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1. Introduction 

1.1. Vascular remodelling 

The vascular system is not a static vessel’s network, but rather constantly changing to adapt 

to the body’s and tissue’s needs and maintain vascular homeostasis. In response to short-

term alterations in hemodynamic forces exerted by the flowing blood or to humoral factors, 

especially oxygen, vessels adjust blood flow and flow distribution, regulating lumen 

diameters through vasoconstriction or vasodilation. However, when these alterations 

become longstanding, the vasculature responds by modifying its basal structure, changing 

the vascular network through the generation (angiogenesis) or elimination of vessels 

(pruning), and/or by remodelling the vessel’s wall (Zakrzewicz, Secomb et al. 2002).  

Vascular remodelling processes can result in increased (outward remodelling) or decreased 

lumen diameters (inward remodelling) and can develop in both physiological and 

pathological situations.  Involved mechanisms are fibrosis, hyperplasia of the intima and 

media layers, changes in the extracellular matrix (ECM) and in case of pathological 

remodelling, endothelial dysfunction and/or arterial calcification (van Varik, Rennenberg et 

al. 2012). By switching to a synthetic phenotype, smooth muscle cells (SMCs) play a crucial 

role in some of these mechanisms. By migrating and proliferating in the intima they 

contribute to intimal thickening and by releasing elastolytic enzymes and synthesizing new 

matrix components, to the restructuring of the ECM (Doran, Meller et al. 2008, van Varik, 

Rennenberg et al. 2012). 

In pathological remodelling, damage of the endothelium (endothelial dysfunction) occurring 

during angioplasty or the formation of atherosclerotic plaques often derive in inward 

remodelling that can result in stenosis of the vessel followed by ischemia in the downstream 

tissues (Patel, Waltham et al. 2010). Interestingly, to counterbalance ischemic damage in 

obstructive vascular diseases, vasculature spontaneously develops a physiological adaptive 

response: the outward remodelling of collateral arteries or arteriogenesis. 

Arteriogenesis happens near the obstruction site and defines the growth of arterial 

anastomosis, or collateral arteries, bypassing the obstructed artery. The redirected blood 

from a feeding artery into the collaterals increases the hemodynamic forces that drive their 

development into physiological bypasses. Grown collateral arteries can indeed restore 30 to 

40 % of the blood perfusion (Schaper 2009). Hence, therapeutic arteriogenesis represents 

the only option to mitigate ischemic symptoms of an obstructed artery.  
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To better understand arteriogenic remodelling, a basic knowledge of the structure and 

function of an artery wall is required and will be introduced next. 

1.1.1. Artery wall 

Vessels are composed of up to three different tissue layers or tunics, that from the vessel 

lumen to the outside are called tunica intima, media and adventitia (Figure 1.1). While 

capillaries are composed of a tunica intima solely, arteries and veins possess all three layers.  

Figure 1.1: Schematic representation of an artery wall 

Artery wall composed of the three tunics: intima, media and adventitia. The intima is formed usually 
by a single-cell lining of endothelial cells (ECs) and a basement membrane underneath. The media 
is composed of several layers of smooth muscle cells (SMCs) embedded in elastin sheets with 
collagen fibers and thin layers of proteoglycan-rich extracellular matrix (ECM). The adventitia is 
composed of fibroblasts in collagen-rich ECM. The interna elastic lamina (IEL) and the externa 
elastic lamina (EEL) separate the intima from the media and the media from the adventitia, 
respectively. Modified from (Hammes 2015). 

The intima, or endothelium, is a single-cell lining of endothelial cells (ECs) covering the 

internal vessel surface, with a basement membrane underneath, constituted by connective 

tissue and elastin and collagen fibers. The tunica media is formed by one or more concentric 

layers of SMCs supported by elastin sheets with collagen fibers and thin layers of 

proteoglycan-rich ECM in-between. Finally, the outer adventitia is a layer of connective 

tissue composed of collagen-rich ECM and fibroblasts that holds the vessel in the tissue 

surrounding. In conductive arteries, between the intima and the media and between the 

media and the adventitia are located the internal and external elastic laminae (IEL and EEL), 

respectively, which provide structure to the vessel and allow the vessel to stretch. 
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 ECs 

ECs not only act as a transport barrier between the blood and the rest of the vessel, they 

regulate the equilibrium between thrombosis and haemostasis by separating their 

anticoagulant luminal surface with the strongly thrombogenic macromolecules of the 

basement membrane underneath (Félétou 2011). ECs also exert important functions in the 

control of lumen diameter, leukocytes trafficking and wound healing (Félétou 2011).  

Due to blood flow, ECs are exposed to hemodynamical forces, one perpendicular to the wall 

- the blood pressure - and the other being parallel to the wall, and representing a frictional 

force at the surface of the endothelium, the fluid shear stress (FSS) (Davies 1995). Changes 

in FSS are sensed by ECs and are mechanotransduced via activation of cell membrane 

proteins, mechanosensitive ion channels, focal adhesion and integrins, G-protein linked 

receptors and/or mitogen-activated protein kinase (MAPK) signalling (Davies 1995). One 

of the most important physiological consequences of FSS changes sensed by ECs is the 

regulation of lumen diameter by the secretion of relaxing and contractile factors acting on 

the SMC layer underneath (Davies 1995). However, in response to long-term changes in 

FSS the endothelium initiates arterial remodelling processes (Resnick, Yahav et al. 2003). 

Hence, while decreased blood flow and FSS lead to inward remodelling, increased flow and 

FSS results in enlargement of the lumen diameters as happens during arteriogenesis 

(Resnick, Yahav et al. 2003, Schaper and Scholz 2003). 

 SMCs 

The principal function of differentiated SMCs is the regulation of lumen diameter and blood 

flow through vasoconstriction and vasodilation, in part in response to endothelial-released 

relaxing and contracting factors, or by sensing circumferential wall stress (CWS) (Jacobsen 

and Holstein-Rathlou 2012). CWS is directly proportional to the intravascular pressure and 

inversely proportional to wall thickness. Long-term changes in CWS can also induce 

vascular remodelling processes to preserve vascular homeostasis. To increased CWS, the 

media responds by thickening and vice versa (Jacobsen and Holstein-Rathlou 2012). SMCs 

retained plasticity allow them to dedifferentiate into a synthetic, high proliferative 

phenotype in response to a variety of environmental cues (Owens, Kumar et al. 2004). 

Proliferative SMCs are strongly involved in arterial remodelling by contributing to the 

thickening of the intima and restructuring of the ECM. Due to their pleiotropic functions, 

proliferative SMCs are targets for treatments of coronary artery disease as well as targets in 

therapeutic arteriogenesis (Grundmann, Piek et al. 2007, Stefanini and Holmes 2013) . 
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 Function of vessels wall 

The function of the vessel will determine the composition of its wall. Near the heart, elastic 

arteries are characterized by big lumen diameters and thick tunica intima with a substantial 

IEL and several sheets of SMCs layers in the tunica media. Their high elasticity helps 

stabilize blood pressure oscillations from pumping. Elastic arteries branch into muscular 

arteries, with lower percentage of elastic fibers but thicker tunica media and play an 

important role in vasoconstriction.  

Arteries branch to arterioles of around 30 µm of diameter which walls are much thinner, 

with a tunica media of one or two SMC layers. SMCs in arterioles are slightly contracted, 

leading to a basal arteriolar vasoconstriction, called vascular tone, regulated under neural 

and chemical control (Jackson 2000). Hence, arterioles are referred to as resistance vessels 

since they considerably slow down blood flow causing a rise in blood pressure. 

Arterioles eventually end into small capillaries. Through the thin capillary walls composed 

solely of an intima layer, gases, nutrients and metabolites are exchanged between blood and 

tissue. Finally, the less-oxygenated blood is returned to the heart from capillaries via venules 

and veins.  

1.1.2. Collateral circulation 

Arterioles occasionally end into a conductive artery without capillary branching in-between, 

building so arterio-arteriolar anastomoses. These arterioles are called collateral arteries and 

can be found in both the heart and the peripheral circulation. 

The existence of a collateral circulation is known since the 18th century (Ziegler, Distasi et 

al. 2010). Repetitively during history, cardiologists have described the existence of such 

anastomoses in the heart bypassing obstructed arteries and correlating with better outcomes. 

Due to low resolution techniques unmasking small arterioles, the origin and formation of 

these grown collateral arteries have been for long subject of debate. Were they formed de 

novo or were they growing from pre-existing arteriolar anastomoses? In the 1960’s, by using 

more sensitive techniques, Fulton and Baroldi concurrently demonstrated in post-mortem 

heart angiograms that collaterals had developed from pre-existing arteriolar connections 

(Baroldi, Mantero et al. 1956, Fulton 1963). In fact, collateral arteries are nowadays well 

characterized (Faber, Chilian et al. 2014). 

Histologic- and morphologically, there is no difference between an arteriole and a collateral 

artery at rest. Like arterioles, collaterals are composed of a tunica intima, a prominent IEL, 
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a tunica media with one or two layers of SMCs and a tunica adventitia (Scholz, 

Ziegelhoeffer et al. 2002). Their diameters vary depending on the species, in mice, they are 

usually smaller than 50 µm (Ziegler, Distasi et al. 2010). Even so, resting collateral arteries 

can be distinguished from normal arterioles in that blood enters the collaterals from the two 

anastomotic ends simultaneously and is drained from branches localized along the collateral 

length. A pulsatile collateral flow prevents haemostatic thrombosis and results in almost no 

net flow near the midpoint of the collateral. It is thought that collaterals optimize regional 

metabolic control of oxygen delivery in healthy tissues and serve as scaffolds for delivery 

of blood flow to parenchymal tissue between adjacent artery trees (Faber, Chilian et al. 

2014). 

1.1.3. Arteriogenesis 

Since the identification of arteriogenesis as a remodelling process occurring in pre-existent 

arteriolar anastomoses and differing from angiogenesis - the sprouting or splitting of pre-

existing capillaries - (Schaper, De Brabander et al. 1971), extensive research has been 

performed in the field. Several in vivo models, especially the femoral artery ligation (FAL) 

model have considerably contributed to identify underlying molecular mechanisms and 

cellular players (Limbourg, Korff et al. 2009, Schaper 2009).   

Following the obstruction of a feeding artery, a pressure gradient is established between the 

prestenotic high-pressure bed and the poststenotic low-pressure bed, leading to a rise in 

blood flow and flow velocity through the collaterals (Fig 1.2, A and B) (Pipp, Boehm et al. 

2004). As a consequence, FSS, a force proportional to the flow velocity and exerted onto 

ECs rises and is mechanotransduced by the endothelium into diverse biochemical signalling 

pathways initiating the arteriogenic process (Schaper and Scholz 2003). Collateral 

vasodilation occurs and is mediated by nitric oxide (NO), prostacyclin and endothelium-

derived hyperpolarization factor (EDHF) (Unthank, Nixon et al. 1996, Schaper and Scholz 

2003, Troidl, Troidl et al. 2009). However, since FSS is inversely proportional to the cube 

of the radius, small increases in lumen diameter due to vasodilation and arterial remodelling 

lead to a substantial drop of its value. Hence, other mechanisms contribute to further arterial 

remodelling such as an increase in CWS and the recruitment of perivascular cells (Schaper 

and Scholz 2003).  

An early FSS-induced upregulation of endothelial adhesion molecules, such as Intercellular 

adhesion molecule 1 (ICAM-1) and Vascular cell adhesion molecule 1 (VCAM-1) as well 

as vascular endothelial growth factor (VEGF-A) participate in the recruitment of leukocytes, 
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principally monocytes (Scholz, Ito et al. 2000). Besides macrophages, a role of mast cells 

which degranulate around growing collateral arteries further supports leukocytes 

recruitment and cell proliferation by releasing growth factors (GFs) and cytokines (Chillo, 

Kleinert et al. 2016). Platelets activation also mediates leukocyte recruitment by facilitating 

leukocytes adhesion to the activated endothelium (Chandraratne, von Bruehl et al. 2015). 

Monocyte chemoattractant protein 1 (MCP-1) chemotaxis gradient generated by SMCs 

upon increase in CWT and stretch further guides monocytes towards the vessel’s wall 

(Demicheva, Hecker et al. 2008) (Fig 1.2, B). 

Figure 1.2: Arteriogenesis 

A. Pre-existing collateral arteries as arterio-arteriolar anastomosis. B. In the presence of an arterial 
obstruction, the formation of a pressure gradient in the extremes of the collateral arteries establishes 
an increased blood flow from a supplying artery. Blood flow is accompanied by a rise in FSS sensed 
by the EC layer, inducing a vasodilation first, followed by recruitment of monocytes. C. Collateral 
arteries grow in diameter and length and act as physiological bypasses restoring blood perfusion of 
the downstream tissue and palliating so ischemic-damage. Modified from (Schirmer, van Nooijen 
et al. 2009). 

Macrophages and mast cells orchestrate then collateral growth by secreting GFs and matrix 

proteases, inducing proliferation of ECs and SMCs and degrading the IEL and basal 

membrane to provide room for the proliferating cells (Arras, Ito et al. 1998, Heil, 

Eitenmuller et al. 2006, Schaper 2009, Chillo, Kleinert et al. 2016). Recently, we 

demonstrate a role of vascular arginase in recruitment of M2 macrophages through the 

regulation of Icam-1 expression in collateral arteries (Lasch, Caballero-Martinez et al. 

2016). M2 macrophages localize within the adventitial space of growing collaterals where 

they might be involved in matrix rebuilding and new space formation for the growing 

collateral (Troidl, Jung et al. 2013). Depending on the species, collateral arteries can 

increase their diameter 2 to 20-fold and their tissue mass up to 50-fold. The grow in diameter 
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and in length gives mature collaterals their characteristic tortuosity (Schaper 2009) (Fig 1.2, 

C). As collateral vessels mature, SMCs re-synthesize the wall matrix building the platform 

for the grown collateral vessel. Matrix proteins also contribute to the re-differentiation of 

SMCs, that finally rearrange into circulatory layers and establish cell-to-cell contacts 

(Schaper 2009). 

1.2. Epidemiology of cardiovascular diseases (CVDs)  

1.2.1. CVDs and atherosclerosis 

Cardiovascular diseases (CVDs) constitute the major cause of mortality worldwide (WHO 

2015). Indeed, in 2015, the World Health Organisation (WHO) estimated that annually 17.7 

million people die from CVDs, representing 31 % of all global death. 

The most common disorders are coronary heart disease (CHD), cerebrovascular disease and 

peripheral artery disease (PAD), diseases affecting arteries supplying heart muscle, the brain 

or arms and legs, respectively. 

The main cause of CVDs is atherosclerosis, a chronical arterial disease characterized by 

lipid deposition and oxidation at the luminal layer of the vascular vessels that can cause the 

narrowing of the vessels to even stenosis or to thrombotic events. The disease is influenced 

by unmodified factors such as hyperlipidaemia diseases or genetic susceptibility (genetic 

history), but also by life habits such as smoking, physical inactivity, obesity, diabetes 

mellitus and hypertension (Herrington, Lacey et al. 2016).  

The severity of the symptomatology will depend on localization and sequential events of 

the plaque. The lipid deposits are phagocytosed by macrophages that transform into foam 

cells. In an advanced stage, these accumulations develop into fibroatheromas characterized 

by the disruption of the intimal structure, an enrichment in collagen-rich fibrous tissue and 

apoptosis and necrosis of the underlying macrophages and SMCs layers (Bentzon, Otsuka 

et al. 2014). The slow narrowing of a coronary artery usually leads to stable angina pectoris. 

While if the narrowing occurs in a leg artery, it generates intermittent arterial claudication 

mostly during exercise. This relatively slow reduction of the vessel lumen occurs due to the 

growth of the fibrous tissue forming the fibrotic cap or to an aberrant proliferation of SMCs 

leading to neointima hyperplasia (Bentzon, Otsuka et al. 2014). However, a more dramatic 

situation appears when the rupture of the fibrotic cap or the exposure of the highly 

haemorrhagic necrotic core leads to thrombus formation, that can suddenly partially or even 

totally obstruct the affected artery or a nearby artery (Bentzon, Otsuka et al. 2014). 
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Thrombotic obstruction of a supplying brain artery can lead to ischemic stroke, while the 

obstruction of a coronary artery can cause myocardial infarction or even heart failure. In 

PAD, thrombotic obstruction can lead to rest pain and even gangrene and amputation 

(Ziegler, Distasi et al. 2010). 

1.2.2. Current treatments for atherosclerotic-driven CVDs 

In high-income countries, mortality rates for CVDs have decreased in the last decades due 

to changes in health habits - such as smoking cessation, healthy diet and exercise activity -

and treatment improvements (Herrington, Lacey et al. 2016).  

Besides vasodilators and anti-thrombotic drug treatments, physicians have developed two 

different revascularization strategies to free obstructed arteries in CVDs: angioplasty and 

bypass surgery. Angioplasty is a nonsurgical procedure used to open an artery at the site of 

an atherosclerotic plaque, whereby a balloon with or without stent is introduced through a 

catheter and inflated at the obstructed site. Stents contribute to stabilize artery wall and the 

new generation of drug-eluding stents (DES), releasing anticoagulant or intimal growth 

inhibitors, has proven to significantly reduce the risk of thrombus formation and in-stent 

restenosis (Haas, Lloyd et al. 2012). An alternative to angioplasty is bypass surgery, usually 

preferred in patients with several atherosclerotic arteries. This technique consists in the 

implantation of vessel grafts circumventing the obstructed zone of the affected artery. The 

efficacy and safety of coronary bypass surgery and coronary angioplasty with DES 

deployment have been compared by several randomized trials, showing no clear advantages 

for the one over the other (Al Ali, Franck et al. 2014, Fanari, Weiss et al. 2015).  

However, revascularization therapies are not always recommended in patients with CHDs 

as they do not always result in clear survival benefits over medical therapy alone (Fox, 

Garcia et al. 2006). Hence, while revascularization improves survival in acute coronary 

syndromes, no prognostic benefits have been observed with coronary angioplasty in stable 

coronary artery disease usually performed to relieve symptomatic (Degen, Millenaar et al. 

2014, Al-Lamee, Thompson et al. 2018). Patients with high-procedure morbidity and 

mortality, with a non-significant coronary stenosis (with less than 50 %) or with mild or 

with no symptoms of ischemia, are usually treated with medical therapy alone (Fox, Garcia 

et al. 2006). However, all these patients may benefit from another therapeutic option, the 

pharmacological induction of arteriogenesis. 
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1.2.3. Limitations of physiological arteriogenesis 

Atherosclerosis-driven CVDs, sometimes remain asymptomatic due to the development of 

collateral arteries into physiological bypasses. In CHDs, numerous studies demonstrate a 

protective role of good versus poor coronary collateralization (Meier, Schirmer et al. 2013). 

Patients with a good collateralization tend to have smaller infarcts, improved ventricular 

function, fewer future cardiovascular events and improved survival (Berry, Balachandran et 

al. 2007, Meier, Hemingway et al. 2012). 

Nevertheless, only a third of patients with hemodynamically significant atherosclerotic 

lesions still develop sufficiently grown coronary collaterals as to prevent signs of 

myocardial ischemia (Meier, Schirmer et al. 2013). Similarly, limitations of collateral 

growth are found in PAD patients too (Murrant 2008). Heterogeneity in the arteriogenic 

response against cardiovascular obstruction can be explained by the existence of both 

inherited and risk factors. Studies in a mice model for arteriogenesis have identified genetic 

differences between mouse strains as well as aging as factors influencing collateral density 

during embryonic development (collaterogenesis) and/or collateral growth in adulthood 

(Scholz, Ziegelhoeffer et al. 2002, Chalothorn and Faber 2010, Epstein, Lassance-Soares et 

al. 2012). Several genetic determinants have been identified in patients with CHD too, 

principally through analysis of monocytes transcriptomes (Chittenden, Sherman et al. 2006, 

Schirmer, Fledderus et al. 2008, Meier, Antonov et al. 2009, de Marchi 2014). In addition, 

factors known to induce atherosclerosis such as hypercholesterolemia, hypertension, 

hyperglycemia or obesity, could at the same time hamper collateral artery growth (de Groot, 

Pasterkamp et al. 2009).  

Besides the above-mentioned factors, arteriogenesis also displays physiological limitations. 

Typically, only 30 to 40 % of functional blood flow can be restored by grown coronary and 

peripheral collaterals, respectively (Schaper 2009). This growth arrest has been explained 

by the rapid decrease in FSS, once the diameter of the collateral lumen increases as a 

consequence of the outward remodelling (Schaper 2009). Indeed, the study of Pipp et al 

with the arteriovenous shunt model, resulting into a constant raised FSS and in an impressive 

collateral artery growth demonstrated that anatomical restraints can be transcended. Hence, 

therapeutic stimulation of collateral growth may improve the formation of a strong collateral 

network in patients with CVDs (Pipp, Boehm et al. 2004). 
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1.2.4. Therapeutic arteriogenesis 

Several strategies have been followed to induce arteriogenic growth in patients 

(Hakimzadeh, Verberne et al. 2014). One has been the induction of increased shear stress 

in collaterals by means of physical exercise (Haas, Lloyd et al. 2012, Mobius-Winkler, 

Uhlemann et al. 2016). However, this kind of therapy is not suitable in patients with end-

stage obstructive arterial disease who are unable to perform exercise training. 

Another strategy has been based on the versatile role of monocytes recruited to the growing 

collaterals, fomenting vascular cell proliferation and matrix remodelling through the release 

of GFs and matrix degradation enzymes (Fung and Helisch 2012). Several compounds 

targeting monocytes recruitment and/or activation have been carried out in experimental 

settings with relative success. Despite the promising outcomes of such therapies, large 

randomized clinical trials have failed to show clear beneficial effects (Hakimzadeh, 

Verberne et al. 2014). 

SMCs have also been targets in arteriogenesis by promoting their proliferation with GFs 

such as Fibroblast growth factor 2 (FGF-2) (Yang, Deschenes et al. 1996, Rissanen, 

Markkanen et al. 2003, de Paula, Flores-Nascimento et al. 2009). While in preclinical 

studies, FGF-2 could improve arteriogenesis, in a clinical trial, the beneficial effects in CHD 

patients were limited (Simons, Annex et al. 2002). Probably the time point of FGF 

administration is likely to be critical, as expression of the FGF-receptors is induced during 

a brief time window in the early phase of arteriogenesis (Deindl, Hoefer et al. 2003). 

Besides GFs, several potassium (K+) channels have been involved in SMCs phenotypic 

modulation and proliferation. Hence, K+ channel inhibitors have been used to target SMCs 

proliferation in intima hyperplasia following angioplasty or allograft vasculopathy (Tharp, 

Wamhoff et al. 2008, Chen, Lam et al. 2013, Cidad, Novensa et al. 2014). The 

characterization of K+ channels involved in arteriogenic SMC proliferation might open new 

ways to foster arteriogenesis in CVD patients. 
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1.3. SMCs in arteriogenesis 

SMCs play a crucial role in arteriogenesis, not only as a principal cellular component of the 

vessel wall but also as a source of chemokines, proteolytic enzymes and new ECM 

components (Schaper 2009). To accomplish these new tasks, SMCs undergo a 

dedifferentiation process toward a synthetic/high-proliferative phenotype (Owens, Kumar 

et al. 2004). 

1.3.1. SMC phenotypic modulation  

SMCs differentiate during embryogenesis in cells with a clear function, the regulation of 

the vascular tone. SMC-specific contractile and contractile-associated proteins allow a fast 

modulation of cell morphology, that in a synchronized manner leads to changes in the lumen 

diameter of the vessels (Owens, Kumar et al. 2004). The expression regulation of SMC 

contractile genes is complex and involves both transcription factors (TFs) and 

transcriptional coactivators. SMCs contractile proteins have highly conserved CArG cis-

element in their promoter recognized by the TF serum response factor (SRF). SRF however 

is not exclusive of the SMC lineage, since it also regulates the expression of cardiac- and 

skeletal-specific genes and early response and structural genes (Mack 2011). Specificity is 

achieved by Myocardin and Myocardin related transcription factors (MRTF) A and B, a 

family of transcriptional coactivators considered as the master regulators of the SMC 

lineage. The binding of Myocardin or MRTFs and additional coactivators to SRF regulates 

the SRF-dependent transcription of important SMC effector proteins like α-smooth muscle 

actin (α-SMA), smooth muscle myosin heavy chain (SMMHC), or smooth muscle 22 alpha 

(SM22-α) among others (Yoshida, Sinha et al. 2003, Wang and Olson 2004, Wang, Wang 

et al. 2004, Mack 2011).In adulthood however, diverse stimuli such as GFs, several matrix 

components or matrix degradation products secreted during vascular growth or vascular 

injury stimulate SMC phenotypic modulation (PM) toward a proliferative phenotype 

(Owens, Kumar et al. 2004, Mack 2011). Receptor tyrosine kinase (RTK) engagement and 

subsequent activation of the MAPK signalling pathway results in the phosphorylation of 

Myocardin and its consequent release from DNA binding. SRF is then recruited to a member 

of the ternary complex factor (TCF) family that recognizes E26 transformation-specific 

(Ets) box sequences in the promoters of early growth genes. So Myocardin and TCF 

members compete for SRF to control contractile gene versus early growth genes (Mack 

2011). 
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1.3.2. Factors inducing SMC proliferation in arteriogenesis 

GFs and their signalling through RTKs are strong SMCs mitogenic factors during 

arteriogenesis too. In a rabbit FAL model, Deindl et al. reported a strong expression of 

fibroblast growth factor receptor 1 (FGFR-1) in growing collateral arteries as early as 3h 

after FAL, mostly restricted to SMCs. Moreover, treatment with polyanethole-sulfonic acid 

(PAS), that blocks the binding of FGFR-1 with fibroblast growth factors (FGFs), resulted 

in poorer collateral artery growth (Deindl, Hoefer et al. 2003).  

FGF-2 is the most relevant FGF in SMC proliferation. Monocytes, which adhere to the 

activated endothelium as early as 12h post ligation, strongly express FGF-2 (Arras, Ito et al. 

1998, Scholz, Ito et al. 2000, Deindl, Hoefer et al. 2003). Mast cells are another source of 

FGF-2 as well as of platelet-derived growth factor ß (PDGF-BB), another strong SMC-

mitogenic GF (Chillo, Kleinert et al. 2016). Consistently, application of FGF-2 following 

coronary artery stenosis boosted collateral artery growth in the canine heart and resulted in 

higher blood flow recovery after FAL (Lazarous, Scheinowitz et al. 1995, Yang, Deschenes 

et al. 1996). Interestingly, the combined administration of FGF-2 and PDGF-BB as well as 

transfer of both genes has been beneficial in promoting angiogenesis and arteriogenesis in 

the FAL model (Cao, Brakenhielm et al. 2003, de Paula, Flores-Nascimento et al. 2009). 

Moreover, FGF-2 induces platelet-derived growth factor receptor PDGFR-α and -ß 

expression and together enhance stabilization of collateral arteries (Kano, Morishita et al. 

2005). Nonetheless, since deletion of FGF-2 in mice did not affect collateral growth in the 

FAL model (Sullivan, Doetschman et al. 2002), other FGFs might have similar functions, 

such as FGF-4 (Rissanen, Markkanen et al. 2003).  

The relevance of RTK engagement and MAPK activation during arteriogenesis is reflected 

by the upregulation and activation of the MAPK members extracellular-signal regulated 

kinases 1 and 2 (ERK-1 and -2) (Eitenmuller, Volger et al. 2006). ERK activation in turn 

leads to an upregulation of the pro-arteriogenic TF early growth response 1 (EGR-1) 

expression. The role of EGR-1 in arteriogenesis has been studied in Egr1 knockout mice 

undergoing FAL. Interestingly, EGR-1 deficiency leads to lower hind-limb perfusion 

recovery and poorer arteriogenesis, partially due to an inhibition of SMCs PM and 

proliferation (Pagel, Ziegelhoeffer et al. 2012). 

Besides GFs, the matrix surrounding SMCs also regulates SMC phenotype. Hence, the 

proteolytic cleavage of the IEL and the basement membrane by matrix metalloproteinases 

(MMPs), release collagen I, fibronectin (FN) and elastin-derived peptides, which are 
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inducers of SMC PM and proliferation (Mochizuki, Brassart et al. 2002, Schaper 2009, 

Mack 2011). Collagen I and FN signal through integrin receptors and the nonreceptor 

tyrosine kinase focal adhesion kinase (FAK) leading to activation of the MAPK and Rho A 

signalling pathways regulating migration and proliferation of collateral SMCs (Eitenmuller, 

Volger et al. 2006, Mack 2011).  

1.3.3. SMCs and matrix remodelling 

In early arteriogenesis, SMCs, together with recruited monocytes, secrete MMPs and 

contribute to the disruption of the basement membrane that facilitate their migration and 

proliferation, as well as the fragmentation of the IEL that enable the vascular wall to expand 

and enlarge (Cai, Kocsis et al. 2004). As the collateral vessels grow and the final diameter 

is attained, SMCs reconstitute the IEL producing ECM, collagen and elastin (Schaper and 

Scholz 2003). Moreover, collagen IV and laminin regulate SMCs differentiation towards a 

contractile phenotype (Mack 2011). 

1.4. K+ channels and cell proliferation 

SMC PM and proliferation have not only been correlated with changes in the expression of 

contractile proteins and early growth genes, but also with changes in the composition of K+ 

channels (Cidad, Moreno-Dominguez et al. 2010). Moreover, in vivo and in vitro blockade 

of several K+ channels inhibit SMC proliferation (see below).  

K+ channels are transmembrane proteins that specifically conduct K+ ions across the 

membrane down their electrochemical gradient. They play an important role in cellular 

processes such as cell proliferation, cell volume regulation, hormone secretion and 

formation of action potentials in excitable cells (MacKinnon 2003).  

1.4.1. Membrane potential 

Due to their hydrophobic interior, cell membranes are non-permeable to ions. Through ion 

channels and ion pumps, cells control the permeation of the membrane to each type of ions 

and create ion gradients across it. This way, cells generate in an energy invested process a 

voltage called membrane potential (MP), that facilitates the transport of nutrients and 

proteins or generates electrical driving forces for the movement of ions, crucial e.g. during 

action potentials in excitable cells (Wright 2004).  

While K+ ions are concentrated in the interior of the cell, in the extracellular space are more 

abundant Na+, Cl- and Ca2+ ions. The membrane is relatively permeable to K+ ions and 
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almost no permeable to Cl- and Na+ ions. The high membrane permeability to K+ which 

leads to the constant efflux of positive charges through them, strongly influence the MP 

which is near the equilibrium potential for K+, -84 mV (Wright 2004). Permeability is 

conferred by the amount of leakage channels expressed by the cell, a type of channels 

characterized by being always open.  

Besides leakage channels, there are other channels that can be in a closed or opened state, 

the voltage- and ligands-gated ion channels. Gating of these channels can change very 

quickly the MP through the movement of ions towards their electro-chemical gradients. For 

example, an influx of Ca2+ or Na+ leads to depolarisation of the membrane while K+ ions 

efflux through K+ channels leads to membrane hyperpolarisation.  

1.4.2. Structure and types of K+ channels 

The structure of K+ channels can be divided in two parts: a pore-forming structure, 

responsible for the transportation of K+ ions, and a regulatory part which senses diverse 

stimuli and regulate the pore-forming structure.  

The pore-forming structure is a tetrameric structure of four identical protein subunits, called 

α-subunits. Depending on the K+ channel type, this α-subunit is a transmembrane protein 

containing two, four or six α-helices, that arrange around the central ion-conducting pore 

(Kuang, Purhonen et al. 2015). All identified K+ channels belong to a unique protein family, 

that conserve a segment in their protein sequence called K+ signature sequence, TVGYG. 

This segment constitutes a structural element called selectivity filter (SF), responsible for 

the discrimination between K+ and Na+ ions, allowing only the transportation of K+ ions 

with a selectivity over Na+ of more than 1000. Furthermore, K+ ions are conducted very 

efficiently at rates approaching the diffusion limit (MacKinnon 2003, Kuang, Purhonen et 

al. 2015). 

Ion flux rates through the channels are tightly regulated by gating and/or inactivation of the 

pore-forming structure. There are mainly two mechanisms of K+ channel gating: by voltage 

or by ligand binding. Voltage-gated K+ channels (KV) are opened by energetically coupling 

changes in the membrane electric field with a conformational change in a voltage sensor 

domain of the channel (MacKinnon 2003). The other K+ channels are ligand opened, by 

which opening of the pore is energetically coupled to the binding of a ligand. This ligand 

can be an ion, phospholipids or a binding protein in inwardly rectifying K+ channels (Kir); 

ions, pH, lipids and regulatory proteins in tandem pore domain K+ channels (K2P) or cAMP, 

Ca2+ and NADP in ligand-activated K+ channels (Kligand) (Kuang, Purhonen et al. 2015). 
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K+ channel gating is also modulated by auxiliary subunits that form heteromultimeric 

complexes with Kv α-subunits. Auxiliary subunits also regulate channel assembly and exit 

from the endoplasmic reticulum (ER) and trafficking to and from the cell membrane (Pongs 

and Schwarz 2010). 

1.4.3. Mechanisms of K+ channel-mediated cell proliferation 

One of the most important functions assigned to K+ channels is the regulation of cell cycle 

progression and cell proliferation. Hence, blockade of K+ channels with broad spectrum-

blockers inhibits cell proliferation. Moreover, expression or activity of several K+ channels 

change during cell cycle (Blackiston, McLaughlin et al. 2009). 

In eukaryotes, cell division can be divided in four different phases: a first growth phase 

(G1), a DNA replication phase (S), a second growth phase (G2) and a cell division phase or 

mitosis (M). Correct progression through cell cycle is controlled by several mechanisms to 

assure completion of one phase before proceeding to the next. One of these mechanisms 

controls changes in MP during transitions: depolarization towards G0/G1 and membrane 

hyperpolarizations during the G1/S and G2/M transitions (Pardo 2004, Urrego, Tomczak et 

al. 2014). K+ channels gating results in efflux of K+ ions and creates an electrical gradient 

that derives in membrane hyperpolarization. Membrane hyperpolarization in turn regulates 

cell cycle progression through 3 different mechanisms. Through activation of Cl- ion 

channels involved in cell volume regulation, through changes in membrane potential 

themselves and through the generation of a driving-force for Ca2+ entry. Ca2+ ions act as 

second messengers and activate important signalling pathways involved in cell division (see 

Fig 1.3) (Cartin, Lounsbury et al. 2000, Urrego, Tomczak et al. 2014). 

Interestingly, as shown in Figure 1.3, besides K+-current dependent mechanisms, non-

canonical, permeation-independent mechanisms of cell progression have been described for 

several K+ channels. It has been shown that not only broad-spectrum K+ channels inhibitors 

but also channel specific blockers can inhibit cell proliferation. This denotes that specific 

channels and not only a general change in K+ current are involved in cell-cycle-regulation 

through specific actions of the channel itself. Indeed, the channels éther-a-gogo (eag), 

voltage-gated K+ channels KV1.10 and KV1.3 and the Ca2+-gated K+ channel KCa3.1, among 

others, are still able to influence proliferation even in the absence of K+ permeation (Pardo 

2004, Millership, Devor et al. 2011, Cidad, Jimenez-Perez et al. 2012). K+ channels may act 

as scaffold proteins and activate signalling pathways following channel gating. Moreover, 

K+ channel activity is highly regulated by intracellular auxiliary subunits that act as scaffold 
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proteins too (Sole, Roura-Ferrer et al. 2009, Pongs and Schwarz 2010). The signalling 

cascades and interaction partners involved are now starting to be identified. 

Figure 1.3: K+ channels and their mechanisms of cell proliferation 

K+ channels have different mechanisms to regulate cell cycle progression and cell proliferation. 
Besides permeation-dependent mechanisms, K+ channels can act as scaffold proteins activating 
downstream signalling cascades. Modified from (Urrego, Tomczak et al. 2014). 

1.4.4. K+ channels in SMC proliferation 

Several in vitro and in vivo studies report changes in ion transport and ion channel 

configuration during SMC PM and proliferation in different contexts (Neylon, Lang et al. 

1999, Miguel-Velado, Moreno-Dominguez et al. 2005, Beech and Cheong 2006, Beech 

2007, Cidad, Moreno-Dominguez et al. 2010). This evidence a function of several K+ 

channels in the induction and control of the cell division in SMCs too.  

While the expression of channels involved in the SMC contraction such as Ca2+-gated K+ 

channel KCa1.1 (BKCa), CaV1.2, and several KV1 channels is repressed in proliferating 

SMCs, two K+ channels, the voltage-gated K+ channel KV1.3 and the Ca2+-gated K+ channel 

KCa3.1, among others, have been repeatedly found upregulated in proliferative SMCs in 

vitro and in neointima hyperplasia models. Moreover, their specific blockade could hinder 

SMC proliferation (Cidad, Moreno-Dominguez et al. 2010, Cheong, Li et al. 2011).  
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 Role of KV1.3 in SMC proliferation 

In SMCs, an upregulation of KV1.3 has been detected in cultured SMCs compared to fresh 

isolated ones and in in vivo pathological situations characterized by endothelial dysfunction 

and neointima hyperplasia (Cidad, Moreno-Dominguez et al. 2010, Cheong, Li et al. 2011). 

Furthermore, small interference RNA (siRNA)-mediated KV1.3 downregulation as well as 

treatment with two specific KV1.3 channel blockers, Margatoxin and PAP-1 (Garcia-Calvo, 

Leonard et al. 1993, Schmitz, Sankaranarayanan et al. 2005), resulted in an inhibition of 

SMC migration and proliferation in vitro (Cidad, Moreno-Dominguez et al. 2010). 

Contrarily, transfection of human embryonic kidney cells (HEK-293) with KV1.3 together 

with the auxiliary subunit KVß2, resulted in an increased proliferation that was reverted by 

treatment with Margatoxin or PAP-1 (Cidad, Jimenez-Perez et al. 2012).  

In cultured organ segments of saphenous veins with induced intima hyperplasia, KV1.3 

blockade with Margatoxin or correolide compound C, another KV1.3-specific channel 

blocker (Felix, Bugianesi et al. 1999), reduced SMC proliferation too (Cheong, Li et al. 

2011).  

The mechanisms of KV1.3-mediated cell proliferation are still unclear. KV1.3 blockade with 

Margatoxin or correolide compound C resulted in partial inhibition of K+ efflux in 

depolarized proliferating SMCs and to a significant suppression of Ca2+ entry under 

blockade with Margatoxin. So, KV1.3-mediated hyperpolarization could influence Ca2+ 

entry and Ca2+-dependent gene expression in proliferative SMCs (Cheong, Li et al. 2011). 

In contrast, Cidad et al. observed that Margatoxin-mediated inhibition of SMC proliferation 

could not be reverted by high concentrations of K+ in the medium and hypothesized that 

KV1.3 could exert its role through permeation-independent mechanisms and independent on 

Ca2+ entry (Cidad, Moreno-Dominguez et al. 2010). Indeed, a non-conducting voltage-

sensitive KV1.3 channel mutant showed similar pro-proliferative effects than the wild type 

KV1.3 channel in transfection experiments on HEK-293 cells. Hence, a conformational 

change of the channel driven by membrane depolarization was sufficient to activate 

channel-mediated cell proliferation (Cidad, Jimenez-Perez et al. 2012). 
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 The role of KCa3.1 in SMC proliferation 

Similar to KV1.3, several in vitro reports stated an upregulation of KCa3.1 in SMC of 

different origins too, following stimulation with RTK ligands such as epidermal growth 

factor (EGF), PDGF-BB or tumor growth factor-ß (TGF-ß) (Neylon, Lang et al. 1999, 

Kohler, Wulff et al. 2003, Si, Grgic et al. 2006, Tharp, Wamhoff et al. 2006, Shepherd, 

Duffy et al. 2007, Toyama, Wulff et al. 2008, Bi, Toyama et al. 2013). In vivo, KCa3.1 

expression is induced in several models of intima hyperplasia (Kohler, Wulff et al. 2003, 

Tharp, Wamhoff et al. 2008) . 

The role of the KCa3.1 channel in SMC proliferation has also been evidenced through 

channel blockade with the specific blocker TRAM-34 (Wulff, Miller et al. 2000). Bi et al 

demonstrated that PDGF-BB-induced SMC proliferation in vitro is mediated by KCa3.1 

since treatment with TRAM-34 or downregulation of the channel via siRNA reverted this 

effect (Bi, Toyama et al. 2013). Moreover, in vivo blockade of KCa3.1 with TRAM-34 could 

reduce neointima hyperplasia in a balloon catheter injury rat model of the carotid artery 

(Kohler, Wulff et al. 2003). Similarly, in a porcine model of postangioplasty restenosis, 

coating the balloon with TRAM-34 prevented KCa3.1 induction and significantly reduced 

intima hyperplasia 14 and 28 days post-surgery (Tharp, Wamhoff et al. 2008). Toyama et 

al also reported an inhibition of SMCs proliferation in Apolipoprotein E knockout mice, a 

genetic model of atherosclerosis, when mice were treated with TRAM-34 (Toyama, Wulff 

et al. 2008). 

KCa3.1-mediated SMC proliferation seems to involve Ca2+-mediated signalling but also 

non-permeation mechanisms. Hence, KCa3.1-blockade by TRAM-34 inhibits PDGF-BB 

induced rise in i[Ca2+], responsible for the expression of cyclins involved in cell 

proliferation and Ca2+-dependent TFs, such as cAMP response element-binding protein 

(CREB) (Bi, Toyama et al. 2013). In contrast, the transfection of HEK-293 cells with a 

KCa3.1 pore-mutant, unable neither to conduct K+ ions nor to promote Ca2+ entry, increased 

cell proliferation with respect to mock-transfected cells. Intriguingly, transfection with a 

non-functional trafficking mutant localized in a ring surrounding the nucleus also increased 

proliferation. Hence, not either its localization at the cell membrane was essential for its cell 

proliferation induction (Millership, Devor et al. 2011).  
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1.5. The voltage-gated K+ channel KV1.3 

The voltage-gated K+ channels (KV) constitute a family of K+ ion specific channels which 

are activated by changes in the voltage of the cell membrane, usually upon depolarization. 

It comprehends many different channels grouped in 12 subfamilies based on sequence 

homology of the hydrophobic transmembrane cores of the α-subunit (Gonzalez, Baez-Nieto 

et al. 2012). KV1.3 belongs to the delayed rectifier, shaker subfamily of KV channels 

characterized by a slow inactivation of the channel in the presence of a maintained 

membrane depolarization. KV1.3 is ubiquitously expressed in mammals and can be found 

in both excitable and non-excitable cells (Blunck and Batulan 2012).   

1.5.1. Structure and gating of Kv1.3 

As a typical KV channel, KV1.3 is composed out of four α-subunits, each having six 

transmembrane α-helices, S1-S6, connected by five linker regions. Both the amino (NH2)- 

and carboxy (COOH)-termini are located intracellularly (Fig 1.4, A). The subunits 

tetramerize so that the α-helices S5-S6 of all the monomers co-assemble to the center of the 

structure to form the ion-conducting pore. Surrounding the central pore rearranged the 

voltage-sensing domains (VSD), each formed by the S1-S4 segments (Fig 1.4, B). On the 

extracellular entrance of the pore, the S5-S6 linker forms a membrane re-entering small 

helix (P-loop) that contains the selectivity filter (SF) (Fig 1.4, C) (Blunck and Batulan 

2012). K+ permeation through the channel is controlled by the SF gate and the S6 bundle 

crossing (BC) gate (Fig 1.4, C). Upon depolarization of the membrane potential, the VSD 

undergoes conformational change, which leads to the widening of the BC gate. In KV1.3, 

with a C-type inactivation, opening of the pore subsequently triggers closing of the SF gate 

preventing ions from passing through (Blunck and Batulan 2012). 

Other functional domains in KV1.3 channel have been described. The intracellular T1 

domain located at the NH2-terminus is responsible for its interaction with KVß-subunits that 

regulate channel gating (McCormack, McCormack et al. 1999, Gulbis, Zhou et al. 2000). 

Additionally, the tertiary topology of the COOH-terminus is responsible for the interaction 

with the auxiliary subunit potassium voltage-gated channel subfamily E member 4 

(KCNE4) that regulates KV1.3 endoplasmic reticulum (ER) retention and trafficking to the 

cell membrane (Sole, Roig et al. 2016). 
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Figure 1.4: Structure of voltage-gated K+ channels 

A. Cartoon of an KV channel α-subunit composed of 6 transmembrane segments (S1-S6) and one P-
loop. In grey are represented the voltage-sensing domains (S1-S4) and in blue the 2 pore-forming 
domains (S5-S6). The amino and carboxy termini are intracellular. B. 3D structure of the KV1.2 
channel, viewed from the extracellular site. Four α-subunits forms a typical KV channel. One subunit 
is red. C. Side view of the pore region formed by the segments S5, S6 and the P-loop. The selectivity 
filter (SF) allows the passage of K+ ions. The bundle crossing (BC) of the S6 helices (BC gate) forms 
a barrier K+ ions. Taken from (Labro and Snyders 2012). 

1.5.2. Functions of KV1.3 

Its role as inducer of cell division has been reported in many different cell types pointing to 

a conserved role of the channel in the process. Kv1.3 role in cell proliferation was first 

observed in T cells where it plays an important role in T-cell-receptor signalling-mediated 

proliferation (Cahalan and Chandy 2009). By now its mitogenic role has been observed in 

several other cell types such as oligodendrocytes (Chittajallu, Chen et al. 2002), microglia 

(Kotecha and Schlichter 1999), ECs (Erdogan, Schaefer et al. 2005) and SMCs (Cidad, 

Moreno-Dominguez et al. 2010, Cheong, Li et al. 2011, Cidad, Jimenez-Perez et al. 2012, 

Tian, Yue et al. 2013, Cidad, Novensa et al. 2014). 

The characterization of KV1.3 knockout mice has revealed a role of KV1.3 in olfactory 

sensing, insulin metabolism and control of body weight. KV1.3 plays a key role in the 

establishment of a membrane potential in the neurons of the olfactory bulb. It also 

participates in the structure of the olfactory bulb glomeruli and modulates the capacity to 

detect odorant molecules by changing the expression of scaffold proteins involved in 

downstream signalling pathways (Fadool, Tucker et al. 2004). Interestingly, channel activity 

is inhibited by insulin through activation of RTKs (Fadool, Tucker et al. 2000). KV1.3 
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deletion in mice subjected to high-fat diet results in lower body weight but normal basal 

activity. Since the channel is expressed in the hypothalamus, a region of the brain regulated 

by insulin that control adaptive thermogenesis, a role of KV1.3 in thermogenesis has been 

postulated (Xu, Koni et al. 2003). 

Besides its localization at the cell membrane, KV1.3 has also been localized at the 

mitochondrial membrane, where it plays an important role in the regulation of the 

mitochondrial membrane potential ΔΨm. Inhibition of the channel through membrane-

permeable specific blockers (Psora-4, PAP-1, correolide compound C) or through binding 

to Bcl-2-associated X protein (Bax) leads to hyperpolarisation of the membrane with 

subsequent radical oxygen species (ROS) production, cytochrome c release and finally 

apoptosis (Gulbins, Sassi et al. 2010, Leanza, Henry et al. 2012). Hence, KV1.3 channel has 

been identified as a target for anti-tumour therapies (Leanza, Venturini et al. 2015). 

1.6. The Ca2+-gated K+ channel KCa3.1 

Ca2+-gated K+ channels (KCa) are a family of K+ channels activated by a rise in intracellular 

Ca2+ concentrations (i[Ca2+]). Their activation leads to K+ efflux and to repolarization or 

even hyperpolarization of the membrane. There are three subfamilies of Ca2+-gated K+ 

channels: big conductance KCa1.1 channel, also known as BKCa, intermediate conductance 

KCa3.1 channel (or IKCa), and small conductance SKCa channels KCa2.1, KCa2.2 and KCa2.3. 

The intermediate conductance KCa3.1 channel is expressed in both excitable and non-

excitable cells.  

1.6.1. Structure and gating of KCa3.1 

KCa3.1 is composed out of four α-subunits rearranged into a central pore. Each α-subunits 

is a transmembrane protein with six transmembrane domains (Fig 1.5). The selectivity filter 

and the central pore are formed by the extracellular loop between the fifth and sixth 

transmembrane domains. Both the NH2- and COOH-termini are intracellular. Gating of the 

channel is induced by a rise in i[Ca2+], which is sensed by the binding of Calmodulin (CaM) 

to the Calmodulin binding domain (CaMBD) at the COOH-terminus of the channel. The 

COOH-terminus localizes just after the channel pore and it interacts with CaM even in the 

absence of Ca2+. The Ca2+-dependent binding of CaM to the channel involves the 

CaMBD2A and CaMBD2B (Morales, Garneau et al. 2013). Each α-subunit must interact 

with CaM to get activated (Gueguinou, Chantome et al. 2014).  
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Figure 1.5: Structure of the Ca2+-gated K+ channel KCa3.1 

Cartoon of the KCa3.1 α-subunit, organized in six transmembrane segments (S1-S6) plus a pore 
region between S5 and S6. The channel Ca2+ sensitivity is conferred by Calmodulin (CaM), with the 
CaM C-lobe constitutively bound to the CaM binding domain 1 (CaMBD1). The Ca2+-dependent 
binding of CaM to the channel also involves the CaMBD2A and CaMBD2B. Modified from 
(Morales, Garneau et al. 2013). 

The exact molecular mechanism of KCa3.1 gating through Ca2+-CaM is not well known and 

there is no high-resolution 3D-structure crystallized for KCa3.1 yet. However, structural 

information from the crystallization of the rat KCa2.2–CaMBD in the presence of Ca2+ led 

to a proposed model where Ca2+ binding to CaM induces its conformational change that 

drives the interaction of the NH2-terminus of a subunit with the COOH-terminus of an 

adjacent channel subunit. This, in turn, induces a conformational change in the S6 

transmembrane segments leading finally to the opening of the channel pore (Fig 1.6) 

(Morales, Garneau et al. 2013).  

Figure 1.6: Model of KCa3.1 channel gating 

CaM-binding to the COOH-terminus confers channel sensitivity to Ca2+. Ca2+-binding to CaM 
induces a conformational change in the S6 segment leading to the opening of the pore. Adapted from 
(Ledoux, Werner et al. 2006) 
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1.6.2. Functions of KCa3.1 channel  

As well as KV1.3, KCa3.1 has been involved in induction of cell proliferation not only in 

SMCs (Kohler, Wulff et al. 2003, Shepherd, Duffy et al. 2007, Tharp, Wamhoff et al. 2008, 

Su, Wang et al. 2011, Bi, Toyama et al. 2013) but also in ECs, playing a role in angiogenesis 

(Grgic, Eichler et al. 2005, Yang, Li et al. 2013), in T cells (Ghanshani, Wulff et al. 2000), 

in cancer cells (Wang, Shen et al. 2007, Lallet-Daher, Roudbaraki et al. 2009, Yang, Liu et 

al. 2013) and in fibroblasts (Grgic, Kiss et al. 2009). 

Besides its effect on cell proliferation, KCa3.1 plays an important role in endothelium-

derived hyperpolarization factor (EDHF)-mediated vasodilation. As already mentioned, the 

endothelium regulates vascular tone by releasing vasodilator factors or transmitting 

electrical signals that induce the relaxation of the SMCs underneath. EDHF-mediated 

vasodilation is characterized by a hyperpolarization of the SMC membrane preceding 

relaxation. It is well accepted that EDHF depends to a large extent on the activation of the 

endothelial KCa2.3 and KCa3.1 K+ channels (Eichler, Wibawa et al. 2003, Feletou 2011). 

Even though both channels play a role in the process, their function cannot be substituted 

by each other. Indeed, KCa3.1 deficient mice have impaired EDHF-mediated vasodilation 

and increased blood pressure compare to wild type mice (Si, Heyken et al. 2006). The 

different subcellular localization could explain their specific functions. While KCa2.3 is 

confined in endothelial gap junctions, KCa3.1 localizes in endothelial projections towards 

the IEL, often associated with myoendothelial junctions (MEJ) (Feletou 2011). Following 

KCa3.1 activation, the accumulation of K+ ions in the intercellular space between ECs and 

SMCs could drive the activation of the K+-sensitive Kir2.1 channels and the Na+/K+ ATPase 

on the SMC membrane, leading to its hyperpolarization. Another explanation sustains that 

KCa3.1-mediated endothelial hyperpolarization is directly propagated to the SMC 

membrane through MEJ. This goes with the fact that both MEJ and EDHF-mediated 

vasodilation increase as the vessel size decreases (Feletou 2011). 
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1.7. Aim of the project 

SMCs play an important role in arteriogenic vascular remodelling. Besides proliferating and 

contributing to the enlargement and lengthening of collateral arteries, they secrete matrix 

degradation enzymes achieving place for migrating and new proliferating cells. Finally, they 

contribute to the synthesis of the new extracellular matrix and by differentiating into 

contractile cells to functional mature collateral arteries. Due to their pleiotropic functions, 

SMCs are an interesting target for therapeutic arteriogenesis. 

Several K+ channels have been involved in phenotypic modulation and proliferation of 

SMCs. The voltage-gated K+ channel KV1.3 and the Ca2+-gated K+ channel KCa3.1 are 

upregulated in cultured SMCs and in proliferating SMCs in in vivo models of neointima 

hyperplasia. However, their role in arteriogenesis has not been investigated so far. On the 

other hand, while several mechanisms have been described for K+ channel-mediated cell 

proliferation, it remains unclear how these channels orchestrate their mitogenic function. 

This study aimed to shed light on the role of KV1.3 and KCa3.1 in arteriogenic SMC 

proliferation focusing on the following points: 

• Characterization of KV1.3 and KCa3.1 expression and localization patterns in the 

FAL model of arteriogenesis 

• Effects of pharmacological KV1.3 and KCa3.1 channel blockade on arteriogenic 

SMCs proliferation in the FAL model 

• Role of the channels in the regulation of the RTK signalling pathway in 

arteriogenesis and in cultured MArSMCs
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2. Materials and methods 

2.1. Materials 

Table 2.1. Consumables 

Consumable  Company 

Reaction 

tubes 
200 µl PCR tubes 

Eppendorf AG, Hamburg, 
Germany 

1.5 ml and 2 ml 
Eppendorf AG, Hamburg, 
Germany 

15 ml FALCON tubes 
Greiner Bio-One GmbH, 
Kremsmünster, Austria 

50 ml FALCON tubes 
Corning Inc., Corning, New 
York, USA 

Nunc CryoTubeTm 1.8 ml vials NuncTm, Roskilde, Denmark 

innuSPEED lysis tubes P Analytik Jena AG, Jena, Germany 

Tips 0.1-10 µl epT.I.P.S.® LoRetention 
filter tips 

Eppendorf AG, Hamburg, 
Germany 

0.1-10, 2-30, 10-100, 2-200 and 
100-1000 µl Diamond® filter tips 

Gilson Inc., Middleton, USA 

10, 100, 200, 1000 µl tips 
Eppendorf AG, Hamburg, 
Germany 

Combitips Advanced® 
Eppendorf AG, Hamburg, 
Germany 

Syringes 1 ml syringe Plastipak BD Biosciences, California, USA 

2 ml and 5 ml syringe, Discardit II BD Biosciences, California, USA 

10 ml Injekt syringes Braun, Melsungen, Germany 

Needles 24G and 30G Microlance 3 BD Biosciences, California, USA 

Slides and 

coverslips 

Thermo Scientific Superfrost plus 
slides 

Gerhard Menzel GmbH, 
Braunschweig, Germany 

Coverslips 
Medite Medizintechnik, 
Burgdorf, Germany 

Embedding 

cassettes 

Histosette I, Embedding Cassettes 
with LID, blue 

Simport, Beloeil, Quebec, Canada 

Cryomold® Standard 25 x 20 x 5 
mm 

Sakura Finetek., Tokyo, Japan 

Flasks 25, 75 and 175 cm2 Corning® TC-
treated surface treatment with vent 
cap 

Corning Inc., New York, USA 
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Well plates Costar® 12-, 24-, 96-well cell culture 
plates flat bottom with lid, tissue 
culture treated 

Corning Inc., New York, USA 

Costar® EIA/ RIA 96 well plate flat 
bottom, non-treated 

Corning Inc., New York, USA 

96 well Semi-Skirted qPCR Plates 4titude® Ltd., Wotton, UK 

Serological 

pipettes 

2 ml, 5 ml, 10 ml and 25 ml costar 
STRIPETTE 

Corning Inc., New York, USA 

PAGE gels 
PAGE 4-20 % gels (43230.01) 

SERVA Electrophoresis GmbH, 
Heidelberg, Germany 

Filter paper and 
Whatman GmbH, Dassel, 
Germany 

Nitrocellulose membrane (WB) 
Whatman GmbH, Dassel, 
Germany 

Aortic 

catheteri-

zation 

Venofix Safety 25G Braun, Melsungen, Germany 

ETHICON 4-0 
Johnson&Johnson, New Jersey, 
USA 

VICRYL 6-0 
Johnson&Johnson, New Jersey, 
USA 

Silk Braided Suture 7/0 
Peasalls Sutures, Somerset, 
England 

Table 2.2. Devices 

Device Model Company 

Centrifuges Mikro 200R Andreas Hettich GmbH & 
Co.KG, Tuttlingen, Germany Rotina 420R 

Cryotome  Leica CM3050 S Research 
Cryostat 

Leica Biosystems, Wetzlar, 
Germany 

Dispenser Isoflurane Vapor 19.3 Abbott, Wiesbaden, Germany 

Embedding machine Tissue-Tek TEC 5 Sakura Finetek., Tokyo, Japan 

Hemocytometer 
Neubauer improved 

Laboroptik Ltd, Lancing, 
United Kingdom 

Homogenizer 
SpeedMill PLUS 

Analytik Jena AG, Jena, 
Germany 

Incubators 
CO2 Brutschrank C150 

BINDER GmbH, Tuttlingen, 
Germany 

Heating cabinet Heraeus, Hanau, Germany 

Laser Doppler 

Imaging moorLDI2-IR 
Moor Instruments Ltd., 
Millwey, Axminster, Devon, 
England 
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Microscopes Axioskop 40 and Axiocam 
105 color camera 

Carl Zeiss AG, Feldbach, 
Switzerland 

LEICA M60 and LEICA 
MC120 HD camera 

Leica Biosystems, Wetzlar, 
Germany 

Zeiss Axio Examiner.Z1 
Carl Zeiss AG, Feldbach, 
Switzerland 

Axio Imager 2 and Axiocam 
ICc 5 

Carl Zeiss AG, Feldbach, 
Switzerland 

Microtome 
Rotationsmikrotom 2030 

Reichert-Jung, Heidelberg, 
Germany 

Microwave 
 

Siemens AG, Munich 
Germany 

pH-Meter 
inoLab pH 720 

WTW GmbH, Weilheim, 
Deutschland 

Pipetboy 

Pipetboy comfort 
INTEGRA Biosciences Corp., 
Hudson, New Hampshire, 
USA 

Pipettes 0.1-10 µl Eppendorf Xplorer® 
plus 

Eppendorf AG, Hamburg, 
Germany 

1-10, 10-100, 20-200, 100-
1000 µl Eppendorf Research 

Eppendorf AG, Hamburg, 
Germany 

1-10, 10-100, 20-200, 100-
1000 µl Pipetman 

Gilson Inc., Middleton, USA 

Multipette Plus 
Eppendorf AG, Hamburg, 
Germany 

Power supply ECO-Power-Supply 300 V / 
700 mA 

Kisker Biotech GmbH, 
Steinfurt, Germany 

Shaker 

GFL 3005 
GFL Gesellschaft für 
Labortechnik mbH, 
Burgwedel, Germany 

Spectrophotometers 
ELISA reader Infinite F200 

Tecan Group Ltd., Männedorf, 
Switzerland 

NanoDrop 2000c 
Thermo Fischer Scientific, 
Waltham, Massachusetts, 
USA 

Sterile bank 
LaminAir HBB 2448 

Heraeus Holding GmbH, 
Hanau, Germany 

Surgical instruments Adson Forceps Medical 

Fine Science Tools, 
Heidelberg, Germany 

Dumont #5, #7, #5/45 Forceps 
Inox 

Vannas Spring Scissor - 
Straight 
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Iris Scissors - Straight 11.5 cm 

Olsen-Hegar Needle Holder 
12 cm 

Thermocyclers Thermal Cycler 2720 
Life Technologies, Carlsbad, 
California, USA StepOnePlus™ Real-Time 

PCR System 

Thermomixer 
Thermomixer Compact 

Eppendorf AG, Hamburg, 
Germany 

Tissue processor 

Shandon Citadel 1000 
Thermo Fischer Scientific, 
Waltham, Massachusetts, 
USA 

Vortexer IKA MS2 Minishaker 
Vortexer 

IKA®-Werke GmbH & Co. 
KG, Staufen, Germany 

Weighing machine 
CPA225D 

Sartorius AG, Göttingen, 
Germany 

Table 2.3. Buffers, cell culture media and solutions 

 Name Company 

Buffers Dulbecco’s phosphate buffered 
saline (DPBS) 

PAN BIOTECH, Aidenbach, Germany 

TRIzol Reagent 
Thermo Fisher Scientific Inc, Waltham, 
USA 

Laemmli Buffer 10x, for SDS-
PAGE 

SERVA Electrophoresis GmbH, 
Heidelberg, Germany 

Roti®-Load 1 protein loading 
buffer (4x) 

Carl Roth GmbH, Karlsruhe, Germany 

Media Dulbecco’s modified Eagle’s 
medium (DMEM) 

Thermo Fisher Scientific Inc, Waltham, 
USA 

Smooth muscle cell growth 
medium (SMCGM) 

Cell Biologics, Chicago, USA 

Solutions 
Acetic acid 

Sigma-Aldrich Chemie GmbH, Steinheim, 
Germany 

Aqua ad iniectabilia Braun, Melsungen, Germany 

Chloroform 
Sigma-Aldrich Chemie GmbH, Steinheim, 
Germany 

70 %, 96 % and 99.8 % EtOH 
SAV Liquid Production GmbH, 
Flintsbach, Germany 

EtOH BioUltra, for molecular 
biology, ≥99.8% 

Sigma-Aldrich Chemie GmbH, Steinheim, 
Germany 

Eukitt quick-hardening 
mounting medium 

Sigma-Aldrich Chemie GmbH, Steinheim, 
Germany 
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Gelatine, 2 % in PBS PAN BIOTECH, Aidenbach, Germany 

Giemsa - Solution for 
microscopy 

AppliChem, Darmstadt, Germany 

Isopropanol 
Sigma-Aldrich Chemie GmbH, Steinheim, 
Germany 

Mayer's Hämalaun AppliChem, Darmstadt, Germany 

Methanol AppliChem, Darmstadt, Germany 

Mythramycin A 
Santa Cruz Biotechnology, California, 
USA 

PageRulerTM Prestained 
Protein 

Thermo Fisher Scientific Inc, Waltham, 
USA 

Penicillin (10 000 units/ml )/ 
Streptomycin (10 mg/ml) 
solution 

PAN BIOTECH, Aidenbach, Germany 

Ponceau S solution  
Sigma-Aldrich Chemie GmbH, Steinheim, 
Germany 

Super Signal West Femto 
Maximum Sensitivity Substrate 

Thermo Fisher Scientific Inc, Waltham, 
USA  

Tissue-Tek® O.C.T.™ 
Compound 

Sakura Finetek., Tokyo, Japan 

Trypan blue solution 
Sigma-Aldrich Chemie GmbH, Steinheim, 
Germany 

Trypsin PAN BIOTECH, Aidenbach, Germany 

Xylene AppliChem, Darmstadt, Germany 

Others Foetal calf serum (FCS) PAN BIOTECH, Aidenbach, Germany 

 
Industrial Latex 

Chicago Latex Products, Crystal Lake, 
Illinois, USA 

Table 2.4. Chemicals 

Name Company 

Adenosine 
Sigma-Aldrich Chemie GmbH, Steinheim, 
Germany 

Agarose LE, analytical grade Promega GmbH, Mannheim, Germany 

Albumin from bovine serum Sigma-Aldrich, Steinheim, Germany 

Blotting Grade Blocker non Fat Dry 
Milk 

Bio-Rad Laboratories GmbH München, 
Germany 

5-Bromo-2’-deoxyuridine 
Sigma-Aldrich Chemie GmbH, Steinheim, 
Germany 
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cOmplete ULTRA Tablets, Mini, 
EDTA-free EASYpack, protease 
inhibitor cocktail tablets 

Roche Diagnostics GmbH, Mannheim, 
Germany 

1,4-diamino-2,3-dicyano-1,4-bis[2-
aminophenylthio] butadiene (UO126) 

Cell Signaling Technology, Inc., Cambridge, 
USA 

4',6-diamidino-2-phenylindole (DAPI) 
Sigma Aldrich Chemie GmbH, Steinheim, 
Germany 

Ethylenediaminetetraacetate AppliChem GmbH, Darmstadt, Germany 

Glycine AppliChem, Darmstadt, Germany 

Hypo chloride acid Merck KGaA, Darmstadt, Germany 

Paraformaldehyde Merck KGaA, Darmstadt, Germany 

Paraplast Plus Tissue Embedding 
Medium 

Leica, Solms, Germany 

Phosphate 
Sigma Aldrich Chemie GmbH, Steinheim, 
Germany 

PhosphoStop, phosphataseInhibitor 
tablets 

Roche Diagnostics GmbH, Mannheim, 
Germany 

Potassium chloride Merck KGaA, Darmstadt, Germany 

Potassium Hydrogen phosphate Merck KGaA, Darmstadt, Germany 

Phenylmethylsulphonyl fluoride 
(PMSF) 

Calbiochem, La Jolla CA, USA 

Sodium chloride AppliChem, Darmstadt, Germany 

Sodium deoxycholate Sigma Aldrich GmbH, Seelze, Germany 

Sodium dodecyl sulfate Merck KGaA, Darmstadt, Germany 

Sodium hydrogen phosphate Merck KGaA, Darmstadt, Germany 

Sodium orthovanadate 
Sigma Aldrich Chemie GmbH, Steinheim, 
Germany 

Sucrose 
Sigma Aldrich Chemie GmbH, Munich, 
Germany 

Tris base AppliChem, Darmstadt, Germany 

Triton-X-100 
Sigma Aldrich Chemie GmbH, Steinheim, 
Germany 

Tween 20 AppliChem GmbH, Darmstadt, Germany 

 

Table 2.5. Drugs and substances administered to the mice 

Application  Brand name Active ingredient Company 

Analgesic 
Temgesic® Buprenorphine 

Reckitt Benckiser Healthcare 
(UK) Ltd., Slough, England 
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Anesthesia 
Dorbene® 

Medetomidine 
hydrochloride 

Pfizer GmbH, Berlin, 
Deutschland 

Fentanyl-
Curamed® 

Fentanyl 
CuraMED Pharma, 
Karlsruhe, Germany 

Forene® Isoflurane 
Dräger Medical, Lübeck, 
Germany  

Midazolam-
Ratiopharm® 

Midazolam 
Ratiopharm GmbH, Ulm, 
Germany 

Antidote Flumazenil 
Inresa 

Flumazenil 
Inresa Arzneimittel GmbH, 
Freiburg, Germany 

Naloxon Inresa 
Naloxone 
hydrochloride 

Inresa Arzneimittel GmbH, 
Freiburg, Germany 

Revertor® 
Atipamezole 
hydrochloride 

cp-pharma, Burgdorf, 
Germany 

Cell 

prolifera-

tion marker 

BrdU Bromodeoxyuridine 
Sigma-Aldrich, Steinheim, 
Germany 

Eye 

protection 

Bepanthen® 
eye ointment 

Dexpanthenol 
Bayer Vital GmbH, 
Leverkusen, Germany 

KV1.3 

blockade  PAP-1 
5-(4-
Phenoxybutoxy)psorale
n  

Sigma-Aldrich Chemie, 
Taufkirchen, Germany 

KCa3.1 

blockade TRAM-34 
1-[(2-Chlorophenyl) 
diphenylmethyl]-1H-
pyrazole 

Alomone labs, Jerusalem, 
Israel 

Skin 

disinfection 

Bode 
Cutasept® F 
spray 

Propan-2-ol  
Bode Chemie GmbH, 
Hamburg, Germany 
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Table 2.6. Antibodies 

 Antigen Host  Conjugation Clone Company 

IHC/ 

ICC 
KV1.3 rabbit pAb no APC-101 

Alomone labs, 
Jerusalem, Israel 

KCa3.1 rabbit pAb no APC-064 
Alomone labs, 
Jerusalem, Israel 

α-SMA mouse mAb Cy3 1A4 
Sigma-Aldrich, 
Steinheim, Germany 

CD31 rat mAb 
Alexa fluor 

647 
MEC13.3 

BioLegend, San 
Diego, CA, USA 

Rabbit 
IgG 

goat pAb 
Alexa fluor 

488 
711-545-
152 

Jackson 
ImmunoResearch 
Labotatories Inc., CA, 
USA 

WB p44/42 
MAPK 
(ERK-
1/2) 

rabbit mAb no 137F5 
Cell Signaling 
Technology, Inc., 
Cambridge, USA 

Phospho-
p44/42 
MAPK 
(ERK-
1/2) 

rabbit mAb no D13.14.4E 
Cell Signaling 
Technology, Inc., 
Cambridge, USA 

Rabbit 
IgG 

goat pAb 
Horseradish 
peroxidase 

(HRP) 
sc-2030 

Santa Cruz 
Biotechnology, 
California, USA 
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Table 2.7. Primers 

Gene name Accession no. Primer sequence 
anT 

(°C) 

Lengt

h (bp) 
E 

rRNA 18S 

(18S)  
NR_003278 for: 

GGACAGGATTGACAGATTGATA
G 64 108 1.91 
rev: 
CTCGTTCGTTATCGGAATTAAC 

Alpha-

smooth 

muscle actin 

(αSma) 

NM_007392.3 for: GAGCATCCGACACTGCTG 

58 146 1.88 
rev: GTACGTCCAGAGGCATAG 

Early 

growth 

response 1 

(Egr1) 

NM_007913.5 for: 
CGAACAACCCTATGAGCACCTG 

64 270 1.77 
rev: 
CAGAGGAAGACGATGAAGCAGC 

Fibroblast 

growth 

factor 

receptor 1 

(Fgfr1) 

NM_001079908.
2 

for: CTTGCCGTATGTCCAGATCC 

63 77 1.89 
rev: TCCGTAGATGAAGCACCTCC 

Voltage-

activated K+ 

channel 1.3 

(Kcna3) 

NM_008418.2 for: 
TGAGTAAGTCGGAGTATATGGT
GAT 60 98 2 

rev: GCAAGTGGCTGTGGAGTTG 

Platelet-

derived 

growth 

factor beta 

(Pdgfrb) 

NM_001146268.
1 

for: 
AGGACAACCGTACCTTGGGTGA
CT 

63 89 1.77 
rev: 
CAGTTCTGACACGTACCGGGTCT
C 

Transcriptio

n factor Sp1 

(Sp1) 

NM_013672.2 for: ACAGGGTGCCAATGGCTGGC 

60 124 1.91 rev: 
GCCCACCAGAGACTGTGCGG 

Table 2.8. Kits 

Name Application Company 

BrdU In-situ detection kit 
Staining of 
proliferative cells 

BD Pharmingen, CA, USA 

BrdU proliferation assay Cell proliferation 
Roche Diagnostics GmbH, 
Germany 

PierceTM BCA protein assay 
kit 

Protein quantification 
Thermo Fischer Scientific, 
Waltham, USA 

Power Sybr green Real time PCR Life technologies 
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QuantiTect reverse 
transcription kit 

cDNA synthesis Qiagen, Hilden, Germany 

Rneasy Kit RNA isolation Qiagen, Hilden, Germany 

RQ1 RNase-Free DNase 
DNase digestion of 
RNA 

Promega, Mannheim, Germany 

Table 2.9. Software, programs and websites 

Name Company 

AxioVision 4.8.2.0 Carl Zeiss AG, Feldbach, Switzerland 

AxioVision SE64 Rel. 4.9.1 Carl Zeiss AG, Feldbach, Switzerland 

Endnote® X4.01 Thomson Reuters, New York, USA 

GraphPad prism 6 GraphPad Software, California, USA 

i-control I.9 Tecan Group Ltd., Männedorf, Switzerland 

MatInspector Genomatix GmbH, Munich, Germany 

Microsoft Excel, Power point, 
Word 2007 

Microsoft Corporation, Redmond, USA 

moorLDI Version 5.3 Moor Instruments Ltd., Axminster, Devon, England 

Photoshop Microsoft Corporation, Redmond, USA 

StepOne Software v2.2.2 Life Technologies, Carlsbad, California, USA 

Wasabi software 
Hamamatsu PHOTONICS GmbH, Herrsching, 
Germany 

ZEN Blue Carl Zeiss AG, Feldbach, Switzerland 
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2.2. Murine model of femoral artery ligation 

2.2.1.  Animals 

C57BL/6J mice were purchased from Charles River and kept under 12 hours light/ night 

cycle with water and food ad libitum. Experiments were performed with 7 to 10 weeks old 

male mice. 

2.2.2. Drugs and channel blockers administration 

 Anaesthesia, antidote and analgesia 

Before the surgical procedure, mice were anesthetized with a mixture of 5 mg/kg 

Midazolam, 0.5 mg/kg Medetomidine and 0.05 mg/kg Fentanyl (MMF) injected 

subcutaneously. Just after the surgical procedure, anaesthesia effects were antagonized with 

an antidote consisting of a combination of 0.5 mg/kg Flumazenil, 1.2 mg/kg Naloxone and 

2.5 mg/kg Atipamezole (FNA), injected subcutaneously. 

To avoid pain, 1.2 mg/kg of Buprenorphine was injected subcutaneously immediately after 

surgery and 12 hours later. 

 Channel blockers 

For channel blockade experiments in vivo, the KV1.3 channel blocker 5-(4-

Phenoxybutoxy)psoralen (PAP-1) (Sigma) and the KCa3.1 channel blocker TRAM-34 

(Alomone labs) were dissolved in peanut oil and administered intraperitoneally at 40 mg/kg 

and 120 mg/kg per day, respectively. To maintain PAP-1 and TRAM-34 levels in blood as 

constant as possible, the doses were administered in two injections, one in the morning and 

another in the afternoon. Treatment started 4 hours before the surgical procedure and 

finished on day 6. 

2.2.3. Surgical procedure 

Once anaesthetized with MMF, mice were placed over a heated bench cover to control body 

temperature for the whole surgery. A veterinary ointment (Bepanthen®) was applied over 

the eyes to avoid desiccation. The skin of the upper thigh was first disinfected with 

Cutasept® and then shaved with a scalpel. A small skin incision on the right thigh was 

performed over the epigastric artery (Fig 2.1, A). A few millimetres downstream the 

epigastric artery, the femoral artery was dissected from the nerve, vein, fat and connective 

tissues (Fig 2.1, B). A thread was introduced surrounding the artery and tied off (Fig 2.1, C 
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and D). A contra-lateral sham operation on the left leg was performed as described above, 

except that the thread was let untied (Fig 2.1, E). Finally, the wound was closed with a 

surgical suture (Fig 2.1, F). To avoid pain, the analgesic Buprenorphine was injected 

subcutaneously immediately after surgery. 15 min after the first Buprenorphine injection, 

mice were waked up with the antidote, (FNA) injected subcutaneously. 

Figure 2.1: Surgical procedure of femoral artery ligation 

A. Upper right thigh of the mouse. Small skin incision over the bifurcation of the femoral artery and 
the epigastric artery. B. Ligation site proximal to the epigastric bifurcation free of fat and connective 
tissues. C. Silk surrounding the femoral artery. In D, silk tied off (occluded) and E let untied (sham). 
F. Skin incision is sutured. N: nerve, FA: femoral artery, FV: femoral vein, Ep: Epigastric artery. 
White scale bar: 5 mm, dark scale bar: 1 mm. 

2.2.4. Laser Doppler Imaging 

While ligation of the femoral artery on the right leg impairs perfusion of the hind-limb, in 

the sham-operated left leg, the perfusion remains intact. Hind-limb perfusion was 

established before surgery, immediately thereafter as well as three and seven days after FAL 

with a laser Doppler moorLDI2-IR (Moor Instruments Ltd). Results were expressed as the 

perfusion ratio of the occluded hind-limb relative to the sham-operated one. Basal 

measurements were performed as control, since no differences should be observed in the 

perfusion of both feet before surgery. Just after ligation, the occluded-to-sham hind-limb-

perfusion ratio was lower than 10 %. Mice showing higher perfusion ratios were discarded.  

Mice were either anaesthetized with MMF as described for surgery or were sedated by 

inhalation of 5 % isoflurane for 5 seconds following 1.5 % mixed with oxygen flowing at ~ 

2.5 l/min connected to a warm chamber (37 °C). Mice were led in a supine position and 

hind-limbs were fixed with double-band adhesive for an acclimatisation period of 10 min. 

Between the minutes 10 and 21, a measurement was performed each 3 minutes. During this 

period, occluded-to-sham ratios reach a maximum and then decrease. The maximal ratio 
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was selected for analysis. The setup parameters were the following: distance from Laser 

Doppler to warm plate: 20 cm, image dimension: 3.6x2.3 cm, Gain: DC 2, FLUX 0, CONC 

2; Background Threshold BK 65. For analysis, a region of interest of 0.55 mm2 was 

delimited per hand around the paws and perfusion was assessed with the moorLDI Version 

5.3 software (Moor Instruments Ltd.). 

2.2.5. Mouse tissue harvesting 

 Aortic catheterization and perfusion 

Before collecting thigh muscles for histology, mice were perfused with vasodilation and 

fixation buffers via an aortic catheterization, to allow maximal vasodilation of collateral 

arteries and tissue fixation. Likewise, for gene expression analysis, the perfusion per hand 

of 0.5 ml of latex facilitated the dissection of thigh collateral arteries. 

Mice were first anaesthetized with MMF. Skin was removed from the abdomen up to the 

thoracic cavity. Abdominal cavity was opened downstream the xiphoid process. To control 

bleeding, aorta and vena cava were clamped upstream the kidneys with a vascular clamp 

(Fig 2.2, A). Downstream to the kidney, the abdominal aorta was dissected from connective 

tissue and vena cava and was surrounded by a suture silk (Fig 2.2, B). A small cut was 

performed in the aorta and the point of a butterfly needle was introduced and fixed with the 

silk (Fig 2.2, C and D). The butterfly needle was first connected to an open syringe located 

at 1 meter over the bench and solution was let perfused to eliminate air bubbles before 

catheterization. Finally, solutions were let flow through the aorta by constant pressure after 

cutting the cava vein. 

For histology, 20 ml of vasodilation buffer, 0.1 % (w/v) adenosine and 0.5 % (w/v) bovine 

serum albumin (BSA) in phosphate-buffered saline (PBS), were perfused to allow maximal 

vasodilation of the collateral vessels. To fix the tissue for paraffin wax conservation, 20 ml 

of 4 % (w/v) paraformaldehyde (PFA) in PBS were perfused afterwards. For 

cryoconservation, tissue was fixed with 3 % PFA in PBS. All three buffers were freshly 

prepared and gently prewarmed to 37 °C. 
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Figure 2.2: Aortic catheterization for perfusion fixation and latex perfusion 

A. Open abdomen of the mouse showing the abdominal aorta (AAo), the inferior cava vein (ICV) 
and left kidney (Ki). Upstream of the kidney, AAo and ICV are clamped with a vascular clamp. B. 
Suture silk is placed surrounding the AAo and a small incision in AAo is realized. C. Introduction 
of a butterfly needle in the aorta through the aortic incision and fixation with silk. D. Perfusion, in 
this case with latex, used to make visible the vascular system like the collateral arteries subject of 
study. White scale bar: 5 mm, dark scale bar: 1 mm. 

 Processing of adductor samples for paraffin- and cryoconservation 

For paraffin conservation, thigh samples were collected immediately after perfusion fixation 

and placed in fixation solution allowing to fix for 12 h more at 4 °C. Samples were then 

washed with tap H2O for 30 min and immersed in 70 % ethanol for few hours to several 

days. Following dehydration in increasing concentrations of ethanol and xylene, samples 

were finally embedded in paraffin wax in a carousel-type tissue processor (see table 2.10). 

Adductors were then cut in the middle, crossing muscle fibres and collateral arteries, and 

embedded in paraffin wax with the cut face laying down. Samples were stored at room 

temperature (RT). 

Before cutting, thigh samples were cooled down by incubating them in a freezer to -20 °C. 

2 µm thick sections were placed over glass slides and let dry 24 h to 48 h at 37 °C in a warm 

chamber. Slides were then stored at RT or stained immediately. 

Table 2.10. Dehydration and paraffin embedding protocol 

Step 1-2 3-5 6-8 9-10 11-12 

Solution 70 % EtOH 96 % EtOH 
99.8 % 

EtOH 
Xylene Paraffin wax 

Time 2 x 60 min 3 x 60 min 3 x 60 min 2 x 90 min 2 x 90 min 
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For cryoconservation, following perfusion fixation, adductor samples were immersed first 

in 15 % sucrose (w/v) in PBS for 4 h at RT and then in 30 % sucrose (w/v) in PBS overnight 

at 4 °C. Sucrose should avoid the formation of crystals and protect cellular structure and 

tissue morphology during freezing. Adductor were cut in the middle as for paraffin 

conservation and embedded in OCT compound over cryomolds placed on dry ice and let 

freeze slowly. Samples were stored at -80 °C. 

Thigh samples were cut with a cryotome in 6 µm thick sections, that were placed over glass 

slides and stored at -80 °C.  

 Collateral arteries sampling for gene expression studies 

To avoid RNA degradation by endogenous ribonucleases, catheterization and sampling was 

performed as quick as possible. After latex perfusion, the skin of the upper tight was sprayed 

with Cutasept® to avoid the dispersion of hairs and then cut carefully. Using clean scissors, 

the two superficial collateral arteries were dissected from the Profunda artery to the femoral 

artery, collected in 1.5 ml RNases-free reaction tubes and quick-frozen on dry ice. Samples 

were immediately stored at -80 °C. 

2.3. Histology 

2.3.1. Giemsa staining and morphometric analysis 

Morphometric analysis was performed on collateral artery cross-sections stained with 

Giemsa’s solution. Giemsa’s solution is composed of a mixture of eosin, methylene blue 

and Azure B. Eosin is an acidic dye which binds to basic structures such as cytoplasm, 

proteins and collagen. Methylene blue and Azure B are basic dyes that bind to acidic 

structures such as nucleic acids. Paraffin sections stained with Giemsa’s solution in an acidic 

pH display blue nuclei and pink collagen fibres making possible the delimitation of the 

arterial wall. 

Sections were stained following the protocol described in table 2.11. Finally, sections were 

mounted over coverslips using Eukitt® quick-hardening mounting medium, let dry and 

stored at RT. Images of the collateral arteries were taken with a 40x oil immersion objective 

of an Axioskop 40 microscope equipped with an Axiocam 105 colour camera (Zeiss) and 

analysed with the AxioVision 4.8.2.0 software. 
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Table 2.11. Giemsa staining protocol of paraffin sections 

Step Time Temperature 

Immerse in xylene 20 min 

RT 
Hydrate in abs EtOH, 96 % EtOH, 70% EtOH 

5 min 
each 

Immerse in Giemsa’s solution 1 h 60 °C 

Wash with tap H20  

RT 
Immerse in 1 % acetic acid 3 s 

Dehydrate in 96 % EtOH and abs EtOH 15 s each 

Immerse in xylene 2x 5 min 

Cover with Eukitt® quick-hardening mounting medium and glass coverslips 

 

The inner and outer luminal circumferences were assessed as these two parameters are 

constant, independent on the vessel shape (Limbourg, Korff et al. 2009). The 

circumferences were then used to calculate the luminal diameter and the medial wall 

thickness. For this, collateral sections were assumed to be perfect circles. The following 

equations were used:  

 �� = � × �, 

where Co is outer circumference and D diameter, and 

 
 = � × ��,  

where A is vessel area and r the radius of the circumference. 

Medial thickness area was calculated then subtracting inner from outer vessel area, and wall 

thickness subtracting inner radius from outer radius. 

2.3.2. BrdU staining in paraffin sections 

Due to their distinct localization and morphology, ECs and SMCs can be very well identified 

in collateral artery cross-sections and their proliferation quantified in histological sections. 

ECs in growing collateral arteries have big round nuclei projected to the intraluminal space. 

SMCs are big cells immersed in the vessel media layer with round nuclei and can be easily 

differentiated from fibroblasts, localized in the adventitia layer. Compared to other cell 

proliferation markers expressed only during cell replication, bromodeoxyuridine (BrdU), a 

thymine analogue, is introduced into the deoxyribonucleic acid (DNA) during genome 

replication and remains in the genome after several cell divisions. This way, cells that have 
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replicated in the past will be BrdU positive too, increasing the sensitivity of the method 

respect to other cell proliferation markers. Together with the corresponding channel blocker, 

mice were given 50 mg/kg BrdU for five days starting just before surgery. BrdU (Sigma-

Aldrich) was dissolved in PBS à 12.5 mg/ml and sterile filtrated. 

Staining was performed using the BrdU detection kit (BD Pharmingen), based on exposition 

of BrdU antigen via antigen retrieval and further detection with an anti-BrdU antibody 

conjugated indirectly to a peroxidase enzyme. Oxidation of the chromogen 3,3'-

diaminobenzidine (DAB) by the peroxidase enzyme in the presence of hydrogen peroxide 

results in a brown alcohol soluble precipitate. See table 2.12. for a detailed protocol. 

Images were taken with a 40x oil immersion objective of an Axioskop 40 microscope 

equipped with an Axiocam 105 colour camera (Zeiss) and analysed with the AxioVision 

4.8.2.0 software. For the analysis of BrdU+ SMCs-to-total SMCs ratios, 50 SMCs were 

counted per mouse. For analysis of BrdU+ ECs-to-total ECs ratio, 150 ECs were counted 

per mouse. The average of BrdU+ cells-to-total cells of 3 mice was calculated and used as 

parameter for comparison between groups. 

Table 2.12. BrdU staining protocol of paraffin sections 

Step Time Temperature 

Immersion in xylene 2x 20 min 

RT 

Hydration in abs EtOH, 96 % EtOH, 70% EtOH 5 min each 

Destillated water 5 min 

7.5 % H2O2 5 min 

Destillated water 5 min 

Antigen retrieval buffer (ARB) 15 min 
800 watts microwave 

ARB refilled 15 min 

Cool down slowly in open jars 30-45 min 

RT 

 

Washing step with PBS 2x 5 min 

Incubation biotin conjugated- BrdU antibody 90 min 

Washing step with PBS 2x 5 min 

Peroxidase conjugated-streptavidin 30 min 

Washing step with PBS 2x 5 min 

Drop of DAB 3-4 min 

Washing step with tap water 10 min 

Counterstaining with Hämalaun solution 45 s 
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Washing step with tap water 5 min 

Dehydration in 96 % EtOH and abs EtOH 5 min each 

Immersion in xylene 5 min 

Cover with Eukitt® quick-hardening mounting medium and glass coverslips 

 

2.3.3. Fluorescence immunohistochemistry 

For fluorescence immunohistochemistry of collateral artery cross-sections, adductors were 

cryoconserved and cut as described above. Sections were let dry at RT for 15 min and then 

fixed in 2 % PFA for 3 min. After washing twice with PBS for 5 min, sections were 

permeabilized with 1 % tween 20 in PBS (PBST) for 20 min. Sections were then incubated 

with 1:100 rabbit anti-KV1.3 or rabbit anti-KCa3.1 antibodies (Alomone) in PBST overnight 

at 4 °C. After three washing steps with PBS, sections were incubated with 1:100 goat Alexa 

Fluor 488-conjugated anti-rabbit antibody, together with 1:100 Cy3-conjugated mouse anti-

α-SMA (Sigma) and 1:100 Alexa Fluor 647-conjugated rat anti-CD31 (cluster of 

differentiation 31) antibody in PBST for 1 h at RT. Sections were then washed three times 

for 5 to 10 min in PBS and imaging was performed immediately. Images were taken with a 

Zeiss Axio Examiner.Z1 microscope using a 60x water objective, equipped with a Colibri.2 

illumination system. 

Analysis of KV1.3 or KCa3.1 expression in α-SMA positive SMCs and CD31 positive ECs 

was performed with the ZEN Blue software (Zeiss). Briefly, the collateral artery section 

was delimited from the rest of the tissue. Positive α-SMA or CD31 areas were selected to 

create a mask of the SMC layer or endothelium respectively. Areas smaller than 10 µm2 

were not considered for calculations. Fluorescence intensity means for Alexa Fluor 488 

(KV1.3 and KCa3.1) in the selected masks were calculated and used as parameter for relative 

protein quantification. 

2.3.4. Fluorescence immunocytochemistry 

MArSMCs were stained for KV1.3 and KCa3.1 channels as well as for the SMC marker α-

SMA together with the nuclear dye 4',6-diamidino-2-phenylindole (DAPI).  

Cells were seeded à 5 x104/ per well of a 24 well plate over sterile and with 1 % collagen 

pre-coated coverslips. After let them growing for 2 more days in SMCGM, cells were 

washed with PBS and fixed with 2 % PFA in PBS for 3 min. Following two wash steps with 

PBS, cells were permeabilized with PBST for 20 min at RT. Cells were then incubated with 

1:100 diluted rabbit anti-KV1.3 or anti-KCa3.1 antibody in PBST overnight at 4 °C. After 
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washing three times with PBS, cells were incubated for 1 h at RT with a combination of 

Alexa Fluor 488-conjugated anti-rabbit secondary antibody and Cy3-conjugated anti α-

SMA antibody, both diluted 1:100 in PBST. After three washing steps, cells were incubated 

with the nuclear dye DAPI à 500 nmol/l for 20 min at RT and washed again with PBST. 

Finally, coverslips were washed with PBS and mounted with ProLong anti fade mounting 

medium (Invitrogen). 

Images were taken with a 40x objective of a Axio Imager 2 fluorescence microscope 

equipped with a fluorescence Axiocam ICc 5 camera and Axiocam ICc 5 software. 

2.4. Cell culture  

2.4.1. MArSMCs culture 

Cell isolation from mouse tissues often results in a mixture of cell populations. SMCs 

isolated from aorta and arteries are usually contaminated by fibroblasts, which grow faster 

and better than SMCs, overwhelming them after several passages. For this reason and to 

assure high quality standard and reproducible data, primary SMCs were purchased from 

Cell Biologics. Furthermore, since SMCs from different beds can have different phenotypes, 

special attention was done in choosing SMCs isolated from arteries and not from the aorta. 

In addition, cells were used in lower passages to avoid cell dedifferentiation.  

MArSMCs were cultured with SMC growth medium (SMCGM) (Cell Biologics) containing 

20 % foetal calf serum (FCS), Insulin and the growth factors FGF-2 (10 ng/µl) and EGF (5 

ng/µl). Cells were grown in collagen-coated flasks and medium was changed every other 

day.  

When cells reached 80 % confluence, they were splitted and used for experiments. Briefly, 

cells were washed with prewarmed Ca2+- and Mg2+-free PBS and loosed from the bottom 

of the flask with trypsin/ Ethylenediaminetetraacetic acid (EDTA) (1 ml in 25 cm2 flask, 2 

ml in 75 cm2 flask) for several minutes in a reaction controlled under the microscope. 

Reaction was stopped with 1:4 ml 10 % FCS Dulbecco's modified Eagle's medium 

(DMEM). After centrifugation à 2800 rpm (Rotina 420R) at RT for 5 min, cells were 

resuspended in SMCGM and either used for experiments or cultured further in coated flasks 

(1:4). 
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Figure 2.3: Light microscope image of MArSMCs after 2 passages 

2.4.2. MArSMCs counting and trypan blue exclusion 

Cell concentration of cell suspensions was determined with a Neubauer improved 

hemocytometer (Laboroptik) through staining with trypan blue solution (Sigma) allowing 

exclusion of dead cells (blue). 

2.4.3. BrdU proliferation assay 

To assess the effects of channel blockade on MArSMCs proliferation, the BrdU 

proliferation assay kit (ROCHE) was used, following manufacturer’s instructions. Briefly, 

MArSMCs were seeded in a 96 well plate à 1 x 104 cells/well in 100 µl SMCGM overnight. 

The next day, medium was replaced for starvation medium, DMEM containing 1 % FCS 

for 24 h. Cells were then stimulated with 10 % FCS in DMEM with or without the channel 

inhibitors PAP-1 or TRAM-34 together with 10 µM BrdU supplied by the kit. PAP-1 was 

diluted to 0.1, 1 and 5 µM while TRAM-34 was diluted to 10, 100 and 500 nM end 

concentrations. Negative control cells were stimulated with 2 % FCS medium. Cells were 

let grow for 3 days and then were fixed with 200 µl/well FixDenat buffer. After 30 min at 

RT, the solution was removed by flicking off and tapping. Then, 100 µl/well of anti-BrdU-

POD solution was added and incubated for 90 min at RT. The antibody conjugate was 

removed, and cells were washed 3 times with 200-300 µl Washing Solution. After removing 

the washing solution, 100 µl/well Substrate Solution was added and incubated for 5 to 30 

min at RT. Then reaction was stopped with 25 µl of 1 n/l H2SO4 for 1 min on a shaker at 30 

rpm. Finally, the absorbance at 450 nm was measured within 5 min after adding stop 

solution with an Infinite F200 ELISA reader (Tecan). The reference wavelength was set to 

620 nm. 
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2.4.4. MArSMCs samples collection for gene expression studies 

MArSMCs were seeded in a 12 well plate precoated with 1 % gelatine à 0.5 -1 x 106 

cells/well in 0.5 ml SMCGM overnight. For gene expression experiments with channel 

inhibitors, cells were serum starved for 24 h in DMEM containing 2 % FCS. Cells were then 

stimulated with 0.5 ml SMCGM/well with or without 1 µmol/l PAP-1 or 100 nmol/l TRAM-

34 for 6 h in a cell incubator at 37 °C and 5 % CO2. PAP-1 was first dissolved in Dimethyl 

sulfoxide (DMSO) à 1 mmol/l and TRAM-34 à 10 mmol/l. Both solutions were sterile 

filtrated with a 0.22 µm filter, aliquoted and stored à -20 °C. Stock solutions were fresh pre-

diluted in DMEM. DMSO end concentrations were lower than 0.1 %. Finally, cells were 

washed twice with ice cold PBS and lysed with 100 µl Trizol for RNA extraction. Sample 

were either stored at -20 °C or continued processing for RNA isolation. 

For gene expression studies with the Sp1-blocker Mithramycin A (MTM), MArSMCs were 

serum starved for 3 days in DMEM 0.5 % FCS. Cells were then stimulated with SMCGM 

with or without 200 nmol/l MTM for 6 h in a cell incubator. Finally, cells were washed 

twice with ice cold PBS and lysed with 100 µl TRIzol for RNA extraction. MTM was first 

dissolved in DMSO à 10 mM and was sterile filtrated with a 0.22 µm filter. Stock aliquots 

were stored at -20 °C.  

2.4.5. MArSMCs samples collection for western blot 

For western blot analysis, MArSMCs were seeded in 12 well plate precoated with 1 % 

gelatine à 0.8-1x106 cells/well in 1 ml SMCGM/well for several days, with daily medium 

changing. When confluence was reached, medium was changed to DMEM with 0.5 % FCS 

(starvation medium) for 3 days. Two hours before stimulation with SMCGM, MArSMCs 

were incubated with 10 µmol/l UO126, a Mitogen-activated protein kinase kinase 1/2 

(MEK1/2) inhibitor in starvation medium. UO126 was first resuspended in DMSO at a 

concentration of 10 mM and stock aliquots were stored at -20 °C. 30 min before stimulation, 

MArSMCs were incubated with the KV1.3 inhibitors PAP-1 and Margatoxin (MgTX) à 1 

µM and 100 nM respectively in starvation medium. MArSMCs were then stimulated with 

SMCGM for 5 min with or without UO126 and the channel inhibitors PAP-1 and 

Margatoxin. After two washing steps with ice cold PBS, cells were lysed with the 

corresponding lysis buffer. 
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2.5. Protein biochemistry 

2.5.1. Preparation of protein lysates 

After cell stimulation, cells were washed twice with ice cold PBS and lysed by scraping 

with 100 µl/well radio-immunoprecipitation assay (RIPA) buffer containing fresh added 

protease and phosphatase inhibitors (see Table 2.13.). Cell lysates were transferred to 1.5 

ml reaction tubes, incubated on ice for 30 min and vortexed each 10 min. Cell lysates were 

then centrifuged for 5 min à 10 000 g at 4 °C. Supernatants were transferred to new reaction 

tubes and pellets were discarded.  

Table 2.13. Composition of cell lysis buffer (RIPA) 

Component Concentration 

Tris/ HCl (pH 7.4) 50 mM 

NaCl 150 mM 

EDTA 1 mM 

Triton-X-100 1 % (v/v) 

Sodiumdeoxycholate 1 % (w/v) 

SDS (10 %) 0.1 % (v/v) 

Freshly added:  

Protease inhibitor cocktail 
(Roche) 

1 tablet /10 ml buffer 

PhosphoStop (Roche) 1 tablet /10 ml buffer 

Sodium orthovanadate 1 mM 

PMSF 0.5 mM 

2.5.1. Protein quantification 

Protein concentration of cell lysates was determined with the PierceTM bicinchoninic acid 

BCA protein assay kit with a standard curve ranging 0.125 mg/ml to 2 mg/ml bovine serum 

albumin supplied with the kit. 1:5 diluted samples and standards were pipetted in duplicates 

in a 96 well plate. Reaction buffer was freshly prepared by mixing 50 parts BCA Reagent 

A with 1 part BCA Reagent B. After 30 min of incubation à 37 °C, colorimetry was 

measured with the Infinite F200 ELISA reader (Tecan) à 562 nm. 
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2.5.2. Immunoblotting 

Changes in protein concentration as well as post-translational modifications in MArSMC 

lysates were assessed by western blot.10 µg cell lysates aliquots were reduced and denatured 

by adding Roti®-Load protein loading buffer (4x) (Carl Roth) and incubating à 95 °C for 5 

min. Samples were then chilled on ice for 5 min and stored at -80 °C until western blot was 

performed. 

MArSMCs lysates, containing 10 µg protein were thawed on ice, centrifuged, mixed by 

pipetting and loaded in a 4-20 % gradient Sodium dodecyl sulfate- polyacrylamide gel 

electrophoresis (SDS-PAGE) gel (Serva). Gel was placed before in an electrophorese 

chamber and covered with Laemmli running buffer (Serva) (see Table 2.14 for buffer 

composition). For future control of the size of the proteins of interest, the prestained protein 

marker PageRulerTM Prestained Protein (Thermo Fischer Scientific) with a band pattern of 

10 to 180 kDa was loaded in the first lane. Electrophorese chamber was then connected to 

a power supply and a current of 10 mA was first elicited for 10 min and then increased to 

20 mA for 1 h. 

From the gel, proteins were transferred to a nitrocellulose membrane to allow detection with 

specific antibodies. Briefly, filter paper and nitrocellulose membrane were first equilibrated 

in transfer buffer for 5 min (see Table 2.14 for buffer composition). In a blotting chamber, 

filter paper, membrane and gel were placed in the following order, from cathode to anode: 

filter paper, membrane, gel, filter paper. The presence of SDS in sample loading buffer 

charged the proteins negatively so that they move from the cathode to the anode in the 

presence of a current. A current of 44 mA was applied for 1 h. 

To control that transfer occurred successfully, the membrane was then stained with Ponceau 

solution for 30 s and washed with Tris-buffered saline containing 0.1 % Tween20 wash 

buffer (TBST). Additionally, the Ponceau stained membrane was scanned and used as 

evidence of equal loading. Before incubation with specific antibodies, the membrane was 

blocked for 1 h with 5 % dry milk in TBST in a shaker à 200 rpm. The membrane was then 

incubated overnight, either with the rabbit mAb anti-phospho-p44/42 MAPK (ERK-1/2) à 

1:2000 or with the rabbit mAb anti-p44/42 MAPK à 1:1000 in TBST with 5 % BSA at 4 °C 

with gentle shaking. After several washing steps under shaking, membrane was incubated 

with horseradish peroxidase (HRP)-conjugated goat anti-rabbit mAb, à 1:10000 in TBST 

with 5 % dry milk for 1 h at RT. Finally, HRP was detected with the luminol-based enhanced 

chemiluminescent substrate SuperSignal West Femto Substrate (Thermofischer) incubating 
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for 3-5 minutes and visualized in an ORCA system (Hamamatsu) and the Wasabi software 

(Hamamatsu). 

Table 2.14. Composition of running, transfer and wash buffers for western blot 

Running buffer:           Transfer buffer:  Wash buffer (TBST) 

Component Conc.  Component Conc.  Component Conc. 

Tris 
250 
mM 

 
Tris  

 Tris  

Glycin 1.92 M  Glycin   NaCl  

SDS 1 %  SDS   HCl  

pH 8.4-8.9   Methanol   Tween20 0.1 % 

  pH 8.3   pH 7.5  

 

2.6. Real time Polymerase Chain Reaction 

2.6.1. RNA isolation 

RNA isolation was performed with TRIzol, a monophasic solution of phenol and guanidine 

isothiocyanate which maintains integrity of RNA while disrupting cells. MArSMCs were 

detached and lysed with 100 µl TRIzol reagent while collateral samples, around 15 mg 

tissue, were homogenised with 300 µl TRIzol in lysis tubes containing beads in a SpeedMill 

PLUS homogenizer (Analytic Jena). Addition of chloroform (1/5 volume of TRIzol) 

followed by centrifugation at 12.000 g for 15 min at 4 °C allowed the separation of the 

sample into an upper aqueous phase and an organic phase. The RNA-rich aqueous phase 

was then mixed with cold isopropanol (1/2 of TRIzol volume) and centrifuged at 12.000 g 

for 30 min at 4 °C to finally precipitate the RNA.  

To eliminate any rest of genomic DNA, RNA was digested with 1 unit of RQ1 RNase-Free 

DNase enzyme (Promega)/µg RNA at 37 °C for 30 min. RNA samples were then cleaned 

up from DNase and DNase buffer with the RNeasy MinElute Cleanup kit® from Qiagen 

following manual’s instructions. Briefly, samples were first mixed with buffer RLT, then 

with 100 % ethanol and transferred to spin columns (supplied by the kit). Spin columns 

were centrifuged to 14.000 g for 30 s at RT, washed twice with RPE buffer followed by 80 

% ethanol. Spin columns were let dry by centrifugation at full speed and RNA was finally 

eluted with 15-20 µl H2O.  
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RNA concentration was measured at a UV wavelength of 260 with a NanoDrop® 

spectrophotometer and calculated with the Beer-Lambert equation (solved for 

concentration): 

� = 
/(Ɛ × �), 

where � is RNA concentration in molarity (n/L), 
 is UV absorbance in absorbance units 

(AU), Ɛ is extinction coefficient (liter/mol-cm) and � pathlength in cm. 

RNA purity was assessed analysing the ratios 260/230 and 260/280. While low 260/230 

ratios indicate contamination with guanidinium isothiocyanate, phenol and other buffer 

components, low 260/280 ratios reflect protein contamination. Samples were considered 

pure when the ratios 260/230 and 260/280 ranged from 1.8- to 2 and 2 to 2.2, respectively. 

RNA integrity was analysed in 1 % agarose gels. RNA samples were used when the 28s and 

18s ribosomal RNAs bands were visible and the upper 28s band was thicker than the 18s 

band. 

2.6.2. cDNA synthesis 

RNA samples were reverse transcribed to complementary DNA (cDNA) with the 

QuantiTect® Reverse Transcription kit from Qiagen, following manufacturer’s instructions. 

Briefly, 250 ng RNA was incubated with Wipeout buffer at 42 °C for 4 min to eliminate 

any rest of genomic DNA and chilled on ice for 5 min. Samples were mixed with reverse-

transcription master mix containing RT primer mix, a mixture of random and poly dT 

primers and reverse transcriptase and incubated for 30 min to 42 °C. Finally, reverse 

transcriptase was inactivated by incubating the samples at 95 °C for 3 min. Samples were 

diluted 1:5 and stored at -20 °C. 

2.6.3. Real time PCR 

Real time PCR was performed with the StepOne Plus PCR machine (Life technologies) and 

data were analysed with the ΔΔCt method, described elsewhere (Pfaffl 2001). 

Usually 2 µl of 1:5 diluted cDNA was amplified per well using the Power Sybr green kit 

(Life technologies). Forward and reverse primers (Eurofins GmbH) were mixed in a master 

mix à 5 µM each and used to a final concentration of 250-500 µM. Samples were run in 

triplicates and mean values were used for calculations. See Table 2.15. for running protocol.  
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Table 2.15. Real time PCR running protocol 

Step 

Polymerase 

activation 

PCR Melt curve 

Cycle (40x) 

Step and hold 
Hold 

Den

at. 
Ann./ Ext. 

Temp 
95 °C 

95 

°C 
58-64 °C * 95 °C 64 °C 

+ 0.7 °C/min 

until 95 °C 

Time 
10 min 15 s 1 min 15 s 1 min 

* Annealing temperature is primer-dependent. 

2.7. Statistics 

Results were analysed with the statistical software GraphPad Prism 6 (GraphPad Software, 

California, USA). For statistical comparison of two groups, data was first tested for 

normality. For normally distributed data, groups were compared with Student’s t test and 

for data not distributed normally by Rank Sum test. For the comparison of multiple groups, 

1-way or 2-way analysis of variance (ANOVA) followed by a Holm-Sidak Post Hoc test 

was carried out. The corresponding tests are indicated in the figure legends. All 

experimental values are displayed as mean ± standard error of the mean (SEM). Results 

were considered significant with a p-value < 0.05. 
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3. Results 

3.1. KV1.3 and KCa3.1 localization and abundance pattern 

during arteriogenesis 

In order to investigate the role of the potassium channels KV1.3 and KCa3.1 in arteriogenesis, at 

first, their localization and expression patterns were characterized in collateral arteries, 

employing the murine model of FAL. Three different time points of collateral artery growth 

were analyzed: at baseline (sham), two days after FAL (2d), and seven days after FAL (7d). 

Two days after FAL, collateral arteries are characterized by a strong cellular proliferation rate 

while seven days after FAL they have already reached a low-proliferative state. Kv1.3 and 

KCa3.1 specific localization in SMCs and in ECs was assessed by immunofluorescence imaging 

through multi-staining with the SMC marker α-SMA and the EC marker CD31. Furthermore, 

fluorescence intensity measurements of the channels in SMCs and ECs allowed a relative 

quantification between time points. 

3.1.1. KV1.3 localization and abundance in collateral arteries 

Immunofluorescence imaging revealed KV1.3 expression in SMCs and ECs of collateral arteries 

at all time points analyzed, as demonstrated by co-localization with α-SMA and CD31 

respectively (Fig 3.1, A). Other vascular cells such as adventitial fibroblasts and perivascular 

inflammatory cells as well as skeletal muscle fibers were KV1.3+ too. However, as displayed in 

Figure 3.1, B, no changes in KV1.3 fluorescence intensity between the different time points 

analyzed were evident in neither SMCs nor ECs, indicating a constant protein abundance in 

these cells during arteriogenesis. Interestingly, KV1.3 staining intensities were stronger in ECs 

than in SMCs. 
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Figure 3.1: KV1.3 localization and abundance pattern in collateral arteries of wild type mice 

during arteriogenesis 

A. Immunofluorescence staining against KV1.3 (green) together with the SMC marker α-SMA (red) and 
the EC marker CD31 (blue) in cross-sections of collateral arteries in sham-operated hind-limb (sham) 
and collateral arteries 2 (2d) and 7 days (7d) after FAL. Lower line, negative control staining performed 
with anti-Kv1.3 antibody (Ab) pre-adsorbed with KV1.3 antigenic peptide. CA: collateral artery, SM: 
skeletal muscle, F: fibroblast, I: inflammatory cell. Scale bar 10 µm. B. Quantitative analysis of the 
fluorescence intensity mean values for KV1.3 in SMCs and ECs. Mean ± SEM, 1-way ANOVA and 
Holm-Sidak Post Hoc test: * p<0.05, n=3 mice per group, 4-12 sections/ mouse. 
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3.1.2. KCa3.1 localization and abundance in collateral arteries 

KCa3.1 expression was more evident in collateral SMCs and ECs 2 days after FAL (Fig 3.2, A). 

Like KV1.3, KCa3.1 staining was also positive in fibroblasts, perivascular inflammatory cells 

and skeletal muscle. A comparison of KCa3.1-staining fluorescence intensities in SMCs, 

revealed a strong but still insignificant induction of KCa3.1 expression 2 days after FAL 

compared to resting collateral arteries (2407.53 ± 157.50 2d vs 1693.74 ± 251.07 sham) (Fig 

3.2, B). Interestingly, at day 7, KCa3.1 expression was significantly downregulated compared 

to 2 days after FAL (1238.51 ± 172.89 7d vs 2407.53 ± 157.50 2d), reaching even lower levels 

than in resting collateral arteries (1238.51 ± 172.89 7d vs 1693.74 ± 251.07 sham). In ECs, as 

in SMCs, KCa3.1 staining reached a peak 2 day after FAL (2433.64 ± 109.26 2d vs 1768.34 ± 

270.43) and its expression was significantly downregulated again 7 days after FAL (1300.53 ± 

202.36). KCa3.1 expression increased albeit not significantly during the proliferative phase of 

arteriogenesis in both SMCs and ECs. 
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Figure 3.2: KCa3.1 localization and abundance pattern in collateral arteries of wild type mice 

during arteriogenesis 

A. Immunofluorescence staining against KCa3.1 (green) together with the SMC marker α-SMA (red) 
and the EC marker CD31 (blue) in cross-sections of collateral arteries of sham-operated hind-limb and 
collateral arteries 2 (2d) and 7 days (7d) after FAL. Lower line, negative control staining performed with 
anti-KCa3.1 Ab pre-adsorbed with the KCa3.1 antigenic peptide. Scale bar 10 µm. B. Quantitative 
analysis of the fluorescence intensity mean values for KCa3.1 in SMCs and ECs. Mean ± SEM, 1-way 
ANOVA and Holm-Sidak Post Hoc test: * p<0.05, n=3 mice per group, 5-12 sections/mouse. 
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3.2. Effects of KV1.3 and KCa3.1 blockade on arteriogenesis 

To elucidate the role of KV1.3 and KCa3.1 in arteriogenesis, mice were treated with the KV1.3 

channel blocker PAP-1 (40 mg/kg per day) or with the KCa3.1 channel blocker TRAM-34 (120 

mg/kg per day), while control mice received vehicle only. Mice were subjected to femoral artery 

ligation and the effect of channel blockade on hind-limb perfusion recovery and collateral artery 

remodeling were assessed. 

3.2.1. Hind-limb perfusion recovery after FAL 

Blood perfusion of the hind-limb was monitored via laser Doppler imaging (LDI) and hind-

limb perfusion recovery was calculated as the ratio of perfusion of the occluded hind-limb to 

the perfusion of the sham-operated hind-limb.  

As displayed in Figure 3.3, treatment with the channel blockers had no effects on perfusion 

ratios at the baseline, showing values around 100 % in the 3 groups. Immediately after FAL, 

values decreased to less than 10 %, again independent on the treatment. At day 3, hind-limb 

perfusion ratio in control mice reached 42.5 ± 1.67 % and at day 7 already 89.17 ± 1.49 % (Fig 

3.3). While 3 days after FAL both treated groups displayed only an attenuated perfusion 

recovery respect to controls (33.33 ± 2.19 TRAM-34 and 33.50 ± 3.45 PAP-1), this reduction, 

however, became significant at day 7 (67.5 ± 4.67 % TRAM-34 and 75.5 ± 3.02 PAP-1). 
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Figure 3.3: Hind-limb perfusion recovery after femoral artery ligation 

A. Line plot displaying the ratio perfusion in occluded (occ) versus perfusion in sham hind-limb 
(occ/sham) of control, TRAM-34-treated and PAP-1-treated mice, before (basal), just after (after lig) 
and 3 and 7 days after FAL. B. Representative flux images. Mean ± SEM, 2-way ANOVA and Holm-
Sidak Post Hoc test, n=6 per group, * PAP-1 vs Con, # TRAM-34 vs Con. 

3.2.2. Morphometric analysis of collateral arteries 

To contrast the results on hind-limb perfusion recovery, the effects of channel blockade on 

collateral artery growth were investigated directly on collateral artery cross-sections seven days 

after FAL. The luminal and external perimeters of collateral arteries were measured in Giemsa 

stained cross-sections. Luminal diameter, medial area and medial thickness were then 

calculated using perfect circle formulas. 
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As noticed in the representative images of Figure 3.4, femoral artery ligation induced a strong 

collateral artery growth compared to resting collateral arteries of the sham-operated hind-limb 

in all three groups. Unexpectedly, while sections of collateral arteries of mice treated with the 

channel blockers compared to control collateral arteries suggested thinner collateral arteries, 

arterial lumen respect to resting collaterals appears as large as in control mice.  

Figure 3.4: Representative images of thigh muscle cross-sections seven days after femoral artery 

ligation 

Sections of thigh muscle in the occluded hind-limb (occ) and sham-operated hind-limb (sham) of 
control, TRAM-34-treated and PAP-1-treated mice were stained with Giemsa. Inner and outer arteriole 
circumference were measured to determine luminal diameter, medial thickness and medial area. CA: 
collateral artery, CV: collateral vein, N: nerve. Scale bar: 20 µm 

As expected, the luminal diameter of collateral arteries in occluded hind-limb of control mice 

increased significantly 1.61-fold with respect to those of collateral arteries in sham-operated 

hind-limb (44.33 ± 4.62 µm occ vs 27.54 ± 1.34 µm sham) (Fig 3.5, A). However, and in 

contrast to that what one would expect from the perfusion recovery data, the luminal diameter 

of collateral arteries of TRAM-34-treated and PAP-1-treated mice were significantly increased 

too with respect to their relatives in sham-operated hind-limb. In TRAM-34 treated mice, the 

increase in luminal diameter was found to be slightly larger than in control mice, reaching 2-

fold values respect to the contralateral collaterals (53.84 ±.2.92 µm occ vs 25.76 ± 2.19 µm 

sham). However, the raise in luminal diameter in TRAM-34 collateral arteries was not 

significant with respect to control arteries as shown after normalization of values to those in the 

respective sham-operated hind-limb (Fig 3.5, A, right). The enlargement in luminal diameter 

of collateral arteries in PAP-1-treated mice was similar to controls, with a 1.79-fold increase 

(49.92 ± 3.90 µm occ vs 27.92 ± 1.99 µm sham). 
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Parallel to the results on luminal diameter, collateral artery medial area in the occluded hind-

limb of control mice experienced a significant 1.48-fold increase respect to their contralateral 

counterparts (27.43 ± 1.50 µm2 occ vs 18.50 ± 0.43 µm2 sham) (Fig 3.5, B). Interestingly, this 

increase was attenuated under treatment with TRAM-34 in collateral arteries of occluded hind-

limb and, with 1.2-fold increase, no more significant with respect to those in sham-operated 

hind-limb (23.40 ± 2.10 µm2 occ vs 19.14 ± 0.71 µm2 sham). However, this increase was almost 

inexistent in PAP-1-treated mice (21.77 ± 0.77 µm2 occ vs 20.35 ± 1.40 µm2 sham). 

Normalization of collateral medial area in occluded hind-limb with those in the sham-operated 

hind-limb revealed a significant reduction in PAP-1 treated mice respect to control mice. 

Analogous to arterial medial area, medial thickness of collateral arteries in the occluded hind-

limb of control mice significantly increased 1.52-fold when compared to those in sham-

operated hind-limb (4.46 ± 0.65 µm occ vs 2.94 ± 0.14 µm sham) (Fig 3.5, C). Again, media 

thickening under treatment with TRAM-34 was attenuated increasing only 1.24-fold (3.67 ± 

0.78 µm occ vs 2.96 ± 0.12 µm sham), while treatment with the KV1.3 blocker PAP-1 abolished 

media thickening in collateral arteries of occluded hind-limb versus their contralateral 

counterparts (3.41 ± 0.33 µm occ vs 3.24 ± 0.55 µm sham). Again, normalization with respect 

to medial thickness values in sham-operated hind-limb revealed a significant reduction in PAP-

1-treated mice compared to controls. 
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Figure 3.5: Morphometric analysis of collateral arteries seven days after femoral artery ligation 

A. On the left, box-and-whiskers graph representing the luminal diameter of collateral arteries in 
occluded and sham-operated hind-limb. On the right, after normalization to sham values and measured 
as percentages. B. Quantitative analysis of the collateral medial area of collateral arteries in occluded- 
and sham-operated hind-limb, before (left) and after normalization to values in sham-operated hind-limb 
(right). C. Quantitative analysis of the collateral medial thickness before (left) and after normalization 
to values in sham-operated hind-limb (right). One-way ANOVA and Holm-Sidak Post Hoc test, 
*p<0.05, ** p<0.01, n=3-6 mice per group. 
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3.3. Effects of KV1.3 and KCa3.1 blockade on SMC proliferation 

in arteriogenesis 

The data on wall thickening alluded to an inhibition of SMC proliferation during arteriogenesis 

under channel blockade, particularly under KV1.3 blockade. In this chapter, the effects of 

channel blockade on SMC proliferation in vivo were investigated more specifically. Mice were 

treated with the proliferation cell marker BrdU and seven days after ligation, BrdU positive 

cells were quantified in collateral artery cross-sections. Additionally, these data were 

complemented with gene expression analysis of α-SMA, a SMC effector protein whose 

expression is strongly downregulated in proliferative SMCs. 

3.3.1. Analysis of collateral SMC and EC proliferation via BrdU 

staining 

To quantify SMC and EC proliferation in collateral arteries, immunohistochemical analysis of 

the proliferation marker BrdU was performed 7 days after FAL. Collateral artery transversal 

sections were stained against BrdU, followed by Haemalaun to counterstain tissue morphology. 

As exhibited in Figure 3.6, A, localization and distinctive morphology of SMCs and ECs at the 

vessel wall allowed an easy identification and quantification of both cell types, without cell 

specific staining. Since SMCs of collateral arteries in sham-operated hind-limb don’t 

proliferate, only collateral arteries in occluded hind-limb were examined and compared between 

groups. Results were calculated as the ratio of BrdU+ cell numbers to total cell numbers, 

normalized to control values and expressed as percentages.  

Quantification of BrdU+ SMCs in collateral arteries of TRAM-34-treated mice, seven days after 

occlusion, revealed that KCa3.1 blockade with TRAM-34 did not influence the number of BrdU+ 

SMCs with respect to the control group (Fig 3.6, B). On the contrary, KV1.3 blockade with 

PAP-1 resulted in a strong reduction of SMC proliferation, with 54.2 % decrease respect to 

control arteries (Fig 3.6, C). 

Interestingly, although statistically insignificant, both treatments slightly increased the numbers 

of BrdU+ ECs, with an increase of 38.78 % in the TRAM-34 group and 34.13 % in the PAP-1 

group above control values (Fig 3.6). The tendency to higher EC numbers under channel 

blockade supports morphometric analysis by which luminal diameters of collateral arteries were 

found to be as in controls in PAP-1 or even slightly higher in TRAM-34 collateral arteries on 
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occluded hind-limbs, seven days after ligation. However, both analysis contrast with perfusion 

data, by which PAP-1- and TRAM-34-treated mice recovered worse than control mice. 

Figure 3.6: Quantitative analysis of SMC and EC proliferation in collateral arteries seven days 

after femoral artery ligation via BrdU incorporation 

A. Representative image of BrdU immunohistochemical staining counterstained with Haemalaun. CA: 
collateral artery, CV: collateral vein, N: nerve. Black arrows: BrdU+ SMCs and black arrow’s head 
BrdU- SMC, red arrow: BrdU+ EC, red arrow’s head: BrdU- EC, asterisk: BrdU+ adventitial fibroblast. 
Scale bar: 20 µm. B. Bar plots representing the ratio BrdU+ SMCs-to-total SMC (left panel) and the ratio 
BrdU+ EC-to-total ECs (right panel) in TRAM-34-treated versus control mice. C. Bar plots representing 
the ratio BrdU+ SMCs-to-total SMCs (left panel) and the ratio BrdU+ ECs-to-total ECs (right panel) in 
PAP-1-treated versus control mice. Student’s t-test, p<0.05, n=3 mice/group. 
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3.3.2. Analysis of aSma expression in collateral arteries 

Alpha smooth muscle actin (α-SMA) is a characteristic SMC effector protein and its expression 

is strongly repressed during SMC phenotypic modulation (PM) and in proliferative SMCs. To 

assess when SMC PM is induced following FAL, aSma expression was analyzed over time in 

collateral arteries of wild type mice via real time PCR. Results are expressed as the ratio 

between messenger RNA (mRNA) levels normalized to 18S rRNA in collateral arteries of 

occluded hind-limb and the mRNA levels in collateral arteries of sham-operated hind-limb. 

As displayed in Figure 3.7, aSma expression reached a depression point 12h after FAL, 

recovered 24h after ligation and from 36h on was even upregulated. Repression of aSma 

expression 12h after FAL indicated that at this time point phenotypic modulation towards 

proliferative SMCs probably occur. 

Figure 3.7: aSma expression profiling during arteriogenesis in wild type mice 

Bar graph displaying aSma expression pattern represented as the ratios of mRNA levels measured by 
real time PCR normalized to 18S rRNA in collateral arteries of occluded to collateral arteries of sham-
operated hind-limb of wild type mice at several time points after FAL. One-way ANOVA and Holm-
Sidak Post Hoc test, n=3-5. # p<0.05 refers to 12h occ vs 12h sham. 

To analyze the role of KV1.3 and KCa3.1 in phenotypic modulation induction, mice were treated 

with the corresponding blockers and the expression of aSma was assessed 12h after FAL. 

Again, aSma mRNA levels in control mice were downregulated in collateral arteries 12h after 

ligation respect to their contralateral counterparts. The same downregulation was evident under 

treatment with the KCa3.1 blocker TRAM-34 (0.867 ± 0.06 TRAM-34 vs 0.886 ± 0.04 Con) 

(Fig 3.8, B). However, KV1.3 blockade with PAP-1 resulted in an upregulation of aSma 

expression in collateral arteries of occluded hind-limb compared to those of the sham-operated 

hind-limb. Compared to controls this upregulation was statistically significant (1.366 ± 0.03 

PAP-1 vs 0.886 ± 0.04 Con).  
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Figure 3.8: aSma expression in collateral arteries 12h after femoral artery ligation  

Bar graph representing aSma expression in TRAM-34-treated, PAP-1-treated and control mice collateral 
arteries 12h after FAL. One-way ANOVA and Holm-Sidak Post Hoc test, ** p<0.01, n=3 per group. 

3.4. Effects of KV1.3 and KCa3.1 blockade on MArSMCs 

proliferation in vitro 

The role of KV1.3 and KCa3.1 K+ channels on SMC proliferation was investigated further on 

primary mouse artery SMCs (MArSMCs) in vitro.  

3.4.1. KV1.3 and KCa3.1 subcellular localization in MArSMCs 

First, a qualitative analysis of KV1.3 and KCa3.1 expression in MArSMCs with special attention 

on their cellular localization was performed via immunofluorescence imaging. 

As exposed in Figure 3.9, MArSMCs cultured in vitro with SMC growth medium (SMCGM) 

expressed both KV1.3 and KCa3.1 channels. Interestingly, immunofluorescence staining 

revealed a strong localization of both channels around and in the nuclei of MArSMCs together 

with a much weaker localization in the cytoplasm and at the cytoplasmic membrane. 

Con TRAM PAP
0.0

0.5

1.0

1.5

a
S

m
a

e
x
p
re

s
s
io

n
(o

c
c
/s

h
a

m
)

**



Results 

68 

Figure 3.9: KV1.3 and KCa3.1 subcellular localization in MArSMCs 

MArSMCs were immunostained against KV1.3 (upper line) and KCa3.1 (middle line) (green), together 
with the SMC marker α-SMA (red). Nuclei were stained with DAPI (blue). C. Negative control (lower 
line) staining performed without primary antibody. Scale bar 40 µm. 

3.4.2. Analysis of MArSMCs proliferation via BrdU assay 

To investigate the effects of KV1.3 and KCa3.1 blockade on MArSMCs proliferation, cells were 

cultured under increasing doses of TRAM-34 (10, 100, 500 nM) and PAP-1 (0.1, 1 and 5 µM) 

and cell proliferation was quantified via a BrdU incorporation assay.  

MArSMC proliferation was indeed inhibited in the presence of both channel blockers TRAM-

34 and PAP-1 (Fig 3.10). 100 nM TRAM-34 significantly reduced MArSMC proliferation 

0.26-fold compared to control cells (73.70 ± 10.23 100 nM TRAM-34 vs 100 ± 17.13 pos Con). 

Moreover, PAP-1 inhibition of MArSMC proliferation was found to be dose-dependent and 

significant at 1 µM PAP-1, with a 0.27-fold reduction compared to control cells stimulated with 

10 % FCS only (73.33± 8.24 1 µM PAP-1). Furthermore, cells treated with 1 µM PAP-1 or 

with 100 nM TRAM-34 displayed similar proliferation rates as negative control cells 

maintained in starvation medium with 0.27-fold reduction (73.06 ± 16.73 2% FCS), reflecting 

decreased proliferation but not cell death. Furthermore, toxicity and cell viability were assessed 

with a trypan blue staining (data not shown). 
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Figure 3.10: Assessment of MArSMC proliferation via BrdU incorporation 

Bar graph displaying BrdU incorporation values expressed as percentage to positive control: MArSMCs 
stimulated with 10 % FCS. Together with 10 % FCS stimulation, MArSMCs were cultured under 
increasing doses of TRAM-34: 10 to 500 nM or PAP-1: 100 nM to 5 µM. Negative control: MArSMCs 
cultured in 2 % FCS. One-way ANOVA and Holm-Sidak Post Hoc test, *p<0.05, n=3. 

3.5. Effects of KV1.3 and KCa3.1 blockade on Fgfr1 and Pdgfrb 

expression 

3.5.1. Fgfr1 and Pdgfrb expression in MArSMCs under TRAM-34 

and PAP-1 

RTK signalling plays an important role in SMC proliferation, activating the cell division 

machinery. Furthermore, FGFR-1 and PDGFR-ß signalling are important stimulators of 

arteriogenic SMC proliferation. To investigate the role of KV1.3 on Fgfr1 and Pdgfrb 

expression regulation in SMCs, experiments were performed in cultured MArSMCs. Cells were 

stimulated with SMCGM containing 2 RTK ligands: FGF-2 and EGF after 24h serum-

starvation. 

Stimulation with SMCGM did not induce Fgfr1 and Pdgfrb expression in cultured MArSMCs 

(Fgfr1: 0.892 ± 0.074 SMCGM vs 1.065 ± 0.065 neg Con, Pdgfrb: 0.890 ± 0.067 SMCGM vs 

1.008 ± 0.008 neg Con). Parallelly, treatment with the KCa3.1 channel blocker TRAM-34 had 

no significant effects on Fgfr1 and Pdgfrb expression compared to cells stimulated with 

SMCGM alone (Fgfr1: 0.892 ± 0.074 SMCGM vs 0.783 ± 0.034 TRAM-34, Pdgfrb: 0.890 ± 

0.067 SMCGM vs 0.823 ± 0.061 TRAM-34). However, the presence of the KV1.3 channel 
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blocker PAP-1 significantly repressed both, Fgfr1 0.62-fold as well as Pdgfrb with 0.58-fold 

compared to cells stimulated with SMCGM only (Fgfr1: 0.892 ± 0.074 SMCGM vs 0.557 ± 

0.035 PAP-1; Pdgfrb: 0.890 ± 0.067 SMCGM vs 0.520 ± 0.014 PAP-1) (Fig 3.11).  

Figure 3.11: Fgfr1 and Pdgfrb expression in MArSMCs under RTK stimulation 

Bar graph representing Fgfr1 and Pdgfrb expression values normalized to 18S rRNA, assessed by real 
time PCR. After serum starvation in 2 % FCS for 24h, cells were stimulated with SMCGM containing 
FGF-2 and EGF only or together with 100 nM TRAM-34 or 1 µM PAP-1 for 6h. One-way ANOVA 
and Holm-Sidak Post Hoc test, **p<0.01, n=3. 

3.5.2. Fgfr1 and Pdgfrb expression in collateral arteries 

Since KV1.3 blockade altered Fgfr1 and Pdgfrb expression in MArSMCs, the effects of channel 

blockade on the expression of both RTK 12h after FAL was investigated next.  

In control mice Fgfr1 and Pdgfrb were not differentially expressed, with occ-to-sham ratios of 

1.117 ± 0.103 for Fgfr1 and 1.036 ± 0.019 for Pdgfrb (Fig 3.12). In mice treated with the KCa3.1 

blocker TRAM-34, both genes were slightly depressed. However, this downregulation was not 

significant respect to controls for neither of the 2 genes (Fgfr1: 0.843 ± 0.175 vs 1.117 ± 0.103 

con, Pdgfrb: 0.744 ± 0.120 vs 1.036 ± 0.019). A much stronger and significant downregulation 

was evident under KV1.3 blockade with PAP-1 for both genes, Fgfr1: 0.608 ± 0.051 PAP-1 vs 

1.117 ± 0.103 Con and Pdgfrb: 0.644 ± 0.019 PAP-1 vs 1.036 ± 0.019 con, respect to the control 

group. 
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Figure 3.12: Fgfr1 and Pdgfrb expression in collateral arteries 12h after femoral artery ligation 

Bar plot representing Fgfr1 and Pdgfrb gene expression as the ratio occ-to-sham collateral arteries in 
control, TRAM-34-treated and PAP-1-treated mice. One-way ANOVA and Holm-Sidak Post Hoc test, 
*p<0.05, n=3. 

3.6. Role of KV1.3 in receptor tyrosine kinase signalling 

So far, the data pointed to an important role of KV1.3 in SMC proliferation during arteriogenesis 

by regulating the expression of two important receptor tyrosine kinases involved in SMC 

proliferation: FGFR1 and PDGFR-ß. In this chapter, the role of KV1.3 in RTK signalling was 
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RTK activation signals among others through the MAPK/ ERK pathway. In arteriogenesis, 
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expression of the transcription factor EGR-1. Hence, Egr1 expression is upregulated 12h after 
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PAP-1, Egr1 expression was significantly downregulated 0.72-fold with respect to MArSMCs 

stimulated with SMCGM (0.359 ± 0.024 PAP-1 vs 0.501 ± 0.008 SMCGM), reaching values 

even lower than in negative control cells.  

As expected, 12h after FAL, a strong 1.879-fold upregulation of Egr1 expression in control 

mice was observed in collateral arteries of occluded hind-limb compared to their contralateral 

counterparts (1.162 ± 0.237 occ vs 0.646 ± 0.190 sham) (Fig 3.13, B). Analogous to in vitro 

data, KV1.3 blockade significantly repressed Egr1 expression 0.46-fold with respect to controls 

(0.860 ± 0.063 PAP-1 vs 1.879 ± 0.292 Con). Interestingly, this upregulation was not only 

truncated in mice treated with PAP-1 but was even slightly downregulated (0.906 ± 0.381 occ 

vs 1.109 ± 0.587 sham). 

Figure 3.13: Egr1 expression in cultured MArSMCs under RTK stimulation and in collateral 

arteries 12h after femoral artery ligation  

A. Egr1 expression values normalized to 18S rRNA in MArSMCs maintained in starvation medium and 
in MArSMCs stimulated with SMCGM containing FGF-2 and EGF for 6h, with or without 1 µM PAP-
1. One-way ANOVA and Holm-Sidak Post Hoc test. B. Egr1 expression 12h after FAL in collateral 
arteries of PAP-1-treated versus control mice, represented as ratio occluded- to sham-operated hind-
limb. Student’s t-test, *p<0.05, **p<0.01, n=3. 
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3.6.2. Effect of KV1.3 blockade on ERK1/2 phosphorylation under 

RTK stimulation in MArSMCs 

KV1.3 channel blockade resulted in downregulation of Egr1 expression. Since KV1.3 localizes 

at the cytoplasmic membrane and at the nuclear envelope, KV1.3-mediated Egr1 expression 

regulation could be effectuated at one of these two cellular levels. 

To investigate if KV1.3 channel blockade inhibits RTK activation at the cytoplasmic membrane, 

downstream phosphorylation of ERK by MEK was assessed via western blot in MArSMCs 

under treatment with two different KV1.3 channel blockers: PAP-1 and the membrane 

impermeable Margatoxin (MgTX). As a negative control for ERK phosphorylation, MArSMCs 

were treated with the specific MEK inhibitor UO126. 

In MArSMCs, ERK phosphorylation was strongly induced after stimulation with SMCGM 

containing FGF-2 and EGF for 5 min compared to MArSMCs cultured further in starvation 

medium (Fig 3.14). This increase was not due to higher ERK protein levels since ERK signals 

displayed similar intensities in both groups. As expected, addition of the MEK inhibitor UO126 

resulted in a reduced ERK phosphorylation, again without affecting ERK levels. In this setting, 

the presence of the KV1.3 channel blockers PAP-1 (1 µM) or MgTX (10 nM) did not influence 

ERK phosphorylation compared to MArSMCs stimulated with SMCGM alone. Total ERK 

levels were not affected neither. 

Figure 3.14: Analysis of ERK phosphorylation after RTK stimulation in MArSMCs 

Western blot with MArSMC lysates plotted against p-ERK and ERK, upper and middle panel 
respectively. Lower panel, Ponceau staining confirming equal loading. MArSMCs were stimulated with 
SMCGM containing FGF-2 and EGF for 5 min in the presence of 1 µM PAP-1 or 100 nM MgTX after 
a starvation period of 3 days in 0.5 % FCS. As a negative control, MArSMCs were incubated with the 
MEK inhibitor UO126 (10 µM). 
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3.7. Role of Sp1 in KV1.3-mediated Fgfr1, Pdgfrb and Egr1 

expression regulation 

Fgfr1, Pdgfrb and Egr1 expression were downregulated under KV1.3 channel blockade both in 

MArSMCs cultured in vitro under RTK stimulation and during arteriogenesis. A literature 

research and an in silico analysis of transcription factor binding sites in the promoter sequences, 

revealed Specificity protein-1 (Sp1) as a common transcription factor for all three genes. In this 

section, its role in the expression regulation of the three genes was specifically assessed in 

MArSMCs. Furthermore, the effect of KV1.3 blockade on Sp1 expression was investigated in 

MArSMCs and in collateral arteries 12h after FAL.  

3.7.1. In silico analysis of Sp1 binding sites on Fgfr1, Pdgfrb and Egr1 

promoters 

The presence of Sp1 binding sites in Egr1 promoter has been reported elsewhere (Sakamoto, 

Bardeleben et al. 1991, Schwachtgen, Campbell et al. 2000). Moreover, Cao et al, demonstrated 

that Sp1 activates Egr1 expression in fibroblast in in vitro transfection studies (Cao, Mahendran 

et al. 1993). On the other hand, an Sp1-dependent regulation of Fgfr1 expression has been 

reported in myoblasts, chicken skeletal muscle and cardiomyocytes (Saito, Kouhara et al. 1992, 

Patel and DiMario 2001, Parakati and DiMario 2002, Seyed and Dimario 2007, Parakati and 

DiMario 2013). Pdgfrb expression regulation through Sp1 has also been reported in vitro in 

neuroblastoma cells (Molander, Hackzell et al. 2001, Kaneko, Yang et al. 2006). 

MatInspector software revealed two binding sites for Sp1 on Egr1 promoter, six binding sites 

on Fgfr1 promoter and two binding sites on Pdgfrb promoter (Table 3.1). 

Table 3.1. Sp1 binding sites on Egr1, Fgfr1 and Pdgfrb promoters 

Gene  
Accession 

no. 

Nr. 

BS 
Opt Start End Strand Sequence 

Core 

sim. 

Matrix 

sim. 

Egr1 GXP_3614163 1 0.91 211 227 + ggttgGGGCgggggcaa 1.000 0.979 
2 0.91 578 594 - ggctgGGGCaggggccg 1.000 0.917 

Fgfr1 GXP_270509 1 0.88 284 300 - gggagGGGCgggtgcct 1.000 0.959 
2 0.91 580 596 + gctgcGGGCggcgcgga 1.000 0.921 
3 0.85 922 938 + accccGGGCggcggacc 1.000 0.854 
4 0.88 938 954 - cggggGGGAgggctcgg 0.807 0.891 
5 0.88 946 962 - aggcgGGGCggggggga 1.000 0.997 
6 0.91 986 1002 - agcccGGGCgggaacaa 1.000 0.932 

Pdgfrb GXP_423602 1 0.85 470 486 - cctgtGGGCggagttat 1.000 0.947 
2 0.88 483 499 - gttagGGGCgggccctg 1.000 0.969 
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In silico analysis of Sp1 binding sites in Egr1, Fgfr1 and Pdgfrb promoters performed with the 
MatInspector software. BS: binding sites, Opt: optimized, Core sim.: core similarity, Matrix sim.: matrix 
similarity. 

3.7.2. Effects of Sp1 DNA-binding blockade on Fgfr1, Pdgfrb and 

Egr1 expression in MArSMCs 

In order to investigate the specific role of Sp1 in the regulation of Fgfr1, Pdgfrb and Egr1 in 

SMCs specifically, their expressions were analyzed in MArSMCs in the presence of the Sp1-

specific blocker Mithramycin A.  

In MArSMCs, following three days in starvation medium, stimulation with SMCGM containing 

FGF-2 and EGF strongly induced Egr1 expression 4.65-fold (5.175 ± 0.159 SMCGM vs 1.112 

± 0.063 2 % FCS) (Fig 3.15). Addition of the Sp1 blocker Mithramycin A (MTM) resulted in 

a significant decrease of 0.84-fold in Egr1 mRNA levels compared to cells stimulated with 

SMCGM alone (5.175 ± 0.159 SMCGM vs 4.338 ± 0.195 MTM) (Fig 3.15, A). The same effect 

was observable on Fgfr1 expression. Stimulation with SMCGM resulted in an upregulation of 

Fgfr1 expression of 2.44-fold (0.562 ± 0.033 SMCGM vs 0.230 ± 0.013 2 % FCS) while 

treatment with MTM significantly repressed this upregulation 0.80-fold (0.448 ± 0.011 MTM 

vs 0.562 ± 0.033 SMCGM) (Fig 3.15, B). On the contrary, Pdgfrb was strongly downregulated 

1.80-fold after stimulation with SMCGM compared to starved MArSMCs (0.610 ± 0.054 

SMCGM vs 1.096 ± 0.048 2 % FCS). Treatment with MTM did not affect its expression 

compared to SMCGM stimulation alone (0.610 ± 0.054 SMCGM vs 0.577 ± 0.062 MTM). 

Figure 3.15: Effects of Sp1 binding blockade on Egr1, Fgfr1 and Pdgfrb expression in MArSMCs 

under RTK stimulation 

MArSMCs were stimulated with SMCGM containing FGF-2 and EGF for 6h after a starvation period 
of 3 days with 2 % FCS in the presence or not of the Sp1 blocker Mithramycin A (MTM) (20 µM). 
Expression of Egr1 (A) and the RTKs Fgfr1 and Pdgfrb (B) was analyzed by real time PCR. One-way 
ANOVA and Holm-Sidak Post Hoc test, *p<0.05, **p<0.01, n=3. 
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3.7.3. Effects of KV1.3 blockade on Sp1 gene expression in MArSMCs 

and collateral arteries  

Since Sp1 regulates Egr1 and Fgfr1 expression in MArSMCs, a possible role of KV1.3 in Sp1 

transcription activity was investigated too. It has been reported that Sp1 transcription activity 

can be modulated not only through post-transcriptional modifications but also by protein 

abundance (Tapias, Ciudad et al. 2008). Therefore, Sp1 expression was assessed first in 

MArSMCs in the presence or not of the KV1.3 blocker PAP-1 following stimulation with 

SMCGM. Parallelly, Sp1 expression was determined in collateral arteries 12h after FAL of 

control and PAP-1-treated mice. 

In vitro stimulation of MArSMCs with SMCGM did not affect Sp1 mRNA levels compared to 

cells cultured in 2 % FCS (0.875 ± 0.052 SMCGM vs 0.894 ± 0.095 neg Con). However, 

MArSMCs stimulated with SMCGM in the presence of PAP-1 significantly downregulated Sp1 

expression 0.69-fold (0.605 ± 0.049 PAP-1 vs 0.875 ± 0.052 SMCGM) (Fig 3.16, A). 

Contrastingly, in collateral arteries 12h after FAL, treatment with the KV1.3 blocker PAP-1 did 

not influence Sp1 expression compared to control mice treated with vehicle only (1.192 ± 0.132 

Con vs 1.112 ± 0.165 PAP-1) (Fig 3.16, B).  

Figure 3.16: Sp1 gene expression in MArSMCs under RTK stimulation and in collateral arteries 

12h after femoral artery ligation  

A. Sp1 gene expression analysis represented as Sp1 values normalized to 18S in MArSMCs stimulated 
with SMCGM containing FGF-2 and EGF following a FCS-starvation period, in the presence or not of 
1 µM PAP-1. One-way ANOVA and Holm-Sidak Post Hoc test. B. Sp1 expression expressed as the 
ratio of collateral arteries in occluded- to collateral arteries in sham-operated hind-limbs of control and 
PAP-1-treated mice, 12h after FAL. Student’s t-test *p<0.05, n=3. 
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3.8. Effects of Sp1 DNA-binding blockade on Kcna3 expression 

Sp1 has been involved in Kcna3 (KV1.3 gene) expression regulation in carcinoma cells (Jang, 

Byun et al. 2015). To contrast these data in primary MArSMCs, cells were stimulated with RTK 

ligands in the presence of the Sp1-specific blocker MTM. Interestingly, Kcna3 expression was 

strongly induced in MArSMCs stimulated with SMCGM containing FGF-2 and EGF almost 2-

fold (1.886 ± 0.446 neg Con vs 3.756 ± 0.257 SMCGM) (Fig 3.17). However, KV1.3 mRNA 

levels were not affected with the addition of MTM under RTK stimulation (3.609 ± 0.625 MTM 

vs 3.756 ± 0.257 SMCGM). 

Figure 3.17: KV1.3 gene expression in MArSMCs under RTK stimulation and Sp1-DNA binding 

blockade 

KV1.3 gene (Kcna3) expression values normalized to 18S in MArSMCs stimulated with SMCGM 
containing FGF-2 and EGF for 6h were assessed with or without the Sp1-specific blocker MTM by real 
time PCR. Negative control, MArSMCs maintained in 2 % FCS. One-way ANOVA and Holm-Sidak 
Post Hoc test, p<0.05, n=3
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4. Discussion 

4.1. Channel blockade versus channel-knockout mice 

To investigate the role of channels in vivo, two different strategies can be followed: the analysis 

of channel-specific knockout (KO) or the treatment of wild type mice with channel specific 

blockers (loss of function) or openers (gain of function).  

KV1.3 and KCa3.1 KO mice have been reported so far (Fadool, Tucker et al. 2004, Si, Heyken 

et al. 2006). However, both are constitutive KO mice, that is, gene expression is missing from 

the whole embryonic development and is deleted in all the tissues where the gene is expressed. 

In these mice, collaterogenesis, the formation of collateral arteries during embryogenesis, could 

be affected and influence the parameters used to evaluate arteriogenesis in adulthood. 

Moreover, it is well known that constitutive KO mice can develop compensation mechanisms 

by which the gene’s function is undertaken usually by high-conserved genes, unmasking any 

function (Sprossmann, Pankert et al. 2009). Hence, compensatory mechanisms have been 

detected in thymocytes of KV1.3-KO mice, by which a lack of voltage-gated K+ current is 

compensated by an increase in chloride currents (Koni, Khanna et al. 2003). On the other hand, 

while KCa3.1-KO exhibit a normal phenotype, a mild 7 mmHg increase in mean arterial blood 

pressure has been detected, probably due to interference with its EDHF function and other 

developmental compensations (Wulff and Castle 2010). To study the role of KV1.3 and KCa3.1 

channels in SMCs specifically, the best strategy would be the use of inducible SMC-specific 

KO mice. In these mice expression of the channel would be controlled temporally and spatially 

by using SMC-specific marker gene promoter (Kuhbandner, Brummer et al. 2000). The 

generation of these mouse models is however time-consuming and very expensive.  

Chemical inhibition with channel specific blockers neither affects embryonic development nor 

give place to compensation mechanisms, since the treatment starts shortly before the surgical 

procedure. Furthermore, treatment with channel blockers is quick, flexible and cheap. For all 

these reasons, the use of specific channel blockers was considered the best strategy in this study. 

However, chemical inhibition of channels presents some disadvantages to consider. As well as 

constitutive KO mice, the treatment with channel blockers is not cell type-specific: all cells 

expressing the channel will be affected. Furthermore, channel blockers must be tested for 

toxicity as any other drug and the dose used must be specific. Since family channels have highly 

conserved members, high concentrations of the channel blocker could act non-specifically over 

highly related-channels (Schmitz, Sankaranarayanan et al. 2005). 
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4.1.1. KV1.3 channel blocker PAP-1 

5-(4-Phenoxybutoxy)psoralen (PAP-1) is a membrane-permeable specific KV1.3-channel 

blocker, that is 23-fold selective over KV1.5 and 33- to 125-fold selective over other KV1-family 

channels (Schmitz, Sankaranarayanan et al. 2005). Furthermore, PAP-1 has been used in several 

in vivo studies in mice, rats and monkeys without toxic effects (Schmitz, Sankaranarayanan et 

al. 2005, Azam, Sankaranarayanan et al. 2007, Pereira, Villinger et al. 2007, Straub, Perez et 

al. 2011, Cidad, Novensa et al. 2014). In this study, the dose and administration route used, 40 

mg/kg/day i.p., is based on a rat study performed by Chen et al (Chen, Lam et al. 2013). To 

maintain a relative constant concentration of the blocker, the daily dose was administered in 

two injections with 10-12 h interval. In addition, special attention was paid to any manifestation 

of toxicity or any disease symptom. Since drugs were injected i.p., any signs of infection or 

inner organs damage were checked out during organ sampling or perfusion fixation. In PAP-1-

treated mice, drinking and eating behaviors, weight, feces and fur were as usual. 

4.1.2. KCa3.1 channel blocker TRAM-34 

TRAM-34 (1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole) is a membrane-permeable 

KCa3.1-specific blocker that has also been used in in vivo experiments with mice, rats and swine 

showing no toxicity so far (Kohler, Wulff et al. 2003, Tharp, Wamhoff et al. 2008). The dose 

and frequency used in this study, 120 mg/kg/d i.p., in two different injections with 10-12h 

interval were already reported in mice (Toyama, Wulff et al. 2008, Hua, Deuse et al. 2013) and 

rats (Kohler, Wulff et al. 2003, Grgic, Wulff et al. 2009).  

As in PAP-1-treated mice, treatment with TRAM-34 did not affect drinking and eating 

behaviors, weight, feces or fur. No symptoms were observed during the whole study. 

4.2. The role of KV1.3 in arteriogenesis and SMC proliferation 

4.2.1. KV1.3 is constantly expressed in collateral SMCs and ECs 

First, KV1.3 expression in collateral arteries of wild type mice undergoing FAL was confirmed 

through immunofluorescence histology. To further examine its expression regulation during 

collateral artery growth, immunofluorescence intensities were quantified in resting, two and 

seven day growing collateral arteries, corresponding to a highly proliferative and to a quiescent 

phase, respectively. Co-localization of KV1.3 with the SMC marker α-SMA and the EC marker 

CD31 revealed the expression of the channel in both cell types. Interestingly, quantification of 
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Kv1.3 immunofluorescence intensities in all time points investigated reflected no changes in 

KV1.3 protein levels, neither in SMCs nor in ECs.  

In contrast to this finding, two studies report an upregulation of the channel in proliferative 

versus contractile SMCs, albeit in models of  neointima hyperplasia, such as the murine femoral 

artery balloon injury model (Cidad, Moreno-Dominguez et al. 2010) or in human saphenous 

vein segments cultured ex vivo following endothelial damage (Cheong, Li et al. 2011). 

However, even if both arteriogenesis and neointima hyperplasia share a strong SMC 

proliferation, in neointima hyperplasia is characteristic an endothelial dysfunction occasioned 

by endothelium damage. During arteriogenesis, however, SMC proliferation induction follows 

a FSS-driven endothelial activation without endothelial damage or dysfunction (Hui 2008, 

Patel, Waltham et al. 2010). It is well known that the endothelium regulates SMC proliferation 

through several mechanisms. The endothelium acts as a barrier from continuous contact to GFs 

present in the vessel lumen and secrete products that directly inhibit SMCs proliferation, like 

nitric oxide (Feletou 2011, Napoli, Paolisso et al. 2013). Indeed, re-endothelization after 

vascular injury results in less neointima hyperplasia (Nugent, Rogers et al. 1999, Patel, 

Waltham et al. 2010, Adamo, Fishbein et al. 2016). Hence, the course of SMC proliferation 

during arteriogenesis may proceed to a different manner as the one in the pathological situation 

of neointima hyperplasia and explain the different KV1.3 expression regulation in proliferative 

SMCs in both models. 

Besides the regulation of protein abundance, channel function can also be modulated at the 

level of channel activity as well as subcellular localization. While KV1.3 channel gating occurs 

through membrane depolarization, mechanisms regulating channel gating have been reported 

such as post-translational modifications or modulation by auxiliary subunits (Cook and Fadool 

2002). The auxiliary subunit KCNE4 for example, strongly inhibits KV1.3 activation and 

increases its rate and extent of cumulative inactivation (Grunnet, Rasmussen et al. 2003, Sole, 

Roura-Ferrer et al. 2009). Auxiliary subunits also mediate channel sorting and trafficking. 

Hence, interaction with KCNE4 or the prodomain of the metalloproteinase 23 impair KV1.3 

targeting to the cell membrane and retains it in the endoplasmic reticulum (ER) (Sole, Roura-

Ferrer et al. 2009, Nguyen, Galea et al. 2013), while co-expression of Kv1.3 with the ß subunits 

KVß1 or KVß2 in oocytes results in increase channel localization and K+ currents at the cell 

membrane, without affecting its activation kinetic (McCormack, McCormack et al. 1999). 

KV1.3 has been found in different subcellular localizations such as nuclei and nuclear envelope 

as well as the mitochondrial membrane. Hence, as discussed in the next chapter, it may be 
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subject to recycling from the cell membrane to the nucleus (Gulbins, Sassi et al. 2010, Jang, 

Byun et al. 2015).  

In summary, KV1.3 might be regulated during arteriogenesis through channel activity and/or 

subcellular localization instead of protein abundance. Further investigations on channel 

subcellular localization, expression analysis of auxiliary subunits or KV1.3 post-translational 

modifications in collateral SMCs following FAL specifically will complement our knowledge 

on KV1.3 regulation in arteriogenesis.  

Along with its localization in SMCs, KV1.3 was strongly and constantly expressed in ECs. 

Interestingly, the fluorescence signal in ECs was stronger than in SMCs, reflecting higher KV1.3 

levels in ECs than in SMCs. A stronger expression of KV1.3 in ECs versus SMCs was also 

reported at the mRNA level by Fountain et al in mouse mesenteric arteries (Fountain, Cheong 

et al. 2004). The role of endothelial KV1.3, however, has not been investigated extensively. 

KV1.3 may mediate endothelial proliferation, since KV1.3 blockade with Margatoxin inhibited  

human umbilical vein ECs (HUVECs) proliferation in vitro, by interfering with VEGF-

mediated hyperpolarization and NO production, a well-known endothelial mitogenic factor 

(Erdogan, Schaefer et al. 2005). 

Based on cell morphology and localization, perivascular inflammatory cells and adventitial 

fibroblasts, in addition to skeletal muscle were also stained for KV1.3. Macrophages and T cells 

are recruited to collateral arteries where they foster collateral artery growth (Arras, Ito et al. 

1998, Scholz, Ito et al. 2000, Stabile, Kinnaird et al. 2006). In macrophages, KV1.3 plays a role 

in proliferation and migration (Vicente, Escalada et al. 2003, Kan, Gao et al. 2016). In T cells, 

KV1.3 is involved in T cell receptor-mediated activation and proliferation (Azam, 

Sankaranarayanan et al. 2007). While in fibroblasts, KV1.3 expression has not been described 

so far, in skeletal muscle KV1.3 has been involved in glucose uptake (Li, Wang et al. 2006). 

Due to the broad expression of KV1.3 in collateral arteries, results on the effects of channel 

blockade on SMC proliferation in vivo were analysed carefully and contrasted with in vitro 

experiments effectuated with primary MArSMCs. 

4.2.2. PAP-1 impaired arteriogenesis by inhibiting SMC PM and 

proliferation 

The expression of KV1.3 in resting and growing collateral SMCs, prompted us to investigate 

the impact of KV1.3 channel blockade on arteriogenesis and specially on SMC proliferation. 

Moreover, a first seven day follow up of the perfusion recovery of the hind-limb after femoral 
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artery ligation revealed an attenuation of the perfusion recovery on day three after FAL that 

became significant on day seven under KV1.3 channel blockade. To contrast LDI data, a more 

specific and detailed analysis of arterial morphometry was performed in collaterals of adductor 

samples of control and PAP-1-treated mice. Adductors were collected after maximal 

vasodilation and perfusion fixation with paraformaldehyde, seven days after ligation of the 

femoral artery. Histological cross-sections of the middle region were stained with Giemsa 

solution to delimitate vascular wall, and collaterals were compared between occluded- and 

sham-operated hind-limb and between groups. As expected, a strong increase in diameter and 

in medial thickness was detected in control mice between collaterals of the occluded hind-limb 

and their sham-operated counterpart. While collateral arteries in occluded hind-limb of PAP-1-

treated mice depicted similar diameters compared to control ones, a significant decrease was 

observed in collateral medial thickness and medial area. These results pointed to an inhibition 

of SMC proliferation by KV1.3 blockade with PAP-1 while EC proliferation remained 

unaffected. In order to verify this hypothesis, a quantitative analysis of proliferative SMCs and 

ECs was carried out in collateral cross-sections of occluded hind-limb of mice treated with the 

thymine substitute BrdU, seven days after occlusion of the femoral artery. Indeed, while BrdU+ 

ECs-to-total ECs ratios were similar in control versus PAP-1-treated mice, a strong reduction 

was observed in the BrdU+ SMCs-to-total SMCs ratio in collateral arteries under PAP-1 

treatment. Interestingly, an in vivo inhibition of SMC proliferation by PAP-1 has also been 

reported though in a murine model of hypertension-mediated neointima hyperplasia (Cidad, 

Novensa et al. 2014). 

Considering that collaterals luminal diameters in both PAP-1-treated and control mice were 

similar, it is at first glance surprising that channel blockade impaired blood perfusion recovery. 

However, as assessed by collateral morphometry and BrdU+ SMC counting in seven days 

growing collateral arteries, PAP-1 significantly decreased SMC numbers. Since SMCs play a 

crucial role in vascular tone regulation, collateral arteries of PAP-1-treated mice could be 

affected in their vasodilation function. Hence, during LDI measurement the mouse is placed in 

a warm chamber to induce a physiological vasodilation that could be hindered in the thinner 

collateral arteries of PAP-1-treated mice. In contrast, for collateral morphometry analysis, 

collaterals are externally vasodilated by perfusion fixation before sample collection, so that the 

same vasodilation is reached in all groups.  

In addition, an involvement of KV1.3 in vascular tone regulation cannot be excluded neither. 

Even though a direct role of KV1.3 in vascular tone regulation has not been reported yet, studies 

with isolated and endothelium-denuded mesenteric arteries have associated the highly-related 
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K+ channels KV1.2, KV1.4, KV1.5 and KV1.6 with tone regulation in terminal arterioles by 

employing KV1 inhibitors (Yuan, Wang et al. 1998, Cheong, Dedman et al. 2001, Plane, 

Johnson et al. 2005). Hence, KV1.3 blockade with PAP-1 could increase vascular tone and blood 

pressure, preventing so optimal vasodilation in the warm chamber during LDI measurements 

and giving misleading results. For instance, a similar situation was observed in endothelial nitric 

oxide synthase knockout mice (eNOS-KO). eNOS produces nitric oxide (NO) that diffuses 

towards the SMC layer inducing SMC relaxation and subsequent vasodilation. While eNOS-

KO mice have a very bad perfusion recovery measured with LDI compared to their wild type 

littermates, their collateral arteries have surprisingly normal diameters and wall thicknesses. 

The restoration to a normal perfusion recovery in eNOS-KO mice after injection of the NO-

donor S-Nitroso-N-Acetyl-D,L-Penicillamine (SNAP) just before LDI measurement, indicated 

that the low perfusion observed was due to an interference in the vasodilation induced in the 

warm chamber during LDI measurement and not to poorer collateral growth (Schaper and 

Schaper 2004). 

Unfortunately, no measurements of blood pressure in PAP-1-treated and control mice were 

performed in this study and reports characterizing KV1.3-KO mice did not assessed explicitly 

alterations in blood pressure and vascular tone neither (Xu, Koni et al. 2003, Fadool, Tucker et 

al. 2004). Therefore, it remains an open question if bad recovery in feet perfusion under KV1.3 

blockade was due to dysfunctional collateral arteries as a result of less SMC numbers and/or to 

a role of the channel in vascular tone regulation. 

In several studies, KV1.3 has been correlated with in vitro SMC proliferation too. To contrast 

our in vivo findings and the reported data, the inhibitory effects of PAP-1 on SMC mitogenesis 

were assessed in MArSMCs through a BrdU-based proliferation ELISA test.  

Indeed, MArSMCs proliferation was proportionally inhibited with increasing concentrations of 

PAP-1. This inhibition was already significant with 1 µM PAP-1, a dose reported to be non-

toxic in Jurkat T cells and in mouse erythroleukemia (MEL) cells treated for 48h and no 

mutagenic for Salmonella typhimurium in an Ames test (Schmitz, Sankaranarayanan et al. 

2005). PAP-1 has also been reported to inhibit SMCs as well as HEK-293 cell proliferation 

transfected with a KV1.3 plasmid in vitro (Cidad, Moreno-Dominguez et al. 2010, Cidad, 

Jimenez-Perez et al. 2012). 

Since PAP-1 is a membrane-permeable KV1.3 channel blocker, its effects on SMC proliferation, 

both in vitro and in in vivo, could be consequence of the blockade in both nuclear and cell 

membrane KV1.3 channels 
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According to the presence of KV1.3 in SMCs of resting collateral arteries and the inhibitory 

effect that KV1.3 channel blockade exerted on SMC proliferation, we raised the question if 

KV1.3 could mediate SMC PM soon after arteriogenesis induction. Since SMCs undergoing 

PM strongly downregulate the expression of the contractile marker α-SMA (Mack 2011), its 

expression was assessed in collateral arteries of mice treated with the channel blocker. A 

previous analysis of αSma expression at several time points after ligation of the femoral artery 

revealed a depression point 12h after FAL, while the expression recovered 24h after and was 

even upregulated from 36h on. This reflected a first SMC proliferation wave 12h after 

arteriogenesis induction. After proliferation, SMC differentiate again giving rise to a mixture 

of SMC populations in collateral arteries and explain the upregulation of α-SMA from 36h on. 

Supporting this finding, Pagel et al also detected a downregulation of aSma 12h after FAL 

(Pagel, Ziegelhoeffer et al. 2012). Interestingly, aSma was no more repressed when KV1.3 was 

blocked with PAP-1 compared to control mice treated with vehicle only. 

Despite the strong expression of KV1.3 in collateral ECs observed by immunofluorescence 

staining, the regular arterial diameters and BrdU+ ECs ratios of collateral arteries in occluded 

hind-limb of PAP-1 treated mice, made assume that in arteriogenesis endothelial KV1.3 

probably does not play a role in EC proliferation in contrast to what reported by Erdogan et al. 

in HUVECs (Erdogan, Schaefer et al. 2005).  

Altogether, in vivo findings point to a role of the Kv1.3 channel in the regulation of SMC 

proliferation during arteriogenesis and probably in the mediation of SMC PM soon after 

arteriogenesis induction. However, since the channel is also expressed in ECs and perivascular 

cells, known to foster collateral growth, blockade of the channel in these cells could influence 

SMC phenotype and proliferation too. To verify that the effects seen on SMC proliferation 

under PAP-1 treatment were indeed consequence of channel blockade on SMC themselves, in 

vitro experiments were performed in parallel with MArSMCs.  

4.2.3. KV1.3 localizes in the nucleus and could regulate gene 

expression 

The in vivo findings on KV1.3 expression in collateral SMCs and on SMC proliferation under 

channel blockade were contrasted with in vitro experiments performed with primary 

MArSMCs. Cells cultured in SMCGM containing the GFs EGF and FGF-2 were characterized 

by immunofluorescence cytochemistry. KV1.3 staining not only confirmed the expression of 

the channel but, moreover, it revealed an unexpected localization at the nucleus and ER, 

together with a much weaker signal in cytoplasm and cell membrane. Interestingly, the nuclear 
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localization of KV1.3 has been reported in several cancer cells, human brain tissue and Jurkat 

cells (Jang, Byun et al. 2015) but not in SMCs yet (Cidad, Moreno-Dominguez et al. 2010).  

How KV1.3 is transported to the nuclear envelope (NE) and/or into the nuclei and moreover, 

through which stimulus, is not well known. Nuclear proteins are transported to the nucleus 

usually through the recognition of a nuclear localization signal (NLS). Then, they cross the 

nuclear pore complexes (NPC) that connect the outer nuclear membrane (ONM) with the inner 

nuclear membrane (INM) together. However, KV1.3 protein has no conventional NLS in its 

sequence, and even if an atypical NLS cannot be discarded, its nuclear localization can be 

explained by other mechanisms (Jang, Byun et al. 2015). As other transmembrane proteins, 

KV1.3 channel may diffuse from the ER where it folders to the outer nuclear membrane (ONM), 

since both membranes are continuous. The channel, if located at the INM, could then be 

translocated from the ONM to the INM or to the nucleus through vesicular fusion or through 

peripheral channels present between the NPC core and the membrane (Zuleger, Korfali et al. 

2008, Ungricht and Kutay 2015). Interestingly, the voltage-gated K+ channel KV10.1 has been 

detected in the cell membrane but also in the INM of neurons, tumor cells and several cell lines 

(Chen, Sanchez et al. 2011). Even though KV10.1 contains a NLS, its translocation to the INM 

seems to precede channel recycling from the cell membrane via endocytosis and lysosomes 

sorting representing an alternative pathway to the NE, the so called retrograde pathway (Kohl, 

Lorinczi et al. 2011). Intriguingly, a recent publication reported the endocytosis of KV1.3 

following EGF-EGFR signalling in HEK-293 cells, targeting the channel to endosomes 

together with the EGFR, in an ERK1/2-dependent process (Martínez-Mármol, Comes et al. 

2016). Even if the authors found KV1.3 in lysosomes and concluded that the channel is finally 

degraded, a possible route from endosomes to the nucleus via the retrograde pathway, as 

described for KV1.10, cannot be excluded neither. Hence, the translocation from endosomes to 

the nucleus has also been described for EGFR itself, together with other RTKs such as FGFR-

1 (Wang, Yamaguchi et al. 2010). Moreover, since EGF is one of the GF present in the growth 

medium used in this study to culture MArSMCs, EGFR engagement might explain the different 

KV1.3 localization pattern observed in SMCs respect to other reports (Cidad, Moreno-

Dominguez et al. 2010). 

The NE is a permeable barrier to ions. The perinuclear space (NE lumen) acts as a Ca2+ store, 

with high [Ca2+] inside compared to cytoplasm and nucleoplasm. Inversely, [K+] in the 

perinuclear space is lower than outside (Garner 2002). The presence of intranuclear electrical 

charges (negatively charged DNA and positively charged histones) and the diffusion of ions 

across the NE through ion channels and along the NPCs generate a nuclear membrane electrical 
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potential difference (nmΔΨ). Thus, changes in the nuclear K+ channels activity alters K+ flux 

across the NE and affects nmΔΨ. Subsequently, changes in perinuclear [Ca2+] activates Ca2+-

regulated gene expression (Checchetto, Teardo et al. 2016). Hence, the blockade of the nuclear 

channels ATP-sensitive potassium channel (KATP) and KCa1.1 or activation of the nuclear 

inositol triphosphate receptor (InsP3R) trigger nuclear Ca2+ transients able to activate the 

transcription of the Ca2+-activated TF cAMP response element-binding (CREB) (Quesada, 

Rovira et al. 2002, Cardenas, Liberona et al. 2005, Li, Jie et al. 2014).  

Interestingly, Jang et al reported an increased phosphorylation and activation of CREB and an 

increased c-fos abundance under PAP-1 channel blockade and thus suggested a role for KV1.3 

in the regulation of gene expression. Accordingly, since Margatoxin induced hyperpolarization 

of the NE in isolated nuclei, this regulation may be permeation-dependent and Ca2+-mediated 

(Jang, Byun et al. 2015). Moreover, Klemm et al correlated high CREB levels with a lower 

SMC proliferation both in vivo and in vitro (Klemm, Watson et al. 2001).  

In addition, Jang et al demonstrated a direct interaction between KV1.3 and the TF Upstream 

binding transcription factor 1 (UBTF1), a TF that controls RNA polymerase I, responsible for 

the transcription of rRNA (Jang, Byun et al. 2015). rRNAs assemble with ribosomal proteins 

to form ribosomes, that in the cytoplasm, control mRNA translation to proteins. Both rRNA 

and the subsequent protein synthesis take place before mitosis and are crucial for successful 

cell proliferation. rRNA synthesis increases during the G1 phase and reach a maximum in G2 

phase (Hernandez-Verdun 2011). Interestingly, KV1.3 silencing in A549 lung adenocarcinoma 

cells resulted in anti-proliferative effects by affecting the G1 to S transition (Jang, Choi et al. 

2011).  

Furthermore, nuclear K+ ions can directly influence the physical structure of heterochromatin, 

regulating so transcription efficiency and splicing. K+ ions increase the stability of G-

quadruplex structures, inter or intramolecular non-Watson-Crick pairs in guanine-rich area, 

which can act as transcriptional repressor elements (Siddiqui-Jain, Grand et al. 2002). Chen et 

al postulated that KV10.1 could bind to heterochromatin since its localization correlated with 

the absence of Lamin A/C, compatible with heterochromatin (Chen, Sanchez et al. 2011). 

Interestingly, immunofluorescence staining of MArSMCs revealed KV1.3 signal surrounding 

pericentric heterochromatin stained with DAPI. 

In summary, the nuclear localization of KV1.3 in MArSMCs may be explained by recycling 

from the cell membrane following EGFR engagement and MAPK activation (Fig 4.1). In the 

nuclei or NE, KV1.3 may then influence gene transcription and subsequent SMC proliferation 
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through almost three different mechanisms: the regulation of TF activity/ abundance, rRNA 

synthesis and subsequent protein translation and/or by modifying heterochromatin structure and 

accessibility. 

Figure 4.1: Proposed model of nuclear KV1.3-mediated gene expression regulation 

EGFR engagement and MAPK activation leads to KV1.3 endocytosis from the cell membrane together 
with the EGFR (Martínez-Mármol, Comes et al. 2016). As described for KV10.1 and the EGFR itself, 
KV1.3 could be then recycled to the nucleus through the retrograde pathway (Wang, Yamaguchi et al. 
2010, Kohl, Lorinczi et al. 2011). In the nucleus, Kv1.3 might regulate gene expression by several 
mechanisms such as TF regulation, rRNA synthesis or heterochromatin stabilization (Siddiqui-Jain, 
Grand et al. 2002, Jang, Byun et al. 2015). 

4.2.4. Role of KV1.3 in RTK signalling 

GF signalling through RTK and downstream MAPK is a strong inducer of SMC proliferation 

(Mack 2011). In SMCs, engagement of FGFR-1, PDGFR-ß and other RTK leads to the 

activation of the MAPK kinase (MEK) that in turn phosphorylates ERK. ERK translocates to 

the nucleus and phosphorylates among others the transcription activator Elk-1. Finally, Elk-1 

binds to the TF SRF inducing the expression of early growth genes, such as the TF EGR-1 

(Santiago, Lowe et al. 1999, Hjoberg, Le et al. 2004, Vogel, Kubin et al. 2006).  

Hence, the influence of KV1.3 blockade on RTK and MAPK signalling was investigated next. 

First, the effect of channel blockade on the expression of the SMC mitogenic FGFR-1 and 
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PDGFR-ß receptors was analysed both in MArSMCs and in collateral arteries. Furthermore, 

we investigated the expression of the RTK downstream target EGR-1. Additionally, to elucidate 

if KV1.3 participates in RTK signalling at the cell membrane upstream ERK, ERK 

phosphorylation following RTK stimulation, was examined by western-blot in MArSMCs. 

PAP-1 repressed Fgfr1 and Pdgfrb expression in MArSMCs and in arteriogenesis 

Since FGFR-1 and PDGFR-ß gene expression is induced by FGF-2, MArSMCs were stimulated 

for 6h with SMCGM containing FGF-2 and EGF after a starvation period of 24h (Kano, 

Morishita et al. 2005). Compared to negative control cells cultured further in starvation 

medium, no significant up-regulation of Fgfr1 and Pdgfrb mRNA levels were observed under 

SMCGM stimulation. The absence of upregulation of the RTKs could be explained by the short 

starvation period (24h) in which SMCs could not have reached total quiescence and still express 

high amounts of RTKs. Nevertheless, an intriguing significant repression of Fgfr1 and Pdgfrb 

expression was manifested when MArSMCs were stimulated with SMCGM under KV1.3 

blockade.  

Likewise, gene expression analysis in collateral arteries 12h after FAL revealed a strong 

downregulation of Fgfr1 and Pdgfrb in mice treated with PAP-1. Since 12h after FAL is a very 

early time point and SMC proliferation reaches a peak three day after FAL, the lower levels of 

Fgfr1 and Pdgfrb detected under PAP-1 rather point to an involvement of KV1.3 in RTK 

signalling or Fgfr1 and Pdgfrb expression regulation directly and not to lower SMC numbers. 

In control mice, Fgfr1 and Pdgfrb were not differentially upregulated, presumably due to its 

earlier upregulation (Deindl, Hoefer et al. 2003). 

The relevance of FGFR-1 in arteriogenesis has been reported by Deindl et al. who not only 

detected an upregulation of the receptor in collateral arteries as early as 3h after FAL with a 

peak after 6h in the rabbit, but also a poor collateral growth under blockade of the binding of 

the receptor to its ligand with polyanetholesulfonic acid (PAS) (Deindl, Hoefer et al. 2003). 

FGF-2 in collateral arteries is secreted by recruited monocytes and tissue macrophages as well 

as mast cells (Arras, Ito et al. 1998, Scholz, Ito et al. 2000, Chillo, Kleinert et al. 2016). 

Likewise, tissue macrophages and mast cells release PDGF-BB in growing collaterals (Takeda, 

Costa et al. 2011, Chillo, Kleinert et al. 2016). The PDGF-BB-PDGFR-ß axis is well known 

for its mediation in SMC proliferation and migration also in arteriogenesis (Heldin and 

Westermark 1999, de Paula, Flores-Nascimento et al. 2009). 

Considering the important role of the RTK FGFR-1 and PDGFR-ß on SMC proliferation, it 

may well be that their soon downregulation under KV1.3 channel blockade observed in vivo, is 
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responsible, at least partially, for the reduced SMC proliferation detected in collateral arteries 

of mice treated with the KV1.3 channel blocker PAP-1. 

PAP-1 repressed the expression of the downstream transcription factor EGR-1 in 

MArSMCs and in arteriogenesis 

To induce Egr1 expression in vitro, MArSMCs were stimulated with SMCGM after 24h serum 

starvation. Egr1 was slightly upregulated after SMCGM stimulation compared to starved 

control cells, while, intriguingly, its expression was strongly downregulated when cells were 

given PAP-1 together with SMCGM.  

In vivo, analysis of Egr1 mRNA levels in collaterals of occluded- versus sham-operated hind-

limbs of control mice confirmed its already reported upregulation 12h after FAL (Pagel, 

Ziegelhoeffer et al. 2012). Moreover, and correlating with in vitro findings, Egr1 upregulation 

was significantly truncated in mice treated with the KV1.3 channel blocker.  

Besides Egr1 upregulation in collateral arteries 12h after FAL, Pagel et al also reported the 

involvement of EGR-1 in SMCs PM. Egr1-KO mice expressed higher α-SMA and splicing 

factor 1 (SF-1) levels compared to wild type mice, hallmarks of the SMC contractile phenotype. 

Moreover, the lack of Egr1 decreased the collateral expression of the proliferation marker Ki67 

and cyclin D, a cell cycle regulatory protein (Pagel, Ziegelhoeffer et al. 2012).  

Together with the expression repression of the RTK receptors FGFR-1 and PDGFR-ß, 

truncation of Egr1 upregulation may be responsible for the low SMC proliferation detected in 

growing collaterals of PAP-1 treated mice. Egr1 repression under KV1.3 channel blockade 

might be consequence of the downregulation of the upstream receptors FGFR-1 and PDGFR-ß 

themselves, but also to a role of KV1.3 in Egr1 expression regulation as postulated above. 

KV1.3 acts downstream ERK phosphorylation in MArSMCs 

KV1.3 channel current at the cell membrane is inhibited following EGFR engagement, in part 

through tyrosine phosphorylation by v-src tyrosine kinase (Holmes, Fadool et al. 1996, Bowlby, 

Fadool et al. 1997). Interestingly, v-src-mediated tyrosine phosphorylation of KV1.3 and current 

inhibition is reverted by the adaptor protein growth factor receptor-bound protein 10 (Grb10), 

a positive adaptor protein of RTK downstream signalling (Wang, Dai et al. 1999, Cook and 

Fadool 2002, Cailliau, Le Marcis et al. 2003).  

Hence, we asked if KV1.3 blockade at the cell membrane could inhibit downstream FGFR-1 

and EGFR signalling in MArSMCs. For this, ERK phosphorylation was assessed under 
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stimulation with SMCGM containing FGF-2 and EGF in the presence of two KV1.3 channel 

blockers, Margatoxin and PAP-1. As a negative control, cells were stimulated with SMCGM in 

the presence of the MEK inhibitor UO126. After five minutes stimulation with SMCGM, ERK 

phosphorylation by MEK was induced compared to cells maintained in starvation medium. 

Furthermore, treatment with UO126, strongly blocked ERK phosphorylation without affecting 

total ERK protein levels. However, neither Margatoxin nor PAP-1 could revert ERK 

phosphorylation, questioning a role of the channel upstream ERK.  

Interestingly, Jimenez-Perez et al. recently reported that KV1.3 conformational change 

following membrane depolarization leads to the exposure of a segment at the C-terminus of the 

channel that is subsequently phosphorylated by p-ERK increasing KV1.3 mitogenic effects 

(Jimenez-Perez, Cidad et al. 2016). In addition, EGF-mediated KV1.3 endocytosis from the cell 

membrane following EGFR engagement is also ERK1/2-dependent (Martínez-Mármol, Comes 

et al. 2016). Contrastingly, Kan et al. reported that KV1.3 downregulation via siRNA in cultured 

macrophages reduced ERK-phosphorylation and ERK-mediated migration, while UO126 

inhibited migration and increased ERK-phosphorylation induced by KV1.3 overexpression 

(Kan, Gao et al. 2016). 

This in vitro finding and the recent literature demonstrating a role of ERK in KV1.3 regulation 

and trafficking following RTK engagement point to a role of KV1.3 in RTK signalling 

downstream ERK. Furthermore, in view of the strong localization of the channel at the nuclei 

and nuclear envelope of MArSMCs cultured in SMCGM, a role of the nuclear KV1.3 in cell 

proliferation cannot been discarded neither. However, as reported for Kv1.3-mediated 

migration in macrophages, it cannot be excluded that KV1.3 also signals upstream ERK in other 

signalling pathways and functions such as migration. 

4.2.5. Sp1 could be involved in KV1.3-mediated gene regulation 

Considering the strong localization of KV1.3 in MArSMCs nuclei, we endeavored to define the 

role of the nuclear KV1.3 in RTK signalling. An intriguing role for KV1.3 in the activation of 

the TFs CREB and c-fos abundance in cancer cells has been reported, involving the channel in 

gene expression regulation (Jang, Byun et al. 2015). The authors detected an increased 

phosphorylation of CREB under PAP-1 treatment in lung adenocarcinoma cells. Interestingly, 

a correlation of increased CREB levels with downregulation of GFs and RTKs such as PDGFR-

α and Endothelin-1 receptor has been reported in SMCs (Klemm, Watson et al. 2001). One may 

hypothesize that the downregulation of Fgfr1, Pdgfrb and Egr1 observed under PAP-1 

treatment in MArSMCs and in collateral arteries could be mediated by an increased 
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phosphorylation of CREB. However, there is until now no evidence of a CREB-mediated 

downregulation of these genes following phosphorylation. Quite the contrary, a study in 

gonadotrophs described the binding of p-CREB to the Egr1 promoter and increased expression 

while a dominant negative mutant of CREB resulted in less Egr1 expression (Mayer, Willars et 

al. 2008). Hence, other TFs must be involved in the regulation of Fgfr1, Pdgfrb and Egr1 by 

KV1.3. Interestingly, a recent publication reported c-fos-dependent Fgfr1 transcription in 

osteosarcoma cells (Weekes, Kashima et al. 2016). Moreover, in arteriogenesis, activator 

protein-1 (AP-1), the heterodimer composed of c-fos and c-Jun, is activated 24h after FAL and 

regulates the transcription of MCP-1 in SMCs (Demicheva, Hecker et al. 2008). Since c-fos 

transcription is induced by MAPK signalling activation, it might also be involved in KV1.3-

mediated gene expression regulation of Fgfr1 (Karin 1995). 

Interestingly, Specificity protein 1 (Sp1), a member of the specificity protein/Krüppel-like 

factor (Sp/KLF) zinc finger family of transcription factors, regulates SMC PM and SMC 

proliferation (Andres, Urena et al. 2001, Deaton, Gan et al. 2009, Tang, Yu et al. 2017) and has 

been involved in the transcription of Fgfr1, Pdgfrb and Egr1 in different cell types, albeit not 

in SMCs specifically (Cao, Mahendran et al. 1993, Patel and DiMario 2001, Kaneko, Yang et 

al. 2006).  

Sp1-DNA binding blockade inhibits the expression of Fgfr1 and Egr1 in MArSMCs under 

RTK stimulation 

Since Sp1 transcription of Fgfr1, Pdgfrb and Egr1 has not been assessed in SMCs specifically, 

the effects of the Sp1-DNA binding blocker Mithramycin A (MTM) were investigated in 

MArSMCs via real time PCR. To induce Sp1 activation and transcription activity, MArSMCs 

were stimulated with SMCGM containing FGF-2 and EGF, as these GFs induce ERK-1/2-

dependent Sp1 phosphorylation and transcription activity in SMCs (Merchant, Du et al. 1999, 

Bonello and Khachigian 2004). 

After three days in starvation medium, MArSMCs stimulated with SMCGM for six hours 

significantly upregulated Fgfr1 and Egr1 expression. Addition of MTM significantly repressed 

this upregulation, even though both genes were still upregulated compared to negative controls. 

In contrast, Pdgfrb expression was strongly downregulated in MArSMCs following RTK 

stimulation independent on MTM treatment compared to cells in starvation medium. 

The partial repression of Fgfr1 and Egr1 upregulation indicated additional Sp1-independent 

transcription regulation mechanisms. Indeed, Fgfr1 gene expression is regulated by c-Fos/ AP-

1, the pRB/E2F pathway and by AP-2 in different cell types (Tashiro, Maruki et al. 2003, 
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Mitchell and DiMario 2010, Weekes, Kashima et al. 2016). Regarding Egr1, its expression is 

activated by Elk-1 following RTK engagement through binding with SRF among others (Gregg 

and Fraizer 2011). Regarding Pdgfrb regulation, a negative feedback loop in Pdgfrb expression 

has been reported in fibroblasts and in SMCs stimulated with FCS for a long period of time 

(Vaziri and Faller 1995, Kaplan-Albuquerque, Van Putten et al. 2005). Hence, 5 minutes 

stimulation with PDGF-BB resulted in a strong Pdgfrb upregulation and PDGFR-ß 

phosphorylation in SMCs, while six hours stimulation strongly repressed its expression 

(Kaplan-Albuquerque, Van Putten et al. 2005). In our setting, the strong downregulation 

observed under SMCGM stimulation could well be due to this negative feedback response.  

From these findings, it can be affirmed that indeed, Sp1 regulates the transcription of Fgfr1 and 

Egr1 under engagement of RTK in MArSMCs too, although other TFs may be involved. Hence, 

Sp1 could be the chain link between the nuclear KV1.3 and the downregulation of Fgfr1 and 

Egr1 observed under PAP-1 treatment. In addition, since Pdgfrb expression under MTM was 

performed in MArSMCs stimulated for six hours, which might have led to a negative feedback 

regulation, further experiments are needed to demonstrate an Sp1-mediated regulation of 

Pdgfrb expression following RTK engagement.  

KV1.3 blockade inhibits Sp1 expression in MArSMCs but not in whole collateral arteries 

Besides post-translational modifications and protein interactions influencing DNA binding 

and/or transactivation activity, Sp1 transcription activity can be modulated by Sp1 abundance 

(Bonello and Khachigian 2004, Tapias, Ciudad et al. 2008, Tan and Khachigian 2009, Azahri, 

Di Bartolo et al. 2012). Thus, the effect of KV1.3 blockade on Sp1 gene expression was analysed 

in vitro and in vivo.  

Interestingly, six hours stimulation with GFs-containing SMCGM following a starvation period 

did not influence Sp1 gene expression in MArSMCs, while KV1.3 blockade with PAP-1 

resulted in a significant decline of Sp1 mRNA levels. In contrast, channel blockade did not 

influence Sp1 expression in collateral arteries of occluded hind-limb 12h after FAL compared 

to their contralateral counterparts in control mice. Moreover, and in contrast to Egr1, Sp1 

mRNA levels in control mice were not differentially expressed at this time point neither.  

Sp1 plays an important role in cell cycle regulation and its Sp1 abundance is tiny regulated by 

cell cycle related proteins reaching a peak at the G1 phase (Tapias, Ciudad et al. 2008). Indeed, 

while ectopic expression of a truncated Sp1 mutant results in growth arrest at the S-phase, its 

overexpression in several cancer cells leads to an aberrant cell proliferation (Kumar and Butler 
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1998, Chen, Zhang et al. 2000, Wang, Wei et al. 2003). Expression of Sp1 is mainly regulated 

by Sp1 itself as well as by other Sp/KLF family members (Nicolas, Noe et al. 2003). 

Considering Sp1 downregulation by PAP-1 in MArSMCs, it is conceivable that KV1.3 channel 

influences Sp1 expression and subsequent transcriptional activity. However, this effect was not 

detectable in whole collateral artery samples, probably due to the ubiquitous expression of Sp1, 

unmasking any expression changes in collateral SMCs. Hence, further analysis of Sp1 

abundance in collateral SMCs through quantitative immunofluorescence histochemistry would 

complement in vitro data. In addition, Kv1.3 may influence Sp1 post-transcriptional 

modifications too as observed for p-CREB. Interestingly, post-translational induction of Sp1-

DNA binding and not Sp1 abundance induced SMC proliferation in a balloon angioplasty 

model (Andres, Urena et al. 2001). The proposed model has been pictured in Figure 4.2. 
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Figure 4.2: Proposed model of KV1.3-mediated transcription regulation of Fgfr1 and Egr1 through 

the regulation of Sp1 abundance in SMCs 

Following RTK engagement and MAPK signalling activation, KV1.3 channel is recycled to the nucleus 
and nuclear envelope. There, it might regulate Sp1 gene transcription since KV1.3 blockade repressed 
Sp1 expression. In addition, KV1.3 might also regulate Sp1 post-transcriptional regulation. As 
demonstrated with the Sp1 inhibitor Mithramycin A (MTM), Sp1 in turns regulates Fgfr1, Egr1 and 
probably Pdgfrb in SMCs, all three genes involved in SMC proliferation. The repression of the TF EGR-
1 would lead to the repression of early response genes regulating cell division while FGFR-1 and 
PDGFR-ß downregulation of the RTK would decline RTK signalling. Both situations would finally lead 
to less SMC proliferation. 

4.2.6. Sp1 does not regulate Kv1.3 expression in MArSMCs 

Besides Fgfr1, Pdgfrb and Egr1, Kv1.3 gene expression itself has been reported to be under the 

transcriptional activity of Sp1, albeit in cancer cells (Jang, Byun et al. 2015). Moreover, the 

expression of the KV1.3 highly related channel KV1.5 is also regulated by Sp1 (Fountain, 

Cheong et al. 2007). 

Interestingly, no effects on Kv1.3 mRNA levels were observed when MArSMCs were treated 

with MTM following RTK engagement, even if Kv1.3 expression was significantly upregulated 

following GF stimulation compared to cells cultured further in starvation medium.  
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This result denotes that KV1.3 gene expression is certainly regulated by TFs activated 

downstream RTK engagement. Interestingly, FGF-2 and PDGF-B upregulate KV1.3 expression 

and mitogenesis of cultured oligodendrocyte precursor cells (Chittajallu, Chen et al. 2002). So 

far, Sp1-mediated KV1.3 and KV1.5 expression regulation has been demonstrated through 

artificial in vitro systems (Fountain, Cheong et al. 2007, Jang, Byun et al. 2015). Thus, the 

stimulus inducing Sp1-mediated transcription of the KV1.3 gene is still unknown. 

4.3. The role of KCa3.1 in arteriogenesis 

Similar to KV1.3, the Ca2+-gated K+ channel KCa3.1 has been related to SMC proliferation in 

vitro and in vivo situations of intima hyperplasia. However, its specific role in arteriogenesis 

and in outward remodelling processes has not been investigated so far.  

4.3.1. KCa3.1 expression is induced in early arteriogenesis 

Immunofluorescence staining of collateral arteries sections demonstrated the presence of 

KCa3.1 in collateral SMCs, ECs and perivascular inflammatory cells. Interestingly, a rise in 

KCa3.1 level was observed in both SMCs and ECs two days after FAL, while seven days after 

ligation KCa3.1 levels returned to basal values in both cell types.  

In SMCs, expression of KCa3.1 was restricted to the proliferative phenotype. While in resting 

collateral arteries KCa3.1 protein level in SMCs was very low, two days after FAL an 

upregulation was evident although statistically insignificant. Moreover, KCa3.1 protein level 

was significantly restrained seven days compared to two days after FAL, time point by which 

most SMCs have reached again a differentiated phenotype. 

This in vivo induction of KCa3.1 expression has been reported in situations of neointima 

hyperplasia at both mRNA and protein levels too (Kohler, Wulff et al. 2003, Tharp, Wamhoff 

et al. 2008). However, the downregulation of KCa3.1 following a SMC mitogenic phase as 

observed in growing collaterals has never been described, again reflecting the different 

regulation mechanisms controlling neointima hyperplasia and arteriogenesis. 

KCa3.1 was also expressed in collateral ECs as detected by co-localization with the EC marker 

CD31. Again, its expression was stronger two days after FAL but very weak in resting and in 

seven day growing collaterals. Several studies report an upregulation of the channel in ECs 

when stimulated with the GFs FGF-2, VEGF and EGF. Moreover, through KCa3.1 blockade 

with TRAM-34, they confirmed a role of the channel in endothelial mitogenesis in vitro and in 

murine models of angiogenesis (Grgic, Eichler et al. 2005, Yang, Li et al. 2013). However, 

since in our in vivo findings, TRAM-34 did not influence ECs proliferation during 
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arteriogenesis (see below), its role in ECs may have more to do with its function in EDHF-

mediated vasodilation. Hence, KCa3.1 expression is induced in ECs exposed to FSS 

(Brakemeier, Kersten et al. 2003). Since increased FSS is the driving force for EC activation 

during early arteriogenesis, it might explain its upregulation soon after FAL. Interestingly, the 

Ca2+-channel transient receptor potential cation channel, subfamily V, member 4 (TRPV4) acts 

as an mechanotransducer of increased FSS in collateral arteries, being upregulated in ECs as 

early as 24h after FAL. Upon channel activation a first rise in intracellular Ca2+ concentration 

could lead to activation of KCa3.1 and EDHF-mediated vasodilation while a sustained increased 

in Ca2+ ions would activate Ca2+-dependent TFs (Troidl, Troidl et al. 2009, Troidl, Nef et al. 

2010) 

Besides SMCs and ECs, fibroblasts and perivascular inflammatory cells were also stained for 

KCa3.1. The channel has been correlated with migration in macrophages (Chung, Zelivyanskaya 

et al. 2002, Penna and Stutzin 2015), migration and degranulation in mast cells (Duffy, Cruse 

et al. 2005), T cell receptor-mediated activation and proliferation in T cells (Ghanshani, Wulff 

et al. 2000) and proliferation in fibroblasts (Pena and Rane 1999). Since KCa3.1 channel 

blockade in these cells could influence SMC proliferation, in vivo data were contrasted with 

cultured MArSMCs. 

4.3.2. KCa3.1 blockade by TRAM-34 has a mild effect on 

arteriogenesis 

The role of KCa3.1 in arteriogenesis and particularly in SMC proliferation was further 

investigated in the FAL model, under KCa3.1 blockade with TRAM-34. LDI revealed a 

tendency to lower perfusion recovery at day three that resulted in a significant impediment in 

perfusion recovery seven days after FAL in mice treated with the KCa3.1 channel blocker. In 

contrast, analysis of collateral artery lumen diameters and medial area displayed a regular 

collateral artery growth. To resolve this incongruency, quantification of SMCs proliferation 

under KCa3.1 blockade was performed in mice receiving the proliferation marker BrdU. Hence, 

and consolidating collateral morphometry data, no obvious decrease in medial BrdU+ SMCs 

numbers were detected in seven days growing collateral arteries when mice were given TRAM-

34. In ECs, KCa3.1 blockade had no inhibitory effect in their proliferation neither, since 

collateral diameters and BrdU+ ECs were normal or even higher than in control collaterals.  

The controversial data concerning perfusion recovery and collateral morphometry, might be 

explained by the well-known function of the KCa3.1 in EDHF-mediated vasodilation that could 

affect vascular tone (Eichler, Wibawa et al. 2003, Si, Heyken et al. 2006). Indeed, KCa3.1-KO 
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exhibit 7 mmHg increase in mean arterial blood pressure probably due to impediment of its 

EDHF-mediated function (Si, Heyken et al. 2006). The effect of endothelial KCa3.1 blockade 

could influence perfusion of the feet during LDI measurements under heat-induced vasodilation 

by an increased vascular tone compared to control mice. As mentioned above, a similar effect 

was observed in eNOS-KO mice (Schaper and Schaper 2004). 

In addition, to assess a role of KCa3.1 in PM and soon induction of SMC mitogenesis, gene 

expression analysis of the contractile marker α-SMA and the RTK FGFR-1 and PDGFR-ß were 

assessed in whole collateral arteries of mice treated with TRAM-34. 12h after FAL, aSma 

mRNA levels were downregulated in collateral arteries of the occluded hind-limb compared to 

their contralateral counterparts in both, control and TRAM-34-treated mice. Moreover, KCa3.1 

blockade did not affect the expression of the GF receptors Fgfr1 and Pdgfrb neither.  

Contrastingly, a downregulation of the contractile markers α-SMA, SMMHC and Smoothelin-

B together with a KCa3.1 upregulation has been reported in cultured SMCs under stimulation 

with PDGF-BB. Moreover, treatment with TRAM-34 was able to downregulate KCa3.1 channel 

expression and blocked repression of the above-mentioned contractile markers (Tharp, 

Wamhoff et al. 2006). Together with the later KCa3.1 expression induction following FAL, these 

findings questioned a role of the channel in the induction of SMC PM and early SMC 

proliferation during arteriogenesis. 

Considering the many reports linking the channel with SMC proliferation and the increased 

protein levels in collateral SMCs during the active proliferation phase, the low effect of TRAM-

34 treatment in arteriogenic SMC proliferation was unexpected. One hypothesis contemplates 

the absence of phenotype to a suboptimal channel blockade in vivo. However, given that the 

dose of 120 mg/Kg/day used has been reported to be effective in inhibiting SMC proliferation 

in several in vivo studies, this hypothesis seems unlikely. Hence, in a rat model of restenosis, 

the same dose of TRAM-34 reduced intima hyperplasia by 40 % (Kohler, Wulff et al. 2003), 

while in an atherogenic mouse model, it led to a significant SMCs inhibition in atherosclerotic 

lesions in aortic roots (Toyama, Wulff et al. 2008).  

Furthermore, KCa3.1 blockade with TRAM-34 did not inhibit EC proliferation neither, as has 

been reported elsewhere (Grgic, Eichler et al. 2005, Yang, Li et al. 2013). To the contrary, 

collateral artery diameters in TRAM-34 treated mice were similar or even slightly higher to 

those of control mice. Moreover, quantification of BrdU+ ECs in seven days growing collateral 

transversal sections were slightly increased compared to the control group. Interestingly, 

TRAM-34 has been shown to act as an agonist of the estrogen receptors α and ß and to potentiate 
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the estrogen-induced in vitro proliferation of breast cancer cells at concentrations of 3-10 µM 

(Roy, Cowley et al. 2010). Moreover, ECs express both receptors and their engagement, 

together with an eNOS activation and NO-dependent vasodilation, is responsible for estrogen-

induced EC proliferation and migration (Haynes, Sinha et al. 2000, Lu, Schnitzler et al. 2016). 

Contrastingly, estrogen has an inhibitory effect on SMCs migration and proliferation in vivo 

and in vitro (Dai-Do, Espinosa et al. 1996, Yue, Vickery-Clark et al. 2000, Pare, Krust et al. 

2002). 

At this stage, it can be concluded that KCa3.1 plays a mild if not irrelevant role in SMC 

proliferation during arteriogenesis. Its expression and upregulation in collateral endothelium 

two days after FAL may reflect a role of the channel in EDHF-mediated vasodilation in early 

arteriogenesis. In addition, besides its effects on KCa3.1 blockade, TRAM-34 could have act as 

an estrogen receptor agonist in ECs, slightly stimulating their proliferation and concurring with 

the reported inhibitory effect on KCa3.1-mediated ECs proliferation. 

KCa3.1 localizes in the cell membrane and nuclei of MArSMCs and its blockade inhibits 

MArSMCs proliferation 

Interestingly, KCa3.1 channel staining in MArSMCs depicted a strong localization surrounding 

the nuclei and at the nuclei together with a much weaker staining at the cytoplasm and cell 

membrane. 

The nuclear localization of KCa3.1 has been reported in airway SMC as well as in placental 

trophoblasts (Chachi, Shikotra et al. 2013, Diaz, Wood et al. 2014). In spite of the reported 

KCa3.1 localization at the NE, its function at the NE has not been investigated specifically. As 

mentioned above, KCa1.1 has also been found in the NE of neurones. Its role has been correlated 

with Ca2+ transients from the NE towards the nucleoplasm and subsequent Ca2+-mediated 

CREB transcription (Li, Jie et al. 2014). It is therefore possible that, KCa3.1 similar to KCa1.1 

influence Ca2+-mediated gene expression, albeit certainly with different activation and 

regulation mechanisms. Interestingly, Bi et al reported in whole cell lysates an increased 

phosphorylation of CREB levels and c-fos following stimulation of SMCs with PDGF that was 

repressed under TRAM-34 treatment or even enhanced in SMCs overexpressing the channel 

(Bi, Toyama et al. 2013). 

Since several studies involve KCa3.1 with SMC proliferation in vitro, a BrdU proliferation assay 

was performed with cultured MArSMCs. After a starvation period of 24h, cells were stimulated 

with 10% FCS-enriched basal medium in the presence of increasing doses of TRAM-34. 

Indeed, the specific dose of 100 nM significantly reduced proliferation more than 35 % respect 
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to control cells. The mitogenic inhibitory effect of 100 nM TRAM-34 in SMCs has also been 

observed in human coronary SMCs (Toyama, Wulff et al. 2008, Bi, Toyama et al. 2013) and in 

the cell line A7r5 derived from rat aortic vascular SMCs (Si, Grgic et al. 2006).  

Interestingly, since TRAM-34 is a membrane-permeable blocker, a role of the nuclear channel 

in SMC proliferation through gene expression regulation cannot been discarded. However, as 

observed in vivo, KCa3.1-mediated SMC proliferation seems to be independent of Fgfr1 and 

Pdgfrb expression regulation, since treatment with TRAM-34, in contrast to the KV1.3 channel 

blocker PAP-1, did not influence their mRNA levels neither in cultured MArSMCs nor in 

collateral arteries of mice treated with the channel blocker, 12h after FAL. Accordingly, neither 

Bi et al could observe any change on Pdgfrb expression in human coronary SMCs under KCa3.1 

blockade with TRAM-34 and PDGF stimulation. Moreover, as mentioned above KCa3.1-

mediated proliferation was dependent on intracellular Ca2+ concentrations and CREB, c-fos and 

neuron-derived orphan receptor 1 (NOR-1) activation (Bi, Toyama et al. 2013). 

In conclusion, KCa3.1 induced MArSMCs proliferation as shown be the inhibitory mitogenic 

effect of its blocker TRAM-34. Furthermore, the strong subcellular localization of the channel 

in MArSMCs cultured in a GF-enriched growth medium and literature reports make 

hypothesize that the channel might regulate SMC proliferation through Ca2+-mediated gene 

expression regulation, as described for the related channel KCa1.1. However, experiments 

performed in the murine FAL model under channel blockade revealed an irrelevant role of the 

channel on arteriogenic SMCs proliferation. However, its upregulation in endothelium two days 

after FAL may indicate a role of the channel in EDHF-mediated vasodilation in early 

arteriogenesis.
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5. Conclusion 

The present study demonstrates that the voltage-gated K+ channel KV1.3, but not the Ca2+-gated 

K+ channel KCa3.1, remarkably influences SMC proliferation during arteriogenesis. KV1.3 in 

vivo blockade with PAP-1 resulted in thinner collateral arteries and lower medial BrdU+ SMCs 

ratios. This restricted SMC proliferation is presumably consequence of an early repression of 

the receptor tyrosine kinases FGFR-1 and PDGFR-ß as well as the well-known pro-arteriogenic 

transcription factor EGR-1 observed under KV1.3 blockade.  

In MArSMCs, RTK downstream signalling was not affected by KV1.3 blockade as observed by 

normal ERK phosphorylation following growth factor (GF) stimulation. Together with the 

strong detection of KV1.3 at the nuclei of MArSMCs cultured in GF-enriched growth medium, 

these findings argue for a nuclear KV1.3-mediated gene expression regulation. The precise 

mechanism however remains to be elucidated. As reported in cancer cells, nuclear KV1.3 is able 

to regulate transcription factor activation and abundance. Sp1, a transcription factor influencing 

SMC PM and proliferation may mediate this effect. Hence, beside a downregulation of Fgfr1 

and Egr1 under Sp1 blockade, we detected an in vitro repression of Sp1 under treatment with 

the KV1.3 blocker PAP-1. 

These findings, on the one hand, add insight into the role of KV1.3 in SMC proliferation during 

collateral artery growth, and further support the nuclear localization of the channel as well as 

its control over gene expression regulation in SMCs. Future investigations on KV1.3 activation 

mechanisms during arteriogenesis and KV1.3 downstream targets might assist in the 

identification of new and specific targets for therapeutic arteriogenesis. On the other hand, since 

KCa3.1 blockade manifested a very mild effect on arteriogenesis, this study further supports 

KCa3.1 channel blockade as a potential target for neointima hyperplasia therapy.





 

107 

 

 

 

 

 

 

 

Summary





Summary 

109 

6. Summary 

Arteriogenesis, i.e. the growth of collateral arteries forming physiological bypasses, represents 

a physiological alternative to vascular surgery in obstructive diseases, the leading cause of death 

worldwide. Collateral growth, however, is limited by genetic factors, age and physiological 

restrictions. Therefore, a better molecular knowledge is necessary in order to identify molecular 

targets to promote a faster and stronger growth of collateral arteries in patients. 

Proliferative smooth muscle cells (SMCs) are key players of collateral enlargement and wall 

remodelling, and thus interesting targets for therapeutic arteriogenesis. The induction of SMC 

de-differentiation towards proliferative SMCs is accompanied by changes in K+ channel 

composition and activity. The voltage-gated K+ channel KV1.3 and the Ca2+-gated K+ channel 

KCa3.1 are upregulated in cultured SMCs and in proliferative SMCs of neointima hyperplasia 

models. Moreover, their blockade impairs SMC proliferation. However, their role in 

arteriogenic SMC proliferation has not been investigated so far. Furthermore, the signalling 

pathways involved in KV1.3 and KCa3.1-mediated SMC proliferation are still under research. 

Using the murine femoral artery ligation (FAL) model of arteriogenesis, the expression of both 

channels in SMCs of resting and growing collateral arteries of wild type mice was first verified 

through histological analysis. The specific role of KV1.3 and KCa3.1 channel on arteriogenesis 

was then investigated employing pharmacological channel blockade with 5-(4-Phenoxybutoxy) 

psoralen (PAP-1) and TRAM-34 (1-[(2-chlorophenyl)diphenyl-methyl]-1H-pyrazole), 

respectively, giving a special focus on SMC proliferation. Furthermore, in vitro experiments 

with primary mouse artery SMCs (MArSMCs) were performed in parallel, so as to further 

investigate channel involvement in receptor tyrosine kinase engagement and downstream 

mitogen-activated protein kinase (MAPK) signalling pathway. 

The results showed that KCa3.1 blockade with TRAM-34 hindered MArSMCs proliferation in 

vitro but hold no significant effects on SMC proliferation in growing collateral arteries in vivo. 

Interestingly, its upregulation in endothelial cells two days after FAL may reflect a role of the 

channel in endothelial-derived hyperpolarization factor-mediated vasodilation. 

In contrast, an impairment on SMCs proliferation both in MArSMCs as well as in vivo was 

detected under KV1.3 blockade with PAP-1. Mice treated with PAP-1 displayed thinner 

collateral arteries and lower Bromodeoxyuridine (BrdU)+ SMCs ratios seven days after FAL, 

compared to control mice. Kv1.3 was constantly expressed in resting and growing collateral 

arteries, however, its function might be regulated at the level of channel activity or subcellular 
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localization. Moreover, since the channel is expressed in resting collateral arteries and channel 

blockade resulted in an absence of repression of the contractile marker alpha-smooth muscle 

actin (α-SMA) as early as 12h after FAL, a role of the channel in SMC phenotypic modulation 

was hypothesized. Interestingly, at the same time point, a repression at the mRNA level of the 

growth factor receptors fibroblast growth factor receptor 1 (FGFR-1) and platelet-derived 

growth factor receptor ß (PDGFR-ß) as well as the pro-mitogenic transcription factor early 

growth response protein 1 (EGR-1) was stated under KV1.3 blockade with PAP-1. Moreover, 

this repression was observed in MArSMCs too. Further in vitro experiments assessing the 

possible involvement of KV1.3 on receptor tyrosine kinase (RTK) signalling discarded a role of 

the channel upstream extracellular signal-regulated kinase (ERK) since ERK phosphorylation 

was not affected by KV1.3 blockade following stimulation with growth factors-enriched growth 

medium.  

Intriguingly, a strong detection at the nucleus beside its conventional cell membrane 

localization was noticed in MArSMCs cultured with growth factors-enriched growth medium. 

Since nuclear KV1.3 is able to regulate transcription factor activation and abundance in cancer 

cells, a role of the channel in nuclear gene expression regulation was ascribed in MArSMCs 

too. An in silico analysis and literature research revealed the transcription factor Sp1 as a 

common transcription factor for Fgfr1, Pdgfrb and Egr1. Moreover, Sp1 blockade with 

Mithramycin A indeed downregulated Fgfr1 and Egr1 in MArSMCs following stimulation with 

growth factors-enriched growth medium. Intriguingly, Kv1.3 blockade with PAP-1 repressed 

Sp1 expression in MArSMCs. Hence, the transcription factor Sp1 might be behind KV1.3-

mediated transcription regulation of at least Fgfr1 and Egr1 genes.
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7. Zusammenfassung 

Arteriogenese bezeichnet das Wachstum von Kollateralarterien zu physiologischen Bypässen 

und stellt eine natürliche Alternative zur Gefäßchirurgie bei obstruktiven Gefäßerkrankungen 

dar, die Haupttodesursache weltweit. Allerdings beeinträchtigen genetische Faktoren, Alter und 

physiologische Einschränkungen das Wachstum von Kollateralarterien in Patienten. Ein 

besseres molekulares Verständnis der Arteriogenese ist daher notwendig um neue molekulare 

Angriffspunkte zu identifizieren und ein schnelleres und ausgeprägteres Kollateralwachstum in 

Patienten zu fördern.  

Proliferierende glatte Gefäßmuskelzellen (smooth muscle cells, SMCs) spielen eine 

Schlüsselrolle bei der Erweiterung und dem Wandaufbau von Kollateralarterien und sind aus 

diesem Grunde ein interessanter Angriffspunkt für die therapeutische Arteriogenese. Die 

Induktion der SMC Dedifferenzierung zu proliferierenden SMCs wird unter anderem von 

Veränderungen in der K+-Kanalzusammensetzung und -Aktivität begleitet. Der 

spannungsgesteuerte K+-Kanal KV1.3 und der Ca2+-gesteuerte K+-Kanal KCa3.1 sind 

überexprimiert in kultivierten SMCs sowie in proliferierenden SMCs bei Neointima 

Hyperplasie Modellen. Ferner beeinträchtigt die Blockierung dieser Kanäle die Proliferation 

von SMCs. Nichtsdestotrotz wurde ihre Rolle bei der arteriogenen SMC Proliferation bis jetzt 

nicht erforscht. Des Weiteren sind die Signalwege, die an der KV1.3 and KCa3.1 gesteuerten 

SMC Proliferation beteiligt sind, noch Gegenstand der aktuellen Forschung. 

Unter Verwendung des Arteriogenese-Modells der murinen Femoralarterienligatur (FAL) 

wurde die Expression der beiden Kanäle in SMCs bei ruhenden und wachsenden 

Kollateralarterien von Wildtyp-Mäusen durch histologische Analyse überprüft. Die spezifische 

Rolle von KV1.3 and KCa3.1-Kanälen bei der Arteriogenese wurde dann mittels 

pharmakologischer Kanalblockierung unter Verwendung von 5-(4-Phenoxybutoxy) psoralen 

(PAP-1) beziehungsweise TRAM-34 (1-[(2-chlorophenyl)diphenyl-methyl]-1H-pyrazole) mit 

Fokus auf der SMC Proliferation untersucht. Des Weiteren wurden in vitro Experimente mit 

primären Mausarterien-SMCs (MArSMCs) parallel durchgeführt, um die Beteiligung der 

Kanäle an den Signalwegen der Tyrosin-Rezeptor-Kinase-Aktivierung (RTK) und der 

stromabwärts gelegenen Mitogen-aktivierten-Protein-Kinase (MAPK) zu untersuchen.  

Die Ergebnisse zeigten, dass obwohl eine KCa3.1 Blockierung mit TRAM-34 die Proliferation 

von MArSMCs in vitro behinderte, kein besonderer Effekt auf die in vivo SMC Proliferation 

bei wachsenden Kollateralarterien beobachtet werden konnte. Interessanterweise könnte die 

erhörte KCa3.1 Proteinmenge in Endothelzellen zwei Tage nach der FAL auf eine Rolle bei der 
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durch den endothelialen hyperpolarisierenden Faktor (endothelium-derived hyperpolarizing 

factor, EDHF) verursachten Vasodilatation hinweisen.  

Im Gegensatz dazu konnte eine gestörte SMC Proliferation sowohl in MArSMCs als auch in 

vivo bei der KV1.3 Blockierung mit PAP-1 nachgewiesen werden. Mäuse die mit PAP-1 

behandelt wurden zeigten gegenüber den Kontrollmäusen schmalere Kollateralarterien und 

niedrigere Bromodeoxyuridine (BrdU)+ SMC Verhältnisse sieben Tage nach der FAL. Obwohl 

KV1.3 in ruhenden und wachsenden Kollateralarterien konstant exprimiert ist, könnte seine 

Funktion jedoch auf der Ebene der Kanalaktivität oder subzellulärer Orte reguliert sein. Da der 

Kanal in ruhenden Kollateralarterien exprimiert ist und 12 Stunden nach der FAL die 

Kanalblockierung nicht zu einem Aussetzen der Repression des kontraktilen Markers alpha-

smooth-muscle Aktin (α-SMA) führte, wurde angenommen dass der Kanal bei der 

phänotypischen Modulation der SMCs eine Rolle spielt. Interessanterweise wurde zur gleichen 

Zeit eine Repression auf mRNA-Ebene des Fibroblast-Wachstumsfaktor-Rezeptors-1 (FGFR-

1) und Plättchen-gebundenen-Wachstumsfaktors-ß (PDGFR-ß) sowie des Pro-Mitogenetischen 

Transkriptionsfaktors Early Growth Factor 1 (EGR-1) bei einer KV1.3 Blockierung mit PAP-1 

festgestellt. Des Weiteren wurde diese Repression auch in MArSMCs beobachtet. Weitere in 

vitro Experimente, die die mögliche Beteiligung von KV1.3 beim Rezeptor-Tyrosin-Kinase 

(RTK)-Signalweg ermitteln sollten, schlossen eine Rolle der kanalaufwärts gelegenen 

Extrazellulären-signalregulierten-Kinase (ERK) aus, da die ERK-Phosphorylierung nach 

Stimulierung mit einem Wachstumsfaktoren-angereicherten Nährmedium durch eine Kv1.3 

Blockierung  nicht beeinträchtigt wurde. 

Faszinierenderweise konnte neben der konventionellen Zellmembranlokalisierung des Kv1.3 

dieser auch im Kern von MArSMCs, die mit Wachstumsfaktoren angereichertem Nährmedium 

kultiviert wurden, detektiert werden. Da KV1.3 im Zellkern in der Lage ist die Aktivierung und 

Menge von Transkriptionsfaktoren in Krebszellen zu regulieren, wurde dem Kanal auch eine 

Rolle bei der Kontrolle der nuklearen Genexpression in MArSMCs zugeschrieben. Eine in 

silico Analyse, sowie eine Literatur-Recherche zeigten, dass Specifity protein 1 (Sp1) ein 

gemeinsamer Transkriptionsfaktor für Fgfr1, Pdgfrb und Egr1 ist. Außerdem verhinderte eine 

Sp1 Inhibition mit Mithramyzin A tatsächlich Fgfr1 und Egr1 Expression in MArSMCs nach 

Stimulierung mit einem Wachstumsfaktoren-angereichertem Nährmedium. Zudem 

unterdrückte die KV1.3 Blockierung mit PAP-1 die Sp1 Expression in MArSMCs. Das heißt, 

dass der Transkriptionsfaktor Sp1 zumindest hinter der KV1.3 gesteuerten 

Transkriptionsregulierung von Fgfr1 und Egr1 Genen stecken könnte. 
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9. Abbreviations 

Ab Antibody 

α-SMA Alpha smooth muscle actin 

ANOVA Analysis of variance 

AP-1 Activator protein-1  

BC Bundle crossing 

BrdU Bromodeoxyuridine 

BSA Bovine serum albumin 

Ca2+ Calcium ion 

CaM Calmodulin 

CaMBD Calmodulin binding domain  

cAMP Cyclic adenosine monophosphate 

CD31 Cluster of differentiation 31 

cDNA Complementary DNA 

CHD Coronary heart disease 

Cl- Chloride ion 

Con Control 

CREB cAMP response element-binding protein  

CVD Cardiovascular disease  

CWS Circumferential wall stress 

DAB 3,3'-diaminobenzidine  

DNA Deoxyribonucleic acid  

DAPI 4',6-diamidino-2-phenylindole  

DES Drug-eluting stent 

DMEM Dulbecco's modified Eagle's medium  

DMSO Dimethyl sulfoxide 

eag Éther-a-gogo 

EC Endothelial cell 

ECM Extracellular matrix 

EDHF Endothelium-derived hyperpolarization factor 

EDTA Ethylenediaminetetraacetic acid 

EEL Externa elastic lamina 

EGF Epidermal growth factor 

EGFR EGF receptor 

EGR-1 Early growth response 1  
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eNOS Endothelial nitric oxide synthase 

ER Endoplasmic reticulum  

ERK Extracellular-signal regulated kinase 

Ets E26 transformation-specific  

FAK Focal adhesion kinase  

FAL Femoral artery ligation 

FCS Foetal calf serum  

FGF Fibroblast growth factor 

FGFR-1 Fibroblast growth factor receptor 1  

FN Fibronectin 

FSS Fluid shear stress 

GF Growth factor 

HEK Human embryonic kidney cells 

HRP Horseradish peroxidase  

HUVECs Human umbilical vein ECs 

i.p. Intraperitoneally 

ICAM-1 Intercellular adhesion molecule 1   

IEL Internal elastic lamina 

INM Inner nuclear membrane  

K+ Potassium ion 

K2P Tandem pore domain K+ channel 

KCa1.1 Ca2+-gated K+ channel subfamily M, alpha member 1 

KCa3.1 Ca2+-gated K+ channel subfamily N, member 4 

KCNE4 Potassium voltage-gated channel subfamily E member 4 

Kir Inwardly rectifying K+ channel 

Kligand Ligand-activated K+ channels  

KO Knockout 

KV Voltage-gated K+ channel 

KV1.10 Voltage-gated K+ channel subfamily H member 10 

KV1.3 Voltage-gated K+ channel subfamily A member 1 

LDI Laser Doppler imaging 

MAPK Mitogen-activated protein kinase 

MArSMCs Mouse artery SMCs 

MCP-1 Monocyte chemoattractant protein 1 

MEJ Myoendothelial junctions  

MgTX Margatoxin 
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mmHg Millimeter of mercury 

MMP Matrix metalloproteinase 

MP Membrane potential 

mRNA Messenger RNA 

MRTF Myocardin related transcription factor 

MTM Mithramycin A 

Na+ Sodium ion 

NE Nuclear envelope 

NLS Nuclear localization signal  

NO Nitric oxide 

NPC Nuclear pore complexes  

occ Occluded 

ONM Outer nuclear membrane  

PAD Peripheral artery disease 

PBS Phosphate-buffered saline  

PBST Phosphate-buffered saline 1 % tween 20 

PCR Polymerase chain reaction 

PDGF-BB Platelet-derived growth factor ß  

PDGFR Platelet-derived growth factor receptor 

p-ERK Phosphorylated ERK 

PFA Paraformaldehyde 

PM Phenotypic modulation 

qPCR Quantitative polymerase chain reaction 

RNA Ribonucleic acid 

rRNA Ribosomal RNA 

RT Room temperature 

RTK Receptor tyrosine kinase  

SDS Sodium dodecyl sulfate 

SDS-PAGE Sodium dodecyl sulfate-polyacrylamide gel electrophoresis  

SEM Standard error of the mean 

SF Selectivity filter 

siRNA Small interference RNA 

SM22-α Smooth muscle 22 alpha  

SMC Smooth muscle cell 

SMCGM SMC growth medium 

SMMHC Smooth muscle myosin heavy chain  
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Sp/KLF Specificity protein/Krüppel like factor family 

Sp1 Specificity protein 1 

SRF Serum response factor  

TBST Tris-buffered saline 1 % tween 20 

TCF Ternary complex factor  

TF Transcription factor 

TGF-ß Tumor growth factor-ß  

TRPV4 
Ca2+-channel transient receptor potential cation channel, subfamily V, 
member 4  

UBTF1 Upstream binding transcription factor 1 

VCAM-1 Vascular cell adhesion molecule 1  

VEGF-A Vascular endothelial growth factor  

VSD Voltage-sensing domain 

WHO World Health Organisation  
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