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1 SUMMARY 
 
 
Stroke is one of the leading causes of morbidity, disability and mortality in humans worldwide. 

Accurate classification of etiologic stroke subtypes is of utmost importance for adequate 

primary and secondary prevention as well as for sufficiently powered genetical studies. In 

contrast, clinical phenotypization of ischemic stroke is often limited due to evidence of 

concurrent etiologies. For large-artery atherosclerotic stroke, genome-wide association 

studies have recently identified HDAC9 as a strong risk locus. However, as in the case of the 

HDAC9 locus, most common variants associated with disease risk locate to non-coding regions 

of the genome, making it notoriously hard to determine the causative molecular mechanisms. 

Our objective was to (1) test the reliability of established ischemic stroke classification systems 

in the setting of a research consortium, (2) identify novel risk loci for ischemic stroke and its 

distinct subtypes, and (3) elucidate the molecular mechanism mediating ischemic stroke risk 

at the HDAC9 locus. 

First, applying the ischemic stroke classification systems CCS and TOAST to a research cohort 

of more than 16.000 patients from the US and Europe, we found higher interrater reliability 

for CCS (k = 0.72) than with the traditional TOAST classification system. Second, classifying 

ischemic stroke based on CCS and TOAST, we performed a two-stage genome-wide 

association study with more than 37.000 patients and almost 400.000 controls. We identified 

a novel locus near TSPAN2 significantly associating with large-artery atherosclerotic stroke 

and replicated the 4 previously identified loci PITX2, ZFHX3, ALDH2, and HDAC9 with subtype-

specific associations. Third, utilizing a modern DNA-protein pulldown approach for high 

resolution mass spectrometry-based proteomics, we identified preferential binding of an 

E2F3-TFDP1-Rb1 complex to the common allele of rs2107595. Additional functional follow-up 

studies imply allele-specific regulation of HDAC9 expression via E2F3 and Rb1 as the molecular 

mechanism mediating disease risk at the HDAC9 locus. 

Collectively, we demonstrate improvements in ischemic stroke phenotypization, identification 

of a new risk locus for ischemic stroke and application of mass spectrometry-based proteomics 

to functional genetics to uncover the molecular mechanism mediating stroke risk. This 

approach is virtually applicable to any complex disease and may aid in the functional follow-

up of non-coding variants.  
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2 INTRODUCTION 
 
 
2.1        Fundamentals of Stroke 

Sudden onset neurological deficits such as facial palsy, arm weakness and/or impaired speech 

are typical symptoms in patients suffering a stroke.1 While the causative disruption of cerebral 

blood flow may be due to intracranial hemorrhage or blockage of cerebral blood vessels, the 

vast majority of strokes (approximately 72 %)2 are based on the latter with ischemia 

subsequently leading to infarction of brain parenchyma. 

 

Epidemiology and Risk Factors of Ischemic Stroke 

Ischemic stroke (IS) is one of the most frequent causes of morbidity and mortality worldwide, 

in developed countries also being the most frequent cause of disability and care dependency 

in the elderly.2,3 In 2016, the global lifetime risk of IS was approximately 18 %,2 with two thirds 

of IS usually occurring above the age of 65. 

Besides age several other risk factors for IS are well established, such as smoking, atrial 

fibrillation, hypertension, hypercholesterolemia, obesity and diabetes.4 Most of these risk 

factors are shared with other cardiovascular diseases like coronary artery disease (CAD)5 or 

myocardial infarction (MI),6 and are accountable for about 60 % of IS lifetime risk. The 

remaining IS risk is largely attributed to specific genetic heritability7 (see section 2.2). 

 

Pathophysiology and Treatment of Ischemic Stroke 

In case of IS cerebral blood flow is impaired via narrowing or complete occlusion of cerebral 

arteries. The brain parenchyma itself can be described as a “metabolic powerhouse”, as 

evidenced by its high extraction fraction of blood oxygen and glucose.8 In case of ischemia 

failure of Na+/K+-ATPase results in rapid breakdown of neuronal membrane potential and loss 

of function of neurotransmitter reuptake may additionally cause glutamatergic 

excitotoxicity.9,10 This low tolerance to ischemia results in high vulnerability of brain 

parenchyma, with neuronal damage becoming irreversible within minutes after onset of 

severe ischemia.11 

Therefore, treatment of acute IS aims to restore cerebral blood flow as quickly as possible in 

order to minimize the extent of infarction of brain parenchyma. Systemic thrombolysis via 

intravenous administration of recombinant tissue-type plasminogen activator (rt-PA)12 within 
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4.5 hours after symptom onset increases the chance of a good neurological outcome with an 

odds ratio of 1.34.13 However, in cases of large vessel occlusions with high thrombus burden, 

systemic thrombolysis via rt-PA on its own only has a minor chance of vessel recanalization.14 

For large vessel occlusions of the anterior circulation, endovascular therapy with mechanical 

thrombectomy (MT) is the therapy of choice,15 within 6 hours after symptom onset MT 

dramatically improves chances of good neurological outcome with an odds ratio of 2.49,16-23 

and MT was shown to be effective up to 24 hours after symptom onset in select cases.24,25 

Secondary prevention of IS includes potential lifestyle changes like physical exercise and 

quitting smoking as well as medication like statins, antiplatelet agents or anticoagulation.4 The 

choice of medication for secondary prevention is highly dependent on the patient’s IS etiology. 

 

Etiology and Classification of Ischemic Stroke 

Both for secondary prevention as well as for stroke research it is important to determine an 

individual patient’s IS etiology, for which several classification systems have been developed. 

The most widespread classification system of IS in clinical routine is the Trial of Org 10172 in 

Acute Stroke Treatment (TOAST),26 recognizing the following 5 distinct stroke etiologies: (1) 

large-artery atherosclerosis, (2) cardioembolism, (3) small-vessel occlusion, (4) other 

determined etiologies such as arterial dissection, and (5) undetermined. 

However, by applying the TOAST criteria about 30 % of stroke etiologies still remain 

undetermined (category 5).27 One focus of the present work was to improve the 

phenotypization of IS by assessing the discriminatory power of a new IS classification system, 

the Causative Classification of Stroke (CCS)28,29 in comparison to the established TOAST 

system (see section 3). Since IS per se is a complex phenotype with multiple possible 

etiologies, improving its causative phenotypization also has direct implications for stroke 

research such as genetics. 

 

2.2 Genetics of Ischemic Stroke 

Genetic Heritability of Ischemic Stroke 

Apart from the aforementioned risk factors, about 40 % of IS lifetime risk is accounted to 

genetical risk factors, as evidenced by the fact that prior IS among first-degree relatives 

constitutes an increase in IS risk of up to 30 % when compared to the general population.30 

Generally, heritability is usually conferred via distinct genetical mechanisms:31 (1) non-



INTRODUCTION 

 12 

synonymous single gene mutations leading to mendelian diseases, (2) rare variants with 

moderate to high effect size, and/or (3) common variants of so-called single nucleotide 

polymorphisms (SNPs). The most common monogenic stroke syndrome due to single gene 

mutations is cerebral autosomal dominant arteriopathy with subcortical infarcts and 

leukencephalopathy (CADASIL).32 However, the vast majority of IS incidents in the general 

population are caused by the combination of environmental factors, lifestyle and common 

variants, i.e. SNPs, with a low to moderate effect size.7 Method of choice for dissecting the 

genetical component of such complex diseases are genome-wide association studies 

(GWAS),33 where typically several thousands of SNPs across the whole genome are tested for 

their association with a certain phenotype,34 e.g. IS. With DNA sample numbers in local stroke 

cohorts usually limited to the range of several thousands, identification of risk loci with 

genome-wide significance does require a very clean phenotype.35,36 Hence, another focus of 

the present work was the identification of novel risk loci for IS via performing a GWAS based 

on the CCS classification28,29 (see section 4). 

 

Risk Loci for Ischemic Stroke 

The first risk locus for IS to be discovered via a GWAS was 4q25, with two SNPs close to PITX2 

significantly associating with IS in general and most strongly with cardioembolic stroke.37 

Meanwhile, as a result of two large scale GWAS meta-analyses of several international stroke 

cohorts (combined to MEGASTROKE and International Stroke Genetics Consortium) both with 

European and non-European ancestry in more than 70.000 stroke patients and 800.000 

controls,38,39 a total of 35 risk loci for stroke were identified. Out of these 35 risk loci, 20 

reached genome-wide significance for IS. These IS risk loci predominantly showed stroke 

subtype specificity, with all known risk loci only reaching genome-wide significance for one 

specific IS subtype.38,40 For e.g. large-artery atherosclerotic stroke (LAS), the following risk loci 

reached genome-wide significance: TSPAN2, TM4SF4-TM4SF1, EDNRA, LINC01492, MMP12 

and HDAC9. Since LAS and other cardiovascular traits such as CAD and MI share a lot of genetic 

heritability through their underlying pathophysiology of atherosclerosis,5,6 LAS risk loci 

currently are of particular biomedical interest. 
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HDAC9 and Functional Genetics 

The first risk locus to reach genome-wide significance for LAS was HDAC9, as identified in three 

independent European samples via the framework of the International Stroke Genetics 

Consortium and the Wellcome Trust Case Control Consortium 2.41 Besides LAS this risk locus 

is also strongly associated with CAD5,6 as well as peripheral artery disease and increased 

intima-media-thickness.42,43 With a p-value of 3.65x10-15 and an odds ratio of 1.21 the initially 

published lead SNP rs2107595 reached the highest level of confidence for the HDAC9 locus in 

the MEGASTROKE meta-analysis as well.38,41 The genomic location of rs2107595 is just 7.5 kb 

3’ of the HDAC9 gene. 

 

HDAC9 is a member of the histone deacetylases family and critically involved in gene 

regulation and transcriptional activity, both via deacetylation of histones as well as direct 

interaction with transcription factors.44-46 HDAC9 was found to be overexpressed in human 

atherosclerotic vessel lesions,42 whereas HDAC9 deficiency led to significant reduction of 

atherosclerotic lesion load in a mouse model of atherosclerosis.47,48 Furthermore, HDAC9 was 

implicated in inflammatory processes via T-cell homeostasis.49-51 Taken together, HDAC9 

seems a plausible candidate for mediating the risk effect of the HDAC9 locus with respect to 

LAS and CAD. 

 

rs2107595, like most common variants in the human genome,52,53 is located in an intergenic 

region and therefore might most likely impact on HDAC9 activity levels via gene regulatory 

mechanisms, i.e. via disrupting cis-regulatory elements such as promoter, enhancer or 

suppressor sequences,54 resulting in the allele-specific binding of transcription factors. 

Indeed, rs2107595 was found to match both with a DNase I hypersensitive site (DHS) as well 

as enhancer histone marks H3K4me1 and H3K27ac (ENCODE55,56), indicating colocalization 

with a cis-regulatory element.57-61 

Ultimately, a major focus of the present work was to apply a proteomics approach (see section 

2.3) to the lead SNP rs2107595 in order to detect allele-specific binding of transcription factors 

and thus enabling identification of the causative molecular mechanism by which the HDAC9 

locus mediates LAS risk (see section 5). 
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2.3 Mass Spectrometry-Based Proteomics 

Principles of Mass Spectrometry-Based Proteomics 

Proteomics, the large-scale identification and quantification of proteins from a complex 

sample, started out via 2D separation of proteins via SDS-PAGE and subsequent analysis of 

individually excised gel bands.62 Modern proteomics, however, is predominantly based on 

recently developed high-resolution quantitative mass spectrometry,63,64 allowing for precise 

identification and quantification of thousands of proteins as well as its interactions or 

posttranslational modifications.65-67 

 

The proteomics method of choice for high coverage of complex biological samples is the 

“bottom-up” approach:68 during sample preparation the biochemical isolation of the protein 

fraction of choice is performed and may or may not include further steps of fractionation 

and/or affinity purification.69,70 Next, the entire proteomic sample is digested into peptides 

with the addition of proteases such as trypsin and lysyl endopeptidase.71 After subsequent 

purification steps the sample is then subjected to high performance liquid chromatography 

(HPLC), where the highly complex peptide mixture is separated and coupled to a mass 

spectrometer (LC-MS) via electrospray ionization of the eluting peptides.72,73 For tandem 

mass spectrometry (LC-MS/MS), the ionized peptides’ mass is analyzed, followed by 

fragmentation and subsequent analysis of the fragment ions.74-76 From this data the peptide 

sequences as well as protein identities and abundances can be inferred via searching against 

a human proteome sequence database.77,78 

 

Interaction Proteomics for Functional Genetics 

In the context of functional genetics mass spectrometry-based proteomics techniques are 

increasingly suitable for the identification of protein-protein and protein-DNA interactions, it 

is now possible to accurately identify and quantify e.g. proteins interacting with specific 

chromatin marks or the allele-specific binding of transcription factors.79-82 Following 

immunoprecipitation (IP) of a certain protein or DNA bait of interest, the resultant proteomic 

sample is digested into peptides, purified and subjected to LC-MS/MS.83 

In order to perform accurate quantifications of interacting proteins two main strategies are 

available: metabolic labeling e.g. via “stable isotope labeling by amino acids in cell culture”84,85 

or label-free methods such as MaxLFQ,86 involving stringent bioinformatic normalization 
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strategies for deduction of protein intensities.82 While both strategies have their advantages, 

one benefit of metabolic labeling is the robust exclusion of confounding background binders 

or contaminants.87 

 

In case of metabolic labeling via SILAC, the cell culture-based input material is generated in 

two states, either with heavy-labeled or light-labeled amino acids.84 These differentially 

labeled input materials are then subjected to two sets of IP each, once with the candidate bait 

being assigned the heavy-labeled input, once with the control bait being assigned the heavy-

labeled input. Due to label-switching between the two sets of IP, a typical SILAC experiment 

will generate two different heavy-over-light ratios for identified proteins, with specific 

interactors showing inverse ratios between both sets of IPs.88,89 

 

Proteome-Wide Analysis of Disease-Associated SNPs (PWAS) 

Interaction proteomics can be used as an unbiased DNA-centric method for detecting DNA-

protein interactions.90 If applied to functional genetics, concatemerized synthetic DNA oligos 

containing the risk allele or its corresponding wildtype allele plus some of the SNPs flanking 

genomic sequence can be used as candidate and control bait, respectively. Using nuclear 

extracts which have been metabolically labeled via SILAC as proteomic input material, this 

DNA-protein pulldown followed by quantitative LC-MS/MS enables robust identification of 

differentially binding transcription factors in an allele-specific manner.91 

 

This method was called proteome-wide analysis of disease-associated SNPs (PWAS), its first 

application in the context of clinical genetics was the identification of allele-specific binding 

factors for SNPs at the IL2RA locus, a risk locus associated with type 1 diabetes.91 In the 

present study, this approach was specifically applied to rs2107595 for identification of the 

molecular mechanism conferring LAS risk at the HDAC9 locus (see section 5).  
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Methods—Fifty-two trained and certified adjudicators determined both phenotypic (abnormal test findings categorized in 
major pathogenic groups without weighting toward the most likely cause) and causative ischemic stroke subtypes in 
16 954 subjects with imaging-confirmed ischemic stroke from 12 US studies and 11 studies from 8 European countries 
using the web-based Causative Classification of Stroke System. Classification reliability was assessed with blinded 
readjudication of 1509 randomly selected cases.

Results—The distribution of pathogenic categories varied by study, age, sex, and race (P<0.001 for each). Overall, only 40% 
to 54% of cases with a given major ischemic stroke pathogenesis (phenotypic subtype) were classified into the same final 
causative category with high confidence. There was good agreement for both causative (κ 0.72; 95% confidence interval, 
0.69–0.75) and phenotypic classifications (κ 0.73; 95% confidence interval, 0.70–0.75).

Conclusions—This study demonstrates that pathogenic subtypes can be determined with good reliability in studies that 
include investigators with different expertise and background, institutions with different stroke evaluation protocols and 
geographic location, and patient populations with different epidemiological characteristics. The discordance between 
phenotypic and causative stroke subtypes highlights the fact that the presence of an abnormality in a patient with stroke 
does not necessarily mean that it is the cause of stroke.   (Stroke. 2014;45:3589-3596.)

Key Words: classification ◼ pathogenesis ◼ phenotype

Successful identification of genes that modify ischemic 
stroke risk relies on accurate delineation of pathogenic 

stroke phenotypes.1–5 Determination of pathogenic stroke 
subtypes requires integration of several clinical, diagnostic, 
and imaging features and, therefore, is inherently subject 
to variability. Reproducible data on frequency of patho-
genic stroke subtypes based on large multicenter data sets 
using well-defined and evidence-based criteria do not exist. 
Published studies on pathogenic stroke subtypes are largely 
constrained by poor to moderate reliability of the classifi-
cation system,6–8 suboptimal or uncertain diagnostic work-
up,9,10 small sample size,7,8,11 single center design,8 and use of 
stringent selection criteria.10,11

This analysis sought to better understand the pathogenic 
basis of ischemic stroke. We prospectively identified patho-
genic stroke subtypes using the rule- and evidence-based 
Causative Classification of Stroke (CCS) system within the 
context of the NINDS (National Institute of Neurological 
Disorders and Stroke)-Stroke Genetics Network (SiGN).12–15 
CCS automatically provides both phenotypic and causative 
stroke subtypes in each case. The former is a summary of 
positive test findings, whereas the latter requires integration of 
clinical, laboratory, and imaging stroke features and diagnos-
tic test results to identify a single most likely causative sub-
type for each case. Hence, they provide different information. 
Here, we report distribution characteristics of various CCS-
defined ischemic stroke subtypes and inter-rater reliability of 
pathogenic subtype assignments in the SiGN data set.

Methods
Contributing Studies and Patient Population
SiGN is a large international consortium of ischemic stroke stud-
ies aiming to generate high-quality phenotype data to assist in the 
identification of the genetic basis of ischemic stroke subtypes. This 
analysis included ischemic stroke cases from the initial 12 US and 11 
European ischemic stroke studies in SiGN from 9 countries. Imaging 
confirmation of the absence of hemorrhagic stroke was required in 
each subject. Details about the individual contributing studies have 
been described previously in a separate publication.15 Seventeen stud-
ies recruited consenting cases without using any selection criteria. In 
contrast, 6 studies were conducted in selected populations based on 

age, sex, and family history.15 Recruitment to contributing studies oc-
curred during a 23-year period between 1989 and 2012.

Stroke Subtyping
Pathogenic stroke classification in SiGN started in July 2010. The 
current study included 16 954 cases for whom pathogenic subtype 
information was available in the SiGN database as of March 2014. 
SiGN used the web-based CCS system for stroke subtyping (available 
at https://ccs.mgh.harvard.edu).13 The details of CCS were published 
elsewhere.13 For the purpose of SiGN, we customized CCS by gener-
ating a confidential, password-protected data collection platform. We 
also made a modification in the online CCS form by separating the 
single data entry field for small artery occlusion (SAO) in the original 
CCS into 2 separate data entry fields: one to indicate whether there 
is a typical lacunar infarct on neuroimaging and the second one to 
rule out whether there is an accompanying parent artery disease at 
the origin of the penetrating artery supplying the site of the lacunar 
infarct. Thus, it became possible to collect phenotypic data on lacunar 
infarcts for which vascular imaging for parent artery disease was not 
available. No modification was made in the decision-making code of 
the CCS; both customized and original CCS algorithms provided the 
same subtype for each given test condition.

We determined phenotypic subtypes in each subject.13,14 Phenotypic 
subtypes referred to abnormal test findings categorized in major 
pathogenic groups without weighting toward the most likely cause in 
the presence of multiple causes.14 There were 4 main phenotypic cat-
egories: large artery atherosclerosis (LAA), cardiac embolism (CE), 
lacunar infarction, and other uncommon causes. There were 4 pos-
sible states for LAA and CE (major, minor, absent, and incomplete 
evaluation), 3 for lacunar infarction (major, absent, and incomplete 
evaluation), and 2 for other uncommon causes (major and absent), 
giving rise to a total of 96 phenotypic categories. We collapsed these 
96 categories into the following 7 subtypes: LAA-major, CE-major, 
lacunar infarction-major, other-major, no major pathogenesis, mul-
tiple competing major pathogeneses, and incomplete investigation. 
We further collapsed the last 3 categories into undetermined category 
and generated a 5-subtype phenotypic categorization.

We also recorded causative subtypes in each case. In contrast to 
phenotypic subtypes, causative subtyping requires integration of 
multiple aspects of ischemic stroke evaluation in a probabilistic 
and objective manner.12,13 The causative subtype differs from the 
phenotypic subtype in certain occasions. For instance, in a patient 
with internal carotid artery stenosis, ipsilateral internal borderzone 
infarcts, and atrial fibrillation, the causative subtype is LAA, whereas 
the phenotypic subtype is multiple competing pathogeneses because 
of coexistence of LAA and CE. Major causative categories included 
LAA, CE, SAO, other uncommon causes, and undetermined causes. 
The undetermined group was further divided into 4 subcategories as 
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cryptogenic embolism, cryptogenic-other, incomplete evaluation, and 
multiple competing causes (unclassified). We grouped cardiac pathol-
ogies with uncertain risk of stroke (minor sources) into the undeter-
mined cryptogenic-other category. This allowed us to generate a more 
refined cardioembolic category (CE-major). Each causative category 
in CCS (except for undetermined category) was subdivided based on 
the weight of available data as evident, probable, or possible to iden-
tify the level of confidence in assigning an pathogenesis.12 Overall, 
CCS generated 17 causative subtypes.

CCS did not require a minimum level of investigations. In cases 
with missing tests, the system still assigned a subtype based on results 
of available tests but with a lower level of confidence. For instance, 
in a patient with typical lacunar infarct in the internal capsule and 
missing intracranial vascular imaging to rule out a parent artery dis-
ease, the level of confidence in attributing lacunar infarct to SAO was 
reduced from evident to possible. A subtype (both causative and phe-
notypic) was considered to be incomplete evaluation only when brain 
imaging, vascular imaging, or cardiac evaluation was not performed 
in the absence of an identified pathogenesis.

Data Adjudication and Quality Control
A total of 52 adjudicators (13 stroke neurologists, 17 stroke fellows, 
13 neurology residents, and 9 non-neurologists) performed stroke 
subtyping. A centralized Phenotype Committee of 4 expert stroke 
neurologists met weekly to monitor data quality and site performance. 
The same committee blindly readjudicated a randomly selected 10% 
of cases recruited from the US studies for quality control. Similarly, 
10% of cases from European studies were readjudicated by blinded 
European investigators (n=20). Each adjudicator and readjudicator 
had to complete an interactive online training module. The Phenotype 
Committee members provided training to adjudicators/readjudica-
tors on data entry, data submission, and archiving at scheduled study 
meetings and via webinars. Every investigator was required to pass an 
online certification examination available at the CCS website.

Data Source
Study-specific case report forms and unabstracted medical records 
served as data source for subtyping. Readjudicators used the same 
data source available to adjudicators to determine the CCS sub-
types. Data sources varied in length and detail among the study sites. 
Subtype assignments were done based on data available at the time of 
discharge in the majority. Prolonged ambulatory cardiac monitoring 
was obtained after discharge in 14% of the subjects. In such cases, 
we used postdischarge cardiac monitoring findings for stroke subtyp-
ing. All data entered into CCS and the system output were saved in a 
confidential SiGN database. In addition to subtype-related data, each 
study site provided baseline variables such as age, sex, race, and vas-
cular risk factors, using a structured data collection form.

Statistics
Our primary objective was to determine the distribution of CCS sub-
types within the SiGN cohort. We also determined pathogenic sub-
type distribution in a subset with complete diagnostic investigation. 
We defined complete investigation as the presence of brain imaging, 
intracranial and extracranial vascular imaging, and cardiac evaluation 
with echocardiography if ECG and clinical assessment did not reveal 
a source. We assessed the heterogeneity among centers in utilization 
of diagnostic tests using the χ2 test. We used χ2 test and Student t test 
to evaluate differences between cohorts with and without complete 
investigation for categorical and continuous variables, respectively. 
We assessed the correlation between causative and phenotypic sub-
types by calculating how often CCS classified a given major abnor-
mal evaluation finding (phenotypic subtype) as the causative stroke 
mechanism (causative subtype). We performed multinomial logistic 
regression to evaluate associations between causative CCS subtypes 
and age, sex, and race. In regression models, undetermined catego-
ry served as the reference. We assessed the concordance between 
paired ratings by adjudicators and readjudicators by calculating 

crude agreement rates and unweighted κ values for both 5-subtype 
causative and phenotypic classification.16 We expressed associations 
as odds ratios and 95% confidence intervals (CIs). We considered P 
values <0.05 as statically significant.

Results
Study Cohort
Table 1 presents characteristics of the study population. 
Complete diagnostic investigation was available in 46%. Cases 
with complete investigation were similar to those with incom-
plete investigation except that they were slightly younger and 
more likely to be men (P<0.001; Table 1). The proportion of 
cases with complete investigation varied across the 23 studies 
(P<0.001; Table 2). US studies had higher complete investi-
gation rate as compared with European centers (53% versus 
40%; P<0.001).

Stroke Subtypes
Figure 1 shows the distribution of phenotypic and causative 
subtypes. Compared with the overall population, subtype 
distribution differed in the cohorts with complete investiga-
tion (Figure 1; P<0.001) and after exclusion of the 6 stud-
ies that used selection rules (Figure I in the online-only Data 
Supplement; P<0.001).

Vascular investigations revealed an atherosclerotic lesion 
causing ≥50% stenosis (LAA-major phenotype) in 3392 of 
the 16 954 cases (20%); among these, 2093 (62%) had extra-
cranial stenosis, 962 (28%) had intracranial stenosis, and 337 
(10%) had both extra- and intracranial stenoses. LAA-major 
was an isolated finding in 2536 (75%); in the remaining 856 
(25%), there was another major pathogenesis such as a major 
cardioembolic source. Diagnostic tests for other pathogeneses 
were missing in 972 (29%). Overall, 1719 (51%) cases with 
a major LAA had either a missing test or another competing 
pathogenesis. The final causative subtype was LAA-evident in 
only 1815 (54%) cases (Figure 2A). The remaining individu-
als were either classified into the category of LAA but with a 

Table 1. Patient Characteristics

Overall Study  
Population  
(n=16 954)

Complete  
Investigation  

(n=7748)

Incomplete  
Investigation  

(n=9206)

Age (mean±SD), y 67.1 (14.9) 64.7 (15.7) 69.1 (13.9)

Female (%) 48.8 44.5 52.3

Race (%)

    Black 9.7 11.0 8.7

    White 79.3 77.5 80.7

    Other 11.0 11.5 10.6

Hypertension (%) 67.8 66.0 69.3

Diabetes mellitus (%) 25.0 25.7 24.4

Atrial fibrillation (%) 21.4 23.2 19.9

Coronary artery disease (%) 22.9 21.3 24.3

Current smoking (%) 24.1 24.4 23.8

Complete investigation is defined as the presence of brain imaging, cardiac 
evaluation with electrocardiography, echocardiography if other investigations 
did not reveal a source, and intracranial and extracranial vascular evaluation.
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lower level of confidence (either probable or possible) or into 
another category.

There was a major cardiac source in 4496 of the 16 954 
(27%) cases. Atrial fibrillation accounted for the largest pro-
portion of the major cardiac source of embolism (3735; 83%). 
There was another competing major vascular or systemic 
abnormality in 816 (18%) cases. Diagnostic investigations 
were incomplete in 2229 (50%) cases. The final causative sub-
type was CE-evident in 2011 (45%) cases with a major cardiac 
source of embolism (Figure 2B).

There were 2458 (15%) cases with a typical lacunar infarct 
on neuroimaging. Among those with lacunar infarction, intra-
cranial vascular imaging was available in 1567 (64%). An 
abnormality in the parent artery at the origin of the penetrat-
ing artery supplying the territory of the lacunar infarct was 
reported in 300 (19%). Cardiac investigations were performed 
in 1617 (66%) and revealed a major cardiac source in 208 
(13%). Overall, vascular and cardiac evaluations revealed 
another major pathogenesis in 492 (20%). Investigations were 
incomplete in 1344 (55%). The final causative subtype was 

SAO-evident in 992 (40%) cases with a typical lacunar infarct 
on neuroimaging (Figure 2C).

Diagnostic investigations revealed a major uncommon 
pathogenesis in 1109 (7%) cases. The most frequent uncom-
mon pathogenesis was acute arterial dissection (397 cases, 
36%). Overall, incomplete evaluation and completing major 
pathogenesis rate was 53% in this category. The final causative 
subtype was evident other uncommon causes in 526 (47%) 
patients with a major uncommon pathogenesis (Figure 2D).

The largest pathogenic category was undetermined patho-
genesis (7272 cases; 43%). This category included 3947 
(55%) with incomplete evaluation, 1333 (18%) with minor 
cardiac emboli sources, 655 (9%) with multiple competing 
pathogeneses, 1118 (15%) with cryptogenic-other, and 219 
(3%) with cryptogenic embolism. Of note, there were a total 
of 3257 (19%) cases in the entire study cohort with multiple 
competing pathogeneses (major or minor). Nevertheless, the 
final causative subtype was unclassified in only 655 (4%), 
suggesting that the CCS algorithm was able to identify a prob-
able pathogenesis in the vast majority of patients with overlap-
ping pathogeneses.

There was a significant relationship between stroke sub-
types and age, sex, and race (P<0.001 for each; Figure II in 
the online-only Data Supplement). The association was most 
obvious for age. Subjects ≥50 years were ≈4× more likely to 
have cardioembolic stroke and 6× less likely to have stroke 
because of other uncommon causes as compared with those 
<50 years. In a further analysis where age was classified by 
decades, we found a continuous increase in LAA and SAO 
with increasing age with peak values in the age ≈50 to 70 
years (Figure 3). There was no such age peak in major CE; 
instead, the probability of major CE continuously increased 
by increasing age. In contrast, there was a steady decrease in 
cryptogenic and other uncommon strokes by increasing age.

Reliability
There were 1509 paired ratings by 52 adjudicators and 24 
readjudicators. The crude agreement for 5-subtype causative 
system was 80% (Table I in the online-only Data Supplement). 
The corresponding κ value was 0.72 (95% CI, 0.69–0.75). The 
crude agreement rate for 5-subtype phenotypic system was 
81% with a corresponding κ value of 0.73 (95% CI, 0.70–
0.75; Table II in the online-only Data Supplement). Crude 
agreements rates for causative system varied between 65% 
and 99% across the study sites except for 1 site where the 
agreement rate was 40% (Figure III in the online-only Data 
Supplement). After excluding that one outlier, the κ value 
increased to 0.75 (95% CI, 0.72–0.77) for causative and 0.75 
(95% CI, 0.72–0.78) for phenotypic classifications.

Discussion
This is a large study of systematic ischemic stroke subtyping 
using an evidence- and rule-based system. Because of its size, 
patterns of subtype distribution across age groups are more 
readily discernible. It is also the largest study of the inter-rater 
reliability of ischemic stroke subtyping published thus far, 
based on 1509 paired ratings by a total of 76 trained and certi-
fied adjudicators and readjudicators. There was simultaneous 

Table 2. Complete Investigation Rates Across the 
Contributing Studies 

Study No. of Cases
Complete Cardiac  
Investigation, % 

Complete Vascular  
Investigation, %

Complete Cardiac  
and Vascular  

Investigation, %

1 684 40.9 20.2 4.8

2 578 89.6 75.3 70.4

3 840 71.8 39.4 30.1

4 1072 79.5 98.5 78.7

5 331 98.8 97.9 96.7

6 876 94.5 79.3 75.9

7 598 58.2 35.8 21.9

8 675 80.0 79.4 64.3

9 1088 64.0 97.6 61.7

10 626 45.7 13.9 5.9

11 642 81.2 50.9 43.3

12 891 87.8 68.2 62.3

13 470 57.7 20.9 13.0

14 555 73.9 42.9 34.8

15 643 95.2 32.7 30.6

16 407 51.4 40.8 29.0

17 1085 78.6 47.3 37.4

18 686 83.4 92.7 80.2

19 554 58.3 31.0 19.0

20 685 74.9 92.3 69.5

21 524 93.9 85.7 80.5

22 957 55.3 31.2 16.7

23 1487 85.3 33.8 29.1

P<0.001 P<0.001 P<0.001

Europe 9360 68.8 54.7 39.7

USA 7594 81.6 60.6 53.1

P<0.001 P<0.001 P<0.001

The heterogeneity among studies was assessed by χ2 test.
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assessment of phenotypic and causative subtypes allowing 
examination of subtype distribution and reliability separately 
for these 2 types of classification. Our finding of discor-
dance between the causative and phenotypic classifications is 
expected and reflects the fact that the presence of a phenotypic 
characteristic in a given patient, such as a vascular or cardiac 
abnormality, does not necessarily mean that it is the cause of 
stroke in that patient.

The extent of diagnostic evaluation was heterogeneous for 
a variety of reasons. Some studies used single site recruit-
ment where strokes were evaluated at tertiary medical centers 
by vascular neurologists with a highly consistent diagnostic 
approach, whereas other studies were regional or national in 
scope with strokes evaluated primarily at community hos-
pitals by physicians with diverse backgrounds with a less 
consistent diagnostic approach.15 This variation in extent of 
diagnostic evaluation motivated us to provide data separately 
for the subset with complete vascular and cardiac investi-
gations. The results in this subset are the highest quality 

data available in the literature on the distribution of stroke 
subtypes. Of note, the subset with complete investigations 
resembled the overall study population with respect to the 
majority of baseline characteristics, suggesting no substantial 
selection bias.

In the present study, inter-rater reliability was slightly lower 
(κ=0.72) than previously reported for CCS (κ≥0.80).12–14 Prior 
studies had smaller number of raters (n=2–20) and smaller 
number of cases (n=50). As the number of cases and the num-
ber of raters increase, the variance introduced to stroke clas-
sification also increases and hence the reliability decreases. 
In contrast to prior studies that used abstracted case summa-
ries, reliability analysis in this study was based on reviews of 
unabstracted case report forms and patient charts. Differences 
in raters’ ability to pinpoint the medical record data that is 
critical for subtyping, ambiguities in the source data (for 
instance, inconsistencies in interpretation of test finding 
between physician notes), variance in raters’ interpretation 
of the diagnostic data, and lack of data or incomplete data 

Figure 1. Distribution of phenotypic and causative stroke subtypes. A, Phenotypic subtypes in the entire population (n=16954); (B) phe-
notypic subtypes in the subset with complete vascular and cardiac investigation (n=7748); (C) causative subtypes in the entire population; 
and (D) causative subtypes in the subset with complete vascular and cardiac investigation. Please note that the term incomplete evalua-
tion in A and C designates a pathogenic subgroup under undetermined (Und) category that is considered when diagnostic investigations 
are not performed in the absence of an identified pathogenesis. According to this definition, a case with atrial fibrillation in history is not 
classified as incomplete evaluation when vascular and cardiac investigations are not done. The term complete investigation in B and D, 
however, is solely based on availability of diagnostic tests indicating that brain imaging, vascular imaging, and cardiac evaluation are 
available. CE indicates cardiac embolism; LAA, large artery atherosclerosis; LI, lacunar infarction; and SAO, small artery occlusion.
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(for instance, unavailability of radiographic images for visual 
assessment) likely contributed to lower agreement. Despite all 
these factors, κ for CCS still exceeds reported κs for conven-
tional classification systems. The Women’s Health Study is 
the largest reliability study of Trial of ORG 10172 in Acute 
Stroke Treatment (TOAST) including 133 cases and 2 raters 
and reporting a κ of 0.49.9 The Siblings with Ischemic Stroke 
Study (SWISS) assessed the reliability of TOAST using the 
largest number of raters (6 raters and 30 cases) and reporting 
a κ of 0.54.11 The κ for conventional classification would be 

expected to be much lower when tested in the same test condi-
tions with the present study.

Several limitations merit further discussion. We did not 
include a specific minimum standard for quality of source data 
used for phenotyping. The 23 studies included in this analy-
sis represent a broad range of methodologies (hospital-based 
case–control, pedigree-based, observational cohorts, and pop-
ulation-based studies) and using a broad range of criteria for 
inclusion ranging from no restriction to targeted recruitment 
by age, sex, family history, etc. Source documents varied from 
secondary notes of test results to computerized data reposito-
ries where access to source data such as radiographic images 
was possible. This diversity strengthens the confidence in our 
findings by capturing the vagaries that may occur in the real 
world as opposed to the rigors of a structured clinical research 
setting. Moreover, CCS provides refined subtypes by integrat-
ing quality and completeness of source data into level of con-
fidence for each subtype, minimizing the impact of diversity 
in source data on validity of classifications. Insufficient rep-
resentation of certain racial and ethnic groups (for instance, 
Asian population) in SiGN may have caused underestimation 
of certain mechanisms such as intracranial atherosclerosis. 
Finally, because majority of studies were hospital-based, the 
study population was vulnerable to survival, severity, or con-
sent bias in addition to the impact of specific inclusion and 
exclusion criteria.

A major strength of this study was systematic adjudication 
of stroke subtypes using a rule- and evidence-based system. 
CCS offers several advantages such as good to excellent reli-
ability and web-based interface.13 In addition, CCS retains 
and standardizes individual data points such as atrial fibril-
lation or arterial dissection that underlie subtype classifica-
tion. Furthermore, its ability to provide both phenotypic and 
causative subtypes would allow one to separately explore the 
genetic basis of the presence of a potential pathogenesis (phe-
notypic subtype) and the presence of a causative pathogenesis 
(causative subtype). A gene for LAA could be different from 
a gene that makes an atherosclerotic plaque rupture and cause 

Figure 3. The relationship between age and caus-
ative stroke subtypes. CE indicates cardiac embo-
lism; LAA, large artery atherosclerosis; and SAO, 
small artery occlusion.

Figure 2. Correlation between causative and phenotypic sub-
types. Segments in each circle indicate proportion of causative 
subtypes in each major phenotypic category (circles). CE indi-
cates cardiac embolism; LAA, large artery atherosclerosis; LI, 
lacunar infarction; and SAO, small artery occlusion.
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stroke. The ability to study such differential genetic associa-
tions would facilitate our understanding of the pathophysi-
ological basis of ischemic stroke.

Sources of Funding
The Stroke Genetics Network (SiGN) study was funded by a coop-
erative agreement grant from the National Institute of Neurological 
Disorders and Stroke (NINDS) U01 NS069208. The Base de Datos 
de Ictus del Hospital del Mar (BASICMAR) Genetic Study was sup-
ported by the Ministerio de Sanidad y Consumo de España, Instituto 
de Salud Carlos III (ISC III) with the grants: Registro BASICMAR 
Funding for Research in Health (PI051737); GWA Study of 
Leukoaraiosis (GWALA) project from Fondos de Investigación 
Sanitaria ISC III (PI10/02064) and (PI12/01238); and Fondos 
European Regional Development Funding (FEDER/EDRF) Red de 
Investigación Cardiovascular (RD12/0042/0020). Additional sup-
port was provided by the Fundació la Marató TV3 with the grant 
GOD’s project. Genestroke Consortium (76/C/2011) Recercaixa’13 
(JJ086116). Assistance with data cleaning was provided by the 
Research in Cardiovascular and Inflammatory Diseases Program of 
Institute Hospital del Mar of Medical Investigations, Hospital del 
Mar, and the Barcelona Biomedical Research Park. The Bio-
Repository of DNA in Stroke (BRAINS) was supported by the 
British Council (UKIERI), Henry Smith Charity, and the UK Stroke 
Research Network. Dr Sharma was supported by a Department of 
Health (United Kingdom) Senior Fellowship. Center for Inherited 
Disease Research (CIDR): genotyping services were provided by the 
Johns Hopkins University CIDR, which is fully funded through a 
federal contract from the National Institutes of Health (NIH) to the 
Johns Hopkins University (contract No. HHSN268200782096C). 
The Edinburgh Stroke Study was supported by the Wellcome Trust 
(clinician scientist award to Dr Sudlow) and the Binks Trust. Sample 
processing occurred in the Genetics Core Laboratory of the 
Wellcome Trust Clinical Research Facility, Western General 
Hospital, Edinburgh. Much of the neuroimaging occurred in the 
Scottish Funding Council Brain Imaging Research Centre (www.
sbirc.ed.ac.uk), Division of Clinical Neurosciences, University of 
Edinburgh, a core area of the Wellcome Trust Clinical Research 
Facility and part of the Scottish Imaging Network–A Platform for 
Scientific Excellence collaboration (www.sinapse.ac.uk), funded by 
the Scottish Funding Council and the Chief Scientist Office. 
Genotyping was performed at the Wellcome Trust Sanger Institute in 
the United Kingdom and funded by the Wellcome Trust as part of the 
Wellcome Trust Case Control Consortium 2 project (085475/B/08/Z 
and 085475/Z/08/Z and WT084724MA). The Massachusetts General 
Hospital Stroke Genetics Group was supported by the NIH Genes 
Affecting Stroke Risks and Outcomes Study grant K23 NS042720, 
the American Heart Association/Bugher Foundation Centers for 
Stroke Prevention Research 0775010N, and NINDS K23NS042695, 
R01NS059727, the Deane Institute for Integrative Research in Atrial 
Fibrillation and Stroke, and by the Keane Stroke Genetics Fund. 
Genotyping services were provided by the Broad Institute Center for 
Genotyping and Analysis, supported by grant U54 RR020278 from 
the National Center for Research Resources. The Greater Cincinnati/
Northern Kentucky Stroke Study (GCNKSS) was supported by the 
NIH (NS 030678). The Genetics of Early Onset Stroke (GEOS) 
Study was supported by the NIH Genes, Environment, and Health 
Initiative (GEI) grant U01 HG004436, as part of the Gene 
Environment Association Studies (GENEVA) consortium under 
GEI, with additional support provided by the Mid-Atlantic Nutrition 
and Obesity Research Center (P30 DK072488) and the Office of 
Research and Development, Medical Research Service, and the 
Baltimore Geriatrics Research, Education, and Clinical Center of the 
Department of Veterans Affairs. Genotyping services were provided 
by the Johns Hopkins University CIDR, which is fully funded 
through a federal contract from the NIH to the Johns Hopkins 
University (contract No. HHSN268200782096C). Assistance with 
data cleaning was provided by the GENEVA Coordinating Center 
(U01 HG 004446; PI Bruce S Weir). Study recruitment and assembly 

of data sets were supported by a Cooperative Agreement with the 
Division of Adult and Community Health, Centers for Disease 
Control and by grants from the NINDS and the NIH Office of 
Research on Women’s Health (R01 NS45012, U01 NS069208-01). 
GRAZ: The Austrian Stroke Prevention Study was supported by the 
Austrian Science Fund (FWF) grant Nos. P20545-P05 and P13180 
and I904-B13 (Era-Net). The Medical University of Graz supports 
the databases of the Graz Stroke Study and the Austrian Stroke 
Prevention Study. The Ischemic Stroke Genetics Study (ISGS) was 
supported by the NINDS (R01 NS42733; PI Dr Meschia). The 
Sibling with Ischemic Stroke Study (SWISS) was supported by the 
NINDS (R01 NS39987; PI Dr Meschia). Both SWISS and ISGS re-
ceived additional support, in part, from the Intramural Research 
Program of the National Institute on Aging (Z01 AG000954-06; PI 
Andrew Singleton). SWISS and ISGS used samples and clinical data 
from the NIH-NINDS Human Genetics Resource Center DNA and 
Cell Line Repository (http://ccr.coriell.org/ninds), human subject 
protocol Nos. 2003-081 and 2004-147. SWISS and ISGS used 
stroke-free participants from the Baltimore Longitudinal Study of 
Aging (BLSA) as controls with the permission of Dr Luigi Ferrucci. 
The inclusion of BLSA samples was supported, in part, by the 
Intramural Research Program of the National Institute on Aging 
(Z01 AG000015-50), human subject protocol No. 2003-078. This 
study used the high-performance computational capabilities of the 
Biowulf Linux cluster at the NIH (http://biowulf.nih.gov). 
Phenotypic data and genetic specimens collection were funded by 
the grant from the Polish Ministry of Science and Higher Education 
for Leading National Research Centers (KNOW) and by the grant 
from the Medical College, Jagiellonian University in Krakow, 
Poland: K/ZDS/002848. The Leuven Stroke genetics study was sup-
ported by personal research funds from the Department of Neurology 
of the University Hospitals Leuven. Dr Thijs is supported by a 
Fundamental Clinical Research grant from FWO Flanders (Nos. 
1.8.009.08.N.00 and 1800913N). Dr Lemmens is a Senior Clinical 
Investigator of FWO Flanders (FWO 1841913N) and is supported 
through Fonds Annie Planckaert-Dewaele. The Lund Stroke Register 
was supported by the Swedish Research Council (K2010-
61X-20378-04-3), The Swedish Heart-Lung Foundation, Region 
Skåne, the Freemasons Lodge of Instruction EOS in Lund, King 
Gustaf V’s and Queen Victoria’s Foundation, Lund University, and 
the Swedish Stroke Association. Biobank services were provided by 
Region Skåne Competence Centre (RSKC Malmö), Skåne University 
Hospital, Malmö, Sweden, and Biobank, Labmedicin Skåne, 
University and Regional Laboratories Region Skåne, Sweden. The 
Middlesex County Ischemic Stroke Study was supported by intra-
mural funding from the New Jersey Neuroscience Institute/JFK 
Medical Center, Edison, NJ, and The Neurogenetics Foundation, 
Cranbury, NJ. The Northern Manhattan Study was supported by 
grants from the NINDS (R37 NS029993, R01 NS27517). The 
Cerebrovascular Biorepository at University of Miami/Jackson 
Memorial Hospital (The Miami Stroke Registry, Institutional Review 
Board No. 20070386) was supported by the Department of 
Neurology at University of Miami Miller School of Medicine and 
Evelyn McKnight Brain Institute. Biorepository and DNA extraction 
services were provided by the Hussmann Institute for Human 
Genomics at the Miller School of Medicine. The MUNICH study 
was supported by the Vascular Dementia Research Foundation and 
the Jackstaedt Stiftung. The Nurses’ Health Study work on stroke is 
supported by grants from the NIH, including HL088521 and 
HL34594 from the National Heart, Lung, and Blood Institute, as 
well as grants from the National Cancer Institute funding the ques-
tionnaire follow-up and blood collection: CA87969 and CA49449. 
The Oxford Vascular Study was supported by the Stroke Association, 
Medical Research Council, Wellcome Trust, Dunhill Medical Trust, 
NIH Research (NIHR), and NIHR Oxford Biomedical Research 
Centre based at Oxford University Hospitals NHS Trust and 
University of Oxford. Dr Rothwell is in receipt of Senior Investigator 
Awards from the Wellcome Trust and the NIHR. The Reasons for 
Geographic and Racial Differences in Stroke Study (REGARDS) 
was supported by a cooperative agreement U01 NS041588 from the 
NINDS, NIH, and Department of Health and Human Service. A full 

 by guest on M
arch 1, 2017

http://stroke.ahajournals.org/
D

ow
nloaded from

 



3596  Stroke  December 2014

list of participating REGARDS investigators and institutions can be 
found at http://www.regardsstudy.org. The Sahlgrenska Academy 
Study of Ischemic Stroke was supported by the Swedish Research 
Council (K2011-65X-14605-09-6), the Swedish Heart and Lung 
Foundation (20100256), the Swedish state/Sahlgrenska University 
Hospital (ALFGBG-148861), the Swedish Stroke Association, the 
Swedish Society of Medicine, and the Rune and Ulla Amlöv 
Foundation. SPS3: The Secondary Prevention of Small Subcortical 
Strokes trial was funded by the US National Institute of Health and 
Neurological Disorders and Stroke grant No. U01NS38529-04A1 
(principal investigator, Oscar R. Benavente; coprincipal investigator, 
Robert G. Hart). The SPS3 Genetic Substudy (SPS3-GENES) was 
funded by R01 NS073346 (coprincipal investigators, Julie A. 
Johnson, Oscar R. Benavente, and Alan R. Shuldiner). ST. 
GEORGE’S: The principal funding for this study was provided by 
the Wellcome Trust, as part of the Wellcome Trust Case Control 
Consortium 2 project (085475/B/08/Z and 085475/Z/08/Z and 
WT084724MA). Collection of some of the St George’s stroke cohort 
was supported by project grant support from the Stroke Association. 
The Women’s Health Initiatives program was funded by the National 
Heart, Lung, and Blood Institute, NIH, US Department of Health 
and Human Services through contracts N01WH22110, 24152, 
32100-2, 32105-6, 32108-9, 32111-13, 32115, 32118 to 32119, 
32122, 42107-26, 42129-32, and 44221. The Hormones and 
Biomarkers Predicting Stroke was supported by a grant from the 
National Institutes of Neurological Disorders and Stroke 
(R01NS042618). Washington University St. Louis Stroke Study 
(WUSTL): The collection, extraction of DNA from blood, and stor-
age of specimens were supported by 2 NINDS NIH grants (P50 
NS055977 and R01 NS8541901). Basic demographic and clinical 
characterization of stroke phenotype was prospectively collected in 
the Cognitive Rehabilitation and Recovery Group registry. The 
Recovery Genomics after Ischemic Stroke study was supported by a 
grant from the Barnes-Jewish Hospital Foundation.

Disclosures
Drs Brown, Kittner, Markus, Rexrode, Sacco, and Meschia re-
ceived research grant from National Institutes of Health (NIH).  
Dr Engström has an employment position in Astra Zeneca R&D. Dr 
Rosand received research grant from NIH and has a consultant or ad-
visory relationship with Boehringer Ingelheim. Dr Worrall received 
research grant from NIH and has an associate editor affiliation with 
American Academy of Neurology. The other authors report no conflicts.

References
 1. Gschwendtner A, Bevan S, Cole JW, Plourde A, Matarin M, Ross-Adams 

H, et al; International Stroke Genetics Consortium. Sequence variants on 
chromosome 9p21.3 confer risk for atherosclerotic stroke. Ann Neurol. 
2009;65:531–539.

 2. International Stroke Genetics Consortium (ISGC), Wellcome Trust 
Case Control Consortium 2 (WTCCC2), Bellenguez C, Bevan S, 
Gschwendtner A, Spencer CC, et al. Genome-wide association study 
identifies a variant in HDAC9 associated with large vessel ischemic 
stroke. Nat Genet. 2012;44:328–333.

 3. Holliday EG, Maguire JM, Evans TJ, Koblar SA, Jannes J, Sturm JW, 
et al; Australian Stroke Genetics Collaborative; International Stroke 
Genetics Consortium; Wellcome Trust Case Control Consortium 2. 
Common variants at 6p21.1 are associated with large artery atheroscle-
rotic stroke. Nat Genet. 2012;44:1147–1151.

 4. Lubitz SA, Yi BA, Ellinor PT. Genetics of atrial fibrillation. Heart Fail 
Clin. 2010;6:239–247.

 5. Gudbjartsson DF, Arnar DO, Helgadottir A, Gretarsdottir S, Holm H, 
Sigurdsson A, et al. Variants conferring risk of atrial fibrillation on chro-
mosome 4q25. Nature. 2007;448:353–357.

 6. Goldstein LB, Jones MR, Matchar DB, Edwards LJ, Hoff J, Chilukuri V, 
et al. Improving the reliability of stroke subgroup classification using the 
Trial of ORG 10172 in Acute Stroke Treatment (TOAST) criteria. Stroke. 
2001;32:1091–1098.

 7. Gordon DL, Bendixen BH, Adams HP Jr, Clarke W, Kappelle LJ, 
Woolson RF. Interphysician agreement in the diagnosis of subtypes 
of acute ischemic stroke: implications for clinical trials. The TOAST 
Investigators. Neurology. 1993;43:1021–1027.

 8. Lindley RI, Warlow CP, Wardlaw JM, Dennis MS, Slattery J, Sandercock 
PA. Interobserver reliability of a clinical classification of acute cerebral 
infarction. Stroke. 1993;24:1801–1804.

 9. Atiya M, Kurth T, Berger K, Buring JE, Kase CS; Women’s Health 
Study. Interobserver agreement in the classification of stroke in the 
Women’s Health Study. Stroke. 2003;34:565–567.

 10. Selvarajah JR, Glaves M, Wainwright J, Jha A, Vail A, Tyrrell PJ. 
Classification of minor stroke: intra- and inter-observer reliability. 
Cerebrovasc Dis. 2009;27:209–214.

 11. Meschia JF, Barrett KM, Chukwudelunzu F, Brown WM, Case LD, 
Kissela BM, et al; Siblings with Ischemic Stroke Study (SWISS) 
Investigators. Interobserver agreement in the trial of org 10172 in acute 
stroke treatment classification of stroke based on retrospective medical 
record review. J Stroke Cerebrovasc Dis. 2006;15:266–272.

 12. Ay H, Furie KL, Singhal A, Smith WS, Sorensen AG, Koroshetz WJ. An 
evidence-based causative classification system for acute ischemic stroke. 
Ann Neurol. 2005;58:688–697.

 13. Ay H, Benner T, Arsava EM, Furie KL, Singhal AB, Jensen MB, et al. A 
computerized algorithm for etiologic classification of ischemic stroke: the 
Causative Classification of Stroke System. Stroke. 2007;38:2979–2984.

 14. Arsava EM, Ballabio E, Benner T, Cole JW, Delgado-Martinez MP, 
Dichgans M, et al; International Stroke Genetics Consortium. The 
Causative Classification of Stroke system: an international reliability and 
optimization study. Neurology. 2010;75:1277–1284.

 15. Meschia JF, Arnett DK, Ay H, Brown RD Jr, Benavente OR, Cole JW, et 
al; NINDS SiGN Study. Stroke Genetics Network (SiGN) study: design 
and rationale for a genome-wide association study of ischemic stroke 
subtypes. Stroke. 2013;44:2694–2702.

 16. Cohen J. A coefficient of agreement for nominal scales. Educ Psychol 
Meas. 1960;20:37–46.

 by guest on M
arch 1, 2017

http://stroke.ahajournals.org/
D

ow
nloaded from

 



Bradford B. Worrall and James F. Meschia
Seiler, Pankaj Sharma, Agnieszka Slowik, Cathie Sudlow, Vincent Thijs, Rebecca Woodfield, 
M. Rothwell, Tatjana Rundek, Ralph L. Sacco, Reinhold Schmidt, Markus Schürks, Stephan
Kathryn M. Rexrode, David Rhodes, Stephen S. Rich, Jaume Roquer, Jonathan Rosand, Peter 
Norrving, Leema Reddy Peddareddygari, Annie Pedersén, Joanna Pera, Kristiina Rannikmäe,

Levi, Linxin Li, Arne Lindgren, Hugh S. Markus, Patrick F. McArdle, Olle Melander, Bo 
Daniel L. Labovitz, Silvia Lanfranconi, Jin-Moo Lee, Manuel Lehm, Robin Lemmens, Chris
Katarina Jood, Michael Katsnelson, Brett Kissela, Steven J. Kittner, Dawn O. Kleindorfer, 

Eva Giralt-Steinhauer, Raji P. Grewal, Katrina Gwinn, Christina Jern, Jordi Jimenez-Conde,
Sherita N. Chapman, John W. Cole, Hossein Delavaran, Martin Dichgans, Gunnar Engström, 

Hakan Ay, Ethem Murat Arsava, Gunnar Andsberg, Thomas Benner, Robert D. Brown Jr,
Pathogenic Ischemic Stroke Phenotypes in the NINDS-Stroke Genetics Network

Print ISSN: 0039-2499. Online ISSN: 1524-4628 
Copyright © 2014 American Heart Association, Inc. All rights reserved.

is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231Stroke 
doi: 10.1161/STROKEAHA.114.007362

2014;45:3589-3596; originally published online November 6, 2014;Stroke. 

 http://stroke.ahajournals.org/content/45/12/3589
World Wide Web at: 

The online version of this article, along with updated information and services, is located on the

 /content/46/1/e17.full.pdf
An erratum has been published regarding this article. Please see the attached page for: 

  
 http://stroke.ahajournals.org//subscriptions/

is online at: Stroke  Information about subscribing to Subscriptions:
  

 http://www.lww.com/reprints
 Information about reprints can be found online at: Reprints:

  
document. Permissions and Rights Question and Answer process is available in the

Request Permissions in the middle column of the Web page under Services. Further information about this
Once the online version of the published article for which permission is being requested is located, click 

 can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office.Strokein
 Requests for permissions to reproduce figures, tables, or portions of articles originally publishedPermissions:

 by guest on M
arch 1, 2017

http://stroke.ahajournals.org/
D

ow
nloaded from

 



 http://stroke.ahajournals.org/content/suppl/2014/11/06/STROKEAHA.114.007362.DC1
Data Supplement (unedited) at:

  
 http://stroke.ahajournals.org//subscriptions/

is online at: Stroke  Information about subscribing to Subscriptions:
  

 http://www.lww.com/reprints
 Information about reprints can be found online at: Reprints:

  
document. Permissions and Rights Question and Answer process is available in the

Request Permissions in the middle column of the Web page under Services. Further information about this
Once the online version of the published article for which permission is being requested is located, click 

 can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office.Strokein
 Requests for permissions to reproduce figures, tables, or portions of articles originally publishedPermissions:

 by guest on M
arch 1, 2017

http://stroke.ahajournals.org/
D

ow
nloaded from

 



e17

The version of the article, “Pathogenic Ischemic Stroke Phenotypes in the NINDS-Stroke Genetics 
Network” by Ay et al that published online ahead-of-print on November 6, 2014, and appears in 
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V.T.).

This correction has been made to the online version of the article, which is available at http://
stroke.ahajournals.org/content/45/12/3589.
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Supplemental Table I:  Causative subtypes by adjudicators and readjudicators. The numbers 
indicate number of stroke cases evaluated. 
 

Readjudicator 

 LAA CE SAO Other Undetermined 

LAA 186 9 3 1 39 

CE 4 296 7 2 31 

SAO 6 8 125 3 62 

Other 1 0 2 56 10 
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Undetermined 23 36 40 13 546 
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Supplemental Table II: Phenotypic subtypes by adjudicators and readjudicators. The numbers 
indicate number of stroke cases evaluated. 
 

Readjudicator 

 LAA-major CE-major LI-major Other-major Undetermined 

LAA-major 177 4 1 1 36 

CE-major 4 307 4 1 26 

LI-major 5 3 108 3 56 

Other-major 1 0 2 51 12 
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Undetermined 28 45 40 15 579 
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Supplemental figure I:  
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Supplemental Figure II:  
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Supplemental Figure III: 
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Supplemental Figure Legends: 
 
Supplemental figure I: Distribution of causative and phenotypic stroke subtypes in studies with 
unselected populations: 1(a), phenotypic subtypes in the entire population; 1(b), phenotypic 
subtypes in the subset with complete vascular and cardiac investigation; 1(c), causative subtypes 
in the entire population; 1(d), causative subtypes in the subset with complete vascular and 
cardiac investigation. Und: undetermined 
 
Supplemental figure II: Association between causative stroke subtypes and patient 
characteristics. Multinomial logistic regression was used to calculate odds ratios and 95% CI 
with the “Undetermined” group as the reference category. 
 
Supplemental figure III: Crude agreement rates for causative classification between 
adjudicators and readjudications across the contributing studies. 
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NINDS Stroke Genetics Network (SiGN) and International Stroke Genetics Consortium (ISGC)*

Summary
Background The discovery of disease-associated loci through genome-wide association studies (GWAS) is the leading 
genetic approach to the identifi cation of novel biological pathways underlying diseases in humans. Until recently, 
GWAS in ischaemic stroke have been limited by small sample sizes and have yielded few loci associated with 
ischaemic stroke. We did a large-scale GWAS to identify additional susceptibility genes for stroke and its subtypes.

Methods To identify genetic loci associated with ischaemic stroke, we did a two-stage GWAS. In the fi rst stage, we 
included 16 851 cases with state-of-the-art phenotyping data and 32 473 stroke-free controls. Cases were aged 16 to 
104 years, recruited between 1989 and 2012, and subtypes of ischaemic stroke were recorded by centrally trained 
and certifi ed investigators who used the web-based protocol, Causative Classifi cation of Stroke (CCS). We 
constructed case-control strata by identifying samples that were genotyped on nearly identical arrays and were of 
similar genetic ancestral background. We cleaned and imputed data by use of dense imputation reference panels 
generated from whole-genome sequence data. We did genome-wide testing to identify stroke-associated loci within 
each stratum for each available phenotype, and we combined summary-level results using inverse variance-weighted 
fi xed-eff ects meta-analysis. In the second stage, we did in-silico lookups of 1372 single nucleotide polymorphisms 
identifi ed from the fi rst stage GWAS in 20 941 cases and 364 736 unique stroke-free controls. The ischaemic stroke 
subtypes of these cases had previously been established with the Trial of Org 10 172 in Acute Stroke Treatment 
(TOAST) classifi cation system, in accordance with local standards. Results from the two stages were then jointly 
analysed in a fi nal meta-analysis.

Findings We identifi ed a novel locus (G allele at rs12122341) at 1p13.2 near TSPAN2 that was associated with large 
artery atherosclerosis-related stroke (fi rst stage odds ratio [OR] 1·21, 95% CI 1·13–1·30, p=4·50 × 10–⁸; joint OR 1·19, 
1·12–1·26, p=1·30 × 10–⁹). Our results also supported robust associations with ischaemic stroke for four other loci that 
have been reported in previous studies, including PITX2 (fi rst stage OR 1·39, 1·29–1·49, p=3·26 × 10–¹⁹; joint OR 1·37, 
1·30–1·45, p=2·79 × 10–³²) and ZFHX3 (fi rst stage OR 1·19, 1·11–1·27, p=2·93 × 10–⁷; joint OR 1·17, 1·11–1·23, 
p=2·29 × 10–¹⁰) for cardioembolic stroke, and HDAC9 (fi rst stage OR 1·29, 1·18–1·42, p=3·50 × 10–⁸; joint OR 1·24, 
1·15–1·33, p=4·52 × 10–⁹) for large artery atherosclerosis stroke. The 12q24 locus near ALDH2, which has previously 
been associated with all ischaemic stroke but not with any specifi c subtype, exceeded genome-wide signifi cance in the 
meta-analysis of small artery stroke (fi rst stage OR 1·20, 1·12–1·28, p=6·82 × 10–⁸; joint OR 1·17, 1·11–1·23, 
p=2·92 × 10–⁹). Other loci associated with stroke in previous studies, including NINJ2, were not confi rmed.

Interpretation Our results suggest that all ischaemic stroke-related loci previously implicated by GWAS are subtype 
specifi c. We identifi ed a novel gene associated with large artery atherosclerosis stroke susceptibility. Follow-up studies 
will be necessary to establish whether the locus near TSPAN2 can be a target for a novel therapeutic approach to stroke 
prevention. In view of the subtype-specifi city of the associations detected, the rich phenotyping data available in the 
Stroke Genetics Network (SiGN) are likely to be crucial for further genetic discoveries related to ischaemic stroke.

Funding US National Institute of Neurological Disorders and Stroke, National Institutes of Health.

Introduction
Worldwide, stroke is the second leading cause of death1 
and a major contributor to dementia and age-related 
cognitive decline. About 15 million people have a stroke 
each year.1 Most survivors are left with a permanent 
disability, which makes stroke the world’s leading cause 
of adult incapacity.2 Strokes result from the sudden 
occlusion or rupture of a blood vessel supplying the 
brain, and so are categorised accordingly as ischaemic 
(vessel occlusion) or haemorrhagic (vessel rupture) on 
the basis of neuroimaging results. Up to 85% of all 
strokes are ischaemic.

Although hypertension, atrial fi brillation, diabetes 
mellitus, and cigarette smoking are known risk factors 
for stroke,3 a substantial proportion of the risk remains 
unexplained and might be attributable to inherited 
genetic variation. Discovery of genetic variants that 
predispose to stroke is a crucial fi rst step toward the 
development of improved diagnostic tests for stroke 
and novel therapies that might reduce the disease 
burden. Genome-wide association studies (GWAS) 
have thus far identifi ed only a few confi rmed loci,4–7 
which together account for a small proportion of the 
heritable risk.8
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Ischaemic stroke occurs when the blood fl ow to a 
region of the brain is interrupted because of blockage of 
a blood vessel. Because vessel occlusion can occur 
through diff erent mechanisms, ischaemic stroke can be 
subtyped on the basis of the presumed mechanism: 
large artery atherosclerosis, cardioembolism, or small 
artery occlusion. With one exception, all associations 
for ischaemic stroke detected in GWAS have been 
subtype-specifi c, suggesting the need for studies that are 
powered to detect subtype-specifi c associations. The 
National Institute of Neurological Disorders and Stroke 
(NINDS) Stroke Genetics Network (NINDS-SiGN)9 is 
the largest and most comprehensive GWAS of stroke 
and its subtypes to date. We sought to detect new 
associations of polymorphisms with risk of ischaemic 
stroke and its subtypes and to provide evidence for 
previously reported associations.

Methods
Study design
We did a two-stage joint association analysis of ischaemic 
stroke and its subtypes. The fi rst stage consisted of a 
GWAS, and the second stage was an in-silico association 
analysis of the top single nucleotide polymorphisms 
(SNPs) identifi ed in the fi rst stage in a set of independent 
samples of cases and controls. We then analysed both 
stages together to identify loci that exceeded the 
threshold for genome-wide signifi cance (1 × 10–⁸). 
Compared with separate discovery and replication 
analyses, this two-stage approach has been shown to 
improve the power for discovery without altering the 
type I error.10

Research in context

Evidence before this study
We searched PubMed with the search terms “stroke” and “genome 
wide association study” for reports published before Oct 19, 2015. 
We only included peer-reviewed reports in English. Compared with 
the rapid pace of genetic discovery for other common disorders, 
only four loci (PITX2, HDAC9, ZFHX3, and 12q24.2) have been 
convincingly implicated by genome-wide association studies 
(GWAS) in ischaemic stroke. GWAS of stroke have been limited by 
small sample sizes and concerns about phenotypic heterogeneity.

Added value of this study
To our knowledge, the National Institute of Neurological 
Disorders and Stroke (NINDS)-Stroke Genetics Network (SiGN) 
project is the largest and most comprehensive study of 
ischaemic stroke so far. Discovery analyses were done in 
16 851 cases and 32 473 controls and fi ndings were followed up 
in an additional 20 941 cases and 364 736 controls. 
Furthermore, the project implemented the Causative 
Classifi cation of Stroke (CCS) system to subtype cases and 
generated a rich phenotypic database. Trial of Org 10 172 in 
Acute Stroke Treatment (TOAST)-based subtypes were also 

available, allowing for the fi rst ever analysis of the genetic 
overlap between TOAST and CCS subtypes.

Implications of all the available evidence
Our data show that increasing sample size and applying a 
standardised subtyping method can reveal additional 
information about the underlying genetic architecture of 
stroke. Because we had access to phenotype information 
generated by two diff erent subtyping methods, we also 
showed that there is moderate to strong genetic correlation 
between the CCS and TOAST subtyping methods, suggesting 
that future studies might benefi t from liberal inclusion of 
cases, regardless of subtyping approach. Also, our results 
show that all discovered loci, including the 12q24.12 locus, 
which was previously implicated in all ischaemic stroke, are 
specifi c to a single subtype, suggesting that these subtypes 
will have at least partly distinct genetic signatures. Because of 
the subtype-specifi city of genetic associations in stroke, 
substantially larger samples of stroke subtypes will probably 
be needed to expand the number of identifi ed stroke loci to 
that of other common diseases. 

See Online for appendix

Study sample
For the fi rst stage, we assessed 31 existing collections that 
included cases of ischaemic stroke with either available 
genotypic data or DNA for genotyping, neuroimaging 
confi rmation of stroke, and adequate clinical data to 
enable phenotypic classifi cation. The cases of ischaemic 
stroke in the second stage met similar requirements, 
except that we used pre-existing Trial of Org 10 172 in 
Acute Stroke Treatment (TOAST)11 subtyping data for the 
phenotypic classifi cation. The appendix contains details 
about each collection, including their study design.

For each collection, approval for inclusion in the SiGN 
analysis complied with local ethical standards and with 
local institutional review board and ethics committee 
oversight. All people included as cases and controls 
provided written informed consent for genetic studies 
either directly or by a legally authorised representative.

Classifi cation of stroke subtype
In the NINDS-SiGN,9 we used two subtyping systems: 
the Causative Classifi cation of Stroke (CCS) system, 
which is a standardised web-based subtype classifi cation 
system,12 and the more widely used TOAST subtype 
classifi cation system.11,13 Both of these systems are based 
on a similar conceptual framework but are operationalised  
diff erently. The TOAST subtyping system is based on the 
application of written rules requiring clinician judgment; 
patients with confl icting potential causes are placed into 
an undetermined category. The CCS subtyping system 
uses two web-based algorithms that classify patients 
with confl icting potential causes. Causative (CCSc) 
categorisation uses historical examination and test data 
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from each ischaemic stroke subject to assign the most 
probable cause in the presence of competing aetiologies, 
while phenotypic (CCSp) categorisation uses abnormal 
test fi ndings to assign each case into one or more major 
groups without using rules to determine the most likely 
aetiology. In addition to the generation of both CCSc and 
CCSp subtype categories, the advantages of the CCS 
system are improved inter-observer and intra-observer 
reliability12,14,15 and the ability to capture and store 
individual data elements from the clinical evaluation of 
the subject.

In the fi rst stage of our study, each site assigned stroke 
subtypes with the CCS system (appendix). All of the CCS 
data were collected, subjected to quality control, and 
analysed centrally. Most sites had previously generated 
TOAST subtype classifi cations. In the second stage, we 
identifi ed additional sites that had GWAS data for 
subtyped stroke cases. Because we included all available 
CCS-classifi ed cases in the fi rst stage, we used the 
corresponding subtype categories from TOAST in the 
second stage.

For both CCS and TOAST, each case was assigned to 
one of fi ve ischaemic stroke subtypes: cardioembolic, 
large artery atherosclerosis, small artery occlusion, 
undetermined, and other. Although the classifi cation of 
other was available, we did not analyse it because of 
low sample counts and insuffi  cient power. In CCS, the 
classifi cation undetermined was used to refer to 
cryptogenic cases in which no cause was identifi ed after 
adequate assessment, whereas in TOAST, undetermined 
cases were those with incomplete assessment, more 
than one possible cause, and cryptogenic.

Quality control
Full details of the genotyping and quality control 
processes are provided in the appendix (p 4). Briefl y, 
newly genotyped cases and about 1150 controls were 
genotyped on the Illumina 5M array (Illumina, 
San Diego, CA, USA) so we could include them in the 
analyses for the fi rst stage. All other cases had been 
previously genotyped on various Illumina platforms 
(appendix). We selected publicly available external 
controls to match cases on the basis of ancestral 
background and genotyping array.

The cases and controls that were newly genotyped 
formed separate analysis groups (Krakow, Poland, and 
Leuven, Belgium; table 1). The remaining cases and 
controls were matched based on cohort, geographic 
region of the sample collection site, and genotyping 
platform (table 1). We assigned matched cases and 
controls into ancestry-specifi c analysis strata in two steps 
(appendix). We projected samples onto HapMap 316 data 
using principal component analysis to establish a group 
of European ancestry samples. Then, we implemented a 
hyper-ellipsoid clustering technique based on principal 
components within self-reported groups of non-Hispanic 
black and Asian participants. We used the hyper-ellipsoid 

Location of sample 
collection

Genotyping 
platform

Ancestry groups Cases Controls

First stage

Case-control group 1

BRAINS UK 650Q European 267 ··

MGH-GASROS USA 610 European 111 ··

ISGS USA 610 European 351 ··

SWISS USA 610 European 25 ··

HABC USA 1M European ·· 1586

Case-control group 2

EDIN UK 660 European 566 ··

MUNICH UK 660 European 1131 ··

OXVASC UK 660 European 457 ··

STGEORGE UK 660 European 418 ··

KORA Germany 550 European ·· 804

WTCCC UK 660 European ·· 5150

Case-control group 3

GEOS USA 1M African, European 843 880

Case-control group 4

BRAINS UK 5M European, Hispanic 110 ··

MGH-GASROS USA 5M African, European, Hispanic 456 ··

GCNKSS USA 5M African, European, Hispanic 482 ··

ISGS USA 5M African, European, Hispanic 178 ··

MCISS USA 5M African, European, Hispanic 619 ··

MIAMISR USA 5M African, European, Hispanic 294 ··

NHS USA 5M European, Hispanic 314 ··

NOMAS USA 5M African, European, Hispanic 358 ··

REGARDS USA 5M African, European, Hispanic 304 ··

SPS3 The Americas, Spain 5M African, European, Hispanic 949 ··

SWISS USA 5M African, European, Hispanic 181 ··

WHI USA 5M African, European, Hispanic 454 ··

WUSTL USA 5M African, European, Hispanic 449 ··

HRS USA 2·5M African, European, Hispanic ·· 11 174

OAI USA 2·5M African, European ·· 3882

HCHS/SOL USA 2·5M Hispanic ·· 1214

Case-control group 5

Krakow Poland 5M European, Hispanic 880 717

Case-control group 6

Leuven Belgium 5M European, Hispanic 460 453

Case-control group 7

BASICMAR Spain 5M European, Hispanic 890 ··

ADHD Spain 1M European ·· 411

INMA Spain 1M European ·· 807

Case-control group 8

GRAZ Austria 610 European ·· 815

GRAZ Austria 5M European 609 ··

Case-control group 9

SAHLSIS Sweden 5M European, Hispanic 783 ··

LUND Sweden 5M European, Hispanic 613 ··

MDC* Sweden 610 European, Hispanic 211 1362

Case-control group 10

ASGC Australia 610 European 1109 1200

Case-control group 11

VISP USA, Canada, UK 1M African, European 1979 ··

(Table 1 continues on next page)
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analysis to establish a group of non-Hispanic black 
(African ancestry) participants and a group of 
participants of Asian ancestry. Samples that were not 
grouped as European, African, or Asian ancestry formed 
the Hispanic stratum. We excluded samples of Asian 
ancestry from further analysis because of the small 
number. After establishing the ancestry-based composite 
groups, we did principal component analysis again to 
confi rm the ancestral homogeneity within each 
case-control stratum. Case-control strata then underwent 
extensive quality control (appendix). Finally, each 
stratum was prephased17 and imputed. We imputed 
samples of European ancestry using a merged reference 
panel that included the 1000 Genomes Project Phase I18 
and the Genome of the Netherlands.19 We imputed 
samples in the African and Hispanic groups using the 
1000 Genomes Project Phase I reference panel only. We 
added summary-level imputed data from an additional 
cohort (Vitamin Intervention for Stroke Prevention) to 
the fi rst stage meta-analysis.

First stage genome-wide association analysis
After quality control and imputation, 16 851 cases and 
32 473 controls from 15 ancestry-specifi c groups were 
available for genome-wide testing (table 1, appendix). 
Within each stratum, we analysed all ischaemic stroke 
phenotypes and the four main subtypes (cardioembolism, 
large artery atherosclerosis, small artery occlusion, and 
undetermined) as established with CCSc, CCSp, and 
TOAST, which were available for 12 612 (74·8%) cases. 
All GWAS were adjusted for sex and the top ten principal 
components; genome-wide testing was not corrected for 
age, because age information was missing for most of 
the controls.

After the GWAS, we removed SNPs with frequency of 
less than 1% because they showed excessive genomic 
infl ation. We checked the frequencies of imputed SNPs 
for consistency with the continental populations repre-
sented in the 1000 Genomes Project Phase I, and we 
removed SNPs with a diff erence in frequency of more 
than 30%. After quality control, 9·3 million to 
15·4 million SNPs were available in the study strata for 
the meta-analysis. We did inverse variance-weighted 
fi xed-eff ects meta-analysis across the 15 ancestry-specifi c 
strata using MANTEL20 in each of the 15 traits. The 
genomic infl ation factor λ of the 15 meta-analyses for 
each trait ranged from 0·936 to 1·005 (appendix pp 5–8).

Second stage analysis
In the second stage, we performed in-silico lookups 
of association results in 18 independent studies 
that contained 20 941 TOAST-subtyped cases and 
364 736 controls, using the nominally signifi cant SNPs 
identifi ed in the fi rst stage (table 1 and appendix p 51). 
The SNPs selected for the second stage for each subtype 
were aggregated such that, for example, SNPs with 
p<1 × 10–⁶ from the three cardioembolism GWAS (CCSc, 

Location of sample 
collection

Genotyping 
platform

Ancestry groups Cases Controls

(Continued from previous page)

Melanoma 
Study

USA 1M European ·· 1047

HANDLs USA 1M African ·· 971

Total ·· ·· ·· 16 851 32 473

Second stage

ARIC USA Aff y 6.0 African 263 2466

CADISP† Multi-cohort Illumina 610 European 555 9259

CHARGE† Multi-cohort Multi-chip European 3100 75 530

CHS USA Illumina Omni 1M African 110 623

deCODE Iceland Multi-chip European 5291 228 512

Glasgow UK ImmunoChip European 599 1775

HVH USA Illumina 370CNV European 577 1330

INTERSTROKE† Multi-cohort Cardio-
metabochip

African, East Asian, 
European, Hispanic

1771 2103

LUND Sweden 635 European 546 528

MDC Sweden 5M European 1304 3504

METASTROKE† Multi-cohort Multi-chip European 1729 7925

RACE Pakistan 660 South Asian 2385 5193

SAHLSIS Sweden 750 European 299 596

SIFAP Germany 2·5M European 981 1825

SIGNET-REGARDS USA Aff y 6.0 African 258 2094

SWISS/ISGS USA Illumina 610 or 
660

African 173 389

UTRECHT The Netherlands ImmunoChip European 556 1145

VHIR-FMT-
BARCELONA

Spain HumanCore and 
ExomeChip

European 545 320

WGHS‡ USA Human Hap300 
and custom array

European 440 22 725

Total ·· ·· ·· 21 482 367 842

Joint

Total ·· ·· ·· 38 333 400 315

Case cohorts in the fi rst stage were matched to external controls based on genotyping array, cohort, ancestry, and location 
of sample collection. Case-control groups were constructed for the fi rst stage analyses from contributing cohorts, which 
were mainly case-only or control-only cohorts. Hispanic samples were an exception and are not shown as a separate group 
here, because the small number of samples required that we pool all available Hispanic samples into a single analysis 
stratum. The second stage consisted of in-silico SNP lookups of summary-level results in previously analysed case-control 
sets. Totals represent the number of unique samples, accounting for partial sample overlap between two sites (CHARGE and 
WGHS). NINDS-SiGN=National Institute of Neurological Disorders and Stroke Stroke Genetics Network. 
BRAINS=Biorepository of DNA in Stroke. MGH-GASROS=Massachusetts General Hospital—Genes Aff ecting Stroke Risk and 
Outcome Study. ISGS=Ischemic Stroke Genetics Study. SWISS=Siblings with Ischemic Stroke Study. HABC=Health ABC. 
EDIN=Edinburgh Stroke Stoke. OXVASC=Oxford Vascular Study. STGEORGE=St George’s Hospital. KORA=MONICA/KORA 
Ausburg Study. WTCCC=Wellcome Trust Case Control Consortium. GEOS=Genetics of Early Onset Stroke. GCNKSS=Greater 
Cincinnati/Northern Kentucky Stroke Study. MCISS=Middlesex County Ischemic Stroke Study. MIAMISR=Miami Stroke 
Registry and Biorepository. NHS=Nurses’ Health Study. NOMAS=Northern Manhattan Study. REGARDS=Reasons for 
Geographic and Racial Diff erences in Stroke. SPS3=Secondary Prevention of Small Subcortical Strokes. WHI=Women’s 
Health Initiative. WUSTL=Washington University St Louis. HRS=Health and Retirement Study. OAI=Osteoarthritis Initiative. 
HCHS/SOL=The Hispanic Community Health Study/Study of Latinos. LEUVEN=Leuven Stroke Genetics Study. 
BASICMAR=Base de Datos de Ictus del Hospital del Mar. ADHD=Attention-defi cit Hyperactivity Disorder. INMA=Infancia y 
medio ambiente. SAHLSIS=Sahlgrenska Academy Study of Ischemic Stroke. LUND=Lund Stroke Registry. MDC=Malmo Diet 
and Cancer Study. ASGC=Australian Stroke Genetics Collaborative. VISP=Vitamin Intervention for Stroke Prevention. 
HANDLs=Health/Aging in Neighborhoods of Diversity across the Lifespan Study. ARIC=Atherosclerosis Risk in Communities 
Study. CADISP=Cervical Artery Dissection and Ischemic Stroke Patients. CHARGE=Cohorts for Aging and Research in Genetic 
Epidemiology. CHS=Cardiovascular Health Study. HVH=Heart and Vascular Health Study. GLASGOW=Glasgow ImmunoChip 
Study. RACE=Risk Assessment of Cardiovascular Events. SIFAP=Stroke in Young Fabry Patients. SIGNET=The Sea Island 
Genetics Network. UTRECHT=Utrecht ImmunoChip Study/PROMISe Study. WGHS=Women’s Genome Health Study. *Only 
TOAST subtypes available for the fi rst stage. †Contributing cohorts are described in the appendix. ‡Not included in the 
ischaemic stroke and cerebroembolism analyses because of overlap with CHARGE.

Table 1: Case and control cohorts in NINDS-SiGN 
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CCSp, and TOAST) were all selected for lookup in the 
independent TOAST cardioembolism cases and matched 
controls. This process was repeated for the other 
subtypes.

Joint analysis
We did a meta-analysis of the results from the in-silico 
lookups from the second stage and the results from the 
fi rst stage. We set the threshold for genome-wide 
signifi cance in the joint analysis at p<1 × 10–⁸, after 
correction for testing of the fi ve phenotypes (all stroke, 
cardioembolic, large artery atherosclerosis, small artery 
occlusion, and undetermined). λ in the ischaemic stroke 
joint analysis was 1·005 and ranged from 0·936 to 0·998 
in the subtype analyses (appendix pp 9–12).

Role of the funding source
The funder participated in the design of the study. The 
study investigators were solely responsible for the data 
collection, analysis, and interpretation. An employee of 
NINDS (KG) was a member of the writing committee 
The analysis team had full access to all data included in 
the study. The steering committee had fi nal responsibility 
for the decision to submit the report for publication.

Results
After data quality control (appendix p 4 and pp 114–26), 
we included 16 851 stroke cases and 32 473 controls in 
the fi rst stage of our analyses. The fi rst stage GWAS 
revealed 1372 SNPs in 268 loci associated with 
ischaemic stroke or a specifi c subtype in any of the CCS 
or TOAST traits at p<1 × 10–⁶. We included an additional 
independent set of 20 941 cases and 364 736 controls in 
the second stage, which enabled the joint analysis of 
37 893 cases and 397 209 controls across fi ve primary 
independent traits (ischaemic stroke and the four 
subtypes).

Genome-wide Z scores (SNP β values divided by their 
respective SE) from the CCSc, CCSp, and TOAST 
GWAS were checked for correlation (Pearson’s r) 
between each possible pair of traits. The analysis 
revealed moderate to strong genetic correlation (fi gure 1) 
between the standardised SNP eff ects in CCSc, CCSp, 
and TOAST, despite the modest phenotypic correlation 
noted previously.21 The moderate to strong genetic 
correlation between CCS and TOAST within subtype-
specifi c clusters suggested that TOAST subtyping was 
appro priate for inclusion in the second stage of the 
analysis. Phenotypic correlations were also strong 
within subtype-specifi c clusters (fi gure 1).

In the joint analysis of CCS (fi rst stage) and TOAST 
(second stage) results, SNPs in two novel loci exceeded 
genome-wide signifi cance. Four common SNPs in 
linkage disequilibrium (r²>0·57 in the 1000 Genomes 
Project samples of European ancestry) near the TSPAN2 
locus on chromosome 1 were associated at genome-wide 
signifi cance with large artery atherosclerosis. The lead 

SNP in the associated locus was rs12122341 (odds ratio 
[OR] for the G allele 1·19, 95% CI 1·12–1·26, p=1·3 × 10–⁹; 
fi gure 2, table 2). 

A second locus emerged as having a genome-wide 
signifi cant association with ischaemic stroke, but only in 
samples of African ancestry. In view of the small sample 
size in which it was identifi ed, the association must be 
interpreted with caution. rs74475935 in ABCC1 on 
chromosome 16 was associated with the undetermined 
phenotype (table 2, appendix p 14), driven by a variant 
with rare frequency (minor allele frequency [MAF] about 
0·01%) in European-ancestry samples and low frequency 
(MAF about 1·5%) in African-ancestry samples.

We also identifi ed associations for the previously 
reported loci PITX24 and ZFHX35 for cardioembolic 
stroke, and HDAC96 for large artery atherosclerotic 
stroke, all of which exceeded genome-wide signifi cance 
in our samples (table 2). The 12q24.12 locus near ALDH2, 
previously reported to be associated with all ischaemic 
stroke, but not with any specifi c subtype,7 exceeded 
genome-wide signifi cance in the joint analysis of all 
ischaemic stroke (OR for the T allele 1·07, 95% CI 
1·5–1·09, p=4·20 × 10–⁹). However, the association was 
even stronger for small artery occlusion in the joint 
analysis of CCSp in the fi rst stage and TOAST in the 
second stage (OR 1·17, 95% CI 1·11–1·23, p=2·92 × 10–⁹); 
the association was not genome-wide signifi cant in the 
joint analysis of CCSc (fi rst stage) and TOAST (second 
stage; OR 1·16, 95% CI 1·10–1·22, p=2·77 × 10–⁸). 
Evidence of associations with other subtypes was reduced 
in our study (OR<1·1 and p>4 × 10–³ for cardioembolism, 
large artery atherosclerosis, and undetermined in the 
combined CCSp and TOAST analysis; appendix p 15). 
Systematic testing that accounted for shared controls 
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Figure 1: Genetic and phenotypic correlation between subtyping methods in the fi rst stage analysis
All cases with an available CCS subtype were included in the fi rst stage analyses. Genome-wide Z scores from the 
CCSc, CCSp, and TOAST GWAS were checked for correlation between each possible pair of traits. Pearson’s 
r correlation coeffi  cient (mathematically equivalent in this scenario to the Lin’s concordance correlation coeffi  cient) 
within each square shows genetic correlation. Cohen’s κ within each square shows phenotypic agreement. CCSc1 
includes all undetermined strokes; CCSc2 includes all incomplete and unclassifi ed strokes; and CCSc3 includes all 
cryptogenic and cardioembolic minor strokes. The CCSc2 and CCSc3 classifi cations are mutually exclusive. 
CCS=Causative Classifi cation of Stroke. CCSc=CCS causative. CCSp=CCS phenotypic. TOAST=Trial of Org 10172 in 
Acute Stroke Treatment classifi cation system. GWAS=genome-wide association study. 
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(appendix p 15) showed a signifi cant diff erence in the 
magnitude of ORs between small artery occlusion and 
the combined non-small artery occlusion subtypes 
(p=0·048, appendix p 15), suggesting that the eff ect of 
12q24.12 might be specifi c for small artery occlusion.

By contrast, we did not fi nd any evidence for the 
previously reported association between ischaemic stroke 
and NINJ2 (rs34166160, OR for the A allele 1·20, 95% CI 
0·96–1·48, p=0·106; table 2), even though our sample 
size had 100% power to detect an association (p<0·05) at 
this locus. In the full fi rst stage analysis, evidence 
for association was weak for both the 6p2122 and 
CDKN2B-AS123 loci in large artery atherosclerosis, and 
for the ABO24 locus in all ischaemic stroke, large artery 
atherosclerosis, and cardioembolism (table 2). When we 
restricted our analysis to only the samples not used for 
the initial discovery (appendix p 52), CDKN2B-AS1 was 
associated with large artery atherosclerosis (OR for the 
G allele 1·09, 95% CI 1·02–1·17, p=0·009) and ABO was 
associated with all ischaemic stroke (OR for the C allele 
1·07, 95% CI 1·03–1·10, p=2·5 × 10–⁴), large artery 
atherosclerosis (OR 1·15, 95% CI 1·07–1·24, p=2·5 × 10–⁴), 
and cardioembolism (OR 1·09, 95% CI 1·02–1·16, 
p=0·007). For 6p21, however, we detected no evidence for 
any association with large artery atherosclerosis (OR for 
the T allele 1·04, 95% CI 0·96–1·12, p=0·304).

Discussion
Our results show a novel association between a genetic 
locus and large artery atherosclerosis. The lead SNP, 
rs12122341, is located in an intergenic region 23·6 kb 
upstream of TSPAN2, the gene encoding tetraspanin-2 
(fi gure 2) This SNP is in linkage disequilibrium with 
intronic and untranslated region variants in TSPAN2 
(r²>0·3 in 1000 Genomes Project samples of European 
ancestry), but is located in a DNA sequence immediately 
adjacent to TSPAN2 that can be bound by several 
transcription factor proteins, including CTCF. This 
sequence is a promotor and enhancer site that is marked 
by histone modifi cation and DNase hypersensitivity 
according to experimental data from ENDCODE and 
ROADMAP Epigenomics (appendix p 16),25,26 suggesting 
a potential role for rs12122341 in gene regulation. An 
intergenic SNP near rs12122341 has been reported to be 
associated with migraine,27 but the two SNPs are not in 
linkage disequilibrium (r²=0·03 in 1000 Genomes 
Project samples of European ancestry).

TSPAN2, the gene closest to rs12122341, is a member 
of the transmembrane 4 (tetraspanin) superfamily. This 
family of proteins can mediate signal transduction to 
regulate cell development, activation, growth, and 
motility. TSPAN2 knock-out mice have increased 
neuroinfl ammation, shown by activation of microglia 
and astrocytes with no eff ect on myelination and axon 
integrity.28 Notably, TSPAN2 is highly expressed in artery 
tissue and whole blood cells (appendix p 16), which 
accords with the association we detected between 
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TSPAN2 with large artery atherosclerosis stroke. 
Whether the association of rs12122341 is caused by the 
locus’ regulation of TSPAN2 or other nearby genes will 
need further functional assessment.

The additional locus that we identifi ed as being 
associated with undetermined stroke (rs74475935) is in a 
gene-rich region with linkage-disequilibrium-paired 
SNPs (r²>0·1 in 1000 Genomes Project samples of 
African ancestry) of up to 4 Mb. Because of the small 
sample size for rs74475935 (610 cases) and the shortage 
of samples from people with African ancestry, studies 
with large samples from people of African descent will 
be necessary to fully assess the robustness of this signal.

So far, only four loci—PITX2,4 ZFHX3,5 HDAC9,6 and 
12q24.127—have been repeatedly identifi ed in GWAS of 
ischaemic stroke, all of which are subtype specifi c except 
for 12q24.12. Although the 12q locus association was 
originally identifi ed for all ischaemic stroke, our analysis 
suggests that it is probably specifi c to small artery 
occlusion. These fi ndings suggest that ischaemic stroke 
subtypes have distinct genetic signatures. Our analysis of 
genetic correlation across the traits also showed that the 
subtypes share subtle genetic associations (appendix 
p 17 and p 53). This fi nding is supported by the results of 
another study, which identifi ed genetic overlap between 
the large artery atherosclerosis and small artery occlusion 
subtypes.29 Future eff orts will help to clarify both the 
shared and unique genetic architectures within and 
between subtypes.

Until now, GWAS of ischaemic stroke subtypes have 
used far smaller sample sizes than studies of other 
complex traits. The SiGN study, the largest GWAS of 
ischaemic stroke so far, was well powered (75·1%) to 
detect common SNP subtype-specifi c associations of 
larger eff ect (MAF 25% and OR 1·2 in 3000 cases and 
30 000 controls) but was substantially less powered to 
identify lower frequency or lower eff ect SNPs (13·8% 
power for MAF 10% and OR 1·2; 1·1% power for MAF 
25% and OR 1·1). Because of the almost linear relation 
that exists between sample size and discovered loci,30 and 
because large-scale GWAS in other complex traits have 
yielded hundreds of SNP-disease associations,31–33 
studying ischaemic stroke subtypes in larger samples 
will probably yield additional associated common 
variants. Furthermore, the implementation of whole 
genome sequencing studies of stroke will begin to test 
whether rare alleles in the population account for a 
substantial proportion of disease heritability.

The SiGN study has several other limitations. First, 
sample inclusion was heavily biased towards individuals 
of European descent; inclusion of non-European 
populations will improve power for locus discovery34 and 
will be especially informative for future fi ne-mapping 
eff orts.35 Second, the inclusion of TOAST-based 
classifi cation for samples in the second stage probably 
added phenotypic heterogeneity (fi gure 1, appendix p 53), 
which potentially reduced power.21 Third, many of the 

participating studies within SiGN (especially the publicly 
available controls) had little or no stroke-specifi c risk 
factor data available. Such data are key to disentangling 
potential gene–environment interactions. Future genetic 
studies of stroke will continue to face challenges related 
to the disease phenotype, including high prevalence of 
the disease (lifetime risk about 20%), its late onset (mainly 
in individuals >65 years), the contribution of other 
cardiovascular diseases and environment as causative 
factors, and diffi  culties of subtyping (in SiGN 12·6–22·3% 
of all cases analysed were ultimately classifi ed as 
undetermined by CCS or TOAST).

Our use of CCS enabled identifi cation of candidate SNPs 
that were not signifi cant for the second stage follow-up in 
TOAST, including those SNPs at the TSPAN2 locus. This 
refi nement might represent a reduction in phenotypic 
heterogeneity that CCS introduces through its capture of 
clinical stroke features, completeness of diagnostic 
investigations, and, where possible, classifi cation of cases 
with diff erent potential causes into the most probable 
causes. The association signal of the TSPAN2 locus 
identifi ed with CCS was, however, improved by the 
inclusion of TOAST-classifi ed samples, suggesting that 
making use of the genetic correlation underlying the 
subtyping methods and allowing for broader inclusion of 
cases, regardless of subtyping system, can lead to the 
discovery of more susceptibility loci. Further studies will 
help to establish whether the rich repository of 
individual-level data created through the use of the CCS 
will help to uncover novel phenotypes and thus reveal 
biological mechanisms and broaden the understanding of 
the genetic architecture in patients with stroke.
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ABSTRACT 51 
 52 
Rationale: Genome-wide association studies (GWAS) have identified the histone deacetylase 9 53 
(HDAC9) gene region as a major risk locus for atherosclerotic stroke and coronary artery disease in 54 
humans. Gene expression studies and data from mouse models of atherosclerosis suggest a role of 55 
altered HDAC9 expression levels as the underlying disease mechanism. rs2107595, the lead single 56 
nucleotide polymorphism (SNP) in recent GWAS for stroke and coronary artery disease resides in 57 
noncoding DNA and colocalizes with histone modification marks suggestive of enhancer elements. 58 
Objective: To determine the mechanisms by which genetic variation at rs2107595 regulates HDAC9 59 
expression and thus vascular risk.  60 
Methods and Results: Targeted resequencing of the HDAC9 locus in patients with atherosclerotic 61 
stroke and controls supported candidacy of rs2107595 as the causative SNP at this locus. A search for 62 
nuclear binding partners by proteome-wide analysis revealed preferential binding of the 63 
E2F3/TFDP1/Rb1 complex to the rs2107595 common allele, consistent with the disruption of an E2F3 64 
consensus site by the risk allele. Gain- and loss-of-function studies showed a regulatory effect of E2F 65 
and Rb proteins on HDAC9 gene expression. Compared to the common allele the rs2107595 risk allele 66 
exhibited higher transcriptional capacity in luciferase assays in Jurkat cells and THP-1 macrophages 67 
and was associated with higher HDAC9 mRNA levels in primary macrophages and genome-edited 68 
Jurkat cells. Circularized chromosome conformation capture revealed a genomic interaction of the 69 
rs2107595 region with the HDAC9 promoter, which was stronger for the common allele as was the in 70 
vivo interaction with E2F3 and Rb1 determined by chromatin immunoprecipitation. Gain-of-function 71 
experiments in isogenic Jurkat cells demonstrated a key role of E2F3 in mediating rs2107595-dependent 72 
transcriptional regulation of HDAC9.  73 
Conclusions: Collectively, our findings imply allele-specific transcriptional regulation of HDAC9 via 74 
E2F3 and Rb1 as a major mechanism mediating vascular risk at rs2107595. 75 
 76 
KEY WORDS 77 
Gene regulation, large artery stroke, HDAC9 78 
 79 
 80 
INTRODUCTION 81 
Stroke is the leading cause of permanent disability and the second most common cause of death 82 
worldwide.1, 2 Genome-wide association studies (GWAS) have mapped more than 35 genomic loci for 83 
stroke most residing in noncoding DNA.3, 4 However, at many loci the causal variant, gene, and 84 
mechanism remain undetermined5, 6 thus impeding the identification of novel pathways and possible 85 
targets for intervention. The histone deacetylase 9 (HDAC9) gene region on chromosome 7p21.1 86 
represents the strongest risk locus for atherosclerotic stroke (large artery stroke)3, 7 and has further been 87 
established as a major risk locus for myocardial infarction, coronary artery disease,8 and peripheral 88 
artery disease,9 thus implying a broader involvement in atherosclerosis and a major impact on human 89 
health.10 90 
rs2107595, the lead single nucleotide polymorphism (SNP) in recent GWAS for stroke3, 11, 12 and 91 
coronary artery disease8 resides in noncoding DNA 3’ to the HDAC9 gene. rs2107595 colocalizes with 92 
DNase I hypersensitive sites (DHS) and histone modification marks H3K27ac and H3K4me1 93 
(ENCODE,13 genome build hg19) indicating a possible involvement in gene regulatory mechanisms.14-94 
16 95 
We and others recently provided evidence for a central role of HDAC9 expression levels in 96 
atherogenesis and stroke: first, Hdac9 deficiency attenuates atherogenesis in mouse models of 97 
atherosclerosis.17, 18 Second, HDAC9 expression levels were found to be elevated in human 98 
atherosclerotic plaques.19 Third, gene expression studies in peripheral blood mononuclear cells 99 
(PBMCs) revealed an association between the rs2107595 risk allele and elevated levels of HDAC9 100 
mRNA expression with a gene dosage effect.18 The same variant further associates with both carotid 101 
intima media thickness and the presence of atherosclerotic plaques in the common carotid artery.19, 20 102 
Collectively, these findings point to the possibility that the rs2107595 region mediates disease risk by 103 
influencing HDAC9 expression levels. 104 
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In the current study, we aimed to elucidate the molecular mechanisms linking genetic variation in the 105 
rs2107595 region to HDAC9 expression. For this we employed targeted resequencing of the HDAC9 106 
locus, proteome-wide search for allele-specific nuclear binding partners, chromatin 107 
immunoprecipitation (ChIP), genome-editing, reporter assays, circularized chromosome conformation 108 
capture (4C), and gain- and loss-of-function experiments in cultured human cell lines and primary 109 
vascular and immune cells. We provide evidence for a regulatory effect of rs2107595 on HDAC9 110 
expression involving a direct physical interaction between the rs2107595 region and the HDAC9 111 
promoter. We further demonstrate a role of the E2F3 and Rb1 proteins in mediating allele-specific 112 
effects of rs2107595 on HDAC9 transcription. 113 
 114 
 115 
 116 
METHODS 117 
 118 
Targeted Resequencing 119 
192 patients with large artery stroke and 192 age- and gender-matched controls were chosen for targeted 120 
resequencing of the HDAC9 gene locus. Barcoded libraries were generated from fragmented genomic 121 
DNA (~200 bp, Covaris S2 sonifier) using a fragment library preparation kit (Applied Biosystems). 122 
Libraries were amplified on a Gene Amp PCR System 9700 (Applied Biosystems), subjected to a 123 
quality control on a 2100 Bioanalyzer (Agilent Technologies) and hybridized twice to a pool of 124 
biotinylated capture probes from a TargetSeq™ Custom Enrichment Kit (Applied Biosystems) 125 
designed to cover the region 18,123,000-19,188,000 at chromosome 7 (GRCh37/hg19). Bound DNA 126 
fragments were recovered by streptavidin Dynabeads (Thermo Fisher Scientific), quantified by qPCR 127 
using a TaqMan Quantification kit (Applied Biosystems), subjected to an emulsion PCR on a SOLiD 128 
EZ Bead System (E120 scale), enriched to a concentration of approximately 1.5 million beads and 129 
sequenced on a 5500 SOLiD xl system (Applied Biosystems). 130 
Coverage of the sequence was over 85% in 352 individuals (176 cases, 176 controls), 32 individuals 131 
were removed from the analysis due to low coverage (Supplemental Figure 3). Mean alignment rate of 132 
reads was generally >90% and approximately one third of reads were ultimately used after removal of 133 
duplicates. After alignment and post-processing, the GATK software suite was used for quality control, 134 
re-alignment and re-calibration. SNPs were subsequently called using GATK and SAMtools. Data from 135 
rs11984041 and rs2107595 were compared to prior genotyping efforts (microarray/TaqMan SNP 136 
genotyping) demonstrating an overlap of 99.8%. 137 
From the 9,427 single nucleotide polymorphisms (minor allele count >= 1) and 1,040 138 
insertions/deletions (InDels), 931 SNPs and 108 InDels were filtered out due to quality control issues 139 
(e.g. Hardy-Weinberg equilibrium). Of the remaining 8,496 SNPs, 2,939 variants had previously not 140 
been reported in dbSNP (Version dbSNP142). Of those, 2,008 had a minor allele count of one in the 141 
whole dataset. SNPs were analyzed using logistic regression followed by Bonferroni correction. 142 
Haplotype blocks were reconstructed using Haploviewer and association analyses performed using 143 
logistic regression. As variant-collapsing methods we used SKAT and SKAT-O and calculated values 144 
for multiple p-value thresholds: all SNPs, common SNPs (10%<MAF<50%), low frequency SNPs 145 
(1%<MAF<10%) and rare SNPs (0.1%<MAF<1%). 146 
 147 
Proteome-Wide Analysis of SNPs (PWAS)  148 
PWAS was conducted as previously described21 with minor modifications as described in the 149 
supplemental material and methods. 150 
 151 
Chromatin immunoprecipitation (ChIP) 152 
1x106 HeLa cells were crosslinked with 1% formaldehyde at room temperature, lysed (50 mmol/L Tris-153 
HCl pH 8, 10 mmol/L EDTA, 1% SDS, complete EDTA-free protease inhibitor, Roche) and sheared 154 
by sonication on a Covaris S220 (Covaris). The supernatant was diluted 1:10 with ChIP-RIPA Buffer 155 
(10 mmol/L Tris-HCl pH 7.5, 1 mmol/L EDTA, 0.5 mmol/L EGTA, 1% Triton X-100, 0.1% SDS, 0.1% 156 
Na-deoxycholate, 140 mmol/L NaCl). Immunoprecipitation was performed using an E2F3 antibody 157 
(Santa Cruz, C-18 sc-878) or IgG antibody (abcam, rabbit IgG, ab37415). qPCR data are normalized to 158 
the IgG control. 159 
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Genome-edited Jurkat cells were grown with or without 1 mmol/L HU (200,000 cells/ml) and harvested 160 
after 24 h. Formaldyde fixation and nuclei preparation was conducted according to TruChIPTM protocol 161 
(Covaris). Nuclei were washed in MNase digestion buffer (1% Triton X-100, 0.1 % Na-deoxycholate, 162 
0.1 % SDS, 140 mmol/L NaCl, 10 mmol/L Tris-HCl pH 8.0, 1 mmol/L EDTA). Chromatin was digested 163 
using Micrococcal Nuclease (MNase digestion buffer supplemented with 2 mmol/L CaCl2).22 ChIP was 164 
performed as described above using E2F3 and Rb1 antibodies (Santa Cruz, C-18 sc-878, sc-50 X). 165 
 166 
Cell culture and Transfection 167 
HeLa cells were maintained in DMEM-GlutaMAXTM-I, and THP-1 and Jurkat (clone E6-1) cells were 168 
cultured in RPMI 1640 medium, both supplemented with 10% fetal bovine serum, 100 U/ml 169 
penicillin/100 μg/ml streptomycin (reagents from Gibco, Life Technologies). Human aortic smooth 170 
muscle cells (HAoSMC) and human aortic endothelial cells (HAoEC) obtained from PromoCell were 171 
cultured according to manufacturer’s instructions. HeLa cells were transfected using Lipofectamine 172 
2000 (Invitrogen). HAoSMCs and HAoECs, THP-1 and Jurkat cells were transfected by appropriate 173 
Amaxa® Cell Line Nucleofector® Kits. Small interfering RNAs (siRNAs) were obtained from 174 
Dharmacon Thermo Fisher Scientific (Supplemental Table 1). THP-1 cells were seeded in RPMI1640 175 
supplemented with 100ng/ml Phorbol 12-myristate 13-acetate (PMA) immediately after transfection to 176 
induce THP-1 macrophage (MΦ) differentiation. 177 
 178 
RNA isolation and cDNA synthesis 179 
Total RNA was isolated using either Qiazol or the RNeasy Mini kit (Qiagen) according to the 180 
manufacturer`s instructions including the RNase-free DNase Set (Qiagen). An equal amount of RNA 181 
was used for each Oligo dT(15) or random primed cDNA synthesis (Omniscript RT kit Qiagen). 182 
  183 
Protein isolation and Immunoblotting 184 
Cells were washed with PBS and lysed with RIPA buffer (50 mmol/L Tris-HCl pH 7.5, 150 mmol/L 185 
NaCl, 1% NP-40, 0.5% desoxycholate, 0.1% SDS) containing complete Protease Inhibitor (Roche) for 186 
30 min on ice. Protein concentrations were determined by using BCA Protein assay kit (Pierce, Thermo 187 
Fisher Scientific). Primary antibodies: rabbit anti-E2F3 1:1000 (Santa Cruz), rabbit anti-E2F4 1:1000 188 
(Santa Cruz), rabbit anti-Rb1 1:1000 or 1:4000 (Santa Cruz), rabbit anti-Rbl1 1:1000 (Santa Cruz), 189 
rabbit anti-Rbl2 1:1000 (Santa Cruz), rabbit anti-actin 1:1000 (Sigma Aldrich) and mouse anti-HA 190 
(clone 16B12) 1:1000 (Covance). Secondary antibodies: goat anti-mouse 1:10000 (Dako) and goat anti-191 
rabbit 1:10000 (Dako). For Western Blot analysis of the PWAS samples 16 mmol/L biotin  was eluted 192 
in 40µl PBB (150 mmol/L NaCl, 50 mmol/L Tris/HCl pH 8.0, 10 mmol/L MgCl2, 0.5% NP40, 193 
Complete Protease Inhibitor-EDTA, Roche) after the DNA pull-down and separated SDS-PAGE. 194 
 195 
Gene expression analysis 196 
Gene expression analysis was performed using quantitative PCR applying SYBR Green or TaqMan 197 
technology. Gene specific primers are listed in supplemental table 2. TaqMan probes were obtained 198 
from Applied Biosystems: HDAC9 (Hs00206843 m1), Twist1 (Hs00361186_m1), CD68 199 
(Hs02836816_g1). For normalization RPLP0 (4326314E) and HPRT (4326321E) probes were used. 200 
 201 
Cell cycle synchronization  202 
HeLa cells or genome-edited Jurkat cells were seeded in T80 cell culture flasks with a density of 35,000 203 
or 200,000 cells per ml, respectively. After 24 h hydroxyurea (HU) was added in a final concentration 204 
of 5 mmol/L or 1 mmol/L, respectively. 24 h after synchronization represents the baseline time point 205 
and media were changed allowing progression of the cell cycle and subsequently harvested any other 206 
hour. 207 
 208 
Human primary Aortic Smooth Muscle cells (HAoSMCs) and human blood-derived MΦ  cultures 209 
Experiments in primary human cells were approved by the local institutional review board (project #17-210 
693). Primary human blood-derived MΦ were obtained from healthy volunteers. PBMCs purified over 211 
a 15 ml Ficoll Paque Premium cushion at room temperature by centrifugation (400xg 30 min, 212 
acceleration 3, deceleration 0). PBMCs were washed (PBS, 2 mmol/L EDTA) at 400xg 10min and 213 
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resuspended in 1 ml Cyro-SFM (Promo Cell). Cells were frozen at -80°C overnight (Mr. Frosty, 214 
ThermoFisher) and subsequently stored in liquid nitrogen. 215 
To isolate monocytes from PBMCs and differentiate them into MΦ, cryopreserved aliquots of each 216 
genotype (rs2107595, GG genotype: n=9; AA: n=6) age- and gender-matched were plated in two wells 217 
(6 well plate) in monocyte attachment medium (Promo Cell). After 1 h, cells medium was replaced with 218 
M1-Macrophage Generation Medium DFX (Promo Cell). After 8 days in culture, cells were incubated 219 
in medium with reduced supplement (1%) either with or without 50 ng/ml human TNFα and 10 ng/ml 220 
IFNγ and incubated for 24 h. 221 
Primary HAoSMC were obtained from Dr. Civelek (University of Virginia) (rs2107595 GG: n=9; AA: 222 
n=6) and cultured in Smooth Muscle Basal Medium (SMBM, Lonza) according to manufacturer’s 223 
instructions on 0.1% Gelatine coated flasks. For stimulation, 100,000 cells were seeded and cultured 224 
overnight in 6 well plates and treated with 20 ng/ml human TNFα in temperature and pH equilibrated 225 
FBS-free SMBM for 0, 4 h and 8 h. Cells were lysed with Qiazol in the plate for RNA isolation. 226 
 227 
Dual luciferase reporter assay 228 
For the dual luciferase reporter assay we used the pGL3 vector (Promega) carrying the minimal murine 229 
HSP68 promoter. 41-bp oligonucleotides of the genomic SNP sequences containing either the common 230 
or risk allele (Supplemental Table 2) were generated by annealing ssDNA oligo nucleotides (flanked 231 
by single-stranded overhangs for KpnI and SacI restriction sites) and subsequently cloned into the 232 
pGL3-mHSP68 plasmid using KpnI and SacI restriction sites. For normalization the phRL-TK Renilla 233 
vector (Promega) was used. The luciferase constructs were transiently transfected and measured using 234 
a Glomax-Multi Detection System (Promega) after 24 h. 235 
 236 
Generation of genome-edited Jurkat cell lines 237 
Edited cell lines were generated as previously described.23 In brief, targeting vectors were designed and 238 
produced by Horizon Discovery (Cambridge, UK) and rAAV produced by co-transfection of HEK293T 239 
cells with targeting and helper vectors. Viruses were purified using an AAV purification kit (Virapur, 240 
San Diego, USA). Jurkat cells heterozygous for rs2107595 were infected with rAAV carrying either 241 
the common or the risk allele of rs2107595. For selection a loxP-flanked neomycin resistance cassette 242 
was included in the vector and genome-edited single cell clones were identified by genotyping. The 243 
neomycin cassette was removed using Cre recombinase and its absence verified in single cell clones by 244 
PCR. Successful editing was subsequently confirmed by sequencing. 245 
 246 
Circular Chromosome Conformation Capture 247 
4C-chromatin was prepared as described previously.24 Further details are explained in supplemental 248 
material and methods. 249 
 250 
Cell proliferation assay 251 
To determine cell proliferation pulse-chase experiments were performed in unsynchronized genome-252 
edited Jurkat cells using Click-iT™ Plus EdU (5-ethynyl-2'-deoxyuridine) technology (# C10634, 253 
Thermo Fisher). Cells were seeded at a density of 200,000 cells per ml and grown in the presence of 10 254 
µmol/L EdU for 4 h. Afterward, cells were washed 3 times with PBS, resuspended in RPMI 1640 and 255 
analysed by flow cytometry (BD FACSVerse™) at 0, 24 h, 48 h and 72 h. 256 
 257 
Statistical analysis 258 
The Shapiro-Wilks Test was utilized to determine the distribution of data sets. Normally distributed 259 
data were statistically analysed with the parametric T-Test, else a Wilcoxon Rank-Sum Test or 260 
Wilcoxon Signed-Rank Test were applied. Data are represented as mean values and standard error of 261 
the mean unless specified otherwise. Significance is depicted as follows; *: p < 0.05; **: p < 0.01; ***: 262 
p < 0.001. HDAC9 regional plots (Figure 1A) were constructed using locuszoom. The upper panel uses 263 
data from the large artery stroke analysis of the MEGASTROKE collaboration.3 264 
  265 
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RESULTS 266 
 267 
Targeted resequencing of the HDAC9 region supports candidacy of rs2107595 as the causal 268 
variant for large artery stroke  269 
rs2107595 gave the strongest signal in previous GWAS for atherosclerotic phenotypes,3, 11, 12, 19, 25, 26 270 
(Figure 1A, upper panel) and had a >95% posterior probability of being the only causal SNP at this 271 
locus in the most recent stroke GWAS.3 To further examine the candidacy of rs2107595 as the causal 272 
variant at this locus while also capturing rare variants, low-frequency variants, and haplotypes, we 273 
performed targeted resequencing of the HDAC9 gene region including the nearby TWIST1 and FERD3L 274 
genes in 176 patients with large artery stroke and 176 stroke-free controls (Figure 1A, middle panel; 275 
Figure S1). Genotypes for rs2107595 showed 99.8% agreement with previously obtained microarray 276 
and TaqMan SNP genotyping data demonstrating the reliability of our sequencing approach. Overall, 277 
we identified 9,428 variants (8,496 SNPs, 932 insertions/deletions) and 169 haplotype blocks but no 278 
rare or low-frequency variants in the rs2107595 haplotype block. Following correction for multiple 279 
testing, none of the variants or haplotypes significantly associated with large artery stroke thus arguing 280 
against variants with large effect sizes in this region. Next, we used variant-collapsing methods (SKAT 281 
and SKAT-O) to analyse the 2.5-kb sequence block around rs2107595, which is conserved in mammals, 282 
the intergenic region between HDAC9 and TWIST1, and the HDAC9, TWIST1, and FERD3L genes 283 
(Figure 1A, lower panel). SKAT-O analyses revealed a significant association (p=0.017) for the 284 
conserved sequence block encompassing rs2107595, while all other equally-sized sequence blocks 285 
showed higher p-values. Of note, all proxy SNPs (r2 with rs2107595 >0.8) localize outside the 286 
conserved sequence block. Collectively, these findings support rs2107595 as the causative variant at 287 
this locus. Hence, we focused on this variant in our functional analyses. 288 
 289 
The rs2107595 risk variant interferes with E2F3 binding 290 
The rs2107595 region shows enrichment for marks of regulatory chromatin (DHS, H3K27ac, 291 
H3K4me1, H3K9me3) in various cell types listed in HaploReg,27 Roadmap Epigenomics,28 and 292 
ENCODE13 (Supplemental Table 3 and 4, Figure S2) suggesting a potential involvement of 293 
rs2107595 in transcriptional regulation. To identify transcription factors with allele-specific binding at 294 
rs2107595 and hence a possible role in transcriptional regulation, we performed proteome-wide analysis 295 
of SNPs (PWAS). This approach is based on the interaction of synthetic oligonucleotides with 296 
metabolically labelled nuclear factors (Stable Isotopic Labelling with Amino acids in Cell culture, 297 
SILAC) that are subsequently identified by mass spectrometry.21 41-bp-SNP-centered oligonucleotides 298 
differing only at rs2107595 (Supplemental Table S2) were incubated either with light or heavy isotope 299 
labelled nuclear factors from HeLa cells. A comparison of the heavy/light ratios of all identified binding 300 
proteins revealed six factors surpassing the predefined false discovery rate of 0.01: NFATC2, a member 301 
of the nuclear factor of activated T-cells,29 L3MBTL3, a putative polycomb group protein functioning 302 
as transcriptional regulator in large protein complexes,30 SAMD1, a protein with a potential role in 303 
immobilizing low density lipoprotein (LDL) in the arterial wall,31 and all constituents of the 304 
E2F3/TFDP1/Rb1 complex (Figure 1B). 305 
E2F3 and TFDP1 represent transcription factors of the E2F and DP1 families known to complex with 306 
Rb proteins.32 The observed enrichment of E2F3 at the common allele is supported by the prediction of 307 
an E2F3 consensus site33 within the common allele sequence which is disrupted by the risk allele 308 
(Figure 1C). To validate allele-specific binding of E2F3 we further incubated biotinylated synthetic 309 
oligonucleotides with nuclear extracts from HeLa cells and purified the assembled allele-specific 310 
nucleoprotein complexes by DNA pull-down. Subsequent immunoblotting revealed enriched binding 311 
of E2F3 to the common allele (Figure 1D). Finally, we performed ChIP experiments in HeLa cells, 312 
which are homozygous for the rs2107595 common allele and thus suited to explore E2F3 binding in 313 
vivo. ChIP revealed a significant occupancy of E2F3 at rs2107595 (Figure 1E). Given these results and 314 
the known role of E2F and Rb proteins in transcriptional regulation34, 35 we considered these proteins to 315 
be strong candidates for regulating HDAC9 expression. 316 
 317 
  318 
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E2F3 and Rb1 regulate HDAC9 expression 319 
To determine the effect of E2F and Rb proteins on endogenous HDAC9 expression we next conducted 320 
gain- and loss-of-function experiments in HeLa cells. Overexpression of E2F3a resulted in a 6-fold 321 
increase in HDAC9 mRNA levels compared to empty vector control. In contrast, overexpression of 322 
Rb1 led to a reduction in HDAC9 expression which however did not reach significance (Figure 2A 323 
and S3A, B). siRNA-mediated knockdown of E2F3, E2F4, or both resulted in a significant decrease of 324 
HDAC9 mRNA compared to non-targeting control (Figure 2B and S3C, D). In contrast, knockdown 325 
of Rb proteins caused a significant increase in HDAC9 expression for Rb1, Rbl1 and the triple 326 
knockdown (Figure 2C and S3E, F).  327 
E2F and Rb act as transcriptional regulators of cell cycle genes. At the G1/S boundary repressive Rb 328 
proteins become phosphorylated by cyclin-dependent kinases and dissociate from E2F proteins, which 329 
then activate the expression of target genes.34-36 Hence, we analysed cell cycle-dependent variations in 330 
HDAC9 expression. Synchronization of HeLa cells by hydroxyurea- (HU)-induced cell cycle arrest at 331 
the G1/S boundary led to a significant increase in HDAC9 mRNA expression compared to untreated 332 
cells (Figure 2D and 2E). Following release of the cell cycle arrest HDAC9 mRNA expression further 333 
increased during progression through S phase and declined upon reaching G2, thus paralleling the 334 
activity of E2F proteins across the cell cycle.37, 38 335 
 336 
The rs2107595 risk variant is associated with elevated HDAC9 transcription 337 
To examine the association between rs2107595 and HDAC9 gene expression in cells relevant to 338 
atherosclerosis we first examined primary human MΦ and human aortic smooth muscle cells 339 
(HAoSMCs) with defined carrier status at rs2107595. Proinflammatory MΦ were isolated from PBMCs 340 
obtained from healthy donors (GG genotype: n=7; GA: n=7; AA: n=5, matched for age and gender) 341 
and differentiated in vitro (Figure S4A). Upon stimulation with TNFα and IFNγ, MΦ homozygous for 342 
the risk allele showed significantly elevated HDAC9 expression levels compared to MΦ homozygous 343 
for the common allele (Figure 3A). Gene expression analysis in cultured HAoSMC (GG genotype: 344 
n=9; AA: n=6) revealed no allele-specific differences in HDAC9 expression before and after 4 or 8 h 345 
of TNFα stimulation (Figure 3B). Also, there was no allele-specific effect on TWIST1 expression in 346 
HAoSMCs and MΦ (Figure S4B and results not shown). 347 
To examine the effects of rs2107595 on transcriptional regulation, we further performed luciferase 348 
reporter assays in T-lymphoid Jurkat cells, THP-1 monocytes and PMA-induced THP-1 MΦ, HAoEC, 349 
and HAoSMC. 41-bp-SNP centered fragments containing either the rs2107595 common or risk variant 350 
were cloned into a firefly luciferase reporter vector21 (Figure 3C) and tested for a cis-regulatory 351 
function by measuring luciferase activity after transient transfection. Transcriptional activity was 352 
significantly higher for the risk allele compared to the common allele both in Jurkat cells and PMA-353 
induced THP-1 MΦ39 (Figure 3C) whereas we found no allele-specific differences in HAoEC, 354 
HAoSMCs, and THP-1 monocytes, (Figure S5A-C). SNPs in high (rs57301765, r2=0.99) and low 355 
(rs10255384, r2=0.47) linkage disequilibrium (LD) with rs2107595 showed no consistent results in 356 
Jurkat cells and PMA-induced THP1 MΦ (Figure S5D-G). 357 
Next, we specifically genome-edited rs2107595 in Jurkat cells using recombinant adeno-associated 358 
virus23 (rAAV) resulting in isogenic cells differing solely at rs2107595. Jurkat cells were chosen 359 
because of (1) their immunological origin, (2) the presence of open chromatin marks both in the 360 
rs2107595 region (Figure S2) and HDAC9 promoter, and (3) their diploidy and heterozygosity for 361 
rs210759513, 28, 40 allowing a one-step editing procedure in either direction. Successful editing was 362 
confirmed by direct sequencing (Figure 3D). Cells homozygous for the risk allele exhibited 2-fold 363 
higher mRNA levels of HDAC9 compared to cells carrying the common allele (Figure 3E). 364 
Heterozygous cells displayed intermediate mRNA levels compatible with a gene dosage effect. 365 
TWIST1 and FERDL3 expression levels were below detection limit in these cells (data not shown). 366 
Collectively, these results show that rs2107595 regulates HDAC9 transcription in an allele-specific 367 
manner. We further examined allele-specific effects of rs2107595 on HDAC9 transcription across the 368 
cell cycle. Following synchronization at the G1/S-boundary, HDAC9 levels were significantly elevated 369 
in risk allele cells compared to common allele cells (time point zero, Figure 3F) in accordance with the 370 
results obtained in unsynchronized cells (Figure 3E). This difference was sustained for 6 h following 371 
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release of the HU block. Because of the allele-specific effects on cell cycle associated HDAC9 372 
expression we analysed the effect of rs2107595 on cell proliferation in genome-edited Jurkat cells. 373 
Pulse-chase labeling with the thymidine analogue EdU and detection by flow cytometry revealed no 374 
allele-specific differences for rs2107595 (Figure S6 A and B). 375 
 376 
E2F3 mediates allele-specific effects of rs2107595 on HDAC9 transcription 377 
Given the observed effect of rs2107595 on HDAC9 transcription we next tested for physical 378 
interactions of the rs2107595 region with the HDAC9 promoter by circularized chromosome 379 
conformation capture (4C) in isogenic Jurkat cells. Based on Jurkat cell-specific open chromatin 380 
structure (DHS) and promoter information (H3K4me3)13 we selected the promoter viewpoint at nt 381 
~18,330,000. Mapping the 4C-seq signals to the HDAC9 gene region revealed a significant interaction 382 
between rs2107595 and the promoter region in common allele (“GG” in Figure 4A) but not in risk 383 
allele cells (“AA”) indicating allele-specific differences in chromatin organisation. Analyses for an 384 
alternative HDAC9 promoter lacking detectable chromatin marks in Jurkat cells showed lower 385 
significance for allele-specific interactions at both viewpoints (Figure S7). These results provide further 386 
mechanistic evidence for a role of the rs2107595 region in regulating HDAC9 transcription. 387 
To determine whether the in vivo binding of E2F3 and Rb1 at rs2107595 observed in HeLa cells occurs 388 
in a truly allele-specific manner we next performed ChIP experiments in the genome-edited isogenic 389 
Jurkat cells. Since E2F3 and Rb1 control cell cycle progression at the G1/S boundary,38 we arrested 390 
these cells with HU. Upon synchronization, we found a significantly enriched occupancy of E2F3 and 391 
Rb1 proteins at the common allele compared to the risk allele (Figure 4B and 4C), which was not 392 
present in unsynchronized cells (Figure S8 A and B) possibly reflecting cell cycle-dependent binding 393 
of E2F3 and Rb1 to the common allele. 394 
Finally, to examine whether the allele-specific effects on HDAC9 transcription at rs2107595 are 395 
mediated by allele-specific binding of E2F3 and Rb1, we tested the influence of exogenous E2F3a and 396 
Rb1 expression in isogenic Jurkat cells. Compared to empty vector control, overexpression of E2F3a 397 
but not Rb1 resulted in a significant increase of the ratio between HDAC9 expression in cells 398 
homozygous for the common allele vs cells homozygous for the risk allele (Figure 4D and S8C). 399 
Collectively, these results suggest allele-specific interactions between rs2107595 and the HDAC9 400 
promotor and show a mediating effect of E2F3 on HDAC9 expression via rs2107595 (see proposed 401 
model in Figure 4E).  402 
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DISCUSSION 403 
 404 
We present a mechanism by which a noncoding variant at the large artery stroke and coronary artery 405 
disease risk locus on 7p21.1 regulates HDAC9 transcription. We show that rs2107595, the likely causal 406 
variant at this locus, has allele-specific transcriptional capacity and that the risk allele associates with 407 
elevated HDAC9 expression levels in cell types relevant to atherosclerosis. We further identify a 408 
physical interaction of the rs2107595 region with the HDAC9 promoter, demonstrate preferential 409 
binding of the E2F3/ TFDP1/Rb1 cell-cycle complex to the common allele, and show that E2F3 410 
mediates HDAC9 transcription in an allele-specific manner. Together, our data imply transcriptional 411 
regulation of HDAC9 via E2F3/Rb1 complexes as a major mechanism linking genetic variation at 412 
rs2107595 with disease risk. 413 
 414 
A transcriptional effect of rs2107595 on HDAC9 expression is demonstrated by our data in genome-415 
edited T-lymphoid Jurkat cells and in primary proinflammatory MΦ, and is further substantiated by the 416 
4C results, which showed a physical interaction between the rs2107595 region and the HDAC9 417 
promoter. The directionality of the transcriptional effect was consistent with the results from luciferase 418 
assays for rs2107595 in Jurkat cells and THP-1 MΦ. It was further consistent with the effects on 419 
HDAC9 transcription reported previously for PBMCs18 in that the risk allele was associated with higher 420 
HDAC9 expression levels. Of note, however, our earlier observations in PBMCs did not allow 421 
attributing allele-specific effects to a specific genetic variant. As such, the current findings represent a 422 
major advance. While we cannot exclude that other variants in the rs2107595 region also contribute to 423 
transcriptional regulation of HDAC9, several observations point to rs2107595 as the causal variant 424 
mediating vascular risk: rs2107595 was the lead SNP in GWAS for stroke3, 11, 12 and coronary artery 425 
disease.8 It was the only variant contained in the 95% credible SNP set in the most recent stroke 426 
GWAS,3 and here using targeted resequencing we found no variants with large effect sizes in the 427 
HDAC9 region with SKAT-O analyses further favoring rs2107595 as the causal variant.  428 
 429 
The observed allele-specific interaction between rs2107595 and E2F3/Rb1 complexes is supported by 430 
four independent lines of evidence: an unsupervised approach using proteome-wide analysis of allele-431 
specific binding partners, DNA pull-down experiments in combination with immunoblotting, ChIP, and 432 
bioinformatics data showing a consensus-binding site for E2F3 at the common allele. Again, the 433 
directionality was consistent across all approaches in that the risk allele disrupted binding to E2F3. 434 
Importantly, allele-specific interaction was also demonstrated in vivo using ChIP. Our proteome-wide 435 
experiment identified differential interactors aside from E2F3 and Rb proteins and we cannot exclude 436 
a role of these factors in mediating allele-specific effects.30, 41 However, the binding of three proteins 437 
belonging to the same complex (E2F3, TFDP1, and Rb1) together with our functional results strongly 438 
support a major role of these factors in mediating the effects of rs2107595 on HDAC9 expression.  439 
 440 
An involvement of E2F and Rb proteins in regulating HDAC9 transcription is evidenced by our gain- 441 
and loss-of-function experiments in HeLa cells and by the mediating effect of E2F on allele specific 442 
HDAC9 expression in isogenic Jurkat cells. In accord with this, we found the expression of HDAC9 in 443 
HeLa and genome-edited Jurkat cells to be cell cycle-dependent in a manner paralleling E2F3 activity. 444 
Despite these observations and the proposed role of HDAC9 in cell proliferation and cancer,42-45 we 445 
found no allele-specific effect on cell proliferation in isogenic Jurkat cells. However, this might relate 446 
to Jurkat cells lacking functional p53,46 which is transcriptionally regulated by HDAC9.45 447 
 448 
Our findings provide some indication that the effects of rs2107595 on HDAC9 expression might be 449 
cell-type dependent. While the rs2107595 risk allele was associated with higher HDAC9 expression 450 
levels in proinflammatory human MΦ and genome-edited T-lymphoid Jurkat cells we found no 451 
indication for an allele-specific effect in cultured HAoSMC. Similarly, luciferase assays showed a 452 
higher transcriptional activity with the risk allele in Jurkat cells and proinflammatory THP-1 MΦ but 453 
not in undifferentiated THP-1 monocytes, HAoSMCs and HAoECs. However, these cell lines also vary 454 
in terms of their source and cell senescence. For instance, primary MΦ were isolated from healthy 455 
young adults, whereas HAoSMCs were isolated from heart transplant donors with propagation for 456 
multiple passages. Future studies using genome-editing in inducible pluripotent stem cells (IPSCs) with 457 
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differentiation into different cell lineages might allow better delineating the biological effects of 458 
rs2107595 in specific cell-types relevant to human atherosclerosis.47 459 
Our observations are reminiscent of a previous study that found a single risk variant associated with 460 
LDL levels and myocardial infarction to create a CCAAT enhancer binding protein transcription factor 461 
binding site and alter the expression of SORT1, a transporter protein involved in LDL secretion.48, 49 462 
Similarly, the lead SNP at the coronary artery disease locus on 4q32.1 has been shown to influence 463 
GUCY1A3 expression levels by allele-specific binding to the transcription factor ZEB1.50 To our 464 
knowledge, the current study is the first to provide a gene regulatory mechanism for a common variant 465 
associated with risk of atherosclerotic stroke.5   466 
 467 
In conclusion, our current findings imply transcriptional regulation of HDAC9 via E2F3 and Rb1 as a 468 
major mechanism mediating disease risk at rs2107595. HDAC9 has emerged as a potential target for 469 
drug development. For one, there is evidence from different mouse models of atherosclerosis that 470 
lowering HDAC9 expression may attenuate atherogenesis.17, 18 Second, rs2107595 has been associated 471 
with early stages of atherogenesis,19, 20 which makes HDAC9 an attractive target for early intervention. 472 
Third, recent drug discovery programs have resulted in the development of selective class IIa HDAC 473 
inhibitors with reasonable specificity and inhibitory activity against HDAC9.51-53 Interest in HDAC9 474 
further emerges from the observation that the HDAC9 locus is implicated in three major manifestations 475 
of atherosclerosis: stroke, coronary artery disease, and peripheral artery disease. More work is needed 476 
to better understand the mechanisms linking genetic variation in the rs2107595 region to atherosclerosis. 477 
 478 
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Figure Legends 658 

Figure 1: The rs2107595 risk variant interferes with E2F3 binding. (A) Top: regional association 659 
plot of the HDAC9 gene region (18123000-19188000, GRCh37/hg19) showing association signals 660 
around rs2107595 for large artery stroke in the MEGASTROKE dataset.3 rs2107595 is located in 661 
noncoding DNA 3’ to HDAC9 and 5’ to TWIST1 and FERD3L. Middle: association plot of the same 662 
region showing variants identified by targeted resequencing of 176 cases of large artery stroke and 176 663 
stroke-free controls. Bottom: -log10 p-values for the conserved sequence element around rs2107595, the 664 
intergenic region between HDAC9 and TWIST1, and the HDAC9, TWIST1, and FERD3L genes, 665 
calculated by variant-collapsing methods (SKAT and SKAT-O). The conserved 2.5-kb sequence block 666 
around rs2107595 (position marked by the dashed line) significantly associated with large artery stroke 667 
(p=0.017). (B) Identification of allele-specific binding partners of rs2107595 using PWAS. E2F3, Rb1, 668 
TFDP1, SAMD1 and L3MBTL3 preferentially interacted with the common allele (G) whereas 669 
NFATC2 preferentially bound to the risk allele (A). (C) Position Weight Matrix33 for the consensus site 670 
of the human E2F3 protein aligned to the genomic sequence surrounding rs2107595. (D) Preferential 671 
binding of both E2F3a and E2F3b to the rs2107595 common allele (G) as revealed by immunoblotting. 672 
Overexpressed E2F3a (right panel) was used as a positive control. The asterisk marks an unspecific 673 
band that served as a loading control. (E) ChIP experiments showing in vivo binding of E2F3 to the 674 
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rs2107595 region in HeLa cells (E2F3 FC enrichment over IgG). The CDC2 promoter served as a 675 
positive control for E2F3 binding while β-actin served as a negative control. n=7-8, meanrSD. 676 
Wilcoxon Signed-Rank Test. 677 
 678 
  679 
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 680 
 681 
 682 
Figure 2: E2F3 and Rb1 regulate HDAC9 expression. (A-C) Fold changes (FC) in HDAC9 mRNA 683 
expression assessed by quantitative real-time PCR analysis in HeLa cells after (A) overexpression of 684 
E2F3a and Rb1, (B) siRNA mediated knockdown of E2F3 and E2F4 and (C) siRNA mediated 685 
knockdown of Rb1, Rbl1 and Rbl2. n=7. (D) Cell cycle analysis by flow cytometry and propidium 686 
iodide staining in HeLa cells following cell cycle arrest at the G1/S boundary by hydroxurea (HU). 687 
Panel headlines indicate treatment modality and time points after release of the cell cycle arrest. (E) 688 
Quantitative real-time PCR analysis of HDAC9 at different stages of the cell cycle shows an increase 689 
of HDAC9 expression at the G1/S boundary and during S phase. n=6-7. FC: fold change. meanrSEM. 690 
Wilcoxon Signed-Rank Test. 691 
 692 
  693 
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694 
Figure 3: The rs2107595 risk variant is associated with elevated HDAC9 transcription. (A) Human 695 
blood-derived monocytes were isolated and differentiated in vitro to proinflammatory MΦ. Upon TNFα 696 
and IFNγ stimulation MΦ homozygous for the risk allele displayed significantly higher HDAC9 697 
expression levels compared to common allele carriers. No allele-specific effects were seen in 698 
unstimulated MΦ. (GG: n=5; GA: n=5; AA: n=7). (B) Post mortem-derived HAoSMC were cultured in 699 
vitro and harvested for transcriptional analysis. No significant expression differences were measured in 700 
unstimulated or TNFα stimulated HAoSMCs (4h or 8h). (GG: n=9; AA: n=6). (C) Luciferase reporter 701 
assays using constructs containing a 41bp genomic region carrying the common (G) or risk (A) allele of 702 



 
 

18 

rs2107595. The risk allele showed a significant increase in luciferase activity compared to the common 703 
allele in T-lymphoid Jurkat and PMA-induced THP-1 MΦ. Increased HDAC9 mRNA expression in 704 
heterozygous and homozygous genome-edited Jurkat cells carrying the rs2107595 risk allele (A) 705 
compared to cells homozygous for the common allele (G). n=16 or 24, meanrSD. (D) Sanger sequencing 706 
of genome-edited Jurkat cells containing either the (*) common allele (G) or risk allele (A). (E) Increased 707 
HDAC9 mRNA expression in heterozygous and homozygous genome-edited Jurkat cells carrying the 708 
rs2107595 risk allele (A) compared to cells homozygous for the common allele (G). n=16 or 24, 709 
meanrSD. T-test. (F) Comparative expression analysis during cell cycle progression in isogenic Jurkat 710 
cells carrying either the common (G) or risk allele (A). HU arrested cells were relieved and harvested 711 
every 2 h until 10 h and after 24 h. HDAC9 expression levels increased during the first 8 h after HU 712 
removal. Risk allele carrying cells showed a significantly increased expression of HDAC9 until 6 h. 713 
meanrSD. T-test.  714 
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Figure 4: E2F3 mediates allele-specific effects of rs2107595 on HDAC9 transcription. (A) Domain 716 
plot of the 4C-seq results obtained in isogenic Jurkat cells homozygous for the common (G) or risk 717 
allele (A). Shown are the significance levels of the 4C-seq signal coverage with viewpoints in the 718 
HDAC9 promoter (top) and rs2107595 region (bottom). For both viewpoints results for individual 719 
alleles are depicted in the upper panels with difference plots depicted below. Region of interactions 720 
(arrows) are defined by an enrichment of covered fragends within a running window of 1 to 50 fragends. 721 
Grey boxes represent the location of the 4C viewpoints. DHS and H3K4me3 histone marks are 722 
displayed at the top. (B and C) Comparative ChIP experiments in isogenic Jurkat cells homozygous for 723 
the common (G) or risk allele (A). G1/S boundary arrested cells showed an enrichment for E2F3 (B) 724 
and Rb1 (C) in common allele cells but not in risk allele cells at rs2107595. (n=6, meanrSEM, 725 
Wilcoxon Rank-Sum Test). (D) Influence of exogenous E2F3 and Rb1 expression in isogenic Jurkat 726 
cells. Compared to empty vector control (ctrl), overexpression of E2F3a but not Rb1 resulted in a 727 
significant increase of the ratio between HDAC9 expression in cells homozygous for the rs2107595 728 
common allele (A) vs cells homozygous for the risk allele (G). (n=8-10, meanrSD, T-test). (E) 729 
Proposed model for the regulatory effect of rs2107595 on HDAC9 expression by allele-specific binding 730 
of the E2F3/Rb1/TFDP1 complex. In the presence of the common allele (G) the E2F3/Rb1/TFDP1 731 
complex is recruited to the rs2107595 region and mediates a repressive effect on HDAC9 transcription. 732 
The risk allele (A) disrupts binding of the E2F3/Rb1/TFDP1 complex thus resulting in elevated HDAC9 733 
expression. 734 



Figure S1: Coverage Plot of the targeted resequencing experiment of the HDAC9 region.
10 fold coverage calculated as N × L / G (N: number of reads,L: average read length, G: locus size), was
achieved on average in this experiment. Individual samples with a percent coverage of < 80% were discarded
from analysis. BC represents the barcode number.
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Figure S2: Chromatin landscape of the intergenic rs2107595 SNP region. Depicted are DHS sites, and
the histone marks H3K4me1, H3K27ac and H3K9me3 surrounding the rs2107595 region in HeLa, HUVEC,
CD14+ monocytes, CD3+ and Jurkat cells as well as aorta, if available (ENCODE, Roadmap Epigenomics).
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Figure S3: Control experiments for the gain- and loss-of-function approaches in HeLa cells. Overexpression
of E2F3a and Rb1 was confirmed with quantitative real-time PCR analysis (A), (n=8), and immunoblotting (B).
Expression levels of E2F3 and E2F4 after siRNA mediated knockdowns were analyzed on mRNA level (C), n=7-8,
and protein level (D). Using siRNAs against Rb1, Rbl1 and Rbl2 expression levels were quantified on mRNA level
(E), n=7, and controlled on protein level (F).
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Figure S4: Gene expression analysis in primary human Mϕ and HAoSMCs. (A) Verification of monocyte to
Mϕ differentiation by measuring gene expression of the Mϕ marker CD68. After 9 days in culture unstimulated
and TNFα and IFNγ-stimulated Mϕ showed a 3-5 fold increase of CD68 expression compared to monocytes
cultured for one day or primary PBMCs. (B) Shown are results for TWIST expression in HAoSMCs.There was no
allele-specific effects on TWIST1 expression in HAoSMCs were observed. TWIST1 expression in human Mϕ was
under the detection limit (results not shown).
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Figure S5: Luciferase assays in THP-1 cells, HAoECs and HAoSMCs. Shown are results for rs2107595,
rs57301765 (r2=0.99) and rs10255384 ( r2=0.47). (A-C) results for rs2107595 in THP-1 monocytes (A),
HAoEC (B) and HAoSMC (C). (D-E) results for rs57301765 in Jurkat (D) and THP-1 Mĭ (E). (F-G) results for
rs10255384 in Jurkat (F) and THP-1 Mĭ (G).
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Figure S6: rs2107595 and cell proliferation. (A) Shown are representative figures from FACS analyses
following EdU pulse-chase labelling in isogenic Jurkat cells at variable time points after pulse labelling.
(B) Quantification showing the relative number of EdU positive cells in cells homozygous for the common (GG)
and risk allele (AA).
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Figure S7: 4C analysis at the alternative HDAC9 promoter. Significance level of the 4C-seq signal from
the second HDAC9 promoter - lacking detectable chromatin marks - and rs2107595 in Jurkat cells carrying
the common (G) or risk allele (A). Shaded boxes beneath arrows represent the regions of interaction at the
4C viewpoints.
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Figure S8: Role of E2F3 in mediating HDAC9 expression. Comparative ChIP experiments in isogenic Jurkat
cells carrying either the common (G) or risk allele (A). Unsynchronized cells display  background levels of E2F3 (A)
and RB1 (B) occupancy at both alleles. n=4, mean+/-SEM. Albumin and p68 served as a negative and positive
control, respectively. (C) Control experiment showing the transfection efficiency of E2F3a and Rb1 in isogenic
Jurkat cells. Empty vector control was set to 1 (dashed line). n=4, mean +/-SEM.
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Supplemental Material and Methods 
 
Proteome-Wide Analysis of Disease-Associated SNPs (PWAS)  
PWAS was conducted as previously described1 with the following minor modifications: 
11.25 nmol each of the corresponding pair of bait oligonucleotides (Supplemental Table 2) were 
annealed and phosphorylated using polynucleotide kinase (Fermentas). Concatemers were generated by 
ligating the bait oligonucleotides using T4 ligase (20 U, Fermentas) overnight at room temperature. 0.5 
nmol of pre-annealed desthiobiotinylated adapter oligonucleotides were ligated to the concatemer ends 
and subsequently purified using a G50 column (GE Healthcare). SNP pull-down and LC-MS/MS 
samples processing was performed as described1 and subsequently analyzed by nanoflow liquid 
chromatography on an EASY-nLC system from Proxeon Biosystems into a Q Exactive or Q Exactive 
HF (Thermo Fisher Scientific). Peptides were separated via HPLC on a C18-reversed phase 200 mm 
column packed with Reprosil (Dr. Maisch). 
Raw files were processed with MaxQuant2 (version 1.5.0.0) and searched against the human UniProt 
database. Search results were processed with MaxQuant filtered with a false discovery rate of 0.01. Data 
handling and outlier definition were performed using the Perseus software package (version 1.4.2.35).3 
Heavy over light ratios of identified proteins were filtered for contaminants, logarithmized, and the 
results of both forward and reverse experiments were plotted against each other. For outlier definition 
the heavy over light ratios were z-scored and a 1% cutoff was applied. Proteins were considered 
statistically significant outliers if this cutoff level was met in both forward and reverse experiments. 
For E2F3 consensus site prediction the MatchTM  tool (Gene-Regulation)4 was used. 
 
Circular Chromosome Conformation Capture 
4C-chromatin was prepared as described previously.5 In brief, 10 million cells were used for crosslinking 
in 2% formaldehyde (Sigma), lysed in 50mmol/L TRIS pH 7.5, 150mmol/L NaCl, 5mmol/L EDTA, 
0.5% NP-40, 1% Triton X-100. Isolated chromatin was subjected to a digestion with with DpnII (NEB, 
#R0543L), a ligation by T4 DNA ligase (Roche), a second digestion by CviQI (NEB, #R069S), a second 
ligation and a purification. Digestion and ligation efficiencies were checked on agarose gels. For 4C-
sequencing library preparation PCR of 1.6 µg of 4C template per reaction was performed by 
multiplexing 4 to 10 primer pairs (Supplemental Table 2) in the initial PCR reaction and subsequent 
pooling according to primer efficiency. After an initial PCR reaction of 6 cycles (reaction volume = 200 
µL) individual samples were divided among PCR reactions containing single primer pairs for another 
26 cycles (reaction volume = 25 µL). PCR products (20 ng, 100 µL volume) derived from the same 
Jurkat cell genotype were pooled in equimolar amounts and a final 6-cycle PCR reaction was performed 
with primers containing sequencing adapter and barcode sequences. After size selection by agarose gel 
electrophoresis fragments <700 bp were sequenced using the NextSeq500 platform (Illumina), 
producing single end reads of 75 bp.  
The raw sequencing reads were de-multiplexed based on viewpoint specific primer sequences. Reads 
were trimmed to 16 bases and mapped to an in silico generated library of fragends (fragment ends) 
neighbouring all DpnII sites in human genome (NCBI37/hg19), using custom Perl scripts. No 
mismatches were allowed during the mapping and the reads mapping to only one fragend were used for 
further analysis. For visualization of the 4C-signal the number of covered fragends mapping to 
chromosome 7 was calculated within a running window of k fragends (k was set increasingly from 1 to 
50). The number of covered fragends in each running window was compared to the number of covered 
fragends expected by random distribution. When the number of the covered fragends was higher 
compared to the number expected from the random distribution the significance level was calculated 
using the binominal cumulative distribution function; R pbinom. 
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6 DISCUSSION 
 
 
In the present work disease phenotypization, genetics and proteomics are integrated into a 

comprehensive workflow, depicting the scientific discovery from phenotype to function. 

 

First, we applied the novel web-based classification system CCS28,29 to more than 16.000 IS 

patients from the US and Europe, considering clinical, laboratory, imaging as well as additional 

technical data for the delineation of phenotypic and causative stroke subtypes.92 Interrater 

reliability was higher (k = 0.72) than in comparison with the traditional TOAST classification 

system.93 Importantly, via systematic probabilistic scoring of individual phenotypic findings, 

CCS also assigned the most probable cause of IS with good interrater reliability (k = 0.75). 

Second, we performed a two-stage GWAS with IS phenotypization based on CCS and TOAST, 

testing the associations of SNPs with a total of more than 37.000 IS patients and almost 

400.000 control subjects.94 A novel locus near TSPAN2 significantly associated with LAS,               

4 previously identified loci (PITX2, ZFHX3, HDAC9 and ALDH2) were replicated and associated 

in a stroke subtype-specific manner as well. 

Third, we applied a modern DNA-protein pulldown approach coupled to LC-MS/MS to the lead 

SNP rs2107595 at the LAS risk locus HDAC9, identifying preferential binding of an E2F3-TFDP1-

Rb1 complex to the common allele of rs2107595 (see section 5, Prestel et al.). Additional gain- 

and loss-of-function-studies, reporter assays and chromosome conformation capture provide 

evidence for an interaction of rs2107595 with the HDAC9 promoter and allele-specific 

regulation of HDAC9 expression via E2F3 and Rb1. 

 

Taken together, this workflow represents a compelling application of modern mass 

spectrometry-based proteomics to stroke genetics and showcases its benefit for the 

functional follow-up of GWAS hits. 
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6.1 Ischemic Stroke, a Complex Phenotype of Complex Diseases 

Besides being a complex disease caused by the interplay of environmental factors, lifestyle 

and a multitude of common variants, IS also is a complex phenotype with several distinct 

pathomechanisms potentially leading to the same endpoint, i.e. ischemic stroke. This 

interplay of complex disease and complex phenotype is critical in the understanding of IS, both 

for clinical routine as well as for stroke genetics. 

 

In clinical routine, IS patients are etiologically classified according to the widespread TOAST 

system,26 with the distinction between LAS and cardioembolism being one of the most 

important clinical differentiations to guide the choice of secondary prevention via antiplatelet 

agents or anticoagulants, respectively.95 When applying the TOAST classification system to IS 

patients in a hospital setting, about 30-50 % of IS cases are rated “undetermined”,96,97 raising 

questions about the right secondary prophylaxis for affected IS patients. The CCS system on 

the other hand proves to be a relatively easy-to-use web-based classification algorithm for 

IS,29,98 which can be helpful in the assignment of the causative phenotype via its probabilistic 

stratification of individual IS risk factors.99 

However, even the application of CCS rates about 25 % of IS cases as “undetermined”.100 Two 

major obstacles for IS phenotypization are limited diagnostic sensitivity of today’s routinely 

used tests as well as a high percentage of incomplete diagnostic workup in the setting of acute 

stroke care.92,101 For instance, the likelihood of detecting intermittent atrial fibrillation with 

one 72 hour ECG is just about 20 %,102,103 generating the necessity for more stringent 

diagnostic work-ups. With atrial fibrillation most likely being underdiagnosed in IS patients, 

the association of risk loci of cardioembolism with IS in general could be partially explained.37 

 

Due to this diagnostic uncertainty a clinical concept is currently being evaluated for secondary 

prevention of IS, “embolic stroke of undetermined source” (ESUS).104 Defined as a non-lacunar 

cerebral infarction without evidence for proximal arterial stenosis nor atrial fibrillation,105 

ESUS is likely to be a subset of the undetermined IS cases. For ESUS, the benefit of new oral 

anticoagulants vs. antiplatelet agents for prevention of recurrent IS is currently tested in 

randomized multicentre trials. While RE-SPECT ESUS106 and NAVIGATE ESUS107 did not find 

any benefit for dabigatran or rivaroxaban, respectively, vs. acetylsalicylic acid, the trials 

ATTICUS and ARCADIA comparing apixaban vs. acetylsalicylic acid are still ongoing. 
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Additionally, technological advancements that might improve the accuracy of causative IS 

classification are arriving in clinical stroke care as well.108 Recently the use of event recorders, 

small implantable ECG devices, proved to be superior in detection of intermittent atrial 

fibrillation than conventional follow-up after stroke.109 Such developments are of particular 

interest, since missing out on intermittent atrial fibrillation will unquestionably result both in 

inadequate medication for secondary prevention as well as in inferiorly curated IS 

phenotypization and consequently in less-powered GWAS. 

 

As for stroke genetics, GWAS remain the state-of-the-art technology for elucidating genetic 

heritability of complex diseases. As evidenced in the present work for IS, precise phenotyping 

is crucial, particularly for IS with its heterogenous etiologies. Here, the application of the 

refined CCS classification system to a two-stage GWAS lead to the identification of TSPAN2, a 

previously unknown subtype-specific risk locus for LAS.94 Since both classification systems, 

TOAST and CCS, showed moderate correlation in terms of their respective causative stroke 

classification,100 it is not surprising that TOAST and CCS also showed moderate to strong 

genetic correlation.94 Hence, for future GWAS in the setting of IS, the use of a well-curated 

phenotypization per se might be more important for identification of novel risk loci than the 

choice between TOAST and CCS itself. 

Moreover, the study of larger IS sample sizes in a subtype-specific manner will possibly 

generate the biggest improvement in identification of additional risk loci.110,111 This is 

evidenced by the success of two recent multicohort GWAS meta-analyses,38,39 bringing the 

total number of significant risk loci for stroke to 35. IS subtype-specificity of the identified risk 

loci was demonstrated by the fact that all loci reaching genome-wide significance for one IS 

subtype did not reach genome-wide significance for an alternate IS subtype.38 Additional risk 

loci might reach genome-wide significance for a specific IS subtype once subtype information 

becomes available for the UK biobank cohort.39 Interestingly however, two loci showed 

evidence of a shared genetic influence both on LAS and cardioembolism (SH2B3 and ABO), 

hinting at some degree of shared pathophysiology between these two etiologies. 

Furthermore, there was strong evidence for shared genetic variation with related vascular 

phenotypes such as bloodpressure, CAD and MI.5,38 
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As with all conventional GWAS, the aforementioned studies robustly uncover common 

variants with almost linear relation to their sample sizes.110,111 However, rare variants with 

moderate to high effect sizes and minor allele frequencies of < 1 % are typically not 

represented.112,113 Future developments in stroke genetics will therefore most likely 

incorporate new technologies such as whole-exome sequencing or whole-genome sequencing 

in order to uncover additional layers of IS heritability.114,115 

 

6.2 Modern Proteomics and its Application to Stroke Genetics 

Modern proteomics have tremendous applications for both basic biology and functional 

genomics. Today, high resolution quantitative MS-based proteomics is the de facto standard 

for the unbiased study of global protein dynamics and protein-protein interactions from a 

complex sample.116,117 Due to technological and methodological advancements in all aspects 

of the proteomics workflow, MS-based proteomics is increasingly capable to quantify low 

abundance proteins, DNA-protein interactions and even specific histone marks from complex 

samples.118,119 

 

In clinical genetics, one major obstacle is the identification of causal variants and uncovering 

the molecular mechanisms mediating disease risk, because like in the case of IS the vast 

majority of disease-associated SNPs locate to non-coding regions of the genome.38,39,52,53 Due 

to the large-scale multicentre effort Encyclopedia of DNA elements (ENCODE55,56), 

systematically employing functional genomics experiments such as ChIP-seq and DNase-seq, 

the concentration of disease-associated SNPs in regulatory DNA as marked by DHSs was 

shown.53 Hence, disease-associated SNPs from non-coding regions might mediate their risk 

effects via gain- or loss-of-function mutations in regulatory DNA elements.54,120,121 This was 

e.g. demonstrated for the SORT1 locus associated with cholesterol levels and MI, where the 

common variant rs12740374 resides in a binding site for the transcription factor C/EBP, 

resulting in allele-specific hepatic expression of SORT1.120 

 

In order to screen for allele-specific binding of transcription factors, we employed interaction 

proteomics via PWAS as an unbiased DNA-centric approach.91 As demonstrated for the 

vascular risk locus HDAC9, this DNA-protein pulldown coupled to LC-MS/MS readily identified 

allele-specific binding of the E2F3/Rb1-complex to rs2107595 and thus facilitated the 
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discovery of the probable molecular mechanism mediating the risk effect towards CAD, MI, 

and among others, LAS (see section 5). In comparison to functional genomics experiments 

such as protein-centric ChIP-seq,122,123 the DNA-centric PWAS approach does not require          

a priori knowledge of the transcription factors involved. This potentially allows the 

identification of allele-specific binding of transcription factors for which (1) no functional 

genomics data via ChIP-seq are available, (2) no consensus binding site is available for in silico 

predictions124, or (3) non-DNA binding cofactors of transcription factor complexes exist.125,126 

In addition, PWAS is virtually applicable to any phenotype of interest with synthesis of custom 

DNA oligos being easily accessible. 

 

However, one limitation of PWAS is the proteomic input material for the IP-MS experiment: 

depending on the cell line used for nuclear extract preparation,91 for some highly differentially 

expressed transcription factors allele-specific binding might be missed due to extremely low 

abundance, potentially resulting in false-negative PWAS studies. One approach to overcome 

this limitation might be the application of label-free quantification86 in combination with 

PWAS, as this would allow the use of biologically relevant primary cells or tissues as proteomic 

input material.127 

Another important limitation of PWAS relates to its in vitro assay with synthetic DNA oligos, 

which do not necessarily resemble the precise in vivo chromatin context of the analyzed SNP. 

Since DNA-protein interactions in vivo are not only dependent on the isolated DNA sequence, 

but on histones, histone modifications and the 3D chromatin structure as well,128 this might 

be another source of false-negative or false-positive PWAS results. Here, additional studies 

like locus-specific ChIP-MS129 in combination with genome editing130 could have added value 

in corroborating in vitro PWAS hits, albeit locus-specific ChIP-MS currently still being severely 

limited by its sensitivity and not being feasible for a multi-variant screening approach.131 

 

In due consideration of its limitations, PWAS does provide a scalable DNA-centric assay that 

can be used to screen multiple SNPs in a reasonable amount of time.87,90 This is especially 

important when considering the number of SNPs that have to be screened per disease-

associated risk locus. For significantly associated risk loci, fine mapping e.g. via resequencing 

or 1000G imputation generates insight into its haplotype structure, usually revealing multiple 

SNPs that could have causative effects.132,133 While prioritization of SNPs for follow-up via 
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epigenetic features seems promising,53,134 at least for some loci a summation effect of 

multiple SNPs cooperatively modulating gene expression seems entirely possible.91,110 Once 

a prioritization and selection of target SNPs for follow-up has been performed, PWAS may 

then be applied to gain additional biological insight into target SNP functionality, as 

demonstrated with the analysis of rs2107595 at the HDAC9 locus (see section 5). With current 

MS technology and methodology, the throughput for PWAS analysis is about 5-6 SNPs per day 

and mass spectrometer. Due to modern advances in mass spectrometer technology135 and 

methodological improvements,136,137 this throughput will further increase, possibly allowing 

genome-wide analyses of disease-associated SNPs in the near future. 

 

6.3 From Bed to Bench and Back 

This work integrates all aspects from phenotypization to genetics and proteomics into a 

comprehensive workflow, exemplifying how to get from phenotype to function in the case of 

IS, famously corresponding to the phrase “from bed to bench”. However, to suffice for the 

modern label of “translational medicine”,138 one question remains: how to get back to bed? 

 

With our improving knowledge of human genetic variation and its relevance for disease risk, 

personalised medicine has become increasingly important.139 So far, however, attempts in 

personalised risk stratification or causative classification based on the knowledge of 

individual’s common variants have been unrewarding in the setting of IS,140 most likely due to 

the SNPs’ relatively small effect sizes. Today, one prominent example of stroke genetics and 

its successful application in clinical routine is Fabry’s disease.141 Identification of such 

mendelian disorders is especially important among young patients with stroke of 

undetermined cause,142 as recurrence of IS is typically high and enzyme replacement therapy 

might improve longterm outcome of these patients.143 

Another relevant example of stroke genetics is its application in pharmacogenetic decision 

making. A variety of SNPs have been shown to critically affect metabolization of drugs, thus 

possibly decreasing efficacy or resulting in an increase of drug-related adverse events, 

including warfarin,144 clopidogrel145 and dabigatran.146 For warfarin, genotype-dependent 

dosage even showed a reduction in drug-related adverse events and was implemented into 

FDA guidelines.147,148 
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For common genetic variants, the focus of the present work, identification of risk loci and their 

molecular mechanisms will ideally result in drug target identification and drug development 

for primary, secondary or tertiary prevention of human diseases such as IS. In the case of 

HDAC9, risk locus fine mapping taken together with functional data from ENCODE strongly 

hinted towards a causative role of rs2107595.40,41,56 Via LC-MS/MS and extensive follow-up 

experiments, we generated conclusive evidence for an interaction of rs2107595 with the 

HDAC9 promoter and allele-specific regulation of HDAC9 expression via E2F3 and Rb1 (see 

section 5; Prestel et al.). These results are in line with previous studies which found HDAC9 to 

be overexpressed in human atherosclerotic plaques,42 while HDAC9 deficiency in mice led to 

a reduction of atherosclerotic lesions.47 Besides LAS HDAC9 is also strongly implicated in CAD 

and MI,5,6,38 rendering HDAC9 a promising drug target for a variety of vascular phenotypes. 

Indeed, data suggests that valproate, typically used as an antiepileptic drug, functions as a 

non-specific HDAC inhibitor149 and results in reduction of atherosclerotic lesions in apoE-

deficient mice.150 Also, exposure to valproate was linked to reduced stroke recurrence rate.151 

Despite that, little is known about human HDAC9 physiology, which will become increasingly 

important with the advent of more specific and more potent HDAC9 inhibitors. Besides its 

involvement in the pathogenesis of atherosclerosis,42,47 HDAC9 has been implicated in 

schizophrenia152 as well as increased Treg activity in the setting of autoimmune disorders.49,50 

Once a specific and potent HDAC9 inhibitor is available, further animal studies and ultimately 

clinical studies will be required in order to determine efficacy and safety for primary or 

secondary prevention of stroke. 

 

On a more general scheme, research on one risk locus including functional follow-up studies 

clearly is a multi-year effort, as evidenced by the present work on IS. Ultimately, stroke 

genetics and its subsequent translation into clinical neurology can only be as effective as the 

whole chain of translational research. As such, further improvements in data acquisition 

during clinical routine, stringent probabilistic phenotypization of stroke cases, large multi-

cohort collaborative GWAS consortia, next-generation sequencing technologies and modern 

functional follow-up of associated risk loci will unquestionably result in a deeper 

understanding of stroke heritability and additional gene discovery for medical treatment. 
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