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Zusammenfassung

In dieser Arbeit berechnen wir Quantenkorrekturen zu den Zwei- und Vierpunktsfunktio-
nen bis zur zweiten Ordnung in der Kopplungskonstante für eine konform gekoppelte
Skalarfeldtheorie mit quartischer Selbstwechselwirkung in der vierdimensionalen Anti–de
Sitter-Raumzeit (AdS). Unsere Berechnungen werden durchgeführt, indem die übliche
Feynman-Störungstheorie in flacher Raumzeit auf den Poincaré-Patch des Euklidischen
AdS verallgemeinert wird. Insbesondere wenden wir keine Kenntnisse in konformer
Feldtheorie (CFT) an. Die erhaltenen Ergebnisse für die Zwei- und Vierpunktsfunktionen
sind miteinander konsistent. Darüber hinaus argumentieren wir, dass die kritischen
Exponenten von Korrelationsfunktionen nahe des dreidimensionalen konformen Randes
von AdS die erforderlichen Daten für die Renormierungsbedingungen liefern und somit
die üblichen on-shell Bedingungen ersetzen.
Die holographische Vierpunktsfunktion kann systematisch in den konformen Invari-

anten entwickelt und mit der konformen Block-Entwicklung auf dem Rand von AdS
verglichen werden. Dies wird hier in niedriger Ordnung in den konformen Invarianten
durchgeführt, wobei gezeigt wird, dass die entsprechenden Expansionskoeffizienten die
Daten der konformen Block-Entwicklung eindeutig festlegen. Trotz Feinheiten bei UV-
und (manchmal) IR-Divergenzen tritt kein Widerspruch auf. Wir zeigen ferner, dass die
resultierende duale Randtheorie, stark eingeschränkt aufgrund der konformen Symmetrie
und daher einer Reihe nichttrivialer Bedingungen unterliegend, tatsächlich eine mathe-
matisch und physikalisch konsistente CFT ist. Unsere Theorie liefert daher eine erste
explizite Bestätigung einer Quanten-AdS/CFT-Korrespondenz.
Schließlich wird die Struktur der Operatorproduktentwicklung (OPE) der dualen

CFT, einer deformierten verallgemeinerten freien Feldtheorie, zusammen mit den Korrek-
turen sowohl der OPE-Koeffizienten als auch der konformen Dimensionen der primären
Operatoren dargelegt. Insbesondere wird das Fehlen des Energie-Impuls-Tensors und
jeglicher erhaltener Ströme deutlich. Analytische Ausdrücke für die anomalen Dimen-
sionen werden bei einer Loop-Ordnung gefunden, sowohl für Neumann- als auch für
Dirichlet-Randbedingungen.
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Abstract

In this thesis we compute quantum corrections to the two- and four-point correlation
functions up to second order in the coupling constant for a conformally coupled scalar
field theory with quartic selfinteraction in four-dimensional anti–de Sitter space-time
(AdS). Our calculations are performed by generalizing the usual flat space-time Feynman
perturbation theory to the Poincaré patch of Euclidean AdS. In particular, we do not
exert any conformal field theory (CFT) knowledge. The obtained results for the two-
and four-point functions are mutually consistent. In addition, we argue that the critical
exponents of correlation functions near the three-dimensional conformal boundary of
AdS provide the necessary data for the renormalization conditions, thus replacing the
usual on-shell condition.

The holographic four-point function can systematically be expanded in the conformal
invariants and compared with the conformal block expansion on the boundary of AdS.
This is carried out here at low order in the conformal invariants, where the corresponding
expansion coefficients are shown to uniquely fix the data for the conformal block expansion.
No contradiction arises despite subtleties with UV and (sometimes) IR divergences. We
also show that the disclosed boundary dual, subject to a set of nontrivial conditions
dictated by the strong constraint of conformal symmetry, is indeed a mathematically and
physically consistent CFT. Hence, our theory provides a first explicit confirmation of a
quantum AdS/CFT correspondence.

Finally, the operator product expansion (OPE) structure of the dual CFT, a deformed
generalized free field theory, is revealed, along with the corrections to both the OPE
coefficients and conformal dimensions of primary operators. In particular, the absence of
the stress tensor and of any conserved current becomes explicit. Analytic expressions
for the anomalous dimensions are found at one loop, both for Neumann and Dirichlet
boundary conditions.
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I Introduction

1.1 Motivation
Without any doubts, Quantum Field Theory (QFT) is one of the most successful theoret-
ical frameworks in physics at present. It combines field theory with quantum mechanics
in a consistent manner and, in contrast to the conventional quantum formulation à la
Heisenberg and Schrödinger, it allows for a sensible (special) relativistic formulation.
From its inception almost a century ago it fueled theoretical and experimental physicists
with deep insights into particle physics. Just to mention a few, the first developed QFT,
the theory of Quantum Electrodynamics describing the electromagnetic interaction, was
able to explain the phenomenon of spontaneous emission of photons from atoms and
to infer the existence of anti–matter. But perhaps, the most impressive achievement of
Quantum Electrodynamics is the extraordinary precision in the prediction of the electron
magnetic moment [1]. Another significant accomplishment was the implementation of
the weak interactions within the framework of QFT. The emergent theory, Quantum
Flavordynamics, is however better understood in terms of the Electroweak Theory, a
theory unifying the quantum theories of Electrodynamics and Flavordynamics. This
unified theory agrees with experiments showing that, at very high energies, the electro-
magnetic and weak interaction merge into a single electroweak interaction. Also the
theory of strong interactions was realized in terms of a QFT and is known today as
Quantum Chromodynamics. Although Quantum Chromodynamics was less prolific than
the Electroweak Theory, it predicted the asymptotic freedom and has been the missing
piece of the puzzle in the formulation of the Standard Model, a theory describing three of
the four fundamental interactions between elementary particles. Many predictions of the
Standard Model have been met with remarkable experimental precision [2], conveying
the impression that we are close to a complete characterization of particle physics.

Moreover, particle physics is not the only subject QFT has been successfully applied to.
For instance, QFT has proven to supply a precious formulation of emergent phenomena
at macroscopic scales of many-particle systems. Indeed, it found applications in a
plethora of fields describing condensed matter, ranging from the simplest crystal lattices
to the hardly manageable theories of superconductivity and the fractional quantum hall
effect [3]. Notably, inalienable concepts of particle physics like the Higgs mechanism
for spontaneous symmetry breaking and the renormalization procedure, were developed
respectively improved by the study of Condensed Matter Physics within the framework of
QFT. This certifies QFT as a universal concept, and not as a mere descriptive framework.
On the other hand, a slightly older theory than QFT amazed generations of physi-

cists with its puzzling implications. The theory is Einstein’s General Relativity (GR),
which describes the fourth fundamental interaction, gravitation, the Standard Model is
not capable of. It provided us with a flawless theoretical clarification of gravitational
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phenomena as well as with data of striking precision [4]. Long lasting inconsistencies
like the instantaneous action at a distance of Newtonian gravity and the “anomalous”
precession of the perihelion of Mercury were solved. Further, it disclosed a rich multi-
tude of physical phenomena, generating new fields of study, the most important being
black holes, cosmology, applications to large-scale structures, and the recently observed
gravitational waves.
Although GR and QFT are of fundamentally different origin, they have a few major

traits in common. Both are relativistic field theories, and both are also gauge theories.
QFT is usually formulated as a Yang–Mills theory where gauging the internal symmetry
group gives rise to gauge particles of spin-1. In GR instead, the space-time symmetries
are gauged and this leads to a spin-2 gauge particle. Despite the similarities, a game-
changing difference is at hand; whereas QFT is a quantum theory of fields, GR embodies
a classical field. At first sight this does not appear to be an issue. However, when
investigating situations of strong gravitational fields (at severe space-time curvature)
the incompleteness of GR becomes apparent. For example, quantum theory does not
permit particles to inhabit a space smaller than their wavelengths, which is in contrast
to the behavior predicted by GR at the singularity of black holes, or at the origin of the
universe.
But then what prevents one from quantizing GR, as it was successfully done when

passing from classical field theory to QFT, and thus obtaining a theory of Quantum
Gravity? Nothing and everything. Nothing, since one could formally treat both theories
on the same footing and apply the procedure of quantization to GR in complete analogy
with QFT. Everything, since GR is not a Yang–Mills theory; whereas Yang–Mills theories
are proven to be renormalizable [5], a naive power counting suggests GR is not. Hence,
it is not known how to deal with divergences arising in the perturbative calculations
of quantized GR, and the theory loses all its predictive power. It is conceivable that
nontrivial cancellations hidden within perturbation theory tame the appearing divergences.
But also a more detailed analysis, even if not conclusive, indicates that, at loop level,
GR is definitely plagued by noncurable infinities [6].

There have been various attempts to formulate a consistent theory of Quantum Gravity.
Perhaps, the most immediate approach is given by simply enlarging the gauge group, in
particular by supersymmetry. In fact, it seems that maximally extended Supergravity
could establish renormalizability [7, 8]. This proposal is very interesting, but as yet it
is unknown how to break supersymmetry to obtain a sensible theory at low energies.
Another attempt is given by the asymptotic safety program [9]. It postulates that there
is a nontrivial ultraviolet fixed point in the exact renormalization group, but the latter
demands the inclusion of irrelevant terms into the bare action. Needless to say, this
makes perturbative calculations at loop order extremly complicated to perform (see, for
instance, ref. [10]). In four dimensions, there is no evidence of asymptotic safety at
present.
While the above approaches aim to a minimal intervention in GR, there have been

other approaches of much more exotic nature. The most promising of all, String Theory,
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solves the problem of nonrenormalizability at the core; in GR the coupling constant,
Newton’s constant GN , is dimensionful, whereas the coupling constants of (unbroken)
Yang–Mills theories are all dimensionless. Thus, in comparison with Yang–Mills, at each
loop order in perturbation theory the divergences of quantized GR intensify. String
theory cures the divergences by substituting particles with strings, and this introduces a
new length scale, the string tension. However, the price to pay are unusual features like
tachyonic exitations, branes, and higher dimensions. Different compactifications of these
higher dimensions lead to different predicitions of String Theory, a problem known as
the String Theory landscape [11].

For an overview of the principal attempts in the formulation of a consistent theory of
Quantum Gravity, we refer to ref. [12]. The vastness of the taken paths, and related, as
yet unsurmountable, issues, indicate that a conclusive theory is far from being found.
Moreover, none of the candidate theories has delivered accurate predictions.
At this point, it is perhaps better to take a step back and focus on the fundamental

requirements a theory of Quantum Gravity has to fulfill. In particular, a substantial
improvement of our present understanding of the semiclassical approximation to Quantum
Gravity would surely aid further work towards the correct formulation of the full theory
itself. This is not a mere academic exercise; in situations where a quantum field
theory reaches energies close to the Planck scale, it is expected that ignoring quantum
gravitational effects would lead to wrong conclusions. While present particle accelerators
are far from being able to induce these new effects of gravity, there is a chance that
we might be able to investigate these on astronomical objects in the near future. For
instance, the study of quantum gravitational effects in the cosmic microwave background
looks promising [13].

But without going too far, there exists a seemingly modest yet rich approach worth to
be studied, corresponding to the leading order of the semi–classical approximation to
Quantum Gravity. Much like the development of Quantum Electrodynamics benefited
substantially by its earliest formulation where a quantum particle was considered immersed
in a classical electromagnetic field, studying quantum field theory in classical curved
space-times is of immense value to improve our present understanding of the quantization
of GR. The reasons are multifold. It delineates what a correct theory of Quantum Gravity
should predict at weak space-time curvatures, and it poses far-reaching conceptual as
well as formal problems. Solving these problems might hint to the right path to follow,
perhaps with a novel framework for GR better suited for quantization.
Even though a myriad of questions1 are still open, there is general consensus that

QFT in flat space-time is well-understood. Yet, a small deformation of the geometry of
the flat space-time poses, in general, serious hurdles already at the implementation of a
classical field theory on curved space-times. In order to be able to formulate a consistent
Cauchy problem of the differential equation governing the dynamics of the field theory
under consideration, one usually takes the space-time to be globally hyperbolic. This

1especially what concerns nonperturbative effects, as quantum triviality and solitons
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requirement is in fact very restrictive, as there exist plenty of non-globally hyperbolic
space-times of physical interest. While some approaches introduce new mathematical
structures [14], a restricted class of space-times allows for a less radical approach, see,
for instance, ref. [15]. In the subsequent process of quantization of a field in curved
space-times, one of the major conceptual difficulties one encounters right away is given by
the contrasting role of time in QFT and GR. While in QFT time plays a central role, as it
is evident from the canonical momentum and the equal time commutation relations in the
canonical quantization procedure, in GR the general covariance principle implies it does
not. Hence, unless the space-time is stationary2, the choice of a preferred time coordinate
is not unique and, consequently, neither the vacuum state is. Even worse, different
choices give rise to, in general, unitarily inequivalent representations of the commutation
relations, and therefore to different predictions. Fortunately, the forced designation of
one of these unitarily inequivalent constructions can be overcome by formulating the
theory via the algebraic approach3 [18]. Nowadays, it is understood that nonuniqueness
of the vacuum state is a prerogative of all space-times; different observers will generally
disagree on the results obtained. This insight lead to spectacular predictions of QFT
in general space-times, the Unruh effect and the Hawking radiation [19]. The discovery
of the Hawking radiation, in particular, posed a wide range of unsolved issues, most
notably the information paradox. Contradictions of this weight have been, historically,
of invaluable assistance in the progress of physics.4

Having said that, the lack of global hyperbolicity and of a preferred time coordinate can
be considered as the only serious obstacles introduced by the deformation of the geometry
of space-time in the canonical quantization of a field theory; once these are addressed,
the quantization procedure can, in principle, be applied straightforwardly. In order
to describe dynamical processes of QFT in curved space-times, one generally proceeds
with the calculation of correlation functions. These are generically ill-defined already
at tree level, as it becomes apparent in the computation of the vacuum energy. In flat
space-time, the arising divergence is simply discarded by the normal ordering procedure,
which was of no concern since in nongravitational theories only energy differences are
measurable. However, in gravitational theories, energy itself is a source of gravity, and
cannot be ignored. This is an active field of study, and we refer to ref. [20]. Nonetheless,
in the perturbative approach of QFT in curved space-times, the issue is circumvented by
considering a particular class of quantum states of free fields, the Hadamard states.

Essentially, the building blocks in the perturbative computation of correlation functions
are the (free) propagators, defined as the two-point functions of Hadamard states, of the
various fields. Like in flat space-time, the knowledge of the propagator of a free field
theory uniquely determines all correlation functions, and hence, the full quantum theory.

2where the presence of the global time-like Killing vector field induces a direction of time
3To date, the algebraic approach also seems to yield the most natural framework for an axiomatic
formulation of QFT in curved space-times [16, 17].

4We remind the reader of the Michelson–Morley experiment, or the ultraviolet catastrophe of black body
radiation.
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Instead, if interactions are turned on, one generally exerts the perturbative approach
of QFT and computes integral expressions of products of propagators. To some extent,
these propagators are known in the Schwinger–DeWitt representation [21]. However,
analytical expressions are only given for a handful of space-times and spins. In fact, even
finding the simplest scalar propagator is a burden, but the difficulties are alleviated if
the space-time possesses some symmetries.
Ideally, the preferred space-times to work with are maximally symmetric Lorentzian

manifolds. These are solutions of the vacuum Einstein equations and, depending on the
sign of the cosmological constant5, one differentiates in either de Sitter or the anti–de
Sitter space-time. The de Sitter space-time (dS) plays a central role in contemporary
cosmology for basically two reasons. First, it is believed that the primordial universe has
gone through a phase of exponential expansion, called inflation, which is approximately
described by a dS [22]. Second, dS models a universe filled by solely dark energy. As our
present universe entered the dark energy dominated era about five billion years ago, it
is highly probable that it will approach a dS in the far future [23]. On the other hand,
anti de–Sitter space-time (AdS) certainly does not offer a realistic physical model since it
presents itself with a number of bizarre properties. While the issue of the existence of
closed time-like curves can be solved by adopting the universal covering space of AdS, the
“box property” is by no means avoidable: an object thrown in any direction by a floating
observer in AdS turns always back to the observer. Due to the presence of a time-like
conformal boundary, even a light ray gets reflected at spatial infinity and reaches the
observer in a finite amount of time. This conformal boundary also renders the space-time
non-globally hyperbolic. However, as it was shown in ref. [15], a careful analysis of
the information entering and leaving AdS through the conformal boundary allows for a
consistent quantization.
Despite its odd properties, AdS has received much attention in mathematical and

high-energy physics due to the existence of consistent theories of interacting higher spins,
in contrast to flat space-time. In fact, the first complete set of cubic interactions of
higher spins have been obtained in AdS [24, 25, 26], and the only presently known fully
nonlinear theory of interacting higher spins, described by Vasiliev’s equations [27, 28], is
formulated around the AdS background. Moreover, it is conjectured that AdS relates
to Conformal Field Theory (CFT) on its conformal boundary, as exemplified by the
AdS/CFT correspondence [29, 30, 31]. This correspondence is a fascinating modern
development in theoretical physics, formally equating a, perhaps consistent, Quantum
Gravity in d + 1 dimensions to a QFT in flat d-dimensional space-time. Furthermore,
the conjecture is believed to solve the aforementioned information paradox [32], and it
even found application in Condensed Matter Physics, for instance in the description of
high-temperature superconductors, see ref. [33]. However, at present, there is no proof of
the correspondence in general terms, and only a few, yet striking, agreements were found.

The principal reason is that progress in QFT on curved space-times has been hampered,

5The maximally symmetric space-time with vanishing cosmological constant is the usual flat space-time.
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in particular, by the absence of a momentum representation for which the Feynman
amplitudes can be represented as elementary integrals. The absence of such a represen-
tation is particularly limiting at loop level. Indeed, while the short-distance properties
of quantum fields in curved space-times can be analyzed systematically, little is known
about the influence of curvature at distances of the order of the curvature scale. Con-
sequently, to date, explicit tests of the AdS/CFT correspondence have, to a large
extent, been limited to classical fields on AdS, with a handful of examples and new
techniques having just begun to appear to tackle the loop corrections, see, for instance,
refs. [34, 35, 36, 37, 38, 39, 40, 41, 42, 43].

Moreover, since the coupling of the CFT stress tensor to the graviton is present almost
universally, one is confronted, when considering the bulk theory beyond the classical
level, with the quantization of gravity together with its perturbative pathologies in the
ultraviolet. Of course, if embedded in string theory, these singularities should be resolved.

Indeed, a class of realizations of the AdS/CFT correspondence are formulated in terms
of string theories in AdS. The most established one is given by a string theory on the
product space AdS5 × S5 conjectured to be equivalent to a supersymmetric Yang–Mills
theory on a four-dimensional boundary. This is a remarkable duality as it provides a
stong/weak coupling duality: whenever Yang–Mills theory is strongly coupled, its dual
theory is described by weakly coupled strings. However, for the same reason, it is difficult
to test the realization. Moreover, world sheet calculations of string theory in AdS are
mostly beyond reach at present [44]. Hence, as yet, most of the tests were confined to
the string correlation functions at tree-level; that is, CFTs in the leading order in the
1/N expansion, where N is the number of colors of the boundary Yang–Mills theory.

Another class of conjectured dualities, that was supposed to be simpler than the
usual string-like dualities, is between CFTs with matter in vector representations and
theories with massless higher spin fields in the bulk [45, 46]. The simplest example of
such a duality is given by a free O(N)-vector model, i.e., a bunch of free scalar fields
ϕi(x), i = 1, ..., N with the O(N)-singlet constraint imposed. This duality involves
an infinite number of massless higher spin fields in the bulk that are dual to higher
spin conserved tensors Js ∼ ϕ∂sϕ in the free scalar CFT. Other options include the
critical vector model, the free fermion CFT, the Gross–Neveu model [47, 48] and, more
generally, Chern–Simons matter theories [49]. The problem here is twofold. Firstly,
higher spin theories reveal some pathological nonlocalities [50, 51, 52] that prevent them
from having a bulk definition that is independent of their CFT duals (but can be defined
as anti–holographic duals of the corresponding CFTs). Secondly, for massless higher spin
fields, ultraviolet pathologies of gravity are amplified with increasing spin, see ref. [53].
At present, it is unclear how they can be resolved, except for the conformal [54, 55, 56]
and chiral [57] higher spin theories where the nonlocalities are absent and quantum
corrections can be shown to vanish [58, 59].
One possible way to get around these problems is to use the conformal bootstrap,

in particular crossing symmetry, to determine the coefficients in the operator product
expansion (OPE) and the anomalous dimensions of the corresponding operators in CFT,
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to make predictions for loop-corrected boundary-to-boundary correlation functions of
the dual bulk theory in AdS [60, 39, 41, 40]. Here, the input is the first-order anomalous
dimensions for the “double-trace operators” inferred from the tree-level bulk amplitudes
which, using crossing symmetry, lead to an equation for the second-order anomalous
dimensions of the latter. This has led to explicit results for a class of dual bulk theories
in AdS3 and AdS5 [39, 41, 40]. However, since there are no closed expressions for the
conformal blocks in three dimensions, this approach does not easily generalize to AdS4,
which is the focus of the present work.

Moreover, the above approach does not lead to a verification of the AdS/CFT corre-
spondence beyond the classical field theory, since an explicit and complete calculation
of correlation functions in the bulk up to sufficient order is yet missing. The process
of renormalization, necessary for handling quantum effects induced by loop amplitudes,
is widely uninvestigated in AdS, and there is no certainty that the boundary theory
retains its conformal symmetry. The goal of the present thesis is to provide a first explicit
confirmation of such a quantum AdS/CFT correspondence by directly computing loop
corrected amplitudes in AdS4 for the simplest interacting model of a scalar field with
quartic selfinteraction. On the boundary of AdS, the final results are subject to a set of
nontrivial tests dictated by conformal symmetry.

1.2 Research statement and results
In the present thesis we compute loop-corrected correlation functions on the Poincaré
patch of AdS without using any particular properties of a CFT dual on the conformal
boundary [61, 62]. More precisely, we consider the bulk theory in a loop expansion in
position space. There is a convenient representation for loop diagrams in AdS in terms
of Mellin amplitudes [34]. A related approach, followed in ref. [35], is to reduce loop
diagrams in global coordinates in AdS to a sum over tree-level diagrams using a discrete
Mellin space Källén–Lehmann representation with weight function inferred from the OPE
in the dual CFT.6 Alternatively, one may exploit the fact that the data defining the
Mellin representation of the loop diagram is already contained in the tree-level data [39].

Here we will not follow this path. Instead, we simply evaluate the loop diagrams in an
adapted representation in terms of Schwinger parameters with refinements originally due
to Symanzik [63]. In order to avoid pathologies associated to spin-2 and above, we will
consider a simple interacting scalar bulk theory. Concretely, we consider an interacting
bulk scalar field with action given schematically by

S =

∫
AdS4

√
g

(
1

2
(∂φ)2 +

m2

2
φ2 +

λ

4!
φ4

)
on the Poincaré patch of Euclidean AdS4. This theory is perturbatively renormalizable
and thus we will not have to deal with any of the pathologies mentioned above. In
6We are not aware of an analogous construction on the Poincaré patch.
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particular, we do not quantize the bulk metric but instead treat it as a background. From
the point of view of QFT on curved space-time this is a natural truncation. On the other
hand, this may not seem so natural to a reader familiar with the AdS/CFT literature
where the graviton appears naturally as the bulk field dual to the stress tensor of the
CFT. However, if we do not insist on locality on the CFT side, there are many CFTs
that do not possess a local stress tensor. Among them, the critical point of Ising-like
models with long distance interactions, see, for example, ref. [64]. Such CFTs should
also admit an AdS dual description where gravity is frozen to a classical background.

The idea of truncating the bulk theory to an interacting scalar field is not new even in
the context of the AdS/CFT correspondence. In particular, this model was considered in
ref. [60] as a bulk dual to a CFT with just one low dimensional single-trace operator.
The simplest such CFT is the generalized free field [65], which is characterized by the
property that the correlation functions of operators factorize similarly to those of the
fundamental fields in the Gaußian model. The corresponding bulk dual is just that of a
free scalar field φ in AdS [31]. If we denote by O∆ the generalized free field of conformal
dimension ∆, then, using the standard AdS/CFT dictionary, its two-point function is
given by

〈O∆(x1)O∆(x2)〉CFT = 〈φ̄(x1)φ̄(x2)〉AdS =
Nφ

r2∆
12

, (1.1)

where φ is the scalar field dual to O∆, φ̄ is its restriction to the boundary of AdS,
r12 ≡ |x1 − x2| and Nφ is a normalization constant. Similarly, the four-point function of
the generalized free field will be given by

〈O∆(x1)O∆(x3)O∆(x4)O∆(x2)〉CFT =
Nφ

r2∆
12

Nφ

r2∆
34

+ permutations. (1.2)

Crossing symmetry of the left hand side will be automatically satisfied and it then
has an expansion in conformal blocks of the double-trace operators O∆�n∂lO∆ of the
corresponding CFT.

Next, we consider a deformation of the generalized free field that does not preserve the
factorization property. The simplest such renormalizable deformation is the φ4 theory
on Euclidean AdS4. This deformation should correspond to an interacting CFT with a
scalar operator O∆, m2 ∝ ∆(∆− d), but without a local stress tensor. It is clear that
any interaction term in an action for the bulk theory will give a crossing-symmetric
contribution to the correlation functions on the CFT side by construction. At present,
we will take the conformally coupled scalar field in AdS4. There are two possible choices
of boundary conditions for φ: ∆ = 2 and ∆ = 1, both being within the unitarity window
[66]. Due to the extremality of the ∆ = 1 case we expect some subtleties at the quantum
level. For the same reason we do not include the φ3 interaction. We will discuss this in
more detail throughout the text.

The first prediction for the CFT that is computable at tree-level in AdS is the anomalous
dimensions and OPE coefficients of double-trace operators appearing in the OPE of O∆
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with itself. This can be extracted from the exchanges and quartic contact interactions,
see, for instance, refs. [67, 68, 60, 69]. We then compute the first quantum corrections
to the two- and four-point functions, which includes one- and two-loop diagrams in
AdS4. At a conceptual level, an important implication of this is that the actual loop
calculation in the bulk theory is consistent with the duality. In addition, this allows us
to extract further CFT data. In particular, we can extract higher order corrections to
the anomalous dimension of double-trace operators, as well as their OPE coefficients
at next-to-leading order in both the deformation parameter λ and the dimension of the
double-trace operators. One result, already noted in ref. [60], is that, while the conformal
block expansion of the four-point function of the generalized free field involves primary
double-trace operators7 of all even spin and even dimensions, only the OPE coefficients
and dimensions of such operators with spin 0 are affected by the interaction at tree-level.8
At loop level, however, their dimensions are corrected (see also ref. [39] for AdS3 and
AdS5).

One of the main results of this thesis is the anomalous dimensions ∆0,l of the operators
of the leading Regge trajectory, i.e., having the form O∆∂

lO∆. These are the lowest-twist
double-trace primaries appearing in the OPE of O∆ with itself. For ∆ = 2 we find

∆0,l = 4 + l + γδl,0 + γ2

{
5
3

for l = 0,

− 6
(l+3)(l+2)(l+1)l

for l > 0,
(1.3)

where γ = −λR/16π2 and λR is the renormalized coupling. For ∆ = 1 we have, in turn,

∆0,l = 2 + l + 2γδl,0 + γ2 −4

2l + 1
ψ(1)(l + 1) + γ2

{
−4 for l = 0,

− 2
l(l+1)

for l > 0,
(1.4)

where ψ(1)(l + 1) is the trigamma function. Anomalous dimensions for higher twist
operators are also computed but they do not seem to have such a simple l-dependence.
An important question that requires clarification at loop level in AdS concerns the

dependence on the renormalization scheme. In this thesis we use an ultraviolet cut-
off regularization, which manifestly preserves covariance, followed by a nonminimal
subtraction. For ∆ = 1, there are additional infrared divergences. A convenient covariant
regularization of the latter is provided by continuation in ∆. Another issue related to
this is the lack of a simple quantum AdS experiment that determines the renormalization
conditions in terms of measurable quantities such as the mass of particles, for instance.
In the present context we replace the latter by the dimensions of the operators of the
dual CFT which seems to be an appropriate replacement in the context of AdS/CFT.

7In the present context, based on the identification obtained in the original AdS/CFT conjecture, we
denote by double-trace operators all operators which are not dual to a bulk field.

8This may come as a surprise since the higher spin primaries do not correspond to conserved currents as
they do not saturate the unitarity bound.
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1.3 Content of the thesis
The content of this thesis is organized as follows. In chapter II we discuss the basic
requirements and properties of a QFT in flat space-time. The main objective is to
provide a strong foundation for the material presented in the forthcoming chapters.
In particular, the later transition to curved space-times can be best illustrated with
the axiomatic formulation of QFT in flat space-time, which is presented in section
2.1 in terms of the Wightman axioms. Another equivalent characterization in terms
of the properties of the Wightman functions is discussed in section 2.2. Section 2.3
deals with the procedure of analytic continuation of correlation functions, and with the
properties of the resulting Euclidean QFT. Eventually, in section 2.4 we explicate the
canonical quantization procedure on the simplest model of a free neutral scalar field in
flat space-time and review the resulting QFT in the context of the Wightman axioms.
Chapter III aims to provide a basic understanding of QFT in curved space-times. In

section 3.1 we carry on our discussion on the previous example of a free neutral scalar
QFT and outline the main difficulties arising in the formulation of the same theory on
generally curved space-times. Section 3.2 contains a short discussion on the generalization
of the Wightman axioms to curved space-times. This, in particular, tries to elucidate
how the previously specified issues could possibly be solved.
Chapter IV contains an overview of the properties of anti–de Sitter space-time. In

section 4.1 we first introduce AdS through the ambient space formalism but leave a more
detailed discussion for appendix A. Then, we discuss the geometry and causal structure
of AdS, and introduce different coordinate patches. In section 4.2 the symmetries of AdS
will be presented, and we will pay particular attention on how these act on Poincaré
coordinates. The geometrical properties and symmetries of the conformal boundary of
AdS are discussed separately in section 4.3.

The knowledge gained in the previous chapters is used in chapter V to present the
formulation of QFT in AdS. Specifically, in section 5.1 we explicitly quantize the model of
a free neutral scalar introduced earlier on AdS. As argued in [15], a particular care of the
conformal boundary of AdS is necessary. In section 5.2 we introduce the Euclidean AdS
and review the construction of the scalar propagator on AdS. For the interested reader,
higher spin propagators are constructed in appendix D with the aid of the spinor helicity
formalism introduced in appendix B and the resulting identities listed in appendix C.
We conclude this chapter with section 5.3 containing a direct investigation of the dual
CFT appearing on the conformal boundary of AdS.
Chapter VI contains the novel results this thesis aims to present. After shortly

specifying the exact model under consideration, we proceed in section 6.1 by listing all
the various bulk correlation functions that will be calculated later on. In section 6.2
we derive the one- and two-loop corrections to the two-point function in position space
using a Schwinger parameterization. Here we also specify the ultraviolet regularization
employed in this thesis. For ∆ = 1, we will encounter in addition infrared divergences
whose regularization is also discussed there. Section 6.3 contains the computation of the
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four-point function. The tree-level contribution is well known (e.g., refs. [68, 60]), so
we just reproduce their calculations. The one-loop contribution requires an ingenious
use of Schwinger parameters. Eventually, the ultraviolet divergences can be absorbed
in the renormalized φ4 coupling as expected. It turns out that the ∆ = 1 calculation
differs from that for ∆ = 2 by an extra contribution, which is computationally tedious
but manageable as a short-distance expansion on the boundary. Section 6.4 summarizes
the final results obtained in the previous sections. Eventually, in section 6.5 we compare
the short-distance expansion of the bulk four-point function with the conformal block
expansion in conformal field theory. How the short-distance expansion is performed is
explained in detail in appendix E. At zeroth order in the bulk coupling λ it is possible to
read off the spectrum of double-trace operators. At order λ one determines the anomalous
dimensions which vanish for all but the spin-0 double-trace operators at that order. At
order λ2 things become more interesting. Still, for the leading Regge trajectory, we
are able to derive a closed formula for the anomalous dimensions. An extensive list of
anomalous dimensions and OPE coefficients for various spins and twists are referred to
the appendix F.

Eventually, in chapter VII conclusions are drawn and we give possible applications of
the derived results and an outlook for further research.
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Parts of this thesis are reproductions of the content of the author’s publications. Some
of the results presented here have been published in the following papers:
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101601 [arXiv:1804.01880]
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Dual, JHEP 02 (2019) 099 [arXiv:1810.00907]
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II QFT in flat space-time

The path to the development of a full theory of quantum gravity passes first through
a deep understanding of quantum field theory in curved space-times, where matter is
treated in accordance to the principles of quantum field theory but gravity is not. Instead,
gravity is treated classically, that is, it is required to satisfy the rules of general relativity.
Despite being an approximate theory, the study of QFT in curved space-times has led to
deep insights into the nature of quantum gravity, the most striking being the prediction
of Hawking radiation [70].

However, a fully satisfactory description of QFT in curved space-times is far from being
formulated. Whereas QFT in flat space-time has been remarkably successful and has
been confirmed by experiments to within an extraordinary degree of accuracy, it does not
provide a straightforward generalization to curved space-times. The main issue is that the
(best-understood) particle description of QFT relies crucially on the symmetry properties
of space-time, but curved space-times do not even have to exhibit any symmetry.

Here we will discuss the basic requirements and properties of a QFT in flat space-time.
This will be a guidance to our later discussion on how quantum field theory could be
generalized to curved space-times.

2.1 Axiomatic quantum field theory
By examining the heuristic formulations of QFT in flat space-time, a few common features
of the theory emerge. These key properties are resumed by the Wightman axioms [71], a
first attempt towards a formal description of quantum field theory1:

A relativistic (bosonic) quantum field theory in Minkowski space-time Md,1, with d > 1
spatial dimensions, is given by a Hilbert space H being the module of a unitary
representation U of the Poincaré group P, and a set of operator-valued distributions
(and their adjoints) {Ψi(x)} over Md,1. The theory should further satisfy [73]

A1: (Spectrum condition) The spectrum pµ of the (selfadjoint) generators P µ of the
subgroup of space-time translations T ⊂ P is confined to the forward cone

C+ := {x ∈ Md,1 : xµ
2 ≡ x · x ≡ xµx

µ ≡ ηµνx
µxν = −(x0)2 + ~x 2 ≤ 0, x0 ≥ 0}.

A2: (Domain condition) For each test function f defined on Rd+1, the domain of the
“smeared” operators

Ψi(f) =

∫
dd+1x Ψi(x)f(x) (2.1)

1There exist also attempts of different nature, like the algebraic approach leading to the Haag–Kastler
axioms (see ref. [72] for an overview).
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is a dense subspace D ⊂H invariant under the action of both P and Ψi(f).

A3: (Vacuum condition) There is a, up to a phase, unique ray |Ω〉 ∈ D invariant under
T . This state is also invariant under the Lorentz subgroup L.

A4: (Completeness condition) The set of finite linear combinations of vectors of the
form Ψi1(f1) · · ·ΨiN (fN)|Ω〉 is dense in H .

A5: (Covariance condition) The operators transform covariantly under the action of
g ∈ P , i.e.,

U(g)Ψi(x)U−1(g) = Mi(g
−1) ·Ψi(g(x))),

where Mi is a real-valued tensor representation of the identity component L0 of
the Lorentz group L ⊂ P .

A6: (Microcausality condition) Take two test functions f, g. If the support of f is
space-like to the support g, that is, for each x ∈ supp(f) and y ∈ supp(g) it follows
(x− y)µ

2
> 0, then [Ψi(f),Ψj(g)] = 0.

In order to shed light on the Wightman axioms, let us clarify some points. The following
discussion might seem too detailed at this stage. However, when discussing QFT in
curved space-times, it will allow us to keep an overview on the defining properties of
QFT in flat space-time. This further facilitates the detection of relevant differences.

• The physical states are interpreted as the unit rays in H , or equivalently, vectors
in the projective space of H . The smeared operators Ψi(f) correspond to the
quantum fields, and the generator of time translations P 0 is identified with the
(unique, see below) Hamiltonian density H. It will later become clear that the
spectral condition ensures that all physical states have nonnegative mass and energy.

• In the covariant formulation of gauge theories, the positive definiteness of the
Hilbert space inner product is absent. However, these zero modes should resolve
after gauge fixing.

• The Ψi(f) are (possibly) unbounded operator, thus one must specify their domain.
Although there also exist properly unbounded operators defined on the whole
Hilbert space2, in applications only those defined on a proper subspace of H
appear. Since the denseness of the domain is a necessary and sufficient condition for
the existence of the adjoint, it is necessary to extend the domain of the unbounded
operators to a dense subspace D ⊂H . This is indeed always possible by simply
demanding that the kernel of the operator, having domain K ⊂H , contains the
complement K ⊥ of K . The statement then follows from H = K ⊕K ⊥, where
K is the closure of K . The restriction of the domain of a bounded operator
to some dense subspace D is not constraining, since the operator has a unique
extension to H .

2as a pathological result of the axiom of choice
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• According to the definition of distributions, the integral Ψi(f) in eq. (2.1) denotes
a continuous3 linear functional on the vector space of test functions f . In the
treatment of QFTs with renormalizable interactions, our experience dictates us that
it appears sufficient to take f as an element of the Schwartz space4 S (Rd+1) [74, 75].
This restriction is particularly advantageous since the Fourier transformation is
an automorphism on both S (Rd+1) and its dual space S ′(Rd+1) defined by eq.
(2.1), with elements of the latter space called tempered distributions. The Fourier
transform of a tempered distribution Ψ̃i(p) is the tempered distribution defined via
Ψ̃i(f) = Ψi(f̃), where f̃ is the Fourier transform of f ∈ S (Rd+1).

• By Wigner’s theorem (see, for instance, ref. [76]), in order to preserve the proba-
bilistic interpretation of the theory, every symmetry of the theory is necessarily
described by some unitary or anti–unitary representation of P. All symmetries
represented by anti–unitary operators involve time-reversion. One might only
consider the identity component P0 of P , excluding de facto all discrete space-time
symmetries and consequently the need for anti–unitary operators.

• A particular choice of unitary representation U of P0 settles the particle content
of the theory. More precisely, each unitary irreducible representation (UIR) of P0

corresponds to a physically relevant particle since, as a consequence of Schur’s
lemma, irreducibility translates to sharp mass and spin eigenvalues of the respective
Casimir operators. It is known that all unitary representations of the Poincaré
group can be decomposed into irreducible ones [77]. This is quite surprising,
as the complete reducibility property is a virtue of finite groups and compact
Lie groups, however P0 is a noncompact Lie group. Nevertheless, a substantial
difference with compact Lie groups exists and is the origin for the necessity of field
theory in relativistic quantum mechanics; all the nontrivial UIRs of P0 are infinite-
dimensional representations, corresponding precisely to the field representations. In
general, one considers only UIRs whose little group is compact5. This guarantees
finite-component field representations, since all UIRs of compact Lie groups are
finite dimensional. Altogether, these representations describe bosonic massive and
massless particles, both of finite spin.

• The Hilbert space H of a free theory, the Fock space, is separable and thus its
basis forms a countable set. In other theories a nonseparable Hilbert space might
be necessary, but as long as one considers theories with finite particle content,
this is not the case [71]. Working on separable Hilbert spaces guarantees that
the generator of each continuous symmetry is a unique selfadjoint operator and

3or, equivalently, bounded
4This is the space of all infinitely differentiable functions that are rapidly (faster than any power)
decreasing at infinity, along with all partial derivatives.

5The little group of a massless particle is noncompact but its action on the helicity representation
corresponds to that of a compact group, see ref. [78].



16 II QFT in flat space-time

therefore an observable. The mathematical formulation is the following. Let Uα
with α ∈ R be a unitary representation of a one-parameter subgroup of P on a
separable Hilbert space H . Then, according to Stone’s theorem6, there exists a
unique selfadjoint operator A such that

Uα = e−iαA. (2.2)

The operator A is clearly a selfadjoint representation of one of the generators ta
(or linear combination thereof) of the Lie group P , satisfying the Lie algebra

[ta, tb] = if cabtc . (2.3)

The structure constants f cab completely characterize the algebra and are independent
of the representation of ta. This allows to study the Lie group P in a sufficiently
small neighborhood of the identity.

• Let us see how the subgroup of space-time translations T ⊂ P0 acts on a quantum
field Ψi(x). The unitary representation of a space-time translation with the vector
α ∈ Md,1 is given by Uαµ = e−iα·P , where P µ are the generators of T . Axiom
(A5) yields Ψi(x + α) = UαµΨi(x)U−αµ , which infinitesimally corresponds to the
generalization of the Heisenberg equation

i
∂Ψi(x)

∂xµ
= [Pµ,Ψi(x)], (2.4)

where we introduced the distributional derivative∫
dd+1x

∂Ψi(x)

∂xµ
f(x) ≡ −

∫
dd+1x Ψi(x)

∂f(x)

∂xµ
. (2.5)

Acting with Uαµ on the Fourier transformed quantum field

Ψ̃i(p) =

∫
dd+1x e−ix·pΨi(x), (2.6)

leads to
UαµΨ̃i(p)U−αµ = eiα·pΨ̃i(p) , −pµΨ̃i(p) = [Pµ, Ψ̃i(p)]. (2.7)

Thus, any vector of the form Ψ̃i1(p1) · · · Ψ̃iN (pN)|Ω〉 is an eigenvector of P µ:

P µΨ̃i1(−p1) · · · Ψ̃iN (−pN)|Ω〉 = (pµ1 + · · ·+ pµN)Ψ̃i1(−p1) · · · Ψ̃iN (−pN)|Ω〉, (2.8)

6On nonseparable Hilbert spaces, Stone’s theorem requires strong continuity of Uα instead of solely weak
measurability, see ref. [79].
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where we made use of the invariance of the vacuum under T , see axiom (A3).
Then, the spectrum condition (A1) requires that for each Ψ̃i1(p1) · · · Ψ̃iN (pN)|Ω〉,
p1 + · · ·+ pN ∈ (−C+). Furthermore, note that

(2π)N(d+1)

∫
dd+1α e−iα·pU−αµΨi1(x1) · · ·ΨiN (xN)|Ω〉

=

∫ (
Πndd+1qn

)
δ

(
pµ +

∑
n

pµn

)
ei
∑
n xn·pnΨ̃i1(p1) · · · Ψ̃iN (pN)|Ω〉,

(2.9)

with n ∈ {1, . . . , N}. Since p1 + · · ·+ pN ∈ (−C+) it follows that p ∈ C+. A more
general statement is that, for each |Ψ〉 ∈ D (see axiom (A4)), one has∫

dd+1α e−iα·pU−αµ |Ψ〉 = 0 if p 6∈ C+. (2.10)

• Free fields subject to the (equal time) canonical commutation relations (CCR)
trivially satisfy the microlocality condition. On the other hand, all known examples
of interacting fields satisfying axiom (A6) are derived, as yet, from free fields.

• Although microcausality at very short distances is not a necessary requirement as
long as macrocausality is assured, a rigorous formulation of the latter is difficult
[80]. The common idea is that the support of Ψi(x) should not grow faster than
the speed of light.

• The axioms should apply to free or interacting theories alike.

As a final remark, let us briefly discuss the important physical consequences of dealing
with a projective space of H . The unitary representations U of P0 are more appropriately
projective representations, that is, they are only defined up to a phase. Let us choose, for
each g ∈ P0, a representative U(g). Then these representations satisfy the composition
rule

U(g1)U(g2) = eiθ(g1,g2)U(g1 ◦ g2), (2.11)

where θ(g1, g2) ∈ R and g1, g2, g1 ◦ g2 ∈ P0. The associated Lie algebra features an
additional term on the right hand side of eq. (2.3), a central charge of the form ifab. In
contrast, ordinary representations are group homomorphisms, for which θ(g1, g2) = 0
for all g1, g2 is satisfied and consequently the central charge is zero. Now, the question
arises if is it possible to choose different representatives for U(g) such that eq. (2.11)
corresponds to a homomorphism. Bargmann’s theorem states that this is indeed possible
if P0 is simply-connected and if its generators can be redefined such to eliminate all
central charges from its Lie algebra. However, P0 does not satisfy the former requirement,
which makes it necessary to consider its universal covering group7.
7For Lie groups, the universal cover is the unique simply-connected Lie group that has the same Lie
algebra of the original group.
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The physical consequences are the following. The ordinary UIRs of the universal
cover of P0 include fermionic particles, in addition to the bosonic particles appearing
in the ordinary UIRs of P0. This allows for the transition to a fermionic (or mixed, by
considering direct sums of UIRs) QFT, where one has to impose a grading of the fields
into even and odd, and the commutator of odd fields in axiom (A6) has to be replaced
with the anticommutator.

2.2 The Wightman functions
To keep things simple, and given the focus on real scalar field theories in this thesis, we
henceforth assume that our theory contains only one scalar selfadjoint operator-valued
distribution Ψ(x) = Ψ†(x). Nevertheless, a generalization of sections 2.2 and 2.3 to
different operator-valued distributions is straightforward.
Being acquainted with the properties a general QFT has to satisfy, as yet, does not

enhance our knowledge on the outputs of the theory. For theoretical particle physicists,
the relevant outputs are ideally experimentally verifiable predictions, frequently about
scattering. The full data of scattering processes is, by means of the LSZ reduction
formula [81], encoded in the N -point functions, i.e., the vacuum expectation values of
the product8 of N operator-valued distributions:

〈Ω|Ψ(x1) · · ·Ψ(xN)|Ω〉. (2.12)

In order to postpone the complications concerning pointwise products of distributions,
we further take the points {x1, . . . , xN} to be distinct. In fact, this generally ill-defined
product is what causes the necessity for renormalization in heuristic QFT [82]. However,
note that the Wightman axioms comprise renormalized fields by definition, and thus eq.
(2.12) is finite.

According to eq. (2.1), let us introduce the Wightman functions

WN(f1, . . . , fN) := 〈Ω|Ψ(f1) · · ·Ψ(fN)|Ω〉, (2.13)

which are well-defined9 multilinear functionals from the product space S N ≡ S (Rd+1)×
. . .×S (Rd+1) of Schwartz spaces to the complex numbers C. As it was clarified above,
the product of distributions

Ψ(x1) · · ·Ψ(xN)|Ω〉 (2.14)

defines a functional which is separately continuous in each test function. Thus, by
Schwartz’s nuclear theorem [83], the functional can be uniquely extended to a linear and
continuous functional which maps f ∈ SN ≡ S (Rd+1 × . . .× Rd+1) to C, such that one
obtains the same results as integrating with eq. (2.14) whenever f factorizes as

f(x1, . . . , xN) = (f1 ⊗ . . .⊗ fN)(x1, . . . , xN) ≡ f1(x1) · · · fN(xN). (2.15)
8Here we neglect time-ordering.
9see axioms (A2) and (A3)
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In particular, also the Wightman functions WN(f1, . . . , fN) can be uniquely extended
to linear and continuous functionals WN(f). From now on, we denote the Wight-
man functions as WN(f) and the corresponding (Wightmann) distributions as WN :=
WN(x1, . . . , xN).

Taking into account the Wightman axioms, WN (f) are linear and continuous functionals
satisfying the following properties:

W1: (Covariance) Invariance under transformations g ∈ P :

WN(g(x1), . . . , g(xN)) = WN(x1, . . . , xN). (2.16)

W2: (Locality) If (xj − xj+1)µ
2
> 0 for some j ∈ {1, . . . , N − 1}, then

WN(x1, . . . , xj, xj+1, . . . , xN) = WN(x1, . . . , xj+1, xj, . . . , xN). (2.17)

W3: (Spectrum property) For each WN ∈ S ′
N there exists a w̃N−1 ∈ S ′

N−1, with support
in the product of forward cones (C+)N−1, such that

WN(x1, . . . , xN) = (2π)−(N−1)(d+1)

∫ (
Πjd

d+1qj
)
ei
∑
j uj ·qj w̃N−1(q1, . . . , qN−1),

(2.18)
where uj = xj − xj+1 and j ∈ {1, . . . , N − 1}.

W4: (Positive definiteness) For any sequence
(
f(N)

)
N∈N

with f(N) ∈ SN :

k∑
M,N=0

WM+N(f̄(M) ⊗ f(N)) ≥ 0, (2.19)

where f̄(M)(x1, . . . , xM) = f ∗(M)(xM , . . . , x1) and f ∗(M) is the complex conjugate of
f(M).

W5: (Cluster property) For any space-like vector α ∈ Md,1 the following holds:

lim
λ→∞

WN(x1, . . . , xn, xn+1+λα, . . . , xN+λα) = Wn(x1, . . . , xn)WN−n(xn+1, . . . , xN).

(2.20)

The properties (W1) and (W2) are direct consequences of the axioms (A5) and (A6)
respectively, whereas property (W4) simply follows from the the fact that

k∑
M=1

Ψ(x1) · · ·Ψ(xM)|Ω〉 ∈ D , (2.21)

and thus its norm is nonnegative. Property (W3) is slightly more elaborate. Firstly,
existence of w̃N−1 follows from translation invariance, which implies that WN depends
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only on the (N − 1) difference vectors uj = xj − xj+1. Indeed, let us write the Wightman
distribution WN in terms of its Fourier transform:

WN(x1, . . . , xN) = (2π)−N(d+1)

∫ (
Πndd+1pn

)
ei
∑
n xn·pnW̃N(p1, . . . , pN). (2.22)

A change of variables yields

WN(u1, . . . , uN−1, xN) = (2π)−N(d+1)

∫ (
Πndd+1qn

)
ei
∑
j uj ·qj+ixN ·qNW̃N(q1, . . . , qN),

(2.23)
where qn = p1 + · · ·+ pn and n ∈ {1, . . . , N}, j ∈ {1, . . . N − 1}. Now, the equation

− (pµ1 + · · ·+ pµN)W̃N(p1, . . . , pN) = 〈Ω|P µΨ̃(p1) · · · Ψ̃(pN)|Ω〉 = 0, (2.24)

has the following solution

W̃N(q1, . . . , qN) = (2π)(d+1)δ(qN)w̃N−1(q1, . . . , qN−1) (2.25)

for some distribution w̃N−1 ∈ S ′
N−1. With this, eq. (2.23) becomes exactly eq. (2.18).

Secondly, to find the support of w̃N−1, let us start with its inverse Fourier transform
wN−1 := wN−1(u1, . . . , uN−1) and Fourier transform the latter with respect to only one
of the vectors uj. This is then proportional to∫

dd+1α e−iα·qjWN(u1, . . . , uj−1, uj + α, uj+1, . . . uN−1)

=

∫
dd+1α 〈Ω|Ψ(x1) · · ·Ψ(xj)U−αµΨ(xj+1) · · ·Ψ(xN)|Ω〉,

(2.26)

where again qj is the momentum conjugate of uj . Then, according to eq. (2.10), we have
w̃N−1(q1, . . . , qN−1) = 0 whenever any qj 6∈ C+.
The derivation of property (W5) is rather lenghty and is beyond the scope of this

thesis. It exploits the fact that, for large λ, one can reverse the order in eq. (2.20) to
xj+1 +λα, . . . , xN +λα, x1, . . . , xj . This also reverses the sign of the momentum conjugate
qj to the difference variable uj. The statement follows applying the spectrum condition
on qj and the uniqueness of the vacuum [84].

The above properties of the Wightman functions together reveal a fundamental pecu-
liarity of quantum field theory, that is, the Wightman functions describe by themselves
a well-defined QFT and hence entail all the necessary information. More precisely, the
Wightman reconstruction theorem states that

Given any sequence (WN)N∈N of tempered distributions obeying the conditions (W1-W5),
there exists a QFT satisfying axioms (A1-A6) for which the WNs are the Wightman
distributions.
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A proof of the theorem can be found in ref. [84]. Let us remark that, by excluding the
cluster property (W5), the resulting QFT satisfies anyway all Wightman axioms (A1-A6),
with the eventual exclusion of the uniqueness of the vacuum. This is interesting since,
in fact, we will later argue that the requirement of the uniqueness of the vacuum is, in
general, not possible to satisfy in curved space-times.

In addition to the Wightman reconstruction theorem, several imporant formal proper-
ties of QFTs, remarkably the CPT and the spin-statistics theorems, have been proven
within the Wightman framework [71]. Yet, its predictive power is limited for various
reasons when facing real physical phenomena. First of all, it is a difficult task to even
give examples of Wightman quantum field theories for the case of free theories, and
no Wightman QFT has been constructed so far for any realistic interaction [85]. Even
worse, the canonical commutation relations pose the “choice problem”: In nonrelativistic
quantum mechanics all selfadjoint representations of the Heisenberg algebra [qi, pj ] = iδi,j
are, within certain technical restricitions, unitarily equivalent (Stone–von Neumann
theorem). Therefore, all representations, most importantly Schrödinger and Heisenberg
representations, give rise to the same expectation values. In QFT instead, the CCR
have uncountably many unitarily inequivalent representations [86]. On which basis does
one choose among these inequivalent representations? The obvious response would be
to consider only one representation (up to unitary equivalence) as physically relevant
and dismiss the remaining. However, this response is proven wrong by Haag’s theorem
[87, 88], which is a direct consequence of the Wightman axioms10. In brief, the theorem
states the following:

Take two Wightman QFTs, a free theory11 (HF , {ΨF (x)}) and an “interacting” theory
(HI , {ΨI(x)}), each satisfying the canonical commutation relations. If there exists a uni-
tary mapping V from HF to HI such that for each ΨF (x) one has ΨI(x) = VΨF (x)V −1,
then also (HI , {ΨI(x)}) describes the same free theory12.

In other words, the attempt to derive the Wightman functions for a truly interacting
theory, starting from the Wightman functions of the free theory, fails due to the impos-
sibility to represent nontrivial interactions. Undoubtedly, since all infinite-dimensional
separable Hilbert spaces are isomorphic, one can always find a unitary map between
HF and HI . However, contrary to the assumptions in Haag’s theorem, this map does
not identify two unitarily equivalent representations of the CCR. Thus, the existence
of inequivalent representations of the CCR are not a mere mathematical subtlety but
carries an intricated amount of physical implications. A discussion of these implications
is beyond the scope of this thesis and we refer to ref. [89] for an in-depth analysis.
Still, let us note that, owing to the general validity of Haag’s theorem, it might seem

10and also of the Haag–Kastler’s axioms
11A free theory in the sense that ΨF (x) is a solution of the Klein–Gordon equation, see section 2.4.
12If also ΨI(x) is a solution of the Klein–Gordon equation, the theorem states that the mass has to be
the same as for ΨF (x).
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natural to consider the canonical formalism of QFT, including the interaction picture
and perturbation theory, somehow erroneous. The discrepancy between the canonical
formalism and some formal description is indeed reflected in the difficulty of formulating
physically relevant QFTs within the above axiomatic setting. Nevertheless, this does
not prevent us from using the canonical formalism, due to its, in this view admittedly
surprising, exceptional precision.

In spite of the mentioned discordance between the axiomatic and the heuristic approach
to QFT, the Wightman axioms are, in their limited domain of application, a great
playground to discuss general QFTs in flat space-time and, even further, QFTs in curved
space-times. This will be done in the next chapter. Afterwards we will proceed with the
heuristic approach, considering first a free scalar field theory in anti–de Sitter space-time
and subsequently a quartic deformation of the free theory.

2.3 Analytic continuation of correlation functions
The Wick rotation is widely regarded as a standard tool in quantum field theory, rendering
the integrals in the calculation of correlation functions13 more easily manageable. It is
strongly bound to the notion of analytic continuation of Wightman functions, relating
the Wightman functions to the Schwinger functions. On general space-times such a
continuation is not always attainable. This section explains the procedure of analytic
continuation of correlation functions in flat space-time, in order to later on justify its
application in anti–de Sitter space-time. We will essentially follow ref. [90], but a more
detailed discussion can for instance be found in refs. [73, 91].

Analytic continuation of tempered distributions.
Let us start from a convex cone C, i.e., a subset of RD satisfying λ1p1 + λ2p2 ∈ C for
each p1, p2 ∈ C and λ1, λ2 ≥ 0. Its dual

C ′ := {x ∈ RD : 〈x, p〉 ≤ 0 for all p ∈ C} (2.27)

is also a convex cone. Here 〈x, p〉 represents any symmetric and nondegenerate bilinear
form14 on RD satisfying the inequality

〈x, p〉 ≤ −1

2
m‖p‖, (2.28)

where m is a nonnegative number dependent on x ∈ C ′, and ‖p‖ denotes the Euclidean
length of p ∈ C. Assume the subset C ′0 = {x ∈ C ′ : m > 0} to be an open, nonempty set.
Further, assume that g̃(p) is a polynomially bounded continuous function with support
in C. Polynomial boundedness requires |g̃(p)| ≤ c(1 + ‖p‖)k for some c ≥ 0 and k ∈ N.

13Which are, dependendly on the context, either Wightman or Schwinger functions. Schwinger functions
will be introduced in this section.

14Note that this ensures that RD is isomorphic to its dual with respect to the defined bilinear form.
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Then, the function

Fg̃(ζ) := (2π)−D
∫

dDp ei〈ζ,p〉g̃(p), (2.29)

of the complex vector ζ in the open tube T = RD + i(−C ′0) ⊂ CD, satisfies the following
properties:

• Since i〈ζ, p〉 has a negative real part, it follows that

|Fg̃(ζ)| ≤ c

(2π)D

∫
dDp e−

1
2
m‖p‖(1 + ‖p‖)k ≤ c

(2π)D
2π

D
2

Γ(D
2

)
l!

(
2

m

)l+1

e
m
2 , (2.30)

for l = D + k − 1. In the last step we integrated over the whole RD with spherical
coordinates.

• Fg̃(ζ) is differentiable in ζ since, as a consequence of continuity of g̃(p), one can
take derivatives under the integral.

Thus, Fg̃(ζ) is a well-defined holomorphic function on the open tube T. Now, any
distribution T̃ ∈ S (RD) with support in a convex cone can be written in the form
T̃ = P (i∂)g̃(p) for some polynomial P (x) ∈ C[x1, . . . , xD] and some g̃(p) as above [92].
Then, the function

FT̃ (ζ) := (2π)−D
∫

dDp ei〈ζ,p〉P (i∂)g̃(p) = P (ζ)Fg̃(ζ) (2.31)

is again a holomorphic function on T. In plain words, any tempered distribution with
support in a convex cone can be analytically continued on the open tube. Eventually,
we are interested in the boundary value FT̃ (x) of FT̃ (ζ) ≡ FT̃ (x + iy), but it follows
from eq. (2.28) that 0 6∈ C ′0. In fact, for y = 0, the integrals (2.29,2.31) generally
do not converge. This is akin to claim that a polynomial function does not admit a
Fourier transformation. Fortunately, one can circumvent this issue by requiring FT̃ (x) to
converge in the distributional sense:∫

dDx FT̃ (x)f̃(x) ≡ lim
t↘0

∫
dDx FT̃ (x+ ity)f̃(x) :=

∫
dDx T̃ (x)Ff̃ (x), (2.32)

for each f̃ ∈ S (RD). The last integral in eq. (2.32) is well-defined if

Ff̃ (x) = (2π)−D
∫

dDp ei〈x,p〉f̃(p) (2.33)

is an element of S (RD), and in that case FT̃ (x) is also a tempered distribution.
Let us see how this all applies to our case. With Md,1 as the underlying vector space,

one can identify the convex cone C with the forward cone C+ ⊂ Md,1, and the bilinear
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form with the standard scalar product 〈x, p〉 = x · p, p ∈ C+, x ∈ C ′+. In this setting, C+

is selfdual, i.e., C+ = C ′+, and the bilinear form satisfies the inequality

〈x, p〉 ≤ −1

2
(x0 − |~x|)‖p‖. (2.34)

Thus, m = 0 corresponds to xµ2
= 0, and therefore

C ′0+ = {x ∈ Md,1 : xµ
2

< 0, x0 > 0} (2.35)

is an open nonempty set. The set T− = Md,1 + i(−C ′0+) is called open backward tube.
Note that, with the standard scalar product, Ff̃ (x) = f(x) ∈ S (Rd+1) since the Fourier
transform is an automorphism on S (Rd+1). Now, consider the Wightman distribution
wN ∈ S ′

N in terms of its Fourier transform w̃N :

wN(u1, . . . , uN) = (2π)−N(d+1)

∫ (
Πndd+1qn

)
ei
∑
n un·qnw̃N(q1, . . . , qN), (2.36)

where n ∈ {1, . . . , N}. By the spectrum property (W3), the tempered distribution w̃N

has support in the N -fold forward cone CN
+ . After identifying CN

+ with the convex cone
C, it is rather straightforward to verify its self-duality with respect to the extended
bilinear form

〈(u1, . . . , uN), (q1, . . . , qN)〉N :=
N∑
n=1

un · qn , (2.37)

Clearly, this bilinear form is again symmetric, nondegenerate, and satisfies inequality
(2.28). Therefore, according to the above discussion, the formula

wN(Θ) := (2π)−N(d+1)

∫
dd+1Q ei〈Θ,Q〉N w̃N(Q), (2.38)

where Q ∈ CN
+ and Θ = U + iV ∈ TN

− , provides a holomorphic function in the variable Θ
with boundary value wN (U) ≡ wN (u1, . . . , uN ) (cf. eq. (2.32)). Eventually, owing to the
relation wN(U) = WN+1(X) with X = (x1, . . . , xN+1), WN+1(Z) = WN+1(X + iY ) also
provides a holomorphic function on TN

− .

Extension of the domain of analyticity.
As will be clear at the end of this paragraph, in order to justify the Wick rotation, an
extension of the domain of analyticity of wN appears necessary. A first observation in the
context of the Wick rotation is that the scalar product defined on Md,1 can be continued
to a complex-bilinear form on Cd+1:

〈ζ, ζ ′〉 = −ζ0ζ ′0 + ~ζ · ~ζ ′, (2.39)

with ζ, ζ ′ ∈ Cd+1. The subset

E := {(ix0, ~x) ∈ Cd+1 : (x0, ~x) ∈ Md,1} (2.40)
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is a vector space of Euclidean points, since, for e, e′ ∈ E,

〈e, e′〉 = x0x′0 + ~x · ~x ′. (2.41)

Let us now see to which extent a Wightman distribution WN+1 ∈ S ′
N can be further

analytically continued to an open connected domain UN ⊂ (Cd+1)N such that UN contains
a large portion of the N -fold Euclidean space

EN := {(e1 − e2, . . . , eN − eN+1) : (e1, . . . , eN+1) ∈ EN+1} ∼= EN . (2.42)

This will be conducted in two steps. Eventually, the restriction of all the analytically
continued WN+1 to UN ∩ EN defines an Euclidean field theory, as we will see in the next
paragraph. The first step exploits covariance of the Wightman functions (W1), which
implies the identity

wN(u1, . . . , uN) = wN(g(u1), . . . , g(uN)), (2.43)

for any g ∈ L0. This identity has a unique analytical continuation to transformations in
the (proper) complex Lorentz group L0(C)15 [93]. Consequently, wN can be extended to
the so-called N -fold extended tube

(TN
− )ε :=

⋃
{(L(θ1), . . . , L(θN−1)) : (θ1, . . . , θN) ∈ TN

− , L ∈ L0(C)}. (2.44)

It is rather simple to see that (T−)ε ≡ (T1
−)ε contains all Euclidean points E with the

only exception of the origin. Still, a big portion of the set EN is not contained in a
general N -fold extended tube (TN

− )ε. This takes us to the next step, where locality of the
Wightman functions (W2) is used. Note that, while T− does not contain real points, for
any real point u ∈ Md,1 with uµ2

> 0, one can find an L ∈ L0(C) such that L(u) ∈ (−C0
+).

Therefore, any real point θ = u + i0 with 〈θ, θ〉 > 0 is contained in the extended tube
(T−)ε. The converse can also be shown, that is, each θ ∈ Md,1 ∩ (T−)ε satisfies 〈θ, θ〉 > 0.

For general N -fold extended tubes, we have the following due to Jost [73]: An N -tuple
of real points Θ = (u1, . . . , uN) + i0 lies in (TN

− )ε if and only if all convex combinations
are space-like: (

N∑
n=1

λnu
µ
n

)2

> 0, with
N∑
n=1

λn = 1, λn ≥ 0. (2.45)

In particular, note that also the difference vectors un themselves are space-like, and hence
the requirements for locality (W2) are fulfilled.

15This is the identity component of the group of complex matrices being orthogonal with respect to
the complex scalar product (2.39). Note that L(C), countrary to L, only contains two connected
components with det(L) = ±1, L ∈ L(C). As a side note, the CPT theorem is based on this peculiarity
of the complex Lorentz group.
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Let us now denote a permutation of the set {1, . . . , N + 1} with σ ∈ SN+1. The
Wightman distribution WN+1 and the permuted Wightman distribution

σWN+1(x1, . . . , xN+1) := WN+1(xσ(1), . . . , xσ(N+1)) (2.46)

can be analytically continued to their respective N -fold extended tubes (TN
− )ε and (σTN

− )ε.
Then, according to the previous step, (TN

− )ε and (σTN
− )ε have a common nonempty open

and connected subset of real points un with uµ2

n > 0. In addition, as a consequence of
locality, WN+1 and σWN+1 agree on that common subset. Thus, the analytic domain of
WN+1 can be further continued to the N -fold permuted extended tube

(TN
− )ε,σ :=

⋃
{(σTN

− )ε : σ ∈ SN+1}. (2.47)

This tube contains almost the full N -fold Euclidean space EN . Indeed, take any
(N + 1)-tuple of noncoincident points (e1, . . . , en, . . . , eN+1) ∈ EN+1, where en = (ix0

n, ~xn).
Applying a suitable permutation σ ∈ SN+1, one can choose an increasing order of the
values x0

n appearing inside the zero-components of the points en. Thus, without restriction
of generality, let us write

x0
1 ≤ x0

2 ≤ · · · ≤ x0
N+1. (2.48)

Moreover, because of the noncoincidence of the points, there exists a Lorentz transforma-
tion L ∈ L0 ⊂ L0(C) such that L(en)0 6= L(em)0 for all n 6= m. Accordingly, through a
permutation σ, followed by a Lorentz transformation L, the above ordering can always
be made strict:

x′01 < x′02 < · · · < x′0N+1, (2.49)

where e′k = (ix′0n , ~x
′
k) = L(ek). The difference points e′n − e′n+1 satisfy x′0n − x′0n+1 < 0

and each of them is therefore element of T−. We conclude that the difference points
(e1 − e2, . . . , eN − eN+1) are indeed contained in (TN

− )ε,σ for all noncoincident points
(e1, . . . , eN+1) ∈ EN+1, or, equivalently, that UN contains the whole space EN\∆N with
∆N = {(h1, . . . , hn, . . . , hN) ∈ EN : hn 6= 0}.

Euclidean quantum field theory.
The Wick rotation corresponds to restricting the analytic continuation of the Wightman
distributions WN to the set EN−1\∆N−1. This defines the Schwinger distributions

SN(x1, . . . , xN) := WN((ix0
1, ~x1), . . . , (ix0

N , ~xN)), (2.50)

where the scalar product of the points xn ∈ Rd+1 complies to the Euclidean scalar product
xµ

2

n = (x0
n)2 + ~x 2

n . These analytic distributions satisfy

S1: (Euclidean covariance) Invariance under transformations g of the isometry group
of the Euclidean space Rd+1:

SN(g(x1), . . . , g(xN)) = SN(x1, . . . , xN). (2.51)
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S2: (Permutation property) For any σ ∈ SN it follows

SN(x1, . . . , xN) = SN(xσ(1), . . . , xσ(N)). (2.52)

S3: (Laplace transformation) At chronologically ordered points, i.e., for

(x1, . . . , xN) ∈ RN
+ := {((x0

1, ~x1), . . . , (x0
N , ~xN)) ∈

(
R(d+1)

)N
: 0 < x0

1 < · · · < x0
N},

the Schwinger distributions are related to the Wightman distributions through

SN(x1, . . . , xN) = (2π)−(N−1)(d+1)

∫ (
Πjd

d+1qj
)
e
∑
j(u0

jq
0
j+i~uj ·~qj)w̃N−1(q1, . . . , qN−1),

(2.53)
where uj = xj − xj+1 and j ∈ {1, . . . , N − 1}.

S4: (Reflection positivity) For any sequence
(
f(N)

)
N∈N

with f(N) ∈ S (RN
+ ):

k∑
M,N=0

SM̂+N(f̄(M) ⊗ f(N)) ≥ 0, (2.54)

where SM̂+N(x1, . . . , xM , y1, . . . , yN) = SM+N(x̂1, . . . , x̂M , y1, . . . , yN) with x̂m =
(−x0

m, ~xm).

S5: (Cluster property) For any Euclidean vector α ∈ Rd+1 the following holds:

lim
λ→∞

SN(x̂1, . . . , x̂n, xn+1 + λα, . . . , xN + λα) = Sn(x̂1, . . . , x̂n)SN−n(xn+1, . . . , xN).

(2.55)
The above properties are called Osterwalder–Schrader axioms and follow rather directly
from properties (W1-W5). As for property (W5) regarding the Wightman functions,
the validity of the cluster property for the Schwinger functions (S5) is equivalent to the
uniqueness of the vacuum. Moreover, one can derive the properties (W1-W4) directly from
the properties (W1-W4) and thus also the Schwinger functions allow to fully reconstruct
a quantum field theory in the sense of the Wightman axioms (A1-A6).

Owing to the permutation property (S2), the Schwinger distributions can be regarded
as correlation functions of commuting, hence classical, variables. This constitutes the
basis for the rich relationship between quantum field theory and classical statistical field
theory, see, for instance, ref. [94].

2.4 Free scalar quantum field theory
Here we construct a free neutral scalar quantum field theory from the physicist’s viewpoint,
similarly as was done in ref. [95]. Thus, the focus lies on the plain formulation of such
a theory rather than on the discussion of mathematical subtleties16. Nevertheless, the
pragmatic approach adopted here suffices to verify the fulfillment of the Wightman
axioms, as we will see right afterwards.
16The latter will be a central issue in chapter III, where the theory is generalized to curved space-times.
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Classical scalar field theory.
The starting point is a real scalar field φ(x) on Md,1. Under a general coordinate
transformation, i.e., a diffeomorphic transformation x→ x′, the transformed scalar field
φ′ evaluated in the new coordinates x′ retains its value at each point in space-time as
given by the original scalar field φ in the old coordinates x, and hence

φ(x)→ φ′(x′) = φ(x). (2.56)

As an example, let us consider the isometries Md,1. These are the transformations which
leave the line element ds =

√
ηµνdxµdxν invariant. It comprises space-time translations

xµ → x′µ = xµ + αµ, (2.57)

with α ∈ Md,1, and space-time rotations

xµ → x′µ = Λµ
νx

ν , (2.58)

where Λ is a matrix satisfying ΛµρΛν
ρ = ηµν . Note that there are (d + 2)(d + 1)/2

independent transformation parameters. Under these transformations, φ(x) transforms,
respectively, as

φ(x)→ φ(x′ − α) (2.59)

and
φ(x)→ φ(Λ−1 · x′), (2.60)

in agreement with eq. (2.56).
A quadratic classical action for a real scalar field φ(x), being invariant under isometries

of Md,1, is given by

S0 = −1

2

∫
dd+1x

[
(∂φ) · (∂φ) +m2φ2

]
, (2.61)

where m > 0 is the mass parameter. The application of the principle of least action,
δS0 = 0, leads to the Klein–Gordon equation

(−ηµν∂µ∂ν +m2)φ(x) = 0. (2.62)

This equation is known to pose a well-defined initial-value problem [96], which is a vital
requirement, since it ensures the existence and uniqueness (see section 3.1) of advanced
and retarded propagators, Green’s functions of eq. (2.62) fulfilling particular conditions.
We will introduce these functions later.

Let VC be the vector space of smooth complex scalar fields17 satisfying eq. (2.62).
With the purpose to write down the most general solution to eq. (2.62), one has to find
a complete, orthonormal set of modes. This would then allow to express any element
17Additionally, we require these scalar fields to fall off sufficiently fast at spatial infinity in order to make
the various integrals we introduce finite.
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ϕ ∈ VC in terms of these modes. However, the notion of orthonormality necessitates a
scalar product on VC, which will be introduced as follows. Assume ϕ1, ϕ2 ∈ VC. The
conserved current

Jµ(ϕ1, ϕ2) = −i [ϕ∗1(x)∂µϕ2(x)− ϕ2(x)∂µϕ
∗
1(x)] (2.63)

naturally defines an indefinite18, sesquilinear scalar product on VC:

(ϕ1, ϕ2) :=

∫
ddx J0(ϕ1, ϕ2) = i

∫
ddx [ϕ∗1(x)∂tϕ2(x)− ϕ2(x)∂tϕ

∗
1(x)] , (2.64)

where x0 = t. By construction, the scalar product is invariant under isometries of Md,1,
and also independent on t. Now consider the set {u~k} of complex solutions to eq. (2.62),
where

u~k(x) =
1√

2ω(2π)d
eix·k, (2.65)

with k = (ω,~k) ∈ Md,1 satisfying

ω =

√
~k 2 +m2. (2.66)

Clearly, u~k with negative ω would solve eq. (2.62) as well. However, here we insist on
the positivity of ω and instead include the set of complex conjugates {u∗~k}. Since

(u~k1
, u~k2

) = δ(d)(~k1 − ~k2),

(u∗~k1
, u∗~k2

) = −δ(d)(~k1 − ~k2),

(u~k1
, u∗~k2

) = 0,

(2.67)

the modes u~k, u
∗
~k
form an orthonormal basis for VC. Moreover, according to eq. (2.67),

VC has a decomposition into a direct sum V+⊕V− with, respectively, basis modes u~k and
u∗~k . On the vector space V+, the scalar product is positive definite, whereas on V− it is
negative definite. A question that one might ask is if, under a continuous transformation
of the isometry group of Md,1, the two vector spaces mix. It turns out that this does not
happen, as a consequence of the fact that the modes are eigenstates of the operator i∂t
appearing in eq. (2.64):

i∂tu~k = ωu~k , i∂tu
∗
~k

= −ωu∗~k , (2.68)

and no continuous transformation of the isometry group of Md,1 can reverse the sign19 of
t. As we will see later, the splitting of VC into positive frequency solutions20, spanned by
18In nonrelativistic quantum mechanics, the analogue is positive definite, hence J0 has the interpretation
of a probability density. Here such an interpretation is not possible, and thus eq. (2.62) has to be
considered a classical equation.

19This is easily checked by noting that the matrix Λ describing a continuous space-time rotation obeys
det(Λ) = 1 and Λ0

0 ≥ 1.
20This denomination has historical reasons, given the similarity of the eigenvalue equation with
Schrödinger’s equation.
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basis modes with positive eigenvalues of i∂t, and negative frequency solutions, spanned by
modes with negative eigenvalues of i∂t, is vital for a meaningful particle interpretation of
the theory, as is affects the definition of the vacuum state and, hence, the Hilbert space.
Here we are especially interested in the real solutions to eq. (2.62), i.e., in the space

V ⊂ VC of real scalar fields φ. The set {u~k, u∗~k} is still a basis of V, but with the
requirement that the possible linear combinations of the basis modes are constrained.
Indeed, the most general solution φ ∈ V, expressed in terms of the basis modes, reads

φ(x) =

∫
ddk[a~ku~k(x) + a∗~ku

∗
~k
(x)], (2.69)

where the coefficient functions a~k, a
∗
~k
are related by complex conjugation in order to

render φ a real scalar field.

Canonical quantization.
The system will be quantized in the canonical quantization scheme, which is one among
several possible quantization schemes. Other noteworthy quantization techniques, espe-
cially in the prospect of QFT in curved space-times, are the C∗ algebra approach and
the path integral approach.21 The former appears in the algebraic approach to QFT
mentioned in section 2.1 and is particularly well suited to the rigorous treatment of the
functional analysis ubiquitous in QFT. The latter is favorable in the quantization of
interacting fields. However, the canonical quantization scheme bears a plain simplicity, as
it resembles the standard quantization approach of nonrelativistic quantum mechanics.
To quantize the theory, we promote the classical scalar field φ(x) to an operator-

valued distribution acting on a Hilbert space, and impose the (equal time) canonical
commutation relations:

[φ(t, ~x1), π(t, ~x2)] =iδ(d)(~x1 − ~x2),

[φ(t, ~x1), φ(t, ~x2)] =[π(t, ~x1), π(t, ~x2)] = 0,
(2.70)

where the momentum operator π is the canonically conjugate variable to φ, that is,

π ≡ δS0

δ(∂tφ)
= ∂tφ. (2.71)

Consequently, also the coefficient functions a~k, a
∗
~k
appearing in eq. (2.69) are promoted

to operator-valued distributions a~k, a
†
~k
, and thus the expansion of the quantized scalar

field φ now reads22

φ(x) =

∫
ddk[a~ku~k(x) + a†~ku

∗
~k
(x)]. (2.72)

21Detailed treatments of C∗ algebras can be found in refs. [97, 98], and of path integrals in refs. [95, 74].
22The field is presented in the Heisenberg representation, where the operators representing observables
evolve in time and the states do not.
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Note that φ is selfadjoint. Plugging eq. (2.72) into eq. (2.70) yields

[a~k1
, a†~k2

] =δ(d)(~k1 − ~k2),

[a~k1
, a~k2

] =[a†~k1
, a†~k2

] = 0.
(2.73)

The Hilbert space.
The Hilbert space of the theory will be constructed explicitly by specifying the set of
eigenfunctions of the Hamilton operator. The Hamiltonian can be directly derived from
eq. (2.61) and is classically given by

H =

∫
ddx

1

2

[
π2 + (∂iφ)2 +m2φ2

]
. (2.74)

After quantization, one can express the Hamilton operator in terms of the operators
a~k, a

†
~k
:

H =

∫
ddk

ω

2

(
a†~ka~k + a~ka

†
~k

)
. (2.75)

It is then straightforward to compute the following commutation relations:

[H, a~k] = −ωa~k , [H, a†~k] = ωa†~k . (2.76)

These make it evident that, given an eigenstate of the Hamilton operator H with energy
E, the operators a~k, a

†
~k
will, respectively, lower and raise the energy E by ω. Since

the spectrum of the Hamilton operator is bounded from below by construction (see eq.
(2.74)), the existence of a state of minimum energy is guaranteed. This state is called
vacuum state |0〉 and it is, up to a phase, the unique state annihilated by all operators
a~k.
The similarity of eq. (2.76) with eq. (2.68) is not accidental. In fact, by virtue of (cf.

eq. (2.4))
i∂tφ = [φ,H], (2.77)

the Hamilton operator H is related to the generator of space-time translations in the
field representation i∂t. Furthermore, from

a~k i
∂

∂t
u~k(x) = [a~k, H]u~k(x), a†~k i

∂

∂t
u∗~k(x) = [a†~k, H]u∗~k(x), (2.78)

it is obvious that positive and negative frequency modes u~k and u∗~k are identified,
respectively, with the annihilation operators a~k and the creation operators a†~k. More
precisely, as long as u~k is a positive frequency mode, a~k is an annihilation operator,
and, analogously, as long as u∗~k is a negative frequency mode, a†~k is a creation operator.
Furthermore, recall that the corresponding subspaces V+ and V− are invariant under
continuous transformations of the isometry group of Md,1. This ensures that the vacuum
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|0〉, defined as the state annihilated by all annihilation operators, is unaffected from such
transformations. This invariance of the vacuum has two important physical implications.
First, the vacuum is independent of the (inertial) observer23. Second, the vacuum does
not evolve in time. A more detailed discussion will be given in chapter III.
Let us proceed by computing the energy of the vacuum state:

H|0〉 =
1

2

∫
ddk ω δ(0)(0) |0〉. (2.79)

The above formula reveals the problem that the energy of the vacuum state is infinite. One
might be worried about the factor δ(0)(0). However, performing the identical calculation
on a space of finite volume Ld gives

1

2

∫
ddk ω δ(0)(0)→ 1

2

(
L

2π

)d∑
~k

ω , (2.80)

which is still divergent. Hence, the problem lies in the high frequencies, or, equivalently,
in the short distances. Indeed, the divergence appears as a consequence of the fact that,
being the Hamilton operator defined as a product of distributions at incident points, its
definition in eq. (2.74) is faulty (cf. discussion in section 2.2). Luckily, this problem is
easily circumvented by considering :H: instead, where the double-dots denote the normal
ordering operation, i.e., the prescription of moving all operators a†~k on the left of all
operators a~k for each term enclosed in the double-dots. This leads to

H ≡ :H:=

∫
ddk ω a†~ka~k , (2.81)

effectively corresponding to a rescaling of the energy, even by an infinite amount, without
affecting observable quantities. Indeed, now the energy of the vacuum state results, as
expected, in H|0〉 = 0.

Starting from the vacuum state |0〉, which has the interpretation of a state containing
no particles, one can construct one-particle states via

|1~k〉 = a†1~k
|0〉. (2.82)

The denomination of the latter as one-particle states is not casual. Indeed, we interpret
the state |1~k〉 as the state describing the presence of one particle with momentum ~k.
Bearing in mind that the vacuum is, up to a phase, invariant under the isometry group
of Md,1, this interpretation is valid at each instant and in every inertial frame. Requiring
〈0|0〉 = 1, the one-particle states satisfy the normalization property

〈1 ~k1
|1 ~k2
〉 = δ(d)(~k1 − ~k2). (2.83)

23A noninertial observer would observe particles where an inertial observer would observe none. For
example, the vacuum for a uniformly accelerating observer in empty space is seen as a thermal bath of
nonvanishing temperature (Unruh effect), see ref. [19].
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Since these form a complete set of eigenstates of the Hamilton operator H, they form
a basis of the one-particle Hilbert space H1. Therefore, any state |f〉 ∈ H1 can be
expanded as

|f〉 =

∫
ddk√

2ω(2π)d
f(~k)|1~k〉. (2.84)

This makes the inner product on H1 explicit:

〈g|f〉 =

∫
ddk

2ω(2π)d
g∗(~k)f(~k), (2.85)

where also |g〉 ∈ H1. We deduce that H1 = L2(Rd, ddk/2ω(2π)d), i.e., H1 is the
(separable) space of square-integrable functions24 over Rd. In particular, note that the
measure in eq. (2.85) is invariant under transformations of the subgroup L0 ∈ P , since

dd+1k

(2π)d
δ(kµ

2

+m2)θ(ω) =
ddk

2ω(2π)d
, (2.86)

where θ denotes the Heaviside step function. In addition to the one-particle states, let us
introduce many-particles states

|1~k1
, 1~k2

, . . . , 1~kj〉 = a†~k1
a†~k2
· · · a†~kj |0〉, (2.87)

which, in fact, contain one-particle states along with the vacuum state |0〉. If any a†~k
appears multiple times, then we set

|(n1)~k1
, (n2)~k2

, . . . , (nj)~kj〉 =
1√

n1!n2! · · ·nj!
(a†~k1

)n1(a†~k2
)n2 · · · (a†~kj)

nj |0〉, (2.88)

in agreement to the Bose statistics of identical scalar particles. These multi-particles
states also satisfy some normalization property:

〈(n′1)~k′1
, (n′2)~k′2

, . . . , (n′i)~k′i
|(n1)~k1

, (n2)~k2
, . . . , (nj)~kj〉

= δij
∑
σ∈Sj

δn′1nσ(1)
· · · δn′jnσ(j)

δ(d)(~k′1 − ~kσ(1)) · · · δ(d)(~k′j − ~kσ(j)).
(2.89)

Furthermore, it follows that

a†~kl
|(n1)~k1

, . . . , (nl−1)~kl−1
, (nl)~kl , (nl+1)~kl+1

, . . . , (nj)~kj〉

=
√
nl + 1|(n1)~k1

, . . . , (nl−1)~kl−1
, (nl + 1)~kl , (nl+1)~kl+1

, . . . , (nj)~kj〉,
(2.90)

24More precisely, one needs to define equivalence classes; two square integrable functions are equivalent
if they only differ on a set of measure zero.
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and

a~kl |(n1)~k1
, . . . , (nl−1)~kl−1

, (nl)~kl , (nl+1)~kl+1
, . . . , (nj)~kj〉

= δ(d)(0)
√
nl|(n1)~k1

, . . . , (nl−1)~kl−1
, (nl − 1)~kl , (nl+1)~kl+1

, . . . , (nj)~kj〉.
(2.91)

Note that the case nl = 0 is not excluded in the above formulæ. The operator N~k := a†~ka~k
acts on multiple-particles states in the following way:

N~k|(n1)~k1
, . . . , (nj)~kj〉 =

j∑
i=1

δ(d)(~k − ~ki)ni|(n1)~k1
, . . . , (nj)~kj〉, (2.92)

and therefore, the so-called number operator

Ntot =

∫
ddkN~k (2.93)

counts the total number of particles in a state |(n1)~k1
, . . . , (nj)~kj〉. Analogously to the

one-particle states being a basis for H1, the states in eq. (2.88) form a basis of another
Hilbert space, the Fock space F , defined as the Hilbert space completion of

∞⊕
n=0

S
(
H ⊗n

1

)
≡ C⊕H1 ⊕ S (H1 ⊗H1)⊕ S (H1 ⊗H1 ⊗H1)⊕ . . . , (2.94)

where the operator S symmetrizes each tensor product H ⊗n
1 . This space is again

separable, since one considers only states with finite particle content.

Symmetries.
Let us introduce the classical stress-tensor:

Tµν = (∂µφ)(∂νφ)− 1

2
ηµνη

κρ(∂κφ)(∂ρφ)− 1

2
m2ηµνφ

2, (2.95)

which is the Noether current [81] associated to the invariance of S0 under space-time
translations. It determines the charges

Pµ := −
∫

ddx T0µ, (2.96)

with
T00 =

1

2

[
(∂tφ)2 + (~∇φ)2 +m2φ2

]
, T0i = (∂tφ)(∂iφ), (2.97)

where i = 1, . . . , d. All these charges are conserved in the sense that ∂tP µ = 0, and
the charge P 0 agrees with the Hamiltonian H defined in eq. (2.74). Recall that, when
considering the quantized charges, normal ordering is required.
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Due to its implications, let us stress that H being a conserved charge confirms what
stated earlier, that is, the vacuum does not evolve in time. In fact, since H is a conserved
charge, the energy of each eigenstate of H is conserved for all values of t. Hence, being
|0〉, up to a phase, the unique eigenstate of H of lowest energy, it does not change in
time.
Expressing the d+ 1 charges in terms of the operators a~k, a

†
~k
gives

H =

∫
ddk ω a†~ka~k ,

~P =

∫
ddk ~k a†~ka~k . (2.98)

This makes it clear that ~P corresponds to the momentum operator, as expected. By
construction, the operators a~k, a

†
~k
act on the Fock space F , and consequently also the

Hamilton- and momentum operators given in eq. (2.98) do. The latter operators are
selfadjoint, and therefore define unitary operators Ut = e−iHt and U~x = ei~P ·~x. As we will
see later, the operators H and ~P correspond to the generators of the subgroup T ⊂ P .
Analogously to P µ in eq. (2.96), the charges Jµν , determined by the Noether current
associated to the invariance of S0 under space-time rotations, can be found:

Jµν = −
∫

ddx (xµT0ν − xνT0µ) . (2.99)

These d(d+ 1)/2 conserved charges, expressed in terms of a~k, a
†
~k
, read

J ij = i

∫
ddk a†~k

(
kj

∂

∂ki
− ki ∂

∂kj

)
a~k ,

J i0 = i

∫
ddk a†~k

(
ω
∂

∂ki
+
ki

2ω

)
a~k .

(2.100)

Again, they are selfadjoint, and hence define themselves a unitary operator UΩ =
e−

i
2

ΩµνJµν , where Ω is a real antisymmetric matrix in d+ 1 dimensions.
By Stone’s theorem, the unitary operators defined via the selfadjoint operators P µ, Jµν

are unitary representations of some Lie group, which is easily revealed by its Lie algebra.
Indeed, the commutation relations

[P µ, P ν ] = 0,

[Jµν , P λ] = i
(
ηµλP ν − ηνλP µ

)
,

[Jµν , Jλρ] = i
(
ηµλJνρ − ηνλJµρ − ηµρJνλ + ηνρJµλ

)
,

(2.101)

describe the Lie algebra of the Poincaré group. So we conclude that we found all
(d+ 2)(d+ 1)/2 generators of P , and P µ generate the group T of space-time translations
whereas Jµν generate the Lorentz group L of space-time rotations.
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The propagators.
The inhomogeneous Klein–Gordon equation, that is, eq. (2.62) altered by a smooth
source term j(x) inserted on the right hand side:

(−ηµν∂µ∂ν +m2)φ(x) = j(x), (2.102)

remains a well-posed initial value problem. With the aid of Green’s function, defined via(
−ηµν ∂

∂xµ
∂

∂xν
+m2

)
G(x, y;m) = δ(d+1)(x− y), (2.103)

solutions to eq. (2.102) are generated by

φ(x) = φh(x) +

∫
dd+1y G(x, y;m)j(y). (2.104)

The field φh(x) is required to obey the homogeneous Klein–Gordon equation given by
eq. (2.62) and is chosen such that φ(x) satisfies the initial conditions. Most frequently,
under a general coordinate transformation x→ x′, y → y′, Green’s function G(x, y;m)
is assumed to transform as G(x, y;m) → G′(x′, y′;m) = G(x, y;m), in analogy to the
transformation property of the scalar field. This assumption makes eq. (2.103) invariant
under the isometry group of Md,1 and further constrains the relationship between x and y
in the dependence of G(x, y;m). For instance, space-time translation symmetry restricts
the dependence to the difference vector x − y. The strategy adopted here to solve eq.
(2.103) is by Fourier transforming Green’s function:

G(x− y;m) =
1

(2π)d+1

∫
dd+1p G̃(p;m)ei(x−y)·p, (2.105)

which simplifies eq. (2.103) to

G̃(p;m)(pµ
2

+m2) = 1. (2.106)

This equation can be resolved for G̃(p;m):

G̃±(p;m) =
−1

(p0 ± iδ)2 − ~p 2 −m2
, (2.107)

where δ > 0 is a small parameter coping with the zeros of the expression pµ2
+m2. The

effect of δ can be seen on

G±(x− y;m) = − 1

(2π)d+1

∫
dd+1p

ei(x−y)·p

(p0 ± iδ)2 − ~p 2 −m2
, (2.108)
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where the integral over p0 can be carried out using the contour integration method.
Hence, δ is equivalent to a slight deformation of the contour in order to avoid the poles
of the integrand. This leads to

G±(x− y;m) = ±iθ(±(x0 − y0))

∫
ddp

2ω~p(2π)d
[
ei(x−y)·p − e−i(x−y)·p] , (2.109)

where now p = (ω~p, ~p) with ω~p = (~p 2 + m2)1/2. The Green’s functions G+(x − y;m)
and G−(x− y;m) are called, respectively, advanced and retarded propagator, having the
property that G+(x−y;m) vanishes for x0 > 0 and G−(x−y;m) for x0 < 0. Furthermore,
both vanish for space-like distances between x and y.
The choice of the integration contour is clearly not restricted to those two cases. For

example, another choice is given by

GF (x− y;m) = − 1

(2π)d+1

∫
dd+1p

ei(x−y)·p

(p0)2 − ~p 2 −m2 + iδ

= iθ(x0 − y0)

∫
ddp

2ω~p(2π)d
ei(x−y)·p + iθ(−x0 + y0))

∫
ddp

2ω~p(2π)d
e−i(x−y)·p,

(2.110)

with the same p as above. This Green’s function, called Feynman propagator, is expo-
nentially falling off for space-like distances. Nevertheless, no matter how the contour is
chosen, all propagators differ at most by a contribution corresponding to a solution to eq.
(2.62).

Green’s functions naturally appear in quantum field theory. An example is given by
the field commutator at different space-time points x, y ∈ Md,1:

[φ(x), φ(y)] =

∫
ddk

2ω(2π)d
[
ei(x−y)·k − e−i(x−y)·k] , (2.111)

which can be expressed in terms of G±(x− y):

[φ(x), φ(y)] = −i [G+(x− y;m)−G−(x− y;m)] . (2.112)

The Wightman axioms.
Now we have all the ingredients necessary to a quantum field theory; a Hilbert space F
being the module of a unitary representation of the Poincaré group P , and a self-adjoint
operator-valued distribution φ(x) over Md,1. The Wightman axioms will be verified one
by one:

• Applying P µ on some basis vector of F yields

P µ|(n1)~k1
, . . . , (nj)~kj〉 =

j∑
i=1

nik
µ
i |(n1)~k1

, . . . , (nj)~kj〉, (2.113)
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where each kµi satisfies kµ
2

i = −m2 ≤ 0, k0
i ≥ 0. In accordance with the spectrum

condition (A1), the spectrum of P µ is confined to the forward cone C+. This follows
from

∑j
i=1 nik

0
i ≥ 0 and

− (

j∑
i=1

nik
0
i )

2 + (

j∑
i=1

ni~ki)
2 ≤ −(

j−1∑
i=1

nik
0
i )

2 + (

j−1∑
i=1

ni~ki)
2 ≤ · · · ≤ 0. (2.114)

In eq. (2.114) we repeatedly used the fact that one can always choose a coordinate
system such that ~kj = 0, k0

i = m2 ≥ 0.

• Being φ(x) defined via the operators a~k, a
†
~k
, its domain is the space spanned by the

basis vectors |(n1)~k1
, . . . , (nj)~kj〉. This space is, by construction, a dense subspace

of F which is clearly invariant under P and φ(x) itself. This confirms the domain
condition (A2).

• As the vacuum condition (A3) requires, the only state in F invariant under T is
indeed |0〉. The vacuum state is also invariant under L.

• The completeness condition (A4) is fulfilled, since the set all φ(f1) · · ·φ(fN)|0〉
simply corresponds to a basis of F in position space.

• For space-time translations, the covariance condition (A5) follows directly from the
action of the unitary representations of P on φ(x). For the subgroup T one gets

Utφ(t, ~x)U−t = φ(0, ~x), U~xφ(t, ~x)U−~x = φ(t, 0), (2.115)

and for the subgroup L the result is

UΩφ(x)U−Ω = φ(Λµ
νx

ν), (2.116)

where

Λµ
ν = e

− i
2

Ωαβ i

(
ηαµδ

β
ν−δ

α
ν η
βµ
)
. (2.117)

Since ΛµρΛν
ρ = ηµν , the matrix Λµ

ν is indeed an element of L in the vector
representation.

• If (x − y) is space-like, it is possible to find an element in L0 that transforms
(x − y) to −(x − y). By transforming only the second term in eq. (2.111), the
field commutator [φ(x), φ(y)] vanishes identically, and hence the microcausality
condition (A6) is fulfilled. Note that, for time-like (x − y), that is, for (x − y)
satisfying (x− y)µ

2
< 0, there is no such continuous Lorentz transformation, and

the commutator does not vanish.

We thus infer that the quantum field theory of a free neutral scalar field satisfies all
the Wightman axioms. More sophisticated quantum field theories in flat space-time are
expected to satisfy the axioms as well, even though the direct verification is commonly a
highly arduous task.
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Generalized free fields.
We conclude this section by mentioning the existence of a particular class of QFTs whose
field commutators yield numerical distributions like in the case of a free field theory (see
eq. (2.111)). As distinct to the latter, these fields are not necessarily solutions to a linear
equation of motion. First introduced by Greenberg [65], the so-called generalized free
fields are equivalently characterized by correlation functions all factorizing into two-point
functions. Another characterization can be indicated with the aid of the Källén–Lehmann
representation. Specifically, let us rewrite the two-point function of any (also interacting)
scalar QFT as [81]

〈Ω|φ(x)φ(y)|Ω〉 =

∫ ∞
0

dM2 ρ(M2)GF (x− y;M) for x0 > y0, (2.118)

where GF (x− y;M) is the Feynman propagator of a free scalar field of mass M , see eq.
(2.110), and ρ(M2) is a positive spectral density function. Then, a sufficient condition
for a field to be generalized free is that its two-point function has support within a finite
interval of masses [99].

Generalized free fields appear in various contexts; in O(N)- or U(N)-symmetric theories
they appear in the large N limit [100]. Also restricting a free scalar field of mass m on a
time-like hypersurface, as, for instance, the one defined by xd = 0, leads to a generalized
free field. The resulting spectral density is given by ρ(M2) = 1/

√
M2 −m2, supported

at M2 ≥ m2. Since this corresponds to a continuous superposition of masses in the
Källén–Lehmann representation, the theory does not admit a description in terms of
associated particles. Therefore, no associated Lagrangian and no (canonical) stress tensor
can be found [101]. Nevertheless, as long as the two-point function of the generalized
free field theory satisfies the properties (W1-W5), the Hilbert space and the field is
obtained uniquely from the Wightman reconstruction theorem discussed in section 2.2.
This exemplifies a Wightman theory where the identification between field and particle
breaks down.

Generalized free fields emerge in the context of the AdS/CFT correspondence as well.
As we will see in section 5.3, they describe the boundary dual of a free scalar field in
anti–de Sitter space-time. An exhaustive discussion of generalized free fields, also in
connection to the AdS/CFT correspondence, can be found in ref. [101].
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III QFT in curved space-times

As it was explicitly displayed in section 2.4, the formulation of a quantum field theory is
based on the following main ingredients:

• An equation of motion of the classical theory, specified for example via the classical
action, and its solution space.

• A quantization procedure, such as the canonical procedure or the path integral
approach.

• The characterization of the Hilbert space.

• The interpretation of the states and of the observables.

It turns out that, independently of the shape of the manifold the quantum field theory is
defined on, these ingredients are essential for the construction and the comprehension of
a quantum field theory. With section 2.4 as a guideline, the free neutral scalar quantum
field theory will be generalized to curved space-times, paying particular attention to the
above ingredients. We will however focus on a particular class of space-times, which
include many physically interesting curved space-times as well as Md,1. Eventually, we
discuss the generalization of the Wightman axioms on this class of space-times.

3.1 Free scalar quantum field theory
In the framework of General Relativity, space-times are represented by pseudo-Riemannian
manifolds. These are differentiable manifolds, each endowed with a nondegenerate,
symmetric metric. A differential structure allows to define differentiable functions and
differentiable curves on the manifold. In particular, each differentiable curve through a
point on the manifold defines the directional derivative df/ds of smooth functions f at
that point, where s is the parameter along the curve. This naturally induces a vector
bundle whose space of sections are tangent spaces; at each point of the manifold, one
can attach a tangent space, defined as the space of directional derivatives of all curves
passing through that point. Thus, by the chain rule, a basis of each tangent space is
given by the set of partial derivatives with respect to the local coordinates. For a detailed
discussion of these concepts, we refer to refs. [102, 103].

In the following, let Md,1 be a pseudo-Riemannian manifold in d+ 1 dimensions, where
the associated metric gµν presents the same signature as the metric ηµν of Md,1. Such
manifolds are called Lorentzian. In other words, at each point p ∈ Md,1, the tangent space
is actually given by Md,1. Clearly, the flat space-time Md,1 itself is a (d+ 1)-dimensional
Lorentzian manifold. Furthermore, in order to avoid complications concerning calculus,
let us assume that Md,1 has a smooth structure and a smooth metric.
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Classical scalar field theory.
It is relatively simple to generalize the classical equation of motion to a (smooth)
pseudo-Riemannian manifold Md,1 in a local and covariant way. Driven by the general
covariance principle, which in plain terms states that there is no preferred coordinate
system, the generalization of eq. (2.61) to Md,1 is required to be invariant under general
coordinate transformations. Therefore, for a real scalar field φ(x) on Md,1 transforming
as φ(x)→ φ′(x′) = φ(x) under a general coordinate transformation x→ x′, the quadratic
classical action reads1

S0 = −1

2

∫
dd+1x

√
−g
[
gµν(∇µφ)(∇νφ) +m2φ2

]
, (3.1)

where g is the determinant of gµν and ∇µ is any affine connection on Md,1. For the
sake of simplicity, we take ∇µ to be the Levi-Civita connection, which is the unique
connection being both metric compatible2 and torsion free3. In particular, the Levi-Civita
connection can be expressed in terms of solely partial derivatives, plus the metric and
partial derivatives thereof [102].

It is worth to mention that the above action was specified with respect to some coordi-
nate system, but the choice of coordinates is by no means distinguished. Furthermore, on
general manifolds Md,1, several coordinate patches with associated gµν may be required
to cover the entire manifold.
Setting the variation of the action (3.1) with respect to φ equal to zero yields

(−� +m2)φ(x) = 0, (3.2)

where � := gµν∇µ∇ν is given by the known formula

� =
1√
−g

∂µ
√
−g gµν∂ν . (3.3)

Unfortunately, the existence and uniqueness properties of the solution to eq. (3.2) are
not unconditionally given on Md,1. In order to have a well-posed initial value formulation,
as this is the case in Md,1, we set some conditions4 on Md,1:

• First we restrict attention to time-orientable manifolds. At each point p ∈ Md,1,
two time-like vectors Xµ, Y µ are said to be equivalent if gµνXµY ν < 0. This is

1Note that, while it is simple to formulate an action invariant under general coordinate transformations,
this does not render the theory invariant under diffeomorphisms (as General Relativity is). The former
transformations are passive transformations, and the metric is transformed accordingly to keep distances
between points equal. The latter are considered active transformations, moving points on the manifold.
This consequently alters the distances between these points.

2∇σ gµν = 0
3Xµ∇µY ν − Y µ∇µXν = Xµ∂µY

ν − Y µ∂µXν for any vector fields Xµ, Y µ on Md,1
4Nevertheless, there exist generalizations of quantum field theories to space-times not admitting well-
posed initial value problems, see, for instance, ref. [104].
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indeed an equivalence relation defining two equivalence classes, whose vectors are,
respectively, referred to with future- and past-directed. Which of the two classes is
identified with future-directed vectors is arbitrary. By definition, a time-orientable
manifold is a manifold where a continuous designation of future- and past-directed
time-like vectors can be made on the whole space-time.

• Second, we consider manifolds which admit a Cauchy surface. Specifically, take a
closed set Σ ⊂ Md,1 which is achronal, i.e., no pair of points in p, q ∈ Md,1 can be
joined by a time-like curve. The domain of dependence is defined as follows:

D(Σ) = {p ∈ Md,1 : every inextensible causal curve through p intersects Σ},

where inextensible curves do not possess endpoints and causal curves have time- or
null-like tangent vectors. If D(Σ) = Md,1, then Σ is said to be a Cauchy surface of
Md,1.

A manifold Md,1 satisfying both requirements is called globally hyperbolic. Now we are
able to formulate a well-defined initial-value problem for eq. (2.62) making use of the
following theorem [103]:

Given a linear, hyperbolic partial differential equation of n-th order for φ(x) on a globally
hyperbolic manifold Md,1, and a set of arbitrary smooth initial data {(nµ∇µ)kφ|Σ : k =
0, . . . , n − 1} defined on a smooth Cauchy surface Σ of Md,1, where nµ denotes the
future-directed time-like unit vector normal to Σ. Then, there exists a unique solution
φ(x) throughout Md,1. Moreover, a change of the initial data on any closed set Σ′ ⊂ Σ
only influences the solution φ(x) on D(Σ′). In addition, φ(x) is smooth and depends
continuously5 on the initial data.

As eq. (2.62) is a hyperbolic partial differential equation of second order, it poses a
well-defined initial-value problem if supplied with φ|Σ and nµ∇µφ|Σ. Furthermore, the
above theorem continues to hold if eq. (2.62) is altered by a smooth source term j(x)
inserted on the right hand side. This ensures the existence and uniqueness of advanced
and retarded propagators.

In what follows, let us restrict our analysis to a globally hyperbolic manifold Md,1, and
let Σ be a Cauchy surface of Md,1 with the future-directed time-like unit vector normal
nµ. We want to keep things related as closely as possible to section 2.4. Hence, we would
now introduce a complete, orthonormal set of modes allowing us to expand the most
general solution to eq. (3.2), and afterwards quantize the theory by interpreting the
coefficient functions as operators. Let us see where this procedure could possibly break
down.

5with a suitable Sobolev space topology [96]
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A scalar product on VC, the vector space of smooth complex scalar fields6 satisfying eq.
(3.2), can again be defined via the conserved current in eq. (2.63), this time expressed in
a covariant form:

Jµ(ϕ1, ϕ2) = −i
[
ϕ∗1(x)∇µϕ2(x)− ϕ2(x)∇µϕ

∗
1(x)

]
, (3.4)

with ϕ1, ϕ2 ∈ VC. This leads to the invariant, indefinite, sesquilinear scalar product

(ϕ1, ϕ2)Σ = i

∫
Σ

ddx
√
|h| nµ

[
ϕ∗1(x)∇µϕ2(x)− ϕ2(x)∇µϕ

∗
1(x)

]
, (3.5)

where h is the determinant of the induced metric on Σ:

hµν = gµν + nµnν . (3.6)

It might appear that eq. (3.5) is dependent on Σ. However, this is not the case as can
be seen as follows. Let Σ1 and Σ2 be two different, nonintersecting Cauchy surfaces. If
V is the (d+ 1)-dimensional hypervolume bounded by Σ1 and Σ2, one finds

(ϕ1, ϕ2)Σ2 − (ϕ1, ϕ2)Σ1 = i

∮
∂V

ddx
√
|h| nµ

[
ϕ∗1(x)∇µϕ2(x)− ϕ2(x)∇µϕ

∗
1(x)

]
. (3.7)

Eventually, the application of Gauss’s law yields

(ϕ1, ϕ2)Σ2 − (ϕ1, ϕ2)Σ1 = i

∫
V

dd+1x
√
−g ∇µ

[
ϕ∗1(x)∇µϕ2(x)− ϕ2(x)∇µϕ

∗
1(x)

]
, (3.8)

which, as expected, vanishes due to ϕ1 and ϕ2 being solutions of the Klein–Gordon
equation.
Because of global hyperbolicity of Md,1, it is always possible to find a set {uλ, u∗λ} of

complex solutions to eq. (3.2) and corresponding complex conjugates, satisfying

(uλ1 , uλ2)Σ = δλ1λ2 ,

(u∗λ1
, u∗λ2

)Σ = −δλ1λ2 ,

(uλ1 , u
∗
λ2

)Σ = 0,

(3.9)

where λ might denote a discrete or continuous index, but for the moment we adopt the
notation pertinent to the discrete case. If the set {uλ, u∗λ} is complete, it forms a basis of
VC, and any real scalar field φ ∈ V ⊂ VC can be expanded as

φ(x) =
∑
λ

[aλuλ(x) + a∗λu
∗
λ(x)] . (3.10)

Furthermore, VC has a decomposition into a direct sum V+ ⊕ V− with, respectively,
basis modes uλ and u∗λ . So far, so good. Though, a main issue arises here. As done in
6If Σ is noncompact, then we require these scalar fields to fall off sufficiently fast at spatial infinity.
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flat space-time, we would like to interpret V+ as the vector space of positive frequency
solutions and V− as the vector space of negative frequency solutions, such that these
vector spaces are invariant under general coordinate transformations. However, contrary
to flat space-time, on Md,1 a generic notion for positive/negative frequency solutions
does not even exist. For instance, one might be tempted to search for eigenstates of the
operator inµ∇µ appearing in eq. (3.5), which effectively amounts to declare nµ as the
direction of time. This is, in principle, allowed. But, owing to the general covariance
principle, in Md,1 no preferred time direction exists at all, and a different choice of the
direction of time would give rise to a different splitting of VC.
So how could this riddle possibly be solved? Actually, for general space-times, this

turns out to be a hard task, see ref. [105]. We might scale down our expectations and
ask that, at least, there is a splitting of VC which is preserved during time evolution. As
we have seen in section 2.4, this is tantamount to requiring that the Hamiltonian H is
a conserved charge, which was itself a consequence of the action being invariant under
time translations as part of the isometry group of Md,1. On general space-times Md,1, the
action is invariant under general coordinate transformations. These are described by
an infinite-dimensional Lie group, but surely one does not expect an infinite number of
conserved charges. In fact, even if on Md,1 the classical stress-tensor

Tµν = (∇µφ)(∇νφ)− 1

2
gµνg

σρ(∇σφ)(∇ρφ)− 1

2
m2gµνφ

2 (3.11)

is a well defined conserved current, i.e., ∇µT
µν = 0, a charge is only conserved if it is

independent of the choice of the Cauchy surface Σ it is integrated over. Surely, one could
construct currents KµTµν , associated to any vector field K ≡ Kµ∂µ, whose charge

QK := −
∫

Σ

ddx
√
|h| KµnνTµν (3.12)

is manifestly covariant. However, QK is not conserved unless KµTµν is conserved, or
equivalently, unless7

∇µKν +∇νKµ = 0. (3.13)

Vector fields satisfying eq. (3.13) are called Killing vector fields. Another equipollent
characterization is the following. The Lie derivative L of the metric gµν along a Killing
vector field Kµ vanishes [102], that is,

LKgµν ≡ Kσ∂σgµν + gσν∂µK
σ + gµσ∂νK

σ = 0, (3.14)

where K = Kµ∂µ. The isometry group of Md,1 can therefore be found by identifying all
its Killing vector fields Kµ.

7This is again shown by subtracting QK integrated over Σ1 with QK integrated over Σ2 and using
Gauss’s law.
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A space-time Md,1 having a global, nonvanishing, time-like Killing vector field Kµ

t is
called stationary. Thus, stationary symmetry allows to pick a preferred time direction,
given by the time-like Killing vector field. Furthermore, such a Kt ≡ K

µ

t ∂µ commutes
with the Klein-Gordon operator −� +m2, and is anti-hermitian8:

(ϕ1, Ktϕ2) = (−Ktϕ1, ϕ2). (3.15)

From the last formula, it follows that the eigenvalues of iKt are real.
Now, take a complete orthonormal set of eigenstates of iKt with positive eigenvalues,

i.e., {uλ} with
iLKtuλ ≡ iKtuλ = Ωuλ, Ω > 0, (3.16)

and (uλ1 , uλ2)Σ = δλ1λ2 . Then, the corresponding complex conjugates satisfy iKtu
∗
λ =

−Ωu∗λ. Furthemore, elements of the joint set {uλ, u∗λ} obey again eq. (3.9). This is exactly
what we were searching for; the vector space VC can be decomposed into a vector space
of positive frequency solutions V+ and a vector space of negative frequency solutions
V−. Moreover, a transformation generated by the time-like Killing vector field Kµ

t is
an isometry of Md,1, and its associated conserved charge QKt is the Hamiltonian. Thus,
the splitting of VC is unaffected by transformations generated by Kt, and consequently
neither the vacuum and the Hilbert space are. However, note that different observers will
in general see different vacua, the physical implications thereof will be discussed below.

Canonical quantization.
In order to quantize the system, a decomposition of Md,1 in space-like hypersurfaces is
needed. Such a space-time foliation can be carried out by requiring that each space-like
hypersurface is a level set of a regular9 scalar field. By regularity of the scalar field, the
hypersurfaces do not intersect. The existence of such a scalar field is ascertained by the
following theorem [96]:

Let Md,1 be a globally hyperbolic manifold. Then, a global time function, i.e., a differen-
tiable function T (x) on Md,1 such that ∇µT (x) is a past-directed time-like vector field10,
can be chosen such that each surface of constant T (x) is a Cauchy surface. Thus, Md,1

can be foliated by Cauchy surfaces and the topology of Md,1 is Σ×R, where Σ corresponds
to a Cauchy surface.

Let us pick some foliation and label each Cauchy surface by Στ , where τ is the (constant)
value of the global time function T (x) on that Cauchy surface. To each Στ , the corre-
sponding normal unit vectors nµ|Στ are related to T (x) by the formula nµ = −N∇µ T (x),
with a normalization factor N > 0 called lapse function.

8These two properties are most easily checked by choosing a coordinate system in which K
µ

t = (1,~0).
9i.e., with nonvanishing gradient
10Therefore, the scalar field T (x) increases towards the future.
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The system will be quantized in the canonical quantization scheme with respect to
the chosen foliation. But, first of all, we have to specify the direction of time. Even for
stationary space-times, where a preferred time direction is available, the time-like Killing
vector Kµ

t does not necessarily have to be parallel to nµ. If it is possible to find a foliation
such that this is indeed the case, then the space-time is called static. Anyway, let us
proceed without further assumptions on the space-time other than global hyperbolicity.
The ADM formalism [106] provides a generic and covariant formulation of the time

direction, and is shortly presented here. Let us perform a global coordinate transformation
xµ(t, ~y) such that:

• (xτ )
µ := xµ(τ, ~y) describes an embedding of Στ in Md,1.

• (xy0)µ := xµ(t, ~y0) connects points on different Στ having the same spatial value ~y0.

• tµ := ∂(xy)
µ/∂t obeys tµ∇µT (x) = 1.

We choose the time-evolution vector field tµ as our preferred direction of time. The
constraint it is subject to can be explained as follows. Consider a point on the Cauchy
surface Στ with coordinates xµ. By definition, the global time function satisfies T (x) = τ .
Further, consider a displacement of the point by the infinitesimal vector tµdτ . Requiring
that xµ + tµdτ lies in the neighboring Cauchy surface Στ+dτ , leads to

T (xµ + tµdτ) = T (x) + tµdτ∇µT (x) ≡ τ + dτ, (3.17)

and therefore to tµ∇µT (x) = 1 as appointed above. As a result, the time-evolution vector
can be decomposed as

tµ = Nnµ +Nµ , (3.18)

where the shift vector field Nµ is tangential to Στ and parametrizes the freedom in the
choice of tµ.

Now that the time direction is introduced, the subsequent step is about the formulation
of the canonical commutation relations. To this aim, let us compute the canonical
momentum π. By the chain rule, it follows that

dxµ = tµdt+ e
µ

i dyi, (3.19)

where eµi := ∂xµ/∂yi with i ∈ {1, . . . , d} is a vector field tangent to the Cauchy surfaces
Στ . Hence, the squared line element can be expressed in terms of the new coordinates
(t, ~y), resulting in

ds2 = gµνdx
µdxν = (NiN

i −N2)dt2 + 2Nidtdy
i + hijdy

idyj. (3.20)

The quantities hµν and Nµ have simply been transformed in the new coordinates, i.e.,

hij = hµνe
µ

i e
ν
j ≡ gµνe

µ

i e
ν
j , hijN

j = Ni = Nµe
µ

i . (3.21)
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By virtue of eqs. (3.6,3.18,3.19), the action in eq. (3.1) can then be rewritten as

S0 = −
∫

dt

2

∫
ddy N

√
|h|
[
− 1

N2

(
∂tφ−N i∇iφ

)2
+ hij (∇iφ) (∇jφ) +m2φ2

]
, (3.22)

where we have used |g| = N2|h|, with h being the determinant of hij, and

tµ∇µφ(t, ~y) = ∂tφ(t, ~y). (3.23)

Eventually, the computation of the canonically conjugate variable to φ is possible:

π ≡ δS0

δ (∂tφ)
=
√
|h| nµ∇µφ. (3.24)

In the coordinate system with coordinates (t, ~y), the (equal time) canonical commutation
relations take exactly the same form as in eq. (2.70):

[φ(t, ~y1), π(t, ~y2)] =iδ(d)(~y1 − ~y2),

[φ(t, ~y1), φ(t, ~y2)] =[π(t, ~y1), π(t, ~y2)] = 0.
(3.25)

Note that, for any ϕ1, ϕ2 ∈ VC,

[(ϕ1, φ)Στ , (ϕ2, φ)Στ ] = −(ϕ1, ϕ
∗
2)Στ . (3.26)

Conversely, it is also true that if φ satisfies eq. (3.26) for arbitrary ϕ1, ϕ2 ∈ VC, then φ
satisfies the canonical commutation relations given in eq. (3.25). Since the scalar product
is independent on the choice of Στ , also eq. (3.26) is independent of Στ . Therefore, it is
only necessary to impose the canonical commutation relations on one Cauchy surface,
and they are automatically satisfied on every Cauchy surface.
Analogously to what was done before, let us promote aλ, a∗λ appearing in eq. (3.10)

to operator-valued distributions. Then, these appear in the expansion of the quantized
(selfadjoint) scalar field φ:

φ(t, ~y) =
∑
λ

[aλuλ(t, ~y) + a†λu
∗
λ(t, ~y)], (3.27)

and satisfy

[aλ1 , a
†
λ2

] =δλ1λ2 ,

[aλ1 , aλ2 ] =[a†λ1
, a†λ2

] = 0.
(3.28)

The relations in eq. (3.28) can easily be derived by using eq. (3.26) together with

aλ = (uλ, φ)Σ , a†λ = −(u∗λ, φ)Σ . (3.29)
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Exactly as in eq. (2.77), one can find the commutator between φ and H to be

i∂tφ(x) = [φ,H]. (3.30)

With the assumption that uλ and u∗λ are, respectively, positive and negative frequency
modes (having eigenvalues ±Ω) with respect to the operator i∂t, one gets

aλ i∂tuλ(x) = [aλ, H]uλ(x), a†λ i∂tu
∗
λ(x) = [a†λ, H]u∗λ(x), (3.31)

and consequently
[H, aλ] = −Ωaλ, [H, a†λ] = Ωa†λ. (3.32)

Therefore, the positive frequency modes uλ are related with the annihilation operator aλ,
whereas the negative frequency modes u∗λ are related with the creation operators a†λ, as
in flat space-time. This allows us to introduce the vacuum state.

The Hilbert space.
As was done in section 2.4, the vacuum state |0〉 is introduced as the state annihilated
by all operators aλ. The “one-particle” Hilbert space H1 is then constructed as the
space spanned by a†λ|0〉. Consequently, the Fock space F is given by the Hilbert space
completion of the direct sums of symmetrized tensor products H ⊗n

1 .
Consider a second, complete orthonormal set of basis modes {ūλ, ū∗λ} satisfying

(ūλ1 , ūλ2)Σ = δλ1λ2 ,

(ū∗λ1
, ū∗λ2

)Σ = −δλ1λ2 ,

(ūλ1 , ū
∗
λ2

)Σ = 0.

(3.33)

Analogously to eq. (3.27), the scalar field φ may be expanded in the new basis:

φ(t, ~y) =
∑
λ

[āλūλ(t, ~y) + ā†λū
∗
λ(t, ~y)], (3.34)

where

[āλ1 , ā
†
λ2

] =δλ1λ2 ,

[āλ1 , āλ2 ] =[ā†λ1
, ā†λ2

] = 0.
(3.35)

This defines a new vacuum state |0̄〉 annihilated by all operators āλ, and consequently
a new Fock space F̄ . On a general Md,1, there is no physically reasonable argument
to prefer one expansion over the other, and here we discuss the implications of such a
choice.

The first query is if the creation and annihilation operators in eq. (3.27) are related to
those in eq. (3.34). Since both sets of basis modes are complete, we can express one in
terms of the other as

ūλ =
∑
κ

[αλκuκ + β∗λκu
∗
κ] . (3.36)
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With the aid of the scalar product, it is possible to evaluate the so-called Bogolubov
coefficients:

αλκ = (ūλ, uκ)Σ, βλκ = (ū∗λ, uκ)Σ,

α∗λκ = −(ū∗λ, u
∗
κ)Σ, β∗λκ = −(ūλ, u

∗
κ)Σ.

(3.37)

Equating eq. (3.27) with eq. (3.34) and making use of the orthonormality relations gives

aκ =
∑
λ

[
αλκāλ + βλκā

†
λ

]
, āλ =

∑
κ

[
αλκaκ − β∗λκa†κ

]
. (3.38)

Eventually, the commutation relations given in eqs. (3.28,3.35) lead to the constraints∑
λ

[
αλκ1α

∗
λκ2
− βλκ1β

∗
λκ2

]
= δκ1κ2 ,

∑
λ

[αλκ1βλκ2 − αλκ2βλκ1 ] = 0. (3.39)

Transformations given in eq. (3.38) satisfying the above constraints are called Bogolubov
transformation. In plain words, these are linear transformation of the creation and
annihilation operators that preserve the canonical commutation relations, and hence
generalize the class of canonical transformations. Note that such transformations may
relate unitarily inequivalent representations of the commutation relations, whose existence
was already mentioned in section 2.2.

Let us shortly discuss a restricted class of Bogolubov transformations, the one describing
general coordinate transformations and time-evolution. For stationary space-times, one
requires uλ to be the positive frequency modes with respect to the time-like Killing
vector field Kt ≡ K

µ

t ∂µ. By virtue of eq. (3.16), the vector space V+, spanned by
these positive frequency modes, is invariant under time-evolution, since the generator of
time-translation is given by iLKt in the field representation. Therefore, by eq. (3.36), we
expect β∗λκ = 0. It follows that āλ is a linear combination of solely aκ, and therefore |0〉
keeps its status as a vacuum state during time-evolution. In particular, the basis modes
uκ and ūλ share a common vacuum state and |0̄〉 can be chosen to solely differ from |0〉
by a phase factor. Consequently, the two Fock spaces F and F̄ are related by a unitary,
hence invertible, transformation, cf. eq. (3.39). So, the particle interpretation of Md,1

can be carried over without any essential adjustment to globally hyperbolic, stationary
space-times, as long as one sticks with one observer whose trajectory follows along orbits
of the Killing vector Kt.

If a space-time is not stationary, as, for instance, a space-time describing the expansion
of the universe, then there is no meaningful definition of positive frequency modes. Hence,
βλκ might be nonvanishing under time-evolution, here defined as a translation in direction
of some vector tµ. It then follows immediately that, for βλκ 6= 0, |0̄〉 is not annihilated by
all aκ:

aκ|0̄〉 =
∑
λ

βλκā
†
λ|0̄〉 6= 0. (3.40)
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Since we are working in the Heisenberg picture, if we choose the state |0̄〉 to be the
vacuum state, then it will remain unaltered in the past/future. Thus, it turns out that
the vacuum state |0̄〉 might appear at a different instant of time to be populated with
particles, since

〈0̄|Ntot|0̄〉 =
∑
κ

〈0̄|a†κaκ|0̄〉 =
∑
λ,κ

|βλκ|2, (3.41)

where Ntot denotes the number operator in the past/future. Therefore, the measurement
an observer is performing depends on the instant his measuring device is actually
switched on. Something analogous occurs under general coordinate transformations,
where a vacuum state in one coordinate system is not necessarily a vacuum state in
another coordinate system. The consequence is that the measurement of an observer will
generally also depend on the location and state of motion of his measuring device.
In summary, different observers disagree on the particle content of the theory. Ac-

cordingly, it is difficult to provide a meaningful particle interpretation. One observer
can surely assert the presence of particles, but without specifying the trajectory of the
detector, the claim is not very useful. Note that this is also true in flat space-time, but
there exist inertial coordinate systems, and on these preferred coordinate systems all
measuring devices agree on the measurements performed.
The notion of particles, being heavily dependent on the choice of basis modes which

are defined globally11 on the space-time, is sensitive to the structure of space-time itself.
A reasonable particle concept could be possible if these particles were of much smaller
wavelength than the curvature scale, but this is clearly not satisfactory as it implies
an incomplete set of modes. One has thus to accept that, in a generic situation, it is
unknown how to deal with this issue. It seems unlikely that the particle picture will
prove meaningful here.

One might ask if there is a way to provide an objective probe. As detectors are of local
nature, it seems worthwhile to investigate locally defined, rather than globally defined,
quantities, as for example 〈f |T µν |f〉, with |f〉 ∈ F , is. Indeed, for a fixed state |f〉 ∈ F ,
the results for the expectation value of the stress-tensor of different measuring devices
are related by the usual tensor transformation.
This however poses the problem of the divergent vacuum energy. In flat space-time

this divergence was simply discarded by the normal ordering procedure. However, in
curved space-times there is an ambiguity in the choice of the vacuum state with respect
to which one should perform the normal ordering, and different choices can lead to
inequivalent descriptions. Therefore, it requires a more sophisticated renormalization
technique. Since the appearing divergence was due to modes with short wavelengths,
and since curved space-times on very small scales look like flat space-time, it should be
possible to match the behavior of fields in curved space-times at short distances to those
in flat space-time, and thus to subtract off the divergences. For a free theory, this is
indeed possible by considering Hadamard states, states whose singularity structure at
11or at least on a large patch
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the coincidence point of its two-point function is the natural generalization to curved
space-times of the singularity structure of the two-point function on flat space-time. It
can be shown that Hadamard states exist on every globally hyperbolic space-time and are
the only states for which the renormalized stress-tensor is well-defined and nonsingular.
Furthermore, if the Hadamard condition is satisfied on one Cauchy surface, it is satisfied
in its whole domain of dependence. We will not discuss the details there but instead
refer to ref. [20].
In conclusion, let us shortly mention that in certain circumstances, it might still be

possible to give a (local) notion of particles on nonstationary space-times. This is the
case for space-times which are stationary only in limited regions. If each of these regions
possesses a Cauchy surface then a vacuum can be defined on with respect of the local
time-like Killing vector field. The quantization procedure is applicable since the regions
themselves are globally hyperbolic. An example is given by the region outside the horizon
of a static black hole, which is globally hyperbolic even though it is not geodesically
complete. Another important case is given by a space-time which approaches stationary
space-times in the far past and future. The asymptotic regions can either be flat or some
other highly symmetric space-times, in order to allow a meaningful particle interpretation.
These regions are then called in and out regions, in analogy to scattering theory of
flat space-time where it is assumed that the field interactions approach zero in the far
past/future. A useful object in this setting is the S-matrix, a unitary operator relating
any state in the Fock space of the far past to any state in the Fock space in the far future.
The elements of the S-matrix can be written in terms of the Bogolubov coefficients, see,
for instance, ref. [95].

3.2 Generalized Wightman axioms
Here we will give a short glimpse on how it might be possible to extend the Wightman
axioms to curved space-times. This is a relatively novel field of study, and is far from
being conclusive. In spite of that, it already provides strong hints on the fundamental
properties of quantum field theory. Furthermore, in its most notable formulation [16], it
implies a curved space-time version of the CPT and spin-statistics theorems. Anyway, an
in-depth discussion goes beyond the scope of this thesis. The interested reader is referred
to refs. [16, 17].

• Classically, for physically reasonable fields, the stress-tensor satisfies the dominant
energy condition, i.e.,

K
µ

t n
νTµν ≥ 0, (3.42)

where Kt is a vector field representing time translations. Thus, the total energy is
positive, see eq. (3.12), and if Kt is a Killing vector field, then it is also conserved.
In quantum field theory the situation drastically changes. It is known that, locally,
energy densities can be arbitrarily negative. Nevertheless, in flat space-time, the
total energy is positive for all physically reasonable states. In curved space-times this
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is not anymore guaranteed, even for space-times with time-translation symmetry12.
Hence, the lack of an appropriate notion of total energy makes it meaningless to
generalize the spectrum condition (A1) in terms of the positivity of such a quantity.
In flat space-time, it can be shown that the spectrum condition is equivalent to
the microlocal spectrum condition, characterizing the short-distance singularity
structure of the correlation functions of the quantum fields. This condition has a
natural generalization to curved space-times.

• A seemingly meaningful generalization of invariance/covariance under Poincaré
transformations of flat space-time is the invariance/covariance under general co-
ordinate transformations of curved space-times. However, this does not provide
additional symmetries, since any Poincaré covariant theory can be rephrased in
terms of a generally covariant theory. The true symmetry group of space-time
transformations is generated by Killing vectors and, in fact, on curved space-times
it steps in for the Poincaré group of flat space-time. On the other hand, this does
not imply that the requirement of general covariance is of no physical relevance.
Contrarily, it dictates that the only background structure is the manifold13. Fur-
thermore, it relates quantum fields in different coordinate systems, generalizing the
covariance condition (A5).

• Since the quantum fields are smeared over a local region of space-time, one demands
that they are locally constructed from the background structure in the sense that
the quantum fields in any neighborhood should be covariantly constructed from the
background structure within the neighborhood itself. This ensures that a variation
of the metric around some point only influences the field locally.

• In the absence of symmetries of the space-time, there is no preferred choice of
the vacuum state. Even worse, different vacua may lead to unitarily inequivalent
constructions of the theory. For instance, in a free quantum field theory even the
restriction to Hadamard states is highly nonunique, and different choices indeed
give rise to, in general, unitarily inequivalent constructions. The forced designation
of one of these unitarily inequivalent constructions can be overcome by formulating
the theory via the algebraic approach [18]. Nevertheless, as already discussed
previously, for curved space-times without symmetries there is a general consensus
that it is fruitless to seek a preferred vacuum state as much as it is fruitless to seek
a preferred coordinate system. Hence, the notion of “vacuum” and “particles” has,
in general, to be abandoned. However, in the presence of a global time-like Killing
vector field Kt, there exists a preferred class of coordinate systems. Indeed, one
may introduce a coordinate t upon which the metric does not depend and with
respect to which Kt takes the form K

µ

t = (1, 0, . . . , 0). Furthermore, Kt may be

12One example is the massless scalar field on a R× S1 universe [95].
13including its metric, time and space orientation, and spin structure
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scaled so that t gives the proper time of at least one observer moving along the orbit
of Kt. Relative to that observer, the mode functions can be separated in positive
and negative frequency modes. This allows for the introduction of a vacuum state
invariant under LKt . In the presence of further Killing vector fields, one may
demand that the vacuum is also invariant under the transformations generated by
these. Altoghether, this is a viable generalization of the vacuum condition (A3) to
the class of stationary space-times, even though the requirement of uniqueness of
the vacuum state is not implementable on general space-times. Sure, in order to
render the vacuum state unique one could impose additional constraints, as, for
instance, those given in ref. [18]. But the so-defined vacuum state does not always
exist.

Bearing all these concepts in mind, the domain condition (A2), the completeness condition
(A4) and the microcausality condition (A6) can easily be reformulated on generally curved
space-times.
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In general, the symmetries of a physical problem are of huge assistance. One can exploit
these symmetries to render the problem more manageable. For instance, in most curved
space-times, even finding the simplest scalar propagator is a burden but the difficulties are
alleviated if the space-time possesses some symmetries. Ideally, the preferred space-times
to work with are maximally symmetric Lorentzian manifolds, which are space-times
admitting the maximal amount of linearly independent global Killing vector fields. In
d+ 1 dimensions, there are at most (d+ 2)(d+ 1)/2 of them. This can easily be seen
as follows. Take the following identity which is a direct consequence of the Killing eq.
(3.13):

∇µ∇νK
ρ = R

ρ
νµσK

σ, (4.1)

and is therefore valid for any Killing vector field Kµ . The quantity Rρ
νµσ is the Riemann

tensor. It is clear that, at any point p ∈ Md,1, Kµ is uniquely fixed by the d+ 1 values
Kµ|p and (d + 1)2 values ∇νK

µ|p, as one can infer from the Taylor expansion of Kµ

around p. Moreover, the number (d+ 1)2 of independent values of the derivative of the
Killing vector field is further restricted by the Killing eq. (3.13), since only the d(d+ 1)/2
antisymmetric combinations ∇µKν − ∇νKµ are nonvanishing. Hence, one has indeed
(d+ 2)(d+ 1)/2 independent values at most.

So how do maximally symmetric space-times look like? For such space-times, it can
be shown that the Riemann tensor assumes the form [102]

Rµνρσ = −a2(gµρgνσ − gµσgνρ), (4.2)

where a2 is some real constant, not necessarily positive. Then, the Ricci curvature tensor
and the Ricci scalar are, respectively, given by

Rµν = −da2gµν , R = −d(d+ 1)a2. (4.3)

Now it is straightforward to verify that maximally symmetric spaces satisfy the vacuum
Einstein equations

Rµν −
1

2
gµνR + gµνΛc = 0, (4.4)

with the cosmological constant given by

Λc = −d(d− 1)

2
a2. (4.5)

Thus, one can classify the maximally symmetric space-times by the sign of the cosmological
constant; the space-time with vanishing cosmological constant is identified with the flat
space-time Md,1, since the Riemann tensor is zero everywhere. Positive and negative
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cosmological constants give rise to the so-called de Sitter and anti–de Sitter space-times.
These manifolds, despite being quite similar in the above construction, reveal contrasting
properties. While de Sitter is a globally hyperbolic but nonstationary space-time, anti–de
Sitter space-time, as we will see, is non-globally hyperbolic but stationary, even static.
All these properties of the anti–de Sitter space-time will be discussed in this chapter.
Let us note that the absence of a Cauchy surface on anti–de Sitter space-time has major
implications on its causal structure, eventually leading to the AdS/CFT correspondence.
Working in anti–de Sitter space-time carries a few benefits. First, it provides a great

opportunity to validate our further results. Also, it provides insights to the not yet
well-understood correspondence itself. Thus, in what follows, we only deal with the
anti–de Sitter space-time, hence we assume a2 > 0.

4.1 Geometry of AdS
For an excellent reference on anti–de Sitter space-time, especially what concerns fig-
ures depicting different coordinate patches and the conformal structure of AdSd+1, we
recommend ref. [107].
The (d + 1)-dimensional anti–de Sitter space-time AdSd+1 can be embedded into a

(d+ 2)-dimensional flat ambient space Md,2. AdSd+1 is then described by the quadric

(XA)2 := ηABX
AXB = ηµνX

µXν − (Xd+1)2 = − 1

a2
, (4.6)

where A,B = 0, ..., d + 1 and where ηAB and ηµν are, respectively, the metrics of Md,2

Md,1. This results in a one-sheeted hyperboloid, topologically equivalent to Rd × S1, see
figure 1. It is clear that the symmetry group leaving the quadric invariant is given by
O(d, 2). We will discuss its implications throughly in section 4.2.

The squared line element, restricted to the above quadric, is given by

ds2 = (ηAB + a2XAXB)dXAdXB = (dXµ)2 − a2(XµdXµ)2

1 + a2(Xµ)2
. (4.7)

Here we do not further discuss the ambient space approach and refer to appendix A.
Let us instead adopt immediately a parametrization of the quadric. It appears natural
to introduce hyperspherical coordinates for the Euclidean subspace Rd spanned by XA

for A = 1, . . . , d. We choose the main polar angle θ ∈ [0, π] in direction of Xd, that is,

Xd = r cos θ. (4.8)

The quantity r ∈ [0,∞) is the radial coordinate of the hyperspherical coordinates. Hence,
it follows that

(X1)2 + · · ·+ (Xd−1)2 = r2 sin2 θ (4.9)

and
(X1)2 + · · ·+ (Xd−1)2 + (Xd)2 = r2. (4.10)
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τ

r

Xd

Xd+1

X0

Figure 1: Embedding of the anti de–Sitter space-time.

The full parametrization of the quadric is given by the further identification

X0 =

√
r2 +

1

a2
sin(τa),

Xd+1 =

√
r2 +

1

a2
cos(τa),

(4.11)

with τ ∈ [0, 2π/a). The coordinate patch is a global patch of AdSd+1, covering the whole
space-time, as depicted in figure 1. In this coordinate system, the squared infinitesimal
line element reads

ds2 = −(1 + r2a2)dτ 2 +
1

1 + r2a2
dr2 + r2dΩ2

d−1, (4.12)

where dΩ2
d−1 is the metric on the (d−1)-dimensional hypersphere Sd−1. Periodicity of the

(noncontractible) time coordinate τ has a major drawback, it allows for closed time-like
curves. Although it may argued that, by fixing some consistency constraints, one can
avoid causality breaking situations and the resulting paradoxes, they are very unpleasant
to deal with. Fortunately, there is a simple resolution; we consider the universal covering
space1 of AdSd+1, thus changing the topology of AdSd+1 to Rd+1. The range of the time
coordinate thus is taken to be (−∞,∞). In what follows, when we refer to AdSd+1, we
intend its universal covering space.
The investigation of the causal structure of AdSd+1 is best performed in another

coordinate system, related to the previous by

τ̄ = τa, r̄ = arctan(ra). (4.13)

1The universal covering space of S1 is R.
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This leads to the metric

ds2 =
1

a2 cos2 r̄

(
−dτ̄ 2 + dr̄2 + sin2 r̄ dΩ2

d−1

)
, (4.14)

with (τ̄ , r̄) ∈ R× [0, π/2). Thus, in this (also global) coordinate patch, the null geodesics
correspond to straight lines. From the corresponding Penrose diagram, see figure 2, it
becomes obvious that AdSd+1 possesses a time-like conformal boundary J at r̄ = π/2,
topologically equivalent to a cylinder R× Sd−1.

0

τ̄

Σ

D(Σ)

π
2 r̄

J

p

Figure 2: Penrose diagram of anti–de Sitter space-time in the (τ̄ , r̄)-plane.

Although spatial distance from any point in AdSd+1 to the boundary is infinite, null
geodesics get there in a finite amount of time and get reflected at a right angle. Moreover,
time-like geodesics are sinusoidal, see, for instance, ref. [108]. This so-called box effect
of anti–de Sitter space-time is a reminiscence of the periodicity of the original time
coordinate.

As a consequence, AdSd+1 is not globally hyperbolic. Indeed, the achronal hypersurface
Σ at, say, τ̄ = 0 is not a Cauchy surface, as its domain of dependence D(Σ) is not
covering the whole space-time. Suppose one is interested in finding a unique solution
to a hyperbolic differential equation on AdSd+1. To this end, one may choose initial
data on Σ. The field is uniquely determined in D(Σ). However, as depicted in figure
2, the field at p is not only influenced by Σ, but also from the boundary J . Hence, in
addition to the initial data on Σ, one necessitates also of the data on the boundary itself.
This fact lies at the heart of the AdS/CFT correspondence. But whereas AdSd+1 is not
globally hyperbolic, the union of AdSd+1 with its boundary is [109]. This union is called
conformal completion and will be discussed in section 4.3.

Due to its affinity with the coordinates of Minkowski space-time Md,1, in this thesis we
will stick to another patch of AdSd+1 which, however, covers only half of the space-time.
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It is defined by Poincaré coordinates via the parametrization

Xα =
xα

axd
,

Xd =
1√

2axd

(
1− xµ

2

2

)
,

Xd+1 =
1√

2axd

(
1 +

xµ
2

2

)
,

(4.15)

where2 α, α = 0, . . . , d− 1 and where

xµ
2

= ηµνδ
µ
µδ

ν
νx

µxν (4.16)

as in Minkowski space-time. The coordinate x0 is identified with the time coordinate
t, whereas xd > 0 is called radial coordinate. We will denote the latter by the letter z.
The relation between these coordinates and the global coordinates (τ̄ , r̄) appearing in eq.
(4.14) can be found to be

t =

√
2 sin τ̄

cos τ̄ + sin r̄ cos θ
,

z =

√
2 cos r̄

cos τ̄ + sin r̄ cos θ
.

(4.17)

Indeed, it follows from the above relations that the Poincaré patch does not cover the
whole anti–de Sitter space-time; in order to have z > 0 one has to require the denominator
in eq. (4.17) to be positive definite. The other half of AdSd+1, the one with negative
definite denominator, is covered by z < 0 and is disconnected from z > 0 by a singularity
at z = 0. From now on, let us only consider the coordinate patch defined by z > 0. The
other Poincaré coordinates are related to the global coordinates via

xα ∝
√

2 sin r̄ sin θ

cos τ̄ + sin r̄ cos θ
for α 6= 0, (4.18)

satisfying the constraint√
(x1)2 + · · ·+ (xd−1)2 =

√
2 sin r̄ sin θ

cos τ̄ + sin r̄ cos θ
. (4.19)

The prerogative of Poincaré coordinates is the simplicity of the metric expressed in
these coordinates:

ds2 =
1

a2z2
ηµνδ

µ
µδ

ν
νdxµdxν . (4.20)

2Henceforth, the indices denoted by the initial letters of the greek alphabet (α, β, γ, . . . ) run from 0 to
d − 1, as opposed to other greek letters (µ, ν, ρ, . . . ) running from 0 to d, the lowercase latin letters
(i, j, k, . . . ) running from 1 to d, and the uppercase latin letters (A,B,C, . . . ) running from 0 to d+ 1.
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Additionally, it makes the conformal flatness (more will be said in section 4.3) of AdSd+1

explicit. Note that, independently of the sign of z, Kt = ∂t is clearly a (global) time-like
Killing vector, hence the anti–de Sitter space-time is stationary. See also section 4.2.
Let us foliate the space-time by choosing the global time function to be T (x) = t.

The corresponding normal unit vector is given by nµ = −N∇µT (x), with lapse function
N = 1/az, or explicitly by nµ = az (1,~0). Then, since the shift function is identically
zero, the anti–de Sitter space-time is also static. Note that this was already manifest in
eqs. (4.12,4.14), as we were able to find static global coordinate patches for AdSd+1.

Let us conclude this section by showing that the manifold defined by the quadric (4.6)
really corresponds to the anti–de Sitter space-time. With the introduction of the frame
field one-form

hµ = hµµdxµ =
1

az
δµµdxµ , (4.21)

which relates the space-time indices to the vector indices of Md,1, the squared line element
of AdSd+1 in Poincaré coordinates reads

ds2 = gµνdx
µdxν = ηµνh

µhν . (4.22)

The spin-connection one-form ωµν can be found via the first Cartan structure equation:

dhµ + ωµν ∧ hν = 0, (4.23)

where ∧ is the exterior product. Note that dhµ = ahµ ∧ hd. Therefore, the connection
can be written as

ωµνµ = a
(
hνµη

µd − hµµηνd
)
, (4.24)

where the antisymmetry of ωµν was exploited. Now that we know the spin-connection,
let us compute the second Cartan structure equation:

dωµν + ωµρ ∧ ω ν
ρ = −a2hµ ∧ hν . (4.25)

Solving for the curvature two-form

1

2
Rµνρσh

ρ ∧ hσ = −a2hµ ∧ hν (4.26)

leads to
Rµνρσ = −a2(ηµρηνσ − ηµσηνρ). (4.27)

The above result agrees with eq. (4.2) when expressed through space-time indices.
Therefore the space-time covered by the Poincaré patch is indeed an open subset of the
anti–de Sitter space-time, defined as the maximally symmetric space-time with negative
cosmological constant.
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4.2 Symmetries
According to eq. (4.6), it immediately follows that the isometry group of anti–de Sitter
space-time is given by the Lorentz group of Md,2, and hence is given by O(d, 2). This
is the group which leaves the quadric invariant. We would like to derive the action of
the group O(d, 2) on the Poincaré coordinates. To this aim, note that in the embedding
space formalism, the (d+ 2)(d+ 1)/2 generators of the group read JAB = XA∂B −XB∂A.
Let us define

Pα =
1√
2

(J(d+1)α − Jdα),

Lαβ =Jαβ,

Kα =−
√

2(J(d+1)α + Jdα),

D =J(d+1)d.

(4.28)

Then, the above linear combinations of generators act on xµ as follows:

Pα(xµ) = δ
µ
α ,

Lαβ(xµ) = ηασδ
σ
σx

σδ
µ

β − ηβσδ
σ
σx

σδ
µ
α ,

Kα(xµ) = xµ
2

δ
µ
α − 2ηασδ

σ
σx

σxµ ,

D(xµ) = xµ .

(4.29)

In particular, the action of the generators on the coordinate z is

Pα(z) = 0,

Lαβ(z) = 0,

Kα(z) = −2ηασδ
σ
σx

σz,

D(z) = z.

(4.30)

Moreover, it is worth to note that the z-preserving generators, Pα and Lαβ, act like a
Poincaré group in d dimensions. The derivation of the Killing vector fields of AdSd+1 is
straightforward:

Pα = δ
ρ
α∂ρ ,

Lαβ = ηασδ
σ
σx

σδ
ρ

β∂ρ − ηβσδ
σ
σx

σδ
ρ
α∂ρ ,

Kα = xµ
2

δ
ρ
α∂ρ − 2ηασδ

σ
σx

σxρ∂ρ ,

D = xρ∂ρ .

(4.31)

Indeed, first note that, by acting with these on xµ, one immediately recovers eq. (4.29).
Furthermore, one can easily verify that, for each value of α, β, these vector fields satisfy
eq. (3.14).
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A discrete symmetry of the quadric (4.6) is the parity transformation, performed by
Xd → −Xd. After a normalization through the operator D, the associated action on the
Poincaré coordinates is

I(xµ) =
xµ

xµ2 . (4.32)

Note that I is an involution, i.e., I2 = 1, and relates Pα and Kα through the identity

Kα = IPαI. (4.33)

With the latter symmetry transformation, all the symmetries of the quadric have been
found, since all other allowed3 discrete transformations are equivalent to combinations of
the above parity transformation and rotations.

4.3 Conformal boundary
As discussed in section 4.1, the anti–de Sitter space-time possesses a conformal boundary
at r̄ = π/2, see also figure 2. Owing to the lack of global hyperbolicity in AdSd+1, we
would like to somehow include the boundary into the actual space-time. This is indeed
possible by an idea that traces back to Penrose [110] called conformal completion. The
general procedure is to attach the boundary points to the manifold, such that the interior
of the newly defined manifold is diffeomorphic to the original one. This new manifold will
be equipped with a metric which differs from the original one by a Weyl transformation:

ds′ = Ω(x)ds. (4.34)

The conformal factor Ω(x) is taken to vanish at the boundary, but beyond that it is
an arbitrary function. Hence, the new metric is some representative of the class of
conformally equivalent metrics.

Let us illustrate how this works on the Poincaré patch. From eq. (4.17) it is straight-
forward to see that, for allowed values of τ̄ , θ, setting r̄ to π/2 results in z = 0. Hence the
topology of AdSd+1 at z = 0 is given by the Minkowski space-time Md−1,1. However, as
yet, this space-time is not equipped with a metric that extends over the space-time with
z = 0, since the metric (4.20) appears to be singular there. Let us choose the conformal
factor as follows:

ds′2 = a2z2ds2. (4.35)

This new metric is regular at the point z = 0, turning exactly into the flat metric of
Md−1,1. We stress again that one might equally take another representative of the same
equivalence class, the class of conformally flat metrics.

So what are the symmetries of the space-time at z = 0? Owing to eqs. (4.29,4.30), at
z = 0, one recovers the full conformal group action. Indeed, at that point the quantities
3The transformation Xd+1 → −Xd+1 amounts to change the patch (z → −z) and is therefore not
allowed as a symmetry transformation.
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Pα, Lαβ, Kα and D correspond exactly to the generators of the conformal group in Md−1,1:

Pα(xδ) = δδα ,

Lαβ(xδ) = ηαγx
γδδβ − ηβγxγδδα ,

Kα(xδ) = xγ
2

δδα − 2ηαγx
γxδ ,

D(xδ) = xδ ,

(4.36)

as these form a complete set of solutions to the conformal Killing equation in Md−1,1:

∂α(Kc)β + ∂β(Kc)α =
2

d
ηαβ∂γK

γ
c . (4.37)

Hence, the generators have the interpretation of generating translations (Pα), rota-
tions (Lαβ), special conformal transformations (Kα) and dilatations (D). Eventually, I
resembles the operation of coordinate inversion.

This, however, poses the problem that the point corresponding to the inversion of the
origin of Md−1,1 is not included in the space-time itself. Fortunately, we simply missed a
point on the boundary. By fixing τ̄ = kπ + π/2 for k ∈ N and θ = π/2, and afterwards
taking the limit r̄ → π/2, the radial coordinate diverges, i.e., z →∞. This equips Md−1,1

with an additional and unique point, leading to Md−1,1 ∪ {∞}. We found the conformal
completion of anti–de Sitter space-time. In fact, it is well known that the so-defined
conformal compactification of Minkowski space-time Md−1,1 has the topology R × Sd−1

[31], and this cylindric topology coincides exactly with the topology of the boundary of
AdSd+1, as discussed in section 4.1.
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V Free scalar QFT in (E)AdS

The knowledge gained in the previous chapters III and IV will guide us towards the
quantization of a free scalar field on anti–de Sitter space-time. This space-time is static,
hence there exists a preferred vacuum state invariant under the respective time-like Killing
vector field. However, it is non-globally hyperbolic and therefore the usual quantization
procedure is inapplicable. Nevertheless, a consistent quantization scheme can be devised
by carefully controlling information entering and leaving the space-time through its
boundary [15]. We will not go too much into the details here. Instead, bearing in mind
that the conformal completion of anti–de Sitter space-time is globally hyperbolic [109],
we will henceforth work with this “improved” space-time. When a distinction between
the two space-times has to be made, we will explicitly distinguish between them, and
call the interior of AdSd+1 the bulk.

5.1 Free scalar quantum field theory
Classical scalar field theory.
Let us again start from the action (3.1):

S0 = −1

2

∫
dd+1x

√
−g
[
gµν(∇µφ)(∇νφ) +m2φ2

]
, (5.1)

where g = −1/(az)2(d+1) in Poincaré coordinates. By means of eq. (3.3), the respective
equation of motion can be written as(

−a2z2ηµνδ
µ
µδ

ν
ν∂µ∂ν + (d− 1)a2z∂z +m2

)
φ = 0. (5.2)

With the ansatz
φ = eikαxαJ(z), (5.3)

the equation of motion (5.2) can further be written as

z2∂2
zJ − (d− 1)z∂zJ −

[
z2k2 +

m2

a2

]
J = 0, (5.4)

where k2 := ηµνδαµδ
β
ν kαkβ. Assuming kα to be time-like, i.e., k2 < 0, the above differential

equation has a solution in terms of Bessel functions of the first kind. Specifically, one
has that

J(z) = z
d
2J∆− d

2
(kzz), (5.5)

for

∆ =
d

2
±
√
d2

4
+
m2

a2
(5.6)
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and kz ≥ 0, is a solution of eq. (5.4) whenever

k0 =
√
k2

1 + · · ·+ k2
d−1 + k2

z . (5.7)

As we will see in section 5.3, the quantity ∆ corresponds to the scaling dimension, simply
called (conformal) dimension or weight, of the dual operator living on the boundary of
AdSd+1. In order for eq. (5.5) to describe two independent solutions, ∆− d

2
has to be

a noninteger. This will not be of great limitation for us, since the explicit model we
later work on does agree with this assumption1. In case of an integer value for ∆− d

2
,

one would have to invoke also Bessel functions of the second kind. Clearly, one should
also consider the case k2 > 0, for which the solutions can be written in terms of the
modified Bessel functions K∆− d

2
and I∆− d

2
. Note however that it is possible to recover

these solutions through the replacement kz → ikz.
We additionally require the mass m to take values within the following range:

− d2

4
≤ m2

a2
< −d

2

4
+ 1. (5.8)

This is based on physical grounds. The lower bound is called Breitenlohner–Freedman
bound [111] and is the requisite for having stable solutions2 in AdSd+1. It implies that ∆ is
a real number. The upper bound is also necessary as it makes the solutions normalizable.
Indeed, the closure equation∫ ∞

0

dz zJ∆− d
2
(kzz)J∆− d

2
(k′zz) =

δ(kz − k′z)
kz

(5.9)

is only valid for3 ∆ > (d− 2)/2. Note that, for spatial dimensions d > 1 as considered
here, this bound requires a negative value of the mass squared, m2 < 0. The minimally
coupled scalar, corresponding to the “massless” case m2 = 0, is given by an integer
value of ∆− d

2
and will therefore not be covered here. Thus, according to eq. (5.8), the

dimension ∆ is a positive real number fulfilling

d− 2

2
< ∆ <

d+ 2

2
. (5.10)

The next step is to find the modes ukα,kz , u∗kα,kz , forming an orthonormal basis for
the vector space VC of complex solutions to eq. (5.4). With the foliation for AdSd+1

introduced in section 4.1, the scalar product (3.5) reads

(ϕ1, ϕ2) = i

∫ ∞
−∞

dx1 · · · dxd−1

∫ ∞
0

dz
1

(az)d−1
[ϕ∗1(x)∂tϕ2(x)− ϕ2(x)∂tϕ

∗
1(x)] , (5.11)

1Nevertheless, in many cases the scalar modes arising from the Kaluza–Klein reduction of string theory
to AdSd+1 have integer value ∆− d

2 . See, for instance, ref. [31].
2An example for an unstable solution is the tachyonic scalar field in flat space-time, corresponding to a
particle with negative mass.

3This is the unitarity bound for a coupled scalar operator in d-dimensional conformal field theory, see
ref. [112].
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for any ϕ1, ϕ2 ∈ VC. By using the closure equation (5.9), it is straightforward to show
that the modes

ukα,kz =

√
ad−1kz

2k0(2π)d−1
eikαxαz

d
2J∆− d

2
(kzz) (5.12)

indeed satisfy the orthonormality relations given in eq. (3.9). Note that these modes
are eigenstates of the operator iLKt ≡ ∂t, hence we have a strict separation of the
solution space VC in positive and negative frequency modes. Now we can write down the
expansion of the scalar field

φ =

∫ ∞
−∞

dk1 · · · dkd−1

∫ ∞
0

dkz

[
akα,kzukα,kz + a∗kα,kzu

∗
kα,kz

]
. (5.13)

Boundary conditions.
As yet we cheated a bit; we omitted to include the boundary of AdSd+1 in our consid-
erations. This will be fixed here. First, let us see how φ behaves at the boundary. By
sending z to 0, eq. (5.12) becomes

ukα,kz ∼ z∆

√
ad−1

k0(2π)d−1

Γ(∆− d
2

+ 1)

(
kz
2

)∆− d
2

+ 1
2

eikαxα . (5.14)

For ∆ ≥ 0, the modes are thus regular on the boundary. For positive values of the
dimension ∆, and hence m 6= 0, the modes even vanish at the boundary. On the other
hand, for ∆ = 0 (implying m = 0) the modes are finite but nonvanishing at the boundary.
The interpretation of this is that particles in AdSd+1 have finite probability to reach the
conformal boundary. Indeed, as we saw in section 4.1, null geodesics reach the boundary
in a finite amount of time, whereas time-like geodesics never reach it.

Moreover, in usual quantum field theory in flat space-time, see section 2.4, a necessary
but generally not sufficient requirement for the solutions to be normalizable is to vanish
at infinity. The same happens here; the normalizable solutions φ, as given in eq. (5.13),
all satisfy ∆ > 0 and thus vanish at the boundary.

So, in this regard, anti–de Sitter space-time and Minkowski space-time seem to agree.
There is however a crucial difference. Whereas sources posed at infinity of Md,1 do not
influence the physical processes taking place in the inside, in AdSd+1 they do, since a
geodesic starting from the boundary can reach the bulk.
Hence, we expect φ in AdSd+1 to have a universal asymptotic behavior near the

boundary. The standard procedure is, as one approaches the boundary, to rescale φ by
any function of the coordinate z with a pole of order ∆ at z = 0. This yields a finite,
non-vanishing quantity on the boundary. For instance, define the rescaled scalar field of
dimension ∆ as follows4:

φ0 := z−∆φ. (5.15)
4Note that such a definition breaks the symmetries of anti de–Sitter space-time. Hence, φ0 will only be
employed near the boundary.
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Therefore, the boundary value is given by

φ0 ∼ φ̄∆ := lim
z→0

φ0, (5.16)

where φ̄∆ is a z-independent function. Until now we considered the small and the large
root of eq. (5.6) separately, and in that case, eq. (5.15) just works fine. However, the
most general solution of the equation of motion (5.2) is a linear combination of the two
fields with different ∆. Without restriction on generality, let us for the moment assume
∆ is the small root of eq. (5.6). The solution thus behaves at the boundary as

φ ∼ z∆φ̄∆ + zd−∆φ̄d−∆, (5.17)

where also φ̄d−∆ is a z-independent function. Note that φ0 still satisfies φ0 ∼ φ̄∆ on the
boundary and is thus regular. A rescaling of φ by z∆−d would be singular instead.

Now that it is known how a general φ behaves on the boundary, one might ask if there
exist constraints φ̄∆ and φ̄d−∆ are subject to. Indeed, there are. Reconsider the variation
of the action given in eq. (5.1) without omitting the boundary term:

δS0 = −
∫

dxd+1
√
−gδφ

(
−� +m2

)
φ+

1

2

∫
∂

dx0 · · · dxd−1

(az)d−1
[φ(∂zδφ)− (∂zφ)δφ] , (5.18)

where ∂ stands for the boundary of AdSd+1. Thus, contrary to our statement above, the
principle of least action requires φ not only to obey the equation of motion (5.2), but also
to fulfill some boundary conditions such that the second integral in eq. (5.18) vanishes.
Such a boundary condition may be given by

z∂zφ
∣∣
∂

= Cφ
∣∣
∂
, (5.19)

with an arbitrary function C, normally taken to be constant. Assuming C = ∆, the
above condition can be restated as

z∆−d (z∂z −∆)φ
∣∣
∂

= 0. (5.20)

The prefactor was included to obtain a finite relation on the boundary. This fixes
φ̄d−∆ = 0, but places no restriction on φ̄∆. Moreover, in terms of φ0, the constraint reads
∂zφ0|∂ = 0 with arbitrary φ0|∂ . Thus, eq. (5.20) imposes Neumann boundary conditions
on φ0. On the other hand, let us assume C = d−∆, and therefore

z−∆ (z∂z − d+ ∆)φ
∣∣
∂

= 0. (5.21)

This now requires φ̄∆ = 0 and places no restriction on φ̄d−∆. Equivalently, we have that
φ0|∂ = 0 whereas ∂zφ0|∂ is arbitrary. These are Dirichlet boundary conditions on φ0. In
the particular case where the roots coincide5, i.e., ∆ = d/2, one has the freedom to either
impose Neumann or Dirichlet conditions on φ0.
5This happens to scalar fields saturating the Breitenlohner–Freedman bound.
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Let us make a concluding consideration on boundary conditions. It is clear that
eq. (5.19) does not describe the most general boundary condition possible; in fact the
Neumann and Dirichlet conditions are the most elementary ones. One could, for instance,
choose a nonconstant function C. An even more general boundary condition can be
imposed by requiring [113]

z∂zφ(xα, z)
∣∣
∂

=

∫
∂

dx′0 · · · dx′d−1f(x′α, xα)φ(x′α, z), (5.22)

where f(x′α, xα) is symmetric in xα and x′α. Nevertheless, in this thesis we proceed by
considering the Neumann and Dirichlet boundary conditions as described above and we
simply denote φ̄∆ and φ̄d−∆ by φ̄.

Canonical quantization.
By promoting akα,kz , a∗kα,kz to operators and imposing the (equal time) canonical commu-
tation relations (3.25), where the canonically conjugate variable (cf. eq. (3.24)) is given
by

π =
∂tφ

(az)d−1
, (5.23)

one gets, as expected,

[akα,kz , a
†
k′α,k

′
z
] =δ(k1 − k′1) · · · δ(kd−1 − k′d−1)δ(kz − k′z),

[akα,kz , ak′α,k′z ] =[a†kα,kz , a
†
k′α,k

′
z
] = 0.

(5.24)

Again, we define the vacuum state as the state annihilated by all operators akα,kz
and construct a basis of the Fock space F by consequent application of a†kα,kz on that
state. Although the vacuum may not be unique, this is not of concern to us. What is
fundamental is that it is invariant under all Killing vectors (4.31) of AdSd+1.

Symmetries.
The symmetry properties of AdSd+1 were already discussed in section 4.2. To each Killing
vector in eq. (4.31) there is a conserved charge, defined by eq. (3.12). In particular, also
the Hamilton operator, the charge related to the global time-like Killing vector Kt, is a
conserved charge.

The propagators.
Computing the field commutator at different space-time points x1, x2 ∈ AdSd+1 gives

[φ(x1), φ(x2)] =− iad−1z
d
2
1 z

d
2
2

∫ ∞
0

dkz kzJ∆− d
2
(kzz1)J∆− d

2
(kzz2)

× [G+(x1 − x2; kz)−G−(x1 − x2; kz)],

(5.25)

where G±(x1 − x2; kz) are the advanced and retarded propagators of flat Md−1,1 space-
time, cf. eq. (2.112). In fact, all Green functions in Poincaré coordinates can be
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derived from the Green functions of Minkowski space-time, and, in particular, also the
Feynman propagator of anti–de Sitter space-time [114]. Given that the chosen boundary
conditions are either Neumann or Dirichlet, the singularities of these propagators are of
the Hadamard form [115, 116].
Let us assume for the moment that z1 = z2 take a fixed value. One may argue that

the field commutator (5.25) satisfies the microcausality condition (A6) within the leaf
defined by the fixed radial coordinate. So it appears that the restriction to that leaf
yields a description of a particle propagating in (d−1)-dimensional Minkowski space-time.
Moreover, it seems reasonable to interpret kz as the mass of the particle since, according
to eq. (5.7), also the spectrum condition (A1) is then straightforwardly satisfied. However,
this interpretation turns out to be wrong, as kz takes any nonnegative value and therefore
does not yield a discrete particle spectrum. Nevertheless, the idea is not completely
invalid, as we will explain now.

Brane restriction.
The Poincaré coordinates of anti–de Sitter space-time make it evident that each value of z
defines a time-like hypersurface. One might ask if it is possible to restrict quantum fields
of AdSd+1 on these branes at fixed z. More precisely, can we construct a one-parameter
family of quantum field theories, each living on the corresponding space-time submanifold
with the topology R× Sd−1?

Let us first address this question in flat Minkowski space-time, where it is already a
nontrivial statement since quantum fields are distributions which only become operators
by smearing them with appropriate test functions. It was shown in ref. [117] that it is
only necessary to smear the field operators in the time-like direction alone in order to get
meaningful operators. Hence, quantum fields restricted on time-like hypersurfaces exist
as distributions in a space-time of one dimension less, whereas on space-like hypersurfaces
they do not.
These restricted quantum fields on a time-like hypersurface obviously inherit many

properties from the Wightman axioms (A1-A6) satisfied by the original quantum field.
The first thing to note is that the Hilbert space for both theories is the same. Thus,
the domain condition (A2), the vacuum condition (A3), and the completeness condition
(A4) instantly follow. Moreover, also the spectrum condition (A1) is preserved, since
the forward cone C+ is contained in the forward cone of the restricted quantum field.
The same applies for the microcausality condition (A6); space-like separations on the
hypersurface are also space-like separations on the original space-time, hence the field
commutator vanishes. Only the covariance condition (A5) requires a limitation. It is
expected that only the hypersurface-preserving subgroup acts on the restricted fields.

It is thus clear that a quantum field on Minkowski space-time, restricted on a time-like
hypersurface, describes a full quantum field theory in the Wightman sense. This result
has been generalized to the class of warped manifolds, which also includes the anti–de
Sitter space-time [118].
Therefore, we expect the brane theory at fixed values of z to satisfy the Wightman
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axioms of a Poincaré covariant quantum field theory in d-dimensional Minkowski space-
time Md−1,1. None of these theories are conformally covariant since the family parameter
z sets a scale. But the brane restriction on the limiting brane z = 0 is different. For
scalar fields, it was shown that the boundary field φ̄ defines also a Wightman quantum
field theory in d-dimensional Minkowski space-time Md−1,1 [119]. However, this quantum
field theory comes with an enhanced symmetry group, the conformal group, inherited
from the isometry group of AdSd+1. As we will see in the next section, the theory of a
free massive scalar field in AdSd+1 induces a fully consistent conformal field theory on
the boundary, yielding a simple example of the AdS/CFT correspondence.
As a concluding remark we recall that the analytic continuation of the Wightman

distributions illustrated in section 2.3 was performed using the Wightman axioms, in
particular axioms (A1,A5,A6). Since each brane of AdSd+1 allows a description of a
quantum field theory in terms of the Wightman axioms, one can analytically continue the
Wightman distributions at each brane separately. Thus, the Wick rotation is well-defined
if performed in the variables xα alone [120].

5.2 Correlation functions
From now on until chapter VII, we will deal exclusively with Euclidean anti–de Sitter
space (EAdS, also called hyperbolic space) Hd+1. Specifically, we employ a massive scalar
field theory on Hd+1 with Euclidean action

S0[φ] =
1

2

∫
dd+1x

√
g
[
gµν(∇µφ)(∇νφ) +m2φ2

]
. (5.26)

This theory is related by a Wick rotation to the scalar quantum field theory on AdSd+1

given by the action (5.1). The reason to use the Euclidean counterpart is multifold. First,
in Hd+1 causality is not a concern. Second, we will make extensive use of the Schwinger
parametrization trick, which requires Euclidean signature of the metric to be rigorous.
And third, the conformal coordinates, the Euclidean version of the Poincaré coordinates
to AdSd+1, cover the whole space Hd+1 instead of only half of it.

Geometry of hyperbolic space.
Let us shortly review some properties of Euclidean anti-de Sitter space. Analogously
to AdSd+1, the hyperbolic space Hd+1, can be embedded into a flat ambient space, this
time however in Minkowski space-time Md+1,1. Precisely, Hd+1 is one of the sheets of the
two-sheeted hyperboloid satisfying the quadric (see figure 3)

(X0)2 + (X1)2 + · · ·+ (Xd)2 − (Xd+1)2 = − 1

a2
. (5.27)

Note that the quadric (4.6) defining AdSd+1 is related to the above quadric (5.27) via
the substitution X0 → iX0. Thus, in terms of the Poincaré coordinates, this is indeed
tantamount to Wick-rotating the time coordinate t→ it. As asserted in section 5.1, this
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J

z > 0

z < 0

Xd+1

Xd

X0

Figure 3: Euclidean anti de–Sitter space and its boundary J at infinity.

Wick rotation is well-defined since it is applied to a nonradial coordinate.
The isometry group of Hd+1 is given by O(d + 1, 1). Moreover, it is topologically
equivalent to a (d+1)-dimensional open ball Bd+1 [31], and thus the conformal completion
corresponds to the topological closure of the open ball. Therefore, the conformal boundary,
given by the limit points of Bd+1, is topologically equivalent to a d-dimensional sphere
Sd. In order to relate this to the discussion of section 4.3, recall that, by means of the
stereographic projection, the sphere Sd is homeomorphic to Rd ∪ {∞}.

We will generally proceed without altering the notation when passing from Lorentzian
quantities to their Euclidean counterparts. Thus, from now on any appearing quantity is
intended as an Euclidean quantity unless otherwise stated. Owing to the distinguished
significance of the coordinate z, let us, in what follows, denote a point x ∈ Hd+1 as
x = (z, xi) or, alternatively, as x = (z, xi). In other words, let us identify x0 with z.
Furthermore, let us denote

xi
2

= δijδ
i
iδ
j
jx

ixj. (5.28)

In this notation, the squared line element in conformal coordinates reads

ds2 =
1

a2z2
(dz2 + dxi

2

), (5.29)

and hence g = 1/(az)2(d+1).
We will make extensive use of a dimensionless quantity, K, related to the geodesic

distance ρ (see appendix A for its derivation in AdSd+1) as follows

K :=
1

cosh aρ
. (5.30)
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Expressed in conformal coordinates, it reads

K =
2zw

(xi − yi)2 + z2 + w2
. (5.31)

This quantity is invariant under the Lorentz group O(d+ 1, 1). For further reference we
note that, at the conformal boundary, we have

K∆ ∼ z∆K̄∆, (5.32)

where
K̄ =

2w

(xi − yi)2 + w2
(5.33)

is the usual bulk-to-boundary propagator [31]. Clearly, this quantity vanishes at the
boundary and needs to be rescaled, as explained in section V. Nevertheless, in what
follows, we will leave the procedure implicit.
Later on, it will also be useful to know how K behaves in the flat space limit. This

limit corresponds to sending the parameter a to 0, as one can easily see from eq. (4.7).
By introducing d-dimensional hyperspherical coordinates with radius

R :=
√

(XA)2 + (Xd+1)2, (5.34)

we can rewrite the squared line element as

ds2 =
1

1 + a2R2
dR2 +R2dΩ2

d, (5.35)

where dΩ2
d is the metric on a d-dimensional hypersphere Sd. To simplify matters, let us

settle down to a standard point Y d+1 = 1
a
, Y 0 = . . . = Y d = 0. Then, it is straightforward

to show that the relation between the radial coordinate R and K is given by

K =
1√

a2R2 + 1
, (5.36)

and hence the flat space limit yields

K = 1− 1

2
a2R2 +O(a4). (5.37)

The scalar propagator.
Let us now compute the propagator Λ(x, y;m) for the scalar field. By definition, Λ(x, y;m)
satisfies the equation of motion following from the variation of the action (5.26):

(
−� +m2

)
Λ(x, y;m) =

1
√
g
δ(d+1)(x− y), (5.38)



74 V Free scalar QFT in (E)AdS

where m is the mass of the scalar field, see eq. (5.26). Making use of the fact that Λ is a
function of the geodesic distance (or equivalently K), we find that

� = a2K2(1−K2)
∂2

∂K2
− a2K

(
d− 1 + 2K2

) ∂

∂K
. (5.39)

A derivation of the above formula is given in appendices B and C. Right now, it suffices
to note that � is proportional to JABJAB, and the proportionality factor can be fixed by
taking the flat space limit a→ 0. Instead of giving right away the general solution of eq.
(5.38), let us first study the asymptotic behavior of the above differential equation at the
boundary of Hd+1. In the limit, K → 0, the homogeneous part of eq. (5.38) becomes an
Euler differential equation:(

−a2K2 ∂2

∂K2
+ a2K(d− 1)

∂

∂K
+m2

)
Λ(K;m) = 0. (5.40)

One can easily check that Λ(K;m) = K∆, with ∆ given in eq. (5.6), solves the above
equation. Note that to each value of the mass m, there usually correspond two different
values of ∆. In this regard, bearing in mind the relation between m and ∆, let us
henceforth express the propagator by Λ(x, y; ∆) or Λ(K; ∆), i.e., as a function of ∆
instead of m. The solutions to eq. (5.38) are well-known (e.g., ref. [121]) and can be
expressed in terms of hypergeometric functions 2F1:

Λ(K; ∆) = C∆K
∆

2F1

[
∆

2
,
∆ + 1

2
; ∆ + 1− d

2
;K2

]
. (5.41)

As expected, in the limit K → 0, the above solutions are proportional to K∆. Moreover,
these solutions correspond to the propagators satisfying the Neumann and Dirichlet
boundary conditions. The coefficient C∆ is fixed by eq. (5.38). In fact, using hyperspher-
ical coordinates, see eq. (5.34), and integrating eq. (5.38) over a small ball containing
R = 0, leads to

C∆ =
ad−1Γ(∆

2
)Γ(∆+1

2
)

4π
d+1

2 Γ(∆ + 1− d
2
)
. (5.42)

In the flat space limit, Λ(K; ∆) reduces6 to the Green’s function of the Laplacian in Rd+1:

Λ(K; ∆) =
Γ
(
d+1

2

)
2(d− 1)π

d+1
2 Rd−1

+O(a). (5.43)

The higher-point functions.
The correlation functions (see section 2.3) of our free scalar field theory can be written
entirely in terms of the scalar propagator (5.41). To this aim, let us introduce the
generating functional:

Z0[j] :=

∫
Dφ e−S0[φ]+

∫
dd+1x j(x)φ(x), (5.44)

6up to a sign, due to eq. (5.38)
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where j is the source function, and the integral runs over all possible field configurations
φ(x). In the case under consideration, Z0[j] can be found to be [81]

Z0[j] = Z0[0]e
1
2

∫
dd+1x dd+1y j(x)Λ(x,y;∆)j(y). (5.45)

The connected correlation functions are generated via the relation

〈φ(x1) · · ·φ(xN)〉0 =
1

Z0[0]

δN

δj(x1) · δj(xN)
Z0[j]

∣∣
j=0
, (5.46)

and hence, the two- and four-point functions read, respectively,

〈φ(x1)φ(x2)〉0 =Λ(x1, x2; ∆),

〈φ(x1)φ(x2)φ(x3)φ(x4)〉0 =Λ(x1, x2; ∆)Λ(x3, x4; ∆)

+Λ(x1, x3; ∆)Λ(x2, x4; ∆) + Λ(x1, x4; ∆)Λ(x2, x3; ∆).

(5.47)

5.3 The holographic correlators and the CFT dual
In order to find the dual to the theory of a free massive scalar on Hd+1, let us first take
the correlators in eq. (5.47) and send them to the boundary. The resulting Witten two-
and four-point functions are then given by

〈φ̄(x1)φ̄(x2)〉0 =
2∆C∆

r2∆
12

,

〈φ̄(x1)φ̄(x2)φ̄(x3)φ̄(x4)〉0 =
4∆C2

∆

(r12r34)2∆

[
1 + v∆ +

v∆

(1− Y )∆

]
,

(5.48)

where r2
ij := (xi − xj)2 and where we introduced the conformal invariants

v =
r2

12r
2
34

r2
14r

2
23

, Y = 1− r2
13r

2
24

r2
14r

2
23

. (5.49)

The original prescription of the AdS/CFT correspondence is given in the following
terms: consider the partition function of the fields φ, with fixed boundary values φ̄, and
interpret these boundary values as the source for the operator O∆ of the conformal field
theory [31]. Although this proposal has been proven reliable in many cases, we will
use a more immediate, yet equivalent, prescription [122]. Specifically, we interpret the
boundary limit φ̄ of the bulk field φ as the dual to the conformal field theory operator
O∆. In this framework, the boundary limit of the bulk correlation functions, the Witten
correlators, correspond directly to the correlation functions of the dual operator O∆.
Concerning our case of a free massive scalar field theory, we identify

〈φ̄(x1) · · · φ̄(xN)〉0 ≡ 〈O∆(x1) · · · O∆(xN)〉, (5.50)
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and, therefore, the dual operator O∆ is a real scalar operator satisfying

〈O∆(x1)O∆(x2)〉 =
2∆C∆

r2∆
12

,

〈O∆(x1)O∆(x2)O∆(x3)O∆(x4)〉 =
4∆C2

∆

(r12r34)2∆

[
1 + v∆ +

v∆

(1− Y )∆

]
.

(5.51)

An immediate consequence is that 〈O∆(x1)O∆(x2)〉 does not satisfy a linear second order
differential equation, unless ∆ = (d− 2)/2. This can be seen by dimensional analysis.
Hence, the CFT operator O∆ is not, in general, a free operator. However, as one can
see, for example, from the four-point function in eq. (5.48), it does obey a factorization
property:

〈O∆(x1)O∆(x2)O∆(x3)O∆(x4)〉 = 〈O∆(x1)O∆(x2)〉〈O∆(x3)O∆(x4)〉+ permutations.

It can easily be checked that, by means of this factorization property, all correlation
functions are fully determined by the two-point function. Hence, these operators are
generalized free fields, which were already introduced at the end of section 2.4.
It would be of great interest to know which kind of theory of generalized free fields

emerges at the boundary. While it is very difficult to indicate the explicit model, a
detailed study can reveal much, or even all, of its properties. The most promptly
evident one is that we are indeed dealing with a conformal field theory, as the correlation
functions for the scalar operator O∆ of dimension ∆ are exactly of the form dictated by
conformal invariance [123]; the correlation functions (5.51) behave covariantly under the
conformal transformations generated by Pi, Lij, Ki and D given in eq. (4.36). Note that
the dimension ∆ gives the scaling behavior under dilatations of the operator O∆ at the
origin:

[D,O∆(0)] = ∆O∆(0). (5.52)

Additionally, Pi and Ki act, respectively, as raising and lowering operators on the CFT
operators at the origin:

[D, [Pi,O∆(0)]] = (∆+1)[Pi,O∆(0)], [D, [Ki,O∆(0)]] = (∆−1)[Ki,O∆(0)]. (5.53)

So how do we examine the conformal field theory on the boundary? The main target may
be to find the full spectrum of the theory, but it suffices to find all the primaries, labeled
by OI with index I, contained in the spectrum of our CFT. Primaries of dimension ∆I

are operators of lowest conformal weight:

[D,OI(0)] = ∆IOI(0), [Ki,OI(0)] = 0. (5.54)

Note that these conditions are preserved by the action of Lij on OI(0) and hence the space
of primaries carries representations of the subgroup SO(d), labeled by the spin quantum
number l. Examples of primaries are the unit operator and O∆ itself. The remaining
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operators of the theory, the descendants, can be constructed out of the primaries by
acting repeatedly with the momentum generator Pi on them.
A full characterization of all primaries can be realized by comparing the correlation

functions with the operator product expansion (OPE). The OPE between two primaries
reads [123]

OI(x1)OJ(x2) =
∑
K

A1/2
IJK

(
OK(x1)

r∆I+∆J−∆K
12

+ descendants

)
, (5.55)

where A1/2
IJK are called7 OPE coefficients. Now, applying the OPE on the two- and four

point functions given in eq. (5.51), we can infer that the conformal field theory contains
a tower of conformal primaries of conformal dimension 2∆ + 2n + l of all even spins
l. Schematically, these operators are of the form :O∆�n∂lO∆ :. We will discuss this in
detail in section 6.5, where an explicit derivation will be given via conformal blocks [124]
instead of the operator product expansion.

Our boundary theory satisfies crossing symmetry, which originates from the associativity
of the operator product expansion applied on the correlation functions, and8 unitarity.
The latter follows from the requirement of a positive definite inner product and reflects
in the following constraints for any primary [123]:

∆I ≥

{
d−2

2
for l = 0,

d+ l − 2 for l > 0,
(5.56)

with exception of the unit operator, whose dimension is zero. If the primary satisfies the
above inequality, then also the related descendants do.
Hence, a free massive scalar field theory in AdSd+1 with ∆ ≥ (d − 2)/2 defines a

consistent conformal field theory on the boundary. The main scope of this thesis will be
to test the validity of the AdS/CFT correspondence on a deformation of the above theory.
At tree level, hence by considering solely classical contributions to the interaction, the
duality is already successfully verified [125]. It will become clear in the next chapter that
the dual theory is not anymore described by generalized free fields, since the factorization
property is absent. Another novelty is that the dimensions of the operators receive
corrections called anomalous dimensions, and we will derive them explicitly.

7Interestingly, a data set containing the OPE coefficient and the dimension of each primary uniquely
fixes the conformal field theory.

8In Euclidean space, unitarity is also called reflection positivity.
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In the previous chapter we discussed the AdS/CFT correspondence in the setting of
a free scalar field theory in (Euclidean) anti–de Sitter space, which was shown to lead
to a consistent CFT dual on its boundary. The verification of the duality was possible
since the free theory is analytically solvable. As soon as an interaction is turned on, full
analytical solutions may not be known, as it is the case for the model considered here.
Hence, a verification of the AdS/CFT correspondence can, at best, only be performed
perturbatively. In this chapter we will compute the two- and four-point functions up to
second order in the coupling constant. The obtained results will then be compared with
a general conformal field theory at the boundary.

Consider a scalar field with a quartic self–interaction propagating on a four-dimensional
Euclidean anti–de Sitter H4 background, described by the action

S[φ] =

∫
d4x
√
g

(
1

2
gµν(∇µφ)(∇νφ) +

m2

2
φ2 − λφ

4

4!

)
, (6.1)

where1 λ > 0 is a small dimensionless coupling constant. The classical equation of motion
is given by

(−� +m2)φ = λ
φ3

6
. (6.2)

We take the scalar field to be conformally coupled, i.e., we require the action to be
invariant under Weyl transformations. Let us write the conformal factor as Ω(x) = e2ω(x),
with some scalar function ω(x). Then, the metric changes infinitesimally as

δgµν = 2ω(x)gµν . (6.3)

Assuming m to be dependent on the metric, the requirement of Weyl invariance can be
written as

0 = δS =

∫
d4x

[√
g

2
Tµν δg

µν +
δS[φ]

δφ
δφ

]
=

∫
d4x
√
g ω(x)T

µ
µ , (6.4)

where δS[φ]
δφ

= 0 by means of eq. (6.2). In other words, the trace of the (Euclidean)
stress-tensor

Tµν =
2
√
g

δS[φ]

δgµν
(6.5)

has to vanish on shell. This leads to the constraint

gµν
δm2

δgµν
φ2 =

1

2
�φ2 +m2φ2. (6.6)

1Although the sign of the interaction term is inverted in comparison to standard literature, it does not
affect any of our conclusions. The usual sign can be restored by systematically substituting λ→ −λ.
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By using the following identity for the variation of the Ricci tensor

gρσ δRρσ

δgµν
φ2 =

(
gµν�−∇µ∇ν

)
φ2, (6.7)

which can be derived by double partial integrating the Palatini identity, it is straight-
forward to show that eq. (6.6) admits the solution m2 = R

6
. In H4, the Ricci scalar

takes the value R = −12a2, see eq. (4.3). Therefore, in what follows, we set m2 = −2a2,
corresponding to the dimensions ∆ = 1, 2 as can be seen from eq. (5.6). Note that these
values for ∆ satisfy inequality (5.10). Moreover, the propagator (5.41) simplifies to

Λ(K; ∆) =
a2K∆

4π2(1−K2)
for ∆ = 1, 2. (6.8)

One may ask why we bother taking a conformally coupled scalar. Although this
is certainly not obligatory, there are at least three good reasons for this. First, it
preserves the scale-invariance property of the classical2 φ4 theory of a massless scalar
field in Minkowski space-time M3,1, and hence, it can be thought as the most meaningful
generalization of masslessness in curved space-times. Second, due to Weyl invariance,
it has the nice property that, if φ is a classical solution in one space-time, it is also a
solution in any space-time differing by a Weyl transformation from the original one. And
last but not least, it greatly simplifies the form of the propagator, see eq. (6.8).

6.1 Correlation functions
In analogy to what was done in eq. (5.44), let us introduce the generating functional:

Z[j] :=

∫
Dφ e−S[φ]+

∫
d4x j(x)φ(x), (6.9)

which can be rewritten as

Z[j] = e
∫

d4x
√
g λ

4!(
δ

δj(x))
4

Z0[j], (6.10)

where Z0[j] is the generating functional of the four-dimensional free theory, given by
imposing d = 3 in eq. (5.45). Therefore, it follows directly that

Z[0] = e
∫

d4x
√
g 3λ

4!
Λ(x,x;∆)2

. (6.11)

The interacting, connected correlation functions are related to Z[j] via

〈φ(x1) · · ·φ(xN)〉 =
1

Z[0]

δN

δj(x1) · · · δj(xN)
Z[j]

∣∣
j=0

. (6.12)

2Quantum effects spoil Weyl invariance, as one can see from the nonzero beta function [81].
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This leads to expressions for the two- and four-point functions, given diagrammatically
by

〈φ(x1)φ(x2)〉 = x1 x2
+
λ

2 x1 x2
+
λ2

4 x1 x2

+
λ2

4 x1 x2
+
λ2

6 x1 x2
+O(λ3),

(6.13)

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =3×
x2 x3

x1 x4

+ λ

1×
x4x1

x2 x3

+ 6× 1

2

x1 x4

x2 x3



+
λ2

4

6×
x1 x4

x2 x3

+ 3×
x1 x4

x2 x3

+ 6×
x1 x4

x2 x3



+
λ2

2

4×
x4x1

x2 x3

+ 6× 1

3

x1 x4

x2 x3

+ 3×
x1

x2

x4

x3

+O(λ3),

(6.14)

where we adopted the following Feynman rules:

• each line x y corresponds to the free two-point function Λ(x, y; ∆),

• each four-vertex stands for an integral
∫

d4x
√
g over the vertex point x.

One of the purposes of this work is to calculate all the above diagrams. In the following
two sections, 6.2 and 6.3, we will focus on the one-particle irreducible diagrams, since
all the other diagrams are simple products and/or permutations of the latter. At the
beginning of each of these sections, there will be a figure displaying all the computed
diagrams in the given section. The reader not interested in the details of the calculation
can skip to section 6.5, where a summary of the obtained results is available.
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6.2 Two-point function
In this section, we compute the one-particle irreducible diagrams that contribute to the
two-point function (6.13), or explicitly

x1 x2

I2

x1 x2

H2

x1 x2

L2

x1 x2

K2

.

(6.15)

As a warm-up we compute the mass shift diagram I2, and proceed afterwards in the
calculation of the tadpole diagram H2 and the double tadpole diagram L2. Eventually, we
discuss the technically more challenging sunset diagram K2. For ∆ = 1 we will encounter
infrared divergences which are absent for ∆ = 2.

6.2.1 The mass shift diagram

Strictly speaking, this diagram is not needed in our analysis. Nevertheless, it will appear
as a counterterm of other diagrams. It is therefore convenient to have its form in order
to identify such terms. The mass shift diagram I2 depicted in figure (6.15) corresponds
to the following integral

I2 =

∫
d4x
√
g(x)Λ(x1, x; ∆)Λ(x2, x; ∆). (6.16)

Let us for the moment set the two points x1, x2 to x1 = (z1, 0), x2 = (z2, 0) (the covariant
form will be restored later). By further denoting x2 ≡ xi

2, the integral is then

I2 =
(4z1z2)∆

(4π2)2

∫
d4x

z2∆−4(x2 + z2 + z2
1)2−∆(x2 + z2 + z2

2)2−∆

Π2
i=1[x2 + (z + zi)2][x2 + (z − zi)2]

, (6.17)

where we have used that
√
|g(x)| = 1

a4z4 . As already mentioned, the above integral
features an IR divergence for ∆ = 1, but not for ∆ = 2. To continue, we introduce a
dimensionless regulator σ > 0 which does not affect the ∆ = 2 case:

I2 =
(4z1z2)∆

(4π2)2

∫
d4x

(z2 + σ2f 2(z1, z2))∆−2(x2 + z2 + z2
1)2−∆(x2 + z2 + z2

2)2−∆

Π2
i=1[x2 + (z + zi)2][x2 + (z − zi)2]

, (6.18)

where f(z1, z2) is a nonnegative function which will be determined later by imposing
covariance.



6.2 Two-point function 83

∆ = 1.
The integral (6.18) can be integrated directly. Performing the z-integral and then
integrating over x using three-dimensional spherical coordinates yields in the limit of
small σ

I2 =
z1z2(z1 + z2)−1

4πσf(z1, z2)
+

z1z2

4π2(z2
1 − z2

2)2

[
(z2

1 + z2
2) log

16z2
1z

2
2

(z2
1 − z2

2)2
+ 2z1z2 log

(z1 − z2)2

(z1 + z2)2

]
.

(6.19)
Then, the covariant form of the IR-finite contribution reads

Iregular
2 =

1

8π2

[
K

1−K2
log 4 +

K

1−K2
log

K2

1−K2
+

K2

1−K2
log

1−K
1 +K

]
. (6.20)

On the other hand, the IR-divergent term is not generally covariant for a generic choice
of f(z1, z2). To determine this function we note that a covariant regularization can be
obtained by continuation in ∆, for instance. However, for noninteger values of ∆ the
scalar propagator on AdS is complicated. Still we can proceed, using the fact that for
any covariant infrared regularization, I2 has to obey the inhomogenenous differential
equation

(−�x1 − 2a2) I2 = Λ(x1, x2; ∆). (6.21)

For ∆ = 1, the most general covariant solution is

I2 = c1
K

1−K2
+ c2

K2

1−K2
+

1

8π2

[
K

1−K2
log

K2

1−K2
+

K2

1−K2
log

1−K
1 +K

]
, (6.22)

where the homogeneous part with constants c1, c2 corresponds to free ∆ = 1, 2 propagators.
Now consider the boundary limit:

I2 ∼
(
c1 +

logK

4π2

)
K + c2K

2 +O(K3). (6.23)

The divergent term, whenever an AdS invariant IR regulator is available, should enter in
c1 or c2. The term proportional to c2 produces a fall-off behaviour corresponding to the
∆ = 2 boundary condition. Thus, for ∆ = 1, we set c2 = 0. The divergent part should
therefore be parameterized by c1. Comparing eq. (6.22) with eq. (6.19) uniquely fixes
f(z1, z2) up to a scale as

f(z1, z2) = π
(z1 − z2)2(z1 + z2)

z2
1 + z2

2

. (6.24)

The covariant form of eq. (6.19) then reads

I2 =
1

8π2

[
K

1−K2

(
log 4 +

1

σ

)
+

K

1−K2
log

K2

1−K2
+

K2

1−K2
log

1−K
1 +K

]
,

with boundary limit

I2 ∼ I2 =
K

8π2σ
+

log 2K

4π2
K +O(K3). (6.25)
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∆ = 2.
For ∆ = 2, where there are no IR issues, the evaluation of the integral (6.17) can again
be carried out straightforwardly:

I2 = − 2z1z2

8π2(z2
1 − z2

2)2

[
(z2

1 + z2
2) log

(z1 − z2)2

(z1 + z2)2
+ 2z1z2 log

16z2
1z

2
2

(z2
1 − z2

2)2

]
, (6.26)

which corresponds to the covariant expression

I2 = − 1

8π2

[
K2

1−K2
log 4 +

K

1−K2
log

1−K
1 +K

+
K2

1−K2
log

K2

1−K2

]
. (6.27)

This solution features two properties. Firstly, it solves as well the differential equation
(6.21). Secondly, its behavior at the boundary exhibits a clear similarity to the regular
part of the same expression for ∆ = 1 (cf. eq. (6.25)):

I2 ∼ I2 =
1− log 2K

4π2
K2 +O(K3). (6.28)

As expected, the leading terms of both eqs. (6.25), (6.28) are of order K∆.

6.2.2 The tadpole diagram

The tadpole diagram H2 given in figure (6.15) has the integral expression

H2 =

∫
d4x
√
g(x)Λ(x, x1; ∆)Λ(x, x2; ∆)Λ(x, x; ∆). (6.29)

The expression Λ(x, x; ∆) is clearly ultraviolet divergent, and needs to be regularized. In
principle, we can set it to zero by hand, but we would like to introduce the regulator
that we systematically use later on. In position space, UV divergences result in the limit
of colliding points, where K → 1. The following “rescaling” is AdS-invariant and resolves
the short distance singularity of 1/(1−K)-like expressions

K → K

1 + ε
. (6.30)

With the help of eq. (5.37), we find that in the flat space limit the ε regularization takes
the form

1− K

1 + ε
=

a2r2

2
+ ε

1 + ε
+O(a4). (6.31)

From this it becomes clear that the above regularization carves out a small ε-ball around
the point and then rescales it by 1/(1 + ε). This regularization procedure will be used
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systematically on every UV-divergent integral encountered in this work. More precisely,
for propagators representing internal lines, we rescale each K as in eq. (6.30), i.e.,

Λ(x, y; ∆)→ (1 + ε)2−∆
a2K∆

xy

4π2(1 +Kxy + ε)(1−Kxy + ε)
, (6.32)

while for propagators representing external legs, only thoseK’s appearing in the numerator
are rescaled. Here Kxy stands for K as a function of the points x and y.
Returning to the tadpole diagram, the propagator at coincident points is given by

Λ(x, x; ∆) =
a2

4π2

(1 + ε)2−∆

ε(2 + ε)
. (6.33)

Therefore, the tadpole diagram reduces to the mass-shift diagram (6.16) times a divergent
prefactor

H2 =
a2

8π2

(
1

ε
+

3

2
− 3∆

)
I2 +O(ε). (6.34)

After sending x1 and x2 to the boundary, eq. (6.34) simplifies to

H2 ∼ H2 =
a2

8π2

(
1

ε
+

3

2
− 3∆

)
I2 +O(ε), (6.35)

where I2 is given in eq. (6.25) and eq. (6.28).

6.2.3 The double tadpole diagram

The double tadpole diagram L2 in figure (6.15) corresponds to the following integral

L2 =

∫
d4x
√
g(x)

∫
d4y
√
g(y)Λ(x1, x; ∆)Λ(x2, x; ∆)Λ(x, y; ∆)2Λ(y, y; ∆), (6.36)

which, containing two loops, requires again a regularization. Adopting the regularization
described in section 6.2.2, L2 takes the form

L2 =
a2

(4π2)3

(1 + ε)6−5∆

ε(2 + ε)

∫
d4x
√
g(x)Λ(x1, x; ∆)Λ(x2, x; ∆)

∫
d4y

w4

K2∆
xy

[(1 + ε)2 −K2
xy]

2
.

Let us first consider the integral over y. By the substitution (w, yi) → (w, yi + xi),
it displays manifest independence on the “nonradial” coordinates xi. Then, a simple
rescaling argument can be used to show that the integral also does not depend on the
radial coordinate z. Indeed, any rescaling z → θz, θ > 0 can be undone by a substitution
of the form yi → θyi, w → θw. In particular, we can set z to any value3 z0 > 0. Thus,
the nested integral (6.36) factorizes as

L2 =
a2

(4π2)3

(1 + ε)6−5∆

ε(2 + ε)
M2 × I2 , (6.37)

3We might as well set z0 = 1, but since the integral has to be regularized for ∆ = 1, we keep z0 and
show that the scaling symmetry survives regularization.
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where I2 is the mass shift computed in section 6.2.1 and where

M2 =

∫
d4y

w4

K2∆
x0y

[(1 + ε)2 −K2
x0y

]2
= (2z0)2∆

∫ ∞
−∞

d4y

w4−2∆

Q4−2∆[y2 + (w − z0)2 + εQ]−2

[y2 + (w + z0)2 + εQ]2
.

(6.38)
In the above formula we defined Q = y2 + w2 + z2

0 . For ∆ = 1, M2 exhibits another
IR divergence. In order to introduce the same IR-regulator as in section 6.2.1, note
that the integral above is essentially the mass shift diagram (6.16) evaluated by setting
x1 = x2 = (z0, 0) after rescaling K as in eq. (6.30) to regulate the resulting UV divergence.
It is not hard to see that f(z1, z2) given in eq. (6.24) generalizes to

f(z1, z2) = π
[(z1 − z2)2 + ε(z2

1 + z2
2)][(z1 + z2)2 + ε(z2

1 + z2
2)]

(z2
1 + z2

2)(z1 + z2)
, (6.39)

which, by colliding the points, reduces to z0 up to a coefficient. Thus, we regulate the
integral as follows:

M2 = (2z0)2∆

∫
d4y

(w2 + σ2z2
0)2−∆

Q4−2∆

[y2 + (w + z0)2 + εQ]2[y2 + (w − z0)2 + εQ]2
,

where the coefficient in front of σ is irrelevant due to the scale invariance in z0 (which
survives the regularization) explained above. Owing to the w → −w symmetry of the
integral, let us double the integration domain:

M2 =
(2z0)2∆

2

∫ ∞
−∞

d4y

(w2 + σ2z2
0)2−∆

Q4−2∆

[y2 + (w + z0)2 + εQ]2[y2 + (w − z0)2 + εQ]2
.

∆ = 1.
For ∆ = 1, the integral (6.38) becomes

M2 = 2z2
0

∫ ∞
−∞

d4y

w2 + σ2z2
0

Q2

[y2 + (w + z0)2 + εQ]2[y2 + (w − z0)2 + εQ]2
, (6.40)

or equivalentlyM2 =M+
2 +M−

2 , where

M±
2 =

z2
0

(1 + ε)2

∫ ∞
−∞

d4y

w2 + σ2z2
0

1

[y2 + (w + z0)2 + εQ][y2 + (w ± z0)2 + εQ]
. (6.41)

In the last step we used the w → −w symmetry and the identity

2(1 + ε)Q
[y2 + (w − z0)2 + εQ]−1

[y2 + (w + z0)2 + εQ]
=

1

[y2 + (w + z0)2 + εQ]
+

1

[y2 + (w − z0)2 + εQ]
.

The easiest way to deal with integrals of this form is to implement Schwinger parameters.
Introducing one Schwinger parameter for each of the three factors in the denominator,
the integral (6.41) reads

M±
2 =

z2
0

(1 + ε)2

∫ ∞
−∞

d4y

∫ ∞
0

dt1dt2dt3 e
−(t1+t2)(1+ε)Q−(t1±t2)2wz0−t3(w2+σ2z2

0). (6.42)
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Now, the spatial integral is a straightforward Gaussian integral resulting in

M±
2 =

π2z2
0

(1 + ε)3

∫ ∞
0

dt1dt2dt3
e
−z2

0(1+ε)
(t1+t2+t3)2− (t1±t2)2

(1+ε)2
+(σ2−1)t3(t1+t2+t3)

t1+t2+t3

(t1 + t2)
3
2

√
t1 + t2 + t3

, (6.43)

where we substituted t3 → (1 + ε)t3. Let us introduce the following coordinates: ti = ssi,
which simply correspond to a rescaling of our original coordinates ti by a factor s.
Accordingly, one can rewrite the measure as

Πn
i=1dti = Πn

i=1dsi

∫ ∞
0

ds sn−1 δ(1−
n∑
i=1

si), ∀n ∈ N, (6.44)

assuming that the condition s =
∑

i ti is satisfied. Hence, eq. (6.43) becomes

M±
2 =

π2z2
0

(1 + ε)3

∫ ∞
0

ds1ds2ds3ds δ(1−
3∑
i=1

si)
e
−sz2

0(1+ε)

(
1− (s1±s2)2

(1+ε)2
+(σ2−1)s3

)

(s1 + s2)
3
2

, (6.45)

where we already integrated over s3. Integrating over s yields

M±
2 =

π2

(1 + ε)4

∫ ∞
0

ds1ds2ds3
δ(1− s1 − s2 − s3)

(s1 + s2)
3
2

[
1− (s1±s2)2

(1+ε)2 + (σ2 − 1)s3

] , (6.46)

which further leads, in the limit σ → 0, to

M+
2 =

π2

(1 + ε)4

(
π

σ
− 2 + 2

arccoth(1 + ε)

1 + ε

)
+O(σ) (6.47)

and

M−
2 =

π2

(1 + ε)4

(
π

σ
− 1 +

ε(2 + ε) log ε
2+ε

2(1 + ε)

)
+O(σ). (6.48)

Eventually, the full double tadpole diagram is given by

L2 =
a2π2

2(4π2)3

(−3 + 2π
σ
− log ε

2

ε
+ 11− 7π

σ
+

11

2
log

ε

2

)
I2 +O(ε, σ). (6.49)

∆ = 2.
By setting ∆ = 2 and rescaling z0 to 1, the integral (6.38) becomes

M2 = 8

∫ ∞
−∞

d4y
1

[y2 + (w + 1)2 + εQ]2[y2 + (w − 1)2 + εQ]2
. (6.50)
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Again, it is favourable to introduce Schwinger parameters. This results in

M2 = 8

∫ ∞
−∞

d4y

∫ ∞
0

dt1dt2 t1t2 e
−(t1+t2)(1+ε)Q−(t1−t2)2w, (6.51)

which allows for a simple spatial integration, yielding

M2 = 8π2

∫ ∞
0

dt1dt2
t1t2

(t1 + t2)2
e

(t1−t2)2

t1+t2
−(t1+t2)(1+ε)2

. (6.52)

After the substitution ti → ssi, the integral becomes

M2 = 8π2

∫ ∞
0

ds1ds2ds
s s1s2 δ(1− s1 − s2)

(s1 + s2)2
e
−s (s1+s2)2(1+ε)2−(s1−s2)2

s1+s2 . (6.53)

Then, by removing the Schwinger parameter s and subsequently integrating over s2, one
gets

M2 = 8π2

∫ 1

0

ds1
s1(1− s1)

[(1 + ε)2 − (2s1 − 1)2]2
. (6.54)

Eventually, the evaluation of the last integral yields

M2 = −π2
2(1 + ε) + [2 + ε(2 + ε)] log ε

2+ε

2(1 + ε)3
. (6.55)

For small ε, the full solution for the double tadpole diagram reads

L2 =
a2π2

2(4π2)3

(
14 + 13 log ε

2

2
−

1 + log ε
2

ε

)
I2 +O(ε). (6.56)

We close this section with a comment on the renormalization scale. When analyzing
QFT in AdS typically one encounters a separation of scales into a UV scale which is
related to the scale of local physics and an IR scale given by the AdS radius. In the
present context, however, we will be interested in boundary-to-boundary correlation
functions for which the AdS radius is the only relevant scale and the UV scale is absent.
This is also implicit in the choice of the dimensionless regulator ε in eq. (6.30), which is
related to a dimensionful cut-off Λ through Λ = ε/a.

6.2.4 The sunset diagram

The sunset diagram K2 in figure (6.15) instructs us to compute

K2 =

∫
d4y
√
g(y)

∫
d4x
√
g(x)Λ(x1, x; ∆)Λ(x, y; ∆)3Λ(x2, y; ∆). (6.57)

Let us split it into two parts, the first one being

J2 =

∫
d4y
√
g(y)Λ(x, y; ∆)3Λ(x2, y; ∆). (6.58)



6.2 Two-point function 89

As we are eventually interested in the anomalous dimensions of the operators on the
boundary we can already take the boundary limit for x2. Then, J2 takes the following
form

J2 ∼ J2 = (1 + ε)6−5∆ a8z∆
2

(4π2)4

∫
d4y
√
g(y)

K3∆
xy

(1−Kxy + ε)3(1 +Kxy + ε)3
K̄∆
x2y

. (6.59)

In the last step we also introduced the UV regulator, cf. eq. (6.32). Using translation
symmetry, we can shift x and x2 by (0,−xi2), which leads to

J2 = (1 + ε)6−5∆ a8z∆
2

(4π2)4

∫
d4y
√
g(y)

K3∆
x′y

(1−Kx′y + ε)3(1 +Kx′y + ε)3
K̄∆
x′2y

, (6.60)

where x′2 = (0, 0). Next, as was done in ref. [126], we use inversion symmetry4 to simplify
the above expression. In particular, we invert every point by itself, which therefore results
in sending x′2 to infinity. For the propagators, this gives

Kx′y = Kx′′y′′ , K̄x′2y
= x′′22 K̄x′′2y

′′ = 2w′′, (6.61)

where we denoted the inverted points by double primes. Note that the measure of
the integral does not change under the inversion. A subsequent variable substitution
(w′′, yi

′′
) = (w, yi + xi

′′
) eventually gives

J2 = (1 + ε)6−5∆a
4(16z2)∆z′′3∆

2(4π2)4

∫ ∞
−∞

d3y dw
Q6−3∆[y2 + (z′′ − w)2 + εQ]−3

w4−4∆[y2 + (z′′ + w)2 + εQ]3
, (6.62)

where Q = y2 + z′′2 + w2 and we used again the fact that the integrand is symmetric
under w → −w.

∆ = 1.
For ∆ = 1, the integral (6.62) becomes

J2 = (1 + ε)
8a4z2z

′′3

(4π2)4

∫ ∞
−∞

d3y dw
Q3

[(y2 + (z′′ − w)2 + εQ)(y2 + (z′′ + w)2 + εQ)]3
.

A decomposition in partial fractions yields

J2 =
a4z2z

′′3

(4π2)4(1 + ε)2

∫ ∞
−∞

d3y dw

[
1

y2 + (z′′ − w)2 + εQ
+

1

y2 + (z′′ + w)2 + εQ

]3

.

Using the w → −w symmetry, one can write J2 = Ja2 + J b2 , where

Ja2 =
2a4z2z

′′3

(4π2)4(1 + ε)2

∫ ∞
−∞

d3y dw
1

[(1 + ε)Q+ 2z′′w]3
(6.63)

4The inversion operator I acts on conformal coordinates as I(xi) = xi

x2+z2 , I(z) = z
x2+z2 . See also

section 4.2.
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and

J b2 =
6a4z2z

′′3

(4π2)4(1 + ε)2

∫ ∞
−∞

d3y dw
1

[(1 + ε)Q+ 2z′′w]2[(1 + ε)Q− 2z′′w]
. (6.64)

The computation of Ja2 is rather simple. Indeed, the introduction of one Schwinger
parameter gives

Ja2 =
a4z2z

′′3

(4π2)4(1 + ε)2

∫ ∞
0

dt t2
∫ ∞
−∞

d3y dw e−t(1+ε)Q−2tz′′w, (6.65)

allowing for the integration over space,

Ja2 =
π2a4z2z

′′3

(4π2)4(1 + ε)4

∫ ∞
0

dt e
−tz′′2(1+ε)

[
1− 1

(1+ε)2

]
=
a4z2z

′′

(4π2)4

π2

(1 + ε)3ε(2 + ε)
. (6.66)

For small values of ε, this simplifies to

Ja2 =
π2a4z2z

′′

(4π2)4

(
1

2ε
− 7

4

)
+O(ε). (6.67)

For the calculation of J b2 , the introduction of two Schwinger parameters is more convenient,

J b2 =
6a4z2z

′′3

(4π2)4(1 + ε)2

∫ ∞
0

dt1dt2 t1

∫ ∞
−∞

d3y dw e−(t1+t2)(1+ε)Q−(t1−t2)2z′′w. (6.68)

Integration over space is now viable and results in

J b2 =
6π2a4z2z

′′3

(4π2)4(1 + ε)4

∫ ∞
0

dt1dt2
t1

(t1 + t2)2
e
−(t1+t2)(1+ε)z′′2

[
1− (t1−t2)2

(t1+t2)2(1+ε)2

]
. (6.69)

Note that the integral does not change if we swap t1 and t2. Therefore one can replace
the t1 in front of the exponential with (t1 + t2)/2. After introducing new coordinates
ti = ssi as done above, the integration over s2 leads to

J b2 =
3π2a4z2z

′′3

(4π2)4(1 + ε)4

∫ ∞
0

ds

∫ 1

0

ds1 e
−s(1+ε)z′′2

[
1− (1−2s1)2

(1+ε)2

]
. (6.70)

Removing the Schwinger parameter s allows one to integrate over s1. Therefore, the final
result for J b2 is given by

J b2 =
3π2a4z2z

′′

2(4π2)4(1 + ε)4
log

2 + ε

ε
= −3π2a4z2z

′′

2(4π2)4
log

ε

2
+O(ε). (6.71)
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∆ = 2.
The integral (6.62) is instead given by

J2 =
a4(16z2)2z′′6

2(4π2)4(1 + ε)4

∫ ∞
−∞

d3y dw
w4

[y2 + (z′′ + w)2 + εQ]3[y2 + (z′′ − w)2 + εQ]3
.

As usual, let us introduce the Schwinger parameters

J2 =
a4(16z2)2z′′6

8(4π2)4(1 + ε)4

∫ ∞
0

dt1dt2 (t1t2)2

∫ ∞
−∞

d3y dw w4 e−(t1+t2)(1+ε)Q−(t1−t2)2z′′w

=
a4(16z2)2z′′6∂2

γ |γ=1

8(4π2)4(1 + ε)6

∫ ∞
0

dt1dt2 (t1t2)2

(t1 + t2)2

∫ ∞
−∞

d3y dw e−(t1+t2)(1+ε)(y2+γw2+z′′2)−(t1−t2)2z′′w,

where in the last step we introduced an auxiliary parameter γ > 0 in order to get rid of
the factor w4 in the numerator. The spatial integration yields

J2 =
a4π2(16z2)2z′′6

8(4π2)4(1 + ε)8
∂2
γ |γ=1

1
√
γ

∫ ∞
0

dt1dt2
(t1t2)2

(t1 + t2)4
e
−(t1+t2)(1+ε)z′′2

[
1− (t1−t2)2

(t1+t2)2(1+ε)2γ

]
.

Let us now apply the substitution ti = ssi. After integrating over s2, we get

J2 =
a4π2(16z2)2z′′6

8(4π2)4(1 + ε)8
∂2
γ |γ=1

1
√
γ

∫ ∞
0

ds

∫ 1

0

ds1 s s
2
1(1− s1)2e

−s(1+ε)z′′2
[
1− (1−2s1)2

(1+ε)2γ

]
.

Integrating over the Schwinger parameter s gives

J2 =
a4π2(16z2)2z′′2

8(4π2)4(1 + ε)6
∂2
γ |γ=1 γ

3/2

∫ 1

0

ds1

[
s1(1− s1)

(1 + ε)2γ − (1− 2s1)2

]2

. (6.72)

Differentiating twice by γ, setting γ = 1, and subsequently integrating over s1, yields

J2 =
a4π2z2

2z
′′2

(4π2)4

[
1

ε
+

1

2
(−1 + 6 log

ε

2
)

]
+O(ε). (6.73)

Recovering the full covariance.
In order to get back the explicit covariant form, let us first note that undoing the inversion
and restoring the translation invariance instructs us to replace

2z′′ → K̄xx2 , (6.74)

which is manifestly covariant. Therefore, it follows that one can write J2 as

J2 =
a4π2

4(4π2)4
K∆
xx2

(
1

ε
+ 3(−1)∆ log

ε

2
− 13

2
+ 3∆

)
. (6.75)
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Furthermore, it is possible to reconstruct the bulk quantity J2. Owing to the covariant
form of J2 in eq. (6.58), it has to correspond to the above result modulo some function
of Kxx2 . In order to find this dependence on Kxx2 , note that

(−�x2 − 2a2)J2 = Λ(x, x2; ∆)3. (6.76)

The solution to the above differential equation is then given by

J2 =
a2π2

4(4π2)3
Λ(x, x2; ∆)

[
1

ε
+ 3(−1)∆ log

ε

2
− 13

2
+ 3∆

+3(−1)∆K3−2∆
xx2

log

(
1 +Kxx2

1−Kxx2

)
− 4(∆− 1)−

2K4−2∆
xx2

1−K2
xx2

]
,

(6.77)

where the integration constants were fixed such that J2 ∼ J2 of eq. (6.75).

Attaching the missing leg.
The full sunset diagram can be obtained by attaching one more leg to J2 we just extracted
the most singular part of, i.e.,

K2 =

∫
d4x
√
g(x)Λ(x1, x; ∆)J2. (6.78)

Then the final result can be expressed in terms of the mass shift I2:

K2 ∼ K2 =
a2π2

4(4π2)3

(
1

ε
+ 3(−1)∆ log

ε

2
− 13

2
+ 3∆

)
I2. (6.79)

It is worth to note that, in contrast to the previously computed diagrams, the sunset
diagram is not proportional to I2. Instead, the proportionality is only given on the
boundary.

6.3 Four-point function
In this section we compute the diagrams that contribute to the four-point function. Up
to the second order in the coupling constant λ, the one-particle irreducible diagrams are

x4x1

x2 x3

I4

x1

x2

x4

x3

K4

. (6.80)

The contact cross diagram I4 is well-known in the literature, see, for instance, ref. [125].
For completeness, we repeat the calculations. Afterwards, we compute the one loop
diagram K4.
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6.3.1 The cross diagram

The cross diagram leads to

I4 =

∫
d4x
√
g(x)Λ(x1, x; ∆)Λ(x2, x; ∆)Λ(x3, x; ∆)Λ(x4, x; ∆). (6.81)

With all external legs on the boundary the integral reduces to

I4 ∼
42∆a4Π4

i=1z
∆
i

(4π2)4
I4, (6.82)

with

I4 =

∫
d4x

z4∆−4

Π4
i=1 [(x− xi)2 + z2]∆

. (6.83)

As opposed to the rest of this thesis, note the extra factor between I4 and I4 which we
introduced in order to conform with the literature. The Schwinger parameterization
yields

I4 =
π

3
2 Γ
(
2∆− 3

2

)
2Γ(∆)4

∫ ∞
0

Π4
i=1

(
dti t

∆−1
i

)
e
−

∑
i<j titjr

2
ij∑

i ti

(
4∑
i=1

ti

)−2∆

. (6.84)

Making the redefinition ti = ssi and performing the integration over s gives

I4 =
π

3
2 Γ
(
2∆− 3

2

)
Γ(2∆)

2Γ(∆)4

∫ ∞
0

Π4
i=1

(
dsi s

∆−1
i

) δ (1−∑4
i=1 si

)[∑
i<j sisjr

2
ij

]2∆
. (6.85)

Now, let us redefine the coordinates as s1 = s and si → ssi for i ≥ 2. The integration
over s leads to

I4 =
π

3
2 Γ
(
2∆− 3

2

)
Γ(2∆)

2Γ(∆)4

∫ ∞
0

Π4
i=2

(
dsi s

∆−1
i

)[∑4
i=2 si

(
r2

1i +
∑

j>i sjr
2
ij

)]2∆
, (6.86)

and a subsequent integration over s2 and s3 yields

I4 =
π

3
2 Γ
(
2∆− 3

2

)
2Γ(2∆)(r23r14)2∆

∫ ∞
0

ds

s
2F1

[
∆,∆; 2∆; 1−

(
η + ζ

ηζ

)2

− (ξs− 1)2

ηζξs

]
. (6.87)

Here, we introduced the conformal invariants

ξ =
r24r34

r12r13

, η =
r14r23

r12r34

, ζ =
r14r23

r13r24

, (6.88)
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where only two of them are independent and these are related to the previous ones by

Y = 1− 1

ζ2
, v =

1

η2
. (6.89)

A change of variables sξ = e2z allows to eliminate the conformal invariant ξ, and eventually
we reach the final form:

I4 =
2π

3
2 Γ
(
2∆− 3

2

)
Γ(2∆)(ηζ Πi<jrij)

2
3

∆

∫ ∞
0

dz 2F1

[
∆,∆; 2∆; 1−

(
η + ζ

ηζ

)2

− 4 sinh2 z

ηζ

]
. (6.90)

Another way to compute I4 is the one adopted in ref. [127]. Symanzik was the first to
note that eq. (6.84) does not change if one substitutes

∑4
i=1 ti with

∑4
i=1 κiti, where the

κi ≥ 0 are not all vanishing:

I4 =
π

3
2 Γ
(
2∆− 3

2

)
2Γ(∆)4

∫ ∞
0

Π4
i=1

(
dti t

∆−1
i

)
e
−

∑
i<j titjr

2
ij∑

i κiti

(
4∑
i=1

κiti

)−2∆

. (6.91)

Let us choose κ2 = κ3 = κ4 = 0, κ1 = 1. Then, the Mellin transform of the exponential
function:

e−x =
1

2πi

∫ −ε+i∞

−ε−i∞
ds Γ(−s)xs, x > 0, (6.92)

is used to substitute e−
t2t4r

2
24

t1 and e−
t3t4r

2
34

t1 . With a redefinition ti → 1/ti, the integration
over t1 becomes straightforward. Then, a subsequent integration over t2, t3 and t4 yields

I4 =
π

3
2 Γ
(
2∆− 3

2

)
(2πi)−2

2Γ(∆)4(ηζ Πi<jrij)
2
3

∆

∫ −ε+i∞

−ε−i∞
dsdt

1

ζ2sη2t
Γ(−s)2Γ(−t)2Γ(s+ t+ ∆)2.

Now, using the identity

1

2πi

∫ −ε+i∞

−ε−i∞
ds zs Γ(−s)2Γ(s+t+∆)2 = Γ(t+∆)2

∞∑
m=0

Γ(t+m+ ∆)2

Γ(2t+m+ 2∆)m!
(1−z)m (6.93)

the integral becomes

I4 =
π

3
2 Γ
(
2∆− 3

2

)
(2πi)−1

2Γ(∆)4(ηζ Πi<jrij)
2
3

∆

∞∑
m=0

(1− 1
ζ2 )m

m!

∫ −ε+i∞

−ε−i∞
dt

1

η2t

Γ(−t)2Γ(t+ ∆)2Γ(t+m+ ∆)2

Γ(2t+m+ 2∆)
.

An integration around the contour with positive real part of t gives

I4 =
π

3
2 Γ
(
2∆− 3

2

)
Γ(∆)4

v∆

(r12r34)2∆

∞∑
m,n=0

Y mvn

m!(n!)2

Γ(n+ ∆)2Γ(n+m+ ∆)2

Γ(2n+m+ 2∆)

×
[
ψ(n+ 1)− 1

2
log v − ψ(n+ ∆)− ψ(n+ ∆ +m) + ψ(2n+ 2∆ +m)

]
,

(6.94)

where for later convenience we used again the conformal invariants v and Y .
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6.3.2 The one loop diagram

The one loop diagram K4 depicted in figure (6.80) is given by the double integral

K4 =

∫
d4x
√
g(x)Λ(x1, x; ∆)Λ(x2, x; ∆)J4, (6.95)

where we defined the sub–integral J4 as

J4 =

∫
d4y
√
g(y)Λ(x, y; ∆)2Λ(x3, y; ∆)Λ(x4, y; ∆). (6.96)

The latter, by sending z3 and z4 to the boundary, takes the form

J4 ∼ J4 = (1 + ε)4−6∆a
8(z3z4)∆

(4π2)4

∫
d4y
√
g(y)

K2∆
xy

(1−Kxy + ε)2(1 +Kxy + ε)2
K̄∆
x3y
K̄∆
x4y
.

As before, the UV divergences are regularized with the help of ε: Kxy → Kxy/(1 + ε).
Furthermore, since the divergence is logarithmic in ε, we can safely ignore the prefactor
(1 + ε)4−6∆ in what follows. Translating the points x, x3, and x4 by (0,−xi4) yields

J4 =
a8(z3z4)∆

(4π2)4

∫
d4y
√
g(y)

K2∆
x′y

(1−Kx′y + ε)2(1 +Kx′y + ε)2
K̄∆
x′3y
K̄∆
x′4y

, (6.97)

where x′4 = (0, 0). As detailed in ref. [126], we use the inversion trick to simplify the
above expression. For the K’s this gives

Kx′y = Kx′′y′′ , K̄x′3y
=

1

x′23
K̄x′′3y

′′ =
1

r2
34

K̄x′′3y
′′ , K̄x′4y

= x′′24 K̄x′′4y
′′ = 2w′′, (6.98)

where the inverted points are denoted by double primes. One more substitution (w′′, yi
′′
) =

(w, yi + xi
′′
) eventually yields

J4 =
a4(16z3z4)∆z′′2∆

2(4π2)4r2∆
34

∫ ∞
−∞

d3y dw
Q4−2∆w4∆−4[y2 + (z′′ − w)2 + εQ]−2

[(x′′′3 − y)2 + w2]∆[y2 + (z′′ + w)2 + εQ]2
, (6.99)

with xi′′′3 = xi
′′

3 − xi
′′ , Q = y2 + z′′2 + w2. Again, we used the symmetry of the integrand

under w → −w.

∆ = 1.
For this value, the integral (6.99) takes the form

J4 =
8a4z3z4z

′′2

(4π2)4r2
34

∫ ∞
−∞

d3y dw
Q2[(x′′′3 − y)2 + w2]−1

[(y2 + (z′′ − w)2 + εQ)(y2 + (z′′ + w)2 + εQ)]2
. (6.100)

The Q in the numerator can be written as

[2(1 + ε)Q]2 =[y2 + (z′′ − w)2 + εQ]2 + [y2 + (z′′ + w)2 + εQ]2

+ 2[y2 + (z′′ + w)2 + εQ][y2 + (z′′ − w)2 + εQ],
(6.101)
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which allows for a splitting of the integral in a divergent part and a regular part:
J4 = Jd4 + Jr4 . Explicitly, one gets

Jd4 =
4a4z3z4z

′′2

(4π2)4r2
34(1 + ε)2

∫ ∞
−∞

d3y dw
1

[y2 + (z′′ − w)2 + εQ]2[(x′′′3 − y)2 + w2]
(6.102)

and

Jr4 =
4a4z3z4z

′′2

(4π2)4r2
34

∫ ∞
−∞

d3y dw
1

[y2 + (z′′ − w)2][y2 + (z′′ + w)2][(x′′′3 − y)2 + w2]
, (6.103)

where for the latter integral, being regular, we already set ε → 0. Additionally, the
regular integral can be further simplified to

Jr4 =
4a4z3z4z

′′2

(4π2)4r2
34

∫ ∞
−∞

d3y dw
1

[y2 + (z′′ − w)2][y2 + z′′2 + w2][(x′′′3 − y)2 + w2]
, (6.104)

by using

2Q

[y2 + (z′′ − w)2][y2 + (z′′ + w)2]
=

1

y2 + (z′′ − w)2
+

1

y2 + (z′′ + w)2
(6.105)

and the symmetry w → −w of the integrand of eq. (6.103). The computation of Jd4 is
rather simple. Introducing two Schwinger parameters and integrating over space yields

Jd4 =
4π2a4z3z4z

′′2

(4π2)4r2
34(1 + ε)4

∫ ∞
0

dt1dt2 t1 e
− t1t2x

′′′2
3

t1+t2 e
−
t1(t2+ ε

1+ε t1)z′′2

(1+ε)(t1+t2) e−
ε

1+ε
t1z′′2 . (6.106)

After the change of variables ti = ssi, one then finds

Jd4 =
4π2a4z3z4z

′′2

(4π2)4r2
34(1 + ε)4

∫ ∞
0

ds1ds2ds s1δ(1− s1 − s2) e
−s
[
s1s2x′′′23 +

s1(s2+ ε
1+ε s1)z′′2

(1+ε)
+ ε

1+ε
s1z′′2

]

= − 4π2a4z3z4z
′′2

(4π2)4r2
34(1 + ε)2

log

(
z′′2ε(2+ε)

(1+ε)2(x′′′23 +z′′2)

)
x′′′23 (ε+ 1)2 + z′′2

,

which for small values of ε reduces to

Jd4 = −4π2a4z3z4z
′′2

(4π2)4r2
34

log
(

2z′′2

x′′′23 +z′′2

)
+ log(ε)

x′′′23 + z′′2
+O(ε). (6.107)

The same steps done above, applied on Jr4 , lead to

Jr4 =
4π2a4z3z4z

′′2

(4π2)4r2
34

∫ ∞
0

ds1ds2ds3
δ(1−

∑3
i=1 si)

[(s1 + s2)s3x′′′23 + (s2 + s3)s1z′′2 + s2z′′2]

=
4π2a4z3z4z

′′

(4π2)4r2
34

∫ 1

0

ds3

arctanh
√

(1−s3)z′′2

s3x′′′23 +z′′2√
(1− s3)(s3x′′′23 + z′′2)

.

(6.108)
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Then, the substitution

t =

√
(1− s3)z′′2

s3x′′′23 + z′′2
(6.109)

yields a simpler form of the integral

Jr4 =
8π2a4z3z4

(4π2)4r2
34

∫ 1

0

dt
arctanht

α2t2 + 1
, (6.110)

where we defined α = |x′′′3 |/z′′. This integral admits a closed-form solution in terms of
the dilogarithm Li2:

Jr4 =
4π2a4z3z4

(4π2)4r2
34

1

α
Im

{
Li2

(
iα− 1

iα + 1

)}
. (6.111)

However, in order to compute the complete four-point function (6.95), the integral form
(6.110) will be better suited.

∆ = 2.
For ∆ = 2, the integral (6.99) becomes instead

J4 =
a4(16z3z4)2z′′4

2(4π2)4r4
34

∫ ∞
−∞

d3y dw
w4[(x′′′3 − y)2 + w2]−2

[(y2 + (z′′ − w)2 + εQ)(y2 + (z′′ + w)2 + εQ)]2
.

As usual, let us introduce the Schwinger parameters:

J4 =
a4(16z3z4)2z′′4

2(4π2)4r4
34

∫ ∞
0

dt1dt2dt3 t1t2t3

∫ ∞
−∞

d3y dw w4 e−(t1+t2)εz′′2

× e−t1(z′′−w)2−t2(z′′+w)2−(εt1+εt2+t3)w2−(t1+t2)(1+ε)y2−t3(x′′′3 −y)2

.

(6.112)

Integrating over the nonradial coordinates, and subsequently substituting t1 = ss1, t2 =
ss2, t3 = (1 + ε)ss3, yields

J4 =
a4π

3
2 (16z3z4)2z′′4(1 + ε)

3
2

2(4π2)4r4
34

∂2
γ |γ=0

∫ ∞
0

ds1ds2ds3ds s3/2 s1s2s3

∫ ∞
−∞

dw δ

(
1−

3∑
i=1

si

)
× e−s(s1+s2)s3(1+ε)x′′′23 −s(s1(z′′−w)2+s2(z′′+w)2+(ε+s3+γ)w2)−s(s1+s2)εz′′2 .

Additionally, above we also introduced an auxiliary parameter γ > 0 to get rid of the w4

factor. Then, further evaluation of the integral leads to

J4 =
a4π2(16z3z4)2z′′4(1 + ε)

3
2

2(4π2)4r4
34

∂2
γ |γ=0

1√
1 + γ + ε

∫ 1

0

ds3

∫ 1−s3

0

ds1 s1s3(1− s1 − s3)

×
[
(1− s3)s3(1 + ε)x′′′23 +

4s1(1− s1 − s3) + (1− s3)(ε+ s3 + γ)

1 + γ + ε
z′′2 + (1− s3)εz′′2

]−2

.



98 VI Interacting scalar QFT in EAdS

Differentiating twice by γ, setting γ = 1, and integrating over s1, yields

J4 =
16a4π2(z3z4)2z′′4

(4π2)4r4
34

∫ 1

0

ds3
(1− s3)s3(1 + ε)

(s3 (x′′′23 (1 + ε)2 + z′′2) + z′′2ε(2 + ε))
2 . (6.113)

Eventually, after integrating over s3 and taking only the leading orders in ε, one gets

J4 = −16a4π2(z3z4)2z′′4

(4π2)4r4
34

2 + log
(

2z′′2

x′′′23 +z′′2

)
+ log ε

(x′′′23 + z′′2)
2 +O(ε). (6.114)

Recovering the full covariance.
To get back the explicit covariant form, let us first note that

4z′′2

x′′′23 + z′′2
= r2

34K̄xx3K̄xx4 ≡
4

α2 + 1
, (6.115)

which is manifestly covariant. Therefore, it follows that

J4 =
a4π2

(4π2)4
K∆
xx3
K∆
xx4

(
log(α2 + 1)− log 2ε+ ∆J4(α2)

)
, (6.116)

where

∆J4(α2) =

{
2(α2 + 1)

∫ 1

0
dt arctanh t

α2t2+1
for ∆ = 1,

−2 for ∆ = 2.
(6.117)

Attaching the missing legs.
In order to obtain the complete one loop diagram K4 given in eq. (6.95), we still need to
perform the remaining integral

K4 =

∫
d4x
√
g(x)Λ(x1, x,∆)Λ(x2, x,∆)J4(x3, x4, x,∆). (6.118)

Let us send z1, z2 to the boundary, reducing K4 to

K4 ∼ K4 =
a4(16z1z2z3z4)∆π2

(4π2)6

∫
d4x

z4∆−4
(

log α2+1
2ε

+ ∆J4(α2)
)

Π4
i=1[(xi − x)2 + z2]∆

. (6.119)

In analogy to what was done above, let us translate xk, k = 1, . . . , 4 by (0,−xi4) (denoted
by primes), invert all points (denoted by double primes), and then make the substitution
(z′′, xi

′′
) = (z, xi + xi

′′
3 ). Then, the above expression further simplifies to

K4 =
a4(16Π4

i=1zi)
∆π2

2(4π2)6(x′1x
′
2x
′
3)2∆

∫ ∞
−∞

d3x dz

[x2 + z2]∆

z4∆−4
[
log(x

2

z2 + 1)− log 2ε+ ∆J4(x
2

z2 )
]

[(x′′′1 − x)2 + z2]∆[(x′′′2 − x)2 + z2]∆
,

(6.120)
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with xi′′′1 = xi
′′

1 − xi
′′

3 and xi′′′2 = xi
′′

2 − xi
′′

3 . In order to solve K4, let us first introduce a
generating function with parameters γ, t > 0:

φγ,t∆ =
1

2x′2∆
1 x′2∆

2 x′2∆
3

∫ ∞
−∞

d3x dz
z4∆−4+2γ

[(x′′′1 − x)2 + z2]∆[(x′′′2 − x)2 + z2]∆[t2x2 + z2]∆+γ
,

(6.121)
comprising all different cases in eq. (6.120). Indeed, the integral (6.120) can be written
as

K4 =
a4(16 Π4

i=1zi)
∆π2

(4π2)6

[
−∂γφγ,t=1

∆ |γ=0 − log
ε

2
φγ=0,t=1

∆ + ∆K4

]
, (6.122)

with

∆K4 =

{
2
∫ 1

0
dt φγ=0,t

∆=1 arctanh t for ∆ = 1,

−2φγ=0,t=1
∆=2 for ∆ = 2.

(6.123)

Introducing Schwinger parameters, integrating over spatial coordinates and making the
usual substitution ti = ssi, yields

φγ,t∆ =
π3/2Γ(∆)−1Γ(2∆ + γ − 3

2
)

2Γ(∆ + γ)(ηζ Πi<jrij)
2
3

∆

∫ ∞
0

(Π3
i=1dsi)

(s1s2s3)1−∆

sγ3(
∑3

i=1 si)
3
2
−2∆−γ δ(1−

∑3
i=1 si)

(1 + s3(t2 − 1))
3
2
−∆[ s1s2

η2 + t2s3( s1
ζ2 + s2)]∆

,

where we reintroduced the conformal invariants already defined in eq. (6.88). Making
another substitution s1 → ss1, s2 → ss2, s3 → s and integrating over s further simplifies
the integral to

φγ,t∆ =
π3/2Γ(∆)−1Γ(2∆ + γ − 3

2
)

2Γ(∆ + γ)(ηζ Πi<jrij)
2
3

∆

∫ ∞
0

ds1ds2
(s1s2)∆−1(1 + s1 + s2)

3
2
−2∆−γ

(t2 + s1 + s2)
3
2
−∆[ s1s2

η2 + t2( s1
ζ2 + s2)]∆

.

(6.124)
The change of variables s1 = t2sr, s2 = t2s(1 − r) compactifies one integration region,
which leads to

φγ,t∆ =
π3/2Γ(∆)−1Γ(2∆ + γ − 3

2
)

2Γ(∆ + γ)(ηζ Πi<jrij)
2
3

∆

∫ ∞
0

ds

∫ 1

0

dr
(sr(1− r))∆−1(1 + t2s)

3
2
−2∆−γ

t3−2∆(1 + s)
3
2
−∆[s r(1−r)

η2 + r
ζ2 + 1− r]∆

.

(6.125)
Note that, as one might expect, eq. (6.125) is invariant under the exchanges x1 ↔ x2

and x3 ↔ x4. For example, x1 ↔ x2 yields η → η
ζ
, ζ → 1

ζ
, and then invariance of the

above formula follows after a change of variables in r.

Term-by-term computation.
Setting γ = 0, t = 1 in eq. (6.124) should lead to the four-point function at tree level,
which was computed earlier. Indeed, integrating over s1 yields

φγ=0,t=1
∆ =

π3/2Γ(2∆− 3
2
) η2∆ζ2∆

2Γ(2∆)(ηζ Πi<jrij)
2
3

∆

∫ ∞
0

ds2

s1−∆
2

(1 + s2)−∆

(η2s2 + ζ2)∆

× 2F1

[
∆,∆; 2∆; 1− s2η

2ζ2

(1 + s2) (η2s2 + ζ2)

]
,

(6.126)
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corresponding to I4 given in eq. (6.90) up to a Pfaff transformation of the hypergeometric
function. This result, together with eq. (6.122), confirms the expectation that the UV
divergence can be completely absorbed in the coupling constant λ. The first term in eq.
(6.120) is given by

− ∂γφγ,t=1
∆ |γ=0 = I4

(
ψ(∆)− ψ(2∆− 3

2
)

)
+
π

3
2 Γ(2∆− 3

2
)

2Γ(∆)2
L4(η, ζ), (6.127)

where ψ(x) denotes the digamma function and where

L4(η, ζ) =
1

(ηζ Πi<jrij)
2
3

∆

∫ ∞
0

ds

∫ 1

0

dr
(sr(1− r))∆−1 log(1 + s)

(1 + s)∆[ sr(1−r)
η2 + r

ζ2 + 1− r]∆
. (6.128)

In the ∆ = 1 case, eq. (6.120) contains also the term

2

∫ ∞
0

dt arctanh t φγ=0,t
∆=1 = π2L′4(η, ζ), (6.129)

where

L′4(η, ζ) =
1

(ηζ Πi<jrij)
2
3

∫ 1

0

dt

∫ ∞
0

ds

∫ 1

0

dr
arctanh t

t
√

(1 + s)(1 + t2s)[ sr(1−r)
η2 + r

ζ2 + 1− r]
.

(6.130)
By means of the relation

∂

∂s

∫ 1

0

dt
arctanh t

t
√

1 + t2s
=

∂

∂s

∫ ∞
1

dλ
log(1 + λs)

4λ
√

1 + λs
= −1

4

log(1 + s)

s
√

1 + s
, (6.131)

which holds for all s ≥ 0, one can rewrite L′4(η, ζ) as

L′4(η, ζ) =
1

(ηζ Πi<jrij)
2
3

∫ ∞
1

dλ

∫ ∞
0

ds

∫ 1

0

dr
log(1 + λs)

4λ
√

(1 + s)(1 + λs)[ sr(1−r)
η2 + r

ζ2 + 1− r]
.

(6.132)
Putting everything together, we find that (cf. eq. (6.122))

K4 =
a442∆(Π4

i=1zi)
∆π2

(4π2)6

[(
ψ(∆)− ψ(2∆− 3

2
)− log

ε

2

)
I4 + π

3
2

Γ(2∆− 3
2
)

2Γ(∆)2
L4 + ∆K4

]
(6.133)

with

∆K4 =

{
π2L′4(η, ζ) for ∆ = 1,

−2I4 for ∆ = 2.
(6.134)

The quantities L4(η, ζ) and L′4(η, ζ) are given respectively in eq. (6.128) and eqs.
(6.130,6.132).
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The above result, together with the loop-corrected two-point functions given in section
6.2, are the key new results of this thesis. Eq. (6.133) contains the complete s-channel
contribution to the one-loop four-point function in AdS for ∆ = 1 as well as ∆ = 2.
The latter was briefly reported in ref. [61]. The t-channel can be simply recovered by
an exchange x1 ↔ x4, which turns out to be equivalent to η ↔ ζ. Analogously, the
u-channel corresponds to the exchange x2 ↔ x4, which, in terms of η and ζ, translates to
η → 1

η
, ζ → ζ

η
. In the next sections we will relate these results to the conformal block

expansion which, in turn, defines the dual conformal field theory. This will be done with
the help of a short-distance expansion of eq. (6.133).

6.4 The holographic correlators

Let use summarize the final result of the bulk computation. The Witten two-point
function is given by5

〈φ̄(x1)φ̄(x2)〉 = =
Nφ

r2∆
12

, (6.135)

where Nφ = 2∆a2

4π2 . Then, for the values ∆ = 1, 2, the Witten four-point function reads
(cf. eq. (6.14))

〈φ̄(x1)φ̄(x2)φ̄(x3)φ̄(x4)〉 = + +

+ λ +
λ2

2

 + +

+O
(
λ3
)

=
N2
φ

(r12r34)2∆

[
1 + v∆ +

v∆

(1− Y )∆
+ λ

v∆(2∆− 1)

4π2
I0

+λ2 3ψ0

2

v∆(2∆− 1)

43π4
I0 + λ2v

∆(2∆− 1)

44π4
K0

]
+O

(
λ3
)
,

(6.136)

5The remaining diagrams including tadpoles and sunset diagrams are proportional to the mass shift
and thus merely contribute to the relation between renormalized and bare mass of the bulk scalar, as
explained in subsection 6.2.4.
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where

ψ0 = ψ(∆)− ψ(2∆− 3

2
)− log

ε

2
,

I0 =
∞∑

n,m=0

Y mvn

m!(n!)2

Γ(n+ ∆)2Γ(n+m+ ∆)2

Γ(2n+m+ 2∆)
ψnm,

ψnm = ψ(n+ 1)− 1

2
log v − ψ(n+ ∆)− ψ(n+ ∆ +m) + ψ(2n+ 2∆ +m),

(6.137)

and

K0 = −12(∆− 1)I0 +
∑

π(x,y,z)
x→v,y→1−Y,z→1

{
L0(x, y, z) + 2L′0(x, y, z) for ∆ = 1,

L0(x, y, z) for ∆ = 2.
(6.138)

The above sum runs over the three cyclic permutations π of the variables x, y, z, namely
over the s-, u- and t-channel. The appearing quantities are defined as

L0(x, y, z) =

∫ ∞
0

ds

∫ 1

0

dr
(sr(1− r))∆−1 log(1 + s)

(1 + s)∆[sr(1− r)x+ ry + (1− r)z]∆
, (6.139)

and

L′0(x, y, z) =

∫ 1

0

dt

∫ ∞
0

ds

∫ 1

0

dr
arctanh t

t
√

(1 + s)(1 + t2s)[sr(1− r)x+ ry + (1− r)z]
,

(6.140)
or, equivalently,

L′0(x, y, z) =

∫ ∞
1

dλ

∫ ∞
0

ds

∫ 1

0

dr
log(1 + λs)

4λ
√

(1 + s)(1 + λs)[sr(1− r)x+ ry + (1− r)z]
.

(6.141)
Note that, in this form, the Witten four-point function (6.136) explicitly shows covariance
under conformal symmetry.
The logarithmically divergent terms in eq. (6.136) can be absorbed in the coupling

constant. Indeed, the renormalized coupling constant obtained through a nonminimal
subtraction is given by

λ = λR −
3λ2

R

32π2
ψ0 +O(λ3

R). (6.142)

Varying the coupling constant with respect to the square root of ε leads to the beta
function

β(λ) ≡
√
ε
∂λ

∂
√
ε

=
3λ2

16π2
+O(λ3) (6.143)

known from standard QFT literature. In what follows, we will use the renormalized
coupling constant λR. In addition, we will fine-tune the renormalized mass such that
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the renormalized bulk theory is conformally coupled to geometry. Since the mass has a
nonvanishing bulk beta function this is not an bulk RG-invariant statement. One might
thus worry that such a theory cannot be dual to a conformal theory on the boundary.
This apparent contradiction is, however, resolved by noting that three-dimensional scale
transformations on the boundary correspond to an isometry in the four-dimensional bulk.

6.5 The CFT dual
Our final goal is to compare our results on the AdS side, that is, correlations functions
evaluated on the boundary, with the double OPE of the full four-point function on the
boundary itself. In order to do so, we have to consider the separate limits v, Y → 0 of
the whole holographic four-point function (6.136). For the cross diagram I0, the required
expansion is already given to all orders in eq. (6.137). On the other hand, for K0 given
in eq. (6.138), the computation is more elaborate. The adopted procedure is described
in detail in appendix E.

We already mentioned in section 5.3 that, in the leading approximation, the bulk scalar
is dual to a real scalar operator O∆ of weight ∆. The operator O∆ is a generalized free
field and the OPE of O∆ with itself contains double-trace operators On,l of all even spins
l with conformal dimension 2∆ + 2n+ l. Schematically, these operators are of the form
On,l =:O∆�n∂lO∆ :, as we will see soon. Let us rewrite the OPE of the operator O∆

with itself as

O∆O∆ = 1 +
∑
n,l

A1/2
n,l On,l , (6.144)

where A1/2
n,l are the OPE coefficients. The cubic vertex is absent in our model, and for

this reason O∆ itself does not show up in the OPE. In the leading approximation, the
four-point function is given by the disconnected contributions, coming from the product
of two-point functions

〈O∆O∆O∆O∆〉 =
1

(r12r34)2∆

(
1 + v∆ +

v∆

(1− Y )∆

)
, (6.145)

where we drop N2
φ from eq. (6.136), being an overall factor. On the other hand, the

four-point function has a conformal block expansion6

〈O∆O∆O∆O∆〉 =
1

(r12r34)2∆

(
G0 +

∑
n,l

An,lGn,l

)
, (6.146)

where G0 is the contribution of the unit operator and the squares of the OPE coefficients
are given in appendix F for any conformal weight ν and any dimension d, see also ref.
[36]. Below we consider separately the two cases of interest for us.
6We use the recursion relations from ref. [124]. The conformal block Gν,l of the spin-l operator with
weight ν begins with v(ν−l)/2(Y l2−l + ...). See also appendix F.
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The connected bulk diagrams result in corrections to the OPE data: the OPE coeffi-
cients and anomalous dimensions, which we would like to extract. It is useful to consider
the squares of the OPE coefficients An,l as functions of the conformal dimension:

A
∆n,l+γ

(1)
n,l+γ

(2)
n,l+...

= An,l + γ
(1)
n,lA

(1)
n,l +

(
γ

(2)
n,lA

(1)
n,l +

1

2
(γ

(1)
n,l )

2A
(2)
n,l

)
+ . . . , (6.147)

where it is assumed that γ(k)
n,l is of order λkR, while An,l, A

(k)
n,l are just numbers. Therefore,

the conformal block expansion, up to second order in the coupling constant, reads

〈O∆O∆O∆O∆〉 = G0 +
∑
n,l

An,lGn,l +
∑
n,l

γ
(1)
n,l

(
A

(1)
n,lGn,l + An,lG

′
n,l

)
+
∑
n,l

[
γ

(2)
n,l (An,lG

′
n,l + A

(1)
n,lGn,l) +

1

2
(γ

(1)
n,l )

2
(
A

(2)
n,lGn,l + An,lG

′′
n,l + 2A

(1)
n,lG

′
n,l

)]
+O(λ3

R),

where G′n,l and G′′n,l are the derivatives with respect to the conformal dimension evaluated
at the free-field value of the double-trace operator’s conformal dimension, i.e., at 2∆+2n+l.
In what follows we perform the conformal block expansion of the bulk results and extract
the OPE data. We first discuss the ∆ = 2 case and only afterwards the ∆ = 1 case, since
the former leads to simpler results.

∆ = 2.
The result of the bulk computation is obtained from eq. (6.136) by setting ∆ = 2. Let
us rewrite eq. (6.136) as

〈φ̄(x1)φ̄(x2)φ̄(x3)φ̄(x4)〉 =

=
1

(r12r34)4

[
1 + v2

∞∑
l,m=0

Flm(log v, λR) Y mvl

]
,

(6.148)

where each Flm can be derived from the results of section 6.4. First, we will focus on
the terms with (l,m) = (0, 0), (1, 0), (0, 1), (0, 2) to show how the extraction of OPE
data works. Afterwards, we will make more general statements about this data. The
conformal blocks Gν,l, where ν is the weight and l the spin of the related operators, which
contribute at these orders are

Gν,0 = v
ν
2

[
1 +

ν

4
Y +

ν3(ν + 1)−1

8(2ν − 1)
v +

ν(ν + 2)2

32(ν + 1)
Y 2

]
,

Gν,1 = v
ν−1

2

[
1

2
Y +

ν + 1

8
Y 2

]
,

Gν,2 = v
ν−2

2

[
−1

3
v +

1

4
Y 2

]
.

(6.149)
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Note that the unit operator 1 appears in eq. (6.148) in the form of the s-channel
disconnected diagram, as its conformal block reads G0 = 1.
For (l,m) = (0, 0), one finds

F00 = 2− λR
48π2

(1 + 3 log v) +
λ2
R

3× 28π4

(
5 +

11

2
log v +

3

4
(log v)2

)
. (6.150)

The only contribution comes from the primary operator :O2
∆: having conformal dimension

∆0,0 = 4. Then, comparing the corresponding conformal block expansion with F00 at
lowest order in the coupling constant yields A0,0 = 2. At first order in λR, we get

γ
(1)
0,0 = − λR

16π2
, A

(1)
0,0 =

1

3
, (6.151)

whereas at second order in λR, we find

γ
(1)
0,0 = ± λR

16π2
, γ

(2)
0,0 =

5λ2
R

3× 28π4
, A

(2)
0,0 =

20

9
. (6.152)

Note that γ(1)
0,0 agrees at different orders in λR. This provides an important consitency test

for the AdS/CFT duality beyond tree level in the bulk. In previous work, this property
was taken as part of the definition of loop diagrams in the bulk (e.g., refs. [39, 35, 128]).
It is reassuring to see that it is indeed compatible with an actual bulk calculation. Put
differently, this supports the argument that CFT does indeed describe the structure
underlying amplitudes of QFT in AdS rather than acting merely as a definition of some
bulk theory specified by its correlation functions.
For (l,m) = (0, 1), F01 reads

F01 = 2− λR
96π2

(5 + 6 log v) +
λ2
R

12× 28π4

(
31 + 25 log v + 3(log v)2

)
. (6.153)

In addition to :O2
∆: , there might be a contribution of a vector operator of dimension 5.

However, by comparing F01 with the expansions of the conformal blocks, one can infer
that the vector operator does not appear in the OPE. This agrees with our expectation
based on general CFT arguments.
The term satisfying (l,m) = (0, 2) reads

F02 = 3− 9λR
160π2

(
11

10
+ log v

)
+

λ2
R

500× 29π4

(
2816 + 1965 log v + 225(log v)2

)
. (6.154)

Bearing in mind that the vector operator of dimension 5 does not appear, the only new
operator which contributes is the spin-2 primary of the schematic form :O∆∂

i∂jO∆: with
∆0,2 = 6. It follows that

A0,2 =
24

5
, γ

(1)
0,2 = 0,

γ
(2)
0,2 = − λ2

R

20× 28π4
, A

(1)
0,2 =

22

25
.

(6.155)
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Also, here γ(1)
0,2 agrees at both orders in λR. An interesting observation is that the spin-2

primary, in spite of not being conserved, does not acquire an anomalous dimension at
first order in the coupling λR. However, it does get modified at second order. As a
consequence to the fact that γ(1)

0,2 = 0, we can not provide a value for A(2)
0,2.

The last term we explicitly consider here corresponds to (l,m) = (1, 0) with

F10 =
λR

120π2

(
17

5
− 6 log v

)
+

λ2
R

150× 28π4

(
−491

5
+ 292 log v + 30(log v)2

)
, (6.156)

which requires a new scalar operator :O∆�2O∆ : of conformal dimension ∆1,0 = 6 and

A1,0 =
8

7
, γ

(1)
1,0 = − λR

16π2
, A

(1)
1,0 = −478

735
,

γ
(2)
1,0 =

23λ2
R

15× 27π4
, A

(2)
1,0 =

111392

77175
.

(6.157)

Again, there is an agreement of γ(1)
1,0 at different orders in λR. Eventually, this gives a

complete characterization of all operators of conformal spin l ≤ 2 entering the OPE.
Now that the adopted strategy is clear, one could proceed in the extraction of the CFT

data at higher orders in v and Y . At this point we simply state the results obtained.
The zeroth-order OPE coefficients correspond to the disconnected part and follow from
the general result discussed above

An,l =
2−l−4nΓ

(
l + 3

2

)
Γ
(
n+ 3

2

)
Γ(n+ 2)Γ(l + n+ 2)Γ

(
l + n+ 5

2

)
Γ(l + 2n+ 3)

Γ(l + 1)Γ(n+ 1)2Γ
(
l + n+ 3

2

)2
Γ
(
l + 2n+ 5

2

) .

The first order anomalous dimensions are easy to extract from I0 in eq. (6.136):

γ := γ
(1)
n,l=0 = − λR

16π2
, γ

(1)
n,l>0 = 0. (6.158)

Only the scalar operators :O∆�nO∆: receive anomalous dimensions and, for the simplest
quartic interaction as considered here, the anomalous dimension does not depend on
n, see also ref. [60]. It is known that such an interaction does not induce anomalous
dimensions for the operators with l > 0. The OPE coefficients are not so illuminating,
but we find them to be in accordance with refs. [60, 36] (note that γ(1)

n,l does not depend
on n and, according to eq. (6.147), is factored out of the OPE coefficients):

A
(1)
n,l =

1

2

∂

∂n
An,l , l = 0 . (6.159)

Additionally, for operators with spin, the OPE coefficients can be determined only at the
second order since γ(1)

n,l>0 = 0, as is clear from eq. (6.147).
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At second order the first few anomalous dimensions read (see appendix F for a more
detailed table)

γ
(2)
0,0 =

5

3
γ2, γ

(2)
0,2 = − 1

20
γ2, γ

(2)
0,4 = − 1

140
γ2 , γ

(2)
0,6 = − 1

504
γ2 ,

γ
(2)
1,0 =

46

15
γ2 , γ

(2)
1,2 = − 107

1260
γ2 , γ

(2)
1,4 = − 19

1260
γ2 ,

γ
(2)
2,0 =

113

28
γ2 , γ

(2)
2,2 = − 269

2520
γ2 .

Note that the loop correction results in nonvanishing anomalous dimensions for spinning
operators as well. Indeed, since there is no operator which saturates the unitarity bound,
in our model no local stress tensor and not even a conserved current appears. Therefore,
none of the operators is expected to be protected.
While most of the anomalous dimensions are quite complicated, by comparison with

the expansion of eq. (6.136) we found a simple formula for the leading-twist operators,
i.e., for :O∆∂

lO∆ : (being in the first Regge trajectory):

γ
(2)
0,l = γ2

{
5
3

for l = 0,

− 6
(l+3)(l+2)(l+1)l

for l > 0.
(6.160)

The general pattern is that all operators with nonzero spin have negative anomalous
dimensions, which should correspond to binding energies in the AdS dual picture. Only the
scalar operators have positive anomalous dimensions, which is, however, a second-order
effect as compared to γ(1)

n,l=0.
From eq. (6.160) we can easily work out the conformal spin expansion of the anomalous

dimensions of the operators belonging to the leading trajectory and notice the latter to
be consistent with the general expectations [129, 130, 131]

γ
(2)
0,l>0 = γ2 3

J2(1− J2/2)
, J2 = (l + τ/2)(l + τ/2− 1) = (l + 2)(l + 1), (6.161)

where the twist τ corresponds to 4.

∆ = 1.
Here we set ∆ = 1 in the result of the bulk computation (6.136). The zeroth-order OPE
coefficients are then given by7

An>0,l =
4Γ
(
l + 3

2

)
Γ
(
n+ 1

2

)
Γ(l + n+ 1)Γ(l + 2n+ 1)

2l+4nΓ(l + 1)Γ(n+ 1)Γ
(
l + n+ 3

2

)
Γ
(
l + 2n+ 1

2

) , An=0,l =
2
√
πΓ(l + 1)

2lΓ
(
l + 1

2

) .

7Note that there is small subtlety in taking ∆ = 1 in the general formula (F.1), and the n = 0 case is
special.
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The first-order anomalous dimensions are found to be

γ
(1)
n=0,l=0 = 2γ, γ

(1)
n>0,l=0 = γ, γ

(1)
n,l>0 = 0. (6.162)

We observe a similar pattern as for ∆ = 2, except that the anomalous dimension of
the very first operator in the OPE, :O2

∆:, jumps from γ to 2γ. The first order OPE
coefficients follow eq. (6.159), as expected.
At second order our results are more limited as compared to the ∆ = 2 case, the

reason being that we did not find an efficient expansion for the integrals L′0(x, y, z) in
eq. (6.140) at high orders in v and Y . Nevertheless, the anomalous dimension of the
operators on the first Regge trajectory can be determined to all orders in the spin

γ
(2)
n=0,l = γ2 −4

2l + 1
ψ(1)(l + 1) + γ2

{
−4 for l = 0,

− 2
l(l+1)

, for l > 0,
(6.163)

where ψ(1) is the digamma function, which can be rewritten also as

−4

2l + 1
ψ(1)(l + 1) =

1

2l + 1

(
−2π2

3
+ 4H

(2)
l

)
, (6.164)

where H(2)
l =

∑l
k=1 k

−2 are the generalized harmonic numbers. It is actually in this
latter form that the anomalous dimensions emerge from the OPE expansion of the bulk
integrals. The last term in eq. (6.163) results from all channels of L0(x, y, z) and the
s-channel of L′0(x, y, z). In the large spin limit the anomalous dimension behaves as

γ
(2)
n=0,l/γ

2 = −4/l2 + 4/l3 − 10/(3l4) +O(1/l5). (6.165)

It can also be seen that the anomalous dimension admits an expansion in terms of the
conformal spin. We expect to find a series of the form [129, 130, 131]

γ
(2)
0,l = γ2

∑
k=1

Qk

J2k
, J2 = (l + τ/2)(l + τ/2− 1) = l(l + 1), (6.166)

where the twist τ is 2 and Qk are coefficients to be determined. The last term in eq.
(6.163) contributes with −2 to Q1. It is interesting that the first term can also be
expanded and the coefficients are related to the Euler-Ramanujan’s harmonic number
expansion into negative powers of the triangular numbers

Qk = (−)k+121−2k

(
k∑
j=1

(−4)j
(
k

j

)
B2j(

1
2
) + 1

)
, (6.167)

where B2j(x) are the Bernoulli polynomials.
The anomalous dimensions of the operators belonging to the subleading Regge trajec-

tories do not have any π2 (or polygamma) contributions and are listed in appendix F.
All of them are negative for l > 0 and positive for l = 0.
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VII Conclusions

In this thesis we gave an analytic derivation of the two-loop correction to bulk/boundary
two-point functions for a conformally coupled λφ4 theory in Euclidean AdS, as well as
the one-loop correction for the four-point boundary-to-boundary correlation function, by
directly computing the related integrals in position space. The final result can be reduced
to a single integral expression which is not given by elementary functions. Nonetheless, it
can either be evaluated numerically or, more importantly, be evaluated analytically in a
short-distance expansion on the boundary. We have then shown that the theory describes
a fully consistent one-parameter family of dual conformal field theories on the boundary
of AdS whose OPE coefficients and dimensions are parametrized by the renormalized
coupling λR. The structure of the dual CFT turns out to be that of a deformed generalized
free field of dimension ∆ = 1 and ∆ = 2. The OPE of the CFT contains an infinite
number of further primary double-trace operators which have anomalous dimensions and
anomalous OPE coefficients that we are able to compute from our boundary correlation
functions. This is the AdS equivalent of determining the masses and branching ratios in
flat space-time. In order for the interpretation of our result to work out correctly in terms
of a dual CFT, our loop corrected boundary correlation functions have to pass some
nontrivial consistency tests. For example, the first order anomalous dimension enters not
just at tree-level, but also in the bulk four-point function at one loop multiplying log(v)2.
Similarly, the conformal spin expansion [129, 130, 131] implies a certain asymptotic
fall-off behavior of the anomalous dimensions for large spin. All of these conditions
are fulfilled by our bulk correlators. In addition, our bulk calculation gives manifestly
finite results for all anomalous dimensions in terms of the renormalized bulk coupling,
something that is more difficult to achieve in an approach that reconstructs the bulk
correlators from the boundary CFT (e.g., refs. [39, 41, 40]).
In summary, the theory considered in this thesis, namely a scalar φ4 theory in AdS4,

leads to a consistent CFT on the conformal boundary, at least up to second order in the
coupling constant as was confirmed here. Specifically, the boundary theory is conformally
covariant, and satisfies crossing symmetry as well as unitarity. While crossing symmetry
follows automatically from the crossing symmetry of the bulk theory, the other two
properties are more difficult to achieve. Conformal covariance of the boundary theory
can only be obtained by applying a regularization procedure which preserves the AdS
symmetry1 and allows for a well-defined boundary limit. A regulator satisfying these
requirements was explicitly constructed here. Unitarity is more demanding. While there
is general consensus that a Wightman-alike, and hence finite, QFT in AdS would lead
to a unitary CFT on the boundary, this was not a priori ensured for the theory under
consideration in this thesis due to appearing IR an UV divergences. At this point, the

1at least in the nonradial directions
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leading question to raise is if the AdS/CFT correspondence is also satisfied at higher
orders. For instance, in case of a truly nonrenormalizable theory in the bulk (e.g., a
scalar φ6 theory in AdS4), it might be necessary to abdicate unitarity since, in order
to regularize the theory, one generally introduces a new length scale, the cutoff. This
subsequently leads to a family of dual theories parametrized by the cutoff, and the
parameter enters in the determination of the conformal weights. It is then not clear if
unitarity is satisfied for any value of the cutoff. In the perspective of a nonperturbative
analysis of QFTs in AdS, it is conceivable that any effective field theory in the bulk
defines an approximate CFT on the boundary2. On the other hand, if the AdS/CFT
correspondence proves true, a UV complete theory in the bulk should necessarily lead to
an exact boundary CFT. Hence, as long as the UV behavior of a scalar φ4 theory in four
dimensions remains unknown (we remind the reader of the alleged Landau pole, and of
the quantum triviality issue [132]), not even a tentative answer can be given.
Aside from the AdS/CFT correspondence, the scalar field theory with quartic self-

interaction in four-dimensional AdS admits a wide spectrum of possible applications.
It can be used as a model for a selfinteracting Higgs boson, with the outlook on a full
formulation of the Electroweak Theory on AdS. Also, the same selfinteraction appears,
among mixed interactions, in the O(N)-symmetric vector model. Moreover, for massless
spin-1 and spin-1

2
particles in AdS, the propagator is again given by eq. (6.8) modulo

parallel transport of the polarization vectors. This means that spin-1 and spin-1
2
fields

lead to similar integrals to those computed here, and hence QED and scalar QED in AdS
can be quantized in the same way.
Our results have a direct bearing on higher spin theories in AdS4 as well. Indeed,

all these theories contain a scalar field corresponding to ∆ = 1, 2 and need to have a
vanishing φ3 bulk coupling3. The quartic vertices begin with φ4 and contain infinitely
many (φ

←→
∇ kφ)�n(φ

←→
∇ kφ) vertices [50]. Therefore, our results present a meaningful

contribution of the φ4 interaction to the anomalous dimensions and OPE coefficients of
the dual vector model [45, 46]. Moreover, this thesis displays a systematic approach which
can in principle be applied to the computation of higher spin amplitudes in AdS4, and
offers an example on how to successfully deal with ultraviolet and infrared divergences
in the bulk. Implemented with advanced techniques like holographic reconstruction
[134, 135], on-shell methods [35, 36], or a combination theoreof [136], it may lead to
interesting results.
Another interesting application is in the context of the dS/CFT correspondence

[137], where our universe is conjectured to be dual to some three-dimensional Euclidean
CFT at early/late times. Even though de Sitter space-time differs from AdS by being
nonstationary and by having a space-like boundary, the developed techniques should
allow to compute the same amplitudes in dS. The dS/CFT correspondence has appealing

2Conformal symmetry could break down when one analyzes operators of large conformal dimension.
3In higher spin theories one should also add boundary terms in order to obtain the correct 〈OOO〉
correlator [133].
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properties; time is the emergent dimension in the bulk theory, and the duality generates
the cosmological constant and hence could explain the dark energy problem. Applied to
this framework, our specific model does not possess a dynamical gravity and therefore,
besides avoiding UV pathologies, it could lead to an alternative description of the universe
where gravity and dark energy emerge directly from the duality. A small perturbation
of the dS symmetry could then generate a renormalization group flow of the boundary
theory away from the UV fixed point towards the IR fixed point, thus describing the
dynamical evolution of the universe.
A concluding remark is given on the interpretation of the boundary-to-boundary

correlation functions in the (Euclidean) AdS. In the first place, these fully characterize
the bulk theory, much like the scattering amplitudes fully characterize the related QFT
in four-dimensional flat space-time. Interestingly, also these scattering amplitudes can
be identified with CFT correlators, but on a two-dimensional space-time, the celestial
sphere [138]. Additionally, according to the AdS/CFT correspondence, the boundary-to-
boundary correlation functions define statistical correlation functions describing second-
order phase transitions on the boundary itself. It would be of great interest to detect
the explicit theory at the boundary, which in our specific case should correspond to
some generalized free field in the zeroth order of the bulk coupling constant λ. One
could then analytically or numerically reconstruct the boundary-to-boundary correlation
functions of the theory in the bulk, or even provide nonperturbative solutions thereof.
Alternatively, an applicable strategy is to extract information about the boundary-to
boundary correlation functions by exploiting the known characteristics of the boundary
CFT. In flat four-dimensional space-time, a similar approach is given by the S-matrix
theory (see, for instance, ref. [76]), where the QFT is bootstrapped by imposing a set
of principles to the S-matrix. This is in fact more than an analogy, since the S-matrix
theory is related to the AdS/CFT correspondence by the flat space limit [139]. Moreover,
the boundary theory of AdS could itself model a physically relevant theory4, and hence,
allow for an experimental determination of the critical exponents of the (universality
class of the) statistical theory at the critical point.

4For instance, the O(N)-model is capable of describing various systems of spins on a lattice [140].
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A Ambient space approach

As discussed in section 4.1, the anti–de Sitter space-time AdSd+1 can be embedded into
a flat space-time Md,2:

(XA)2 := ηABX
AXB = ηµνX

µXν − (Xd+1)2 = − 1

a2
, (A.1)

where A,B = 0, ..., d+ 1 and where ηAB and ηµν are, respectively, the metrics of Md,2 and
Md,1. The induced squared line element is given by

ds2 = (ηAB + a2XAXB)dXAdXB = (dXµ)2 − a2(XµdXµ)2

1 + a2(Xµ)2
. (A.2)

Geodesic distance.
To derive the geodesic distance let us introduce an action on AdSd+1 as a measure of the
length of a curve XA(T ), constrained to the quadric (4.6):

S =

∫
dT

[
1

2
(ẊA)2 +

κ2

2

(
(XA)2 +

1

a2

)]
, (A.3)

where the dot denotes the derivative with respect to the affine parameter T and κ is a
Lagrange multiplier. Varying the action gives the equations of motion

ẌA − κ2XA = 0, (XA)2 +
1

a2
= 0, (A.4)

which have the following general solution:

XA = CA exp(κT ) +DA exp(−κT ), (A.5)

with the constants CA and DA subject to the constraints

(CA)2 = (DA)2 = 0, CAD
A = − 1

2a2
. (A.6)

Note that, on shell, (ẊA)2 satisfies the relation

a2(ẊA)2 = κ2. (A.7)

Let us take two separate points XA ≡ XA(T1), Y
A ≡ XA(T2) on the curve. Then, it

follows that

XAY
A = − 1

a2

ea
√

(ẊA)2(T1−T2) + e−a
√

(ẊA)2(T1−T2)

2
. (A.8)
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We can derive the geodesic distance as an integral of the line element:

ρ :=

∫
ds =

∫ T2

T1

dT

√
(ẊA)2 =

√
(ẊA)2(T2 − T1), (A.9)

where we integrated over a geodesic curve and used the fact that (ẊA)2 is a conserved
quantity, see eq. (A.7). Eventually, this yields

cosh aρ = −a2XAY
A. (A.10)

In what follows, we will make use of the quantity

u := a2XAY
A, (A.11)

which takes values in (−∞,−1] and is related to K by

K = −1

u
. (A.12)

Tangent vectors.
Let us for the moment work with a = 1. This makes the formulæ simpler and a can be
reintroduced by dimensional analysis at any time. One can easily construct a tangent
vector V A to a geodesic curve by taking the gradient of the geodesic distance with respect
to XA, ∂Aρ, and projecting the result onto the tangent space1 TXAdSd+1:

V A = − 1√
u2 − 1

(Y A + uXA). (A.13)

Equivalently, one gets another tangent vector by taking the gradient with respect to Y A′ ,
where the primed index simply symbolizes that a different point on the quadric is taken:

V A′ = − 1√
u2 − 1

(XA′ + uY A′). (A.14)

Note that the tangent vectors are automatically normalized (V A)2 = (V A′)2 = 1.

The vector parallel propagator.
The most general rank-two tensor GAA′ that one can construct on AdSd+1 with the
vectors XA and YA′ satisfying (XA)2 = (Y A′)2 = −1 is

GAA′(X, Y ) = f(u)ηAA′ + g(u)XAXA′ + h(u)XAYA′ + k(u)YAXA + l(u)YAYA′ , (A.15)

1That is, requiring it to be orthogonal to XA.
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where the coefficients f(u), g(u), h(u), k(u), l(u) are yet to find. These can be uniquely
fixed by the following conditions, the defining properties of the vector parallel propagator :

XAGAA′(X, Y ) = GAA′(X, Y )Y A′ = 0, (A.16)
V AGAA′(X, Y ) = −VA′ , (A.17)
GAA′(X, Y ) = GA′A(Y,X), (A.18)
GAA′(X, Y → X) = ηAA′ +XAXA′ , (A.19)

GAB′(X, Y )GB′

C(Y,X) = GAC . (A.20)

Transversality, the constraint in eq. (A.16), restricts our propagator to

GAA′(X, Y ) = f(u)

[
ηAA′ −

1

u
YAXA′

]
+ l(u)

[
XAXA′ + YAYA′ + uXAYA′ +

1

u
YAXA′

]
.

Furthermore, the preservation of tangent vectors (A.17) and the inverse map condition
(A.20) lead to, respectively,

l(u) =
f(u) + u

1− u2
and f(u)2 = 1. (A.21)

The coincident points limit (A.19) gives us the boundary condition f(−1) = 1 and
therefore f(u) = 1. Eventually, the parallel propagator becomes

GAA′ ≡ GAA′(X, Y ) = ηAA′ +
1

1− u
[XAXA′ + YAYA′ + YAXA′ + uXAYA′ ] . (A.22)

Note that the symmetry condition (A.18) is manifestly satisfied.

The covariant derivative.
Take any vector TA lying in the tangent space TXAdSd+1. As we will see later, the
covariant derivative ∇ATB := GC

AG
D
B∂CTD defines the Levi-Civita connection. First, one

can rewrite the above covariant derivative as

∇ATB = ∂̂ATB +XBX
C ∂̂ATC = ∂̂ATB −XB

(
∂̂AX

C
)
TC , (A.23)

where ∂̂A =
(
δBA +XAX

B
)
∂B is the projected ambient space partial derivative. The

one-form eA := dXA is the canonical dual basis of ∂̂A, since

dXA
(
∂̂A

)
= δAB +XAXB (A.24)

corresponds to the identity element on AdSd+1. This allows for a coordinate-independent
reformulation of the covariant derivative:

∇TA = dTA −XAe
BTB. (A.25)
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The most general covariant derivative which does not affect eq. (A.25) when acting on
elements in TXAdSd+1, but for which both the ambient space metric ηAB and the vectors
XA are covariantly constant, is given by

∇SA = dSA −XAe
BSB + eAX

BSB (A.26)

for any SA ∈ Md,2. From
∇2TA = −eAeBTB (A.27)

and ∇eA = 0 one can see that our connection is metric compatible, torsionless and indeed
gives the right curvature form of the AdSd+1 space. Therefore, the above definition
corresponds to the unique Levi-Civita connection on the anti–de Sitter space-time.
The covariant derivative of the tangent vector in eq. (A.13) is given by

∇VA = − u√
u2 − 1

eB (GAB − VAVB) . (A.28)

Note that, as one may expect, it satisfies the geodesic equation V B∇BVA = 0. One gets
a similar expression for the covariant derivative of eq. (A.14):

∇VA′ = − 1√
u2 − 1

eB (GBA′ + VBVA′) , (A.29)

satisfying V B∇BVA′ = 0. Another useful relation is the following:

∇GAA′ = −
√
u+ 1

u− 1
eB (GBAVA′ +GBA′VA) , (A.30)

with the property that V B∇BGAA′ = 0, where we used the fact that the covariant
derivative only acts on the unprimed indices.

The Dirac spinor parallel propagator.
In our conventions, the Clifford algebra on the ambient space Md,2 reads{

γA, γB
}

= −2ηAB. (A.31)

It follows that, for XA with (XA)2 = −1, the operator /X := XAγ
A squares to one.

Additionally, it anticommutes with any /T , where TA ∈ TXAdSd+1, and therefore it can
be seen as the chirality matrix. Note also that

{
/X, /Y

}
= −2u. In order to find the spinor

parallel propagator, we follow the the procedure applied above for the vector parallel
propagator. The most general operator dependent on XA and Y A one can write down is

G(X, Y ) = m(u)1 + n(u) /X /Y + o(u) /X + p(u) /Y , (A.32)

where G(X, Y ) has to satisfy the conditions

G(X, Y ) /Y = /XG(X, Y ), (A.33)
G(X, Y → X) = 1, (A.34)
G(X, Y )G(Y,X) = 1. (A.35)
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The preservation of chirality (A.33) yields

G(X, Y ) = m(u)
[
1 + /X /Y

]
+ o(u)

[
/X + /Y

]
, (A.36)

whereas the inverse map condition (A.35) restricts the coefficients to

m(u)2 =
1

2(1− u)
and o(u) = 0. (A.37)

Eventually, the coincident points limit (A.34) leads to the spinor parallel propagator

G(X, Y ) =
1√

2(1− u)

[
1 + /X /Y

]
. (A.38)

To see how the above formula is related to the vector parallel propagator given in eq.
(A.22), consider the parallel transport of /T with TA ∈ TXAdSd+1:

TAGAA′ γ̂
A′ = TAG(Y,X)γ̂AG(X, Y ), (A.39)

where γ̂A = (ηAB +XAXB)γB are the projected gamma matrices. Inserting eq. (A.38)
into the above formula, one can easily reconstruct eq. (A.22). Note that the parallel
propagation of normal components XA vanishes as expected.

The covariant derivative acting on Dirac spinors.
One can make the following ansatz for the covariant derivative of the Dirac spinor:

∇ψ = dψ + A/e /Xψ, (A.40)

where A is a complex coefficient which can be found algebraically. The above ansatz
is inferred by contracting the connection in eq. (A.26) with the generators of Lorentz
transformations in the Dirac representation,

[
γA, γB

]
. A way to fix the coefficient is to

consider the covariant derivative of the gamma matrix. Indeed, the covariant constancy
of γA, which follows directly from eq. (A.39), yields A = A∗ = −1/2. Therefore, one
concludes that

∇ψ = dψ − 1

2
/e /Xψ. (A.41)

An important property of the above covariant derivative is that it preserves the chirality
of the Dirac spinor, since

∇( /Xψ) = /X∇ψ. (A.42)

In order to compute the covariant derivative of the spinor parallel propagator given in
eq. (A.38), one has to keep in mind that both 1 and /X /Y have only one spinor index at
the point XA, and therefore the covariant derivative of these expressions does not vanish.
The result is given by

∇G(X, Y ) = −
√
u+ 1

u− 1

eA

2

(
VA + γ̂A /V

)
G(X, Y ). (A.43)

In particular, note that it satisfies the relation V A∇AG(X, Y ) = 0.





119

B Spinor helicity formalism in AdS

In four-dimensional Minkowski space-time M3,1, there exists a powerful tool simplifying
the computations of the scattering amplitudes of massless particles with spin, the
spinor helicity formalism [141]. In M3,1, one makes use of the fact that its isometry
group, the Lorentz group SO(3, 1), is, upon complexification, locally isomorphic to
SL(2,C)× SL(2,C). Thus, all finite-dimensional irreducible representations are labeled
by (s1, s2), where s1, s2 are positive integers or positive half integers. The dimension of
the associated representation is (2s1 + 1)(2s2 + 1). A four-dimensional vector kµ ∈ M3,1,
corresponding to the representation (1

2
, 1

2
), can be written as having two SL(2,C) indices,

kαα̇. Each index is related to one of the two inequivalent two-dimensional representations
of SL(2,C), the fundamental and the anti–fundamental representation, and hence run
over two values. The main advantage of the formalism follows from the possibility to
write a four-momentum kµ, satisfying the mass shell condition kµ2

= 0, as a product of a
spinor with its complex conjugate, i.e., as kαα̇ = ±λαλ̄α̇. The sign determines whether
kµ has positive or negative energy.
The same formalism can also be applied on four-dimensional anti–de Sitter space-

time AdS4 [142], even though the situation is slightly different. We do not have full
SL(2,C)× SL(2,C) symmetry, but only one SL(2,C) copy corresponding to the SO(3)
rotation group in three dimensions. However, this does not prevent us to adopt the same
formalism on AdS4 by using frame fields. Here we see how this works.
The squared line element of AdSd+1 is given in Poincaré coordinates by (see section

4.1)

ds2 =
1

a2z2
ηµνδ

µ
µδ

ν
νdxµdxν , (B.1)

where ηµν is the metric of M3,1. For convenience, let us change notation with respect to
the rest of the thesis and write a point x ∈ AdS4 as

x = (x0, x1, z, x3), (B.2)

that is, we position the z-coordinate such that x2 = z. The indices i and i are henceforth
referred to as running over 0, 1 and 3. The quantity K then formally reads exactly as in
eq. (5.31):

K =
2zw

(xi − yi)2 + z2 + w2
, (B.3)

where y = (y0, y1, w, y3). Note however that here (xi − yi)2 does not evaluate with
respect to the Euclidean metric but is related to it by a Wick rotation. Keeping that
in mind, since the following main results are functions of K alone, one can recover
straightforwardly the expressions for the hyperbolic space H4 by reinterpreting K as the
Euclidean counterpart.
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Weyl spinors.
Let us introduce the Pauli matrices:

σαα̇µ =

((
1 0
0 1

)
,

(
0 1
1 0

)
,

(
0 i
−i 0

)
,

(
1 0
0 −1

))
. (B.4)

The epsilon tensor, which will be used to raise and lower the spinor indices, reads

εαβ = εαβ =

(
0 1
−1 0

)
, (B.5)

and an analogous formula applies for dotted indices. We use the same summation
convention for both the undotted and the dotted spinor indices, where the contraction
applies from the top left to the bottom right. One can easily verify that

σαα̇µ σναα̇ = −2ηµν , (B.6)

which further implies
ηµνσαα̇µ σββ̇ν = −2εαβεα̇β̇. (B.7)

To switch from vector indices to spinor indices, the relations are defined as follows

Tαα̇ = σαα̇µ T µ, (B.8)

where T µ = hµµT
µ for some vector T µ in AdS4. The inverse relation is then given by

Tµ = −1

2
σαα̇µ Tαα̇. (B.9)

Note that
ηµνT

µT ν = −1

2
Tαα̇Tαα̇. (B.10)

Contrary to the definition in eq. (4.21), here it is preferable to introduce a frame field
(here vierbein) which directly connects space-time indices to spinor indices:

hαα̇µ =
1

2z
σαα̇µ , (B.11)

where σαα̇µ is defined as σαα̇µ δµµ and satisfies eqs. (B.6,B.7) for ηµν := ηµνδ
µ
µδνν . In what

follows, we ignore vector indices. The coefficient in eq. (B.11) was chosen such that it
normalizes the coefficient in the computation of the curvature of the spin connection,
as we will see later. This turns out to be the most natural normalization for spinorial
quantities.
With the above vierbein, the metric is given by

gµν = hαα̇µ hναα̇ = − 1

2z2
ηµν , (B.12)
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which can be reinterpreted as gµν having inverse sign and a taking the value
√

2. In any
case, a can be reintroduced at any time by dimensional analysis. For the inverse vierbein,
we require

h
µ

αα̇h
αα̇
ν = δ

µ
ν , (B.13)

and this leads to
h
µ

αα̇ = −zσναα̇ηνµ ≡ gµνhναα̇ . (B.14)

Moreover, due to
hµαα̇hββ̇µ = εαβεα̇β̇, (B.15)

we get that
T µTµ ≡ hµαα̇Tαα̇h

ββ̇
µ Tββ̇ = Tαα̇Tαα̇ . (B.16)

Let us now make a few considerations on the isometry group for fixed radial coordinate
z. This corresponds to the Lie group SO(2, 1) which is locally isomorphic to the
Lie group SL(2,R). For the latter group, the fundamental and the anti–fundamental
representations are equivalent. To relate the representations of the two groups, note
that a basis of1 sl(2,R) is given by {iσ1, σ2, iσ3}. One can always choose a basis for the
fundamental representation of sl(2,C) such that, when constrained to the subalgebra
sl(2,R), the basis corresponds to the one stated above. Indeed, for sl(2,C), take the basis
{σ1, σ2, σ3, iσ1, iσ2, iσ3}, where the former three have the interpretation as generators of
rotations and the latter three as generators of boosts. Therefore, at any fixed point z,
one can directly substitute the undotted indices with SL(2,R) indices:

ψα := ψaδ α
a , ψa = ψαδ a

α , (B.17)

where ψ is a Weyl spinor. A difference arises if one considers the anti–fundamental repre-
sentation of sl(2,C), whose basis is given by {σ1, σ2, σ3,−iσ1,−iσ2,−iσ3}. Consistency
requires that, if N denotes the transformation matrix from dotted to sl(2,R) indices,
the relations {N, σ1} = {N, σ3} = [N, σ2] = 0 have to be satisfied. Therefore, N is
proportional to σ2 and we write

ψα̇ = iψaε α̇a , ψa = iψα̇ε aα̇ , (B.18)

with ε 2
1 = −ε 1

2 = 1. Now that we know how the spinor indices of a nonradial vector T i
in AdS4 transform under SO(2, 1), let us define

x̃αα̇ = σαα̇i xi. (B.19)

The quantity K, given explicitly in eq. (B.3), can be used to define a bi-spinor Fαα̇,
which resembles, up to a factor, the tangent vector given in eq. (A.13):

Fαα̇h
αα̇ := d lnK. (B.20)

1Recall that the Lie algebra of some Lie group G is denoted by g.
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Note that ∂αα̇K = KFαα̇. First, one finds

Fαα̇h
αα̇ =

K

2z2w

[
∆+dz − 2z(xi − yi)dxi

]
, (B.21)

where ∆± = (xi − yi)2 ± (w2 − z2). One then can verify that

Fαα̇ =
K

2zw
[2z(x̃− ỹ)αα̇ −∆+iεαα̇] (B.22)

gives exactly eq. (B.21). Because of the symmetry between x and y in the formula for
K, the analogue to eq. (A.14) can be read off easily and is given by

Fα′α̇′ = − K

2zw
[2w(x̃− ỹ)α′α̇′ + ∆−iεα′α̇′ ] . (B.23)

Note that Fαα̇F β
α̇ = (1−K2)εαβ. Furthermore, Fαα̇Fαα̇ = 2(K2 − 1).

The Weyl spinor parallel propagator.
To find the parallel propagator Παα′(x, y), one can impose on it the following conditions:

Παα′(x, x) = iεαα
′
, (B.24)

Πα′α(y, x) = −Παα′(x, y), (B.25)

Παβ′(x, y)εβ′γ′Π
γ′β(y, x) = εαβ, (B.26)

Παα′(x, y)Π̄α̇α̇′(x, y)Fαα̇ = −Fα′α̇′ . (B.27)

The most general, sl(2,R)-invariant ansatz has the form

Παα′(x, y) = f(x, y)(z + w)iεαα
′
+ g(x, y)(x̃− ỹ)αα

′
, (B.28)

where f(x, y) and g(x, y) are real functions which are yet to find. The complex conjugate
is given by

Π̄α̇α̇′(x, y) = −f(x, y)(z + w)iεα̇α̇
′
+ g(x, y)(x̃− ỹ)α̇α̇

′
. (B.29)

Using together the symmetry condition (B.25) and the inverse map condition (B.26),
one finds the constraint

f(x, y)2(z + w)2 + g(x, y)2(x̃− ỹ)2 = 1. (B.30)

Furthermore, using the preservation of the tangent vectors (B.27), the following conditions
arise:

4z(z + w)(x̃− ỹ)2f(x, y)g(x, y)−∆+

[
f(x, y)2(z + w)2 − g(x, y)2(x̃− ỹ)2

]
= ∆−,

(z + w)∆+f(x, y)g(x, y) + z
[
f(x, y)2(z + w)2 − g(x, y)2(x̃− ỹ)2

]
= w.

(B.31)
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Combining eq. (B.30) with eq. (B.31), one uniquely finds

f(x, y)2 = g(x, y)2 = f(x, y)g(x, y) =
K

2zw(K + 1)
, (B.32)

and thus, the parallel propagator becomes

Παα′(x, y) =

√
K

2zw(K + 1)

[
(z + w)iεαα

′
+ (x̃− ỹ)αα

′
]
, (B.33)

which automatically satisfies eq. (B.24). At this point is it worth to mention that the
parallel propagator for any quantity with multiple spinor indices can be constructed
through the application of eq. (B.33) on each of the spinor indices. For example, this
allows to find the relation between the Weyl parallel propagator and the vector parallel
propagator:

Πµν′(x, y) = h
µ

αα̇h
ν′

α′α̇′Π
αα′(x, y)Π̄α̇α̇′(x, y). (B.34)

The covariant derivative acting on Weyl spinors.
Analogously to what done in section 4.1, the spin-connection one-form can be found via
the first Cartan structure equation, which reads

dhαα̇ + ωαβα̇β̇ ∧ hββ̇ = 0, (B.35)

where
ωαβα̇β̇ = σαα̇µ σββ̇ν ωµν . (B.36)

Because of its antisymmetry, the spin-connection can be rewritten in the form

ωαβα̇β̇ = εα̇β̇ωαβ + εαβωα̇β̇, (B.37)

where ωαβ and ωα̇β̇ are, respectively, the selfdual and the anti-selfdual parts. These
quantities are symmetric in the spinor indices. Then, since dhαα̇ = 1

z
hαα̇ ∧ dz, it follows

that
ωαβ =

i

2z
σαβi dxi , ωα̇β̇ = − i

2z
σα̇β̇i dxi . (B.38)

The second Cartan structure equation yields

dωαβ + ωαγ ∧ ω β
γ = hαγ̇ ∧ hβγ̇, (B.39)

corresponding to the curvature two-form of the selfdual part of the spin-connection. As
announced earlier, the above quantity is normalized.

Knowing the spin-connection allows us to compute the covariant derivatives of various
quantities. For instance, the covariant derivative of Tαα̇ is given by

∇Tαα̇ = dTαα̇ + ωαβα̇β̇Tββ̇, (B.40)
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where ∇ = ∇µdxµ . Hence, for Weyl spinors, one gets

∇ψα = dψα + ωαβψβ , ∇ψα̇ = dψα̇ + ωα̇β̇ψβ̇ . (B.41)

Furthermore, the covariant derivative of Fαα̇ can be found to be

∇ββ̇Fαα̇ := hµββ̇∇µF
αα̇ = 2εαβεα̇β̇ + Fαα̇F ββ̇. (B.42)

Note that Fββ̇∇ββ̇Fαα̇ = 2K2Fαα̇ 6= 0 since Fαα̇ is not normalized. The direct computa-
tion of the covariant derivative of the Weyl parallel propagator is rather tedious. Let us
first determine its general form. The most general ansatz is the following:

∇ββ̇Παα′ = a(x, y)
(
F ββ̇Παα′ + b(x, y)Fαβ̇Πβα′

)
, (B.43)

where a(x, y) and b(x, y) are some coefficients. Applying the covariant derivative ∇δδ̇ on
eq. (B.26) (where eq. (B.25) has also to be considered) and then contracting with εαβ, one
finds the relative coefficient to be b(x, y) = −2. This then implies that Fββ̇∇ββ̇Παα′ = 0.
The coefficient a(x, y) can be found computationally, and this yields the final form

∇ββ̇Παα′ =
1

2(K + 1)

(
2Fαβ̇Πβα′ − F ββ̇Παα′

)
. (B.44)

Using eq. (B.27), one finds the covariant derivative of Fα′α̇′ to be

∇ββ̇Fα′α̇′ = −2KΠβα′Π̄β̇α̇′ +
K

K + 1
F ββ̇Fα′α̇′ . (B.45)

Note that Fββ̇∇ββ̇Fα′α̇′ = 2K2Fα′α̇′ .
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C Collection of identities

In appendix D, we will compute the bosonic higher spin propagators by using the
formalism developed in appendix B. The calculations require the knowledge of a set of
identities, which we will give here. Particularly handy is the fact that the structures
K,Fαα̇, Fα′α̇′ ,Παα′ , Π̄

α̇α′ form a closed algebra, and all covariant derivatives do not
produce any new object. In what follows, the · -product denotes contraction of the
(suppressed) spinor indices.

Algebraic Identities.

Fαα̇F
αα̇ = 2(K2 − 1), (C.1)

Fαα̇F β
α̇ = εαβ(1−K2), (C.2)

Fαα̇F β̇
α = εα̇β̇(1−K2), (C.3)

Πνα′Πν
β′ = εα

′β′ , (C.4)

Παα′Π
αα′ = −2, (C.5)

Παα′ = −Πα′α, (C.6)

Π̄α̇α̇′ = −Π̄α̇′α̇, (C.7)

Fαα̇Παα′Π̄α̇α̇′ = −Fα′α̇′ , (C.8)

Fα′α̇′Π
αα′Π̄α̇α̇′ = −Fαα̇, (C.9)

Πγα′F γ
α̇ = −Π̄α̇γ̇′Fα′

γ̇′ = Π̄γ̇′α̇Fα′
γ̇′ , (C.10)

Fα
γ̇ Π̄γ̇γ̇′Fα′

γ̇′ = −Παα′(1−K2), (C.11)

F γ
α̇ Πγγ′F γ′

α̇′ = −Π̄α̇α̇′(1−K2), (C.12)

(Fαγ̇Π̄γ̇
β̇′ )(F γβ̇Πγ

α′ ) = (1−K2)Παα′Π̄β̇β̇′ − Fαβ̇Fα′β̇′ . (C.13)

First derivatives.

∇αα̇K = KFαα̇ , (C.14)
∇αα̇F

αα̇ = 6 + 2K2, (C.15)
∇αα̇Fββ̇ = 2εαβεα̇β̇ + Fαα̇Fββ̇ , (C.16)

∇αα̇Fβ′β̇′ =
K

1 +K
Fαα̇Fβ′β̇′ − 2KΠαβ′Π̄α̇β̇′ , (C.17)

∇αα̇Πββ′ =
1

2(1 +K)
[2Fβα̇Παβ′ − Fαα̇Πββ′ ] , (C.18)

∇αα̇Π̄β̇β̇′ =
1

2(1 +K)

[
2Fαβ̇Π̄α̇β̇′ − Fαα̇Π̄β̇β̇′

]
, (C.19)
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(F · ∇)K = −2K(1−K2), (C.20)

(F · ∇)F ββ̇ = 2K2F ββ̇ , (C.21)

(F · ∇)F β′β̇′ = 2K2F β′β̇′ , (C.22)

(F · ∇)Πββ̇′ = 0, (C.23)

∇αα̇F
αβ̇ = εα̇

β̇ (3 +K2), (C.24)
∇αα̇F

βα̇ = εα
β (3 +K2). (C.25)

(C.26)

D’Alembertian.
For a scalar function f(K), we have

∇2f(K) := ∇αα̇∇αα̇f(K) = 2K2(K2 − 1)
∂2f(K)

∂K2
+ 4K(K2 + 1)

∂f(K)

∂K
. (C.27)

Note that the above equation is, up to a sign, in agreement with eq. (5.39) if one
chooses a =

√
2 and d = 3 as we have done. The sign difference comes from the negative

overall sign of the metric gµν , see eq. (B.12). The fundamental relations involving the
D’Alembertian are

∇2K = 4K(1 +K2), (C.28)
∇2Fαα̇ = Fαα̇2(2K2 + 3), (C.29)

∇2Fα′α̇′ = 4K2Fα′α̇′ , (C.30)

∇2Παα′ =
3(1−K)

2(1 +K)
Παα′ , (C.31)

∇2Π̄α̇α̇′ =
3(1−K)

2(1 +K)
Π̄α̇α̇′ . (C.32)

Mixed-derivatives.

(∇K) · (∇K) = −2K2(1−K2), (C.33)
(∇K) · (∇Fββ̇) = 2K3Fββ̇ , (C.34)

(∇K) · (∇Fβ′β̇′) = 2K3Fβ′β̇′ , (C.35)

(∇K) · (∇Πββ′) = 0, (C.36)
(∇K) · (∇Π̄β̇β̇′) = 0, (C.37)

(∇Fαα̇) · (∇Fββ̇) = 4εαβεα̇β̇ + 2Fαα̇Fββ̇(1 +K2), (C.38)

(∇Fαα̇) · (∇Fβ′β̇′) =
2K (K2 +K + 1)

K + 1
Fαα̇Fβ′β̇′ − 4KΠαβ′Π̄α̇β̇′ , (C.39)

(∇Fαα̇) · (∇Πββ′) =
1

1 +K
[2Fβα̇Παβ′ − Fαα̇Πββ′ ] = 2∇αα̇Πββ′ , (C.40)
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(∇Παα′) · (∇Πββ′) =
(1−K)

2(1 +K)
[2εαβεα′β′ + Παα′Πββ′ ] , (C.41)

(∇Παα′) · (∇Π̄β̇β̇′) =
1

2(1 +K)2

[
2Fαβ̇Fα′β̇′ − (1−K2)Παα′Π̄β̇β̇′

]
. (C.42)

Other random identities.

∇αα̇(Fαα̇Fα′α̇′) = (4K2 + 6)Fα′α̇′ , (C.43)

∇αα̇(Παα′Π̄α̇α̇′) =
3

K + 1
Fα′α̇′ , (C.44)

∇αα̇Fβ′β̇ = −(1 +K)Παβ′εα̇β̇ +
1 + 2K

2(1 +K)
Fαα̇Fβ′β̇ , (C.45)

(F · ∇)Fβ′β̇ = 2K2Fβ′β̇ , (C.46)

∇αγ̇F β′
γ̇ = −1

2
(2K2 + 3K + 3)Παβ′ , (C.47)

∇2(Fαα̇Fα′α̇′) =
12K3 + 12K2 + 10K + 6

K + 1
Fαα̇Fα′α̇′ − 8KΠαα′Π̄α̇α̇′ , (C.48)

∇2(Παα′Π̄α̇α̇′) =
2

(K + 1)2

[
Fαα̇Fα′α̇′ + (1−K2)Παα′Π̄α̇α̇′

]
, (C.49)

where Fα′α̇ = Πγα′F γ
α̇ .
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D Bosonic higher spin propagators

In section 5.2 we derived the scalar propagator of a massive particle in hyperbolic space
Hd+1. Here we will firstly repeat the calculation in order to conform with the conventions
adopted in appendices B and C. That is, we work in AdS4 space-time with the metric
tensor given in eq. (B.12). In addition, we compute the propagators of massless particles
of every integer spin.

D.1 Propagation of a scalar particle
In the conventions adopted, the scalar propagator Λ has to fulfill(

∇2 +m2
)

Λ(x, y; ∆) =
i√
−g

δ(4)(x− y), (D.1)

where g = −(1/2z)8 is the determinant of the AdS4 metric and

∆ =
3

2
±
√

9

4
+
m2

2
. (D.2)

Again, owing to the isotropy of anti–de Sitter space-time, we can take Λ to be a function
of only K and ∆. The solutions to the homogeneous part are then given by

Λ(K;µ2) = C∆K
∆

2F1

[
∆

2
,
∆ + 1

2
;
2∆− 1

2
;K2

]
, (D.3)

where C∆ are coefficients, fixed by eq. (D.1). These can be found by noting that the
normalization on the right hand side of eq. (D.1) was chosen such that, under a Wick
rotation1 x0 → ix0, y0 → iy0, one recovers exactly the expression in Euclidean anti–de
Sitter space, see eq. (5.38). Hence, by basically repeating the steps of section 5.2, one
gets

C∆ =
Γ(∆

2
)Γ(∆+1

2
)

2π2Γ(∆− 1
2
)
. (D.4)

The propagator for the minimally coupled scalar particle is given by

Λ(K,∆ = 3) =
K − arctanhK +K2arctanhK

2π2 (1−K2)
, (D.5)

whereas those for the conformally coupled scalar particle read

Λ(K,∆ = 1) =
K

2π2 (1−K2)
, Λ(K,∆ = 2) =

K2

2π2 (1−K2)
. (D.6)

1The delta function δ(x0 − y0) changes by a factor −i.
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D.2 Propagation of a vector particle
Let us start from the equation of motion of a free massless vector particle Aαα̇:

∇ββ̇∇ββ̇Aαα̇ −∇
ββ̇∇αα̇Aββ̇ = 0. (D.7)

Equivalently, one can write the above equation as

∇ββ̇Fββ̇αα̇ = 0, (D.8)

with
Fββ̇αα̇ = ∇[ββ̇Aαα̇] := ∇ββ̇Aαα̇ −∇αα̇Aββ̇ (D.9)

being the field strength tensor. Instead of fixing the gauge directly, for instance by the
Lorenz gauge condition, let us add an Rξ-gauge term to the equation of motion:

∇ββ̇Fββ̇αα̇ + ξ∇αα̇∇ββ̇Aββ̇ = 0. (D.10)

Let us now introduce the propagator:

〈Aαα̇Aα′α̇′〉 := Λαα̇α′α̇′ (D.11)

satisfying the equation

∇ββ̇〈Fββ̇αα̇Aα′α̇′〉+ ξ∇αα̇∇ββ̇〈Aββ̇Aα′α̇′〉 = εαα′εα̇α̇′
i√
−g

δ(4)(x− y), (D.12)

where
〈Fββ̇αα̇Aα′α̇′〉 = ∇[ββ̇Λαα̇]α′α̇′ . (D.13)

The most general ansatz is given by

〈Aαα̇Aα′α̇′〉 = f(K)Παα′Π̄α̇α̇′ +∇αα̇∇α′α̇′g(K), (D.14)

where f(K) and g(K) are yet to find. This ansatz has the advantage that the second
term is pure gauge [143] and, therefore, in principle it suffices to find f(K). However,
here we will follow another route determining 〈Fββ̇αα̇Aα′α̇′〉 instead. To this aim, let us
make the additional ansatzes

〈Fββ̇αα̇A
α′α̇′〉 = QF[ββ̇Π α′

α Π̄ α̇′

α̇] ,

∇ββ̇〈Aββ̇Aα′α̇′〉 = PFα′α̇′ .
(D.15)

The relation between f, g and Q,P can be found to be

Q = Kf ′ − f

K + 1
,

P = 4K(3K2 + 1)g′ + 12K4g′′ + 2K3g′′′(K2 − 1) +
3f

K + 1
−Kf ′,

(D.16)
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where the prime denotes the derivative with respect to K. Note that Q only depends on
f . In terms of Q,P , the homogeneous part of eq. (D.12) is given by

(K2 − 1)KQ′ + (K2 + 2)Q− ξKP = 0,

KQ′ +
K − 2

K + 1
Q+ ξ

(
KP ′ +

K

K + 1
P

)
= 0,

(D.17)

which further leads to a differential equation for solely Q:

K2(K2 − 1)Q′′ + 2K(2K2 + 1)Q′ + 2(K2 − 1)Q = 0. (D.18)

The solution is
Q =

CK

(K + 1)2
+

K2D

(K − 1)2(K + 1)2
, (D.19)

where C and D are integration constants. By using eqs. (D.17) together with eq. (D.19),
one can find the relation

KQ+ ξP = C. (D.20)

Note that Fββ̇αα̇ is either antisymmetric in the undotted or in the dotted indices. There-
fore, it can be split in a selfdual and an anti–selfdual object:

Fαβ := εα̇β̇Fββ̇αα̇,

Fαβ := εα̇β̇Fββ̇αα̇.
(D.21)

These two objects are related to Q as follows

〈FαβAα′α̇′〉 = QF α̇
α Παα′Π̄α̇α̇′ ,

〈Fα̇β̇Aα′α̇′〉 = QFα
α̇Π̄α̇α̇′Παα′ ,

(D.22)

where we use the notation that if two indices are identical but uncontracted then one has
to symmetrize over them, which is achieved by summing up all necessary permutations
without any additional factors. Another quantity one can construct is given by

〈Fββ̇αα̇Fβ′β̇′α′α̇′〉 = 〈Fββ̇αα̇A[α′α̇′〉
←−
∇β′β̇′], (D.23)

where the covariant derivative
←−
∇β′β̇′ acts on the left. It can be split in four different

objects, but due to complex conjugation only the following two are independent:

〈FαβFα′β′〉 := εα̇β̇εα̇
′β̇′〈Fββ̇αα̇Fβ′β̇′α′α̇′〉,

〈FαβFα̇′β̇′〉 := εα̇β̇εα
′β′〈Fββ̇αα̇Fβ′β̇′α′α̇′〉.

(D.24)

In terms of Q, these read

〈FαβFα′β′〉 =
[
Q′K(K2 − 1) +Q(K + 1)2

]
Παα′Παβ′ ,

〈FαβFα̇′β̇′〉 =

(
Q′K +Q

K − 1

K + 1

)(
F γ′

α̇′Παγ′

) (
F γ̇
α Π̄γ̇β̇′

)
.

(D.25)
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Note that, by using eq. (D.19), the latter expression becomes

〈FαβFα̇′β̇′〉 = D

[
K2

(1−K)2(1−K2)

](
F γ′

α̇′Παγ′

) (
F γ̇
α Π̄γ̇β̇′

)
, (D.26)

which does not depend on how we choose C. However, C affects the behaviour of the
first expression in eq. (D.25):

〈FαβFα′β′〉 =

[
(4C −D)K2

(1 +K)2

]
Παα′Παβ′ . (D.27)

Let us take D = 4C, such that the latter quantity vanishes. This is physically reasonable,
as then the purely (anti)–selfdual correlators are zero2. This choice leads to

Q = C
K

(K − 1)2
, P =

C

ξ

1− 2K

(K − 1)2
, (D.28)

where C is yet to find. To this aim, we perform a Wick rotation and then integrate eq.
(D.12) over a covariantly constant test-current j(x)αα̇:∫

d4x
√
g j(x)αα̇

[
∇ββ̇QF[ββ̇Παα′Π̄α̇α̇′] + ξ∇αα̇PFα′α̇′

]
= j(y)α′α̇′ . (D.29)

Partial integration of the left hand side, and subsequent integration of the boundary term
over a small ball of radius R (see section 5.2), yields the constraint C = 1

4π2 . Therefore,
we conclude that

〈Fββ̇αα̇Aα′α̇′〉 =
K

4π2(K − 1)2
F[ββ̇Παα′Π̄α̇α̇′]. (D.30)

If we compare the above expression with eq. (D.19) in the limit K → 1, we can deduce
the above results for the alternative choice C = 0:

〈Fββ̇αα̇Aα′α̇′〉 =
K2

π2(1−K2)2
F[ββ̇Παα′Π̄α̇α̇′]. (D.31)

Therefore

〈FαβFα̇′β̇′〉 = − 1

π2

(
K2

(K − 1)3(K + 1)

)(
F γ′

α̇′Παγ′

) (
F γ̇
α Π̄γ̇β̇′

)
, (D.32)

and

〈FαβFα′β′〉 = − 1

π2

(
K

K + 1

)2

Παα′Παβ′ . (D.33)

Squaring the above quantities yield

〈FαβFα̇′β̇′〉
2 =

12K4

π4(1−K)4
,

〈FαβFα′β′〉2 =
12K4

π4(1 +K)4
.

(D.34)

2These correspond to electric-electric respectively magnetic-magnetic correlators, in contrast to eq.
(D.26) describing the electric-magentic correlator.
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D.3 Propagation of a higher spin particle
We will derive the massless higher spin propagator by making substantial use of the
knowledge gained in the vector case. First, let us introduce the spin-s field. Recall
that, in four dimensions, it suffices to consider totally symmetric tensors since all other
nonvanishing irreducible representations are equivalent to the former, see, for instance,
ref. [78]. Being the order of the indices irrelevant, the spin-s field will thus be denoted
by Φα(s)α̇(s), where s ∈ N in the brackets indicates the number of indices of the same
type. Again, noncontracted indices denoted by the same letter are understood to be
symmetrized. As we take massless fields, one could right away fix the gauge3 by imposing
the Fierz-Pauli transversality condition and the tracelessness condition, i.e.,

∇ββ̇Φββ̇α(s−1)α̇(s−1) = 0, Φββ̇

ββ̇α(s−2)α̇(s−2)
= 0. (D.35)

These are necessary conditions on the fields to ensure that these correspond to irreducible
representations of the isometry group. However, later we are going to fix again the gauge
via Rξ-gauge, as done in the vector case.

For m ≤ s, let us introduce the (partial) Weyl tensor

C(m)

β(m)β̇(m)α(s)α̇(s)
:= (∇[ββ̇)m Φα(s)α̇(s)],

where the anti–symmetrization is intended to be pairwise in βiβ̇i and αiα̇i for each
i ∈ {1, . . . ,m}. The full Weyl tensor

Cβ(s)β̇(s)α(s)α̇(s) := C(s)

β(s)β̇(s)α(s)α̇(s)
(D.36)

corresponds to the field strength tensor Fββ̇αα̇ in the s = 1 case. Note that, in the spinor
helicity formalism, the Weyl tensor is automatically traceless. For a free massless higher
spin particle on shell, Cβ(s)β̇(s)α(s)α̇(s) satisfies the well-known equation

∇ββ̇Cβ(s)β̇(s)α(s)α̇(s) = 0, (D.37)

where we did not consider the gauge-fixing term, which will be introduced later. Owing
to the anti–symmetry, one can also split the Weyl tensor in its selfdual Cα(2s) and anti–
selfdual Cα̇(2s) parts, by contracting the Weyl tensor with s copies of, respectively, εβ̇α̇
and εβα. In terms of these quantities, eq. (D.37) becomes

∇γ
γ̇Cγα(2s−1) = 0. (D.38)

The next step is to generalize the notion of the scalar and vector propagators to a
tensor propagator Λα(s)α̇(s)α′(s)α̇′(s). Let us define

〈Φα(s)α̇(s)Φα′(s)α̇′(s)〉 := Λα(s)α̇(s)α′(s)α̇′(s). (D.39)
3Still, there is a residual gauge freedom.



134 D Bosonic higher spin propagators

Now it is time to try an ansatz, which will be shown to be consistent by proving that it
solves eq. (D.38):

〈Cα(2s)Φβ′(s)β̇′(s)〉 = Qs

(
F δ̇
α Παβ′Π̄δ̇β̇′

)s
. (D.40)

Here the symmetrization has to be implemented over all s factors. Consequently, one
gets

〈Cα(2s)Cα̇′(2s)〉 = Q(s)
s

(
F δ̇
α Π̄δ̇α̇′F

β′

β̇′
Παβ′

)s
, (D.41)

where Q(s)
s is defined recursively as Q(0)

s = Qs and

Q(i+1)
s =

(
∂KQ

(i)
s

)
K +Q(i)

s

(
sK − 1

K + 1
+ i

)
. (D.42)

Analogously, one finds
〈Cα(2s)Cβ′(2s)〉 = Q̃(s)

s (Παα′Παβ′)
s , (D.43)

with Q̃(0)
s = Qs and

Q̃(i+1)
s =

(
∂KQ̃

(i)
s

)
K(K2 − 1) + Q̃(i)

s (K + 1)

(
K(s− i) +

K − 1

K + 1
i+ 1

)
. (D.44)

By means of eq. (D.38), the above quantities satisfy

∇γ
γ̇〈Cγα(2s−1)Φβ′(s)β̇′(s)〉 = 0, (D.45)

and therefore Qs fulfills

(K2 − 1)KQ′s + (K2 + 2)Qs + (s− 1)(K2 + 1)Qs = 0,

KQ′s +
K − 2

K + 1
Qs + (s− 1)

K − 1

K + 1
Qs = 0.

(D.46)

Note that, for s = 1, the above equations agree with eqs. (D.17) for ξ = 0, as one may
expect. In order to solve eqs. (D.46), let us introduce the following gauge:

Rβ(s−1)β̇(s−1)α(s−1)α̇(s−1) ≡ ∇
γγ̇C(s−1)

γγ̇β(s−1)β̇(s−1)α(s−1)α̇(s−1)
= 0. (D.47)

It is straightforward to see that we can write

〈Rα(2s−2)Φβ′(s)β̇′(s)〉 = Ps

(
F δ̇
α Παβ′Π̄δ̇β̇′

)s−1

Fβ′β̇′ , (D.48)

since it is the only allowed tensor structure one can construct. In analogy to what done
in the spin-1 case, the gauge condition can be implemented as a Rξ-gauge by adding to
eq. (D.45) the term

ξ∇αγ̇〈Rα(2s−2)Φβ′(s)β̇′(s)〉. (D.49)
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Thus, eqs. (D.46) become

(K2 − 1)KQ′s + (K2 + 2)Qs + (s− 1)(K2 + 1)Qs − ξKPs = 0,

KQ′s +
K − 2

K + 1
Qs + (s− 1)

K − 1

K + 1
Qs + ξ

(
KP ′s +

K

K + 1
Ps + (s− 1)Ps

)
= 0.

(D.50)

Eliminating ξ leads to the differential equation

K2(K2 − 1)Q′′s + 2K(K2(s+ 1) + 1)Q′s + (K2s+ s− 2)(s+ 1)Qs = 0, (D.51)

whose solution is given by

Qs =
Φ(s)

π2

(
K

1−K2

)s+1

, (D.52)

where Φ(s), with Φ(1) = 1 being a function dependent solely on s. The coefficients were
chosen such that Q1 ≡ Q with C = 0, cf. eq. (D.31). Indeed, note that Ps is related to
Qs via

KQs + ξPs = 0, (D.53)

as expected from eq. (D.20). The spin-s Weyl-field propagator is given by

〈Cα(2s)Φβ′(s)β̇′(s)〉 =
Φ(s)

π2

(
K

1−K2

)s+1 (
F δ̇
α Παβ′Π̄δ̇β̇′

)s
, (D.54)

exhibiting the right behavior in the flat space limit:

〈Cα(2s)Φβ′(s)β̇′(s)〉 ∼ (−1)s
Φ(s)

4
√

2sπ2

1

Rs+2

(
n δ̇
α εαβ′εδ̇β̇′

)s
. (D.55)

Using eqs. (D.41,D.43), one can derive the Weyl-Weyl propagators

〈Cα(2s)Cα̇′(2s)〉 = −Φ(s)

2π2

(2s)!

s!

Ks+1

(K − 1)2s+1(K + 1)s

(
F δ̇
α Π̄δ̇α̇′F

β′

β̇′
Παβ′

)s
, (D.56)

and
〈Cα(2s)Cβ′(2s)〉 = −Φ(s)

2π2

(2s)!

s!

Ks+1

(K + 1)s+1
(Παα′Παβ′)

s . (D.57)

Moreover, one can further compute

〈Cα(2s)Cα̇′(2s)〉2 =
12sΦ̃(s)2

π4

(
K

1−K

)2s+2

,

〈Cα(2s)Cβ′(2s)〉2 =
12sΦ̃(s)2

π4

(
K

1 +K

)2s+2

,

(D.58)

where Φ̃(s) = Φ(s)
2

(2s)!
s!

.
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E Expansions in the conformal invariants

In this appendix we explain how to evaluate the expansion of the integrals L0 and L′0
given in eqs. (6.139-6.141) in powers of v and Y , that is1

L0 =
∞∑

m,n=0

L
(n,m)
0 (log v) vnY m, (E.1)

and analogously for L′0. Here, the coefficient functions L(n,m)
0 (log v) and L′(n,m)

0 (log v) are
to be determined. It is possible to obtain these coefficient functions analytically up to
reasonably high order with the help of Mathematica. For L0, the implementation of
the code is quite straightforward and works efficiently to high orders. For L′0, however,
this turns out to be a much more difficult task. Nevertheless, we able to provide a code
which works up to a sufficient order for our purposes. In this setting, the upper bound of
computable orders is set by the t- and u-channel of L′0, as will be explained later.

The integral L0.
We first discuss the simpler integral L0 given by

L0(x, y, z) =

∫ ∞
0

ds

∫ 1

0

dr
(sr(1− r))∆−1 log(1 + s)

(1 + s)∆[sr(1− r)x+ ry + (1− r)z]∆
. (E.2)

The s-channel. The s-channel is given by L0(v, 1− Y, 1). Let us denote the associated
integrand by ls(s, r; v, Y ). Then, for each of the cases ∆ = 1, 2, the steps to follow are:

1. Expansion in Y : ls(s, r; v, Y ) =
∑∞

m=0 l
(m)
s (s, r; v) Y m

2. Integration over s: l
(m)
s (r; v) =

∫∞
0

ds l
(m)
s (s, r; v)

3. Expansion in v: l
(m)
s (r; v) =

∑∞
n=0 l

(n,m)
s (r; log v) vn

4. Integration over r: L
(n,m)
s (log v) =

∫ 1

0
dr l

(n,m)
s (r; log v)

The t- and u-channels. For both the t- and u-channels of L0, although the integrals
being different, the employed procedure is the same. The integrals are respectively given
by L0(1− Y, 1, v) and L0(1, v, 1− Y ). Here, the steps to follow are similar as above, but
with the order of integration interchanged:

1. Expansion in Y : lt,u(s, r; v, Y ) =
∑∞

m=0 l
(m)
t,u (s, r; v) Y m

1To do so one has to substitute the variables x, y, z with the conformal invariants v, 1 − Y and 1 for
each channel in eqs. (6.139-6.141). In order to simplify the notation we will simply take the subscript
in L0 and L′0 as a placeholder for the different channels s, t, u.
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2. Integration over r: l
(m)
t,u (s; v) =

∫ 1

0
dr l

(m)
t,u (s, r; v)

3. Expansion in v: l
(m)
t,u (s; v) =

∑∞
n=0 l

(n,m)
t,u (s; log v) vn

4. Integration over s: L
(n,m)
t,u (log v) =

∫∞
0

ds l
(n,m)
t,u (s; log v)

The integral L′0.
The case L′0 brings along various difficulties, most of them associated to the s-channel.
The integral to solve is given by

L′0(x, y, z) =

∫ 1

0

dt

∫ ∞
0

ds

∫ 1

0

dr
arctanh t

t
√

(1 + s)(1 + t2s)[sr(1− r)x− ry + (1− r)z]
,

(E.3)
or, equivalently, by

L′0(x, y, z) =

∫ ∞
1

dλ

∫ ∞
0

ds

∫ 1

0

dr
log(1 + λs)

4λ
√

(1 + s)(1 + λs)[sr(1− r)x− ry + (1− r)z]
.

(E.4)
The s-channel. The code associated to the s-channel integral L′0(v, 1− Y, 1) is not as

simple as the ones above, but leads to a comparable performance when implemented in
Mathematica. The basic idea is the following: The s-integral can be split in two parts,
an integral from 0 to α and an integral from α to ∞, with α� 1. Then the integrand
to the former integral can be expanded immediately in v and subsequently integrated
over, since for v = 0 the integral (E.4) only diverges at s → ∞. The integrand of the
latter integral is instead expanded for large s (bear in mind that the product s× v does
not have a defined limit), and then integrated over. Eventually, from the sum of the two
results α drops out in the limit α→∞, yielding the final result.

Let us be more precise and redefine the integrand in eq. (E.4) as

l′s(s, r, λ; v, Y ) = a(s, λ)b(s, r; v, Y ), (E.5)

where

a(s, λ) =
log(1 + λs)

4λ
√

(1 + s)(1 + λs)
, b(s, r; v, Y ) =

1

sr(1− r)v − rY + 1
. (E.6)

The procedure is as follows:

1. Expansion in Y : b(s, r; v, Y ) =
∑∞

m=0 b
(m)(s, r; v) Y m

2. Integration region s ∈ [α,∞):

a) Expansion in s: a(s, λ) =
∑∞

l=0 a
(l)(log s, λ) s−(l+1)

b) Integration over s: A(m,l)(λ, r, α; v) =
∫∞
α

ds a(l)(log s, λ)b(m)(s, r; v) s−(l+1)
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c) Integration over λ: A(m,l)(r, α; v) =
∫∞

1
dλ A(m,l)(λ, r, α; v)

d) Expansion in v: A(m,l)(r, α; v) =
∑∞

n=0A
(n,m,l)(r, α; log v) vn

e) Integration in r: A(n,m,l)(α; log v) =
∫ 1

0
dr A(n,m,l)(r, α; log v)

f) Summation over l: A(n,m)(α; log v) =
∑n

l=0A
(n,m,l)(α; log v)

3. Integration region s ∈ [0, α] (after the variable substitution λ = t/s):

a) Expansion in v: b(m)(s, r; v) =
∑∞

n=0 b
(n,m)(s, r) vn

b) Integration in r: B(n,m)(s, t) =
∫ 1

0
dr a(s, t)b(n,m)(s, r)

c) Integration region (s, t) ∈ [0, α]× [α,∞):

i. Integration in t: B
(n,m)
1 (s, α) =

∫∞
α

dt B(n,m)(s, t)

ii. Integration in s: B
(n,m)
1 (α) =

∫ α
0

ds B
(n,m)
1 (s, α)

d) Integration region (s, t) ∈ [0, t]× [0, α]:

i. Integration in s: B
(n,m)
2 (t, α) =

∫ t
0

ds B(n,m)(s, t)

ii. Integration in t: B
(n,m)
2 (α) =

∫ α
0

ds B
(n,m)
2 (s, α)

4. Summation over results: C(n,m)(α; log v) = A(n,m)(α; log v) + B
(n,m)
1 (α) +

B
(n,m)
2 (α)

5. Elimination of α: L
′(n,m)
s (log v) = lim

α→∞
C(n,m)(α; log v)

In step (2f), the sum clearly runs over all natural numbers. However, for l > n, the terms
A(n,m,l)(α; log v) vanish in the limit α→∞ and thus can be dropped. Furthermore, note
that after the variable substition λ = t/s the integration region is (s, t) ∈ [0, α]× [s,∞),
which in turn can be divided into two smaller regions. This was done in step (3c) and
step (3d).

The t- and u-channels. The implemented code for the t- and u-channels of L′0 is again
straightforward. The integrals are respectively given by L′0(1−Y, 1, v) and L′0(1, v, 1−Y ),
but in this case we start from eq. (E.3).

1. Expansion in Y : l′t,u(s, r, t; v, Y ) =
∑∞

m=0 l
′(m)
t,u (s, r, t; v) Y m

2. Integration over r: l
′(m)
t,u (s, t; v) =

∫ 1

0
dr l

′(m)
t,u (s, r, t; v)

3. Expansion in v: l
′(m)
t,u (s, t; v) =

∑∞
n=0 l

′(n,m)
t,u (s, t; log v) vn

4. Integration over s: l
′(n,m)
t,u (t; log v) =

∫∞
0

ds l
′(n,m)
t,u (s, t; log v)
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5. Integration over t: L
′(n,m)
t,u (log v) =

∫ 1

0
dt l

′(n,m)
t,u (t; log v)

Unfortunately, the Mathematica code does not run efficiently for these channels. However,
by constraining oneself in the computation of solely the coefficients linear in log v in
L
′(n,m)
t,u (log v), the code performance improves drastically. Explicitly, after step (3), one

proceeds as follows:

4. Expansion in log v: l
′(n,m)
t,u (s, t; log v) = l

′(n,m,0)
t,u (s, t) + log v l

′(n,m,1)
t,u (s, t)

5. Integration over s: l
′(n,m,1)
t,u (t) =

∫∞
0

ds l
′(n,m,1)
t,u (s, t)

6. Integration over t: L
′(n,m,1)
t,u =

∫ 1

0
dt l

′(n,m,1)
t,u (t)

where L′(n,m)
t,u (log v) = L

′(n,m,0)
t,u + log v L

′(n,m,1)
t,u . The lack of knowledge of L′(n,m,0)

t,u is not
stringently restrictive for us, since our main interest lies in the anomalous dimensions.
Indeed, this only prevents us from deriving the OPE coefficients of higher weight primaries
at second order in the coupling constant.
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F OPE coefficients

Here we collect some of the OPE coefficients and anomalous dimensions. The (squared)
OPE coefficients for the disconnected contribution to the four-point function of a gener-
alized free field of weight ν are1

An,l=
πΓ( d2 +l)2d−4ν−l−4n+3Γ(− d2 +n+ν+1)Γ(−d+n+2ν+1)Γ(l+n+ν)Γ(l+2n+2ν−1)Γ(− d2 +l+n+2ν)

Γ(ν)2Γ(l+1)Γ(n+1)Γ(− d2 +ν+1)
2
Γ( d2 +l+n)Γ(− d2 +n+ν+ 1

2)Γ(l+n+ν− 1
2)Γ(− d2 +l+2(n+ν))

, (F.1)

where we recall that the conformal blocks are defined via the recursion relations given in
ref. [124]. They have the general structure

Gν,l = v
ν−l

2
(
2−lY l + Y l+1 + ...+ v(Y l−2 + ...) + ...

)
,

where only the first coefficient, 2−l, is displayed here, while the others are dropped. This
fixes the normalization of the conformal blocks. The recursion begins with the scalar
conformal block:

Gν,0 = v
ν
2 G̃(ν

2
, ν

2
, ν), (F.2)

G̃(b, f, S) =
∑
n,m

Y mvn

m!n!

(b)m+n(S − b)n(f)m+n(S − f)n(
S − 3

2
+ 1
)
n

(S)m+2n

. (F.3)

∆ = 2.
A few OPE coefficients at order λR are given in table 1. Note that, since most of the
anomalous dimensions at first order vanish, the OPE coefficients for l > 0 are determined
by matching the OPE expansion at order λ2

R. Only the first column, l = 0, comes from
the OPE at order λR.

At order λ2
R the anomalous dimensions of the operators from the first Regge trajectory

have a very simple analytic form, see section 6.5. This seems not to be the case for
the subleading trajectories and we simply list some of them in table 2. Likewise, few
OPE coefficients at order λ2

R can be found (note that due to vanishing of the first order
anomalous dimensions of the spinning operators most of the second order OPE coefficients
will be only fixed at order λ3

R, and we do not have access to) and these are given in table
3.

∆ = 1.
Also for ∆ = 1 the anomalous dimensions of the operators with nonzero spin vanish at
order λR, and thus only corrections to An,l=0 can be determined at this order. These
can be found in table 4. For l > 0, the lowest order corrections to the OPE coefficients
1The coefficients can be found in ref. [36], but we adjusted them to our normalization of conformal
blocks.
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are determined by matching the OPE expansion at order λ2
R. However, owing to the

complexity of L′4 at order λ2
R, our results are more limited, see table 5.

Anomalous dimensions of the operators at n > 0 trajectories are purely rational (in
terms of γ2) and are given in table 6. Due to γ(1)

n,l>0 = 0, again only part of the OPE
coefficients can be determined at order λ2

R, and the first few of them are given in table 7.
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∆ = 2 l = 0 l = 2 l = 4 l = 6

n = 0 1
3

22
25

1066
1323

1327184
2760615

n = 1 −478
735

−20834676
22204105

−4866352
7966035

−13064388928
43517414655

n = 2 −11507
50820

−14977826
60144903

− 15701186862675
107693096012359

− 3223599567312
47662730167195

Table 1: Some of the OPE coefficients A(1)
n,l

∆ = 2 l = 0 l = 2 l = 4 l = 6 l = 8 l = 10

n = 1 46
15

− 107
1260

− 19
1260

− 131
27720

− 301
154440

− 19
20020

n = 2 113
28

− 269
2520

− 6707
311850

− 1973
270270

− 3439
1081080

n = 3 535
112

− 6697
55440

− 19037
720720

− 143581
15135120

Table 2: Some anomalous dimensions at order λ2
R

∆ = 2 n = 0 n = 1 n = 2 n = 3 n = 4

l = 0 20
9

111392
77175

27588119
70436520

6664117739
96718146525

54416659121622349
5688844669692344160

Table 3: Some of the OPE coefficients A(2)
n,l

∆ = 1 n = 0 n = 1 n = 2 n = 3 n = 4

l = 0 −2 −1
3

− 617
36750

− 20087
22411620

− 34519
695674980

Table 4: Some of the OPE coefficients A(1)
n,0

∆ = 1 l = 2 l = 4

n = 0 144ζ(3)−31
18(π2−5)

− 43
15

2(604800ζ(3)−380209)
3675(120π2−863)

− 10714
11025

Table 5: Some of the OPE coefficients A(1)
n,l>0

∆ = 1 l = 0 l = 2 l = 4 l = 6 l = 8

n = 1 5
2

−23
60

− 59
420

− 37
504

− 179
3960

n = 2 29
6

− 373
1260

− 71
630

− 1693
27720

n = 3 367
60

− 641
2520

− 15074
155925

Table 6: Some anomalous dimensions at order λ2
R

∆ = 1 n = 0 n = 1 n = 2

l = 0 −4ζ(3) + π2/2 + 8 37
27

337219
7717500

Table 7: Some of the OPE coefficients A(2)
n,l
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