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Abstract

Enabling computer systems to understand human thinking or behaviors has

ever been an exciting challenge to computer scientists. In recent years one

such a topic, information filtering, emerges to help users find desired infor-

mation items (e.g. movies, books, news) from large amount of available data,

and has become crucial in many applications, like product recommendation,

image retrieval, spam email filtering, news filtering, and web navigation etc..

An information filtering system must be able to understand users’ infor-

mation needs. Existing approaches either infer a user’s profile by exploring

his/her connections to other users, i.e. collaborative filtering (CF), or ana-

lyzing the content descriptions of liked or disliked examples annotated by the

user, i.e. content-based filtering (CBF). Those methods work well to some

extent, but are facing difficulties due to lack of insights into the problem.

This thesis intensively studies a wide scope of information filtering tech-

nologies. Novel and principled machine learning methods are proposed to

model users’ information needs. The work demonstrates that the uncer-

tainty of user profiles and the connections between them can be effectively

modelled by using probability theory and Bayes rule. As one major contribu-

tion of this thesis, the work clarifies the “structure” of information filtering

and gives rise to principled solutions. In summary, the work of this thesis

mainly covers the following three aspects:

• Collaborative filtering : We develop a probabilistic model for memory-

based collaborative filtering (PMCF), which has clear links with classi-

cal memory-based CF. Various heuristics to improve memory-based CF

have been proposed in the literature. In contrast, extensions based on

PMCF can be made in a principled probabilistic way. With PMCF, we
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describe a CF paradigm that involves interactions with users, instead

of passively receiving data from users in conventional CF, and actively

chooses the most informative patterns to learn, thereby greatly reduce

user efforts and computational costs.

• Content-based filtering : One major problem for CBF is the deficiency

and high dimensionality of content-descriptive features. Information

items (e.g. images or articles) are typically described by high-dimensional

features with mixed types of attributes, that seem to be developed in-

dependently but intrinsically related. We derive a generalized principle

component analysis to merge high-dimensional and heterogenous con-

tent features into a low-dimensional continuous latent space. The de-

rived features brings great conveniences to CBF, because most existing

algorithms easily cope with low-dimensional and continuous data, and

more importantly, the extracted data highlight the intrinsic semantics

of original content features.

• Hybrid filtering : How to combine CF and CBF in an “smart” way re-

mains one of the most challenging problems in information filtering.

Little principled work exists so far. This thesis reveals that people’s in-

formation needs can be naturally modelled with a hierarchical Bayesian

thinking, where each individual’s data are generated based on his/her

own profile model, which itself is a sample from a common distribution

of the population of user profiles. Users are thus connected to each

other via this common distribution. Due to the complexity of such

a distribution in real-world applications, usually applied parametric

models are too restrictive, and we thus introduce a nonparametric hi-

erarchical Bayesian model using Dirichlet process. We derive effective

and efficient algorithms to learn the described model. In particular,

the finally achieved hybrid filtering methods are surprisingly simple

and intuitively understandable, offering clear insights to previous work

on pure CF, pure CBF, and hybrid filtering.
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Chapter 1

Introduction

1.1 Information Access Technologies: Retrieval

and Filtering

Recent years have witnessed the explosive growth of the volume of digital

information. A study conducted by the University of California, Berkeley

(2000)1 revealed that

The world’s total yearly production of print, film, optical, and

magnetic content would require roughly 1.5 billion gigabytes of

storage. This is the equivalent of 250 megabytes per person for

each man, woman, and child on earth.

To keep being informed and entertained, people have to spend considerable

time online everyday to search information items, like web pages, books,

music, images, movies, news, and advertisements, etc. We are suffering from

the problem of “information overload” [Mae94] — the gap between the over-

whelming amount of information and human limitations is so large.

People need effective means to efficiently find the information that they

really need, and avoid the irrelevant information that does not fit in their

interests. Thus information access technologies emerge to meet the challenge.

1http://www.sims.berkeley.edu/research/projects/how-much-info/index.html
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Information retrieval and information filtering are two major information

access techniques:

• Information Retrieval. The research started from 1960’s and tradi-

tionally focused on textual document retrieval. Now it has become a

very wide research field that studies the representation, storage, orga-

nization, and access to digital information items (e.g. , documents, web

pages, images, and multimedia, etc.). The primary goal is to retrieval

relevant information items in response to user queries, while return-

ing as few irrelevant ones as possible. One notable example is web

search engine systems like Google.com 2. In this paradigm, a user is

required to specify his/her information need in the form of query words,

e.g. “Monet and Painting”, and then the search engine returns possibly

millions of relevant web pages ordered by their relevance to the query

words. In some other non-textual retrieval applications where item con-

tents can not be indexed by key words, the retrieval can be triggered

by query examples. For the instance of content-based image retrieval

(CBIR) [CMOY96, FSN+95, MM99, RHOM98, CLL00], a user is often

required to provide some image examples to feed the system, which

then returns similar images by comparing visual similarities between

images in database and given examples. Information retrieval usually

aims at the scenario where information need is very dynamic and tem-

porary. That is to say, a user normally raises a query which reflects his

or her immediate need.

• Information Filtering The topic has become attractive since 1990’s,

motivated by the demand of personalized on-line information service,

like news filtering (e.g. [RIS+94]) and movie recommender systems

(e.g. [SM95]). Information filtering also aims to help people find de-

sired information items and filter out undesired items. However, unlike

information retrieval, it generally focuses on users’ long-term and stable

information need, often being preferences, and operates on dynamically

changing information streams (e.g. email and news). Based on a user’s

profile, which is learned from the user’s previously expressed opinions

2http://www.google.com
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on example items, a filtering system processes a new item and takes

appropriate actions that either ignore it or bring it to the user’s notice.

Typical applications of information filtering include recommender sys-

tems (e.g. movie, music, book and so on), news filtering systems, spam

email filters, and so on. The central problem of information filtering is

how to learn a user’s profile and how to make decisions based on the

profile.

This thesis will mainly focus on the side of information filtering, namely,

modelling people’s long-term information need. However, it is worthy notic-

ing that, though “information retrieval” and “information filtering” conven-

tionally stand for different concepts in research literature, distinguishes be-

tween them are not very fundamental. If we observe a user’s way of querying

a retrieval system like Google, we may find some long-term patterns. For ex-

ample, a computer science scientist may always click the search results which

link to Citeseer3. On the other hand, content-based information filtering ac-

tually has its root in information retrieval (see Sec. 1.2.3). Thus generally

speaking, the work presented in this thesis is also applicable to information

retrieval.

The rest of this chapter is organized as follows. In Sec. 1.2, We provide

an overview to the state-of-the-art of information filtering, mainly covering

content-based filtering, collaborative filtering, and hybrid filtering. By explain-

ing the essential ideas of each approach, we will present the major research

challenges, which serve as the motivations of my thesis work. Then in Sec. 1.3

we will summarize the research described in this thesis and the contributions

as well. Finally the outline of the whole thesis is given in Sec. 1.4.

3http://citeseer.ist.psu.edu/
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1.2 Information Filtering

1.2.1 Characterizing Information Items

Information filtering systems process large volumes of upcoming informa-

tion items, e.g. movies, and find those which are likely to satisfy a user’s

information need. In order to pursue this goal, we first need to character-

ize information items. Nowadays people are facing quite diverse types of

information, varying from news, emails, music, to video or television, whose

descriptions are normally heterogenous and unstructured. We need to do

feature extraction to convert them into forms that can be easily processed,

namely, descriptive feature vectors. However, depending on some nature of

items, feature vectors are often deficient in conveying the characteristics of

items that account for user interests. In particular, let’s consider the follow-

ing situations.

• Information items that are easily characterized. This category typically

includes textual information items, e.g. emails, news articles, and web

pages. It is well known that tf-idf scheme [SM83] has been proven suc-

cessful in representing each document in a corpus as a high-dimensional

numerical vector, i.e. , term frequencies within documents penalized by

term frequencies across documents. The scheme is based on the “bag-

of-words” assumption—that the order of words in a document can be

ignored. Since semantic contents of textual documents are well in-

dicated by key words, the so-called “vector space model” with tf-idf

scheme is current the most popular retrieval model in information re-

trieval/filtering applications [BYRN99].

• Information items that are not easily characterized. A typical fam-

ily of information items is multimedia, including speech, music, image

and video, for which many efforts have been done to extract meaning-

ful visual [SC96, MM96, CLL00] or auditorial features [UZ98, DG02].

Alternative feature extraction is to annotate multimedia items with

texts. Since manual annotation costs too much human efforts, one

has to develop intelligent algorithms for automatic annotation, such as

4



speech-to-text via speech recognition. However, few technologies have

been developed for general types of media like image, music and video.

One recent progress was made in automatic indexing images with key-

words [LW03]. Although nowadays new multimedia products (e.g. ,

movies or music CDs) are often presented with textual information, it

only tells us the content of multimedia items, but does not necessarily

indicate how good they are. Hence one should seek for features that

indicate not only content but also quality. In general, since different

features characterize information items from different perspectives, we

should combine comprehensive information together to achieve the best

performance.

• Information items that are impossibly or not yet characterized. We of-

ten encounter cases where it is almost impossible to extract meaningful

features that are relevant to people’s interests. One example is joke

recommender systems (e.g. Jester [GRGP01])—current vector space

model based on ‘bag-of-words’ assumption indicates nothing about the

sense of humor. We need very high-level language processing technolo-

gies, that are unfortunately far beyond our current limit. In some other

situations, the descriptive features of information items are not avail-

able at all. Information filtering systems should be able to meet these

challenges.

Accordingly, information filtering should be able to adapt themselves to var-

ious situations of information items. We will go to this issue in Sec. 1.2.3.

1.2.2 Learning User Profiles

Understanding people’s information needs is generally a fundamental prob-

lem in information access. Users usually express their information needs

through query in information retrieval applications. While for information

filtering we are always interested in learning a user’s long-term information

needs, referred as user profile. One way to build a information filter is to

specify a set of filtering rules based on domain knowledge. For example,

an administrator can specify a set of rules to build a spam email filtering

5



system. But this way may lack the flexibility to match each individual’s

specific requirements. Another choice is to give the handle to ordinary users

(e.g. [FD92]), which, however, could be tedious for them. Moreover, human-

specified filtering systems are not suitable in situations where rule-based

filtering are not applicable at all.

In order to avoid the difficulties of human-specified profiling, one can

go to the side of machinery—building automatic profiling strategies, which

generally apply machine learning algorithms to learn a user’s profile. A

learning process generalizes the observations about a user’s interests, which

can be acquired by either explicitly asking the user for annotations on sample

items [FD92, RIS+94, BP99], or implicitly observing the user’s behaviors

[MK93, JFM97, Lie95, BP99] (e.g. purchasing a music CD, or clicking a

hyperlink).

By using model-based (or parametric) learning algorithms, we can ex-

plicitly construct a compact profile model (e.g. a classifier) to describe a

user’s profile and directly predict the user’s interest for new items. While for

memory-based (or nonparametric) algorithms, we never build any descriptive

model but just retain all the observations, which implicitly convey the user’s

profile, and delay the learning procedure in prediction phase.

1.2.3 Information Filtering Approaches: Content Ef-

fect vs. Social Effect

We will briefly review major information filtering approaches, which predict

how likely an item is to satisfy a user’s information needs based on the user’s

profile. In this dissertation, we adopt the terminology that an item is said to

be relevant if the item fits in a user’s interest, otherwise the item is irrele-

vant. In order to make filtering algorithms suitable for specific situations, one

should consider two major aspects, i.e. content effect and social effect. That

is to say, we can evaluate whether an item is interesting to a user, either by

examining the item’s content or taking advices from others who have similar

profiles with this user. As illustrated in Fig. 1.1, depending on the nature

of application scenario, we should accordingly adopt different strategies, e.g.
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Figure 1.1: Information filtering approaches: content effect vs. social effect

content-based filtering, collaborative filtering and hybrid filtering.

Content-Based Information Filtering

As probably the most commonly applied technique, content-based filtering

that analyzes an item’s content and predicts its relevance based on the user’s

profile (e.g. , [BS97, MR00, PMB96, YT04]). This technique has its roots in

the information retrieval community.

In this paradigm, each user is assumed to operate independently and thus

the social effect is completely ignored. The approach, in a large sense, is ana-

log to the so-called relevance feedback in information retrieval literature. One

earliest relevance feedback technique is the well-known Rocchio’s algorithm

[Roc71], which adapts the query vector (i.e. a vector of term weights as the

case of vector space model) by iteratively absorbing a user’s relevance judge-

ments (e.g. relevant or irrelevant) on newly returned documents. In informa-

tion filtering paradigm, the tuned query vector is actually a profile model,

specifying the key words as well as their relative importance. Based on the

constructed user profile, a new item’s relevance is measured by computing

the inner product of the query vector and the item’s feature vector—larger

value indicating higher relevance. Operating with solely linear inner product,

Rocchio’s algorithm does not work well when the relevance assessment based
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on content features is nonlinear, which is, unfortunately, the common case

for most non-textual media.

A user profile is constructed from training data, explicitly or implicitly

given by the user, and then is applied to judge other information items

relevant or not. The paradigm can be formulated as a typical classifica-

tion/regression problem in machine learning—Given a set of labelled exam-

ples, a predictive model is trained and then used to predict other previously

unseen data. Compared with ad-hoc solutions, machine learning emphasizes

on the generalization ability in the sense that the learned model not only

gives a compact way to summarize the training data but also promises a good

performance on future unseen data. The generalization performance is even

more crucial in information filtering/retrieval applications, because we can

not require a user to give too many feedbacks before we return something. It

has been reported that support vector machine [Vap95], as a state-of-the-art

learning algorithm, is superior to many other algorithms in text and image

filtering/retrieval tasks [Joa98, DSG01, HTH00].

However, content-based filtering only works well if content effect is suffi-

cient, i.e. when we can extract descriptive features that are highly relevant

to people’s interests. As pointed in Sec. 1.2.1 this is often not the case. Fur-

thermore, due to the complexity of information sources and the heterogenous

interests of a user, content-based filtering has the small-sample problem that

profile models are often learned from insufficient training data. If a new item

significantly differs from training data, the learned profile model will produce

a high predictive variance on it. This thesis presents two recipes for these

drawbacks. First is to derive highly indicative features to represent infor-

mation items. The other solution is to take into account the social effect,

i.e. users are no longer assumed to be independent. We will briefly introduce

the ideas in Sec. 1.3 and then present the details in Sec. 3 and Sec. 4.

Content-based filtering has been studied in various research projects, in-

cluding Web browsing (Letizia [Lie95], and Syskill&Webert [PMB96]), news

filtering (NewsWeeder [Lan95], and Webmate [CS98]), and email filtering

[MDH99].
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Figure 1.2: An illustration of collaborative filtering based on accumulated

user rating data

Collaborative Information Filtering

Collaborative filtering methods [RIS+94, SM95, BP98, YST+04] typically

accumulate a database of item annotations (or ratings), as illustrated in

Fig. 1.2, cast by a large set of users, and then use those ratings to predict

a query user’s preferences for unseen items. Collaborative filtering does not

rely on the content descriptions of items, but purely depends on preferences

expressed by a set of users. These preferences can either be expressed explic-

itly by numeric ratings (as shown in Fig. 1.2), or can be indicated implicitly

by user behaviors, such as clicking on a hyperlink, purchasing a book or

reading a particular news article.

A variety of collaborative filtering algorithms have been proposed in the

last decade. One can identify two major classes of collaborative filtering al-

gorithms [BHK98], memory-based approaches and model-based approaches.

Memory-based collaborative filtering can be motivated from the observa-

tion that people usually trust the recommendations from like-minded friends.

These methods apply a nearest-neighbor-like scheme to predict a user’s rat-

ings based on the ratings given by like-minded users. Earliest collaborative

filtering systems, e.g., Grouplens [RIS+94] and Ringo [SM95], fall into this

category. In the literature, the term collaborative filtering is sometimes used

to refer only to the memory-based methods.

In contrast, model-based collaborative filtering first learns a descriptive

model of user preferences and then uses it for predicting ratings. Many of

these methods are inspired from machine learning algorithms. Examples

include neural network classifiers [BP98], induction rule learning [BHC98],
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linear classifiers [ZI02], Bayesian networks [BHK98], dependency networks

[HCM+00], latent class models or mixture models [HP99, Lee01], item-based

collaborative filtering[SKKR01], principle component analysis based collab-

orative filtering [GRGP01], and hybrids of model- and memory-based ap-

proaches [PHLG00].

Collaborative filtering has been widely used in various areas ranging

from recommender systems (for example, Amazon and CDnow4), web brows-

ing (e.g. WebWatcher [JFM97]), to computer-supported collaborative work

[SKKR00]. Related research projects include Grouplens (the first automatic

collaborative filtering algorithm, [RIS+94]), Ringo [SM95], Video Recom-

mender [HSRF95], Movielens [DKHR98], and Jester [GRGP01].

Hybrid Filtering

Pure Collaborative filtering only relies on user preferences, without incorpo-

rating the actual content of items. It often suffers from the extreme sparsity

of available data, in the sense that users typically rate only very few items,

thus making it difficult to compare the interests between users. Further-

more, pure collaborative filtering can not handle items for which no user has

previously given annotations (or ratings). Such cases are easily handled in

content-based filtering systems, which can make predictions based on the

content of the new item. On the other hand, why one user likes or dislikes

a joke, or prefers one CD over another is virtually difficult to formalize by

content-based analysis. Similarly it is hard to derive features which repre-

sent the difference between an average news article and one of high quality.

Collaborative filtering provides a powerful way to overcome these difficul-

ties, since personal preferences, tastes, and item qualities are all carried in

user annotations. It is hence necessary to build hybrid filtering systems that

combine collaborative filtering and content-based filtering together, to com-

pensate the drawbacks of each single aspect.

Recently many efforts were made in this direction. The key challenge is

how to combine the two types of filters. A family of approaches, e.g. [Paz99,

CGM+99], treat content-based filtering and collaborative filtering separately

4www.amazon.com, www.cdnow.com
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and present the weighted average of both predictions as the final outcome.

As another example, Fab [BS97] is a distributed implementation of a hybrid

system. It maintains user profiles based on content analysis, and directly

compare these profiles to determine similar users for collaborative filtering.

An item is recommended to a user both when it scores highly against the

user’s own profile, and when it is also rated highly by users with similar

profile. Basu et al [BHC98] proposed a classification approach that extends

content-based filtering based on not only normal descriptive content fea-

tures but also collaborative features (i.e. , other users’ ratings on items). In

another approach [MMN02], a different combination strategy was taken in

content-boosted collaborative filtering, where content-based filters are built

for each user and then applied to reduce the sparsity by generating pseudo

ratings for non-rated items. The augmented user rating data is used to feed

a collaborative filtering algorithm.

So far the problem is mainly solved in an ad-hoc way. There are only

few examples of a unifying framework for these two basic information filter-

ing ideas, one being the three-way aspect model [PUPL01], which builds a

probabilistic generative model assuming that both terms (i.e. textual content

features) and user logs are generated from some hidden variables. This ap-

proach, however, is only applicable to text data and suffers from the sparsity

of data.

1.3 Research Work of this Dissertation

This dissertation will focus on building various statistical machine learning al-

gorithms, in order to solve major problems of information filtering, including

collaborative filtering, content-based filtering and hybrid filtering. Our work

demonstrates that statistical learning methods can always provide principled

approach to information filtering. The section briefly introduce the research

work of this thesis, while details will be given in the following chapters.
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1.3.1 Collaborative Filtering: A Probabilistic Memory-

Based Framework

Memory-based collaborative filtering is probably the most popular algorithm

applied in recommender systems [RIS+94, SM95, SM95, BHK98, YST+04].

It is intuitively understandable and also presents results as accurate as those

state-of-the-art model-based methods, e.g. Bayesian networks [BHK98]. How-

ever, the main drawback comes from it very slow prediction response.

We will introduce probabilistic memory-based collaborative filtering (PMCF),

a probabilistic framework for collaborative filtering systems that is similar in

spirit to the classical memory-based collaborative filtering approach. As the

primary ingredient, we present a probabilistic model to describe the density

distribution of user preferences. We use a mixture model built on the basis of

a set of stored prototypes of user profiles. Thus the model clearly links with

memory-based collaborative filtering methods, but provides a principled view

to understand the memory-based approach, and outcomes better results.

Various heuristics to improve memory-based collaborative filtering have

been proposed in the literature (e.g. [RAC+02]). In contrast, extensions to

PMCF can be based on a principled probabilistic way. We argue that this

is one of the major advantages of PMCF. We use PMCF to derive solutions

for two particularly important problems in collaborative filtering.

• Actively acquiring user profiles : Currently most collaborative filtering

methods only passively receive information from a user and learn the

user’s profile. It should be desired if the learning system is aware of

what to learn and thus can actively query the most useful information

from users. Intuitively, this active learning strategy may help a col-

laborative filtering system quickly grasp a user’s profile by requiring

minimum user efforts. This property is particularly useful to solve the

“new user problem”, meaning that a collaborative filtering system can

not serve for a new user whose profile is completely unknown. Within

the proposed PMCF framework, an active learning component is able

to sequentially choose informative unrated items and ask the new user

for feedbacks. This active information acquiring procedure is guided by
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minimizing the uncertainty of user profile, leading to very quick profile

learning.

• Reducing computational costs : The second major extension aims at

reducing the computational burden in the prediction phase typically

associated with memory-based collaborative filtering. PMCF allows us

to select a small subset, called the profile space, from a (possibly huge)

database of user ratings. The selection procedure, based on PMCF

framework, ensures that a small profile space can lead to predictions

that are as accurate as predictions made by using the whole database of

user ratings. The algorithms preserves the probabilistic density of user

ratings and finally derives a very simple and intuitive algorithm—we

only retain the preference patterns which are novel, based on previously

selected data, but actually being typical in the whole database.

1.3.2 Content-Based Filtering: A Generalized Princi-

pal Component Analysis Model

Content-based information filtering works well only when descriptive features

are relevant enough to users’ information need. However, feature extraction

is the major problem for most of filtering applications, due to the following

reasons:

• Deficiency of features : People always extract low-level features from

information items. For example, visual features describing color, tex-

ture or shape information can not sufficiently describe the semantics of

images.

• Heterogeneous features : Since features are always weak, it might be

helpful to combine multi-source features together. Again, for the ex-

ample of images, one might consider the combination of visual features,

associated short texts, and user annotations, and finally obtain feature

vectors with mixed types of attributes (e.g. , continuous, categorical

and binary attributes). However, it is still unclear how to directly work

with such heterogeneous feature vectors with mixed types of attributes.
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• High dimensionality : The performance of information filtering is also

hampered by the high dimensionality of feature vectors. The problem is

even severer after the combination of multi-source features. Therefore

dimensionality reduction, a classical problem in pattern recognition, is

also crucial for information filtering. Traditional methods only handles

continuous data. It is a challenge that how to reduce the dimensionality

of mixed types of high dimensional features.

We present a novel probabilistic latent-variable model, which can be viewed

as a generalization of probabilistic principal component analysis. The new

model is capable of characterizing mixed data types (continuous, binary and

categorical data) by a small number of hidden continuous variables. We

adopt a variational approximation to the likelihood of observations and de-

scribe an expectation-maximization (EM) algorithm to fit the model. The

model allows a unified treatment to mixed types of attributes and thus brings

great benefits for multivariate data analysis, dimensionality reduction, and

information filtering. We demonstrate the advantages of the proposed model

in a painting image recommender system.

1.3.3 Hybrid Filtering: A Hierarchical Bayesian Frame-

work

In this part we present a theoretical framework to combine content-based

filtering and collaborative filtering, based on hierarchical Bayesian model.

The introduced model provides a deeper understanding towards information

filtering and smoothly leads to a principled hybrid filtering algorithm. More

interestingly, we demonstrate that pure collaborative filtering (e.g. the pro-

posed PMCF in Ch. 2) and pure content-based filtering are subcases of the

framework. This point indicates that the hierarchical Model is not only a way

to derive principled hybrid filtering algorithm, but also a general framework

for information filtering.

In the hierarchical Bayesian framework, we assume each user’s profile

model is generated from a prior distribution. Then by repeatedly sampling

the prior distribution, a population of users’ profile models are also generated
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from the same prior distribution. In this situation the prior distribution

becomes a common prior shared by all the users and thus can be learned

from gathered data from all the users. Finally the learned prior distribution

can be applied to constraint the inference for individual users by using the

Bayes rule. In this framework, the common prior distribution actually serves

as an informative Bayesian prior in the content-based profiling process for

individuals (i.e. content-based filtering), and meanwhile statistically connects

all the individuals in the population (i.e. the idea of collaborative filtering).

Since the common prior distribution can be in arbitrary form, it is not

suitable to assume a known parametric distribution (e.g. , Gaussian) for it.

We adopt a flexible nonparametric Bayesian approach to learn the common

prior distribution, based on the Dirichlet process. In the phase of inferring

individual profiles, we adopt various approximations to simplify the compu-

tation. The finally derived algorithm is quite simple and intuitive—we first

train profile models for users via content-based filtering and then at the pre-

diction phase combine many profile models to form a committee machine.

The weights of committee members are based on like-mindedness between

users.

As we know, this is probably the earliest work to theoretically combine

collaborative and content-based filters in a single framework. The derived

algorithm is simple and intuitive, with big potentials in information filtering

applications. On the other hand, this work could also be a strong contribution

to nonparametric Bayesian learning in a sense that a flexible algorithm is

suggested to learn many different but related models.

1.4 Outline

The remaining chapters of this thesis are organized as follows. Ch. 2 intro-

duces the work on probabilistic memory-based information filtering frame-

work. Ch. 3 describes the generalized probabilistic principal component anal-

ysis for content-based information filtering. Then the hierarchical Baysian

framework for hybrid filtering will be presented in Ch. 4. Finally we draw

conclusions and point out future work in Ch. 5.
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Chapter 2

Collaborative Filter: A
Probabilistic Memory-Based
Framework

2.1 Introduction

One major difficulty in designing content-based filtering systems lies in the

problem of formalizing human perception and preferences. Why one user

likes or dislikes a joke, or prefers one CD over another is virtually impossible

to formalize. Similarly it is difficult to derive features which represent the

difference between an average news article and one of high quality. Collab-

orative filtering provides a powerful way to overcome these difficulties. The

information on personal preferences, tastes, and quality are all carried in

(explicit or implicit) user ratings.

A variety of collaborative filtering algorithms have been proposed in the

last decade. One can identify two major classes of collaborative filtering al-

gorithms [BHK98], memory-based approaches and model-based approaches.

Memory-based collaborative filtering can be motivated from the observa-

tion that people usually trust the recommendations from like-minded friends.

These methods apply a nearest-neighbor-like scheme to predict a user’s rat-

ings based on the ratings given by like-minded users. The first collaborative

filtering systems Grouplens [RIS+94] and Ringo [SM95] fall into this cate-

gory. In the literature, the term collaborative filtering is sometimes used to
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refer only to the memory-based methods.

In contrast, model-based collaborative filtering first learns a descriptive

model of user preferences and then uses it for predicting ratings. Many of

these methods are inspired from machine learning algorithms.

2.1.1 Motivation

Up to now, research on collaborative filtering primarily focused on explor-

ing various learning methods, hoping to improve the prediction accuracy of

recommender systems. Other important aspects, like scalability, accommo-

dating to new data, and comprehensibility have received little attention. In

the following we will review five general issues which are important for col-

laborative filtering and greatly motivated the work presented in this paper.

Accuracy

As a central issue in collaborative filtering research, prediction accuracy has

received a high degree of attention, and various methods were proposed for

improvement. Still, conventional memory-based methods using Pearson cor-

relation coefficient remain among the most successful methods in terms of

accuracy. The experiments presented in Sec. 2.5.4 show that our proposed

probabilistic interpretation of memory-based collaborative filtering can out-

perform a set of other memory- and model-based collaborative filtering ap-

proaches.

Interactive Learning of User Profiles

A recommender system cannot provide accurate service to a new user, whose

preferences are initially unknown. This has been referred to as the “new user

problem” [BS97, GSK+99, RAC+02] Before being able to make predictions,

a collaborative filtering system typically requires the new user to rate a list

of query items in an initial information gathering stage. Efficient heuristics

[RAC+02] are essential to select informative query items and thus keep the
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information gathering stage as short as possible, since users may easily lose

patience when faced with a long list of query items.

Within our proposed probabilistic framework for collaborative filtering,

we show in Sec. 2.3 how informative query items can be selected in a prin-

cipled way. At each information gathering step, those query items are pre-

sented to the user which are expected to maximally sharpen the user’s profile.

Our experiments (see Sec. 2.5.5) confirm that this interactive approach out-

performs other ways of selecting query items [RAC+02] both in terms of

necessary user effort and achieved accuracy of predictions.

Efficiency

Memory-based collaborative filtering often suffers from slow response time,

because each single prediction requires the scanning of a whole database of

user ratings. This is a clear disadvantage when compared to the typically

very fast responses of model-based collaborative filtering. In the proposed

probabilistic memory-based collaborative filtering approach, predictions are

generated from a carefully selected small subset of the overall database of

user ratings, which we call profile space. As a consequence, predictions can

be made much faster than in a classical memory-based collaborative filter-

ing system. Still, the accuracy of a system using the full data set can be

maintained. We will describe this process of data selection in Sec. 2.4. The

results presented in Sec. 2.5.6 confirm that the constructed profile space does

indeed allows a both accurate and fast prediction of user ratings.

Incrementally accommodating to new data

Recommender systems must be capable of handling new data, be it new

users or new items. For example, in a music recommender system, the rec-

ommender system must be able to adapt itself to newly arising styles of

music and thus new preference patterns. This suggests that the training pro-

cess of any underlying collaborative filtering algorithm should be incremental.

However, model-based collaborative filtering approaches are typically trained

using batch algorithms. To our knowledge, little work has addressed the use
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of on-line learning in collaborative filtering. Thus, re-training a model with

new data can become quite expensive, in particular if it needs to be per-

formed regularly [BHK98]. In contrast, memory-based collaborative filtering

can easily accommodate to new data by simply storing them. In the proposed

probabilistic memory-based collaborative filtering framework, this goal can

be achieved by a straight-forward extension of the data selection procedure

introduced in Sec. 2.4.

Comprehensibility

The results in [HKR00] indicate that allowing users to know more about

the result-generating process can help them understand the strengths and

weaknesses of collaborative filtering systems. With this knowledge, users

can make low-risk decisions. For example, consider the following two cases:

(1) Among Julia’s like-minded users there are 50% percent of users who

rated ‘like’ to Titanic, while 50% of them rated ‘dislike’. (2) In the other

case, most of her neighbors give neutral ratings to that movie. A traditional

collaborative filtering system may only give a neutral rating in both of the

cases. A more sophisticated system may remind Julia of the underlying

reasons in the first case and, for example, output an estimated distribution of

a user’s rating for some item, either in graphical or textual form (“I guess you

will like that movie, and I am pretty sure (or very unsure) about that”). This

suggests that a probabilistic collaborative filtering approach, as presented in

this paper, can improve the comprehensibility and thus the acceptance of

a collaborative filtering system. Furthermore, memory-based collaborative

filtering has a clear interpretation that can be easily conveyed to users, such

as “You seem to be sharing opinions with user A, who liked the following

items. . . ”.

2.1.2 Overview of Our Approach

In this paper, we introduce probabilistic memory-based collaborative filter-

ing (PMcollaborative filtering), a probabilistic framework for collaborative

filtering systems that is similar in spirit to the classical memory-based col-
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laborative filtering approach. A schematic drawing of the components of

PMCF is shown in Fig. 2.1.

As the basic ingredient, we present a probabilistic model for user prefer-

ences in Sec. 2.2. We use a mixture model built on the basis of a set of stored

user profiles; thus the model clearly links with memory-based collaborative

filtering methods.

Various heuristics to improve memory-based collaborative filtering have

been proposed in the literature. In contrast, extensions to PMCF can be

based on a principled probabilistic way. We argue that this is one of the major

advantages of PMCF. We use PMCF to derive solutions for two particularly

important problems in collaborative filtering.

The first one concerns the new user problem. An active learning extension

to the PMCF system can actively query a user for additional information, in

case the available information is insufficient.

The second major extension aims at reducing the computational burden

in the prediction phase typically associated with memory-based collaborative

filtering. PMCF allows us to select a small subset, called the profile space,

from a (possibly huge) database of user ratings. The selection procedure is

derived directly from the probabilistic framework and ensures that the small

profile space leads to predictions that are as accurate as predictions made by

using the whole data base of user ratings.

2.1.3 Structure of this Chapter

This paper is organized as follows. In Sec. 2.2, we describe the framework of

probabilistic memory-based collaborative filtering (PMCF). In Sec. 2.3, we

present an active learning extension of PMCF to gather information about

a new user in a particularly efficient way that requires a minimum of user

interaction. In Sec. 2.4, we show how to construct the profile space for the

PMCF model, which is a small subset of the available user rating data. We

present experimental results that demonstrate the effectiveness of PMCF,

the active learning extension and the profile space construction in Sec. 2.5.

We end the paper by conclusions and an outlook in Sec. 2.6.
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Figure 2.1: A schematic drawing of the components of probabilistic

memory-based collaborative filtering (PMCF). Through an active learning

scheme (presented in Sec. 2.3), the profile of a new user can be inferred with

a minimum of required user effort. User ratings are stored in a database,

from which a compact representation—the profile space—can be constructed

in order to make fast predictions (presented in Sec. 2.4)
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2.2 Probabilistic Memory-Based collaborative

filtering

In this section a general probabilistic memory-based collaborative filtering

(PMCF) approach is introduced. Probabilistic collaborative filtering has

been a vivid research topic. Examples include Bayesian networks [BHK98],

dependency networks [HCM+00], latent class models or mixture models [HP99,

Lee01], and hybrids of memory- and model based systems [PHLG00]. The

work presented here has been inspired by [PHLG00], in that we also aim

at connecting memory- and model-based collaborative filtering in a proba-

bilistic way. While [PHLG00] mainly focusses on making predictions, we use

the probabilistic model for further extensions of the collaborative filtering

system, some of which will be described in Sec. 2.3 and 2.4.

2.2.1 Notation

Suppose that we have gathered K users’ ratings on a given item set I of

size M = |I|. Let xi,j ∈ R be the rating of user i on item j and let D with

(D)i,j = xi,j be the K × M matrix of all ratings. Ri is the set of items

for which user i has actually given ratings, Ri ⊆ I. If an item has not been

rated, we set xi,j to a neutral rating ni, which we will define later. We denote

by xi the vector of all ratings of user i. In the following text, user i’s ratings

xi are often referred as user i’s profile. We also maintain a smaller set of

user profiles, the profile space P , which consists of a subset of rows of D.

Without loss of generality, we assume that the profile space is built up1 from

the ratings of the first N users, i.e. the first N rows of D, where typically

N � K.

In collaborative filtering terminology, the active user is the user that

queries the collaborative filtering system for recommendations on some items.

We denote the active user’s ratings by a. By ar, we denote the ratings

1We will show in Sec. 2.4 how a compact and accurate profile space P can be incre-

mentally built from a given set of user ratings D.
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the active user has already provided (for items ∈ Ra), and an are the yet

unknown ratings. The total rating vector a is thus the union of ar and an.

As mentioned above, we use a neutral rating ni for all items a user i has

not given an explicit rating, i.e. xi,j = ni if j 6∈ Ri. In order to compute ni,

we assume a Gaussian prior for the neutral rating with mean m0 which is

estimated as the overall mean of user ratings. If we further assume that ni is

also Gaussian distributed with mean m0 we can estimate the neutral rating

as

ni =

∑
j∈Ri

xi,j + Cm0

|Ri|+ C
(2.1)

where C is the ratio of the variance of the ratings for user i and the vari-

ance of m0. We determined a suitable value for C based on cross validation

experiments. We found C = 9 to work effectively on the data we consider.

2.2.2 A Density Model for Preference Profiles

We assume a generative probabilistic model in which the ratings a of an

active user are generated based on a probability density of the form

p(a|P) =
1

N

N∑
i=1

p(a|i), xi ∈ P (2.2)

where p(a|i) is the probability of observing the active user’s ratings a if

we assume that a has the same profile class as the ith profile prototype

in P , i.e. user i’s profile. The density expressed by Eq. (2.2) models the

influences of other like-minded users’ preferences on the active user a. For the

mixture components p(a|i), we use Gaussian2 density functions. Assuming

2We are a little inaccurate here and assume for simplicity that our rating scale is

continuous and unbounded, ignoring the fact that ratings are often given on a discrete

scale. One might also chose mixture components that fit particular data, for example

binomial distributions for discrete ratings.
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that ratings on individual items are independent, given a profile i, we get

p(a|i) =
∏
j∈I

p(aj|i) (2.3)

=
∏
j∈I

(2π)−1/2√
σ2 + dj 6∈Ri

σ2
0

exp

(
−1

2

(aj − xi,j)
2

σ2 + dj 6∈Ri
σ2

0

)
Here, dj 6∈Ri

= 1 if xi,j is unrated and dj 6∈Ri
= 0 otherwise. This model can

be motivated as a mixture model, with the prototype profiles xi serving as

cluster centers, or as a Parzen density model on the profile space P . The

additional variance for unrated items takes into account the uncertainty of

the estimated rating.

In our experiments, we set σ2
0 to be the overall variance of user ratings.

σ2 was optimized by maximizing the leave-one-out likelihood of profiles∑
a∈P

p(a|P \ a) (2.4)

with respect to σ2. σ2 is tuned after constructing the profile space (see

Sec. 2.4) and left constant thereafter. Note that, technically, profiles take on

different meanings: If they are part of the data base, they represent prototype

vectors defining the component densities in Eq. (2.3). If we consider the

active user’s profile, the profile corresponds to a sample generated from the

probability density defined in the same equation.

2.2.3 A Probabilistic Approach to Estimating User Rat-

ings

We can now calculate the posterior density of the active user a’s ratings on

not yet rated items, denoted by an, based on the ratings ar user a has already
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given. Using the previously defined density model for user ratings, we find

p(an|ar,P) =
p(an,ar|P)

p(ar|P)
(2.5)

=

∑N
i=1 p(a

n,ar|i)∑N
i=1 p(a

r|i)
(2.6)

=
N∑

i=1

p(an|i) Pr(i|ar,P). (2.7)

Pr(i|ar,P) indicates the a posteriori probability of user a having the ith

prototype profile, given the ratings user a already has provided. It thus

models the “like-mindedness” of active user a to other users i in the profile

space P :

Pr(i|ar,P) =
p(ar|i)∑N
i=1 p(a

r|i)
. (2.8)

Within the PMCF model, predictions for the active user are thus made by

combining the predictions based on other prototype users xi, weighted by

their degree of like-mindedness to user a. This puts the key idea of memory-

based collaborative filtering into a probabilistic framework.

Note that the computational complexity of prediction is O(NM), i.e. it is

linear in the size of the profile space. In Sec. 2.4 we will show how to obtain

a profile space that is much smaller than the complete user rating database

D. Making predictions only on basis of the small profile space thus brings a

significant reduction of overall computational cost.

2.3 An Active Learning Approach to Learn-

ing User Profiles

In the previous section, we introduced the PMCF framework and showed

how predictions can be made. In this section we will use an active learning

approach to efficiently learn the profile of an individual user. The active

learning approach integrates smoothly into the PMCF framework and pro-

vides a solution for the “new user problem”. By presenting a set of most
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informative query items in an interactive process, we can learn about the

profile of a new user with a minimum of user effort.

2.3.1 The New User Problem

For users that are new to a recommender system, no information about their

preferences is initially known. Thus, the recommender system typically re-

quests them to rate a set of query items. Using the ratings on these query

items, the collaborative filtering system can then start making recommenda-

tions.

There are several important reasons why this set of query items should

be selected carefully: (1) Users are not willing to rate a long list of items; (2)

Users cannot rate items unknown to them; (3) Rating results for some items

might be very informative for determining a user’s profile whereas rating

results for other items might not provide useful new information. So far

little work has been done to address3 the new user problem. [RAC+02].

In the next sections, we will present an approach for selecting query items

that requires particularly little user effort, yet allows fast learning about the

user’s preferences.

2.3.2 Identifying Informative Query Items

To achieve an efficient interactive learning of user profiles, we put the se-

lection of query items into a decision theoretic framework (see for example

Sec. 4.3 of [Jen01]). First, one needs to define a loss function, evaluating the

quality of the system before querying a new item λ(ar,P) and after querying

the user for item j, j 6∈ Ri and after having obtained rating aj. We denote

the loss after querying by λ(aj,a
r,P). The goal is now to select the query

item j such that the expected loss

Ep(aj |ar,P)

[
λ(aj,a

r,P)
]

(2.9)

3A method for improving the accuracy of collaborative filtering systems by adding extra

query items has been presented in [BZ03]. This approach might also be adapted to solve

the new user problem.
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is minimized. The expectation is calculated here with respect to the predicted

probability of user a’s ratings for item j.

The most important ingredient is the loss function λ(aj,a
r,P). We pro-

pose to use the entropy of the like-mindedness Pr(i|ar,P) as the loss function.

Pr(i|ar,P) describes the like-mindedness of a user i in the profile space P
with active user a, given a’s ratings ar. In an extreme case, Pr(i|ar,P) has

a uniform distribution, which means that the profile of user a is completely

unclear. In contrast, a sharp peak in the distribution of Pr(i|ar,P) indicates

that user a has similar preferences as a small group of like-minded users. It

thus seems natural to choose those query items that minimize the uncertainty

(thus, the entropy) of user a’s like-mindedness.

Putting this into a formal setting, we can write for the loss function

λ(aj,a
r,P) = −

N∑
i=1

Pr(i|aj,a
r,P) log Pr(i|aj,a

r,P). (2.10)

By Pr(i|ar, aj,P) we denote like-mindedness, computed with an updated

vector of ratings for the active user, who now also has rated the (previously

unrated) item j.

We can now define the expected benefit (Sec. 4.3.2 of [Jen01]) for querying

item j as

E[B(j)] = Ep(aj |ar,P) [λ(aj,a
r,P)]− λ(ar,P) (2.11)

and terminate the query process if the expected benefit is less than a thresh-

old related to the cost of querying.

Our algorithm for query item selection is myopic in the sense that the al-

gorithm only looks one step ahead. In contrast, a hyperopic algorithm would

aim at finding the optimal sequence of query items to be presented. How-

ever, since hyperopic optimization is computationally intractable, myopia

is a standard approximation used in sequential decision-making problems

[HBR94, Ton01].
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2.3.3 Identifying the Items Possibly Known to the Ac-

tive User

If we wanted to use the active learning approach described in the previous

section directly, we would most often get a “don’t know” as the answer to

most of the query items. Users of a collaborative filtering system can typically

provide ratings for only few of the items. For example, in a recommender

system for movies, users may typically have seen a few dozen movies out

of the several hundred movies contained in the data base. It may be quite

informative to know the user’s opinion on an unusual movie, yet it is likely

that the user will not be able to give this movie any rating.

Thus, we must also predict the probability that a user is able to rate4

a given query item. This can be achieved by again referring to the like-

mindedness of users. In Eq. (2.5), predictions for active user a were built from

a sum of other users’ ratings, weighted by their degree of like-mindedness

Pr(i|ar,P). Similarly, we can predict the probability of user a being able to

rate item j, given his or her other ratings ar, by checking user a’s like-minded

users:

Pr(user a can rate item j|ar,P) =
N∑

i=1

Pr(user a can rate item j|i) Pr(i|ar,P)

(2.12)

Pr(user a can rate item j|i) is the probability that a can rate item j, given

that users a and i (as described by prototype profile xi) agree on which items

they are able to rate. We assume for simplicity that user a can rate exactly

the same5 movies as user i:

Pr(user a can rate item j|i) =

1 if user i has rated item j

0 otherwise
(2.13)

4Another way of solving this problem would be to integrate this probability into the

loss function Eq. (2.10) for the active learning approach. We do not pursue this solution

in the present article.
5This is a strong assumption, yet due to the weighting introduced by the like-

mindedness we obtain meaningful results
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2.3.4 A Summary of the Active Learning Process

Using the ideas described in the previous sections, we propose the following

iterative scheme to learn the profile of the active user a:

1. Out of the set of items that have not yet been rated by user a, find

those k1 items with the highest probability of being known to user a,

i.e. those items with the highest value for Eq. (2.12).

2. Out of these k1 items, select a subset of k2 items that lead to the highest

reduction of uncertainty about the user’s profile, i.e. the items with the

highest expected benefit in Eq. (2.11).

3. Display those k2 items to the user for rating. Collect the ratings and

update the vector of ratings a.

4. Terminate if the user is not willing to answer any more queries or if

the expected benefit of querying (as defined in Eq. (2.11)) is below a

certain threshold. Otherwise, go to step 1.

In the very first step, where nothing is known about user a, we assume equal

like-mindedness of user a with all profiles in P . Thus, user a will be presented

the k2 most popular items as query items.

2.3.5 Implementation

Parameters for Active Learning

The value of k1 (see step 1 of Sec. 2.3.4) should be carefully selected. If k1

is too small, for example, as small as k2, then the selection procedure is too

much biased by Eq. (2.12), and thus might miss out informative items—the

system performs too little exploration. If k1 is too large, too many items will

be presented to the user which the user is not able to rate. In cross validation

experiments, we found that k1 = 50 gives the best results for the data we

consider. The value for k2 is rather uncritical. We used k2 = 10, because it

seems reasonable to display 10 items on a normal-sized PC screen. Thus, at

each iteration, we first find the 50 candidate items with largest probability
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of being known, and then identify 10 query items according to the expected

reduction of uncertainty in like-mindedness.

Computational Complexity

The most costly part in this active learning approach is the evaluation of

Eq. (2.11), where the expected reduction of uncertainty in like-mindedness

is computed. The algorithm needs to exhaust O(ck1) possibilities of user

feedbacks at each iteration (where c is the number of ratings a user might

possibly give to a presented query item, and k1 is the number of candidate

items) and calculate the entropy of the like-mindedness for each case. This

again requires evaluating Eq. (2.2) with changed preference vector a. For-

tunately, Eq. (2.2) factorizes along items, thus the distances only need to be

re-calculated along the dimensions of the newly rated items. This greatly

reduces the overall computational cost.

Alternative Methods

Several of the approaches proposed in the active learning literature may

be adopted for collaborative filtering. A common approach is uncertainty

sampling [LC94], which has been successfully applied to text categorization

[LC94] and image retrieval [Ton01] to reduce the number of training exam-

ples. The general idea behind all proposed variants of uncertainty sampling

is to present the unlabeled examples for which the outcome is most uncertain,

based on the current predictions. In a collaborative filtering scenario, one is

interested in predicting a user’s ratings for non-rated items. Thus, the vari-

ance of predictions var p(aj|ar,P) is an appropriate measure of uncertainty.

An advantage of this approach lies in its low computational cost, since we

only have to compute the predictions p(aj|ar,P) for all yet unrated items.

Another low complexity method for query item selection is entropy sam-

pling [RAC+02]. Here, we consider Prj(s), the fraction of users who had given

a particular rating s ∈ {s1, . . . , sc} for item j. Query items are selected such

that the entropy of Prj(s) is maximized.

We will show in Sec. 2.5.5 that the method based on uncertainty of like-
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mindedness (as outlined in Sec. 2.3.2) achieves best results, both in terms of

achieved accuracy and in terms of required user input.

2.4 Incrementally Constructing Profile Space

In Sec. 2.2 we introduced a probabilistic model for describing user preferences.

This model was based on a given set of user profiles, the profile space P .

In this section, we will show how this profile space can be constructed, by

selecting informative user profiles from the overall database of user ratings D.

Since the profile space typically contains only a low number of user profiles

(as compared to the often huge D), it allows us to build compact models

and make predictions efficiently, while maintaining a high accuracy. It thus

solves the well-known problem that predictions of traditional memory-based

collaborative filtering methods are rather time-consuming.

2.4.1 Kullback-Leibler Divergence for User Profile Sam-

pling

Let’s assume that there exists an optimal density model for user ratings,

which we denote by popt(x). Naturally we do not have access to this optimal

model but we work with a non-optimal model p(x|P), as given in Eq. (2.2),

based on some profile space P . The key idea of our proposed selection pro-

cedure is to select the profile space P such that the density p(x|P) is as close

as possible to the optimal density popt(x).

To measure the distance of these two distributions, we use the Kullback-

Leibler divergence (KL-divergence [CT91]). We denote the KL-divergence of

the two distributions by

D
(
p(x|P)||popt(x)

)
=

∫
popt(x) log

popt(x)

p(x|P)
dx (2.14)

where the integral is over the whole space of user rating vectors. The KL-

divergence is always non-negative and is zero when two compared distribu-

tions are identical. Assuming that the total set of user ratings D constitutes
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a set of independent samples drawn from popt(x), we can approximate the

KL-divergence by Monte-Carlo integration [Fis96]:

D̃
(
p(x|P)||popt(x)

)
=

1

K

K∑
i=1

log
popt(xi)

p(xi|P)
(2.15)

=
1

K
log

popt(D)

p(D|P)
(2.16)

where K is the number of users in D.

As stated above, we wish to minimize the KL-divergence D̃(p(x|P)||popt(x))

so that the density p(x|P) best approximates popt(x). Since popt(D) is con-

stant, Eq. (2.15) can be minimized by maximizing the likelihood of the user

rating database D with respect to the profile space P . Finding the optimal

profile space P is clearly an intractable task, we thus switch to an iterative

greedy approach for constructing P .

2.4.2 Incremental Profile Space Construction

For constructing the profile space P from a data base D of user ratings, we

consider an incremental scenario. Given the current profile space P , which

profile pattern xi ∈ D should be included such that the updated profile space

P ∪ xi can achieve the maximum reduction in KL-divergence, according to

Eq. (2.15)?

The reduction in KL-divergence caused by including xi in P can be writ-

ten as

∆i = D̃
(
p(x|P)||popt(x)

)
− D̃

(
p(x|P ∪ xi)||popt(x)

)
(2.17)

=
1

K
log

p(D|P ∪ xi)

p(D|P)
(2.18)

Mind that this step causes the optimal density popt(x) to drop out. According

to Bayes’ rule, the likelihood of the overall data D, given the updated profile

space P ∪ xi can be written as follows:

p(D|P ∪ xi) = p(D|P)
p(xi|D)

p(xi|P)
(2.19)
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where p(xi|D) is the likelihood of xi, based on a model that uses the complete

data as the profile space. Combining Eq. (2.17) and (2.19), the optimal profile

x to be selected is given by:

arg max
i

∆i = arg max
xi∈D\P

p(xi|D)

p(xi|P)
(2.20)

An intuitive interpretation of this selection scheme is as follows: Eq. (2.20)

suggests that profiles xi with low p(xi|P) but high p(xi|D) will be selected.

p(xi|P) encodes how likely a profile xi is, given our current knowledge P ,

while p(xi|D) encodes the likelihood and thus the “degree of typicalness” of

profile xi in the overall data D. The profile selection scheme thus focusses

on profiles that are novel to our current knowledge (encoded by the current

profile space), but are in fact typical in the real world (represented by the

whole data D). Thus, this sampling scheme will result in removing redun-

dancies (we only focus on novel data that is not yet included in the profile

space) and in removing outliers (outliers can be considered untypical data).

Still, Eq. (2.20) does not give a practical algorithm, since it requires

evaluating O(K) profiles, K = |D|, where each evaluation requires O(K)

steps to actually build p(xi|D). This leads to the clearly impractical overall

runtime of O(K2). Practical variants will be discussed in the next section.

2.4.3 Implementation

Constructing a profile space P according to Eq. (2.20) is sometimes referred

to as full greedy selection. This can only be done efficiently if the associated

objective function can be computed cheaply—which is not the case for the

likelihood ratio we consider here. In related problems, it has been suggested

to consider small subsets of candidates, evaluate the objective function for

each candidate, and select the best candidate out of this subset (see, for

example, Sec. 6.5 of [SS02]).

We thus obtain the following profile sampling scheme to build P from D:

1. Select a subset C of candidate profiles at random from D \ P.

2. Compute the likelihood p(xi|P) for each candidate profile xi ∈ C, based

on the current profile space P .
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3. Compute the likelihood p(xi|D) for each xi ∈ C, based on the complete

data D.

4. Include the best candidate profile in the profile space:

P ← P ∪ arg max
xi∈C

p(xi|D)

p(xi|P)
(2.21)

5. Terminate, if the profile space has reached a given maximum size or if

the reduction of KL-divergence is below a given threshold.

It has been suggested in [SS02] that subsets of size |C| = 59 can be guaranteed

to select profiles that are better than 95% of all other profiles with confidence

95%. In our experiments, we aim at achieving higher efficiency and thus use

subsets of size |C| = 7. This corresponds to selecting profiles that are better

than 80% of all others with confidence 80%.

2.4.4 Constructing Profile Spaces in a Dynamic Envi-

ronment

While the sampling approach presented in the previous section works fine

in a static environment with a fixed database of user ratings, it needs to

be refined to work in a dynamic environment. The dynamics arises from

changing preferences patterns (for example, new styles of music in a music

recommender system) and the ever growing database of user ratings. Since

user profiles are typically collected incrementally, we suggest an incremental

extension to the basic sampling scheme presented in Sec. 2.4.3. We assume

that the profile space is being updated after a fixed period of time, e.g. each

day or week. The new user profiles gathered during this period are being

processed and some of them will be added to the profile space.

Assuming that we have a data base of user ratings D. From D, we have

already constructed a profile space P . After collecting user profile data for

some time, we get an updated data base D+, with D+ = D ∪∆D. In order

to build the according profile space P+, select the set of candidate items C
from D+. Select the most informative profile and update the profile space
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P+:

P+ ← P+ ∪ arg max
xi∈C

p(xi|D+)

p(xi|P+)
(2.22)

Terminate if the new profile space P+ has reached a given size or if none of

the candidate items xi ∈ C leads to a reduction of KL-divergence. Otherwise,

select a new candidate set and proceed.

Through this straight-forward extension we can retain the basic idea of

using a small profile space, as introduced in Sec. 2.4.2, while now being

capable of incrementally processing new data.6

2.4.5 Computational Complexity

For the basic profile space construction, as outlined in Sec. 2.4.2, the com-

putational complexity is as follows:

Evaluating the density function p(xi|D) for a candidate profile xi (see

Eq. (2.20)) requires scanning the whole data base D with K user ratings. Its

complexity is thus O(K). Since all potential profile spaces P are subsets of D,

P ⊆ D, one can easily construct p(xi|P) as a “by-product” when scanning

the data base in order to find p(xi|D). Both steps are thus O(K), with

K = |D|. Constructing a profile space of size N requires a total of O(KN)

operations. Once the profile space, is constructed, one also needs to update

the variance σ2 according to Eq. (2.4). This is done with a leave-one-out

scheme, its complexity is thus O(N2).

Since one would typically keep the profile space resident in memory, the

memory consumption of the profile space construction is O(N), with N =

|P|.
The suggested method for constructing a profile space P thus has the

same complexity as making predictions in a traditional memory-based col-

laborative filtering method. Yet, as described in Sec. 2.4.4, profile space

construction can be seen as a background process that is being triggered by

time or when unused computing power is available. Thus, its time consump-

tion is not visible to a user of the collaborative filtering system. We argue

6One might also consider the case of removing certain (outdated) user profiles from P,

yet we did not evaluate this idea in the present work.
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that the so achieved shift of workload is important, since it greatly improves

the efficiency of front-end processing, namely, making predictions.

2.5 Empirical Study

In this section we report results from applying the probabilistic memory-

based collaborative filtering (PMCF) framework to two collaborative filter-

ing benchmark data sets, EachMovie and Jester. We report results on

prediction accuracy, efficiency of learning individual user profiles (based on

the ideas presented in Sec. 2.3) and accuracy of the constructed profile spaces

(using the incremental scenario of Sec. 2.4).

2.5.1 Data Sets

We apply the PMCF framework to the following two benchmark data sets:

• EachMovie7 contains ratings from 72, 916 users on 1, 628 movies.

User ratings were recorded on a discrete scale from zero to five. On

average, each user rated about 30 movies. EachMovie is one of the

most widely used data sets in recommender system research.

• Jester8 contains ratings from 17, 998 users on 100 jokes, continuously

valued from −10 to 10. On average, each user rated about 50 jokes.

We transferred the ratings to a discrete scale {−10,−9, . . . , 9, 10}.

2.5.2 Evaluation Metrics and Experimental Setup

In collaborative filtering research, one is typically interested in two types of

accuracy, the accuracy for predicting ratings and the accuracy for making

7Available from the Digital Equipment Research Center at

http://www.research.digital.com/SRC/EachMovie/
8Jester stems from a WWW-based joke recommender system, developed

at the University of California, Berkeley [GRGP01]. It is available from

http://shadow.ieor.berkeley.edu/humor/
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recommendations. The first one measures the performance when explicitly

predicting the active users ratings on some unseen items. The second one

focusses on finding an accurate ordering of a set of unseen items, in order

to recommend the top ranked items to the active user. These two scenarios

require different experimental setups and metrics, which we will describe

now.

Accuracy of Predicting Ratings

To evaluate the accuracy when the collaborative filtering system is asked to

predict an active user’s ratings, we use the mean absolute error (MAE, the

average absolute difference between the actual ratings and the predicted rat-

ings). This measure has been widely used in previous collaborative filtering

research [BHK98, HKBR99, PHLG00, RIS+94, SM95].

We examine the accuracy of predictions in two experimental setups, All-

ButOne and Given5, which were introduced in [BHK98]:

• AllButOne evaluates the prediction accuracy when sufficient infor-

mation about the active user is available. For each active user (from

the test set9) we randomly hide one of the rated items and predict its

rating, based on the ratings on other non-hidden items.

• Given5 evaluates the performance of a collaborative filtering system

when only little information about a user is available. For each ac-

tive user, we retain only 5 ratings. The collaborative filtering system

predicts the ratings of hidden items, based on the 5 visible ratings.

It has been argued that the accuracy of a collaborative filtering system

is most critical when predicting extreme ratings (very high or very low) for

items [PHLG00, SM95]. Since the goal of a collaborative filtering system

is to make recommendations, high accuracy on high and low rated items is

of most importance. One would like to present those items (in particular,

9This naturally requires that we skip users in the test set that have only rated one

single item, respectively users that rated less than 6 items in the Given5 setup.
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products) that the active user likes most, and avoid anything the user dis-

likes. Therefore, for both of the above AllButOne and Given5 setups,

we use two settings Extreme and All (see [PHLG00]). The All setting

corresponds to the standard case where the collaborative filtering system is

asked to predict any of the hidden ratings. In the Extreme setting, the

collaborative filtering system only predicts ratings that are on the end of the

rating scales. For EachMovie, these extreme ratings are {0, 1, 2, 4, 5}, and

ratings below -5 or above 5 for Jester.

Accuracy of Recommendations

We use precision and recall to evaluate the accuracy of recommendations.

These two metrics have been extensively used in information retrieval and

collaborative filtering research [BP98, LAR02]. In our experiments, precision

is the percentage of items recommended to a user that the user actually likes.

Recall is the percentage of items the user likes that are also recommended by

the collaborative filtering system. For the EachMovie data, we assume that

users like those items (movies) which they had rated 4 or 5. For Jester, we

assume that users like those jokes that had been given a rating larger than

5.

To compute precision and recall, we use the following setup. For each

active user (from the test set10) we randomly hide 30 of the user’s ratings11.

The collaborative filtering system then predicts the ratings for these items,

based on the remaining visible ratings. The top ranked items out of these

30 items are then recommended to the user and used to evaluate precision

and recall. We compute precision and recall for two cases, where we either

recommend the top 5 or the top 10 ranked items. These two cases will be

labeled Top5 and Top10 in the table of results.

10The setup requires that we skip users who had rated less than 31 items.
11We experimented with different numbers here, for example, hiding 20 of the user’s

ratings. We found that the results were consistent throughout these experiments, thus we

present only results for one setup.
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Training and Test Sets

For comparing the accuracy of predictions of PMcollaborative filtering with

that of Bayesian network collaborative filtering [BHK98] on the EachMovie

data, we use exactly the same split as reported in [BHK98, PHLG00] with

training and test sets of size 5000. To be able to evaluate the significance of

our results, we use training and test sets (both of size 5000) drawn at random

from the data, and repeat this five times.

Similarly, for evaluating the accuracy of prediction on the Jester data,

we take the first 5000 users as the training set, and the next 5000 as the test

set. Five random splits are used for significance tests.

As mentioned above, we skip all test users that have rated less than 31

items when computing precision and recall, respectively less than two (six)

items when computing the MAE in the AllButOne (Given5) setup. Final

results for MAE, precision and recall are always averaged over all users in

the test set.

2.5.3 Comparison with Other Collaborative Filtering

Methods

To compare the results of PMCF with other established collaborative filtering

methods, we report results in terms of MAE, precision and recall for PMCF

and for the following methods that have proven successful in the collaborative

filtering literature.

• Memory-based collaborative filtering with Pearson correlation coeffi-

cient [RIS+94], one of the most popular memory-based collaborative

filtering algorithms.

• Bayesian network collaborative filtering [BHK98]. Since we use exactly

the same experimental setup and evaluation metrics for the Each-

Movie data as reported in [BHK98], we can directly compare the per-

formance of Bayesian network collaborative filtering with other meth-

ods. We did not implement Bayesian network collaborative filtering for

the Jester data.
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• Näıve Bayesian collaborative filtering [MP00]. Despite its simplicity,

the näıve Bayesian classifier has proven to be competitive with Pearson

correlation collaborative filtering.

All methods are evaluated in the setup described in Sec. 2.5.2.

We compare the above listed methods with two variants of PMCF, which

we label PMCF P and PMCF D. For the PMCF D variant, we use the full

training set to build the density model in Eq. (2.2), that is, the profile space

is taken to be the full training data P = D. The other variant PMCF P
is PMCF with profile space constructed from the training set D in the way

described in Sec. 2.4. For both EachMovie and Jester, we constructed

profile spaces with 1000 profiles (out of the training data of size 5000).

2.5.4 Evaluation of Accuracy

Tab. 2.1 and 2.2 summarize the performance of all evaluated collaborative

filtering methods in terms of accuracy for prediction and recommendation.

Tab. 2.1 lists results for accuracy of prediction that are based on one

particular split of the data into training and test set that has also been used

in [BHK98]. It can be clearly seen that PMCF achieves an MAE that is

about 7-8% lower than the MAE of the competing methods. The results

also suggest that PMCF is particularly suitable for making predictions when

only very little information about the active user is given: PMCF achieved

a particularly high improvement of accuracy for the Given5 scenarios.

For the accuracy of predictions, we also evaluated all methods (except

for the Bayesian network) with five different randomly drawn training and

test sets of size 5000, and did a pairwise comparison of results using a paired

t-test. The test confirmed that both variants of PMCF performed better

than all of the competing method with a significance level of 99% or above.

Comparing PMCF P and PMCF D, we noted that both performed almost

identical for the Given5 setups. For the two AllButOne setups, PMCF

D achieved a slightly better performance.

The results for accuracy of recommendation listed in Tab. 2.1 are averages

over five different random splits into training and test data, as described
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above. The large advantage of PMCF in terms of accuracy of prediction does

not fully carry over to the accuracy of recommendation. Still, a consistent and

statistically significant gain in performance could be achieved. Precision and

recall of PMCF are typically about 2-3% better than those of the competing

methods. A larger performance gain was always achieved in the Top5 setup.

Again, a pairwise comparison of results in a paired t-test was conducted.

Results for one of the two PMCF variants that are marked in bold in Tab. 2.1

are better than those of the two competing methods with a significance level

of 95% or above. Similarly, results marked in italics achieve a significance

level of 90% or above.

Overall, we could verify that our proposed probabilistic memory-based

collaborative filtering framework achieves an accuracy that is comparable

or superior to other approaches that have been proposed for collaborative

filtering.

2.5.5 Evaluation of Profile Learning

In Sec. 2.3, we proposed an active learning approach to interactively learn

user profiles. In this section we investigate the performance of this learning

process in a series of experiments that simulate the interaction between users

and the recommender system.

We use the training/test split described in Sec. 2.5.2. For each test user,

ratings are randomly split into a set S of 30 items and the remaining items U .

We assume that the test user initially has not rated any items, and we wish to

infer his profile using the active learning approach. To obtain long learning

curves, we restrict the test set to users who had rated at least 60 items. This

leaves us with 972 and 1340 test users respectively for the EachMovie and

Jester data sets.

The interactive sessions are simulated as follows: The recommender sys-

tem selects the 10 most informative items12 according to the criterion de-

12Query items might also be presented one by one, instead of using batches of 10 items.

We chose the variant with 10 items since it seems more natural in an application scenario.

Presenting items one by one can easily make users impatient.
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Table 2.1: Accuracy of predictions, measured by mean absolute error MAE,

of different collaborative filtering methods. Details on the individual ex-

periments are given in Sec. 2.5.2 and 2.5.3. Both PMCF P and PMCF D

consistently outperform the competing method, in particular when little in-

formation is given about the active user in the Given5 scenario. The results

shown here are based on the training/test split reported in Sec. 2.5.2. Ad-

ditional experiments with 5 random splits and paired t-test confirmed that

PMCF outperformed the competing methods at a significance level of 99%

or above

EachMovie

All Extreme

AllButOne Given5 AllButOne Given5

Pearson correlation 0.996 1.150 1.130 1.290

Bayesian networks 1.066 1.154

Näıve Bayes 0.987 1.162 1.096 1.223

PMCF D 0.966 1.008 1.010 1.112

PMCF P 0.984 1.008 1.040 1.110

Jester

All Extreme

AllButOne Given5 AllButOne Given5

Pearson correlation 3.927 4.258 5.062 5.730

Bayesian networks

Näıve Bayes 4.132 4.263 4.753 5.512

PMCF D 3.544 3.967 4.408 5.219

PMCF P 3.724 3.972 4.523 5.46442



Table 2.2: Accuracy of recommendations, measured by precision and recall,

of different collaborative filtering methods. All results in this table are av-

eraged over 5 runs, where training and test sets had been drawn at random

from the total data sets. Marked in bold are PMCF results that are signif-

icantly better (with a significance level of 95% or above in a paired t-test)

than the competing approaches. Marked in italic are PMCF results that are

better than the competing approaches with a significance level of 90% or

above. Further details on the individual experiments are given in Sec. 2.5.2

and 2.5.3

EachMovie

Top5 Top10

Precision Recall Precision Recall

Pearson correlation 0.703 0.284 0.656 0.510

Näıve Bayes 0.663 0.264 0.617 0.484

PMCF D 0.715 0.291 0.665 0.520

PMCF P 0.713 0 .288 0 .659 0 .512

Jester

Top5 Top10

Precision Recall Precision Recall

Pearson correlation 0.703 0.284 0.656 0.510

Näıve Bayes 0.663 0.264 0.617 0.484

PMCF D 0.715 0.291 0.665 0.520

PMCF P 0.713 0 .288 0 .659 0 .512
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scribed in Sec. 2.3.4. User feedback is taken from the actual ratings the user

has given on an item, if the item is in set U . Otherwise it is left unrated,

simulating that the user is not able to give feedback on this particular item.

We make a series of such simulated interactions, t = 1, 2, . . . , gaining more

and more knowledge about the user’s profile. For test user a, we compute

the MAE when predicting the ratings in set S and the precision for making

recommendations in set S, denoted by MAE(a, t) and precision(a, t). By

averaging over all users in the test set, we obtain MAE(t) and precision(t).

Using MAE and precision, we compare the following 5 methods for se-

lecting the query items:

1. Query item selection by minimizing the entropy of the like-mindedness,

as outlined in Sec. 2.3.4.

2. Uncertainty sampling, as described in Sec. 2.3.5

3. Entropy sampling, as described in Sec. 2.3.5

4. Popularity sampling: At each iteration, we present 10 of the most

popular items to the test user

5. Random sampling: At each iteration t, we randomly select 10 query

items

Methods 3, 4 and 5 have also been studied in [RAC+02].

The resulting learning curves MAE(t) and precision(t) for the above 5

methods are shown in Fig. 2.2 (for the EachMovie data) and in Fig. 2.3 (for

Jester). The graphs clearly indicate that query item selection based on like-

mindedness outperforms all other tested methods. Like-mindedness based

selection is thus a method which achieves a maximum gain of information

about a particular user with only a minimum of user effort.

For all of the tested methods, we also investigated the average number

of items the user is being able to rate at a particular iteration t. The low

performance of random and entropy based sampling, in particular on Each-

Movie, can be explained by the fact that users are not able to answer the

posed queries. The remaining three methods all achieve similar results for

the average number of rated items. Yet, like-mindedness sampling seems
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(a) MAE(t) (b) Precision(t)

Figure 2.2: Learning individual user profiles for the EachMovie data.

Mean absolute error MAE(t) and precision(t) achieved after t = 1, 2, . . .

steps of user interaction with different strategies for query item selection.

Details of the experimental setup are given in Sec. 2.5.5

to ask more informative questions, leading to the steepest learning curves

among all methods in Fig. 2.2 and 2.3.

From the presented results, we conclude that like-mindedness based sam-

pling is a sensible and accurate method of inferring user profiles and requires

only a minimum amount of user effort. It has a particularly good perfor-

mance on data sets with high sparsity such as EachMovie, where only 3%

of the items are rated, yet it also performs better than competing approaches

on dense data sets (Jester).

2.5.6 Evaluation of Constructing Profile Spaces

We showed in Sec. 2.4 how a small profile space P for the PMCF model can

be constructed out of a large data base of user ratings D. In this section,

we investigate how the profile space construction relates to the achievable

accuracy for predictions and recommendations in the PMCF model.

To this aim, we use the split of training and test data described in
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(a) MAE(t) (b) Precision(t)

Figure 2.3: Learning individual user profiles for the Jester data. Mean

absolute error MAE(t) and precision(t) achieved after t = 1, 2, . . . steps of

user interaction with different strategies for query item selection. Details of

the experimental setup are given in Sec. 2.5.5

Sec. 2.5.2. From the training data D, the profile space P is constructed

iteratively as outlined in Sec. 2.4. At certain intervals13, we evaluate the per-

formance of the PMCF method, based on the profile space constructed so far,

on the test set. We use the mean absolute error MAE in the AllButOne

setting and precision in the Top10 setting as the measures of performance.

We so obtain a curve of performance versus size of the profile space. Since

constructing the profile space uses a randomized strategy to select candidate

profiles (see Sec. 2.4.3), we repeat this procedure 10 times. Thus, error bars

for the performance of PMCF with a profile space of a given size can be

plotted. As the baseline method, we use a PMCF model with a profile space

drawn at random from the full training data D.

The resulting curves for accuracy of prediction (MAE) and recommen-

dation (precision) on the EachMovie data are shown in Fig. 2.4, and in

13Evaluation is done when the profile space has reached a size of 60, 125, 250, 500, 1000,

2000 and 4000.
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(a) MAE(t) (b) Precision(t)

Figure 2.4: Evaluating the profile space construction for the EachMovie

data set. Mean absolute error MAE and precision achieved with profile spaces

of different size, that are either constructed based on KL-divergence (see

Sec. 2.4) or drawn at random from the training data. The plot is averaged

over 10 runs, with error bars

Fig. 2.5 for the Jester data. All plots clearly indicate that the profile

space construction presented in Sec. 2.4 does bring significant advantages

in terms of performance over a randomly chosen profile space. The gain in

performance was particularly large for accuracy of recommendation on the

Jester data.

2.6 Conclusions

In this chapter we proposed a probabilistic framework for memory-based

collaborative filtering (PMCF). The PMCF is based on user profiles in a

specially constructed profile space. With PMCF the posterior distribution of

user ratings can be used to predict an active user’s ratings. An experimental

comparison with other collaborative filtering methods (memory-based collab-

orative filtering with Pearson correlation, Bayesian networks, näıve Bayes)
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(a) MAE(t) (b) Precision(t)

Figure 2.5: Evaluating the profile space construction for the Jester data

set. Mean absolute error MAE and precision achieved with profile spaces

of different size, that are either constructed based on KL-divergence (see

Sec. 2.4) or drawn at random from the training data. The plot is averaged

over 10 runs, with error bars
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showed that PMCF outperforms the competing methods both in terms of

accuracy for prediction and recommendation.

As one of its major advantages, PMCF allows extensions to the basic

model on a sound probabilistic basis. We showed in Sec. 2.3 how an active

learning approach can be integrated smoothly into the PMCF framework.

Through active learning, the collaborative filtering system can interactively

learn about a new user’s preferences, by presenting well selected query items

to the user. Our results showed that the active learning approach performed

better than other methods for learning user profiles, in the sense that it can

make accurate predictions with only a minimum amount of user input.

In Sec. 2.4 we used the probabilistic framework to derive a data selection

scheme that allows the recommender system to make fast and accurate pre-

dictions. Instead of operating on a possibly huge database of user preferences

(as traditional memory-based collaborative filtering does), the data selection

scheme allows us to use only a carefully selected subset, which we call the

profile space. Using the so selected profile space in the PMCF model allows

making fast predictions with only a small drop in performance over a PMCF

model operating on the full data.

We believe that the PMCF framework will allow more extensions and

thus can contribute to further improvements of recommender systems. A

particularly promising research direction is the combination of collaborative

filtering methods with content based filtering into hybrid systems. We are

currently working on a PMCF based hybrid system for image and text re-

trieval [YST+03]. This system implicitly also solves the new item problem:

If no user ratings are available for an item, predictions can still be made on

the basis of the content description.

Our further work on the PMCF model will also include an improved

model for user preferences. In Eq. (2.3), only items that were actually rated

contribute to the model. An improved model could also take into account

the information which items had not been rated. For example, in the Each-

Movie data, a movie may have been unrated because a friend had dissuaded

the user from seeing the movie. Thus, one may be able to extract a certain

degree of information from the set of unrated items as well and further im-

prove the accuracy of a collaborative filtering system.
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For the current PMCF system, as described in this article, the efficiency

of the active learning scheme still needs to be improved. Active learning

based on minimization of the entropy of like-mindedness achieves the best

recommendation accuracy, yet the computational complexity is higher than

that of competing methods such as uncertainty sampling.
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Chapter 3

Content-Based Filter: A
Generalized PCA Model

3.1 Introduction

Information retireval/filtering1 systems typically operate on a database of

information items, e.g. images, movies and articles, with each item described

by many attributes. An image, for example, is associated with visual features

(e.g. color, texture), categories, and introductory texts. As another example,

a web page probably contains texts, images, user logs (implicitly), audio and

video clips. Different types of attributes seem to be developed independently

but actually intrinsically related. Organization and representation of het-

erogeneous attributes remain big research challenges, which can effectively

influence a wide spectrum of problems like,

• Homogenizing the representation of heterogenous data

• Reducing dimensionality of attributes

• Highlighting latent relevant information

• Supporting fast and accurate retrieval/filtering

1In this chapter, we loose the distinguish between information retrieval and information

filtering, since they are almost the same in the context of content-based framework (see

Sec. 1.2.3).
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The challenges generally arise in many application fields, including web infor-

mation retrieval, multimedia databases, data mining, genetics and molecular

biology, language modelling and machine translation.

Pattern recognition, machine learning and statistics communities have a

long tradition to develop dimensionality reduction approaches for continuous

data (e.g. principal component analysis (PCA), factor analysis). Recently

similar models were applied to text data, which was referred as latent seman-

tic analysis (LSA) or indexing (LSI). Studies indicate that LSA (or LSI) can

reduce the dimensionality of document representations. The derived compact

features summarize the dependencies between different terms and are often

highly informative in characterizing the semantics of documents. Currently

those related models mainly handle continuous data, lacking means to deal

with non-continuous or mixed types of data.

This chapter will describe a different and novel paradigm, with emphasis

on the fusion of as wide as possible information sources in content-based

information filtering. As different attributes describe the information items

from different perspectives, putting them all together is likely to add more

relevant information in processing. This expansion, however, also makes it

harder to handle the information due to the higher dimensionality and mixed

types of attributes (i.e. continuous, binary and categorical). Clearly we need

a dimensionality reduction algorithm dealing with vectors with heterogenous

attributes. Traditionally few dimension reduction methods can do the job.

Here we develop a new dimensionality reduction model, called generalized

probabilistic principle component analysis (GPPCA), to transform heteroge-

neous attributes into reduced and unifying continuous Gaussian variables.

Thus the model is not only dimensionality reduction, but also feature fu-

sion. In addition to obvious benefits for computational concerns (as typical

algorithms only easily work with low-dimension and continuous data), the

reduced features are often highly indicative, as indicated by Vapnik,

if one can significantly compress the description of the given string,

then the algorithm used describes intrinsic properties of the data.

We will empirically demonstrate that the extraction of latent variables from

heterogenous attributes can significantly improve the accuracy of content-
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based retrieval/filtering on painting data.

The rest of this chapter will be organized as follows. Sec. 3.2 gives an

overview on the research of latent variable analysis. Then in Sec. 3.3 we will

describe our model of GPPCA and derive an efficient variational expectation-

maximization (EM) algorithm to learn the model from data. we also discuss

properties of the model and connections to previous work. Empirical studies,

based on movie data and image data, are given in Sec. 3.4. At the end, we

end up this chapter by some conclusive discussions in Sec. 3.5.

3.2 Latent Variable Analysis

We can often assume that high-dimensional observations are indirect mea-

surements arising from one or several underlying source(s), which typically

cannot be directly measured. Latent variable analysis (also called hidden

variable analysis) is a family of unsupervised data modelling approaches that

factorizes high-dimensional observations with a reduced set of latent vari-

ables. The latent variables offer explanations of the dependencies between

observed variables and often explore the underlying sources.

This section will review some major latent variable models, including

factor analysis (FA) and principal component analysis (PCA). The focus is

not on a comprehensive coverage of the whole field, but on highlighting the

the mechanism of using reduced latent variables to explain high dimensional

data.

3.2.1 Factor Analysis

Factor analysis (FA) is a classical technique developed in the statistical lit-

erature that aims to identify latent uncorrelated continuous variables, which

are assumed to be Gaussian distributed.

In order to find a representation for the distribution of observed data t

in an M -dimensional space t = (t1, . . . , tM) in terms of L (L < M) latent
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variables (or factors) x = (x1, . . . , xL), FA has the form

t1 = w11x1 + · · ·+ w1LxL + b1 + ε1

t2 = w21x1 + · · ·+ w2LxL + b2 + ε2

...
... (3.1)

tM = wM1x1 + · · ·+ wMLxL + bM + εM

or t = Wx + b + ε, where W is an L ×M matrix of factor loadings, the

εm are uncorrelated zero-mean Gaussian noises, and the bm are constants

accounting for the mean of observations t. Assuming x are a priori Gaussian

distributed with zero mean and unit covariance matrix, we can write down

the generative process of observations as

x ∼ N (x;0, I) (3.2)

t|x ∼ N (t;W>x+ b,Cε) (3.3)

where Cε = diag[Var(ε1), . . . ,Var(εM)]. FA assumes that observed multi-

variate data t are generated from some independent2 zero-mean Gaussian

sources x by linear transformation W (i.e. rotation and stretching of the

coordinates), plus observation noises ε and bias of mean b. The covariance

of observations is therefore written as

Ct = W>W +Cε (3.4)

Cε being diagonal indicates that εm are unique to each tm and explain the

uncorrelated variation between tms. Thus latent sources account for the

correlations of coordinates of observations and W explains the correlations.

Given multivariate t, typically an expectation-maximization (EM) algorithm

is applied to learn the model. Fig. 3.1 offers a graphical interpretation to

FA.

3.2.2 Principal Component Analysis

Principal Component Analysis (PCA) has been proven successful in dimen-

sionality reduction for many pattern recognition applications. For a set of N

2Variables being Gaussian and uncorrelated are statistically independent.
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Figure 3.1: A graphical interpretation to factor analysis

zero-mean random observation vectors tn ∈ RM , n = 1, . . . , N , PCA diago-

nalizes the covariance matrix 3

Ct =
1

N

∑
tnt

>
n (3.5)

To do this, one has to solve the eigen-decomposition problem:

Ct =
∑
m

λmvmv
>
m

= V ΛV > (3.6)

where Λ is a diagonal matrix diag[λ1, . . . , λM ] and vm (i.e. each column of

V ) is an eigenvector. PCA picks up the L leading eigenvectors with largest

eigenvalues as principle components. It can be easily demonstrated that an

eigenvalue is the variance of data distribution over its corresponding eigen-

vector (principal component). That is to say, PCA identifies the principal

subspace where data distribution has the largest variance. An illustration of

PCA on two-dimensional data is in Fig. 3.2.

Recent studies on PCA reveals that it has strong connections with sta-

tistical FA but takes a slightly different modelling assumption, where the

measurement noises are assumed to be isotropic, i.e. having equal variance

σ2 [TB99, RG99]. Thus the generative model is

x ∼ N (x;0, I) (3.7)

t|x ∼ N (x;W>x+ b, σ2I) (3.8)

and the covariance matrix of t is

Ct = W>W + σ2I (3.9)

3More precisely, the covariance matrix is the expectation of tt>
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Figure 3.2: An illustration of PCA on two-dimensional data

It turns out that the maximum likelihood estimate of the factor loading

matrix W in this case is given by the first L principle eigenvectors of the

observation covariance matrixCt, with scaling determined by the eigenvalues

and noise variances [TB99]. Classical PCA Eq. (3.7) can be obtained by

assuming σ → 0 in this latent-variable framework.

3.3 A Generalized Probabilistic PCA Model

We will present a probabilistic latent-variable model to fit observations with

both continuous and binary attributes in this section. Since in practice cat-

egorical attributes can always be effectively encoded by sets of binary at-

tributes (e.g. 1-of-c coding scheme [Bis95]), this model can be applied to a

wide range of situations. We call the model as generalized probabilistic PCA

(GPPCA).

3.3.1 Latent-Variable Modeling Mixed Types of Data

The goal of a latent variable model is to find a representation for the dis-

tribution p(t) of observed data in an M -dimensional space t = (t1, . . . , tM)

in terms of a number of L latent variables x = (x1, . . . , xL). In our set-

ting of interest, we consider a joint distribution of M continuous and binary
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attributes, as illustrated in Fig. 3.4. We use m ∈ R to indicate that the

variable tm is continuous-valued, and m ∈ B for binary variables (i.e. {0, 1}).
The generative model is:

x ∼ N (x;0, I) (3.10)

y|x = W Tx+ b (3.11)

tm|ym ∼ N (tm; ym, σ
2) m ∈ R (3.12)

tm|ym ∼ Be
(
g(ym)

)
m ∈ B (3.13)

By Be(p) we denote a Bernoulli distribution with parameter p (the probability

of giving a 1). W is an L×M matrix with column vectors (w1, . . . ,wM), b

an M -dimensional column vector, and g(ym) the sigmoid function (Also see

Fig. 3.3)

p(tm = 1) = g(ym) =
1

(1 + exp(−ym))
(3.14)

which models a Bernoulli distribution’s dependence on a linear continuous

quantity as a generalized linear model [HTF01]. We assume that the observed

vectors t are generated from a prior Gaussian distribution with zero mean and

identity covariance matrix4. Note that we assume a common noise variance

σ2 for all continuous variables. To match this assumption, we sometimes

need to use scaling or whitening as a pre-processing step for the continuous

data in our experiments.

The likelihood5 of an observation vector t given the latent variables x

and model parameters θ is

p(t|x, θ) = p(tR|x, θ)p(tB|x, θ)

=
∏
m∈R

1√
2πσ2

exp
{
− 1

2

(ym − tm)2

σ2

} ∏
m∈B

g
(
(2tm − 1)ym

)
(3.15)

4A non-zero mean and non-identity covariance matrix can be moved to parameters W

and b without loss of generality.
5A full Bayesian treatment would require prior distributions for the parameters θ. We

do not go for a full Bayesian solution here, thus implicitly assuming a non-informative

prior.
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Figure 3.3: Sigmoid function

Figure 3.4: Graphical models of PCA and generalized probabilistic PCA
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where ym = wT
mx+ bm. The distribution in t-space, for a given value of θ is

then obtained by integration over the latent variables x

p(t|θ) =

∫
p(t|x, θ)p(x)dx (3.16)

3.3.2 Maximum-Likelihood Model Fitting

For a given set of N observation vectors, the log likelihood of data D is

L(θ) = log p(D|θ) =
N∑

n=1

log p(tn|θ) (3.17)

We estimate the model parameters θ = {W , b, σ2} by maximizing the log

likelihood L(θ), which can be typically achieved by the expectation-maximization

(EM) algorithm [DLR77]. It starts from a random guess of θ and then itera-

tively repeats the E-step and M-step. Each iteration increases the likelihood

of data.

E-step:

At the expectation step, we estimate the a posteriori distribution of hidden

variables given the current estimate of model parameters.

p(x|t, θk) =
p(t|x, θk)p(x)∫
p(t|x, θk)p(x)dx

(3.18)

M-step:

At the maximization step, we update the estimate of parameters by maxi-

mizing the expected likelihood of observations over the estimated a posteriori

distribution of hidden variables from the last E-step.

θk+1 = arg max
θ

∫
p(t|x, θ)p(x|t, θk)dx (3.19)

However, given parameters θk estimated from the previous M-step, the

posterior distribution p(x|t, θk) in E-step can not be analytically solved due

to the integral. We thus have to resort to an approximated solution like
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MCMC (Markov Chain Monte-Carlo) sampling [Fis96], which draws S ran-

dom samples from p(x|t, θk). Then the integral at M-step can be approx-

imated by a sum of predictive likelihood p(t|x, θ) evaluated at S random

samples, with the complexity increased by S times. MCMC demonstrates

good performance in many cases, however, it introduces a rather high compu-

tational cost. In the next section, we will present an analytical approximation

to solve this problem.

3.3.3 A Variational EM Algorithm for Model Fitting

In order to obtain the parameters θ that maximize Eq. (3.17), we employ a

variational EM algorithm[JGJS99]. A variational EM algorithm constructs

a lower bound (the variational approximation) for the likelihood of observa-

tions, Eq. (3.17), by first introducing additional variational parameters ψ.

Then, it iteratively maximizes the lower bound with respective to the vari-

ational parameters (at the E-step) and the parameters θ of interest (at the

M-step).

By adopting a variational lower bound previously used for Bayesian lo-

gistic regression [JJ00], an approximation for the likelihood contribution of

binary variables, tm ∈ B in Eq. (3.13) is given by

p(tm|x, θ) ≥ p̃(tm|x, θ, ψm)

= g(ψm)exp
{
(Am − ψm)/2 + λ(ψm)(A2

m − ψ2
m)

}
(3.20)

where Am = (2tm − 1)(wT
mx + bm) and λ(ψm) = [0.5 − g(ψm)]/2ψm. For a

fixed value of x, we get the perfect approximation where the lower bound

is maximized to be p(tm|x, θ) by setting ψm = Am. However, in the case

of x distributed over a Gaussian distribution N (0, I), maximization of the

corresponding lower bound with respect to ψm is not so straightforward. In

the following we derive the variational approximation for the log likelihood

Eq. (3.17) of data D as the following

L(θ) ≥ F(θ,Ψ) = log
N∏

n=1

∫
p̃(tn|x, θ,ψn)p(x)dx (3.21)
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where

p̃(tn|x, θ,ψn) =
∏
m∈R

p(tmn|x,wm, σ)
∏
m∈B

p̃(tmn|x,wm, ψmn) (3.22)

We denote the total set of N × |B| variational parameters by Ψ. Since the

variational approximation depends on x only quadratically in the exponent

and the prior p(x) is Gaussian, the integrals to obtain the approximation

F(θ,Ψ) can be solved in closed form.

The variational EM algorithm starts with an initial guess of θ and then

iteratively maximizes F(θ,Ψ) with respect to Ψ (E-step) and θ (M-step), re-

spectively, holding the other fixed. Each iteration increases the lower bound,

but will not necessary maximize the true log likelihood L(θ). However, since

the E-step results a very close approximation of L(θ), we expect that, at M-

step, the true log likelihood is increased. Details are given in the following:

E-step: Ψk+1 ← arg maxΨF(θk,Ψ)

The optimization can be achieved by a normal EM approach. Given ψold
n

updated from the previous step, the algorithm iteratively estimates the suf-

ficient statistics for the posterior approximation p̃(xn|tn, θk,ψold
n )6, which is

again a Gaussian with covariance and mean given by

Cn =
[ 1

σ2

∑
m∈R

wmw
T
m + I − 2

∑
m∈B

λ(ψold
mn)wmw

T
m

]−1
(3.23)

µn = Cn

{ 1

σ2

∑
m∈R

(tmn − bm)wm +
∑
m∈B

[2tmn − 1

2
+ 2bmλ(ψold

mn)
]
wm

}
(3.24)

and then updates ψn by maximizing En

{
log p̃(tn,xn|θk,ψn)

}
where the

expectation is with respect to p̃(xn|tn, θk,ψold
n ). Taking the derivative of

En

{
logp̃(tn,xn|θk,ψn)

}
with respect to ψn and setting it to zero leads to

the updates

ψ2
mn = En

{
(wT

mxn+bm)2
}

= wT
mEn(xnx

T
n )wm+2bmw

T
mEn(xn)+b2m (3.25)

6Based on Bayes’ rule, the posterior approximation is derived by normalizing

p̃(tn|xn, θk,ψold
n )p(xn) and thus is a proper density, no longer a lower bound.
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where En(xnx
T
n ) = Cn + µnµ

T
n and En(xn) = µn. The two-stage opti-

mization updates ψ and monotonously increases F(θk,Ψ). The experiments

showed that this procedure converges rapidly, most often in only two steps.

M-step: θk+1 ← arg maxθ F(θ,Ψk+1)

Similar to the former E-step, this can also be achieved by iteratively first

estimating the sufficient statistics of p̃(xn|tn, θold,ψk+1
n ) through Eq. (3.23)

and Eq. (3.24), and then maximizing
∑N

n=1En

{
logp̃(tn,xn|θ,ψk+1

n )
}

with

respect to θ, where En(·) denotes the expectation over p̃(xn|tn, θold,ψk+1
n ).

For m ∈ R, we derive the following updates

wT
m =

[ N∑
n=1

(tmn − bm)En(xn)T
][ N∑

n=1

En(xnx
T
n )

]−1

(3.26)

σ2 =
1

N |R|

N∑
n=1

{ ∑
m∈R

[
wT

mEn(xnx
T
n )wm+2(bm−tmn)wT

mEn(xn)+(bm−tmn)2
]}

(3.27)

where bm, m ∈ R, is directly estimated by the mean of tmn. For m ∈ B, we

have the following updates

(wT
m, bm)T = −

[ N∑
n=1

2λ(ψmn)En(x̂nx̂
T
n )

]−1[ N∑
n=1

(tmn − 0.5)En(x̂n)
]

(3.28)

where x̂n = (xT , 1)T .

3.3.4 Inference with Complete and Incomplete Obser-

vations

Finally, given the trained generative model, we can infer the a posteriori

distribution of hidden variables for a complete observation vector t by using

Bayes’ rule

p(x|t, θ) =
p(t|x, θ)p(x)∫
p(t|x, θ)p(x)dx

(3.29)
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However, since the integral is again infeasible, we need to derive a variational

approximation by normalizing p̃(t|x, θ,ψ)p(x), where ψ is obtained by max-

imizing the lower bound p̃(t|θ,ψ), as described by Eq. (3.23), Eq. (3.24), and

Eq. (3.25) in the E-step of variational EM inference. The optimization goes

on with model parameters θ fixed and converges very fast, normally whithin

2 iterations.

For a vector t with some missing attributes, we can still infer the posterior

distribution with the described model, since essentially the attributes are

independent given model parameters θ and latent variables x. Let t∗ ∈ t
denote the non-missing attributes, we can infer the posterior distribution of

latent variables

p(x|t∗, θ) =

∏
p(t∗|x, θ)p(x)∫ ∏
p(t∗|x, θ)p(x)dx

(3.30)

Again, the inference resorts to an iterative optimization process with respect

to variational parameters ψ: starting from a random initialization of ψ,

and interatively first estimating the covariance and mean of the posterior

distribution of hidden variables given the visible attributes t∗

C =
[ 1

σ2

∑
m∈R∗

wmw
T
m + I − 2

∑
m∈B∗

λ(ψold
m )wmw

T
m

]−1
(3.31)

µ = C
{ 1

σ2

∑
m∈R∗

(tm − bm)wm +
∑

m∈B∗

[2tm − 1

2
+ 2bmλ(ψold

m )
]
wm

}
(3.32)

where R∗ and B∗ respectively denote the non-missing continous and non-

missing binary attributes, and then updating variational parameters

ψ2
m = E

{
(wT

mx+ bm)2
}

= wT
mE(xxT )wm + 2bmw

T
mE(x) + b2m (3.33)

Obviously, with missing data, the uncertainty of latent varibles x is likely

to be increased. At the end, we can use the estimated mean of x as the

intrinsic representation of observations. Finally, we would note that the

ability of handling missing data is one of the big advantages of probabilistic

latent-variable models, while traditional dimensionality-reduction methods

solve the problem in an ad-hoc way, just filling in default values. In the

application of information filtering, there might be many missing data due

to varous reasons. In our experiment we associate paintings with user logs,

which typically have a large portion of missing values since each user only

visited a subset of paintings.
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3.3.5 Unbalanced Inference

We can extend GPPCA to the case of unbalanced inference, meaning that

sometimes we wish the model fitting adapted to only a subset of attributes.

Putting the problem in a general setting, let tu be ordainary attributes (

continous or discrete) and tv be the important attributes that we wish to

adapt to. The learning problem can be solved in two steps:

• Maximizing the likelihood p(tv|θv) via the variational EM algorithm,

and deriving the sufficient statistics of the a poseriori distributions of

latent variables p(x|tv, θv) for each samples tv.

• Using only the M-step to estimate parameters θu by maximizing the

likelihood p(tu|x, θu) expected over p(x|tv, θv).

This approach takes into account the coviarance structure of tv and the

covariance between tv and tu, while ignoring the covariance of tu.

For a better understanding of the problem, let us think about a content-

based image retrieval problem using low-level visual features and texts. It

makes sense to assume that visual features are pretty weak while texts are

always relevant to people’s searching intentions. Thus we can train the model

with higher emphasis on the texts based on some images with mannully

annotated texts. Since in the trained model the mapping from low-level

features to latent space has been ’forced’ by textual information, thus the

resultant model is likely to project images without textual information into

semantically meaningful latent spaces. This is a nice property because textual

annotation costs many human efforts.

Let us consider another problem called supervised dimensionality reduc-

tion, in which given some labelled training examples, GPPCA treats the

target labels (or values) as additional attributes tv and adapts the derived

latent varibles t accounting for targets. After the model is learned, given

a new input vector with targets being missing, with parameters θu we can

transform the input into a meaningful latent space.
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3.3.6 Properties of GPPCA

Multivariate Data Analysis, Fusion and Visualization

The rows of the ML estimator W that relates latent variables to observed

variables span the principal subspace of the data. The GPPCA model allows

a unified probabilistic modelling of continuous, binary and categorical obser-

vations, which can bring great benefits in real-world data analysis. Also, it

can serve as a visualization tool for high-dimensional mixed data in a two-

dimensional latent variable space. Existing models currently only visualize

either continuous [BSW98] or binary data [Tip99]. Also, like PPCA [TB99],

GPPCA specifies a full generative model, it can also handle missing obser-

vations in a principled way.

For pattern recognition tasks, GPPCA can provide a principled data

transformation for general learning algorithms (which most often rely on

continuous inputs) to handle data with mixed types of attributes. In infor-

mation filtering, the advantage is even more apparent. Suppose that we are

building a web-based image search system. A common way to characterize

and index images is to perform PCA on high-dimensional visual measures

(e.g. color, texture, shape and segments). The proposed generalized GP-

PCA can do this by taking into account not only the visual features, but

also image categories, textual descriptions, and even user visit logs. This

scenario has the potential power of finding the projections of images that

actually reflect the semantics and high-level perceptual properties.

Supervised Dimensionality Reduction

Also, GPPCA can provide a principled approach to supervised dimensionality

reduction, by allowing the target values as additional observation variables.

GPPCA explores the dependence between inputs and targets via the hidden

variables and maximizes the joint likelihood of both. It actually discovers

a subspace of the joint space in which the projections of inputs have small

projection loss and also have clear class distributions. A large number of

methods have been developed to handle issue of supervised data reduction

(see [HTF01]), like partial least squares, linear discriminant analysis (LDA).
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However most of them, in general, can not handle missing data. Moreover,

for a problem with c classes, LDA only finds a c− 1 independent projective

directions. For problems with few classes and high input dimensionality this

may result in a reduction of dimensionality that is too drastic (see [Bis95]).

Relation to Previous Work

Jaakkola & Jordan [JJ00] proposed a variational likelihood approximation for

Bayesian logistic regression, and briefly pointed out that the same approxima-

tion can be applied to learn the “dual problem”, i.e. a hidden-variable model

for binary observations. Tipping [Tip99] derived the detailed variational EM

formalism to learn the model and used it to visualize high-dimensional bi-

nary data. Collins et al. [CDS01] generalized PCA to various loss functions

from the exponential family, in which the case of Bernoulli variables is similar

to Tipping’s model. Latent variable models for mixed observation variables

were also studied in statistics community [Mou96, SRL97]. In contrast to

our variational approach, [Mou96] and [SRL97] used numerical integration

methods to handle the otherwise intractable integral in the EM algorithm.

Latent variable models for mixed data were already mentioned by Bishop

[BSW98] and Tipping [Tip99], yet never explicitly implemented. Recently,

Cohn [Coh03] proposed informed projections, a version of supervised PCA,

that minimizes both projection loss and inner-class dissimilarities. How-

ever, this requires tuning a parameter β to weight the two parts of the loss

function. To our best knowledge, little work has been done in information

retrieval and filtering that mergeing heterogenous descriptive attributes into

unifying continuous features.

3.4 Empirical Study

3.4.1 A Toy Problem

We first illustrate GPPCA on a simple problem, where 100 two-dimensional

samples are generated from two Gaussian distributions with mean [−1, 1] and
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Figure 3.5: A toy problem: PCA, GPPCA and GPPCA-W solutions

[1,−1] respectively and equal covariance matrices. A third binary variable

was added that indicates which Gaussian the sample belongs to. We perform

GPPCA, as described in Sec. 3.3, and standard PCA on the data to identify

the principal subspace. The results are illustrated in Fig. 3.5. As expected,

the PCA solution is along the direction of largest variance. The GPPCA so-

lution, on the other hand, also takes the class labels into account, and finds

a solution that conveys more information about the observations. In an ad-

ditional experiment, we pre-process the continuous variables with whitening

and then perform GPPCA. We will refer to this as GPPCA-W in the fol-

lowing. With GPPCA-W, the solution even more clearly indicates the class

distribution. Clearly, a change of the subspace in W corresponding to the

whitened continuous variables will no longer change the likelihood contribu-

tion. Thus, the GPPCA EM algorithm will focus on the likelihood of binary

observations only and thus lead to a result with clear class distribution.

3.4.2 Visualization of Painting Images

Next, we show an application of GPPCA to visualizing image data. We con-

sider a data set of 642 painting images from 47 artists. An often encountered

problem in the research on image retrieval is that low-level visual features
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(a) PCA solution

(b) GPPCA solution

(c) GPPCA-W solution

Figure 3.6: Visualization of painting images
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(a)

(b)

Figure 3.7: Precision on painting image recommendation, based on different

features
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(like color, texture, and edges) can hardly capture high-level information of

images, like concept, style, etc. GPPCA allows to characterize images by

more information than just those low-level features. In the experiment, we

examine if it is possible to visualize different styles of painting images in a

2-dimensional space by incorporating the information about artists.

As the continuous data describing the images, we extract 275 low-level

features (correlagram, wavelet texture, and color moment) for each image.

We encode the artists in 47 binary attributes via a 1-of-c scheme, and obtain

a 322-dimensional vector with mixed data for each image. The result of

projecting this data to a 2-dimensional latent space is shown in Fig. 3.6,

where we limit the shown data to the images of 3 particular artists.

The solution given by normal PCA does not allow a clear separation of

artists. In contrast, the GPPCA solution, in particular when performing

an additional whitening pre-processing for the continuous features, shows

a very clear separation of artists. Note furthermore, that the distinction

between Van Gogh and Monet is a bit fuzzy here—these artists do indeed

share similarities in their style, in particular brush stroke, which is reflected

by texture features.

3.4.3 Recommendation of Painting Images

Due to the deficiency of low-level visual features, building recommender sys-

tems for painting image is a challenging task. Here we will demonstrate that

GPPCA allows a principled way of deriving compact and highly informative

features. Thus the accuracy of recommender systems based on the new image

features can be significantly improved.

We use the same set of 642 painting images as in the previous section.

190 users’ ratings (like, dislike, or no rated) were collected through an on-

line survey 7. For each image, we combine visual features (275-dim.), artist

(47-dim.), and a set of M advisory users’ ratings on it (M-dim.) to form an

(322 + M)-dimensional feature vector. This feature vector contains contin-

uous, binary and missing data (because on average each user only rated 89

7http://honolulu.dbs.informatik.uni-muenchen.de:8080/paintings/index.jsp
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images). We apply GPPCA to map the features to a reduced 50-dimensional

feature space. The rest of 190−M users are then treated as test users. For

each test user, we hide some of his/her ratings and assume that only 5, 10,

20, or 50 ratings are observed. We skip one particular case if a user has

not given that many ratings. Then we use the rated examples, in form of

input (image features) – output(ratings) pairs, to train an RBF-SVM model

to predict the user’s ratings on unseen images and make a ranking. The

performance of recommendation is evaluated by the top-20 precision, which

is the fraction of actually liked images among the top-20 recommendations.

We equally divide the 190 users into 5 groups, pick one group as the group

of test users and treat the other 152 users as advisory users. For each tested

case, we randomize 10 times and calculate the mean and error bars. The

results are shown in Fig. 3.7.

Fig. 3.7(a) shows that GPPCA improves the precision in all the cases by

effectively incorporating richer information. This is not surprising since the

information about artists is a good indicator of painting styles. Advisory

users’ opinions on a painting actually reflect some high-level properties of

the painting from a different individual’s perspective. GPPCA here provides

a princpled way to represent different information sources into a unified form

of continuous data, and allows accurate recommendations based on the re-

duced data. Interestingly, as shown in Fig. 3.7(a), a recommender system

working with direct combination of the three aspects of information shows

a much lower precision than the compact form of features. This indicates

that GPPCA effectively detects the ‘signal subspace’ of high dimensional

mixed data, while eliminating irrelevant information. Note that there are

over 80 percent of missing data in the user ratings. GPPCA also provides

an effective means to handle this problem. Fig. 3.7(b) shows that GPPCA

incorporating visual features and artist information significantly outperforms

a recommender sytem that only works on artist information. This indicates

that GPPCA working on the pre-whitened continuous data does not remove

the influence of visual features.
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3.5 Conclusions

This section describes generalized probabilistic PCA (GPPCA), a latent-

variable model for mixed types of data, with continuous and binary obser-

vations. By adopting a variational approximation, an EM algorithm can be

formulated that allows an efficient learning of the model parameters from

data. The model generalizes probabilistic PCA and opens new perspectives

for multivariate data analysis and machine learning tasks. For content-based

filtering, mixed sources of attributes can be merged into low-dimensional con-

tinuous feature vectors, which can be easily processed by most of the existing

content-based filtering algorithms. Since the derived data account for the de-

pendence of original content features and thus often reflect the semantics of

items, the quality of filtering can also be improved.

We demonstrated the advantages of the proposed GPPCA model on toy

data and data from painting images. GPPCA allows an effective visualiza-

tion of data in two-dimensional hidden space that takes into account both

information from low-level image features and artist information. Our exper-

iments on an image retrieval task show that the model provides a principled

solution to incorporating different information sources, thus significantly im-

proving the achievable precision. Currently the described model reveals the

linear principal subspace for mixed high dimensional data. It might be in-

teresting to pursue non-linear hidden variable model to handle mixed types

of data. Also, how to deceide the number of hidden variables is also an open

question.
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Chapter 4

Hybrid Filter: A Hierarchical
Bayesian Model

4.1 Introduction

Content-based filtering (CBF) and collaborative filtering (CF) represent the

two major information filtering technologies. CBF systems analyze the con-

tents of a set of items, together with the ratings provided by an individ-

ual user (called the “active user”), to infer which of the yet unseen items

might be of interest for the active user. Examples include [BS97, MR00,

PMB96, YT04, XYT+03, XXY+03]. In contrast, collaborative filtering meth-

ods [RIS+94, SM95, BP98, YST+04, YXEK03, YXS+02, YXT+02, YXEK01,

YWXE01] typically accumulate a database of item ratings cast by a large

set of users. The prediction of ratings for the active user is solely based on

the ratings provided by all other users. These techniques do not rely on a

description of item content.

One major difficulty in designing CBF systems lies in the problem of

formalizing human perception and preferences based on content analysis.

There is a large gap between low-level content features (visual, auditory,

or others) and high-level user interests (like or dislike a painting or music).

Fortunately, the information on personal preferences and interests are all

carried in (explicit or implicit) user ratings. Thus CF systems can make use

of these high level features rather easily, by combining the ratings of other

like-minded users.
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On the other hand, pure CF only relies on user preferences, without

incorporating the actual content of items. CF often suffers from the extreme

sparsity of available data, in the sense that users typically rate only very

few items, thus making it difficult to compare the interests of two users.

Furthermore, pure CF can not handle items for which no user has previously

given a rating. Such cases are easily handled in CBF systems, which can

make predictions based on the content of the new item.

4.1.1 Recent Work on Hybrid Filtering

Therefore, recently several hybrid approaches have been proposed to com-

pensate the drawbacks of each method. The key challenge is how to smoothly

combine the two types of filters. However, almost all the existing approaches

did it in a heuristic or ad-hoc way. They may works well in some cases, but

can hardly be applicable everywhere due to lacking of deep insights to the

problem.

A family of approaches, e.g. [Paz99, CGM+99], treat content-based filter-

ing and collaborative filtering separately and present the weighted average

of both predictions as the final outcome. As another example, Fab [BS97] is

a distributed implementation of a hybrid system. It maintains user profiles

based on content analysis, and directly compare these profiles to determine

similar users for collaborative filtering. An item is recommended to a user

both when it scores highly against the user’s own profile, and when it is also

rated highly by users with similar profile. This family of methods combine

two basic filtering approaches in a straightforward way. It needs heuristics to

balance the weights of two parts. More seriously, they completely ignores the

interaction between content effect and social effect and thus are not likely to

achieve the optimal performance.

Basu et al [BHC98] proposed a classification approach that extends content-

based filtering based on not only normal descriptive content features but also

collaborative features (i.e. , other users’ ratings on items). In this paradigm,

difficulty comes from the extreme sparsity of collaborative features. Also the

classifier need to be able to handle heterogenous input data (Interestingly,

our proposed GPPCA in Ch. 3 is a way to solve the two problems.).
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In another approach, a different combination strategy was taken in content-

boosted collaborative filtering [MMN02], where content-based filters are built

for each user and then applied to reduce the sparsity by generating pseudo

ratings for non-rated items. The augmented user rating data is used to feed a

collaborative filtering algorithm. It is yet unclear how much we should trust

the the pseudo ratings. Obviously treating it equally with true ratings is not

a good choice.

There are only few examples of a unifying framework for these two basic

information filtering ideas, one being the three-way aspect model [PUPL01],

which builds a probabilistic generative model assuming that both terms

(i.e. textual content features) and user logs are generated from some hid-

den variables. This approach, however, is only applicable to text data and

suffers from the sparsity of data. Our recent work [YST+03, YMT+03] made

a step forward by suggesting a hierarchical Bayesian model. In this chapter

we describe a nonparametric theoretical framework [YTY04] that generalizes

our previous work.

4.1.2 Overview of Our Work

This chapter introduces the idea of nonparametric hierarchical Bayesian mod-

elling to information filtering. The framework provides a deeper understand-

ing on the nature of information filtering and leads to a principled hybrid

filtering algorithm, which is general, simple and intuitively interpretable.

The framework assumes that each user’s observed preferences data (i.e. an-

notations) are generated based on the user’s own profile model, which itself

is a random sample from a prior distribution of user profiles, shared by all

the users and thus called the common prior in this paper. In this hierarchi-

cal Bayesian model each user’s model is constrained by the common prior,

through which the user is “communicating” with others.

The common prior is “learned” based on the observed annotations from

a population of users. One may assume a parametric form (e.g. a Gaussian)

for the common prior, and then estimate the associated parameters (e.g. the

mean and variance in the Gaussian case). However, due to the complexity

of the functional form of the learned prior, the true distribution of profiling
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models can hardly be described by any known parametric distributions (e.g. a

Gaussian). As a solution, this paper relaxes the parametric limitation on the

common prior and adopts a nonparametric form—an infinite dimensional

multinomial distribution—which itself is generated from a Dirichlet Process

[EW95]. This model encompasses that, a priori, a new user may follow

other users’ interests, but may also have his/her own unique interests. The

process enables a learning session for a new user to inherit knowledge from the

sessions of other users, which leads to quite meaningful results for information

filtering.

In the learning phase, typical Bayesian inference requires MCMC ( Monte

Carlo Markov Chain) sampling that is computationally expensive. This pa-

per instead introduces novel approximations to learn the common prior ef-

fectively and efficiently. For a new user, the learned common prior is easily

integrated into the prediction making in a Bayesian manner.

Finally, we would like to emphasize that the proposed work not only

presents a novel and principled hybrid information filtering algorithm, but is

also a quite general framework for information filtering and retrieval, since:

(1) It unifies the CF and CBF in a single framework, where pure CF and

pure CBF are special cases under certain circumstances; (2) Various existing

algorithms combining CF and CBF can now be interpreted from a unified

point of view, and their further improvements are also suggested; (3) Since

CBF has its roots in information retrieval, the proposed work is also applica-

ble to information retrieval, enabling retrieval sessions to inherit knowledge

from each other. (4) The framework makes no requirements for the form of

profiling models, it is thus applicable to a very wide range of user modelling

applications in information filtering and retrieval (e.g. hidden Markov model

for modelling user web browsing, and support vector machines for image

retrieval).

4.1.3 Structure of This Chapter

The rest of this chapter is organized as follows. In Sec. 4.2, we will inten-

sively explain the idea of modelling information needs of many users in a

hierarchical Bayesian framework. Then we will introduce a nonparametric

76



solution to learn the prior distribution using Dirichlet process in Sec. 4.2.3.

The realization of the theoretical framework using support vector machines

will be presented in Sec. 4.5. In Sec. 4.6 we report results for applying the

described algorithm to three data sets including images and texts. We end

by giving conclusions and an outlook to future work in Sec. 4.7.

4.2 Modelling Information Needs via Hierar-

chical Bayes

In the following, we assume a set of M items, each item j being represented

by a vector of features xj, j = 1, . . . ,M . Also, we have annotation data for N

different users. Annotation data for user i consists of a set of rated items Ri,

together with a set of ratings {yij}, j ∈ Ri, where each rating yij is either +1

(liked that particular item) or −1 (disliked)1. The overall annotation data for

user i, i = 1, . . . , N is denoted by Di = {(xj, yi,j) | j ∈ Ri, yi,j ∈ {+1,−1}}.

4.2.1 Non-Hierarchical Bayesian Models

Given observations Di from user i, a statistical content-based approach will

normally learn a predictive model, represented by parameters θi, by the

maximum-likelihood (ML) principle,

θML
i = arg max

θ
p(Di|θ). (4.1)

Once the ML estimate θML
i is achieved, Di can be thrown away and predic-

tions are made by p(y|x, θML
i ), meaning distribution of user i’s rating y on

some item, described by a vector of features x, given profile model parameters

θML
i .

In contrast, a Bayesian approach will introduce a prior distribution p(θ),

indicating, before observing something, a favor over different settings of

1We restrict the discussion here to models for binary annotation data. But this restric-

tion can be released.
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model parameters θ. Then the prediction is made by absorbing the un-

certainty of model parameters:

p(y|x,Di) =

∫
θ

p(y|x, θ)p(θ|Di)dθ, (4.2)

where the a posteriori distribution of θ is calculated by Bayes rule

p(θ|Di) =
p(Di|θ)p(θ)
p(Di)

. (4.3)

Here we can see the difference that traditional approach learns the ML esti-

mate of model parameters θML
i based on Eq. (4.1) and then use the model

to make predictions p(y|x, θML
i ), while Bayesian approach takes into account

the uncertainty of models and makes predictions solely based on training

data p(y|x,Di).

When sufficient data are observed, then p(θ|Di) is likely to be governed

by the likelihood p(Di|θ), becoming a sharp peak located at the ML esti-

mate θML
i . Thus p(θ|Di) can be approximated by a delta function δ(θML

i ).

In this case Bayesian approaches Eq. (4.2) are equivalent to non-Bayesian

approaches.

However, in information filtering applications we can hardly require a

user to annotate many items. Given a small amount of data, the uncertainty

of model parameter is very high and we can not say that the point estimate

of θ is dominant in p(θ|Di). Thus the Bayesian solution with integral over

the θ space can be viewed as a way of averaging predictions made by infinite

number of settings of θ. This strategy can effectively prevent over-fitting.

It is necessary to note that, the prior distribution p(θ) plays an important

role here, which reflects our prior knowledge about the domain and often

prefers low-complexity models. The Bayesian rule Eq. (4.3) actually makes a

trade-off between empirical knowledge conveyed by observations and the prior

knowledge. When observations are limited, like the information filtering case,

Bayesian rule makes p(θ|Di) more influenced by prior knowledge. However, if

the user annotates more items, then the impact of empirical (training) data

will be automatically increased. Thus Bayesian rule is a quite natural way

to integrate our prior knowledge into the learning process.
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Figure 4.1: An illustration of the described hierarchical Bayesian model for

information filtering

4.2.2 Hierarchical Bayesian Models

In normal Bayesian models, the prior distribution p(θ) is specified to reflect

our prior belief. In this section we are going to answer two questions con-

cerning p(θ), can we learn the prior from data, instead of specifying it before

observing the data? Does it make sense to do so in information filtering?

Our answers to them are both, YES.

We should keep in mind that information filtering systems are modelling

a population of individuals, whose annotation data are different to each other

but related in some way. The relations can be characterized by exploring the

structure of the data generation process. It can be achieved in a quite natural

way if we use a common prior distribution, from which each θi for user i is a

random sample generated. Then the overall observations D = {D1, . . . ,DN}
are modelled hierarchically, with each user’s data Di distributed condition-

ally on parameters θi, which themselves are distributed conditionally on the

common prior distribution p(θ|α) characterized by hyperparameters α. This

hierarchical data generative process is described in Fig. 4.1. Then the likeli-
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hood of overall observed annotations can be written as

p(D|α) =
∏

i

∫
θi

p(Di|θi)p(θi|α)dθi, (4.4)

where

p(Di|θi) =
∏
j∈Ri

p(yi,j, xj|θi) =
∏
j∈Ri

p(yi,j|xj, θi)p(xj), (4.5)

in which we assume that the picking-up of items is random, independent of

user profiles, and the ratings for picked items depends on user profiles.

With such a hierarchical thinking, we can learn the common prior distri-

bution p(θ|α) from observations of a population, even when samples of θ are

not directly visible. It is again solved in a Bayesian manner, by specifying

the prior distributions p(α|β) of hyperparameters β,

p(α|D, β) =
p(D|α)p(α|β)∫

α
p(D|α)p(α|β)dα

. (4.6)

In rest of this chapter, we call p(α|β) the hyper prior distribution. By

marginalizing out the uncertainty of α, one can learn the common prior

distribution of profile model parameters θ as

p(θ|D, β) =

∫
p(θ|α)p(α|D, β)dθ. (4.7)

Then predictions for an active user a are made by

p(y|x,Da,D, β) =

∫
θ

p(y|x, θ)p(θ|Da,D, β)dθ (4.8)

=

∫
θ

p(y|x, θ) p(Da|θ)p(θ|D, β)∫
θ
p(Da|θ)p(θ|D, β)dθ

dθ

=

∫
θ

p(y|x, θ)
p(Da|θ)

∫
α
p(θ|α)p(α|D, β)dα∫

θ
p(Da|θ)

∫
α
p(θ|α)p(α|D, β)dαdθ

dθ.

Comparing Eq. (4.2) and Eq. (4.8), we can see that now the predictions for

user a not only depend on his/her own existing data Da, but also depend

on other users data D. With the hierarchical thinking, our solution, with

its root from the conventional idea of content-based filtering, is interestingly

approaching the idea of collaborative filtering!

Finally, a fully Bayesian hierarchical generative process of data is de-

scribed as the following
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1. For the whole population of users, generate a sample of hyperparame-

ters α ∼ p(α|β),

2. For each user i = 1, . . . , N , generate a sample θi ∼ p(θ|α),

3. Given θi and a set of randomly chosen itemsRi, generating annotations

yi,j ∼ p(y|xj, θi), for j ∈ Ri.

Nonhierarchical models described in Sec. 4.2.1 treat users separately,

which is a conventional way of content-based information filtering. The over-

all observed annotations are thus modelled by many independent parameters

θi, i = 1, . . . , N , with the size scaled by the number of users N . Generally

speaking, models with many free parameters may be too flexible and thus

likely to overfit the data. In contrast, a hierarchical Bayesian model also

apply so many parameters θi, i = 1, . . . , N (thus with sufficient flexibilities

to fit the data), but meanwhile put dependence into these parameters by

using the common prior distribution p(θ|α). In this way p(θ|α) constrains

the freedom of parameters θi and effectively avoid overfitting.

It is also necessary to comment the highest prior distribution p(α|β).

Previously we introduce the common prior distribution p(θ|α) with the aims

to prevent overfitting in the sense that the learned model is able to predict

well for user i’s unseen items. However, we should also prevent another

kind of overfitting that the learned common prior distribution p(θ|α) only

perfectly fit existing users while performs badly on future coming users. Thus

we should use p(α|β) to constrain the adaptation of α.

4.2.3 Nonparametric Hierarchical Models

One may first specify some parametric form for the common prior p(θ|α) and

then learn the parameters α (or their posterior distribution using Eq. (4.6)).

However, due to the nature of the problem2, the common prior is normally

complex and can hardly be described by any known parametric form (like a

2(1) Profiling models must be tailored to applications, like hidden Markov model for

web browsing or support vector machines for image retrieval; (2) The distribution of

people’s interests are very complex.
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Gaussian). We thus relax the parametric assumption and introduce a highly

flexible nonparametric common prior:

p(θ|α) =
∞∑
l=1

αlδθl
(θ), (4.9)

where δθl
(θ) is the point mass distribution at θl (i.e. δθl

(θ) = 0 if θ 6= θl, and∫
δθl

(θ)dθ = 1). α are the parameters of an infinite multinomial distribution.

For a better understanding, one can imagine that the space of θ is equally

divided into K regions. For a region indexed by l, the corresponding mass

probability is αl. When K → ∞, a large class of countably infinite distri-

bution can be represented as Eq. (4.9). This way is called nonparametric in

the sense that the distribution is described in a straightforward way and no

simplifying parametric assumption is made.

To complete the model, we now define the hyper prior p(α|β) as a Dirichlet

process [Ant74, EW95]:

α|β ∼ DP(M,α∗), (4.10)

where β = {M,α∗}, M is a nonnegative scalar, called concentration param-

eter, and α∗ is called the base distribution, which is actually the mode of α.

Dirichlet process is a generalization of Dirichlet prior (i.e. the conjugate

prior for finite multinomial distribution) to the case of infinite dimensions

(See the details about Dirichlet prior in [Hec95]). Intuitively, a Dirichlet

process defines statistically how faraway a randomly generated distribution

α differs from the base distribution α∗. The larger M is, the more likely α is

close to α∗.

If we have directly observed the realizations of profile models θ1, . . . , θN ,

then the posterior distribution of α is again a Dirichlet process. By inte-

grating over α, the common prior (i.e. the distribution of the next coming θ)

becomes

p(θ|{θi}Ni=1, β) =
Mp(θ|α∗) +

∑N
i=1 δθi

(θ)

M +N
. (4.11)

From the above equation we can see a very important property of a Dirichlet

process. For an intuitive understanding, let us imagine a process of assigning

persons into interest clubs. Suppose there are potentially infinite number of

clubs, then
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• The first person comes and creates a club θ1 based on the base distri-

bution p(θ|α∗);

• The second person may either follow the first person to join in the

same club with probability 1/(M + 1), or create a new club from the

distribution p(θ|α∗) with probability M/(M + 1);

• As the process going on, N persons have chosen their own clubs {θi}Ni=1.

Then a new person will join in a club by either following previous per-

sons based on the distribution 1
N

∑N
i=1 δθi

(θ) with probability N/(M +

N), or creating a new club from distribution p(θ|α∗) probabilityM/(M+

N).

The process is also known as a case of Chinese restaurant process in statistical

literature [BGJT04]. In the process, a new user has a large chance to create

a new club if M is very large (or to follow previous users when M is small).

Thus in this paper, the hyper prior p(α|β)—a Dirichlet process—reflects our

prior knowledge about how strongly users are influenced by each other.

4.3 Learning the Nonparametric Hierarchical

Model

However, in the application of information filtering, user profile models {θi}Ni=1

are not directly visible, but only associated annotations D = {Di}Ni=1 ob-

served. Then the dependence among users, described by the common prior,

should not only reflect our prior knowledge (i.e. the Dirichlet process), but

also be adapted to empirical data D. Thus the basic learning procedure is

to first (1) estimate the common prior p(θ|D, β), and then (2) integrate it

into individual profiling sessions. This section will introduce the details of

our learning solution.

The integral over α is often infeasible in computing the common prior in

Eq. (4.7). However, Markov Chain Monte Carlo (MCMC) approaches (like

Gibbs sampling) allow us to directly sample θ. Here we briefly describe a

Gibbs sampling procedure, considering the posterior p(θ|Di,M, α∗):
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1. for each user i = 1, . . . , N , sample a θi ∼ p(θ|Di, {θj, i 6= j},M, α∗), by

either picking up an existing value θ∗l with conditional probability:

b
N∗
−i,l

N − 1 +M
p(Di|θ∗l ) (4.12)

where N∗
−i,l is occurrence of θ∗l in all the users except i, or taking a new

value from p(θ|Di, α
∗) with probability

b
M

N − 1 +M

∫
p(Di|θ)dα∗(θ) (4.13)

where b is a normalizing term.

2. for each distinguished value l = 1, . . . , L, sample θ∗l ∼ p(θ∗l |cl, α∗),
l = 1, . . . , L, where cl are the set of users who are associated to the

same θ∗l at the last step. This step actually updates the distinguished

values θ∗l in a batch way.

The sampling proceeds iteratively over above steps until convergence, which

ends up with a small number of values θ∗l , somehow reflecting the clustering

structure of user profiles.

MCMC sampling is often computationally expensive and sometimes tech-

nically difficult. This chapter instead goes for the maximum a posteriori

(MAP) estimate of α:

αMAP = arg max
α

p(α|D, β) (4.14)

and obtains the common prior as p(θ|αMAP ). Treating θ as latent variables,

we apply expectation-maximization (EM) algorithm to estimate αMAP as

follows. At E-step, we re-estimate the posterior distribution of θ for each

user, based on αk−1 achieved at the (k − 1)-th step of EM:

p(θ|Di, α
k−1) =

p(Di|θ)p(θ|αk−1)

p(Di|αk−1)
(4.15)

In the M-step, we re-estimate the parameters α of the common prior using

the learning rule of multinomial (see [Hec95]), which is equivalent to update

the common prior as

p(θ|αk) =
Mp(θ|α∗) +

∑N
i=1 p(θ|Di, α

k−1)

M +N
. (4.16)
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At the very beginning, we initialize α0 to be the base distribution α∗ and

perform the described E-step and M-step iteratively. At the convergence we

achieve αMAP = αk, and derive the learned common prior as follows:

p(θ|D, β) ≈ p(θ|αMAP ) (4.17)

By plugging the learned common prior into Eq. (4.8), we are able to predict

users’ information needs as follows

p(y|x,Da;α
MAP ) =

∫
θ

p(y|x, θ)p(θ|Da;α
MAP )dθ (4.18)

However, p(θ|αMAP ) can not be solved in a closed form, as the number of

terms in it grows exponentially over EM iterations. In the following we

discuss the details of our treatments in three different cases.

4.3.1 M →∞: Content-Based Filtering

This case indicates that a very strong hyper prior p(α|β) has been imposed.

The base distribution p(θ|α∗) thus dominates the learned common prior,

no matter we adopt the fully Bayesian solution Eq. (4.7) or MAP estimate

Eq. (4.17). This gives

p(θ|D, β) = p(θ|α∗), (4.19)

which implies that the observations D can hardly change our knowledge

about the prior distribution of profile models. Then we can predict an active

user’s interests by

p(y|x,Da;D, β) =

∫
p(y|x, θ)p(θ|Da;α

∗)dθ (4.20)

in which the dependence of predictions for user a on D is removed. We shall

be aware of that in this case the hierarchical model actually degenerates to

the non-hierarchical Bayesian model, which is actually the pure content-based

filtering.

The model treats different users separately, which can be explained from

two perspectives. First, since the prior distribution of θ does not adapt to

the observations from other users, the learning process for a new user a is
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independent to other users’ opinions. Second, usually a rather wide p(θ|α∗)
is assumed before the learner observes something. Such a wide common prior

implies a priori that random samples (i.e. profiling models) are likely to be

different from each other.

4.3.2 M → 0: Content-enhanced Collaborative Filter-

ing

The impact of base distribution p(θ|α∗) vanishes in this situation. According

to Eq. (4.15) and Eq. (4.16), the estimated common prior is “reshaped” by

multiplying p(Di|θ) at each iteration, and therefore repeatedly gets enhanced

at positions θML
i where p(Di|θ) has the maximum, while being suppressed in

rest positions. At the convergence, p(θ|αk) ends up with a number of sharp

peaks. Therefore we take a variational approximation:

p(θ|Dj, α) ≈
N∑

i=1

ξi,jδθML
i

(θ), (4.21)

where θML
i = arg maxθ p(Di|θ), and ξi,j are variational parameters to be spec-

ified. Thus we can apply an EM algorithm, which directly factorizes p(θ|α)

with parameters ξi,j, and then estimates αMAP by maximizing p(α|D, β) as

follows:

1. E-step: Based on p(θ|αk−1) derived from the last step, we can calculate

ξk
i,j

ξk
i,j =

p(Dj|θML
i )p(θML

i |αk−1)∑N
i=1 p(Dj|θML

i )p(θML
i |αk−1)

(4.22)

2. M-step: Then we update the common prior

p(θ|αk) =
N∑

i=1

ξk
i δθML

i
(θ). (4.23)

where ξk
i = 1

N

∑N
j ξ

k
i,j.

At the beginning of iterations, we initialize ξi = 1/N for each i. At the

convergence we obtain the estimate of αMAP , and the estimated common

prior p(θ|αMAP ) as well.
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By plugging the obtained p(θ|αMAP ) into Eq. (4.18), a very simple solu-

tion is finally derived to predict the active user a’s interest for an item with

features x,

p(y|x,Da;α
MAP ) =

N∑
i=1

wip(y|x, θML
i ). (4.24)

Since ξi = p(θML
i |αMAP ), wi can be rewritten as

wi =
1

Z
ξip(Da|θML

i ) = p(θML
i |Da), (4.25)

where Z is a normalization term. The derived prediction is simply a weighted

average of predictions made by profiling models (i.e. ML estimates) of other

users.

Let us take a closer look at the weighting terms Eq. (4.25): ξi suggests

the a prior probability or the typicalness of θML
i ; p(Da|θML

i ) indicates how

well profile model θML
i can explain the active user a’s interests; Then the

weighting term wi models how likely the active user has user i’s profiling

model. Eq. (4.24) indicates that persons like-minded to the active user should

have more impacts in predicting a’s interests, which is essentially also the

major assumption of CF, but here expressed in a probabilistic way.

However, the derived algorithm Eq. (4.24) is not simply CF, but content-

enhanced CF, in the sense that many content-based predictors p(y|x, θML
i )

are combined to make predictions. In certain conditions, the algorithm will

degenerate to pure collaborative filtering (see Sec. 4.4).

4.3.3 M is medium: Hybrid Filtering

Previously we discussed two extreme situations where M is either very large

or very small. To complete our discussion, we shall examine the third case

where M is not either too large or too small. We again apply the same

variational approximation and take the EM algorithm, in which the E-step

remains the same as Eq. (4.22), while M-step becomes:

p(θ|αk) =
Mp(θ|α∗) +N

∑N
i=1 ξ

k
i δθML

i
(θ)

M +N
. (4.26)
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where ξk
i =

∑N
j ξ

k
i,j. At the end we obtain the estimate of p(θ|αMAP ). Finally

predictions for the active user are made as follows

p(y|x,Da;α
MAP ) = w0p(y|x,Da;α

∗) +
N∑

i=1

wip(y|x, θML
i ) (4.27)

where

w0 =
1

Z
Mp(Da|α∗), (4.28)

wi =
1

Z
Nξip(Da|θML

i ), if i 6= 0 (4.29)

where Z is the normalizer to make w0 +
∑N

i=1wi = 1. The final predictive

model Eq. (4.27) averages all the existing users’ predictive models (ML pre-

dictors) and the active user’s own predictor (a Bayesian content-based filter).

The additional weighting term w0 allows contributions directly from user a’s

own data, which is particularly useful when other existing profile models do

not fit the active user a’s interests very well.

4.4 Connections to Related Work

Our work not only offers a principled hybrid information filtering approach,

but also generalizes a bunch of existing information filtering algorithms. We

already know that when we impose a very strong hyper prior, the algorithm

degenerates to the pure CBF.

Now let us examine its connections to pure CF which —in contrast to

our content enhanced CF— would also give valid predictions without useful

features. Without useful features, we can rely on the fact that if a user would

be required to re-rate an item the user had already rated, the user would be

consistent in that both ratings would be (nearly) identical. This fact can be

implemented by using the previous rating of an already rated item instead

of using the prediction of the user model. Then the Eq. (4.24) becomes very

similar to memory-based CF [RIS+94, SM95, PHLG00]. Our methods differs

in that we treat cases (i.e. users) with different typicalness (indicated by ξi)

while other CF methods assume cases are equally typical. Interestingly, a

similar effect can be mimicked by simply overfitting the model!
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Furthermore, our work also generalizes or improves on many hybrid fil-

tering algorithms. Melville et al [MMN02] suggest to build content-based

model for each user and then generate pseudo ratings for non-rated items.

The augmented data are used to feed a memory-based CF algorithm. Since

pseudo ratings may be not accurate, heuristics like harmonic mean weighting

are developed to incorporate the confidence of pseudo ratings. Our algorithm

Eq. (4.24) essentially shares the same idea, but is derived in a principled way,

in which the confidence of pseudo ratings are smoothly handled by predictive

distribution of y. Moreover, Eq. (4.27) further suggests that the predictor

conditioned on the active user’s own data should also be included.

A big family of hybrid filtering algorithms (e.g. [Paz99, CGM+99]) firstly

treat CBF and CF separately and then average both results to make final

predictions. Eq. (4.27) improves them in two aspects: (1) the weighting

terms to balance two parts can now be computed; (2) the CF part can be

content-enhanced. As another example, Fab [BS97] maintains user profiles

based on content analysis, and directly compare these profiles to determine

similar users for collaborative filtering. An item is recommended to a user

both when it scores highly against the user’s own profile, and when it is also

rated highly by users with similar profile. Eq. (4.27) expresses the spirit of

Fab system.

4.5 Collaborative Ensemble Learning with Sup-

port Vector Machines

So far we have studied the general theoretical framework of nonparametric

hierarchical Bayesian solutions to information filtering, but have not yet spec-

ified the detailed model p(y|x, θ). In principle, p(y|x, θ) can be implemented

as any kind of parametric probabilistic predictive models. In the following we

will introduce a version of realization with support vector machines (SVMs),

called collaborative ensemble learning.
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4.5.1 Support Vector Machines

Support vector machines (SVMs) are a classification technique with strong

backing in statistical learning theory [Vap95]. They have been applied with

great success in many challenging classification problems, including text cat-

egorization [Joa98] and image retrieval [TC01].

We consider SVM models for the preferences of user i, based on the ratings

Di this user has previously provided. A standard SVM would predict user

i’s rating on some item x, represented by its feature vector, by computing

y = sign(f i(x)) = sign
( ∑

j∈Ri

yi,jαi,jk(xj, x) + bi

)
(4.30)

k(·, ·) denotes the kernel function, which computes the pairwise similarities

of two items. We will later use θ to stand for the SVM preference model for

user i, with θ containing all SVM model parameters αi,j and bi. The weights

αi,j of the SVM are determined by minimizing the cost function

C
∑
j∈Ri

(1− yi,jf
i(xj))+ +

1

2
αT

i K
iαi (4.31)

By (·)+, we denote a function with (x)+ = x for positive x, and (x)+ = 0

otherwise. Ki is the matrix of all pairwise kernel evaluations on the training

data Di, and αi is a vector containing all parameters αi,j.

4.5.2 Probabilistic Extensions to SVMs

In their standard formulation, SVMs do not output any measure of confidence

for their prediction. Probabilistic extensions of the SVM, where an associated

probability of class membership is output, have been independently suggested

by several authors. For our work, we follow the idea of [Pla99], and compute

the probability of membership in class y, y ∈ {+1,−1} as

p(y|x, θi) =
1

1 + exp(yAif i(x))
(4.32)

Ai is the parameter3 to determine the slope of the sigmoid function. This

modified SVM retains exactly the same decision boundary f i(x) = 0 as

3Platt’s original formulation used an additional bias term in the denominator 1 +

exp(y(Aif
i(x) + bi)). Since we typically only have very few training data available, we
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defined in Eq. (4.30), yet allows an easy approximation of posterior class

probabilities.

4.5.3 PSVM Parameter Tuning

The PSVM profile model has a few parameter that need to be set: The

SVM models in Eq. (4.31) require the constant C that gives a weighting of

errors on the training data. Furthermore, the kernel function k(·, ·) may be

parameterized. As the last parameter, we need to tune the slope parameter

Ai of the PSVM model in Eq. (4.32).

In our experiments, we use an SVM with the radial basis function (RBF)

kernel for working on image data, and a linear kernel for text data. The

kernel parameters, as well as the constant C, are chosen to minimize the

leave-one-out error on the training data. Since the training set for most

users is very small, this typically leads to overfitting. Thus, the kernel pa-

rameters are shared between models, and the optimization is with respect

to the average leave-one-out error on all models. For choosing the slope Ai

of the sigmoidal function Eq. (4.32), we follow the three-fold crossvalidation

strategy suggested by [Pla99].

4.5.4 Collaborative Ensemble Learning

So far we have described a model for the preferences of an individual user,

based on probabilistic SVMs (PSVMs). Given some training data containing

items the user likes and dislikes, this model can predict—based on a descrip-

tion of items using a set of features—an individual user’s preferences. SVM

models are known for their excellent performance in many challenging classi-

fication problems. However, using only the models for individual users would

pose the same problems as common CBF methods, in that the models have

very high variance (due to the insufficient amount of training data from each

individual) and only a poor generalization ability.

Now, we improve the performance of information filtering systems by

restrict the model to containing only one additional parameter Ai.
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applying Eq. (4.27). We maintain a set of profile models θi from users who

have used the system4. Then we use the EM learning to estimate ξi, as

discussed in Sec. 4.3. Now suppose an active user a comes and gives annotates

Da, we first learn his/her profile model θa and them make predictions by

p(y|x,Da) = w0p(y|x, θa) +
N∑

i=1

wi · p(y|x, θi) (4.33)

where the weights w0 and wi are computed as Eq. (4.28) and Eq. (4.29), the

concentration parameter M is set by cross-validation. To compute p(Da|α∗)
in Eq. (4.28), we assume that α∗ specifies a flat distribution where each item

has equal chance to be liked or disliked. Eq. (4.33) realizes Eq. (4.27) via

substituting p(y|x,Da, α
∗) by p(y|x, θa) and θML

i by learned PSVMs θi. The

next section will demonstrate the success of this approach on several data

sets.

4.6 Empirical Study

Empirical evaluations of our learning method are conducted in the following

two experimental settings:

• Simulation on 4533 painting images. From Meisterwerke der Malerei

CDs we collected 4533 painting images, covering antique Egyptian and

Arab frescos, Chinese traditional paintings, India arts, European classi-

cal paintings, impressionism paintings, and modern arts in early 1900s.

To enable an extensive objective measure of performance, we cate-

gorized them into 58 categories, mainly according to their respective

artists. One artist corresponds to one category. We did not distinguish

those artists for antique Arab, Egyptian, Chinese, and India paintings

and just put them into four categories.

• Simulation on news articles. Reuters-21578 text data set is a collection

of news articles that has been widely used in the research on information

4One may select a subset of users to get a compact model. Our current work does not

discuss this issue
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retrieval. Each article has been assigned a set of categories (which

may be empty). From the total data, we eliminate articles without

categories, titles or main texts, and categories with less than 50 articles.

The main text for each article was pre-processed by removing stop

words, stemming, and calculating TF-IDF (i.e. term frequency inverse

document frequency) weights for the stemmed terms. The final data

are 36 categories covering a total of 10, 034 articles, where 1, 152 articles

belong to more than one category.

• Online survey on 642 painting images. We collected 642 painting im-

ages from Internet, mainly impressionism paintings and modern arts

from 30 artists. To evaluate the algorithm performance on completely

true user preferences, we performed a web-based online survey5 to

gather user ratings for 642 images. In the survey, each user gave rat-

ings, i.e. “like”, “dislike”, or “not sure”, to a randomly selected set

of painting images. We so collected data from more than 200 visitors.

After removing users who had rated less then 5 images, and users who

had rated all of their images with one class (only like resp. only dislike),

we retain a total of L = 190 users. On average, each of them had rated

89 images.

For all the images, we extract and combine color histogram (216-dim.), cor-

relagram (256-dim.), first and second color moments (9-dim.) and Pyramid

wavelet texture (10-dim.) to form 491-dimensional feature vectors to repre-

sent images. We use SVMs with RBF (radius basis function) kernel for images

and SVMs with linear kernel for news articles. In our empirical study, we

will mainly examine the accuracy of collaborative ensemble learning in terms

of predicting users’ interests in images or articles, and compare it with other

two competitive algorithms:

• SVM content-based retrieval trains a SVM model on a set of examples

given by an active user, and then apply the model to predict the active

user’s preferences. This algorithm represents a typical CBIR approach.

5The survey can be found on http://honolulu.dbs.

informatik.uni-muenchen.de:8080/paintings/index.jsp.
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• Collaborative filtering combines a society of advisory users’ preferences

to predict an active user’s preferences. The combination is weighted

by Pearson correlation between test user and other advisory users’

preferences. The algorithm applied here is described in [BHK98].

4.6.1 Simulation with 4533 Painting Images

In this study, we will examine the retrieval accuracy of collaborative ensemble

learning in cases that users have heterogenous interests for art images based

on the 4533 painting images.

To enable objective evaluation, we need to “mimic” many users’ prefer-

ences for the images. We assume that each user is interested in n categories.

Since painting images from the same artist (e.g. one category) typically share

similar painting styles, the assumption reflects the real-world cases to some

extent, where one is interested in heterogeneous styles of paintings. We fur-

ther assume that, without loss of generality, for a setting of n, there is Pn,

a set of profile types containing 58− n+ 1 profile types and the p-th profile

type is interested in n adjacent categories from the p-th to the (p+n− 1)-th

one.6 Then we stimulate a user’s preference data in the following steps:

1. Randomly choose the value of n, where n can be 1, 2, or 3. Each

possibility has equal chance.

2. Randomly assign a profile type in Pn to the user, where each profile

type has equal chance.

3. Randomly produce 5 liked art images and 10 disliked art images based

on the profile type assigned.

We repeat the procedure 1000 times and thus produce 1000 users’ preference

data. The detailed setting-up is based on some assumptions, however, we

believe that it approaches real-world cases from certain perspectives. Since

it is not easy to gather the ground truth, i.e. sufficient true-user preferences

for an art image base, it is necessary to perform simulations at this early

stage.

6The image categories are sorted in alphabet order of artist names.
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Figure 4.2: Top-20 accuracy with various number of given examples for

each active user. For each advisory user, we assume that 5 liked and 10

disliked images are given (Simulation on 4533-painting data)

Figure 4.3: Accuracy with various number of returned images. For each

active user, we fix the number of given examples to 20. For each advisory

user, we assume that 5 liked and 10 disliked images are given (Simulation on

4533-painting data)
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Our experiments take a leave-one-out scheme, in which a user is picked

up as a test user (i.e. active user) and the remaining ones serve as advisory

users. Then the test user’s profile type serves as the ground truth for eval-

uation. Based on the profile type, we generate a number of examples, with

approximately 1/3 liked images and 2/3 disliked ones, to feed the art im-

age retrieval system. We use top-N accuracy to measure the performance,

i.e. the fraction of truly liked images among the N top ranked images. We

change the number of given examples for each active user, i.e. 5, 10, 15, 20,

25, 30, 35, 40, 45 and 50, to study the learning curve of the three compared

methods. For one learning curve, we repeat the procedure for 10 times with

different random seeds and each run will go through all the active users. Fi-

nally we compute the mean and standard deviation of the mean over the 10

runs. The obtained final results have been shown in Fig. 4.2. Collaborative

ensemble learning significantly outperforms the other two algorithms, which

indicates that the algorithm effectively captures simulated users’ diverse in-

terests for art images. While the SVM content-based retrieval shows a poor

accuracy. The results confirm our analysis that although SVM demonstrate

excellent learning performances in many real-world problems, it suffers the

problems of modelling users’ diverse interests due to the deficiency of low-

level features. Collaborative filtering performs the worst in our simulation,

because the preference ratings given by advisory users are very sparse, i.e.

only 0.33% of the images are rated for each user. Collaborative filtering

heavily relies on the user ratings while ignoring the descriptive features of

images. It cannot compute reliable Pearson correlation between two users if

they have few commonly rated examples. While our proposed collaborative

ensemble learning generally overcomes the weaknesses of SVM content-based

approach and collaborative filtering by incorporating wider information and

thus achieves the best accuracy.

In the following, we fix the number of given examples for each active user

to 20 and vary N , the number of top ranked results that are returned. Accu-

racy is then computed for all the active users and the procedure is repeated

for 10 times with different random seeds. Finally the mean and error bar

of the mean are calculated and demonstrated in Fig. 4.3. Accuracies of the

three approaches are all decreasing as we increase the number of N , indicat-
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ing that all the three methods present ranking which is better than random

guess (which should be a flat line with accuracy insensitive to the value of N).

However, collaborative ensemble learning clearly demonstrates the best per-

formance. Interestingly, collaborative filtering’s accuracy decreases the most

quickly with N increasing. This is because that collaborative filtering is not

able to generalize examples to similar cases (i.e. images distributed very

close to the given examples in the low-level feature space), and thus cannot

make judgements on the images never visited by any advisory user (i.e. new

images). Therefore, it “consumes out” those limited number of liked images

which could be suggested by advisory users at the early stage and cannot

present more truly liked images when N further increases. This observation

indicates that content-based approach has the ability of generalizing exam-

ples to never-rated cases, and clearly collaborative ensemble learning takes

over and further enhances this advantage.

4.6.2 Text Retrieval on REUTERS-21578

Now we report results from a controlled simulation based on the Reuters-

21578 text data set. For the experiments, we assume that each user is in-

terested in exactly one of categories (an assumption that has been widely

used in the literature on text retrieval). To further simulate the working

environment of collaborative ensemble learning, we generate N = 360 users

and assume that each user has annotated 30 articles. The annotation for an

article is either +1 (if it falls into the assumed category for this particular

user) or −1. In this way we get the training data Di, i = 1, . . . , N . We

report results for two scenarios, with 5 and 20 examples are given by the

active users.

To evaluate collaborative ensemble learning, we examine the average ac-

curacy of top N returned articles for a set of 180 active users, for whom we

assume that 5 or 20 examples have been given by each active user. In both

training and test data, categories have an equal chance to be assigned to

users. We draw items (that is, articles) uniformly at random as well, but en-

sure that approximately 1/3 positive and 2/3 negative examples are selected

for each user.
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(a)

(b)

Figure 4.4: Accuracy with various number of returned news articles. (a)

for each active user, we assume that 5 examples are given, (b) for each active

user, we assume that 20 examples are given
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Using the experimental setup, we compare collaborative ensemble learn-

ing with two other methods for information filtering: (1) collaborative filter-

ing using Pearson correlation [BHK98], and (2) content-based filtering using

SVM with linear kernel [DSG01, Joa98].

By changing the number of returned top N articles, we obtained two

curves in Fig. 4.4. In this setting we find that, in contrast to the earlier

image case, content-based filtering performs much better than collaborative

filtering for text data. This is mainly because that the TF-IDF textual

features are very effective in representing the topics of articles.

Collaborative filtering greatly suffers from the sparsity of user annotations

because for two curves respectively only 0.05% and 0.3% articles are rated

by advisory users. There are a large amount of articles which can not be

processed by collaborative filtering at all because they have never been rated

by any user.

Again, collaborative ensemble learning significantly outperforms both

other methods, with accuracy 10%−20% better than content-based filtering.

4.6.3 Experiments with the Online Survey Data

Although we get impression that collaborative ensemble learning presents

excellent performances, however, simulation can not replace the real-world

cases. In this section, we will examine the performance of the three ap-

proaches based on 190 user’s preference data on 642 painting images, which

are gathered from the on-line survey. Again, we use top-N accuracy to eval-

uate the performance. Since we can not require a user to rate all of the

642 painting images in the survey, for each user we just partially know the

“ground truth” of preferences. As a result, the true precision cannot be com-

puted. We thus adopt the accuracy measure that is the fraction of known

liked images in top ranked N images. The quantity is smaller than true

accuracy because unknown liked images are missing in the measurement.

However, in our survey, the presenting of images to users is completely ran-

dom, thus the distributions of rated/unrated images in both unranked and

ranked lists are also random. This randomness does not change the relative

values of compared methods but just the absolute values. Thus in our follow-
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(a)

(b)

Figure 4.5: Accuracy with various number of returned images. (a) for each

active user, we assume that 5 examples are given, (b) for each active user,

we assume that 20 examples are given
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ing experiment it still makes sense to use the adopted accuracy measurement

to compare the three retrieval methods.

Our experiment takes the leave-one-out scheme again, in which we pick

up each user as the active user and treat all other users as collected advisory

users. We fix the number of given examples for each active user to 5 and

20 respectively, and examine the retrieval accuracy in the cases of returning

various N top ranked images. We take the same methodology as Fig. 4.3 and

demonstrate the results in Fig. 4.5-(a) (given 5 examples) and Fig. 4.5-(b)

(given 20 examples). We find that collaborative ensemble learning achieves

the best accuracy in both cases. Since in the data user ratings are much

denser than the simulation case, collaborative filtering outperforms the SVM

content-based method. Interestingly, the accuracy improvement of collabora-

tive ensemble learning over the other two approaches are more impressive in

the given-5 case. This is a very nice property for art image retrieval because

users are normally not patient at the initial information-gathering stage and

it is much desired to get satisfactory accuracy with only a few examples.

Theoretically, this nice property can be explained from the Bayesian per-

spective, where we use “an informative prior” learned from all the users to

constraint the Bayesian inference. Such a prior knowledge gained from pop-

ulation promises a good accuracy even when limited examples are fed to the

learning system.

In the next, we take a closer look at a case study. As shown in Fig. 4.6, we

let a user input a positive and a negative examples to run the collaborative

ensemble learning algorithm. The returned top 20 results look quite diverse

and meanwhile very different from the positive example. Surprisingly, the

user loves 18 out of the 20 images and there is no strongly disliked image. As

a comparison, we present the results of SVM content-based approach trained

on the same examples in Fig. 4.7. We find that 8 results are actually from

the same artist as the positive example is. The user told us that he strongly

dislikes the images (1,4), (3,2) (3,5), (4,1), (4,3), (4,4) and (4,5).7 This case

study is quite interesting, which demonstrates that, in the studied case where

a user gives examples that only partially convey his preferences, collaborative

ensemble learning effectively infer the user’s comprehensive interests while

7Here we treat the presented 20 images as a 4 by 5 matrix.
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Figure 4.6: Case study: Two images on the top are examples given by a

user. The lower 20 images are the top-20 results returned by collaborative

ensemble learning.
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Figure 4.7: Top-20 results returned by SVM content-based retrieval. Ex-

amples are the same as the ones shown in Fig. 4.6.

SVM content-based approach only returns images that are similar to the

positive example(s). In the art image retrieval application, presenting inter-

esting but novel images to active users is a very nice property because a user

can easily find images from the same artist (by category-based search) while

has difficulties in locating potentially interesting images which are currently

unknown to the user.

4.7 Conclusions

This chapter describes a theoretical framework—nonparametric hierarchical

Bayesian approaches to hybrid information filtering. Traditionally, most of

the information retrieval and filtering systems apply non-hierarchical content-

based models. These methods ignore the connections between different users’

information needs. Then a session of information service can not inherit

knowledge from other sessions. In our work, each user is modelled by a

parametric content-based profile model, whose parameters θ are generated

from a common prior distribution p(θ), which is shared by all the users. Then

users are connected to each other statistically via the common prior.

To complete a fully Bayesian model and enable the learning of such a
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common prior from data, we assume the common prior is a sample gen-

erated from a hyper prior, i.e. “a prior distribution of the common prior

distribution”.

Since the high complexity of the common prior can hardly be covered

by any parametric distribution, we describe a nonparametric form for the

common prior—an infinite multinomial distribution—which is a sample gen-

erated from a Dirichlet process, i.e. the hyper prior.

We derive effective EM algorithms to learn the common prior from data

annotated by users. In particular, various approximations are developed to

solve analytically infeasible computations. The finally achieved predictive

approaches are surprisingly simple and intuitively understandable.

• If a very strong hyper prior is assigned, then the learned common prior

distribution can hardly be influenced by our empirical observations and

remains the same as the base distribution. Therefore different users’

information needs can not be connected to each other via the common

prior distribution. In this case the hierarchical modelling degenerates

to conventional non-hierarchical modelling, which is actually the pure

content-based filtering, assuming users are independent.

• If a very weak hyper prior is assigned, then the impact of base distri-

bution vanishes and the learned common prior is completely adapted

to empirical data. As a direct result, predictions for an active user are

made by a committee of other users’ profile models (ML estimates).

Users who are more like-minded to the active user will have more im-

pacts in the committee. Here a principled hybrid filtering algorithm is

derived since many content-based models are combined in a collabora-

tive way. Interestingly, this method also leads to the pure collaborative

filtering algorithm described in Ch. 2.

• If a normal hyper prior is assigned, the learned common prior is a trade-

off between the base distribution and the empirical distribution. When

existing profile models can not well explain the active user’s data, the

model will automatically give high chances to other settings of mod-

els. This is a very general framework for hybrid information filtering,
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which explains a large family of existing hybrid filtering algorithms and

suggest further improvements.

Finally we design the collaborative ensemble learning algorithm with

SVMs, which is a realization of hybrid approach combining the basic idea

of content-based filtering and collaborative filtering. The performance of col-

laborative ensemble learning has been extensively tested. As compared to

pure content-based and collaborative filtering, collaborative ensemble learn-

ing achieved excellent performance for various data sets.

Our work not only presents a hybrid information filtering solution, but

also unifies pure content-based filtering, pure collaborative filtering, and hy-

brid filtering in a single theoretical framework. Most existing information

filtering algorithms can also be explained in the framework, and principled

improvements are suggested. To our best knowledge, we have not seen similar

work in the literature.

Moreover, the nonparametric hierarchical model provides a general method-

ology for modelling a population of related objects, like costumers in mar-

keting analysis, hospitals in clinical analysis, patients in heath care, automa-

chines for banks. We believe the work is a strong contribution to a wide

range of data modelling tasks.
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Chapter 5

Conclusions and Future Work

This thesis has been focusing on an important technology, information filter-

ing, which aims to understand people’s information needs and find desired

information items. The work extensively studies major branches of infor-

mation filtering approaches, including collaborative filtering, content-based

filtering, and hybrid filtering. Our emphasis is not only on exploring novel

and effective algorithms for solving various real-world problems, but also

building a theoretical framework that provides a unifying view for informa-

tion filtering. Besides showing the technical soundness of our solutions, the

unifying view make us deeply understand the the relations between people

in a community and pave the way for further developments. Particularly,

probability theory and Bayes theory have been intensively used throughout

the whole thesis, as the natural language to build flexible models, encode the

uncertainty of user profiles, model their intrinsic dependence, and integrate

our prior knowledge into learning processes. In the following we conclude the

major aspects of this thesis and point out some future directions as well.

5.1 Probabilistic Memory-Based Collabora-

tive Filtering

Collaborative filtering has recently been widely applied in recommender sys-

tems. It maintains a database of user ratings (or annotations) and explores
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the similarity between users’ opinions for making predictions. Due to its

simplicity, memory-based approach is the most popular collaborative filtering

technique. Various heuristics for memory-based methods have been proposed

in the literature. In contrast, our work focuses on a probabilistic version of

memory-based collaborative filtering (PMCF). The model describes connec-

tions between users’ interests probabilistically. More importantly, various

principled extensions are then readily supported.

One such an extension is active learning. To make predictions for an

active user, a recommender system must previously know something about

this user’s interests. The easiest way is of course present some information

items to the user for feedbacks. Conventional approaches did it in a passive

way. Instead, our work does one earliest attempt to actively present unrated

items to users. The choice of unrated items is made to maximize some

expected gain according to the current knowledge we have known about the

user.

The other extension aims to reduce the computational cost of prediction

making via working with a small subset of stored users. By choosing typical

preference prototypes, predictions can be made accurately and efficiently.

The selection procedure is derived directly from the PMCF framework and

aims to preserve a minimum loss of the data density (measured by K-L

divergence). The derived data selection algorithm focuses on the data that

are novel to our current knowledge, but are in fact typical in the real world,

which is quite intuitively understandable.

With the development of PMCF framework, we interestingly demonstrate

a learning system that actively queries the objects that we want to know

(e.g. asks questions to users), and samples the data that we have gathered

(e.g. chooses the subset of data). In general, one wishes that learning systems

are able to know what to learn, where to learn and how to learn. We make

one step towards this direction, but there is still a long way to go.

In memory-based collaborative filtering, predictions for one active user

are made by taking data from like-minded users, who themselves are often

not completely known to us (as typically we only observe limited data from

each user). Obviously, a better understanding of other users will boost our

predictions for current active user, while a better understanding of current
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user will again benefit for others. In future work we should consider this

propagation (or mutual enhancement) effects in collaborative filtering.

5.2 Generalized Probabilistic Principal Com-

ponent Analysis for Content-based Fil-

tering

Content-based filtering has its root back in information retrieval and aims

at helping users find interesting items (e.g. documents, images) by explor-

ing the content similarity of items. Typically, one item is associated with

different content features that seems to be developed independently but are

intrinsically related. To better characterize each item, one has to combine

different perspectives of features together, which brings major challenges to

content-based filtering, like homogenizing heterogenous data, reducing di-

mensionality, and exploring intrinsic factors.

In Ch. 3 we develop a generalized probabilistic principal component anal-

ysis model (GPPCA), which describes the dependence of high dimensional

feature vector with heterogenous attributes (i.e. continuous and binary) by

low-dimensional hidden variables that are distributed as a multivariate Gaus-

sian. Since categorical data can be encoded by binary data, the model can

also handle categorical attributes. We adopt a variational approximation to

the likelihood of data and describe a variational EM algorithm to fit the

model. The model allows a unified treatment to mixed types of attributes

and thus brings great benefits for multivariate data analysis, visualization,

and dimensionality reduction. For content-based filtering, mixed sources of

attributes can be merged into low-dimensional continuous feature vectors,

which can be easily processed by most of the existing content-based filtering

algorithms. Since the derived data account for the dependence of original

content features and thus often reflect the semantics of items, the quality of

filtering can thus be improved. The advantages of the proposed model are

illustrated on toy data and real-world painting image data for both visual-
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ization and recommendation.

There are several directions to improve the work. Currently the hid-

den variables are described as a multivariate Gaussian distribution, which is

sometimes a restrictive assumption. To relax this limitation, we may consider

a mixture of Gaussian for the hidden variables. This modification actually

assume that items can be structured into clusters. Clustering data with

mixed types of attributes is also an interesting research topic.

Our work is also closely related to multi-output regression or classifi-

cation. A straightforward solution might treat the problem as many inde-

pendent regression/classification problems. In contrast, some algorithm like

GPPCA can map inputs into hidden variables that really account for the

multivariate outputs. Thus the dependence between each prediction prob-

lems are explored in this new framework. Actually, the problem is closely

related to information filtering, since predicting for one user can be treated

as a one-output problem and predicting the interests of many users then be-

comes a multi-output predicting problem. Formulating information filtering

in this way will be an interesting future work.

So far the mapping from observations to hidden variables has been as-

sumed to be linear. However, a more general case is of course nonlinear

mapping. Learning a nonlinear hidden variable model is a fundamentally

important problem.

5.3 Hierarchical Bayesian Framework for Hy-

brid Filtering

As we already know, collaborative filtering makes predictions mainly by ex-

ploring the connections between users, while content-based filtering mainly

does the job by considering the similarity of contents between items. One

natural extension is to combine the two methods together, in order to take

the maximum advantages of data that we have. However, how to realize this

combination remains an fundamentally unsolved problem.

In Ch. 4 we want to propose a principled solution to combine collaborative

109



filtering and content-based filtering. Finally, it turns out that actually a

unifying framework for information filtering, including collaborative filtering,

content-based filtering, and hybrid filtering has been developed. In addition,

various previous work on hybrid filtering can be explained in this framework

and further improvements are suggested.

The nonparametric hierarchical Bayesian framework has been designed,

in which each user is modelled by a parametric content-based profile model,

whose parameters θ are generated from a common prior distribution p(θ),

which is shared by all the users. Then users are connected to each other

statistically via the common prior. Since the high complexity of the com-

mon prior can hardly be covered by any parametric distribution, we de-

scribe a nonparametric form for the common prior—an infinite multinomial

distribution—which itself is a sample generated from a Dirichlet process,

i.e. the hyper prior distribution.

We derive effective EM algorithms to learn the common prior from data

annotated by users. In particular, various approximations are developed to

solve analytically infeasible computations. The finally achieved predictive

approaches are surprisingly simple and intuitively understandable.

Finally we design the collaborative ensemble learning algorithm with

SVMs, which is a realization of hybrid approach combining the basic idea

of content-based filtering and collaborative filtering. The performance of col-

laborative ensemble learning has been extensively tested. As compared to

pure content-based and collaborative filtering, collaborative ensemble learn-

ing achieved excellent performance for various data sets including images,

paintings and news articles.

Our work is quite general in the sense that more complex models for each

individual can be adopted. For example, we may take into account the se-

quential factor of user annotations, then for each user we build a Markov

predictive model with parameters generated from a common prior distribu-

tion, which is again from a Dirichlet process. As another example, in the

described of realization with SVMs, we require users to explicitly give both

positive and negative examples. We can let users just give positive examples,

as in most cases users are only willing to annotate implicitly, like browsing

web pages, clicking hyperlinks, purchasing books and so on. Then we can
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model user annotations as points distributed in the content feature space and

model this distribution in some way (e.g. mixture of Gaussian). Finally the

a hierarchical model can be build on the top of this user profile model.

The nonparametric hierarchical model does something beyond informa-

tion filtering. It provides a general methodology for modelling a population

of related objects, like costumers in marketing analysis, hospitals in clinical

analysis, patients in heath care, automachines for banks, hackers in intru-

sion detection and so on. We believe the work is a strong contribution to a

wide range of data modelling tasks. In the future we are going to pursue its

extensions in different application fields.
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