of actor ¢ at time point ¢ — 1 is defined as

100 -y
ngg—1 — 1 reBhLi-1 Yir
The arms trade network exhibits a highly oligopolistic structure with a few high-intensity
traders, hence a positive coefficient for the outdegree of the sender (sender.outdeg;_; ;) is
plausible. However, we incorporate country-specific random effects in the model and it is
therefore not clear whether the senders’ outdegree as a global measure is still of relevance
once controlled for the random country heterogeneity.

Only few advanced countries within NATO export and import at the same time. They
have a highly differentiated portfolio, rendering specialization economically reasonable and
strategically non-hazardous. In order to better represent this world-wide asymmetry we
include the outdegree of the importer (receiver.outdeg,_ ;). This should not be captured
by the random effects and we expect a clear negative effect, indicating that strong exporters
seldom match with strong importers.

Reciprocity: This statistic is intended to detect whether there is a general tendency of arms
transfers to be mutual. The statistic measures whether the potential receiver was a sender
in the dyadic relationship in the previous period:

recipy_1,i; = yﬁ-f’t

Reciprocation is an essential mechanism in human relations in general, and in trade more
specifically. Similar as noted above, in the context of arms transfers, especially highly de-
veloped countries exhibit this feature. Since this group of countries is rather small, and
specialization-induced transfers between developed countries do not lead to continuous in-
flows we expect this mechanism to be rather visible at the formation stage, whereas it should
not be a dominant feature for permanent repetition.

Transitivity: Hyperdyadic trade relationships are an effective mechanism for pooling risks
in buyer-seller networks (Bramoullé et al. 2019) and for the emergence of generalized trust

10
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which is especially important in exchanging security goods. As a measure for higher-order
dependencies we include transitivity, defined as

; o 100 t—1,t t—1.t
ransSe-1i = T Yie Y -
ti—1 ke Btt—1 ki j

This statistic essentially counts the directed two-paths from ¢ to 7 in £ — 1 and can be
interpreted as a direct application of the Friend of a Friend logic from social networks to arms
trade. Clearly, this kind of network embeddedness of weapons transfer deals is important
for establishing for new ones but is also likely to be relevant for the continuation of already
existing ones.

Shared Suppliers: We also include a statistic that we call shared-suppliers in this context.
This statistic counts the shared number of actors that export to a given pair of countries:

B 100 t—1t t—1t
SUPt—1,45 = o i_9 Yei Yj -
b1 keBtt—1 ktij

This statistic allows to investigate whether two countries that share multiple suppliers have
the tendency to engage in trade with each other. Such a pattern is likely to be induced
by a general hierarchy in the network (see Krause 1995). While the first tier consists of
strong exporters, the second tier is populated by countries with the ability to produce and
export that are nevertheless mainly supplied by the big exporters. Countries with many
shared partners are likely to engage in trade with each other but on the other hand they
are typically dependent on imports from the first tier. Therefore, relationships among those
countries are rather of a sporadic nature and unlikely to endure. Consequently, we expect a
positive coefficient in the formation model and a negative one in the persistence model.
Naturally, the network of international arms trade is not exclusively driven by endogenous
network processes but also influenced by variables from the realms of politics and economics.
We lag all exogenous covariates by one year, first in order to be consistent with the idea that
the determination of the network in ¢ is based on the preceding time period and second, to
account for the time lag between the ordering and the delivery of MCW.
Formal Alliance: We regard dyadic formal alliances (including defence agreements and non-
aggression pacts) as an important security related criteria that plays a central role for the
formation during the cold war period. Therefore, the binary variable alliance;; is included
in the model, being one if countries ¢ and j had a formal alliance in the previous period.
Given the restriction that the data is available only until 2012 (Correlates of War Project
2017a) we extrapolate the data, thereby assuming that the formal alliances did not change
between 2012 and 2015.
Regime Dissimilarity: Another important security related variable that potentially acts on
the formation of arms transfers is given by the differences in political regimes between two
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potential trading partners. Hence we include the so called polity IV score, ranging from the
spectrum —10 (hereditary monarchy) to +10 (consolidated democracy). This data can be
downloaded as annual cross-national time-series until 2015, see Center for systemic Peace
(2017) for the data and Marshall (2017) as a basic reference. In our model we operationalise
the distance between political regimes by using the absolute differences between the scores:
poldif fi; = |polity; — polity;]|.

GDP: Following the standard gravity model, we include market sizes and distance in our
model. The standard measure for market size is the gross domestic product (GDP, in mil-
lions). We include the GDP in logarithmic form for the sender (gdp;) as well as the receiver
(gdp;). The GDP data are taken from Gleditsch (2013b) and merged from the year 2010
on with recent real GDP data from the World Bank real GDP dataset (World Bank 2017).
Clearly, the market size and economic reliability of the exporter is a prerequisite for forming
and maintaining arms exports.

Distance: For gravity models applied to trade in commercial goods, there exists mounting
empirical evidence that distance is a relevant factor for determining trade relations (Disdier
and Head 2008). We do not expect that trade costs and geographical distance impede arms
trade because arms transfers establish world-wide alignments of exporters pursuing global
strategic interests. Nevertheless, we include the logarithmic distance between capital cities
in kilometres (Gleditsch 2013a) in order to fulfil the gravity model specification.

Military Expenditures: We propose to include military expenditures of the sending and re-
ceiving country. This measure can be used as representing the size of the defence industrial
base of the exporter, and the spending power and the intensity of the threat perceptions
of the importing country. Accordingly, military expenditure is added separately for the ex-
porter and the importer in logarithmic form (milex;, milex;). With regard to the distinction
between formation and persistence, our expectation is related to the hypothesis that coun-
tries with high military expenditures are attractive customers for repeated importing. We
therefore expect a positive and high coefficient for the military expenditures of the importer
in the persistence model. The data are available from Correlates of War Project (2017b) in
the national material capabilities data set with Singer et al. (1972) as the basic reference on
the data.

3.3. Modelling heterogeneity

The proposed network model assumes homogeneity, meaning that all differences between
nodes in the network are fully described by the gravity model, enriched by security re-
lated criteria and network statistics as proposed above. However, the arms transfer network
exhibits a rather small number of countries that are high-intensity exporters and a large
number of countries that are restricted to imports. Furthermore, there are some countries
that change their relative position in the trade network during the course of time. This
mirrors a substantial amount of dynamic heterogeneity which need to be taken into account.
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This dynamic heterogeneity is accommodated by the inclusion of latent country effects,
capturing the unobserved heterogeneity. We to follow the idea of Durbéan et al. (2005) and
model country specific random curves which are fitted with penalized splines. This can be
written in a mixed model representation such that the smooth country-specific effects are
constructed using a B-spline basis with (a-priori) normally distributed spline coefficients.
We follow the modelling strategy of Durban and Aguilera-Morillo (2017) and assume that
the model includes two time-dependent random coefficients ¢ ., (t) and @7, ceiper (t)- The
effects are assumed to be a realization of a stochastic process with continuous and integrable
functions. For each sender and receiver in both models the country-specific curves are given
by

¢i(t) = B(t)a; (3)

where B(t) = (By(t),..., Bg(t)) is a B-spline basis covering the time range of observations
and a; = (a;, ..., a;g) is the coefficient vector. We impose the prior distribution

a; ~ N(0,02Dg), i.i.d. fori=1,...,n

where D, is the inverse of a difference based penalty matrix which guarantees smoothness
of the fitted curves ¢;(t) (see e.g. Eilers and Marx 1996, for details on smoothing with
B-splines). Note that for time windows where a country did not exist, the corresponding
B-spline does take value zero, so that no heterogeneity effect is present.

3.4. Complete model and estimation

Putting all the above elements together, the specification of the formation model of equation
(2) is given by
0" ()3 (', xfj_lt) =0g sender.outdeg, 1 ;05 (t) + receiver.outdeg, 1 ;04 (t)
+ recipy_1,ii05 () + trans,_1.;07 (t) + sup,_1.4;67 (t)
+ distance,_1 ;07 (t) + alliance;_1 ;04 (t) + poldif f—1.;607 (t)
+ gdpi—1.05 (t) + gdp,—1 ;04 (t) + milex; 1,07, (t) + milex,_1 ;607 (1)
+ gb:sender (t) + ;,_receiver(t)‘

Analogously we get the persistence model. Estimation is carried out with spline smoothing.
That is, we replace the coefficients by

where uy, is penalized through
u, ~ N(0,0°D).
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Like above, the penalty matrix is appropriately chosen (see e.g. Wood 2017) and B(t) is a
B-spline basis. Hence, smooth functions and smooth random heterogeneity can be estimated
in a coherent framework (see Durbédn et al. 2005). The entire model can be integrated in
the flexible generalized additive model (GAM) framework provided by Wood (2017) (see also
Wood 2006) which is implemented in the mgev package (version 1.8-28) by Wood (2011). The
identification of the smooth components and the intercept term is ensured by a ”sum-to-zero”
constraint (Wood 2017). For further details see the Appendix A.2.

4. Results

4.1. Time-varying fixed effects

The results of the time-varying effects are grouped into network-related covariates (presented
in Figure 3) and political and economic covariates (presented in Figure 4). The left columns
give the coefficients for the formation model and the right columns for the persistence model,
respectively. In the case of the network statistics, a schematic representation of the corre-
sponding network effects is added on the right hand side. The values for the coefficients
are presented as solid lines with shaded regions, indicating two standard error bounds. The
zero-line is indicated as dashed line and the estimates for time-constant coefficients are given
by the dotted horizontal line. Note that the coefficients at a given time point can be inter-
preted just as the coefficients in a simple logit model. Additionally, for the same coefficient
(or coefficients with the same norming) in the formation and persistence model, the effect
size can be compared directly.

Network-Effects (see Figure 3)

Outdegree: The senders’ outdegree has a coefficient that is almost time-constant and close
to zero for both models. This stands in contrast to the findings of Thurner et al. (2018),
where a strong effect is present. Hence, once controlled for country-specific heterogeneity
(especially the sender-specific country effect), no population-level outdegree effect for the
exporter is present (we show in the Supplementary Material that the effect is indeed present
when country-specific heterogeneity is excluded).

However, the inclusion of country-specific sender and receiver effects does not affect the
effect of the receivers’ outdegree and the coefficient is consistently negative, and slightly
increasing over time in the formation model. For the persistence model, we find a less pro-
nounced but significant negative effect. We interpret this as clear evidence that countries
with a high outdegree are comparatively less frequently importing, and importers usually
have relatively less frequent export relations. According to our experience this specification
captures the trade asymmetries of the oligopolistic market better than just specifying the
indegrees of the receiver.

Reciprocity: Controlling for the distinguished asymmetrical nature of the weapons transfers,
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Figure 3: Time-varying coefficients of network statistics in solid black. Shaded areas give
two standard error bounds. Time-constant effects in dashed grey and zero line in dotted
black. Schematic representation of the network effects on the right hand side.

we identify a positive and significant impact of reciprocity in the formation model. Reci-
procity in repeated transfers is only a relevant feature after the breakdown of the bipolar
block structure. We conclude that the asymmetric structure is more present in persistent
trade relations with importing countries that are typically dependent on big exporters.

Transitivity: Looking at three-node statistics it can be seen that the variable transitivity
has a positive impact on the formation and persistence. In the formation model, the effect is
insignificant in the first years. This may be influenced by the clear hegemony of the United
States and the Soviet Union, respectively, immediately after World War II which did not
require a shared control over the recipient country, because the donor was powerful enough
to secure the terms of a deal. In the 1980s middle power countries became technologically
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more advanced and especially in the West, they joined the US in delivering to other coun-
tries. The pronounced change between 1990 and 2010 can be explained by the break up of
the two hostile blocs and the interruption of long-standing arm-trading partnerships leading
to a fundamental reorganization until 2010 when the effect came back to the level of 1990.
Although these arguments are also valid for the persistence model, we see that transitivity is
less relevant for ongoing, repeated transfers (the time constant effect in the formation model
has twice the size as the one in the persistence model). This impression is also strengthened
by the fact that the coefficient is not subject to changes over time.

Shared Suppliers: The coefficients related to the shared suppliers corroborate our expecta-
tion that many shared suppliers lead to the formation of transfers (positive and significant
coefficient for the whole time period in the formation model). This indeed mirrors the phe-
nomenon described above: there is a hierarchy of producing countries in the world. Receiver
countries ¢ and j should become acquainted with these technologies and should have similar
levels of production capacities. This allows them to exchange arms. Also, the act of receiving
both from the same supplier means that this country places trust to both receivers - such
that this facilitates trust giving one to another. On the other hand, in the persistence model,
the effect is indeed significantly negative and virtually zero from the 1975 on, showing that
repetitive trading is not promoted by many shared suppliers.

Covariate Effects (see Figure 4)

Formal Alliance: The impact of a bilateral formal alliances on the formation of a transfer
is positive and significant for both, the formation and with a more modest effect for the
persistence, corroborating our expectation that formal alliances are most relevant for the
formation, i.e. by passing the required threshold of starting weapons transfers. The required
threshold of trustfulness to start seems to decline over time for the initiation. Hence, while
formal alliances play a central role for arms trading after the second world war, the forma-
tion of arms trades is less and less influenced by the existence of a formal alliance by the
sending and receiving state. However, given there exists an alliance, the impact (despite
being smaller) continues to be relevant for repeated transfers. This is an important insight
as we show for the first time that formalized alliance actually breed a dense web of arms
transfers.

Regime Dissimilarity: For the formation model, the coefficient on the absolute difference of
the polity scores is all along negative, significant and shows some time variation. With the
decay of the eastern bloc, the resistance to send new arms to dissimilar regimes increases
until 2000. After that, the absolute effect of different polity scores declines again, coming
back to the long-term constant effect. Interestingly, we find that regime dissimilarity is irrel-
evant in the persistence model, showing that given a relationship is started, repetition does
no more require regimes to exhibit shared governance values.

GDP: As expected, the coefficients on the logarithmic GDP for sender and receiver are
positive and constant for both models. However, the effect for the senders’ GDP is much
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stronger in the formation model, showing that indeed mostly economically strong countries
are able to open new markets for arms exports. Together, the coefficients support the ” grav-
ity hypothesis”, i.e. greater economic power and market sizes of the sender as well as the
receiver increases the probability of forming and maintaining trade relations. However, given
a transfer relation is started, this effect becomes smaller for repetition.

Distance: In accordance with previous insights (Thurner et al. 2018), the results on the
logarithmic distance contradicts the standard gravity model and distance proves to be in-
significant in both models.

Military Expenditures: For the military expenditures of the sender, we find very comparable
and declining effects that become insignificant from 1990 on in both models. This indicates
that with the end of the cold war the dominance of exporting countries with high military
budgets has decreased. For the receivers’ military expenditures in the formation model, the
effect is positive and turns significant with time. This clearly illustrates that the military
expenditures of the receiver are not as important in the Cold War period where super powers
often granted military assistance. Only with end of the 1980s there begins a marketization
of the weapons transfers with suppliers demanding money for delivery. Given there is a pre-
ceding exchange, we find a very strong effect for the military expenditures of the receiver for
the full observational period, indicating that the availability of huge military expenditures
is a key for understanding the continuous yearly inflow of weapons.

Overall, the results confirm our initial hypothesis. Judged by the size of the coefficients
and their significance we find that the network statistics (reciprocity, transitivity, shared
suppliers) and security related covariates (formal alliance, regime dissimilarity) prove to be
highly influential in the formation model. On the other hand, we find weaker (or insignificant)
network effects in the persistence model combined with a high dominance of the GDP and
especially the military expenditures of the receiving country. This is not to say that we
regard for example the positive effect of transitivity or alliances in the persistence model
as irrelevant for repeated trading since the special nature of arms trading clearly demands
trust for the formation and the persistence of transfers but the effects nevertheless show
that the two processes are guided by different mechanisms that attach different priorities to
security-related and economic variables.
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4.2. Time-varying smooth random effects

4.2.1. Functional component analysis

We now pay attention to the actor-specific heterogeneity. In Figure 5, the country-specific
effects for the sender, as well as the receiver countries are visualized for the formation model
on the left and the persistence model on the right. Note that in these plot we have truncated
the curves for the years where countries are not existent.

At a first sight, interpretation of these plots looks clumsy. We therefore retrieve informa-
tion by employing a functional principal component analysis to the multivariate time series
of random effects seen in Figure 5 (see also Ramsay and Silverman 2005 and the Appendix
A.3). The results are shown in Figure 6 for the formation model and in Figure 7 for the
persistence model. On the left hand side the scores of the first two principal components
are plotted, where the latter are visualized on the right hand side. The share of variance
explained by the respective component is provided in the brackets. The basic idea of the
approach is to show the effect of the principal components as perturbations from the mean
random effects curves. By adding (the ”+” line) or subtracting (the ”-” line) a multiple of
the principal component curve we get the visualized perturbation from the mean.

The first principal component is close to be constant and represents the share of variance
induced by different overall levels of the random effect curves. The dynamic of the random
effects is captured by the second principal component, delivering a tendency for an upward
movement if positive and downward if negative. Hence, looking on the horizontal axes, we
see countries that build up their arm trade links over the years as exporters (importers) on
the right hand side while countries that are reluctant to building up export (import) links
are plotted on the left hand side. Looking on the vertical axes, we see countries that decrease
their role as exporter (importer) over the time on the bottom, and vice versa countries that
increase the number of export (import) links over time on the top. All these effects are
conditional on the remaining covariate effects discussed before. Hence, these random effects
capture the remaining heterogeneity not included in the remaining model.

4.2.2. Results of the functional component analysis

Because of the great amount of information condensed in Figures 6 and 7 we restrict our
interpretation to a few global patterns and selected countries that take either very special
positions in the arms trade network (high or low values for component 1) or exhibit variation
over time (high or low values for component 2). Overall regarding the different levels of the
random effects, it can already be seen in Figure 5, that the heterogeneity is much more pro-
nounced in the formation model in comparison to the persistence model. Furthermore, in the
formation model, the countries differ more strongly in their ability to export in comparison
to their ability to import while this contrast is not present in the persistence model.
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Figure 5: Fitted time-varying smooth random effects ¢(t) plotted against time with country
codes. The respective models are in the columns (formation on the left and persistence on
the right) and the type of random effects in the rows (sender effect on the top and receiver

effect on the bottom).

A global pattern regarding the dynamics of the sender effect becomes visible since the top
left in Figure 6 looks like a lying mushroom. That is, countries that started on a low level
(i.e. negative component 1) show, with the exception of Japan (JPN) and Turkey (TUR),
not very much upward or downward variability (i.e. low level for component 2). In contrast,
countries that have a random effect above zero move more strongly up or down with time.
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Figure 6: Functional principal component analysis of the smooth random effects in the
formation model for the sender (top) and the receiver (bottom). Scores of the random effects
for the first two principal components are given on the left. Mean principal component curve
(zero line) and the effects of adding (+) and subtracting the principal component curve are
given on the right.

This means that the export dynamics are mainly driven by countries with relatively high
sender effects.

Figures 6 and 7 show very well that fundamental changes of the system are driven by the
end of the cold war. This can be seen exemplary regarding the position of the Soviet Union
(SUN) and Czechoslovakia (CZE) in the top left in Figures 6 and 7 (both with a high level
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Figure 7: Functional principal component analysis of the smooth random effects in the
persistence model for the sender (top) and the receiver (bottom). Scores of the random
effects for the first two principal components are given on the left. Mean principal component
curve (zero line) and the effects of adding (+) and subtracting the principal component curve
are given on the right.

for component 1 and a low level for component 2). This mirrors that these countries left the
system shortly after the collapse of the eastern bloc. However, this turning point affected not
only exporters but also importers and consequently the representation of the receiver effects
of the formation model at the bottom left of Figure 6 is populated with (former) socialist
countries such as Cuba (CUB), Ukraine (UKR), North Korea (PRK), Yugoslavia (YUG) and
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Moldova (MDA). Additionally, we find a prominent position for Romania (ROM), being a
country that has a high level (high value for component 1) but decreased its’ tendency to be a
receiver in persistent trade relations (low value for component 2) in Figure 7. However, while
some of the countries of the eastern block ceased to exist or strongly reduced their exports or
imports we also find a contrary pattern. Countries like Ukraine (UKR) and Bulgaria (BGR)
have managed to increase their sender effect in the formation as well as in the persistence
model with time (high value for component 1 and component 2 in the top left of Figures 6
and 7). This indicates that some left overs of the collapsed Soviet Union defence industries
sold off their stocks and rushed into the global market of military products.

Besides the massive shift initiated by the end of the cold war, we see that some dominant
exporting countries, especially Great Britain (GBR), France (FRA) and Egypt (EGY), lost
importance over time. This countries can be found in the fourth quadrant of the top left
panels in Figures 6 and 7, meaning their high sender effects decreased strongly with time.
This might seem surprising since France and Great Britain are still among the countries with
the highest exported volumes. However, France and Great Britain have left their dominance
over former colonies leading to a loss of control over many potential importers. The general
pattern also carries over to their receiver effects. Looking at the scores of Great Britain
(GBR) and France (FRA) at the bottom left of Figure 7 we see a strong decrease of their
receiver effects in the persistence model.

Apart from global patterns, some countries exhibit exceptional scores that can be traced
back to country-specific circumstances. We find that Japan (JPN) stands out among the
countries with the lowest proclivity to import (see the low scores for components 1 and 2
at the bottom left of Figure 6). Even more pronounced is the astonishing low tendency to
export, mirrored by Japan’s sender effect in the persistence models (Figure 7, top left) and
the strongly declining sender effect in the formation model (Figure 6, top left). This stands
in contrast to the fact that Japan is among the wealthiest countries with a highly developed
export industry and is clearly due to the highly restrictive arms export principles introduced
in 1967, and tightened in 1976. This ban on exports was only lifted in 2014 (Hughes 2018;
Ministry of Foreign Affairs of Japan 2014).

Another, very notable case is Israel (ISR), being somehow the opposite pole in comparison
to Japan (JPN). The sender effects on the top left of Figures 6 and 7 show that Israel (ISR)
has an outstanding tendency to establish and maintain arms exports. On the other hand,
Israel (ISR) takes a very polar position in the bottom left of Figure 6 as a consequence of
a strongly decreased (i.e. low level for component 2) receiver effect in the formation model.
These results reflect the country’s path of developing highly internationally competitive
weapons systems and its’ rise to be one of the most important exporters. This stands in
contrast to countries like Mexico (MEX), being the country with the least tendency to form
new trade exports (top left in Figure 6). It appears that this country is not able to be
a relevant player in the market despite being among the worlds’ largest economies. We
consider these special paths as induced by cumulative advantages and learning over time in
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the one case (Israel), whereas in the case of Mexico (MEX) we observe the stickiness and
path inertia of a country having not been able to make its defence products sold externally.
There remain many other interesting cases. For example the rise of South Africa (ZAF)
as an exporter in the formation model (top left in Figure 6), mirroring the history of the
country, being initially dependent on imports and now among the major exporters of MCW.
We also find that Ireland (IRL) strongly increased its tendency to be a persistent importer
after its entry to the European Union (bottom left in Figure 7) while Germany (DEU) and
Canada (CAN) strongly increased their roles as persistent exporters (top left in Figure 7).

4.3. Model evaluation

The evaluation of the out-of-sample predictive power is based on the following steps. We
first fit the formation model as well as the persistence model, based on the information in
t — 1, to the data in ¢t and use the estimated coefficients for the prediction of new formation
or persistence of existing ties in t+ 1. As the predictions are probabilistic by their nature, we
weight the recall (true positive rate) against the false positive rate for varying threshold levels,
yielding the ROC curve and the AUC for each year of prediction. Because arms transfers
can be regarded as rare events we also compute the PR curve and the corresponding AUC.
The results are plotted in Figure 8 with the AUC values that correspond to the PR curves
on the left and the one corresponding to the ROC curves on the right. The first row gives
the evaluation of the formation model and the second row shows the persistence model.
While the AUC values in the formation model are very high when evaluated at the ROC
curves they are much lower with the PR curves. This is a consequence of being right quite
frequently if a zero is predicted, while its is hard to forecast the actual transfers in the next
period in case of the formation model. Interestingly, the opposite holds for the persistence
model. In the combined version at the bottom of Figure 8 the AUC values derived from the
PR curve show that the model does quite well.

Additionally, we evaluate how well global network structures like the mean outdegree,
the share of reciprocity and observed transitivity can be mirrored by the predictions using
a simulation-based approach (see Hunter et al. 2008). To do so, we fit the models for the
transition between t — 1 and ¢t and simulate from the formation model an the persistence
model 1,000 times based on the information in ¢. Then, based on equation (1), the predicted
network for ¢ 4+ 1 is constructed. From this, we evaluate global network characteristics and
compare them to the actual characteristics from the true MCW trade network in ¢ + 1. The
corresponding Figure 11 is given in the Appendix A.4. The results are reassuring and the
simulated networks mirror the real network properties in an acceptable way.

Clearly the proposed model is not the only suitable network model. Alternatively, it
is possible to analyse the data with a STERGM without random effects and with various
variants of the ERGM or the TERGM with and without random effect. We discuss this
extensively in the Supplementary Material and show that the out-of-sample predictive power
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Figure 8: Time series of area under the curve (AUC) values for precision recall (PR) on the
left and AUC values for the receiver operating characteristic (ROC) on the right. Formation
model in the first row, persistence model in the second row and their combination in the last
row.

of our model is superior to all other fitted candidate models.

5. Conclusion

In this paper we employ a dynamic separable network model as introduced by Krivitsky and
Handcock (2014) and add techniques proposed by Hastie and Tibshirani (1993) and Durbén
et al. (2005). This enables us to study the process of formation and persistence separately
as well as the inclusion of time-varying coefficients and smooth time-varying random effects
that are further analysed by methods from functional data analysis as described in Ramsay
and Silverman (2005).
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Applied to the discretized MCW networks from 1950 to 2016 we find that the mechanisms
leading to formation and persistence differ fundamentally. Most importantly, the formation
is driven by network effects and security related variables, while the persistence of transfers
is dominated the military expenditures of the receiving country. A careful analysis of the
random effects exhibits a high variation among the countries as well as along the time
dimension. By using functional principal component analysis we decompose the functional
time series of smooth random effects in order find countries that have increased or decreased
their relative importance in the network. The evaluation of the fit confirms that the chosen
model is able to give good out-of-sample predictions.
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A. Appendix

A.1. Descriptives

In Figure 9, the binary network is shown for the years 2015 and 2016. Table 1 gives the
categories of arms that are included in the analysis. All types with explanations are taken
from SIPRI (2017b). The 171 countries that are included in our analysis can be found in
Table 2, together with the three-digit country codes that are used to abbreviate countries
in the paper. In addition to that, the time periods, for which we coded the countries as
existent are included. Note that the SIPRI data set contains more than 171 arm trading
entities but we excluded non-states and countries with no (reliable) covariates available. In
the covariate GDP some missings are present in the data. No time series of covariates for the
selected countries is completely missing (those countries are excluded from the analysis) and
the major share of them is complete but there are series with some missing values. This is
sometimes the case in the year 1990 and /or 1991 where the former socialist countries splitted
up or had some transition time. In other cases values at the beginning or at the end of the
series are missing. We have decided on three general rules to fill the gaps: First, if a value
for a certain country is missing in ¢ but there are values available in t — 1 and ¢+ 1, the mean
of those is used. If the values are missing at the end of the observational period, the last
value observed is taken. In case of missing values in the beginning, the first value observed
is taken.

The series on military expenditures are imputed similarly, using linear interpolation by
employing the R package imputeTS by Moritz (2016).

The number of countries included each year in the network is provided in the upper left
panel of Figure 10. It can be seen that the network is growing almost each year until 1992,
with two big leaps that show the effects of the decolonization, beginning in 1960 and the
end of the Soviet Union after 1991. Typical descriptive statistics for the analysis of networks
are Density, Reciprocity and Transitivity, all shown in Figure 10. The Density is defined
as the number of edges divided by the number of possible edges. Reciprocity is defined as
the share of trade flows being reciprocal. Transitivity is defined as the ratio of triangles and
connected triples in the graph.
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Figure 9: Network of international transfers of major conventional weapons (MCW) in 2015
(top) and 2016 (bottom). Countries are represented by vertices and directed edges represent

arms exports. Vertex sizes are scaled proportional to the logarithmic outdegree (number of
outgoing edges).
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Type

Explanation

Aircraft

Air-defence systems

Anti-submarine warfare weapons

Armoured vehicles

Artillery

Engines

Missiles

Sensors

Ships

Other

All fixed-wing aircraft and helicopters, including unmanned aircraft with a minimum
loaded weight of 20 kg. Exceptions are microlight aircraft, powered and unpowered
gliders and target drones.

(a) All land-based surface-to-air missile systems, and (b) all anti-aircraft guns with
a calibre of more than 40 mm or with multiple barrels with a combined caliber of
at least 70 mm. This includes self-propelled systems on armoured or unarmoured
chassis.

Rocket launchers, multiple rocket launchers and mortars for use against submarines,
with a calibre equal to or above 100 mm.

All vehicles with integral armour protection, including all types of tank, tank de-
stroyer, armoured car, armoured personnel carrier, armoured support vehicle and
infantry fighting vehicle. Vehicles with very light armour protection (such as trucks
with an integral but lightly armoured cabin) are excluded.

Naval, fixed, self-propelled and towed guns, howitzers, multiple rocket launchers and
mortars, with a calibre equal to or above 100 mm.

(a) Engines for military aircraft, for example, combat-capable aircraft, larger military
transport and support aircraft, including large helicopters; (b) Engines for combat
ships -,fast attack craft, corvettes, frigates, destroyers, cruisers, aircraft carriers and
submarines; (c) Engines for most armoured vehicles - generally engines of more than
200 horsepower output.*

(a) All powered, guided missiles and torpedoes, and (b) all unpowered but guided
bombs and shells. This includes man-portable air defence systems and portable
guided anti-tank missiles. Unguided rockets, free-fall aerial munitions, anti-submarine
rockets and target drones are excluded.

(a) All land-, aircraft- and ship-based active (radar) and passive (e.g. electro-optical)
surveillance systems with a range of at least 25 kilometres, with the exception of
navigation and weather radars, (b) all fire-control radars, with the exception of range-
only radars, and (c) anti-submarine warfare and anti-ship sonar systems for ships and
helicopters.™

(a) All ships with a standard tonnage of 100 tonnes or more, and (b) all ships armed
with artillery of 100-mm calibre or more, torpedoes or guided missiles, and (c) all
ships below 100 tonnes where the maximum speed (in kmh) multiplied with the full
tonnage equals 3500 or more. Exceptions are most survey ships, tugs and some
transport ships

(a) All turrets for armoured vehicles fitted with a gun of at least 12.7 mm calibre or
with guided anti-tank missiles, (b) all turrets for ships fitted with a gun of at least
57-mm calibre, and (c) all turrets for ships fitted with multiple guns with a combined
calibre of at least 57 mm, and (d) air refueling systems as used on tanker aircraft.*

*In cases where the system is fitted on a platform (vehicle, aircraft or ship), the database only includes those
systems that come from a different supplier from the supplier of the platform.

The Arms Transfers Database does not cover other military equipment such as small arms and light weapons
(SALW) other than portable guided missiles such as man-portable air defence systems and guided anti-tank
missiles. Trucks, artillery under 100-mm calibre, ammunition, support equipment and components (other
than those mentioned above), repair and support services or technology transfers are also not included in the

database.
Source: SIPRI (2017b)

Table 1: Types of weapon systems included in the SIPRI arms trade database.
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Country Code Included Country Code Included Country Code Included

Afghanistan AFG 1950 - 2016 German Dem. Rep. GDR 1950 - 1991 Pakistan PAK 1950 - 2016
Albania ALB 1950 - 2016 Germany DEU 1950 - 2016 Panama PAN 1950 - 2016
Algeria, DZA 1962 - 2016 Ghana GHA 1957 - 2016 Papua New Guin. PNG 1975 - 2016
Angola AGO 1975 - 2016 Greece GRC 1950 - 2016 Paraguay PRY 1950 - 2016
Argentina ARG 1950 - 2016 Guatemala GTM 1950 - 2016 Peru PER 1950 - 2016
Armenia ARM 1991 - 2016 Guinea GIN 1958 - 2016 Philippines PHL 1950 - 2016
Australia AUS 1950 - 2016 Guinea-Bissau GNB 1973 - 2016 Poland POL 1950 - 2016
Austria AUT 1950 - 2016 Guyana GUY 1966 - 2016 Portugal PRT 1950 - 2016
Azerbaijan AZE 1991 - 2016 Haiti HTI 1950 - 2016 Qatar QAT 1971 - 2016
Bahrain BHR 1971 - 2016 Honduras HND 1950 - 2016 Romania ROM 1950 - 2016
Bangladesh BGD 1971 - 2016 Hungary HUN 1950 - 2016 Russia RUS 1992 - 2016
Belarus BLR 1991 - 2016 India IND 1950 - 2016 Rwanda RWA 1962 - 2016
Belgium BEL 1950 - 2016 Indonesia IDN 1950 - 2016 Saudi Arabia SAU 1950 - 2016
Benin BEN 1961 - 2016 Iran IRN 1950 - 2016 Senegal SEN 1960 - 2016
Bhutan BTN 1950 - 2016 Iraq IRQ 1950 - 2016 Serbia SRB 1992 - 2016
Bolivia BOL 1950 - 2016 Ireland IRL 1950 - 2016 Sierra Leone SLE 1961 - 2016
Bosnia Herzegov. BIH 1992 - 2016 Israel ISR 1950 - 2016 Singapore SGP 1965 - 2016
Botswana BWA 1966 - 2016 Ttaly ITA 1950 - 2016 Slovakia SVK 1993 - 2016
Brazil BRA 1950 - 2016 Jamaica JAM 1962 - 2016 Slovenia SVN 1991 - 2016
Bulgaria BGR 1950 - 2016 Japan JPN 1950 - 2016 Solomon Islands SLB 1978 - 2016
Burkina Faso BFA 1960 - 2016 Jordan JOR 1950 - 2016 Somalia SOM 1960 - 2016
Burundi BDI 1962 - 2016 Kazakhstan KAZ 1991 - 2016 South Africa ZAF 1950 - 2016
Cambodia KHM 1953 - 2016 Kenya KEN 1963 - 2016 Soviet Union SUN 1950 - 1991
Cameroon CMR 1960 - 2016 North Korea PRK 1950 - 2016 Spain ESP 1950 - 2016
Canada CAN 1950 - 2016 South Korea KOR 1950 - 2016 Sri Lanka LKA 1950 - 2016
Cape Verde CPV 1975 - 2016 Kuwait KWT 1961 - 2016 Sudan SDN 1956 - 2016
Central Afr. Rep. CAF 1960 - 2016 Kyrgyzstan KGZ 1991 - 2016 Suriname SUR 1975 - 2016
Chad TCD 1960 - 2016 Laos LAO 1950 - 2016 Swaziland SWZ 1968 - 2016
Chile CHL 1950 - 2016 Latvia LVA 1991 - 2016 Sweden SWE 1950 - 2016
China CHN 1950 - 2016 Lebanon LBN 1950 - 2016 Switzerland CHE 1950 - 2016
Colombia COL 1950 - 2016 Lesotho LSO 1966 - 2016 Syria SYR 1950 - 2016
Comoros COM 1975 - 2016 Liberia LBR 1950 - 2016 Taiwan TWN 1950 - 2016
DR Congo ZAR 1960 - 2016 Libya LBY 1951 - 2016 Tajikistan TIK 1991 - 2016
Congo COG 1960 - 2016 Lithuania LTU 1990 - 2016 Tanzania TZA 1961 - 2016
Costa Rica CRI 1950 - 2016 Luxembourg LUX 1950 - 2016 Thailand THA 1950 - 2016
Cote dIvoire CIv 1960 - 2016 Macedonia MKD 1991 - 2016 Timor-Leste TMP 2002 - 2016
Croatia HRV 1991 - 2016 Madagascar MDG 1960 - 2016 Togo TGO 1960 - 2016
Cuba CUB 1950 - 2016 Malawi MWI 1964 - 2016 Trinidad Tobago TTO 1962 - 2016
Cyprus CYP 1960 - 2016 Malaysia MYS 1957 - 2016 Tunisia TUN 1956 - 2016
Czech Republic CZR 1993 - 2016 Mali MLI 1960 - 2016 Turkey TUR 1950 - 2016
Czechoslovakia CZE 1950 - 1991 Mauritania MRT 1960 - 2016 Turkmenistan TKM 1991 - 2016
Denmark DNK 1950 - 2016 Mauritius MUS 1968 - 2016 Uganda UGA 1962 - 2016
Djibouti DJI 1977 - 2016 Mexico MEX 1950 - 2016 Ukraine UKR 1991 - 2016
Dominican Rep. DOM 1950 - 2016 Moldova MDA 1991 - 2016 Un. Arab Emirates ARE 1971 - 2016
Ecuador ECU 1950 - 2016 Mongolia MNG 1950 - 2016 United Kingdom GBR 1950 - 2016
Egypt EGY 1950 - 2016 Morocco MAR 1956 - 2016 United States USA 1950 - 2016
El Salvador SLV 1950 - 2016 Mozambique MOZ 1975 - 2016 Uruguay URY 1950 - 2016
Equatorial Guin. GNQ 1968 - 2016 Myanmar MMR 1950 - 2016 Uzbekistan UZB 1991 - 2016
Eritrea ERI 1993 - 2016 Namibia NAM 1990 - 2016 Venezuela VEN 1950 - 2016
Estonia EST 1991 - 2016 Nepal NPL 1950 - 2016 Vietnam VNM 1976 - 2016
Ethiopia ETH 1950 - 2016 Netherlands NLD 1950 - 2016 South Vietnam SVM 1950 - 1975
Fiji FJI 1970 - 2016 New Zealand NZL 1950 - 2016 Yemen YEM 1991 - 2016
Finland FIN 1950 - 2016 Nicaragua NIC 1950 - 2016 North Yemen NYE 1950 - 1991
France FRA 1950 - 2016 Niger NER 1960 - 2016 South Yemen SYE 1950 - 1991
Gabon GAB 1960 - 2016 Nigeria NGA 1960 - 2016 Yugoslavia YUG 1950 - 1992
Gambia GMB 1965 - 2016 Norway NOR 1950 - 2016 Zambia ZMB 1964 - 2016
Georgia GEO 1991 - 2016 Oman OMN 1950 - 2016 Zimbabwe ZWE 1950 - 2016

Table 2: Countries included in the analysis (columns 1, 4 and 7) with three-digit country

codes (columns 2, 5 and 8) and time period of inclusion in the model (columns 3, 6 and 9).
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A.2. Details on the estimation procedure

The recent implementation of Generalised Additive Models (GAM) in the R package mgcv
allows for smooth varying coefficients as proposed by Hastie and Tibshirani (1993). These
models can be represented in GAMs by multiplying the smooths by a covariate (in the given
application the smooths of time are multiplied by the covariates. See Wood (2017) for more
details.

The functions for the smooths are based on P-Splines as proposed by Eilers and Marx
(1996), giving low rank smoothers using a B-spline basis using a simple difference penalty
applied to the parameters. For the smooth time-varying coefficients on the fixed effects a
maximum number of 65 knots is used, combined with a second-order P-spline basis (quadratic
splines) and a first-order difference penalty on the coefficients.

The non-linear random smooths are estimated similar to those proposed by Durbén et al.
(2005). As a basic idea, one views the individual smooths as splines with random coefficients,
i.e. each country has a random effect, that is in fact a function of time that is approximated
by regression splines. The parameters of the splines are assumed to be normally distributed
with mean zero and the same variance for all curves, which translates into having the same
smoothness parameter for all curves. This concept is implemented efficiently in the GAM
structure of the mgcv package by using the nesting of the smooth within the respective actor.
In order to avoid overfitting and keeping computation tractable, a first-order penalty with
nine knots is employed. The smoothness selection is done for all smooths by the restricted
maximum likelihood criterion (REML).

As the data set is rather big with more than 1.3 million observations in the formation
model, the fitting procedure of the model is computationally expensive and was virtually
impossible with standard implementations in R before the introduction of the bam() function
in the mgev package in 2016 that needs less memory and is much faster than other comparable
packages. The estimation routine employs techniques as proposed in Wood et al. (2015).
Those methods use discretization of covariate values and iterative updating schemes that
require only subblocks of the model matrix to the computed at once which allows for the
application of parallelization tools.

For all computations we also used the statistical programming language R (R Development
Core Team 2008). Important packages used for visualization of networks and computation of
network statistics are the statnet suite of network analysis packages (Handcock et al. 2008)
as well as the package igraph (Csardi and Nepusz 2006). For the Tables the stargazer
package from Hlavac (2013) was employed. For the model evaluation and visualization we
used the PRROC package of Grau et al. (2015).

VI
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A.3. Details on the PCA of the time-varying smooth random ef-
fects

For the analysis of the smooth random effects we are following the discretization approach
of Ramsay and Silverman (2005, Chap. 8). As noted in Section 3.3 we assume the random
effects ¢;(t) (¢; (t) and ¢; (¢) in the formation and the persistence model, respectively) to
be realizations of a stochastic process ® = {¢(t),t € 7}, for i = 1,..., N individual countries
and 7 = [1951,2016].

In order to summarize the information provided by these functions we are searching for

a weight function §(¢) that gives us the principal component scores ¢; = f B(t)gi(t)dt. In
order to do so, the Weight function &1 (t) among all possible functions 3(t) must be found
that maximizes N~' 3" ([ B(t)¢(t)dt)? subject to the constraint [ &3(t)dt = 1. From our

model we get N individual estlmated functions ¢;(t) for all observations (countries) and can
discretize the functions gz@i(t) on a grid. We use T' = 100 equidistant points {¢i, ...,t100} on
the interval 7 of length |7| = 7. This gives a discretized (N x T') time series matrix ® with
N country specific observations in the rows and the estimated functions, evaluated at the
discrete time points, in the columns:

Gi1(t) - Hi(tioo)

K>
I

QZA)N(h) &N(tIOO)

Therefore, in fact we are searching for a solution for the discrete approximation of

[ st~ (/1) 3 Bt )antes) =

H'Mﬂ

such that the solution & that maximizes the mean square satisfies ||€1]|* = 1. This is now a
standard problem, with the solution & being found by the eigenvector that corresponds to

the largest eigenvalue of the covariance matrix of ®.

A.4. Out-of-sample-predictions for simulated networks

As a standard principle in network analysis, a model should be able the reflect global network
characteristics. We evaluate six of them for our out-of-sample forecasts. The first three
characteristics are related to the number of actors that are actively engaged in the arms
trade. The statistic Size is defined as the count of predicted edges in each year. This
measure helps to evaluate the ability of the model to predict amount of realized arms trade
in each year. As it is also of interest to measure how dense the predicted arms trade network
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is, we include Density, relating the size of the network to the number of edges that could
have potentially realized. We define the Order of the network as number of actors that
are engaged in either exporting or importing arms. The results will provide an impression
whether the model has the ability not only to classify the right amount of edges (as in Size),
but also their nesting within the countries.

As we have emphasized the importance of local network statistics we evaluate whether the
local network statistics are able to generate the corresponding global statistics. Therefore,
we include the Mean Indegree (being the same as Mean Outdegree), as well as the share of
Reciprocity. In order to evaluate the accuracy of our predictions with respect to triangular
relationships we furthermore include the measure Transitivity, that divides the number of
triangles by the number of connected triples in the graph. In this statistic, the direction
of the edges is ignored. The analysis of this measure gives an impression how well the two
chosen transitivity measures capture the overall clustering in the network.

The results are presented in Figure 11. In each of the six panels we see the respective
network statistics plotted against time. The solid red line gives the network statistics,
evaluated at the real MCW network. The boxplots show the network statistics, evaluated
for each year for the 1.000 simulated networks.
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Figure 11: Comparison of realized and simulated network topologies. The boxplots give
statistics from the simulated networks. The solid line gives the statistics for the real networks.
Number of edges (Size), number of active countries (Order), number of realized transfers
relative to possible transfers (Density), average indegree (Indegree), share of reciprocated

transfers and ratio of undirected triangles relative to connected triples (Transitivity).
IX
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Figure 12: Kernel density estimate (KDE) of arms exports, measured in TIV and pooled
over all years from 1950 to 2016. Logarithmic x-axis.

B. Supplementary Material

B.1. Different threshold values

B.1.1. Distribution of TIVs

In Figure 12 we present a kernel density estimate (KDE) of the pooled TIVs for the whole
time period. The distribution of the TIVs is highly skewed and has a long tail. Therefore,
we give a logarithmic representation. In order to give an impression of the left tail, Table 3
provides the lower quantiles of the distribution. From this it can be seen that roughly 20%
of all observations are below a threshold of 3.

0% 4.75% 9.5% 14.25% 19%
0.020 0.700 1.332 2.200 3

Table 3: Lower quantiles of the TIV distribution pooled over all years from 1950 to 2016.

In order to demonstrate the effect of different binarization thresholds on the estimated
coefficients we pursue the following strategy. As a baseline we use the ”original effects” from
the paper with a threshold of zero and plot them in solid black together with two standard
error confidence bounds in dark grey. Additionally, we include the estimated coefficients
with thresholds incrementing from zero to three in steps of 0.5 as dashed black lines. (i)
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By comparison of the solid line with the dashed lines it can be seen how strong the point-
estimates vary with different thresholds. (ii) If the dashed lines are within the confidence
intervals in dark grey they can be said to be statistically indistinguishable from the original
estimates. (iii) Furthermore, we show how the confidence bounds of the new estimates exceed
the ones of the original estimation, displayed in light grey. These areas represent the highest
upper limit and the lowest lower limit that exceeds the original confidence bounds. Hence, if
only the dark grey confidence bound is visible, then the effects of all estimates are the same,
if the light grey confidence bound is above and/or below the dark grey, this means that the
bounds of the estimates with higher thresholds are wider.

B.1.2. Fixed effects with different thresholds

The degree-related statistics are shown in the top four panels of Figures 13. We find no
significant changes of the results as the dashed lines stay in almost all cases within the
original confidence bounds. An exception is the senders’ outdegree in the formation model
but even with the highest threshold this effect does not become significant. On the contrary,
partly the results get even more clear. For example the outdegree effect for the receiver in
the formation and dissolution model (second row) becomes even more negative in tendency
with increasing thresholds.

For the reciprocity effect in the third row we find that the coefficients stay almost the
same for all different thresholds of binarization. The same applies for the transitivity effect
in the formation model (left panel in the fourth row). Here the upper confidence bound
even indicates a potentially higher effect. For the transitivity in the persistence model (right
panel in the fourth row) we find that the effect becomes insignificant in the beginning if we
set roughly 20% of the lowest observations to zero. Otherwise the effect stays significant and
very close to the point estimates of the original estimation.

For the Shared Suppliers Effect (the two panels at the bottom) the results are very similar
to the transitivity effects, i.e. we find an potentially stronger effect in the formation model
(left panel at the bottom) and an insignificant effect for the first years in the persistence
model (right panel) with the highest binarization threshold.

Given that the network statistics are constructed from the network and therefore directly
and potentially strongly affected by different thresholds, the robustness of the effects is
reassuring. Only if we replace almost one fifth of the existing edges by zeros the effects
of the hypderdyadic statistics in the persistence model start to become partly insignificant.
However, the affected statistics are in line with our theoretical expectation that the network
effects matter mostly for the formation.

From this result it might not come as a surprise that the effects of the non-network related
covariates are even more robust because their construction is not affected by the thinning of
the network. We can confirm Akerman and Seim (2014) with Figure 14 that shows virtually
no noteworthy changes of the effects.
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Figure 13: Comparison of fixed effects for network statistics with different binarization
thresholds ranging from zero to three, incrementing by 0.5. The estimates with a threshold
of zero are given in solid black with dark grey confidence bounds. All other estimates are
indicated by dashed lines. Confidence bounds derived from estimates with higher thresholds
in light grey.
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Figure 14: Comparison of fixed effects for economic and political Covariates with different
binarization thresholds ranging from zero to three, incrementing by 0.5. The estimates with
a threshold of zero are given in solid black with dark grey confidence bounds. All other
estimates are indicated by dashed lines. Confidence bounds derived from estimates with
higher thresholds in light grey. XII1



80

B.2. Different time windows

In the paper we assume that the STERGM process applies to two consecutive years. As a
robustness check, we define the periods ¢t and ¢ + 1 such that they contain multiple years. If
we take the years 2013, 2014, 2015 and 2016 as an example for time windows of length two,
we set Y;;_l’t = 1 if country ¢ exports arms to j in 2013 or 2014 and Yi?t_l = 0 if country i
has not exported to j neither in 2015 nor in 2016. We also extend this concept such that we
combine three years into one period.

For the non-network related covariates we are using the time averages for the respective
time windows for continuous variables (e.g. if a period contains two years, the average of
the GDP in these two years is taken) and we set binary variables to one if the respective
feature was present in all year (e.g. the indicator for a formal alliance is one if the alliance
was present in all two or three years).

The corresponding estimates can be seen in Figures 15 and 16. (i) The Figures are
constructed such that the baseline is given by the ”original effects” from the paper. These
effects are plotted in solid black together with two standard error confidence bounds in dark
grey. (ii) The coefficients with two or three years within one time period are given in dotted
(two years) and dotted-dashed (three years). (iii) The area where the original confidence
bounds are exceeded is given in light grey.

In Figure 15 it can be seen that the dotted and dashed-dotted line rarely is outside of
the dark grey confidence bound in the panels of rows one to three. One really noteworthy
exception applies to the transitivity effect in the formation model. Here the estimates with
periods containing three years behave somewhat more time-constant than the original es-
timates. This is, however, a natural result because with the broader time windows major
changes in the data as the collapse of the Soviet Union become more smooth. All in all, the
panels clearly show that the coefficients are very robust and do not change fundamentally.
This impression is confirmed by Figure 16 where again no notable exceptions can be found
influence the interpretation in terms of variation with time or significance. This is again in
line with our theoretical expectations since the coefficient for the military expenditures of
the receiver is almost not affected by different time windows.
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B.3. Model without random effects

In the main article we mentioned that the inclusion of the random effects leads to a vanishing
global effect of the senders outdegree. I.e once controlled for the sender-specific random
effect the coefficient on the outdegree statistic is insignificant. Here, we show that once we
exclude random effects from the models, all results are very robust with the exception of the
coefficient on the outdegree. This can be seen in Figures 17 and 18 with coefficients that
are very comparable to the ones from the main paper. The main exception is given by the
senders outdegree (top panels in Figure 17). Here the coefficients are now in both models
positive and significant. Especially in the formation effect the coefficient is very high. This
shows that there is indeed a global effect of the senders outdegree that, however, vanishes if
one controls for country-specific heterogeneity.
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Figure 17: Time-varying coefficients of network statistics without random effects in solid

a() 6(t)
-01 -005

a()

8(t)

-0.1 0.3

0.05

0

07 1 -04 0 04 08

0 03 0.6

-0.4

Formation: Outdegree, Sender

Persistence: Outdegree, Sender

| D—— g
_c
I
°
1950 1960 1970 1980 1990 2000 2010 1950 1960 1970 1980 1990 2000 2010
Formation: Outdegree, Receiver Persistence: Outdegree, Receiver
°
9|l —0//
4 D g
T
!
4 S
1950 1960 1970 1980 1990 2000 2010 " 1950 1960 1970 1980 1990 2000 2010
t t
Formation: Reciprocity, Sender-Receiver Persistence: Reciprocity, Sender—-Receiver
1 o
1 S
] L\ =3
4 £ o
1 g \ﬁ//
] °
] <
] S
1950 1960 1970 1980 1990 2000 2010 T 1950 1960 1970 1980 1990 2000 2010
Formation: Transitivity, Sender-Receiver Persistence: Transitivity, Sender—Receiver
] -
] \//’_\/\,\/\/— 5
1 =0
] T
] o
] I ———
-
1 S
1950 1960 1970 1980 1990 2000 2010 T 150 1960 1970 1980 1990 2000 2010
t t
Formation: Shared Suppliers, Sender—Receiver Persistence: Shared Suppliers, Sender—Receiver
] ©
] S
q \—/\/_’\ @
] =0
1 I
°
1 S
1950 1960 1970 1980 1990 2000 2010 ' 1950 1960 1970 1980 1990 2000 2010

black. Shaded areas give two standard error bounds.

XVIII



a(t)

a()

8(t)

a(t)

a()

Formation: Alliance, Sender—Receiver

Persistence: Alliance, Sender—Receiver

0 ] 0
S =
< | o
S o
w =3 =]
S S
< <
S S
1950 1960 1970 1980 1990 2000 2010 1950 1960 1970 1980 1990 2000 2010
t t
Formation: Regime Dissimilarity, Sender—Receiver Persistence: Regime Dissimilarity, Sender—Receiver
g 8
S =9
1 =3
8] ]
e ?
1950 1960 1970 1980 1990 2000 2010 1950 1960 1970 1980 1990 2000 2010
t t
Formation: log GDP, Sender Persistence: log GDP, Sender
@ «
S S
o e.
=N D S
o -
QL T T T T T v ? T T T T T T T
' 1950 1960 1970 1980 1990 2000 2010 ' 1950 1960 1970 1980 1990 2000 2010
t t
Formation: log GDP, Receiver Persistence: log GDP, Receiver
g g
s] P
2] \ =3
=y D o I,_,_/—,—,—/‘
3] 8
? 1950 1960 1970 1980 1990 2000 2010 ? 1950 1960 1970 1980 1990 2000 2010
t t
Formation: log Distance, Sender—Receiver Persistence: log Distance, Sender-Receiver
o] ~
S S
o =9
S s
N | N
7 ?
1950 1960 1970 1980 1990 2000 2010 1950 1960 1970 1980 1990 2000 2010
t t
Formation: log Military Expenditures, Sender Persistence: log Military Expenditures, Sender
< 3
o | w_\’\‘_ o \
S o
o ]
© 1950 1960 1970 1980 1990 2000 2010 © 1950 1960 1970 1980 1990 2000 2010
t t
Formation: log Military Expenditures, Receiver Persistence: log Military Expenditures, Receiver
21 2
S =c
o] T 5
S S
o -
=g S
" 1950 1960 1970 1980 1990 2000 2010 ' 1950 1960 1970 1980 1990 2000 2010
t t

85

Figure 18: Time-varying coefficients of economic and political covariates without random
effects in solid black. Shaded areas give two standard error bounds.
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B.4. Comparison of different methods

B.4.1. Theoretical discussion

Besides the STERGM, there are many other models suitable for dynamic networks. In
the following, we provide an overview of alternative approaches with a discussion of their
suitability for the given dataset.

Latent Space Models: A potential alternative is given by the family of latent space models
(e.g. Hoff et al. 2002; Handcock et al. 2007). However, it is hard to model arms trade
appropriately within this model class. The need of estimating time-varying coefficients results
in yearly separate estimations. The resulting yearly latent space representations are not very
stable and do not work well with isolates, i.e. countries without transfers in a given year. If
one goes for a panel approach with this model class (see the package amen by Hoff et al. 2015)
one must accept that the coefficients stay the same for the whole time-period and, even more
problematic, that the positions within one latent space are sufficient to capture all network
dependencies for the time-period 1950-2016, which is clearly a heroic assumption. On top
of that, the latent space approach does not allow for the evaluation of complex network
statistics we are interested in.

Stochastic-Actor Oriented Models: Stochastic-Actor Oriented Model (SAOM, see e.g. Sni-
jders et al. 2010) are built for modelling dynamic networks and have the virtue of allowing
for the estimation of dyadic and hyper-dyadic network effects. However, the model is tai-
lored for social networks and some of its’ assumptions are very problematic for modelling
the arms trade network. Most importantly, it assumes actor-homogeneity, an assumption
that is clearly violated for the dataset. Additionally, the SAOM fundamentally builds on the
idea that the networks observed represent snapshots of a continuous underlying process of
edge formation and persistence, i.e. we would need to assume that between ¢ and ¢ + 1 mul-
tiple changes could have been realized in the network. This is not an acceptable assumption
because if a transfer between ¢ and j was recorded in ¢t and ¢ + 1, it is not meaningful to
assume that there exists an in-between state where the transfer has the change to disappear
and re-emerged multiple times. Otherwise, if no transfer is recorded in ¢ and ¢ + 1 we have
no reason to believe that there was trade in between. In the basic description of the SAOM
(Snijders et al. 2010, p. 54) the authors write: "A foundational assumption of the models
discussed in this paper is that the network ties are not brief events, but can be regarded as
states with a tendency to endure over time. Many relations commonly studied in network
analysis naturally satisfy this requirement of gradual change, such as friendship, trust, and
cooperation.” Apparently it is hard to argue that recording whether there was a transfer
between two countries in a given year can be viewed as an enduring state.

Exponential Random Graph Models: Our model is in fact motivated by recent advances
within the exponential random graph model (ERGM) family, i.e. the TERGM (Hanneke et al.
2010, Snijders et al. 2010, Leifeld et al. 2018) and the STERGM (Krivitsky and Handcock
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2014). However, our model differs from the standard cross-sectional ERGM (but also from
the conventional TERGM and STERGM) because it does not allow for simultaneous network
dependencies. In general, a static cross-sectional ERGM seems to be an implausible choice for
the modelling of a dynamic network with strong actor heterogeneity. A dynamic formation
and the TERGM, however, can be constructed in a very similar manner as the STERGM.
Those models are natural candidate model for comparison.

B.4.2. Candidate models

In the following we present several alternative candidate models by increasing level of com-
plexity.

Autoregressive ERGM (Model 1): The most simplistic stochastic model is an autoregressive
model that assumes time-dependence of all individual dyads such that

P(Yi?t—l _ 1‘yt—1,t _ yt—l,t’Xt—l,t _ xt—l,t; 9) 1y
8 {P(Yi?t_l = Q|Yt-Lt = gLt XLt = gi-Lt; 9)} =0+ Glyij s (4)
This temporal dependence structure can be interpreted as a cross sectional ERGM with the
lagged response as a dyadic exogenous covariate or as a TERGM with a dyadic stability term
(see e.g. Block et al. 2018). It is motivated by the idea that the probability of a transfer in
t might change if there was a transfer in ¢ — 1.
TERGM with covariates (Model 2): We can change model (4) by including all the network
effects and covariates as specified in Section 3.2 of the main paper:

P(Y;?til — 1|yt—1,t — yt—l,t,Xt—l,t — xt—l,t; 9)
08 P(Yit;tfl _ O|Yt—1,t — yt—l,t,Xt—l,t — xt—l,t; 9)

} — Hgij(yt_l’tu l't_Lt) (5)
J
In this formulation, we include the autoregressive component only indirectly, the lagged
network statistics give some information about the network embedding of a transfer but not
whether there was a preceding transfer.
TERGM with covariates and random effects (Model 3): With the inclusion of smooth time-

varying random effects for the sender and the receiver we have

{P(Yi?tl _ 1‘Yt—17t _ yt—Lt’Xt—Lt _ xt—l,t; 9)
log

—O7. (oLt . t=15L
P(Yi?t_l = Q|Yt-Lt = yt- Lt Xt-1t = gt-1t; 9)} =0g;; (y* 2"

+ ¢i,sender (t) + ¢j,receiver(t)~

(6)

The main difference to the STERGM is now that we do not model the processes of formation
and persistence separately but within one model and that we do not include the information
on the lagged response here, that is implicitly included in the STERGM mechanics.
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Number Model Name lagged edge covariates rand. eff. PR % ROC %
1 Autoreg. ERGM yes no no 0 0

2 TERGM no yes no 0 0

3 TERGM no yes yes 0 1.54%
4 TERGM with dyadic stability yes yes no 4.62% 6.15%
5 TERGM with dyadic stability yes yes yes 18.46% 44.62%
6 STERGM implicit yes no 24.62%  6.15%
7 STERGM implicit yes yes 52.31%  41.54%

Table 4: Different dynamic network models from the ERGM family included in the com-
parison of prediction. Name of the models in the second column. Model specification in
columns three, four and five. The share of years where the respective model performed best
according to the AUC of the PR or the ROC curve are given in the two rightmost columns.

TERGM with covariates and dyadic stability (Model 4): The inclusion of the lagged response
to the TERGM with covariates gives

{P(Yi?tl _ 1‘yt—1,t — yt—l,t,Xt—l,t — xt—l,t;e)
log

— Q7. (ot~ =10 t—1,t
P(Yi?t‘l = OVt 1t = yi= Lt Xt-Lt = gi-Lt; 9)} = 0gi;(y' 2T + by (7)

TERGM with network effects, dyadic stability and random effects (Model 5): And as a last
step we allow for sender- and receiver-specific random effects in the TERGM with network
statistics and lagged response:

{p(yé_,tl — 1‘yt71,t = gt~ bt XLt = gLt 0)
0g

s (i1t -1t t—1,t
p(yl_?tfl = O[Yt-Lt = yt=1t Xt = gt-1t; 9)} 799”@ » L )+ elyij

+ ¢i,sender (t) + ¢j,raceiver(t>~

(8)

STERGM without random effects (Model 6): Together with our main model from the paper
(Model 7), the STERGM with random effects we additionally include a STERGM without
random effects. The formal representations are given in the main paper in equations (4) and

(5)-

B.4.3. Comparison of out-of-sample predictions

We evaluate the proposed models in the following way. In a first step, we fit coefficients
based on the information of ¢ — 1 to the response in t. In the second step we use the fitted
models in order to predict the edges in ¢t + 1. As a result we obtain probabilistic out-of-
sample predictions. The evaluation is done with area under the curve (AUC) measures for
the Receiver-Operating-Characteristic (ROC) curve and the Precision-Recall (PR) curve.
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Figure 19: AUC values for out-of-sample predictions based on precision recall (left) and
receiver-operator-characteristics (right). The STERGM with covariates and random effects
(Model 7) in solid and red, the autoregressive ERGM (Model 1) and the TERGM with
covariates (Model 2) and random effects (Model 3) in black and dashed.

All models are fitted using the package mgev (Wood 2017; Version 1.8-24) and evaluated
with the package PRROC (Grau et al. 2015; Version 1.3).

Table 4 gives and overview of the predictive performance of all models included. In the
two rightmost columns we present the share of years where the respective model has the high-
est out-of-sample predictive power. It can be seen that evaluated by the PR, the STERGM
with random effects clearly represents the superior model with the highest predictive perfor-
mance. Judged by the ROC the performance of the TERGM and the STERGM (both with
random effects and as a model class) are very similar. We give a detailed description of the
results below.

In order to give a clear impression of how the out-of-sample fits are related we provide
multiple plots where the baseline model, the STERGM with covariates and random effects,
is always indicated in solid red.

In Figure 19 we compare the AUC values of the autoregressive ERGM (Model 1), the
TERGM with covariates (Model 2) and with random effects (Model 3) with the baseline
STERGM model (Model 7). The Precision Recall AUC values are shown on the left hand
side of Figure 19 and provide a clear message since all selected candidate models have AUC
values clearly below the STERGM used in the paper (Model 7). Looking at the AUC values
from the ROC measure (right panel) shows that the two TERGM models (Models 2 and
3) come partly close to the baseline model in the first years of the observational period,
while the simplistic autoregressive ERGM has considerable lower AUC values. However as
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Figure 20: AUC Values for out-of-sample predictions based on precision recall (left) and
receiver-operator-characteristics (right). The STERGM with covariates and random effects
(Model 7) in solid and red, the TERGM with covariates, dyadic stability (Model 4) and
random effects (Model 5) in black and dashed.

a general picture the STERGM with random effects is clearly the superior model.

Including the lagged response as explanatory variable makes the TERGM models (Models
4 and 5) pretty similar to our baseline model (Model 7). Naturally, this is reflected in Figure
20. However, the STERGM model is more flexible because it allows for different coefficients
for the processes of formation and persistence. This fact leads to superior predictions of
the STERGM model (Model 7) in the left panel of Figure 20. The red line provides the
upper boundary in most time points, but there are some instances where the autoregressive
TERGMs (Models 4 and 5) provide the better predictions when evaluated with the PR curve.
If the AUC measure for the ROC curve is compared, we see again that the predictions of
the TERGM partly outperform the STERGM. Nevertheless, this is mostly the case in the
beginning of the observational period and it seems like the superiority of the STERGM
increases with the more recent periods.

In Figure 21 the predictive performance of the STERGM with (Model 7) and without
(Model 6) random effects is compared. Although the AUC values are very close to each other,
the model that includes the random effects clearly provides better out-of-sample predictions.
On the right hand side of Figure 21 the contrast becomes visible more clearly and in almost
all years our baseline model provides the better predictions.

All in all we conclude the following. (i) The STERGM gives, among all other candidate
models the best predictions when judged by Precision Recall, being the more important
measure when predicting rare vents. (ii) Furthermore, the STERGM has a much richer
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Figure 21: AUC values for out-of-sample predictions based on precision recall (left) and
receiver-operator-characteristics (right). The STERGM with covariates and random effects
(Model 7) in solid and red, the STERGM with covariates but without random effects (Model
6) in black and dashed.

interpretation than the TERGM and (iii) the random effects provide an substantial benefit
to the inferential part of the model. We therefore conclude that the choice of the STERGM
with random effects seems to be very appropriate regarding both, the predictive performance
as well as the ability to gain new insights.
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Abstract

Given the growing number of available tools for modeling dynamic networks, the
choice of a suitable model becomes central. The goal of this survey is to provide an
overview of tie-oriented dynamic network models. The survey is focused on introducing
binary network models with their corresponding assumptions, advantages, and short-
falls. The models are divided according to generating processes, operating in discrete
and continuous time. First, we introduce the Temporal Exponential Random Graph
Model (TERGM) and the Separable TERGM (STERGM), both being
time-discrete models. These models are then contrasted with continuous process mod-
els, focusing on the Relational Event Model (REM). We additionally show how the
REM can handle time-clustered observations, i.e., continuous time data observed at
discrete time points. Besides the discussion of theoretical properties and fitting pro-
cedures, we specifically focus on the application of the models on two networks that
represent international arms transfers and email exchange. The data allow to demon-
strate the applicability and interpretation of the network models.
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1 Introduction

The conceptualization of systems within a network framework has become popular within
the last decades, see Kolaczyk (2009) for a broad overview. This is mostly because network
models provide useful tools for describing complex dependence structures and are applicable
to a wide variety of research fields. In the network approach, the mathematical structure of
a graph is utilized to model network data. A graph is defined as a set of nodes and relational
information (ties) between them. Within this concept, nodes can represent individuals,
countries or general entities, while ties are connections between those nodes. Dependent on
the context, these connections can represent friendships in a school (Raabe et al., 2019),
transfers of goods between countries (Ward et al., 2013), sexual relations between people
(Bearman et al., 2004) or hyperlinks between websites (Leskovec et al., 2009) to name just
a few. Given a suitable data structure for the system of interest, the conceptualization as
a network enables analyzing dependencies between ties. A central statistical model that
allows this is the Exponential Random Graph Model (ERGM, Robins and Pattison, 2001).
This model permits the inclusion of monadic, dyadic and hyperdyadic features within a
regression-like framework.

Although the model allows for an insightful investigation of within-network dependencies,
most real-world systems are typically more complex. This is especially true if a temporal
dimension is added, which is relevant, as most systems commonly described as networks
evolve dynamically over time. It can even be argued that most static networks are de facto
not static but snapshots of a dynamic process. A friendship network, e.g., typically evolves
over time and influences like reciprocity often follow a natural chronological order.

Of course, this is not the first paper concerned with reviewing temporal network models.
Goldenberg et al. (2010) wrote a general survey covering a wide range of models. The authors
laid the foundation for further articles and postulated a soft division of statistical network
models into latent space (Hoff et al., 2002) and p; models (Holland and Leinhardt, 1981), all
originating in the Edés-Rényi-Gilbert random graph models (Erdés and Rényi, 1959; Gilbert,
1959). Kim et al. (2018) give a contemporary update on the field of dynamic models building
on latent variables. Snijders (2005) discusses continuous time models and reframes the
independence and reciprocity model as a Stochastic Actor oriented Model (SAOM, Snijders,
1996). Block et al. (2018) provide an in-depth comparison of the Temporal Exponential
Random Graph Model (TERGM, Hanneke et al., 2010) and the SAOM with special focus
on the treatment of time. Further, the ERGM and SAOM for networks which are observed
at single time points are contrasted by Block et al. (2019), deriving theoretical guidelines for
model selection based on the differing mechanics implied by each model.

In the context of this compendium of articles, the scope is to give an update on the
dynamic variant of the second strand of models relating to p; models. We therefore extend
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Figure 1: Tree diagram summarizing the dependencies between models originating in the
Erdos-Rényi-Gilbert graph model, models situated in a box with a grey background are
discussed in this article. This graph is an update of Figure 6.1 in Goldenberg et al. (2010).

the summarizing diagram of Goldenberg et al. (2010) as depicted in Figure 1. Generally, we
divide temporal models into two sections, by differentiating between discrete and continuous
time network models. In this endeavor, we emphasize reviewing tie-oriented models. Tie-
oriented models are concerned with formulating a stochastic model for the existence of a tie
contrasting the actor-oriented approach by Snijders (2002), which specifies the model from
the actors point of view (Block et al., 2018). The Dynamical Actor-Oriented model (DyNAM,
Stadtfeld and Block, 2017) adopts this actor-oriented paradigm to event data. This type of
model was formulated with a focus on social networks (Snijders, 1996). Contrasting this, tie-
oriented models can be viewed as more general, since they are also applicable to non-social
networks.

Statistical models for time discrete data rely on an autoregressive structure and condition
the state of the network at time point ¢ on previous states. This includes the TERGM and
the Separable TERGM (STERGM, Krivitsky and Handcock, 2014). There exists a variety of
recent applications of the TERGM. White et al. (2018) use a TERGM for modeling epidemic
disease outcomes and Blank et al. (2017) investigate interstate conflicts. In He et al. (2019)
Chinese patent trade networks are inspected and Benton and You (2017) use a TERGM
for analyzing shareholder activism. Applications of STERGMs are given for example by
Stansfield et al. (2019) that model sexual relationships and Broekel and Bednarz (2019) that
study the network of research and development cooperation between German firms.



97

In case of time-continuous data, the model regards the network as a continuously evolving
system. Although this evolution is not necessarily observed in continuous time, the process
is taken to be latent and explicitly models the evolution from the state of the network at
time point ¢t — 1 to ¢ (Block et al., 2018). In this paper we discuss the relational event model
(REM, Butts, 2008) for the analysis of event data. Applications of the REM are manifold
and range from explaining the dynamics of health behavior sentiments via Twitter (Salathé
et al., 2013), inter-hospital patient transfers (Vu et al., 2017), online learning platforms (Vu
et al., 2015), and animal behavior (Tranmer et al., 2015) to structures of project teams
(Quintane et al., 2013). Eventually, the REM is adapted to time-discrete observations of
networks. That is, we observe the time-continuous developments of the network at discrete
observation times only. Henceforth, we use the term time-clustered for this special data
structure.

In reviewing dynamic network models, we assume a temporal first-order Markov depen-
dency. To be more specific, this implies that the network at time point ¢ only depends on
the previous observation of the network. This characteristic is widely used in the analysis of
longitudinal networks (Hanneke et al., 2010; Krivitsky and Handcock, 2014) and the result-
ing conditional independence among states of the network facilitates the estimation with an
arbitrary number of time points. In that respect, it suffices to only include two observational
moments for illustrative purposes, since the interpretation and estimation with a longer se-
ries of networks is unchanged. Lastly, the comparison of the methods at hand in a clear-cut
manner is hence enabled.

The paper is structured as follows. In Section 2 we give basic definitions that are used
throughout the paper and present the two data examples that will be analyzed as illustrative
examples. After that, Section 3 introduces time-discrete and Section 4 time-continuous
network models. They are applied in Section 5 on two data sets and Section 6 concludes.
Additional results relating to the applications can be found in the Supplementary Material.

2 Definitions and Data Description

2.1 Definitions

This article regards directed binary networks, with ties representing directed relations be-
tween two nodes at a time point. The respective information can be represented in an
adjacency matrix Y, = (Yjj1)ij=1,.n € YV, where Y = {Y : Y € {0,1}"*"} represents the
set of all possible networks with n nodes. The entry (i,7) of Y; is ”1”7 if a tie is outgo-
ing from node ¢ to j in year t and 70" otherwise. Further, the discrete time points of
the observations of Y; are denoted as ¢t = 1,...,7. We restrict our analysis to two time
points in both exemplary networks, which suffices for comparison. Hence, we set T'= 2. In

4
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Arms Trade Network Email Network
Time t 2016 2017 Period 1 Period 2
Number of events — — 4957 2537
Number of nodes n 180 180 88 88
Number of possible ties n(n —1) 32220 32220 7656 7656
Density 0.021 0.020 0.123 0.087
Transitivity 0.195 0.202 0.407 0.345
Reciprocity 0.081 0.083 0.7 0.687
Repetition — 0.641 — 0.574

Table 1: Descriptive statistics for the international arms trade network (left) and the Euro-
pean research institutions email correspondence (right).

many networks, including our running examples self-loops are meaningless. We therefore fix
Yi: =0V ie{l,...,n} throughout the article. Further, all sub-scripted temporal indices
(Y;) are assumed to take discrete and all indices in brackets (Y(¢)) continuous values. The
temporal indicator ¢t denotes the observation times of the network and to notationally differ
this from time-continuous model we write ¢ for continuous time.

To sufficiently compare different models, we use two application cases. The first one
represents the international trade of major weapons, which is given by discrete snapshots
of networks that are yearly aggregated over time-continuous trade instances, i.e., the time-
stamped information is not observed. Whereas the second application, a network of email
traffic, comes in time-stamped format, that can be aggregated to discrete-time observations.

2.2 Data Set 1: International Arms Trade

The data on international arms trading for the years 2016 and 2017 are provided by the
Stockholm International Peace Research Institute (SIPRI, 2019). To be more specific, infor-
mation on the exchange of major conventional weapons (MCW) together with the volume
of each transfer is included. In order to have a binary network representation, we discretize
the data and set edges Y;;, to ”1” if country 7 sent arms to country j in t.

The left side of Table 1 gives some descriptive measures (Csardi and Nepusz, 2006) and
Figure 2 visualizes the arms trade network using the software Gephi (Bastian et al., 2009).
The density of a network is the proportion of realized edges out of all possible edges and
is similar in both years, indicating the sparsity of the modeled network. Clustering can
be expressed by the transitivity measure, providing the percentage of triangles out of all
connected triplets. Reciprocity in a graph is the ratio of reciprocated ties and is similar in
both years. As expressed by the high percentage of repeated ties, most countries seem to
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Figure 2: The International Arms Trade as a binary network in 2016 (left) and 2017 (right).
Nodes that are isolated in both years are not depicted for clarity and the node size relates
to the sum of the out- and in-degree. The labels of the nodes are the ISO3 codes of the
respective countries.

continue trading with the same partners.

Additionally, different kinds of exogenous covariates may be controlled for in statistical
network models. In the given example we use the logarithmic Gross Domestic Product (GDP)
(World Bank, 2017) as monadic covariates concerning the sender and receiver of weapons.
We also include the absolute difference of the so called polity IV index (Center for systemic
Peace, 2017), ranging from zero (no ideological distance) to 20 (highest ideological distance),
as a dyadic exemplary covariate. These covariates are assumed to be non-stochastic and we
denote them by x;. See the Supplementary Material for a list of all included countries and
their ISO3 code.
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2.3 Data Set 2: European Research Institution Email Correspon-
dence

The second network under study represents anonymized email exchange data between insti-
tution members of a department in a European research institution (see Paranjape et al.,
2017, Email EU Core, 2019). In this data set, we observe events w = (i, j, ) that represent
emails sent from department member i to department member j at a specific time point £.

The data contains n = 89 persons and is recorded over 802 days. For this paper, we
select the first two years and split them again into two years, labeled Period 1 and Period
2. Within the first period, 8068 events are recorded and 4031 in the second period. We
only regard one-to-one email correspondences, therefore we exclude all group mails from the
analysis. In the right column of Table 1 the descriptive measures for the two aggregated
networks are given and in Figure 3 they are visualized. All descriptive statistics are higher
in the email exchange network as compared to the arms trade network. In comparison to
the arms trade network, the aggregated network is more dense with more than 10% of all
possible ties being realized. In both years the transitivity measure is relatively higher in
both time periods. The high share of reciprocated ties is intuitive given that the network
represents email exchange between institution members that may collaborate. No covariates
are available for this network. See Annex A for the visualization of the degree distributions
of both applications.

3 Dynamic Exponential Random Graph Models

3.1 Temporal Exponential Random Graph Model

The Exponential Random Graph Model (ERGM) is among the most popular models for the
analysis of static network data. Holland and Leinhardt (1981) introduced the model class,
which was subsequently extended with respect to fitting algorithms and network statistics
(see Lusher et al., 2012, Robins et al., 2007). Spurred by the popularity of ERGMs, dynamic
extensions of this model class emerged, pioneered by Robins and Pattison (2001) who de-
veloped time-discrete models for temporally evolving social networks. Before we start with
a description of the model, we want to highlight that the TERGM as well as the STERGM
are most appropriate for equidistant time points. That is, we observe the networks Y; at
discrete and equidistant time points t = 1,...,7. Only in this setting, the parameters allow
for a meaningful interpretation. See Block et al. (2018) for a deeper discussion.

Hanneke et al. (2010) is the main reference for the TERGM, a model class that utilizes
the Markov structure and, thereby, assumes that the transition of a network from time
point £ — 1 to time point ¢ can be explained by exogenous covariates as well as structural



101

Figure 3: The European research institution email correspondence aggregated to a binary
network divided into Period 1 (day 1-365, left) and Period 2 (day 1-365, right). The node
size relates to the sum of the out- and in-degree.

components of the present and preceding networks. Using a first-order Markov dependence
structure and conditioning on the first network, the resulting dependence structure of the
model can be factorized into

Po(Yr, ..., YY1, 21, ...,xp) = Po(Yp|Yr_q, x7) - - - Po(Y3|Ya, 23)Po(Y2|Y1, 22). (1)

In the formulation above, it is assumed that the joint distribution can be decomposed into
yearly transitions from Y, ; to Y;. Further, it is assumed that the same parameter vector
f governs all transitions. Often, this is an unrealistic assumption for networks observed
at many time-points because the generative process may change other time. Therefore, it
can be useful to allow for different parameter vectors for each transition probability (i.e.
Or, Or_1,...). In such a setting, the parameters for each transition can either be estimated
sequentially (e.g. Thurner et al., 2018) or by using smooth time-varying effects (e.g. Lebacher
et al., 2019).

Given the dependence structure (1), the TERGM assumes that the transition from Y;_;
to Y; is generated according to an exponential random graph distribution with the parameter

0:

exp{0”s(yt, ye1,24)} ' (2)

BofYi = Yoy =y ) = S0 G
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Generally, s(y;, yi—1,2¢) specifies a p-dimensional function of sufficient network statistics
which may depend on the present and previous network as well as on covariates. These
network statistics can include static components, designed for cross-sectional dependence
structures (see Morris et al., 2008 for more examples). However, the statistics s(y:, yi—1, %t)
explicitly allow temporal interactions, e.g. delayed reciprocity

Sdetrecip(Yt: Yt—1) X Z YijitYije—1- (3)
i#]

This statistic governs the tendency whether a tie (i,j) in ¢ — 1 will be reciprocated in ¢.
Another important temporal statistic is stability

Sstability(yta ytfl) X Z (yij,tyij,tfl + (1 - yij,t)(l - yij,tfl)) : (4)
i£]

In this case, the first product in the sum measures whether existing ties in ¢ — 1 persist
in ¢ and the second term is one if non-existent ties in ¢ — 1 remain non-existent in ¢. The
proportionality sign is used since in many cases the network statistics are scaled into a specific
interval (e.g. [0,n] or [0, 1]). Such a standardization is especially sensible for networks where
the actor set changes with time. Additionally, exogenous covariates can be included, e.g.,
time-varying covariates x;;

deadic(yty xt) - Z yij,txij,t' (5)
i#]

There exists an abundance of possibilities for defining interactions between ties in ¢t — 1
and ¢. From this discussion and equation (2) it also becomes evident, that in a situation
where the interest lies in the transition between two periods, a TERGM can be modeled
simply as an ERGM, including lagged network statistics. This can be done for example by
incorporating v;;,—1 as explanatory variable in (5) which is mathematically equivalent to the
stability statistic (4). In the application we call this statistic repetition (Block et al., 2018).

Concerning the estimation of the model, maximum likelihood estimation appears to be
a natural candidate due to the simple exponential family form (2). However, the nor-
malization constant in the denominator of model (2) often poses an inhibiting obstacle
when estimating (T)ERGMs. This can be seen by inspecting the normalization constant
K0, Y1, 70) = D5y exp{07s(Jt, y1—1,7¢)}, that requires summation over all possible net-
works g € V. This task is virtually infeasible, except for very small networks. Therefore,
Markov Chain Monte Carlo (MCMC) methods have been proposed in order to approximate
the logarithmic likelihood function (see Geyer and Thompson (1992) for Monte Carlo max-
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imum likelihood and Hummel et al. (2012) for its adaption to ERGMs). The article by
Caimo and Friel (2011) provides an alternative algorithm that uses MCMC-based inference
in a Bayesian model framework. Another approach is to employ maximum pseudolikelihood
estimation (MPLE, Strauss and Ikeda, 1990) that can be viewed as a local alternative to
the likelihood (van Duijn et al., 2009) but is often regarded as unreliable and poorly under-
stood in the literature (Hunter et al., 2008, Handcock et al., 2003). However, the MPLE is
asymptotically consistent (Desmarais and Cranmer, 2012) and the often suspect standard
errors can be corrected via bootstrap (Leifeld et al., 2018). A notable special case arises if
the network statistics are restricted such that they decompose to

8(Yts Ye1, 1) = Zyij,tgij(yt—laxt)v (6)
i#]

with 3;; being a function that is evaluated only at the lagged network y,_; and covariates x;
for tie (7, 7). With this restriction, we impose that the ties in ¢ are independent, conditional
on the network structures in ¢ — 1. This greatly simplifies the estimation procedure and
allows to fit the model as a logistic regression model (see for example Almquist and Butts,
2014) without the issues related to the MPLE.

A problem, that is very often encountered when fitting (T)ERGMs with endogenous
network statistics is called degeneracy (Schweinberger, 2011) and occurs if most of the prob-
ability mass is attributed to network realizations that provide either full or empty networks.
One way to circumvent this problems is the inclusion of modified statistics, called geometri-
cally weighted statistics (Snijders et al., 2006). Using the definitions of Hunter (2007), the
geometrically weighted out-degree distribution (GWOD) controls for the out-degree distri-
bution with one statistic, via

n—1

sewop(y) = expf{ao} Y (1 — (1 — exp{—ao})*) Ok(w), (7)

k=1

with Og(y;) being the number of nodes with out-degree k in ¢ and ap as the weighting
parameter. Correspondingly, the in-degree distribution is captured by the geometrically
weighted in-degree distribution (GWID) statistic by exchanging Ok (y;) with I (y;), which
counts the number of nodes with in-degree k, and ap with ;. While on the one hand, the
weighting often effectively counteracts the problem of degeneracy, the statistics become more
complicated to interpret. Negative values of the associated parameter typically indicate a
centralized network structure.

Regarding statistics capturing clustering, the most common geometrically weighted tri-
angular structure is called geometrically weighted edge-wise shared partners (GWESP) and

10
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builds on the number of two-paths that indirectly connect two nodes ¢ and j given the
presence of an edge (i, 7):

n—2

sawesp(yr) = exp{as} Y (1= (1 — exp{—as})*) Sk(w), (8)

k=1

where ag is a weighting parameter. The number of edges with & shared partners (Sk(y:))
is uniquely defined in undirected networks. If the edges are directed it must be decided,
which combination should form a triangle, see Lusher et al. (2012) for a discussion. As
a default, the number of directed two-paths is chosen (Goodreau et al., 2009). Generally,
a positive coefficient for GWESP indicates that triadic closure increases the probability of
edge occurrence and globally a positive value for the associated parameter means more triadic
closure as compared to a regime with a negative value (Morris et al., 2008).

3.2 Separable Temporal Exponential Random Graph Model

An useful improvement of the TERGM (2) is the STERGM proposed by Krivitsky and
Handcock (2014). This model can be motivated by the fact that the stability term leads to
an ambiguous interpretation of its corresponding parameter. Given that we include (4) in
a TERGM and obtain a positive coefficient after fitting the model it is not clear whether
the network can be regarded as ”stable” because existing ties are not dissolved (i.e. y;;; =
Yiji—1 = 1) or because no new ties are formed (i.e. y;;; = yi;:—1 = 0). To disentangle this,
the authors propose a model that allows for the separation of formation and dissolution.
Krivitsky and Handcock (2014) define the formation network as Y =Y, UY,_;, being
the network that consists of the initial network Y;_; together with all ties that are newly
added in ¢t. The dissolution network is given by Y~ = Y; NY;_; and contains exclusively
ties that are present in ¢t and ¢t — 1. Given the network in ¢ — 1 together with the formation
and the dissolution network we can then uniquely reconstruct the network in ¢, since Y; =
Y\ (Y \Y ™) =Y~ U (YT\Y,_1). Define = (67,07) as the joint parameter vector that
contains the parameters of the formation and the dissolution model. Building on that,
Krivitsky and Handcock (2014) define their model to be separable in the sense that the
parameter space of # is the product of the parameter spaces of #* and 6~ together with
conditional independence of formation and dissolution given the network in ¢ — 1:

Po(Ye = Vi1 =y, ) =

P+ <Y+ = y+|Y;—1 = UYt-1, %) Py- (Y_ = y_|Y;5—1 = Yt-1, xt) . (9)
Format;)rn Model Dissolution Model
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Figure 4: Conceptual representation, illustrating formation and dissolution in the STERGM.

The structure of the model is visualized in Figure 4. On the left hand side the state of the
network Y;_; is given, consisting of two ties (i, h) and (h, 7). In the top network all ties that
could possibly be formed are shown in dashed and the actual formation in this example (i, )
is shown in solid. On the bottom, the two ties that could possibly be dissolved are shown
and in this example (h, j) persists while (7, j) is dissolved. On the right hand side of Figure 4
the resulting network at time point ¢ is displayed. Given this structure and the separability
assumption (9), it is assumed that the formation model is given by

exp{(0%)"s(y", ye1,71) }
R(9+7yt717xt) 7
with x(6%,y;_1,2;) being the normalization constant. Accordingly, the dissolution model

can be defined. Inserting the separable models in (9) makes it apparent, that the STERGM
is a subclass of the TERGM since

Py+ (Y+ = y+|Y2_1 = yt—hxt) = (10)

exp{(01)"s(y", yer, 20) } exp{(07)"s(y~ ye1, 20)}
K(OF, Y1, 24) k(07 Y1, T4)

. eXp{GTs(yhyt,l, $t)}

a K(0, ye—1,T¢)

PG(YQ = yt!YH = Yi-1, l"t) =
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with 0 = (07,07)7) s(ye, ye—1, 7)) = (s(yt, -1, 20), 8(y ™, ye—1,7¢))T and the normalization
constant set accordingly.

For practical reasons it is important to understand that the term dissolution model is
somewhat misleading since a positive coefficient in the dissolution model implies that nodes
(or dyads) with high values for this statistic are less likely to dissolve. This is also the
standard implementation in software packages, but can simply be changed by switching the
signs of the parameters in the dissolution model.

The network statistics are used similarly as in a cross-sectional ERGM. In Krivitsky and
Handcock (2014) they are called implicitly dynamic because they are evaluated either at the
formation network y* or the dissolution network y~, which are both formed from y; ; and
y;. For example, the number of edges is separately computed now for the formation and the
dissolution network, giving either the number of edges that newly formed or the number of
edges that persisted. For example, reciprocity in the formation network is defined as

Srecip(y+> Y1) = Srecip(y+) X Z y;;yjj_ (11)
i#j

and in case of the dissolution model, y* is simply exchanged with y~. Similarly, and edge
covariates or the geometrically weighted statistics shown in equations (5), (7) and (8) are
now functions of y* or y~ not ;.

3.3 Model Assessment

In analogy to binary regressions models, the (S)TERGM can be evaluated in terms of their
receiver-operator-

characteristic (ROC) curve or precision-recall (PR), where the latter puts more emphasis
on finding true positives (e.g. Grau et al., 2015). A comparison between different models is
possible using, for example, the Akaike Information Criterion (AIC, Claeskens and Hjort,
2008). Here we want to highlight, that the AIC fundamentally builds on the log likelihood,
which in most realistic applications is only available as an approximation, see Hunter et al.
(2008) for further discussion.

However, in statistical network analysis it is often argued that suitable network models
should not exclusively provide good predictions for individual edges, but also be able to repre-
sent topologies of the observed network. The dominant approach to asses the goodness-of-fit
of (S)TERGMs is based on sampling networks from their distribution under the estimated
parameters and then comparing network characteristics of these sampled networks with the
same ones from the observed network (Hunter et al., 2008). For this approach, it is recom-
mendable to utilize network characteristics that are not used for specifying the model. For
instance, models that include the GWOD statistic (7) may not be compared to the simulated
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values of it but against the out-degree distribution.

Hanneke et al. (2010) point out that for networks with more than one transition from
t—1 to t available it is possible to employ a ” cross-validation-type” assessment of the fit. The
parameters can be fit repetitively to all observed transitions except one hold-out transition.
It is then checked, how well the network statistics from the hold-out transition period are
represented by the ones sampled from the coefficients obtained from all other transitions.

4 Relational Event Model

4.1 Time-Continuous Event Processes

The second type of dynamic network models results by comprehending network changes
as a continuously evolving process (see Girardin and Limnios, 2018 as a basic reference
for stochastic processes). The idea was originally introduced by Holland and Leinhardt
(1977). According to their view, changes in the network are not occurring at discrete time
points but as a continuously evolving process, where only one tie can be toggled at a time.
This framework was extended by Butts (2008) to model behavior, which is understood as a
directed event at a specific time, that potentially depends on the past. Correspondingly, the
observations in this section are behaviors which are given as triplets w = (i, j,#) and encode
the sender i, receiver j, and exact time point . This fine-grained temporal information
is often called time-stamped or time-continuous, we adopt the latter name. Furthermore,
we only regard dyadic events in this article, i.e., a behavior only includes one sender and
receiver.

The concept of behavior, hereinafter called event, generalizes the classical concept of
binary relationships based on graph theory as promoted by Wasserman and Faust (1994).
This event framework does not intrinsically assume that ties are enduring over a specific time
frame (Butts, 2009; Butts and Marcum, 2017). For example in an email exchange network,
sending one email at a specific time point is merely a brief event, which does not convey the
same information as a durable relationship. Therefore, the time-stamped information cannot
adequately be represented in a binary adjacency matrix without having to aggregate the
relational data at the cost of information loss (Stadtfeld, 2012). Nevertheless, a friendship
between actor ¢ and j at a given time point can still be viewed as an event that has an
one-to-one analogy to a tie in the classical framework.

The overall aim of Relational Event Models (REM, Butts, 2008) is to understand the
dynamic structure of events conditional on the history of events (Lerner et al., 2013). This
dynamic structure, in turn, controls how past interactions shape the propensity of future
events. To make this model feasible, we leverage results from the field of time-to-event
analysis, or survival analysis respectively (see, e.g., Kalbfleisch and Prentice, 2002 for an
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overview). The central concept of the REM can be motivated by the introduction of a
multivariate time-continuous Poisson counting process

N(t) = (N (t) | i,5 € {1,...,n}), (12)

where N;;(f) counts how often actors i and j interacted in [0,%). Note that we indicate
continuous time ¢ with a tilde to distinguish from the discrete time setting witht = 1,2,..., T

assumed in the previous section. Process (12) is characterized by an intensity function \;;(t)
for ¢ # j, which is defined as:

dt10 dt '

This is the instantaneous probability of observing a jump of size ”1” in N,»j(f), which indicates

observing the event (i,7,t). Since we assume that there are no self-loops A\;;(t) = 0V i =
1,...,n holds.

4.2 Time-Continuous Observations

Butts (2008) introduced the REM to analyze the intensity \;;(¢) of process (12) when time-
continuous data on the events are available. He assumed that the intensity is constant
over time but depends on time-varying relational information of past events and exogenous
covariates. Vu et al. (2011) extended the model by postulating a semi-parametric intensity
similar to Cox (1972):

ij (£ | N(E), 2(8),0) = Ao(f)exp{0”s;; (N (£), 2(1)) }, (13)

where A\o(%) is an arbitrary baseline intensity, 6 € R? the parameter vector and s;; (N (t), z(t))
a statistic that depends on the (possibly time-continuous) covariate process x(f) and the
counting process just prior to .

Generally, similar statistics as already introduced in Section 3 can be included in
sij(N(t),z(f)). Solely the differing level of the model needs to be accounted for, since model
(13) takes a local time-continuous point of view to understand the relational nature of the
observed events. This necessitates defining the statistics s;;(N (), z(f)) from the position
of specific ties, in contrast to the globally defined statistics s(yy, y4—1, ;) in (2). To give an
example, the tie-level version of reciprocity for the event (i, j) is defined as

Sij,reciprocity (N(f)7 x(f)) = H(Nji(g) > 0)7
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where I(-) is the indicator function. It only regards, whether already having observed the
event (j, 1) prior to ¢ has an effect on \;;(t | N(¢), z(f),6), in comparison to the network level
version (3) of delayed reciprocity that counted all reciprocated ties between the networks y;
and y;_1.

Degree statistics can be specified as either sender- or receiver-specific. If we, e.g., want
to control for the out-degree of the sender the corresponding tie-oriented statistic is:

n

sijsop(N(D), z(f)) =Y I(Nu(f) > 0).

h=1

The in-degree of the receiver can be formulated accordingly.

Clustering in event sequences may be captured by different types of nested two-path
configurations. For instance, the tie-oriented version of directed two-paths, henceforth called
transitivity, is given by:

n

syrra(N@), 2() = > I(Nu(f) > 0)I(Ny;(£) > 0).

The inclusion of monadic and dyadic exogenous covariates becomes straightforward by setting
Sij.dyadic (N (), x(f)) equal to the covariate values of interest. Since the effect of a past event at
time 4, say, on a present event at time ¢ may vary according to the elapsed time t—4, Stadtfeld
and Block (2017) introduced windowed effects, which only regard events that occurred in a
pre-specified time window, e.g. a year. We will come back to this point in the next section.

If time-continuous observations are available each dimension of the observed counting
process is conditional on the past independent. This, in turn, enables the construction of a
likelihood, which can subsequently be maximized. Assuming that € is the set of all observed
events and 7T the interval of observation, the likelihood can be written as:

o= ] )\ij(f|N(t~),x(t~),9)exp{—/Z Nl | N(w), a(w), O)du . (14)
T

(i.5De k,h=1

This likelihood is straightforward to maximize in the case of a parametric baseline intensity
Ao(t), for example Butts (2008) assumes Ao(t) = 7o. Alternatively, Butts (2008) analyzed
events with ordinal temporal information. In this setting, the likelihood is equal to the partial
likelihood introduced by Cox (1972) for estimating parameters of semi-parametric intensities
as in (13). Letting U; denote the set of all possible events that could have occurred at time
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point ¢ but did not, the partial likelihood for continuous event data is defined as:

) A | N(D),2(0),9)
Plam® = 1 S S G N @) 200 =

(i,5,8) €N

Consecutively, Aq(t) fo Ao(u)du can be estimated with a Nelson Aalen estimator (see
Kalbfleisch and Prentlce 2002 for further details on the estimation).

When dealing with large amounts of event data the main obstacle is evaluating the sum
over the intensities of all possible ties in (15) (Butts, 2008). One exact option is to trade a
longer running time for a slimmer memory footprint by means of a coaching data structure.
Vu et al. (2011) exploit this by saving prior values of the sum and subsequently changing
it event-wise by elements of U; whose covariates changed. Alternatively, Vu et al. (2015)
proposes approximate routines that utilize case-control sampling and stratification for the
Cox model (Langholz and Borgan, 1995). More precisely, the sum is only calculated over a
sampled subset of possible events in addition to stratification. Lerner and Lomi (2019) go
one step further and sample events out of € for the calculation of PL(#) in (15).

Extensions of this model building on already well-established methods in social network
and time-to-event analysis were numerously proposed. Perry and Wolfe (2013) used a strat-
ified Cox model in (13). Stadtfeld et al. (2017) adopted the Stochastic Actor oriented Model
(SAOM) to events. DuBois and Smyth (2010) and DuBois et al. (2013) extended the Stochas-
tic Block Model (SBM) for time-stamped relational events. Further, DuBois et al. (2013)
adopted a Bayesian hierarchical model to event data when information is only available in
smaller groups.

4.3 Time-Clustered Observations

Generally, the approach discussed above requires time-continuous network data, meaning
that we observe the precise time points of all events. To give an instance, in the first data
example, this means that we need the exact time point ¢ of an arms trade between country i
and j. Often, such exact time-stamped data are not available and, in fact, trading between
states can hardly be stamped with a single time point . Indeed, we often only observe the
time-continuous network process at discrete time points ¢ = 1,...,T. In such setting, we may
assume a Markov structure in that we do not look at the entire history of the process N (%)
but just condition the intensity (13) on the history of events from the previous observation
t — 1 to £. Technically this means that N (¢) is adapted to Y (f) := N () — N(t — 1) and z({)
for £ € [t — 1,t]. We then reframe (13) as

)‘ij (f ‘ Y/(f), £L‘(£)7 6) = )\O<E)6Xp{9TSij (?(5)7 :L’(f)) } (16)
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In other words, we assume that the intensity of events between ¢t —1 and ¢ does not depend on
states of the multivariate counting process (12) prior to t — 1. For this reason, all endogenous
statistics introduced in Section 4.2 are now evaluated on Y (f) instead of N(f). This is a
reasonable assumption, if one is primarily interested in short-term dependencies between
the individual counting processes. It enables a meaningful comparison to the models from
Section 3 that assume an analog discrete Markov property. However, we want to emphasize
that this dependence structure is not vital to inferential results.

If we observe the continuous process at discrete time points it is inevitable that we observe
time clustered observations, meaning that two or more events happen at the same time point.
Under the term tied observations this phenomenon is well known in time-to-event analysis
and treated with several approximations. One option is the so-called Breslow approximation
(see Peto, 1972; Breslow, 1974). Let therefore

Or = {(i,5) | Nij(t) — Ni;(t — 1) > 0}

where element (i, j) is replicated N;;(t) — N;;(t — 1) times in O, that is if an event between
i and j occurred multiple times in the interval from ¢ — 1 to ¢ then (4, j) appears respective
times in O;. Given that we have not observed the exact time point of an event we also get
no information on the baseline intensity A\o(f) in (13) for # € [t — 1,#] so that the model
simplifies to a discrete choice model structure (see, e.g., Train, 2009) which resembles the
partial likelihood (15) and is defined as:

d H(i,j)eot exp{0”s;; (Y/<t)7 x(t))}
PECZ’U.St (9 = >, nt
) tll (Z(k,h)eUt eXp{@Tskh(Y(t),x(t))})

where n, = |O;]. Alternatively, one can replace the denominator in (17) by considering all
possible orders of the unobserved events in O; giving the average likelihood as introduced
by Kalbfleisch and Prentice (2002). Since this can be a combinatorial and hence numerical
challenge, random sampling of time point orders among the time-clustered observations can
be used with subsequent averaging, which we call Kalbfleisch-Prentice approximation (see
Kalbfleisch and Prentice, 2002). Further techniques to deal with unknown time ordering
are augmenting the clustered events into possible paths of ordered events and adapting the
maximum likelihood estimation proposed for the SAOM by Snijders et al. (2010) or using
random sampling of the ordering. This can be legitimized in cases where we may assume
independence among events happening in one year, since the events take a long time to
materialize (Snijders, 2017).

(17)
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4.4 Model Assessment

In comparison to the assessment for models operating in discrete time, widely accepted
methods dealing with relational event data are scarce. The proposals either stem from
time-to-event analysis or regard link prediction, which is the task of predicting the most
likely next event given the history of past events (Liben-Nowell and Kleinberg, 2007). One
example of the former option is the usage of Schonfeld residuals by Vu et al. (2017) to check
the assumption of proportional intensities, which is central to semi-parametric models as
the one proposed by Cox (1972). For the latter approach, we need to define a predictive
measure that quantifies how well the next event is predicted. Vu et al. (2011) proposed the
recall measure that estimates the percentage of test events which are in the list of K most
likely next events according to a given model. Evaluating this percentage for different values
of K permits a visualization of the predictive capabilities of the model. The strength of
the predicted intensity allows the ordering of events according to the probability of being
observed next. If we model the propensity of time-clustered events that represent binary
adjacency matrices one can alternatively adopt the analysis of the ROC and PR curve
introduced in Section 3.3.

5 Application

When it comes to software, there exist essentially three main R packages that are designed
for fitting TERGMs and STERGMs. Most important is the extensive statnet library
(Goodreau et al., 2008) that allows for simulation-based fitting of ERGMs. The library
contains the package tergm with implemented methods for fitting STERGMs using MCMC
approximations of the likelihood. However, currently the package tergm (version 3.5.2) does
not allow for fitting STERGMs with time-varying dyadic covariates for more than two time
periods jointly. The package btergm (Leifeld et al., 2018) is designed for fitting TERGMs us-
ing either maximum pseudo-likelihood or MCMC maximum likelihood estimation routines.
In order to obtain Bayesian Inference in ERGMs, the package bergm by Caimo and Friel
(2014) can be used. Besides implementations in R, the stand-alone program PNet (Wang
et al., 2006) allows for simulating, fitting and evaluating (T)ERGMs. In order to ensure
comparable estimates we estimate the TERGM, as well as the STERGM, with the statnet
library, using MCMC-based likelihood estimation techniques. We use the package ergm and
include delayed reciprocity and the repetition of previous ties as dyadic covariates. The
STERGM is fitted using the tergm package.

Marcum and Butts (2015) implemented the R package relevent (version 1.0-4) to es-
timate the REM for time-stamped data. It was followed by the package goldfish (version
1.2) by Stadtfeld and Hollway (2018) for modeling event data with precise and ordinal tem-
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poral information with an actor- and tie-oriented variant of the REM. Furthermore, it is
highly customizable in terms of endogenous and exogenous user terms and will be used in
the following applications.

We want to remark that the STERGM coefficients are implicitly dynamic, while in the
TERGM all network statistics except the lagged network and delayed reciprocity terms are
evaluated on the network in ¢. All covariates of the REM are continuously updated and the
intensity at time point ¢ € [t — 1,#] only depends on events observed in [t — 1,#). Like the
building period proposed by Vu et al. (2011), the events in ¢ — 1 are only used for building up
the covariates and not directly modeled. Due to no compositional changes, we did not scale
any statistics. Moreover, we refer to the Supplementary Material for the model assessment.

5.1 Data Set 1: International Arms Trade

The results obtained for the arms trading data section are displayed in Table 2. For a detailed
interpretation of effects focusing on political, social, and economic aspects we refer to the
relevant literature (e.g. Thurner et al., 2018). Here we want to comment on a few aspects
only. While we do not have timestamps for the arms trades, the longitudinal networks can
still be viewed as time-clustered observations enabling the techniques from Section 4.3.

Both, the TERGM (column 1) and the REM (column 4) identify the repetition of previous
ties as a driving force in the dynamic structure of the network. Degree-related covariates,
which are GWID and GWOD in the (S)TERGM and in- and out-degree in the REM, capture
centrality in the network. The coefficients of the GWID and GWOD are negative and have
low p-values in the TERGM. This stands in contrast to the STERGM, where these effects
are only pronounced in the formation model (column 2), while they are insignificant effect
in the dissolution model (column 3). Hence, these effects suggest a centralized pattern in
the formation network, which is also captured by the TERGM. In the REM an analogous
pattern can be detected, since a higher in-degree of the receiver increases the respective
intensity, thus spurs trade relations. Similar interpretations hold for the out-degree of the
sender. Overall, countries that have a high out-degree are more likely to send weapons
and countries with a high in-degree to receive weapons, which again results in a centralized
network structure as indicated by the estimates in the TERGM and STERGM.

Lastly, consistent effects among the models were also found for the exogenous covariates.
Consider, for instance, the coefficient of the logarithmic GDP of the importing country. The
TERGM assigns a significantly higher probability to observe in-going ties to countries with
a high GDP just like the REM. However, disentangling the model towards formation and
dissolution we see strongly significant coefficients in the dissolution model while the effect
for the formation model is weakly significant.

Based on the independence assumption in (9) we can sum up the two AIC values and
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TERGM STERGM REM
Formation Dissolution
Repetition 3.671+ _ — 2.661***
(0.132) - - (0.143)
Edges —15.632***  —17.186*** —16.987*** -
(1.809) (2.168) (3.587) -
Reciprocity —0.258 —0.620 —0.058 —0.109
(0.306) (0.436) (0.619) (0.181)
In-Degree (GWID) —1.823"*  —2.106"** —0.412 0.060"*  In-Degree Receiver
(0.278) (0.379) (0.442) | (0.015)
Out-Degree (GWOD)  —3.220™*  —4.126*** —0.326 0.010"*  Out-Degree Sender
(0.304) (0.462) (0.533) (0.004)
GWESP 0.050 0.076 0.150 0.010 Transitivity
(0.066) (0.071) (0.126) (0.029)
Polity Score —0.024* —0.028* —0.016 —0.016
(0.010) (0.014) (0.017) (0.009)
log(GDP) Sender 0.313*** 0.394*** 0.323** | 0.395***
(0.048) (0.054) (0.088) (0.039)
log(GDP) Receiver 0.165*** 0.135* 0.327** | 0.192***
(0.043) (0.054) (0.087) (0.032)
Log Likelihood —949.833  —675.327  —258.425
AIC 1917.666 1366.654 532.849
> AIC 1917.666 1899.503

Table 2: Arms trade network: Comparison of parameters obtained from the TERGM (first
column), STERGM (Formation in the second column, Dissolution in the third column) and
REM (fourth column). Standard errors in brackets and stars according to p-values smaller
than 0.001 (***), 0.05 (**) and 0.1 (*). Decay parameter of the geometrically weighted
statistics is set to log(2) and the Kalbfleisch-Prentice approximation was used with 100
random orderings of the events to find the estimates of the REM.

see that the AIC value of the STERGM is smaller than of the TERGM.

5.2 Data Set 2: European Research Institution Email Correspon-
dence

As already indicated by the descriptive statistics in Table 1, the email network seems to be
driven by three major structural influences: repetition, reciprocity, and transitive clustering.
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TERGM STERGM REM
Formation Dissolution
Repetition 1.367*** - - 2.2
(0.107) - - (0.084)
Edges —5.755"**  —4.853"**  —2.237*** -
(0.237) (0.247) (0.224) -
Reciprocity 0.398*** 2.498*** 2.586*** 1.655%**
(0.112)  (0.157) (0.226) | (0.075)
In-degree (GWID) 1.060** 1.349* 0.709 —0.004 In-Degree Receiver
(0.333) (0.648) (0.415) | (0.003)
Out-degree (GWOD) 0.031 —0.411 —0.369 —0.0001 Out-Degree Sender
(0.312) (0.431) (0.397) | (0.003)
GWESP 1.560*** 0.655*** 0.429*** 0.070*** Transitivity
(0.110)  (0.111) (0.086) | (0.008)
Log Likelihood —1723.732 —1000.506  —505.431
AIC 3459.464 2011.012 1020.862
> AIC 3459.464 3031.874

Table 3: Email exchange network: Comparison of parameters obtained from the TERGM
(first column), STERGM (Formation in the second column, Dissolution in the third column)
and REM (fourth column). Standard errors in brackets and stars according to p-values
smaller than 0.001 (***), 0.05 (**) and 0.1 (*). Decay parameter of the geometrically weighted
statistics is set to log(2).

The estimates from Table 3 demonstrate, that all models were able to identify these forces.
According to the REM (column 4), the event network of email traffic in the research
institution is not centralized and primarily based on collaboration between coworkers. We
can draw those conclusions from insignificant estimates of degree-related statistics and highly
significant estimates regarding reciprocity and repetition. In the TERGM (column 1) we
find a positive and significant effect of GWID, while no effect can be found in the STERGM
(columns 2 and 3). The estimates of repetition and reciprocity in the REM and TERGM are
very pronounced. For instance, the estimates of the REM imply that a reciprocated event is
19.6 times more likely than an event with the same covariates only not being reciprocated.
Interestingly, the STERGM detects a lower effect of GWESP in the formation and dissolution
than the TERGM. The effect of the delayed reciprocity in the TERGM is less relevant than
reciprocity in the formation and dissolution model. This strongly differing effect size results
from the mathematical formulation of the statistics given in equations (3) and (11).
Contrasting the AIC values of the TERGM and STERGM shows that the dynamic struc-
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ture of the email network is again better explained by the STERGM. In the Supplementary
Material we fit the TERGM and STERGM to multiple time points.

6 Conclusion

6.1 Further Models

Snijders (1996) formulated a two-stage process model operating in a continuous-time frame-
work. The dynamics are considered to evolve according to unobserved micro-steps. At
first, a sender out of all eligible actors gets the opportunity to change the state of all his
outgoing ties. Consecutively, the actor needs to evaluate the probability of changing the
present configuration with each possible receiver, which entails each actors knowledge of the
complete graph whenever he has the possibility to toggle one of his ties. Lastly, the deci-
sion is randomly drawn relative to the probabilities of all possible actions. In general, the
SAOM is a well-established model for the analysis of social networks, that was successfully
applied to a wide array of network data, e.g., in Sociology (Agneessens and Wittek, 2012;
de Nooy, 2002), Political Science (Kinne, 2016; Bichler and Franquez, 2014), Economics
(Castro et al., 2014), and Psychology (Jason et al., 2014). Estimation of this model variant
is predominantly carried out with the R package RSiena (Ripley et al., 2013).

Another notable model that can be regarded as a bridge between the ERGM and continuous-
time models is the Longitudinal ERGM (LERGM, Snijders and Koskinen, 2013; Koskinen
et al., 2015). In contrast to the TERGM, the LERGM assumes that the network evolves in
micro-steps as a continuous time Markov process with an ERGM being its limiting distri-
bution. Similar to the SAOM, the model builds on randomly assigning the opportunity to
change, followed by a function that governs the probability of a tie change. This model is
still tie-oriented, meaning that dyadic ties instead of actors are chosen and then have the
option to change the current network.

6.2 Summary

In this article, we put emphasis on tie-oriented dynamic network models. Comparisons
between these models can be drawn on the level at which each implied generating mechanism
works and how time is perceived. The overall aim in the TERGM is to find an adequate
distribution of the adjacency matrix Y; conditioning on information of previous realizations
of the network. In the separable extension, the aim remains unchanged, only splitting Y;
into two smaller sub-networks that include all possible ties that were and were not present in
Y;_1 separately. While the (S)TERGM proceeds in discrete time, the REM tackles modeling
the intensity on the tie level in continuous time conditional on past events. Therefore,

23



117

the TERGM and STERGM take a global and REM a local point-of-view, which results in
substantially different interpretations of the estimates.

Furthermore, we analyzed two data sets that represent two types of network data that
are traditionally either modeled by the TERGM and REM. By extending the REM to time-
clustered observations and aggregating events to binary adjacency matrices a meaningful
comparison between the STERGM, TERGM, and REM is enabled.
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A Annex: Additional Descriptives

Figures 5 and 6 depict the distributions of in- and out-degrees in the two networks. Building
on in- and out-degree of all nodes, these distributions represent the relative frequency of all
possible in- and out-degrees in the observed networks, which is calculated with the igraph
package in R (Csardi and Nepusz, 2006).

In the arms trade network, a strongly asymmetric relation is revealed, indicating that
about 70% of the countries do not export any weapons, while a small percentage of countries
accounts for the major share of trade relations. The distribution of the in-degree is not that
extreme but still we have roughly one third of all countries not importing at all.

The email exchange network shows a different structure. Here, many medium-sized in-
degrees can be found and only roughly 10% of all nodes have receiver no emails. For the out-
degree, this number doubles (roughly 20% have not sent emails). Further, the distribution
of the out-degree is more skewed then the one for the in-degree.
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Figure 5: Arms trade network: Barplots indicating the distribution of the in- and out-degrees.
Black bars indicate the values of year 2016 and grey bars of 2017.
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B Supplementary Material

B.1 Countries in the International Arms Trade Network

Table 4: Countries included in the analysis of the international trade network with the ISO3

Country Name 1SO3 Country Name ISO3 Country Name 1SO3
Afghanistan AFG Germany DEU Niger NER
Albania ALB Ghana GHA Nigeria NGA
Algeria DZA Greece GRC Norway NOR
Andorra AND  Grenada GRD Oman OMN
Angola AGO  Guatemala GTM  Pakistan PAK
Antigua and Barbuda ATG Guinea GIN Palau PLW
Argentina ARG  Guinea-Bissau GNB Panama PAN
Armenia ARM  Guyana GUY Papua New Guinea PNG
Australia AUS Haiti HTI Paraguay PRY
Austria AUT Honduras HND Peru PER
Azerbaijan AZE Hungary HUN Phlhp ines PHL
Bahamas BHS Iceland ISL Polan POL
Bahrain BHR India IND Portugal PRT
Bangladesh BGD  Indonesia IDN Qatar QAT
Barbados BRB Iran IRN Romania ROM
Belarus BLR Iraq IRQ Russia RUS
Belgium BEL Ireland IRL Rwanda RWA
Belize BLZ Israel ISR Saint Kitts and Nevis KNA
Benin BEN Ttaly ITA Saint Lucia LCA
Bhutan BTN Jamaica JAM Saint Vincent and the Grenadines VCT
Bolivia BOL Japan JPN Samoa WSM
Botswana BWA  Jordan JOR San Marino SMR
Brazil BRA Kazakhstan KAZ Sao Tome and Principe STP
Brunei Darussalam BRN Kenya KEN Saudi Arabia SAU
Bulgaria BGR South Korea KOR Senegal SEN
Burkina Faso BFA Kosovo KOS Serbia YUG
Burundi BDI Kuwait KWT  Seychelles SYC
Cambodia KHM  Kyrgyzstan KGZ Sierra Leone SLE
Cameroon CMR  Laos LAO Singapore SGP
Canada CAN Latvia LVA Slovakia SVK
Cape Verde CPV Lebanon LBN Slovenia SVN
Central African Republic CAF Lesotho LSO Solomon Islands SLB
Chad TCD Liberia LBR South Africa ZAF
Chile CHL Libya LBY Spain ESP
China CHN Lithuania LTU Sri Lanka LKA
Colombia COL Luxembour, LUX Sudan SDN
Comoros COM  Macedonia %FYROM) MKD  Suriname SUR
DR Congo ZAR Madagascar MDG  Swaziland SWZ
Congo COG  Malawi MWI Sweden SWE
Costa Rica CRI Malaysia MYS Switzerland CHE
Cote dIvoire CIV Maldives MDV  Tajikistan TJK
Croatia HRV Mali MLI Tanzania TZA
Cuba CUB  Malta MLT Thailand THA
Cyprus CYP l\larshall Islands MHL Timor-Leste TMP
Czech Republic CZE Mauritania MRT Togo TGO
Denmark DNK  Mauritius MUS Trinidad and Tobago TTO
Dominica DMA  Mexico MEX Tunisia TUN
Dominican Republic DOM  Micronesia FSM Turkey TUR
Ecuador ECU Moldova MDA  Turkmenistan TKM
F EGY  Mongolia NG anda UGA
EI Salvador SLV Montenegro YUG Ukraine UKR
Equatorial Guinea GNQ  Morocco MAR  United Arab Emirates ARE
Estonia EST Mozambique MOZ United Kingdom GBR
Ethiopia ETH Myanmar MYM  United States USA
Fiji FJI Namibia NAM  Uruguay URY
Finland FIN Nauru NRU Uzbekistan UZB
France FRA Nepal NPL Vanuatu vuUT
Gabon GAB Netherlands NLD Viet Nam VNM
Gambia GMB ew Zealand NZL Zambia ZMB
Georgia GEO  Nicaragua NIC Zimbabwe ZWE

codes, that are used in the graphical representations of the network.

I11



129

B.2 Simulation-based Goodness-of-fit in (S)TERGMs

In Figures 7 and 10 we show simulation-based godness-of-fit (GOF) diagnostics for the the
TERGM model and in Figures 8, 9, 11 and 12 for the STERGM in the formation and
dissolution model, respectively. The figures are created by the R package ergm (version
3.10.4) and follow the approach of Hunter et al. (2008). In all three models, the fitted
model is used in order to simulate 100 new networks. Based on these, different network
characteristics are computed and visualized in boxplots.

The standard characteristics used are the complete distributions of the in-degree, out-
degree, edge-wise shared partners and minimum geodesic distance (i.e. number of node pairs
with shortest path of length & between them). The solid black line indicates the measure-
ments of these characteristic in the observed network. These statistics show whether mea-
sures like GWID, GWOD and GWESP are sufficient to reproduce global network patterns.
Because many shares are rather small, we visualize the simulated and observed measures on
a log-odds scale.

On the bottom of the figures it is shown how well the actual network statistics are
reproduced. Note, that both models compare different things as the TERGM is evaluated
at y; while the STERGM regards y* and y~. Overall, all plots indicate a satisfying fit of
the respective models.
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B.2.1 Data Set 1: International Arms Trade

Goodness—of-fit diagnostics
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Figure 7: Arms trade network: Simulation-based goodnes-of-fit diagnostics in the TERGM.
Boxplots give the evaluations of the respective network characteristics at the simulated net-
works and the solid line gives the actual values from the observed network. First four
panels give the log-odds of a node for different in-degrees (top left), out-degrees (top right),
edge-wise shared partners (middle, left) and minimum geodesic distance (middle right). All
included rescaled network statistics on the bottom panel.
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Formation: Goodness—of-fit diagnostics

[} 5 - [
g B
c t\‘l — f=4
© o
5 % 5
2] 1%
= T o
5 ! B
] v |
j=2) ! j=2]
kel o
© o o ¢ LM
TT T T T T T T T T T T T T T T T T T 1T TT
0O 2 4 6 8 10 12 14 16 18 20 22 0 4 8 13 18 23 28 33 38 43 48 53 58 63 68 73
in degree out degree

g o 4 3 & T
° o -
g e
% r? - f ‘T‘ —
8 - e v 4
) 8
3 v 4 ° ¢
1) o
T . [ ‘01 -
()] L
S 4 LN 294

TT 1T 1T 1T 1T T T T T 1T 111 TrrTT1

0123456789 11 13 15 17

edge-wise shared partners minimum geodesic distance

L
5
2
% S 7 e 5 - - L - - -
> ' f ' ' ' ' ' '
[} o~ — 1 1 1 1 1 1 1 1
E 1 1 1 1 1 1 1
5 o o [ ][ | ] | ] | ] [ ] [ ]
e [ ) - ) E— S ) E— . S ) E— ]
% R ! ' ' ' ' ' ' '
<} : 3 ! ! ! ! ! !
L 7 4 — —_ PR — — R — PR — — —_a
o
= T T T

edges mutual gwodeg.fixed.0.693147180559945 edgecov.poldiff nodeocov.lgdp nodeicov.lgdp

model statistics

Figure 8: Arms trade network: Simulation-based goodnes-of-fit diagnostics in the STERGM
for the formation model. Boxplots give the evaluations of the respective network character-
istics at the simulated networks and the solid line gives the actual values from the observed
network. First four panels give the log-odds of a node for different in-degrees (top left), out-
degrees (top right), edge-wise shared partners (middle, left) and minimum geodesic distance
(middle right). All included rescaled network statistics on the bottom panel.
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Dissolution: Goodness—of-fit diagnostics
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Figure 9: Arms trade network: Simulation-based Goodnes-of-fit diagnostics in the STERGM
for the dissolution model. Boxplots give the evaluations of the respective network character-
istics at the simulated networks and the solid line gives the actual values from the observed
network. First four panels give the log-odds of a node for different in-degrees (top left), out-
degrees (top right), edge-wise shared partners (middle, left) and minimum geodesic distance
(between them, middle right). All included rescaled network statistics on the bottom panel.
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B.2.2 Data Set 2: European Research Institution Email Correspondence
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Figure 10: Email exchange network: Simulation-based Goodnes-of-fit diagnostics in the
TERGM. Boxplots give the evaluations of the respective network characteristics at the sim-
ulated networks and the solid line gives the actual values from the observed network. First
four panels give the log-odds of a node for different in-degrees (top left), out-degrees (top
right), edge-wise shared partners (middle, left) and minimum geodesic distance (middle
right). All included rescaled network statistics on the bottom panel.
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Formation: Goodness—of-fit diagnostics
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Figure 11: Email exchange network: Simulation-based Goodnes-of-fit diagnostics in the
STERGM for the formation model. Boxplots give the evaluations of the respective network
characteristics at the simulated networks and the solid line gives the actual values from the
observed network. First four panels give the log-odds of a node for different in-degrees (top
left), out-degrees (top right), edge-wise shared partners (middle, left) and minimum geodesic
distance (middle right). All included rescaled network statistics on the bottom panel.
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Dissolution: Goodness—of-fit diagnostics
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Figure 12: Email exchange network: Simulation-based Goodnes-of-fit diagnostics in the
STERGM for the dissolution model. Boxplots give the evaluations of the respective network
characteristics at the simulated networks and the solid line gives the actual values from
the observed network. First four panels give the log-odds of a node for different in-degrees
(top left), out-degrees (top right), edge-wise shared partners (middle, left) and minimum
geodesic distance (between them, middle right). All included rescaled network statistics on
the bottom panel.
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B.3 ROC-based Goodness-of-fit
B.3.1 Data Set 1: International Arms Trade

As already stated in Section 3.3 of the main paper techniques for assessing the fit of a
probabilistic classification can be used when working with binary network data. In the case
of observations at discrete time points this allows an informal comparison of the models
proposed in Section 3 and 4.3.

In the case of the TERGM and STERGM the application of the ROC- and PR-curve
follows from the conditional probability of observing a specific tie (see equation (2.5) of
Hunter and Handcock, 2006). For the REM we predict the intensities of all possible events
given the information of t — 1 and use this value as a score in the calculation of the ROC
curve. While the latter approach is non-standard and can only be applied to REMs that
regard durable ties, it enables a direct comparison between the models as shown in Figure 13.
The results of the ROC curve indicate a generally good fit of all models. In the STERGM
more parameters are estimated, which seems to lead to a slightly bigger area under curve
(AUC) values as compared to the REM and TERGM. Similar to the conclusions from the
ROC curve, the PR curve favors the TERGM and STERGM over the REM.

TERGM (0.975) - —-— STERGM (0.985) — — — REM (0.969) —— TERGM (0.633) - — - - STERGM (0.686) — — - REM (0.611)
1.00 eimimemen 1.00{ = _
- - - ‘L'.‘ b,

0.75 0.75
P c
= i=)
= 2}
7 0.50 ‘S 0.50
S o
N o

0.25 025

0.00 P 0.00

1.00 0.75 0.50 0.25 0.00 0.00 0.25 0.50 0.75 1.00

Specificity Recall

Figure 13: Arms trade network: ROC and PR curves from the TERGM (dotted line),
STERGM (dotdashed line), and REM (solid line).The AUC values of the respective curves
are indicated in brackets.
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B.3.2 Data Set 2: European Research Institution Email Correspondence

The second data set regards reoccurring events in the REM, which are aggregated for the
analysis of the TERGM and STERGM. Therefore, the ROC and PR curve are only available
for the TERGM and STERGM. The results are depicted in Figure 14. For this data set, the
ROC curves favor the TERGM. Yet, when emphasis is put on finding the true positives, the
PR curve detects a better model fit of the STERGM.

TERGM (0.92) - =-= STERGM (0.91) —— TERGM (0.63) - - - - STERGM (0.658)
1.00 1.00
0.75 0.75
2 c
= 9
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w .
c 8 0.50
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3 a
0.25
0.25
0.00{ +
1.00 0.75 0.50 0.25 0.00 0.00 0.25 0.50 0.75 1.00
Specificity Recall

Figure 14: Email exchange network: ROC and PR curves from the TERGM (dotted line),
STERGM (dotdashed line), and REM (solid line). The AUC values of the respective curves
are indicated in brackets.

As explained in Section 4.4 one option to asses the goodness-of-fit of REMs is the recall
measure as proposed by Vu et al. (2011). We apply the measure in three different situations
that may be of interest when measuring the predictive performance of relational event models:
predict the next tie, next sender, and next receiver. The worst case scenario in terms of
predictions of a model would be random guessing of the next sender, receiver, or event, the
resulting recall rates are indicated by the dotted lines. The results in Figure 15 exhibit a
good predictive performance of the REM, i.e. in about 75% of the events the right sender
and receiver is among the 25 most likely senders and receivers.
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Figure 15: Email exchange network: Recall Curves of REM regarding the next sender (a),
receiver (b), and event (c). The dotted line indicates the measure under random guessing of
the next sender, receiver, or event.
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B.4 Application with multiple time points

In the main article, we fitted a TERGM as well as a STERGM to two time points, called
period 1 and period 2. However, it is possible to fit these models to multiple transitions. In
order to do so, we took the first two years of the email exchange network and aggregated
the deciles into 10 binary networks. Using again a first order Markov assumption and
conditioning on the first network, this allows to fit a TERGM as well as a STERGM to
the remaining nine networks. For comparison we additionally fit a REM to the data set.
The estimation is done using the function mtergm from the package btergm (version 3.6.1)
(Leifeld et al., 2018) that implements MCMC-based maximum likelihood. The STERGM is
fitted again using the package tergm (version 3.5.2).

The corresponding results can be found in Table 5 in column 1 to 3. Note that the
parameter estimates still refer to the transition from ¢t — 1 to ¢ and can interpreted in the
same way as in the main article. In that regard note, that it is now assumed that the
coefficients stay constant with time. Possible approaches to relax this assumption were
given in the main article. The estimates of the REM (column 4) are consistent with the
(S)TERGM but slightly differ to the main article, since now we condition only on the first
out of 10 periods and hence model more events.
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TERGM STERGM REM
Formation Dissolution
Repetition 1.986*** — — 2.354**
(0.058) - - (0.048) -
Edges —3.435™*  —4.485**  —0.769*** —
(0.059)  (0.073) (0.107) -
Reciprocity 1.090*** 2.755%* 1.761** 1.699***
(0.069)  (0.079) (0.113) | (0.043)
In-Degree (GWID) —1.239"*  —0.870**  —0.307* | 0.007*** In-Degree Receiver
(0.099)  (0.156) (0.152) | (0.002)
Out-Degree (GWOD) —1.574** —1.757** —0.056 | 0.009** Out-Degree Sender
(0.097)  (0.155) (0.159) | (0.001)
GWESP 0.497** 0.508*** 0.124* 0.199** Transitivity
(0.028)  (0.029) (0.043) | (0.011)

Table 5: Email exchange network: Comparison of parameters obtained from the TERGM
(first column) and STERGM (Formation in the second column, Dissolution in the third
column). Standard errors in brackets and stars according to p-values smaller than 0.001
(***), 0.05 (**) and 0.1 (*). Decay parameter of the geometrically weighted statistics is set

to log(2).
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Censored Regression for Modelling
International Small Arms Trading and its

”Forensic” Use for Exploring Unreported
Trades
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Abstract

In this paper we use a censored regression model to investigate data on the inter-
national trade of small arms and ammunition (SAA) provided by the Norwegian
Initiative on Small Arms Transfers (NISAT). Taking a network based view on the
transfers, we not only rely on exogenous covariates but also estimate endogenous net-
work effects. We apply a spatial autocorrelation (SAR) model with multiple weight
matrices. The likelihood is maximized employing the Monte Carlo Expectation Max-
imization (MCEM) algorithm. Our approach reveals strong and stable endogenous
network effects. Furthermore, we find evidence for a substantial path dependence as
well as a close connection between exports of civilian and military small arms. The
model is then used in a ”forensic” manner to analyse latent network structures and
thereby to identify countries with higher or lower tendency to export or import than
reflected in the data. The approach is also validated using a simulation study.
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1. Introduction

The Small Arms Survey Update 2018 indicates transfers of small arms in 2015 amounting
to 5,7 billion (Holtom and Pavesi, 2018, p. 19) with a major share and highest increases
in ammunitions (Holtom and Pavesi, 2018, p. 22). Given the often fatal consequences -
civilian or military - of the availability of these arms for intrastate conflict and shootings as
well as for interstate war, the absence of empirical evidence for supplier-recipient networks
is surprising. A major reason behind this research gap are the notorious data deficiencies
due to non-reporting and illicit trafficking (see Holtom and Pavesi, 2018, p. 29-46). Based
on the only large-scale data base for small arms (Marsh and McDougal, 2016) we aim to
analyse for the first time the small arms trading network. We integrate gravity models in
a statistical network design to apply a forensic statistical analysis.

Starting with the seminal work of Tinbergen (1962), the gravity equation was quickly
established as a valuable tool of empirical trade research. The success of the model stems
from its intuitive interpretation as well as its surprisingly strong empirical validity, see e.g.
Head and Mayer (2014). It is therefore not surprising that the concept was applied to all
kinds of trade relations, including the international exchange of arms. An early example for
these applications is the work of Bergstrand (1992). Although he doubted the suitability
of the model for arms trade because of the strong political considerations in this area, the
approach was taken up more recently. Akerman and Seim (2014) and Thurner et al. (2018)
used the gravity model in order to explain whether Major Conventional Weapons (MCW)
are exchanged. Martinez-Zarzoso and Johannsen (2017) rely on the framework of Helpman
et al. (2008) to investigate the influence of economic and political variables on the so-called
extensive and intensive margin of MCW trade. The interplay between oil imports and
arms exports is determined using a gravity model in Bove et al. (2018). While the papers
above focus on the exchange of MCW, in our paper we investigate transfers of small arms
and ammunition (SAA) provided by the Norwegian Initiative on Small Arms Transfers
(NISAT). This data is arguably even better suited for a gravity model since small arms are
potentially less dependent on political decision making and many more trade occurrences
are recorded.

We propose a network perspective on international SAA trade and conceptualize coun-
tries as nodes and transfers between them as directed, valued edges. Although gravity
models are a standard tool for the analysis of dyadic data (Kolaczyk, 2009), endogenous
network effects are rarely incorporated in these models. We do so by connecting the idea
of gravity models with the spatial autoregressive (SAR) model adjusted to network data.
Especially in sociology, SAR models are regularly used in a network context since the early
eighties (Dow et al., 1982; Doreian et al., 1984; Doreian, 1989). They are called network
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autocorrelation models in this strand of literature. More recently, network autocorrelation
models became popular in political science applications, see for example Franzese and Hays
(2007), Hays et al. (2010) and Metz and Ingold (2017). Here, it is assumed that actors with
certain characteristics are embedded in a network and this embedding leads to contagion
and/or spillover effects transmitted through the edges that relate the actors (Leenders,
2002). Hence, one presumes that the characteristics of actors are correlated because a
specific social, political or economic mechanism is connecting them. Note that the design
of these models is different as compared to the usual set-up of gravity models since the
outcome is related to the nodes, and the edges only represent indicators for node depen-
dence. In this paper, we are interested in the dependencies among the transfers (instead
of the actors) and account for outdegree, indegree, reciprocity and exogenous covariates.
A similar model in a non-network context is the spatial gravity model (LeSage and Pace,
2008), that accounts for spatial dependence of the exporter, the importer as well as for the
spatial importer-exporter dependencies.

Contrary to the typical structure of trade data we observe a high degree of reported
non-trade in SAA. In other words, the trade network has a large percentage of zero entries.
To accommodate the zero inflation problem we employ a censored SAR model that can
be fitted using the Monte Carlo Expectation Maximization (MCEM) algorithm (Dempster
et al., 1977; Wei and Tanner, 1990). There are already several similar EM-based approaches
that have been pursued. For instance Suesse and Zammit-Mangion (2017) use the EM
algorithm in spatial econometric models, Schumacher et al. (2017) apply an EM-based
application to a censored regression model with autoregressive errors, and Vaida and Liu
(2009) utilize EM estimation in a censored linear mixed effects model. In Augugliaro et al.
(2018) a similar estimation procedure is used in the context of fitting a graphical LASSO
to genetic networks.

While the model application per se provides new insights into SAA trading, the ultimate
objective in this paper is to make use of the model to explore the validity of reported zero
trades. This reflects a ”forensic” objective, i.e. we estimate, whether unreported trades are
likely to have happened based on the fitted model. Despite this idea is in line with forensic
statistics and forensic economics (Aitken and Taroni, 2004; Zitzewitz, 2012) our goal is
apparently less ambitious. We do not aim to provide statistical evidence that some states
are under-reporting but we do want to investigate potential under-reporting by utilizing
the fitted network model.

This paper is organized as follows: after presenting the data in Section 2, we explain the
model and show how to proceed with estimation and inference in Section 3. In Section 4 the
results of the censored regression analysis are given and Section 5 provides the ”forensic”
analysis, accompanied by a simulation study. Section 6 concludes the paper.
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Figure 1: Binary SAA trade network for the 59 most relevant countries in 1992 (left) and
2014 (right). Countries are indicated by grey nodes and transfers by edges in black.

2. Data description

Since 2001, the Geneva-based Small Arms Survey specializes on documenting the interna-
tional flows of the respective products. However, only the Norwegian Initiative on Small
Arms Transfers (NISAT, see Marsh, 2017) provides truly relational data necessary for ap-
plying network analysis. The NISAT database contains relational information on the trade
of small arms, light weapons and ammunition (see also Marsh and McDougal, 2016). This
information is collected from different sources as described in Haug et al. (2002). Although
NISAT represents the most reliable source of data regarding the exchange of small arms and
light weapons, there is nevertheless an enormous amount of uncertainty inherent to arms
trading data. This is especially true for light weapons where data quality and availability
is partly very poor (Herron et al., 2011). Therefore, we restrict our analysis to small arms
and the associated ammunition (SAA). See Table 2 in Annex 2 for the types of small arms
and ammunition included in the dataset. Note, that the NISAT database also contains
data on sporting guns, which we excluded from the dataset since we are particularly inter-
ested in the export of small arms with potential military value. Actually, we will rely on
transferred sporting guns volumes later as a useful explanatory variable. In the remaining
dataset, more than 86000 SAA transfers are recorded for the years 1992-2014, providing
the exporting country, the importing country as well as the transferred arms category. The
value of the export is measured in constant 2012 USD. In order to make estimation feasi-
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Figure 2: Aggregated exports (left) and density (right) in the SAA trade networks of the 59
most relevant countries. Countries with the highest export volume (Germany DEU, Italy
ITA and United States USA) are highlighted.
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ble, we restrict our analysis to a subnetwork and select those countries that account for the
major share of the SAA trade activity. The resulting 59 countries (see Annex A.1, Table
3) account for 73% — 91% (depending on the year) of the total transfer volume and have
participated in arms trade at least once in each year under study. Hence, we investigate
the ”"core” of the international small arms trade network, balancing the trade-off between
the number of countries included, the share of trade volume and the density of the sub-
networks. In Figure 1, we show two binary networks for 1992 and 2014, with the countries
represented as nodes and the arms transfers as directed edges among them.

In the left panel of Figure 2 we show the aggregated exports for the most important
exporters United States (USA), Germany (DEU) and Italy (ITA) together with the exports
of the 56 other countries (other). On the right hand side of Figure 2 we present the density,
defined as the sum of existent edges divided by the number of potential edges. Although
the network can be without doubt described as a dense one (as compared to the density of
social networks), the density is smaller than 0.2 in the beginning and remains below 0.4 in
the subsequent recent years.
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3. Regression model

3.1. General model

Let Y; = (Yi,;) € R™" represent a network of transfers at the discrete time points ¢ =
1,...,T. At each time point Y; consists of n nodes and N = n(n — 1) directed, continuous
real valued edges, with diagonal elements Y;;; left undefined. We set Y; = vec(Y;) € RY
as the row wise vectorization of Y;, excluding the diagonal elements. In the following,
we suppress the time index ¢ for ease of the notation and assume (after some suitable
transformation) that in each time point Y follows the autoregressive network model

q
Y/:ZpkaY/_‘_Xﬁ—i_ea ENNN(O)UZIN) (1)

k=1

with 8 being a p-dimensional parameter vector for the design matrix X. The matrices
W), are row-normalized weight matrices representing linear endogenous network effects,
with parameters py as their strength. Model (1) is usually known as spatial autoregressive
(SAR) model and we refer to LeSage and Pace (2009) for a more detailed discussion and to
Lacombe (2004) or LeSage and Pace (2008) for similar models with multiple weight matri-
ces. Standard software implementations that allow for a likelihood based estimation of the
model are mostly restricted to the special case with ¢ = 1, for example in the R package
spdep (Bivand et al., 2013; Bivand and Piras, 2015). The package tnam by Leifeld et al.
(2017) allows for multiple weight matrices but is based on pseudo-likelihood estimation
and therefore valid only if the weight matrices exclusively apply to exogenous covariates.
Another possibility to estimate similar models is given by the package ARCensReg (Schu-
macher et al., 2017), initially designed to fit models with autoregressive errors. Because of
the similar mathematical structure, the package could be used to fit models with spatially
dependent errors known as Spatial Error Models (SEM). In the given case however, the
network structure is assumed to influence the response directly which prevents us from
using the package.
Model (1) can be rewritten as

7 (m -3 i ) (X +e) = (A(p) " (XB+e) = B(p)(XB+o),
M= =B(p)
=A(p)

where the dependence on the g-dimensional parameter vector p = (py,...,p,)" is made
explicit for notational clarity. Similar as in Besag (1974) and given that all NV edges in the

6
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network are observed, their distribution is given by

(A(p)Y = XB) (A(p)Y — Xp) !

P(Y|X.0) =
(Y]X,0) =

Lo { - ®)

(2mo?)

The parameter space of this model is restricted such that A(p) is non-singular, which is
ensured if the eigenvalues of A(p) are real valued and greater than zero.

3.2. Censored regression model

The above model is not directly applicable to our data since a large proportion of the SAA
trade values is zero, expressing no (reported) SAA trade between countries ¢ and j. We
therefore adapt model (1) towards a utility model with censored observations. For each
potential transfer from ¢ to j there exists a utility of the transfer. This utility, however,
only materializes in a transfer if it is higher than a certain threshold. Therefore, we assume
that the probability model (2) applies to a network of partly observed latent variables, say
Z = (Z;;). The relation among Y;; and Z;; is given by Y;; = max(c, Z;;) for i,5 =1,...,n
and ¢ some threshold. Accordingly, we now set Y = vec(Z) and label the observed utility
}7'0 € R™ and the N,, unobserved ones as }N/m A reordering according to the observational
pattern of Y gives

Y ?; Ho Eoo Eom
()= () ()

where Y,, < ¢ and N = N, + N,,. Since the density of the network (see Figure 2) is
roughly between 0.2 and 0.4 in all years, NV, is always substantially larger than N,. The
mean-covariance structure is given by

m

Boxs= (1) sonse) = (57 5 ).

In the following, we will denote all reordered matrices in the notation with double sub-
scripts, i.e. Ay, refers to the submatrix of A where only interactions of observed variables
Y, enter.

3.3. Monte Carlo EM estimation

In order to estimate the unknown parameter vector § = (p, 3,0?) € R4 we employ
the EM algorithm (Dempster et al., 1977). The complete log-likelihood £ opmp(#) is simply
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derived from (2). We are interested in maximizing the observed log-likelihood £ ys(0) =
ly (0) + Ly, 7, (0), where the first part is simply the multivariate normal density of the
observed transfers. The second part equals

1 (U — HKm O)TZ»,_nlo(U — HBm 0)
ty,.v,(0) = log (/ —— eXp{ - | | | }dU),
(e f(2m) N Sy ?

where fi,,), and X,,|, are the first and second conditional moments. Because N,, is greater
than 2000 in each year, the observed log-likelihood is numerically hard to evaluate (and
even more so to maximize) with state of the art software implementation. As a solution, we
apply the EM algorithm and maximize Q(0]6y) == Eg, [leomp(0)|Ys, X, M| iteratively. The
observation space is given by

M={Y, : Y1 <¢ .., Von, <c} (3)

3.4. E-Step

The E-Step essentially boils down to calculating the first two moments of a multivariate
normally distributed variable Y

}76 ~ NNm (/fbm + Emozgol(}}o - /1/0)7 Emm - ETnoZ;olZom) (4)

with restriction M from (3) applied to Y. Let those truncated moments be Mo a0 20
and define

- ( u}; ) ®)

as the vector that contains the observed values as well as the conditional expectation of the
non-observed ones. Given the two moments, we can calculate the conditional expectation
of the quadratic form (see Mathai and Provost, 1992):

S*(p) = B [YT(A(p))TA(P)Y Yo, X, M] =

- - 6
= tr((Amm(p))TAmm(p) Zz|o) + (Y*)T(A(p))TA(p)Y* ( )

Then, the function to maximize in the M-step is given by
(5*(p) — 28" XTA(p)Y" + BTXTXp) (7)
202 '

In order to find the first and second moment of a truncated multivariate normally dis-
tributed variable, Vaida and Liu (2009) use the results of Tallis (1961) on the moment

QUOlf) =~ Tog(2m0”) +los(| A(p)]) ~
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generating function to provide closed form expressions of the E-Step. This, however, is
not practicable in our setting as (a) software implementations of a multivariate normal
distribution function are overstrained by the high dimension of our problem (the standard
package in R, mvtnorm by Genz et al. (2016) is not able to process dimensions higher than
1000) and (b) as noted by Schumacher et al. (2017), even if the distribution function could
be evaluated, the closed form solution is computationally very expensive which leads to in-
feasible convergence times in applications with a high number of non observed values. The
same is true for the direct calculation using the moment generating function implemented
in R by Wilhelm et al. (2012).

A practicable alternative consists in using the Monte Carlo EM (MCEM) algorithm
(Wei and Tanner, 1990) where intractable expectations are replaced by sample based ap-
proximations. In our specific case we use the R package TruncatedNormal by Botev (2017)
in order to draw from the truncated multivariate normal distribution. An alternative would
be to enrich the E-Step with a stochastic approximation step (SAEM algorithm, see Schu-
macher et al., 2017 for a detailed description) which reduces the number of simulations
needed and is very efficient if the M-step is faster then the E-Step. In our specific appli-
cation, the computational bottleneck comes with the M-Step and simulations showed that
the SAEM converges more slowly than the MCEM algorithm.

3.4.1. M-Step

It is numerically more efficient to reduce the log-likelihood to a profile log-likelihood by
first maximizing with respect to 5 and o2 and then with respect to p. Using the derivatives
of (7) with respect to 4 and o2 and defining 3(p) and 6%(p) as the solutions of the score
equations as functions of p it follows that

B(p) = (XTX) ' XTA(p)Y”
o, S*(p) = YT (A(p))"HA(p)V* (8)
6%(p) = N :

where H = X(XT~X)_1XT is the hat matrix. With s being a constant we can write the
profiled function Q(-) as

Qpl6) =+ 1og(|A(p)]) — > log (s*<p> - ?*T(A@))THA(/))Y*). ©)
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The expressions (A(p))TA(p) and (A(p))THA(p) have derivatives

0(A TA
14k
A THA
( (p)a)p (p) _ HW, — W H + 20 W, HWy, + > (W HW, + W HW,) =: Hi(p).
* 14k
Now define

Ri(p) = tr(Rimm(p)S510) + (V)T Ri(p) Y™

which gives

0Q(pl6o) _ N Ri(p) - YT Hy(p)Y"
oo B ) P AT HAP)T 1)

Iteration between the E- and the M-step provide the final estimate f. The variance of f can
be calculated using Louis (1982) formula with more details on the practical implementation
provided in the Supplementary Material.

4. Application to the data

4.1. Covariates

Considering model (1) we need to specify the two major components of the model, namely
(a) the covariates included in matrix X and (b) the network related correlation structure.
Node Specific Variables: Following standard applications (Ward et al., 2013; Head and
Mayer, 2014; Egger and Staub, 2016; Thurner et al., 2018), we control for the logarithmic
real GDP in constant 2010 USD as a measure for the market size of the exporting and
importing country. The data are provided by the World Bank (2017). For the two years
1993-1994 no reliable GDP data are available for Serbia, Croatia, Estonia, Latvia, Lithuania
and Slovenia, we therefore assume that the GDP remained constant in the first three years
for this countries. In order to control for the potential influence of intrastate conflicts we
insert a binary variable that is one if there is an intrastate conflict in the receiving country
in the respective year and zero otherwise. The corresponding data is available from the
webpage of the Uppsala Conflict Data Program (UCDP, 2019).

Edge Specific Distance Measures: Because of the strong empirical evidence that geo-
graphic distance is a relevant factor in trade (Disdier and Head, 2008), we control for the
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logarithmic distance between capital cities in kilometres (Gleditsch, 2013). In recent appli-
cations of the gravity model to arms trade (Akerman and Seim, 2014; Martinez-Zarzoso and
Johannsen, 2017; Bove et al., 2018; Thurner et al., 2018) it is argued that political distance
measures in terms of regime dissimilarity must also be inserted in the gravity equation. We
use the absolute difference of the polity IV index (Marshall, 2017) between two countries,
ranging from 20 (highest ideological distance) to zero (no ideological distance). Addition-
ally, we include a dummy variable for formal alliances between the exporting and importing
country, being one if the two countries have a formal alliance. The data is available from
Correlates of War Project (2017) until 2012 and we assume that the alliances stay constant
for the years 2013 and 2014.

Edge Specific Trade Measures: We control for lagged logarithmic SAA transfers by
smoothing the past observed trade volume using a five-year moving average. In the years
with less then five lagged periods available, the moving average is shortened accordingly.
We call this path dependency, leading to inertias that arises because of diminishing trans-
action costs, trust relations, security aspects and potentially interoperability, and is a very
important determinant in the MCW trade network (Thurner et al., 2018).

Additionally, we enrich the model with a five year moving average of logarithmic civilian
weapon transfers. The intuition behind that is that exports of SAA for military usage
and civilian usage might be correlated. This is plausible because countries that export
massive amounts of civilian arms also have the capabilities to produce military arms. The
data is also provided by NISAT (Marsh and McDougal, 2016). Furthermore it seems
plausible that there is a connection between the volume of small arms traded and the volume
of MCW. MCW transfers are recorded by the Stockholm International Peace Research
Institute (SIPRI) and measured in so called trend indicator values (TIV). This measure
represents the military value and the production costs of the transferred products. For
detailed explanation of the data and the TTV see SIPRI (2017b,a) and Holtom et al. (2012).
We use a dummy variable that is one if there was an MCW transfer from country ¢ to j
in the actual year or in the four preceding years, zero otherwise. Additionally, we use the
logarithmic sum of the exported TIV volumes in the actual year and the four preceding
ones.

4.2. Network structure

Next we specify the network specific effects represented by matrices W in model (1). We
include three effects which are explained subsequently and visualized in Figure 3.
Reciprocity: The reciprocity effect measures whether the export volume from country
7 to country j increases in the export volume from j to 4. In the given context it is a
plausible assumption that countries tend to specialize in certain types of small arms and/or

11



155

Figure 3: Schematic representation of linear network effects. The focal edge in dashed grey.

a) Reciprocity b) Exporter Effect c) Importer Effect
«<:> ® © d}—

ammunition and therefore complement each other with their products. Mutual trade is
likely to be encouraged by political partnerships and indicates strategic elements, induced
by bilateral agreements. The measure is also investigated in the context of commercial
trade (e.g. Garlaschelli and Loffredo, 2005; Barigozzi et al., 2010;Ward et al., 2013). In
the arms trade literature, reciprocity is specified by Thurner et al. (2018), with the finding
that this is rather unusual in the context of MCW.

Exporter and Importer Effect: The exporter and the importer effect have their analogies
in binary networks and can be interpreted as the valued versions of the outdegree and
the indegree. The coefficient of the exporter effect measures whether the transfers going
out from a certain exporter i are correlated. A positive effect indicates the presence of
"super-exporters”. Contrary, the importer effect measures whether the imports of a certain
importer j are related, with a positive effect indicating ”super-importers”. The degree
structure is a crucial feature of the SAA network because a rather small number of countries
accounts for the major share of the trade volume, while a small share of (potentially
identical) importing countries accounts for a great amount of the import volume.

Before fitting the model we apply the natural logarithm to the data. This is necessary,
because in its raw form the data is strongly skewed with a long tail. In the Supplementary
Material the distribution of the log-transformed response is investigated

Hence, if the original trade matrices are given by Y; = (Y} ,;), the elements of fft are
given by }7“] = log(Y};,;) if Y;;; > 0 and are not defined if Y;;; = 0. Furthermore, we
define d; = min({Y;;; > 0}) as the lowest strictly positive value in the network at year
t and set ¢; = log(d;). That is, the threshold ¢; is defined such that at a given time
point t all transfers below the smallest observed log-transformed transfer in that sample
are censored. Utility below the threshold ¢; implies that no transfer was carried out or
was not recorded. Furthermore, we allow for time-varying coefficients by estimating each
time-period separately. This relaxes the unrealistic assumption of time-constant effects for
more than 20 years and reduces the computational effort. Given these specifications, the
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final model is now given by

~ ~ 1 ~ 1 ~
T
Yiij = Xt,ijﬁt + peaYiji 2 5 E Yiiu+ pi3 5 E Y uj +e€is,
N—— n — oy n— i
TV TV 4
Exporter Effect Importer Effect

€rij ~N(0,0%) for i, j=1,...,n,i#j,t=1993,...,2014,n = 59 and N = 3422.

Reciprocity

4.3. Results: Coefficients

In Figure 4 the time series of coefficients are plotted against time for the years 1993-2014.
The shaded areas around the coefficients give two standard error bounds and the colouring
of the point estimates reflects the respective significance level, the zero-line is depicted by
solid black.

Covariates: The exogenous covariates in the first row and in the second row on the right
represent the standard gravity variables logarithmic GDP of the exporter and the importer
as well as the geographic distance between them (second row, right panel). Overall, the
expected results of the gravity equation hold, except for the logarithmic GDP of the ex-
porter that tends to be insignificant and is close to zero in the most recent years. This is an
interesting result, because it highlights the fact, that market size is not a prerequisite for
producing and exporting internationally competitive SAA. This finding is in stark contrast
to the insights on MCW by Thurner et al. (2018).

The strong negative effect of the geographic distance is significant in all years. Again,
this is different as compared to MCW transfers where geopolitical strategy disregards dis-
tance.

Regarding the political security measures we find that the presence of a conflict in the
importing country (second row, left panel) has a mostly positive but seldom significant
effect while the coefficient on the dissimilarity of political regimes (third row, left panel)
is mostly negative but also often insignificant. The coefficient on the dummy variable for
formal alliances (third row, right panel) is positive in the beginning but almost permanently
insignificant from 2001 on.

The large and consistently significant coefficients of the lagged moving average (fourth
row, left panel) illustrates an important feature of the network, namely path inertia. Inten-
sive transfer relationships in the past, strongly increase the export volume in the present.
Similarly we find a strong connection between exporting civilian and military arms (fourth
row, right panel). Looking at the relation between SAA and MCW trade we find that hav-
ing traded MCW (fifth row, left panel) in the actual year or the in the four preceding ones
has a strong positive effect - at least until the last two years. However, at the same time
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Figure 4: Time-series of annually estimated regression coefficients. Shaded areas give + 2
standard errors. Colouring according to p-values, green: p < 0.05, yellow: p < 0.1 and red:

p > 0.1.
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the effect of the logarithmic sum of the TIV values (fifth row, right panel) has a negative
and mostly significant effect. I.e. rather small transfers of MCW tend to coincide with SAA
exports while dyads with high amounts of MCW exchange tend to transfer small arms to
a relatively lower degree.

Network Structure: On the right panel in the sixth row of Figure 4 the coefficients for
reciprocity are shown. The coefficients remain almost constant and positive with values
between 0.02 and 0.06. As the coefficients often changes from significant to insignificant
we infer that there is at least a tendency that mutuality increases the volume of arms
exchanged.

The strongest endogenous effect is the exporter effect (bottom row, left panel) with
coefficients that are consistently positive and significant. This indicates that the transfers
stemming from the same exporter are indeed highly correlated and reflects the existence
of "super-sellers” like the United States, Germany, Brazil or Italy. On the other hand, we
also find a stable, positive and significant importer effect (bottom row, right panel). The
fact that the two coefficients on the exporter and the importer effect are much higher than
the reciprocity effect provides structural information about heterogeneity in the network.
Being a strong exporter or sending to a strong importer increases the export volume more
than simply having imported high amounts from the respective partner.

5. ”Forensic” statistical analysis

5.1. Under- and over-reporting

Our model rests on the assumption that the SAA network is determined by a latent utility
network Z;. Based on the joint distribution (2) we can in fact estimate the probability of
Zy;; being greater than the threshold ¢, given the covariates, the endogenous effects and
the rest of the network. In order to do so, let Z, _;; represent the (N — 1)-dimensional
vector that contains the realized and the expected values of the latent variables, except
the entry that corresponds to the transfer from i to j. Because we are interested whether
some latent transfers could have realized according to the model, we form the expectations
without the restriction that the latent transfers must be smaller than ¢;. Based on this,
we define the conditional probability of a specific latent transfer being greater than the
threshold by R
Teij = P(Zui; > el Xijy Zi,—ijs 0r).

By construction (see the Supplementary Material for the derivation), m;;; is high for trans-
fers that are observed in the dataset (Y;,;; > 0) and small for transfers that are not observed
(Y:i; = 0). However, we may calculate a high value of m,;, i.e. a high probability for a
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realized transfer of arms, despite the data actually indicates Y;;; = 0. We propose to
consider this as potential under-reporting. Such a zero-record can happen due to random
fluctuation, factors beyond the model as for example historical relationships, or because
de-facto existent transfers have not been reported. Vice versa, we may obtain a low value
of m;; although Y;;; > 0. We label this as over-reporting. This label is not intended
to suggest that potentially over-reported transfers in fact never happened, but highlights
transfers where our model attaches a lower level of latent utility than manifested in the
data. Naturally, our main ”forensic” interest is in uncovering potential under-reporting.

Apparently, this requires the fixation of a threshold value for the probabilities. Based
on Receiver-Operating Characteristic (ROC) curves, an optimal threshold value J; can be
found using Youden’s J statistic (Youden, 1950). This value is optimal in the sense that
it allows for a separation such that both, sensitivity and specificity are maximized. This
defines the binary network

II; = (I(ﬂ—t,ij > Jt))

This network is now set into relation with the observed binary SAA trade
[y = (I(Yii; > 0)).
Comparing II; and I';, we can define the ”forensic” network
O = (Wt,z‘j) =1L — Ty
which in turn creates two new binary networks

 =(I(wii; = 1))

Q =(I(we; = -1)).
For wy;; = 1, the model predicted a transfer that is not present in the dataset, and for
we;j = —1, the model did not predict an actual transfer. Following our convention from

above we label Q) as the under-reporting network and to €2, as the over-reporting network
of unpredicted but realized transfers.

5.2. Simulation study of ”forensic” power

Before we apply our model in a ”forensic” matter to identify transfers with potential under-
reporting we demonstrate the behavior of the model in a simulation study to explore its
detection properties. We use two different settings in order to investigating how well the
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Table 1: Schematic representation of the evaluation scheme used in the simulation study.
True conditions in the columns and Estimated in the rows. UR denotes under-reporting
and UR denotes censored observations that are not under-reported. Further abbreviations:
True positive (TP), false positive (FP), false negative (FN) and true negative (TN).

TRUE TRUE
UR | UR > UR | TR >
. UR| 0 | FP FP . UR| TP | FP | TP+FP
Bstimated | g | g | on | o BSUmated b gl ey | | ENTN
| > | 0 [0.75N [ 0.75N | > |0.IN[0.65N [ 0.75N
(a) Classifier evaluation DGP1. (b) Classifier evaluation DGP2.

proposed approach identifies under-reporting. The first setting builds on the following Data
Generating Process (DGP1)

p=1(0.1,0.2,03)", B =(1,2,3,4,5)", p=5,n =20, N =380
X ~ '/\/;2(1? [P)
Z ~ Nn(B(p)XB,B(p)B(p)")

Zij = -[(Zij > q0.75(Z))Zijy for 7 # j = 1, S (8

(11)

Here, qo75(Z) denotes the 75% quantile and we are censoring the network towards an
observed density of 0.25. Note, that DGP1 is not subject to under-reporting and all
censored responses are in fact below the censoring threshold. The results of running DGP1
100 times and applying the estimation procedure are summarized in the Supplementary
Material, indicating that the expected values approximate the latent variables very well
and that we are able to find unbiased estimates despite the enormous amount of censoring.

In order to validate the forensic power of the model, we run a second experiment
(DGP2), being a modified version of DGP1. To be precise, we are censoring again 75%
of the observations but only 65% correspond to the lowest ones, while the remaining 10%
are randomly selected among the observations that are in fact higher than the threshold
qo.65(Y). This share of observations represents the under-reporting. Again we run DGP2
100 times.

In order to make the following evaluation transparent, we represent the evaluation
scheme (e.g. Fawcett, 2006) for both DGPs in Table 1. On the left hand side, we regard
the simulation without under-reporting (DGP1). In this setting we can investigate the
false positive rate (FPR), being the sum of the false positives (FP) relative to the number
of all observations that are in fact not under-reported. A low value for this measures
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Figure 5: Results of DGP1 and DGP2. The top panel shows boxplots for the false positive
rate (FPR) in DGP1 (left) and DGP2 (right). On the bottom boxplots for the true positive
rate (TPR) and the false discovery rate (FDR) are provided for DGP2.
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means in DGP1 that in a setting without under-reporting a low share is classified as under-
reporting. In DGP2, the measure tells us whether including true under-reporting in the
simulation leads to an increase of misclassified under-reporting. The corresponding results
are visualized on the top panel of Figure 5. The FPR shows a higher variability in DGP2
(right panel) and is slightly higher as compared to DGP1 (left panel). However, the results
provide evidence for an overall low FPR in both setting.

Furthermore, DGP2 allows to evaluate the share of under-reported observations that
is identified. This is assessed based on the true positive rate (TPR) and shown on the
bottom left panel of Figure 5. In fifty percent of all simulation runs we are able to identify
at least 95% of the falsely censored observations and even in the simulation runs with the
worst performance, the TPR are does not fall below 74%. Additionally, we investigate the
False discovery rate (FDR) that relates the observations that are wrongly classified to be
under-reporting to the sum of all observations that are classified for under-reporting. A low
value for this measure provides evidence, whether the model is able to keep the number
of potential over-reporting that are in fact not under-reporting low. The corresponding
results are shown in the south-east panel of Figure 5. We find a median share of less than
26% to be classified incorrectly.
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Figure 6: Densities of the under-reporting network Q; and the over-reporting network Q;
over time.
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5.3. ”Forensic” analysis of arms trade data

We now turn back to the data and provide the development of the densities for the latent
networks in Figure 6. In the real data, over- and under-reporting is certainly not random
but potentially clustered among countries. We therefore evaluate node (i.e. country) specific
network topologies of €} and ; for each year and summarize the information in box-plots
for each country, ordered according to the median of the respective feature. This is shown
in Figure 7 for potential under-reporting and in Figure 8 for over-reporting. In the first row,
we represent the Eigenvector centrality scores. This measure is undirected and constructed
such that the centrality of each country is proportional to the sum of the centralities of its
trading partners. Hence, countries with high scores have many potentially under-reported
(over-reported) import- and export-relations with many other countries that themselves
have many under-reported (over-reported) import- and export-relations, see e.g. Csardi
and Nepusz (2006). In the middle row, we present the outdegree, that is the number
of potentially under-reported (over-reported) exports for a country. The bottom row in
Figures 7 and 8 gives the indegree, that is the number of potentially under-reported (over-
reported) imports. All measures are scaled to take values between 0 and 1. Countries at
the right hand side in the plots of Figure 7 are potentially under-reporting and in Figure
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Figure 7: Ordered box-plot representation of topological network features of the under-

reporting networks Q) for ¢t = 1993, ...,

dle) and indegree (bottom).
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8, the right hand side of the plots mirrors high over-reporting.
To detect persistent patterns in the networks on a dyadic level, we check whether
potential under-reporting or over-reporting occurs frequently, i.e. counting instances of

+
Wi =

networks as

OF=>"0f,

teT

F=>9.

teT

1 and w;; = 1 for t € T = {1993,...,2014}. Denote the aggregated ”forensic”

We look at the distribution of elements of Qf} and €, which is plotted in Figure 9. On
the horizontal axis we show the possible values of the matrix entries, that is the number
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Figure 8: Ordered box-plot representation of topological network features of the over-
reporting networks 2, for t = 1993, ...,2014: Eigenvalue centrality (top), outdegree (mid-
dle) and indegree (bottom).
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years where transfers in the forensic networks occur. This ranges from 1 (potential under-
reporting or over-reporting in one year) to 22 (potential under-reporting or over-reporting
in all years). The maximum entry of Qf; is thereby less then 22, namely 21, while the
maximum value of {2 is 15. On the vertical axis of Figure 9 we show the frequency of
the entries of QF and Q7. Apparently for ”forensic” purposes, large values of QF are of
particular interest, since they report pairs of countries which are likely to under-reporting.

The line in solid black with the ”+” symbols represents Q; and the line in grey with
the ”-” symbols represents the under-reporting network. Additionally, we indicate for both
networks the pairs of countries (i.e. sender and receiver) which are of particular interest
for "forensic” purposes. This means for example for an element of Q7+- that has value 21,
that the respective transfer from ¢ to j is one of the four transfers appeared that appeared
21 times in the under-reporting network.

Under-reporting networks € : Looking at the Eigenvector centrality scores of Figure 7
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Figure 9: Frequency distribution of transfers in the aggregated under-reporting network
(%, black ”+7) and over-reporting (27, grey ”-”) networks on the vertical axis. Number of
years with under-reporting (w?l]) or over-reporting (w7 ;) on the horizontal axis. Transfers
with the most years predicted are indicated in the form ”exporter-importer” in black for
QF and in grey for Q.
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Value of Omega+ and Omega-—

on the top provides conclusive results about countries that are central in the network series
Q. Among the countries where arms transfers are potentially under-reported, we find
many Western European countries such as Belgium (BEL), Sweden (SWE), France (FRA),
Spain (ESP) and Denmark (DNK). However, the list of presumed under-reporting is headed
by Russia (RUS) and Turkey (TUR) but also Brazil (BRA), Israel (ISR) and China (CHN)
have high scores. These countries also play a dominant role in Figure 9. In particular,
exports from Brazil (BRA) to Russia (RUS), Hungary (HUN), Ukraine (UKR), China
(CHN) and Japan (JPN) are likely to be frequently under-reported. Similarly, exports
from Russia (RUS) to Cyprus (CYP), Denmark (DNK), Ireland (IRL), Turkey (TUR),
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Sweden (SWE), Portugal (PRT) and Greece (GRC) are listed. We also find imports of
Israel (ISR) from Finland (FIN), Belgium (BEL) and Austria (AUT) as well as exports of
Belgium (BEL) to India (IND), Ukraine (UKR), Russia (RUS), Lebanon (LEB), Colombia
(COL) and China (CHN).

Over-reporting networks €2, : Among the twelve countries with the highest Eigenvector
centrality in Figure 8 is Croatia (HRV) as the only European country. There are how-
ever many countries from Asia such as Singapore (SGP), India (IND), Thailand (THA),
Indonesia (IDN), Malaysia (MYS), South Korea (KOR) and Philippines (PHL). Further-
more, South Africa (ZAF), New Zealand (NZL), Australia (AUS) and Israel (ISR) are
among the countries where trade activity is often over-reported. For Asian countries as
well as for Australia and New Zealand this might mirror the fact that those countries export
many SAA to Europe and the United States despite the strongly negative distance effect
of the model. Furthermore, this network is very likely to be driven by bilateral agreements
and historical developments not covered by the covariates. See for example in Figure 9 the
number of over-reporting related to the Baltic countries Estonia (EST) Lithuania (LTU)
and Latvia (LVA).

It remains to be emphasized that the constructions of the forensic networks relies on
our model with corresponding assumptions and admittedly high degrees of uncertainty.
As a consequence, it does not allow for definite statements about actual hidden transfers.
However, many of the dyads listed in Figure 9 indeed have either traded massive amounts
of civilian arms (e.g. AUT-CHN, BRA-RUS, RUS-BEL, RUS-DNK) or had frequent MCW
trade relations (e.g. RUS-CYP) but almost no documented small arms transfers for military
usage. Additionally, many of the countries that take central positions in the forensic
networks are known for not being very transparent with respect to their SAA exports and
imports (see e.g. the small arms transparency barometer).

6. Conclusion

In this paper we have modelled the volumes of international transfers of small arms and
ammunition for the years 1992-2014 based on data provided by NISAT. As an analytical
tool we combined the gravity model of trade with a modified SAR model that allows to
enrich the analysis by endogenous network dependencies, accounting for exporter-related,
importer-related and reciprocal dependency among the transfers in the network. Using
a censored normal regression model we are able to include information provided by zero-
valued transfers. The infeasible likelihood of the censored model is maximized using a
Monte Carlo EM algorithm. The fitted model shows strong and stable endogenous network
effect, especially related to the sender effect and the receiver effect but also some evidence
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for reciprocity. Additionally, we find a high coefficient on path dependency and a close
connection to the exports of civilian small arms. Conditional on that, the classical gravity
hypothesis is confirmed with respect to the GDP of the importer and physical distance
but only exceptionally with respect to political distance measures and the GDP of the
exporter. This contrasts with the MCW network where distance plays no role, where
political similarity and GDP of the exporter have a strong impact (see Thurner et al., 2018).
Actually, this difference is plausible, as the technological requirements for the production of
small and ammunition are relatively low, and strategic considerations of world-wide acting
countries make geographic distances a negligible factor for MCW trade.

Building on our latent utility framework we were able to explore latent utility net-
works. With the construction of under-reporting and over-reporting networks we perform
for the first time a forensic approach in this area highlighting especially potentially under-
reported exports of Russia and Turkey. We refrain, of course, from making too far-reaching
assertions. Note that we do not claim to provide unambiguous claims for intentional false
reporting. However, we demonstrate that some zero entries in the SAA trading network
tend to be not plausible.
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A. Annex

A.1. Descriptives

Table 2: Different arms types included in the NISAT dataset with three digit arms category
code, weapon type, subcategory and number of transfers in the dataset.

Code PRIO Weapons Type Subcategories
200  Small Arms

210 Pistols & Revolvers

230 Rifles/Shotguns (Military)

233 Assault Rifles

234 Carbines

235 Sniper Rifles

237 Semi-automatic Rifles (Military)
239 Shotguns (Military)

240 Machine Guns

243 Sub Machine Guns

245 Light Machine Guns

247 General Purpose Machine Guns
250 Military Weapons

260 Military Firearms

270 Machine Guns All Types

300 Light Weapons

310 Heavy Machine Guns <= 12.7mm
400  Ammunition

415 Small Arms Ammunition

417 Small Calibre Ammunition <= 12.7mm
418 Shotgun Cartridges

Source: nisat.prio.org.
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Table 3: The 59 major exporting and importing countries of the small arms and ammunition
dataset with ISO 3 country codes.

Country  ISO3 Code Country ISO3 Code Country ISO3 Code
Argentina ARG India IND Poland POL
Australia AUS Indonesia IDN Portugal PRT
Austria AUT Ireland IRL Romania ROM
Belgium BEL Israel ISR Russia RUS
Brazil BRA Italy ITA Saudi Arabia SAU
Bulgaria BGR Japan JPN Serbia SRB
Canada CAN Kenya KEN Singapore SGP
Chile CHL South Korea KOR Slovenia SVN
China CHN Kuwait KWT South Africa ZAF
Colombia COL Latvia LVA Spain ESP
Croatia HRV Lebanon LBN Sweden SWE
Cyprus CYP Lithuania LTU Switzerland CHE
Denmark DNK Malaysia MYS Thailand THA
Egypt EGY Mexico MEX Turkey TUR
Estonia EST Netherlands NLD Ukraine UKR
Finland FIN New Zealand NZL Un. Arab Emirates ARE
France FRA Norway NOR United Kingdom GBR
Germany DEU Pakistan PAK United States USA
Greece GRC Peru PER Uruguay URY
Hungary HUN Philippines PHL - -

II
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B. Supplementary Material

B.1. Derivatives of the complete log-likelihood
The complete log-likelihood is given by

(A(p)Y — XB)"(A(p)Y — XB)

Ceomy(8) = — log(2m0?) + log(| A(p)]) —

202 ’
with score vector
eomp(@) 1 1 ~
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Where we use Jacobi’s formula (see Magnus and Neudecker, 1988) that allows to express
the derivative of a matrix determinant in terms of the derivative of the matrix and its
adjugate (adj(-)). Resulting in

dlog(|A(p)])

oo =] A(p)| " tr[adj(A(p)) W] = —tr(B(p)Wi),

for the third equation in (12). The differentiation of the trace

a“(Bagj)W’” _ tr(a’;ﬁ? wk) B (B<p> 8g‘;7>3<p>wk) — (B(p)WiB(p)W))

is used for the sixth and seventh equation in (13).

B.2. Practical Implementation of the Algorithm
The gradient

0Q(plbo) _ N Rj(p) —Y"TH(p)Y"
on. PP S ) Y At AT )
can be used to maximize
Qlolto) = -+ 1ox(1A4(p) ~ 5 1ox (5(p) = VAT HAIT ). (15

by applying the BFGS optimization routine (see Broyden, 1970, Fletcher, 1970, Gold-
farb, 1970 and Shanno, 1970). The implementation of the BEGS algorithm in R (R Core
Team, 2016) is provided by the base function optim. More computational stability for
the maximization of equation (15) is reached by defining A = (A, ..., Ay)T as the vector
of eigenvalues of A(p) and replacing log(|A(p)|) by 27]«\[:1 log(A\-(p)) in equation (15), see
Bivand and Piras (2015). The starting value for the algorithm can be found by using a
maximum pseudolikelihood estimate (MPLE), using W1Y, ..., W, Y as exogenous covariates
in a censored regression model, provided by the R package censReg (Henningsen, 2013).
Since the observed log-likelihood cannot be evaluated, we define 0 as the solution of the
maximization problem if (6 — 6)" (6 — 6,) < 0.1, otherwise we set 6y = 6 and re-iterate
until the stopping criteria is satisfied.
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B.3. Approximation of the Fisher Information

Louis (1982) and Oakes (1999) provide formulas for the Fisher information of the observed
likelihood. We follow the recommendation of McLachlan and Krishnan (2007), arguing
that Louis’s formula is best suited for the MCEM and provides a conservative measure of
the standard errors. Therefore, we calculate the observed information based on

0% ops(0) Ol gomp(0) | eomp(0) [ eomp()\ "
00007 _EG[_ 000" YO’X’M] _Ee[ 09 ( 00 ) Y‘”X’M} (16)
Oeomp(0) Ol comp(0) !
+E9[T Y;anM:| (EQ[T Y,, X, M .

Note that the second term of (16) depends not only on the first and second but also on the
third and fourth conditional moment of the truncated multivariate normal and cannot be
evaluated analytically therefore.

In order to approximate the observed information we are using the results of Robert and
Casella (2004, p. 187) and Kang et al. (2013, Section 3.7) that allow for an approximation
of the observed information based on the score and Hessian of the complete likelihood.
Hence, we can use the results from Section B.1 for the following procedure.

We draw w = 1000 times potential realizations Y g, from the truncated version of

Y/c ~ NNm (Mm + Emozgol (Yo - No)v Emm - Emozgolzom) (17)
using the package TruncatedNormal (Botev, 2017). Those are stored for each draw s in a
vector Y, = (Yo, Yo sim)-

Then we calculate the score and Hessian from equations (12) and (13) w times, where
we replace Y by Y[ in each equation and index them by s, allowing to calculate the

empirical version of (16) by approximating the expectations by means.

0 s(0)

0000™
1 2“’: C Placomp(0) ([ Olseomp) 1 Xw: s comp(0) [ Oscomp() 1 z“’: Wseomp®)\ "
w = 00060 a0 w = 00 00 w = a0 '

This gives an estimator for the observed information. Standard errors are obtained by the
square root of the diagonal elements of the inverted approximated matrix.

B.4. Data Transformation

In Figure 10 we show the distribution of the observed log-transformed response variable.
The data is pooled over all years and standardized to have mean zero and variance one.

\%



179

Figure 10: Kernel Density Estimate of the log-transformed standardized observed response
variable pooled for all time periods (left). Q-Q plot for the log-transformed standardized
response variable (right).
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The panel on the left side shows a kernel density estimate and the panel on the right gives
a Q-Q plot.
B.5. Conditional Probabilities

Based on the fitted coefficients 6, = (Bt, pt,62) and our model assumptions, we can represent
the joint distribution of the latent utility network Z; via a multivariate normal

Zt ~ NN(,ata zA)t))

where [i; = B(ﬁt)XBt ands 3, = B(p:)(B(p:))62. Given that, define Z; _;; as the (N —1)-
dimensional vector, containing all entries of Z; except Z;;;. Additionally, for example in
the case that ¢j is the first entry of Z;, rearrange ; such that

5, _( Ditijii Bt )

t—ijij  Bt—ij—ij

VI



180

Then, the conditional distribution of Z,;; is given by a univariate normal distribution

Zt,ij’Xa Zt,—ij ~ N(Mt,z‘jHj, Et,z‘jm‘j), where
~ o~ - -1 ~
fit,ijl~ij = Feij + Bij—ij B —ij—ij(Zr—ij — fu,~ij) and

. . o
Vitigl-ij = Vitijij — Bitij—ij

t,—z’j,—ijzt,—ij,ij-

We are interested in a possible state of the network, where the latent utility is allowed to
be greater c¢;. Therefore, we insert the expectation for the non-observed utility in Z; _;; and
denote this by Zt,—z‘j- Consequently, we can calculate the probability of Z, ;; being greater
than ¢; using

T = P(Zyi5 > il Xeaj, Zt,ﬂ‘j; é) =1—-P(Z;; < | Xy, Zt,fij; é)

(U - ﬂt,z’jl—ia‘)2> .

Ct 1
=1- / —————exp | — =~
—o0 1/2%22”‘_2.]. 22t,ij\—ij

The probability 7, ;; can be interpreted as the probability that the latent utility of a transfer
from country i to country j is higher than the threshold ¢; conditional on the covariates
X; and the remaining network, where no transfer is restricted to be smaller ¢;.

B.6. Simulation study - Endogenous effects and approximation
of censored variables

In order to analyse the properties of our estimator, we use the following Data Generating
Process (DGP1)

p=1(0.1,0.2,03)", B =(1,2,3,4,5)", p=5,n =20, N = 380
X N'N;J(L[p)
Z ~ Nn(B(p)X,B(p)B(p)")

Zij = [(ZZJ > q0.75(Z>)Zij> for ¢ 7£ ] = 1, ey N

(18)

Here, qo75(Z) denotes the 75% quantile and we are censoring the network towards an
observed density of 0.25. Note, that DGP1 is not subject to under-reporting and all
censored responses are in fact below the censoring threshold. The results of running DGP1
100 times and applying the estimation procedure are summarized in Figure 11. On the
left panel, we show the true but censored values against the expected values from the last
E-Step, together with contour curves and a non-parametric fit for the mean in solid black.

VII
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Figure 11: Results of DGP1. Expected values against true censored values for all simu-
lations (left). Angle bisector in dashed black, non-parametric mean in black and colored
contours. Boxplots for the difference between estimated and true values for p (right).
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It can be seen that the expected values approximate the latent variables very well. The
right panel of Figure 11 shows boxplots for the difference between the true values of p and
the estimated parameters. It indicates that as we are able to find unbiased estimates of
the endogenous parameters despite the enormous amount of censoring.

VIII



182



183

Chapter 6

Regression-based network
reconstruction with nodal and
dyadic covariates and random
effects

Contributing Article:

Michael Lebacher and Goéran Kauermann (2019): Regression-based network reconstruction
with nodal and dyadic covariates and random effects.

Under review in the Journal of the American Statistical Association (Theory and Methods).

arXiv preprint https://arxiv.org/abs/1903.11886
Code at https://github.com/lebachem/regression_network_reconstruction

Further Versions:
Michael Lebacher and Goéran Kauermann (2019): Regression-based network reconstruction

with nodal and dyadic covariates and random effects
Proceedings of the 33th International Workshop on Statistical Modelling, 1:220-226.

Author Contributions:

The initial ideas for solving the network reconstruction problem (including approaches with
random effects) were provided by Géran Kauermann together with the idea of using bootstrap
prediction intervals. Furthermore, Géran Kauermann gave very valuable input for the simu-
lation section. The contribution of Michael Lebacher is given by deriving the model with and
without random effects, the implementation of the model in R, including data manipulation,
fitting and simulation. The concrete formulation and the algorithm is also due to Michael
Lebacher. Furthermore, Michael Lebacher wrote the major part of the manuscript. Both
authors contributed to the manuscript writing and were involved in extensive proof-reading.


https://arxiv.org/abs/1903.11886
https://github.com/lebachem/regression_network_reconstruction

184

Regression-based Network Reconstruction
with Nodal and Dyadic Covariates and
Random Effects

Michael Lebacher and Goéran Kauermann*
Department of Statistics, Ludwig-Maximilians Universitat Miinchen

Abstract

Network (or matrix) reconstruction is a general problem which occurs if the margins of a
matrix are given and the matrix entries need to be predicted. In this paper we show that
the predictions obtained from the iterative proportional fitting procedure (IPFP) or
equivalently maximum entropy (ME) can be obtained by restricted maximum likelihood
estimation relying on augmented Lagrangian optimization. Based on the equivalence
we extend the framework of network reconstruction towards regression by allowing
for exogenous covariates and random heterogeneity effects. The proposed estimation
approach is compared with different competing methods for network reconstruction
and matrix estimation. Exemplary, we apply the approach to interbank lending data,
provided by the Bank for International Settlement (BIS). This dataset provides full
knowledge of the real network and is therefore suitable to evaluate the predictions
of our approach. It is shown that the inclusion of exogenous information allows for
superior predictions in terms of Ly and Lo errors. Additionally, the approach allows to
obtain prediction intervals via bootstrap that can be used to quantify the uncertainty
attached to the predictions.

Keywords: Bootstrap; Interbank lending; Inverse problem; Iterative proportional fitting;
Network analysis; Maximum entropy; Matrix estimation
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1. Introduction

The problem of how to obtain predictions for unknown entries of a matrix, given restrictions
on the row and column sums is a problem that comes with many labels. Without a sharp
distinction of names and fields, some non exhaustive examples for keywords that are related
to very similar settings are Network Tomography and Traffic Matrix Estimation in Computer
Sciences and Machine Learning (e.g. Vardi, 1996, Coates et al., 2002, Hazelton, 2010, Airoldi
and Blocker, 2013, Zhou et al., 2016), Input-Output Analysis in Economics (e.g. Bacharach,
1965, Miller and Blair, 2009), Network Reconstruction in Finance and Physics (e.g. Sheldon
and Maurer, 1998, Squartini and Garlaschelli, 2011, Mastrandrea et al., 2014, Gandy and
Veraart, 2018), Ecological Inference in Political Sciences (e.g. King, 2013, Klima et al., 2016),
Matrix Balancing in Operation Research (e.g. Schneider and Zenios, 1990) and many more.

An old but nevertheless popular solution to problems of this kind is the so called iterative
proportional fitting procedure (IPFP), firstly introduced by Deming and Stephan (1940) as
a mean to obtain consistency between sampled data and population-level information. In
essence, this simple procedure iteratively adjusts the estimated entries until the row and
column sums of the estimates match the desired ones. In the statistics literature, this
procedure is frequently used as a tool to obtain maximum likelihood estimates for log-
linear models in problems involving three-way and higher order tables (Fienberg et al., 1970,
Bishop et al., 1975, Haberman, 1978, 1979). Somewhat parallel, the empirical economics
literature, concerned with the estimation of Input-Output matrices, proposed a very similar
approach (Bacharach, 1970), often called RAS algorithm. Here, the entries of the matrix
must be consistent with the inputs and the outputs. The solution to the problem builds
on the existence of a prior matrix that is iteratively transformed to a final matrix that is
similar to the initial one but matches the input-output requirements. Although the intention
is somewhat different, the algorithm is effectively identical to IPFP (Onuki, 2013). The
popularity of the procedure can also be explained by the fact that it provides a solution
for the so called maximum entropy (ME) problem (Malvestuto, 1989, Upper, 2011, Elsinger
et al., 2013). In Computer Sciences, flows within router networks are often estimated using
Raking and so called Gravity Models (see Zhang et al., 2003). Raking is in fact identical to
IPFP and the latter can be interpreted as a special case of the former.

In this paper, we propose an estimation algorithm that builds on augmented Lagrangian
optimization (Powell, 1969, Hestenes, 1969) and can provide the same predictions as IPFP
but is flexible enough to be extended toward more general concepts. In particular we propose
to include exogenous covariates and random effects to improve the predictions of the missing
matrix entries. Furthermore, we compare our approach with competing models using real
data. To do so, we look at an international financial network of claims and liabilities where
we pretend that the inner part of the matrix is unknown. Since in the data at hand the
full matrix is in fact available we can carry out a competitive comparison with alternative
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routines. Note that commonly the inner part of the financial network remains unknown
but finding good estimates for the matrix entries is essential for central banks and financial
regulators. This is because it is a necessary prerequisite for evaluating systemic risk within
the international banking system. See e.g. a very recent study by researchers from 15 different
central banks (Anand et al., 2018) where the question of how to estimate financial network
linkages was identified as being crucial for contagion models and stress tests. Our proposal
has therefore a direct practical contribution.

The paper is structured as follows. In Section 2 we relate maximum entropy, maximum
likelihood and IPFP. In Section 3 we introduce our model and discuss estimation and infer-
ence as well as potential extensions. After a short data description in Section 4 we apply the
approach, compare different models and give a small simulation study that shows properties
of the estimator. Section 5 concludes our paper.

2. Modelling approach

2.1. Notation

Our interest is in predicting non-negative, directed dyadic variables :cﬁj among i,j =1,...,n
observational units at time points ¢ = 1,...,T. The restriction to non-negative entries is
henceforth referred to as non-negativity constraint. We do not allow for self-loops and leave
elements x!, undefined. Hence, the number of unknown variables at each time point ¢ is
given by N = n(n —1). Let x' = (z%,, ..., 2%, xél...,xz(n_l))T be an N-dimensional column
vector and define Z = {(4,j) : 4,5 = 1,...,n;i # j} as the corresponding ordered index
set. We denote the ith row sum by yf = z{, = >, #}; and the jth column sum by
Yntj = Tej = Diz; Ty Stacking the row and column sums, results in the 2n-dimensional
column vector y*. Furthermore, we define the known binary (2n x N) routing matrix A such
that the linear relation

yi=Ax! fort=1,..,T (1)

holds. Henceforth, we will refer to relation (1) as marginal restrictions. Furthermore, we
denote each row of A by the row vector A, = (a,1,...,a,y). Hence, we can represent the
marginal restrictions row wise by

Ax' =y forr=1.2nandt=1,..,T.

Note that in cases where some elements of y* are zero, the number of unknown variables to
predict decreases and matrix A must be rearranged accordingly. In the following we will
ignore this issue and suppress the time-superscript for ease of notation. Random variables
and vectors are indicated by upper case letters, realizations as lower case letters.



187

2.2. Maximum entropy, iterative proportional fitting and maxi-
mum likelihood

Besides the long known relation between maximum entropy (ME) and IPFP, there also exists
an intimate relation between maximum entropy and maximum likelihood that is formalized
for example by Golan and Judge (1996) and is known as the Duality theorem, see for example
Brown (1986) and Dudik et al. (2007). Also in so-called configuration models (Squartini and
Garlaschelli, 2011, Mastrandrea et al., 2014) the connection between maximum entropy and
maximum likelihood is a central ingredient for network reconstruction.

In the following (i) we rely on the work of Golan and Judge (1996), Squartini and Gar-
laschelli (2011) and Munoz-Cobo et al. (2017) in order to briefly derive the ME-distribution in
the given setting. (ii) After that, we show that IPFP indeed maximizes the ME-distribution.
(iii) Based on the first two results, we show that we can arrive at the same result as IPFP by
constrained maximization of a likelihood where each matrix entry comes from an exponential
distribution.

(i) Maximum entropy distribution: =~ We formalize the problem by defining the Shannon
entropy functional of the system as

Hf) = - /X £() log(£(x))dx,

where we make it explicit in the notation that the functional H[f] takes the function f

as input. The support of f is given by X € Rf , ensuring the non-negativity constraint.

Furthermore, we require that the density function f: X — R, integrates to unity

/X Fx)dx = 1. @)

We denote the expectation of the random vector X by p and formulate the marginal restric-
tions in terms of linear restrictions on p which we specify as

/ Axf(x)dx = A,p =y, forr=1,...,2n. (3)
X
Combining the constraints (2) and (3) results into the Lagrangian functional

c1f) = - [ seotoe(renix - o [ roax-1) - ZA( [ Axsis-u) o

with Lagrange multipliers A, > 0 for » = 0,...,2n. The solution can be found using the
Euler-Lagrange equation (Dym and Shames, 2013), stating that a functional of the form
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[y L(x, f(x), f'(x))dx is stationary (i.e. its first order derivative is zero) if

oL d oL
of ~axf ®)

If the Lagrangian functional does not depend on the derivative of f(-), we find the right hand
side in equation (5) to be zero so that no derivative appears. For the Lagrangian functional
(4) this provides

—log(f(x)) =1 =X — Y _ MAx=0. (6)

r=1

Rearranging the terms in (6) results in the maximum entropy distribution

2n
f(x):exp{—Z)\TATX—l—)\O}ﬁorXEX. (7)
r=1

In order to ensure restriction (2) we set exp(l + Ag) = ¢(A) where A = (A1, ..., Ay, is the
parameter vector and

where A\, > 0 for r = 1, ..., 2n ensures integration to a finite value. Taken together, this leads
to the exponential family distribution

f(x) = 0(1)\) exp{ - iATATx}, for x € X. (8)

Apparently, the sufficient statistics in (8) result through
Ax=y., forr=1,..2n

and hence, we can characterize the N dimensional random variable X in terms of 2n param-
eters A. Using (8), the second order condition results from

1
< 0,VXEX
f(x)

and ensures that f is indeed a maximizer.
(ii) IPFP and the maximum entropy distribution: In order to solve for the parameters of
the maximum entropy distribution we take the first derivative of the log-likelihood obtained
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from (8), i.e.
2n
i) = ~Tog(e(A) — 3_ Ay )
r=1
Since (8) is an exponential family distribution we can use the relation

dlog(c(A))

ox = —E,[A,x], for r=1,...,2n

and the maximum likelihood estimator X results from the score equations

A x Yr
1= = f =1,....2n. 10
EAx  EyAx T (10)

If we now multiply the left and the right hand side of (10) by parameter A, we get

A=A yforr=1,...,2n

Yr
E}\ [ATX}
and can solve the problem using fixed-point iteration (Dahmen and Reusken, 2006). That
is we fix the right hand side to A*~! and update the left side to A* through

A=Y =1 o, 11
TN EaaAx T (11)

But this is in fact iterative proportional fitting, a procedure that iteratively rescales the
parameters until the estimates match the marginal constraints. Convergence is achieved
when A=t = \¥ satisfying the score equations (10). More generally, the log-likelihood (9) is
monotonically non-decreasing in each update step (11) and convergence of (11) is achieved
only if the log-likelihood is maximized (Koller et al., 2009, Theorem 20.5).

(iii) IPFP and constrained maximum likelihood: If we re-sort the sufficient statistics and
re-label the elements of A we get

2n
Z ArALx :>\1(1’12 + T3+ + $1n) + -+ >\2n(l‘1n + xop + -+ x(nfl)n)
r=1
T
- Z ()‘th + /\n+q2)xq = —
Hq

q=(q1,92)€T q€T
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with g, = (Mg, + Antge) " for ¢ € Z. This leads to

c(A) = /Xexp{ - ZZZ}dx =] ke (12)

q€L q€L

and where with (10) Ap =y. Hence, we can represent the whole system as the product of
densities from exponentially distributed random variables X, for ¢ € Z. That is

Foo e { = 02 = Ctostu) f = [T 2o { - 221 (13)

q€T qeT q€L ’u'q ’UJq

with observed margins Ax = Ap =y and z, >0V g e L.

3. Maximum likelihood-based estimation strategy

3.1. Parametrization and estimation

From result (13) it follows that we can use a distributional framework in order to build a
generalized regression model. We exemplify this with a model which includes a sender-effect
denoted as & = (1, ...,d,) and a receiver-effect v = (71, ..., 7). We stack the coefficients in
a 2n parameter vector @ = (87, ~47)7 such that the following log-linear expectation results

Eo[Xij] = pij(0) = exp(d; + 7). (14)

Based on this structural assumption, we can now maximize the likelihood derived from
(13) with respect to € subject to the observed values Ax = y and the moment condition
Ap(0) = y. In the given formulation, the moment condition is linear in p(0) but not in 6.
Consequently, the numerical solution to the problem might be burdensome. We therefore
propose to use an iterative procedure that is somewhat similar to the Expectation Condi-
tional Maximization (ECM, Meng and Rubin, 1993) algorithm, since it involves iteratively
forming the expectation of X;; based on the previous parameter estimate (E-Step) and con-
strained maximization afterwards (M-Step). To be specific, define the (N x2n) design matrix
Z, that contains indices for sender- and receiver-effects. Matrix Z has rows z, indexed by
q € T where for ¢ = (i,j) we have the i-th and the(n + j)-th element of z, equal to 1
and all other elements are equal to zero. Starting with an initial estimate @y that satisfies
Ap(0y) =y, we form the expectation of the log-likelihood

Q(0;6,) = Eg, [Z < — 210 - Miqa))] => ( — 210 — exp{z! () — 9)}).

qeZ qeZ
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Then, the maximization problem in the M-step is given by

max Q(0; 6y) subject to Au(0) =y. (15)
OcR?"

A suitable optimizer for non-linear constraints is available by the augmented Lagrangian
(Hestenes, 1969, Powell, 1969)

£00:4.¢,00) = ~Q(0:0,) — €L (A(6) —y) + 5|1 An(0) ~ ¥} (16)

with & and ¢ being auxiliary parameters. The augmented Lagrangian method decomposes
the constrained problem (15) into iteratively solving unconstrained problems. In each iter-
ation we start with an initial parameter & in order to find the preliminary solution .
Then, we update &1 = & + ((Ap(Or+1) — y) in order to increase the accuracy of the
estimate. In case of slow convergence, also ¢ can be increased. An implementation in R is
given by the package nloptr by Johnson (2014).

3.2. Confidence and prediction intervals

Considering the data entries as exponentially distributed allows for a quantification of the
uncertainty of the estimates. We pursue this by bootstrapping (Efron and Tibshirani,
1994) here. Given a converged estimator @ we can draw for each matrix entry X;; from
an exponential distribution with expectation ,ui]-(é) in order to obtain B bootstrap sam-
ples X* = (X’(kl),...,XfB)). For each bootstrap sample X’(kb) we calculate the marginals
AXE‘b) = be) and re-run the constrained estimation procedure resulting in B vectors of esti-
mated means fi* = (,112‘1), ceny ﬂ’(“B)). Consequently, the moment condition A;lz‘b) =Y, holds
for all mean estimates of the bootstrap and by model-construction, the expected marginal
restrictions from the bootstrap sample match the observed ones:

Eé{AXE‘b)] = AEé[ ?b)] =Y.

Based on the bootstrap estimates, we can easily derive confidence intervals for p;; using
the variability of ﬂfb),ij for b = 1,..., B. Additionally, we define the prediction error as
eij = xi; — [lij and construct prediction intervals for the unknown x;; based on the quantiles
of the empirical distribution of

ﬂ” + ez(b),ij - ,[L” + .l"?b),ij - I[’\l’?b),ij7 fOI“ b - ]., ceey B
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3.3. [Extensions with exogenous information and random effects

The regression framework allows to extend the model by including exogenous information.
We consider again model (13) and parametrize the expectation through

Eo [Xij] = Hij(a) = exp(d; + v+ if}ﬂ) = eXP(ZiTje)a (17)

with 0; and 7; again being the subject-specific sender- and receiver-effects. Furthermore,
Z;; represents a [-dimensional covariate vector and 3 is the corresponding parameter vector.
We can use the augmented Lagrangian approach from above to estimate the p = [ 4+ 2n
dimensional parameter vector 6. It is important to note here that only dyadic covariates
have the potential to increase the predictive performance of the approach. If we only include
subject-specific (monadic) information the expectation can be multiplicatively decomposed
and the model collapses back to the IPFP model (14). Thus is easily seen through

Nevertheless, the inclusion of subject-specific information may be valuable if it is the goal
to forecast future networks based on new covariate information. This holds in particular in
dynamic networks. We give an example for predictions based on lagged covariates in the
next section.

We can also easily add additional structure to model (17) and assume a distributional
form for some or all coefficients. A simple extension arises if we assume random effects. This
occurs by the inclusion of normally distributed sender- and receiver-effects:

(8,7)" ~ Noy (0, 2(09)), (18)

where we take ¥ as the vector of parameters that determines the covariance matrix of the
random effects. The latter could be parametrized for example with 9 = (03, 03.,,02)" such

4 2 2
(5?> ~ Ny <0, (;’2‘5 O%])) fori,j=1,..,n and i # J, (19)

7 ayy vy

where we assume separate variance components for the sender- and the receiver effects,
respectively. In order to fit the model, we follow a Laplace approximation estimation strategy
similar to Breslow and Clayton (1993). Details are given in the Appendix A.
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AT  Austria ES  Spain JP Japan

AU  Australia FI Finland KR  South Korea

BE  Belgium FR  France NL  Netherlands

CA Canada GB  United Kingdom SE Sweden

CH  Switzerland GR  Greece TR  Turkey

CL  Chile 1E Ireland TW  Taiwan

DE  Germany IT Ttaly US United States of America

Table 1: Countries included in the analysis

4. Application

4.1. Data description

The dataset under study is provided by the Bank for International Settlements (BIS) and
freely available from their homepage. In general, the locational banking statistics (LBS)
provide information about international banking activity by aggregating the financial ac-
tivities (in million USD) to the country level. Within each country, the LBS accounts for
outstanding claims (conceptualized as a valued dyad z;; that consists of all claims banks
from country i to banks of country j) and liabilities of internationally active banks located
in reporting countries (conceptualized as the reverse direction x ;). We have selected the 21
most important countries (see Table 1) for the time period from January 2005 to December
2017 as a quarterly series for the subsequent analysis. In Figure 1 the density of the network
(number of existing edges relative to the number of possible edges) is shown on the left,
the share of the zero-valued marginals in the middle and the development of the aggregated
exposures on the right. Especially in the first years some marginals of the financial networks
are zero and the corresponding matrix entries are therefore not included in the estimation
problem. Correspondingly, it can be seen that most countries do have some claims and
liabilities to other countries but especially in the beginning, many dyads z;; are zero valued.

Since it is plausible that financial interactions are related to the economic size of a country,
we consider the annual Gross Domestic Product (GDP, in current USD Billions) as covariate.
The data is provided for the years 2005-2017 by the International Monetary Fund on their
homepage. Furthermore, there might be relationship between trade in commercial goods
and financial transfers and we use data on dyadic trade flows (in current USD) between
states as additional covariate. The data is available annually for the years 2005 to 2014
by the Correlates of War Project online. We do not have available information on trade
for the years 2015, 2016 and 2017 and we therefore extrapolate the previous values using
an autoregressive regression model. Apparently, by doing so we have covariate information
which is subject to uncertainty. We ignore this issue subsequently. In order to have an

10
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Figure 1: Density (left), share of zero-valued marginals (middle) and aggregated volume in
million USD (right) of the network as quarterly time series.

Variable Description Type Correlation
Tij Claim from country ¢ to country j dyad specific 1.0000
qgdp; Gross Domestic Product of country 4 node specific 0.4716
gdp; Gross Domestic Product of country j node specific 0.1858
trade;;  Bilateral trade flows of commercial goods dyad specific 0.4349
dist;; Distance between the capital cities of countries ¢ and j dyad specific —0.0953
xf;l Lagged claim from country i to country j dyad specific 0.9935

Table 2: Covariates used for the regression-based network-reconstruction

example for uninformative dyadic information, we use time-invariant data on the dyadic
distance in kilometres between the capital cities of the countries under study (provided by
Gleditsch, 2013). Finally, in some matrix reconstruction problems, the matrix entries of
previous time points become known after some time. Typically, lagged values are strongly
correlated with the actual ones. We therefore also consider the matrix entries, lagged by one
quarter as covariates. See Table 2 for an overview of the variables, together with the overall
correlation of the actual claims and the respective covariate. In the subsequent analysis we
include all covariates in logarithmic form.

11
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Method Covariates Rand. eff. Model overall L; overall Ly average L; SE average Lo SE
1 IPFP - - (11,14)  4204.212 75.778 80.850 12.564 10.445 1.168
2 Regression - Ug, U,Z),, Ugn (14,19)  4204.212 75.778 80.850 12.564 10.445 1.168
3 Regression gdp;, gdp;, trade;; - (17) 3300.242 56.794 63.466 9.246 7.802 1.085
4 Regression gdp;, gdp;, trade;; Ug,ogr,ai,y (17,19  3315.673 57.104 63.763 9.222 7.850 1.052
5 Regression  gdp;, gdp;, dist;; - (17) 4884.728 91.575 93.937 15.864 12.565 1.857
6 Regression  gdp;, gdp;, dist; 03,0205, (17,19) 4843.641 90.623 93.147 15.490 12.435 1.833
7 Regression  gdp;, gdp;, %! - (17)  2280.235 41.805  43.851 12833  5.591  1.549
8 Regression  gdpi, gdp, o7' o300l (17,19) 2341796 43483 45.035 11715 5787 1710

Table 3: Comparison of different regression models with the BIS Dataset. All values scaled
by 100000 and lowest values in bold.

4.2. Model performance

We evaluate the proposed models in terms of their L; and Ly errors. The corresponding
results are provided in Table 3. As a baseline specification, all models contain sender-
and receiver effects. In the first row, we provide the maximum entropy model (14) that
coincides with the IPFP solution (11). The second row shows model (14) together with the
random effects structure (19). In the third row, we provide the errors for model (17) where
we included the covariates logarithmic GDP (gdp;, gdp;) as well as the logarithmic trade
data (trade;;). In row four, we use the same model as in row three but additionally added
the random effects structure from (19). In rows five and six, the same models as in rows
three and four are used but with logarithmic distance (dist;;) instead of trade as dyadic
explanatory variable. In the last two rows we consider models with lagged claims (xfj_l)
with and without random effects. This comparison might be somewhat unfair because of the
strong correlation and because it is not clear whether it can safely be assumed that such data
is always available. Therefore, we have separated this specification from the other models.
In the first four columns the different specifications together with the related equations
are provided. Columns five and six show the aggregated errors over all 52 quarters and the
last four columns show the errors averaged over all years together with their corresponding
standard errors. It can be seen that the first two models provide the same predictions
and the inclusion of the random effects has no impact other than giving estimates for the
variance of the sender- and receiver-effects as well as their correlation, shown in Figure 2.
It becomes visible that the variation of the receiver-effect is much higher than the variation
of the sender-effect which is almost constant. The correlation between the sender and the
receiver effect is consistently positive and increases strongly within the first years.
Furthermore, Table 3 shows that in the four models that include exogenous information
(rows three to six) the extension towards the random effects structure has an impact on the
predictive quality. It decreases in the model that includes the variable trade;; and increases
in the one that includes dist;;. Nevertheless, the models with and without random effects
are rather close to each other and in fact they are statistically indistinguishable with respect

12
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Figure 2: Quarterly time series of the estimated variances (models (14) and (19)) of the
sender-effect (63) on the left, the receiver effect (62) in the middle and the correlation
between the sender- and the receiver effect (63, /(6,G5)) on the right.

to their Ly differences. While the model with the covariate dist;; performs even worse than
the IPFP solution, the model that includes trade;; but includes no random effects (row
three) gives superior predictions relative to all other models in the upper part of Table 3.
However, the two models that use the information on the lagged values give by far the best
predictions. We nevertheless continue with the best model from the upper part of Table 3
lagged data are not necessarily available. The corresponding fitted values are provided as
time series in Figure 4 and in Figure 3 we provide the estimates for the coefficients of the
model. In the first row, the estimated sender- (8, left) and receiver-effects (4, right) are
shown as a time series. In the second row of Figure 3 the estimates for the coefficients on
the exogenous covariates (B) can be seen. The estimated coefficients provide the intuitive
result that the claims from country i to country j increase with gdp; and gdp; and the trade
volume between them (trade;;). It is reassuring that the ordering of the average height of
the coefficients approximately matches with the order of the correlations reported in Table
2. Note however, that the size of the coefficients is to be interpreted with care because of the
limited information available on the unknown claims. We also provide prediction intervals
in Figure 5, based on the share of real values x;; located in the interval [go.005, o.955]. Here,
Go.0o5 and ¢g.o55 are the 0.005 and 0.955-quantiles derived from the bootstrap distribution
(bootstrap sample size B = 100). On the left, we illustrate the real values against the
predicted ones together with grey 95% prediction intervals for the most recent network.
Observations that do not fall within the prediction interval are indicated by red circles.
Because of the quadratic mean-variance relation of the exponential distribution it is much
easier to capture high values within the prediction intervals than low ones. A circumstance
that materializes in the fact that exclusively small values are outside the prediction intervals.
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Figure 3: Estimated coefficients of model (17) with gdp;, gdp; and trade;; as covariates.
Time series of sender- (8, left) and receiver-effects (9, right) in the first row. Time series of
estimated coefficients on exogenous covariates (3) in the second row.

The share of real values within the prediction intervals against time is shown on the right
hand side of Figure 5. We cover on average 96% of all true values with our prediction
intervals over all time periods and regard the bootstrap approach therefore as satisfying.
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Figure 4: Fitted exposures, shown as quarterly series (52 time points) in million USD. All

estimated with model (17) with gdp;, gdp; and trade;; as covariates. Four dyads with the
overall highest values are highlighted.

4.3. Comparison to alternative routines

Gravity model: A standard solution to the problem is the gravity model (e.g. Sheldon and
Maurer, 1998). In essence it represents a multiplicative independence model
xioxoj

fiy = T (20)

'Z‘..

The model is simple, easy to implement and very intuitive. In situations where diagonal ele-
ments x; are not restricted to be zero it even coincides with the maximum entropy solution.
Tomogravity model: An extension of the gravity model is given by the tomogravity approach
by Zhang et al. (2003). The model was initially designed to estimate point-to-point traffic
volumes from dyadic loads and builds on minimizing the loss-function

o = argmin {(Au ) (Ap—y)+¢*) % log <M’> } (21)

i#j xioxoj

subject to the non-negativity constraint. Here, the gravity model (20) serves as a null model
in the penalization term and the strength of penalization is given by 4. The approach is
implemented in the R package tomogravity (see Blocker et al., 2014). Zhang et al. (2003)
show in a simulation study, that 1» = 0.01 is a reasonable choice if no training set is available.
In our competitive comparison we optimize the tuning parameter in order to minimize the
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Figure 5: 95% Prediction intervals for the estimated means of model (17) with gdp;, gdp;
and trade;; as covariates, for the most recent network on the left. Prediction intervals in
grey. Real values on the horizontal axis and estimated means on the vertical axis. Bisecting
line in solid black. Predictions (not) covered by prediction intervals in black (red) circles.
Share of real values within prediction intervals as a time series on the right.

overall Ly error with grid search and find 1) = 0.011 to be an optimal value.

Non-negative LASSO: The LASSO (Tibshirani, 1996) was already applied to predict flows
in bike sharing networks by Chen et al. (2017) and works best with sparse networks. Using
this approach, we minimize the loss function

o= g { (A= )7 (A = ¥) 473 ol (22)
i%

where we can drop the absolute value in the penalization term because of the non-negativity
constraint (see Wu et al., 2014 for the non-negative LASSO). In order to use the approach in
the competitive comparison, we optimize the penalty parameter 7 on a grid for the minimum
Ly error and use 7 = 45,483.6. The models are estimated using the R package glmnet by
Friedman et al. (2009).

Ecological regression: In Ecological Inference (see e.g. Klima et al., 2016, King, 2013), it is
often assumed that the observations at hand are independent realizations of a linear model,

16



200

parametrized by time-constant transition-shares f3;;. Define the stacked column sums in ¢
by y! and the stacked row sums in ¢ by y’. Then, the model can be represented as

E[Y Y. =y!] =By’ fort =1,...T (23)

where the (n x N) matrix B, contains the parameters f;;. In the give form, the problem is
not identified for one time period ¢ and it must be assumed that multiple time-points can be
interpreted as independent realizations. Additionally, the model is not symmetric, implying
that the solution to equation (23) does not coincide with the solution to

E[Y.Y.=y!|=B,y. fort=1,..T. (24)

Since, the estimated transition shares are not guaranteed to be non-negative and sum up to
one they must be post-processed to fulfil this conditions. Both models are fitted via least-
squares in R.

Hierarchical Bayesian models: Gandy and Veraart (2017) propose to use simulation-based
methods. In their hierarchical models the first step consists of estimating the link probabil-
ities and given that there is a link, the weight is sampled from an exponential distribution:

In order to estimate the link probabilities p, knowledge of the density or a desired target
density is needed. In their basic model it is proposed to use an Erdos-Rényi model with
p consistent with the target density. In an extension of the model, inspired by Graphon
models, Gandy and Veraart (2018) propose a so called empirical fitness model. Here the link
probability is determined by the logistic function

1

(Xij > 0) = py 1+ exp(—a—z — z;)

(26)

with « being some constant that is estimated for consistency with the target density. For the
fitness variables z;, the authors propose to use an empirical Bayes approach, incorporating
the information of the row and column sums as z; = log(Ze; + ®;e). An implementation of
both models is given by the R package systemicrisk. In order to make the approach as
competitive as possible we use for each quarter the real (but in principle unknown) density
of the networks. Because the results of the method differ between each individual estimate,
we average the estimates and evaluate the combined dataset.
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Method Model overall Ly overall Ly average L SE average Lo SE

Regression (gdp;, gdp;, trade;;)  (17) 3300.242  56.794 63.466 9.246 7.802 1.085
Gravity model (20) 4300.927 79.342 82.710 13.003 10.935 1.232
Tomogravity Model (21) 4241.299 75.760 81.563 12.774 10.442 1.168
Non-negative LASSO (22) 7233.821 127.638 139.112  20.399 17.572 2.150
Ecological Regression, columns  (23) 9785.014 163.422 188.173 24.575 22.573 2.032

(24)

(25)

(26)

Ecological Regression, rows 10776.570  184.636 207.242 27.662 25.438 2.946
Hierarchical, Erdés-Rényi 5328.834 101.639 102.478  17.439 14.004 1.610
Hierarchical, Fitness 5316.036 102.072 102.231 17.912 14.039 1.827

00 3 O U = W N~

Table 4: Comparison of different methods with the BIS Dataset. All values scaled by 100 000
and lowest values in bold.

4.4. Competitive comparison

Again we compare the different algorithms in terms of their L; and L, errors in Table 4.
In the first row of Table 4 we show the restricted maximum likelihood model with the best
predictions from Table 3 and in the following rows, the models introduced in Section 4.3
above are shown. The results can be separated roughly into three blocks. The models that
fundamentally build on some kind of Least Squares criterion without referring in some way to
the gravity model or the maximum entropy solution (ecological regression, and non-negative
LASSO in rows four, five and six) have the highest values in terms of their L; and Ly errors.
Somewhat better are the Hierarchical Bayesian Models (rows seven and eight) that can be
considered as the second block. However, although they provide better predictions than
the models in the first block, we used the real density of the network in order to calibrate
them which gives them an unrealistic advantage. The third group is given by the gravity
and tomogravity model (rows two and three). Those are statistically indistinguishable and
provide considerably better results than the models from the former blocks. Nevertheless,
the regression model that uses exogenous information on trade;; (first row) yields the best
predictions in this comparison.

4.5. Performance of the estimator

We hope to see improvements in the predictions if we include informative exogenous variables
in the model. Informative means in this context, that variation in z;; is able to explain
variation in the unknown X;;. Apparently, including information with a low association
to X;; simply adds noise into the estimation procedure. In this case we expect inferior
predictions as compared to the IPFP solution. We illustrate the properties of the estimator
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Figure 6: Median (solid black) and mean (solid grey) of the relative squared error RSS,(f)
for different levels of .

using a simulation study with the following data generating process

d; ~ N(0,1), v; ~ N(0,1), z;; ~ N(0,1), for i,j =1,...,10 and i # j
pij(B) = exp(6; + v + 24 3) (27)
Xij ~ Exp(pii(5)).

Since the association between z;; and the unknown Xj; is crucial, we vary the parameter
from —4 to 4 and denote with p;;(3) the mean based on 5. For each parameter § we re-run
the data generating process (27) S = 1000 times and calculate for the s-th simulation the
IPFP solution fi,;;(/) and the restricted maximum likelihood solution fi,;;(/5). Based on
that, we calculate in each simulation the ratio of the squared errors

i Xsi' - vsi' 2
2eizi Ko ’f”(ﬁ))Q, for s = 1, ..., 1000.
Zi7§j(Xs,ij _:u's,ij(ﬁ))

This ratio is smaller than one if the IPFP estimates yield a lower mean squared error than the
restricted maximum likelihood estimates and higher than one if the exogenous information
improves the predictive quality in the terms of the mean squared error.

In Figure 6, we show the median (solid black) and the mean (solid grey) of RSSs(f3) for
different values of § as well as a horizontal line indicating the value one (dashed black) and

RSSs(5) =
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a vertical line for § = 0 (dashed black). It can be seen, that the mean and the median of
RSS,(B) are below one for values of 5 that are roughly between —0.5 and 0.5 but increase
strongly with higher absolute values of 5. Apparently, the distribution of RSS,(5) is skewed
with a long tail since the mean is much higher than the median. With very high or low
values of 5, the median of the relative mean squared error becomes more volatile and partly
decreases.

Furthermore, we investigate how well the estimated expectations match the true ones.
By construction, it holds that Ap = E[Y]| = AE[f] and consequently, the regression-based
approach as well as IPFP assume that the sum of realized values equals the sum of the true
expectations. Nevertheless, the moment condition does not imply that E[is;;| = ;. In
order to investigate potential bias, we draw again from

8; ~ N(0,1), v; ~ N(0,1), z;; ~ N(0,1), for 4,5 = 1,...,10 and i # j,

and fix 11;;(8) = exp(d; + v; + z;;3) to be the true expectation and draw and re-estimate
again S = 1000 times from X;; ~ Exp(u;;(5)). Apparently, estimating the true expectations
is a hard task as only sums of random variables with different expectations are available.
Consequently, the variation of the mean estimates is rather high and we report boxplots of
the normalized difference between the true value and mean estimate

_ ((8)si; — pii (B)
S ((B)sis — 57PN, (B)siy)?

and accordingly for /i(3)s,;. In Figure 7 we illustrate three different cases with 8 = 0 (top),
f =1 (middle) and 8 = —1 (bottom). On the left hand side, boxplots for A(f),;; are
shown for the regression-based model and on the right hand side for IPFP. The solid black
line represents zero and the dashed black lines give + 1.96. The results for the case § =0
on the top, match with the previous analysis illustrated in Figure 6 and show that IPFP
identifies the true expectations somewhat better than the regression-based approach when
the exogenous information is non-informative. In such a case, including z;; adds noise in the
estimation procedure, resulting in a greater variance around the true expectations. However,
this changes strongly if z;; is informative. Especially for 3 = —1 on the bottom of Figure
7, some estimates obtained from IPFP are seriously biased because this procedure does not
have the ability to account for the dyad-specific heterogeneity. The regression-based method,
however does a reasonable job in recovering the unknown true expectations.

As,ij (/8)

)
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Figure 7: Boxplots for the normalized differences between the true expectation and the
mean of the estimated ones Ay ;;(3) for § =0 (top), 8 =1 (middle) and § = —1 (bottom).
Regression-based model on the left, IPFP on the right.
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5. Discussion

In this paper we propose a method that allows for network reconstruction within a regression
framework. This approach makes it easy to add and interpret exogenous information. It
also allows to construct bootstrap prediction intervals to quantify the uncertainty of the
estimates. Furthermore, the framework is flexible enough to deal with problems that involve
partial information. For example if some elements of the network are known or if we have
information on the binary network, then we can model the expected values of the matrix
entries conditional this information, simply by changing the routing matrix and the E-Step.

However, we also want to list some shortfalls of the method. An obvious drawback of
the method is its derivation from the maximum entropy principle that tries to allocate the
matrix entries as even as possible and is therefore not very suitable for sparse networks as
long as the sparseness cannot be inferred from the marginals. Furthermore, the estimated
coefficients must be interpreted with care, as they are estimated based on a data situation
with much less information than in usual regression settings. As a last but most important
point, if the association between the exogenous explanatory variable(s) and the unknown
matrix entries is low, the method is likely to deliver predictions that are worse than simple
IPFP. It is therefore highly recommendable to use expert knowledge when selecting the
exogenous dyadic covariates for regression-based network reconstruction.
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A. Estimation with random effects

In order to fit a model of the form

11;(8) = exp(0; +; + 258) = exp(z;0),

4 2 2
<6’> ~ Ny (0, (025 05’})) yfori,j=1,...,n and i # j,
Vi I5~ On

we follow a Laplace approximation estimation strategy similar to Breslow and Clayton (1993)
and fix ¥ to some value Yy, see also Tutz and Groll (2010). The moment condition implies
a restriction for @ but not for ¥ and given some starting value 6y, we can maximize the
penalized log-likelihood (constant terms omitted)

ben(0:00,00) = 3 (= 250~ exp(af (60— 0)} ) — 36745 (90) 87 ")

q€L

subject to the moment condition Ap(@) = y. Therefore, the new optimization problem is
given by

£6:€,C.00, 90) = —pen(0: 00, 60) — € (Au(6) —y) + SIARO) ~ ¥l (29)

Define Z as the (N x1) design matrix for the fixed effects and U as the (N x2n) random effects
design matrix, this allows to write the generic mean as log(p) = Z6 = ZB + U(67,~7)".
Given that we have some estimate of 8, call it 8, we can estimate the variance parameters
¥ with an approximation of the marginal restricted log-likelihood:

L5 - 28)TV(9) (5 - 28) (29)

a(9:01,00) = — log(IV(9)]) — 3 log(1Z7V(9)'2]) 5

where V(9) = (Ddiag{V(X)}'D) '+ UX(9)U”, with D = diag{p(6:)} and diag{ V(X)}~! =
diag{p(61)%} and consequently V(9) = Iy + UX(9)U”. The pseudo-observations y are
given by log(u(6;)) + D' ((6y) — 1(6;)). Estimators can be obtained by iteratively opti-
mizing firstly (28) and secondly (29) in each iteration until convergence.
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Abstract

To capture the systemic complexity of international financial systems, network data is an
important prerequisite. However, dyadic data is often not available, raising the need for
methods that allow for reconstructing networks based on limited information. In this paper,
we are reviewing different methods that are designed for the estimation of matrices from their
marginals and potentially exogenous information. This includes a general discussion of the
available methodology that provides edge probabilities as well as models that are focussed
on the reconstruction of edge values. Besides summarizing the advantages, shortfalls and
computational issues of the approaches, we put them into a competitive comparison using the
SWIFT (Society for Worldwide Interbank Financial Telecommunication) MT 103 payment
messages network (MT 103: Single Customer Credit Transfer). This network is not only
economically meaningful but also fully observed which allows for an extensive competitive
horse race of methods. The comparison concerning the binary reconstruction is divided
into an evaluation of the edge probabilities and the quality of the reconstructed degree
structures. Furthermore, the accuracy of the predicted edge values is investigated. To test
the methods on different topologies, the application is split into two parts. The first part
considers the full MT 103 network, being an illustration for the reconstruction of large,
sparse financial networks. The second part is concerned with reconstructing a subset of the
full network, representing a dense medium-sized network. Regarding substantial outcomes,
it can be found that no method is superior in every respect and that the preferred model
choice highly depends on the goal of the analysis, the presumed network structure and the
availability of exogenous information.
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1. Introduction

In recent years, interest in applying network-based methodology to financial data has strongly
increased (see e.g. Soramaki et al., 2007, Schweitzer et al., 2009, Imakubo et al., 2010, Baek
et al., 2014, Battiston et al., 2016). A huge amount of this research effort is directed to the
study and assessment of systemic risk (see e.g. Gai and Kapadia, 2010, Kaué Dal’Maso Peron
et al., 2012, Billio et al., 2012, Chinazzi et al., 2013, Thurner and Poledna, 2013, Soraméki and
Cook, 2013, Bardoscia et al., 2017 and Caccioli et al., 2018). This focus stems from the fact that
in the aftermath of the financial crisis it became clear that the banking system forms a complex
network with inherent interdependencies and feedback loops. As a consequence, the centrality
and connectedness of a financial institution can be just as important as size for its potential
to wreak havoc on the system overall (Markose et al., 2012, Liu et al., 2015). Battiston et al.
(2012) even suggest to add the term “too-central-to-fail” to the discussion of “too-big-to-fail”
institutions. Given that, investigation of the topologies of financial networks is very important
for regulators, central banks and other institutions concerned with the stability of the financial
system. Although considerable effort is put into modeling system risk, those methods generally
require information from the full network that is most often not observed. This raises the need
for a methodology that allows providing an accurate reconstruction of the networks derived
from the limited information available.

The canonical examples of network reconstruction in finance are exposure networks created
by interbank loans. In these networks, the total assets and liabilities of a given bank are mostly
known, but the actual loans made to other banks, i.e. the binary edge structure (existence or
non-existence of loans) and their corresponding edge weights (loan volume), are unobserved.
Knowledge of the edges and their values is nevertheless crucial to measure the systemic risk in
the exposure network. If one bank fails to meet its’ obligations that could lead its’ creditor(s)
unable to make their obligations which leads to further contagion, potentially affecting all banks
or a large portion of the network. An example of how to process such information, if available,
is DebtRank (Battiston et al., 2012), being a popular metric for assessing systemic importance
in exposure networks based on the values of loans between bank pairs.

Although the reconstruction problem is introduced here as a task that belongs to the realms
of Finance or Economics, it emerges in many different disciplines. In order to get an overview,
from the perspective of Economics, see for example Sheldon and Maurer (1998), Upper (2011)
and Elsinger et al. (2013). The article by Squartini et al. (2018) provides a very broad overview
from a methodological perspective, based on maximum-entropy methods and Statistical Physics
(see also Cimini et al., 2015 and Mastrandrea et al., 2014). In Computer Sciences and Statistics,
a similar problem is often called traffic matrix estimation or network tomography and this
research branch developed its’ own methodological toolkit (e.g. Castro et al., 2004, Zhang et al.,
2003b, Airoldi and Blocker, 2013, Zhou et al., 2016 and Nie et al., 2017). In the given paper,
not all models proposed in different research fields can be included but we have selected the
ones that are feasible and potentially useful for the given data situation.

A good reference point for this paper is certainly the extensive study by Anand et al. (2018).
In their paper, they employ seven different reconstruction methods to 25 different networks. Al-
though we are not that ambitious regarding the variety of use cases, our approach can be seen as
a related paper that focusses on other aspects. First of all, we do not restrict our methodology to
methods that rely only on aggregated row- and column sums but also include density-calibrated
methods and models that are capable of incorporating exogenous covariates. Further, it is tried
to propose regularized least-squares models inspired by the network tomography literature and
new methodology not considered by Anand et al. (2018). Additionally, we provide a more de-
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tailed technical exposition of the models in a manner that is comprehensible for practitioners.
Regarding the evaluation techniques, we separate the evaluation of the binary and valued recon-
struction more clearly and employ measures that are more standard in Statistics and Machine
Learning.

To compare the different models, we use data provided by the Society for Worldwide Inter-
bank Financial Telecommunication (SWIFT, www.swift.com). SWIFT acts as an infrastruc-
ture for financial institutions and enables them to send and receive information about financial
transactions encoded in the form of secure standardized messages. One of the most important
types of messages is the MT 103 single customer credit transfer, representing payments sent
between clients of financial institutions. The MT 103 data under study consist of monthly
bilateral message counts aggregated at the country level between January 2003 and February
2018. Note that the concept of a country here is not limited to independent, passport-granting
states, but also includes territories (e.g. Turks and Caicos Islands), dependencies (e.g. Guernsey
and Jersey) and autonomous constituent states (e.g. Greenland).

The SWIFT network is especially suitable for testing network reconstruction methods be-
cause it is an economically meaningful data set (see Cook and Soramaki, 2014 for an extensive
investigation). Further, the data provides a long time series available for testing with full link
data available. Hence, in this dataset, it is known exactly how well different methods work
allowing to compare different models.

The article is structured as follows. In Section 2 we formalize the problem and give general
notation for the paper. This is followed by a description of the SWIFT data in Section 3. In
Section 4 we introduce the models under study and their evaluation is provided in Section 5.
Section 6 discusses the results and concludes the paper.!

2. Notation

The SWIFT MT 103 messages can be represented as a series of matrices X! = (a:f]) containing
dyadic count data. The elements of X* can be interpreted as directed edge values xﬁj € Ny
among ,j = 1,...,n countries at time points t = 1,...,T. We exclude self-loops from our study
and, therefore, elements z!; are left undefined for i = 1,....,n. Accordingly, within-country
payments are not regarded. We also assume that the number of nodes n is invariant with

respect to time so that at each time point ¢ the number of variables is given by N = n(n — 1).

2.1. Binary Network Structure

Although the binary networks structure is readily available if the valued structure is given,
both aspects of the network need to be modelled separately. To account for this aspect, we also
introduce notation for the binary network structure. Let Z! = (zfj) denote the binary networks,
defined via

ij = I(xfj > 0), for i # j,

"We provide the code online at Github https://github.com/lebachem/lost_edges . Because the used data
set is confidential, the code is not accompanied with the actual dataset but with a “fake dataset” that does not
represent the original data but only the same dimension and a similar density.
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with elements zfj being indicators whether the corresponding entry of the matrix is zero or
greater than zero. Let the density (also called the connectivity) of the network be

1
Dl = N szj, fort=1,..,T
i#j
providing the number of non-zero edges in the network relative to the number of possible edges
at time point ¢. Additionally, we define the number of outgoing edges to be the outdegree and

the number of ingoing edges is measured with the indegree. Formally, the outdegree and the
indegree for node ¢ at time point ¢ are given by

2by = szk, fori=1,...n
kst

2t = g 2 fori=1,..,n.
ki

2.2. Valued Network

Similarly, we are interested in the row and column sums of the valued network, i.e. the valued
in- and outdegree. Other names in the network literature describing the same concepts are the
in-strength and out-strength or the weighted in- and outdegree. Let the ith valued outdegree
and valued indegree be

t t <
Tiq = g Ty, fori=1,..,n
ki

xh, = Zx}fm, fori=1,...,n.
ki

2)

For a more compact formulation, we stack the row and column sums, resulting in a 2n-
dimensional column vector of marginals

t t t ot t \T
V' = (2 -y Tpras Taly ooy Tapy) , for t =1,...,T.

Furthermore, let
t

x' = (zf,, ...,xﬁn,xél...,xi(nfl))T, fort=1,..,T
be an N-dimensional column vector containing the values of the edges (without diagonal ele-
ments) and define the known binary (2n x N) routing matrix A’ such that the linear relation

y' = A% (3)

holds for ¢ = 1,...,T. Note that relation (3) is just a compact way of writing equations (2)
in matrix notation. Henceforth, we will refer to relation (3) as marginal restrictions. The
restriction that all matrix entries are non-negative is referred to as non-negativity constraint. If
we refer to methods that yield stochastic solutions we adopt the nomenclature from Physics and
label a collection of sampled networks as network ensemble (e.g. Bargigli, 2014). In the model
description we will suppress the time-superscript in most representations for ease of notation.
As a general convention, vectors and matrices are given in bold and (with the exception of
the deterministic routing matrix A), random variables are given by upper case and realisations
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Figure 1: Time series of valued edges xfj in the full MT 103 network on a monthly basis.
Messages per edge on the vertical axis, time measured in months on the horizontal axis.
Source: SWIFT BI Watch.

by lower case letters.

3. Data description

The data under study is provided by the Society for Worldwide Interbank Financial Telecom-
munication (SWIFT, www.swift.com) and provides standardized messages called MT 103, rep-
resenting payment transfers. The data is aggregated to the country level and allow to construct
a network x' where the countries are the nodes and the directed, valued edges xﬁj between
them represent the number of messages sent from country ¢ to country j at time point ¢t. The
available database covers T' = 182 time points on a monthly basis, ranging from January 2003
to February 2018.

We restrict our analysis to the n = 203 countries that are existent during the whole ob-
servational period. This includes one entity that is not a country or a territory but represents
international market infrastructure, referring to monetary organizations that operate in many
countries (see the country list in Table 4 of Appendix A). The network including all 203 coun-
tries is set to be the baseline for all models that can deal with “big” networks and is labeled
full network.

In Figure 1 we plot all individual edges of the full network against time. Notably, there
is a great deal of country-related heterogeneity in the data. The time series with the highest
time-averaged amount of messages sent corresponds to the edge United States - China (US-CN)
and is on average almost ten times higher than the second-highest valued edge (United States -
Hong Kong, US-HK). Furthermore, already the yearly 80% quantile of the number of messages
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Figure 2: Summary statistics for the full MT 103 network as monthly time series. Density of
the network (left), share of non-zero marginals y* (middle) and cumulative edge values (right).
Source: SWIFT BI Watch.

within each month ranges only between one and five messages per edge. This implies that the
major share of all messages is sent and received by a small subset of countries characterized by
a high-intensity exchange.

To analyze both, the full network and its’ “dense core” we additionally investigate a reduced
dataset, containing the 59 most important countries. This network is labeled to be the reduced
network. Depending on the month, the reduced network accounts for about 85% up to 91% of
all messages sent in the whole system. In the following, we show descriptive measures for the
full network but in the Annex B the same descriptives are provided for the reduced network.

The structure of the full binary networks z' is summarized in Figure 2. On the left-hand
side, it can be seen that the density of the network decreases steadily from 2006 on whereas,
the development of the total MT 103 messages (right-hand side) follows a clear upward trend.
This pattern implies that increasingly more messages are sent per edge. Similarly, but in
a more modest form, this can also be concluded for the reduced network (see Figure 10 in
the Annex B). The SWIFT data exclusively contains countries that send or receive MT 103
messages. Therefore, each country can only have either a zero out- or indegree. However, if
many countries would be restricted to only receive or send messages, the dimensionality of the
problem could be greatly reduced. This can be investigated by calculating the share of non-zero
marginals y! for each year. The resulting plot is given in the middle plot of Figure 2 and we find
that the low density is not mirrored by a low share of valued marginals. This means that almost
no information about the density can be inferred from the marginals since the vast majority of
them are greater zero. In the reduced network, the density is much higher (about 0.85 averaged
over all months) without any zero marginal.

In Figure 3 the degree structure of the full network is visualized. The first two panels show
the cumulative degree distribution (indegree on the left and outdegree on the right) aggregated
for all months. The realizations between the monthly minimum and maximum values are
indicated in grey. It can be seen that both, the indegree as well as the outdegree grow close
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to linear and are, therefore, almost uniformly distributed. This is a rather uncommon finding
and does not match with common structures like scale-free networks (Barabdsi and Albert,
1999; Albert and Barabdsi, 2002) or random graphs (Erdés-Rényi graphs, Erdos and Rényi,
1959). This is consistent with the findings of Cook and Soramaki (2014) who noted that the
data cannot appropriately be described with standard power-law distributions. Again similar
and even more pronounced results can be found for the reduced network, shown in Figure 11 of
Annex B.

The right panel of Figure 3 plots shows for all nodes and all months the indegree versus the
outdegree. This can be thought of a check how “symmetric” the network is and it appears that
there is a strong positive (non-linear) relationship between the in- and outdegrees.

In some models, exogenous data can be incorporated. Based on the empirical investigation
by Cook and Soramaki (2014), we assume it to be plausible that financial activity in a given
country is related to its’ economic size and consider the annual Gross Domestic Product (GDP,
in current USD Billions) as a valid covariate. The data is provided by the International Monetary
Fund (IMF) and we denote the GDP of country i by gdp;.

4. Models for Network Reconstruction

4.1. Overview

Since almost none of the zeros in the network can be inferred from the marginals, most of the
models that provide edge probabilities rely on two crucial assumptions: (i) The true density
is known and (ii) the row- and column sums of the valued edges carry information about the
binary structure. Both points are highly related and evolve around the basic problem that
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Method Abbreviation Section  Full netw.  Calibrated
Maximum-Entropy IPFP 4.2 X
Maximum-Entropy, GDP IPFP-GDP 4.2

Maximum-Entropy, lag. values IPFP-LAG 4.2

Gravity Model GRAVITY 4.3 X

Dens. cor. Gravity Model DC-GRAVITY 4.3 X X
Dens. cor. Gravity, GDP DC-GRAVITY-GDP 4.3 X
Dens. cor. Gravity, lag. values DC-GRAVITY-LAG 4.3 X
Tomogravity Model TOMOGRAVITY 4.4

LASSO LASSO 4.5 X X
Hierarchical Erdos-Rényi Model H-ER 4.6 X X
Hierarchical Fitness Model H-FIT 4.6 X X
Minimum Density MINDENS 4.7 X

Table 1: Summary of reconstruction methods used in this article together with abbreviations,
their ability to fit the full network (Full netw.) and whether calibration to the true density is
needed (Calibrated).

knowledge of the marginals is not sufficient to provide information about the edge probabilities
(Gandy and Veraart, 2017, Proposition 3.1). This fundamental identification problem can be
overcome only by adding additional constraints (i.e. knowledge of the density). For the sake of
this article, we assume the true density to be known. In practice, this implies that models that
are found to perform very well in our comparison might not do so with an incorrectly specified
density. Given knowledge about the true density, the second assumption is less problematic
and, depending on the presumed structure of the network under study, it can be plausible that
the marginals provide information that helps to determine the edge probabilities.

Another issue that complicates network reconstruction is the high dimensionality of the full
network. With n = 203 nodes, the number of dyads amounts to N = 41006. This brings many
methods to their computational limits. In the reduced network, the problem greatly simplifies
as N shrinks to 3422 which allows to apply almost all methods considered in this paper. An
exception is the density-corrected directed weighted configuration model (DWCM) by Bargigli
(2014) that is not considered in this paper because the algorithm failed to converge even in the
small network. In the model description, we will mention which methods are computationally
tractable in the full network and in case they are not, they are only applied to the reduced
network.

All methods used are summarized in Table 1, including their names, abbreviations and
references to the corresponding sections with a detailed description. Additionally, it is shown
whether the methods are applied to the full network and whether knowledge of the true density
is needed to calibrate the models.

4.2. Iterative Proportional Fitting

A very simplistic, but nevertheless powerful method to reconstruct dense networks is given by
the iterative proportional fitting procedure (IPFP, Deming and Stephan, 1940, Fienberg et al.,
1970). The algorithm has gained much attention in the matrix reconstruction literature under
the name maximum-entropy method because it allows for estimating the parameters of the
maximum-entropy probability distribution (the methodological backbone of many reconstruc-
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tion tasks, Squartini et al., 2018).

In the Statistics literature, the procedure is originally intended to provide maximum likeli-
hood estimates for parameters of log-linear models in contingency tables (Bishop et al., 1975,
Haberman, 1978, 1979). In the given case, this interpretation is convenient because it allows
for a specific interpretation of the outcomes as the maximum likelihood estimates for the ex-
pectation of a Poisson-distributed random variable

Xij ~ Poi(pi), for i # j, (4)

with log-linear expectation E[X;;] = pi; = exp{d; + v;}. The two parameters d; and 7; corre-
spond to row- and column-effects. Furthermore, the model provides a model-based possibility
to calculate the probability of observing a value X;; greater than zero:

Dij = IFD(X” > 0) =1- P(X” = 0) =1- exp{fuij}, for 4 ;é 7.

However, with high values for X;;, the probabilities approach zero exponentially fast, meaning
that for high marginals most probabilities will be almost or numerically even equal to one.

The model is a dense reconstruction method that provides edge values for all rows and
columns with valued marginals. Besides this drawback, the model has the merit of being com-
putationally efficient (see the R package ipfp by Blocker et al., 2014) and due to the construction
of the algorithm, it is guaranteed that the row- and column sums of the predicted entries match
the observed marginals exactly.

In Lebacher and Kauermann (2019) the IPFP model from above is extended to incorporate
informative dyadic exogenous information, which is labeled here as Cj;. In particular, the
covariates C;; can be included in the log-linear expectation

E[X:|Ci; = cij] = pij = exp{d; +v; + ¢i;8}, for i # j.

If the association between C;; and the unknown Xj; is high, the prediction accuracy increases
relative to the standard IPFP solution. However, this approach comes at a price since model
fitting is based on constrained non-linear optimization making computation significantly more
demanding than standard IPFP. Furthermore, only dyadic covariates have the potential to
increase the predictive power but in practice often only monadic information is available. We
take a pragmatic approach and use a transformation of the GDP values of countries ¢ and j
that is not linearly separable and can be interpreted as dyadic overall GDP, defined through:

cij = log(gdp; + gdp;), for i # j. (5)
This yields the expectation
E[X;5|Cij = cij] = pij = exp{d; + 3} + (gdpi + gdp;)", for i # 5.

To test the power of the model in situations where a covariate with a strong association is
available, we also include a logarithmic transformation of the lagged edge values:

e =log(1+a!;1), for i # j. (6)

Estimation is pursued as described in Lebacher and Kauermann (2019), with a constrained
Poisson likelihood. In the following, the IPFP-type models using GDP and the lagged variables
are denoted IPFP-GDP and IPFP-LAG, respectively.



221

4.3. Gravity Models

Gravity models are at the heart of many methods related to the analysis of network flow data
(Kolaczyk, 2009). Besides their successful application to economic trade data (Disdier and
Head, 2008, Head and Mayer, 2014) they are also among the preferred models for network
tomography in Computer Sciences (Vardi, 1996). Network tomography relates to a problem
that often appears when analyzing computer networks. Here, the individual edge loads are
assumed to be known but the flow is allowed to intersect the nodes in the network. The task is
then to provide accurate predictions for flows between arbitrary nodes. Very often the gravity
model is found to be among the best algorithms to solve this problem (Zhang et al., 2003a).
Although the formulation of the problem seems to be very different compared to the network
reconstruction task, it leads to the same mathematical structure.

From a methodological point of view, the gravity model is simply a special case of the
IPFP model discussed above and in fact, the gravity model is the immediate maximum-entropy
solution in each network reconstruction problem where self-loops are allowed (Squartini et al.,
2018, Sheldon and Maurer, 1998). Mathematically, the model builds on a simple multiplicative

structure
TieLej

fuij = , for i # 7, (7)
with zee representing the sum over all valued in- or outdegrees. Though simple in structure
and fast to compute, the model has two main drawbacks. First, the model yields biased results
if the diagonal elements are restricted to be zero because then the row and column sums of the
predictions do not match the marginal restrictions exactly. However, in big networks, the bias
is often negligible. Second, as in all maximum-entropy models, the approach relies on inferring
sparseness from the marginals and predicts exclusively non-zero matrix entries if all marginals
are greater than zero.

Because economic and financial networks most often exhibit a density smaller than one,
Cimini et al. (2015) proposed a model that is designed for reconstructing the binary structure
of networks with limited information available. Basically, they extend the gravity model from
above towards a two-step procedure. In the first step they propose to model the probabilities
of observing an edge with a parameter o such that they match with the pre-defined targeted
density

D:iZP(X">O~d):i27&XWj 8)
N T N T dady

where the parameters x; and 1); are node-specific fitness variables. Following the idea that the
marginals carry information about the binary network structure, they are typically set equal
to the marginals (i.e. x; = %j and ¢; = x,;) or some transformation of them. Another
interpretation is that the economic strength determines the fitness of a country or previous
bilateral exchanges influence the fitness of dyadic relations. We include the transformed GDP
values and set x;1; = ¢;; as defined in equation (5). For the logarithmic lagged exchange we
set x;; = log(1.1+ xi;l) as fitness variables. Note that adding 1.1 instead of 1 prevents the
probabilities from being zero irrespective of « in cases with xfj_l =0.

The parameter & can be found by any precise root-search program. In applications with
larger dimensionality, the values for & might become numerically very small and we use a genetic
algorithm (implemented in the R package GA by Scrucca, 2013) to overcome this problem. Given
an estimate for « that satisfies (8), Cimini et al. (2015) propose to sample binary networks
network ensembles with variables Z;; and use a density-corrected version of model (7) for the

10
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edge values
~ _1 . .
frij = %I(éij > 0), for i # j. (9)
In the following we refer to the density-corrected gravity model by DC-GRAVITY and the mod-
els with GDP and lagged variables are abbreviated by DC-GRAVITY-GDP and DC-GRAVITY-

LAG.

4.4. Tomogravity model

An important model candidate from the network tomography literature is proposed by Zhang
et al. (2003b). In their article, the problem of learning origin-destination flows from link load
data in IP networks motivates the estimation of a traffic matrix. The authors regard the
problem as an ill-posed regression problem that must be regularized with the Kullback-Leibler
divergence from an independence model. The predicted values can be found by minimizing the
loss-function

L) = (An—y) (A~ y) + 023 10 (“) (10)

it TieTej
with respect to p = (12, ---7/~Ln(n—1))T and subject to the non-negativity constraint. The first
term is simply the sum of squared deviations from the marginals. In the penalization term, the
gravity model serves as a null model together with a regularization parameter 1. Note that
the model is a dense reconstruction technique and does neither provide probabilities nor do the
predictions match with the observed marginals.

Although this appears to be an appealing combination between the successful gravity model
and information-theoretic reasoning, the procedure is so far seldom applied to the reconstruction
of networks. The approach is implemented in the R package tomogravity (see Blocker et al.,
2014). The implementation is computationally expensive and we, therefore, apply this model
only for the reduced data set. Zhang et al. (2003b) show in a simulation study, that the
performance of the algorithm is not very sensitive to varying values of ¥ and as a rule of thumb
they recommend to use ¢ = 0.01 if no training data are available and we follow their rule in
the application section.

4.5. LASSO Model

Regarding the network reconstruction problem again as an ill-posed regression problem, it
might not even be necessary to make use of a new penalization term. Instead, the least absolute
shrinkage and selection operator (LASSO) approach proposed by Tibshirani (1996) can be
employed, which uses a Lj penalty to enforce sparsity in the model. Although approaches with
some kind of regularization are common in network tomography (Castro et al., 2004) the LASSO
is applied rather rarely for network reconstruction. An exception is given by Chen et al. (2017)
who propose a LASSO-type model to predict flows in a bike-sharing network from station traffic
(number of ingoing and outgoing bikes at each station).

Technically, the quadratic deviation from the marginals is combined with a regularization
term that penalizes the sum of the predicted matrix entries, yielding the following loss function

L(p) = (Ap—y) (Ap—y)+7Y_ |ugl. (11)
i

By the non-negativity constraint, the absolute value in the penalization term can be dropped.
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The R package glmnet by Friedman et al. (2009) allows for efficient and scalable estimation.

In principle, the model might appear to be attractive because the regularization shrinks some
predictions exactly to zero. However, it is not clear how to derive the penalization parameter
7 because cross-validation aiming at the marginals does not lead to satisfactory results. Chen
et al. (2017) propose to use a training data set - information that might not always be available.
To use the approach nevertheless in the competitive comparison without a training set available,
we optimize the penalty parameter 7 on a grid such that the number of non-zero coefficients is
consistent with the real density.

Note further, that the predicted marginals are, by construction, always be smaller than the
observed ones because of the shrinkage property of the LASSO. On the other hand, the model
has much potential for exploratory analysis by investigating the path plots of the coefficients,
i.e. the values of the coefficients against increasing values of .

4.6. Hierarchical Fitness Models

A central finding of the study by Anand et al. (2018) states that no method works equally well
for different reconstruction tasks. Based on this insight, Gandy and Veraart (2017) proposed
that a construction method should be adjustable to topological characteristics and especially
to the density of a network. To do so, they present a hierarchical model designed for the
reconstruction of financial networks. In the hierarchy of the model, the first step consists of
estimating the edge probabilities consistent with the target density D. As a baseline model, the
authors propose an Erdos-Rényi model with

pij = p, for i # j,

treating each edge to be equally likely. Given the obtained set of probabilities, edge weights are
sampled from an exponential distribution with common expectation

n=E[X;j|Z;; = 1], for i # j. (12)

The sampling algorithm is constructed such that the sampled networks provide stochastic net-
work ensembles but each realization is consistent with the marginal restrictions.

Additionally, they proposed a model that is inspired by fitness-based approaches similar as
in equation (9). In this model, the edge probability is determined by the logistic function

1
1+ exp{—a —10g(zei + is) — 10g(ej + Tje)}

pij(a) ) for 4 7£ jv (13)
with o being some constant that is estimated for consistency with the target density. In this
model, the marginals serve as log-transformed fitness variables. In principle, any kind of vari-
ables could be used for the fitness model but only the marginals are yet implemented in the
R package systemicrisk. The software implementation is very efficient and not overstrained
by the dimensionality of the full network. Nevertheless, the algorithm is in trouble with the
high values of the marginals. In the given application the marginals are scaled down in the
estimation procedure and the predictions are then rescaled again.

By construction, the model puts much more emphasis on the binary network structure than
on the prediction of the edge values. This is because the marginals are used directly only in
the first step to estimate the edge probabilities. In the second step, all edge values are assumed
to share the same expectation (12) and the marginal constraints enter only indirectly as a
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restriction.
In the comparison, the hierarchical Erdés-Rényi model is abbreviated by H-ER and the
hierarchical fitness model is called H-FIT.

4.7. Minimum Density

Anand et al. (2015) noted that the problem of binary network reconstruction can be viewed
as finding a solution between two extreme points in the space of possible networks. Either,
a maximally dense solution is searched for (maximum-entropy approaches), or it is the goal
to find a solution with a minimal number of non-zero edges that are still consistent with the
marginal constraints. Given that financial networks are typically sparse and disassortative,
maximum-entropy solutions almost certainly provide an incorrect binary network structure.

In principle, if the density of the network is driven to the lowest level possible, the allocation
of the edge weights might even become a simple task because of the small number of possibilities
that are left. In its original form, the loss function of the minimum density model is simply
given by the number of non-zero edges

L) = 2 (s > 0),
i#j

subject to the marginal constraints and the non-negativity constraint. The loss function is
not differentiable and direct minimization is computationally expensive. To circumvent this
obstacle, Anand et al. (2015) relax the problem by giving up the assumption that the marginal
constraint must hold exactly and shift the focus on the quadratic deviations from the marginals.
Then, the authors propose an algorithm that implements two Markov processes, one adds new
edges and weights and the second one deletes edges. Initialized with an arbitrary network the
algorithm iterates as long as the loss function does not decrease any more together with a
sufficient fit for the marginals.

The proposed algorithm is stochastic with non-unique solutions and generates ensembles
of low-density networks. Typically, the realization with the lowest density is taken to be the
optimal estimate (called MINDENS henceforth). By definition, the method does not rely on
knowledge of the real density D. Therefore, it is appropriate to regard the model as a lower-
bound (in the space of feasible networks that satisfy the marginal constraints) instead of viewing
it as an accurate reconstruction. This also has implications for the edge values, because a
minimal number of edges in the system leads to maximal concentration of the edge values on a
few nodes.

5. Evaluation

5.1. Binary Network Reconstruction

We evaluate the quality of the binary network reconstruction with different measures. For
models that provide edge probabilities, we use the area under the curve (AUC) of the receiver-
operating characteristic (ROC) curve and the precision-recall (PR) curve (see Grau et al., 2015).
We regard both measures as complementary for model evaluation. While the ROC curve is, so
to speak, ignorant about how good we predict either ij =1lor ij = 0, the PR curve describes
how well the models do in predicting Zitj = 1. This is relevant because in low-density networks
it is simpler to predict a zero than a one. Further, we look at the Bier score decomposition
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proposed by Murphy (1973) (see also Siegert, 2017). For each time period ¢ and model, we
obtain K different probabilities p}; € {p], ..., P} With nj, equal probabilities that correspond
to edges 2z} for k =1,..., K'. The Bier score decomposition is given by

1 LU 2 Koot 2
B =y - =3 (A -) + X (F-p) cpa-my,
N Z#J el N nk P} N nk W

REL; RES,

The reliability RE L; measures the distance between the estimated probabilities and the average
real frequencies, with 0 being the best value that can be achieved. This means that a low
reliability actually is the preferred outcome. The term labeled UNC; is called uncertainty
and gives the variability of the edges in the sample. Resolution (RES;) gives the difference
between the different share of empirical probabilities for each of the K! categories and their
overall average. Hence, it is a measure for the ability to discriminate between zero and one. A
higher value indicates a better resolution. If the ability to discriminate is at is maximum, all
probabilities are either one and zero, in this situation it holds that RES; = UNC}. We report
these measures aggregated for all years and show the aggregated difference U NCy — RE'S; which
can be interpreted as the reduction of the uncertainty due to resolution.

We follow Squartini et al. (2018) and provide graphical representations of the reconstructed
networks in the Appendices C.1 and D.1. There, the reconstructed adjacency matrices (based
on binarization with a threshold according to the true density) for the most recent full and
reduced network are shown.

We are not only interested in the prediction of individual edge occurrences but also in the
quality of the reconstructed network topology. Given the strong heterogeneity in the network,
the degree distribution can be regarded as a very important measure for the binary structure.
We evaluate the fit of the outdegree distribution using the square root of the mean squared
error of the real and the reconstructed outdegree distribution

2
1 n n n
RMSE!, = ;Z {Zl(éf, =j) = Iz, :j)} Jfort=1,..,T
1 Ui=1 i=1

j=

and correspondingly for the indegree.

To make the models comparable, we calibrate all estimates to the same target density. For
models that are not scaled to the real density, we use a pragmatic approach and take the highest
DN (the number of edges in the real network) estimates to be one and all other estimates to
be zero while in the probability-based models, we use the highest DN probabilities to predict
a one.

A visual impression of the quality of the degree reconstruction is given in Appendix C.2,
plotting the predicted outdegree (indegree) against the real outdegree (indegree) for the most
recent network observation of the full network and in D.2 for the reduced network.

5.1.1. Full Network

In the full network, four different models can be compared using AUC values and the decomposed
Brier score. These four models include the iterative proportional fitting model from Section 4.2
(IPFP), the density-corrected gravity model by Cimini et al. (2015) from Section 4.3 (DC-
GRAVITY) and the two hierarchical models from Section 4.6, with edge-probabilities coming
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Figure 4: Evaluation of probabilities in the full network. Time series of the area under the
curve (AUC) values for receiver-operating-characteristics (ROC, left panel) curve and precision-
recall (PR, right panel) curve for the IPFP model, the degree corrected Gravity model (DC-
GRAVITY), the hierarchical Erdés-Rényi model (H-ER) and the hierarchical fitness model.
Source: SWIFT BI Watch.
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Figure 5: Decomposition of the Brier score for the full network into reliability (REL) and
remaining uncertainty after subtracting resolution (UNC-RES) for the IPFP model, the Gravity
model (GRAVITY), the degree corrected gravity model model (DC-GRAVITY), the hierarchical
fitness models (H-ER, H-FIT). Uncertainty (UNC) as a dashed line.

Source: SWIFT BI Watch.

either from the Erdos-Rényi (H-ER) or the fitness model (H-FIT). In Figure 4, we plot the AUC
values for the ROC (left panel) and PR (right panel) curves against time. In Figure 5 we show
the decomposition of the Brier score, with uncertainty (UNC) as a dashed vertical line.

For the reconstruction of the degrees, additionally the Gravity model (GRAVITY) from

15



227

Section 4.3, the LASSO from Section 4.5 and the minimum density (MINDENS) method of
Section 4.7 enter the comparison. This is visualized in Figure 6 with the root mean squared
errors for the outdegree in the left panel and for the indegree on the right. In both figures, the
abbreviations of models are ordered to approximately match the time-averaged height of the
respective measures.

Edge Probabilities

The hierarchical Erdés-Rényi (H-ER) model performs worst in the left panel and second-worst
in the right panel of Figure 4. Seemingly, the assumption of equal probabilities for all dyads is
strongly violated in this network. This relates to the discussion in Section 3 where we showed
that the patterns of the degree distribution do not match with the Erdos-Rényi model.

However, also the IPFP model that allows for differing edge probabilities in its’ Poisson
interpretation does not perform satisfactorily and we see a declining trend of the prediction
accuracy with time. As a consequence, the AUC values of the ROC curve decrease strongly
and when evaluated with the PR curves, the model even provides the worst outcomes. This is
a result of the growing values of the marginals, implying that the IPFP probabilities become
very close to one or even numerically equal to one, leading to a loss of variation among the
probabilities.

The two winners of this comparison, the density-corrected gravity model (DC-GRAVITY)
and the hierarchical fitness model (H-FIT), give very similar accuracy measures in both panels
of Figure 4. The AUC values for the ROC curves provided by the H-FIT model are slightly
better than the ones of the DC-GRAVITY model and the other way round when evaluated with
the PR curves. The strong similarity of the models’ predictive power is, in fact, intuitive and
results from the comparable choice of functions for determining the edge probabilities.

These results can be supported by the decomposition of the aggregated Brier score shown in
Figure 5. The DC-GRAVITY model and the H-FIT model both provide a very low reliability
measure and a comparatively high resolution. Interestingly, they are closely followed by the
H-ER model that does not appear to be much worse with respect to the Brier score. Different
from that, we find that the IPFP model has a low resolution and a high reliability measure,
indicating that provided probabilities deviate strongly from the real ones and the ability to
separate the predictions into “0” and “1” is rather low. Again this is because the IPFP model
is not calibrated and many predictions are numerically just equal to one.

Degree Structure

Turning to the reconstruction of the degree structure, the different scaling of the two panels in
Figure 6 shows that it is simpler to reconstruct the indegrees as compared to the outdegrees.
The minimum density solution (MINDENS) marks an extreme case, resulting in the worst
reconstruction of the out- and indegree structure. However, MINDENS has the comparative
disadvantage of not being calibrated to the density and predicts far fewer edges than present in
the real networks. Therefore, fewer edges can be allocated to certain nodes. With the exception
of the United States, the model predicts no out- or indegrees above 65 at all (see also Figure 24
in the Annex C.2).

The LASSO provides the most unstable behavior and exhibits a high variance. Although
the model is calibrated to the real density, the edge reconstruction is second-worst and delivers
unsatisfactory reconstructions for the out- and the indegree. In Figure 25 of Annex C.1 it can
be seen that the reconstructed degrees look almost random and Figure 18 indicates that the
model is not able to make efficient use of the provided information on the row and column sums.
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Figure 6: Time series of root mean squared error (RMSE) for the reconstruction of the outdegree
(right) and the indegree (left) of the full network for the IPFP model, the Gravity model
(GRAVITY), degree corrected gravity model model (DC-GRAVITY), the hierarchical fitness
models (H-ER, H-FIT), the LASSO model and the minimum density model (MINDENS).
Source: SWIFT BI Watch.

The performance of the hierarchical Erdés-Rényi model (H-ER) shows that ignorance about
the marginals for predicting the binary structure also can lead to unsatisfactory outcomes. The
H-ER model “over-estimates” the out- and indegree for countries with medium-sized degrees
and “under-estimates” the out- and indegree for countries with high degrees. This is clearly
a result of the assumption that all edges are equally likely (as long as consistent with the
marginals), leading to a random block structure in the network.

The Gravity model (GRAVITY) and the IPFP model make the best use of the information
provided by the marginals to reconstruct the outdegree but not for the indegree. Their predictive
quality concerning the degrees is almost identical and it is hard to distinguish both models in
the left panel (IPFP overlays GRAVITY in both plots).

The hierarchical fitness model (H-FIT) together with the degree corrected gravity model
(DC-GRAVITY) perform slightly worse than the GRAVITY and IPFP models concerning the
outdegree but can be said to be the winner in the competition for the indegree reconstruction.

5.1.2. Reduced Network

In the reduced network, a greater variety of models can be investigated. Essentially, we can
add four additional models in our comparative study, by extending the degree corrected gravity
model (DC-GRAVITY) from Section 4.3 with the usage of GDP (DC-GRAVITY-GDP) and
the lagged values (DC-GRAVITY-LAG) for determining the edge probabilities as well as the
extended IPFP approach from Section 4.2 using the GDP values (IPFP-GDP) and the lagged
values (IPFP-LAG) a covariates. In the degree reconstruction part, additionally the TOMO-
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Figure 7: Evaluation of probabilities in the reduced network. Time series of area under the
curve (AUC) values for receiver-operating-characteristics (ROC, left panel) and precision-recall
(PR, right panel) for the IPFP model, the degree corrected gravity model (DC-GRAVITY) with
covariates (DC-GRAVITY-GDP, DC-GRAVITY-LAG), the hierarchical Erdés-Rényi model (H-
ER), the hierarchical fitness model (H-FIT) and the IPFP-based models with covariates (IPFP-
GDP, IPFP-LAG).

Source: SWIFT BI Watch.

GRAVITY model (Section 4.4) is considered. The MINDENS model, however, is not considered
for the reduced network because it is very dense.

Edge Probabilities

The IPFP probabilities are among the worst in both panels of Figure 7. Similar to the full
network, the AUC values for the ROC curve are strongly decreasing with time. An almost
parallel pattern can be found for the IPFP-based reconstruction with GDP values (IPFP-GDP).
Although the exogenous information helps to improve the performance relative to IPFP, the
outcome is still very bad in comparison to the other models.

While the information on the GDP nevertheless improves the fit in the IPFP-based models,
this is not the case for the density-corrected gravity model (DC-GRAVITY). It turns out that
the version that includes GDP values (DC-GRAVITY-GDP) performs even worse than without
(DC-GRAVITY) with both measures. Again, we find that the DC-GRAVITY and the H-FIT
model behave very similar.

The two models with lagged variables as covariates, the DC-GRAVITY-LAG model and
the IPFP model combined with the lagged values (IPFP-LAG), have the unfair advantage of
incorporating much more information than all others and reach outstanding AUC values in both
panels of Figure 7 (both lines overlay in the plots). In Figures 30 and 35 it can be seen that
the reconstructed network based on the lagged covariates is almost identical to the original one,
showing that having observed an edge in ¢t — 1 is almost deterministic for predicting an edge in
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Figure 8: Decomposition of the Brier score for the reduced network into reliability (REL)
and remaining uncertainty after subtracting resolution (UNC-RES) for the IPFP model, the
degree corrected gravity model (DC-GRAVITY) with covariates (DC-GRAVITY-GDP, DC-
GRAVITY-LAG), the hierarchical Erdés-Rényi model (H-ER), the hierarchical fitness model
(H-FIT) and the IPFP-based models with covariates (IPFP-GDP, IPFP-LAG). Uncertainty
(UNC) as a dashed line.

Source: SWIFT BI Watch.

The decomposition of the Brier score in Figure 8 mirror the results discussed above. However,
it is striking that the IPFP-LAG model has a much higher reliability measure in comparison
to the DC-GRAVITY-LAG model which results from not being calibrated to the real density.
Further note that the three models IPFP, IPFP-GDP and DC-GRAVITY-GDP have a resolution
score of almost zero indicating that the knowledge GDP does not contribute much information
about the binary edge structure.

Degree Structure

Given that the reduced network is very dense, the degree structures might be more easily recon-
structed as compared to the sparse full network. However, the predicted edges still need to be
allocated correctly to the corresponding nodes which are not a trivial task. This becomes obvi-
ous when regarding the visualization of the degree reconstruction in Supplementary Material.
There it can be seen that the reconstruction of the binary degrees is partly very bad. Quantified
with the root mean squared errors as shown in Figure 9, the models can be compared directly.

In both panels of Figure 9 it can be seen very clearly that the models that incorporate the
lagged matrix entries (IPFP-LAG, DC-GRAVITY-LAG) lead to degree reconstructions that
are superior in every respect. Except for some spikes, that might reflect a kind of seasonality
pattern, the root mean squared errors are close to zero.

If no information from exogenous covariates is available, the DC-GRAVITY model is found
to perform very well for the indegree. Especially regarding the outdegree, almost all methods
(amongst others H-FIT, GRAVITY, IPFP) give good and very comparable results.

Again the LASSO proves to be a bad choice for reconstructing the degree structure, exhibit-
ing a high variance over time as well as large deviations from the actual degrees.
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Figure 9: Time series of root mean squared error (RMSE) for the reconstruction of the out-
degree (right) and the indegree (left) of the reduced network for the IPFP model, the Grav-
ity model (GRAVITY), the degree corrected gravity model (DC-GRAVITY) with covariates
(DC-GRAVITY-GDP, DC-GRAVITY-LAG), the hierarchical Erdés-Rényi model (H-ER), the
hierarchical fitness model (H-FIT), the IPFP-based models with covariates (IPFP-GDP, IPFP-
LAG), the LASSO model and the TOMOGRAVITY model.

Source: SWIFT BI Watch.

5.2. Valued Network Prediction

The mechanisms that determine the edge probabilities might differ fundamentally from the ones
that lead to certain edge values. Additionally, some models are restricted to the prediction of
edge values and the prediction of binary networks constructed with threshold values is not the
usage they are originally built for. Therefore, we now pay attention to the predictive quality of
the valued reconstruction in terms of the Lq errors

Ly = |weij — figl, for t =1,..,T
i#j

and the Ly errors

Lg = Z(wt’i]‘ — ﬂt,ij)27 for t = 1, ...,T.
i#]
These measures are regarded in terms of overall errors aggregated over all time points as well
as their monthly averages and the corresponding standard errors.
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Method overall L overall Ly  average L SE average Lo SE
IPFP 48,443.070 229.987 266.171 68.568 16.225 5.246
GRAVITY 47,971.710 211.125 263.581 68.321 14.886 4.843
DC-GRAVITY  51,595.870 239.899 283.494 70.855 16.917 5.495
LASSO 452,296.700 824.632 2,485.147  778.114 58.177 18.807
H-FIT 67,171.460 479.524 369.074 100.739 33.669 11.425
H-ER 67,282.440 481.793 369.684 101.241 33.810 11.534
MINDENS 90,610.240 459.455 497.858 114.582 33.021 8.361

Table 2: Evaluation of the reconstructed valued full MT 103 networks, Method in the first
column. Aggregated L; and Ly errors in columns two and three as well as average errors and

their standard errors over time in the last four columns. Minimal values in bold.
Source: SWIFT BI Watch.

Method overall L overall Lo average Ly SE average Lo SE

IPFP 39, 087.480 216.339 214.766 54.409 15.270 4.912
GRAVITY 38,646.430 203.317 212.343 54.268 14.321 4.709
DC-GRAVITY 41,470.410 232.719 227.859 55.489 16.396 5.378
TOMOGRAVITY 39,691.210 215.081 218.084 55.635 15.182 4.878
LASSO 290, 061.700 1,042.029 1,593.746 486.963 73.577 23.569
H-FIT 55,979.590 471.112 307.580 83.433 33.426 10.136
H-ER 56,071.170 471.710 308.083 83.580 33.460 10.178
DC-GRAVITY-GDP 39,759.120 232.127 218.457 53.322 16.337 5.415
DC-GRAVITY-LAG 40, 110.850 232.127 220.389 53.532 16.351 5.373
IPFP-GDP 38,231.110 214.741 210.061 54.639 15.018 5.290
IPFP-LAG 4,137.484 34.178 22.859 11.523 2.128 1.391

Table 3: Evaluation of the reconstructed valued reduced MT 103 networks, Method in the first
column. Aggregated L1 and Lo errors in columns two and three as well as average errors and
their standard errors over time in the last four columns. The last four rows give models with

exogenous information included. Minimal values in bold.
Source: SWIFT BI Watch.

5.2.1. Full Network

In Table 2, it can be seen that the two dense reconstruction models IPFP and GRAVITY give
the best reconstruction evaluated with the L; and Lo errors with the GRAVITY model being
slightly ahead. The third-best prediction quality is delivered by the DC-GRAVITY model. It
can be inferred that the risk of guessing the wrong edges to be zero or one (and placing a
high weight or no weight to the false edges) strongly counterweights the seeming disadvantage
of the dense reconstruction methods. This effect is pronounced in the MINDENS model and
even more so in the LASSO model that comes with extremely high errors. However, also the
hierarchical fitness model (H-FIT), one of the best models for binary network reconstruction
is found to provide edge value predictions that are by far worse compared to the GRAVITY
solution.
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5.2.2. Reduced Network

In the reduced network, we conclude that IPFP, the GRAVITY model and the TOMOGRAV-
ITY model results in very similar aggregated L; and Lo errors. These models are closely
followed by the DC-GRAVITY-GDP model. The hierarchical models (H-FIT, G-ER) perform
comparable and by far better than the LASSO.

Models that include exogenous information are separated and given in the last four rows
of Table 3. Among these models, the second-best result is given by the IPFP-GDP model,
showing that the GDP values provide useful information that improves the quality of the edge
value reconstruction, for example, relative to IPFP or the GRAVITY model. The IPFP model
that incorporates lagged edge values (IPFP-LAG) as covariates performs outstandingly well.
But again it might unrealistic to assume the availability of lagged data points. Interestingly,
both density-corrected gravity models with exogenous covariates (DC-GRAVITY-GDP, DC-
GRAVITY-LAG) are only slightly better than the DC-GRAVITY model. This can be explained
by the fact, that the exogenous information is only used to determine the edge probabilities.

6. Discussion

In this paper, we have compared different models for network construction using the SWIFT
MT 103 networks. The models are compared along different dimensions, including the accuracy
of edge prediction, degree reconstruction, and edge value estimation. Overall, four conclusions
that can be drawn from this competitive comparison.

(i) The task of reconstructing edge values differs fundamentally from the task of estimating
edge probabilities. Technically, this is very intuitive because the marginals give exclusively infor-
mation about the edge values and all approaches that output edge probabilities are necessarily
dependent on further restrictions (the real density).

Even if the true density is assumed to be known, no model emerged that can be said to
be great in achieving outstanding predictions of the edge probabilities and their values. This
conclusion is also in line with the findings of the extensive comparison by Anand et al. (2018).
We, therefore, recommend that the model choice should be governed by the specific use case
and depending on the importance attached to either reconstruction. If the binary structure is of
interest and the model is presumed to be sparse, the hierarchical fitness model (H-FIT) and the
density-corrected gravity model (DC-GRAVITY) are good choices. While Anand et al. (2018)
highlight the ability of the minimum density method (MINDENS) to detect absent edges we
must supplement this by noting that the method nevertheless performs not that good if interest
lies in detecting present edges.

Regarding the quality of the edge value prediction, either in sparse or dense networks the
maximum entropy models (IPFP and GRAVITY) work very well. The same was found by
Anand et al. (2018), pointing on the good quality of maximum entropy solutions. However,
in contrast to their findings, we highlight here more clearly the potential shortfalls for sparse
reconstruction methods for the prediction of edge values.

(ii) Other than Anand et al. (2018), we do not find that the preferred models change when
either a dense or a sparse network is to be reconstructed. However, this statement must be
taken with care since in our analysis the dense network is, in fact, a subset of the sparse one.

(iii) Including exogenous information can help to improve both, the binary and the valued
network reconstruction and partly leads to dramatic increases in the predicted performance.
However, this increase in predictive accuracy is not guaranteed. If variables with a low asso-
ciation to the unknown edge values are chosen, the quality of the reconstruction might even
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decline (see also Lebacher and Kauermann, 2019). Especially regarding the binary network
reconstruction, the inclusion of GDP led to mixed results.

(iv) As an “off the shelf” model in situations without exogenous information available, the
density-corrected gravity model (DC-GRAVITY) can be recommended because it is found to
work well on the big sparse network as well as on the small dense network with respect to the
edge probabilities and the edge values. A similar conclusion can be found in Anand et al. (2018,
p. 116), stating that among the probabilistic methods the model is the “clear winner across all
measures of interest”. Similarly, Gandy and Veraart (2019) report that this model is performing
very well in binary and valued reconstruction. Further, the model can be extended towards the
inclusion of exogenous information in a simple way.

For further research, it seems to be necessary to compare the performance of edge probabil-
ities when using calibration densities that differ from the real one. Another important research
question relates to the ability of reconstruction models to provide uncertainty quantification.
Many approaches introduced above results in network ensembles or come with an associated
stochastic structure that can be used to construct prediction intervals.
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A. Countries included

1SO name reduced ISO name reduced 1ISO name reduced
AD Andorra 0 GQ Equatorial Guinea 0 PE Peru 0
AE United Arab Emirates 1 GR Greece 1 PF French Polynesia 0
AG Antigua & Barbuda 0 GT Guatemala 0 PG Papua New Guinea 0
AT Anguilla 0 GY Guyana 0 PH Philippines 1
AL Albania 0 HK Hong Kong SAR China 1 PK Pakistan 0
AM Armenia 0 HN Honduras 0 PL Poland 1
AO Angola 0 HR Croatia 1 PR Puerto Rico 0
AR Argentina 0 HT Haiti 0 PS Palestinian Territories 0
AT Austria 1 HU Hungary 1 PT Portugal 1
AU Australia 1 D Indonesia 1 PY Paraguay 0
AW Aruba 0 B Ireland 1 QA Qatar 0
AZ Azerbaijan 0 IL Israel 1 RE Réunion 0
BA Bosnia & Herzegovina 0 M Isle of Man 0 RO Romania 1
BB Barbados 0 IMI Internat. Market Infrastrct. 0 RU Russia 1
BD Bangladesh 0 IN India 1 RW Rwanda 0
BE Belgium 1 IR Iran 0 SA Saudi Arabia 1
BF Burkina Faso 0 Is Iceland 0 SB Solomon Islands 0
BG Bulgaria 1 T Ttaly 1 sC Seychelles ]
BH Bahrain 0 JE Jersey 0 SD Sudan 0
BI Burundi 0 JM Jamaica 0 SE Sweden 1
BJ Benin 0 JO Jordan 0 SG Singapore 1
BM Bermuda 0 JP Japan 1 ST Slovenia 1
BN Brunei 0 KE Kenya 0 SK Slovakia 1
BO Bolivia 0 KG Kyrgyzstan 0 SL Sierra Leone 0
BR Brazil 1 KH Cambodia 0 SM San Marino 0
BS Bahamas 0 KN St. Kitts & Nevis 0 SN Senegal 0
BW Botswana 0 KR South Korea 1 SR Suriname 0
BY Belarus 1 KW Kuwait 1 SV El Salvador 0
BZ Belize 0 KY Cayman Islands 0 SY Syria 0
CA Canada 1 KZ Kazakhstan 1 TC Turks & Caicos Islands 0
CF Central African Republic 0 LA Laos 0 TG Togo 0
CH Switzerland 1 LB Lebanon 0 TH Thailand 1
CI Céte d’Ivoire 0 LC St. Lucia 0 TJ Tajikistan 0
CL Chile 0 LI Liechtenstein 0 TL Timor-Leste 0
CM Cameroon 0 LK Sri Lanka 0 ™ Turkmenistan 0
CN China 1 LS Lesotho 0 TN Tunisia 0
CcO Colombia 0 LT Lithuania 1 TO Tonga 0
CR Costa Rica 0 LU Luxembourg 1 TR Turkey 1
CU Cuba, 0 LV Latvia 1 TT Trinidad & Tobago 0
Ccv Cape Verde 0 LY Libya 0 TW Taiwan 1
CcYy Cyprus 1 MA Morocco 0 TZ Tanzania 0
CZ Czechia 1 MC Monaco 0 UA Ukraine 1
DE Germany 1 MD Moldova 0 uG Uganda 0
DJ Djibouti 0 MG Madagascar 0 us United States 1
DK Denmark 1 MK Macedonia 0 uy Uruguay 0
DM Dominica 0 ML Mali ] Uz Uzbekistan ]
DO Dominican Republic 0 MN Mongolia 0 vC St. Vincent & Grenadines 0
DZ Algeria 0 MO Macau SAR, China 0 VE Venezuela 0
EC Ecuador 0 MR Mauritania 0 VG British Virgin Islands 0
EE Estonia 1 MS Montserrat 0 VI U.S. Virgin Islands 0
EG Egypt 0 MT Malta 0 VN Vietnam 1
ES Spain 1 MU Mauritius 0 vu Vanuatu 0
ET Ethiopia 0 MV Maldives ] WS Samoa 0
FI Finland 1 MW Malawi 0 YE Yemen 0
FJ Fiji 0 MX Mexico 1 YT Mayotte 0
FO Faroe Islands 0 MY Malaysia 1 ZA South Africa 1
FR France 1 MZ Mozambique 0 ZM Zambia 0
GA Gabon 0 NA Namibia 0 W Zimbabwe 0
GB United Kingdom 1 NC New Caledonia 0 GF French Guiana 0
GD Grenada 0 NE Niger 0 KI Kiribati 0
GE Georgia 0 NG Nigeria 1 CD Congo - Kinshasa 0
GG Guernsey 0 NI Nicaragua 0 CG Congo - Brazzaville 0
GH Ghana 0 NL Netherlands 1 MQ Martinique 0
GI Gibraltar 0 NO Norway 1 SZ Swaziland 0
GL Greenland 0 NP Nepal 0 CK Cook Islands 0
GM Gambia 0 NZ New Zealand 1 VA Holy See 0
GN Guinea 0 OoM Oman 0 TD Chad 4]
GP Guadeloupe 0 PA Panama 1

Table 4: Countries included in the analysis with ISO 2 country code (ISO), name of the country
(name) and occurrence in the small MT 103 network set (reduced=1).
Source: SWIFT BI Watch.
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B. Descriptives for the reduced data set
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Figure 10: Summary statistics for the reduced MT 103 network as monthly time series. Density
of the network (left), share of non-zero marginals (middle) and cumulative edge values (right).
Source: SWIFT BI Watch.
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C. Binary Reconstruction: Full Network

C.1. Predicted Adjacency Matrices: Full Network
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Figure 12: Adjacency matrices, representing the full MT 103 network in February 2018. IFPF
reconstruction (left), real network (right).
Source: SWIFT BI Watch.
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Figure 13: Adjacency matrices, representing the full MT 103 network in February 2018. GRAV-
ITY reconstruction (left), real network (right).
Source: SWIFT BI Watch.
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Figure 14: Adjacency matrices, representing the full MT 103 network in February 2018. DC-
GRAVITY reconstruction (left), real network (right).
Source: SWIFT BI Watch.
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Figure 15: Adjacency matrices, representing the full MT 103 network in February 2018. H-ER
reconstruction (left), real network (right).
Source: SWIFT BI Watch.
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B R

Figure 16: Adjacency matrices, representing the full MT 103 network in February 2018. H-FIT
reconstruction (left), real network (right).
Source: SWIFT BI Watch.

Figure 17: Adjacency matrices, representing the full MT 103 network in February 2018. MIN-
DENS reconstruction (left), real network (right).
Source: SWIFT BI Watch.
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Figure 18: Adjacency matrices, representing the full MT 103 network in February 2018. LASSO

reconstruction (left), real network (right).

Source: SWIFT BI Watch.
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Figure 19: Degree Reconstruction in the full MT 103 network in February 2018. IPFP recon-

struction of the outdegree (left), outdegree (middle) and in- and outdegree (right).
Source: SWIFT BI Watch.
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Figure 20: Degree Reconstruction in the full MT 103 network in February 2018. GRAVITY

reconstruction of the outdegree (left), outdegree (middle) and in- and outdegree (right).
Source: SWIFT BI Watch.
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Figure 21: Degree Reconstruction in the full MT 103 network in February 2018. DC-GRAVITY

reconstruction of the outdegree (left), outdegree (middle) and in- and outdegree (right).
Source: SWIFT BI Watch.
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Figure 22: Degree Reconstruction in the full MT 103 network in February 2018. H-ER recon-

struction of the outdegree (left), outdegree (middle) and in- and outdegree (right).
Source: SWIFT BI Watch.
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Figure 23: Degree Reconstruction in the full MT 103 network in February 2018. H-FIT recon-

struction of the outdegree (left), outdegree (middle) and in- and outdegree (right).
Source: SWIFT BI Watch.
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Figure 24: Degree Reconstruction in the full MT 103 network in February 2018. MINDENS

reconstruction of the outdegree (left), outdegree (middle) and in- and outdegree (right).
Source: SWIFT BI Watch.
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D. Binary Reconstruction: Reduced Network

D.1. Predicted Adjacency Matrices: Reduced Network
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Figure 26: Adjacency matrices, representing the reduced MT 103 network in February 2018.
IPFP reconstruction (left), real network (right).
Source: SWIFT BI Watch.
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Figure 27: Adjacency matrices, representing the reduced MT 103 network in February 2018.
GRAVITY reconstruction (left), real network (right).
Source: SWIFT BI Watch.
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Figure 28: Adjacency matrices, representing the reduced MT 103 network in February 2018.
DC-GRAVITY reconstruction (left), real network (right).
Source: SWIFT BI Watch.
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Figure 29: Adjacency matrices, representing the reduced MT 103 network in February 2018.
DC-GRAVITY-GDP reconstruction (left), real network (right).
Source: SWIFT BI Watch.
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Figure 30: Adjacency matrices, representing the reduced MT 103 network in February 2018.
DC-GRAVITY-LAG reconstruction (left), real network (right).
Source: SWIFT BI Watch.

I, .- g eaid BTl T D

-k —

Figure 31: Adjacency matrices, representing the reduced MT 103 network in February 2018.
H-ER reconstruction (left), real network (right).
Source: SWIFT BI Watch.
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Figure 32: Adjacency matrices, representing the reduced MT 103 network in February 2018.
H-FIT reconstruction (left), real network (right).
Source: SWIFT BI Watch.

Figure 33: Adjacency matrices, representing the reduced MT 103 network in February 2018.
LASSO reconstruction (left), real network (right).
Source: SWIFT BI Watch.
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Figure 34: Adjacency matrices, representing the reduced MT 103 network in February 2018.
IPFP-GDP reconstruction (left), real network (right).
Source: SWIFT BI Watch.

Figure 35: Adjacency matrices, representing the reduced MT 103 network in February 2018.
IPFP-LAG reconstruction (left), real network (right).
Source: SWIFT BI Watch.
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Figure 36: Adjacency matrices, representing the reduced MT 103 network in February 2018.
TOMOGRAVITY reconstruction (left), real network (right).
Source: SWIFT BI Watch.
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Figure 37: Degree Reconstruction in the reduced MT 103 network in February 2018. IPFP
reconstruction of the outdegree (left), outdegree (middle) and in- and outdegree (right).
Source: SWIFT BI Watch.
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Figure 38: Degree Reconstruction in the reduced MT 103 network in February 2018. GRAVITY

reconstruction of the outdegree (left), outdegree (middle) and in- and outdegree (right).
Source: SWIFT BI Watch.
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Figure 39: Degree Reconstruction in the reduced MT 103 network in February 2018. DC-
GRAVITY reconstruction of the outdegree (left), outdegree (middle) and in- and outdegree

(right).

Source: SWIFT BI Watch.
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Figure 40: Degree Reconstruction in the reduced MT 103 network in February 2018. DC-
GRAVITY-GDP reconstruction of the outdegree (left), outdegree (middle) and in- and outde-

gree (right).

Source: SWIFT BI Watch.
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Figure 41: Degree Reconstruction in the reduced MT 103 network in February 2018. DC-
GRAVITY-LAG reconstruction of the outdegree (left), outdegree (middle) and in- and outdegree

(right).
Source: SWIFT BI Watch.
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Figure 42: Degree Reconstruction in the reduced MT 103 network in February 2018. H-ER
reconstruction of the outdegree (left), outdegree (middle) and in- and outdegree (right).

Source: SWIFT BI Watch.
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Figure 43: Degree Reconstruction in the reduced MT 103 network in February 2018. H-FIT
reconstruction of the outdegree (left), outdegree (middle) and in- and outdegree (right).

Source: SWIFT BI Watch.
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Figure 44: Degree Reconstruction in the reduced MT 103 network in February 2018. LASSO

reconstruction of the outdegree (left), outdegree (middle) and in- and outdegree (right).
Source: SWIFT BI Watch.
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Figure 45: Degree Reconstruction in the reduced MT 103 network in February 2018. IPFP-

GDP reconstruction of the outdegree (left), outdegree (middle) and in- and outdegree (right).
Source: SWIFT BI Watch.
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Figure 46: Degree Reconstruction in the reduced MT 103 network in February 2018. IPFP-LAG

reconstruction of the outdegree (left), outdegree (middle) and in- and outdegree (right).
Source: SWIFT BI Watch.
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Figure 47: Degree Reconstruction in the reduced MT 103 network in February 2018. TOMO-
GRAVTIY reconstruction of the outdegree (left), outdegree (middle) and in- and outdegree
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