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SUMMARY
The human herpesvirus cytomegalovirus (CMV) is a prevalent pathogen and infects

a person for life. After primary infection, CMV latently resides in certain body cells

to avoid clearance by the immune system. Primary infection and reactivations from

latency usually go unnoticed in persons with an intact immune system. But in immuno-

compromised persons, such as transplant recipients, CMV can cause severe diseases,

because these persons cannot keep the virus in check. Virus-specific CD8+ T cells are

the key component of CMV-directed immunity and their presence is associated with

protection from overt disease. Several studies have already explored the human T-cell

response against the virus. However, the CMV-specific T-cell repertoire is highly com-

plex, and it remains an enigma which CD8+ T cells with which CMV antigen specificity

are the most protective and best control the virus.

CD8+ T cells recognise antigens using a specialised surface protein, the heterodimeric

↵� T-cell receptor (TCR). This receptor is highly variable between T cells and billions

of different TCRs can be found on the T cells of a single person. In this PhD project,

the CD8+ T-cell repertoire specific for CMV was assessed at high resolution: Virus-

specific CD8+ T cells from healthy virus carriers were enriched through in vitro stim-

ulation with short peptides and analysed by TCR mRNA sequencing, primarily of the

�-chain. CMV-specific TCR� sequences were identified by computational analysis via

multi-sample comparisons. Subsequently, the magnitude and diversity of interindivid-

ual and intraindividual CMV-specific TCR� repertoires was analysed. The focus was

on the TCR repertoire specific for HLA-C–restricted CMV peptides, because presenta-

tion of such peptides is least affected by viral immunomodulation.

In total, 1809 CMV-specific TCR� amino acid sequences were identified in this project.

The CMV-specific TCR repertoires were generally highly clonal, but repertoire diversity

differed between peptides. CMV-specific TCR� clonotypes, particularly those specific

for HLA-C–restricted peptides, were highly frequent in peripheral blood of virus carriers;

in 3 of 9 donors, the TCR with the highest frequency in the entire CD8+ T cell reper-

toire was specific for one CMV peptide. Several TCR� clonotypes with the same CMV

peptide specificity were identical or strikingly similar at the amino acid level and shared

by multiple donors. The cumulative frequency of these 162 shared TCR� clonotypes

was significantly higher in CMV-positive than CMV-negative donors in this cohort and
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SUMMARY

a large independent validation cohort. Consequently, CMV infection leaves a specific

TCR� signature in the T-cell repertoires of its human hosts.

Signature TCR� sequences will be valuable in disease monitoring, for instance as

markers for the presence of a CMV-specific T-cell response. In addition, such TCRs

hold great potential for adoptive T-cell transfer, since they are tolerant to a wide range

of HLA-self peptide complexes and are therefore less likely to cause toxicity in the

recipient.
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1 INTRODUCTION

1.1 Human cytomegalovirus, a large viral pathogen

1.1.1 Virology

Human cytomegalovirus (CMV) is the prototypic representative of the �-herpesvirus

subfamily (Crough and Khanna 2009) and is also referred to as human herpesvirus 5.

CMV hast the largest genome of all known human viruses (Boeckh and Geballe 2011):

Its double-stranded deoxyribonucleic acid (DNA) genome comprises approximately

235 kilo base pairs (bp) (Gardner and Tortorella 2016). The genome consists of a

unique long (UL) and a unique short (US) region, which are separated by an internal

repeat region and flanked by terminal repeats (Murphy et al. 2003). It contains more

than 200 open reading frames (ORFs), of which 151 were, so far, shown to encode

immunogenic proteins (Sylwester et al. 2005). In the virion, the genome is enclosed by

the icosahedral capsid, the tegument and the viral envelope (Figure 1.1).

Figure 1.1: Schema of the CMV virion. The double-stranded DNA genome is encap-
sulated by the icosahedral nucleocapsid, the tegument, and the lipid bilayer envelope.
Most phosphoproteins are contained in the tegument, while glycoproteins are located
in the outer membrane, where they form protein complexes.

The tegument contains many phosphoproteins, among them the lower matrix phos-

phoprotein 65 (pp65), the virion transactivator pp71, and the core virion maturation

protein pp150 (Crough and Khanna 2009). The viral envelope consists of a lipid bilayer

membrane sprinkled with glycoprotein complexes (Gardner and Tortorella 2016). Ap-
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1. INTRODUCTION

proximately 20 different glycoproteins with functions in cell attachment and cell entry

were found to be located in the envelope, including glycoprotein B (gB), gH, gL, and

gO (Crough and Khanna 2009; Gardner and Tortorella 2016). Spherical mature virions

measure 200–300 nm in diameter (Crough and Khanna 2009; Yu et al. 2017).

1.1.2 Life cycle

Human CMV has a broad tropism. It infects and subsequently replicates in various cell

types, including fibroblasts and epithelial cells, but also macrophages, neurons, and

muscle cells (Revello and Gerna 2010; Beltran and Cristea 2014; Acquaye-Seedah

et al. 2015). Infection of host cells is initiated by adsorption of CMV virions onto the

cell surface (Figure 1.2) followed by different entry mechanisms depending on the cell

type (Compton et al. 1993). Entry into fibroblasts occurs via direct membrane fusion

and is mediated by protein gB in cooperation with the gH/gL/gO trimeric complex (Hu-

ber and Compton 1998; Isaacson and Compton 2009). Entry into endothelial and

Figure 1.2: CMV life cycle. The virion attaches to its host cell by adsorption and
enters the cell through direct fusion with the cell membrane or endocytosis (1). Next,
the capsid containing the CMV genome is released into the cytoplasm (2). The capsid
enters the nucleus, where the viral DNA is released and replicated (3). Viral proteins
are translated, and the viral DNA is encapsulated in newly assembled capsids (4).
After nuclear egress (5), the capsids are enveloped (5) and the mature virions are
either released by cell lysis or transmitted from cell to cell (6). Figure based on Crough
and Khanna 2009.
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1. INTRODUCTION

epithelial cells, as well as into macrophages, occurs via endocytosis combined with

low-pH fusion (Ryckman et al. 2006; Acquaye-Seedah et al. 2015). It is mediated by

the gH/gL/UL128–131 pentameric complex (Hahn et al. 2004; Wang and Shenk 2005;

Ryckman et al. 2008). During viral entry, the capsid enclosing the viral DNA is re-

leased into the cytoplasm and translocates to the nucleus (Crough and Khanna 2009;

Acquaye-Seedah et al. 2015). Next, the viral DNA is replicated and translated. Viral

DNA and freshly produced proteins are assembled to virions and enveloped. New viri-

ons are either released into the extracellular space (cell-free transmission) or directly

into a neighbouring cell (cell-to-cell transmission) (Acquaye-Seedah et al. 2015; Murrell

et al. 2017).

Apart from infecting cells productively, CMV can also establish latency in cells of the

myeloid lineage, particularly in monocytes, and hematopoietic progenitor cells (Dupont

and Reeves 2016). Other cell types that may be latent CMV reservoirs are endothe-

lial progenitor cells and derived aortic endothelial cells, and neuronal progenitor cells

(Fish et al. 1998; Belzile et al. 2014; Dupont and Reeves 2016), but more data is re-

quired to validate these putative sites of latency. Latency is defined as a state in which

the viral genome is present in the cell as an extrachromosomal plasmid (episome)

and no infectious virus is produced (Noriega et al. 2012). However, the virus does

not remain completely silent during latency. It was shown for other herpesviruses that

non-coding ribonucleic acids (RNAs) exert various latency-promoting functions, such

as epigenetic modifications, anti-apoptotic effects, and regulation of viral and cellular

gene expression (Perng et al. 2000; Pfeffer et al. 2004; Cai et al. 2005; Umbach et al.

2008; Dupont and Reeves 2016). Non-coding RNAs were also found in cells that were

latently infected with CMV. For instance, several long non-coding RNAs were found in

latently infected cells, of which one, RNA4.9, is likely involved in epigenetic silencing of

immediate-early genes (Rossetto et al. 2013). Furthermore, CMV-encoded microRNAs

that suppress immediate-early gene expression were identified (Grey et al. 2007; Mur-

phy et al. 2008). Consequently, CMV, like its herpesvirus siblings, also uses non-coding

RNAs to establish and maintain latency. In addition to these RNAs, a discrete set of

CMV proteins is expressed during latency. These proteins are predominantly involved

in immunoevasion and modulation of the cellular environment, but may also exert other

functions, such as maintenance of the viral genome (Dupont and Reeves 2016). Reac-

3



1. INTRODUCTION

tivation of CMV from latency is thought to be induced by cellular differentiation: It was

shown that CMV reactivates upon differentiation of monocytes to macrophages or den-

dritic cells (Taylor-Wiedeman et al. 1994; Reeves et al. 2005). Presumably, reactivation

of CMV is promoted by histone modifications, which, in turn, lead to activation of the

major immediate-early promoter that is repressed during latency (Dupont and Reeves

2016). Despite recent advances in the field, the precise mechanisms leading to es-

tablishment and maintenance of latency and to viral reactivation from latency remain

poorly understood (Crough and Khanna 2009; Dupont and Reeves 2016; Goodrum

2016).

Based on their sequence of expression, CMV proteins are divided into 3 categories:

immediate-early, early, and late proteins (Stinski 1978; Stenberg et al. 1990; Crough

and Khanna 2009). Immediate-early proteins are expressed directly after infection

(0h–2h) and require no prior synthesis of viral proteins (Stinski 1978; Stenberg et al.

1990; Crough and Khanna 2009; Goodrum 2016). The most prominent immediate-

early proteins are IE1 and IE2. Expression of early proteins requires the presence of

immediate-early proteins and takes place up to 24h after infection. Late proteins are

expressed more than 24 hours after infection. The most intensively studied late protein

is structural matrix protein pp65.

1.1.3 Pathology

CMV is a widespread human pathogen. Between 30%–90% of persons carry the virus

and its prevalence increases with age (Crough and Khanna 2009). Upon initial con-

tact, CMV establishes a persistent infection in its host and, in doing so, switches to

a quiescent latent state with occasional reactivations. The virus can be transmitted

in various ways: sexually, via the placenta, via saliva, via transplants, or via blood

transfusion (Crough and Khanna 2009). Primary infection with CMV and its reacti-

vation are usually asymptomatic in healthy persons, although CMV mononucleosis is

infrequently observed during seroconversion (Sissons and Carmichael 2002). In im-

munocompromised persons, however, CMV can cause severe clinical complications

(Crough and Khanna 2009). Groups at risk of developing CMV disease are congen-

itally infected fetuses, human immunodeficiency virus (HIV) carriers, and patients re-

ceiving solid organ transplantation or hematopoietic stem cell transplantation (HSCT).
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1. INTRODUCTION

The highest-risk constellation in the setting of HSCT is when a CMV-positive patients

receives a graft from a CMV-negative donor, because the donor graft does not con-

tain antigen-experienced, protective T cells (thymus-derived lymphocytes) against the

virus. Additional risk factors for CMV infection and disease after HSCT include mis-

matched human leukocyte antigen (HLA) alleles between donor and recipient, and the

use of T-cell–depleted or cord-blood–derived grafts (Chen et al. 2018). Owing to the ad-

vancement of CMV prevention strategies, less than 5% of patients today develop CMV

disease after receiving HSCT (Camara 2016). Nevertheless, morbidity and mortality

are severe in transplant recipients who do present with CMV disease. Common clinical

manifestations of early CMV disease, which sets on up to 100 days post transplan-

tation, are pneumonitis and gastrointestinal disease. Both conditions are associated

with poor overall survival at mortality rates of ca. 70% each (Camara 2016; Baroco

and Oldfield 2008). Late CMV disease (>100 days post transplantation) is considered

a major threat to long-term survival of patients and mostly manifests as pneumonitis,

although retinitis and encephalitis were also observed (Crough and Khanna 2009).

1.1.4 Treatment

Management of CMV after HSCT can be prophylactic, preemptive, or therapeutic (Ca-

mara 2016). In prophylactic treatment, patients receive antivirals, such as intravenous

ganciclovir, in the absence of detectable virus to prevent CMV infection or reactivation.

Preemptive treatment means that measures are taken when active CMV infection is di-

agnosed in a patient, but CMV disease has not yet clinically manifested. Measures of

preemptive treatment include intravenous injection of ganciclovir, treatment with foscar-

net, or oral administration of valganciclovir in low-risk patients (Ljungman et al. 2008).

A randomised double-blind study (Boeckh et al. 1996) showed that overall survival

after HSCT was similar for patients treated prophylactically or preemptively with ganci-

clovir. Since prophylactic treatment was associated with increased incidence of fungal

and bacterial infections, preemptive treatment is currently the gold standard of CMV

treatment strategies. When the worst cannot be averted and an HSCT recipient is di-

agnosed with CMV disease, therapeutic measures are put to action. These measures

include the administration of antivirals gangciclovir or foscarnet, often in combination

with CMV immunoglobulin (Ig) (Camara 2016).
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1.1.4.1 Antivirals

Different antivirals have been developed to prevent or treat CMV disease. Common

practice is the administration of the established antivirals ganciclovir and its oral ana-

logue valganciclovir, foscarnet or cidofovir (Boeckh and Geballe 2011). All three an-

tivirals inhibit the viral DNA polymerase and were shown to be effictive in clinical tri-

als. Unfortunately, treatment with these antivirals has severe adverse effects, such as

organ-directed toxicity, and it frequently leads to drug resistance (Boeckh and Geballe

2011). Recently, three new antivirals have been evaluated in clinical trials: maribavir,

brincidofovir, which is a prodrug of cidofovir, and letermovir. Maribavir targets CMV

protein kinase UL97, whereas brincidofovir acts on the viral DNA polymerase in the

same way as cidofovir. Both antivirals failed clinical trial phase III, since their effective-

ness against CMV could not be demonstrated at the tested doses. A second phase

III trial with higher doses has been started for maribavir, since it was well tolerated

and had virtually no side effects in the first round of clinical trials (Camara 2016; Chen

et al. 2018). The third novel antiviral, letermovir, uses yet a different mechanism of

action and targets the CMV terminase complex UL56. Letermovir effectively reduced

CMV reactivation and mortality in two randomised studies with tolerable adverse effects

(Chemaly et al. 2014; Marty et al. 2017). Hence, it was approved by the US Food and

Drug Administration and the European Medicines Agency in 2017 (Chen et al. 2018).

Despite the success of letermovir, a number of cases of breakthrough CMV viremia

and CMV pneumonia were already reported (Knoll et al. 2019; Lischka et al. 2015).

They were likely caused by different mutations in CMV UL56 in patients on letermovir

prophylaxis. It was shown that letermovir rapidly induces diverse mutations which con-

fer drug resistance to letermovir in vitro (Chou 2015). These recent findings imply that

letermovir induces drug-resistant CMV strains and is therefore not ideal for prevention

and treatment of CMV disease. To treat CMV disease, it is currently recommended

to combine antiviral treatment with intravenous administration of purified anti-CMV IgG

from pooled human sera. However, a large study showed that the addition of anti-CMV

IgG had no beneficial effects on survival of patients with CMV disease (Camara 2016).

1.1.4.2 Experimental vaccines

Great efforts are made to try and develop new and innovative CMV prevention and

treatment stategies. A major milestone in the prevention of CMV infection and reacti-
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vation would be the development of a CMV vaccine that is able to boost potent adap-

tive immune responses. Experimental CMV vaccines have been developed for several

decades, but without resounding success. Vaccine candidates range from live attenu-

ated virus to viral-vectored and plasmid DNA vaccines, and subunit vaccines (McVoy

2013). A live attenuated virus vaccine derived from the CMV strain Towne was safe and

induced cellular and humoral responses, but failed to protect mothers from contracting

primary CMV infection from their children in a blind randomised study. This was likely

due to lower neutralising titers with the vaccine than after wild type infection (Adler

et al. 1995; McVoy 2013). To increase immunogenicity of the Towne vaccine, 25%

of the Towne vaccine genome were replaced with analogous sequences from CMV

strain Toledo (McVoy 2013). The four resulting Towne/Toledo chimeric vaccines were

safe, but did not increase existing immunity of CMV-positive subjects in a phase I study

(Heineman et al. 2006). In an additional phase I trial with 36 healthy CMV-negative

men, vaccination with the Towne/Toledo chimeras lead to detectable anti-CMV anti-

body responses in 11 subjects (Adler et al. 2016). An additional CD4+ T-cell response

was detected in 2 of the responsive subjects and an additional CD8+ T-cell response

was detected in 8 of the responsive subjects. CD8+ T-cell responses were always di-

rected against IE1, but CD8+ T cells against pp65, UL32, UL36, UL48, and UL55 were

also infrequently detected. Towne/Toledo chimeras 2 and 4 were most immunogenic

and will thus be tested in additional clinical trials (Adler et al. 2016). ASP 0113, also

known as TransVax, is a plasmid vaccine comprised of adjuvant and a DNA plasmid

encoding CMV proteins gB and pp65. The outcome of a phase II trial of ASP 0113 in

HSCT recipients was encouraging (Kharfan-Dabaja et al. 2012), but it was discontin-

ued in January 2018 due to lack of efficacy in the phase III trial (Astellas Pharma 2018).

Besides, it was not effective in the prevention of CMV viremia in kidney transplant re-

cipients in another phase II trial (Vincenti et al. 2018). VCL 6365 or CyMVectin, which

consists of the same plasmid DNA as ASP 0113, but an improved adjuvant, was with-

drawn from a phase I clinical trial in 2016 and discontinued shortly after in March 2018

(AdisInsight database 2018). RNA virus-vectored vaccine AVX 601 encodes gB and a

pp65/IE1 fusion protein. It was safe in a phase I clinical trial and induced polyfunctional

CD4+ and CD8+ T cell responses (Bernstein et al. 2009; AlphaVax a). It is still in the

AlphaVax pipeline (AlphaVax b). The subunit vaccine gB/MF59 combines a soluble
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form of CMV gB with adjuvant MF59. The vaccine reduced primary infection in women

by 50% (Pass et al. 2009; McVoy 2013) and was marginally protective against CMV

infection of teenage girls in an additional phase II clinical trial (Bernstein et al. 2016).

Due to the overall insufficient efficacy, the gB/MF59 vaccine was not continued as a

standalone vaccine for CMV infection (Bernstein et al. 2016). Additional approaches

to CMV vaccination of transplant patients are currently tested in clinical trials. These

include a recombinant Modified Vaccinia Ankara virus encoding pp65, IE1, and IE2,

and a vaccine with a pp65 peptide plus adjuvant (Diamond et al. 2018).

1.1.4.3 Adoptive T-cell transfer

Adoptive transfer of CMV-specific T cells is an alternative approach to prevent or treat

CMV disease in HSCT recipients. CMV-specific T cells can be obtained by selec-

tive enrichment from CMV-positive bone marrow donors or by genetic modification of

T cells from CMV-negative bone marrow donors (Peggs 2009; Roddie and Peggs 2017;

Kaeuferle et al. 2019). The first proof of principle study of adoptive T-cell therapy used

CMV-specific CD8+ T-cell clones, which were generated by ex vivo stimulation of donor-

derived peripheral blood mononuclear cells (PBMCs). Adoptive transfer of these CD8+

CMV-specific T-cell clones led to reconstitution of CMV immunity in HSCT patients

(Walter et al. 1995). Polyclonal CMV-specific T-cell lines, which were produced by stim-

ulation of PBMCs from bone marrow donors with CMV lysate or CMV-derived peptide,

were also potent in reconstituting CMV immunity (Einsele et al. 2002; Peggs et al. 2003;

Micklethwaite et al. 2007). In another clinical study, multi-specific T-cell lines for adop-

tive T-cell transfer were produced by stimulation of donor-derived PBMCs with Epstein-

Barr virus (EBV)-transformed, adenovirus-transduced B cells as antigen presenting

cells (Leen et al. 2006). The transferred multi-specific T cells had antiviral activity

against all three viruses (CMV, EBV, and adenovirus) in vivo. In a follow-up study, multi-

specific T-cell lines generated by in vitro stimulation with overlapping peptide pools de-

rived from 5 viruses, including CMV, were protective in 94% of the tested donors (Pa-

padopoulou et al. 2014). Direct selection of CMV-specific T cells from donor samples

by peptide-MHC multimer-based enrichment (Cobbold et al. 2005; Neuenhahn et al.

2017) or enrichment of T cells secreting interferon (IFN)� in response to CMV protein

or peptide (Peggs 2009) can also be used to obtain CMV-specific T cells for adoptive

T-cell transfer. Peptide-MHC multimers, for short multimers, are oligomers of peptide-
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loaded major histocompatibility complex (MHC)-encoded molecules that can be cou-

pled to a fluorophore. They are used to stain T cells specific for a given peptide-MHC

complex. A major drawback of all aforementioned methods to enrich CMV-specific T

cells is that they require a CMV-positive bone marrow donor. Furthermore, all methods

are costly, since T-cell preparations have to be generated for each patient individually

as a highly personalised medication. Lastly, chances are the transferred T cells cause

alloreactivity or graft-versus-host disease, especially in less well-defined preparations,

such as polyclonal and multi-specific T-cell lines. Genetically modified T-cell products

are a promising alternative to circumvent these problems. CMV-pp65–specific T-cell

receptor (TCR)-transgenic T cells (Schub et al. 2009) and CMV-gB–specific chimeric

antigen-receptor (CAR) T cells (Full et al. 2010) showed relevant effector functions in

vitro. Consequently, adoptive transfer of genetically modified T cells holds great poten-

tial for prevention of CMV infection, reactivation, and disease in HSCT recipients.

Despite the availability of various treatment options, CMV remains a major threat to the

health of immunocompromised patients and newborns (Navarro 2016). Thus, there is

a great need for new safe and effective CMV therapeutics.

1.1.5 Diagnosis

Viral infection can be diagnosed in various ways. Firstly, the presence of virus particles

in blood (viremia) or urine (viruria), or in other patient samples, can be diagnosed by

cell culture. Traditionally, CMV was isolated in fibroblast tissue cultures, which can be

produced from various patient samples. An existing CMV infection will cause a cyto-

pathic effect in the fibroblast cultures, which can be confirmed by fluorescent antibody

stainings. A variation to standard fibroblast cell culture is the shell vial method, in which

samples are centrifuged onto fibroblast monolayers and antibody-stained for early CMV

antigens after a brief incubation period. The shell vial method dramatically reduces the

time from sample collection to diagnosis compared to the classical cell culture protocol,

but also reduces the sensitivity by up to 32% (Hoz et al. 2002). Secondly, an active

CMV infection can be confirmed by detecting CMV pp65 antigen with pp65-specific

monoclonal antibodies (antigenemia). Compared to viral culture, CMV antigenemia

was equally specific and more sensitive, but it was less reliable when specimens other

than blood or cerebrospinal fluid were tested (Hoz et al. 2002). Thirdly, CMV serology
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can indirectly diagnose CMV infection by detecting the presence of a humoral response

to CMV in serum from patients. Most commonly, anti-CMV IgG or IgM antibody titres

are determined with an enzyme-linked immunosorbent assay (ELISA) (Kotton 2013).

However, CMV serology can sometimes be ambigous with absorption values in the

range of the cutoff controls. Last but not least, the presence of CMV DNA (DNAemia)

can be detected to diagnose infection. In this method, CMV DNA is amplified by poly-

merase chain reaction (PCR) from clinical samples or after in vitro proliferation in cul-

ture. PCR is a highly sensitive method and can detect CMV appearance earlier than

cell culture or antibodies (Storch et al. 1994). It is currently the diagnostic standard to

detect active CMV infection.

1.2 The cellular adaptive immune system

Every living creature is permanently surrounded and attacked by various pathogens

and other damage-causing agents that are a potential threat to its well-being. The hu-

man body defends itself against pathogens with a complex network of specialised cells,

proteins, and messenger molecules: the immune system. The immune system is di-

vided into two main components: the innate immune system and the adaptive immune

system. While the innate immune system reacts immediately with non-specific defense

mechanisms, the adaptive immune system is based on acquired immunity and highly

pathogen-specific. After an initial response to a pathogen is elicited, the adaptive im-

mune system forms an immunological memory. This immunological memory enables

the body to mount a rapid immune response in case a pathogen is re-encountered.

The adaptive immune system is subdivided into humoral immunity, which is based on

macromolecules, such as antibodies secreted by B lymphocytes (B cells), and cellular

immunity, which is largely mediated by pathogen-specific immune cells, the T lympho-

cytes (T cells). T cells do not directly remove pathogens, but recognise processed

antigen presented on body cells. Based on their distinct functions, T cells are divided

into two subsets: cytotoxic T cells and T helper cells. When cytotoxic T cells are acti-

vated, they release cytotoxins and thereby induce apoptosis of infected cells. T helper

cells regulate innate and adaptive immune responses, but mostly do not exert direct

target killing function.
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1.2.1 T-cell development

T cells derive from hematopoietic stem cells in the bone marrow and are named af-

ter their site of maturation, the thymus (Murphy and Weaver 2016). When progenitor

T cells enter the thymus, they receive a signal via their Notch1 receptor, which activates

particular genes, thus inducing commitment to the T-cell lineage. Initially, progenitor

T cells in the thymus, the thymocytes, do not express the prototypic T-cell surface

molecules required for recognition of infected cells. These surface molecules are the

pathogen-specific T-cell receptor (TCR) and its co-receptors cluster of differentiation

(CD)3, and CD4 or CD8. Because neither CD4 or CD8, the co-receptors defining T-cell

function later on, are expressed in the early stage of T-cell development, the immature

T cells are called double-negative thymocytes. Most double-negative thymocytes dif-

ferentiate to ↵� T cells, which express a heterodimeric TCR consisting of an ↵-chain

and a �-chain. In the double-negative stage of ↵� T-cell development, the TCR� chain

locus is rearranged. If gene rearrangement was productive, the expressed TCR� chain

and a surrogate pre-TCR↵ chain pair to form the pre-TCR. The pre-TCR is expressed

on the thymocyte surface in complex with CD3. Pre-TCR–signalling induces thymocyte

proliferation and the simultaneous expression of surface co-receptors CD4 and CD8.

Thus, the thymocyte enters the double-positive stage of T-cell development, in which

the TCR↵ chain locus is rearranged. Successfully recombined ↵� TCRs are positively

selected for their ability to recognise self-peptide/self-MHC complexes. T cells express-

ing a functional TCR pass positive selection and mature to single-positive thymocytes,

which lose expression of either CD4 or CD8. During and after the double-positive

stage, developing T cells undergo a second round of quality control, the negative selec-

tion. In the negative selection stage, autoreactive T cells that respond to self-peptides

are eliminated. After passing negative selection, single-positive mature T cells exit the

thymus. The antigen-inexperienced naı̈ve T cells circulate in the blood and periph-

eral lymphoid organs, where they may encounter their cognate antigen and become

activated.

1.2.2 Antigen presentation, processing, and recognition

T cells recognise pathogen-derived foreign peptides, which are processed from anti-

genic proteins and presented by body cells on specialised molecules encoded by the
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MHC gene set (Murphy and Weaver 2016). MHC molecules come in two distinct

classes. MHC class I molecules are heterodimers and consist of a long and variable ↵-

chain paired with a smaller and invariant �2-microglobulin chain. They are expressed

on all nucleated body cells and primarily present peptides derived from intracellular

antigen. Intracellular antigenic proteins in the cytosol are mainly degraded via the pro-

teasomal pathway and give rise to many short peptides. The resulting peptides are

continually transported to the endoplasmic reticulum (ER) lumen by a protein complex

called ”transporter associated with antigen processing” (TAP). MHC class I ↵-chains

and �2-microglobulin chains are also transported to the ER, where they are assembled

to heterodimeric MHC class I molecules. Binding of a matching short peptide to the

MHC binding groove stabilises the MHC molecule. The stable peptide-MHC complex is

then translocated to the surface, where it is exposed to T cells. Peptides presented by

MHC class I molecules are recognised by cytotoxic CD8+ T cells, which are activated,

secrete cytotoxins and induce apoptosis of the presenting body cell. MHC class II

molecules are also heterodimers, but consist of two homogenous peptide chains, the

↵- and �-chain. They are only expressed by professional antigen-presenting cells

(APCs), such as dendritic cells or macrophages, and they primarily present peptides

derived from extracellular antigen. Extracellular proteins from exogenous sources are

internalised by endocytosis or phagocytosis and are subsequently degraded by lyso-

somal proteolysis under acidic conditions (Blum et al. 2013). Lysosomes containing

degraded peptide fuse with vesicles containing MHC class II molecules. Subsequently,

peptide-MHC complexes are formed and transported to the cell surface for antigen

presentation to T cells. Peptides presented by MHC class II molecules are recognised

by CD4+ T cells, which subsequently orchestrate further immune responses. In some

cases, CD4+ T cells can also directly kill the peptide-presenting cells. This was, for in-

stance, shown in the context of antiviral T-cell responses, particular those against CMV

(Suni et al. 2001; Hegde et al. 2005; Marshall and Swain 2011; Pachnio et al. 2016).

In humans, MHC molecules are referred to as human leukocyte antigens (HLA) and

are encoded by several genes of the MHC locus on chromosome 6. There are three

classical HLA class I heavy chains (HLA-A, HLA-B, and HLA-C), and three gene loci

encoding the major HLA class II chains (HLA-DP, HLA-DQ, and HLA-DR).
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1.2.3 TCR gene rearrangement

T cells recognise infected cells with their heterodimeric TCR, which typically consists of

an ↵-chain and a �-chain (Murphy and Weaver 2016). Less frequently, T cells express

an alternative TCR consisting of a �-chain paired with a �-chain. Such �� T cells

include �2 T cells that are responsible for the recognition of phosphoantigens, but they

will not be addressed in this thesis. TCRs are highly diverse molecules, but each T cell

only expresses a single functional version of the TCR� chain and 1–2 TCR↵ chains,

one of which does not pair with the �-chain and is therefore non-functional. TCR

diversity is created during T-cell maturation through rearrangement of gene segments

in the TCR↵ and TCR� gene loci, TRA and TRB (Figure 1.3). This process was

termed V(D)J recombination. The human TRA locus is located on chromosome 14 and

Figure 1.3: V(D)J recombination of the TCR↵ (TRA) locus and the TCR� (TRB) locus
during T-cell development. Functional VJ↵ exons are generated by pasting one of ⇡70
V↵ to one of 61 J↵ gene segments. Functional VDJ� exons are generated by combin-
ing one of 52 V� with one of 2 D� segments and one of 13 J� gene segments, whereby
only D� and J� gene segments of the same gene segment cluster can be combined
(there are two DJC clusters). Random nucleotides are inserted or deleted at the fusion
sites of the gene segments. Successfully rearranged TCR chains are transcribed and
the V(D)J exon is spliced to the C exon during messenger RNA (mRNA) processing.
The spliced mRNA is translated and the ↵-chain and �-chain pair to form a functional
heterodimeric TCR.

contains ⇡70 different variable region (V) gene segments, 61 joining region (J) gene

segments, and 1 constant region (C) gene segment. During T-cell maturation, one of

the V↵ and J↵ gene segments each are pasted together to obtain a functional VJ exon.

Random nucleotides are inserted or deleted at the fusion site between V gene segment
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and J gene segment, which further increases TCR↵ chain diversity. The human TRB

locus is located on chromosome 7 and consists of 52 V gene segments, 2 diversity

region (D) gene segments, 13 J gene segments, and 2 C gene segments. The D�,

J�, and C� gene segments form 2 clusters, and only genes of the same cluster are

rearranged together to form a productive VDJ exon. Because of the additional D gene

segments and the insertion or deletion of non-template nucleotides to both sides of the

D gene segment during V(D)J recombination, the TCR� chain is even more diverse

than the TCR↵ chain. After successful rearrangement of the TRB and subsequently

the TRA gene locus, the two TCR chains are transcribed and translated independently.

Newly synthesised TCR↵ and TCR� protein chains pair and are transported to the

T-cell surface.

1.2.4 TCR:peptide-MHC interaction

The TCR generally contacts the peptide-MHC complex with 3 loops of each chain.

These loops are termed complementarity-determining regions (CDRs, Figure 1.4).

CDR1 and CDR2 are completely encoded by the V gene segments and mainly contact

the MHC molecule. CDR3 is highly variable, because it is located at the site where V,

(D,) and J gene segments are joined in an imprecise way with template-independent

insertions and deletions of nucleotides, and binds directly to the presented peptide

(Garcia et al. 1996). Between 1–400 interactions of TCRs with peptide-MHC com-

Figure 1.4: Interaction of the TCR with a peptide-MHC complex. The CDR1 and CDR2
loops of each TCR chain are in close contact with the MHC ↵-helices, while the CDR3
loops make direct contact to the peptide. Crystal structure modified from Ishizuka et
al. (PDB ID: 2VLJ) (Ishizuka et al. 2008)
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plexes are estimated to be required for activation of a T cell (Huppa and Davis 2003).

Apart from the TCR binding to its cognate peptide-MHC complex, signalling through

T-cell co-receptor CD3, and often stabilisation by co-receptor CD4 or CD8, is required

for T-cell activation. Typically, peptides presented on MHC class I molecules are 8–10

amino acids long (Wieczorek et al. 2017). The ends of the peptide are anchored in the

confined MHC class I binding groove. Peptides presented on MHC class II molecules

are generally longer and measure 13–25 amino acids; their termini protrude at the

sides from the open binding groove. Immunogenic peptides are presented by their

restricting MHC in a particular spatial conformation. The portion of the peptide-MHC

complex that is bound by TCRs is referred to as T-cell epitope.

1.3 CMV-directed immunity and viral immune evasion

Infection with CMV initiates a massive immune response in the human host, which

involves both humoral and cellular immunity. Although the human body mobilises a

strong humoral response against CMV antigens, in particular against the late phase

envelope glycoprotein gB (Britt et al. 1990), it remains controversial whether or not the

CMV-directed humoral immunity is protective against viral disease. The effectiveness

of the humoral immunity in virus control appears to be limited, because CMV is mostly

located within body cells, where it is protected from antibody neutralisation (Hoz et al.

2002). Nonetheless, it is believed that CMV-specific antibodies block cell-free transmis-

sion of the virus and thereby reduce the severity of CMV disease (Jonjić et al. 1994;

Boppana and Britt 1995; Crough and Khanna 2009).

The CMV-specific T-cell response is, to date, the largest known human T-cell response

against a single pathogen. CMV-specific T cells, in particular effector memory T cells,

accumulate in virus carriers after initial infection. This process was designated ”mem-

ory inflation” and has been described in numerous studies in mice (Holtappels et al.

2000; Karrer et al. 2003) and humans (Gillespie et al. 2000; Sylwester et al. 2005;

Hosie et al. 2017). Accordingly, it was observed that CMV-specific CD8+ T cell are

more frequent in the elderly than in young persons (Klenerman and Oxenius 2016).

Memory inflation is presumably a result of recurring virus reactivation and subsequent

mobilisation of specific T cells over time (Smith and Khanna 2013). CD8+ T cells are

key players in virus control and their presence is associated with protection from overt
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CMV disease (Quinnan et al. 1982; Cwynarski et al. 2001; Bunde et al. 2005; Sacre

et al. 2008). Indeed, adoptive transfer of virus-specific CD8+ T cells was sufficient to

restore CMV-protective immunity in HSCT recipients (Walter et al. 1995; Cobbold et al.

2005; Neuenhahn et al. 2017). The role of CMV-specific CD4+ T cells in virus control

is still unclear. Several studies indicate that the presence of CD4+ T cells after trans-

plantation contributes to protection from the virus, likely because they help maintaining

an effective CD8+ T cell response (Walter et al. 1995; Gerna et al. 2006).

1.3.1 Immune evasion strategies of CMV

Considering that CMV elicits such an enormous immune response, it seems surpris-

ing that the virus manages to persist after initial infection. During co-evolution with

its human host, the virus has developed a multitude of immune evasion strategies to

modulate and mitigate attacks by the immune system (Tortorella et al. 2000). Firstly,

CMV is able to hide from the immune system by entering a latent state in which no

infectious virus is produced and very few viral transcripts are present in the cell. This

reduces immunogenicity of the virus to a minimum (Noriega et al. 2012). In addition,

CMV has dedicated a substantial fraction of its genome to encode immunoevasins

which interfere with immune control on multiple levels. For instance, CMV is thought

to evade humoral immunity by upregulating host complement control proteins and in-

corporating them into the virion (Hengel et al. 1998; Alcami and Koszinowski 2000).

Moreover, CMV evades innate immunity and inflammation. For this purpose, the vi-

ral genome encodes homologues of the immunoregulatory cytokine interleukin (IL)-10

and chemokine receptors (Smith and Khanna 2013).

Most importantly, CMV tampers with antigen presentation so that infected cells can-

not be recognised by T cells. CMV encodes various immunoevasins to downregulate

antigen presentation mediated by MHC class I. These immunoevasins interfere with

many steps of antigen processing and presentation (Noriega et al. 2012). Some im-

munoevasins block the supply of antigenic peptide. They inhibit proteasomal antigen

degradation that produces antigenic peptide, TAP-dependent transport of antigenic

peptide to the ER, or trimming of antigenic peptide mediated by endoplasmic reticu-

lum aminopeptidase 1 (ERAP1) in the ER. Other immunoevasins induce degradation

of MHC class I or decelerate or stop translocation of the peptide-MHC complex to the
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cell surface. Notably, CMV immunoevasins most strongly block antigen presentation of

peptides presented on HLA-A and HLA-B, but less so on HLA-C (Schust et al. 1998). It

remains controversial whether CMV also interferes with antigen presentation on MHC

class II molecules. A study reported that the immunoevasive gene product of US2 lead

to the degradation of certain MHC class II-encoded proteins (Tomazin et al. 1999). This

finding was later refuted by Rehm et al. who showed that gene products of US2 and

US11 only affected the surface expression of MHC class I molecules, whereas MHC

class II molecules were spared from immunomodulation (Rehm et al. 2002).

CMV has also evolved mechanisms to block downstream signalling of the antiviral in-

terferons IFN↵ and IFN�, thereby tampering with activation of natural killer (NK) cells

(Garcı́a-Sastre and Biron 2006; Loewendorf and Benedict 2010). NK cells are tra-

ditionally considered part of the innate immune system, because they have invariant

receptors to detect infected cells. They have both direct cytotoxic activity and secrete

inflammatory cytokines, such as IFN�, to promote the function of other immune cells

(Murphy and Weaver 2016). NK cells express activating and inhibitory receptors to dis-

tinguish healthy from infected or otherwise abnormal body cells. Some inhibitory recep-

tors bind to certain MHC class I molecules and their signal prevents NK-cell–mediated

cytotoxicity. In case of low MHC class I expression, for instance due to reduction by vi-

ral immunoevasins, the inhibitory signal is abolished and the MHC class I–deficient cell

is killed by NK cells. This mechanism of action was termed ”missing self” theory and

was proposed several decades ago (Ljunggren and Kärre 1990). HLA-C molecules,

as a group, are particularly important to protect cells from NK-cell lysis (Colonna et

al. 1993), because for every HLA-C molecule there is a matched inhibitory NK re-

ceptor from the killer-cell immunoglobulin-like receptor (KIR)2DL group. Members of

inhibitory KIR groups are expressed on a large subset of NK cells across donors with

diverse ethnic backgrounds (Middleton et al. 2008). Every KIR haplotype contains such

inhibitory receptors for any type of HLA-C molecule, and therefore HLA-C is the univer-

sal molecule for NK-cell inhibition, although expression levels and ability to induce self-

tolerance can vary for different inhibitory KIR2DL and HLA-C alleles (Gardiner 2008;

Charoudeh et al. 2012). CMV immunoevasins may spare HLA-C from downregulation

to prevent NK cells from killing the host cell. In line with this hypothesis, recent work

of our group showed that an IE1-derived T-cell epitope restricted by HLA-C*07:02 was
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constitutively presented by CMV-infected cells and capable of inducing a specific cyto-

toxic T-cell response (Ameres et al. 2013). By contrast, other IE1 epitopes restricted

by different HLA-A or HLA-B alleles were no longer presented and thus not recognised

by cytotoxic T cells. Deletion of four immunoevasins restored surface expression of

HLA-A and HLA-B alleles and T-cell mediated killing of CMV-infected target cells. CMV

immunoevasins also modulate NK-cell activity by downregulation of ligands required

for NK-cell activation (Loewendorf and Benedict 2010). In addition, CMV expresses

an HLA class I homologue, the UL18 gene product (Beck and Barrell 1988), which

prevents killing of CMV-infected cells by a subset of NK cells, whereas another sub-

set is activated by UL18 (Prod’homme et al. 2007). However, UL18 is also a target

of CD8+ T cells and its expression leads to lysis of cells infected with CMV (Saverino

et al. 2004). It has been shown that absence of NK cells leads to severe CMV disease,

indicating that NK cells are protective against the virus (Biron et al. 1989).

1.3.2 Protectivity of specific T cells

Although the presence of a virus-specific T-cell response is associated with protection

from CMV, it is unknown which T cells (of which antigen and epitope specificities) have

protective effector functions, and which T cells are only innocent bystanders and do not

contribute to virus control. The CD8+ T-cell response appears to be particularly impor-

tant for virus control (Quinnan et al. 1982; Cwynarski et al. 2001). Despite the large

number of immunogenic ORFs, only few antigens elicit CD8+ T-cell responses in a sub-

stantial number of donors. The most immunogenic antigens include immediate-early

proteins IE1 and IE2, envelope glycoprotein gB, phosphoproteins pp65 and pp150,

which both have late kinetics and are located in the virion tegument, and the UL29/28

gene product, which promotes accumulation of IE mRNA and regulates transcription

factor p53 to prevent cellular stress responses (Sylwester et al. 2005; Terhune et al.

2010; Savaryn et al. 2013). Especially CMV antigens IE1 and pp65 give rise to many

different epitopes and induce stong CD8+ immune responses (Elkington et al. 2003;

Khan 2007). CMV antigen pp65 has been shown to elicit a strong and diverse func-

tional CD8+ T-cell response in vitro and ex vivo (Manley et al. 2004; Lacey et al. 2005),

and clinical responses were observed after transfer of pp65-specific T cells (Einsele et

al. 2002; Neuenhahn et al. 2017). However, when T cells of different specificities (IE1,
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pp65) and their association with viral reactivation was analysed in transplant patients,

IE1-specific CD8+ T cells appeared more protective than pp65-specific T cells (Bunde

et al. 2005; Sacre et al. 2008; Gratama et al. 2008). Data from our group implies that

not only the nature of the antigen, but also the restricting HLA determines function-

ality of the T-cell response. HLA-C–restricted epitopes may be superior to epitopes

restricted by HLA-A or HLA-B in eliciting a protective CD8+ T-cell response, because

they are less affected by CMV immunoevasion and are thus continuously presented on

infected cells (Ameres et al. 2013; Ameres et al. 2014); this enables clearance of the

infected cells by CD8+ T cells. Still, the identity of protective T cells is far from being

understood, and further research is required to expand our knowledge of the functional

roles of the different elements that constitute a CMV-specific T-cell response.

1.3.3 Factors contributing to diversity of the CMV-specific T-cell
response

Understanding the overall human T-cell response to CMV is difficult, because it is

greatly diverse. Factors contributing to this immense diversity are (i) CMV antigen di-

versity, (ii) CMV epitope diversity, (iii) HLA diversity, and (iv) TCR diversity. Once CMV

infects a body cell, viral proteins are degraded to peptides, which are in turn presented

to T cells on HLA molecules (Figure 1.5). CMV harbours the largest genome of all

presently known human viruses. One group studied CD4+ and CD8+ T-cell responses

to 213 known ORFs in CMV, and they identified T-cell responses against 151 of the

encoded CMV proteins (Sylwester et al. 2005). Each of the many CMV antigens is

degraded and can potentially give rise to multiple different immunogenic peptides that

are presented on HLA molecules. HLA molecules are highly polymorphic and many

different alleles exist in the human gene pool. Three classical HLA class I heavy chains

are encoded by the major genes HLA-A, -B, and -C. There are also three major gene

loci encoding HLA class II ↵-chains and �-chains; they are HLA-DP, -DQ, and -DR.

The combination of HLA alleles found on a single chromosome are called an HLA hap-

lotype. Due to the close vicinity of the HLA-B and HLA-C loci, there is a particularly

strong linkage disequilibrium between alleles of these two HLA genes. The frequency

distribution of HLA alleles differs between ethnic groups (Cao et al. 2001; Schmidt et

al. 2009; Gragert et al. 2013). For instance, HLA-A*02:01 is the most frequent HLA-

A allele in people of European descent (allele frequency 27.6%), but less common in
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Figure 1.5: The CMV-specific CD8+ T-cell response. After CMV infects a human cell,
viral proteins are degraded to peptides (1). Some of these peptides are loaded onto
matching HLA class I molecules and transported to the cell surface (2). T cells can
recognise immunogenic CMV peptides in complex with their restricting HLA. The part of
the peptide-MHC complex that is bound by the TCR is referred to as the T-cell epitope.
CMV-specific T cells bind to matching epitopes presented by infected cells (3) and are
activated. Activated CD8+ T cells secrete cytotoxins (4), which in turn induce apoptosis
in the infected cell.

Southeast Asians (5.8%); the latter most frequently express HLA-A*11:01 (17.5%) and

HLA-A*24:02 (13.8%) (Gragert et al. 2013). Furthermore, the individual HLA alleles are

joined to different haplotypes in different ethnic groups (Cao et al. 2001). For exam-

ple, HLA-C*07:02 is the most frequent HLA-C allele in Southeast Asians (12.9%) and

the second most frequent HLA-C allele in Europeans (14.1%) (Gragert et al. 2013);

in Germans, HLA-C*07:02 is even the most frequent HLA-C allele (15.2%) (Schmidt

et al. 2009). However, HLA-C*07:02 is most commonly associated with HLA-A*26:01

and HLA-B*08:01 in Southeast Asians, whereas it is most commonly associated with

HLA-A*03:01 and HLA-B*07:02 in Europeans (Gragert et al. 2013). Different HLAs

bind to and present different antigenic peptides. Hence, two people expressing dif-
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ferent HLA alleles will present different CMV epitopes and therefore mobilise T cells

with different TCRs. This makes it difficult to get an overall picture of the human T-cell

respone against CMV. Lastly, the TCR comes in various different compositions. It is

estimated that between 1015 and 1020 distinct TCR clonotypes can theoretically be pro-

duced by V(D)J recombination (Laydon et al. 2015). By definition, a TCR clonotype is

the entirety of T cells expressing the same TCR. However, the estimated total number

of T cells in the human body is only 1013 (Bianconi et al. 2013), and some antigen-

experienced TCR clonotypes are highly abundant. Consequently, the actual number

of different TCR clonotypes in a person is much lower than the theoretically possible

number of different TCR clonotypes. A study by theoretical biologists estimated the

amount of distinct TCR clonotypes per person to be in the range of 1010, which was

one order of magnitude lower than the estimated number of naı̈ve T cells in the human

body (Lythe et al. 2016). Still, there are countless different TCR clonotypes among

which the CMV-specific ones need to be identified.

1.4 Studies of the CMV-specific TCR repertoire

Several studies have previously investigated the magnitude and diversity of the CMV-

specific T-cell response against epitopes, antigens, and full-length virus using phe-

notypical peptide-MHC multimer staining or functional immunoassays (Gillespie et al.

2000; Hosie et al. 2017; Elkington et al. 2003; Jackson et al. 2014; Sylwester et al.

2005), but the T-cell response to CMV is complex and many questions remain unan-

swered. In order to fully understand the CMV-specific human T-cell response, it is in-

evitable to go into more detail and also assess the composition, frequency, and binding

properties of the TCRs that bind CMV-derived epitopes. Although some virus-specific

TCRs have been described to date, our knowledge of the CMV-directed TCR repertoire

is still very limited. Early studies have identified some CMV-specific TCR� chains tar-

geting pp65-derived epitopes, sometimes in combination with matching TCR↵ chains.

For instance, a group sequenced TCR↵ and TCR� chains of epitope-specific T-cell

clones that were generated by stimulation with short immunogenic CMV peptides in

order to investigate the clonal composition of the pp65-specific CD8+ T-cell response

(Weekes et al. 1999). Both TCR chains of the clones were amplified in multiple sepa-

rate PCR reactions using a panel of V region-specific primers followed by Sanger se-
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quencing. In doing so, the authors discovered clonally expanded CMV peptide-specific

CD8+ TCR clonotypes in all tested virus carriers. TCR� sequences specific for pp65

epitopes were also identified by other groups, either from ex vivo multimer-enriched

populations or from short-term peptide stimulated and subsequently multimer-enriched

cells (Price et al. 2005; Venturi et al. 2008; Schwanninger et al. 2008; Miconnet et al.

2011; Brennan et al. 2012; Koning et al. 2013). In these studies, bulk RNA was iso-

lated, amplified, and transformed into competent Escherichia coli cells, from which

selected colonies were Sanger-sequenced.

The advent of high-throughput immunosequencing a decade ago (Robins et al. 2009)

enabled the simultaneous readout of thousands of ↵� TCRs from single cells or hun-

dreds of millions of TCR↵ or TCR� chains from bulk cell samples. This led to a mas-

sive increase in sequencing depth, since not only the most expanded specific TCR

clonotypess, but also less expanded ones, can be found, and large TCR data sets

have become available. Several groups have already exploited high-throughput se-

quencing to analyse CMV-specific TCR repertoires. In multiple studies, CMV-specific

T cells were enriched by sorting with pp65-derived peptide-MHC multimers, or, less

frequently, IE1-derived or pp50-derived multimers (Klarenbeek et al. 2012; Dash et al.

2017; Glanville et al. 2017). Multimer-enriched cells were high-throughput–sequenced

either from bulk cells to obtain high-resolution, but separate, TCR↵ and/or TCR� reper-

toires, or from single cells for paired TCR↵� data at a lower resolution. These studies

identified a number of CMV multimer-specific TCR sequences and found that the spe-

cific TCR� repertoires were stably maintained after primary infection (Klarenbeek et al.

2012) and that TCR repertoires of the same specificity frequently used common CDR3

amino acid sequence motifs (Dash et al. 2017; Glanville et al. 2017). An additional

study combined short-term peptide stimulation with multimer sorting and found that the

TCR repertoire specific for a CMV epitope was diverse, but contained several short

CDR3 sequence motifs (Chen et al. 2017). One group sequenced PBMCs that were

short-term–stimulated with an overlapping peptide pool of CMV late protein pp65 and

used a frequency cutoff of >1% of total TCR� reads to identify antigen-specific TCR�

sequences in their samples (Dziubianau et al. 2013). They showed that pp65-specific

TCR� repertoires were oligoclonal and largely stable over time. Except for the last

study, which did not investigate the precise epitope specificity and HLA restrictions
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of their specific TCR� sequences, all previous studies only analysed TCR repertoires

specific for CMV epitopes restricted by HLA-A and HLA-B alles. The findings presented

in this PhD thesis expand on these previous results by exploring TCR� repertoires not

only against CMV epitopes restricted by HLA-A and HLA-B alles, but also include HLA-

C–restricted CMV epitopes.

1.5 Aims of this PhD project
Previous studies that investigated the CMV-specific TCR repertoire greatly relied on

multimer sorting to isolate virus-specific T cells. However, multimers can be difficult

to produce, are quite expensive, and they are only available for selected CMV-derived

epitopes. In this project, the CMV-specific TCR repertoire is explored by combining

in vitro stimulation with short immunogenic peptides with high-throughput Illumina se-

quencing. Short peptides are comparatively inexpensive and easy to produce. They

can be externally loaded onto HLA molecules, where they are presented to T cells.

With the peptide stimulation approach, TCR clonotypes specific for any CMV-derived

peptide matching the donors HLA can be identified, even if no multimer is available.

Such an assay will be simple and ready to be scaled up to test different CMV pep-

tide specificities simultaneously. Apart from investigation of TCR repertoires against

HLA-A–restricted and HLA-B–restricted CMV epitopes, which have been studied be-

fore to different levels of detail, the CMV-specific HLA-C–restricted TCR repertoire is

investigated here for the first time. The TCR repertoires of an unstimulated sample

and sample(s) stimulated with control peptide(s) were sequenced in addition to the

peptide-stimulated sample (multi-sample comparison) with the aim to distinguish CMV

peptide-specific TCR� clonotypes from those with different specificities with precision

and efficacy.

The CMV-specific TCR repertoire data obtained by this technique were to be analysed

with regard to the following questions:

1. Is it possible to obtain a measure of the frequency of epitope-specific T cells

directly from TCR� sequencing? How well does this measure correlate with the

frequency of specific T cells determined by peptide-MHC multimer staining?
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2. To what extent is TCR� chain sequencing sufficient to characterise the CMV

epitope-specific T-cell repertoire? Is knowledge of the pairing TCR↵ chain indis-

pensable to gain meaningful insights in the CMV-specific T-cell response?

3. How frequent are circulating CMV-specific TCRs against selected epitopes in

virus carriers? What portion of T cells and expressed TCRs is estimated to be

specific for CMV in total?

4. Are there differences in magnitude or clonality of CMV-specific TCR repertoires

between epitopes derived from different antigens or presented by different HLAs?

5. How similar is the interindividual and intraindividual TCR repertoire against par-

ticular CMV epitopes? Why do different donors mobilise different TCRs against

the same epitopes?

6. Are there common features or patterns between TCRs of the same specificity,

such as usage of particular gene segments or preferred CDR3 lengths? Can

amino acid sequence motifs be identified that are indicative the epitope specificity

and may be used to predict the specificity of a given TCR?

7. Are there CMV epitope-specific TCRs that are frequently shared between donors?

Can we identify a minimum set of shared specific TCRs against selected CMV

epitopes that can be used to derive a predictive TCR signature that can, for in-

stance, be used in CMV disease monitoring? This question is of great clinical

interest because extensively shared CMV-specific TCRs also hold great potential

for adoptive T-cell therapy, since they are tolerant to many HLA backgrounds and

therefore less likely to cause graft-versus-host disease.
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2 MATERIALS

2.1 Laboratory equipment and devices

Table 2.1: Laboratory equipment and devices.

Item Model Manufacturer

Autom. electrophoresis system 2100 Bioanalyzer Agilent Technologies, Santa Clara, US
Beaker Polypropylene, 1l Brand, Wertheim, DE
Centrifuge Rotana 46 RSC Hettich, Tuttlingen, DE
Centrifuge Rotana 460 R Hettich, Tuttlingen, DE
Electrophoresis power supply E835 Consort, Turnhout, BE
Electrophoresis system PerfectBlue Mini S PEQLAB Biotechnologie, Erlangen, DE
Electrophoresis system PerfectBlue Mini L PEQLAB Biotechnologie, Erlangen, DE
Flow cytometer BD LSRFortessa BD Biosciences, Heidelberg, DE
Freezer, -20�C KG39NVW30 Siemens, Berlin & Munich, DE
Freezer, -80�C Igloo 830l Telstar, Terrassa, ES
Fridge, 4�C Bosch economic Bosch, Gerlingen-Schillerhöhe, DE
Gel documentation system Quantum ST4 Vilber Lourmat, Eberhardzell, DE
Glass bottles Duran 50 ml–1 l SCHOTT, Mainz, DE
Ice machine AF206 Scotsman, Vernon Hills, US
Incubator CB150 Binder, Tuttlingen, DE
Irradiation device (Cs137) Gammacell 40 Best Theratronics, Ottawa, CA
Laminar flow hood S 1800 BDK, Sonnenbühl-Genkingen, DE
Liquid nitrogen tank CS 540 B Cryo Anlagenbau, Wilnsdorf, DE
Magnetic separator MidiMACS Separator Miltenyi, Bergisch Gladbach, DE
Magnetic separator OctoMACS Separator Miltenyi, Bergisch Gladbach, DE
Measuring cylinder Polypropylene, 1l Kartell LABWARE, Noviglio, IT
Microcentrifuge Centrifuge 5415 R Eppendorf, Hamburg, DE
Microcentrifuge Pico 21 Heraeus, Hanau, DE
Microscope Axiovert 25 Zeiss, Jena, DE
Microwave R-202 Sharp, Sakai, JP
Mini centrifuge SPROUT Diversified Biotech, Dedham, US
Multichannel pipette, 20–200 µl Transferpette-12 Eppendorf, Hamburg, DE
PCR Thermal Cycler TGradient Biometra, Göttingen, DE
Pipet controller Pipetboy acu 2 Integra Biosciences, Hudson, US
Pipette 2 µl Pipetman G P2G Gilson, Middleton, US
Pipette 10 µl Pipetman G P10G Gilson, Middleton, US
Pipette 20 µl Pipetman G P20G Gilson, Middleton, US
Pipette 200 µl Pipetman G P200G Gilson, Middleton, US
Pipette 1000 µl Pipetman G P1000G Gilson, Middleton, US
Plate reader EL800 Bio-Tek Instruments, Winooski, US
Roller mixer CAT RM5-30V neoLab, Heidelberg, DE
Thermomixer Thermostat plus Eppendorf, Hamburg, DE
UV-Vis spectrophotometer Nanodrop ND-1000 PEQLAB Biotechnologie, Erlangen, DE
Vacuum pump N86KN.18 KNF Neuberger, Freiburg, DE
Vortex mixer 7-2020 neoLab, Heidelberg, DE
Vortex mixer Vortex-Genie 2 Scientific Industries, New York, US
Water bath 1003 GFL, Burgwedel, DE
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2.2 Consumables

Table 2.2: Consumables.

Item Manufacturer

Butterfly needle, Vacutainer safety-lok green BD Biosciences, Heidelberg, DE
Cell culture flask, Falcon 25cm2, vented cap Corning, New York, US
Cell culture flask, EasYFlask 75cm2, filter cap Nunc, Roskilde, DK
Cell strainer, Falcon 100 µm Corning, New York, US
Conical centrifuge tube, Falcon 15 ml Corning, New York, US
Conical centrifuge tube, Falcon 50 ml Corning, New York, US
Cryotube, 1.8 ml Nunc, Roskilde, DK
Disposable Pasteur pipette, 3.2 ml Carl Roth, Karlsruhe, DE
FACS Test tube, Falcon 5 ml, round-bottom Corning, New York, US
Gloves, NextGen Nitrile S Meditrade, Kiefersfelden, DE
Gloves, Kimtech Purple Nitrile S Kimberly-Clark Professional, Roswell, US
MACS column, LS Miltenyi, Bergisch Gladbach, DE
MACS column, MS Miltenyi, Bergisch Gladbach, DE
Multiwell plate, 6 wells, flat bottom Corning, New York, US
Multiwell plate, 12 wells, flat bottom Corning, New York, US
Multiwell plate, 24 wells, flat bottom Corning, New York, US
Multiwell plate, 48 wells, flat bottom Corning, New York, US
Multiwell plate, 96 wells, flat bottom Corning, New York, US
Multiwell plate, 96 wells, V-bottom Nunc, Roskilde, DK
Hemocytometer, C-Chip NanoEnTek, Seoul, KR
PCR strip, 200 µl, 8 tubes Brand, Wertheim, DE
Pipette tips, 10 µl, Diamond D10 Gilson, Middleton, US
Pipette tips, 200 µl, Diamond D200 Gilson, Middleton, US
Pipette tips, 1000 µl, Diamond D1000 Gilson, Middleton, US
Reaction tubes, 1.5 ml Eppendorf, Hamburg, DE
Reaction tubes, 2 ml Eppendorf, Hamburg, DE
Serological pipette, 5 ml Greiner Bio-One, Kremsmünster, AT
Serological pipette, 10 ml Greiner Bio-One, Kremsmünster, AT
Serological pipette, 25 ml Greiner Bio-One, Kremsmünster, AT
Serum tube, Primavette S 10 ml KABE Labortechnik, Nümbrecht, DE
Syringe, INFUJECT 50/60 ml Dispomed Witt, Gelnhausen, DE
Syringe filter, Minisart �0.2 µm Sartorius, Göttingen, DE

2.3 Commercial kits

Table 2.3: Commercial kits.

Name Manufacturer

DNA 1000 Kit Agilent Technologies, Santa Clara, US
NEBNext Multiplex Oligos for Illumina (Dual New England Biolabs, Ipswich, USIndex Primers Set 1)
Human Anti-Cytomegalovirus IgG ELISA Kit abcam, Cambridge, UK
Human IFN-� ELISA development kit (ALP) Mabtech AB, Nacka Strand, SE
QuantiTect Reverse Transcription Kit Qiagen, Hilden, DE
RNeasy Mini Kit Qiagen, Hilden, DE
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2.4 Chemicals and buffers

Table 2.4: Chemicals and buffers.

Name Manufacturer

Agarose Biozym, Hessisch Oldendorf, DE
Agencourt AMPure XP Beads Beckman Coulter, Brea, US
Aqua ad iniectabilia, 50 ml B Braun, Melsungen, DE
Dimethylsulfoxide (DMSO) Carl Roth, Karlsruhe, DE
dNTP mix ThermoFisher scientific, Waltham, US
Ethanol, ROTIPURAN 2.5l Carl Roth, Karlsruhe, DE
Ethidium bromide, 0.07%, 15 ml dropper bottle AppliChem, Darmstadt, DE
Ficoll, Pancoll 500 ml PAN-Biotech, Aidenbach, DE
Formaldehyde, 37% solution Carl Roth, Karlsruhe, DE
GeneRuler DNA ladder, 100 bp ThermoFisher scientific, Waltham, US
Heparin, Heparin-Natrium-25000 ratiopharm, Ulm, DE
DNA Gel Loading Dye (6⇥) ThermoFisher scientific, Waltham, US
MgSO4 ThermoFisher scientific, Waltham, US
NaOH, pellets Carl Roth, Karlsruhe, DE
Dulbecco’s PBS, 500 ml Sigma-Aldrich, St. Louis, US
RNase-free H2O Qiagen, Hilden, DE
TAE buffer, Rotiphorese 50x Carl Roth, Karlsruhe, DE
TRIS hydrochloride Carl Roth, Karlsruhe, DE
Trypan blue Merck, Darmstadt, DE

2.5 Oligonucleotides

2.5.1 Multiplex PCR primers for TCR↵ library preparation

Table 2.5: List of multiplex PCR primers for TCR↵ libraries that were designed in
this thesis. 51 forward primers and 2 reverse primer candicates were ordered from
metabion (Planegg, DE). The non-pairing primer overhangs are equivalent to the Il-
lumina Read 1 and Illumina Read 2 primer sites. In this table, ”ACACTCTTTCC-
CTACACGACGCTCTTCCGATCT” (Illumina Read 1 primer sequence) is abbreviated
to ”ACA[...]TCT” and ”5’-GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT-3’” (Illu-
mina Read 2 primer sequence) is abbreviated to ”GTG[...]TCT”. The target-binding
portions of the primers are highlighted in bold font.

Name Sequence (5’! 3’)

multiTRAV1-1 ACA[...]TCTCGCTCTGATAGTTATGGTTACCTCCTTCTAC
multiTRAV1-2 ACA[...]TCTTCTAAAGGGTACAGTTACCTCCTTTTGAAGG
multiTRAV2 ACA[...]TCTGTTCTCTTCATCGCTGCTCATCCTCC
multiTRAV3 ACA[...]TCTCAAACCTCCTTCCACCTGAAGAAACCATC
multiTRAV4 ACA[...]TCTAGTCCAGCACTCTGAGCCTGCC
multiTRAV5 ACA[...]TCTGGATAAACATCTGTCTCTGCGCATTGCAG
multiTRAV6 ACA[...]TCTCCCTTAAACAGAGTTTGTTTCATATCACAGCC
multiTRAV6*04 ACA[...]TCTCCCTTAAACAGAGTTTGTTTCATGTCACAGC
multiTRAV7 ACA[...]TCTTGGAAGCAGCTTGTACATTACAGCCG
multiTRAV8-1 ACA[...]TCTAATTCTCCTTTAATCTGAGGAAACCCTCTG
multiTRAV8-2+4 ACA[...]TCTCCTCCTTCCACCTGACGAAACCCTC
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Table 2.5: (continued)

Name Sequence (5’! 3’)

multiTRAV8-3 ACA[...]TCTTCAATCTTCCTTCAATCTGAGGAAACCCTC
multiTRAV8-3*02 ACA[...]TCTCAATCTTCCTTCAACCTGAGGAAACCCTC
multiTRAV8-4*02 ACA[...]TCTCCTCCTTCCACCTGACAAAACCCTC
multiTRAV8-4*06 ACA[...]TCTTCCTTCCACCTGACGAAACCCG
multiTRAV8-6 ACA[...]TCTACTTCCTTCCACTTGAGGAAACCCTC
multiTRAV8-7 ACA[...]TCTGAAACCTCCTTCTACCTGAGGAAACCATC
multiTRAV9-1 ACA[...]TCTGAAACCACTTCTTTCCACTTGGAGAAAGAC
multiTRAV9-2 ACA[...]TCTCCACTTCTTTCCACTTGGAGAAAGGC
multiTRAV10 ACA[...]TCTAGCAAAGCTCTCTGCACATCACAGC
multiTRAV12-1 ACA[...]TCTGCCAGTATATTTCCCTGCTCATCAGAGAC
multiTRAV12-2 ACA[...]TCTCCAGCCAGTATGTTTCTCTGCTCATCAG
multiTRAV12-3 ACA[...]TCTTCCAGCAAGTATATCTCCTTGTTCATCAGAG
multiTRAV13-1 ACA[...]TCTCCAAACATTTCTCCCTGCACATCACAG
multiTRAV13-2 ACA[...]TCTAGACAGTGAAACATCTCTCTCTGCAAATTG
multiTRAV14/TRDV4 ACA[...]TCTCGCCAACCTTGTCATCTCCGC
multiTRAV16 ACA[...]TCTGCGAGACATCTTTCCACCTGAAGAAACC
multiTRAV17 ACA[...]TCTGAAAAGCAGTTCCTTGTTGATCACGGC
multiTRAV18 ACA[...]TCTGTTCCTTCCACCTGGAGAAGCCCTC
multiTRAV19 ACA[...]TCTGTTCCTTCAACTTCACCATCACAGCC
multiTRAV20 ACA[...]TCTAAGCTTTCTGCACATCACAGCCC
multiTRAV21 ACA[...]TCTCATCAGGACGTAGTACTTTATACATTGCAGC
multiTRAV22 ACA[...]TCTCGGAACGCTACAGCTTATTGTACATTTCCTC
multiTRAV23/TRDV6 ACA[...]TCTGCCAAGCAGTTCTCATTGCATATCATGG
multiTRAV24 ACA[...]TCTGGAGGGTTACAGCTATTTGTACATCAAAGG
multiTRAV25+41 ACA[...]TCTACAGCTCCCTGCACATCACAGC
multiTRAV26-1 ACA[...]TCTAGTCCAGCACCTTGATCCTGCC
multiTRAV26-2 ACA[...]TCTAGTCCAGTACCTTGATCCTGCACCG
multiTRAV27 ACA[...]TCTAAAGGACAGTTCTCTCCACATCACTGC
multiTRAV29/TRDV5 ACA[...]TCTGCCAAGCACCTCTCTCTGCACATTG
multiTRAV29/TRDV5*02 ACA[...]TCTGCCAAGCACCTCTCTCTCGACATTG
multiTRAV30 ACA[...]TCTGCAAAGCTCCCTGTACCTTACGGC
multiTRAV34 ACA[...]TCTCAGCAAAGTTCCCTGCATATCACAGC
multiTRAV35 ACA[...]TCTAGAAAGGACAGCTTCCTGAATATCTCAGC
multiTRAV36/TRDV7 ACA[...]TCTCAGCATCCTGAACATCACAGCCAC
multiTRAV38-1+2/TRDV8 ACA[...]TCTGCAGCCAAATCCTTCAGTCTCAAGATCTC
multiTRAV39 ACA[...]TCTTCTCAGCACCCTCCACATCACAGC
multiTRAV40 ACA[...]TCTGACAAAAACTCCCCCATTGTGAAATATTCAG
multiTRDV1 ACA[...]TCTAATCCGTCGCCTTAACCATTTCAGCC
multiTRDV2 ACA[...]TCTAGAACCTGGCTGTACTTAAGATACTTGCAC
multiTRDV3 ACA[...]TCTAAGCCTTTCACTTGGTGATCTCTCCAG
C↵A GTG[...]TCTCGGCAGGGTCAGGGTTCTGG
C↵B GTG[...]TCTGGATTTAGAGTCTCTCAGCTGGTACACG
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2.5.2 Multiplex PCR primers for TCR� library preparation

Table 2.6: Multiplex PCR primers for TCR� libraries. 45 forward primers and 3
reverse primers were ordered from metabion (Planegg, DE). All target-binding re-
gions of the forward primers, except for ss-BV15, were published by Robins et al.
(Robins et al. 2009). Forward primer ss-BV-15 and the reverse primers were de-
signed by Xiaoling Liang. In this table, ”ACACTCTTTCCCTACACGACGCTCTTCC-
GATCT” (Illumina Read 1 primer sequence) is abbreviated to ”ACA[...]TCT” and ”5’-
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT-3’” (Illumina Read 2 primer se-
quence) is abbreviated to ”GTG[...]TCT”. The binding portions of the primers are
printed in bold font.

Name Sequence (5’! 3’)

SS-BV2 GTG[...]TCTTCAAATTTCACTCTGAAGATCCGGTCCACAA
SS-BV3-1 GTG[...]TCTGCTCACTTAAATCTTCACATCAATTCCCTGG
SS-BV4-1 GTG[...]TCTCTTAAACCTTCACCTACACGCCCTGC
SS-BV(4-2, 4-3) GTG[...]TCTCTTATTCCTTCACCTACACACCCTGC
SS-BV5-1 GTG[...]TCTGCTCTGAGATGAATGTGAGCACCTTG
SS-BV5-3 GTG[...]TCTGCTCTGAGATGAATGTGAGTGCCTTG
SS-BV(5-4, 5-5, 5-6, 5-7, 5-8) GTG[...]TCTGCTCTGAGCTGAATGTGAACGCCTTG
SS-BV6-1 GTG[...]TCTTCGCTCAGGCTGGAGTCGGCTG
SS-BV(6-2, 6-3) GTG[...]TCTGCTGGGGTTGGAGTCGGCTG
SS-BV6-4 GTG[...]TCTCCCTCACGTTGGCGTCTGCTG
SS-BV6-6 GTG[...]TCTCGCTCAGGCTGGAGTTGGCTG
SS-BV6-5 GTG[...]TCTGCTCAGGCTGCTGTCGGCTG
SS-BV6-7 GTG[...]TCTCCCCTCAAGCTGGAGTCAGCTG
SS-BV6-8 GTG[...]TCTCACTCAGGCTGGTGTCGGCTG
SS-BV6-9 GTG[...]TCTCGCTCAGGCTGGAGTCAGCTG
SS-BV7-1 GTG[...]TCTCCACTCTGAAGTTCCAGCGCACAC
SS-BV7-2 GTG[...]TCTCACTCTGACGATCCAGCGCACAC
SS-BV7-3 GTG[...]TCTCTCTACTCTGAAGATCCAGCGCACAG
SS-BV7-4 GTG[...]TCTCCACTCTGAAGATCCAGCGCACAG
SS-BV7-6 GTG[...]TCTCACTCTGACGATCCAGCGCACAG
SS-BV7-7 GTG[...]TCTCCACTCTGACGATTCAGCGCACAG
SS-BV7-8 GTG[...]TCTCCACTCTGAAGATCCAGCGCACAC
SS-BV7-9 GTG[...]TCTCACCTTGGAGATCCAGCGCACAG
SS-BV9 GTG[...]TCTGCACTCTGAACTAAACCTGAGCTCTCTG
SS-BV10-1 GTG[...]TCTCCCCTCACTCTGGAGTCTGCTG
SS-BV10-2 GTG[...]TCTCCCCCTCACTCTGGAGTCAGCTA
SS-BV10-3 GTG[...]TCTCCTCCTCACTCTGGAGTCCGCTA
SS-BV(11-1, 11-3) GTG[...]TCTCCACTCTCAAGATCCAGCCTGCAG
SS-BV11-2 GTG[...]TCTCTCCACTCTCAAGATCCAGCCTGCAA
SS-BV(12-3, 12-4, 12-5) GTG[...]TCTCCACTCTGAAGATCCAGCCCTCAG
SS-BV13 GTG[...]TCTCATTCTGAACTGAACATGAGCTCCTTGG
SS-BV14 GTG[...]TCTCTACTCTGAAGGTGCAGCCTGCAG
SS-BV15 GTG[...]TCTCTGCTTTCTTGACATCCGCTCACCAG
SS-BV16 GTG[...]TCTCTGTAGCCTTGAGATCCAGGCTACGA
SS-BV17 GTG[...]TCTCTTCCACGCTGAAGATCCATCCCG
SS-BV18 GTG[...]TCTGCATCCTGAGGATCCAGCAGGTAG
SS-BV19 GTG[...]TCTCCTCTCACTGTGACATCGGCCC
SS-BV20-1 GTG[...]TCTCTTGTCCACTCTGACAGTGACCAGTG
SS-BV23-1 GTG[...]TCTCAGCCTGGCAATCCTGTCCTCAG
SS-BV24-1 GTG[...]TCTCTCCCTGTCCCTAGAGTCTGCCAT
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Table 2.6: (continued)

Name Sequence (5’! 3’)

SS-BV25-1 GTG[...]TCTCCCTGACCCTGGAGTCTGCCA
SS-BV27 GTG[...]TCTCCCTGATCCTGGAGTCGCCCA
SS-BV28 GTG[...]TCTCTCCCTGATTCTGGAGTCCGCCA
SS-BV29-1 GTG[...]TCTCTAACATTCTCAACTCTGACTGTGAGCAACA
SS-BV30 GTG[...]TCTCGGCAGTTCATCCTGAGTTCTAAGAAGC
R-seq-BC18 TACA[...]TCTCACAGCGACCTCGGGTGGGA
R-seq-N1-BC18 TACA[...]TCTNCACAGCGACCTCGGGTGGGA
R-seq-N2-BC18 TACA[...]TCTNNCACAGCGACCTCGGGTGGGA

2.5.3 Miscellaneous primers

Table 2.7: Miscellaneous primers. These primers are required for reverse transcription
of TCR mRNA or for quality control of mini-LCLs.

Name Sequence (5’! 3’) Use

CP1⇤ GCACCTCCTTCCCATTCAC TCR� reverse transcription primer

RT TRAC A CGGTGAATAGGCAGACAGAC TCR↵ reverse transcription primer candidate
RT TRAC B GCTCTTGAAGTCCATAGACCTC TCR↵ reverse transcription primer candidate

Nextera1 AATGATACGGCGACCACCGA Rescue PCR primerNextera2 CAAGCAGAAGACGGCATACGA

cam-up† TTCTGCCGACATGGAAGCCATC Target chloramphenicol acetyltransferase as a
marker for mini-EBV–specific sequencescam-down† GGAGTGAATACCACGACGATTTCC

gp85c† TGGTCAGCAGCAGATAGTGAACG Target the BXLF1 gene, which encodes
glycoprotein 65, as marker for wild-type EBVgp85d† TGTGGATGGGTTTCTTGGGC

⇤ Published in Zhou et al. 2006
† Published in Moosmann et al. 2002

2.6 Enzymes
All enzymes were delivered with their appropriate 10⇥ standard buffer.

Table 2.8: Enzymes.

Name Manufacturer

Taq DNA polymerase, 5U/µl, New England Biolabs, Ipswich, US
Phusion High-Fidelity DNA Polymerase, 2U/µl ThermoFisher scientific, Waltham, US
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2.7 Antibodies and multimers
Throughout this project, anti-human antibody conjugates were used to phenotypically

analyse human cells by flow cytometry or enrich cells by magnetic-activated cell sort-

ing (MACS). In addition, multimers, which consist of multiple peptide-MHC complexes

linked to a fluorophore, were used to visualise epitope-specific T cells.

2.7.1 Fluorescence-activated cell sorting (FACS) antibodies

Over the course of this thesis, the antibody panels used to stain human PBMCs for

flow cytometry were optimised. All antibodies and their combinations in the different

panels are listed in Table 2.9. The compensation control for PE, which was used to tag

multimers, was anti-CD4-PE. FITC-labelled and BV605-labelled KIR2DL2/3 antibod-

ies were compensated with antibodies against CD4 and CD19, respectively, because

KIR2DL2/3-positive cells are not frequent enough to get a large positive population.

Table 2.9: Flow cytometry antibodies. All antibodies are monoclonal mouse anti-
human antibodies. The antibody targets are named according to the cluster of dif-
ferentiation (CD) nomenclature. In this thesis, however, CD158b will be referred to as
KIR2DL2/3, and CD197 will be referred to as CCR7.

Target Clone Isotype Fluorophore Panel Manufacturer

CD3 HIT3a IgG2a, Alexa700 I,III,IV Biolegend, San Diego, US
CD3 HIT3a IgG2a, APC/Cy7 II Biolegend, San Diego, US
CD4 RPA-T4 IgG1, APC I,IV Biolegend, San Diego, US
CD4 RPA-T4 IgG1, APC/Cy7 III Biolegend, San Diego, US
CD4 RPA-T4 IgG1, FITC I⇤ Biolegend, San Diego, US
CD4 RPA-T4 IgG1, PE I⇤,II,III⇤,IV⇤ Biolegend, San Diego, US
CD8 RPA-T8 IgG1, Pacific Blue I,II,III,IV Biolegend, San Diego, US
CD19 HIB19 IgG1, BV605 III⇤ Biolegend, San Diego, US
CD45RA HI100 IgG2b, APC II,III Biolegend, San Diego, US
CD62L DREG-56 IgG1, Alexa488 III† Biolegend, San Diego, US
CD158b‡ CH-L IgG2b, BV605 III BD Biosciences, Heidelberg, DE
CD158b‡ CH-L IgG2b, FITC I,II,IV BD Biosciences, Heidelberg, DE
CD197§ G043H7 IgG2a, Alexa488 III† Biolegend, San Diego, US
CD197§ G043H7 IgG2a, PE/Cy7 II Biolegend, San Diego, US

⇤ Compensation control
† Either anti-CD197 or anti-CD62L was used as differentiation marker in panel III
‡ Here referred to as KIR2DL2/3
§ Here referred to as CCR7
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2.7.2 Magnetic-activated cell sorting (MACS) microbeads

Table 2.10: Magnetic-activated cell sorting microbeads.

Target Isotype Product name Manufacturer

CD4 mouse IgG1 CD4 MicroBeads Miltenyi, Bergisch Gladbach, DE
CD8 mouse IgG2a CD8 MicroBeads Miltenyi, Bergisch Gladbach, DE

2.7.3 Multimers

Table 2.11: Pentamers and streptamers for staining of epitope-specific T cells in
flow cytometry. Unlabelled pentamers were purchased from ProImmune (”Pro5 MHC
Class I Pentamers” series, ProImmune, Oxford, UK). Peptide/HLA-C*07:02 monomers
for streptamer assembly were synthesised and kindly provided by Fabian Schlott,
Michael Neuenhahn, and Dirk Busch (Technical University Munich, Munich, DE).

Peptide HLA molecule Type Antigen Virus

CRVLCCYVL HLA-C*07:02 monomer IE1 CMV
CRVLCCYIL HLA-C*07:02 monomer IE1 CMV
ELKRKMIYM HLA-B*08:01 pentamer IE1 CMV
ELRRKMMYM HLA-B*08:01 pentamer IE1 CMV
FRCPRRFCF HLA-C*07:02 monomer UL29/28-encoded protein CMV
HERNGFTVL HLA-B*40:01 pentamer pp65 CMV
NLVPMVATV HLA-A*02:01 pentamer pp65 CMV
QIKVRVDMV HLA-B*08:01 pentamer IE1 CMV
RPHERNGFTVL HLA-B*07:02 pentamer pp65 CMV
RPPIFIRRL HLA-B*07:02 pentamer EBNA-3A EBV
TPRVTGGGAM HLA-B*07:02 pentamer pp65 CMV
VLEETSVML HLA-A*02:01 pentamer IE1 CMV
VTEHDTLLY HLA-A*01:01 pentamer pp50 CMV
YSEHPTFTSQY HLA-A*01:01 pentamer pp65 CMV

Table 2.12: Fluorophores for multimer labelling.

Name Fluorophore Target multimer Manufacturer

StrepTactin PE PE streptamer IBA Lifesciences, Göttingen, DE
Pro5 Fluorotag R-PE PE pentamer ProImmune, Oxford, UK

2.8 Peptides
All peptides were produced by JPT Peptide Technologies (Berlin, DE) with at least 70%

purity. Lyophilized peptides were solved in DMSO to a stock concentration of 10 mg/ml

and stored in a freezer at -20�C. Table 2.13 lists all peptides used in this project. A new

batch of peptides was used for the peptide pool stimulations.
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Table 2.13: List of immunogenic CMV peptides tested in this thesis. Each peptide is
listed with its full-length amino acid sequence in one-letter code, its abbreviation (Abbr.,
usually 3 letters), the peptide length in amino acids (Len.), the antigen it originates
from, its HLA restriction (HLA res.), and the reference(s) to its first description with the
stated HLA restriction

Name Abbr. Len. Antigen HLA res. Reference(s)

ATVQGQNLK ATV 9 pp65 A*11:01 Kondo et al. 2004
AYAQKIFKI AYA 9 IE1 A*24:02 Kirchner et al. 2008
AYAQKIFKIL AYA-10 10 IE1 A*24:02⇤ Kuzushima et al. 2001
CEDVPSGKL CED 9 pp65 B*40:01 Kondo et al. 2004
CRVLCCYIL CRV-I 9 IE1 C*07:02 Ameres et al. 2013
CRVLCCYVL CRV 9 IE1 C*07:02 Ameres et al. 2013
DALPGPCI DAL 8 pp65 B*51:01 Kondo et al. 2004
DEEDAIAAY DEE-D 9 IE1 B*18:01 Retière et al. 2000
DEEEAIVAY DEE 9 IE1 B*18:01† Gavin et al. 1993; Ameres 2013
EDAIAAYTL EDA 9 IE1 B*40:01 Smith et al. 2016
EEAIVAYTL EEA 9 IE1 B*40:01‡ Braendstrup et al. 2014
EFFWDANDIY EFF 10 pp65 B*44:02 Wills et al. 1996; Weekes et al. 1999
ELKRKMIYM ELK-I 9 IE1 B*08:01§ Saulquin et al. 2000
ELKRKMMYM ELK 9 IE1 B*08:01 Elkington et al. 2003
ELRRKMIYM ELR-I 9 IE1 B*08:01 Weißbrich 2016
ELRRKMMYM ELR 9 IE1 B*08:01 Elkington et al. 2003
FPKTTNGCSQA FPK 11 IE1 B*55:01 Khan et al. 2007; Gibson et al. 2007
FPTKDVAL FPT 8 pp65 B*35:02|| Longmate et al. 2001; Wiesner et al. 2005
FRCPRRFCF FRC 9 UL28/29 C*07:02 Kim et al. 2011
GPISGHVLK GPI 9 pp65 A*11:01 Hebart et al. 2002
HERNGFTVL HER 9 pp65 B*40:01/02 Kondo et al. 2004
ILEETSVML ILE 9 IE1 A*02:01 Link et al. 2017
IPSINVHHY IPS 9 pp65 B*35:01 Gavin et al. 1993
KEVNSQLSL KEV 9 IE1 B*40:01 Nastke et al. 2005
KLGGALQAK KLG 9 IE1 A*03:01 Elkington et al. 2003
KLGGALKAK¶ KLG-K 9 IE1 A*03:01 unpublished
KQIKVRVDM KQI 9 IE1 C*06:02 Slezak et al. 2007
NLVPMVATV NLV 9 pp65 A*02:01 Diamond et al. 1997
NQWKEPDVY NQW 9 pp65 B*35:01 Wiesner et al. 2005
QEFFWDANDIY QEF 11 pp65 B*44:02 Nastke et al. 2005; Gibson et al. 2007
QIKVRVTMV⇤⇤ QIK 9 IE1 B*08:01 unpublished
QYDPVAALF QYD 9 pp65 A*24:02 Kuzushima et al. 2001
RCPEMISVL RCP 9 pp65 C*01:02 Kondo et al. 2004
RIKEHMLKK RIK 9 IE1 A*03:01 Ameres et al. 2013; Ameres et al. 2014
RPHERNGFTV RPH-10 10 pp65 B*07:02 Weekes et al. 1999
RPHERNGFTVL RPH 11 pp65 B*07:02 Longmate et al. 2001
TPRVTGGGAM TPR 10 pp65 B*07:02 Wills et al. 1996; Weekes et al. 1999
TRATKMQVI TRA 9 pp65 C*06:02†† Rist et al. 2009
TSDACMMTMY TSD 10 IE1 A*01:01 Braendstrup et al. 2014
VLEETSVML VLE 9 IE1 A*02:01 Khan et al. 2002a
VTEHDTLLY VTE 9 pp50 A*01:01 Elkington et al. 2003
VYALPLKML VYA 9 pp65 A*24:02 Masuoka et al. 2001
YSEHPTFTSQY YSE 11 pp65 A*01:01 Longmate et al. 2001

⇤ A*23:01 discussed (Burrows et al. 2003) ¶ CMV strain variant
† A*01:01 discussed (Elkington et al. 2003) ⇤⇤ The correct CMV epitope is QIKVRVDMV (Elkington et al. 2003).

Because of a typing error, it was ordered with a D!T exchange.‡ B*44:02 discussed (Khan et al. 2007)
§ B*18:01 discussed (Retière et al. 2000) †† Also published as B13 (Nastke et al. 2005); B57 (Crough et al. 2005);

B57 and B58 (Walker et al. 2007); B57, B58, and Cw6 (Zhong et al.
2008)

|| Often imprecisely published as B35-restricted
(Elkington et al. 2003)
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2.9 Cell lines and cell culture materials

2.9.1 Primary human cells

PBMCs were isolated from blood of healthy adult volunteers with their informed consent

or obtained from buffy coats of anonymous blood donors (Institut für Transfusionsmedi-

zin, Ulm, DE).

Table 2.14: Donor cohort of this thesis project.The table lists alias name, CMV status,
and HLA class I alleles of the 21 CMV-positive and 10 CMV-negative donors. In ad-
dition, the table shows information on TRBV4-3 deletions and use of the TRBJ2-7*02
allele variant. No donor was homozygous for TRBJ2-7*02.

Donor CMV HLA-A HLA-B HLA-C �BV4-3 BJ2-7*02

P01 + A*03:01,A*30:03 B*07:02,B*58:01 C*07:02,C*07:18 yes no
P02 + A*02:01,A*02:01 B*07:02,B*35:03 C*04:01,C*07:02 no no
P03 + A*02:01,A*02:01 B*07:02,B*40:02 C*02:02,C*07:02 no yes
P04 + A*02:01,A*11:01 B*07:02,B*07:02 C*07:02,C*07:02 no no
P05 + A*11:01,A*24:02 B*07:02,B*35:01 C*04:01,C*07:02 no no
P06 + A*03:01,A*03:01 B*07:02,B*50:01 C*06:02,C*07:02 no no
P07 + A*02:01,A*31:01 B*07:02,B*44:02 C*05:01,C*07:02 yes no
P08 + A*02:01,A*03:01 B*07:02,B*57:01 C*06:02,C*07:02 no no
P09 + A*02:01,A*02:01 B*07:02,B*08:01 C*07:01,C*07:02 no no
P10 + A*01:01,A*01:01 B*07:02,B*08:01 C*07:01,C*07:02 no no
P11 + A*11:01,A*11:01 B*07:02,B*55:01 C*01:02,C*07:02 no no
P12 + A*02:01,A*02:01 B*07:02,B*27:05 C*02:02,C*07:02 no no
P13 + A*02:01,A*03:01 B*07:02,B*44:02 C*05:01,C*07:02 no no
P14 + A*03:01,A*32:01 B*07:02,B*38:01 C*07:02,C*12:03 no no
P15 + A*24:02,A*68:01 B*07:02,B*15:01 C*03:03,C*07:02 no no
P16 + A*02:01,A*24:02 B*07:02,B*39:01 C*07:02,C*12:03 no no
P17 + A*01:01,A*02:01 B*08:01,B*18:01 C*07:01,C*07:02 no no
P18 + A*02:03,A*02:06 B*40:01,B*55:02 C*01:02,C*07:02 yes no
P19 + A*01:01,A*03:01 B*35:01,B*57:01 C*04:01,C*06:02 yes no
P20 + A*03:01,A*24:03 B*18:01,B*37:01 C*06:02,C*12:03 yes no
P21 + A*01:01,A*02:01 B*08:01,B*40:01 C*03:04,C*07:01 no no
N01 – A*01:01,A*02:01 B*07:02,B*57:01 C*06:02,C*07:02 no no
N02 – A*02:01,A*02:05 B*07:02,B*50:01 C*06:02,C*07:02 no no
N03 – A*02:01,A*03:01 B*07:02,B*27:05 C*02:02,C*07:02 yes no
N04 – A*03:01,A*11:01 B*07:02,B*49:01 C*07:01,C*07:02 no no
N05 – A*03:01,A*03:01 B*07:02,B*35:01 C*04:01,C*07:02 no yes
N06 – A*02:01,A*03:01 B*07:02,B*35:01 C*04:01,C*07:02 no yes
N07 – A*03:01,A*24:02 B*07:02,B*35:03 C*04:01,C*07:02 no no
N08 – A*02:01,A*24:02 B*07:02,B*07:02 C*07:02,C*07:02 no no
N09 – A*02:05,A*03:01 B*07:02,B*49:01 C*07:01,C*07:02 yes no
N10 – A*01:01,A*26:01 B*35:01,B*57:01 C*04:01,C*06:02 no yes
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2.9.2 Cell lines

Table 2.15: Cell lines.

Name Description Reference(s)

B95.8 EBV-transformed cotton-top tamarin (Saiguinus oedipus)
cell line B95.8

Miller et al. 1972; Miller
and Lipman 1973

LL8 CD40-ligand–expressing LL8 mouse fibroblasts Rancan et al. 2015

2.9.3 T-cell clones

Table 2.16: T-cell clones used in IFN� ELISAs. They were obtained by limiting dilution
of stimulated cell lines made from CMV-positive donors.

Name Specificity Description

F46M #160 CRV CRV Made by Stefanie Ameres from IE1 mini-LCL–stimulated cell line
XLBC13 #8 FRC FRC Made by Xiaoling Liang from FRC peptide-stimulated cell line

2.9.4 Cell culture media and additives

Table 2.17: Cell culture media and additives for cell culture of human lymphocyte-
derived primary cells and cell lines and of LL8 feeder cells.

Name Manufacturer

Cyclosporin A Novartis, Nürnberg, DE
FCS, Fetal bovine serum 500 ml Bio&SELL, Feucht bei Nürnberg, DE
Interleukin-2, Proleukin S Novartis, Nürnberg, DE
Interleukin-4 R&D Systems, Minneapolis, US
Penicillin-Streptomycin, gibco 105U/mL ThermoFisher scientific, Waltham, US
RPMI1640 liquid medium, gibco 500 ml, with
L-Glutamine and Phenol Red ThermoFisher scientific, Waltham, US

Sodium selenite, ⇠98% MP Biomedicals, Santa Ana, US
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2.10 Hardware, software, and bioinformatics tools

2.10.1 Hardware

Table 2.18: Hardware.

Item Manufacturer

Hard Drive, Canvio Basics, 3 TB Toshiba, Tokyo, JP
iMac computer (21.5-inch, late 2013) Apple, Cupertino, US

Operating system: macOS High Sierra (v10.13.6)
Processor: 3.1 GHz Intel Core i7
Memory: 16 GB 1600 MHz DDR3
Startup Disk: Macintosh HD
Graphics: NVIDIA GeForce GT 750M 1024 MB
Serial Number: DGKQF00YF8J8

2.10.2 Software and programming languages

Table 2.19: Software and programming languages.

Name Version Developer

Cisco AnyConnect Secure
Mobility Client 4.5.05030 Cisco Systems, San Jose, US

Cytoscape 3.7.0 Cytoscape Developer Team, National Resource for
Network Biology

FlowJo 10.4.1 FlowJo LLC, Ashland, US
GraphPad Prism 7.0d GraphPad, San Diego, US
Java 1.8.0 60 Oracle, Redwood City, US
MacVector 14.5.2 (24) MacVector, Apex, US
Microsoft Office 16.16.5 Microsoft, Redmond, US

Microsoft Excel
Microsoft Powerpoint
Microsoft Word

MiXCR 1.8.1 MiLaboratory, Moscow, RU (Bolotin et al. 2015)
Python 2.7.10 Python Software Foundation, Delaware, US
R 3.5.1 R Core Team, GNU project
packages:

beeswarm 0.2.3
circlize 0.4.5
colorspace 1.3-2
data.table 1.11.8
directlabels 2018.5.22
ggplot2 3.1.0
plyr 1.8.4
reshape2 1.4.3
scales 1.1.0
stringdist 0.9.5.1
stringr 1.3.1

RStudio 1.1.463 RStudio, Boston, US
Terminal 2.8.3 (404.1) Apple, Cupertino, US
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2.10.3 Online bioinformatics tools

Table 2.20: Online bioinformatics tools.

Name URL Developer

Galaxy https://galaxyproject.org/,
private repository

Galaxy Community, The Galaxy Project

Multiple Primer Analyzer https://www.thermofisher.com/ ThermoFisher scientific, Waltham, US
WebLogo https://weblogo.berkeley.edu/ University of California, Berkeley, US

2.11 Services and cooperations
High-resolution HLA class I typing was done in the Center for Human Genetics and

Laboratory Diagnostics (MVZ Martinsried, Munich, DE). High-throughput sequencing

of TCR libraries was performed by Dr. Stefan Krebs and Dr. Helmut Blum at the Labo-

ratory for Functional Genome Analysis (Gene Center, Ludwig Maximilian University of

Munich, Munich, DE).
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3.1 Molecular biology

3.1.1 Preparation of TCR� libraries

3.1.1.1 RNA isolation

Cells were lysed and total RNA was extracted with the RNeasy Mini Kit as per manufac-

turer’s instructions. The quality and concentration of RNA in the eluate was measured

with the Nanodrop ND-1000 spectrophotometer using 1 µl eluate. The RNA samples

were either stored at -80�C in a freezer or, preferably, directly transcribed to comple-

mentary DNA (cDNA).

3.1.1.2 Reverse transcription

Per sample, 1 µg RNA or, if low RNA yields were obtained, a maximum of 12 µl RNA

eluate, were used to make TCR libraries. The multimer-sorted samples of donors

P01 and P04 had the lowest amounts of input RNA (0.14 µg–0.73 µg). RNA was

treated with genomic DNA wipeout buffer and reversely transcribed to cDNA using

the QuantiTect Reverse Transcription Kit. In the reverse transcription, a TCR�-gene–

specific primer (CP1 (Zhou et al. 2006)), which was designed to target both C�1 and

C�2, was used at cend = 0.2 µM and elongation was carried out for 30 min at 42�C.

Then, the TCR� cDNA was amplified in two subsequent PCRs.

3.1.1.3 Multiplex PCR

First, a gene-specific multiplex PCR was run (Table 3.1). In this first PCR step, equimo-

lar amounts of 45 different forward primers covering all possible human TRBV gene

segments (ss-BV-mix) and a mix of TRBC-specific reverse primers (R-seq-BC18-mix)

with identical priming site in the TRBC region were used. In addition to the cDNA

binding sites, each primer had an overhang sequence complementary to the Illumina

Read 2 and Illumina Read 1 priming sequence, respectively. Thus, the Illumina read

priming sites were added to the PCR products in the multiplex PCR. Three different

versions of the R-seq-BC18 primer with 0, 1, or 2 degenerated (N) nucleotides in-

serted between the TRBC priming site and the Illumina Read 1 sequence were mixed

at equimolar concentrations. Using primers with different N nucleotide insertions in this
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position is required, because it considerably increases the nucleotide (nt) diversity of

TCR� reads in the first 5 base positions. Thereby cluster recognition during sequenc-

ing is facilitated and sequencing artefacts are reduced. To minimise amplification bias,

forward and reverse primers were used in excess and only 10 cycles were run in the

multiplex PCR. Each PCR was split into 2 PCR tubes each containing 50 µl per tube to

ensure that the target temperatures are reached quickly during the short PCR cycles.

Table 3.1: Assembly (left) and thermocycler settings (right) of the first PCR (= multiplex
PCR) of the TCR� library preparation protocol.

Ingredient Vstock cend

TCR� cDNA 20 µl -
dNTP mix 10 µl 0.2 mM
MgSO4 mix 16 µl 4 mM
ss-BV-mix 3 µl ⌃0.3 µM
R-seq-BC18-mix 3 µl ⌃0.3 µM
Pfu polymerase 2 µl 0.05 U/µl
10⇥ Pfu buffer 10 µl 1⇥
H2O 36 µl -

Vtotal 100 µl (2 tubes)

PCR step T [�C] t [s]

Initial denat. 95 120
Denaturation 95 30

9
=

; 10⇥Annealing 59 30
Elongation 72 60
Final elong. 72 600

3.1.1.4 Purification of the intermediate PCR product

After the first PCR step, the two PCR reactions of the same sample were combined

(Vtotal = 100µl) and the PCR product was purified with Agencourt AMPure XP Beads.

The principle behind this system, solid-phase reversible immobilisation, uses parama-

gentic beads coated with carboxyl groups and a buffer containing polyethylene glycol

and NaCl (DeAngelis et al. 1995). In the presence of the buffer, DNA molecules can

bind to the coated beads. When proportionally more buffer is added, smaller DNA

fragments can bind to the beads. PCR product purification was carried out according

to the manufacturer’s protocol using 0.8 µl beads suspension per 1 µl PCR product.

At this concentration, DNA fragments that are at least 150 bp long, such as the TCR�

amplicons, can bind to the beads, while the shorter primers and self-annealed primer

by-products are washed off. The purified PCR product was eluted in 20 µl H2O.

3.1.1.5 Barcode PCR

Next, the PCR product was amplified in a second PCR using commercially available

NEBNext Multiplex Oligos for Illumina (Dual Index Primers Set 1). These primers bind

to the Illumina Read 1 and Illumina Read 2 priming sites that were introduced in the first
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PCR. In addition, they contain 8-nt–long barcodes, which are required for correct as-

signment of sequence reads to the original sample, and the Illumina i5 and i7 adapters,

which are needed for binding of the TCR� amplicons to the Illumina flow cell. Primers

i501-i508 were combined with primers i701-i712 so that each of the samples that will

be combined on one sequencing lane has a unique combination of an i5 and i7 bar-

code. Table 3.2 shows the reagents and thermocycler settings used in this barcode

PCR step. Generally, 15 cycles were sufficient to obtain as much DNA as needed to

sequence the TCR� library. However, in case the yield was very low, which affected

approximately a third of all samples, the second PCR was repeated with 16-20 cycles

to obtain satisfactory amounts of TCR� PCR product.

Table 3.2: Assembly (left) and thermocycler settings (right) of the second PCR (=bar-
code PCR) of the TCR� library preparation protocol.

Ingredient Vstock cend

1st PCR product 10 µl -
dNTP mix 5 µl 0.2 mM
MgSO4 mix 8 µl 4 mM
i5 primer 2 µl ⌃0.3 µM
i7 primer 2 µl ⌃0.3 µM
Pfu polymerase 1 µl 0.05 U/µl
10⇥ Pfu buffer 5 µl 1⇥
H2O 17 µl -

Vtotal 50 µl

PCR step T [�C] t [s]

Initial denat. 95 120
Denaturation 95 30

9
=

; 15⇥Annealing 59 30
Elongation 72 60
Final elong. 72 600

3.1.1.6 Purification of the final TCR� PCR product

After the second PCR step, the PCR product was again purified using the Agencourt

AMPure XP Beads as described above, with the alteration that the purified DNA was

eluted in 10 µl H2O.

3.1.1.7 Automated chip electrophoresis

To determine the TCR� amplicon concentration in the samples and for the sake of

quality control, the DNA was measured in an automated chip electrophoresis sys-

tem: Samples were placed in a microchannel chip using the Agilent DNA 1000 Kit

and measured with the Agilent 2100 Bioanalyzer automated electrophoresis system

as per manufacturer’s instructions. The TCR� amplicons are approximately 300 bp in

length and a concentration of no less than 5 nM, but ideally higher than 10 nM, was re-

quired for high-throughput sequencing. The presence of residual primers in the sample

(Figure 3.1A) does not negatively impact the sequencing procedure, since these frag-
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ments are too short to contain both the i5 and i7 adapter sequence; hence they cannot

be amplified on the Illumina flow cell. For samples lacking the peak at 300 bp, the

second PCR step was repeated with an increased number of cycles. Samples that had

a very small peak at 300 bp were amplified in an additional rescue PCR using primers

Nextera 1 and Nextera 2, which are complementary to the Illumina i5 and i7 adapter

sequences. The rescue PCR was also done to rescue samples with overamplification

peaks (Figure 3.1B). These overamplification peaks are caused by insufficient amounts

of primer, which prevents correct elongation and leads annealing of mismatched DNA

strands, which in turn generates bulky DNA structures. Overamplification can severely

decrease sequencing quality, since it leads to underestimation of the amount of total

TCR� DNA in the sample, which in turn results in an overload of the sequencing flow

cell. One cycle of denaturing, annealing, and elongation with suitable primers restores

the complementary strands of the TCR� amplicons and removes bulky secondary DNA

structures. After the rescue PCR, samples were purified with Agencourt AMPure XP

Beads and remeasured on the Agilent 2100 Bioanalyzer.

Figure 3.1: Exemplary electropherograms of two TCR� libraries. The electrophero-
grams were generated using the Agilent 2100 Bioanalyzer. The lower DNA marker
(green arrow) is 15 bp long and the upper DNA marker (purple arrow) is 1500 bp long.
(A) This TCR� sequencing sample of T cells from donor P14 which were stimulated
with peptide TPR and subsequently CD8-enriched is sufficiently pure and contains
enough DNA for high-throughput sequencing. The TCR� amplicon peak is at 304 bp
(2) and its signal strength corresponds to a concentration of 19.1 nM. A second peak
suggestively shows at approximately 80 bp (1), which indicates the presence of resid-
ual primers that were not removed by paramagnetic bead purification. (B) This sample
was derived from cells of donor N06 stimulated with peptide FRC. Apart from the TCR�
amplicon peak at 297 bp (2), there is a broad DNA peak between 500 bp and 1500 bp
(3) indicating overamplification of the sample.
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3.1.2 Preparation of TCR↵ libraries

Libraries for sequencing of TCR↵ repertoires were prepared analogously to the TCR�

libraries (Section 3.1.1) with minor alterations. To reversely transcribe the total RNA,

TCR↵-gene–specific primer RT-TRAC-A was used. For the first PCR step, a new set of

TCR↵ multiplex primers (TRAV/TRDV-mix) was designed. Importantly, the overhangs

of the TCR↵ primers were switched: The multiplex primers binding to the variable re-

gion were complementary to the Illumina Read 1 priming site, and the reverse primer

binding to the constant region was complementary to the Illumina Read 2 priming site.

Because of this, no N nucleotide insertions were required to increase read diversity in

the first 5 bases and therefore a single reverse primer (C↵B) was sufficient. However, a

drawback is that TCR↵ libraries alone may be not diverse enough for sequencing with-

out TCR� libraries on the same lane, especially if strongly expanded clonotypes are

present in the sample. The full-length PCR products for high-throughput sequencing

are slightly larger than the TCR� products and measure around 320 bp.

3.1.3 High-throughput Illumina sequencing

TCR libraries that passed the Bioanalyzer quality check were handed over to our co-

operation partners Dr. Stefan Krebs and Dr. Helmut Blum (Laboratory for Functional

Genome Analysis, Gene Center, Ludwig Maximilian University of Munich, Munich, DE).

All TCR libraries that were to be sequenced together on the same flow cell lane were

mixed at equimolar concentrations to obtain a concentation of 10 nM DNA in total. Next,

10 µl TCR DNA mix was denatured by adding 10 µl 1M sodium hydroxide. The reac-

tion was neutralised by addition of 980 µl Illumina hybridisation buffer. Next, 60 µl of

the neutralised denatured DNA was combined with 440 µl Illumina hybridisation buffer

to obtain a 12 pM DNA concentration for sequencing. Our TCR libraries are of lower

variability than i.e. whole transcriptome libraries, since we only sequence one type of

transcript, namely the TCR↵ or TCR� cDNA. Hence, a high amount of phiX control

library (10%) was added to the sample before sequencing. The template hybridisa-

tion and first extension was done using the cBot 2 System (Illumina, San Diego, US).

Subsequently, the TCR libraries were paired-end sequenced in rapid mode. Sequence

read length was 150 bp or 175 bp in each direction, and index read length was 8 nt per

direction.
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3.1.4 Isolation and PCR amplification of mini-EBV–specific DNA

Infection of B cells with mini-EBV leads to expression of genes delivered by the virus.

In order to confirm the successful transformation of the B cells through mini-EBV, DNA

was isolated and samples were tested for the presence of mini-EBV–specific DNA se-

quences. First, 1 ml cell suspension was transferred to an 1.5 ml reaction tube and

spun down in a desktop centrifuge at 300⇥g for 10 min at room temperature (rt). The

supernatant was removed and cells were lysed by addition of 25 µl 50 mM sodium

hydroxide and subsequent incubation at 95�C for 5 min. Samples were then cooled

down to rt and 4 µl 1 M TRIS hydrochloride (pH=7.0) was added to neutralise the reac-

tion. To remove cell debris, samples were centrifuged at 14,000⇥g for 1 min at rt and

25 µl supernatant was transferred to a new 1.5 ml reaction tube. Next, the PCRs were

assembled and run as shown in Table 3.3.

Table 3.3: Assembly (left) and thermocycler settings (right) of the PCR for amplification
of EBV DNA amplicons.

Ingredient Vstock cend

mini-LCL DNA 2 µl -
dNTP mix 5 µl 0.2 mM
cam-up primer 1.5 µl 0.3 µM
cam-down primer 1.5 µl 0.3 µM
gp85c primer 1.5 µl 0.3 µM
gp85d primer 1.5 µl 0.3 µM
Taq polymerase 1 µl 0.1 U/µl
10⇥ Taq buffer 5 µl 1⇥
H2O 31 µl -

Vtotal 50 µl

PCR step T [�C] t [s]

Initial denat. 95 300
Denaturation 95 45

9
=

; 30⇥Annealing 59 45
Elongation 72 45
Final elong. 72 600

3.1.5 Agarose gel electrophoresis

Argarose gel electrophoresis was used to validate functionality of the newly designed

TCR↵ multplex PCR primers for sequencing library preparation and to confirm the

identity of freshly transformed (mini-)LCLs. Depending on the number of PCR samples,

1.5% agarose gels were made by mixing 1.05 g (small gel) or 1.8 g (large gel) agarose

with 70 ml or 120 ml 1⇥TAE buffer, respectively. To fully dissolve the agarose, the

mixture was brought to boil using the microwave. Right before pouring the gels, 2 or

3 drops ethidium bromide were added to stain the DNA amplicons on the gel. 1.5 mm

combs were used to make 10 or 20 pockets in the gel. 25 µl of a mixture consisting of

25 µl sample and 5 µl 6x loading dye were loaded in each sample pocket. As a marker,
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1 µl 100 bp GeneRuler ladder, diluted with 19 µl H2O, was mixed with 5 µl loading dye

and 20 µl were applied. The gel electrophoresis was run with 1⇥TAE buffer as running

buffer at a voltage of approximately 9 V/cm for 1 hour (h). DNA bands on the gel were

visualised using the Vilber Lourmat gel documentation system.

3.2 Cell culture
In this thesis, most experiments were performed with human PBMCs or derived cell

lines. Moreover, CD40-ligand–expressing LL8 mouse fibroblasts were used to pro-

duce and maintain CD40-stimulated human B cell lines (B blasts) (Garrone et al. 1995;

Wiesner et al. 2008; Rancan et al. 2015). Cell culture medium was always RPMI1640

liquid medium supplemented with 8% or 10% fetal calf serum (FCS), 100 U/ml peni-

cillin, 100 µg/ml streptomycin, and 100 nM sodium selenite. Unless stated otherwise,

cells in 15 ml or 50 ml Falcon tubes were spun down in a large bench centrifuge at

speed 300⇥g and rt for 10 min. Cells were handled under sterile conditions in a lam-

inar flow hood. They were counted and phenotypically observed under a microscope

at 10⇥ and 50⇥ magnification.

3.2.1 Isolation of human peripheral blood mononuclear cells

Blood was drawn from healthy adults with their informed consent or obtained from buffy

coats of anonymous blood donors (Institut für Transfusionsmedizin, Ulm, DE). Clotting

of freshly drawn blood was prevented by adding 0.5 ml heparin per 60 ml syringe.

The blood was transferred to 50 ml Falcon tubes at up to 20 ml (buffy coats) or up to

30 ml (fresh blood) per tube. Next, the blood was diluted with phosphate-buffered saline

(PBS) to 35 ml. For PBMC separation by density gradient centrifugation, approximately

13 ml Ficoll with a density of 1.077 g/ml was carefully layered beneath the diluted blood.

Next, the blood samples were centrifuged at 1000⇥g at rt for 25 min with slow acceler-

ation and deceleration in order to separate the blood samples into layers (Figure 3.2).

Optionally, 10 ml plasma were removed and stored in a 15 ml Falcon tube at -20�C for

serological tests. The PBMC layer was transferred to a new 50 ml Falcon tube and

diluted to 50 ml with PBS to lower the cell density. After standard centrifugation, the

supernatant was discarded and the pellet was resuspended in PBS. If a sample was

split into multiple tubes, cells from the same sample were combined in this step. Again,
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Figure 3.2: Layers of blood samples after density gradient centrifugation.

the suspension was topped up to 50 ml, cells were spun down by centrifugation and

the supernatant was removed. This washing procedure with PBS was repeated two

more times before the PBMCs were counted. The freshly isolated PBMCs were either

used in experiments or were divided into aliquots and cryopreserved until use.

3.2.2 Cell counting

Per sample, 10 µl cell suspension was mixed with 10 µl 0.4% trypan blue solution.

Then, 10 µl stained cell suspension was transferred to a hemocytometer and counted.

If cell concentrations were too high and exceeded 4 million cells/ml, cell suspensions

were diluted 1:5 or 1:10 with PBS prior to staining with trypan blue solution.

3.2.3 Cryopreservation of cells

Cryomedium for long-term storage of human cells was RPMI1640 liquid cell culture

medium mixed with FCS and dimethyl sulfoxide (DMSO) at a ratio of 5:4:1. Cells were

spun down by centrifugation (300⇥g, 10 min, rt), resuspended in 1 ml cryomedium,

and transferred to 1.8 ml Nunc CryoTubes. The cryotubes were kept on ice and stored

at -80�C as soon as possible. After few weeks to months, the cryopreserved cells were

relocated to liquid nitrogen tank, where they were stored in the gas phase until use.

Frozen cells were quickly thawed with and taken up in 10–20 ml pre-warmed standard

cell culture medium. If the thawed cells were isolated from buffy coats, they were

passed through a cell strainer to remove aggregates. Then, cells were centrifuged, the
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DMSO-containing supernatant was removed, and cells were resuspended in fresh cell

culture medium or PBS.

3.2.4 Establishment of mini-lymphoblastoid cell lines

In order to analyse the human TCR repertoire against full-length CMV antigens, mini-

lymphoblastoid cell lines (mini-LCLs) were established by infecting PBMCs with a mini-

EBV containing encoding only EBV proteins, or EBV proteins together with one addi-

tional CMV antigen, which was either pp65 or IE1. The mini-EBV particles for B-cell

transformation were produced in our lab as previously described (Moosmann et al.

2002; Ameres et al. 2015). As a positive control for infection, full-length EBV produced

by the cotton-top tamarin cell line B95.8 (Miller et al. 1972; Miller and Lipman 1973)

was used. Stable mini-LCL cell lines were generated with existing virus supernatants

as described by Moosmann et al. (Moosmann et al. 2002). Firstly, PBMCs were thawed

according to Section 3.2.3 and seeded at 400,000 cells per well on a 96-well flat-bottom

plate in 100 µl cell culture medium supplemented with 1 µg/ml Cyclosporin A (CsA).

CsA is a T-cell inhibitor and prevents outgrowth of T cells in mini-LCL cultures. Per

mini-LCL, as well as for the positive and negative controls, six replicates were seeded.

Then, 100 µl freshly thawed mini-EBV–containing cell culture supernatant was added

to each well for mini-LCL generation. For the positive control, 10 µl EBV-containing

B95.8 supernatant was diluted with 90 µl cell culture medium and 100 µl diluted B95.8

supernatant was added per well. For the negative control, 100 µl cell culture medium

was added to each well. The cells were co-incubated with mini-EBV supernatants or

controls at 37�C for 3 h or overnight for infection. Next, 150 µl medium was carefully

replaced by 150 µl fresh CsA medium without touching the infected cells on the bot-

tom of each well. Cells were then incubated until they proliferated strongly and formed

spherical aggregates. Every week, 100 µl supernatant was exchanged with 100 µl

fresh CsA medium. When the cell culture medium started to turn acidic and mini-LCL

outgrowth was observed, mini-LCLs were expanded 1:2 or 1:3 once or twice a week

depending on the growth rates. The mini-LCLs grow non-adhesively and were first

expanded on 48-well plates, then 24-well plates, 12-well plates, 6-well plates, and, fi-

nally, in cell culture flasks stored upright in the incubator. Approximately 4 weeks past

infection, addition of CsA to the medium was discontinued. The identities of the best-
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growing mini-LCLs were confirmed as described in Section 3.1.4 and further passaged

or cryopreserved in 1 ml aliquots until use.

3.2.5 Generation and maintenance of CD40-stimulated B cell lines

CD40-stimulated B cells (B blasts) were produced from human PBMCs by co-culture

with LL8 feeder cells (Garrone et al. 1995; Wiesner et al. 2008; Rancan et al. 2015).

For this purpose, the LL8 cells were harvested and irradiated at �180 Gy for 5 h in a
137Cs device before they were plated at 1 million cells per plate on a 96-well flat-bottom

plate. The irradiated LL8 cells were rested for 1 day in an incubator which allows them

to adhere to the bottom. On the next day, PBMCs were thawed as described in Sec-

tion 3.2.3. All supernatant was removed from the irradiated LL8 feeder cell wells and

the PBMCs were seeded at different concentrations in 200 µl cell culture medium con-

taining 1 µg/ml CsA and 2 ng/ml IL-4. The cell numbers seeded per well were 2⇥105,

105, 5⇥104, 2.5⇥104, and 1.25⇥104; 6 wells were prepared for each cell number. Ev-

ery week, cells were transferred to new LL8 feeder plates and half of the medium was

exchanged by freshly prepared cell culture medium with CsA and IL-4. When B blasts

proliferated strongly, they were split 1:2 to a larger plate, i.e. to a 48-well plate at first,

and in later passages to 24-well and 12-well plates. Of all cultures that proliferated, the

cultures with the lowest seeded cell number were kept and further expanded. After 3

months in culture, CsA was omitted in B blast cell culture medium.

3.3 T-cell stimulation assays

3.3.1 Peptide stimulation assay

CMV-epitope–specific T cells were expanded by in vitro stimulation of PBMCs with a

single HLA class I-restricted peptide per culture. 25 million PBMCs were suspended in

2 ml standard cell culture medium containing 5 mg/ml peptide and were incubated at

37�C for 1 h. Subsequently, cells were washed thrice with PBS to remove excess pep-

tide. Next, the cells were resuspended in 12.5 ml cell culture medium supplemented

with 50 U/ml IL-2 and distributed at 2.5 ml/well to a 12-well plate. The plate was placed

in an incubator. After 6±1 days, the cells of each well were resuspended, distributed to

two wells, and 1 ml of fresh culture medium supplemented with IL-2 was added to each
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well. Cells were harvested on day 10 of culture and cryopreserved, used to isolate

RNA, or stained for flow cytometry.

3.3.2 Stimulation with mini-LCLs

Firstly, mini-LCLs were �-irradiated with 50 Gy in a 137Cs device. Then, 1.5⇥105 mini-

LCL cells were combined with 6⇥106 PBMCs in 3 ml standard cell culture medium

per replicate in a 12-well plate. Four replicates were made per culture. After 9 days,

and then every 7 days, the T cells were restimulated. For this purpose, cultures were

harvested, washed, and counted. 3⇥106 T cells per well were seeded on a 12-well

plate and coincubated with 106 irradiated mini-LCLs in 3 ml medium with 50 U/ml IL-2.

On day 30, cultures were harvested and T cells were further analysed.

3.3.3 Stimulation with peptide pools

PBMCs were stimulated as described in Section 3.3.1, but with multiple epitopes si-

multaneously. For this pupose, 32 CMV-derived peptides were mixed in 8 different

pools as listed in Table 3.4. These CMV peptides were selected, because they were

previously published as CD8+ T-cell epitopes with known HLA restrictions. The sole

exception was epitope KLG-K, which was added because it is a CMV strain variant of

epitope KLG. Per pool, 12 or 13 different epitopes were combined, and each peptide

was present in a unique subset of pools, which we termed the ”address” of the pep-

tide. Epitope variants were also included. These variants were of different types: (i)

epitope variants from different CMV strains, (ii) shorter or longer versions of epitopes,

and (iii) shifted versions of epitopes. The variant peptides were added to the same

pools as the corresponding reference peptide. To make the pools, each peptide was

dissolved in 500 µl DMSO (cstock=10 mg/ml) and 20 µl of each peptide stock was added

to the respective pools. The pools were topped up with DMSO to 400 µl, so that the

final concentration per peptide was 0.5 mg/ml. Up to 200 million PBMCs from healthy

donors were resuspended in 16 ml cell culture medium and split to 8 different 15 ml

Falcon tubes. Then, 4 µl of one of the eight peptide pools was added to each sam-

ple (cend=1 µg/ml per peptide). Each sample was incubated, washed, and processed

as described for the single peptide stimulation in Section 3.3.1. The pool stimulation

experiments were performed by Fenja Gerpott within the framework of her Master’s

thesis and supervised by me.
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Table 3.4: Composition of 8 peptide pools containing 12 or 13 defined CMV-derived
peptide sequences each. Every peptide was present in exactly 3 pools, as indicated by
”x”, and the combination of pools was unique for each peptide. Peptide variants were
distributed to the same pools as the reference peptide; they are listed in parentheses.
The number of the unique pool combinations are designated ”address” of a peptide.
See Table 2.13 for full sequences and further information on all peptides.

Peptide Pool Address1 2 3 4 5 6 7 8
ATV x x x 124
AYA (AYA-10) x x x 238
CED x x x 167
CRV (CRV-I) x x x 158
DAL x x x 168
DEE (DEE-D) x x x 123
EEA (EDA) x x x 278
EFF (QEF) x x x 234
ELK (ELR,ELK-I,ELR-I) x x x 467
FPK x x x 134
FPT x x x 356
FRC x x x 237
GPI x x x 247
HER x x x 137
IPS x x x 578
KEV x x x 678
KLG (KLG-K) x x x 146
KQI x x x 358
NLV x x x 468
NQW x x x 245
QIK x x x 178
QYD x x x 568
RCP x x x 128
RIK x x x 345
RPH (RPH-10) x x x 567
TPR x x x 456
TRA x x x 145
TSD x x x 357
VLE (ILE) x x x 135
VTE x x x 346
VYA x x x 267
YSE x x x 246

3.3.4 Stimulation of T-cell clones for the IFN� ELISA

Since the results from peptide pool stimulation assays raised the concern that some

cross-contamination of peptides or peptide pools may have occurred, the purity of CRV

and FRC peptides in the old peptide batch, the new peptide batch, and the assembled

pools was indirectly assessed by quantifying the response of antigen-specific Tcell

clones to these peptide preparations. To do so, T-cell clones with known specificity for

CRV or FRC were short-term–stimulated with peptide-loaded B blasts to measure the
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resulting IFN�-secretion. B blasts expressing the required HLA for presentation of CRV

and FRC, HLA-C*07:02, were counted, spun down and resuspended at 20,000 cells/ml

in standard cell culture medium. Per condition, 1 ml cell suspension was transferred

to a 15 ml Falcon tube. Peptides or peptide pools were added to the B blasts at a

final concentration of 1 µg/ml and cells were incubated at 37�C for 1 h. Subsequently,

B blasts were washed with PBS to remove excess peptide and resuspended in 1 ml

medium. 10,000 B blasts (in 100 µl medium) per well were seeded in triplicates for

each condition on a 96-well V-bottom plate. Then, 10,000 cells of the CRV-specific or

FRC-specific T-cell clone in 100 µl standard cell culture medium per well were added to

the peptide-loaded B blasts. The plate was incubated overnight at 37�C. The following

day, the supernatant was tested for IFN� as described in Section 3.4.3.

3.4 Immunological methods

3.4.1 Serum isolation

Human serum was isolated from fresh blood samples. Approximately 5 ml blood were

drawn from healthy donors into a serum tube without anti-coagulant. It was left for

blood clotting at rt for approximately 30 min. The supernatant, which is the serum, was

then transferred to 1.5 ml reaction tubes and stored at -20�C until use.

3.4.2 CMV serology

CMV status was determined by ELISA using the Human Anti-Cytomegalovirus IgG

ELISA Kit (abcam). The ELISA was conducted according to the manufacturer’s pro-

tocol using the supplied reagents and consumables. Absorption was measured at

450 nm with the automated plate reader EL800.

3.4.3 IFN� ELISA

An IFN� ELISA with supernatants from overnight peptide-stimulated T-cell clones (Sec-

tion 3.3.4) was performed using the Human IFN-� ELISA development kit (Mabtech)

as per manufacturer’s instructions, but using half of the recommended volumes of su-

pernatant samples and diluted reagents (anti-IFN� capture antibody, biotinylated anti-

IFN�-antibody, and streptavidin-alkaline phosphatase). Plates were then incubated

with 100 µl of alkaline phosphatase substrate solution (final concentration: 1 mg/ml
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para-nitrophenylphosphate, 0.8 mM MgSO4, 10% diethanolamine in water, pH 9.5) for

20min. Alkaline phosphatase activity was measured via absorption at 450 nm with the

automated plate reader EL800.

3.4.4 Magnetic bead separation

Before or after stimulation with single peptides (Section 3.3.1), PBMCs or peptide-

stimulated cells were CD8-enriched by magnetic-activated cell sorting (MACS) as per

CD8 MicroBeads instructions with few modifications described as follows. During the

whole procedure, all cells and reagents were kept on ice. The columns and the magnet

were pre-cooled in a fridge. In summary, cells were harvested or thawed, spun down by

standard centrifugation (300⇥g, 10 min) and subsequently taken up in ice-cold MACS

buffer, which was PBS supplemented with 2% FCS; 80 µl MACS buffer were used

per 107 cells. Cells were then incubated with CD8 MicroBeads using 20 µl beads

per 107 cells. After thorough washing, the magnetically labelled cells were transferred

to an MS or LS column fixed in a MACS Separator magnet and labelled cells were

immobilised on the column. The flow-through was collected and further analysed or

cryopreserved as CD8-depleted reference sample. Columns were washed twice with

ice-cold PBS buffer to remove residual unlabelled cells, before CD8-positive cells were

flushed out and further analysed or cryopreserved. Analogously, CD4-positive lympho-

cytes were enriched from PBMCs by magnetic sorting with CD4 MicroBeads.

3.4.5 Flow cytometry

Phenotypes of PBMCs and sorted and/or stimulated cell samples were analysed by

flow cytometry. In doing so, information about T-cell subsets within samples was ob-

tained and the poportions of epitope-specific T cells were determined. Fluorescence-

activated cell sorting (FACS), in this thesis synonymously used for flow cytometry mea-

surement without cell sorting unless explicitly stated otherwise, was also used to check

the purity of MACS-enriched T-cell entities. FACS buffer was always PBS supple-

mented with 2% FCS. All cell samples, buffers, and antibodies were kept on ice at

all times and centrifugation was carried out at 4�C.
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3.4.5.1 Antibody and multimer titration

In order to determine the minimum amount of antibody or multimer required to suffi-

ciently stained all marker-positive cells in a sample, 3⇥105 cells each were co-incubated

with different concentrations of fluorochrome-labelled antibodies or peptide-MHC multi-

mers on ice for 20 min and then washed twice with 1 ml FACS buffer. The fluorescence

was then measured with the BD LSRFortessa flow cytometer. For each antibody or

multimer, the optimum amount for staining was determined as the lowest amount that

did not lead to a major downward shift of the positive population (Figure 3.3).

Figure 3.3: Titration of fluorescent-labelled antibodies and multimers, exemplarily
shown here for PBMCs from donor P01 stained with ↵CD4-APCCy7. Samples shown
here were gated on lymphocytes in the forward scatter vs. side scatter view. The low-
est concentration that does not shift the positive population out of the gate, here 0.5 µl
↵CD4-APCCy7 antibody per 3⇥105 cells, was later used in the staining panels.

3.4.5.2 Surface marker staining

In order to assess the different cell populations within samples, cell surface markers

were stained with different fluorescence-labelled, commercially available antibodies.

Over the course of this thesis, the panel was changed for improved staining results.

Generally, the surface markers CD3, CD4, CD8, and KIR2DL2/3 (CD158b) were al-

ways stained. CD3 is a ubiquitous receptor expressed on T cells, CD4 is a marker

for T helper cells, CD8 is a maker for cytotoxic T cells, and KIR2DL2/3 is a receptor

expressed on NK cells. KIR2DL2/3-positive cells were excluded from quantification

of HLA-C–restricted T-cell responses in the flow cytometry data analysis step, since

HLA-C streptamers may also stain NK cells or T cells of irrelevant specificity that ex-

press KIR2DL2/3. In addition to these markers, the differentiation markers CD45RA

and CCR7 (CD197) were occasionally stained to investigate the differentiation state of

specific T cells in the sample. The panels used throughout the thesis can be found

in Table 2.9. Per sample, up to 3⇥105 cells were stained. A master mix containing
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all panel antibodies was prepared by mixing the amounts of antibody determined by

titration and adding FACS buffer to 20 µl per sample. Next, cells were washed with

FACS buffer once and distributed to 1.5 ml reaction tubes or V-bottom 96-well plates at

up to 3⇥105 cells per tube or well. After centrifugation at 4�C, the supernatant was re-

moved and cells were thoroughly resuspended in 20 µl master mix per sample. Then,

the cells were incubated with the antibodies on ice in the dark for ⇡20 min. Samples

were washed twice. Subsequently, cells were taken up in 100 µl FACS buffer for direct

measurement, or they were fixed with 100 µl FACS buffer containing 1% formaldehyde

and stored at 4�C in the dark until the next day.

3.4.5.3 Pentamer staining with commercially available multimers

All of the HLA-A–restricted and HLA-B–restricted multimers used in this project were

ready-to-use pre-assembled pentamers purchased from ProImmune (Table 2.11). Per

sample, up to 3⇥105 cells were stained with 0.5 µl unlabelled pentamer in 9.5 µl FACS

buffer. Staining took place at rt for ⇡15 min. For the negative controls, cells were

incubated in 10 µl with no pentamer added. After an intermediate washing step, cells

were stained with a surface marker panel as described above, to which 1 µl Fluorotag-

PE was added per sample. Fluorotag-PE binds to the unlabelled pentamers on the cell

surface and is required to visualise the multimer-specific cells in the flow cytometer.

3.4.5.4 Streptamer staining

For HLA-C–restricted CMV peptides, no off-the-shelf multimers were available until

very recently. In this project, peptide-MHC streptamers were therefore assembled

in vitro from peptide-MHC monomers, which were produced and kindly provided by

Fabian Schlott, Michael Neuenhahn, and Dirk Busch (Technical University Munich,

Munich, DE). To assemble the multimers, 0.4 µl peptide-MHC monomer was mixed

with 0.5 µl Strep-Tactin PE and 9.1 µl FACS buffer and incubated on ice shielded from

light for ⇡30 min. For the negative controls, 0.5 µl Strep-Tactin PE was combined with

9.5 µl FACS buffer and incubated under the same conditions. Per up to 3⇥105 cells,

10 µl incubated streptamer or control was mixed thoroughly with the cells and samples

were incubated on ice in the dark for ⇡30 min. Subsequently, cells were spun down

and stained with a surface marker panel as described above.
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3.4.5.5 Compensation controls

Compensation controls were included in each flow cytometry experiment. For each

fluorochrome, 5⇥104–105 cells were stained with one of the fluorescence-labelled an-

tibodies used in the surface marker panel alone. Since KIR2DL2/3 was not expressed

on a high proportion of cells, anti-CD4 antibody labelled with the same fluorophore

was used as compensation control for the KIR2DL2/3 antibody. Cells for the compen-

sation controls were resuspended in a mix of 1 µl fluorescence-labelled antibody and

19 µl FACS buffer and incubated on ice in the dark for ⇡20 min. Excess antibody

was removed by washing twice, and cells were resuspended in 100 µl FACS buffer for

measurement or fixed with formaldehyde and stored until use.

3.4.5.6 Flow cytometry measurements

The stained cell samples were transferred to FACS test tubes and left on ice in the dark

until BD LSRFortessa flow cytometer measurement. Fluorescence was compensated

by measuring 104 events of unstained cells and single fluorochrome-stained samples.

After compensation, up to 105 events were recorded per sample using the built-in BD

FACSDiva software. Recorded FACS data was later analysed as described in Sec-

tion 3.5.2.

3.5 Bioinformatics and data analysis

3.5.1 Primer design for TCR↵ library generation

The binding portions of the primers for TCR↵ sequencing were designed to resemble

the properties of the TCR� sequencing primers. With the exception of primer ss-BV15,

which was designed by Xiaoling Liang, the binding portions of the TCR� sequencing

primers were originally published by Robins et al. (Robins et al. 2009). From this set

of TCR� primers, the criteria listed in Table 3.5 were derived and applied to TCR↵

primer design. In addition to these requirements, the risk of TCR↵ primer dimerisation,

duplex formation, and hairpin structure formation was minimised using the ”Quicktest

Primer” option of the software MacVector. Finally, the Illumina Read 1 priming site was

added to the 5’ end of each TRAV-binding forward primer sequence as a non-pairing

overhang. In addition, two different reverse primers (C↵A and C↵B), which bind to
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different parts of the TRAC region, were designed and the Illumina Read 2 priming site

was added to the 5’ end of both primers.

Table 3.5: Criteria for the design of TCR↵ multiplex primers as derived from the previ-
ously established TCR� primers (Robins et al. 2009).

Parameter Required value

Length 20 – 31 nt
Upstream position⇤ 31 – 38
Last base C or G
GC content 40 – 60%
Tm(Santa Lucia)†,‡ 63.2 – 68.2�C
Tm(Multiple Primer Analyzer)‡,§ 70.0 – 75.0�C

⇤ Position upstream of CDR3, which here starts after the canonic cysteine codon
† Determined using MacVector
‡ Tm = melting temperature
§ Determined with the online tool ”Multiple Primer Analyzer”

3.5.2 Flow cytometry data analysis

The flow cytometry data were analysed using the software FlowJo. Figure 3.4 shows

the gating strategy that was followed throughout this project. The events were first

gated on lymphocytes in a plot of the forward scatter area (FSC-A) and the side scatter

area (SSC-A). Next, doublets were excluded in an FSC-A versus forward scatter height

(FSC-H) plot. Finally, events were gated on CD3-expressing T cells. Since NK cell

receptor KIR2DL2/3 may be bound by HLA-C–streptamers, these cells are excluded in

streptamer-stained samples by gating on KIR2DL2/3-negative events.

3.5.3 Sequencing data analysis

Sequencing data was uploaded by Stefan Krebs to the group’s Galaxy repository

(http://blum-galaxy.genzentrum.lmu.de/galaxy/), where raw data was processed,

downloaded and further analysed using various software.

3.5.3.1 Raw data processing

Raw data deposited on the Galaxy platform were accessed through the virtual private

network of Ludwig-Maximilians-University Munich. Using the built-in online tools of the

Galaxy platform, raw data were first demultiplexed. During demultiplexing, all reads

obtained from a sequencing lane were grouped by barcode. Two separate files con-
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Figure 3.4: Gating strategy for T cells, here exemplarily shown for PBMCs isolated
from donor P07. All events were gated on lymphocytes and subsequently on single
cells. Next, T cells were isolated by gating on CD3-expressing cells. For multimer
staining of T cells targeting HLA-C*07:02–restricted epitopes, KIR2DL2/3-positive cells
were excluded to avoid false positive events due to the presence of NK cells or irrele-
vant KIR2DL2/3-positive T cells in the samples.

taining the forward and reverse reads, respectively, were generated for each barcode.

When demultiplexing reads from single-barcoded libraries produced by Xiaoling Liang,

no barcode mismatch was tolerated in the 6-nt barcodes. For the dual-barcoded li-

braries generated in this thesis, a single mismatch per 8-nt barcode was permitted.

Demultiplexed sequencing data was then quality-filtered using the built-in FastqFilter

tool in paired-end mode. FastqFilter trims low-quality bases from each side and re-

moves reads that are shorter than a user-defined length. If a forward read is removed

due to poor quality in this process, the paired read in the reverse read file is also re-

moved and vice versa. Here, 100 nt was used as the minimum tolerated length in

FastqFilter. Demultiplexed and quality-filtered forward and reverse read files were then

downloaded from Galaxy and long-term stored on an external hard drive.

3.5.3.2 Alignment of reads and clonotype clustering

Forward and reverse read files from Galaxy were further processed with the java-based

software MiXCR (Bolotin et al. 2015). MiXCR was accessed via Terminal. Reads

were aligned to TCR↵ or TCR� template gene sequences, clustered to clonotypes of

identical reads, and exported in tab-delimited format with the following command lines:
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// 1. Align reads:

mixcr align --loci TRB --species hsa --report ALIGN_REPORT_samplename.txt

-OminSumScore=258

-OvParameters.geneFeatureToAlign={FR3End\(-26\):FR3End\(+3\)}

-OcParameters.geneFeatureToAlign={CBegin:CBegin\(+20\)}

-OjParameters.geneFeatureToAlign={FR4Begin\(-3\):FR4End}

-OjParameters.parameters.floatingRightBound=false

-OvParameters.parameters.minAlignmentLength=25

-OjParameters.parameters.minAlignmentLength=25

-OvParameters.parameters.absoluteMinScore=115

-OjParameters.parameters.absoluteMinScore=125

-OvParameters.parameters.relativeMinScore=0.8

-OjParameters.parameters.relativeMinScore=0.8

-OcParameters.parameters.relativeMinScore=0.8

-OvParameters.parameters.maxHits=5 -OjParameters.parameters.maxHits=5

-OvParameters.parameters.scoring.gapPenalty=-28

-OjParameters.parameters.scoring.gapPenalty=-28 input_fwd_read.fastqsanger

input_rev_read.fastqsanger align_samplename.vdjca

// 2. Cluster clonotypes:

mixcr assemble --report ASSEBMBLE_REPORT_samplename.txt

-OassemblingFeatures=[CDR3] -OminimalClonalSequenceLength=6

-OqualityAggregationType=Average -ObadQualityThreshold=20

-OmaxBadPointsPercent=0 -OaddReadsCountOnClustering=true

-OcloneClusteringParameters.searchDepth=2

-OcloneClusteringParameters.searchParameters=oneMismatch

-OcloneClusteringParameters.clusteringFilter.specificMutationProbability=1E-4

align_samplename.vdjca clones_samplename.clns

// 3. Export clonotype tables:

mixcr exportClones --filter-out-of-frames --filter-stops -count -fraction

-sequence -aaFeature CDR3 -vHit -vHitsWithScore -jHit -jHitsWithScore

-dHit -cHit -lengthOf CDR3 -quality -minFeatureQuality CDR3

clones_samplename.clns clones_samplename.txt
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Forward and reverse read pairs were first aligned to the best fitting V-region, J-region

and C-region of TCR template genes. Secondly, core clonotypes were assembled by

grouping identical reads of good quality. Reads containing few low-quality nucleotides

were then mapped to core clonotypes with similar sequences if possible. Furthermore,

high-frequency parent clonotypes and highly similar clonotypes with significantly lower

read counts were clustered, whereby only the information of the parent clonotype is

kept. Thirdly, relevant clonotype information, such as read count, proportion of reads

in sample, V and J gene use, CDR3 nt and amino acid sequence, and average CDR3

read quality, is extracted and exported to a tab-delimited .txt output file.

3.5.3.3 In-depth TCR repertoire analyses

All analyses described in the following sections were performed in R via the integrated

development environment RStudio. The R packages used in this project are listed in

Table 2.19. Custom R scipts were written for each analysis step.

3.5.3.4 Specific TCR� clonotypes from single peptide stimulations

Specific TCR� clonotypes for each CMV peptide were identified by comparing clono-

type frequencies in three samples from the same donor: a sample S that was stimu-

lated with the specific peptide of interest, a sample C that was stimulated with a control

peptide, and a sample U derived from unstimulated PBMCs. To count as specific,

TCR� clonotypes were demanded to be enriched in S over C and in S over U, and to

exceed a sample-specific read count (Figure 3.5). Let si, ci and ui be the proportion

of reads (relative read frequency) of clonotype i in the three samples. TCR� clono-

types must exceed two distinct enrichment cutoffs to count as specific (Figure 3.5B).

The first enrichment cutoff was determined as a local minimum of a weighted density

distribution of log10(si/ci) of all clonotypes i that met the requirement sici >10�6, i.e., of

all medium- to high-frequency clonotypes. Analogously, the second enrichment cutoff

was determined as a local minimum of a weighted density distribution of log10(si/ui)

of all clonotypes i fulfilling the condition siui >10�7. In order to eliminate low-fidelity

background signals, specific clonotypes were also required to exceed a specific sample

read count cutoff (Figure 3.5C). This cutoff was identified by analysing the two density

distributions of log10(si) for all clonotypes i that were of low frequency in control sam-

ples (i.e., an absolute frequency of 1–10 reads in sample C or sample U, respectively).
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Figure 3.5: Criteria for identification of peptide-specific TCR� clonotypes. As an ex-
ample, representative data from donor P01 for identification of CRV-specific T cells are
shown. Diagrams on the left relate to the binary comparison of the CRV-stimulated
sample and the TPR-stimulated sample (control peptide). Diagrams on the right relate
to the comparison of the CRV-stimulated sample and the unstimulated PBMC sample.
Only TCR�s that fulfilled all criteria were categorised as CRV epitope-specific. In dot
plots, a frequency of zero is plotted as a pseudofrequency of 0.5 reads. (A) Relative
frequencies of TCR� clonotypes. Red lines indicate the enrichment cut-off (diagonal
line) and the specific sample read count cut-off (horizontal line). (B) The enrichment
cut-off (red line) is defined as the local minimum of the weighted density distribution of
the logarithm of clonotype enrichment. Clonotype enrichment is the ratio of clonotype
frequencies in the CRV-stimulated sample and either control. (C) Read count cut-offs
(red line) were defined as local minima of the distribution of the logarithms of clonotype
counts, determined for clonotypes with a read count of 1 to 10 in the TPR-stimulated
(left) or unstimulated (right) sample. The mean of these two cut-offs was used as the
final specific sample read count cut-off. (D) Relative frequencies of TCR� clonotypes
as in A, but TCR� clonotypes that fulfil all inclusion criteria for being CRV epitope-
specific are shown in red. (E) Correlation of the log-transformed read frequencies of
CRV-specific clonotypes in the unstimulated and CRV-stimulated sample, with Pearson
correlation coefficient r. Figure and legend taken from Huth et al. 2019.
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The read count at a local minimum of both two distributions was determined, and the

mean of these two individual read counts served as the read cutoff value. If any of

these density distribution did not have a local minimum, the cutoff was positioned at

the global maximum of the density distribution ⇥ 100 (i.e., at �100 reads in sample S).

3.5.3.5 Antigen-specific TCR� clonotypes from mini-LCL stimulations

Identification of antigen-specific TCR� sequences from mini-LCL stimulations was a-

chieved in a similar manner as described in Section 3.5.3.4: The frequency of each

clonotype in the CMV antigen-stimulated sample ( b=si) was compared with its ex vivo

frequency ( b=ui) and with its frequency in the samples obtained by stimulation with an

empty-vector mini-LCL control ( b=ci). Unlike for the single-peptide stimulation, a fixed

enrichment value of 5-fold enrichment was demanded in the comparison of the CMV

antigen-stimulated sample and the unstimulated sample: si � 5 ⇥ ui. Setting a fixed

enrichment cutoff compared to the unstimulated sample was necessary, since popu-

lations of not-enriched and enriched TCR� clonotypes were not as sharply separated

as in the single peptide stimulation assay. This was likely due to the fact that a large

number of T-cells, both CMV-specific and EBV-specific, were enriched by mini-LCL

stimulation. Consequently, the minimum of the density distibutions in the mini-LCL–

stimulated versus unstimulated samples could not be identified with the R function for

analysis of single-peptide–stimulated samples. Another difference between the analy-

ses was that the read cutoff was determined by comparing only read frequencies in the

CMV antigen-stimulated and empty control mini-LCL–stimulated samples. Here, the

read cutoff was set at 2⇥ the absolute maximum of the logarithmic density distribution

of clonotypes with 1–10 reads in the control sample. Only TCR� sequences that were

enriched compared with both control samples and exceeded the computed read count

cutoff were considered specific for epitopes from the tested CMV antigen.

3.5.3.6 Specific TCR� clonotypes from peptide pool stimulations

Epitope-specific TCR� sequences from peptide pool stimulations were identified with

a simplified analysis of TCR� frequencies. For every peptide, the 5 pools that did

not contain the peptide served as controls for the 3 pools in which the peptide was

contained. All clonotypes that had at least 10-fold higher proportion of reads in any

3 pools compared to the remaining 5 pools were extracted from the MiXCR-processed
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sequencing data. Of these, all clonotypes whose pool combinations matched one of

the peptide addresses (Table 3.4) were categorised as specific for the given peptide.

Here is an example: A TCR� clonotype had �10⇥ higher proportional read frequency

in pools 4, 5, and 6 compared to pools 1, 2, 3, 7, and 8. This clonotype was assigned

the specificity TPR, because TPR is contained in pools 4, 5, and 6. Peptide-specific

TCR� sequences identified in this manner were removed when they had <10 reads in

any of the 3 pools matching the peptide address to exclude sequencing artefacts.

3.5.3.7 Shared or related epitope-specific TCR� sequences

TCR� sequences specific for a particular epitope were compared to find identical or

highly similar TCR� sequences shared between donors. For this purpose, all TCR�

sequences that were identical or differed in 1 amino acid from at least one other TCR�

sequences with the same CMV epitope specificity were isolated. This resulted in a set

of shared and similar TCR� sequences, which was further divided into TCR� clusters

which are present in multiple donors, and TCR� cluster candidates, which are TCR�

chain variants within the same donor.

3.5.4 Data visualisation

VJ use of epitope-specific TCRs was visualised with chord diagrams using the circlize

package in R. Scatter plots, heatmaps, and density plots comparing clonotype fre-

quencies in different samples were plotted in R with ggplot2. Formation probabilities

of shared or related and private epitope-specific TCR� sequences were determined

using the python-based OLGA algorithm (Sethna et al. 2019) and visualised in R. Bar

plots and overlays were made with Microsoft Excel combined with GraphPad Prism

or R. Multi-panel figures were assembled with Inkscape and Microsoft Powerpoint.

Amino acid logos were made from CDR3 amino acid sequences of TCR� families

using Berkeley’s WebLogo tool. Clusters of specific TCR� sequences were made with

R and Cytoscape.
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4.1 High-resolution TCR� profiling by short-term CMV
peptide stimulation

In this PhD project, the CMV-specific TCR repertoires of individuals and cohorts were

analysed in order to deepen our understanding of the human T-cell response against

the virus. The focus of the project was on analysis of the TCR� repertoire, because

the TCR� repertoire is generally more diverse than the TCR↵ repertoire (Murphy and

Weaver 2016); thus the �-chain seemed more likely to provide precise markers of TCR

specificity than the ↵-chain. Moreover, the TCR� chain is a better determinant for T-

cell clonotypes, since a single �-chain is expressed per T cell, whereas appoximately

25% of T-cells express 2 distinct functional ↵-chain sequences (Malissen et al. 1992;

Murphy and Weaver 2016). To assess the CMV-specific TCR repertoire, a former post-

doc in our group, Xiaoling Liang, established a protocol combining short term in vitro

stimulation of PBMCs with synthetic peptide and high-throughput Illumina sequencing

(Figure 4.1). First, virus-specific T cells were enriched by incubation of peptide-loaded

PBMCs for 10 days in the presence of IL-2. Next, RNA was isolated from bulk peptide-

stimulated cells and unstimulated PBMCs of the same donor and reversely transcribed

to cDNA with a TCR� gene-specific primer. In two subsequent PCR steps, a TCR�

gene-specific multiplex PCR and an adapter PCR, TCR� DNA was amplified and nu-

cleotide indices (barcodes) as well as the required primer binding sites and adapters

for Illumina sequencing were appended to the amplicons. Raw sequencing data was

quality-filtered and TCR� clonotypes were built using the software MiXCR (Bolotin et

al. 2015). TCR� sequences that were enriched in the peptide-stimulated sample com-

pared to both the unstimulated control sample and a sample stimulated with a different

peptide (three-sample comparison) were identified to be specific for the tested CMV

epitope (Section 3.5.3.4).

Initially, the single peptide stimulation assay was tested with CMV-positive donors that

co-expressed HLA-B*07:02 and HLA-C*07:02, because these HLA alleles are highly

frequent in persons of European descent (Gragert et al. 2013) and present some of

the most immunogenic CMV epitopes known to date (Ameres et al. 2013; Kim et al.

2011; Weekes et al. 1999). In donors that additionally expressed HLA-A*02:01 or HLA-
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Figure 4.1: Experimental setup. (A) Schema of the peptide stimulation assay and
three-sample comparison for expansion and analysis of CMV-specific T cells. PBMCs
were isolated from peripheral blood of healthy donors, loaded with single immunogenic
CMV peptides, and cultured for 10 days with IL-2. Cells before and after stimulation
were lysed, and TCR� libraries were prepared from bulk RNA and high-throughput–
sequenced. Specific TCR� sequences for each epitope were identified by comparing
TCR� clonotype frequencies in three samples. These samples were 1) stimulated with
specific peptide, 2) stimulated with control peptide, and 3) not stimulated. Clonotypes
that were enriched by stimulation with the specific peptide, but not in controls, were
considered specific. (B) Preparation of TCR� libraries for paired-end sequencing of
the CDR3. After total RNA isolation, TCR� RNA was reversely transcribed using a
C� gene-specific primer (1). In the first PCR step (2), cDNA was amplified by semi-
multiplexed PCR with a mixture of 45 forward primers that covered all V� genes. All
forward primers had identical overhangs that served to append the Illumina sequencing
read 2 priming site to the product. The reverse primer was complementary to both C�
genes and appended the Illumina sequencing read 1 priming site to the amplicon. In
the second PCR step (3), a single primer was used on each side to add Illumina i5
and i7 adapters and sample indices (barcodes) for multiplexed Illumina sequencing
(4). Figure taken from Huth et al. 2019.
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B*35:01, CMV epitopes restricted by these HLA alleles (Diamond et al. 1997; Khan et

al. 2002a; Gavin et al. 1993) were also included. T cells from 9 CMV-positive donors

(P01–P08 and P14) were stimulated with 1 of 7 HLA-matched CMV peptides. Of the

7 peptides, 2 were HLA-A*02:01–restricted (NLV and VLE), 2 were HLA-B*07:02–

restricted (RPH and TPR), 1 was HLA-B*35:01–restricted (IPS), and 2 were HLA-

C*07:02–restricted (CRV and FRC). Comprehensive lists of all tested donors with their

HLA type and of all CMV-derived peptides used in this project can be found in Ta-

ble 2.14 and Table 2.13, respectively.

4.2 Peptide stimulation increases the RNA content per
T cell

Cell were counted in samples before and after stimulation with a CMV-derived peptide.

After 10 days of co-culture with CMV peptide and IL-2, absolute cell numbers were

often lower than the amount of initially seeded cells in each stimulation (Figure 4.2A).

Cells from 5 of 9 donors reacted strongly to stimulation with FRC, as demonstrated

by the 1.25-fold to 2.1-fold increase in cell number at harvest. Stimulation with IPS

and TPR also led to an increase in cell number in 1 of 1 donor and 1 of 9 donors,

Figure 4.2: Change in cell number and RNA content per cell in PBMCs from 9 donors
stimulated with 1 of 7 HLA-matched CMV peptides. (A) Ratios of the number of cells
harvested after stimulation divided by the cell number seeded. Data were grouped by
the CMV-derived peptide with which the cells were stimulated. Red digits indicate the
number of donors that were treated with each peptide and black lines show the median
of each data subset. (B) Average RNA content per cell before and after stimulation
grouped by donor. The average amount of RNA obtained per cell is shown for all
peptides with which the donor’s cells were treated.
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respectively. RPH-stimulation marginally increased the cell number in samples of 2 of

7 donors. Cells stimulated with CRV, NLV, or VLE always decreased in number upon

peptide stimulation. To this point, it is unclear why changes in cell numbers due to 10-

day stimulation were different between donors and peptides. Possible reasons include

different strengths of the initiated CMV-specific T-cell responses, different proportion

of epitope-specific T cells in PBMCs, and different proliferative potential of activated

T cells.

Total RNA was isolated from unstimulated and peptide-stimulated PBMCs. The av-

erage RNA content per lysed cell was between 0.5 pg and 6 pg (Figure 4.2B). Un-

stimulated samples had RNA yields below 2.5 pg per cell. In 8 of 9 donors, the RNA

content in the unstimulated sample was the lowest or second lowest of all samples.

By contrast, the highest RNA yield per cell was obtained from the unstimulated sam-

ple in donor P04. When comparing the RNA contents per cell after stimulation with

different peptides, TPR–stimulated and VLE–stimulated cells were often among the

samples with the highest RNA yields of a donor. Interestingly, CRV–stimulated cells

harboured either one of the highest or lowest amounts of RNA compared to differently

treated samples of a donor. In general, there was a positive linear correlation between

the input cell number and output RNA yield of unstimulated samples (Pearson corre-

lation coefficient r=0.66; Figure 4.3) and peptide-stimulated samples (r=0.51). CMV

Figure 4.3: Comparison of RNA content in samples before and after stimulation with
CMV peptide. The plot shows total RNA yields of unstimulated and peptide-stimulated
samples as a function of the input cell numbers. CD8-enriched samples are repre-
sented by triangles and unsorted samples by circles. Pearson correlation coefficients r
were calculated for both time points.
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peptide-stimulated cells contained on average 1.75-fold more RNA than unstimulated

PBMCs and were slightly larger in size as observed under the miscroscope. Total RNA

yields were lower when cell samples were not CD8-enriched by MACS prior to lysis

and RNA isolation. A measurable increase in average RNA content per cell was antic-

ipated, because CMV-specific T cells are highly frequent in the blood of virus carriers

(Gillespie et al. 2000; Sylwester et al. 2005; Hosie et al. 2017) and because activated

T cells upregulate TCR expression approximately a day after activation (Paillard et al.

1990). Since only CD8+ T-cell epitopes were used to stimulate CMV-specific T cells, it

was expected that RNA content in CD8-enriched samples was higher than in unsorted

samples which contain higher proportions of unactivated cells.

4.3 Peptide stimulation enriches CMV multimer-posi-
tive T cells

Unstimulated PBMCs and peptide-stimulated cells were stained with peptide-MHC mul-

timers as described in Section 3.4.5 in order to determine the proportions of epitope-

specific T cells. Total events were first gated on lymphocytes, then single cells, and

finally CD3+ T cells as explained in Figure 3.4. KIR2DL2/3-positive events were ex-

cluded in stainings with HLA-C multimers, because the NK-cell receptor KIR2DL2/3

can also bind to HLA-C, which may lead to false-positive events. The proportions

of multimer-positive and thus peptide-MHC–specific T cells were calculated based on

the number of CD3+ lymphocytes. CMV-positive donors had substantial amounts of

CMV-specific T cells in their blood, while such T cells were rare or absent in CMV-

negative donors (Figure 4.4). Stimulation with HLA-matched peptides increased the

percentage of epitope-specific T cells in samples derived from CMV-positive donors,

but not in samples from CMV-negative donors. In the flow cytometry data analyses

presented here, background signals determined by control stainings without multimers

were subtracted from the proportion of multimer-positive T cells. Table 4.1 shows the

proportions of multimer-positive T cells in CMV-positive donors P01–P08 and P14 ex

vivo (d0) and after 10-day stimulation with the corresponding CMV peptide (d10). Pro-

portions of T cells specific for the tested peptides in ex vivo PBMCs varied between

donors. On average, FRC-specific T cells were most frequent in the ex vivo repertoire

of CMV-positive donors followed by CRV-specific T cells, with geometric means of 0.5%
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Figure 4.4: Frequency of multimer-positive T cells in PBMCs (ex vivo) and samples
stimulated with single CMV peptides from a CMV-positive donor (P07) and a CMV-
negative donor (N06). The figure shows representative flow cytometry plots of sam-
ples stained with streptamers CRV/HLA-C*07:02 or FRC/HLA-C*07:02, or pentamer
TPR/HLA-B*07:02. The controls for streptamer- or pentamer-treated samples were
treated with StrepTactin-PE or Fluorotag-PE, respectively, in the absence of peptide-
MHC monomer or multimer. Since the ex vivo samples were all derived from the same
starting material, one control was sufficient for both streptamer stainings (CRV and
FRC).

and 0.23%. Ex vivo frequencies of RPH- and TPR-specific T cells varied the most and

ranged from 0.0059% to 0.6% and from 0.0016% to 1.6%, respectively. Surprisingly,

levels of VLE-specific T cells were very similar in ex vivo samples from 3 of 4 donors.

The differences in ex vivo frequencies of CMV-specific T cells between donors were

even more apparent in a plot showing the proportions of multimer-positive T cells per

epitope for each donor (Figure 4.5A). While CRV-specific and FRC-specific T cells

were frequent across donors, proportions of RPH-specific and TPR-specific T cells

were high in some donors, but very low in others. Next, the relative enrichment of

CMV epitope-specific T cells by peptide stimulation was calculated by dividing the pro-

portion of specific T cells in the stimulated sample by their proportion in the ex vivo

sample (d10 ÷ d0). Average enrichment of epitope-specific T cells was strikingly sim-

67



4. RESULTS

Table
4.1:

P
roportions

ofspecific
T

cells
in

unstim
ulated

(d0)
and

peptide-stim
ulated

(d10)
sam

ples
ofdonors

P
01–P

08
and

P
14

in
percent[%

]ofC
D

3
+

T
cells,

as
m

easured
by

flow
cytom

etry,
and

calculated
T-cellenrichm

ent.
A

pproxim
ately

60%
ofstainings

w
ere

perform
ed

by
X

iaoling
Liang

and
reanalysed

in
this

thesis.S
om

e
stainings

are
m

issing
because

the
FR

C
/H

LA
-C

*07:02-m
ultim

er
w

as
notavailable

atthe
tim

e
ofstaining,orbecause

the
stim

ulation
w

as
notdone;they

are
m

arked
by

n.d.
(”notdone”).

B
lank

cells
indicate

thatno
staining

w
as

done
because

the
donor

does
notexpress

the
relevantH

LA
for

the
peptide.

G
eom

etric
m

eans
ofthe

T-cellproportions
and

the
enrichm

ent(d10÷
d0)

are
noted

in
the

bottom
row

.
M

ean
values

ofIP
S

stainings
are

notrepresentative,
since

only
one

donorw
as

analysed.Values
<

100
w

ere
rounded

to
2

significantdigits;values
�

100
w

ere
rounded

to
0

decim
alplaces.

E
nrichm

entw
as

calculated
from

non-rounded
frequency

values.

D
onor

C
R

V
FR

C
IP

S
N

LV
d0

[%
]

d10
[%

]
E

nrichm
ent

d0
[%

]
d10

[%
]

E
nrichm

ent
d0

[%
]

d10
[%

]
E

nrichm
ent

d0
[%

]
d10

[%
]

E
nrichm

ent

P
01

0.20
30

150
0.36

6.8
19

P
02

2.4
3.7

1.5
2.8

32
11

0.76
11

14
P

03
0.039

3.6
93

0.13
4.8

37
0.11

2.6
23

P
04

0.83
24

29
n.d.

n.d.
-

0.0031
0.17

55
P

05
0.27

4.4
16

n.d.
n.d.

-
0.19

36
192

P
06

0.061
0.58

9.4
n.d.

n.d.
-

P
07

0.27
1.6

6.0
0.50

16
33

0.24
3.7

15
P

08
0.92

5.0
5.5

n.d.
n.d.

-
0

0.82
-

P
14

0.030
0.027

0.90
n.d.

n.d.
-

G
eom

etric
m

ean
0.23

2.6
11

0.50
11

23
0.19

36
192

0.090
1.7

23

D
onor

R
P

H
TP

R
V

LE
d0

[%
]

d10
[%

]
E

nrichm
ent

d0
[%

]
d10

[%
]

E
nrichm

ent
d0

[%
]

d10
[%

]
E

nrichm
ent

P
01

0.011
4.6

419
0.11

26
238

P
02

0.16
0.42

2.6
0.18

16
91

0.36
3.3

9.1
P

03
0.084

3.3
39

0.025
1.0

40
0.28

2.3
8.1

P
04

0.011
0.66

59
0.0062

5.7
912

0.0029
n.d.

-
P

05
0.60

5.4
9.0

0.0016
0.000060

0.040
P

06
0.0059

0.22
38

0.18
4.2

24
P

07
0.10

1.6
16

0.20
3.6

18
0.33

6.2
19

P
08

0.19
4.8

25
0.29

4.0
14

0
0.040

-
P

14
0.50

1.9
3.7

1.6
1.3

0.79

G
eom

etric
m

ean
0.073

1.6
22

0.076
1.3

17
0.099

1.2
11

68



4. RESULTS

Figure 4.5: Ex vivo frequencies and enrichment of CMV-specific T cells in samples of
donors P01–P08 and P14 as determined by flow cytometry. Background signal mea-
sured in the negative controls was subtracted from the proportions of positive T cells
in each sample. Samples derived from donors P04, P05, P06, P08, and P14 were not
stained with FRC streptamer, since it was not available at the time. (A) Proportion of
T cells that are specific for the tested epitopes in ex vivo samples. The proportions of
positive T cells were plotted on a linear y-axis (bar chart) and a logarithmic y-axis (dot
plot). (B) Relative enrichment of peptide-specific T cells by 10-day stimulation. En-
richment was calculated by dividing the proportion of positive T cells after stimulation
by the ex vivo proportion of peptide-specific T cells. The red line marks no change in
proportion of positive T cells by peptide stimulation. Bottom and top box ends repre-
sent the lower quartile (Q1) and upper quartile (Q3), the horizontal line is the median
(Q2), and the whiskers extend to highest value and the lowest value of each data sub-
set. Values that are Q1–1.5⇥the interquartile range (IQR; IQR=Q3-Q1) and values
that are �Q3+1.5⇥IQR are considered to be outliers. Outliers are ignored when de-
termining whisker endpoints. NLV- and VLE-specific T cells were absent in the ex vivo
sample of donor P08 and are not depicted in the plots. VLE-staining was not done for
VLE-stimulated cells in donor P04 and is therefore not depicted.
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ilar for all epitopes except IPS, which is not representative, because only one donor

was tested (Figure 4.5B). Enrichment by stimulation with FRC, NLV, or VLE was sim-

iliar across donors, while stimulation with CRV, RPH, or TPR induced more variable

enrichment depending on the donor. The geometric means of enrichment by peptide

stimulation were between 11 (CRV & VLE) and 23 (FRC & NLV). Despite the similar

average enrichment of epitope-specific T cells, the enrichments observed for individ-

ual donors were rather diverse. For instance, enrichment of TPR-specific T cells by

peptide stimulation varied between 0.04-fold and 912-fold. Donor P05 had extremely

low initial frequency of TPR-specific T cells, and the frequency of such T cells was

even lower after stimulation, indicating that this donor may not mobilise T cells against

CMV epitope TPR at all. In conclusion, CMV-specific T cells were abundant in PBMCs

and their proportion was enriched by stimulation with most CMV-derived peptides in all

donors.

4.4 Peptide stimulation identifies CMV peptide-specific
TCR� clonotypes

After TCR� library preparation and high-throughput sequencing, raw data were pro-

cessed as described in Section 3.5.3. The software MiXCR returned TCR� repertoire

files with aligned and clustered clonotypes. In the MiXCR output files, the read count

and the proportion of reads on the total number of reads for each clonotype were listed

alongside their V and J gene usage and CDR3 nucleotide and amino acid sequences.

The TCR� clonotype files were further analysed in R using custom scripts that I wrote

for this project. Table A1 in the appendix lists all single peptide stimulation samples that

were used to identify CMV-specific TCR� sequences. The median productive read

count per sample was 5.1⇥106 reads, and the median number of TCR� clonotypes

was 128115.

4.4.1 Clonotype distribution in TCR� repertoires is influenced by
stochastic effects

To begin with, the frequency distribution of TCR� clonotypes in unstimulated and CMV

peptide-stimulated samples was examined. Low-frequency clonotypes were far more

abundant than clonotypes with high read counts. The vast majority of TCR� clonotypes

identified in unstimulated or stimulated samples were detected at absolute frequencies
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of less than 10 reads. For example, a total of 2745103 clonotypes were identified

in unstimulated and peptide-stimulated samples of donor P03 (Figure 4.6A), whereby

clonotypes that were found in multiple samples were counted multiple times. Of these

2745103 clonotypes, 2139 or 0.078% of clonotypes were found with at least 1000

reads in their corresponding sample. Conversely, 2358163 clonotypes, or 85.9% of

clonotypes, were found with less than 10 reads in their corresponding sample. Low-

Figure 4.6: Clonotype distribution in TCR� repertoires. (A) Frequency of clonotypes
with a particular read count in unstimulated and stimulated samples of CMV-positive
donor P03. The higher the number of reads was, the fewer clonotypes had this read
count. (B) Biological replicates of ex vivo PBMCs derived from donor P03. Each
TCR� clonotype is defined as the entirety of identical reads on the nucleotide level and
represented by a black dot. Clonotypes that were undetectable in one sample were
assigned a pseudo-frequency corresponding to 0.5 reads to enable their display on
a logarithmic axis. Two separate TCR� library preparations were carried out starting
from the same PBMC sample. Frequency variation of a TCR� clonotype increased
with decreasing relative frequency of a clonotype in either sample.

frequency clonotypes were not only highly abundant in number, but their relative fre-

quency values were less stable between biological replicates than the relative frequen-

cies of high-frequency clonotypes. Figure 4.6B compares the relative frequencies of

TCR� clonotypes in two biological replicates derived from the same PBMC sample of

donor P03. Before cell lysis, the PBMC sample was split into two distinct samples.

RNA isolation, TCR� library preparation, and high-throughput sequencing were car-

ried out independently for both replicates. While the relative frequency of the most

frequent TCR� clonotypes was similar in the replicates, the relative frequency varied

more strongly the lower the TCR� clonotype frequency was in one of the replicates.
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This led to a broader clonotype distribution at the lower frequency end and impacted

all TCR� repertoire comparisons between samples dealt with in this project. The dis-

tortion of high-throughput sequencing data by PCR has been investigated both empir-

ically and theoretically in a recent study (Kebschull and Zador 2015). The researchers

analysed the impact of PCR bias, stochasticity, template switching, and polymerase

errors on the representation of DNA templates in the sequenced samples. They found

that stochastic effects contribute the most to skewed high-throughput sequencing data

and that this skewing was most significant for low copy numbers. Since PCR is not

a perfect process, not all templates are amplified in each PCR cycle. This affects

low-frequency TCR� sequences more severely than high-frequency TCR� sequences

because even if some cDNA copies from high-frequency TCR� clonotypes are not am-

plified in a cycle, the majority of them still is. By contrast, if a TCR� clonotype with only

one initial cDNA copy is not amplified in a cycle, its relative frequency decreases by

approximately 50% and it is further disadvantaged in the next cycle of amplification.

In addition to the stochastic effects on low-frequency sequences, they are also more

prone to sampling effects during Illumina sequencing. The stochastic effects on TCR�

repertoire data were considered in all analyses presented in this thesis. For example,

read frequency cutoffs were introduced when samples were compared to each other to

reduce indicences of false-positive peptide-specific TCR� clonotypes (e.g. Figure 3.5).

4.4.2 Clusters of enriched TCR� clonotypes emerge after stimula-
tion of PBMCs from CMV-positive donors

When plotting TCR� clonotype frequencies before and after 10-day peptide stimula-

tion, distinct clusters of specifically enriched clonotypes are present in CMV-positive,

but not in CMV-negative donors. Figure 4.7 exemplarily shows such scatter plots for

CMV-positive donor P01 and CMV-negative donor N05 treated with peptides CRV,

FRC, RPH, or TPR. The stochastic variation and consequently wider distribution of

low-frequency clonotypes explained in the previous section is visible in all scatter plots.

Apart from this, a proportional effect influenced the TCR� clonotype frequency distri-

bution. This effect became apparent when one or more highly frequent TCR� clono-

types dominated the sample. In the CRV-stimulated and TPR-stimulated samples of

donor P01 (Figure 4.7), the dominant TCR� clonotype takes up 60.5% and 71.6% of

all reads. This leaves less reads for the remaining TCR� clonotypes of the sample,
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Figure 4.7: Relative frequencies (proportion of reads) of TCR� clonotypes before (x-
axis) and after (y-axis) stimulation with one of four CMV peptides in CMV-positive donor
P01 (upper panel) and CMV-negative donor N05 (lower panel). Each TCR� clonotype
is defined as the entirety of identical reads on the nucleotide level and represented
by a black dot. Clonotypes that were undetectable in one condition were assigned a
pseudo-frequency corresponding to 0.5 reads to enable their display on a logarithmic
axis.

which in turn leads to a seemingly lower enrichment of all expanded TCR� clonotypes

compared to the ex vivo sample. As a result, the enrichment, which was defined as

the ratio of the frequency after stimulation divided by the frequency before stimulation,

becomes smaller when the frequency of responding clonotypes is relatively high ex

vivo. However, this does not impair the discriminatory power of the experiment, since

the corresponding ratio of frequencies of non-responding clonotypes becomes smaller

as well. Because of the strong variation in enrichment values of enriched TCR� clono-

type clusters obtained for different donors or peptides, no uniform enrichment cutoff,

such as at least 10-fold enrichment, could be applied to all samples in order to iden-

tify epitope-specific TCR� clonotype. Hence, a dynamic discriminator was required

to identify CMV epitope-specific TCR� clonotypes for each three-sample comparison

individually. This dynamic discriminator was implemented as a custom R script that

automatedly searched for the minima of TCR� clonotype distributions between the re-

sponder and non-responder clonotypes (see Section 3.5.3.4 and Figure 3.5). Like this,

enriched clusters of TCR� sequences were identified and the corresponding specific

TCR� sequences were extracted from the data.
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4.4.3 High-throughput sequencing identifies TCR� clonotypes of
various CMV epitope specificities

Epitope-specific TCR� clonotypes were identified as described in Section 3.5.3.4 and

Figure 3.5. The computed cutoff values that were required for TCR� clonotypes of

a particular sample to qualify as CMV epitope-specific are listed in Table A2 in the

appendix. All in all, 1440 specifically enriched TCR� sequences were identified from

9 CMV-positive donors P01–P08 and P14. Importantly, some of these 1440 specific

TCR� sequences were identical on the amino acid level within a donor’s repertoire

or even identical on the nucleotide level between donors (donor-nucleotide-unique).

In this section, the specific TCR� repertoires of the 9 donors are analysed individ-

ually and no comparisons between TCR� sequences of different donors are made.

90 TCR� sequences were assigned to more than one epitope specificity in the same

donor. They were excluded from the following analyses, leaving 1350 monospecific

TCR� sequences specific for one of the 7 tested CMV-derived epitopes (Table 4.2).

The table shows how many nucleotide-unique specific TCR� clonotypes were found

Table 4.2: Number of nucleotide-unique monospecific TCR� clonotypes per CMV epi-
tope and donor.

Donor CRV FRC IPS NLV RPH TPR VLE Sum Mean

P01 119 24 27 39 209 52.3
P02 31 25 n.d. n.d. 38 5 99 24.8
P03 39 16 8 15 22 15 115 19.2
P04 45 13 12 16 20 n.d. 106 21.2
P05 118 99 26 63 13 319 63.8
P06 49 36 21 21 127 31.8
P07 33 39 20 30 9 10 141 23.5
P08 25 18 26 18 12 2 101 16.8
P14 26 52 n.d. 55 133 44.3

Sum 485 322 26 66 190 229 32 Total TCR�s = 1350
Mean 53.9 35.8 26 16.5 27.1 25.4 8 Overall mean = 31.4

in a donor for each epitope. On average, each single-peptide stimulation lead to the

identification of 31.4 CMV-specific TCR� sequences. Most specific TCR� sequences

were found after stimulation with CRV, namely between 25 and 119 TCR� sequences

per donor. The lowest number of specific TCR� sequences was found after stimulation

with VLE, where 2–15 TCR� sequences were specifically enriched. Donor P05 had

a particularly diverse T cell response against the 5 tested CMV epitopes; 319 specific
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TCR� sequences were discovered in samples derived from this donor. The remaining

donors mobilised between 99 and 209 TCR� clonotypes against 3–6 tested epitopes.

4.4.4 Peptide stimulation enriches CMV-specific TCR� clonotypes

In Section 4.3, frequency and enrichment of CMV-specific T cells was analysed on the

cellular level using flow cytometry. Next, this analysis was carried to the molecular level:

The cumulative proportions and the enrichment values of specific TCR� sequences in

the ex vivo and peptide-stimulated samples were computed. For this purpose, the read

frequencies of all TCR� sequences that were monospecific for a given CMV epitope in

a donor were added together, and the percentages of these reads among total reads in

ex vivo and peptide-stimulated samples of this donor was obtained (Table 4.3). Over-

all enrichment of specific TCR� sequences was calculated by dividing the frequency

of all specific TCR� sequences in the relevant peptide-stimulated sample by their fre-

quency in the unstimulated sample. Excluding IPS, which was analysed in only one

donor, TCR� sequences against HLA-C–restricted epitopes CRV and FRC had, on

average, the highest mean frequencies, both ex vivo and in stimulated samples. CRV-

specific TCR� sequences accounted for an average 2% of reads in the unstimulated

and 47% in the peptide-stimulated samples. FRC-specific TCR� sequences had mean

frequencies of 0.89% in the unstimulated and 50% in the peptide-stimulated sample.

Ex vivo frequencies of CRV-specific TCR� sequences varied strongly between donors,

and ranged from 0.068% in donor P03 to 19% in donor P01. In 4 out of 9 donors, the

percentages of specific TCR� sequences in the CRV-stimulated samples exceeded

90%. Importantly, the proportions of specific TCR� sequences presented in this sec-

tion for donors P02 and P03 stem from unsorted samples, whereas the samples from

all other donors were CD8-enriched before sequencing. This means that the frequency

of CMV epitope-specific TCR� sequences will be higher in CD8-enriched samples from

donors P02 and P03. Nevertheless, the unsorted samples were analysed here be-

cause they were used to identify specific TCR� sequences. A comparison of ex vivo

frequencies of CMV epitope-specific TCR� sequences in unsorted ex vivo samples

of all donors can be found later on (Section 4.4.9). TCR� sequences targeting HLA-

A*02:01-restricted epitopes NLV and VLE had the lowest median frequencies in ex vivo

samples (0.081% and 0.066%, respectively). Among HLA-matched donors, the ex vivo
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frequencies of VLE-specific TCR� sequences differed by more than 3 orders of mag-

nitude, whereas the lowest and highest cumulative frequencies of NLV-specific TCR�

sequences, 0.059% and 0.5%, were within the same order of magnitude. Compared to

the highly frequent HLA-C–restricted and the lower frequency HLA-A–restricted TCR�

sequences, HLA-B*07:02–restricted TCR� sequences were of intermediate ex vivo

frequency: RPH-specific TCR� sequences had a mean frequency of 0.14% and TPR-

specific TCR� sequences had a mean frequency of 0.16%.

Cumulative ex vivo frequencies of CMV-specific TCR� sequences were computed

by adding together the relative read frequencies of CMV epitope-specific TCR� of

each individual donor. Cumulative frequencies of TCR� clonotypes specific for any

tested CMV epitope ranged from 2% in the unsorted samples of donors P02 and P03

and 4.4%–4.5% in the CD8-enriched samples of donors P04 and P06 to maximum

34% in donor P05 (Figure 4.8A). In 8 out of 9 donors, HLA-C*07:02–restricted CRV-

specific or FRC-specific TCR� sequences were the most abundant specificity in ex

vivo samples. Only the ex vivo sample of donor P03 was dominated by VLE-specific

TCR� sequences. Enrichment of epitope-specific TCR� sequences was the highest

through NLV-stimulation and varied between 135-fold and 483-fold in the HLA-A*02:01–

expressing donors; the mean enrichment was approximately 200-fold. The lowest en-

richment values were observed for CRV-stimulated samples with a mean enrichment

of 24-fold across all donors. Median TCR� enrichment values were in a similar range

for all epitopes but CRV and FRC (Figure 4.8B). The enrichment values for epitopes

CRV and FRC were spread the most between donors. When comparing enrichment

values of specific TCR� clonotypes from different donors or peptide stimulations, two

aspects need to be considered. Firstly, unlike the T-cell enrichment values measured

by flow cytometry, enrichment values from TCR� sequencing presented here are not

independent from the method to identify CMV-specific TCRs, since enrichment com-

pared to the unstimulated sample was a criterion for peptide specificity of TCR� clono-

types. Secondly, as discussed above, the presence of high frequency CMV-specific

TCR� clonotypes reduces the reads leads to lower relative read frequencies of the

non-responding TCR� clonotypes. Consequently, the calculated enrichment of TCR�

clonotypes compared to their ex vivo frequency may be lower, but at the same time the

enrichment of the CMV-specific TCR� clonotypes compared to the non-responding
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Figure 4.8: Ex vivo frequencies and overall enrichment of CMV-specific TCR� se-
quences in samples of donors P01–P08 and P14. Samples derived from donors P01
(except the FRC-stimulated sample), P04, P05, P06, P07, P08, and P14 were CD8-
enriched by MACS before sequencing. (A) Proportion of reads of CMV epitope-specific
TCR� sequences in ex vivo samples. The percentages were plotted on a linear y-axis
(bar chart) and a logarithmic y-axis (dot plot). (B) Relative enrichment of epitope-
specific T cells by 10-day stimulation. Enrichment was calculated by dividing the total
proportion of epitope-specific TCR� sequence reads in the sample after stimulation
by their ex vivo frequency. The red line marks no change in proportion of positive
T cells by single peptide stimulation. Bottom and top box ends represent the lower
quartile (Q1) and upper quartile (Q3), the horizontal line is the median (Q2), and the
whiskers extend to highest value and the lowest value of each data subset. Values that
are Q1–1.5⇥IQR and values that are �Q3+1.5⇥IQR are considered to be outliers.
Outliers are ignored when determining whisker endpoints.
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TCR� clonotypes may be similar to samples without high frequency specific clono-

types. For example, TCR� clonotypes in the CRV-enriched cluster from donor P01

were, on average, approximately 10-fold more frequent after peptide stimulation (en-

richment=10), but they were approximately 1000-fold enriched compared to the TCR�

clonotypes not responding to CRV peptide (see Figure 4.7). Donor P01 responded

strongly to peptide CRV and a CRV-specific TCR� clonotype was already highly fre-

quent ex vivo (>10% of total reads). No such high-frequency TCR� clonotype was

found after stimulation with RPH in this donor. The frequency of RPH-specific TCR�

clonotypes after peptide stimulation compared to their ex vivo frequency was, on aver-

age, 1000-fold increased (enrichment=1000). However, RPH-specific clonotypes were

also 1000-fold enriched compared to the not RPH-responsive TCR� clonotype popula-

tion. Although TCR� clonotypes of both specificities were similarly enriched by short-

term peptide stimulation compared to the TCR� clonotypes with different specificities,

the computed enrichment factors presented in Table 4.3 for donor P01 were 2 orders

of magnitude higher for RPH than CRV. In conclusion, the informative power of the

calculated enrichment values in Table 4.3 is limited, since it does not take into account

the degree of reduction in relative frequency of non-responding TCR� clonotypes.

4.4.5 Correlation of flow cytometry and sequencing data

To answer the question whether there was a correlation between the proportion of

multimer-positive T cells and read frequencies of TCR� sequences specific for the

corresponding epitope, the data from flow cytometry and high-throughput sequencing

were compared (Figure 4.9). A moderate positive correlation between relative frequen-

cies of specific T cells and specific TCR� sequences was observed in ex vivo samples

and peptide-stimulated samples from donors P01–P08 and P14 with Pearson corre-

lation coefficients of r=0.434 and r=0.642, respectively. A major problem with these

comparisons is that most samples were CD8-enriched prior to high-throughput se-

quencing, whereas flow cytometry was always performed on unsorted samples. CD8-

enriched samples tended to contain higher proportions of CMV-specific TCR� reads

than unsorted samples (Figure 4.9), which may have negatively influenced the cor-

relation between flow cytometry and sequencing data. This phenomenon may also

explain why the data from stimulated samples correlated slightly better: Since only
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CD8+ T cell epitopes were investigated, CD8+ T cells were enriched by CMV-peptide

stimulation and the overall proportion of CD8+ T cells in the stimulated samples was

higher than in the ex vivo samples. MACS enrichment of CD8+ T cells changed the ra-

tio of CD8+:CD4+ T cells in the sequenced samples after peptide stimulation less than

in the ex vivo samples, which contained a higher proportion of CD4+ T cells. Hence,

the sequenced peptide-stimulated samples will be more similar in their composition

to the not CD8-enriched samples analysed by flow cytometry than the unstimulated

samples, which may have led to the better positive correlation.

Figure 4.9: Comparison of frequencies of specific T cells and cumulative specific
TCR� sequences before and after peptide stimulation. The equation and Pearson
correlation coefficient r for the linear regression are noted in the framed boxes. The
proportions of multimer-positive T cells on total CD3+ T cells are plotted on the x-axes,
while the proportions of reads of specific TCR� sequences are plotted on the y-axes.
Samples marked with a triangle were CD8-enriched prior to sequencing.

4.4.6 Clonality of the CMV-specific TCR� repertoire

When comparing the proportional read frequencies of CMV epitope-specifc TCR� se-

quences in the corresponding single peptide-stimulated samples, it becomes appar-

ent that most epitope-specific TCR� repertoires are dominated by one or few highly

frequent clonotypes (Figure 4.10). This observation was particularly striking in sam-

ples from donors P07 and P08, where the most frequent specific TCR� clonotype(s)

were up to 500-fold (P07, VLE) more frequent than the remaining ones. In 29 of 43

peptide-stimulated samples, the top most frequent TCR� clonotype(s) amounted to
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Figure 4.10: Clonality of CMV epitope-specific TCR� repertoires. The plots show
the proportional read frequencies of CMV-specific TCR� clonotypes in the peptide-
stimulated samples of CMV-positive donors P01–P08 and P14. Samples from donors
P01 (except FRC), P04–P08, and P14 were CD8-enriched before sequencing.

at least 10% of all reads each, while the frequency of the majority of epitope-specific

TCR� clonotypes was well below 0.5%. Importantly, all samples from donors P02 and

P03, and the FRC-stimulated sample from donor P01 were not CD8-enriched before

sequencing and thus the frequency of epitope-specific TCR� clonotypes in these sam-

ples is underestimated here. The most frequent TCR� clonotype found in a stimulated

sample was an FRC-specific clonotype in donor P08 with a relative read frequency of

83.1%.

4.4.7 VJ gene segment usage in TCR� repertoires

There is a concern that multiplex PCR-based sequencing library preparation introduces

an amplificaton bias, because not all primers bind equally well to their template. Hence,

the obtained TCR� repertoire data was initially compared to TCR� repertoires of an

independent control cohort from a recently published study by Ruggiero et al. (Rug-

giero et al. 2015). The V and J (VJ) gene segment usage in ex vivo TCR� reper-

toires of an extended donor cohort of 21 CMV-positive donors P01–P21 and 10 CMV-

negative donors N01–N10 was compared to the VJ gene segment usage in ex vivo

TCR� repertoires of 6 healthy donors from the control cohort. The TCR� libraries of
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the independent control cohort were produced using a non gene-specific amplification

system: TCR� mRNA was reversely transcribed using a C-region–specific, biotiny-

lated primer and the resulting TCR� cDNA was captured on streptavidin beads. Then,

a single-stranded linker cassette was appended to the free cDNA ends and TCR�

cDNA was amplified in two PCR steps using primers complementary to the C region

and the linker cassette. Consequently, no multiplex primer-based PCR bias was in-

troduced in the TCR� repertoire data of the control cohort. Figure 4.11 shows the

relative frequencies of the various V� and J� genes used in ex vivo TCR� repertoires

of healthy donors from this cohort and the cohort published by Ruggiero et al. It is

important to note that some V� segments could not be distinguished from each other

in our TCR� repertoire data, since their nucleotide sequence was identical in the am-

plified and sequenced portion of the TCR� chain. This affects V� genes TRBV3-1 and

3-2, TRBV6-1, 6-5 and 6-6, TRBV6-2 and 6-3, and TRBV12-3 and 12-4. Sequencing

reads for these V� gene groups were added together, which likely contributed to the

observation that these groups were among the most frequent V� genes used. VJ gene

usage was remarkably similar in both cohorts which demonstrates there was no mea-

Figure 4.11: Proportion of TCR� clonotypes using a particular TRBV gene (upper
panel) or TRBJ gene (lower panel) in ex vivo PBMCs of donors P01–P08 and P14
and an independent cohort of 6 healthy donors (Ruggiero et al. 2015). Grey dots
correspond to donors from the cohort published by Ruggiero et al. and black dots
correspond to donors of this cohort. TRAV and TRAJ genes that are categorised as
open reading frames or pseudogenes according to IMGT (Lefranc 2001) are marked
with a star and a triangle, respectively.
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surable PCR bias introduced by the multiplexed V� gene-specific forward primers used

in this project. Functional V� genes were used with different relative frequencies that

approximately ranged from 10�3 to 10�1, with the exception of TRBV7-2, which was

the most frequently V� gene used in ex vivo TCR repertoires across donors from both

cohorts. V� genes derived from ORFs or pseudogenes were of low frequency in our

cohort, since no primers targetting these V� genes were included in the set of multiplex

primers. In the control cohort, however, some V� ORFs or pseudogenes were found at

substantial frequencies in some or all donors, for instance TRBV21-1. The distribution

of J� genes used in ex vivo TCR repertoires was similar in this cohort and the control

cohort, although TRBJ2-5 was slightly overrepresented in this cohort.

The overall VJ gene segment usage in ex vivo TCR� repertoires was comparable for

donors in this cohort. Stimulation with CMV peptides led to strong shifts in VJ usage of

TCR� repertoires from CMV-positive donors, whereas VJ usage in TCR� repertoires

from CMV-negative donors was not influenced by stimulation with CMV peptides. For

instance, single peptide stimulation of PBMCs derived from CMV-positive donor P07

led to dramatic changes in VJ gene usage in these samples (Figure 4.12). By contrast,

relative frequencies of VJ gene segments used only marginally changed in peptide-

stimulated samples of CMV-negative donor N05 compared to the unstimulated control

sample. VJ usage in the ex vivo repertoires of donor P07 and donor N05 was similar:

Both donors frequently use TRBV7-2, TRBV7-8, TRBV7-9, and TRBV28, and TRBJ1-

1, TRBJ2-1, TRBVJ2-3, TRBJ2-5, and TRBJ2-7 with similar porportional read frequen-

cies. TRBV7-2 was by far the most frequently used V gene in TCR� sequences of ex

vivo repertoires across CMV-positive donors P01–P08 and P14, and CMV-negative

donors N01–N08. Upon single peptide stimulation, the proportions of VJ genes used

in TCR� repertoires of donor P07 shifted strongly to few highly frequent VJ combi-

nations. Notably, the most frequent VJ combinations were completely different in 4

samples stimulated of donor P07 stimulated with different peptides. This implies that

the underlying individual CMV-specific TCR� clonotypes were very diverse for different

epitope specificities.
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Figure 4.12: Usage of V� genes (TRBV) and J� genes (TRBJ) in samples before and
after single peptide stimulation. Chord diagrams show the V gene usage (left semi-
circle) and J gene usage (right semi-circle) in ex vivo or CMV peptide-stimulated TCR�
repertoires of CMV-negative donor N05 and CMV-positive donor P07. All samples
were CD8-enriched before sequencing. The sector widths correspond to the relative
proportion of reads using a particular V or J gene. The chord thickness is proportional
to the read frequencies of particular combinations of V and J genes in the sample. The
top 5 most frequently used gene segments are labelled in each chord diagram.

4.4.8 Epitope-reactive TCR� clonotypes in CMV-negative donors

In addition to donors P01–P08 and P14, eight CMV-negative donors (N01–N08) were

subjected to the single peptide stimulation assay. PBMCs derived from donors N01–

N08 were stimulated with CMV peptides CRV, FRC, and TPR. PBMCs from donors

N03 and N05 were also stimulated with HLA-matched CMV peptide(s) NLV, or IPS

and RPH. Single peptide stimulation of CMV-negative donors with CMV peptides fol-

lowed by high-throughput sequencing and data analysis using the same data analysis

pipeline as described for the CMV-positive donors (Section 3.5.3.4) led to the identi-

fication of 399 epitope-reactive TCR� sequences (Table A3, Table A4), of which 375

were monoreactive within samples of a donor. An additional 12 TCR� sequences

were found twice with different specificity in the same donor. As already implied by

the flow cytometry data shown in Figure 4.4, there were hardly any multimer-positive

T cells in stimulated samples derived from CMV-negative donors. In addition, no dis-
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tinct clusters of enriched TCR� clonotypes were seen in samples of CMV-negative

donors when comparing ex vivo TCR� read frequencies and TCR� read frequencies in

peptide-stimulated samples (Figure 4.7). Epitope-reactive TCR� sequences identified

in CMV-negative donors were absent or of low relative frequency ex vivo (0%–0.059%

or reads) and contributed up to 7.2% of reads in the stimulated samples (Table A5).

V gene usage among the 375 epitope-reactive TCR� sequences was similar to the

ex vivo distribution: 38% of TCR� sequences used TRBV7-2, and gene segments

TRBV6-1/6-5/6-6, TRBV7-6, TRBV7-8, TRBV7-9, TRBV12-3/12-4, TRBV28 were also

frequently used (see Figure 4.12, leftmost chord diagrams). Similarly, the most fre-

quently used J genes were TRBJ2-1, followed by TRBJ2-3, TRBJ2-7, and TRBJ1-1,

which were also the most abundant J gene segments used ex vivo. When comparing

the epitope-reactive TCR� sequences on the amino acid level between donors, there

was no sharing observed between donors. All these observations imply that stochas-

tic effects, which were introduced by library preparation and sequencing, rather than

epitope-specific in vitro enrichment led to the identification of specific TCR� sequences

in CMV-negative donors (see Section 4.4.1 for an explanation of this phenomenon).

However, it cannot be excluded that, sporadically, naı̈ve T cells or cross-reactive T cells

of a CMV-negative donor were indeed specifically activated and expanded in the single

peptide stimulation assay.

4.4.9 CMV-specific TCR� sequences are highly abundant in the ex
vivo repertoires of virus carriers

In a next step, the impact of CMV-infection on the ex vivo TCR� repertoire were in-

vestigated. For this purpose, the top 100 most frequent TCR� clonotypes in ex vivo

PBMCs or CD8-sorted samples were extracted and compared to the CMV epitope-

specific TCR� sequences identified by single peptide stimulation of PBMCs from the

same donor (Figure 4.13). The top 100 most frequent TCR� clonotypes in ex vivo sam-

ples were similarly distributed in CMV-positive and CMV-negative donors, with some

highly frequent clonotypes accumulating above 1% of reads and the majority of clono-

types with read frequencies between 0.01%–1%. In the CD8-enriched samples of

donors P01, P03, P14, N02, N03, N04, and N07, 1–2 TCR� clonotypes had frequen-

cies >10% of the total acquired TCR� reads. 2–15 of the 100 most frequent TCR�

clonotypes in PBMCs and 5–17 in CD8-enriched samples of CMV-positive donors were
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Figure 4.13: Frequency of CMV epitope-specific TCR� sequences in ex vivo reper-
toires of virus carriers and uninfected persons. The ex vivo frequencies of the top
100 most frequent TCR� sequences in PBMCs (left) or CD8-enriched cells (right) are
plotted in the top panel for CMV-positive donors P01–P08 and P14 as well as CMV-
negative donors N01–N08. In the lower panel, the number of different CMV-specific
TCR� sequences in the top 100 most frequent clonotypes are plotted by epitope. Spe-
cific TCR� sequences were only searched for in the ex vivo repertoire of the donor in
which they were identified. All donors were single peptide-stimulated with CRV, FRC,
and TPR. Some donors were additionally stimulated with IPS, NLV, RPH, or VLE if they
expressed the matching HLA; these donors are marked with circles in the colour of the
corresponding epitope.

specific for one of the tested epitopes, whereas no epitope-reactive TCR� sequences

identified in CMV-negative donors were among the top 100 most frequent TCR� clono-

types of these donors. In 8 of 9 virus carriers, at least one CMV-specific TCR clono-

type was among the top 5 most frequent TCR� clonotypes in the entire repertoire,

and all virus carriers had CMV-specific TCR� clonotypes among the top 5 most fre-

quent TCR� sequences in the CD8-sorted samples. The most frequent CMV-specific

TCR� clonotype ex vivo was specific for CRV in 7 of 9 CMV-positive donors, and in

donors P03 and P08, the top CMV-specific clonotype was specific for VLE and FRC,

respectively. Overall, the most abundant CMV-specific TCR� clonotypes in the ex vivo

PBMCs and CD8-enriched samples of donors P01–P08 and P14 were specific for the

HLA-C*07:02–restricted epitopes CRV and FRC, with the exception of P03, in which

VLE-specific TCR� clonotypes were highly frequent ex vivo. Taken together, these
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findings show that CMV infection strongly shapes the TCR� repertoire of its carriers,

as CMV-specific TCR� sequences are highly frequent in the blood of infected donors.

T cells specific for HLA-C*07:02–restricted CMV epitopes were particularly frequent.

This observation is in line with the findings of a recent study (Hosie et al. 2017) in

which researchers showed that CD8+ T cells specific for HLA-C*07:02-restricted CMV

epitopes dominate the immune repertoire of CMV-positive elderly persons.

4.5 Peptide stimulation discerns peptide-specific TCR�
clonotypes better than MACS enrichment

The majority of recently published CMV-specific TCR� sequences were identified by

combining peptide-MHC multimer-based sorting of peripheral blood T cells and high-

throughput sequencing of the sorted cell population (Klarenbeek et al. 2012; Glanville

et al. 2017; Emerson et al. 2017; Chen et al. 2017). To test whether this approach

yields comparable results to the single peptide stimulation approach, PBMCs from

two CMV-positive donors whose T-cell repertoires were also explored with the peptide

stimulation assay (P01 and P04) were labelled with CRV/HLA-C*07:02 streptamers

or TPR/HLA-B*07:02 pentamers. Multimer-positive cells were isolated by MACS us-

ing ”Anti-PE MicroBeads” (Miltenyi, Bergisch Gladbach, DE), and subsequently their

TCR� repertoires were sequenced by Xiaoling Liang, a former post-doc of the group.

A reanalysis of these data was performed by me for this project.

Between 0.14% and 0.68% of input cells were obtained as the multimer-positive frac-

tion after MACS enrichment (Table 4.4). Relative enrichment of multimer-positive T cells

by MACS, as determined by flow cytometry, was between 30-fold and 1258-fold, lead-

ing to a purity between 15.1% and 67.4% in the positive fractions that were sequenced.

The absolute number of sequenced CMV-specific T cells, which was computed by mul-

tiplication of the cell count in the eluate with the proportion of multimer-positive cells

measured by flow cytometry, was between 1.3⇥104 and 1.5⇥105. Relative frequen-

cies and enrichment values of CMV-specific T cells from flow cytometry measurements

were in the same range as those measured for peptide-stimulated samples (see Ta-

ble 4.1), but the absolute cell count after peptide stimulation (7⇥106–84⇥106, median

= 23⇥106) was considerably higher than the cell count after MACS enrichment. There-

fore, the number of CMV-specific T cells in the peptide-stimulated samples substan-
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Table 4.4: Enrichment of multimer-labelled T cells by MACS. Cells were counted before
(input) and after (eluate) MACS-enrichment of T cells specific for CMV epitopes CRV
or TPR from PBMCs of donor P01 or P04. Multimer-staining and flow cytometry were
used to determine the relative frequency of multimer-positive T cells in the input PBMCs
and eluate (positive) fractions. Yield = Percentage of multimer-labelled cells eluted from
the MACS column, Comp. count = computed number of multimer-positive cells in the
eluted fraction, Rel. enrichment = relative enrichment of multimer-positive T cells by
MACS.

Input Eluate
Donor Multimer Cells [106] Multimer+ [%] Cells [106] Multimer+ [%]

P01 CRV 25 0.67 0.09 20.1
P01 TPR 25 0.16 0.17 27.1
P04 CRV 60 0.96 0.22 67.4
P04 TPR 60 0.012 0.086 15.1

Multimer+ Cells
Donor Multimer Yield [%] Comp. count [106] Rel. enrichment [-fold]

P01 CRV 0.36 0.018 30
P01 TPR 0.68 0.046 169
P04 CRV 0.37 0.148 70
P04 TPR 0.14 0.013 1258

tially exceeded the number of CMV-specific T cells in the multimer-sorted samples,

although similar or higher input cell numbers were used for the latter samples. After

sequencing, the relative frequencies of TCR� clonotypes in single peptide-stimulated

samples or multimer-enriched samples were compared to their frequencies in the cor-

responding ex vivo control samples (Figure 4.14). The clusters of enriched TCR�

clonotpes after single peptide stimulation were larger and more clearly separated in

the frequency scatter plots than the clusters of enriched TCR� clonotypes after mul-

timer sorting. Especially low frequency epitope-specific TCR� clonotypes were not

visibly enriched in the multimer-sorted samples. Between 7947 and 33353 distinct

TCR� clonotypes were found in each of the multimer-sorted samples (Table A6), sug-

gesting that the TCR� clonotypes obtained from multimer sorting were far from being

exclusively epitope-specific. Computational identification of epitope-specific TCR� se-

quences from multimer-sorted samples using the data analysis pipeline developed in

this thesis would therefore result in a significantly lower amount of epitope-specific

TCR� clonotypes than with the single peptide stimulation assay. Only the most abun-

dant epitope-specific TCR� clonotypes would be found by multimer sorting, whereas

the low-frequency epitope-specific TCR� clonotypes would go unrecognised. This lim-

ited set of sequencing data obtained from CMV multimer-enriched samples suggests
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Figure 4.14: Comparison of TCR� clonotype frequencies in single peptide-stimulated
and multimer-MACS samples of donors P01 and P04. Clonotypes that were unde-
tectable in one sample were assigned a pseudo-frequency corresponding to 0.5 reads
to enable their display on a logarithmic axis. (A) TCR� clonotype frequencies in CRV-
stimulated and TPR-stimulated samples of donors P01 and P04 (y-axes) compared
to their ex vivo frequencies (x-axes). All samples were CD8-enriched prior to RNA
isolation. (B) TCR� clonotype frequencies in CRV:HLA-C*07:02 or TPR:HLA-B*07:02
multimer-sorted samples of donors P01 and P04 (y-axes) compared to their frequen-
cies in PBMCs (x-axes).

that single peptide stimulation combined with high-throughput sequencing is superior in

identification of CMV epitope-specific TCR� sequences compared to TCR� sequenc-

ing of multimer-sorted samples. A limitation of this comparison is that the purity of

multimer-positive T cells after MACS-based isolation may be lower than the purity that

could potentially be achieved by flow cytometry sorting.

4.6 Co-culture with CMV antigen-presenting cells en-
riches epitope-specific T cells

In vitro peptide stimulation to enrich CMV-specific T cells has two major limitations.

Firstly, synthetic peptides do not carry post-translational modifications. Therefore,

doubts have been raised over whether T cells responding to synthetic peptides would

also recognise endogenously expressed and processed viral antigens, and whether

genuinely virus-specific T cells may be missed because they do not react to unmod-

ified synthetic peptides (Yewdell 2005). Secondly, CMV antigens are processed and

presented in different quantities and the physologically relevant amount of presented

peptide required for T-cell activation is unknown. In the peptide stimulation approach,
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synthetic peptide is loaded in excess to ensure that specific T cells are activated. How-

ever, physiological levels of presented antigen can be expected to be much lower and

it is not clear whether physiological levels of CMV peptide activate the same T cells

as those identified by peptide stimulation. Because of the excess of synthetic pep-

tide, there is a risk of activating low-affinity cross-reactive T cells that recognise similar

epitopes from completely unrelated antigens in the artificial in vitro peptide stimulation

assay. This may also explain, in part, the background of epitope-reactive TCR� found

in CMV-negative donors (see Section 4.4.8).

In order to address these questions, PBMCs derived from 3 of 9 CMV-positive donors

who were previously tested with the single peptide stimulation assay (P01, P02, and

P03) and a CMV-negative donor (N09) were long-term stimulated with autologous

B cell lines transformed by infection with a minimal EBV genome, so-called mini-LCLs

(see Section 3.2.4). All 4 donors were positive for EBV. The mini-LCLs expressed one

additional full-length CMV antigen (pp65 or IE1) together with the EBV antigens en-

coded by the mini-EBV genome, or no additional CMV antigen (empty mini-LCL). For

two donors, autologous CD40-activated B cells (B blasts) were used as negative con-

trols. PBMCs were co-cultivated with one of the mini-LCLs or a B blast line for 30 days

as described in Section 3.3.2). At each time point of restimulation, cells were counted

and samples were taken for flow cytometry analysis. Figure 4.15 shows the growth

rates and extrapolated cell numbers of mini-LCL–stimulated PBMCs from donors P01–

P03 and N09. Cell counts of mini-LCL–stimulated PBMCs declined over the first 9

days, but then increased until day 23 post start of culture. The observed growth rates

were highest at day 16 and day 23 of co-culture, and often declined towards the end-

point on day 30. Co-stimulation of PBMCs with autologous B blasts from donor P01

was terminated on d16, because the stimulated cells were barely viable. In donor P01,

stimulation with IE1-expressing mini-LCL led to higher growth rates between day 9 and

day 16 than with the other mini-LCLs or B blasts, but was comparable to growth rates of

the other co-cultures from day 23 onwards. In CMV-negative donor N09, growth rates

were similar for all stimulations except PBMCs stimulated with autologous B blasts,

which only proliferated around day 23.

Next, the mini-LCL–stimulated cells were phenotypically analysed for their specificity by

flow cytometry. Samples were stained with CMV multimers and EBV antigen EBNA3A-
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Figure 4.15: Cell growth from each time point to the next (upper panel) and extrap-
olated cell counts (lower panel) during 30-day stimulations of CMV-positive donors
P01–P03 and CMV-negative donor N09 with autologous mini-LCLs or CD40-activated
B cells (B blasts). Growth rates were calculated by dividing the number of harvested
cells at each time point by the number of cells seeded on the previous time point. Ex-
trapolated cell numbers were calculated by successively multiplying the initially seeded
number of PBMCs with the growth rates determined on day 9, 16, 23, and 30 of co-
culture. They represent the cell numbers that would have been obtained had no sam-
ples been taken at previous time points. Donors P02 and P03 were not stimulated
with autologous B blasts, and donor P02 was neither stimulated with autologous pp65
mini-LCL, since the pp65 mini-LCL of this donor was not viable.

derived RPP multimer, all matching the donors’ HLA types, and data were gated on

CD3+ lymphocytes. Data analysis showed that, over time, CMV epitope-specific T cells

were enriched by stimulation with a mini-LCL expressing the matching antigen in virus

carriers. Figure 4.16 shows representative FACS plots of IE1 mini-LCL–stimulated

T-cell cultures derived from donors P01 and N09 stained with CRV or RPP multi-

mer. CRV-specific T cells strongly increased throughout mini-LCL stimulation in CMV-

positive donor P09, but not in CMV-negative donor N09. EBV-targeting RPP-specific

T cells increased over time in both donors, which meets the expectations since both

donors are EBV-positive. The flow cytometry data of all donors and mini-LCL–stim-

ulations show that enrichment of epitope-specific T cells over time was exclusively

observed in samples derived from donors with the correct virus status and stimulated

with the corresponding antigen (Figure 4.17). For example, CRV-positive T cells were

solely enriched in IE1 mini-LCL–stimulated T cells of donor P01, and TPR- and RPH-

positive T cells were solely found in pp65 mini-LCL–stimulated T cells of donor P01.
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Figure 4.16: Specific enrichment of multimer-positive T cells by mini-LCL stimulation
over time. Flow cytometry data of IE1 mini-LCL–stimulated PBMCs from donors P01
and N09 stained with PE-labelled CRV streptamer or RPP multimer. Only donor P01
is CMV-positive, but both donors carry EBV.

Neither CRV-positive, nor RPH- or TPR-positive T cells emerged after stimulation with

empty control mini-LCLs. No CMV-multimer–positive T cells were enriched in donor

N09 throughout the mini-LCL stimulations, except on day 16, where multimer staining

resulted in ambiguous low-positive populations (compare Figure 4.16). RPP-specific

T cells against EBV were enriched in all four donors and peaked around day 16 and day

23. Multimer-positive T cells started to accumulate around day 9 and either continued

to outgrow until day 30, or peaked on day 23 and declined towards the end of co-

culture. CRV-specific T cells were the most abundant with 50%–75% in IE1-stimulated

samples of all 3 CMV-positive donors. In donor P03, an additional 20% of T cells were

specific for VLE, accounting for a total of more than 70% of CMV-specific T cells with

known epitope specificity in this sample. T cells against pp65-derived epitopes were

less frequent and accounted for up to 20% of T cells. Weak epitope-specific responses

upon full-length antigen stimulation were observed in donor P02 for VLE and in donor

P03 for TPR.
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Figure 4.17: Relative frequencies of CMV epitope-specific T cells in mini-LCL–
stimulated samples as measured by flow cytometry. Cells were gated on lymphocytes,
then single cells and finally CD3+ T cells. Percentages of multimer-positive T cells refer
to the number of CD3+ T cells in the samples. For each donor and mini-LCL, frequen-
cies of multimer-positive T cells are shown on a large scale (0%–80%) and as a close
up on the y-axis (0%–3%). Multimer stainings in which the multimer did not match
the antigen were not done for all samples from donors P02 and P03. As a marker
for EBV-specific T cells, all samples were stained with RPP-multimer derived from the
EBV antigen EBNA-3A.

4.7 Peptide stimulation expands TCR� clonotypes that
recognise endogenously processed antigen

Samples from day 23 or day 30 of mini-LCL–stimulation were chosen for TCR� library

preparation and high-throughput sequencing. When comparing TCR� clonotype fre-

quencies in the IE1 mini-LCL–stimulated or pp65 mini-LCL–stimulated samples to their

frequencies in the corresponding empty mini-LCL control sample, clusters of specifi-

cally enriched T cells were solely found in CMV-positive donors P01–P03, while CMV-

negative donor N09 lacked enriched TCR� sequences (Figure 4.18). CMV antigen-

specific TCR� sequences were identified only from CMV-positive donors P01–P03 by

comparing the clonotype frequencies in the CMV antigen-stimulated sample (pp65 or
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Figure 4.18: Frequencies of TCR� clonotypes in PBMCs and mini-LCL–stimulated
samples. Each dot represents one TCR� clonotype. Proportional TCR� clonotype
frequencies in the empty mini-LCL–stimulated samples of donors P01, P02, P03, and
N09 are plotted on the x-axes; relative frequencies after stimulation with IE1-expressing
mini-LCLs are plotted on the y-axes. TCR� clonotypes that were only found in one of
the two samples shown in each plot were assigned a pseudofrequency of 0.5 reads in
the sample in which they were absent in order to depict them on a logarithmic scale.

IE1), in the empty mini-LCL–stimulated sample, and in the unstimulated PBMCs as

explained in Section 3.5.3.5. The median productive read count per sample was 4.5

million reads, and the median number of TCR� clonotypes was 71045 (Table A7). In

total, 1572 nucleotide-unique TCR� clonotypes were found in donors P01, P02, and

P03 (Table A8). 11 of these TCR� clonotypes were found to be specific for both IE1

and pp65 in donor P03, leaving 1550 monospecific TCR� sequences. Of these, 915

were specific for IE1 and 635 were specific for pp65. Next, the antigen-specific TCR�

sequences identified by mini-LCL stimulation were compared to the epitope-specific

TCR� sequences found by single peptide stimulation of the same donors P01–P03.

Of the 915 IE1-specific TCR� sequences, 138 were specific for CRV, 6 for VLE, and

no epitope could be assigned to 771 TCR� sequences. Of the 635 pp65-specific

TCR� sequences, 4 were specific for NLV, 26 for RPH, 38 for TPR, and 566 were of

unknown epitope specificity. One pp65-enriched TCR� sequence was enriched with

both RPH and TPR in the single peptide stimulation assay and therefore of ambiguous

specificity. Although the precise epitope specificity of the majority of different TCR�

clonotypes could not determined, the majority of pp65-specific and IE1-specific TCR�

reads could be assigned to epitope specificities in 4 out of 5 samples (Figure 4.19).

For example, 95.6% of TCR� reads belonged to CRV-specific clonotypes in the IE1

mini-LCL–stimulated sample of P01. In the pp65 mini-LCL–stimulated sample of this

donor, 56.1% of reads belonged to TPR-specific clonotypes and another 7.6% to RPH-

specific clonotypes. Nonetheless, 32.2% of IE1-stimulated TCR� reads in donor P02
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and 21.6% of pp65-stimulated TCR� reads in donor P03 could not be assigned to an

epitope specificity based on the data obtained by single peptide stimulation of the same

donor. Hence, it may be interesting to test these donor for additional IE1-derived and

pp65-derived epitopes, respectively.

Figure 4.19: The majority of full-length antigen-specific TCR� reads identified by mini-
LCL–stimulation belongs to clonotypes with known epitope specificity. Cumulative read
frequencies of TCR� sequences of each epitope specificity in the ex vivo and mini-
LCL–stimulated samples of donors P01, P02, and P03 are shown on the y-axes.

To find out whether the CMV epitope-specific TCR� clonotypes identified by single

peptide stimulation also recognise endogenously processed and presented epitopes

from full-length antigens, specific TCR� sequences identified using the single peptide

stimulation assay were compared to enriched TCR� sequences from mini-LCL stimula-

tion (Figure 4.20). With the exception of TPR-specific TCR� clonotypes identified from

donor P03, all top frequency epitope-specific TCR� clonotypes activated and prolifer-

ated by co-culture with an autologous mini-LCL presenting the corresponding antigen.

Moreover, many less frequent epitope-specific TCR� clonotypes were also identified as

antigen-specific in the mini-LCL stimulation assay. Especially CRV-specific TCR� se-

quences were abundant in IE1 mini-LCL–stimulated samples of donors P01–P03. The

data show that majority of peptide-specific TCR� clonotypes was specificially enriched

with physiological levels of antigen exogenously processed and presented by mini-LCL.

These findings corroborate that the single peptide stimulation assay is a valid approach

to identify genuine CMV epitope-specific TCR� sequences. The assay is also suitable

to identify rare CMV-specific TCR� clonotypes that are of low frequency ex vivo, but

selectively enrich upon peptide stimulation. In addition, the data suggest that a majo-
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Figure 4.20: Specific TCR� clonotypes identified by peptide stimulation recognise
endogenously processed CMV antigen. The analysis was performed for antigens IE1
(epitopes CRV and VLE) in CMV-positive donors P01–P03 and pp65 (epitopes NLV,
RPH and TPR) in donors P01 and P03. The plot depicts all TCR� clonotypes that
were identified as epitope-specific in the peptide stimulation assay. The y-axis shows
the frequency of each clonotype after peptide stimulation. Coloured dots represent
clonotypes that were specifically enriched by stimulation with an autologous mini-LCL
expressing the corresponding CMV antigen; grey dots indicate clonotypes for which
this was not the case. The numbers on top indicate the total number of epitope-specific
TCR� clonotypes and, in parentheses, the number of clonotypes responding to antigen
endogenously processed by mini-LCLs. Samples of donor P01 were CD8-enriched
before sequencing.

rity of IE1-specific and pp65-specific T cells in donors with HLA backgrounds similar

to P01–P03 are directed against a small number of already known immunodominant

epitopes. However, this may not hold true for donors with less well-studied HLA alleles.

Comparative TCR� sequencing can serve to identify donors with antigen-specific T-cell

responses that are unaccounted for on the epitope level, in order to identify presently

unknown immunodominant epitopes.

4.8 Stimulation with multiplexed CMV peptides to char-
acterise T cells with various specificities

Since the identification of CMV-specific TCR� clonotypes by single peptide stimulation

is quite laborious and one sample is required per specificity, the assay was scaled up
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to test multiple specificities simultaneously with as few samples as possible in donors

with various HLA types. For her master’s thesis in molecular biotechnology, Fenja Ger-

pott conducted a set of experiments under my supervision in which she distributed 32

immunogenic CMV peptides, all of which were previously described CD8+ T-cell tar-

gets, to 8 different pools. The peptides were distributed in a way that each peptide

was present in a unique combination of 3 pools and absent in the remaining 5 pools,

resulting in a unique ”address” for each peptide. To optimise coverage of CMV-specific

T cells, homologous peptides whose sequence shows some variation in different CMV

strains were combined and treated as one epitope. The full-length peptide sequences

are listed in Table 2.13 and the pool distributions are noted in Table 3.4. As in the single

peptide stimulation assay, PBMCs were loaded with pooled peptides, excess peptide

was washed off, and cells were cultured in the presence of IL-2 for 10 days. Cells

were counted before and after the 10-day stimulation period, and expansion rates for

each stimulation were calculated by dividing the cell number harvested by the cell num-

ber seeded (Figure 4.21). For the peptide pool stimulation experiments, CMV-positive

Figure 4.21: Expansion rates of CMV peptide pool-stimulated PBMCs derived from
8 CMV-positive donors. The red line indicates identical cell counts before and after
stimulation (expansion rate=1). Experiments were performed jointly by Fenja Gerpott
and me.

donors with a wide variety of different HLA types matching to multiple of the 32 CMV

peptides were chosen (P01, P03, P11, P17–P21). Consistent with this donor choice,

the observed expansion in culture was strongly dependent on the donor and the pep-
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tide pool. While absolute cell numbers were up to 3-fold increased after stimulation of

PBMCs derived from donors P01, P17, and P21 with some peptide pools, cell numbers

were decreased in donors P19 and P20. Variations in cell expansion between peptide

pool stimulations of the same donor were smallest in donors P03 and P20, where har-

vested cell numbers were in the same range for all pools. Peptide pool-dependent

expansion rates varied most strongly in donors P17 and P21. No CMV peptide pool

led to an increase in cell numbers in all donors, but pool 3 led to growth rates >1 in 6

out of 8 donors. In donor P21, cell numbers after stimulation with CMV pools 1, 3, and

5 were more than twice as high than after stimulation with the remaining pools. This

suggested that this donor reacted particularly strongly to the HLA-A*02:01–restricted

epitope VLE and/or its strain variant ILE, which were contained in exactly these pools

(1,3,5) and matched the donor’s HLA type.

4.8.1 Multimer-positive T cells are enriched by stimulation with
CMV peptide pools

Samples from before and after CMV peptide pool stimulation derived from donor P21

were stained with HLA-matched multimers for epitope-specific T cells and analysed by

flow cytometry (Figure 4.22). CMV-specific T cells targeting various epitopes presented

on different HLAs, namely ELK, NLV, QIK, VLE, VTE, YSE, were already frequent in

PBMCs. The measured proportions in ex vivo CD3+ T cells ranged from 0.13% (ELK)

to 0.81% (VTE). Multimer-positive T cells against epitopes ELK, NLV, VLE, and VTE

were enriched with all 3 pools containing the respective peptide and were not enriched

with the remaining 5 pools. T cells against YSE were enriched in the 3 pools contain-

ing the peptide (pools 2,4, and 6), but also in pools 1 and 5, which should not contain

YSE. No enrichment of multimer-positive T cells was observed in pools containing

ELR, HER, or QIK. While QIK-specific cells were nicely stained in the ex vivo sample,

no specific cells were observed when staining with ELR or HER multimers. The lack of

enrichment of QIK-specific T cells may be related to the fact that the QIK amino acid

sequence that was used in the peptide pools contained an error (see Table 2.13). This

could mean that donor P21 did not react to the erroneous QIK variant at all, or that

T cells that were enriched with the erroneous QIK variant could not be stained with the

QIK-multimer with the correct CMV epitope sequence. ELK-specific T cells, but not
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Figure 4.22: Multimer stainings of unstimulated and peptide pool-stimulated samples
derived from donor P21 with multimers matching the donor’s HLA type. Cells were
gated on CD3+ lymphocytes. The multimer stainings of samples stimulated with a CMV
peptide pool containing the corresponding peptide are framed by boxes in the colour
of the peptide. Some samples could not be analysed since handling errors occurred
during staining; such samples are marked wit an ”x”. All stainings were performed by
Fenja Gerpott for her master’s thesis under my supervision.

ELR-specific T cells, were found ex vivo and were enriched by stimulation with ELK

and/or its variant epitopes ELR, ELK-I, and ELR-I. It has been described before that

ELK-specific T cells did not respond to stimulation with ELR peptide (Elkington et al.

2003). Furthermore, a study showed that cross-reactivity of ELR-specific and ELK-

specific T cells was donor-dependent (Smith et al. 2016). In that study, ELR-specific

T cells were absent in a CMV-infected donor who carried CMV strains that mostly con-

tained the ELR epitope variant, whereas a T-cell response against the subdominant

epitope variant ELK existed in that donor. In two other CMV-infected donors of that
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study, however, T cells cross-reactive towards ELK and ELR were found. As the flow

cytometry data implies, donor P21 belongs to the class of donors with T cells targeting

exclusively the epitope variant ELK. Moreover, donor P21 had no HER-specific T cells

in their repertoire, which is in agreement with previous reports in which HER-specific

T cells were only found in a subset of donors expressing the restricting HLA-B*40:01

and/or HLA-B*40:02 (Kondo et al. 2004; Trivedi et al. 2005). In summary, T cells spe-

cific for 6 of 8 HLA-matched CMV peptides were present in the ex vivo repertoire of

donor P21, and T cells specific for 5 of these 6 CMV peptides (all except QIK) were

enriched by stimulation with the relevant peptide pools.

When looking at the cumulative proportions of CMV multimer-positive T cells in sam-

ples of donor P21 (Figure 4.23A), most multimer-positive T cells were found after stim-

ulation with pool 4 (80%) followed by pool 6 (51%). In these two samples, VTE-specific

T cells were most abundant, followed by NLV-specific T cells and ELK-specific T cells.

VLE-specific T cells were only enriched in pools 1, 3 and 5, but their proportions in

the stimulated samples were <5%. Since T cells specific for the VLE/ILE pool com-

bination (Table 3.4) appear to be dominant in this donor (Section 4.8), this donor’s

CMV-specific CD8+ T-cell repertoire seems dominated by strain-specific T cells that

recognise ILE, but not VLE. An ILE/HLA-A*02:01 multimer to verify this hypothesis was

not available at the time. There appears to be no reduction of relative frequencies of

epitope-specific T cells due to competition in pools where the donor reacted to multiple

epitopes. For example, the proportion of NLV-specific T cells in the sample stimulated

with pool 4 was not smaller than its proportion in pool 8, although donor P21 had a

strong T cell response against VTE in pool 4 and reacted to no other specificity stained

for in pool 8. By multiplication of the number of cells harvested by the proportion of

multimer-positive cells, the absolute number of multimer-positive T cells in the samples

can be estimated (Figure 4.23B). Numbers of multimer-positive T cells in the relevant

pools were comparable for specificities ELK (1.31–3.44 million cells) and VLE (1.63–

2.45 million cells), but varied more for specificities NLV (1.29–7.45 million cells) and

VTE (11.47–19.61 million cells). YSE-multimer–positive T cells were most abundant

with pools 1 and 5, which did not contain YSE peptide. This multimer showed a rela-

tively high staining in all samples, and the staining pattern took the form of an extended

”smear” between negative and positive cells (Figure 4.22); the quality of the multimer
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Figure 4.23: Flow cytometry confirms selective enrichment of multimer-positive T cells
after pool stimulation. Stainings of unstimulated and peptide pool-stimulated samples
derived from donor P21 and stained with HLA-matched multimers. Cells were gated
on CD3+ lymphocytes and the background from samples stained without peptide-MHC
monomer or multimer was subtracted. All stainings were performed by Fenja Gerpott
for her master’s thesis under my supervision. (A) Relative frequencies of multimer-
positive T cells in ex vivo PBMCs and after stimulation with CMV peptide pools 1–8. (B)
Number of multimer-positive T cells before and after peptide pool stimulation. Absolute
numbers of multimer-positive T cells were calculated by multiplying the proportion of
multimer-positive T cells determined by flow cytometry with the harvested amount of
cells in a sample. (C) Enrichments of multimer-positive T cells by CMV peptide pool
stimulations were calculated by dividing the relative frequencies of multimer-positive
cells after stimulation by their frequencies ex vivo. The red line marks no enrichment
through peptide pool stimulation. ⇤ Unusable for analysis due to handling errors during
staining; � Background-corrected frequency in stimulated sample  0.
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reagent may have suffered during its long-term storage. Since the relative frequency

of CMV epitope-specific T cells after stimulation is influenced by the ex vivo frequency

of multimer-positive T cells, the enrichment of multimer-positive T cells by peptide pool

stimulation was also analysed (Figure 4.23C). T cells specific for ELK, NLV, VLE, and

VTE were enriched exclusively by stimulation with 3 peptide pools containing the re-

spective peptides and depleted in the remaining 5 pools. Enrichment of T cells with

one of these specificities ranged from 16-fold (VLE, pool 3) to 129-fold (ELK, pool 7)

when stimulated with matching peptide pools and from 0.08-fold (NLV, pool 3) to 1.3-

fold (VLE, pool 2) when stimulated with mismatched peptide pools. Consequently,

there was a more than 10-fold difference in enrichment of T cells specific for ELK, NLV,

VLE, and VTE after stimulation with matched peptide pools than after stimulation with

mitmatched peptide pools. Taken together, the flow cytometry results demonstrate that

T cells with different specificities can be specifically enriched simultaneously by short-

term CMV peptide pool stimulation.

4.8.2 Peptide pool stimulation identifies TCR� clonotypes of vari-
ous specificities

High-throughput sequencing of TCR� chains before and after CMV peptide pool stim-

ulations (median reads=2.1⇥106, Table A9) and subsequent bioinformatic identifica-

tion of specific TCR� clonotypes as described in Section 3.5.3.6 led to the identifi-

cation of 944 CMV epitope-specific TCR� sequences in 8 seropositive donors (Ta-

ble 4.5). These TCR� sequences were nucleotide-unique in each of the donors, but

were counted multiple times if found with identical nucleotide sequence in different

donors. The 944 TCR� sequences included 92 TCR� sequences that were enriched in

every pool that contained at least one of two strongly overlapping peptides: DEE+EEA,

KQI+QIK, and RPH+HER. Both peptides of each pair are independent CMV epitopes

with different HLA restrictions. However, because of their large sequence overlap it

cannot be excluded that under the conditions of our experiment one peptide may bind

to the other HLA, although probably less efficiently. Therefore, the 3 pairs of strongly

overlapping CMV peptides were included in this analysis. Of the 944 CMV-specific

TCR� sequences, 625 (66.2%) were specific for epitopes known to be restricted by

HLAs matching the donor’s HLA type. For all CMV epitopes tested, at least one spe-

cific TCR� sequence was found in HLA-matched donors, with the exception of epitopes
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Table 4.5: Number of specific TCR� sequences found by peptide pool stimulation per
peptide and donor. TCR� sequences that can be presented by the donor because they
have the matching HLA allele are shown in black font and HLA-mismatched peptides
are shown in red font. Three peptides strongly overlapped and may be presented on 2
distinct HLA alleles; if only one of 2 alleles matched the donor’s HLA type, numbers are
printed in gray font. The numbers in parentheses indicate the numbers of HLA-matched
TCR� sequences for each donor and epitope.

Epitope P01 P03 P11 P17 P18 P19 P20 P21 Sum Epitope

ATV 0 0 1 0 0 4 1 1 7 (1)
AYA 0 0 0 2 0 7 0 0 9 (0)
CED 0 0 0 0 1 1 3 2 7 (3)
CRV 9 8 12 14 9 1 0 0 53 (52)
DAL 0 0 0 0 0 3 1 0 4 (0)
DEE 0 1 0 0 0 3 5 1 10 (5)
DEE+EEA 0 0 82 0 0 1 1 0 84 (0)
EEA 0 0 0 0 1 2 4 8 15 (9)
EFF 0 0 1 0 0 45 0 0 46 (0)
ELK 0 0 1 10 0 1 3 14 29 (24)
FPK 0 0 7 1 0 2 1 0 11 (7)
FPT 0 0 0 0 0 1 0 0 1 (1)
FRC 24 61 30 60 63 1 3 1 243 (238)
GPI 0 2 0 0 4 1 3 1 11 (0)
HER 0 1 1 0 0 4 3 0 9 (1)
IPS 0 0 0 0 0 15 1 0 16 (15)
KEV 0 0 0 1 10 4 2 2 19 (12)
KLG 0 0 0 0 2 2 1 0 5 (3)
KQI 0 0 0 0 0 2 2 0 4 (4)
KQI+QIK 0 1 1 0 0 2 1 0 5 (0)
NLV 0 10 0 11 22 1 6 31 81 (52)
NQW 0 1 0 0 0 2 4 0 7 (2)
QIK 0 2 11 0 1 9 3 1 27 (1)
QYD 0 1 0 0 0 0 0 0 1 (0)
RCP 0 1 5 0 1 2 3 3 15 (6)
RIK 0 0 0 0 0 3 5 0 8 (8)
RPH 1 4 3 0 0 1 1 1 11 (8)
RPH+HER 0 0 0 0 0 0 2 1 3 (0)
TPR 1 3 4 1 0 2 2 0 13 (9)
TRA 0 0 0 0 0 5 20 0 25 (25)
TSD 0 0 0 0 0 5 1 1 7 (6)
VLE 0 1 0 0 0 4 0 10 15 (11)
VTE 3 0 2 11 0 19 1 47 83 (77)
VYA 0 0 0 3 1 1 3 2 10 (0)
YSE 0 1 0 5 0 22 4 18 50 (45)

Sum Donor 38
(35)

98
(88)

161
(62)

119
(112)

115
(85)

178
(76)

90
(33)

145
(134) 944 (625)

HER, RIK, TSD, and VLE. Specific TCR� sequences against the latter epitopes were

found in 1/3 HLA-matched donors (HER), or 2/3 HLA-matched donors (RIK, TSD, VLE).

This is not surprising, since CMV epitopes are not equally immunogenic or, as it is com-

monly termed, immunodominant. For example, VLE-specific T cells were found in 6/18
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donors in a study by Khan et al. (Khan et al. 2002a), in which the epitope was iden-

tified, and in 2/6 donors and 14/26 donors in other studies (Nastke et al. 2005; Khan

et al. 2004). HER appears to be even less immunodominant, as specific T cells have

been found in 0/10 CMV-positive donors by multimer staining ((Nastke et al. 2005))

and in 2/4 CMV-positive donors by IFN� screening (Trivedi et al. 2005). Consistently,

no HER/HLA-B*40:01 multimer-positive T cells were found in donor P21 in this project

(Figure 4.22). A low number of specific TCR� sequences from donors lacking the ex-

pected HLA type was observed for specificities CRV, ELK, FRC, IPS, KQI, RIK, TRA,

TSD, VTE, and YSE. For these specificities, �80% of identified TCR� sequences were

found in donors expressing the HLA molecule that was expected to present the peptide.

Most TCR� sequences in an HLA-mismatched donor were found in donor P19 for EFF

followed by donor P18 for NLV. For the overlapping specificities DEE+EEA, KQI+QIK,

and RPH+HER, 0–2 specific TCR� sequences were found per donor expressing one

of 2 matching HLAs. The low number of TCR� sequences with overlapping specificity

implies that the two overlapping peptides of each pair are unlikely presented on the

same HLA, and that such peptides are not recognised by the same TCR� clonotypes.

The only donor expressing both HLAs for one of the overlapping epitope pairs, namely

donor P03 for RPH+HER, did not mobilise any TCR� sequences recognising both RPH

and HER on their respective HLAs, although 4 and 1 TCR� sequences were found for

each individual epitope. In donor P11, 82 specific TCR� sequences were found for the

overlapping epitope pair DEE+EEA, although the donor expressed none of the required

HLAs to present either peptide. The DEE+EEA double-specific TCR� sequences were

of low frequency in the ex vivo sample (0 or 1 reads) and at the low-frequency end

of specific TCR� sequences. Hence it is likely that these TCR� sequences are, in

fact, unspecific background. By far the largest number of unique HLA-matched specific

TCR� sequences was found for FRC; for this epitope, between 24–63 specific TCR�

sequences were identified per donor. Other epitopes eliciting a diverse specific T-cell

response on the TCR� clonotype level in HLA-matched donors were epitopes CRV

(8–14), ELK (10–14), NLV (10–31), TRA (5–20), VTE (11–47), and YSE (5–22).

In conclusion, peptide pool stimulation specifically enriched TCR� sequences against

epitopes presented on HLA-molecules matching the donor’s HLA type. Nevertheless,

there was occasional enrichment of specific TCR� sequences against epitopes that
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were not expected to be presented by certain donors, because these donors lacked

the known matching HLA. An example are the 45 EFF-specific TCR� sequences found

in donor P19 who did not express the known restricting HLA-B*44:02. The online

tool NetMHC 4.0 Server (http://www.cbs.dtu.dk/services/NetMHC/ (Nielsen et al.

2003; Andreatta and Nielsen 2015)) predicts strong binding affinity of the 9-mer ”FFW-

DANDIY”, which is fully contained within EFF, to two HLA class I alleles expressed

by donor P19, namely HLA-B*35:01 (affinity = 20.97 nM) and HLA-C*04:02 (affinity =

1404.15 nM). Hence, it is possible that T cells enriched with EFF in donor P19 actually

recognise the slightly different CMV peptide ”FFWDANDIY” presented on HLA-B*35:01

or HLA-C*04:01. Having said that, it was beyond the scope of this study to analyse

whether some of the unexpected combinations of HLA type and peptide were due to

recognition of bona fide epitopes that are presently unknown. Consequently, specific

TCR� clonotypes identified from HLA-mismatched donors were excluded from further

analyses in this thesis. Likewise, TCR� sequences specific for the dual CMV peptide

combinations DEE+EEA, KQI+QIK, and RPH+HER were excluded from further anal-

yses, since such dual recognition of overlapping peptides by TCR� clonotypes was

rarely observed, and such TCR� sequences were low in frequency.

4.8.3 Overlap of CMV-specific TCR� repertoires identified by sin-
gle peptide or peptide pool stimulation

PBMCs from donors P01 and P03 were stimulated both with single CMV peptides and

with CMV peptide pools 1–8. Overall, peptide pool stimulation led to the identification

of fewer epitope-specific TCR� sequences than single peptide stimulation (see Ta-

ble 4.2). In donor P01, sequencing of 1 ex vivo sample and 4 single peptide-stimulated

samples resulted in the identification of 209 specific TCR� sequences. In donor P03,

sequencing of 1 ex vivo sample and 6 single peptide-stimulated samples resulted in

the identification of 115 specific TCR� sequences. With the pool stimulation assay,

1 ex vivo sample and 8 peptide pool-stimulated samples were sequenced per donor.

Although the peptide pools contained additional peptides matching the HLA type of

each donor, namely KLG and RIK (P01) and HER (P03), the number of specific TCR�

sequences found by pool stimulation was lower than by single peptide stimulation: 38

epitope-specific TCR� sequences were found using pool stimulation in donor P01 and

98 specific TCR� sequences were found in donor P03 (Table 4.5).
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When comparing the specific TCR� sequences identified by single peptide stimulation

to those found by peptide pool stimulation, there was a considerable overlap between

specific TCR� sequences (Table 4.6). In all 4 epitopes studied in donor P01, and in

three of the epitopes (CRV, FRC, NLV) studied in donor P03, most or all of the TCR�

sequences that were identified as specific in the sample of lower resolution (i.e. with

the smaller number of specific TCR�, either single peptide or peptide pool) were also

identified as specific in the other sample. TCR� sequences that were found in both

Table 4.6: Number of specific TCR� sequences found by single peptide stimulation,
pool stimulation, or both assays in donor P01 and donor P03. Numbers in parentheses
indicate how many of the identified TCR� sequences were also specifically enriched
by stimulation with the matching mini-LCL. Since no UL29/28-expressing mini-LCL was
available, FRC-specific TCR� sequences could not be tested for recognition of endoge-
nously processed peptide.

Peptide Donor P01 Donor P03
Single peptide Peptide pool Both Single peptide Peptide pool Both

CRV 119 (94) 9 (8) 9 (8) 39 (22) 8 (8) 8 (6)⇤
FRC 24 24 15 16 61 16
NLV 8 (4) 10 (8) 4 (4)
RPH 27 (20) 1 (1) 1 (1) 15 (6) 4 (0) 0
TPR 39 (36) 1 (1) 1 (1) 22 (2) 3 (1) 0
VLE 15 (4) 1 (0) 0

⇤ In the pool stimulation assay, 2 TCR� sequences were assigned different specificities (1⇥ KQI+QIK, 1⇥ VLE). They were not
enriched by stimulation with IE1-expressing mini-LCL.

assays mostly also responded to endogenously processed antigen in the mini-LCL

stimulations. For example, 9 CRV-specific TCR� sequences were identified both by

single peptide and by peptide pool stimulation in donor P01, and 8 of these 9 TCR�

sequences were specificially enriched by stimulation with the IE1-expressing mini-LCL.

Conversely, equal or even higher numbers of TCR� sequences specific for FRC or

NLV were found by peptide pool stimulation than by single peptide stimulation. While

15 of 24 TCR� sequences found by single peptide or peptide pool stimulation over-

lapped in donor P01, all 16 FRC-specific TCR� sequences identified by single pep-

tide stimulation in donor P03 were also found by peptide pool stimulation of the same

donor. 10 NLV-specific TCR� sequences were found by peptide pool stimulation in

donor P03, including 4 TCR� sequences that were specifically enriched by pp65 mini-

LCL–stimulation but not by single peptide stimulation. All in all, these results show that

CMV-specific TCR� sequences can be identified by both single peptide stimulation and

106



4. RESULTS

peptide pool stimulation, and that a substantial number of these TCR� sequences also

respond to endogenously processed and presented antigen. The number of specific

TCR� sequences identified by peptide pool stimulation was, in most cases, lower than

with single peptide stimulation, which may be a result of different cut-off criteria for the

identification of CMV-specific TCR� sequences in both assays. The cut-off criteria may

have been more stringent for the peptide pool stimulation assay, because more control

samples were included, and consequently fewer specific TCR� sequences were iden-

tified.

In order to understand why the yield of specific TCR� sequences was comparatively

low in the peptide pool stimulation assay, the frequencies of epitope-specific TCR�

sequences in the single peptide-stimulated samples of donors P01 and P03 were com-

pared to their frequencies in CMV peptide pools 1–8 (Figure 4.24). Generally, there was

a positive correlation between clonotype frequencies in the single peptide-stimulated

and peptide pool-stimulated samples: TCR� sequences frequencies increased in all

pools with increasing frequencies in the single peptide-stimulated samples. TCR� se-

quences specific for FRC and NLV in donor P03 were well-separated and 2–3 orders

of magnitude more frequent in the stimulations with the 3 pools containing the pep-

tide than in the remaining 5 stimulations. The 4 lower-frequency NLV-specific TCR�

clonotypes from single peptide stimulation were not enriched with any of the 3 pools

containing NLV. These four TCR� sequences may not be specific for NLV; they were

not enriched by stimulation with pp65 mini-LCLs either. The top FRC-specific TCR�

sequences derived from single peptide stimulation of donor P01 were also more fre-

quent in the 3 samples stimulated with pools containing FRC than in the 5 samples

stimulated with pools lacking FRC, but for the lower-frequency FRC-specific TCR� se-

quences this was not seen as clearly. Most CRV-specific TCR� sequences were often

enriched with 6 of 8 pools (pools 1,2,3,5,7, and 8) and depleted in pools 4 and 6. This

unexpected observation was made in both donors and raised the question of whether

(a) these TCRs may be specific for more than one peptide, or (b) the three other pools

may have been contaminated with the CRV peptide. Pools 1, 5, and 8 were supposed

to contain the CRV peptide. Pools 2, 3 and 7 were the pools that contained the other

HLA-C–restricted CMV-peptide FRC, and this peptide was handled immediately after

CRV when lyophilised peptides were dissolved and distributed to pools. RPH-specific
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Figure 4.24: Frequencies of CMV-specific TCR� clonotypes in the CMV peptide
pool-stimulated samples of donor P01 and P03. All specific TCR� sequences that
were identified by single peptide stimulations in the respective donor are displayed in
the plots. The proportional read frequency of each clonotype in the single peptide-
stimulated sample are shown on the x-axis and the corresponding frequencies in each
of the 8 pools are plotted on the y-axis. Consequently, each specific TCR� clonotype
identified by single peptide stimulation is depicted as 8 dots with identical x-axis va-
lues, but different y-axis values. TCR� clonotypes that were not present in a pool were
assigned a pseudofrequency of 0.5⇥ the minimum proportion of reads a clonotype had
in this analysis. The circles next to the peptide name in the plot headings correspond
to the pools in which the peptide was contained.

and TPR-specific TCR� sequences were enriched in pools 4,5,6, and 7, hinting at a

potential cross-contamination of these 2 peptides in the CMV peptide pools; RPH was

handled immediately after TPR at setup. VLE-specific TCR� sequences identified by

single peptide stimulation of donor P03 were enriched with pool 8 in addition to pools

1,3, and 5 in which VLE peptide was contained. If the reason for this was a contami-

nation of another peptide with VLE, peptides CRV or KQI were likely candidates, since

they appear only in pool 8 apart from two of the three pools 1, 3, and 5. Because TCR�

clonotypes against CRV, RPH, TPR, and VLE were enriched by stimulation with more
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than the 3 pools containing the epitope, many TCR� sequences specific for these epi-

topes could not be found using the bioinformatics data analysis pipeline established

for peptide pool stimulations. Peptides FRC and NLV, however, appeared not affected

by this hypothetical cross-contamination, which explains the high numbers of specific

TCR� sequences found for these epitopes using the peptide pool stimulation assay.

To test the hypothesis that cross-contamination of the peptides had occurred due to

handling errors when solutions were mixed to prepare CMV peptide pools, T-cell clones

specific for CRV or FRC were co-incubated with peptide stock solutions or peptide

pools that contained either CRV, FRC, or neither of the two peptides (Figure 4.25).

Older peptide stocks that were independently synthesised and handled were avail-

able for this experiment; these stocks had been used for all single peptide stimulation

experiments, but not for the peptide pool stimulation experiments. The CRV-specific

Figure 4.25: IFN� secretion of a CRV-specific T-cell clone (made by Steffi Ameres)
and an FRC-specific T-cell clone (made by Xiaoling Liang) in response to different CMV
peptide stocks and pools. 9 different conditions were tested with both T-cell clones: the
new CRV and FRC stock solutions used to make the peptide pools (1–2), three different
CMV peptide pools, of which one only contained CRV (3), one only contained FRC (4),
and one contained neither peptide (5), the old peptide stocks used for all single peptide
stimulation assays (6–8), and a negative control containing no peptide. 10,000 T cells
were co-incubated with 20,000 peptide-loaded CD40-stimulated B cells overnight to
induce IFN� secretion. Per well, 1 µg peptide was loaded onto the B cells and excess
peptide was washed off. Each condition was tested in triplicates (n=3) for each T-cell
clone, error bars indicate the standard deviation of measured OD405 values.

and the FRC-specific T-cell clone were produced and kindly provided by Steffi Ameres

and Xiaoling Liang, respectively. IFN� secretion was measured in an IFN�-ELISA. As

expected, the CRV-specific T-cell clone strongly reacted to both the old CRV stock so-

lution used in the single peptide stimulations and the new stock solution used in the

peptide pool stimulations. In addition, it secreted IFN� in response to peptide pool 1,

109



4. RESULTS

which contained CRV peptide. IFN� secretion was similar in all 3 samples containing

CRV, as shown by the similar OD405 values (mean=2.4–2.6). However, the CRV-

specific T-cell clone also secreted IFN� in response to stimulation with the new FRC

stock solution and peptide pool 2 containing FRC, even though the OD405 values were

approximately halved compared to the intentionally CRV-containing samples. These

results confirmed that the new FRC stock solution and the pools produced from it were

contaminated with CRV peptide due to handling errors. This explains the enrichment

of CRV-specific TCR� clonotypes with pools 2, 3, and 7, all of which should not have

contained CRV. The FRC-specific T-cell clone was barely functional, as demonstrated

by the very low OD405 values measured in the IFN�-ELISA. Nevertheless, there was a

slight tendency of higher IFN�-secretion in the samples containing FRC than in those

were FRC was supposed to be absent. Together with the observation that FRC-specific

TCR� clonotypes were significantly more frequent in the 3 pools containing FRC than

in the remaining 5 pools (Figure 4.24), it can be tentatively concluded that FRC peptide

was exclusively contained in the 3 dedicated pools. The comparison between TCR�

clonotypes identified after single peptide and peptide pool stimulations (Table 4.6, Fig-

ure 4.24) together with the control experiment shown in Figure 4.25 suggested that,

while identification of some specific TCR� clonotypes was not possible due to peptide

contamination, those TCR� clonotypes that were identified as specific were most likely

correctly assigned to their CMV epitope specificity. Therefore, the peptide pool-derived

TCR� data were further analysed, albeit with special caution.

There was a strong positive correlation of relative frequencies of TCR� clonotypes

that were deemed specific for CRV or FRC by both single peptide stimulation and

peptide pool stimulation of donors P01 and P03 (Figure 4.26). Pearson correlation

coefficients of log10-transformed frequency data ranged from r=0.66 for CRV-specific

TCR� sequences of donor P01 to r=0.95 for FRC-specific TCR� sequences of donor

P03. Average frequencies were at least 2 orders of magnitude higher after stimulation

with the 3 pools containing CRV or FRC than with the remaining 5 pools. Notably, the

frequency distribution patterns of specific TCR� clonotypes in the 3 matching pool-

stimulated samples were very similar. Because the CMV-specific TCR� clonotypes

that were found by both single peptide stimulation and peptide pool stimulation were at

least 100-fold more frequent in the 3 pools containing the tested peptides than in the 5
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Figure 4.26: Frequency of TCR� sequences that were identified as specific for CRV or
FRC by single peptide stimulation and peptide pool stimulation of donor P01 and P03.
The proportional read frequency of each clonotype in the single peptide-stimulated
sample are shown on the x-axis, and the corresponding frequencies in each peptide
pool-stimulated sample are plotted on the y-axis. The circles next to the peptide name
in the plot headings indicate in which pools the peptide was contained. TCR� clono-
types that were not present in a pool were assigned a pseudofrequency of 0.5⇥ the
minimum proportion of reads a clonotype had in this analysis. Pearson r values indi-
cate the correlation of the log10-transformed frequencies in the single peptide stimu-
lated samples and in the samples stimulated with one of the matching pools.

other pools, it is implied that stimulation with multiplexed peptides is a valid approach

to identify epitope-specific TCR� sequences.

In summary, there was cross-contamination of certain peptides, such as CRV and pos-

sibly other peptides, due to handling errors. Consequently, many TCR� clonotypes

with these specificities could not be identified bioinformatically. Other peptides, such as

FRC, were not carried to other pools, which explains why identification of FRC-specific

TCR� clonotypes by peptide pool stimulation was better than for CRV-specific TCR�

clonotypes. There was a substantial overlap between CMV-specific TCR� clonotypes
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identified by peptide pool stimulation of donors P01 and P03 and those identified by

single peptide stimulation and mini-LCL–stimulation; this observation provides prelim-

inary validation of peptide pool stimulation as a suitable assay to characterise specific

TCR� clonotypes with multiple CMV peptide specificities simultaneously.

4.8.4 Cumulative frequency of CMV-specific TCR� clonotypes ob-
tained from peptide pool stimulation

Epitope-specific TCR� clonotypes identified in 8 CMV-positive donors were traced back

in the ex vivo sample and peptide pool-stimulated samples of each donor to assess

the frequency of CMV-specific TCR� clonotypes in each sample (Section 4.8.3, Fig-

ure 4.27). TCR� clonotypes against epitopes ELK, FRC, NLV, and VTE were abun-

Figure 4.27: Frequencies of specific TCR� sequences identified with the peptide pool
stimulation assay in ex vivo samples and after pool stimulation. The upper panel shows
the cumulative frequencies of TCR� reads for each epitope specificity. The lower panel
shows a close-up of the same bar chart. The numbers and colours of squares below
each donor name indicate the number and kind of peptides that matched the donor’s
HLA type.

dant in specific peptide-containing pools and exclusively present in donors expressing

the expected HLA molecule for epitope presentation. Cumulative read frequencies of

TCR� sequences specific for one of these four epitopes after peptide pool stimulation

varied between 4% (P17, pool 6, ELK) and 65.1% (P21, pool 6, VTE). An exception to

this were cumulative frequencies of ELK-specific TCR� sequences in pool 7 and VTE-

specific TCR� sequences in pool 3 of donor P17, and FRC-specific TCR� sequences

in pools 2, 3, and 7 of donor P01: these specificities contributed less than 1% to the

total TCR� reads of the pool-stimulated samples. The reason for lower cumulative
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frequencies of specific TCR� sequences in these samples may be the presence of a

strong competitor peptide which expands specific clonotypes that consume a major-

ity of TCR� reads in these samples. For example, we know from the single peptide

stimulation assay that donor P01 mounts a very strong T-cell response against CRV

and 97% of reads belong to CRV-specific TCR� clonotypes in the stimulated sam-

ple (Table 4.2). Most of the 119 CRV-specific TCR� clonotypes were also specifically

enriched with endogenously processed antigen (Figure 4.20). Unfortunately, the ma-

jority of CRV-specific TCR� clonotyes of donor P01 could not be identified by peptide

pool stimulation. Despite the inability to identify CRV-specific TCR� clonotypes in the

peptide pool stimulation assay, they were still expanded in all 6 pools containing CRV

peptide (pools 1, 2, 3, 5, 7, and 8) and likely accounted for most of the TCR� reads

in these pools. This was implied by the data presented in Figure 4.24, which shows

the frequency of the 119 CRV-specific TCR� clonotypes identified by single peptide

stimulation in all 8 peptide-pool–stimulated samples. Because of the great expan-

sion of CRV-specific clonotypes in donor P01, the relative frequency of FRC-specific

TCR� clonotypes in the samples was likely reduced; for in the single peptide stimu-

lation assay, 11% of TCR� sequences were FRC-specific after stimulation of PBMCs

from donor P01 with FRC peptide (Table 4.3). To give more examples for competi-

tion between peptides, VTE- and YSE-specific TCR� sequences were less frequent in

samples derived from donor P19 stimulated with pool 4 and pool 6, which contained

both peptides, than they were in pool 2 and pool 3, which contained only one of the

peptides each. Likewise, the cumulative proportions of TCR� sequences specific for

ELK, NLV, VLE, or YSE were higher in samples stimulated with a pool containing only

one peptide that donor P21 reacted to (pools 1, 2, 5, 7, 8) than in the remaining 3

pools, which additionally contained VTE. In conclusion, competition for reads between

TCR� clonotypes with different specificities likely modified cumulative frequencies of

epitope-specific TCR� clonotypes. Particularly the presence of strongly immunogenic

peptides may have reduced the magnitude of the T-cell response observed for other

CMV peptides in some of the tested donors, even when they could not be identified as

specific by computational data analysis. TCR� sequences specific for 6 CMV epitopes

were frequent in pool-stimulated samples of one HLA-matched donor each: 1/1 donor

mounted a strong response specific for IPS, 1/2 donors for DEE, KEV, or TRA, and
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1/3 donors for VLE or YSE. Cumulative read frequencies of specific TCR� sequences

ranged between 0.04% (P18, pool 8, KEV) and 88.8% (P21, pool 5, VLE). Lack of

specific TCR� sequences against these epitopes in additional HLA-matched donors

may be explained by general lack of epitope-specific T cells in these donors, since not

all donors have T cells against all HLA-matched epitopes, or by enrichment of specific

T cells in more than 3 pools so that they could not be identified as peptide-specific (see

Figure 4.24, Figure 4.25).

Donor P18 was negative for HLA-A*02:01, but still mounted a strong T cell response

specific for the HLA-A*02:01–restricted CMV epitope NLV: 22 NLV-specific TCR� se-

quences accounted for 20–75% of reads in the samples stimulated with NLV-containing

pools. Although the donor did not express HLA-A*02:01, they expressed the related

alleles HLA-A*02:03 and HLA-A*02:06. This indicates that at least one of the two re-

lated HLA molecules is also able to present NLV and to activate NLV-specific T cells.

An earlier study by Trivedi et al. (Trivedi et al. 2005) included a donor who expressed

HLA-A*02:06, but not HLA-A*02:01; this donor had 0.2% of NLV-specific T cells in their

PBMCs and 5% after stimulation with a pp65 peptide library consisting of overlapping

15-mers. Hence, HLA-A*02:06 is possibly the presenting HLA of NLV in donor P18, but

a contribution of HLA-A*02:03 cannot be excluded.

In conclusion, the results from peptide pool stimulation show that selective enrichment

and identification of epitope-specific TCR� sequences worked well for some CMV epi-

topes, while specific TCR� sequences against other epitopes could not be determined.

Possible explanations for the lack of specific TCR� sequences in donors expressing

the expected HLA are (i) lack of a T cell response specific for an epitope in a particular

donor, and (ii) cross-recognition of different peptides by the same TCR� clonotype,

which leads to expansion of this clonotype in more than 3 pools, leading to its elimina-

tion during quantitative analysis.

4.9 Common features of CMV peptide-specific TCR�
repertoires

In the previous sections, the CMV epitope-specific TCR� sequences were examined

separately for each donor. In the following sections, the epitope-specific TCR� se-

quences identified by single peptide stimulation and peptide pools stimulation of PBMCs
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derived from donors P01–P08, P11, P14, and P17–P21 will be compared between

donors. TCR� sequences with ambigous specificity derived from the single peptide

stimulation assay were excluded from the analyses. Likewise, TCR� sequences iden-

tified as specific for HLA-mismatched epitopes or as specific for overlapping epitopes

DEE+EEA, KQI+QIK, and RPH+HER by peptide pool stimulation were excluded. The

remaining 1350 monospecific TCR� sequences from single peptide stimulation and

625 HLA-matched TCR� sequences from pool stimulation were combined. This re-

sulted in a total of 1921 monospecific TCR� sequences, which were nucleotide-unique

in the donor in which they were identified, but not necessarily nucleotide-unique be-

tween different donors (donor-nucleotide-unique). 52 of these 1921 TCR� sequences

were found both by single peptide stimulation and peptide pool stimulation of PBMCs

derived from donors P01 and P03.

4.9.1 TCR� sequences with the same epitope specificity use sim-
ilar V genes

At first, the sharing of V and J genes used in TCR� sequences with the same epitope

specificity was investigated. For this purpose, VJ gene usage in TCR� sequences

targeting the 8 most intensively tested epitopes were analysed. This group consisted

of four pairs of epitopes that were restricted by the same HLA class I molecule: The

epitopes were VTE and YSE (HLA-A*01:01), NLV and VLE (HLA-A*02:01), RPH and

TPR (HLA-B*07:02), and CRV and FRC (HLA-C*07:02). Figure 4.28 shows the overall

VJ gene usages of donor-nucleotide-unique TCR� sequences with the same epitope

specificity and the use of particular VJ combinations. Certain V genes were preferably

used by TCR� sequences with the same specificity, but often in combination with a

different J gene. In TCR� clonotypes of some peptide specificities, a certain V� gene

segment was nearly exclusively linked to a particular J� gene segment. For example,

VTE-specific TCR� sequences frequently used TRBV9 in combination with TRBJ2-7

(18%) and the most frequent VJ combination among RPH-specific TCR� sequences

was TRBV4-3 with TRBJ1-1 (11%). By contrast, the most frequent V genes used in

TCR� sequences with other specificities were more promiscuous in their J gene us-

age. For example, TRBV28 was with 39% the top V gene used in FRC-specific TCR�

sequences, but the 208 FRC-specific TCR� clonotypes with TRBV28 used a variety

of different J genes, such as TRBJ2-3, TRBJ2-1, TRBJ2-7, TRBJ2-5, and TRBJ1-
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1, to comparable extents. Similarly, TRBV7-9 was the most frequently used V gene

in TPR-specific TCR� sequences. These 79 TPR-specific TCR� clonotypes (33%)

used TRBV7-9 in combination with TRBJ1-6, TRBJ1-1, TRBJ2-1, TRBJ2-2, and oth-

ers. These observations imply that V gene usage is a stronger determinant for TCR�

clonotype specificity than J gene usage. TCR� sequences with different epitope speci-

Figure 4.28: V� (TRBV) genes and J� (TRBJ) genes used in epitope-specific TCR�
sequences with identical CMV epitope specificity. Chord diagrams show the V gene us-
age (left semi-circle) and J gene usage (right semi-circle) of donor-nucleotide-unique
TCR� sequences specific for epitope CRV, FRC, NLV, RPH, TPR, VLE, VTE, or YSE.
The sector widths correspond to the relative proportion of reads using a particular V
or J gene. The chord thickness is proportional to the read frequencies of particular
combinations of V and J genes in the sample. The top 5 most frequently used gene
segments are labelled in each chord diagram. Number below the chord diagrams indi-
cate how many donor-nucleotide-unique TCR� sequences were found per specificity
and from how many donors they were derived.
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ficities preferably used different V genes. For instance, VLE-specific TCR� sequences

tended to prefer TRBV11-2 and TRBV7-3, while CRV-specific TCR� sequences prefer-

ably used TRBV25-1 and TRBV6-1/6-5/6-6. FRC-specific TCR� sequences frequently

used TRBV28 and TRBV15. An exception to this was TRBV7-2, which was often

used in TCR� clonotypes with various epitope specificities. This V gene, however,

was also the most frequent V gene in ex vivo repertoires of all tested donors and

therefore may have been used in TCR� sequences that were not truly epitope spe-

cific, but were rather background noise (Section 4.4.7, Section 4.4.8). Remarkably,

one V gene was frequently used in TCR� sequences specific for each pair of epitopes

restricted by the same HLA allele. Many TCR� sequences specific for HLA-A*01:01–

restricted epitopes used TRBV9, while HLA-A*02:01-restricted TCR� sequences often

used TRBV7-2. HLA-B*07:02-restricted TCR� sequences preferably used TRBV27

and HLA-C*07:02–restricted TCR� sequences frequently used TRBV28. Since CDR1

and CDR2 of the TCR� chain V region are mainly in contact with the MHC molecule

and seldom interact with the presented peptide (Rudolph et al. 2006; Ishizuka et al.

2008; Merkle et al. 2017; Cole et al. 2017), conserved V gene usage of TCR� se-

quences with the same epitope specificity indicates that TCR� sequences specific for

different CMV epitopes with identical HLA restriction may bind in a similar orientation

to their target peptide-MHC complex.

4.9.2 Several TCR� sequences were specifically enriched with the
same CMV peptide in at least 2 donors

The analysis of specific TCR� sequences was next taken to the amino acid level, be-

cause although the underlying nucleotide sequence may vary, the resulting protein

sequence defines the specificity of a TCR� chain. All in all, 1809 amino-acid-unique

epitope-specific TCR� sequences were found by single peptide and peptide pool stim-

ulation. 45 TCR� sequences were found to be specifically enriched with the same

CMV peptide in 2–6 donors (Table 4.7). One additional TCR� sequence was specifi-

cally enriched with two different peptides in two donors, namely with CRV in P07 and

VLE in P08. This sequence was excluded from the following analyses. 12 specific

TCR� chains with identical CDR3� amino acid sequence were found more than once

in the same donor, but with different underlying nucleotide sequences, suggesting that

these TCRs originate from independently formed T-cell clones. The remaining 1751
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Table 4.7: List of 46 amino acid-unique TCR� clonotypes shared between multiple
donors. The rightmost 3 columns show the sum of donors in which this TCR� se-
quences was specifically enriched (⌃Donors), the total number of occurences among
the 1921 monospecific TCR� sequences (Occ.), and the number of nucleotide variants
encoding the TCR� amino acid sequence (nt var.).

V gene CDR3 sequence J gene Specificity ⌃Donors Occ. nt var.

TRBV4-3 CASSPQRNTEAFF TRBJ1-1 RPH 6 9 6
TRBV15 CATSREGGETQYF TRBJ2-5 FRC 5 5 4
TRBV25-1 CASSPGDEQFF TRBJ2-1 CRV 4 8 8
TRBV25-1 CASTPGDEQFF TRBJ2-1 CRV 4 5 5
TRBV4-3 CASSPARNTEAFF TRBJ1-1 RPH 4 4 4
TRBV7-8 CASSFRTVSSYEQYF TRBJ2-7 TPR 4 4 4
TRBV7-9 CASSLIGVSSYNEQFF TRBJ2-1 TPR 3 5 5
TRBV6-2/6-3 CASSYGLEAFF TRBJ1-1 FRC 3 5 4
TRBV15 CATSRTGGETQYF TRBJ2-5 FRC 3 4 4
TRBV7-6 CASSLAPGATNEKLFF TRBJ1-4 NLV 3 4 3
TRBV12-3/12-4 CASSSVNEAFF TRBJ1-1 NLV 3 3 3
TRBV6-2/6-3 CASSGGLEAFF TRBJ1-1 FRC 3 3 3
TRBV6-1/6-5/6-6 CASSSGQKNTEAFF TRBJ1-1 CRV 3 3 2
TRBV6-2/6-3 CASSLGLEAFF TRBJ1-1 FRC 2 5 5
TRBV9 CASSAGQGVTYEQYF TRBJ2-7 VTE 2 5 5
TRBV28 CASSFPDTQYF TRBJ2-3 CRV 2 5 4
TRBV6-2/6-3 CASSYSSGELFF TRBJ2-2 TPR 2 4 3
TRBV12-3/12-4 CASSSANYGYTF TRBJ1-2 NLV 2 3 3
TRBV28 CASSLEQGAGETQYF TRBJ2-5 FRC 2 3 3
TRBV28 CASTPWGAEAFF TRBJ1-1 CRV 2 3 3
TRBV4-3 CASSPSRNTEAFF TRBJ1-1 RPH 2 3 3
TRBV9 CASSVGTGSNTEAFF TRBJ1-1 RIK 2 3 3
TRBV27 CASSLSPSTGNYGYTF TRBJ1-2 TPR 2 3 2
TRBV10-2 CASSESTGFDGYTF TRBJ1-2 CRV 2 2 2
TRBV15 CATSRVAGETQYF TRBJ2-5 FRC 2 2 2
TRBV20-1 CSAPDWNNEQFF TRBJ2-1 CRV 2 2 2
TRBV25-1 CASSPGDEQYF TRBJ2-7 CRV 2 2 2
TRBV27 CASSLEGYTEAFF TRBJ1-1 NLV 2 2 2
TRBV28 CASEDTGELFF TRBJ2-2 FRC 2 2 2
TRBV28 CASSLADLNQPQHF TRBJ1-5 FRC 2 2 2
TRBV28 CASSLGDTNQPQHF TRBJ1-5 FRC 2 2 2
TRBV28 CASSPGFSGNTIYF TRBJ1-3 FRC 2 2 2
TRBV28 CASSPISNEQFF TRBJ2-1 CRV 2 2 2
TRBV28 CASSPVSNEQFF TRBJ2-1 CRV 2 2 2
TRBV28 CASSSLNSNQPQHF TRBJ1-5 FRC 2 2 2
TRBV4-3 CASSPHRNTEAFF TRBJ1-1 RPH 2 2 2
TRBV4-3 CASSPNRNTEAFF TRBJ1-1 RPH 2 2 2
TRBV6-1/6-5/6-6 CASSPGTPRDEQFF TRBJ2-1 CRV 2 2 2
TRBV6-2/6-3 CASSYSGNTEAFF TRBJ1-1 TPR 2 2 2
TRBV7-2 CASSSRGTVNTEAFF TRBJ1-1 TPR 2 2 2
TRBV7-8 CASSFRTVNSYEQYF TRBJ2-7 TPR 2 2 2
TRBV7-8 CASSLRTVSSYEQYF TRBJ2-7 TPR 2 2 2
TRBV7-9 CASSFRQGVNTGELFF TRBJ2-2 TPR 2 2 2
TRBV7-9 CASSLHTQGARTEAFF TRBJ1-1 TPR 2 2 2
TRBV28 CASSLEQLSGNTIYF TRBJ1-3 FRC 2 2 1
TRBV7-9 CASSLTQDQETQYF TRBJ2-5 CRV;VLE⇤ 2 2 1

⇤ This TCR� sequence was found in 2 different donors with diverging specificities. It was therefore excluded from further
analyses.
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TCR� sequences were only found in one donor and with one nucleotide variant.

Up to 3 different nucleotide sequences translating to the same TCR� amino acid se-

quence were found in a single donor, and up to 8 different nucleotide variants were

found per amino acid-unique TCR� sequence in all tested donors taken together. Of

the 45 specific TCR� sequences that were shared between multiple donors, 33 were

found to be specific in 2 donors, 7 were found in 3 donors, 4 in 4 donors, 1 in 5 donors,

and 1 in 6 donors. Several shared TCR� sequences of the same specificity used the

same V gene and a non-identical but similar CDR3 amino acid sequence, with just

one or 2 amino acid exchanges. Such exchanges often appeared in the same posi-

tion of the CDR3. For example, all RPH-specific shared TCR� sequences used V gene

TRBV4-3, had the same CDR3� length, and their CDR3 amino acid sequence followed

the pattern ”CASSPXRNTEAFF”. In this project, a small set of up to 12 HLA-matched

donors was tested per epitope, and only few donors were tested for epitopes that were

not restricted by HLA-A*02:01, HLA-B*07:02, and HLA-C*07:02. Hence, TCR� se-

quences with a lower extent of sharing may have been present in only one donor of

this cohort and were therefore missed when searching for completely conserved se-

quences between donors.

4.9.3 Identification and clustering of shared and similar CMV pep-
tide-specific TCR� sequences

Based on the similarities found between 45 shared specific TCR� sequences, the

analysis of TCR� sharing was extended to include non-identical but similar TCR� se-

quences. Here, similar TCR� sequences were defined as TCR� sequences with (i)

the same CMV peptide specificity, (ii) identical TRBV gene usage, (iii) identical CDR3

lengths, and (iv) a maximum of one divergent amino acid in the CDR3 amino acid se-

quence. Consequently, the 1809 amino-acid-unique TCR� sequences were subjected

to a second round of analysis, in which not only completely identical TCR� sequences,

but also similar TCR� sequences were included. In total, 162 TCR� sequences were

identified that were similar to or identical with at least one other TCR� sequence with

the same epitope specificity in at least one other donor of the set (Table 4.8). Of the 162

shared TCR� sequences, 20 were published with concordant epitope specificity and

HLA restriction before this project started, 106 were published by us as epitope-specific

in the frame of this project (Huth et al. 2019), and 36 have not been published yet. The
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162 shared TCR� sequences fell into 60 specificity clusters of similar TCR� chains.

The largest number of specific TCR� clusters was found for HLA-C*07:02–restricted

CMV epitopes CRV (21) and FRC (18), for which the largest number of HLA-matched

donors were tested. The TCR� clusters were of different size and comprised between

1 and 14 different CDR3� amino acid sequences.

Table 4.8: List of 162 shared and similar TCR� sequences grouped into 60 specificity
clusters. The table only lists donors in whom the TCRs were functionally identified as
epitope-specific. The ’Reference’ column shows the publication(s) in which a TCR�
sequence was first published with its precise epitope specificity and HLA restriction,
blank spaces indicate unpublished TCR� sequences. Data of this project were partially
published in Huth et al. 2019.

V gene CDR3 sequence J gene Cluster Donors Reference
TRBV25-1 CASSPGDEQFF TRBJ2-1 CRV01 P01,P05,P06,P07 Huth et al. 2019
TRBV25-1 CASTPGDEQFF TRBJ2-1 CRV01 P03,P06,P07,P14 Huth et al. 2019
TRBV25-1 CASSPGDEQYF TRBJ2-7 CRV01 P01,P11 Huth et al. 2019
TRBV25-1 CASTLGDEQYF TRBJ2-7 CRV01 P05 Huth et al. 2019
TRBV25-1 CASSAGDEQYF TRBJ2-7 CRV01 P05 Huth et al. 2019
TRBV25-1 CASSFGDTQYF TRBJ2-3 CRV01 P05 Huth et al. 2019
TRBV25-1 CASSLGDEQYF TRBJ2-7 CRV01 P14
TRBV25-1 CASSPGDTQYF TRBJ2-3 CRV01 P06 Huth et al. 2019
TRBV25-1 CASTHGDEQFF TRBJ2-1 CRV01 P05 Huth et al. 2019
TRBV25-1 CASTPGDEQYF TRBJ2-7 CRV01 P06 Huth et al. 2019
TRBV25-1 CASTQGDEQFF TRBJ2-1 CRV01 P06 Huth et al. 2019
TRBV25-1 CASTSGDEQFF TRBJ2-1 CRV01 P07 Huth et al. 2019
TRBV25-1 CASTTGDEQFF TRBJ2-1 CRV01 P03 Huth et al. 2019
TRBV25-1 CATSPGDEQYF TRBJ2-7 CRV01 P01 Huth et al. 2019

TRBV6-1/6-5/6-6 CASSSGQKNTEAFF TRBJ1-1 CRV02 P01,P07,P11 Huth et al. 2019
TRBV6-1/6-5/6-6 CASQPGQKNTEAFF TRBJ1-1 CRV02 P08 Huth et al. 2019
TRBV6-1/6-5/6-6 CASSTGQKNTEAFF TRBJ1-1 CRV02 P01 Huth et al. 2019
TRBV6-1/6-5/6-6 CASTPGQKNTEAFF TRBJ1-1 CRV02 P04 Huth et al. 2019
TRBV6-1/6-5/6-6 CASTTGQKNTEAFF TRBJ1-1 CRV02 P05 Huth et al. 2019

TRBV6-1/6-5/6-6 CASSPVGGGYTF TRBJ1-2 CRV03 P02 Huth et al. 2019
TRBV6-1/6-5/6-6 CASSYVGGDYTF TRBJ1-2 CRV03 P04 Huth et al. 2019
TRBV6-1/6-5/6-6 CASSYVGGGYTF TRBJ1-2 CRV03 P08 Huth et al. 2019
TRBV6-1/6-5/6-6 CASSYVGSGYTF TRBJ1-2 CRV03 P17

TRBV7-9 CASSLMGLAGEETQYF TRBJ2-5 CRV04 P06 Huth et al. 2019
TRBV7-9 CASSLSGLAGEETQYF TRBJ2-5 CRV04 P05 Huth et al. 2019
TRBV7-9 CASSLSGLAGQETQYF TRBJ2-5 CRV04 P07 Huth et al. 2019
TRBV7-9 CASSLVGLAGQETQYF TRBJ2-5 CRV04 P05 Huth et al. 2019

TRBV28 CASSPISNEQFF TRBJ2-1 CRV05 P01,P07 Huth et al. 2019
TRBV28 CASSPVSNEQFF TRBJ2-1 CRV05 P01,P02 Huth et al. 2019
TRBV28 CASSPISNEQYF TRBJ2-7 CRV05 P01 Huth et al. 2019

TRBV6-2/6-3 CASSAATPNTEAFF TRBJ1-1 CRV06 P07 Huth et al. 2019
TRBV6-2/6-3 CASSQATPNTEAFF TRBJ1-1 CRV06 P05 Huth et al. 2019
TRBV6-2/6-3 CASSTATPNTEAFF TRBJ1-1 CRV06 P03 Huth et al. 2019

TRBV6-1/6-5/6-6 CASSGGQKNEKLFF TRBJ1-4 CRV07 P05 Huth et al. 2019
TRBV6-1/6-5/6-6 CASSSGQKNEKLFF TRBJ1-4 CRV07 P06 Huth et al. 2019
TRBV6-1/6-5/6-6 CASSTGQKNEKLFF TRBJ1-4 CRV07 P02 Huth et al. 2019

TRBV7-9 CASSLRTDVYNEQFF TRBJ2-1 CRV08 P05 Huth et al. 2019
TRBV7-9 CASSLRTETYNEQFF TRBJ2-1 CRV08 P01 Huth et al. 2019
TRBV7-9 CASSLRTEVYNEQFF TRBJ2-1 CRV08 P01 Huth et al. 2019

TRBV7-9 CASSLSGLDNEQFF TRBJ2-1 CRV09 P03 Huth et al. 2019
TRBV7-9 CASSLSGLENEQFF TRBJ2-1 CRV09 P05 Huth et al. 2019
TRBV7-9 CASSLSGLYNEQFF TRBJ2-1 CRV09 P05 Huth et al. 2019

TRBV20-1 CSAPDWNNEQFF TRBJ2-1 CRV10 P01,P02 Huth et al. 2019
TRBV20-1 CSAPDWGNEQFF TRBJ2-1 CRV10 P08 Huth et al. 2019
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Table 4.8: (continued)

V gene CDR3 sequence J gene Cluster Donors Reference

TRBV11-3 CASSSWADTQYF TRBJ2-3 CRV11 P04 Huth et al. 2019
TRBV11-3 CASSSWEDTQYF TRBJ2-3 CRV11 P01 Huth et al. 2019

TRBV25-1 CASSAPRETQYF TRBJ2-5 CRV12 P01 Huth et al. 2019
TRBV25-1 CASSEPRETQYF TRBJ2-5 CRV12 P04 Huth et al. 2019

TRBV25-1 CASSEVLFEQFF TRBJ2-1 CRV13 P06 Huth et al. 2019
TRBV25-1 CASSEVVFEQFF TRBJ2-1 CRV13 P05 Huth et al. 2019

TRBV4-3 CASSQELAETYEQYF TRBJ2-7 CRV14 P02 Huth et al. 2019
TRBV4-3 CASSQEWAETYEQYF TRBJ2-7 CRV14 P08 Huth et al. 2019

TRBV6-1/6-5/6-6 CASSMGQKNQPQHF TRBJ1-5 CRV15 P01 Huth et al. 2019
TRBV6-1/6-5/6-6 CASSPGQKNQPQHF TRBJ1-5 CRV15 P11

TRBV6-2/6-3 CASSYVAGGYEQYF TRBJ2-7 CRV16 P06 Huth et al. 2019
TRBV6-2/6-3 CASSYVAGSYEQYF TRBJ2-7 CRV16 P14

TRBV7-9 CASSLLGTYSYNEQFF TRBJ2-1 CRV17 P07 Huth et al. 2019
TRBV7-9 CASSLTGTYSYNEQFF TRBJ2-1 CRV17 P05 Huth et al. 2019

TRBV28 CASSFPDTQYF TRBJ2-3 CRV18 P01,P02 Huth et al. 2019

TRBV28 CASTPWGAEAFF TRBJ1-1 CRV19 P04,P08 Huth et al. 2019

TRBV10-2 CASSESTGFDGYTF TRBJ1-2 CRV20 P03,P18 Huth et al. 2019

TRBV6-1/6-5/6-6 CASSPGTPRDEQFF TRBJ2-1 CRV21 P03,P05 Huth et al. 2019

TRBV15 CATSREGGETQYF TRBJ2-5 FRC01 P05,P06,P08,P11,P14 Huth et al. 2019
TRBV15 CATSRTGGETQYF TRBJ2-5 FRC01 P01,P03,P05 Huth et al. 2019
TRBV15 CATSRVAGETQYF TRBJ2-5 FRC01 P06,P11 Huth et al. 2019
TRBV15 CATSRVGGETQYF TRBJ2-5 FRC01 P11
TRBV15 CATSAEGGETQYF TRBJ2-5 FRC01 P08 Huth et al. 2019
TRBV15 CATSAFGGETQYF TRBJ2-5 FRC01 P18
TRBV15 CATSNIAGETQYF TRBJ2-5 FRC01 P04 Huth et al. 2019
TRBV15 CATSNTGGETQYF TRBJ2-5 FRC01 P14
TRBV15 CATSQFGGETQYF TRBJ2-5 FRC01 P11
TRBV15 CATSQTGGETQYF TRBJ2-5 FRC01 P14
TRBV15 CATSRDAGETQYF TRBJ2-5 FRC01 P06 Huth et al. 2019
TRBV15 CATSRDGGETQYF TRBJ2-5 FRC01 P02 Huth et al. 2019
TRBV15 CATSRIAGETQYF TRBJ2-5 FRC01 P17
TRBV15 CATSRVAGEVQYF TRBJ2-7 FRC01 P06 Huth et al. 2019
TRBV15 CATSSHAGETQYF TRBJ2-5 FRC01 P07 Huth et al. 2019
TRBV15 CATSSHVGETQYF TRBJ2-5 FRC01 P07 Huth et al. 2019
TRBV15 CATSSLAGETQYF TRBJ2-5 FRC01 P18
TRBV15 CATSSVAGETQYF TRBJ2-5 FRC01 P11
TRBV15 CATSVTGGETQYF TRBJ2-5 FRC01 P02 Huth et al. 2019

TRBV6-2/6-3 CASSYGLEAFF TRBJ1-1 FRC02 P03,P14,P17
TRBV6-2/6-3 CASSGGLEAFF TRBJ1-1 FRC02 P03,P07,P11 Huth et al. 2019
TRBV6-2/6-3 CASSLGLEAFF TRBJ1-1 FRC02 P03,P17 Huth et al. 2019
TRBV6-2/6-3 CASSPGLEAFF TRBJ1-1 FRC02 P14
TRBV6-2/6-3 CASSYGLEAFF TRBJ2-1 FRC02 P03

TRBV15 CATSRVAGEELFF TRBJ2-2 FRC03 P02 Huth et al. 2019
TRBV15 CATSRVAGEEQFF TRBJ2-1 FRC03 P02 Huth et al. 2019
TRBV15 CATSRVAGEKLFF TRBJ1-4 FRC03 P18
TRBV15 CATSSSAGEEQFF TRBJ2-1 FRC03 P08 Huth et al. 2019
TRBV15 CATSSVAGEEQFF TRBJ2-1 FRC03 P02 Huth et al. 2019

TRBV19 CASSIGLEQFF TRBJ2-1 FRC04 P11
TRBV19 CASSLGLEQFF TRBJ2-1 FRC04 P17
TRBV19 CASSLGLEQYF TRBJ2-7 FRC04 P17
TRBV19 CASSYGLEQFF TRBJ2-1 FRC04 P03 Huth et al. 2019

TRBV28 CASSLEQGAGETQYF TRBJ2-5 FRC05 P08,P18 Huth et al. 2019
TRBV28 CASSFEQGAGETQYF TRBJ2-5 FRC05 P11

TRBV15 CATGPGQGPYEQYF TRBJ2-7 FRC06 P17
TRBV15 CATSPGQGPYEQYF TRBJ2-7 FRC06 P07 Huth et al. 2019

TRBV15 CATSGTAGETQYF TRBJ2-5 FRC07 P08 Huth et al. 2019
TRBV15 CATSHTAGETQYF TRBJ2-5 FRC07 P11

TRBV15 CATSRFGGEKLFF TRBJ1-4 FRC08 P06 Huth et al. 2019
TRBV15 CATSRTGGEKLFF TRBJ1-4 FRC08 P01
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Table 4.8: (continued)

V gene CDR3 sequence J gene Cluster Donors Reference

TRBV28 CAIDTGDSPLHF TRBJ1-6 FRC09 P18
TRBV28 CAIDTGNSPLHF TRBJ1-6 FRC09 P03 Huth et al. 2019

TRBV28 CASSLEALSSYNEQFF TRBJ2-1 FRC10 P05 Huth et al. 2019
TRBV28 CASSLEFLSSYNEQFF TRBJ2-1 FRC10 P18

TRBV28 CASSLEVGGGLETQYF TRBJ2-5 FRC11 P04 Huth et al. 2019
TRBV28 CASSLEVGGGQETQYF TRBJ2-5 FRC11 P18

TRBV4-3 CASSQDLGDTGELFF TRBJ2-2 FRC12 P05 Huth et al. 2019
TRBV4-3 CASSQDLPDTGELFF TRBJ2-2 FRC12 P14

TRBV28 CASEDTGELFF TRBJ2-2 FRC13 P05,P17 Huth et al. 2019

TRBV28 CASSLADLNQPQHF TRBJ1-5 FRC14 P03,P17

TRBV28 CASSLGDTNQPQHF TRBJ1-5 FRC15 P01,P18 Huth et al. 2019

TRBV28 CASSPGFSGNTIYF TRBJ1-3 FRC16 P11,P18

TRBV28 CASSSLNSNQPQHF TRBJ1-5 FRC17 P05,P17 Huth et al. 2019

TRBV28 CASSLEQLSGNTIYF TRBJ1-3 FRC18 P04,P17 Huth et al. 2019

TRBV11-2 CASSLDPAGQGYEQYF TRBJ2-7 IPS01 P19 Koning et al. 2013
TRBV11-2 CASSLDPTGQGYEQYF TRBJ2-7 IPS01 P05

TRBV12-3/12-4 CASSSVNEAFF TRBJ1-1 NLV01 P03,P08,P21 Schwanninger et al. 2008
TRBV12-3/12-4 CASSIVNEAFF TRBJ1-1 NLV01 P21 Dash et al. 2017
TRBV12-3/12-4 CASSSVTEAFF TRBJ1-1 NLV01 P17 Venturi et al. 2008

TRBV7-6 CASSLAPGATNEKLFF TRBJ1-4 NLV02 P03,P07,P21 Venturi et al. 2008
TRBV7-6 CASSLAPGSTNEKLFF TRBJ1-4 NLV02 P21 Venturi et al. 2008

TRBV6-1/6-5/6-6 CASSPTTGTGAYGYTF TRBJ1-2 NLV03 P03
TRBV6-1/6-5/6-6 CASSPTTGTGNYGYTF TRBJ1-2 NLV03 P21

TRBV12-3/12-4 CASSSANYGYTF TRBJ1-2 NLV04 P08,P17 Venturi et al. 2008

TRBV27 CASSLEGYTEAFF TRBJ1-1 NLV05 P03,P21 Venturi et al. 2008

TRBV9 CASSVGTGSNTEAFF TRBJ1-1 RIK01 P19,P20

TRBV4-3 CASSPQRNTEAFF TRBJ1-1 RPH01 P03,P04,P05,P06,P08,P11 Brennan et al. 2012
TRBV4-3 CASSPARNTEAFF TRBJ1-1 RPH01 P03,P05,P08,P11 Weekes et al. 1999
TRBV4-3 CASSPSRNTEAFF TRBJ1-1 RPH01 P03,P08 Weekes et al. 1999
TRBV4-3 CASSPHRNTEAFF TRBJ1-1 RPH01 P03,P05 Weekes et al. 1999
TRBV4-3 CASSPNRNTEAFF TRBJ1-1 RPH01 P03,P08 Brennan et al. 2012
TRBV4-3 CASSPGRNTEAFF TRBJ1-1 RPH01 P03 Huth et al. 2019
TRBV4-3 CASSPTRNTEAFF TRBJ1-1 RPH01 P08 Brennan et al. 2012

TRBV7-8 CASSFRTVSSYEQYF TRBJ2-7 TPR01 P01,P03,P04,P11 Huth et al. 2019
TRBV7-8 CASSFRTVNSYEQYF TRBJ2-7 TPR01 P02,P03 Huth et al. 2019
TRBV7-8 CASSLRTVSSYEQYF TRBJ2-7 TPR01 P02,P04 Huth et al. 2019

TRBV27 CASSLGASPGELFF TRBJ2-2 TPR02 P02 Huth et al. 2019
TRBV27 CASSLGGSPGELFF TRBJ2-2 TPR02 P06 Huth et al. 2019
TRBV27 CASSLGSAPGELFF TRBJ2-2 TPR02 P06 Huth et al. 2019

TRBV7-9 CASSLHDRGFRTEAFF TRBJ1-1 TPR03 P02 Huth et al. 2019
TRBV7-9 CASSLHDRGSRTEAFF TRBJ1-1 TPR03 P01 Huth et al. 2019
TRBV7-9 CASSLHDRGVRTEAFF TRBJ1-1 TPR03 P02 Huth et al. 2019

TRBV7-9 CASSLIGVSSYNEQFF TRBJ2-1 TPR04 P01,P02,P06 Miconnet et al. 2011
TRBV7-9 CASSLKGVSSYNEQFF TRBJ2-1 TPR04 P06 Huth et al. 2019

TRBV7-9 CASSFRQGVNTGELFF TRBJ2-2 TPR05 P01,P02 Huth et al. 2019
TRBV7-9 CASSFRQGSNTGELFF TRBJ2-2 TPR05 P01 Huth et al. 2019

TRBV7-9 CASSLALGVAKNIQYF TRBJ2-4 TPR06 P01 Koning et al. 2013
TRBV7-9 CASSLATGVAKNIQYF TRBJ2-4 TPR06 P06 Huth et al. 2019

TRBV7-9 CASSSHDLTGMNTEAFF TRBJ1-1 TPR07 P02 Huth et al. 2019
TRBV7-9 CASSSHDWTGMNTEAFF TRBJ1-1 TPR07 P07 Huth et al. 2019

TRBV6-2/6-3 CASSYSSGELFF TRBJ2-2 TPR08 P01,P08 Janbazian et al. 2012

TRBV27 CASSLSPSTGNYGYTF TRBJ1-2 TPR09 P03,P06 Miconnet et al. 2011

TRBV7-2 CASSSRGTVNTEAFF TRBJ1-1 TPR10 P03,P05 Huth et al. 2019

TRBV7-9 CASSLHTQGARTEAFF TRBJ1-1 TPR11 P02,P07 Huth et al. 2019

TRBV11-2 CASSLNRGRTDTQYF TRBJ2-3 VLE01 P03
TRBV11-2 CASSLQRGRTDTQYF TRBJ2-3 VLE01 P02 Koning et al. 2013

122



4. RESULTS

Table 4.8: (continued)

V gene CDR3 sequence J gene Cluster Donors Reference

TRBV9 CASSAGQGVTYEQYF TRBJ2-7 VTE01 P19,P21
TRBV9 CASSSGQGVTYEQYF TRBJ2-7 VTE01 P19
TRBV9 CASSVGQGVTYEQYF TRBJ2-7 VTE01 P21 Glanville et al. 2017

In most clusters, all TCR� sequences used the same TRBJ gene. However, in clusters

CRV01, CRV05, FRC02, FRC03, and FRC04, 2–3 different TRBJ genes were used.

The most frequently interchanged TRBJ genes were TRBJ2-1 and TRBJ2-7, which

led to a conservative amino acid exchange (F$Y) in the penultimate CDR3� position.

There were also TRBJ gene usage variations within specificity clusters that led to non-

conservative amino acid exchanges, such as TRBJ1-4 and TRBJ2-1 (K$E and L$Q)

in cluster FRC03. Specific TCR� sequences in cluster FRC02 used either TRBJ1-1 or

TRBJ2-1, but this differential J� gene usage did not alter the CDR3� sequence. These

findings indicate that while the J gene segment is important for encoding parts of the

CDR3� and for TCR↵ chain pairing, variations in J gene usage are tolerated as long

as these variations do not lead to severe changes in the CDR3� amino acid sequence.

TRBV gene usage of specificity clusters was similar to the overall TRBV gene usage of

TCR� sequences with the corresponding specificity (Section 4.9.1, Figure 4.28). For

instance, the largest TCR� cluster used TRBV25-1, which was also among the top 3

TRBV genes used in all 521 donor-nucleotide–unique CRV-specific TCR� sequences.

Likewise, many CRV clusters use TRBV6-1/6-5/6-6, TRBV7-9, or TRBV28, which are

overrepresented V genes in CRV-specific TCR� sequences.

A large extent of sharing between donors was observed for some TCR� clusters. For

example, in all 12 tested donors expressing HLA-C*07:02, at least one TCR� sequence

of cluster FRC01 was specifically enriched by single peptide or peptide pool stimula-

tion. Likewise, one or more TCR� sequences from cluster RPH01 were specifically

enriched in 5 of 7 donors by single peptide stimulation. Donors P01 and P07 did not

express any TCR� sequence from cluster RPH01, but these donors have a TRBV4-

3 deletion, as suggested by a lack of TRBV4-3 in their TCR� repertoires. They can

therefore not recombine TCR� chains from cluster RPH01, which uses this particular

V� gene. Other frequently shared TCR� clusters were IPS01 (2/2 donors), NLV01 (4/6

donors), and VTE01 (2/3 donors). TCR� sequences from the most common cluster

specific for TPR, cluster TPR01, were found specifically enriched in 5 of 9 donors, and
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the remaining clusters were shared to a lesser extent. Many donors expressed not only

one, but multiple different epitope-specific TCR� sequences of a given cluster. Donor

P11, for instance, expressed 5 distinct TCR� sequences of cluster FRC01 that were

specifically enriched upon stimulation with FRC-containing peptide pools. Donors P05

and P06 each expressed 5 specific TCR� sequences from cluster CRV01, and donor

P03 even expressed 6 of 7 specific TCR� sequences from cluster RPH01. All in all,

the results show that there is extensive sharing of identical or highly similar specific

TCR� sequences.

The relationship architecture between TCR� sequences in the 60 specificity clusters

was vastly different (Figure 4.29). Some TCR� clusters, like RPH01 or FRC02, were

strongly interconnected and each TCR� sequences in these clusters differed in max-

imum one amino acid from any other TCR� sequence of this cluster. Other clusters,

like CRV02 or FRC03, were rather linear with single connections between each neigh-

boring TCR� sequence and the TCR� sequences at both ends differed in 2–4 amino

acids from each other. Some clusters, i.e. NLV01 or TPR01, contained one frequently

shared TCR� sequence and two lesser shared variants each. Clusters CRV01 and

FRC01 were most complex in their relationship architecture. In both clusters, there

were 3 identical TCR� sequences that were specifically enriched in multiple donors,

and both clusters can be divided into two major subclusters. CDR3� sequences on

the left hand side of cluster FRC01 had amino acids ”AG” on positions 7–8 and often

an aliphatic amino acid (V, I, or L) on position 6. They clustered around the identically

shared CDR3� sequence ”CATSRVAGETQYF”. CDR3� sequences on the right hand

side of cluster FRC01 had the central motif ”GG” instead of ”AG”, which was generally

accompanied by a polar or acidic amino acid (T or E) in position 6 and clustered around

the to major CDR3� sequences of the cluster, which were ”CATSREGGETQYF” and

”CATSRTGGETQYF”. Similarly, CDR3� sequences in cluster CRV01 could be subdi-

vided in TCR� chains using TRBJ2-7 (right side) and TRBJ2-1 or TRBJ2-3 (left side).

Some clusters with the same specificity contained TCR� sequences that were quite

similar across clusters, suggesting that there may be a missing link connecting these

clusters that may be identified when testing more donors with our assays. An example

for such sequence-related specificity clusters are CRV02 and CRV07, which used the

same V� gene, but a different J� gene that substantially changed the last part of the
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Figure 4.29: Sequence relationship architecture within 60 TCR� specificity clusters.
(A) Overview of all 60 specificity clusters identified in this thesis. The clusters are
sorted by cluster size and then specificity. Each node represents one amino-acid-
unique TCR� sequence and the node sizes correspond to the number of donors in
which a TCR� sequence was specifically enriched (smallest = 1 donor, largest = 6
donors). The edges (black lines) connect CDR3� sequences that differ by one amino
acid from each other. (B) Close-up of the 3 largest specificity clusters. Cluster nodes
are labelled with the CDR3� amino acid sequences.
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CDR3�. The cluster analysis of the similar or identical shared TCR� sequences shows

that while there were some CDR3�s that seem to be preferentially selected, be it be-

cause of superior function or increased recombination probability, other less shared

sequence-related CDR3�s can also recognise the presented epitope and induce T-cell

proliferation. Depending on the binding mode of a TCR to the peptide-MHC complex,

the CDR3� sequences may be more restricted or more variable. For instance, amino

acid exchanges in multiple CDR3� positions were tolerated in TCR� sequences of

cluster FRC01, but only CDR3� sequences with one amino acid exchange in position

5 were FRC-specific in cluster FRC02 (”CASSXGLEAFF”). Looking at positions and

properties of tolerated amino acid exchanges in the CDR3� in more detail will shed

more light on factors determining the specificity of TCR� chains. At present, it is not

possible to speculate in greater detail on the role of individual amino acids in HLA-

C*07:02-restricted TCRs, since no X-ray structures of such TCRs in complex with their

cognate epitope have been published yet.

The results presented in the preceding paragraphs demonstrate that TCR� sequences

of the same specificity are often distinct, but some have shared elements, such as

same V gene usage, CDR3 length and similar CDR3 amino acid sequence. Recently,

two research groups made an effort to try and identify common CDR3� sequence mo-

tifs rather than searching for conserved full-length CDR3� sequences, with the aim

to predict TCR� chain specificity (Dash et al. 2017; Glanville et al. 2017). In this

project, only 162 of 1809 amino-acid-unique specific TCR� sequences (9%) were sim-

ilar or identical to one or more TCR� sequences with the same epitope specificity

(shared), which leaves 1647 specific TCR� sequences to be donor-exclusive (private).

Finding common motifs among TCR� sequences of the same specificity could help

to categorise not only shared, but also private specific TCR� sequences according

to their specificity. However, when comparing the CDR3� amino acid sequences of

the largest 1–2 specificity clusters found here for epitopes CRV, FRC, NLV, RPH, and

TPR, conserved sequence stretches that were not TRBV- or TRBJ-encoded were rare

and often very short (Figure 4.30) comprising only 2–3 amino acids. Many speci-

ficity clusters, for example CRV01, FRC01, or RPH01, were highly variable in the cen-

tral amino acid positions 5 and/or 6 of their CDR3� sequence and had conservative

amino acid exchanges in more peripheral positions. Frequently observed amino acid
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Figure 4.30: Amino acid logos of CDR3�s of the largest specificity clusters found in
this project and similar clusters (CRV07, FRC03, FRC04, and TPR04). Amino acids
are coloured based on their chemical properties. Names of the specificity clusters
and the used V� genes are noted to the left of each logo. The number of TCR�
sequences in each cluster is shown in parentheses to the right. Letter sizes represent
the proportion of TCR� sequences in a cluster with the corresponding amino acid in a
particular position.

exchanges were T$S$N and I$V$L. Despite of the overall diversity found in cen-

tral CDR3� amino acid positions, some TCR� specificity clusters were very similar to

each other suggesting the presence of common motifs among TCR� sequences with a

particular specificity. For example, clusters CRV02 and CRV07 mainly differed in their

CDR3� amino acid sequence due to the diverging TRBJ gene usage, but both had the

central amino acid motif ”GQKN”. Likewise, clusters FRC01 and FRC03 often used

motif ”VAGE”, and clusters TPR01 and TPR04 used motif ”VSSY”. When screening

the 1809 amino acid-unique CMV-specific TCR� sequences for CRV-motif ”GQKN”,

4 additional TCR� sequences were using this motif were found, and all 4 were CRV-

specific. However, the sole additional hit when searching for FRC-motif ”VAGE” was a

CRV-specific TCR. Moreover, both hits when searching for TPR-motif ”VSSY” were not

TPR-specific, but responded to NLV or VTE. This brief and random motif search implies

that short CDR3 motifs of 3–4 amino acid length are not sufficient for determination of

the specificity of a TCR� sequence, since TCR� sequences with different CMV epi-

tope specificities made use of the same amino acid sequence motif stretches. The

specificity-defining features of TCR� sequences are likely more complex than short

CDR3� amino acid motifs. Rather, the data presented here suggest that V� gene

usage, CDR3� length, and a conserved CDR3� sequence, in which only few amino

acid exchanges in defined positions are tolerated, determine the epitope specificity of

a TCR� chain.
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4.9.4 Shared TCR� sequences are shorter and more likely to be
recombined

An interesting question raised by the epitope-specific TCR� repertoires identified in

this project is why some TCR� sequences were specifically enriched in multiple donors

(shared TCR� sequences), while others were donor-exclusive (private). Is it because

shared TCR� sequences bind their cognate peptide-HLA complex with higher bind-

ing affinity than private TCR� sequences? Are shared TCR� sequences functionally

superior to private TCR� sequences? Or is it because the likelihood of somatic recom-

bination of shared TCR� sequences is higher? To address this question, the CDR3�

amino acid sequence lengths and computed generation probabilities Pgen of the 162

shared and 1647 private amino acid-unique specific TCR� sequences were compared

(Figure 4.31). The CDR3�s of the shared TCR�s, starting with the canonical C and

Figure 4.31: Comparison of CDR3� amino acid sequence lengths and computed gen-
eration probabilities Pgen of 162 shared and 1647 private TCR� sequences. Pgen val-
ues were computed for each V�-CDR3�-J� combination on the amino acid level using
the python-based algorithm OLGA (Sethna et al. 2019). (A) Density plots of the CDR3
amino acid sequence length distributions (left) and computed Pgen values (right) of
shared and private TCR� chains. (B) Hallmark values of CDR3 length and Pgen value
distributions.
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ending on the canonical F or, in case of TRBJ2-7*02, on V, were between 11–17 amino

acids long, while the CDR3�s of the private TCR�s were 9–26 amino acids long. The

median CDR3� lengths of shared and private TCR�s were 13 and 15 amino acids,

respectively. On average, CDR3� lengths of shared TCR�s were shorter than those

of private TCR�s, with mean lengths of 13.51 (shared TCR�s) and 14.84 (private

TCR�s). The density plot curve of the CDR3� length distribution of shared TCR�s

was shifted to shorter lengths compared to the curve of private TCR�s.

Generation probabilities of shared and private TCR� sequences were calculated on

the amino acid level with the python-based algorithm OLGA (Sethna et al. 2019). The

Pgen values returned by OLGA reflect the likelihood of a CDR3� amino acid sequences

to be recombined using the exact V� and J� genes with which it was identified here.

Pgen values of shared TCR� sequences ranged from 3.36⇥10�13 to 2.73⇥10�8, with a

geometric mean of 6.19⇥10�10 and a median Pgen of ⇥10�10. Generation probabilities

of private TCR� sequences were more variable (1.15⇥10�27 to 1.90⇥10�7), and the

median and mean Pgen values were lower than those of shared TCR� sequences (me-

dian(Pgen)=4.51⇥10�11; geometric mean(Pgen)=1.98⇥10�11). This also shows in the

Pgen density plots, in which the curve of shared TCR� sequences is shifted to higher

Pgen values compared to the curve of private TCR� sequences. In conclusion, shared

TCR� sequences tend to be shorter than private TCR� sequences and have a higher

likelihood to be generated by somatic recombination.

4.10 A CMV-specific TCR� clonotype signature

The sequencing data produced and analysed in this project revealed that CMV epitope-

specific TCR� sequences are highly frequent in the ex vivo repertoire of the CMV-

positive donors from which they were identified by single peptide stimulation (Sec-

tion 4.4.9, Figure 4.13). However, most of the specific TCR� sequences identified here

were private and shared TCR� clonotypes were often not the most frequent clonotype

of a given specificity. Nontheless, a considerable number of shared TCR� sequences

were identified in this project. It was therefore tested whether these shared TCR� se-

quences were sufficient to identify and track CMV epitope-specific T-cell responses in

additional donors without testing each of them individually by CMV peptide stimula-

tion. To do so, the cumulative read frequencies of the 162 shared and similar signature
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Figure 4.32: Frequency of the 162 shared signature TCR� sequences in peripheral
blood T-cell repertoires of 21 CMV-positive donors (P01–P21) and 10 CMV-negative
donors (N01–N10). Cumulative proportions of signature TCR� reads for each of the
60 individual specificity clusters are visualised as a heatmap. An overview of TCR�
sequences in each specificity cluster can be found in Table 4.8.

TCR� sequences were calculated in the ex vivo TCR� repertoires of donors P01–P21

and N01–N10 (this cohort), as well as in an additional cohort of 575 high-resolution

HLA-typed donors with known CMV status published by Emerson et al. (Emerson et

al. 2017) (designated ”cohort 1” in their study).

First, the cumulative TCR� read frequencies of each specificity cluster (see Table 4.8)

in the peripheral blood T-cell repertoires of donors P01–P21 and N01–N10 of this co-

hort were computed (Figure 4.32). Signature TCR� sequences were highly frequent in

the ex vivo repertoires of CMV-positive donors, but rare in CMV-negative donors. Cu-

mulative TCR� read frequencies of single specificity clusters in CMV-positive donors

often exceeded 0.001, and the maximum cumulative frequency of any cluster in any

donor was 0.0178 (FRC01 in P11). By contrast, sequences of the signature TCR� set

were seldom found in CMV-negative donors, and when they were found, the cumulative

read frequencies did not exceed 6.3⇥10�5 (TPR04 in N03). Most CMV-positive donors

had signature TCR� sequences from multiple specificity clusters of the same epitope
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specificity in their peripheral blood T cell repertoires, which highlights the relevance of

signature TCR� sequences with a lower extent of sharing. Donors P17–P21 did not

express HLA-B*07:02 and donors P19–P21 did neither express HLA-C*07:02, which is

why these donors were not expected to have TCR� sequences against RPH and TPR,

and CRV and FRC, respectively, in their ex vivo repertoires. Importantly, these donors

exhibited a similar pattern of cumulative frequencies of signature TCR� sequences

on the heatmap and the same underlying signature TCR� sequences were found at

comparable frequencies. This was in contrast to all other donors who showed dis-

tinct peripheral blood TCR� frequency patterns. Samples from donors P17–P21 were

prepared and sequenced together, and it was sometimes observed that there was a

spillover of dominant, highly frequent TCR� sequences from peptide-stimulated sam-

ples to other samples sequenced on the same lane. For example, samples from donor

N03 were sequenced together with samples from donor P06, whose most frequent

TCR� sequence specific for TPR was ”TRBV7-9–CASSLIGVSSYNEQFF–TRBJ2-1”.

This TCR� sequence held 37.2% of reads of all TCR� reads in the TPR-stimulated

sample of donor P06 and was found at a low read frequency (6.3⇥10�5) with exactly

the same nucleotide sequence in donor N03. It is likely that the presence of this TCR�

sequence in the ex vivo sample of donor N03 is due to a contamination of the sam-

ple with material from donor P06 and is not actually found in the peripheral blood of

donor N03. Similarly, it is possible that HLA-mismatched signature TCR� sequences

were found at such a high frequency in donors P17–P21 because of sample contam-

ination or barcode spillover rather than because they were actually present in the ex

vivo repertoires of these donors. In addition to the signature TCR� sequences found

in mismatched donors P17–P21, several NLV- and VLE-specific signature TCR� se-

quences, albeit more frequent in the HLA-A*02:01–expressing donors, were also found

in HLA-mismatched CMV-positive donors P11 and P14. While TCR� sequences of

some specificity clusters were abundant in CMV-positive donors even in the absence

of the required HLA allele, the TCR� sequence from cluster RIK01, shared between

donors P19 and P20, was not found in peripheral blood of 7 of 8 HLA-A*03:01–positive

CMV carriers (absent in P01, P06, P08, P13, P14, P20). It was expected that not all

donors had T cells against RIK in their CMV–specific repertoire, since another group

reported that 2/4 HLA-matched donors responded to the peptide (Braendstrup et al.
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2014). However, the proportion of donors with RIK-specific signature TCR� sequences

in their circulation was 4-fold lower in this project. This suggests that relevant RIK-

specific signature TCR� sequences, either belonging to cluster RIK01 or a different

cluster, have not been identified yet. The shared RIK-specific TCR� sequence was

found to be specific in donor P20, but was below detection limit in the PBMC sam-

ple of that donor. Taken together, the data obtained in this project show that shared

CMV epitope-specific TCR� sequences are more frequent in the peripheral blood T-cell

repertoires of CMV-positive donors than CMV-negative donors, although background

signal in CMV-negative and HLA-mismatched donors was sometimes observed.

Next, the cumulative read frequencies of signature TCR� sequences against the 6

best studied epitopes of this project, that is epitopes NLV and VLE (HLA-A*02:01–

restricted), RPH and TPR (HLA-B*07:02–restricted), and CRV and FRC (HLA-C*07:02–

restricted), were calculated in the donor cohort sequenced in this project (P01–P21,

N01–N10) and 575 high-resolution HLA-typed donors with known CMV serostatus from

cohort 1 (Emerson et al. 2017). High-resolution HLA-typing data for cohort 1 was only

recently made available to the public (DeWitt et al. 2018).

Firstly, the impact of HLA matches on cumulative signature TCR� read frequencies

across donors was investigated. For this purpose, donors were grouped by the number

of matching HLA loci (HLA-A*02:01, HLA-B*07:02, HLA-C*07:02). Donors expressing

neither of these HLA alleles formed the group ”0 matched HLA loci”, while donors ex-

pressing all 3 HLA alleles were grouped to ”3 matched HLA loci”. Homozygosity in any

of the 3 HLA loci was treated in the same way as heterozygosity. Figure 4.33A shows

the cumulative read frequencies of 156 signature TCR� sequences against the 6 epi-

topes restricted by the relevant HLA-alleles in peripheral blood of 31 donors of this co-

hort and 575 donors of cohort 1. The cumulative frequency of the 156 signature TCR�

sequences increased with increasing number of matched HLA loci in CMV-positive

donors, while it remained constantly low in CMV-negative donors (median cumulative

frequency approximately 10�5). This shows that the ex vivo frequency of CMV epitope-

specific signature TCR� sequences is strongly dependent on the donor’s HLA type and

CMV serostatus. An exception were the high ex vivo signature TCR� frequencies (ca.

3⇥10�3) in donors P19 and P20 of this cohort, who had 0 matching HLA loci. These

high cumulative frequencies may be a result of TCR� library cross-contamination.
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Figure 4.33: Frequency of CMV epitope-specific signature TCR� sequences in pe-
ripheral T-cell repertoires of CMV-positive and CMV-negative donors from this cohort
and 575 high-resolution HLA-typed donors with known CMV serostatus from cohort 1
published by Emerson et al. (Emerson et al. 2017) and DeWitt et al. (DeWitt et al.
2018). (A) Cumulative frequency of 156 TCR� sequences restricted by HLA-A*02:01,
HLA-B*07:02, or HLA-C*07:02 in ex vivo TCR� repertoires of donors with 0, 1, 2, or 3
matching HLA loci, whereby homozygosity in an HLA allele is considered as 1 match.
(B) Cumulative frequency of 156 TCR� sequences in HLA-matched donors grouped
by epitope specificity. HLA res.=HLA restriction (A+B) Grey dots belong to donors from
this cohort and black dots to donors from cohort 1. Red lines show the median cumu-
lative read frequencies. (C) Cumulative frequency of 145 TCR� sequences restricted
by HLA-B*07:02 or HLA-C*07:02 in peripheral blood of fully HLA-matched (B7/C7+)
or double-negative donors (B7/C7–) from this cohort or cohort 1. Gray circles identify
donors P01–P08, P11, and P14 from whose repertoires the TCR� sequences were
originally derived. Red lines show the median cumulative read frequencies. P values
were calculated with a two-tailed Mann–Whitney U test.
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Secondly, the cumulative read frequency for each of the 6 epitopes individually was

computed exclusively in HLA-matched donors to see whether there was a difference

in signature TCR� read frequencies between epitopes (Figure 4.33B). The median cu-

mulative read frequencies for all epitopes but CRV were 0 in CMV-negative donors,

and for CRV it was well below 10�6. Furthermore, median cumulative read frequen-

cies of signature TCR� sequences for each epitope, except for VLE, were at least

100-fold higher in CMV-positive than CMV-negative donors. Median cumulative read

frequencies of the 4 best-studied epitopes (CRV, FRC, RPH, and TPR) with the high-

est number of signature TCR� sequences in CMV-positive donors were in a similar

range and varied between 7.6⇥10�5 and 2.1⇥10�4. NLV-specific signature TCR� se-

quences were slightly less frequent (median=4.2⇥10�5) and the median cumulative

frequency of VLE-specific signature TCR� sequences was 0. However, fewer samples

were analysed for these two specificities and, consequently, only 9 and 2 signature

TCR� sequences were found for these epitopes. Analysing more samples stimulated

with epitopes NLV and VLE will likely increase the number of shared or similar spe-

cific TCR� sequences and thereby the cumulative read frequencies in HLA-A*02:01–

expressing CMV carriers. Importantly, it was expected that VLE-specific T cells were

not found in all donors, since two studies by Khan et al. (Khan et al. 2002a; Khan et al.

2004) detected VLE-specific T-cell responses in approximately half of their tested CMV-

positive donors. In conclusion, cumulative signature TCR� read frequencies showed

great potential to discriminate between CMV-positive and CMV-negative donors for all

epitopes, although more signature TCR� sequences need to be identified for HLA-

A*02:01–restricted epitopes VLE and NLV.

Lastly, the four most intensively studied epitopes CRV, FRC, RPH, and TPR, all re-

stricted by the HLA-B*07:02/HLA-C*07:02 haplotype, were put into focus of the anal-

ysis. Overall, 145 signature TCR� sequences grouped to 53 specificity clusters were

found for these epitopes. Cumulative frequencies of the 145 HLA-B*07:02/HLA-C

*07:02–restricted signature TCR� sequences were computed in peripheral T cell reper-

toires of 25 donors sequences in this project, all expressing the relevant HLA haplo-

type, and all donors from cohort 1 either expressing both (B7/C7+) or neither (B7/C7–

) of the two HLA alleles of interest (Figure 4.33C). There was no significant differ-

ence in cumulative read frequencies in donors P01–P08, P11, and P14, from whom
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the epitope-specific TCR� sequences were identified (identification subcohort), and

an additional cohort of 6 CMV-positive, HLA-matched donors (validation subcohort),

confirming that there was no obvious bias favouring donors of the identification co-

hort. Median cumulative frequencies of the 145 signature TCR� reads were 532-fold

and 172-fold higher in the identification subcohort (median=2.24⇥10�3) and the val-

idation subcohort (median=7.9⇥10�4) than in the CMV-negative donors of this co-

hort (median=4.6⇥10�6). Accordingly, median cumulative frequencies of signature

TCR� sequences in B7/C7+ subcohort of cohort 1 were 263-fold higher in CMV-

positive donors (median=2.1⇥10�3) than in CMV-negative donors (median=8.0⇥10�6).

In contrast, the median cumulative frequency of signature TCR� sequences in CMV-

positive donors of the B7/C7– subcohort of cohort 1 was not different from that of

HLA-mismatched CMV-negative donors, or from CMV-negative donors co-expressing

HLA-B*07:02/HLA-C*07:02. A deliberately chosen cumulative frequency cutoff of 10�4

separates CMV-positive from CMV-negative donors with high precision in both HLA-

matched cohorts. All 25 donors of this cohort were assigned their correct CMV serosta-

tus with a cumulative read frequency cutoff of 10�4 (F1 score = 1). Similarly, 45 of 53

CMV-positive were correctly discriminated from 88 of 88 CMV-negative donors of the

B7/C7+ subcohort of cohort 1 with regard to their CMV seropositivity (F1 score = 0.91).

Taken together, the analysis of cumulative read frequencies demonstrates that the

shared CMV epitope-specific signature TCR� sequences identified in this project are

strongly indicative of the CMV serostatus and HLA type of healthy donors.

4.11 CRV-specific T cells also expand with the strain
variant peptide CRV-I

Protein sequences between different CMV strains are not perfectly conserved, and

some of the peptides tested in this thesis differ in their sequence by 1 amino acid

between different strains. One example for such an epitope polymorphism is found in

the HLA-C*07:02–restricted epitope CRV derived from antigen IE1. The variant used

in the single peptide stimulation assays is here abbreviated ”CRV” and the full length

sequence is ”CRVLCCYVL”. This variant is present in many well-studied CMV strains,

such as AD169 (Chee et al. 1990; Bradley et al. 2009), Towne (Bradley et al. 2009; Cui

et al. 2012), and Merlin (Dolan et al. 2004). The second epitope variant, which is here
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Table 4.9: Number of TCR� clonotypes identified as specific for epitope variant CRV
only, variant CRV-I only, or both variants in donors P01 and P04–P08.

Donor CRV CRV-I both

P01 52 10 67
P04 8 10 37
P05 55 8 63
P06 16 2 33
P07 9 21 24
P08 10 2 15

abbreviated ”CRV-I”, has a conservative V!I amino acid exchange in position 8 and the

full-length sequence is ”CRVLCCYIL”. The CRV-I variant is, for example, found in CMV

strains TB40/E (Sinzger et al. 2008) and Toledo (Murphy et al. 2003). To test whether

T cells with TCR� clonotypes specific for variant CRV also respond to variant CRV-I,

6 CMV-positive donors P01 and P04–P08 were single-peptide–stimulated with CRV-I.

CRV-I–specific TCR� sequences were identified as described in Section 3.5.3.4 and

Figure 3.5 using autologous TPR-stimulated samples and ex vivo samples as controls.

Subsequently, CRV-specific TCR� sequences were compared to CRV-I–specific TCR�

sequences in each donor (Table 4.9). In all donors, the majority of CRV-specific TCR�

sequences were also specifically enriched with peptide variant CRV-I. Between 15 and

67 TCR� sequences responding to both epitope variants were found per donor. In

addition, between 2 and 55 TCR� sequences per donor were only specific for one of

the epitope variants and not identified as specific with the other. The vast majority of the

most frequent specific TCR� sequences was specifically enriched with both epitope

variants (Figure 4.34). Another group of exclusively CRV-specific or CRV-I–specific

TCR� clonotypes was similarly frequent in both stimulations and should therefore be

specific for both epitope variants, but these clonotypes were likely narrowly below the

specificity cutoffs for one of the variants. For example, one frequent TCR� sequence

of donor P07 had a proportional read frequency of 0.039 in the CRV-stimulated sample

and 0.029 in the CRV-I–stimulated sample (Figure 4.34, blue ”x”) , yet it was only

classified as specific for variant CRV. Some TCR� sequences that were only specific

for one epitope variant, however, lie outside the normal frequency distribution range of

all TCR� clonotypes found in the tested donors (marked by grey dots) and may indeed

be specific for only one of the epitope variants. In conclusion, the data show that

the most frequent CRV-specific TCR� clonotypes generally recognised epitope variant
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CRV-I as well. Therefore, a majority of CRV-specific T cells have antiviral potential

against various different CMV strains.

Figure 4.34: Frequencies of CRV- and/or CRV-I–specific TCR� clonotypes in sam-
ples from donors P01 and P04–P08 stimulated with peptide CRV or peptide CRV-I.
Clonotypes that were undetectable in one sample were assigned a pseudo-frequency
of 2⇥10�8 to enable their display on a logarithmic axis. TCR� clonotypes that were
not specific for CRV or CRV-I, derived from any donor, are marked by grey dots. TCR�
clonotypes that were specific for either epitope variant or both are shown using hollow
symbols and coloured in red (only CRV-I–specific), blue (only CRV-specific), or black
(specific with both variants).

4.12 TCR↵ chain sequencing
Although TCR� chain sequencing was highly efficient to identify epitope-specific TCRs

and to trace virus-specific T cell responses in HLA-matched seropositive donors, I also

sought to characterise the corresponding TCR↵ repertoire to see if some specific or

shared TCR↵ sequences and, potentially, TCR↵� pairs can be identified.

4.12.1 Setup of the TCR↵ sequencing protocol

TCR↵ sequencing primers with the required overhangs (priming and barcoding se-

quences) were designed to resemble the binding properties of the TCR� sequencing

primers (see Section 3.5.1). Two different gene-specific reverse transcription primers

(RT-TRAC A and RT-TRAC B), complementary to sequences in the TCR↵ C region,

were designed and compared with the oligo-dT mix provided with the ”QuantiTect Re-
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verse Transcription Kit”. Two different reverse primers (C↵A and C↵B) that contained

the required overhangs (priming sites for secondary PCR and Illumina sequencing, and

barcode) were designed for and tested in the multiplex PCR step of library preparation.

The first PCR was conducted with all 51 TCR↵ forward primers at equimolar concen-

trations, or with only one randomly chosen TRAV forward primer alone (TRAV12-1 from

the set of newly designed primers), or with a previously published and established V↵

primer TRAV19-1 (published as 12S1 in accordance with an older TCR nomenclature

(Steinle et al. 1995)). Comparison of the different conditions by gel electrophoresis

(Figure 4.35A) shows that TCR↵ products were obtained after reverse transcription

with any of the tested primers, RT-TRAC A, RT-TRAC-B, or oligo-dT. Products of ap-

propriate size were obtained with any combination of reverse primers C↵A or C↵B and

forward primers TRAV12-1 or TRAV19-1. However, no product was obtained when

the complete TRAV/TRDV mix was used with either of the reverse primers. Using the

TRAV/TRDV primer mix together with reverse primer C↵A, but not C↵B, there was a

bright band around 100 bp, where long primer by-products are expected to accumulate.

This indicated that primer C↵B works better that primer C↵A. A possible explanation

for this observation is that primer C↵A may have a higher tendency to form hairpin

structures, self dimers, or cross dimers with the forward primers than primer C↵B. The

high GC content of the binding portion of primer C↵A (70%) as opposed to primer C↵B

(50%) may favour primer dimerisation by increasing the stability of primer dimers. The

lack of visible bands for PCR product after the multiplex PCR with the TRAV/TRDV

primer mix can potentially be explained by the differing lengths of the PCR products.

When more TCR↵ chains than those expressing TRAV19-1 are amplified, the lengths

of the PCR products will be more diverse. This leads to a more diffuse running be-

haviour of the PCR products on the gel and product bands may be too weak to be

visualised by ethidium bromide staining. Next, the complete TCR↵ library preparation

protocol was run with the same settings as the TCR� protocol using primer RT-TRAC B

as reverse transcription primer, TRAV/TRDV mix as forward primers in the multiplex

PCR and C↵B as reverse primer in the multiplex PCR. The purified product after the

second PCR step (barcode PCR) was present at sufficient concentrations (�5 nM), as

confirmed by Bioanalyzer measurement (Figure 4.35B), showing that the TCR↵ library

preparation protocol with the primers designed in this project was effective.
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Figure 4.35: Validation of the TCR↵ sequencing library preparation protocol. (A) Gel
electrophoresis after the first PCR step (multiplex PCR) with cDNA from 125 ng RNA to
test different primers. Primers RT-TRAC A, RT-TRAC B, or oligo-dT were used for re-
verse transcription. The first PCR step was tested using only one of the TCR↵ primers
designed in this project (TRAV12-1; here ”12-1”), or all primers (TRAV/TRDV mix, here
”mix”), or the established primer 12S1 binding to TRAV19-1 as positive control. The
established primer TRAV19-1 was published by Steinle et al. (Steinle et al. 1995) us-
ing the V gene name 12S1 according to the nomenclature by Arden et al. (Arden et al.
1995). As reverse primer, one of the 2 primer candidates C↵A or C↵B were used. 26
cycles were run per reaction. Estimated product sizes with the new forward primers
designed here were 225 bp with C↵A and 250 bp with C↵B as reverse primer. Esti-
mated product sizes with control primer TRAV19-1 were 371 bp with C↵A and 396 bp
with C↵B as reverse primer. L ladder, – negative control (no polymerase), + positive
control (housekeeping gene GADPH) * control forward primer (B) Bioanalyzer elec-
tropherogram and virtual gel representation of the first TCR↵ library prepared from
sample P07 stimulated with peptide CRV. The average PCR product size was 321 bp
and the concentration of TCR↵ product after the second PCR step was sufficiently high
for sequencing (9.7 nM).

4.12.2 VJ gene segment usage in TCR↵ repertoires

TCR↵ libraries were prepared from RNA of 4 samples from which TCR� repertoires

were previously sequenced. The 4 samples were ex vivo PBMCs and CRV-stimulated

cells derived from donor P03, and CD8-enriched PBMCs and CRV-stimulated cells de-

rived from donor P07. First, VJ gene usage in TCR↵ chains of the peripheral blood

samples derived from donor P03 and P07 was assessed to see whether the TCR↵
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library preparation protocol introduced any amplification bias. As an independent con-

trol cohort, peripheral blood TCR↵ repertoires from 6 healthy donors published by Rug-

giero et al. (Ruggiero et al. 2015) were analysed with regard to their TRAV and TRAJ

gene usage. Figure 4.36 shows the proportions of TCR↵ clonotypes using a particular

TRAV and TRAJ gene. The ↵-chain VJ usage of the two donors sequenced in this

Figure 4.36: Proportion of TCR↵ clonotypes using a particular TRAV gene (upper
panel) or TRAJ gene (lower panel) in ex vivo samples of donor P03 and donor P07
and in an independent cohort of 6 healthy donors (Ruggiero et al. 2015). Cells from
donor P07 were CD8-enriched prior to RNA isolation. Grey dots correspond to donors
from the cohort published by Ruggiero et al. and black dots correspond to donors P03
and P07 of this cohort. TRAV and TRAJ genes that are categorised as open reading
frames or pseudogenes according to IMGT (Lefranc 2001) are marked with a star and
a triangle, respectively.

project was highly similar to the ↵-chain VJ usage of the 6 healthy donors sequenced

by Ruggiero et al. (Ruggiero et al. 2015), who used a non gene-specific cDNA ampli-

fication system with a biotinylated primer targeting the C region and a single-stranded

linker cassette. The biotinylated primers were required for purification of TCR cDNA

from the sample. The single stranded linker cassette was appended to the end of the

cDNA and served as primer binding site for the subsequent PCR step. Functionality of

each TRAV and TRAJ gene for this analysis was assigned in accordance with the IMGT

TCR repertoire database (Lefranc 2001). Proportions of TCR↵ chains with each TRAV

and TRAJ gene were between 10�3 and 10�1 for most functional V↵ and J↵ genes in

both cohorts, and below 5⇥10�3 for ORFs and pseudogenes. Functional V↵ genes
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TRAV7, TRAV9-1, and TRAV18 were of low relative frequency in both tested donors

of this cohort, suggesting that the V↵ primers targeting these alleles may not have

worked and need to be improved. However, TCR↵ sequences with TRAV7, TRAV9-1,

and TRAV18 were also absent or of very low frequency in the 6 donors of the control

cohort, indicating that these V↵ genes may never or rarely be used in functional T cells.

The relative frequency of functional gene TRAJ14 was remarkably low, while TRAJ58,

which was annotated as an ORF (i.e. a gene segment of uncertain functionality) in the

IMGT system, was used at a frequency typical for functional J↵ segments in donors

of both cohorts. This implies that the roles of these TRAJ genes may not have been

correctly assigned in the IMGT database, and TRAJ14 may in fact be a non-functional

J↵ gene, whereas TRAJ58 may be functional. Because of the similar VJ↵ gene usage

patterns in the two cohorts, it can be concluded that the primers designed for TCR↵

library preparation in this project are functional and no discernible PCR bias was intro-

duced in the multiplex PCR step.

4.12.3 Pairing of TCR↵ and TCR� chains

TCR↵ and TCR� chains are encoded by different chromosomes; these are chromo-

some 14 (TCR↵) and chromosome 7 (TCR�). There is currently no high-throughput

method to sequence and reliably match TCR↵� pairs at the high resolution of indi-

vidual chain sequencing. Nevertheless, TCR↵� pairs can be identified by single cell

sequencing or sequencing of functionally selected clones obtained by limiting dilution.

Alternatively, TCR↵� pairs may be found in some cases by identifying TCR↵ and TCR�

chains with sufficiently matched frequencies in complex samples. Here, TCR↵ and

TCR� repertoires were sequenced separately from the same RNA sample. When

plotting the clonotype frequencies in the unstimulated sample against their frequen-

cies in the CRV-stimulated samples, the resulting TCR↵ and TCR� clonotype distribu-

tion patterns were similar in each of the 2 donors (Figure 4.37A). For both chains, a

population of distinctly enriched clonotypes was visible on the plots. Since a TCR↵-

sequenced control sample stimulated with a different peptide was missing, no spe-

cific TCR↵ sequences could be determined with the filtering strategy used above for

TCR�. However, because of the similar clonotype frequency distributions in TCR↵

and TCR� samples, enriched populations of clonotypes for both chains were identified
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using the enrichment cutoff values determined for TCR� clonotypes in the identifica-

tion of specific TCR� sequences (Section 3.5.3.4). Accordingly, Figure 4.37B shows

only TCR↵ and TCR� clonotypes that were �67.12-fold (P03) and �4.24-fold (P07)

enriched in the CRV-stimulated sample compared to the corresponding d0 sample and

had a proportional read frequency �10�4. This resulted in 47 CRV-enriched TCR↵ and

Figure 4.37: Comparison of TCR↵ and TCR� repertoires derived from the same RNA
samples of donors P03 and P07. (A) Juxtaposition of TCR↵ and TCR� clonotype
frequencies in ex vivo PBMCs and CRV-stimulated samples. Clonotypes that were
undetectable in one sample were assigned a pseudo-frequency corresponding to 0.5
reads to enable their display on a logarithmic axis. Samples derived from donor P07
were CD8-enriched prior to RNA isolation. (B) Comparison of CRV-enriched TCR↵
and TCR� clonotype frequencies. Displayed are all clonotypes that exceeded the en-
richment cutoffs determined for TCR� clonotypes in the identification of specific TCR�
sequences (Section 3.5.3.4) and had read frequencies �10�4. Concretely, the re-
quired enrichment factors for CRV-enriched TCR↵ and TCR� clonotypes were �67.12
(P03) and �4.24 (P07). This way, 47 CRV-enriched TCR↵ and 71 TCR� clonotypes
were found for donor P03 and 39 CRV-enriched TCR↵ and 42 TCR� clonotypes were
found for donor P07. Circled clonotypes are putative TCR↵�-pairs based on similar
frequency values.
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71 TCR� clonotypes in donor P03, and 39 CRV-enriched TCR↵ and 42 TCR� clono-

types in donor P07. Although the clonotypes distribution patterns for both chains were

similar, only the top 2 most frequent CRV-enriched TCR� chains found in each donor

could be assigned to their matching TCR↵ chain with high confidence. One of the 4

putative TCR↵� pairs, namely the top CRV-enriched TCR↵ chain and TCR� chain of

donor P03, was previously found to form a functional CRV-specific TCR in our research

group in T-cell clones generated by limiting dilution of cells derived from P03 (Ameres

et al., unpublished). Although this confirms that matching of TCR↵ chains and TCR�

chains based on their frequencies in 2 samples was possible for the most frequent

TCRs, TCR↵� chain pairing for lower-frequency clonotypes was not feasible, since the

accuracy of clonotype frequency values gets lower with decreasing relative frequency

of a clonotype, and since the number of TCR chains whose frequencies are too close

to each other increases. In addition, approximately 25 % of T cells express two dis-

tinct functional TCR↵ sequences together with one TCR� chain (Malissen et al. 1992),

which may further complicate assignment of TCR↵� pairs from the two independent li-

braries. In order to find genuine TCR↵� pairs, the samples could be analysed by single

cell sequencing or by combinatory expression of TCRs, but both approaches strongly

reduce the high resolution of the bulk sequencing approach presented here. Between

the 2 donors, there were no shared CRV-enriched TCR↵ sequences, although the sig-

nature TCR� chain TRBV25–CASTPGDEQFF–TRBJ2-1 was specifically enriched by

CRV-stimulation in both donors. This indicates that there is TCR↵ chain variability in

epitope-specific TCRs with the same TCR� chain. Nonetheless, these observations

are very limited in scope at this point. To gain insight into TCR↵ chain sharing be-

tween T cells with the same specificity, more samples from more donors will need to

be TCR↵-sequenced at high resolution.
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In this PhD project, the CMV-specific human T-cell response was investigated in dif-

ferent assays combining short-term in vitro stimulation with immunogenic peptides or

mini-LCLs expressing viral antigens with high-throughput TCR� sequencing. Firstly,

T cells from healthy virus carriers expressing the HLA-B*07:02/HLA-C*07:02 haplo-

type were stimulated with single antigenic CMV peptides to specifically enrich T cells.

Enrichment of peptide-specific T cells was confirmed by flow cytometry. Bulk TCR�

sequencing and data analysis (three-sample comparison) identified 1350 donor-nu-

cleotide-unique TCR� clonotypes specific for 1 of 7 tested CMV epitopes from 9 CMV-

positive donors P01–P08 and P14. Secondly, T cells of 3 of these CMV-positive donors

(P01–P03) were co-cultured with autologous mini-LCLs that expressed a full length

CMV antigen, pp65 or IE1, and presented derived peptides at physiological levels.

The majority of TCR� clonotypes specific for pp65-derived and IE1-derived peptides

as identified by peptide stimulation also responded to endogenously processed and

presented antigen on mini-LCLs. This confirmed that genuinely virus antigen-specific

T cells can be enriched by short-term stimulation with defined CMV peptides, and

that most of these T cells also respond to intracellularly processed levels of antigen.

Thirdly, the assay was scaled up: 32 CMV peptides were distributed to 8 peptide pools,

whereby each peptide was present in a unique combination of 3 pools and absent in the

remaining 5 pools. Stimulation of 8 CMV-positive donors with various HLA types (P01,

P03, P11, and P17–P21) with peptide pools identified an additional 625 TCR� clono-

types specific for 1 of 26 tested CMV peptides. Despite the limited informative value

of the data obtained by peptide pool stimulation due to peptide cross-contamination in-

troduced by handling errors, the results imply that multiplexed stimulation with defined

CMV peptides is suitable to identify TCR� clonotypes with various specificities and

restricted by many different HLAs at the same time. Lastly, 162 CMV-specific signa-

ture TCR� sequences were identified that were shared between multiple donors. The

frequency of these signature TCR� sequences in peripheral blood was highly discrim-

inative of a person’s CMV status and HLA type in this cohort and a large independent

validation cohort. Such signature TCRs will open up new possibilities for diagnosis,

monitoring, and therapy of viral diseases.
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5.1 Sample choice and experimental setup

Currently, the prevailing method to identify virus-specific TCRs is to label specific T cells

with peptide-MHC multimers, enrich them by FACS, and perform high-throughput TCR↵

and/or TCR� sequencing (Klarenbeek et al. 2012; Dash et al. 2017; Glanville et al.

2017; Attaf et al. 2018), sometimes after in vitro peptide stimulation (Chen et al. 2017;

Miyama et al. 2017). This is problematic when researchers assume that all T-cell clono-

types identified from the multimer-sorted samples are CMV-specific. High-throughput

sequencing is an extremely sensitive method and has the potential to identify TCR

sequences even from very rare T cells in the sample and marker-positive T cell pop-

ulations are not 100% pure. Some unspecific background signal, potentially caused

by dominant T-cell clones of irrelevant specificity from the parent population, may be

present in the marker-positive fractions. For no easily discernible reason, the purity of

the marker-positive fractions that were analysed by high-throughput TCR sequencing

was not stated in most of the aforementioned studies. In the two studies where the

purity was stated, it was at least 95% (Klarenbeek et al. 2012; Chen et al. 2017). How-

ever, this still leaves up to 5% of T cells that are not specific for the tested epitopes

in the marker-positive fraction; such impurities most probably lead to the identification

of false-positive TCRs. Apart from sorting impurities, high-throughput TCR repertoires

are heavily influenced by factors such as stochastical effects, polymerase errors, and

sampling effects, all of which can be introduced during TCR mRNA or DNA amplifica-

tion and during sequencing (Kebschull and Zador 2015). Consequently, a significant

amount of TCR clonotypes obtained by high-throughput sequencing of the marker-

positive fraction are likely not specfic for the tested peptides in these studies. This

particularly affects TCR clonotypes with low read frequencies (see Section 4.4.1).

To reduce the background signal, a read cutoff can be introduced that eliminates low-

frequency clonotyopes. As an example, Dziubianau et al. (Dziubianau et al. 2013)

sequenced TCR� libraries from T cells that were specifically enriched by stimulation

with an overlapping pp65 peptide pool followed by FACS-based enrichment of acti-

vated T cells that were positive for CD40L. They introduced a frequency cutoff of 1%

to exclude TCR� sequences that were not antigen-specific; consequently only TCR�

clonotypes with a read frequency �1% were considered antigen-sepcific. While such

a stringent frequency cutoff strongly reduces the background signal, it necessarily dis-
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regards rarer TCR� clonotypes that are antigen-specific. The data obtained in this

project showed that the CMV-specific T-cell response was highly clonal and usually

dominated by one or few abundant TCR� clonotypes (Figure 4.10). Many additional

TCR� clonotypes with the same specificity were 100-fold–10000-fold less frequent

in the peptide–stimulated samples of the respective donors; such TCR� clonotypes

would have been eliminated with a stringent �1% read frequency cutoff. It follows that

a read frequency cutoff alone is not sufficient to identify specific TCR� clonotypes from

peptide-stimulated or multimer-sorted T-cell samples.

In a study published by Klinger et al. (Klinger et al. 2013), T cells from a CMV-positive

donor expressing HLA-A*02:01 were labelled with pp65 NLV/HLA-A*02:01 multimers

or stimulated with NLV peptide for 18 h in vitro and subsequently labelled with an-

tibodies against the T-cell activation marker CD137. The labelled T cells were then

enriched by FACS and TCR� sequencing was performed on the multimer-positive or

CD137-positive fraction, and, as control samples, on the multimer-negative or CD137-

negative fraction, and on unsorted PBMCs. NLV-specific TCR� clonotypes were iden-

tified by comparing clonotype frequencies in the positive fractions to their frequencies

in both control samples. This way, 8 NLV-specific TCR� clonotypes were identified

by multimer-labelled FACS enrichment. All 8 NLV-specific TCR� clonotypes were also

identified by FACS enrichment of CD137-positive T cells, which identified 1 additional

TCR� clonotype as NLV-specific. The NLV-specific TCR� clonotypes were approx-

imately 100-fold more frequent in the marker-positive fractions than in PBMCs, and

approximately 1000-fold more frequent compared to the marker-negative fraction. This

is in line with the relative enrichment values observed in this project after single pep-

tide stimulation (see Figure 3.5, Table 4.3, Figure 4.7), even though the three-sample-

comparison performed here used a sample stimulated with a different peptide instead

of a marker-negative fraction as control sample.

Sorting of multimer-positive T cells to identify CMV epitope-specific TCR� clonotypes

was also attempted in this PhD project, but enrichment of CMV multimer-positive T cells

from PBMCs was done by MACS. This led to a less effective separation of peptide-

specific TCR� clonotypes and non-responder TCR� clonotypes than enrichment by

peptide stimulation done here (Figure 4.14) and FACS-based enrichment done by

Klinger et al. (Klinger et al. 2013). The decreased discriminatory power of the three-
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sample-comparison after MACS enrichment in this project compared to the FACS en-

richment by Klinger et al. can be explained by the differences in purity of the se-

quenced samples. The purity of the sequenced multimer-positive fractions after MACS

enrichment, as determined by FACS, was between 15.1% and 67.4% multimer-positive

cells, whereas the purity of the positive fractions in the paper published by Klinger and

colleagues, although not explicitly stated, was likely much higher. Consequently, the

differences in frequency of specific TCR� clonotypes in data from Klinger et al. were

much larger in the marker-positive FACS fractions compared to the negative control

samples than the differences in frequency found here by MACS enrichment. The pro-

portion of peptide-specific T cells after single peptide stimulation in this project, which

was measured by flow cytometry, was, on average, between 1.2% and 36% depending

on the peptide. Despite this seemingly low purity, the peptide-specific TCR� clono-

types were distinctively enriched in the peptide-stimulated samples compared to the

respective controls. This suprisingly distinctive power of the peptide stimulation assay

can, in part, be attributed to increased TCR� mRNA levels several days after T-cell

activation (Paillard et al. 1990). Concordantly, increased total mRNA levels after CMV

peptide stimulation were also measured here (Figure 4.3). In other words, not only the

count of specific T cells increases in peptide-stimulated samples (proliferation), but also

the proportion of TCR� mRNA in the activated, specific T cells increases (activation-

induced transcription). Both aspects together lead to a more pronounced enrichment of

peptide-specific TCR� clonotypes compared to non-responder TCR� clonotypes and

thereby facilitate the identification of peptide-specific TCR� clonotypes.

Klinger et al. (Klinger et al. 2013) identified NLV-specific TCR� clonotypes in a three-

sample-comparison; they demanded a �10-fold enrichment compared to both con-

trol samples and introduced a frequency cutoff equivalent to the frequency of �20

T cells in the sequenced sample. Very similar to that approach, CMV peptide-specific

TCR� clonotypes were identified in a three-sample-comparison in this project, but dy-

namic enrichment and frequency cutoff criteria were used to match the different TCR�

clonotype distributions obtained from different donors with different peptides (see Sec-

tion 4.4.2, Table A2). In the discussed paper (Klinger et al. 2013), and in a follow-up

paper of the same group (Klinger et al. 2015), in which they multiplexed peptide/HLA-

A*02:01 multimers or antigenic HLA-A*02:01–restricted peptides derived from mutliple
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pathogens, Klinger et al. identified 8–37 NLV-specific TCR� clonotypes per CMV-

positive, HLA-matched donor. Likewise, 8–26 NLV-specific TCR� clonotypes were

found in donors of this project by single peptide stimulation, and 10–31 NLV-specific

TCR� clonotypes were found in this project by CMV peptide pool stimulation, an as-

say that was developed based on the ”MIRA”-assay developed by Klinger et al (Klinger

et al. 2015). Researchers who did not include control samples identified much higher

numbers of peptide-specific TCR� clonotypes, most of which are likely derived from

sample impurities. For example, Chen et al. (Chen et al. 2017) identified almost 4000

NLV-specific TCR� sequences from only 8 donors, a number that seems vastly exag-

gerated.

In essence, the major advantage of the assays presented in this project is that no

physical isolation of peptide-specific T cells by FACS or MACS is required before

TCR� sequencing. Therefore, no expensive antibodies or multimers are needed for

the identification of CMV peptide-specific TCRs and the assay can be performed with

smaller cell numbers. Furthermore, short-term peptide stimulation increased the count

of peptide-specific T cells in the sample, as well as the amount of total mRNA per cell

(Figure 4.2B), which, in turn, increases the resolution of the assay and enables identifi-

cation of rare peptide-specific TCR� clonotypes in samples of limited size. A limitation

of the peptide stimulation approach is that it identifies only such specific T cells that

are capable of proliferating in vitro. However, it can be argued that these are likely

the relevant T cells that play a role in pathogen control and protection from disease.

Finally, peptide-MHC multimers for some peptides and HLAs are difficult to produce,

despite recent advances in multimer technology (Braendstrup et al. 2013; Schlott et al.

2018), and many multimers are not readily available on the market. Besides, it was

reported that multimers may not always stain the entire population of antigen-specific

T cells (Rius et al. 2018), thus some antigen-specific T-cell clones may be missed us-

ing FACS-based enrichment. Taken together, these observations imply that peptide

stimulation has clear advantages over enrichment of multimer-labelled cells by flow

cytometry.
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5.2 Sequence analysis and assignment of TCR speci-
ficity

In the experiments presented here, a potential PCR bias, which may have been in-

troduced by the multiplex primer-based amplification system, was reduced by running

only 10 cycles of the gene-specific multiplexed PCR. The multiplexed primers targetting

the V region of the TCR↵ or TCR� mRNA were used in excess, and because of the low

number of cycles, all primers were present in sufficient amounts to ensure similar am-

plification efficiencies for all TCR transcripts, even in unbalanced libraries containing

dominant TCR clonotypes, like those prepared from CMV peptide-stimulated samples.

This does, of course, not exclude the possibility that some multiplexed V gene-specific

primers bind their template better than others. However, the overall V gene and J gene

usage in TCR↵ and TCR� libraries prepared from PBMCs of donors in this cohort

was highly similar to that of the cohort published by Ruggiero et al. (Ruggiero et al.

2015), who used an unbiased system without multiplexed V gene-specific primers (see

Section 4.4.7 and Section 4.12.2). Furthermore, it was shown that omnipresent TCR

repertoire skewing, which was also observed here after sequencing of a biological

replicate (Section 4.4.1), was primarily caused by stochastical effects (Kebschull and

Zador 2015). Primer bias, template switching, and polymerase errors only played a

secondary role in TCR repertoire skewing. From these two observations, it can be de-

duced that the use of multiplexed primers has only minor effects, if any, on the obtained

TCR� repertoires in this project.

High-throughput TCR sequencing using the Illumina HiSeq platform is relatively error-

prone, with an error rate of �0.1% (Glenn 2011). The CDR3 is a hypervariable gene

region and single nucleotide polymorphisms between different T cells in a donor’s T-cell

repertoire will occur frequently, particularly for TCR chains that have a high formation

probability due to few nucleotide insertions or deletions. Hence, it is important to re-

duce sequencing errors in the CDR3 region to obtain TCR repertoires that faithfully

represent natural nucleotide variability. To reduce sequencing errors in the CDR3s,

paired-end (bidirectional) TCR sequencing was performed in this project. TCR se-

quences with nucleotide mismatches in the CDR3 were either clustered to a highly

similar and much more frequent parent clonotype, if such a parent population existed,

or they were removed during clonotype assembly using the software MIXCR (Bolotin
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et al. 2015). Barcode spillover - the assignment of reads to wrong samples due to am-

plification and sequencing errors in the indices - was observed, but was reduced over

the course of the project by switching from a single 6-nucleotide index to a dual index

system with two 8-nucleotide indices.

Enrichment of T cells by in vitro stimulation with externally loaded synthetic peptide

is a somewhat artificial system and it can happen that T cells are unspecifically acti-

vated because of unnaturally high levels of peptide on the cells. Moreover, it was only

partially addressed in this project if the identified peptide-specific TCR� clonotypes

functionally responded to CMV epitopes, mainly because the corresponding TCR↵

sequences remained unknown. Nevertheless, the data presented here strongly sug-

gest that the CMV epitope-specific TCR� clonotypes identified here are functionally

active. Firstly, the majority of CMV peptide-specific TCR� clonotypes was enriched

both by stimulation with synthetic peptide and by stimulation with mini-LCL express-

ing the parent antigen (Figure 4.20). Consequently, these specific TCR� clonotypes

respond to physiological levels of endogenously processed antigen. But why is it that

some CMV peptide-specific TCR� clonotypes were not identified as antigen-specific

in the mini-LCL stimulation assay? For the immunodominant CMV epitopes tested

here, no specific T cells have been described in the literature that respond exclusively

to the synthetic peptide, but not to the corresponding antigen. It is likely that some

lower-frequency TCR� clonotypes that were categorised as specific for CMV peptides

may have been erroneously categorised as specific. Also, some CMV peptide-specific

TCR� clonotypes may have been lost due to the significantly longer stimulation pe-

riod of the mini-LCL assay (30 days), with the possibility that some clonotypes were

lost due to competition in cell culture. A second argument in favour of functionality

of the identified CMV-specific TCR� clonotypes is that many peptide-specific TCR�

sequences from single peptide stimulation or mini-LCL–stimulation were also identi-

fied as specific by peptide pool stimulation in donors P01 and P03. This dramatically

decreases the likelihood of these TCR� clonotypes being cell culture or stochastical

artifacts. Thirdly, cumulative read frequencies of peptide-specific TCR� sequences

positively correlated with the frequency of multimer-labelled T-cells measured by flow

cytometry, which showed that there is a concordance between phenotype and TCR�

mRNA expression level of peptide-specific T cells. Fourthly, many of the extensively
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shared TCR� clonotypes specific for well-studied CMV epitopes, such as NLV, RPH,

and TPR, were previously found in independent studies of many different groups, in

which T cell clones were functionally isolated and sequenced by classical Sanger se-

quencing (Weekes et al. 1999; Venturi et al. 2008; Schwanninger et al. 2008; Miconnet

et al. 2011; Brennan et al. 2012; Koning et al. 2013). This validates the congruent

TCR� clonotypes and implies validity for additional private TCR� clonotypes identi-

fied here. Moreover, it suggests functional activity, such as IFN� secretion, for these

TCR� clonotypes. Finally, the cumulative read frequency of CMV peptide-specific

signature peptide-specific TCR� sequences was significantly higher in CMV-positive

donors than CMV-negative donors in our cohort and a large, independent control cohort

(Figure 4.33), implying that these TCR� clonotypes are indeed virus-specific. Taken

together, these results obtained throughout this PhD project confirmed the validity of

the peptide-specific TCR� clonotypes identified here and suggest antiviral function of

such clonotypes.

Sequencing only the TCR� chains of ↵� T cells underestimates the diversity of epitope-

specific T-cell responses, since a TCR� chain can pair with different TCR↵ chains and

still retain specificity for the same or an overlapping epitope (Miles et al. 2006; Dong

et al. 2010; Misko et al. 1999). The results obtained in this PhD project, however,

show that TCR� sequencing alone is sufficient to inform about the CMV-specific T-cell

status of donors. The recent large-scale study published by Emerson et al. (Emer-

son et al. 2017) identified some signature TCR� sequences that were strongly as-

sociated with CMV seropositivity, but the CMV epitope or antigen specificity of these

clonotypes was not determined in that study. In their study, ex vivo TCR� sequencing

and data analysis led to the identification of 164 CMV-associated signature TCR� se-

quences from 641 healthy donors with known CMV status. Here, 162 antigen-specific

signature TCR� sequences were identified from only 15 CMV-positive donors by se-

quencing only 125 samples. Because the epitopes of the TCR sequences identified

in this project were known, it was possible to include highly similar sequences with

identical peptide specificity that were shared to a lesser extent. Such sequences were

missed in the association-based approach by Emerson et al., which can only iden-

tify the most extensively shared TCR� sequences. Rarer CMV-associated sequences

with few incidences will be missed by their approach; they cannot be included based
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on sequence similarity when the specificity is unknown, because there is a risk that

similar TCR� sequences have a completely different specificity. Another disadvantage

of virus-associated TCR� sequences as opposed to peptide-specific TCR� sequences

is that pathogens with overlapping epidemiology may negatively influence predictivity

of the signature TCR� sequences. For example, CMV-positive donors may be more

likely to carry certain other viruses that CMV-negative donors, and in this case the as-

sociation of CMV infection with certain TCR sequences may not indicate CMV speci-

ficity of these TCRs. In conclusion, knowledge of the antigen specificity enabled the

identification of similar numbers of signature TCR� sequences here, while using fewer

resources and analysing fewer samples than Emerson et al. The 162 peptide-specific

signature TCR� sequences identified in this project distinguished CMV-positive donors

from CMV-negative donors with high precision, confirming the predictive power of sig-

nature TCR� sequences to detect virus-directed T-cell responses.

5.3 CMV-specific T cells are extremely frequent and tar-
get various viral epitopes

CMV-specific T cells against various epitopes tested in this study were highly frequent

in PBMCs of healthy virus carriers (Figure 4.13), which shows how strongly CMV influ-

ences the T-cell repertoires of its hosts. The findings presented here add to previous

publications reporting a high frequency of CMV-specific T cells in the circulation of

virus-infected persons. For example, an early study found that 0.5%–4.5% of CD8+

T cells secreted IFN� in response to NLV or TPR peptide in CMV-positive donors ex-

pressing the appropriate HLA (Kern et al. 1999). Another group stained NLV-specific

and TPR-specific circulating T cells with peptide/HLA tetramers and found a similar

range of frequencies of specific CD8+ T cells in their donors (0.13%–5%) (Gillespie

et al. 2000). A subsequent large-scale study by Sylwester et al. extended these find-

ings. They used overlapping peptide pools of 213 CMV ORFs to stimulate T cells

derived from 33 virus carriers to assess the magnitude of the total CMV-specific T-cell

response in humans by IFN� secretion (Sylwester et al. 2005). CMV-specific T cells

accounted for a median of 4.0% of CD4+ T cells and 4.6% of CD8+ T cells. Remark-

ably, in one subject, >30% of total CD8+ T cells were specific for the virus. Perhaps

the frequency of CMV-specific T cells in the circulation of virus carriers becomes even
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larger when all antigen-specific T cells are measured and not only those with active

effector function at the time of analysis (Tan et al. 1999). In this project, comparable ex

vivo frequencies were found in CMV-positive healthy donors: between 0.25% (donor

P06, 3 peptides tested) and 6.66% (donor P02, 6 peptides tested) of total T cells were

specific for the tested peptides in each donor as determined by flow cytometry. The

variability of cumulative frequencies of CMV-specific T cells in the circulation of a per-

son is influenced by several factors, including their HLA type (Höllsberg 2002), the

epitopes that are recognised by their T-cell repertoire (Yewdell and Bennink 1999), the

activation state of CMV (Khan et al. 2007), and the person’s age (Hosie et al. 2017).

Sylwester et al. showed that the CMV-specific T-cell response was not only strong, but

also very complex. T cells were found to target between 5 and 55 different CMV anti-

gens per person (Sylwester et al. 2005). Correspondingly, specific T cells and TCR�

clonotypes against a variety of different CMV epitopes derived from various antigens

were found in ex vivo repertoires of donors in this cohort. Most of the epitopes used

in the single peptide stimulation assay (CRV, FRC, IPS, NLV, RPH, TPR, and VLE)

were previously reported to be immunodominant, i.e. to elicit immune responses in

a majority of CMV-positive persons with the appropriate HLA haplotype (Khan et al.

2004). Notably, T-cell responses to epitopes FRC and VLE were shown to be a little

less frequent than to the remaining epitopes: FRC elicited a tumour necrosis factor

(TNF)↵ T-cell response in 74% (Hosie et al. 2017) and VLE elicited an IFN� T-cell

response in between 33%–54% of donors with the appropriate HLA haplotype (Khan

et al. 2002a; Khan et al. 2004). The immunodominance of all 7 tested CMV epitopes

was confirmed here. Remarkably, CMV peptide-specific TCR� clonotypes were found

in all HLA-matched donors for the tested peptides, even for peptides FRC and VLE.

The sole exception was donor P05, who likely did not mount a TPR-specific T-cell re-

sponse. This was implied by a decrease in TPR/HLA-B*07:02 multimer-positive T cells

after stimulation of PBMCs from donor P05 with TPR, whereby inital levels of multimer-

positive cells were already very low and likely resulted from background signal, by

the lack of an enriched population of TCR� clonotypes after peptide stimulation (plot

not shown), and by the low cumulative read frequency of TCR� sequences assigned to

TPR after peptide stimulation (0.63%). Another oddity that deserves attention is the ob-

served discrepancy between enrichment of CRV-specific T cells and TCR� clonotypes
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by single peptide stimulation of PBMCs from donors P02 and P14. In these donors,

the frequency of CRV-specific T cells as measured by flow cytometry remained similar

before and after stimulation with CRV peptide, suggesting that these donors did not

mount a T-cell response against CRV. Nonetheless, a distinct population of enriched

TCR� clonotypes emerged after stimulation in scatter plots depicting the TCR� se-

quencing data. The identified CRV-specific TCR� clonotypes were frequent ex vivo

and in the stimulated samples (see Table 4.3), constituting a paradox to what was ob-

served by flow cytometry. A possible explanation for this paradox is that T-cell fratricide

occured during peptide stimulation. T-cell fratricide has been reported in the context

of adoptive T-cell therapy of tumours, where it was observed that T cells expressing a

survivin-specific transgenic TCR restricted by HLA-A*02:01 killed survivin-expressing

lymphocytes expressing this particular HLA (Leisegang et al. 2010). One key finding of

this project is that CRV-specific TCR� clonotypes are highly frequent in ex vivo reper-

toires of CMV-positive donors. Consequently, loading CRV peptide onto PBMCs will

elicit a massive CRV-specific immune response. Since CRV-specific CD8+ T cells ex-

press HLA class I molecules, they will also present CRV peptide and can be killed by

other CRV-specific CD8+ T cells. To circumvent this problem, only half of the donor

PBMCs were loaded and incubated with CRV peptide and the remaining PBMCs were

added after the washing steps right before starting the 10-day co-culture. This was

done for all donors except donor P02 and P03, where this step was inadvertently left

out. As a consequence, fratricide of CRV-specific T cells in culture is expected to be

greatly reduced in donors with massive CRV-specific immune responses. Immune re-

sponses against CMV epitopes other than the 7 most intensively studied epitopes of

this project were less immunodominant and elicited T-cell responses in fewer donors,

which was in accordance with previously published data on these epitopes (see Sec-

tion 4.8.2).

Apart from the extraordinary magnitude and diversity of the CMV-specific T-cell reper-

toire in seropositive donors, it has also been described that the frequency of CMV-

specific memory CD8+ T cells in the blood was higher in older virus carriers than in

younger virus carriers, which is putatively due to an expansion of T cell memory over

time following repeated episodes of CMV reactivation (Klenerman and Oxenius 2016).

This CMV-dependent T-cell memory inflation was associated with greater clonality of
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the CMV-specific CD8+ T-cell repertoire (Khan et al. 2002b) and, potentially as a conse-

quence of induced high clonality, may impair immunity to other pathogens in the elderly

(Khan et al. 2004). Contrarily, a recent age-grouped analysis of the large data set from

Emerson et al. (Emerson et al. 2017; Lindau et al. 2019) suggested that, while CMV-

positive donors tended to have slightly more clonal overall TCR� repertoires than CMV-

negative donors, the clonality of the TCR� repertoire was not significantly increased in

elderly persons with the same virus status. In this PhD project, the overall frequency

distribution of the top 100 most frequent TCR� clonotypes was similar for CMV-positive

and CMV-negative donors (Figure 4.13), but the abundance of CMV-specific clonotypes

among the most frequent circulating clonotypes of virus carriers was strinking. No age-

related analysis could be performed on this cohort, since the donors were anonymous

and no age information was available. Recently, it was shown that particularly CD8+ T-

cells specific for HLA-C*07:02–restricted CMV epitopes are abundant in virus carriers

and that such T cells dominate the CD8+ T-cell compartment of the elderly (Hosie et al.

2017). Accordingly, the majority of expanded CMV peptide-specific TCR� clonotypes,

including the top most frequent one, were restricted by HLA-C*07:02 in 8 of 9 donors

of this cohort that were subjected to the single peptide stimulation assay. While there

is evidence that CMV infection may drive T-cell exhaustion and immunosenescene (Tu

and Rao 2016), it was shown that CMV-specific HLA-C*07:02–restricted T cells retain

their function in elderly individuals despite the considerable memory inflation (Hosie

et al. 2017). The extraordinary high magnitude of the T-cell response specific for HLA-

C*07:02–restricted CMV epitopes, together with the higher TCR� clonotype diversity

compared to other HLA restrictions (Table 4.2, Figure 4.10), suggests a special role for

HLA-C*07:02–restricted T cells in virus control.

5.4 Unique features of the HLA-C*07:02–restricted T-
cell response

Although it has long been established that CMV-specific CD8+ T cells are associated

with virus control (Quinnan et al. 1982; Cwynarski et al. 2001; Bunde et al. 2005; Sacre

et al. 2008), it is still unknown which T cells are actually protective. This enigma is dif-

ficult to solve, because responses to different antigens and epitopes are associated

with each other and it is difficult to examine them separately. Most studies investigated
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the immune response directed towards pp65 epitopes, in particular the HLA-A*02:01–

restricted epitope NLV. Less frequently, the immune response against epitopes derived

from pp50 or IE1 was explored; however, mostly HLA-A and HLA-B–restricted T cells

were studied. Recent data from this group suggests that not the nature of the pre-

sented peptide, but the restricting HLA determines protectivity of the T-cell response.

Stefanie Ameres et al. showed that recognition of IE1-derived peptides by CD8+ T cells

in the presence of CMV immunoevasins was strongly HLA allotype-specific (Ameres et

al. 2013). Cells infected with CMV were recognised much more efficiently by T cells

restricted to HLA-C*07:02 than by those restricted by HLA-A or HLA-B alleles. Since

the presence of HLA-C molecules is indispensable for prevention of NK-cell–mediated

killing (Colonna et al. 1993), it can be speculated that during co-evolution of CMV and

its human host, the virus has maintained HLA-C expression at the cost of being visible

to specific CD8+ T cells. All in all, the stable presentation of HLA-C*07:02, together with

the observed higher magnitude and diversity of the HLA-C–restricted T-cell response

in this project, imply that HLA-C*07:02–restricted CMV peptides may be a driving force

in mobilising a protective T-cell response.

Apart from presentation of antigenic peptides to CD8+ T cells, HLA-C also guides the

cellular innate immune response mediated by NK cells. In doing so, HLA-C molecules

interact with activating and inhibitory KIRs expressed on NK cells. HLA-C has evolved

to be the dominant ligand of KIRs, and all HLA-C molecules expressed by humans

contain either the C1 or C2 epitope required for inhibitory KIR recognition (Hilton and

Parham 2017). Therefore, HLA-C plays a more broadly important role in protecting

cells from NK-cell–mediated killing than the particular HLA-A or HLA-B alleles that can

also interact with inhibitory KIRs. With their KIRs, NK cells can identify virus-infected

cells by sensing reduced levels of surface expression of HLA-C, which may be caused

by viral immunoevasion, or by sensing altered composition of peptides presented by

HLA-C, which occurs when significant amounts of viral peptide are presented. Certain

HLA-C and KIR combinations are associated with increased susceptibility to infectious

diseases. Conversely, some HLA-C alleles, often in combination with particular KIRs,

are associated with protection from infectious diseases. For instance, the interaction of

KIR2DL2/3 with its cognate HLA-C epitope C1 was strongly associated with the devel-

opment of cerebral malaria in persons infected with Plasmodium falciparum (Hirayasu
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et al. 2012). The same combination of KIR2DL2/3 and HLA-C1 was also associated

with improved resolution of hepatitis C infection (Khakoo et al. 2004).

Of the classical HLA class I loci, HLA-C was, and still is, the least studied locus (Ras-

mussen et al. 2014). However, given that HLA-C is relevant to both T-cell and NK-cell

recognition and is therefore an important link between adaptive and innate immunity,

it raises particularly interesting research questions. HLA-C is expressed at substan-

tially lower levels compared to HLA-A and HLA-B, and the various HLA-C alleles are

more closely related to each other than the HLA-A and HLA-B alleles (Zemmour and

Parham 1992; Apps et al. 2015). Expression levels of HLA-C mRNA vary for different

HLA-C alleles and influence NK-cell–mediated virus control, as shown for HIV (Thomas

et al. 2009). Interestingly, of all HLA-C alleles tested in that study, HLA-C*07:02 was

the least protective against acquired immune deficiency syndrome. In this project, it

was found that the HLA-C*07:02–restricted T-cell response against CMV was extraor-

dinarily strong and diverse. A comparably strong HLA-C–restricted immune response

has not been described for other viruses yet, and only few HLA-C*07:02–restricted

epitopes derived from viral pathogens other than CMV have been identified. Viral

pathogens with known HLA-C*07:02–restricted epitopes include hepatitis B virus (Riv-

ino et al. 2013), influenza A virus (Rasmussen et al. 2014), measles virus (Schellens

et al. 2015), and yellow fewer virus (Rasmussen et al. 2014). Notably, one study found

that, despite the reported lower expression of HLA-C alleles (Apps et al. 2015), one

HLA-C*07:02–restricted measles epitope was expressed at extremely high copy num-

bers (Schellens et al. 2015); such ”supra-abundance” of epitopes was previously only

attributed to HLA-A alleles. Despite recent advances by our group and others, research

on HLA-C–restricted T-cell responses is still in the fledgling stage, and many surprising

discoveries can be expected in this area in the future.

5.5 Patterns of TCR specificity

162 CMV peptide-specific TCR� sequences were found to be shared between donor

(”public”) in this project. These shared TCR� sequences were not typically among the

most frequent specific clonotypes in the repertoires obtained from PBMCs. Accord-

ingly, the top most frequent peptide-specific TCR� sequences were usually different

for different donors and mostly exclusive to a certain donor (”private”). This is in con-
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trast to what was observed for other viral infections, such as influenza (Lehner et al.

1995; Chen et al. 2017) or EBV (Miles et al. 2006), where some heavily conserved

public TCR� sequences dominated the virus-specific T-cell repertoires of its carriers.

The CMV peptide-specific TCR� repertoires identified here were mostly composed

of clonotypes that were only moderately shared between donors or entirely private.

Similar observations have already been made for CMV-specific HLA-A–restricted and

HLA-B–restricted T cells (Price et al. 2005; Venturi et al. 2008; Miconnet et al. 2011;

Dash et al. 2017; Glanville et al. 2017; Klinger et al. 2015; Trautmann et al. 2005).

The results of this PhD thesis confirm these observations and extend them to HLA-

C*07:02–restricted CMV-specific T cells. Thus, there is no CMV epitope known to

date that activates universally dominant TCR� clonotypes as it was observed for other

pathogens.

In this project, 45 TCR� sequences were found to be specificially enriched with the

same peptide in multiple donors. Some of these 45 shared TCR� sequences with the

same peptide specificity were very similar to each other in that they had the same V�

gene usage, CDR3� length, and 1 or 2 amino acid differences in the CDR3�. These

observations expand on data from previous studies showing that virus-specific TCR�

chains restricted by HLA-A or HLA-B can be very similar in their amino acid sequence.

Similarities among specific TCR� sequences have been described for many epitopes

derived from herpesviruses CMV (Weekes et al. 1999; Price et al. 2005; Trautmann

et al. 2005; Venturi et al. 2008; Miconnet et al. 2011; Koning et al. 2013; Klinger et

al. 2015; Dash et al. 2017; Glanville et al. 2017) and EBV (Lim et al. 2000; Fazou

et al. 2001; Miles et al. 2005; Miles et al. 2006; Venturi et al. 2008; Miconnet et al.

2011; Koning et al. 2013), but also for epitopes derived from HIV (Miconnet et al. 2011)

and influenza virus (Lehner et al. 1995; Chen et al. 2017). These TCR� sequences

used identical or closely related TRBV and TRBJ genes and showed exchanges in few

amino acid positions. In an attempt to categorise specific T-cell responses, several

groups searched not only for identically shared TCR sequences, but for short motifs

within the CDR3 that may be indicative for a certain epitope specificity. Short motifs

were found in the central portion of the CDR3 (Miconnet et al. 2011; Lehner et al.

1995), somewhere near residues 6 and 7. These residues were found to form strong

bonds to the peptide-MHC complex and are therefore thought to significantly influence
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the specificity of a TCR (Stadinski et al. 2016). The 162 signature TCR� sequences

identified here were most variable in positions 5–6 compared to other members of the

same specificity cluster, but variations were also observed at more C-terminal posi-

tions, particularly in TCR� sequences with long CDR3s (Figure 4.30, Table 4.8). Some

TCR� clusters only tolerated conservative amino acid exchanges, indicating that the

chemical properties of the amino acids in these positions are indispensable for epitope

recognition. For example, only a conservative S$T exchange appeared to be toler-

ated on position 4 in TCR� sequences cluster CRV01 without loss of specificity for

CRV/HLA-C*07:02. Other TCR� clusters tolerated more variation, like cluster RPH01,

in which amino acids with diverse chemical properties were found, which implies that

these residues may be less involved in peptide-MHC recognition. The search for com-

mon features of TCR� sequences with the same epitope specificity was recently taken

to the next level, when two research groups independently designed algorithms to clus-

ter sequences from T cells of the same specificity by using local similarity (CDR3�

motifs), or global similarity as discriminator (Dash et al. 2017; Glanville et al. 2017).

Global similarity was a better predictor of TCR� specificity than short sequence motifs,

which is in line with results from this project indicating that the whole TCR� sequence

needs to be considered when investigating patterns of specificity. This makes sense,

since while the CDR3 sequence is arguably a strong determinant of TCR specificity,

CDR1 and CDR2, which are fully encoded by the V gene segment, also play a major

role in epitope recognition by establishing bonds mainly to the peptide-presenting HLA.

A brief CDR3� motif search in the data presented here, without taking into account the

used TRBV gene, showed that most short motifs were not exclusive to the specificity

from which they were identified, but also extended to other TCR�s with different CMV

peptide specificity. Moreover, the short sequence motifs were generally located in po-

sitions of the CDR3� that were encoded, in parts or completely, by the V�, D�, and/or

J� gene segment, which increases the general likelihood of such motifs to be present

in a person’s TCR� repertoire. It seems questionable that TCR� clonotype specificity

can be pinpointed to a short 3–4 amino acid motif, as suggested by Glanville et al.

and Dash et al. (Dash et al. 2017; Glanville et al. 2017), when there are an estimated

3⇥1011 naive T cells (Jenkins et al. 2009) and 1010 distinct TCR� clonotypes in the

human body. Chances are that such short motifs are frequently produced by indepen-
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dent TCR recombination events. Thus, short motifs fail to reflect the true diversity of a

specific T-cell response. Considering the usage of a certain TRBV gene in addition to a

motif will likely improve the results, but to be able to predict TCR� specificity, algorithms

should rather focus on the identity of full-length CDR3�s with amino acid exchanges

tolerated in particular positions. Applying the concept of ”sequence specificity clus-

ters”, which was carved out in this thesis and is based on same V� gene usage, same

CDR3 length, and a highly similar CDR3� amino acid sequence, will help to improve

the predictive power of TCR� specificity prediction algorithms compared to short CDR3

motifs. Because of the high prevalence of CMV and the exceptional magnitude of the

CMV-specific T-cell response, the virus is suitable as a model to study specific TCR�

repertoires with regard to sequence similarities and differences, which will also expand

our limited knowledge of the human T-cell response in general.

5.6 Application prospects of virus-specific TCR� sig-
natures

Even though public TCR� clonotypes did not dominate the peptide-specific T-cell reper-

toire of the donors in which they were identified, the set of 162 signature TCR� se-

quences identified here was highly discriminative of donor CMV status and HLA type.

The signature TCR� sequences were found with considerable cumulative read fre-

quencies in CMV-positive donors expressing the relevant HLA haplotype, but rarely in

donors that were either CMV-negative or lacked the appropriate HLA. Consequently,

signature TCR� sequences are unlikely to be found in T cells of irrelevant specificity.

The data presented here also showed that including signature TCR� sequences re-

stricted to additional HLAs to cover more HLA loci increased the cumulative frequency

of signature TCR� sequences (Figure 4.33A). It would therefore be worthwile to extend

our approach to more CMV epitopes restricted by many different HLAs in order to distin-

guish not only donors co-expressing HLA-B*07:02/HLA-C*07:02, but also other donors

with different HLA types. The predictive power of the signature TCR� sequences was

confirmed in this study using this cohort and a large independent control cohort (Emer-

son et al. 2017). Therefore, our approach to identify signature TCR� sequences can

be extended to more epitopes, viruses, and other pathogens in the future.

Identification of a large set of specific signature TCR� sequences covering multiple
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pathogens and HLA types can find application in various areas, for example in clini-

cal research, diagnostics, and therapy. Short-term in vitro stimulation combined with

high-throughput sequencing is a convenient approach to analyse TCR repertoires and

pave the way for novel disease management strategies and immunotherapies. Clinical

immunologists recently tend to prefer in vitro stimulation over purification of specific

T cells by multimer staining and flow cytometry to produce T-cell products for clinical

application (Feuchtinger et al. 2004; Feuchtinger et al. 2006; Icheva et al. 2013; Pa-

padopoulou et al. 2014; Tzannou et al. 2017; Gary et al. 2018), whereas researchers

who perform TCR repertoire analyses still greatly rely on the more expensive, more in-

tricate, and more limited flow cytometry approach. In clinical research, eptiope-specific

signature TCR� sequences can be used as a marker to track virus specific T-cell re-

sponses, for instance after hematopoietic stem cell transplantation. For example, if

signature TCR� sequences specific for CMV epitope CRV are found in a donor, they

likely also have several T-cell clonotypes expressing private TCR� sequences specific

for this epitope. Because the presence of signature TCR� sequences is indicative

of the presence of an epitope-specific T-cell response, it is possible to correlate the

presence of T cells of a certain specificity to viral load and cases of CMV disease to

identify those CMV epitopes that elicit a protective immune response. Compared to

multimer staining to identify specific T-cell responses in patients, TCR� sequencing is

more sensitive, fewer T cells are needed in a sample, and TCRs with the same epitope

specificity, but potentially different function, can be distinguished. This is particularly

important when investigating T cell responses in HSCT recipients, whose immune sys-

tem takes a long time to recover, during which the amount of T cells in their circulation

can be much lower than in healthy donors.

After the identification of protective T-cell responses, protection-associated signature

TCR� sequences will be suitable to guide treatment of patients at risk of CMV disease.

If a patient already has protective CMV-specific CD8+ T cells in their repertoire, it may

not be necessary to treat them with antivirals, which can have severe side effects or

lead to selection of resistant virus strains. Conversely, if a patient lacks such protective

T cells, they may be in elevated need of an antiviral treatment regimen. Furthermore,

signature TCR� sequences of protective T-cell responses can be used to confirm the

success of experimental CMV vaccines. If a novel CMV vaccine can induce virus-
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specific T cells that were associated with protection from CMV disease, it is a highly

promising candidate for clinical trials.

TCR� sequencing could replace current CMV monitoring strategies, such as peptide-

MHC multimer staining (Cwynarski et al. 2001; Gratama et al. 2001) or other im-

munoassays, as a highly parallelisable and economic standalone method to identify

virus-specific T cells in healthy persons and patients in need of antiviral regimens.

Furthermore, this TCR� sequencing-based monitoring approach could be extended

to explore T-cell responses to various different epitopes, HLAs, and pathogens simul-

taneously. Much like a detectable antibody response can be detected by immunoas-

says like ELISA, pathogen-specific T-cell repertoire signatures can be read by high-

troughput TCR� sequencing, and TCR� sequencing is more precise and sensitive

than other immunoassays. Because TCR� sequencing is a highly sensitive method,

it only requires a small amount of blood sample. T-cell responses of HSCT recipients

may be more easily identified using genetical methods, such as TCR� sequencing,

than with flow cytometry, since the T-cell activation status will be more heterogenous

than in healthy patients. This can, in turn, lead to irregular multimer staining, puta-

tively because of TCR internalisation, downregulation of other T-cell markers, or in-

creased background signal. Like many other newly developed technologies, it can

be expected that the costs of high-throughput sequencing will decrease over the fol-

lowing years, making TCR� sequencing economically more attractive as a diagnos-

tic tool. In addition, TCR� sequencing for diagnostic purposes is highly parallelis-

able, as signature TCR� sequences against many pathogens can be identified from

only one sequencing sample. This way, the protection status of a person against

selected pathogens can be determined to identify patients in need of therapy, such

as adoptive T-cell therapy or antiviral regimen, which would, in turn, reduce costs

and adverse effects of unnecessary treatments. Moreover, the readout of signature

TCR� against multiple pathogens from a single blood sample would minimise the

amount of required patient material for diagnostic purposes. To expedite the devel-

opment of TCR� sequencing-based diagnosis and patient monitoring, specific signa-

ture TCR� to a multitude of pathogens and HLA types need to be identified. Many

groups have already studied pathogen-specific TCR� repertoires by traditional or high-

thoughput sequencing. Their results are collected in the data base vdjdb (Shugay
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et al. 2017), a curated repository for antigen-specific TCR sequences. Since TCR

sequencing has become a popular technology to assess T-cell responses, several

groups have developed tools to simplify and standardise the complex task that is

processing of TCR sequencing data (Bolotin et al. 2015; Nazarov et al. 2015). Si-

multaneously, data bases for T-cell epitopes (www.iedb.org (Vita et al. 2018)) and

crystal structures of TCRs in complex with their cognate peptide-MHC (www.rcsb.org

(Berman et al. 2000)), and epitope prediction algorithms (www.syfpeithi.de (Ram-

mensee et al. 1999), http://www.cbs.dtu.dk/services/NetMHC-4.0/ (Nielsen et al.

2003; Andreatta and Nielsen 2015)) will guide the identification of novel pathogen-

derived epitopes and specific signature TCRs. Published high-throughput TCR se-

quence datasets (Ruggiero et al. 2015; Emerson et al. 2017) will be extremely valu-

able in order to identify and validate novel signature TCRs specific for many different

epitopes and pathogens.

Extensively shared CMV-specific TCRs may be of special interest for adoptive T-cell

therapy. In this PhD project, some CMV peptide-specific TCR� sequences were en-

riched in multiple donors with various HLA backgrounds, which shows that such TCRs

are frequently present in the self-tolerant TCR repertoires of healthy donors. Conse-

quently, such TCRs are likely nonresponsive to human self-antigens in diverse genetic

backgrounds. The use of extensively shared specific TCRs in adoptive T-cell therapy

will greatly reduce the risk of allo-HLA cross-reactivity, which is frequently observed

with virus-specific CD8+ T cells (Amir et al. 2010), and thus reduce the risk of graft-

versus-host disease. Therefore, such TCRs are suited best for use in immunotherapy

of viral reactivation and disease with TCR-transgenic T cells (Schub et al. 2009). An-

tiviral activity of adoptively transferred T cells produced from donor material hast been

observed in several clinical trials (Walter et al. 1995; Einsele et al. 2002; Cobbold et al.

2005; Leen et al. 2006; Micklethwaite et al. 2007; Papadopoulou et al. 2014; Gary

et al. 2018). Using TCR-transgenic CMV-specific T cells (Schub et al. 2009) equipped

with a TCR that tolerates multiple HLA backgrounds will enable the production of CMV-

specific T-cell grafts even when the donor is seronegative for the virus and with the best

chance of avoiding allo-reactivity.
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5.7 Future objectives of TCR sequencing

Since the initial description of high-throughput TCR sequencing in 2009 (Robins et al.

2009), the method already transformed and significantly accelerated many areas of

immunological research. TCR sequencing is a powerful, sensitive, and gradually more

economical method to characterise complex T-cell responses against a multitude of

pathogens and autoantigens in various vertebrates. With growing data sets of specific

TCRs, we will eventually be able to answer some long-standing questions about the

human pathogen-specific T-cell response. For example, it would be interesting to iden-

tify common TCR sequence features of the T-cell response against certain epitopes, as

undertaken by Glanville at al. and Dash et al. (Glanville et al. 2017; Dash et al. 2017).

Based on these results, computational algorithms could be developed to predict the

specificity of a T-cell based on its TCR sequence. However, the human T-cell response

is highly diverse due to the variability of the TCR itself, the extreme polymorphism of

the MHC loci, and the multitude of antigens and derived epitopes. The TCR sequenc-

ing data obtained in this PhD project imply that there is little conservation of TCR�

sequences with the same specificity. Conserved amino acids of TCR� sequences with

the same specificity were mostly germline encoded. Short CDR3� sequence motifs

were not exclusive to one CMV specificity, and V� gene usage was diverse among

TCR� sequences with the same specificity, even though some V� genes were pref-

erentially used. Only 162 of 1809 specific TCR� sequences were found to be shared

or similar in multiple donors. Consequently, it is questionable whether computational

algorithms will ever be able to fully encompass and categorise the immense diversity

of the human T-cell response.

High-throughput TCR sequencing can also be employed to identify T cells and antigens

that cause autoimmune diseases. The MHC locus is the most polymorphic gene region

in the human genome, with >7200 HLA class I alleles and >2000 HLA class II alleles

presently known (Robinson et al. 2014). A popular hypothesis on what caused the

immense diversity of the MHC locus is that it was evolutionarily necessary for slowly

evolving vertebrates to diversify its MHC locus in order to remain protected against

more rapidly evolving pathogenic microorganisms and viruses (Sommer 2005). A per-

son’s individual T-cell repertoire is shaped by the HLA alleles that they express. Cer-

tain HLA alleles are strongly linked to autoimmune diseases (Shiina et al. 2009), such
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as celiac disease (HLA-DQ2 (Sollid et al. 1989)), multiple sclerosis (HLA-DR15 and

HLA-DQ6 (Terasaki et al. 1976; Compston et al. 1976; Compston and Coles 2008)),

narcolepsy (HLA-DQ1 (Mignot et al. 1994)), or psoriarsis (HLA-Cw6 (Tiilikainen et al.

1980)), or to susceptibility to viral diseases (Smeraldi et al. 1986; Lenzi et al. 1998;

Bohl et al. 2005). Although associations of HLA alleles to some diseases were iden-

tified decades ago, the identities of autoreactive T cells interacting with these HLAs

is often not known yet. Certain autoimmune diseases are linked to viral infections or

vaccinations against viruses. For instance, infection with EBV or HHV-6 was found

to be linked to multiple sclerosis (Challoner et al. 1995; Lünemann et al. 2006; As-

cherio and Munger 2007; Jilek et al. 2008; Farrell et al. 2009), and vaccination with

the influenza vaccine Pandemrix increased the incidence of narcolepsy approximately

9-fold (Nohynek et al. 2012). One of the proposed mechanisms for this correlation

of viral infections and autoimmune diseases is a process termed ”molecular mimicry”.

This hypothesis is based on the assumption that some viral peptides are highly similar

to self peptides and that presentation of such viral peptides can activate autoreactive

T cells (Oldstone 1998). High-throughput TCR sequencing can help to identify such

cross-reactive T cells, as well as other T cells causing autoimmune diseases.

Another interesting aspect to investigate using TCR sequencing is why TCR reper-

toires against viruses and other pathogens are so variable between individuals. In this

thesis, it was implied that shared TCR� sequences are more likely to be recombined

than private TCR� sequences (Figure 4.31). Still, it is unlikely that TCR� sequences,

even those with high recombination probabilities, are produced in all humans. Some

shared TCR� sequences cannot be made by donors with a common deletion in the

TRBV gene locus (Brennan et al. 2012). For example, TCR� sequences of specificity

cluster RPH01 cannot be made by such donors, because the V� gene used in these

TCRs, TRBV4-3, was deleted in these donors. Therefore, some TCRs cannot be pro-

duced in certain human beings due to genetic predisposition.

The different HLA combinations of different persons also enhance the overall diver-

sity of specific TCR repertoires. Some pathogen-specific TCRs may cross-react with

self-peptides in the context of a different HLA and are therefore removed by negative

selection in the thymus. This hypothesis predicts that TCR repertoires against a viral

peptide presented by a certain HLA will be more similar in persons whose other HLAs
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are more similar than in persons whose other HLAs are mostly different. Negative se-

lection was implied as one driving force of T-cell diversity in a set of publications study-

ing the human TCR↵� repertoire against an immunodominant HLA-B*08:01–restricted

epitope (FLRGRAYGL) derived from EBV antigen EBNA3A (Burrows et al. 1994; Ar-

gaet et al. 1994; Burrows et al. 1995). The authors initially showed that T cells specific

for the FLRGRAYGL epitope cross-reacted with HLA-B*44:02. Conversely, the major-

ity of alloreactive T cells against HLA-B*44:02 produced in vitro also recognised the

HLA-B*08:01–restricted EBV epitope. In a follow-up study, they found striking TCR

publicness between EBV-positive donors: 4 of 5 tested donors had T cells with the

exact same TCR against epitope FLRGRAYGL in their repertoire; the fitfth donor had

a highly similar TCR� chain. A year later, the authors demonstrated that donors ex-

pressing both HLA-B*08:01 and HLA-B*44:02 lacked the public FLRGRAYGL-specific

TCR, implying that it was deleted by negative selection in the thymus. Recently, it

was shown that the alloreactive FLRGRAYGL-specific T cells bind to a self peptide

(EEYLQAFTY) that only shares one conserved and two similar amino acids with the

EBV epitope (Macdonald et al. 2009), suggesting that conformational mimicry of epi-

topes is more important than sequence identity for cross-recognition of alloreactive

T cells. The role that the HLA type plays in the deletion and diversification of TCRs of

the CMV epitope-specific TCR� repertoires was beyond the scope of this project, but

should be addressed in future TCR repertoire studies.

Another aspect that shapes the human TCR repertoire is the infection history of a

person. Infection with unrelated pathogens can potentially activate T cells that cross-

react with other epitopes derived from pathogens of subsequent infections, a process

termed ”heterologous immunity”. As a consequence of different infection histories be-

tween individuals, different cross-reactive T cells may be activated that differentially

influence the pathogen-specific TCR repertoires of these individuals. Few cases of

cross-reactivity of cytotoxic CD8+ T cells with different epitopes from different viral

pathogens were initially described in mice (Yang et al. 1989; Kulkarni et al. 1993; Selin

et al. 1994), and later also in humans (Misko et al. 1999; Nilges et al. 2003; Wedemeyer

et al. 2001; Clute et al. 2005). Cross-reactivity in humans was observed for T cells

specific for HLA-A*02:01–restricted epitopes; examples are epitopes derived from the

virus pairs influenza A virus and hepatitis C virus (Wedemeyer et al. 2001), influenza A
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virus and EBV (Clute et al. 2005), or human papilloma virus and coronavirus (Nilges

et al. 2003). Moreover, one study reported cross-reactivity of HLA-B*08:01–restricted

EBV epitope-specific CD8+ T cells with a self peptide and a bacterial peptide from

Staphylococcus aureus (Misko et al. 1999). The pairs of cross-recognised epitopes

were moderately sequence-related: between 33% and 66% of sequence identity was

found. Despite these reports, it is unclear how common cross-reactivity of CD8+ T cells

really is across the repertoire, and whether structural identity or sequence identity of

epitopes is the major driver of cross-reactivity. In the data presented in this thesis, 90

TCR� clonotypes were found to respond to mutliple tested CMV peptides in the same

donor. These clonotypes, however, often responded to epitopes restricted by different

HLA alleles, and were of comparatively low frequency in all or all but one samples.

Thus, they were likely enriched in the other samples because of stochastical effects

rather than because of true multi-specificity. Although only epitopes derived from CMV,

and not across different pathogens, were studied here, the data implies that cross-

reactive CD8+ T cells are not a common phenomenon in humans. In line with this,

a recent study failed to find cross-reactive CD8+ T cells specific for epitopes derived

from CMV, EBV, and influenza A virus (Rowntree et al. 2018). Importantly, the group

found no cross-reactive CD8+ T cells against an HLA-A*02:01–restricted epitope pair

derived from EBV and influenza A virus, for which cross-reactivity was previously de-

scribed (Clute et al. 2005). Additionally, the group reported that they found no structural

similarities between the tested epitopes of different viruses that would support cross-

reactive CD8+ T-cell responses. They concluded that T cell cross-reactivity between

different pathogens may not be a phenomenon as common as previously assumed.

Cross-reactivity of CD8+ T cells with homologous epitope variants derived from differ-

ent strains of the same virus, however, seems to be a widespread phenomenon. For

example, it was shown that conserved sequence-related, non-identical epitopes from

different influenza A strains and even different influenza viruses were cross-recognised

by the same T cells (Gras et al. 2010; Koutsakos et al. 2019). T cells cross-reacting

to multiple strain variants of an epitope often expressed the same TCRs within donors

(Grant et al. 2018). In both studies on influenza A virus (Gras et al. 2010; Grant et al.

2018), it was shown that the cross-reactive influenza A epitopes have a highly similar

conformation, which further corroborates the hypothesis of cross-strain recognition of
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epitopes by CD8+ T cells. The data from this PhD project confirmed these findings:

The majority of TCR� clonotypes specific for CMV epitope CRV also specifically ex-

panded with strain variant epitope CRV-I (Table 4.9, Figure 4.34). These two epitope

variants cover all CMV strains known to date. T cells expressing TCRs that are able

to recognise different strain variant epitopes may be particularly important in protec-

tion from the virus. Furthermore, conserved epitopes that are recognized in donors

with different, yet related HLA alleles deserve special attention. In this cohort, NLV-

specific TCR� sequences were found in all donors expressing HLA-A*02:01, the most

frequent HLA-A allele in persons of European descent, but also in an additional donor

of Asian descent, who expressed the closely related HLA alleles HLA-A*02:03 and

HLA-A*02:06. It was previously described that donors expressing HLA-02:06 in the

absence of HLA-A*02:01 mobilised an NLV-specific T-cell response (Trivedi et al. 2005;

Miyama et al. 2017). No similar NLV-specific TCR� sequences were found to be shared

between the donors expressing HLA-A*02:01 and the donor expressing HLA-A*02:03

and HLA-A*02:06. However, if more NLV-specific TCR� clonotypes from donors ex-

pressing HLA-A2 alleles other than HLA-A*02:01 were to be found in the future, it

would be interesting to search for cross-reactive TCRs that recognise NLV presented

on different HLA alleles. Such cross-reactive TCRs would be highly interesting for

basic research, but also for the development of TCR-engineered CMV-specific T-cell

grafts for adoptive transfer, since they can find application in many patients of different

ethnicities. Co-infection with different CMV strains is common, but it remains con-

troversial if the diversity of different CMV genomes a person harbours contributes to

higher viral loads and disease progression. For EBV, it was shown that different strains

with different biological properties circulate in a person, and that some epitopes are

highly variable between strains, while others are conserved (Palser et al. 2015; Cirac

et al. 2018). Renzette et al. demonstrated that CMV genomes in congenitally infected

neonates were highly variable, with only 25% of the genome being fully conserved, and

that CMV strain occurrence between different sample types, peripheral blood and urine,

was highly variable and resembled the variance of the same sample type between dif-

ferent donors (Renzette et al. 2013; Renzette et al. 2015). Another group showed that

diversity hotspots between different CMV strains were mostly found in genes that other

members of the herpesvirus family do not possess, whereas conserved regions of the
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CMV genome could be mapped to genes that are found in many other herpesviruses

(Sijmons et al. 2015). Smith et al. recently investigated the specific CD8+ T-cell re-

sponse for pairs of epitope variants derived from IE1 of different CMV strains in pa-

tients who underwent HSCT (Smith et al. 2016). In their cohort, 52% of patients were

infected with multiple CMV strain variants as distinguished by polymorphisms in the

IE1-encoding gene UL123. They found that some homologous epitope variant pairs

induced comparably strong T-cell responses. Contraily, only one of two tested variants

of other homologous epitope pairs was capable to induce a variant-specific or cross-

reactive T-cell response in patients, although both variants were present. In summary, it

appears that the CMV-specific T-cell repertoire of a carrier is shaped by the virus strains

they are infected with and the epitope variants that are processed and presented. This

has important implications on adoptive T-cell therapy, since limited cross-reactivity of a

T-cell graft will impair its antiviral potential. T cells expressing cross-reactive TCRs that

can respond to multiple strain variants of viral peptides, such as those recognising both

CRV and strain variant CRV-I, are of special interest for the development of vaccines

and adoptive T-cell therapies, because they can confer protection against many virus

strains at once.
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APPENDIX

Table A1: List of high-throughput sequencing samples used to identify CMV-specific
TCR� sequences from single peptide stimulations of CMV-positive donors.

Donor Sample ID Treatment Cell type Total productive reads Number of clonotypes

P01 0073 unstimulated CD8 12043137 584630
P01 0086 unstimulated all 14515877 583111
P01 0080 CRV CD8 18182271 84775
P01 0182 FRC all 4333494 363333
P01 0079 RPH CD8 7438191 222019
P01 0078 TPR CD8 8134892 37234
P02 0188 unstimulated all 4461887 403105
P02 0190 CRV all 4334321 779479
P02 0191 FRC all 2893655 507295
P02 - NLV not done not done not done
P02 - RPH not done not done not done
P02 0192 TPR all 4708088 623779
P02 0193 VLE all 5043299 710836
P03 0162 unstimulated all 4536124 584506
P03 0184 CRV all 4138428 538597
P03 0164 FRC all 5240440 305592
P03 0165 NLV all 4486573 274060
P03 0185 RPH all 3547381 386160
P03 0175 TPR all 4710517 337660
P03 0167 VLE all 4412951 318528
P04 0015 unstimulated CD8 963210 212125
P04 0017 CRV CD8 1592670 59739
P04 0021 FRC CD8 1440428 75470
P04 0018 NLV CD8 2153113 234318
P04 0020 RPH CD8 1375678 200167
P04 0016 TPR CD8 1425865 84142
P04 - VLE not done not done not done
P05 0035 unstimulated CD8 13028045 283478
P05 0036 CRV CD8 15000704 81340
P05 0040 FRC CD8 25588668 25723
P05 0041 IPS CD8 11332377 60300
P05 0039 RPH CD8 16294617 132349
P05 0038 TPR CD8 13010720 122888
P06 0025 unstimulated CD8 1042812 183707
P06 0026 CRV CD8 2425994 55471
P06 0030 FRC CD8 1899999 31431
P06 0029 RPH CD8 938285 60619
P06 0028 TPR CD8 1802570 64580
P07 0049 unstimulated CD8 4821591 256394
P07 0054 CRV CD8 8951471 121384
P07 0056 FRC CD8 7263340 97686
P07 0050 NLV CD8 5694601 109483
P07 0053 RPH CD8 6471832 154897
P07 0052 TPR CD8 5359364 119764
P07 0051 VLE CD8 7565271 128115
P08 0057 unstimulated CD8 7334612 111989
P08 0062 CRV CD8 6748656 92462
P08 0064 FRC CD8 6042090 21546
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Table A1: (continued)

Donor Sample ID Treatment Cell type Total productive reads Number of clonotypes

P08 0058 NLV CD8 6948206 72414
P08 0061 RPH CD8 6210355 53741
P08 0060 TPR CD8 7362160 77073
P08 0059 VLE CD8 5124377 67568
P14 0158 unstimulated CD8 4744864 29679
P14 0159 CRV CD8 4066750 30068
P14 0161 FRC CD8 5403673 14181
P14 0160 TPR CD8 5148835 40137

Statistics
Median reads: 512437 Median clonotypes: 128115
Min. reads: 938285 Min. clonotypes: 21546
Max. reads: 25588668 Max. clonotypes: 779479

Table A2: Computed cutoff values for the identification of specific TCR� clonotypes by
single peptide stimulation of PBMCs derived from CMV-positive donors. Abbreviations:
ctrl = control peptide, spec = specific, enr = enrichment, d0 = unstimulated sample.

Donor Peptide Ctrl Spec. TCR�s Read cutoff Enr. cutoff (ctrl) Enr. cutoff (d0)

P01 CRV TPR 119 297 5.12 0.57
P01 FRC TPR 24 1949 1116.99 23
P01 RPH CRV 27 4565 3323.06 210.77
P01 TPR CRV 39 824 199.11 11.08
P02 CRV TPR 31 396 20.14 5.91
P02 FRC TPR 25 908 12.95 11.56
P02 NLV not done not done not done not done not done
P02 RPH not done not done not done not done not done
P02 TPR CRV 38 618 9.04 15.35
P02 VLE TPR 5 2280 47.95 24.2
P03 CRV TPR 40 513 17.5 67.12
P03 FRC TPR 17 3017 37.88 14.68
P03 NLV CRV 9 3575 110.13 55.74
P03 RPH CRV 17 1473 101.02 52.55
P03 TPR CRV 23 3597 31.08 44.63
P03 VLE TPR 16 2288 7.39 32.78
P04 CRV TPR 45 582 15.34 3.95
P04 FRC TPR 13 2194 249.29 34.87
P04 NLV CRV 14 2083 2046.05 158.55
P04 RPH CRV 19 986 70.62 100.35
P04 TPR CRV 21 572 303.54 41.24
P04 VLE not done not done not done not done not done
P05 CRV TPR 118 132 2.05 1.16
P05 FRC TPR 99 521 2.53 1.6
P05 IPS CRV 30 2371 738.66 48.12
P05 RPH CRV 75 3974 312.29 4.64
P05 TPR CRV 22 2385 13173.6 16.35
P06 CRV TPR 49 233 15.25 7.1
P06 FRC TPR 36 914 25.65 6.15
P06 RPH CRV 21 1468 137.7 11.63
P06 TPR CRV 21 2067 170.05 59.32
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Table A2: (continued)

Donor Peptide Ctrl Spec. TCR�s Read cutoff Enr. cutoff (ctrl) Enr. cutoff (d0)

P07 CRV TPR 33 1970 19.21 4.24
P07 FRC TPR 45 1107 14.08 25.68
P07 NLV CRV 31 822 114.53 21.59
P07 RPH CRV 40 1793 32.88 26.78
P07 TPR CRV 11 1983 96.77 9.17
P07 VLE TPR 14 2054 141.45 65.79
P08 CRV TPR 25 438 15.84 17.52
P08 FRC TPR 18 161 10.7 1.82
P08 NLV CRV 33 2100 62.68 5.59
P08 RPH CRV 23 479 78.07 22.1
P08 TPR CRV 18 1388 63.12 9.6
P08 VLE TPR 3 2052 78.98 5.55
P14 CRV TPR 26 2265 18 11.72
P14 FRC TPR 52 680 7.03 2.94
P14 TPR CRV 55 693 28.28 74.8

Table A3: List of high-throughput sequencing samples used to identify epitope-reactive
TCR� sequences from single peptide stimulations of CMV-negative donors.

Donor Sample ID Treatment Cell type Total productive reads Number of clonotypes

N03 0031 unstimulated CD8 869916 214838
N03 0032 NLV CD8 1427925 111428
N03 0033 CRV CD8 1109306 113611
N03 0034 TPR CD8 1474310 120585
N05 0042 unstimulated CD8 5755743 738851
N05 0043 TPR CD8 10157300 1083931
N05 0044 RPH CD8 8815592 976338
N05 0045 IPS CD8 9468082 954464
N05 0046 CRV CD8 10898408 1086147
N05 0048 FRC CD8 9574205 877361
N04 0096 unstimulated all 1676344 192539
N06 0097 unstimulated all 1669857 319087
N07 0098 unstimulated all 1530288 180502
N08 0099 unstimulated all 1533634 104796
N01 0100 unstimulated all 1748374 157616
N02 0101 unstimulated all 1403545 269192
N04 0102 CRV all 2115559 90908
N04 0103 FRC all 1829487 87970
N04 0104 TPR all 2060695 113698
N06 0105 CRV all 2107213 156250
N06 0106 FRC all 2152171 187758
N06 0107 TPR all 1758352 115160
N07 0109 CRV all 4853025 174541
N07 0110 FRC all 4203024 226460
N07 0111 TPR all 4729117 160043
N08 0112 CRV all 3577046 98734
N08 0113 FRC all 4677728 129521
N08 0114 TPR all 4366374 157027
N01 0115 CRV all 3854037 194343
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Table A3: (continued)

Donor Sample ID Treatment Cell type Total productive reads Number of clonotypes

N01 0117 TPR all 3568847 160237
N02 0118 CRV all 3682471 329210
N02 0119 FRC all 3304195 329450
N02 0120 TPR all 3247774 286225
N01 0154 FRC all 2907567 161402
N03 0201 FRC CD8 5268659 457776

Statistics
Median reads: 3247774 Median clonotypes: 180502
Min. reads: 869916 Min. clonotypes: 87970
Max. reads: 10898408 Max. clonotypes: 1086147

Table A4: Computed cutoff values for the identification of specific TCR� clonotypes
by single peptide stimulation of PBMCs derived from CMV-negative donors. Abbre-
viations: ctrl = control peptide, spec = specific, enr = enrichment, d0 = unstimulated
sample.

Donor Peptide Ctrl Spec. TCR�s Read cutoff Enr. cutoff (ctrl) Enr. cutoff (d0)

N01 CRV TPR 5 1019 101.11 69.9
N01 TPR CRV 0 4426 14.47 104.76
N01 FRC TPR 10 2247 74.46 7.12
N02 CRV TPR 25 1955 34.47 5.31
N02 FRC TPR 10 3079 39.3 5.97
N02 TPR CRV 2 6054 49.02 7.2
N03 NLV CRV 6 746 14.32 22.94
N03 CRV TPR 6 628 96.11 35.18
N03 TPR CRV 1 1175 104.04 35.38
N03 FRC TPR 4 5557 214.62 27.35
N04 CRV TPR 23 939 66.93 2.96
N04 FRC TPR 22 842 24.9 7.81
N04 TPR CRV 4 2829 32.91 3.99
N05 TPR CRV 30 1900 16.43 101.41
N05 RPH CRV 49 1175 105.38 47.28
N05 IPS CRV 12 2681 109.37 12.16
N05 CRV TPR 26 1551 10.55 85.86
N05 FRC TPR 60 1073 11.56 11.46
N06 CRV TPR 24 606 90.05 34.16
N06 FRC TPR 22 2303 72.22 12.33
N06 TPR CRV 11 1851 17.28 22.95
N07 CRV TPR 7 3976 26.47 37.98
N07 FRC TPR 5 3739 89 63.14
N07 TPR CRV 24 3086 18.17 4.05
N08 CRV TPR 4 1395 77.29 38.34
N08 FRC TPR 6 1499 103.55 35.56
N08 TPR CRV 1 3650 129.39 24.23
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Table A5: Proportions of reads that CMV-reactive TCR� sequences hold in unstimu-
lated (d0) and peptide-stimulated (d10) samples of donors N01–N08 in percent [%] of
total reads and overall enrichment of these TCR� sequences. Stimulations of donors
N03 and N05 were performed by Xiaoling Liang and reanalysed in this thesis. Geomet-
ric means of the read proportions and the enrichment (d10÷d0) are noted in the bottom
row. All values below 100 were rounded to two significant digits. Enr. = enrichment.

Donor CRV FRC TPR
d0 [%] d10 [%] Enr. d0 [%] d10 [%] Enr. d0 [%] d10 [%] Enr.

N01 0.001 0.38 382 0.017 1.1 63 0⇤ 0⇤ -
N02 0.048 3.3 70 0.015 1.6 103 0.0001 0.59 5939
N03†,‡ 0.0029 0.51 176 0.0031 0.57 184 0.0001 0.094 944
N04†,§,|| 0.022 2.1 99 0.018 1.5 83 0 1.1 -
N05 0.0017 1 607 0.011 1.7 147 0.0021 2.2 1043
N06 0.016 2.8 180 0.025 7.2 293 0.013 3.2 247
N07 0.0056 0.94 169 0.002 0.81 405 0.059 3.5 594
N08 0.0003 0.21 712 0.0058 0.49 85 0 0.18 -

Geometric
mean 0.0044 0.98 223 0.0091 1.3 140 0.0017 0.83 611

⇤ No epitope-reactive TCR� sequences found in this donor for this peptide.
† All samples of this donor were CD8-enriched before RNA isolation and TCR� sequencing library preparation.
‡ NLV stimulation: d0 = 0.0066%; d10 = 0.72%; Enrichment = 110.
§ IPS stimulation: d0 = 0.0022%; d10 = 3.2%; Enrichment = 1463.
|| RPH stimulation: d0 = 0.0018%; d10 = 2.734%; Enrichment = 1519.

Table A6: List of high-throughput sequencing samples that were CMV multimer-sorted
before TCR� sequencing and the corresponding unsorted control samples.

Donor Sample ID Treatment Cell type Total productive reads Number of clonotypes

P01 0086 unstimulated all 14515877 583111
P01 0076 CRV-sorted all 7979341 7947
P01 0074 TPR-sorted all 9024836 9392
P04 0089 unstimulated all 18297841 298620
P04 0067 CRV-sorted all 2960351 27141
P04 0065 TPR-sorted all 10572282 33353

Statistics
Median reads: 9798559 Median clonotypes: 30247
Min. reads: 2960351 Min. clonotypes: 7947
Max. reads: 18297841 Max. clonotypes: 583111
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Table A7: List of high-throughput sequencing samples used to identify CMV antigen-
specific TCR� sequences from mini-LCL stimulations of CMV-positive donors P01–
P03.

Donor Sample ID Treatment Cell type Total productive reads Number of clonotypes

P01 0148 unstimulated all 3327630 627081
P01 0140 pp65 mini-LCL all 4159034 5018
P01 0141 IE1 mini-LCL all 4876559 3956
P01 0142 empty mini-LCL all 3251600 5669
P02 0188 unstimulated all 4461887 403105
P02 - pp65 mini-LCL not done not done not done
P02 0194 IE1 mini-LCL all 5168770 61537
P02 0195 empty mini-LCL all 3761372 49042
P03 0162 unstimulated all 4536124 584506
P03 0168 pp65 mini-LCL all 4767526 137946
P03 0169 IE1 mini-LCL all 4869584 71045
P03 0170 empty mini-LCL all 5252146 124923

Statistics
Median reads: 4536124 Median clonotypes: 71045
Min. reads: 3251600 Min. clonotypes: 3956
Max. reads: 5252146 Max. clonotypes: 627081

Table A8: Computed cutoff values for the identification of specific TCR� clonotypes
by mini-LCL stimulation of PBMCs derived from CMV-positive donors P01–P03. Ab-
breviations: ctrl = control peptide, spec = specific, enr = enrichment, d0 = unstimulated
sample.

Donor Antigen Ctrl Spec. TCR�s Read cutoff Enr. cutoff (ctrl) Enr. cutoff (d0)

P01 pp65 empty mini-LCL 139 88 256.82 5
P01 IE1 empty mini-LCL 193 29 19.67 5
P02 pp65 not done not done not done not done not done
P02 IE1 empty mini-LCL 590 106 46 5
P03 pp65 empty mini-LCL 507 364 49.98 5
P03 IE1 empty mini-LCL 143 264 12.03 5

Table A9: List of high-throughput sequencing samples used to identify CMV epitope-
specific TCR� sequences from peptide pool stimulations of CMV-positive donors P01,
P03, P11, and P17–P21.

Donor Sample ID Treatment Cell type Total productive reads Number of clonotypes

P01 0247 unstimulated all 3457397 497105
P01 0248 CMV pool 1 all 1885494 24022
P01 0249 CMV pool 2 all 1441626 15767
P01 0250 CMV pool 3 all 2644115 28002
P01 0251 CMV pool 4 all 1337003 36999
P01 0252 CMV pool 5 all 3385459 33525
P01 0253 CMV pool 6 all 2004841 222909
P01 0254 CMV pool 7 all 1861126 28779
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Table A9: (continued)

Donor Sample ID Treatment Cell type Total productive reads Number of clonotypes

P01 0255 CMV pool 8 all 2308324 22154
P03 0220 unstimulated all 4675940 709835
P03 0221 CMV pool 1 all 2027312 115666
P03 0222 CMV pool 2 all 2435917 192033
P03 0223 CMV pool 3 all 2100551 110560
P03 0224 CMV pool 4 all 2135187 214906
P03 0225 CMV pool 5 all 1739644 109697
P03 0226 CMV pool 6 all 1028891 103088
P03 0227 CMV pool 7 all 2202455 154399
P03 0228 CMV pool 8 all 2870789 147115
P11 0238 unstimulated all 4016000 234555
P11 0239 CMV pool 1 all 1882969 223593
P11 0240 CMV pool 2 all 2402198 160455
P11 0241 CMV pool 3 all 2103641 126658
P11 0242 CMV pool 4 all 2160096 58530
P11 0243 CMV pool 5 all 1744034 70787
P11 0244 CMV pool 6 all 1744828 76739
P11 0245 CMV pool 7 all 1714674 130340
P11 0246 CMV pool 8 all 5604062 456527
P17 0229 unstimulated all 5309262 427449
P17 0230 CMV pool 1 all 1924212 60416
P17 0231 CMV pool 2 all 1595723 63257
P17 0232 CMV pool 3 all 1901659 50053
P17 0233 CMV pool 4 all 2726130 118721
P17 0234 CMV pool 5 all 2485994 81067
P17 0235 CMV pool 6 all 1602103 79106
P17 0236 CMV pool 7 all 2163102 75709
P17 0237 CMV pool 8 all 2628999 84041
P18 0202 unstimulated all 4370127 566357
P18 0203 CMV pool 1 all 2712898 123294
P18 0204 CMV pool 2 all 2851549 84229
P18 0205 CMV pool 3 all 2247059 47768
P18 0206 CMV pool 4 all 1623487 33931
P18 0207 CMV pool 5 all 1806345 84803
P18 0208 CMV pool 6 all 1848378 43407
P18 0209 CMV pool 7 all 2299591 46224
P18 0210 CMV pool 8 all 3083352 106600
P19 0211 unstimulated all 4311069 358585
P19 0212 CMV pool 1 all 2195646 206573
P19 0213 CMV pool 2 all 3493755 233768
P19 0214 CMV pool 3 all 4461729 228553
P19 0215 CMV pool 4 all 1871649 79072
P19 0216 CMV pool 5 all 2612966 284753
P19 0217 CMV pool 6 all 2080054 106067
P19 0218 CMV pool 7 all 2040106 188041
P19 0219 CMV pool 8 all 2124318 154135
P20 0256 unstimulated all 3047784 197536
P20 0257 CMV pool 1 all 1747643 231810
P20 0258 CMV pool 2 all 1979802 253671
P20 0259 CMV pool 3 all 1675717 210592
P20 0260 CMV pool 4 all 2086259 247566
P20 0261 CMV pool 5 all 1360568 209766
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Table A9: (continued)

Donor Sample ID Treatment Cell type Total productive reads Number of clonotypes

P20 0262 CMV pool 6 all 1842610 257657
P20 0263 CMV pool 7 all 1907590 270000
P20 0264 CMV pool 8 all 2145825 241465
P21 0265 unstimulated all 3979008 172574
P21 0266 CMV pool 1 all 1856237 47622
P21 0267 CMV pool 2 all 1515965 94851
P21 0268 CMV pool 3 all 2134357 38911
P21 0269 CMV pool 4 all 1724689 32672
P21 0270 CMV pool 5 all 1984094 51092
P21 0271 CMV pool 6 all 1695427 26804
P21 0272 CMV pool 7 all 1452737 40025
P21 0273 CMV pool 8 all 2222118 54682

Statistics
Median reads: 2102096 Median clonotypes: 110128.5
Min. reads: 1028891 Min. clonotypes: 15767
Max. reads: 5604062 Max. clonotypes: 709835
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