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1 Einleitung 

Koffein ist die meist konsumierte pharmakologische Substanz weltweit. Der wahrscheinlich 

wichtigste Grund hierfür dürfte der antreibende und aktivierende zentralnervöse Effekt sein. 

Allerdings besitzt Koffein neben seiner Wirkung auf die Psyche auch eine Reihe anderer 

Effekte. Metaanalysen von Beobachtungsstudien und Interventionsstudien zeigen, dass 

Kaffee- und Koffein-Konsum das Risiko reduzieren, Brust-, Kolon-, Endometrium- und 

Prostata-Tumoren, Diabetes Typ II oder Parkinson zu bekommen 1. Auch konnte gezeigt 

werden, dass Koffein die Entstehung von Hautkrebs vermindert 2,3. Diese auf den ersten Blick 

sehr unterschiedlichen Erkrankungen teilen sich als pathophysiologisch wichtigen 

gemeinsamen Faktor eine unterschwellig vorliegende, chronische Entzündungsreaktion. Es 

wird daher in der Literatur vermutet, dass Koffein seinen protektiven Effekt über die Modulation 

dieser Entzündungsvorgänge bewirkt 4.  

In Anbetracht dieser epidemiologisch relevanten Effekte, ist jedoch bisher erstaunlich wenig 

über die immunmodulatorischen Mechanismen von Koffein bekannt 5. Hier setzt die 

vorliegende Arbeit an und möchte einen Beitrag leisten.  

1.1 Koffein 

Das Alkaloid Koffein gehört der Gruppe der Xanthine und damit den natürlich vorkommenden 

Purinen an. Neben der Kaffeepflanze und dem Teestrauch enthalten auch viele andere 

Pflanzen wie Guarana, Mate und die Kolanuss große Mengen Koffein. In diesen Pflanzen dient 

Koffein als Insektizid.  

1.1.1 Generelle Wirkmechanismen von Koffein 

Der häufigste Grund für den Konsum von Koffein ist sicherlich seine stimulierende Wirkung. 

Koffein ist ein kompetitiver Antagonist an Adenosinrezeptoren. Adenosin hemmt die Aktivität 

von Nervenzellen, um sie vor einer Überlastung zu schützen. Koffein konkurriert mit Adenosin 

um diese Rezeptoren, jedoch ohne diese zu aktivieren. Des Weiteren hemmt Koffein 

Phosphodiesterasen, was zu einer intrazellulären Erhöhung von zyklischem AMP (cAMP) und 

einer Aktivierung der Proteinkinase A (PKA) führt. Des Weiteren können Xanthine ryanodin-

sensitive Calciumkanäle für Calcium sensibilisieren und nicht zuletzt sind sie Antagonisten an 

GABAA-Rezeptoren 6 (Abbildung 1-1).  

In Konzentrationen, die durch den normalen täglichen Konsum von Kaffee und koffeinhaltigen 

Getränken erreicht werden, wirkt Koffein hauptsächlich als Antagonist der 
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Adenosinrezeptoren. Adenosinrezeptoren spielen auch im Bereich des Immunsystems eine 

wichtige Rolle sowohl in der Aktivierung, wie auch Inhibition einer Immunantwort. So steigern 

die Adenosinrezeptoren A1 und A2 die Chemotaxis 7,8, wohingegen der Rezeptor A3 die 

Chemotaxis hemmt 9,10. Auch konnte gezeigt werden, dass Mastzellen bei Asthmatikern über 

den A2B-Rezeptor aktiviert werden können 5, nach Inhalation von Adenosin wurden in der 

Bronchioalveolarflüssigkeit von Asthmapatienten vermehrt Histamin, Prostaglandin 2D und 

Tryptase gemessen 11. Als Antagonist dieser Adenosinrezeptoren ist für Koffein daher eine 

Vielzahl an Wirkungen auf das Immunsystem denkbar. 

Weitere Ziele von Koffein sind die Phosphatidylinositol-3-Kinasen ataxia-telangiectasia 

mutated (ATM) und Ataxia telangiectasia and Rad3 related (ATR) 12. ATM und ATR sind 

wichtige Bestandteile der Zellzyklusregulation. ATM registriert DNA-Doppelstrangbrüche, 

initiiert die DNA-Doppelstrangbruch-Reparatur und leitet bei schweren Schäden den 

Zellzyklusarrest und Apoptose ein. ATR hingegen registriert Einzelstrang-DNA als Zeichen 

einer fehlerhaften Replikation und führt ebenfalls zum Zellzyklusarrest 12. Eine Inhibition von 

ATM und ATR durch Koffein führt trotz vorhandener DNA-Schäden zu einem Fortschreiten 

des Zellzyklus und einer darauffolgenden Apoptose aufgrund von DNA-Schäden 13,3. Auch 

konnte festgestellt werden, dass Koffein über diesen Mechanismus als Radiosensitizer wirkt, 

da Strahlung zu DNA-Strangbrüchen führt 3. Dieser Mechanismus erklärt den protektiven 

Effekt von Koffein gegenüber dem Basalzellkarzinom 2,3. 
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Abbildung 1-1 Verschiedene Angriffsorte von Koffein. Koffein agiert an Adenosinrezeptoren sowohl als 
Agonist, als auch als Antagonist, die Wirkung ist abhängig von Rezeptorsub- und Zelltyp. An GABAA-
Rezeptoren wirkt Koffein als Kanalblocker. Zyklische Nukleotiddiesterasen werden durch Koffein gehemmt, 
wodurch die cAMP/cGMP-Level in der Zelle erhöht werden. Darüber hinaus führt Koffein zu Öffnung von 
ryanodinsensitiven Calciumkanälen des sarkoplasmatischen Retikulums, wodurch es zu einem 
intrazellulären Calciumanstieg kommt 6.    

 

1.1.2 Verwendung von Koffein als Pharmakon 

Koffein wird medizinisch als analgetisches Adjuvans verwendet. Ein Adjuvans besitzt selbst 

keinerlei analgetische Wirkung, verstärkt aber die Wirkung eines Analgetikums. Bereits 1984 

konnte gezeigt werden, dass Koffein sowohl die Wirkung der Nicht-steroidalen Antirheumatika 

(NSAR) Acetylsalicylsäure und Ibuprofen, als auch von Paracetamol verstärkt 14. Die co-

analgetische Wirkung von Koffein wird der Interaktion mit den Adenosinrezeptoren A1, A2A und 

A2B zugeschrieben 15.  

Eine weitere Anwendung findet Koffein in der Behandlung der Apnoe von frühgeborenen 

Kindern. Die stimulierende Wirkung von Koffein wird auf die antagonistische Wirkung an 

Adenosinrezeptoren im Atemzentrum zurückgeführt 6.  

1.1.3 Koffein und seine Wirkung auf das Immunsystem 

In vielen Veröffentlichungen wurden bereits die Wirkungen von Koffein auf das Immunsystem 

in vivo und in vitro untersucht. So wurde in LPS-stimuliertem Vollblut eine reduzierte TNF-

Freisetzung in Anwesenheit von Koffein beobachtet 16. Auch konnte gezeigt werden, dass die 
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Freisetzung von IL-2 und IL-4 von murinen Th1 bzw. Th2 Klonen, sowie von IFN-γ aus 

Vollblutproben durch Koffein reduziert wird 5,17. In PBMCs konnte eine Koffein-induzierte 

Inhibierung der Lymphozytenproliferation gezeigt werden 17.  

In der Literatur wird angegeben, dass Koffein Phosphodiesterasen (PDEs) erst ab 

Konzentrationen hemmt, die 20x höher sind, als die A1 und A2A-Rezeptoren hemmenden 

Konzentrationen 5 18. Da Adenosin jedoch anti-inflammatorisch wirkt, wäre dann davon 

auszugehen, dass Koffein als Antagonist inflammatorisch wirkt. Es wurden jedoch bisher 

sowohl pro- wie auch antiinflammatorische Effekte beschrieben 5 19. So konnte gezeigt werden, 

dass Koffein schon in geringen Dosen zu einer Erhöhung von cAMP in LPS-stimulierten 

humanen Monozyten führt 16. Die Aktivierung des PKA-Signalwegs hemmt die Freisetzung von 

TNF und fördert die Freisetzung des anti-inflammatorischen Zytokins IL-10 20.  

Der genaue Wirkmechanismus von Koffein auf die Immunantwort ist bisher nicht aufgeklärt. 

Denkbar wären, neben dem schon beschriebenen Einfluss auf das zelluläre cAMP-Level, auch 

Interaktionen mit dem Adenosinrezeptor A3. 

1.2 Das Immunsystem 

Das Immunsystem wird schematisch in einen unspezifischen bzw. angeborenen und einen 

spezifischen, erworbenen Teil untergliedert. Während das erworbene Immunsystem, erst 

verzögert nach klonaler Expansion entsprechender spezifischer Lymphozyten in eine Infektion 

eingreift und in der Lage ist, ein immunologisches Gedächtnis zu entwickeln, bildet das 

angeborene Immunsystem eine wesentlich frühere Verteidigungslinie, die nicht nur durch 

spezialisierte Immunzellen vermittelt wird, sondern durch nahezu jede Körperzelle 

gewährleistet wird. Ebenfalls dem angeborenen Immunsystem zugerechnet werden die 

neutrophilen Granulozyten, Makrophagen und natürlichen Killerzellen, die Pathogene über 

Mustererkennungsrezeptoren erkennen können und über Effektormechanismen verfügen 

diese dann unschädlich zu machen. Dendritische Zellen bilden eine Schnittstelle zwischen 

dem angeborenen und erworbenen Teil des Immunsystems, indem sie Antigene aufnehmen 

und der spezifischen Immunität präsentieren 21. Nahezu jede Körperzelle besitzt spezifische 

Rezeptoren sogenannte Mustererkennungsrezeptoren auf ihrer Oberfläche bzw. in ihrem 

Zytoplasma, um Pathogene an Hand sogenannter PAMPs (pathogen associated molecular 

patterns) zu erkennen und dann geeignete Gegenmaßnahmen einzuleiten 21. Im Rahmen 

einer Virusinfektion beinhaltet dies die Aktivierung eines Genprogramms, das die Replikation 

des Virus in der infizierten Zelle erschwert. Des Weiteren werden Interferone und Zytokine 

freigesetzt, die umliegende Zellen warnen und so in einen Alarmzustand versetzen. Außerdem 
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werden von Interferonen anderen Immunzellen aktiviert und angelockt, die infizierte Zellen 

abtöten und Pathogene inaktivieren 22.  

1.3 Das angeborene Immunsystem 

Wenn ein Pathogen die Barrieren eines Organismus wie Haut oder Schleimhaut überwunden 

hat, bedarf es zur Abwehr und Schadensbegrenzung einer Reaktion des Organismus. Der 

evolutionsbiologisch ältere Teil des Immunsystems, das angeborene Immunsystem, spielt 

hierbei eine entscheidende Rolle. 

Ein wichtiges Funktionsprinzip des angeborenen Immunsystems sind die pathogen-associated 

molecular patterns (PAMPs), die von den pattern recognition receptors (PRRs) 23 erkannt 

werden. Charles Janeway postulierte dieses Konzept schon lange vor der Entdeckung der 

PRRs 24. PAMPs sind konservierte Strukturen, die ein Pathogen, ob Virus, Bakterium, Pilz oder 

Protozoe besitzt, aber im gesunden Wirtsorganismus nicht vorkommen. Diese Rezeptoren 

sind oftmals nicht spezifisch für Zellen des Immunsystems, sondern kommen auch in anderen 

somatischen Zellen vor. 

1.3.1 Mustererkennungsrezeptoren 

In die Gruppe der PRRs fallen eine Vielzahl verschiedener Proteine. Diese werden in 

verschiedene Familien eingeteilt. Wichtige Gruppen sind hier die Toll-like Rezeptoren (TLRs), 

NOD-like Rezeptoren (NLRs) oder die RIG-I like Rezeptoren (RLRs). 

Die einzelnen Mitglieder der jeweiligen Gruppen erkennen mitunter sehr verschiedene PAMPs, 

von viralen oder bakteriellen Nukleinsäuren, über bakterielle Zellwandbestandteile, bis hin zu 

bakteriellem Flagellin. Auch die Lokalisation der verschiedenen PPRs ist unterschiedlich: so 

kommen TLRs an der Zelloberfläche und in Endo-, bzw. Endolysosomen vor. Eine weitere 

Gruppe von PRRs ist die Gruppe der RIG-I-like Rezeptoren (RLRs). Diese Gruppe dient der 

Erkennung von viraler RNA und befindet sich im Zytoplasma von Zellen. Die wichtigsten 

Vertreter werden im folgenden Teil dargestellt.  
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Toll-like Rezeptoren 

Eine große und gut untersuchte Gruppe sind die TLRs. TLRs sind eine 

entwicklungsgeschichtlich sehr alte Gruppe von Proteinen 23. Verwandte Rezeptoren wurden 

zuerst in der Fliege entdeckt 21. Bisher sind 10 verschiedene TLR beim Menschen bekannt 25.  

TLRs erkennen neben bakteriellen und viralen PAMPs auch Strukturen, die zu Pilzen oder 

Protozoen gehören. TLR1, 2, 4, 5, 6, 7 und 9 erkennen hauptsächlich bakterielle PAMPs 25. 

TLR4 erkennt zusammen mit CD14, MD2 und LBP Lipopolysaccharid (LPS), welches ein 

Bestandteil der Zellwand gramnegativer Bakterien ist. Gram-positive Bakterien enthalten 

Peptidoglycan, Mycobakterien Lipoarabinomamman, beides sind Liganden von TRL2 25. Doch 

nicht nur Zellwandbestandteile können Liganden der TLRs sein. TLR5 erkennt Flagellin, 

welches in begeißelten Bakterien vorkommt. Ebenso kann DNA, ob viral oder bakteriell durch 

TLR9 erkannt werden. Virale und bakterielle DNA ist auf andere Weise modifiziert und wird 

darüber und über ihre Lokalisation in Zellkompartements in denen sie unter phyisologischen 

Bedingungen nicht vorkommt  als fremd erkannt 25. Bakterielle und virale RNA, die in 

Endophagosome gelangt, kann von TLR7, TLR8 und TLR3 erkannt werden. Eine Aktivierung 

von TLR1, 2, 4, 5 und 6 durch PAMP führt zur Freisetzung von inflammatorischen Proteinen, 

die Aktivierung von TLR9, TLR7 und TLR8 zur Freisetzung von Typ I Interferonen 25.  

NOD-like Rezeptoren 

Eine weitere Gruppe von PRR sind die NOD-like Rezeptoren (NLRs). NLRs sind eine Gruppe 

von zytoplasmatischen Rezeptoren mit 23 bekannten Mitgliedern 25.  

Als Beispiel seien hier NOD1 und NOD2 genannt. Diese sind zytoplasmatische Rezeptoren 

und werden durch verschiedenen Peptidoglykane, ebenfalls Bakterienwandbausteine, aktiviert 

26. NOD2 spielt darüber hinaus auch eine große Rolle in der Abwehr von Toxoplasma gondii 

27. Eine Aktivierung führt zu einer Oligomerisierung der Rezeptoren über spezifische Domänen 

und so zu einer Freisetzung inflammatorischer Zytokine 25. Dass NLRs eine wichtige Rolle in 

der Balance der Immunabwehr spielt, kann daran festgemacht werden, dass bestimmte 

genetische Varianten von NOD1 mit Atopie in Verbindung gebracht werden 28,29, Varianten von 

NOD2 mit Morbus Crohn 30,31.  

In Makrophagen oder dendritischen Zellen kann die Erkennung einiger PAMPs zudem zur 

Formation eines Inflammasoms führen. Das Inflammasom ist ein Proteinkomplex aus 

Mitgliedern der NLR-Familie und weiterer nicht-NLRs, der Caspase-1 aktivieren kann, welche 
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wiederum pro-IL1β in die aktive proinflammatorische Form IL-1β überführt 25. Das am besten 

untersuchte Inflammason ist das NLRP3 Inflammasom. Dieses besteht aus den Proteinen 

NLRP3, ASC und Procaspase-1. Nach Aktivierung durch ein PAMP kommt es zu einer 

Spaltung von Procaspase-1 zu Caspase-1 und somit zur Aktivierung von Caspase-1. 

RIG-I-like Rezeptoren (RLR) 

Eine andere wichtige Gruppe von PRRs ist die Gruppe der RLRs. Diese Familie besteht aus 

den drei Mitgliedern retionic acid inducible gene I (RIG-I), melanoma differentiation antigen 5 

(MDA5) und  laboratory of Genetics and Physiology 2 (LGP2)25. Die RLRs sind ubiquitär 

vorkommende zytosolische Nukleinsäurerezeptoren, deren Expression durch Typ I Interferone 

induziert wird.  

Strukturell sind alle RLRs ähnlich aufgebaut. Am C-terminalen Ende befindet sich die C-

terminale Domäne (CDT), welche eine wichtige Rolle in der Detektion viraler RNA spielt. 

Möglichkeiten zur fremd-eigen-Differenzierung von RNA bieten neben dem 5‘-triphospat-Ende 

- eukaryotische RNA wird im Kern aufwändig prozessiert und am 5‘-Ende mit einer Cap-

Struktur versehen - auch Doppelsträngigkeit. dsRNA kommt in eukaryotischen Zellen, mit 

wenigen Ausnahmen, wie z.B. tRNA, unter physiologischen Bedingungen nicht vor. Die CDT 

von RIG-I erkennt das 5‘-tri- oder diphospat-Ende kurzer doppelsträngiger RNA (dsRNA) 32, 

die CDT von MDA5 hingegen erkennt lange doppelsträngige RNA, unabhängig von der 

Phosphorylierung. Der CDT folgt eine Helikase-Domäne, die ebenfalls für die Bindung der 

RNA verantwortlich ist 33. Am N-terminalen Ende von RIG-I und MDA5 befinden sich zwei 

CARD-Domänen, die als Bindeglied zur RIG-I-Signalkaskade dienen (Abbildung 1-1). 

 
Abbildung 1-1 Schematischer Aufbau der RIG-I like Rezeptoren. Nach Schmidt et al32. RLRs bestehen 
aus jeweils einer C-terminale Domäne (CDT), einer Helikasedomäne (beide sind an der Bindung von 
Nukleinsäuren beteiligt) und im Falle von RIG-I und MDA5 zweier caspase recriutment domains (CARD), 
LGP2 fehlen diese CARDs 

Bei Aktivierung interagieren die CARD-Domänen der RLRs mit den CARD-Domänen des 

mitochondrial lokalisierten Proteins mitochondrial anti-viral singalling (MAVS) und führen so zu 
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einer Aktivierung des interferon regulatory factor 3 (IRF3) und IRF7. Die Aktivierung von IRF3 

und 7 führt zur Transkription der Typ I Interferone (siehe Abb. 1-2) 32.  

 

Abbildung 1-2 Schematische Übersicht der verschiedenen Wege zur Erkennung viraler 
Nukleinsäuren durch RIG-I like Rezeptoren. Nach Schmidt et al. 32, Reikine et al. 33 RIG-I erkennt 
doppelsträngige pppRNA, MDA5 lange dsRNA >1000bp. Die zytoplasmatische RNA Polymerase III 
transkribiert AT-reiche DNA und transkribiert diese in pppRNA, welche dann ebenfalls durch RIG-I erkannt 
wird. Durch Bindung von RNA an RLRs nehmen diese ihre aktive Form an und die CARDs des RLRS werden 
freigelegt. RIG-I wird durch die E3-Ubiquitin-Ligase TRIM25 poly-ubiquitinyliert. So wird die Interaktion mit 
MAVS über eine CARD-CARD-Interaktion möglich. Die Aktivierung von MAVS führt über die Kinase TBK1 
und die Transkriptionsfaktoren IRF3/IRF7 zur transkriptionellen Induktion von Typ I Interferonen. 

RIG-I bindet an doppelsträngige Tri oder bi-phosphat-RNA (pppRNA) 34. Durch Bindung der 

RNA werden die CARD-Domänen freigelegt und RIG-I so in eine aktive Form überführt. RIG-

I ist ein essentieller Teil der viralen Abwehr für eine Reihe von klinisch relevanten Erregern wie 

zum Beispiel das Influenzavirus oder das Hepatitis C Virus 32. MDA5 hingegen bindet vor allem 

längere dsRNA (>1000bp) ohne ein spezifisches 5‘-Ende zu benötigen 35. Auch sammeln sich 

mehrere MDA5-Moleküle entlang eines RNA-Stranges 33. Diese Anordnung erlaubt über die 

CARD-Domänen eine Oligomerisierung und Aktivierung von MAVS. Bisher konnte gezeigt 

werden, dass MDA5 Picornaviren wie das Hepatitis A oder Poliovirus erkennt.  

Auch konnte gezeigt werden, dass die RNA-Polymerase III AT-reiche DNA im Zytoplasma 

erkennt und diese in pppRNA umschreibt. Diese pppRNA wird von RIG-I erkannt und aktiviert 

so die Signalkaskade. Der Effekt wurde sowohl für die synthetische Oligonuklotide mit einer 

repetitiven dAdT Sequenz, als auch für virale DNA nachgewiesen 36,37 . 
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Sowohl RIG-I, wie auch MDA5 bilden bei Aktivierung Oligomere über ihre CARD-Domänen, 

wobei RIG-I Oligomere aus weniger Molekülen bestehen, als MDA5 Oligomere 38. Diese 

Gruppierungen stellen die aktiven Formen dar. RIG-I benötigt zur vollen Aktivierung zusätzlich 

K63-gekoppelte Polyubiquitinketten. Diese poly-Ubiquitinylierung geschieht durch die E3-

Ubiquitin-Ligase tripartite motif-containing protein 25 (TRIM25) 39 33. Diese Oligomere sind nun 

in der Lage, wiederum über CARD-Domänen, MAVS Polymere zu bilden, was den nächsten 

Schritt in der RIG-I Signalkaskade darstellt 33.  

LGP2 fehlen die CARD-Domänen, weshalb es nicht in der Lage ist, den RIG-I-Signalweg zu 

aktivieren. Sowohl eine synergistische Funktion zu den anderen RLRs, wie auch eine 

inhibitorische Funktion werden diskutiert 33.  

MAVS aktiviert die Kinase TBK1, die den Transkriptionsfaktor IRF3 phosphoryliert und somit 

in seine aktive Form bringt, was zu einer Aktivierung der Typ1-Interferone führt 25.  

Ein weiterer zytoplasmatischer DNA-Rezeptor ist das absent in melanoma 2 (AIM2) 

Inflammasom. AIM2 erkennt zytoplasmatische DNA und spaltet Procaspase-1 zu Caspase-1, 

welches das proinflammatorische IL-1β aktiviert 25.  

Ebenso erkennt das zytosolische Protein cyclic GMP-AMP synthase (cGAS) zytosolische 

DNA. Nach Bindung von zytosoloischer dsDNA synthetisiert cGAS cyclic di-GMP-AMP 

(cGAMP), welches als second messenger das ER-gebundene Effektorprotein stimulator für 

IFN genes (STING) aktiviert. STING wiederum führt über die Aktivierung von TBK1 zur 

Freisetzung von Typ-I Interferonen 40.   

1.3.2 Zytokine 

Zytokine sind Botenstoffe zwischen Zellen, die auf einen Stimulus hin freigesetzt werden. 

Zytokine sind meist kleine Moleküle (<25kDa) und werden über spezifische Rezeptoren 

erkannt. Die Aktivität von Zytokinen kann autokrin (betrifft die freisetzende Zelle), parakrin 

(betrifft umliegende Zellen) oder endokrin (systemische Wirkung) sein 21. Zytokine spielen 

wichtige Rollen in einer Vielzahl von Prozessen, angefangen bei der Differenzierung und 

Reifung von Zellen (koloniestimulierende Faktoren) über immunologische Reaktionen (TNF) 

und Kommunikation zwischen den Immunzellen (Interleukine), bis hin zu Chemoattraktion 

(Chemokine) 21.  

Im Rahmen von Virusinfektionen spielen vor allem die Gruppe der Interferone eine wichtige 

Rolle. Unterschieden werden hier drei Familien: Typ-I, -II und -III Interferone. Die wichtigsten 

Vertreter der Typ-I Interferone sind Interferon-α (IFN-α) (im Moment sind 13 humane Interferon 



Einleitung 

13 

 

α Subtypen bekannt), sowie Interferon-β (IFNβ). Interferon-γ (IFN-γ) ist der einzige Vertreter 

der Typ-II Interferone. Während IFN-γ lediglich von NK-Zellen und T-Zellen produziert wird, 

kann nahezu jede Körperzelle Typ-I Interferone freisetzen 40. Typ-III Interferone sind IFNλ1, 

IFNλ2 und IFNλ3.  

Typ-I Interferone binden an den Transmembranrezetor Interferon-α/β Rezeptor (IFNAR), der 

die Tyrosinkinasen JAK1 und TYK2 aktiviert. Diese phosphorylieren die Transkriptionsfaktoren 

STAT1 und STAT2 und setzen so die Transkription der interferoninduzierten Gene (ISG) in 

Gang 21,40. ISGs bilden als Gesamtheit ein mehrere hundert Gene umfassendes antivirales 

Gen-Programm, das es Viren erschwert in der infizierten Zelle zu replizieren und umliegende 

Zellen zu infizieren. Beispiele für antivirale ISGs sind MxA und die IFITM-Familie 22. Viele Viren 

haben Mechanismen entwickelt, um die Interferonantwort zu unterdrücken oder zu stören 41. 

In vivo Versuche mit IFNAR1-Knockout-Mäusen zeigten, dass die Interferonantwort eine 

maßgebliche Rolle in der Widerstandsfähigkeit gegen Viren spielt 42.  

Typ-I Interferone wirken auch auf die Zellen des Immunsystems und aktivieren sowohl Zellen 

des angeborenen (Monozyten, NK-Zellen), wie auch des erworbenen Immunsystems (T-

Zellen, B-Zellen). 
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1.4 Ziele dieser Arbeit 

In Experimenten unserer Arbeitsgruppe, die Mechanismen der Apoptose-Induktion durch 

DNA-Viren untersuchten, wurde Koffein als Inhibitor der Proteinkinase ataxia telangiectasia 

mutated (ATM) verwendet und damit eine Rolle des DNA-Reparatur-Signalwegs in der 

Apoptose-Induktion durch zytoplasmatische virale DNA nahegelegt 43. In noch nicht 

veröffentlichten Daten aus diesem Projekt zeigte sich in Anwesenheit von Koffein in einigen 

Experimenten neben der verminderten Apoptose auch eine verminderte Freisetzung von 

Interferon und Inflammatorischen Zytokinen nach einer Infektion mit einem DNA-Virus. Dieser 

vorläufige Befund sollte in der vorliegenden Arbeit weiter untersucht werden und insbesondere 

der Effekt von Koffein auf die Zytokinproduktion nach Stimulation intrazellulärer Nukleinsäure-

Rezeptoren von Typ der RIG-I-like Helikasen untersucht werden.  
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2 Material und Methoden 

2.1 Material 

2.1.1 Technische Geräte 

Eismaschine Ziegra, Isernhagen, D 

Lamin Air Flow (HB 2448) Heraeus, Hanau, D 

Light Cycler 480 II Roche Diagnostics, Mannheim, D 

Multiplate Reader Mithras LB 940 Berthold Technologies, Bad Wildbach, D 

Nanodrop ND-1000  NanoDrop, Wilmington, USA 

Neubauer Zählkammer  Optik Labor Frischknecht, Balgach, D 

pH-Meter 720 Inolab benchtop WTW, Darmstadt, D 

Thermocycler T3 Biometra, Göttingen, D 

Vortexmischer Janke & Kunkel, Staufen, D 

Zellkulturbrutschrank Heraeus, Hanau, D 

Zentrifuge 5415 R Eppendorf Hamburg, D 

Zentrifuge Sepatech Omnifuge Heraeus, Hanau, D 

 

2.1.2 Reagenzien und Kits 

Agar-Agar, Kobe I Roth, Karlsruhe, D 

Annexin V apoptosis detection kit BD Biosciences, San Diego, USA 

Aqua ad injectabilia Braun, Melsungen, D 

Biocoll  Merck Millipore, Billerica, USA 

Bovine serum albumin (BSA)  Roth, Karlsruhe, D 

Bromphenol blue Roth, Karlsruhe, D 

Calciumchlorid Sigma-Aldrich, Steinheim, D 

Ciprofloxacin Stada, Bad Homburg, D 
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Coelenterazine  Promega, Mannheim, D 

dAdT Invivogen, San Diego, USA 

dNTPs (10mM)  Fermentas, St. Leon Rot, D 

Dulbecco's Modified Eagle Medium 

(DMEM) 
Sigma-Aldrich, Steinheim, D 

Ethylendiamintetraessigsäure (EDTA) Roth, Karlsruhe, D 

Fötales Kälberserum (FCS) GibcoBRL, Paisley, GB 

GeneJET Plasmid Miniprep Kit ThermoFisher Scientific, Waltham, USA 

Genejuice Merck Chemicals, Darmstadt, D 

GMEM Invitrogen, Carlsbad, USA 

Human IFN-alpha ELISA Kit R&D Systems, Minneapolis , USA 

Human IL6 ELISA Set BD Biosciences, San Diego, USA 

Human IP-10 ELISA Kit R&D Systems, Minneapolis , USA 

Koffein Sigma Aldrich, Steinheim, D 

L-Glutamine PAA, Linz, A 

Lipofectamine 2000 Invitrogen, Carlsbad, USA 

Lipofectamine RNAiMax Invitrogen, Carlsbad, USA 

Luciferase-Assay Kit  BioThema, Handen, S 

MCDB 153 Sigma-Aldrich, Steinheim, D 

MegaShortscript T7 Kit Fa. Ambion, Darmstadt, D 

Opti-MEM Invitrogen, Carlsbad, USA 

Passive Lysis Buffer Promega  Mannheim, D 

Penicillin / Streptomycin (100x)  PAA, Linz, A 

Pfu Polymerase  Fermentas, St. Leon Rot, D 

Phosphate-buffered saline (PBS) PAA, Linz, A 

Poly(I:C) Invivogen, San Diego, USA 

RNeasy Mini Kit Qiagen, Venlo, NL 
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2.1.3 Verbrauchsmaterial 

 

 

 

 

 

2.1.4 Plasmide 

 

 

 

 

 

 

2.1.5 Primer 

Die in dieser Arbeit verwendeten Primer wurden von Metabion (Planegg/Steinkirchen, D) 

synthetisiert. Für das Primerdesign für qRT-PCR-Assays wurde das Assay Design Programm, 

sowie die Universal Probe Library (UPL) von Roche (Basel, CH) verwendet. 

 

RT-PCR Reaktionsmix Peqlab, Erlangen, D 

Streptomycin PAA, Linz, A 

Trypan blau Sigma-Aldrich, Steinheim, D 

Tryptose Sigma-Aldrich, St, Louis, USA 

LeucoSep Röhrchen Greiner Bio-One, Kremsmünster, A 

Mikroreaktionsgefäße Eppendorf, Hamburg, D 

Reaktionsgefäße Greiner Bio-One, Kremsmünster, A 

Steril-Filter  Sigma-Aldrich, St. Louis, USA 

Zellkulturflaschen Corning, Corning, USA 

Name Nr.  Promotor Beschreibung Resistenz 

pGl2-basic 
(Promega) 

46 IFN-β Firefly-Luciferase 
unter Kontrolle des 
IFN-β-Promotors 

Ampicillin 

pRL-CMV Vector 
(Promega)  

47 CMV Renilla-Luziferase 
Kontrollvektor zur 
Ko-Transfektion mit 
Luciferase-vektoren 

Ampicillin 

PCDNA 3.1  CMV  Ampicillin 
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Zielgen Forward Primer  Reverse Primer  UPL-Probe 

HPRT1 (human) tgaccttgatttattttgcatacc cgagcaagacgttcagtcct 73 

Interferon-β 

(human) 

cgacactgttcgtgttgtca gaggcacaacaggagagcaa 25 

    

Für die Synthese von doppelsträngiger ppp-RNA wurden der T7-Primer, sowie zwei Templates 

verwendet.  

 Sequenz 

T7-Promoterprimer taatacgactcactata 

Template 2.2s tcaaacagaggtcgcatgcctatagtgagtcgta 

Template 2.2as gcatgcgacctctgtttgactatagtgagtcgta 

5‘-ppp-2.2 RNA gcaugcgaccucuguuuga 

 

2.1.6 Software 

GraphPad Prism GraphPad Software Inc., La 
Jolla, USA 

Microsoft Office Microsoft, Redmont, USA 

 

2.1.7 Virusstämme 

In dieser Arbeit wurde das Encephalomyokarditisvirus (EMCV, wild typ) und das Vesicular 

Stomatitis Virus (VSV, Indiana Strang), zur Verfügung gestellt von Prof. Dr. Anne Krug (LMU 

München), verwendet. 
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2.1.8 Zelllinien 

Als humane Zelllinien wurden in dieser Arbeit die Human Embyonic Kidney 293T Zelllinie 

(HEK293T), sowie die humane Melanomzelllinie 1205Lu verwendet. Die 1205Lu Zelllinie 

wurde von Dr. Robert Besch (LMU München) zur Verfügung gestellt.  

Um Virustiter mittels Plaque-Assay zu bestimmen, wurden Baby Hamster Kidney (BHK) Zellen 

verwendet.  

2.1.9 Medien 

DMEM Standardzellkulturmedium DMEM  

10%FCS  

1% Penicillin/Streptomycin 

1% L-Glutamin 

PBMC Medium RPMI 

10% FCS 

2mM L-Glutamin 

1%Ciprofloxacin 

GMEM Standardzellkulturmedium GMEM 

1% Tryptose  

1% Penicillin/Streptomycin  

10% FCS 

 

2.2 Methoden 

2.2.1 Zellkultur 

Wachstumsbedingungen  

Alle verwendeten Zelllinien wurden in einem Standardzellkulturinkubator bei 37°C, 95% 

Luftfeuchtigkeit und 5% CO2 gehalten. Die Zellen wurden bei einer Konfluenz von ca. 80% des 

Zellkulturflaschenbodens 1:10 geteilt. Hierzu wurden die Zellen mit PBS gewaschen und durch 

Trypsin +0,5% EDTA von der Oberfläche der Zellkulturflaschen gelöst, resuspendiert und 

anschließend in frischem Medium wieder ausgebracht. Falls für ein Experiment notwendig, 
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wurden die Zellen in einer Neubauer-Zählkammer gezählt, um tote Zellen identifizieren zu 

können, wurde Trypanblau verwendet. HEK 293T Zellen und 1205LU Zellen wurden in 

Standardzellkulturmedium DMEM mit 10% fötalem Kälberserum (FCS), 1% 

Penicillin/Streptomycin, 1% Glutamin kultiviert, PBMCs in RPMI mit 10% FCS, 2mM L-

Glutamine und 1% Ciprofloxacin44, BHK-Zellen in GMEM mit 1% Tryptose, 1% 

Penicillin/Streptomycin und 10% FCS. 

Gewinnung mononukleärer Zellen des peripheren Blutes 

Vor der Blutentnahme wurden in den Abnahmespritzen 5000 IE Heparin vorgelegt, 

anschließend erfolgte die Blutabnahme. In LeucoSep-Blue-Cap Röhrchen wurden 13ml Biocoll 

Seperation Solution gegeben, kurz bei 400g abzentrifugiert und anschließend mit maximal 

25ml heparinisiertem Vollblut überschichtet. Die befüllten LeucoSep-Blue-Cap Röhrchen 

wurden bei minimaler Beschleunigung und Abbremsen 15min bei Raumtemperatur und 800g 

zentrifugiert. Nach der Auftrennung und Abnahme der mononukleären Zellen wurden diese mit 

0,9% NaCl gewaschen und bei 4°C 10min bei 500g zentrifugiert. Die abzentrifugierten Zellen 

wurden resuspendiert und erneut mit 0,9% NaCl gewaschen. Nach erneuter Zentrifugation und 

verwerfen des Überstandes, wurden die Zellen in 3ml Erylyse-Lösung (8,929g NH4Cl, 0,029g 

KHCO3, 1g EDTA, 1l Aqua dest., zur Lösung aufkochen, anschließend den pH auf 7,2 mit HCl 

einstellen und sterilfiltrieren) resuspendiert und 3min bei Raumtemperatur inkubiert. Nach 

erneutem Waschen der Zellen in 0,9% NaCl wurden die Zellen in RPMI-Medium für PBMCs 

aufgenommen. 

2.2.2 Molekularbiologische Methoden 

Transformation 

Eingefrorene hitzekompetente Bakterien wurden langsam auf Eis aufgetaut, anschließend 

wurden 1-2µl des zu transformierenden Plasmids zugegeben und 30 Minuten auf Eis stehen 

gelassen. Die Bakterien wurden dann exakt eine Minute auf 42°C erhitzt und anschließend mit 

frischem LB-Medium eine Stunde bei 37°C inkubiert. Das Bakteriengemisch wurde auf einer 

Agarplatte mit in Abhängigkeit des Resistenzgens des Plasmids zugefügtem Antibiotikum 

ausplattiert und über Nacht bei 37°C im Bakterienbrutschrank selektioniert. Die über Nacht 

entstandenen Kolonien wurden gepickt und 16h in LB-Medium, ebenfalls mit Antibiotikum, 

expandiert.  



Material und Methoden 

21 

 

DNA-Präparation 

Die Bakterien wurden bei 12.000g abzentrifugiert. Die Plasmidaufreinigung erfolgte mit Hilfe 

des GeneJET Plasmid Miniprep Kits, die Verwendung erfolgte gemäß den Herstellerangaben.  

Synthese von pppRNA 

pppRNA wurde mit Hilfe des MEGAscript T7 Kits synthetisiert. Hierzu wurde zunächst der T7-

Primer entweder mit dem 2.2s oder 2.2as Template hybridisiert. Hierzu wurden 2µl Primer mit 

2µl Template in 10µl H2O bei 70°C inkubiert und anschließend langsam auf Raumtemperatur 

abgekühlt. Um ss-pppRNA zu synthetisieren wurden den hybridisierten Strängen der 

MEGAscript T7 Polymerasemix zugegeben, wie im Herstellerprotokoll angegeben. Für die 

Hybridisierung zu ds-pppRNA wurden die entstandenen RNA-Produkte aus dem 2.2s und dem 

2.2as-Ansatz über Nacht bei 37°C inkubiert. Entsprechend den Herstellerangaben folgte ein 

DNAse-Verdau und ein Phenol-Chloroformfällung. Verbliebene Verunreinigungen aus den 

vorangegangenen Reaktionsschritten wurden mittels RNeasy-Kit (Qiagen) entfernt. Die 

Konzentration von dsRNA wurde photometrisch mit Hilfe des Nanodrop gemessen.  

RNA-Isolation 

RNA wurde aus Zellen mit dem Total RNA Kit von Peqlab nach dem Protokoll des Herstellers 

aufgereinigt. Die erhaltene Konzentration wurde photometrisch mittels Nanodrop gemessen. 

Die Lagerung von RNA erfolge bei -80°C. 

Reverse Transkription von RNA 

Um RNA in cDNA umzuschreiben wurde eine reverse Transkription durchgeführt. 0,2µl 

Reverse Transcriptase H-(Fermentas), 0,5µl Riboloc (Fermentas), 2µl dNTPs (10mmol/µl), 2µl 

18-poly Primer, 4µl RT-Puffer und 11,3µl (Gesamtansatz 20µl), wurden 60min bei 42°C 

inkubiert. Anschließend erfolgte eine Inaktivierung der Enzyme bei 70°C für 10min.  

Quantitative Real-Time-PCR 

Um cDNA und somit RNA quantitativ messen zu können, wurde der Lightcycler (Roche) und 

die zugehörige Universal Probe Library (Roche) verwendet. Für jeden Ansatz wurden, wie vom 

Hersteller angegeben, 9µl cDNA, je 0,4µl Primer (10pmol/µl), 0,2µl der benötigten Sonde und 

10µl des Peqlab Kapa Probe Reaktionsmix gegeben. Nach einer Denaturierung bei 95°C für 

10min erfolgten 45 Zyklen zur Amplifikation im Standardprogramm (10 Sekunden 95°C, 10 

Sekunden 60°C, 10 Sekunden 72°C) des Lightcyclers.  
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2.2.3 Lipotransfektion 

Um Zellen mit RNA oder DNA zu transfizieren, wurde Lipotransfektion verwendet. pppRNA, 

dAdT und poly IC wurden mit RNAiMAX transfiziert, Plasmide mit GeneJuice. Die 

Transfektionen erfolgten gemäß den Herstellerangaben. Als Medium wurde Opti-MEM 

verwendet.  

2.2.4 Enzyme linked immunosorbent assay (ELISA) 

Der enzyme linked immunosorbent assay (ELISA) ist ein Verfahren, um die Konzentration von 

Molekülen in einer Lösung zu bestimmen. Hierfür sind zwei verschiedene Antikörper gegen 

das zu messende Molekül notwendig. Der erste Antikörper wird an die Oberfläche einer 96-

Lochplatte gebunden. Die zu untersuchende Lösung wird zu den gebundenen Antikörpern 

gegeben, für eine bestimmte Zeit inkubiert und anschließend abgewaschen. Es verbleiben nun 

die Antikörper mit den gebundenen Molekülen in der Platte. Im nächsten Schritt werden 

Antikörper gegen das Molekül zugegeben, an welches das Enzym horseraddish peroxidase 

(HRP) gekoppelt ist. Wiederum erfolgen Inkubation und Abwaschen des nicht gebundenen 

Antikörpers. HRP setzt ein zunächst farbloses Substrat um, das Produkt dieser Reaktion kann 

anschließend kolorimetrisch gemessen werden. Die gemessene Absorption korreliert mit der 

Menge an gebundenem HRP-Antikörper. Damit kann im Vergleich zu einer Standardkurve der 

gesuchten Substanz mit bekannter Konzentration, die unbekannte Konzentration in der 

Lösung abgelesen werden.  

Um die Konzentrationen der von IFN- und IP-10 in Zellüberständen zu messen, wurde ein 

sog. “Sandwich-ELISA” (R&D System) verwendet. Die Durchführung erfolgte nach den 

Angaben des Herstellerprotokolls.   

2.2.5 Luciferase Assay 

Um die Aktivität eines Promotors zu bestimmen, wurde der Luciferase-Assay angewendet. 

Hierbei stehen Luciferasegene unter der Kontrolle des Promoters, dessen Aktivität gemessen 

werden soll. Die Firefly-Luciferase stand unter der Kontrolle des IFN-β-Promotors, die Renilla-

Luciferase unter der Kontrolle des CMV-Promotors. Die Aktivität des Firefly-Luciferase zeigte 

somit die Induktion des INF-β-Promotors an, die Aktivität des Renilla-Luciferase dient dabei 

der Normalisierung. 

Je 105 HEK293T-Zellen wurden nach dem Anwachsen mit den Luciferase-Plasmiden und 

eventuelle Stimulationsplasmiden in einer 96-Loch-Platte transfiziert (Lipotransfektion). Zur 

Normierung der Plasmidmenge wurde die DNA-Mengen in allen Bedingungen mit dem leeren 
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PCDNA3.1 Vektor-Plasmid auf 200ng angeglichen. PCDNA3.1 fungiert darüber hinaus als 

Negativkontrolle. Nach 18 bis 24h Inkubation wurden die Zellen mit Passive-Lysis-Buffer 

lysiert. Die Aktivität der Luciferasen wurde nach Zugabe der Enzym-Substrate (Firefly-

Luciferase: Luciferase-Assay Kit, Renilla-Luciferase: Coeleterazine) am Mithras Multiplate-

Reader gemessen.   

2.2.6 Plaque-Assay 

Zur Bestimmung der Viruskonzentration wurde ein sog. Plaque-Assay durchgeführt. Hierzu 

wurden 3,5 x 106 BHK-Zellen in 6-Loch-Platten gegeben. Über Nacht wuchsen diese auf eine 

Konfluenz von ungefähr 80%. Die Zellen wurden mit einer Verdünnungsreihe von 10-3 bis 10-

10 der Viruslösung (Verdünnung in Opti-MEM) infiziert. Nach 2h wurde die Viruslösung entfernt 

und die Zellen einmal mit PBS gewaschen. Anschließend wurden die Zellen mit einem 

Agarose-Deckel versiegelt, um das Ausbreiten des Virus zu verhindern. Für den 

Agarosedeckel wurden1% Agarose in PBS gelöst und anschließend mit der gleichen Menge 

GMEN vermischt. Kurz vor Verfestigung der Agarose wurden die Zellen vorsichtig 

überschichtet.  

Nach 24h wurde der Deckel entfernt und der Zellrasen mit Methylenblau gefärbt. Anschließend 

wurden die Plaques ausgezählt, um die Plaque-Forming-Unit (PFU) zu bestimmen. 

2.2.7 Statistische Analyse 

Die Daten wurden mit Microsoft Excel und GraphPad Prism analysiert. Es wurde ein gepaarter 

zweiseitiger student’s T-test verwendet, um die Signifikanz der Mittelwerte zu bestimmen. Als 

signifikant wurden p<0,05 angesehen (* p<0,05, ** p<0,01. *** p<0,001), ein p-Wert >0,05 

wurde als nicht signifikant (ns) angesehen. Fehlerbalken sind als Standardabweichung vom 

Mittelwert angegeben. 
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3 Ergebnisse 

Bei Vorarbeiten der Arbeitsgruppe zur Apoptose-Induktion in Zelllinien nach Infektion mit den 

DNA Virus MVA (modified vaccinia Ancara) wurde von Wenzel et al. 43 Koffein eingesetzt, um 

die Kinase ATM zu inhibieren. Als Nebenbefund dieser Experimente fiel eine Inhibition der 

MVA-induzierten Zytokinproduktion in Anwesenheit von Koffein auf. Während die ATM-

Abhängigkeit der MVA-induzierten Apoptose durch eine siRNA-vermittelte Depletion von ATM 

und ATR bestätigt werden konnte und publiziert wurde, war die beobachtete Koffein-

abhängige Zytokinhemmung nicht durch Depletion von ATM/ATR wieder aufzuheben, so dass 

hier eine ATM-unabhängige Wirkung von Koffein auf die MVA-induzierte Zytokinproduktion 

postuliert wurde. Da bekannt ist, dass durch MVA und das ebenfalls bei Wenzel et al. 43 

eingesetzte virale DNA-Imitat dAdT nach Umschrieb der DNA durch die Polymerase III in 

triphosphat-modifizierte RNA die Zytokininduktion, zumindest zum Teil durch Aktivierung der 

RIG-I-like Helikasen erfolgt36, wurde zunächst eine Wirkung von Koffein auf die RLH-induzierte 

Zytokininduktion vermutet. MVA und dAdT können jedoch je nach Zellsystem auch die 

Mustererkennungsrezeptoren AIM2, cGAS/Sting und TLR 9 aktivieren, so dass auch eine 

Beeinflussung dieser Signalwege durch Koffein möglich erschien. Dies sollte daher 

experimentell weiter untersucht werden.  

3.1 Effekt von Koffein auf PBMCs 

Periphere mononukleäre Blutzellen (PBMCs) sind eine Mischung von verschiedenen Zelltypen 

des angeborenen und erworbenen Immunsystems. Um zu untersuchen, ob ein Effekt von 

Koffein auf die Zytokinausschüttung generell bei Zellen des Immunsystems zu beobachten ist, 

wurden PBMCs von fünf verschiedenen Spendern isoliert, mit verschiedenen Konzentrationen 

Koffein behandelt und anschließend mit LPS, dAdT, ppp-RNA, und poly IC stimuliert. dAdT 

aktiviert dabei RIG-I, ist aber auch in der Lage den zytoplasmatischen Rezeptor cGAS zu 

aktivieren. ppp-RNA ist ein spezifischer Ligand des zytoplasmatischen RNA-Rezeptors RIG-I. 

poly IC führt zur Aktivierung von MDA5 und LPS wird durch TLR-4 erkannt. Nach der 

Erkennung von ppp-RNA und dAdT durch RIG-I/cGAS bzw. von poly IC durch MDA5 folgt eine 

Signalkaskade, die zur Aktivierung von NFκB und IRFs und in Monozyten und dendritischen 

Zellen zur Induktion von Interferon-α führt. Die TLR-4-vermittelte Stimulation mit LPS führt in 

diesen Zellen insbesondere zur einer MYd88 und NF-B-abhängigen Ausschüttung von TNF-

.  
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Abbildung 3-1 Koffein hemmt die TNF-Freisetzung von PBMCs nach Stimulation mit LPS.  
1 x 10 5 PBMC wurden in einer 96 Well Platte in 100µl Medium in Triplikaten ausplattiert und mit Koffein in der 
angegebenen Konzentration inkubiert. 1 h später wurden die Zellen mit LPS (100ng/well) stimuliert und nach 

24 h wurde der Überstand abgenommen und TNF- mittels ELISA bestimmt. Gezeigt sind die Daten als 
Mittelwerte +- SD von 5 verschiedenen Spendern. *p≤0,05, **p≤0,01, ***p≤0,001 zeigt die Signifikanzniveaus 
jeweils für den Vergleich mit der LPS-stimulierten Bedingung ohne Koffein im zweiseitigen t-Test, nd = nicht 
messbar, ns = nicht signifikant. 

 

Dabei zeigte sich eine konzentrationsabhängige Reduzierung der LPS-induzierten TNF-

Ausschüttung durch Koffein (Abbildung 3-1). 1mM Koffein führte zu einer Reduzierung auf nur 

12,6% der Freisetzung im Vergleich zur Stimulation in Abwesenheit von Koffein. Auch 0,5mM 

(36%), 0,2mM (49%), 0,1mM (54%) und 0,05mM (845%) zeigten eine signifikant reduzierte 

TNF-Freisetzung. 0,025mM und 0,01mM hingegen zeigten nahezu keine Wirkung mehr. 

Koffein alleine ohne LPS führte zu keiner Freisetzung von TNF. 
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Abbildung 3-2 Koffein hemmt die Interferon-α Freisetzung von PBMCs nach Stimulation mit dAdT.  
1 x 10 5 PBMC wurden in einer 96 Well Platte in 100µl Medium in Triplikaten ausplattiert und mit Koffein in der 
angegebenen Konzentration inkubiert. 1 h später wurden die Zellen mit dAdT (200ng/well) komplexiert mit 

RNAiMAx stimuliert und nach 24 h wurde der Überstand abgenommen und IFN- mittels ELISA bestimmt. 
Gezeigt sind die Daten als Mittelwerte +- SD von 5 verschiedenen Spendern. *p≤0,05, **p≤0,01, ***p≤0,001 
zeigt die Signifikanzniveaus jeweils für den Vergleich mit der dAdT-stimulierten Bedingung ohne Koffein im 
zweiseitigen T-test, nd = nicht messbar, ns = nicht signifikant. 

Auch für die dAdT-induzierte Interferon- Produktion zeigte sich eine 

konzentrationsabhängige Reduzierung der Interferonfreisetzung durch Koffein. 1mM Koffein 

senkte die IFN-Freisetzung auf 16,8% der, 0,5mM auf 38,5%, 0,2mM auf 60% und 0,1mM 

erbrachte ebenfalls nur eine Freisetzung von 76%. Koffein alleine ohne dAdT führte zu keiner 

Freisetzung von Interferon.  

Da dAdT neben der Aktivierung von RIG-I auch über die Aktivierung von cGAS/Sting 

Interferon-induzieren kann wurde im nächsten Experiment untersucht, ob die 

Interferonproduktion durch den direkten RIG-I-Agonisten pppRNA ebenfalls durch Koffein 

beeinflusst wird.  

Auch hier zeigte sich eine Reduzierung der pppRNA-induzierten IFN-Ausschüttung durch 

Koffein (Abbildung 3-2), die jedoch weniger stark konzentrationsabhängig war. Eine 
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Konzentration von 1mM Koffein führte zu einer INFα Freisetzung von 51,4% im Vergleich zur 

Probe ohne Koffein. Niedrigere Konzentrationen führten noch zu einer Hemmung auf 60-70% 

der IFN-Ausschüttung. Koffein alleine ohne pppRNA führte zu keiner Freisetzung von 

Interferon.  

 

 

Abbildung 3-3 Koffein hemmt die Interferon-α Freisetzung von PBMCs nach Stimulation mit ppp-RNA.  
1 x 10 5 PBMC wurden in einer 96 Well Platte in 100µl Medium in Triplikaten ausplattiert und mit Koffein in der 
angegebenen Konzentration inkubiert. 1 h später wurden die Zellen mit pppRNA (200ng/well) komplexiert mit 

RNAiMAx stimuliert und nach 24 h wurde der Überstand abgenommen und IFN- mittels ELISA bestimmt. 
Gezeigt sind die Daten als Mittelwerte +- SD von 5 verschiedenen Spendern. *p≤0,05, **p≤0,01, ***p≤0,001 
zeigt die Signifikanzniveaus jeweils für den Vergleich mit der pppRNA-stimulierten Bedingung ohne Koffein im 
zweiseitigen T-test, nd = nicht messbar, ns = nicht signifikant. 

Neben RIG-I ist MDA5 der zweite RLR, der an der Erkennung von fremd-RNA beteiligt ist. Das 

synthetische Polynukleotid poly IC ist im Zytoplasma ein Ligand von MDA5 kann jedoch auch 

endosomales bzw. membranständiges TLR3 aktivieren. Um den Effekt von Koffein auf die poly 

IC-induzierte Interferon-Produktion zu untersuchen wurden PBMCs zunächst mit Koffein in 

unterschiedlichen Konzentrationen behandelt und anschließend mit poly IC stimuliert. Um eine 
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MDA5-Aktivierung zu erreichen wurde poly IC dabei via Transfektion ins Zytoplasma 

geschleust. Wie in Abbildung 3-4 dargestellt.  

 

Abbildung 3-4 Koffein hemmt die Interferon-α Freisetzung von PBMCs nach Stimulation mit poly IC.  
1 x 10 5 PBMC wurden in einer 96 Well Platte in 100µl Medium in Triplikaten ausplattiert und mit Koffein in der 
angegebenen Konzentration inkubiert. 1 h später wurden die Zellen mit poly IC (200ng/well) komplexiert mit 

RNAiMAx stimuliert und nach 24 h wurde der Überstand abgenommen und IFN- mittels ELISA bestimmt. 
Gezeigt sind die Daten als Mittelwerte +- SD von 5 verschiedenen Spendern. *p≤0,05, **p≤0,01, ***p≤0,001 
zeigt die Signifikanzniveaus jeweils für den Vergleich mit der poly IC-stimulierten Bedingung ohne Koffein im 
zweiseitigen T-test, nd = nicht messbar, ns = nicht signifikant. 

 

Zunächst fällt an den Ergebnissen nach Stimulation mit poly IC auf, dass nur 1/10 an Interferon 

freigesetzt wird, wie bei der Stimulation durch RIG-I. Dennoch lässt sich auch hier eine durch 

Koffein reduzierte Interferonfreisetzung erkennen. 1mM Koffein reduzieren signifikant die 

Freisetzung um ca. 50%. Niedrigere Koffeinkonzentrationen erzielen eine 50-10%ige 

Reduktion von Interferon, wobei die Werte keinen p-Wert <0,05 erreichen, aber einen 

deutlichen Trend aufweisen. Diese Werte zeigen, dass Koffein nicht lediglich die RIG-I-, 

sondern auch die MDA5-induzierte Koffeinfreisetzung hemmt.  
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3.2 Einfluss von Koffein auf das angeborene Immunsystem in 1205LU-Zellen 

Um zu untersuchen, ob auch Zellen, die keine spezialisierten Immunzellen sind, auf Koffein 

mit einer verringerten Zytokinproduktion reagieren, wurden 1205LU- Zellen mit poly IC, einem 

synthetischen doppelsträngigem RNA-Analogon, stimuliert. poly IC wird vesikulär von TLR3 

erkannt. Wird poly IC transfiziert, aktiviert es MDA5.  
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Abbildung 3-5 Koffein hemmt die Freisetzung von Interferon-β in 1205LU-Zellen nach Stimulation mit 
poly IC 
1 x 10 5 1205LU-Zellen wurden in 12 Well Platte in Duplikaten ausplattiert und nach 24h mit Koffein in der 
angegebenen Konzentration inkubiert. 1 h später wurden die Zellen mit poly IC (500ng/well) komplexiert mit 
RNAiMAX stimuliert. Nach 6 h wurde die RNA isoliert. Mittels qRT-PCR wurde die relative Kopienzahl von 
Interferon-β mRNA im Verhältnis zum housekeeping-Gen HPRT gemessen. Der Fehlerbalken entspricht der 
Standardabweichung. Weder Koffein allein, noch unstimulierte Zellen produzierten messbare Interferon-β 
mRNA. (us = unstimuliert). Gezeigt sind die Daten als Mittelwerte +- SD der Duplikate. 

Das Ergebnis dieses Versuchs zeigt (Abb. 3-5), dass in 1205LU-Zellen die Transkription von 

IFN-β durch Koffein reduziert wird. Dies kann darauf hindeuten, dass der anti-inflammatorische 

Effekt von Koffein nicht nur in Immunzellen eine Rolle spielt. Koffein selbst hat keinen 

immunstimulatorischen Effekt in 1205LU-Zellen.  

3.3 Hemmung der IP-10 Freisetzung durch Koffein nach Überexpression des RIG-I 

Signalweges 

Um die Wirkebene von Koffein im RIG-I-Signalweg zu finden, wurden die einzelnen Teile der 

Singalkaskade aktiviert und versucht, diese Aktivierung durch die Zugabe von Koffein zu 

hemmen. Dies wurde für RIG-I, MAVS, TBK1 und IRF3 untersucht. Bei RIG-I, MAVS und TBK1 

führt die Überexpression zur Aktivierung des Signalwegs. Von IRF3 wurde eine konstitutiv 

aktive Variante IRF3-5D verwendet.  



 

30 

 

10 5 2 1 0
0

20

40

60

Koffein [mM]

IP
-1

0
 n

g/
m

l

10 5 2 1 0
0

200

400

600

800

Koffein [mM]

IP
-1

0
 n

g/
m

l

10 5 2 1 0
0

20

40

60

80

Koffein [mM]

IP
-1

0
 n

g/
m

l

10 5 2 1 0
0

200

400

600

800

Koffein [mM]

IP
-1

0
 n

g/
m

l

a b

c d

 

Abbildung 3-6 Koffein hemmt die Freisetzung von IP-10 durch nach Überexpression von RIG-I, MAVS, 
TBK1 und IRF3 zwischen TBK1 und IRF3. 
1x 10 5 1205LU-Zellen wurden in 96-Well-Platten in Triplikaten ausplattiert und nach 24h mit Koffein in der 
angegebenen Konzentration inkubiert. Nach Transfektion von mit GeneJuice komplexierten 
Überexpressionsplasmiden (RIG-I 200ng DNA, MAVS 50ng, TBK1 50ng, IRF3-5D 200ng, PCDNA3.1 
Backboneplasmid) wurden nach 24h die Überstände gesammelt und das freigesetzte IP-10 mittels ELISA 
bestimmt. RIG-I(a), MAVS(b), TBK1 (c), IRF3-5D(d). PCDNA3.1 zeigte keine IP-10 Freisetzung (Daten nicht 
gezeigt). Der Fehlerbalken entspricht der Standardabweichung. Gezeigt sind die Daten als Mittelwerte +- SD 

der Triplikate.  

Koffein hemmt in allen Konzentrationen deutlich die Freisetzung von IP-10 durch die 

Überexpression von RIG-I. Auch die Freisetzung von IP-10 durch die Überexpression von 

MAVS und TBK1 wird konzentrationsabhängig gehemmt, wenn auch nicht so deutlich wie bei 

RIG-I. Die IP-10 Freisetzung durch das konstitutionelle IRF3-5D wird nicht durch Koffein nicht 

beeinflusst. Diese Daten legen nahe, dass Koffein seine hemmende Wirkung zwischen der 

Aktivierung von TBK1 und der Phosphorylierung von IRF3 ausüben könnte.  

3.4 Der Einfluss von Koffein auf Virusreplikation 

Da Koffein einen Einfluss auf die Produktion von Zytokinen hat, war der nächste Schritt, den 

Einfluss von Koffein auf die Replikation von Viren zu untersuchen. Koffein hemmt die 

Ausschüttung von Zytokinen, welche dazu dienen, auch Zellen, die noch nicht infiziert sind, in 

einen Alarmzustand zu versetzen, um eine Verbreitung der Viren zu unterbinden.  



 

31 

 

Als Modell wurden dabei sowohl ein RIG-I-abhängig erkanntes Virus als auch ein MDA5-

abhängiges Virus untersucht. Das Enzephalomyocarditisvirus (EMCV), ist ein Mitglied der 

Familie der Picornaviren und wird von MDA5 erkannt. Das vesikuläre Stomatitisvirus (VSV) 

aktiviert RIG-I. Es wurde eine geringe multiplicity of infection (MOI) von 0,01 gewählt. 

Hierdurch sollte sichergestellt werden, dass nicht sofort alle Zellen infiziert wurden und somit 

nicht-infizierte Zellen auf die Zytokine der infizierten Zellen reagieren konnten. Es wäre dann 

zu erwarten, dass aufgrund der geringeren Zytokinausschüttung durch die Koffeinbehandlung 

sich die Viren leichter und schneller replizieren können und ein höherer Virustiter gemessen 

werden könnte. 

VSV zeigte jedoch entgegen der ursprünglichen Erwartung bereits ab einer Konzentration von 

0,5mM einen um den Faktor 10 verminderten Virustiter nach 24h. Bei einer Konzentration von 

1mM war der Titer nach 24h um den Faktor 100 niedriger, nach 48h noch um den Faktor 10. 

Konzentrationen von 10mM und 5mM verminderten den Virustiter um den Faktor 1000 bis 100, 

dies war konstant auch noch nach 48h zu beoachten (Abb. 3-8 oben).  

Auch auf die Replikation von EMCV hatte Koffein einen suppressiven Einfluss. Bei einer 

Konzentration von 10mM zeigte sich die Replikation vollkommen supprimiert. Auch bei 5mM 

und 1 mM kam es noch zu einer Replikationshemmung, die auch nach 48h noch erkennbar 

war (Abb. 3-8 unten). 
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Abbildung 3-8: Koffein hemmt die Replikation von EMCV und VSV in 1205LU-Zellen. 
1205LU-Zellen wurden nach Stimulation mit Koffein mit EMCV oder VSV infiziert („multiplicity of infection“ (MOI) 
0,01). Nach 24 und 48 Stunden wurden die Überstände abgenommen und die jeweiligen Virustiter mittels 
Plaque-Assay als „plaque forming units“ (PFU) gemessen. Die Experimente wurden in Duplikaten gemachte, 
die Ergebnisse sind als Mittelwerte dargestellt, nd bedeutet eine PFU von unter 1x10^3.  
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4 Diskussion 

4.1 Zusammenfassung der Ergebnisse 

Ziel dieser Arbeit war, es den Einfluss von Koffein auf die Zytokinproduktion nach Aktivierung 

des Immunsystems durch Liganden von Mustererkennungsrezeptoren und Viren zu 

untersuchen und damit verbundene potentielle Effekte auf die Replikation von Viren zu 

analysieren. 

In der Arbeit konnte gezeigt werden, dass in PBMCs die ex vivo Präinkubation mit Koffein ab 

Konzentrationen von 50 M zu einer deutlichen Reduktion der LPS-induzierten TNF--

Produktion nach 24 h führt. Koffein-Konzentrationen ab 100 M hemmten zudem die durch 

Transfektion von dAdT-induzierte Interferon- Produktion in PBMCs. Dieser hemmende 

Koffein-Effekt ließ sich, wenn auch etwas weniger deutlich, auch für die durch Transfektion 

von pppRNA und poly IC induzierte Interferon- Produktion in PBMC zeigen. Dieser 

hemmende Effekt von Koffein auf die RLR-induzierte Interferon Typ-I Produktion nach 

Transfektion von poly IC ließ sich auch in der humanen Melanom Zelllinie 1205lu 

reproduzieren. In diesem Zellsystem konnte zudem durch Experimente, in denen durch 

Überexpression von RIG-I, TBK1 und einer konstitutiv-aktiven IRF3 Variante jeweils der RLR-

Signalweg aktiviert wurde, gezeigt werden, dass Koffein seinen hemmenden Einfluss auf den 

RLR-Signalweg unterhalb oder auf Höhe von TBK1 und oberhalb von IRF3 ausübt. Während 

diese hemmende Wirkung von Koffein auf den RLR-Signalweg zunächst eine Replikations-

fördernde Wirkung von Koffein auf Viren erwarten ließ, zeigten Infektionsexperimente mit den 

beiden durch RLRs erkannten Modellviren VSV und EMCV in 1205lu Zellen jedoch ab 

Konzentrationen von 500 M eine deutliche Reduktion der freigesetzten Viruspartikel im 

Überstand nach 24 und 48 Stunden. 

4.2 Koffein und seine Wirkung auf inflammatorische Zytokine und Virusreplikation in 

der Literatur 

4.2.1 Wirkung von Koffein auf inflammatorische Zytokine 

Bisher konnte ein immunmodulatorischer Effekt von Koffein in einer Vielzahl von Systemen 

festgestellt werde. Koffein hat sowohl einen Effekt auf die Zytokinproduktion, aber auch auf 

die Produktion freier Radikale, die Lymphozytenproliferation, die Antikörperproduktion, die 

Leukozytenchemotaxis, die Funktion von NK-Zellen und die Apoptose von Immunzellen 5.  

Bei Konzentrationen von 0,2mM konnten von Van Furth et al. ein statistisch signifikanter Effekt 

von Koffein auf die Freisetzung von TNFα durch S. pneumiae stimulierte Leukozyten 
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nachgewiesen werden 45. 2004 konnten Horrigan et al. zeigen, dass Koffein in einer 

Konzentration von 100µM einen hemmenden Effekt auf die Freisetzung von TNF-α in Vollblut 

nach Stimulation mit LPS hat. Eine statistische Signifikanz konnte nicht nachgewiesen werden, 

dennoch ein Trend 16. In der gleichen Arbeit zeigten Horrigan et al., dass die reduzierte TNFα-

Freisetzung durch die Hemmung der cAMP-Phosphodiesterase verursacht wird. Sie 

beobachteten eine erhöhte intrazelluläre cAMP-Konzentration in Makrophagen. cAMP aktiviert 

die Proteinkinase A (PKA). Der PKA-Inhibitor Rp-8-Br-cAMPS konnte den hemmenden Effekt 

von Koffein auf die Freisetzung von TNF-α wieder aufheben 12. In einer anderen Arbeit, die 

den Einfluss von Koffein auf die Antikörperproduktion untersuchte, wurde nachgewiesen, dass 

die reduzierte Freisetzung von Antikörpern aus murinen Splenozyten durch den PKA-Inhibitor 

H-89 wieder aufgehoben werden konnte 17. Für das antiinflammatorische Zytokin IL-10 und 

das proinflammatorische Zytokin IL-12 konnte gezeigt werden, dass die Freisetzung cAMP-

abhängig ist. IL-10 wird vermehrt unter einer höheren cAMP-Konzentration freigesetzt, IL-12 

vermindert 46-48.  

 

4.2.2 Wirkung von Koffein auf die Virusreplikation 

Ein Einfluss von Koffein auf die Virusreplikation wurde bereits in mehreren Arbeiten 

beschrieben. Für das Hepatitis C Virus konnte ein hemmender Effekt für die Replikation in vitro 

ebenso gezeigt werden, wie eine verminderte Rate einer fortgeschrittenen Leberfibrose durch 

Koffeinkonsum in Patienten mit Hepatitis-C 49-51. 

Der Effekt, wie Koffein die Virusreplikation hemmt, konnte jedoch bisher nicht abschließend 

geklärt werden. Die Verfasser oben genannter Arbeiten nehmen zum Teil an, dass die Ursache 

in der koffeinbedingten Förderung der Apoptose liegt 52. Andere Möglichkeiten sind eine 

Interaktion von Koffein bei der Formation des Virus. Eine Inaktivierung der Viren durch Koffein 

konnte hingegen ausgeschlossen werden 52.  

4.3 Diskussion der eigenen Ergebnisse 

4.3.1 Der Einfluss von Koffein auf die Freisetzung von Zytokinen 

In mehreren Publikationen wurde der Einfluss von Koffein auf die Freisetzung von Zytokinen 

und auch die Lymphozytenproliferation gezeigt 5. In Vollblutproben, die mit abgetöteten S. 

pneumoniae stimuliert wurden, konnte eine Reduzierung der Zytokinfreisetzung durch Koffein 

beobachtet werden 45. Übereinstimmend mit diesen Ergebnissen zeigte sich in dieser Arbeit 

nach Stimulation von PBMCs mit LPS, auch bekannt als Endotoxin, ein Bestandteil der 
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Zellwand von Bakterien, der beim Zerfall dieser freigesetzt wird, eine Reduzierung der TNF-α-

Freisetzung um 80% in Anwesenheit von Koffein in einer Konzentration von 1mM.  

Darüber hinaus konnte in dieser Arbeit festgestellt werden, dass auch die Zytokinfreisetzung 

durch virale Stimuli, wie pppRNA oder dAdT, durch Koffein konzentrationsabhängig reduziert 

wird (Abb. 3-2, Abb. 3-3, Abb. 3-4). 

Der größte Effekt wurde hier bei dAdT gesehen. dAdT kann dabei über zwei verschiedene 

Mechanismen die Produktion von Interferon induzieren. Einerseits kann AT-reiche DNA von 

der RNA-Polymerase III in pppRNA transkribiert werden, die dann über RIG-I erkannt wird. 

Zusätzlich kann doppelsträngige DNA zytoplasmatisch von cGAS erkannt werden und über 

diesen Signalweg Sting-abhängig Interferon induzieren. Sollte der cGas-Sting Signalweg 

stärker durch Koffein gehemmt werden oder in den Monozyten und dendritischen Zellen, die 

innerhalb von PBMCs die Hautproduzenten von Interferon darstellen, eine wichtigere Rolle für 

die Interferonproduktion spielen als RIG-I würde dies den stärkeren Effekt von Koffein auf die 

dAdT-induzierte Interferonproduktion im Vergleich zur pppRNA- oder Poly IC-induzierten 

Interferonproduktion erklären. 

Denkbare mögliche Mechanismen der verminderten IFNα-Freisetzung sind sowohl eine 

direkte Interaktion von Koffein mit einem Mitglied der Signalkaskade, als auch die 

wahrscheinlichere Variante einer indirekten Interaktion durch einen 2nd messenger, wie z.B. 

cAMP mit einer folgenden PKA Aktivierung oder die Produktion von IL10, wie dies bereits für 

die hemmende Wirkung auf TNFα beschrieben wurde9,14. Dies wurde in der vorliegenden 

Arbeit jedoch nicht weiter untersucht. 

Auch in Zellen, die nicht dem Immunsystem angehören, wie 1205 LU Zellen konnte eine 

Hemmung der der Zytokinantwort auf mRNA-Ebene beobachtet werden (Abb. 3-5).  

Insgesamt scheint der Effekt auf PBMCs wesentlich größer als auf 1205 LU -Zellen, auch wenn 

die Ergebnisse von qRT-PCR und ELISA nicht direkt vergleichbar sind. Dennoch wäre dieser 

Effekt durchaus durch die unterschiedliche Ausstattung an Rezeptoren der einzelnen Zellen 

bzw. Zelllinien eine mögliche Ursache hierfür. Es ist davon auszugehen, dass PDEs und 

Adenosinrezeptoren in den für die Interferonproduktion verantwortlichen Monozyten und 

dendritischen Zellen innerhalb der PBMCs anders exprimiert sind, wie in der Melanomzelllinie 

1205LU. 
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4.3.2 Hemmung der Aktivierung des RIG-I-Signalwegs durch Koffein 

Die Daten dieser Arbeit deuten an, dass Koffein seine hemmende Wirkung auf die Freisetzung 

von Zytokinen durch Aktivierung des RIG-I-Signalwegs zwischen TBK1 und IRF3 hat (Abb. 3-

6). Horrigan et al. 16 konnten zeigen, dass Koffein die intrazelluläre cAMP-Konzentration erhöht 

und über die Aktivierung von der Proteinkinase A (PKA) eine Reduzierung der TNF-

Freisetzung bedingt. Der gleiche oder ein ähnlicher Mechanismus ist bei IFN bzw. IP-10 

ebenfalls denkbar. Yan et al beschreiben, dass die PKA zu einer Phosphorylierung von MAVS 

führt, welche in weiteren Schritten zu einem Abbau von MAVS und somit einer Hemmung der 

Zytokinfreisetzung führt 53. Dies würde mit den in dieser Arbeit gezeigten Daten 

übereinstimmen, da die Zytokinfreisetzung durch Überexpression von RIG-I und MAVS Koffein 

gehemmt wird, wobei die die Hemmung auf Ebene von RIG-I deutlicher ist, als auf der Ebene 

von MAVS. Dass auch die durch Überexpression von TBK1 induzierte Zytokinfreisetzung 

gehemmt wird, könnte durch die komplexe und zweizeitige Interaktion von MAVS und TBK1 

die  mehrere Adapterproteine involviert erklärt werden 54,55. So bedarf die optimale 

Phosphorylierung von IRF3 durch TBK1 zunächst der Phosphorylierung von MAVS durch 

TBK1 und der dadurch induzierten Interaktion von MAVS und IRF3 56 Der PKA-induzierte 

Abbau von MAVS könnte daher auch ein gewisse Einflussnahme auf die im Signalweg 

üblicherweise unterhalb von TBK1gesehene IRF3-Aktivierung erklären.   

4.3.3 Koffein hemmt die Produktion von Viren  

Entgegen der ersten Annahme, dass durch eine Hemmung der Zytokinausschüttung, die 

Virusreplikation begünstigt sein sollte, stellte sich das Gegenteil heraus. Sowohl für VSV, als 

auch für EMCV konnte eine Hemmung der Virusproduktion gezeigt werden. Diese Viren 

entstammen unterschiedlichen Gruppen, VSV gehört zur Gruppe der Rhabdoviren, EMCV zu 

den Picornaviren. Es ist daher davon auszugehen, dass hier zunächst kein virusspezifischer 

Effekt vorliegt. Für das Hepatitis C-Virus konnte ein ähnlicher Effekt beobachtet werden 50. Die 

in den Experimenten verwendeten Konzentrationen waren allerdings um eine Vielfaches 

höher, als die Blutkonzentrationen, die bei einem physiologischen Koffeinkonsum erreicht 

werden  

Erklärungsansätze für den virostatischen Effekt von Koffein wurden bereits von mehreren 

Autoren versucht, eine endgültige Aussage ist zum aktuellen Zeitpunkt noch nicht möglich. Es 

wurden in anderen Publikationen verschiedene Mechanismen vermutet. Eine Möglichkeit wäre 

der Einfluss von Koffein auf die Apoptose von Zellen, so dass die Wirtszellen schneller in 

Apoptose gehen und das Virus seinen Wirt verliert. Auch wird vermutet, Koffein könnte durch 
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direkte Interaktion mit den vorläufigen Viruspartikeln ein Zusammensetzen behindern. Ebenso 

ist eine Kombination dieser Effekte denkbar 50-52.  
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5 Zusammenfassung 

Koffein ist auf Grund seiner antreibenden und aktivierenden Wirkung auf das 

Zentralnervensystem die am meisten konsumierte pharmakologische Substanz weltweit. 

Der Koffein-Konsum ist dabei jedoch zusätzlich mit einer Vielzahl weiterer, weniger gut 

verstandener Effekt verbunden. Metaanalysen zeigen, dass Kaffee- und Koffein-Konsum 

das Risiko reduzieren, Brust-, Kolon-, Endometrium- und Prostata-Tumoren, Diabetes 

Typ II oder Parkinson zu bekommen. Diese auf den ersten Blick sehr unterschiedlichen 

Erkrankungen teilen sich als pathophysiologisch wichtigen, gemeinsamen Faktor eine 

unterschwellig vorliegende, chronische Entzündungsreaktion. Es wird daher in der 

Literatur vermutet, dass Koffein seinen protektiven Effekt über die Modulation von 

Entzündungsvorgänge bewirken könnte. Hier setzt die vorliegende Arbeit an. In 

Experimenten unserer Arbeitsgruppe, die Mechanismen der Apoptose-Induktion durch 

DNA-Viren untersuchte, wurde Koffein als Inhibitor der Proteinkinase ataxia 

telangiectasia mutated (ATM) verwendet und damit eine Rolle des DNA-Reparatur-

Signalwegs in der Apoptose-Induktion durch zytoplasmatische virale DNA nahegelegt.  

In noch nicht veröffentlichten Daten aus diesem Projekt zeigte sich in Anwesenheit von 

Koffein in einigen Experimenten neben der verminderten Apoptose auch eine 

verminderte Freisetzung von Interferon und inflammatorischen Zytokinen nach einer 

Infektion mit einem DNA-Virus. Dieser vorläufige Befund sollte in der vorliegenden Arbeit 

weiterverfolgt werden und der Einfluss von Koffein auf die Zytokinproduktion nach 

Aktivierung des Immunsystems durch Liganden von Mustererkennungsrezeptoren und 

Viren untersucht und damit verbundene potentielle Effekte auf die Replikation von Viren 

analysiert werden. 

Die Ergebnisse der Arbeit zeigen, dass in PBMCs die ex vivo Präinkubation mit Koffein 

ab Konzentrationen von 50 M zu einer deutlichen Reduktion der LPS-induzierten TNF-

-Produktion nach 24 h führt. Koffein-Konzentrationen ab 100 M hemmten zudem die 

durch Transfektion von dAdT-induzierte Interferon- Produktion in PBMCs. Dieser 

hemmende Koffein-Effekt ließ sich, wenn auch etwas weniger deutlich, auch für die 

durch Transfektion von pppRNA und poly IC induzierte Interferon- Produktion in PBMC 

zeigen. Dieser hemmende Effekt von Koffein auf die RLR-induzierte Interferon Typ-I 

Produktion nach Transfektion von poly IC ließ sich auch in der humanen Melanom 

Zelllinie 1205lu reproduzieren. In diesem Zellsystem konnte zudem durch Experimente, 

in denen durch Überexpression von RIG-I, TBK1 und einer konstitutiv-aktiven IRF3 

Variante jeweils der RLR-Signalweg aktiviert wurde, gezeigt werden, dass Koffein seinen 
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hemmenden Einfluss auf den RLR-Signalweg unterhalb oder auf Höhe von TBK1 und 

oberhalb von IRF3 ausübt. Während diese hemmende Wirkung von Koffein auf den 

RLR-Signalweg zunächst eine Replikations-fördernde Wirkung von Koffein auf Viren 

erwarten ließ, zeigten Infektionsexperimente mit den beiden durch RLRs erkannten 

Modellviren VSV und EMVC in 1205lu Zellen jedoch ab Konzentrationen von 500 M 

eine deutliche Reduktion der freigesetzten Viruspartikel im Überstand nach 24 und 48 

Stunden. 

Der Genuss einer Tasse Kaffee führt zu Koffeinblutspiegeln von 5 bis 10 M 57. Ähnliche 

Konzentrationen werden durch die Einnahme Koffein-haltiger Grippemittel wie 

Grippostad erreicht und bei Frühgeborenen, die aufgrund einer Ateminsuffizienz Koffein 

erhalten, ergeben sich Konzentrationen von bis zu 100 M 57. Damit wird ein 

Konzentrationsbereich erreicht, in dem die Effekte, die diese Arbeit beschreibt relevant 

werden können. Auch wenn die Mechanismen, die den beobachteten Effekten zu 

Grunde liegen, in dieser Arbeit noch nicht aufgeklärt werden konnten, macht dies 

deutlich, dass weitere Arbeiten zum Verständnis der immunmodulatorischen Wirkung 

von Koffein erforderlich sind, um die Vor- und Nachteile dieser von vielen täglich 

konsumierten Substanz besser beurteilen zu können.   



 

40 

 

6 Referenzen 

1. Grosso G, Godos J, Galvano F, Giovannucci EL. Coffee, Caffeine, and Health 
Outcomes: An Umbrella Review. Annu Rev Nutr 2017;37:131-56. 

2. Miura K, Hughes MC, Green AC, van der Pols JC. Caffeine intake and risk of 
basal cell and squamous cell carcinomas of the skin in an 11-year prospective study. 
Eur J Nutr 2014;53:511-20. 

3. Conney AH, Lu YP, Lou YR, Kawasumi M, Nghiem P. Mechanisms of Caffeine-
Induced Inhibition of UVB Carcinogenesis. Front Oncol 2013;3:144. 

4. Paiva C, Beserra B, Reis C, Dorea JG, Da Costa T, Amato AA. Consumption of 
coffee or caffeine and serum concentration of inflammatory markers: A systematic 
review. Crit Rev Food Sci Nutr 2017:1-12. 

5. Horrigan LA, Kelly JP, Connor TJ. Immunomodulatory effects of caffeine: friend 
or foe? Pharmacol Ther 2006;111:877-92. 

6. Daly JW. Caffeine analogs: biomedical impact. Cell Mol Life Sci 2007;64:2153-
69. 

7. Cronstein BN, Daguma L, Nichols D, Hutchison AJ, Williams M. The 
adenosine/neutrophil paradox resolved: human neutrophils possess both A1 and A2 
receptors that promote chemotaxis and inhibit O2 generation, respectively. J Clin Invest 
1990;85:1150-7. 

8. Rose FR, Hirschhorn R, Weissmann G, Cronstein BN. Adenosine promotes 
neutrophil chemotaxis. J Exp Med 1988;167:1186-94. 

9. Knight D, Zheng X, Rocchini C, Jacobson M, Bai T, Walker B. Adenosine A3 
receptor stimulation inhibits migration of human eosinophils. J Leukoc Biol 1997;62:465-
8. 

10. Walker BA, Jacobson MA, Knight DA, et al. Adenosine A3 receptor expression 
and function in eosinophils. Am J Respir Cell Mol Biol 1997;16:531-7. 

11. Polosa R, Ng WH, Crimi N, et al. Release of mast-cell-derived mediators after 
endobronchial adenosine challenge in asthma. Am J Respir Crit Care Med 
1995;151:624-9. 

12. Bode AM, Dong Z. The enigmatic effects of caffeine in cell cycle and cancer. 
Cancer Lett 2007;247:26-39. 

13. Sarkaria JN, Busby EC, Tibbetts RS, et al. Inhibition of ATM and ATR kinase 
activities by the radiosensitizing agent, caffeine. Cancer Res 1999;59:4375-82. 

14. Laska EM, Sunshine A, Mueller F, Elvers WB, Siegel C, Rubin A. Caffeine as an 
analgesic adjuvant. JAMA 1984;251:1711-8. 

15. Lipton RB, Diener HC, Robbins MS, Garas SY, Patel K. Caffeine in the 
management of patients with headache. J Headache Pain 2017;18:107. 

16. Horrigan LA, Kelly JP, Connor TJ. Caffeine suppresses TNF-alpha production via 
activation of the cyclic AMP/protein kinase A pathway. Int Immunopharmacol 
2004;4:1409-17. 

17. Rosenthal LA, Taub DD, Moors MA, Blank KJ. Methylxanthine-induced inhibition 
of the antigen- and superantigen-specific activation of T and B lymphocytes. 
Immunopharmacology 1992;24:203-17. 



 

41 

 

18. Fredholm BB, Battig K, Holmen J, Nehlig A, Zvartau EE. Actions of caffeine in 
the brain with special reference to factors that contribute to its widespread use. 
Pharmacol Rev 1999;51:83-133. 

19. Al Reef T, Ghanem E. Caffeine: Well-known as psychotropic substance, but little 
as immunomodulator. Immunobiology 2018;223:818-25. 

20. Eigler A, Siegmund B, Emmerich U, Baumann KH, Hartmann G, Endres S. Anti-
inflammatory activities of cAMP-elevating agents: enhancement of IL-10 synthesis and 
concurrent suppression of TNF production. J Leukoc Biol 1998;63:101-7. 

21. Kennth Murphy PT, Mark Walport. Janeway's Immunobiology. 2008;7th Edition. 

22. Yan N, Chen ZJ. Intrinsic antiviral immunity. Nat Immunol 2012;13:214-22. 

23. Janeway CA, Jr., Medzhitov R. Innate immune recognition. Annu Rev Immunol 
2002;20:197-216. 

24. Janeway CA, Jr. Approaching the asymptote? Evolution and revolution in 
immunology. Cold Spring Harb Symp Quant Biol 1989;54 Pt 1:1-13. 

25. Kumar H, Kawai T, Akira S. Pathogen recognition by the innate immune system. 
Int Rev Immunol 2011;30:16-34. 

26. McDonald C, Inohara N, Nunez G. Peptidoglycan signaling in innate immunity 
and inflammatory disease. J Biol Chem 2005;280:20177-80. 

27. Shaw MH, Reimer T, Sanchez-Valdepenas C, et al. T cell-intrinsic role of Nod2 
in promoting type 1 immunity to Toxoplasma gondii. Nat Immunol 2009;10:1267-74. 

28. Hysi P, Kabesch M, Moffatt MF, et al. NOD1 variation, immunoglobulin E and 
asthma. Hum Mol Genet 2005;14:935-41. 

29. Weidinger S, Klopp N, Rummler L, et al. Association of NOD1 polymorphisms 
with atopic eczema and related phenotypes. J Allergy Clin Immunol 2005;116:177-84. 

30. Hugot JP, Chamaillard M, Zouali H, et al. Association of NOD2 leucine-rich repeat 
variants with susceptibility to Crohn's disease. Nature 2001;411:599-603. 

31. Ogura Y, Bonen DK, Inohara N, et al. A frameshift mutation in NOD2 associated 
with susceptibility to Crohn's disease. Nature 2001;411:603-6. 

32. Schmidt A, Endres S, Rothenfusser S. Pattern recognition of viral nucleic acids 
by RIG-I-like helicases. J Mol Med (Berl) 2011;89:5-12. 

33. Reikine S, Nguyen JB, Modis Y. Pattern Recognition and Signaling Mechanisms 
of RIG-I and MDA5. Front Immunol 2014;5:342. 

34. Hornung V, Ellegast J, Kim S, et al. 5'-Triphosphate RNA is the ligand for RIG-I. 
Science 2006;314:994-7. 

35. Kato H, Takeuchi O, Sato S, et al. Differential roles of MDA5 and RIG-I helicases 
in the recognition of RNA viruses. Nature 2006;441:101-5. 

36. Ablasser A, Bauernfeind F, Hartmann G, Latz E, Fitzgerald KA, Hornung V. RIG-
I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-
transcribed RNA intermediate. Nat Immunol 2009;10:1065-72. 

37. Chiu YH, Macmillan JB, Chen ZJ. RNA polymerase III detects cytosolic DNA and 
induces type I interferons through the RIG-I pathway. Cell 2009;138:576-91. 

38. Jiang X, Kinch LN, Brautigam CA, et al. Ubiquitin-induced oligomerization of the 
RNA sensors RIG-I and MDA5 activates antiviral innate immune response. Immunity 
2012;36:959-73. 



 

42 

 

39. Chan YK, Gack MU. RIG-I-like receptor regulation in virus infection and immunity. 
Curr Opin Virol 2015;12:7-14. 

40. McNab F, Mayer-Barber K, Sher A, Wack A, O'Garra A. Type I interferons in 
infectious disease. Nat Rev Immunol 2015;15:87-103. 

41. Versteeg GA, Garcia-Sastre A. Viral tricks to grid-lock the type I interferon 
system. Curr Opin Microbiol 2010;13:508-16. 

42. Muller U, Steinhoff U, Reis LF, et al. Functional role of type I and type II 
interferons in antiviral defense. Science 1994;264:1918-21. 

43. Wenzel M, Wunderlich M, Besch R, et al. Cytosolic DNA triggers mitochondrial 
apoptosis via DNA damage signaling proteins independently of AIM2 and RNA 
polymerase III. J Immunol 2012;188:394-403. 

44. Katial RK, Sachanandani D, Pinney C, Lieberman MM. Cytokine production in 
cell culture by peripheral blood mononuclear cells from immunocompetent hosts. Clin 
Diagn Lab Immunol 1998;5:78-81. 

45. van Furth AM, Seijmonsbergen EM, Langermans JA, van der Meide PH, van 
Furth R. Effect of xanthine derivates and dexamethasone on Streptococcus 
pneumoniae-stimulated production of tumor necrosis factor alpha, interleukin-1 beta (IL-
1 beta), and IL-10 by human leukocytes. Clin Diagn Lab Immunol 1995;2:689-92. 

46. Kambayashi T, Jacob CO, Zhou D, Mazurek N, Fong M, Strassmann G. Cyclic 
nucleotide phosphodiesterase type IV participates in the regulation of IL-10 and in the 
subsequent inhibition of TNF-alpha and IL-6 release by endotoxin-stimulated 
macrophages. J Immunol 1995;155:4909-16. 

47. Platzer C, Meisel C, Vogt K, Platzer M, Volk HD. Up-regulation of monocytic IL-
10 by tumor necrosis factor-alpha and cAMP elevating drugs. Int Immunol 1995;7:517-
23. 

48. Procopio DO, Teixeira MM, Camargo MM, et al. Differential inhibitory mechanism 
of cyclic AMP on TNF-alpha and IL-12 synthesis by macrophages exposed to microbial 
stimuli. Br J Pharmacol 1999;127:1195-205. 

49. Modi AA, Feld JJ, Park Y, et al. Increased caffeine consumption is associated 
with reduced hepatic fibrosis. Hepatology 2010;51:201-9. 

50. Batista MN, Carneiro BM, Braga AC, Rahal P. Caffeine inhibits hepatitis C virus 
replication in vitro. Arch Virol 2015;160:399-407. 

51. Khalaf N, White D, Kanwal F, et al. Coffee and Caffeine Are Associated With 
Decreased Risk of Advanced Hepatic Fibrosis Among Patients With Hepatitis C. Clin 
Gastroenterol Hepatol 2015;13:1521-31 e3. 

52. Murayama M, Tsujimoto K, Uozaki M, et al. Effect of caffeine on the multiplication 
of DNA and RNA viruses. Mol Med Rep 2008;1:251-5. 

53. Yan BR, Zhou L, Hu MM, et al. PKACs attenuate innate antiviral response by 
phosphorylating VISA and priming it for MARCH5-mediated degradation. PLoS Pathog 
2017;13:e1006648. 

54. Liu XY, Chen W, Wei B, Shan YF, Wang C. IFN-induced TPR protein IFIT3 
potentiates antiviral signaling by bridging MAVS and TBK1. J Immunol 2011;187:2559-
68. 

55. Fang R, Jiang Q, Zhou X, et al. MAVS activates TBK1 and IKKepsilon through 
TRAFs in NEMO dependent and independent manner. PLoS Pathog 2017;13:e1006720. 

56. Liu S, Cai X, Wu J, et al. Phosphorylation of innate immune adaptor proteins 
MAVS, STING, and TRIF induces IRF3 activation. Science 2015;347:aaa2630. 



 

43 

 

57. Lee TC, Charles BG, Steer PA, Flenady VJ. Saliva as a valid alternative to serum 
in monitoring intravenous caffeine treatment for apnea of prematurity. Ther Drug Monit 
1996;18:288-93. 

   



 

44 

 

7 Abkürzungen 

AIM2 absent in melanoma 2 

ATM ataxia telangiectasia mutated  

BHK Baby Hamster Kidney 

bp base pair 

cAMP Zyklisches Adenonsinmonophosphat 

CDT C-terminale Domäne 

cGAMP cyclic di-GMP-AMP 

cGAS cyclic GMP-AMP synthase 

dAdT poly(deoxyadenylic-deoxythymidylic) acid 

dsRNA Doppelstrang-RNA 

ELISA Enzyme linked immunosorbent assay 

EMCV Encephalomyokarditisvirus 

FCS Fötales Kälberserum  

HEK293T Human Embyonic Kidney 293T 

IFNAR Interferon-α/β receptor 

IFNα Interferon α 

IFNβ Interferon β 
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IFNγ Interferon γ 

IL Interleukin 

IRF IFN-regulatory-factors 

ISG Interferoninduzierten Gene 

LGP2 laboratory of Genetics and Physiology 2  

LPS Lipopolysaccharid 

MAVS mitochondrial anti-viral singalling 

MDA5 melanoma differentiation antigen 5 

MOI multiplicity of infection 

NLR NOD-like receptor 

NSAR Nicht-steroidale Antirheumatika 

PAMP pathogen-associated molecular pattern 

PBMCs Periphere mononukleäre Blutzellen 

PDE Phosphodiesterase 

PFU Plaque-Forming-Unit 

poly IC polyinosinic:polycytidylic acid 

PKA Proteinkinase A 

pppRNA Triphosphat-RNA 
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PRR pattern recognition receptor 

qRT-PCR real-time quantitative PCR 

RIG-I retionic acid inducible gene I 

RLR RIG-I-like Receptors 

ssRNA Einzelstrang-RNA 

STING stimulator for IFN genes 

TLR Toll-like receptor 

TNFα Tumornekrosefaktor α 

TRIM25 tripartite motif-containing protein 25 

VSV Vesicular Stomatitis Virus 
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