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Summary 

 

The skin, the outermost layer of the human body, is a highly versatile organ and is 

regulated very tightly. Epidermal dysregulation can cause over 3000 skin diseases, among 

them non-melanoma skin cancer (NMSC). NMSC occurs more commonly than all other 

tumors combined. High cumulative sun exposure and a history of sunburns are the causes 

of 90% of NMSC incidences. Ultraviolet radiation also increases erythroblastic leukemia 

viral oncogene homolog (ERBB) receptor signaling as it is found in various tumors. The 

ERBB receptor family comprises four receptor tyrosine kinases: EGFR/ERBB1/HER1, 

ERBB2/HER2/neu, ERBB3/HER3 and ERBB4/HER4. The ERBB system represents a very 

complex signaling network regulating pivotal cellular processes like proliferation, 

differentiation, apoptosis and motility. They also play important roles during skin 

development, homeostasis and tumorigenesis. Deletion of the autonomous epidermal 

growth factor receptor (EGFR) as well as its activation causes a severe phenotype in 

murine epidermis. Furthermore, EGFR triggers carcinogenesis in the skin, as observed in 

several other tumors. In contrast, ERBB2 and ERBB3 deficiency have no major impact on 

skin homeostasis, whereas both receptors are involved in NMSC promotion. The second 

autonomous receptor of the ERBB family, ERBB4, is involved in crucial evolutionary 

processes such as the development of the heart and the central nervous system, and it is 

implicated in various epithelial tumors. However, the presence and role of ERBB4 in the 

skin has been debated for many years. Therefore, we investigated the function of ERBB4 
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in the skin in vitro and in vivo in human skin tissue samples and a skin-specific ERBB4 

knockout mouse model. We analyzed receptor expression in the human keratinocyte cell 

line HaCaT and in the skin epidermoid carcinoma cell line A431 and found ERBB4 

expression and activation upon epidermal growth factor stimulation in both. We 

uncovered the expression and localization of ERBB4 in human tissue samples in the basal 

epidermis and developed a skin-specific ERBB4 knockout mouse model, showing a 

decreased epidermal thickness and a reduced proliferation rate. Taken together, our 

findings not only proved the expression of ERBB4 in the skin, or more precisely, in the 

basal layer of human and murine epidermis, they also showed the influence of the receptor 

on epidermal homeostasis by affecting proliferation.  

ERBB receptors are regulated by positive and negative feedback loop mechanisms, 

comprising ligand activation, receptor recycling, degradation and compartmentalization, 

but also the synthesis of new regulatory molecules like leucine-rich repeats and 

immunoglobulin-like domains proteins (LRIG). LRIG proteins belong to a single-pass 

transmembrane protein family that includes three homologous proteins in vertebrates 

(LRIG1-3). Due to their potential as prognostic factors in various cancer types, LRIG 

proteins aroused attention. LRIG1 is the best-studied member of the protein family. It 

promotes stem cell quiescence in the skin, intestine and stomach and influences the ERBB 

signaling network by inducing ubiquitination and therefore the degradation of EGFR. 

Research on LRIG2 and LRIG3 is currently much less advanced. However, regarding 

tumorigenesis, LRIG2 is mostly related to poor prognosis, while LRIG3 and LRIG1 are 

thought to be tumor suppressors. Molecular mechanisms, in particular their role in the 

skin, are not yet understood completely.  

Using the Tet-Off system, we generated inducible, skin-specific transgenic (TG) mouse 

lines overexpressing LRIG1-3 to investigate their function in skin development, 

homeostasis and tumorigenesis in vivo. This thesis presents the impact of LRIG1 and 

LRIG2 on the epidermis and pilosebaceous unit. 

Skin-specific overexpression of LRIG1 in mice revealed a severe phenotype during 

epidermal development and homeostasis. LRIG1 excess during embryogenesis caused 

postnatal lethality, possibly due to a disrupted skin barrier. Newborn LRIG1-TG mice 

showed altered epidermal differentiation and hair follicle morphogenesis. Additionally, 

the ERBB system was affected by LRIG1 overexpression at birth. However, inhibition of 

LRIG1 overexpression until birth by doxycycline enabled TG mice to survive. LRIG1 

excess disturbed skin homeostasis and resulted in a severe alopecia phenotype, showing 

decreased ERBB signaling and a profoundly impaired hair follicle cycle. In contrast, 
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neurogenic locus notch homolog protein (NOTCH) signaling, which is involved in cell fate 

decisions, was activated and the expression of stem cell markers of the bulge and the 

sebaceous gland was increased in adult LRIG1-TG mice. In conclusion, the LRIG1-TG 

mouse model revealed a remarkable effect of LRIG1 on skin development and homeostasis, 

influencing the ERBB system as well as NOTCH signaling and epidermal stem cells.  

In contrast to LRIG1, LRIG2-TG mice showed no impact on skin development or 

homeostasis. Nevertheless, we found that thrombospondin-1 (THBS1) interacts with 

LRIG2 in adult TG mice. THBS1 is an important player in angiogenesis and 

tumorigenesis, influencing the extracellular matrix. In vitro studies showed increased 

LRIG2 expression in epidermal cancer cell lines (A431 and A375) compared to human 

keratinocytes (HaCaT). The evaluation of human tissue samples of patients with 

cutaneous squamous cell carcinoma (cSCC) also revealed LRIG2 expression in these 

tumors. Further, 12-O-tetra-decanoylphorbol-13-acetate (TPA)-induced epidermal 

dysplasia elucidated severely increased inflammation due to an LRIG2 excess in TG mice, 

indicating a potential tumorigenic function of LRIG2. To investigate the role of LRIG2 

during skin tumorigenesis, we applied a two-stage chemical carcinogenesis protocol to 

LRIG2-TG mice and controls using the tumor initiating agent 

7,12-dimethylbenz(a)anthracene, and the tumor promoting agent TPA. LRIG2-TG mice 

showed a significantly increased tumor progression and an early onset of cSCC with a 

concomitant inactivation of the tumor suppressor phosphatidylinositol 3,4,5-triphosphate 

3-phosphatase and dual specificity protein phosphatase PTEN. In addition, we found 

activated EGFR/ERBB4-mitogen activated protein kinase (MAPK) signaling in LRIG2-TG 

mice during tumorigenesis. Summarizing, our study revealed an intriguing impact of 

LRIG2 excess on skin tumor progression but not initiation, confirming a possible function 

of LRIG2 as an oncoprotein as previously reported for cervical SCC. 

To conclude, our findings reveal that LRIG proteins are also involved in feedback loop 

mechanisms of the ERBB receptors in the skin. We showed a tremendous impact of LRIG1 

on skin development and homeostasis and the influence of LRIG2 on skin tumorigenesis. 

Additionally, we identified ERBB4 receptor expression in the basal layer of the epidermis 

and found that ERBB4 affects epidermal proliferation. In summary, the present thesis 

provides important insights into the interplay of ERBB receptors and LRIG proteins in 

skin development, homeostasis and tumorigenesis 
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Zusammenfassung 

 

Die Haut ist die äußerste Schicht des Körpers und steht in ständiger Interaktion mit der 

Umwelt. Sie ist ein sehr vielseitiges Organ und unterliegt sehr strengen 

Regulationsmechanismen. Epidermale Fehlregulationen können weit über 3000 

Hauterkrankungen verursachen, darunter der nicht-melanozytäre Hautkrebs, zudem 

auch das Plattenepithelkarzinom der Haut zählt, auch „weißer Hautkrebs“ genannt. 

Weißer Hautkrebs tritt häufiger auf als alle anderen Tumorarten zusammen. Hohe 

kumulative Sonneneinstrahlung und eine Vorgeschichte von Sonnenbränden sind die 

Hauptursachen für 90% der weißen Hautkrebsinzidenzen. Ultraviolette Strahlung erhöht 

die Signaltransduktion der ERBB (erythroblastic leukemia viral oncogene homolog) 

Rezeptoren, wie es in verschiedenen Tumoren vorkommt. Die ERBB-Rezeptorfamilie 

umfasst vier Rezeptor-Tyrosinkinasen: EGFR/ERBB1/HER1, ERBB2/HER2/neu, 

ERBB3/HER3 und ERBB4/HER4. Das ERBB-System stellt ein sehr komplexes 

Signalnetzwerk dar, das zentrale zelluläre Prozesse wie Proliferation, Differenzierung, 

Apoptose und Motilität steuert. Diese spielen auch bei der Morphogenese, der Homöostase 

und der Tumorgenese der Haut eine wichtige Rolle. Die Deletion des autonomen EGFR 

(epidermal growth factor receptor) sowie dessen Aktivierung verursacht einen 

ausgeprägten Phänotyp in der murinen Epidermis. Darüber hinaus ist der EGFR auch in 

die Hautkarzinogenese involviert, was auch bei vielen anderen Tumoren beobachtet 

wurde. Im Gegensatz dazu hat die Deletion von ERBB2 und ERBB3 keinen großen 
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Einfluss auf die Homöostase der Haut, allerdings sind beide Rezeptoren an der 

Entstehung des Plattenepithelkarzinoms der Haut beteiligt. Der zweite autonome 

Rezeptor der ERBB-Familie, ERBB4, ist an entscheidenden embryonalen Prozessen wie 

der Entwicklung des Herzens und des zentralen Nervensystems beteiligt, allerdings auch 

an verschiedenen epithelialen Tumorarten. Über die Expression und die Rolle von ERBB4 

in der Haut wird seit vielen Jahren diskutiert. Aus diesem Grund haben wir die Funktion 

von ERBB4 in der Haut in vitro und in vivo an humanen Hautproben und einem 

hautspezifischen ERBB4 Knockout-Mausmodell näher charakterisiert. Wir haben die 

Rezeptorexpression in der humanen Keratinozyten-Zelllinie HaCaT und in der 

epidermoid-Karzinom-Zelllinie A431 analysiert und konnten die Expression sowie eine 

Aktivierung von ERBB4 durch eine Stimulation mit EGF (epidermal growth factor) in 

beiden Zelllinien nachweisen. Außerdem konnten wir die Expression von ERBB4 in 

humaner Haut in der basalen Schicht der Epidermis lokalisieren. Die hautspezifischen 

ERBB4 Knockout-Mäuse zeigten eine geringere Epidermisdicke mit einer geringeren 

Proliferationsrate. Zusammenfassend konnten wir nicht nur die Expression von ERBB4 

in der Haut nachweisen, sondern auch den Einfluss des Rezeptors auf die epidermale 

Homöostase durch seine Wirkung auf die Proliferation der Keratinozyten in der Haut.  

ERBB-Rezeptoren werden durch positive und negative Feedbackloop Mechanismen 

reguliert, die die Aktivierung von Liganden, das Recycling, den Abbau und die 

Kompartimentierung von Rezeptoren, aber auch die Synthese neuer regulatorischer 

Moleküle veranlassen. Zu diesen Feedbackloop Proteinen zählen auch die LRIG (leucine-

rich repeats and immunoglobulin-like domains) Proteine. Die LRIG Proteine gehören zu 

einer Singlepass-Transmembranproteinfamilie, die in Wirbeltieren drei homologe 

Proteine umfasst (LRIG1-3). Aufgrund ihres Potenzials als prognostische Faktoren bei 

verschiedenen Krebsarten erregten die LRIG Proteine große Aufmerksamkeit. LRIG1 ist 

das am meisten untersuchte Mitglied der Proteinfamilie. Es verhindert die Teilung von 

Stammzellen in der Haut, im Darm und im Magen und beeinflusst das ERBB-

Signalnetzwerk indem es die Ubiquitinierung und damit den Abbau des EGFRs induziert. 

LRIG2 und LRIG3 sind bisher nur wenig analysiert und charakterisiert worden. In Bezug 

auf die Tumorgenese ist die Expression von LRIG2 jedoch meist mit einer schlechten 

Prognose verbunden, während LRIG3 und LRIG1 als Tumorsuppressoren gelten. 

Molekulare Mechanismen, insbesondere ihre Rolle in der Haut, sind noch nicht 

vollständig verstanden.  

Um die Funktion der LRIG Proteine in der Morphogenese, Homöostase und Tumorgenese 

der Haut in vivo zu untersuchen haben wir unter Verwendung des Tet-Off-Systems 

induzierbare, hautspezifische, transgene (TG) Mauslinien, die LRIG1-3 überexprimieren, 
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generiert. Diese Arbeit befasst sich mit den Auswirkungen von LRIG1 und LRIG2 auf die 

Epidermis und den Haarfollikel sowie die Talgdrüse. 

Die hautspezifische Überexpression von LRIG1 bei Mäusen zeigte einen apparenten 

Phänotyp während der epidermalen Entwicklung und Homöostase. Eine Überexpression 

von LRIG1 während der Embryogenese ist postnatal letal, was möglicherweise auf eine 

gestörte Hautbarriere zurückzuführen ist. Neugeborene LRIG1-TG Mäuse zeigten eine 

gestörte epidermale Differenzierung und Morphogenese der Haarfollikel. Das ERBB-

System war bei diesen Tieren durch die Überexpression von LRIG1 stark verändert. 

Jedoch konnte eine Hemmung der LRIG1-Überexpression bis zur Geburt durch 

Doxycyclin das Überleben von TG Mäusen sichern. Die LRIG1 Überexpression führte bei 

adulten Mäusen zu einer gestörten Homöostase der Haut und zu einer schweren Alopezie, 

mit einer verminderten ERBB-Signaltransduktion und einem stark beeinträchtigten 

Haarfollikelzyklus. Im Gegensatz dazu war die NOTCH (neurogenic locus notch homolog 

protein) Signaltransduktion, welche an der Bestimmung des Schicksals der Zelle beteiligt 

ist, bei adulten LRIG1-TG Mäusen aktiviert und die Expression von Stammzellmarkern 

der Bulge und der Talgdrüse erhöht.  

Im Gegensatz zu LRIG1-TG Mäusen zeigten LRIG2-TG Mäuse keinen Einfluss auf die 

Morphogenese oder Homöostase der Haut. Wir konnten aber zeigen, dass THBS1 

(Thrombospondin-1) mit LRIG2 in TG Mäusen interagiert. THBS1 ist ein wichtiger 

Akteur in der Angiogenese und Tumorgenese und beeinflusst die extrazelluläre Matrix. 

Unsere in vitro Studien zeigten eine erhöhte LRIG2-Expression in epidermalen 

Tumorzelllinien (A431 und A375) im Vergleich zu humanen Keratinozyten (HaCaT). Die 

Auswertung von humanen Patientenproben mit kutanem Plattenepithelkarzinom zeigte 

ebenfalls eine LRIG2-Expression in diesen Tumoren. An einer mittels TPA (12-O-Tetra-

decanoylphorbol-13-acetat) induzierten epidermalen Dysplasie konnten wir an LRIG2-TG 

Mäusen eine starke Entzündungsreaktion nachweisen, was auf eine mögliche Funktion 

von LRIG2 in der Tumorgenese hinweist. Um die Rolle von LRIG2 bei der Tumorgenese 

des Plattenepithelkarzinoms der Haut näher zu charakterisieren, haben wir eine 

zweistufige chemische Hautkarzinogenese bei LRIG2-TG Mäusen und Kontrolltieren 

induziert, bei welchem die tumorinitiierende Substanz 7,12 Dimethylbenz(a)anthracen 

und das tumorfördernde Mittel TPA verwendet wurden. LRIG2-TG Mäuse zeigten eine 

signifikant erhöhte Tumorprogression und eine frühe Entstehung von kutanen 

Plattenepithelkarzinomen mit einer gleichzeitigen Inaktivierung des Tumorsuppressors 

PTEN (3,4,5-triphosphate 3-phosphatase and dual specificity protein phosphatase PTEN). 

Zusätzlich fanden wir eine aktivierte EGFR/ERBB4-MAPK (mitogen activated protein 

kinase) Signaltransduktion in LRIG2-TG Mäusen während der Tumorgenese. 
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Zusammenfassend lässt sich sagen, dass unsere Studie einen Einfluss von LRIG2 auf die 

Progression von Hauttumoren, aber nicht auf ihre Initiation zeigte. Dies bestätigt eine 

mögliche Funktion von LRIG2 als Onkoprotein, wie sie bereits beim zervikalen 

Plattenepithelkarzinom berichtet wurde. 

Abschließend konnten wir in unseren Untersuchungen zeigen, dass die LRIG Proteine 

auch in der Haut wichtige Feedbackloop Mechanismen für die ERBB Rezeptoren erfüllen. 

Das LRIG1-TG Mausmodell wies einen starken Einfluss der LRIG1 Überexpression auf 

die epidermale Entwicklung und Homöostase auf. Die LRIG2 Überexpression in TG 

Mäusen dagegen zeigte einen Einfluss auf die Hautkarzinogenese. Ebenfalls 

identifizierten wir die Expression des ERBB4 Rezeptors in der Basalschicht der Epidermis 

und konnten seine Beteiligung an der epidermalen Proliferation nachweisen. Die 

vorliegende Arbeit zeigt wichtige Erkenntnisse über das Zusammenspiel der ERBB 

Rezeptoren und LRIG Proteine während der Morphogenese, Homöostase und 

Tumorgenese der Haut. 
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 Background 

 

 The skin as an outstanding organ to study biological 

processes 

 

 The skin and the interfollicular epidermis 

 

The skin is one of the most important organs of the human body, it makes up to 15% of 

our total body weight1 and is, with 25 m2, the third largest organ in humans after the gut 

and the lung2. Since it represents the outermost layer of the body, the skin acts as a 

protective barrier against water loss and environmental influences such as ultraviolet 

(UV) radiation or infections3-5. Besides these, vitamin D production, thermoregulation and 

sensory perception are also crucial functions of the skin3,6. The skin is constituted of three 

main layers: the epidermis, the dermis and the hypodermis (Figure 1-1)7. The latter is the 

deepest layer and consists mainly of loose connective tissue. The hypodermis provides 

anchorage of the skin to the underlying fascia as well as blood vessels and nerves. The 

middle layer represents the dermis with the epidermal appendages. The dermis contains 

sweat glands and hair follicles (HFs) with sebaceous glands (SGs), the arrector pili muscles 

(APM), which attach to each HF, many sensory neurons and blood vessels, supplying 
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nutrients to the skin. Last, the outermost layer of the skin is the interfollicular epidermis 

(IFE), normally comprising four layers in different stages of differentiation: stratum 

basale, stratum spinosum, stratum granulosum and stratum corneum (Figure 1-1)3,7,8. 

 

Approximately 20 different cell types reside within the skin3. Keratinocytes are the most 

abundant cells of the IFE, expressing specific proteins depending on their differentiation 

stage9. Yet, the IFE also hosts melanin producing melanocytes10, which protect epidermal 

cells against UV light induced DNA damage11, Langerhans cells, important for the 

epidermal immune response and skin barrier12 and Merkel cells, responsible for the touch 

sensory function of the skin9,13-15. Keratinocytes in the basal epidermis are attached to the 

underlying basement membrane (BM). The BM is rich in extracellular matrix (ECM) and 

growth factors and influences migration, proliferation, apoptosis and thus, also 

tumorigenesis of basal cells due to different stimuli4. The basal cells express  

keratin (KRT) 5 or 14 until they differentiate into the suprabasal layer (stratum 

spinosum), expressing KRT1 and KRT105,16,17. During differentiation, the keratinocytes 

undergo actin-dependent delamination due to a polarized cytoskeleton network18. Basal 

cells lose their adhesion to the BM and are pushed upwards4. Involucrin (IVL) or loricrin 

(LOR) are markers for the stratum granulosum19,20 and keratohyalin granules and 

filaggrin (FLG) are present in terminally differentiated cells21. Dead, enucleated 

keratinocytes with keratin filaments and proteins crosslinked by transglutaminases build 

the cornified envelope (CE) which is surrounded by a lipid envelope22. The CE is crucial in 

Figure 1-1 The skin, the epidermis and its appendages. 

Schematic representation of the skin, depicting the hypodermis with adipose tissue, blood vessels and nerves, 

the dermis containing the pilosebaceous unit, sweat gland and blood vessels and nerves and the epidermis, 

enlarged on the right, showing the cell layers with specific differentiation markers (in brackets) and the 

different cell types residing in the epidermis. BM, basement membrane; HF, hair follicle; APM, arrector pili 

muscle; SG, sebaceous gland; FLG, filaggrin; CE, cornified envelope; IVL, involucrin; LOR, loricrin; KRT, 

keratin. 



 Background 
 

3 

regard to the protective function of the skin as it represents the impermeable barrier for 

microbes and prevents the loss of essential fluids4,5. Terminally differentiated cells scale 

off the epidermal surface and are replaced by new differentiating cells3,4. For the 

constantly self-renewal of the skin and in response to environmental influences and injury 

epidermal stem cells (SCs) are necessary, differentiating into multiple epidermal 

linages3,23-25. Various models about epidermal proliferation and differentiation were 

developed in this context: the presence of epidermal proliferative units (EPU)26, the 

asymmetric division or the symmetric division of SCs4. The hypotheses of the EPUs and 

the symmetric division suggest the existence of transit amplifying or progenitor cells 

(PCs), which divide for certain times before they differentiate4,26,27. Terminal 

differentiation is controlled by several signaling pathways, such as epidermal growth 

factor receptor (EGFR)28 or neurogenic locus notch homolog protein (NOTCH)29, and takes 

approximately four weeks in humans4. However, regarding the skin as a protective 

barrier, the pilosebaceous unit also has to be considered in addition to the IFE. Microbes 

in particular reside on the entire skin appendage surface and influence its homeostasis2,30. 

 

 The hair follicle and its cycle 

 

Besides the IFE, HFs are also involved in maintaining the skin’s integrity. The HFs play 

an important role in interacting with microbes and influencing the absorbance of UV 

radiation, skin moisture, thermoregulation and sensory function30. A perpetual cycle of 

Figure 1-2 Hair follicle morphogenesis. 

HF development is initiated by the formation of DP and HG and mediated by various epidermal and 

mesenchymal signals. The HF with ORS, IRS, SG and APM is formed by highly proliferative matrix cells. 

After the first HF has developed, it undergoes regression and enters the first follicular cycle. Increase and 

decrease of epidermal thickness is shown. HG, hair germ; ORS, outer root sheath; IRS, inner root sheath; DP, 

dermal papilla; SG, sebaceous gland; APM, arrector pili muscle; HF, hair follicle. 
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HF growth and degeneration is responsible 

for hair growth and regeneration 

throughout life3,4,31. The hair 

morphogenesis starts during development, 

assessing all HFs, thus no HFs are formed 

postnatally. The epithelial-mesenchymal 

interaction between the dermal 

condensate, the precursor of the dermal 

papilla (DP), and the epidermis induces the 

formation of the first hair germ (HG). 

Epidermal cells start to proliferate and 

grow downward and build the HF with the 

outer root sheath (ORS). The ORS 

continues the IFE and remains in contact 

with the BM, expressing KRT5 and KRT14 

likewise3. At the base of the developing HF, 

the matrix resides, comprising highly 

proliferative, proliferation marker protein Ki-67 (MKI67) positive keratinocytes. Matrix 

cells change their gene expression profile due to the contact with the DP and build the 

inner root sheath (IRS), expressing trans-acting T-cell-specific transcription factor GATA-

3 (GATA3)32. The companion layer, positive for KRT6, and the hair shaft are formed. When 

matrix cells stop to proliferate, they undergo apoptosis and two thirds of the HF are 

degraded33,34. The retracting BM pulls the DP upward to the bulge, which is located at the 

lowest permanent part of the HF, expressing hematopoietic progenitor cell antigen CD34 

(CD34)35. Slowly cycling SCs36, which are necessary for the regeneration of HFs, reside in 

the bulge and can also give rise to the IFE and SG37-39. Further, the secondary HG arises 

and interacts with the DP to activate the bulge SCs. Thus, the development and growth of 

the new HF and its hair is initiated and the hair cycle is induced31,40-42. The new hair can 

emerge through the same orifice at the skin surface. The infundibulum (INF) represents 

an additional SC compartment in the HF, expressing leucine-rich repeats and 

immunoglobulin-like domains 1 (LRIG1). However, under homeostatic conditions, these 

SCs are only involved in the maintenance of the IFE and SG43,44. SGs are established at 

birth in the upper part of the HFs. Differentiated and degenerated sebocytes in the SGs 

release lipids and sebum and thereby ensure the maintenance of skin moisture4. These 

cells also have to be reproduced by SCs, residing at the base of SGs, to sustain epidermal 

integrity27. PCs in the SGs express PR domain zinc finger protein 1 (BLIMP1)45 and 

Figure 1-3 Structure of the hair follicle. 

Structure of a HF with its different compartments and 

specific markers in brackets. INF, infundibulum; ORS, 

outer root sheath; IRS, inner root sheath; DP, dermal 

papilla; APM, arrector pili muscle; SG, sebaceous 

gland. 
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placenta-expressed transcript 1 protein (PLET1)46. In conclusion, every skin compartment, 

the IFE27,47, the HF with the bulge36 and the INF43,44, and the SG45,48, has its own reservoir 

of bi- or multipotent SCs which are able to give rise to the epithelial cell linages49-51. These 

reservoirs are referred to as niches and provide an appropriate microenvironment to 

maintain the balance between proliferation and differentiation52,53. The distinct SC niches 

have different capacities and are involved in individual processes during homeostasis and 

tissue regeneration27,37-39,43-45. However, the molecular mechanisms are far from being fully 

understood. The morphogenesis of HFs and the compartments of HFs with the specific 

markers are shown in Figure 1-2 and Figure 1-3.  

The HF cycle is divided into three distinct stages: catagen, telogen and anagen31,54. The 

catagen stage is referred to as the regression phase, in which the hair shaft shrinks due 

to apoptosis and the HF can renew itself33,34. Regression is followed by the telogen stage, 

also called the resting phase. However, telogen stage represents more the “master-

switch”55 stage of HF cycling, where bulge SCs are regulated to prepare HF regeneration 

and the subsequent growth phase36,39 as well as tissue renewal upon injury55,56. 

Additionally, in telogen stage the club hair is anchored and maintained57. During anagen, 

HFs grow downward and build a new hair58. Figure 1-4 depicts several criteria, which 

Figure 1-4 The hair follicle cycle. 

Different morphological substages of HFs during resting (telogen), growth (anagen) and apoptosis-driven 

regression (catagen) phase are shown. The pie chart illustrates the proportion of time the HF spends in each 

stage. Increasing and decreasing length and localization of HF during the HF cycle is depicted. The hair cycle 

repeats itself throughout a lifetime. ED, epidermis; D, dermis; HD, hypodermis; DP, dermal papilla; APM, 

arrector pili muscle; SG, sebaceous gland; HG, hair germ; ORS, outer root sheath; IRS, inner root sheath; BM, 

basement membrane. (adopted from Muller-Rover et. al31) 
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allow the assignment of HFs to the different stages, including the length of HFs, their 

location in the skin as well as the thickness of the IFE31.  

In summary, the variety and complexity of the skin require precise regulation and 

coordination of epidermal pathways, otherwise more than 3000 skin disorders may occur59. 

These properties make the skin to an outstanding organ to study biological processes and 

molecular mechanisms, including SC biology. 

 

 Non-melanoma skin cancer 

 

The frequency of non-melanoma skin cancer (NMSC) incidences is higher than of all other 

cancers combined60,61. In the Caucasian population, NMSC is even the most common type 

of cancer with up to three million new cases per year worldwide62,63. NMSC arises from 

keratinocytes, and depending on the keratinocyte cell type, the tumor group is subdivided 

into basal cell carcinomas (BCC) (70% of NMSC)64, squamous cell carcinomas (SCC) (25% 

of NMSC)65,66 and some other rare skin tumors like actinic keratoses (AKs) or Bowen’s 

disease (SCC in situ)67,68. The molecular biological causes for the development of skin 

cancer are DNA damages, gene mutations or disturbed repair mechanisms69,70. Fair skin, 

genetic susceptibility, age and sex influence NMSC incidence intrinsically71, whereas 

tobacco smoking72, human immunodeficiency virus (HIV) infection73 or 

immunosuppression74 are extrinsic risk factors. In immunosuppressed patients for 

instance, NMSC incidence is increased tremendously and cutaneous SCC (cSCC) seems to 

be more aggressive and tends to metastasize69,74. However, UV irradiation is the major 

risk factor of NMSC75,76, which predominantly causes mutations in the tumor suppressor 

gene cellular tumor antigen p53 (TP53)77,78. cSCC incidences increase with the time 

patients spent in the sun, whereas the relation in BCC is more complex79, pointing to the 

very distinct molecular mechanisms of both cancers. While disturbed hedgehog signaling 

leads to the de novo development of BCC80, cSCC is thought to arise from precursor lesions 

in a multi-stage model owing to genomic instability69,81. The mutational pattern in cSCC 

is very complex and the link to the dysregulation of one particular pathway is not yet 

found82. However, it was shown that the expression of the EGFR, a member of the 

erythroblastic leukemia viral oncogene homolog (ERBB) receptor family, and its ligands 

were altered in both cancer types83-86. UV radiation causes the upregulation of EGFR87 and 

ERBB288, another receptor of the ERBB family, while the inhibition of EGFR results in 

the prevention of UV-induced skin carcinogenesis89. Although the chances of recovery are 
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95%90, cSCC is more likely to metastasize than BCC, also leading to death (metastatic 

rate: 0.1–9.9%; 75% of deaths due to NMSC68)69,81. Besides radiotherapy and conventional 

chemotherapy, there are currently only few non-surgical treatment opportunities 

available71. One promising treatment alternative for NMSC is an EGFR targeted 

therapy91, which is also found in many other epithelial tumors, such as non-small cell lung 

cancer (NSCLC) or colorectal cancer92. However, patients treated with monoclonal 

antibodies against EGFR or with small-molecule tyrosine kinase inhibitors show severe 

side effects such as inflammatory skin rashes, acneiform eruption, skin dryness leading to 

eczema and fissures, pruritus, hair abnormalities, hyperpigmentation and mucosal 

changes93,94. Although, these adverse reactions are not life-threatening, they have an 

enormous psychological as well as physiological impact on the patient's quality of life, 

which can also limit the therapy85. Thus, the research into new and more specific targets 

is required to improve the treatment of NMSC in the skin. 

 

 The ERBB signaling network 

 

 The ERBB receptor family 

 

The ERBB receptor family comprises four receptor tyrosine kinases (RTKs): 

EGFR/ERBB1/HER195, ERBB2/HER2/neu96, ERBB3/HER397 and ERBB4/HER498. They 

are composed of an extracellular ligand-binding domain, a single hydrophobic 

transmembrane domain and a cytoplasmic tail with a kinase domain and tyrosine auto-

phosphorylation sites95,99,100 (see Figure 1-5).  

Figure 1-5 ERBB receptors 

and their ligands. 

Receptor tyrosine kinases EGFR, 

ERBB2, ERBB3 and ERBB4 and 

their ligands. EGFR specifically 

binds EGF, TGFA, EPGN and 

AREG. EREG, HBEGF and BTC 

bind EGFR and ERBB4. NRG1 

and NRG2 are bound by ERBB3 

and ERBB4. NRG3 and NRG4 

are specific ERBB4 ligands. 

ERBB2 has no ligand binding 

domain and ERBB3 lacks kinase 

activity (indicated by X). Y depicts 

different phosphorylation sites of 

the receptors. 
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The ERBB signaling pathway is involved in many pivotal processes during life such as 

proliferation, differentiation or apoptosis101. Upon ligand binding, receptors form homo- or 

heterodimers and due to auto-phosphorylation of the cytosolic domain a variety of 

signaling cascades can be induced99,101. 

Eleven ligands of the ERBB receptor family are known: amphiregulin (AREG), 

betacellulin (BTC), epidermal growth factor (EGF), epigen (EPGN), epiregulin (EREG), 

heparin-binding EGF-like growth factor (HBEGF), neuregulins (NRG1-4) and 

transforming growth factor alpha (TGFA)102-104. These ligands are located in the cell 

membrane as precursors and are composed of an EGF motif containing cysteine repeats 

with an N-terminal extension and a C-terminal membrane-anchoring region105,106. The 

activation and release of the growth factor is triggered by a myriad of signals from 

different stimuli including the shedding by metalloproteases like a disintegrin and 

metalloproteinase domain-containing proteins (ADAMs)107. Paracrine, autocrine but also 

juxtacrine receptor activation is possible108. The ligands show binding specificity to certain 

receptors of the ERBB family and regulate receptor activation by their binding strength85. 

While EGF, TGFA, EPGN and AREG specifically bind EGFR, BTC, HBEGF and EREG 

bind EGFR and ERBB4. NRG1 and NRG2 bind ERBB3 and ERBB4, and NRG3 and NRG4 

are specific ERBB4 ligands99,109. Ligand binding of ERBB receptors causes conformational 

changes inducing receptor homo- or heterodimerization and thereafter the activation of a 

variety of downstream signaling cascades110,111. While EGFR and ERBB4 are two 

autonomous receptors that can form homodimers and heterodimers with each of the three 

other receptors, ERBB2 is an orphan receptor101,112. The structure of ERBB2 is similar to 

the ligand-bound form of EGFR, which might be the reason for the inability to bind ligands 

and form homodimers113. However, ERBB2 is the favored partner for heterodimerization, 

especially for the second non-autonomous receptor ERBB3114,115, which lacks kinase 

activity116,117. Heterodimers in general, and especially those with the ERBB2 receptor115, 

are more mitogenic than homodimers and are related to many pathological processes. This 

is due to a higher affinity and specificity of the receptor heterodimers to the ligands and 

their resulting decelerated dissociation99,101. Receptor dimerization leads to the 

phosphorylation of characteristic tyrosines and the recruitment of several 

phosphorylation-specific substrate proteins with a proto-oncogene tyrosine-protein kinase 

Src (SRC) homology (SH) 2 domain and a phosphotyrosine binding domain. Due to the 

large number of possible adaptor proteins, several downstream signaling pathways can be 

initiated85,99,101,109,118. The most prominent downstream pathway upon EGFR activation is 

the recruitment of growth-factor-receptor bound-2 (GRB2) and son of sevenless 
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homolog 1 (SOS), which bind directly, or through association with the adaptor molecule 

Shc transforming protein (SHC), to specific docking sites on the receptor. GTPase Ras 

(RAS) is then recruited and activates the mitogen-activated protein kinase (MAPK) 

cascades, which are responsible for cell cycle entry, survival and proliferation in 

keratinocytes85,92,119. Indirectly, EGFR can also activate the phosphatidylinositol 3-kinase 

(PI3K) – RAC-alpha serine/threonine-protein kinase (AKT)/ protein kinase B (PKB) 

cascade involved in cell survival by RAS or by dimerization with the ERBB3 receptor92,99. 

Unoccupied ERBB receptors are internalized and recycled back to the cell surface120. On 

the contrary, activated receptors alter their trafficking behavior. Upon ligand binding, 

EGFR is more rapidly internalized through clatherin-coated pits than the other receptor 

family members121,122. Thus, EGFR signaling occurs mainly in endosomal compartments 

while the other ERBBs act primarily at their membrane bound localization123. 

Additionally, ERBB heterodimers recycle back to the cell surface more frequently than 

homodimers, which causes enhanced receptor signaling and point to their increased 

mitogenic character124. Endosomal signaling cascades are distinct from the pathways 

induced at the membrane, but include also cell proliferation or survival99,123. Receptor 

endocytosis and down-regulation seems to be an EGFR specific feature and is impaired in 

all other receptor family members122,125. Recruitment of the E3 ubiquitin-protein ligase 

CBL (CBL) and the neural precursor cell expressed developmentally downregulated 

protein 8 (NEDD8) induces ubiquitination and lysosomal degradation of EGFR126,127. 

Besides endosomal signaling and lysosomal receptor down-regulation, the ERBB system 

is also involved in transcriptional control mechanisms by nuclear receptor translocation128-

132. EGFR together with the transcriptional cofactor signal transducer and activator of 

transcription 3 (STAT3) can induce transcription in the nucleus of highly proliferative 

cells133. EGFR has no DNA binding domain, whereas ERBB2 can directly interact with the 

cyclooxygenase enzyme prostaglandin G/H synthase 2 (PTGS2) promoter in the nucleus 

and stimulate its transcription, often observed in human cancer types like colon and breast 

cancer134. Transcriptional mechanisms were also shown for nuclear ERBB3135 and 

ERBB4136,137, mainly in proliferating cells pointing to a role during tumorigenesis. ERBB4 

represents an exception among its family members as it can be shed from the cell 

membrane extracellularly by ADAM17107 and intracellularly by gamma-secretase138 and 

can further induce juxtacrine as well as nuclear signaling. The resulting intracellular 

domain (ICD) translocates to the nucleus138 to activate the transcription of different target 

genes together with STAT5139 or transcriptional coactivator YAP1 (YAP1)140,141. Whereas 

phosphorylated YAP1 can constrain ERBB4 in the cytoplasm and thus prevents its 

function in transcriptional regulation141. Additionally, ERBB4 is the only receptor that has 
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six different splice isoforms which induce various intracellular signaling pathways142,143. 

Four tissue-specifically expressed isoforms differ in their extracellular juxtamembrane 

domain (JM-a-d): 23 amino acids in the extracellular domain (ECD) of JM-a are replaced 

by 13 amino acids in the JM-b variant, JM-c shows deletion of the entire JM region, 

whereas JM-d comprises both, the JM-a and the JM-b sequence132,142. The JM-a specific 

sequence is essential for receptor cleavage132. If this region is lacking, ADAM17 is not able 

to shed the ERBB4 ECD, thereby impeding gamma-secretase to cleave ERBB4 

intracellularly. Consequently, nuclear translocation of the ICD of ERBB4 is prevented and 

its transcriptional activity inhibited144,145. The other two isoforms of ERBB4, CYT-1 and 

CYT-2, differ in their cytoplasmic tail in the PI3K binding domain and have no impact on 

nuclear translocation. However, due to sixteen missing amino acids in the binding domain 

for PI3K in the CYT-2 isoform only CYT-1 can activate the PI3K pathway146. 

ERBB signaling is tissue-dependent, thus the next chapter will give a short overview 

about the ERBB network in the skin. 

 

 ERBB receptors in the skin and skin pathogenesis 

 

In the 80s of the last century ERBB receptors were discovered and became a focus of 

biological research. More and more indications arose that ERBBs play a pivotal role in 

skin development and homeostasis and that their dysregulation results in pathogenesis, 

including psoriasis147-152, disturbed wound healing153-155, melanoma154,156-158 and 

NMSC83,84,154,159,160 (see Chapter 1-2)85. In humans EGFR86,161,162 and ERBB3155,161,163 are 

most abundant in the basal layer of the epidermis, while ERBB2 is mainly located in the 

suprabasal layer161,164. Although ERBB4 expression has been reported in human 

embryonic and adult skin165, detection is very difficult and contradictory in the field and 

was therefore examined in more detail as part of this thesis (see Chapter 2). EGFR seems 

to be involved in the terminal differentiation by maintaining the proliferative capacity of 

epidermal PCs28. Further, the transition from anagen to catagen in the HF cycle is also 

influenced by EGFR166,167. The loss of EGFR168,169 in mice led to alopecia, while the skin-

specific deletion of ERBB2170 and ERBB3154 resulted in no obvious phenotype. However, 

ERBB2 excess during homeostasis causes severe alopecia and the concomitant delayed 

keratinocyte differentiation and spontaneous formation of papillomata indicate a function 

of ERBB2 in tumor initiation171-174. Besides, ERBB2 and ERBB3 are involved in tumor 

promotion154,170, and EGFR is an important player during tumor development and 
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progression in the skin. Disturbed EGFR signaling revealed a decreased tumor burden 

and papillomata expressing no EGFR were smaller and showed decreased proliferation, 

resulting in cell cycle arrest175-178. In regard to carcinogenesis, the expression of ERBB 

receptors as well as their ligands can be a prognostic factor. Thus, the investigation of the 

underlying mechanisms is crucial to understand their impact on tumor development and 

progression and to develop better tumor therapies99,179.  

The ERBB system represents one of the most complex signaling networks in biology with 

high redundancy, which shows precise regulation of ligands, receptors, adaptor molecules 

and compartmentalization, including receptor endocytosis, degradation or recycling. 

Therefore, positive and negative feedback mechanisms are pivotal to maintain 

homeostasis, and are often disturbed in cancer99,180. 

 

 Feedback loop regulation of ERBB receptors 

 

To maintain cellular function, the duration, amplitude and frequency of signals within the 

ERBB network are regulated by positive or negative feedback loop mechanisms. The 

positive ERBB regulation includes the extension and amplification of the signal by 

trans181- or secondary182 phosphorylation of the receptor, by receptor recycling183 as well 

as by ligand activation184. Autocrine or paracrine activation of ERBBs initiate the RAS-

MAPK pathway, which may lead to the transcription of new ligands101. Further, the cross-

talk with other signaling pathways, which activate metalloproteases, can induce the 

proteolytic release of ligands and thus transactivate ERBBs185. In turn, an excess of 

ligands leads to ERBB degradation, as observed in BCC86. However, the ligand-induced 

degradation is delayed due to the limited capacity of clathrin-mediated endocytosis99. 

Contrary, ERBB receptors are negatively regulated through receptor dephosphorylation 

by protein tyrosine-specific phosphatases such as density-enhanced phosphatase-1 

(DEP1)186 or protein tyrosine phosphatase-1B (PTP1B)187, which influence receptor 

endocytosis at different sites along the endocytotic pathway resulting either in recycling 

or degradation of the receptor99,184. In addition, further receptor degradation pathways, 

catalytic inactivation, conformational changes, which induce steric inhibition, as well as 

receptor translocation or compartmentalization are further possible mechanisms for 

negative feedback loop regulation of ERBBs99,184. Moreover, signaling regulators like 

sprouty (SPRY)188-191 or LRIG1192 are newly synthesized due to ERBB activation and 

thereby induce a late regulatory response. While SPRY has a dual function by preventing 
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receptor degradation and increasing MAPK activation191, LRIG1 is involved in the 

negative feedback loop of EGFR by inducing receptor ubiquitination and degradation 

through CBL recruitment (see Chapter 1-4.1)188,193. These feedback mechanisms are 

responsible for the steady state of the ERBB network and dysregulation is observed in 

many tumors194. Especially negative feedback mechanisms are often attenuated during 

carcinogenesis, leading to uncontrolled receptor activation195-198. LRIG proteins arose 

attention regarding their potential to regulate signaling of RTKs like the ERBBs, but also 

due to their role as prognostic tumor markers in various cancers (see Chapter 1-4). 

 

 The LRIG protein family 

 

The LRIG proteins are single-pass transmembrane 

proteins, first discovered in 1996 in the central 

nervous system (CNS) of Drosophila melanogaster, 

named kekkon (Kek) 1 and 2199. At the same time, 

Suzuki et al. described the murine orthologues LRIG1 

in P19 embryonal carcinoma cells, involved in neural 

differentiation200. In vertebrates the LRIG single-pass 

transmembrane protein family consists of three 

members, LRIG1200,201, LRIG2202,203 and LRIG3203. 

They all share the following structure: a signal 

peptide, 15 tandem leucine-rich repeats (LRR) with 

cysteine-rich N- and C-flanking domains, three 

immunoglobulin-like domains (Ig), a transmembrane 

domain, and a cytoplasmic tail (Figure 1-6)203,204. Like 

in Drosophila, the ECDs of the LRIGs are highly 

conserved, whereas the intracellular regions are more distinct203. LRRs and Ig domains 

are often involved in protein recognition processes205,206. The murine protein family shows 

80-87% similarity to human homologs and all three members are widely expressed in all 

tissues analyzed so far203. While the LRIG1 transcript is highly expressed in brain, liver, 

lung, small intestine and stomach203,207, the mRNA of LRIG2 is most strongly expressed 

in ovary, uterus and skin203. LRIG3 transcripts are most abundant in stomach, thyroid 

and skin203,207. All LRIG proteins are involved in very diverse cellular processes, such as 

tumorigenesis207-209, psoriasis210, and complex tissue morphogenesis200,211,212, but only little 

Figure 1-6 Schematic structure of 

LRIG proteins. 

SP, signal peptide; LRR, leucine-rich 

repeats with cysteine-rich N- and C-

flanking domains; Ig, immunoglobulin-

like domains; TM, transmembrane 

domain; CYT, cytoplasmic tail. (adopted 

from Simion et. al204) 
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is known about the underlying molecular mechanisms. Especially, the function of LRIGs 

as prognostic factors is currently widely discussed in the research field207, which 

emphasizes the importance of understanding their impact on cellular processes.  

 

 LRIG1 

 

The first described and best studied member of the LRIG transmembrane protein family 

is LRIG1200, located at chromosome 3p14.3201 in humans, a region often deleted in many 

cancers213. LRIG1 is known to be a negative regulator of RTKs, such as ERBBs192,193,214, 

hepatocyte growth factor receptor (MET)215, proto-oncogene tyrosine-protein kinase 

receptor Ret (RET)216 or platelet-derived growth factor receptor alpha (PDGFRA)212. 

Different mechanisms of receptor regulation were postulated. In case of RET, it was shown 

that LRIG1 prevents ligand binding and thus receptor activation216. Contrary, regarding 

ERBB receptor signaling, LRIG1 interacts with the extracellular region of EGFR and 

promotes its lysosomal degradation by the recruitment of the E3 ubiquitin ligase to induce 

ubiquitination192,193. The same mechanism was shown for MET215. Additionally, since 

LRIG1 can be shed from the cell surface, it can also act in a non-cell-autonomous manner 

and suppress proliferation of neighboring cells217,218. However, the ECD of LRIG1 

influences paracrine EGFR signaling but does not induce receptor degradation218, 

referring to different regulatory mechanisms. Another important feature of LRIG1 is its 

function in adult SCs. In the epidermis, more specifically in the isthmus adjacent to the 

INF and SG43, as well as in the small intestine219 and stomach220, LRIG1 was shown to 

promote SC quiescence. Suzuki et al. also reported the expression of LRIG1 mRNA and 

LRIG1 protein in the basal layers of HFs and to a lesser extend in the IFE, clustered in 

patches221. Loss of LRIG1 in the skin leads to a growth advantage in the basal layer 

together with EGFR upregulation and induction of committed PCs222. LRIG1 knockout 

(KO) mice developed psoriasis and revealed increased proliferation in the skin221. In the 

intestine, the deletion of LRIG1 causes the development of neoplasia and highly penetrant 

duodenal adenomas219. These current findings suggest the involvement of LRIG1 in 

several crucial feedback loop mechanisms of growth factor receptors, like proliferation, 

differentiation or apoptosis but also tumorigenesis223,224. Nevertheless, further studies are 

needed to elucidate the molecular function of LRIG1 in more detail. 
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 LRIG2 

 

LRIG2 is the most poorly studied member of the LRIG family, located at chromosome 

1p13, which is implicated in various cancers202,213 such as SCC, breast cancer207,213 and 

oligodendroglioma225. LRIG2 shows high structural similarity to LRIG1 and Kek1226. The 

ECD of LRIG2 is responsible for its function and promotes cell proliferation and the 

inhibition of apoptosis227. LRIG2 seems to play an important role during development, as 

LRIG2 deficient mice show a transiently reduced growth rate and an increased 

spontaneous mortality rate212. Xiao et al. showed that LRIG2 interacts with EGFR and 

enhances EGFR/PI3K/AKT signaling227, but EGFR or ERBB2 expression seems not to be 

influenced by LRIG2224. Mutations of LRIG2 are related to urofacial syndrome (UFS)228 

and many other pathologies225,227,229-231. In summary, LRIG2 appears to have a mitogenic 

function, but the molecular mechanisms still have to be analyzed tissue-specifically. 

 

 LRIG3 

 

The last described member of the LRIG family is LRIG3203. Genes in close proximity to the 

LRIG3 gene, at the chromosomal region 12q13203, are highly expressed in several 

tumors232-234, indicating a function of LRIG3 in cancer. LRIG3 is involved in crucial 

developmental processes like neural crest formation in Xenopus embryos211, mammalian 

morphogenesis of the inner ear235 or the regulation of heart function236 and blood 

cholesterol levels237. Irrespectively of the large differences in the ICD203, LRIG3 shows a 

higher homology to LRIG1 than to LRIG2238, and the expression of both overlaps during 

development235. However, LRIG1 and LRIG3 are functionally distinct and oppose one 

another in HEK293T cells, and the ratio of both LRIGs is important for ERBB receptor 

regulation224. While LRIG1 is able to decrease LRIG2, LRIG3 and ERBB receptor 

expression, LRIG3 has no direct effect on LRIG1 expression but interacts with and 

stabilizes the ERBBs, thereby increasing their expression and influencing receptor 

binding ability224,238. Additionally, the ICD of LRIG3 contains SH2 and SH3 domains 

which enable the transmembrane protein to bind to activated ERBB receptors238, whereas 

the ECD seems to have a unique function and decreases ERBB3 receptor expression224. In 

contrast, the down-regulation of LRIG3 in glioblastoma cells or cervical SCC resulted in 

increased EGFR expression and activation239,240. The current findings indicate a tissue-
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specific impact of LRIG3 on ERBB signaling and also a function as tumor suppressor as 

observed in prostate cancer241.  

 

 LRIGs – prognostic factors in carcinogenesis 

 

The chromosomal regions, where the three LRIG genes are located at are often implicated 

in cancer201-203. In addition, recent studies showed a correlation between LRIG transcripts 

or LRIG protein expression and cancer prognosis207. Despite their opposing function, both, 

LRIG1 and LRIG3, appear to rather act as tumor suppressors during carcinogenesis, while 

LRIG2 expression is mainly related to poor prognosis in various types of cancer207,209. 

Patients with SCC of the uterine cervix revealed high LRIG2 expression in the tumors and 

decreased survival prognosis242,243, whereas high LRIG1 expression in those patients was 

related to prolonged survival229. Loss of LRIG3 in cervical SCC led to increased 

proliferation239, but its expression had no prognostic value244. Contrary, there is no impact 

of LRIG2 on uterine cervical adenocarcinoma242, however, patients with high LRIG3 

expression revealed good prognosis245. In addition, in NSCLC, LRIG1 expression 

correlated with patient survival246 and LRIG3 was downregulated at initial stages247. In 

contrast, high cytoplasmic LRIG2 expression in patients with NSCLC revealed poor 

survival230, similar to esophageal carcinoma patients231. In cSCC, LRIG1 upregulation is 

related to better prognosis and more differentiated tumors, while patients with low LRIG1 

expression show metastasis and decreased survival248. These findings indicate that the 

role of LRIG transcripts and LRIG proteins must be carefully examined tissue-specifically 

to evaluate their prognostic impact. The prognostic value of LRIGs is often also associated 

with ERBB signaling. In ERBB2 positive breast cancer LRIG1 is downregulated249 and 

the suppression of LRIG1 leads to further ERBB2 upregulation214. Inversely, the 

overexpression of LRIG1 in bladder cancer directly influences EGFR activity and stops 

tumor growth250. In head and neck cancer, it was shown that LRIG1 suppresses the 

expression of ERBB ligands and matrix- metalloproteinases (MMPs) causing decreased 

ERBB/MAPK signaling and ECM remodeling251. Since LRIG1 expression in the brain is 

very high203, loss of Lrig1 in glioma in mice results in very aggressive tumors but ectopic 

LRIG1 can decrease tumor invasion252. Glioblastoma often express a constitutively active 

but poorly ubiquitinated mutant form of the EGFR (EGFRvIII) causing disturbed receptor 

trafficking to lysosomes and nonattenuated oncogenic signaling253. Ectopic LRIG1 

expression induces the decrease of tumor cell proliferation, survival, motility and invasion 

CBL-independently254. LRIG3 overexpression also decreased EGFR activation and 
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attenuated downstream RAS/MAPK and PI3K/AKT signaling in glioblastoma255. This was 

consistent with the knockdown of LRIG3 in glioblastoma cells, which resulted in the 

upregulation of EGFR and thus in increased proliferation240. Holmlund et al. was the first 

who associated LRIG expression with a negative effect on survival. He postulated the 

opposing function of LRIG2 and LRIG1 in oligodendroglioma, showing the relation 

between cytoplasmic LRIG2 expression and poor prognosis225. Furthermore, LRIG2 

expression correlated with glioma grade and it was shown that glioblastoma cells release 

the soluble ECD of LRIG2, which is functional in tumor progression227. Additionally, the 

loss of LRIG2 led to the protection against platelet-derived growth factor subunit B 

(PDGFB)-induced glioma in mice212. The impact of LRIG2 on the ERBB network during 

carcinogenesis is so far not well analyzed and therefore investigated in this thesis (see 

Chapter 4). In conclusion, LRIG proteins seem to represent tissue-specific, prognostic 

factors in various tumors where both expression and localization seem to play a role. Thus, 

in regard to tumor therapy, LRIGs might be promising targets and initial steps have been 

taken to develop new strategies for cancer treatment207. The identification of interaction 

partners and especially the influence of LRIGs on the ERBB system would be very 

important in respect to prospective therapy approaches. 
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ERBB receptors are crucial players during skin development, homeostasis but also 

tumorigenesis and are often dysregulated in various cancers85,99,101,180. Consequently, the 

understanding of how ERBB receptors cooperate is crucial for future therapeutic 

strategies. EGFR KO mice show a severe epidermal phenotype, developing alopecia, 

hyperplasia of the IFE and SG and inflammation168. Additionally, EGFR is involved in 

NMSC84 as well as in melanoma158 and influences tumor development and progression in 

the skin175-178. Skin-specific ERBB2 and ERBB3 KO mice also revealed a tumor progressive 

function in the 7,12-dimethylbenz(a)anthracene (DMBA)/12-O-tetra-decanoylphorbol-13-

acetate (TPA) carcinogenesis model154,170, while they show no obvious phenotype under 

homeostatic conditions. However, the ERBB receptor family consists of four members, but 

in contrast to EGFR, ERBB2 and ERBB3, ERBB4 expression was not unambiguously 

detected in the skin. Nevertheless, ERBB4 is involved in many crucial processes like the 

development of the heart, the CNS256 and the mammary gland (MG)256,257 and also in 



The receptor tyrosine kinase ERBB4 is expressed in skin 

keratinocytes and influences epidermal proliferation 

 

  

18 

epithelial tumorigenesis, such as NSCLC258, breast cancer259-261 or colorectal cancers262. 

Especially the overexpression of ERBB4 in oral263 and head and neck159 SCC as well as in 

melanoma156,157 has drawn our attention to a role of the receptor in skin and skin 

tumorigenesis. Although the analysis of ERBB4 in the skin is difficult and reports are 

inconsistent in the literature, Srinivasan et al. showed ERBB4 expression in human 

embryonic and adult skin165. Further, Panchal et al. revealed the increase of ERBB4 in 

murine skin due to the transgenic (TG) overexpression of its specific ligand, NGR3, leading 

to epidermal hyperplasia264. Taking these findings into account, a role of ERBB4 in the 

skin or during skin pathogenesis is very likely. Therefore, we hypothesized that ERBB4 is 

involved in skin homeostasis or tumorigenesis. The weak expression of ERBB4 in healthy 

skin, together with the existence of several isoforms of the receptor142,143, make its 

detection in the epidermis very challenging, which might also be the reason for the 

common overlooking of epidermal ERBB4. In the following study, our aim was to analyze 

the impact of ERBB4 on skin in vitro, in human keratinocytes HaCaT and in the human 

skin epidermoid carcinoma cell line A431, as well as in vivo, in human and murine 

epidermis during homeostasis. We generated a skin-specific ERBB4 KO mouse model and 

investigated the effect of ERBB4 on skin morphology and cell biology in more detail. 
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A B S T R A C T

Background: The epidermal growth factor receptor (EGFR) and associated receptors ERBB2 and ERBB3 are
important for skin development and homeostasis. To date, ERBB4 could not be unambiguously identified in the
epidermis. The aim of this study was to analyze the ERBB-receptor family with a special focus on ERBB4 in vitro
in human keratinocytes and in vivo in human and murine epidermis.
Methods: We compared the transcript levels of all ERBB-receptors and the seven EGFR-ligands in HaCaT and
A431 cells. ERBB-receptor activity was analyzed after epidermal growth factor (EGF) stimulation by Western
blot analysis. The location of the receptors was investigated by immunofluorescence in human keratinocytes and
skin. Finally, we investigated the function of ERBB4 in the epidermis of skin-specific ERBB4-knockout mice.
Results: After EGF stimulation, all ligands were upregulated except for epigen. Expression levels of EGFR were
unchanged, but all other ERBB-receptors were down-regulated after EGF stimulation, although all ERBB-re-
ceptors were phosphorylated. We detected ERBB4 at mRNA and protein levels in both human epidermal cell
lines and in the basal layer of human and murine epidermis. Skin-specific ERBB4-knockout mice revealed a
significantly reduced epidermal thickness with a decreased proliferation rate.
Conclusions: ERBB4 is expressed in the basal layer of human epidermis and cultured keratinocytes as well as in
murine epidermis. Moreover, ERBB4 is phosphorylated in HaCaT cells due to EGF stimulation, and its deletion in
murine epidermis affects skin thickness by decreasing proliferation.
General significance: ERBB4 is expressed in human keratinocytes and plays a role in murine skin homeostasis.

1. Introduction

The epidermal growth factor receptor (EGFR, ERBB1, HER1) and its
ligands play an important role in skin homeostasis, and their dereg-
ulation promptly affects keratinocyte proliferation and differentiation,
potentially resulting in inflammatory or hyperproliferative responses
[1]. EGFR belongs to a family of receptor tyrosine kinase (RTK) re-
ceptors that also includes ERBB2 (NEU, HER2), ERBB3 (HER3), and
ERBB4 (HER4) [2,3]. While evidence for a key role of EGFR in skin
pathophysiology is ample, considerably less is known about the func-
tions of the structurally related ERBB receptors in this tissue.

ERBB2, a ligand-less receptor, is co-expressed with EGFR in the
epidermal basal layer and in proliferative cells of the pilosebaceous unit
[4]. ERBB2 is activated by UV irradiation and increases UV induced
skin tumorigenesis by suppressing S-phase arrest [5]. ERBB2 is over-
expressed in several types of cancer, including human non-melanoma
skin cancer [6,7], and transgenic overexpression of ERBB2 causes epi-
dermal and follicular hyperplasia and spontaneous tumor formation

[4,8–11]. Deletion of ERBB2 in HaCaT cells [12] and murine skin de-
teriorates wound healing and decreases tumor burden in a multistage
chemical carcinogenesis protocol in ERBB2 knockout mice [13]. ERBB3
is expressed in all epidermal layers, with highest levels in the supra-
basal and spinous layers [4,14]. ERBB3 has a potential involvement in
wound repair [15,16], and it has an important function in chemically-
induced skin tumorigenesis in mice [17]. So far, ERBB4 expression
analysis in the skin resulted in contradictory findings. ERBB4 expres-
sion was not detectable in human [14,18] or murine [4] epidermis, and
also not in human primary keratinocytes [19] and A431 [20,21].
Nevertheless, other groups detected ERBB4 in human epidermis [21], in
A431 cells, although only a weak signal was observed [18], and not
unambiguously identified in HaCaT cells [19]. Notably, Panchal and
colleagues detected ERBB4 in murine epidermis and hair follicles [22].
This group overexpressed neuregulin 3 (NRG3), a highly specific ERBB4
ligand, under the control of the keratin 14 promoter in the skin, and
observed a dramatically thickened epidermis.

The aim of this work was to study the ERBB receptors and their
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ligands in the human keratinocyte cell line HaCaT, representing normal
keratinocytes, and in the human skin epidermoid carcinoma cell line
A431, which represents a squamous cell carcinoma. As EGFR, ERBB2,
and ERBB3 are established receptors regulating skin homeostasis and
tumorigenesis, we focused on the neglected ERBB4 receptor. Although
in the past some studies investigated ERBB receptors and some of their
ligands in these cell lines, to date no publication is available in which
all ERBB receptors and all EGFR ligands are analyzed in both lines and
directly compared to each other. We clearly detected ERBB4 expression
in established keratinocyte cell lines, human and murine epidermis
using three different antibodies. Generation of skin-specific ERBB4
knockout mice revealed that ERBB4 is dispensable for skin develop-
ment, but it is involved in epidermal proliferation and homeostasis.

2. Materials and methods

2.1. Cell culture

HaCaT keratinocytes and A431 cells were cultured in DMEM®

medium (Biochrom, Berlin, Germany) supplemented with 10% fetal calf
serum (FCS, Biochrom) and 1% penicillin/streptomycin (Biochrom).
For starvation, cells were cultured in the medium indicated above
without FCS for 12 h and were stimulated with 100 ng/ml EGF (R&D
systems, Wiesbaden-Nordenstadt, Germany) for the indicated periods of
time.

2.2. Mice

Mice carrying floxed Erbb4 alleles [23] or expressing cre re-
combinase under the keratin 5 promoter have been described pre-
viously [24]. Genotyping of transgenic mice was done by PCR using the
following primers P20: 5′-CAAATGCTCTCTCTGTTCTTTGTGTCTG-3′;
P22: 5′-TTTTGCCAAGTTCTAATTCCATCAGAAGC-3′; P23: 5′-TATTGT
GTTCATCTATCATTGCAACCCAG-3′; K5Cre-Fw: 5′-AATCGCCATCTTCC
AGCAG-3′; K5Cre-Rv: 5′-GATCGCTGCCAGGATATACG-3′. Mouse strains
were maintained in the C57BL/6N background under specific pa-
thogen-free conditions and had access to water and standard rodent diet
(V1534, Ssniff, Soest, Germany) ad libitum. All experiments were ap-
proved by the Committee on Animal Health and Care of the state of
Upper Bavaria (Regierung von Oberbayern, Germany). Genotyping of
mouse lines was performed according to the original publications.
Eight-week-old Erbb4del females and control littermates were dissected
for further investigations. After euthanasia, skin samples were fixed in
4% paraformaldehyde (PFA, Sigma, Taufkirchen, Germany), dehy-
drated, and embedded in paraffin or snap-frozen and stored at −80 °C
until use.

2.3. Quantitative RT-PCR

For RNA analysis the starved cells were stimulated with EGF for 2 h.
Total RNA was isolated with TRIZOL reagent (Invitrogen, Darmstadt,
Germany) and 1 μg of RNA samples were reverse-transcribed in a final
volume of 20 μl using RevertAid Reverse Transcriptase (Thermo
Scientific, Schwerte, Germany) according to the manufacturer's in-
structions. Quantitative RT-PCR was carried out in a LightCycler®480
(Roche, Mannheim, Germany) using the primers listed in
Supplementary Table S1 (0.5 μM), 1 μl cDNA, 0.2 μM probe (Universal
ProbeLibrary Set, Roche), and the LightCycler® 480 Probes Master Mix
(Roche) in a final volume of 10 μl. Cycle conditions were 95 °C for 5min
for the first cycle, followed by 45 cycles at 95 °C for 10 s, 60 °C for 15 s,
and 72 °C for 1 s. Transcript copy numbers were normalized to histone
H3 (H3F3A) (Fig. 1) or peptidyl-prolyl cis-trans isomerase a (PPIA) (Fig.
S3) mRNA copies. The ΔCt value of the sample was determined by
subtracting the average Ct value of the target gene from the average Ct
value of the H3F3A gene. For each primer pair we performed no-tem-
plate control and no-RT control assays, which produced negligible

signals that were usually> 40 in Ct value. Experiments were performed
in duplicates for each sample. All primers and probes are listed in
Supplementary Table S1. For qualitative mRNA expression of human
ERBB4, RT-PCR using reagents from Qiagen (Hilden, Germany) were
performed. The final reaction volume was 20 μl, and cycle conditions
were 94 °C for 5min, followed by 35 cycles at 94 °C for 1min, 60 °C for
1min, and 72 °C for 1min. Following primers were employed: ERBB4
forward primer 5′-GAGCAAGAATTGACTCGAATAGG-3′ and reverse
primer 5′-TTCCTGACATGGGGGTGTAG-3′; JM forward primer 5′-TCC
AGATGGCTTACAGGG-3′ and reverse primer 5′-TCTCATTAAGAATCTT
AATAGC-3′; CYT forward primer 5′-ATCTCTTGGATGAAGAGGATT-3′
and reverse primer 5′-TTGTCTCGCATAGGAGTCAT-3′; GAPDH forward
primer 5′-TCATCAACGGGAAGCCCATCAC-3′ and reverse primer
5′-AGACTCCACGACATACTCAGCACCG-3′.

2.4. Western blot analysis

For Western blot experiments the starved cells were stimulated with
EGF for 10min. Protein of cells and murine tissue was extracted using
Laemmli-extraction-buffer, and the protein concentration was esti-
mated via bicinchoninic acid protein assay. 25 μg of total protein were
separated by 10% SDS-PAGE and transferred to PVDF membranes
(Millipore, Schwalbach, Germany) by semidry blotting. Membranes
were blocked in 5% w/v fat-free milk powder (Roth, Karlsruhe,
Germany) for 1 h at room temperature (RT). After washing in Tris-
buffered saline solution (TBS) with 0.1% Tween20 (Sigma) (TBS-T),
membranes were incubated over night at 4 °C in 5% w/v BSA (Sigma) in
TBS-T with the appropriated primary antibody. All primary and sec-
ondary antibodies and their dilutions are listed in Supplementary Table
S2. After washing, membranes were incubated in 5% w/v fat-free milk
powder with a horseradish peroxidase-labeled secondary antibody.
Signals were detected using an enhanced chemiluminescence detection
reagent (GE Healthcare, Munich, Germany) and appropriated X-ray
films (GE Healthcare).

2.5. Immunofluorescence

For in vitro immunofluorescence stainings, cells were grown on
cover slips and fixed for 15min in 4% PFA in phosphate buffered saline
(PBS). After fixation, the cells were permeabilized for 10min with 0.5%
Triton X-100 (Roth) in PBS and then washed with PBS. Cover slips were
incubated for 2 h at RT with primary antibodies listed in Supplementary
Table S3. Sections were washed and incubated with secondary antibody
together with Alexa Fluor 594 conjugated Phalloidin (Thermo Fisher
Scientific, Waltham, MA, USA, #A-12381). All sections were mounted
with Vectashield (Vector Laboratories, Burlingame, CA, USA) with
DAPI and stored at 4 °C.

Biopsy sample (normal femoral skin from a female, Caucasian,
52 years old patient and healthy frontal skin) obtained after informed
consent were kindly provided by R. Wolf, M.D. (Klinik für Dermatologie
und Allergologie, Universitätsklinikum Giessen-Marburg, Marburg,
Germany). Human and murine samples were embedded in Tissue-Tek
O.C.T. (VWR, Darmstadt, Germany), frozen on dry ice and cryosec-
tioned (10 μm). After fixation for 15min at RT in 4% PFA in PBS sec-
tions were washed with TBS-T and blocked in blocking buffer (5%
donkey serum (Millipore), 0.1% Tween20 in TBS) for 2 h at RT. For
immunolabeling the primary and secondary antibodies listed in
Supplementary Table S3 were used. Sections were incubated with pri-
mary antibody in staining buffer (2.5% donkey serum, 0.1% Tween20
in TBS) at 4 °C over night. After washing with 0.1% TBS-T tissue sec-
tions were incubated with appropriate fluorescent secondary antibodies
in staining buffer for 1–2 h at RT and nuclei were additionally stained
with 4′,6-diamidino-2-phenylindole (DAPI) for 5min at RT. At last,
sections were mounted with Vectashield with DAPI after washing with
0.1% TBS-T. Images were acquired using Zeiss LSM710 laser-scanning
confocal microscope (Carl Zeiss MicroImaging) with a 40× water
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objective. Representative single Z-planes are presented. RGB images
were assembled using Fiji (ImageJ) software.

2.6. Immunohistochemistry

Skin samples were fixed in 4% PFA, dehydrated, and embedded in
paraffin. For target retrieval the sections were deparaffinized and

boiled in a microwave for 20min in 10mM citrate buffer (pH 6.0).
Tissue sections were incubated with anti-Ki67 antibody over night at
4 °C followed by incubation with a biotin linked secondary antibody for
1 h at RT. Slides were incubated for 30min with an avidin-biotin-en-
zyme complex solution (Vector Laboratories), 3,3′-diaminobenzidine
(KemEnTec, Copenhagen, Denmark) was used as a chromogen.
Counterstaining was performed with hematoxylin. At last, sections were
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Fig. 1. Abundance and regulation of EGFR/ERBB family members in HaCaT and A431 cells. Relative expression of ERBB receptors (A) and EGFR ligands (C) in HaCaT and A431 cells (B,
D). (E) Analysis of receptor transcript levels by quantitative RT-PCR in non-treated and EGF treated HaCaT and A431 cells (n=6 samples/group). (F) Expression of the EGFR ligands in
HaCaT and A431cell lines non-treated and treated with EGF for 2 h (n=6 samples/group). Expression levels are relative to H3F3A expression. Data are presented as means ± SEM, and
were analyzed by 2-way ANOVAs. In E and F: white columns represent non-stimulated cells, and black columns represent EGF stimulated cells.
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dehydrated using 50%, 70%, 90%, and 100% ethanol and xylene and
mounted with Histokitt (Hecht-Assistant, Sondheim, Germany). All
antibodies are listed in Supplementary Table S3. Proliferation rate was
measured on Ki67-stained sections by counting 20 visual fields for each
animal. Both, Ki67-positive and negative nuclei were counted on pic-
tures taken with a 200 magnification lens and a Leica DFC425C digital
camera (Leica Microsystems, Wetzlar, Germany) covering a length of
13mm skin.

2.7. Morphometric analysis

Epidermal thickness was analyzed in four female Erbb4del mice and
control littermates. For the quantitative evaluation of epidermal
thickness, two different sections from the back skin of each animal were
stained with H&E. Pictures covering a length of 26mm of epidermis
(distributed over a total length of 10.4 cm of back skin) were taken with
a 200×magnification lens using a Leica DFC425C digital camera (Leica
Microsystems) per animal. Epidermal thickness was investigated on 40
pictures on 10 constantly distributed measuring points per picture, re-
sulting in a total of 400 measuring points per animal. The Leica
Application Suite 4.4.0 software (Leica Microsystems) was used for the
measurements.

2.8. Data pretreatment and statistical analysis

Data are presented as means ± SEM and compared by Student's t-
test (GraphPad Prism version 5.0 for Windows, GraphPad Software, San
Diego, CA, USA). Differences were considered to be statistically sig-
nificant if P < 0.05. Ct values of gene targets of qRT-PCR analysis were
shown relative to Ct values of the H3F3A or PPIA cDNA and compared
by 2-way analysis of variance (ANOVA) (GraphPad Prism), for the
following parameters: cell line, treatment, and cell line x treatment
(interaction).

3. Results

3.1. Expression of ERBB receptors and EGFR ligands in HaCaT and A431
cells

We employed quantitative RT-PCR to characterize the expression of
the ERBB receptors and the EGFR ligands in human HaCaT and A431
cells. Among the receptors, EGFR showed the highest expression level,
ERBB2 as well as ERBB3 transcript levels were lower (Fig. 1A). Ad-
ditionally, we were able to detect ERBB4 gene expression in HaCaT cells
(Fig. 1A; E). To evaluate changes in receptor expression during EGFR
activation, we treated both cell lines with EGF for 2 h. As shown in
Fig. 1E, EGF stimulation of HaCaT cells significantly reduced the
transcript levels of all three ERBB receptors, but not EGFR. In A431 cells
only the transcript levels of ERBB2 were significantly reduced. The
same applied to ERBB4 transcripts, but this receptor was barely ex-
pressed in A431 (Fig. 1B). Evaluation of the transcript levels of the
seven EGFR ligands by quantitative RT-PCR demonstrated that heparin-
binding EGF-like growth factor (HBEGF) was the most abundantly ex-
pressed ligand, followed by transforming growth factor alpha (TGFA),
epigen (EPGN), epiregulin (EREG), amphiregulin (AREG), betacellulin
(BTC), and EGF in HaCaT cells (Fig. 1C). In A431 cells EPGN was not
expressed, and the most abundant ligand was TGFA (Fig. 1D). Treat-
ment with EGF resulted in the upregulation of all ligands, except for
EPGN in HaCaT cells. In A431 cells results were similar, besides that
EGF expression levels did not change (Fig. 1F). The receptor and ligand
expression data shown in Fig. 1 was determined relative to H3F3A
expression, these results were confirmed with a second reference gene
PPIA (Fig. S1). The expression of ERBB4 was confirmed by RT-PCR.
ERBB4 transcripts were found in non-stimulated and EGF treated
HaCaT cells. Additionally, a faint band was visible in A431 cells
(Fig. 2A). ERBB4 can be alternatively spliced into four major isoforms

with different functions. Two alternative extracellular juxtamembrane
isoforms (JM-a and JM-b) and two intracellular cytoplasmic isoforms
(CYT-1 and CYT-2) have been described [25]. To clarify which isoforms
of ERBB4 are expressed in HaCaT cells, RT-PCR recognizing the JM and
CYT region of the ERBB4-receptor was performed. HaCaT cells ex-
pressed only the cleavable JM-a isoform, but both CYT variants
(Fig. 2B).

3.2. Expression of EGFR/ERBB receptors, MAPK, and AKT on protein level
in vitro

We next performed Western blot analysis to characterize ERBB re-
ceptor expression on protein level in both cell lines. For this, we in-
vestigated non-stimulated cells and cells stimulated with EGF for
10min. We found a much higher amount of EGFR and ERBB2 proteins
in A431 cells compared to HaCaT cells. In addition, ERBB3 expression
was slightly higher in A431 (Fig. 3A). Also ERBB4 was expressed in
both cell lines, and was detected by three different antibodies
(Fig. 3G–I). Activated EGFR, phosphorylated at tyrosine residue 1173
and 1068, was detected in stimulated as well as non-stimulated A431
cells and in stimulated HaCaT cells, but not in non-stimulated HaCaT
cells (Fig. 3B). The same pattern was found for the activated ERBB2-
receptor, phosphorylated at tyrosine residue 877. Phosphorylation of
the ERBB2 at tyrosine residue 1221 was barely detectable (Fig. 3C). For
phosphorylated ERBB3-receptor at tyrosine 1289, we found a higher
signal in A431 cells compared to HaCaT cells (Fig. 3D). One of the main
downstream targets of EGFR is mitogen-activated protein kinase
(MAPK). MAPK was activated in non-stimulated and EGF treated A431
cells at equal amounts (Fig. 3E). The same results were obtained for
phosphorylated RAC-alpha serine/threonine-protein kinase (AKT)
(Fig. 3F). In HaCaT cells, MAPK and AKT were only activated under
stimulated conditions. Non EGF-treated HaCaT cells showed no phos-
phorylated ERBB receptors and no kinase activity (Fig. 3E; F).
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Fig. 2. Gene expression of ERBB4 and its isoforms in vitro. (A) Analysis of ERBB4 tran-
script levels by RT-PCR in A431 and HaCaT cells. (B) Isoform JM-a and both CYT variants
are expressed in HaCaT cells. GAPDH serves as loading control. Abbreviations: HaCaT
cells (H), A431 cells (A), EGF stimulation for 2 h (+), non-stimulated (−).
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Next, we investigated the protein expression level of ERBB4 with
three different antibodies for phosphorylated and total ERBB4 each. All
antibodies provided the same results: ERBB4 seemed to be expressed
equally in all four cell samples. Regarding receptor activation, phos-
phorylated ERBB4 was detected in EGF stimulated HaCaT and A431
cells, in non-stimulated A431 cells, but not in non-treated HaCaT cells
(Fig. 3G–I). These findings are in accordance with the expression pat-
tern of the other ERBB family members.

3.3. Immunofluorescence staining of EGFR/ERBB receptors in HaCaT cells
and human skin

Next, we analyzed ERBB-receptor expression by immuno-
fluorescence staining. HaCaT cells were stained with antibodies for the
different ERBB receptors together with phalloidin to illustrate the cy-
toplasm (Fig. 4). EGFR, ERBB2, and ERBB4 were located next to the
membrane, and ERBB3 was additionally detected diffusely in the cy-
tosol of HaCaT cells. An overview of the cell staining with lower
magnification is presented in Fig. S2. To confirm these findings, we
stained also healthy human skin. We observed ERBB4 and EGFR ex-
pression in the epidermis (Fig. 5), and both receptors were stronger
expressed in the basal than in the suprabasal layer. ERBB4 expression
was confirmed using four different antibodies showing the same ex-
pression pattern in the basal layer of the epidermis (Fig. S3). Contrary
to previous reports on murine skin [4], ERBB3 was detected only in the
basal layer and ERBB2 in the suprabasal layer of human epidermis
(Fig. 5).

3.4. Skin-specific deletion of ERBB4 in mice

Finally, to analyze a possible influence of ERBB4 on skin develop-
ment and homeostasis we deleted the receptor in murine skin. For this
purpose, we crossed mice carrying conditional Erbb4 alleles [23] with
transgenic mice expressing the cre enzyme under the control of the
keratin 5 (K5) promoter [24]. The obtained skin-specific ERBB4
knockout mice (Erbb4del) were viable, born at Mendelian ratios, and
bred normally. We demonstrated that ERBB4 is expressed in the basal
layer of the epidermis, but the signal was absent in Erbb4del mice
(Fig. 6A). Western blot analysis confirmed the loss of ERBB4 in skin of
Erbb4del mice (Fig. 6B). Erbb4del mice showed no macroscopic altera-
tions. Histologically, however, Erbb4del mice revealed a significantly
thinner epidermis compared to control animals (Fig. 6C; D). To assess
the function of ERBB4 in skin proliferation, we performed a Ki67
staining (Fig. 6E). The epidermal proliferation rate in Erbb4del mice was
significantly decreased compared to control littermates (Fig. 6F). We
performed Western blot analysis to assess whether the loss of ERBB4
affects the expression of other ERBB receptors in the skin. We found no
changes of EGFR, ERBB2, and ERBB3 expression, or their phosphor-
ylation states in Erbb4del mice compared to control littermates (Suppl.
Fig. S4). Also, the main ERBB downstream kinases MAPK and AKT were
not affected in Erbb4del mice (Suppl. Fig. S4).

4. Discussion

The ERBB receptors and their ligands play an important role in
epidermal development, homeostasis, and tumorigenesis [1–3]. In this
study, we analyzed the expression of all four members of the ERBB
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receptor family in epidermal keratinocytes in vitro and in vivo. We
compared the gene expression of EGFR, ERBB2, ERBB3, and ERBB4 in
human HaCaT keratinocytes with malignant epidermal A431 cells,
confirming EGFR as the most abundant ERBB receptor for both cell
lines. EGFR was much higher expressed in A431 than in HaCaT cells,
because A431 contain multiple EGFR gene amplifications [26]. ERBB2
and ERBB3 were expressed in similar amounts in both cell lines, but on
protein level ERBB2 was higher expressed in A431 than in HaCaT cells.
To our knowledge, this is the first study to investigate all seven EGFR
ligands [27], including BTC [28], EREG [29], and the last recognized
EGFR ligand EPGN [30,31] in both cell lines. All ligands were upre-
gulated after EGF stimulation, except EGF in A431 and EPGN in HaCaT
cells. EPGN was not expressed in A431 cells, which is in line with
previous studies showing that a deletion of epigen in mice has no effect
on skin homeostasis [32]. However, a skin-specific overexpression of
EPGN revealed hyperplasia of the sebaceous glands and increased ex-
pression of the LRIG1-positive stem cell pool in the hair follicle, al-
though no differences in the epidermis were observed [33]. TGFA,
HBEGF, and AREG were highly upregulated in both cell lines after EGFR
activation, emphasizing their important role in skin homeostasis,
wound healing [34–36], psoriasis [37], and tumorigenesis [1,38–41].
Most intriguingly, we found transcripts of ERBB4 in HaCaT cells, and a
very weak signal in A431 cells. These results were also confirmed by
standard RT-PCR. Due to alternative splicing, ERBB4 can be expressed
in six different isoforms [42]. They vary in their extracellular juxta-
membrane (JM) and intracellular cytoplasmic (CYT) domains. We
analyzed the four most frequently expressed variants, JM-a and JM-b as
well as CYT-1 and CYT-2 and revealed the expression of all isoforms
except JM-b. The JM-a isoform is known to be a substrate to regulated
intramembrane proteolysis, encoding a cleavage site for matrix

metalloproteases (MMPs), like the tumor necrosis factor alpha con-
verting enzyme (TACE), at the cell surface [43–45]. The intracellular
domain (ICD) of JM-a can be released by gamma-secretase cleavage
[43] and enter the nucleus to act at transcriptional levels [46]. Isoform
JM-b contains the alternative exon 15b instead of exon 16 and cannot
be shed from the cell surface. Additionally, two further splicing variants
for ERBB4 have been reported, JM-c lacking both exons 15b and 16,
and JM-d including these both exons, containing the MMP cleavage site
[25,47]. Moreover, two cytoplasmatic isoforms exist varying in the
presence of exon 26. While the CYT-1 variant contains exon 26 and
exhibits a phosphatidyl inositol 3-kinase (PI3-K) binding site, the CYT-2
isoform lacks exon 26 and therefore lacks PI3-K activity [48]. The ex-
istence of six different ERBB4 isoforms and additional posttranslational
modifications may make it difficult to identify the ERBB4-receptor,
especially when it is poorly expressed like in the skin. Consequently,
proving evidence of ERBB4 expression in the epidermis is extremely
challenging.

Regarding ERBB expression at protein level, we could show that all
four RTKs were expressed in vitro under stimulated and non-stimulated
conditions. In addition, all ERBB receptors were autophosphorylated
and therefore activated in A431 tumor cells. In contrast, in HaCaT
keratinocytes a stimulus is necessary to activate the ERBB receptors.
After stimulation of ERBBs using a known ligand like EGF, autopho-
sphorylation was induced and EGFR, ERBB2, ERBB3, and ERBB4 were
activated and affected downstream signal transduction cascades like the
MAPK or AKT pathways. EGF is known to bind and activate homo- and
heterodimers of all ERBB receptors [19]. These results are in ac-
cordance with early studies analyzing A431 [18] and HaCaT cells [19].

Since we could show the presence of all members of the ERBB

Fig. 4. Immunofluorescence showing the expression of ERBB receptors in HaCaT cells.
Receptors were labeled with Alexa Fluor 488 (green), and phalloidin with Alexa Fluor
594 (red), nuclei were stained with DAPI (blue). Merge shows an overlay of all stainings.
Pictures were taken with 400× magnification. Scale bars represent 10 μm.
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Fig. 5. Localization of ERBB receptors in vivo. Immunofluorescence reveals the expression
of ERBB receptors in healthy human epidermis. ERBB receptors are shown in green, and
the nuclei were stained with DAPI (blue). Merge shows an overlay of both stainings. Scale
bars represent 50 μm.
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family in vitro and in vivo at transcript and protein expression level in
human epidermal cells, and the findings about ERBB4 expression in
keratinocytes are often contradictory in literature, we decided to study
the function of ERBB4 in murine skin. It has been published that ERBB4
is expressed in murine skin, and that skin-specific overexpression of the
ERBB4 ligand NRG3 results in epidermal hyperplasia in mice [22]. For
further analysis of the function of ERBB4 in murine skin, we developed
a skin-specific knockout mouse model for the receptor. Characterization
of Erbb4del mice revealed an impact of ERBB4 on skin proliferation.
Interestingly, we found no alteration in skin proliferation in Erbb2del

[13] and Erbb3del mice [17] under steady-state conditions in our pre-
vious studies. However, EGFR is the most abundantly expressed and
most important ERBB receptor in the skin and seems to play a critical
role during development, homeostasis as well as tumorigenesis. Skin-
specific EGFR knockout mice [49,50] develop skin inflammation, hair
follicle degeneration and show a deficient skin barrier, reminding
symptoms of patients treated with EGFR inhibitors. Frequently, the
inhibition of EGFR during cancer therapy is accompanied by skin rash,
dry and itchy skin, and microbial infections [51–53]. Evidently, we
could show that ERBB4 is expressed in the basal layer of human and

murine epidermis, similar to EGFR. Furthermore, Erbb4del mice showed
an influence of the ERBB4 receptor on epidermal proliferation and
homeostasis. Our current study indicates an even more important role
of ERBB4 in skin homeostasis than ERBB2 and ERBB3. Nevertheless,
further studies are required to investigate ERBB4 during pathological
processes as wound healing, dermatitis or tumorigenesis.

In conclusion, our study reveals that ERBB4 is expressed in the
human keratinocyte cell line HaCaT and in human and murine skin. In
contrast to skin-specific ERBB2- and ERBB3-knockout mice, the epi-
dermal deletion of ERBB4 reduces the proliferation rate of the epi-
dermis and its thickness. Therefore we conclude that ERBB4 influences
skin homeostasis.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.bbagen.2018.01.017.
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 Supplementary material 

 

In the following all supplementary figures and tables of the publication “The receptor 

tyrosine kinase ERBB4 is expressed in skin keratinocytes and influences epidermal 

proliferation.”161 are depicted. 

 

  

Figure 2-1 Fig. S1. Abundance and regulation of EGFR/ERBB family members in HaCaT and A431 

cells. 

Relative expression of ERBB receptors (A) and EGFR ligands (C) in HaCaT and A431 cells (B,D). (E) Analysis 

of receptor transcript levels by quantitative RT-PCR in non-treated and EGF treated cells 

(n=6 samples/group). (F) Expression of the EGFR ligands in HaCaT and A431cell lines non-treated and 

treated with EGF for 2 h (n=6 samples/group). Expression is relative to PPIA expression. Data are presented 

as means ± SEM, and analyzed by 2-way ANOVAs. In E and F: white columns are non-stimulated, and black 

columns are stimulated with EGF. 
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Figure 2-2 Fig. S2. Immunofluorescence showing the expression of ERBB receptors in HaCaT cells. 

Receptors were labeled with Alexa Fluor 488 (green), and phalloidin with Alexa Fluor 594 (red), nuclei were 

stained with DAPI (blue). Merge shows an overlay of all staining. Pictures were taken with 400x magnification. 

Scale bars represent 50 µm.  
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Figure 2-3 Fig. S3. ERBB4 expression in healthy human epidermis. 

Receptor expression is shown with five different antibodies. (A) Abcam, #19391, (B) Fitzgerald, #70R-17129, 

(C) Proteintech, #19943-1-AP, (D) Santa Cruz, #8050 and (E) Santa Cruz, #283 in green, nuclei were stained 

with DAPI (blue). Dashed line separates epidermis from dermis. Scale bars represent 50 µm. 
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Figure 2-4 Fig. S4. Western blot analysis from Erbb4del back skin and control mice. 

The total and phosphorylated levels of EGFR, ERBB2, ERBB3, and of the downstream kinases MAPK and 

AKT are shown. GAPDH was used as loading control. 
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Table 2-1 Supplementary Table S1. 

Primers and probes employed for quantitative RT-PCR analysis. 

AREG 

Forward Primer 
Reverse Primer 
Probe  

5’-cggagaatgcaaatatatagagcac-‘3 
5’-caccgaaatattcttgctgaca-‘3 
#38 (cat. no. 04687965001) 

BTC 

Forward Primer 
Reverse Primer 
Probe 

5’-actgcatcaaagggagatgc-‘3 
5’-tctcacaccttgctccaatg-‘3 
#49 (cat. no. 04688104001) 

EGF 

Forward Primer 
Reverse Primer 
Probe 

5’-aagaatgggggtcaaccagt-‘3 
5’-tgaagttggttgcattgacc-‘3 
#27 (cat. no. 04687582001) 

EPGN 

Forward Primer 
Reverse Primer 
Probe 

5’-tttgggagttccaatatcagc-‘3 
5’-tgtgattggaggtgttacagtca-‘3 
#34 (cat. no. 04687671001) 

EGFR 

Forward Primer 
Reverse Primer 
Probe 

5’-gccttgactgaggacagca-‘3 
5’-tttgggaacggactggttta-‘3 
#69 (cat. no. 04688686001) 

ERBB2 

Forward Primer 
Reverse Primer 
Probe 

5’-tgctgtcctgttcaccactc-‘3 
5’-tcatcctcatcatcttcacattg-‘3 
#67 (cat. no. 04688660001) 

ERBB3 

Forward Primer 
Reverse Primer 
Probe 

5’-ctgatcaccggcctcaat-‘3 
5’-ggaagacattgagcttctctgg-‘3 
#37 (cat. no. 04687957001) 

ERBB4 

Forward Primer 
Reverse Primer 
Probe 

5'-tctgggtgagccttctcgt-3' 
5'-ctccgttcctgcacacact-3' 

#26 (cat. no. 04687574001) 

EREG 

Forward Primer 
Reverse Primer 
Probe 

5’-tggtctcttcactcaggtctca-‘3 
5’-cgtgagttggcatagggaac-‘3 
#86 (cat. no. 04689119001) 

HBEGF 

Forward Primer 
Reverse Primer 
Probe 

5’-tggggcttctcatgtttagg-‘3 
5’-catgcccaacttcactttctc-‘3 
#55 (cat. no. 04688520001) 

TGFA 

Forward Primer 
Reverse Primer 
Probe 

5’-ttgctgccactcagaaacag-‘3 
5’-atctgccacagtccacctg-‘3 
#63 (cat. no. 04688627001) 

H3F3A 

Forward Primer 
Reverse Primer 
Probe 

5'-agtgaggcctatctggttgg-3' 
5'-gcacgttctccacgtatgc-3' 

#42 (cat. no. 04688015001) 

PPIA 

Forward Primer 
Reverse Primer 
Probe 

5'-cctaaagcatacgggtcctg-3' 
5'-tttcactttgccaaacacca-3' 

#48 (cat. no. 04688082001) 
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Table 2-2 Supplementary Table S2. 

Antibodies employed for Western blots analysis and their dilution. 

Antigen Antibody Host Dilution 

EGFR Santa Cruz, Heidelberg, Germany, #03, rabbit 1:500 

ERBB2 Santa Cruz, #284 rabbit 1:500 

ERBB3 Santa Cruz, #285 rabbit 1:500 

ERBB4 Santa Cruz, #283 rabbit 1:500 

ERBB4 Cell Signaling, Boston, MA, USA,  #4795 rabbit 1:1000 

ERBB4 Proteintech #19943-1-AP rabbit 1:1000 

Phospho-Tyrosin Cell Signaling, #9411 mouse 1:2000 

p-EGFR (Tyr 1068) Cell Signaling, #2236 mouse 1:1000 

p-EGFR (Tyr 1173) Santa Cruz, #12351 rabbit 1:500 

p-ERBB2 (Tyr 1221/1222) Cell Signaling, #2243 rabbit 1:1000 

p-ERBB2 (Tyr 877) Cell Signaling, #2242 rabbit 1:1000 

p-ERBB3 (Tyr 1289) Cell Signaling, #4791 rabbit 1:1000 

p-ERBB4 (Tyr 1258) Abcam, Cambridge, UK, #76132 rabbit 1:1000 

p-ERBB4 (Tyr 1284) Cell Signaling, #4757 rabbit 1:1000 

p-ERBB4 (Tyr 984) Cell Signaling, #3790 rabbit 1:1000 

p44/42 MAPK Cell Signaling, #9102 rabbit 1:1000 

p-p44/42 MAPK Cell Signaling, #4370 rabbit 1:1000 

AKT Cell Signaling, #9272 rabbit 1:1000 

p-AKT (Ser 473) Cell Signaling, #4060 rabbit 1:2000 

GAPDH Cell Signaling, #2118 rabbit 1:5000 

Donkey α Rabbit GE Health Care, Munich, Germany, #NA934V donkey 1:2500 

Rabbit α Mouse Cell Signaling, #7076 rabbit 1:2000 

Donkey α Guinea Pig Fitzgerald, Acton, MA, USA, #43R-ID039HRP donkey 1:10000 
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Table 2-3 Supplementary Table S3. 

Antibodies employed for immunofluorescence (IF), immunocytochemistry (ICC), and immunohistochemistry 

(IHC). 

Antigen Antibody Host Dilution Application 

EGFR Cell Signaling, Boston, MA, USA, #4267 rabbit 1:100 ICC 

EGFR Santa Cruz, Heidelberg, Germany, #03, rabbit 1:200 IF 

ERBB2 Cell Signaling, #4290 rabbit 1:800 ICC 

ERBB2 Cell Signaling, #2165 rabbit 1:200 IF 

ERBB3 Cell Signaling, #12708 rabbit 1:250 ICC 

ERBB3 Santa Cruz, #285 rabbit 1:200 IF 

ERBB4 Cell Signaling, #4795 rabbit 1:200 ICC 

ERBB4 Abcam, Cambridge, UK,  #19391 mouse 1:200 IF 

ERBB4 Fitzgerald, Acton, MA, USA, #70R-17129 rabbit 1:100 IF 

ERBB4 Proteintech, Manchester, UK, #19943-1-AP rabbit 1:100 IF 

ERBB4 Santa Cruz, #8050 mouse 1:100 IF 

ERBB4 Santa Cruz, #283 rabbit 1:100 IF 

Ki67 (TEC3) DakoCytomation, Glostrup, Denmark, #M7249 rat 1:200 IHC 

anti-rabbit Alexa488 Dianova, Hamburg,  Germany, #711-546-152 donkey 1:1000 IF/ICC 

anti-rabbit Alexa594 Dianova, # 711-585-152 donkey 1:1000 IF 

anti-mouse 

Alexa488 

Thermo Fisher Scientific, Waltham, MA, USA,  

# A-21202 
donkey 1:1000 IF 

anti-rat biotinylated DakoCytomation, #E0468 rabbit 1:200 IHC 
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 Conclusion and outlook 

 

The present study elucidates a more important function of the RTK receptor ERBB4 than 

previously assumed. ERBB4 was unambiguously identified in human and murine 

keratinocytes in vitro and in vivo and it was shown that EGF can activate ERBB4 in vitro. 

ERBB4 is located in the basal layer of human and murine epidermis and the skin-specific 

KO of ERBB4 in mice induced the decrease of epidermal thickness and proliferation161, 

similar to EGFR KO mice but not as severe169,265,266. Although the expression of ERBB4 in 

the skin has been debated in the literature so far, the epidermal ERBB4 KO phenotype is 

convincing and indicates an important function of the receptor in the skin. Nevertheless, 

the molecular mechanisms which influence skin homeostasis and proliferation have to be 

analyzed in more detail. In contrast, ERBB2 and ERBB3 KO mice showed no epidermal 

alterations during skin homeostasis, however, the deletion of both non-autonomous 

receptors influenced tumor progression154,170. EGFR also influences skin carcinogenesis175-

178 and ERBB4 is involved in various epithelial cancers258-262. In melanoma ERBB4 is often 

mutated and increases tumor progression157, dependent on the splice isoform267. Also in 

breast cancer ERBB4 seems to be a two-edged sword, as it can be related to good and poor 

prognosis depending on the splice isoform 268,269. Since EGFR, ERBB2 and ERBB3 affect 

tumorigenesis of the skin, it is reasonable to assume that ERBB4 may also be involved in 

epidermal carcinogenesis. Therefore, the investigation of the role of ERBB4 during 

pathological processes in the skin, like wound healing, dermatitis or tumorigenesis would 

be promising in regard to new treatment strategies in the future.  
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 Epidermal overexpression of LRIG1 

disturbs development and homeostasis in skin by 

disrupting the ERBB system 

 

 Aim 

 

LRIG1 is an important regulator of SC quiescence in the skin43,270. Additionally, the 

transmembrane protein is involved in the negative feedback loop regulation of ERBB 

receptor signaling192,193, which is also indispensable for skin homeostasis and for the 

control of epidermal SCs271. However, the molecular mechanisms of LRIG1 and whether 

there is an interaction with the ERBB receptor network in the skin are not understood, 

yet. LRIG1 KO mice develop psoriasis and reveal a similar phenotype to TG mice showing 

activated ERBB receptor signaling in the skin upon the overexpression of the ligands of 

EGFR, like TGFA272 or AREG221,273. In addition, LRIG1 was up-regulated in EPGN 

overexpressing mice, indicating the induction of a feedback mechanism triggered by EGFR 

activation274. These findings point to a correlation of LRIG1 and EGFR also in the skin, as 

reported in the intestine219 or in different tumors like glioblastoma254, bladder cancer250 or 

head and neck cancer251. ERBB receptors are indispensable for skin development and 

homeostasis and their dysregulation results in skin pathogenesis like psoriasis147,148 or 

NMSC83,84,154,159,160,170. An unbalanced epidermal homeostasis can cause more than 3000 
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skin disorders275, thus a deeper understanding of the biological processes would be 

beneficial for better treatment strategies. Therefore, the aim of the following study was to 

investigate the function of LRIG1 during morphogenesis and homeostasis of the epidermis 

and of the pilosebaceous unit, in particular with respect to its effect on ERBB receptors, 

in vivo. We generated an inducible, skin-specific gain-of-function mouse model, 

overexpressing LRIG1 and analyzed the skin morphologically and molecular biologically, 

with regard to the ERBB signaling network but also to the NOTCH pathway, 

indispensable for HF development and cell fate specification of adult epidermal SCs276,277. 

 

 Study 

 

This work is in the process of publication at the Journal of Dermatological Science 

(submitted July 2019, under review). The following chapters depict the submitted 

manuscript. 
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JEH; Project Administration: MD; Resources: MD, MRS; Supervision: MD; Validation: 

MD, CH, JEH; Visualization: CH; Writing - Original Draft Preparation: CH, MD, MRS; 

 

 Abstract 

 

Background 

More than 3000 skin disorders can develop due to unbalanced epidermal homeostasis. 

Adult stem cells (SCs), residing in different niches of the skin, are crucial to maintain its 

structural and functional integrity. The transmembrane protein leucine-rich repeats and 

immunoglobulin-like domains 1 (LRIG1) is known to promote SC quiescence in the 

isthmus of the hair follicle and to regulate receptor tyrosine kinases like the ERBB 

receptor family. ERBBs are pivotal during skin development and homeostasis, regulating 

proliferation, differentiation or migration, but the interplay of LRIG1 and ERBB receptors 

in the skin is not fully understood yet. 
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Objective 

The aim of this study was to analyze the impact of LRIG1 on ERBB receptors in the skin 

during development and homeostasis. 

Methods 

We generated an inducible, skin-specific LRIG1 transgenic mouse model using the Tet-Off 

system with the keratin 5 promoter and investigated the impact of LRIG1 on skin 

development and homeostasis, especially its influence on the ERBB signaling network. 

Results 

LRIG1 overexpression during embryogenesis led to postnatal lethality accompanied by 

altered skin differentiation and hair follicle development, influencing the ERBB system. 

LRIG1 overexpression after birth caused a severe alopecia phenotype and profoundly 

impaired ERBB signaling. Our results indicated an additional activation of NOTCH 

signaling and epidermal SCs in LRIG1 transgenic mice. 

Conclusion 

The present study shows a remarkable effect of LRIG1 on ERBB receptor signaling in the 

skin, affecting the hair follicle cycle and epidermal SCs. 

 

 Introduction 

 

Skin disorders are among the most common causes of human illness275,278. The skin is a 

highly complex organ and proper differentiation during development and homeostasis is 

indispensable. The continuous self-renewal of the interfollicular epidermis (IFE) and the 

hair follicles (HFs), and regeneration after wounding, are ensured by adult epidermal stem 

cells (SCs)3,279. SCs reside in distinct niches, each one representing appropriate 

microenvironments to maintain their function and regulate the balance between SCs, 

slowly differentiating progenitor cells (PCs) and neighboring cells49,50. In the isthmus of 

HFs, adjacent to the infundibulum and sebaceous gland (SG), a niche, which comprises 

SCs with multipotent capacity, is located 44,46. These cells can give rise to the IFE and SG 

during homeostasis and are characterized by the expression of leucine-rich repeats and 

immunoglobulin-like domains 1 (LRIG1)43. In humans, LRIG1 is expressed in both IFE 

and HF210, and promotes SC quiescence270. LRIG1-deficient mice developed a psoriatic, 

hyperplastic phenotype also indicating the important function of LRIG1 in the skin221. 
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Furthermore, LRIG1 marks SCs in the intestine219 and stomach220. LRIG1 is one of three 

members of the transmembrane protein family (LRIG1-3) which has additionally attracted 

attention due to their impact on receptor tyrosine kinases (RTKs) such as the epidermal 

growth factor receptor (EGFR, ERBB1, HER1) and the other members of the ERBB 

receptor family (ERBB2-4, HER2-4)99,101. LRIGs are involved in feedback loop regulation 

of RTKs in different ways223,224. While LRIG1 promotes ERBB degradation188,192,193, LRIG3 

stabilizes ERBB receptors224 and LRIG2 activates EGFR227. ERBBs are widely expressed 

in skin and are involved in crucial processes during development, homeostasis and 

tumorigenesis85. The skin-specific deletion of ERBB2170 and ERBB3154 resulted in no 

obvious phenotype in mice. However, the knockout (KO) of EGFR led to an impaired 

epithelial development and a shortened lifespan169,266, and the deletion of ERBB4 caused 

decreased epidermal thickness and proliferation161. Moreover, epidermal overexpression 

of the EGFR ligand epigen led to receptor activation and increased LRIG1 expression274, 

showing the correlation between LRIG1 and EGFR also in the skin. Since EGFR inhibits 

terminal differentiation and promotes proliferation of epidermal PCs28, LRIG1 may be an 

important feedback-regulator of ERBBs in the epidermis, but this has not been shown yet. 

We addressed this hypothesis by overexpressing LRIG1 skin-specifically in mice using the 

Tet-Off system with the keratin 5 (KRT5) promoter. This study reveals the effects of 

LRIG1 excess in skin development and homeostasis in the IFE, HFs and SGs. LRIG1 can 

be shed and act in an autocrine but also non-cell-autonomous manner218. In particular, we 

focused on the influence on the ERBB system and neurogenic locus notch homolog protein 

(NOTCH) signaling, both crucial for epidermal and HF cell fate decisions3,28,277. Our 

present data indicate that LRIG1 has crucial impact on epidermal development and 

homeostasis by regulating ERBB receptors and NOTCH signaling and thereby influencing 

epidermal SC compartments. 

 

 Materials and methods 

 

 Mice 

 

All mouse experiments were approved by the Committee on Animal Health and Care of 

the local governmental body of the state of Upper Bavaria (Regierung von Oberbayern), 

Germany, and were performed in strict compliance with the European Communities 

Council Directive (86/609/EEC) recommendations for the care and use of laboratory 
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animals. Mice were maintained under specific-pathogen-free conditions and had access to 

water and standard rodent diet (V1534; Ssniff, Soest, Germany) ad libitum. Pronuclear 

microinjection into zygotes of C57BL/6N mice was used to generate two independent 

mouse lines overexpressing LRIG1 skin-specifically. Therefore, Lrig1 cDNA was cloned 

into the pTRE-tight vector (Clontech). We used two pTRE-tight-LRIG1-TG mice from two 

different founders to mate with the previously described keratin 5 (KRT5) promoter driver 

mouse line (KRT5-tTA), expressing the tetracycline-regulated transcriptional 

transactivator (tTA) under the control of the KRT5 promoter280. Thus, we obtained two 

independent LRIG1-TG mouse lines expressing exogenous LRIG1 skin-specifically. Both 

mouse lines showed the same phenotype, all experiments depicted in this manuscript were 

done with one line, referring to as LRIG1-TG (LRIG1-TG: TRE-LRIG1;KRT5-tTA, Control 

(Co): wildtype, KRT5-tTA, TRE-LRIG1). All mouse strains were maintained in the 

C57BL/6N background. Dissection of mice was done at indicated time points and skin 

samples were snap frozen or embedded in paraffin. Male and female mice were used in 

this study and did not show sex-bias differences (P0: sex not known; P18,21,28,45: male, 

P60, six months: female; molecular biological analysis was done with female mice only). 

To inhibit LRIG1-TG expression during embryogenesis, all pregnant mice received 

3 mg/mL doxycycline (Dox) (Beladox 500 mg/g, bela-pharm (Lehnecke 793-588), Schortens, 

Germany) in the drinking water together with 5% sucrose (Sigma, Taufkirchen, Germany) 

until they gave birth. 

 

 Toluidine blue assay 

 

To investigate the outside-in barrier, mice were dissected at indicated times and 

dehydrated and subsequently rehydrated in 25, 50, 75 and 100% methanol in 

phosphate-buffered saline (PBS), stained in 0.1% toluidine blue in PBS, and 

washed with PBS.  

 

 Histology and immunohistochemistry 

 

Skin samples were either embedded in paraffin or snap frozen on dry ice and embedded in 

Tissue-Tek® O.C.T.TM Compound (Sakura Finetek, Alphen aan den Rijn, Netherlands). 

For histological investigations Giemsa or H&E stainings of paraffin sections were used. 
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Epidermal thickness and sebaceous gland area were measured on 60 visual fields over a 

length of 39.2 mm, thickness was determined at 180 constantly distributed measuring 

points. Pictures were taken with a 200x magnification lens using a Leica DFC425C digital 

camera (Leica Microsystems, Wetzlar, Germany) and the LAS software version 3.8.0 

(Leica Microsystems) was used for analysis. HFs of controls and LRIG1-TG mice on 

indicated days were evaluated according to the HF morphogenesis and cycling stages as 

described elsewhere31,281. The total number (%) of HFs in distinct HF stages was counted. 

HF density was determined on 19 (HF density at P0) or 37 (HF density at two months) 

visual fields (12.4 mm or 24.1 mm epidermis). The mean number of HFs per visual field is 

presented. Only HFs that have contact to the IFE were considered. Paraffin- or cryo-

sections were used for immunofluorescence or immunohistochemical stainings as 

described previously161. A 10 mM sodium citrate buffer (pH 6.0) was used as antigen 

retrieval for all paraffin embedded skin samples. All used primary and secondary 

antibodies and their dilution are listed in 3-3 Supplementary material, Table 3-1. 

 

 Western blot analysis 

 

For Western blot analysis Laemmli-extraction-buffer was used to extract proteins from 

skin samples and a bicinchoninic acid protein assay was used to estimate protein 

concentrations. 20 µg of total protein were separated by SDS-PAGE, transferred to PVDF 

membranes (Millipore, Schwalbach, Germany) and immunoblotted against antibodies as 

indicated. Membranes were stripped with a stripping buffer (2% SDS, 62.5 mM Tris/HCl, 

pH 6.7 and 100 mM β-mercaptoethanol) for 40 min at 70 °C to detect reference proteins 

and to analyze the phosphorylated state as well as the total protein. Densitometrical 

analysis was done using ImageJ (http://rsb.info.nih.gov/ij). All primary and secondary 

antibodies and their dilutions are listed in 3-3 Supplementary material, Table 3-1. 

 

 Quantitative RT-PCR 

 

For RNA analysis, total RNA was isolated from back skin with TRIZOL reagent 

(Invitrogen, Darmstadt, Germany) and 3 µg RNA were reverse-transcribed in a final 

volume of 30 µL using RevertAid Reverse Transcriptase (Thermo Scientific, Schwerte, 

Germany) according to the manufacturer’s instructions. The StepOnePlus™ Real-Time 

PCR System (Applied Biosystems, Waltham, USA) and the PowerUp™ SYBR® Green 
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Master Mix (Applied Biosystems, Waltham, Massachusetts, USA) were used for 

quantitative real-time PCR (qPCR) according to the manufacturer’s instructions. 2 µL of 

cDNA in final reaction volume of 10 μl were used and the final primer concentration was 

0.5 µM. Cycle conditions were 95 °C for 2 min followed by 40 cycles of 95 °C for 15 s, 60 °C 

for 15 s, and 72 °C for 1 min. For Quantification the threshold cycle (CT) number was used. 

We performed no-template control and no-RT control assays, which produced negligible 

signals with CT values that were greater than 35. Experiments were performed in 

duplicates or triplicates for each sample. Primers used for qPCR are listed in Table S2. 

Transcript copy numbers were normalized to ribosomal protein L30 (Rpl30). 

 

 Statistical analysis 

 

Quantitative RT-PCR values were related to the mean value of the control group 

and compared by Student’s t-test (Prism; GraphPad Software, San Diego, CA), data 

are presented as box plots with medians. Hair follicle cycle data were analyzed by 

Mann-Whitney U-test and the remaining data were analyzed with Student’s t-test. 

Data are presented as means±standard error of the mean (SEM) unless otherwise 

indicated. Group differences were considered to be statistically significant if 

P<0.05.  

 

 Results 

 

 Prenatal LRIG1 overexpression in the skin results in disturbed 

differentiation and neonatal lethality 

 

To investigate the function of LRIG1 during skin development and homeostasis we 

generated a skin-specific inducible, Keratin 5 (KRT5) promoter-driven transgenic (TG) 

mouse line using the Tet-Off system. Double transgenic KRT5-tTA;LRIG1 mice 

(LRIG1-TG) skin-specifically overexpress LRIG1 in the basal cells of the interfollicular 

epidermis and pilosebaceous unit (3-3 Supplementary material, Figure 3-7a,f). LRIG1-TG 

mice died within one week after birth. At embryonic stages, the distribution of genotypes 

corresponded to the expected Mendelian ratio (3-3 Supplementary material, Figure 3-7b). 

Newborn LRIG1-TG mice showed open eyes and short, thick whiskers (Figure 3-1a). Skin 
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permeability was analyzed by toluidine blue staining. The outside-in barrier was not 

affected in LRIG1-TG mice at embryonic day E17.5, E18.5 or at birth, additionally we 

found no alteration in the bodyweight (3-3 Supplementary material, Figure 3-7c,d). 

Figure 3-1 LRIG1 overexpression was neonatal lethal and resulted in impaired HF morphogenesis 

and epidermal differentiation. 

(a) Representative pictures of an eye and whiskers of a newborn LRIG1-TG mouse and a control. 

(b) Percentage of HFs found in the different hair morphogenesis stages at P0. (c) HF density in LRIG1-TG 

and control mice. (d) Giemsa staining of back skin of LRIG1-TG and control mice at P0 in indicated 

morphogenesis stages. Scale bars represent 100 µm. (e) Immunofluorescence stainings against keratin 5, 10 

and 6 (KRT5, KRT10, KRT6), loricrin (LOR), E-Cadherin (CDH1) and occludin (OCLN) (green) on back skin 

of LRIG1-TG and control mice at P0. Scale bars represent 50 µm. Data in (b) and (c) are means±SEM and 

were analyzed by Mann-Whitney U-test (n=4). *P<0.05, ***P<0.001. 
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Morphometric studies revealed no differences in epidermal thickness or proliferation of 

back skin of newborn LRIG1-TG mice and controls (3-3 Supplementary material, 

Figure 3-7e,f,g). Besides orthologous cornification, the histology of the TG skin appeared 

normal. However, HF morphogenesis was severely impaired and HF density was 

significantly reduced in LRIG1-TG mice (Figure 3-1c). While control HFs were mainly in 

morphogenesis stage 5, TG HFs were still in stage 4 at P0 (Figure 3-1b,d). Additionally, 

LRIG1-TG mice showed altered differentiation and ectopic expression of keratin 6 (KRT6) 

in the IFE. Immunofluorescence also revealed an increased expression of keratin 10 

(KRT10), with no obvious differences in KRT5, loricrin (LOR) or E-cadherin (CDH1) 

(Figure 3-1e). However, olccudin (OCLN) was mainly expressed in the basal layer of the 

IFE in newborn LRIG1-TG mice, while controls revealed OCLN expression also in upper, 

more differentiated epidermal layers (Figure 3-1e). These findings point to a delayed HF 

morphogenesis and a disturbed differentiation of the skin due to LRIG1 overexpression, 

leading probably to postnatal lethality.  

 

 ERBB2 activation is decreased in newborn LRIG1-TG mice 

 

To determine whether LRIG1 affects ERBB signaling in skin, receptor expression was 

analyzed by immunofluorescence and Western blots. Regarding ERBB localization, EGFR 

and ERBB3 were expressed throughout the IFE, whereas ERBB2 expression was present 

in more differentiated epidermal layers in TG and control animals (Figure 3-2a). 

Moreover, ERBB2 phosphorylation and ERBB3 expression were decreased upon LRIG1 

overexpression, ERBB2 was also less activated, but the EGFR level was unchanged 

(Figure 3-2b,c). However, Western blot analysis of ERBB downstream targets revealed a 

decreased activation of RAC-alpha serine/threonine-protein kinase (AKT) but no influence 

on mitogen-activated protein kinase 1/2 (MAPK1/2) (Figure 3-2b,c). In addition, we 

investigated the expression of NOTCH1 receptor due to its role in embryonic development, 

but found no differences (3-3 Supplementary material, Figure 3-7f). In summary, LRIG1 

overexpression induces a decrease of ERBB2 activation and ERBB3 expression in neonatal 

skin, but shows no effect on proliferation or NOTCH1 signaling. 
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Figure 3-2 ERBB2 activation was decreased in newborn LRIG1-TG mice. 

(a) EGFR, ERBB2, and ERBB3 expression (green) by immunofluoresence stainings on back skin of LRIG1-

TG and control mice at P0. Scale bars represent 50 µm. (b) Western blot and (c) densitometrical analysis of 

phosphorylated and total ERBB receptors (ERBB1-3), MAPK1/2 and AKT. GAPDH was used as reference 

protein. Data are means+SEM and were analyzed by Student’s t-test (n=6). *P<0.05, **P<0.01. 
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 Postnatal induced LRIG1 overexpression leads to alopecia and 

hyperproliferation 

 

Figure 3-3 Postnatal induced LRIG1 overexpression caused alopecia and hyperplasia. 

(a) Picture of a three-month-old LRIG1-TG mouse (*) showing alopecia and a control mouse. (b) H&E staining 

of back skin of six-month-old LRIG1-TG and control mice. (c) Body weight of LRIG1-TG mice and controls. 

(d) MKI67-immunohistochemistry on back skin of a six-months-old LRIG1-TG and control mouse. 

(e) Epidermal thickness and area of sebaceous glands (SGs) of six-month-old LRIG1-TG mice. 

(f) Immunofluorescence on back skin of a LRIG1-TG and control mouse for indicated differentiation markers 

(green). Cell nuclei are stained with DAPI (blue). (g) HF density in two-month-old LRIG1-TG and control 

mice. All data are means+SEM and were analyzed by Student’s t-test or Mann-Whitney U-test (n=4). 

**P<0.01, ***P<0.001. Scale bars in (b) and (d) represent 50 µm, (f) 20 µm. 



Epidermal overexpression of LRIG1 disturbs development and 

homeostasis in skin by disrupting the ERBB system 

 

  

48 

To evaluate the impact of LRIG1 in skin homeostasis, we suppressed LRIG1 

overexpression until birth by the application of doxycycline to pregnant mice. Accordingly, 

we obtained postnatal, skin-specifically LRIG1 overexpressing TG mice (3-

3 Supplementary material, Figure 3-7h,i) in a Mendelian ratio. Phenotypical studies 

revealed that LRIG1-TG mice started to lose their hair coat at the age of ten weeks and 

developed alopecia later on. After six months, TG animals showed a reduced bodyweight 

and developed hyperkeratosis, malformed HFs, significantly decreased in their density, 

hyperplasia of SGs and IFE with increased proliferation (Figure 3-3a-e,g). The enlarged 

SGs resulted in significantly increased sebum secretion in adult mice (data not shown). 

Regarding epidermal differentiation, LRIG1-TG mice showed an increase in KRT10 and 

LOR expression (Figure 3-3f). Furthermore, ectopic KRT6 expression occurred in the IFE 

of TG mice like in newborn animals, showing the disturbed epidermal balance between 

differentiation and proliferation during homeostasis (Figure 3-3f). These data 

demonstrate a crucial impact of LRIG1 overexpression on skin homeostasis. LRIG1-TG 

mice show alopecia and hyperplasia of IFE and SGs, which is consistent with 

hyperproliferation and altered differentiation. 

 

 Expression and activation of EGFR is decreased due to epidermal 

LRIG1 overexpression 

 

As LRIG1 overexpression caused a severe skin phenotype, we investigated the impact on 

the ERBB network in skin samples of six-month-old mice by Western blot analysis. EGFR, 

ERBB2 and phosphorylated EGFR were significantly reduced in LRIG1-TG mice, 

resulting in decreased EGFR activation (Figure 3-4a,b). The decrease of MAPK1/2 and 

AKT expression and their phosphorylated forms are in accordance with the 

downregulation of ERBB signaling, but no differences in MAPK1/2 or AKT activation were 

detected (Figure 3-4a,b). Evaluation of the effect of LRIG1 overexpression on ERBB 

signaling in adult mice revealed a significant downregulation of the EGFR/ERBB2 

pathway. 
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 LRIG1 overexpression disturbs the hair follicle cycle 

 

LRIG1-TG mice showed severe abnormalities in the HF cycle. While the first catagen stage 

at day P18 seemed to be unaffected, LRIG1-TG mice revealed an accelerated transition to 

anagen at P21 (Figure 3-5). Control HFs were mainly in telogen phase whereas HFs of 

LRIG1-TG mice showed predominantly anagen I-II morphology. However, at the end of 

the first growth phase (P28), HFs of both groups remained in anagen stages V or VI. 

Nevertheless, TG animals developed strongly malformed HFs. Further, at P45, LRIG1-TG 

mice revealed a more progressed HF cycle, similar to the first telogen to anagen transition 

(Figure 3-5). As the HF cycle proceeded, LRIG1-TG mice showed a broad distribution of 

anagen HFs while control HFs regenerated more slowly. In conclusion, HF cycle analysis 

revealed a severe impairment of telogen-anagen transition in LRIG1-TG mice compare to 

controls. 

 

 

 

Figure 3-4 EGFR expression and activation were decreased in adult LRIG1-TG skin. 

(a) Western blot and (b) densitometrical analysis of phosphorylated and total ERBB receptors (ERBB1-3) and 

their downstream targets MAPK1/2 and AKT in skin samples of six-month-old LRIG1-TG and control mice. 

H3F3A was used as reference protein. Data are means+SEM and were analyzed by Student’s t-test (n=4). 

*P<0.05, **P<0.01, ***P<0.001. 



Epidermal overexpression of LRIG1 disturbs development and 

homeostasis in skin by disrupting the ERBB system 

 

  

50 

 

Figure 3-5 The hair follicle cycle of LRIG1-TG mice was severely impaired. 

Quantitative histomorphometry of Giemsa-stained back skin of LRIG1-TG and control mice at indicated 

postnatal days with percentage of HFs found in the different HF stages. Data are means±SEM and were 

analyzed by Mann-Whitney U-test (n=4-6). *P<0.05, **P<0.01, ***P<0.001. Scale bars represent 100 µm. 
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 NOTCH signaling and SC compartments is activated by LRIG1 

overexpression at alopecia onset 

 

Ten weeks after birth LRIG1-TG mice start to lose their hair. Therefore, we used skin 

samples of LRIG1-TG and control animals at P60 to analyze the early phenotypical and 

cell biological changes and to address the question if LRIG1 also has PC function outside 

its niche. First, the ERBB system, important for terminal differentiation and proliferation 

of PCs in the skin28, and NOTCH1 signaling, crucial in cell fate decision3,276,277, were 

studied by Western blot analysis. Contrary to the results of six-month-old animals, the 

expression of EGFR and ERBB3 was increased but their activation was significantly 

decreased at P60 (Figure 3-6a,b). Furthermore, activation of ERBB2 and the expression of 

its phosphorylated form were highly increased in LRIG1-TG mice. Consistent with 

EGFR/ERBB3 downregulation, MAPK1/2 expression and activation was decreased 

(Figure 3-6a,b). Investigations of NOTCH1 signaling revealed increase of cleaved 

NOTCH1 receptor and activation of its downstream targets like recombining binding 

protein suppressor of hairless (RBPJ), mastermind-like protein 1 (MAML1), Myc proto-

oncogene protein (MYC) and transcription factor HES-1 (HES1). A disintegrin and 

metalloproteinase domain-containing protein 17 (ADAM17), involved in the proteolytic 

cleavage and activation of NOTCH1282, and G1/S-specific cyclin-D3 (CCND3), an 

important regulator of the cell-cycle during G1/S transition283, were not affected 

(Figure 3-6c,d). Additionally, proliferation was highly enhanced in LRIG1-TG animals 

(Figure 3-6c,d). Further, we used qPCR to investigate epidermal SC marker transcripts in 

the back skin of LRIG1-TG and control mice at P60 (Figure 3-6e). Our data argue for an 

increase of SC markers of the bulge and SGs. Blimp1, defining a progenitor population in 

SGs45, like Plet1/MTS2446, were increased in LRIG1-TG mice compared to control 

littermates. Transcripts of the bulge SC markers Cd3435 and Lhx2284 were also increased 

while the transcripts Lgr6285, Nfatc1286 and Lgr5287 revealed no differences (Figure 3-6e). 

Analysis of the early onset of alopecia in LRIG1-TG mice and controls indicated an 

influence of LRIG1 on ERBB and NOTCH1 signaling, both involved in PC regulation. In 

addition, LRIG1 overexpression led to an increase of SG and bulge SC markers pointing 

to an activation of both SC pools. 
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Figure 3-6 LRIG1-TG mice showed altered ERBB and NOTCH signaling at the onset of alopecia. 

Western blot and densitometrical analysis of (a,b) phosphorylated and total ERBB receptors (ERBB1-3), 

MAPK1/2 and AKT and (c,d) NOTCH1 receptor, ADAM17 and activated NOTCH1 targets as indicated in skin 

samples of LRIG1-TG and control mice at P60. TUBA1A or GAPDH were used as reference protein. Data are 

means+SEM and were analyzed by Student’s t-test (n=4). (e) Relative expression of indicated skin stem cell 

marker transcripts in the back skin of LRIG1-TG and control mice at P60. Transcript copy numbers were 

normalized to Rpl30. Data are presented as box plots with medians and were analyzed by Student’s t-test 

(n=5). *P<0.05, **P<0.01, ***P<0.001. 
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 Discussion 

 

A balanced proliferation and differentiation are crucial during skin development and 

homeostasis. The ERBB receptor signaling has important functions in these processes and 

feedback mechanisms are indispensable for its proper control184. LRIG proteins are 

involved in ERBB feedback loop modulation192,193,224 and are often dysregulated in various 

diseases and thus are suitable prognostic markers 209. Little is known about the function 

of LRIGs in the skin. LRIG1 expression is located to PCs in the isthmus of HFs43 and its 

loss resulted in a psoriasiform epidermal hyperplasia221. The underlying molecular 

mechanisms of LRIG1 activity remain still unclear until today. Therefore, we generated a 

skin-specific gain-of-function mouse model and investigated the influence of LRIG1 

overexpression on skin and the ERBB system during development and homeostasis. 

Overexpression of LRIG1 during morphogenesis resulted in postnatal lethality. The 

phenotype of LRIG1-TG mice at P0 was similar to that of EGFR KO mice with open eyes 

and abnormal whiskers169. The delayed HF morphogenesis and the decreased HF density 

in LRIG1-TG mice together with the orthologue cornification and the altered 

differentiation suggest mortality due to a disturbed skin barrier288. However, the toluidine 

blue assay revealed no differences in the outside-in barrier, pointing to an effect on the 

inside-out barrier. In addition, in controls OCLN was expressed in several epidermal 

layers, whereas in LRIG1-TG mice it was mainly found in the basal layer. These findings 

indicate failure in the formation of tight junctions during epidermal development, also 

important for an intact inside-out barrier289,290. Newborn LRIG1-TG animals presented 

changes in ERBB receptor signaling. Although expression of all receptors and their 

phosphorylated forms tended to be downregulated upon LRIG1 overexpression, only the 

decrease in ERBB3 and phosphorylated ERBB2 expression were significant. Beside the 

decreased activation of ERBB2 we found a reduced activation of its downstream target 

AKT in LRIG1-TG animals. ERBB2 and ERBB3 preferably form heterodimers and induce 

intracellular signaling which seems to be decreased in the skin of LRIG1-TG mice291. Our 

model suggests an important role of LRIG1 on ERBB signaling during skin development, 

but ERBB receptors play different roles in epidermal homeostasis and 

development169,292,293. To analyze the function of LRIG1 during homeostasis in more detail 

we performed a long-term study: we inhibited LRIG1 overexpression until birth by 

doxycycline treatment und obtained TG animals in a Mendelian ratio. Notably, adult 

LRIG1-TG mice developed alopecia similar to EGFR KO mice168, showed hyperplasia of 

the IFE and SGs and an altered epidermal differentiation resembling newborn TG mice. 
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Additionally, LRIG1-TG epidermis showed a higher proliferation rate and a decreased 

activation of EGFR together with decreased expression of EGFR and ERBB2. Inhibition 

of EGFR or ERBB2 impairs new hair growth293 and keratinocyte differentiation294, and 

both effects were detected in LRIG1-TG mice. Down-regulation of ERBB receptors was in 

line with the decreased phosphorylation of their main downstream targets MAPK1/2 and 

AKT. In vitro overexpression of LRIG1 seems to induce EGFR downregulation as 

previously reported192,193,224. Otherwise, the loss of LRIG1 in vivo in the murine intestine 

resulted in an upregulation of ERBB1-3219. Investigating the skin of LRIG1-TG mice at 

the early onset of alopecia revealed an even more prominent effect on ERBBs. While the 

activation of EGFR and ERBB3 was significantly decreased, the activation of ERBB2 was 

increased, which can contribute to pathological processes295 and is often involved in 

cancer85,170. The reduced activation of MAPK1/2 supports these results. The altered ERBB 

signaling due to LRIG1 overexpression can be the reason for the disturbed HF cycle. EGFR 

deficient mice also showed a disturbed transition from anagen to catagen stage during the 

HF cycle, causing loss of hair and inflammation166,168. Nevertheless, to elucidate this 

question, further studies of HF stages are necessary. LRIG1 is known to promote 

quiescence in SCs43 and NOTCH1, expressed in the IFE and SG (Okuyama et al. 2004, 

Rangarajan et al. 2001), controls cell fate decision and therefore epidermal SCs by a 

juxtacrine cellular signaling pathway3,276,277. The loss of NOTCH results in disturbed 

epidermal differentiation (Rangarajan et al. 2001). At the onset of alopecia, LRIG1 

overexpression led to an increase of activated NOTCH1 together with several downstream 

targets like MYC. LRIG1 and MYC act in an autoregulatory loop296. MYC activation 

induces epidermal differentiation297 and MYC-positive PCs induce hyperplasia of IFE and 

SG274,298. This was also observed in TG mice, confirming the role of LRIG1 in PCs. 

Analyzing the transcripts of specific SC markers of bulge and SG, Cd34 and Lhx2 or 

Blimp1 and Plet1 respectively, revealed an activation of both pools, which may point to a 

general impact of LRIG1 on SCs outside its original niche in the isthmus. In conclusion, 

our gain-of-function model revealed a remarkable impact of LRIG1 on epidermal 

development and homeostasis disrupting ERBB signaling and affecting epidermal SCs. 

Prenatal overexpression of LRIG1 led to postnatal lethality, probably due to a disturbed 

epidermal barrier. However, during homeostasis, LRIG1 overexpression decreased EGFR 

activation and caused alopecia with epidermal hyperplasia and altered the HF cycle. 
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 Supplementary material 

 

In the following all supplementary figures and tables of the manuscript “Epidermal 

overexpression of LRIG1 disturbs development and homeostasis in skin by disrupting the 

ERBB system” are depicted.  

Figure 3-7 Figure S1. The LRIG1-TG mouse model during development and homeostasis. 

Immunofluorescence staining against (a), (i) LRIG1 and (g) MKI67 (green) on back skin of LRIG1-TG and 

control mice at indicated times. Cell nuclei are stained with DAPI (blue). (b) Genotype distribution at 

indicated embryonic stages. Control: wildtype, KRT5-tTA, TRE-LRIG1; LRIG1: TRE-LRIG1;KRT5-tTA. 

(c) Bodyweight of LRIG1-TG and control mice at indicated times. (d) Toluidine blue staining of murine 

embryos at E17.5, 18.5 and P0. Asterisks (*) indicate LRIG1-TG mice. (e) Thickness of the epidermis and the 

stratum corneum of LRIG1-TG and control mice at P0. (f) Western blot analysis of indicated targets. TUBA1A 

was used as reference protein. (h) Western blot analysis of LRIG1 in different organs of adult LRIG1-TG mice 

and controls (Co). BS, back skin; TS, tail skin; Li, liver; K, kidney; H, heart; Lu, lung; M, muscle. GAPDH was 

used as reference protein. Scale bars in (a) and (g) represent 50 µm, in (d) 1 cm, and in (i) 20 µm.  
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Table 3-1 Table S1. 

Antibodies employed for Western blot (WB) analysis, immunofluorescence (IF) and immunohistochemistry 

(IHC) with their dilution. 

Antigen Antibody App. Host Dilution 

LRIG1 R&D Systems,  Minneapolis, MN, USA, #AF3688 WB/IF goat 1:1000/1:200 

pEGFR (Tyr 1068) Cell Signaling, Boston, MA, USA, #3777 WB rabbit 1:1000 

EGFR Santa Cruz, Heidelberg, Germany, #03, WB rabbit 1:500 

EGFR R&D Systems,  Minneapolis, MN, USA, #AF1280 IF goat 1:200 

pERBB2 (Tyr 877) Cell Signaling, Boston, MA, USA, #2241 WB rabbit 1:1000 

ERBB2 Cell Signaling, Boston, MA, USA, #4290 WB rabbit 1:1000 

ERBB2 R&D Systems,  Minneapolis, MN, USA, #AF5176 IF sheep 1:200 

pERBB3 (Tyr 1289) Cell Signaling, Boston, MA, USA, #4791 WB rabbit 1:1000 

ERBB3 Cell Signaling, Boston, MA, USA, #12708 WB rabbit 1:1000 

ERBB3 R&D Systems,  Minneapolis, MN, USA, #AF4518 IF sheep 1:1000 

pMAPK1/2 

(Thr202/Tyr204) 
Cell Signaling, Boston, MA, USA, #4370 WB rabbit 1:1000 

MAPK1/2 Cell Signaling, Boston, MA, USA, #9102 WB rabbit 1:1000 

pAKT (Ser 473) Cell Signaling, Boston, MA, USA, #4060 WB rabbit 1:2000 

AKT Cell Signaling, Boston, MA, USA, #4691 WB rabbit 1:1000 

PCNA Cell Signaling, Boston, MA, USA, #13110 WB rabbit 1:1000 

MKI67 Dianova, Hamburg, Germany, #M7249 IF/IHC rat 1:200 

KRT5 BioLegend, San Diego, CA, USA, #905501 IF rabbit 1:800 

KRT6 BioLegend, San Diego, CA, USA, #905701 IF rabbit 1:800 

KRT10 BioLegend, San Diego, CA, USA, #905701 IF rabbit 1:800 

LOR BioLegend, San Diego, CA, USA, #905101 IF rabbit 1:800 

CDH1 R&D Systems,  Minneapolis, MN, USA, #AF748 IF goat 1:200 

OCLN 
OriGene Technologies GmbH, Herford, Germany, 

#AP30626PU-N 
IF rabbit 1:200 

NOTCH1 Cell Signaling, Boston, MA, USA, #3608 WB rabbit 1:1000 

ADAM17 BioRad, Hercules, CA, USA, #CD156B WB rabbit 1:500 

RBPJH Cell Signaling, Boston, MA, USA, #5313 WB rabbit 1:1000 
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MYC Cell Signaling, Boston, MA, USA, #5605 WB rabbit 1:1000 

MAML1 Cell Signaling, Boston, MA, USA, #12166 WB rabbit 1:1000 

HES1 Cell Signaling, Boston, MA, USA, #1988 WB rabbit 1:1000 

CCND3 Cell Signaling, Boston, MA, USA, #2936 WB mouse 1:1000 

TUBA1A Cell Signaling, Boston, MA, USA, #2125 WB rabbit 1:1000 

GAPDH Cell Signaling, Boston, MA, USA, #2118 WB rabbit 1:5000 

H3F3A Cell Signaling, Boston, MA, USA, #9717 WB rabbit 1:1000 

mouse α rat Jackson ImmunoResearch, Ely, UK‚ #212-066-168 IHC mouse 1:100 

donkey α rabbit 
Jackson ImmunoResearch, Ely, UK‚  

#711-546-152 
IF donkey 1:1000 

donkey α goat 
Jackson ImmunoResearch, Ely, UK‚  

#705-545-147 
IF donkey 1:1000 

donkey α sheep 
Jackson ImmunoResearch, Ely, UK‚  

#713-586-147 
IF donkey 1:1000 

rabbit α mouse Cell Signaling, Boston, MA, USA, #7076 WB rabbit 1:2500 

goat α rabbit Cell Signaling, Boston, MA, USA, #7074 WB goat 1:2500 

donkey α goat R&D Systems,  Minneapolis, MN, USA, #HAF109 WB donkey 1:2500 

 

Table 3-2 Table S2. 

Primers employed for the quantitative RT-PCR analysis. 

Lgr6 
Forward Primer 

Reverse Primer 

5′-TGTCAAGTCAGTCCTTCTGGTG-3′ 

5′-GGTAGAGCAGTGGGTTGAGG-3′ 

Blimp1 
Forward Primer 

Reverse Primer 

5′-CCACAGTGCCTTCTCCCTTA-3′ 

5′-GGGGGACTACTCTCGTCCTT-3′ 

Plet1 
Forward Primer 

Reverse Primer 

5’-GTGCCTGGCTCTGCACTTA-3’ 

5’-ACCACGCAGGACCCATTAT-3’ 

Cd34 
Forward Primer 

Reverse Primer 

5’-GAACCGTCGCAGTTGGAG-3’ 

5’-AACAGCCATCAAGGTTCCAG-3’ 

NfatC1 
Forward Primer 

Reverse Primer 

5′-TGTGGCCCTCAAAGTAGAGC-3′ 

5′-TCAGAAGTGGGTGGAGTGGT-3′ 

Lgr5 
Forward Primer 

Reverse Primer 

5′-GTGTCTTTTTGCCTTTTGACG-3′ 

5′-TGTCAGTCCAAGAAACTGGTGT-3′ 

Lhx2 
Forward Primer 

Reverse Primer 

5′-CAGCTTGCGCAAAAGACC-3′ 

5′-CGGGCATTCTGAAACCAG-3′ 

Rpl30 
Forward Primer 

Reverse Primer 

5’-AACAACTGTCCAGCTTTGAGG-‘3 

5’-GCATACTCTGTAGTATTTTCCACACG-‘3 
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 Conclusion and outlook 

 

Our study revealed a crucial function of LRIG1 during skin development and homeostasis. 

Prenatal LRIG1 overexpression led to neonatal lethality and caused disturbed epidermal 

differentiation and HF morphogenesis. Postnatal LRIG1 excess induced the development 

of alopecia accompanied by hyperplasia of the pilosebaceous unit and the IFE with 

hyperproliferation and a disturbed HF cycle. Our gain-of-function model revealed a 

disrupted ERBB receptor network, suggesting involvement of LRIG1 in the negative 

feedback loop regulation of ERBBs in the skin as reported for the intestine219. In contrast, 

NOTCH signaling was activated at the early onset of alopecia due to LRIG1 

overexpression. SC markers of the bulge and SG were increased, indicating LRIG1-

dependent activation of both SC pools and control of cell fate and differentiation3,276,277. 

Furthermore, in a loss-of-function mouse model, the deletion of LRIG1 also resulted in a 

severe epidermal phenotype, showing the development of psoriasis and epidermal 

hyperplasia221. In conclusion, an altered LRIG1 expression in the skin shows a remarkable 

influence on epidermal morphogenesis and homeostasis. However, mRNA expression of 

LRIG1 in the skin is low, whereas LRIG3 transcripts are most abundantly expressed203. 

Consequently, the question arises as to the function of the other two LRIGs in the skin. 

The loss of LRIG2 led to increased spontaneous mortality212 and LRIG3 is also involved in 

crucial developmental processes211,235, but nothing is known about their function in the 

skin. LRIG1 and LRIG3 show a very similar expression pattern during development and 

are rather homologous to each other than to LRIG2235,238. In contrast to LRIG1 though, 

LRIG3 increased ERBB receptor levels in HEK293T cells238, suggesting opposing functions 

of LRIG1 and LRIG3. Therefore, we hypothesize that LRIG3 induces ERBB up-regulation 

in the skin and that LRIG1 expression increases due to the negative ERBB feedback 

mechanism. In turn, LRIG1 initiates receptor degradation as well as a decrease of 

LRIG3224. We generated a LRIG3-TG mouse model, similar to LRIG1-TG mice, which will 

shed light on the underlying mechanism in future studies. However, investigation of 

LRIG3 expression in LRIG1-TG mice may also provide evidence for this theory. In 

addition, the function of LRIG2 seems also to differ from that of the other LRIG family 

members, although, currently there is no literature available on LRIG2 function in the 

skin. Especially with regard to carcinogenesis, LRIG2 acts as an oncoprotein in various 

tumors225,227, whereas LRIG1 and LRIG3 show tumor suppressive functions207,209. Even 

though LRIG2 enhances EGFR/PI3K/AKT signaling227, it appears to have no major impact 

on ERBB expression levels224. In the context of this thesis, the function of LRIG2 in the 
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skin during homeostasis and tumorigenesis and its influence on the ERBB network was 

investigated (see Chapter 4). In conclusion, the function of LRIG proteins in the skin might 

be very distinct and their impact on skin diseases, as well as on their role as prognostic 

factors for tumor therapy has to be examined very carefully. The identification of LRIG 

interaction partners and especially the influence of LRIGs on the ERBB system in the skin 

is highly important with respect to prospective therapy approaches of NMSC. 
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 The transmembrane protein LRIG2 

increases tumor progression in skin carcinogenesis 

 

 Aim 

 

High cumulative sun exposure and a history of sunburns are the causes of 90% of NMSC 

incidences, and numbers are remarkably increasing in recent years, especially in younger 

people75. Particularly cSCC occurrence correlates directly with the number of hours 

patients spent in the sun79. UV radiation results in the upregulation of EGFR87 and 

ERBB288, which is in accordance with an altered ERBB receptor expression in NMSC160. 

ERBB inhibitors are commonly used in cancer therapy299. However, their side effects are 

undesirable, and novel, more specific therapeutic targets could improve treatment 

strategies. Therefore, LRIG proteins arose our attention. As feedback loop regulators of 

the ERBB network193,227,238 and potential prognostic factors in different types of cancer207, 

LRIG proteins are promising targets in NMSC treatment. We found increased LRIG2 

expression in the cSCC cell line A431 compared to healthy keratinocytes and also an 

altered expression of LRIG2 in tissue samples of cSCC patients. Therefore, we proposed a 

tumorigenic impact of LRIG2 on cSCC. To analyze the impact of LRIG2 on skin 

homeostasis and tumorigenesis, in particular on NMSC, we developed a skin-specific TG 

mouse model, overexpressing LRIG2. 10% of SCC incidences show RAS activation300, and 
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cSCC arises from precursor lesions in a multi-stage model69, prompting our decision to 

apply a two-stage chemical carcinogenesis protocol to LRIG2-TG mice and control (Co) 

littermates. The model consists of an initiation and a promotion phase301. The initially 

required Ras mutation, predominantly HRas1, is induced by the application of the tumor 

initiating agent DMBA302, and the repeated administration of the chemical agent TPA 

triggers sustained epidermal hyperplasia and promotes tumor growth301. Papillomata 

arise due to the treatment, which may progress into invasive SCC and spindle cell 

carcinoma, dependent on the genetic background301. The following study focused on the 

impact of LRIG2 on the skin and skin carcinogenesis. We analyzed the influence of LRIG2 

excess on tumor initiation and progression in the skin, especially with regard to the ERBB 

system. Additionally, we used a TPA-induced epidermal dysplasia model to investigate 

the effect of LRIG2 during early hyperproliferative stages of tumor development. 

 

 Study 

 

This work is in the process of publication at Molecular Oncology (revision submitted July 

2019, under review). The following chapters depict the submitted manuscript. 

Authors: C. Hoesl, T. Fröhlich, J.E. Hundt, H. Kneitz, M. Goebeler, R. Wolf, M.R. 

Schneider, M. Dahlhoff 

Author contribution: Conception and design: MD, CH, MRS; Development of methodology: 

MD, CH, MRS; Acquisition of data (provided animals, acquired and managed patients 

provided facilities, etc.): MD, RW, MG, JEH; Analysis and interpretation of data: MD, CH, 

HK, TF, JEH; Writing, review, and/or revision of the manuscript: MD, CH; Study 

supervision: MD; Discussion of the experiments at planning stage and discussions of the 

results: MD, CH, MRS, MG, HK, TF, JEH; 

 

 Abstract 

 

In the last decades, non-melanoma skin cancer (NMSC) became more significant with over 

three million cases every year worldwide. The members of the ERBB receptor family are 

important regulators of skin development and homeostasis and, when dysregulated, 

contribute to skin pathogenesis. In this study, we investigated leucine-rich repeats and 
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immunoglobulin-like domains 2 (LRIG2), a transmembrane protein involved in feedback 

loop regulation of the ERBB receptor family, during NMSC. LRIG2 was identified to be 

up-regulated in various types of squamous cell carcinoma (SCC), but only little is known 

about LRIG2 in cutaneous SCC (cSCC). To investigate the function of LRIG2 in cSCC in 

vivo, we generated a skin-specific LRIG2 overexpressing transgenic mouse line (LRIG2-

TG) using the Tet-Off system. We employed the 7,12-dimethylbenz(a)anthracene/12-O-

tetra-decanoylphorbol-13-acetate (DMBA/TPA) two-stage chemical carcinogenesis model 

and analyzed the skin during homeostasis and tumorigenesis. LRIG2-TG mice revealed 

no alterations in skin development and homeostasis but showed interaction between 

LRIG2 and thrombospondin-1, often involved in angiogenesis and tumorigenesis. 

However, during carcinogenesis, transgenic animals showed significantly increased tumor 

progression and a more rapid development of cSCC. This was accompanied by changes in 

the ERBB system. After a single TPA application, inflammation of the epidermis was also 

impaired under LRIG2 overexpression. In human skin samples, LRIG2 expression was 

identified in the basal layer of the epidermis and in hair follicles of normal skin, but also 

in cSCC samples. In conclusion, epidermal LRIG2 excess is associated with accelerated 

tumor progression in NMSC and activated EGFR/ERBB4-MAPK signaling, making 

LRIG2 a potential oncoprotein in skin. 

 

 Introduction 

 

Excessive exposure to the sun and a history of sunburns are often linked to an increased 

incidence of malignant skin lesions75,79. Every third cancer diagnosis is skin cancer, the 

most common type of cancer amongst Caucasians, with up to 3 million new non-melanoma 

skin cancer (NMSC) cases per year worldwide63. Increasing NMSC incidences claim for 

the development of new therapies and prophylactic measures as well as for the 

optimization of screenings. NMSC arises from keratinocytes, and can be divided into basal 

cell carcinoma (BCC) or cutaneous squamous cell carcinoma (cSCC) depending on the cell 

type from which tumors develop64-66. Dysregulated growth factors and their receptors have 

a deep impact on tumor initiation and progression303. The epidermal growth factor receptor 

(EGFR, ERBB1, HER1) plays a crucial role in human cSCC84. The EGFR and the other 

members of the ERBB receptor family (ERBB2-4, HER2-4) are widely expressed in human 

epidermis161 and regulate key processes of epidermal homeostasis, including proliferation, 

differentiation, and cell death101. The deletion of ERBB4 in murine skin results in 

decreased epidermal thickness and keratinocyte proliferation161. Skin-specific ERBB2170 
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and ERBB3154 knockout mice revealed a major role of both receptors in NMSC promotion, 

and also EGFR plays a crucial role in skin carcinogenesis177,178,304. Signaling of the ERBB 

receptors is controlled by negative or positive feedback loops184. During pathogenic 

processes, the dysregulation of those pathways can also influence ERBB signaling in a 

tumorigenic manner177. The leucine-rich repeats and immunoglobulin-like domains 

(LRIG) family comprises three transmembrane proteins (LRIG1-3)200-203 involved in the 

regulation of receptor tyrosine kinases (RTKs) such as the ERBB receptors203,224. LRIG 

proteins attracted attention especially due to their potential as prognostic markers in 

different cancer types209. In the skin, LRIG1 is predominantly expressed in a stem cell pool 

of the hair follicle (HF)43, similarly to its expression in the intestine219 or stomach220, while 

LRIG2 and LRIG3 are expressed throughout the epidermis210. LRIG1 knockout mice 

develop psoriasis-like skin lesions221. It was shown that LRIG1 promotes EGFR, ERBB2, 

and ERBB3 degradation from the cell surface in a negative feedback loop188,192,193 and that 

the extracellular domain of LRIG1 decreases EGFR signaling in a paracrine manner218. 

LRIG3 opposes the function of LRIG1 and stabilizes the ERBB receptors at the cell surface 

of HEK293 cells224. While tumor suppressive functions of LRIG1252 and LRIG3255 were 

reported in malignant glioma, LRIG2 seems to act more as an oncoprotein212,225,227. LRIG2 

expression correlates with poor prognosis in SCC of the cervix and uterus, which show 

increased LRIG2 RNA levels242. However, although it is known that LRIG proteins can 

promote and suppress tumor growth in a tissue-specific manner208, the molecular 

mechanisms and their impact on tumorigenesis in the skin are mostly unknown. The aim 

of this study was to investigate the function of LRIG2 in the skin during development, 

homeostasis and tumorigenesis, and in particular its impact on the ERBB system. 

Therefore, we generated a skin-specific transgenic (TG) mouse line overexpressing LRIG2 

using the Tet-Off system. LRIG2-TG mice were viable and showed no major phenotype 

during development and homeostasis. However, when homeostasis was disrupted, 

overexpression of LRIG2 resulted in increased inflammation, angiogenesis and tumor 

progression along with an early onset of cSCC, affecting ERBB signaling and components 

of the extracellular matrix (ECM).  
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 Materials and methods 

 

 Cell culture 

 

HaCaT keratinocytes, A431 and A375 cells were purchased from CLS (Cell lines service, 

Eppelheim, Germany) four months before the experiments were performed. All human 

permanent cell lines in the CLS cell bank have been authenticated by using the STR DNA 

profiling analysis. Mycoplasma testing will be done every 6 months for all cultured cells 

using a mycoplasma detection kit (PlasmoTest, InvivoGen, Toulouse, France). Cells were 

cultured in DMEM® medium (Biochrom, Berlin, Germany) supplemented with 10% fetal 

calf serum (FCS, Biochrom) and 1% penicillin/streptomycin (Biochrom) in a humidified 

incubator with 5% CO2 at 37 ˚C. 

 

 Human samples 

 

Biopsy samples of cSCC were obtained from 10 patients between 71 and 92 years of age. 

They were obtained at the Department of Dermatology, University Hospital Würzburg, 

Germany, and taken from the following anatomical sites: cheeks (3 patients), forehead (3 

patients), nose, ear, dorsum of the hand and lower leg (1 patient each). Eight of these 

patients were diagnosed at stage I (pT1G1: 6 patients, pT1G2: 2 patients) and two at stage 

II (pT2G2 and pT2G3: one patient each) as classified according to the 8th Edition of the 

staging manual of the American Joint Committee on Cancer (AJCC-8)305. Skin samples 

from non-diseased skin of 10 individuals served as controls. Analysis of human tissue 

samples was approved by the Ethics Committee of the Medical Faculty, University of 

Würzburg, Germany (reference number #169/12). 

 

 Mice 

 

Mice were maintained under specific-pathogen-free conditions and had access to water 

and standard rodent diet (V1534; Ssniff, Soest, Germany) ad libitum. C57BL/6N mice 

expressing the tetracycline-regulated transcriptional transactivator (tTA) under the 

keratin 5 (KRT5) promoter have been originally described previously280. We cloned murine 

Lrig2 cDNA into the pTRE-tight vector (Clontech) (pTRE-tight-LRIG2-TG mouse line) or 



The transmembrane protein LRIG2 increases tumor progression in 

skin carcinogenesis 

 

  

66 

fused Lrig2 cDNA with a sequence encoding the human influenza hemagglutinin (HA)-

epitope C-terminally (pTRE-tight-HA-LRIG2-TG mouse line), and used these constructs 

to generate two independent TG mouse lines by pronuclear microinjection into zygotes of 

C57BL/6N mice. To obtain two independent TG KRT5-LRIG2 mouse lines expressing 

transgenic LRIG2 skin-specifically, the KRT5-tTA mouse line was mated with either the 

pTRE-tight-LRIG2- or the pTRE-tight-HA-LRIG2-TG mouse line. Mouse strains were 

maintained in the C57BL/6N background. For further studies we used the HA-tagged TG 

mouse line, referring to as LRIG2-TG. 

To study proliferation rates of twelve-month-old mice, 10 mM bromodeoxyuridine (BrdU, 

Roche, Mannheim, Germany) dissolved in PBS were injected intraperitoneal to the mice 

(30 mg/kg body weight) three hours before dissection. 

To inhibit LRIG2-TG expression, 3 mg/mL doxycycline (Dox) (Beladox 500 mg/g, bela-

pharm (Lehnecke 793-588), Schortens, Germany) was added to the drinking water 

together with 5% sucrose (Sigma, Taufkirchen, Germany) for two weeks.  

LRIG2-TG mice and controls (Co) were dissected at indicated time points, skin samples 

were fixed in 4% paraformaldehyde (PFA, Sigma, Taufkirchen, Germany), dehydrated, 

and embedded in paraffin or snap-frozen and stored at -80 °C until use. All murine 

experiments were approved by the Committee on Animal Health and Care of the local 

governmental body of the state of Upper Bavaria (Regierung von Oberbayern), Germany, 

and were performed in strict compliance with the European Communities Council 

Directive (86/609/EEC) recommendations for the care and use of laboratory animals. 

 

 Chemical skin carcinogenesis and TPA-induced epidermal dysplasia 

 

Chemical carcinogenesis was carried out as described elsewhere, according to 

internationally accepted standards301. For tumor initiation, the carcinogen 7,12-

dimethylbenz(a)anthracene (100 µL DMBA dissolved in acetone, 400 nmol, Sigma-

Aldrich) was applied once to the shaved back skin of seven-week-old, female LRIG2-TG 

mice and controls. Tumor promotion was achieved by repeated application of the tumor 

promoting agent 12-O-tetra-decanoylphorbol-13-acetate (50 µL TPA dissolved in ethanol, 

10 nmol, Sigma Aldrich) twice a week for 24 weeks. Tumor development was assessed 

weekly. 

To investigate the effect of LRIG2 during early hyperproliferative stages, shaved back skin 

of nine-week-old LRIG2-TG mice and controls were exposed to a single dose of TPA (50 µL 
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TPA dissolved in ethanol, 10 nmol, Sigma Aldrich). Mice were euthanized 48 h after TPA 

application. Skin samples were processed as described before.  

 

 Co-immunoprecipitation and Western blot analysis 

 

Protein was extracted by using Laemmli extraction buffer for skin samples or protein lysis 

buffer (0.05 M Hepes pH 7.5, 10% glycerol, 0.15 M NaCl, 1% Triton X-100, 0.5 M EDTA, 

0.5 M EGTA, 0.01 M NaF, 0.025 M β-glycerol phosphate, 0.01 M Na3Vo4, Phosphatase 

inhibitor cocktail (Roche)) for cell lysates or skin samples used for co-immunoprecipitation 

(IP) experiments. Protein concentration was estimated by bicinchoninic acid protein assay. 

300 µg of total protein were used for co-immunoprecipitation with 1.8 µg HA-Tag antibody 

and Dynabeads® Protein G (Invitrogen, Carlsbad, CA, United States). Protein lysates 

were pre-cleared with Dynabeads® Protein G for 60 min at 4 °C and immunoprecipitated 

with the HA-Tag antibody conjugated to the beads for 2 h at 4 °C. Samples were washed 

and elution was done with 2x Laemmli extraction buffer by heating at 95 °C for 5 min. For 

Western blot analysis half of the co-IP eluate or 5-20 µg of total protein were separated by 

SDS-PAGE, transferred to PVDF membranes (Millipore, Schwalbach, Germany) and 

immunoblotted (IB) against antibodies as indicated. For reference proteins and to analyze 

the phosphorylated state as well as the total protein, we stripped the membranes by 

incubating them with a stripping buffer (2% SDS, 62.5 mM Tris/HCl, pH 6.7 and 100 mM 

β-mercaptoethanol (BME)) for 40 min at 70 °C. Afterwards membranes where washed, 

blocked and incubated with the second primary antibody. All primary and secondary 

antibodies and their dilutions are provided in 4-3 Supplementary material, Table 4-1. 

Densitometrical analysis was done using ImageJ (http://rsb.info.nih.gov/ij). 

 

 Histology, immunohistochemistry, and morphometric analysis 

 

Skin samples were either embedded in paraffin or snap frozen on dry ice and embedded in 

Tissue-Tek® O.C.T.TM Compound (Sakura Finetek, Alphen aan den Rijn, Netherlands). 

Giemsa or hematoxylin and eosin (H&E)-staining, immunofluorescence, and 

immunohistochemistry were performed as described previously161. Giemsa and H&E-

stained sections were employed for histological analysis. For analysis of LRIG2 expression 

in human tissue samples and the detection of proliferating cells (MKI67 or BrdU positive), 

immunohistochemical staining were performed. Briefly, sections were boiled in 10 mM 

sodium citrate buffer (pH 6.0) for antigen retrieval, and the endogenous peroxidase was 

http://rsb.info.nih.gov/ij
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blocked with 3% H2O2 for 15 min. Slides were blocked with 5% serum from the secondary 

antibody host and incubated overnight at 4 °C with indicated antibodies. After being 

washed in Tris-buffered saline solution, the slides were incubated for 1 h with appropriate 

secondary biotin-conjugated antibodies followed by 30 min incubation with streptavidin-

biotin complex (Vector Laboratories, Burlingame, USA). ImmPACT® AMEC Red or DAB 

Peroxidase (HRP) substrate (Vector Laboratories) were used as chromogen. 

Counterstaining was performed with hematoxylin. Immunofluorescence stainings were 

performed accordingly without blocking endogenous peroxidase and incubation with the 

streptavidin-biotin complex. Additionally, the M.O.M. Immunodetection Basic kit (Vector 

Laboratories) was applied to murine sections if primary antibodies were raised in mice. 

All primary and secondary antibodies and their dilution are listed in 4-3 Supplementary 

material, Table 4-1. For morphometric investigations, three different H&E- or Giemsa-

stained back skin sections were analyzed. Per animal, 60 pictures covering a total length 

of 39.2 mm of back skin epidermis were taken with a 200x magnification lens using a Leica 

DFC425C digital camera (Leica Microsystems, Wetzlar, Germany). The area of all visible 

SGs was recorded with LAS software version 3.8.0 (Leica Microsystems) and employed to 

calculate the mean gland area. Epidermal thickness was investigated on the same sections 

on three constantly distributed measuring points per picture, resulting in a total of 180 

measuring points per animal. To analyze the epidermal proliferation rate, BrdU- or 

MKI67-stained sections were evaluated and the total number of epidermal nuclei and the 

total number of BrdU or MKI67 positive nuclei were determined similarly on 60 images 

covering a length of 39.2 mm. 

 

 Gelatin zymography 

 

Gelatin zymography was performed as described previously306. Briefly, protein samples 

(50 µg) lysed in protein lysis buffer were separated on an 8% acrylamide gel with 1% 

gelatin. Gels were incubated in a renaturation-buffer (2.5% Triton X-100 in H2O), followed 

by a 20 h developing step in the incubation buffer (500 mM TRIS, 2 M NaCl, 50 mM CaCl2, 

50 µM ZnCl2) at 37 °C, stained with Coomassie Brilliant Blue R and washed with 

decolorizing solution (5% methanol, 7% acetic acid). Proteinase-activities were determined 

by densitometrical analysis of the inverse band intensities using ImageJ.  
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 Mass-spectrometry analysis 

 

For mass spectrometry analysis reduced (8% BME) and non-reduced protein samples of 

LRIG2-TG back skin and controls were separated by SDS-PAGE. Gels were stained with 

Coomassie Brilliant Blue R, and protein bands above 300 kDa were excised. To reduce 

disulfide bonds, the gel slices were incubated in 45 mM dithioerythritol / 50 mM NH4HCO3 

for 30 min at 55 °C. Free sulfhydryl groups were blocked using 0.1 M iodoacetamide in 

50 mM NH4HCO3 at room temperature for 2 x 15 min. For digestion, gel pieces were 

minced and covered with 100 ng porcine trypsin in 50 mM NH4HCO3 (Promega, Madison, 

WI, USA). Peptides were separated on a C18 column (PepMap RSLC, C18, 2 µm, 100A, 

75 µm x 50 cm, Thermo Scientific, Rockford, IL, USA) at a flow rate of 200 nL/min using 

an EASY-nLC 1000 system (Thermo Scientific, Rockford, IL, USA). The gradients 

consisted of a 120 min ramp from 2% to 25% B (100% acetonitrile, 0.1% formic acid) and a 

consecutive ramp to 50% B within 10 min. Mass spectra were acquired using a top 5 data-

dependent method on an online coupled LTQ Orbitrap XL instrument (Thermo Scientific, 

Rockford, IL, USA). Spectra were searched using MASCOT V2.4 (Matrix Science Ltd, 

London, UK) and the murine subset of the UniProt database. For evaluation of the data, 

Scaffold V 4.1 (Proteome Software, Inc, Portland, OR, USA) was used. 

 

 RNA expression analysis 

 

Organs were homogenized in TRIzol reagent (Invitrogen, Darmstadt, Germany) for RNA 

isolation. 3 µg RNA were reverse-transcribed in a final volume of 30 µL using RevertAid 

Reverse Transcriptase (Thermo Scientific, Schwerte, Germany) according to the 

manufacturer’s instructions. For qualitative analysis of mRNA expression of HA-Lrig2, 

reverse transcription-PCR (RT-PCR) using reagents from Qiagen (Hilden, Germany) was 

performed. The final reaction volume was 20 μl, and cycle conditions were 94 °C for 5 min 

followed by 35 cycles of 94 °C for 1 min, 60 °C for 1 min, and 72 °C for 1 min. Following 

primers were employed: HA-Lrig2 forward primer 5′-GAGGCAGGCAGCCATCAGC-3′ and 

reverse primer 5′-TCAAGCGTAGTCTGGGACG-3′ and Gapdh forward primer 

5′-TCATCAACGGGAAGCCCATCAC-3′ and reverse primer 

5′-AGACTCCACGACATACTCAGCACCG-3′.  

Quantitative mRNA expression analysis was performed by quantitative real-time PCR 

(qPCR) using the StepOnePlus™ Real-Time PCR System (Applied Biosystems, Waltham, 

USA) and the PowerUp™ SYBR® Green Master Mix (Applied Biosystems) according to 
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the manufacturer’s instructions. The final primer concentration was 0.5 μM, and the final 

reaction volume was 20 μl, and cycle conditions were 95 °C for 2 min followed by 40 cycles 

of 95 °C for 15 s, 60 °C for 15 s, and 72 °C for 1 min. Quantitative values were obtained 

from the threshold cycle (CT) number, at which the increase in the signal associated with 

the exponential growth of PCR products begins to be detected. Absolute mRNA 

quantification was performed by using standard curves generated with a plasmid 

containing the murine Lrig2 cDNA. We performed no-template control and no-RT control 

assays, which produced negligible signals with CT values that were greater than 35. 

Experiments were performed in duplicates. The following primers were used: 

Lrig2-Fw: 5’-CACTGAAATACCTGAATTTGAGC-‘3, 

Lrig2-Rev: 5’-TCAGTTCCAAGAACTGGAGATG-‘3.  

 

 Statistical analysis 

 

Data are presented as mean±SEM and compared by Student’s t-test (GraphPad Prism 

version 5.0 for Windows, GraphPad Software, San Diego, CA, USA), and in the case of 

more than two groups by analysis of variance (ANOVA) and Tukey’s multiple comparison 

test. Incidence, papilloma burden, and size were analyzed by 2-way ANOVA. Group 

differences were considered to be statistically significant if P<0.05.  

 

 Results 

 

 LRIG2 is expressed in human skin cancer 

 

To evaluate the significance of LRIG2 in human skin homeostasis and tumorigenesis, we 

investigated LRIG2 expression in different human skin cell lines and tissue samples of 

healthy individuals and patients with cSCC. Western blot analysis revealed that LRIG2 

expression was significantly increased in human cSCC (A431) and melanoma (A375) cell 

lines compared to human keratinocytes (HaCaT) (Figure 4-1a). In normal human skin 

LRIG2 is predominantly expressed in the basal and lower spinous layer of the epidermis 

and in HFs with a mainly cytoplasmatic pattern. In upper spinous layers LRIG2 is also 

located in nuclei. cSCC samples revealed prominent LRIG2 expression in tumor cells with 

a predominantly nuclear staining pattern (Figure 4-1b). These data indicate a role of 

LRIG2 during the pathogenesis of cSCC in humans.  
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 Overexpression of LRIG2 has no influence on skin development and 

homeostasis 

 

To investigate the function of LRIG2 in the skin we generated two independent skin-

specific inducible transgenic mouse lines using the Tet-Off system. Both lines were mated 

with a keratin 5 promoter (KRT5-tTA) driver mouse line. As both mouse lines showed no 

phenotype, in spite of an overexpression of LRIG2 on RNA level (data not shown), the 

LRIG2 transgenic mouse line (LRIG2-TG) with a c-terminal HA-tag was used for all 

experiments descripted in this manuscript. LRIG2-TG mice were viable, showed no 

macroscopic phenotype, and bred in a Mendelian ratio (4-3 Supplementary material, 

Figure 4-7a). RT-PCR (4-3 Supplementary material, Figure 4-7b), qPCR (4-

3 Supplementary material, Figure 4-7d) and Western blot analysis (4-3 Supplementary 

material, Figure 4-7c) confirmed skin-specific overexpression of the transgene. Western 

blots revealed that LRIG2-TG animals treated for two weeks with doxycycline (Dox+) 

Figure 4-1 LRIG2 is expressed in human skin, cSCC, and human skin cell lines. 

(a) Western blot analysis of LRIG2 expression in HaCaT, A431, and A375 cells. TUBA1A was used as 

reference protein. Densitometrical analysis of LRIG2 in relation to TUBA1A reveals that LRIG2 is 

significantly higher expressed in both tumor cell lines compared to HaCaT keratinocytes. Data were analyzed 

by ANOVA and Tukey’s multiple comparison test. ***P<0.001. (b) Immunohistochemical visualization of 

LRIG2 expression (in red) in normal human skin and cSCC. Micrographs are representative for 10 cSCCs (8 

patients with stage I and 2 patients with stage II according to AJCC-8305, see Materials and Methods for 

details) and 10 normal skin samples. Magnification as indicated in the micrographs. 
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showed no transgene expression but endogenous LRIG2 levels comparable to those of 

control mice (4-3 Supplementary material, Figure 4-7e). LRIG2-TG mice showed no 

altered expression of the other LRIG family members LRIG1 and LRIG3 (4-

3 Supplementary material, Figure 4-7e). Immunofluorescence staining against the 

HA-tag revealed expression of LRIG2 in the epidermis and HFs of transgenic animals 

(Figure 4-2a). Histologically, LRIG2 overexpression had no effect on skin at any time 

under homeostatic conditions (Figure 4-2b), not even in a long-term study (up to 12 

months). While the HF cycle was not impaired in LRIG2-TG mice, they showed 

Figure 4-2 Skin-specific overexpression of LRIG2 causes no phenotypical alterations.  

(a) Immunofluorescence staining against HA-tag in the skin of a twelve-month-old LRIG2-TG animal 

demonstrates a strong expression of LRIG2 in epidermis, hair follicles, and sebaceous glands. HA-tag in green 

and cell nuclei are stained with DAPI (blue). Scale bar represents 50 µm. (b) H&E staining of the skin of a 

twelve-month-old LRIG2-TG mouse and a control littermate. Scale bars represent 50 µm. (c) Morphometric 

analysis of the epidermal thickness and sebaceous gland area revealed no alterations (n=4). Data were 

analyzed by Student’s t-test. (d) Co-immunoprecipitation (IP) of HA-tag in a LRIG2-TG skin sample of a 

twelve-month-old mouse. Immunoblotting (IB) revealed precipitation of LRIG2 and binding of THBS1. 

(e) Gelatin zymography of skin samples of twelve-month-old LRIG2-TG mice and controls (n=4). 

Densitometrical analysis of gelatin zymography revealed increased expression and activity of MMP2. Data 

were analyzed by Student’s t-test. *P<0.01. 
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significantly more HFs in the late catagen phase VIII compared to controls on day P18 (4-

3 Supplementary material, Figure 4-10). However, these changes seem to be transient, as 

such a finding could not be confirmed at any other time point. Epidermal thickness and 

sebaceous gland size showed no differences (Figure 4-2c) between LRIG2-TG animals and 

control littermates. In addition, epidermal differentiation and proliferation rate were 

unchanged in LRIG2-TG mice (4-3 Supplementary material, Figure 4-8). Since LRIG 

proteins are feedback loop regulators of the ERBB receptor family, we analyzed ERBB 

expression and activation in the skin of LRIG2-TG and control mice as well as their main 

target kinases mitogen-activated protein kinase 1/2 (MAPK1/2) and RAC-alpha 

serine/threonine-protein kinase (AKT), but no differences became apparent (4-

3 Supplementary material, Figure 4-9). Thus, we can conclude that LRIG2 overexpression 

does not influence epidermis and HF development and homeostasis. 

 

 LRIG2 binds thrombospondin-1 

 

To identify potential interacting partners of the transmembrane protein LRIG2, we 

performed mass spectrometry analysis and co-IPs. Investigation of LRIG2 expression in 

adult LRIG2-TG and control mice under reducing and non-reducing conditions by Western 

blot, revealed transgenic LRIG2 at a size of 120 kDa. Additionally, we detected a positive 

signal at 300 kDa but only in non-reduced LRIG2-TG protein samples (4-3 Supplementary 

material, Figure 4-11a), indicating the presence of proteins interacting with LRIG2. 

Corresponding bands of transgenic and control animals were analyzed by mass 

spectrometry to detect potential binding partners. Besides LRIG2, 40 further proteins 

were exclusively identified in transgenic animals and were sorted by total spectral counts 

of the non-reduced LRIG2-TG protein fraction. A table of the top 20 proteins is shown in 

Figure 4-11b (4-3 Supplementary material). We identified several keratins but also two 

glycoproteins, laminin subunit beta-1 (LAMB1) and thrombospondin-1 (THBS1), both 

containing EGF-like motifs that possibly interact with LRIG2. In contrast to LAMB1, 

THBS1 has been shown previously to play a role in SCC and other cancers307. Therefore, 

we focused on THBS1 for further studies. THBS1 was exclusively identified in LRIG2-TG 

samples by four individual peptides. Corresponding MS spectra as well as probability 

scores are shown in Figure 4-11c,d (4-3 Supplementary material). THBS1 has an 

important role in tyrosine kinase-dependent signaling, is involved in angiogenesis and 

tumorigenesis and mediates cell-to-cell and cell-to-matrix interactions. 

Immunoprecipitation revealed that THBS1 binds LRIG2, suggesting that it could be an 
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important interaction partner of LRIG2 (Figure 4-2d). However, although its expression 

was not increased in LRIG2-TG animals, THBS1 may be stabilized by LRIG2 binding (4-

3 Supplementary material, Figure 4-9). THBS1 regulates the matrix-metalloproteinases 

(MMPs) 2 and 9308, which could be essential for tumor progression. Therefore, we analyzed 

MMP2 and MMP9 activity by zymography. LRIG2-TG mice showed significantly increased 

levels of pro-MMP2 and active MMP2 whereas no changes of MMP9 levels were detected 

(Figure 4-2e). In summary, we identified THBS1 as a binding partner of LRIG2 and 

observed increased levels of pro- and active MMP2, an important modulator of the ECM, 

in the skin of LRIG2-TG mice. 

 

 LRIG2 has a significant impact on progression of skin carcinogenesis  

 

Figure 4-3 Accelerated development of cSCCs in LRIG2-TG mice in a chemically induced two-step 

model of skin tumorigenesis. 

(a) Macroscopic pictures of the lower back skin of a representative LRIG2-TG animal and a control littermate 

at the final stage. Scale bars represent 1 cm. (b) Papilloma incidence, cSCC incidence, papilloma burden, and 

papilloma size of LRIG2-TG animals compared to control littermates (n= 21 Co/ 15 TG). Data were analyzed 

by 2-way ANOVA. Interaction: ***P<0.001. n.s.: not significant. (c) H&E staining of a papilloma of a LRIG2-

TG mouse and a control littermate. Scale bars represent 500 µm. (d) H&E staining of cSCC of a LRIG2-TG 

mouse and back skin of a control littermate. Arrow points to tissue vascularization, indicating angiogenesis in 

LRIG2-TG mice. Scale bars represent 50 µm. 
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To determine whether LRIG2 affects skin tumorigenesis, we performed a two-stage 

chemical skin carcinogenesis model with onetime application of DMBA on the back skin 

of LRIG2-TG mice and control littermates causing tumor initiation followed by TPA 

treatment twice a week. In both groups, the first papillomata arose four weeks after 

DMBA treatment, without differences in tumor incidence, papilloma burden or size at this 

time. However, 10 weeks after tumor initiation we noticed a less pronounced increase of 

papilloma burden and papilloma size in LRIG2-TG animals as compared to controls 

(Figure 4-3b,c). Instead of papillomata, LRIG2-TG mice developed a cSCC-like phenotype 

at their backs starting six weeks after tumor initiation (Figure 4-3b). 58% of the transgenic 

animals, but only 10% of control littermates were affected (Figure 4-3a,b). Histological and 

Figure 4-4 Epidermial differentiation during chemically induced skin tumorigenesis. 

(a) Immunofluorescence stainings against epidermal differentiation markers KRT5, KRT6, KRT10, and LOR 

(in green). (b) Immunofluorescence staining against CDH1, VIM, and KRT8 (in green). Cell nuclei are stained 

with DAPI (blue). Skin was obtained 24 weeks after initiation of chemically induced tumorigenesis. Shown 

are representative pictures of control skin including papillomata or close to papillomata and of LRIG2-TG skin 

at the transition from epidermis to cSCC (white dashed line). Scale bars represent 50 µm. 
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immunofluorescence analysis of the skin lesions revealed a phenotype resembling human 

cSCC. Atypical spindle-like tumor cells arising from the epidermis protruded into the 

dermis and were accompanied by an inflammatory infiltrate (Figure 4-3d). Moreover, 

vascularization appeared to be increased indicating angiogenesis (arrow, Figure 4-3d). 

Tumors were stained for keratin 8 (KRT8), an established marker for cSCC in mice 309, 

which was highly expressed in the cSCC-like lesions of LRIG2-TG mice but not in controls 

(Figure 4-4b). Additionally, cSCC-like lesions of transgenic mice were poorly 

differentiated. In transgenic animals, the expression of epidermal differentiation markers 

(keratin 5 (KRT5), keratin 6 (KRT6), keratin 10 (KRT10), and loricrin (LOR), see 

Figure 4-4a) in the cSCC-like lesions decreased significantly in comparison to the adjacent 

epidermis, whereas the epidermis around the papillomata of controls were still 

differentiated. Moreover, epithelial polarity was lost. A decrease of epidermal CDH1 and 

a concomitant increase of vimentin (VIM) expression in the dermis indicate an enhanced 

tumor invasiveness, which might refer to epithelial–mesenchymal transition (EMT) 

(Figure 4-4b). Altogether, our data argue for a tumor promoting function of LRIG2 in 

murine skin resulting in an accelerated onset of cSCC development. 

 

 LRIG2 overexpression affects EGFR and ERBB4 expression during 

tumor progression 

 

To investigate whether the tumor promoting activity of LRIG2 is ERBB-receptor-

dependent, we analyzed the expression of the latter and respective downstream targets in 

transgenic and control skin during two-stage skin carcinogenesis. Immunofluorescence 

and Western blot analyses revealed an increased expression of EGFR and ERBB4 in the 

cSCC-like lesions of LRIG2-TG mice (Figure 4-5a,b). Concomitantly, the intracellular 

domain (ICD) of ERBB4 was significantly increased in LRIG2-TG mice (Figure 4-5a), 

indicating that the receptor undergoes regulated intramembrane proteolysis, thus the ICD 

can translocate to the nucleus and act as transcription factor. Additionally, 

phosphorylated ERBB4 and phospho-EGFR were significantly increased upon LRIG2 

overexpression as compared to control littermates. We identified increased levels of AKT 

and phosphorylated AKT, a typical downstream target of the ERBB receptors and 

phosphorylation of MAPK1/2 was significantly increased in transgenic animals compared 

to controls (Figure 4-5c). Other downstream targets such as SHC-transforming protein 1 

(SHC1), signal transducer and activator of transcription 3 (STAT3), STAT5, and GTPase 

Ras proteins (RAS) were unchanged in their activity (data not shown). Phosphorylation of 
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Figure 4-5 ERBB receptor expression during chemically induced skin tumorigenesis. 

(a) Western blot and densitometrical analysis of phosphorylated ERBB receptors and ERBB receptors in skin 

samples obtained 24 weeks after initiation of chemically induced tumorigenesis. TUBA1A was used as 

reference protein. (b) Immunofluorescence staining against ERBB1-4 receptors (in green) using back skin 

sections from the carcinogenesis experiment of control and LRIG2-TG mice. Scale bars represent 50 µm. 

(c) Western blot and densitometrical analysis of phosphorylated and total downstream targets of ERBB 

receptors (MAPK1/2, AKT, and PTEN). GAPDH was used as reference protein. (n=6). Data were analyzed by 

Student’s t-test. *P<0.05, **P<0.01, ***P<0.001. 
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phosphatidylinositol 3,4,5-triphosphate 3-phosphatase and dual specificity protein 

phosphatase PTEN (PTEN) was significantly increased while total PTEN was decreased, 

implying loss of the tumor suppressive function of PTEN (Figure 4-5c). Western blot 

analysis of THBS1 and zymography analysis for MMP2 and MMP9 revealed no differences 

between LRIG2-TG and control animals (data not shown). In summary, these data 

indicate that during tumorigenesis LRIG2 increases skin tumor progression, associated 

with activation of EGFR/ERBB4-MAPK signaling. 

 

 LRIG2 impairs TPA-induced epidermal hyperplasia 

 

Our data suggest that LRIG2 is involved in tumor progression and accelerates 

tumorigenesis. To investigate an early point of time we induced epidermal hyperplasia by 

application of a single dose of TPA. In comparison to control mice the increase of epidermal 

thickness upon TPA treatment was less pronounced in LRIG2-TG animals (Figure 4-6a,b). 

These, however, developed a more prominent neutrophil-dominated inflammation 

(Figure 4-6a). Western blot analysis revealed that the proinflammatory cytokine 

interleukin-1-alpha (IL1A) was significantly increased in LRIG2-TG mice while 

interleukin-6 (IL6) was unchanged (Figure 4-6c,i). As previously observed in our 

carcinogenesis model, ERBB4 was up-regulated in the back skin of LRIG2-TG mice 48 h 

after TPA treatment, but the fraction of phosphorylated ERBB4 was reduced. The other 

ERBB receptors were unchanged except for ERBB2, which was higher expressed in 

LRIG2-TG mice compared to control littermates after TPA treatment (Figure 4-6c,f). 

Additionally, we found increased activation of MAPK1 in LRIG2-TG, TPA treated skin, 

while MAPK2 was not affected (Figure 4-6c,h). Importantly, PTEN expression levels were 

increased in LRIG2-TG mice, but appeared to be phosphorylated and therefore inactivated 

(Figure 4-6c,g). In accordance with a less prominent increase of epidermal thickness we 

found significantly increased levels of cleaved caspase-3 (CASP3) in the skin of TPA 

treated LRIG2-TG mice as compared to controls (Figure 4-6c,g), while the proliferation 

rate was unchanged (Figure 4-6c,d,g). Moreover, LRIG2-TG mice revealed a significant 

increase in THBS1 expression (Figure 4-6c,g) and a significant upregulation of pro-MMP9 

(Figure 4-6e). However, unlike the findings under homeostatic conditions, MMP2 activity 

was not affected by LRIG2 overexpression due to TPA treatment (Figure 4-6e). In 

summary, LRIG2 overexpression leads to an increased inflammatory response after TPA 

treatment, which might contribute to tumorigenesis. 
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Figure 4-6 TPA induces an increased inflammation of the skin of LRIG2-TG mice. 

(a) Giemsa staining reveals huge inflammation spots and blood vessels (arrows) in the skin of LRIG2-TG mice 

48 hours after a single application of TPA. Scale bars represent 50 µm. (b) Morphometric measurements of 

the epidermal thickness showed less pronounced increase of epidermal thickness in LRIG2-TG mice compared 

to controls after TPA treatment (n=4). (c) Western blot of phosphorylated and total ERBB receptors, 

MAPK1/2, PTEN, PCNA, CASP3, THBS1, and the inflammation markers: IL1A and IL6. GAPDH or TUBA1A 

were used as reference protein. (d) The proliferation index is not altered in LRIG2-TG mice compared to 

controls (n=4). MKI67 staining of back skin of a TPA treated TG and control mouse. Scale bars represent 

50 µm. (e) Gelatin zymography with densitometrical analysis of skin samples of TPA treated LRIG2-TG mice 

and controls (n=4) revealed increased expression of pro-MMP9. (f-i) Densitometrical analysis of Western blots 

in (c). Data were analyzed by Student’s t-test. *P<0.05; **P<0.01. 
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 Discussion 

 

LRIG proteins are important regulators of different RTKs and are involved in negative 

and positive feedback loops of the ERBB receptor family184. LRIG1 and LRIG3 show mostly 

tumor-suppressive function, while LRIG2 seems to frequently act as an oncoprotein209. 

Increased LRIG2 expression correlates with a poorer prognosis in patients with 

oligodendroglioma225, cervical SCC242, non-small cell lung cancer230 and glioblastoma226. 

Ubiquitous LRIG2 knockout mice were protected against glioblastoma, demonstrating 

that LRIG2 plays a crucial role in glioblastoma initiation and progression212. It was shown 

that the extracellular domain of the transmembrane LRIG2 protein is the part of the 

protein that is required to mediate the proliferative effect during glioblastoma 

progression227. This is an important finding as the extracellular domain of a protein is 

usually a more amenable drug target. Nevertheless, tumorigenic activity of LRIG proteins 

is often tissue-specific209,225,242 and nothing is known about the function of LRIG2 in the 

skin and skin tumorigenesis. We identified LRIG2 expression in a human keratinocyte 

cell line (HaCaT), in an epidermal tumor cell line (A431), in a human melanoma cell line 

(A375), and in human tissue samples of cSCC patients and normal skin. Our study 

revealed increased LRIG2 expression in cancer cells in vitro, indicating a tumorigenic 

function of LRIG2. Interestingly, LRIG2 expression is mostly cytoplasmic in normal, basal 

epidermis, but nuclear in more differentiated epidermal layers and in cancer cells. LRIG 

proteins show an altered localization in psoriasis210. The nuclear localization of LRIG2 in 

our cSCC tissue samples can also indicate proliferative and pathogenic function. 

To investigate the impact of LRIG2 during skin development, homeostasis, and 

tumorigenesis in vivo, we generated a skin-specific LRIG2-TG mouse model. Long-term 

studies of the mouse line revealed no major phenotypical changes under homeostatic 

conditions. LRIG2 has no impact on epidermal thickness, sebaceous gland size, epidermal 

differentiation or proliferation. By employing proteomic analysis, we identified THBS1 as 

a potential binding-partner of LRIG2. THBS1 attracted our attention because of its EGF-

like motifs310, its function in the modulation of the ECM, angiogenesis and its implication 

in SCC and other types of cancer307,308,311,312. The binding of THBS1 could be related to an 

increase of pro-MMP2 and active MMP2, which is essential for tumor cell invasion, 

inflammation or neovascularization313. While these effects of LRIG2 have no obvious 

impact on skin homeostasis, LRIG2-TG mice showed an increased tumor progression 

compared to control littermates during two-stage chemical skin carcinogenesis. Animals 

showed no differences in tumor initiation, but at the end of the experiment, 58% of all 
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LRIG2-TG mice, but only 10% of all controls developed skin tumors resembling human 

cSCCs. LRIG2-TG mice showed downward invasion of atypical cells, neovascularization, 

and inflammation, accompanied by KRT8 expression and the loss of epidermal 

differentiation markers. Additionally, the decreased expression of CDH1 and concomitant 

increase of VIM suggest an epithelial-mesenchymal transition314,315 in LRIG2-TG animals, 

a process essential for cell-cell interaction and cSCC progression. Analysis of ERBB 

receptor expression revealed an increase of EGFR and ERBB4 and their downstream 

targets MAPK and AKT. The autonomous EGFR and ERBB4 receptors are important for 

tissue development and homeostasis, but they also play a major role in tumorigenesis and 

particularly during skin cancer99,101,109. Additionally, we found the ICD of ERBB4 

increased in cSCC tissue samples of LRIG2-TG mice, which may act as a transcription 

factor and have an important impact on tumorigenesis136,316. Increased levels of 

phosphorylated MAPK and AKT and the concomitant loss of PTEN phosphatase activity 

are often observed in rapid and aggressive tumorigenesis317,318. LRIG2 overexpression 

seems to influence tumor suppressor PTEN activity, which may explain the dramatic 

phenotype during skin carcinogenesis and the absence of effects in skin homeostasis. 

Phosphorylation and thus inactivation of PTEN at residues Ser380/Thr382/383 is 

significantly increased in LRIG2-TG mice 24 weeks after initiation of chemically induced 

tumorigenesis318. However, as the altered molecular signaling may reflect the differences 

between papillomata and cSCC tissue, we additionally analyzed tumor initiation in the 

transgenic LRIG2 model. To investigate the very early tumor initiation in more detail, we 

performed an epidermal hyperplasia experiment by a single TPA application. LRIG2-TG 

mice showed increased inflammatory cell infiltration and neovascularization, which can 

be an indication for tumor promotion and progression. These findings were additionally 

confirmed by an increase of IL1A expression319, as well as by up-regulation of ERBB2 and 

ERBB4, in the skin of LRIG2-TG mice. However, EGFR was not increasingly expressed or 

phosphorylated at this early stage, but the increased expressed PTEN amount seems to 

be phosphorylated and thus inactivated. Inactivation of PTEN plays an important role in 

human cSCC development320,321, consequently the loss of PTEN’s tumor suppressive 

function might be an important element of LRIG2-mediated tumor progression during 

skin cancer. Furthermore, it was shown that THBS1 up-regulates MMP9 expression in 

endothelial cells and promotes tumor cell invasion311. We found THBS1 and concomitant 

MMP9 increase in LRIG2-TG mice 48 h after TPA application, indicating a correlation 

between THBS1 expression and LRIG2-mediated tumor initiation and progression312. 

THBS1 may induce angiogenesis in tumors, influence tumor cell adhesion, migration, 

invasion, and metastasis both in vitro and in vivo322. Additionally, THBS1 is expressed in 
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tumor cells, showing tumor progressive function and THBS1 also induce auto-

phosphorylation of EGFR in A431 cells323, supporting a relationship to the ERBB receptor 

system. However, the increase of inflammatory cells like macrophages and monocytes may 

also have led to the increase of THBS1324. Our findings during early hyperproliferative 

stages point to a tumor promoting influence of LRIG2 excess. Contradictory, we found no 

alterations in THBS1 or MMP levels during skin carcinogenesis. The upregulation of pro-

MMP9 during TPA approach and the increase of pro- and active MMP2 may be overlaid 

by a general increase of MMP2 and MMP9 in cSCC as previously described325.  

 

 Conclusions 

 

In conclusion, our study reveals an important function of LRIG2 during skin 

carcinogenesis. In human skin, LRIG2 is expressed in the HF and in the basal layer of the 

epidermis, and our preliminary data indicates that its expression is increased in skin 

cancer cell lines as well as in human cSCC samples. Even though LRIG2 overexpression 

has no obvious major impact on skin development and homeostasis, LRIG2 may promote 

tumor growth and induces a more severe carcinogenic phenotype, possibly by inactivating 

the tumor suppressor PTEN. Our results show an early onset of cSCC in LRIG2-TG mice 

during two-stage chemical skin carcinogenesis accompanied by altered ERBB signaling.  
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 Supplementary material 

 

In the following all supplementary figures and tables of the manuscript “The 

transmembrane protein LRIG2 increases tumor progression in skin carcinogenesis” are 

depicted. 

 

  

Figure 4-7 Figure S1. 

(a) Macroscopic appearance of a representative LRIG2-TG animal and a control littermate. Scale bars 

represent 1 cm. (b) Reverse transcription PCR shows transgene expression only in tail and back skin. Gapdh 

was used as reference gene. (c) Western blot analysis revealed the expression of a HA-tag only in the skin of 

TG mice. GAPDH was used as reference protein. (d) Quantification of Lrig2 mRNA in indicated organs by 

quantitative real-time PCR. (e) Western blot analysis of HA-tag and LRIG proteins of the back skin of 

LRIG2-TG mice and control littermates. To inhibit LRIG2-TG overexpression doxycycline (3 mg/mL) was 

added to the drinking water for two weeks. GAPDH was used as reference protein. All mice were female and 

six months old when they were dissected. TS: tail skin, BS: back skin, U: uterus, LU: lung, LI: liver, K: kidney, 

S: spleen, I: intestine, M: muscle, H: heart, Dox: doxycycline, +: mice received 3 mg/ml Dox in the drinking 

water for two weeks, -: mice received no Dox.  
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Figure 4-8 Figure S2. 

(a) Immunofluorescence staining against the differentiation markers KRT5, KRT10, KRT6, LOR, CDH1 and 

the HA-tag (all in green) using back skin sections of six-month-old control and LRIG2-TG mice. Cell nuclei are 

stained with DAPI (blue). (b) BrdU staining of back skin of a twelve-month-old TG and control mouse. Arrows 

indicate BrdU positive, proliferating cells. (c) Proliferation index is not altered in LRIG2-TG mice compared 

to controls. Data are presented as mean+SD and were analyzed by Student’s t-test. Scale bars in (a) and (b) 

represent 20 µm. 
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Figure 4-9 Figure S3. 

Western blot and densitometrical analysis of phosphorylated and non-phosphorylated ERBB receptors, 

MAPK1/2, AKT and PTEN and THBS1 of the back skin of twelve-month-old LRIG2-TG mice and control 

littermates. TUBA1A was used as reference protein. Data are presented as mean+SEM and were analyzed by 

Student’s t-test.  
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Figure 4-10 Figure S4. 

The hair follicle cycle in LRIG2-TG mice. Hair follicles (HFs) of controls and LRIG2-TG mice on days post 

partum (P) 18, 21 and 35 were evaluated according to the HF cycling phases as described elsewhere31. The 

total number (%) of HFs in distinct HF cycle phases was counted in LRIG2-TG and wild type mice; 

mean ± SEM, using Mann-Whitney U-test, **P ≤ 0.01, n= 3-5, representative H&E stainings of a LRIG2-TG 

and a control mouse are shown for each P. Scale bars represent 100 µm. (a) LRIG2-TG mice on P18 show 

significantly more HFs in the late catagen phase VIII compared to controls. (b) There are no differences in HF 

cycle phases on P21 between control and LRIG2-TG mice. (c) No remarkable differences in the HF cycle phases 

on P35 can be found between control and LRIG2-TG mice.  
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Figure 4-11 Figure S5.  

(a) Western blot analysis reveals an additional signal for LRIG2 at 300 kDa under non-reducing conditions. 

Co: control, TG: transgen, TS: tail skin, BS: back skin, MG: mammary gland, +/-BME: with/without beta-

Mercaptoethanol. (b) List of top 20 proteins which were exclusively identified around 300 kDa in LRIG2-TG 

samples and not in controls sorted by total spectral counts of the non-reduced LRIG2-TG protein fraction. 

(c) Spectra of four individual TSP1 peptides. (d) Identified TSP1 peptides with probability and MASCOT 

scores. 
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Table 4-1 Table S1. 

Antibodies employed for Western blot (WB) analysis, immunoprecipitation (IP), immunohistochemistry (IHC), 

and immunofluorescence(IF). 
 

Antigen Antibody App. Host Dilution 

LRIG2 GeneTex,  Alton Pkwy Irvine, CA, USA, #37384 WB rabbit 1:500 

LRIG2 LSBio,  Seattle, WA, USA, #C165865 IHC rabbit 1:100 

LRIG2 Abcam, Cambridge, UK, #121472 WB rabbit 1:500 

HA-tag Cell Signaling, Boston, MA, USA, #3724 WB/IF rabbit 1:1000/1:200 

HA-tag Abcam, Cambridge, UK, #9110 WB/IP rabbit 1:5000 

LRIG1 R&D Systems,  Minneapolis, MN, USA, #AF3688 WB goat 1:2500 

LRIG3 

R&D Systems,  Minneapolis, MN, USA, 

#MAB3495 WB mouse 1:1000 

p-EGFR (Tyr 1068) Cell Signaling, Boston, MA, USA, #3777 WB rabbit 1:1000 

p-EGFR (Tyr 1086) Cell Signaling, Boston, MA, USA, #2220 WB rabbit 1:1000 

p-EGFR (Tyr 1173) Santa Cruz, Heidelberg, Germany, #12351, WB rabbit 1:500 

EGFR Santa Cruz, Heidelberg, Germany, #03, WB rabbit 1:500 

EGFR R&D Systems,  Minneapolis, MN, USA, #AF1280 IF goat 1:200 

p-ERBB2 (Tyr 877) Cell Signaling, Boston, MA, USA, #2241 WB rabbit 1:1000 

p-ERBB2 (Tyr 1221) Cell Signaling, Boston, MA, USA, #2243 WB rabbit 1:1000 

ERBB2 Cell Signaling, Boston, MA, USA, #4290 WB rabbit 1:1000 

ERBB2 R&D Systems,  Minneapolis, MN, USA, #AF5176 IF sheep 1:200 

p-ERBB3 (Tyr 1289) Cell Signaling, Boston, MA, USA, #4791 WB rabbit 1:1000 

ERBB3 Cell Signaling, Boston, MA, USA, #12708 WB rabbit 1:1000 

ERBB3 R&D Systems,  Minneapolis, MN, USA, #AF4518 IF sheep 1:1000 

p-ERBB4 (Tyr 1258) Abcam, Cambridge, UK, #76132 WB rabbit 1:1000 
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ERBB4 Santa Cruz, Heidelberg, Germany, #283 WB rabbit 1:500 

ERBB4 Santa Cruz, Heidelberg, Germany, #8050 WB/IF mouse 1:500/1:50 

THBS1 Cell Signaling, Boston, MA, USA, #37879 WB rabbit 1:1000 

p-MAPK1/2 

(Thr202/Tyr204) 

Cell Signaling, Boston, MA, USA, #4370 WB rabbit 1:1000 

MAPK1/2 Cell Signaling, Boston, MA, USA, #9102 WB rabbit 1:1000 

p-AKT (Ser 473) Cell Signaling, Boston, MA, USA, #4060 WB rabbit 1:2000 

AKT Cell Signaling, Boston, MA, USA, #4691 WB rabbit 1:1000 

p-PTEN 

(Ser380/Thr382/383) 

Cell Signaling, Boston, MA, USA, #9554 WB rabbit 1:1000 

PTEN Cell Signaling, Boston, MA, USA, #9552 WB rabbit 1:1000 

PCNA Cell Signaling, Boston, MA, USA, #13110 WB rabbit 1:1000 

CASP3 Cell Signaling, Boston, MA, USA, #9662 WB rabbit 1:1000 

IL1A 

R&D Systems,  Minneapolis, MN, USA, 

#AF400NA 
WB goat 1:2000 

IL6 Cell Signaling, Boston, MA, USA, #12912 WB rabbit 1:1000 

MKI67 Dianova, Hamburg, Germany, #M7249 IHC Rat 1:200 

KRT5 BioLegend, San Diego, CA, USA, #905501 IF rabbit 1:800 

KRT6 BioLegend, San Diego, CA, USA, #905701 IF rabbit 1:800 

KRT8 BioLegend, San Diego, CA, USA, #904801 IF mouse 1:200 

KRT10 BioLegend, San Diego, CA, USA, #905701 IF rabbit 1:800 

LOR BioLegend, San Diego, CA, USA, #905101 IF rabbit 1:800 

CDH1 R&D Systems,  Minneapolis, MN, USA, #AF748 IF goat 1:200 

VIM Cell Signaling, Boston, MA, USA, #5741 IF rabbit 1:200 

TUBA1A Cell Signaling, Boston, MA, USA, #2125 WB rabbit 1:1000 
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GAPDH Cell Signaling, Boston, MA, USA, #2118 WB rabbit 1:5000 

BrdU AbDSeroTec, Puchheim, Germany, #OBT0030 IHC rat 1:100 

donkey α rabbit Jackson ImmunoResearch, Ely, UK‚ #711-546-152 IF donkey 1:1000 

donkey α goat Jackson ImmunoResearch, Ely, UK‚ #705-545-147 IF donkey 1:1000 

donkey α sheep Jackson ImmunoResearch, Ely, UK‚ #713-586-147 IF donkey 1:1000 

donkey α mouse Jackson ImmunoResearch, Ely, UK‚ #715-585-140 IF donkey 1:1000 

mouse α rat Jackson ImmunoResearch, Ely, UK‚ #212-066-168 IHC mouse 1:100 

rabbit α rat AbDSeroTec, Puchheim, Germany, #STAR21B ICH rabbit 1:100 

rabbit α mouse Cell Signaling, Boston, MA, USA, #7076 WB rabbit 1:2500 

goat α rabbit Cell Signaling, Boston, MA, USA, #7074 WB goat 1:2500 

goat α rat Cell Signaling, Boston, MA, USA, #7077 WB Goat 1:2500 

donkey α goat R&D Systems,  Minneapolis, MN, USA, #HAF109 WB donkey 1:2500 
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 Conclusion and outlook 

 

LRIG2 excess in the epidermis showed no impact on skin homeostasis. However, the TG 

mouse model revealed THBS1 as binding partner of LRIG2, indicating a role for LRIG2 in 

tumor progression, modulation of the ECM or angiogenesis308,311,312. After challenging the 

skin with a single application of TPA, thereby inducing epidermal hyperplasia and 

inflammation, or in the two-stage chemical carcinogenesis experiment, LRIG2 

overexpression caused increased inflammation and accelerated tumor progression. The 

early onset of cSCC in TG mice may has been triggered by inactivation of the tumor 

suppressor PTEN and is accompanied by an altered ERBB signaling network. Even 

though we cannot exclude, that the effect on EGFR and ERBB4 expression reflects the 

difference between severely and benignly affected tumor tissue, the mouse model clearly 

revealed a tumor progressive function of LRIG2 in cSCC as previously reported for other 

cancers226,227,230,242. Therefore, LRIG2 might be a promising target for cSCC treatment. The 

inhibition of LRIG2 is possibly a suitable alternative for surgery or conventional radio- or 

chemotherapy and probably more specific than anti-EGFR targeted therapy to overcome 

severe side effects71,91. However, the molecular mechanism of LRIG2 in the skin has to be 

analyzed in more detail to confirm this hypothesis. In contrast, LRIG1 and LRIG3 act as 

tumor suppressors in duodenal adenomas219, prostate cancer241 or glioblastoma240,252,255 

and are related to good prognoses in various tumors229,245,246. Consequently, both LRIGs 

may also be potential prognostic factors in the skin and promising molecules to develop 

novel strategies for tumor therapy. Recent studies revealed, that LRIG1 expression 

significantly correlated with the sensitivity to conventional chemotherapeutics, most 

likely due to altered EGFR signaling231. The internalization of EGFR is a common repair 

mechanism upon DNA damage and often the reason for insensitivity to chemotherapy326. 

LRIG1 might influence this process and thus reduce nuclear EGFR activity, thereby 

increasing apoptosis, as it has been shown in bladder cancer327. In Chapter 3 it was shown 

that epidermal EGFR expression is decreased due to LRIG1 overexpression during skin 

homeostasis. According to this, a tumor suppressive function of LRIG1 in the skin is very 

likely and the transmembrane protein may represent an auspicious protein for novel 

therapies and prophylactic measures. The two-stage chemical carcinogenesis in LRIG1-

TG mice allows the study of LRIG1 function during skin tumorigenesis, similar to the 

experiments with LRIG2-TG mice, shown in this chapter. However, our preliminary data 

suggest the opposite of this hypothesis. LRIG1-TG mice revealed an increased papillomata 

incidence in the DMBA/TPA mouse model. TG animals developed melanocytic nevi, which 
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often transform into invasive melanoma in humans, possibly due to an effect of shed 

LRIG1 on melanocytes. These results demonstrate the importance of investigating the 

molecular mechanisms of LRIG proteins tissue-specifically. 

In conclusion, LRIG function in the skin seems to be very distinct. While LRIG1-TG mice 

show a severe phenotype during homeostasis (see Chapter 3), LRIG2 overexpression 

revealed no major phenotype. However, during carcinogenesis, the excess of both LRIGs 

in the epidermis triggers tumorigenesis, although in a different manner. The LRIGs 

represent a very versatile protein family with intriguing functions in the skin. Future 

studies on their molecular mechanisms and interaction partners in the skin are needed to 

elucidate their precise role in cSCC and their potential as prognostic factors or drug 

targets for tumor therapy. 
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