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1 Introduction 

1.1 Cancer development – an interplay between tumor cells and the immune system  

1.1.1 Hallmarks of cancer 

 

Cancer is one of the major causes of death world-wide with a prognosis for a total of 9.6 million 

deaths in 2018 according to the World Health Organization (WHO). Six major hallmarks of cancer 

have been postulated to define the capabilities of previously normal cells acquired during the 

multistep development of malignant tumors (Hanahan et al., 2011). Key factors underlying these 

hallmarks are both inherited and acquired genetic mutations, leading to genome instability and 

promoting tumor growth and survival. For example, overexpression and somatic mutations in 

receptor tyrosine kinases (RTKs) can foster a sustained mitogenic signaling resulting in an 

uncontrolled expansion of cancer cells. Here, alterations and oncogenic mutations in the EGFR-ERBB 

and FGFR RTKs families were revealed in a wide range of tumor entities (Eswarakumar et al., 2005, 

Lee et al., 2006, Slamon et al., 1989). Therefore, RTKs are important drug targets for small-molecule 

inhibitors and monoclonal antibodies to block and down-regulate RTK activation (Arnould et al., 

2006, Shawver et al., 2002). Another hallmark of cancer is the invasion of neighboring tissue and the 

ability to form distant metastases which is mainly associated with the alteration and inactivation of 

cell-to-cell adhesion molecules such as E-cadherin and N-cadherin (Berx et al., 2009, 

Cavallaro et al., 2004, Johnson et al., 2007).  

 

1.1.2 The impact of the tumor microenvironment on cancer progression   

 

The complexity and development of a tumor can only be fully understood when the tumor 

microenvironment (TME) constructed during tumorigenesis is not neglected (Hanahan et al., 2011). 

Tumors are no longer seen as a homogenous accumulation of cancer cells, they are more complex 

tissues encircled by an extracellular matrix (ECM), stromal cells and a repertoire of recruited immune 

cells that together form the TME (Wang et al., 2017). In many cases among the variety of carcinomas, 

fibroblasts are the preponderant cell population within the tumor stroma and are often designated 

as cancer-associated fibroblasts (CAFs). These CAFs remain perpetually activated within the tumor 

tissue and thus are substantially involved in cancer progression, angiogenesis, invasion and 

metastasis formation by the release of growth factors, cytokines and mesenchymal-epithelial cell 

interactions (Kalluri et al., 2006). Furthermore, the pervasion of the neoplastic lesion with a blood 

and lymphatic vascular network sustaining the oxygen and sustenance supply is essential for the 
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implantation and survival of the tumor. Thus, the angiogenic switch, the formation of new blood 

vessels by activation of quiescent endothelial cells, remains active during the entire process of 

tumorigenesis (Hanahan et al., 1996). In addition, the broad variety of recruited immune cells, 

including cytotoxic T lymphocytes, natural killer cells (NK cells) as well as macrophages and 

neutrophils mediate conflicting signals for both immune escape and immune surveillance of the 

tumor (DeNardo et al., 2010). Because of the complexity of the different cellular components and 

their synergistic pathways involved in tumorigenesis, targeting of not only the malignant cancer cells 

but also of multiple cell types within the TME is of critical importance for the development of highly 

efficient anti-tumor therapies.  

 

1.1.3 Immunosurveillance and immunoediting in carcinogenesis 

 

For a long time, it has been predicted, that the immune system can repress the outgrowth of 

carcinomas and effectively control and eliminate the formation of cancer. Recently, several studies 

reinvigorated and validated the cancer immunosurveillance concept and elucidated the contribution 

of both, innate and adaptive immunity in this hypothesis (Dunn et al., 2004). However, certain tumor 

entities are capable of escaping immune recognition and destruction and create an equilibrium 

phase between tumor and immune cells. This equilibrium phase indicates the initial stage of tumor 

progression, followed by tumor immune escape. This constant interaction between cancer and 

immune cells is also referred to immunoediting where cancer cells shape the immune system and 

vice-versa. In the state of equilibrium, the elimination of certain immunogenic alterations but also 

the outgrowth of clones with immunosuppressive or non-immunogenic manifestations may give rise 

to new populations of tumor cells selected for limited immunogenicity. Accordingly, this 

dysfunctional immunological control may lead to an outbreak of the disease in the escape phase. 

Based on the principle effectiveness of immunosurveillance, immunotherapeutic approaches aim to 

generate or to restore an effective anti-tumor immune response. 

 

1.2 Immunotherapy of malignant diseases 

 

The main pillars of cancer treatment are chemotherapy, surgery and irradiation. Failure to respond 

to treatment and disease relapse occur frequently, urgently requiring novel treatment approaches 

and therapeutic agents to improve the therapeutic success in cancer patients. A promising approach 
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is utilizing the body’s natural defense mechanism, the immune system, to specifically attack cancer 

cells.  

 

The aim of immunotherapy is to utilize, activate and – or stimulate the endogenous immune system 

to redirect immune effector cells towards the tumor and achieve an effective elimination of cancer 

cells. Simultaneously, a long-lasting and antigen-specific immunological memory should be induced. 

In principle, there are several types of immunotherapy including vaccine treatments or the 

administration of immune stimulatory compounds such as cytokines but only antibody and cell-based 

therapies have clinical relevance.  

 

1.3 Antibody-based immunotherapy 

1.3.1 Antibodies are humoral constituents of the adaptive immune system 

 

Antibodies are capable to discern distinct molecular epitopes on cell surfaces and are crucial for the 

formation of a long-lasting immunological memory. This unique function can be achieved by somatic 

recombination of gene regions coding for the variable region of antibodies. As a result, each antibody 

is different from its companions leading to a broad diversity with more than 1012 different molecules 

(Rajewsky, 1996). The re-arrangement of immunoglobulin genes is initiated in the bone marrow at 

the pro-B cell stage, engenders a pre-B cell receptor (BCR) and finally a mature BCR is expressed on 

the cell surface. From this stage on, B cells undergo several selection processes in order to prevent 

the formation of self-reactive, autoimmune antibodies. Further differentiation into an antibody-

secreting plasma cell requires a sequential activation of the B cell by the encounter of the 

complementary antigen and the interaction with CD4+ T cells in secondary lymphoid organs. Once 

activated, plasma cells produce antibodies for a short time period but also migrate to the bone 

marrow. There, long-lived plasma cells persist and constantly secrete immunoglobulins into the 

bloodstream (Hoffman et al., 2016). 

 

Antibodies are Y-shaped glycoproteins consisting of four polypeptide subunits: two identical light 

chains and two identical heavy chains named according to their different molecular weights. These 

chains are connected by covalent disulfide bonds. Furthermore, individual parts of the antibody can 

be classified based on their functional behavior. The antigen binding fragment is located at the amino 

terminal end of both arms of the molecule and is composed of both, the heavy and light chain. Here, 

the complementarity-determining regions are of major importance for specific antigen recognition. 



  INTRODUCTION 

4 

 

The fragment crystallizable (Fc) part, assembled only by the two heavy chains, determines the 

possible effector functions of the antibody (Hoffman et al., 2016). When encountering the 

complementary antigen, antibodies bind to the surface molecules and thereby opsonize the target 

cells. This can result in antibody-dependent cell-mediated cytotoxicity (ADCC), complement-

dependent cytotoxicity (CDC) and antibody-dependent cellular phagocytosis (ADCP) mediated by 

immune effector cells (Ayyar et al., 2016). 

 

1.3.2 Monoclonal antibodies for cancer immunotherapy 

 

Monoclonal antibodies (mAbs) targeting a specific tumor-associated surface protein overexpressed 

by the tumor represent the most established and widely used immunotherapy for cancer treatment 

(Byrd et al., 2001, Goldenberg, 1999). The underlying mode of action includes direct interactions like 

the blockade of essential signaling pathways and neutralization of receptor ligands leading to cancer 

cell death or the classical route via opsonization and induction of ADCC, CDC or ADCP.  

 

One of the first approved therapeutic mAb is rituximab which targets the CD20 surface antigen on 

B cell lymphomas. Rituximab has proven effectivity both in combination with chemotherapy and as 

maintenance monotherapy in treating chronic lymphocytic leukemia (Byrd et al., 2005, Schulz et al., 

2002) and diffuse large B cell lymphomas (Coiffier et al., 2010, Pfreundschuh et al., 2006).  

 

Most target structures for mAbs are altered and overexpressed growth factor receptors such as the 

epidermal growth factor receptors HER2/neu and EGFR. Trastuzumab, a mAb directed against the 

HER2 antigen significantly ameliorated outcome of breast cancer patients with HER2-positive tumors 

(Slamon et al., 2001). Another example is cetuximab, a mAb targeting EGFR which increases response 

rates and prolong progression-free survival in patients with metastatic colon cancer in combination 

with chemotherapy (Van Cutsem et al., 2009). 

 

Despite the striking results of antibody-based immunotherapy, there are still challenges and 

limitations leading to an incomplete elimination and escape of tumors. In particular, for ubiquitously 

expressed target antigens, severe on-target-off-tumor effects can cause organ damage, excessive 

cytokine secretion by activated immune cells and life threatening side effects for the patients, even 

when occurring in low densities on healthy tissue (Suntharalingam et al., 2006, Winkler et al., 1999). 

Furthermore, solid tumors are insufficiently penetrated by mAbs. The limitation is on one hand due 
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to the size and half-life of the molecules and on the other hand caused by the tumor structure 

including the ECM and the poor vascularization of the lesion (Beckman et al., 2006).  

 

1.3.3 Enhancing antibody-based therapy with bispecific antibodies 

 

To further increase the therapeutic efficacy of antibody-based immunotherapy, antibodies 

simultaneously targeting multiple antigens were developed. These bispecific antibodies (BiAbs) could 

either increase the treatment specificity by addressing two surface markers on the tumor cell at once 

or recruit T cells to the lesion by engagement of the pan-T cell marker CD3.  

 

Catumaxomab, an anti-EpCAM-anti-CD3 BiAb was the first molecule studied in patients with 

non-small cell lung cancer (Sebastian et al., 2007) or malignant ascites (Jäger et al., 2012) and was 

approved for clinical application. However, in several clinical studies, catumaxomab induced an 

unspecific and exuberant immune response by crosslinking T effector cells with accessory immune 

cells via the Fc part of the BiAb (Eissler et al., 2013, Mau-Sørensen et al., 2015, Sebastian et al., 2007). 

Catumaxomab was finally withdrawn from the market by the provider based on limited 

implementation of this treatment modality (Viardot et al., 2018). 

 

Therefore, molecules devoid of the Fc portion were constructed by assembling only the antigen 

recognition parts, the single-chain variable fragments (scFvs) of two antibodies. These bispecific T cell 

engagers (BiTEs) can still recruit T cells by an incorporation of an anti-CD3 scFv but lack the 

interaction with bystander immune cells via the Fc part. Furthermore, their diminished size enables 

enhanced penetration of the tumor tissue, albeit with a shortened half-life of the agent. This 

drawback was tackled with the continuous infusion of the BiTE through an infusion pump system 

(Lee et al., 2016).  

 

Evidence for the success of these molecules had been previously shown in in vitro studies which used 

low BiTE concentrations and high target to effector ratios to induce remarkable cytotoxic activity 

(Dreier et al., 2002, Mack et al., 1995). These findings suggest a serial lysis of several target cells 

mediated by the BiTE (Hoffmann et al., 2005). Upon synchronous engagement with the tumor cell, 

T cells are activated and induce target cell lysis (Brischwein et al., 2007, Dreier et al., 2002). Several 

clinical studies using the anti-CD19-anti-CD3 BiTE blinatumomab were conducted in patients with 

various types of B cell non-Hodgkin lymphoma and leukemia (Bargou et al., 2008). Based on initial 
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promising results, studies in patients with persistent or relapsed minimal residual disease-positive 

B-cell acute lymphatic leukemia were successfully initiated, resulting in the clinical approval of 

blinatumomab (Jen et al., 2018, Topp et al., 2011). However, concerns have been raised about 

long-lasting T cell activation during BiTE treatment accompanied by uncontrolled immune activation 

(Teachey et al., 2013), calling for further improvements of the constructs with respect to enhanced 

safety profiles. 

 

1.3.4 Switching off T cells’ natural breaks with checkpoint blocking antibodies  

 

The most successful breakthrough for cancer immunotherapy was achieved by mAbs blocking 

inhibitory checkpoint molecules on immune effector cells. These molecules target inhibitory 

receptors on the surface of T cells and thereby prevent the interaction with the respective ligands 

expressed by immunosuppressive leukocytes and tumor cells. Consequently, an ameliorated and 

prolonged T cell response as well as less tumor-induced immunosuppression can be achieved 

resulting in prolongation of patient survival and enhanced anti-tumor responses. So far, cytotoxic 

T-lymphocyte antigen 4 (CTLA‐4) and programmed cell death protein 1 (PD‐1) have proven to be 

excellent target structures for checkpoint blocking antibodies in a broad variety of malignancies. 

Clinical trials using ipilimumab, an anti-CTLA-4 antibody, demonstrated prolonged overall survival in 

patients with metastatic melanoma (Hodi et al., 2010). Also nivolumab and pembrolizumab, 

antibodies blocking the PD-1-PD-L1 axis, showed major clinical success in various tumor entities 

(Borghaei et al., 2015, Motzer et al., 2015, Robert et al., 2014). In addition, the combination therapy 

of both checkpoint inhibitors provided a superior benefit when compared to monotherapy 

(Hellmann et al., 2018, Motzer et al., 2018).  

 

Although antibody monotherapy has already marked an entirely new level of cancer treatment, the 

combination of checkpoint blocking antibodies with tumor-specific T cells exceed all expectations 

regarding clinical efficacy. Therefore, cytotoxic T lymphocytes are the most relevant immune effector 

cell population for cancer immunotherapy and must be further explored, to enhance the tumor 

recognition and the anti-tumor potential of these powerful cells.  
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1.4 Cell-based immunotherapy 

 

The fundamental principle of cellular immunotherapy is to induce and strengthen the ability of tumor 

antigen-specific immune cells to recognize and eliminate tumor cells. A common approach currently 

used in clinics and clinical studies is the adoptive cell transfer (ACT) of mainly T cells. In this approach, 

tumor-infiltrating lymphocytes (TILs) are isolated from tumor biopsies. After ex vivo enrichment and 

expansion, tumor-specific effector cells can be reinfused into the patient.  

 

To further enhance the specificity of this technique, immune cells extracted from peripheral blood 

can be engineering ex vivo to achieve a specific redirection against tumor-associated antigens (TAAs). 

Here, TAA-specific T cells can be generated by stimulation with autologous, TAA-pre-loaded dendritic 

cells. Recent clinical trials with in vitro generated antigen-specific cytotoxic T lymphocytes 

recognizing a melanoma target antigen showed beneficial therapy responses of metastatic 

melanoma patients upon treatment (Dudley et al., 2002, Mackensen et al., 2006). Another approach 

to conceive tumor-specific T cells is the equipment with a cloned and transduced T cell receptor 

(TCR). The integration of additional artificial TCR cDNA into the T cell genome achieved tumor 

regression after ACT in melanoma (Johnson et al., 2009), colorectal cancer (Parkhurst et al., 2011) 

and synovial sarcoma (Morgan et al., 2013). 

 

However, the majority of the TCR T cell clinical trials was accompanied by severe on- or off-target 

cytotoxicity since most tumor-associated proteins lack specificity and are co-expressed on healthy 

tissue (Linette et al., 2013, Morgan et al., 2013, Parkhurst et al., 2011). In addition, the activation of 

TCR-engineered T cells depends on a major histocompatibility complex (MHC)-mediated presentation 

of the TAA by tumor cells. Thus, a frequently observed escape mechanism by tumors is the loss of 

antigen expression through down-regulation of MHC (Angell et al., 2014, Aptsiauri et al., 2007). To 

bypass this limitation, a new class of recombinant chimeric antigen receptors was developed which 

enables T cells to recognize any surface antigen of interest unrestricted to MHC presentation. 

 

1.4.1 Chimeric antigen receptors 

 

In general, chimeric antigen receptors (CARs) are synthetic fusion proteins which are constructed 

through assembling domains from different proteins, each of which enables the CAR to carry out 

specific functions.  
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The most common structure of CARs consists of an extracellular domain, mediating 

MHC-independent antigen recognition, a transmembrane region and an intracellular signaling part 

(Eshhar et al., 1993). The antigen-binding moiety typically derives from a scFv of an antibody to 

ensure MHC-independent specificity for the TAA. The scFv molecule is linked to the transmembrane 

domain via a flexible spacer to increase the distance from the plasma membrane. Although the 

extracellular spacer domain is not involved in the signaling pathway, it is decisive for the function of 

the CAR due to the orientation of the scFv in different directions to facilitate antigen recognition 

(Hudecek et al., 2015). The most commonly used hinge regions originate from CD8 or IgG4 

molecules. Upon antigen recognition, the intracellular domain is crucial for transmitting an activation 

signal into the cell, leading to cytokine production and cytotoxicity. First-generation CARs mimicked 

endogenous TCR activation through the fusion of the cytoplasmic signaling domain CD3 to the 

transmembrane region (Figure 1a).  

 

In initial studies with these molecules, CAR T cells targeting HER2/neu were used for in vitro 

functional validation. As expected, T cells transduced with an anti-HER2-specific CAR showed 

activation, cytokine release and target cell lysis in response to co-culture with HER2-positive tumor 

cells (Stancovski et al., 1993). Subsequent studies with CAR T cells targeting a broad variety of TAAs 

confirmed the anti-tumoral activity in vitro and in several mouse models (Geiger et al., 1999, 

Haynes et al., 2002). Surprisingly, a translation into human clinical trials could not be managed due to 

poor persistence and loss of function after transfer (Walker et al., 2000). These findings suggest that 

in first generation CARs the signals from ITAM-bearing receptors alone are not sufficient to induce 

polyclonal expansion and sustain anti-tumoral activity in vivo. Pursuant to the two-signal model 

required for lymphocyte activation, the addition of a co-stimulatory signal should rescue the effector 

phenotype of the engineered T cells. 

 

Indeed, the incorporation of an additional intracellular signaling domain from various co-stimulatory 

domains as CD28 (Krause et al., 1998), CD137 (4-1BB) (Finney et al., 2004) or ICOS (Shen et al., 2013) 

to the cytoplasmic part of the CAR, led to an increased function and extended lifespan of the T cells 

(Figure 1b). The advantages of these second generation CARs could be confirmed in vitro with 

superior T cell activity measured by IFN- and IL-2 secretion (Hombach et al., 2001) and in vivo 

studies with leukemia xenograft models (Brentjens et al., 2007, Kowolik et al., 2006). Recently, third 

generation CARs combining multiple signaling domains (e.g. CD3ζ-CD28-CD134 (OX40) or 
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CD3ζ-CD28-41BB) to further augment in vivo persistence, anti-tumor activity and tumor trafficking 

were developed (Enblad et al., 2018, Guedan et al., 2018)(Figure 1c).  

 

 

Figure 1│ Design and development of chimeric antigen receptors (CARs). 

a│First-generation chimeric antigen receptors consist only of the CD3 chain from the endogenous TCR. 
b│Second-generation chimeric antigen receptors incorporate a co-stimulatory signaling domain which leads to 
an increased function and proliferation. c│Third-generation chimeric antigen receptors use multiple signaling 
domains to further augment potency (adapted from Casucci et. al., 2011). 

 

Second and third generation CAR T cells targeting the B cell antigen CD19 showed strong response 

rates in clinical studies with B cell lymphoma. These findings led to the U.S. Food and Drug 

Administration approval of two CAR T cell therapies for patients with relapsed or refractory acute 

lymphoblastic leukemia and refractory B cell lymphoma in 2017 (Zheng et al., 2018).  

 

As seen for T cell-activating antibody-based therapies, CAR T cell therapy is also accompanied by 

severe side effects due to the ubiquitous expression of the target antigen on healthy tissue as well 

and therefore related on-target-off-tumor toxicities (Kochenderfer et al., 2012). Cytokine release 

syndrome (CRS) frequently occurs during CAR T cell therapy but seems to correlate with a beneficial 

outcome for patients (Davila et al., 2014). 
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To further implement CAR T cells in the therapy of malignant diseases, unwanted and unpredictable 

side effects must be controllable and reversible for the safety of patients. Along these lines, 

incorporation of safety switches, which allow a fast and durable shut down of T cell activity or even 

the total elimination of the engineered cells, has come into focus. Suicide genes, allowing the 

selective elimination of the transferred cells upon the administration of a non-toxic prodrug, have 

already been tested in CAR T cells in preclinical experiments (Di Stasi et al., 2011). Indeed, the 

activation of a suicide gene within the engineered T cells leads to the total ablation of the CAR T cells. 

An alternative approach is the co-expression of non-signaling marker antigens such as CD20 

(Philip et al., 2014) or truncated EGFR (Paszkiewicz et al., 2016). Here, CAR T cells can be targeted 

with the corresponding antibodies rituximab or cetuximab and thereby eliminated by ADCC or CDC. 

Again, this strategy depletes the total CAR T cell population which results in the abrogation of the 

therapeutic potential. So far, none of these approaches for a safer application of CAR T cell therapy 

have been tested in the settings of clinical toxicities. The clinical impact therefore remains elusive. 

 

Overall, CAR T cells are a breakthrough innovation in cancer immunotherapy of the last decade and 

surpassed the expectations of a new era in cancer treatment. Unfortunately, CAR T cell therapy is 

accompanied by unpredictable and life-threatening side effects which are so far hardly manageable. 

Moreover, the adaptation of CARs to newly identified TAAs is a time-consuming process were design, 

generation and validation of the respective constructs must be performed prior to in vivo application. 

Time that many cancer patients no longer have. Improving the safety profile while at the same time 

increasing flexibility and modularity are therefore two essential aspects that must be taken into 

account in the further development of CAR T cells. 
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2 Aim of the project 

2.1 Synthetic agonistic receptors for T cell activation  

 

To address and improve the major drawbacks of CARs, two doctoral students from our laboratory 

(Mathias Kurzay and Moritz Schmidbauer) have designed a new class of T cell-activating receptors 

comprising protein structures with an inert extracellular part fused to T cell-activating domains such 

as CD28, CD137 and CD3. These synthetic agonistic receptors (SARs) can trigger specific T cell 

activation upon binding of a BiAb which is linked to a surface antigen of a malignant tumor cell.  

 

 

 

Figure 2│ Design and mode of action of synthetic agonistic receptors. 

Binding of fusion receptor to a bispecific antibody for recruiting and activation of the T cells at the tumor site  

 

2.2 Combining SAR T cells with BiAb 

 

To elucidate the functional relevance of SAR T cells in combination with BiAb, previous doctoral 

students in the laboratory (Mathias Kurzay and Moritz Schmidbauer) designed and cloned two 

different SAR constructs. These consist of an extracellular domain, not naturally occurring on T cells, 
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derived from the epithelial growth factor receptor transcript variant III (EGFRv3) or cryptic antigen 1 

(Cripto) fused to two intracellular domains for T cell activation (CD28 and CD3). The receptors are 

further referred to as E3 or C3. In vitro functionality, measured by cytokine production and target cell 

lysis, was demonstrated by using an anti-EpCAM x anti-EGFRv3 or anti-EpCAM x anti-Cripto BiAb 

respectively combined with EpCAM-expressing tumor cells. Furthermore, a SAR T cell differentiation 

towards an effector memory phenotype upon engagement with target cells was shown 

(Schmidbauer, 2018). The BiAb used for this and the previous study were designed and 

manufactured by collaboration partners from the Roche Innovation Center Zurich. Initial molecules 

were bivalent for both the TAA and the SAR. Thus, an unspecific activation of SAR T cells due to 

potential crosslinking by the BiAb itself could be observed. To further improve the specificity of the 

approach and to reduce off-target toxicities, an improved BiAb format monovalent for the SAR was 

developed in cooperation with the Roche Innovation Center Zurich.  Furthermore, SAR T cells showed 

an increased granzyme B gene transcription after coculture with EpCAM+ tumor cells and BiAb. This 

finding indicated a tumor cell lysis due to the release of lytic vesicles by SAR T cells. In contrast, SAR T 

cells deficient for perforin showed no limitation of their cytotoxic potential in vitro (Schmidbauer, 

2018).  

 

Based on the previously collected data from Mathias Kurzay and Moritz Schmidbauer, this thesis 

aims to elucidate the following aspects: 

 

The first aim of this thesis will be to characterize the new BiAb format in terms of T cell activation 

and target cell lysis. To evaluate the enhanced specificity of the trivalent BiAb, a head-to-head 

comparison of the different antibody formats for EpCAM- target cell killing and unspecific cytokine 

release will be conducted.  

 

The second aim of this project will be to further investigate the killing mechanism underlying the 

elimination of tumor cells by SAR T cells. Therefore, different apoptosis-inducing molecules 

expressed by T cells should be scrutinized for their involvement in cytotoxicity mediated by 

SAR T cells.  

 

The third aim of the study is to evaluate the function of the potential safety switches implied in the 

approach. Since CAR T cell therapy is often accompanied by severe side effects including cytokine 

release syndrome, the incorporation of safety switches to the engineered T cells is of major interest 
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for the translation into clinics. For the combination of SAR T cells with BiAb, the limited half-life of 

the BiAb can be used to control excessive cytokine production by the SAR T cells. This should be 

addressed in vitro by deprivation of the BiAb from a coculture of target cells with SAR T cells. 

Furthermore, the E3 SAR utilizing the EGFRv3 extracellular domain could potentially be targeted with 

the clinical grade antibody cetuximab to selectively deplete the transferred T cells in vivo.  
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3 Material 

3.1 Technical equipment 

 

Analytical balance  CPA1003S  Sartorius Laboratory, Göttingen, DE 

Autoclave Varioklav  500E HP  Medizintechnik, München, DE 

Cell culture incubator  BBD 6220  Heraeus, Hanau, DE 

Centrifuges   3L-R   Multifuge Heraeus, Hanau, DE 

Centrifuge 5318R Eppendorf, Hamburg, DE 

Rotina 420R  Hettich GmbH, Tuttlingen, DE 

FACS    Canto II   BD Biosciences, Franklin Lakes, USA 

    LRSFortessa  BD Biosciences, Franklin Lakes, USA 

Heating block   Thermomixer 5436  Eppendorf, Hamburg, DE 

Incubator (cell culture)  BD 6220  Heraeus Instruments, Hanau, DE 

Laminar flow hoods   HeraSAFE KS  Heraeus, Hanau, DE 

LightCycler®   480 II   Roche, Mannheim, DE 

Microscopes   Axiovert 40C  Zeiss, Jena, DE 

Axiovert HAL 100 Zeiss, Jena, DE 

Multilabel plate reader  Mithras LB 940  Berthold, Bad Wildbad, DE 

Photometer    NanoDrop 2000c Thermo Fisher, Waltham, USA 

pH-Meter   inoLab pH 720  WTW GmbH, Weilheim, DE 

Vortex mixer   RS-VA 10  Phoenix, Garbsen, DE 

Water bath    Unitherm-HB  UniEquip, München, DE 

iCELLigence RTCA Systems iCELLigence  ACEA Biosciences, San Diego, USA 

 

3.2 Materials 

 

Cell culture flasks (T25 to T175)    Costar Corning, New York, USA 

Cell culture plates (6- to 96-well)   BD Medical, Franklin Lakes, USA 

Cryotubes      Greiner Bio One, Frickenhausen, DE 

Disposable scalpels (No. 10)    FEATHER, Osaka, JP 

ELISA microplates (96-well)    Costar Corning, New York, USA 

Eppendorf tubes (0.5 ml; 1.5 ml; 2.0 ml)  Sarstedt, Nürnbrecht, DE 

FACS tubes      BD Biosciences, Franklin Lakes, USA 
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Nylon filter SmartStrainers (100 μm, 30 μm)  Miltenyi Biotec, Bergisch Gladbach, DE 

Petri dishes      BD Medical, Franklin Lakes, USA 

Pipetboy      Hirschmann Laborgeräte, Eberstadt, DE 

Pipettes      Eppendorf, Hamburg, DE 

Polypropylene round bottom tubes   BD Biosciences, Franklin Lakes, USA 

Serological pipettes     Costar Corning, New York, USA 

Syringes (2 ml, 10 ml)     BD Medical, Franklin Lakes, USA 

 

3.3 Chemicals and reagents 

 

β-Mercaptoethanol     Roth, Karlsruhe, DE 

Agarose      Biozym, Oldendorf, DE 

Albumin Fraction V (BSA)    Sigma-Aldrich, Steinheim , DE 

Calcium chloride     Merck, Darmstadt, DE 

Dimethyl sulfoxide (DMSO)    Sigma-Aldrich, Steinheim, DE 

DNA loading dye     Thermo Scientific, Rockford, USA 

DNA Ladder (100 bp)     Thermo Scientific, Rockford, USA  

Dithiothreitol (DTT)     Sigma-Aldrich, Steinheim, DE 

Ethanol 96 - 100 % (puriss.)    Sigma-Aldrich, Steinheim, DE 

FACSFlow      BD Biosciences, Franklin Lakes, USA 

Isopropanol p.A.     AppliChem, Darmstadt, DE 

Kapa Probe Universal Master Mix   VWR, Darmstadt, DE 

Methanol      Merck, Darmstadt, DE 

Sulfuric acid (2 N)     Pharmacy of LMU, München, DE 

Tris (Tris(hydroxymethyl)aminomethane)  Roth, Karlsruhe, DE 

Trypan blue      Sigma-Aldrich, Steinheim, DE 

Trypsin       PAA, Pasching, AT 

Tween-20      Sigma-Aldrich, Steinheim, DE 

 

3.4 Commercial assay kits 

 

CytoTox 96® Non-Radioactive Cytotoxicity Assay Promega, Mannheim, DE 

GzmB ELISA (murine)     R & D Systems, Minneapolis, USA 
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IFN- ELISA (murine)     BD Biosciences, Franklin Lakes, USA 

InviTrap Spin Cell RNA Mini Kit    Stratec Molecular GmbH, Berlin, DE 

SuperScript™ II Reverse Transcriptase Kit  Invitrogen, Carlsbad, USA 

Universal Probe Library     Roche, Mannheim, DE 

Fixable Viability Dye eFluor™ 780   Thermo Scientific, Rockford, USA 

Cell Proliferation Dye eFluor™ 450   Thermo Scientific, Rockford, USA 

Cell Proliferation Dye eFluor™ 670   Thermo Scientific, Rockford, USA 

 

3.5 Cytokines and stimulants 

 

Recombinant Human IL-2    PeproTech, Rocky Hill, USA 

Recombinant Human IL-15    PeproTech, Rocky Hill, USA 

Dynabeads Mouse T-Activator CD3-CD28  Life technologies, Munich, DE 

 

3.6 Antibodies 

 

Table 1│ FACS antibodies 

Antibody Reactivity Clone Concentration Manufacturer 

Anti-CD3-FITC Murine 500-A2 5 µg/ml BioLegend 

Anti-CD3-PE Murine 145-2C11 5 µg/ml BioLegend 

Anti-CD8a-FITC Murine 53-6.7 5 µg/ml BioLegend 

Anti-CD8a-Pacific Blue Murine 53-6.7 5 µg/ml BioLegend 

Anti-EGFR-APC Human AY13 20 µg/ml BioLegend 

Anti-IgG-Cy2 Murine Poly  Jackson Immuno-
Research  

Anti-IgG-FITC Human Poly  Jackson Immuno-
Research 

 

Table 2│ Bispecific antibodies 

Antibody Reactivity Manufacturer 

2 + 2 Anti-EpCAM x anti-Cripto Murine, Human Roche Innovation Center, Schlieren, CH 

2 + 2 Anti-EpCAM x anti-EGFRv3 Murine, Human Roche Innovation Center, Schlieren, CH 

2 + 1 Anti-EpCAM x anti-EGFRv3 Murine, Human Roche Innovation Center, Schlieren, CH 
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Table 3│ Unconjugated antibodies 

Antibody Reactivity Clone Manufacturer 

Anti-CD3ε Murine 145-2C1 eBioscience, San Diego, USA 

Anti-CD28 Murine 37.51 eBioscience, San Diego, USA 

Anti-CD178 Murine MFL3 eBioscience, San Diego, USA 

Anti-CD253 Murine N2B2 eBioscience, San Diego, USA 

Anti-EGFR (Cetuximab) Human Hu1 Merck KGaA, Darmstadt, DE 

 

3.7 Cell lines, supplements and medium 

3.7.1 Cell lines 

 

Table 4│ Cell lines used in this study 

Name Cell type Species Medium Reference 

PlatinumE Human embryonic kidney Human 
PlatE culture 

medium 

Morita, et 

al. 2000 

Panc-

OVA-

EpCAM 

Mouse pancreatic ductal 

adenocarcinoma (C57BL/6) transduced 

with murine EpCAM cDNA 

Murine DMEM+++ 
Corbett, et 

al. 1984 

B16-F10- 

EpCAM 

Mouse melanoma (C57BL/6) 

transduced with murine EpCAM cDNA 
Murine DMEM+++ Fidler, 1975 

4T1 
Malignant neoplasms of the mouse 

mammary gland (BALB/c) 
Murine DMEM+++ 

Dexter, et 

al. 1978 

 

3.7.2 Supplements 

 

Blasticidin      Sigma-Aldrich, Steinheim, DE  

Dulbecco’s modified Eagle’s medium (DMEM)  Lonza, Basel, CH 

Fetal bovine serum (FBS) - heat inactivated  Gibco, Carlsbad, USA 

HEPES (1 M)      Sigma-Aldrich, Steinheim, DE 

L-Glutamine (200 mM)     PAA, Pasching, AT 

Non-essential amino acids (NEAA)   Gibco, Carlsbad, USA 



  MATERIAL 

18 

 

Penicillin/Streptomycin (100 x)    PAA, Pasching, AT 

Phosphate-buffered Saline (PBS)   Lonza, Basel, CH 

Puromycin      Sigma-Aldrich, Steinheim, DE 

Roswell Park Memory Institute (RPMI) 1640  Lonza, Basel, CH 

Sodium pyruvate (100 mM)    Biochrom AG, Berlin, DE 
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3.7.3 Cell culture media 

 

Complete DMEM medium (DMEM+++)   Complete RPMI medium (RPMI+++) 

DMEM full medium  500 ml   RPMI 1640 full medium  500 ml 

FBS    10 % (v/v)   FBS    10 % (v/v) 

Penicillin/Streptomycin (100 x) 1 % (v/v)  Penicillin/Streptomycin (100 x) 1 % (v/v) 

L-Glutamine (200 mM)  1 % (v/v)  L-Glutamine (200 mM)  1 % (v/v) 

 

T cell medium (TCM)     PlatE culture medium 

RPMI+++    500 ml   DMEM+++   500 ml 

Sodium pyruvate (10 mM) 1 % (v/v)  Blasticidin   10 µg/ml 

HEPES (1 M)   0.1 % (v/v)  Puromycin   1 µg/ml 

 

Cytotoxicity medium     Cryopreservation medium 

RPMI1640 w/o phenol red 500 ml   FBS with cells   900 µl 

FBS    1 % (v/v)  DMSO    100 µl 

Penicillin/Streptomycin (100 x) 1 % (v/v)  

L-Glutamine (200 mM)  1 % (v/v)  

Sodium pyruvate (10 mM) 1 % (v/v)  

HEPES (1 M)   0.1 % (v/v) 

 

3.8 Buffer solutions 

 

Lysis buffer      Transfection buffer 

Ammonium chloride   8.92 g  Sodium chloride  1.6 g 

Potassium bicarbonate   29 mg  Potassium chloride  74 mg 

EDTA     1 g  Disodium phosphate  50 mg 

fill up to 1000 ml with ddH2O, adjust pH to 7.2  HEPES    1 mg  

with HCl (1 M) or NaOH (1 M)  fill up to 100 ml with ddH2O, adjust pH to 7.1 

with HCl (1 M) or NaOH (1 M) 
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FACS buffer 

PBS     500 ml 

BSA     2 % (v/v)  

 

3.9 Software 

 

Adobe Creative Suite     Adobe Systems, San Jose, USA 

BD FACSDiva      BD Biosciences, Franklin Lakes, USA 

EndNote X6      Thomson Reuters, Carlsbad, USA  

Flow Jo 7.6.2 and 10     Tree Star, Ashland, USA 

GraphPad PRISM® Version 5.0 and 7.0   GraphPad Software, La Jolla, USA 

LightCycler® 480 SW 1.5     Roche, Mannheim, DE 

Microsoft Office 2016     Microsoft, Redmond, USA 

RTCA Data Analysis      ACEA Biosciences, San Diego, USA 

SnapGene 3.3.4      GSL Biotech LLC, Chicago, USA 
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4 Methods 

4.1 Cell biological methods 

4.1.1 General cell culture conditions 

 

All cell lines were cultured in incubators at 37 °C, 5 % CO2 and 95 % humidity. Cell manipulations 

were performed under sterile cell culture conditions under a laminar flow hood. To detach adherent 

cell lines, cells were washed with PBS and incubated with a trypsin-EDTA solution for 5 min at 37 °C. 

Detached cells were spun down at 400x g for 5 min and resuspended in full growth medium. All cell 

lines were monitored regularly for their confluency under a light microscope and were divided at 

80 % confluence. Neubauer hemocytometers were used to determine number and viability of trypan 

blue stained cells. Total cell numbers were calculated by using the following formula: 

 

Total cell number =(
total cells counted

number of squares
) *𝐷T*VM*104 

DT: Dilution trypan blue 

VM: Volume media 

 

4.1.2 Isolation of murine splenocytes 

 

Wild-type C57BL/6 or BALB/c mice were sacrificed by cervical dislocation under isoflurane 

anesthesia, spleens were taken into 2 ml Eppendorf tubes containing TCM and kept on ice. For 

generating single cell suspension of splenocytes, the whole organ was mashed through a 100 µm and 

30 µm cell strainer by using the plunger end of a syringe under sterile conditions. The filters were 

washed with 8 ml TCM and the cell suspension was centrifuged at 400x g for 5 min. Red blood cell 

lysis was performed by incubating the cell pellet in 2 ml of the described lysis buffer for 2 min. To 

stop the lysis, 8 ml TCM were added. Cells were centrifuged, resuspended in fresh TCM and the total 

cell number was adjusted to 2 x 106 cells/ml. For T cell differentiation, 10 IU/ml human IL-2, 

50 µM ß-mercaptoethanol, 1 µg/ml anti-mouse CD3 and 0.1 µg/ml anti-mouse CD28 were added and 

cells were cultured in 6-well plates overnight.  
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4.1.3 Transduction of primary murine T cells 

 

Retroviral transduction is a common technique to genetically modify cells by stable introduction of 

foreign DNA to the host genome via a retroviral vector. The protocol described here corresponds to a 

modified version of already published methods (Leisegang et al., 2008).  

 

0.8-1.5 x 106 cells of the retroviral producer cell line Platinum-E (PlatE) were cultured in 6-well tissue 

culture plates in 3 ml DMEM+++ 24 h before the transfection to yield a confluence of about 70 %. On 

the following day, a plasmid solution (18 µg plasmid DNA, 15 µl CaCl2 2.5 M, filled up to 150 µl with 

ddH2O) was prepared and added drop by drop to 150 µl transfection buffer. Strong vortexing of the 

polystyrene tube containing the transfection buffer lead to enhanced formation of the calcium 

precipitates and enhanced the transfection efficiency. After 30 min incubation at RT, 300 µl plasmid 

solution was added to each well of PlatE cells. 5 h later the medium was replaced by fresh, pre-

warmed DMEM+++ for the virus production. The virus-containing supernatants were collected 43 h 

later, filtered through a 0.45 µm filter to remove residual cell debris and could be used immediately 

for the first transduction. 3 ml of fresh TCM were added to the PlatE for further virus production. 

 

To enhance the colocalization of the retrovirus and target cells, tissue culture 24-well plates were 

coated with 400 µl/well of 6.25 µg/ml RetroNectin solution and incubated overnight at 4°C.  

After the RetroNectin-coated wells were blocked with 2 % BSA in ddH2O for 30 min and washed once 

with 25 mM HEPES in 1 ml PBS, 1 ml viral supernatant was added to each well. The virus particles 

were attached to the RetroNectin by centrifugation at 3000x g for 2 h at 4 °C. 106 primary murine 

T cells in 1 ml TCM supplemented with 10 U/ml recombinant human IL-2, 50 µM ß-mercaptoethanol 

and 4 x 105 sodium acid-free mouse T cell activator beads/ml were co-incubated with the virus 

overnight. A second transduction hit was performed on the next day. The transduction efficiency was 

determined by quantification of the vector-encoded surface proteins by flow cytometry using the 

appropriate FACS antibodies. 

 

T cells were adjusted to 106 cells/ml in fresh TCM containing 50 ng/ml human IL-15 and 50 µM 

ß-mercaptoethanol for expansion and re-cultured every 48 h. Transduction efficiencies of > 20 % and 

> 30 % were used for in vitro and in vivo assays, respectively. 
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4.2 Molecular biological methods 

4.2.1 Generation of synthetic agonistic receptors by overlap extension polymerase chain 

reaction 

 

The extension of overlapping gene segments by PCR is an efficient and reliable method to generate 

chimeric genes or site-directed mutagenesis.  

 

The murine EGFRv3 – CD28 –CD3 molecule (E3) consists of human EGFRv3 (Uniprot Entry P00533 

AA 1-29, 298-646), murine CD28 (Uniprot Entry P31041 AA 151-218) and murine CD3 (Uniprot Entry 

P24161 AA 52-164). The Cripto 1-CD28-CD3 construct (C3) consists of human Cripto 1 (Uniprot Entry 

P13385 amino acids (AA) 31-150), murine CD8a (Uniprot Entry P01731 AA 153-196), murine CD28 

(AA 178-218) and murine CD3 (AA 52-164). Both SAR constructs were generated and provided by 

Mathias Kurzay. 

 

For the E3-GFP construct, E3 was coupled through a self-cleaving 2A peptide (Ryan et al., 1991) to 

GFP (Uniprot Entry P42212). The E3 variants were generated from E3 by point mutations as follows: 

mutation of YMNM (AA 189-192) to FMNM (E3-FMNM), mutation of PYAP (AA 206-209) to AYAA 

(E3-AYAA) and the double mutant E3-FMNM-AYAA. 

 

All constructs were cloned into the retroviral vector pMP71 (Engels et al., 2003). 

 

4.2.2 Quantitative real-time PCR (qRT PCR) 

 

Total RNA was extracted from stimulated cells using the InviTrap Spin Universal RNA extraction kit 

and cDNA was synthesized from 2-5 µg of RNA using the Superscript II kit according to the 

manufacturer’s instructions. PCR primers were designed automatically from the NCBI GenBank 

sequence NM_001146708.1 (murine CD95) in the assay design center from the Roche Universal 

Probe Library. The oligonucleotides used as PCR primers were: CD95 (left) 5’-GCA GAC ATG CTG TGG 

ATC TG-3’ and CD95 (right) 5’-TCG GAG ATG CTA TTA GTA CCT TGA G-3’. Real-time PCR was 

performed using the Kapa Probe Universal Master Mix and probe 34 for CD95 in a LightCycler 480 

instrument.  
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4.3 Immunological methods 

4.3.1 Enzyme-linked immunosorbent assay (ELISA) 

 

To determine the T cell activation and degranulation, several murine ELISA kits were used to measure 

the cytokine concentrations in the cell supernatant. Samples were collected from culture plates and 

stored at -20 °C prior to analysis. ELISA and buffer preparation were performed according to the 

manufacturer’s protocol except for using only half of the indicated volumes. 

Absorbance at 450 nm was measured using a microplate reader (Berthold Mithras LB940). A four-

parameter logistic (4PL) regression was used to calculate protein concentrations from the standard 

curve. 

 

4.3.2 LDH release assay 

 

The LDH release assay is a standard method to measure effector cell-mediated target cell killing. 

Upon cell lysis, high levels of lactate dehydrogenase (LDH) are released into the cell supernatant 

which can be measured in a coupled enzymatic assay.  

 

T cells were co-cultured with target cells and indicated antibodies for 8-16 h in cytotoxicity medium 

without phenol red. Maximum release of LDH was determined by complete target cell lysis with the 

manufacture’s lysis solution. Supernatants were collected, centrifuged and analyzed immediately 

according to manufacturer’s protocol. Absorbance at 490 nm was measured using a microplate 

reader (Berthold Mithras LB940). Specific cell lysis was calculated by the following formula: 

 

(LDHof interest – LDHeffector only) / (LDHtotal lysis – LDHminimal lysis) x 100 % 

 

Overall negative lysis values indicate a superior tumor cell outgrowth compared to the tumor cell 

maximum control. 

 

4.3.3 Real-time killing assay 

 

In contrast to the LDH release endpoint assay, target cell killing over time was measured with the 

impedance-based iCELLigence device. Here, the iCELLigence system detects the cellular events in 

real-time by measuring electrical impedance using microelectrodes at the bottom of each cell culture 
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plate well. This relative change in the electrical impedance at a defined frequency (ƒn) is termed the 

Cell Index (CI).  

 

Target cells were seeded in an 8-well plate and monitored over the time frame of 20 h every 20 min. 

When reaching a CI between 0.8 and 1.5, effector cells and indicated antibodies were added and 

target cell lysis was quantified for 20 h every 6 min, followed by intervals of 15 min over a period of 

45 h. All the described calculations are based on the RTCA Software version 1. 

 

4.3.4 Flow cytometry (FACS) 

 

Flow cytometry allows a quantification of cell according to their size, granularity and expression of 

surface and intracellular proteins based on staining with appropriate fluorophore-conjugated 

antibodies. For saturation curve analysis T cells were incubated with increasing concentrations of 

either the tetra- or trivalent BiAb for 30 min at 37 °C. Cells were washed with PBS and stained with 

the corresponding secondary antibody for 30 min at 4 °C. After washing, cells were resuspended in 

FACS buffer and analyzed. For proliferation analysis, cells were stained with Fixable Viability Dye and 

fluorophore-conjugated antibodies for CD8a, CD3ε and EGFR for 30 min at 4 °C. Cells were washed 

and resuspended in FACS buffer containing 1.5 µl count bright absolute counting beads. Samples 

were analyzed with a BD FACS Canto II or LRSFortessa, for data analysis FlowJo 7.6.2 or 10 was used. 

 

4.4 Animal experiments 

4.4.1 Care of laboratory animals 

 

For animal experiments, four weeks old wild type C57BL/6 and BALB/c mice were purchased from 

Janvier (St. Bertevin, France) or Charles River (Sulzfeld, Germany). The spleens from the transgenic 

mouse strain B6Smn.C3-Fasl<gld>/J were purchased from The Jackson Laboratory (Bar Harbor, USA). 

The perforin deficient spleens from C57BL/6-Prf1tm1Sdz mice were provided by J. vom Berg (Zurich, 

Switzerland) and the granzyme B knock-out splenocytes were a gift from J. Pardo (Zaragoza, Spain). 

All mice were kept under germ-free conditions in the animal facility “Zentrale Versuchstierhaltung 

Innenstadt” at least one week prior to the experiment. All animal experiments were approved by the 

local regulatory agency (Regierung von Oberbayern, reference number: 55.2.1.54-2532-90-12, 36-14, 

183-12 and 135-17) and adhered to the NIH guide for the care and use of laboratory animals. 
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4.4.2 In vivo subcutaneous co-injection of tumor cells and T cells 

 

For co-injection E3 SAR T cells, BiAb and 2 x 106 Panc02-OVA-EpCAM, 5 x 104 B16-EpCAM or 

1.25 x 105 4T1 tumor cells were preincubated in an effector to target ratio of 10:1 with 1 µg/ml BiAb 

for 30 min. C57BL/6 or BALB/c female mice (6 – 10 week old) were injected subcutaneously into the 

right flank. For re-challenge experiments, mice were injected subcutaneously with corresponding 

numbers of tumor cells in the right flank. Tumor size was measured blinded to the treatment groups 

three times a week and was defined as area in mm2 (length in mm x width in mm). Scoring every 

other day included also tumor morphology, body weight, body condition and general behavior. 

Animals reaching endpoint criteria were anesthetized with CO2 inhalation and sacrificed by cervical 

dislocation.  

 

4.4.3 In vivo depletion of transferred T cells 

 

C57BL/6 female mice were injected intravenously with 107 E3-GFP SAR T cells and were randomized 

after injection into two groups (n = 5). After 6 h, animals received either 1 mg cetuximab in 100 µl of 

PBS or vehicle solution intravenously. 24 h after T cell transfer, mice were anesthetized by CO2 

inhalation and sacrificed via cervical dislocation. Blood, spleens, lymph nodes and lungs were 

harvested, processed and analyzed for remaining transferred T cells via flow cytometry.  

 

4.5 Statistical analysis 

 

Statistical analysis was performed by using GraphPad Prism software 5.0 or 7.0. Data is shown as 

arithmetic mean values and standard error of the mean of at least three biological replicates or 

independent experiments, unless otherwise indicated. Differences between experimental conditions 

were analyzed using the unpaired two-tailed Student’s t test. In all in vivo experiments, two-way 

ANOVA with correction for multiple testing by the Bonferroni method was used to analyze 

differences between the groups. Survival analysis was performed using the Log-Rank test. 

P-values < 0.05 were considered to be significant.   
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5 Results 

5.1 Specific antigen-dependent activation of SAR T cells is dependent on the BiAb valency 

 

The E3 SAR, composed of the extracellular portion of human epidermal growth factor receptor 

variant III (EGFRv3) and the transmembrane and intracellular domains of murine CD28 and CD3 was 

generated by overlap extension PCR and kindly provided by Mathias Kurzay. A control E3del SAR, 

lacking the intracellular T cell activating domains, was also created. The receptors were transduced 

into primary murine T cells by retroviral transduction (Figure 3a and 3b). 

 

Figure 3│ Retroviral transduction of murine CD8+ T cells. 

Primary murine T cells were differentiated from isolated splenocytes and genetically modified using retroviral 
transduction. T cells were engineered with a│ the E3 SAR or b│ the non-signaling form E3del. Transduction 
efficiencies were examined by flow cytometry analysis after surface staining with an anti-hEGFR-APC antibody. 
One representative plot of over fifty independent transductions is depicted. 

 

Previous data from our group have shown that E3 SAR T cells can be specifically activated through 

engagement of an immobilized BiAb, either plate-bound or linked to epithelial cell adhesion molecule 

(EpCAM) expressing tumor cells (Schmidbauer, 2018). However, the BiAb used was bivalent for both 

the SAR and the target antigen murine EpCAM and could therefore induce unspecific activation of 

the E3 SAR T cells by crosslinking the receptor itself in the absence of tumor cells 

(Schmidbauer, 2018). To overcome off-target T cell activation, a trivalent BiAb was generated with 

only one binding moiety for EGFRv3. These two different BiAb formats were compared head-to-head 

for their specific and antigen dependent SAR T cell activation (Figure 4a). 

 

 

b) a) 
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Both BiAbs induced secretion of the immunostimulatory cytokine IFN- when immobilized on the 

plate, indicating strong T cell activation through the E3 SAR. When added in soluble form to E3 SAR 

T cells, only the BiAb bivalent for the SAR could trigger T cell activation whereas the monovalent BiAb 

did not (Figure 4b and 4c). This clearly indicates that, unlike the format monovalent for SAR, the 

SAR-bivalent BiAb is able to crosslink receptors on T cells on its own and thereby induce unspecific E3 

SAR T cell activation. 
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Figure 4│ Specific SAR T cell activation is dependent on bispecific antibody valency. 

a│ Schematic presentation of both 2 + 2 and 2 + 1 bispecific antibodies. b│ Tissue culture plates were pre-
coated with indicated concentrations of either 2 + 2 BiAb or 2 + 1 BiAb at 4 °C overnight. 1.25 x 105 E3 SAR 
T cells were added to each condition. c│ In the control experiment, the same concentrations of soluble 

antibodies were added prior to culture. Supernatants were analyzed for IFN- after 48 h of incubation to 
determine T cell activation. Unspecific E3 SAR T cell activation by soluble antibodies occurred only with the 

2 + 2 BiAb whereas soluble 2 + 1 BiAb could not trigger IFN- due to the loss of one binding site for the SAR. 
All graphs show mean values of experiments performed at least in triplicates. One representative of three 
independent experiments is depicted. p-values by two-sided unpaired t-test are indicated. p < 0.05 was 
considered statistically significant. 

 

Similarly, in a co-culture with target antigen-negative (EpCAM-) tumor cells, unspecific off-target lysis 

(Figure 5a) occurred only with the bivalent BiAb. In contrast, in a co-culture with target antigen 

positive (EpCAM+) tumor cells, on-target lysis of EpCAM+ tumor cells (Figure 5b) was not altered by 

the type of BiAb used.  
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Figure 5│ 2 + 2 BiAb can mediate unspecific lysis of antigen negative tumor cells. 

a│ 2 x 104 Panc02 or b│ Panc02-EpCAM tumor cells were cocultured with 105 E3 SAR T cells. T cells were 
incubated with decreasing amounts of either 2 + 2 or 2 + 1 BiAb as indicated. After 10-14 h supernatants were 
collected and LDH levels were measured. Antigen independent lysis of target cells was only achieved when 
E3 SAR T cells were preloaded with the 2 + 2 BiAb. Both antibody formats showed dose-dependent killing of 
target antigen-positive tumor cells with similar efficiency. All graphs show mean values of experiments 
performed at least in triplicates. One representative of three independent experiments is depicted. p-values by 
two-sided unpaired t-test are indicated. p < 0.05 was considered statistically significant. 

 

There findings were comparable for two additionally tested EpCAM-positive cell lines (Figure 6a and 

6b). 
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Figure 6│ 2 + 2 and 2 + 1 BiAb can mediate equivalent specific lysis of antigen-expressing tumor cells. 

a│ 2 x 104 B16-EpCAM or b│ 4T1 EpCAM-expressing tumor cells were cocultured with 105 E3 SAR T cells. T cells 
were incubated with decreasing amounts of either 2 + 2 or 2 + 1 BiAb as indicated. After 10-14 h supernatants 
were collected and LDH levels were measured. Both antibody formats showed dose-dependent killing of target 
antigen-positive tumor cells with similar efficiency. All graphs show mean values of experiments performed at 
least in triplicates. One representative of three independent experiments is depicted. 
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Furthermore, the levels of T cell degranulation, measured by GzmB release, correlated with the 

off-target lysis when using the bivalent BiAb on EpCAM- target cells (Figure 7a) while degranulation 

was similar for both antibody formats on EpCAM+ target cells (Figure 7b). Therefore, in all following 

experiments, 2 + 1 BiAb was used unless otherwise indicated. 
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Figure 7│ Antibody bivalent for SAR can trigger unspecific T cell degranulation.  

a│ 2 x 104 Panc02 or b│ Panc02-EpCAM tumor cells were cocultured with 105 E3 SAR T cells. T cells were 
incubated with decreasing amounts of either 2 + 2 or 2 + 1 BiAb as indicated. Only T cells incubated with the 
2 + 2 BiAb showed unspecific granzyme B release in coculture with antigen-negative tumor cells while both 
antibody formats showed similar degranulation with antigen-positive tumor cells. All graphs show mean values 
of experiments performed at least in triplicates. One representative of a│ three or b│ two independent 
experiments is depicted. p-values by two-sided unpaired t-test are indicated. p < 0.05 was considered 
statistically significant. 

 

5.2 Tumor cell killing by SAR T cells is predominantly mediated by Fas-FasL interactions  

 

Next, we investigated the mode of action underlying the killing of antigen-positive tumor cells by SAR 

T cells triggered through the 2 + 1 BiAb. Our group previously showed that E3 SAR T cells deficient for 

perforin are still capable of inducing complete target cell lysis similar to wild-type E3 SAR T cells 

(Schmidbauer, 2018). To test whether target cell lysis was also independent of granzyme B release by 

the E3 SAR T cells, a cytotoxicity assay was performed with granzyme B knock-out T cells. 

Unexpectedly, GzmB-/- E3 SAR T cells also revealed a complete and durable lysis of target cells only in 

combination with BiAb (Figure 8a and 8b). 
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Figure 8│ Tumor cell lysis by E3 SAR T cells is independent of granzyme B release. 

a│ Panc02-EpCAM tumor cells were seeded in an impedance-quantifying device (iCELLigence) at a density of 
5 x 104 cells per well and 5 x 105 GzmB+/+ or GzmB-/- E3 SAR T cells preloaded with 1 µg/ml 2 + 1 BiAb were 
added as indicated. Target cells were only killed in the presence of E3 SAR T cells and BiAb and independently 
of granzyme B expression. b│ Granzyme B competence of T cell was verified by Elisa. T cells deficient for 
granzyme B showed no release of the serine protease. All graphs show mean values of experiments performed 
at least in triplicates. Impedance-based cytotoxicity assays were performed in duplicates for technical reasons. 
One representative of three independent experiments is depicted. p-values by two-sided unpaired t-test are 
indicated. For impedance-based cytotoxicity assays the total curve over time was compared. p < 0.05 was 
considered statistically significant. 

 

This indicates a minor contribution of perforin (Schmidbauer, 2018) and granzyme B in the target cell 

lysis by SAR T cells. To further dissect the mechanism of effective tumor cell killing by SAR T cells, we 

assessed the role of other molecules expressed by T cells which can potentially induce tumor cell 

lysis: Fas ligand (FasL) and TNF-related apoptosis-inducing ligand (TRAIL).  

 

Upon addition of blocking antibodies specific for these surface molecules to a co-culture with 

antigen-positive tumor cells and E3 SAR T cells in the presence of 2 + 1 BiAb, we identified FasL to 

predominantly mediate tumor cell lysis (Figure 9a, 9b and 9c). 
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Figure 9│ Target cell lysis by E3 SAR T cells is predominantly mediated by Fas-FasL interactions. 

E3 SAR T cells were co-cultured with a│ Panc02-EpCAM tumor cells in addition of antibodies to block 
T cell-induced tumor cell apoptosis (anti-CD178 [anti-FasL] or anti-CD253 [anti-TRAIL]; each at 10 µg/ml). T cells 
were incubated with 1 µg/ml 2 + 1 BiAb prior to culture. Blocking of FasL significantly reduced lysis of tumor 
cells to comparable values of the control condition without BiAb measured by LDH release. In contrast, blocking 
of TRAIL did not alter tumor cell killing by E3 SAR T cells. Dependency on FasL-Fas interaction in tumor cell 
killing by SAR T cells were verified in two other tumor cell models: b│ B16-EpCAM and c│ 4T1. All graphs show 
mean values of experiments performed at least in triplicates. One representative of a│, b│ three or c│ two 
independent experiments is depicted. p-values by two-sided unpaired t-test are indicated. p < 0.05 was 
considered statistically significant. 

 

To verify if the impact of FasL on tumor cell killing is shared by the therapeutic platform of 

SAR T cells, a previously generated SAR composed of the human Cripto-1 protein fused to the murine 

CD28 and CD3 domains (C3) with the respective BiAb was used. As observed for the E3 SAR T cells 

the lytic capacity of C3 SAR T cell was blocked by the addition of anti-FasL antibodies (Figure 10). 
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Figure 10│ Impact of FasL-dependent tumor cell killing is shared by the therapeutic platform of SAR 

T cells.  

C3 SAR T cells were co-cultured with Panc02-EpCAM tumor cells in the presence of 10 µg/ml anti-FasL 
antibody. T cells were incubated with 1 µg/ml of the respective 2 + 2 BiAb prior to culture. C3 SAR T cell- 
mediated killing was measured by LDH release. As observed before, blocking of FasL significantly reduced lysis 
of tumor cells to baseline values in absence of BiAb. Graph shows mean values of experiments performed in 
quadruplicates. One representative of three independent experiments is depicted. p-values by two-sided 
unpaired t-test are indicated. p < 0.05 was considered statistically significant. 

 

In contrast to these findings, T cells transduced with an EpCAM-specific CAR with identical 

intracellular signaling domains mainly utilized perforin-dependent degranulation for effective target 

cell lysis (Figure 11a). However, inhibition of the Fas-FasL axis did not alter the cytolytic function of 

CAR T cells (Figure 11b). 
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Figure 11│EpCAM-specific CAR T cells rely on the release of perforin for efficient killing. 

Panc02-EpCAM tumor cells were seeded in an impedance-quantifying device (iCELLigence) at a density of 
5 x 104 cells per well and 5 x 105 Prf1+/+ or Prf1-/- anti-EpCAM CAR T cells were added as indicated. a│ Wild-type 
anti-EpCAM CAR T cells mediated immediate and complete tumor cell lysis whereas killing by perforin-deficient 
anti-EpCAM CAR T cells was abolished. b│ Addition of anti-FasL antibody to a co-culture of Panc02-EpCAM 
tumor cells with anti-EpCAM CAR T cells did not affect target cell lysis compared to the non – blocking 
condition. All graphs show mean values of experiment performed in duplicates for technical reasons. One 
representative of a│ two or b│ three independent experiments is depicted. 

 

In addition, an upregulation of Fas expression upon IFN- stimulation could be detected on all tumor 

cell lines tested indicating a high susceptibility of the tumor cells to SAR T cell treatment (Figure 12). 
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Figure 12│ Transcriptional regulation of Fas on tumor cells under inflammatory conditions. 

Panc02-EpCAM, B16-EpCAM and 4T1 tumor cells were seeded to a density of 2 x 104 and stimulated with 

100 U/ml recombinant murine IFN-. Gene expression levels of CD95 (Fas) were analyzed by qRT PCR and 

normalized to the expression of the housekeeping gene Hprt. Upon stimulation with IFN-, all tumor cell lines 
show an upregulation of Fas expression. All graphs show mean values of experiment performed in duplicates 
for technical reasons. One representative of three independent experiments is depicted. 
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5.3 The co-stimulatory domain CD28 does not influence the mode of action but enhances T cell 

activation and proliferation  

 

We further investigated the necessity of the co-stimulatory domain CD28. For this purpose, SAR using 

only CD3 for signaling (referred from now on as E2) and the respective first generation 

anti-EpCAM CAR were generated. The loss of the CD28 domain did not influence the function and the 

FasL-dependent killing of the E2 SAR (Figure 13a and 13b). Target cell killing was comparable for 

E3 SAR and E2 SAR T cells but significantly reduced upon adding anti-FasL antibody. The lytic capacity 

of the 1st generation and 2nd generation anti-EpCAM CAR was not altered under blocking conditions.  
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Figure 13│FasL-mediated target cell killing by SAR T cells does not require the co-stimulatory CD28 

domain.  

a│ Panc02-EpCAM or b│ B16-EpCAM tumor cells were cocultured with either E3 SAR, E2 SAR, 1st generation 
anti-EpCAM CAR or 2nd generation anti-EpCAM CAR T cells for 14 h in an effector to target ratio of 5 : 1. 
Inhibition of FasL reduced the target cell lysis by E2 SAR or E3 SAR T cells whereas the function of the T cells 
transduced with either of the two CAR constructs was not altered. Cytotoxicity was determined by LDH release. 
All graphs show mean values of experiments performed at least in triplicates. One representative of three 
independent experiments is depicted. p-values by two-sided unpaired t-test are indicated. p < 0.05 was 
considered statistically significant. 

 

To demonstrate the impact of the CD28 co-stimulatory domain, which is associated with higher T cell 

activation and proliferation, we generated two distinct point mutations within the intracellular 

signaling part of CD28 in the E3 SAR. Here, the YMNM motif is needed for cytokine secretion upon 

activation. The second motif PYAP is required for both cytokine production and cell proliferation 

(Boomer et al., 2010).  
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The single mutant receptors E3-FMNM and E3-AYAA, as well as the double mutant construct 

E3-FMNM-AYAA showed significant reduction in both T cell activation (Figure 14a) and T cell 

proliferation (Figure 14b) compared to the unmutated E3 SAR when stimulated with immobilized 

anti-EGFR antibody. These results highlight the synergistic function of the CD28 domain in 

transduced T cells.  
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Figure 14│ Functional comparison of different E3 SAR with different CD28 signaling moieties. 

E3 SAR, E3-tyrosine-mutated SAR (E3-FMNM), E3-proline-mutated SAR (E3-AYAA) and E3-tyrosine- and proline-
mutated SAR (E3-FMNM-AYAA) or untransduced T cells were cultured on plates pre-coated with anti-CD3 

antibody or with the anti-EGFR antibody cetuximab for 48 h. a│ T cell activation was determined by IFN- 

secretion measured by ELISA. T cells with fully functional E3 SAR secreted higher levels of IFN- than any of the 
mutated versions or the untransduced control. b│ T cell proliferation was determined by cell counting. The 
number of viable cells normalized to counting beads showed the highest proliferation capacity of E3 SAR T cells 
compared to the mutated constructs and to untransduced T cells. All graphs show mean values of experiments 
performed at least in triplicates. One representative of three independent experiments is depicted. p-values by 
two-sided unpaired t-test are indicated. p < 0.05 was considered statistically significant. 

 

5.4 SAR T cells co-administered with BiAb inhibit tumor cell outgrowth in vivo and induce an 

immunological memory 

 

To determine the in vivo efficacy of E3 SAR T cells in combination with BiAb C57BL/6 mice were 

co-injected with Panc02-EpCAM or B16-EpCAM tumor cells and either E3 SAR T cells or BiAb or both. 

In both tumor models, only the combination of E3 SAR T cells with BiAb prevented tumor outgrowth 

and prolonged survival of the cohort (Schmidbauer, 2018). To demonstrate that this effect is also 

relevant for an endogenous EpCAM-expressing cell line, BALB/c mice were injected with 4T1 in 

combination with E3 SAR T cells and BiAb or treated with monotherapy lacking either the SAR T cells 
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or BiAb. Again, tumor outgrowth was significantly delayed (Figure 15a) and the full treatment cohort 

showed a survival benefit and enhanced tumor elimination (Figure 15b). 
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Figure 15│ Combinational therapy of E3 SAR T cells and bispecific antibody prevented mice from tumor 

outgrowth and prolonged survival in 4T1 tumor model. 

1.25 x 105 4T1 tumor cells were injected in the right flank of BALB/c mice. Five mice received a co-injection with 
E3 SAR T cells (effector to target ratio of 10:1), 5 mice received a co-injection with 2 + 2 BiAb (1 µg) and 10 mice 
received a combination of both. Only the combination therapy of SAR T cells and 2 + 2 BiAb a│ delayed or 
prevented tumor growth (mean values and SEM of tumor sizes are shown) and b│ prolonged survival. The 
experiment shown is representative of two independent experiments. Analysis of differences between groups 
for the tumor growth curves were performed using two-way ANOVA with correction for multiple testing by the 
Bonferroni method. p < 0.05 was considered as statistically significant. 

 

To study the impact of the therapy on the induction of an immunological memory, the co-injection 

in vivo studies with either B16-EpCAM or Panc02-EpCAM tumor cells, already performed by Moritz 

Schmidbauer, were repeated and the obtained results could be verified. After 60 days of tumor free 

survival, these mice were re-challenged with a single injection of corresponding tumor cells at the 

same time as untreated control mice. Here, the combination therapy of E3 SAR T cells and BiAb 

induced an antigen-specific immunological memory, which protected the majority of the 

re-challenged mice from tumor recurrence (Figure 16a and 16b).  
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Figure 16│ Combinational therapy of E3 SAR T cells and BiAb-induced immunological memory in pre-

treated mice. 

Tumor free mice from previous the experiment were re-challenged with a│ 2 x 106 Panc02-EpCAM (n=10, 
control n = 2) or b│ 2 x 104 B16-EpCAM (n=8, control n = 3) by subcutaneous injection into the right flank. 
Animals, pre-treated with the combination therapy, showed prolonged survival compared to untreated control 
mice, indicating an immunological memory. The experiment shown is representative of a│ two or b│ one 
independent experiments. Statistical evaluation of the survival analysis was performed using the log-rank test. 
p < 0.05 was considered as statistically significant. 
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5.5 Selective and reversible activation of E3 SAR T cells depends on the abundance of BiAb 

 

For translation into clinical studies, a validated safety profile of the therapy is crucial to avoid 

potentially lethal side effects. Upon occurrence of therapeutic-related toxicities, it is preferred to 

tune down T cell activity rather than depleting the transferred cells. In contrast to CAR T cell therapy, 

the combination of SAR T cells with BiAb incorporates already an intrinsic safety switch as T cell 

activity should resolve with the elimination of the BiAb. To further investigate this aspect, SAR T cells 

were repetitively co-cultured with tumor cells without readjustment of the BiAb concentration. IFN- 

levels decreased rapidly after BiAb dilution following several wash steps. In contrast, redosing of BiAb 

could rescue the anti-tumoral activity of E3 SAR T cells comparable to the level of 

anti-EpCAM CAR T cell (Figure 17). Therefore, the half-life of the BiAb provides a fast and durable 

shut down of T cell activity if needed. 
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Figure 17│Activation of E3 SAR T cells is dependent on presence of the BiAb. 

2 x 104 Panc02-EpCAM tumor cells were cocultured with either 2 x 105 anti-EpCAM CAR or E3 T SAR cells and 
direct addition of 5 µg/ml BiAb. After 24 h supernatants were collected, T cells were washed with medium and 
transferred into a new plate of seeded tumor cells. For the redosage of the BiAb, 5 µg/ml BiAb was added to 
the respective condition. Supernatants were harvested after an additional 24 h and remaining T cell activation 

was determined by IFN- release. Readjustment of BiAb concentration sustained E3 SAR T cell activation 
comparable to anti-EpCAM CAR T cells whereas T cell activation was reversible when the BiAb was washed off. 
Graph shows mean values of experiments performed at in quadruplicates. One representative of two 
independent experiments is depicted. p-values by two-sided unpaired t-test are indicated. p < 0.05 was 
considered statistically significant. 

  



  RESULTS 

40 

 

5.6 In vivo depletion of E3 SAR T cells by targeting the SAR EGFRv3 domain 

 

In addition, if the BiAb decline is not sufficient to ensure rapid reversibility of occurring side effects, 

SAR T cells bear the advantage of the targetable EGFRv3 ectodomain of the E3 SAR. Thus, we made 

use of the clinically approved anti-EGFR antibody cetuximab, which can effectively detect the E3 SAR 

due to the presence of the conserved cetuximab-binding epitope in EGFRv3, to achieve immediate 

and complete depletion of T cells in vivo. A single dose of 1 mg cetuximab per mouse was enough to 

significantly reduce the number of transferred cells after 24 h in all main secondary lymphoid organs 

(Figure 18). 
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Figure 18│ In vivo depletion of transferred E3 SAR T cells by administration of anti-EGFR antibody 

cetuximab. 

C57BL/6 mice were injected intravenously with 107 E3-GFP SAR T cells. 6 h after injection, mice were 
randomized in two groups and received a single dose of 1 mg cetuximab per mouse or vehicle solution 
intravenously (n = 5 mice per group). 24 h after T cell transfer, mice were sacrificed and spleens, lymph nodes, 
blood and lungs were harvested. Single cell suspensions were analyzed for remaining E3-GFP SAR T cell via flow 
cytometry. In all organs, the number of CD3+ GFP+ cells were reduced when mice were infused with cetuximab.  
The experiment shown is representative of two independent experiments. p-values by two-sided unpaired 
t-test are indicated. p < 0.05 was considered statistically significant. 

 

A major part of the data presented here, in particular Figures 4, 5, 6, 8, 9, 10, 11, 17 and 18, is 

currently in the publication process. 
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6 Discussion 

 

The presented study sought to characterize and evaluate the application of SAR T cells in 

combination with BiAb and to provide evidence for further translation in studies in a human system. 

A critical prerequisite for SAR T cell-based treatment strategies is the restriction of specific T cell 

activation and degranulation solely in the tumor tissue expressing the target antigen. This was 

achieved by using a BiAb monovalent for the SAR compared to the bivalent BiAb used for previous 

projects. Mechanistically, SAR T cells mediate anti-tumoral activity mainly by expression and 

induction of FasL while CAR T cells rely on degranulation for functionality. Beneficial for this finding is 

the upregulation of the Fas receptor on tumor cells under inflammatory conditions leading to a 

potentially higher susceptibility to SAR T cell therapy. In vivo, co-application of the combination 

therapy with tumor cells resulted in delayed tumor outgrowth and induced an immunological 

memory preventing mice from tumor recurrence. To further support translational applicability of 

SAR T cells combined with BiAb, the proposed safety switches demonstrated rapid and effective 

reversibility of uncontrolled T cell activation. SAR T cell activity vanishes with the half-life of the BiAb 

and furthermore, transferred T cells can be depleted by targeting the SAR ectodomain with a 

depleting clinical grade antibody.  

 

6.1 The composition of the SAR is crucial for the translation of the platform 

 

The objective of genetically modified T cells for cancer immunotherapy is the reconditioning of a 

tumor-directed cellular immune response (Sadelain et al., 2017). The basis of the approach used for 

adoptive T cell therapy is the physiological antigen recognition by the immunological synapse, which 

is characterized by the interaction of TCR, adhesion molecules and co-stimulatory receptors 

(Finetti et al., 2018). Crucial for the antigen-mediated redirection of the modified T cells is the 

extracellular portion of the transgene-encoded synthetic receptor. This can differ from synthetic 

TCR chains (Dembić et al., 1986), antigen specific scFv (G. Gross et al., 1989) or ligands for binding 

to respective complementary receptors (Altenschmidt et al., 1996; Kahlon et al., 2004) and 

multivalent antibodies (Kobold et al., 2015b). Here, the fusion protein on the T cells was selected to 

be restricted to the transduced T cells to avoid infiltration of T cells into normal tissues. 

 

The SAR used in this study utilizes the ectodomain of the membrane protein human epidermal 

growth factor receptor variant III (EGFRv3) for BiAb binding, which is exclusively expressed on a small 
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subset of certain tumor entities in humans and therefore fulfills the main requirements of restricted 

expression (Li et al., 2008, O'Rourke et al., 2017). EGFRv3 results from the in-frame deletion of exons 

2 to 7 accompanied by the generation of a novel glycine residue at the junction of exons 1 and 8. 

Although the postulated binding site for the natural ligand EGF in the L2 region (domain 3) remains in 

the splicing variant (Woltjer et al., 1992), the novel extracellular domain architecture is unable to 

bind EGF (Gong et al., 2014, Huang et al., 1997). These reports are consistent with previous studies 

on E3 SAR T cells showing that soluble EGF could not trigger a specific T cells response 

(Schmidbauer, 2018). In contrast, the EGFR-specific antibodies panitumumab and cetuximab exhibit 

comparable binding affinities for both EGFR and EGFRv3 (Gong et al., 2014, Patel et al., 2007) which 

unveils further prospects to target and track E3 SAR T cells. However, the ligand-independent 

formation of transient dimers by the EGFRv3 must be carefully considered as the SAR consists of the 

ectodomain of EGFRv3 (Chu et al., 1997). Aggregation of two or multiple SAR molecules can 

potentially lead to unspecific T cell activation. One possible approach to prevent aggregation could 

be the insertion of the CD28 transmembrane domain or to further truncate the EGFRv3 while the 

antibody-binding epitope remains intact. 

 

The choice of the intracellular domains was mainly based both on previous experience from our 

group and published literature on CARs and CAR-like approaches demonstrating that the CD3 chain 

of the TCR is able to induce sufficient signals to mediate immune effector functions 

(Irving et al., 1991, Letourneur et al., 1992, Lim et al., 2017). As shown for CAR T cells, an integration 

of cytoplasmic domains from co-stimulatory proteins such as CD28 (Krause et al., 1998), 4-1-BB 

(Finney et al., 2004) or OX40 (Pulè et al., 2005) results in a superior function in T cell proliferation and 

secretion of immune stimulatory cytokines IL-2 and IFN- (Hombach et al., 2001, Maher et al., 2002).  

Furthermore, we could demonstrate the importance of the CD28 signal for synergistic activity to the 

CD3 since a SAR with mutations in the signaling motifs of the CD28 domains led to altered T cell 

function and proliferation (Boomer et al., 2010).  

 

Recent studies have shown that the selection of the CAR signaling domains can have a significant 

impact on the T cell metabolism and subsequently, on the fate of the T cells. The use of CD28 as a 

co-stimulus for T cells activation can trigger a higher Glut1 surface expression associated with an 

increased reliance on aerobic glycolysis (Frauwirth et al., 2002). This may drive T cell differentiation 

into short-lived T effector cells which can be beneficial to reduce off target toxicities due to the 

insufficient persistence of transduced cells. Congruently, SAR T cells utilizing the CD28 co-stimulatory 
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domain appeared to expand into a large effector memory cohort after specific activation with the 

BiAb (Schmidbauer, 2018). 

 

In contrast, CAR T cells utilizing 4-1BB co-stimulatory domains showed an enhanced fatty acid 

oxidation which is characteristic for memory T cells. This findings match the superior proliferation 

and persistence of 4-1BB over CD28 CAR T cells as memory T cells are known to be long-lived T cells 

(Porter et al., 2015). Furthermore, the incorporation of the 4-1BB domain resulted in an increased 

capacity to generate mitochondrial mass providing a survival advantage within the tumor 

microenvironment (Kawalekar et al., 2016). Based on this data, future studies should aim to elucidate 

whether a mixture of 4-1BB and CD28 CAR T cells might have a superior outcome to a single 

CAR T cell population. Here, the endogenous immune response with an early dominance of T effector 

cells and the later appearance and persistence of memory T cells would be more mimicked. For 

SAR T cells it remains to be proven, whether the addition or change of co-stimulatory domains to 

4-1BB could result in further or even synergistic activity (Wilkie et al., 2008) and a phenotypically 

differentiation towards a memory T cell population. 

 

6.2 BiAb can facilitate specific T cell activation and broaden the spectrum of tumor targets 

 

Similar to the high demands on SAR, the design and composition of the BiAb must be carefully 

scrutinized. 

 

Early studies on T cell activation with antibodies binding to parts of the TCR such as anti-CD3 are the 

rationale for the engineering of the BiAb (Minguet et al., 2007). In this setting, bi- or multivalent anti-

CD3ε antibodies such as OKT3 were used to activate T cells by TCR clustering thereby inducing 

conformational changes, a property which seems to be lost for monovalent antibodies. Similarly, the 

BiAb bivalent for the SAR was able to induce spontaneous SAR T cell activation to some degree by 

crosslinking two receptors. This ability was lost for the monovalent BiAb and could only be restored 

by immobilizing the tumor-associated binding moiety of the antibody either by attachment to a 

plastic surface or to antigen presentation by tumor cells.  

 

Another decisive advantage of the presented SAR platform is selective activation solely of the 

transferred SAR T cells by the marker antigen EGFRv3. In contrast, other approaches utilizing 

bispecific antibody formats such as BiTE use the pan-T cell marker CD3 as the T cell recruiting 
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domain, leading to a tremendous and unspecific activation of the entire T cell population. This 

frequently induces severe CRS in treated patients (Teachey et al., 2013). Further clinical studies 

including BiTE reveled that also the number of immunosuppressive regulatory T cells (Tregs), 

recruited and activated by the BiTE, increased and which consequently serves as a negative 

predictive factor (Duell et al., 2017).  

 

As the BiAb is indispensable for reliable SAR T cell activation it provides a highly adjustable element 

in the system. The modularity of the whole platform is driven by a flexible exchange of the targeted 

tumor antigen which can be achieved by the rapid replacement of the respective BiAb. Also the BiAb 

itself can be further engineered to target more than one TAA simultaneously as it is already shown 

for a triplebody targeting CD19, CD16 and CD33 at once (Schubert et al., 2011). This can enhance the 

specificity of the approach while reducing the risk of tumor immune escape due to TAA down 

regulation. In addition, T cell stimulating cytokines such as IL-2 or IL-12 can be fused to the BiAb to 

further stimulate and attract T cells within the tumor microenvironment (Rudman et al., 2011). Also 

conceivable is the application of a BiAb mixture, targeting a variety of predicted antigens restricted 

to a certain tumor entity. Here, the likelihood to eradicate not only the primary lesion, but also 

metastasis with diverging gene signatures and biomarker expression patterns (Vignot et al., 2012) 

might be ameliorated compared to single targeted therapies. To elucidate this synergistic potential of 

different BiAb, further tumor specific target antigens must be identified and validated. Given that the 

model antigen used in this study EpCAM is widely expressed on a variety of healthy epithelial tissues, 

including pancreas, lung, bile ducts and intestine (Amann et al., 2008) it is likely that the BiAb is 

retained by these organs and therefore cannot reach the tumor leading to an insufficient 

anti-tumoral response by the SAR T cells. 

 

Furthermore, the affinities of both, the EGFRv3 and the TAA binder must be carefully considered. The 

affinity of a ligand to its receptor or the respective antibody can be described by the binding 

constants KD, where low values indicate a high affinity. It has been shown that antibodies with lower 

affinities might be able to discriminate between normal cells and tumor cells over-expressing the 

target antigen (Garrido et al., 2011). A high affinity towards the tumor cells can also result in an 

almost exclusive binding of the BiAb to the target cells, creating a T cell-activating matrix on their 

surface. This is in favor to facilitate serial killing mediated by the effector cells. In addition, lower 

binding affinities of the BiAb to the T cells foster the disengagement of target and effector cells to 

ensure movement of T cells (Hoffmann et al., 2005). The BiAb used in this study is based on already 
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published antibody clones with a KD (anti-EGFRv3; MR1.1) of 1,5 x 10-9 for the SAR and KD 

(anti-EpCAM; G8.8) of 6,1 x 10-8 for the target antigen (Farr et al., 1991, Kuan et al., 2000). Here, the 

higher binding affinity for the SAR indicates a preferentially engagement of the BiAb with the T cells 

which might induce extensive T cell-target cell clustering and thereby hamper serial killing.  

 

Thus, the design and composition of both, SAR and BiAb, must be precisely evaluated to ensure a 

focused interplay of both therapeutic components and to reduce potential off-target effects.  

 

6.3 Modular approaches combining transduced T cells with nanobodies or antibodies 

 

The rapid development of monoclonal antibodies, BiAbs and also nanobodies for cancer 

immunotherapy conceded a new field of strategies to possibly tune down the intrinsic potency of 

genetically engineered T cells. With titratable recombinant proteins, the immunological synapse 

formation between target and transferred effector cells can be precisely controlled and monitored. 

One of the most advanced products is the “universal CAR” (UniCAR), a CAR specifically redirected 

against a short peptide motif of 10 amino acids derived from a human nuclear protein. The 

separately applied target module compromises a tumor-specific binding domain fused to the peptide 

motif recognized by the UniCAR (Cartellieri et al., 2015). This approach showed already great success 

in preliminary in vitro and in vivo studies, but the short half-life of the nanobody requires continuous 

infusion which can potentially limit the clinical application of the therapy. Further examples are 

Fc-specific CAR T cells, utilizing the CD16 receptor to elicit anti-tumoral activity in combination with 

TAA-specific monoclonal antibodies (Kudo et al., 2014) or anti-FITC CAR T cells engaging with 

FITC-tagged small molecules (Kim et al., 2015). Overall, these switchable CAR T-cell dosing regimens 

bear the advantages of being adaptable to a broader range of target antigens and are furthermore 

accompanied by lower levels of cytokine secretion compared to conventional CAR T cells. However, 

the use of synthetic molecules, not naturally occurring in the human body, might lead to 

immunogenicity issues, thus limiting the translation potential of the approaches. In particular, for the 

CD16-CAR, the unspecific activation by circulating or tissue-bound antibodies has to be further 

elucidated. 

 

The concept of SAR T cells presented in this study effectively bypass these circumstances by availing 

only endogenously expressed molecules, which are however restricted to malignant tissue, thus 

ensuring no occurrence of immunogenicity. Furthermore, the platform includes a switch to modulate 
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T cell activity but also provides the opportunity to target and deplete the T cells as a last resort. 

Hence, SAR T cells approximate the efficiency of CAR T cells combined with the high flexibility of 

other modular approaches, but display a superior safety profile, providing evidence for clinical 

translation. 

 

6.4 SAR T cells utilize predominantly the Fas-FasL axis to mediate target cell lysis   

 

For the effective lysis of infected or malignant cells by cytotoxic T lymphocytes, two major 

mechanisms have been described. The first mode of action relies on the expression of membrane 

bound tumor necrosis factor (TNF) family ligands which are capable to induce apoptosis through 

engagement of the respective death receptor. Here, TRAIL and FasL (CD95L) have been proven to 

have an essential role in this interaction (Griffith et al., 1995, Wang et al., 2003). Another mechanism 

of redirected target cell killing is the release of secretory granules containing lytic proteins such as 

perforin and serine proteases of the granzyme family (Darcy et al., 2000, Isaaz et al., 1995). It has 

been shown that the interaction of TNF receptors and their ligands play a major role in the immune 

cell maturation (Strasser et al., 1995) and homeostasis (Takahashi et al., 1994) whereas the secretion 

of perforin and granzyme eradicates malignant cell populations (Kägi et al., 1994, Smyth et al., 2000).  

 

Consistent with these reports and the present study, CAR T cells mainly utilize the perforin–granzyme 

axis to mediate target cell lysis (Darcy et al., 2000, Davenport et al., 2015) and were inefficient when 

perforin-deficient T cells were used. Although the same mode of action through the identical 

signaling moieties was expected, SAR T cells maintain their lytic capacity in the absence of perforin 

and granzyme B. Here, FasL was identified to be predominantly involved in tumor cell killing. 

Remarkably, this unexpected finding for E3 SAR T cells could be verified in all tumor models tested 

and was found to be transferable to the whole platform when tested with a different SAR and the 

respective BiAb.  

 

Fas and FasL play a major role in modulation of immune function and are the main perpetrators for 

activation‐induced cell death (AICD). Upon TCR stimulation, T cells shown an induction in FasL 

expression. The engagement with its receptor Fas has been reported to be critical for the elimination 

of activated T cells during termination of acute immune responses (Nguyen et al., 2001). The suicide 

and fratricide among the activated cytotoxic T lymphocytes can be beneficial for protection from 

unwanted immune responses but also leads to hampered proliferation and removal of T cells. 
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Therefore, FasL as the predominate mediator of target cell lysis by SAR T cells can potentially favor 

the induction of AICD and fratricide, which so far has not been observed for in vitro cell culture. 

Furthermore, the impact of the co-stimulatory domains CD28 or 4-1BB on AICD is controversially 

discussed for the design and construction of CAR T cells (Boussiotis et al., 1997, Kerstan et al., 2004, 

Mamonkin et al., 2016). Exchange of the CD28 with the 4-1BB co-stimulatory domain might lead to 

an increased surface expression of the apoptotic mediator FasL on SAR T cells (Gomes-Silva et al., 

2017), reveling further aspects to strengthen SAR T cell effectivity. In addition, SAR lacking the CD28 

co-stimulatory domain were not altered in their killing mechanism, pointing towards a sufficient 

endogenous expression of the ligand. Consequently, it is assumed that the unique mode of action for 

SAR T cells in combination with BiAb is more driven by the influence of the BiAb rather by the 

receptor itself.  

 

Another important aspect is the ability of tumor cells to evade immunological detection by the 

expression of FasL. Various cancer entities show a high surface expression of FasL, thus inducing 

apoptosis in infiltrating T cells expressing Fas (Bennett et al., 1998, Koyama et al., 2001, 

Motz et al., 2014). Tumors can therefore counterattack Fas-bearing immune cells to overcome 

rejection and in addition participate in the destruction of the immune system. Also, the expression of 

FasL on the tumor vasculature provides a selective immune barrier to effectively prevent T cell 

infiltration. Consequently, the combination of ACT and FasL blockade in mice resulted in a synergistic 

treatment effect with enhanced T cell homing and prolonged overall survival of the cohort 

(Motz et al., 2014). As FasL is essential for anti-tumoral activity of SAR T cells, this approach cannot 

be taken into consideration for the therapeutic platform. Furthermore, Fas-FasL interaction has been 

reported to be also involved in promoting malignant tumor growth (Ceppi et al., 2014, 

Chen et al., 2010). Thus, tumor response must be carefully monitored during SAR T cell therapy to 

immediately interrupt treatment if any evidence for a tumor-promoting impact occurs.  

 

The underlying molecular processes for these mutually exclusive modes of action for SAR T cells in 

contrast to CAR T cells have not been fully investigated and require future studies to give more 

insights in the distinct mechanisms. So far, this study clearly demonstrates a separation of the 

SAR T cell approach from other engineered T cell-based therapeutic strategies.  
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6.5 SAR T cells include two incorporated safety switches to ensure rapid reversibility of T cell 

activation 

 

A prerequisite for ACT with genetically engineered CAR T cells is the expression of distinct TAA on the 

tumor tissue that serve as targets. The lack of antigens solely restricted to the tumor bears the risk of 

severe and lethal side effects such as CRS (Beatty et al., 2014a, Lee et al., 2014) or the damage of 

healthy tissue expressing the TAA (Morgan et al., 2010, Wang et al., 2014). Patients suffering from 

such accompanying symptoms of ACT commonly require intensive care often including systemic 

treatment with high doses of corticosteroids (Lee et al., 2015). The concurrent ablation of the 

transferred CAR T cells results in a decreased anti-tumoral response (Davila et al., 2014) and could 

potentially lead to further disease relapses. An alternative strategy is the application of the IL-6 

receptor blocking antibody tocilizumab to reverse the symptoms of CRS (Maude et al., 2014). Further 

safety switches such as the incorporation of suicide genes (Casucci et al., 2013, Jensen et al., 2010) or 

the use of depleting argents such as antibodies (Paszkiewicz et al., 2016) are already in clinical 

development. The drawback of these strategies is the total elimination of the CAR T cell population, 

depleting the active anti-tumoral compound.  

 

One of the most used strategy in clinical settings to ensure the rapid removal of uncontrolled 

CAR T cells utilizes the expression of the herpes simplex thymidine kinase (HSV-TK) as a suicide gene 

in the engineered T cells. Upon administration of the antiviral prodrug ganciclovir, T cell activity 

should vanish immediately. But the mechanism of action involves interference with DNA synthesis, 

leading to an incomplete and delayed T cell elimination with prolonged progression of side effects. 

Moreover, the HSV-TK derives from a virus and is therefore potentially immunogenic itself 

(Bordignon et al., 1995, Ciceri et al., 2009, Jones et al., 2014). Considering the challenges, the use of 

viral enzymes might not be acceptable in the acute occurrences of toxicities and live threatening 

events for the patient.  

 

A very advanced and effective approach is the use of an inducible caspase 9 (iCasp9) suicide system, 

which couples caspase 9 to a drug-sensitive binding protein. Administration of the synthetic molecule 

AP1903 induces dimerization of the fusion construct resulting in T cell apoptosis. T cells expressing 

the iCasp9 were systemically eliminated 30 min after infusion of AP1903 accompanied by the 

abrogation of all clinical symptoms (Zhou et al., 2015). Unfortunately, the depletion of the 

transferred cells rescinds their therapeutic potential and might result in a disease relapse. Therefore, 
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approaches to modulate the activation of either the switch or the T cells themselves are potential 

strategies to overcome this issue. 

 

In contrast to T cell ablation, this study illustrates that the dependency of SAR T cell activity is 

restricted to the half-life of the BiAb and vanishes rapidly with BiAb clearance. Hence, SAR T cells 

would remain inactive in the patient but anti-tumoral activity could be restored upon re-dosing of 

the BiAb after resolution of potential side effects. Furthermore, SAR T cells utilize a variant of an 

endogenous, non-immunogenic surface protein for the specific activation of T cells and thus cannot 

trigger an immunogenic rejection of the therapy. Also, the BiAb with an inert human Fc part, should 

not interfere with the patients’ immune system and additionally can be engineered with a half-life 

according to therapeutic schedule. 

 

Nevertheless, if a situation occurs in which it is necessary to completely ablate the SAR T cells, the 

clinical grade anti-EGFR antibody cetuximab can be applied systemically to deplete E3 SAR T cells by 

targeting the SAR ectodomain EGFRv3. Upon engagement of the SAR, cetuximab immediately 

prevents the binding of the BiAb and induces antibody-dependent cellular cytotoxicity (ADCC) and 

complement-dependent cytolysis (CDC) of SAR T cells (Kimura et al., 2007). As demonstrated here, 

the numbers of transferred SAR T cells were reduced significantly in less than 24 h after cetuximab 

administration.  

 

6.6 Co-administration of SAR T cells and BiAb delays tumor outgrowth and induces an 

immunological memory in mice 

 

Previous studies from our group already showed increased survival when tumor cells over-expressing 

EpCAM are co-administrated with SAR T cells and an EpCAM- and SAR T cells-engaging BiAb 

(Schmidbauer, 2018). These findings were confirmed with endogenous EpCAM-expressing tumor 

cells to rule out any genetic alteration in the tumor cells occurring from retroviral transduction. The 

main reason for selecting this co-application model was to substantiate the in vivo tolerance of the 

gene-modified SAR T cells and to determine potential off-target toxicities. Thus, the therapeutic 

success indicates that the engineered T cells in an immunocompetent experimental animal are not 

subject to premature elimination due to high immunogenicity. Furthermore, this efficacy test 

demonstrates that modification, expansion and re-infusion with these artificial constructs is 

technically feasible without observing systemic or local toxicity. 
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Interestingly, cured mice were protected from tumor recurrence even when inoculated again with 

the respective tumor cells subcutaneously. As no additional SAR T cell transfer was conducted, the 

first treatment induced an immune response against antigen-bearing tumor cells resulted from the 

release of secondary tumor antigens by dying target cells. These antigen spread can initiate a 

subsequent immune response including secretion of antibodies specific for cancer-related proteins. 

The occurrence of immunotherapy-induced antigen spread is already reported for various clinical 

trials (Chapuis et al., 2016, Hardwick et al., 2011) and is associated with a beneficial outcome of the 

therapy. In contrast to chemo- and radiotherapy, where the tumor burden decreases quickly after 

treatment initiation, immunotherapy often results in a slowdown of diseases progression. However, 

effects from conventional tumor therapy are known to be short-lived after treatment cessation. 

Therefore, even with delayed treatment responses, immunotherapy bears a tremendous advantage 

due to the induction of a new protective immunological memory.  

 

This study could demonstrate that SAR T cell therapy is accompanied by antigen spreading and the 

establishment of a robust, durable and adaptable immune responses over a long period of time. 

Future studies might aim to identify new specific tumor antigens involved in the spread. 

Furthermore, the kinetics of tumor clearance by immunotherapy strongly encourage an earlier 

treatment initiation as patients with lower tumor burden already showed better clinical response 

(Kwon et al., 2014).  

 

6.7 Limitations and drawbacks of the applied model for in vivo efficiency evaluation 

 

Overall, the experimental setup of the co-injection model raises some issues which do not allow any 

final assessment of the in vivo efficacy for the treatment of established tumors with SAR T cells. In 

this setting, neither the migratory capacity of SAR T cells towards the tumor nor the resistance to the 

immunosuppressive microenvironment can be addressed.  

 

The most advanced T cell-based therapies have limited activity against solid tumors which mainly 

results from an impaired migration and infiltration of the T cells to the tumor tissue 

(Bernhard et al., 2008, Fesnak et al., 2016). Whether SAR T cells can overcome these difficulties could 

not be elucidated in this in vivo treatment model and remains still unanswered. A potential strategy 

to enhance the recognition of malignant tissue and to guide transferred T cells specifically to the 
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tumor site involves additional engineering of T cells with selected chemokine receptors 

(Rapp et al., 2016). Therefore, prospective studies could include the combination of SAR T cells with 

chemokine receptors to improve the migration towards solid tumors.  

 

Another drawback of cellular immunotherapy is the immunosuppressive microenvironment of most 

solid tumor entities. The inhibition of an anti-tumoral immune response is either mediated by 

cell-cell interactions or the secretion of inhibitory cytokines (Beatty et al., 2014b) which leads to 

T cell anergy or exhaustion. Several strategies to face these challenges are already in clinical or 

pre-clinical development. The co-expression of a dominant-negative transforming growth factor-β 

(TGFβ) receptor type II shields the modified T cells from this tumor-derived, suppressive cytokine 

(Foster et al., 2008). A key axis of immune cell suppression is the engagement of the programmed 

cell death protein 1 (PD-1) on the effector cell with its ligand (PD-L1) expressed by the target cell. The 

thereby mediated inhibitory signals for the T cells can limit the duration and strength of the adaptive 

immune response and lead to a potential immune evasion by the tumors (Blank et al., 2004, 

Dong et al., 2002). Thus, the addition of a PD-1-CD28 hybrid receptor could convert T cell inhibitory 

signals into a co-stimulus to further boost the immune response (Kobold et al., 2015a). Furthermore, 

the application of anti-PD-1- or anti-PD-L1-blocking antibodies achieved a marked increase of 

treatment response in clinical trials (Brahmer et al., 2012, John et al., 2013, Topalian et al., 2012) and 

is thus approved by the U.S. Food and Drug Administration for various cancer entities such as 

metastatic melanoma (Beaver et al., 2017), non-small cell lung cancer (Kazandjian et al., 2016, 

Sul et al., 2016) or Hodgkin’s lymphoma (Kasamon et al., 2017).  

 

This highlights the diversity of prospects to further arm and engineer SAR T cells to create more 

powerful and adaptable strategies for directed cancer immunotherapy.  

 

6.8 Conclusion and perspectives 

 

In summary, this thesis describes a novel therapeutic platform for ACT for targeting a broad variety 

of solid tumor entities as well as hematological diseases. The combination of SAR T cells with the 

respective BiAb allows a fast and flexible exchange of the targeted TAA independent of MHC 

presentation without substitution of the transferred modified T cells. In this context, the co-

application of two or more BiAb specific for several TAAs expressed by the tumor should be taken 

into account to reduce the risk of tumor escape by TAA downregulation. This therapeutic concept 
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could be beneficial for targeting primary tumors as well as secondary lesions and metastasis with 

diverging gene signatures and biomarker expression patterns (Vignot et al., 2012) and should be 

evaluated in further studies.  

 

A critical prerequisite for T cell-based treatment strategies is the tolerance, efficiency and safety of 

genetically engineered T cells in patients. The in vivo co-application of SAR T cells and BiAb in 

immunocompetent mice demonstrates, that these requirements are fulfilled. However, the 

treatment of established and vascularized tumors remains elusive. In order to enhance the in vivo 

efficacy of SAR T cells for solid tumors, more BiAb for truly cancer-specific antigens must be validated 

for their applicability to the platform. Furthermore, additional engineering of the BiAb should be 

taken into consideration. Here, dual targeting of various TAAs, the addition of an anti-PD-1 scFv or 

the incorporation of T cell stimulatory cytokines such as IL-12 might bear the potential to ameliorate 

the therapeutic outcome of SAR T cell therapy. 

 

The suitable dosage and administration of both the SAR T cells and the BiAb should not be 

overlooked. Here, the most commonly recommended method for T cell application is the intravenous 

infusion of the cell product. For the BiAb, intravenous or intratumoral injection or the implantation of 

a subdermal sponge-like biomimetic cryogel releasing the agent in vivo (Bachmann et al., 2018) are 

possible strategies to deliver the antibody. Furthermore, combination therapy with 

immunomodulatory small molecules as IDO inhibitors or lenalidomide and the blockage of 

checkpoint molecules such as PD-1 or CTLA-4 can provide additional synergistic effects to the 

SAR T cell treatment (Beatty et al., 2017, John et al., 2013, Ramsay et al., 2012).  

 

  



  SUMMARY 

53 

 

7 Summary 

 

Genetically engineered T cells are powerful anti-cancer treatments but are limited by safety and 

specificity issues. By utilizing the advantages of currently used approaches based on cellular and 

antibody constituents, our group created a new therapeutic platform for adoptive T cell therapy of 

solid malignancies. Combing autologous T cells, expressing a targetable activating receptor (SAR) 

with bispecific antibodies (BiAb) provides MHC-independent tumor antigen recognition, selective 

recruitment and simultaneous activation of T cells with integrated safety switches.  

 

This thesis identifies the importance of the BiAb format used for the platform, the mode of action 

used by SAR T cells to mediate an anti-tumoral response and the functionality of the implemented 

safety mechanisms to control unwanted T cell activation.  

 

In previous studies, the BiAb used was bivalent for both, the SAR and the tumor-associated antigen, 

leading to unspecific T cell activation due to crosslinking of two SAR T cells. Here, a selective 

activation of SAR T cells dependent on BiAb monovalency for the SAR was demonstrated. 

Unexpectedly, FasL appeared to have a major impact in SAR T cell-mediated tumor cell lysis. In 

contrast, CAR T cells targeting the same tumor antigen utilized predominantly granzyme and perforin 

for target cell killing. 

 

T cell activation vanished with the clearance of the BiAb, demonstrating the superior safety profile of 

the therapeutic strategy. In addition, adoptively transferred SAR T cells could be effectively depleted 

in vivo by administration of the clinical grade antibody cetuximab, allowing fast elimination of the cell 

product if required. Overall, the functional data presented here display a potent anti-tumor activity, a 

distinct mode of action and enhanced safety of the SAR T cell therapeutic approach. This provides the 

basis for further translation into human studies. 
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9 List of abbreviations 

ACT    Adoptive cell transfer 

ADCC    Antibody-dependent cell-mediated cytotoxicity 

ADCP    Antibody-dependent cellular phagocytosis 

ALL    Acute lymphatic leukemia 

APC    Allophycocyanin 

BiAb    Bispecific antibody 

CAR    Chimeric antigen receptor 

CD    Cluster of differentiation 

cDNA    Complementary deoxyribonucleic acid 

CDR    Complementarity determining region 

CMC    Complement-mediated cytotoxicity 

CRS    Cytokine release syndrome 

CTL    Cytotoxic T lymphocyte 

ddH2O    Double deionized water 

DMEM    Dulbecco’s modified Eagle’s medium 

DMSO    Dimethyl sulfoxide 

DNA    Deoxyribonucleic acid 

dNTP    Deoxyribonucleoside triphosphate 

EGF    Epithelial growth factor 

EGFR    Epithelial growth factor receptor 

EGFRv3    Epithelial growth factor receptor, transcript variant III 

ELISA    Enzyme-linked immunosorbent assay 

EpCAM    Epithelial cell adhesion molecule 

Fab    Fragment antigen binding 

FasL    Fas ligand 

Fc    Fragment crystallizable 

FBS    Fetal bovine serum 

FITC    Fluorescein isothiocyanate 

GzmB    Granzyme B 

IFN    Interferon 

Ig    Immunoglobulin 

IL    Interleukin 
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mAb    Monoclonal antibody 

MFI    Mean fluorescent intensity 

MHC    Major histocompatibility complex 

mRNA    Messenger RNA 

NHL    Non-Hodgkin lymphoma 

PBS    Phosphate-buffered saline 

PCR    Polymerase chain reaction 

PE    Phycoerithrin 

PerCP    Peridinin chlorophyll A protein 

PerCPCy5.5   Peridinin chlorophyll  A protein-cyanin 5.5 

RNA    Ribonucleic acid 

RPMI    Roswell Park Memorial Institute 

RTK    Receptor tyrosine kinases 

SAR    Synthetic agonistic receptor 

scvF    Single chain variable fragment 

SEM    Standard error of mean 

TAA    Tumor-associated antigen 

TCR    T cell receptor 

TIL    Tumor-infiltrating T cell 

TME    Tumor microenvironment 

Tregs    Regulatory T cells 

TRAIL    Tumor necrosis factor-related apoptosis inducing ligand 

WHO    World health organization 
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