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“Reality is merely an illusion, albeit a very persistent one.” 

Albert Einstein 

 

  



 
 

  



 
 

SUMMARY 

Motion is one of the fundamental features of the visual scene. Most animals process visual 

motion signals effortlessly and generate proper motor reactions almost simultaneously. 

How the brain efficiently extracts relevant motion information from the physical world 

remains a persistent question in the field of visual neuroscience. This dissertation seeks 

to further dissect the neural circuit underlying visual motion processing in larval 

zebrafish, which renders unprecedented access to the brain given its rich genetic toolkit 

and easy optical access. 

In the first study, I closely examined the retinal ganglion cells (RGCs), the output neurons 

of the eye. I found that some RGCs responded to motion in a direction-selective manner. 

Careful anatomical analysis revealed that these direction-selective RGCs not only 

innervate the optic tectum but also a local pretectal neuropil. Together with my 

colleagues, we identified a local circuit in the pretectum that can transform global motion 

signals from the retina into neural commands that can drive optomotor behavior. 

In the second study, I employed an optical illusion as a circuit breaking tool. The chosen 

illusion is called the motion aftereffect (MAE), which offers a unique scenario of seeing 

motion in the absence of visual motion after prolonged exposure to continuous motion. 

Using eye movements as a readout for motion perception, first, I confirmed that larval 

zebrafish, like humans, were also susceptible to MAE. Next, with functional imaging, I 

identified the neural correlates of MAE in a subpopulation of direction-selective neurons 

across the brain. Among the many brain areas that harbored MAE-correlated neurons, 

optogenetic silencing highlighted the indispensable role of the pretectum in inducing 

MAE. Finally, focusing on the MAE-correlated neurons in the pretectum, I homed in on 

individual neurons essential to global motion perception through optogenetic activation 

and photoablation. My study of MAE in larval zebrafish not only revealed the neural 

processing of this illusion at cellular resolution, but it also shed light on key components 

in the motion processing circuit as well as their underlying computational mechanisms. 

Taken together, this dissertation harnessed the advanced genetic and optical methods in 

larval zebrafish and provided a cellular roadmap to the neural circuit underlying visual 

motion processing. This roadmap lays the foundation for the future investigation of 

network connectivity and neural computations.  
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1. INTRODUCTION 

1.1 Visual illusions 

Visual illusions are unique stimuli, of which our perception deviates from the physical 

reality. With their immediate impact on the observers, these illusions have fascinated 

many people, especially neuroscientists. They remind us that our vision is not simply a 

camera taking snapshots of the world. Instead, without conscious awareness, elaborate 

interpretations are seamlessly weaved into our perception by the intricate neural 

networks in the brain. 

The brain actively interprets the visual scenes for good reasons. On one hand, the input 

to the brain is first encoded by millions of photoreceptors in the retina, each looking at a 

particular point in space. Given the ever-changing visual scenes faced by awake animals, 

this poses a potential problem of information overflow. The visual system must swiftly 

extract relevant information so as to make prompt decisions and generate immediate 

motor responses. On the other hand, the input to the brain, namely the retinal image, is 

two-dimensional (2D). In order to gain three-dimensional (3D) information, the brain has 

to reconstruct a 3D world from 2D inputs.  

To efficiently interpret and reconstruct the visual world, the brain has to make some 

assumptions. Although it works flawlessly most of the time, an assumption can be proven 

wrong in edge cases. This is when an illusion arises (Hoffman, 2005). In other words, 

visual illusions are not the result of weaknesses or mistakes in the design of our visual 

system, but rather they reflect the dynamic process in the brain that powers our visual 

system. Interestingly, this notion is supported by a study in computer vision, in which a 

convolutional neural network (CNNs) trained to recognize natural images also 

reproduced human’s response to some illusions, suggesting that visual illusions emerge 

as a byproduct of efficient processing (Gomez-Villa et al., 2019). 

In fact, some principles of neural processing have been distilled from the study of 

illusions. For instance, the Hermann grid illusion (Figure 1A), in which illusory dots were 

perceived at intersections, contributed to our understanding of lateral interaction 

between neighboring neurons (Schiller and Carvey, 2005); the Ponzo illusion (Figure 1B), 

which describes the misperception of two lines of equal length in the background of 
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converging lines, revealed our innate default interpretation of space according to linear 

perspective (Gandhi et al., 2015; Schiffman and Thompson, 1977); the Ebbinghaus 

illusion (Figure 1C), which causes strong effect in perception but weak effect in the act of 

grasping, provided evidence for the hypothesis that different processing pathways 

underlie vision-to-perception and vision-to-action transformations (Haffenden et al., 

2001). Plausible theories have been formed for many illusions like the above-mentioned, 

however, for many of them, the exact neural implementation still remains elusive.  

Visual illusions open up a powerful window into the neurobiology of vision (Eagleman, 

2001). Understanding how visual illusions work will not only add on to our knowledge of 

the visual system, but it can also provide novel ideas for the algorithm design of computer 

vision that can one day approximate or even surpass the biological visual systems (Mély 

et al., 2018; Watanabe et al., 2018). This provides strong incentives to further examine 

the rich repertoire of visual illusions, especially the ones whose neural underpinnings 

and their biological values are yet to be found out.  

1.2 Motion aftereffect 

Motion aftereffect (MAE), also known as the waterfall illusion, is a classical visual illusion 

that describes the phenomenon of motion perception in the absence of visual motion 

after prolonged viewing of motion in one direction. For instance, if one fixates on a 

waterfall for some time, and then shift the gaze away to the rocks nearby, these stationary 

rocks would appear to be moving upwards. MAE was first described by Aristotle more 

than two thousand years ago (Aristotle, 350B.C.). Later, it was rediscovered 

independently by Purkinje (Purkinje, 1820) and Addams (Addams, 1834) based on 

A B C 

Figure 1. Illusions reveal features of visual processing. A. The Hermann grid illusion, 
in which illusory grey spots are seen at the intersections. B. The Ponzo illusion, in which 
the horizontal line closer to where the vertical lines converge ap pears to be further 
away and longer. C. The Ebbinghaus illusion, in which the dot surrounded by bigger 
dots appears to be smaller than the dot surrounded by smaller dots.  
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similar visual experience at the sight of flowing water in nature. The scientific research 

on MAE did not take off until the 1960s. From then, the publication on MAE grew 

exponentially (Figure 2). Even today MAE is still a popular topic in vision science. 

There are two interesting features of MAE. First, the observers see motion in objects that 

display no physical change in position. This indicates that the perception of the illusory 

motion originates from the brain. Second, the direction of the illusory motion is always 

opposite to the previously observed motion (first described by Lucretius, 56B.C.). This 

suggests that the mechanism underlying MAE is direction specific. Before it was possible 

to peep inside the brain by means of electrophysiology or functional imaging, these 

interesting features of MAE provided additional information for the curious minds to 

postulate potential computations under the hood that transform sensory inputs into 

perception or actions. 

Past studies showed that MAE not only affects humans (Wohlgemuth, 1911), but also a 

wide range of other vertebrates and invertebrates. These include mice (Samonds et al., 

2018), monkeys (Scott and Milligan, 1970), pigeons (Xiao and Güntürkün, 2008), 

zebrafish (Najafian et al., 2014; Pérez-Schuster et al., 2016), and insects (Srinivasan and 

Dvorak, 1979). The cross-species impact of MAE suggests that it is tapping on some 

fundamental mechanisms in visual processing, which are conserved through evolution.  

Figure 2. Cumulative plot of the number of publications on MAE by year. The 
number of MAE publications grew linearly before 1960, and exponentially (as 
show in the inset log-scale plot) since then (From Mather et al., 1998). 
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In fact, perceptual aftereffect is not limited to motion. Phenomena of the same concept 

have been reported in other visual features, e.g. orientation(Gibson and Radner, 1937), 

and shape (O’leary and McMahon, 1991). One striking example is the color aftereffect, 

which refers to the emergence of an illusory contour in complementary color upon 

prolonged stimulation with a certain hue (Loomis, 1972; Zaidi et al., 2012). In addition, 

aftereffects also exist in other sensory modalities and seem to have a cross-modal effect. 

For instance, visual MAE can not only be induced by visual motion, but also by directional 

auditory and tactile stimuli (Berger and Ehrsson, 2016; Konkle et al., 2009). This suggests 

that MAE can be transferred between sensory modalities. The vast variety of aftereffects 

implies that their underlying mechanism could be a universal principle adopted across 

sensory systems. 

1.2.1 Psychophysics 

Early studies on MAE aimed to unravel the characteristics of illusory motion and the 

stimulus determinants to induce the illusory perception. Typically, an MAE experiment 

consists of two phases: a conditioning phase (also called adaptation phase) of continuous 

motion in one direction to induce MAE and a test phase of a stationary scene or test 

motion to measure the occurrence or the strength of MAE. Some studies in the 1900s 

extended to clinical applications, e.g. use MAE to evaluate personality traits and 

psychological conditions, although no causal relationship was ever shown between MAE 

and psychological features. The majority of the test subjects for MAE psychophysical 

studies were primates. 

1.2.1.1 Setups and measurements 

The knowledge of MAE grew with the evolution of experiment setup and measurement 

procedure. Classical setups to study MAE include hand-operated moving gratings 

(Bowditch, 1881)(Figure 3A) and S.P. Thompson’s spiral (Figure 3, B and C). In most 

experiments done with these setups, the moving stimuli came to a halt in the test phase, 

mimicking MAE in natural viewing conditions. This is referred to as the static MAE 

(SMAE). From the twentieth century, computer-generated dynamic stimuli came into 

play, which allowed more diverse stimulus types (e.g. second-order motion) and wider 

range of motion stimuli (e.g. spatial and temporal frequencies). One widely adopted 

dynamic stimulus is the random dot kinematogram (Curran and Benton, 2006) (Figure 

3D), which consists of short-lived dots appearing in random position moving in directions 
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of various coherence. With dynamic stimuli, moving objects instead of stationary objects 

are displayed in the test phase, and hence they are named the dynamic MAE (DMAE). 

Interestingly, adaptation with the second-order motion, which bears no point-to-point 

correspondence over time, could elicit a DMAE but not an SMAE (Nishida and Sato, 1995; 

Nishida et al., 1994). This suggests that the two types of MAE might have different causes. 

In terms of measurement, early measurements were based on the verbal report of 

experiment subjects, which includes occurrence, duration, and vividness of the illusory 

motion perception. Although such experiments were easy to carry out, the results were 

rather subjective and qualitative. More quantitative measurements were made possible 

by computer generated stimuli. A common measurement is the nulling method, which 

attempts to estimate the speed or the strength of MAE by identifying real motion in the 

opposite direction that can effectively cancel the illusory perception. Another recently 

developed measurement of MAE is based on eye movements. During MAE, it has been 

shown that smooth pursuit eye movements in the opposite direction to the conditioning 

Figure 3. Typical setups for psychophysics experiments of MAE. A. Hand 
operated apparatus to induce MAE (From Bowditch and Hall, 1881). B -C. S.P. 
Thompson’s spiral with Rhesus monkey subject (From Scott and Miligan, 1970) 
and human subject (Photo taken by author at Museum der Illusionen Hamburg, 
Germany). D. Dynamic random dot kinematograms displayed on LCD screens 
(From Curran and Benton, 2006).  

A 

D 

C B 

Adapt Test 
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motion was elicited (Braun et al., 2006; Gardner et al., 2004). This particular MAE-

induced behavior is termed the oculomotor MAE as opposed to the self-report based 

perceptual MAE. 

1.2.1.2 MAE features  

Careful psychophysical studies revealed interesting features of MAE. Generally, MAE can 

be generated after the viewing of continuous motion of a wide range of speeds and 

duration (Glasser et al., 2011; Mather et al., 1998; Wohlgemuth, 1911). MAE was the 

strongest when the stimulus pattern in the test phase resembled that in the conditioning 

phase, and a lack of contour in the test phase reduced illusory perception (Spiegel 1962). 

Rotating radial patterns in the conditioning phase produced a stronger MAE than straight 

moving translational patterns (Bex et al., 1999). Additionally, the MAE also has the 

following unique features: 

Storage period: in human subjects, the perception of MAE can be delayed by closing the 

eyes right after the conditioning phase. The subjects do not perceive MAE until the 

subsequent viewing of the test pattern. This phenomenon is known as the storage of the 

MAE (Spigel, 1962; Wohlgemuth, 1911).  In addition to closed eyes, a blank screen, as well 

as test patterns dissimilar to the adaptation pattern at the beginning of the test phase, 

could all lead to the storage of MAE (Thompson and Wright, 1994). The storage effect not 

only exists in the perceptual MAE but also in the oculomotor MAE (Watamaniuk and 

Heinen, 2007). 

Interocular transfer: after monocular presentation of the conditioning motion to one 

eye, the perception of MAE persisted if the test pattern was only presented to the other 

non-adapted eye (a black screen for the adapted eye). This so-called interocular transfer 

(IOT) of MAE was first described in detail by Dvorak in 1870 (translated in Broerse et al., 

1994). Since the conditioning motion and the test pattern were presented to different 

eyes, the IOT was believed to originate from the adaptation of binocular neurons 

(Coltheart, 1971; Mitchell and Ware, 1974; Movshon et al., 1972). The IOT rate was about 

30-50% for SMAE, but almost 100% for DMAE, suggesting that the neural computation 

underlying SMAE and DMAE might take place on different levels of visual motion 

processing that involve different degrees of binocularity (Nishida et al., 1994; Raymond, 

1993; Wade et al., 1993). 
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Link to diseases:  it has been shown that MAE was altered in individuals with certain 

neurological diseases. For example, MAE was prolonged in patients with migraine and 

schizophrenia (Harris, 1994; Singh and Shepherd, 2016). However, it is unclear what 

neurological changes underlie the prolonged MAE effect. 

1.2.2 Theoretical models 

The theoretical models of MAE evolved over time. Early explanations of MAE concerned 

eye movement and muscle fatigue (Purkinje, 1820). However, most of them were 

disproved by psychophysics experiments (Drysdale, 1975; Seidman et al., 1992; Sekuler 

and Ganz, 1963). Modern theories of MAE took shape based on the inspiration of the 

physiology of cortical neurons. One of the most plausible hypothesis was the ratio model, 

which was put forward by Sutherland in 1961 after the discovery of direction-selective 

(DS) neurons (Hubel and Wiesel, 1959). He proposed that the perception of motion could 

be based on the ratio of firing neurons tuned to different directions. After prolonged 

viewing of motion, cells that have just been stimulated fire less compared to the others. 

This imbalance leads to the perception of apparent movement in the opposite direction 

(Sutherland, 1961). This idea was further developed in the “opponent process” model 

(Figure 4), which includes two layers of processing: the motion sensor layer and the 

opponent energy layer (Barlow and Hill, 1963a). Comparator cells in the opponent 

energy layer receive paired inputs from direction-selective cells in the motion sensor 

layer that are tuned to opposite directions. One of the inputs is excitatory and the other 

inhibitory. As such, the output of the opponent energy layer is based on the difference in 

activity between oppositely tuned motion sensors. With this organization, a suppressed 

firing in motion sensors caused by adaptation can be transformed into an activation of 

Figure 4. Opponent process model of MAE. Oppositely tuned cells (leftward and 
rightward tuned cells in this example) in the motion sensor layer provide paired 
excitatory and inhibitory inputs to the comparator cells in the opponent energy 
layer. The comparator cell on the left is tuned to leftward motion, and the one on 
the right is tuned to rightward motion (Based on B arlow and Hill, 1963a). 
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the comparator cells tuned to the opposite direction of the conditioning motion. To 

account for the two-dimensional effect of the MAE, a third layer, the integrator layer was 

added to the “opponent-process” model. The integrator cells receive excitatory and 

inhibitory inputs from comparator cells tuned to various directions (Wilson et al., 1992). 

1.2.3 Neural substrates 

Psychophysics studies indicated that different neural populations could contribute to 

MAE. To find out where these populations are located in the brain, scientists took 

advantage of techniques like microelectrode recording (Ling and Gerard, 1949) and 

functional magnetic resonance imaging (fMRI)(Lauterbur, 1973). Accumulating evidence 

suggests that MAE taps on multiple sites in the brain on different levels of the motion 

processing pathway (Bavelier et al., 2001). 

1.2.3.1 Retinal ganglion cells 

Retinal ganglion cells (RGCs) are the output neurons of the retina, which relay 

information from the eyes to the brain. DS RGCs have been found in many species, 

including rabbit (Barlow et al., 1964), mouse (Elstrott et al., 2008; Sun et al., 2006; Weng 

et al., 2005), and zebrafish (Gabriel et al., 2012; Hunter et al., 2013; Lowe et al., 2013; 

Nikolaou et al., 2012), although the existence of DS RGCs in primate still remains to be 

Adaptation 

Suppression 

Figure 5. Example response of rabbit direction-selective RGCs in response to 
prolonged motion stimulation. Top, an RGC adapted in its preferred direction; 
bottom, an RGC adapted in its null  direction (Adapted from Barlow and Hill 1963).  
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definitively established. The single-unit recordings of DS RGCs in the rabbit retina were 

the first experimental evidence for the neural substrates of MAE (Barlow and Hill, 1963a). 

They showed that motion adaptation in a neuron’s preferred direction led to a gradual 

decrease in firing rate during motion presentation and subsequently a suppression in 

spontaneous activity when the motion ended. In contrast, motion adaptation in a 

neuron’s null direction (the direction opposite to the preferred direction) resulted in no 

significant change in firing rate (Figure 5). Barlow and Hill regarded the reduction in 

spontaneous activity in the DS population adapted in their preferred direction as the 

neural substrate of MAE. However, this is just the tip of the iceberg. Further computations 

take place downstream of RGCs, which is necessary to explain other features of MAE (e.g. 

interocular transfer).  

1.2.3.2 Primary visual cortex 

The visual area 1 (V1) is often referred to as the primary visual cortex or the striate 

cortex. Neurons with orientation and direction selectivity can be reliably found in V1. V1 

receives input from the lateral geniculate nucleus (LGN) of the thalamus and relays 

processed visual information to higher visual areas, including V2, V3, MT/V5. There are 

two distinct cell types in V1: simple cells and complex cells (Hubel and Wiesel, 1962). 

Simple cells have defined antagonistic receptive fields so that their response can be 

predicted solely based on the stimulus location in the receptive field. On the contrary, 

complex cells have invariance in their receptive fields. A certain visual feature like 

orientation would make them fire whenever it is located in their receptive fields. 

Single-cell recordings in cat V1 showed that DS neurons conditioned in their preferred 

direction decreased their firing rate in the course of continuous motion stimulation 

(Giaschi et al., 1993; Hammond et al., 1985, 1988; von der Heydt et al., 1978; Maffei and 

Fiorentini, 1973; Marlin et al., 1988). Some studies reported different time courses of 

adaptation between simple cells and complex cells (Giaschi et al., 1993; Hammond et al., 

1988; Maffei and Fiorentini, 1973; Marlin et al., 1988), while others reported no 

difference (Vautin and Berkley, 1977). On the other hand, for neurons conditioned in 

their null direction, while some studies reported a slightly enhanced response in the test 

phase (von der Heydt et al., 1978; Marlin et al., 1988), others reported no change or even 

suppressed spontaneous activity (Giaschi et al., 1993). Notably, the enhanced response 

in the test phase was only found in simple cells but not in complex cells (von der Heydt et 
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al., 1978). In summary, although it seems certain that all V1 DS neurons adapt to 

prolonged motion stimulation, there still exist many open questions, in particular 

regarding 1) the response of V1 neurons in the test phase, 2) their temporal dynamics, 

and 3) the difference between simple and complex cells. The early single-cell studies 

failed to reach consensus, mostly due to the limited sampling and the vastly different 

visual stimulus protocols used in each study. 

Recent functional magnetic resonance imaging (fMRI) studies, limited by the method’s 

low temporal and spatial resolution, were not able to resolve these open questions in V1. 

Instead, they found that V1 might not play a major role in MAE after all.  One fMRI study 

showed that the MAE-specific modulation of the population response was only observed 

in area MT (see 1.2.3.3), but not in V1 (Hogendoorn and Verstraten, 2013). Moreover, 

repetitive transcranial magnetic stimulation (rTMS) on V1 right before or during MAE did 

not affect the illusory motion perception (Théoret et al., 2002). These results suggest that 

there are likely further computations of MAE beyond or independent of V1.  

1.2.3.3 Middle temporal visual area 

MT or V5 refers to the middle temporal area of extrastriate cortex, which contains a big 

proportion of DS neurons (Maunsell and Van Essen, 1983; Zeki, 1974). It receives 

feedforward input from early visual areas, and it projects to areas implicated in the 

analysis of optic flow (e.g., MST) and the generation of eye movements (e.g., LIP) (Born 

and Bradley, 2005). fMRI study in human showed increase in activity in MT during MAE 

illusory perception, and the time course of this activity matched psychophysical MAE 

(Figure 6) (He et al., 1998; Tootell et al., 1995). Moreover, single-unit recordings of DS 

neurons in macaque MT identified neural correlates of MAE, which after adaptation in its 

null direction showed enhanced response to a stationary scene (Van Wezel and Britten, 

2002) and a zero-motion counter-phase flickering grating (Kohn and Movshon, 2004).   

On the other hand, the duration of MAE in human subjects was shortened, when MT was 

perturbed by transcranial magnetic stimulation (TMS) during a storage period before the 

test phase or during MAE (Antal et al., 2004; Stewart et al., 1999; Théoret et al., 2002). In 

contrast, the same stimulation on early visual area V1 and non-motion area dorsolateral 

prefrontal cortex (DLPFC) produced a negligible effect (Antal et al., 2004; Théoret et al., 
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2002). Together with the imaging studies, these results suggest a crucial role of MT for 

MAE.  

1.2.3.4 Other cortical areas 

In addition to MT, several other brain areas were also activated during MAE. These areas 

include V2, V3a, BA37 (fusiform gyrus), BA40 (supramarginal gyrus), BA44 (pars 

opercularis of inferior frontal gyrus), BA46 (dorsolateral prefrontal cortex), BA47 

(orbital part of inferior frontal gyrus), and the anterior cingulate gyrus (CG)(Hautzel et 

al., 2001; Huk et al., 2001; Taylor et al., 2000). Medial superior temporal area (MST) is 

particularly implicated in phantom MAE, in which MAE is observed outside the adapted 

visual field (Meng et al., 2006). Together, these physiological experiments in primates 

suggest that MAE involves multiple neural levels of motion processing, most likely with 

adaptation as a universal feature and opponent processing as a unique feature in higher 

levels specific to global motion processing. 

1.3 Zebrafish as a model system 

Zebrafish (Danio rerio) has been established as a model system well-suited for studying 

visual behaviors and neural circuits (Baier, 2000; Orger, 2016; Portugues and Engert, 

2009). The visual system in zebrafish develops rapidly. It is well developed by 5 days post 

fertilization (dpf) in terms of morphology, electrophysiology, and behavior (Bilotta and 

Saszik, 2001; Rinner et al., 2005). It is a highly functional system that can give rise to a 

variety of visually induced behaviors, although it is made up of much fewer neurons and 

synaptic connections in comparison to the mammalian visual system. On the other hand, 

zebrafish, as a genetic model, has accumulated a rich collection of transgenic lines, which 

Figure 6. Temporal dynamics of MT activity matched psychophysical MAE 
(From Tootell et al. 1995). 
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can express useful tools like neural activity indicators and optogenetic tools in specific 

groups of neurons. The expression of these tools in the translucent larval zebrafish allows 

all-optical interrogation of the brain. Using only light, neural activity can be monitored 

and manipulated, while the behavior of the fish is tracked. With all these advantages, 

zebrafish is without doubt an unprecedented vertebrate platform to decipher the neural 

mechanism underlying visual behaviors. 

1.3.1 Global motion induced behaviors 

Global motion on the retina occurs during active or passive movement.  In response, 

larval zebrafish actively move their eyes and tails to compensate for self-motion or drift 

in the environment. These motion-induced innate behaviors emerge at early life stages 

(as larvae), and they can serve as a useful readout of motion perception in larval 

zebrafish, which cannot disclose perceived motion by self-report. 

1.3.1.1 Optokinetic response 

The presence of rotational motion elicits stereotypic eye movements, called the 

optokinetic response (OKR), which consists of slow phase eye movements in the direction 

of visual motion followed by rapid saccades in the opposite direction to reset the eye 

position (Figure 6B). This reflexive behavior for gaze stabilization not only exists in 

foveate animals like human and monkeys (Pasik et al., 1972; Tarnutzer and Straumann, 

2018), but also in afoveate animals like mice and zebrafish (Brockerhoff et al., 1995; 

Iwashita et al., 2001). Remarkably, the OKR behavior in zebrafish can be observed as early 

as 3dpf (Beck et al., 2004; Easter and Nicola, 1996, 1997). Moreover, it is highly consistent 

and robust across individuals (Brockerhoff et al., 1995).  

A B 

Figure 7. Optokinetic response in larval zebrafish. A. Typical setup of rotating 
sinusoidal gratings to induce OKR (From Roeser and Baier, 2000). B. Example eye 
movement traces of a zebrafish larva during OKR (Adapted from Neuhauss et al., 1999).  

Smooth pursuit Saccade 
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Experimentally, it is easy to induce OKR in eye-freed restrained larval zebrafish with a 

rotating drum of sinusoidal gratings (Figure 7A) (Neuhauss et al., 1999). Psychophysics 

studies have discovered that the OKR behavior in larval zebrafish was dependent on 

stimulus velocity and spatial frequency (Rinner et al., 2005). In fact, the initial eye velocity 

during the slow phase almost matched the stimulus velocity within a certain range (Beck 

et al., 2004). On the contrary, the OKR behavior in larval zebrafish was largely 

independent of stimulus brightness if it was beyond the detection threshold (Rinner et 

al., 2005). 

In mammals, the OKR is mediated by a subcortical neural pathway including two heavily 

interconnected areas, the accessory optic systems (AOS) (Simpson, 1984), and the 

nucleus of the optic tract (NOT) (Wallman, 1993). AOS and NOT receive input of motion 

information from RGCs and cortical areas, and they send output to premotor areas in the 

brain stem that drive eye movements (Giolli et al., 2006; Sun et al., 2015; Yakushin et al., 

2000). In teleost, the pretectal area or area pretectalis (APT), part of which is a 

homologous structure to the mammalian AOS/NOT, is implicated in the OKR behavior 

(Masseck and Hoffmann, 2008, 2009a, 2009b).  

1.3.1.2 Optomotor response 

The presence of translational motion elicits another reflexive behavior, called the 

optomotor response (OMR), in which the fish swim in the direction of perceived motion 

in order to stabilize their position in flowing water (Neuhauss et al., 1999). Like OKR, 

OMR is also an innate behavior that is widely observed in the animal kingdom. E.g. in mice 

(Abdeljalil et al., 2005), crabs (Tomsic, 2016), flies (Reichardt, 1969), and etc. In 

zebrafish, OMR is normally fully mature by 6dpf (Neuhauss, 2003).  

OMR can be elicited in free swimming larvae exposed to moving sinusoidal gratings 

(Figure 8A). The free swimming assay is usually used to measure population response, in 

which the average position of a group of fish is determined (Muto et al., 2005). On the 

other hand, OMR can also be induced in a head restrained preparation with the tail of the 

fish freed. The actual tail movement or its proxy, namely the activity in the peripheral 

motor nerve (fictive swims), can be measured to reflect the OMR behavior in larval 

zebrafish (Figure 8B) (Naumann et al., 2016; Pérez-Schuster et al., 2016; Vladimirov et 

al., 2018). 
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 In mammals, like OKR, OMR is also mediated by AOS and NOT (Simpson, 1984). In 

goldfish, the tectum has been shown to play an indispensable role for OMR behavior 

(Springer et al., 1977). However, larval zebrafish with tectal ablation could still perform 

OMR (Roeser and Baier, 2003). A recent study proposed that the OMR behavior in larval 

zebrafish was mediated by a circuit broadly distributed in the brain, which could explain 

why tectal ablation alone did not abolish OMR (Naumann et al., 2016).  

1.3.2 Neural circuit underlying global motion perception 

Like in many other animals, the processing of motion stimuli in larval zebrafish begins in 

the retina. RGCs, the output neurons of the retina, relay motion information to the 

retinorecipient areas in the brain. Upon further processing, the motion information is 

then sent to the motor/premotor areas in the midbrain and the hindbrain, which drive 

appropriate motor responses. Since MAE involves a reversal of perceived direction, we 

are particularly interested in the DS neurons. 

1.3.2.1 Retinal ganglion cells 

In larval zebrafish, all RGCs project to the contralateral hemisphere. Their axons 

terminate in 10 distinct areas called arborization fields (AFs) (Burrill and Easter, 1994). 

AF 1-9 span the region of the preoptic area/hypothalamus, the thalamus, and the 

pretectum, whereas AF 10 is the neuropil of the optic tectum (Figure 9A) (Burrill and 

Easter, 1994; Robles et al., 2014).  Each AF is innervated by a unique combination of RGCs 

of distinct dendritic morphologies and functional response types (Robles et al., 2014). A 

highly plausible hypothesis is that different AFs function as parallel processing channels 

A B 

Figure 8. Optomotor response in larval zebrafish. A. Free swimming assay with 
moving sinusoidal gratings to induce OMR (From Roeser and Baier, 2000). B. Head -
restrained preparation of paralyzed fish. The tail movement is approximated by the 
activity of the peripheral motor nerve measured by electrophysiology. (From 
Naumann et al. 2016).  
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for behavioral functions (Baier, 2000), e.g. prey detection (small, mobile objects), 

collision avoidance (fast expanding, high contrast stimuli), and phototaxis (ambient 

luminance increments) (Semmelhack et al., 2014; Temizer et al., 2015; Zhang et al., 2017). 

Motion response, in particular DS response, was found in the superficial layer of AF10, 

namely the stratum fibrosum et griseum superficiale  (SFGS), and they have three 

preferred directions that are roughly 120⁰ apart (Figure 9B)(Nikolaou et al., 2012). In the 

SFGS, DS RGC axons innervate the most superficial layer (Figure 9B)(Nikolaou et al., 

2012). RGCs that innervate the superficial SFGS also form axon collaterals in AF5 (Robles 

et al., 2014). Thus, we hypothesized AF5 to be the pretectal AF carrying directional 

motion information(see 1.3.2.3 Pretectum). Contradictory to our hypothesis, Naumann 

et al. reported DS response in a neighboring AF, AF6 (Figure 9C) (Naumann et al., 2016). 

One goal of my thesis was to resolve this discrepancy. 

1.3.2.2 Tectum 

The tectum is the largest retinal recipient area in larval zebrafish and has a highly 

laminated structure (Figure 10)(Baier, 2013). The tectal neurons can be categorized into 

periventricular neurons (PVNs), superficial interneurons (SINs), and neuropil neurons 

(NPNs) based on the location of their cell bodies (Kinoshita and Ito, 2006; Nevin et al., 

2010; D. Förster, pers. communication). The former resides in the stratum 

Figure 9. Functionally and morphologically distinct RGC axons terminate in 
different AFs. A. Lateral view of AFs (From Robels et al. 2014) B. Direction - 
selective response in the SFGS layer of AF10 (From Nikolaou et al. 2012) C. 
Direction-selective response in AF6 (From Naumann et al. 2016).  

P 

L 
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periventriculare (SPV), while the latter two resides in the tectal neuropil. The tectal 

neurons can also be classified into interneurons and projection neurons based on their 

neurite projections. While interneurons transmit information within the tectum, 

projection neurons send their axons to premotor areas in the forebrain, the midbrain and 

the hindbrain. In particular, these areas include the pretectum, the reticular formation, 

and the medulla oblongata (Scott and Baier, 2009). Most PVNs (70%) are projection 

neurons (Scott and Baier, 2009). Interestingly, there exists not only retinotopy but also a 

motor map in the tectum (Helmbrecht et al., 2018; Robles et al., 2014). In other words, 

the tectum not only encodes the precise location of the visual stimuli, but it is also capable 

of initiating different types of directional motor responses. This unique organization may 

underlie the essential role of the tectum in sensorimotor transformation for behaviors 

like approach and escape (Barker and Baier, 2015; Bianco and Engert, 2015; Dunn et al., 

2016; Filosa et al., 2016; Heap et al., 2018). 

A substantial amount of tectal neurons are direction-selective, and these include both 

PVNs (~44 % of the active cells)(Gabriel et al., 2012; Gebhardt et al., 2013; Grama and 

Engert, 2012) and SINs (~20%)(Yin et al., 2019). Monocular DS neurons in the tectum 

had four preferred directions, corresponding to the cardinal coordinates (Abbas et al., 

2017; Hunter et al., 2013; Wang et al., 2019). The emerging tuning to the rostral-caudal 

direction, which is not present in the RGCs, is most likely due to a de novo computation in 

the tectum. However, despite the presence of DS neurons in the tectum, zebrafish larvae, 

whose RGC axons projecting to the tectum were ablated, could still perform OKR and OMR 

Figure 10. Laminated structure of the tectum in larval  zebrafish. 
Abbreviations: BM, basement membrane; SAC,  stratum album centrale; SAC/SPV, 
boundary between SAC and SPV; SFGS, stratum fibrosum et griseum superficiale ; 
SGC, stratum griseum centrale; SM, stratum marginale ; SO, stratum opticum; SPV, 
stratum periventriculare (From Baier, 2013). 
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(Roeser and Baier, 2003). This suggests that the tectum does not play a leading role in 

global motion processing. 

1.3.2.3 Pretecum 

The pretectum in adult zebrafish resides in the caudal diencephalon (Figure 11). It 

comprises of multiple interconnected pretectal nuclei, of which some are retinorecipient 

(parvocellular superficial, central, intercalated, paracommissural, and periventricular) 

and some non‐retinorecipient (magnocellular superficial, posterior, and accessory) 

(Yáñez et al., 2018). The pretectum in larval zebrafish is located ventral to the tectum. 

Just like the tectum, the pretectum also receives visual information from direct RGC input 

(Burrill and Easter, 1994). It sends output to areas including the tectum, the 

hypothalamus, the oculomotor nuclei, the medial longitudinal fasciculus (nMLF), the 

cerebellum, and the reticular formation (Antinucci et al., 2019; Muto et al., 2017; 

Semmelhack et al., 2014). Pretectal activity can be modulated by efferents from the 

nucleus isthmi (NI) (Henriques et al., 2019). 

Functionally, the pretectum is engaged in a variety of visually guided behaviors. Some 

pretectal neurons, which are located in the vicinity of AF7 and potentially receive input 

from it, serve as prey detectors. The ablation of these pretectal neurons or AF7 

significantly impaired the prey capture (Antinucci et al., 2019; Muto et al., 2017; 

Semmelhack et al., 2014). Moreover, a recent study reported that the optogenetic 

activation of single cells in the pretectum was sufficient to initiate hunting behavior 

(Antinucci et al., 2019). This highlights the function of the pretectum as a command 

center for predatory behavior.  

Figure 11. Schematics of the pretectal nuclei in adult zebrafish . Pretectal 
nuclei are labeled in gray. Abbreviations: ch, horizontal  commissure; cpop, 
postoptic commissure; Hb, habenula; ot, optic tract; OT,  optic tectum; PTh, 
prethalamus; PO, posterior pretectal nucleus; TLo, torus longitudinalis; Th, 
thalamus (From Yáñez et al., 2018). 
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In terms of motion processing, the pretectum seems to assume the role of a command 

center as well. The pretectum is prevalently populated by both monocular and binocular 

DS neurons (Kubo et al., 2014; Naumann et al., 2016; Portugues et al., 2014; Wang et al., 

2019). Similar to the tectal neurons, the pretectal monocular DS neurons are also tuned 

to the four cardinal directions (Wang et al., 2019). Notably, the binocular DS neurons 

encoded specific binocular optic flow patterns, including rotation and translation in all 

three body axes (Wang et al., 2019). This full coverage of response types suggests that the 

neural computation at the level of the pretectum could be sufficient to elicit appropriate 

global motion induced behaviors. In fact, with broad optogenetic activation and 

inhibition, the pretectum has been shown to be both required and sufficient for the OKR 

behavior in larval zebrafish (Kubo et al., 2014). In my thesis, I addressed the question of 

which exact neurons, out of the large pretectal DS population, drive a specific global 

motion induced behavior like OKR. 

1.3.3 Genetic and optical methods 

To crack a neural circuit, a common experimental strategy is to first figure out which 

neurons are involved by monitoring brain activity during normal behavior. Then, based 

on how different neurons respond, hypotheses of the circuit mechanism can be formed. 

Finally, by perturbing individual circuit components and measuring its behavioral 

consequences, these hypotheses can be either confirmed or rejected. Larval zebrafish, 

with its full collection of circuit breaking tools, is well-suited to implement this workflow.  

1.3.3.1 Transgenic lines 

To specifically and non-invasively express circuit breaking tools in target cell 

populations, a binary system of expression, namely the Gal4/UAS system, was established 

in zebrafish. Originated from yeast, Gal4 is an 881 amino acid transcription factor, which 

binds to a specific recognition sequence called UAS (upstream activating sequence), and 

thereby activates the transcription of downstream target genes (Guarente et al., 1982). It 

not only functions in yeast, but also in many other organisms including flies (Fischer et 

al., 1988), zebrafish (Scheer and Campos-Ortega, 1999), frogs (Hartley et al., 2002), and 

mice (Ornitz et al., 1991). The binary nature of this system enables the mix and match of 

different circuit breaking tools with various genetically defined expression patterns, 

simply by crossing animals expressing different reporters and Gal4 drivers (Figure 12).  

Gal4 was later on replaced by Gal4‐VP16, a fusion protein with the DNA‐binding domain 
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from Gal4 and the transcriptional activation domain from the herpes simplex virus VP16 

protein. Compared to the original Gal4, Gal4‐VP16 showed a stronger induction of UAS 

gene expression (Köster and Fraser, 2001; Sadowski et al., 1988). Gal4‐VP16 was further 

genetically engineered to generate Gal4FF, which is less toxic in embryonic stages 

(Asakawa et al., 2008). 

The transgenesis efficiency in zebrafish was vastly increased with the development of the 

Tol2 transposon system, which was first discovered in the medaka fish (Oryzias latipes), 

a small freshwater teleost from East Asia. (Kawakami and Shima, 1999; Kawakami et al., 

1998, 2000). The Tol2 element encodes an active transposase, which can facilitate the 

excision and the reintegration of a foreign gene into the host genome without causing any 

gross rearrangement in the surrounding genomic DNA (Figure 12)(Kawakami, 2005). 

Compared to DNA microinjection alone, the germline transmission efficiency increases 

fourfold using the Tol2 system, meaning that much fewer animals have to be injected and 

screened in order to identify a founder (Kawakami et al., 2004).   

Figure 12. Tol2 mediated Gal4 enhancer trap or gene trap screens. A 
transposon donor plasmid containing a GAL4 trap construct is injected into 
fertilized eggs together with the transposase mRNA. The GAL4 trap construct is 
excised from the donor plasmid and integrated into the fish genome. The transgene 
pattern can be visualized by crossing identified founders with transgenic fish 
expressing a reporter gene, e.g. enhanced green florescence protein (EGFP)  
(Adapted from Asakawa et al., 2008). 
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Facilitated by the high efficiency of the Tol2 system, a large number of transgenic lines 

with distinct expression patterns have been generated by enhancer trapping (Asakawa 

et al., 2008; Balciunas et al., 2004; Ellingsen et al., 2005; Marquart et al., 2015; Ogura et 

al., 2009; Parinov et al., 2004; Scott et al., 2007) and gene trapping (Asakawa et al., 2008; 

Davison et al., 2007; Kawakami et al., 2004). To achieve transgenesis, a transgene like 

GAL4 is placed after a basal promotor for enhancer trapping or a splice acceptor sequence 

for gene trapping. The entire cassette is inserted between two Tol2 arms. As such, the 

transgene will only be expressed if the cassette flanked by the Tol2 arms is integrated 

near an endogenous enhancer or into an endogenous gene with a splice donor, 

respectively. Both strategies, upon successful integrations, allow the expression of 

transgenes in a pattern similar to the endogenous gene (Asakawa et al., 2008). The 

hundreds of Gal4 lines generated by enhancer and gene trapping provide genetic access 

to different cell types and tissues within the zebrafish nervous system, which lays the 

foundation for circuit neuroscience in zebrafish (Scott and Baier, 2009).  

1.3.3.2 Functional imaging 

In larval zebrafish, it is possible to monitor neural activity noninvasively with optical 

methods. This is thanks to the genetically encoded calcium indicators (GECIs). A widely 

used GECI is a fusion protein called GCaMP, which is made up of green fluorescence 

protein (GFP), calmodulin, and a peptide sequence from myosin light chain kinase. Its 

fluorescence intensity fluctuates with intracellular calcium concentration, and thereby 

serves as a proxy of neural activity (Nakai et al., 2001). The GECIs vary in their temporal 

dynamics and excitation wavelength, making them suitable for different experiments (Lin 

and Schnitzer, 2016). With the Gal4/UAS system, GECIs like GCaMP can be used to 

monitor the activity of different genetically defined neural populations. Furthermore, 

given the transparency of larval zebrafish, they can be imaged directly after 

immobilization in the agarose without any prior surgery (Vanwalleghem et al., 2018). 

Thanks to the development in imaging techniques, it became possible to image more than 

one z plane almost simultaneously. To gain access to multiple z planes, one strategy is to 

use an electrically tunable lens (ETL), which remotely shifts the focus without moving the 

specimen or the objective (Grewe et al., 2011). This way, a flexible volume can be imaged 

at a relatively high speed (Dal Maschio et al., 2017). More recently developed volumetric 

imaging techniques have faster imaging rate and improved 3D coverage. Techniques like 
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light-sheet microscopy (Ahrens et al., 2013; Dunn et al., 2016; Naumann et al., 2016; 

Portugues et al., 2014; Quirin et al., 2016), scanned oblique plane illumination 

microscopy (Kumar et al., 2018), and seeded iterative demixing microscopy (Nöbauer et 

al., 2017) have been implemented for functional imaging in larval zebrafish. Given the 

small brain size of larval zebrafish, whole-brain coverage can be achieved with single cell 

resolution. 

To combine and compare the functional responses within and across individual fish, 

techniques have been developed to register the results of different functional imaging 

sessions from different fish to a common anatomical framework. Using algorithms like 

ANTs (Avants et al., 2011) and CMTK (Rohlfing and Maurer, 2003), a test brain could be 

registered to a target brain by linear and non-linear transformations. Once registered, the 

transformation matrix could also be used to register auxiliary information, e.g. other 

fluorescence channels, neuron tracings, and functional information (Chen et al., 2018; 

Helmbrecht et al., 2018). A common framework allows direct comparison of data from 

different experimental animals, and moreover, it enables a combinatorial usage of 

different databases, including anatomical annotations, single-cell tracings, transgenic 

lines, and histochemical staining (Kunst et al., 2019; Marquart et al., 2017; Randlett et al., 

2015). With these databases, further virtual anatomical, functional, and histochemical 

analyses could be carried out post hoc. In a nutshell, brain image registration is a 

powerful approach to uncover hidden relationships from the functional imaging data.  

1.3.3.3 Laser ablation 

Functional imaging is informative, but it only shows correlation between neural activities 

and external stimuli or animal’s behaviors. One way to test causality is to remove certain 

circuit components by killing the corresponding neurons. For a small number of neurons, 

this is typically done by two-photon-laser plasma ablation (laser ablation in short) (Muto 

et al., 2017; Vladimirov et al., 2018). This method, given its two-photon nature, exerts 

minimal impact outside the focal volume (Tsai and Kleinfeld, 2009). This enables us to 

specifically ablate targeted cells while leaving adjacent cells or neurites intact. 

Compared to chemogenetic ablation or gross lesion, laser ablation is more flexible and 

specific. It can target not only single cells (Antinucci et al., 2019; Kawashima et al., 2016; 

Muto et al., 2017), but also commissures and neuropils (Naumann et al., 2016; 

Semmelhack et al., 2014). It is particularly suited for functionally identified neurons, 
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which may not be defined genetically (Vladimirov et al., 2018). However, laser ablation 

also has its limitations. It is irreversible, and furthermore, the effect of laser ablation on 

behavior or neural readout may not directly reflect the actual function of targeted 

neurons in the circuit (e.g. due to cellular redundancy in neural circuits).  

1.3.3.4 Optogenetic manipulation 

Optogenetics is another widely adopted method to probe the causal relationship between 

activities of specific neurons and behaviors in larval zebrafish. It represents a variety of 

genetically encoded light-gated ion channels, which, upon light stimulation, can be 

opened or closed in order to modulate the excitability of neurons (Mutter et al., 2014). 

These channels are naturally occurring microbial or animal opsins, although many of 

them have been further genetically engineered for higher efficiency, bidirectional control, 

or shifted activation wavelength to be compatible with calcium imaging.  

Compared to invertebrate model organisms like drosophila, zebrafish has the advantage 

of having endogenous storage of all-trans retinal, which means no external supply of 

retinal is necessary for the rhodopsin-based optogenetic tools to function (Boyden et al., 

2005; Nagel et al., 2003). In addition, given the transparency of larval zebrafish, the light 

stimulus can be easily delivered via external optic fibers or whole field illumination to 

restrained or free-swimming animals without any implants (Portugues et al., 2013). 

These features make optogenetics a convenient tool in larval zebrafish. 

A B 

Figure 13. Optogenetic tools for activation and inhibition of neural activity. 
A. Schematic drawing of two example optogenetic tools, channelrhodopsin-2 
(ChR2) and halorhodopsin (NpHR). They differ in their activation spectrum, ion 
selectivity, and kinetics (From Mutter et al. 2014). B. Activation spectrum for ChR2 
(peak sensitivity 470 nm) and NpHR (peak sensitivity 580 nm) (From Zhang et al. 
2017). 
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To activate neurons, channelrhodopsin-2 (ChR2) from the green alga Chlamydomonas 

reinhardti, is commonly used (Nagel et al., 2003). It is a light-gated cation-selective 

channel, which, upon blue light stimulation, allows nonspecific cations to permeate 

(Nagel et al., 2003).  ChR2 has been applied in larval zebrafish to dissect spinal circuits 

(Kimura et al., 2013; Umeda et al., 2016), to disentangle potential connectivity 

(Blumhagen et al., 2011; Bundschuh et al., 2012; Cheng et al., 2017), and to test sufficiency 

for various behaviors (Antinucci et al., 2019; Arrenberg et al., 2009; Barker and Baier, 

2015; Cheng et al., 2016; Douglass et al., 2008; Gonçalves et al., 2014; Kubo et al., 2014; 

Monesson-Olson et al., 2014; Schoonheim et al., 2010).  

To silence neurons, halorhodopsin from Natronomonas pharaonis (NpHR) has been the 

favorite choice in the past (Boyden et al., 2005; Gradinaru et al., 2008; Zhang et al., 2007). 

NpHR is a light-driven chloride pump, which actively transports chloride iron into the 

cytoplasm and hence hyperpolarizes the cell (Zhang et al., 2007). It can be used in 

conjunction with ChR2 to achieve bidirectional control of membrane voltage with two 

colors of light (Han and Boyden, 2007). The combination of these two tools, either in 

conjunction or in separate animals, enabled gain-of-function and loss-of-function 

experiments in vivo, which was proven a powerful way to dissect neural circuits in larval 

zebrafish (Antinucci et al., 2019; Arrenberg et al., 2009; Cheng et al., 2016; Kubo et al., 

2014; Schoonheim et al., 2010). Recently, a family of light-gated anion channels named 

anion channel rhodopsins (ACRs) was discovered in cryptophyte algae Guillardia theta 

(Govorunova et al., 2015). Compared to NpHR, the ACRs are more efficient, because they 

are anion channels with no limited capacity like a pump (Govorunova et al., 2015). 

GtACR1 and GtACR2 have been used to effectively inhibit spinal neurons and reduce 

spontaneous movements in zebrafish embryos (Mohamed et al., 2017). The ACRs are no 

doubt one of the most potent optogenetic silencers so far.  However, the ACRs also have 

limitations. Depending on targeted cell types and subcellular site of optogenetic 

stimulation, the ACRs could have both hyperpolarizing and depolarizing effects 

(Malyshev et al., 2017; Wiegert et al., 2017).  

Compared to laser targeted ablation, optogenetics offers the possibility of reversible 

manipulation on neurons with precise temporal and spatial control (Tan et al., 2015). The 

light stimulation can be time-locked to external sensory stimuli, or to a certain behavior 

of the fish. In addition, the expression of optogenetic tools can be restricted to a small 
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desired population using the extensive collection of Gal4 lines available in zebrafish, and 

the specificity can be further improved with optical targeting. It has been shown that 

ChR2 could also be activated by two-photon lasers, which provided better spatial 

specificity (Papagiakoumou et al., 2010; Rickgauer and Tank, 2009). With recently 

developed computer generated holography, it became possible to optogenetically 

manipulate any group of individual neurons located at different locations in the brain 

with the capacity of concurrent two-photon functional imaging (Dal Maschio et al., 2017; 

Hernandez et al., 2016). Taken together, optogenetics is an invaluable tool in larval 

zebrafish to reveal how neural circuits generate behavior. 

1.4. Aims of this thesis 

This thesis is devoted to gain a better cellular understanding of the neural basis of visual 

motion processing in larval zebrafish, and how it can give rise to motion illusions. 

Specifically, the aim of the thesis is two-fold: first, by harnessing the remarkable optical 

and genetic access to the brain in larval zebrafish, I sought to identify the neural 

substrates of MAE in this model organism; second, using MAE as an extension to the 

conventional stimulus space, I intended to identify the DS neurons that bear causal 

significance in the motion processing circuit that evokes OKR behavior.  

As a groundwork to study MAE, which involves a reversal in perceived motion direction, 

first I searched the brain for neurons with DS response.  With two-photon microscopy, I 

systematically imaged the activity of different neural populations, while presenting the 

fish with moving gratings in a variety of directions. For the RGCs in particular, I, together 

with my colleagues, used an axon-terminal-specific transgenic line as well as an image-

registration strategy to more accurately map out the AF(s) that encodes the directional 

information of motion. The results clarified a previous confusion in the field, and it 

became an important part of the first publication (Kramer et al., 2019) in this cumulative-

style thesis. 

To study MAE in larval zebrafish, first I looked for the visual stimuli that could robustly 

induce the perception of illusory motion. I systematically varied the parameters of the 

conditioning motion and monitored the eye movements of the fish as a readout of motion 

perception. With the best stimulus condition identified, I carried out volumetric calcium 

imaging followed by a clustering analysis to identify the neural correlates of MAE. I 
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further examined these MAE-correlated neurons in terms of their neurotransmitter 

identity, ocular input, optic flow selectivity, and location. Finally, by optogenetic 

perturbation, I determined the brain regions, which played an indispensable role to evoke 

MAE illusory perception. 

On the other hand, to look for the DS neurons that are essential for driving OKR behavior, 

I hypothesized that the MAE-correlated neurons would be a more likely candidate 

because of their correlation to the OKR behavior with and without visual motion stimuli. 

I focused on a spatial hotspot of the MAE-correlated neurons in the pretectum. By laser 

targeted ablation and focal optogenetic activation, I pinpointed an essential node in the 

motion processing circuit, which was not only required but also sufficient for OKR 

behavior. Together, my study of MAE in larval zebrafish led to the second manuscript (Wu 

et al., 2019) in this cumulative-style thesis. 
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2. MANUSCRIPTS 

2.1 Neuronal Architecture of a Visual Center that Processes Optic Flow 

Anna Kramer, Yunmin Wu, Herwig Baier, Fumi Kubo 

 

The article “Neuronal Architecture of a Visual Center that Processes Optic Flow” (DOI: 

10.1016/j.neuron.2019.04.018) was published in Neuron in July 2019.  

 

Author contributions:  

H.B. and F.K. conceived the project. A.K. performed FuGIMA experiments, generated the 

UAS:FuGIMA and UAS:FuGIMA-C3PA transgenic lines, and performed anatomical 

registrations and complementation analyses. Y.W. performed the imaging on RGC 

terminal responses and analyzed the direction-selective responses in RGCs. F.K. 

generated the UAS:syGCaMP6s transgenic line. A.K., Y.W., and F.K. annotated arborization 

fields. A.K., Y.W., H.B., and F.K. wrote the manuscript.  
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SUMMARY

Animals use global image motion cues to actively
stabilize their position by compensatorymovements.
Neurons in the zebrafish pretectum distinguish
different optic flow patterns, e.g., rotation and trans-
lation, to drive appropriate behaviors. Combining
functional imaging and morphological reconstruc-
tion of single cells, we revealed critical neuroanatom-
ical features of this sensorimotor transformation.
Terminals of direction-selective retinal ganglion cells
(DS-RGCs) are located within the pretectal retinal
arborization field 5 (AF5), where they meet dendrites
of pretectal neurons with simple tuning to monocular
optic flow. Translation-selective neurons, which
respond selectively to optic flow in the same direc-
tion for both eyes, are intermingled with these simple
cells but do not receive inputs from DS-RGCs. Mutu-
ally exclusive populations of pretectal projection
neurons innervate either the reticular formation or
the cerebellum, which in turn control motor re-
sponses. We posit that local computations in a
defined pretectal circuit transform optic flow signals
into neural commands driving optomotor behavior.

INTRODUCTION

When animals activelymove, or are passively carried through the

environment, their visual systems experience continuous move-

ment of stationary features in the visual scene. Neuronal circuits

use the drifting retinal images to compute global image motion

(optic flow) in order to adjust the animal’s body posture and po-

sition and stabilize the direction of gaze. In teleost fish and other

vertebrates, the optokinetic response (OKR) and the optomotor

response (OMR) are typical optic-flow-driven behaviors that

compensate for self-motion (Masseck and Hoffmann, 2009a).

Eye movements accompanying the OKR consist of slow

following phases, which minimize retinal slip, interspersed by

quick reset phases. The OMR is characterized by locomotion

in the direction of the perceived motion. This ensures that the

animal does not drift away from its location, for instance, in a

flowing water stream. Zebrafish larvae older than 5 days post-
118 Neuron 103, 118–132, July 3, 2019 ª 2019 Elsevier Inc.
fertilization (>5 dpf) exhibit both robust OKR and OMR (Neu-

hauss et al., 1999; Orger et al., 2000, 2004, 2008; Portugues

and Engert, 2009; Rinner et al., 2005).

Retinal ganglion cells (RGCs) are the sole output neuron class

of the retina. In zebrafish larvae, all RGC axons cross the midline

and terminate in nine arborization fields (AFs) (numbered AF1–

AF9) in the preoptic area and/or hypothalamus, the thalamus,

and the pretectum, in addition to the optic tectum, which is

AF10 (Burrill and Easter, 1994; Robles et al., 2014). Each AF

and each of the ten layers of the tectum receive input from of a

distinct combination of morphologically and functionally identifi-

able RGC types, which form parallel processing channels for

specific visual features, such as prey-like objects, looming stim-

uli, and decreasing or increasing ambient light levels (Robles

et al., 2014; Semmelhack et al., 2014; Temizer et al., 2015; Zhang

et al., 2017). A unifying hypothesis posits that behaviorally rele-

vant information is packaged in spatially segregated information

channels (Dhande and Huberman, 2014), which in turn evoke

distinct adaptive behaviors (Baier, 2000; Helmbrecht et al.,

2018). Therefore, knowledge of AF tuning provides a productive

entry point to decipher the ‘‘division of labor’’ among the different

visual and visuomotor processing streams.

Broad activation of the pretectum (accessory optic system) is

sufficient to evoke OKR in mammals and zebrafish, and lesions

or experimental inactivation suppress this behavior (Cazin

et al., 1980; Kubo et al., 2014; Schiff et al., 1988). This observa-

tion led to the prediction that the subset of RGCs that encodes

the direction of movement, namely the direction-selective (DS-)

RGCs (Barlow and Hill, 1963; Dhande and Huberman, 2014),

carries information about image motion to the pretectal area.

Previous anatomical work in zebrafish had shown that the

RGCs that project to the DS sublayer of the optic tectum, the

stratum fibrosum et griseum superficiale 1 (SFGS1) (Gabriel

et al., 2012; Gebhardt et al., 2013; Nikolaou et al., 2012), also

form collateral branches in AF5 (Robles et al., 2014). This obser-

vation made AF5 a prime candidate for the pretectal neuropil re-

gion that receives DS-RGC inputs. Until now, however, DS-RGC

responses had not been detected in AF5. Rather, a recent study

annotated the neighboring area AF6 as the DS-RGC recipient

area (Naumann et al., 2016). One goal of the current study was

to precisely map DS-RGC inputs within the pretectum to resolve

this discrepancy.

In lateral-eyed animals, such as zebrafish, each eye samples

roughly one hemisphere of the visual world. Therefore, inte-

grating visual inputs from both eyes is an obvious strategy for
28

mailto:fumikubo@nig.ac.jp
https://doi.org/10.1016/j.neuron.2019.04.018
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuron.2019.04.018&domain=pdf


2p photo-
activation

sensory
stimulation

UAS paGFPnls-GCaMP6s

Gal4s1101t

FEL
FER

FELR
FSP
BEL
BER

BELR
BSP

tra
ns

la
tio

n-
se

le
ct

iv
e

MoNR
MoTL
MoTR

MoNL

non-motion- 
sensitive

m
on

oc
ul

ar
di

re
ct

io
n-

se
le

ct
iv

e

RE
LE

RE
LEB

W
FW C

W
C

C
W

0 12010080604020 140

5 
Δ

F/
F 0

# 2 
(MoNL)

# 3

# 1 
(BSP)

Time (s)

neuron

0.8

0.6

0.4

0.2

0.7

0.5

0.3

0.1

COI 1

pre post

paGFP
nls-GCaMP6s

HuC:lyn-tagRFP: fish 1, fish 2, fish 3

midline

L

P

A

overlay of registered 
reference markers 

HuC:lyn-tagRFP

P

L
20

 μm

20 μm

midline

neuron 2

neuron 3

neuron 1

reference marker 
(HuC:lyn-tagRFP)

nls-GCaMP6s
FuGIMA tracing 

(max. proj.)

midline

D

I

A B

E

C

G

H

F

Figure 1. FuGIMA Enables Morphological Reconstructions of Functionally Characterized Pretectal Neurons

(A) The bidirectional genetic construct UAS:FuGIMA enables co-expression of nls-GCaMP6s and paGFP using the Gal4-UAS system.

(B) FuGIMA workflow: inactive nls-GCaMP6s and paGFP show little or no fluorescence. During stimulation with horizontally moving gratings, neuronal activity is

recorded to determine a cell of interest. PaGFP is focally photoactivated with a two-photon (2p) laser (l = 750 nm) and subsequently labels the cell of interest’s

morphology by diffusion.

(C) (Top) The presented visual stimulus consists of eight motion phases, i.e., four monocular (nasalward left, temporalward left, temporalward right, and na-

salward right) and four binocular (BW, backward; FW, forward; CW, clockwise; CCW, counter-clockwise) phases (see also Figure S2A). (Below) Of 28 possible

regressors, the following response types were investigated (barcode visualization): four monocular direction-selective types (green square); eight translation-

selective response types (magenta square); and the non-motion-sensitive type (blue outline). Response type names are adapted from Kubo et al. (2014). Filled

squares symbolize neuronal activity during the stimulation phase. The color code applies to other panels of this figure. B, backward translation; E, excited by; F,

forward translation; L, to the left eye; Mo, monocular; N, nasalward; R, to the right eye; SP, specific; T, temporalward.

(legend continued on next page)
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discriminating translational versus rotational optic flow (i.e.,

movement in the same or in the opposite directions for left and

right eye; Masseck and Hoffmann, 2009a, 2009b; Sabbah

et al., 2017; Wang et al., 2019; Wylie et al., 1998). Functional

imaging had shown that most pretectal neurons in zebrafish

fall into one of two broad categories: (1) ‘‘simple’’ optic-flow-

responsive cells, which are driven by DS inputs from one eye

and (2) ‘‘complex’’ cells that respond to translational optic flow

and are suppressed by rotational optic flow (Kubo et al., 2014).

In a parsimonious wiring diagram, simple monocular pretectal

cells might combine their DS tuning across hemispheres to

generate the responses of complex translation-selective neu-

rons (Kubo et al., 2014). The latter cells might then convey the

processed information to premotor centers in the hindbrain,

which in turn initiate the OMR.

To test the anatomical predictions of this wiring diagram, we

set out to determine the cellular composition of the pretectal op-

tic-flow-processing circuit and test predictions of its input and

output pathways. We found that the majority of DS-RGCs termi-

nate in AF5, consistent with earlier anatomical findings (Robles

et al., 2014). Morphological reconstructions of optic-flow-

responsive pretectal cells showed that the putative dendrites

of simple monocular cells overlap with DS-RGC presynaptic ter-

minals in AF5. Complex translation-selective cells have different

morphologies and project neurites into a neuropil region abut-

ting, and overlapping with, AF6. Long-range projections connect

the optic-flow-sensitive pretectal area to the cerebellum, the

reticular formation, and other motor-related centers. Together,

our work integrating diverse functional and anatomical datasets

traces a universally important visual pathway with cellular reso-

lution from the retina to the hindbrain.

RESULTS

FuGIMA Approach Allows Reconstruction and
Visualization of Functionally Identified Pretectal
Neurons
We asked how optic flow information is represented by cell types

of the pretectum. The pretectum is an anatomically complex re-

gion comprised of retinorecipient and non-retinorecipient cells

(Yáñez et al., 2018). Pretectal cells with different functional prop-

erties are intermingled (Kubo et al., 2014; Naumann et al., 2016).

To reveal the morphologies of optic-flow-responsive pretectal

neurons, we employed the all-optical method FuGIMA (func-

tion-guided inducible morphological analysis) (Förster et al.,

2018). FuGIMA is based on the co-expression of nuclear local-
(D) nls-GCaMP6s fluorescence time series of example neurons of distinct respo

regressor, gray). Solid colored line, average of three repetitions; shaded area, SE

(E) Overlay of field-of-view (mean DF/F0) and pixel-wise regressor-based analys

correlated with the regressor 1 shown in (D) (top trace). Thewhite dotted circle indi

field of view used in (F).

(F) Photoactivation of neuron 1. Before photoactivation, most nuclei exhibit dim nl

bright paGFP fluorescence (white arrowhead, neuron 1; small white square, app

(G) Tracing of photoactivated neuron 1 (white, maximum intensity projection) su

GCaMP6s/paGFP; magenta, HuC:lyn-tagRFP).

(H) Overlay of the reference marker (HuC:lyn-tagRFP) derived from three experim

(I) 3D rendering of the standard brain surface (gray) with three registered tracings

Scale bars represent 10 mm in (E) and (F) and 50 mm in (H). See also Figure S1.
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ized GCaMP6s (nls-GCaMP6s) and cytoplasmic photoactivat-

able GFP (paGFP) under the control of a bidirectional upstream

activating sequence (UAS) (Janus-UAS; Distel et al., 2010; Pa-

quet et al., 2009; Figure 1A). Although both nls-GCaMP6s and

photoactivated paGFP emit green fluorescence, signals from

the two proteins are separated by way of their nuclear versus

cytoplasmic localization, thus allowing their combination in the

same cell.

We used zebrafish larvae expressing the FuGIMA components

in all neurons by crossing the panneuronal driver Gal4s1101t

with UAS:FuGIMA (see STAR Methods). Neuronal activity in

the pretectumwas recorded by imaging of nls-GCaMP6s signals

upon stimulation with whole-field motion (Figure 1B). The visual

stimulus protocol consisted of monocular and binocular optic

flow patterns (horizontally moving gratings) in a sequence of

eight phases: four monocular phases with gratings shown to

the left or right side of the fish, moving either nasally or tempo-

rally, and four binocular phases, namely backward, forward,

clockwise, and counter-clockwise motions (Figure S2A). Re-

sponses to each of the eight phases were used to assign to

each cell a barcode, which represents the stimulus combination

to which the cell is tuned (Kubo et al., 2014; Figure 1C). A cell of

interest was then chosen for photoactivation, based on its

response to optic flow, and labeled by focusing 750-nm laser

light in two-photon (2p) mode onto the soma (Figures 1D–1F).

Photoactivated paGFP diffuses into the neurites and, after

several hours, reveals the morphology of the cell (Förster et al.,

2018; Figure 1G). The maximum distance over which neurites

can be traced is dependent on the diffusion properties of paGFP

and was empirically determined to be around 200 mm (Figures

S1A and S1B; see STAR Methods).

Pretectal Neurons with Optic Flow Tuning Differ in Their
Morphologies from Non-Motion-Sensitive Neurons
Out of the 256 (28) theoretically possible barcodes, we focused

on the following three response classes (Kubo et al., 2014): sim-

ple monocular DS (comprising four response types); complex

translation-selective (eight response types); and non-motion-

sensitive as controls (activity not locked to any motion phase;

Figure 1C). We used a regressor-based analysis to semi-auto-

matically identify response types of interest in a near-online

fashion (see three exemplary GCaMP6s fluorescent traces in

Figure 1D). Among these cells, we selected one cell of interest

for photoactivation (correlation map of regressor 1; Figures 1E

and 1F). After allowing for diffusion of GFP fluorescence, cells

of interest were manually traced (Figure 1G) and registered to a
nse types identified by regressor-based analysis (overlaid on the respective

M; gray bars, stimulation periods.

is (color bar: Pearson’s correlation coefficient), highlighting two neurons best

cates example neuron 1 (COI1, cell of interest 1); white dashed square indicates

s-GCaMP6s fluorescence. After photoactivation of the soma, neuron 1 exhibits

roximate photoactivation region).

perimposed on one plane of the registered experimental z stack (green, nls-

ental fish that have been registered to the standard brain.

(dorsal view). The color of the three tracings corresponds to that used in (D).
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standard brain for interindividual comparisons via a reference

marker (HuC:lyn-tagRFP; Figures 1H, 1I, S1D, and S1E; see

STAR Methods).

We reconstructed the morphologies of 58 pretectal neurons

from 46 fish (30 monocular DS neurons, 19 translation-selective

neurons, and 9 non-motion-sensitive neurons; for individual

calcium traces, see Figures S2B and S2C). The respective fre-

quencies of response types detected in our FuGIMA dataset

was overall similar to Kubo et al. (2014); however, monocular

DS neurons responding to nasalward motion (i.e., MoNR and

MoNL) located in the brain ipsilateral to the visually stimulated

eye were not identified in this limited dataset (Figures S2D

and S2E).

Motion-sensitive neurons in our FuGIMA dataset showed

overall similar morphologies; their stem neurite pointed in a

lateral-anterior-ventral direction (Figure 2A; Video S1). The

neurites of non-motion-sensitive neurons, on the other

hand, typically branched and extended in the anterior and pos-

terior directions, suggesting that the morphologies of optic-

flow-sensitive cells differ fundamentally from those of the

non-motion-sensitive control neurons (Figure 2A). Cell bodies

of monocular DS neurons were widely distributed in an ante-

rior-lateral domain, whereas the translation-selective neurons

were located in a more confined, posterior-medial domain

(Figure S4B).

Neurons with Monocular DS versus Binocular
Translational Optic Flow Tuning Differ in Their AF
Projection Patterns
To examine which FuGIMA neurons are potentially retinoreci-

pient, we registered RGC axon projections (Figure 2B) to the

standard brain (Figures S3A and S3B; see STAR Methods).

Guided by known anatomical features (Burrill and Easter, 1994;

Robles et al., 2014), the volumes of AFs 4–10 could be reliably

annotated (see STARMethods; Video S2).We found that thema-

jority of optic-flow-responsive cells (35 of 49; 71%) overlapped

with one or more of the AFs. We noticed that monocular DS cells

(6 of 30; 20%) extended neurites into AF5, regardless of their

preferred direction (Figures 2D, left, 2E, left, and 2F; individual

tracings in Figure S4A; Video S1), and translation-selective neu-

rons did not receive inputs from the AF5 region. On the other

hand, both monocular DS and translation-selective classes

densely branch in a region that is abutting, and overlapping

with, the dorsal part of AF6. In fact, all translation-selective cells

project ventrally in the direction of AF6, regardless of whether
Figure 2. Monocular DS and Translation-Selective Neurons Show Diffe

(A) 3D rendering of all FuGIMA tracings (n = 58 tracings) with the standard brain (

The tracings are color coded according to the neurons’ response class (dorsal v

(B) Anatomical representation of AFs. (Left) SypGFP signal driven by atoh7:Gal4 d

AFs in the same 3D volume is shown. Dotted line corresponds to the optical plan

(C) Boundaries of AFs (from the RGC standard brain) after registration to the FuG

(KDE) of co-registered AF masks from (B) (thresholded to 25%, 50%, 75%, and

(D) 3D rendering of FuGIMA tracings grouped by response class together with A

(E) Further classification of FuGIMA neurons by direction selectivity (left: light g

magenta, backward; dark magenta: forward).

(F) Analysis of morphological types of all FuGIMA neurons. Intersections of indivi

tracings and the AFs (black squares symbolize the intersection with the indicate

Scale bar represents 50 mm in (B). See also Figures S2, S3, and S4.
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they are responsive to forward or backward motion (Figures

2D, middle, and 2E, right).

The analysis of intersections of all FuGIMA tracings with AF

boundaries (defined by kernel density estimate [KDE] = 50%) re-

vealed that many FuGIMA cells (25 of 58; 43%) intersected with

one AF: 19 with AF6; 5 with AF9; and 1 with AF7. About a quarter

of FuGIMA-traced cells (14 of 58; 24%) intersected with more

than one AF in varying combinations (Figure 2F). The total num-

ber of intersections per AF changed with the applied threshold

for KDE. However, as we varied KDE from 25% to 75%, the num-

ber of cells overlapping with AFs 5, 7, and 8 remained constant

(n = 6, 1, and 2, respectively), suggesting that overall intersection

patterns of response classes do not depend on the stringency

with which these AFs are annotated (Figure S3C).

DS-RGCs Project to Pretectal Neuropil Area AF5
Monocular DS-responsive pretectal neurons may inherit

their tuning from DS-RGCs that project to AF5. To test this

prediction, we measured responses to moving gratings in

RGC axon terminals and aligned the functional responses

from multiple fish in a second standard brain, ‘‘RGC standard

brain,’’ which we constructed based on the isl2b:Gal4 3

UAS:mCherry labeling pattern (Figure S5A). The isl2b promoter

allows targeting of the vast majority of RGCs (Pittman et al.,

2008), and DiI injection confirmed that the isl2b:Gal4 line labels

most of the RGCs terminating in the ventrally located AF4–AF6

(Figure S5E). For imaging of axon terminals of DS-RGCs in the

pretectum, we expressed synaptophysin-tagged GCaMP6s

(syGCaMP6s) in RGCs (isl2b:Gal4; UAS:syGCaMP6s; Figures

S5B-S5D). Fusion to synaptophysin targets the calcium indica-

tor to presynaptic terminals (Dreosti et al., 2009; Dunn et al.,

2016; Nikolaou et al., 2012). Recorded syGCaMP6s signals

were then mapped onto the RGC standard brain (see STAR

Methods), and accuracy of the mapping was confirmed by

overlay of multiple brains with the RGC standard brain (Figures

S5F–S5K).

We examined visual motion-induced activity in RGC terminals

by presenting monocular moving gratings to the contralateral

eye of the fish. Visual stimuli were presented from the side of

the fish, and recorded brain areas included most of the tectal

neuropil (AF10) and more ventral AFs in the pretectum and thal-

amus, including AF4–AF6 (Figures 2B and 3A). Response profiles

of AF4 and AF6 were largely consistent with previous studies,

with AF4 being activated by ON and AF6 by OFF whole-field

luminance changes (Temizer et al., 2015; Zhang et al., 2017;
rent Morphologies

HuC:lyn-tagRFP) and RGC terminals as labeled with isl2b:Gal4, UAS:mCherry.

iew). See also Video S1.

river reveals distinct AFs at 6 dpf (compound of three fish). (Right) Annotation of

es for imaging AF4, AF5, and AF6. See also Video S2.

IMA standard brain. 3D rendering of a thresholded kernel-density estimation

90%; n = 7 bridging z stacks, from 4 fish). See also Figure S3.

F masks (oblique views; AFs 4–9; KDE = 50%).

reen, monocular temporalward; dark green, monocular nasalward. right: light

dual tracings with AFs 4–9 reveals widespread intersections between FuGIMA

d AF). (Right) Intersection frequency according to response class is shown.
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Figure 3. Direction-Selective RGCs Largely Terminate in Arborization Fields AF5 and Tectum (AF10)

(A) Schematic of the experimental setup for visual stimulation with moving gratings presented from the side. Color indicates direction of motion.

(B–D) DS pixels in AF10 (B and C) and AF4, AF5, and AF6 (D).

(E) Schematic of the experimental setup for visual stimulation with moving gratings presented below.

(F–H) DS pixels in AF10 (F and G) and AF4, 5, and 6 (H). In (B)–(D) and (F)–(H), DS pixels are plotted on top of the mean image of syGCaMP6s (gray).

(I) Representative responses of DS-RGC terminals in AF5 and AF6. Visual stimuli were presented from the side. ROIs correspond to synaptic punctamarked in the

left image. Polar plot (middle) is derived from the DF/F traces shown on the right.

(J) Distribution of DS pixels identified in ventral AFs. The pie charts show the percentage of DS pixels residing in AF5, AF6, and a region neither AF5 nor 6 (‘‘not

identified’’), summed from 6 and 7 fish for side and below stimulus presentation, respectively.

(legend continued on next page)
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Figure 4. Distribution of Preferred Directions of DS-RGCs Reveals Shared Inputs in AF5 and Tectum

(A) Direction space of motion stimulus presented from the side.

(B and C) Distributions of preferred directions of DS-RGC terminals in AF10 (B; N = 6 fish) and AF5 (C; N = 6 fish). Motion was presented from the side.

(D) Distribution of preferred direction of DS-RGC terminals in the dorsal AF10. In contrast to (B), where the entire AF10 was sampled, only 3 planes (separated by

4 mm) in AF10 were selected in this histogram, as was reported previously (Nikolaou et al., 2012).

(E) Direction space of motion stimulus presented from below.

(F and G) Distributions of preferred directions of DS-RGC terminals in AF10 (F; N = 7 fish) and AF5 (G; N = 7 fish). Motion was presented from below.

(H) DS response map of a single representative optical plane in the dorsal AF10 analyzed in (D). Scale bar: 30 mm.
Figures S6A–S6C). We then identified pixels that exhibited DS

signals (‘‘DS pixels’’; see STAR Methods). Within the tectum,

DS pixels localized to the posterior half of the SFGS1 (Figures

3B, 3C, S6D, and S6E), as described previously (Nikolaou

et al., 2012). In amore ventral optical plane, DS pixels were found

predominantly in AF5 (64.7%), with fewer DS pixels in AF6

(23.9%; N = 6; Figures 3D and 3J). This difference was further

augmented when the relatively larger number of synaptic puncta

within AF6 were considered. DS pixels represented about 30%–

40% of the total pixels in AF5, whereas in AF6, the DS pixels

comprised about 10% of the total pixels (Figure 3L). The re-

sponses localized to AF6 by our anatomical maskwere observed

in terminals close to the boundary to AF5, suggesting that the

corresponding terminals might sit on branches of AF5-projecting
(K) Overlay of a registeredHuC:GCaMP5G image (gray) with RGC axons (i, isl2b:G

of 6 fish), and DS neuropil ofHuC:GCaMP5G fish (iii, identified from below projecti

and DS neuropil represent all DS populations tuned to any direction of motion.

(L) Percentage of DS pixels relative to the entire pixel counts in AF5 and 6. Average

UAS:sypGFP fish (see STAR Methods for details). N = 6 fish (side) and 7 fish (be

(M and N) 3D representations of DS-RGC terminals. For side-presented 3D ma

volumes. For below-presented 3Dmap (N), both AF10 and AF4, AF5, and AF6 vol

directions of DS pixels. The intensity of DS pixels corresponds to the probabilit

corresponds to the frequency of 0.67 and 0.57 for M and N, respectively). See a

(O) Comparison of DS-RGC terminals responsive to side versus below presenta

presentations. Note that DS-RGC terminals identified by side (red) and below

posterior; SAC, stratum album centrale; SFGS, stratum fibrosum et griseum super

*, skin auto-fluorescence.

Scale bars represent 20 mm (F), 10 mm (H), 30 mm (K), and 50 mm (M–O). See also
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RGCs (Figures 3D and 3I). In addition, a sparse subset of RGC

terminals in AF6 was orientation selective (OS) (Figures S6F–

S6J). In conclusion, the majority of the DS-RGC inputs are sent

to AF5.

AF5 (and SFGS1) Receive Retinal DS Responses
Regardless of RGC Soma Position within the Retina
In a previous study (Naumann et al., 2016), motion stimuli were

presented from below, which activates predominantly the dorsal

part of the retina (Robles et al., 2014; Stuermer, 1988). It is

conceivable that dorsally positioned DS-RGCs project to

different AFs than those that were activated by motion shown

from the side. To test this possibility, we repeated above imaging

experiments while displaying moving gratings from below
al4, UAS:mCherry), DS-RGC terminals (ii, identified from below projection; sum

on; sum of 5 fish) in an optical plane that contains AF4, AF5, and AF6. DS-RGCs

pixel counts in each AF were quantified using anatomical stacks of isl2b:Gal4,

low) for each AF. Error bars represent SEM.

p (M), both AF10 and AF4, AF5, and AF6 volumes are pooled from 6 imaged

umes are pooled from 7 imaged volumes. Color wheels represent the preferred

y of a particular pixel to be DS across all imaged fish (the maximum intensity

lso Videos S3 and S4.

tions. Composite 3D map of a single fish that underwent both side and below

(green) presentations co-localize in AF5. A, anterior; L, lateral; M, medial; P,

ficiale; SGC, stratum griseum centrale; SPV, stratum periventriculare; V, ventral;

Figures S5 and S6.
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(A) Schematic illustrating acquisition and integration of the functional maps and the FuGIMA dataset.

(B–I) A slice of the co-registered volume at the level of the AFs 4–6 with FuGIMA tracings and functional maps of DS-RGC terminals and DS neurons (right

hemisphere, maximum intensity projection over z = 10 mm; see schematic in F; of 58 FuGIMA tracings, 42 of the following classes extend into the slice: 19

monocular DS; 17 translation-selective; 6 not motion-sensitive).

(B–E) FuGIMA tracings (open white arrowhead, FuGIMA tracing bundle; filled white arrowhead, small tracing patch at the border between AFs 5 and 6; open

arrow, direction of oblique view): (B) all (white); (C) monocular DS (green); (D) translation-selective (magenta); and (E) non-motion-sensitive (blue).

(F) Schematic of z stack slicing (oblique view used to visualize optic tract [light gray] and AFs [dark gray]).

(G) Registered 3D map of DS-RGC terminals (isl2b:Gal4, UAS:syGCaMP6s; see color wheel below for direction of moving gratings presented from side; com-

posite of 6 fish).

(H) Registered 3D map of DS-panneuronal (HuC:GCaMP5G; white arrow, broad band of DS pixels; see color wheel below for direction of moving gratings

presented from below; composite of 5 fish).

(I) Composite of DS-panneuronal with all FuGIMA tracings and standard brain reference marker (HuC:lyn-tagRFP in gray).

For (G)–(I), imaging artifact DS pixels located in the eye were removed with a mask. Scale bar represents 50 mm (I).
(Figures 3E–3H). Similar to the presentation from the side, the

majority of DS-RGC inputs were found in AF5 (70.8%), and fewer

were found in AF6 (18.4%; N = 7 fish; Figure 3J). DS-RGC inputs

from dorsal retina were also observed in SFGS1 (Figures 3F, 3G,

S6D, and S6E). This indicates that DS-RGCs project to AF5 and

SFGS1, regardless of their soma positions along the dorsoven-

tral axis of the retina.

To localize DS-RGC pixels within the larger neuropil volume

surrounding the AFs, we registered an image stack from the
HuC:GCaMP5G line to our RGC standard brain. As expected,

RGC axons occupied only a small subvolume of the pretectal

neuropil labeled in HuC:GCaMP5G (Figure 3Ki). Registration of

visual responses towhole-fieldmotion in the RGC standard brain

revealed that DS responses in the panneuronal HuC:GCaMP5G

neuropil extended outside of the AFs (Figures 3Kii and 3Kiii).

To establish a 3Dmap of DS representations in RGC terminals,

we mapped DS pixels identified in multiple fish onto the RGC

standard brain. In the tectum, DS pixels occupied the posterior
Neuron 103, 118–132, July 3, 2019 125 35
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half of the neuropil volume when the stimulus was presented

from the side (Figure 3M; Video S3). When the stimulus was pro-

jected from below, DS pixels were preferentially identified in the

ventral tectum (Figure 3N; Video S4). This location is consistent

with the topographic organization of the retinotectal projection

(Robles et al., 2014; Stuermer, 1988). Notably, in the pretectum,

a co-registration of DS pixels obtained from a single fish, which

was stimulated both from the side and from below, shows that

the identified DS pixels were co-localized in a similar volume,

corresponding to AF5 (Figure 3O). In summary, our results

demonstrate that RGC terminals exhibiting DS responses in

the pretectal neuropil are situated predominantly in AF5 and

that this is independent of the position of the visual stimulus.

AF5- and SFGS1-Projecting DS-RGCs Show Very Similar
DS Tuning, Consistent with Collateral Branching from
the Same Axon
We hypothesized that the DS-RGC axon terminals in AF5 are

collateral branches of RGCs projecting to SFGS1. If so, preferred

directions of RGC axons in AF5 should be identical to those in

SFGS1. When the visual stimuli were presented from the side

(Figures 4A–4D and 4H), the majority of the DS pixels were tuned

to forward stimulusmotion (�270�) in both the tectum (Figure 4B)

and AF5 (Figure 4C), with a much smaller population of DS pixels

with broadly distributed preferred directions between 30� and

180�. In the dorsal part of the tectum, we observed three popu-

lations of DS-RGCs, tuned to whole-field motion in a forward

(270�), oblique-backward (around 45�), and downward (around

160�) direction, respectively, as reported previously (Lowe

et al., 2013; Nikolaou et al., 2012; Figures 4D and 4H). When

the visual stimuli were presented from below, the majority of

DS pixels in SFGS1 and AF5 preferred the forward direction

(�0�) as well (Figures 4E–4G). These results are in agreement

with a direction-of-motion-sensitive visual pathway composed

of three differently tuned classes of DS-RGCs, whose axons

branch in AF5 on their way to SFGS1.

DS-RGC Terminals Spatially Overlap with Dendrites of
Monocular DS-Pretectal Cells in AF5
We next tested the prediction that the neurites of monocular

DS pretectal neurons coincided in space with DS-RGC termi-

nals. In FuGIMA experiments, calcium responses in the neuropil

are invisible due to nuclear localized GCaMP. Therefore,

we registered two sets of functional imaging data to the

FuGIMA standard brain: DS signals recorded in RGC terminals
Figure 6. Pretectal Projection Neurons Target the Cerebellum and Ven

(A) Schematic illustrating the strategy to combine the single-neuron atlas of Kun

(B and C) 3D representation of the standard brain (HuC:lyn-tagRFP) together with

(PPNs) (green, n = 38), chosen based on their soma location within the FuGIMA

(B) (Left, dorsal view, top right) Dorsal view of cell bodies with AFs 4–9; (bottom

(C) As (B) but lateral view (C, cerebellum; H, hypothalamus; RF, reticular form

branching of PPNs).

(D) Intersection analysis of PPNs with annotated brain areas, i.e., contralateral

tegmentum, AF9, cerebellum, AF6, and AF8. Each row represents one neuron; b

(E) 3D rendering of intersection of PPNswith the reticular formation (blue, intersect

formation; top, somata and AFs 4–9; bottom, tracings and AFs 5 and 6; left, dorsa

(F) As (E) but intersection of PPNs with the cerebellum (blue, intersecting tracing

See also Figure S7 and Video S5.
(isl2b:Gal4, UAS:syGCaMP6s) and DS signals from all neurons

(HuC:GCaMP5G; Figure 5A). In this overlay, DS-RGC pixels

overlapped with dendrites from monocular DS cells, but not

with those of translation-selective neurons (Figure 5G). Neurites

of both monocular DS and translation-selective cells were also

seen outside the RGC neuropil, caudal to AF6 (Figures 5B–5D).

This region was contained in the broader pretectal DS neuropil

revealed by HuC:GCaMP5G imaging (Figures 5H and 5I). Trac-

ings of control neurons (non-motion-sensitive) did not overlap

with DS-RGC pixels (Figure 5E). Taken together, registration of

two 3D maps of functional data to the FuGIMA dataset suggests

that monocular DS neurons receive direct input from DS-RGCs

in AF5 and that additional DS responses in the pretectum

emanate from branches of pretectal optic-flow-responsive

neurons.
Distinct Classes of Pretectal Neurons from the Optic-
Flow-Processing Region Project to Premotor Centers
We hypothesized that translation-selective neurons might proj-

ect to premotor centers that drive theOMR. The FuGIMAmethod

relies on relatively slow, distance-dependent diffusion of paGFP

and is therefore unsuited to label long-range projections. To

investigate the connections of the DS pretectal area, we em-

ployed ‘‘virtual tract tracing’’ by interrogating the cellular-resolu-

tion brain atlas of Kunst et al. (2019) [this issue of Neuron]. At the

time of analysis, this dataset contained the morphologies of

1,743 single-cell tracings, all co-registered within a standard

brain. Specifically, we focused on pretectal projection neurons

(PPNs) whose cell bodies reside in immediate vicinity of FuGIMA

neurons (Figure 6A).

38 PPNs were found to reside within the cloud-shaped

‘‘FuGIMA volume of interest’’ (FuGIMA VOI) (offset between

cell body center and edge of volume �10 mm; Figure S7A). Cell

bodies of these neurons (Figure S7B) tend to be located laterally

compared to those of the FuGIMA neurons (Figure 6B). Axons of

PPNs terminate in the hindbrain reticular formation (25 ‘‘pre-

tecto-reticular’’ PPNs; 18 = 72% thereof in the contralateral

hemisphere) or the cerebellum (8 ‘‘pretecto-cerebellar’’ PPNs)

in a mutually exclusive pattern (Video S5). A large fraction of neu-

rons also terminate in the hypothalamus (25 of 38), the thalamus

(19 of 38), the raphe (21 of 38), the pretectum (18 of 38), and

tegmentum (14 of 38; including the nucleus of the medial longi-

tudinal fascicle, the oculomotor nucleus, and the nucleus isthmi),

in various combinations. AFs encompassing PPN termini are

AF9 (9 of 38), AF6 (3 of 38), and AF6 (1 of 38). The cell bodies
tral Hindbrain

st et al. (2019) and the FuGIMA dataset.

all FuGIMA neurons (magenta, n = 58) as well as pretectal projection neurons

‘‘volume-of-interest’’ (FuGIMA VOI) (Figure S7).

right) detail of tracings.

ation; dashed line, dorsal border of hypothalamus; open arrowhead, dense

hemisphere, reticular formation, hypothalamus, thalamus, raphe, pretectum,

lue filled rectangles symbolize intersection with the annotated brain area.

ing tracings [n = 25 of 38 PPNs]; gray, not intersecting PPNs; light blue, reticular

l view; right, lateral view; arrow, dense branching area in dorsal hypothalamus).

s [n = 8 of 38 PPNs]; light blue, cerebellum).
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of pretecto-reticular PPNs reside in the posterior-lateral part of

the FuGIMA VOI (Figure 6E). Their axons heavily branch in an

area directly posterior and about 20 mm ventral to the main

branching area of FuGIMA cells, partially crossing the dorsal

border of the hypothalamus (Figures 6C and 6E). Most of them

(18 of 25) project bilaterally (Figures 6D and 6E). In contrast,

cell bodies of the pretecto-cerebellar PPNs were mainly found

in an anterior cluster lateral to AF9 (Figure 6F). Their neurites

branch in the vicinity of the cell body, contacting AF6 (n =

2), or AF9 (n = 5), again in varied combinations, and terminate

in two patches of the medial cerebellum (Figures 6D and 6F).

The traced set of PPNs did not intersect with AF4, AF5, or AF7.

In conclusion, two mutually exclusive groups of PPNs connect

the optic-flow-sensitive region to the reticular formation (often

with collaterals in the hypothalamus) and to the cerebellum (often

with collaterals in thalamus and pretectum).

DISCUSSION

This study has revealed the cellular composition, as well as the

afferent and efferent pathways, of the optic-flow-processing

center in the zebrafish pretectum. We demonstrate that signals

from DS-RGCs are transmitted primarily to retinal arborization

field AF5 in the pretectal neuropil. DS-RGC axon terminals

spatially overlap with putative dendrites of simple, monocular

DS pretectal neurons in AF5, but not with those of complex,

translation-selective neurons. Complementation of the FuGIMA

dataset with tracings from a single-neuron atlas has revealed

projection targets of pretectal neurons, i.e., the reticular forma-

tion, the tegmentum, the hypothalamus, and the cerebellum.

Based on our findings, we propose amodel of processing stages

in the optic-flow-responsive pathway (Figure 7). Direction selec-

tivity, transmitted by RGC axons to AF5, is inherited by simple,

monocular DS neurons and is then combined across the two

eyes, likely in the densely innervated neuropil dorso-posterior

to AF6, to generate translation-selective tuning in complex cells.

The behaviorally relevant binocular optic flow information,

computed in the pretectum, is then further relayed to premotor

areas in the hindbrain to ultimately drive optomotor behavior.

We demonstrate that DS-RGCs project mainly to AF5. A

smaller fraction of DS-responsive RGC terminals was also found

in AF6. It is noteworthy that, to generate the consensus anatom-

ical mask, AF boundaries were drawn by outlining the silhouettes

of neuropil shapes in multiple fish. Functional data were not

taken into consideration in these AF annotations, and it is

conceivable that axon collaterals do not respect our annotated

anatomical boundaries. It is plausible that the DS responses

detectable in AF6 originate from branches of RGC axons that

are primarily targeting AF5. This interpretation is in contrast to

a previous study (Naumann et al., 2016), which implicated AF6

in pretectal DS-RGC processing. Naumann et al. (2016) identi-

fied a conglomerate of neuropil areas exhibiting DS responses

as ‘‘AF6.’’ The fish they imaged carried the HuC:GCaMP5G

transgene, in which GCaMP is expressed in almost all neurons.

Because GCaMP expression was therefore not limited to

RGCs, this approach does not differentiate AFs or disambiguate

RGC terminals from axons or dendrites that arise from other

neurons. When we registered our two imaging datasets per-
128 Neuron 103, 118–132, July 3, 2019
formed in HuC:GCaMP5G transgenic fish and RGC terminals

into the FuGIMA dataset, the DS neuropil area detected in

HuC:GCaMP5G transgenic fish overlaps with both RGC termi-

nals and neurites of motion-responsive pretectal neurons. This

result suggests that Naumann et al.’s AF6 is likely a mix of

AF5, AF6, and additional neuropil formed by pretectal neurons;

it is certainly not exclusively AF6.

A previous comprehensive analysis of projection patterns of

RGC axons revealed that AF5-projecting RGCs do not form col-

laterals in AF6 and vice versa (Robles et al., 2014). Furthermore,

all AF5- and AF6-projecting RGCs in addition innervate specific

layers of the tectum. AF6-projecting RGCs innervate the deepest

layer of the SFGS (SFGS6) and the stratum griseum centrale

(SGC) (Robles et al., 2014), which do not show DS responses

(Gabriel et al., 2012; Nikolaou et al., 2012). AF5-projecting

RGCs, on the other hand, innervate the most superficial layer

of the SFGS layer (SFGS1), which receives DS-RGC input

(Gabriel et al., 2012; Nikolaou et al., 2012; this study). Assuming

that multiple axonal branches of single DS-RGCs share the same

tuning, our functional imaging result is therefore consistent with

the anatomical organization of RGC projection patterns, further

supporting AF5 as a center for DS motion processing.

We applied the FuGIMA technique (Förster et al., 2018) to tie

tuning properties of individual neurons to their morphologies.

This method is based on diffusion of the fluorescent paGFP

and is therefore well suited to label local neurites, particularly

dendrites, whose calibers are generally bigger than those of

axons (Vishwanathan et al., 2017) but cannot be used to trace

axons over long (>200 mm) distances. We focused on monocular

DS neurons, i.e., neurons that respond tomovement detected by

the contralateral eye, located in the anterior medial cluster of the

pretectum, as reported before (Kubo et al., 2014). Ipsilateral

monocular DS neurons, which were present in the much larger

dataset of Kubo et al. (2014), are missing in our FuGIMA dataset

(Figure S2E). We suspect that this discrepancy is rooted in the

different transgenic lines used (HuC:GCaMP5G by Kubo et al.,

2014 and Gal4s1101t 3 UAS:FuGIMA in this study, respectively).

We hypothesized that at least a subset of the translation-se-

lective pretectal cells might be projection neurons (PPNs), which

convey information to the premotor centers that drive the OMR.

Activity in the reticular formation and the tegmentum has been

shown to be correlated with forward swimming and/or turning

behavior (Chen et al., 2018; Naumann et al., 2016; Portugues

et al., 2014; Vladimirov et al., 2018). Another potential recipient

of optic-flow-related information from the pretectum is the cere-

bellum. Previous work described cerebellar tuning to whole-field

motion in cerebellar granule and Purkinje cells (Knogler et al.,

2017; Matsui et al., 2014). Purkinje cells in the medial part of

the cerebellum were active during OMR, whereas the lateral

part was active during the OKR (Matsui et al., 2014). We interro-

gated a single-neuron atlas (Kunst et al., 2019) to search for

PPNs whose cell bodies reside in the optic-flow-responsive re-

gion. Most PPNs from this dataset send axons to either of two

targets, the reticular formation or the cerebellum. In addition,

many PPN axons form collateral branches in the hypothalamus,

thalamus, raphe, pretectum, and tegmentum. A mutually exclu-

sive innervation of cerebellum and reticular formation by pretec-

tal efferents has also been reported for adult zebrafish (Yáñez
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Figure 7. Model for the Optic-Flow-Processing Pathway

The majority of pretectal DS-RGCs terminate in AF5, where they likely synapse onto simple monocular DS neurons. Monocular DS neurons project to a neuropil

region within the pretectum, close to the dorsal edge of AF6, where they overlap with translation-selective neurons. Binocularity can be established via inhibition

by predicted commissural monocular DS neurons. Information about translational optic flow is transmitted by mutually exclusive populations of pretectal pro-

jection neurons to premotor centers either in the cerebellum or in the reticular formation, together evoking directed optomotor responses.
et al., 2018). ThePPNs thatwedescribeherearenotcharacterized

functionally. However, 10 out of 38 PPNs arborize in AF6, 8, or 9,

which someof the FuGIMA-reconstructed neurons also innervate,

suggesting that a subset, if not all, of the PPNs correspond to op-

tic-flow-responsivecells thatweanalyzedwithFuGIMA.Binocular

integration depends on interhemispheric transfer of DS informa-

tion (Kubo et al., 2014; Naumann et al., 2016). Interestingly,

whenwe scanned the single-cell atlas anterior to the FuGIMA vol-

ume, we discovered a population of commissural neurons in the

pretectum that might subserve this function (unpublished data).

Commissural neurons projecting to the contralateral pretectum

have been described in adult zebrafish (Yáñez et al., 2018).

In conclusion, our results identify a cell-resolved retina-pretec-

tum-hindbrain pathway of the optic flow computation underlying

the OMR. A combination of functional and anatomical ap-

proaches can offer a unique opportunity to gain new insights
into neural circuits that cannot be obtained by a single approach

alone. Our circuit model provides a blueprint for the identification

of synaptic connectivity and circuit mechanisms underlying optic

flow processing in the vertebrate brain.
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Alpha-Bungarotoxin Invitrogen B1601

DiI (1,1’-Dioctadecyl-3,3,30,30-
Tetramethylindocarbocyanine Perchlorate)

Invitrogen D3911

Tricaine Sigma-Aldrich MS-222

Experimental Models: Organisms/Strains

Zebrafish Tg(atoh7:Gal4-VP16)s1992t, a. k. a.

ath5:Gal4

Del Bene et al., 2010 ZFIN ID: ZDB-FISH-150901-27082

Zebrafish Tg(elavl3:lyn-tagRFP)mpn404, a. k. a.

HuC:lyn-tagRFP

Dal Maschio et al., 2017 ZFIN ID: ZDB-ALT-170731-38

Zebrafish Tg(elavl3:GCaMP5G)a4598 Ahrens et al., 2013 ZFIN ID: ZDB-FISH-150901-22335

Tg(elavl3:Has.H2B-GCaMP6s)jf5 aka HuC:H2B-

GCaMP6s

Freeman et al., 2014 ZFIN ID: ZDB-FISH-170711-1

Zebrafish Et(E1b:Gal4-VP16)s1101t) Scott et al., 2007 ZFIN ID: ZDB-FISH-150901-5255

ZebrafishTg(isl2b:Gal4-VP16, myl7:TagRFP)zc65 Fujimoto et al., 2011 ZFIN ID: ZDB-FISH-150901-13523

Zebrafish Tg(UAS:mCherry)s1984t Heap et al., 2013 ZFIN ID: ZDB-FISH-150901-14417

Zebrafish Tg(UAS:syn-GFP) a. k. a. UAS:sypGFP Heap et al., 2013 ZFIN ID: ZDB-FISH-150901-21811

Zebrafish Tg(UAS:Dendra-kras)s1998t Arrenberg et al., 2009 ZFIN ID: ZDB-ALT-110808-3

Zebrafish Tg(UAS:syGCaMP6s)mpn156 This paper NA

Zebrafish Tg(UAS-Janus:nlsGCaMP6s,PA-

GFP)mpn161, a.k.a. UAS:FuGIMA

This paper NA

Zebrafish Tg(UAS-Janus:nlsGCaMP6s,C3PA-

GFP)mpn162, a.k.a UAS:FuGIMA-C3PA

This paper NA

Software and Algorithms

ImageJ/Fiji Schindelin et al., 2012 https://fiji.sc/

Simple Neurite Tracer (Fiji plugin) Longair et al., 2011 https://imagej.net/Simple_Neurite_Tracer

Attenuation Correction (Fiji plugin) Biot et al., 2008 http://imagejdocu.tudor.lu/doku.php?

id=plugin:stacks:attenuation_correction:start

Name Landmarks and Register (Fiji plugin) Longair and Jefferis, 2006 https://imagej.net/Name_Landmarks_and_Register

NeuTube Feng et al., 2015 https://www.neutracing.com/

Advanced Normalization Tools (ANTs) Avants et al., 2008;

Avants et al., 2011;

Avants et al., 2010

http://stnava.github.io/ANTs/

RStudio Version 1.0.143 RStudio https://www.rstudio.com/

Python 2.7 Python.org https://www.python.org

Python 3 Python.org https://www.python.org

Amira Thermo Fisher Scientific https://www.thermofisher.com/global/en/home/

industrial/electron-microscopy/electron-microscopy-

instruments-workflow-solutions/3d-visualization-

analysis-software/amira-life-sciences-biomedical.html

Imaris Bitplane https://imaris.oxinst.com

FFmpeg https://ffmpeg.org/

CaImAn (Calcium Imaging Analysis toolbox) Giovannucci et al., 2019;

Pnevmatikakis and

Giovannucci, 2017

https://github.com/flatironinstitute/CaImAn

R package nat (NeuroAnatomy Toolbox) Jefferis and Manton, 2014 http://jefferis.github.io/nat/

R package rgl Daniel Adler, Duncan

Murdoch and others

https://cran.r-project.org/web/packages/rgl/

index.html
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REAGENT or RESOURCE SOURCE IDENTIFIER

Other

Confocal microscope LSM 700, with a 20x/1.0 NA

water-dipping objective

Carl Zeiss https://www.zeiss.com/microscopy/int/home.html?

vaURL=www.zeiss.com/microscopy

Movable object two-photon microscope with

a 20x water-dipping objective (Olympus, NA 1.0)

Sutter Instruments/ Olympus https://www.sutter.com / https://www.olympus-

lifescience.com/de/

Femtonics 3DRC two-photon microscope, with

16x or 20x water-dipping objective

Femtonics http://femtonics.eu/

Tracings, brain area annotations, and standard brain Single-neuron atlas of

Kunst et al., 2019

https://fishatlas.neuro.mpg.de/zebrafishatlas/
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Fumi

Kubo (fumikubo@nig.ac.jp).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animal care and transgenic zebrafish
Adult and larval zebrafish (Danio rerio) were housed and handled according to standard procedures (Westerfield, 2007).

Animal experiments were performed according to regulations of the Max Planck Society and the regional government of Upper

Bavaria (Regierung von Oberbayern; approved protocols: ROB-55.2Vet-2532.Vet_02-16-31 and 55.2-1-54-2532-101-2012). We

used the following previously described transgenic lines: HuC:GCaMP5G (Tg(elavl3:GCaMP5G)a4598); Tg(isl2b:Gal4-VP16)zc65;

Tg(atoh7:Gal4-VP16)s1992t; Tg(UAS:mCherry)s1984t; Tg(UAS:Dendra-kras)s1998t; Tg(UAS:sypGFP); Et(E1b:Gal4-VP16)s1101t

(= Gal4s1101t), HuC:lyn-tagRFP (Tg(elavl3:lyn-tagRFP)mpn404); Tg(elavl3:H2B-GCaMP6s). Transgenic fish were kept in either a TL

or TLN (nacre) background and larvae lacking trunk pigmentation (outcrossed to TLN, nacre) were used in the experiment. Zebrafish

larvae were raised in Danieau’s solution until day 5 or 6 post-fertilization (dpf). As sex determination has not yet taken place in larvae,

we used future males and females indiscriminately.

Line establishment
To generate the UAS:syGCaMP6s plasmid, the synaptophysin coding sequence (Meyer and Smith, 2006) was fused with GCaMP6s

and inserted into a pTol2-14xUAS vector. Tg(UAS:syGCaMP6s)mpn156 transgenic fish were generated using the standard Tol2

transposon system.

To co-express nls-GCaMP6s and either paGFP (forUAS:FuGIMA) or C3PA-GFP (forUAS:FuGIMA-C3PA), we fused nls-GCaMP6s

and either paGFP (Patterson and Lippincott-Schwartz, 2002) or C3PA-GFP (Ruta et al., 2010) to the two sides of a bidirectional 14x

UAS sequence (Janus-UAS; Distel et al., 2010; Paquet et al., 2009) in a Tol2 vector harboring a trangenesis marker (‘‘bleeding heart,’’

cmlc2:mCherry). The transgenic lines Tg(UAS:paGFP,nlsGCaMP6s)mpn161 and Tg(UAS:C3PA-GFP,nlsGCaMP6s)mpn162 were

generated in the background of Gal4s1101t using the standard Tol2 transposon system. Most FuGIMA experiments were conducted

in the F2 and F3 generations of theUAS:FuGIMA line, which showed considerable variegation and silencing of the transgene expres-

sion. Of the 58 FuGIMA tracings, three were performed with UAS:FuGIMA-C3PA, Gal4s1101t or HuC:Gal4. These neurons belong to

the monocular direction-selective response type class and do not intersect with AF5.

METHOD DETAILS

RGC axons and pretectal neuropil functional imaging
Calcium imaging of RGC terminals was performed in triple transgenic zebrafish larvae expressing syGCaMP6s andmCherry in RGCs

(Tg(isl2b:Gal4-VP16)zc65, Tg(UAS:syGCaMP6s)mpn156, Tg(UAS:mCherry)s1984t) between 5 and 6 dpf. Larvae were mounted in

2% low-melting agarose with the dorsal side up. The fish were positioned in the center of a dish with a diameter of 3 cm. Larvae

were intraspinally injected with a-bungarotoxin (2 mg/mL a-bungarotoxin (Invitrogen, B1601), FastRed 10% v/v, 1x Danieau’s solu-

tion). A moveable objective microscope (MOM, Sutter Instruments) was used to record GCaMP signals (920 nm, 10-20 mW after the

objective) with a 20x objective (Olympus, NA 1.0). ScanImage software (Pologruto et al., 2003) was used for image acquisition. We

typically recorded one of two volumes per fish, each covering AF10 or AF4, AF5 and AF6 volume. For recording of AF10, ca. 20

z-planes were imaged with the z-step size of 4 mm. For recording of AF4, 5 and 6, ca. 25 z-planes were imaged with the z-step

size of 3 mm. For each z-plane, images were acquired with a spatial resolution of 256x256 pixels (pixel size of 0.33 mm for AF10

and 0.19 mm for AF 4, 5 and 6) at a frame rate of 2.38 Hz. Since the average diameter of a presynaptic bouton in zebrafish RGCs
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is �0.8 mm (Meyer and Smith, 2006), the physical lateral dimensions of pixels are below that of a typical presynaptic bouton. Sinu-

soidal grating stimuli were generated by customwritten scripts using PsychoPy and presented onto a screen positioned either below

or on the side of the fish using a digital light processing (DLP) projector (DLP LightCrafter 4500), using the red channel only, which

allowed simultaneous visual stimulation and detection of green fluorescence. The visual stimuli consisted of whole-field luminance

change (lowest luminance/ highest luminance/ lowest luminance) followed by gratings moving in 12 equally spaced angular di-

rections presented in a random order. For each presentation of a different direction, the gratings initially stayed stationary for 10 s, in

motion for 5 s, and back to stationary for 5 s, and this process was repeated for all grating presentations. The total length of the visual

stimulus protocol was about 5 min. For the projection from the side of the fish, spatial and temporal frequency of the gratings was

0.06 cycle/degree and 1.8 Hz, respectively. The projected image filled a visual field of approximately 120� in azimuth and ± 35� in
elevation. For the projection from below the fish, gratings were designed as described in the recent study (Naumann et al., 2016).

Briefly, the gratings of the spatial period of 1 cm moving at 10 mm/sec were presented onto a 12 cm x 12 cm screen. In contrast

to this recent study, the complete screen area was covered by the grating (no stimulus omission directly below the fish).

Calcium imaging of pretectal neuropil was performed in HuC:GCaMP5G fish between 5 and 6 dpf. A volume centered around the

pretectal neuropil was imaged with the z-step size of 5 mm. For each z-plane, images were acquired with a spatial resolution of

512x512 pixels (pixel size of 0.19 mm) at a frame rate of 2.38 Hz. The visual stimulus was presented from below the fish, as described

above.

Pixelwise calcium imaging analysis (RGCs)
Raw time series of two-photon recordings were first corrected formotion artifacts by a hiddenMarkovmodel (HMM)-based algorithm

using the SIMA toolkit (Kaifosh et al., 2014) and then processed by a uniform filter for noise removal. For each pixel in the filtered

motion corrected recordings, its fluorescence time series was divided into 14 phases based on the visual stimuli. These 14 phases

consisted of 1 ON phase (whole-field luminance increase), 1 OFF phase (whole-filed luminance decrease), and 12 motion phases.

The normalized signal intensity changes (DF/F0) were calculated for each phase, and theywere tested for correlationwith the stimulus

time series convolved with a kernel with syGGCaMP6s kinetics (tdecay = 1.2 s). Pixels were considered motion responsive, if 1) their

Pearson correlation coefficients were above the threshold of 0.35 in no less than 2motion phases and 2) their t-scores (the coefficient

from linear regression divided by error) in at least one motion phase were above noise threshold of 1.3. For each motion responsive

pixel, we generated a response profile which consisted of the integral response over motion presentation for 12 directions.

To identify DS and OS populations, we plotted the response profiles as vectors in direction and orientation space, and we calcu-

lated the vector sum. The angle of the vector sum represents the preferred direction or orientation, and the normalized length of the

vector sum (Ldir and Lori as calculated below) represents the degree of selectivity. This has been shown to be a robust method to

quantify direction and orientation selectivity (Mazurek et al., 2014).

Ldir =

�
�
�
�

P
kRðqkÞexpðiqkÞP

kRðqkÞ
�
�
�
�

Lori =

�
�
�
�

P
kRðqkÞexpð2iqkÞP

kRðqkÞ
�
�
�
�

qk represents a direction of motion, and R(qk) is the integral response during the motion phase in the direction of qk. An empirical

threshold of 0.4 was set for Lori and 0.5 for Ldir. Pixels that surpassed the threshold were considered DS or OS. If a pixel was classified

as both DS and OS, that pixel was regarded as DS, for which we have set a more stringent threshold. This ensured that DS and OS

pixels are mutually exclusive. These thresholded, binary DS and OS pixels were color coded according to their preferred direction or

orientation and plotted on top of the anatomical references, which are the mean images of the motion-corrected time series. To

generate histograms of preferred direction (Figure 4), we first obtained the distribution of the preferred direction of DS pixels for

each individual fish. The total number of DS pixels was normalized across different fish, and then the average of the normalized dis-

tribution was plotted. To compare our data with the previously published result of distribution of preferred directions of DS-RGC ter-

minals (Figure 4D), we selected 3 planes (separated by 4 mm) in the dorsal part of AF10 (approximately 30 - 45 mm from the dorsal

surface of the tectum). The luminance response was determined independently of the response to motion stimuli (Figure S6). Pixels

were deemed luminance responsive, if they showed activity correlated with changes in light intensity (Pearson correlation coefficient

> empirically derived threshold 0.45). The activity of ON pixels increases when luminance rises, while that of OFF pixels increases

when luminance drops. ON-OFF pixels show an increase in activity when luminance rises and drops. For a pixel to be regarded

as luminance responsive, mutually exclusive criteria were used: i.e., ON if ON > 0.45 and OFF < 0.45, and OFF if ON < 0.45 and

OFF > 0.45, and ON-OFF if ON > 0.45 and OFF > 0.45.

Image registration for RGC and pretectal neuropil
After calcium imaging, we acquired anatomical z stacks of the same fish (isl2b:Gal4, UAS:syGCaMP6s, UAS:mCherry). We first

obtained small stacks (256x256 pixels) with the two-photon microscope, using syGCaMP6s and covering the functionally imaged
Neuron 103, 118–132.e1–e7, July 3, 2019 e3 45



volume (either AF10 or AF4, AF5 and AF6, or both in a few cases). Additionally, one overview stack with a higher resolution

(1024x1024 pixels) was taken at the confocal microscope (LSM700, Carl Zeiss, Jena, Germany) with a 20x objective (W Plan-Apo-

chromat 20x/1.0, Carl Zeiss, NA 1.0) with a z-step size of 1 mm and using both syGCaMP6s and mCherry channels.

In order to visualize the DS and OS RGC terminals imaged in multiple fish and compare them with the HuC:GCaMP5G expression

pattern, we developed a three-step registration procedure (Figure S5A): 1) the mean image of the motion corrected time series were

manually aligned (custom written Python script) onto the two-photon anatomical z stack using the syGCaMP6s signal as reference.

As such, we registered the functional information to the anatomical z stacks. To circumvent changes of pixel values and thereby

changes of DS/OS information caused by the image registration, we binned functional data according to preferred direction/orien-

tation. Namely, we created 12 separate channels, with each channel corresponding to one of the 12 bins of preferred directions. 2) the

two-photon anatomical z stacks were registered to the confocal stack of the same fish using syGCaMP6s as the reference channel.

To facilitate gross alignment between the stacks, we pre-aligned the z stacks according to manual landmark selection using the plu-

gin ‘‘Name Landmarks and Register’’ (by Mark Longair and Greg Jefferis) in Fiji (Schindelin et al., 2012; Schneider et al., 2012). The

stacks were then precisely registered by the image registration library ANTs (Advanced Normalization Tools) (Avants et al., 2008;

Avants et al., 2011; Avants et al., 2010) using syGCaMP6s signal as a reference for registration. The parameters for the command

antsRegistration recently applied to zebrafish live images (Marquart et al., 2017) were used, except for variation of the initial transform

parameter and the application of a mask. This mask was drawn in Fiji with the plugin segmentation editor (by Johannes Schindelin,

Francois Kusztos and Benjamin Schmid) and restricted the search for corresponding pixels to the area containing RGC terminals. 3)

The resulting stack was then registered to the template (RGC standard brain) which was generated from six different stacks

(isl2b:Gal4, UAS:mCherry) using the command antsMultivariateTemplateConstruction2 in ANTs. Using themCherry signal as a refer-

ence channel, we applied the same settings as for the previous round of ANTs registration (but without mask). Therefore, for

each step of registration, the previous template stack served as the pattern to be registered. If a pitch difference between the

experimental fish and the template was greater than ± 5� (as calculated from the transformation information), DS and OS bins

were recalculated accordingly before applying image registration. After anatomical stacks underwent registration, functional stacks

containing DS/OS information were treated as additional channels and subjected to the same transformations using the command

antsApplyTransforms (Marquart et al., 2017). As DS/OS depicting pixels were broadened due to registration, we applied a threshold

of a pixel intensity value 50 to eliminate the smearing effect of the registration (custom Python script). This threshold was determined

visually to display the same spatial extent of DS/OS information in the template volume as in the original two-photon frames. To visu-

alize the isl2b template in the context of the HuC:GCaMP5G expression pattern, we registered a single isl2b:Gal4, UAS:mCherry,

HuC:GCaMP5G fish to the template via the mCherry channel. For registering DS neuropil signals imaged in HuC:GCaMP5G fish

(N = 6 fish), the same image registration protocol was applied except that 1) pre-alignment of the two-photon anatomical z stacks

using manual landmark selection was skipped (during step 2 of the registration protocol) and 2) the confocal anatomical stacks of

the functionally imaged fish were registered to our reference brain via the previously aligned HuC:GCaMP5G pattern.

Segmentation of AFs and 3D rendering
Segmentation of AFs was performed based on presynaptic puncta signals in atoh7:Gal4, UAS:sypGFP fish after they had been regis-

tered to the RGC standard brain using ANTs. AFs were manually segmented using published anatomical information about AFs (Bur-

rill and Easter, 1994; Robles et al., 2014). Note that our segmentation of AFs relied only on anatomical features, without referring to

functional maps of RGC terminals. We noted some variability of SypGFP localization patterns across different individual fish, espe-

cially at the boundary between AF5 and AF6. To account for this individual fish differences, 3 fish were segmented by 3 annotators

each, and average of the 9 annotations was used to generate a consensus mask for AF4, AF5 and AF6. To quantify the number of DS

pixels in different AFs, we used original calcium time series before anatomical registration to avoid the smearing effect (thereby lead-

ing to changes in the absolute number of pixels of each RGC puncta) caused by the registration. To count DS pixels in the original

calcium time series in each AF, we either drew masks of AFs directly on the original calcium time series (with the aid of anatomical

stacks) or back-transformed our consensus AF masks (drawn on the registered image volume) to the original calcium time series

using inverse transformation. To determine the proportion of DS pixels relative to the entire number of pixels in AFs, we first quantified

the pixel counts in AF5 and AF6 using the synaptic puncta signals of 9 anatomical stacks obtained from isl2b:Gal4, UAS:sypGFP fish.

Subsequently, the number of DS pixels was divided by the average pixel counts in each AF to derive the percentage of DS pixels per

total number of pixels in each AF. 3D rendering of registered image stacks was performed using Imaris software. Autofluorescence of

the skin and eyeswas removed by applying 3Dmasks and the volumes corresponding to AFswere highlighted in Imaris. Movies were

prepared using Imaris and Fiji.

Lipophilic Dye labeling
6 day old isl2b:Gal4, UAS:Dendra-kras transgenic larvaewere fixed in 4%paraformaldehyde in PBS for 1hr at 4�C. 1%solutions of DiI

in chloroform were pressure injected between the lens and the retina to visualize all axonal projections. Fluorescent images were

acquired one day after the injection.
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Functional imaging and analysis (FuGIMA dataset)
Larvae were mounted in agarose (LMP-agarose, 1.5% w/v in Danieau’s solution), and intraspinally injected with alpha-bungarotoxin

(2mg/mL a-bungarotoxin (Invitrogen, B1601), FastRed 10%v/v, 1x Danieau’s solution) before the experiment to abolishmovements.

During injection, larvae were under anesthesia with tricaine (0,02%, MS-222, Sigma-Aldrich) and the tricaine was washed out after

injection. We used a two-photon microscope (Femtonics 3DRC microscope, Femtonics, Tuzlo, Hungary) for functional imaging as

well as acquisition of z stacks. The visual stimuli were presented to the fish using a custom-built red LED arena as reported previously

(Kubo et al., 2014; four flat panels covering 360� around the fish; no grating presentation in �30� in front of the fish). In each exper-

iment session, gratings moved horizontally in eight phases (3 s each at spatial frequency of 0.033 cycles/degree and temporal fre-

quency of 2 cycles/sec, interspersed with 10 s stationary gratings, Figure S2A). Four of the eight phases are monocular, four are

binocular: 1) left nasalward, 2) left temporalward, 3) right temporalward, 4) right nasalward, 5) backward, 6) forward, 7) clockwise,

8) counterclockwise. The sequence of eight phases was repeated three times. During visual stimulation, GCaMP fluorescence

was imaged at about 3 Hz using the laser tuned to 920 nm (0.53 0.5 mm/pixel, ca. 15 mW after the objective, imaging region of about

903 98 mm). Response types of recorded neurons were identified using a customwritten python script (regressor based, near-online

analysis: approx. 2 minutes run time). First, traces of the three repetitions were averaged. Second, the averaged time series of each

pixel were correlated to 256 regressors (visual stimulus time series convolved with nls-GCaMP6s kernel, tau = 3 s, tau determined

visually to resemble the fluorescence trace), and the best-correlated regressor was determined for each pixel (threshold of Pearson’s

correlation coefficient > 0.3). For each regressor-of-interest (e.g., monocular DS and translation-selective response types), we gener-

ated a map of correlated pixels overlaid on the mean DF/F0 image (Figure 1E), based on which cells of interest were chosen. The

selected cells of interest were further manually inspected for variability in response across repetitions, baseline fluorescence (indi-

cator of transgene expression level), and accessibility for photoactivation (separation from neighboring neurons).

To improve display of fluorescence traces, functional imaging time series were motion corrected with CaImAn (Giovannucci et al.,

2019; Pnevmatikakis and Giovannucci, 2017). We extracted average brightness from ROIs centered on the cell of interest (using Fiji),

and calculated DF/F0 with F0 being the mean of the 10th percentile. For neurons of the monocular DS and translation selective type,

we plotted the mean trace of three repetitions, grouped by response type. For non-motion-selective neurons we in addition plotted

the variance over three stimulus repetitions of the trial (SEM). Regressor traces were manually overlaid with corresponding fluores-

cence traces.

Photoactivation of paGFP and z stack acquisition
Photoactivation of paGFP in selected cells of interest was performed according to a detailed published protocol (Förster et al., 2018).

Briefly, a ROI of about 0.8 3 0.8 mm (0.2 3 0.2 mm/pixel, 4 3 4 pixels) was placed in the center of the nucleus in 3D. Initially, paGFP

was photoactivated with trial pulses of 200 ms (one and three pulses, laser wavelength 750 nm, ca. 10 - 17 mW after the objective,

1 Hz). If no neighboring cells were photoactivated, the ROI was re-centered and the first full cycle of photoactivation was delivered

(403 200 ms, 1 Hz, Figure 1F). In cases of residual movement of the fish, tricaine was added before photoactivation. The whole pro-

tocol consisted of 15 cycles, with typically fiveminutes intervals between two activation cycles. However, in the dataset containing 58

neurons, 3 were photoactivated with less than 5 cycles and 11 with 5-10 cycles of photoactivation. Typically, paGFP fluorescence

intensity in the photoactivated soma rapidly increased with the first photoactivation cycle, reaching themaximum after several cycles

of photoactivation, suggesting that the maximum level of the photoactivation is achieved after several cycles of photoactivation (Fig-

ure S1C). To control progress of diffusion, z stacks capturing both green and red fluorescence (1020 nm, 1 mm z-step) were typically

acquired every five cycles, as well as a high resolution stack after the last activation period.

We quantified the degree of photoactivation by calculating the normalized fluorescence change after each cycle of photoactivation

(mean of n = 5 neurons in 3 fish). An experiment was terminated, if 1) a directly neighboring neuron was also photoactivated, 2) fluo-

rescence in the neurite did not strongly increase after the first cycle of photoactivation, or 3) the sample drifted. Furthermore, as the

pretectum is located directly ventral to the tectum, we photoactivated few neurons resembling tectal neurons’ morphology (neurite

targeting the tectal neuropil, perpendicular branching in the neuropil layers), which were excluded. Two-photon and confocal micro-

scopy offer different advantages: while two-photon microscopy achieves superior resolution in deeper tissue, it typically does not

allow to image close to the eye pigment epithelium (due to photomultiplier tube (PMT) saturation). As confocal microscopy does

not show this restriction, we acquired a large z stack at the confocal microscope (LSM 700, Carl Zeiss, Jena, Germany 20x/1.0

NA, water-dipping objective) in addition to the two-photon z stack.

To exclude the possibility that tracing quality underlies differential neurite trajectories of different response types, we manually

sorted z stacks into four groups according to their image quality and compared tracings between groups. We did not find systematic

differences in tracing length or overall morphology among the four groups (Figure S4C). Furthermore, all four groups contained trac-

ings of all three response classes. Translation-selective neurons were even slightly overrepresented in the ‘‘best’’ image group. It is

thus unlikely that we overlooked particular features, such as AF5 targeting, of translation-selective neurons.

Tracing of FuGIMA neurons and consolidation
Neurons were semi-manually traced from the confocal and two-photon z stacks using the Fiji plugin Simple Neurite Tracer (Longair

et al., 2011) or the software neuTube (Feng et al., 2015) (Figure 1G). Neurons were traced in both confocal and two-photon z stacks, if

available, as the two imaging modalities complement one another (see above). Finally, we merged the tracings of the same neuron
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after co-registration (see section Image registration of FuGIMA data below) using a custom written python code. For merging, node

locations of two tracings were compared and corresponding nodes were identified based on a maximal distance between them

(defined by an empirically chosen tolerance factor). Residual nodes were then added to themerged tracing (OR operation). To assess

the labeling distance of paGFP, we photoactivated a neuron co-expressing a membrane-tagged red fluorescent protein and Fu-

GIMA. Briefly, we injected the plasmid pTol2-UAS:tdTomato-CAAX into embryos (Gal4s1101t, UAS:FuGIMA) at the two to four cell

stage and selected larvae with sparse expression of tdTomato. We applied the full photoactivation protocol on a spinal cord neuron

co-expressing FuGIMA and tdTomato-CAAX. While tdTomato in the soma was considerably photo-bleached, it colocalized with

paGFP in the neurite. Neurons highlighted with paGFP can be followed over 200 mm, as shown in a spinal cord neuron co-expressing

tdTomato-CAAX (Figures S1A and S1B).

Image registration of FuGIMA data
The basis of comparisons across fish is their registration to a standard brain. We established the FuGIMA standard brain using the

ANTs from four z stacks of four live fish expressing HuC:lyn-tagRFP, HuC:H2B-GCaMP6s (imaged at the confocal microscope). The

FuGIMA standard brain is centered on the pretectum of the right hemisphere and extends 311.23 311.2 3 161 mm (x/y/z direction,

0.69 3 0.69 3 1 mm voxel size). To compare tracings from different experimental fish in one volume, z stacks were registered to

the standard brain (overlay of three registered example z stacks: Figure 1H, registration workflow: Figure S1D). As preparation,

the HuC:lyn-tagRFP channel was corrected for depth-dependent decrease of brightness (Fiji plugin Attenuation Correction (Biot

et al., 2008)). If the experimental z stack was centered on the contralateral hemisphere, the z stack was flipped and rotated prior

to registration using Fiji. Z stacks were registered to the standard brain using the software ANTs (Avants et al., 2008; Avants

et al., 2011; Avants et al., 2010) and based on the common reference labeling pattern of HuC:lyn-tagRFP. We used the

parameters recently determined for live samples (Marquart et al., 2017). Tracings (.swc files) were co-registered using the command

ANTsApplyTransformsToPoints contained in the package ANTsR using R. If both confocal and two-photon-stacks were available,

two-photon-stacks were registered to the confocal stack of the same fish and confocal stacks were registered to the FuGIMA stan-

dard brain. In the case of insufficient registration precision (visually determined), we either altered parameter r to change search

initialization or applied a mask to restrict the search area. Search masks (binary .tiff files) were drawn manually or derived from pre-

vious rounds of registration. To verify the accuracy of our registration, we annotated eleven anatomical landmarks in the standard

brain and individual z stacks (n = 8 z stacks from 6 fish for LM 1 – 9 and 11, n = 6 z stacks from 4 fish for LM 10). After co-registration

into the standard brain, we calculated the distance between the landmark of the standard brain and the individual brains using R. The

deviations of the landmark positions of the registered fish from those of the standard brain were on average 6.7 ± 2.8 mm (STD, 11

landmarks, 4 or 6 z stacks from 6 fish, Figure S1E).

To facilitate comparison of tracing results across datasets, we described the x,y-position of FuGIMA neuron somata relative to a

previously defined coordinate system origin (as in Kubo et al., 2014). For this, we extracted soma coordinates from .swc files, sub-

tracted the origin coordinates (intersection of planes connecting the anterior tips of the AF9 containing neuropil, the midline, and the

plane just dorsal to the anterior tips of AF9), and transformed the coordinates (45� rotation between the RGC and FuGIMA standard

brain volumes). Soma locations (relative to the origin) were plotted in histograms (bin size = 16 mm, visually determined).

To combine visualization of neuronal tracings with landmark annotations, the latter were transformed to surfaces. For this, regis-

tered z stacks were binarized, if necessary manually smoothed (both using Fiji), and surface renderings were produced using the

software Amira (Thermo Fisher Scientific/FEI, smoothing: unconstrained smoothing, extent = 5). Neuronal tracings and landmark sur-

faces were plotted using R with the packages rgl (Adler, Murdoch, and others) and NeuroAnatomy Toolbox package (Jefferis and

Manton, 2014). For the accompanying videos, FuGIMA tracings were smoothed. The video was assembled using Fiji, then converted

and compressed with the software FFmpeg.

Integration of RGC and FuGIMA datasets
We had generated consensus AF masks in the RGC standard brain (see section Segmentation of AFs and 3D rendering above).

To transfer these masks into the FuGIMA volume, we applied a two-step registration process (Figure S3A): 1) we registered the

RGC standard brain (based on isl2b:Gal4, UAS:mCherry) to individual ‘‘bridge’’-z stacks of fish expressing isl2b:Gal4, UAS:GFP,

HuC:lyn-tagRFP (n = 7 z stacks from 4 fish), 2) then we registered the ‘‘bridge’’-z stacks to the FuGIMA standard brain (based on

HuC:lyn-tagRFP). As we observed slight differences in the localization of co-registered AF masks, we applied a kernel-density

estimation (KDE) to the collection of binarized z stacks. After normalizing the maximum pixel intensity to 100, the stack was thresh-

olded (pixel values = 25, 50, 75, and 90) and surfaces were generated. We utilized the KDE = 50%mask for further analysis of tracing

intersections with AFs.

To compare FuGIMA tracings with functional information (z stacks), we first registered the functional imaging datasets (DS in RGC

terminals and all neurons) to the FuGIMA standard brain. Streaks of DS pixels were found in the region of the eye pigment in the pan-

neuronal DS stack, resulting fromnoise due to PMT saturation.We removed those pixels with amask. To convert .swc files of tracings

to rastered data (z stacks) we applied a custom-written Fiji macro script. Resulting pixelated tracingswere smoothed in Fiji to improve

the impression of continuous neurites for display.
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Complementation with the single-neuron atlas
To compare FuGIMA neurons with a single-neuron atlas (Kunst et al., 2019), we registered the FuGIMA dataset to the standard brain

of this single-neuron atlas. The single-neuron atlas standard brain is based on the synapsin pattern (antibody staining, fixed samples)

and contains several registered expression patterns to enable registration of external datasets based on those patterns (e.g., fixed

HuC:lyn-tagRFP). To register the FuGIMA standard brain (acquired live, a sub-volume of the fish brain) into the single-neuron atlas

volume (fixed, whole-brain), we employed registration in three steps a follows: 1) FuGIMA volume to a sub-volume of the liveHuC:lyn-

tagRFP standard brain (at this time not yet registered to the single-neuron atlas), 2) extension to the full live standard brain volume, 3)

live standard brain to fixedHuC:lyn-tagRFP standard brain. Co-registration of FuGIMA tracings (.swc files) and landmark annotations

(.tiff stacks), followed by surface rendering of landmarks allowed to visualize both datasets together. We searched among 1743 trac-

ings from the web-interface of the single neuron atlas for tracings complementing the FuGIMA tracings (Pretectal projection neurons,

PPNs) (https://fishatlas.neuro.mpg.de/zebrafishatlas/, download: 25. Oct. 2018, combined results of searches in different brain re-

gions). To define the search volume for PPNs (FuGIMA VOI), we dilated FuGIMA somata and merged patches in the binary .tiff stack

(distance surface to soma approx. 10 mm (x/y) and 11 mm (z), in the FuGIMA standard volume). After co-registration of the FuGIMAVOI

to the single-neuron atlas volume, we identified PPNs with somata in the FuGIMA VOI (custom written python script). For the inner-

vation analysis, we retrieved the number of tips per PPN for all 78 brain region annotations and one additional area ‘‘contralateral

hemisphere.’’ To focus on the most prominently targeted areas, we depicted areas with > 5 intersecting PPNs, omitting similar

annotations i.e., only ‘‘cerebellum,’’ no additional ‘‘corpus cerebelli,’’ and included all annotated AFs intersecting with PPNs. For visu-

alization, we ordered the list starting with the contralateral hemisphere, then in the order of the number of intersections.

QUANTIFICATION AND STATISTICAL ANALYSIS

The statistical information is provided in each of the sections above.

The analyzed number of zebrafish and brains is indicated in the main text and figure legends. Error bars correspond to SEM unless

stated otherwise.

DATA AND SOFTWARE AVAILABILITY

Data and software will be made available upon request.
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Supplementary Figure S1 (related to Figure 1). Characterization of paGFP activation in 

single cells, registration procedure of tracings and alignment precision of landmarks. 

(A) Application of the FuGIMA photoactivation protocol in a single spinal cord neuron co-

expressing UAS:FuGIMA and UAS:tdTomato-CAAX (driver: Gal4s1101t). Photoactivation in a single 

spinal cord neuron, pre- and post-photoactivation with a single activation cycle 

(brightness/contrast adapted separately). (B) Lateral views of the tail with the photoactivated 

neuron extending from the spinal cord after full photoactivation protocol of 15 cycles. (Inset: 

rectangle on fish schematic indicates the field of view. Green: nls-GCaMP6s/paGFP, magenta: 

tdTomato-CAAX, white arrow: soma of photoactivated neuron, arrowhead: filled neurite). (C) Time 

course of paGFP brightness in the soma over the course of 15 cycles of photoactivation (n = 5 

pretectal neurons in 3 fish, mean +/- STD). (D) Workflow of image registration enabling 

visualization of FuGIMA neurons in the standard brain. Experimental z stacks are split into two 

separately processed channels. Neurons are traced in the nls-GCaMP6s/paGFP channel and 

tracings of neurons imaged at both the two-photon (2p) and the confocal microscope are merged. 

In parallel, the reference marker channel (HuC:lyn-tagRFP) is registered to the standard brain 

(averaged HuC:lyn-tagRFP). The resulting registration files are applied to tracings (co-

registration), enabling their visualization within the volume of the standard brain. (E) Quantification 

of distances between the location of landmarks in the standard brain and in the registered 

experimental fish. Left: combined box plot and swarm plot (middle horizontal line: median, 

horizontal box outlines: first and third quartile, whiskers: last points included in 1.5 * interquartile 

range from the respective quartile), right: 3D rendering of landmarks in the standard brain (gray 

surface: reference marker HuC:lyn-tagRFP, dark gray: landmark position in standard brain, 

colors: registered landmarks from experimental fish, n = 8 z stacks from 6 fish for LM 1 – 9 and 

11, n = 6 z stacks from 4 fish for LM 10, middle: dorsal view, black arrow: viewing direction for 

lateral view, shown on the right, LM, landmark). Scale bar: 5 µm in (A), 50 µm in (B). 
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Supplementary Figure S2 (related to Figures 1 and 2). Visual stimulus protocol, functional 

imaging time series of all FuGIMA neurons and comparison of response type sampling 

with Kubo et al. (2014). (A) During functional imaging, fish are presented with the following 

whole-field motion stimulus, consisting of eight motion phases with three repetitions (same order): 

Horizontally moving gratings (3 s each, black arrows) are presented in four monocular phases 

(left nasalward, left temporalward, right temporalward, right nasalward), followed by four binocular 

phases (backward, forward, clockwise and counter-clockwise) and interspersed by the 

presentation of stationary gratings (gray, 10 s) (RE: right eye, LE: left eye). (B) Normalized 

fluorescence traces of motion-sensitive pretectal FuGIMA neurons grouped according to their 

response type, numbers indicate occurrence in FuGIMA dataset and hemisphere of origin. 

(C) Fluorescence traces of non-motion-sensitive pretectal FuGIMA neurons and hemisphere of 

origin (blue line: average over three repetitions, light blue: SEM). (D) Comparison of response 

type frequency between Kubo et al. (2014) (number of cells per fish) and this work (total number 

of cells in the dataset). Proportions of response type are normalized to the total number of neurons 

across the investigated motion-sensitive response types (four monocular DS and eight 

translation-selective), absolute number of neurons are indicated on top of each bars. (E) FuGIMA 

neurons were imaged in both left and right hemispheres. Mirroring leads to a change in response 

type name as indicated. 
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Supplementary Figure S3 (related to Figure 2). Establishment of arborization field 

approximation boundaries and effect of boundary stringency on intersections with 

FuGIMA tracings. (A) Schematic illustrating registration of AF masks from the RGC standard 

volume via bridging z stacks (derived from multiple fish) to the FuGIMA reference brain. 

(B) Generation of approximation boundaries of AFs based on a kernel-density estimation (KDE) 

over registered AF masks (underlying Figure 2C). Left: Overlap of registered AF masks (n = 7 

bridging z stacks, from 4 fish, open arrow: direction of oblique view), right: KDE of registered 

masks, thresholded to 25, 50, 75, and 90 %. (C) Quantification of intersections of FuGIMA tracings 

with AF boundaries of various stringency (KDE=25, 50, 75, and 90%). Right: 3D renderings of AF 

boundaries of various stringency and the full FuGIMA dataset (oblique view). Scale bar: 20 µm 

in (B). 
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Supplementary Figure S4 (related to Figure 2). Morphology of all FuGIMA neurons, soma 

locations regarding response class and split of dataset according to z stack quality. 

(A) Individual FuGIMA neurons plotted together with AF masks (KDE=50%), tracings color-coded 

according to response class (green: monocular DS, magenta: translation-selective, blue: non-

motion-sensitive, color-code as in Figure 1C, oblique view). (B) Soma location of FuGIMA neurons 

color-coded according to their response class. (Left) Montage of 3D rendering of FuGIMA somata 

with surfaces of AFs 4-9 and KDE for ML and AP distributions. (Right) Plot of soma location with 

histogram of ML and AP distribution (separated by response class). ML: medial-lateral, 

AP: anterior-posterior, distance measured from the origin as defined in Kubo et al., 2014. (C) Split 

of FuGIMA dataset into four categories according to image quality of the z stack (“best” to “worst”, 

manual annotation). For each category, the tracings of each class are color-coded as in (A), and 

the number of each class is stated on top. All four categories contain tracing of all response 

classes, with relatively more translation and non-motion-sensitive tracings emanating from the 

best quality z stacks. 
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Supplementary Figure S5 (related to Figure 3). Image registration work flow to generate a 

3D map of direction-selectivity, characterization of isl2b:Gal4, UAS:syGCaMP expression 

and overlay from image registration. (A) Schematic workflow for registering functional 

responses with anatomical structures. For clarity, only 3 preferred directions are represented here. 

See STAR Methods for details. (B, C) Subcellular localization of syGCaMP6s in the tectum/AF10 

(B) and AF4, AF5 and AF6 (C) in isl2b:Gal4, UAS:syGCaMP6s, UAS:mCherry fish. Note that 

syGCaMP6s expression exhibits punctate signals in RGC terminals, in contrast to uniform 

mCherry signals in en passant RGC axon bundles. SO, stratum opticum; SFGS, stratum fibrosum 

et griseum superficiale; SGC, stratum griseum centrale; SAC, stratum album centrale. 

(D) Schematic illustration of AFs (modified from Burrill and Easter (1994)). Blue dotted lines 

indicate approximate z-planes shown in other panels of this figure. OT, optic tract. (E) Lipophilic 

dye DiI injection of the RGC axons in isl2b:Gal4, UAS:Dendra-kras fish. Note that the isl2b:Gal4 

line labels most of RGCs projecting to AF4, AF5 and AF6. (F-K) Overlay of 6 different transgenic 

fish (isl2b:Gal4, UAS:syGCaMP6s, UAS:mCherry) that have been registered into a reference 

system (RGC standard brain based on isl2b:Gal4, UAS:mCherry). Z-position indicates the 

distance from the dorsal most surface of AF10. Note that both syGCaMP6s (F-H) and mCherry 

(I-K) patterns from 6 fish occupy conserved space in the registered volume. A, anterior; 

P, posterior; D, dorsal; V, ventral, M, medial. Scale bars represent 30 μm. 
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Supplementary Figure S6 (related to Figure 3). Mapping of orientation-selectivity, direction-

selectivity, and luminance responses in RGC terminals. (A) Response profile to luminance 

changes in AF 4, 5, and 6 presented from the side or below. Pixels are color coded according to 

the mutually exclusive luminance response types: pixels responsive to increase in luminance 

(ON), decrease in luminance, and both increase and decrease in luminance (ON-OFF). 

(B) Representative luminance response in AF4 and 6. Visual stimuli were presented from the 

side. ROIs correspond to synaptic puncta marked in the right panel. Note that AF5 is not contained 

in this optical plane. In (A) and (B), functional pixels are plotted on top of the mean image of 

syGCaMP6s (gray). (C) 3D representation of luminance response in RGC terminals. (Left) 3D 

model of AFs (as Figure 2B). For side presented 3D map, both AF10 and AF 4, 5, and 6 volumes 

are pooled from 6 functionally imaged volumes. For underneath presented 3D map, both AF10 

and AF 4, 5, and 6 volumes are pooled from 7 functionally imaged volumes. The intensity of pixels 

corresponds to the frequency of a particular pixel to be luminance responsive across all imaged 

fish. Note that AF4 and AF9 contain highly luminance responsive RGC terminals and AF5 is 

weakly ON responsive (right panel). (D) Localization of DS pixels in tectal sublaminae. After 

registration into the RGC reference brain, DS pixels identified by the side (green) and below 

(magenta) presentations of visual stimuli were overlaid to the average image of isl2b:Gal4, 

UAS:syGCaMP6s signals of the same registered volume. DS pixels tuned to forward motion are 

plotted here for both side and below stimulus presentations. The volume was sliced obliquely to 

reveal laminar structure along the superficial-deep axis within the tectal neuropil. (E) Intensity plot 

along region indicated by a box shown in (D). Note that DS pixels for both stimulus positions (side, 

below) occupy SFGS1. (F, G) Color scheme of orientation space for motion presented from the 

side (F) and below (G). (H, I) Orientation selectivity (OS) in AF4, AF5 and AF6. The motion was 

presented from the side (H) and below (I). The color code is shown in (F, G). OS pixels are plotted 

on top of the mean image of syGCaMP6s (gray). (J) Representative responses of OS-RGC 

terminals in AF6. Visual stimuli were presented from the side. ROIs correspond to synaptic puncta 
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marked by the two circular ROIs in the bottom left image. Polar plot (bottom right) is derived from 

the ΔF/F traces shown above. A, anterior; P, posterior; D, dorsal, L, lateral. SO, stratum opticum; 

SFGS, stratum fibrosum et griseum superficiale; SGC, stratum griseum centrale; SAC, stratum 

album centrale. Scale bars: 10 μm (A, I), 30 µm (D) and 50 μm (C). 
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Supplementary Figure S7 (related to Figure 6). Search strategy to complement FuGIMA 

tracings with a single-neuron atlas and results. (A) Definition of the FuGIMA “volume-of-

interest” (FuGIMA VOI), the search area to find neurons complementing FuGIMA neurons 

(pretectal projection neuron (PPNs)) in a single-neuron atlas. The surface encompasses the 

somata of all FuGIMA neurons (n = 58 neurons) and is registered to the volume of a single-neuron 

atlas (Kunst et al. (2019), this issue of Neuron). (B) 3D rendering of the single-neuron atlas 

standard brain (HuC:lyn-tagRFP, Kunst et al. (2019), this issue of Neuron) and all somata from 

this single-neuron atlas, color-coded according to position within (green, n = 38, pretectal 

projection neurons, PPNs) or outside of the FuGIMA VOI (magenta, n = 1705, out of 1743 tracings 

in the atlas) (left: dorsal view, right: lateral view). (C) Individual tracings of PPNs, plotted with AFs 

4 – 9; two plots per neuron: dorsal view (left) and lateral view (right), respectively. 
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2.2 An Essential Circuit Node for Motion-Induced Behavior Identified by an Optical 
Illusion  

Yunmin Wu, Marco Dal Maschio, Herwig Baier, Fumi Kubo 

 

The manuscript “An Essential Circuit Node for Motion-Induced Behavior Identified by an 

Optical Illusion” is in preparation for submission. 
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Abstract (100-125 words):  

Optical illusions have long been used in human psychophysics to infer general mechanisms of 

neural processing, such as lateral inhibition in the retina and pattern completion by the visual 

cortex. Here we use the motion aftereffect, which causes the well-known 'waterfall illusion', 15 

together with cellular-resolution functional imaging and region-specific optogenetic manipulations 

in zebrafish larva, to identify neurons whose activity induces the optokinetic reflex. Remarkably, 

these neurons represent merely a small fraction of the entire population of direction-selective cells, 

are clustered in a pretectal area, and are both necessary and sufficient to drive optokinetic eye 

movements. Thus, the illusion-based paradigm allowed us to pinpoint key circuit elements of 20 

global motion processing in the brain of a vertebrate. 

 

One Sentence Summary (125 characters): Functional imaging during illusory motion identifies 

a subset of direction selective neurons that evoke optokinetic behavior. 

  25 
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Main Text: 

Sensory perception, cognition and action arise by the activity of populations of interconnected 

neurons across the brain. Generally, researchers can rely on a large toolbox of experimental and 

analytical approaches to identify such activity patterns and to formulate models of underlying 

circuit mechanisms (1, 2). However, in many cases, it remains a challenge to distill causal 5 

relationships from the correlative information for a given behavior due to the abundance of 

responsive neurons and their widespread distribution. For example, recent whole-brain imaging 

studies in larval zebrafish demonstrated widespread activation of neurons responding to horizontal 

motion of a visual scene (3, 4). The large number (in the thousands) and scattered distribution of 

direction-selective (DS) neurons has been taken as evidence for distributed network activity in 10 

even simple motion-evoked behaviors (3). An alternative interpretation of these results argues that 

the stream of behavior-causing activity is in fact limited to a 'labeled line' of a few, sequentially 

connected areas. In this view, the majority of co-active neurons outside of this central stream might 

process unrelated (e.g. local motion computation), corollary or feedback information. 

Disentangling correlation from causation would require necessity and sufficiency experiments on 15 

each of the candidate neuronal subsets – a daunting task given the sheer number of testable 

combinations. 

To narrow down the neurons responsible for global motion perception in zebrafish, we took 

advantage of a classical optical illusion called motion aftereffect (MAE). MAE describes the 

phenomenon in which, after a prolonged exposure to a visual scene moving in one direction (e.g. 20 

a waterfall), stationary objects (e.g. the rocks near the waterfall) appear to drift in the opposite 

direction. The existence of MAE has been documented in invertebrates (5) and vertebrates (6–8), 

including zebrafish (9). Given the unique scenario of motion perception in the absence of visual 

motion, we hypothesized that DS neurons that are active during MAE might play a causal role in 

global motion perception. If so, MAE responsiveness can be used as a signature to tag neurons that 25 

sit within the core stream of global motion processing.  

Normally, a presentation of motion in the visual scene (e.g. the conditioning phase, Fig. 1B) elicits 

an optokinetic reflex (OKR), which consists of cycles of slow phase eye movements in the motion 

direction, interspersed by reset saccades in the opposite direction (10). Interestingly, after 

prolonged motion stimulation in the conditioning phase, the fish frequently (91.6% under optimal 30 

condition) showed reversed OKR-like behavior instead of undirected spontaneous eye movements, 
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suggesting they perceive motion opposite to the conditioning motion (the test phase; Fig. 1B). 

Similar to MAE in human (11, 12), this OKR-like behavior in zebrafish exhibited lower velocity 

and smaller amplitudes compared to the OKR to real motion (fig. S1). 

By systematically varying the duration (2, 3, 4, 5, 6, and 7 min) and the speed (5, 15, and 30 °/s) 

of the conditioning motion, we determined the best stimulus conditions to induce MAE in our 5 

assay (fig. S1A). Similar to a previous study (9), induction of MAE depended on the duration of 

the conditioning motion and saturated for durations of 5 min and longer, while the speed in the 

range tested had negligible effect (fig. S2). Thus, we chose a conditioning phase of 5 min at 30°/s 

for further experiments.  

To identify the brain area(s) required for MAE, we used GtACR2, an optogenetic silencer, to 10 

disrupt the activity of candidate areas (Fig. 1C, fig. S3D-G). We separately targeted retinal 

ganglion cell (RGC) axons, tectum, and pretectum with tissue-specific transgenic drivers (Fig. 1D) 

and quantified the eye movements using an ‘OKR index’ (OKR index = #CW saccades over 60s - #CCW 

saccades over 60s,). When blue light was turned on in the test phase, fish in which either RGC axons or 

tectum were silenced still showed MAE (Fig. 1, E and F), suggesting that neurons in these areas 15 

are dispensable for MAE. In contrast, MAE was diminished in pretectum-silenced fish, suggesting 

that the pretectum is required for the OKR-like behavior in the test phase (Fig. 1G).  

A widely accepted hypothesis attributes MAE to an imbalance between oppositely tuned direction 

selective (DS) neurons after motion adaptation (13). To determine the source of motion adaptation, 

we inhibited the tectum and the pretectum in the conditioning phase. MAE was significantly 20 

reduced for both tectum- and pretectum-silenced fish, suggesting that motion adaption in both 

areas contributed to MAE (Fig. 1, H and I). Notably, the OKR in the conditioning phase was 

severely impaired in the pretectum-silenced fish. In some cases, OKR behavior was replaced by 

spontaneous eye movements despite the presence of motion stimuli (fig. S3H). We ruled out the 

effect of blue light stimulation by exposing non-expressing clutchmates to the same visual stimuli 25 

and light stimulation (Fig. 1, J and K). The fact that silencing of pretectal activity strongly affected 

the OKR to both real and illusory motion suggests that MAE arises from motion-processing 

circuits in the pretectum. 

To test this scenario, we searched for neural correlates of MAE by performing calcium imaging in 

brains expressing a nuclear-localized calcium indicator (n=10, Fig. 2B). We performed volumetric 30 
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calcium imaging at cellular resolution focusing on the tectum, the pretectum and surrounding areas 

(Fig. 2, B and C). The visual stimulus consisted of the pre-phase, the conditioning phase, and the 

test phase as in the behavior assay (Fig. 2A). We began by presenting short periods of clockwise 

(CW) and counterclockwise (CCW) motion to probe the direction selectivity of neurons. After the 

MAE stimulus protocol, we then exposed the fish to a series of motion phases, which included 5 

monocular and binocular optic flow patterns (Fig 2H). 

To identify prominent response types, we employed unsupervised hierarchical clustering based on 

vectors of coefficients that represent how a cell responded during real and illusory motion 

perception (fig. S4). This approach divided motion-responsive neurons into 11 clusters, of which 

5 represented DS neurons (Fig. 2, D and E). Conditioning-motion tuned (CMT) neurons, i.e. 10 

neurons with their preferred direction aligned with the conditioning direction, were divided into 

two subtypes, C5 and C6 (Fig. 2G). Compared to C5, C6 neurons adapted more rapidly (τC5 =90s, 

τC6 = 39s) and their activity dropped more by the end of the conditioning phase (decreaseC5 = 

54.0%, decreaseC6 = 87.9%). On the other hand, opposing motion tuned (OMT) neurons, whose 

preferred direction is opposite to the conditioning motion but same as the expected illusory motion, 15 

were classified into three subtypes, namely C2, C3 and C4, which differ in their activity during 

the test phase (Fig. 2F). Remarkably, despite the presence of OKR-like behavior, 47.3% of the 

OMT neurons (C4) stayed inactive throughout the test phase. In contrast, C2 and C3 neurons were 

active in the test phase, but with different temporal dynamics. C2 neurons showed a fast onset in 

the test phase (τC2 =5.4s), while C3 showed a slow onset (τC3 =17.2s). A shorter conditioning phase, 20 

insufficient to induce MAE, also did not induce activity of C2 and C3 in the test phase (fig. S5), 

suggesting they are the neural correlates of MAE. 

Interestingly, most MAE-correlated neurons (C2 and C3) received monocular input, mainly from 

the contralateral eye (Fig. 2I, fig. S6). Note that the neurons tuned to temporal motion in the 

contralateral eye were more enriched in "fast" MAE neurons (C2), whereas the neurons tuned to 25 

nasal motion in the contralateral eye were more enriched in "slow" MAE neurons (C3) (Fig. 2I). 

On the other hand, neurons with rotation-selective response, which involves binocular computation 

(14), were overrepresented in non-MAE neurons (Fig. 2J). 

To find out if there exists a spatial segregation of MAE-correlated neurons, we registered the 

coordinates of each functionally identified neuron into a single standard brain (fig. S7-8), which 30 
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also holds the previously annotated contours of various brain areas (Fig. 3A)(15). This registration 

procedure allows a high-resolution anatomical annotation of functionally identified neurons. 

MAE-correlated neurons were found mostly in visual areas, e.g. tectum and pretectum, but also in 

motor/premotor areas, e.g. cerebellum (Fig. 3B and fig. S9). Notably, the pretectum contained the 

largest proportion of MAE-correlated neurons (Fig. 3C).  5 

Interestingly, DS neurons of different functional subtypes appear to concentrate in largely non-

overlapping spatial hotspots. MAE-correlated neurons (C2 and C3) formed symmetrical hotspots 

in the ventral-lateral pretectum, coincident with the migrated pretectal region M1 (16) (Fig. 3, D 

and E, cyan). Within this hotspot, C2 neurons are located more dorsally than C3 neurons (Fig 3, 

G and H). On the other hand, non-MAE DS neurons (C4) also form their own spatial hotspot close 10 

to the midline (Fig. 3F, green). These neurons, given their location and tuning, are most likely 

neurons in the previously identified posterior-dorsal cluster (PDC) (Fig. 3I, fig. S10, D-F)(14).  

MAE-correlated neurons in the pretectum might play an essential and specific role in driving the 

OKR. To test this hypothesis, we unilaterally photoablated small groups of MAE-correlated 

neurons in the pretectal hotspot (typically 6-12 individual neurons; CCW tuned cells in left 15 

hemisphere or CW tuned cells in right hemisphere; Fig. 4, A and B, fig. S11A). After overnight 

recovery, the fish were tested for their behavioral response to four monocular motion phases (i.e. 

LN, LT, RN, and RT) (Fig. 4C), because almost all DS neurons in this hotspot are monocular and 

receive contralateral input (Fig. 3, G and H). The ablation of the MAE-correlated neurons in the 

pretectal hotspot resulted in a specific impairment of the OKR to nasal motion presented to the 20 

contralateral eye, but not to nasal motion in the ipsilateral eye or temporal motion both in the 

contra- and ipsilateral eyes (n=7, Fig. 4, D and E). There was no significant effect, when non-MAE 

DS pretectal neurons were ablated or when neurons unresponsive to motion in the vicinity of the 

hotspot were ablated (n=4 for each control condition; Fig. 4, F to H; fig. S11, B to D). Together, 

these results suggest that MAE-correlated neurons in the pretectal hotspot are required to induce 25 

OKR. 

We asked further if these pretectal MAE-correlated neurons were also sufficient to drive OKR. To 

answer this question, we locally activated neurons in the hotspot using transgenic fish that 

expressed channelrhodopsin in the pretectum (Fig. 4I). Strikingly, unilateral laser stimulation 

targeted at ventral-lateral pretectum induced OKR (Fig. 4J). The optogenetically induced OKR 30 
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was more prominent and robust in the eye contralateral to the illumination (Fig. 4K). Same light 

intensity caused no detectable change in spontaneous eye movements in non-expressing 

clutchmates (Fig. 4K, fig. S12, D and E). We conclude that a pretectal hotspot is a necessary and 

sufficient station in the global motion-processing stream that evokes OKR behavior. 

In summary, our experiments granted us an opportunity to pinpoint a cluster of behaviorally 5 

relevant DS neurons, which could not have been straightforwardly identified by imaging of 

responses to real global motion (3, 4, 14). Our finding that many DS neurons stayed quiet during 

the OKR-like behavior elicited by MAE implies that neurons of the same direction selectivity 

might be engaged in separate pathways dedicated to different behavioral goals. It is yet to be found 

out what behaviors the non-MAE neurons contribute to and how connectivity of MAE and no-10 

MAE neurons differs. The pretectal sub-circuit identified here in a small vertebrate brain may 

constitute a neural substrate for the MAE parallel to the one ascribed to visual cortex in primates 

(17–19). More generally, we show here that imaging of neuronal responses to an optical illusion 

in zebrafish provide an inroad into the neuronal mechanisms of visual processing, complementing 

the electrophysiology and functional brain imaging studies in human and non-human primates by 15 

offering brain-wide and cellular resolution. 
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Materials and Methods 

Animal care and transgenic zebrafish 

Adult and larval zebrafish (Danio rerio) were housed and handled according to standard procedures 

(Westerfield, 2007). All animal experiments were performed under the regulations of the Max 

Planck Society and the regional government of Upper Bavaria. We used the following transgenic 5 

lines: Tg(isl2b:Gal4-VP16)zc65 and Tg(UAS:syGCaMP6s)mpn156; Tg(elavl3:lyn-

tagRFP)mpn404; Tg(elavl3:H2B-GCaMP6s); Tg(UAS:GCaMP6s)mpn101; Tg(Vglut2a:Gal4);  

Tg(gad1b:Gal4VP16)mpn155; Tg(Gal4s1026t); Tg(UAS-E1b:Ntr-mCherry)c264; 

Tg(UAS:Cr.ChR2_H134R-mCherry); Tg(SAGFF(LF)81C), kindly provided by Koichi 

Kawakami (National Institute of Genetics, Japan); Tg(UAS:GtACR2:eYFP)sq212, generously 10 

provided by Suresh Jesuthasan (Nanyang Technological University, Singapore). Transgenic fish 

were kept in either a TL or TLN (nacre) background and larvae lacking trunk pigmentation 

(outcrossed to TLN, nacre) were used in the experiment. Zebrafish larvae were raised in Danieau’s 

solution on a 14/10h light/dark cycle until day 5 or 6 post-fertilization (dpf) with the exception of 

optogenetic silencer expressing larvae, which were raised in the dark. There was no gender bias in 15 

experiment subjects, since sex determination has not yet occurred at this stage. 

 

MAE behavior assay and optogenetic stimulations 

5 or 6 dpf zebrafish larvae were embedded in 2% low melting point agarose at the center of 35mm 

diameter dish. To allow free eye movements, the agarose in the vicinity of the eyes was carefully 20 

removed. Afterwards, individual larvae were placed in the center of a visual arena made of 4 

miniature LCD screens (height, 6cm; width, 8cm), which displayed either stationary or moving 

sinusoidal gratings with spatial frequency of 0.066 cycle/°.  The visual stimulation protocol in the 

MAE behavior assay consisted of three phases: 1) the pre-phase, in which stationary grating was 

presented for 5 min, 2) the conditioning phase, in which unidirectional rotating gratings were 25 

presented for a set period of time, and 3) the test phase, in which stationary grating was presented 

again for 5 min. To find out the stimulus determinants of MAE, we tested different durations (2, 

3, 4, 5, 6, 7 min) and speeds (5, 15, 30°/s) in the conditioning phase. The direction of motion in 

the conditioning phase was randomized to be either CW or CCW in each trial, and each larva went 

through only one trial to avoid cumulative effect of motion conditioning. Concurrent with visual 30 

stimulation, eye movements of the fish were recorded at 15Hz using a CCD video camera (Allied 
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Vision Technology) mounted upon a dissecting scope. For behavior experiments with optogenetic 

stimulation, the conditioning phase was fixed to 5min at 30°/s, and the fish was illuminated by 

850nm infrared LED to avoid the contamination of optogenetic illumination, which was filtered 

out by an IR filter (Thorlabs absorptive filter, ND=1.0). A 200um (for perturbation with GtACR2) 

or a 50um (for activation with ChR2) light fiber delivering 473nm laser (Omicron Lighthub) was 5 

placed right on top of the fish targeting desired brain area. For optogenetic silencing, the laser was 

turned on in either the conditioning phase or the test phase using custom python script. Although 

GtACR2 has been shown to have both activating and inactivating effects depending on the 

subcellular locations of activation (1), bilaterally activating GtACR2 in an entire population of the 

RGCs, the tectum, or the pretectum perturbed OKR to the expected extent (2, 3), suggesting that 10 

GtACR2 acted as a silencer under these conditions (fig. S3, D to G)(4). To rule out the effect of 

genotype, we tested all lines we used with the same visual stimuli without optogenetic illumination 

(fig. S3, A to C). All the MAE behavioral assay was conducted between 10am and 7pm. 

 

Ocular tracking and analysis 15 

From the recorded videos, the angle of both eyes in reference to the midline was extracted using 

either a custom python script or the Eyetracker program in LabVIEW (as described in Kubo et al. 

2014). We focused on saccades in the eye angle time series, which serve as a reliable readout of 

motion perception in zebrafish larvae: in motion the eyes of a fish almost exclusively saccade in 

the opposite direction of the motion, whereas in still the eyes of the fish saccade in both CW and 20 

CCW directions. To automatically detect saccades, we looked for positive and negative peaks in 

the first derivative of the eye angle time series using “peak detector” – a python script developed 

by Marcos Duarte (https://github.com/demotu/BMC). The location of the peaks represents saccade 

time points, and the sign of the peaks represents the saccade direction. To compare between 

individuals and across experiment conditions, we calculated an OKR index based on the number 25 

of saccades to quantify motion perception in zebrafish larvae: 

OKR index = #saccades in CCW direction over 60s - #saccades in CW direction over 60s 

The 60s time window to calculate the OKR index slides with a step size of 10s. The OKR index is 

1) positive, when a fish sees CW motion, 2) negative, when a fish sees CCW motion, and 3) around 

zero, when a fish is presented with no motion. The sign of the OKR index was reversed for fish 30 



77 

 

conditioned with CW motion, so that they could be directly compared to fish conditioned with 

CCW motion, and the OKR index in the conditioning phase is always negative. 

 

Two-Photon calcium imaging 

2P calcium imaging was performed on 5 or 6dpf Tg(elavl3:H2B-GCaMP6s), Tg(elavl3:lyn-5 

tagRFP)mpn404 double-transgenic zebrafish larvae immobilized in 2% agarose. The visual stimuli 

were presented to the fish by a custom-built 360° red LED-arena (660 nm Kubo et al., 2014).  The 

LED-arena displayed gratings with spatial frequency of 0.033 cycles/° and temporal frequency of 

1Hz when moving. We presented 3 different visual stimulus protocols to each fish. The first 

protocol consists of 8 motion phases in pseudorandom order repeated for 3 times. These 8 phases 10 

includes 4 binocular motion: 1) clockwise (CW), 2) counterclockwise (CCW), 3) forward (FW), 

4) backward (BW), and 4 monocular motion: 5) left-eye nasal (LN), 6) left-eye temporal (LT), 7) 

right-eye nasal (RN), 8) right-eye temporal (RT). Each motion phase lasted for 5s and was 

followed by a 30s interval of stationary gratings. An additional 30s interval was installed whenever 

luminance change occurred. This protocol was used to probe the ocular selectivity and rotation 15 

selectivity of a neuron. The second protocol has 4 sequential components: 1) 8min of stationary 

gratings to identify the baseline of neurons without motion stimulation, 2) 2 rounds of alternating 

CW and CCW motion for 5s with 30s interval to determine the direction selectivity of neurons 

(the direction opposite to the conditioning motion always came first), 3) 5min of rotating gratings 

in either CW or CCW direction to induce MAE (the conditioning phase), and 4) 3 min of stationary 20 

gratings in which the fish supposedly experienced illusory motion (the test phase). This protocol 

was used to probe the response of different neural populations during MAE. The third protocol 

was the same as the second except that the conditioning phase was shortened to 1min. Behaviorally 

there was no response to illusory motion under this condition, therefore this protocol served as a 

control to verify if a neuron was truly the neural correlates of MAE. Concurrent with visual 25 

stimulation, we performed volumetric imaging of the brain using Femtonics 3DRC microscope 

(Femtonics, Tuzlo, Hungary) coupled with electrically tunable lens (Optotune, EL-10-30-Ci-IR-

LD-MV) and a 16x objective (Nikon CFI70, NA 0.8, WD 3.0mm). This enabled us to 

simultaneously image 10 planes of 419.6 um by 234 um with 14-16 um intervals at 1Hz. The pixel 

size (0.9 um/pixel) was sufficient for single cell resolution, given the diameter of zebrafish neurons 30 
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is about 5 um. We presented each visual stimulus protocol twice in order to cover our volume of 

interest at 7-8um intervals. 

 

Data analysis for 2P calcium imaging 

The recordings from volumetric imaging was first deinterleaved by a custom-written python script. 5 

Then for the time series of each plane, we used CaImAn (DOI: 10.7554/eLife.38173) for motion 

correction and ROI extraction (~22,000 ROIs per fish out of 20 planes). To narrow down to motion 

responsive ROIs, we performed two linear-regression-based analyses on the florescence time 

series from extracted ROIs. Briefly, we created 3 motion regressors (CW, CCW, and CW+CCW), 

which are times series of zeros (when there is no motion) and ones (when the corresponding visual 10 

motion is on) convolved by a kernel of H2B-GCaMP6s dynamics (tauH2B-GCaMP6s = 7s). These 

regressors model the expected response of a neuron to a stimulus. For each ROI, we correlated the 

time series during the short motion part in protocol 2 to the 3 motion regressors in the 

corresponding time window. Moreover, we fitted the time series in the same period with regressor 

CW and CCW using the linear model module from sklearn. The ROIs, whose absolute value of 15 

correlation coefficients surpassed the threshold 0.4 and whose coefficient of determination (R2) 

from fitting surpassed 0.2, were then inspected individually. Overlapping ROIs and ROIs of 

multiple neurons (10-20% of all ROIs) were detected semi-automatically and corrected manually. 

From these curated ROI masks of single neurons (fig. S4A), we re-extracted dF/F0 time series and 

repeated the regression based analysis. Only ROIs with robust motion response, namely those that 20 

surpassed a higher threshold (|correlation coefficient|max > 0.45, R2 > 0.25) in all three protocols 

were considered in further analysis.  

To parameterize the response to both real and illusory motion, we performed regression based 

analysis in two time windows using 6 real motion regressors and 6 illusory motion regressors (fig. 

S4B). These 6 real motion regressors correspond to the three short motion regressors (CW, CCW, 25 

and CW+CCW) as described and their reverse, and the 6 illusory motion regressors corresponds 

to neural activity lasting for 5s, 35s, 65s, 95s, 125s, 155s starting from the beginning of the test 

phase. To find out the prominent response types in the motion responsive neurons, we performed 

hierarchical clustering using the 12-parameter matrix as input. We experimentally defined 14 as 

the cut-off distance in the derdrogram, which yielded 11 distinct clusters.  30 

 

https://doi.org/10.7554/eLife.38173
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Quantification of the eye- and optic-flow-pattern-specificity  

To quantify the eye- and optic-flow-pattern-specificity of the DS neurons, we focused on their 

response to the first visual stimulus protocol, which contains 8 motion phases. With the coefficient 

derived from linear fitting using the linear model module from sklearn, we calculated the average 

response of each neuron to these 8 motion phases.  5 

To quantify if a neuron responds selectively to rotational motion, we calculated a rotation 

selectivity index:  

Rotation selectivity index =
Response to Rotation. max-Response to Translation. max 

(Response to Rotation, Response to Translation). max
 

This index is 0 if a neuron responds equally to rotational and translational motion, 1 if a neuron 

only respond to rotational motion, and -1 if a neuron only respond to translational motion. 10 

To quantify from which eye a neuron receives its input, we calculated an ocular selectivity index: 

Ocular selectivity index =
Response to Right Eye. max-Response to Left Eye. max 

(Response to Right Eye, Response to Left Eye). max
 

This index is 0 if a neuron responds equally to motion presented to both eyes, 1 if a neuron only 

respond to motion presented to the right eye, and -1 if a neuron only respond to motion presented 

to the left eye. 15 

We categorized DS neurons with rotation selectivity index > 0.5 as rotation selective complex 

cells. In the remaining DS neurons, we categorized neurons with ocular selectivity index <-0.4 or 

>0.4 as monocular simple cells. Based on the location of their cell bodies and their directional 

tuning, these monocular cells were further divided into subgroups tuned to contralateral nasal 

(Contra-N), contralateral temporal (Contra-T), ipsilateral nasal (Ipsi-N), and ipsilateral temporal 20 

(Ipsi-T) motion. We categorized neurons with |ocular selectivity index| < 0.4 and |rotation 

selectivity index| < 0.5 as binocular simple cells. 

 

Z stacks acquisition and image registration 

For each functionally imaged fish, we acquired a local z-stack of the imaged volume (374.4*374.4 25 

mm2, mostly captured at 720 * 720 pixels, 1 um in z, green channel only) with the 2P microscope 

(Femtonics 3DRC), plus an overview z-stack of the whole brain (640.17*640.17 mm2, mostly 

captured at 1024 pixels * 1024 pixels, 1 um in z, green channel at 488 nm, red channel at 543 nm) 

with a confocal microscope (Carl Zeiss LSM-700). Before acquisition of the z-stacks, the fish were 
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treated with tricaine (0.02 %, MS-222, Sigma-Aldrich) to avoid any movement artifacts. To 

visualize ROIs from different fish in the same standard brain framework, we developed a 3-step 

registration strategy based on the image registration library ANTs (Advanced Normalization 

Tools): (1) with custom python script, we mapped the average time series of the imaged planes 

onto the 2P z-stack. (2) using the command “antsRegistration” in ANTs, we registered the 2P local 5 

z-stack onto the confocal overview z-stack of the same fish using elavl3:H2B-GCaMP6s as the 

reference channel. To facilitate precise registration, we specified a manually defined target region 

as the guiding mask; (3) using the same ANTs command again (without the guiding mask), we 

registered the confocal z-stack of each individual fish onto the standard brain using elavl3:lyn-

tagRFP as the reference channel (fig. S7A). The generation of the standard brain and the 10 

parameters used for ANTs registration has been described in detail in Kunst et al (5). With the 

transformation files generated from this 3-step registration process, we applied the 

“antsApplyTransformsToPoints” command to convert the spatial coordinates of each ROI 

centroids from the 2P z-stack framework to the standard brain framework. For anatomical 

characterization, we employed the masks of annotated areas established by Kunst et al. in the 15 

framework of fixed brain tissue. To make use of these masks in the framework of our standard 

brain, we used the same “antsRegistration” command to register the fixed brain to our live standard 

brain using elavl3:lyn-tagRFP as the reference channel. The masks of anatomical areas were 

coregistered and then thresholded (pixels with intensity < 70 were deemed background) to 

eliminate the smearing effect of registration. A custom Python script based on Mayavi library was 20 

used to visualize cell body locations and anatomical masks in 3D. 

 

Laser targeted ablation 

At 5dpf, Tg(elavl3:H2B-GCaMP6s) zebrafish larvae were mounted in 2.0% agarose. We selected 

2-3 planes spaced by 10 um in ventral pretectum/dorsal thalamus to perform single-plane 25 

functional imaging (Femtonics). To locate DS neurons and identify how they respond to MAE, we 

presented the fish with protocol(2) using the LED-arena. With a custom python script, we 

identified in near-online fashion DS neurons with MAE response in the spatial hotspot (5-10 cells 

per fish), and we ablated these neurons by scanning a small region (4 pixels by 8 pixels) in the 

center of the target neuron with high power laser (80-100 mW at 800 nm). For one round of 30 

ablation, the laser was delivered three times for 0.2s separated by 6s intervals. Multiple rounds of 
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ablation were carried out until a hole was visible on the cell body and the target cell lost its DS 

response completely. For the control experiments, non-MAE DS neurons (8-11 cells per fish) or 

non-motion-responsive neurons in the vicinity of the pretectal hotspot were ablated instead. The 

ablated fish were freed from the agarose after ablation and left to recover overnight. At 6 dpf, the 

ablated fish were mounted again with 2% agarose. First, they were reimaged with a simple protocol 5 

of alternating CW and CCW motion to confirm effective ablation. Then we removed the agarose 

surrounding the eyes of the fish, and they were tested for their response to monocular motion 

stimulation. The visual stimulation consisted of 1 min of stationary gratings followed by 1 min of 

moving gratings presented monocularly (90° in azimuth, fspatial = 0.066 cycle/°, ftemporal = 2Hz). 

The 4 monocular motions (LN, LT, RN, and RT) were shown in random order. A piece of black 10 

matt metal sheet was put next to the unstimulated eye to avoid reflection from the side of the plastic 

dish. The eye movements of the fish were recorded and analyzed as described in the section of 

ocular tracking and analysis. 

 

Quantification and Statistical Analysis 15 

All analyses and visualizations were performed with custom-written code in Python, using 

NumPy, Scipy, Matplotlib, Seaborn, Pandas, Scikit-image, Mayavi, Bokeh and Scikit- learn 

libraries (Hunter, 2007; McKinney, 2011; Oliphant, 2007; Pedregosa and Varoquaux, 2011; Perez 

and Granger, 2007; van der Walt et al., 2011, 2014). All statistical details are described in the 

figure captions, including the exact values of n, what n represents, the definition of center and 20 

dispersion, and the statistical tests used. 
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Fig. 1. Pretectum plays an indispensable role for both veridical and illusory motion detection 

(A) Setup for the MAE assay. (B) Eye movements of a zebrafish larvae in response to the visual 

stimulus. Gray shading, continuous motion. Blue, right eye; Red, left eye. Orange line marks when 

MAE took place. (C) Schematics of bilateral optogenetic stimulation with a 200um optic fiber. (D) 

Transgenic lines used to express GtACR2 selectively in RGCs (Islet2b:Gal4), tectum 5 

(SAGFF(LF)81C), and pretectum (Gal4 s1026t). (E-G) Mean OKR index (shaded area: mean ± 

SEM) of fish with RGCs, tectum and pretectum silenced in the test phase. (H, I) Mean OKR index 

(shaded area: mean ± SEM) of fish with tectum and pretectum silenced in the conditioning phase. 

(J, K) OKR index in the 1st minute of the test phase for tectum and pretectum silenced fish. OFF, 

no blue illumination; Test ON, blue illumination in the test phase; Cond On, blue illumination in 10 

the conditioning phase. Each gray line represents the responses of one fish. * for P < 0.05, ** for 

P < 0.01, *** for P < 0.001.  

Fig. 2. Functional imaging identifies subpopulations of direction-selective neurons that are 

active during MAE. 

(A)Visual stimulus protocol for MAE. (B) Expression pattern of elav3:H2B-GCaMP6s in 5-6dpf 15 

larvae. Rectangular box represents the imaging volume. (C) Example planes from volumetric 

imaging with single-neuron ROIs circled in yellow. (D) 11 clusters identified by hierarchical 

clustering. Euclidean Distance reflects the similarity between two ROIs. Yellow and blue squares 

highlight the opposing motion tuned (OMT) and conditioning motion tuned (CMT) populations, 

respectively. (E) Averaged ∆F/F0 time series (shaded area: mean ± SEM) for each cluster. Blue 20 

areas represent motion in same direction as the conditioning phase, and red represent motion in 

reversed direction to the conditioning phase. (F, G) Cluster composition for OMT and CMT 

neurons. (H) Visual stimulus protocol to probe the ocular input and the rotation selectivity of a 

neuron. (I) Ocular selectivity and direction preference in monocular OMT neurons per cluster. (J) 

Rotation selectivity of OMT neurons per cluster. A, anterior; D, dorsal; P, posterior; V, ventral. 25 

Fig. 3. MAE neural correlates are clustered in a spatial hotspot in the pretectum 

 (A) Previously annotated anatomical masks registered onto the standard brain. (B) Anatomical 

distribution of OMT neurons in comparison to all DS neurons in the imaged volume. (C) 
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Percentage of OMT neurons per cluster in various brain areas. (D-F) Spatial distribution of OMT 

neurons per cluster. Top left, top view; top right, side view from the right; bottom frontal view. 

Relative density is calculated as the number of neighbors belonging to the same cluster in a radius 

of 20um, normalized by the highest density per cluster. Cyan dashed line encircles the MAE 

hotspot; green dashed line encircles the non-MAE hotspot. (G-I) Spatial distribution and tuning of 5 

OMT neurons within the MAE and non-MAE hotspots. Frontal view of the region marked by black 

dashed line in (D-F). The dashed line represents the midline. Contra, contralateral; Ipsi, ipsilateral; 

N, nasal; T, temporal; Bi, binocular; Rot-sel, rotation selective. 

Fig. 4. The pretectal hotspot is not only required but also sufficient to drive OKR 

(A) Time course of imaging, ablation and behavioral test. (B) MAE neural correlates in the 10 

pretectal hotspot before (left) and after (right) the ablation. Scale bar, 20um. (C) Monocular motion 

stimuli used for the behavioral test. (D) Example responses to the monocular motion stimuli from 

a fish with 9 CW tuned MAE neural correlates in the right hemisphere ablated. L, left eye; R, right 

eye. N, nasal direction; T: temporal direction. (E-H) OKR index in response to four monocular 

motion stimuli for fish with MAE-correlated neurons ablated, non-MAE DS neurons ablated, non-15 

motion neurons in the hotspot ablated, and no ablation, respectively. Ipsi and contra represent 

motion presented to the eye ipsilateral and contralateral to the ablation side, respectively. (I) 

Schematics of unilateral optogenetic activation of the pretectal hotspot with channelrhodopsin 

(Tg(s1026t:gal4; UAS:ChR2-mCherry)) using a 50um optic fiber. (J) Example of optogenetically 

induced OKR in the absence of visual motion by targeting the pretectal hotspot in the left 20 

hemisphere as illustrated in (I). Blue line, right eye; red line, left eye. (K) OKR index of the left 

eye (red) and the right eye (blue) in response to left and right pretectal hotspot activation. Nil 

represents no illumination. Colored lines represent ChR2(+) fish, and gray lines represent ChR2 (-

) fish. The solid line in (E-H, K) showed averaged response with error bars of SEM, whereas each 

fainted line represents the response of individual fish. Asterisks indicate statistical significance 25 

from paired (E-H) and unpaired t test (K): *P < 0.05, **P < 0.01, ***P < 0.001.  
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Fig. S1. Characteristics of the MAE in larval zebrafish 

(A) 18 versions of the conditioning phase of various durations and speeds to identify the optimal 

MAE stimulus protocol. (B-C) Initial speed of slow-phase eye movements during real and illusory 

motion. R2 indicates the goodness of fit for the linear model. 

Fig. S2. MAE depends on the duration, but not the speed, of the conditioning phase 5 

(A-F) Comparison of the averaged OKR index for larvae undergone different conditioning speeds 

presented for the same duration. (G-I) Comparison of the averaged OKR index for larvae 

undergone the same conditioning speed presented for different durations. For (A-I), the shaded 

area represents mean ± SEM, and the orange arrowheads mark the occurrence of MAE. Color of 

each line corresponds to the panel shown in Fig. S1A. (J) The OKR index of the first minute in the 10 

test phase for all 18 conditions (n = 6 fish for each condition). Ctl refers to the control, which is 

the OKR index of the last minute of the pre-phase. (n = 6 fish for each condition). Asterisks indicate 

statistical significance: *P < 0.05, **P < 0.01, ***P < 0.001 for unpaired t test. 

Fig. S3. Controls for optogenetic inhibition of the RGCs, the tectum, and the pretectum 

(A-C) Mean OKR index (shaded area: mean ± SEM) of isl2b:Gal4, 81C:Gal4, and s1026t:Gal4 15 

transgenic fish in response to the MAE stimulus protocol without blue light illumination. The light 

gray areas indicate the conditioning phase. Colored lines represent the GtACR2 expressers, and 

gray represent GtACR2 non-expressing clutchmates. (D) Example OKR response during motion 

presentation with RGC inhibition. The light blue line indicates when the blue light illumination 

was present. Top, response of a GtACR2 expresser; bottom, response of a GtACR2 non-expressing 20 

clutchmate. (E-G) OKR index during motion presentation for the RGC-, the tectum- and the 

pretectum-silenced fish. OFF, no light stimulation; ON, blue light illumination. Each grey line 

represents the response of one fish to all light conditions. Asterisks indicate statistical significance: 

*P < 0.05, **P < 0.01, ***P < 0.001, paired t test was used for the same fish under different light 

conditions, and unpaired t test for different fish under the same light condition. (H) Example 25 

response of fish with pretectal inhibition in the conditioning phase. The light gray area indicates 
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the conditioning phase. The light blue line on top indicates when the blue light illumination was 

present. Blue line, right eye; red line, left eye. 

Fig. S4. Generation of response profile for motion responsive neurons 

(A) Example imaged plane. Top, ROIs extracted by CaImAn. Bottom, ROIs in the same plane 

after filtering away non-motion-responsive ROIs and manual curation to remove overlapping ROIs 5 

and ROIs of multiple neurons. (B) 12 regressors and their applicable time windows (marked by 

dashed boxes) to parameterize the response of each ROI to real and illusory motion. 

Fig. S5. Comparison of neural activity per cluster with the conditioning phase of 5min and 

1min 

Averaged ∆F/F0 time series (shaded area: mean ± SEM) for each cluster is plotted on top of the 10 

heatmaps of ∆F/F0 time series for individual neurons. In the plots for averaged ∆F/F0 time series, 

the blue areas represent motion in same direction as the conditioning phase, and the red areas 

represent motion in reversed direction to the conditioning phase. In the heatmaps, one horizontal 

line represents the response of one neuron. Left, response to a 5min conditioning phase; right, 

response to a 1min conditioning phase. The left and right heatmaps are sorted in the same order. 15 

Fig. S6. Rotation selectivity and ocular selectivity of CMT and OMT neurons 

(A) Density histogram of the rotation selectivity for the CMT neurons (C5&C6). (B) Ocular 

selectivity and direction preference of monocular CMT neurons per cluster. (C, D) Density 

histogram of the ocular selectivity for the OMT neurons (C2, C3&C4) and the CMT neurons 

(C5&C6).  20 

Fig. S7. Registration scheme to the standard brain 

(A) Registration pipeline using ANTs. Yellow dots represent the positions of the motion 

responsive neurons on this example z plane before and after the registration procedures. (B) 

Overlay of 7 different functionally imaged fish (elav3:H2B-GCaMP6s) that have been registered 

into the standard brain framework. 3D side-view on the left shows the location of the two selected 25 

example z planes. A, anterior; D, dorsal. Scale bars represent 50 μm. 
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Fig. S8. Spatial distribution of DS and non-DS motion responsive neurons per cluster 

For each panel, top left, top view; top right, side view from the right; bottom, frontal view. Relative 

density is calculated as the number of neighbors belonging to the same cluster in a radius of 20 

um, normalized by the highest density per cluster. 

Fig. S9. Anatomical distribution of motion responsive neurons 5 

(A) Normalized anatomical composition per cluster. (B) Composition of clusters per anatomical 

area. 

Fig. S10. Anatomical identity of the MAE and the non-MAE hotspots 

(A) MAE neurons (C2&C3) in the MAE hotspot overlaid with the expression patterns of 

vglut2a:dsRed and gad1b:EGFP registered to the standard brain. (B-C) Zoom-in views of the 10 

dashed line enclosed area in (A) with the vglut2a:dsRed pattern only in (B) and the gad1b:EGFP 

expression pattern only in (C). (D) Non-MAE motion responsive neurons (C4) in the non-MAE 

hotspot on top of the isl1:EGFP and the chatA:GFP expression patterns registered to the standard 

brain. (E) Zoom-in view of the dashed line enclosed area in (D). (F) Neurite projection of the 

neurons found in the single cell atlas (5) with their cell bodies located in the C4 non-MAE hotspot. 15 

The search was done using a manually defined mask of the C4 non-MAE hotspot. Scale bars, 50 

μm. 

Fig. S11. Example of laser targeted ablation and subsequent monocular OKR response 

(A) MAE neural correlates in the MAE hotspot targeted for laser ablation. Top, location of the 4 

out of 8 ablated neurons in this example fish; Bottom, ∆F/F0 time series in response of the MAE 20 

stimulus protocol for all the ablated neurons. (B-D) Example responses to the monocular motion 

stimuli from fish with non-MAE neurons ablated in the right hemisphere (B), non-motion neurons 

ablated in the right hemisphere (C), and without ablation (D). Colored areas represent the periods 

of monocular motion presentation. L, left eye; R, right eye.  N, nasal direction; T: temporal 

direction. RH, ablation in the right hemisphere. 25 

Fig. S12. Optogenetic activation of the pretectal hotspot 

(A) Schematics of unilateral optogenetic activation of channelrhodopsin (Tg(s1026t:gal4; 

UAS:ChR2-mCherry)) in the pretectal hotspot using a 50um optic fiber. (B) Image of a zebrafish 
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larva under the setup in (A). (C) Example response of induced OKR in the absence of visual motion 

by focal activation of the pretectal hotspot in the right hemisphere as illustrated in (A). Blue line, 

right eye; red line, left eye. (D, E) OKR index of the right eye and the left eye with focal blue light 

illumination. The result of the ChR2 expressing larvae is in (D) and that of the non-expressing 

larvae in (E). LPt, illumination in the left ventral lateral pretectum; RPt, illumination in the right 5 

ventral lateral pretectum. One dot represents the result from one trial (each fish undergone five 

trials per side of optogenetic stimulation). Asterisks indicate statistical significance: *P < 0.05, 

**P < 0.01, ***P < 0.001, paired t test was used for the left eye and right eye response of the same 

fish, and unpaired t test was used for the rest. 

Fig. S13. Minimal circuit model for MAE 10 

The minimal circuit model of MAE consists of three layers, which could be in principle 

implemented by the RGCs, the pretectum, and the oculomotor nuclei (OMN) plus the abducens 

nuclei (ABD), respectively. Each circle represents a subpopulation of DS neurons that share 

neurotransmitter identity, directional tuning and response to MAE. The arrow within the circle 

indicates the preferred direction of the corresponding DS population. E, excitatory neurons; I, 15 

inhibitory neurons. Circle cap, excitatory synapse; bar cap, inhibitory synapse. Orange highlights 

the essential wiring that gives rise to the response of MAE neural correlates. Grey highlights the 

non-MAE neurons, whose contribution to the OKR-like behavior is negligible (dashed line). 
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Supplementary Figure 3
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Supplementary Figure 8
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3. DISCUSSION 

The two studies in this thesis took two different angles to further dissect the neural basis 

of visual motion processing. The first study focused on sensory encoding. By 

systematically sampling RGC projections to AFs, it revealed how the motion information 

was conveyed from the retina to the brain. The second study concerned the behavioral 

relevance of neurons with similar sensory tuning. Guided by MAE, it uncovered a 

potential further division of labor in the vast DS neural population to serve in distinct 

functionally specialized pathways. Taken together, the work presented in this thesis not 

only identified key components in the motion processing circuit, but it also shed light on 

the computational mechanisms and the organizational principles of the circuit. 

3.1 Direction selectivity in zebrafish RGCs 

RGCs with direction-selective response are not unique to larval zebrafish. Initially 

discovered in rabbits (Barlow and Hill, 1963b; Barlow et al., 1964), DS RGCs were well 

characterized in vertebrate animal models (Weng et al., 2005). In mice, where DS RGCs 

were most extensively studied, DS RGCs can be further divided into two subtypes, i.e. the 

On-Off and the On DS RGCs, based on their response to bright and dark contrasts. The On-

Off DS RGCs have bistratified dendritic arbors in the On and the Off sublamina of the inner 

plexiform layer (IPL) (Amthor et al., 1984; Famiglietti, 1992),  whereas the ON DS RGCs 

have monostratified dendritic arbors in the On sublamina (Amthor et al., 1984; 

Famiglietti, 1992; He and Masland, 1998). In the IPL, the DS RGCs synapse with starburst 

amacrine cells (SACs), which grant them direction selectivity (Briggman et al., 2011; 

Taylor et al., 2000). In particular, On DS RGCs project exclusively to AOS and prefer slower 

motion, which implicates their role in mediating the optokinetic response (Berson, 2008; 

Kay et al., 2011). 

In comparison, in larval zebrafish, RGCs that innervate in AF5, AF6 and/or AF10, where 

DS response was identified, could be On, Off, or On-Off based on their dendritic 

stratification in the IPL (Robles et al., 2014). The optokinetic behavior is most likely 

mediated by the On and On-Off DS RGCs in larval zebrafish, since a mutant with normal 

Off responses but abnormal On-Off and On responses could not perform OKR (Emran et 

al., 2007). Just like in mammals, the direction selectivity in zebrafish RGCs most likely 

stems from the SACs, although direct evidence is still missing. 
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Interestingly, my results demonstrated that the directional tunings in AF5 and AF10 were 

very similar, which could be explained by the DS RGCs that form collaterals in both AFs. 

Such DS RGCs were indeed identified in my pilot experiments of functional imaging in 

stochastically labeled single RGCs (unpublished). With this organization, the same motion 

information was conveyed to two retinorecipient areas, which could serve to fulfil 

distinct behavioral goals. One possibility is that the pretectal pathway via AF5 leads to 

global motion induced behaviors like OKR, whereas the tectal pathway via AF10 provides 

background subtraction for other visually guided behaviors e.g. object motion detection. 

3.2 MAE in an animal without a cortex 

Larval zebrafish lack an extended telencephalon and cortex (Parker et al., 2013). The 

finding that they were also affected by MAE challenges the cortical origin of MAE (Kohn 

and Movshon, 2004; Tootell et al., 1995; Van Wezel and Britten, 2002). One possible 

explanation is that the MAE in larval zebrafish and human represents two different 

behaviors controlled by two visual pathways. In primates, there exist two parallel 

pathways for motion processing: one in the cortical areas and the other in the subcortical 

areas. The divergence of motion processing occurs at the level of RGCs. A substantial 

number of RGCs that project to the LGN to relay information to the cortex also form 

branching axons in the midbrain (Guillery, 2003). Since the midbrain contains motor and 

premotor centers concerned with bodily movements, the subcortical pathway could 

underlie the vision-to-action transformation; since the cortex is involved in cognitive 

processes, the cortical pathway could underlie the vision-to-perception transformation. 

The MAE in primates, as measured by self-reported motion perception, is most likely 

governed by the vision-to-perception pathway. In contrast, the MAE in larval zebrafish, 

as measured by eye movements, probably relies on the vision-to-action pathway.  

This hypothesis can potentially explain the difference in the time course of MAE between 

larval zebrafish and human. Namely, on one hand, a much longer conditioning motion 

was required to induce MAE in larval zebrafish (~3 min for zebrafish as opposed to 0.5 -

1 min for human), which could emerge from a higher activation threshold in the vision-

to-action pathway. On the other hand, the duration of MAE was significantly longer in 

larval zebrafish (~1min for zebrafish as opposed to ~10s for human), implying that 

distinct neural populations of different temporal dynamics might underlie the MAE in the 

two species. Given the limited access to the midbrain, the vision-to-action pathway might 
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have been overlooked in the studies of MAE in primates. The possibility to study MAE in 

larval zebrafish opens up a window to this less studied vision-to-action pathway.  

3.3 Neural mechanism of MAE 

Our working hypothesis for MAE is the “opponent process” model by Barlow and Hill, 

which is a two-layer model that computes the difference between oppositely tuned 

motion sensors (Figure 4)(Barlow and Hill, 1963a).  After motion adaptation, the 

imbalance in oppositely tuned motion sensors results in an increase in activity in the 

downstream comparator cells, which give rise to MAE. Based on the direction of the 

conditioning motion, DS neurons can be divided into conditioning motion tuned (CMT) 

and opposing motion tuned (OMT) populations depending on their preferred directions. 

The preferred direction of the CMT neurons aligned with the conditioning motion, 

whereas the preferred direction of the OMT neurons is opposite to the conditioning 

motion. 

3.3.1 CMT neurons 

As expected, the CMT neurons in my study, namely the DS neurons whose preferred 

direction aligned with the conditioning motion, exhibited decreasing activity in the 

course of the conditioning phase. Similar adaptation over prolonged motion stimulation 

has been reported in the RGCs, V1, and V5 neurons by means of electrophysiology and 

fMRI studies (Barlow and Hill, 1963a; Giaschi et al., 1993; Marlin et al., 1988; Van Wezel 

and Britten, 2002). Interestingly, my clustering analysis unveiled a variation in 

adaptation rate in different DS subpopulations. The variation could stem from the input, 

the firing property of the cells per se, or both. Generally, our data showed that the neurons 

further down the motion processing pathways seemed to adapt more compared to the 

ones at earlier stages of processing. For instance, the neurons in the tectum and the 

pretectum adapted more than the RGCs (Figure 14). This observation is in agreement 

with a previous study in cats, which reported a slower adaptation rate in the LGN 

compared to that in the V1 (Sanchez-Vives et al., 2000). Furthermore, within each 

anatomical area, there existed CMT neurons of different adaptation rates. The functional 

implication of such organization is yet to be determined. 

Unexpectedly, after prolonged motion stimulation, we did not observe a significant 

suppression of baseline activity in the CMT neurons, which was reported in the 
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electrophysiology recordings of RGCs (Barlow and Hill, 1963a). This discrepancy could 

be due to the limitation of our method calcium imaging, which only reflects the change of 

firing rate in a certain dynamic range. Therefore, the decrease of an originally low 

baseline might not be detected, if it fell below the range of detection. 

3.3.2 OMT neurons 

On the other hand, some of the OMT neurons, namely the DS neurons tuned to the 

opposite direction of the conditioning motion, showed increase in activity in the test 

phase. Notably, most of these neurons also showed motion opponent response, meaning 

that their activity was suppressed below the baseline when motion in their null direction 

was presented. Such response profile suggests that they could be the comparator cells in 

the “opponent process” model, which computes the difference in activity of oppositely 

tuned motion sensors by combining excitatory input from sensors tuned to one direction 

and inhibitory input from sensors tuned to the opposite (Figure 4). The fact we found 

both excitatory and inhibitory neurons in the DS population further supports the 

“opponent process” model (unpublished).  

Interestingly, MAE-correlated neurons could be further categorized based on their 

temporal dynamics during MAE, which has not been documented before. One subtype 

(C2) showed a rather fast and transient response, while the other (C3) displayed a slow 

and sustained response. The two subtypes also differed in terms of their tuning. The 

former (C2) was more enriched with monocular neurons tuned to the temporal direction 

in the contralateral eye, while the latter (C3) was more enriched with monocular neurons 

A B RGCs Tectum & Pretectum 

Figure 14. Degree of adaptation at different levels of visual motion 
processing. (A) Degree of adaptation in the RGCs. (B) Degree of adaptation in 
the tectum and pretectum. Degree of adaptation is calculated as the difference in 
activity between the end and the beginning of the conditioning phase divided by 
that in the beginning of the conditioning phase. It is plotted in the form of 
normalized histogram.  
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tuned to the nasal direction in the contralateral eye. One possible explanation to this 

could be the asymmetry in the tuning of DS RGCs, which are predominantly selective to 

the nasal direction in larval zebrafish (Kramer et al., 2019; Nikolaou et al., 2012). Thus, 

nasal motion could result in stronger inhibition and consequently a more striking 

rebound in the downstream temporal motion tuned comparator cells. Further study is 

necessary to reveal the neural computation that underlies these two subtypes of MAE-

correlated neurons, and furthermore, how they contribute to the illusory motion 

perception. 

An unexpected result in the functional imaging study of MAE is that the rotation selective 

complex cells, namely the neurons that were binocular and responded more strongly to 

rotational motion than translational motion, were more enriched in the non-MAE DS 

neurons, suggesting that they were not responsible for the OKR-like behavior during 

MAE. Instead, this result implies a monocular organization of the optokinetic circuit. In 

principle, the OKR could be driven solely by monocular neurons.  

More surprisingly, the rotation selective non-MAE DS neurons also include the ones 

located in the oculomotor nuclei (OMN), which controls extraocular eye muscles in larval 

zebrafish together with the trochlear and the abducens (ABD) nuclei (Greaney et al., 

2017). In particular, motoneurons in the OMN innervate the ipsilateral medial and 

inferior rectus (MR, IR), the inferior oblique (IO) and contralateral superior rectus (SR); 

those in the trochlear nuclei control the contralateral superior oblique (SO); and those in 

the abducens nuclei drive the ipsilateral lateral rectus (LR) muscle. This organization of 

Figure 15. Schematics of the motor nuclei and the extraocular muscles for 
horizontal eye movements. The motoneurons in the oculomotor nuclei 
(OMN) and the abducens nuclei (ABD) innervate ipsilateral medial rec tus (MR) 
and lateral rectus (LR) respectively. A, anterior; P, posterior. (Adapted from 
Schoonheim et al., 2010). 
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muscle innervation from the extraocular motor nuclei is highly conserved across 

vertebrate species (Büttner-Ennever, 2006).  The nasal/temporal eye movement 

concerned in the MAE study is driven by the MR and the LR, which are innervated by OMN 

and ABD respectively (Figure 15)(Schoonheim et al., 2010). 

3.3.1 Neural implementation of the “opponent process” model 

By functional imaging, we have identified the potential neural implementations of all the 

proposed components in the “opponent process” model. Theoretically, MAE in larval 

zebrafish could arise from a three-layer minimal circuit, with the RGCs as the DS motion 

sensors, the pretectal neurons as the comparator cells, and the OMN and the ABD neurons 

as the actuator cells to drive eye movements (Figure 16). Since all RGCs are excitatory, 

inhibitory interneurons are necessary to provide inhibitory input to the comparator cells 

in the pretectum.  

The lack of activity in the OMN prompted a bold hypothesis that the OKR-like activity 

during MAE could be driven by inhibition instead of activation of the extraocular 

motoneurons (Figure 15&16). While at rest, the extraocular muscles keep a constant tone 

Figure 16. Minimal circuit model of MAE. Each circle represents a subpopulation of DS neurons that 
share neurotransmitter identity, directional tuning and response to MAE. The arrow within the circle 
indicates the preferred direction of the corresponding DS population. E, excitatory neurons; I, inhibitory 
neurons. Circle cap, excitatory synapse; bar cap, inhibitory synapse. Orange highlights the opponent 
processing that gives rise to the response of MAE correlated neurons. Grey highlights the non-MAE 
neurons, whose contribution to OKR is negligible (dashed line). 
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to resist passive stretch and maintain the position of the eyes. Normally, when a real 

motion is present in visual scene e.g. in the CW direction, it activates the motoneurons in 

the OMN in the left hemisphere and the ABD in the right hemisphere, which in turn 

contracts the MR in the left eye and the LR in the right eye. This generates conjugated 

rotational eye movement in the CW direction. In contrast, during MAE, if the OMN in the 

right hemisphere and the ABD in the left hemisphere are inhibited, meaning the LR in the 

left eye and the MR in the right eye are relaxed, the same conjugated rotational eye 

movement in the CW direction can be generated. Given the dynamic range of inhibition is 

much smaller than activation in most neurons, it is expected that eye movements driven  

by inhibition are less pronounced compared to those driven by activation. 

This hypothesis is supported by behavioral evidence and potential neural basis. Just as 

predicted, we found that the OKR-like behavior during MAE was less pronounced 

compared to the normal OKR in the conditioning phase. The initial speed of the slow 

phase was lower during MAE, and the saccades were less frequent. Aside from the 

behavioral evidence, we also identified a substantial number of GABAergic MAE-

correlated neurons (Figure 17). These neurons could potentially realize the inhibition to 

OMN and ABD to relax the eye muscles. Confirmation of this hypothesis awaits further 

connectivity and electrophysiology evidence.  

3.4 Role of the pretectum in OKR 

Consistent with the past studies in larval zebrafish (Kubo et al., 2014; Naumann et al., 

2016; Portugues et al., 2014; Wang et al., 2019), we observed a substantial number of DS 

neurons in the pretectum. The majority of them were monocular, and mostly responding 

to motion presented to the contralateral eye. In addition, our optogenetic silencing of the 

pretectum resulted in similar impairment in OKR as previously reported (Kubo et al., 

2014). Unlike in mammals, which encode different motion directions in separate nuclei 

in the accessory optic system, teleost fish have only one pretectal nucleus that undertakes 

Figure 17. Cluster compositions of glutamatergic and GABAergic OMT 
neurons compared to the pan-neuronal dataset. Left, glutamaterfic neurons 
labeled by vglut2a:Gal4. Right, GABAergic neurons labeled by gad1b:Gal4. 
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the functions of the whole accessory optic system (Masseck and Hoffmann, 2009a). It 

encodes both horizontal (temporal and nasal) and vertical (up and down) motion 

directions (Klar and Hoffmann, 2002; Masseck and Hoffmann, 2009b; Wang et al., 2019). 

Therefore, broad pretectal silencing in larval zebrafish would impair OKR to both CW and 

CCW motion, just as shown in our result. Together, our results emphasize the crucial role 

of the pretectum in larval zebrafish for global motion induced OKR. 

Furthermore, guided by MAE, we were able to sift through the broad DS population in the 

pretectum and home in on a focal hotspot, which, we showed for the first time, was both 

required and sufficient to drive OKR behavior. This ventral lateral hotspot may 

correspond to the migrated region of pretectum (M1), which grows into the superficial 

pretectal region in adult zebrafish (Mueller and Wullimann, 2002). The superficial 

pretectal region is not only involved in primary visual circuits, but also in higher order 

visual and multisensory circuits (Wullimann, 1997). A recent study in larval zebrafish 

reported that neurons in M1 also responded to vestibular stimulation (Favre-Bulle et al., 

2018), suggesting a potential multimodal nature of M1 neurons. In free moving animals, 

the OKR often works in conjunction with the vestibulo‐ocular reflexes (VOR) to ensure 

image stabilization during self‐motion and environmental drifts. Thus, M1 could serve as 

a hub, which integrates visual and vestibular information and generates proper motor 

commands to drive behaviors like eye movements. 

In many species including teleosts, there exist direct pretectal projections to the 

oculomotor complex (Büttner-Ennever et al., 1996; Clarke et al., 2003). This implicates 

that the pretectal neurons could directly drive the motor neurons innervating the 

extraocular muscles to elicit OKR behavior. Apart from this, pretectal neurons in fish also 

project to premotor areas including the cerebellum, the reticular formation, the inferior 

olive and the vestibular nuclei, which can further modulate the behavior (Kramer et al., 

2019; Masseck and Hoffmann, 2009a). 

3.5 Role of the tectum in OKR 

Although a big proportion of the tectal neurons were also DS, our results suggest that the 

tectum does not drive OKR directly, but rather facilitates it. Compared to the outcome of 

tectal ablation (Pérez-Schuster et al., 2016; Roeser and Baier, 2003), optogenetic 

inhibition of the tectum resulted in a similar reduction of saccade frequency at motion 
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onset. However, we did not observe diminished adaptation over prolonged motion 

stimulation, which could be explained by decreasing efficiency of optogenetic inhibition 

over time. Interestingly, the decreased adaptation in the tectum weakened the OKR-like 

behavior during MAE, suggesting that neural adaptation in the tectum contributed to 

MAE. One possibility is that tectal DS neurons function as the motion sensors in the 

“opponent process” model, whose adaptation and subsequent suppression in the baseline 

give rise to the response of the comparator cells, presumably the pretectal MAE-

correlated neurons. The presence of descending tectal efferents in the pretectum, 

especially in the M1 region, is consistent with such a role(Wullimann, 1997). 

Alternatively, the tectum can also mediate OKR behavior via other premotor areas (e.g. 

reticular formation) (Wullimann, 1997). 

3.6 Dedicated motion processing pathways 

To achieve optimal wiring and efficient processing, the brain has evolved to have 

segregated pathways to process different features of the visual scene in parallel. This is 

best demonstrated by a neurological disorder called cerebral akinetopsia. Patients who 

suffer from this disorder can not perceive motion despite having normal color and form 

vision (Zihl and Heywood, 2015). This indicates that there exist dedicated motion 

processing pathways in the brain that are separated from the pathways for other visual 

features. 

In larval zebrafish, the dedicated motion processing pathway begins in the retina. 

Although the cell bodies of DS RGCs presumably tile the retina, their axons relay the 

motion information mainly to AF5 and the superficial layers of SFGS in AF10. The cellular 

and molecular mechanisms underlying this specific innervation pattern are still elusive. 

Axon guidance molecule Slit has been shown to speed up the innervation of DS RGCs in 

AF10, although it is not required to establish the right synaptic connections (Nikolaou 

and Meyer, 2015). 

Downstream of RGCs, a substantial number of DS neurons were identified in the larval 

zebrafish brain, especially in the tectum, the pretectum, and the hindbrain. While some 

neurons simply inherit the DS response from RGCs, some others develop new complex 

responses, including motion opponent response, preference to a new motion direction, 

and selectivity to binocular optic-flow patterns (Kubo et al., 2014; Naumann et al., 2016; 
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Wang et al., 2019). A common feature shared by many brain regions is that there exist 

many neurons of similar tunings (Dhawale et al., 2010; Holy, 2010; Panzeri et al., 2017; 

Puchalla et al., 2005). Interestingly, the ablation of some DS neurons in the pretectum 

disrupted OKR behavior, while some others not. This suggests that the motion processing 

pathway further diverges into functionally specialized pathways that serve different 

behavioral goals.  

The work in this thesis has singled out some of the DS neurons involved in the pathway 

that drives OKR behavior. Surprisingly, the ablation of only 6-12 neurons was enough to 

disrupt OKR. This result implies sparse coding in the optokinetic circuit, which is 

probably the most efficient way to elicit a simple reflexive behavior like OKR. On the other 

hand, this result also inspires new research on the functional roles of the DS neurons, 

especially the ones not required for OKR.  In addition to image stabilization on the retina, 

many other behaviors rely on the detection of global motion, e.g. background subtraction 

during object motion detection. The neural underpinnings of these more complex global 

motion guided behaviors are yet to be determined. 

3.7 Conclusions and outlook 

The larval zebrafish brain, with its genetic and optical accessibility, serves as an excellent 

platform to study the neural underpinnings of perception and behavior. Taking 

advantage of the larval zebrafish brain, I ascertained that the processing of motion is 

already segregated in the RGCs. AF5, in addition to AF10, serves as the major venue to 

relay directional information from the retina to the brain. Furthermore, I showed, for the 

first time, the neural substrates of MAE in the pretectum with single cell resolution. These 

neurons had two distinct kinetics during MAE, which have not been described before. 

Meanwhile, I also demonstrated the utility of an optical illusion as a powerful circuit 

breaking tool. Using the response to the MAE stimulus as an additional criterion, I was 

able to classify the DS neurons beyond their DS tuning profile. Most importantly, focusing 

on the MAE-correlated neurons, I identified an essential component in the optokinetic 

circuit, which is not only required but also sufficient to drive OKR behavior. In summary, 

with a highly resourceful platform and a unique illusory perspective, this thesis advanced 

the understanding of the neural basis of visual motion processing in larval zebrafish. 
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However, several open questions remain to be addressed to fully illuminate the neural 

circuit for visual motion processing. One of them is the local circuit that implements 

motion opponency, which gives rise to the response of the MAE-correlated neurons. 

Given that motion opponent responses are not prominent in the RGCs, the opponent 

processing is most likely carried downstream (e.g. in the pretectum). We have identified 

neurons with the required DS response and the neurotransmitter identity to implement 

motion opponency, although it is still unknown whether these neurons are wired 

according to the “opponent processing” model. Another issue that was not addressed in 

this thesis is the downstream target of the essential node in the optokinetic circuit. The 

neurons there are sufficient to drive the OKR behavior, but whether they directly 

innervate motor neurons in the extraocular nuclei remains to be elucidated.  

As alluded by the open questions, a deeper understanding of the neural basis of visual 

motion processing calls for functional information in combination with detailed synaptic 

circuitry. One strategy is to use FuGIMA (function-guided inducible morphological 

analysis), which allows us to visualize the neurites of a chosen neuron after determining 

its functional identity (Förster et al., 2018; Kramer et al., 2019). However, currently this 

method is unsuited to reveal long-range projections or direct synaptic contacts, and the 

number of neurons that can be labeled distinguishably in one brain is limited. An 

alternative strategy is to use dense electron microscopic reconstructions (e.g. serial 

blockface EM), which could potentially reveal the complete connectome of the larval 

zebrafish brain (Hildebrand et al., 2017). Nevertheless, a robust method to combine 

functional imaging results with EM reconstruction in the same brain is yet to be 

developed. For now, the combination of function and synaptic wiring persists as a 

challenge in circuit neuroscience. However, I firmly believe that, with technological 

advances in tools and methods, we will soon overcome this barrier and obtain a full 

picture of the neural basis of visual motion processing in larval zebrafish. 
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