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Abstract 
 

BACE1 is the initiating enzyme responsible for the generation of the pathogenic 

amyloid beta (Aβ) and therefore a major drug target in Alzheimer’s disease. On one 

hand, therapeutic BACE1 inhibition leads to reduced Aβ production but on the other 

hand it causes unwanted side effects due to loss of cleavage of additional BACE1 

substrates besides APP. Different proteomic studies have identified several 

membrane proteins as potential BACE1 substrate candidates, but most of them have 

not been validated nor functionally characterized.  

Here, seizure protein 6 (SEZ6) was validated as an exclusive BACE1 substrate both 

in primary neurons and in the brain of BACE1 knock-out (BACE1KO) mice. 

Additionally, I demonstrate that the soluble ectodomain of SEZ6 (sSEZ6) generated 

by BACE1 cleavage is strongly reduced in the CSF of BACE1KO mice, suggesting 

that sSEZ6 is an excellent biomarker for monitoring BACE1 activity. While it is known 

that BACE1 mediated-cleavage of SEZ6 controls dendritic spine density and LTP, 

little is known about the molecular functions of SEZ6. To this aim, I applied a novel 

proteomic technique to determine how loss of SEZ6 affects the surface proteome of 

primary neurons. Surprisingly, I found that SEZ6 specifically controls surface levels of 

a subclass of glutamate receptors with key functions in neurotransmission. 

Mechanistic analyses suggest that SEZ6 is required for glutamate receptor transport 

and maturation along the secretory pathway and may influence synaptic 

transmission.  

Taken together my results prove that SEZ6 is a major substrate of BACE1, both in 

vitro and in vivo. Moreover, I investigated the possibility to use sSEZ6 as a potential 

companion diagnostic to monitor BACE1 activity in patients treated with BACE 

inhibitors and I discovered a novel function of SEZ6 as glutamate receptor regulator. 
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1. Introduction 
 

1.1 Dementia and Alzheimer's disease (AD) 
 
AD is a complex multifactorial neurodegenerative disease, leading to dementia 

symptoms such as cognitive impairment and neuropsychiatric symptoms [1]. In 2005, 

Alzheimer Disease International estimated that 24 million people were affected by 

dementia in the 14 World Health Organization regions considered in this study. 

Additionally, this study estimated 4.6 million new cases of dementia occur every year 

(one new case every 7 seconds) and that the number of affected people will be 

almost double every 20 years to 42.7 million by 2020 and 82 million by 2040 [2]. The 

same analysis run in 2013, which estimated that 48.1 million and 90.3 million people 

will be affected by dementia in 2020 and 2040 respectively [3]. Considering that up to 

70% of dementias occurring in older adults are attributed in whole or in part to AD, 

AD is considered the most common cause of dementia nowadays [4,5]. 

In addition, according to the Alzheimer's Association costs of health care, long-term 

care and hospice for individuals with AD and other dementias were three times higher 

than payments for people in the same age group without dementias [6]. It was also 

estimated that total payments in 2016 in USA for all individuals with AD and other 

dementias are $236 billion, making AD one of the most expensive chronic diseases to 

society [6,7]. Yet, current available treatments for AD are only symptomatic and 

unable to impede the progressive pathogenesis of AD. Therefore, considering the 

strong impact AD has on patients and society, there is a worldwide effort to better 

understand its molecular mechanism, delay its onset, and prevent it from developing. 

 
1.1.1 AD: neuropathology and amyloid β  
 

AD leads to specific neuron and synapse loss and is neuropathologically 

characterized by the presence of neurofibrillary alterations mainly composed by 

abnormal Tau proteins, and amyloid plaques mainly composed by amyloid beta (Aβ) 

peptides. Neurofibrillary alterations include strands of abnormal Tau proteins located 

within nerve cell bodies (neurofibrillary tangles) and within their dendritic processes 

(neuropil threads), and neuritic plaques as a result of abnormal fibrous material which 

accumulates in swollen cellular processes and extracellular ‘tombstone’ tangles 
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Figure 1: Amyloid cascade hypothesis and Aβ generation. Amyloid precursor protein (APP) 
is first cleaved by β-secretase (also referred to as the aspartyl protease BACE1), followed by 
γ-secretase cleavage. This double cleavage leads to Aβ generation and secretion. Aβ can form 
oligomers, which are neurotoxic through mechanisms involving the Tau proteins, leading to 
inflammation in the brain and neurodegeneration. Aβ aggregates are visible in the brain of AD 
patients upon autopsy as amyloid plaques, whereas Tau forms hyperphosphorylated-Tau 
aggregates. APP can also be shed by the α-secretase ADAM10, which cleaves APP in the 
middle of the Aβ domain, thus preventing APP from being converted to Aβ or being cleaved by 
other proteases (η- and δ-secretase). Taken from Saftig and Lichtenthaler, 2015 (order 
number: 4564920472620) 

localized at the sites at which the host nerve cells are perished [8]. Amyloid plaques 

are extracellular deposits composed mainly, but not exclusively, of Aβ peptides. 

Plaques occur in different sizes and shapes and most of them evolve as globular 

structures with or without a condensed core [8]. 

Aβ peptides are generally considered the main neurotoxic species in AD pathology. 

Aβ peptides are arisen from amyloid precursor protein (APP) by a first proteolytic 

cleavage mediated by BACE1 (β-secretase or β site amyloid precursor protein 

cleaving enzyme 1 [9]) and a subsequent cleavage by γ-secretase (Fig. 1) [10]. This 

double cut generates hydrophobic peptides highly prone to aggregate into high order-

oligomers and subsequently form insoluble amyloid fibrils [11]. Insoluble amyloid 

fibrils were believed to be the main source of toxicity that causes synaptic 

abnormalities and the breakage of neuronal processes [12,13]. 
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However, it was shown that oligomeric Aβ assemblies cause substantial neuronal 

dysfunctions even before the appearance of fibrillar amyloid deposits, indicating an 

important role of oligomeric assemblies in AD pathogenesis [14,15,11]. The 

mechanism of Aβ toxicity has been studied extensively and many theories have been 

proposed. Recently, in addition to the well-established role of Aβ in mediating 

neurotoxicity, emerging evidences show that Aβ can activate a local inflammatory 

process astrocytes and microglia-mediated [16]. Taken together, pharmacological 

modulation to slow down Aβ generation may be a potential treatment for AD. 
 
1.1.2 BACE1 in AD 
 

Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) is the aspartyl 

protease that mediates the first cleavage of APP; thereby it is the key initiating 

enzyme to generate the neurotoxic Aβ peptide [9]. Protein levels of BACE1 and its 

activity have been found to increase in the brain of AD patients as compared to the 

healthy controls [17-19]. This evidence suggests that increase in BACE1 might initiate 

or accelerate AD pathogenesis [20]. Additionally, it is known that the APP Swedish 

mutation (KM670/671NL), which leads to early onset of familial AD, causes enhanced 

APP cleavage mediated by BACE1, which is sufficient to induce AD pathogenesis 

[21,22]. On the opposite side, the Icelandic mutation (A673T) in the APP gene, which 

reduces approximately 40% of Aβ production for the entire lifespan, is protective 

against AD and cognitive decline [23]. Considering these evidences, BACE1 is a 

prime target for drug development in AD and the possibility of reducing Aβ production 

by inhibiting BACE1 have been extensively pursued [24,25].  

 

BACE1 inhibitors have been shown to reduce Aβ levels both in preclinical and clinical 

phase [26-34]. On the other hand, side effects due to the loss of BACE1 were 

reported in BACE1KO mice and mice treated with BACE1 inhibitors (see Table 1 and 

section 1.1.3)  [35-38]. 

For example, Cheret et al. showed that BACE1 is required for formation and 

maturation of muscle spindles and therefore it is essential to maintain motor 

coordination [38]. Savonenko et al. showed a sensori-motor-gating deficiency, 

behavioral signs of glutamatergic hypo-function, and other typical endophenotypes of 

schizophrenia-like behavior in BACE1KO mice [39]. Kobayashi et al. demonstrated 
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that BACE1KO mice perform worse than wild-type mice in hippocampal-dependent 

learning tasks and in a motor coordination test [40]. Additionally, several groups 

reported impaired synaptic plasticity and impaired spatial and working memory in 

BACE1KO mice [40-42,36]. 

Likewise, patients enrolled in different clinical trials reported some side effects upon 

treatment with BACE inhibitors and this cause the termination of several clinical trials 

in the last years. For example in 2017 Merck stopped the EPOCH trial (SCH 900931, 

P07738) of verubecestat in mild to moderate AD for “virtually no chance of finding a 

positive effect” [43] and just one year later also the Merck’s APECS trial (SCH 

900931), aiming to test the same drug in people with prodromal AD, was stopped 

because “was unlikely that positive benefit/risk could be established if the trial 

continued” (official Merck communication, pressed February 13, 2018). In the same 

year Janssen decided to terminate the EARLY phase 2b/3 trial of atabecestat (also 

known as JNJ-54861911) in preclinical AD because “elevations of liver enzymes, 

which were serious in nature, have been observed in some study participants who 

received the Janssen BACE inhibitor, atabecestat” (official Janssen communication, 

pressed May 18, 2018). Previously, Eli Lilly’s LY2811376 (Phase 1) and LY2886721 

(Phase 2) and Roche’s RG7129 were also dismissed because of off-target side 

effects, including liver toxicity for LY2886721. In addition, some mild memory deficits, 

psychiatric symptoms and tendency to fall/get injuries were also described upon 

treatment with BACE inhibitors in subgroups of patients [43]. In addition to the 

described side effects, no cognitive benefits were reported so far in patients treated 

with BACE inhibitors.  

 

1.1.3 BACE1 substrates 
 

The phenotypes described in mice lacking BACE1 activity result most likely from the 

absence of processing of other essential BACE1 substrates besides APP. The loss of 

neuregulin-1 processing for example, leads to hypomyelination and loss of muscle 

spindles seen in BACE1KO mice. The neuregulin-1 EGC-like region is no longer 

released and is therefore not available to stimulate axon myelination [44-46,38]. 

Likewise, loss of cleavage of the cell adhesion protein CHL1 has been linked to axon 

guidance defects in BACE1KO mouse brains [47]. Additionally, the hyperexcitability 

and spontaneous seizures described in the BACE1KO mice may be explained by loss 
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of cleavage of voltage-gated sodium channels β subunit (VGSC β) [48,49]. Recently, 

reduced LTP, spine density and spine plasticity were reported in SEZ6KO mice and 

these features could be reproduced in BACE1 inhibitor treated mice, which indicates 

that the lack of SEZ6 processing by BACE1 is responsible for these phenotypes [37]. 

Conclusively, it becomes clear that the substrates and functions of BACE1 need to be 

carefully examined in order to fully evaluate the therapeutic potential of BACE1 and 

possible side effects of pharmacological BACE1 inhibition in patients [20]. 

 

A part of the most known BACE1 substrates such as APP [50], several novel BACE1 

substrates have been identified in different proteomic studies [51-55], among which 

the seizure protein 6 (SEZ6, also known as seizure related protein 6) and its 

homolog seizure protein 6 like (SEZ6L) were exclusive substrates of BACE1 [52,55]. 

A third family member, SEZ6L2, was also among the BACE1 substrates, but was not 

only cleaved by BACE1 but also by additional proteases, probably including 

Cathepsin D [52,53,56]. 
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BACE1KO Mouse Phenotype Reference 
Altered neurogenesis and astrogenesis Hu, X. et al. (2013) 

Axonal targeting errors 
Rajapaksha, T.W. et al. (2011); Cao, L. et 
al. (2012) T; Hitt, B. et al. (2012) 

Epileptic-like seizures 
Hu, X. et al. (2010); Kobayashi, D. et al.; 
Hitt, B.D. et al. (2010) 

Higher lethality Dominguez, D. et al. (2005); Hu, X. et al. 
(2010) 

Hypomyelination 
Willem, M. et al. (2006) Hu, X. et al. 
(2006); Hu, X. et al. (2008) 

Impaired growth cone collapse Barão, S. et al. (2015) 

Impaired spatial and working memory 
Laird, F.M. et al. (2005); Kobayashi, D. et 
al. (2008); Filser, S. et al. (2014) 

Impaired synaptic plasticity 
Laird, F.M. et al. (2005); Kobayashi, D. et 
al. (2008); Wang, H. et al. (2008); Filser, S. 
et al. (2014) 

Reduced muscle spindles Cheret, C. et al. (2013) 
Reduced spine density Savonenko, A.V. et al. (2008) 
Retinal pathology Cai, J. et al. (2012) 

Schizophrenia-like phenotypes 
Kobayashi, D. et al.; Savonenko, A.V. et al. 
(2008) 

Timid and less exploratory Harrison, S.M. et al. (2003) 

  

Table 1: Summary of the phenotypes described in BACE1KO or BACE inhibitor- treated 
mice. Modified from Barao et al., 2016 
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1.2 The Seizure protein 6 family 

 

The protein SEZ6 is a particularly interesting BACE1 substrate for several reasons. 

First, the ectodomain cleavage of the transmembrane protein SEZ6 is almost 

exclusively dependent on the BACE1 activity. Additionally, SEZ6 was reported to play 

critical roles in neuronal development and functions [57]. Some phenotypes present 

in SEZ6KO mice, such as reduced anxiety levels and cognitive deficits were also 

described in BACE1KO mice, suggesting that BACE1 may regulate the functions of 

SEZ6 in the nervous system [57]. 

 

1.2.1 Expression and domain structure of Seizure protein 6 family 
 

SEZ6 mRNA was found upregulated in cortical neurons treated with the convulsant 

drug pentylene-tetrazole (PTZ), but, nowadays no prove of SEZ6 involvement in 

epilepsy- or PTZ-susceptibility was found [58]. Different SEZ6 isoforms are produced 

by alternative splicing of the SEZ6 mRNA: two (Sez6 type I and type II) are cell-

surface proteins with a single transmembrane domain (transmembrane type 1), and 

Sez6 type III is a secreted isoform. The third splice form, Sez6 type III, has been 

described on the mRNA level and is a truncated soluble protein, but has never been 

detected on the protein level [59,57]. 

The SEZ6 extracellular region includes protein-protein interaction domains: CUB 

(complement subcomponent C1r, C1s/sea urchin embryonic growth factor Uegf/bone 

morphogenetic protein 1) and SCR (short consensus repeat) (Fig. 2). The SEZ6 C-

terminal domain was predicted to contain a NPxY binding motif, which is commonly 

involved in protein endocytosis and it is reported to be important for the internalization 

of SEZ6L2, another member of the SEZ6 family [60,56]. 

The other two family members of the SEZ6 family, Seizure-related 6 Like protein 

(SEZ6L) and Seizure-related 6 Like 2 protein (SEZ6L2) have more than 40% identity 

and 60% similarity with SEZ6. The similarity is particularly high in the CUB and SCR 

domains, which are important for protein-protein interaction (alignment done with 

EMBOSS Stretcher, using SEZ6 Uniprot sequence Q7TSK2, SEZ6L Uniprot 

sequence Q6P1D5 and SEZ6L2 Uniprot sequence Q4V9Z5-1). 
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Figure 2: Schematic representation of SEZ6/SEZ6L structure and hypothesized 
proteolytic processing. SEZ6 proteins contain three CUB domains, five SCR domains and 
a NPxY motif. It was suggested that, similarly to APP, BACE1 cleaves SEZ6/SEZ6L 
generating a soluble ectodomain (sSEZ6/sSEZ6L) and a C-terminal fragment (F1). F1 would 
be further cleaved by γ -secretase producing two additional fragments, F2 and F3. The 
function of these fragments remains unexplored. Figure modified from Pigoni et al., 2017 

The three family members have a peculiar spatial and temporal expression pattern. 

SEZ6 is mainly expressed in neurons with highest expression in embryonic and 

postnatal neocortex [61,59,62,63]. In adult mouse brain, SEZ6 expression is reduced 

but remains detectable in mid-cortical layers, olfactory tubule, cingulate cortex and 

hippocampus (mainly in the CA1) [61]. SEZ6L has been mainly studied in brain, but 

there are mounting evidences indicating that this protein is also expressed in other 

cell types and organs such as pancreatic cells and lung [55,64].  
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As compared to SEZ6, SEZ6L levels in the brain are relatively constant during the 

postnatal stages [59] and it is expressed ubiquitously in all regions with highest 

expression in the cerebellum and Purkinje cells [59,65]. Similar to SEZ6L, SEZ6L2 

was also detected in pancreatic cells and in lung [55,66]. In the brain, SEZ6L2 is 

widely expressed in the gray matter with high levels in the olfactory bulb, anterior 

olfactory nuclei, hippocampus and cerebellar cortex and its level remain constant 

during aging [59]. 

 

1.2.2 The SEZ6 family in disease 
 

In general, mutations in SEZ6 have been linked to psychiatric disturbances and 

neurodevelopmental disorders in several genome-wide association studies, even if no 

evidence of a mechanism or causative role of SEZ6 was ever shown. Ambalavanan 

et al. described a de novo variant of SEZ6 sequence associated with Childhood-onset 

schizophrenia (COS) and speculate that SEZ6 might be a good candidate as a COS 

predisposing gene [67]. Maccarrone et al. found significantly increased levels of 

SEZ6 ectodomain (sSEZ6) in the CSF of bipolar disorder, major depressive disorder 

and schizophrenia patients in comparison to controls [68]. Additionally, genetic 

variants of SEZ6 genes have been associated with severe intellectual disability [69] 

and increased susceptibility for febrile seizures [70,71]. A mutation in the SEZ6L2 

gene was associated with bipolar disorder [72] and mutations in both SEZ6L and 

SEZ6L2 genes with autism [73,74]. 

SEZ6 was also found to be associated with neurodegenerative diseases, in particular 

AD. Reduced levels of sSEZ6 have been found in the CSF of AD patients as 

compared to healthy controls [75] and recently, a rare variant of SEZ6 (R615H) was 

linked to late-onset AD in a large Italian family carrying no typical FAD-linked 

mutations [76]. 

 
1.2.3 Molecular functions of the SEZ6 family 
 

Even if SEZ6 knock-out (SEZ6KO) mice have been generated more than ten years 

ago and several phenotypes of SEZ6KO mice have been described [57], the 

molecular functions of SEZ6 are still largely unknown. However, given that Sez6 

mRNA is highly expressed in the developing forebrain, it is reasonable to assume that 
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SEZ6 plays a critical role in the development and functions of neocortex, 

hippocampus and thalamus. At the behavioral level, SEZ6KO mice displayed 

impaired primary motor ability, long-term memory deficit and decreased anxiety levels 

[57]. Behavioral phenotypes also correlate with morphological alterations in neurons. 

As compared to WT control, SEZ6KO neurons increased complexity of dendritic 

branches but reduced spine numbers [57,37]. Additionally, the number of functional 

excitatory connections and long term potentiation (LTP) are significantly reduced in 

SEZ6KO mice [57,37]. A similar reduction of excitatory synaptic transmission was 

also found in SEZ6L and SEZ6L2 deficient neurons, resulting in reduced frequency 

and amplitude of intracellular calcium elevations and neuronal network activity [77]. 

In addition, considering that the structure of SEZ6 is rich in CUB and SCR domains, 

both are involved in protein-protein interactions [78] and are contained in a number of 

neurotransmitter receptor-binding proteins such as SOL-1, SOL-2 and LEV-10 [79-

86], SEZ6 and related family members might be involved in cell-cell adhesion or in 

the regulation of ionotropic neurotransmitter receptors. Indeed, supporting this notion, 

it was recently published that SEZ6L2 binds both glutamate receptor 1 (GluR1) and 

Adducin, forming a protein complex and acting similarly to a scaffolding protein [87]. 

Taking all together, I proposed and found a novel function of SEZ6 as a regulator of 

glutamate ionotropic receptors.  
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Left side table 2: Classification and nomenclature of major ionotropic glutamate 
receptors (iGluRs). Old nomenclature (“Old nomenclature”), gene name according to the 
Human Genome Organisation Internationa (“HUGO”) and new nomenclature according to the 
International Union of Basic and Clinical Pharmacology (“IUPHAR”) are reported. 

Right figure 3: Schematic representation of iGluRs structure. TM: transmembrane domain. 

1.3 The Kainate ionotropic receptors GluK2 and GluK3 

 

The ionotropic glutamate receptor (iGluR) family comprises three major subfamilies 

named after their pharmacological agonists: α-amino-3-hydroxy-5-methylisoxazole-4-

propionic acid (AMPA), N-methyl-D-aspartate (NMDA), and kainate (KA) receptors 

(Table 2) [88]. KARs, similarly to all the other iGluRs, have a tetrameric subunit 

composition which consists of an extracellular N-terminal domain (NTD), three 

transmembrane domains, a re-entrant loop penetrating the plasma membrane from 

the intracellular side, and a cytoplasmic C-terminal domain (CTD) (Fig. 3) [89,90]. 

The ligand-binding domain (LBD) of KARs consists of two lobes, formed by the S1 

and S2 domains of the subunit (Fig. 3). KARs are further classified into two 

subgroups: low-affinity (GluK1, GluK2 and GluK3) and high-affinity (GluK4 and 
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GluK5) subunits. Low affinity subunits can assemble as homomeric or heteromeric 

tetramers, while GluK4 and GluK5 have to co-assemble in a complex with low-affinity 

subunits to form functional KARs. GluK2 and GluK3 are low affinity subunits, and 

therefore they can form both homomeric and heteromeric complexes.  

Additionally, GluK2 and GluK3 diversity is further increased by alternative splicing 

that might occur at the CTD and generates GluK2a, GluK2b and GluK2c and GluK3a 

and GluK3b, respectively. 

 

1.3.1 Regulation and surface localization of GluK2 and GluK3  
 

Multiple mechanisms are known to control trafficking and surface localization of 

kainate receptors in general and in particular to GluK2 and GluK3. Some of these are 

dependent from intrinsic properties of the receptors themselves such as alternative 

splicing, editing of mRNA, differential assembly of different subunits, post-

translational modifications. Several other proteins are also known to be important 

modulators of the trafficking and activity of GluK2 and GluK3 [91]. 

For example, both splice variants GluK2a and GluK3a contain a cell surface 

trafficking motif rich in basic residues (873 RRXKXK 878), which makes these 

subunits be efficiently targeted to the cell surface, while GluK2b and GluK3b are 

partially retained in the ER [92,93]. Not only GluK2a and GluK3a are efficiently 

exported when in homomeric structures, but also in heteromeric assembly GluK2a 

and GluK3a promote the trafficking to the cell surface of otherwise ER-retained 

subunits [92-94]. This indicates that assembly of different subunits is indeed a critical 

control step for the membrane trafficking of the receptors. Furthermore, Q/R editing 

of GluK2 mRNA leads to attenuated oligomerization, decreased ER exit as well as 

stability, and ultimately leads to a reduced surface expression of GluK2(R)-containing 

KARs  [95]. Moreover, it was shown that disruption in ligand binding domain (LBD) of 

GluK2 or its co-assembly with mutated GluK5 subunits with reduced agonist-affinity 

leads to lower surface levels and intracellular retention of the complex [96,97]. These 

evidences suggest that conformational changes occurring upon agonist binding to 

the subunits, are a prerequisite for efficient exit from the ER and represent a step of 

quality control for further trafficking of assembled receptors [97]. Several post-

translational modifications influence GluK2 and GluK3 abundance at the cell surface. 
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Among these, phosphorylation (PKC- and PKA- mediated), palmitoylation and 

SUMOylation are known to regulate surface levels of KARs and the subsequent 

kainate-receptor-mediated synaptic transmission in response to different stimuli [98-

101]. 

1.3.2 Proteins interacting and regulating GluK2 and GluK3 
 

GluK2/3 and other KARs are known to interact with several proteins mainly belonging 

to the SAP family and to other PDZ or CUB domain-containing, or BTB-Kelch protein 

family members [91]. For example, postsynaptic density protein 95 (also known as 

PSD-95 or SAP-90), SAP-102 and SAP-97 were proven to directly interact with 

GluK2 and the interaction with PSD-95 promotes GluK2 clustering and thereby 

influences the electrophysiological properties GluK2 [102,103]. In addition to the SAP 

family, other PDZ domain proteins such as PICK1 (protein interacting with PRKCA 1), 

GRIP (glutamate receptor interacting protein 1), and syntenin bind GluK2 and these 

interactions not only modulate KARs synaptic transmission, but also seem to be 

involved in KARs stabilization at the cell surface [99]. 

More recently, two CUB domain-containing proteins have been identified as 

accessory subunits essential for the modulation of pharmacological and gating 

properties of KARs: Neuropilin and Tolloid-like 1 and 2 proteins (NETO 1 and 

NETO2) [81]. Conflicting data have been reported as to whether these two proteins 

regulate trafficking and synaptic localization of KARs [104]. Zhang et al. showed that 

NETO2 does not influence the surface abundance of GluK2 in the heterologous X. 

laevis oocyte system [81], whereas Tang et al. described a reduction of GluK2-

containing KARs in the PSD of cerebella in NETO2 knock-out mice, while the overall 

GluK2 protein level was not altered [104]. Additionally, Straub et al. showed that no 

obvious change in the surface abundance of GluK2/3 can be observed in acute 

hippocampal slices of NETO1 knock-out mice [85], but a reduction of GluK2- and 

GluK5-containing KARs in the PSDs of NETO1 and NETO1/2 knock-out hippocampal 

neurons has been reported by Tang et al. [86]. Additionally, BTB-Kelch protein family 

plays a critical role in the regulation of KARs. For example, KRIP6 (kainate receptor 

interacting protein for GluR6) alters functional properties of GluK2 without affecting 

plasma membrane levels of the receptor [105], whereas actinfilin is implicated in 

targeting GluK2 for degradation [106]. 
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1.3.3 Kainate ionotropic receptors in disease 
 

Ionotropic kainate receptors play a critical role in the development of synaptic 

connectivity and in the maturation of neuronal networks both in embryonal and early 

post-natal stages [107]. Indeed, a two-step model of neuronal synaptogenesis was 

suggested, in which KARs may be activated by low concentrations of glutamate early 

in development and this activation may promote neuronal filopodia motility. Once the 

nascent synapse is established, higher concentrations of glutamate may lead to 

lower motility and to the stabilization of the new synaptic contact [108]. 

Considering the important function of KARs in brain development, it is not surprising 

that KARs have been linked to several brain disorders such as mood disorders and 

epilepsy. Evidences of altered KARs expression in schizophrenic post-mortem brains 

have been provided by several groups both at mRNA and protein level [109-113]. For 

example, Scarr et al. showed a reduction of GluK1 mRNA in the hippocampus, 

parahippocampus and prefrontal cortex of schizophrenic brains [111] and Garey 

found a significant reduction of GluK1/2/3-positive neurons in the cortex of 

schizophrenic patients [112]. On the other hand, no difference of KAR subunits 

expression was detected in thalamic nuclei of schizophrenic brains by Dracheva et al. 

[114]. Interestingly, Tucholski et al. showed that the glycosylation of KARs is also 

altered in schizophrenia patients, suggesting that the altered glutamate 

neurotransmission in schizophrenia may involve abnormal trafficking of KARs [115].  

In addition, deletions of the Grik2 gene have been associated to mental retardation 

[116] and mania [117,118]. SNPs in the Grik3 gene have also been shown in linkage 

disequilibrium with depressive disorder patients [119,120] and patients with 

schizophrenia [121,122]. In addition to mood disorders, mounting evidences showed 

an involvement of KARs in the excitatory to inhibitory imbalances connected to 

epilepsy. Considering that kainate administration in mice is used as a model of 

epilepsy and that GluK2 KO mice display reduced sensitivity to develop seizures after 

KA administration, it was suggested that KARs play an important role in the KA-

mediated over-excitability that leads to epilepsy [123]. Indeed, antagonists of GluK1 

were shown to be able to abolish epileptic activity and seizures both in in brain slices 

and in vivo in a mouse of epileptiform activity [124]. In addition, mutations of Grik1 
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gene represent a major genetic risk to the pathogenesis of juvenile absence 

epilepsy-related phenotypes [125].  

 

On the basis of these important research findings, my aim was to validate SEZ6 as a 

major BACE1 substrate in neurons and investigate how BACE1 inhibition impacts on 

SEZ6 proteolytic processing. Furthermore, l extensively studied the molecular 

functions of SEZ6 in neurons with the aim to identify novel functions for SEZ6 and 

molecular mechanisms in which SEZ6 in involved. Third, I will investigate how the 

loss of BACE1-mediated SEZ6 cleavage influences these functions. These aspects 

will help to better understand how SEZ6 acts physiologically in neurons and to reveal 

the mechanisms that lead to the previously described phenotypes related to SEZ6 

deficiency or BACE1 inhibition. 
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Abstract

Background: The protease BACE1 (beta-site APP cleaving enzyme) is a major drug target in Alzheimer’s disease.
However, BACE1 therapeutic inhibition may cause unwanted adverse effects due to its additional functions in the
nervous system, such as in myelination and neuronal connectivity. Additionally, recent proteomic studies
investigating BACE1 inhibition in cell lines and cultured murine neurons identified a wider range of neuronal
membrane proteins as potential BACE1 substrates, including seizure protein 6 (SEZ6) and its homolog SEZ6L.

Methods and results: We generated antibodies against SEZ6 and SEZ6L and validated these proteins as BACE1
substrates in vitro and in vivo. Levels of the soluble, BACE1-cleaved ectodomain of both proteins (sSEZ6, sSEZ6L)
were strongly reduced upon BACE1 inhibition in primary neurons and also in vivo in brains of BACE1-deficient
mice. BACE1 inhibition increased neuronal surface levels of SEZ6 and SEZ6L as shown by cell surface biotinylation,
demonstrating that BACE1 controls surface expression of both proteins. Moreover, mass spectrometric analysis
revealed that the BACE1 cleavage site in SEZ6 is located in close proximity to the membrane, similar to the
corresponding cleavage site in SEZ6L. Finally, an improved method was developed for the proteomic analysis of
murine cerebrospinal fluid (CSF) and was applied to CSF from BACE-deficient mice. Hereby, SEZ6 and SEZ6L were
validated as BACE1 substrates in vivo by strongly reduced levels in the CSF of BACE1-deficient mice.

Conclusions: This study demonstrates that SEZ6 and SEZ6L are physiological BACE1 substrates in the murine brain
and suggests that sSEZ6 and sSEZ6L levels in CSF are suitable markers to monitor BACE1 inhibition in mice.

Keywords: Alzheimer’s disease, BACE1, BACE2, Secretase, Neuroproteomics, Biomarker, SEZ6, SEZ6L

Background
The β-secretase BACE1 (β-site APP cleaving enzyme) is
a key drug target in Alzheimer’s disease (AD) [1].
BACE1 cleaves the amyloid precursor protein (APP) and
thus catalyzes the first step in generation of the amyloid
β peptide (Aβ) [2–5], which has a critical role in AD
pathogenesis [6]. BACE1 is highly expressed in the
nervous system and contributes to additional physio-
logical processes besides its role in AD, e.g. through
neuregulin-1 cleavage in myelination and CHL1 cleavage

in axon targeting [7–12]. Moreover, several phenotypic
changes were described in BACE1-/- mice, such as
epileptic seizures, schizophrenic symptoms, increased
mortality and altered insulin metabolism, but most of
the BACE1 substrates contributing to these phenotypes
still need to be determined [13]. Their identification and
validation would also allow the estimation of potential
liabilities of BACE inhibitors in AD clinical trials and the
use of BACE1 substrate cleavage products, in addition to
Aβ, as possible companion diagnostics to monitor
BACE1 inhibition in animals and patients.
More than 40 substrate candidates for BACE1 were

identified in recent proteomic studies in murine neurons
or cerebrospinal fluid (CSF), but only a few of them have
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been validated to date with functional or in vitro assays,
including L1, CHL1, ENPP5 and PTPRN2 [12, 14–16].
The three members of the seizure protein 6 (SEZ6)

family, namely SEZ6, SEZ6-like (SEZ6L) and SEZ6-like 2
(SEZ6L2) have been identified as candidate BACE1 sub-
strates in different studies [15, 17], but have not yet been
validated in detail. The SEZ6 family controls synaptic
connectivity and motor coordination in mice [18, 19], but
little is known about the functions of these proteins at the
molecular level. How BACE1-cleavage influences the func-
tion of SEZ6 and SEZ6L has not been investigated so far.
Interestingly, several of the identified BACE1 substrate

candidates were also found to be cleaved by other prote-
ases. As a result, substrate cleavage was only partly
blocked upon BACE1 inhibition or BACE1-deficiency [14,
15], limiting the use of these substrates or their cleavage
products as potential biomarkers to monitor BACE1 in-
hibition in vivo. In contrast, the two type I membrane pro-
teins SEZ6 and its homolog SEZ6L appeared to be almost
exclusively cleaved by BACE1 in neurons [15], making
them potential biomarkers for BACE activity in vivo. The
third family member, SEZ6L2, appeared to be mostly
cleaved by proteases other than BACE1 [15, 17]. After the
proteomic identification of SEZ6 as a BACE1 substrate
candidate, SEZ6 was also shown to undergo reduced
cleavage in BACE1-/- mouse brains [15]. However, the
proteomic data for SEZ6L have not been validated by
other methods and another proteomic study using pancre-
atic cells and tissue failed to confirm SEZ6L as a BACE1
substrate. Instead, that study demonstrated that SEZ6L is
cleaved by the BACE1-homolog BACE2 in pancreas [17].
To resolve whether SEZ6 and SEZ6L are bona fide

BACE1 substrates in brain, we generated monoclonal
antibodies against both proteins and validated SEZ6 and
SEZ6L as BACE1 substrates in murine neurons and
brain. Additionally, SEZ6 and SEZ6L levels at the neur-
onal surface were controlled by BACE1, as demonstrated
by cell surface biotinylation. Finally, we used a whole
proteome analysis of CSF from BACE-deficient mice and
found that the soluble ectodomains of SEZ6 and SEZ6L
in CSF were most strongly reduced among all BACE1
substrates identified, suggesting their use as potential
biomarkers in CSF to monitor BACE1 activity in mice.

Methods
Materials
The following antibodies were used: pAb SEZ6 [18],
newly generated monoclonal SEZ6 and monoclonal
SEZ6L (described below), pAb SEZ6L2 (R&D Systems,
AF4916), pAb SEZ6L (R&D Systems, AF4804), 3D5 (kindly
provided by Robert Vassar), pAb BACE2 (Santa Cruz,
sc-10049), calnexin (Enzo, Stressgen, Farmingdale, NY,
USA, ADI-SPA-860), β actin (Sigma, A5316), LDLR (R&D
system, AF2255), rat mAb HA 3F10 (Roche, 11867423001),

Flag M2 (Sigma, F1804), anti-DYKDDDDK (Biolegend, L5),
anti-V5 (ThermoFisher, R960-25), HRP coupled anti-mouse
and anti-rabbit secondary (DAKO), HRP coupled anti-goat,
anti-rat and anti-sheep (Santa Cruz), biotinylated goat
anti-rat IgG (Vector Laboratories), SULFO-TAG labelled
anti-sheep (MSD, R32AI-1). The following reagents and
media were used: neurobasal medium, HBSS and B27
(Invitrogen), C3 (β-secretase inhibitor IV; Calbiochem,
565788, final concentration 2 μM), DAPT (D5942 Sigma,
final concentration 1 μM), ON-TARGETplus Bace2
siRNA SMARTpool, ON-TARGETplus Non-targeting
Pool (Dharmacon, L-040326-00-0005 and D-001810-
10-05, respectively), FlexiTube GeneSolution siRNA
for Bace1 and AllStars Negative Control siRNA (Qiagen,
GS23821 and SI03650318, respectively).

Mouse strains
The following mice were used in this study: wild type
(WT) C57BL/6NCrl (Charles River), BACE1-/- (Jackson
Laboratory, strain B6.129- Bace1tm1Pcw/J, BACE1 KO),
SEZ6-/- (SEZ6 KO) [18], SEZ6 family triple knockout
(TKO) mice lacking SEZ6, SEZ6L and SEZ6L2 [19] and
SEZ6L2-/- (SEZ6L2 KO, bred from SEZ6 family TKO
[19]). For the CSF experiments the following mice were
used: WT, single BACE1-/- (BACE1 KO), single
BACE2-/- (BACE2 KO), double BACE1-/- BACE2-/-
(BACE DKO) knockout mice [20]. All mice were on a
C57BL/6 background and were maintained on a 12/12 h
light-dark cycle with food and water ad libitum.

Antibody production in rat
Monoclonal antibodies against murine SEZ6 (clone 14E5,
IgG1) and murine SEZ6L (clone 21D9, IgG2a) were gener-
ated using standard procedures [21]. Briefly, a cDNA
(HIS-mmSEZ6-HIS) was generated encoding murine
(mus musculus) SEZ6 ectodomain (mmSEZ6, aa: 29-869,
lacking the endogenous signal peptide) with an N- and C-
terminal HIS tag, fused to an N-terminal CD5 signal pep-
tide. The CD5 signal peptide allows for efficient secretion
of the recombinant protein and is removed upon expres-
sion by signal peptidase, yielding HIS-mmSEZ6-HIS. The
other cDNA (mmSEZ6L-1xStrepII) encoded murine
SEZ6L ectodomain with its endogenous signal peptide
(mmSEZ6L, aa: 1-812) and a C-terminal 1xStrepII tag.
cDNA constructs were expressed in HEK293T cells and
recombinant proteins were purified from the supernatant
and used for immunization of rats.

Immunohistochemistry
DAB immunostaining: Brains from 4 % paraformalde-
hyde perfusion-fixed SEZ6 TKO (n = 4) and WT (n = 7)
adult mice were cryosectioned and underwent sequential
incubation in BLOXALL (Vector Laboratories), 4 %
Bovine Serum Albumin (BSA, Sigma Aldrich) and 0.1 %
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Triton X-100 (Sigma Aldrich) in phosphate buffered
saline (PBS), and avidin/biotin (Avidin/Biotin Blocking
Kit, Vector Laboratories). Sections were incubated over-
night with monoclonal rat anti-SEZ6 or SEZ6L primary
antibodies diluted in 2 % BSA and 0.3 % Triton X-100 in
PBS. Sections were washed with PBS, incubated with
biotinylated goat anti-rat IgG (Vector Laboratories) and
processed using the VECTASTAIN ABC Kit (Vector
Laboratories) and ImmPACT DAB peroxidase substrate
as chromogen (Vector Laboratories) according to manu-
facturer’s instructions. Some sections were counterstained
with haematoxylin. Primary or secondary antibodies were
omitted on sections in each experiment to confirm stain-
ing specificity. Low power images were acquired on a
Mirax slide scanner and high power images were acquired
at 63× magnification on a Zeiss Axio microscope.

Molecular biology
pcDNA3.1/HA-SLIC-Flag-mmSEZ6 was generated clon-
ing full-length Mus musculus SEZ6, transcript variant 1
(Uniprot Q7TSK2-1) without signal peptide in pcDNA3.1
vector using Gibson assembly protocol as previously
described [14]. The signal peptide of SEZ6 was replaced
by the CD5 signal peptide, followed by a short tag
resulting from sequence and ligase independent cloning
(SLIC) [22], and an HA tag (YPYDVPDYA). A FLAG
tag (DYKDDDDK) was cloned to the C terminus of the
protein. pcDNA3.1/HA-SLIC-Flag-empty was used as
control. pcDNA3.1/Flag-V5-hSEZ6-HA was generated
cloning full-length Homo sapiens SEZ6, transcript
variant 1 (Uniprot Q53EL9-1) into pcDNA3.1 vector.
Following the endogenous signaling peptide, a Flag and
V5 (PIPNPLLGLDST) tag were inserted, separated by a
10 amino acid glycine/serine linker sequence. An HA
tag was cloned to the C terminus of the protein.

Transfection and stable line generation
HEK293T stably expressing pcDNA3.1/HA-SLIC-Flag-
mmSEZ6 or pcDNA3.1/HA- SLIC-Flag-empty as control
were generated and cultured as previously described
[14]. Cells were seeded in plates coated with Poly-D-
lysine (Sigma, P6407). After 24 h medium was replaced
with fresh medium supplemented with either C3, DAPT
or DMSO as control. Collection of supernatants and cell
lysates (described below) was done after 24 h. MIN6
were cultured in the same conditions, supplementing
the medium with 2 mM L-glutamine and 50 μM β-
mercaptoethanol (all from Invitrogen). Cells were
transfected with 10 nM of BACE1, BACE2 and respect-
ive control siRNA using Lipofectamine RNAiMAX
(Invitrogen, 13778-150), according to manufacturer’s
instructions. Forty-eight hours post transfection,
medium was replaced and cells were incubated for 24 h
before collection of supernatants and cell lysis.

For drug inhibition studies, MIN6 cells were trans-
fected with pcDNA3.1/Flag-V5-hSEZ6-HA as described
above. Stable cell lines were generated using Geneticin
(Gibco) selection pressure (800 μg/ml). MIN6 cells sta-
bly expressing Flag-V5-SEZ6 were seeded at a concen-
tration of 300,000 cells/well in Falcon 24-well tissue
culture plates (Corning, 353047). After 72 h, the medium
was removed and replaced with fresh medium containing
BACE inhibitors. Cells were treated with a nonselective
BACE inhibitor (Compound A: (4aR,6R,8aS)-8a-(2,4-
difluorophenyl)-6-(3-methylisoxazol-5-yl)-4a,5,6,8-tetrahy-
dro-4H-pyrano[3,4-d] [1, 3] thiazin-2-amine [23], and 2
BACE1-selective inhibitors (Compound B: (5S)-2-amino-
5-(2,6-diethyl-4-pyridyl)-3-methyl-5-(3-pyrimidin-5-ylphe
nyl)imidazol-4-one (AZD3839) [24] or Compound C:
(5S)-2-amino-5-(2,6-diethyl-4-pyridyl)-3-methyl-5-(3-pyri-
midin-5-ylphenyl)imidazol-4-one [25]. After 24 h of drug
incubation, medium was removed, centrifuged to remove
floating cells/cell debris (4000xg, 10 min), and analyzed
for soluble shed Flag-V5-hSEZ6 as described below. For
evaluation of endogenous SEZ6L shedding, wild-type
MIN6 cells were seeded as above, and medium was re-
placed with drug-containing Opti-MEM (Gibco). After
24 h of drug exposure, Opti-MEM was removed and cen-
trifuged to remove cell debris.

Cellular Aβ assay
Cellular activity was assessed using the human SK-N-
BE(2) neuroblastoma cell line expressing the wild-type
amyloid precursor protein (hAPP695). BACE inhibitors
described above were diluted and added to the cells, in-
cubated for 18 h, and then measurements of Aβ42 were
taken. Aβ42 was measured by a sandwich αlisa assay
using biotinylated antibody (AbN/25) attached to
streptavidin-coated beads and antibody (cAb42/26) con-
jugated acceptor beads. In the presence of Aβ42, the
beads come into close proximity. The excitation of the
donor beads provokes the release of singlet oxygen mol-
ecules that triggers a cascade of energy transfer in the
acceptor beads, resulting in light emission. Aβ42 was
quantified on an EnVision Multimode plate reader (Per-
kin Elmer) with excitation at 650 nm and emission at
615 nm.

Enzymatic BACE1 and BACE2 assay
Primary BACE1 and BACE2 enzymatic activity was
assessed by a FRET assay using an amyloid precursor
protein (APP) derived 13 amino acids peptide contain
the “Swedish” Lys-Met/Asn-Leu mutation of the APP β-
secretase cleavage site as a substrate (Bachem, M-2465)
and soluble BACE1(1 − 454) (Aurigene, Custom made)
or soluble BACE2 (Enzo, BML-SE550). The APP peptide
substrate (Mca-SEVNLDAEFRL(Dnp)RR-NH2) contains
two fluorophores: 1) (7-methoxycoumarin-4-yl) acetic
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acid (Mca), a fluorescent donor with excitation wave-
length at 320 nm and emission at 405 nm and, 2) 2,4-
dinitrophenyl (Dnp), a proprietary quencher acceptor. An
increase in fluorescence is linearly related to the rate of
proteolysis. BACE1 or BACE2 were incubated with
substrate and the inhibitor for 120 min in a 384-well plate.
The amount of proteolysis is measured by fluorescence
measurement in the Fluoroskan microplate fluorometer
(Thermo Scientific). For the low control, no enzyme was
added to the reaction mixture.

Mesoscale (MSD) detection of sFlag-V5-SEZ6 and sSEZ6L
Detection of Flag-V5-SEZ6 and SEZ6L was done in
Mesoscale Discovery MULTI-ARRAY 96-well plates
(L15XA-3 or L15XB-3 respectively). sFlag-V5-SEZ6 was
quantified using anti-DYKDDDDK Tag capture antibody
(L5, Biolegend, 10 μg/ml), mouse monoclonal anti-V5
Epitope Tag detection antibody (R960-25, ThermoFisher,
1:20000 dilution) and SULFO-TAG labeled Protein A
(1:4000 dilution) for anti-mouse quantification. SEZ6L
was quantified by coating 30 μl of Opti-MEM medium
diluted 1:25 in PBS to MSD High Bind plates overnight
at 4 °C, followed by detection with 25 μl of R&D System
anti-SEZ6L (AF4804, 2 μg/ml) and SULFO-TAG labeled
Anti-Sheep antibody (MSD, R32AI-1, 1 μg/ml). For both
assays, blocking and antibody dilutions were done in
0.1 % Blocker™ Casein (ThermoFisher) in PBS. Detection
was done using 2× concentration of Read Buffer T
(MSD, R92TC-1). Data were transformed to 0–100 %
activity based on low controls (2.5 μM nonselective
BACE inhibitor with nM potency) and high controls
(0.02 % DMSO) within the same plate. IC50s were calcu-
lated in Graphpad Prism using the four parameter variable
slope nonlinear fit model. All curves are based on
biological replicates with at least two technical replicates.

Isolation of primary neurons
Neurons from WT mice were isolated at E15/E16 and
cultured as described previously [26]. After 5 days in vitro
(DIV), neurons were washed with PBS and medium was
replaced with fresh neurobasal supplemented with C3 or
DMSO as control. After 48 h (7 DIV), supernatants from
neurons were collected and cells were lysed.

Cell lysate preparation
Supernatants from neurons, HEK293T and MIN6 cells
were collected and cells were lysed as described
previously [14]. Protein concentrations were quanti-
fied with an BCA assay (Uptima Interchim, UP95425)
and 15–20 μg of total neuronal lysate, 8–10 μg of
HEK293T lysate and 15–20 μg of MIN6 lysate were
used for Western Blot analysis.

Brain fractionation
Brains were isolated from P7 BACE1 KO mice and WT
littermates. SEZ6 KO, SEZ6L2 KO and SEZ6 TKO and
WT brains were collected from 4 to 5 month old male
mice. All brains were processed as previously described
[15]. Protein concentrations were quantified with an
BCA assay (Uptima Interchim, UP95425) and 15–20 μg
of total protein were used for Western Blot analysis.

Murine CSF sampling
CSF was extracted from single BACE1 KO, BACE2 KO,
BACE DKO mice and WT controls according to a previ-
ously described protocol [27]. CSF was put into a 0.5 ml
LoBind tube (Eppendorf), centrifuged for 5 min at 800 ×
g, and transferred to a fresh tube and frozen at −80 °C.
For mass spectrometric analysis 7 WT and 7 BACE DKO
were sampled and 5 μl of each CSF sample was used.
Immunoblots for the analysis of murine CSF were
performed using 5 or 4 μl of CSF.

Western blot analysis
Samples were boiled for 5 min at 95 °C in Laemmli buffer.
For the detection of SEZ6L, Laemmli buffer without disul-
fide bridge reducing agents such as β-mercaptoethanol was
used. Samples were separated on 8 % SDS-polyacrylamide
gels. Schägger gels were used for the detection of C-
terminal fragments (16.5 % separation gel, 10 % spacer gel
[28]). PVDF membranes (Millipore) were incubated with
primary antibody for 1–2 h at room temperature or at 4 °C
overnight. After incubation with secondary antibody at
room temperature for 1 h, membranes were developed
with ECL prime (GE Healthcare, RPN2232V1).

Deglycosylation assay
40 μg of neuronal lysate were treated with endoglycosi-
dase H (Endo H, New England Biolabs, P0702), or
Peptide-N-Glycosidase (PNGase F, New England Biolabs,
P0704) according to the manufacturer’s protocol. For
SEZ6L, non-reducing conditions were used (denaturation
buffer was with 5 % SDS but no DTT). Afterwards, the
samples were separated on 8 % SDS-polyacrylamide gel.

Surface biotinylation
At 7 DIV, neurons were biotinylated with EZ-Link™ Sulfo-
NHS-Biotin (ThermoFisher, 21217) according to manu-
facturer’s protocol. Quenching was done with ammonium
chloride (50 mM) and BSA (1 %) in PBS and lysis with
SDS lysis buffer (50 mM Tris-HCl pH 8, 150 mM NaCl,
2 mM EDTA, 1 % SDS). RIPA buffer (10 mM Tris-HCl
pH 8, 150 mM NaCl, 2 mM EDTA, 1 % Triton, 0.1 %
sodium deoxycholate, 0.1 % SDS) was used to dilute the
samples. After sonication, protein concentrations were
quantified and 80 μg of total lysate were incubated with
25 μl of High Capacity Streptavidin Agarose Resin
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(ThermoFisher, 20361), mixed overnight at 4 °C. Beads
were washed in RIPA buffer and bound proteins were
eluted by boiling at 95 °C in Laemmli buffer supple-
mented with 3 mM biotin. Eluted proteins were sepa-
rated on 8 % SDS-polyacrylamide gel and Western
blotting was performed.

BACE1 in vitro digestion and mass spectrometric cleavage
site determination
The murine SEZ6 peptide AASLDGFYNGRSLDVAKA-
PAASSAL (PSL Peptide Specialty Laboratories GmbH,
Germany) was resuspended in LC-MS grade water
(Chromasolv, Sigma Aldrich, Germany) and 40 μg of
peptide were used to determine the cleavage site. Pep-
tides were incubated with recombinant BACE1 with or
without C3 inhibitor in 50 mM sodium acetate buffer
pH 4.4 from 4 to 16 h as previously described [29].
Samples from the peptide cleavage assay were analyzed

by LC-MS/MS. An amount of 500 fmol with respect to
the starting material of the synthetic peptide was
injected. Samples were separated on a nanoLC system
(EASY-nLC 1000, Proxeon – part of Thermo Scientific,
US; PRSO-V1 column oven: Sonation, Germany) using
an in-house packed C18 column (30 cm × 75 μm ID,
ReproSil-Pur 120 C18-AQ, 1.9 μm, Dr. Maisch GmbH,
Germany) with a binary gradient of water (A) and aceto-
nitrile (B) containing 0.1 % formic acid at 50 °C column
temperature and a flow of 250 nl/min (0 min, 8 % B;
25:00 min, 35 % B; 30:00 min, 95 % B; 40:00 min, 95 %
B). The nanoLC was coupled online via a nanospray flex
ion source (Proxeon – part of Thermo Scientific, US) to
a Q-Exactive mass spectrometer (Thermo Scientific,
US). The five most intense ions exceeding an intensity of
1.0 × 104 were chosen for collision induced dissociation.
The dynamic exclusion was reduced to 1 s and the m/z
values of the proposed cleavage products were put on an
inclusion list to get high quality MS/MS spectra.
MS raw data of the peptide cleavage assay were used

to check for m/z values of possible cleavage products.
Quantification was done by calculating the area under
the curve of cleavage products using extracted ion chro-
matograms. Peak areas of the synthetic peptide incu-
bated with BACE1 were compared with the control
incubations of BACE1 and C3 as well as without BACE1.
The identity of cleavage products was verified by a data-
base search against the sequence of the synthetic peptide
with Maxquant [30]. Non-specific cleavage was applied
to identify cleavage products by tandem MS spectra.

Mass spectrometric analysis of CSF samples
Seven WT and seven BACE DKO CSF samples were
used for mass spectrometric analysis. A volume of 5 μL
of CSF per sample was subjected to proteolytic digestion
in 50 mM ammonium bicarbonate with 0.1 % sodium

deoxycholate (Sigma Aldrich, Germany). Disulfide bonds
were reduced by addition of 2 μL 10 mM dithiothreitol
(Biomol, Germany). Cysteine residues were alkylated by
addition of 2 μL 55 mM iodoacetamide (Sigma Aldrich,
Germany). Proteolytic digestion was performed by
consecutive digestion with LysC (0.1 μg; 4 h) and trypsin
(0.1 μg; 16 h) at room temperature (Promega, Germany).
Samples were acidified by adding 4 μL of 8 % formic

acid (Sigma Aldrich, Germany) and 150 μL of 0.1 %
formic acid (Sigma Aldrich Germany). Precipitated
deoxycholate was removed by centrifugation at
16,000 g for 10 min at 20 °C. Proteolytic peptides were
desalted by stop and go extraction (STAGE) with C18
tips [31], dried by vacuum and dissolved in 20 μL 0.1 %
formic acid.
Samples were analyzed with the same LC-MS/MS

method as described for the BACE1 in vitro digestion
assay with a longer gradient (0 min, 2 % B; 3:30 min, 5 %
B; 137:30 min, 25 % B; 168:30 min, 35 % B; 182:30 min,
60 % B; 185 min, 95 % B; 200 min, 95 % B).
Full MS spectra were acquired at a resolution of

70,000. The top ten peptide ions exceeding an intensity
of 1.5 × 104 were chosen for collision induced dissoci-
ation. Fragment ion spectra were acquired at a reso-
lution of 17,500. A dynamic exclusion of 120 s was used
for peptide fragmentation.

MS data analysis of CSF samples
The data were analyzed with Maxquant software (max-
quant.org, Max-Planck Institute Munich) version
1.5.3.12 [30]. The MS data were searched against a
reviewed canonical fasta database of Mus musculus
from UniProt (download: January 26th 2016, 16758 en-
tries). Trypsin was defined as protease. Two missed
cleavages were allowed for the database search. The
option first search was used to recalibrate the peptide
masses within a window of 20 ppm. For the main
search, peptide and peptide fragment mass tolerances
were set to 4.5 and 20 ppm, respectively. Carbamido-
methylation of cysteine was defined as static modifica-
tion. Acetylation of the protein N-term as well as
oxidation of methionine were set as variable modifica-
tions. False discovery rate for both peptides and
proteins was adjusted to less than 1 % using a target
and decoy approach (concatenated forward/reverse
database). Only unique peptides were used for quanti-
fication. Label-free quantification (LFQ) of proteins
required at least two ratio counts of unique peptides.
The LFQ intensity values were log2 transformed and

a two-sided Welch’s t-test was used to evaluate the
significance of proteins with changed abundance between
KO and WT animals. A p-value less than 5 % was set as
significance threshold.
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Statistical tests
Statistical differences for Western Blot experiments were
determined using two-tailed Mann-Whitney test
(GraphPad Prism Software, San Diego, CA, USA). In
Fig. 7, one-way ANOVA followed by two-tailed Stu-
dent’s t-Test, was used for Western Blot quantification.
Graphs show mean ± SEM.

Results
Validation of new monoclonal antibodies against SEZ6
and SEZ6L
To validate SEZ6 and SEZ6L as BACE1 substrates, rat
monoclonal antibodies against both proteins were gener-
ated. They were first tested in immunoblots using mem-
brane fractions from mouse brains. As a control, the
third family member, SEZ6L2, was also analyzed, using a
commercial antibody. To ensure the specificity of the
immunoblot signals, brains from wild type (WT) as well
as from SEZ6-/- (SEZ6 KO) or SEZ6L2-/- (SEZ6L2 KO)
mice were used. As SEZ6L-/- mouse brains were not
available, brains from mice lacking all three SEZ6 family
members (SEZ6-/-, SEZ6L-/-, SEZ6L2-/-; triple knock-
out, TKO [16]) were used instead.
In WT brains the SEZ6 antibody detected a major

band at 170 kDa and a band of minor intensity at
150 kDa (Fig. 1a). Importantly, both bands were absent
in SEZ6 KO and TKO brains, but were clearly visible in
SEZ6L2 KO brains, demonstrating the specificity of the
SEZ6 antibody. Because SEZ6 has 10 predicted N-
glycosylation sites [32], we next determined whether the
two SEZ6 bands differ in their extent of glycosylation. In
order to detect both the major and the minor band more
intensively, a SEZ6 polyclonal antibody was used. En-
dogenous SEZ6 from neuronal lysates was deglycosyl-
ated in vitro using peptide N-glycosidase F (PNGaseF),
which removes all N-linked sugars, or endoglycosidase
H (EndoH), which only removes high-mannose sugars
but not complex glycosylated sugars. PNGaseF induced a
band shift and lowered the apparent molecular weight of
both SEZ6 bands to 155 and 135 kDa, respectively (Fig. 1b).
This demonstrates that SEZ6 is N-glycosylated. How-
ever, the fact that still two distinct SEZ6 bands – and
not just one - were visible demonstrates that both
protein forms must differ by an additional post-
translational modification other than N-glycosylation.
This is likely to be O-glycosylation as SEZ6 was found
to be O-glycosylated in a proteomic study identifying
O-glycosylated proteins [33]. Similar to PNGaseF,
EndoH induced a band shift of the 150 kDa band, but
did not induce a major shift of the 170 kDa band
(Fig. 1b). This reveals that the 170 kDa band contains
complex sugars (referred to as mature SEZ6), whereas
the 150 kDa band (referred to as immature SEZ6),
contains only high-mannose sugars.

The SEZ6L antibody detected one major band at
160 kDa and a very weak band at 130 kDa (Fig. 1a). Both
bands were not detected in the SEZ6 TKO samples,
while they showed unchanged intensity in WT, SEZ6
KO and SEZ6L2 KO brains, thus confirming the specifi-
city of the antibody for SEZ6L. Similar to SEZ6, the
major SEZ6L band at 160 kDa was complex N-
glycosylated. The glycosylation was removed with PNGa-
seF, but not with EndoH (Fig. 1b). The 130 kDa band of
SEZ6L was not consistently detected in the deglycosyla-
tion experiments, but may represent the immature form,
similar to SEZ6.
As a control, SEZ6L2 expression was detected in WT

and SEZ6 KO brains, but was absent in SEZ6L2 KO and
SEZ6 TKO brains (Fig. 1a). Notably, in brains deficient
in SEZ6 or SEZ6L2, levels of the other family members
were not significantly altered (Fig. 1a), revealing that
there are no compensatory changes in protein levels at
least for deficiency of SEZ6 and SEZ6L2.
Taken together, these results demonstrate that SEZ6

and SEZ6L are N-glycosylated proteins and that the
newly generated antibodies specifically detect endogen-
ous SEZ6 and SEZ6L.
In WT adult mouse brains SEZ6 protein was local-

ized to a number of brain regions including the neo-
cortex and hippocampus (Fig. 1c), with particularly
strong immunoreactivity in the striatum and olfactory
tubercle (not shown). In the cortex SEZ6 was localized
to neuronal cell bodies and processes, predominantly
in layers V and VI (Fig. 1c). In the hippocampus, SEZ6
was localized to CA1 pyramidal neuron cell bodies and
dendrites, CA2 and a subset of CA3 neurons, and
sparsely labeled neurons in the dentate gyrus which
resemble interneurons.
SEZ6 immunostaining was completely absent in SEZ6

TKO brain sections (Fig. 1c) and in SEZ6 KO brain
sections (data not shown).
Similarly, SEZ6L immunoreactivity (Fig. 1d) appeared

strong in the neocortex and hippocampus, and protein
localization in these areas was consistent with SEZ6L
mRNA expression in the Allen Mouse Brain Atlas [34].
SEZ6L localized to pyramidal neurons throughout the
cortex, particularly the apical dendrites (Fig. 1d), and
appeared relatively lower in layer IV and VI. All regions
of the hippocampus displayed immunoreactivity for
SEZ6L (Fig. 1d) although staining was less prominent in
neuronal soma than the SEZ6 staining (Fig. 1c). SEZ6L
staining was observed in other brain regions including
the cerebellum and septal nuclei (data not shown).
SEZL6 immunostaining was completely absent in SEZ6
TKO brain sections (Fig. 1d).
Taken together, the newly generated antibodies specific-

ally detect endogenous SEZ6 and SEZ6L by immunohisto-
chemistry as well as Western Blot.
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BACE1 cleavage of SEZ6 and SEZ6L in primary neurons
and mouse brain
As a result of BACE1 cleavage, the soluble ectodomains
of SEZ6 and SEZ6L (sSEZ6 and sSEZ6L) should be shed
into the conditioned medium of primary neurons and
into the extracellular space in mouse brains (Fig. 2a).
However, when BACE1 is inhibited or deleted, sSEZ6
and sSEZ6L might be absent or strongly reduced. In fact,
treatment of primary neurons with the established
BACE1 inhibitor C3 (also known as BACE1 inhibitor
IV) [35] strongly reduced sSEZ6L levels compared to the
control treatment with a concomitant moderate increase
of full-length SEZ6L levels in the cell lysate (Fig. 2b).
Likewise, in P7 BACE1 KO mouse brains sSEZ6L was
strongly reduced in the diethylamine soluble DEA brain

fraction, while full-length SEZ6L was increased in the
membrane fraction (Fig. 2c). In agreement with our pre-
vious study on SEZ6 [15], similar results were obtained
for sSEZ6 and full-length SEZ6 both in C3-treated
neurons and in BACE1 KO mouse brains (Fig. 2b and c).
Taken together, these results reveal that ectodomain
shedding of sSEZ6 and sSEZ6L requires BACE1 activity
both in primary neurons and in mouse brains.

BACE1 cleavage of SEZ6 and SEZ6L in pancreatic MIN6 cells
A previous proteomic study showed that SEZ6L was
cleaved by BACE2, but not by BACE1 in the pancreatic
β-cell line MIN6 [17], which is different from our find-
ings in neurons and brain. SEZ6 was not detected in that
study. To investigate whether the same differences can

Fig. 1 Specificity of SEZ6 and SEZ6L monoclonal antibodies. a Membranes from mouse brains were probed with the indicated antibodies against
SEZ6, SEZ6L, SEZ6L2 or calnexin. Brains were collected from wild type (WT), SEZ6-/- (SEZ6 KO), SEZ6L2-/- (SEZ6L2 KO) or triple knock-out (TKO)
mice lacking SEZ6, SEZ6L and SEZ6L2. b Lysates from primary neurons were treated with peptide N-glycosidase F (PNGaseF) or endoglycosidase
H (EndoH) and blotted for SEZ6 and SEZ6L. For SEZ6, a polyclonal antibody was used in the deglycosylation experiment. * indicates mature SEZ6,
** indicates immature SEZ6. c, d Immunohistochemistry of TKO and WT brains using antibody against SEZ6 (c) or SEZ6L (d)
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be observed for SEZ6, we used the same cell line MIN6
and knocked-down BACE1 or BACE2 with siRNAs
(Fig. 3a). As a control, cleavage of SEZ6L was also moni-
tored. In agreement with the previous study [17],
sSEZ6L was reduced upon knock-down of BACE2, but
not of BACE1. Interestingly, sSEZ6 was also not reduced
upon knock-down of BACE1, but mildly reduced upon
knock-down of BACE2. This shows that both SEZ6 and
SEZ6L are not substrates for BACE1 in the pancreatic
cell line. Full-length SEZ6 and SEZ6L levels were
increased upon BACE2 knock-down, in line with the re-
duced cleavage of both proteins (Fig. 3a). Taken together,
this demonstrates that both SEZ6 and SEZ6L are cleaved
by different proteases in a tissue-specific manner. One
possible scenario might be that the tissue-specificity
reflects the relative amounts of BACE1 and BACE2 in
different tissues. For example, BACE1 – which was the
major SEZ6 and SEZ6L protease in neurons – was found
to be expressed at higher levels in neurons compared to
MIN6 cells (Additional file 1: Figure S1). The opposite
was seen for BACE2, which was the primary protease
cleaving SEZ6 and SEZ6L in MIN6 cells. This tissue- spe-
cificity is reminiscent of two other BACE1 substrates, APP
and L1, which are mostly cleaved by BACE1 in neurons,
but by ADAM10 in non-neuronal cells [15, 36–39].
The cleavage of SEZ6 and SEZ6L in MIN6 cells by

BACE2, but not BACE1, was further evaluated using
nonselective (inhibiting both BACE1 and BACE2) and
BACE1-selective pharmacological inhibitors by assessing
shedding of SEZ6 and SEZ6L in MIN6 cells. Because
SEZ6 is expressed at low levels in MIN6 cells (Add-
itional file 1: Figure S1), human SEZ6 tagged with an N-
terminal Flag- and V5-tag (Flag-V6-hSEZ6) was mildly
overexpressed in MIN6 cells. To validate the efficacy of
BACE1 inhibition, Aβ42 (a BACE cleavage product of
APP) was measured in the SK-N-BE(2) neuroblastoma
cell model, and sFlag-V5-hSEZ6 and endogenous
sSEZ6L in MIN6 cells. IC50s for the released substrate
cleavage products (sFlag-V5-SEZ6 sSEZ6L) were com-
pared with IC50s determined in enzymatic BACE1 and
BACE2 assays. Cleavage of Aβ42 and sFlag-V5-SEZ6 and
sSEZ6L were similar after addition of nonselective BACE
inhibitor A and was consistent with equipotent inhib-
ition of BACE1 and BACE2 in enzymatic assays.
However, cleavage of sFlag-V5-SEZ6 and sSEZ6L was

less impacted than Aβ42 upon inhibition with BACE1-
selective inhibitors (B and C) and followed the enzym-
atic inhibition curves of BACE2 rather than BACE1
(Fig. 3b). This confirms the findings in Fig. 3a and dem-
onstrates that in MIN6 cells SEZ6 and SEZ6L are pre-
dominantly cleaved by BACE2, but not by BACE1.

BACE1 inhibition increases neuronal cell surface levels of
SEZ6 and SEZ6L
The deglycosylation experiment (Fig. 1b) had revealed
that mature SEZ6 and SEZ6L carry complex N-linked
sugars and are resistant to EndoH treatment. Complex
sugars are added as proteins move through the Golgi
apparatus. Thus, the mature forms of SEZ6 and SEZ6L
are likely to be located in late compartments of the
secretory pathway or at the plasma membrane. Indeed,
using cell surface biotinylation the mature, but not the
immature forms of both proteins were detected at the
cell surface of primary neurons (Fig. 4). Treatment with
the BACE inhibitor C3 increased full-length, mature
SEZ6 and SEZ6L in whole cell lysates (Fig. 2b) and also
at the cell surface (Fig. 4). As a control, surface levels of
the LDL-receptor (LDLR), which is a substrate of
ADAM10, but not of BACE1 [38], were not altered upon
BACE inhibition. To demonstrate the specificity of the
surface biotinylation, β-actin was detected in whole
lysates, but strongly reduced in the pull-down of the bio-
tinylated cell surface proteins (Fig. 4), as expected for a
cytoplasmic protein. Taken together, BACE1 activity
negatively controls the levels of SEZ6 and SEZ6L at the
neuronal cell surface and in whole lysates.

BACE1 cleaves SEZ6 within its juxtamembrane domain
Next, we determined the cleavage site of BACE1 within
the juxtamembrane domain of SEZ6 and compared it to
the previously identified cleavage site within its homolog
SEZ6L [15]. In the previous proteomic study which iden-
tified SEZ6 as a BACE1 substrate candidate, several
tryptic peptides of the secreted SEZ6 ectodomain were
identified. The most C-terminal of these peptides
encompassed amino acids 894 to 904 (AASLDGFYNGR)
of murine SEZ6 (Fig. 5a). This was a tryptic peptide end-
ing with arginine (R), but BACE1 preferentially cleaves
C-terminally to leucine or other hydrophobic amino
acids [40]. Thus, the BACE1 cleavage site is likely to be

(See figure on previous page.)
Fig. 2 BACE1 is required for SEZ6 and SEZ6L shedding in primary neurons and mouse brain. a Schematic diagram of SEZ6 and SEZ6L domain
structure and proposed proteolytic processing. b Detection of soluble SEZ6 and SEZ6L ectodomains (sSEZ6 and sSEZ6L) and full-length SEZ6 and
SEZ6L in neuronal supernatant and lysate upon C3 treatment. c Detection of sSEZ6 and sSEZ6L and full-length SEZ6 and SEZ6L in BACE1 KO and
WT brains. Brains were separated into soluble fraction (DEA) and membranes (membrane). Note that in this figure, a different molecular weight
marker has been used compared to Fig. 1. The 148 kDa band corresponds to the band detected at 170 kDa in Fig. 1. The upper band in panel 2C
(*) is due to unspecific signal. Densitometric quantitations of the Western blots are shown, (*; p < 0.05, **; p < 0.01, two-tailed Mann-Whitney
test n = 6)
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located between this tryptic peptide and the transmem-
brane domain (start: leucine 923). To determine this site
precisely, an in vitro peptide assay was used. The 25
amino acid peptide AASLDGFYNGRSLDVAKAPAAS-
SAL (Fig. 5a, amino acids 894 to 918), comprising the
tryptic peptide and ending shortly before the transmem-
brane domain, was incubated in the presence or absence
of recombinant BACE1 with or without the BACE1
inhibitor C3 (Fig. 5b). Full-length peptide and cleavage

fragments were separated by nano liquid chromatog-
raphy and analyzed by high resolution mass spectrom-
etry (nanoLC/MS). The non-cleaved, full-length peptide
eluted from the nLC column at ~ 22 min (Fig. 5b). The
correct sequence was verified by MS/MS-based frag-
mentation (Fig. 5c). Upon addition of BACE1, the full-
length peptide levels were decreased in the chromato-
gram and two additional peptides with elution times
of ~16 and ~21 min were detected (Fig. 5b). Addition
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of C3 inhibited the production of both peptides, dem-
onstrating that they are BACE1 cleavage products of
the full-length peptide. The two peptides were identified
as AASLDGFYNGRSL (N-terminal cleavage product,
Fig. 5d) and DVAKAPAASSAL (C-terminal cleavage prod-
uct 2, Fig. 5e) by fragment spectra. Thus, we conclude that
the BACE1 cleavage site in SEZ6 is the peptide bond
between leucine906 and aspartate907 (Fig. 5a). Interest-
ingly, this site comprises the same amino acids in the P1
and P1’ position (L-D) as Swedish mutant APP (Fig. 5a),
which is very efficiently cleaved by BACE1 [4]. The previ-
ously identified cleavage site in SEZ6L [15] is not identical,
but similar to SEZ6, as it also has a hydrophobic amino
acid in the P1 and a negatively charged amino acid in the
P1’ position (Fig. 5a). Moreover, SEZ6 and SEZ6L are both
cleaved at a similar distance from the transmembrane
domain, i.e. 16 and 14 amino acids for SEZ6 and SEZ6L,
respectively (Fig. 5a).

SEZ6 is a substrate for γ-secretase
After initial BACE1 cleavage, the resulting C-terminal,
membrane-bound protein fragments of several mem-
brane proteins, including APP and SEZ6L [17], are
further processed within their transmembrane domains
by γ-secretase, in a process referred to as regulated
intramembrane proteolysis [41] (for schematic overview
see Fig. 2a). The accumulation of C-terminal fragments
upon pharmacological inhibition of γ-secretase with
DAPT can be used to identify γ-secretase substrates [42].
To examine if SEZ6 is also cleaved by γ-secretase, we
generated a human embryonic kidney 293 (HEK293T) cell
line stably expressing murine SEZ6. Due to the lack of an
antibody against the SEZ6 C-terminus, the full-length
SEZ6 construct was tagged with an N-terminal HA and a
C-terminal FLAG epitope tag. The full-length SEZ6 in the
cell lysate and the shed ectodomain (sSEZ6) in the super-
natant were detected by immunoblots in the transfected
cells, but not in control transfected cells (Fig. 6a).
Addition of the BACE inhibitor C3 decreased the sSEZ6
(Fig. 6a), in agreement with the results in neurons (Fig. 2b).
The expected C-terminal fragment arising through
BACE1 cleavage was not detected in control cells without
the γ-secretase inhibitor DAPT, presumably because of its
fast turnover. However, γ-secretase inhibition led to a
strong accumulation of the SEZ6 C-terminal fragment at a
molecular weight of around 13 kDa (Fig. 6b), which is
consistent with the theoretical molecular weight of about
10 kDa for the C-terminal fragment starting at the BACE1
cleavage site and ending with the C-terminal FLAG-tag.
These results indicate that SEZ6 is a γ-secretase substrate.

sSEZ6 and sSEZ6L are detected in murine CSF in
BACE1-dependent manner
Finally, we tested in vivo whether levels of sSEZ6 and
sSEZ6L in murine CSF may be useful biomarkers for
BACE1 activity in vivo. A previous proteomic study
demonstrated that the soluble ectodomains of other
BACE1 substrates, such as APLP1, PLXDC2 and CHL1,
were reduced in the CSF of BACE1-deficient mice [14].
However, sSEZ6 and sSEZ6L were not consistently
detected and could not be quantified in murine CSF,
potentially because their levels were below the detection
limit. Thus, we first improved the method for proteomic
analysis of murine CSF in order to identify and quantify
a larger number of proteins compared to the previous
study. Most BACE1 inhibitors currently tested in clinical
trials for AD are not specific for BACE1, but also inhibit
BACE2. To mimic this situation we applied the im-
proved proteomic method to the analysis of CSF from
seven 4-month old BACE1/BACE2 double knock-out
(BACE DKO) and seven age-matched WT mice.
In our previous protocol for mouse CSF proteomics,

proteins were digested in the presence of urea and
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Fig. 4 BACE1 controls neuronal cell surface levels of SEZ6 and
SEZ6L. Primary, murine neurons were treated with the BACE
inhibitor C3 or DMSO as a control. Proteins at the surface were
labeled with biotin and enriched using streptavidin pull-down.
Biotinylated SEZ6 and SEZ6L were detected by immunoblot. As a
control, both proteins were also detected in whole cell lysates. Note,
that only the mature 170 kDa form of SEZ6 was biotinylated at the
cell surface. As a control, the ADAM10 substrate LDL receptor (LDLR)
did not show a change in surface levels upon C3-treatment. As a
further control, the cytosolic protein actin was only detected in
whole lysates, but not among the surface biotinylated proteins
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thiourea [14]. We replaced these nonionic chaotropes
with the mild ionic detergent sodium deoxycholate
(SDC), which has been shown to improve trypsin diges-
tion of membrane proteins [43, 44]. A concentration of
0.1 % SDC was sufficient to improve the digestion effi-
ciency. Triplicates of a pooled mouse CSF sample were
digested with either the urea or the SDC-supported
digestion protocol. The number of identified unique
peptides was 6.6 % lower for the SDC supported proto-
col (Table 1). However, digestion efficiency was strongly
increased which was detected by the 58.1 % lower num-
ber of average missed cleavages per peptide (Table 1).
Additionally, the average number of identified and quan-
tified proteins was 10.3 and 7.5 % higher for the SDC
supported digestion protocol, respectively. Subcellular

locations of proteins quantified in all replicates of SDC
or urea supported digestions were similar (Additional
file 1: Figures S2 and S3). However, the number of quan-
tified membrane proteins was 8.9 % higher for the
samples digested in the presence of SDC (135 vs. 124).
Next, BACE DKO CSF was compared to WT CSF. In

contrast to our previous proteomic study of CSF from
BACE1 deficient mice [14], we were able to quantify SEZ6
and SEZ6L with the optimized protocol (Additional file 2:
Supplementary Data: proteins BACE DKO vs WT CSF).
The levels of several known or proposed BACE1 sub-
strates such as SEZ6, SEZ6L, SCN4B, LRRN1, APLP1,
APLP2, CACHD1 and NLGN4L were significantly re-
duced in BACE DKO CSF (Fig. 7a). Among these proteins,
SEZ6 (DKO/WT= 13 %, p = 5.99E-06) and SEZ6L (DKO/
WT= 20 %, p = 5.10E-05) showed the strongest reduction
as well as the highest statistical significance (Fig. 7a).
Changes in sSEZ6 and sSEZ6L also remained significant,
when applying the Benjamini-Hochberg false discovery
rate adjustment (α = 5 %) to correct for multiple hypoth-
esis testing. In contrary, the third SEZ6 family member,
SEZ6L2, did not show a significantly lower abundance in
BACE DKO CSF, indicating that it is mostly cleaved by
protease other than BACE1 or BACE2 (Fig. 7a).
Interestingly, the interleukin-6 receptor subunit beta

(IL6ST) was quantified in all WT CSF samples by four
unique peptides but in none of the BACE DKO CSF sam-
ples. This indicates that IL6ST may be an additional
BACE1 and/or BACE2 substrate. Another BACE substrate
candidate could be the type-1 transmembrane protein
hephaestin (HEPH), which was significantly reduced by
53 % in BACE DKO CSF. Hephaestin is known to be
expressed in the brain [45]. Additionally, peptide se-
quences of transmembrane and GPI-anchored proteins

(See figure on previous page.)
Fig. 5 Cleavage site determination of SEZ6. a Comparison of BACE1 cleavage sites in the known APP Swedish mutant, in SEZ6 and SEZ6L.
Additionally, the peptide (SEZ6 pep) used for the in vitro assay is aligned. Numbers next to the N- and C-terminal amino acids of the peptide
indicate the amino acid number within the sequence of the full-length protein. Amino acids at the cleavage site are shown in green. Amino acids
of the transmembrane domains are in red. Domains of SEZ6 and SEZ6L are shown with indicated symbols. The most C-terminal tryptic peptide of the
secreted SEZ6 ectodomain detected in our previous study is underlined in black. b Extracted ion chromatogram of full-length peptide incubated with
BACE1, BACE1 plus C3 or without BACE1 showing the peaks of the two cleavage products as well as the full-length peptide. Identification of the
full-length peptide (c), the N-terminal (d) and the C-terminal cleavage product (e) by fragment ion spectra. The mapped y and b fragment ions are
indicated in the sequences as well as in fragment ion spectra. Neutral loss fragment ions are indicated in light blue for b and orange for y ions
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Fig. 6 SEZ6 is a substrate for γ-secretase. a HEK293T cells were stably
transfected with empty vector (Empty) or SEZ6 expression construct
with an N-terminal HA-tag and a C-terminal FLAG epitope tag. Cells
were treated with C3 or DMSO as a control. sSEZ6 was detected in
the cell supernatant and full-length SEZ6 in the lysate. Calnexin was
used as a loading control. b Cells were treated with DMSO, C3 or
the γ-secretase inhibitor DAPT. The C-terminal SEZ6 fragment was
detected by immunoblot using an anti-FLAG-tag antibody

Table 1 Comparison of urea and SDC supported digestion of
mouse CSF

SDC Urea Difference

Unique peptides 5955.3 6376.7 −6.6 %

Average missed cleavages per peptide 0.26 0.62 −58.1 %

Protein identifications (≥2 unique peptides) 814.0 738.0 +10.3 %

Protein quantifications 847.7 788.3 +7.5 %

Values are averaged over three replicates
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were loaded into the bioinformatics software tool QARIP
[46] to check for their position within the protein se-
quences. Peptides were almost exclusively mapped to
extracellular domains of transmembrane proteins (Add-
itional file 3: Tables S1-S6). This indicates that most trans-
membrane proteins in the CSF are derived from
proteolytic shedding and not from contaminating cells.
For SEZ6, SEZ6L and SEZ6L2 only peptides from the
ectodomain were identified (Additional file 3: Table S1).
To validate the proteomic results, reduced abun-

dance of sSEZ6 and sSEZ6L were confirmed using
immunoblots of independent CSF samples (Fig. 7b). In
agreement with the proteomic analysis, sSEZ6 was
nearly completely absent in BACE DKO CSF. The same
reduction was observed in CSF from BACE1 KO, but
not for BACE2 KO mice. This demonstrates that sSEZ6
is generated specifically by BACE1, but not by BACE2
in murine CSF. Likewise, sSEZ6L was strongly reduced
in BACE1 KO CSF. Taken together, these results show
that sSEZ6 and sSEZ6L levels can be used to monitor
BACE1 activity in murine CSF.

Discussion
BACE1 is a major drug target in AD, but has additional
substrates and thus contributes to various biological pro-
cesses [1, 13], which may limit its therapeutic potential.
Recent proteomic studies have identified more than 40
membrane proteins as potential BACE1 substrates [14–16].
However, only few of them have been validated in vitro and
in vivo. Using different techniques, our study validates
SEZ6 and SEZ6L as BACE1 substrates in vitro and in vivo
and demonstrates that, in contrast to other BACE1 sub-
strates, SEZ6 and SEZ6L are nearly exclusively cleaved by
BACE1 and not by other proteases in the brain. Levels of
the soluble ectodomains (sSEZ6, sSEZ6L) were reduced to
less than 10 % of the control levels upon pharmacological
inhibition of BACE1 in primary neurons. Additionally,
SEZ6 and SEZ6L were validated in vivo as BACE1
substrates using brains and CSF from BACE1 KO, BACE2
KO and/or BACE DKO mice. Thus, we propose that in
addition to Aβ and sAPPβ, which are two BACE1 cleavage
products of APP, sSEZ6 and sSEZ6L may be suitable as
biomarkers to monitor BACE1 activity in vivo in CSF.
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Several other previously identified BACE1 substrates,
such as CHL1, L1, contactin-2, APP and its homolog
APLP2, are not exclusively cleaved by BACE1, but also
by other proteases, including ADAM10 [15, 38]. For
example, the APP homolog APLP2 is cleaved to about
60 % by BACE1 and to 40 % by ADAM10 in neurons,
but the percentages may strongly vary for each substrate
[38]. Additionally, the different proteases may compen-
sate for each other, if one of them is blocked. One
example is APP. BACE1 inhibition increases the
ADAM10 cleavage of APP, such that total APP cleavage
is only mildly reduced [36, 47]. Potentially, this is also
true for the third SEZ6 family member, SEZ6L2, which
shows only moderately reduced shedding upon BACE1
inhibition [15]. A similar compensation does not occur
for SEZ6 and SEZ6L in brain, where total cleavage was
nearly completely abolished upon BACE1 inhibition.
However, in other cell types and tissues both proteins
may be cleaved by proteases different than BACE1. A
previous study reported that in pancreatic cells SEZ6L is
predominantly cleaved by BACE2, but not by BACE1
[17]. We confirm this finding and also extend it to
SEZ6. Importantly, we show that neither SEZ6 nor
SEZ6L are substrates for BACE1 in the pancreatic cell
line, which is in contrast to brain, demonstrating that
SEZ6 and SEZ6L are cleaved by different proteases in a
tissue-specific manner. Precedents for such a tissue-
specific proteolytic cleavage are the BACE1 substrates
CHL1 and L1, which are mostly cleaved by BACE1 in
the nervous system, but by ADAM proteases in non-
neuronal cells [15, 37]. We found opposite expression
patterns of BACE1 and BACE2 in MIN6 cells and in
neurons, which correlated with the tissue-specific cleav-
age of SEZ6 and SEZ6L. Whether the distinct protease
cleavage events also lead to a different functional out-
come for the substrates remains to be investigated. This
is particularly relevant as different proteases may cleave
at distinct peptide bonds and thus generate ectodomains
of different lengths and potentially different functions.
For example, in APP the ADAM10 and BACE1 cleavage
sites are 16 amino acids apart from each other and yield
APP ectodomains with diverging functions [48, 49].
The molecular functions of SEZ6 and SEZ6L are not

yet well understood. The name SEZ6 comes from the
initial finding that SEZ6 expression was upregulated in
cortical murine cells treated with the seizure-inducing
drug pentylene tetrazole [32]. SEZ6 has been genetically
linked to febrile seizures and epilepsy [50, 51], whereas
SEZ6L was associated with bipolar disorder [52]. The
extracellular regions of SEZ6/SEZ6L contain three CUB
(complement subcomponent C1r, C1s /sea urchin em-
bryonic growth factor Uegf / bone morphogenetic
protein 1) and five short consensus repeat domains,
which are protein-binding domains that are also found

in a variety of cell surface receptors. This suggests that
SEZ6/SEZ6L may act as receptors at the cell surface.
Importantly, our study demonstrates that BACE1 cleav-
age negatively regulates SEZ6 and SEZ6L surface levels
in neurons, suggesting that BACE1 may directly control
SEZ6/SEZ6L surface functions. This could be a more
general function of BACE1, because BACE1 also nega-
tively regulates surface levels and/or function of two
other substrates, contactin-2 and CHL1 [12, 15, 53].
However, the function of SEZ6 and SEZ6L may not only
be exerted by the full-length proteins, but also by sSEZ6
and sSEZ6L or even by the C-terminal fragments result-
ing from BACE1 cleavage, as recently found for the
BACE1 substrate CHL1 [12].
Future studies need to address how exactly BACE1

alters SEZ6 and SEZ6L function and whether such alter-
ations contribute to the multiple phenotypes observed in
BACE1-deficient mice. Notably, both BACE1- and SEZ6-
deficient mice have deficits in hippocampal learning para-
digms [18, 54–56] and in motor coordination [18, 57].
Moreover, both mouse lines appear to have reduced levels
of anxiety and/or cognitive deficits [18, 56], reduced gluta-
matergic synapse function and reduced dendritic spine
densities [18, 58]. Given the substantial overlap, at least
some of these phenotypes may result from the reduced
cleavage products of SEZ6/SEZ6L.
Another major outcome of our study is an improved

protocol for efficient proteomic analysis of murine CSF.
While human CSF is available in milliliter quantities, only
approximately 10 μl of murine CSF are obtainable. Here,
we improved the digestion efficiency of murine CSF in
comparison to our previous protocol by using 0.1 % SDC
in 50 mM ammonium bicarbonate as digestion buffer.
This was demonstrated by the strong reduction of the
average missed cleavages per peptide as well as the in-
creased number of identified and quantified proteins
(Table 1). The improved method may be of wide relevance
for studying murine CSF in the context of different neuro-
logical and neurodegenerative diseases. Importantly, the
new workflow allowed the quantification of SEZ6 and
SEZ6L, which were not quantified in the previous study
[14]. The nearly complete absence of sSEZ6 and sSEZ6L
in murine CSF makes both cleavage products suitable
markers to monitor BACE1 inhibition in mice. This may
be particularly useful for determining the target engage-
ment and potential side effects of BACE inhibitors in
animal models. If confirmed in human CSF, sSEZ6 and
sSEZ6L may even be useful as companion diagnostics to
guide BACE inhibitor dosing in individual patients and
monitor BACE1 inhibitor selectivity.

Conclusions
We demonstrate that SEZ6 and SEZ6L are physiological
BACE1 substrates in the murine brain and that, in
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contrast to most other BACE1 substrates, these two pro-
teins are nearly exclusively cleaved by BACE1. Levels of
sSEZ6 and sSEZ6L were strongly reduced upon pharma-
cological inhibition or genetic deficiency of BACE1 in
primary neurons and mouse brain. Additionally, we
developed an improved method for whole proteome
analysis of murine CSF and found that in the CSF of
BACE DKO mice the soluble ectodomains of SEZ6 and
SEZ6L were most strongly reduced among all BACE1
substrates identified, suggesting their use as potential
biomarkers in CSF to monitor BACE1 activity in vivo in
mice.
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Abstract 

Seizure protein 6 (SEZ6) is required for development and maintenance of the nervous system, is a 

major substrate of the protease BACE1 and is linked to Alzheimer’s disease (AD) and psychiatric 

disorders, but its molecular functions are not well understood. Here we demonstrate that SEZ6 

controls glycosylation, cell surface localization and function of kainate receptors composed of 

GluK2/3 subunits. Loss of SEZ6 reduced surface levels of GluK2/3 in primary neurons and 

reduced kainate-evoked currents in CA1 pyramidal neurons in acute hippocampal slices. 

Mechanistically, loss of SEZ6 in vitro and in vivo prevented modification of GluK2/3 with the human 

natural killer-1 (HNK-1) glycan, a modulator of GluK2/3 function. In heterologous cells, SEZ6 

interacted with GluK2 through its ectodomain and promoted post-endoplasmic reticulum transport 

of GluK2 in the secretory pathway. Taken together, SEZ6 acts as a new trafficking factor for 

GluK2/3, thereby fine-tuning neurotransmission which is essential for a healthy nervous system. 

  



Introduction 

Precise development and maintenance of the nervous system is essential for the functioning of the 

brain. Defects in these processes cause various psychiatric and neurological diseases, including 

neurodevelopmental disorders and Alzheimer’s disease (AD), the most common 

neurodegenerative disorder (Brookmeyer, Evans et al., 2011, Goodman, Lochner et al., 2017). 

One protein with links to different brain diseases is seizure protein 6 (SEZ6). SEZ6 is an N-

glycosylated type I transmembrane protein with predominant expression in neurons, where it 

localizes to the somatodendritic compartment, including the cell surface (Gunnersen, Kim et al., 

2007, Herbst & Nicklin, 1997, Pigoni, Wanngren et al., 2016). SEZ6-deficient mice revealed basic 

functions for SEZ6 in nervous system development and maintenance, such as in dendritic 

branching, dendritic spine dynamics, correct synapse formation and proper synaptic transmission, 

in particular excitatory postsynaptic responses, as well as long-term potentiation (Gunnersen et al., 

2007, Zhu, Xiang et al., 2018). Several of these functions seem to be mediated by full-length 

SEZ6, but SEZ6 can also undergo ectodomain shedding (Lichtenthaler, Lemberg et al., 2018), 

similar to the AD-linked amyloid precursor protein (APP). This proteolytic removal of the large 

extracellular domain of SEZ6 is mediated by the AD-linked protease b-site APP cleaving enzyme 1 

(BACE1) and contributes to SEZ6 function in controlling dendritic spine dynamics and long-term 

potentiation in mice (Pigoni et al., 2016, Zhu et al., 2018). The cleaved, soluble form of SEZ6 

(sSEZ6) is released  from neurons and is found in CSF, where it is increased in depressed, bipolar 

and schizophrenic patients as well as in inflammatory pain and may be a biomarker for monitoring 

BACE1 activity in clinical trials for AD (Maccarrone, Ditzen et al., 2013, Pigoni et al., 2016, 

Roitman, Edgington-Mitchell et al., 2019). 

Genetic variants of SEZ6 are linked to psychiatric and neurological disorders. For example, 

deletions in the SEZ6 ectodomain are found in childhood onset schizophrenia (Ambalavanan, 

Girard et al., 2015). Other genetic variants have been reported in intellectual disability (Gilissen, 

Hehir-Kwa et al., 2014) while the rare SEZ6 mutation R615H has been suggested to cause a 

familial form of AD (Paracchini, Beltrame et al., 2018). Consistent with the disease link, SEZ6-

deficient mice, which are viable and fertile, display an anxiety- and depression-related behavior 

(Gunnersen et al., 2007). Moreover, they show exploratory, motor, and cognitive deficits, which are 

more severe in mice lacking not only SEZ6, but also its two homologs SEZ6-like (SEZ6L) and 

SEZ6L2 (Gunnersen et al., 2007, Miyazaki, Hashimoto et al., 2006). 

Despite the fundamental functions of SEZ6 in the brain, the molecular mechanisms through which 

wild-type and mutated SEZ6 contribute to physiological and pathological processes in the nervous 

system are not yet well defined. SEZ6 localizes to the somatodendritic surface of neurons. The 

SEZ6 ectodomain contains three CUB (complement subcomponent C1r, C1s /sea urchin 

embryonic growth factor Uegf / bone morphogenetic protein 1) and five complement control protein 



(CCP, also referred to as Sushi or short consensus repeat (SCR)) domains. Both CUB and CCP 

domains are frequently found in proteins of the complement system (Escudero-Esparza, 

Kalchishkova et al., 2013, Forneris, Wu et al., 2016) and in some proteins, including LEV-10, 

SOL1/2 and Neto1/2, that bind certain neurotransmitter receptors, such as acetylcholine receptors 

(AChR) or AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptors and act as 

auxiliary subunits that regulate synaptic clustering or gating of neurotransmitter receptors (Gally, 

Eimer et al., 2004, Gendrel, Rapti et al., 2009, Nakayama & Hama, 2011, Ng, Pitcher et al., 2009, 

Straub, Hunt et al., 2011, Tang, Pelkey et al., 2011, Wang, Mellem et al., 2012, Zhang, St-Gelais et 

al., 2009, Zheng, Brockie et al., 2006, Zheng, Mellem et al., 2004). The presence of CUB and CCP 

domains also in SEZ6 suggests a role for SEZ6 in neuronal protein-protein interactions, but 

potential interaction partners are not yet known. 

Here, we tested the possibility that SEZ6 controls levels of proteins or protein complexes at the 

neuronal surface. Mass spectrometry analysis of the membrane proteome from SEZ6 knock-out 

(SEZ6KO) neurons demonstrated a selective reduction of kainate receptor (KAR) subunits 2 and 3 

(GluK2 and GluK3) at the cell surface, leading to a lowering of kainate currents in hippocampal 

brain slices. KARs belong to the family of ionotropic glutamate receptors (iGluRs), which also 

comprise NMDA (N-methyl-D-aspartate) and AMPA receptors. Mechanistically, we report that the 

extracellular domain of SEZ6 can bind GluK2 and controls the complex N-glycosylation of GluK2 

and/or GluK3, which occurs late in the secretory pathway, as well as the correct transport of GluK2 

and/or GluK3 to the plasma membrane. This molecular function of SEZ6 was independent of 

BACE1 cleavage and, consequently, appears to mediated predominantly by the full-length, but not 

the cleaved form of SEZ6. Together, these data reveal an unanticipated function for SEZ6 as a 

specific regulator of the trafficking of KAR subunits GluK2 and GluK3 to the neuronal plasma 

membrane, thus establishing a new mode of regulation of KAR activity. 

  



Results 

SEZ6 controls surface levels of GluK2 and GluK3 in neurons 

We used an unbiased mass spectrometry approach and investigated whether loss of SEZ6 affects 

protein levels at the cell surface of primary neurons. To this aim, we used a modified version of the 

‘surface-spanning protein enrichment with click sugars’ (SUSPECS) method (Herber, Njavro et al., 

2018), which biotinylates complex glycosylated, sialylated proteins residing at the surface and late 

in the secretory pathway. Floxed Sez6 cortical neurons were treated with lentiviral CRE 

recombinase or GFP to obtain neurons lacking (SEZ6KO) or maintaining SEZ6 (WT), respectively 

(workflow in Fig. 1A). SEZ6 was consistently detected on the surface of the WT neurons, and not 

consistently detected in the SEZ6KO neurons, in line with an efficient Cre-mediated SEZ6KO (Fig. 

2A and Supplementary Fig. 1). 3209 proteins were detected in 3 out of 3 experiments by the 

SUSPECS analysis and 571 were glycosylated (Fig. 1B). 40% out of all the proteins detected, and 

90% of the glycosylated proteins were classified as membrane proteins according to UniProt 

keywords (Fig. 1B), proving that our method efficiently enriched for membrane proteins. Proteins 

were considered as hits if their protein level in SEZ6KO versus WT neurons was lower than log2 

ratio(SEZ6KO/WT)=-0.5 (0.7 fold change) or higher than log2 ratio(SEZ6KO/WT)=0.5 (1.4 fold 

change) and if the p-value of this change was lower than 0.05. This yielded 14 proteins with 

reduced and 9 proteins with increased abundance in the SEZ6KO neurons. All other proteins did 

not show quantitative changes between SEZ6KO and WT neurons (Fig. 1C and Supplementary 

Table 1), demonstrating that loss of SEZ6 selectively affected cell surface levels of only a few 

neuronal proteins. 

Notably, the two pore-forming subunits of kainate receptors, glutamate receptor kainate 2 (gene 

Grik2, protein GluK2) and 3 (gene Grik3, protein GluK3), showed the strongest reduction at the cell 

surface of SEZ6KO neurons with a decrease of 50% and 60%, respectively (Fig. 1C and 

Supplementary Table 1). Other iGluR subunits were also detected, but not significantly changed 

(Fig. 1C). This included two subunits of the NMDA receptor subfamily (GluN1, GluN2B) and two 

AMPA receptor subunits (GluA1, GluA2) (Fig. 1C). Thus, among the detected iGluRs, loss of SEZ6 

specifically reduced surface levels of GluK2 and GluK3.  

Next, we validated the mass spectrometric results using an independent method based on cell 

surface biotinylation, which selectively labels proteins only at the cell surface, followed by 

streptavidin pull-down and immunoblotting (Supplementary Fig. 1). While surface levels of several 

transmembrane proteins were not affected in SEZ6KO neurons, such as the SEZ6 homolog 

SEZ6L2 or members of the glutamate receptor family (GluN2B and GluA2), GluK2 and GluK3 were 

reduced by 50%, which is consistent with the mass spectrometric analysis (Fig. 2A and Fig. 1C). 

Given that the available antibody does not discriminate between GluK2 and GluK3, the protein 

band is referred to as GluK2/3 throughout the manuscript, in line with previous publications 



(Mennesson, Rydgren et al., 2019, Straub et al., 2011, Zhang et al., 2009). Interestingly, total 

GluK2/3 protein levels in neuronal lysates were also reduced, but only mildly by about 15% in the 

SEZ6KO neurons (see later Fig. 4C). Importantly, no difference in the GluK2 and GluK3 mRNA 

level was found in SEZ6KO neurons (Fig. 2B). Moreover, while mRNA editing at the Q/R site in the 

channel pore loop of GluK2 is a critical step for controlling cellular protein levels of GluK2 as well 

as its transport to the cell surface and its degradation (Ball, Atlason et al., 2010, Evans, Gurung et 

al., 2017), the amount of edited (R) and unedited (Q) mRNA was not altered in the wild-type and 

SEZ6KO neurons (Fig. 2C). Taken together, these experiments suggest that SEZ6 controls cell 

surface levels of GluK2/3 at the post-translational level. 

SEZ6 controls function of GluK2/3  

To test whether the reduced surface levels of GluK2 and GluK3 also result in attenuated kainate 

receptor signaling, we next recorded kainate-evoked currents in acute hippocampal slices in WT 

and SEZ6KO mice. We focused on the CA1 region of the hippocampus, where both SEZ6 and 

GluK2 and/or GluK3 are expressed (Bureau, Bischoff et al., 1999, Kim, Gunnersen et al., 2002, 

LeinHawrylycz et al., 2007). CA1 pyramidal neurons were whole-cell patch-clamped, and the 

membrane current was recorded in control ACSF, in the presence of 10 µM kainate for 5 min and 

after addition of  NBQX, an antagonist of both AMPA and kainate receptors (Fig. 3A). Throughout 

the experiments AMPA receptors were blocked by GYKI53655 in the ACSF. In addition, the 

activation of NMDA and GABAA receptors was prevented by the extracellular presence of APV and 

bicuculline, respectively. Kainate reliably evoked inward currents in both genotypes. However, in 

the absence of SEZ6 in the SEZ6KO mice the mean charge carried by the kainate-evoked inward 

currents (calculated as area under the current curves) was reduced by 34% compared to wild type 

mice (Fig. 3B), consistent with a reduced membrane expression of channel subunits. 

GluK2/3 maturation is impaired in SEZ6KO neurons and in vivo in mouse brains 

In WT neurons the GluK2/3 immunoreactivity in western blots was seen as two closely co-

migrating bands, but in SEZ6KO neurons the upper band appeared reduced and merging with the 

lower one, suggesting that N-glycosylation of GluK2 and/or GluK3 may be impaired in SEZ6KO 

neurons (Fig. 4A and Supplementary Fig. 1). In fact, GluK2 and GluK3 have multiple N-

glycosylation sites (Parker, Thaysen-Andersen et al., 2013, Vernon, Copits et al., 2017), which are 

glycosylated to different extents, producing GluK2 and GluK3 forms with more simple, immature 

glycosylation and with mature glycosylation. GluK2/3 with immature glycans is mostly found within 

cells, whereas GluK2/3 with mature glycans localizes to a larger extent to the cell surface (Mah, 

Cornell et al., 2005). Distinction between both sugar modifications is possible with the glycan-

removing enzyme endoglycosidase H (EndoH) that cleaves off immature, but not mature N-

glycans. To test, whether SEZ6KO affects the glycosylation of GluK2 and/or GluK3, we digested 



neuronal protein lysates with EndoH and blotted for the GluK2/3 bands (Fig. 4A). With EndoH, the 

two bands of GluK2/3 in control conditions were converted to three distinct proteins bands with a 

lower apparent molecular weight. The lowest band is completely deglycosylated, as shown 

previously by PNGase F treatment (Nasu-Nishimura, Jaffe et al., 2010). The upper two bands were 

not completely deglycosylated, demonstrating that they partially contain mature sugar chains, 

which are not removable by EndoH. SEZ6KO specifically affected the uppermost, EndoH-resistant 

protein form. Compared to WT, this band had a lower intensity and was shifted to a slightly lower 

apparent molecular weight, indicating that in the SEZ6KO, GluK2/3 carries less mature glycans 

(Fig. 4A and model in 4A).  

So far, our experiments revealed that SEZ6 modulates mature GluK2 and/or GluK3 glycosylation in 

vitro in primary neurons. To test if maturation of GluK2 and/or GluK3 is also affected in vivo, we 

analyzed their glycosylation pattern in brain homogenates and synaptosomes of wild type and 

constitutive SEZ6KO adult mice. Similar to our results in vitro (Fig. 4A), the upper one of the two 

GluK2/3 bands under control conditions (no EndoH treatment) was reduced in the SEZ6KO brain 

and this effect was even more clearly visible after EndoH treatment, where again the uppermost, 

mature glycoform shifted to a lower apparent molecular weight (Fig. 4B for brain homogenates and 

Fig. 4E for synaptosomes). Total levels of the GluK2/3 bands were not changed and this was also 

seen for a control protein, the GluA2 subunit of AMPA receptors (Fig. 4B and D). 

Although SEZ6 has two homologs, SEZ6L and SEZ6L2, which have a similar domain structure as 

SEZ6, there was no effect on mature glycosylation of the GluK2/3 band in SEZ6L and SEZ6L2 

single knock-out brain synaptosomes (Fig. 4E). Moreover, the reduced maturation of the GluK2/3 

band was not further reduced in synaptosomes from triple-knock-out mice lacking SEZ6 and both 

of its homologs (Fig. 4E). This demonstrates that specifically SEZ6, and not its homologs, is 

required for mature glycosylation of GluK2 and/or GluK3. 

The relevance of SEZ6 for GluK2/3 maturation was not only seen at very young ages, when SEZ6 

expression is high ((Kim et al., 2002, Miyazaki et al., 2006) and Fig. 4F), but also during adulthood 

(Fig. 4F), demonstrating that the effect of SEZ6 on maturation of GluK2 and/or GluK3 is 

independent of the developmental stage and that no compensation occurs through other proteins 

during adulthood. Interestingly, the intensity of the lowest GluK2/3 band was highest during the 

embryonic stage and decreased sharply after birth (Fig. 4F), but this was independent of SEZ6.  

SEZ6 controls HNK-1 glycan modification of GluK2 and/or 3 

To identify the SEZ6-dependent changes in glycosylation of GluK2 and/or GluK3, we used a lectin 

chip microarray (LecChip) that allows characterization of the glycome fingerprint of proteins (Hu & 

Wong, 2009). Lysates of WT and SEZ6KO neurons were analyzed by a LecChip containing 45 

different lectins, which recognize different sugar structures. This analysis revealed a reduction in 



glycosylation of GluK2 and/or GluK3 for the lectins PHAE (Phaseolus vulgaris-E) and PHAL 

(Phaseolus vulgaris-L) (Fig. 5A). These two lectins share the recognition of the oligosaccharide 

Galβ1-4GlcNAcβ1 as a common motif, a sugar unit commonly involved in complex oligosaccharide 

formation, including of the human natural killer-1 (HNK-1) epitope (Chou, Ilyas et al., 1986). This is 

a known glycan modification of GluK2, which affects GluK2 function (Vernon et al., 2017), is found 

in a few other neuronal proteins, such as GluA2 (Morita, Kakuda et al., 2009) and NCAM-1 (Kruse, 

Mailhammer et al., 1984) and is generally assumed to control cell adhesion and migration (Morise, 

Takematsu et al., 2017). To determine, whether loss of SEZ6 indeed reduces modification of the 

GluK2/3 protein band with the HNK-1 glycan, we immunoprecipitated GluK2/GluK3 from mouse 

brain extracts and blotted with an anti-HNK-1 antibody ((Stanic, Saldivia et al., 2016) and Fig. 5B). 

In WT brain extracts, the GluK2/3 band contained the HNK-1 modification, in agreement with a 

previous report (Vernon et al., 2017). As a control, treatment of immunoprecipitated GluK2/3 

protein with the enzyme peptide N-glycosidase F (PNGase), which removes all N-linked sugars, 

abolished the HNK-1 signal as expected. Importantly, in SEZ6KO brains, the GluK2/3 protein 

lacked the HNK-1 modification, while the immunoblot signal for HNK-1 in the total brain extract 

(without immunoprecipitation of GluK2/3 protein) and for the different isoforms of the HNK-1 

modified protein NCAM-1 was unaltered (Fig. 5B). Thus, loss of SEZ6 specifically prevents HNK-1 

modification of GluK2 and/or GluK3, but not of other proteins in mouse brain. As a further control, 

global glycome determination of lysates by mass spectrometry did not show significant changes 

between WT and SEZ6KO neurons (Supplementary Fig. 2), revealing that loss of SEZ6 does not 

broadly affect N-glycosylation in neurons.  

 

SEZ6 facilitates GluK2 transport within the secretory pathway 

So far, our experiments revealed that SEZ6 is required for normal cell surface localization and 

signaling as well as for correct glycosylation of GluK2 and/or GluK3 with the HNK-1 epitope, which 

happens in the trans cisterna of the Golgi or in the trans-Golgi network (Kizuka & Oka, 2012). 

These findings suggest that SEZ6 promotes GluK2 and/or 3 protein trafficking through the 

secretory pathway.  

In order to investigate whether SEZ6 directly affects GluK2 trafficking through the secretory 

pathway towards the plasma membrane, we used the “retention using selective hooks” (RUSH) 

system (Fig. 6). Human embryonic kidney 293 (HEK293) cells were chosen as a heterologous 

system, which do not express endogenous SEZ6 or GluK2 or GluK3, and therefore no competition 

with endogenous proteins is expected. HEK293 were transfected with a GluK2 construct (SBP-

mCherry-GluK2) that is retained in the ER, unless biotin is added to the culture medium, which 

binds to a streptavidin-KDEL ER anchor and suppresses the interaction with a streptavidin-binding 

peptide (SBP) at the N-terminus of GluK2. Consequently, GluK2 is released from the artificial 

anchor from the ER. Thus, release of SBP-mCherry-GluK2 from the ER can be induced in a 



synchronous manner (Boncompain, Divoux et al., 2012, Evans et al., 2017). In absence of added 

biotin, SBP-mCherry-GluK2 was retained in the ER (Fig. 6B, SBP-mCherry-GluK2 is detected in 

red). 20 min after biotin addition SBP-mCherry-GluK2 largely localized to the Golgi apparatus (Fig. 

6B). At 40 min after biotin addition, vesicles containing SBP-mCherry-GluK2 were observed in the 

cytoplasm of the cells (Fig. 6B and C control mean number of vesicles/cell: 22 ± 13). When SEZ6 

(in Fig. 6B detected in green) was co-transfected with SBP-mCherry-GluK2 the number of 

cytoplasmic vesicles was significantly increased (Fig. 6B and C SEZ6 mean number of 

vesicles/cell: 36 ± 20) compared to the control transfected cells at the 40 min time point. In 

contrast, when SEZ6L2 (in Fig. 6B detected in green) was co-transfected with SBP-mCherry-

GluK2, the number of vesicles was not significantly different from the control (Fig. 6B and C 

SEZ6L2 mean number of vesicles/cell: 24 ± 14), proving that also in a heterologous system 

SEZ6L2 does not influence the trafficking of GluK2. Taken together we conclude that SEZ6 

influences GluK2 maturation by controlling its trafficking through the secretory pathway.  

The extracellular domain of SEZ6 binds GluK2/3 and is required for mature glycosylation of 

GluK2/3 

To further address the mechanism through which SEZ6 promotes trafficking, glycosylation, surface 

localization and activity of GluK2 and/or GluK3, we tested which of the several SEZ6 domains is 

required and whether SEZ6 interacts with GluK2 and/or GluK3.  

The SEZ6 ectodomain contains CUB and CCP domains, which may mediate protein-protein 

interactions, whereas its cytoplasmic domain includes an NPxY motif, which is known to be 

important for endocytosis of proteins from the cell surface (Bonifacino & Traub, 2003). To 

investigate which of the protein domains is required for full maturation of GluK2 and/or GluK3, we 

carried out a domain-deletion analysis of SEZ6. As a control, we used full-length SEZ6 (SEZ6FL) 

(Fig. 7A). First, one mutant lacked the C-terminal 39 amino acids (SEZ6ΔCyto, amino acids 20-

952; amino acids 1-19 are the signal peptide) including the NPxY motif. Second, another mutant 

was the SEZ6 ectodomain (SEZ6ecto, amino acids 20-909), which has the same amino acid 

sequence as the soluble SEZ6 (sSEZ6) generated through BACE1 cleavage between leucine906 

and aspartate907 of SEZ6 (Pigoni et al., 2016), but contains additional HA and Flag tags. The third 

mutant was the counterpart to SEZ6ecto, namely the C-terminal fragment (SEZ6CTF, amino acids 

907-991) generated by BACE1 cleavage. First, we verified that the constructs were correctly 

expressed in the SEZ6KO neurons. SEZ6FL displayed the known double band corresponding to 

the mature form (upper band) and the immature form of the protein (lower band) (Fig. 7B) (Pigoni 

et al., 2016). SEZ6ΔCyto showed bands of similar molecular weight, but of lower intensity. 

SEZ6ecto had the expected lower molecular weight than the mature SEZ6FL and was detected in 

the lysate as the immature form, whereas the mature glycosylated form was efficiently secreted 

and detected in the conditioned medium of the neurons (Fig. 7C). SEZ6CTF was well expressed at 



the expected low molecular weight (24 kDa). SEZ6FL, SEZ6ΔCyto and SEZ6ecto rescued the 

glycosylation phenotype, as seen by the reappearance of the uppermost GluK2/3 band after 

EndoH treatment in the SEZ6KO neurons (Fig. 7B), whereas SEZ6CTF did not rescue the 

maturation of the GluK2/3 protein. Thus, we conclude that the extracellular domain of SEZ6 - either 

in the membrane-bound or soluble form - is required for the function of SEZ6 in controlling GluK2/3 

protein glycosylation. Interestingly, similar observations were made for LEV-10 and SOL-1, where 

not only the full-length, but also the soluble CUB domain-containing soluble ectodomains rescued 

surface clustering of neurotransmitter receptors in the corresponding knock-out cells (Gally et al., 

2004, Gendrel et al., 2009, Nakayama & Hama, 2011, Zheng et al., 2006). 

Within the secretory pathway the ER exit of KARs can be controlled (Contractor, Mulle et al., 2011, 

Jaskolski, Coussen et al., 2004). Therefore, we used SEZ6Dcyto, but containing a KKXX ER-

retention motif (SEZ6DcytoER) and showed that it was not able to rescue the glycosylation defect 

of SEZ6KO neurons in contrast to SEZ6Dcyto (Fig. 7D). As expected for the ER localization, 

SEZ6DcytoER was only detected as the immature protein band. This experiment demonstrates 

that SEZ6 affects the post-ER trafficking of the GluK2 and/or 3. This is in line with the RUSH 

experiment (Fig. 6) which revealed that SEZ6 can promote trafficking of GluK2 in the secretory 

pathway.  

The finding that expression of SEZ6ecto, which corresponds to the physiologically generated 

BACE1 cleavage fragment of SEZ6 (sSEZ6), rescued the glycosylation phenotype in SEZ6KO 

neurons, showed that the ectodomain is sufficient to promote GluK2/3 protein maturation. To 

exclude the possibility that sSEZ6 – generated by BACE1 and found in the extracellular space - 

might influence GluK2/3 protein maturation indirectly, we also tested whether BACE1 inhibition or 

deletion, which abolishes sSEZ6 secretion, has an effect. As expected, pharmacological BACE1 

inhibition in primary cortical neurons and genetic BACE1 deletion in mouse brain homogenates 

neither altered GluK2/3 glycosylation nor cell surface levels of the GluK2/3 protein in primary 

neurons (Supplementary Fig. 3). Thus, we conclude that the requirement of SEZ6 for GluK2/3 

protein glycosylation and cell surface localization is independent of BACE1, suggesting that under 

physiological conditions it is preferentially the full-length form of SEZ6 that controls SEZ6 

glycosylation and cell surface levels.  

Our findings suggest that the regulation of GluK2 and/or 3 trafficking is mediated by the SEZ6 

extracellular domain. To address the possibility of a direct binding of SEZ6 extracellular domain to 

GluK2 and/or GluK3, we first immunoprecipitated GluK2/3 from mouse brain extract and detected 

co-immunoprecipitated proteins by mass spectrometry. While the known GluK2/3 interactor Neto2 

was detected (Zhang et al., 2009), SEZ6 was not detected (Supplementary Table 2). This suggests 

that the SEZ6 interaction with GluK2 and/or GluK3 is weaker or shorter-lived than the Neto2-

GluK2/3 interaction and not stable enough to be detected in our extract conditions. Thus, to test 



whether SEZ6 has the ability to interact with GluK2 and whether such interaction is mediated by 

the SEZ6 ectodomain, we co-expressed the GluK2a isoform with different SEZ6 mutants in 

HEK293 cells (Fig. 7E). The SEZ6 mutants containing the extracellular domain (SEZ6FL, 

SEZ6ΔCyto and SEZ6ecto) co-immunoprecipitated with GluK2a, but SEZ6CTF was not detectable 

(Fig. 7E). These data demonstrate that SEZ6 is indeed able to form a complex with GluK2 and that 

the SEZ6 ectodomain is the site of interaction with GluK2.   



Discussion 

Neurotransmitter receptors have fundamental functions in the nervous system, including for cellular 

responses to neurotransmission and synaptic plasticity. A fine-tuning of receptor activity is 

essential for adjusting neurotransmitter signal transduction to the required needs of a cell, organ or 

whole organism. Here, we identified the CUB and CCP domain-containing protein, SEZ6, as a new 

regulator of neurotransmission and demonstrate that SEZ6 controls the intracellular trafficking of 

kainate receptor subunits GluK2 and GluK3 to the cell surface, thereby controlling its glycosylation, 

cell surface localization and signaling (for a model see Supplementary Fig. 4). This reveals a novel 

molecular function for the transmembrane protein SEZ6, which is linked to schizophrenia and AD, 

but is also required for nervous system development, synaptic connectivity and long-term 

potentiation (LTP) (Gunnersen et al., 2007, Zhu et al., 2018). 

 

The trafficking mechanism of action of SEZ6 on KAR function is surprising. Other CUB and CCP 

domain-containing proteins such as Neto1, Neto2, SOL-1, LEV-9 and LEV-10 act on iGluRs or 

AChRs (Nakayama & Hama, 2011). However, they bind stably to their receptors and act as 

auxiliary receptor subunits that control synaptic receptor localization and its signaling properties, as 

determined by electrophysiology. For example, Neto1 and Neto2 are known auxiliary KAR subunits 

(Straub et al., 2011, Tang et al., 2011, Zhang et al., 2009). They bind GluK2 and specifically 

modulate key functional properties of GluK2, such as inducing slow channel kinetics and high 

agonist affinity, whereas a potential additional function of Neto1/2 on GluK2 trafficking and synaptic 

localization remains controversially discussed (Tomita & Castillo, 2012). In contrast to the Neto 

proteins, SEZ6 does not appear to fulfill the criteria established for auxiliary subunits (Copits & 

Swanson, 2012, Yan & Tomita, 2012) because our coimmunoprecipitations suggest that the SEZ6 

interaction with GluK2 or GluK3 is more transient than the interaction between Neto2 and GluK2. 

Thus, we propose that SEZ6 is a trafficking factor for GluK2 and/or GluK3 rather than a stably 

interacting auxiliary subunit, thereby providing an additional layer of regulation of KARs beyond the 

auxiliary subunits. Interestingly, the SEZ6 homolog SEZ6L2 has recently been shown to bind 

AMPARs, but not KARs, in transfected cells (Yaguchi, Yabe et al., 2017). Thus, the whole SEZ6 

family consisting of SEZ6, SEZ6L and SEZ6L2 may have important, but specific roles in iGluR 

trafficking. 

 

Transmembrane proteins in the secretory pathway were long thought to traffic by default towards 

the plasma membrane, but it is now clear that several of them require specific transport helpers, 

such as iRhom2 for ADAM17, Cornichon for transforming growth factor or ERGIC-53 for certain 

cathepsins and blood coagulation factors (Dancourt & Barlowe, 2010, Lichtenthaler, 2012). 

Through its action on the secretory trafficking of GluK2, SEZ6 now joins this growing group of 

membrane protein transport helpers. The trafficking function of SEZ6 for GluK2 and/or GluK3 is 



supported by several findings: firstly, co-expression of SEZ6 with GluK2 promoted trafficking of 

GluK2 through the secretory pathway, as measured with the RUSH system in HEK293 cells. In 

addition, the use of an ER-retained SEZ6 construct revealed that SEZ6 specifically controls the 

post-ER trafficking of GluK2 and/or GluK3. Conversely, loss of SEZ6 reduced neuronal surface 

levels of GluK2 and/or GluK3 in a post-transcriptional manner without a major effect on total 

protein levels of GluK2/3 in neurons or mouse brains. Importantly, loss of SEZ6 did not affect cell 

surface levels of other detected iGluRs and most other transmembrane proteins, revealing a 

specific effect on GluK2 and/or GluK3 surface localization. Finally, as required for a trafficking 

factor, SEZ6 bound GluK2 in co-immunoprecipitation experiments and this interaction occurred 

through its CUB domain-containing ectodomain. Potentially, SEZ6 affects interactions of GluK2 

and/or 3 with other proteins, such as protein kinase C and PDZ ligand interactions, that control 

correct positioning of GluK2 at the plasma membrane(Evans et al., 2017). 

 

Loss of SEZ6 not only reduced trafficking and surface localization of GluK2 and GluK3, but 

additionally prevented GluK2 and/or GluK3 from carrying the post-translational modification HNK-1, 

which is a covalently attached sulfated sugar chain consisting of three different sugar molecules, 

glucuronic acid, galactose and N-acetylglucosamine (HSO3-3GlcAb1-3Galb1-4GlcNAc) (Chou et 

al., 1986). The unique glycostructure that distinguishes HNK-1 from other glycostructures is the 

terminal sulfated glucuronic acid (Supplementary Fig. 4). HNK-1 has a functional role in cell 

migration, adhesion and recognition and is an autoantigen in peripheral demyelinating neuropathy 

(Morise et al., 2017). Addition of the HNK-1 epitope to proteins occurs in the trans cisternae of the 

Golgi or within the trans-Golgi network (Kizuka & Oka, 2012), but the mechanisms or sequence 

features that control HNK-1 addition to proteins remain unknown. With our finding that the 

immunoblot signal intensity for HNK-1 was unaltered in SEZ6KO mouse brains extracts, we 

conclude that SEZ6 is mechanistically not generally required for HNK-1 modification of proteins, 

but instead specifically enables HNK-1 modification of GluK2 and/or GluK3. We therefore consider 

that SEZ6 is either required for transporting GluK2 and 3 to the cellular site of HNK-1 modification 

or that it facilitates HNK-1 modification of GluK2 and/or GluK3. Whether the lack of the HNK-1 

modification in SEZ6KO neurons in turn also contributes to the reduced GluK2/3 surface levels or 

is independent of the reduced surface levels is not yet clear. However, HNK-1 is generally able to 

alter protein trafficking, as shown for another iGluR subunit, the AMPAR subunit GluA2. In that 

case, loss of HNK-1 increased GluA2 endocytosis and reduced cell surface levels of GluA2 in 

hippocampal neurons (Morita et al., 2009).  

 

Our study shows that SEZ6 is not only required for normal secretory pathway trafficking, cell 

surface localization and HNK-1 modification of GluK2/3, but also for its signaling. Loss of SEZ6 

reduced the amplitude of the kainate current in the ex vivo system of acute hippocampal slices. 



The reduced kainate current in SEZ6KO neurons may be a direct consequence of the 50% 

reduction of GluK2/3 at the cell surface. Additionally, the lack of HNK-1 on GluK2/3 in SEZ6KO 

neurons may contribute to the reduced kainate current. While it has not yet been investigated 

whether and how the loss of HNK-1 alters GluK2 and/or GluK3 function, the opposite experiment 

was done (Vernon et al., 2017). Co-expression of GluK2a or GluK3a with the two HNK-1 

synthesizing enzymes in HEK293 cells enabled HNK-1 modification on both GluK2a and GluK3a 

and resulted in glutamate-evoked currents with slower desensitization kinetics. The mean peak 

amplitude for the current was not altered for GluK2a but increased three-fold for GluK3a(Vernon et 

al., 2017). Thus, it appears possible that SEZ6 acts on GluK2/3 function through both mechanisms, 

i.e. through controlling surface levels and independently through HNK-1 modification of GluK2/3.  

 

SEZ6 is linked to neurological and psychiatric diseases, but the underlying molecular mechanisms 

are little understood. Genetic variants of SEZ6 are linked to childhood onset schizophrenia 

(Thr229-Thr231del) (Ambalavanan et al., 2015), intellectual disability (Arg657Gln) (Gilissen et al., 

2014) and AD (Arg615His) (Paracchini et al., 2018). These mutations are localized within the SEZ6 

ectodomain that interacts with GluK2 and/or GluK3. With our newly established SEZ6 function for 

surface levels and HNK-1 modification of GluK2 and/or GluK3, it appears possible that these 

mutations act as loss-of-function mutations and cause reduced KAR activity, which may result in 

altered synaptic plasticity and LTP (Bortolotto, Clarke et al., 1999, Contractor, Swanson et al., 

2001, Pinheiro, Perrais et al., 2007, Sherwood, Amici et al., 2012). Interestingly, besides SEZ6 

mutations, also changes in HNK-1 metabolism may contribute to psychiatric diseases. In fact, 

single nucleotide polymorphisms or chromosome breakpoint translocation sites close to HNK-1 

synthesizing enzymes were genetically linked to schizophrenia (Jeffries, Mungall et al., 2003, 

Kahler, Djurovic et al., 2011). 

Not only full-length, but also the soluble SEZ6 ectodomain (sSEZ6) has been linked to disease. 

While increased sSEZ6 levels in CSF were reported in bipolar, depressive and schizophrenic 

patients (Maccarrone et al., 2013) and inflammatory pain conditions (Roitman et al., 2019), the 

opposite was seen in AD, where reduced levels of the sSEZ6 were reported in CSF (Khoonsari, 

Haggmark et al., 2016). However, it remains unclear whether these changes directly contribute to 

disease pathogenesis or are merely a consequence of the disease process. sSEZ6 is released 

from full-length SEZ6 through the action of the protease BACE1 (also known as b-secretase) 

(Pigoni et al., 2016), which is a key drug target in AD as it catalyzes the first step in the generation 

of the pathogenic Ab peptide (Vassar, Kuhn et al., 2014). Our study revealed that the knock-out of 

BACE1 and the use of BACE inhibitors did not affect glycosylation or cell surface trafficking of 

GluK2/3. Thus, the action of full-length SEZ6 on GluK2/3 function was independent of BACE1. This 

is good news for the clinical development of BACE1-targeted inhibitors, as they are not expected to 

cause side effects by affecting GluK2 and/or GluK3 function. Yet, the BACE1 cleavage products of 



SEZ6, sSEZ6 or the C-terminal fragment (SEZ6CTF), may have physiological functions other than 

full-length SEZ6 and such functions may still be affected by the clinically tested BACE inhibitors. In 

fact, pharmacological BACE1 inhibition in mice reduced LTP and dendritic spine density in a SEZ6-

dependent manner (Zhu et al., 2018). While the underlying molecular mechanisms still need to be 

elucidated, these experiments imply BACE1 cleavage products in controlling LTP and spine 

density. Finding different functions for full-length versus soluble SEZ6 is reminiscent of other 

single-span transmembrane proteins, such as the death receptor DR6 (Colombo, Hsia et al., 

2018), the neuronal cell adhesion protein NrCAM (Brummer, Muller et al., 2019) and the B-cell 

maturation antigen (Laurent, Hoffmann et al., 2015), where the full-length protein and cleavage 

products have different physiological functions. 

In summary, our study identifies the neuronal protein SEZ6 as a novel trafficking protein of KARs 

that controls activity, localization and glycosylation of the KAR subunits GluK2 and GluK3. This 

reveals for the first time a molecular function for the transmembrane protein SEZ6, which has 

fundamental role in the brain, such as for nervous system development, synaptic connectivity and 

long-term potentiation (Gunnersen et al., 2007, Zhu et al., 2018). Given the genetic link of SEZ6 to 

psychiatric and neurologic diseases, the new function and mechanism of action for SEZ6 are also 

of major relevance for understanding these devastating diseases. 

 

 

 
  



Materials and Methods 
 

Materials 

The following antibodies were used: monoclonal SEZ6 (Pigoni et al., 2016), polyclonal SEZ6 

(Gunnersen et al., 2007), pAb SEZ6L2 (R&D Systems, AF4916), pAb SEZ6L (R&D Systems, 

AF4804), GluR6/7 (04-921, Millipore. GluK2 and GluK3 antibodies commercially available are not 

able to discriminate between these two subunits due to their high homology), NMDAR2b (D15B3, 

Cell Signaling), anti-GluR2 (MAB397, Millipore), 3D5 (kindly provided by Robert Vassar), calnexin 

(Enzo, Stressgen, Farmingdale, NY, USA, ADI-SPA-860), β-tubulin (T8578, Sigma), β actin 

(Sigma, A5316), PSD 95 (2507, Cell Signaling), LDLR (R&D Systems, AF2255), NCAM-1 (R&D 

Systems, AF6070), rat mAb Flag M2 (F1804, Sigma), 5F8 anti-Red (Chromotek ), anti- HA.11 

(MMS-101P, Covance), HRP coupled anti-mouse and anti-rabbit secondary (DAKO), HRP coupled 

anti-goat, anti-rat and anti-sheep (Santa Cruz). 

The following reagents and media were used: neurobasal medium, HBSS and B27 (Invitrogen), C3 

(β-secretase inhibitor IV; Calbiochem, 565788, final concentration 2 μM), DMEM (Gibco), FBS 

(Thermo Fisher Scientific) 

 

Mouse strains 

The following mice were used in this study: wild type (WT) C57BL/6NCrl (Charles River), BACE1-/- 

(Jackson Laboratory, strain B6.129- Bace1tm1Pcw/J, BACE1KO), SEZ6-/- (SEZ6KO) (Gunnersen 

et al., 2007), SEZ6 flox/flox (Gunnersen et al., 2007), SEZ6 family triple knockout (TKO) mice 

lacking SEZ6, SEZ6L and SEZ6L2 (Miyazaki et al., 2006), SEZ6L-/- (SEZ6LKO, bred from SEZ6 

family TKO (Miyazaki et al., 2006)) and SEZ6L2-/- (SEZ6L2 KO, bred from SEZ6 family TKO 

(Miyazaki et al., 2006)). All mice were on a C57BL/6 background and were maintained on a 12/12 

h light-dark cycle with food and water ad libitum. 

 

Molecular biology 

pFUW HA-SLIC-Flagx2-mmSEZ6FL was generated synthetizing full-length Mus musculus SEZ6, 

transcript variant 1 (Uniprot Q7TSK2-1) in pFUW vector, where the insert replaced the original 

GFP in the pFUGW vector. The signal peptide of SEZ6 was maintained, followed by a short spacer 

(SLIC) [22], and an HA tag (YPYDVPDYA). A double FLAG tag (DYKDDDDK) was cloned to the C 

terminus of the protein. The different SEZ6 mutants were similarly synthetized in the pFUW vector 

and GFP or empty pFUW were used as control. In particular, pFUW HA-SLIC-Flagx2-

mmSEZ6Δcyto was generated removing the last 39 amino acids at the C terminus of the protein. 

The pFUW HA-SLIC-Flagx2-mmSEZ6ecto and pFUW HA-SLIC-Flagx2-mmSEZ6 CTF containing 

the SEZ6 ectodomain and the SEZ6 C-terminal fragment respectively, were generated according 

to the BACE1 cleavage site located between leucine906 and aspartate907 (Pigoni et al., 2016). 

pFUW HA-SLIC-Flagx2-mmSEZ6L2 was generated synthetizing full-length Mus musculus 



SEZ6L2, transcript variant 1 (Uniprot Q4V9Z5-1) in pFUW vector. For the generation of the SEZ6 

retention mutant, the pFUW HA-SLIC-Flagx2-mmSEZ6Δcyto Flagx2 was used as template and the 

Flagx2 was substituted with the WBP1 retention signal (KKLETFKKTN) (Shikano & Li, 2003). 

 

Isolation of primary cortical neurons 

Neuronal cultures were derived from SEZ6 flox/flox and SEZ6KO mice at E15.5/E16.5. Brains from 

fetuses were prepared and digested with papain (Sigma) for 30 minutes. Tissue was triturated and 

cortical neurons were separated by sequential passage of the cell suspension through plastic 

pipettes. Cells were centrifuged for 3 minutes at 800 g, and resuspended in seeding medium 

(DMEM containing 10% FBS). The cell number was determined and neurons were seeded at a 

density of 1.5 million cells per milliliter in Poly-D-Lysin (Sigma-Aldrich)-coated plates. In general, 

neurons were infected at day 2 in vitro (DIV) with the exception of the rescue experiment in figure 7 

(infection was done at DIV 0 in order to maximize the rescue effect). After 5 days in vitro (DIV), 

neurons were washed with PBS, medium was replaced with fresh neurobasal.and the experiments 

were carried out at DIV 7. 

 

 

Cell lysate preparation 

In general, supernatants and lysates from neurons were collected at DIV 7 as previously described 

(Dislich, Wohlrab et al., 2015). In order to detect better the difference in the GluK2/3 glycosylation, 

Triton lysis buffer (150 mM NaCl, 50 mM Tris pH 7.5, 1% Triton X-100 and protease inhibitor 

cocktail (Roche) was used. BCA assay (Uptima Interchim, UP95425) was used to quantify protein 

concentrations and 10–15 μg of total neuronal lysate were used for Western Blot analysis. 

Brain homogenization 

Brains were isolated from SEZ6KO mice and WT at different age. All brains were homogenized in 

20mM HEPES pH 7.4, 150mM NaCl, 0.5% NP-40, 2mM EDTA, 10% Glycerol and incubated on ice 

for at least 1h. Samples were then centrifuged at maximum speed for 5 minutes in order to remove 

the membranes. BCA assay (Uptima Interchim, UP95425) was used to quantify protein 

concentrations and 15–20 μg of total protein were used for Western Blot analysis. 

 

Brain fractionation 

Brains were isolated from P7 BACE1 KO mice and WT littermates kindly provided by Prof. Jochen 

Herms. Samples were processed as previously described (Kuhn, Koroniak et al., 2012) and the 

concentration of the membrane proteins were quantified with a BCA assay (Uptima Interchim, 

UP95425). 15–20 μg of total protein were used for Western Blot analysis. 

 

Synaptosomes  



Synaptosomes were purified from full mouse brain (without olfactory bulbs and cerebellum) 

according to Carlin et al. 1980 (Carlin, Grab et al., 1980). Brains were homogenized in 0.32M 

sucrose, 1mM NaHCO3, 1mM MgCl2 and 0.5 mM CaCl2 and diluted at a final concentration of 

10% w/v. Samples were centrifuged at 1400g for 10 min at 4 °C. The supernatants (S1) were 

transferred to a fresh tube and centrifuged at 13800 g for 10 min at 4 °C. The supernatants (S2) 

were discarded and pellets (P2) resuspended in 0.32M sucrose, 1mM NaHCO3. Sucrose gradient 

was set up by slowly over-laying increasing sucrose concentration solutions (0.85M sucrose, 1M 

sucrose and 1.2M sucrose in water). P2 suspensions were loaded carefully on the sucrose layers 

and tubes were centrifuged in an ultracentrifuge with swing out rotor at 82.500 g for 2h at 4 °C 

(max acceleration, but slow deceleration). Synaptosome fractions were collected between layers 

1.2M and 1M sucrose, and centrifuged at 13800 g for 15 min at 4 °C. Sucrose was completely 

removed and pellets (P3) solved in SDT buffer (2% SDS, 100mM Tris, 50mM DTT). 

 

Western blot analysis 

Samples were boiled for 5 min at 95 °C in Laemmli buffer and separated on 8% or 12% SDS-

polyacrylamide handcast gels or 4-12% MOPS gradient gels (GenScript). PVDF membranes 

(Millipore) were incubated with primary antibody for 1–2 h at room temperature or at 4 °C 

overnight. After incubation with secondary antibody at room temperature for 1 h, membranes were 

developed with ECL prime (GE Healthcare, RPN2232V1). 

 

Deglycosylation assay 

10-12 μg of neuronal lysate or brain homogenate were treated with endoglycosidase H (Endo H, 

New England Biolabs, P0702) or Peptide-N-Glycosidase F (PNGase F, New England Biolabs, 

P0704) according to the manufacturer’s protocol. Afterwards, the samples were separated on 8 % 

SDS-polyacrylamide gel Western blotting was performed. 

 

Surface biotinylation 

Neurons were biotinylated at DIV 7 with EZ-Link™ Sulfo- NHS-Biotin (ThermoFisher, 21217) 

according to manufacturer’s protocol. Quenching was done with ammonium chloride (50 mM) and 

BSA (1 %) in PBS and lysis with SDS lysis buffer (50 mM Tris-HCl pH 8, 150 mM NaCl, 2 mM 

EDTA, 1 % SDS). To dilute the samples, RIPA buffer (10 mM Tris-HCl pH 8, 150 mM NaCl, 2 mM 

EDTA, 1 % Triton, 0.1 % sodium deoxycholate, 0.1 % SDS) was used. After sonication, protein 

concentrations were quantified and 80 μg of total lysate were incubated with 25 μl of High Capacity 

Streptavidin Agarose Resin (ThermoFisher, 20361). Samples were incubated rotating 2h at room 

temperature or overnight at 4 °C. Beads were washed with RIPA buffer and bound proteins were 

eluted in Laemmli buffer supplemented with 3 mM biotin by boiling at 95 °C. Eluted proteins were 

separated on 8 % SDS-polyacrylamide gel and Western blot analysis was performed. 



 

RNA extraction and RT-qPCR 

RNA was extracted from DIV 7 neurons using the RNeasy Mini Kit (QIAGEN) and Reverse 

Transcription was performed using the High-Capacity cDNA Reverse Transcription Kit 

(ThermoFisher) according to manufacturer’s protocol. RT-qPCR was carried out using the 

StepOnePlus real-time PCR system (Life Technologies) and power Sybr Green master mix 

(Applied Biosystems). Reaction volumes of 20 µl with the following specific primers (0.5 µM) were 

used (Rangel, Madronal et al., 2009): 

Gene Forward Primer 5’-3’ Reverse Primer 5’-3’ 

GluA1 CTCGCCCTTGTCGTACCAC GTCCGCCCTGAGAAATCCAG 

GluA2 GTGTCGCCCATCGAAAGTG AGTAGGCATACTTCCCTTTGGAT 

GluK2 ATCGGATATTCGCAAGGAACC CCATAGGGCCAGATTCCACA 

GluK3 AGGTCCTAATGTCACTGACTCTC GCCATAAAGGGTCCTATCAGAC 

GluN2B GCCATGAACGAGACTGACCC GCTTCCTGGTCCGTGTCATC 

β-Actin CCCAGAGCAAGAGAGG GTCCAGACGCAGGAT 

GAPDH AGGTCGGTGTGAACGGATTTG TGTAGACCATGTAGTTGAGGTCA 

 

Amplification conditions consisted of 15″ denaturation at 95°C; 1 min of annealing and elongation 

at 60°C for 40 cycles. The results were normalized by the expression levels of gapdh and βactin. 

Data were analyzed by StepOne Software (Applied Biosystems) following the 2−ΔΔCT method (Livak 

& Schmittgen, 2001). 

 

Analysis of GluK2 editing 

cDNA extract from DIV 7 neurons (see session RNA extraction and RT-qPCR) was used as 

template to amplify the M2 region of GluK2. The following primers were used: GluK2 5′-

GGTATAATCGACACCCTTGCAACC-3′, GluK2 5′-TGACTCCATTAAGAAAGCATAATCGGA-3′. 

BbvI (New England Biolabs) digestion was performed according to manufacturer’s protocol and 

was used to determine the level of GluK2 RNA editing (Bernard, Ferhat et al., 1999). The digested 

product was run on 2% agarose gel, and bands were quantified using NIH ImageJ. To determine the 

level of editing, was used the formula (intensity of 376 [edited] / intensity of [376 (edited) + 269 

(unedited)]) × 100, according to Evans et al. (Evans et al., 2017) . The band at 76 bp was used to 

determine equal loading. 

 

 

 

Inhibitor treatment of neurons  



The BACE inhibitor C3 (β-secretase inhibitor IV; Calbiochem, 565788, final concentration 2 μM) 

was applied to neurons at DIV 5 supplemented to fresh medium. Treatment was prolonged for 48h 

and lysates collected at DIV 7. 

 

Co-immunoprecipitation 

HEK293T were transfected with 1 μg of pcDNA3.6 mycGluR6a(Q) plasmid kindly provided by Prof. 

Christophe Mulle (Jaskolski, Normand et al., 2005) and 0.5 μg of different SEZ6 and SEZ6L2 

constructs (see previous description). 72h later, cells were lysated in 20mM HEPES pH 7.4, 

150mM NaCl, 0.5% NP-40, 2mM EDTA, 10% Glycerol and lysates were incubated with protein G 

agarose beads preconjugated with GluR6/7 antibody (10 μls of antibody and 300 μl of beads were 

used for 14 samples) O/N at 4 °C. After washing, proteins were eluted in Laemmli Buffer, boiled at 

95°C for 5 minutes and loaded on a 4-12% MOPS gradient gel (GenScript). Detection was done 

with GluR6/7 (04-921, Millipore) and anti- HA.11 (MMS-101P, Covance) antibodies. For the Co-

immunoprecipitation followed by mass spectrometry analysis, 50ul of protein G agarose beads per 

sample were conjugated with 5ul of GluR6/7 antibody or 600ul SEZ6 14E5 hybridoma supernatant 

o/n, at 4°C, with rotation. Conjugated beads were washed 3 times with PBS and 50 μl of the 

bis(sulfosuccinimidyl)suberate (BS3) solution (2.5 mM BS3 in PBS) was added and incubated 1 h, 

RT, rotating. BS3 crosslinked PGS beads were then washed in different solutions: three times with 

50 μl of 100 mM glycine pH 2.8, two times with PBS supplemented with 1% Igepal CA-630 (v/v) 

and finally one time with PBS. After washing, crosslinked beads were incubated with 2mg of brain 

homogenate in the HEPES NP40 buffer O/N, at 4°C on rotator. Samples were washed three times 

with HEPES NP40 buffer and eluted in 30 μl of 8% formic acid for 10 min, RT. 

 

Lectin chip microarray (LecChip) 

For lectin chip microarray analysis (LecChip), primary neuronal cultures from WT (n = 3) and 

SEZ6KO mice (n = 4) were first lysed in STET-Buffer (50 mM Tris, pH 7.5, 150 mM NaCl, 2 mM 

EDTA, 1% Triton-X, PI mix 1:500) and brought to identical protein concentrations (measurement 

was performed by BCA reagent, Uptima Interchim, UP95425) in TBS to obtain a 0.05 mg/ml 

solution. LecChip (GlycoTechnica Ltd.) was washed three times with Probing Solution (provided by 

the manufacturer), and lysates (1 µg/ml) were added to the wells in Probing Solution. Samples 

were incubated overnight at 18 °C. After incubation, an excess blocker glycoprotein was added to 

the chip and incubated for 30 min. The Blocking solution was then discarded, and the chip was 

washed 3 times with 0.1% TBST. Anti GluR6/7 antibody (04-921, Millipore) in blocking solution in 

TBS was then applied to the chip, and incubated for 1h. After three washes with 0.1% TBST, 

AF555-labeled goat anti rabbit (Life Technologies) solution in 0.1% TBST was added and 

incubated for 30 min. Subsequently, the LecChip was washed with TBS and double-distilled water 

30 min each. The LecChip was scanned with InnoScan 710 Microarray scanner (Innopsys) and 



results were analyzed with CLIQS Array Professional software (TotalLab). Overall, 45 lectin 

intensities were measured in each sample. An average Pearson correlation coefficient of 0.98 and 

above was calculated for all samples. Lectin intensities were considered and discoveries were 

determined using the Original FDR method of Benjamini and Hochberg, with Q = 2%. 

 

Immunoprecipitation and HNK-1 detection 

Protein G agarose beads preconjugated with GluR6/7 (1.5 μl of antibody and 40 μl of beads per 

sample) or NCAM-1 antibody (12.5 μl of antibody and 40 μl of beads per sample) were incubated 

with 200 ug of total brain homogenates O/N at 4 °C. After washing, proteins were eluted in 

Laemmli Buffer, boiled at 95°C for 5 minutes and loaded on a 4-12% MOPS gradient gel 

(GenScript) or 8% gel. Detection was done with HNK-1 1C10 supernatant (Developmental Studies 

Hybridoma Bank). As control for the specificity of the HNK-1 antibody, the proteins pulled down 

from two WT samples were digested with PNGase F before elution to remove HNK-1 epitope. 

 

SUSPECS labeling of proteins for mass spectrometry analysis  

Surface labeling and processing of the samples were performed as previously described (Herber et 

al., 2018). Briefly, 40 million primary cortical SEZ6 flox/flox neurons were infected at 2 DIV with 

iCRE (SEZ6KO neurons) or GFP (control) virus. At 5 DIV medium was replaced with fresh 

neuronal culture medium supplemented with 50 µM Ac4-ManNAz. At DIV7 biotinylation of 

glycoproteins at the cell surface was performed via bioorthogonal click chemistry applying 100 µM 

DBCO-PEG12-biotin (Click-chemistry tools) for 2h at 4 °C. Cells were lysed in STET-lysis buffer 

(150 mM NaCl, 50 mM Tris (pH 7.5), 2 mM EDTA, 1% Triton X-100) with protease inhibitor, 

centrifuged and lysates were filtered through a 0.45µM syringe filter (Millipore). Cell lysates of 3 

control (GFP) and 3 SEZ6KO (iCRE) were loaded on a polyprep chromatography column (Biorad) 

containing 300 µL of high capacity streptavidin agarose beads (Thermofisher) and washed with 10 

mL 2% SDS in PBS to remove non-specifically bound proteins. Streptavidin-beads were dried 

completely and proteins were eluted from the beads by boiling 5 min at 95°C in 150 µL Laemmli 

buffer supplemented with 8 M urea and 3 mM biotin. Samples were separated with 10% SDS-

polyacrylamide gel electrophoresis (PAGE) and stained with 0.025% (w/v) Coomassie Brilliant Blue 

in 10% acetic acid. The gel was destained in 10% acetic acid and each lane was cut into 14 

horizontal slices (=14 fractions) at equal height and subjected to tryptic in-gel digestion. 

 

In gel-digestion and peptide purification 

In gel digestion and peptide purification were performed as previously described (Shevchenko, 

Tomas et al., 2006). Briefly, proteins residing in the gel were denatured with 10 mM dithiothreitol 

(DTT) in 100 mM ammonium bicarbonate (ABC), reduced with 55 mM iodoacetamide (IAA) in 100 

mM ABC and proteolytic digestion was performed at 37°C overnight using 150 ng trypsin per 



fraction. 40% acetonitrile (ACN) supplemented with 0.1% formic acid was used to extract the 

peptides. Peptides were dried by vacuum centrifugation, and reconstituted in 0.1% formic acid for 

proteomic analysis. 

 

LC-MS/MS analysis 

Each gel fraction was analyzed on an Easy nLC-1000 (Thermo Sceintific, US), which was coupled 

online via a nano electrospray source (Thermo Scientific, US) equipped with a PRSO-V1 column 

oven (Sonation, Germany) to a Velos Pro Orbitrap Mass Spectrometer (Thermo). Peptides were 

separated on a self-packed C18 column (300 mm × 75µm, ReproSil-Pur 120 C18-AQ, 2.4 µm, Dr. 

Maisch, Germany) with a binary gradient of water (A) and acetonitrile (B) containing 0.1% formic 

acid (0 min, 2% B; 3:30 min 5% B; 48:30 min, 25% B; 59:30, 35% B; 64:30, 60% B) at a flow rate 

of 250 nL/min and column temperature of 50°C. Full MS spectra were acquired in profile mode at a 

resolution of 30,000 covering a m/z range of 300-2000. The ten most intense peptide ions per full 

MS scan were chosen for collision induced dissociation (CID) within in the ion trap (isolation width: 

2 m/z; normalized collision energy: 35%; activation q: 0.25; activation time: 10 ms). A dynamic 

exclusion of 40 s was applied for peptide fragmentation. Two technical replicates were acquired 

per sample. 

 

 

LC-MS/MS data analysis and statistical evaluation 

Database search and label free quantification was performed with the software MaxQuant (version 

1.4.1.2, maxquant.org) (Cox & Mann, 2008). Trypsin was defined as protease (cleavage specificity: 

C-terminal of K and R). Carbamidomethylation of cysteines was defined as fixed modification. 

Oxidation of methionines and acetylation of protein N-termini were defined as variable 

modifications. Two missed cleavages were allowed for peptide identification. The first search 

option was enabled to recalibrate precursor masses using the default values. The data was 

searched against a mouse database including isoforms (UniProt, download: May 16th, 2014; 

51,389 entries). The false discovery rate (FDR) was adjusted to less than 1% for both, peptides 

and proteins. Common contaminants such as bovine proteins of fetal calf serum and human 

keratins were excluded. Label-free quantification (LFQ) intensity values were used for relative 

quantification. At least two ratio counts of razor and unique peptides were required for protein 

quantification. The LFQ intensities of the technical replicates were averaged and LFQ ratios 

(SEZ6KO/WT) were calculated separately for each biological replicate. The LFQ ratios were log2 

transformed and a one-sample t-test (µ0 = 0) was applied to identify proteins with a significant 

abundance difference at the cell surface proteome.  

 

Preparation of acute hippocampal slices 



Wild type and SEZ6-/- mice on a C57BL/6 background at postnatal day P15 were used in the 

experiments. After the mice were deeply anesthetized with CO2 and decapitated, the brain was 

immediately removed and immersed in ice-cold slicing solution containing (in mM) 24.7 glucose, 

2.48 KCl, 65.47 NaCl, 25.98 NaHCO3, 105 sucrose, 0.5 CaCl2, 7 MgCl2, 1.25 NaH2PO4, and 1.7 

ascorbic acid (Fluka, Switzerland).The pH value was adjusted with to 7.4 with HCl and stabilized 

by bubbling with carbogen which contained 95% O2 and 5% CO2 and the osmolality was 290-300 

mOsm. 300 µm horizontal hippocampal slices were cut in the slicing solution by the use of a 

vibratome (VT1200S; Leica, Germany). Brain slices were kept in a recovering solution which 

contained (in mM) 2 CaCl2, 12.5 glucose, 2.5 KCl, 2 MgCl2, 119 NaCl, 26 NaHCO3, 1.25 NaH2PO4, 

2 thiourea (Sigma, Germany), 5 Na-ascorbate (Sigma), 3 Na-pyruvate (Sigma), and 1 glutathion 

monoethyl ester (Santa Cruz Biotechnology, USA) at room temperature for at least one hour 

before the experiment. The pH value of the recovering solution was adjusted to 7.4 with HCl and 

constantly bubbled with carbogen, and the osmolality was 290 mOsm. 

 

Electrophysiological recordings 

After resting in the recovery solution for at least 1 hour, individual hippocampal slices were 

transferred to the recording chamber, which was constantly perfused at a flow rate of 3 ml/min with 

artificial cerebrospinal fluid (ACSF) containing (in mM) 2 CaCl2, 20 glucose, 4.5 KCl, 1 MgCl2, 125 

NaCl, 26 NaHCO3, and 1.25 NaH2PO4 and gassed with 95% O2 and 5% CO2 to ensure oxygen 

saturation and to maintain a pH value of 7.4. 30 µM D-AP5 (Abcam and Tocris, USA), 20 µM 

GYKI53655 (Tocris), and 10 µM bicuculline (Enzo, USA) were added to the ACSF to block 

NMDAR-, AMPAR- and GABAAR-mediated synaptic transmission. Somatic whole-cell recordings 

from CA1 pyramidal neurons were performed with a borosilicate glass pipette with the resistance of 

ca. 7 MΩ filled with internal solution which contained (in mM) 148 K-gluconate, 10 HEPES, 10 

NaCl, 0.5 MgCl2, 4 Mg-ATP, 0.4 Na3-GTP. The pH value of internal solution was adjusted to 7.3 

with KOH. Voltage-clamp measurements were carried out using an EPC9/2 patch-clamp amplifier 

(HEKA, Germany). The membrane potential was held at -70 mV in voltage-clamp mode without 

liquid junction potential adjustment. Data acquisition and the generation of stimulation protocols 

were applied by the use of PULSE software (HEKA). Data were collected at 10 kHz and Bessel-

filtered at 2.9 kHz and analyzed through Igor 5 software (Wavemetrics, USA). 

 

RUSH Cargo Sorting Assay using Confocal Microscopy 

RUSH Cargo Sorting Assay was performed as described previously (Deng, Pakdel et al., 2018). 

SBP-mCherry-GluK2 construct was kindly provided by Jeremy Henley (Evans et al., 2017). 

HEK293T cells were cultured on sterile glass slides coated with Poly-D-lysine (Sigma, P6407) in 6-

wells. After 24h cells were transfected with 1.2 ug of SBP-mCherry-GluK2 and 50 ng of pFUW HA-

SLIC-Flagx2-mmSEZ6FL, pFUW HA-SLIC-Flagx2-mmSEZ6L2 or pFUW HA-SLIC-Flagx2-inactive 



iCRE. After 72h, cells were incubated with 40 µM d-Biotin (SUPELCO) in DMEM for 0h, 20 and 40 

minutes. As a control, cells without d-Biotin were monitored to confirm retention of the reporter in 

the ER. After washing with 1x PBS, cells were fixed with 4% paraformaldehyde in PBS for 10 min 

and prepared for immunofluorescence microscopy. 5F8 anti-Red (Chromotek, dilution 1:300) and 

anti- HA.11 (MMS-101P, Covance, dilution 1:300) were incubated for at least 3h room temperature 

or 4 °C overnight. AF488-labeled goat anti mouse (Life Technologies) and AF555-labeled goat anti 

rat (Life Technologies) secondary antibodies were incubated for 1h at room temperature and 

Hoechst for 10 minutes at room temperature. Sample images were acquired using a confocal 

laser-scanning microscope (LSM 780; Carl Zeiss) with 100x magnification (oil objective). To image 

the complete cell, 10-18 stacks in Z-direction with a step/size of 0.35 µm were recorded of each 

field of view. For the analysis with ImageJ/Fiji, only cells showing transport of the reporter from the 

ER to Golgi after Biotin incubation were considered, while cells showing ER signal after Biotin 

addition were excluded. Furthermore only vesicles of cells expressing the GFP as well as the 

RUSH-construct were counted. 

 

Glycome analysis 

8M guanidine hydrochloride (GuHCl), 1-hydroxybenzotriazole hydrate (HOBt), 50% sodium 

hydroxide, super DHB matrix (2-hydroxy-5-methoxy-benzoic acid and 2,5-dihydroxybenzoic acid, 

1:9), trifluoroacetic acid (TFA), 28-30% ammonium hydroxide solution and lyophilized recombinant 

PNGase F from Flavobacterium meningosepticum were obtained from Sigma-Aldrich (St. Louis, 

MO). HPLC SupraGradient acetonitrile (ACN) was obtained from Biosolve (Valkenswaard, The 

Netherlands). Dithiothreitol (DTT), ethanol and sodium bicarbonate (NaHCO3) were from Merck 

(Darmstadt, Germany) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) from 

Fluorochem (Hadfield, UK). The peptide calibration standard was purchased from Bruker Daltonics 

(Bremen, Germany). MultiScreen® HTS 96 multiwell plates (pore size 0.45 μm) with high protein-

binding membrane (hydrophobic Immobilon-P PVDF membrane) were purchased from Millipore 

(Amsterdam, The Netherlands), conical 96-well Nunc plates from Thermo Scientific (Roskilde, 

Denmark). All buffers were prepared using ultra-pure deionized water (MQ) was generated by the 

Purelab Ultra, maintained at 18.2 MΩ (Veolia Water Technologies Netherlands B.V., Ede, The 

Netherlands). 

 

Preparation of released N-glycans from cell pellet 

N-glycans were released from twelve biological replicates per condition (0.5 × 10 E6 cells each/25 

µl) using a 96-well plate PVDF-membrane based N-glycan release protocol as described 

earlier(Holst, Deuss et al., 2016). Briefly, cell pellets were suspended in MQ and sonicated for 30 

min. As controls, Visucon pooled human plasma as well as water blanks were used. Denaturation 

buffer (5.8 m GuHCl and 5 mM DTT) and 25 µl dissolved cell pellet were onto a preconditioned 



HTS 96-well plates with hydrophobic Immobilon-P PVDF membrane and incubated for 30 min at 

60 °C. The wells were washed twice with 200 μl mQ with 5 min incubation steps on a horizontal 

shaker prior to centrifugation and once with 200 μl 100 mM NaHCO3 (1 min, 500 × g). For N-

glycan release, 15 μl 100 mm NaHCO3 and 1 mU PNGase F were added per well. After 20 min 

incubation an additional 15 μl buffer was added. Plates were placed into the incubation device and 

incubated for overnight at 37 °C. Glycans were recovered into 96-well collection plates by 

centrifugation (2 min, 1000 × g); eventual residual solution was collected from the membrane and 

wash 3 times with 40 μl water. Samples were dried for 2 at 45 °C in a vacuum centrifuge and finally 

dissolved in 25 μl water.  

 

MALDI-TOF (/TOF)-MS(/MS) analysis of released glycans 

Prior to MALDI-TOF-MS analysis, sialic acids were stabilized in a linkage-specific way by ethyl 

esterification and amidation (Reiding, Blank et al., 2014), purified by cotton-HILIC-SPE, and 

MALDI-TOF-MS analysis was performed on an UltrafleXtreme (Bruker Daltonics) operated under 

flexControl 3.3 (Build 108; Bruker Daltonics). Ten microliters of the released glycans were added to 

50 μL derivatization reagent (250 mM 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide and 250 mM 

1-hydroxybenzotriazole in ethanol) and incubated for 30 min at 37°C at which 10 μL 28-30% 

ammonium hydroxide is added for amidation. Sixty microliters of ACN were added and derivatized 

glycans were enriched by cotton hydrophilic-interaction liquid chromatography (HILIC)−solid-phase 

extraction (SPE) as described before and eluted in 10 μL water (Selman, Hemayatkar et al., 2011). 

Five µL of the enriched ethyl-esterified glycans was spotted on a MALDI target (MTP AnchorChip 

800/384 TF; Bruker Daltonics) together with 1 µL 5 mg/mL super-DHB in 50% ACN and 1 mM 

NaOH. The spots were dried by air at room temperature. For each spot, a mass spectrum was 

recorded from m/z 1 000 to 5 000, combining 20 000 shots in a random walk patter at 5 000 Hz 

and 100 shots per raster spot. Prior to the analysis of the samples, the instrument was calibrated 

using peptide calibration standard (Bruker Daltonics). 

 

 

Data processing 

For automated relative quantification of the released glycans analyzed by MALDI-TOF-MS, using 

MassyTools (version 0.1.8.1.) (Jansen, Reiding et al., 2015), the MALDI-TOF-MS files were 

converted to text files. Spectra were internally calibrated using glycan peaks of known composition 

signals with a S/N above nine (Supporting Information, ST1), covering the m/z range of the 

glycans. Integration was performed on targeted peaks for visually determined list of glycans, 

including at least 95% of the theoretical isotopic pattern. Several quality parameters assess the 

actual presence of a glycan based on the mass accuracy (between -20 and 20 ppm), the deviation 

from the theoretical isotopic pattern (below 25%) and the S/N (above nine) of an integrated signal. 



Analytes were included for all samples when present in at least two-thirds of one of the biological 

replicates. Glycan composition (n = 54) signals were normalized to the total signal intensity 

(Supporting Information, ST2). 

 

Preparation of CoIP samples for mass spectrometry analysis 

The protein concentrations of the co-IP samples were estimated using the Pierce 660 nm assay 

supplemented with the ionic detergent compatibility reagent (Thermo Fisher Scientific, US). A 

protein amount of 20 µg was subjected to proteolytic digestion using the filter aided sample 

preparation (FASP) protocol with 30 kDa Vivacon filters (Sartorius, Germany) as previously 

described (Wisniewski, Zougman et al., 2009). Peptides were purified with self-packed C18 stop 

and go extraction (STAGE) tips as previously described (Rappsilber, Ishihama et al., 2003). 

 

MS analysis of Co-IP samples 

Co-IP samples were analysed on an Easy nLC 1200 nanoHPLC (Thermo Scientific) which was 

coupled online via a Nanospray Flex Ion Source (Thermo Sientific, US) equipped with a PRSO-V1 

column oven (Sonation, Germany) to a Q-Exactive HF mass spectrometer (Thermo Scientific, US). 

An amount of 1.3 µg of peptides per sample was separated on an in-house packed C18 column 

(30 cm x 75 µm ID, ReproSil-Pur 120 C18-AQ, 1.9 µm, Dr. Maisch GmbH,Germany) using a binary 

gradient of water (A) and acetonitrile (B) supplemented with 0.1% formic acid (0 min., 2% B; 3:30 

min., 5% B; 137:30 min., 25% B; 168:30 min., 35% B; 182:30 min., 60% B) at 50°C column 

temperature. A data-dependent acquisition method was used. Full MS scans were acquired at a 

resolution of 120,000 (m/z range: 300-1400, AGC target: 3E+6). The ten most intense peptide ions 

per full MS scan were selected for peptide fragmentation (resolution: 15,000, isolation width: 1.6 

m/z, AGC target: 1E+5, NCE: 26%). A dynamic exclusion of 120 s was used for peptide 

fragmentation. 

The raw data was analysed with the software Maxquant (maxquant.org, Max-Planck Institute 

Munich) version 1.5.5.1 (Cox, Hein et al., 2014). The MS data was searched against a reference 

fasta database of Mus musculus from UniProt (download: March 09th 2017, 16851 entries). 

Trypsin was defined as protease. Two missed cleavages were allowed for the database search. 

The option first search was used to recalibrate the peptide masses within a window of 20 ppm. For 

the main search peptide and peptide fragment mass tolerances were set to 4.5 and 20 ppm, 

respectively. Carbamidomethylation of cysteine was defined as static modification. Acetylation of 

the protein N-term as well as oxidation of methionine was set as variable modifications. The false 

discovery rate for both peptides and proteins was adjusted to less than 1%. The “match between 

runs” option was enabled with a matching window of 2 min. Label free quantification (LFQ) of 

proteins required at least two ratio counts of razor or unique peptides. Only razor and unique 

peptides were used for quantification. 



 

Ethics approval and consent to participate 

All animal procedures were performed in accordance with either the European Communities 

Council Directive (86/609/EEC) or Australian Code of Practice for the Care and Use of Animals for 

Scientific Purposes. Animal protocols were approved by the Ludwigs-Maximilians-University 

Munich and the government of Upper Bavaria, or alternatively the Anatomy & Neuroscience, 

Pathology, Pharmacology, and Physiology Animal Ethics Committee of the University of 

Melbourne, Australia. 

Statistics 

In general, data were analysed using Mann-Whitney test and considered significant when p-value 

was lower than 0.05. At least 6 replicates from 2 biological replicates were considered, as specified 

for each experiment in the figure legend. In figure 5, discoveries were determined using the FDR 

method of Benjamini and Hochberg, with Q = 2% and at least 3 mouse brains per genotype were 

used. When three conditions were compared in figure 6, data from 3 independent experiments 

were analysed using Kruskal-Wallis. Mass spectrometry data were analysed as described in the 

previous sessions. 
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Figure Legends 

Figure 1: Loss of SEZ6 selectively changes the levels of GluK2 and GluK3 at the neuronal 

surface. A) Workflow of the surface analysis performed in SEZ6KO and WT neurons. SEZ6 

flox/flox neurons were infected with iCRE (SEZ6KO) and GFP (WT) virus at DIV2 and metabolic 

labeling was started at DIV5. Surface analysis was performed at DIV7. B) Protein classification of 

the total proteins (3209, left panel) and of the glycoproteins (571, right panel) detected in 3 out of 3 

experiments. More than 90% of the glycoproteins detected are classified as membrane proteins, as 

expected for the surface labeling. C) Changes of glycosylated proteins on the cell surface of 

SEZ6KO neurons compared to WT. The average log2 fold change of SEZ6KO neurons over WT 

(log2 SEZ6KO/WT) is plotted against the negative log10 of each protein’s p-value according to a 

one-sample t test. Blue labeled dots are considered as hits (including GluK2 and GluK3) and are 

proteins with a p-value less than 0.05 (neg. log10(0.05)=1.3; horizontal dotted line) and a fold-

change to less than -0.5 or more than 0.5 (vertical dotted lines). GluK2 and GluK3 are labeled in 

pink, GluA1 and GluA2 are indicated with green lines and dots and GluN1 and GluN2B are marked 

with red lines and dots.  

Figure 2: Validation of GluK2/3 reduction on the surface of SEZ6KO neurons by 

immunoblot. A) SEZ6KO and WT neurons were biotinylated with Sulfo-NHS-Biotin and surface 

proteins were enriched by streptavidin bead pull-down. The GluK2/3 antibody cannot discriminate 

the subunits 2 and 3 (Lerma & Marques, 2013), therefore the band is commonly indicated with the 

labeling GluK2/3. GluK2/3, GluA2 and GluN2B surface levels were quantified, normalized to 

SEZ6L2 surface levels (negative control) in the same sample (GluK2/3 / SEZ6L2) and divided by 

the WT levels, with the ratio for WT being set to 1.0 (plot shows mean ± S.E.M., at least 10 

replicates in 4 independent biological experiments, Mann-Whitney p-value<0.005). B) mRNA levels 

of GluA1, GluA2, GluK2, GluK3 and GluN2B were quantified in SEZ6KO neurons, normalized to 

GAPDH and β-actin mRNA in the same sample and compared to the mRNA levels in WT neurons 

(6 replicates in 2 independent biological experiments). No difference in GluK2/3 mRNA was 

detected in SEZ6KO neurons compared to WT. C) Editing of GluK2 mRNA was tested in SEZ6KO 

and WT neurons. The editing value was calculated as (intensity of 376 [edited] / intensity of [376 

(edited) + 269 (unedited)]) × 100 and normalized to the band at 76 bp. No difference was detected 

in SEZ6KO neurons compared to WT (plot shows mean ± S.E.M., 6 replicates in 2 independent 

biological experiments). 

Figure 3: Reduced kainate-evoked inward currents in the absence of SEZ6. (A) Left: Current 

trace resulting from whole-cell voltage-clamp recordings at a holding potential of -70 mV in a CA1 

pyramidal neuron in a WT mouse hippocampal slice (P15). The current was recorded in the 

presence of 10 µM bicuculline, 20 µM GYKI53655 and 30 µM APV in the ACSF. Perfusion of the 

recording chamber with 10 µM kainate and 100 µM 2,3-dioxo-6-nitro-1,2,3,4-



tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX) are indicated with green and blue bars, 

respectively. Right: Analogous experiment in a SEZ6KO mouse (P15). (B) Summary of the 

experiments in A. Bar graph illustrates mean charge carried by the inward currents (measured as 

area under the curve, AUC) for the two genotypes at P15 (WT 46.6 ± 0.5 nC (n=10 cells), SEZ6KO 

30.8 ± 0.5 nC (n=9 cells), p=0.0375 Mann-Whitney-U-test). 

Figure 4: Loss of SEZ6 impairs glycosylation and maturation of GluK2/3. A) In WT neurons, 

GluK2/3 was seen as two closely comigrating bands, whereas the upper one of lower intensity was 

missing or running even more closely to the lower band of main intensity in SEZ6KO neurons 

(schematic representation on the right). When the total lysates of SEZ6KO and WT neurons were 

digested with endoglycosidase H (EndoH) – which removes immature, but not mature sugars – the 

two closely comigrating bands were converted to three bands of a lower apparent molecular 

weight, consistent with full deglycosylation of the lowest band and a partial deglycosylation of the 

upper two bands (marked in blue, red and green in the right panel). In SEZ6KO neurons the 

uppermost (light blue) band was missing and a new band of lower apparent molecular weight was 

seen that was overlapping with the red labeled band and was indicated with the pink asterisk in the 

SEZ6KO. No difference in the glycosylation of GluA2 was detectable, pointing to a specific effect of 

SEZ6 on GluK2/3. B) The running pattern of GluK2/3 in SEZ6KO and WT brains was compared 

upon EndoH digestion. Similar to primary neurons, GluK2/3 displayed an immature glycosylation 

pattern in SEZ6KO brains. C) Total GluK2/3 levels were quantified and showed a significant but 

moderate reduction in SEZ6KO compared to WT neuronal lysates (plot shows mean ± S.E.M., 9 

replicates in 3 independent biological experiments, Mann-Whitney p-value<0.005). D) No 

significant change in GluK2/3 total levels was detectable in SEZ6KO and WT adult brains (plot 

shows mean ± S.E.M., 6 replicates). E) Synaptosomes from knock-out (KO) brains of single SEZ6 

family members (SEZ6, SEZ6L, SEZ6L2), triple knock-out (TKO) and respective controls (WT and 

TWT – triple WT) were digested with EndoH. GluK2/3 displayed the immature glycosylation in 

SEZ6KO and TKO brains, but not in SEZ6L and SEZ6L2 brains, demonstrating non-redundant 

functions for the SEZ6 family members. F) Brain homogenates from SEZ6KO and WT mice at 

different ages were digested with EndoH. GluK2/3 displayed the immature glycosylation at all 

developmental stages of SEZ6KO mice, suggesting that no compensation effect is occurring with 

aging. 

Figure 5: Loss of SEZ6 reduces HNK-1 epitope on GluK2/3. A) The glycome fingerprint of 

GluK2/3 was analyzed by lectin chip microarray (LecChip). Lectin PHAL and PHAE (indicated with 

asterisks) detected reduced amounts of the oligosaccharide Galβ1-4GlcNAcβ1 on GluK2/3 in 

SEZ6KO neurons (plot shows mean ± S.E.M., 3 WT replicates and 4 SEZ6KO replicates were 

used, discoveries were determined using the FDR method of Benjamini and Hochberg, with Q = 

2%). B) Immunoblot analysis revealed reduction of HNK-1 epitope on GluK2/3 in SEZ6KO brains. 

Left panels: Comparable amounts of GluK2/3 were immunoprecipitated (IP) in WT and SEZ6KO 



brains using excess of brain homogenates compared to beads. Anti-HNK-1 antibody was used for 

detection. HNK-1 band on GluK2/3 was detected only in WT brains but not in SEZ6KO brains 

(n=6). As a control, HNK-1 modification of NCAM-1 was unaltered, as revealed after IP of NCAM-1 

from WT and SEZ6KO brains (n = 3), followed by detection with anti-HNK-1 antibody. Different 

isoforms of NCAM-1 are annotated with arrowheads (NCAM 180, NCAM 140 and NCAM 120). Mid 

panel: To prove the specificity of the HNK-1 antibody, GluK2/3 was immunoprecipitated and 

digested with Peptide-N-Glycosidase F (PNGase F), which removes N-linked oligosaccharides. 

Upon PNGase F digestion, HNK-1 was not detectable in WT brains and the molecular weight of 

GluK2/3 was reduced. Right panels: In total brain homogenates (input), no difference of general 

HNK-1 epitope or NCAM-1 levels was detected. 

Figure 6: SEZ6 facilitates GluK2/3 trafficking through the secretory pathway. A) Schematic 

representation of the RUSH Cargo Sorting Assay using Confocal Microscopy. HEK293T cells were 

transfected with the SBP-mCherry-GluK2 plasmid that expresses streptavidin binding peptide 

(SBP)—mCherry—GluK2 fusion protein and streptavidin-KDEL “anchor” that retains SBP-

containing proteins in the ER. Upon addition of biotin in the cell culture medium, SBP-mCherry-

GluK2 is released allowing its trafficking through the secretory pathway. B) SEZ6, SEZ6L2 and 

control plasmid (HA-iCRE) were co-transfected with SBP-mCherry-GluK2. Biotin was added to 

elicit release of SBP-mCherry-GluK2 from the ER (0 min) and cell were fixed at different time 

points (0, 20 and 40 min). White arrowheads point to Golgi-derived vesicles containing SBP-

mCherry-GluK2. In red: SBP-mCherry-GluK2. In green: anti HA antibody detecting HA-iCRE, SEZ6 

or SEZ6L2. C) The number of vesicles containing SBP-mCherry-GluK2 was determined at each 

time point. When SEZ6, but not SEZ6L2, was co-transfected, the number of vesicles containing 

SBP-mCherry-GluK2 was significantly higher compared to the control condition (plot shows mean 

± S.D., 3 independent experiments, Kruskal-Wallis p-value < 0.01). 

Figure 7: SEZ6 extracellular domain in the secretory pathway rescues GluK2/3 maturation in 

SEZ6KO neurons and binds to GluK2/3. A) Schematic representation of the constructs used: 

SEZ6 full length (SEZ6FL), SEZ6 lacking the C-terminal domain (SEZ6Δcyto), SEZ6 ectodomain 

generated by BACE1 cleavage (SEZ6ecto), SEZ6 C-terminal fragment generated by BACE1 

cleavage (SEZ6CTF) and SEZ6 lacking the C-terminal domain but fused to an ER retention signal 

(SEZ6ΔcytoER). B) SEZ6 constitutive KO neurons were transduced with SEZ6 constructs. 

SEZ6FL and SEZ6Δcyto were detectable as two bands corresponding to mature (higher) and 

immature (lower) forms of SEZ6. No difference in the apparent molecular weight was detected 

because the high percentage of the gel used (12%) and the small C-terminal deletion (39 amino 

acids). SEZ6ecto was present as the immature band in the neuronal lysates and as the mature, 

secreted band in the conditioned medium (C). SEZ6CTF (with HA and Flag-tags) was detected at 

the expected low molecular weight. Additionally, the C-terminal fragment generated from SEZ6FL 

by BACE1 cleavage was detected. Due to its lack of an HA-tag, it had a lower molecular weight 



than SEZ6CTF. The C-terminal fragment generated from SEZ6Δcyto upon BACE1 cleavage was 

not visible because of its low molecular weight. GluK2/3 glycosylation was rescued when SEZ6FL, 

SEZ6Δcyto and SEZ6ecto were expressed in the neurons, but SEZ6CTF was not able to rescue 

the phenotype. D) Sez6 constitutive KO neurons were transduced with SEZ6ΔcytoER and 

SEZ6Δcyto. SEZ6ΔcytoER presented only the band corresponding to the immature form of SEZ6, 

as expected for a protein retained in the ER. SEZ6Δcyto, but not SEZ6ΔcytoER, was able to 

rescue GluK2/3 glycosylation, showing that SEZ6 localized to the ER is not sufficient to rescue the 

GluK2/3 glycosylation. E) HEK293T cells were co-transfected with a GluK2a plasmid and the SEZ6 

constructs. Expression of SEZ6 constructs was analyzed in the total lysates (“Input”) and revealed 

a similar expression of the different proteins. GluK2a was immunoprcipitated with GluK2/3 antibody 

and the SEZ6 mutants were detected with the HA.11 antibody (“IP”). SEZ6FL, SEZ6Δcyto and 

SEZ6ecto, but not SEZ6CTF were co-immunoprecipitated with GluK2a, suggesting that SEZ6 

extracellular domain is necessary for GluK2a binding. 

  



Supplementary Figure Legends 

Supplementary Fig. 1: Quality control of surface enrichment by Sulfo-NHS-Biotin. SEZ6KO 

and WT neurons were biotinylated with Sulfo-NHS-Biotin and surface proteins were enriched by 

streptavidin beads pull-down. Total proteins in the lysates (11 µg, “Total”) and surface proteins (60 

µg, “Surface”) were analyzed by immunoblotting The efficiency of the enrichment is shown by the 

calnexin depletion, by the absence of immature SEZ6 (black star, Pigoni et al. 2016) and by the 

absence of a second GluA2 band at a lower molecular weight in the surface pull-down compared 

to the total lysates. 

Supplementary Fig. 2: No changes in the total glycome of SEZ6KO neurons were detected. 

A general N-glycan analysis was performed using lysates of WT and SEZ6KO neurons. N-glycans 

were released from the protein extracts (Holst et al., 2016) and subject to MALDI-TOF mass 

spectrometric analysis. N-acetylneuraminic acids (NeuAc) were subjected to linkage-specific 

derivatization, allowing stabilization of the sialic acid residues and mass spectrometric distinction of 

sialic acid linkages on the basis of mass shifts induced by ethyl esterification (α2,6-linkage) and 

lactonization with sequential amidation (α2,3-linkage). 54 glycan structures were identified and 

quantified, and none of them showed differences between WT and SEZ6KO neurons (plot shows 

mean ± S.E.M., 11 WT replicates and 12 SEZ6KO replicates from 2 independent biological 

experiments were used). 

Supplementary Fig 3: BACE1 cleavage does not affect the function of SEZ6 as GluK2/3 

regulator. A) WT neurons were treated with the BACE inhibitor C3 or DMSO as control and 

surface biotinylation with Sulfo-NHS-Biotin was performed. BACE1 inhibition did not only prevent 

SEZ6ecto formation (Pigoni et al., 2016), but also increased full-length SEZ6 levels at the cell 

surface compared to the control condition. Even though SEZ6 full length accumulated on the cell 

surface of BACE-inhibitor treated neurons, no change in GluK2/3 amounts at the cell surface was 

detected. B) Membrane fraction of WT and BACE1KO brains was digested with EndoH. As 

expected, SEZ6 full length accumulates in the membrane fraction of BACE1KO brains. No change 

in GluK2/3 glycosylation or total amount was detected. C) WT and SEZ6KO neurons were treated 

with the BACE1 inhibitor C3 or DMSO as control and total lysates were analyzed with EndoH 

digestion. Even though SEZ6 full length accumulates upon BACE inhibition and GluK2/3 presents 

immature glycosylation in the SEZ6KO neurons, no change of GluK2/3 glycosylation or total 

amounts was seen when WT neurons were treated with C3. These indicates that both surface 

localization (A) and glycosylation (B and C) of GluK2/3 are likely to have reached their maximum in 

WT cells and cannot be enhanced by increased SEZ6 levels, as induced here through BACE1 

inhibition. 

Supplementary Fig 4: Proposed model for GluK2/3 regulation mediated by SEZ6. SEZ6 

interacts with GluK2 in the early secretory pathway (ER) and facilitates its trafficking through the 



secretory pathway. While trafficking into the Golgi, GluK2/3 undergoes several sugar modifications, 

including HNK-1 modification. Once reached the cell surface, SEZ6 and GluK2/3 separate and 

become independent from each other, explaining why BACE1 cleavage does not affect GluK2/3 

maturation. When SEZ6 is not present, GluK2/3 trafficking is impaired and also its function at the 

cell surface.  

 

Supplementary Table 1: Proteins significantly changed on the cell surface of SEZ6KO 

neurons compared to WT. Proteins with LFQ intensity lower than log2 ratio (SEZ6KO/WT)=-0.5 

(0.71 fold change) or higher than log2 ratio(SEZ6KO/WT)=0.5 (1.4 fold change) and a p-value 

lower than 0.05 were considered as hits. Proteins are sorted according to their fold change 

(“Ratio”) and their p-values is reported (“p-value”). Membrane (“Membrane”), soluble (“Soluble”) 

and proteins with unknown classification (“Unknown”) were detected, according to Uniprot. 

Supplementary Table 2: Proteins co-immunoprecipitated with GluK2/3 in endogenous 

conditions. GluK2/3 and SEZ6 as control were immunoprecipitated in WT brain homogenates 

(n=6). Proteins co-immunoprecipitated with GluK2/3 in more than 4 out of 6 replicates and 

detected in less than 2 out of 6 controls, are reported in the table. Proteins are sorted according to 

their average LFQ intensity, showing at the top of the table the proteins giving a stronger signal. 

Neto2 was co-immunoprecipitated with GluK2/3 in endogenous conditions, but SEZ6 was not 

detectable (“NaN”). 
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Global glycome analysis WT and SEZ6KO neurons
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Supplementary Table 1 

 

Protein 
IDs 

Gene 
names Protein names Ratio p-value Protein 

type 
B1AS29 Grik3/ 

GluK3 
Glutamate receptor ionotropic. kainate 3 0.43 0.02 Membrane 

D3YTM0 Cers2 Ceramide synthase 2 0.45 0.01 Soluble 
Q9ER00 Stx12 Syntaxin-12 0.46 0.05 Membrane 

P39087 Grik2/ 
GluK2 

Glutamate receptor ionotropic. kainate 2 0.52 0.01 Membrane 

P61089 Ube2n Ubiquitin-conjugating enzyme E2 N 0.54 0.03 Soluble 

O54865 Gucy1b
3 

Guanylate cyclase soluble subunit beta-
1 0.57 0.05 Soluble 

Q8BTX9 Hsdl1 Inactive hydroxysteroid dehydrogenase-
like protein 1 0.58 0.03 Soluble 

O08915 Aip AH receptor-interacting protein 0.59 0.01 Soluble 
P11627 L1cam Neural cell adhesion molecule L1 0.62 0.02 Membrane 
Q9Z0P4-
2 Palm Paralemmin-1 0.63 0.01 Membrane 

P97785-
2 Gfra1 GDNF family receptor alpha-1 0.68 0.04 Membrane 

Q8BYI8 Kiaa14
67 

Uncharacterized protein KIAA1467 0.70 0.01 Membrane 

O08912 Galnt1 Polypeptide N-
acetylgalactosaminyltransferase 1 0.70 0.03 Membrane 

Q9R1R8 Rdh11 Retinol dehydrogenase 11 0.71 0.03 Unknown 
 

Protein 
IDs 

Gene 
names Protein names Ratio p-value Protein 

Type 
Q99LD9 Eif2b2 Translation initiation factor eIF-2B 

subunit beta 2.00 0.01 Unknown 

Q9CWR2 Smyd3 Histone-lysine N-methyltransferase 
SMYD3 1.68 0.04 Soluble 

Q9D6R2 Idh3a Isocitrate dehydrogenase [NAD] subunit 
alpha. mitochondrial 1.66 0.05 Soluble 

Q8BUY9 Pggt1b Geranylgeranyl transferase type-1 
subunit beta 1.64 0.04 Unknown 

Q8R3I2-
3 Mboat2 Lysophospholipid acyltransferase 2 1.64 0.01 Membrane 

O88986 Gcat 2-amino-3-ketobutyrate coenzyme A 
ligase. mitochondrial 1.64 0.05 Soluble 

F6S1R2 Ahsa2 Activator of 90 kDa heat shock protein 
ATPase homolog 2 1.62 0.02 Unknown 

Q8R323 Rfc3 Replication factor C subunit 3 1.45 0.05 Soluble 
Q8K2M0-
2 Mrpl38 39S ribosomal protein L38. 

mitochondrial 1.44 0.04 Soluble 

 



Supplementary Table 2 

 

Protein 
IDs 

Gene 
names Protein names 

Average 
LFQ 

intensity# 

B1AS29 Grik3/ 
GluK3 Glutamate receptor ionotropic, kainate 3 31,97 

P39087 Grik2/ 
GluK2 Glutamate receptor ionotropic, kainate 2 31,64 

Q61626 Grik5/ 
GluK5 Glutamate receptor ionotropic, kainate 5 28,25 

P47757-2 Capzb F-actin-capping protein subunit beta 25,30 
E9Q171 Nfasc Neurofascin 25,23 
Q8BMF5 Grik4 Glutamate receptor ionotropic, kainate 4 24,79 
O09061 Psmb1 Proteasome subunit beta type-1 24,57 
P47708 Rph3a Rabphilin-3A 24,05 
Q60692 Psmb6 Proteasome subunit beta type-6 23,95 
Q3U2G2 Hspa4 Heat shock 70 kDa protein 4 23,87 
Q8BNJ6 Neto2 Neuropilin and tolloid-like protein 2 23,76 

P35486 Pdha1 Pyruvate dehydrogenase E1 component 
subunit alpha, somatic form, mitochondrial 23,73 

P59016 Vps33b Vacuolar protein sorting-associated protein 
33B 22,12 

Q7TSK2 Sez6 Seizure protein 6 NaN 
#log2 scale 



Further answer to reviewer’s comment: 
  
Specific Comments on Section 2.2: 
Figure 5 – Does the PNGase treatment affect GluK2/3 band shift in the Sez6 KO 
neurons? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Comment on figure 5: Loss of SEZ6 affects EndoH sensitivity of GluK2/3. In the 
control neuronal lysates (“Control”) WT condition, GluK2/3 was seen as two closely 
comigrating bands. In the control neuronal lysates SEZ6KO condition, the upper band of 
lower intensity was missing or running even more closely to the lower band of main 
intensity. When the total lysates of SEZ6KO and WT neurons were digested with 
endoglycosidase H (“+EndoH”) – which removes immature, but not mature sugars – the 
two closely comigrating bands were converted to three bands of a lower apparent 
molecular weight, consistent with full deglycosylation of the lowest band (marked in 
green) and a partial deglycosylation of the upper two bands (marked in light blue and red). 
In SEZ6KO neurons the uppermost (light blue) band was missing. A new band of lower 
apparent molecular weight, partially overlapping with the red labeled band was detected 
(indicated with the purple asterisk). When both WT and SEZ6KO neuronal lysates were 
treated with PNGase (“+PNGase”) – which removes also mature sugars – no difference 
in the glycosylation of GluK2/3 was detected (green marks). 

Control + EndoH
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3. Discussion and future perspectives 

 

BACE1 is the initial enzyme that cleaves APP to generate the AD-related 

pathological Aβ peptide and is therefore considered as an appealing therapeutic 

target for AD [24,25]. Several BACE1 inhibitors have been generated and tested both 

in preclinical and clinical trials (phase 2 and 3). Unfortunately, most of the clinical 

trials for BACE inhibitor have been stopped in the last years due to the lack of 

efficacy and presence of undesired side effects in BACE-inhibitors treated patients. In 

line with these evidences in humans, BACE1KO mice and mice treated with BACE1 

inhibitors also display pathological phenotypes (see introduction), and some of them 

have been connected to the loss of cleavage of BACE1 substrates other than APP. 

Therefore, it would be extremely important to understand if, similarly to mice, the side 

effects reported in human are also due to a loss of cleavage of BACE1 substrates. To 

this aim, the first step is the identification of physiological BACE1 substrates, followed 

by their biochemical and functional characterization. 

 

3.1 SEZ6 processing and its biological functions in neurons 

 

Several BACE1 substrates have been identified and, among these, SEZ6 and the 

other family member SEZ6L are the BACE1 substrates with the strongest reduction 

of their shed ectodomains in conditioned medium of BACE1 inhibited murine neurons 

[52]. Here, I showed that both soluble SEZ6 (sSEZ6) and soluble SEZ6L (sSEZ6L) 

are dramatically reduced when BACE activity is abolished either upon treatment of 

primary cortical neurons with BACE inhibitor or genetic knock-out of BACE1 in vivo 

[126]. In addition, the full length form of both SEZ6 (+80%) and SEZ6L (+60%), 

accumulated on the cell surface of neurons when BACE1 was not active. The 

accumulation of these proteins was also reproduced in an independent unbiased cell 

surface proteome study of BACE1 inhibited neurons [127]. 

Similar to APP and SEZ6L [55,128], the CTF of SEZ6 was further cleaved by γ- 

secretase and degraded most likely shorted afterwards since it was not detectable if 

γ-secretase was not inhibited. However, whether SEZ6 function is mediated by the 

full length form of the protein or by the cleavage products (sSEZ6 or SEZ6-CTF) is 
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still under debate. Considering the strong alterations occurring in SEZ6 shedding as 

a consequence of BACE1 loss of cleavage, we can speculate that the accumulation 

of full length SEZ6 (SEZ6FL) on the cell surface might lead to a gain of function. On 

the other hand, the loss of cleavage products might lead to a loss of SEZ6 function. 

Indeed, Zhu et al. identified an important function of SEZ6 in maintaining normal 

dendritic spine dynamics and proved that the reduction of spine density measured in 

BACE inhibitor treated mice is most likely due to the accumulation of SEZ6FL or the 

reduction in SEZ6-CTF [37]. 

On the other hand, the novel function of SEZ6 as a modulator of kainate receptor 2 

(GluK2) and 3 (GluK3), which I discovered in this study, seems not to be influenced 

by BACE1 cleavage but rather depends on SEZ6FL. The trafficking as well as the 

glycosylation of Gluk2 and 3 were altered in SEZ6KO neurons which reduced the cell 

surface levels of both kainate receptors by 50%. Therefore, inhibition or absence of 

BACE1, which leads to an increased abundance of SEZ6 on the cell surface, might 

also result in elevated cell surface levels or differences in glycosylation of Gluk2/3. 

However, I showed that in BACE inhibitor treated neurons and BACE1KO mice no 

alteration in GluK2/3 glycosylation or surface abundance was detectable. 

Furthermore, no accumulation of GluK2/3 on the cell surface of neurons treated with 

BACE inhibitor was reported by Herber et al. [127]. Even if the effect of an induction 

of BACE1 activity has still to be tested, these evidences point in the direction that 

BACE1 activity does not influence SEZ6 to function as a regulator of GluK2/3 

trafficking.  

Additionally, Gunnersen et al. showed that overexpression of SEZ6 isoform III 

(similar, but not identical to sSEZ6 generated by BACE1 cleavage) has a 

probranching activity and enhances the number of neurites but reduces their length 

[57]. In the opposite direction, overexpression of ectopic Sez-6 t II (full length SEZ6) 

decreases neurite number and negatively influences dendritic arborization under 

basal conditions [57]. This indicates that BACE inhibitor treated neurons, where 

SEZ6 full length accumulates and sSEZ6 is absent, would display a marked 

reduction in neurite number. Unfortunately, validating this hypothesis might be 

complicated considering that also some other BACE1 substrates, among these CHL1 

[129] and APP [130-132], are involved in neurite branching. 
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Conclusively, these evidences suggest that SEZ6 has multiple functions which are 

partially independent of SEZ6 processing, including trafficking of GluK2/3. On the 

other hand, additional functions like spine density promotion are modulated by 

BACE1 activity and its loss of activity leads to side effects due to loss of cleavage of 

SEZ6.  

3.2 sSEZ6 and sSEZ6L as biomarkers for BACE activity and companion 

diagnostics 

 

Having the possibility to monitor SEZ6 shedding in murine models and ultimately in 

patients treated with BACE1 inhibitors, would be a powerful way not only to prevent 

the side effects due to absent or reduced cleavage of SEZ6 itself, but also more in 

general to modulate BACE1 activity without completely abolishing it. To test if sSEZ6 

might be a good biomarker, I measured sSEZ6 and sSEZ6L levels in the CSF of WT 

and BACE1KO mice. The ectodomains were clearly detectable both via mass 

spectrometry and Western Blotting and the ectodomains of both proteins were 

dramatically reduced to less than 10% in the CSF of BACE1KO mice. Since it was 

reported that in vitro SEZ6 proteins can be cleaved also by BACE2, the protein 

homologous of BACE1 [126,55], I also analyzed the CSF of BACE2KO mice. This 

experiment showed that sSEZ6 levels in BACE2KO mice are equal to those detected 

in the WT mice, indicating that sSEZ6 detectable in the CSF of mice is a product of 

BACE1 cleavage [126]. 

Although my results strongly suggest sSEZ6 as a highly potent biomarker for BACE1 

activity, the detection of sSEZ6 was so far done via mass spectrometry and Western 

blot, which cannot be used as high throughput readout methods. Additionally, with 

the final goal of using sSEZ6/sSEZ6L as biomarkers for BACE1 activity on routinely 

basis both for research and clinical purposes, the detection method has to be 

reproducible, operator independent, and does not have to require special equipment 

such as a mass spectrometer. For this purpose, we have chosen the very sensitive 

immunoassay-based Meso Scale Discovery Platform (MSD) which is suitable for 

large scale clinical testing. This method combines the specificity and sensitivity of 

antibodies similarly to a standard ELISA method and the stability of 

electrochemiluminescence (ECL) as a detection technique in contrast to the 

colorimetric reaction employed by conventional ELISA. The MSD method usually 
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covers a broader dynamic range than standard ELISAs and also requires less 

sample volume due to its improved sensitivity [133]. In order to optimize a MSD 

platform for the detection of sSEZ6 in the CSF of mice, specific monoclonal 

antibodies were generated by immunizing rats with SEZ6 ectodomain overexpressed 

and purified from HEK293T cells [126]. The specificity and sensitivity of these newly 

generated clones was proved using SEZ6KO mouse brain lysates similarly to Pigoni 

et al. [126]. The next step, will be to test different combinations of monoclonal 

antibodies produced in house and commercially available, identify a combination of 

clones that are not only able to specifically detect sSEZ6, but also able to monitor a 

dose-dependent reduction of sSEZ6 in brain lysates and CSF of rodents treated with 

BACE inhibitors. Additionally, it will be important to generate, screen and test 

monoclonal antibodies against human sSEZ6, in order to optimize an MSD assay 

specifically detecting sSEZ6 in human body fluids. When the optimization phase will 

be completed, the human sSEZ6 MSD might be used to monitor SEZ6 processing in 

a more reproducible, quicker and operator-independent manner in patients. 

Ideally, an appealing biomarker should be easily accessible in order to maximize the 

compliance of the patients; therefore it will be important to measure sSEZ6 and 

sSEZ6L levels in mouse plasma samples. Considering the expression pattern of 

SEZ6 and BACE1, both quite highly expressed in the nervous system and particularly 

in neurons but not in other body tissues [9,134], I speculate that sSEZ6 will be 

probably not detectable in murine plasma. On the other hand, SEZ6L has a broader 

distribution and it is expressed in other body tissues in addition to the CNS, for 

example in pancreatic cells and lungs [49,57]. BACE2 also shows a broader 

expression pattern compare to BACE1. BACE2 expression in the brain is limited to a 

subset of neurons but it is expressed in different glia cells [135], and plays an 

important role in melanosome biogenesis [136]. Additionally, BACE2 is expressed in 

pancreatic β cells [137], where we and other groups proved that it can cleave SEZ6L 

[55]. Therefore, it is highly probable that sSEZ6L will be detected in plasma but it will 

be important to clarify if its levels are also influenced by BACE2 cleavage. 

In the last decade, the idea of complete BACE1 inhibition in order to abolish Aβ 

production has been changed in favor of a partial and rather preventive inhibition of 

BACE1. The idea is strongly supported by the evidence that the Icelandic mutation 

(A673T) in the APP gene, which is protective against Alzheimer's disease and 
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cognitive decline, reduces approximately 40% of Aβ production for the entire lifespan 

of the person [23]. Therefore, the ideal treatment should target a 50% to 20% 

reduction of Aβ production but should be started several years before plaque 

formation and the onset of symptoms. This approach should reduce the side effects 

due to the loss of cleavage of BACE1 substrates, prevent or delay AD-related 

symptoms and the onset of disease [138-140]. 

Monitoring sSEZ6 as a companion diagnostic biomarker for BACE1 activity could be 

used to identify a safe range of BACE inhibition that lowers Aβ production avoiding 

the side effects due to loss of cleavage of SEZ6. Since also other BACE1 substrates 

can contribute to mechanism-based side effects, it would be desirable to use a panel 

of different markers like CHL1, or neuregulin-1. In the long run and in the prospective 

of personalized medicine, sSEZ6 and other BACE1 substrates might be useful to 

monitor the efficacy of a BACE inhibition in each treated patient in order to 

individually adjust the dose of inhibitor according to instant response and tolerability 

of the drug. 

Last, the connection between pathological phenotypes described in patients treated 

with BACE inhibitors and loss of cleavage of BACE substrates remains a point that 

has to be further investigated. Indeed, some patients treated with different BACE 

inhibitors displayed some mild memory deficits, psychiatric symptoms and tendency 

to fall and get injuries [43]. Given that loss of processing of Neuregulin-1 in 

BACE1KO mice leads to hypomyelination and loss of muscle spindles [38,44-46], it is 

possible that loss of Neuregulin-1 cleavage contributes to the undesired motor side 

effects seen in some patients treated with BACE inhibitors. Similarly, SEZ6 function 

is connected to dendritic spine density and synapsis maintenance, and several 

evidences connect SEZ6 with psychiatric diseases, suggesting that psychiatric 

symptoms occurring in BACE inhibitor treated patients might be due to a loss of 

cleavage of SEZ6. Having the human SEZ6 MSD will allow to measure sSEZ6 levels 

in a reliable manner in the subgroup of patients who displayed side effects and 

compare them to those who do not show any symptoms. This human sSEZ6 MSD 

detection platform will help to better understand the cause of the side effects and to 

define a tolerable degree of BACE1 inhibition.  



100 
 

3.3 SEZ6 as a regulator of ionotropic kainate receptors 2 and 3  

 

3.3.1 Cell surface analysis of SEZ6KO cortical neurons  

 

Even if SEZ6 knock-out (SEZ6KO) mice have been generated and described more 

than ten years ago [57], and they display alterations in the morphology and 

functionality of the neurons as well as behavioral deficits, the molecular function of 

SEZ6 and the mechanisms that lead to those phenotypes are still largely unknown. 

The structure of SEZ6, rich in CUB and SCR domains involved in protein-protein 

interaction [141,142], and the localization of SEZ6 at the cell surface [126], point in 

the direction of an involvement in cell-cell adhesion or cell communication.  

In order to study the cell surface composition of SEZ6KO neurons and compare it to 

the WT condition in an unbiased manner, I performed a mass spectrometry analysis 

based on the SUSPECS method recently published in our laboratory [127]. Primary 

cortical neurons were fed with tetra-acetylated N-azidomannosamine, a click 

chemistry-suitable azido-modified mannose derivative that is metabolically 

incorporated in the newly synthetized glycosylated proteins during their maturation in 

the ER and Golgi. After two days of metabolic labeling the cells were biotinylated with 

dibenzylcyclooctyne (DBCO)-biotin, a membrane not-permeable compound, which 

reacts with the azido group of the glycoprotein, facilitating covalent biotinylation of the 

glycoproteins present at the cell surface. Biotinylated proteins were enriched with 

streptavidin agarose and analyzed by mass spectrometry using label-free protein 

quantification. Since it is known that SEZ6KO neurons present a reduced number of 

dendritic spines and diminished punctate staining for postsynaptic density, I 

performed the surface analysis at an early developmental stage of the primary 

cortical neurons (DIV 7), in order to avoid that specific effects may be masked by a 

general reduction in synaptic proteins. 

As expected, no overall drastic changes were detected comparing the cell surface 

proteome of SEZ6KO and WT neurons. Nevertheless, some changes in protein 

abundances point towards a selective function of SEZ6 in protein trafficking or 

maturation of specific proteins. Noteworthy, the ionotropic kainate receptors 2 

(GluK2) and 3 (GluK3) showed an abundance reduction of roughly 50% on the cell 

surface of SEZ6KO neurons. The other subunits of the ionotropic kainate receptors 
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(GluK1, KA1 and KA2) were not detected in our analysis. In contrast, other glutamate 

receptors such as α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) 

and N-methyl-D-aspartate (NMDA) receptors were detected but not significantly 

changed on the cell surface of the neurons. Even if we cannot exclude that all 

kainate receptor subunits were affected by SEZ6 loss, this analysis proves that the 

GluK2 and GluK3 reduction is a specific effect and does not affect the levels of all 

ionotropic glutamate receptors at the cell surface. 

Other proteins significantly reduced on the cell surface of SEZ6KO neurons were 

Ceramide synthase 2 (-50%) and Syntaxin-12 (-50%). CERS2 is mainly expressed in 

oligodendrocites and is involved in sphingolipids biosynthesis. Sphingolipids are 

involved in various neuronal events. For example, inhibition of shingolipid synthesis 

through blockage of ceramide synthase in Purkinje cells leads to elongated but less-

branched dendrites [143] and disrupts axonal outgrowth in cultured hippocampal 

neurons [144]. Even if a connection between the altered branching of SEZ6KO 

neurons and alterations in Ceramide synthase might be possible, it remains difficult 

to explain the physiological significance of CERS2 on the neuronal cell-surface and 

this was not further investigated in this study. 

Little is known about Syntaxin-12 (STX-12), a part that it is mainly expressed in 

endosomes and seems to act as t-SNARE, a protein present on organelle membrane 

which interacts with v-SNAREs present on transport vesicles and allows targeting, 

docking, and fusion of the right vesicles to the right membrane [145]. Considering the 

similarity of STX-12 with the other family member Syntaxin-13 (STX-13), a role in 

controlling the intracellular fate of AMPA receptors and the endosomal sorting of the 

GriA2 subunit towards recycling and membrane targeting was proposed [146]. The 

family member STX-13 is in fact known to localize in the endosomes and be 

important in membrane fusion events during the recycling of plasma membrane 

proteins [147]. In particular, it was reported that syntaxin 13 binds GRASP-1, an 

important component of the molecular machinery that regulates the directions of 

endosomal trafficking in neurons, and this interaction is required for GluA2 recycling 

[148,149]. 

Considering that the structure of SEZ6 is rich in CUB domains and there are multiple 

evidences in literature supporting the role of CUB containing proteins in 
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neurotransmitter receptors regulation [79-84], the relationship between SEZ6 and 

GluK2/3 was further investigated. 

3.3.2 SEZ6 as a regulator of GluK2/3  

 

Here, I provide multiple evidences proving that SEZ6 is a regulator of kainate 

receptors trafficking. First, GluK2/3 levels are reduced on the surface of SEZ6KO 

neurons in a specific manner. Second, in a heterologous system (RUSH), the co-

expression of SEZ6 with GluK2a enhances the number of GluK2a-positive secretory 

vesicles. Additionally, GluK2/3 in the SEZ6KO neurons and mouse brains are more 

sensitive to EndoH and carry less HNK-1 epitope, therefore their maturation status is 

less advanced in the absence of SEZ6, which can be linked to its reduced cell 

surface abundance. On the other side, when the total GluK2/3 protein level was 

tested, just a milder reduction was detected in the SEZ6KO neurons. This mild 

reduction might be a consequence of a compensatory, increased degradation of 

GluK2/3 occurring upon accumulation of immature GluK2/3 in the ER. It was in fact 

reported that mutant forms of GluRs, which lead to misfolded or misassembled 

complexes, are retained in the ER and probably eliminated by the endoplasmic 

reticulum-associated degradation (ERAD) system [150,151]. Taken all together, 

these evidences show that SEZ6 regulates the maturation and trafficking of GluK2/3 

and just partially its total levels. 

Considering the high homology between SEZ6 and the other family members, a 

redundant functionality was hypothesized for SEZ6L and SEZ6L2. Therefore, I 

considered GluK2/3 maturation in mouse KO for the other SEZ6 family members and 

found that GluK2/3 maturation is not impaired in SEZ6LKO and SEZ6L2KO mice. 

This evidence might suggest different functions for the three family members. 

Another possibility that has to be considered is that SEZ6L and SEZ6L2 mediate a 

SEZ6-similar function but in different areas of the brain or at different age of the mice. 

The situation where members of the same protein family modulate the same 

glutamate receptors but in different brain areas and in a different manner, was 

already reported for the NETO family. NETO1 and NETO2 are both known to bind 

and regulate GluK2/3, but GluK2/3 binds preferentially to Neto2 in the cerebral 

cortex, and Neto1, but not Neto2, is required for the synaptic abundance of KARs 

[85,86,81]. An alternative scenario is that different members of the SEZ6 family are 
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specifically involved in the regulation of different glutamate receptors. Similarly, 

NETO1 also regulates NMDARs [83] but no involvement of NETO2 in NMDARs 

regulation was proved yet. 

 

3.3.3 SEZ6 as a regulator of GluK2/3 glycosylation 

 

It is known that glycosylation changes on KARs can modulate their function and 

cellular localization [152,153]. Therefore, I further investigated which sugars are 

specifically changed on GluK2/3 in SEZ6KO neurons. Using an unbiased approach 

(Lectin Chip analysis) followed by a validation via Western Blotting, I showed that the 

sulfated trisaccharide human natural killer-1 (HNK-1) epitope is specifically reduced 

on GluK2/3 in SEZ6KO neurons and mouse brain. In addition, I showed that no 

general reduction of HNK-1 was detected in the full SEZ6KO proteome or on NCAM, 

another protein known to carry the HNK-1 sugar. 

HNK-1 is mainly expressed in the nervous system but, despite its broad expression in 

the brain, is only carried by certain kinds of molecules, indicating that its biosynthesis 

in the Golgi is tightly regulated. In the nervous system only few HNK-1-carrying 

proteins have been identified which include NCAM and L1 [154], adhesion proteins 

belonging to the Ig-superfamily, and a specific glutamate receptor subunit, GluA2 

[153]. The fact that no general changes of HNK-1 were detected in the entire 

proteome of SEZ6KO neurons and that other proteins known to carry HNK-1 epitope, 

such as NCAM and GluA2, were detected but not changed on the cell surface of 

SEZ6KO neurons, strongly suggest that the reduction of HNK-1 is a specific effect 

occurring on GluK2/3. 

Worth mentioning, the HNK-1 carbohydrate epitope was already identified on Gluk2/3 

[152], but the impact of HNK-1 on the function of endogenous GluK2/3 is not 

characterized yet. In the case of GluA2, a reduction of HNK-1 on the receptor 

reduces the GluA2 interaction with N-cadherin, GluA2 stability on the cell surface 

[153] and might influence GluA2 spine-promoting activity [155,156]. Similarly, I 

speculate that the HNK-1 reduction on GluK2/3 might affect its stability on the cell 

surface and be the cause of the reduced amount of GluK2/3 on the cell surface in 

SEZ6KO neurons. On the other hand, the HNK-1 reduction on GluK2/3 might simply 
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be a further confirmation that in the absence of SEZ6, GluK2/3 does not reach the 

Golgi compartment where GlcAT-P, the glucuronyltransferase responsible for the 

HNK-1 biosynthesis, is active. In order to further investigate this possibility, it would 

be meaningful to compare the GluK2/3 maturation in GlcAT-PKO and SEZ6KO 

neurons and study if the two conditions phenocopy each other. In general, 

considering all the evidences provided in this thesis, it is more likely that SEZ6 is 

involved in GluK2/3 trafficking to the Golgi where GlcAT-P is active. 

3.3.4 SEZ6 regulates GluK2/3 via CUB domains 

 

Several CUB domain-containing proteins have been identified as regulators of 

ionotropic acetylcholine receptors and ionotropic glutamate receptors [79-86], and 

often their function and interaction with the receptors are mediated by the CUB 

domains [84,83,82]. Consistently with these findings, SEZ6 full length, and SEZ6 

lacking the C-terminal tail were able to rescue the maturation of GluK2/3 when 

reintroduced in SEZ6KO neurons. In addition, similarly to soluble SOL-1 [84], SEZ6 

ectodomain expressed in cis was also sufficient to rescue the maturation of GluK2/3. 

The same is not true for SEZ6 CTF, indicating that SEZ6 extracellular region, 

containing the CUB domains, is necessary and sufficient to mediate the SEZ6 

function as a regulator of GluK2/3 maturation. Similarly, when the same mutants 

were tested for the interaction with GluK2a in HEK293T cells overexpressing both 

SEZ6 and GluK2a, no interaction between GluK2a and SEZ6 CTF was detectable 

but the other SEZ6 mutants were consistently co-immunoprecipitated with GluK2a. 

These evidences do not exclude that the SCR domains play a role in the regulation 

of GluK2/3 but, together with the previously mentioned literature, strongly point in the 

direction that the CUB domain of SEZ6 are important for the binding and regulation of 

GluK2/3. 

Even if I could reproduce the interaction between GluK2/3 and NETO2 in 

endogenous conditions [81], I was not able to show a direct interaction between 

SEZ6 and GluK2/3 in neurons or in brains. Indeed, for other CUB domain-containing 

proteins, it was also not possible to show a direct interaction with the regulated 

receptor in endogenous conditions, but only in overexpressed conditions [80]. The 

inability of detecting the endogenous interaction might be attributed to different 

factors. For example, the total amount of proteins present in the tissue and the 
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percentage of them that are involved in the interaction might be very low. 

Additionally, the strength of the interaction and the type of detergent used to 

solubilize the transmembrane proteins are critical factors to be considered. 

Conclusively, a transient interaction, maybe restricted to certain subcellular 

compartments, like the SEZ6 and GluK2/3 interaction seems to be, will be particularly 

difficult to detect. 

 

3.3.5 Can SEZ6 be considered an auxiliary subunit for GluK2/3?  

 

The CUB domain-containing proteins previously mentioned are also considered as 

auxiliary subunits of the receptors that they regulate. Auxiliary subunits are, 

according to the classification proposed by Yan and Tomita 2012 [157], non-pore-

forming subunit directly and stably interacting with a pore-forming subunit. Auxiliary 

subunits are able to modulate channel properties and/or to traffic it in heterologous 

cells. Additionally, their necessity for the correct expression and maintenance of 

channel properties and/or localization of the receptor has to be proven in vivo. 

This raises the question: can SEZ6 be considered an auxiliary subunit for GluK2/3? 

First, that SEZ6 regulates the surface amounts and maturation of GluK2/3 was 

proven in different systems and manners. I not only showed that GluK2/3 is reduced 

on the cell surface of SEZ6KO neurons with two independent methods, but I also 

proved through the analysis of GluK2/3 glycosylation, that the maturation of the 

receptor is impaired. Second, using the RUSH system, I showed that SEZ6 facilitates 

the trafficking and exportation of GluK2/3 in a heterologous system. Third, similarly to 

SOL-1, I was able to prove a direct interaction between SEZ6 and GluK2 in 

overexpressing conditions and providing evidences that the SEZ6 CUB domains are 

most likely to mediate the interaction with GluK2a and are important for GluK2/3 

trafficking and maturation. Fourth, I showed that the impaired glycosylation of 

GluK2/3 is an early event occurring already in the brain of embryos, but the effect is 

not rescued postnatally or during aging of the mice, indicating the relevance of SEZ6 

function in vivo and at all developmental stages of the murine brain. Finally, I showed 

that the SEZ6 mutant, which is retained in the ER and not present in the Golgi does 

not rescue GluK2/3 maturation, pointing in the direction that SEZ6 does not only 
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regulate the exit of GluK2/3 from the ER but is also involved in the trafficking to the 

Golgi. 

On the other hand, I was not able to prove a direct and stable interaction between 

SEZ6 and GluK2 in endogenous conditions and I did not validate the hypothesis that 

SEZ6 is a non-pore forming subunit by itself. Additionally, the electrophysiological 

analysis that was done shows that SEZ6KO hippocampal slices are less sensitive to 

KA stimulation. Nevertheless, this is most likely a consequence of a reduced number 

of receptors at the cell surface, but does not provide information about the channel 

properties of GluK2/3. If SEZ6, similarly to NETO1 and NETO2 [81,85], also 

modulates kinetic parameters of kainate receptors and if this modulation occurs also 

in vivo has to be further investigated. 

Taken all together, these evidences strongly point in the direction of a novel function 

of SEZ6 as an auxiliary subunit for GluK2/3. Nevertheless, since some important 

aspects mentioned in the definition of auxiliary subunits are not fulfilled by SEZ6 yet, 

and further investigations are required, I consider premature to include SEZ6 in the 

family of the auxiliary subunits of kainate receptors. 

 

3.3.6 SEZ6 and kainate receptors in disease 

 

Even if multiple studies have linked SEZ6 mutations to psychiatric disturbances and 

neurodevelopmental disorders, the mechanism behind these associations was not 

investigated. Considering the novel function of SEZ6 discovered in this thesis and the 

well-established role of kainate receptors in brain development, it would be extremely 

important to investigate how changes in SEZ6-mediated GluK2/3 regulation affect the 

brain development. For example, it would be interesting to check if the de novo 

variant of SEZ6 sequence associated with Childhood-onset schizophrenia (COS) 

described by Ambalavanan et al. leads to reduced expression of SEZ6 and if it also 

correlates with alteration in GluK2/3 maturation. Interestingly, Tucholski et al. 

reported that KARs glycosylation is altered and GluK2/3 is more sensitive to EndoH 

digestion in schizophrenia patients [115]. Therefore, a larger cohort of schizophrenia 

patients should be considered to investigate if the impaired glycosylation of GluK2/3 

indeed correlates with reduced SEZ6 levels. 
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Moreover, a few studies connect SEZ6 alterations with neurodegenerative diseases. 

Recently, the rare variant R615H of SEZ6 was found in the members of a large 

Italian family suffering of late onset AD carrying no typical FAD-linked mutations [76]. 

Since the mutation maps on the second CUB domain present in SEZ6 extracellular 

region, it would be interesting to investigate if it affects the function of SEZ6 as 

regulator of GluK2/3 and the binding between these two proteins. Additionally, 

reduced levels of SEZ6 ectodomain have been detected in the CSF of AD patients 

compared to healthy controls [75]. If it can be confirmed that reduced levels of SEZ6 

correlate with impair maturation of GluK2/3 in the postmortem brain of AD patients, it 

would be tempting to speculate an involvement of SEZ6 in the glutamate receptor 

and synaptic dysfunction occurring in early stages of AD. 

Considering the important functions of SEZ6 and KARs during brain development 

and the evidences associating these proteins to developmental disorders, the 

function of SEZ6 as a KARs regulator discovered in this thesis might potentially 

represent a regulatory mechanism involved in the determination of developmental 

disorders. Future studies are required to investigate if this novel mechanism 

represents also a potential therapeutic target for the treatment of psychiatric 

disorders. 

To conclude, since BACE1 is one of the main drug targets for the treatment of AD, 

the loss of cleavage of its substrates represents one major drawback and an issue 

that needs to be overcome before BACE inhibitor might be used on routinely bases in 

patients. If on one hand I show that SEZ6 cleavage is completely dependent by 

BACE1, I also prove that at least some of SEZ6 functions do not depend by BACE1 

activity. Therefore, these findings represent double positive news for the BACE 

inhibitors. First, it might be predicted that no side effects due to altered GluK2/3 

trafficking and altered excitatory synaptic transmission will occur in patients treated 

with BACE inhibitors, making this approach safer. Second, the fact that SEZ6 is 

cleaved only by BACE1 makes it a valuable biomarker to monitor specifically and 

sensitively BACE1 activity in patients, representing in the long term an additional step 

forward in the direction of personalized medicine. 
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La Divina Commedia, Dante Alighieri, Inferno Canto XXVI 

 

 

“O frati", dissi "che per cento milia 
perigli siete giunti a l'occidente, 
a questa tanto picciola vigilia 

d'i nostri sensi ch'è del rimanente, 
non vogliate negar l'esperienza, 
di retro al sol, del mondo sanza 
gente. 

Considerate la vostra semenza: 
fatti non foste a viver come bruti, 
ma per seguir virtute e 
canoscenza" 

And then I said: “O brothers, ye who now 
have through a hundred thousand perils reached 
the West, to this so short a waking-time 
 
still left your senses, will not to refuse 
experience of that world behind the sun 
which knows not man!  
 
Bethink you of the seed! Whence ye have sprung; for ye 
were not created to lead the life of stupid animals, 
but manliness and knowledge to pursue.” 
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