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Chapter 0 

Introduction 

 

Many attempts have been undertaken to construct a general reactivity scale that can be used to 

classify the reactivity of both, organic and inorganic compounds. During the recent decades, 

Mayr et al. have constructed a comprehensive nucleophilicity scale which is based on the 

kinetics of the reactions of π-, n-, and σ-nucleophiles with benzhydrylium ions, structurally 

related quinone methides, and diethyl benzylidenemalonates.[1] 

The second-order rate constants of these reactions have been described by the linear free energy 

relationship (Equation 1), where E is an electrophile-specific solvent-independent parameter, 

and N and sN are solvent dependent nucleophile-specific parameters.  

lg k2 (20 °C) = sN (N + E)  (1)[1] 

Natural products comprise a rich source for bioactive molecules with medicinal relevance. 

Many of these contain electrophilic scaffolds that covalently bind the active sites of conserved 

enzymes.[2] Prominent examples include beta-lactams and beta-lactones which specifically 

acylate serine residues in diverse peptidases.[3] For our studies, we decided to investigate 

penicillin G and the beta-butyrolactone as model compounds. To quantify and dissect the 

differences in bioactivities, the kinetics of the reactions of beta-butyrolactam, beta-

butyrolactone and penicillin G (Figure 1) with reference nucleophiles have been analyzed with 

a set of reference amines in pH-buffered aqueous solution at 37 °C. The relative reactivity of 

beta-butyrolactam, beta-butyrolactone and penicillin G could therefore be elucidated. 

 

Figure 1: Beta-butyrolactone and beta-butyrolactams studied in this work. 

As a second project, in this work, equation 1 was used to characterize the ambident nucleophilic 

reactivity of N,N-dialkylated anilines. N,N-Dialkylated anilines are highly important in organic 

chemistry as they are used as activator for polymerisations[4] as well as for the production of 
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dyes,[5] pharmaceuticals and agricultural chemicals.[6] Numerous kinetic studies on the 

reactivities of amines,[7] azoles,[8] and pyridines[9] have been performed, but kinetic data for the 

reactions of N,N-dialkylated anilines with carbocations are very limited to date. 

 

Scheme 1: Possible reactions of N,N-dialkylated anilines with cationic electrophiles. 

Using the system of Mayr et al., the reactivities of N,N-dialkylated anilines were studied with 

benzhydrylium ions in acetonitrile and dichloromethane at 20 °C.[1] N,N-Dialkylated anilines 

can react with carbocations via four different pathways (Scheme 1). Beside the reaction at the 

C2 and C4 ring carbon, both the attack of the nitrogen atom and hydride abstraction at the alkyl 

group in alpha position to the nitrogen atom are possible. In this thesis, beside                                        

N,N-dimethylaniline, various substitution patterns of the alkyl groups, as well as the influence 

of different substituents at the aromatic ring were studied (Figure 2).  

 

Figure 2: N,N-Dialkylated anilines investigated in this work. 
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By studying the kinetics of their reactions with benzhydrylium ions, the reactivity at the 

nitrogen atom of all studied N,N-dialkylated anilines was quantified. It was further possible to 

study the reactivity at the C4 carbon ring atom of N,N-dimethylaniline, N,N-diethylaniline and 

1-phenylpyrrolidine as well as the selective abstraction of an hydride of N,N-dimethylaniline 

by using tritylium ions as alternative reference electrophiles. 

N,N-Dimethylaniline is not only interesting in terms of its reactivity. Functionalization of 

tertiary amines at the sp3-hybridized -carbon has been an emerging field of organic chemistry 

in recent years.[10] Using this synthetic method for the introduction of an aryl moiety would 

furnish benzylic amines, which are a common structural motif of market-relevant 

pharmaceuticals.[11] Beside others, the work of Diels and Paquin from 1913[12] led us to a 

synthetic approach (Scheme 2). 

 

Scheme 2: a) DEAD mediated selective demethylation of N,N-dimethylaniline by Diels and 

Paquin.[12] b) Our synthetic approach for the functionalization of N,N-dimethylated anilines and 

aliphatic tertiary amines. 

According to a procedure from Diels and Paquin of 1913[12] we treated N,N-dimethylated 

anilines with diisopropyl azodicarboxylate (DIAD) to generate N-aminomethylated hydrazine-

1,2-dicarboxylates. These hydrazine-adducts react under acidic conditions with potassium 

aryltrifluoroborates as nucleophiles to yield the corresponding cross coupling products. In 

contrast to other procedures, this method works without addition of transition metal catalysts 

or water under acid conditions. Thus, we herein report a transition metal-free[13] two-step 

synthesis of -arylated amines from tertiary amines, DIAD and organotrifluoroborates. 

 

  

b) 

a) 
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Summary 
 

Kinetic and theoretical studies of beta-lactone reactivity – a quantitative 

scale for biological application 

The second-order rate constants (k2) for the reactions of beta-butyrolactone and penicillin G 

were studied with a set of reference amines in buffered aqueous solution at 37 °C. In case of 

these studies, several buffer systems were investigated. All buffers reacted with beta-

butyrolactone, but smallest conversion was found with triethanolamine (TEA). Different 

product ratios of C1 vs. C3 attack on the beta-butyrolactone have been observed, depending on 

the aliphatic or aromatic nature of the standard amine used (Scheme 1). The first-order rate 

constants (kobs) obtained for the reaction of beta-butyrolactone with aniline were found to 

correlate linearly with the concentrations of the anilines and second-order rate constants (kN) 

could, therefore, be obtained with aromatic and aliphatic amines (example see Figure 1). In 

correspondence with their weak proteome reactivity, monocyclic beta-lactams did not react 

with our set of standard nucleophiles studied herein. Bicyclic beta-lactams, however, exhibited 

a lower activation barrier, and thus, reacted with standard nucleophiles. The experimental 

results were verified by theoretical studies using combined quantum mechanics/molecular 

mechanics (QM/MM). 

 

Scheme 1: Products of the reactions of beta-butyrolactone with amines in H2O/MeCN 9/1 (v/v) 

(yields refer to isolated products).   
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Figure 1: a) Reaction of beta-butyrolactone with aniline in D2O/d6-DMSO 9/1 (v/v) at 37 °C. 

b) Linear dependence of the first-order rate constant kobs for the reaction of beta-butyrolactone 

with aniline on the concentration of aniline at 37 °C (kobs for [aniline]eff = 0 corresponds to the 

hydrolysis of beta-butyrolactone in triethanolamine (TEA)-buffered solution; not considered 

for the depicted linear correlation).  

 

Transition Metal-Free C-H Functionalization of Tertiary Amines: 

Diisopropyl Azodicarboxylate Mediated -Arylations 

 

Aromatic and aliphatic tertiary methylamines RR’NCH2–H were converted to -arylated 

amines RR’NCH2–Ar in two steps. In the first step, tertiary methylamines and a slight excess 

of diisopropyl azodicarboxylate (DIAD, 1.1 equiv.) reacted in acetonitrile to generate                        

N-aminomethylated hydrazine-1,2-dicarboxylates. These aminals were isolated with good 

yields in the range of 71–95% (Table 1). The reaction time could be shortened by heating the 

reaction mixture, as shown for the reaction of N,N-dimethyl-para-anisidine with DIAD (Table 

1, entry 2 and 3). In an initial attempt, the para methyl substituted diisopropyl 1-((methyl(p-

tolyl)amino)methyl)hydrazine-1,2-dicarboxylate was reacted with 2-methylfuran and furnished 

the desired -arylated amine in good yield (Scheme 2). The scope of the reaction with 

kobs = 7.87 × 10–4 M–1 s–1 × [aniline]0
+ 5.49 × 10–5 s–1

0.0
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unfunctionalized arenes was, however, limited to this reaction. Reactions of these hydrazines 

with potassium (hetero)aryltrifluoroborates at ambient temperature in the presence of one 

equivalent of trifluoroacetic acid in acetonitrile furnished -arylated amines (Figure 2). Also 

tropinone was converted to different (hetero-aryl)methylated nortropinones (Scheme 3). Both 

steps of the reaction sequence occurred without addition of a metal-based catalyst. 

Table 1: Addition of DIAD to N,N-dimethylanilines. 

 
 Aniline, X =  Hydrazine Yield[a] (%) 

 4-Me  95 (4 d, rt) 

 4-OMe  78 (2 d, rt) 
81 (4 h, rflx) 

 H  86 (5 d, rt) 

 4-F  88 (2 d, rt) 

 4-Cl  74 (3 d, rflx) 

 4-Br  87 (3 d, rflx) 

 4-CO2Et  86 (2 d, rflx) 

 4-CN  71 (2 d, rt) 

 2,4,6-(Me)3  87 (10 h, rflx) 

[a] Yield of isolated product after column chromatography. 

 

 

Scheme 2: Brønsted acid mediated -arylation of diisopropyl 1-((methyl(p-

tolyl)amino)methyl)hydrazine-1,2-dicarboxylate with 2-methylfuran. 
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Figure 2: a) DIAD-mediated aminomethylations of potassium benzofuran-2-yl trifluoroborate 

by the ring-substituted N,N-dimethylaniline derivatives. b) DIAD-mediated                                 

-(hetero)arylations of diisopropyl hydrazine carboxylates. All yields refer to isolated products 

after purification by column chromatography. Reactions with the furan-2-yl trifluoroborate and 

the furan-3-yl trifluoroborate yield the same product. [a] Reaction at >1 mmol scale. [b] With 

0.74 equiv. TFA. [c] With 0.37 equiv. TFA.  

 

Scheme 3: Conversion of tropinone to (hetero-aryl)methylated nortropinones via DIAD-

activated tropinone. 

 

a) b) 
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Quantification of the Nucleophilic Reactivities of N,N-Dialkylated Anilines 

 

The second-order rate constants (k2) for the reactions of N,N-dialkylated anilines were studied 

with benzhydrylium and tritylium ions as reference electrophiles in acetonitrile and 

dichloromethane at 20 °C by UV/Vis and 1H NMR spectroscopy. Product studies where 

performed with para-unsubstituted N,N-dialkylated anilines, yielding triarylmethanes as result 

of the attack at C4 carbon of the N,N-dialkylated anilines. The consumption of the electrophile 

and the formation of the according triarylmethane was followed by time-resolved 1H NMR 

spectroscopy. Applying UV/Vis spectroscopy, in most cases a bisexponential decay of the time-

dependent absorbance of the electrophiles was observed (Figure 3).  

The measured rate constants correlated linearly with the electrophilicity parameters of the 

respective electrophile allowing us to derive their nucleophilicity parameters N and sN for the 

attack of the N,N-dialkylated anilin’s C4 and nitrogen atom (examples are shown in Figure 4). 

The nucleophilic reactivities of the studied N,N-dialkylated anilines are in a comparable range 

for the attack of the C4 carbon in acetonitrile and dichloromethane, respectively. For the attack 

at the nitrogen atom, they cover a range of nearly 4 orders of magnitude (Figure 5). Furthermore, 

second-order rate constants for the selective abstraction of a hydride from the CH3 group in        

α-position of the N atom, were measured, by studying the kinetics of the reactions with tritylium 

ions (Scheme 4). 
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Figure 3: a) Reaction of N,N-dimethylaniline with (dma)2CH+ BF4
– in CH3CN at 20 °C. b) Plot 

of the absorbance A at 605 nm vs. time for the reaction of N,N-dimethylaniline (c = 1.67 ×      

10–3 M) with electrophile (dma)2CH+ (c = 1.16 × 10–5 M) in acetonitrile at 20 °C with the 

calculated absorbance for the attack of the C4 carbon of N,N-dimethylaniline (green line; kobs = 

1.48 × 10–5 s–1). b) Enhancement of the first seconds. The first absorbance drop can be described 

by another monoexponential function and is assigned to the attack of the nitrogen atom of 

N,N-dimethylaniline (red line; kobs = 2.28 × 10–2 s–1).  
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Figure 4: Correlation of the rate constants lg k2 for the reactions of N,N-dimethylaniline 

(squares) and N,N-diethylaniline (circles) at the C4 ring carbon with benzhydrylium ions in 

acetonitrile at 20 °C with their electrophilicity parameters E. The N parameters are derived as 

the intercepts on the abscissa (stroked line, N = –E at lg k2 = 0; N = 5.83 for N,N-dimethylaniline 

and N = 6.28 for N,N-diethylaniline), the sN parameters are the slopes of the correlation lines 

(sN = 1.69 for N,N-dimethylaniline and sN = 1.64 for N,N-diethylaniline). The open symbols 

were not used for the calculation of the correlation line. 

 

Scheme 4: Reaction of N,N-dimethylaniline with (ani)3C+ BF4
– in CD3CN at 20 °C. A second-

order rate constant k2 = 2.71 × 10–2 M–1 s–1 was obtained. 
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Figure 5: N and sN parameters of the N,N-dialkylated anilines studied in this work.  

N 
(in MeCN) 
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Kinetic and theoretical studies of beta-lactone reactivity – a 

quantitative scale for biological application 

 

Elija N. Wiedemann, Franziska A. Mandl, Iris D. Blank,  

Christian Ochsenfeld, Armin R. Ofial and Stephan A. Sieber 

ChemPlusChem 2015, 80, 1673–1679. 

Abstract 

Natural products comprise a rich source for bioactive molecules with medicinal relevance. 

Many of these contain electrophilic scaffolds that bind conserved enzyme active sites 

covalently. Prominent examples include beta-lactams and beta-lactones, which specifically 

acylate serine residues in diverse peptidases. Although these scaffolds appear similar, their 

bioactivities and corresponding protein targets vary. To quantify and dissect these differences 

in bioactivities, the kinetics of the reactions of beta-butyrolactone with a set of reference amines 

in buffered aqueous solution at 37 °C have been analyzed. Different product ratios of C1 vs. C3 

attack on the beta-butyrolactone have been observed, depending on the aliphatic or aromatic 

nature of the standard amine used. Quantum mechanics/molecular mechanics (QM/MM) 

calculations revealed that a H3O+ molecule has a crucial role in stabilizing C3 attack by aniline, 

through coordination of the lactone ring oxygen. In agreement with their weak proteome 

reactivity, monocyclic beta-lactams did not react with our set of standard nucleophiles studied 

herein. Bicyclic beta-lactams, however, exhibited a lower activation barrier, and thus, reacted 

with standard nucleophiles. This study represents a starting point for semiquantitative reactivity 

scales for natural products, which, in analogy to chemical reactivity scales, will provide 

predictions for electrophilic modifications in biological systems. 
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Introduction 

Natural products frequently exhibit diverse electrophilic moieties designed to trap nucleophilic 

amino acid residues and thereby inhibit cellular proteins.[1] Evolution has fine-tuned these 

electrophiles to address a variety of cellular nucleophiles, e.g. in the active site of enzymes. 

These taylored scaffolds include beta-lactams, beta-lactones, epoxides and Michael acceptors, 

which vary in their reactivity and selectivity towards amino-, thio-, and hydroxyl-substituted 

amino acids (Figure 1).  

 
Figure 1: Common electrophilic motifs in natural products.  

 

Beta-lactams are among the most potent antibiotics and they exert their cellular activity by 

reacting with the active site serine in penicillin-binding-proteins (PBPs), thereby inhibiting cell 

wall biosynthesis, and thus, bacterial viability.[2] Importantly, monocyclic beta-lactams lack 

pronounced protein reactivity.[3] However, scaffolds in which the lactam is activated by, for 

example, sulfonylation (aztreonam) or as a bicycle (penicillins), exhibit desirable reactivity and 

bioactivity.[4] The beta-lactones on the other hand, do not require activation in order to react 

with serine and cysteine residues, which suggests that monocyclic lactones and lactams show 

significantly different electrophilicities under physiological conditions.[5] Previous ring-

opening studies with 3-alkylated beta-lactones revealed S-nucleophiles to require activation by 

deprotonation for an efficient C3 attack, a mixed SN2 reaction (attack at C3) and acylation 

(attack at C1) with amines, and C1 or C3 attack in hydrolysis reactions (Figure 2).[6,7] 

 
Figure 2: Possible beta-lactone ring-opening pathways of different nucleophiles.  

 

Due to a lack in reliable reactivity and selectivity profiles under physiological settings, the 

identification of nucleophiles that distinguish between C1 vs. C3 attack, as well as an 

explanation for the selectivity towards these two sites, has not been possible. In order to mimic 

biological systems accurately, one must consider aqueous media as well as a series of 
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nucleophiles that imitate the reactivity of active sites. A first step in this direction was the 

evaluation of the alkylating potential of lactones as per their reaction rates with 4-(p-

nitrobenzyl)pyridine in water/dioxane mixtures.[7] A crucial parameter for the determination of 

natural product electrophilicities is the selection of suitable nucleophiles which can be described 

by suitable kinetic equations. Previously, reactivities of structurally diverse carbocations and 

neutral electrophiles were characterized with a set of reference nucleophiles, and the 

corresponding second-order rate constants were evaluated according to the linear free energy 

relationship lg k(20 °C) = sN(N + E).[8] While the electrophile-independent parameter, N, is a 

measure of the nucleophilicity of a dissolved reactant, sN provides information about its 

sensitivity towards changes in the electrophilicity of reaction partners. The electrophilicity E is 

a nucleophile-independent reactivity parameter. Because the same values of E is assigned to 

the reference electrophiles (benzhydrylium ions and quinone methides) in different solvents, all 

solvent effects on reactivity are considered in the nucleophilicity parameters N and sN.  

The kinetics of electrophilic compounds under physiological conditions has previously been 

studied by different groups, for example, to derive the carcinogenic properties of lactones or 

lactams from their alkylation potential.[7, 9] To determine reactivities of lactones and lactams 

towards nucleophiles with known N and sN parameters,[8d] we started with investigating the 

reactions of beta-butyrolactone (BBL, 1) with a set of standard amino-substituted nucleophiles 

(Figure 3) and determined its electrophilic reactivity, as well as the regioselectivity of 

nucleophilic attack with experimental and theoretical methods. In agreement with their minimal 

biological effects, monocyclic beta-lactams did not exhibit any reactivity with nucleophiles        

6–8, whereas reactions occurred when the beta-lactam was part of a strained bicyclic ring 

system. Because these reactions were performed under aqueous conditions, this study provides 

a basis for a rational approach to fine-tuning electrophilic scaffolds as selective inhibitors in 

biological applications. 

 
Figure 3: Standard amino-substituted nucleophiles used herein: aniline (2), m-toluidine (3), p-toluidine (4), p-

anisidine (5), benzylamine (6), 2-phenylethylamine (7), n-propylamine (8). 
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Results and discussion 

General considerations 

To obtain a comprehensive picture of the reactivity of BBL (1) under physiological conditions, 

we used a series of primary amines (Figure 3) in aqueous solution (D2O) at 37 °C and a constant 

pH. In these reactions mixtures, four different nucleophiles are capable of reacting with BBL: 

water, hydroxide ions, the conjugate bases X of the buffer system, and the selected nucleophile 

(Scheme 1). 

Scheme 1. Reactions of BBL (1) with amines in buffered aqueous solutions. 

 

The rate law for the decay of the concentration of 1 (eq 1) has to consider the contributions of 

all four reaction channels. 

 

–d[1]/dt = (kW + kDO–[DO–] + kbuffer[buffer] + kN[amine])·[1]  (1)  

 

Previous kinetic studies on the pH-dependency of BBL hydrolysis have shown that the non-

catalyzed reaction of 1 with water follows a first-order rate law with a first-order rate constant, 

kW. Attack by hydroxide ions (OH–) is only relevant at pH > 9, while acid catalysis accelerates 

the hydrolysis only in the region of pH < 1.[10] Blackburn and Dodds have shown that in buffered 

solutions, the reaction of pyridines and imidazoles with -propiolactone could be described by 

equation 2a.[11] Significant increases in the rate of the 1 hydrolysis were only observed in the 

presence of highly concentrated buffers (> 1.5 mol L–1).[10b] Based on the extensive work done 

by Gresham on the ring opening of -propiolactone by acetate or anions of inorganic acids,[12] 

we expected that buffers do not only participate in the stabilization of the pH but that their 

conjugate bases are also potential nucleophiles that are capable of attacking 1 (kbuffer[buffer]).[13] 

As we found that the conjugate bases of the buffers indeed gave covalent adducts with 1 (see 

Table 1), we extended equation 2a to equation 2b. 
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k = kW + kDO–[DO–] + kN[amine]   (2a) 

k2 = kW + kDO–[DO–] + kbuffer[buffer] + kN[amine] (2b) 

k1 = kW + kDO–[DO–] + kbuffer[buffer]   (3) 

 

Owing the high initial concentration of water, the constant value of [DO–] in buffered solution 

and only partial consumption of buffer and amine, the concentrations of all four relevant 

nucleophiles do not change significantly during the kinetic experiments. Consumption of 1 is, 

therefore, expected to follow an exponential function, [1]t = [1]0 e–kt, in which k corresponds to 

k1 for hydrolysis of 1 in buffered aqueous solutions (eq 3) or to k2 for the reaction of 1 in 

buffered aqueous solutions of amines (eq 2b). 

 

Reactivity of 1 in aqueous buffer solutions.  

In a first step, we determined the rate of the consumption of 1 in a 9:1 mixture of D2O/d6-DMSO 

in the absence of standard amine nucleophiles using time-resolved 1H NMR spectroscopy. The 

consumption of 1 through hydrolysis and the nucleophilic attack of different buffers (pH range 

from 4.75 to 8.10) was investigated (Table 1). In each case, the consumption of 1 followed a 

mono-exponential decay and produced a mixture of 3-hydroxybutyric acid (3-HBA) and the 

buffer adduct (see Supporting Information). Least squares fitting with the function [1]t = [1]0 × 

e–k1t yielded the first-order rate constants k1 as defined by equation 3, which reflect the reactivity 

of 1 towards the solvent at a constant pH for a 0.10 M buffer system. 

The attack of 1 by buffer components was recorded by 1H NMR spectroscopy throughout 

kinetic experiments (right column of Table 1) and independently confirmed by LC-HRMS 

analysis (see Supporting Information). The presence of buffer changed the rate constant of the 

consumption of 1 only within a factor of < 1.25 (Table 1, entries 2–5), compared with the non-

buffered hydrolysis of 1 (Table 1, entry 1), which agrees with minimal formation of adducts of 

1. As illustrated in Table 1, entries 1–5, compound 1 reacted with all buffered aqueous solutions 

at comparable rates, we decided to proceed with aqueous TEA solutions for further kinetic 

investigations of reactions of 1 with primary amines. This is beneficial because the tertiary 

amine TEA provides a constant pH of 7.75 which is similar to physiological conditions in living 

cells (Table 1, entry 4). 
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Table 1: Rate constants of consumption of 1 in buffered and non-buffered mixtures of D2O/d6-DMSO 9/1 (v/v) at 

37 °C ([1]0 = 25 mM, [buffer]0 = 0.10 M,). 

entry buffer pH k1 [s–1] t½ [h] 

Ratio  

3-HBA/buffer adduct 

 

1 without buffer – 4.73 × 10–5 [a] 4.1 100/– 

2 acetate 4.75 4.14 × 10–5 4.7 96/4 

3 Na2HPO4/NaH2PO4 7.00 5.85 × 10–5 3.3 86/14 

4 TEA 7.75 5.47 × 10–5 3.5 83/17 → 88/12[b] 

5 TRIS 8.10 5.79 × 10–5 3.3 79/21 

[a] Comparison with data from Ref. [14]: With ∆H‡ = 87.6 kJ mol–1 and ∆S‡ = –77.9 J mol–1 K–1, the second-order 

rate constant for the hydrolysis of 1 is calculated to be k(37 °C) = 1.1 × 10–6 M–1 s–1. Multiplying k(37 °C) with 

[D2O] for the D2O/d6-DMSO 9/1 mixture in our experiment gives a first-order rate constant for the hydrolysis of 

1 of kW(37 °C) = 5.5 × 10–5 s–1, in sufficient agreement with the rate constant determined under our conditions. [b] 

The ratio 3-HBA/buffer adduct increased during the course of the reaction (14 h) probably because of a subsequent 

hydrolysis of the quaternary ammonium salt formed by C3 attack of TEA on 1 (for details see Supporting 

Information, Section 3.1.5). TEA = triethanolamine, TRIS = tris(hydroxymethyl)aminomethane, 3-HBA =               

3-hydroxybutyric acid. 

 

Reactivity of 1 towards amines in aqueous solutions.  

We commenced by studying the products of the reactions of 1 with a panel of nucleophilic 

amines (aniline (2), m-toluidine (3), p-toluidine (4), p-anisidine (5), benzylamine (6) and               

2-phenylethylamine (7), Figure 3) in aqueous solutions. Interestingly, we observed that the 

amine structure directly influenced the preferred site of attack at 1. Aromatic amines opened 

the lactone ring via a SN2 attack at the C3 position of 1 (O-alkyl fission), yielding the beta-

amino acids, while primary aliphatic amines underwent acylation via reaction at the C1 site of 

1 (O-acyl fission), forming 3-hydroxy amides (Scheme 2).  
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Scheme 2. Products (2-p–7-p) of the reactions of 1 with amines 2–7 in H2O/MeCN 9/1 (v/v) (yields refer to 

isolated products). 

 

 

 

QM/MM studies on the C1 versus C3 selectivity of amine attack on 1 

To explain the unexpected preference for either C1 or C3 attack of aliphatic and aromatic 

amines on 1, we performed theoretical studies using a combined quantum mechanics/molecular 

mechanics (QM/MM) approach with linear-scaling quantum-chemical methods (QM) (see e.g. 

Ref. [15] and references therein).[16] The QM/MM method has been widely used to describe 

complex reactions. Using this strategy, reaction mechanisms were calculated using both the 

adiabatic mapping approach and the nudged elastic band method (for computational details see 

Supporting Information). The composition of the calculated systems is illustrated for the 

reaction of 1 with aniline (2) in Figure 4. 

 

 

 

2-p 3-p 
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Figure 4: Illustration of the calculated systems obtained by using the QM/MM approach, as exemplified for the 

reaction of 1 with aniline (2). The reactants (depicted in atomic color) are part of the QM region (cyan; 156 atoms) 

in which chemical reactions can be described. The remaining part is described by MM (Molecular Mechanics), in 

which the region depicted in orange is optimized (including the QM region; overall 681 atoms) and the grey region 

will be held fixed (2235 atoms in total).  

 

In this reaction, H3O+ stabilizes the transition state of the nucleophilic attack of aniline (2) at 

C3 and thereby lowers the activation barrier by 28 kcal mol–1 to 21 kcal mol–1 (Figure 5). 

Specifically, H3O+ approaches the lactone ring oxygen to a minimum distance of 1.38 Å, 

forming a strong hydrogen bond (Figure 5, right), and thus, facilitating lactone ring opening. In 

a subsequent step, aniline (2) forms a covalent bond with C3 and simultaneously protonates the 

lactone oxygen to form a stable product (–17 kcal mol–1 compared to initial state). In contrast, 

in the case of C1 attack, H3O+ protonates the lactone ring oxygen instead of aniline (2), leaving 

aniline (2) protonated when forming the product. This product, however, is not stable (+13 kcal 

mol–1 compared to the initial state) and immediately regenerates the starting material (Figure 

S7 in the Supporting Information of the publication). Owing to the dependence of this reaction 

on H2O/H3O+, the reaction did not occur in nonaqueous solvents, such as acetonitrile and 

DMSO (Figure S2, S3 and Table S1 in the Supporting Information of the publication). The 

consumption of 1 with a rate constant of 7.9 × 10–4 M–1 s–1 was observed, however, in D2O/d6-

DMSO 9/1 (v/v) at 37 °C (Table 2). 
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Figure 5: Calculated reaction profiles of the C3 attack of aniline (2) on 1 with (black) and without (black dashed) 

H3O+ (left) with structures out of the QM/MM simulation for the starting material, transition and product state 

(right).  

 

On the other hand, nucleophilic attack of the aliphatic benzylamine (6) at C1 does not require 

H3O+ stabilization. Calculations demonstrate that attack at C1 and protonation of the lactone 

ring by the amine is favored (activation barrier of 12 kcal mol–1) over the attack at C3 (activation 

barrier of 37 kcal mol–1; Table S1 in the Supporting Information of the publication). In the 

transition state, the C1 atom is in a tetrahedral configuration and the lactone ring remains intact. 

Subsequently, proton transfer from benzylamine (6) to the ring oxygen induces lactone opening. 

If H3O+ is considered in these simulations, the reaction also occurs via the same tetrahedral 

transition state, but H3O+ protonates the ring oxygen instead. Finally, the positively charged 

nitrogen transfers a proton to a nearby water molecule (Figure 6). 

 
Figure 6: Calculated reaction profiles of the C1 attack of benzylamine (6) on 1 with (black) and without (black 

dashed) H3O+ (left) with structures from the QM/MM simulation for the starting material, transition state and 

product (right). Accounting for H3O+ in the calculated system leads to barrier-free attack at C1; however, minor 

product formation is also possible in the absence of H3O+ (left). 

 

The computational data is in line with experimental measurements of the rate constants for the 

reaction in the presence (5.8 × 10–3 M–1 s–1) and in the absence of water (2.5 × 10–4 M–1 s–1) 
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(Figure S1 in the Supporting Information). These values demonstrate that C1 attack indeed 

takes place, even in absence of H3O+ and H2O (Figure S1 and S3 in the Supporting Information 

of the publication). Since almost all naturally occurring beta-lactones exhibit bulky substituents 

at the C3 position, the biologically relevant ring-opening reaction in enzyme active sites is 

likely to be at the C1 position. This is supported by cocrystal structures of the thioesterase 

domain of human fatty acid synthase inhibited by Orlistat[17] as well as kinetic studies that show 

rapid hydrolysis of the ester intermediate of lactone-bound enzyme.[18]  

 

Kinetic studies of the reactions of 1 with amine nucleophiles in buffered media 

Next, reactivity studies were performed by following the kinetics of 1 turnover with the same 

set of primary aliphatic amines and ring-substituted anilines in aqueous TEA-buffered solutions 

(Table 2). To fully solubilize these molecules, a small amount of DMSO (10 vol%) was 

necessary as a co-solvent. Again, the consumption of 1 followed a mono-exponential function, 

[1]t = [1]0 e–k2t, from which k2 was derived. By rearranging equation 4, kN can be calculated 

from equation 5, in which k1 is the first-order rate constant of the background reactions of 1 in 

a mixture of TEA-buffered D2O:d6-DMSO (9:1) (Table 1, entry 4) and [amine]eff corresponds 

to the concentrations of the free amines at pH 7.75. 

 

k2 = k1 + kN[amine]eff   (4) 

kN = (k2 – k1)/[amine]eff  (5) 

 

 
Figure 7: Linear dependence of the first-order rate constant k2 (= kobs) for the reaction of 1 with aniline (2) on the 

concentration of 2 (kobs for [2]0 = 0 corresponds to the hydrolysis of 1 in TEA-buffered solution; not considered 

for the depicted linear correlation). 

 

kobs = 7.87 × 10–4 M–1 s–1 ×[aniline]0
+ 5.49 × 10–5 s–1
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Table 2: Second-order rate constants of the reactions of amines with 1 in 0.10 M TEA-buffered aqueous solutions 

([1]0 = 25 mM, pH 7.75 in D2O/d6-DMSO 9/1 (v/v), at 37 °C, determined by 1H NMR spectroscopy). 

nucleophile pKB
[a] N[b] sN

[b] kN [M–1 s–1] 

aniline (2) 9.4 12.99 0.73 7.9 (±0.5) × 10–4 [c] 

m-toluidine (3) 9.13 n.d. n.d. 9.9 × 10–4 

p-toluidine (4) 8.92 13.00 0.79 1.4 × 10–3 

p-anisidine (5) 8.64 14.28[d,e] 0.68[d,e] 1.6 × 10–3 

benzylamine (6) 4.64 13.44 0.55 5.8 × 10–3 [f] 

phenylethylamine (7) 4.11 13.40[d] 0.57[d] 1.1 × 10–2 [f] 

[a] From Ref. [19]. [b] Reactivity parameters N and sN (as defined in eq 1) of amines in water, from Ref. [20] [c] 

Average kN of four kinetic runs at variable concentrations of 2, the same value for kN is obtained from the slope of 

the linear correlation of k2 vs [2]0 (see Supporting Information, Section 4.1.5). [d] This work. [e] The previously 

published nucleophilicity parameters for p-anisidine (5) (N = 16.53, sN = 0.50) from Ref. [20] were revised in this 

work (see the Supporting Information). [f] Rate constants of lower accuracy; an error of ±15 % is assumed. 

 

The linear dependence of the first-order rate constant k2 on the concentration of aniline (2) 

(Figure 7) is in agreement with the rate laws shown in equations 2a,b and 4. The intercept on 

the ordinate matches, within experimental error, the first-order rate constant k1 (eq 3) for the 

background reaction in TEA-buffered solution (Table 1, entry 4), which demonstrates that the 

background reaction is not significantly affected by the presence of the amine. The consistency 

of the determined kN values is demonstrated by a Hammett analysis of the data for anilines, 

which shows a good correlation of the rate constants kN with the values of σp
– (and σm) of the 

substituents at the anilines 2–5 (lg kN = –1.21 σ – 3.09, R² = 0.9906, see also Figure S30 in the 

Supporting Information). 

Ritchie characterized the relative leaving-group abilities of nucleophiles in the tetrahedral 

intermediates 9 (equation 6) by analyzing the rate constants for the reactions of several 

nucleophiles X (in water) with carbocations, N-acyl pyridinium ions and aryl esters.[21] 

 

The relative rates for the expulsion of X are remarkably different for water and aniline (2) 

compared to those for primary aliphatic amines: relative lg k–X: H2O (5.20) = 2 (5.20) ≫ BuNH2 
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(1.21) > EtNH2 (0.82).[21] These results from kinetic measurements may provide an alternative 

interpretation for the observed variation of regioselectivity of the attack of 1 by different 

nucleophiles. For water and anilines, attack at C1 of 1 is highly reversible, whereas stable 

products are formed by irreversible SN2 reaction at C3 of 1 (see Scheme 2). In accordance with 

this interpretation, the hydrolysis of (S)-1 in buffered solution at pH 7 was reported to give 

selective inversion of the stereocenter to yield (R)-3-hydroxybutyric acid.[10b] Although the 

nucleophilicity of the primary amines 6 and 7 is in the same range as that of the anilines 2–5, 

products of C1 attack at 1 were obtained with the primary alkylamines 6 and 7. This observation 

is in accord with Ritchies’s lg kX values for tetrahedral intermediates formed by nucleophilic 

attack on carboxylic esters, which indicate that the primary aliphatic amines are 104-fold weaker 

nucleofuges than anilines or water.  

Amines 2–7 employed in this study cover a relatively small range in nucleophilicity in water 

(12.99 < N < 14.28), which corresponds to a reactivity difference of only a factor of 20 towards 

a certain electrophile (if differences in sN are neglected). Because anilines attack at C3 while 

aliphatic amines attack at C1, rate constants for nucleophilic attack at 1 are additionally 

influenced to a different extent by anomeric effects.[22] 

Mayr’s reference electrophiles have been assigned the same value of E in different solvents.[8] 

It can be expected, however, that the use of solvent-independent E parameters is not possible 

for all electrophiles. If products with highly localized charges will be formed during 

nucleophilic attack solvent-dependent E parameters will be required.[23] In this work, the rate 

constant of the reaction of 1 with benzylamine (6) decreases by a factor of 23 when changing 

from aqueous solution to DMSO solution, although an increase in the rate constants by about 

one order of magnitude (N/sN for benzylamine (6) in DMSO: 15.28/0.65) is expected when 

assuming the same electrophilic reactivity of 1 in both solvents.[8d] As a consequence, it is not 

possible to determine a reliable E parameter for C1 or C3 attack on 1. Hence, the discussion of 

-lactam reactivities in the following paragraph has been based on relative rate constants 

towards amines. 
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Electrophilic reactivity of beta-lactams 

Monocyclic beta-lactams exhibit limited reactivity with enzyme active sites, while their bicyclic 

analogs are potent antibiotics with pronounced protein reactivity.[3] This physiological 

observation is in agreement with our experimental and theoretical studies, which reveal no 

turnover of 4-methyl-1-azetidin-2-one with nucleophiles due to an insuperable activation 

barrier of 40–70 kcal mol–1 (Table S2 and Figure S5 and S6 in the Supporting Information of 

the publication). In contrast, penicillin G, which is a bicyclic beta-lactam, reacts with 

benzylamine (6), 2-phenylethylamine (7) and n-propylamine (8) at significantly higher rates 

ranging from 8 × 10–2 M–1 s–1 (for 6) via 9 × 10–2 M–1 s–1 (for 7) to 4 × 10–1 M–1 s–1 (for 8), a 

trend which was further confirmed by QM/MM calculations (Figure 8). These rates exceed 

those observed for monocyclic lactones. Accordingly, the acylation products 10a,b of the 

reactions of penicillin G with benzylamine (6) and n-propylamine (8) have been isolated and 

characterized by NMR spectroscopy and HRMS (Scheme 3). 

 
Figure 8: Calculated reaction profiles of n-propylamine (8) (left) and benzylamine (6) (right) with penicillin G. 

The attack at C1 is shown in black and the attack at C3 in black dashed. Left: The first barrier represents the 

reorientation of n-propylamine (8) during the approach towards penicillin G. The second barrier represents the 

nucleophilic attack at C1 and C3 respectively.  

 

Scheme 3. Products of the reactions of sodium penicillin G with amines 6 and 8 in H2O/MeCN 9/1 (v/v) (yields 

refer to isolated products, only one diastereomer is shown). 
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Conclusion  

Electro- and nucleophilicity parameters have been obtained for a variety of compound classes, 

to provide a prognostic value for chemical reactions.[8] Natural products exhibit many 

electrophilic motifs that have been customized by evolution to irreversibly bind the active sites 

of enzymes. The corresponding biological activities are as diverse as these scaffolds and range 

from anticancer to antibiotic properties. Recent drug-discovery efforts have focused on natural-

product-inspired covalent inhibitors; however, a quantitative scale to describe and parameterize 

their reactivity under physiological conditions is currently lacking. We therefore used kinetic 

experiments to evaluate pharmacologically relevant electrophilic scaffolds. Importantly, the 

ambident reactivity of beta-butyrolactone (C1 vs. C3 attack) towards anilines and primary 

aliphatic amines was explained by QM/MM calculations using linear-scaling QM methods. 

Strikingly, these calculations revealed that H3O+ molecules are crucial for catalysis owing to 

their stabilizing effects on the transition state of aniline attack at the C3 position of the lactone. 

Although the energy path for this reaction is significantly lower than that of C1 attack, 

benzylamine (6) prefers C1 attack (with or without H3O+ catalysis) owing to an insuperable C3 

energy barrier. All of these calculations were supported by experimental data which confirmed 

the influence of water for the corresponding reaction rates. The value of this platform has been 

demonstrated in the direct comparison of beta-butyrolactone (1), 4-methyl-1-azetidin-2-one and 

penicillin G. The phenomenological observation that penicillin G and beta-lactones are reactive 

with protein active sites while monocyclic beta-lactams are weak binders could be proven 

experimentally as well as theoretically. With this proof of principle study, the scope of 

application can easily be expanded to other biologically-relevant electrophilic scaffolds. 

Acknowledgements 

We thank Prof. Dr. H. Mayr (LMU München) for generous support and Dr. D. Stephenson 

(LMU München) for help with the NMR spectroscopy measurements. 

We acknowledge financial support by the DFG funding initiative SFB749 (Projects A3, B1, 

C7), the Excellence Cluster EXC114 (CIPSM), and an ERC starting grant (250924-

antibacterials). 

  



 

27 
 

References 

[1] a) M. Gersch, J. Kreuzer, S. A. Sieber, Nat. Prod. Rep. 2012, 29, 659–682; b) C. Drahl, 

B. F. Cravatt, E. J. Sorensen, Angew. Chem. Int. Ed. Engl. 2005, 44, 5788–5809. c) J. 

A. H. Schwöbel, Y. K. Koleva, S. J. Enoch, F. Bajot, M. Hewitt, J. C. Madden, D. W. 

Roberts,T. W. Schultz, M. T. D. Cronin, Chem. Rev. 2011, 111, 2562–2596. 

[2] D. J. Waxman, J. L. Strominger, Annu. Rev. Biochem. 1983, 52, 825–869. 

[3] I. Staub, S. A. Sieber, J. Am. Chem. Soc. 2008, 130, 13400–13409. 

[4] a) M. I. Page, A. P. Laws, Tetrahedron 2000, 56, 5631–5638; b) P. Proctor, N. P. 

Gensmantel, M. I. Page, J. Chem. Soc. Perkin Trans. 2 1982, 1185–1192. 

[5] T. Böttcher, S. A. Sieber, MedChemComm 2012, 3, 408–417. 

[6] a) A. Noel, B. Delpech, D. Crich, Org. Biomol. Chem. 2012, 10, 6480–6483; b) A. 

Griesbeck, D. Seebach, Helv. Chim. Acta 1987, 70, 1326–1332. 

[7] J. A. Manso, M. T. Pérez-Prior, M. d. P. García-Santos, E. Calle, J. Casado, Chem. Res. 

Toxicol. 2005, 18, 1161–1166. 

[8] a) H. Mayr, M. Patz, Angew. Chem. Int. Ed. Engl. 1994, 33, 938–957; b) H. Mayr, A. 

R. Ofial, J. Phys. Org. Chem. 2008, 21, 584–595; c) H. Mayr, T. Bug, M. F. Gotta, N. 

Hering, B. Irrgang, B. Janker, B. Kempf, R. Loos, A. R. Ofial, G. Remennikov, H. 

Schimmel, J. Am. Chem. Soc. 2001, 123, 9500–9512; d) For a comprehensive listing of 

nucleophilicity parameters N, sN and electrophilicity parameters E, see 

http://www.cup.lmu.de/oc/mayr/DBintro.html. 

[9] a) B. L. Van Duuren, B. M. Goldschmidt, J. Med. Chem. 1966, 9, 77–79; b) B. L. Van 

Duuren, Ann. N. Y. Acad. Sci. 1969, 163, 633–650. 

[10] a) F. A. Long, M. Purchase, J. Am. Chem. Soc. 1950, 72, 3267–3273; b) A. R. Olson, 

R. J. Miller, J. Am. Chem. Soc. 1938, 60, 2687–2692. 

[11] G. M. Blackburn, H. L. H. Dodds, J. Chem. Soc. Perkin Trans. 2 1974, 377–382. 

[12] a) T. L. Gresham, J. E. Jansen, F. W. Shaver, J. T. Gregory, J. Am. Chem. Soc. 1948, 

70, 999–1001; b) T. L. Gresham, J. E. Jansen, F. W. Shaver, J. Am. Chem. Soc. 1948, 

70, 1003–1004. 

[13] For related kinetic studies of the reactions of -propiolactone with anionic nucleophiles, 

see also P. D. Bartlett, G. Small, J. Am. Chem. Soc. 1950, 72, 4867–4869. 

[14] M. T. Pérez-Prior, J. A. Manso, M. d. P. García-Santos, E. Calle, J. Casado, J. Org. 

Chem. 2005, 70, 420–426. 

[15] J. Kussmann, M. Beer, C. Ochsenfeld, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2013, 

3, 614–636. 



 

28 
 

[16] a) A. Warshel, Angew. Chem. Int. Ed. 2014, 53, 10020–10031; b) H. M. Senn, W. Thiel, 

Angew. Chem. Int. Ed. 2009, 48, 1198–1229; Angew. Chem. 2009, 121, 1220–1254. 

[17] C. W. Pemble, L. C. Johnson, S. J. Kridel, W. T. Lowther, Nat. Struct. Mol. Biol. 2007, 

14, 704–709. 

[18] M. Gersch, K. Famulla, M. Dahmen, C. Göbl, I. Malik, K. Richter, V. S. Korotkov, P. 

Sass, H. Rübsamen-Schaeff, T. Madl, H. Brötz-Oesterhelt, S. A. Sieber, Nat. Commun. 

2015, 6, 6320. 

[19] a) Y. Altun, J. Solution Chem. 2004, 33, 479–497; b) D. Xiong, Z. Li, H. Wang, J. 

Wang, Green Chem. 2013, 15, 1941–1948; c) P. J. Battye, E. M. Ihsan, R. B. Moodie, 

J. Chem. Soc. Perkin Trans. 2 1980, 741–748; d) C. H. Arrowsmith, H. X. Guo, A. J. 

Kresge, J. Am. Chem. Soc. 1994, 116, 8890–8894; e) R. F. Jameson, G. Hunter, T. Kiss, 

J. Chem. Soc. Perkin Trans. 2 1980, 1105–1110. 

[20] F. Brotzel, Y. C. Chu, H. Mayr, J. Org. Chem. 2007, 72, 3679–3688. 

[21] C. D. Ritchie, J. Am. Chem. Soc. 1975, 97, 1170–1179. 

[22] T. A. Nigst, H. Mayr, Eur. J. Org. Chem. 2013, 2155–2163. 

[23]  H. Mayr, Tetrahedron 2015, 71, 5095–5111. 

  



 

29 
 

– Supporting Information – 

 

Kinetic and theoretical studies of beta-lactone reactivity – a quantitative scale for 

biological application 

 

1. Supporting figure 

 

Figure S1: Decay of the concentration of BBL (determined by 1H NMR spectroscopy) while reacting with 

benzylamine in an aqeuous TEA-buffered reaction mixture at 37 °C (black curve, [BBL]0 = 25 mM, [PhCH2NH2]0 

= 50 mM, [PhCH2NH2]eff = 1.2 × 10–3 M, [TEA]0 = 0.10 M, pH = 7.75, solvent D2O/DMSO-d6 9/1 (v/v), kobs = 

6.2 × 10–5 s–1, kN = 5.8 × 10–3 M–1 s–1) and while reacting with benzylamine in d6-DMSO at 37 °C versus time 

(grey curve, [BBL]0 = 25 mM, [PhCH2NH2]0 = 50 mM, kN = 2.5 × 10–4 M–1 s–1) is shown.  

 

2. General methods and materials 

 

All chemical reagents and solvents used for product studies were of reagent grade or of higher 

purity and used without further purification as obtained from the commercial sources Alfa-

Aesar, AppliChem, Fluka/Sigma-Aldrich, Merck and Roth. Chemical reagents and solvents 

used for kinetic NMR-studies were purified by destillation. Concentrations under reduced 

pressure were performed by rotary evaporation at 40 °C. Yields refer to purified, dried and 

spectroscopically pure compounds. 

1H NMR and 13C NMR spectra were recorded at (26 ± 1) °C on Bruker Avance 360, Avance 

500 and Avance III 500 spectrometers. 1H NMR kinetic measurements were performed on 

Varian VNMRS 400 or Varian 200 spectrometers at 37 °C. Chemical shifts () were referenced 
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to the residual proton or carbon signal of the deuterated solvent in ppm (d6-DMSO: H 2.50, C 

39.52; CDCl3: H 7.26, C 77.16; D2O: H 4.79).[1] Coupling constants (J) are reported in Hertz 

(Hz) and multiplicity is reported as follows: s = singlet, d = doublet, t = triplet, q = quartet, m 

= multiplet or unresolved. 

 

 

3. Stability of β-butyrolactone (BBL) in different buffer systems – 

Determination of first-order rate constants k1 

3.1. Kinetic data 

3.1.1. General 

 

A 0.11 M buffer solution in D2O (540 µL) was mixed with a solution of BBL (60 µL of a 0.25 

M solution in d6-DMSO) in an NMR tube at 37 °C to produce a 9/1 (v/v) D2O/d6-DMSO solvent 

mixture. The conversion of BBL was monitored by using time-resolved 1H NMR spectroscopy. 

Concentrations of BBL, [BBL]t, were calculated from the ratio of the integral of the methyl 

resonances of BBL (d,  = 1.70 ppm) to the integral of the methyl resonances in the range  = 

1.43–1.27 ppm. 

The first-order rate constants kobs (= k1 in equation (3) of the main text) were determined by 

least-squares fitting of the exponential function [BBL]t = [BBL]0·exp(–kobst) + C to the time-

dependent [BBL]t. 

kobs = k1 = kW + kDO–[DO–] + kbuffer[buffer] (3) 

 

3.1.2. Hydrolysis of BBL without buffer 

 

D2O (540 µL) and BBL (60 µL of a 0.25 M solution in d6-DMSO) were mixed in an NMR tube 

at 37 °C. The conversion of BBL was monitored by using time-resolved 1H NMR spectroscopy. 

Concentrations of BBL, [BBL]t, were calculated from the ratio of the integral of the methyl 

resonances of BBL (d,  = 1.70 ppm) to the integral of the methyl resonances assigned to 3-

hydroxybutanoic acid (3-HBA: d,  = 1.38 ppm).  
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Figure S2: Exemplary time-resolved 1H NMR spectra of the hydrolysis of BBL in D2O/d6-DMSO 9/1 (v/v) at 37 

°C ([BBL]0 = 25 mM). Start of the reaction (bottom), time-resolved topview of 1H NMR spectra (middle), showing 

the decrease of BBL resonances and increase of 3-HBA resonances, and final 1H NMR spectrum after 40800 s 

(top).  
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Figure S3: Decay of the concentration of BBL in D2O/d6-DMSO 9/1 (v/v) at 37 °C versus time ([BBL]0 = 25 mM, 

pH = 7.00). The black line shows a mono-exponential fit of the data. 

 

3.1.3. Hydrolysis of BBL in the presence of acetate buffer 

 

Acetate buffer (540 µL of a 0.11 M solution of NaOAc/HOAc in D2O, pH 4.75) and BBL (60 

µL of a 0.25 M solution in d6-DMSO) were mixed in an NMR tube at 37 °C. The conversion 

of BBL was monitored by using time-resolved 1H NMR spectroscopy. Concentrations of BBL, 

[BBL]t, were calculated from the ratio of the integral of the methyl resonances of BBL (d,  = 

1.70 ppm) to the integral of the methyl resonances in the range  = 1.43–1.27 ppm. 

 

 

Figure S4: 1H NMR spectrum (400 MHz) of BBL in an acetate-buffered reaction mixture after 60 h at 37 °C 

([BBL]0 = 25 mM, [AcOH]0 = 0.10 M, pH = 4.75 in D2O/d6-DMSO 9/1 (v/v)). 
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Figure S5: Decay of the concentration of BBL in an acetate-buffered reaction mixture at 37 °C ([BBL]0 = 25 mM, 

[AcOH]0 = 0.10 M, pH = 4.75 in D2O/d6-DMSO 9/1 (v/v). The black line shows a mono-exponential fit of the data. 

 

3.1.4. Hydrolysis of BBL in the presence of phosphate buffer 

 

 

 

 

Phosphate buffer (540 µL of a 0.11 M solution of Na2HPO4/NaH2PO4in D2O, pH 7.00) and 

BBL (60 µL of a 0.25 M solution in d6-DMSO) were mixed in an NMR tube at 37 °C. The 

conversion of BBL was monitored by using time-resolved 1H NMR spectroscopy. 

Concentrations of BBL, [BBL]t, were calculated from the ratio of the integral of the methyl 

resonances of BBL (d,  = 1.70 ppm) to the integral of the methyl resonances in the range  = 

1.43–1.27 ppm that were assigned to the formation of 3-HBA and 3-(phosphonooxy)butanoic 

acid (3-PBA, Figure S13). C-4 attack of BBL by dihydrogenphosphate or hydrogenphosphate 

ions to form 3-PBA is further corroborated by 31P NMR spectroscopic analysis of the reaction 

mixture, in which the resonance at P = 0.69 ppm was assigned to the formation of a phosphoric 

acid ester (Figure S7). 
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Figure S6: 1H NMR spectrum (400 MHz) of BBL in a phosphate-buffered reaction mixture after 49 h at 37 °C 

([BBL]0 = 25 mM, [NaH2PO4]0 + [Na2HPO4]0 = 0.10 M, pH = 7.00 in D2O/d6-DMSO 9/1 (v/v)).  

 

Figure S7: 31P-{1H} NMR spectrum (162 MHz) of BBL in a phosphate-buffered reaction mixture after 49 h at 37 

°C ([BBL]0 = 25 mM, [NaH2PO4]0 + [Na2HPO4]0 = 0.10 M, pH = 7.00, solvent D2O/d6-DMSO 9/1 (v/v)). The 

resonance at  = 1.23 ppm is assigned to the phosphate buffer, the resonance at  = 0.69 ppm is assigned to            

3-(phosphonooxy)butanoic acid (3-PhosBA). 

 

Figure S8: Decay of the concentration of BBL in a phosphate-buffered reaction mixture at 37 °C ([BBL]0 = 

25 mM, [NaH2PO4]0 + [Na2HPO4]0 = 0.10 M, pH = 7.00 in D2O/d6-DMSO 9/1 (v/v)). The black line shows a 

mono-exponential fit of the data. 
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3.1.5. Hydrolysis of BBL in the presence of triethanolamine buffer (TEA buffer) 

 

TEA buffer (540 µL of a 0.11 M solution of TEA/TEA·HCl in D2O, pH 7.75) and BBL (60 µL 

of a 0.25 M solution in d6-DMSO) were mixed in an NMR tube at 37 °C. The conversion of 

BBL was monitored by using time-resolved 1H NMR spectroscopy. Concentrations of BBL, 

[BBL]t, were calculated from the ratio of the integral of the methyl resonances of BBL (d,  = 

1.70 ppm) to the integral of the methyl resonances in the range = 1.43–1.27 ppm (Figure S9). 

Beside 3-HBA, an adduct of BBL and TEA is formed. The 3-HBA/BBL-TEA-adduct ratio 

increases from 5.0 to 7.5 during the reaction (14 h, Figure S11), however reaches 13.3 after 

13 days (Figure S9).  

 

 

 

Figure S9: 1H NMR spectrum (400 MHz) of BBL in a TEA-buffered reaction mixture after 13 days at 37 °C 

([BBL]0 = 25 mM, [TEA]0 = 0.10 M, pH = 7.75 in D2O/d6-DMSO 9/1 (v/v)). 
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Figure S10: Decay of the concentration of BBL in a TEA-buffered reaction mixture at 37 °C ([BBL]0 = 25 mM, 

[TEA]0 = 0.10 M, pH = 7.75 in D2O/d6-DMSO 9/1 (v/v). The black line shows a mono-exponential fit of the data. 

 

Figure S11: Concentration profiles in a TEA-buffered reaction mixture of BBL at 37 °C ([BBL]0 = 25 mM, [TEA]0 

= 0.10 M, pH = 7.75 in D2O/d6-DMSO 9/1 (v/v) (left) and 3-HBA/BBL-buffer adduct ratio (right).  

 

3.1.6. Hydrolysis of BBL in the presence of tris(hydroxymethyl)aminomethane buffer 

(TRIS buffer) 

 

TRIS buffer (540 µL of a 0.11 M solution of TRIS/TRIS·HCl in D2O, pH 8.10) and BBL (60 

µL of a 0.25 M solution in d6-DMSO) were mixed in an NMR tube at 37 °C. The conversion 

of BBL was monitored by using time-resolved 1H NMR spectroscopy. Concentrations of BBL, 

[BBL]t, were calculated from the ratio of the integral of the methyl resonances of BBL (d,  = 

1.70 ppm) to the integral of the methyl resonances in the range = 1.43–1.27 ppm (Figure S11). 
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Figure S12: 1H NMR spectrum (400 MHz) of BBL in a TRIS-buffered reaction mixture after 9 d at 37 °C ([BBL]0 

= 25 mM, [TRIS]0 = 0.10 M, pH = 8.10 in D2O/d6-DMSO 9/1 (v/v)). 
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Figure S13: Decay of the concentration of BBL in a TRIS-buffered reaction mixture at 37 °C ([BBL]0 = 25 mM, 

[TRIS]0 = 0.10 M, pH = 8.10 in D2O/d6-DMSO 9/1 (v/v). The black line shows a mono-exponential fit of the data. 
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4. Kinetics of the reaction of BBL with amines in TEA-buffered D2O/d6-

DMSO 9/1 (v/v) – Determination of second-order rate constants kN 

 

General procedure 

A TEA-buffered (pH 7.75) solution of an amine (0.056 M) in D2O (540 µL) was mixed with a 

solution of BBL (60 µL of a 0.25 M solution in d6-DMSO) in an NMR tube at 37 °C to produce 

a 9/1 (v/v) D2O/d6-DMSO solvent mixture. The conversion of BBL was monitored by using 

time-resolved 1H NMR spectroscopy. Concentrations of BBL, [BBL]t, were calculated from 

the ratio of the integral of the methyl resonances of BBL (d,  = 1.70 ppm) to the integral of the 

methyl resonances in the range = 1.43–1.27 ppm.  

The first-order rate constants kobs (= k2 in equation (4) of the main text) were determined by 

least-squares fitting of the exponential function [BBL]t = [BBL]0·exp(–kobst) + C to the time-

dependent [BBL]t. 

kobs = k2 = k1 + kN[amine]eff   (4) 

According to equation (5) of the main text, i.e.  

kN = (k2 – k1)/[amine]eff   (5), 

kN is then calculated from the experimentally determined k2, the first-order rate constant of the 

BBL decay in TEA-buffered solution (k1 = 5.47 × 10–5 s–1, see Section 3.1.5) and the effective 

concentration of free amine at pH 7.75, [amine]eff, which is calculated according to Henderson 

Hasselbalch equation with pKaH+ values from Ref. [2]. 
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4.1. Kinetics of the reaction of BBL with aniline in TEA-buffered D2O/d6-DMSO 9/1 (v/v) 

4.1.1. Reaction of BBL with [aniline]0 = 50 mM 

[BBL]0 = 25 mM,  

[PhNH2]0 = 50 mM, [PhNH2]eff = 50 mM, 

[TEA buffer]0 = 0.10 M, pH 7.75 in D2O/d6-DMSO 9/1 (v/v), 37 °C. 

 

 

Figure S14: 1H NMR spectrum (400 MHz) of the crude reaction mixture after completion of the reaction of BBL 

with aniline in a TEA-buffered D2O/d6-DMSO 9/1 (v/v) solution. 

    

Figure S15: Decay of the concentration of BBL while reacting with aniline in a TEA-buffered reaction mixture at 

37 °C ([aniline]0 = 50 mM, kN = 8.50 × 10–4 M–1 s–1). The black line shows a mono-exponential fit of the data.  
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4.1.2. Reaction of BBL with [aniline]0 = 74 mM 

[BBL]0 = 25 mM,  

[PhNH2]0 = 74 mM, [PhNH2]eff = 74 mM, 

[TEA buffer]0 = 0.10 M, pH 7.75 in D2O/d6-DMSO 9/1 (v/v), 37 °C. 

 

    

Figure S16: Decay of the concentration of BBL while reacting with aniline in a TEA-buffered reaction mixture at 

37 °C ([aniline]0 = 74 mM, kN = 7.07 × 10–4 M–1 s–1). The black line shows a mono-exponential fit of the data.  

 

4.1.3. Reaction of BBL with [aniline]0 = 0.10 M 

[BBL]0 = 25 mM,  

[PhNH2]0 = 0.10 M, [PhNH2]eff = 0.10 M, 

[TEA buffer]0 = 0.10 M, pH 7.75 in D2O/d6-DMSO 9/1 (v/v), 37 °C. 

    

Figure S17: Decay of the concentration of BBL while reacting with aniline in a TEA-buffered reaction mixture at 

37 °C ([aniline]0 = 0.10 M, kN = 8.23 × 10–4 M–1 s–1). The black line shows a mono-exponential fit of the data.  
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4.1.4. Reaction of BBL with [aniline]0 = 0.30 M 

[BBL]0 = 25 mM,  

[PhNH2]0 = 0.30 M, [PhNH2]eff = 0.30 M, 

[TEA buffer]0 = 0.10 M, pH 7.75 in D2O/d6-DMSO 9/1 (v/v), 37 °C. 

  

Figure S18: Decay of the concentration of BBL while reacting with aniline in a TEA-buffered reaction mixture at 

37 °C ([aniline]0 = 0.30 M, kN = 7.88 × 10–4 M–1 s–1). The black line shows a mono-exponential fit of the data.  

 

4.1.5. Determination of the second-order rate constant kN for the reaction of BBL with 

aniline 

Table S1: Rate constants for the reactions of BBL with aniline at 37 °C at pH 7.75 in D2O/d6-DMSO 9/1 (v/v) at 

variable aniline concentrations. 

 

 

 

 

 

 

 

 

 

 

[aniline]0 (M) kobs (s–1) kN (M–1 s–1) 

5.0 × 10–2 9.72 × 10–5 8.50 × 10–4 

7.4 × 10–2 1.07 × 10–4 7.07 × 10–4 

1.0 × 10–1 1.37 × 10–4 8.23 × 10–4 

3.0 × 10–1 2.91 × 10–4 7.88 × 10–4 

averaged kN  7.92 × 10–4 

Standard dev  ±5.4 × 10–5 
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The averaged kN is in excellent agreement with the kN derived from the slope of the linear 

correlation of kobs with [aniline]0 shown in Figure S19. 

 

 

Figure S19: Corelation of kobs with [aniline]0. For comparison also kobs of hydrolysis in TEA-buffered solution is 

plotted.  

The average value kN(aniline) = 7.92 (± 0.54) × 10–4 M–1 s–1 is used in Table 3 of the main text. 
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4.2. Kinetics of the reaction of BBL with m-toluidine in TEA-buffered D2O/d6-DMSO 9/1 

(v/v) 

 

[BBL]0 = 25 mM, 
[m-tol-NH2]0 = 50 mM, [m-tol-NH2]eff = 50 mM, 
[TEA buffer]0 = 0.10 M, pH 7.75 in D2O/d6-DMSO 9/1 (v/v), 37 °C. 

 

 

Figure S20: 1H NMR spectrum (400 MHz) of the crude reaction mixture after completion of the reaction of BBL 

with m-toluidine in a TEA-buffered D2O/d6-DMSO 9/1 (v/v) solution.  

 

Figure S21: Decay of the concentration of BBL while reacting with m-toluidine in a TEA-buffered reaction mixture 

at 37 °C (kN = 9.90 × 10–4 M–1 s–1). The black line shows a mono-exponential fit of the data.  
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4.3. Kinetics of the reaction of BBL with p-toluidine in TEA-buffered D2O/d6-DMSO 9/1 

(v/v) 

 

[BBL]0 = 25 mM, 

[p-tol-NH2]0 = 50 mM, [p-tol-NH2]eff = 50 mM, 

[TEA buffer]0 = 0.10 M, pH 7.75 in D2O/d6-DMSO 9/1 (v/v), 37 °C. 

 

 

Figure S22: 1H NMR spectrum (400 MHz) of the crude reaction mixture after completion of the reaction of BBL 

with p-toluidine in a TEA-buffered D2O/d6-DMSO 9/1 (v/v) solution.  

 

Figure S23: Decay of the concentration of BBL while reacting with p-toluidine in a TEA-buffered reaction mixture 

at 37 °C (kN = 1.35 × 10–3 M–1 s–1). The black line shows a mono-exponential fit of the data. 
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4.4. Kinetics of the reaction of BBL with p-anisidine in TEA-buffered D2O/d6-DMSO 9/1 

(v/v) 

 

[BBL]0 = 25 mM,  

[p-ani-NH2]0 = 50 mM, [p-ani-NH2]eff = 50 mM, 

[TEA buffer]0 = 0.10 M, pH 7.75 in D2O/d6-DMSO 9/1 (v/v), 37 °C. 

 

 

Figure S24: 1H NMR spectrum (400 MHz) of the crude reaction mixture after completion of the reaction of BBL 

with p-anisidine in a TEA-buffered D2O/d6-DMSO 9/1 (v/v) solution.  

  

Figure S25: Decay of the concentration of BBL while reacting with p-anisidine in a TEA-buffered reaction mixture 

at 37 °C (kN = 1.62 × 10–3 M–1 s–1). The black line shows a mono-exponential fit of the data.  
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4.5. Kinetics of the reaction of BBL with benzylamine in TEA-buffered D2O/d6-DMSO 9/1 

(v/v) 

[BBL]0 = 25 mM,  

[PhCH2NH2]0 = 50 mM, [PhCH2NH2]eff = 1.2 mM, 

[TEA buffer]0 = 0.10 M, pH 7.75 in D2O/d6-DMSO 9/1 (v/v), 37 °C. 

 

 

Figure S26: 1H NMR spectrum (400 MHz) of the crude reaction mixture after completion of the reaction of BBL 

with benzylamine in a TEA-buffered D2O/d6-DMSO 9/1 (v/v) solution.  

 

Figure S27: Decay of the concentration of BBL while reacting with benzylamine in a TEA-buffered reaction 

mixture at 37 °C (kN = 5.8 × 10–3 M–1 s–1). The black line shows a mono-exponential fit of the data. 

Due to the small concentration of unprotonated benzylamine under reaction conditions, we 

proofed the formation of N-benzyl-3-hydroxybutanamide by HPLC-HRMS (ESI) analysis of 

the reaction mixture. Calcd. for C11H16NO2 [M+H]+ : m/z = 194.11756; found: m/z = 194.11753. 
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4.6. Kinetics of the reaction of BBL with phenylethylamine in TEA-buffered D2O/d6-

DMSO 9/1 (v/v) 

[BBL]0 = 25 mM, 

[PhCH2CH2NH2]0 = 50 mM, [PhCH2CH2NH2]eff = 0.36 mM, 

[TEA buffer]0 = 0.10 M, pH 7.75 in D2O/d6-DMSO 9/1 (v/v), 37 °C. 

 

 

Figure S28: 1H NMR spectrum (400 MHz) of the crude reaction mixture after completion of the reaction of BBL 

with phenylethylamine in a TEA-buffered D2O/d6-DMSO 9/1 (v/v) solution.  

 

Figure S29: Decay of the concentration of BBL while reacting with phenylethylamine in a TEA-buffered reaction 

mixture at 37 °C (kN = 1.1 × 10–2 M–1 s–1). The black line shows a mono-exponential fit of the data. 

Due to the small concentration of unprotonated phenylethylamine under reaction conditions, 

we proofed the formation of 3-hydroxy-N-phenethylbutanamide by HPLC-HRMS (ESI) 

analysis of the reaction mixture. Calcd. for C12H18NO2 [M+H]+: m/z = 208.13321; found: m/z 

= 208.13317.  
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4.7. Rate constants for the reactions of BBL with amines 

 

Table S2: Rate constants for the reactions of BBL with different amines at 37 °C and pH 7.75 in D2O/d6-DMSO 

9/1 (v/v). 

[a] Average value, see Section 4.1. [b] From Ref. [3] 

 

4.8. Hammett plot for the reactions of BBL with anilines 

 

 

Figure S30: Hammett plot of the reaction of BBL with anilines at 37 °C and pH 7.75 in D2O/d6-DMSO 9/1 (v/v), 

with data from Table S2. 

   

 
aniline m-toludine p-toluidine p-anisidine 

benzyl- 

amine 

phenylethyl- 

amine 

pKaH+ 4.60 4.87 5.08 5.36 9.36 9.89 

ceff (M) - 5.0 × 10–2 5.0 × 10–2 5.0 × 10–2 1.2 × 10–3 3.6 × 10–4 

kobs (s–1) - 1.04 × 10–4 1.22 × 10–4 1.35 × 10–4 6.2 × 10–5 5.9 × 10–5 

kN (M–1 s–1) 7.92 × 10–4[a] 9.90 × 10–4 1.35 × 10–3 1.62 × 10–3 5.8 × 10–3 1.1 × 10–2 

σm or σp
–[b] 0 –0.07 –0.17 –0.26 - - 
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5. Kinetics of the reaction of BBL with benzylamine in d6-DMSO 

 

[BBL]0 = 25 mM,  

[PhCH2NH2]0 = 50 mM, in d6-DMSO, 37 °C.  

 

 

Figure S31: 1H NMR spectrum (200 MHz) of the crude reaction mixture after completion of the reaction of BBL 

with benzylamine d6-DMSO solution.  

 

Figure S32: Decay of the concentration of BBL while reacting with benzylamine d6-DMSO at 37 °C (left). 

Determination of the second-order rate constant by plotting time versus Y = ([Nu]0−[E]0)–1ln([E]0([E]t 

+[Nu]0−[E]0)/[Nu]0[E]t) (kN = 2.5 × 10–4 M–1 s–1, evaluated from data for the first half-life; right).  
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6. Determination of second-order rate constants of the reaction of sodium 

penicillin G with various amines in D2O/d6-DMSO 9/1 (v/v) 

 

General procedure  

A TEA-buffered (pH 7.75) solution of an amine (0.056 M) in D2O (540 µL) was mixed with a 

solution of penicillin G (60 µL of a 0.25 M solution in d6-DMSO) in an NMR tube at 37 °C to 

produce a 9/1 (v/v) D2O/DMSO solvent mixture. The conversion of penicillin G (PenG) was 

monitored by using time-resolved 1H NMR spectroscopy. Concentrations of PenG, [PenG]t, 

were calculated from ratio of the integral of the aromatic protons (7.63 to 7.40 ppm, m, 5 H; 15 

H respectively, if the nucleophile also gave signals in this range) to all protons of the bicyclic 

moiety (5.67 ppm, d, J = 3.9 Hz, 1 H and 5.59 ppm, d, J = 3.8 Hz, 1 H). 

The first-order rate constants kobs (= k2 in equation (4) of the main text) were determined by 

least-squares fitting of the exponential function [PenG]t = [PenG]0·exp(–kobst) + C to the time-

dependent [PenG]t. 

kobs = k2 = k1 + kN[amine]eff   (4) 

According to equation (5) of the main text, i.e.  

kN = (k2 – k1)/[amine]eff   (5) 

kN is then calculated from the experimentally determined k2, the first-order rate constant of the 

PenG decay in TEA-buffered solution (k1 = 3.3 × 10–5 s–1, see Section 7.1) and the effective 

concentration of free amine at pH 7.75. 
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6.1. Consumption of sodium penicillin G in TEA-buffered solution – Determination of the 

first-order rate constant k1 

 

TEA buffer (540 µL of a 0.11 M solution of TEA/TEA·HCl in D2O, pH 7.75) and penicillin G 

(60 µL of a 0.25 M solution in d6-DMSO) were mixed in an NMR tube at 37 °C. The conversion 

of penicillin G was monitored by using time-resolved 1H NMR spectroscopy. Concentrations 

of penicillin G, [PenG]t, were calculated from ratio of the integral of the aromatic protons (7.63 

to 7.40 ppm, m, 5 H) to all protons of the bicyclic moiety (5.67 ppm, d, J = 3.9 Hz, 1 H and 

5.59 ppm, d, J = 3.8 Hz, 1 H). 

[PenG]0 = 25 mM,  

[TEA buffer]0 = 0.10 M, pH 7.75 in D2O/d6-DMSO 9/1 (v/v), 37 °C 

 

TEA buffer

D2O/d6-DMSO (9/1)

S

N
O

HO
O

NH

O

S

NH

O

OH

HO
O

NHO

PenG  
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Figure S40: Exemplary time-resolved 1H NMR spectra of the hydrolysis of penicillin G in TEA-buffered D2O/d6-

DMSO 9/1 (v/v) at 37 °C ([penicillin G]0 = 25 mM, pH = 7.75). Start of the reaction (bottom), time-resolved 

topview of 1H NMR spectra showing the decrease of the followed penicillin G resonances (middle), and final 1H 

NMR spectrum after 40407 s (top).  
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Figure S41: Decay of the concentration of penicillin G in a TEA-buffered reaction mixture at 37 °C. The black 

line shows a mono-exponential fit of the data. 

 

6.2. Kinetics of the reaction of sodium penicillin G with benzylamine in TEA-buffered 

D2O/d6-DMSO 9/1 (v/v) 
 

[PenG]0 = 25 mM,  

[PhCH2NH2]0 = 50 mM, [PhCH2NH2]eff = 1.2 mM, 

[TEA buffer]0 = 0.10 M, pH 7.75 in D2O/d6-DMSO 9/1 (v/v), 37 °C 

 

 

Figure S42: Decay of the concentration of penicillin G while reacting with benzylamine in a TEA-buffered 

reaction mixture at 37 °C (kN = 8.1 × 10–2 M–1 s–1). The black line shows a mono-exponential fit of the data. 
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6.3. Kinetics of the reaction of sodium penicillin G with phenylethylamine in TEA-buffered 

D2O/d6-DMSO 9/1 (v/v) 

 

[PenG]0 = 25 mM,  

[PhCH2CH2NH2]0 = 50 mM, [PhCH2CH2NH2]eff = 0.36 mM, 

[TEA buffer]0 = 0.10 M, pH 7.75 in D2O/d6-DMSO 9/1 (v/v), 37 °C 

 

.  

Figure S43: Decay of the concentration of penicillin G while reacting with phenylethylamine in a TEA-buffered 

reaction mixture at 37 °C (kN = 8.6 × 10–2 M–1 s–1). The black line shows a mono-exponential fit of the data. 
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6.4. Kinetics of the reaction of sodium penicillin G with n-propylamine in TEA-buffered 

D2O/d6-DMSO 9/1 (v/v) 
 

[PenG]0 = 25 mM,  

[n-PrNH2]0 = 50 mM, [n-PrNH2]eff = 0.058 mM, 

[TEA buffer]0 = 0.10 M, pH 7.75 in D2O/d6-DMSO 9/1 (v/v), 37 °C 

 

 

Figure S44: Decay of the concentration of penicillin G while reacting with n-propylamine in a TEA-buffered 

reaction mixture at 37 °C (kN = 4.5 × 10–1 M–1 s–1). The black line shows a mono-exponential fit of the data. 

6.5. Rate constants for the reactions of sodium penicillin G with different aliphatic amines 
 

Table S3: Rate constants for the reactions of penicillin G (PenG) with different aliphatic amines at 37 °C and pH 

7.75. 

 
benzylamine phenylethylamine n-propylamine 

pKaH+ 9.36 9.89 10.68 

ceff (M) 1.2 × 10–3 3.6 × 10–4 5.8 × 10–5 

kobs (s–1) 1.3 × 10–4 6.4 × 10–5 5.9 × 10–5 

kN (M–1 s–1) 8.1 × 10–2 8.6 × 10–2 4.5 × 10–1 
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7. Determination of N and sN parameters of amines in H2O 

 

The nucleophilic reactivities of 2-phenylethylamine and p-anisidine in water were determined 

by using the benzhydrylium method as described previously.[4] Second-order rate constants for 

the attack of OH– ions at the colored reference electrophiles (k2,OH-) have previously been 

reported.[5] As outlined in more detail previously,[4] the second-order rate constants for the 

attack of the amine at the benzhydrylium ions (kN) in equation S1 can be obtained from the 

slope of a linear plot of k1 (equation S2) vs the amine concentration (equation S3). 

kobs = kW + k2,OH-[OH–] + kN[amine] (S1) 

k1 = kobs – k2,OH-[OH–] = kobs – k1ψ, OH- (S2) 

k1 = kW + kN[amine] (S3) 

The following benzhydrylium tetrafluoroborates were used as reference electrophiles for the 

determination of the nucleophilicity parameters N and sN of the amines according to equation 

(1) in the main text.  

reference electrophile abbreviation E parameter[a] 

 

(dma)2CH+ –7.02 

 

(pyr)2CH+ –7.69 

 

(thq)2CH+ –8.22 

 

(ind)2CH+ –8.76 

 

(jul)2CH+ –9.45 

[a] from Ref. [6] 
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7.1. Phenylethylamine 

 

Table S4: Reaction of phenylethylamine with (dma)2CH+BF4
– (at 20 °C in water, cosolvent: 1 vol-% CH3CN, 

stopped-flow, detection at 607 nm). 

E = (dma)2CH+BF4
–; Nu = phenylethylamine 

[E]0 (M) [Nu]0 (M) [Nu]eff (M) [OH–] (M) [Nu]eff/[E]0 kobs (s–1) k1ψ, OH- (s–1) k1ψ (s–1) 

7.11 × 10–5 5.57 × 10–4 3.84 × 10–4 1.73 × 10–4 5 1.35 2.26 × 10–2 1.33 

7.11 × 10–5 1.67 × 10–3 1.35 × 10–3 3.23 × 10–4 19 5.67 4.24 × 10–2 5.63 

7.11 × 10–5 2.79 × 10–3 2.36 × 10–3 4.28 × 10–4 33 10.1 5.60 × 10–2 10.04 

7.11 × 10–5 3.90 × 10–3 3.39 × 10–3 5.13 × 10–4 48 15.0 6.72 × 10–2 14.93 

7.11 × 10–5 5.01 × 10–3 4.43 × 10–3 5.86 × 10–4 62 19.6 7.68 × 10–2 19.52 

 

pKB (PhCH2CH2NH2) = 4.11[7] 

k2,OH- = 131 M–1 s–1 [5] 

kN = 4.51 × 103 M–1 s–1 

 

Figure S45: Determination of the second-order rate constant kN = 4.51 × 103 M−1 s−1 from the dependence of the 

first-order rate constant k1 on the concentration of phenylethylamine. 
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Table S5: Reaction of phenylethylamine with (pyr)2CH+BF4
– (at 20 °C in water, cosolvent: 1 vol-% CH3CN, 

stopped-flow, detection at 607 nm). 

E = (pyr)2CH+BF4
–; Nu = phenylethylamine 

[E]0 (M) [Nu]0 (M) [Nu]eff (M) [OH–] (M) [Nu]eff/[E]0 kobs (s–1) k1ψ, OH- (s–1) k1ψ (s–1) 

1.37 × 10–5 4.54 × 10–4 3.01 × 10–4 1.53 × 10–4 22 0.411 7.41 × 10–3 0.404 

1.37 × 10–5 1.36 × 10–3 1.07 × 10–3 2.88 × 10–4 79 1.48 1.40 × 10–2 1.47 

1.37 × 10–5 2.27 × 10–3 1.89 × 10–3 3.83 × 10–4 138 2.81 1.86 × 10–2 2.79 

1.37 × 10–5 4.09 × 10–3 3.56 × 10–3 5.26 × 10–4 261 6.00 2.55 × 10–2 5.97 

  

pKB (PhCH2CH2NH2) = 4.11 

k2,OH- = 48.5 M–1 s–1 [5] 

kN = 1.73 × 103 M–1 s–1  

 

Figure S46: Determination of the second-order rate constant kN = 1.73 × 103 M−1 s−1 from the dependence of the 

first-order rate constant k1 on the concentration of phenylethylamine. 
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Table S6: Reaction of phenylethylamine with (thq)2CH+BF4
– (at 20 °C in water, cosolvent: 1 vol-% CH3CN, 

stopped-flow, detection at 607 nm). 

E = (thq)2CH+BF4
–; Nu = phenylethylamine 

[E]0 (M) [Nu]0 (M) [Nu]eff (M) [OH–] (M) [Nu]eff/[E]0 kobs (s–1) k1ψ, OH- (s–1) k1ψ (s–1) 

1.27 × 10–5 1.67 × 10–3 1.35 × 10–3 3.23 × 10–4 106 1.33 7.63 × 10–3 1.32 

1.27 × 10–5 2.79 × 10–3 2.36 × 10–3 4.28 × 10–4 185 2.32 1.01 × 10–2 2.31 

1.27 × 10–5 3.90 × 10–3 3.39 × 10–3 5.13 × 10–4 266 3.35 1.21 × 10–2 3.34 

1.27 × 10–5 5.01 × 10–3 4.42 × 10–3 5.86 × 10–4 347 4.62 1.38 × 10–2 4.61 

  

pKB (PhCH2CH2NH2) = 4.11 

k2,OH- = 23.6 M–1 s–1 [5] 

kN = 1.06 × 103 M–1 s–1  

 

Figure S47: Determination of the second-order rate constant kN = 1.06 × 103 M−1 s−1 from the dependence of the 

first-order rate constant k1 on the concentration of phenylethylamine. 
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Table S7: Reaction of phenylethylamine with (ind)2CH+BF4
– (at 20 °C in water, cosolvent: 1 vol-% CH3CN, 

stopped-flow, detection at 607 nm). 

E = (ind)2CH+BF4
–; Nu = phenylethylamine 

[E]0 (M) [Nu]0 (M) [Nu]eff (M) [OH–] (M) [Nu]eff/[E]0 kobs (s–1) k1ψ, OH- (s–1) k1ψ (s–1) 

1.80 × 10–5 5.57 × 10–4 3.84 × 10–4 1.73 × 10–4 21 0.193 1.87 × 10–3 0.191 

1.80 × 10–5 1.67 × 10–3 1.35 × 10–3 3.23 × 10–4 75 0.646 3.49 × 10–3 0.643 

1.80 × 10–5 2.79 × 10–3 2.36 × 10–3 4.28 × 10–4 131 1.07 4.62 × 10–3 1.07 

1.80 × 10–5 3.90 × 10–3 3.39 × 10–3 5.13 × 10–4 188 1.58 5.54 × 10–3 1.57 

1.80 × 10–5 5.01 × 10–3 4.42 × 10–3 5.86 × 10–4 246 2.09 6.33 × 10–3 2.08 

   

pKB (PhCH2CH2NH2) = 4.11 

k2,OH- = 10.8 M–1 s–1 [5] 

kN = 466 M–1 s–1  

 

Figure S48: Determination of the second-order rate constant kN = 466 M−1 s−1 from the dependence of the first-

order rate constant k1 on the concentration of phenylethylamine. 
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Table S8: Reaction of phenylethylamine with (jul)2CH+BF4
– (at 20 °C in water, cosolvent: 1 vol-% CH3CN, 

stopped-flow, detection at 630 nm). 

E = (jul)2CH+BF4
–; Nu = phenylethylamine 

[E]0 (M) [Nu]0 (M) [Nu]eff (M) [OH–] (M) [Nu]eff/[E]0 kobs (s–1) k1ψ, OH- (s–1) k1ψ (s–1) 

2.77 × 10–5 5.57 × 10–4 3.84 × 10–4 1.73 × 10–4 14 0.0621 5.94 × 10–4 6.15 × 10–2 

2.77 × 10–5 1.67 × 10–3 1.35 × 10–3 3.23 × 10–4 49 0.233 1.11 × 10–3 2.32 × 10–1 

2.77 × 10–5 2.79 × 10–3 2.36 × 10–3 4.28 × 10–4 85 0.378 1.47 × 10–3 3.77 × 10–1 

2.77 × 10–5 5.01 × 10–3 4.42 × 10–3 5.86 × 10–4 160 0.774 2.02 × 10–3 7.72 × 10–1 

 

pKB (PhCH2CH2NH2) = 4.11 

k2,OH- = 3.44 M–1 s–1 [5] 

kN = 175 M–1 s–1  

 

Figure S49: Determination of the second-order rate constant kN = 175 M−1 s−1 from the dependence of the first-

order rate constant k1 on the concentration of phenylethylamine. 
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Table S9: Rate Constants for the reactions of phenylethylamine with different benzhydrylium ions as reference 

electrophiles (20 °C, in water). 

reference electrophile E parameter kN (20 °C) (M–1 s–1) 

(dma)2CH+ –7.02 4.51 × 103 

(pyr)2CH+ –7.69 1.73 × 103 

(thq)2CH+ –8.22 1.06 × 103 

(ind)2CH+ –8.76 4.66 × 102 

(jul)2CH+ –9.45 1.75 × 102 

 

Reactivity parameters for phenylethylamine (in water): N = 13.40; sN = 0.57 

 

Figure S50: Plot of log kN vs. the electrophilicity parameters E for the reactions of benzhydrylium ions with 

phenylethylamine.  
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7.2. p-Anisidine 

 

Table S10: Reaction of p-anisidine with (dma)2CH+BF4
– (at 20 °C in water, cosolvent: 1 vol-% CH3CN, stopped-

flow, detection at 607 nm). 

E = (dma)2CH+BF4
–; Nu = p-anisidine 

 

pKB = 8.70[2a] 

k2,OH- = 131 M–1 s–1 [5] 

kN = 9.37 × 104 M–1 s–1 

 

Figure S51: Determination of the second-order rate constant kN = 9.37 × 104 M−1 s−1 from the dependence of the 

first-order rate constant k1 on the concentration of p-anisidine. 

 

  

[E]0 (M) [Nu]0 (M) [Nu]eff [OH–] (M) [Nu]eff/[E]0 kobs (s–1) k1ψ, OH- (s–1) k1ψ (s–1) 

1.90 × 10–4 1.33 × 10–3 1.33 × 10–3 1.63 × 10–6 7 106 2.13 × 10–4 1.06 × 102 

1.90 × 10–4 3.98 × 10–3 3.98 × 10–3 2.82 × 10–6 21 351 3.69 × 10–4 3.51 × 102 

1.90 × 10–4 6.64 × 10–3 6.64 × 10–3 3.64 × 10–6 35 587 4.77 × 10–4 5.87 × 102 

1.90 × 10–4 9.29 × 10–3 9.29 × 10–3 4.30 × 10–6 49 856 5.64 × 10–4 8.56 × 102 
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Table S11: Reaction of p-anisidine with (pyr)2CH+BF4
– (at 20 °C in water, cosolvent: 1 vol-% CH3CN, stopped-

flow, detection at 607 nm). 

E = (pyr)2CH+BF4
–; Nu = p-anisidine 

[E]0 (M) [Nu]0 (M) [Nu]eff [OH–] (M) [Nu]eff/[E]0 kobs (s–1) k1ψ, OH- (s–1) k1ψ (s–1) 

2.95 × 10–5 1.33 × 10–3 1.33 × 10–3 1.63 × 10–6 45 14.6 7.90 × 10-5 1.46 × 101 

2.95 × 10–5 3.98 × 10–3 3.98 × 10–3 2.82 × 10–6 135 93.3 1.37 × 10–4 9.33 × 101 

2.95 × 10–5 6.64 × 10–3 6.64 × 10–3 3.64 × 10–6 225 167 1.76 × 10–4 1.67 × 102 

2.95 × 10–5 9.29 × 10–3 9.29 × 10–3 4.30 × 10–6 315 229 2.09 × 10–4 2.29 × 102 

2.95 × 10–5 1.19 × 10–2 1.19 × 10–2 4.87 × 10–6 405 288 2.36 × 10–4 2.88 × 102 

 

pKB = 8.70 

k2,OH- = 48.5 M–1 s–1[5] 

kN = 2.57 × 104 M–1 s–1 

 

Figure S52: Determination of the second-order rate constant kN = 2.57 × 104 M−1 s−1 from the dependence of the 

first-order rate constant k1 on the concentration of p-anisidine. 
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Table S12: Reaction of p-anisidine with (ind)2CH+BF4
– (at 20 °C in water, cosolvent: 1 vol-% CH3CN, stopped-

flow, detection at 607 nm). 

E = (ind)2CH+BF4
–; Nu = p-anisidine 

[E]0 (M) [Nu]0 (M) [Nu]eff [OH–] (M) [Nu]eff/[E]0 kobs (s–1) k1ψ, OH- (s–1) k1ψ (s–1) 

3.23 × 10–5 1.33 × 10–3 1.33 × 10–3 1.63 × 10–6 41 13.0 1.76 × 10–5 13.0 

3.23 × 10–5 3.98 × 10–3 3.98 × 10–3 2.82 × 10–6 123 28.8 3.04 × 10–5 28.6 

3.23 × 10–5 6.64 × 10–3 6.64 × 10–3 3.64 × 10–6 205 48.1 3.93 × 10–5 48.1 

3.23 × 10–5 9.29 × 10–3 9.29 × 10–3 4.31 × 10–6 288 62.7 4.65 × 10–5 62.7 

3.23 × 10–5 1.19 × 10–2 1.19 × 10–2 4.87 × 10–6 370 75.1 5.26 × 10–5 75.1 

 

pKB = 8.70 

k2,OH- = 10.8 M–1 s–1[5] 

kN = 5.96 × 103 M–1 s–1  
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Figure S53: Determination of the second-order rate constant kN = 5.96 × 103 M−1 s−1 from the dependence of the 

first-order rate constant k1 on the concentration of p-anisidine. 

  



 

66 
 

Table S13: Rate constants for the reactions of p-anisidine with different electrophiles (20 °C). 

reference electrophile E parameter kN (20 °C) (M–1 s–1) 

(dma)2CH+ –7.02 9.37 × 104 

(pyr)2CH+ –7.69 2.57 × 104 

(ind)2CH+ –8.76 5.96 × 103 

 

Reactivity parameters for p-anisidine (in water): N = 14.28; sN = 0.68 

lo
g

k
N

 

Figure S54: Plot of log kN vs. the electrophilicity parameters E for the reactions of benzhydrylium ions with              

p-anisidine. 
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Chapter 2 

Transition Metal-Free C-H Functionalization of Tertiary Amines: 

Diisopropyl Azodicarboxylate Mediated -Arylations 

 

Abstract  

Aromatic and aliphatic tertiary methylamines RR’NCH2-H were converted to -arylated 

amines RR’NCH2-Ar in two steps. In the first step, tertiary methylamines and diisopropyl 

azodicarboxylate (DIAD) reacted in acetonitrile to generate N-aminomethylated hydrazine-1,2-

dicarboxylates. Reactions of these hydrazines with potassium (hetero)aryltrifluoroborates at 

ambient temperature in the presence of one equivalent of trifluoroacetic acid in acetonitrile 

furnished -arylated amines. Both steps of the reaction sequence occurred without addition of 

a metal-based catalyst. 

 

Introduction 

Functionalization of tertiary amines at the sp3-hybridized -carbon has been an emerging field 

of organic chemistry in recent years.[1] Using this synthetic method for the introduction of an 

aryl moiety would furnish benzylic amines, which are a common structural motif of market-

relevant pharmaceuticals.[2] Several methods for the arylation of amines were developed, 

therefore, which generally rely on the use of stoichiometric or catalytic amounts of metal salts 

or nucleophilic organometallics.[3–6] With exception of a few reports, which focus on oxidative 

cross couplings of 1,2,3,4-tetrahydroisoquinolines (THIQs) with indoles and phenols,[7] to the 

best of our knowledge, metal-free -CH-arylations of tertiary amines under mild conditions 

have not been reported.[1d,8–11] 

In this context, dialkyl azodicarboxylates (DAADs) appeared attractive reagents because they 

possess electrophilic as well as oxidative properties.[12] This combination of features had 

already been used by Diels and Paquin in 1913, who demethylated N,N-dimethylaniline by 

addition of dimethyl azodicarboxylate to form aminal A, which was then hydrolyzed 

(Scheme 1).[13–16]  

N-Demethylation of tertiary amines and alkaloids[13,17] remained the sole application of the 

oxidative -amination of tertiary amines by DAADs for many decades.[18] 
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Scheme 1. Demethylation of N,N-dimethylaniline through addition of dialkyl 

azodicarboxylates (DAADs) and subsequent hydrolysis. 

 

Scheme 2. Intermolecular CC bond-forming reactions upon DAAD-mediated oxidation of 

tertiary amines. 

In 2009, first examples of intermolecular CC bond-forming reactions were disclosed by Li and 

Xu, who successfully applied oxidative C(sp3)-H bond amination by diethyl azodicarboxylate 

(DEAD) for CuI-catalyzed alkynylations of aliphatic tertiary methylamines (Scheme 2).[19] 

Transition metal catalysis was found to be dispensable when acidic pronucleophiles or 

otherwise activated nucleophiles were used for DAAD-mediated -functionalizations of 
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tertiary amines:[20] Nishibayshi exploited the Lewis acidity of Grignard reagents (2.2 equiv.) in 

azodicarboxylate-mediated -arylations of cyclic tertiary amines.[21] Hu showed that a mixture 

of diisopropyl azodicarboxylate (DIAD) and CH acidic acceptor-substituted 

fluoromethylsulfones selectively fluoromethylated NCH3 groups of tertiary aliphatic amines.[22] 

DMSO as a highly polar solvent turned out to be beneficial when Akiyama and co-workers used 

structurally diverse nucleophiles (silylated enol ethers, CH acids, allylstannanes etc.) in 

combination with DEAD as the oxidant to functionalize the C-1 position of THIQs. These 

authors suggested that the basicity of the dicarboxyhydrazide anion was a further crucial factor 

for achieving high yielding reactions of the THIQ-DEAD addition products with the 

investigated (pro)nucleophiles.[23] 

Herein, we report on a transition metal-free[24] two-step synthesis of -arylated amines from 

tertiary amines, DIAD, and organotrifluoroborates (Scheme 2). 

 

Results and Discussion 

 

In agreement with a recent study,[23] the aminals 2a–i were isolated with good yields in the 

range of 71–95% when the ring-substituted N,N-dimethylanilines 1a–i and a slight excess of 

DIAD (1.1 equiv.) were combined in acetonitrile (Table 1).[25] Heating the reaction mixture to 

reflux shortened the reaction time for the generation of 2b from two days to 4 h and was helpful 

when preparing the -aminated anilines that carried electron-withdrawing groups. 

As typically observed for amides or carbamates,[23,26] the broad, unresolved signals in the 1H 

and 13C NMR spectra (CDCl3, 27 °C) of hydrazine-1,2-dicarboxylates 2a–i indicate hindered 

rotations around the N-C bonds in (H)NN-CO and (R)(N)N-CO groups. Significantly improved 

resolutions and signal-to-noise ratios of the resonances were achieved when the NMR spectra 

of the hydrazine-1,2-dicarboxylates 2a–i were acquired in d6-DMSO at 90 °C (Supporting 

Information). 
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Table 1. Addition of DIAD to N,N-dimethylanilines 1a–i. 

 

Aniline X =  Hydrazine Yielda) (%) 

1a 4-Me  2a 95 (4 d, rt) 

1b 4-OMe  2b 78 (2 d, rt) 

81 (4 h, rflx) 

1c H  2c 86 (5 d, rt) 

1d 4-F  2d 88 (2 d, rt) 

1e 4-Cl  2e 74 (3 d, rflx) 

1f 4-Br  2f 87 (3 d, rflx) 

1g 4-CO2Et  2g 86 (2 d, rflx) 

1h 4-CN  2h 71 (2 d, rt) 

1i 2,4,6-(Me)3  2i 87 (10 h, rflx) 

a) Yield of isolated product after column chromatography. 

Previous work by Nishibayashi showed that acidic conditions facilitate the formation of 

electrophilic species from aminals,[27] such as 2, which should be interceptable in CC bond-

forming reactions by sufficiently nucleophilic arenes.[28] In an initial attempt, 2-methylfuran 

and 2a were used as substrates to probe the formation of an -arylated amine. The                             

5-aminomethylated 2-methylfuran was isolated in 82% yield when aq HCl (2 M) was added to 

an equimolar solution of the reactants in chloroform (Scheme 3). 

 

Scheme 3. Brønsted acid mediated -arylation of 2a with 2-methylfuran. 

However, further studies with indoles, thiophenes and methoxy-substituted benzenes, signalled 

a very limited scope of this transformation. Aminomethylated arenes were only obtained in 

yields of <35%. In addition, diarylmethanes formed as major by-products owing either to 
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subsequent reactions of the initially formed -arylated amines or to the presence of 

formaldehyde in the solutions caused by decomposition of 2a. 

Kinetic investigations by Berionni, Mayr, and co-workers had shown that the reactivities of 

arenes Ar-H increased by more than three orders of magnitude when a trifluoroborate 

substituent was introduced at the -system.[29] The fact that potassium aryltrifluoroborates Ar-

BF3K are generally synthesized from ArB(OR)2 and KHF2 at low pH provides evidence for the 

stability of the Ar-BF3
– ions under acidic reaction conditions.[30–32] Both properties of ArBF3K, 

enhanced reactivity of the -system and their stability towards Brønsted acids, led us to 

hypothesize that potassium aryltrifluoroborates might be suitable substrates for transition 

metal-free reactions with the DIAD-activated anilines 2.[33] 

In a first series of experiments, hydrazine-1,2-dicarboxylate 2a was combined with potassium 

benzofuran-2-yltrifluoroborate (3a) in presence of stoichiometric amounts of Brønsted or Lewis 

acids (Table 2). The -arylated N,N-dimethyl-p-toluidine 4a formed in the presence of all 

examined acids and was isolated in 70 to 94% yield (Table 2, entries 1–5). Changing from 

aqueous hydrochloric acid to an ethereal HCl solution shortened the reaction time and increased 

the yield of 4a from good to excellent (entries 1,2). When trifluoroacetic acid (TFA) was used 

as the acid, the reactants were quantitatively converted within 2 h at ambient temperature and 

4a was isolated in 94% yield (entry 3). The -arylations of 2a to form 4a could also be achieved 

when the Lewis acids ZnBr2 or BF3·OEt2 were used. The yields of the Lewis acid mediated 

reactions were, however, considerably lower than those for the Brønsted acid mediated versions 

(entries 4,5). Nevertheless, it is noteworthy that 59% of 4a were obtained when only 25 mol-% 

of BF3·OEt2 were employed (entry 6), which indicates a potential for developing catalytic 

versions of this transformation. 
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Table 2. Optimization of the -arylation of 2a by potassium benzofuran-2-yltrifluoroborate 

(3a) to yield 4a.a) 

 

Entry Acid Reaction time Yieldb) (%) 

1 aq HCl (2 M) 24 h 70 

2 HCl (2 M in Et2O) 12 h 94 

3 CF3COOH 2 h 94 

4 ZnBr2 2 h 90 

5 BF3·OEt2 24 h 79 

6 BF3·OEt2
c) 24 h 59 

a) Reaction conditions: 2a, 3a, acid (1 equiv.), MeCN, ambient temperature.  

b) Yield of isolated product after column chromatography. 
c) With 25 mol-% of BF3·OEt2. 

Under the optimized reaction conditions (Table 2, entry 3), we tested the scope of further               

N-aminomethylated hydrazines 2 in the reaction with potassium benzofuran-2-yltrifluoroborate 

(3a). Electron-donating or electron-withdrawing groups at the para-position of the phenyl rings 

in 2a–h did not significantly affect the efficiency of the arylation by 3a (Figure 1). The arylation 

was scalable as demonstrated by the good yield obtained for the p-bromo-derivative 4f (isolated 

in 75% yield when starting with 1.5 mmol educts). Hydrazine-1,2-dicarboxylates 2g and 2h 

selectively underwent aminomethylation reactions with the trifluoroborate 3a to give 4g and 

4h, respectively, which showed that the electrophilic sites of CO2Et and CN groups were 

compatible with our standard reaction conditions. The success of the 2,4,6-trimethylaniline 

derivative 2i to generate product 4i when treated with 3a exemplifies the robustness of this               

-functionalization of tertiary amines towards steric hindrance in the vicinity of the amino 

group’s nitrogen. 

Exclusive ipso-substitutions of the BF3K group in the reactions of 3a with 2a–i were indicated 

by the diagnostic NMR chemical shift of (C-3) = 103.8–104.4 ppm in the aminomethylated 

benzofurans 4a–i, which contrasts with the observation that bis(p-methoxyphenyl)methylium 

ions reacted preferentially with the 3-position of benzofuran-2-yl trifluoroborate (3a).[29b] 
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Figure 1. DIAD-mediated aminomethylations of potassium benzofuran-2-yl trifluoroborate 

(3a) by the ring-substituted N,N-dimethylaniline derivatives 2a–i. [a] Reaction at >1 mmol 

scale (see Experimental). 

To define the scope of the potassium aryltrifluoroborates that can be used for substituting the 

hydrazine moiety in 2, we studied further reactions of furyl, thienyl and phenyl derivatives 

under the standard conditions (Figure 2).[34] 

The reaction of 2a–c with potassium furan-2-yltrifluoroborate (3b) furnished moderate to good 

yields of the 2-aminomethylated furans 5a–c. The 2-substituted furan 5b was also isolated when 

2a was combined with potassium furan-3-yltrifluoroborate (3b’), a constitutional isomer of 3b. 

This observation is in accord with previous reports on the attack of electrophiles at remote 

positions of furanyl trifluoroborates.[29b] Instead of undergoing ipso-substitution different types 

of carbocations reacted at C-H groups of the -systems, that is, at the 5-position of 3b or the   

2-position of 3b’. Subsequent protodeborylations then led in both cases to 2-substituted furans. 

Analogously, the formation of 5b from both 3b and 3b’ as well as the formation of 5f–h by      

C-5 attack of 2a,c,d at 3d can be explained. 

While 5-methyl substituted 2-thienyltrifluoroborate (3e) gave only moderate yields of its 

reactions with hydrazine derivatives 2a,b (→ 5i,j), the successful reactions of the same 

electrophiles with phenyltrifluoroborates 3f,g to form products 5k–n further widened the scope 

of this arylation reaction. 
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Figure 2. DIAD-mediated -(hetero)arylations of diisopropyl hydrazine carboxylates (yields 

refer to isolated products after purification by column chromatography). [a] With 0.74 equiv. 

TFA. [b] With 0.37 equiv. TFA. 

Carbon-carbon bond-forming reactions between DIAD-activated anilines and 

organotrifluoroborates were also extended to C(sp3)-C(sp) cross couplings. The alkynylation of 

2a by potassium phenylethynyltrifluoroborate (6) furnished propargylamine 7 (78% yield, 

Scheme 4), which was previously obtained from 1a by using transition-metal catalysis.[23,35] 

 

Scheme 4. -Alkynylation of DIAD-activated N,N-dimethyl-p-toluidine (2a). 

Derivatization of natural products, such as alkaloids, is of particular interest for the 

development of pharmaceuticals.[5g,22] We have, therefore, isolated 2j, the addition product of 

DIAD and tropinone (Scheme 5). Substitution of the hydrazine moiety of 2j by the benzofuranyl 

group of 3a furnished within 24 h the (heteroaryl)methylated nortropinone 8a in 92% yield. 
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Analogously, the reaction of 2j with 3d at ambient temperature delivered the 9-(2-thienyl)-

functionalized tropinone 8b (90% yield). 

 

Scheme 5. Conversion of tropinone (1j) to (hetero-aryl)methylated nortropinones 8a,b via 

DIAD-activated tropinone (2j). 

In summary, additions of diisopropyl azodicarboxylate (DIAD) to aromatic and aliphatic 

tertiary amines in acetonitrile generated aminomethylated hydrazine-1,2-dicarboxylates. The 

insertion of DIAD in the C-H bond of an NCH3 group thus provided -aminations of tertiary 

amines under mild conditions. The high reactivities of heteroaryl- and aryltrifluoroborates, 

ArBF3K, as well as their stability under acidic conditions allowed us to transform the DIAD-

amine addition products to a series of -arylated amines (Scheme 6).  

 

Scheme 6. DIAD-amine addition products as relays for the transition metal-free -arylation of 

tertiary amines. 

Several functional groups in the amine tolerated the arylation reactions with 

organotrifluoroborates. Chloro- and bromoanilines could, thus, be used for further classical 

palladium-catalyzed cross-couplings or functionalization reactions, while carboxylic ester or 

cyano groups may serve as electrophilic sites for the addition of nucleophiles. 

Both steps of the amination/arylation sequence from unfunctionalized to -arylated amines 

were efficient without adding a transition metal catalyst. The thus developed arylation method 
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was also successfully applied for the introduction of heteroaromatic groups at C-9 of tropinone, 

which underscores its potential for selective N-methyl functionalizations of alkaloids.[5g] 

Experimental Section 

Typical procedure: The hydrazine-1,2-dicarboxylate 2f (619 mg, 1.54 mmol) was dissolved in 

acetonitrile (5 mL). Subsequently, the potassium aryltrifluoroborate 3a (345 mg, 1.54 mmol) 

and trifluoroacetic acid (120 µL, 1.57 mmol) were added dropwise within 1–5 min. The reaction 

mixture was stirred at room temperature for 2 h. Then, the solvent was removed under reduced 

pressure. The residue was treated with 2 M aq ammonia (20 mL) and extracted with CH2Cl2 

(3 × 20 mL). The combined organic layers were dried (Na2SO4), filtered, and volatiles were 

removed under reduced pressure. Finally, the crude product was purified by flash column 

chromatography (SiO2, acetone/pentane gradient from 1/200 to 1/20): 4f (363 mg, 75%), light 

yellow oil. See Supporting Information for product characterization. 
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– Supporting Information – 

 

Transition Metal-Free C-H Functionalization of Tertiary Amines: 
Diisopropyl Azodicarboxylate Mediated α-Arylations 

 

 

1. General  

Analytics 

1H NMR (600, 400, or 300 MHz), 13C NMR (151, 101, or 75.5 MHz), and 19F NMR spectra (376 
MHz) were recorded on Varian or Bruker NMR systems in d6-DMSO or CDCl3. Chemical shifts in 
ppm refer to the solvent residual signal in d6-DMSO (δH 2.50, δC 39.52 ppm)[S1] or CDCl3 (δH 7.26, δC 
77.16 ppm)[S1] as internal standard or to external CFCl3 (δF 0.0 ppm), respectively. The following 
abbreviations are used to describe the mutiplicities of 1H resonances: br s = broad singlet, s = singlet, 
d = doublet, t = triplet, q = quartet, sept = septet, m = multiplet, app = apparent. NMR signal 
assignments are based on additional 2D-NMR experiments (COSY, HSQC, and HMBC). 

Materials  

Commercially available acetonitrile (Acros, 99.9%, Extra Dry, AcroSeal) was used as received. 

Diisopropyl azodicarboxylate (DIAD; 94%, ABCR or Apollo) was purchased and used as received. 

The following commercially available potassium aryl- or alkynyltrifluoroborates were used as 
received: Potassium 3-furanyltrifluoroborate 3b’ (97%, Aldrich), potassium 2-thienyltrifluoroborate 
3d (Aldrich), potassium phenyltrifluoroborate 3f (98%, Apollo), potassium 3,4-
(methylenedioxy)phenyltrifluoroborate 3g (97%, Aldrich), and potassium 
(phenylethynyl)trifluoroborate 6 (95%, Aldrich). Potassium benzofuran-2-yltrifluoroborate 3a (90%, 
Aldrich) was recrystallized from acetone/diethyl ether. 

Potassium 2-furanyltrifluoroborate 3b, potassium trifluoro(5-methylfuran-2-yl)borate 3c and 
potassium trifluoro(5-methylfuran-2-yl)borate 3e were synthesized from the parent heteroarenes by 
subsequent treatment with n-BuLi, B(OiPr)3, and KHF2 (6 equiv.) in analogy to a procedure described 
in ref. [S2] The crude products were purified by recrystallization from acetone/diethyl ether.  

Commercially available substituted N,N-dimethylanilines and tropinone were used as received. N,N-
Dimethyl-p-anisidine was prepared as described in ref. [S3] 

4-(Dimethylamino)benzonitrile (1h) was synthesized from 4-aminobenzonitrile by reductive 
methylation:[S4] 4-Aminobenzonitrile (1.0 g, 8.5 mmol) was dissolved in 1,4-dioxane (100 mL). Zinc 
powder (7.0 g) and 30% aq formaldehyde solution (3.5 mL, 38 mmol) were added. Subsequently, 
acetic acid (12 mL, 0.21 mol) was added to the reaction mixture via a dropping funnel. The exothermic 
reaction was controlled by cooling the reaction solution with an ice bath (0 °C). After another 12 h of 
stirring at ambient temperature, the solution was neutralized by addition of aq NaOH solution. Solid 
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residues were then removed by filtration. The aqueous phase was extracted with chloroform. The 
combined organic layers were then dried (Na2SO4), filtered, and concentrated in the vacuum, which 
caused precipitation of 1h (1.20 g, 97%). 1H and 13C NMR data were in accord with those reported in 
ref. [S5]. 

1H NMR (400 MHz, CDCl3): δ 3.03 (s, 6 H, NMe2), 6.63–6.65 (m, 2 H, ArH), 7.45–7.48 (m, 2 H, 
ArH). 13C NMR (101 MHz, CDCl3): δ 40.1, 97.6, 111.5, 120.8, 133.5, 152.6. 

 

 

N

1h
1H NMR@27°C

(400 MHz, CDCl3)
CN
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2. Preparation of 2a–j 

 

General Procedure (GP1): The amine 1 was dissolved in MeCN and diisopropyl azodicarboxylate 
(DIAD) was added dropwise under stirring. The reaction mixture was then stirred at room temperature, 
if not indicated otherwise, for the indicated time. After the removal of volatiles under reduced pressure, 
the crude product was purified by flash column chromatography by applying an acetone/pentane (or 
acetone/isohexane) gradient (1/100 to 1/10). 

 

Diisopropyl 1-((methyl(p-tolyl)amino)methyl)hydrazine-1,2-dicarboxylate (2a). According to 
GP1, 2a was prepared from N,N-dimethyl-p-toluidine 1a (10 mL, 69 mmol) and 
DIAD (16 mL, 76 mmol) in MeCN (50 mL) by stirring the reaction mixture at 
ambient temperature for 4 days. After purification by column chromatography 
(silica gel, acetone/isohexane 1/10; Rf = 0.33) 2a was obtained as a slightly orange 
colored viscous liquid (22.1 g, 95%). 

1H NMR (400 MHz, d6-DMSO, 90 °C): δ 1.14 (br d, J = 6.2 Hz, 6 H, OCH(CH3)2), 1.22 (d, J = 6.2 
Hz, 6 H, OCH(CH3)2), 2.19 (s, 3 H, Ar-Me), 2.92 (s, 3 H, NMe), 4.76 (sept, J = 6.2 Hz, 1 H, 
OCH(CH3)2), 4.84 (sept, J = 6.2 Hz, 1 H, OCH(CH3)2), 4.95 (br s, 2 H, NCH2N), 6.72–6.76 (m, 2 H, 
ArH), 6.95–6.99 (m, 2 H, ArH). 

13C NMR (101 MHz, d6-DMSO, 90 °C): δ 19.3 (CH3, Ar-Me), 21.2 (CH3, OiPr), 21.3 (CH3, OiPr), 
37.0 (CH3, NMe), 66.0 (CH2, NCH2N), 67.7 (CH, OiPr), 68.7 (CH, OiPr), 112.8 (CH), 125.3 (C), 
128.7 (CH), 145.8 (C), 154.8 (C, CO2iPr). 

 

Diisopropyl 1-(((4-methoxyphenyl)(methyl)amino)methyl)hydrazine-1,2-dicarboxylate (2b). 
According to GP1, 2b was prepared from N,N-dimethyl-p-anisidine 1b (3.09 g, 20.5 
mmol) and DIAD (4.6 mL, 22 mmol) in MeCN (20 mL) by stirring the reaction 
mixture at reflux temperature for 4 h. After purification by column chromatography 
2b was obtained as a brown viscous liquid (5.86 g, 81%). 

1H NMR (400 MHz, d6-DMSO, 90 °C): δ 1.14 (br d, J = 6.2 Hz, 6 H, OCH(CH3)2), 
1.21 (d, J = 6.2 Hz, 6 H, OCH(CH3)2), 2.90 (s, 3 H, NMe), 3.68 (s, 3 H, OMe), 4.77 (sept, J = 6.2 Hz, 
1 H, OCH(CH3)2), 4.83 (sept, J = 6.2 Hz, 1 H, OCH(CH3)2), 4.92 (br s, 2 H, NCH2N), 6.79 (app s, 4 
H, ArH). 

13C NMR (101 MHz, d6-DMSO, 90 °C): δ 21.3 (CH3, OiPr), 37.2 (CH3, NMe), 55.1 (CH3, Ar-OMe), 
66.8 (CH2, NCH2N), 67.7 (CH, OiPr), 68.7 (CH, OiPr), 114.2 (CH), 114.4 (CH), 142.4 (C), 151.6 (C), 
154.8 (C, CO2iPr). 

HR-MS (EI, 70 eV): m/z [M]•+ Calcd for [C17H27N3O5]•+ 353.1945; Found 353.1951. 
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Diisopropyl 1-((methyl(phenyl)amino)methyl)hydrazine-1,2-dicarboxylate (2c). According to 
GP1, 2c was prepared from N,N-dimethyl-aniline 1c (2.7 mL, 21 mmol) and DIAD 
(5.0 mL, 24 mmol) in MeCN (20 mL) by stirring the reaction mixture at ambient 
temperature for 5 days. After purification by column chromatography 2c was 
obtained as a yellow viscous liquid (5.86 g, 86%). 

1H NMR (400 MHz, d6-DMSO, 90 °C): δ 1.14 (br d, J = 6.3 Hz, 6 H, OCH(CH3)2), 1.22 (d, J = 6.3 
Hz, 6 H, OCH(CH3)2), 2.96 (s, 3 H, NMe), 4.76 (sept, J = 6.3 Hz, 1 H, OCH(CH3)2), 4.86 (sept, J = 
6.3 Hz, 1 H, OCH(CH3)2), 5.00 (br s, 2 H, NCH2N), 6.67–6.70 (m, 1 H, ArH), 6.82–6.85 (m, 2 H, 
ArH), 7.14–7.18 (m, 2 H, ArH), 8.94 (br s, <1 H, NH). 

13C NMR (101 MHz, d6-DMSO, 90 °C): δ 21.25 (CH3, OiPr), 21.27 (CH3, OiPr), 36.9 (CH3, NMe), 
65.7 (CH2, NCH2N), 67.7 (CH, OiPr), 68.8 (CH, OiPr), 112.5 (CH), 116.6 (CH), 128.2 (CH), 147.9 
(C), 154.8 (C, CO2iPr). 

HR-MS (EI, 70 eV): m/z [M]•+ Calcd for [C16H25N3O4]•+ 323.1840; Found 323.1853. 

Elemental Analysis: Calcd: C 59.42, H 7.79, N 12.99; Found: C 59.04, H 7.70, N 12.77. 

 

Diisopropyl 1-(((4-fluorophenyl)(methyl)amino)methyl)hydrazine-1,2-dicarboxylate (2d). 
According to GP1, 2d was prepared from 4-fluoro-N,N-dimethyl–aniline 1d (4.9 
g, 35 mmol) and DIAD (8.0 mL, 38 mmol) in MeCN (25 mL) by stirring the 
reaction mixture at ambient temperature for 48 h. After purification by column 
chromatography 2d was obtained as a brownish solid (10.5 g, 88%). 

1H NMR (400 MHz, d6-DMSO, 90 °C): δ 1.13 (br d, J = 6.2 Hz, 6 H, OCH(CH3)2), 
1.21 (d, J = 6.2 Hz, 6 H, OCH(CH3)2), 2.93 (s, 3 H, NMe), 4.76 (sept, J = 6.2 Hz, 1 H, OCH(CH3)2), 
4.84 (sept, J = 6.2 Hz, 1 H, OCH(CH3)2), 4.96 (br s, 2 H, NCH2N), 6.81–6.84 (m, 2 H, ArH), 6.94–
6.99 (m, 2 H, ArH), 8.90 (br s, <1 H, NH). 

13C NMR (101 MHz, d6-DMSO, 90 °C): δ 21.2 (CH3, OiPr), 37.3 (CH3, NMe), 66.4 (CH2, NCH2N), 
67.7 (CH, OiPr), 68.8 (CH, OiPr), 114.0 (CH, d, JC,F = 7.5 Hz), 114.4 (CH, d, JC,F = 21.9 Hz), 144.7 
(C, d, JC,F = 1.5 Hz), 154.8 (C, CO2iPr), 154.9 (C, d, 1JC,F = 234 Hz). 

19F NMR (376 MHz, d6-DMSO, 90 °C) δ –128.5 (br s). 

HR-MS (EI, 70 eV): m/z [M]•+ Calcd for [C16H24FN3O4]•+ 341.1745; Found 341.1747. 

Elemental Analysis: Calcd: C 56.29, H 7.09, N 12.31; Found: C 56.16, H 7.13, N 12.23. 
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Diisopropyl 1-(((4-chlorophenyl)(methyl)amino)methyl)hydrazine-1,2-dicarboxylate (2e). 
According to GP1, 2e was prepared from 4-chloro-N,N-dimethyl-aniline 1e (2.10 
g, 13.4 mmol) and DIAD (3.1 mL, 15 mmol) in MeCN (10 mL) by stirring the 
reaction mixture at reflux temperature for 72 h. After purification by column 
chromatography 2e was obtained as a brown viscous liquid (3.52 g, 74 %). 

1H NMR (400 MHz, d6-DMSO, 90 °C): δ 1.13 (br d, J = 6 Hz, 6 H, OCH(CH3)2), 
1.22 (d, J = 6.2 Hz, 6 H, OCH(CH3)2), 2.94 (s, 3 H, NMe), 4.75 (sept, J = 6.2 Hz, 1 H, OCH(CH3)2), 
4.84 (sept, J = 6.2 Hz, 1 H, OCH(CH3)2), 4.98 (br s, 2 H, NCH2N), 6.80–6.84 (m, 2 H, ArH), 7.14–
7.18 (m, 2 H, ArH). 

13C NMR (101 MHz, d6-DMSO, 90 °C): δ 21.2 (CH3, OiPr), 21.3 (CH3, OiPr), 37.1 (CH3, NMe), 65.7 
(CH2, NCH2N), 67.7 (CH, OiPr), 68.9 (CH, OiPr), 114.1 (CH), 120.6 (C), 127.8 (CH), 146.8 (C), 154.8 
(C, CO2iPr). 

HR-MS (EI, 70 eV): m/z [M]•+ Calcd for [C16H24ClN3O4]•+ 357.1450; Found 357.1449. 

 

Diisopropyl 1-(((4-bromophenyl)(methyl)amino)methyl)hydrazine-1,2-dicarboxylate (2f). 
According to GP1, 2f was prepared from 4-bromo-N,N-dimethylaniline 1f (1.7 g, 
8.4 mmol) and DIAD (1.9 mL, 9.0 mmol) in MeCN (10 mL) by stirring the reaction 
mixture at reflux temperature for 72 h. After purification by column 
chromatography 2f was obtained as a brown viscous liquid (2.95 g, 87%). 

1H NMR (400 MHz, d6-DMSO, 90 °C): δ 1.13 (br d, J = 6 Hz, 6 H, OCH(CH3)2), 
1.22 (d, J = 6.2 Hz, 6 H, OCH(CH3)2), 2.94 (s, 3 H, NMe), 4.75 (sept, J = 6.2 Hz, 1 H, OCH(CH3)2), 
4.84 (sept, J = 6.2 Hz, 1 H, OCH(CH3)2), 4.98 (br s, 2 H, NCH2N), 6.77–6.80 (m, 2 H, ArH), 7.27–
7.30 (m, 2 H, ArH), 8.93 (br s, <1 H, NH). 

13C NMR (101 MHz, d6-DMSO, 90 °C): δ 21.2 (CH3, OiPr), 21.3 (CH3, OiPr), 37.1 (CH3, NMe), 65.5 
(CH2, NCH2N), 67.7 (CH, OiPr), 68.9 (CH, OiPr), 108.0 (C), 114.6 (CH), 130.7 (CH), 147.2 (C), 154.8 
(C, CO2iPr). 

HR-MS (EI, 70 eV): m/z [M]•+ Calcd for [C16H24
79BrN3O4]•+ 401.0945; Found 401.0948. 

 

Diisopropyl 1-(((4-(ethoxycarbonyl)phenyl)(methyl)amino)methyl)hydrazine-1,2-dicarboxylate 
(2g). According to GP1, 2g was prepared from ethyl 4-(dimethylamino)benzoate 
1g (1.95 g, 9.99 mmol) and DIAD (2.0 mL, 9.5 mmol) in MeCN (5 mL) by stirring 
the reaction mixture at reflux temperature for 48 h. Then pentane was added and 
the mixture was heated at 35 °C. After cooling to ambient temperature a (heavy) 
liquid layer formed, which was separated from the apolar layer. This extraction of 
unreacted starting materials by pentane was repeated (2 ×). After removing 

volatiles in the vacuum, 2g was obtained as a yellow oil (3.22 g, 86%). 
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1H NMR (400 MHz, d6-DMSO, 90 °C): δ 1.12 (br d, J = 6 Hz, 6 H, OCH(CH3)2), 1.23 (d, J = 6.2 Hz, 
6 H, OCH(CH3)2), 1.30 (t, J = 7.1 Hz, 3 H, OCH2CH3), 3.03 (s, 3 H, NMe), 4.26 (q, J = 7.1 Hz, 2 H, 
OCH2CH3), 4.75 (sept, J = 6.2 Hz, 1 H, OCH(CH3)2), 4.86 (sept, J = 6.2 Hz, 1 H, OCH(CH3)2), 5.07 
(br s, 2 H, NCH2N), 6.86–6.89 (m, 2 H, ArH), 7.75–7.79 (m, 2 H, ArH). 

13C NMR (101 MHz, d6-DMSO, 90 °C): δ 13.8 (CH3, OEt), 21.2 (CH3, OiPr), 21.3 (CH3, OiPr), 37.1 
(CH3, NMe), 59.2 (CH2, OEt), 65.0 (CH2, NCH2N), 67.8 (CH, OiPr), 69.1 (CH, OiPr), 111.4 (CH), 
117.8 (C), 130.0 (CH), 151.6 (C), 154.8 (C, CO2iPr), 165.3 (C, CO2Et). 

HR-MS (EI, 70 eV): m/z [M]•+ Calcd for [C19H29N3O6]•+ 395.2051; Found 395.2060. 

 

Diisopropyl 1-(((4-cyanophenyl)(methyl)amino)methyl)hydrazine-1,2-dicarboxylate (2h). 
According to GP1, 2h was prepared from 4-(dimethylamino)benzonitrile 1h (1.33 
g, 9.01 mmol) and DIAD (2.1 mL, 10 mmol) in MeCN (5 mL) by stirring the 
reaction mixture at ambient temperature for 48 h. After purification by column 
chromatography 2h was obtained as a colorless solid (2.22 g, 71%). 

1H NMR (400 MHz, CDCl3, 27 °C): δ 1.22–1.26 (m, 12 H, 2 × OCH(CH3)2), 3.11 
(s, 3 H, NMe), 4.90–5.15 (m, 4 H, 2 × OCH(CH3)2 and NCH2N), 6.38 (br s, 1 H, NH), 6.84 (app d, J 
= 8.8 Hz, 2 H, ArH), 7.47 (app d, J = 8.8 Hz, 2 H, ArH). The additional resonance at δ = 2.16 ppm is 
caused by trace amounts of acetone. 

13C NMR (101 MHz, CDCl3, 27 °C): δ 22.0 (CH3, OiPr), 22.1 (CH3, OiPr), 38.8 (CH3, NMe), 65.9 
(CH2, NCH2N), 70.3 (CH, OiPr), 71.0 (CH, OiPr), 99.7 (C, CN), 112.6 (CH), 120.3 (C), 133.6 (CH), 
151.0 (C), 155.7 (C). Additional resonances at δ = 31.1 and 207.1 ppm are caused by trace amounts of 
acetone. 

HR-MS (EI, 70 eV): m/z [M]•+ Calcd for [C17H24N4O4]•+ 348.1792; Found 348.1793. 

Elemental Analysis: Calcd: C 58.61, H 6.94, N 16.08; Found C 58.36, H 6.95, N 15.94. 

 

Diisopropyl 1-((mesityl(methyl)amino)methyl)hydrazine-1,2-dicarboxylate (2i). According to 
GP1, 2i was prepared from N,N,2,4,6-pentamethylaniline 1i (0.82 g, 5.0 mmol) 
and DIAD (1.0 mL, 4.7 mmol) in MeCN (1 mL) by stirring the reaction mixture 
at reflux temperature for 10 h. After recrystallization 2i was obtained as a 
colorless solid (1.50 g, 87%); mp 94–96 °C. Partial decomposition of 2i in d6-
DMSO at 90 °C hindered the unequivocal assignment of resonances. Therefore, 
the NMR data for a solution of 2i in CDCl3 at 27 °C are reported. 

1H NMR (400 MHz, CDCl3, 27 °C): δ 1.23 (br d, J = 6.3 Hz, 6 H, OCH(CH3)2), 
1.26 (br d, J = 6.3 Hz, 6 H, OCH(CH3)2), 2.23 (app s, 9 H, 2,4,6-(CH3)3), 2.82 (s, 3 H, NMe), 4.72–
4.98 (m, 4 H, 2 × OCH(CH3)2 and NCH2N), 6.59 (br s, 1 H, NH), 6.82 (s, 2 H, 3-H and 5-H). 
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13C NMR (101 MHz, CDCl3, 27 °C): δ 18.9 (CH3, 2-CH3 and 6-CH3), 20.8 (CH3, 4-CH3), 22.01 (CH3, 
OiPr), 22.03 (CH3, OiPr), 39.6 (CH3, br, NMe), 69.6–71.2 (superimposed CH and CH2, OiPr and 
NCH2N), 129.5 (CH, C-3 and C-5), 135.2 (C), 136.8 (C), 145.1 (C), 155.9 and 156.5 (C, CO2iPr). 

HR-MS (EI, 70 eV): m/z [M – H–]+ Calcd for [C19H30N3O4]+ 364.2231; Found 364.2230. 

 

Diisopropyl 1-((3-oxo-8-azabicyclo[3.2.1]octan-8-yl)methyl)hydrazine-1,2-dicarboxylate (2j). 
According to GP1, 2j was prepared from tropinone 1j (0.47 g, 3.4 mmol) and 
DIAD (0.77 mL, 3.7 mmol) in MeCN (10 mL) by stirring the reaction 
mixture at ambient temperature for 24 h. After purification by column 
chromatography 2j was obtained as a brown solid (0.93 g, 80%); mp 92–
95 °C. 

1H NMR (400 MHz, CDCl3, 27 °C): δ 1.14–1.16 (m, 12 H, OCH(CH3)2), 1.54–1.57 (m, 2 H, 6-H and 
7-H), 2.02 (br s, 2 H, 6-H and 7-H), 2.13–2.17 (m, 2 H, 2-H and 4-H), 2.58–2.61 (m, 2 H, 2-H and 4-
H), 3.51 (br s, 2 H, 1-H and 5-H), 4.23 (br s, 2 H, NCH2N), 4.82–4.86 (m, 2 H, 2 × OCH(CH3)2). 

13C NMR (101 MHz, CDCl3, 27 °C): δ 21.9 (CH3, OiPr), 22.0 (CH3, OiPr), 27.6 (CH2, C-6 and C-7), 
48.5 (CH2, C-2 and C-4), 57.4 (CH, C-1 and C-5), 65.9 (CH2, NCH2N), 69.2 (CH, iPr), 69.6 (CH, iPr), 
154.9 and 156.4 (C, CO2iPr), 208.8 (C, C-3). 

HR-MS (EI, 70 eV): m/z [M]•+ Calcd for [C16H27N3O5]•+ 341.1945; Found 341.1948. 

Elemental Analysis: Calcd.: C 56.29, H 7.97, N 12.31; Found: C 56.19, H 7.89, N 12.38. 
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3. Preparation of α-Aryl Amines 

 

General Procedure (GP2): The hydrazine-1,2-dicarboxylate 2 was dissolved in acetonitrile. 
Subsequently, potassium aryltrifluoroborate 3 and trifluoroacetic acid were added dropwise within 1–
5 min. The reaction mixture was stirred at room temperature for the indicated time. At the end of the 
reaction time, the solvent was removed under reduced pressure. The residue was treated with aq 
ammonia (2 M, 20 mL) and extracted with dichloromethane (3 × 20 mL). The combined organic layers 
were dried over Na2SO4, filtered, and volatiles were removed under reduced pressure. Finally, the 
crude product was purified by flash column chromatography with acetone/pentane mixtures (gradient 
from 1/200 to 1/20). 

 

N-(Benzofuran-2-ylmethyl)-N,4-dimethylaniline (4a). According to GP2, 2a (173 mg, 0.513 mmol) 
was dissolved in MeCN (5 mL). Potassium benzofuran-2-yltrifluoroborate 3a 
(115 mg, 0.513 mmol) and trifluoroacetic acid (40 µL, 0.51 mmol) were added, 
and the mixture was stirred for 2 h. After column chromatography 4a (121 mg, 
94%) was obtained as a colorless liquid; Rf = 0.92 (silica gel, acetone/isohexane = 
1/10). 

1H NMR (600 MHz, CDCl3): δ 2.36 (s, 3 H, 4-CH3), 3.11 (s, 3 H, NMe), 4.65 (s, 2 H, NCH2), 6.56 
(q, J = 1 Hz, 1 H), 6.85–6.87 (m, 2 H), 7.14–7.16 (m, 2 H), 7.25–7.32 (m, 2 H), 7.52–7.55 (m, 2 H). 

13C NMR (150.6 MHz, CDCl3): δ 20.4 (CH3, 4-CH3), 38.9 (CH3, NMe), 50.9 (CH2, NCH2), 104.0 
(CH), 111.2 (CH), 113.4 (CH), 120.8 (CH), 122.7 (CH), 123.8 (CH), 126.7 (C), 128.5 (C), 129.8 (CH), 
147.2 (C), 155.0 (C), 155.4 (C).  

 

N-(Benzofuran-2-ylmethyl)-4-methoxy-N-methylaniline (4b). According to GP2, 2b (157 mg, 
0.444 mmol) was dissolved in MeCN (10 mL). Potassium benzofuran-2-
yltrifluoroborate 3a (100 mg, 0.446 mmol) and TFA (35 µL, 0.46 mmol) were 
added, and the mixture was stirred for 24 h. After column chromatography 4b 
(106 mg, 89%) was obtained as a colorless liquid. 

1H NMR (400 MHz, CDCl3): δ 3.02 (s, 3 H, NMe), 3.79 (s, 3 H, OMe), 4.55 (s, 2 
H, NCH2), 6.51–6.52 (m, 1 H), 6.87 (br s, 4 H), 7.19–7.28 (m, 2 H), 7.45–7.52 (m, 2 H). 

13C NMR (100.6 MHz CDCl3): δ 39.5 (CH3, NMe), 51.9 (CH2, NCH2), 55.8 (CH3, OMe), 104.3 (CH), 
111.2 (CH), 114.8 (CH), 115.5 (CH), 120.8 (CH), 122.8 (CH), 123.9 (CH), 128.5 (C), 144.1 (C), 152.5 
(C), 155.0 (C), 155.4 (C). 

HR-MS (EI, 70 eV): m/z [M]•+ Calcd for [C17H17NO2]•+ 267.1254; Found 267.1254. 
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N-(Benzofuran-2-ylmethyl)-N-methylaniline (4c). According to GP2, 2c (171 mg, 0.529 mmol) was 
dissolved in MeCN (10 mL). Potassium benzofuran-2-yltrifluoroborate 3a (118 
mg, 0.527 mmol) and TFA (41 µL, 0.54 mmol) were added, and the mixture was 
stirred for 24 h. After column chromatography 4c (110 mg, 88%) was obtained as 
a colorless liquid. Known compound, the NMR spectroscopic data are in accord 
with those given in ref.[S6] 

1H NMR (300 MHz, CDCl3): δ 3.10 (s, 3 H, NMe), 4.63 (s, 2 H, NCH2), 6.51–6.52 (m, 1 H), 6.78–
6.82 (m, 1 H), 6.86–6.89 (m, 2 H), 7.19–7.31 (m, 4 H), 7.46–7.51 (m, 1 H). 

13C NMR (75.5 MHz, CDCl3): δ 38.7 (CH3, NMe), 50.6 (CH2, NCH2), 104.0 (CH), 111.2 (CH), 113.0 
(CH), 117.4 (CH), 120.8 (CH), 122.8 (CH), 123.9 (CH), 128.5 (C), 129.3 (CH), 149.2 (C), 155.1 (C), 
155.3 (C). 

HR-MS (EI, 70 eV): m/z [M]•+ Calcd for [C16H15NO]•+ 237.1148; Found 237.1148. 

 

N-(Benzofuran-2-ylmethyl)-4-fluoro-N-methylaniline (4d). According to GP2, 2d (270 mg, 
0.791 mmol) was dissolved in MeCN (5 mL). Potassium benzofuran-2-
yltrifluoroborate 3a (178 mg, 0.795 mmol) and TFA (62 µL, 0.81 mmol) were 
added, and the mixture was stirred for 2 h. After column chromatography 4d (165 
mg, 82%) was obtained as a yellow liquid. 

1H NMR (400 MHz, CDCl3): δ 3.08 (s, 3 H, NMe), 4.60 (s, 2 H, NCH2), 6.55 (br 
s, 1 H), 6.82–6.86 (m, 2 H), 7.01–7.05 (m, 2 H), 7.25–7.34 (m, 2 H), 7.52–7.57 (m, 2 H). 

13C NMR (100.6 MHz CDCl3): δ 39.2 (CH3, NMe), 51.3 (CH2, NCH2), 104.2 (CH), 111.2 (CH), 114.4 
(CH, d, JC,F = 7.3 Hz), 115.6 (CH, d, JC,F = 22.1 Hz), 120.8 (CH), 122.8 (CH), 124.0 (CH), 128.4 (C), 
146.0 (C, d, JC,F = 1.9 Hz), 155.03 (C), 155.05 (C), 156.0 (C, d, 1JC,F = 236.0 Hz). 

19F NMR (376 MHz, CDCl3): δ –127.88 (tt, J = 8.5, 4.4 Hz). 

 

N-(Benzofuran-2-ylmethyl)-4-chloro-N-methylaniline (4e). According to GP2, 2e (40 mg, 
0.11 mmol) was dissolved in MeCN (1 mL). Potassium benzofuran-2-
yltrifluoroborate 3a (25 mg, 0.11 mmol) and TFA (9 µL, 0.1 mmol) were added, 
and the solution was stirred for 2 h. After column chromatography 4e (25 mg, 
84%) was obtained as a yellowish liquid. 

1H NMR (400 MHz, CDCl3): δ 3.07 (s, 3 H, NMe), 4.59 (s, 2 H, NCH2), 6.48 (br 
s, 1 H), 6.74–6.77 (m, 2 H), 7.17–7.27 (m including residual CHCl3, 4 H), 7.43–7.50 (m, 2 H). 

13C NMR (100.6 MHz CDCl3): δ 39.0 (CH3, NMe), 50.7 (CH2, NCH2), 104.2 (CH), 111.2 (CH), 114.2 
(CH), 120.9 (CH), 122.3 (C), 122.9 (CH), 124.0 (CH), 128.4 (C), 129.1 (CH), 147.8 (C), 154.7 (C), 
155.1 (C). 

F

N
O
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HR-MS (EI, 70 eV): m/z [M]•+ Calcd for [C16H14
35ClNO]•+ 271.0758; Found 271.0762. 

 

N-(Benzofuran-2-ylmethyl)-4-bromo-N-methylaniline (4f). Following GP2, 2f (619 mg, 1.54 
mmol) and potassium benzofuran-2-yltrifluoroborate 3a (345 mg, 1.54 mmol) 
were dissolved in MeCN (5.0 mL). After the addition of TFA (120 µL, 1.57 mmol), 
the solution was stirred at room temperature for 2 h. After column chromatography 
4f (363 mg, 75%) was obtained as a light yellow oil. 

1H NMR (400 MHz, CDCl3): δ 3.00 (s, 3 H, NMe), 4.53 (s, 2 H, NCH2), 6.42 (br 
s, 1 H), 6.63–6.66 (m, 2 H), 7.12–7.21 (m, 2 H), 7.24–7.27 (m, 2 H), 7.37–7.44 (m, 2 H). 

13C NMR (100.6 MHz, CDCl3): δ 38.9 (CH3, NMe), 50.5 (CH2, NCH2), 104.2 (CH), 109.4 (C), 111.2 
(CH), 114.6 (CH), 120.9 (CH), 122.9 (CH), 124.0 (CH), 128.4 (C), 132.0 (CH), 148.2 (C), 154.6 (C), 
155.1 (C). 

HR-MS (EI, 70 eV): m/z [M]•+ Calcd for [C16H14
79BrNO]•+ 315.0253; Found 315.0249. 

 

Ethyl 4-((benzofuran-2-ylmethyl)(methyl)amino)benzoate (4g). According to GP2, 2g (0.12 g, 
0.30 mmol) was dissolved in MeCN (5 mL). Potassium benzofuran-2-
yltrifluoroborate 3a (68 mg, 0.30 mmol) and TFA (23 µL, 0.30 mmol) were added, 
and the solution was stirred for 2 h. After column chromatography 4g (85 mg, 
92%) was obtained as a slightly yellowish liquid. 

1H NMR (600 MHz, CDCl3): δ 1.38 (t, J = 7.1 Hz, 3 H, OCH2CH3), 3.17 (s, 3 H, 
NMe), 4.34 (q, J = 7.1 Hz, 2 H, OCH2CH3), 4.68 (s, 2 H, NCH2), 6.50–6.51 (m, 1 H), 6.79–6.81 (m, 2 
H), 7.19–7.27 (m including residual CHCl3, 2 H), 7.44–7.50 (m, 2 H), 7.94–7.96 (m, 2 H). 

13C NMR (100.6 MHz, CDCl3): δ 14.6 (CH3, OCH2CH3), 38.8 (CH3, NMe), 49.9 (CH2, NCH2), 60.3 
(CH2, OCH2CH3), 104.2 (CH), 111.2 (CH), 111.4 (CH), 118.6 (C), 120.9 (CH), 122.9 (CH), 124.1 
(CH), 128.3 (C), 131.4 (CH), 152.3 (C), 154.1 (C), 155.1 (C), 166.9 (C). 

HR-MS (EI, 70 eV): m/z [M]•+ Calcd for [C19H19NO3]•+ 309.1359; Found 309.1359. 

Elemental Analysis: Calcd: C 73.77, H, 6.19, N, 4.53. Found: C 73.52, H 6.24, N 4.53. 

 

4-((Benzofuran-2-ylmethyl)(methyl)amino)benzonitrile (4h). According to GP2, 2h (32 mg, 0.092 
mmol) was dissolved in MeCN (5 mL). Potassium benzofuran-2-yltrifluoroborate 
3a (21 mg, 0.094 mmol) and TFA (7 µL, 0.09 mmol) were added, and the solution 
was stirred for 24 h. After column chromatography 4h (19 mg, 79%) was obtained 
as a colorless liquid. 

1H NMR (400 MHz, CDCl3): δ 3.17 (s, 3 H, NMe), 4.67 (s, 2 H, NCH2), 6.51 (br 
s, 1 H), 6.79–6.81 (m, 2 H), 7.19–7.28 (m, 2 H), 7.43–7.51 (m, 2 H). 
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13C NMR (100.6 MHz, CDCl3): δ 38.8 (CH3, NMe), 49.9 (CH2, NCH2), 98.8 (C, CN), 104.4 (CH), 
111.3 (CH), 112.2 (CH), 120.5 (C), 121.0 (CH), 123.1 (CH), 124.4 (CH), 128.2 (C), 133.7 (CH), 151.6 
(C), 153.5 (C), 155.1 (C). 

 

N-(Benzofuran-2-ylmethyl)-N,2,4,6-tetramethylaniline (4i). According to GP2, 2i (122 mg, 
0.33 mmol) was dissolved in MeCN (5 mL). Potassium benzofuran-2-
yltrifluoroborate 3a (75 mg, 0.33 mmol) and TFA (26 µL, 0.34 mmol) 
were added, and the solution was stirred for 2 h. After column 
chromatography 4i (78 mg, 85%) was obtained as a slightly yellowish 
liquid. 

1H NMR (400 MHz, CDCl3): δ 2.30 (s, 3 H, 4-CH3), 2.36 (s, 6 H, 2,6-(CH3)2), 2.86 (s, 3 H, NMe), 
4.31 (s, 2 H, NCH2), 6.65–6.66 (m, 1 H), 6.89 (br s, 2 H), 7.24–7.28 (m, 2 H), 7.48–7.50 (m, 1 H), 
7.56–7.58 (m, 1 H). 

13C NMR (100.6 MHz, CDCl3): δ 19.2 (CH3, 2,6-(CH3)2), 20.9 (CH3, 4-CH3), 40.2 (CH3, NMe), 53.3 
(CH2, NCH2), 103.8 (CH), 111.2 (CH), 120.7 (CH), 122.6 (CH), 123.6 (CH), 128.8 (C), 129.7 (CH), 
135.0 (C), 137.3 (C), 146.7 (C), 155.1 (C), 157.6 (C). 

HR-MS (EI, 70 eV): m/z [M]•+ Calcd for [C19H21NO]•+ 279.1618; Found 279.1633. 

 

N-(Furan-2-ylmethyl)-4-methoxy-N-methylaniline (5a). Following GP2, 2b (210 mg, 0.594 mmol) 
and potassium 2-furanyltrifluoroborate 3b (103 mg, 0.592 mmol) were dissolved in 
MeCN (5 mL). After the addition of TFA (46 µL, 0.60 mmol), the solution was stirred 
at room temperature for 1 h. After column chromatography 5a (66 mg, 51%) was 
obtained as a colorless oil. Known compound.[S7] 

1H NMR (400 MHz, CDCl3): δ 2.91 (s, 3 H, NMe), 3.78 (s, 3 H, OMe), 4.38 (s, 2 H, 
NCH2), 6.13–6.14 (m, 1 H), 6.30–6.31 (m, 1 H), 6.85 (br s, 4 H), 7.36–7.37 (m, 1 H). 

13C NMR (100.6 MHz, CDCl3): δ 39.1 (CH3, NMe), 51.3 (CH2, NCH2), 55.8 (CH3, OMe), 107.5 (CH), 
110.2 (CH), 114.7 (CH), 115.6 (CH), 141.9 (CH), 144.4 (C), 152.4 (C), 152.6 (C). 

HR-MS (EI, 70 eV): m/z [M]•+ Calcd for [C13H15NO2]•+ 217.1097; Found 217.1096. 

 

N-(Furan-2-ylmethyl)-N,4-dimethylaniline (5b) from 3b. According to GP2, 2a (92 mg, 0.27 mmol) 
was dissolved in MeCN (5 mL). Potassium 2-furayltrifluoroborate 3b (48 mg, 0.28 
mmol) and TFA (22 µL, 0.29 mmol) were added, and the mixture was stirred for 2 h. 
After column chromatography 5b (52 mg, 96%) was obtained as a colorless liquid; Rf 
= 0.85 (silica gel, acetone/isohexane = 1/10). 
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1H NMR (600 MHz, CDCl3): δ 2.31 (s, 3 H, 4-CH3), 2.98 (s, 3 H, NMe), 4.46 (s, 2 H, NCH2), 6.16–
6.17 (m, 1 H), 6.32–6.33 (m, 1 H), 6.80–6.81 (m, 2 H), 7.09–7.10 (m, 2 H), 7.377–7.383 (m, 1 H). 

13C NMR (150.6 MHz, CDCl3): δ 20.4 (CH3, 4-CH3), 38.6 (CH3, NMe), 50.3 (CH2, NCH2), 107.3 
(CH), 110.2 (CH), 113.6 (CH), 126.6 (C), 129.7 (CH), 141.9 (CH), 147.5 (C), 152.6 (C). 

HR-MS (EI, 70 eV): m/z [M]•+ Calcd for [C13H15NO]•+ 201.1148; Found 201.1151. 

 

N-(Furan-2-ylmethyl)-N,4-dimethylaniline (5b) from 3b’. According to GP2, 2a (116 mg, 
0.344 mmol) was dissolved in MeCN (10 mL). Potassium 3-furanyltrifluoroborate 3b’ (60 mg, 0.34 
mmol) and TFA (30 µL, 0.39 mmol) were added, and the mixture was stirred for 24 h. After column 
chromatography 5b (65 mg, 95 %) was obtained as a colorless liquid. 

1H NMR (400 MHz, CDCl3): δ 2.31 (s, 3 H, 4-CH3), 2.99 (s, 3 H, NMe), 4.46 (s, 2 H, NCH2), 6.16–
6.18 (m, 1 H), 6.32–6.34 (m, 1 H), 6.79–6.83 (m, 2 H), 7.08–7.12 (m, 2 H), 7.38–7.39 (m, 1 H). 

13C NMR (100.6 MHz, CDCl3): δ 20.4 (CH3, 4-CH3), 38.6 (CH3, NMe), 50.4 (CH2, NCH2), 107.3 
(CH), 110.2 (CH), 113.6 (CH), 126.6 (C), 129.7 (CH), 141.9 (CH), 147.5 (C), 152.6 (C). 

HR-MS (EI, 70 eV): m/z [M]•+ Calcd for [C13H15NO]•+ 201.1148; Found 201.1142. 

N-(Furan-2-ylmethyl)-N-methylaniline (5c). According to GP2, 2c (180 mg, 0.557 mmol) and 
potassium 2-furanyltrifluoroborate 3b (97 mg, 0.56 mmol) were dissolved in MeCN (5 
mL). Then TFA (43 µL, 0.56 mmol) was added, and the reaction mixture was stirred 
for 2 h. After column chromatography 5c (71 mg, 68%) was obtained as a colorless oil. 
Known compound, the NMR spectroscopic data are in accord with those given in 
ref.[S8] 

1H NMR (400 MHz, CDCl3): δ 2.97 (s, 3 H, NMe), 4.45 (s, 2 H, NCH2), 6.12–6.13 (m, 1 H), 6.27–
6.29 (m, 1 H), 6.72–6.76 (m, 1 H), 6.81–6.83 (m, 2 H), 7.21–7.25 (m, 2 H), 7.33–7.34 (m, 1 H). 

13C NMR (100.6 MHz, CDCl3): δ 38.4 (CH3, NMe), 50.0 (CH2, NCH2), 107.3 (CH), 110.3 (CH), 
113.2 (CH), 117.2 (CH), 129.2 (CH), 141.9 (CH), 149.5 (C), 152.5 (C). 

HR-MS (EI, 70 eV): m/z [M]•+ Calcd for [C12H13NO]•+ 187.0992; Found 187.0988. 

 

N,4-Dimethyl-N-((5-methylfuran-2-yl)methyl)aniline (5d). According to GP2, 2a (190 mg, 
0.563 mmol) was dissolved in MeCN (5 mL). Potassium (5-methylfuran-2-
yl)trifluoroborate 3c (106 mg, 0.564 mmol) and TFA (45 µL, 0.59 mmol) were 
added, and the solution was stirred for 2 h. After column chromatography 5d (115 
mg, 95%) was obtained as a colorless liquid. 

1H NMR (600 MHz, CDCl3): δ 2.27 (s, 6 H, 4-CH3 and furyl 5-Me), 2.95 (s, 3 H, 
NMe), 4.36 (s, 2 H, NCH2), 5.86–5.87 (m, 1 H), 6.00 (m, 1 H), 6.76–6.78 (m, 2 H), 7.05–7.06 (m, 2 
H). 
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13C NMR (150.6 MHz, CDCl3): δ 13.7 (CH3, furyl 5-Me), 20.4 (CH3, 4-CH3), 38.6 (CH3, NMe), 50.5 
(CH2, NCH2), 106.1 (CH), 108.2 (CH), 113.7 (CH), 126.5 (C), 129.7 (CH), 147.7 (C), 150.6 (C), 151.5 
(C). 

HR-MS (EI, 70 eV): m/z [M]•+ Calcd for [C14H17NO]•+ 215.1305; Found 215.1312. 

 

N-Methyl-N-((5-methylfuran-2-yl)methyl)aniline (5e). According to GP2, potassium trifluoro(5-
methylfuran-2-yl)borate 3c (112 mg, 0.596 mmol) and 2c (193 mg, 0.597 mmol) 
were dissolved in MeCN (5 mL). After the addition of TFA (47 µL, 0.61 mmol), the 
reaction mixture was stirred for 72 h. After column chromatography 5e (44 mg, 
37%) was obtained as a colorless liquid.  

1H NMR (400 MHz, CDCl3): δ 2.30 (s, 3 H, furyl 5-Me), 3.02 (s, 3 H, NMe), 4.43 (s, 2 H, NCH2), 
5.89–5.90 (m, 1 H), 6.04 (d, J = 3.0 Hz, 1 H), 6.75–6.79 (m, 1 H), 6.85–6.89 (m, 2 H), 7.27–7.30 (m, 
2 H). 

13C NMR (100.6 MHz, CDCl3): δ 13.7 (CH3, furyl 5-Me), 38.3 (CH3, NMe), 50.1 (CH2, NCH2), 106.1 
(CH), 108.1 (CH), 113.2 (CH), 117.1 (CH), 129.2 (CH), 149.6 (C), 150.5 (C), 151.5 (C). 

HR-MS (EI, 70 eV): m/z [M]•+ Calcd for [C13H15NO]•+ 201.1148; Found 201.1144. 

 

N,4-Dimethyl-N-(thiophen-2-ylmethyl)aniline (5f). According to GP2, 2a (120 mg, 0.356 mmol) 
was dissolved in MeCN (10 mL). Potassium 2-thienyltrifluoroborate 3d (83 mg, 0.44 
mmol) and TFA (20 µL, 0.26 mmol) were added, and the solution was stirred for 24 h. 
After column chromatography 5f (65 mg, 84%) as a colorless liquid; Rf = 0.88 (silica 
gel, acetone/isohexane = 1/10).  

1H NMR (300 MHz, CDCl3): δ 2.27 (s, 3 H, 4-CH3), 2.94 (s, 3 H, NMe), 4.63 (s, 2 H, 
NCH2), 6.74–6.79 (m, 2 H), 6.89–6.95 (m, 2 H), 7.05–7.08 (m, 2 H), 7.16–7.18 (m, 1 H). 

13C NMR (75.5 MHz, CDCl3): δ 20.4 (CH3, 4-CH3), 38.5 (CH3, NMe), 52.6 (CH2, NCH2), 113.8 (CH), 
124.4 (CH), 125.0 (CH), 126.8 (CH), 126.8 (C), 129.8 (CH), 142.4 (C), 147.4 (C). 

HR-MS (EI, 70 eV): m/z [M]•+ Calcd for [C13H15NS]•+ 217.0920; Found 217.0915. 

 

N-Methyl-N-(thiophen-2-ylmethyl)aniline (5g). Following GP2, 2c (167 mg, 0.516 mmol) and 
potassium 2-thienyltrifluoroborate 3d (99 mg, 0.52 mmol) were dissolved in MeCN (5 
mL). Then, TFA (40 µL, 0.52 mmol) was added dropwise. The reaction proceeded 
smoothly within 24 h to give 5g (95 mg, 91%) as a light yellowish oil. 13C NMR data 
are in accord with resonances reported for the trideuterated analogue N-methyl-N-

(thiene-2-yl-5-d1-methyl-d2)aniline.[S9] 
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1H NMR (400 MHz, CDCl3): δ 3.04 (s, 3 H, NMe), 4.73 (s, 2 H, NCH2), 6.82–6.85 (m, 1 H), 6.90 (d, 
J = 8.4 Hz, 2 H), 6.98–7.01 (m, 2 H), 7.22–7.23 (m, 1 H), 7.30–7.34 (m, 2 H). 

13C NMR (100.6 MHz, CDCl3): δ 38.3 (CH3, NMe), 52.2 (CH2, NCH2), 113.3 (CH), 117.4 (CH), 
124.4 (CH), 125.0 (CH), 126.8 (CH), 129.3 (CH), 142.2 (C), 149.3 (C). 

HR-MS (EI, 70 eV): m/z [M]•+ Calcd for [C12H13NS]•+ 203.0763; Found 203.0765. 

 

4-Fluoro-N-methyl-N-(thiophen-2-ylmethyl)aniline (5h). According to GP2, 2d (225 mg, 
0.659 mmol) was dissolved in MeCN (5 mL). Potassium 2-thienyltrifluoroborate 3d 
(125 mg, 0.658 mmol) and TFA (52 µL, 0.68 mmol) were added, and the mixture was 
stirred for 2 h. After column chromatography 5h (136 mg, 93%) was obtained as a 
colorless liquid. 

1H NMR (400 MHz, CDCl3): δ 2.93 (s, 3 H, NMe), 4.61 (s, 2 H, NCH2), 6.75–6.78 
(m, 2 H), 6.89–6.90 (m, 1 H), 6.93–6.97 (m, 3 H), 7.17–7.19 (m, 1 H). 

13C NMR (100.6 MHz, CDCl3): δ 38.9 (CH3, NMe), 53.1 (CH2, NCH2), 114.9 (CH, d, JC,F = 7.4 Hz), 
115.7 (CH, d, JC,F = 22.0 Hz), 124.5 (CH), 125.2 (CH), 126.8 (CH), 141.9 (C), 146.1 (C, d, JC,F = 2.0 
Hz), 156.1 (C, d, 1JC,F = 236.2 Hz). 

19F NMR (376 MHz, CDCl3): δ –127.93 (tt, J = 8.5, 4.4 Hz). 

HR-MS (EI, 70 eV): m/z [M]•+ Calcd for [C12H12FNS]•+ 221.0669; Found 221.0659. 

 

4-Methoxy-N-methyl-N-((5-methylthiophen-2-yl)methyl)aniline (5i). According to GP2, 2b 
(199 mg, 0.563 mmol) was dissolved in MeCN (5 mL). Potassium (5-methyl-2-
thienyl)trifluoroborate 3e (115 mg, 0.564 mmol) and TFA (44 µL, 0.57 mmol) were 
added, and the mixture was stirred for 2 h. After column chromatography 5i (83 
mg, 60%) was obtained as a colorless liquid. 

1H NMR (400 MHz, CDCl3): δ 2.44 (s, 3 H, 5-Me), 2.90 (s, 3 H, NMe), 3.79 (s, 3 
H, OMe), 4.52 (s, 2 H, NCH2), 6.59–6.60 (m, 1 H), 6.70 (d, J = 3.3 Hz, 1 H), 6.83–6.89 (m, 4 H). 

13C NMR (100.6 MHz, CDCl3): δ 15.4 (CH3), 38.8 (CH3, NMe), 53.6 (CH2, NCH2), 55.8 (CH3, OMe), 
114.7 (CH), 115.7 (CH), 124.6 (CH), 125.2 (CH), 138.9 (C), 139.6 (C), 144.3 (C), 152.4 (C). 

HR-MS (EI, 70 eV): m/z [M]•+ Calcd for [C14H17NOS]•+ 247.1025; Found 247.1024. 
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N,4-Dimethyl-N-((5-methylthiophen-2-yl)methyl)aniline (5j). According to GP2, 2a (240 mg, 

0.711 mmol) was dissolved in MeCN (10 mL). Potassium (5-methyl-2-

thienyl)trifluoroborate 3e (175 mg, 0.858 mmol) and TFA (20 µL, 0.26 mmol) were 

added, and the mixture was stirred for 24 h. After column chromatography 5j (102 

mg, 62%) was obtained as a colorless liquid; Rf = 0.87 (silica gel, acetone/isohexane 

= 1/10). 

1H NMR (300 MHz, CDCl3): δ 2.25 (s, 3 H, 4-CH3), 2.41 (s, 3 H), 2.91 (s, 3 H, NMe), 4.54 (s, 2 H, 
NCH2), 6.55–6.56 (m, 1 H), 6.66–6.67 (m, 1 H), 6.73–6.76 (m, 2 H), 7.03–7.06 (m, 2 H). 

13C NMR (75.5 MHz, CDCl3): δ 15.5 (CH3), 20.4 (CH3, 4-CH3), 38.4 (CH3, NMe), 52.7 (CH2, NCH2), 
113.7 (CH), 124.7 (CH), 125.0 (CH), 126.7 (C), 129.8 (CH), 138.9 (C), 139.8 (C), 147.4 (C). 

 

N-Benzyl-4-methoxy-N-methylaniline (5k). According to GP2, 2b (161 mg, 0.456 mmol) was 

dissolved in MeCN (10 mL). Potassium phenyltrifluoroborate 3f (84 mg, 0.46 mmol) 

and TFA (35 µL, 0.46 mmol) were added, and the mixture was stirred for 24 h. After 

column chromatography 5k (92 mg, 89%) was obtained as a colorless liquid. Known 

compound, the NMR spectroscopic data are in accord with those given in ref.[S10] 

1H NMR (400 MHz, CDCl3): δ 2.88 (s, 3 H, NMe), 3.71 (s, 3 H, OMe), 4.39 (s, 2 H, NCH2), 6.69–

6.82 (m, 4 H), 7.21–7.30 (m, 5 H). 

13C NMR (100.6 MHz, CDCl3): δ 39.1 (CH3, NMe), 55.8 (CH3, OMe), 58.1 (CH2, NCH2), 114.6 (CH), 

114.8 (CH), 126.9 (CH), 127.2 (CH), 128.5 (CH), 139.3 (C), 144.9 (C), 151.9 (C). 

 

N-Benzyl-N,4-dimethylaniline (5l). According to GP2, 2a (116 mg, 0.344 mmol) was dissolved in 
MeCN (5 mL). Potassium phenyltrifluoroborate 3f (64 mg, 0.35 mmol) and TFA 
(27 µL, 0.35 mmol) were added, and the mixture was stirred for 24 h. After column 
chromatography 5l (57 mg, 78%) was obtained as a colorless liquid, Rf = 0.92 (silica 
gel, acetone/isohexane = 1/10). Known compound, the NMR spectroscopic data are in 
accord with those given in ref.[S11] 

1H NMR (400 MHz, CDCl3): δ 2.23 (s, 3 H, 4-CH3), 2.94 (s, 3 H, NMe), 4.46 (s, 2 H, NCH2), 6.64–
6.68 (m, 2 H), 6.99–7.03 (m, 2 H), 7.19–7.22 (m, 3 H), 7.26–7.30 (m, 2 H). 

13C NMR (100.6 MHz, CDCl3): δ 20.4 (CH3, 4-CH3), 38.8 (CH3, NMe), 57.2 (CH2, NCH2), 112.9 
(CH), 125.9 (C), 126.9 (CH), 127.0 (CH), 128.6 (CH), 129.8 (CH), 139.4 (C), 148.0 (C). 

 



 

94 
 

N-(Benzo[d][1,3]dioxol-5-ylmethyl)-4-methoxy-N-methylaniline (5m). According to GP2, 2b 
(150 mg, 0.424 mmol) was dissolved in MeCN (10 mL). Potassium 3,4-
(methylenedioxy)phenyltrifluoroborate 3g (99 mg, 0.43 mmol) and TFA (33 µL, 
0.43 mmol) were added, and the mixture was stirred for 48 h. After column 
chromatography 5m (103 mg, 90%) was obtained as a colorless liquid.  

1H NMR (400 MHz, CDCl3): δ 2.91 (s, 3 H, NMe), 3.78 (s, 3 H, OMe), 4.34 (s, 
2 H, NCH2), 5.94 (s, 2 H, OCH2O), 6.72–6.87 (m, 7 H). 

13C NMR (100.6 MHz, CDCl3): δ 39.1 (CH3, NMe), 55.8 (CH3, OMe), 58.0 (CH2, NCH2), 101.0 (CH2, 
OCH2O), 107.8 (CH), 108.2 (CH), 114.8 (CH), 114.9 (CH), 120.3 (CH), 133.2 (C), 144.8 (C), 146.6 
(C), 147.9 (C), 152.0 (C). 

 

N-(Benzo[d][1,3]dioxol-5-ylmethyl)-N,4-dimethylaniline (5n). According to GP2, 2a (231 mg, 
0.675 mmol) was dissolved in MeCN (10 mL). Potassium 3,4-
(methylenedioxy)phenyltrifluoroborate (158 mg, 0.693 mmol) and TFA (54 µL, 
0.71 mmol) were added, and the mixture was stirred for 24 h. After column 
chromatography 5n (161 mg, 93%) was obtained as a colorless liquid, Rf = 0.90 
(silica gel, acetone/isohexane = 1/10). 

1H NMR (400 MHz, CDCl3): δ 2.29 (s, 3 H, 4-CH3), 2.97 (s, 3 H, NMe), 4.41 (s, 2 H, NCH2), 5.94 (s, 
2 H, OCH2O), 6.71–6.79 (m, 5 H), 7.06–7.08 (m, 2 H). 

13C NMR (100.6 MHz, CDCl3): δ 20.4 (CH3, 4-CH3), 38.6 (CH3, NMe), 57.0 (CH2, NCH2), 101.0 
(OCH2O), 107.6 (CH), 108.3 (CH), 113.0 (CH), 120.0 (CH), 126.0 (C), 129.8 (CH), 133.3 (C), 146.6 
(C), 147.9 (C), 148.0 (C). 

 

N,4-Dimethyl-N-(3-phenylprop-2-yn-1-yl)aniline (7). According to GP2, 2a (214 mg, 0.634 mmol) 
was dissolved in MeCN (10 mL). Potassium (phenylethynyl)trifluoroborate 6 
(137 mg, 0.656 mmol) and TFA (50 µL, 0.65 mmol) were added, and the mixture 
was stirred for 24 h. After column chromatography 7 (115 mg, 78%) was 
obtained as a colorless liquid. Known compound, the NMR spectroscopic data 
are in accord with those given in ref.[S12] 

1H NMR (300 MHz, CDCl3): δ 2.34 (s, 3 H, 4-Me), 3.05 (s, 3 H, NMe), 4.27 (s, 2 H, NCH2), 6.89–
6.92 (m, 2 H), 7.13–7.16 (m, 2 H), 7.30–7.32 (m, 3 H), 7.42–7.45 (m, 2 H). 

13C NMR (75.5 MHz, CDCl3): δ 20.5 (CH3), 39.1 (CH3, NMe), 43.8 (CH2, NCH2), 84.4 (C), 85.2 (C), 
115.1 (CH), 123.2 (C), 127.8 (C), 128.1 (CH), 128.3 (CH), 129.7 (CH), 131.8 (CH), 147.4 (C). 
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8-(Benzofuran-2-ylmethyl)-8-azabicyclo[3.2.1]octan-3-one (8a). According to GP2, 2j (48 mg, 
0.14 mmol) was dissolved in MeCN (10 mL). Potassium benzofuran-2-
yltrifluoroborate 3a (32 mg, 0.14 mmol) and TFA (11 µL, 0.14 mmol) were 
added, and the mixture was stirred for 24 h. After column chromatography 8a 
(33 mg, 92%) was obtained as a colorless liquid. 

1H NMR (400 MHz, CDCl3): δ 1.64–1.70 (m, 2 H, 6-H and 7-H), 2.13–2.17 (m, 2 H, 6-H and 7-H), 
2.25 (br d, 2J = 16 Hz, 2 H, 2-H and 4-H), 2.75 (dd, 2J = 16.2 Hz, 3J = 4.4 Hz, 2 H, 2-H and 4-H), 3.62 
(br s, 2 H, 1-H and 5-H), 3.89 (d, J = 0.9 Hz, 2 H, NCH2), 6.66 (q, J = 0.9 Hz, 1 H, 3’-H), 7.20–7.29 
(m, 2 H), 7.48–7.55 (m, 2 H). 

13C NMR (100.6 MHz, CDCl3): δ 27.8 (CH2, C-6 and C-7), 48.3 (CH2, C-2 and C-4), 48.7 (CH2, 
NCH2), 59.1 (CH, C-1 and C-5), 104.9 (CH, C-3‘), 111.4 (CH), 120.9 (CH), 122.9 (CH), 124.2 (CH), 
128.4 (C), 155.2 (C), 155.7 (C), 209.7 (C, C=O). 

HR-MS (EI, 70 eV): m/z [M]•+ Calcd for [C16H17NO2]•+ 255.1254; Found 255.1252. 

 

8-(Thiophen-2-ylmethyl)-8-azabicyclo[3.2.1]octan-3-one (8b). According to GP2, 2j (183 mg, 
0.536 mmol) was dissolved in MeCN (5 mL). Potassium 2-thienyltrifluoroborate 
3d (102 mg, 0.542 mmol) and TFA (42 µL, 0.55 mmol) were added, and the 
reaction mixture was stirred for 24 h. After purification 8b (107 mg, 90%) was 
obtained as a light yellow liquid.[S13] 

1H NMR (400 MHz, CDCl3): δ 1.61–1.67 (m, 2 H, 6-H and 7-H), 2.08–2.12 (m, 
2 H, 6-H and 7-H), 2.20–2.25 (m, 2 H, 2-H and 4-H), 2.70 (dd, 2J = 16 Hz, 3J = 4.6 Hz, 2 H, 2-H and 
4-H), 3.56 (br s, 2 H, 1-H and 5-H), 3.92 (br s, 2 H, NCH2), 6.94–6.97 (m, 2 H), 7.24–7.26 (m, 1 H). 

13C NMR (100.6 MHz, CDCl3): δ 27.8 (CH2, C-6 and C-7), 48.7 (CH2, C-2 and C-4), 50.7 (CH2, 
NCH2), 58.8 (CH, C-1 and C-5), 124.9 (CH), 125.0 (CH), 126.6 (CH), 144.0 (C), 210.3 (C, C=O). 

HR-MS (EI, 70 eV): m/z [M]•+ Calcd for [C12H15NOS]•+ 221.0869; Found 221.0869. 

  



 

96 
 

4. References 

[S1] G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. 

Bercaw, K. I. Goldberg, Organometallics 2010, 29, 2176–2179. 

[S2] (a) G. Berionni, V. Morozova, M. Heininger, P. Mayer, P. Knochel, H. Mayr, J. Am. Chem. 

Soc. 2013, 135, 6317–6324; (b) G. Berionni, private communication, 2016. 

[S3] J. A. Hodges, R. T. Raines, Org. Lett. 2006, 8, 4695–4697. 

[S4] R. A. da Silva, I. H. S. Estevam, L. W. Bieber, Tetrahedron Lett. 2007, 48, 7680–7682. 

[S5] X. Jiang, C. Wang, Y. Wei, D. Xue, Z. Liu, J. Xiao, Chem. Eur. J. 2014, 20, 58–63. 

[S6] G. W. Kabalka, L.-L. Zhou, L. Wang, R. M. Pagni, Tetrahedron 2006, 62, 857–867. 

[S7] D. Bilović, V. Hahn, Croat. Chem. Acta 1967, 39, 189–197. 

[S8] a) O. S. Nayal, V. Bhatt, S. Sharma, N. Kumar, J. Org. Chem. 2015, 80, 5912–5918; b) O. S. 
Nayal, M. S. Thakur, V. Bhatt, M. Kumar, N. Kumar, B. Singh, U. Sharma, Chem. Commun. 
2016, 52, 9648–9651. 

[S9] a) Y. Hu, L. Liang, W.-t. Wei, X. Sun, X.-j. Zhang, M. Yan, Tetrahedron 2015, 71, 1425–1430; 
b) See also: A. Giumanini, G. Lercker, Gazz. Chim. Ital. 1974, 104, 415–424. 

[S10] D. Maiti, B. P. Fors, J. L. Henderson, Y. Nakamura, S. L. Buchwald, Chem. Sci. 2011, 2, 57–
68. 

[S11] R. Nishio, M. Sugiura, S. Kobayashi, Chem. Asian J. 2007, 2, 983–995. 

[S12] Z. Li, C. J. Li, J. Am. Chem. Soc. 2004, 126, 11810–11811. 

[S13] Previously, the hydrochloride 8b·HCl was characterized: N. Willand, B. Folléas, C. Boutillon, 
L. Verbraeken, J.-C. Gesquière, A. Tartar, B. Deprez, Tetrahedron Lett. 2007, 48, 5007–5011. 

 

 

  



 

97 
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Chapter 3 

Quantification of the Nucleophilic Reactivities of N,N-Dialkylated 

Anilines 

Introduction 

 

Neutral nitrogen nucleophiles represent a vast and interesting class of nucleophiles, in which a 

wide variation of properties through structural change is possible, with the nucleophilic center 

kept constant. N,N-Dialkylated anilines (1) are ambident nucleophiles.[1] When they react with 

cationic electrophiles, four different reasonable reactions are possible for a nucleophilic attack 

(Scheme 1). Aside from the attack of the nitrogen atom lone pair, the attack of the carbon ring 

atoms, C2 and C4, by the electrophile is also possible. Finally, a hydride at the alkyl group 

might also be abstracted by cationic electrophiles. 

 

Scheme 1: Possible reactions of N,N-dialkylated anilines (1) with cationic electrophiles. 

N,N-Dialkylated anilines (1) are highly important in organic chemistry as they are used as 

activator for polymerisations[2] and for the production of dyes,[3] pharmaceuticals and 
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agricultural chemicals.[4] Numerous kinetic studies on the reactivities of amines,[5] azoles,[6] and 

pyridines[7] have been performed, but kinetic data for the reaction with N,N-dialkylated anilines 

(1) is very limited to date. 

Hirobe et al studied the conversion of the demethylation of N,N-dimethylaniline (1a) with 

hydrogen peroxide in the presence of Microperoxidase-11 (MP-11) and hemin-Cl (Scheme 2). 

They found full conversion in the presence of MP-11 within 5 min but only 20% conversion 

with hemin-Cl using the same setup (1 mM H2O2, 5 mM N,N-dimethylaniline (1a), 50% 

methanol, 50 mM sodium phosphate pH 7.4, 10 µM MP-11 or hemin-Cl, respectively). The 

data points could be fitted (kobs = 4.1 × 10–2 s–1 using MP-11 as catalyst and 2.1 × 10–3 s–1 for 

catalysis by hemin-Cl), although only 5 equivalents of 1a over H2O2 were applied.[8] 

 

 

Scheme 2: Oxidative demethylation of N,N-dimethylaniline (1a) with hydrogen peroxide, using 

Microperoxidase-11 (MP-11) or hemin-Cl as a catalyst. 
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Scheme 3: Reaction of N,N-dimethylated anilines (1) with H2O2 in the presence of the catalyst 

methyltrioxorhenium (A). The reaction proceeds via the in situ formed species B. 

Another kinetic study of the reaction of hydrogen peroxide with N,N-dimethylated anilines (1) 

was performed by Espenson and Zhu (Scheme 3). They studied the oxidation of amines with 

hydrogen peroxide at 25 °C in methanol in presence of methylrhenium trioxide. Thereby, the 

3-methyl-1,2,3-dioxarhenirane 3,3-dioxide MeRe(O)2(O2) (B) is formed in situ from 

methyltrioxorhenium (A) and hydrogen peroxide. They obtained the rate constants for the 

reaction of several para substituted N,N-dimethylanilines by initial rate experiments in 

methanol at 25 °C. Evaluation of this data shows a good correlation of the logarithmized 

second-order rate constants with the σp parameter (Table 1 and Figure 1), showing the 

consistency of the reaction mechanism within the studied amines. The data showed that the 

reaction is first-order with respect CH3ReO3 and aniline. A zeroth-order dependence on [H2O2] 

was found.[9] 

Table 1: Rate constants of the oxidation of para-substituted dimethylanilines at 25.0 °C in 

methanol. 

para substituent k2 M–1 s–1 lg k2 σp
[a] 

CH3 24.5 1.39 –0.17 

H 18.4 1.26 0 

F 12.7 1.10 0.06 

Br 8.7 0.94 0.23 

NO2 1.9 0.28 0.78 

 [a] Values taken from Ref. [10]. 

A 

B A 
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Figure 1: Hammett plot of the oxidation of para-substituted dimethylanilines at 25.0 °C in 

methanol with data of Table 1. 

 

 

Scheme 4: Methylation and ethylation of N,N-dimethylaniline (1a) in methanol at various 

temperatures. 

The methylation and ethylation of N,N-dimethylaniline (1a) was studied by Reis et al. in 

methanol at various temperatures, from 20 °C to 60 °C, with methyl iodide and ethyl iodide 

respectively (Scheme 4). They found a temperature dependent increase of the second-order rate 

constant by a factor of 22 in the case of the methyl iodide (from 3.61 × 10–5 M–1 s–1 to 8.07 × 

10–4 M–1 s–1) and of 33 for the reaction with ethyl iodide (from 1.68 × 10–5 M–1 s–1 to 5.53 ×  

10–4 M–1 s–1). The Gibbs energy of activation, ΔG‡, was calculated to be 99.2 kJ mol–1 for the 

methylation and 106.7 kJ mol–1 for the ethylation.[11]  

lg k2 = –1.19 σp + 1.21
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Scheme 5: Reaction of N,N-dimethylaniline (1a) with diethyl azodicarboxylate. Kinetically 

measured is the initial attack of the nitrogen atom at the azo moiety, yielding the intermediate 

C. The formation of the isolated product (D) was considered via a ylid-rearragement (top 

pathway) but was later revised to form via a iminium ion (bottom pathway).[12] 

Huisgen and Jakob studied the addition of diethyl azodicarboxylates to N,N-dimethylaniline 

(1a) (Scheme 5). They studied the kinetics by iodometric titration in different solvents. By 

addition of radical inhibitors they excluded a radical mechanism of the reaction. The second-

order rate constants k2(60 °C) increases by a factor of 6, changing the solvent from unpolar 

cyclohexane (2.1 × 10–1 M–1 s–1) to the very polar nitrobenzene (1.3 M–1 s–1). Because of the 

high solvent polarity dependence, they concluded a polar intermediate and therefore a 

nucleophilic addition of the N,N-dimethylaniline (1a) nitrogen atom to the azo moiety 

(intermediate C). They found a strong decrease of the second-order rate constants by electron-

withdrawing groups in dioxane at 60 °C (from 3.5 × 10–1 M–1 s–1 for 1a, to 1.4 × 10–2 M–1 s–1 

for m-nitro-N,N-dimethylaniline and no reaction with p-nitro-N,N-dimethylaniline), which 

supports this hypothesis. The formation of the isolated products was supposed to be an ylid-

rearrangement (top pathway in Scheme 5), but was revised in 1994, to proceed over an iminium 

ion as intermediate (bottom pathway in Scheme 5).[12] 

The ambident reactivity of N,N-dialkylated anilines 1 was studied intensively for synthetic use, 

for example with hexachlorocyclotriphosphazatriene (N3P3Cl6) (Scheme 6). Shaw and Cheng 

observed the C4 substituted product [N3P3Cl5(C6H4·NMe2)] (E) and the nitrogen-substituted 

product [N3P3Cl5(NMePh)] (F), beside hydrochloride and alkylchloride as side products. When 

reacting N3P3Cl6 with N,N-dimethylaniline (1a), a conversion of about 60% was achieved within 

C D 
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14 h at 160 °C. The ratio of the carbon- (compound E) to the nitrogen-substituted (compound 

F) was found to be 1:10. In contrast, reactions of octachlorocyclotetraphosphazatetraene 

(N4P4Cl8) yield only nitrogen-substituted derivatives but as mono- (N4P4Cl7NMePh, G) and di-

substituted (N4P4Cl6(NMePh)2, H), which might be geminal or nongeminal, in a ratio of 5:4 with 

a total isolated yield of 85%. Taking the high reaction temperature into account, the formation 

of nitrogen-substituted products F, G and H may be surprising at the first glance, but the N-

attack may become irreversible after fast elimination of the methyl chloride molecule, via a 

SN2-type reaction (inlay in Scheme 6).[1a] 

 

Scheme 6: Ambident reactivity of N,N-dimethylaniline (1a) when reacting with 

a) hexachlorocyclotriphosphazatriene (N3P3Cl6) and b) octachlorocyclotetraphosphazatetraene 

(N4P4Cl8). An exact structure of the disubstituted product N4P4Cl6(NMePh)2 (H) was not 

given.[1a] 

a) 

b) 

E F 

G 

H 
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Scheme 7: Cationic palladium olefin complex [PtCl(η2-CH2=CH2(tmeda)]+ (tmeda = N, N, N’, 

N’-tetramethyl-1,2-diamonoethane) (I) reacting with N,N-dimethylaniline (1a) or N-

methylaniline. In case of 1a only the C4 substituted product K was formed, while the reaction 

with N-methylaniline gave a mixture.[1b] 

Maresca et al. studied the reaction of the cationic palladium olefin complex C8H21ClN2Pt+ (I) 

with N,N-dimethylaniline (1a) and N-methylaniline. The proposed reaction mechanism with 

anilines is shown in Scheme 7. With N-methylaniline in excess (3 equivalents over I), the major 

product JH+ is formed via nitrogen-attack. Carrying out the reaction in presence of potassium 

carbonate, the attack of the para carbon atom was also observed (minor product K, ca. 20% of 

the reaction products; reaction conditions r.t. and 48 h). N-Methylaniline further reacted with 

another equivalent of C8H21ClN2Pt+ (I) and furnished the C and N substituted product L. 

Carrying out the analogous reaction with N,N-dimethylaniline (1a) in presence of potassium 

carbonate, the carbon substituted product K was formed, according to the authors, quantitative 

(70% conversion).[1b]  

 

I 

J 

K 

L 

JH+ 

+ I 
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Scheme 8: Reaction of 4,6-dinitro-2-(2,4,6-trinitrophenyl)-2H-benzo[d][1,2,3]triazole 1-oxide 

M with aniline (left pathway) and N,N-dimethylaniline (1a) in DMSO-d6 (right pathway).[1c] 

Renfrow and Strauss studied the reaction of so-called super-electrophiles, namely 

1,3,5-trinitrobenzene and 4,6-dinitro-2-(2,4,6-trinitrophenyl)-2H-benzo[d][1,2,3]triazole 

1-oxide (M) with aniline and N,N-dimethylaniline (1a) (Scheme 8). Both amines did not react 

with 1,3,5-trinitrobenzene in DMSO-d6, but formed a σ-complex with M. Interestingly, with 

aniline the formation of the Meisenheimer type complex occurred at the picryl ring (carbon C1 

of M in Scheme 8) and this σ-complex decomposed into 2',4',6'-trinitro-[1,1'-biphenyl]-4-amine 

(N) and 5,7-dinitro-1H-benzo[d][1,2,3]triazole 3-oxide (O). N,N-Dimethylaniline (1a), 

however, attacked only at the benzotriazole moiety and formed a stable σ-complex (carbon C7 

of M in Scheme 8), but no product of the attack of the nitrogen atom was observed.[1c]  

  

M 

N O 
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The linear free energy relationship – The Mayr-Patz Equation 

 

 

Elucidating the position of N,N-dialkylated anilines 1 in a comprehensive reactivity scale was 

missing so far. During the recent decades, Mayr et al. have constructed a comprehensive 

nucleophilicity scale, which is based on the kinetics of reactions of π-, n-, and σ-nucleophiles 

with benzhydrylium ions, structurally related quinone methides, and diethyl 

benzylidenemalonates.[13] 

The second-order rate constants of these reactions have been described by Equation 1, where E 

is an electrophile-specific parameter, and N and sN are solvent dependent nucleophile-specific 

parameters.[14]  

lg k2 (20 °C) = sN (N + E)  (1) 

With this equation, second-order rate constants of nucleophiles with electrophiles can be 

estimated. Generally, reactions at 20 °C will not occur, if the sum of N and E parameter is 

smaller than –5, and will react under diffusion control if the sum is higher than 9. The scale 

covers electrophiles with an E parameter ranging from –25 to 8 and nucleophiles with a N 

parameter ranging from –4 to 30, providing the base for reaction estimations for a wide range 

of nucleophiles-electrophiles combinations (Figure 2).  

The N and sN parameters for N,N-dialkylated anilines 1 are not available to date. Related 

compounds, like primary anilines and aliphatic tertiary amines, were already studied by Mayr 

et al. (Figure 3) with regard to their nucleophilicity at the nitrogen atom. The N parameters of 

aromatic amines vary around 13, those of the aliphatic ones around 18. This reflects the 

influence of the aromatic ring, lowering the reactivity of the nitrogen atom significantly. 
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Figure 2: Plot of nucleophilicity parameter N versus electrophilicity parameter E, highlighting 

that many name reactions in organic chemistry are just in the well-defined corridor (green) 

between “no reaction” (blue) and “diffusion control” (red). 

 

 

 

A variety of arenes have been studied by Mayr et al., for example toluene (N parameter of            

–4.36 and sN of 1.77[15]). Comparing the σp
+ of the methyl group (–0.32) with the one of the 

dimethyl-amino group (–1.74) suggests a huge increase of the nucleophilic reactivity of the 

para-position (C4 carbon). Based on these σp
+ parameters, a N parameter of 5.5 was estimated 

for N,N-dimethylaniline (1a) at the C4-position.[13c] Comparing this estimated N parameter with 

the N and sN parameters of aniline (N parameter of 12.64 and sN of 0.68 for the attack at the 

nitrogen atom)[5g] and tertiary amines, like 1-methylpiperidine (N parameter of 18.72 and sN of 

Figure 3: Nucleophile-specific parameters N and sN (in parenthesis) of p-substituted anilines 

(left) and aliphatic amines (right) in acetonitrile for the attack of the nitrogen atom. [a] N 

parameters estimated with an sN parameter of 0.52.[5g, 5h] 
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0.52 for the attack at the nitrogen atom)[5h] suggests, that the corresponding attack of the 

nitrogen atom of 1a is anticipated to be faster than the attack of the C4 carbon. The thereby 

formed quaternary ammonium salts might be unstable and therefore not isolable. It can be 

summarized, that a N parameter of 5.5 for the C4 carbon and a N parameter of 13 for the nitrogen 

atom of 1a is expected (Figure 4).  

 

 

N,N-Dialkylated anilines 1 are ambident nucleophiles with four nucleophilic sites (Scheme 1). 

Ambident reactivity is often analysed with the HSAB (hard and soft acids and bases) 

principle.[16] It was shown, however, that this concept is practically useless, as it is only 

applicable in around 50% of the cases and hence not better than flipping a coin.[17] Therefore 

there will be no further mention of this concept. In this work the reactivity of N,N-dialkylated 

anilines (1) for reactions with carbocations via N-attack, C-attack and hydride transfer will be 

discussed in terms of kinetic and thermodynamic control. 

 

 

 

Ambident nucleophiles, like N,N-dialkylated anilines 1, might give complex kinetics. This 

behaviour was found by Mayr et al. while studying the reactivites of azolium-enolates (Scheme 

9). The extraordinary behaviour was explained by the different nucleophilic centers present in 

the nucleophile. The fast, but incomplete reaction (Figure 5) was assigned to benzhydrylium 

P Q R 

P, Q, R 
2 

Figure 4: Estimated N parameters for the nitrogen and the C4 atom of N,N-dimethylaniline (1a). 

Scheme 9: Ambident reactivity of azolium-enolates investigated by Mayr and Maji with 

benzhydrylium ions 2.[6e] 
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attack at the more nucleophilic oxygen-center, the slow reaction to the electrophilic attack at 

the carbon-center of the enolate. Using the weakly Lewis acidic carbenium ions (thq)2CH+ 

(bis(1-methyl-1,2,3,4-tetrahydroquinolin-6-yl)methylium) and (ind)2CH+ (bis(1-

methylindolin-5-yl)methylium), the formation of the benzhydryl enol ether was irrelevant, and 

only the attack at the carbon of the azolium enolate was observed. The stronger Lewis acidic 

(dma)2CH+ (2b) reacts first to a large extent to give the benzhydryl enol ether, rearrangement 

then leads to the thermodynamically more stable product of C-attack. In case of (pyr)2CH+ (2a) 

a borderline situation was found. At low concentrations of the azolium-enolate R the 

equilibrium for the oxygen-attack was shifted to the reactant side, while at high concentrations 

the oxygen-attack is measurable. In conclusion, the enolate-oxygen atom was attacked 20 times 

faster by benzhydrylium ions than the carbon atom leading to the thermodynamically more 

stable products.[6e] 

 

 

Figure 5: a) Reaction of (pyr)2CH+ (2a) with (Z)-2-phenyl-1-(1,3,4-triphenyl-4H-1,2,4-triazol-

1-ium-5-yl)prop-1-en-1-olate (R). b) Plot of the absorbance A at 618 nm vs. time for the 

reaction of R (c = 1.1 × 10–4 M) with 2a (c = 1.3 × 10–5 M) in THF at 20 °C with the calculated 

absorbance for the attack of the C-attack (dashed line; kobs = 5.80 s–1). Inlay: Linear correlation 

of the first-order rate constants kobs for the C-attack vs. [R].  
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Scheme 10: Ambident reactivity of phenolates investigated by Ofial and co-workers.[18] 

Ofial et al. investigated the ambident reaction of phenolates with benzhydrylium ions (Scheme 

10). They found a fast attack of the phenolate oxygen atom which yielded the benzhydryl ethers 

as products. This attack is reversible and followed by slow and irreversible attack of the C4 ring 

carbon of the phenolate. Thus, the oxygen-substituted products of phenolates rearranged to the 

C4-substituted products. The reactivity of the oxygen atom was measured by UV/Vis 

spectroscopy. The subsequent isomerisation was studied by 1H NMR spectroscopy and the 

second-order rate constants k2c for reaction at the C4 carbon were derived thereof. An attack of 

the C2 carbon was not observed.[18] 

 

 

Scheme 11: Reactivity of N,N-dimethylaniline (1a) under thermodynamic control.[19]  

A wide range of reactions of eletrophiles with substituted anilines and phenols was studied by 

Chupakhin et al. Reactions of N,N-dimethylaniline (1a) with electron-deficient arenes in 

butanol at reflux are shown in Scheme 11. Thus, the reactions are under thermodynamic control. 

This is reflected by the obtained product. For the reaction of N,N-dimethylaniline (1a) with 

azolpyrimidines (S) they found quantitative to no conversion, depending on the substituent at 

the azolpyrimidine (quantitative for R = CF3, 50% conversion for R = H, no conversion for R 

= NH2). As expected from the reaction conditions, no reaction product of the attack of the 

nitrogen atom of the dimethylamino group was found. Correspondingly, no conversion was 

observed reacting N,N-dimethyl-para-toluidine (1e) with azolopyrimidines (S), which was 

attributed to a steric hindrance of the dimethylamino group.[19] 

2 

S 
1a 
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Scheme 12: Ambident reactivity of primary and tertiary anilines in DMSO at 35 °C.[1d] 

Chupakhin et al. also studied the ambident reactivity of primary and tertiary anilines with the 

N-methylacridinium ion (T). With tertiary anilines, a charge transfer complex was obtained 

with a broad absorption band at 540–580 nm. With a large excess of primary anilines it was 

possible to shift the equilibrium towards the N-adduct even at room temperature in DMSO. 

Thus, both species, the N-adduct as well as the C4 substitution product of aniline have been 

observed, but the ratio is dependent on the rest R of the amine (Scheme 12 and Table 2). In 

general, the methyl substituents at the nitrogen atom hinder a reaction at the nitrogen atom. 

Introducing substituents to the aromatic ring influences the ratio of carbon to nitrogen attack. 

A methyl group in ortho position (Table 2, entry 2) gives the C4 attack exclusively, while a 

methyl group in meta position, decreases the ratio to 2:1 (Table 2, entry 3). High yields of the 

N-adduct were found, if the C4 atom is blocked (Table 2, entry 4+5), but also a substitution at 

the C2 carbon was observed in the case of p-toluidine (Table 2, entry 4).[1d] 

 

 

 

T 

+ T 

+ T 
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Table 2: Product ratio of the reactions of N-methylacridinium ion (T) with anilines in DMSO-

d6 at 35°C after 3 h.[1d] 

Amine C2 substitution [%] C4 substitution [%] N-adduct [%] 

Aniline – 80 20 

o-Toluidine – 100 – 

m-Toluidine – 66 34 

p-Toluidine 28 – 72 

p-Anisidine – – 100 

 

 

Project Proposal 

 

Experimental data for the reactivity of N,N-dimethylaniline (1a) with benzhydrylium ions 2 

was not available[5g, 5h] and only an estimate of the reactivity at the C4 carbon was made.[13c] 

The four different reaction sites might react parallel with the cationic electrophiles 2 and lead 

to multi-exponential decays of the monitored absorbance of these. Literature reports on the 

kinetics of ambident nucleophiles always find a fast and reversible reaction of the electron rich 

heteroatom with the benzhydrylium ions first, and a slow reaction of a carbon atom, if 

present.[5h, 6e, 18]  

Many parameters, like the solvent or the substitution pattern at the N,N-dialkylated anilines 1 

have effects on the reactivity and the ratio of carbon to nitrogen attack.[1d] We therefore decided 

to study beside N,N-dimethylaniline (1a), various substitution patterns, to put the experimental 

results in a broader context. Thus, the effect of alkyl groups on the reactivity of anilines, like 

ethyl groups (N,N-diethylaniline (1b)) and of the cyclic five-membered ring                                   

(1-phenylpyrrolidine (1c)) and six-membered ring (1-phenylpiperidine (1d)) were studied. 

Additionally, the effect of a para substitution at the aromatic ring was investigated                   

(N,N-dimethyl-para-toluidine (1e) and N,N-dimethyl-para-anisidine (1f)). As reaction partner, 

several benzhydrylium ions, with an E parameter of around –5, were chosen as reference 

electrophiles (Table 3 and Figure 6), as the N parameter of the C4 carbon of 1a was estimated 

to be 5.5 and the N parameter of the nitrogen atom can be estimated around 13 (Figure 4). 
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Figure 6: N,N-Dimethylaniline (1a) and derivatives (1b–f) studied with benzhydrylium ions 2 

in this work. Gas-phase basicities (GB) are in kcal mol–1 (1 kcal mol–1 = 4.184 kJ mol–1). pKaH 

and GBexp values were taken from Ref. [20]. [a] Averaged value. [b] Taken from Ref. [21]. [c] 

Taken from Ref. [22]. [d] Taken from Ref. [23]. 

The pKa values of the anilines 1a–f do not differ dramatically (Figure 6). In water the most 

basic one is the N,N-diethylaniline (1b), the least basic one (more than two pKaH units less basic) 

is 1-phenylpyrrolidine (1c). The para substituted anilines 1e and 1f are, as expected, more basic 

than the parent compound 1a, but not as basic as the N,N-diethylsubstituted 1b. Unfortunately, 

pKaH values in acetonitrile are not available for all anilines 1a–f, but a similar trend is found. In 

the row of 1a, 1b, 1e and 1f, N,N-dimethylaniline (1a) is the least basic one, but N,N-dimethyl-

para-anisidine (1f) is slightly more basic than N,N-diethylaniline (1b).  

We determined rate and equilibrium constants in polar aprotic solvents, namely in acetonitrile 

and dichloromethane. If not mentioned otherwise, the solvent used is acetonitrile. For clarity 

the counter ions of the benzhydrylium ions, which are tetrafluoroborate (BF4
–) in case of 2a–g 

and bromide (Br–) in case of the significantly more reactive 2h, are mostly omitted (Table 3). 
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Table 3: Benzhydrylium tetrafluoroborates 2 employed as reference electrophiles in this 

study.[24]  

 

Electrophile 

 

R1 R2 No. 
E 

parameter 

λmax [nm] 

in 

acetonitrile 

λmax [nm] 

in 

dichloromethane 

(pyr)2CH+     C4H8 (cycl.) 2a –7.69 612 620 

(dma)2CH+ Me Me 2b –7.02 605 613 

(mpa)2CH+ Ph Me 2c –5.89 613 623 

(mor)2CH+    C2H4-O-C2H4 (cycl.) 2d –5.53 612 621 

(dpa)2CH+ Ph Ph 2e –4.72 645 674 

(mfa)2CH+ CH2CF3 Me 2f –3.85 586 593 

(pfa)2CH+ CH2CF3 Ph 2g –3.14 592 601 

(tol)2CHBr 

 

2h 3.63[a] -[b] -[b] 

[a] E parameter of the corresponding cation (tol)2CH+. [b] Not used for photometric studies. 
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Results and Discussion 

Product Studies 

As outlined in Scheme 1, various products can be formed when N-phenyl dialkylamines react 

with carbocations. Product studies for the reactions of 1 with the reference electrophiles 2 were 

performed to elucidate the product structures and the selectivity of their formation.  

To the deeply blue-coloured solutions of the benzhydrylium ions 2 in dry solvents (acetonitrile 

or dichloromethane) the anilines 1 were added dropwise in slight excess (≈ 1.1 equiv.). 

Complete decoloration of the solutions was not achieved, indicating that a small amount of 2 

remained in the reaction mixture. After TLC showed no further conversion, the mixture was 

subjected to basic aqueous workup and purified by flash chromatography. The reactions of 1a, 

1b and 1d with the benzhydrylium ions 2b, 2d and 2f furnished triarylmethanes 3 in good yields 

(Table 4). Tough, the reaction conditions had not been optimized. Nevertheless, some 

significant differences are observed. The reaction of N,N-dimethylaniline (1a) with (dma)2CH+ 

(2b) furnished the 4,4',4''-methanetriyltris(N,N-dimethylaniline) (3ab) in good yield in 48 h. 

Reacting the more reactive benzhydrylium ion (mfa)2CH+ (2f) with 1a furnished the 

corresponding triarylmethane 4,4'-((4-(dimethylamino)phenyl)methylene)bis(N-methyl-N-

(2,2,2-trifluoroethyl)aniline) (3af) also in good yield within 18 h. The reaction of 2f with            

1-phenylpiperidine (1d) was completed within 1 h and after aqueous workup the 4,4'-((4-

(piperidin-1-yl)phenyl)methylene)bis(N-methyl-N-(2,2,2-trifluoroethyl)aniline) (3df) was 

isolated as product of the attack of the C4 carbon. Reacting N,N-diethylaniline (1b) with 

(dma)2CH+ (2b) produced 4,4'-((4-(diethylamino)phenyl)methylene)bis(N,N-dimethylaniline) 

(3bb) in good yields but after a reaction time of 5 d. The extraordinary long reaction time is 

due to total lack of visible decolouration. The reaction was quenched as no further conversion 

was detected. Aside from the reaction time, the result is equal to the result of the reaction of 

N,N-dimethylaniline (1a) with 2b. Again, using the more reactive cation (mor)2CH+ (2d) led to 

4-(bis(4-morpholinophenyl)methyl)-N,N-diethylaniline (3bd) in 24 h. Other reaction products 

than the triarylmethanes 3 were not observed under these reaction conditions. The isolated 

powders were slightly blue or violet, or became slightly coloured within a few hours, indicating 

decomposition of a very small amount of the product. This degradation did not affect the 

analytical data of the obtained compounds, as the isolated compounds stayed analytically pure 

over several days.  
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Table 4: Yields and reaction times of the reactions of N,N-dialkylated anilines 1a, 1b and 1d 

with benzhydrylium ions 2 in acetonitrile at room temperature.  

 

Aniline Alk Electrophile R1 R2 
Reaction 

time[a] 

Product, 

yield[b] 

1a Me (dma)2CH+ (2b) Me Me 48 h 3ab, 70% 

1a Me (mfa)2CH+ (2f) Me CH2CF3 18 h 3af, 84%[c] 

1b Et (dma)2CH+ (2b) Me Me 5 d 3bb, 75% 

1b Et (mor)2CH+ (2d) C2H4-O-C2H4 (cycl.) 24 h 3bd, 84% 

1d C5H10 (cycl.) (mfa)2CH+ (2f) Me CH2CF3 1 h 3df, 87% 

[a] Reaction conditions not optimized. [b] Isolated yields. [c] Dichloromethane was used as 

solvent. 

 

  

 MeCN 
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Nucleophilicity of N,N-dimethylaniline (1a)  

 

The unambiguous results of the product studies encouraged us to investigate the kinetics of 

these reactions. The reactions of N,N-dimethylaniline (1a) with benzhydrylium ions 2 were 

monitored photometrically or by time-resolved 1H NMR spectroscopy. The advantage of 1H 

NMR spectroscopy are that relatively high concentrations of reactants are employed, which 

accelerates the reaction. A disadvantage is the sensitivity of this method, as nearly equimolar 

ratios of the reaction partners are necessary. Thus, pseudo first-order conditions cannot be 

applied. Therefore, the rate law for second-order reactions (2) was integrated to Equation 3. 

 

       

    

 

Exemplary the reaction of N,N-dimethylaniline (1a) with (dma)2CH+ BF4
– (2b) in CD3CN at 

23 °C is shown (Figure 7). The second-order rate constant k2 = 1.18 × 10–2 M–1 s–1 is the slope 

of the correlation. In analogy to the product studies, the time-resolved 1H NMR spectra clearly 

show the formation of the para-substituted product (see Figure S4 in the Supporting 

Information).  

The same reaction was followed by UV/Vis spectroscopy. For all photometrically studied 

combinations, N,N-dimethylaniline (1a) was added in excess (> 10 equivalents) to achieve 

pseudo-first-order conditions. The pseudo-first-order rate constants kobs (s–1) were obtained by 

least-squares fitting of the monoexponential function At = A0 e–kobst + C to the time-dependent 

absorbance decays of the electrophiles. Plots of kobs versus the nucleophile concentrations were 

linear for most reactions with the reference electrophiles. The second-order rate constants k2 

(M–1 s–1) were obtained from the slopes of these plots, according to eq. 4, were k0 is one or 

several background reactions, with e.g. the solvent or residual water, which may or may not 

occur.  

kobs = k2 [Nu] + k0           (4) 

Y 

(2) 

(3) 

1a 

1a 1a 
1a 
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Figure 7: a) Reaction of N,N-dimethylaniline (1a) with (dma)2CH+ BF4
– (2b) in CD3CN at 

23 °C. b) Decay of the relative concentration of (dma)2CH+ BF4
– (2b; c = 2.32 × 10–2 M) while 

reacting with N,N-dimethylaniline (1a; c = 7.13 × 10–2 M) in CD3CN at 23 °C. c) Determination 

of the second-order rate constant by plotting time versus Y = ([1a]0−[2b]0)–1ln([2b]0([2b]t 

+[1a]0−[2b]0)/[1a]0[2b]t) (k2 = 1.18 × 10–2 M–1 s–1, data points up to 50% conversion were 

used). 

Monitoring the absorbance of (dma)2CH+ (2b) when reacting with 1a by UV/Vis spectroscopy, 

an unexpected behaviour was found, as the absorbance of the 2b drops significantly in the first 

seconds (Figure 3). Excluding this time range from the fit of the monoexponential function       

At = A0 e–kobst + C the second-order rate constants k2 were obtained from the slopes of the linear 

plots of kobs against the nucleophile concentrations (inlay in Figure 3b), yielding a of k2 = 9.91 

× 10–3 M–1 s–1, with is only 16% slower than the k2 obtained by 1H NMR spectroscopy at the 
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slightly evaluated temperature (k2 = 1.18 × 10–2 M–1 s–1 in CD3CN at 23 °C). Therefore it can 

be concluded, that this reaction is the attack of the 1a’s C4 carbon atom. However, the initial 

drop of the absorbance could also be evaluated using least-squares fitting of the exponential 

function At = A0 e–kobst + C to the time-depending absorbance (Figure 3c). This shows clearly the 

appearance of a second reaction. 

NN
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Figure 8: a) Reaction of N,N-dimethylaniline (1a) with (dma)2CH+ BF4
– (2b) in CH3CN at 

20 °C. b) Plot of the absorbance A at 605 nm vs. time for the reaction of N,N-dimethylaniline 

(1a; c = 1.67 × 10–3 M) with 2b (c = 1.16 × 10–5 M) in acetonitrile at 20 °C with the calculated 

absorbance (green line; kobs = 1.48 × 10–5 s–1). Inlay: The slope of the linear correlation of the 

first-order rate constants kobs with the nucleophile concentrations corresponds to the second-

order rate constant k2 (CH3CN, 20 °C) for the attack of the C4 carbon of 1a at the carbocation 

2b. Correlation line: kobs = 9.91 × 10–3 M–1 s–1 [1a] + 1.14 × 10–7 s–1, R2 = 0.9988).                             

c) Enhancement of the first seconds. A unexpected sudden drop of the absorbance of 2b is 

found. It can be described by another monoexponential function (red line; At = A0 e–kobst + C with 

a kobs = 2.28 × 10–2 s–1).   
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Benzhydrylium ions 2 can react with N,N-dimethylaniline (1a) at four different reaction sides 

(Scheme 1). Product mixtures of the attacks at the 1a’s nitrogen, C2 or C4 atom has been 

reported in the literature. [1a, 1b, 1d] To clarify the regioselectivity of the reactions, Florian 

Achrainer from the Zipse group performed quantum mechanics calculations at B2PLYP-

D3(FC)/G3MP2large//M06-2X/6-31+G(d) level of theory of the reactions of carbocations 2 

with N,N-dimethylaniline (1a) in the gas phase. The reaction of N,N-dimethylaniline (1a) with 

three different electrophiles was studied: two benzhydrylium ions 2x (R = H) and 2b (R = 

NMe2) and the prop-2-yl cation 2y, as a sterically more demanding alternative to the methyl 

cation (Figure 9).  

 

 

Figure 9: Carbocations 2b, 2x and 2y used for quantum-chemical studies.  

As expected the most exothermic reaction enthalpies were obtained for the reaction of the prop-

2-yl cation (2y; black bars in Figure 10) with the nitrogen of the N,N-dimethylaniline (1a) 

(<ΔHN> = –267.6 kJ mol–1), followed by addition to the para position (<ΔHpara> = –248.2 kJ 

mol–1). A similar trend is observed for the parent benzhydrylium ion 2x (red bars in Figure 10) 

with reaction enthalpies of <ΔHN> = –119.0 kJ mol–1 for the attack of the nitrogen atom and 

<ΔHpara> = –102.2 kJ mol–1 for addition to the para position of 1a. 
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Figure 10: Reaction enthalpies of N,N-dimethylaniline (1a) with carbocations (E+) 2x (red), 2b 

(blue) and 2y (black) at B2PLYP-D3(FC)/G3MP2large//M06-2X/6-31+G(d) level of theory in 

the gas phase for the reaction at the C2 carbon (“ortho”), the C4 carbon (“para”) and the nitrogen 

atom (“N”) of N,N-dimethylaniline (1a). 

Interestingly, the calculations for (dma)2CH+ (2b) show positive reaction enthalpies for the 

formation of the C–C bound adduct at the para position (<ΔHpara> = +22.1 kJ mol–1). This 

reflects the increased stability of the reactant electrophile. Inclusion of implicit solvation using 

a continuum model (SMD/B3LYP/6-31G(d)) with dichloromethane or acetonitrile as respective 

solvent show smaller reaction enthalpies compared to the gas phase (Figure 11). The reaction 

enthalpies in acetonitrile are even smaller than those obtained in dichloromethane. Negative 

reaction enthalpies were found for the reaction of 1a with 2x, but no change of the 

thermochemical results with the cation (dma)2CH+ (2b). The gap between the theoretical studies 

and the experimental results is most probably due to high stability of the re-aromatised product 

3ab. The experimentally confirmed exclusive formation of the product resulting from the attack 

of the C4 atom of 1a at the electrophiles proves the occurrence of this reaction (Table 4, 

entry 1). The reaction enthalpies for the formation of the product 3ab have not been calculated. 

 

(Me2N-C6H4)2CH+ 

Ph2CH+ 

(H3C)2CH+ 
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Figure 11: Boltzmann-averaged reaction enthalpies for the reaction of N,N-dimethylaniline (1a) 

with carbocations (E+) 2x (red), 2b (blue) and 2y (black) applying an implicit solvation model 

(SMD/B3LYP/6-31G(d)). 

In conclusion, the smallest reaction enthalpies of N,N-dimethylaniline (1a) with (dma)2CH+ 

(2b) was found for the attack of the nitrogen atom. The attack at the ortho and para carbon 

atom was found to be less favourable. The C2 position is statistically represented twice, but still 

energetically not favourable. A product of the attack of the C2 carbon was not found in the 

product studies. The abstraction of a hydride was not calculated, but all time-resolved 1H NMR 

spectra of reaction mixtures of N,N-dialkylated anilines 1a–c with benzhydrylium cations 2a+b 

did not indicate products originating from hydride transfer. The calculations support, therefore, 

an initial reaction of the nitrogen atom of 1a at carbocations and a slower attack of the C4 

carbon atom. 

Therefore, we suggest in line with the literature,[5h, 6e, 18] that the first decay of the 

benzhydrylium ion 2 absorbance represents the attack of the electron rich nitrogen at the 

benzhydryl ion 2, leading to an instable ammonium intermediate. The slower reaction is the 

attack of the C4 carbon atom of the aromatic ring. The attack of the C2 carbon atom was 

excluded due to the steric demand, the calculations shown above and the absence of a C2 

substituted product in the product studies. After the formation of a Wheland complex via the 

(Me2N-C6H4)2CH+ 

Ph2CH+ 

(H3C)2CH+ 
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attack of the carbon atom, a proton is released. This may protonate the formed product 3 as well 

as a free aniline 1a. This protonation does not affect the kinetic analysis, as only up to one 

equivalent of 1a can be protonated and a huge excess of 1a (> 10 equivalents over the 

electrophile 2) is used. Thus, pseudo-first-order conditions are ensured during the entire 

reaction time. A hydride shift was also excluded, as the resulting diarylmethane would be stable 

but was not observed, neither in the product studies, nor in the time-resolved 1H NMR 

spectroscopic studies.  

After evaluation of the time-dependence absorption of the benzhydrylium ions 2 when reacting 

with N,N-dimethylaniline (1a), the second-order rate constants k2 of the attack of the nitrogen 

or C4 atom were obtained from the slopes of the linear plots of kobs vs. [1a] (Figure 12) and are 

listed in Table 5. 

 

 

Figure 12: a) Reaction of N,N-dimethylaniline (1a) with (dma)2CH+ BF4
– (2b) in CH3CN at 

20 °C. The slope of the linear correlation of the first-order rate constants kobs with the 

nucleophile concentrations corresponds to the second-order rate constant k2 (CH3CN, 20 °C) 

for the attack at the carbocation 2b b) of the nitrogen atom of 1a and c) of the C4 carbon of 1a.  

kobs = 11.8 M–1 s–1 [1a] + 5.16 × 10–3 s–1

R2 = 0.9887

0.00

0.01

0.02

0.03

0.04

0.05

0.0000 0.0011 0.0022 0.0033

k o
bs

/ s
–1

[1a] / M

kobs = 9.91 × 10–3 M–1 s–1 [1a] + 
1.14 × 10–7 s–1

R2 = 0.9988

0.00000

0.00001

0.00002

0.00003

0.00004

0.0000 0.0012 0.0024 0.0036

k o
bs

/ s
–1

[1a] / M

b) 

a) 

c) 



 

179 
 

Table 5: Second-order rate constants (k2, 20 °C) for the reactions of benzhydrylium 

tetrafluoroborates 2 with N,N-dimethylaniline (1a) in acetonitrile and resulting N and sN 

parameters. 

Nucleo-

phile 
Solvent 

Reac-

tion 

Site 

N 

(sN) 

Reference 

electrophile 

E 

para-

meter 

k2 (M–1 s–1) lg k2 

 

 

 

 

MeCN 

C4 
5.83 

(1.69) 

(pyr)2CH+ (2a) 

(dma)2CH+ (2b) 

(dma)2CH+ (2b) 

(mpa)2CH+ (2c) 

(mor)2CH+ (2d) 

(dpa)2CH+ (2e) 

(mfa)2CH+ (2f) 

(pfa)2CH+ (2g) 

–7.69 

–7.02 

–7.02 

–5.89 

–5.53 

–4.72 

–3.85 

–3.14 

1.01 × 10–3 

9.91 × 10–3 

1.18 × 10–2 

9.39 × 10–1 

1.97 

89.7 

27.6 

504 

–3.00 

–2.00 

–1.93[a, b] 

–0.03 

0.29 

1.95 

1.44[a] 

2.70[a] 

 N 
8.49 

(0.79) 

(dma)2CH+ (2b) 

(mor)2CH+ (2d) 

(dpa)2CH+ (2e) 

(mfa)2CH+ (2f) 

(pfa)2CH+ (2g) 

–7.02 

–5.53 

–4.72 

–3.85 

–3.14 

11.5 

260 

1.51 × 103 

5.53 × 103 

1.12 × 104 

1.06 

2.41 

3.18 

3.74 

4.05 

[a] Excluded from the determination of N and sN parameter. [b] Measured at 23 °C by 1H NMR 

spectroscopy.  

The second-order rate constants k2 correlate linearly with the electrophilicity parameters E of 

the benzhydrylium cations 2, as claimed by eq. 1 (Figure 13). The N and sN parameters of N,N-

dimethylaniline (1a) were derived as the intercepts on the abscissa (N = –E at log k2 = 0; N = 

8.49 for the attack of the nitrogen atom and N = 5.83 for the attack of the C4 ring carbon) and 

the slopes of these correlations (sN = 0.79 for the attack of the nitrogen atom and sN = 1.69 for 

the attack of the C4 ring carbon) reflecting the susceptibilities of N,N-dimethylaniline (1a) 

toward changes of the reactivities of the electrophiles. The second-order rate constants of the 

reactions with (mfa)2CH+ (2f) and (pfa)2CH+ (2g) were not used to derive the N and sN 

parameters as they differ dramatically from the correlation line, as the attack of the nitrogen 

and the carbon atom cannot be separated for the kinetic evaluation. 
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Figure 13: Correlation of the logarithmized second-order rate constants lg k2 (MeCN, 20 °C) 

for the reactions of N,N-dimethylaniline (1a) at the nitrogen atom (squares) and the C4 ring 

carbon (circles) with the electrophiles 2 with their respective electrophilicity parameters E. The 

N parameters were derived as the intercepts on the abscissa (stroked line, N = –E at lg k2 = 0;  

N = 8.49 for the attack of the nitrogen atom and N = 5.83 for the attack of the C4 ring carbon), 

the sN parameters are the slopes of the correlation line (sN = 0.79 for the attack of the nitrogen 

atom and sN = 1.69 for the attack of the C4 ring carbon). The open symbols were not used for 

the calculation of the correlation line.  

The reactivities of aliphatic tertiary amines were studied by Mayr et al. in acetonitrile and 

dichloromethane.[5h] Qualitatively, the thermodynamic stabilities of the quaternary ammonium 

salts in acetonitrile were found to decrease for a given benzhydrylium ion from the cyclic 

tertiary amines, like N-methylpiperidine or N-methylmorpholine, to the non-cyclic trialkylated 

amine NEt3. The formation of ammonium salts from benzhydrylium ions and tertiary amines in 

dichloromethane was found to be thermodynamically even less favourable than in acetonitrile. 

However, it was neither possible to determine the equilibrium constants, nor were any aromatic 

amines studied in that work.[5h] It is therefore not surprising, that it was neither possible to 

isolate nor observe by NMR spectroscopic methods quaternary ammonium salts in this work. 
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Nucleophilicity of N,N-diethylaniline (1b) 

 

Analogous to the reaction of (dma)2CH+ BF4
– (2b) with N,N-dimethylaniline (1a) the time-

resolved 1H NMR spectra of the reaction of (pyr)2CH+ BF4
– (2a) with N,N-diethylaniline (1b) 

showed the formation of the para-substituted product (Figure 14). The second-order rate 

constant k2 = 7.17 × 10–4 M–1 s–1 were obtained from the linear correlation of Y vs. t according 

to eq. 3 (Figure 14c). 

 

NN

2a

BF4

NN

HBF4

N
Et Et

20 °C

CH3CN
+

N
Et Et

1b

+

 

 

Figure 14: a) Reaction of N,N-diethylaniline (1b) with (pyr)2CH+ BF4
– (2a) in CD3CN at 20 °C. 

b) Decay of the relative concentration of (pyr)2CH+ BF4
– (2a; c = 3.65 × 10–2 M) while reacting 

with N,N-diethylaniline (1b; c = 7.48 × 10–2 M) in CD3CN at 20 °C. c) Determination of the 

second-order rate constant by plotting time versus Y = ([1b]0−[2a]0)–1ln([2a]0([2a]t 

+[1b]0−[2a]0)/[1b]0[2a]t) (k2 = 7.17 × 10–4 M–1 s–1, data points up to 50% conversion were 

used). 
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When photometric UV/Vis spectroscopy was applied to monitor the reactions of benzhydrylium 

ions 2 with 1b, again a bisexponential decay was found, indicating the occurrence of two 

different reactions (Figure 15).  

 

  

Figure 15: a) Reaction of N,N-diethylaniline (1b) with (mpa)2CH+ BF4
– (2c) in CH3CN at 20 °C. 

b) Plot of the absorbance A at 613 nm vs. time for the reaction of N,N-diethylaniline (1b) (c = 

2.97 × 10–4 M) with 2c (c = 9.25 × 10–6 M) in acetonitrile at 20 °C with the calculated decay 

(dashed line). Plot of the first-order rate constants kobs vs. the concentration of 1b (inlay, 

correlation line kobs = 4.24 M–1 s–1 [1b] + 1.34 × 10–6 s–1, R2 = 0.9997). c) Enhancement of the 

first seconds, showing the significant deviation between measured and absorbance calculated 

for the attack of the C4 carbon.  

Thus, the results were analogous to the reactions of N,N-dimethylaniline (1a) with 

benzhydrylium ions 2. A fast but reversible attack of the nitrogen atom and slow but irreversible 

attack of the C4 carbon of 1b at the cationic electrophiles. The second-order rate constants for 

these attacks are listed in Table 6. 
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Table 6: Second-order rate constants (k2, 20 °C) for the reactions of benzhydrylium 

tetrafluoroborates 2 with N,N-diethylaniline (1b) in acetonitrile and resulting N and sN 

parameters. 

Nucleo-

phile 
Solvent 

Reac-

tion 

Site 

N 

(sN) 

Reference 

electrophile 

E 

para-

meter 

k2 (M–1 s–1) lg k2 

 

 

 

MeCN 

C4 
6.28 

(1.64) 

(pyr)2CH+ (2a) 

(dma)2CH+ (2b) 

(mpa)2CH+ (2c) 

(mor)2CH+ (2d) 

(dpa)2CH+ (2e) 

–7.69 

–7.02 

–5.89 

–5.53 

–4.72 

7.17 × 10–4 

2.50 × 10–1 

4.24 

17.9 

354 

–3.14[a] 

–0.60[a] 

0.63 

1.25 

2.55 

 N 
10.29 

(0.62) 

(dma)2CH+ (2b) 

(mor)2CH+ (2d) 

(mfa)2CH+ (2f) 

–7.69 

–7.02 

–3.85 

80.7 

1.23 × 103 

7.95 × 103 

1.91 

3.09 

3.90 

[a] Excluded from the determination of N and sN parameter due to significant deviations. 

 

The N and sN parameters are again obtained by linear correlation of the logarithmized second-

order rate constants lg k2 with the electrophilicity parameters E of the benzhydrylium ions 2 

(Figure 16). The sN parameter for the attack of the C4 atom of 1b is almost identical to that for 

the attack of the C4 atom of 1a (sN = 1.69), showing the consistency of this method. However, 

1b is more reactive than 1a, for the attack of the nitrogen (1a: N = 8.49 sN = 0.79) as well as for 

the attack of the C4 carbon (1a: N = 5.83 sN = 1.69). This shows the inductive effect of the ethyl 

groups compared to the methyl groups, which is also reflected by the higher basicity of 1b in 

comparison to 1a (Figure 6). 
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Figure 16: Correlation of the logarithmized rate constants lg k2 (MeCN, 20 °C) for the reactions 

of N,N-diethylaniline (1b) at the nitrogen atom (squares) and the C4 ring carbon (circles) with 

the electrophiles 2 with their electrophilicity parameters E. The N parameter was derived as the 

intercept on the abscissa (stroked line, N = –E at lg k2 = 0; N = 10.29 for the attack of the 

nitrogen atom and N = 6.28 for the attack of the C4 ring carbon), the sN parameter is the slope 

of the correlation line (sN = 0.62 for the attack of the nitrogen atom and sN = 1.64 for the attack 

of the C4 ring carbon). The open symbols were not used for the calculation of the correlation 

line.  
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Nucleophilicity of N,N-dimethylaniline (1a) and N,N-

diethylaniline (1b) in dichloromethane 

 

Monitoring the reactions of benzhydrylium ions 2a–f with N,N-dimethylaniline (1a) in 

dichloromethane by UV/Vis photometry, again a bisexponential decay was observed. The 

attack of the nitrogen atom of 1a at the cations 2 in dichloromethane could be evaluated 

analogous as in the case of acetonitrile. However, for the correlation of the first-order rate 

constants kobs against [1a] upward curvatures (Figure 17a) instead of a linear correlation was 

obtained. This indicates a rate-determining proton transfer subsequent to the attack of 1a’s C4 

atom on the benzhydrylium ion 2, in which a second molecule 1a acts as Brønsted base. As the 

direct determination of k2 from the slopes of the plots of kobs versus [1a] was not possible in 

these cases, the method of evaluation for these kinetics had to be changed. 

 

Figure 17: a) Reaction of N,N-dimethylaniline (1a) with (mfa)2CH+ BF4
– (2f) in CH2Cl2 at 

20 °C. Plot of b) kobs versus [1a] and c) [1a]/kobs versus 1/[1a] for the reaction of 1a with 

(mfa)2CH+ (2f) in dichloromethane at 20 °C. 
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Figure 18: Reaction of N,N-dimethylaniline (1a) with benzhydrylium ion (2, E) in 

dichloromethane. The rate determining step is shifted from the initial attack of the C4 carbon 

to the proton transfer kb and kp, respectively. At high nucleophile concentrations, the direct 

proton-transfer (kp) as well as the proton-transfer after the irreversible formation of the carbon-

carbon bond (kp’) can be neglected. A steady-state concentration for the intermediate I is 

assumed. 

For the reactions of N,N-dimethylaniline (1a) with benzhydrylium ions 2a–f in 

dichloromethane, the proton transfer becomes rate determining and the measured kobs values do 

not correlate linearly with [1a] anymore (Figure 18). The kinetics follow therefore the rate law 

of Equation 5, which is derived in the Supporting Information; it can be rewritten as Equation 6 

(on page 253).[25]  

  

Indeed, the plots of [1a]/kobs versus 1/[1a] were found to be linear for the reactions of 1a with     

2a–f in dichloromethane (Figure 17b), which shows that the formalism holds for these cases in 

a wide range of concentrations of 1a. At higher concentrations of 1a again a linear correlation 
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between kobs and [1a] is found and Equation 6 simplifies to Equation 4, as the second term tends 

to zero. The same is true for a very slow, negligible reverse reaction. 

The effect of the proton transfer becoming the rate determining step only occurred in 

dichloromethane, not in acetonitrile, in which the proton can also be stabilized by the solvent. 

The effect did also not occur, using the about one pKaH unit more basic nucleophile                    

N,N-diethylaniline (1b; pKa in acetonitrile of 1a = 11.43, of 1b = 12.4, Figure 6).[20-21] 

Second-order rate constants for the reactions of 1a and 1b with the reference electrophiles 2 in 

dichloromethane are collected in Table 7. 

Table 7: Second-order rate constants (k2, 20 °C) for the reactions of benzhydrylium 

tetrafluoroborates 2 with tertiary alkylated anilines 1a and 1b in dichloromethane and resulting 

N and sN parameters. 

Nucleo-

phile 
Solvent 

Reac-

tion 

Site 

N 

(sN) 

Reference 

electrophile 

E 

para-

meter 

k2 (M–1 s–1) lg k2 

 

 

 

 

 

CH2Cl2 

C4 
5.01 

(1.22) 

(pyr)2CH+ (2a) 

(dma)2CH+ (2b) 

(mpa)2CH+ (2c) 

(mor)2CH+ (2d) 

(dpa)2CH+ (2e) 

(mfa)2CH+ (2f) 

–7.69 

–7.02 

–5.89 

–5.53 

–4.72 

–3.85 

2.72 × 10–4 

3.70 × 10–3 

2.11 × 10–1 

3.40 × 10–1 

2.99 

11.5 

–3.57 

–2.43 

–0.68 

–0.47 

0.48 

1.06 

 N 
9.95[c] 

(0.44) 

(mpa)2CH+ (2c) 

(mfa)2CH+ (2f) 

–5.89 

–3.85 

60.7 

476 

1.78 

2.68 

 

CH2Cl2 

 

 

C4 

 
 

 

4.92 

(1.30) 

(pyr)2CH+ (2a) 

(dma)2CH+ (2b) 

(mor)2CH+ (2d) 

(dpa)2CH+ (2e) 

(pfa)2CH+ (2g) 

–7.69 

–7.02 

–5.53 

–4.72 

–3.14 

2.98 × 10–4 

4.61 × 10–3 

6.12 × 10–2 

8.14 × 10–1 

529 

–3.53[b] 

–2.34 

–1.21 

–0.09 

2.72 

[a] Excluded from the determination of N and sN parameter. [b] Measured at 23 °C.                        

[c] Inaccurate due to the limited amount of available data points.  
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Nucleophilicity of tertiary cyclic aryl amines 1-phenylpyrrolidine 

(1c) and 1-phenylpiperidine (1d) 

Similar to the diethyl-substituted aniline (1b), 1-phenylpyrrolidine (1c) shows a bisexponential 

decay when reacting with benzhydrylium ions 2 in acetonitrile. For the reactions with 

(mfa)2CH+ (2f) and (pfa)2CH+ (2g) the k2 values for the attack of the nitrogen atom could be 

evaluated (Table 8). The N and sN parameters were obtained analogously to the N,N-dialkylated 

anilines 1a+c (Figure 21). For the attack of the nitrogen atom of 1-phenylpyrrolidine (1c) a         

N parameter of 9.87 and a slope parameter of 0.55 were determined. These are similar to the 

parameters of the N-attack of 1b (N = 10.29 and sN = 0.62). 1c’s C4 carbon is less reactive         

(N = 6.13 and sN = 1.63) and has a reactivity in between of the parameters of the C4-attack of 

1a (N = 5.83 and sN = 1.69) and 1b (N = 6.28 and sN = 1.64). The similarity of the sN parameters 

found for the of the N,N-dialkylated anilines 1a–c of 1.66±0.03 for the C4-attack and 0.67±0.12 

for the N-attack shows the consistency of these results. 

Table 8: Second-order rate constants (k2, 20 °C) for the reactions of benzhydrylium ions 2 with 

tertiary alkylated anilines 1c and 1d in acetonitrile and the resulting N and sN parameters. 

Nucleo-

phile 
Solvent 

Reac-

tion 

Site 

N 

(sN) 

Reference 

electrophile 

E 

para-

meter 

k2 (M–1 s–1) lg k2 

 

MeCN 

C4 
6.13 

(1.63) 

(pyr)2CH+ (2a) 

(mor)2CH+ (2d) 

(dpa)2CH+ (2e) 

–7.69 

–5.53 

–4.72 

2.72 × 10–3 

9.91 

186 

–2.57 

1.00 

2.27 

N 
9.87[a] 

(0.55) 

(mfa)2CH+ (2f) 

(pfa)2CH+ (2g) 

–3.85 

–3.14 

2.08 × 103 

5.15 × 103 

3.32 

3.71 

 

MeCN N[b] 
10.65 

(0.79) 

(dma)2CH+ (2b) 

(mor)2CH+ (2d) 

(mfa)2CH+ (2f) 

(pfa)2CH+ (2g) 

–7.02 

–5.53 

–3.85 

–3.14 

773 

9.71 × 103 

1.87 × 105 

9.34 × 105 

2.89 

3.99 

5.27 

5.97 

[a] Inaccurate due to the limited amount of available data points. [b] The C4 substitution was 

found as the only product (see Table 4, entry 5).  

For 1-phenylpiperidine (1d) a totally different behaviour was observed. In contrast to 1c, 

reactions of 1d with (mfa)2CH+
 (2f) followed monoexponential decays and showed full 



 

189 
 

conversions over the whole concentration range. As for the N,N-dialkylated anilines 1a–c when 

reacting with 2 only small conversions by the attack of the nitrogen atom were observed (Figure 

3c and Figure 15c), we originally expected the observation of the attack of the 1d’s C4 carbon. 

Also in the reaction of 1d with (dma)2CH+ (2b), only monoexponential decays were found. 

However, nearly full conversion was only observed for high concentrations of 1d (Figure 19).  

 

 

 

Figure 19: a) Reaction of 1-phenylpiperidine (1d) with (dma)2CH+ BF4
– (2b) in CH3CN at 

20 °C. Plot of the absorbance at 613 nm vs. time for the reaction of 1-phenylpiperidine (1d) 

with (dma)2CH+ (2b) in acetonitrile at 20 °C at low and at high concentrations of 1d. 

[2b]0 = 7.23 × 10–6 M with b) [1d] = 4.84 × 10–4 M and c) [1d] = 1.94 × 10–3 M. The linear 

dependence of [1d] vs. kobs is given over the whole concentration range (inlay). Regression line 

kobs = 773 M–1 s–1 [Nu] + 0.17 s–1, R2 = 0.9984.  
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The existence of an equilibrium in the reactions of 1d with 2b already indicates a reversible 

reaction, most likely, due to the attack of the nitrogen atom. The linear dependence of kobs vs. 

[1d] holds for the full concentration range, revealing no change in the reaction mechanism. The 

second-order rate constants are listed in Table 8. Evaluation of the k2 values according to eq. 1, 

gave a N and sN-parameter of 10.65 and 0.79 respectively (Figure 21), similar to the parameters 

found for the attacks of the nitrogen atom in the N,N-dialkylated anilines 1a–c (N parameters 

and in parenthesis sN-parameter for the attack of the nitrogen atom: 1a 8.49 (0.79), 1b 10.29 

(0.62) and 1c 9.87 (0.55)). These obtained parameters are also similar to the parameters 

obtained for the N-attack of other primary anilines and tertiary amines, studied by Mayr et al.[5g, 

5h] The sharp contrast to the behavior of 1-phenylpyrrolidine (1c) can be rationalised by taking 

the three-dimensonal shape of the molecule into account (Scheme 13).  

 

Scheme 13: Conformers of 1-phenylpiperidine (1d). Axial (left) and equatorial (right).[26] 

Theoretical studies revealed a ratio of equatorial to axial position of the phenyl ring of about 

9:1 (Eq:Ax = 92:8 (B3LYP), 87:13 (B3LYP-GD3), 84:16 (M06-2X), 83:17 (MP2/6-311G**) 

and 76:24 (MP2/cc-pVTZ)),[26] which is in good agreement with the experimental gas-phase 

electron diffraction data of 90(10):10(10).[26] The geometrical presentation of these conformers 

shows a pyramidal conformation at the nitrogen atom, whereas the minor axial conformer is 

pseudo trigonal planar.[26] Sophia Schwarz calculated the geometries of the conformers of the 

substrates 1c and 1d as well as for isopropyl cation adducts at the nitrogen and the C4 atom.[27] 

The conformation analysis was performed using the Avogadro program package. The 

energetically most stable conformers were used as starting structures for a geometry 

optimization at B3LYP/6-31++G(3df,2p) level of theory using the Gaussian09 program 

package. A subsequent frequency analysis was performed to verify the minimum structures and 

to obtain the thermal corrections to the enthalpies and Gibbs free energies at 298 K (Table 10). 

In this analysis, the axial minor conformer was not consider. 
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Table 9: Optimized structures of 1-phenylpyrrolidine (1c) and 1-phenylpiperidine (1d) (first 

line), as well as after the reaction with isopropyl cation at the nitrogen (second line) and the C4 

carbon atom (third line) (gas phase, 298 K). The dihedral angle is the angle between the two 

intersecting planes through the atom C1, N2, C3 and N2, C3, C4, respectively. 

 

 
Structure of 1c and dihedral angle 

α [°] at the nitrogen atom 

Structure of 1d and dihedral angle 

α [°] at the nitrogen atom 

reactant 
 

180.00 
 

141.82 

N-adduct 

 

118.90 

 

117.91 

C4-adduct 

 

179.74 

 

176.55 
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The differences in reactivity at the nitrogen atoms of 1c and 1d, can be rationalized with the 

different structural features. The higher reactivity at the nitrogen atom of the piperidino 

compounds compared to pyrrolidino analogues can be explained by the higher p-character of 

the nitrogen lone-pair in a five-membered ring compared with a six-membered ring. Quantum 

chemical calculations by Robert Mayer at the SMD(MeCN)/M06-2X/6-31+G(d,p) level 

confirmed the geometrically differences of 1c compared to 1d (Figure 20).  

 

 

Figure 20: Conformers of a) 1-phenylpyrrolidine (1c) and b) 1-phenylpiperidine (1d) calculated 

at the SMD(MeCN)/M06-2X/6-31+G(d,p) level of theory. The out-of-plane distances were 

calculated for the distance of the nitrogen atom and the plane defined by the three carbon atoms 

bond to the nitrogen atom. The out-of-plane distance of the nitrogen atom is 0 Å for 1c and of 

0.352 Å for 1d (left). The bond length of the C1 ring carbon to the nitrogen atom is 1.37 Å for 

1c and 1.41 Å for 1d (right). 

The distance of the nitrogen atom from the plane defined by the three carbon atoms directly 

bound to the nitrogen atom, was calculated. 1c is perfectly planar with an out-of-plane distance 

of the N atom of 0 Å, whereas the N atom of 1d is 0.352 Å out of the defined plane. The bond 

length of the C1 ring carbon to the nitrogen atom is 1.37 Å for 1c and 1.41 Å for 1d. This clearly 

shows a higher double bond character for 1c which lowers the reactivity at the nitrogen atom 

compared to 1d, but increases the reactivity at the C4 carbon atom of 1c compared to 1d. 

Nevertheless, in the reaction of 1d with (mfa)2CH+ (2f), not the N-adduct was the isolated 

product, but the tri-aryl methane, as a product of the attack of the C4 at the aniline ring (Table 

4, entry 5). The proposed reaction mechanism for the reactions of 1d with benzhydrylium ions 

b) 

a) 
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2 is, therefore, similar to the reaction mechanism of the N,N-dialkylated anilines 1a–c. A fast 

but reversible attack of the nitrogen atom, and a slow but irreversible attack of the carbon atom 

(Scheme 14). The rate constants for the isomerisation of the N-adduct to the C4 substituted 

product, were not obtained, however. 

 

 

Scheme 14: Reaction mechanism for the reactions of 1-phenylpiperidine (1d) with 

benzhydrylium ions 2 in MeCN at 20 °C.  
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Figure 21: Correlation of the logarithmized second-order rate constants for the reactions of 

reference benzhydrylium ions 2 with 1-phenylpyrrolidine (1c, filled squares) and                             

1-phenylpiperidine (1d, circles) at the nitrogen atom and at the C4 of 1-phenylpyrrolidine (1c, 

open squares) in acetonitrile at 20 °C. The N parameters were derived as the intercepts on the 

abscissa (stroked line, N = –E at lg k2 = 0; N = 10.65 for the attack of the nitrogen atom of 1d 

and N = 9.87 for the attack of the nitrogen atom of 1c and N = 6.13 for the attack of the C4 ring 

carbon of 1c), the sN parameters are the slopes of the correlation lines (sN = 0.79 for the attack 

of the nitrogen atom of 1d and sN = 0.55 for the attack of the nitrogen atom of 1c and sN = 1.63 

for the attack of the C4 ring carbon of 1c). 
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Abstraction of hydride from the CH3 group in α-position of the 

nitrogen atom 

So far, we discussed the reactions of N,N-dialkylated anilines 1 with benzhydrylium ions 2 at 

the nitrogen atom and at the C4 ring carbon. Another possible reaction is the abstraction of 

hydride from the CH3 group in α-position of the nitrogen atom. The synthetic use of the 

activation of this C–H bond was already shown in chapter 2 of this work.  

In 2015, Ofial summarized the use of tritrylium ions as a complementary probe to 

benzhydrylium ions for examining ambident nucleophilicity and demonstrated their impact on 

the determination of nucleophilicites of n-nucleophiles or hydride donors.[28] However, beside 

the hydride abstraction, an attack of the tritylium ions at the nitrogen atom of 1 or the C4 carbon 

is also possible (Scheme 15). 

 

Scheme 15: Mechanistic scenario for the reactions of tritylium ions with N,N-dimethylaniline 

(1a), and N,N-dimethyl-para-toluidine (1e) in acetonitrile. The rest R1 = OMe and R2 = H or 

OMe. 
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We performed some preliminary experiments. The time-resolved 1H NMR spectra show clearly 

the formation of the tris(4-methoxyphenyl)methane by a resonance at around 5.5 ppm, what 

proofs the abstraction of a hydride (see Figure S4 in the Supporting Information). The second-

order rate constants were obtained from the formation of tris(4-methoxyphenyl)methane 

(Figure 22; for time-resolved 1H NMR spectra see Supporting Information). The results are 

shown in Table 10. 

 

Figure 22: a) Reaction of N,N-dimethylaniline (1a) with (ani)3C+ BF4
– in CD3CN at 20 °C. ani 

= p-MeOC6H4. b) Decay of the relative concentration of (ani)3C+ BF4
– (c = 4.93 × 10–2 M) while 

reacting with N,N-dimethylaniline (1a; c = 1.03 × 10–1 M) in CD3CN at 20 °C. b) Determination 

of the second-order rate constant by plotting time versus Y = ([1a]0−[(ani)3C+]0)–1 

ln([(ani)3C+]0([(ani)3C+]t +[1a]0−[(ani)3C+]0)/[1a]0[(ani)3C+]t) (k2 = 2.71 × 10–2 M–1 s–1, data 

points up to 50% conversion were used). 
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Table 10: Second-order rate constant (k2, 20 °C) for the reactions of (ani)2Ar’C+ with               

N,N-dimethylaniline (1a) in acetonitrile. The rest ani = p-MeOC6H4 and Ar’ = Ph or ani. 

 

Nucleophile 

Proposed 

Reaction 

Side 

Solvent 
N (sN) 

parameter 

Reference 

Electro-

phile 

E 

para-

meter 

k2 (M–1 s–1) lg k2 

 

α-C–H 
aceto-

nitrile 

1.48 

(0.54)[a] 

(ani)3C+  

(ani)2PhC+ 

–4.35 

–3.04 

2.71 × 10–2[b] 

1.42 × 10–1[c] 

–1.56 

–0.85 

 

α-C–H 
aceto-

nitrile 
-  (ani)3C+ –4.35 4.78 × 10–3[b,d] –2.32 

[a] Inaccurate due to limited available data points. [b] Obtained by time-resolved 1H NMR 

spectroscopy. [c] Reaction side of the electrophile might be at the central carbon of (ani)2PhC+ 

or at the C4 of the phenyl ring.[29] [d] At 23 °C. 

Monitoring the reaction of (ani)2PhC+ with N,N-dimethylaniline (1a) photometrically via 

UV/Vis spectroscopy at 497 nm, a bisexponential decay is observed (Figure 23). Due to the 

steric demand of the tritylium ion, reactions at the C4 or even C2 carbons are unlikely. For the 

synthesis of tetraarylmethanes high temperatures are reported (> 90°C),[30] which allows us to 

exclude these reactions.  

Though the attack of nitrogen is sterically demanding, this attack is the 

most reasonable one, as the nitrogen atom is the reaction center with the highest reactivity 

present in N,N-dimethylaniline (1a) in acetonitrile (Table 5).  
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Figure 23: a) Reaction of N,N-dimethylaniline (1a) with (ani)2PhC+ BF4
– in CH3CN at 20 °C. 

b) Plot of the absorbance A at 497 nm vs. time for the reaction of N,N-dimethylaniline ([1a] = 

5.22 × 10–3 M) with (ani)2PhC+ ([(ani)2PhC+]0 = 2.72 × 10–5 M) in acetonitrile at 20 °C. ani = 

p-MeOC6H4. A kobs = 1.28 × 10–3 s–1 was obtained by least-squares fitting of the exponential 

function At = A0 e–kobst + C to the time-depending absorbance for the data points of 50-600 s. The 

calculated decay is shown as dashed line. Plot of the first-order rate constants kobs vs. the 

concentration of 1a (inlay, correlation line kobs = 1.42 × 10–1 M–1 s–1 [1a] + 5.44 × 10–4 s–1,         

R2 = 0.9994). c) Enhancement of the first seconds, showing the significant deviation between 

measured and calculated absorbance for t < 80 s. 
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The obtained experimental results should be treated with caution, as only a limited amount of 

data points is available. Nevertheless, the observed reaction is significant slower than the attack 

of the C4 carbon. The benzhydrylium ion (dpa)2CH+ (2e) (E parameter of –4.72) is of similar 

reactivity as the tritylium ion (ani)3C+ (E parameter of –4.35), but the observed reaction is 3310 

times slower when reacting (ani)3C+ with 1a. The reaction of 1a with (ani)2PhC+ is 6 times 

faster than the reaction with (ani)3C+, resulting into a N parameter of 1.48 and a sN parameter 

of 0.54. Comparing the second-order rate constants of the reaction of 1a and 1e with (ani)3C+, 

the latter is nearly 20 times slower.  

This shows the importance of the reaction partner design for a selective hydride abstraction, as 

done in Chapter 2 of this work about the C–H bond functionalisation at N-CH3 groups of 

anilines derivatives with azodicarboxylates.  

 

Reactions of benzhydrylium ions 2 with the para-substituted                             

N,N-dimethylanilines N,N,4-trimethylaniline (1e) and the                             

4-methoxy-N,N-dimethylaniline (1f) 

Monitoring the reaction of N,N-dialkylated anilines 1a–c with benzhydrylium ions 2, via 

UV/Vis spectroscopy gave bisexponential decays. This complicates the kinetic evaluation. In 

contrast, reacting 1-phenylpiperidine (1d) with 2 only the attack of the nitrogen atom was 

observed. However, the isolated product of these reactions is the substitution at the C4 carbon. 

To get further insights on the reactivity of N,N-dialkylated anilines 1, and stable and isolable 

products of the N-adduct, we investigated the reactions of para-substituted                                                         

N,N-dimethylanilines, namely the N,N,4-trimethylaniline (1e) and the 4-methoxy-N,N-

dimethylaniline (1f). The substituent patterns of 1e and 1f were chosen, as an enhancement of 

reactivity and stability of the formed N-adducts was expected through their electron donating 

effect. In addition the para position of the phenyl ring is blocked in 1e and 1f.  

The kinetics investigations revealed again a bisexponential decay for the reactions of 1e or 1f 

with the benzhydrylium ions 2b and 2d–g. Analogous to the N,N-dialkylated anilines 1–c, a 

fast but reversible reaction and a slow reaction was found. For the reaction of 4-methoxy-N,N-
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dimethylaniline (1f) with (mor)2CH+ (2d) in acetonitrile the second-order rate constant for the 

fast reaction is 278 M–1 s–1 and for the slow reaction 9.02 M–1 s–1 (Figure 24).  

 

 

 

  

Figure 24: a) Reaction of 4-methoxy-N,N-dimethylaniline (1f) with (mor)2CH+ (2d) in CH3CN 

at 20 °C. b+c) Plots of the obtained first-order rate constants kobs from the reaction of                             

4-methoxy-N,N-dimethylaniline (1f) with (mor)2CH+ (2d) versus [1f]. b) Second-order rate 

constant k2 = 278 M–1 s–1 for the fast reaction, c) Second-order rate constant k2 = 9.02 M–1 s–1 

for the slow reaction. 
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When reacting N,N-dimethyl-para-toluidine ([1e] = 8.79 × 10–4 M) with (pfa)2CH+ ([2g]0 = 

1.76 × 10–5 M) in acetonitrile at 20 °C, within seconds the formation of two equilibria was 

observed. A first equilibrium is reached after ca. 0.2 s, while a second equilibrium is reached 

after around 25 s (Figure 25). The observed first-order rate constants kobs correlated linearly 

with [1e]. A second-order rate constant for the fast reaction of 2.89 M–1 s–1 and for the slow 

reaction of 260 M–1 s–1 was obtained (see Table S57 and S59 in the Supporting Information). 

However, the reactions could also be induced by a trace impurity of the investigated batches of 

1e and 1f.  

 

The abstraction of a hydride is not reversible and not as fast as the monitored reactions. Thus, 

the hydride abstraction can be excluded for the monitored reactions. Most reasonable is 

therefore a fast attack of the nitrogen atom and a slow attack of a ring carbon. A disadvantage 

of the UV/Vis spectroscopy is that only the absorption and concentration of free benzhydrylium 

ion 2 can be followed. Direct rearrangements are not visible. Thus, the results should be treated 

as preliminary and further studies have to be performed to clarify the exact reaction mechanism. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40 60

A
at

 5
92

 n
m

t / s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.0 0.2 0.4 0.6 0.8 1.0

A
at

 5
92

 n
m

t / s

Figure 25: a) N,N-dimethyl-para-toluidine (1e) reacting with (pfa)2CH+ (2g) in acetonitrile at 

20 °C. a+b) Plot of the absorbance at 592 nm vs. time for the reaction of N,N-dimethyl-para-

toluidine ([1e] = 8.79 × 10–4 M) with (pfa)2CH+ ([2g]0 = 1.76 × 10–5 M) in acetonitrile at 20 °C. 

a) One data point per 60 ms, revealing an equilibrium reached at about 25 s. b) One data point 

per 1 ms, revealing a second equilibrium reached at about 0.2 s. 

a) 

c) b) 
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The proposed general reaction scheme is shown in Scheme 16. As the second-order rate 

constants of the fast reaction, as well as the obtained N and sN parameters (Table 11), are in the 

same range as for the nitrogen attack of the tertiary anilines 1a–c, we suggest a fast reaction at 

the nitrogen atom.  

An abstraction of a hydride is possible, but as shown for the reaction of N,N-dimethyl-para-

toluidine (1e) with (ani)3C+ (E = –4.35) several orders of magnitude slower than the reaction 

observed with (mor)2CH+ (2d; E = –5.53) and (pfa)2CH+ (2g; E = –3.14) (Table 10, entry 3 and 

Table 11, entry 1 and 2). The slower reaction could be an attack of a ring carbon. As the                             

N-adduct as well as the Wheland complex, formed by an attack of the C4 carbon, are unstable, 

the even slower reaction at the C2 carbon might take place. 

 

Scheme 16: Proposed general reaction scheme for the reaction of para-substituted                             

N,N-dimethylanilines N,N-dimethyl-para-toluidine (1e) and N,N-dimethyl-para-anisidine (1f). 
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Table 11: Second-order rate constants (k2, 20 °C) for the reactions of benzhydrylium 

tetrafluoroborates 2 with tertiary alkylated anilines N,N-dimethyl-para-toluidine (1e) and                             

N,N-dimethyl-para-anisidine (1f) in acetonitrile and resulting N and sN parameters. 

Nucleophile 

Proposed 

Reaction 

Side 

N (sN) 
Reference 

electrophile 
E parameter k2 (M–1 s–1) lg k2 

 

 

C2/C4 

 

n.d. 
(mor)2CH+ (2d) 

(pfa)2CH+ (2g) 

–5.53 

–3.14 

260 

99.5 

2.42 

1.99 

N 
12.16 

(0.50) 

(mor)2CH+ (2d) 

(dpa)2CH+ (2e) 

(pfa)2CH+ (2g) 

–5.53 

–4.72 

–3.14 

1.64 × 103 

6.76 × 103 

2.89 × 104 

3.22 

3.83 

4.46 

 

C2/C4 

 

n.d. 

 

(mor)2CH+ (2d) –5.53 9.03 0.96 

N 
9.71 

(0.58) 

(mor)2CH+ (2d) 

(pfa)2CH+ (2g) 

–5.53 

–3.14 

278 

6.59 × 103 

2.44 

3.82 

 

For the attack of the C4 carbon of 1a at (mfa)2CH+ (2f) and (pfa)2CH+ (2g) in acetonitrile, the 

obtained second-order rate constants deviate significantly from the correlation line of lg k2 vs. 

Electrophilicity parameter E of the applied benzhydrylium ions 2. Similarly the linear free 

energy relationship (Equation 1) is not applicable of the attack of the C4 carbon of 1e at 

(pfa)2CH+ (2g) and thus, a N and sN parameter could not be derived for this reaction side. 

However, for the attack of the nitrogen atom of 1e and 1f, the logarithmized second-order rate 

constants lg k2 correlate linearly with the Electrophilicity parameter E of the applied 

benzhydrylium ions 2 (Figure 26). 
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Figure 26: Correlation of the logarithmized second-order rate constants lg k2 for the reactions 

of N,N-dimethyl-para-toluidine (1e, circles) and 4-methoxy-N,N-dimethylaniline (1f, squares) 

at the nitrogen atom with the electrophiles 2 in acetonitrile with their electrophilicity parameters 

E. The N parameter are derived as the intercepts on the abscissa (N = –E at log k2 = 0; N = 12.16 

for the attack of the nitrogen atom of 1e and N = 9.71 for the attack of the nitrogen atom of 1f), 

the sN parameters are the slopes of the correlation lines (sN = 0.50 for the attack of the nitrogen 

atom of 1e and sN = 0.58 for the attack of the nitrogen atom of 1f).  

The attack of the anilines C2 carbon at the benzhydrylium ions 2 seems unlikely, but the proof 

of principle is shown by reacting 1e with (tol)2CHBr (2h, E parameter of the corresponding 

cation (tol)2CH+ is +3.63) to the ortho-substituted product 2-(di-p-tolylmethyl)-N,N,4-

trimethylbenzenammonium bromide (Figure 27). (Tol)2CH+ is way more reactive than all the 

other benzhydrylium ions used for the kinetic studies. It is reasonable to assume a first attack 

of the carbocation at the nitrogen atom, followed by a slow concerted or stepwise rearrangement 

to the nearby C2 carbon atom (Scheme 17).  
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Scheme 17: Proposed mechanism of the reaction of N,N-dimethyl-para-toluidine (1e) with 

(tol)2CHBr (2h). The formation of the N-adduct might either take place at the free 

benzhydrylium ion or follow a SN2-type mechanism. The N-adduct degenerates by a stepwise 

(left reaction pathway) or concerned (right reaction pathway) rearrangement.  
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Figure 27: a) Reaction of N,N-dimethyl-para-toluidine (1e) with (tol)2CHBr (2h) in CD3CN at 

23 °C. b) X-ray crystal structure (ORTEP protection) of the reaction product 2-(di-p-

tolylmethyl)-N,N,4-trimethylbenzenammonium bromide, which crystallized within 14 days. 

The asymmetric unit contains two formula units, one selected molecule is presented. Thermal 

ellipsoids are drawn at the 50% probability level.[31]  

 

 

  

b) 

a) 
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Conclusion 

 

The second-order rate constants (k2) for the reactions of N,N-dialkylated anilines 1 with 

benzhydrylium ions 2 were studied in acetonitrile and dichloromethane. In most cases a 

bisexponential decay of the time-dependent absorbance of the electrophiles 2 was observed. 

This is due to a fast, but reversible attack of the nitrogen atom and a slow but irreversible attack 

of the C4 carbon atom at the benzhydrylium ions 2. Nucleophilicity parameters for the attack 

of the nitrogen atom were obtained for all N,N-dialkylated anilines 1a–f. For the nucleophiles 

N,N-dimethylaniline (1a), N,N-diethylaniline (1b) and 1-phenylpyrrolidine (1c) the reactivity 

of the C4 carbon was also determined. As 1-phenylpiperidine (1d) yields the N-adduct 

quantitatively and rearranges to the thermodynamic stable triarylmethane the reactivity at the 

C4 carbon could not be determined. Product studies where performed with the nucleophiles 

1a,b+d and triarylmethanes were obtained as product of the attack of N,N-dialkylated anilines 

at the C4 carbon. The para-substituted compounds N,N-dimethyl-para-toluidine (1e) and N,N-

dimethyl-para-anisidine (1f) also showed a fast reaction at the nitrogen atom. The formed 

quaternary ammonium salts are unstable and a subsequent reaction occurs, which could not be 

clarified within this work. The attack of the nitrogen atom of the amines 1a–f, as well as the 

attack of the C4 carbon of amines 1a–c, follows the linear free energy relationship (Equation 

1). The measured rate constants correlated linearly with the electrophilicity parameters of the 

respective electrophile (Figure 13), allowing us to derive their nucleophilicity parameters N and 

sN for at least one reaction center of each investigated aniline 1 (Figure 28). The nucleophilic 

reactivities of the studied N,N-dialkylated anilines 1 for the attack of the C4 carbon are very 

similar in acetonitrile and dichloromethane, respectively. For the attack at the nitrogen atom 

they cover a range of nearly 4 orders of magnitude. For the abstraction of a hydride from the 

methyl group in α-position of the nitrogen atom a N parameter of 1.48 and sN parameter of 0.54 

was found. 
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Figure 28: N and sN parameters of the N,N-dialkylated anilines 1 studied in this work. As 

comparison the N and sN parameters of aniline (taken from Ref. [5g]) and tertiary aliphatic 

amines (taken from Ref. [5h]) are depicted.  
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– Supporting Information – 

 

Quantification of the Nucleophilic Reactivities of N,N-Dialkylated Anilines 

 

1. Derivation of Equation 6 of the main chapter 
 

 

Scheme S1: Reaction of N,N-dimethylaniline (1a, Nu) with benzhydrylium ion (2, E) in 

dichloromethane. 

The reaction of N,N-dimethylaniline (1a, Nu) with benzhydrylium ion (2, E) in 

dichloromethane speeds up disproportionately with the nucleophiles concentration. This 

indicates the shift of the rate-determining step from the attack of the carbon atom towards the 

proton transfer, due to the increased concentration of base. Therefore, the reaction pathway had 

to be reconsidered (Scheme S1). 

 

For the further discussion, kp’ is irrelevant, as the carbon-carbon bond is already formed 

irreversibly. The change of the concentration of the zwitterionic intermediate I can be expressed 

by equation S1.  
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The rate law can be expressed by equations S2 and S3 if we assume a steady-state concentration 

for the intermediate I. 

 

 

At high nucleophile concentrations, the direct proton-transfer (kp) can be neglected, and eq (S3) 

is reduced to eq (S4) which can be rewritten as eq (S5).  

  

Second-order rate constants for the C-N-bond formation (k2) were obtained as the reciprocal 

intercepts of plots of [Nu]/kobs versus 1/[Nu].  

At very high nucleophile concentrations where k–2 << kb[Nu], eq (S4) is reduced to eq (S6) 

resulting in a linear dependence between rate and nucleophile concentration.  
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2. Theoretical Studies by Florian Achrainer and Hendrik Zipse 
 

 

Scheme S2: Reaction of benzhydrylium ions of type 2 with N,N-dimethylaniline (1a). R = H or 

NMe2. 

The different possibilities of attack were already discussed in the main chapter, but in a general 
view (Scheme S2). To clarify the reaction observed by the first decay, Florian Achrainer from 
the Zipse group performed theoretical calculations at B2PLYP-D3(FC)/G3MP2large//M06-
2X/6-31+G(d) level of theory to quantify the regioselectivity of the reactions of carbon cations 
shown in Figure S1 with N,N-dimethylaniline (1a). The reaction enthalpies of N,N-dimethyl 
aniline (1a) with carbocations 2x, 2b and 2y (Figure S1) has been discussed in the main chapter. 

Three different electrophiles were included: two benzhydrylium ions 2x (R = H) and 2b (R = 
NMe2) and the prop-2-yl cation 2y, which was chosen for its small sterically demand, as a 
sterically more demanding alternative to the methyl cation (Figure S1).  

H3C CH3

H
H

R R

2a (R = H)
2b (R = NMe2)

2c

 

Figure S1: Carbocations 2b, 2x and 2y used for quantum-chemical studies. 

Even though their formation from dimethylaniline and benzhydryl cations is endothermic, 4b 
and 5b represent bound adducts at M06-2X/6-31+G(d) level characterized by a typical bond 
length of 162 to 164 pm. Mulliken charge analysis confirms this result since most of the positive 
charge of the benzhydrylium ion is transferred to the aniline moiety (see Figure S2). 
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Figure S2: M06-2X/6-31+G(d) optimized structures of the most stable ortho and para adducts 
of 1 and 2b, together with cumulative Mulliken charges q of the reactants in the adduct, 
respectively. 

The structure of N-alkylated adduct 3b is highly dependent on the employed theory and basis 
set (Figure S3). Optimization at the M06-2X/6-31+G(d) level yields the expected N-adduct 
with a comparatively long C-N bond and 45% cation to aniline charge transfer. Optimization 
with other hybrid DFT methods (B3LYP, B98) with exclusion of diffuse functions or dispersion 
corrections failed to locate the covalent adduct and gave in contrast the non-bonded ion-dipole 
complex 3b-CT with moderate charge transfer character. 

   

Figure S3: Comparison of optimization of the N-adducts 3b at M06-2X/6-31+G(d) (left) and 
its charge-transfer complex 3b-CT at B3LYP/6-31G(d,p) level of theory (right). 

q  (1@4b)

+0.905

q (2b@4b)

+0.095
4b

162.1 pm

q (2b@5b)

+0.026

q (1@5b)

+0.974

5b

163.6 pm

3b-CT

3b

q (2b)

+0.953

q (1)

-0.047

251.2 pmq (2b)

+0.547

163.0 pm

q (1)

+0.453
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3. Additional information on the quantum-chemical 
calculations 

 

All stationary points have been optimized at M06-2X/6-31+G(d) level of theory[1] with initial 

coordinates from the MM3* force field as implemented in MacroModel (Schrödinger program 

package).[2] Thermal corrections at 298.15 K have been calculated at the same level using the 

rigid rotor/harmonic oscillator model. Dispersion interactions of the aromatic π system have 

been included using Grimme’s corrected B2PLYP-D3(FC)[3] approach in combination with the 

G3MP2large basis set and M06-2X/6-31+G(d) geometries. The related methyl cation affinities 

(MCA) of Lewis-basic organocatalysts have recently been validated and MP2(FC)/6-

31+G(2d,p)//B98/6-31G(d) calculations were identified as method of choice for the correct 

thermodynamic prediction.[4] Recently, Lewis acidities of benzhydrylium ions have been 

correlated with quantum chemically calculated acidities at B3LYP/6-311++G(3df,2pd)// 

B3LYP/6-31G(d,p) level.[5] The passage from gas to liquid phase has been accomplished by 

employing a polarizable continuum model (PCM)[6] with dichloromethane or acetonitrile as the 

solvent, respectively. The solvent model density (SMD)[7] with a combination of B3LYP theory 

and 6-31G(d) basis set in a single-point approach has been used to calculate ΔGsolv at 298.15 

K. Boltzmann-averaged enthalpies of n conformers are obtained by eq. 1: 

𝑤௜ =  
exp ቀ

−∆𝐻ଶଽ଼

𝑅 𝑇
ቁ

∑
−∆𝐻ଶଽ଼

𝑅 𝑇
௡
௜ୀଵ

൙  

<H298> = ∑ wiHi
n
i=1     (1) 

B2PLYP-D3 theory is implemented in Gaussian09 Rev. D.01. All other calculations have been 

performed with Gaussian09 Rev. C.01.[8] 
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All stationary points have been optimized at B3LYP/6-311++G(3df,2p) level of theory. 

Thermal corrections at 298.15 K have been calculated at the same level using the rigid 

rotor/harmonic oscillator model. The related methyl cation affinities (MCA) of Lewis-basic 

organocatalysts have recently been validated and MP2(FC)/6-31+G(2d,p)//B98/6-31G(d) was 

identified as method of choice.[4] The passage from gas to liquid phase has been accomplished 

by employing a polarizable continuum model (PCM)[9]
 with dichloromethane as the respective 

solvent. The solvent model density (SMD) with a combination of B3LYP theory and 6-31G(d) 

basis set in a single-point approach has been used to calculate Gsolv at 298.15 K.[7] All 

calculations have been performed with Gaussian09, Rev. C.01.[8] 

 

N

+
Hortho

H

N N
H

Hpara

1

1-Pr-p

1-Pr-o

HN

N

1-Pr-N

CH(CH3)2

Pr
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Table S1: Energies and enthalpies of considered reactants at 298.15 K in the gas phase (in 

Hartree). 

 

 

N

 

H

 

N
H

 H

N

 

B3LYP/6-311++G(3df,2p) 

E 
-366.3386909 -118.2522846 

(a) -484.6663348 
(b) -484.6706123 

-484.6793837 

H 

-366.156034 -118.158537 

(a) -484.382012 
(b) -484.386290 

<H> 
-484.3862325 

<Hsol> 
-484.4667417 

-484.395227 

MP2(FC)/6-31+G(2d,p)// 
B98/6-31G(d) 

E 
-365.1545403 -117.8244049 

(a) -483.2360494 
(b) -483.2387679 

-483.2434280 

H 

-364.9707267 -117.7299161 

(a) -482.9499439 
(b) -482.9527495 

<H> 
-482.9525922 

<Hsol> 
-483.0331020 

-482.9576194 

SMD/B3LYP/6-31G(d)// 
B3LYP/6-311++G(3df,2p) 

CH2Cl2 
Gsolv -0.0128604 -0.1007954 

(a) -0.0803335 
(b) -0.0804769 

-0.0795845 

 

 
N

 

B3LYP/6-311++G(3df,2p) 
E -484.6798423 
H -484.394414 

MP2(FC)/6-31+G(2d,p)// 
B98/6-31G(d) 

E -483.2642558 
H -482.9772275 

SMD/B3LYP/6-31G(d)// 
B3LYP/6-311++G(3df,2p) 

CH2Cl2 
Gsolv -0.0837119 

 

Table S2: Reaction enthalpies of the electrophilic addition of the 2-propyl cation (Pr) to aniline 

1 (in kJ mol–1). 

+CH(CH3)2 
 Hortho Hpara HN 

B3LYP/6-311++G(3df,2p) -188.15 -211.76 -209.63 
MP2(FC)/6-31+G(2d,p)// 

B98/6-31G(d) 
-661.49 -674.69 -726.17 

B3LYP + Gsolv -101.12 -122.31 -131.01 
MP2 + Gsolv -574.47 -585.24 -647.55 
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Table S3: Ratio prediction of rate constants obtained using the Arrhenius equation k =           

exp(–H/RT). 

+CH(CH3)2 
 Hortho Hpara HN kortho : kpara : kN 

B3LYP/6-311++G(3df,2p) +23.61 0.0 +2.13 7.3 10-5 : 1 : 0.42 
MP2(FC)/6-31+G(2d,p)// 

B98/6-31G(d) 
+64.68 +51.48 0.0 n/a 

B3LYP + Gsolv +29.89 +8.70 0.0 5.8 10-6 : 0.030 : 1 
MP2 + Gsolv 73,08 +62.31 0.0 n/a 

 

 

Structure of all stationary points (optimized at B3LYP/6-311++G(3df,2p) level) 

1 

 1\1\GINC-S2\FOpt\RB3LYP\6-311++G(2df,2p)\C8H11N1\ROOT\06-Nov-2014\0\\# 
 P B3LYP/6-311++G(2df,2p) opt freq pop=nbo\\Dimethylanilin\\0,1\C,-1.00 
 78817339,-1.0879625507,-0.0019371419\C,0.0974673419,-0.7909678155,-0.7 
 904117641\C,0.6790032659,0.4685203183,-0.7677099492\C,0.1723016686,1.4 
 856717478,0.0655502606\C,-0.9588099502,1.1771926583,0.8473675648\C,-1. 
 5272426422,-0.087927267,0.8116888606\H,-1.4570791061,-2.0707572405,-0. 
 0261717151\H,0.5169620296,-1.5477085963,-1.4408649673\H,1.5314553622,0 
 .6565885911,-1.4013150548\H,-1.3990143336,1.9246891631,1.4884307347\H, 
 -2.3935051117,-0.2883672254,1.42905212\N,0.7700361622,2.7360639846,0.1 
 231075089\C,0.0936380944,3.8182519234,0.8113233294\H,0.7210049208,4.70 
 51183374,0.7814026566\H,-0.8762091132,4.0691179015,0.362459363\H,-0.07 
 53463495,3.5722214429,1.8607013733\C,1.7820003657,3.08777669,-0.853983 
 8199\H,2.1563115125,4.0841217827,-0.6344653247\H,2.6293165844,2.402151 
 1485,-0.8068598753\H,1.4006484121,3.0838516258,-1.8833177693\\Version= 
 AM64L-G09RevC.01\State=1-A\HF=-366.3386909\RMSD=7.395e-09\RMSF=1.495e- 
 05\Dipole=0.2730638,0.7487442,-0.0516745\Quadrupole=-0.5375901,2.32321 
 34,-1.7856233,1.4412896,-3.0026985,1.2316527\PG=C01 [X(C8H11N1)]\\@ 

 
Pr 

 1\1\GINC-S1\FOpt\RB3LYP\6-311++G(2df,2p)\C3H7(1+)\FLORIAN\07-Nov-2014\ 
 0\\#P B3LYP/6-311++G(2df,2p) opt freq pop=nbo\\Propyl cation\\1,1\C,-1 
 .2685053739,-0.1936388223,-0.032333106\H,-1.2088076472,-1.2777637889,- 
 0.0362727165\H,-1.8613323173,0.2208286434,-0.853918009\H,-1.8526228729 
 ,0.1260757266,0.8619090832\C,-0.0231403921,0.4937360799,0.1462021886\H 
 ,-0.0299335938,1.5737793876,-0.0011401846\C,1.2302519253,-0.1053480244 
 ,0.5002795686\H,1.1837715704,-1.1493974264,0.7947620645\H,1.8119690376 
 ,-0.0299904891,-0.447863648\H,1.8166188839,0.5213638736,1.1797147793\\ 
 Version=AM64L-G09RevC.01\State=1-A\HF=-118.2522846\RMSD=2.491e-09\RMSF 
 =5.355e-06\Dipole=-0.0019497,0.3106269,-0.0424004\Quadrupole=3.30594,- 
 1.1147124,-2.1912275,0.1058398,0.5755916,-0.1458447\PG=C01 [X(C3H7)]\\ 
 @ 
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1-Pr-p 

 1\1\GINC-S2\FOpt\RB3LYP\6-311++G(2df,2p)\C11H18N1(1+)\ROOT\08-Nov-2014 
 \0\\#P B3LYP/6-311++G(2df,2p) opt freq pop=nbo\\Dimethylanilin + para 
 Propyl\\1,1\C,-0.6656171196,-0.8649687722,3.483306362\C,0.6825820899,- 
 0.667312087,2.9049024195\C,1.2809443344,0.5314801452,2.7952878337\C,0. 
 616649444,1.7371335522,3.2372472206\C,-0.7101771376,1.6098367102,3.796 
 4723777\C,-1.2934840249,0.4047693851,3.9134116302\H,-1.2975381466,-1.2 
 723944578,2.6769495028\H,1.2009850998,-1.5424085788,2.5361517245\H,-1. 
 2271633433,2.4868270608,4.1501846172\H,-2.2810924045,0.3403744557,4.35 
 38773375\N,1.2021923216,2.9177691761,3.1292286367\C,0.5034079326,4.175 
 2137898,3.4428001628\H,1.00284259,4.9830223177,2.918359267\H,-0.527434 
 1502,4.140047896,3.106184615\H,0.5351305601,4.3785487282,4.5135686039\ 
 C,2.5990213452,3.0661308198,2.6877191043\H,2.9685551132,4.022804405,3. 
 0414216224\H,3.2237943378,2.2853627597,3.1090157915\H,2.6648482588,3.0 
 444315904,1.5995485081\H,2.2557050172,0.5975926071,2.3401923073\C,-0.7 
 318126073,-1.9742233271,4.6079249116\H,-1.7776580072,-1.9846114058,4.9 
 24285769\C,0.1354174813,-1.622363482,5.8180650559\H,1.1960454697,-1.61 
 54397553,5.5618213219\H,-0.1179179841,-0.6489396078,6.2388847876\H,-0. 
 0043809616,-2.3643518548,6.6032187461\C,-0.3998590374,-3.3598114434,4. 
 0519975549\H,-0.5760269139,-4.1140998298,4.8180705236\H,-1.0200644617, 
 -3.6139615575,3.1917306471\H,0.6465844644,-3.4458496798,3.7567981576\\ 
 Version=AM64L-G09RevC.01\State=1-A\HF=-484.6793837\RMSD=6.356e-09\RMSF 
 =4.209e-06\Dipole=0.3710081,1.5125463,-0.5056579\Quadrupole=-3.0550379 
 ,14.0388717,-10.9838338,7.3647174,-4.5820339,-3.6071376\PG=C01 [X(C11H 
 18N1)]\\@ 

 

1-Pr-o_a 

 1\1\GINC-S3\FOpt\RB3LYP\6-311++G(2df,2p)\C11H18N1(1+)\FLORIAN\08-Nov-2 
 014\0\\#P B3LYP/6-311++G(2df,2p) opt freq pop=nbo\\Dimethylanilin + or 
 tho Propyl\\1,1\C,-0.4523503689,-0.928793185,3.3298258235\C,0.81222170 
 99,-0.7869085047,2.9092521746\C,1.5841346644,0.4789023661,3.0884376435 
 \C,0.7257553575,1.6751167863,3.3997345081\C,-0.5497091606,1.431655596, 
 3.9999756172\C,-1.1079951509,0.1922909651,3.9406677732\H,-0.9778753216 
 ,-1.8676673264,3.2352927742\H,1.3566941644,-1.6198480369,2.4843850239\ 
 H,-1.1225697677,2.2433914541,4.4161309622\H,-2.1037112981,0.0557438774 
 ,4.34266757\H,2.1710836011,0.6481163646,2.1867373399\N,1.1132429357,2. 
 9134882654,3.1451192775\C,0.3101900258,4.0702435678,3.5858287095\H,0.8 
 897703666,4.9712986142,3.4183327464\H,-0.6162325571,4.1350519785,3.015 
 9525006\H,0.0836455561,3.9999145291,4.6461386858\C,2.2527878308,3.2915 
 97278,2.2998955\H,3.004791336,3.8091833229,2.892267072\H,2.7062954434, 
 2.4322974267,1.8268041336\H,1.888916576,3.9686339457,1.5282244502\C,2. 
 6758791883,0.1904522127,4.2414818166\H,3.0876639411,-0.7764672965,3.94 
 65115062\C,3.8271541085,1.1953263378,4.2397387586\H,3.5125915667,2.184 
 8706311,4.5715612856\H,4.5890576023,0.8563916907,4.9414354898\H,4.3030 
 059084,1.2825923796,3.2634231175\C,2.0742883544,0.044375745,5.63834537 
 96\H,1.2432414173,-0.6574247681,5.6663803907\H,2.8390715004,-0.3302634 
 005,6.3179113367\H,1.7312744097,1.0007034434,6.0345399627\\Version=AM6 
 4L-G09RevC.01\State=1-A\HF=-484.6663348\RMSD=4.159e-09\RMSF=1.617e-05\ 
 Dipole=-0.2892876,0.7970231,-0.4847538\Quadrupole=0.7371816,7.0183263, 
 -7.7555078,0.8246703,-2.1444514,-1.9097662\PG=C01 [X(C11H18N1)]\\@ 
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1-Pr-o_b 

 1\1\GINC-S3\FOpt\RB3LYP\6-311++G(2df,2p)\C11H18N1(1+)\FLORIAN\08-Nov-2 
 014\0\\#P B3LYP/6-311++G(2df,2p) opt freq pop=nbo\\Dimethylanilin + or 
 tho Propyl\\1,1\C,-0.4328983477,-1.4662527396,0.3836631526\C,0.6526935 
 297,-0.7560583329,0.0459981714\C,0.6103889582,0.3797137072,-0.91949600 
 05\C,-0.6849059978,0.5013275366,-1.681424214\C,-1.8254518945,-0.210589 
 633,-1.2024738492\C,-1.6916443195,-1.1487269395,-0.2252423378\H,-0.379 
 7160938,-2.266679496,1.1070404757\H,1.6105003954,-0.9641924723,0.50126 
 22033\H,-2.7930585094,-0.0552795102,-1.6496155827\H,-2.5712695839,-1.6 
 968232057,0.0871220097\H,1.4275924989,0.2277320411,-1.62939342\N,-0.77 
 68072864,1.263821623,-2.7580831293\C,-2.0658541365,1.4696660093,-3.444 
 0267473\H,-1.9289611762,2.2240480685,-4.2106706721\H,-2.4038469745,0.5 
 470062045,-3.914357598\H,-2.8205584568,1.8222605663,-2.7456134337\C,0. 
 3576267993,1.9094600567,-3.4298911411\H,0.2760711833,2.9922977387,-3.3 
 41314352\H,1.305877299,1.5912587051,-3.0181678605\H,0.3265281243,1.644 
 7255532,-4.4856999028\C,0.958776999,1.7517920572,-0.1749566112\H,0.876 
 3132112,2.5224018234,-0.9419219101\C,-0.0261824119,2.0961737487,0.9433 
 537161\H,0.0146327763,1.3722930718,1.7565016762\H,0.2288472164,3.06961 
 18148,1.360814189\H,-1.05606054,2.1532083975,0.5918286839\C,2.40532706 
 58,1.7486997526,0.3233445546\H,3.1133042882,1.4938223498,-0.4664234873 
 \H,2.6641826257,2.7422404097,0.6879950228\H,2.5540168583,1.0561046834, 
 1.1511088645\\Version=AM64L-G09RevC.01\State=1-A\HF=-484.6706123\RMSD= 
 1.763e-09\RMSF=7.740e-06\Dipole=-0.4598949,0.0254534,-1.0524287\Quadru 
 pole=0.0441129,-2.9322414,2.8881286,2.678513,4.1055155,-6.9706196\PG=C 
 01 [X(C11H18N1)]\\@ 

 

1-Pr-N 

 1\1\GINC-S2\FOpt\RB3LYP\6-311++G(2df,2p)\C11H18N1(1+)\ROOT\08-Nov-2014 
 \0\\#P B3LYP/6-311++G(2df,2p) opt freq pop=nbo\\Dimethylanilin + N Pro 
 pyl\\1,1\C,-0.4317234349,-0.9919661536,3.1891769388\C,0.6324455046,-0. 
 8091460738,2.3136139199\C,1.3302752294,0.3904968252,2.2975736308\C,0.9 
 616050127,1.4145177816,3.1657903196\C,-0.0997365139,1.2416041931,4.043 
 3030342\C,-0.7932883581,0.0337633588,4.0489337403\H,0.9240216065,-1.59 
 90101998,1.6361232494\H,-0.4105368138,2.0123348457,4.728626569\H,-1.61 
 86211972,-0.0937508601,4.734825291\N,1.7395275898,2.708294845,3.118987 
 8328\C,1.1471027536,3.7608959175,4.0122316717\H,1.7268823889,4.6690293 
 208,3.8982115953\H,0.1237508683,3.9479693472,3.7041921381\H,1.17350271 
 29,3.4369246606,5.0448046371\C,1.6670204431,3.2475531311,1.7072417115\ 
 H,2.0746232898,4.2513048623,1.6861540328\H,2.2304680176,2.606030466,1. 
 0401140463\H,0.6241566176,3.2640552372,1.4071619896\H,2.149409451,0.50 
 24207608,1.6030809599\H,-0.9736316625,-1.9267938,3.1983872895\C,3.2377 
 524265,2.4263894959,3.5210234993\H,3.5332534153,1.6681689461,2.8007577 
 968\C,4.136744879,3.6450243655,3.3528287488\H,5.1567891344,3.321182919 
 3,3.5561992885\H,4.1345293567,4.0567547326,2.346834179\H,3.9104732068, 
 4.4358999618,4.065980641\C,3.3316874358,1.8442370773,4.9246911075\H,4. 
 350962835,1.489250194,5.0693758017\H,3.1422925447,2.5901859815,5.69520 
 46634\H,2.6674913504,0.9971835205,5.0754740662\\Version=AM64L-G09RevC. 
 01\State=1-A\HF=-484.6798423\RMSD=1.389e-09\RMSF=8.164e-06\Dipole=0.40 
 79701,1.0749272,-0.1814547\Quadrupole=0.2900068,4.2372296,-4.5272364,5 
 .7319083,-2.0470951,1.1889562\PG=C01 [X(C11H18N1)]\\@ 
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4. General remarks  
 

Materials  

Commercially available acetonitrile (H2O content < 50 ppm) was used without further 

purification. Dichloromethane was successively treated with concentrated sulfuric acid, water, 

10% NaHCO3 solution, and water. After drying with CaCl2, it was freshly distilled over CaH2 

under exclusion of moisture (N2 atmosphere). The reference electrophiles used in this work 

were synthesized according to literature procedures.[10] 

The alkylated anilines where synthesized following the procedure of Bieber et al. from the 

corresponding free anilines.[11] 

NMR spectroscopy  

In the 1H and 13C NMR spectra chemical shifts are given in ppm and refer to tetramethylsilane 

(δH = 0.00, δC = 0.0), to CD3CN (δH = 1.94, δC = 1.3), [D6]-DMSO (δH = 2.50, δC = 39.5) or to 

CDCl3 (δH = 7.26, δC = 77.0),[12] as internal standards. The coupling constants are given in Hz. 

For reasons of simplicity, the 1H NMR signals of AA’BB’-spin systems of p-disubstituted 

aromatic rings are treated as doublets. Signal assignments are based on additional COSY, 

gHSQC, and HMBC experiments.  

Kinetics 

As the reactions of colored benzhydrylium ions 2 (Table S1) with colorless N,N-dialkylated 

anilines 1 yielded colorless products (or products with a different absorption range than the 

reactants), the reactions could be followed by UV-Vis spectroscopy. For fast reactions (t½ < 

60 s), the kinetics were monitored using stopped-flow techniques. The temperature of all 

solutions was kept constant at 20.0 ± 0.1 °C by using a circulating bath thermostat. In all runs 

the concentration of the colorless compound was at least 10 times higher than the concentration 

of the colored compound, resulting in pseudo-first-order kinetics with an exponential Decay of 

the relative concentration of the minor compound. First-order rate constants kobs were obtained 

by least-squares fitting of the exponential function A(t) = A0 exp(–kobs t) + C to the time-

dependent absorbances. The second-order rate constants k2 were obtained from the slopes of 

the linear plots of kobs against the concentration of the excess components.  

 



 

222 
 

 

The reaction was monitored at the λmax published by Mayr et al. in 2001 (Table S4).[13] Some 

λmax were revised by Mayr et al. in 2019.[14] 

 

Table S4: Benzhydrylium ions 2 employed as reference electrophiles in this study with λmax 

published by Mayr et al. in 2001.[13]  

 

Electrophile 
R1 R2 No. E 

λmax [nm] 
in 

acetonitrile 

λmax [nm] 
in 

dichloromethane 
(pyr)2CH+     C4H8 (cycl.) 2a –7.69 612 620 
(dma)2CH+ Me Me 2b –7.02 606[a] 612[a] 
(mpa)2CH+ Ph Me 2c –5.89 613 622[a] 
(mor)2CH+    C2H4-O-C2H4 (cycl.) 2d –5.53 612 620[a] 
(dpa)2CH+ Ph Ph 2e –4.72 644[a] 672[a] 
(mfa)2CH+ CH2CF3 Me 2f –3.85 586 593 
(pfa)2CH+ CH2CF3 Ph 2g –3.14 592 601 

(tol)2CH+ 

 

2h 3.63[b] -[c] -[c] 

[a] Revised in Ref. [14]. For λmax See Table 3 in the main chapter. [b] E parameter of the 

corresponding cation (tol)2CH+. [c] Not used for photometric studies. 
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5. Reactions of N,N-dimethylaniline (1a) with benzhydrylium 
ions 2 in CH3CN at 20 °C 

5.1 Reactions of N,N-dimethylaniline (1a) with benzhydrylium ions 2 at the 

C4 carbon in CH3CN at 20 °C 

 

Table S5: Reaction of N,N-dimethylaniline (1a) with (pyr)2CH+ BF4
– (2a) in CD3CN (20 °C, 

1H NMR spectroscopy).  

 

k2 (20 °C) = 1.01 × 10–3 M–1 s–1 

  

 Decay of the relative concentration of (pyr)2CH+ BF4
– while reacting with N,N-dimethylaniline 

(1a) in CD3CN at 20 °C (left). Determination of the second order rate constant by plotting time 

versus Y = ([Nu]0−[E]0)–1ln([E]0([E]t +[Nu]0−[E]0)/[Nu]0[E]t) (k2 = 1.01 × 10–3 M–1 s–1, all data 

points were used (27% conversion); right). 
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Table S6: Reaction of N,N-dimethylaniline (1a) with (dma)2CH+ BF4
– (2b) in CD3CN (23 °C, 

1H NMR spectroscopy).  

 

k2 (23 °C) = 1.18 × 10–2 M–1 s–1 

   

Decay of the relative concentration of (dma)2CH+ BF4
– (2b) while reacting with                                      

N,N-dimethylaniline (1a) in CD3CN at 23 °C (left). Determination of the second order rate 

constant by plotting time versus Y = ([Nu]0−[E]0)–1ln([E]0([E]t +[Nu]0−[E]0)/[Nu]0[E]t) (k2 = 

1.18 × 10–2 M–1 s–1, data points up to 50% conversion were used; right). 
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Figure S4: Time-resolved 1H NMR spectra of the reaction of N,N-dimethylaniline (1a) with 

(dma)2CH+ BF4
– (2b) in CD3CN at 23 °C. The resonance at 5.36 ppm clearly proofs the 

formation of the triarylmethane 3ab.   

2b only 

176 s 

320 s 

45 min 
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Table S7: Reaction of 1a with (dma)2CH+ BF4
– (2b) in MeCN (20 °C, conventional UV/Vis, 

detection at 605 nm).  

 

k2 (20 °C) = 9.91 × 10–3 M–1 s–1 

 

  

kobs = 9.91 × 10–3 M–1 s–1 [Nu] + 1.14 × 10–7 s–1

R2 = 0.9988

0.00000

0.00001

0.00002

0.00003

0.00004

0.0000 0.0010 0.0020 0.0030 0.0040

k o
bs

/ 
s–

1

[Nu] / M

[E]0 (M) [Nu]0 (M) [Nu]0/[E]0 kobs (s–1) 

1.14 × 10–5 2.25 × 10–4 19.7 2.06 × 10–6 

9.58 × 10–6 1.14 × 10–3 119 1.21 × 10–5 

1.16 × 10–5 1.50 × 10–3 129 1.46 × 10–5 

9.71 × 10–6 2.56 × 10–3 263 2.56 × 10–5 

1.08 × 10–5 3.38 × 10–3 312 3.35 × 10–5 
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Table S8: Reaction of N,N-dimethylaniline (1a) with (dma)2CH+ BF4
– (2b) in CD3CN (23 °C, 

1H NMR spectroscopy).  

 

k2 (23 °C) = 1.18 × 10–2 M–1 s–1 

  

  

Decay of the relative concentration of (pyr)2CH+ BF4
– while reacting with N,N-dimethylaniline 

(1a) in CD3CN at 23 °C (left). Determination of the second order rate constant by plotting time 

versus Y = ([Nu]0−[E]0)–1ln([E]0([E]t +[Nu]0−[E]0)/[Nu]0[E]t) (k2 = 1.18 × 10–2 M–1 s–1, data 

points up to 50% conversion were used; right). 
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Table S9: Reaction of 1a with (mpa)2CH+ BF4
– in MeCN (20 °C, conventional UV/Vis, 

detection at 612 nm).  

 

k2 (20 °C) = 9.39 × 10–1 M–1 s–1 

 

  

kobs = 9.39 × 10–1 M–1 s–1 [Nu] + 4.74 × 10–5 s–1

R2 = 0.9992

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010

k o
bs

/ 
s–

1

[Nu] / M

[E]0 (M) [Nu]0 (M) [Nu]0/[E]0 kobs (s–1) 

9.78 × 10–6 1.06 × 10–4 10.8 1.40 × 10–4 

9.98 × 10–6 4.49 × 10–4 44.9 4.79 × 10–4 

9.53 × 10–6 6.86 × 10–4 71.9 6.96 × 10–4 

9.87 × 10–6 8.87 × 10–4 89.9 8.72 × 10–4 
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Table S10: Reaction of 1a with (mor)2CH+ BF4
– in MeCN (20 °C, conventional UV/Vis, 

detection at 612 nm).  

 

k2 (20 °C) = 1.97 × 10–1 M–1 s–1 

 

  

kobs = 1.97 M–1 s–1 [Nu] + 4.55 × 10–4 s–1

R2 = 0.9944

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.0000 0.0010 0.0020 0.0030 0.0040

k o
bs

/ 
s–

1

[Nu] / M

[E]0 (M) [Nu]0 (M) [Nu]0/[E]0 kobs (s–1) 

1.65 × 10–5 8.33 × 10–4 50.4 1.94 × 10–3 

1.62 × 10–5 1.63 × 10–3 101 3.83 × 10–3 

1.64 × 10–5 1.98 × 10–3 121 4.45 × 10–3 

1.59 × 10–5 2.40 × 10–3 151 5.12 × 10–3 

1.63 × 10–5 3.28 × 10–3 202 6.83 × 10–3 
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Table S11: Reaction of 1a with (dpa)2CH+ BF4
– in MeCN (20 °C, conventional UV/Vis, 

detection at 644 nm).  

 

k2 (20 °C) = 89.7 M–1 s–1 

 

  

kobs = 89.7 M–1 s–1 [Nu] + 1.07 × 10–3 s–1

R2 = 0.9970

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.0000 0.0005 0.0010 0.0015

k o
bs

/ 
s–

1

[Nu] / M

[E]0 (M) [Nu]0 (M) [Nu]0/[E]0 kobs (s–1) 

1.46 × 10–5 1.34 × 10–4 9.18 1.31 × 10–2 

1.54 × 10–5 4.51 × 10–4 29.3 3.89 × 10–2 

1.42 × 10–5 7.27 × 10–4 51.4 7.00 × 10–2 

1.41 × 10–5 1.03 × 10–3 73.4 9.34 × 10–2 

1.48 × 10–5 1.35 × 10–3 91.7 1.21 × 10–1 
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Table S12: Reaction of 1a with (mfa)2CH+ BF4
– in MeCN (20 °C, conventional UV/Vis, 

detection at 586 nm).  

 

k2 (20 °C) = 27.6 M–1 s–1 

 

 

 

 

kobs = 27.6 M–1 s–1 [Nu] + 7.58 × 10–4 s–1

R2 = 0.9972

0.00

0.01

0.01

0.02

0.02

0.03

0.03

0.04

0.0000 0.0005 0.0010 0.0015

k o
bs

/ 
s–

1

[Nu] / M

[E]0 (M) [Nu]0 (M) [Nu]0/[E]0 kobs (s–1) 

1.80 × 10–5 1.89 × 10–4 10.5 5.55 × 10–3 

1.81 × 10–5 3.79 × 10–4 20.9 1.15 × 10–2 

1.87 × 10–5 5.47 × 10–4 29.3 1.60 × 10–2 

1.71 × 10–5 6.80 × 10–4 39.8 2.01 × 10–2 

1.79 × 10–5 8.99 × 10–4 50.2 2.48 × 10–2 

1.78 × 10–5 1.12 × 10–3 62.9 3.18 × 10–2 
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Table S13: Reaction of N,N-dimethylaniline (1a) with (mfa)2CH+ BF4
– (2f) in MeCN (20 °C, 

stopped-flow, detection at 592 nm).  

 

k2 (20 °C) = 504 M–1 s–1 

 

 

 

 

  

kobs = 504 M–1 s–1 [Nu] + 4.59 × 10–2 s–1

R2 = 0.9993

0.00
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0.0000 0.0010 0.0020 0.0030 0.0040

k o
bs

/ 
s–

1

[Nu] / M

[E]0 (M) [Nu]0 (M) [Nu]0/[E]0 kobs (s–1) 

2.32 × 10–5 6.63 × 10–4 28.6 3.46 × 10–1 

2.32 × 10–5 1.33 × 10–3 57.3 7.06 × 10–1 

2.32 × 10–5 1.99 × 10–3 85.8 1.06 

2.32 × 10–5 2.65 × 10–3 114 1.39 

2.32 × 10–5 3.32 × 10–3 143 1.71 
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Determination of reactivity parameters N and sN for N,N-dimethylaniline (1a) in MeCN at the 

C4 carbon atom 

Table S14: Rate constants for the reactions of N,N-dimethylaniline (1a) with reference 

electrophiles (20 °C).  

[a] Values not considered for the depicted linear correlation. [b] Measured at 23 °C. 

 

N = 5.83, sN = 1.69 

 

  

lg k2 = 1.69 E + 9.85
R2 = 0.9957

-3

-2

-1

0

1

2

3

4

5

-8 -7 -6 -5 -4 -3 -2 -1 0

lg
 k

2

Electrophilicity E

Electrophile E-Parameter k2 (M–1 s–1) lg k2 

(pyr)2CH+ (2a) –7.69 1.01 × 10–3 –3.00 

(dma)2CH+ (2b) –7.02 9.91 × 10–3 –2.00 

(dma)2CH+ (2b) –7.02 1.20 × 10–2 –1.92[a, b] 

(mpa)2CH+ (2c) –5.89 9.39 × 10–1 –0.03 

(mor)2CH+ (2d) –5.53 1.97 0.29 

(dpa)2CH+ (2e) –4.72 89.7 1.95 

(mfa)2CH+ (2f) –3.85 27.6 1.44[a,c] 

(pfa)2CH+ (2g) –3.14 504 2.70[a,d] 
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5.2 Reactions of N,N-dimethylaniline (1a) with benzhydrylium ions 2 at the 

nitrogen in CH3CN at 20 °C 

 

Table S15: Reaction of N,N-dimethylaniline (1a) with (dma)2CH+ BF4
– (2b) in MeCN (20 °C, 

stopped-flow, detection at 606 nm).  

 

k2 (20 °C) = 11.8 M–1 s–1 

 

 

  

kobs = 11.8 M–1 s–1 [Nu] + 5.16 × 10–3 s–1

R2 = 0.9887
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[Nu] / M

[E]0 (M) [Nu]0 (M) [Nu]0/[E]0 kobs (s–1) 

1.14 × 10–5 3.21 × 10–4 28.2 1.00 × 10–2 

1.16 × 10–5 1.67 × 10–3 144 2.28 × 10–2 

1.09 × 10–5 3.12 × 10–3 286 4.29 × 10–2 
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Table S16: Reaction of N,N-dimethylaniline (1a) with (dpa)2CH+ BF4
– (2e) in MeCN (20 °C, 

stopped-flow, detection at 644 nm).  

 

k2 (20 °C) = 1.50 × 103 M–1 s–1 

 

  

kobs = 1.51 × 103 M–1 s–1 [Nu] + 6.71 s–1

R2 = 0.9984
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[E]0 (M) [Nu]0 (M) [Nu]0/[E]0 kobs (s–1) 

5.10 × 10–5 1.47 × 10–3 28.8 8.94 

5.10 × 10–5 1.96 × 10–3 38.4 9.61 

5.10 × 10–5 2.45 × 10–3 48.0 10.5 

5.10 × 10–5 2.94 × 10–3 57.6 11.1 

5.10 × 10–5 3.42 × 10–3 67.1 11.9 

5.10 × 10–5 3.91 × 10–3 76.7 12.6 
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Table S17: Reaction of N,N-dimethylaniline (1a) with (mfa)2CH+ BF4
– (2f) in MeCN (20 °C, 

stopped-flow, detection at 586 nm).  

 

k2 (20 °C) = 5.53 × 103 M–1 s–1

 

K (20 °C) = 318 M–1 

  

kobs = 5.53 × 103 M–1 s–1 [Nu] + 5.07 s–1

R2 = 0.9972
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[Nu] / M

[E]0 (M) [Nu]0 (M) [Nu]0/[E]0 kobs (s–1) A0 Aequil. A/A0 

1.80 × 10–5 5.45 × 10–4 30.3 8.08 0.82 0.63 1.31 

1.80 × 10–5 7.13 × 10–4 39.6 9.06 0.86 0.56 1.55 

1.80 × 10–5 8.80 × 10–4 48.9 9.82 0.81 0.47 1.73 

1.80 × 10–5 1.09 × 10–3 60.6 11.2 0.76 0.40 1.92 

1.80 × 10–5 1.26 × 10–3 70.0 12.0 0.70 0.32 2.18 
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Table S18: Reaction of N,N-dimethylaniline (1a) with (pfa)2CH+ BF4
– (2g) in MeCN (20 °C, 

stopped-flow, detection at 592 nm).  

[a] To little datapoints were observed to evaluate a kobs. 

 

K (20 °C) = 166 M–1 

 

  

A / A0 = 166 M–1 [Nu] + 1.32 s–1 

R2 = 0.9988
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[Nu] / M

[E]0 (M) [Nu]0 (M) [Nu]0/[E]0 kobs (s–1)[a] A0 Aequil. A/A0 

2.32 × 10–5 1.33 × 10–4 57.3 n.d. 1.29 0.84 1.54 

2.32 × 10–5 1.99 × 10–4 85.8 n.d. 1.38 0.84 1.65 

2.32 × 10–5 2.65 × 10–3 114 n.d. 1.36 0.77 1.77 

2.32 × 10–5 3.32 × 10–3 143 n.d. 1.31 0.70 1.87 
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Determination of reactivity parameters N and sN for N,N-dimethylaniline (1a) in MeCN for the 

reaction at the nitrogen atom 

Table S19: Rate constants for the reactions of 1a with reference electrophiles (20 °C).  

 

N = 8.28, sN = 0.86 

 

 

 

  

lg k2 = 0.86 [E-Parameter] + 7.12
R2 = 0.9953
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E-Parameter

Electrophile E-Parameter k2 (M–1 s–1) lg k2 

(dma)2CH+ (2b) –7.02 11.8 1.07 

(dpa)2CH+ (2e) –4.72 1.51 × 103 3.18 

(mfa)2CH+ (2f) –3.85 5.53 × 103 3.74 
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6. Reactions of N,N-dimethylaniline (1a) with tritylium ions in 
acetonitrile at 20 °C 

 

Table S20: Reaction of N,N-dimethylaniline (1a) with (ani)3CH+ BF4
– in CD3CN (20 °C, 1H 

NMR spectroscopy). The rest ani = p-MeOC6H4. 

 

k2 (20 °C) = 2.71 × 10–2 M–1 s–1 

   

Decay of the relative concentration of (ani)3C+ BF4
– while reacting with N,N-dimethylaniline 

(1a) in CD3CN at 20 °C (left). Determination of the second order rate constant by plotting time 

versus Y = ([Nu]0−[E]0)–1ln([E]0([E]t +[Nu]0−[E]0)/[Nu]0[E]t) (k2 = 2.71 × 10–2 M–1 s–1, data 

points up to 50% conversion were used; right). 
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Table S21: Reaction of N,N-dimethylaniline (1a) with (ani)2PhC+ BF4
– in acetonitrile (20 °C, 

stopped flow, detection at 497 nm). The rest ani = p-MeOC6H4. 

 

k2 (20 °C) = 1.42 × 10–1 M–1 s–1 

  

kobs = 1.42 × 10–1 M–1 s–1 [Nu] + 5.44 × 10–4 s–1

R2 = 0.9994
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[Nu] / M

[E]0 (M) [Nu]0 (M) [Nu]0/[E]0 kobs (s–1) 

2.72 × 10–5 5.22 × 10–3 192 1.28 × 10–3 

2.72 × 10–5 6.96 × 10–3 256 1.54 × 10–3 

2.72 × 10–5 8.71 × 10–3 320 1.77 × 10–3 

2.72 × 10–5 1.04 × 10–2 382 2.02 × 10–3 
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7. Reactions of N,N-dimethylaniline (1a) with benzhydrylium 
ions 2 in dichloromethane at 20 °C. 

7.1 Reactions of N,N-dimethylaniline (1a) with benzhydrylium ions 2 at the 

C4 carbon in dichloromethane at 20 °C 

 

Table S22: Reaction of N,N-dimethylaniline (1a) with (pyr)2CH+ BF4
– (2a) in CD2Cl2 (20 °C, 

1H NMR spectroscopy).  

 

k2 (20 °C) = 2.72 × 10–3 M–1 s–1 

   

Decay of the relative concentration of (pyr)2CH+ BF4
– while reacting with N,N-dimethylaniline 

(1a) in CD2Cl2 at 20 °C (left). Determination of the second order rate constant by plotting time 

versus Y = ([Nu]0−[E]0)–1ln([E]0([E]t +[Nu]0−[E]0)/[Nu]0[E]t) (k2 = 2.72 × 10–3 M–1 s–1, data 

points up to 50% conversion were used; right). 
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Table S23: Reaction of N,N-dimethylaniline (1a) with (mpa)2CH+ BF4
– (2c) in 

dichloromethane (20 °C, conventional UV/Vis, detection at 622 nm).  

 

k2 (20 °C) = 2.11 × 10–1 M–1 s–1 

 

  

[Nu] kobs
–1 = 1.59 × 10–2 M2 s [Nu]–1 + 4.74 M s

R2 = 0.9824
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[Nu]–1 / M–1

[E]0 (M) [Nu]0 (M) [Nu]0/[E]0 kobs (s–1) [Nu]0
–1

 (M–1) [Nu]0 kobs 
–1 (M s) 

1.75 × 10–5 4.39 × 10–3 251 5.36 × 10–4 228 8.19 

1.81 × 10–5 3.77 × 10–3 208 4.35 × 10–4 265 8.67 

1.78 × 10–5 1.60 × 10–3 89.9 1.02 × 10–4 625 15.7 

1.79 × 10–5 1.08 × 10–3 60.3 5.70 × 10–5 926 18.9 
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Table S24: Reaction of N,N-dimethylaniline (1a) with (mor)2CH+ BF4
– (2d) in 

dichloromethane (20 °C, conventional UV/Vis, detection at 620 nm).  

 

k2 (20 °C) = 3.40 × 10–1 M–1 s–1 

 

  

[Nu] kobs
–1 = 7.65 × 10–3 M2 s [Nu]–1 + 2.94 M s

R2 = 0.9939
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–1

 (M–1) [Nu]0 kobs 
–1 (M s) 

9.98 × 10–6 2.01 × 10–3 201 2.83 × 10–4 498 7.10 

9.83 × 10–6 1.54 × 10–3 157 2.09 × 10–4 649 7.37 

9.34 × 10–6 1.04 × 10–3 111 9.94 × 10–5 962 10.5 

1.02 × 10–5 5.19 × 10–4 50.9 2.94 × 10–5 1.93 × 103 17.7 
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Table S25: Reaction of N,N-dimethylaniline (1a) with (dpa)2CH+ BF4
– (2e) in dichloromethane 

(20 °C, conventional UV/Vis, detection at 672 nm).  

 

k2 (20 °C) = 2.99 M–1 s–1 

 

  

[Nu] kobs
–1 = 1.72 × 10–4 M2 s [Nu]–1 + 3.35 × 10–1 M s  

R2 = 0.9988
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–1

 (M–1) [Nu]0 kobs 
–1 (M s) 

3.12 × 10–5 3.29 × 10–4 10.5 3.85 × 10–4 3.04 × 103 8.55 × 10–1 

2.96 × 10–5 1.13 × 10–3 38.2 2.27 × 10–3 885 4.98 × 10–1 

2.84 × 10–5 1.42 × 10–3 50.0 3.15 × 10–3 704 4.51 × 10–1 

3.16 × 10–5 1.91 × 10–3 60.4 4.54 × 10–3 524 4.21 × 10–1 

3.13 × 10–5 2.10 × 10–3 67.1 5.06 × 10–3 476 4.15 × 10–1 



 

245 
 

Table S26: Reaction of 1a with (mfa)2CH+ BF4
– (2f) in dichloromethane (20 °C, conventional 

UV/Vis, detection at 593 nm).  

 

k2 (20 °C) = 11.5 M–1 s–1 

 

  

[Nu] kobs
–1 = 2.34 × 10–4 M2 s [Nu]–1 + 8.70 × 10–2 M s  

R2 = 0.9993
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–1

 (M–1) [Nu]0 kobs 
–1 (M s) 

1.79 × 10–5 3.53 × 10–4 19.7 4.72 × 10–4 2.83 × 103 7.48 × 10–1 

1.80 × 10–5 5.57 × 10–4 30.9 1.11 × 10–3 1.80 × 103 5.02 × 10–1 

1.80 × 10–5 7.10 × 10–4 39.4 1.68 × 10–3 1.41 × 103 4.23 × 10–1 

1.75 × 10–5 9.02 × 10–4 51.5 2.56 × 10–3 1.11 × 103 3.52 × 10–1 

1.74 × 10–5 1.42 × 10–3 81.6 5.68 × 10–3 704 2.50 × 10–1 

1.74 × 10–5 1.77 × 10–3 102 8.22 × 10–3 565 2.15 × 10–1 
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Determination of reactivity parameters N and sN for N,N-dimethylaniline (1a) in 

dichloromethane at the C4 carbon atom 

Table S27: Rate constants for the reactions of N,N-dimethylaniline (1a) with reference 

electrophiles (20 °C).  

 

N = 5.01, sN = 1.22 

 

 

 

  

lg k2 = 1.22 E + 6.11
R2 = 0.9730
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E-Parameter

Electrophile E-Parameter k2 (M–1 s–1) lg k2 

(pyr)2CH+ (2a) –7.69 2.72 × 10–4 –3.57 

(dma)2CH+ (2b) –7.02 3.70 × 10–3 –2.43 

(mpa)2CH+ (2c) –5.89 2.11 × 10–1 –6.76 × 10–1 

(mor)2CH+ (2d) –5.53 3.40 × 10–1 –4.69 × 10–1 

(dpa)2CH+ (2e) –4.72 2.99 4.76 × 10–1 

(mfa)2CH+ (2f) –3.85 11.5 1.06 
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7.2 Reactions of N,N-dimethylaniline (1a) with benzhydrylium ions 2 at the 

nitrogen in dichloromethane at 20 °C 

 

Table S28: Reaction of 1a with (mpa)2CH+ BF4
– (2f) in dichloromethane (20 °C, stopped-flow, 

detection at 622 nm).  

 

k2 (20 °C) = 60.7 M–1 s–1 

 

[a] The negative intercept with the abscissa is due to slow/incomplete mixing of the reactants 

in comparison with the fast reaction. 

  

kobs = 60.7 M–1 s–1 [Nu] – 9.96 × 10–1 s–1

R2 = 0.9981
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[E]0 (M) [Nu]0 (M) [Nu]0/[E]0 kobs (s–1) 

1.50 × 10–5 1.51 × 10–3 101 9.18 × 10–2 

1.50 × 10–5 3.02 × 10–3 201 1.79 × 10–1 

1.50 × 10–5 3.75 × 10–3 250 2.29 × 10–1 
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Table S29: Reaction of 1a with (mfa)2CH+ BF4
– (2f) in dichloromethane (20 °C, stopped-flow, 

detection at 593 nm).  

 

k2 (20 °C) = 476 M–1 s–1 

 

  

kobs = 476 M–1 s–1 [Nu] + 4.60 × 10–1 s–1

R2 = 0.9985
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[E]0 (M) [Nu]0 (M) [Nu]0/[E]0 kobs (s–1) 

1.50 × 10–5 3.02 × 10–4 20.1 6.00 × 10–1 

1.50 × 10–5 6.03 × 10–4 40.2 7.55 × 10–1 

1.50 × 10–5 9.05 × 10–4 60.3 8.84 × 10–1 

1.50 × 10–5 1.34 × 10–3 89.3 1.11 

1.50 × 10–5 1.51 × 10–3 101 1.17 
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Determination of reactivity parameters N and sN for N,N-dimethylaniline (1a) in 

dichloromethane at the nitrogen atom 

Table S30: Rate constants for the reactions of 1a with reference electrophiles (20 °C).  

 

N = 9.95, sN = 0.44 

 

 

 

  

lg k2 = 0.44 E + 4.38
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Electrophile E-Parameter k2 (M–1 s–1) lg k2 

(mpa)2CH+ (2c) –5.89 60.7 1.78 

(mfa)2CH+ (2f) –3.85 476 2.68 
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8. Reactions of N,N-diethylaniline (1b) with benzhydrylium ions 
2 in acetonitrile at 20 °C 

 

8.1 Reactions of N,N-diethylaniline (1b) with benzhydrylium ions 2 at the 

C4 carbon in acetonitrile at 20 °C 

 

Table S31: Reaction of N,N-diethylaniline (1b) with (pyr)2CH+ BF4
– (2a) in CD3CN (20 °C, 

1H NMR spectroscopy).  

 

k2 (20 °C) = 7.17 × 10–4 M–1 s–1 

  

Decay of the relative concentration of (pyr)2CH+ BF4
– (2a) while reacting with                                       

N,N-diethylaniline (1b) in CD3CN at 20 °C (left). Determination of the second order rate 

constant by plotting time versus Y = ([Nu]0−[E]0)–1ln([E]0([E]t +[Nu]0−[E]0)/[Nu]0[E]t) (k2 = 

7.17 × 10–4 M–1 s–1, data points up to 50% conversion were used; right). 
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Table S32: Reaction of 1b with (dma)2CH+ BF4
– (2b) in MeCN (20 °C, stopped-flow, detection 

at 606 nm).  

 

k2 (20 °C) = 2.50 × 10–1 M–1 s–1 

 

 

  

kobs = 2.50 × 10–1 M–1 s–1 [Nu] + 9.29 × 10–6 s–1

R2 = 0.9978
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[E]0 (M) [Nu]0 (M) [Nu]0/[E]0 kobs (s–1) 

8.90 × 10–6 9.53 × 10–5 10.7 3.13 × 10–5 

1.24 × 10–5 1.51 × 10–4 12.2 4.71 × 10–5 

9.97 × 10–6 2.36 × 10–4 23.7 7.13 × 10–5 

9.94 × 10–6 4.94 × 10–4 49.7 1.32 × 10–4 
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Table S33: Reaction of 1b with (mpa)2CH+ BF4
– (2c) in MeCN (20 °C, stopped-flow, detection 

at 613 nm).  

 

k2 (20 °C) = 4.24 M–1 s–1 

 

  

kobs = 4.24 M–1 s–1 [Nu] + 1.34 × 10–6 s–1

R2 = 0.9997
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[E]0 (M) [Nu]0 (M) [Nu]0/[E]0 kobs (s–1) 

8.84 × 10–6 8.69 × 10–5 9.84 3.70 × 10–4 

9.25 × 10–6 2.97 × 10–4 32.1 1.26 × 10–3 

9.31 × 10–6 4.94 × 10–4 53.1 2.08 × 10–3 

9.83 × 10–6 7.51 × 10–4 76.4 3.23 × 10–3 

9.82 × 10–6 9.90 × 10–4 101 4.18 × 10–3 
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Table S34: Reaction of 1b with (mor)2CH+ BF4
– (2d) in MeCN (20 °C, conventional UV/Vis, 

detection at 612 nm).  

 

k2 (20 °C) = 17.9 × 10–1 M–1 s–1 

 

 

  

kobs = 17.9 M–1 s–1 [Nu] + 4.96 × 10–2 s–1

R2 = 0.9876
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1.13 × 10–5 6.49 × 10–4 57.4 6.20 × 10–2 

1.13 × 10–5 1.30 × 10–3 115 7.14 × 10–2 

1.13 × 10–5 1.95 × 10–3 172 8.53 × 10–2 
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Table S35: Reaction of 1b with (dpa)2CH+ BF4
– (2e) in MeCN (20 °C, conventional UV/Vis, 

detection at 644 nm).  

 

k2 (20 °C) = 354 M–1 s–1 

 

[a] The negative intercept with the abscissa is due to slow/incomplete mixing of the reactants 

in comparison with the fast reaction. 

  

kobs = 354 M–1 s–1 [Nu] – 9.45 × 10–3 s–1

R2 = 0.9996
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[E]0 (M) [Nu]0 (M) [Nu]0/[E]0 kobs (s–1) 

1.38 × 10–5 1.24 × 10–4 9.01 3.40 × 10–2 

1.57 × 10–5 2.18 × 10–4 13.9 7.00 × 10–2 

1.45 × 10–5 3.98 × 10–4 27.5 1.29 × 10–1 

1.43 × 10–5 7.50 × 10–4 52.6 2.57 × 10–1 
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Determination of reactivity parameters N and sN for N,N-diethylaniline (1b) in MeCN 

Table S36: Rate constants for the reactions of N,N-diethylaniline (1b) with reference 

electrophiles (20 °C).  

[a] Not considered for the correlation.  

N = 6.28, sN = 1.64 

 

 

 

 

  

lg k2 = 1.64 E + 10.28
R2 = 0.9997
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Electrophile E-Parameter k2 (M–1 s–1) lg k2 

(pyr)2CH+ (2a) –7.69 7.17 × 10–4 –3.14[a] 

(dma)2CH+ (2b) –7.02 2.50 × 10–1 –0.60[a] 

(mpa)2CH+ (2c) –5.89 4.24 0.63 

(mor)2CH+ (2d) –5.53 17.9 1.25 

(dpa)2CH+ (2e) –4.72 354 2.55 
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8.2 Reactions of N,N-diethylaniline (1b) with benzhydrylium ions 2 at the 

nitrogen atom in acetonitrile at 20 °C 

 

Table S37: Reaction of 1b with (dma)2CH+ BF4
– (2b) in MeCN (20 °C, conventional UV/Vis, 

detection at 606 nm).  

 

k2 (20 °C) = 80.7 M–1 s–1 

 

  

kobs = 80.7 M–1 s–1 [Nu] + 7.62 × 10–3 s–1

R2 = 0.9919
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[E]0 (M) [Nu]0 (M) [Nu]0/[E]0 kobs (s–1) 

8.90 × 10–6 9.53 × 10–5 10.7 1.64 × 10–2 

9.97 × 10–6 2.36 × 10–4 23.7 2.50 × 10–2 

9.94 × 10–6 4.94 × 10–4 49.7 4.81 × 10–2 
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Table S38: Reaction of 1b with (mor)2CH+ BF4
– (2d) in MeCN (20 °C, stopped-flow, detection 

at 612 nm).  

 

k2 (20 °C) = 1.23 × 103 M–1 s–1 

 

  

kobs = 1.23 × 103  M–1 s–1 [Nu] + 2.08 s–1

R2 = 0.9949
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1.13 × 10–5 9.74 × 10–4 86.2 3.30 

1.13 × 10–5 1.62 × 10–3 143 4.03 

1.13 × 10–5 1.95 × 10–3 172 4.52 
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Table S39: Reaction of 1b with (mfa)2CH+ BF4
– (2f) in MeCN (20 °C, stopped-flow, detection 

at 586 nm).  

 

k2 (20 °C) = 7.95 × 103 M–1 s–1 

 

  

kobs = 7.95 × 10–3 M–1 s–1 [Nu] + 4.17 s–1

R2 = 0.9925
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1.49 × 10–5 3.45 × 10–4 23.2 7.06 

1.49 × 10–5 7.26 × 10–4 48.7 9.71 

1.49 × 10–5 8.98 × 10–4 60.3 11.2 

1.49 × 10–5 1.07 × 10–3 71.8 12.9 
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Determination of reactivity parameters N and sN for N,N-diethylaniline (1b) in MeCN at 20 °C 

at the nitrogen atom. 

Table S40: Rate constants for the reactions of 1b with reference electrophiles (20 °C).  

 

N = 10.29, sN = 0.62 

 

 

 

 

 

 

  

lg k2 = 0.62 E + 6.38
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Electrophile E-Parameter k2 (M–1 s–1) lg k2 

(dma)2CH+ (2b) –7.02 80.7 1.91 

(mor)2CH+ (2d) –5.53 1.23 × 103 3.09 

(mfa)2CH+ (2f) –3.85 7.95 × 103 3.90 
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9. Reactions of N,N-diethylaniline (1b) with benzhydrylium ions 
2 at the C4 carbon in dichloromethane at 20 °C.  

 

Table S41: Reaction of N,N-diethylaniline (1b) with (pyr)2CH+ BF4
– (2a) in CD2Cl2 (23 °C, 

1H NMR spectroscopy).  

 

k2 (23 °C) = 2.98 × 10–4 M–1 s–1 

   

Decay of the relative concentration of (pyr)2CH+ BF4
– (2a) while reacting with                                      

N,N-diethylaniline (1b) in CD2Cl2 at 23 °C (left). Determination of the second order rate 

constant by plotting time versus Y = ([Nu]0−[E]0)–1ln([E]0([E]t +[Nu]0−[E]0)/[Nu]0[E]t) (k2 = 

2.98 × 10–4 M–1 s–1, data points up to 50% conversion were used; right). 
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Table S42: Reaction of N,N-diethylaniline (1b) with (dma)2CH+ BF4
– (2b) in CD2Cl2 (20 °C, 

1H NMR spectroscopy).  

 

k2 (20 °C) = 4.61 × 10–3 M–1 s–1 

  

Decay of the relative concentration of (dma)2CH+ BF4
– (2b) while reacting with                                       

N,N-diethylaniline (1b) in CD2Cl2 at 20 °C (left). Determination of the second order rate 

constant by plotting time versus Y = ([Nu]0−[E]0)–1ln([E]0([E]t +[Nu]0−[E]0)/[Nu]0[E]t) (k2 = 

4.61 × 10–3 M–1 s–1, data points up to 50% conversion were used; right). 
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Table S43: Reaction of N,N-diethylaniline (1b) with (mor)2CH+ BF4
– (2d) in dichloromethane 

(20 °C, conventional UV/Vis, detection at 620 nm).  

 

k2 (20 °C) = 6.12 × 10–2 M–1 s–1 

  

kobs = 6.12 × 10–2 M–1 s–1 [Nu] + 2.56 × 10–5 s–1

R2 = 1.0000
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[E]0 (M) [Nu]0 (M) [Nu]0/[E]0 kobs (s–1) 

2.10 × 10–5 1.07 × 10–3 51.0 9.11 × 10–5 

2.15 × 10–5 1.48 × 10–3 68.8 1.16 × 10–4 

2.13 × 10–5 2.05 × 10–3 96.2 1.51 × 10–4 

2.08 × 10–5 3.08 × 10–3 148 2.14 × 10–4 
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Table S44: Reaction of 1b with (dpa)2CH+ BF4
– (2e) in dichloromethane (20 °C, conventional 

UV/Vis, detection at 672 nm).  

 

k2 (20 °C) = 8.14 × 10–1 M–1 s–1 

 

  

kobs = 8.14 × 10–1 M–1 s–1 [Nu] + 1.62 × 10–4 s–1

R2 = 0.9937
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1.59 × 10–5 1.69 × 10–4 10.6 3.21 × 10–4 

2.56 × 10–5 4.80 × 10–4 18.8 5.04 × 10–4 

1.50 × 10–5 7.60 × 10–4 50.7 8.17 × 10–4 

1.55 × 10–5 1.06 × 10–3 68.4 1.01 × 10–3 

2.48 × 10–5  1.49 × 10–3 60.1 1.38 × 10–3 
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Table S45: Reaction of 1b with (pfa)2CH+ BF4
– (2g) in dichloromethane (20 °C, stopped-flow, 

detection at 601 nm).  

 

k2 (20 °C) = 529 M–1 s–1 

 

  

kobs = 529 M–1 s–1 [Nu] + 2.34 × 10–3 s–1

R2 = 0.9905
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1.55 × 10–5 2.14 × 10–4 13.8 1.42 × 10–1 

1.55 × 10–5 6.41 × 10–4 41.4 2.93 × 10–1 

1.55 × 10–5 1.50 × 10–3 96.8 8.35 × 10–1 

1.55 × 10–5 1.92 × 10–3 124 1.00 
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Determination of reactivity parameters N and sN for N,N-diethylaniline (1b) in dichloromethane 

at 20 °C at the C4 carbon atom. 

Table S46: Rate constants for the reactions of N,N-diethylaniline (1b) with reference 

electrophiles (20 °C).  

[a] Measured at 23 °C. 

N = 4.92, sN = 1.30 

 

 

  

lg k2 = 1.30 E + 6.40
R2 = 0.9731
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Electrophile E-Parameter k2 (M–1 s–1) lg k2 

(pyr)2CH+ (2a) –7.69 2.98 × 10–4 [a] –3.53 

(dma)2CH+ (2b) –7.02 4.61 × 10–3 –2.34 

(mor)2CH+ (2d) –5.53 6.12 × 10–2 –1.21 

(dpa)2CH+ (2e) –4.72 8.14 × 10–1 –0.09 

(pfa)2CH+ (2g) –3.14 529 2.72 
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10.  Reactions of 1-phenylpyrrolidine (1c) with benzhydrylium 
ions 2 in acetonitrile at 20 °C. 

 

10.1 Reactions of 1-phenylpyrrolidine (1c) with benzhydrylium ions 2 at 

the C4 carbon in acetonitrile at 20 °C 

 

Table S47: Reaction of 1-phenylpyrrolidine (1c) with (dpa)2CH+ BF4
– (2e) in MeCN (20 °C, 

stopped-flow, detection at 644 nm).  

 

k2 (20 °C) = 186 M–1 s–1 

 

[a] The negative intercept with the abscissa is due to slow/incomplete mixing of the reactants 

in comparison with the fast reaction. 

  

kobs = 186 M–1 s–1 [Nu] – 5.60 × 10–3 s–1

R2 = 0.9995
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1.88 × 10–5 6.18 × 10–4 33.0 1.10 × 10–1 

1.88 × 10–5 9.28 × 10–4 49.4 1.68 × 10–1 

1.88 × 10–5 1.24 × 10–3 65.9 2.24 × 10–1 

1.88 × 10–5 1.55 × 10–3 82.4 2.80 × 10–1 

1.88 × 10–5 1.86 × 10–3 98.9 3.43 × 10–1 
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Table S48: Reaction of 1-phenylpyrrolidine (1c) with (mor)2CH+ BF4
– (2d) in MeCN (20 °C, 

stopped-flow, detection at 612 nm).  

 

k2 (20 °C) = 9.91 M–1 s–1 

 

  

kobs = 9.91 M–1 s–1 [Nu] + 4.48 × 10–4 s–1

R2 = 0.9991
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1.91 × 10–5 6.18 × 10–4 32.4 6.75 × 10–3 

1.91 × 10–5 9.28 × 10–4 48.6 9.51 × 10–3 

1.91 × 10–5 1.24 × 10–3 64.8 1.26 × 10–2 

1.91 × 10–5 1.55 × 10–3 81.0 1.58 × 10–2 

1.91 × 10–5 1.86 × 10–3 97.2 1.90 × 10–2 
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Table S49: Reaction of 1-phenylpyrrolidine (1c) with (pyr)2CH+ BF4
– (2a) in CD3CN (20 °C, 

1H NMR spectroscopy).  

 

k2 (20 °C) = 2.72 × 10–3 M–1 s–1 

 

Decay of the relative concentration of (pyr)2CH+ BF4
– while reacting with 1-phenylpyrrolidine 

(1c) in CD3CN at 20 °C (left). Determination of the second order rate constant by plotting time 

versus Y = ([Nu]0−[E]0)–1ln([E]0([E]t +[Nu]0−[E]0)/[Nu]0[E]t) (k2 = 2.72 × 10–3 M–1 s–1, data 

points up to 50% conversion were used; right). 
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Determination of reactivity parameters N and sN for 1-phenylpyrrolidine (1c) in MeCN 

Table S50: Rate constants for the reactions of 1-phenylpyrrolidine (1c) with reference 

electrophiles (20 °C).  

 

N = 6.13, sN = 1.63 

 

 

 

 

  

lg k2 = 1.63 E + 10.00
R2 = 0.9999
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Electrophile E-Parameter k2 (M–1 s–1) lg k2 

(pyr)2CH+ (2a) –7.69 2.72 × 10–3 –2.57 

(mor)2CH+ (2d) –5.53 9.91 1.00 

(dpa)2CH+ (2e) –4.72 186 2.27 
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10.2 Reactions of 1-phenylpyrrolidine (1c) with benzhydrylium ions 2 at 

the nitrogen atom in acetonitrile at 20 °C 

 

Table S51: Reaction of 1-phenylpyrrolidine (1c) with (mfa)2CH+ BF4
– (2f) in MeCN (20 °C, 

stopped-flow, detection at 586 nm).  

 

k2 (20 °C) = 2.08 × 103 M–1 s–1 

 

  

kobs = 2.08 × 103 M–1 s–1 [Nu] + 8.42 s–1

R2 = 0.9980
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8.06 × 10–6 3.62 × 10–4 44.9 9.19 

8.06 × 10–6 7.24 × 10–4 89.8 9.88 

8.06 × 10–6 9.05 × 10–4 112 10.3 

8.06 × 10–6 1.09 × 10–3 135 10.7 
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Table S52: Reaction of 1c with (pfa)2CH+ BF4
– (2g) in MeCN (20 °C, stopped-flow, detection 

at 592 nm).  

 

k2 (20 °C) = 5.15 × 103 M–1 s–1 

 

 

Determination of reactivity parameters N and sN for 1-phenylpyrrolidine (1c) in MeCN 

Table S53: Rate constants for the reactions of 1-phenylpyrrolidine (1c) with reference 

electrophiles at the nitrogen atom (20 °C).  

 

N = 9.87, sN = 0.55 

  

kobs = 5.15 × 103 M–1 s–1 [Nu] + 1.26 s–1

R2 = 0.9989
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8.86 × 10–6 7.24 × 10–5 8.2 1.61 

8.86 × 10–6 1.45 × 10–4 16.4 2.02 

8.86 × 10–6 2.90 × 10–4 32.7 2.77 

8.86 × 10–6 3.62 × 10–4 40.9 3.10 

Electrophile E-Parameter k2 (M–1 s–1) lg k2 

(mfa)2CH+ (2f) –3.85 2.08 × 103 3.32 

(pfa)2CH+ (2g) –3.14 5.15 × 103 3.71 
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11. Reactions of 1-phenylpiperidine (1d) with benzhydrylium ions 
2 at the nitrogen atom in CH3CN at 20 °C. 

 

 

Table S54: Reaction of 1-phenylpiperidine (1d) with (dma)2CH+ BF4
– (2b) in MeCN (20 °C, 

stopped-flow, detection at 606 nm).  

 

k2 (20 °C) = 773 M–1 s–1 

 

 

  

kobs = 773 M–1 s–1 [Nu] + 0.17 s–1

R2 = 0.9984
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7.23 × 10–6 4.84 × 10–4 66.9 5.61 × 10–1 

7.23 × 10–6 9.68 × 10–4 134 9.12 × 10–1 

7.23 × 10–6 1.45 × 10–3 201 1.28 

7.23 × 10–6 1.94 × 10–3 268 1.64 

7.23 × 10–6 2.42 × 10–3 335 2.07 
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Table S55: Reaction of 1-phenylpiperidine (1d) with (mor)2CH+ BF4
– (2d) in MeCN (20 °C, 

stopped-flow, detection at 612 nm).  

 

k2 (20 °C) = 9.71 × 103 M–1 s–1 

 

[a] The negative intercept with the abscissa is due to slow/incomplete mixing of the reactants 

in comparison with the fast reaction. 

 

  

kobs = 9.71 × 103 M–1 s–1 [Nu] – 0.11 s–1

R2 = 1.0000
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9.90 × 10–6 4.84 × 10–4 48.9 4.59 

9.90 × 10–6 9.68 × 10–4 97.7 9.28 

9.90 × 10–6 1.45 × 10–3 147 14.0 

9.90 × 10–6 1.94 × 10–3 196 18.7 

9.90 × 10–6 2.42 × 10–3 244 23.4 



 

274 
 

Table S56: Reaction of 1-phenylpiperidine (1d) with (mfa)2CH+ BF4
– (2f) in MeCN (20 °C, 

stopped-flow, detection at 586 nm).  

 

k2 (20 °C) = 1.87 × 105 M–1 s–1 

 

[a] The negative intercept with the abscissa is due to slow/incomplete mixing of the reactants 

in comparison with the fast reaction. 

 

  

kobs = 1.87 × 105 M–1 s–1 [Nu] – 2.45 s–1

R2 = 0.9992
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8.40 × 10–6 8.56 × 10–5 10.2 12.7 

8.40 × 10–6 1.71 × 10–4 20.4 30.4 

8.40 × 10–6 2.57 × 10–4 30.6 46.2 

8.40 × 10–6 3.42 × 10–4 40.8 61.7 

8.40 × 10–6 4.28 × 10–4 50.9 77.2 
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Table S57: Reaction of 1-phenylpiperidine (1d) with (pfa)2CH+ BF4
– (2g) in MeCN (20 °C, 

stopped-flow, detection at 591 nm).  

 

k2 (20 °C) = 9.34 × 105 M–1 s–1 

 

 

 

  

kobs = 9.34 × 105 M–1 s–1 [Nu] + 52.3 s–1

R2 = 0.9955
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8.80 × 10–6 1.18 × 10–4 13.4 161 

8.80 × 10–6 1.57 × 10–4 17.9 198 

8.80 × 10–6 1.77 × 10–4 20.1 219 

8.80 × 10–6 1.97 × 10–4 22.4 241 

8.80 × 10–6 2.16 × 10–4 24.6 253 

8.80 × 10–6 2.36 × 10–4 26.8 270 
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Determination of reactivity parameters N and sN for 1-phenylpiperidine (1d) in MeCN at 20 °C 

at the nitrogen atom. 

Table S58: Rate constants for the reactions of 1-phenylpiperidine (1d) with reference 

electrophiles (20 °C).  

 

N = 10.65, sN = 0.79 
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Electrophile E-Parameter k2 (M–1 s–1) lg k2 

(dma)2CH+ (2b) –7.02 773 2.89 

(mor)2CH+ (2d) –5.53 9.71 × 103 3.99 

(mfa)2CH+ (2f) –3.85 1.87 × 105 5.27 

(pfa)2CH+ (2g) –3.15 9.34 × 105 5.97 
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12.  Reactions of N,N-dimethyl-para-toluidine (1e) with 
benzhydrylium ions 2 in acetonitrile at 20 °C 

12.1 Reactions of N,N-dimethyl-para-toluidine (1e) with benzhydrylium 

ions 2 at the nitrogen atom in acetonitrile at 20 °C 

 

Table S59: Reaction of N,N-dimethyl-para-toluidine (1e) with (mor)2CH+ BF4
– (2d) in 

acetonitrile (20 °C, stopped-flow, detection at 612 nm).  

 

k2 (20 °C) = 1.64 × 103 M–1 s–1 

 

 

  

kobs = 1.64 × 103 M–1 s–1 [Nu] + 2.09 × 10–1 s–1

R2 = 0.9757
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[E]0 (M) [Nu]0 (M) [Nu]0/[E]0 kobs (s–1) 

1.11 × 10–5 4.91 × 10–4 44.3 8.86 × 10–1 

1.11 × 10–5 6.88 × 10–4 62.1 1.44 

1.11 × 10–5 8.84 × 10–4 79.8 1.74 

1.11 × 10–5 1.47 × 10–3 133 2.57 
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Table S60: Reaction of N,N-dimethyl-para-toluidine (1e) with (dpa)2CH+ BF4
– (2e) in MeCN 

(20 °C, stopped-flow, detection at 644 nm).  

 

k2 (20 °C) = 6.76 × 103 M–1 s–1 

 

  

kobs = 6.76 × 103 M–1 s–1 [Nu] + 6.94 s–1

R2 = 0.9929
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[E]0 (M) [Nu]0 (M) [Nu]0/[E]0 kobs (s–1) 

1.22× 10–5 2.95 × 10–4 24.2 9.09 

1.22× 10–5 4.91 × 10–4 40.3 9.94 

1.22× 10–5 1.08 × 10–3 88.5 14.6 

1.22× 10–5 1.47 × 10–3 120 16.7 
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Table S61: Reaction of N,N-dimethyl-para-toluidine (1e) with (pfa)2CH+ BF4
– (2g) in MeCN 

(20 °C, stopped-flow, detection at 592 nm).  

 

k2 (20 °C) = 2.89 × 104 M–1 s–1 

 

  

kobs = 2.89 × 104 M–1 s–1 [Nu] + 12.0 s–1

R2 = 0.9969
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[E]0 (M) [Nu]0 (M) [Nu]0/[E]0 kobs (s–1) 

1.76 × 10–5 2.20 × 10–4 12.5 18.2 

1.76 × 10–5 4.39 × 10–4 24.9 25.0 

1.76 × 10–5 5.49 × 10–4 31.2 28.1 

1.76 × 10–5 6.59 × 10–4 37.4 30.4 

1.76 × 10–5 8.79 × 10–4 49.9 37.6 
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Determination of reactivity parameters N and sN for N,N-dimethyl-para-toluidine (1e) in MeCN 

at 20 °C at the nitrogen atom. 

Table S62: Rate constants for the reactions of N,N-dimethyl-para-toluidine (1e) with reference 

electrophiles (20 °C).  

 

N = 12.16, sN = 0.50 

 

 

 

 

  

lg k2 = 0.50 E + 6.08
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Electrophile E-Parameter k2 (M–1 s–1) lg k2 

(mor)2CH+ (2d) –5.53 1.64 × 103 3.22 

(dpa)2CH+ (2e) –4.72 6.76 × 103 3.83 

(pfa)2CH+ (2g) –3.14 2.89 × 104 4.46 
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12.2 Subsequent reactions of N,N-dimethyl-para-toluidine (1e) with 

benzhydrylium ions 2 after the attack at the nitrogen atom in 

acetonitrile at 20 °C 

 

Table S63: Reaction of N,N-dimethyl-para-toluidine (1e) with (mfa)2CH+ BF4
– (2f) in 

acetonitrile (20 °C, stopped-flow, detection at 586 nm).  

 

k2 (20 °C) = 260 M–1 s–1 

 

  

kobs = 260 M–1 s–1 [Nu] + 2.04 × 10–1 s–1

R2 = 0.9794
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[E]0 (M) [Nu]0 (M) [Nu]0/[E]0 kobs (s–1) 

9.05 × 10–6 6.43 × 10–4 71.0 3.71 × 10–1 

9.05 × 10–6 9.64 × 10–4 107 4.77 × 10–1 

9.05 × 10–6 1.29 × 10–3 143 5.09 × 10–1 

9.05 × 10–6 1.64 × 10–3 181 6.29 × 10–1 

9.05 × 10–6 1.96 × 10–3 217 7.25 × 10–1 
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Table S64: Reaction of N,N-dimethyl-para-toluidine (1e) with (pfa)2CH+ BF4
– (2g) in MeCN 

(20 °C, stopped-flow, detection at 592 nm).  

 

k2 (20 °C) = 99.5 M–1 s–1 

 

 

  

kobs = 99.5 M–1 s–1 [Nu] + 4.58 × 10–2 s–1

R2 = 0.9880
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[E]0 (M) [Nu]0 (M) [Nu]0/[E]0 kobs (s–1) 

1.76 × 10–5 2.20 × 10–4 12.5 6.91 × 10–2 

1.76 × 10–5 4.39 × 10–4 24.9 8.91 × 10–2 

1.76 × 10–5 5.49 × 10–4 31.2 1.01 × 10–1 

1.76 × 10–5 6.59 × 10–4 37.4 1.07 × 10–1 

1.76 × 10–5 8.79 × 10–4 49.9 1.36 × 10–1 
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13.  Reactions of N,N-dimethyl-para-toluidine (1e) with tritylium 
ions in acetonitrile  

 

Table S65: Reaction of N,N-dimethyl-para-toluidine (1e) with (ani)3C+ BF4
– in CD3CN (23 °C, 

1H NMR spectroscopy). The rest ani = p-MeOC6H4. 

 

k2 (23 °C) = 4.78 × 10–3M–1 s–1 

  

Decay of the relative concentration of (ani)3C+ BF4
– while reacting with N,N-dimethyl-para-

toluidine (1e) in CD3CN at 23 °C (left). Determination of the second order rate constant by 

plotting time versus Y = ([Nu]0−[E]0)–1ln([E]0([E]t +[Nu]0−[E]0)/[Nu]0[E]t) (k2 = 4.78 × 10–3   

M–1 s–1, data points up to 50% conversion were used; right). 
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143 sec 

2.75 h 

9.4 h 
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14. Reactions of N,N,dimethyl-para-anisdine (1f) with 
benzhydrylium ion 2 in acetonitrile at 20 °C. 

14.1 Reactions of N,N-dimethyl-para-anisidine (1f) with benzhydrylium 

ions 2 at the nitrogen atom in acetonitrile at 20 °C 

 

Table S66: Reaction of N,N-dimethyl-para-anisidine (1f) with (mor)2CH+ BF4
– (2d) in 

acetonitrile (20 °C, stopped-flow, detection at 612 nm).  

 

k2 (20 °C) = 278 M–1 s–1 

 

  

kobs = 2.78 × 102 M–1 s–1 [Nu] + 2.91 s–1

R2 = 0.9969
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[E]0 (M) [Nu]0 (M) [Nu]0/[E]0 kobs (s–1) 

1.23 × 10–5 6.22 × 10–4 50.6 3.06 

1.23 × 10–5 1.24 × 10–3 101 3.25 

1.23 × 10–5 2.00 × 10–3 163 3.50 

1.23 × 10–5 2.67 × 10–3 217 3.64 

1.23 × 10–5 3.33 × 10–3 271 3.83 

1.23 × 10–5 4.00 × 10–3 325 4.01 
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Table S67: Reaction of N,N-dimethyl-para-anisidine (1f) with (pfa)2CH+ BF4
– (2g) in MeCN 

(20 °C, stopped-flow, detection at 592 nm).  

 

k2 (20 °C) = 6.59 × 103 M–1 s–1 

 

[a] The negative intercept with the abscissa is due to slow/incomplete mixing of the reactants 

in comparison with the fast reaction. 

  

kobs = 6.59 × 103 M–1 s–1 [Nu] – 1.57 s–1
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1.70 × 10–5 4.72 × 10–4 27.8 1.40 

1.70 × 10–5 9.44 × 10–4 55.5 4.94 

1.70 × 10–5 1.42 × 10–3 83.5 7.65 
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Determination of reactivity parameters N and sN for N,N-dimethyl-para-anisidine (1f) in MeCN 

at 20 °C at the nitrogen atom. 

Table S68: Rate constants for the reactions of N,N-dimethyl-para-anisidine (1f) with reference 

electrophiles (20 °C).  

 

N = 9.71, sN = 0.58 
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Electrophile E-Parameter k2 (M–1 s–1) lg k2 

(mor)2CH+ (2d) –5.53 278 2.44 

(pfa)2CH+ (2g) –3.14 6.59 × 103 3.82 
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14.2 Subsequent reactions of N,N-dimethyl-para-anisidine (1f) with 

benzhydrylium ions 2 after the attack at the nitrogen atom in acetonitrile 

at 20 °C 

 

Table S69: Reaction of N,N-dimethyl-para-anisidine (1f) with (mor)2CH+ BF4
– (2d) in 

acetonitrile (20 °C, stopped-flow, detection at 612 nm).  

 

k2 (20 °C) = 9.02 M–1 s–1 

 

 

  

kobs = 9.02 M–1 s–1 [Nu] + 6.70 × 10–2 s–1

R2 = 0.9691
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[E]0 (M) [Nu]0 (M) [Nu]0/[E]0 kobs (s–1) 

1.23 × 10–5 6.22 × 10–4 50.6 7.26 × 10–2 

1.23 × 10–5 1.24 × 10–3 101 7.79 × 10–2 

1.23 × 10–5 2.00 × 10–3 163 8.65 × 10–2 

1.23 × 10–5 2.67 × 10–3 217 8.81 × 10–2 

1.23 × 10–5 3.33 × 10–3 271 1.00 × 10–1 

1.23 × 10–5 4.00 × 10–3 325 1.02 × 10–1 
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15.  Products of the reaction of N,N-dialkylated anilines 1 with 
benzhydryl ions 2 

 

General Procedure 1 (GP1): 

To a solution of 2 in dry MeCN or dichloromethane (5 mL) was added 1 dropwise and stirred 

at room temperature for the indicated time. The reaction mixtures did not decolorize 

completely. After reaction completeness was indicated by TLC, NaOH solution (2 M, 10 mL) 

was added and extracted with dichloromethane (3x 10 mL). The combined organic layers were 

evaporated and purified by flush chromatography (gradient i-hexane/aceton = 1:0 to 5:1) 

yielded in slightly colored powders.  

 

 

 

According to GP1 N,N-dimethylaniline (1a, 32.6 mg, 0.269 mmol) and 2b (81.6 mg, 

0.240 mmol) in dry MeCN (5 mL) yielded 4,4',4''-methanetriyltris(N,N-dimethylaniline) 

(63.0 mg, 0.169 mmol, 70%) as slightly violet powder.  

1H and 13C NMR is according to literature.[15] 

Elemental Analysis: calcd for [C25H31N3]: C: 80.39, H: 8.37, N: 11.25; found: C: 80.47, H: 8.56, 
N: 11.26. 
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According to GP1 N,N-dimethylaniline (1a, 22.1 mg, 0.182 mmol) and 2f (78.0 mg, 

0.164 mmol) in dry dichloromethane (5 mL) yielded 4,4'-((4-(dimethylamino)phenyl) 

methylene)bis(N-methyl-N-(2,2,2-trifluoroethyl)aniline) (70.0 mg, 0.137 mmol, 84%) as 

slightly bluish powder.  

1H NMR (400 MHz, Chloroform-d) δ 7.01 (d, J = 8.3 Hz, 4H, 3-H), 6.97 (d, J = 8.3 Hz, 2H, 
5-H), 6.71 (d, J = 8.8 Hz, 4H, 2-H), 6.66 (d, J = 8.8 Hz, 2H, 6-H), 5.31 (s, 1H, 4-H), 3.81 (q, J 
= 9.0 Hz, 4H, 1-H), 3.02 (s, 6H, 8-H), 2.91 (s, 6H, 7-H). 

13C NMR (101 MHz, Chloroform-d) δ 149.1 (q, CNMe2), 147.0 (q, CNMeCH2CF3), 135.2 (q, 
2 × Carom), 133.2 (q, 1 × Carom), 130.2 (3-C), 130.0 (5-C), 125.8 (q, J = 282.7 Hz, CF3), 112.7 
(6-C and 2-C), 54.8 (q, J = 32.6 Hz, CH2CF3), 54.1 (4-C), 40.9 (7-C), 39.3 (8-C). 
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According to GP1 N,N-diethylaniline (1b, 53.9 mg, 0.361 mmol) and 2b (110.0 mg, 

0.323 mmol) in dry MeCN (5 mL) yielded after five days 4,4'-((4-(diethylamino)phenyl) 

methylene)bis(N,N-dimethylaniline) (97.0 mg, 0.242 mmol, 75%) as slightly bluish powder.  

1H NMR (300 MHz, Methylene Chloride-d2) δ 7.00 (d, J = 8.3 Hz, 4H), 6.95 (d, J = 8.3 Hz, 
2H), 6.68 (d, J = 8.9 Hz, 4H), 6.61 (d, J = 8.9 Hz, 2H), 5.23 (s, 1H), 3.34 (q, J = 7.0 Hz, 4H), 
2.91 (s, 12H), 1.15 (t, J = 7.0 Hz, 6H). 

13C NMR (75 MHz, Methylene Chloride-d2) δ 149.5, 146.5, 134.2, 132.7, 130.2, 130.0, 112.9, 
112.0, 54.6 (superimposed), 44.7, 41.0, 12.9. 
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According to GP1 N,N-diethylaniline (1b, 33.0 mg, 0.221 mmol) and 2d (93.8 mg, 0.221 mmol) 

in dry MeCN (5 mL) yielded after 24 h 4-(bis(4-morpholinophenyl)methyl)-N,N-diethylaniline 

(90.0 mg, 0.185 mmol, 84%) as slightly bluish powder.  

 

1H NMR (599 MHz, Chloroform-d) δ 7.06 (d, J = 8.7 Hz, 4H, 4-H), 6.96 (d, J = 8.8 Hz, 2H, 
6-H), 6.84 (d, J = 8.4 Hz, 4H, 7-H), 6.62 (d, J = 8.7 Hz, 2H, 3-H), 5.33 (s, 1H, 5-H), 3.94 – 3.79 
(m, 8H, 1-H), 3.33 (q, J = 7.1 Hz, 4H, 8-H), 3.19 – 3.09 (m, 8H, 2-H), 2.18 (s, 3H), 1.16 (t, J = 
7.0 Hz, 6H, 9-H). The additional resonance at δ = 2.16 ppm is caused by trace amounts of 
acetone. 

13C NMR (151 MHz, Chloroform-d) δ 149.3 (q), 146.2 (q), 136.9 (q), 131.5 (q), 130.0 
(superimposed 4-C, 6-C), 115.4 (3-C), 111.7 (7-C), 67.0 (1-C), 54.2 (5-C), 49.5 (2-C), 44.3 
(8-C), 12.7 (9-C). 

HR-MS (EI): m/z calcd for [C31H39N3O2]·+ 485.3037 found: 485.3034.  
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According to GP1 1-phenylpiperidine (1d, 3.7 mg, 0.023 mmol) and 2f (11.0 mg, 0.023 mmol) 

in dry MeCN (5 mL) yielded after 1 h 4,4'-((4-(piperidin-1-yl)phenyl)methylene)bis(N-methyl-

N-(2,2,2-trifluoroethyl)aniline) (10.9 mg, 0.020 mmol, 87%) as blue powder.  

 

1H NMR (400 MHz, Acetonitrile-d3) δ 7.46 (d, J = 8.8 Hz, 2H, 5-H), 7.31 (d, J = 8.5 Hz, 2H, 
6-H), 6.98 (d, J = 8.6 Hz, 4H, 3-H), 6.79 (d, J = 8.9 Hz, 4H, 2-H), 5.46 (s, 1H, 4-H), 3.98 (q, J 
= 9.3 Hz, 4H, 1-H), 3.59 – 3.49 (m, 4H, 7-H), 3.00 (s, 6H, CH3), 2.03 – 1.95 (m, 4H, 8-H), 1.73 
(h, J = 5.0, 4.3 Hz, 2H, 9-H). 

13C NMR (101 MHz, Acetonitrile-d3) δ 148.4 (q), 148.3 (q), 141.4 (q), 133.9 (q), 131.8 (6-C), 
131.4, 130.7 (3-C), 127.2 (q, J = 282.7 Hz, CF3), 121.6 (5-C), 113.6 (2-C), 58.4 (7-C), 55.0 
(4-C), 54.1 (q, J = 31.9 Hz, 1-C), 39.7 (CH3), 24.5 (8-C), 21.7 (9-C). 
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4,4'-(Bromomethylene)bis(methylbenzene) (22.0 mg, 80.7 µmol) was solved in CD3–CN 

(1 mL) and N,N-dimethyl-para-toluidine (11.0 mg, 81.4 µmmol) was added and the reaction 

was monitored by time-resolved 1H NMR spectroscopy. The solution became turbid within 1 d. 

After two weeks 2-(di-p-tolylmethyl)-N,N,4-trimethylbenzenaminium bromide crystallized 

suitable for X-ray diffraction analysis. The solvent was decanted and the crystals dried under 

high vacuum (25.1 mg, 61.2 µmol, 76%).  

1H NMR (400 MHz, DMSO-d6) δ 7.70 (s, 1H, CArylH), 7.26 (s, 1H, CArylH), 7.13 (d, J = 7.7 Hz, 
4H, CArylH), 6.95 (d, J = 7.9 Hz, 4H, CArylH), 6.81 (s, 1H, CArylH), 6.24 (s, 1H, Ar3CH), 4.58 
(s, 1H, NH), 2.91 (s, 6H, NCH3), 2.27 (s, 6H CH3), 2.22 (s, 3H, CH3). 
13C NMR (201 MHz, DMSO-d6) δ 139.0 (q), 135.8 (q), 131.4 (q), 129.0 (superimposed, 
CArylH), 121.1 (q), 47.6 (Ar3CH), 47.0, 20.7 (CH3), 20.6 (CH3). 
 
 

 
Figure S5: X-ray structure of 2-(di-p-tolylmethyl)-N,N,4-trimethylbenzenaminium bromide. 

Shown is one from two symmetric units. Thermal ellipsoids are drawn at the 50% probability 

level. 
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The remaining relative concentration of 2h was determined by following the integral of the 

resonance at 6.40 ppm and normalizing it to the integral of the resonances of the solvent 

(CDxHyCN, q at 1.94 ppm) as reference. [4,4'-(bromomethylene)bis(methylbenzene)]0 ≈ 

80.7mM, [N,N-dimethyl-para-toluidine]0 ≈ 81.4 mM. All 1H NMR spectra were measured at 

200 MHz. 
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