
 

  

Aus der Medizinischen Klinik und Poliklinik IV 

(Direktor: Prof. Dr. med. Reincke) 

Ludwig-Maximilians-Universität München 

Sektion für Rheumatologie und Klinische Immunologie 

Leiter: Prof. Dr. med. Hendrik Schulze-Koops 

 

 

 

 

Altered T cell plasticity favors Th17 cells in 

rheumatoid arthritis 

 

 

 

 

Dissertation 

zum Erwerb des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) 

an der Medizinischen Fakultät 

der Ludwig-Maximilians-Universität München 

 

 

 

 

 

vorgelegt von 

Fausto Pirronello 

aus Catania – Italien 

 

2018 

 

 

 

 



 

  

 

 

 

  

 

 

 

 

Gedruckt mit Genehmigung der Medizinischen Fakultät der Ludwig-

Maximilians-Universität München 

 

 

 

 

 

Betreuerin:    Prof. Dr. rer. nat. Alla Skapenko 

Zweitgutachter:   Prof. Dr. med. Vigo Heissmeyer 

Dekan:    Prof. Dr. Reinhard Hickel 

Tag der mündlichen Prüfung: 15.10.2019  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  

 

Eidesstattliche Versicherung 

 

Pirronello, Fausto 

Name, Vorname 

 

Ich erkläre hiermit an Eides statt, dass ich die vorliegende Dissertation mit dem Thema 

 

Altered T cell plasticity favors Th17 cells in rheumatoid arthritis 

 

selbständig verfasst, mich außer der angegebenen keiner weiteren Hilfsmittel bedient und alle 

Erkenntnisse, die aus dem Schrifttum ganz oder annähernd übernommen sind, als solche 

kenntlich gemacht und nach ihrer Herkunft unter Bezeichnung der Fundstelle einzeln 

nachgewiesen habe. 

Ich erkläre des Weiteren, dass die hier vorgelegte Dissertation nicht in gleicher oder in 

ähnlicher Form bei einer anderen Stelle zur Erlangung eines akademischen Grades eingereicht 

wurde. 

 

 

 

 

 

München, 19.12.2018  Fausto Pirronello 

Ort, Datum  Unterschrift Doktorand 

 

 

 

 

 

 

 

 

 

 



 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To Pamela and Matteo 



 

  

CONTENTS 

SUMMARY ....................................................................................................................................................................... 1 

ZUSAMMENFASSUNG .................................................................................................................................................. 3 

1 INTRODUCTION ................................................................................................................................................... 7 

1.1 T cells in the immune system ...................................................................................................................... 7 

1.2 Naïve CD4 T cell differentiation ................................................................................................................. 9 

1.3 Th17 cells .................................................................................................................................................. 12 

1.4 SGK1, FOXO1, IL-23R pathway.............................................................................................................. 16 

1.5 Th17 cells in rheumatoid arthritis and other autoimmune diseases .......................................................... 17 

1.6 Plasticity .................................................................................................................................................... 19 

1.7 Epigenetic modifications of the histones and plasticity ............................................................................ 21 

1.8 Aim of the thesis ....................................................................................................................................... 24 

2 MATERIALS AND METHODS .......................................................................................................................... 25 

2.1 Materials ................................................................................................................................................... 25 

2.1.1 Chemicals and reagents ............................................................................................................................. 25 

2.1.2 Cytokines .................................................................................................................................................. 26 

2.1.3 Antibodies ................................................................................................................................................. 27 

2.1.4 Ladders/Markers ....................................................................................................................................... 28 

2.1.5 Serum ........................................................................................................................................................ 28 

2.1.6 Enzymes .................................................................................................................................................... 28 

2.1.7 TaqMan Gene Expression assays .............................................................................................................. 29 

2.1.8 Oligonucleotides ....................................................................................................................................... 29 

2.1.9 Instrumentation ......................................................................................................................................... 29 

2.1.10 Kits ....................................................................................................................................................... 30 

2.1.11 Buffers and solutions ............................................................................................................................ 30 

2.1.12 Software ............................................................................................................................................... 32 

2.2 Methods .................................................................................................................................................... 33 

2.2.1 Study population ....................................................................................................................................... 33 

2.2.2 Cell purification ........................................................................................................................................ 34 

2.2.3 Transdifferentiation ................................................................................................................................... 36 

2.2.4 Re-stimulation and Fixation ...................................................................................................................... 37 

2.2.5 Flow cytometry ......................................................................................................................................... 38 

2.2.6 RNA isolation............................................................................................................................................ 38 

2.2.7 Complementary DNA (cDNA) synthesis .................................................................................................. 39 

2.2.8 Real-time PCR .......................................................................................................................................... 39 

2.2.9 DNA amplification and gel electrophoresis .............................................................................................. 40 

2.2.10 ChIP for histone modifications ............................................................................................................. 41 

2.2.11 Statistical analysis ................................................................................................................................ 42 

3 RESULTS ............................................................................................................................................................... 43 

3.1 Transdifferentiation of in vitro-generated Th cell subsets ........................................................................ 43 

3.2 Gene expression analysis .......................................................................................................................... 57 

4 DISCUSSION ......................................................................................................................................................... 67 

4.1 Plasticity of human in vitro- and in vivo-generated Th cells .................................................................... 67 

4.1.1 Th1 cell plasticity ...................................................................................................................................... 67 

4.1.2 Th2 cell plasticity ...................................................................................................................................... 68 

4.1.3 Th17 cell plasticity .................................................................................................................................... 69 

4.2 Expression levels of factors involved in lineage commitment .................................................................. 71 

4.2.1 Expression levels of the master transcription factors RORC and Tbet ..................................................... 71 

4.2.2 Expression levels of elements of the SGK1-FOXO1-IL23R pathway ...................................................... 72 

4.3 Histone modifications at key transcription factor loci .............................................................................. 73 

5 CONCLUDING REMARKS ................................................................................................................................ 76 

BIBLIOGRAFY .............................................................................................................................................................. 78 

ACKNOWLEDGEMENTS ............................................................................................................................................ 94 

 



Summary 

    

1 

SUMMARY 

Th17 cells are a subset of CD4 effector T cells defined by the production of interleukin 17 

(IL-17) and characterized by the expression of the transcription factor RORC. Th17 cells are 

physiologically involved in the host defense but are also critically implicated in the 

pathogenesis of autoimmune diseases such as rheumatoid arthritis (RA), psoriatic arthritis, or 

multiple sclerosis. In RA, Th17 cells are increased in number and are characterized by an 

enhanced function. The mechanisms leading to this predominance of Th17 cells in RA are not 

yet fully understood. Recent studies suggest that Th cell differentiation is a dynamic process 

enabling effector T cells to switch their phenotype. An altered T cell plasticity might therefore 

contribute to the shift towards the Th17 phenotype observed in RA (Pirronello et al., Poster 

Sessions, European Congress of Immunology 2012). In order to test this hypothesis, we 

analyzed the ability of sorted Th17, Th1 and Th2 cells from RA patients to differentiate into 

alternative Th subsets. Furthermore, we investigated whether altered levels of expression of 

key transcription factors and molecules involved in T cell lineage differentiation and stability, 

as well as the epigenetic status of key cytokine and transcription factor loci, could be involved 

in the plasticity phenomenon. 

In our first experiments, we hypothesized that a supposed difference in plasticity between 

Th1, Th2 or Th17 derived from healthy donors or RA patients would be due to an intrinsic, 

possibly genetic, characteristic of the RA Th cell. We therefore isolated CD4 Naïve T cells 

from the peripheral blood of RA patients and healthy controls (HC) and differentiated them 

under Th1, Th2, and Th17 inducing conditions. We further purified the cells by performing a 

cytokine secretion assay and sorting them according to cytokine production into highly pure 

populations of in vitro-differentiated Th1, Th2, and Th17 cells. We then further cultured these 

cells under different-inducing conditions. RA-derived in vitro-differentiated Th cells 

demonstrated a normal capacity to transdifferentiate under different inducing conditions. 

Having observed similar plasticity by Th cells generated in vitro from HC and RA patients, 

we hypothesized that an altered plasticity of in vivo-generated Th cells might favor the 

predominance of Th17 cells observed in RA. We therefore isolated CD4 memory cells and 

further purified them through cytokine secretion assay and sorting to obtain in vivo-generated 

Th1, Th2, and Th17 cells. We then cultured the cells under different -inducing conditions. In 

vivo-generated Th17 cells from RA patients demonstrated a diminished capacity to 

transdifferentiate into Th1 and Th2 cells, while transdifferentiation of in vivo-generated Th1 

and Th2 cells towards the Th17 phenotype was enhanced in cells derived from RA compared 

to those derived from HC. 
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In order to further investigate these differences, we first analyzed the mRNA expression 

levels of the master transcription factors of Th17 and Th1 cells RORC and TBX21, in both 

freshly sorted in vivo-generated cells and after transdifferentiation. Freshly sorted Th1 and 

Th17 cells showed no differences in the expression levels of RORC and T-bet, between RA 

and HC. Following transdifferentiation, RA patient-derived Th1 cells cultured under different 

inducing conditions showed a tendency to express higher levels of RORC, compared to cells 

derived from HC.  

Higher levels of RORC expression were also observed in RA patient-derived Th17 cells 

cultured under Th1 inducing conditions. Meanwhile, the expression levels of TBX21 were 

lower in RA compared to HC. These results further confirm the enhanced plastic capabilities 

of RA Th1 cells and the increased resistance towards transdifferentiation of RA patients-

derived Th17 cells. 

Recent studies suggest an important role for the SGK1-FOXO1-IL23R pathway in Th17 cell 

differentiation and lineage commitment. We observed an increased expression of SGK1 and 

IL-23R in both freshly sorted and trandifferentiated Th1 and Th17 cells from RA patients 

compared to HC. The increased expression of IL23R in RA Th1 and Th17 cells could 

potentially confer Th1 cells an “advantage” over HC-derived Th1 cells towards Th17 

transdifferentiation, while also granting Th17 cells with an increased stability, making them 

more resistant to shifts towards other Th cell subtypes. An enhanced SGK1-FOXO1-IL23R 

pathway could therefore contribute to the altered plasticity of Th1 and Th17 cells observed in 

RA, and to the prevalence of Th17 cells observed in the disease. 

Epigenetic modifications of the histones are involved in gene expression control and T cell 

lineage commitment. To investigate whether such modifications could be involved in the 

observed altered plasticity of RA Th cells, we analyzed the transcription factor loci RORC 

and TBX21, in RA- and HC-derived, in vivo-generated Th1 and Th17 cells. We found no 

differences between cells originating from HC and those from RA, indicating that the altered 

plasticity of RA in vivo-generated Th cells is likely not imprinted at the histone modifications 

level. However, such differences between cells derived from RA and HC might arise upon 

repeated stimulations in an environment characterized by a cytokine milieu capable of 

promoting a shift of these cells towards a different Th subtype. 

In summary we demonstrated plasticity in both in vitro- and in vivo-generated human Th 

cells. We further demonstrated an altered plasticity of RA in vivo-derived-Th cells. These 

phenomena lead to a predominance of cells belonging to the Th17 phenotype, characteristic 

for the disease. Differences between cells derived from RA and HC in the expression levels of 

key transcription factors such as RORC and TBX21, as well as components of the SGK1-
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FOXO1-IL23R pathway, could contribute to the observed altered plasticity phenomenon. 

Interestingly, such differences seem not to be epigenetically imprinted at the histone level.
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ZUSAMMENFASSUNG 

Th17-Zellen sind eine Untergruppe von CD4-Effektor-T-Zellen, die durch die Produktion von 

Interleukin 17 (IL-17) und durch die Expression des Transkriptionsfaktors RORC 

charakterisiert sind. Sie sind an der Host-Verteidigung, sowie aber auch an der Pathogenese 

von Autoimmunkrankheiten wie rheumatoider Arthritis (RA), Psoriasisarthritis oder Multiple 

Sklerose beteiligt. In RA sind Th17-Zellen erhöht und zeichnen sich durch eine überaktivierte 

Funktion aus. Die Mechanismen hierfür sind noch nicht vollständig verstanden.  Aktuelle 

Studien deuten darauf hin, dass Th-Zell-Differenzierung ein dynamischer Prozess ist, durch 

den Effektor T-Zellen ihre verschiedenen Phänotypen erreichen können. Eine veränderte T-

Zell-Plastizität könnte daher zur Verschiebung zum Th17-Phänotyp beitragen, welcher in RA 

beobachtet wird (Pirronello et al., Poster Sessions, European Congress of Immunology 2012). 

Um diese Hypothese zu verifizieren, analysierten wir die Fähigkeit von Th17-, Th1- und Th2-

Zellen von RA-Patienten, sich in alternative Th-Untergruppen zu differenzieren. Darüber 

hinaus überprüften wir, ob eine veränderte Expression von den wichtigsten 

Transkriptionsfaktoren und Molekülen, die an der T-Zelllinien-Differenzierung und -Stabilität 

beteiligt sind, sowie der epigenetische Status von den wichtigsten Zytokinen und 

Transkriptionsfaktor-Loci in das “Plastizität Phenomen” beteiligt sein könnten. In unseren 

ersten Versuchen haben wir spekuliert, dass ein Unterschied in der Plastizität zwischen Th1, 

Th2 oder Th17 von gesunden Spendern oder RA-Patienten, auf eine intrinsische, 

möglicherweise genetische Eigenschaft der RA Th-Zellen zurückzuführen wäre. Wir 

isolierten daher CD4 Naive T-Zellen aus dem peripheren Blut von RA-Patienten und 

gesunden Kontrollen (healthy controls, HC) und differenzierten sie unter Th1-, Th2- und 

Th17-induzierenden Bedingungen. Die Zellen wurden weiter purifiziert, indem wir einen 

Zytokin-Sekretionstest durchführten und nach Zytokin-Produktion in hochreine Populationen 

von in vitro-differenzierten Th1-, Th2- und Th17-Zellen sortieren konnten. Wir kultivierten 

dann die Zellen unter verschiedenen induzierenden Bedingungen. RA-stammenden 

differenzierten Th-Zellen zeigten  eine normale Fähigkeit, sich unter verschiedenen 

induzierenden Bedingungen, zu transdifferenzieren. Nachdem wir eine ähnliche Plastizität in 

in vitro erzeugten Th-Zellen von HC- und RA-Patienten beobachtet hatten, spekulierten wir, 

dass eine veränderte Plastizität von in vivo erzeugten Th-Zellen die Dominanz von Th17-

Zellen in RA erklären könnte. Wir isolierten daher CD4-Gedächtniszellen und purifizierten 

sie durch Zytokin-Sekretionstest und Zellsortierung, um in vivo erzeugte Th1-, Th2- und 

Th17-Zellen zu erhalten. Wir kultivierten dann die Zellen unter verschiedenen induzierenden 

Bedingungen. In vivo erzeugte Th17-Zellen von RA-Patienten zeigten eine reduzierte 
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Fähigkeit, in Th1- und Th2-Zellen transdifferenziert zu werden, während die 

Transdifferenzierung von in vivo erzeugten Th1- und Th2-Zellen in den Th17-Phänotyp in 

RA-Zellen  im Vergleich zu HC-Zellen verstärkt war. Um diese Unterschiede weiter zu 

untersuchen, haben wir zunächst die mRNA-Expressionsniveaus der wichtigen 

Transkriptionsfaktoren von Th17- und Th1-Zellen RORC und TBX21 sowohl in frisch 

sortierten in vivo-erzeugten Zellen als auch nach Transdifferenzierung analysiert. Frisch 

sortierte Th1- und Th17-Zellen zeigten keine Unterschiede in den Expressionsniveaus von 

RORC und T-bet zwischen RA und HC. Nach der Transdifferenzierung zeigten RA-Th1-

Zellen, die unter verschiedenen induzierenden Bedingungen kultiviert wurden, eine Tendenz, 

RORC höher zu exprimieren, verglichen mit HC-Th1-Zellen. Höhere Expressionsniveaus von 

RORC wurden auch in RA-Th17 Zellen, die unter Th1-induzierenden Bedingungen kultiviert 

wurden, beobachtet. Dabei waren die Expressionsniveaus von TBX21 niedriger in RA im 

Vergleich zu HC. Diese Ergebnisse bestätigen die hohe Plastizität von RA-Th1-Zellen und 

die erhöhte Resistenz gegen Transdifferenzierung von RA-Th17-Zellen. 

Aktuelle Studien zeigen, dass der SGK1-FOXO1-IL23R-Weg, eine wichtige Rolle für die 

Th17 Zelldifferenzierung und Linienbestimmung spielt. Wir beobachteten eine erhöhte 

Expression von SGK1 und IL-23R sowohl in frisch sortierten als auch trandifferenzierten 

Th1- und Th17-Zellen von RA-Patienten im Vergleich zu HC. Die erhöhte Expression von 

IL23R in RA Th1- und Th17-Zellen könnte Th1-Zellen einen "Vorteil" gegenüber HC Th1-

Zellen in der Th17-Transdifferenzierung verleihen, sowie auch Th17-Zellen eine erhöhte 

Stabilität gewährleisten, wodurch sie resistenter gegenüber Verschiebungen zu anderen Th-

Zellen Subtypen sein könnten. Ein überaktivierter SGK1-FOXO1-IL23R-Weg könnte daher 

zu der veränderten Plastizität von Th1- und Th17-Zellen beitragen, die in RA beobachtet 

wurden, und auf die Prävalenz von Th17-Zellen, die bei der Erkrankung beobachtet wurde. 

Epigenetische Veränderungen der Histone sind an der Genexpressionskontrolle und an der T-

Zelllinie-Differenzierung beteiligt. Um zu untersuchen, ob solche Veränderungen an der 

beobachteten veränderten Plastizität von RA Th-Zellen beteiligt sein könnten, analysierten 

wir den Transkriptionsfaktor loci RORC und TBX21 in RA- und HC- in vivo erzeugten Th1- 

und Th17-Zellen. Wir fanden keine Unterschiede zwischen HC- und RA-Zellen, was darauf 

hinweist, dass die veränderte Plastizität von RA in vivo erzeugten Th-Zellen wahrscheinlich 

nicht auf die Histon-Modifikationen geprägt ist. Stattdessen können solche Unterschiede 

zwischen RA- und HC-Zellen, bei wiederholten Stimulationen in einer Umgebung auftreten, 

die durch ein Zytokinmilieu gekennzeichnet ist, das in der Lage ist, eine Verschiebung dieser 

Zellen zu einem anderen Th-Subtyp zu fördern. 
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Zusammenfassend zeigten wir Plastizität sowohl in vitro- als auch in vivo-erzeugten humanen 

Th-Zellen. Des Weiteren konnten wir eine veränderte Plastizität von RA in vivo-erzeugten 

Th-Zellen nachweisen. Diese Phänomene führen zu einer Dominanz der Zellen, die zum 

Th17-Phänotyp gehören, was charakteristisch für die Krankheit ist. Die Unterschiede 

zwischen RA- und HC-Zellen in den Expressionsniveaus von wichtigen 

Transkriptionsfaktoren wie RORC und TBX21 sowie Komponenten des SGK1-FOXO1-

IL23R-Weges könnten zu dem beobachteten Plastizitätsphänomen beitragen. 

Interessanterweise scheinen solche Unterschiede nicht epigenetisch auf Histonebene geprägt 

zu sein. 
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1 INTRODUCTION 

1.1 T cells in the immune system 

The immune system consists of various types of cells and molecules, which have evolved to 

protect the human body from infectious agents and other harmful substances. The immune 

system of mammals must fulfill a series of tasks: immunological recognition, immune 

effector functions, immune regulation and immunological memory. Immunological 

recognition consists in the ability of the immune system to detect the invading pathogen and 

activate immune effector functions, which will fight the infection through the concerted 

action of the blood proteins of the complement system, and antibodies. The pathogen will 

eventually be destroyed by white blood cells. However, this capacity to fight the infection and 

determine inflammation must be kept under control through a tight immune regulation. Any 

failure of such regulation can contribute to the rise of allergies or autoimmune diseases. 

Finally, higher organisms are characterized by the ability to develop an immunological 

memory, which allows them to fight recurring pathogens more rapidly and efficiently. This 

characteristic of the immune system is exploited to artificially induce immunity in animals 

and humans through vaccination in order to prevent the effects and the spread of several 

infections (Alberts et al., 2007).  

The immune system of higher organisms such as mammals has evolved to include several 

lines of defense. The first defense mechanisms against infectious agents are physical and 

chemical barriers such as the skin enclosing the organism and antimicrobial proteins secreted 

at mucosal surfaces. Furthermore, the immune system consists of two distinct but co-

operating branches: the innate and the adaptive immune system. Innate immune responses act 

rapidly as soon as the first line of defense, represented by external or internal epithelia and 

mucosal surfaces, is breached (Murphy, 2012). Bacterial cell walls are digested by 

antimicrobial enzymes, for example lysozymes, while antimicrobial peptides such as 

defensins lyse the bacterial cell membranes (Ganz T., 2003). At the same time, plasma 

proteins of the complement system target pathogens for successive lysis or phagocytosis by 

innate immunity cells such as macrophages (Aderem and Underhill, 1999). In a second phase 

of the innate immune response, these cellular components of innate immunity are able to 

recognize surface molecules typical of invading microbes called pathogen-associated 

molecular patterns (PAMPs) (Akira et al., 2006). Innate immune responses act therefore as a 

first line of defense towards invading pathogens but are incapable of generating an 

immunological memory. Clearance of pathogens by the immune systems is typically achieved 
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during the first 96 hours from the initial response. However, if the infection persists it will 

trigger an adaptive immune response (Murphy, 2012). 

The adaptive immune response is activated once the invading pathogen has overcome the 

defenses laid by the innate immune responses. The most prominent feature of adaptive 

immunity is its ability to generate immunological memory. Immunological memory consists 

in the storing, within specific long-lived cells, of the information regarding the specific 

pathogen that infected the body. This allows for a more rapid clearance of the pathogen upon 

subsequent infections. Numerous cell types are involved in adaptive immune responses, of 

both lymphoid origin, such as lymphocytes, and myeloid origin, such as dendritic cells and 

macrophages. The fulcrum of innate immunity is however mainly represented by 

lymphocytes. Lymphocytes are able to circulate in the lymphatic system and in the blood 

stream but are generated and reside mainly within primary, such as bone marrow and thymus, 

and secondary lymphoid organs such as spleen, lymph nodes and mucosal lymphoid tissues in 

the gut (Murphy, 2012). There are two main types of lymphocytes: B cells and T cells. B cells 

are generated in the bone marrow from the common lymphoid progenitor and mature within 

this organ. These cells, once activated by T helper cells, are able to produce antibodies 

directed against a specific antigen. They can further differentiate into memory B cells or 

plasma cells, which will produce large amounts of specific antibodies. T cells, such as CD8 

and CD4 T cells, are generated from the common lymphoid progenitor in the bone marrow 

but mature in the thymus, hence the name. They are able to act as effector T cells for the 

cytotoxicity of pathogen-infected cells (CD8 T cells) or as “helpers” in activating B cells 

(CD4 T cells). Most importantly, they are capable of maintaining memory of the antigen they 

encountered. Maturation of T cells, also called at this stage thymocytes, occurs in the thymus, 

a primary lymphoid organ found in the upper chest of humans (Luckheeram et al. 2012). 

Upon arrival to the thymus these precursors are devoid of most of the surface molecules 

characteristic of mature T cells. They are in particular lacking expression of both CD4 and 

CD8 and are therefore named double-negative thymocytes. At this stage cells can branch into 

two different directions which lead to the development of either γ:δ T cells or, more 

frequently α:β T cells (Lauritsen et al., 2006). Through the so-called V(D)J recombination, 

thymocytes are able to express α:β T cell receptors, which confer antigen specificity to each 

cell, and ability to co-express both CD4 and CD8 on their surfaces, in a phase called double 

positive stage. CD4/CD8 double positive cells migrate deep within the thymic cortex where 

they will survive only a few days unless they are rescued by the engagement of their TCR by 

a MHC complex carrying a self-peptide, in a process called positive selection (Hogquist et al., 

1997). While only 10-30% of the double positive cells survive, they have to also undergo a 
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negative selection, in which apoptosis is induced in those cells that interact too strongly with 

self-peptides presented to these cells, thereby eliminating potentially self-reactive cells which 

could cause autoimmune reactions (Surh and Sprent, 1994; Starr et al., 2003). MHC class I 

and MHC class II are necessary for the development of CD8 and CD4 T cells, respectively 

and are required for positive selection. What triggers the lineage choice is the strength of the 

Lck signal given by the co-receptor. When the TCR and the co-receptor of a thymocyte 

encounter a MHC molecule, it triggers first a downregulation of both CD4 and CD8, followed 

by re-expression of CD4 and low levels of CD8. This configuration of CD4+ CD8 low 

thymocytes manifests itself independent of whether the contact happens with a MHC class I 

or II. If the cell is bound by a MHC class II molecule then the re-expression of CD4 leads to a 

stronger Lck signal which further promotes differentiation along the CD4 pathway, with a 

complete downregulation of CD8. If instead the cell is in contact with a MHC class I 

molecule, re-expression of CD4 does not lead to a strong Lck signaling which in turn 

determines CD4 downregulation and CD8 commitment (Singer et al., 2008). Most 

thymocytes develop into either CD4 or CD8 T cells, however those cells that receive a 

stronger signal by a self-antigen than that which leads to CD4 lineage commitment, but not 

strong enough to induce cell death, tend to upregulate expression of the transcription factor 

Forkhead-box P3 (FoxP3) and therefore, development into regulatory T cells (Tregs). Tregs 

express high levels of CD25 and CTLA-4; they are responsible for the suppression of 

inflammation and are essential to control immune responses and prevent auto-immune 

reactions (Zheng and Rudensky, 2007). Mature naive CD4 and CD8 T cells are drawn to the 

bloodstream by the lipid molecule sphingosine 1-phospate (S1P), with which they interact 

through the G-protein-coupled receptor S1P1. The homing of these cells to the peripheral 

lymphoid organs is mediated by chemokines (Cyster, 1999, 2005). They can then enter said 

organs through their expression of the lymph-node homing receptor CD62L (L-selectin) 

(Rosen, 2004). 

 

1.2 Naïve CD4 T cell differentiation 

Naïve T cells in the bloodstream can enter lymphoid organs, such as lymph-nodes, where they 

are exposed to antigen presenting cells (APCs) carrying MHC-bound peptide molecules 

corresponding to a plethora of different antigens. Naïve T cells that do not encounter their 

corresponding antigen, are free to re-enter the bloodstream via the lymphatic system. In case 

the T cell will bind an APC carrying the corresponding antigen, this cell will cease to migrate, 

instead undergoing clonal expansion and differentiation, rapidly multiplying and generating a 
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large number of cells with identical specificity against the invading pathogen. There are three 

main types of cells capable of presenting antigens to T cells, which can localize to the lymph-

node: dendritic cells, macrophages and B-cells. Dendritic cells are specialized in capturing, by 

phagocytosis, macropinocytosis or direct intake of viruses through the plasmatic membrane, 

all types of invading pathogens and processing them to present their antigens. Furthermore, 

dendritic cells are mainly present in T cell areas and are the major drivers of clonal expansion 

and differentiation of naïve T cells (Guermonprez et al., 2002). On the other hand, 

macrophages and B-cells are specialized in processing and presenting antigens from 

intracellular pathogens and soluble antigens, respectively (Unanue, 1984; Pierce et al., 1988; 

Underhill et al., 1999; Shirota et al., 2002). 

When a mature naïve T cell encounters an APC, such as a dendritic cell, it first binds it 

transiently through the interaction of its surface protein LFA-1 with ICAM-1 and ICAM-2 

exposed on the surface of the APC. If the T cells recognizes a peptide:MHC ligand on the 

surface of a dendritic cell, the surface protein LFA-1 on the T cell undergoes a conformational 

change that greatly increases its affinity to the surface proteins ICAM-1 and ICAM-2. This 

binding stabilizes the interaction between T cell and dendritic cell. The T cell then replicates, 

with its daughter cells also binding the same dendritic cell, expanding and differentiating into 

effector T cells (Murphy, 2012). 

The expansion of T cells largely depends on antigen recognition by the TCR, which 

determines the expression or activation of the transcription factors NFAT, AP-1 and NF-B, 

which in turn promote IL-2 expression. IL-2 is essential for the proliferation and 

differentiation of T cells and it is produced by the activated T cells themselves. However, a 

fundamental role is played by co-stimulation through the binding of CD28 on the surface of 

the CD4 T cell to its ligands CD80 and CD86 on an APC. CD28 signaling, also known as 

“signal 2”, activates PI 3-kinase thereby enhancing the expression of AP-1 and NF-B, which 

in turn increases the transcription of IL-2 mRNA (Zhou et al., 2002; Acuto et al., 2003). 

Furthermore, CD28 signaling is able to prolong the half-life of IL-2 mRNA by promoting the 

expression of proteins that block an “instability sequence” present on the IL-2 mRNA (Seko 

et al., 2006). PI 3-kinase also contributes to the activation of Akt, which results in the 

promotion of growth and survival of the cell, thereby increasing the total IL-2 production by 

the activated T cell (Eder et al., 1998; Kane et al., 2001). 

Apart from their “effector” status, CD4 T cells can also differentiate into functionally 

different subtypes, which can be classified based on the cytokines they produce, the 

transcription factors that drive their differentiation and lineage commitment, and the 
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immunological function that they mediate (Hirahara et al., 2010). These classes of CD4 T 

cells comprise Th1, Th2, Th9, Th17 and regulatory T cells. Th1 cells are specialized in 

fighting infections by intracellular bacteria such as mycobacteria and viruses (Agnello et al., 

2003). These pathogen are able to resist degradation inside the vesicles of macrophages 

thereby infecting the cell. Th1 cells are able to recognize bacterial antigens exposed on the 

surface of the infected macrophages and further enhance the microbicidal activity of the 

macrophage, which is then able to clear out the invading pathogen. Th1 cells are characterized 

by their production of IFN and the expression of their master transcription factor Tbet. Th2 

cells are dedicated to the control of infections by parasites such as helminthes (Mowen et al., 

2004). The most important cytokine produced by Th2 cells is IL-4 and the master 

transcription factor is GATA-3. IL-4 promotes responses mediated by mast cells, eosinophils 

and determines the class switching in B cells, which leads to IgE production. While IL-4 has 

in many cases an anti-inflammatory effect, it is involved also in the rise of allergies, which are 

primarily mediated by IgE antibodies. Additionally, Th2 cells also produce IL-5 and IL-13. 

Among other factors, also the “strength” of TCR signaling is an important driver of Th1 

versus Th2 lineage commitment (Tao et al., 1997; Zhu et al., 2010). Initially Th1 and Th2 

cells were considered to be the only two existing subsets of CD4 T cells (Mosmann et al., 

1986; 1989; Hirahara et al., 2010). The Th1/Th2 paradigm was however revised upon the 

discovery of a class of IL-17 producing CD4 T cells, named Th17 cells, which will be 

described more in detail in the following chapter. Although Interleukin 22 (IL-22) was 

considered to be produced primarily by Th17 cells, in 2009 a new subset of T helper cells was 

discovered which is able to produce IL-22 but not IL-17 or IFN. This T cell subtype, distinct 

from Th1 and Th17 cells, was named Th22. Th22 cells share with Th17 cells some 

characteristics, such as the dependence on the master transcription factor RORC for the 

expression of their respective signature cytokines (Trifari et al., 2009). Moreover, Th22, like 

Th17 cells express the surface molecules CCR6 and CCR4. In addition to these surface 

markers Th22 cells also express CCR10, which allows for the migration of these cells to the 

epithelium, following a CCL27 gradient (Duhen et al., 2009; Trifari et al., 2009; Wang et al., 

2010). Accordingly, Th22 cells are localized in the epidermis in inflammatory skin diseases 

(Eyerich et al., 2009; Eyerich and Zielinski, 2014). Although IL-9 production was initially 

associated with Th2 cells, recently a subset of Th cells producing copious amounts of this 

cytokine has been identified in Th9 cells (Veldhoen et al., 2008; Staudt et al., 2010). Th9 cell 

differentiation is induced by TGF and IL-4 and is dependent on the expression of the 

transcription factors PU.1 and the interferon regulatory factor-4 (IRF-4) (Ramming et al., 
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2012; Kaplan, 2013; Kaplan et al., 2015). Finally, regulatory T cells (Tregs) present a stark 

difference compared to the other T cell subtypes. These cells are in fact devoted to the 

modulation of immune responses and maintenance of self-antigen tolerance, thereby avoiding 

autoimmune responses. There are two known types of Tregs: natural regulatory T cells 

(nTregs), which differentiate in the thymus, and induced regulatory T cells (iTregs), which 

develop from naïve CD4 T cells in the periphery in the presence of TGF and IL-6. Tregs are 

characterized by their high expression of the IL-2 receptor alpha-chain CD25. In fact they 

were discovered when CD4 T cells depleted of CD25 positive cells were transferred into nude 

mice and generated a strong autoimmune response. Those mice could be rescued by the 

transfer of CD25 positive cells, within a short time after inoculation of the CD25 negative 

cells. Hence, CD25 positive cells are necessary to modulate effector T cell activity 

(Sakaguchi et al., 1995; 2008). Tregs are also characterized by the expression of their master 

transcription factor forkhead box P3 (FOXP3), which is essential for both the development 

and the function of these cells (Fontenot et al., 2003). Tregs also express the surface proteins 

CTLA-4 and GITR, while CD127 is down regulated, and by their production of TGF (Read 

et al., 2000; Valzasina et al., 2005; Yi et al., 2006; Seddiki et al., 2006). Another important 

marker of Tregs is the surface protein GARP (Tran et al., 2009; Zhou et al., 2013). Tregs 

exert their suppressive activity on effector T cells in more than one way. Some of these 

suppressive mechanisms rely on direct contact with other cells. For example Tregs can bind to 

dendritic cells (DC) through a CTL-4-CD80/CD86 interaction which induces the DC to 

produce indoleamine 2,3-dioxygenase, an enzyme capable mediating cell cycle arrest in T 

conventional cells (Puccetti et al., 2007). Moreover Tregs are able to lyse target cells via the 

expression of perforin and granzymes A and B (Grossman et al., 2004). Other mechanisms of 

suppression do not involve cell-cell contact. As a matter of fact, Tregs are capable of 

secreting inhibitory cytokines like IL-35, IL-10 and TGF which directly impair T 

conventional cells proliferation (Collison et al., 2007). Furthermore, they possess the ability 

to consume IL-2, thereby depriving conventional T cells of this important component for their 

growth (Pandiyan et al., 2007). 

 

1.3 Th17 cells 

Th17 cells are a subtype of effector CD4 T cells specialized in the host defense against 

extracellular bacteria and fungi such as Staphylococcus aureus and C. albicans (Ma et al., 

2008; Puel et al. 2011). Murine Th17 cells are generated, both in vivo and in vitro in response 
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to specific cytokines such IL-6 and TGF in mice (Bettelli et al., 2006 Nature). According to 

Cosmi et al., human Th17 cells seem to arise from a naïve CD4+CD161+ T cell precursor 

upon exposure to IL-1 and IL-23 (Cosmi et al., 2008). IL-1 is a major promoter of Th17 

differentiation, in both mouse and man, which synergizes with IL-6 and IL-23 (Acosta-

Rodriguez et al., 2007; Ghoreschi et al., 2010; Hirahara et al., 2010). IL-1 receptor (IL-1R) 

conditional knockouts show an impaired Th17 differentiation and reduced incidence of EAE 

(Sutton et al., 2006; Ben-Sasson et al., 2009; Hirahara et al., 2010). In this case, the only 

effect of TGF seems to be an inhibition of the differentiation of naïve CD4+CD161- T cells 

towards the Th1 phenotype, thereby only indirectly favoring the rise of the Th17 population 

(Santarlasci et al., 2009; Annunziato et al., 2012 Review). Moreover, other groups have 

demonstrated that while TGF was essential for Th17 differentiation in mouse, it actually had 

an inhibitory effect on the differentiation of human Th17 cells (Acosta-Rodriguez et al., 2007; 

Cosmi et al., 2008; Sallusto et al., 2012). However, it was later shown that while high doses 

of TGF are detrimental to human Th17 cell differentiation, low doses of TGF favor the rise 

of this subpopulation (Wilson et al., 2007; Yang et al., 2008; Sallusto et al., 2012). Several 

studies have demonstrated the importance of IL-1, and the dispensability of TGF, also in the 

development of murine Th17 cells (Chung et al., 2009; Ghoreschi et al., 2010; Annunziato et 

al., 2013). Developing Th17 cells produce IL-21, which also acts on the cell in an autocrine 

fashion to activate STAT3, a transcription factor essential for Th17 differentiation. IL-6, IL-

21 and IL-23 determine the activation of the transcription factor STAT3 which plays an 

important role in the expression of the master transcription factor of Th17 cells, RAR-related 

orphan receptor gamma t (RORt) to which RORC is the human ortholog (Ivanov et al., 2006; 

Yang et al., 2007; Mathur et al., 2007; Korn et al., 2009). It was in fact shown that conditional 

STAT3 knockout mice have impaired Th17 differentiation, while overexpression of a 

constitutively active STAT3 can increase IL-17 production (Yang et al., 2007; Harris et al., 

2007; Korn et al., 2009). In human, Hyper IgE syndrome (HIES) patients, which carry a 

dominant negative mutation in STAT3 show an impaired Th17 development which leads to a 

susceptibility to bacterial and fungal infections (Holland et al., 2007; Minegischi et al., 2007; 

Milner et al., 2008; Ma et al., 2008; de Beaucoudrey et al., 2008). STAT3 is capable of 

directly binding not only IL-17A and IL-17F gene promoters, thereby regulating their 

expression, but also intergenic elements, as shown in ChIP-seq assay analysis (Durant et al., 

2010). Furthermore, STAT3 directly regulates IL-21, IL-21R and IL23R genes (Ghoreschi et 

al., 2010; Hirahara et al., 2010), cooperating with RORt in their transcription (Chen et al., 

2006; Wei et al., 2007; Korn et al., 2009). Interestingly, STAT3 controls both the expression 
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of IL-23R and its downstream signaling (McGeachy et al., 2009). STAT3 also controls the 

expression of several transcription factors involved in Th17 differentiation such as RORt, 

IRF4, and Batf. STAT3 binds RORt and it has been demonstrated that a lack of STAT3 

results in poor RORt expression (Laurence et al., 2007; Yang et al., 2007; Mathur et al., 

2007; Durant et al., 2010; Hirahara et al., 2010). However, overexpression of STAT3 in the 

absence of RORC also resulted in low IL-17 expression, indicating that STAT3 expression 

and function is necessary but not sufficient for IL-17 expression (Zhou et al., 2007). 

Commitment to the Th17 phenotype ultimately depends on RORt expression, as it is 

sufficient to drive Th17 differentiation when overexpressed in mice, while its deficiency 

determined the absence of infiltrating Th17 cells in an EAE model (Ivanonv et al., 2006; 

Sallusto et al., 2012). RORC drives the production of the signature cytokines of Th17 cells, 

IL-17A and IL-17F, and it has been shown, through chromatin immunoprecipitation assays, 

that RORt binds several sites in the IL-17 gene. RORC also promotes the expression of IL-

23 receptor in a STAT3 dependent manner. Several murine studies claimed that IL-23 seems 

not to contribute to Th17 differentiation because murine naïve T cells lack the IL-23 receptor 

(IL-23R) (Ivanov et al., 2006; Zhou et al., 2007; Ichiyama et al., 2008; Hirahara et al., 2010). 

However, other studies based on human cells, like the previously cited work by Cosmi and 

colleagues, have demonstrated a fundamental role played by IL-23 signaling in driving Th17 

differentiation (Wilson et al., 2007; Cosmi et al., 2008). Despite these contrasting results, it is 

well established that upon IL-23 binding, IL-23R signaling is essential for stabilization of the 

Th17 phenotype (Veldohen et al., 2006; Nurieva et al., 2007; Zhou et al., 2007; Korn et al., 

2009). IL-23 is of particular interest as it is a heterodimer composed of a p19 and a p40 

subunit, the latter of which it shares with IL-12 (Oppmann et al., 2000). The sharing of the 

p40 subunit between IL-23 and IL-12 has been exploited to block both Th17- and Th1-driven 

autoimmune responses, through the use of monoclonal antibodies such as Ustekinumab 

(Okamoto et al., 2015; Teng et al., 2015). The importance of IL-23 was first recognized in 

2003 when the analysis of IL-23p19-deficient mice revealed that these mice were resistant to 

EAE and had very few IL-17 secreting cells (Cua et al., 2003). Furthermore, it was shown that 

IL-23 promotes IL-17 production in activated T cells which, when cultured in the presence of 

IL-23 and transferred in different mice, are able to determine the transfer of EAE and CIA 

(Affarwal et al., 2003; Murphy et al.,2003; Langrish et al., 2005; Korn et al., 2009). IL-17 

belongs to the IL-17 family of cytokines, homodimeric peptides of between 35 and 52 kDa 

(Rouvier et al., 1993; Ouyang et al., 2008; Nistala et al., 2009). This family includes IL-17A 

(also known simply as IL-17), and IL-17B through –F. IL-17E (also known as IL-25) is not 
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produced by Th17 cells but rather by Th2 cells, where it might be involved in allergic 

responses (Fort et al., 2001). While other members of the IL-17 cytokine family are encoded 

by genes located on different chromosomes, IL-17A and IL-17F are syntenic and located on 

chromosome 1 and chromosome 6 in the mouse and human genome, respectively (Korn et al., 

2009). Apart from Th17 cells, both cytokines are also produced by  T cells, NK cells, NKT 

cells, eosinophils and neutrophils (Molet et al., 2001; Starnes et al., 2001; Ferretti et al., 2003; 

Zhou et al., 2005; Lockhart et al., 2006; Liu et al., 2007; Korn et al., 2009). Studies based on 

the comparison of IL-17A and IL-17F knockout mice in the setting of various diseases have 

demonstrated that the two cytokines have largely overlapping functions (Yang et al., 2008; 

Korn et al., 2009). Both cytokines act on several different cell types where they induce the 

expression of several different cytokines and chemokines such as IL-1, IL-6, G-CSF, GM-

CSF, CXCL1, CXCL8, CXCL10, and matrix metalloproteinases (Yao et al., 1995; Fossiez et 

al., 1996; Janovic et al., 1998; Awane et al., 1999; Laan et al., 1999; Martel-Pelletier et al., 

1999; Witowski et al., 2000; Hymowitz et al., 2001; Park et al., 2005). Both cytokines are 

essential for the recruitment, activation and migration of neutrophils (Korn et al., 2009). Th17 

cells are also able to produce IL-6, IL-21, which are both able to enhance their own 

expression in an autocrine positive feedback loop, IL-22, IL-26, TNF  (Ouyang et al., 2008 

Immunity). Another important IL-17-producing T cell subtype that has increasingly gathered 

attention in recent years is Th1/Th17. These cells, which will be the object of further 

discussion in another paragraph, are characterized by the co-production of IL-17 and IFN, 

and the expression of both Tbet and RORC. Another transcription factor important for 

induction of Th17 cells is the interferon regulatory factor 4 (IRF4). It was shown that IRF4 

knockout mice were resistant to EAE and T cells and from these mice did not upregulate 

RORt in the presence of TGF and IL-6, being in fact unable to differentiate into Th17 cells 

(Brustle et al., 2007). Beyond the factors cited above, there are several others that positively 

regulate Th17 cells, such as Batf, Runx1, NFAT, NF-B, and also several negative regulators 

such as STAT1, IL-27, IL-2, STAT5, FOXP3 and SOCS3 (Hirahara et al., 2010). However, a 

detailed description of these mechanisms of positive and negative regulation of Th17 cells is 

beyond the scope of this thesis. Once in the site of inflammation Th17 cells secrete IL-8, 

which activates neutrophil granulocytes (Pelletier et al., 2010 Blood), and induce tissue 

resident cells, such as epithelial and endothelial cells, fibroblast and macrophages, to produce 

colony stimulating factor (CSF), granulocyte-macrophage colony stimulating factor (GM-

CSF) and CXCL8, which recruits neutrophils to the site of inflammation (Ouyang et al., 2008 

Immunity, Annunziato et al., 2013). IL-22 belongs to the IL-10 family of cytokines which is 
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produced by terminally differentiated Th17 cells in response to IL-23, and by Th22 cells 

which produce IL-22 but not IL-17 (McGeachy et al., 2007; Korn et al., 2009). IL-22 acts on 

receptors present in the skin, lung and gut to promote innate immune responses in these 

organs. Signal transduction through IL-22R determines the activation of MAPK pathways and 

activates, among others, STAT3 (Xie et al., 2000; Kotenko et al., 2001). Surprisingly, CCR6+ 

mononuclear cells, which include Th17 cells, have been shown to be capable of IL-10 

production, an anti-inflammatory cytokine (Rivino et al., 2010). Furthermore, IL-10 

production by these cells was shown to be upregulated by IL-23 and IL-27, while strongly 

and irreversibly inhibited by IL-1, although overall IL-10 upregulation was limited to 3-5 

days after stimulation (Zielinski et al., 2012; Sallusto et al., 2012). Another phenotypic 

characteristic of Th17 cells is their expression of a pattern of surface markers, additionally to 

CD161 cited above. In their work Acosta-Rodriguez et al. have found that all CCR6+ T cells 

were IL-17-producing and expressing RORC mRNA. They also found that among these cells, 

those co-expressing CCR4 represented the majority of antigen-specific memory T cells 

which, while proliferating, produced high amounts of IL-17 (Acosta-Rodriguez et al., 2007). 

 

1.4 SGK1, FOXO1, IL-23R pathway 

As discussed above, IL-23 signaling plays an important role in Th17 lineage commitment and 

stability and, consequently, it is involved in the pathogenesis of several autoimmune diseases. 

Moreover, the incidence of autoimmune diseases has increased in the last decades, indicating 

that changes in environmental factors, such as diet, might play a role in the rise of these 

diseases. Salt consumption has increased steadily in the Wester diet with the increased 

consumption of processed foods. Recently, this environmental risk factor has been linked to 

autoimmune diseases (Farez et al., 2014; Sundstorm et al., 2014; Binger et al., 2015). Two 

publications in particular have shed light on the effects of high salt intake in Th17 cells 

development and in autoimmune disease models. Kleinewietfeld et al. (2013) have shown a 

significant increase in the expression of Th17 signature cytokines upon culture with a 

concentration of 40mM NaCl in the culture medium. This corresponds to the NaCl 

concentration in the interstitium of mice on a high salt diet. These high concentrations of 

NaCl during Th17 polarization resulted in the phosphorylation of p38 mitogen-activated 

protein kinase (MAPK) and in an increased expression of the osmosensitive transcription 

factor nuclear factor of activated T cells 5 (NFAT5), and it’s target serum/glucocorticoid-

regulated kinase1 (SGK1) (Shapiro and Dinarello., 1995; Aramburu and López-Rodríguez, 

2009; Kleinewietfeld et al., 2013; Binger et al., 2015). Moreover, mice fed with high 
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quantities of salt developed a more severe form of experimental autoimmune 

encephalomyelitis (EAE) and had a higher frequency of Th17 cells, compared to mice with a 

normal diet (Kleinewietfeld et al., 2013). 

Wu et al. (2013) have demonstrated that IL-17-producing CD4 T cells lacking a functional 

Sgk1 through conditional knockout mice, specifically Il17fCreSgk1flox/flox mice, could not 

maintain a stable Th17 phenotype when cultured with IL-23. Moreover, the severity of EAE 

was milder in knockout mice. Activated SGK1 is able to phosphorylate the transcription 

factor forkhead box protein O1 (FOXO1). FOXO1 elicits its functions in the nucleus. It is in 

particular capable of suppressing Il23r expression by actively binding the gene, therefore 

impeding RORt binding which is essential for promoting expression of this gene. Upon 

FOXO1 phosphorylation by SGK1, phospho-FOXO1 translocates to the cytoplasm, thereby 

freeing the Il23r gene for RORt binding. Lastly, the authors demonstrated a potentiated Th17 

differentiation and an increased stability of the phenotype, both in vitro and in vivo, as well as 

an augmented severity of EAE in response to increased NaCl concentrations (Wu et al., 

2013). As discussed above, SGK1 activity is essential to IL-23R expression. However, IL-23 

signaling was shown to induce and maintain SGK1 expression in Th17 cells, thereby 

constituting a positive feedback loop, which helps to maintain and stabilize the Th17 

phenotype. This model is in accordance with the fact that SGK1 is not required for Th17 

differentiation (Heikamp et al., 2014; Norton and Screaton., 2014). 

 

1.5 Th17 cells in rheumatoid arthritis and other autoimmune diseases 

Rheumatoid arthritis (RA) is a systemic autoimmune diseases affecting 0.5-1% of the 

population of developed countries, with about three fold incidence in women. RA is a highly 

invalidating disease which results in a lower quality of life, disability, and reduced life 

expectancy (Alamanos and Drosos, 2005; Mellado et al., 2015). RA is characterized by 

chronic inflammation of synovial tissues, which leads to cartilage and bone destruction. Other 

organs are also affected and can become inflamed to the point where there can be 

cardiovascular, pulmonary and skeletal complications (McInnes et al., 2011). The origin of 

the events that lead to initiation of the disease are not yet clear. RA is a polygenic disease that 

involves genetic, epigenetic and environmental factors. This disease is characterized by 

changes in the synovium, with hyperplasia, neoangiogenesis and local infiltration by immune 

cells, particularly T cells, as evidenced by T-cell dependent arthritis in mouse models and by 

the development of drugs that target T cell co-stimulation, such as abatacept (Buch et al., 

2009; Hot and Miossec, 2011). Among the infiltrating T cells, Th17 cells have a prominent 
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role in the pathogenesis of rheumatoid arthritis. First, IL-17 was found to be elevated in the 

joints of RA patients compared to the peripheral blood of the same RA patients or to the 

synovial fluid (SF) from patients with osteoarthritis (OA) (Kotake et al., 1999). It was later 

demonstrated that both the levels of IL-17 and the frequencies of Th17 cells in the peripheral 

blood of RA and psoriatic arthritis (PsA) patients strongly correlated with DAS28 and levels 

of C-reactive protein (CRP) (Leipe et al., 2010). IL-17 binds type 1 transmembrane protein 

receptors, which can have a homodimeric or heterodimeric configuration, the latter of which 

is composed of IL-17RA and RC subunits (Nistala and Wedderburn, 2009). These receptors 

are found among different cell types such as B- and T lymphocytes, synovial fibroblasts and 

chondrocytes (Honorati et al., 2001; Zrioual et al., 2008; Nistala and Wedderburn, 2009). In 

RA, IL-17 contributes to cartilage and bone destruction in several different ways (Chabaud et 

al., 2001; Nistala and Wedderburn, 2009). IL-17 induces the release of matrix 

metalloproteinases from synovial fibroblasts, which dismantle cartilage (Koshy et al., 2002). 

In synergy with IL-1 and TNFα, IL-17 induces the release of pro-inflammatory cytokines 

from monocytes and synovial fibroblasts, including IL-6, and IL-1 and TNFα themselves. 

Also IL-8 and GM-CSF are released, both of which stimulate neutrophil recruitment to the 

joint. However, once the arthritis is established, IL-17 can maintain the disease in the absence 

of TNFα (Chabaud et al., 1998; Jovanovic et al., 1998; Katz et al., 2001; Koenders et al., 

2006; Nistala and Wedderburn, 2009). Finally, IL-17 and IL-1 induce the expression by 

osteoblasts of receptor activator of nuclear factor-B ligand (RANKL), which enhances the 

maturation of osteoclasts, ultimately resulting in bone destruction (Lubberts et al., 2003). 

Apart from Th17 cells, Treg malfunction plays a fundamental role in the pathogenesis of RA. 

As mentioned in the previous chapter, regulatory T cells play an important role in controlling 

inflammation through various mechanisms. In RA, TNFα contrasts the suppressive function 

of Tregs on effector T cells by hindering Foxp3 mRNA expression. Anti-TNFα angents 

(TNFi) block such TNFα-mediated functions (den Broeder et al., 2002; Ehrenstein et al., 

2004). TNF inhibitors have demonstrated very high efficacy and are therefore widely used. 

However, a lack of response to anti-TNFα drugs has been observed in patients with high 

baseline levels of Th17 cells (Alzabin et al., 2012). Furthermore, anti-TNFα therapy is 

associated with an increased risk of reactivation of tuberculosis (Dixon et al., 2010; Mewar 

and Wilson, 2011). Alone or in conjunction with anti-TNFα, conventional disease-modifying 

anti-rheumatic drugs (DMARDs) such as methotrexate are widely used (Singh et al., 2012; 

Kunwar et al., 2016). However, remission is achieved only in 30-40% of the patients treated 

with DMARDs only (Storage et al., 2010; Kunwar et al., 2016). Hence, there is a need to 
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explore different therapeutic options which involve new biologics. Secukinumab and 

ixekizumab are both MAb, targeting IL-17A, currently in phase III and completed phase II 

clinical trials for RA, respectively (Kugyelka et al., 2016). Secukinumab has been already 

approved for the treatment of psoriasis, psoriatic arthritis (PsA) and in spondyloarthritis. 

Previously, the phase II trials revealed clinically relevant response in RA patients 

unresponsive to treatment with conventional DMARDs or other biologics (Genovese et al., 

2014). Ixekizumab is also a recently FDA approved drug for the treatment of psoriasis, and 

PsA. A recent phase III study revealed that ixekizumab was well tolerated in RA patients, who 

showed clinical improvements. These positive effects of the drug were maintained or 

improved through week 64 (Genovese et al., 2016). Brodalumab is a MAb which targets IL-

17RA. However, brodalumab seems to be ineffective in RA (Pavelka et al., 2015). In 

conclusion, so far anti-IL-17 therapy has led to mixed results and overall did not prove to be a 

therapy preferable to current therapeutic strategies for the treatment of RA. However, more 

studies are needed to further explore the possibility of using anti-IL-17 strategies, particularly 

in those cases where other therapeutic strategies conveyed unsatisfactory results. 

 

1.6 Plasticity 

The Th1/Th2 paradigm first proposed by Mosmann, Coffman and colleagues in the mid-80s 

had the prerogative of considering polarized lineages mutually exclusive and stable, due to the 

self-enforcing feedback loops essential to the acquisition of the phenotype these T cell subsets 

(Mosmann et al, 1986; Mosmann and Coffman, 1989; Heinzel et al., 1989; Muranski and 

Restifo, 2013). This view of terminal differentiation was also initially applied to newly 

discovered T cell subtypes such as Tregs and Th17 cells. However, IL-17/IFN double 

positive cells (Th17/Th1) were soon found in vivo under pathological conditions such as 

Crohn’s disease, demonstrating that the cells could at least acquire this mixed phenotype 

(Annunziato et al., 2007). The notion that Th17 cells could undergo a late developmental 

plasticity was analyzed in detail using IL-17F reporter mice. In this study by Lee and 

colleagues, Th17 cells maintained a stable phenotype when cultured in the presence of TGF 

and IL-23 but rapidly shifted to IFN producing cells upon re-stimulation in the presence of 

IL-12 or IL-23 and in the absence of TGF. This shift occurred also in vivo where cells 

expressing IL-17F become IFN-producing colitogenic effector cells (Lee et al., 2009). Also 

the group of Romagnani and colleagues has proven that in vitro Th17 clones can acquire IFN 

production in addition to IL-17A (Annunziato et al., 2007). Furthermore, they have shown 
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high frequencies of CD4 T cells positive for CD161, and secreting both IL-17A and IFN, in 

the synovial fluid (SF) of juvenile idiopathic arthritis (JIA) patients. Moreover, when Th17 

cells were isolated from the SF of these patients and cultured in medium alone, they 

spontaneously shifted to an IFN-producing phenotype. Also Th17 cells isolated from the 

peripheral blood (PB) of healthy individuals underwent the same shift when cultured in the 

presence of IL-12 or the synovial fluid of JIA patients (Cosmi et al., 2011). As mentioned in 

the previous paragraphs, IFN-positive IL-17-negative cells that are also positive for CD161 

are called “non-classic” Th1 cells and are generated through plasticity of Th17 cells. 

Although these cells do not produce IL-17, they express RORC as well as Tbet, CCR6, and 

IL-23R (Maggi et al., 2012). On the other hand, “classic” Th1 cells are CD161 negative and 

arise from naïve CD4 T cells (Maggi et al., 2012; Annunziato et al., 2013). In a study by a 

different group it was also found that these ex-Th17, non-classic Th1 cells from the synovial 

fluid of JIA patients, co-express IFN and GM-CSF (Piper et al., 2014). Additionally, a recent 

study found an inverse correlation between the frequency of non-classic Th1 cells in the 

peripheral blood of early-onset RA patients and the titer of anti-CCP antibodies in RA, 

suggesting for a more important role played by Th17 cells in the pathogenesis of early phase 

RA (Kotake et al., 2016). Th17/Th1 cells were found not only in the joints of JIA patients, but 

also in the gut of inflammatory bowel disease (IBD) patients and in the central nervous 

system (CNS) of multiple sclerosis (MS) patients. These cells were shown to cross the blood-

brain barrier and home to the CNS in experimental autoimmune encefalomielytis (EAE) mice, 

a model for human MS (Annunziato et al., 2007; Kebir et al., 2009; Geginat et al., 2014). 

Th17/Th2 cells, capable of producing both IL-17 and IL-4, have also been found in the PB of 

healthy individuals and, in a significantly higher percentage, in the PB of asthmatic patients. 

In the same study it was also shown that CCR6+CD161+CD4+ cells, which contain high 

frequencies of Th17 cells, readily shifted towards a Th17/Th2 phenotype upon culture in the 

presence of IL-4 (Cosmi et al., 2010). 

Th1 cells are widely considered to be more stable in their phenotype, compared to Th17 cells. 

However, already in a study from 2003, Th1 cells could be repolarized to acquire a Th2 

phenotype upon IL-4 stimulation (Messi et al., 2003). In a more recent study, plasticity of Th1 

cells towards a Th2 phenotype following helminth infection has been reported (Panzer et al., 

2012). Furthermore, Th1 cells sorted from IFN reporter mice are able to acquire a Th17-like 

phenotype based on the increased RORγt and decreased T-bet expression and Th1 cells 

readily convert to both Th17 and Th1/Th17 cells in the inflamed colon of mice (Brown et al., 

2015; Liu et al., 2015). 
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Similarly to Th1- also Th2 cells are also considered to be rather stable. However, plasticity of 

murine Th2 cells in vitro and in vivo, whereby they adopted a mixed Th2/Th1 phenotype, has 

been demonstrated (Hegazy et al., 2010). 

 

1.7 Epigenetic modifications of the histones and plasticity 

Differentiated cells have the potential to maintain their phenotype over several rounds of 

replication. However, as above stated, several CD4 T cell types are able to plastically change 

their phenotype in terms of cytokine production pattern. One important aspect governing 

lineage stability and, therefore, plasticity of CD4 T cells is their epigenetic configuration. The 

term epigenetics refers to underlying mechanisms that preserve cellular memory and maintain 

distinctive transcriptional profiles and cellular identity (Kanno et al., 2013). Epigenetic 

modifications include DNA methylation and modifications of the histone tails. DNA 

methylation consists of the modification of cytosines in certain CpG dinucletides through the 

addition, by a methyltransferase, of a methyl group to the fifth carbon of said cytosine 

residue. Such modification can be associated with transcriptional repression when it occurs at 

gene promoters. This transcriptional repression can be caused either by a direct interference of 

the methyl group with the binding of transcription factors to the promoter region of a gene, or 

by the recruitment of methyl-CpG-binding domain (MBD) protein family members with 

chromatin remodeling activities. Therefore, MBD proteins represent a link between histone 

modifications and DNA methylation (Hashimoto et al. 2010). DNA methylation has been 

shown to have a role in the plasticity of Th cell subtypes (Thomas et al., 2012). However, a 

detailed description of this phenomenon is beyond the scope of this thesis. 

Another important form of epigenetic modifications are those that influence the structure and 

condensation level of chromatin. A tightly packed chromatin provides, in fact, a physical 

barrier which can constitute an obstacle to gene transcription (Roeder, 2005). The functional 

chromatin unit which can be compacted or released is the nucleosome. The nucleosome is a 

cylindrical protein complex constituted by an octamer of four histones: H2A, H2B, H3, H4 

and the linker H1. Around this protein complex, double stranded DNA 146 base pairs in 

length, is coiled. Furthermore, histones can be modified through catalytic enzymes able to add 

or remove methyl, acetyl, phosphate, ubiquitin, sumoyl and ADP-ribose groups to different 

amino acids located at the N-terminal histone tails (Kouzarides, 2007). The modification of 

the histone tails determine condensation or relaxation of chromatin, thereby allowing or 

denying access to regulatory regions of the genes by transcription factors (Grunstein, 1997). 

Acetylation alters histone charge displacing them from DNA, thereby making regulatory 
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sequences more accessible to transcription factors, enhancing transcription (Bannister and 

Kouzarides, 2011). This type of modifications are called “permissive”, while modifications 

that determine a condensation of the chromatin are classified as “repressive”. While 

acetylation is prerogatively permissive, methylation can be either permissive or repressive 

depending on the position and type of amino acid residue that is modified. For example 

trimethylation of lysine 4 at histone H3 (H3K4me3) is associated with a permissive mark, 

while trimethylation of lysine 27 at histone 3 (H3K27me3) is associated with a repression of 

transcription and is often found at regions with a closed chromatin configuration (Cervoni et 

al. 2001; Ooi et al. 2007; Wei et al., 2009). 

In humans there are several methyltransferases which are specifically active at lysine 4 of 

histone 3 (H3K4). They all belong to the mixed-lineage leukemia (MLL) family of genes, 

which comprise SET1A, SET1B, MLL1, MLL2, and MLL4. The first member of this family 

to be discovered, MLL1, is associated with chromosomal translocations in some aggressive 

leukemias, hence the name (Ruthenburg et al., 2007). Furthermore, MLL1, in addition to its 

role in determining H3K4 methylation, associates with histone acetyltransferases, allowing 

for active gene transcription of specific regions (Milne et al. 2002; Zhao et al. 2013). 

Histone modifications play an important role in CD4 T cell lineage determination and 

stability (Agarwal and Rao, 1998). Genome-wide ChIP-seq experiments by Wei and 

collegues (2009) have shown that epigenetic modifications associated with cytokine genes 

such as IFN, IL-4 and IL-17 were coherent with what expected in differentiated Th1, Th2 

and Th17 cells, respectively, with permissive H3K4me3 marks for each gene in the 

corresponding T cell lineage and repressive H3K27me3 in genes that are not characteristic for 

the specific lineage. However, some of the master transcription factors of these cell lineages 

have shown a different pattern of histone modifications which included, for example, 

permissive H3K4me3 at both the RORC and Foxp3 loci in iTregs, with no repressive 

H3K27me3 marks. Moreover, the master transcription factor TBX21 was characterized by 

both permissive and repressive modifications in cells differentiated under all conditions (Wei 

et al., 2009). This bivalent configuration of opposing histone modifications has been 

previously associated with genes poised for expression, a characteristic which might facilitate 

the production of IFN by non-Th1 cells, in the context of a plastic shift towards a Th17/Th1 

phenotype (Azuara et al., 2006; Bernstein et al., 2006). On the other hand, the fact that the 

Il17 locus is repressed in non-Th17-polarized cells, might indicate a resistance of these cells 

towards acquiring the mixed Th17/Th1 phenotype (Wei et al., 2009). Furthermore, 

Akimzhanov and colleagues (2007) also reported that Th17 cells show increased permissive 
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H3 acetylation at the Il17a and Il17f gene promoters and at several conserved non-coding 

sequences (CNSs) belonging to the same locus, compared Th1 and Th2 cells (Akimzhanov et 

al., 2007). Regarding the role of epigenetic modifications in the plasticity phenomenon, 

important contributions were given by Mukasa and colleagues in 2010 and by Cohen and 

colleagues in 2011, using mouse and human cells, respectively. In the study by Mukasa and 

colleagues, mouse Th17 cells were analyzed for histone modification at the Ifng and Il17a and 

Il17f loci in isolated Th1, Th17 cells, and cells cultured either in the presence of TGF or IL-

12 in order to maintain the Th17 phenotype or induce a plastic shift towards the Th1 

phenotype. The analysis of histone modifications at the Ifng promoter and various CNS 

regions revealed, as expected, a mostly permissive pattern of H3K4me3 in isolated Th1 cells, 

while in Th17 cells the epigenetic marks where mostly either repressive (H3K27me3) or 

“neutral”. However, both the Th17 cells cultured in the presence of IL-12 and those cultured 

in the presence of TGF, showed a mostly permissive pattern of histone modifications for all 

regions, with the exception of CNS-54, but particularly in the cells cultured in the presence of 

IL-12. At the Il17 locus there was, instead, a clear prevalence of permissive modifications in 

the Th17 cells cultured in the presence of TGF, while those cultured in the presence of IL-12 

showed a clearly dominant pattern of repressive epigenetic marks. The authors, further proved 

that the change in epigenetic landscape at the Il17 gene locus was dependent on Rorc, whose 

epigenetic status was repressed by IL-12 signaling through STAT4 (Mukasa et al., 2010). The 

works cited so far used cells derived from animal models to identify the epigenetic status of T 

cell subtypes and plasticity phenomena. However, very few publications have used human 

cells to address these topics. One such publication was published by Cohen and colleagues in 

2011. In this study the authors showed that upon transdifferentiation of isolated Th17 cells 

under Th1 inducing conditions, the Ifng promoter acquired more permissive H3K4me3 

modifications compared to Th17 cells cultured under neutral conditions, although this 

difference was not statistically significant. Moreover, at the Il17a gene promoter, the cells 

cultured under Th1 inducing conditions maintained permissive modifications to the same 

extent as cells cultured under neutral conditions, but acquired significantly higher levels of the 

repressive H3K27me3 mark. However, the histone modifications in the setting of Th17 

plasticity towards a Th1 phenotype proved to be rather modest. Furthermore, also isolated 

Th1 cells cultured under Th17 inducing conditions did not induce significant changes in the 

histone methylations pattern at the Ifng and Il17a gene promoters as well as at TBX21, and 

RORC2 gene promoters. The authors concluded that although Th1, and especially Th17 cells, 

can transiently acquire a mixed Th1/Th17 phenotype in response to Th17 or Th1 inducing 



Introduction 

    

24 

conditions, respectively, this phenotypic change does not fully reflect changes at the 

epigenetic level (Cohen et al., 2011). 

A very important and recent study was conducted by Mazzoni and colleagues in 2015. In this 

study the authors analyzed the methylation status of the IL17A, IL17F and IFNG promoters, 

and regions of interest within RORC2 and TBX21 gene loci in either clones or freshly sorted 

Th17, Th17/Th1 and classic and non-classic Th1 cells. They found a resemblance of the DNA 

methylation status between non-classic Th1 cells and Th17 or Th17/Th1 cells, particularly 

with regard to the methylation status of the RORC2 downstream promoter, which was 

completely demethylated in Th17, Th17/Th1 and non-classic Th1 cells, while it was 

completely methylated in classic Th1 cells. Furthermore, demethylation of the IFNG 

promoter accompanied transidifferentiation of Th17 cells towards the Th17/Th1 and Th1 

phenotype. These findings support the origin of non-classic Th1 from Th17 cells as shown by 

their demethylation of RORC2 and IL17A regions of interest and, although it is not yet clear 

if as a cause or an effect, argue in favor of a role for DNA methylation in T cell plasticity 

(Mazzoni et al., 2015). 

 

1.8 Aim of the thesis 

Th17 cells have been demonstrated to be among the major contributors to the pathogenesis of 

autoimmune disease and, among these, rheumatoid arthritis. These cells have been previously 

shown to be in increased frequencies in the PB and SF of RA patients. Plastic phenomena 

have been shown in both in vitro and in vivo studies. However, plasticity of T helper cells 

from and towards the Th17 phenotype in the context of rheumatoid arthritis has not yet been 

fully pursued. The aim of this thesis therefore is: 

• To investigate a possible role for CD4 T cell plasticity in the observed increased 

frequency of Th17 cell in the peripheral blood of well defined cohort of patients with 

early RA, compared to HC, using in vitro- or in vivo-generated CD4 T cell subsets. 

• To identify possible variations in the expression levels of key cytokine and 

transcription factor loci, as well as genes involved in Th17 lineage stability, in CD4 T 

cells from RA patients compared to healthy controls. 

• To investigate the epigenetic status, in terms of histone modifications, at the master 

transcription factor loci of in vivo-generated Th1 and Th17 cells derived from RA and 

HC.
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2 MATERIALS AND METHODS 

2.1 Materials 

2.1.1 Chemicals and reagents 

Chemical / Reagent Manufacturer 

Agarose Merck 

Ammonium chloride (NH4Cl) Sigma-Aldrich, St. Louis, MO, USA 

β-mercaptoethanol Sigma-Aldrich 

Bovine serum albumin (BSA) Merck 

Dimethylsulfoxid (DMSO) Merck 

Dithiothreitol (DTT) Sigma-Aldrich 

DNA Gel Loading dye (6x) Life technologies 

dNTP set (100 mM solutions) Life technologies 

Ethanol (C2H5OH) Merck 

Ethylendinitrotetraacetic acid (EDTA) Sigma-Aldrich 

Ficoll lymphoflot Biotest, Dreieich, Germany 

Formaldehyde 37% (CH2O) AppliChem GmbH, Darmstadt, Germany 

L-glutamine (C5H10N2O3) Life technologies 

Glycine (NH2CH2COOH) Merck 

Hanks' Balanced Salt Solution (HBSS) with 

phenol red 

Thermo Scientific 

Heparin-sodium salt Ratiopharm, Ulm, Germany 

4-(2-hydroxyethyl)piperazin-1-ethanesulfonic 

acid  (HEPES) 

Merck 

Hydrochloric acid 37% (HCl) Merck 

Ionomycin Merck 

Magnesium chloride (MgCl2) Merck 

Monensin Sigma-Aldrich 

NP-40 Millipore, Billerica, MA, USA 

Oligonucleotide-dT12-18 (Oligo(dT)) GE Healthcare 

Paraformaldehyde (PFA) Merck 

Penicillin G/streptomycin Life technologies 

Phenylmethylsulfonylfluorid (PMSF) 

(C7H7O2SF) 

Roche, Penzberg, Germany 

Phorbol myristate acetate (PMA) Sigma-Aldrich 
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2.1.2 Cytokines 

Cytokine 
Final concentaration in 

culture 
Provider 

Recombinant human IL-1ß 10 g/ml R&D Systems 

Recombinant human IL-2 (Proleukin) 10 U/ml Novartis, Basel, 

Switzerland 

Recombinant human IL-4 31,25 g/ml Perbio Science, 

Bonn, Germany 

Recombinant human IL-12 40 g/ml R&D Systems 

Recombinant human IL-21 100 g/ml Invitrogen 

Recombinant human IL-23 20 g/ml R&D Systems 

Phosphate buffered saline (PBS) Life technologies 

Piperazine-N,N‘-bis-2-ethanesulfonicacid 

(PIPES) 

Millipore 

Potassium chloride (KCl) Merck 

Power SYBR® Green PCR Master Mix  Applied Biosystem 

Protease Inhibitor Cocktail Tablets (complete, 

EDTA-free) 

Roche 

Roswell Park Memorial Institute (RPMI)1640 Life technologies 

Saponin Sigma-Aldrich 

Sheep erythrocytes Fiebig-Nährstofftechnik, Idstein, 

Germany 

Sodium acetate (CH3COONa) Merck 

Sodium azide (NaN3) Merck 

Sodium chloride (NaCl) Merck 

Sodium deoxycholat (C24H39NaO4) Merck 

Sodium dodecyl sulfate (SDS) Merck 

Sodium hydroxide (NaOH) Merck 

SYBR safe DNA gel stain (10,000x) Life technologies 

TaqMan Universal PCR mastermix 2x Life technologies 

TGF-β (recombinant human) R&D Systems, Minneapolis, MN, USA 

Tris(hydroxymethyl)-aminomethan (TRIS) 

(C4H11NO3) 

Merck 

Triton X-100 Sigma-Aldrich 

Tween 20 Sigma-Aldrich 
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Recombinant human TGFß 5 g/ml R&D Systems 

 

2.1.3 Antibodies 

Specificity Conjugate Clone Provider 

Antibodies for cell culture 

Anti-human CD3 non OKT3 LGC Standards 

Teddington, UK 

Anti-human CD28 non CD28.2 BD Biosciences, San 

Diego, CA, USA 

Anti-human IL-4 non 25D2 Thermo Scientific 

Anti-human IFNγ non Polyclonal Thermo Scientific 

    

Specificity Conjugate Clone Provider 

Antibodies for flow cytometry (surface staining) 

Anti-human 

CD3/CD4 dual tag 

FITC/PE UCHT1/Q4120 BD Biosciences 

Anti-human 

CD45RA 

FITC HI100 BD Biosciences 

Anti-human 

CD45RO 

PE UCHL1 BD Biosciences 

Anti-human CD27 PE M-T271 BD Biosciences 

Anti-human CD27 FITC M-T271 BD Biosciences 

    

Specificity Conjugate Clone Provider 

Antibodies for flow cytometry (intracellular staining) 

Anti-human IL-4 APC  BD Biosciences 

Anti-human IL-9  PE MH9A4 BioLegend 

Anti-human IL-17 PE/Cy7 BL168 BioLegend 

Anti-human IFNγ FITC 4S.B3 BD Biosciences 

    

Specificity Clone Provider 

Antibodies for Chromatin Immunoprecipitation (ChIP) 

Anti-trimethyl-Histone H3 

(Lysine4) 

polyclonal Merck 
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anti-acetyl-Histone H3 polyclonal Merck 

anti-trimethyl-Histone H3 

(Lysine27) 

polyclonal Merck 

Normal rabbit IgG        

(isotype control) 

polyclonal Cell Signaling 

   

 

2.1.4 Ladders/Markers 

Name Provider 

GeneRuler DNA ladder (100 bp) Fermentas, St. Leon-Rot, Germany 

GeneRuler DNA ladder (1 kb) Fermentas 

 

2.1.5 Serum 

Name Provider 

Fetal calf serum (FCS) Life technologies 

Mouse serum Sigma-Aldrich 

Normal human serum (NHS) From our lab, Munich, Germany 

Rat serum Sigma-Aldrich 

 

2.1.6 Enzymes 

Enzyme Supplied Reaction Buffer Provider 

AmpliTaq DNA polymerase 10x PCR Buffer II Life technologies 

Epimark Hot Start Taq DNA 

Polymerase 

5x Epimark Hot Start Taq 

reaction buffer 

New England Biolabs 

GeneAmp High Fidelity PCR 

Enzyme Mix 

10x GeneAmp High Fidelity 

PCR buffer 

Life technologies 

peqGOLD Proteinase K (20 

mg/ml) 

 Peqlab 

RNase A, DNase and 

protease-free (10 mg/ml) 

 Life technologies 
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2.1.7 TaqMan Gene Expression assays 

Gene Assay ID Probe Sequence (5‘ to 3‘) 

Cyclophilin A 4310x10783E VIC-probe not provided 

b-actin 4310x10781E VIC-probe not provided 

IFNG Hs00989291_m1 FAM-probe not provided 

IL-4 Hs00174122_m1 FAM-probe not provided 

IL-17 Hs00176383_m1 FAM-probe not provided 

TBX21 Hs00203436_m1 FAM-probe not provided 

GATA3 Hs00231122_m1 FAM-probe not provided 

RORC Hs01076112_m1 FAM-probe not provided 

For - Forward; Rev - Reverse 

 

2.1.8 Oligonucleotides 

Gene/Region Oligonucleotide Sequence (5‘ to 3‘) 

ChIP assay realtime-polymerase chain reaction (PCR) primer 

RORC Promotor For primer 

Rev primer 

TCT CCC CTA TGC CTG TCA CCT G 

TGA TTT TGC CCA AGG ACT CAC AC 

TBX21 Promotor For primer 

Rev primer 

GGC AAC CCG AAA GGT CAC TTA G 

TTC TCC TGG CAC TCA GAG GCT C 
For - Forward; Rev – Reverse 

 

2.1.9 Instrumentation 

Instrument Manufacturer 

ABI Prism 7000 Sequence Detection 

system 

Life technologies 

Biological Safety Cabinets NU-437 Class 

II, Type A2 

Nuaire 

BioPhotometer Eppendorf, Hamburg, Germany 

Bioruptor® Plus (B01020001) Diagenode, Denville, NJ, USA 

Cell counter Z1, Z2 Beckman Coulter 

Centrifuge 5417R, 5415D, 5415R, 5430 Eppendorf 

FACSAria™ III BD Biosciences 

FACS Cytomics FC500 Beckman Coulter 
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FACS MoFlo Legacy Beckman Coulter 

FUJIFILM LAS-3000 Fujifilm, Tokyo, Japan 

Gel chamber Nautico 10x107 H. Hölzel Laborgeräte GmbH, Dorfen, 

Germany 

HERAcell 240 CO2 incubator Thermo Scientific 

MACSmix Tube rotator 

MACS® Separators 

Miltenyi Biotec 

Miltenyi Biotec 

Microcentrifuge 5415R Eppendorf 

pH meter In Lab Routine Pro Mettler-Toledo 

Reax 2000 Vortex mixer Heidolph 

Rotixa 50 RS centrifuge Hettich AG, Bäch, Switzerland 

Thermomixer comfort Eppendorf 

UVT-28 MP transilluminator Herolab GmbH, Wiesloch, Germany 

Water bath GFL 1083 GFL Gesellschaft für Labortechnik GmbH 

 

2.1.10 Kits 

Kit name Origin 

Affinity Script QPCR cDNA Synthesis kit Agilent technologies 

ChIP-IT High Sensitivity® (HS) Kit, 16 

rxns 

Active Motif 

Memory CD4+ T Cell Isolation kit, human Miltenyi Biotec 

Naïve CD4+ T Cell Isolation kit II, human Miltenyi Biotec 

QIAamp DNA Blood Mini kit Qiagen, Hilden, Germany 

RNeasy Plus Mini kit Qiagen 

 

2.1.11 Buffers and solutions 

Buffers and solutions Composition 

0,5 M EDTA, pH 8,0  

0,1 M NaOH  

1 M TrisHCL, pH 9,5  

1 M TrisHCL, pH 8,0  

10 % NaN3  

5 % Saponin 5 % Saponin in PBS 

Cell culture medium 500 ml RPMI 1640 

2 mM L-Glutamine 

50 U/ml Penicillin G 
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50 µg/ml Streptomycin 

10% NHS 

 

Cell lysis buffer 5 mM PIPES, pH 8.0 

85 mM KCl 

0.5% NP-40 

1x PIC 

6x DNA loading buffer 50 mM EDTA 

26.1% glycerol 

0.25% bromphenol blue 

FACS buffer PBS 

2% FCS 

0.01% NaN3 

FACS-Saponin 2% Saponin solution in FACS buffer 

 

MACS buffer PBS 

0.5% BSA 

2 mM EDTA 

10x NH4Cl 41.45 g NH4Cl 

5 g KHCO3 

1 mM EDTA 

H2O ad 0.5 l 

Nuclear lysis buffer 50 mM Tris-HCl, pH 8.0 

10 mM EDTA 

0.1% SDS 

1x PIC 

Sonication buffer 50 mM HEPES, pH 7.8 

140 mM NaCl 

1 mM EDTA 

1% Triton X-100 

0.1% Na-Deoxycholat 

0.1% SDS 

0.5 mM PMSF 

1x PIC 

Swelling buffer 25 mM HEPES, pH 7.8 

1.5 mM MgCl2 

10 mM KCl 

0.1% NP-40 

1 mM DTT 

0.5 mM PMSF 

1x PIC 

50x Tris-Acetate-EDTA (TAE) buffer 242 g Tris-HCl 

57.2 ml acetic acid 

50 mM EDTA (pH7.6) 

H2O ad 1 l 

TBST 20 mM Tris-HCl (pH7.6) 

140 mM NaCl 
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0.1% Tween-20 

TE buffer 10 mM Tris-HCl, pH 8.0 

1 mM EDTA 

0.5 mM PMSF 

1x PIC 

 

2.1.12 Software 

Software Developer 

Corel Draw, Version 11.633 Corel Corporation 

GraphPad Prism, Version 5.0a GraphPad Software 

MacVector Software MacVector, Inc., Cary, NC, USA 

Microsoft Excel, Version 11.4.1 Microsoft Corporation 

Vista Genome Browser Genomics Division of Lawrence Berkeley 

National Laboratory 
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2.2 Methods 

2.2.1 Study population 

Peripheral blood (PB) was obtained at the time of first clinical evaluation from 58 patients 

(Table 1) who fulfilled the American College of Rheumatology (ACR)/European League 

Against Rheumatism (EULAR) 2010 criteria (Aletaha et al., 2010). The patients had active 

disease as defined by a Disease Activity Score in 28 joints (DAS28) of ≥ 3.2 and had a mean 

duration of less than 6 months since their initial clinical symptoms. In order to exclude any 

influence of drug administration on plasticity phenomena or epigenetic modifications, only 

blood from treatment-naive patients was used. Therefore, patients had never been treated with 

glucocorticoids or disease modifying antirheumatic drugs (DMARDs). Demographic and 

clinical parameters such as age, gender, smoking, disease duration, tender joint count (TJC), 

swollen joint count (SJC), DAS28 values, erythrocyte sedimentation rate (ESR) and levels of 

C-reactive protein (CRP), rheumatoid factor (RF), and anti-cyclic citrulinated peptide (anti-

CCP) antibodies were collected at the time of blood sampling. For control, age-matched 

healthy individuals were analyzed (n=35) (Table 1). Written informed consent was provided 

by all patients and healthy donors. The study was approved by the ethics committee of the 

University of Munich. 
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2.2.2 Cell purification 

2.2.2.1 Isolation of human rosette-positive and -negative cells 

In this study, we used isolated human CD4 T cells from healthy blood donors and rheumatoid 

arthritis patients (RA). As a first step PBMCs were isolated from peripheral blood through 

density gradient centrifugation. Briefly, 20 ml of heparinized blood per Falcon tube were 

diluted 1:2 by adding 20 ml of PBS, to a final volume of 40 ml. 10 ml of Ficoll (Biotest) were 

then layered at the bottom of the tube. The tubes were then centrifuged for 20 minutes, 400 g, 

at room temperature. After centrifugation four layers were clearly visible: an upper, yellow 

layer, composed of plasma and containing platelets, a thin white layer of mono-nuclear cells, 

the Ficoll layer and a thick red layer constituted of erythrocytes and granulocytes. PBMCs 

were harvested by suction with a 10 ml pipette, washed with PBS by centrifugation and 

counted with a Z2 Coulter counter. 0.01x106 cells were collected for successive surface 

molecule analysis and purity evaluation. 

Isolation of so-called rosette positive cells or “rosetting” ensued. In this isolation technique, 

PBMCs are incubated with sheep erythrocytes. During this incubation an homologue of 

CD58, present on the surface of the sheep erythrocytes, binds CD2 which is expressed on the 

surface of cells expressing CD3 such as T cells and NK cells, but not on other mononuclear 

cells such as monocytes and B cells (Rosenberg et al., 1979). 10x106/ml PBMCs were 

resuspended in RPMI1640 and 5 ml were dispensed per tube. 2.5 ml of FCS and 2.5 ml of 

sheep erythrocytes (2x106 cells/ml) were added to each tube, mixed and incubated for 10 min 

at 37°C while shaking in order to prevent deposition of the cells at the bottom of the tube. 

After incubation the cells were centrifuged for 10 minutes at 255 g and pellets were incubated 

for 45 min at 4°C. Afterwards, cells were gently resuspended, the content was combined for 

each two tubes and 10ml of Ficoll were layered at the bottom of each tube. Cells were 

centrifuged for 20 min, 400 g at room temperature, which allowed the formation of pellets 

constituted entirely of rosette-positive cells. Rosette-negative cells formed a thin layer above 

the Ficoll layer and were discarded by aspiration. Erythrocytes constituting, together with 

CD3 positive cells, the rosettes were lysed by vigorous resuspention of two pellets at a time 

with 10 ml of 155 mM NH4Cl. Lysis was stopped by adding 40 ml of PBS. The remaining 

CD3 positive, rosette positive cells were washed with PBS and counted. 

2.2.2.2 Isolation of CD4 naive and memory Th cells 

Rosette positive cells were used for further isolation of either naive or memory Th cells, 

through a negative selection magnetic cell separation. Memory or Naive CD4+ T Cell 
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Isolation Kit II from Miltenyi Biotec were used. In this system, cells are bound by 

biotinylated antibodies directed against specific cell surface markers. The cells are then 

incubated with anti-biotin coated magnetic beads and run through a column fixed to a magnet. 

This allows flowthrough only of unlabeled cells, hence the negative selection. Both Memory 

or Naive CD4+ T Cell Isolation Kit II comprise antibodies against the following surface 

molecules: anti-CD8, CD14, CD15, CD16, CD19, CD25, CD34, CD36, CD56, CD123, HLA-

DR, glycophorin A, and TCR γ/δ. Additionally, the Naive CD4 + T Cell Isolation Kit II 

contains anti-CD45RO, thereby allowing exclusion of memory CD4 Th cells, while the 

Memory CD4+ T Cell Isolation Kit II comprises anti-CD45RA, allowing for retention of CD4 

naïve Th cells inside the column. The rosette positive cells were re-suspended in MACS 

buffer at a concentration of 1 x 107 cells/ml, stained with 10 µl of antibody cocktail per 1 x 

107 cells, and incubated for 10 minutes at 4°C. In the case of memory T cell isolation, 

incubation with the secondary antibody ensued, while for Naive T cells the cells were washed 

once with MACS buffer before adding 10 µl of anti-biotin MicroBeads per 1 x 107 cells. Cells 

were incubated for 15 minutes at 4°C and washed once with MACS buffer. Cells were then 

resuspended in 1 ml per 1 x 108 cells and 1 ml of cell suspention was loaded on a pre-wetted 

LS MACS column. After allowing flowthrough, the column was washed three times with 3 

ml of ice-cold MACS buffer, counted, and 0.1 x106 cells were withdrawn for surface staining 

and purity check. 

2.2.2.3 Differentiation of CD4 naive T cells 

Freshly isolated CD4 naive Tconvs (3x106/well) or sorted Th1, Th2 or Th17 cells were 

cultivated for 5 days in 6 well plates coated with 1 µg/ml OKT3, in RPMI1640 medium 

supplemented penicillin G/streptomycin (50 units/ml), L-glutamine (2 mM) (all from Life 

technologies), human recombinant IL-2 (10 units/ml), 10% NHS, 1 µg/ml anti-CD28. This 

cocktail was supplemented with either anti-IL-4 for Th0-, IL-12 and anti-IL-4 for Th1, IL-4 

and anti IFN-γ for Th2- and IL-1, IL-21, IL-23, anti-IL4 and anti-IFN-γ for Th17-inducing 

conditions. After 5 days of stimulation under these conditions, the cells were cultured for an 

additional 2 days in non- coated 6 well plates in the presence of IL-2. On day 7 the cells were 

harvested, washed, counted and either stimulated for 5 hours with PMA and ionomycin in the 

presence of monensin for intracellular staining, or re-stimulated for one hour with anti-

CD3/anti-CD28, before the cytokine secretion assay was performed. 

2.2.2.4 Cytokine secretion assay and sorting of T cell subsets 

In order to sort pure populations of Th1, Th2 or Th17 cells, we stimulated either cultured 
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naive T cells that were differentiated under Th1, Th2 or Th17 inducing conditions, for 5 days 

plus two days in the presence of IL-2, or freshly isolated CD4 memory T cells over-night with 

anti-CD3 and anti-CD28. The next morning cells were harvested, washed and counted. Cells 

were then labeled with 167 µl/ml anti-IL-17A and anti-IFN-γ or anti-IL-4 and anti-IFN-γ 

antibodies, each conjugated to a leukocyte-specific CD45 antibody, incubated for 1 hour at 

37°C on a MACS-mix rotor at a concentration of 1x106 cells/ml to allow cytokine capture, 

and labeled with 167 µL/ml PE labeled anti-IL-17 or anti-IL4, and FITC labeled anti-IFN-γ 

(secretion assay - detection kits, Miltenyi Biotec), and sorted on a FACS Aria (BD 

Biosciences) or MoFlo (Beckman Coulter) (Figure 1). Purity of sorted populations was 

checked routinely by FACS and for some samples by qPCR. 

 

 

Figure 1. Experimental setup. Isolation of naive CD4 T cells, Th cell differentiation for 7 days, cytokine 

secretion assay followed by sorting of Th1 and Th2 effector cells, and transdifferentiation under different 

conditions for 7 days with subsequent cytokine analysis by flow cytometry. 

 

2.2.3 Transdifferentiation 

2.2.3.1 Transdifferentiation of CD4 Th cell subsets generated from naive T cells 

Sorted in vitro-generated Th1, Th2 or Th17 cells were cultured for 5 days at a concentration 

of 0.25x106 cells/ml in 96 well flat-bottom plates coated with 1 µg/ml OKT3, in RPMI1640 

medium supplemented penicillin G/streptomycin (50 units/ml), L-glutamine (2 mM) (all from 
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Life technologies), human recombinant IL-2 (10 units/ml), 10% NHS, 1 µg/ml anti-CD28. 

This cocktail was supplemented with either anti-IL-4 for Th0-, IL-12 and anti-IL-4 for Th1, 

IL-4 and anti IFN-γ for Th2- and IL-1, IL-21, IL-23, anti-IL4 and anti-IFN-γ for Th17-

inducing conditions. After 5 days of stimulation under these conditions, the cells were 

cultured for an additional 2 days in either 2.5 or 10ml polypropylene tubes with the addition 

of only IL-2. On day 7 the cells were harvested, washed, counted and stimulated for 5 hours 

with PMA and ionomycin in the presence of monensin in preparation for intracellular 

cytokine staining. 

2.2.3.2 Transdifferentiation of CD4 memory T cells subsets 

Freshly sorted in vivo-generated Th1, Th2 or Th17 (0.01x106/well) were cultured in OKT3 

coated round bottom 96 well plates for 5 days in RPMI 1640 medium supplemented with L-

glutamine,  penicillin/streptomycin, 10% NHS and IL-2. Additionally cytokine and cytokine-

neutralizing antibody cocktails were added for Th0, Th1, Th2, Th9 or Th17 inducing 

conditions, as described above. On day 5 the cells were harvested, washed, and counted. 

0.01x106 cells were taken from each sample for gene expression analysis. The remaining cells 

were plated in non-coated round bottom well plates at a maximum concentration of 1x106 

cells/ml in RPMI1640 supplemented with L-glutammine, penicillin G/streptomycin, 10% 

NHS, and IL-2 as previously described. After two days the cells were harvested, washed, 

counted and prepared for fixation. 

 

2.2.4 Re-stimulation and Fixation 

Cultured cells or over night-stimulated memory T cells were harvested, washed and counted. 

1x106 cells were plated in 1ml or RPMI1640 supplemented with L-glutammine, 

penicillin/streptomycin, 20 ng/ml of PMA, 1 nM ionomycin, and 2 µM monensin in a flat 

bottom 24 well plate for 5 hours at 37°C. After incubation, cells were washed once with PBS 

and stored in PBS at 4°C for further analysis. After re-stimulation, cells were washed once 

with PBS ad fixed with 3% PFA for 10 minutes at 37°C. After fixation the cells were washed 

twice with PBS and stored at 4°C for further analysis. 
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2.2.5 Flow cytometry 

2.2.5.1 Flow cytometry of surface molecules 

In order to verify the purity achieved during isolation, 0.1x106 cells were washed with FACS 

buffer, resuspended in 50 µl FACS buffer and stained with 1 µl anti-CD3 and anti-CD4, anti-

CD27, anti-CD45RA in case of isolated naive T cells and anti-CD27, anti-CD45RO in case of 

isolated memory T cells. Cells were incubated for 15 minutes at 4°C, washed with FACS 

buffer, resuspended in 200 µl FACS buffer and analysed on an FC500 Series flow cytometer 

by Beckman Coulter. A purity of 98 % was achieved for cells positive for both CD3 and 

CD4 (CD4 T cells). 85% of the cells were positive for both CD27 and CD45RO (memory T 

cells). 

2.2.5.2 Flow cytometry of intracellular cytokines 

In order to determine the capacity of cultured cells to produce cytokines, intracellular staining 

was performed. After re-stimulation and fixation with PFA, cultured cells were washed twice 

with FACS-Saponin to allow permeabilization of the cells followed by 10 minutes of 

incubation with 4% mouse and rat sera at 4°C to block unspecific binding of antibodies. After 

an additional wash step with FACS-Saponin, cells were resuspended in 50 µl of FACS-

Saponin and incubated for 30 minutes at 4°C with 0.1 µg (saturating amount) of anti-IL-1, -

IL-4, -IL-9 and -IL-17. After incubation the cells were washed twice with FACS-Saponin and 

resuspended in 200 µl of FACS buffer. Analysis was performed on an FC500 flow cytometer 

(Beckman Coulter). 

 

2.2.6 RNA isolation 

Total RNA was isolated using the RNeasy Mini Kit (Qiagen). 0.01x106 cells per sample were 

lyzed by resuspension in 350 µl RLT buffer supplemented with 1% β-mercaptoethanol. The 

entire volume was then transferred to a QIAshredder spin column placed in a 2 ml collection 

tube and centrifuged for 2 minutes at full speed. The flow through was then transferred to a 

gDNA eliminator column and centrifuged at 8000 g for 30 seconds. 350 µl of 70% ethanol 

was added to the cell lysate and mixed by pipetting. The entire volume was then transferred to 

an RNeasy spin column placed inside the provided 2 ml collection tube. The column was 

centrifuged 30 seconds at 8000 g, flow through was discarded. Next the column was washed 

with 700 µl of buffer RW1 for 30 seconds at 8000 g. After discarding the flow through, the 

column was then washed twice with 500 µl RPE buffer for 30 seconds at 8000 g. The column 
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was placed in a new collection tube and centrifuged at 10000 g for 1 minute, in order to dry 

the membrane completely. Finally, 30 µl of RNase free water was pipetted on the membrane 

and incubated at room temperature for 1 minute, followed by elution of the column in a 1.5 

ml tube by centrifugation at 10000 g for 1 minute. Due to the low cell number, it was not 

possible to measure RNA yield. The samples were stored at -80°C for further analysis. 

2.2.7 Complementary DNA (cDNA) synthesis 

Total RNA extracted from 0.01x106 cells was reverse transcribed to cDNA using the Affinity 

Script QPCR cDNA Synthesis kit (Agilent Technologies) according to manufacturer’s 

protocol. Briefly, 6 µl of RNA elute was pipetted in a PCR tube with a final volume of 20 μl 

containing 1x First strand mastermix, 12.75 nM Oligo(dT), 2.25 nM random primer, and 1 μl 

Affinity Script RT/RNase Block Enzyme mixture. This mix was then incubated at 25°C for 5 

minutes, at 42°C for 5 minutes, at 55°C for 30 minutes, and at 95°C for 5 minutes. cDNA was 

frozen at -20°C for further analysis. 

 

2.2.8 Real-time PCR 

2.2.8.1 TaqMan Gene Expression assays 

TaqMan Gene Expression assays were used to perform Real-time PCR with an ABI Prism 

7000 Sequence Detection System (Life technologies). The assays include a pair of unlabeled 

PCR primers (For and Rev), a TaqMan probe which has a FAM or VIC dye label conjugated 

at the 5’ end, and a minor groove binder (MGB) and a non-fluorescent quencher (NFQ) linked 

to the 3’ end of the probe. During PCR, the probe anneals to the complementary sequence 

between For and Rev primers. However, Förster-type energy transfer prevents the reporter 

dye from fluorescing due to it’s proximity to the NFQ. During the elongation phase of the 

PCR, the 5’ nuclease activity of the polymerase excises the probe, thereby releasing the 

reporter dye which is free to fluoresce. This exponential increase of florescence can be 

detected by a quantitative PCR instrument. Each sample was analyzed in duplicates. 1 μl of 

cDNA was used for each PCR amplification, in a final volume of the mix was 20 μl. The mix 

consisted of  1x TaqMan Universal PCR mastermix and 1x TaqMan Gene Expression Assay 

mix. The samples were exposed to the following thermal cycling conditions: activation of the 

enzyme at 95°C for 10 minutes followed by 40 cycles of amplification each consisting of 

DNA denaturation at 95°C for 10 seconds followed by the annealing of primers and DNA 

extension at 60°C for 1 minute. The full list of genes analyzed by real-time PCR can be found 
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in the “materials” paragraph. Relative quantification was performed by calculating the 

difference in cross-threshold values (ΔCt) of the gene of interest and a housekeeping gene 

(Cyclophilin) according to the formula 2-ΔCt. 

2.2.8.2 SYBR Green detection 

In order to detect the histone modifications at the loci of interest, listed in the methods 

paragraph, real-time PCR was performed. The MacVector Version 12.0.2 software (Accelrys) 

was used to design the primers for ChIP analysis (For and Rev) for SYBR Green PCR. 

Amplified fragments were up to 120 base pair (bp) long. During PCR, the polymerase 

amplifies the target sequence and the SYBR Green dye is able to intercalate to each new copy 

of double stranded DNA, emitting fluorescence. Fluorescence intensity is thereby increased 

proportionally with the increase in the amount of PCR product. DNA samples were pre-

diluted 1:5 to decrease pipetting error, then 5 μl of DNA template was pipetted in two 

(duplicates) or three (triplicates) wells for each sample. Each well was then filled with 15µl of 

the SYBR Green PCR reaction, which included 1x Power SYBR Green PCR master mix and 

0.2 µM primer mix, for a final volume of 20 μl per well, in a 96 well plate. The amplification 

and detection of the fluorescence was conducted in an ABI Prism 7000 Sequence Detection 

System (Life technologies). The enzyme was activated at 95°C for 10 min prior to 40 cycles 

of amplifications. Each thermal cycle consisted of 10 seconds of denaturation at 95°C, 1 

minute of annealing of the primers and DNA elongation at 60°C. After the last amplification 

cycle, a dissociation curve was built with the following thermal profile: 95°C for 15 seconds, 

60°C for 30 seconds, 95°C for 15 seconds. The full list of genes analyzed by real-time PCR 

can be found in the “Materials” paragraph. Relative quantification was performed by 

calculating the difference in cross-threshold values (ΔCt) of the gene of interest and an input 

control (see the paragraph dedicated to the ChIP assays) according to the formula 2-ΔCt. 

 

2.2.9 DNA amplification and gel electrophoresis 

2.2.9.1  AmpliTaq DNA Polymerase PCR (Life technologies) 

PCR amplification was performed in order to test cDNA integrity prior to performing real 

time PCR. 1 μl of cDNA was used in a final volume of 25 μl. The reaction contained 1x 

GeneAmp® PCR buffer I, 250 µM dNTPs, 0.5 µM cyclophilin Primer mix, and 0.5 units 

AmpliTaq® DNA Polymerase. The following thermal cycling parameters were applied: 95°C 
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5 min, 35 cycles at 95°C 30 sec, 60°C 30 sec, 72°C 1-2 min, and a final extension at 72°C for 

7 min. 

2.2.9.2 Gel electrophoresis to verify cDNA integrity 

10 µl from each sample of PCR products was mixed with 2 µl of DNA 6X loading dye and 

loaded in a 1.8% agarose gel constituted by 50 ml TAE buffer, 0.9 g agarose and 10 µl SYBR 

Safe DNA gel stain. The electrophoresis was carried out in a horizontal chamber for 30 

minutes at 100 V and 60 A. The integrity of the cDNA was analyzed through the use of a 

transilluminator (Herolab). 

 

2.2.10 ChIP for histone modifications 

The presence of specific histone modification patterns at specific genomic locations was 

assessed through ChIP assays carried out using the ChIP-IT High Sensitivity Kit (Active 

Motif). Up to 0,1 x 106 sorted Th1 and Th17 cells were re-suspended in 10 ml RPMI and 

cross-linked with 1% formaldehyde for 10 minutes. Fixation was stopped by 1.25M glycine 

for 5 minutes at room temperature. All centrifugation steps were performed at 723 g at 15°C 

for 5 min. After centrifugation, the cell pellet was washed with ice-cold PBS. Cells were then 

lysed in 250 µl cell lysis buffer, flash-frozen, re-suspended in nuclear lysis buffer and 

sonicated by a Bioruptor Next Generation (Diagenode) for two rounds of 20 cycles with 30 

sec intervals, at 5°C. After sonication, the sheared chromatin was centrifuged for 10 min at 

16,000 g at 4°C in order to let the cell debris sediment and supernatant was transferred to a 

new 1.5 ml tube. 50 µl were then transferred to new 1.5 ml Eppendorf tubes to de-crosslink 

and isolate the DNA fragments to use as input. Briefly, 250 mM NaCl, 40 µg of Proteinase K 

and 20 µg of RNase A were added to the 50 µl of sheared chromatin and incubated for 2 

hours at 55°C followed by 30 min at 95°C to stop the reaction. The DNA was isolated using 

the GenElute PCR Clean-Up kit (Sigma-Aldrich) according to manufacturer’s protocol. 

Briefly, 500 µl Column Preparation solution was added to each column. Then, 5 volumes of 

Binding solution were added to each chromatin sample and transferred to the column. 

Centrifugation steps were performed at 13,000 xg for 1 min. The DNA was bound to the 

column by centrifugation and washed once with 500 µl Wash solution. The column was dried 

and DNA was eluted in 32 µl Elution solution and used as Input control. In few preliminary 

experiments the entire elute, containing chromatin derived from between 0.05x106 and 1x106 

were loaded with 6x Loading dye on a 2% agarose gel in order to check the fragment size 
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which, for the optimal results at the immunoprecipitation step, should range between 200 bp 

and 1000 bp. 

ChIP reactions were performed with the remaining 200 µl of cell lysate, incubated over-night 

with 4 g of anti-H3K4me3, anti-H3ac, anti-H3K27me3, and rabbit IgG to assess background 

levels. After de-crosslinking and degradation of the chromatin structure (according to the 

ChIP-IT High Sensitivity Kit manufacturer’s protocol), the eluted DNA was stored at -80°C 

until further analysis. The DNA samples were analyzed by quantitative PCR using the Power 

SYBR Green PCR Master Mix and 200nM primer mix for SYBR Green detection in the 7500 

Fast Real-Time PCR System (Life Technologies). Primer pairs were used as follows: 5’-

GGCAACCCGAAAGGTCACTTAG-3’ and 5’-TTCTCCTGGCACTCAGAGGCTC-3’ for 

the T-bet promoter region; 5’-TCTCCCCTATGCCTGTCACCTG-3’ and 5’-

TGATTTTGCCCAAGGACTCACAC-3’ for the RORC promoter region. Data are presented 

as a log to the base 2 of the ratio of the immunoprecipitated amounts of DNA of H3K4me3 to 

H3K27me3 and H3ac to H3K27me3 pull-downs or as a ratio of immunoprecipitated DNA to 

that of input DNA. Binding specificity was verified by amplification of unspecific 

precipitated DNA with rabbit IgG. 

 

2.2.11 Statistical analysis 

Results were analyzed by Student's t-test (comparing two different groups). All calculations 

were carried out with Microsoft Excel. P-values less than 0.05 were evaluated as statistically 

significant and represented graphically as follows: * - p <0.05, ** - p <0.01, *** - p <0.001, 

ns – not significant. 
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3 RESULTS 

3.1 Transdifferentiation of in vitro-generated Th cell subsets 

3.1.1.1 Differentiation of naïve CD4 T cells 

CD4 naive T cells have the capacity, under TCR stimulation and exposure to the appropriate 

cytokine milieu, to differentiate into several different effector T cell subsets. In this study, 

Th1, Th2, and Th17 cells were generated from naive T cells as described in the methods. 

After Th1 induction, INFγ production was achieved on average by 43 ± 14.3% of the cells, 

with 38.3 ± 12.7% producing IFNγ but not IL-4, 39.6 ± 13.0% producing IFNγ but not IL-9, 

and 40.7 ± 14.0% producing IFNγ but not IL-17. 4.8 ± 2.9%, 3.4 ± 3.4%, and 2.4 ± 1.5% 

were instead IFNγ/IL-4, IFNγ/IL-9 and IFNγ/IL-17 double positive cells, respectively (Figure 

2A). The frequency of cells producing IL-4 after Th2 induction was, on average, 12.5 ± 

11.3% while those that were able to produce IL-4 but not IFNγ, IL-4 but not IL-9 and IL-4 but 

not IL-17 where 5.2 ± 5.7%, 11.4 ± 11.6%, and 10.9 ± 11.0%, respectively. The frequency of 

double producers, under these inducing conditions, was 7.7 ± 6.1% for IFNγ+IL-4+, 1.0 ± 

0.8% for IL-4+IL-9+, and 1.3 ± 1.0% for IL-4+IL-17+ (Figure 2B). Finally, when cultured 

under Th17 inducing conditions, 19.8 ± 13.4% of the cells acquired the ability to produce IL-

17. The frequency of “IL-17-only” producing cells were 9.3 ± 5.4% for IL-17+IFNγ-, 19.0 ± 

13.2% for IL-17+IL-4-, and 18.9 ± 13.0% for IL-17+IL-9-. At the same time, 10.5 ± 10.0%, 

0.8 ± 0.6%, and 1.1 ± 0.9% of IFNγ+IL-17+, IL-17+IL-4+, and IL-17+IL-9+ double 

producing cells, developed (Figure 2C). These results show that under all inducing conditions 

IFNγ+ cells developed while a moderate but significant percentage of naïve CD4 T cells 

could be induced to differentiate into Th2 and Th17 cells. Furthermore, under all conditions, 

cells capable of co-producing multiple cytokines arose, particularly cells positive for both 

IFNγ and IL-17, when under Th17 inducing conditions. Overall, all inducing conditions 

generated high frequencies of IFNγ producing cells. However, as expected the highest 

frequency of total IL-4- and IL-17-producing cells was achieved under Th2- and Th17-

inducing conditions, respectively. Cells cultured under these inducing conditions were then 

used for cytokine secretion assay and sorting. 
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Figure 2. Differentiation of naïve T cells. Frequency of cytokine producing T cells after culture under (A) Th1- 

(anti-CD3, anti-CD28, IL-12, anti-IL-4), (B) Th2- (anti-CD3, anti-CD28, IL-4, anti-IFNγ), and (C) Th17-

inducing conditions (anti-CD3, anti-CD28, IL-1, IL21, IL-23, anti-IL-4, anti-IFNγ), measured by intracellular 

cytokine staining and subsequent flow cytometric analysis. 

 

3.1.1.2 Cytokine secretion assay and sorting of Th1, Th2 and Th17 cells 

Naive CD4 T cells, after differentiation for 5 days and two days of resting, the cells were 

stimulated over night with anti-CD3 and anti-CD28 as described in the methods. The next day 

a cytokine secretion assay was performed, which allowed the sorting of highly pure, viable 

populations of Th1, Th2 or Th17 cells. Th1 cells were sorted by gating on IFNγ+ cells and 

excluding IL-17+ cells, Th2 cells were positive for IL-4 and negative for IFNγ while Th17 

cells were selected as IL-17+IFNγ-. Due to technical restrictions, namely the lack of a 

cytokine secretion assay kit for IL-4 or IL-17 labeled in FITC, it was not possible to perform 

a CSA for these two cytokines at the same time. A CSA kit for IL-17 in APC, which would 

have allowed for the CSA of both IL-4 and IL-17, was tested but it resulted in low 

frequencies of IL-17 producing cells and consequently it yielded very low cell numbers upon 

sorting. Also, a surface staining for three cytokines was technically unfeasible. Nevertheless, 

Th2 cells, can still be defined as cells producing IL-4 and not IFNγ. Additionally, the 

frequency of cells producing both IL-4 and IL-17 is negligible in humans. For in vitro-

generated Th1, Th2 and Th17 cells, the frequency of cells, following CSA, producing IFNγ, 

IL-4 or IL-17 were, on average, 6.4 ± 0.3% positive for IFNγ and negative for IL-17 after Th1 

inducing conditions (Figure 3A) and 5.0 ± 3.0% after Th17 inducing conditions (Figure 3C). 

IL-17+IFNγ- cell frequency was instead 0.3 ± 0.3% in cells cultured under Th1 inducing 

conditions (Figure 3A) and 1.2 ± 0.6% under Th17 inducing conditions (Figure 3C). On the 

other hand, the frequency of Th2 cells under Th2-inducing conditions was 0.9 ± 1.1% (Figure 
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3B). In order to limit the amount of impurities in the sorted samples, very restrictive gating 

was applied before sorting. This, together with the events discarded by the sorter due to the so 

called “electronic aborts” and to the cells dying due to the stress induced by the sorting 

process, led to a considerably lower yield of sorted cells than would otherwise be expected 

based on the pre-sorting frequencies. The yield of the sorted, in vitro-generated Th1, Th2 and 

Th17 cells was on average 0.137 x 106 of Th1 cells and 0.015 x 106 for Th17 cells under Th1 

inducing conditions, 0.051 x 106 of Th2 cells under Th2 inducing conditions, and 0.388 x 106 

of Th1 cells and 0.151 x 106 for Th17 cells under Th17 inducing conditions. The in vivo-

generated cells underwent a more physiological overnight stimulation with anti-CD3 and anti-

CD28. Consequentially, these cells showed lower frequencies of cytokine producing cells 

upon CSA and even lower yields of sorted Th1, Th2 and Th17 cells. IFNγ+IL-17- cells were 

on average 2.9 ± 1.6% (Figure 4A). The frequency of IFNγ-IL-17+ (Th17) was higher in 

memory cells from RA compared to HCs (0.5 ± 0.3% vs. 0.1 ± 0.1%, p=0.0001) (Figure 4A). 

The frequency of IFNγ-IL-4+ (Th2) was instead 0.1 ± 0.1%, with no differences between RA 

and HCs (Figure 4B). For the same reasons mentioned for the in vitro-generated T cell 

subtypes, also in this case the yield of sorted cells was low, with on average 0.058 x 106 Th1, 

0.005 x 106 Th2, and 0.007 x 106 Th17 cells sorted. Because of these low numbers of sorted 

cells, not all of the subsequent experiments could be performed with the same samples, 

starting from the same cells. Additionally, for some experiments (i.e. ChIP assays) cells 

deriving from different donors had to be pooled together. 

 

 

 

Figure 3. Th cell frequencies of in vitro-generated Th cells after cytokine secretion assay and before 

sorting. Frequency of cytokine producing memory CD4 T cells (according to CSA) after culture under (A) Th1, 

(B) Th2-, and (C) Th17-inducing conditions, assessed by flow cytometry after surface staining. 
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Figure 4. Th cell frequencies of in vivo-generated Th cells after cytokine secretion assay and before 

sorting. Frequency of cytokine producing T cells (according to CSA) after isolation of CD4 memory T cells and 

overnight stimulation. (A) IFN+/IL-17- (Th1) cells and IFN-/IL-17+ (Th17) cells in HC and RA. (B) 

IFN+/IL-4- (Th1) cells and IFN-/IL-4+ (Th2) cells in HC and RA, assessed by flow cytometry after surface 

staining. 

 

3.1.1.3 mRNA expression analysis for purity control 

Due to the low yield of sorted cells, it was not possible to check the purity of the cells by 

performing re-stimulation and intracellular cytokine staining. In order to check purity, 

0.003x106 freshly sorted cells were run in our FC500 Series Beckman Coulter flow 

cytometer. The average purity of the sorted in vitro-differentiated Th cells was 95.9 ± 3.1% 

for IFNγ+IL-17-, 96.6 ± 0,5% for IL-4+IFNγ- and 93.9 ± 1,8% for IFNγ-IL-17+ (Figure 5A). 

For in vivo-differentiated cells the average purity was 95.9 ± 3,6% for IFNγ+IL-17-, 87.2 ± 

4,8% for IFNγ-IL-17+ (Figure 5B). In this case it was not possible to evaluate the purity of 

Th2 cells with this system as the average number of sorted cells was too low. 

Additionally, purity was evaluated through the analysis of the levels of expression of specific 

cytokine encoding genes associated with each Th subtype, namely IFNγ for Th1, and IL-17 

for Th17 cells. When comparing IFNγ and IL-17 expression in sorted in vivo-generated Th1 

and Th17 cells, a clear difference was observed with virtually no IL-17 production by sorted 

Th1 cells, which in turn produced high levels of IFNγ, and vice versa no IFNγ production by 

Th17 cells, which instead produced high levels of IL-17 (Figure 5C). 
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Figure 5. Purity control of in vivo- and in vitro-generated Th cells. Purity of cytokine producing T cells 

(according to CSA) after (A) culture under Th1-, Th2-, and Th17-inducing conditions and sorting. (B) Purity of 

sorted in vivo-generated Th1 and Th17 cells, assessed by flow cytometry after sorting. (C) Cytokine mRNA 

expression of sorted Th1 and Th17 cells, as measured by qPCR. 

 

3.1.1.4 Transdifferentiation of in vitro-generated Th subsets 

Plasticity has been reported to be a common phenomenon in mouse and human, both in vitro 

and in vivo. However, its role in the pathogenesis of rheumatoid arthritis is not yet well 

understood. In this study, a comparison of the plastic capacity of Th subtypes derived from 

healthy individuals and RA patients was made. We hypothesized that a supposed difference in 

plasticity between Th1, Th2 or Th17 derived from HC or RA would be due to an intrinsic, 

possibly genetic, characteristic of the RA Th cell. Therefore, for our first set of experiments 

we focused on testing the plastic capacity of in vitro-generated Th1, Th2 and Th17 cells. The 

experimental setup consisted of the isolation of naive CD4 T cells from peripheral blood of 

healthy donors and RA patients, the differentiation under Th1, Th2 and Th17 inducing 

conditions for 5 days with two additional days of resting with IL-2. On day 7 the cells were 

TCR stimulated overnight and, on the next day, part of the cells were withdrawn for re-

stimulation and intracellular cytokine staining, while the rest of the cells underwent a cytokine 

secretion assay which allowed sorting of highly pure, viable Th1, Th2 and Th17 cells. In 

order to test their plastic capacity 0.05 x 106 sorted Th1, Th2 and Th17 cells, derived from PB 

of healthy donors and RA patients, were cultured under Th0- (neutral), Th1-, Th2-, Th9- or 

Th17-inducing conditions for 5 days with 2 additional days of resting. On day 14, cells were 

re-stimulated for 5 hours with PMA and ionomycin in the presence of monensin, fixed and 
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stained intracellularly with saturating amounts of directly labeled antibodies against IFNγ, IL-

4, IL-9 and IL-17. 

In vitro-generated Th1 cells largely retained their phenotype, defined by the expression of 

IFNγ but not IL-17 (IFNγ+IL-17-), upon transdifferentiation. Less than 5 % of the cells were 

able to convert to the Th17 phenotype (IFNγ-IL17+) under all inducing conditions (Fig. 6 A – 

E, left box plots). A larger portion of Th1 cells (≈ 5-10%) converted to a Th1/Th17 

phenotype, characterized by the simultaneous expression of both IFNγ and IL-17 (IFNγ+IL-

17+), under Th0-, Th1-, Th2- and Th9-inducing conditions (Figure 6A and B, right box plots, 

C and D, bottom panels, right box plots). This conversion was even more pronounced when 

the cells were cultured under Th17-inducing conditions (≈ 30%, Figure 6E, right column). 

Under Th2- and Th9-inducing conditions around 15% and 10% of in vitro-generated Th1 

cells acquired the ability to produce IL-4 and IL-9, respectively (Fig. 6D, E, upper panels, left 

and middle columns). No significant differences in the plastic capability of in vitro-generated 

Th1 cells to convert into IL-4-, IL-9- and IL-17-producing phenotypes were observed, 

between HC and RA patients. In vitro-generated Th2 cells, cultured under Th17-inducing 

conditions, were not as able as the Th1 cells to retain their phenotype and resist 

transdifferentiation. In fact, the majority of Th2 cells acquired the expression of IFNγ, in both 

HC and RA patients (total IFNγ+: ≈ 64%, not shown in figure). Th2 cells, cultured under 

Th17 conditions, resulted in lower percentage of cells bearing the Th17 phenotype, compared 

to Th1 cells under the same inducing conditions (≈ 1.5 %, Figure 6F, lower panel, left). 

Moreover, in contrast to Th1, cells only a small population of Th2 cells acquired the 

Th1/Th17 phenotype (≈ 4 %, Figure 6F, lower panel, right), and cells with a Th2/Th17 

phenotype expressing IL-17 in addition to IL-4 were rarely generated (≈ 2,5%, Figure 6F, 

upper panel, left). Also in the case of in vitro-generated Th2 cells, no significant differences 

in plasticity towards other phenotypes were evident between HC and RA patients. Together, 

while in vitro-generated Th1 cells are able to transdifferentiate towards a Th1/Th17 

phenotype and in vitro-generated Th2 cells are capable of acquiring IFNγ-producing 

capabilities, both demonstrate low plasticity towards an IL-17-only producing Th17 

phenotype. However, for both cell types, no significant differences in their plastic capability 

were observed between HC and RA. In conclusion, in vitro-generated Th1 and Th2 cells 

demonstrated similar plasticity towards the Th17 phenotype in healthy individuals and RA 

patients. 
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Figure 6. Similar plasticity of in vitro-generated Th1 and Th2 cells towards Th17 phenotypes in healthy 

individuals and RA. (A) Experimental setup with isolation of naive CD4 T cells, Th cell differentiation for 7 

days, cytokine secretion assay followed by sorting of Th1 and Th2 effector cells, and transdifferentiation under 

different conditions for 7 days with subsequent cytokine analysis by intracellular staining and flow cytometry. 

(A-F) Cytokine expression after transdifferentiation demonstrated as representative stainings (left) and summary 

for healthy controls (HC, n=4-5 and patients with rheumatoid arthritis (RA, n=3-7)  as box-and-whisker plots 

(right) for the transdifferentiation of Th1 cells under Th0- (A), Th1- (B), Th2- (C), Th9- (D), and Th17-inducing 

conditions (E). Th2 cells cultured under Th17-inducing conditions (F, upper panel) and expression of IL-4 

against IL-17 against IL-4 (F, lower panel). n.s. - not significant. 

 

3.1.1.5 Similar plasticity of in vitro-generated Th17 cells in healthy individuals and RA 

In order to investigate the plasticity of in in vitro-generated Th17 cells we tested their 

potential to convert to a Th1, Th2 phenotype or to retain their Th17 phenotype in HC and RA 

patients. Therefore, in vitro-generated Th17 cells were transdifferentiated under Th1-, Th2- 

and Th17- inducing conditions. Under Th1-inducing conditions, very few Th17 cells were 

able to convert to an IFNγ-only producing phenotype, demonstrating a rather low plastic 

ability by these cells to perform a total conversion to Th1 cells, in both HC and RA (≈ 17%, 

Fig. 7A, left column). On the other hand, only a minority of in vitro-generated Th17 were 

able to maintain their full Th17 phenotype, while a large portion shifted towards a Th1/Th17 

phenotype in both HC and RA patients (≈ 60 %, Fig. 7A, right). However, under Th2-

inducing conditions, these Th17 cells demonstrated a very low degree of plasticity towards 

IL-4 and IL-4/IL-17 producing cells, with most of them remaining positive exclusively for IL-

17 when stained against IL-4 (Figure 7B upper panel, left, middle). Finally, in vitro-generated 

Th17 cells were cultured under Th17-inducing conditions. As expected, under Th17- 

compared to Th1-inducing conditions Th17 cells from HC and RA demonstrate less plasticity 

towards the Th1 phenotype (Th17 ≈ 5% vs. Th1 ≈ 17%) (Figure 7C left, middle). Taken 

together these data indicate that in vitro-generated Th17 cells are prone to transdifferentiate to 

the Th1/Th17 phenotype, demonstrating similar plasticity between HC and RA patients. 
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Figure 7. Similar plasticity of in vitro-generated Th17 cells in healthy indivduals and RA. Th17 effector 

cells generated in vitro from naive CD4 T cells were sorted and cultured under Th1-, Th2- and Th17-inducing 

conditions. Cytokine expression of IL-17 and IFNγ after transdifferentiation is demonstrated as representative 

intracellular stainings (left) and flow cytometry summary (right) for healthy controls (HC, n=3-7) and patients 

with rheumatoid arthritis (RA, n=3-5) shown as box-and-whisker plots for the transdifferentiation of Th17 cells 

under Th1-inducing conditions (A), under Th2-inducing conditions (B, upper panel) as well as expression of IL-

17 against IL-4 (B, lower panel), and under Th17-inducing conditions (C). n.s. - not significant. 

 

3.1.1.6 Enhanced transdifferentiation of in vivo-generated RA Th1 and Th2 cells towards 

a Th17 phenotype 

Having observed similar plasticity by Th cells generated in vitro from HC and RA patients, 

we hypothesized that an altered plasticity of in vivo-generated Th cells might favor the 

predominance of Th17 cells observed in RA. We first tested whether in vivo-derived RA Th1 

and Th2 cells might have an increased plasticity towards Th17 cells. To this goal, effector T 

cells were isolated ex vivo and sorted using cytokine secretion assay after a short TCR 

activation. This allowed for the sorting of highly pure, viable Th1 and Th2 cells. Similar to in 

vitro-generated Th1 cells, in vivo-derived Th1 cells from both HC and RA largely retained the 

Th1 phenotype under all conditions, namely neutral (Th0), Th1-, Th2-, Th9-, and Th17 

inducing conditions (8A-E). Interestingly, not only under Th17- but also under all other 

inducing conditions, in vivo-derived Th1 cells from RA patients demonstrated a significantly 
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higher plasticity towards the Th17 phenotype, compared to those from HC (Figure 8A-E, RA 

vs HC; Th0: 1.0 ± 0.5 vs. 0.4 ± 0.3%, p=0.09; Th1: 0.8 ± 0.4 vs. 0.3 ± 0.3%, p=0.002; Th2: 

1.3 ± 1.0 vs. 0.4 ± 0.2%, p=0.001; Th9: 2.7 ± 1.2 vs. 0.5 ± 0.3%, p=0.002; Th17: 2.3 ± 1.0 vs. 

0.9 ± 0.9%, p=0.0002). Similarly to the previous result, also the in vitro-generated Th1 cells 

that didn’t shift towards a full Th17- phenotype, but rather converted to the mixed Th1/Th17 

phenotype, demonstrated a higher tendency to do so in RA compared to HC, independent of 

the inducing conditions (Figure 8A-E, RA vs HC; Th0: 11.7 ± 4.4% vs. 4.0 ± 3.9%, p=0.04; 

Th1: 7.9 ± 5.1 vs. 2.5 ± 2.2%, p=0.006; Th2: 9.4 ± 5.7 vs. 2.7 ± 2.3%, p=0.0003; Th9: 8.0 ± 

3.6 vs. 2.0 ± 2.4%, p=0.009; Th17: 17.5 ± 11.2 vs. 7.9 ± 7.9%, p=0.008;). Similarly to in 

vitro-generated Th1 cells, when evaluating the plasticity of in vivo-derived Th1 cells, 

maintenance of the Th1 phenotype was observed under Th2-inducing conditions, with ≈ 62 % 

of the cells expressing IFNγ but not IL-4 (data not shown). However, the frequency of in 

vitro-generated Th1 cells cultured under Th2-inducing conditions which acquired concurrent 

IL-4 and, despite Th2 conditions, IL-17 expression, was significantly higher in RA compared 

to HC (Figure 8C, upper panel, right; 1.7 ± 1.6 vs. 0.7 ± 0.4%, p=0.04). Also, the Th1 cells 

from RA patients converted more to an IL-17 positive, IL-4 negative phenotype in RA 

compared to HC, under Th2 inducing conditions (Figure 8C, upper panel, left; 9.1 ± 6.1 vs. 

2.4 ± 2.2%, p=0.0005). The same was true for cells expressing IL-17 but not IL-9, after Th9 

inducing conditions (Figure 8D, upper panel, left; 9.8 ± 4.9 vs. 2.0 ± 2.4%, p=0.008). IL-9 

positive, IL-17 negative Th9 cells were instead reduced in RA compared to HC (Figure 8D, 

upper panel, middle; 40.1 ± 20.2 vs. 17 ± 12.3, p=0.045). Finally, IL9/IL-17 double-positive 

cells, were found at an extremely low frequency and with no differences between HC and RA 

(Figure 8D, upper panel, right). Sorted in vivo-generated Th2 cells largely maintained their 

IL-4-producing phenotype, when cultured under Th17 inducing conditions, in both HC and 

RA (42.6 ± 19.6% and 46.1 ± 15.5%; Fig. 8F, upper panel, middle). However, the frequency 

of both cells fully converted to a Th17 phenotype and those acquiring IL-17 production in 

addition to IL-4 production (Th2/Th17), were significantly higher in RA compared to HC 

(20.7 ± 19.8% vs. 2.5 ± 1.7%, p=0.05, and 5.5 ± 1.6% vs. 2.9 ± 1.8%, p=0.04, respectively; 

Fig. 8F, upper panel, left and right). Therefore, RA in vivo-generated Th2 cells, show a 

tendency towards IL-17 expression when cultured under Th17 inducing conditions. However, 

despite the Th17 inducing conditions, ≈ 30% of the Th2 cells started to express IFNγ (data not 

shown). Consistent with the shift of Th2 cells from RA patients toward Th17 phenotypes, the 

frequency of cells that instead converted to Th1 cells (IFNγ+IL-17-) was decreased in RA 

(28.8 ± 10.6% vs. 14.3 ± 4.8%, p=0.02; Figure 8F, bottom panel, left), while the frequency of 

cells expressing IL-17 but not IFNγ, and cells expressing both cytokines, tended to be higher 
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in RA compared to HC (IFNγ-IL-17+: 10.0 ± 7.4% vs. 3.9 ± 1.8%, p=0.05; IFNγ+IL-17+: 

15.0 ± 17.1% vs. 2.2 ± 1.3%, p=0.1; Figure 8F, bottom panel, center and right). In conclusion, 

these results indicate that in vivo-derived Th1 and Th2 cells from RA patients show a 

tendency to plastically shift towards IL-17 production, independent of the culture conditions. 
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Figure 8. Enhanced transdifferentiation of in vivo-generated RA Th1 and Th2 cells towards a Th17 

phenotype. Th1 and Th2 effector cells sorted from memory CD4 T cells were transdifferentiated under different 

inducing conditions. Intracellular cytokine staining and flow cytometry were performed. Cytokine expression of 
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IL-17 and IFNγ after transdifferentiation is demonstrated as representative stainings (left) and summary (right) 

for healthy controls (HC, n=4-18) and patients with rheumatoid arthritis (RA, n=4-14) shown as dots 

representing individual experiments for Th1 cells cultured under Th0- (A), Th1- (B), Th2- (C), Th9- (D), and 

Th17-inducing conditions (E). Th2 cells cultured under Th17-inducing conditions with expression of IL-4 

against IL-17 (F, upper panel) and IFNγ against IL-17 (F, lower panel). n.s. - not significant. Mean is shown as a 

horizontal line. n.s. -  not significant, * - p<0.05, **- p<0.01, ***- p<0.001 

 

3.1.1.7 In vivo-generated Th17 cells from RA patients are resistant to transdifferentiation 

Next, we investigated whether the increased frequency of Th17 cells observed in the 

peripheral blood of RA patients, might also be due to a resistant phenotype of these cells to 

plastically shift towards different T cell subtypes in RA. In order to test this hypothesis, in 

vivo-differentiated Th17 cells were isolated and cultured under either Th1 or Th2 inducing 

conditions. In this case, it was unfortunately not possible to apply the other inducing 

conditions, namely neutral (Th0), Th9 and Th17, as the number of sorted Th17 cells was too 

scarce, due to the low frequency of this T cell subtype in the context of cytokine secretion 

assay. 

In vivo-generated Th17 cells cultured under Th1 inducing conditions behaved very differently 

between HC and RA. In fact, while Th17 cells from HC readily shifted their pattern of 

cytokine production towards a total conversion to Th1 cells, cells derived from RA largely 

maintained their IL-17-only producing Th17 phenotype (IFNγ-IL-17+: 20.3 ± 6.8% vs. 28.9 ± 

6.4%, p=0.02; Figure 9A, center). On the other hand, the cells that fully converted to Th1 

cells were significantly less in RA compared to HC (18.4 ± 5.1% HC vs. 10.0 ± 5.8% RA, 

p=0.008; Figure 9A, left). However, Th17 cells derived from both HC and RA acquired IFNγ 

production in addition to IL-17 production to a similar extent (48.6 ± 8.2% vs. 51.1 ± 8.2% 

p=0.53; Figure 9A, right). 

Although no significant differences were observed between HC and RA in the IL-17 

production capability of Th17 cells cultured under Th2 inducing conditions, significantly less 

Th17 cells from RA were able to convert to an IL-4 positive, IL-17 negative phenotype 

compared to HC (2.6 ± 1.2% HC vs. 0.9 ± 0.5% RA, p=0.017; Figure 9B, upper panel, 

center). 

Together, these data indicate a resistance of in vitro-generated Th17 cells derived from RA 

patients to convert into Th1 or Th2 cells, compared to HC. 
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Figure 9. Partial resistance of in vivo-generated Th17 cells from RA patients to transdifferentiate. Th17 

effector cells differentiated from memory CD4 T cells were sorted and transdifferentiated under different 

inducing conditions. Intracellular cytokine staining and flow cytometry were performed. Cytokine expression of 

IL-17 and IFNγ after transdifferentiation is demonstrated as representative stainings (left) and summary (right) 

for healthy controls (HC, n=6-9) and patients with rheumatoid arthritis (RA, n=5-7) shown as dots representing 

individual experiments for transdifferentiation of Th17 cells under Th1-inducing conditions (A), and under Th2-

inducing conditions (upper) as well as expression of IL-17 against IL-4 (B, lower panel). n.s. - not significant. 

Mean is shown as a horizontal line. n.s. -  not significant, * - p<0.05, **- p<0.01, ***- p<0.001 
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3.2 Gene expression analysis 

3.2.1.1 Enhanced RORC gene expression in in vivo-derived Th cells upon 

transdifferentiation 

Having observed differences in the pattern of cytokine expression at the protein level, 

between HC and RA, of Th cell subsets upon transdifferentiation, we sought to verify whether 

these differences would manifest also at the mRNA level already in the freshly isolated in 

vivo-generated cells, or only after further culture. For this reason we performed TaqMan gene 

expression analysis on INFγ, IL-4, and IL-17 in sorted Th1 and Th17 cells before and after 

transdifferentiation. It was not possible to include gene expression analysis of sorted Th2 cells 

as the number of sorted cells was too low. 

Sorted Th1 cells expressed, as expected, high levels of IFNγ in both HC and RA (Figure 10A, 

left panel, left). IL-4 was instead expressed at very low levels in Th1 cells, with no 

differences between HC and RA (Figure 10A, left panel, center). A slight tendency for higher 

IL-17 gene expression in RA compared to HC was observed, although this was not 

statistically significant (Figure 10A, left panel, right). A similar gene expression status was 

found in sorted Th17 cells, with no significant statistical differences between HC and RA 

(Figure 10A, right panel). Of note, IFNγ and IL-4 expression was very low, as expected in 

sorted Th17 cells, while IL-17 mRNA expression was high and with a tendency for even a 

slightly higher expression per cell in Th17 cells from RA, compared to HC (Figure 10A, right 

panel). Overall, the lack of differences in cytokine gene expression between HC and RA is 

not of surprise, given that the cells were gated similarly for sorting in the case of both HC and 

RA patient-derived, in vivo-generated T cells. 

In an attempt to find possible underlying mechanisms for the differences in plasticity 

previously described between HC and RA, we extended this analysis not only to the cytokine 

genes, but also to genes encoding for the master transcription factors of Th1, Th2 and Th17 

cells, TBX21, GATA3 and RORC, respectively. While it was expected that TBX21 would be 

well expressed in Th1 cells, RORC expression was surprisingly high (Figure 10B, left panel, 

left and right). However, both transcription factors did not differ in their level of expression 

between HC and RA. Additionally, there was also no difference in the expression levels of 

GATA3 between HC and RA, in Th1 cells (Figure 10B, left panel, center). Finally, a very 

similar gene expression status was found for these genes in isolated, in vivo-generated Th17 

cells. In this case TBX21 expression was, surprisingly, only slightly lower in Th17 cells 

compared to Th1 cells. There were, however, no differences between Th17 cells derived from 

HC and RA (Figure 10B, right panel, left). RORC was, as expected, more expressed in Th17 
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cells compared to Th1 cells, but again there were no differences in the expression level 

between cells derived from HC, compared to RA (Figure 10B, right panel, right). GATA3 

was expressed at surprisingly high levels in both HC and RA, especially considering the 

extremely low amounts of IL-4 expressed by these cells (Figure 10B, right panel, center). 

Taken together these results show that in vivo-generated Th1 and Th17 cells have the 

potential to transdifferentiate towards other lineages, as demonstrated by their co-expression 

of the master transcription factors (TBX21, GATA3 and RORC) of the opposing Th cell 

lineage. However, no significant differences were detected between cells originating from HC 

and RA patients. 

 

 

 

Figure 10. Expression of cytokine and transcription factors in freshly sorted, in vivo-derived Th1 and 

Th17 cells. Relative gene expression assessed by qPCR in in-vivo derived Th1 and Th17 cells for (A) IL-17, 

IFNγ, and IL-4 cytokine encoding genes, and (B) RORC, TBX21 and GATA3 transcription factors in HC (HC 

Th1: n = 8, Th17: n = 5) and patients with rheumatoid arthritis (RA, Th1, n = 8-9, Th17, n = 4-5). 

 

Since we did not detect any differences between HC and RA in the gene expression levels, 

particularly of the master transcription factors TBX21 and RORC in freshly isolated in vivo-
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generated Th1 and Th17 cells, we hypothesized that an upregulation of these genes might 

arise upon transdifferentiation of the cells. In order to prove this hypothesis we performed 

gene expression analysis on sorted in vivo-generated Th1 and Th17 cells cultured for 5 days 

under neutral- (Th0), Th1-, Th2- or Th17-inducing conditions. Th1 cells showed no 

differences between HC and RA in cytokine expression except for IFNγ expression in Th1 

cells cultured further under Th1-inducing conditions, with higher expression in RA compared 

to HC (Figure 11B, left panel). This result was not surprising considering that in previous 

experiments a trend towards higher frequency of total INFγ producing cells and higher 

frequency of INFγ/IL-17 double producing cells were detected in Th1 cells cultured under 

Th1 inducing conditions (data not shown). This result was mirrored by a higher TBX21 

expression in RA, within the same cells (Figure 11B, right panel). Surprisingly, a trend for 

higher GATA3 expression in RA, was also found in these cells, particularly under Th2-

inducing conditions (Figure 11C, right panel). However, the most interesting result was a 

consistent trend, for higher RORC expression in RA compared to HC, spanning Th1 cells 

cultured under all inducing conditions, which was particularly evident under Th1- and Th17- 

inducing conditions (Figure 11A, right panel). 
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Figure 11. Expression of transcription factors in in vivo-derived Th1 cells, transdifferentiated under 

different inducing conditions. Relative expression of cytokine and transcription factor-encoding genes in Th1 

cells cultured for 5 days under Th0-, Th1-, Th2-, and Th17 inducing conditions, assessed by qPCR. (A) IL-17 

(left panel) and RORC (right panel), (B) IFNγ and TBX21, (C) IL-4 and GATA3. Healthy individuals (HC, 

n=4), compared to patients with rheumatoid arthritis (RA, n=3-5). 

 

Next, we performed the same analysis on sorted Th17 cells cultured under the different 

inducing conditions. No statistically significant differences were detected between HC and 
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RA in the gene expression of IL-4 and IL-17 (Figure 12A and 12C, left panels). 

Unsurprisingly, a definitive trend was detectable with lower IFNγ expression levels in RA 

compared to HC under all inducing conditions, which was particularly evident under Th2-

conditions, where it reached statistical significance (Figure 12B, left panel). This phenomenon 

was also mirrored by the expression levels of TBX21, particularly in cells cultured under 

neutral and Th1-inducing conditions (Figure 12B, right panel). Surprisingly, under neutral- 

and Th2-inducing conditions RORC was expressed at lower levels in RA compared to HC, 

although these differences did not reach statistical significance. On the other hand, Th17 cells 

cultured under Th1-inducing conditions expressed significantly higher levels of RORC in RA, 

compared to HC (Figure 12A, right panel). Taken together, these results indicate that the 

increased plasticity towards the Th17 phenotype of non-Th17 cells in RA, and the resistance 

of Th17 cells to shift their phenotype towards other Th cell subsets in RA, might be due to an 

enhanced expression of RORC upon re-stimulation in Th1 cells from RA, and a decreased 

TBX21 expression in Th17 cells from RA patients, compared to HC. 
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Figure 12. Expression of transcription factors in in vivo-derived Th17 cells, transdifferentiated under 

different inducing conditions. Relative expression of cytokine and transcription factor-encoding genes in Th17 

cells cultured for 5 days under Th0-, Th1-, Th2-, and Th17 inducing conditions, assessed by qPCR. (A) IL-17 

(left panel) and RORC (right panel), (B) IFNγ and TBX21, (C) IL-4 and GATA3. Healthy individuals (HC: n= 

4), compared to patients with rheumatoid arthritis (RA: n=3-5). 
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3.2.1.2 No differences in histone modifications at key transcription factor loci 

Having detected differences in the expression levels of the key transcription factors of Th1 

and Th17 cells, potentially underlying the observed altered plasticity of RA, we decided to 

perform analysis of another level of transcriptional regulation, histone modifications. To this 

end, we performed chromatin immunoprecipitation, on sorted in vivo-generated Th1 and Th17 

cells from HC and RA patients, to detect modifications of histone 3 lysine 4 (H3K4), histone 

3 lysine 27 (H3K27), and pan-acetylation of histone 3 (H3Ac). We focused our attention on 

TBX21 and RORC gene loci, however we extended the analysis to include INFG and IL17 

gene loci (data not shown). The data consist of the ratio between permissive H3K4, or H3Ac, 

and repressive H3K27 modifications. Surprisingly, all ratios were positive, indicating a 

prevalently open chromatin configuration of both gene loci, in both Th1 and Th17. Moreover, 

there were no significant differences in the ratios of histone modifications in cells derived 

from both HC and RA patients (Figure 13A and B). 

 

 

Figure 13. Epigenetic regulation of transcription factors in in vitro- and in vivo-derived Th1 and Th17 

cells. ChIP was performed to analyze enrichment of H3K4me3, H3ac and H3K27me3 at RORC and T-bet 

promoters. The mean ratios for H3K4me3 and H3ac over H3K27me3 for individual experiments for sorted (A) 

Th1 cells in HC (n=6) and for RA (n=6), and for sorted (B) Th17 cells in HC (n=5) and RA (n=4) are shown. 

 

3.2.1.3 Enhanced SGK1-Foxo1-IL23R axis in RA Th1 and Th17 cells 

Beyond the expression of key transcription factors, several other pathways can influence 

lineage commitment and plasticity. Among these is the pathway composed of SGK1, FOXO1, 

and IL23R. The salt-sensing kinase SGK1 is an important indirect inducer of IL23R 

expression, which is essential for Th17 cell commitment. This induction is mediated by the 
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degradation of FOXO1, prompted by SGK1, a repressor of IL23R expression. In order to 

assess a possible role for the elements of this pathway in the differences in plasticity between 

Th1 and Th17 cells originating from HC and RA, we performed gene expression analysis of 

these gene loci in sorted, in vivo-generated Th1 and Th17 cells. Furthermore, given the 

previous results for TBX21 and RORC, we also performed the same analysis on Th1 and 

Th17 cells after culture under opposing inducing conditions. Freshly sorted in vivo-generated 

Th1 cells from RA patients, demonstrated a significantly higher mRNA expression for both 

SGK1 and IL23R, compared to HCs. More specifically, SGK1 expression was, on average, 

more than 4 times higher in RA, and IL23R more than 5 times higher in RA, compared to HC. 

No significant differences in FOXO1 expression were detected (Figure 14A, left panel). 

Similarly to Th1 cells, also in vivo-generated Th17 cells presented a similar pattern of 

differences between HC and RA. In fact, the difference in SGK1 expression was even greater, 

with an almost nine fold increase in SGK1 expression in RA compared to HC. IL23R 

expression was also higher in Th17 cells derived from RA compared to HC. Also in this case, 

no differences were detected in FOXO1 expression in Th17 cells from HC and RA (Figure 

14A, right panel). 

Higher gene expression of SGK1 and IL-23R in Th1 cells, from RA patients compared to HC, 

was also observed after transdifferentiation of these cells under all (neutral, Th1, Th2, Th17) 

inducing conditions, reaching statistical significance under Th2- and Th17-inducing 

conditions for SGK1, and Th0-, Th1-, and Th17- inducing conditions for IL23R (Figure 14B, 

left and right panels). Of note, Th1 cells cultured under Th17 inducing conditions additionally 

presented a reduced FOXO1 expression in RA (Figure 14B, center). This result is consistent 

with the fact that, additionally to causing FOXO1 protein degradation, SGK1 activity is also 

known to reduce FOXO1 transcription. Similarly to transdifferentiated Th1 cells, also Th17 

cells showed a trend for higher SGK1 expression in RA compared to HC, under all inducing 

conditions, and significantly under the opposing Th1-inducing conditions (Figure 14C, left 

panel). Also IL23R showed a similar trend, achieving statistical significance in cells cultured 

under Th1-inducing conditions (Figure 14C, right panel). Contrary to Th1 cells, 

transdifferentiating Th17 cells did not show any significant differences in FOXO1 expression, 

between cells derived from HC and RA patients (Figure 14C, center). Taken together, these 

data show an enhanced SGK1-Foxo1-IL23R axis in RA Th1 and Th17 cells, characteristic of 

the in vivo-generated cells, which is then maintained throughout transdifferentiation. This 

enhanced pathway might contribute to the differential plastic capabilities of Th cells from HC 

and RA, and ultimately favor the Th17 phenotype in RA. 
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Figure 14. Expression of signalling molecules in in vivo-derived sorted Th1 and Th17 cells, and 

transdifferentiated cells. Relative expression of SGK1, FOXO1 and IL23R assessed by qPCR in (A) in-vivo 

derived Th1 cells and in-vivo derived Th17 cells in healthy individuals (HC Th1: n= 5-8, Th17: n=3-5) and 

patients with rheumatoid arthritis (RA, Th1: n=9-10, Th17: n= 5). Relative expression of SGK1, FOXO1 and 

IL23R of (B) in-vivo derived Th1 cells after transdifferentiation under Th0-, Th1-, Th2-, and Th17-inducing 

conditions for 5 d, and of (B) in-vivo derived Th17 cells after transdifferentiation under Th0-, Th1-, Th2-, and 

Th17-inducing conditions for 5 d. 
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4 DISCUSSION 

4.1 Plasticity of human in vitro- and in vivo-generated Th cells 

The analysis of the data, that have been presented in the previous sections, allow us to discuss 

some points. Due to the challenges associated with the tracking of Th cell fate, data on T cell 

plasticity of human Th cells are scarce. Moreover, the role of T cell plasticity in the 

pathogenesis of rheumatoid arthritis has not been addressed so far. In this study we 

demonstrated plasticity from in vitro- and in vivo-derived Th cells, which was partially not 

described before and, more importantly, an altered plasticity of in vivo-generated Th cells 

from RA patients. 

 

4.1.1 Th1 cell plasticity 

A few studies described Th1 cell plasticity, both in vitro and in vivo, particularly towards the 

Th2 phenotype (Löhning et al., 2008; Panzer et al., 2012). However, publications on Th1 to 

Th17 cell conversion are particularly scarce. Tang and collegues reported this kind of 

plasticity in mouse upon knockout of the oncoprotein and transcriptional regulator Bcl3. 

However, in the same study, wild type Th1 cells demonstrated a high degree of stability 

(Tang et al., 2014). Liu et al. have observed a transition of Th1 cells towards a mixed 

Th1/Th17 phenotype and even a total conversion to Th17 cells. They demonstrated that such 

shift was induced, in addition to IL-6 and IL-23, by TGF, which in turn upregulated Runx1, 

a transcription factor involved in Th17 differentiation that could both directly bind the IL-17 

promoter or induce IL-17 expression indirectly via induction of RORγt (Zhang et al., 2008; 

Liu et al., 2015). Similar findings were independently published by Brown et al. In this study 

they also showed a critical role for retinoic acid in repressing Runx1, thereby preventing the 

skewing of cells towards a Th17 phenotype during Th1 cell development (Brown et al., 

2015). Nevertheless, for a very long time both Th1 and Th2 cells have been considered to be 

very stable after repeated stimulation and several rounds of cell division (Richter et al., 1999). 

Similarly to the reports on the stability of Th1 cells, in our own experiments on plasticity 

most Th1 cells, both in vitro- and in vivo-generated, maintained their phenotype with only 

very few cells shifting towards other Th cell subtypes such as IFNγ-IL-17+, Th17 cells. 

However, we observed a considerable plastic capability by in vitro-, as well as in vivo-

generated Th1 cells, to acquire a mixed IFNγ+IL-17+ (Th1/Th17) phenotype. This shift was 

observed also in Th1 cell cultured under non-Th17 inducing conditions such as Th0- (≈8-9%), 
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Th1- (≈4-8%), and Th2 inducing conditions (≈10%) (Figures 6 and 8). These results were not 

previously reported. 

A few studies have attempted to describe Th1 plasticity towards the Th2 phenotype. Löhning 

et al., have demonstrated a low level of plasticity of murine in vitro-enriched, LCMV-

specific, Th1 cells towards a Th2 phenotype and IFNγ+IL-4+ phenotype 60 days after in vivo 

transfer (0.4 and 2.4%, respectively) (Löhning et al., 2008). Panzer et al., also showed higher 

but still quite limited in vivo plasticity, towards the IL-4 producing phenotype, of in vitro-

generated Th1 cells upon helminth infection (IFNγ-IL-4+: 4.1% and IFNγ+IL-4+: 9.8%) 

(Panzer et al., 2012). In our experiments we found a limited degree of plasticity from in vitro 

and in vivo-generated Th1 cells towards the IFNγ-IL-4+ (Th2) phenotype (≈1.5%), but a 

rather higher plasticity towards IFNγ+IL-4+ cells (≈13-24%). Again we observed a 

significant portion of cells shifting their phenotype towards the expression of IL-17, either 

alone or while co-expressing IFNγ. This skewing towards the IL-17-producing phenotype was 

different between in vivo-derived Th1 cells from HC and RA, with higher frequencies of both 

IFNγ-IL-17+ and IFNγ+IL-17+ cells in RA. This result was not previously reported in 

literature. 

The plasticity of Th1 cells, particularly towards the Th1/Th17 phenotype, was further 

enhanced under Th17-inducing conditions (≈13-30%), in stark contrast to previous findings, 

described by other groups, in which murine Th1-enriched populations cultured under Th17-

inducing condition yielded virtually no IFNγ+IL-17+ cells (Tang et al., 2014). Such a sheer 

difference might be due to the diverse origin of Th cells and the different inducing conditions 

applied. Once again we observed an increased tendency of in vivo-generated Th1 to 

transdifferentiate towards an IFNγ-IL17+ phenotype in RA compared to HC, mirrored by 

lower frequencies of IFNγ+IL17- cells in RA. 

In summary, Th1 derived from RA patients showed an enhanced tendency to acquire IL-17 

production or even to lose IFNγ production, thereby completely shifting to a Th17 phenotype, 

compared to the healthy counterparts. Surprisingly, such difference was present even when 

the Th1 cells were cultured under non-Th17 inducing conditions (namely Th0, Th1, Th2 and 

Th9 inducing conditions). 

 

4.1.2 Th2 cell plasticity 

Several studies have demonstrated a substantial Th2 cell plasticity towards a Th1 phenotype. 

For example LCMV-specific CD4 cells cultured in vitro under Th2-inducing conditions, 

sorted based on their production of IL-4, and subsequently transferred into LCMV-infected 
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mice resulted in the majority of the cells completely changing their phenotype to resemble 

Th1 cells (IFNγ+IL-4- cells: 53.4%) or at least acquiring a mixed phenotype (IFN+IL-4+: 

20.7%) (Löhning et al., 2008). In another study, peptide specific Th2 cells were generated and 

transferred in Listeria-infected mice. In this case 13.9% of Th2 cells converted completely to 

an IFNγ+IL-4-, Th1 phenotype, while 4.3% acquired IFNγ production in addition to IL-4 

(IFNγ+IL-4+) (Krawczyk et al., 2007). A similar shift towards Th1 cells, was achieved when 

murine Th2 cells were cultured for 6 days under Th1-inducing conditions, with as many as 

17% of the cells converting to Th1 cells (IFNγ+IL-4-) and up to 20% of Th2 cells becoming 

capable of producing both IFNγ and IL-4 (Adeeku et al., 2008). In the same study, previously 

cited, by Löhning and colleagues, in addition to plasticity of Th1 cells towards the Th2 and 

Th17 phenotype and of Th2 cells towards the Th1 phenotype, they also investigated the 

plasticity of Th2 cells towards a Th17 phenotype. As a matter of fact, LCMV-specific Th2 

enriched populations gave rise to very low proportions of IL-17 producing cells (≈1.2%), 60 

days after transfer in mice infected with LCMV for 30 days (Löhning et al., 2008). We 

observed a slightly higher plasticity towards IL4+IL-17+ cells for both in vitro- and in vivo-

generated Th2 cells (2-5.5%; Figure 6F and 8F). Moreover, similarly to the results obtained 

with in vivo-generated Th1 cells, also in vivo-generated Th2 cells derived from RA patients 

showed an enhanced tendency to acquire IL-17 production, compared to those derived from 

HC (Figure 8F). An influence by technical reasons, possibly leading to this result, cannot be 

excluded since for these experiments Th2 cells were sorted as IL-4 positive and IFNγ 

negative, without negatively sorting for IL-17. However, prior to the cell sorting, the 

frequency of cells positive for both IL-4 and IL-17, and at the same time IFNγ negative and 

IL-17 positive, was extremely low (less than 0.1 percent). Based on this fact we deemed a 

potential error in the results due to the contaminating outgrowth by these cells to be highly 

unlikely, especially in light of the observed proliferation rate of T cells, which double every 

72 hours upon activation. 

Together, these results show a tendency of RA Th subtypes to shift their phenotype towards 

the Th17 phenotype, possibly contributing to the increased frequencies of Th17 cells, 

previously observed in the disease. This phenomenon has not been, to our knowledge, 

previously described. 

 

4.1.3 Th17 cell plasticity 

Plasticity of murine Th17 cells has been previously reported by several groups. Regarding 

plasticity of Th17 cells towards a Th1 phenotype, interesting results were reported by Lexberg 
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and colleagues. In their study FACS-sorted IL-17 positive cells generated in vitro (1 week 

under Th17 inducing conditions) were cultured for 6 days under Th1 inducing conditions (IL-

12 and IL-4). Their results showed a strong plasticity towards the Th1 phenotype, with up to 

66.6% of the cells fully converting to the IFNγ+IL-17-, Th1 phenotype. They replicated this 

experiment with sorted in vivo-generated Th17 cells but surprisingly obtained a much lower 

frequency (5.9%) of Th1 cells with this experimental setup, while 66.3% maintained the Th17 

phenotype and only 8.6% of the cells were capable of producing both cytokines (Lexberg et 

al., 2008). In a later publication by the same authors they demonstrated a synergic effect of 

IFNγ and IL-12 in the conversion of in vivo-generated Th17 cells into IFNγ+IL-17+, 

Th1/Th17 cells (Lexberg et al., 2010). Similar results were obtained by Lee et al. (2009), 

where FACS-sorted Il17fThy1.1/Thy1.1 cells were cultured under Th17 inducing conditions for 6 

days, then Thy1.1+ cells were magnetically isolated and cultured for a second round with IL-

12. The authors observed a complete shift to the Th1 phenotype for 42.9% of the cells, while 

15.9% became capable of producing IFNγ in addition to IL-17 and only 11.2% were resistant 

to transdifferentiation and maintained their Th17 phenotype (Lee et al., 2009). Comparable 

results, albeit with slightly different percentages, particularly regarding IFNγ+IL-17+, were 

obtained by other groups working with murine cells. Such deviations are likely due to 

differences in the origin and isolation of the cells, and different culture protocols (Kurschus et 

al., 2010; Thomas et al., 2012). 

Data on the plasticity of human Th17 cells is scarce compared to the murine counterpart, even 

more so in the context of arthritis. However, a few studies have attempted to this phenomenon 

in the human system. Cohen et al. (2011) have demonstrated a substantial plasticity by in 

vivo-generated Th17 cells, which were FACS-sorted and cultured under neutral or Th1-

inducing conditions. While most cells under neutral inducing conditions maintained their 

Th17 phenotype, under Th1 inducing conditions the majority of them either acquired IFNγ 

expression in addition to IL-17 (15.5%) or completely shifted to a Th1 phenotype (34.9%) 

(Cohen et al., 2011). A substantial shift towards the Th1 phenotype was also obtained by 

Cosmi and colleagues when sorted human Th17 cells were cultured in the presence of IL-12 

or, interestingly, synovial fluid of JIA patients (IFNγ+IL-17-: ≈20-24%, IFNγ+IL-17+: ≈30-

37%) (Cosmi et al., 2011). In line with these results, in our experiments we found, for both in 

vitro and in vivo-derived Th17 cells, a high plastic capability, under Th1 inducing conditions, 

towards the IFNγ-IL-17+ phenotype (in vitro-generated: ≈12-25%, in vivo-generated ≈10-

20%, Figure 7A and 9A, left column) and IFNγ+IL-17+ cells (in vitro-generated: ≈60%, in 

vivo-generated ≈50%, Figure 7A and 9A, right column). Differences to murine ex vivo Th17 
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cells might be based on different intrinsic properties, other experimental setup or different in 

vivo priming making cells more susceptible to Th1-polarizing cytokines, which finally results 

in higher plasticity of human in vivo-derived Th17 cells. 

Compared to the plasticity of Th17 cells towards the Th1 phenotype, even fewer studies have 

explored the transdifferentiation of Th17 cells into Th2 cells. Among these is the already cited 

study by Lexberg et al. (2008). In addition to culturing in vivo-generated Th17 cells under 

Th1 inducing conditions, they also cultured them under Th2 inducing conditions (IL-4, -

IFN, -IL-12) for 6 days, obtaining only a slight shift towards the Th2 phenotype (IL-

4+IL17-: 2.4%, IL-4+IL17+: 1.7%) (Lexberg et al., 2008). Similarly, also in our experiments 

we obtained only ≈2% of cells converting to each phenotype (Figure 7B and 9B, upper panel, 

right column). 

Also in this case in vivo-generated Th17 cells, derived from either HC or RA, behaved 

differently when cultured under Th1 or Th2 inducing conditions. In detail, while under Th1 

inducing conditions the majority of cells from both HC and RA were able to shift to an 

IFNγ+IL-17+, Th1/Th17 phenotype, and up to 20% were able to totally convert to IFNγ+IL-

17- Th1 cells, Th17 cells derived from RA showed a resistance towards this shift with, on 

average, only 10% of the cells converting to Th1 cells and significantly higher frequencies of 

cells maintaining an IFNγ-IL-17+ Th17 phenotype, compared to HC. For Th17 cells cultured 

under Th2 inducing conditions, significantly less cells converted to an IL-4+IL-17- phenotype 

in RA compared to HC, confirming the increased stability of RA Th17 cells. This increased 

stability might also contribute to the prominence of the Th17 phenotype observed in the 

disease. Also this phenomenon has not been, to our knowledge, previously described by other 

research groups. Together these results suggest that an altered plasticity might contribute to 

the prominence of Th17 cells observed in early RA. 

 

4.2 Expression levels of factors involved in lineage commitment 

4.2.1 Expression levels of the master transcription factors RORC and Tbet 

Having observed differences between HC and RA in the plastic capability of in vivo-

generated Th cells we investigated the possible reasons for this phenomenon, especially 

considering that at the time of the FACS sorting the cells showed similar phenotypical 

characteristics in terms of cytokine production. As a first step in this direction, we analyzed 

factors that might contribute to such difference, in particular the mRNA expression levels of 
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the master transcription factors of Th17 and Th1 cells RORC and T-bet, in both freshly sorted 

in vivo-generated cells and after transdifferentiation. In addition, mRNA expression for the 

cytokines IFNγ, IL-4 and IL-17, and for the transcription factor GATA3, were also measured. 

No differences were found, between RA and HC, in the level of expression of RORC and T-

bet, as well as the corresponding cytokines, analyzed in freshly sorted ex vivo Th1 and Th17 

cells (Figure 10). However, since the populations were sorted based on high expression of 

IFNγ or IL-17 respectively into pure Th1 and Th17 cells in both HC and RA, the lacking 

difference is to be expected. Nonetheless, following transdifferentiation of Th1 cells towards 

Th17 and non-Th17 subtypes and vice-versa, we observed differences between HC and RA. 

In fact, Th1 cells from RA patients showed a tendency to express higher levels of RORC, 

upon transdifferentiation, compared to cells derived from healthy individuals. Interestingly, 

this tendency manifested independently from the inducing conditions, thereby confirming the 

results previously obtained at the protein level (Figure 11). Also in accordance with the data 

obtained from the intracellular cytokine stainings, Th17 cells transdifferentiated under Th1 

inducing conditions showed a higher expression of RORC in RA, while the expression levels 

of TBX21 were overall lower in RA compared to HC (Figure 12). Taken together these 

results confirm the enhanced plastic potential of RA Th1 cells and the increased resistance of 

Th17 cells derived from RA to transdifferentiate. 

 

4.2.2 Expression levels of elements of the SGK1-FOXO1-IL23R pathway 

The importance of the master transcription factors expression is undisputable. Their role is, 

however, not sufficient to fully explain the intricacies of effector T cell generation and 

function. Recent studies revealed the complex regulatory network that orchestrates the lineage 

commitment of Th17 cells, and implied an important role for the salt-sensing kinase SGK1 in 

Th17 cell generation and stability. Two distinct publications were published in Nature in 

2013, focussing in particular on the role of the SGK1 axis. Kleinewietfeld and collegues 

demonstrated in vitro that sodium chloride (NaCl) promotes the stable induction of Th17 

cells. Such induction was dependent on SGK1 and characterized by the expression of genes, 

such as IL-17A, IL-2, and TNF, associated with a pathogenic phenotype. Moreover, they 

showed that a high salt diet induced Th17 cells in vivo and aggravated EAE. (Kleinewietfeld 

et al., 2013). Wu and colleagues confirmed the importance of NaCl in SGK1 upregulation and 

Th17 lineage commitment. Furthermore, rather than focussing solely on SGK1, they explored 

the entire SGK1-FOXO1-IL23R axis. In their study they demonstrated an induction of SGK1 

expression by IL-23 signaling, which in turn phosphorylates FOXO1, a repressor of the Il23r 
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gene, essential for Th17 cell commitment and stability. This modification impedes FOXO1 

translocation to the nucleus and mediates its degradation. Since FOXO1 is able to promote its 

own expression, by binding a site 1kb upstream of the first exon of the Foxo1 gene locus, 

SGK1 inhibited not only FOXO1 activity but also its expression and, indirectly, promoted 

IL23R expression (Essaghir et al., 2009; Wu et al., 2013). In accordance with these results we 

observed increased expression of SGK1 and IL23R in freshly sorted ex vivo RA Th1 and 

Th17 cells (Figure 14A, left and right panels) as well as after transdifferentiation under 

opposing conditions (Figure 14B and C), compared to HC. Interestingly FOXO1 was 

expressed at the same low levels in both freshly sorted Th1 and Th17 cells from HC and RA 

patients (Figure 14A, left and right panels). Only upon transdifferentiation of Th1 cells under 

Th17 inducing conditions, the cells derived from RA patients showed a decreased expression 

of FOXO1, in accordance with the fact that the higher SGK1 expression impedes FOXO1 

self-promotion (Figure 14B, central panel). The higher expression of SGK1 might be an 

intrinsic property of RA Th1 and Th17 cells or, alternatively, it might be linked to a high salt 

intake, which was previously reported as a possible environmental factor to which RA 

patients are more frequently exposed (Salgado et al., 2015; Sundström et al., 2015). In light of 

these results it is worth considering that, while no substantial differences between HC and RA 

were detected for RORC and T-bet expression in ex vivo Th1 and Th17 cells, RORC 

expression was significantly increased in RA Th1 and Th17 cells after transdifferentiation 

under Th17-inducing conditions compared to HC, which parallels the shift towards the Th17 

phenotype (Figure 11 A and 12 compared to Figure 8 and 9). A possible explanation for this 

phenomenon could be that RA Th cells are predisposed to a more intense response to Th17-

inducing cytokines such as IL-23, for which we observed higher expression of its receptor, as 

well as SGK1 which is known to be involved in IL23R expression. Together these results 

indicate that differences in the level of expression of components of the SGK1-FOXO1-

IL23R axis, might contribute to the altered plasticity of Th1 and Th17 cells observed in RA, 

and ultimately to the prevalence of Th17 cells observed in the disease. 

 

4.3 Histone modifications at key transcription factor loci 

Whereas fibroblast-like synoviocytes have been extensively studied in RA, data on epigenetic 

modifications in T cells subpopulations are lacking (Klein et al., 2012). Since epigenetic 

processes are involved in T cell lineage commitment and controlling gene expression we 

studied histone modifications at the transcription factor loci RORC and Tbet, in Th1 and 

Th17 cells of in vivo-derived RA and HC. We focused on the permissive trimethylation of 
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lysine 4 and acetylation of histone 3, which are associated with an opening of the chromatin 

structure that renders the DNA sequence accessible to transcription factors, and the repressive 

tri-methylation of lysine 27, which determines a condensation of the chromatin thereby 

preventing the transcriptional machinery from accessing the underlying DNA sequences. We 

found the ratio of permissive H3K4me3 and H3Ac to the repressive H3K27me3 to be leaning 

towards an open chromatin pattern for both RORC and Tbet in both Th1 and Th17 cells. This 

result is in accordance with our gene expression data. It also resembled the results obtained 

for TBX21 by Cohen et al., where the gene was characterized by mostly permissive 

modifications across all sorted T cell subtypes. However, in their study they found a slight 

prevalence of repressive H3K27me3 at the RORC2 gene in Th1 cells, while their Th0 cells 

(CD25-CD45RO-CD4+) were characterized by bivalent, both permissive and repressive, 

modifications which have been associated with genes poised for expression (Azuara et al., 

2006; Bernstein et al., 2006). These contrasting results could be attributed to the different 

sorting strategy, which was based on surface markers rather than cytokine secretion assay. 

Moreover, in these experiments the cells were expanded for two weeks post sorting and prior 

to the chromatin immunoprecipitation while we analyzed freshly sorted cells. In our analysis 

on histone modifications, which were assessed for the first time in ex vivo-sorted Th1 and 

Th17 cells from RA patients and compared to controls, we found no differences. This 

suggests that the pattern of histone modifications is similar in homogeneous purely isolated 

Th1 and Th17 cells independently of their HC or RA origin, and that the altered plasticity of 

RA in vivo-generated Th cells seems not to be imprinted at the epigenetic level. Nevertheless, 

our mRNA expression data on cells transdifferentiated under different inducing conditions 

seem to indicate an upregulation of RORC and downregulation of TBX21 in RA compared to 

HC. This suggests that differences in at the histone modifications level, between HC and RA, 

might arise upon repeated stimulations and in an environment characterized by a cytokine 

milieu which encourages a shift of these cells towards a different phenotype. Such a 

possibility might constitute the starting point for further experiments, perhaps involving the 

epigenetic analysis, both at the histone- and DNA-level, of  sorted of IFNγ-IL-17+ and 

IFNγ+IL-17- populations after transdifferentiation from in vivo-generated Th1 and Th17 cells, 

from HC and RA, respectively. Furthermore, the lack of differences between HC and RA in 

freshly sorted in vivo-generated Th1 cells, both at the epigenetic and gene expression levels, 

could be attributed to the sorting of Th1 cells as a single population. As a matter of fact, in 

recent years it has been demonstrated that Th1 cells are constituted by two distinct 

populations, “classic“ and “non-classic“ Th1 cells. Non-classic Th1 cells have been shown to 

be derived from Th17 cells which lost IL-17 production. They share with Th17 cells the 
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expression of the surface markers CCR6 and CD161. Differences in frequencies, proliferation 

or plastic capabilities of these cells between HC and RA might explain the results reported in 

this thesis and are currently the object of further experiments. 
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5 CONCLUDING REMARKS 

In summary we demonstrated plasticity in both in vitro- and in vivo-generated human Th 

cells. We further demonstrated for the first time an altered plasticity of RA in vivo-derived-Th 

cells which manifests itself in the propensity of non-Th17 cells from RA, including but not 

limited to Th1 cells, to shift their phenotype to resemble an IL-17-producing phenotype, and 

in the tendency of Th17 cells derived from RA patients to be more resistant to the shift 

towards non-IL-17-producing phenotypes. These phenomena lead to a predominance of cells 

belonging to the Th17 phenotype, characteristic for the disease. We expected a strong 

involvement of the master transcription factors RORC and Tbet in this phenomenon. While 

we did not observe differences in the levels of expression of these factors between HC- and 

RA-cells in freshly sorted cells, we reported an increased expression of RORC in both RA-

derived Th1 and Th17 cells upon trasdifferentiation, and a decrease in TBX21 in Th1 cells. 

We further investigated the epigenetic status of these cells but did not find any differences 

between HC and RA in the histone modifications at the master transcription factor loci. These 

results suggest that histone modifications, and thereby transcription factor expression 

regulation, might be involved in the observed phenomenon but only in response to secondary 

stimulation and culture conditions and, perhaps, in response to environmental factors. Further 

studies, possibly involving re-sorting of transdifferentiated Th1 and Th17 populations could 

shed light on the contribution of histone modifications to the altered plasticity observed in 

RA-derived Th cells. Furthermore, a significant role might be played by other epigenetic 

modifications such as DNA methylation. Another element that could bring a higher resolution 

to this yet unclear picture would be the analysis of epigenetic modifications in Th1 and Th17 

sub-populations such as “classic” and “non-classic” Th1 cells as well as GM-CSF-producing 

“pathogenic” and IL-10-producing “non-pathogenic” Th17 cells. In our search for possible 

contributors to the altered Th plasticity observed in RA we analyzed the expression levels of 

elements belonging to the SGK1-FOXO1-IL23R axis. We found increased expression levels 

of SGK1 and IL23R in RA-derived, freshly sorted Th1 and Th17. As IL-23 signaling is 

fundamental for Th17 lineage commitment and stability, this could provide RA Th1 cells with 

an initial “advantage”, over HC-derived Th cells, opening a path for transdifferentiation 

towards the Th17 phenotype. Meanwhile, for the same reason, a higher IL23R expression in 

RA Th17 cells might give them an enhanced stability compared to the HC counterparts. Since 

SGK1 expression and activity is enhanced by a high intake of NaCl, it would be of great 

interest, in future studies to analyze a possible correlation of this environmental factor with 

Th17 frequency and RA incidence. 
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Together, these results represent a step forward towards the understanding of the potential 

role of Th cell plasticity in the pathogenesis of rheumatoid arthritis. Further experiments will 

be required to pinpoint the epigenetic and molecular mechanisms that are responsible for the 

altered plasticity observed in RA-derived Th cells. 
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