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1 Introduction 

1.1 The importance of the immune system in cancer development and progression 

The complex and dynamic acquisition of malignant properties in normal cells is known as 

tumorigenesis. The hallmarks of cancer comprise main characteristics associated with this 

process, such as an increased proliferation, evasion of apoptosis and escape from 

immunosurveillance (Hanahan et al., 2011). Numerous studies have identified a high rate of 

somatic gene mutations in classical oncogenes or tumor suppressor genes causing 

malignant transformation of normal cells (Alexandrov et al., 2013). However, tumor formation 

can only occur if the tissue environment provides a milieu that can sustain tumor growth and 

progression. A complex bidirectional interaction takes place between the genetically unstable 

malignant cells and the surrounding milieu. This interaction determines important tumor 

properties such as tumor promotion and proliferation, invasiveness, metastasis and thus also 

influences the patients’ prognosis. Therefore, the tumor microenvironment (TME), including 

non-malignant cells, cytokines, growth factors as well as inflammatory and matrix remodeling 

enzymes, plays a crucial role in tumorigenesis (Joyce et al., 2009; Balkwill et al., 2012; 

Hanahan et al., 2012). 

 

Immunosurveillance describes the elimination of senescent, damaged or malignant cells by 

the immune system and functions as a major mechanism in maintaining tissue integrity. 

Defects in molecular or cellular components involved in this immune response lead to tumor 

progression and metastasis (Joyce et al., 2009). The immune response against malignant 

cells during the process of tumor growth is subdivided into three stages: elimination, 

equilibrium, and escape. In the first stage, immune cells recognize and eliminate tumor cells 

due to the expression of tumor antigens, thus protecting the host against cancer. The next 

stage is a dynamic equilibrium between tumor and immune cells since the immune system is 

incapable to completely destroy the neoplastic lesion. Following equilibrium, the malignant 

cells acquire the probability to escape the immune system leading to tumor formation (Mittal 

et al., 2014). Many studies illustrate mechanisms suppressing an effective 

immunosurveillance including the secretion of immunoregulatory proteins such as 

transforming growth factor (TGF)-β or the tumoral expression of checkpoint molecules such 

as programmed cell death protein 1 (PD-1) and cytotoxic T lymphocyte antigen 4 (CTLA-4) 

(Gorelik et al., 2001; Pardoll, 2012). In addition, the recruitment of regulatory T (Treg) cells 

and myeloid-derived suppressor cells (MDSCs) by the tumor tissue is diminishing the 

immune response (Rabinovich et al., 2007). All of this can be an explanation for the poor 

immunogenicity of most clinicaly relevant tumors.  
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Established standard therapies for cancer patients are surgical resection, chemotherapy and 

irradiation, and more recently immunotherapy. The aim of cancer immunotherapy is to 

harness the patient`s immune system to induce tumor control and rejection.  

 

1.2 Cancer immunotherapy  

In the recent years, several approaches to activate the immune system against cancer 

including immunostimulatory agents, monoclonal antibodies, cancer vaccines, and cell-based 

therapies have been developed. Therapeutic strategies that focus on inhibitory signals 

received by T cells, including monoclonal antibodies targeting CTLA-4 (ipilimumab) and PD-1 

(nivolumab) have been developed. For example in melanoma patients, these strategies led 

to enhanced overall survival (Eggermont et al., 2016; Topalian et al., 2014). Thus in 2011, 

the U. S. Food and Drug Administration (FDA) approved ipilimumab for the treatment of 

melanoma whereas nivolumab obtained approval for a growing number of tumor entities 

since 2014 (www.fda.gov). More recently the combination of both antibodies has shown 

promising responses in patients with intermediate or poor-risk advanced renal cell carcinoma 

(NCT02231749) resulting in the FDA approval of nivolumab plus ipilimumab for the treatment 

of this malignancy (www.fda.gov).  

 

Studies examining different tumor entities describe a positive correlation between immune 

cell infiltrates and an improved prognosis due to an increased anti-tumor response (Schaer 

et al., 2011; Geng et al., 2015). Tumor-specific T cells are able to recognize tumor antigen- 

expressing antigen-presenting cells (APC) or tumor cells themselves. After tumor antigen 

engagement, T cells can directly mediate cytotoxic responses against cancer cells, either 

through the release of cytotoxic granules or through the expression of apoptosis-inducing 

molecules (Restifo et al., 2012). Activated CD8+ T cells are capable of releasing pro-

inflammatory cytokines such as interferon (IFN)-γ to enhance the immune response. The 

counterparts of tumor-infiltrating lymphocytes (TILs) are Treg cells, which compromise the 

protective features of TILs by hampering their activation and proliferation (Ganesan et al., 

2013). Therefore, increasing the access of therapeutic TILs to tumors in order to shift the 

balance towards effector T cells and the maintenance of their activity are promising options 

to enhance anti-tumor response. This can be achieved by adoptive cell therapy (ACT).  

 

1.2.1 Adoptive cell therapy (ACT) 

In the field of cancer immunotherapy the transfer of autologous T cells, isolated from tumor 

biopsies and expanded ex vivo, has emerged as a powerful therapeutic strategy for the 

treatment of patients with advanced malignancies (Kalos et al., 2013). However, only 

30 to 40 % of tumor biopsies contain sufficient numbers of TILs (Dudley et al., 2003). 
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Therefore, autologous T cells from peripheral blood transduced with high-affinity tumor 

antigen-specific T cell receptors (TCRs) or chimeric antigen receptors (CARs) are the most 

explored avenues, due to their more generic basis.  

 

1.2.2 Chimeric antigen receptor (CAR)-engineered T cells for cancer immunotherapy 

The adoptive transfer of T cells, which have been engineered to express an artificial CAR 

targeting a specific antigen expressed on the surface of tumor cells is a promising approach 

for cancer immunotherapy. Over the last decade, adoptive transfer of ex vivo modified and 

expanded CAR T cells has been shown to be an effective treatment for hematological 

malignancies (Park et al., 2016). As a result, the FDA approved the first two CAR T cell 

therapies (KymriahTM and YescartaTM) for the treatment of relapsed and refractory B cell 

acute lymphoblastic leukemia (ALL) or large B cell lymphoma positive for the CD19 antigen 

in 2017 (www.fda.gov). 

 

Initially, CAR constructs were cell surface proteins consisting of the VH and VL regions of a 

tumor antigen-specific monoclonal antibody expressed as a single chain variable fragment 

(scFv), which was linked to a signal transduction domain of the CD3ζ chain (Stancovski et 

al., 1993). Clinical trials using such first generation CAR constructs were not able to initiate 

an effective in vivo anti-tumor activity (Kershaw et al., 2006). Thereafter, CAR constructs 

were designed with one or more additional co-stimulatory domains to enhance cytokine 

production and proliferation of engineered T cells. So-called second or third generation CAR 

constructs incorporating CD3ζ fused to CD28, 4-1BB or OX40 revealed a superior anti-tumor 

efficiency compared to first generation CAR constructs (Wang et al., 2007; Hombach et al., 

2013). 

 

In comparison to TCR-transduced T cells, CAR-mediated ACT has several advantages, 

including HLA-independent tumor antigen recognition. The activation of TCR-transduced 

T cells is limited by the presentation of tumor antigens on HLA molecules on the tumor cells. 

Thus a described mechanism of immune evasion is the down-regulation of HLA molecules 

(Garrido et al., 2016). Another advantage is the possibility to link additional signaling 

modules to one antigen recognition domain resulting in optimal activation, proliferation and 

cytokine secretion by the engineered T cells (June, 2007).  

 

Because of the impressive benefits in the treatment of hematologic malignancies, the values 

of CAR T cell therapy were also investigated for solid tumors, such as breast cancer, 

sarcoma, neuroblastoma and others (Bajgain et al., 2018; Ahmed et al., 2015; Prapa et al., 

2015). However, these approaches led to less encouraging results probably due to the more 
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complex composition of solid tumors, heterogeneous tumor antigen expression as well as the 

immunosuppressive effects of the TME. 

 

1.2.3 Limitations of ACT and improvement strategies to increase the susceptibility of 
solid tumors to CAR T cell therapy 

ACT has an enormous potential for the treatment of hematological malignancies. But so far, 

the success of ACT in the treatment of solid tumors is limited due to immunosuppressive 

mechanisms at the tumor site. Here the presence of Treg cells and MDSCs, as well as 

metabolic conditions inhibit the activation of cytotoxic T cells after tumor infiltration (Balkwill 

et al., 2012). Additionally, tumor cells themselves are able to directly suppress effector T cell 

function. For instance, programmed cell death ligand 1 (PD-L1) is a negative regulator of 

T cell effector function and is frequently expressed in solid tumors (Pardoll, 2012). After 

activation, T cells up-regulate PD-1 and the interaction with PD-L1 on the tumor cell surface 

leads to functionally exhausted T cells. In our group, a strategy has been designed to convert 

this inhibitory signal in a T cell activation signal by exchanging the intracellular signaling 

domain of PD-1 with that of CD28. T cells expressing this fusion receptor become activated 

rather than exhausted upon PD-L1 engagement. Therefore, this receptor serves as a 

promising strategy to overcome PD-L1-mediated immunosuppression (Kobold et al., 2015; 

Liu et al., 2016; Rataj et al., 2018). However, not all tumor entities are susceptible to PD-1-

PD-L1 engagement. Therefore, further innovative approaches are required to bypass 

immunosuppressive hurdles, maintain effector functions and facilitate an efficient anti-tumor 

attack by the transferred T cell.  

 

In addition, only a limited number of tumor-specific antigens that are ubiquitously expressed 

on tumor cells but not on healthy tissue have been identified. Currently, molecules with 

higher expression levels on tumor cells compared to healthy tissue have been selected as 

potential targets but might have safety concerns. Targeting molecules whose expression is 

not restricted to solid tumors carries the risk to damage healthy tissue due to on-target off-

tumor toxicity. Therefore, a major research objective in the area of cancer immunotherapy is 

the identification of tumor-specific antigens (TSA) for the design of novel CAR constructs to 

improve CAR T cell specificity and safety. 

 

In some patients significant and partially life-threatening toxicity due to synchronous CAR 

T cell activation and effector cytokine production has been observed (Morgan et al., 2010). 

This situation in which CAR T cells are activated tumor-independently (on-target/off-tumor 

toxicity) is described as cytokine storm (Porter et al., 2018).This underlines the importance of 

safety mechanism to ameliorate CAR T cell therapy. To regulate the cytotoxic effects of 
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transferred T cells in patients and to minimize the magnitude of adverse effects, CAR T cells 

can be additionally engineered with suicide genes. Several suicide genes are currently tested 

in CAR-engineered T cells, such as the inducible caspase-9-based suicide gene (iCasp9), 

which enables a rapid and sufficient elimination of CAR T cells after activation (Hoyos et al., 

2010). 

 

Tumor escape from CAR T cell therapy can occur due to the down-regulation of targeted 

tumor antigens and subsequent selective outgrowth of antigen-negative variants. 

Simultaneous targeting of two different tumor antigens might overcome this hurdle. 

Therefore, two ligand binding domains separated by a linker or T cells engineered to express 

different CAR constructs could be used (Grada et al., 2013).  

 

The efficiency of ACT relies on the cytotoxic properties of transferred CAR T cells, but the 

importance of an efficient homing of the effector T cells to the target site should not be 

underestimated. To fulfill their therapeutic effects, adoptively transferred engineered T cells 

have to traffic in a sufficient quantity to the tumor site. The homing of T cells is a complex 

multistep process that includes exiting the circulation and infiltrating the tumor mediated by 

chemokines secreted by the tumor milieu (Fisher et al., 2006). Improvements can be made to 

ameliorate these essential steps of ACT. One strategy to enhance ACT for the treatment of 

solid tumors is to increase the trafficking of immune effector cells into the tumor through the 

genetic introduction of chemokine receptors. The expression of one or multiple chemokine 

receptors, depending on the chemokine profile of the tumor, could directly mediate a specific 

migration of cytotoxic T cells to the tumor site (Di Stasi et al., 2009).  

 

1.3 Chemokines and chemokine receptors  

Chemokines are a family of small proteins (8-10 kDa) that exhibit structural similarity with 

each other and are classified into the four subfamilies CXC, CC, C and CX3C, based on the 

configuration of their amino-terminal cysteine residues (Zlotnik et al., 2000). Chemokines are 

known for their capability to regulate the recruitment and trafficking of cells through 

chemoattraction. In physiological situations or by infection or inflammation, chemokines 

orchestrate homeostatic trafficking of several cell types such as hematopoietic stem cells, 

lymphocytes, monocytes, and dendritic cells. In addition, the small chemoattractants play a 

crucial role in diverse processes, including the development of the nervous system, 

homeostatic trafficking of hematopoietic stem cells, lymphocytes and dendritic cells (Raman 

et al., 2011). Chemokines exert their function by interaction with G protein-coupled receptors, 

also known as seven-transmembrane domain receptors. Binding to the extracellular amino-

terminal region of the appropriate receptor leads to phosphorylation of serine and threonine 



Introduction 

6 

residues in the intracellular carboxy-terminal region and activation of a signaling cascade 

culminating in the transcription of genes involved in invasion, motility, extracellular matrix 

interaction and cell survival (Neel et al., 2005). To date, more than 50 different chemokines 

have been described in humans interacting with 19 chemokine receptors reflecting the 

redundancy of the system (Chow et al., 2014). 

 

1.3.1 The role of chemokines in tumors 

Tumor cells, as well as their microenvironment constitutively produce a variety of 

chemokines. In the context of cancer, chemokines are discussed to have controversial anti-

tumor but also tumor-promoting properties including enhanced tumor growth, invasion and 

metastasis and stimulation of angiogenesis. Furthermore, as key players of cell migration, 

chemokines are frequently involved in the recruitment of several cell types into the tumor 

milieu (Raman et al., 2007; Müller et al., 2001; Keeley et al., 2011; Hojo et al., 2007). For 

instance, CXCL8, CXCL12 and CCL5 are well-characterized chemokines promoting the 

growth of malignant cells by enhancing their proliferation and survival (Zhu et al., 2004; 

Smith et al., 2004; Singh et al., 2018). In breast and prostate cancer, the recruitment of 

immunosuppressive tumor-associated macrophages (TAMs) is linked to the tumoral 

expression of the chemokine CCL2, thus associated with a pro-tumoral function (Soria et al., 

2011; Zhang et al., 2010). In addition, cancer-associated fibroblasts are capable to produce 

chemokines, which leads to the recruitment of immunosuppressive Treg cells, inducing tumor 

progression and development of metastasis (Liao et al., 2009). 

 

On the other hand, numerous studies observed a positive correlation of tumoral chemokine 

expression and attraction of effector T cells with anti-tumor abilities. In this context, an 

increased expression of CXCL9 and CXCL10 by tumor tissue is correlated with enhanced 

tumor-infiltration of CD4+ and CD8+ lymphocytes that express high levels of the cognate 

receptor CXCR3. Here, chemokines play an important role in directing TILs in tumors 

resulting in an anti-tumor effect (Gorbachev et al., 2007; Yang et al., 2006; ). The importance 

of these chemokines is also seen in human tumor biopsies. For instance, colorectal 

carcinomas with high CXCL10 levels showed an abundance of TILs expressing CXCR3 

(Musha et al., 2005). Another example for chemokine-mediated TIL recruitment to the tumor 

site is CX3CL1. This chemokine is produced by neuroblastoma or colorectal cancer cells and 

has the ability to attract and activate lymphocytes. Therefore, a high expression of CX3CL1 

is associated with a better prognosis (Siddiqui et al., 2016; Ohta et al., 2005). 

 

In summary, chemokines and their receptors represent a highly complex network and the 

functionality of chemokines in cancer is strongly depended on the circumstances in which 
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they are expressed as well as the stage of the disease. On the other hand, the expression of 

chemokine receptors by lymphocytes is a well-organized process depending on the 

differentiation and activation state of the cells and is influenced by the adjacent environment. 

Furthermore, naïve lymphocytes down-regulate receptors for homeostatic chemokines in 

favor of an up-regulation of inflammation-associated chemokine receptors during the 

development to effector cells (Mackay et al., 1990).  

 

1.3.2 Arming tumor-specific T cells with chemokine receptors to improve ACT 

Because of their disseminated expression in cancer and their versatile role in tumor 

formation and progression, chemokines became an interesting target in cancer therapy as 

well as potential agent for immunotherapy (Homey et al., 2002). Current approaches in the 

area of ACT focus on the idea to improve T cell homing through the insertion of otherwise 

absent or insufficiently expressed chemokine receptors into tumor-specific effector cells to 

increase their limited recruitment to the target site (Table 1). In this context, high expression 

levels of CCL2 in mesotheliomas have been described. But at the same time, it was 

demonstrated that activated human T cells engineered to express a mesothelin-specific CAR 

construct exhibit only minimal expression of the cognate receptor CCR2. Therefore, the 

chemokine receptor CCR2b was co-transduced along with the CAR construct into T cells and 

the therapeutic efficiency of the genetically engineered T cells was investigated. In this study, 

treating mice with established tumors revealed that the additional modification of CAR T cells 

with the chemokine receptor CCR2b led to a 12.5-fold increase in tumor infiltration in 

comparison to T cells expressing only the CAR construct without the chemokine receptor. 

That, in turn, led to a significant increase in the therapeutic effect (Moon et al., 2011). 

 

Over the last years, a limited number of studies focused on the additional genetic 

modification of CAR T cells to co-express chemokine receptor(s) matching the tumors 

chemokine profile to enhance tumor-infiltration by CAR T cells (Table 1). 
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Table 1: Overview of studies examining the combination of CAR or TCR engineering with chemokine receptor 
expression to ameliorate the efficiency of cancer treatment.  

CAR or TCR construct Chemokine receptor Malignancy Reference 

Anti-CD30 CAR CCR4 Hodgkin lymphoma Di Stasi et al., 2009 

Anti-GD2 CAR CCR2b Neuroblastoma Craddock et al., 2010 

Anti-gp100 TCR CXCR2 Melanoma Peng et al., 2010 

Anti-mesothelin CAR CCR2b Mesothelioma Moon et al., 2011 

Anti-EGFRvIII CAR* CXCR4 Glioblastoma Müller et al., 2015 

Anti-OVA TCR CCR2 Lymphoma Garetto et al., 2016 

Anti-OVA TCR CCR4 Pancreatic cancer Rapp et al., 2016 
* NK cells engineered to express the chimeric antigen receptor 

 

All of these approaches achieved enhanced trafficking and anti-tumor activity of TCR- or 

CAR-modified T cells when combined with the expression of a chemokine receptor. 

 

It is conceivable that this strategy can be translated to other tumors with a specific and 

restricted chemokine expression pattern to improve tumor homing under the guidance of 

appropriate chemokine receptors. Since many different cancers are associated with an 

extensive chemokine network, it is of vital importance to identify suitable chemokine and 

chemokine receptor interaction patterns to optimize the tumor homing of adoptively 

transferred tumor-specific T cells and enhance therapeutic benefits in the treatment of solid 

tumors (Balkwill et al., 2012).  

 

1.3.3 The CXCL16-CXCR6 axis  

Among the complex chemokine network, CXCL16 and CXCR6 are a unique chemokine-

chemokine receptor pair: CXCL16 belongs to the CXC chemokine family and exists both in a 

transmembrane and a soluble form (Wilbanks et al., 2001). The transmembrane protein is 

cleaved by metalloproteinases of the ADAM family, ADAM10 and ADAM17, yielding the 

soluble form (Schramme et al., 2008). CXCL16 interacts with its sole receptor CXCR6, also 

known as Bonzo. The activation of the pair is involved in several biological processes, 

including trafficking of lymphocyte subsets, cell adhesion, cell survival, muscle regeneration 

and brain development (Hattermann et al., 2008; Hara et al., 2006; Zhang et al., 2009).  

 

Recent studies confirmed an over-expression of CXCL16 in distinct types of human cancer, 

such as lung (Hald et al., 2015), prostate (Darash-Yahana et al., 2009), renal (Gutwein et al., 

2009), colorectal (Hojo et al., 2007), ovarian (Gooden et al., 2014), bladder (Lee et al., 2013), 

breast (Meijer et al., 2008) and pancreatic cancer (Wente et al., 1992). But the role of the 

CXCL16-CXCR6 axis in cancer is still unclear, since divergent functions have been reported 
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including increased tumor growth, invasion, metastasis and angiogenesis associated with a 

poor prognosis (Ke et al., 2017; Deng et al., 2010; Darash-Yahana et al., 2009; Gooden et 

al., 2014; Ha et al., 2011). In contrast, colorectal carcinoma and tumors high in CXCL16 

expression revealed an increased number of CD4+ and CD8+ lymphocytes and a better 

outcome than weakly CXCL16 expressing tumors (Hojo et al., 2007). Furthermore, mice 

lacking CXCR6 exhibited a more restricted number of TILs resulting in tumor progression in a 

breast cancer model (Matsumura et al., 2008). Thus, CXCL16 expression might also serve 

as a positive prognostic marker as described in the context of renal cancer (Gutwein et al., 

2009).  

 

1.4 Research objectives 

Up to now, the potential of TCR- or CAR-engineered T cells endowed with otherwise absent 

chemokine receptors has been verified in only a limited number of studies (Table 1). 

Therefore, the chemokine network represents an attractive research focus to further enhance 

the therapeutic benefits of ACT in solid tumors. For this approach, CXCL16 seems to be an 

interesting candidate. The chemokine is expressed in several solid tumor entities and a 

positive effect of CXCL16 on the homing of TIL in colorectal cancer has been outlined 

previously. Thus, it was proposed that the additional arming of TCR or CAR T cells with 

CXCR6 might improve ACT efficiency.  

 

A previous doctoral student in the laboratory (Viktoria Blumenberg) showed a strong CXCL16 

expression in murine pancreatic tumor cells resulting in higher chemokine levels in solid 

tumors than in any other healthy murine tissue. At the same time, she could demonstrate that 

the corresponding chemokine receptor, CXCR6, was absent in CD8+ lymphocytes. After 

genetic modification of ovalbumin (OVA)-specific OT-1 T cells with a CXCR6 expression 

vector, the chemokine receptor expressing T cells revealed an increased migration 

capability. Furthermore, her research indicated an enhanced T cell activation and target cell 

lysis upon co-culture with pancreatic tumor cells. Finally, a therapeutic effect of CXCR6-

engineered OT-1 T cells in the treatment of established subcutaneous murine pancreatic 

tumors highlighted the potential of the CXCL16-CXCR6 interaction as a possible strategy to 

enhance ACT efficacy.  

 

Based on these observations, the present thesis had the following objectives: 

• to validate the previous findings with a second tumor model, which includes the 

investigation of the migration capability, T cells activation, in vitro and in vivo anti-

tumor efficiency of CXCR6-expressing T cells 
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• to characterize the chemokine and chemokine receptor interaction and its ability to 

mediate cell adhesion 

• to prove the suspected enhanced tumor homing of CXCR6-expressing tumor-specific 

T cells in vivo 

• to validate the specificity of the therapeutic effect by using a CXCL16-deficient tumor 

model  

• to characterize the trafficking activities of adoptively transferred CXCR6-expressing 

tumor-specific T cells ex vivo  

• to examine the effects of CXCL16-secreting human tumor cells on CXCR6-

expressing human T cells 
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2 Materials 

2.1 Technical equipment 

2-Photon microscope Leica SP5IIMP Leica Microsystems, Wetzlar, DE 

Analytical balance CPA1003S Sartorius Laboratory, Göttingen, DE 

Cell culture incubator BBD 6220 Heraeus, Hanau, DE 

Centrifuges 3L-R Multifuge Heraeus, Hanau, DE 

 Centrifuge 5318R Eppendorf, Hamburg, DE 

 Rotina 420R Hettich GmbH, Tuttlingen, DE 

Confocal microscope Leica SP2 AOBS Leica Microsystems, Wetzlar, DE 

FACS Canto II BD Biosciences, Franklin Lakes, USA 

 Fortessa BD Biosciences, Franklin Lakes, USA 

 Aria II BD Biosciences, Franklin Lakes, USA 

Heating block Thermomixer 5436 Eppendorf, Hamburg, DE 

iCELLigence RTCA S16 ACEA Biosciences, San Diego, USA  

Inverted microscope Axiovert 40C Zeiss Jena, DE 

 Axiovert HAL 100 Zeiss Jena, DE 

Laminar flow hood HeraSAFE KS Heraeus, Hanau, DE 

LightCycler®  480 Instrument II Roche Diagnostics, Rotkreuz, CH 

MACS separator QuadroMACS Miltenyi Biotec, Bergisch Gladbach, DE 

Multilabel plate reader Mithras LB 940 Berthold, Bad Wildbad, DE 

Photometer NanoDrop 2000c Thermo Fisher, Waltham, USA 

pH-Meter inoLab pH720 WTW GmbH, Weilheim, USA 

Spinning disk confocal  Nikon TiE Nikon Instruments, Tokyo, JP 

    microscope 

Thermocycler T3 Biometra, Göttingen, DE 

Vortex mixer RS-VA10 Phoenix, Garbsen, DE 

Water bath Unitherm-HB uni equip, München, DE 

 

2.2 Materials 

Cell culture flasks (T25 to T175) Costar Corning, New York, USA 

Cell culture plates (6- to 96-well) BD Medical, Franklin Lakes, USA 

ELISA microplates (96-well) Costar Corning, New York, USA 

Eppendorf tubes (0.5 ml, 1.5 ml, 2.0 ml) Sarstedt, Nümbrecht, DE 

FACS tubes BD Biosciences, Franklin Lakes, USA 

Nickel-coated 96-well plate Thermo Fisher, Waltham, USA 

Nylon filter SmartStrainer (100 µm, 30 µm) Miltenyi Biotec, Bergisch Gladbach, DE 

Pipetboy Hirschmann Laborgeräte, Eberstadt, DE 
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Pipettes Eppendorf, Hamburg, DE 

Serological pipettes Costar Corning, New York, USA 

Syringes BD Medical, Franklin Lakes, USA 

Trans-well migration plates (8.0 µm) Merck Millipore, Burlington USA 

 

2.3 Chemicals and reagents 

7-Aminoactinomycin D (7-AAD) Sigma-Aldrich, St. Louis, USA 

Albumin Fraction V (BSA) Sigma-Aldrich, St. Louis, USA 

Ammonium chloride Sigma-Aldrich, St. Louis, USA 

Biocoll Separation Solution (d = 1.077 g/ml) Biochrom Merck Millipore, Darmstadt, DE 

Calcein AM BD Biosciences, Franklin Lake, USA 

Calcium chloride Sigma-Aldrich, St. Louis, USA 

Collagenase D Sigma-Aldrich, St. Louis, USA 

Dimethyl sulfoxide (DMSO) Sigma-Aldrich, St. Louis, USA 

Disodium hydrogen phosphate dihydrate Sigma-Aldrich, St. Louis, USA 

DNase I Roche, Mannheim, DE 

Ethylenediaminetetraacetic acid (EDTA) Sigma-Aldrich, St. Louis, USA 

Ethanol 96-100 % Sigma-Aldrich, St. Louis, USA 

FACSFlow BD Biosciences, Franklin Lake, USA 

Fixable Viability Dye eFluorTM 780 eBioscience, San Diego, USA 

Heparin sodium (25,000 I.U./5 ml) Ratiopharm, Ulm, DE 

HEPES Sigma-Aldrich, St. Louis, USA 

Isoflurane CP Pharma, Burgdorf, DE 

β-Mercaptoethanol  Sigma-Aldrich, St. Louis, USA 

pegGOLD TriFastTM  Peqlab, VWR International, Radnor, USA 

Percoll Solution (d = 1.13 g/ml) GE Health Care, Chicago, USA 

Potassium chloride Sigma-Aldrich, St. Louis, USA 

Potassium hydrogen carbonate Sigma-Aldrich, St. Louis, USA 

RetroNectin® TaKaRa, Kyoto,  

Sodium chloride Sigma-Aldrich, St. Louis, USA 

Sulfuric acid (2 N) Pharmacy of LMU, München, DE 

Trypan blue Sigma-Aldrich, St. Louis, USA 

Trypsin (10 x) PAA Laboratories, Pasching, AT 

Tween-20 Roth, Karlsruhe, DE 
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2.4 Cytokines 

HIS-tagged mouse CXCL16 SinoBiological, Wayne, USA 

Recombinant human CXCL16 Peprotech, London, UK 

Recombinant human IL-2 Peprotech, London, UK 

Recombinant human IL-15 Peprotech, London, UK 

Recombinant mouse CXCL16 Peprotech, London, UK 

Recombinant mouse IFN-γ Peprotech, London, UK 

 

2.5 Antibodies 

Table 2: Overview of all applied antibodies. Fluorochrome-conjugated antibodies were used for flow cytometry 
analysis and purified antibodies were utilized for lymphocyte stimulation in cell culture. Specified final 
concentrations have been used for FACS staining or activation of 106 cells  

Specificity Fluorochrome Clone Concentration Manufacturer 

Anti-human CD3 Purified OKT3 2 µg/ml eBioScience 

Anti-human CD8 Pacific Blue SK1 1 µg/ml BioLegend 

Anti-human CD28 Purified CD28.2 2 µg/ml eBioScience 

Anti-mouse CD3 Purified 145-2C11 1 µg/ml eBioScience 

Anti-mouse CD3 PE 145-2C11 1 µg/ml BioLegend 

Anti-mouse CD3 PE-Cy7 145-2C11 1 µg/ml BioLegend 

Anti-mouse CD8 Pacific Blue 53-6.7 1.5 µg/ml BioLegend 

Anti-mouse CD8 PerCP 53-6.7 1 µg/ml BioLegend 

Anti-mouse CD11c APC N418 1 µg/ml BioLegend 

Anti-mouse CD28 Purified 37.51 0.1 µg/ml eBioScience 

Anti-mouse CD31 eFluor450 390 30 µg/ml eBioScience 

Anti-mouse CD45.1 APC-Cy7 A20 1 µg/ml BioLegend 

Anti-mouse CD90.1 Pacific Blue OX-7 1.5 µg/ml BioLegend 
 

2.6 Kits and assays 

Bio-Plex Cell Lysis Kit Bio-Rad, San Diego, USA 

CD3 microbeads, human Miltenyi Biotec, Bergisch Gladbach, DE 

CountBrightTM Absolute Counting Beads Invitrogen, Carlsbad, USA 

DuoSet® ELISA Human CXCL16 R&D Systems, Minneapolis, USA 

DuoSet® ELISA Mouse CXCL16 R&D Systems, Minneapolis, USA 

Dynabeads Human T-Activator CD3/CD28 Thermo Fisher, Carlsbad, USA 

Dynabeads Mouse T-Activator CD3/CD28 Thermo Fisher, Carlsbad, USA 

DCTM Protein Assay Bio-Rad, San Diego, USA 

Mouse IFN-γ ELISA Set  BD Biosciences, Franklin Lake, USA 
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SuperScript II Reverse Transcriptase kit Thermo Fisher, Carlsbad, USA 

 

2.7 Cell lines, supplements and media 

2.7.1 Cell lines 

Table 3: Overview of cell lines used. All cell lines were tested to be mycoplasma free and human cell lines were 
identified by STR profiling.  

Cell line Species Description Medium Reference 

293Vec Eco Human Embryonic kidney DMEM++++ BioVec Pharma, USA 

293Vec Galv Human Embryonic kidney DMEM+++ BioVec Pharma, USA 

293Vec RD114 Human Embryonic kidney DMEM+++ BioVec Pharma, USA 

Capan-1 Human Pancreatic cancer DMEM+++ ATCC: HTB-79 

E.G7-OVA Murine Lymphoma mTCM ATCC: CRL-2113 

Flp-InTM 293 Human Embryonic kidney DMEM+++ Thermo Fisher, USA 

MIA PaCa-2 Human Pancreatic cancer DMEM+++ ATCC: CRL-1420 

PANC-1 Human Pancreatic cancer DMEM+++ ATCC: CRL-1469 

Panc02-OVA Murine Pancreatic cancer DMEM+++ Jacobs et al., 2011 

PA-TU-8988T Human Pancreatic cancer DMEM+++ DSMZ: ACC 162 

Platinum-E Human Embryonic kidney Plat-E medium Morita et al., 2000 

SUIT-2 Human Pancreatic cancer DMEM+++ Iwamura et al., 1987 
+++ supplemented with 50 ml FBS, 1 IU/ml penicillin, 2 mM L-glutamine  
++++ supplemented with 50 ml FBS, 1 IU/ml penicillin, 2 mM L-glutamine  

 

The generation of stable retrovirus-producing cell lines for murine and human cell 

transduction has already been described by Ghani et al., 2007. In brief, pMP71 vectors 

carrying the appropriate sequence were stably introduced in the packaging cell lines 293Vec 

Eco or 293Vec RD114. Single cell clones were generated and indirectly screened for the 

highest level of virus production by determining transduction efficiency of primary T cells. 

This method was used to generate the virus producing cell lines 293Vec Eco-GFP, 293Vec 

Eco-mCherry, 293Vec Eco-CXCR6-2A-GFP, 293Vec RD114-GFP, and 293Vec RD114-

CXCR6-2A-GFP. 

 

Starting with Panc02-OVA or E.G7-OVA the CXCL16-overexpressing cell lines Panc02-OVA-

CXCL16 or E.G7-OVA-CXCL16 were generated by transduction with pMXs vector containing 

the full-length murine CXCL16 cDNA (UNIPROT entry Q8BSU2). Flp-InTM 293-hCXCL16 

cells were created by transduction of Flp-InTM 293 with pMXs vector containing the full-length 

human CXCL16 cDNA (UNIPROT entry Q9H2A7).  
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2.7.2 Supplements 

Blasticidin (10 mg/ml) InvivoGen, San Diego, USA 

Dulbecco’s modified Eagle’s medium (DMEM) PAA Laboratories, Pasching, AT 

Fetal bovine serum (FBS, heat inactivated) Gibco, Carlsbad, USA 

HEPES (1 M) Sigma-Aldrich, St. Louis, USA 

Human serum Sigma-Aldrich, St. Louis, USA 

L-Glutamine (200 mM) PAA Laboratories, Pasching, AT 

Non-essential amino acids (NEAA) PAA Laboratories, Pasching, AT 

Penicillin/Streptomycin (100x) PAA Laboratories, Pasching, AT 

Puromycin (10 mg/ml) InvivoGen, San Diego, USA 

Roswell Park Memory Institute (RPMI) 1640 PAA Laboratories, Pasching, AT 

Sodium pyruvate (100 mM) PAA Laboratories, Pasching, AT 

VLE-RPMI 1640 Biochrom, Berlin, DE 

 

2.7.3 Media 

Complete DMEM medium (DMEM+++) Complete RPMI medium (RPMI+++) 

DMEM 500 ml RPMI 500 ml 
FBS 50 ml FBS 50 ml 
Penicillin 1 IU/ml Penicillin 1 UI/ml 
Streptomycin 100 µg/ml Streptomycin 100 µg/ml 
L-Glutamine 2 mM L-Glutamine 2 mM 
 

Plat-E medium (DMEM+++++) 293Vec Medium (DMEM++++) 

DMEM 500 ml DMEM 500 ml 
FBS 50 ml FBS 50 ml 
Penicillin 1 IU/ml Penicillin 1 UI/ml 
Streptomycin 100 µg/ml Streptomycin 100 µg/ml 
L-Glutamine 2 mM L-Glutamine 4 mM 
Blasticidin 10 µg/ml 
Puromycin 1 µg/ml 
 

Murine T cell medium (mTCM) Humane T cell medium (hTCM) 

RPMI 500 ml VLE-RPMI 1640 500 ml 
FBS 50 ml Human Serum 12.5 ml 
Penicillin 1 IU/ml Penicillin 1 UI/ml 
Streptomycin 100 µg/ml Streptomycin 100 µg/ml 
L-Glutamine 2 mM L-Glutamine 2 mM 
HEPES 1 mM Sodium pyruvate 1 mM 
Sodium pyruvate 1 mM NEAA (100 %) 1 % 
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Murine cytotoxicity medium Human cytotoxicity medium 

RPMI (w/o phenol red) 500 ml RPMI (w/o phenol red) 500 ml 
FBS 5 ml Human Serum 5 ml 
Penicillin 1 IU/ml Penicillin 1 UI/ml 
Streptomycin 100 µg/ml Streptomycin 100 µg/ml 
L-Glutamine 2 mM L-Glutamine 2 mM 
HEPES 1 mM Sodium pyruvate 1 mM 
Sodium pyruvate 1 mM NEAA (100 %) 1 % 
 

Digestion medium  Cryopreservation medium 

RPMI 1 ml FBS 900 µl 
Collagenase D 1 mg/ml DMSO 100 µl 
DNase I 0.05 mg/ml 
 

2.7.4 Buffers 

Transfection buffer (pH 6.76) Erythrocyte lysis buffer (pH 7.2) 

NaCl 1.6 g NH4Cl 8.92 g 
KCl 74 mg KHCO3 29 mg 
Na2HPO4 50 mg EDTA 1 g 
HEPES 1 g Add 1 l Aqua dest. 
Add 100 ml Aqua dest.  
 

FACS buffer 

PBS 500 ml 
FBS 10 ml 
 

2.8 Software 

BD FACSDiva  BD Biosciences, Franklin Lake, USA 

EndNote X7  Thomson Reuters, Calsbad, USA 

Fiji software  Open Source Software 

FlowJo 8.7  Tree Star, Ashland, USA 

GraphPad Prism Version 5.0 GraphPad Software, La Jolla, USA 

Leica LAS X 3.1 software Leica Microsystems, Wetzlar, DE 

Leica LCS software  Leica Microsystems, Wetzlar, DE 

LightCycler® 480 software Roche Diagnostics, Rotkreuz, CH 

Microsoft Office 2016  Microsoft, Redmond, USA 

SnapGene 4.2  GSL Biotech, Chicago, USA 
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3 Methods 

3.1 Molecular biological methods 

3.1.1 Generation of plasmids for retrovirus-mediated gene transfer 

All constructs were generated by overlap extension PCR and recombinant expression 

cloning into the retroviral pMP71 or pMXs vector. To co-express mCXCR6 or hCXCR6 with 

GFP, the full-length of murine Cxcr6 (UNIPROT entry Q9EQ16 amino acid 1-351) or human 

CXCR6 cDNA (UNIPROT entry O00574 amino acid 1-342) was linked to GFP by using a 

self-cleaving 2A peptide-encoding sequence (mCXCR6-2A-GFP or hCXCR6-2A-GFP). For 

fluorescence microscopy analysis, murine Cxcr6-encoding nucleotide sequence was fused to 

GFP with a non-cleavable linker (mCXCR6-GFP). For stable overexpression of the 

chemokine by tumor cells, the full length murine CXCL16 cDNA (UNIPROT entry A2CFE9) 

or human CXCL16 cDNA (UNIPROT entry Q9H2A7) was cloned into the pMXs vector. 

 

3.1.2 RNA isolation and quantitative real-time PCR (qRT-PCR) 

Total RNA was extracted from cells using pegGOLD TriFastTM according to the 

manufacturer’s instructions. 2 µg of total RNA was used as a template for cDNA synthesis 

with the SuperScript II Reverse Transcriptase kit. Primers for qRT-PCR were designed with 

the Roche Universal Probe Library Assay Design Center using NCBI GenBank sequences. 5’ 

Primer TGA ACT AGT GGA CTG CTT TGA GC and 3’ Primer GCA AAT GTT TTT GGT 

GGT GA combined with probe #103 were used for the analysis of murine Cxcl16. The 

LightCycler 480® system was used to perform and evaluate qRT-PCR analysis. Relative 

gene expression levels are shown as the expression level of the gene of interest in relation to 

the expression level of hypoxanthine phosphoribosyltransferase (Hprt).  

 

3.2 Cell biological methods 

3.2.1 General cell culture conditions 

All tumor cell lines were cultured in cell culture flasks in incubators at 37 °C, 5 % CO2, and 

95 % humidity and were handled under sterile conditions. Adherent cells were detached by 

incubating with trypsin solution for 5 to 10 min at 37 °C. Detached cells were spun down 

(400 x g, 5 min) and resuspended in the appropriate medium. Cells were supplemented with 

fresh medium three times a week or after reaching a confluence greater than 80 %. In order 

to determine cell numbers and viability, the cells were stained with trypan blue and manually 

counted using a Neubauer hemocytometer.  

 

For the generation of Panc02-OVA tumor cells deficient for CXCL16, the CRISPR/Cas9 

system was used as described previously (Ran et al., 2013). The U6-gRNA/CMV-Cas9-GFP 
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plasmid with a gRNA targeting exon 2 of the murine Cxcl16 gene was purchased from 

Sigma-Aldrich, St. Louis, USA (gRNA sequence 5’-ACTTCCAGCGACACTGCCCTGG). 

Successful delivery of the plasmid into the tumor cells was confirmed by the expression of 

the GFP reporter gene and individual GFP-positive tumor cells were isolated by FACS 

sorting using BD FACS Aria II run on FACSDiva Software. An efficient gene knockout of 

single cell clones was validated by genome sequencing of the CXCL16 gene and CXCL16 

ELISA. 

 

To expand CD8+ T cells, the cell suspension was transferred into tubes and centrifuged 

(5 min at 400 x g). Murine ovalbumin-specific OT-1 T cells were resuspended in mTCM and 

the cell concentration was adjusted to 106 cells/ml, supplemented with 50 ng/ml human 

interleukin 15 (IL-15) and 50 µM β-mercaptoethanol. Human T cells were resuspended in 

hTCM and adjusted to 106 cells/ml supplemented with 5 ng/ml IL-15, 0.2 µg/ml human 

interleukin 2 (IL-2) and 50 µM β-mercaptoethanol. T cells were cultured in 6-well plates or 

tissue culture flasks and maintained at 37°C, 5 % CO2 and 95 % humidity. After two days of 

T cell culture, the cell number was quantified via trypan blue exclusion staining and the cells 

were re-cultured with 106 cells/ml in respective media. 

 

Capan-1 spheroids were generated by seeding 2,000 tumor cells in 100 µl DMEM+++ into 

96-well plates coated with 50 µl sterile 2 % agarose. Flp-InTM 293-hCXCL16 spheroids were 

grown as hanging drops in a humidity chamber (250 cells per 25 µl drop).  

 

3.2.2 Generation of cell-free tumor supernatants 

To generate cell-free supernatants, tumor cells were trypsinized, if necessary, spun down 

and counted. 2 x 105 Panc02-OVA or 5 x 105 E.G7-OVA cells per ml were seeded in 2 ml 

fresh medium with or without 20 ng/ml IFN-γ in 6-well plates and after 48 h the supernatants 

were harvested. For human tumor cells, 106 cells per ml were plated in 2 ml fresh medium in 

6-well plates and incubated for 72 h. Supernatants were centrifuged twice at 400 x g for 

5 min in a conical Falcon tube to remove tumor cells. After that, supernatants were used for 

migration assays.  

 

3.2.3 Isolation of primary murine T cells 

OT-1, CD45.1 OT-1 or CD90.1 OT-1 mice were killed by cervical dislocation and the spleens 

were transferred into sterile tubes containing mTCM. Mashing the organ through a 100 µm 

and 30 µm cell strainer generated a single cell suspension. Cells were spun down (400 x g, 

5 min) and red blood cells were depleted by using 3 ml erythrocyte lysis buffer. After 2 min, 

mTCM was added and the cells were centrifuged. After quantification, a sufficient number of 
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splenocytes was cultured for 48 h in mTCM supplemented with 4 µg/ml IL-2, 50 µM 

β-mercaptoethanol, 1 µg/ml anti-mouse CD3 and 0.1 µg/ml anti-mouse CD28 antibodies.  

 

3.2.4 Isolation of primary human T cells 

50 to 100 ml peripheral blood was drawn from irreversibly anonymized healthy donors using 

a 50 ml syringe covered with 20 IU heparin sodium per ml blood. For peripheral blood 

mononuclear cell (PBMC) isolation a density gradient with Biocoll (d = 1.077 g/ml) was used. 

First, the blood was diluted 1:1 with isotonic NaCl solution and 30 ml of the diluted blood was 

carefully layered over 15 ml Biocoll in a 50 ml Falcon tube. After a centrifugation step at 

1,000 x g at 20 °C without a brake, the interphase ring containing PBMCs was aspirated and 

transferred to a new 50 ml Falcon tube. The cells were washed twice with isotonic NaCl 

solution (500 x g, 10 min, 20 °C) before separating of T cells using anti-human CD3 

MicroBeads following the manufacturer`s protocol. 106 cells/ml CD3+ human T cells were 

absorbed in hTCM supplemented with 5 ng/ml IL-15, 0.2 µg/ml IL-2, 50 µM 

β-mercaptoethanol and human T-Activator anti-CD3- anti-CD28 Dynabeads (33 µl per 106 

cells). Next, the T cells were cultured in 6-well plates, which have been coated with 2 µg/ml 

anti-human CD3 and 2 µg/ml anti-human CD28 antibodies the previous day. After two days 

of cell culture, the cells were used for transduction. 

 

3.2.5 Retroviral transduction of murine T cells 

The transduction of primary murine OT-1 T cells was conducted following a previously 

described protocol (Kobold et al., 2015). In brief, the ecotropic packaging cell line Platinum-E 

(Plat-E) was plated in 6-well plates and after 16 to 24 h, when the cells were 70 % confluent, 

they were transfected using calcium phosphate precipitation. The transfection mix per 6-well 

consisted of 2.5 M CaCl2, 18 µg retroviral pMP71 plasmid DNA and 150 µl transfection buffer 

in a total volume of 300 µl. The transfection mix was added dropwise to the PlatE cells, which 

afterwards were incubated at 37 °C, 5 % CO2, and 95 % humidity for 6 h. After incubation, 

medium containing the transfection mix was replaced by 3 ml DMEM+++ and the cells were 

cultured at 37 °C, 5 % CO2, and 95 % humidity for about 48 h. For the transduction, virus-

containing medium of the confluent 6-well plate was collected and replaced by mTCM. Then 

the virus-producing PlatE cells were incubated for further 24 h. After this period, the virus-

containing supernatant was again collected and used for a second transduction hit. When 

working with 293Vec-Eco virus producing cell lines, 1.2 x 106 cells were seeded into a 6-well 

plate and virus-containing supernatant was harvested one and two days after plating. Virus-

containing supernatants were passed through a 0.45 µm filter and used for retroviral 

transduction. 
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For the retroviral transduction of primary murine OT-1 T cells, a 24-well plate was coated 

with 6.25 µg/ml RetroNectin® (o/n at 4 °C) to optimize the co-localization of T cells and virus 

particles (Hanenberg et al., 1996). The filtered retroviral supernatant was spun down onto the 

RetroNectin® coated 24-well plate (3,000 x g, 120 min, 4 °C). Next, the supernatant was 

discarded and 106 activated OT-1 T cells per well were added to the virus-coated plate. 16 to 

24 h after the first transduction a second transduction with new retroviral supernatant was 

performed. The transduction efficiency was analyzed using flow cytometry analysis. 

Transduced T cells were cultured in mTCM supplemented with IL-15 and β-mercaptoethanol 

as described in 3.2.1. 

 

3.2.6 Retroviral transduction of human T cells 

293Vec-RD114 virus-producing cell lines were used to generate supernatants for human cell 

transduction. 1.2 x 106 cells were seeded into a 6-well plate and retrovirus-containing 

supernatant was harvested one and two days after plating. The retrovirus was coated onto 

24-well culture plates coated with 6.25 µg/ml RetroNectin®. 106 activated human T cells in 

hTCM supplemented with IL-2, IL-15 and β-mercaptoethanol were seeded onto virus-coated 

wells. The following day, a second transduction was performed using the same protocol. 

T cells were checked for their transduction efficiency using flow cytometry analysis, 

expanded in hTCM supplemented with IL-2, IL-15 and β-mercaptoethanol and as described 

in 3.2.1. 

 

3.2.7 Isolation of cells from organs 

Organs were removed from sacrificed mice and transferred to 24-well plates containing PBS. 

All following steps, when possible, were performed on ice. Tumors were homogenized with 

scalpels and incubated in digestion medium at 37 °C for 30 min on a shaking heating block 

(800 rpm). Single cell suspensions were generated by mashing spleens, lymph nodes or 

digested tumor tissue through a 100 µm and 30 µm cell strainer. For lymphocyte isolation, 

tumor cell suspensions were resuspended in 2 ml PBS and layered over a density gradient of 

9 ml 44 % Percoll (upper phase) and 6 ml 67 % Percoll (lower phase). After a centrifugation 

step at 800 x g for 30 min at 4 °C without brake, the interphase ring containing lymphocytes 

was aspirated, transferred to a new Falcon tube and washed with PBS.  

 

3.2.8 Generation of organ lysates 

Organs were removed from sacrificed mice and shock frozen with liquid nitrogen. After 

shedding and homogenization using a mortar, the frozen tissue powder was lysed with the 

Bio-Plex cell lysis kit according to the manufacturer`s protocol. Protein concentrations were 

quantified using the Bradford method. Absorbance at 750 nm was detected with a microplate 
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reader (Berthold Mithras LB940 multilabel plate reader). Finally, protein concentrations were 

calculated using a standard curve. 

 

3.2.9 Confocal microscopy assay 

To monitor the intracellular trafficking of CXCR6 after interaction with its ligand CXCL16, 

5 x 103 CXCR6-GFP transduced T cells were stimulated with 10 ng/ml recombinant CXCL16 

(Peprotech, Hamburg, Germany). Receptor trafficking was monitored over a period of 1 h 

using a Leica SP5 AOBS confocal microscope run on the Leica LAS X 3.1 software. 

Membrane-associated CXCR6 expression was quantified by blinded counting of at least 75 

representative cells per time point. 

  

3.2.10 Cell adhesion assay 

First, murine 107 T cells were washed with PBS, resuspended in 1 ml PBS and labelled with 

5 µM calcein AM following the manufacturer`s protocol. After labelling, T cells were washed 

twice with FACS buffer and pre-incubated with or without 9 pmol recombinant mouse 

CXCL16 in 100 µl PBS (30 min at 37 °C). Nickel-coated 96-well plates were coated with 

100 µl 9 pmol His-tagged CXCL16 or 9 pmol BSA (1 h at room temperature). Coated wells 

were washed twice with wash buffer (PBS + 0.05 % Tween20). 0.2 x 106 pre-stimulated T 

cells were transferred to the CXCL16 or BSA-coated nickel plate. After 25-min incubation 

and washing twice with cold PBS (4 °C), attached cells were lysed with RIPA buffer 

according to the manufacturer`s recommendations. Cell lysates were spun down at 

15,000 x g at 4 °C for 5 min and the fluorescence of the supernatants was analysed using a 

microplate reader (Berthold Mithras LB940 multilabel plate reader). The number of adherent 

cells is proportional to the fluorescent intensity at 495 nm. 

 

3.2.11 Migration and spheroid invasion assay 

Murine and human T cell migration was investigated using trans-well migration assays. 106 

transduced T cells were placed into the upper chamber of a trans-well plate with an 8 µm 

pore filter. The lower chamber contained 50 ng/ml human recombinant CXCL16 or cell-free 

tumor supernatant (prepared as described in 3.2.2). After 4 h incubation at 37°C the number 

of migrated cells in the lower chamber was quantified using flow cytometry analysis and 

CountBrightTM Absolute Counting Beads. 

 

On day 7 of 3D culture, Capan-1 or Flp-InTM 293-hCXCL16 spheroids were co-incubated with 

15,000 T cells. After 18 h of co-incubation, non-invaded T cells were removed by washing 

with PBS prior to staining with 1 µg/ml 7-AAD in 100 µl PBS (o/n at room temperature, 

protected from light). Next, spheroids were carefully washed with PBS and fixed with 4 % 



Methods 

22 

paraformaldehyde (2 h, 4 °C). Samples were imaged using a selective plane illumination 

microscope and invaded T cells were quantified using Fiji software as described previously 

(Rühland et al., 2015; Schmohl et al., 2015).  

 

3.2.12 T cell stimulation and cytotoxicity assays 

25,000 E.G7-OVA target cells were co-incubated with 0.25 x 106 T cells in a 96-well flat 

bottom plate for 18 h (effector to target ratio of 10:1). Following incubation, supernatants 

were collected, and T cell stimulation was determined using IFN-γ ELISA. In parallel, target 

cell lysis was quantified using the CytoTox 96® Non-Radioactive Cytotoxicity Assay 

according to the manufacturer`s protocol. Upon lysis, cells release lactate dehydrogenase 

(LDH) in the culture supernatant, which is measured with the colorimetric assay. Target cell 

lysis is calculated according to the following formula:  

𝐿𝐷𝐻$%	'()*+*,) − 𝐿𝐷𝐻$%	./012+$3(4 −	𝐿𝐷𝐻*%%*0)$+	$(56

𝐿𝐷𝐻)$)/5	56,', −	𝐿𝐷𝐻$%	./012+$3(4 	𝑥	100	% 

 

3.3 Immunological methods 

3.3.1 Enzyme-linked immunosorbent assay (ELISA) 

Different human and murine ELISA kits were used to determine the cytokine concentration in 

cell supernatants, cell lysates and organ lysates. ELISA and buffer preparation were 

performed according to the manufacturer`s recommendations. Absorbance at 450 nm was 

measured with a microplate reader (Berthold Mithras LB940 multilabel plate reader). Protein 

concentrations were calculated using a standard curve, including background correction at 

595 nm. 

 

To determine the CXCL16 production in organs, all samples were diluted with reagent diluent 

(1 % BSA in PBS) to a protein concentration of 50 mg/ml. CXCL16 concentrations were 

calculated as pg cytokine per milligram protein in respective lysates. 

 

3.3.2 Flow cytometry analysis (FACS) 

To quantify the expression of defined surface molecules, cells were labeled with fluorophore-

conjugated antibodies. First, single cell suspensions were washed by adding 100 to 1000 µl 

FACS buffer followed by a centrifugation step (400 x g, 5 min, 4 °C). Cells were resuspended 

in FACS buffer, a defined concentration of antibodies and fixable viability dye for live/dead 

staining were added and incubated for 30 min at 4°C protected from light. In order to 

eliminate surplus antibodies, cells were washed with FACS buffer and resuspended in 100 µl 

FACS buffer. To quantify specific cell populations, CountBrightTM Absolute Counting Beads 
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were added prior FACS analysis according to the manufacturer`s protocol. Cells were 

analyzed with FACS Canto II or FACS Fortessa both run on FACSDiva software. FACS data 

were analyzed using FlowJo 8.7. 

For the separation of specific subpopulations, single cell suspensions were prepared and 

stained as described in 3.2.7. Cells of interest were sorted into a 1.5 ml tube containing FBS 

using BD FACS Aria II run on FACSDiva Software. FACS-sorted cells were cultivated (as 

described in 3.2.1) or lysed (as described in 3.1.2) for further studies. 

 

3.4 Animal experiments 

3.4.1 Care of laboratory animals 

Five to eight weeks old female C57BL/6RJ wild-type mice were used for in vivo experiments. 

Mice were purchased from Janvier (Saint-Berthevin Cednex, France) or Charles River 

(Sulzfeld, Germany). C57BL/6RJ mice transgenic for an ovalbumin-specific T cell receptor 

(OT-1) were obtained from The Jackson Laboratory, US (stock number 003831). OT-1 mice 

were crossed with CD45.1 or CD90.1 congenic marker mice (obtained from The Jackson 

Laboratory, stock number 002014 or as a kind gift from R. Obst, Munich, Germany). Before 

the start of the experiments, all animals were held in the animal facility “Zentrale 

Versuchstierhaltung” for at least one week. Animal experiments have been approved by the 

local authority, Regierung von Oberbayern (reference number: 55.2.1.54-2532-90/12, 36-14 

183-12 and 135-17). 

 

3.4.2 Subcutaneous tumor models 

Subcutaneous tumors were induced by injection of 2 x 106 Panc02-OVA or 5 x 105 E.G7-

OVA-CXCL16 in 100 µl PBS into the left flank of female mice. For treatment experiments, 

mice were injected intravenously with 107 T cells when tumors were palpable. Tumor size 

was measured three times a week using an electronic caliper and was defined as the area in 

mm2 (length in mm x width in mm). Mice were sacrificed by achieving a tumor size >250 mm2 

or tumor ulceration. For tracking experiments, mice were injected intravenously with 107 

T cells, but here equal numbers of CXCR6- or control-transduced T cells were co-injected in 

one mouse. Four to five days after T cell transfer, mice were sacrificed, and organs were 

analyzed using flow cytometry analysis. To visualize tumor-infiltrating T cells, Panc02-OVA 

tumor-bearing mice were injected intravenously with T cells and the number of intratumoral 

T cells was quantified using two-photon laser scanning microscopy (TPLSM) five days after 

T cell transfer. To visualize intratumoral blood vessels, mice were injected intravenously with 

3 µg anti-mouse CD31 antibody (eFluor450) in 100 µl PBS 30 min before sacrifice. Imaging 

of tumor-infiltrating T cells was performed using a resonant scanning Leica SP5IIMP system 

equipped with a Spectra Physics MaiTai DeepSee Ti:Sa pulsed laser tuned to 890 nm and a 
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20X NA 1.00 objective (Leica). Images with 15 to 20 µm spacing were acquired and 

processed using the Leica LAS X 3.1 software. The number of tumor-infiltrating T cells was 

quantified by counting at least six representative areas per tumor. 

 

All studies are conducted randomized, blinded and with adequate controls. In accordance 

with the animal experiment approval, tumor growth and health status of mice were monitored 

every other day. 

 

3.5 Statistical analysis 

Statistical analyses were performed using GraphPad Prism software 7.0. Arithmetic mean 

and standard error of the mean were calculated. Statistical significance between 

experimental conditions was analyzed using two-sided Student’s t-test for unpaired samples. 

Mann-Whitney U test was used to determine significance comparing data points of individual 

mice. For in vivo experiments, tumor growth curves were analyzed by two-way ANOVA with 

correction for multiple testing by the Bonferroni method. Log-rank (Mantel-Cox) test was 

performed for significance testing of survival curves.  
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4 Results 

4.1 Expression of CXCL16 and its receptor CXCR6 in a murine model 

4.1.1 In vitro expression of the chemokine CXCL16 in murine tumor models 

In previous studies, our group has shown a prominent expression of CXCL16 in murine 

pancreatic tumor tissue, while organs displayed lower expression levels (unpublished data). 

Because of its chemotactic capacity, CXCL16 and its receptor CXCR6 are an attractive 

system to induce an enhanced trafficking of cytotoxic T cells towards solid tumors. 

To study the therapeutic relevance of the CXCL16-CXCR6 axis for adoptive cell therapy, two 

tumor models were used: The murine lymphoma cell line E.G7-OVA and the murine 

pancreatic tumor cell line Panc02-OVA. Since both murine tumor models express ovalbumin, 

TCR transgenic OT-1 T cells specific for the model antigen were used to examine the role of 

CXCR6 in engineered CD8+ T cells.  

 

First, the production of CXCL16 by these murine tumor cell lines was investigated using 

ELISA. In addition to the initial tumor cells, CXCL16-overexpressing or CXCL16-knockout 

cells were generated and their CXCL16 secretion was analyzed.  

 

 

Figure 1: CXCL16 production by murine tumor cells. 
a. The murine tumor cell lines E.G7-OVA, E.G7-OVA-CXCL16, Panc02OVA and Panc02-OVA-CXCL16 were 
stimulated with 20 ng/ml IFN-γ for 48 h and CXCL16 concentrations in supernatants were quantified by 
ELISA.  
b. Wild-type Panc02-OVA, CRISPR Control and Panc02-OVA-Cxcl16-/- tumor cells after stimulation with 
IFN-γ.  
Representative values of three independent experiments are shown. Error bars represent SEM of duplicates 
(a) or triplicates (b). Statistical significance was calculated using two-sided Student`s t-test. n.d., not 
detectable. 

The murine lymphoma cell line E.G7-OVA showed no detectable CXCL16 expression, even 

after IFN-γ stimulation for 48 h. Stable transduction of the cell line with cDNA encoding the 

murine Cxcl16 resulted in chemokine expression levels of about 1,100 pg/ml in the tumor 
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supernatants 48 h after seeding. The murine pancreatic tumor cell line Panc02-OVA 

expressed low levels of endogenous CXCL16. The concentration doubled by stimulation with 

IFN-γ for 48 h. After transduction with the murine Cxcl16 cDNA, the pancreatic cell line 

expressed the chemokine in quantities comparable to E.G7-OVA-CXCL16 (Figure 1 a). To 

analyze CXCL16-mediated effects, a CXCL16-deficient knockout cell line was generated 

using the CRISPR/Cas9 system (Ran et al., 2013). As might be expected, the Panc02-OVA 

CRISPR Control cell line revealed CXCL16 concentrations similar to the wild-type Panc02-

OVA cell line. For the Panc02-OVA-CXCL16 knockout cell line no secretion of the ligand was 

detectable, even after stimulation with IFN-γ for 48 h (Figure 1 b).  
 

4.1.2 CXCL16 is expressed by tumor-infiltrating CD11c-positive myeloid cells 

To further characterize the source of CXCL16, chemokine concentrations in Panc02-OVA-

Cxcl16-/- tumors were analyzed by ELISA. In addition, CD11c-positive myeloid cells were 

isolated from Panc02-OVA tumor tissue by FACS sorting and analyzed for Cxcl16 mRNA 

expression using qPCR.  

 

 

Figure 2: CXCL16 expression by Panc02-OVA-CXCL16-/- tumors and tumor-infiltrating CD11c-positive 
myeloid cells. 
a. Panc02-OVA-Cxcl16-/- tumor cells were subcutaneously injected into the left flank of C57BL/6RJ mice. 
Once the predefined size had been achieved, tumors were harvested and intratumoral CXCL16 
concentrations were determined using ELISA. Results are indicated as pg CXCL16 per mg total protein.  
b. CD11c-negative and CD11c-positive cells were isolated from Panc02-OVA tumor tissue by FACS sorting 
and Cxcl16 mRNA expression of the subpopulations was analyzed using qPCR. Cxcl16 mRNA expression 
was normalized to Hprt mRNA expression.  
Representative values of two (a) or three (b) independent experiments are shown. Error bars represent SEM 
with n = 10 (a) and n = 8 mice (b). Statistical significance was calculated by the Mann-Whitney U test. 

Panc02-OVA-Cxcl16-/- tumors showed a strongly decreased CXCL16 expression level 

compared to Panc02-OVA CRISPR Control tumors. Interestingly, the CXCL16 expression 

did not completely vanish but declined by 48 %, indicating the presence of additional 

CXCL16-expressing cells in the tumor microenvironment (Figure 2 a). The subsequent 
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analysis of tumor-infiltrating myeloid cells revealed a significantly lower Cxcl16 mRNA 

expression in CD11c-negative cells compared to CD11c-positive cells (Figure 2 b). 

Consequently, CD11c-positive myeloid cells can be considered as an important intratumoral 

CXCL16 source in addition to the tumor cells themselves.  

 

4.1.3 Genetic modification of murine cytotoxic T cells with CXCR6 

According to literature, CXCR6 is almost absent from circulating CD8+ T cells with a fraction 

of less than 5 % CXCR6-positive cells under healthy conditions (Unutmaz et al., 2000). 

Therefore, cytotoxic antigen-specific OT-1 T cells were equipped with CXCR6 to force cell 

migration towards CXCL16 gradients produced by tumor tissue.  

 

Figure 3: Representative retroviral transduction of murine CD8+ T cells.  
a. Primary murine OVA-specific T cells (OT-1 T cells) were isolated from splenocytes and genetically modified 
using retroviral transduction to express the fluorescent protein GFP. Transduction efficiencies were examined 
using flow cytometry analysis.  
b. Similarly, T cells were engineered to express the chemokine receptor CXCR6. Again, transduction 
efficiencies were examined using flow cytometry analysis.  

First, the cDNA encoding murine CXCR6-2A-GFP (abbreviated to ‘CXCR6’) was assembled 

in the retroviral expression vector pMP71 and used to transduce primary murine T cells. The 

efficiency of Cxcr6 cDNA transfer into OT-1 T cells (hereinafter referred to as CXCR6-

transduction) was quantified by flow cytometry analysis revealing a stable expression of 

CXCR6 by OT-1 T cells (Figure 3 b). GFP-modified T cells were used as a control to exclude 

secondary effects of the genetic modification (Figure 3 a). T cells with transduction 

efficiencies greater than 30 % were expanded for further in vitro or in vivo assays.  

 

4.2 In vitro characterization of CXCR6-transduced T cells 

4.2.1 CXCR6 mediates migration of primary murine T cells 

The main objective of this research project was the development of a strategy for enhanced 

cytotoxic T cell migration and infiltration into solid tumors. Therefore, the functionality of the 

chemokine receptor expressed by T cells was investigated using trans-well migration assays. 
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Our group could previously show that CXCR6-expressing primary murine T cells specifically 

migrated towards recombinant CXCL16 in a dose-dependent manner (unpublished data). To 

demonstrate that this effect was also relevant for CXCL16 produced by tumor cells, trans-

well migration assays with tumor cell-free supernatants were implemented. 

 

 

Figure 4: Migration of CXCR6-transduced T cells towards tumor cell supernatants. 
a. OT-1 T cells were transduced with a retroviral vector encoding CXCR6 or GFP and migration capability 
towards E.G7-OVA supernatants was determined using trans-well migration assay. 
b. Trans-well migration of CXCR6- or GFP-transduced OT-1 T cells towards Panc02-OVA supernatants. The 
number of CXCR6- or GFP-expressing migrated cells was quantified by flow cytometry analysis. Migration 
capacity was calculated as an increase of transduced T cells in the lower well compared to initial values 
(transduction efficiency) normalized to migration towards medium.  
Representative values of three independent experiments are shown. Error bars represent SEM of triplicates 
and statistical significance was calculated using two-sided Student`s t-test. 

In a trans-well migration assay T cells engineered to express CXCR6 showed a significantly 

increased migration capability towards E.G7-OVA-CXCL16 (Figure 4 a) or Panc02-OVA-

CXCL16 (Figure 4 b) supernatants compared to control GFP-transduced T cells. Migration 

was CXCL16 dependent, as only CXCR6-transduced T cells showed a definite enrichment 

while GFP-transduced T cells were not affected. T cell migration towards wild-type tumor cell 

supernatants, E.G7-OVA or Panc02-OVA, was absent due to the lack or moderate CXCL16 

expression of the tumor cells. This observation emphasizes the importance of an appropriate 

CXCL16 gradient to efficiently stimulate T cell migration towards tumor tissue. Furthermore, 

this initial analysis of CXCR6-expressing T cells revealed that the transduced receptor was 

fully functional.  

 

4.2.2 CXCR6 internalization and recycling upon CXCL16 engagement 

The internalization and recycling of chemokine receptors in the presence of respective ligand 

has been described to play a crucial role in the sensitization or desensitization of receptor-

expressing cell to the ligand (Neel et al., 2005). Therefore, the receptor trafficking upon 

CXCL16 binding in CXCR6-transduced T cells was studied.  
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Figure 5: CXCR6 internalization and recycling.  
a. 5,000 murine CXCR6-expressing T cells were stimulated with 10 ng/ml CXCL16 and receptor trafficking 
was monitored using confocal microscopy. Pictures were taken before adding CXCL16 and hereinafter every 
5 min.  
b. Microscopic images of T cells with representative receptor internalization status at indicated time points. 
Membrane-associated CXCR6 expression was quantified by blinded counting of at least 75 representative 
cells per time point. Representative values of three independent experiments are shown. 

In the absence of ligand, the majority of the GFP-coupled CXCR6 was anchored in the 

membrane of the T cells. Upon ligand binding, the previously recorded membrane-

associated fluorescence was changing towards an intracellular signal indicating rapid 

receptor internalization. The assimilated CXCR6 was recycled and re-expressed on the cell 

surface within 30 min (Figure 5). These findings suggest that the presence of CXCL16 did 

not permanently desensitize CXCR6-expressing T cells and the receptor maintained its 

functionality.  

 

4.2.3 CXCR6 enhances recognition of CXCL16-producing tumor cells 

Our group previously showed a time-dependent enhanced recognition of adherent tumor 

cells and T cell activation mediated by CXCR6 (unpublished data). The ameliorated tumor 

cell recognition led to an increased tumor cell lysis by CXCR6-transduced T cells compared 

to GFP-transduced T cells. To demonstrate that this effect was also transferable to another, 

non-adherent tumor cell line, E.G7-OVA cells were co-cultured with transduced OT-1 T cells 

and T cell activation and target cell lysis was investigated.  
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Figure 6: Tumor cell lysis and T cell activation upon co-culture of E.G7-OVA tumor cells with GFP- or 
CXCR6-transduced OT-1 T cells. 
a. E.G7-OVA or E.G7-OVA-CXCL16 tumor cells were co-cultured in a 10:1 effector to target ratio with GFP- or 
CXCR6-transduced OT-1 T cells. After 18 h, T cell activation was examined by IFN-γ ELISA.  
b. At the same time, tumor cell lysis was determined using the CytoTox 96® Non-Radioactive Cytotoxicity 
Assay.  
Representative values of two (a) or three (b) independent experiments are shown. Error bars represent SEM 
of triplicates (a) or quadruplicates (b). Statistical significance was calculated using two-sided Student`s t-test. 
n.d., not detectable. 

Upon co-culture with E.G7-OVA tumor cells, no substantial difference in the activation level 

of GFP- and CXCR6-transduced T cells was identified. This was to be expected since 

E.G7-OVA tumor cells themselves do not produce CXCL16. The observed IFN-γ secretion 

for both GFP- and CXCR6-transduced OT-1 T cells is due to their OVA-specificity. However, 

CXCR6-transduced OT-1 T cells showed significantly increased IFN-γ levels compared to 

control-transduced OT-1 T cells after co-culture with E.G7-OVA-CXCL16. T cells cultured 

without tumor cells revealed no detectable IFN-γ secretion (Figure 6 a). As a consequence of 

an increased recognition of CXCL16-producing tumor cells, CXCR6-transduced OT-1 T cells 

demonstrated a noticeably higher E.G7-OVA-CXCL16 tumor cell lysis in comparison to GFP-

transduced OT-1 T cells (Figure 6 b).  

 

4.2.4 CXCR6 facilitates T cell adhesion to a CXCL16-positive surface 

CXCL16 is a membrane-bound chemokine, which is released once cleaved by proteases 

(Schramme et al., 2008). While the soluble form mediates migration of CXCR6-expressing 

cells, the membrane-bound CXCL16 is associated with cell adhesion (Hara et al., 2006). In 

order to clarify whether CXCR6-transduced T cells are able to attach to CXCL16-positive 

surfaces, the adhesion ability to plate-bound CXCL16 was evaluated.  
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Figure 7: Analysis of the adhesion capability of murine CXCR6-transduced T cells. 
GFP- or CXCR6-transdcued T cell were stained with calcein and thereafter cultured on CXCL16-coated 
plates. After 30 min, the plates were washed, and the number of attached T cells was indirectly determined by 
the fluorescent signal. Pre-stimulation was conducted by 30 min incubation with soluble CXCL16 prior to 
culturing on CXCL16-coated plates.  
Representative values of three independent experiments are shown. Error bars represent SEM of triplicates 
and statistical significance was calculated using two-sided Student`s t-test. 

CXCR6-transduced T cells exhibited a significantly enhanced adhesion capability to 

CXCL16-coated plates compared to GFP-transduced T cells (Figure 7). This effect was 

CXCL16-mediated, as CXCR6-transduced T cells did not adhere to control BSA-coated 

surfaces. Furthermore, pre-incubation with soluble recombinant CXCL16 abolished T cell 

adhesion to CXCL16-coated surfaces. This observation led to the assumption that the 

increased tumor cell lysis might be due to an enhanced adhesion of CXCR6-transduced 

T cells to CXCL16-producing tumor cells.  

 

4.3 In vivo characterization of CXCR6-transduced OT-1 T cells 

4.3.1 CXCR6 specifically improves the antitumor efficiency of adoptively transferred 
OT-1 T cells shown by delayed tumor growth in vivo 

Based on the in vitro observations of an improved migration and tumor cell recognition by 

CXCR6-transduced OT-1 T cells, the relevance of the CXCL16-CXCR6 axis in connection 

with adoptive cell therapy was investigated. Therefore, the antitumor efficiency of CXCR6-

transduced OT-1 T cells in comparison to control-transduced OT-1 T cells was determined in 

a subcutaneous tumor model.  
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Figure 8: Treatment of E.G7-OVA-CXCL16-bearing mice with CXCR6-transduced OT-1 T cells. 
a. 5 x 105 E.G7-OVA-CXCL16 cells were subcutaneously injected in the left flank of C57BL/6RJ mice. When 
the tumors were palpable, mice were randomized and treated with intravenous injection of 107 CXCR6- or 
mCherry-transduced OT-1 T cells. As a control, one cohort was injected with PBS. Tumor growth was 
measured three times a week.  
Representative values of two independent experiments are shown. Error bars representing SEM of a 
minimum of four mice per group and statistical significance was calculated by two-way ANOVA with correction 
for multiple testing.  
b. Kaplan-Meier survival curves of the same mice bearing subcutaneous E.G7-OVA-CXCL16 tumors treated 
as indicated. Mice were sacrificed based on the tumor size criteria.  
Representative values of two independent experiments are shown. Log rank analysis comparing the survival 
curves were done with resulting p-values as indicated. 

E.G7-OVA-CXCL16 tumor growth was significantly reduced in mice treated with CXCR6-

transduced OT-1 T cells. As might be expected, control-transduced OT-1 T cells also 

showed a treatment effect due to their expression of an OVA-specific TCR (Figure 8 a). 

However, CXCR6-transduced OT-1 T cells mediated efficient tumor control with tumor 

rejection in four out of five mice over a period of 70 days resulting in prolonged survival of 

tumor-bearing mice in contrast to mice treated with mCherry-transduced OT-1 T cells (Figure 

8 b). 
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Figure 9: Treatment of Panc02-OVA-Cxcl16-/- bearing mice with GFP- or CXCR6-transduced OT-1 
T cells. 
a. 2 x 106 Panc02-OVA-Cxcl16-/- cells were subcutaneously inoculated in the left flank of C57BL/6RJ mice. 
When tumors were palpable, mice were randomized and treated with intravenous injection of 107 GFP- or 
CXCR6-transduced OT-1 T cells. Tumor growth was measured three times a week.  
b. For comparison, 2 x 106 Panc02-OVA CRISPR Control tumor cells were subcutaneously inoculated, and 
mice were treated with 107 GFP- or CXCR6-transduced OT-1 T cells when tumors were palpable. Tumor 
growth was measured three times a week.  
Representative values of three independent experiments are shown. Error bars representing SEM of a 
minimum of five mice per group and statistical significance was calculated by two-way ANOVA with correction 
for multiple testing.  

Similarly, mice bearing Panc02-OVA-Cxcl16-/- or Panc02-OVA CRISPR Control tumors were 

treated with GFP- or CXCR6-transduced OT-1 T cells. Comparable to the results in the 

E.G7-OVA-CXCL16 model, tumor growth in Panc02-OVA CRISPR Control tumor-bearing 

mice treated with CXCR6-transduced OT-1 T cells was retarded. By contrast, no difference 

in the tumor growth of Panc02-OVA-Cxcl16-/- bearing mice after treatment with GFP- or 

CXCR6-transduced OT-1 T cells was observed (Figure 9). Overall, these results indicate an 

increased homing of CXCR6-transduced OT-1 T cells towards CXCL16-producing tumors. 

As described previously, tumor-infiltrating myeloid cells are able to produce CXCL16 

resulting in a moderate CXCL16 expression in Panc02-OVA-Cxcl16-/- tumors (Figure 2). In 

this context, the absent anti-tumor effect highlights the importance of a sufficient CXCL16 

gradient to efficiently stimulate CXCR6-mediated T cell trafficking to the tumor site.  

 

4.3.2 CXCR6 mediates T cell homing to tumor tissue 

To further characterize the in vivo behavior of CXCR6-transduced OT-1 T cells, tracking 

experiments were performed in Panc02-OVA tumor-bearing mice. For this purpose, primary 

OT-1 T cells originating from congenic CD90.1-positive or CD45.1-positive OT-1 mice were 

used for transduction. In addition to the expression of GFP or CXCR6, transferred T cells 

were thus distinguishable from CD90.1-negative and CD45.1-negative recipient’s T cells.  
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Figure 10: In vivo tracking of GFP- or CXCR6-transduced OT-1 T cells. 
2 x 106 Panc02-OVA tumor cells were subcutaneously injected in the left flank of C57BL/6RJ mice. When 
tumors were palpable, mice were injected intravenously with a total of 107 CD90.1 CXCR6-transduced and 
CD45.1 GFP-transduced OT-1 T cells per mouse (CD90.1 CXCR6-transduced and CD45.1 GFP-transduced 
OT-1 T cells at a ratio of 1:1). Five days after treatment organs were harvested, single cell suspensions were 
generated and the number of transferred T cells in the indicated organs was quantified using flow cytometry 
analysis.  
Representative values of three independent experiments are shown. Error bars represent SEM with n = 10 
and statistical significance was calculated by the Mann-Whitney U test. LNi, ipsilateral lymph node; LNc, 
contralateral lymph node. 

Before transfer in Panc02-OVA tumor-bearing mice, a mixture of CD90.1 CXCR6-transduced 

and CD45.1 GFP-transduced OT-1 T cells at a ratio of 1:1 was produced and verified by flow 

cytometry analysis. Tracking of the transferred T cells five days after injection revealed a 

specific accumulation of CD90.1 CXCR6-transduced OT-1 T cells compared to CD45.1 GFP-

transduced OT-1 T cells in tumor tissue, but not in any of the other organs analyzed (Figure 

10).  

 

To confirm the findings of the flow cytometry analysis-based tracking experiment, the number 

of tumor-infiltrating CXCR6-transduced OT-1 T cells versus GFP-transduced OT-1 T cells in 

Panc02-OVA tumors was examined using ex vivo two-photon laser scanning microscopy.  
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Figure 11: Quantification of tumor-infiltrating GFP- or CXCR6-transduced OT-1 T cells using two-
photon laser scanning microscopy. 
a. 2 x 106 Panc02-OVA tumor cells were subcutaneously inoculated in the left flank of C57BL/6RJ mice. When 
tumors were palpable, mice were injected intravenously with 107 GFP- or CXCR6-transduced OT-1 T cells per 
mouse (n = 5 mice per group). Five days after T cell transfer mice were injected with 3 µg anti-mouse CD31 
antibody (eFluor450) 30 min before sacrifice to visualize intratumoral blood vessels. Images with 15 to 20 µm 
spacing of at least six representative areas per tumor were acquired using ex vivo two-photon laser scanning 
microscopy in collaboration with Dr. Remco T. A. Megens (IPEK, LMU Munich). Images were processed and 
the number of tumor-infiltrating T cells per 0.5 mm2 tumor tissue was quantified  
b. Microscopic images of representative tumor regions of mice treated with GFP- or CXCR6-transduced OT-1 
T cells.  
Representative values of two independent experiments are shown. Error bars represent SEM with n = 5 and 
statistical significance was calculated by the Mann-Whitney U test.  

Ex vivo two-photon laser scanning microscopy from five distinct mice per group revealed an 

infiltration of both transferred OT-1 T cell populations in Panc02-OVA tumors. As suggested 

by the flow cytometry analysis-based tracking experiments, a significantly increased number 

of tumor-infiltrating CXCR6-transduced OT-1 T cells compared to GFP-transduced OT-1 

T cells has been observed (Figure 11 a). The representative microscopic images show the 

quantitative differences in tumor-infiltration between GFP- and CXCR6-transduced OT-1 

T cell, confirming their preferential tumor homing capability (Figure 11 b).  

 

4.4 Expression of CXCL16 and its receptor CXCR6 in a human model 

4.4.1 In vitro expression of the chemokine CXCL16 in human tumor models 

The next step was to evaluate whether the observations seen in mice are applicable to 

human tumor models. First, the hCXCL16 production by several human pancreatic tumor cell 

lines was examined. 
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Figure 12: CXCL16 expression by human pancreatic tumor cell lines. 
0.2 x 106 tumor cells were cultured for 72 h and hCXCL16 concentrations in tumor cell-free supernatants were 
quantified using ELISA.  
Representative values of three independent experiments are shown. Error bars represent SEM of triplicates. 

All human pancreatic tumor cell lines expressed and secreted hCXCL16 in varying 

concentrations; here PA-TU-8988T showed lowest hCXCL16 levels with 300 pg/ml and 

Capan-1 tumor cells revealed a strong chemokine secretion with about 4,800 pg/ml (Figure 

12). This observation was an important prerequisite for the translation of the murine findings 

into the human setting.  

 

4.4.2 Genetic modification of human cytotoxic T cells with a CXCR6-encoding 
retroviral vector 

Similar to murine T cells, primary human CD3-positive T cells were equipped with human 

CXCR6 (hCXCR6) using retroviral transduction. 

 

 

Figure 13: Representative retroviral transduction of primary human CD3-positive T cells.  
a. Primary human T cells were isolated from PBMC and genetically modified using retroviral transduction to 
express the fluorescent protein GFP.  
b. Expression of human CXCR6 by primary human T cells after retroviral transduction. Transduction 
efficiencies were examined using flow cytometry analysis. 
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The cDNA encoding human CXCR6-2A-GFP (abbreviated to ‘hCXCR6’) was assembled in 

the retroviral expression vector pMP71 and used for the transduction of primary human 

T cells. Flow cytometry analysis were conducted to validate the efficiency of human CXCR6 

cDNA transfer (hereinafter referred to hCXCR6 transduction) revealing a stable expression of 

hCXCR6 in primary human T cells (Figure 13). As already described for the murine model, 

GFP-modified T cells were used as a control to exclude secondary effects of the retroviral 

transduction. Human T cells with transduction efficiencies greater than 30 % were expanded 

and used for following in vitro investigations.  

 

4.4.3 hCXCR6 enables human T cells to migrate towards hCXCL16 gradients 

The first step was to perform functional analysis to characterize the chemokine receptor-

expressing human T cells. It was therefore analyzed whether hCXCR6-transduced T cells 

are able to recognize hCXCL16 and migrate towards chemokine gradients in trans-well 

migration assays.  

 

 

Figure 14: Migration of human CXCR6-transduced T cells towards recombinant CXCL16 and tumor cell 
supernatants. 
a. Primary human T cells were either transduced with a retroviral vector encoding human CXCR6 or GFP and 
the migration capability towards 50 ng/ml recombinant human CXCL16 was confirmed using trans-well 
migration assays.  
b. Trans-well migration assay of GFP- or hCXCR6-transduced primary human T cells towards cell-free 
supernatants of Capan-1 tumor cells. Migrated cells were quantified by flow cytometry analysis. Migration 
capacity was calculated as an increase of transduced T cells in the lower well compared to initial values 
(transduction efficiency) normalized to migration towards medium.  
Representative values of three independent experiments are shown. Error bars represent SEM of triplicates 
and statistical significance was calculated using two-sided Student`s t-test. 

When exposed to a CXCL16 gradient, hCXCR6- but not GFP-transduced human T cells 

migrated towards the recombinant protein (Figure 14 a). Since the recombinant protein did 

not affect GFP-transduced T cells, the observed migration of CXCR6-transduced T cells was 

receptor mediated. A comparable effect was observed when tumor cell-free supernatants of 

Capan-1 cells were used as migration stimulus. hCXCR6-transduced T cells were specifically 

attracted by the supernatant whereas GFP-transduced T cells exhibited no migration (Figure 
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14 b). This initial analysis of hCXCR6-transduced human T cells confirmed the expression of 

a fully functional chemokine receptor, which is able to recognize its ligand and mediates 

chemokine-dependent trafficking.  

 

4.4.4 hCXCR6 mediates penetration of T cells into 3D tumor spheroids  

Next, the invasion capability of hCXCR6-transduced T cells into tumor-like structures was 

studied using 3D spheroids. An important benefit of this in vitro 3D culture is the more 

physiological and spatial cell organization compared to common 2D culture providing a better 

representation of tumor tissue. 

 

 

Figure 15: T cell invasion into 3D tumor spheroids. 
a. Capan-1 tumor spheroids were co-cultured with GFP- or hCXCR6-transduced human T cells and the 
spheroid invasion capability was examined using spinning disc confocal microscopy.  
b. Quantification of GFP- or hCXCR6-transduced human T cells penetrating Flp-InTM 293-hCXCL16 tumor 
spheroids. 
c. Invasion depth of GFP- or hCXCR6-transduced human T cells penetrating Flp-InTM 293-hCXCL16 tumor 
spheroids measured as distance to the spheroid surface. 
Values of three independent experiments are shown. Error bars represent SEM of at least 20 spheroids per 
group (a) or at least three spheroids per group (b, c). Statistical significance was calculated using two-sided 
Student`s t-test.  

For both Capan-1 and Flp-InTM 293-hCXCL16 tumor spheroids, a significantly increased 

number of invaded hCXCR6-transduced T cells in comparison to GFP-transduced T cells 

was determined. Differences in the number of invading T cells per spheroid between 

Capan-1 and Flp-InTM 293-hCXCL16 tumor spheroids are due to the smaller volume of 

Capan-1 tumor spheroids (Figure 15 a, b).  
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Figure 16: Visualization of spheroid invasion by human GFP- or hCXCR6-transduced T cells. 
a. Flp-InTM 293-hCXCL16 3D spheroids were co-cultured with GFP-transduced human T cells and after 18 h 
T cell invasion into tumor spheroids was examined using spinning disc confocal microscopy.  
b. Similarly, invasion of hCXCR6-transduced human T cells into Flp-InTM 293-hCXCL16 spheroids was 
determined. 
Representative microscopic images of three independent experiments with at least three spheroids per group 
are shown. 

In addition to quantitative differences, hCXCR6-transduced T cells achieved a greater 

invasion depth in Flp-InTM 293-hCXCL16 tumor spheroids compared to GFP-transduced 

human T cells (Figure 15 c, Figure 16). GFP-transduced human T cells mainly attached to 

the spheroid surface and were not able to invade the 3D structure (Figure 16 a). Conversely, 

hCXCR6-transduced T cells have the ability to invade the tumor-mimicking 3D cell formation, 

confirming their preferential homing capability into tumor-like structures (Figure 16 b).  

 

 

Data shown in figure 2, 4-12 and 14-16 are part of a manuscript that is being prepared for 

publication.  
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5 Discussion 

This study characterizes the impact of transgenic CXCR6 expression on the homing capacity 

of cytotoxic T cells into CXCL16-secreting tumor tissue. In the murine setting, CXCR6-

transduced tumor-specific T cells showed increased migration abilities towards CXCL16-

secreting tumor cells resulting in a tumor-specific homing of effector cells which was 

associated with an improved therapeutic effect. Furthermore, an enhanced adhesion of 

CXCR6-transduced T cells to CXCL16-positive surfaces was noticed, that could contribute 

positively to T cell-tumor cell interactions further improving the anti-tumor response. The 

observed migratory effect was transferable to the human model. Transgenic CXCR6 

expression on primary human T cells enabled the recognition and effective migration towards 

human CXCL16 gradients. Furthermore, CXCR6-transduced human T cells were capable to 

penetrate 3D tumor structures. Thus, the CXCR6-CXCL16 interplay is a promising 

therapeutic approach to promote tumor homing of lymphocytes and thereby enhance anti-

tumor immune responses.  

 

5.1 IFN-γ amplifies the expression of CXCL16 by tumor cells 

Previous data from our group have shown an up-regulated CXCL16 secretion by tumor cells 

upon stimulation with inflammatory cytokines, such as IFN-γ and TNF-a (unpublished data). 

In this study it could be confirmed that stimulation of tumor cells with IFN-γ leads to a 1.8 – 

2.6-fold increase in CXCL16 secretion within 48 h. The effect could only be seen for tumor 

cells with endogenous CXCL16 expression, while the chemokine levels of CXCL16-

overexpressing cells could not be further increased due to the lack of an IFN-γ sensitive 

promotor region in the retroviral vector used for the genetic modification of the tumor cells. 

Moreover, for validation, CXCL16-knockout tumor cells were not capable to produce CXCL16 

with or without IFN-γ stimulation.  

 

The expression of CXCL16 seems to correlate with inflammation (Lehrke et al., 2007). Not 

surprisingly, inflammation-associated cancers, such as ovary, breast, prostate, colon and 

liver cancer express high intratumoral levels of CXCL16 (Darash-Yahana et al., 2009). IFN-γ 

increases the level of Cxcl16 mRNA but has no effect on ADAM10 and ADAM17 expression. 

Both metalloproteases are responsible for the cleavage of membrane-bound CXCL16 

resulting in the soluble form (Abel et al., 2004). In context with CXCR6-transduced tumor-

specific T cells, this observation is highly relevant since increased intratumoral CXCL16 

levels will positively affect the recruitment of the genetically modified T cells. In this way, a 

stronger anti-tumor response can be expected resulting in an inflammatory microenvironment 

further increasing the intratumoral CXCL16 secretion and forming an amplification loop. 

Furthermore, an increased expression of membrane-bound CXCL16 might further enhance 
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T cell activation through greater adhesion and cell-cell interactions between tumor and 

effector cells.  

 

Irradiation of tumor tissue induces an inflammatory state resulting in the secretion of 

cytokines, such as IFN-γ and TNF-a, into the TME (Lugade et al., 2008). This may be an 

explanation for the increased CXCL16 expression by tumor cells after ionizing radiation 

therapy (Matsumura et al., 2008). Therefore, the combination of local irradiation and adoptive 

transfer of CXCR6-expressing tumor-specific T cells provide a potential strategy to further 

enhance the anti-tumor effectiveness of the chosen model. Irradiation is a current standard 

treatment for cancer patients. Thus, a combination therapy is manageable to implement into 

the treatment regime. Furthermore, chemotherapy has been described to induce intratumoral 

expression of chemokines (Hong et al., 2011). Therefore, it will be of major interest to identify 

chemotherapeutic drugs enabling induction of intratumoral CXCL16 expression to enhance 

the attraction of CXCR6-engineered effector T cells into tumors and secondary metastasis.  

 

5.2 CXCR6-mediated migration and adhesion improved target cell lysis by tumor-
specific T cells in vitro 

In this study, equipping T cells with the chemokine receptor CXCR6 resulted in a specific 

increase in cell migration towards CXCL16-positive tumor cell supernatants. Interestingly, 

this effect could only be observed with tumor cells overexpressing CXCL16. The moderate 

endogenous CXCL16 expression by wild-type Panc02-OVA tumor cells was not sufficient to 

stimulate migration of CXCR6-transduced T cells. This observation indicates a dose-

dependent migration with a defined threshold value to initiate migration of CXCR6-

expressing T cells. Moreover, this finding underlines the importance of a sufficient blood-

tumor CXCL16 gradient as a requirement for an efficient in vivo tumor homing of CXCR6-

transduced T cells. On the other hand, a simpler explanation might be that the artificial in 

vitro systems utilized do not mimic the in vivo situation. 

 

As CXCL16 is associated with inflammation, the expression of the chemokine was reported 

for psoriatic skin lesions, a chronic inflammatory skin disease (Oh et al., 2009). Here, 

CXCR6-expressing CD8+ T cells isolated from psoriatic skin lesions showed a dose-

dependent response to CXCL16 in vitro (Günther et al., 2012). Therefore, the findings of the 

presented study confirmed the already described dose-dependent chemotactic effect 

mediated by CXCR6. 

 

Furthermore, a dose-dependent migration of lymphocytes transduced to express chemokine 

receptors has been reported previously. A study analyzing the trafficking of CXCR2-
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transduced murine T cells indicated a dose-dependent migration of engineered T cells 

towards CXCL1 (Peng et al., 2010). The same was described for CX3CR1-transduced 

human T cells, which showed a dose-dependent migration towards CX3CL1 (Siddiqui et al., 

2016). It should be emphasized that in the latter case, a concentration of 50 ng/ml 

recombinant CX3CL1 was not sufficient to trigger migration of transduced T cells. An efficient 

migration only occurred at a concentration of 100 ng/ml or more (Siddiqui et al., 2016). This 

dose-dependent migratory effect mediated by the expression of a chemokine receptor was 

confirmed in this study.  

 

While the soluble form of CXCL16 is known to mediate migration of CXCR6-expressing cells 

(Matloubian et al., 2000), the membrane-bound form is associated with adhesion (Nakayama 

et al., 2003). In this study it could be shown that the transgenic expression of CXCR6 in 

cytotoxic T cells mediated both chemotaxis and adhesion to a CXCL16-covered surface. 

Therefore, the transduced receptor is able to fulfill all functions associated with the 

endogenous receptor expression.  

 

As one of the first studies, Nakayama and colleagues described a CXCL16-induced 

chemotaxis of plasma cells via CXCR6 and also found an adhesive effect mediated by 

CXCL16 immobilized to plastic surfaces (Nakayama et al., 2003). The observations for both 

CXCR6-mediated characteristics are quite similar to the results presented for the transgenic 

receptor expression in cytotoxic T cells in the current study indicating a comparable receptor 

signaling.  

 

Analyzing co-cultures of transduced OT-1 T cells and CXCL16-expressing tumor cells 

revealed an improved activation and a more efficient tumor cell lysis by CXCR6-transduced 

OT-1 T cells. This result can be explained by both the improved sensing and active 

movement of the T cells towards the CXCL16 gradient as well as the strengthened cell-cell 

contact mediated by CXCL16’s adhesive capabilities, as described in this study. It is 

conceivable that the CXCR6-CXCL16-mediated adhesion will support the interaction of 

cytotoxic T cells and tumor cells resulting in an enhanced stimulation of the tumor-specific 

TCR through its antigen on the tumor cell. As a consequence, an increased effector 

activation will contribute to an improved anti-tumor response. Thus, CXCR6 has the potential 

to enhance tumor homing as well as subsequent effector function. 

 

A study using ovalbumin-specific T cells in combination with the chemokine receptor CCR2 

described no impact on the killing capacity nor on the activation of engineered T cells upon 

co-culture with E.G7-OVA tumor cells, but an improvement in T cell migration (Garetto et al., 
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2016). The differences with the presented study might be due to the unique nature of 

CXCL16. While CCL2 only exists as soluble chemokine mediating chemotaxis, CXCL16 has 

the advantage of a dual function, migration and adhesion.  

 

Several chemokines have been shown to provide co-stimulatory signals in T cells resulting in 

an increased T cell activation (Molon et al., 2005). This conclusion was made when T cells 

were stimulated by beads coated with anti-CD3 alone or with anti-CD3 plus CCR5 or CXCR4 

agonists. The stimulation resulted in a T cell proliferation and activation comparable to that 

obtained by anti-CD28 co-stimulation (Molon et al., 2005). With the presented set of data it 

remains elusive whether CXCL16-binding to CXCR6-expressing CD8+ T cells represents a 

co-stimulatory signal resulting in a higher activation level. Therefore, prospective studies 

should be conducted to determine whether CXCL16 enhances T cell activation.  

 

5.3 CXCR6 improves the anti-tumoral effects of ACT  

In vivo functional analysis carried out in this study revealed a superior therapeutic effect 

mediated by CXCR6-transduced OT-1 T cells. In the lymphoma model E.G7-OVA-CXCL16, 

treatment with CXCR6-transduced OT-1 T cells resulted in retarded tumor growth with partial 

tumor clearance and prolonged overall survival in comparison to control mice. These 

observations suggested an improved CXCR6-mediated trafficking of adoptively transferred 

T cells and thereby enhanced anti-tumor activity. Along these lines, the potential of CXCR6 

as mediator of lymphocyte recruitment was already described in inflamed tissue. For 

instance, CXCR6 regulates the recruitment of pro-inflammatory T cells into atherosclerotic 

lesions, although providing pro-atherogenic features in this context (Butcher et al., 2016). 

 

In cancer, the significance of the CXCL16-CXCR6 axis in lymphocyte recruitment has been 

described by Matsumura and colleagues. In their study, mice lacking CXCR6 showed a 

reduced number of effector T cells in breast tumor tissue, which was associated with a 

limited anti-tumor response (Matsumura et al., 2008). Altogether, this indicates that CXCR6 

is a promising candidate for the improvement of tumor homing in ACT.  

 

However, it should not be neglected that in this study OT-1 T cells with almost 100 % tumor-

specificity were transferred into tumor-bearing mice (data not shown). The percentage of 

tumor-specific CAR or TCR T cells among total transferred T cells in patients receiving ACT 

might be much lower. For instance, in a clinical trial investigating anti-EGFRvIII CAR-

engineered T cells for the treatment of patients with malignant gliomas transduction 

efficiencies of approximately 50 % are described (NCT01454596). Preclinical studies in an 

animal model using anti-EGFRvIII CAR-engineered T cells with transduction efficiencies of 
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approximately 50 % showed impressive results in the treatment of glioma, but a result of the 

ongoing clinical trial is not yet available (Morgan et al., 2012). Thus, an improved recruitment 

of engineered tumor-specific T cells to the tumor tissue in clinical settings might be crucial for 

the success of ACT.  

 

This conclusion is further supported by a recent study demonstrating an anti-tumor effect 

mediated by T cells without induced tumor specificity but engineered to express the 

chemokine receptor CX3CR1 (Siddiqui et al., 2016). This reveals the vital importance of an 

effective infiltration of effector T cells, even with unknown tumor specificity, into tumors and 

demonstrates the benefit of chemokine-mediated lymphocyte recruitment in ACT. 

 

5.4 CXCR6-mediated therapeutic effects are dependent on a sufficient chemokine 
gradient 

The therapeutic effect described for the lymphoma tumor model was absent when mice 

suffering from Cxcl16-/- tumors were treated with CXCR6-transduced OT-1 T cells, whereas 

control CXCL16-producing tumors were associated with a treatment response. This finding 

demonstrates the dependency of the anti-tumor response on CXCL16-mediated T cell 

homing. Although tumor bystander cells were shown to express CXCL16, the reduced 

chemokine levels in Cxcl16-/- tumors were not able to attract CXCR6-transduced OT-1 

T cells. Therefore, no difference in the anti-tumor response between mice treated with 

CXCR6-transduced and control-transduced OT-1 T cells was observed. Furthermore, this 

observation underlines the existence of a dose dependent chemoattraction, probably with a 

certain threshold value of CXCL16 to ensure chemoattraction and extravasation of CXCR6-

expressing T cells. This is in line with the lack of in vitro migration of CXCR6-transduced T 

cells towards moderate CXCL16 concentrations, as described above. 

 

The importance of chemokines for the regulation of lymphocyte trafficking has been known 

since many years and chemokine-chemokine receptor interactions were shown to have a key 

role in lymphocyte development and immune responses in infected or diseased tissue (Stein 

et al., 2005). In the context of cancer, chemokine expression correlates with lymphocyte 

recruitment and improved clinical outcome due to the anti-tumoral immune response (Zhang 

et al., 2003). Moreover, a preclinical study analyzing the significance of the chemokine 

receptor CX3CR1 for the recruitment of T cells reported that a sufficient blood-tissue 

chemokine gradient is a crucial requirement for an effective tumor infiltration of T cells. The 

xenograft model of colorectal cancer used in this study indicated that shedding of the 

chemokine CX3CL1 by tumor cells led to an increased chemokine level in the blood and 

thereby eliminated the chemokine gradient essential for chemotaxis (Siddiqui et al., 2016). 
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Furthermore, similar observations were made in a murine model of melanoma. Here the 

chemokine ligands CCL5, CXCL9 and CXCL10 expressed by tumor cells were identified to 

recruit CD8+ T cells to tumor lesions. Lack of these chemokines was linked to a limited 

migration of cytotoxic T cells into the tumor and dampened the effectiveness of the antitumor 

immunity (Harlin et al., 2009). Overall, these findings are confirmed by the presented study, 

which indicated the crucial requirement of an established blood-tumor CXCL16 gradient for 

the therapeutic response mediated by adoptively transferred CXCR6-transduced T cells.  

 

As mentioned above, tumors formed by Cxcl16-/- tumor cells showed only a reduced 

chemokine expression but no complete absence of CXCL16. Subsequent analysis of tumor 

tissue indicated that CXCL16 is secreted by tumor-infiltrating CD11c-positive dendritic cells 

(DCs). Because of the immunostimulatory function of DCs and their ability to activate T cells, 

this was an interesting observation since CXCR6-mediated adhesion of cytotoxic T cells can 

strengthen their activation. In line with that, it was shown that CXCL16 enhances the 

interaction of DCs with cytotoxic T cells (Matloubian et al., 2000). The significance of the 

finding is reinforced by an enhanced expression of CXCL16 by DCs under inflammatory 

conditions (Tabata et al., 2005). Thus, an anti-tumor immune response might further 

stimulate DCs to express CXCL16 resulting in a greater chemokine gradient and chemotaxis 

of CXCR6-expressing T cells. Therefore, tumor-infiltrating CD11c-positive DCs contribute to 

development of a CXCL16 gradient and, moreover, stimulate the activation of CXCR6-

expressing tumor-specific T cells, thus amplifying their anti-tumor effectiveness.  

 

5.5 CXCR6 ameliorates T cell homing into tumor tissue  

Flow cytometry analysis demonstrated a significantly enhanced trafficking of CXCR6-

engineered OT-1 T cells into subcutaneous Panc02-OVA tumors in comparison to control 

transduced OT-1 T cells. Therefore, this finding confirmed the presumed improved tumor 

penetration by CXCR6-expressing tumor-specific T cells causing the enhanced anti-tumor 

activity.  

 

Bobisse and colleagues described that the majority of adoptively transferred cells localize in 

healthy tissue, such as the spleen, while only a minority of T cells infiltrate the tumor tissue 

(Bobisse et al., 2009). The presented results rather identified the bulk of CXCR6-engineered 

T cells in tumor tissue and only a few cells were dispersed in healthy tissue indicating the 

tumor-specific trafficking. The efficient homing capacity of CXCR6-transduced T cells and the 

association with a therapeutic effect supports the hypothesis that a lacking tumor infiltration 

is a main limitation of ACT in solid tumors. 
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In the past, it was shown that tumors frequently progress even in the presence of a large 

number of circulating, tumor-specific T cells (Rosenberg et al., 2005). This is confirmed by 

clinical studies with limited response rates after immunization with cancer vaccines. Despite 

the successful generation of tumor-specific T cells , those cells failed to mediate effective 

immunologic tumor destruction (Rosenberg et al., 2004b). Even with ACT following 

lymphodepletion, only 50 % of metastatic melanoma patients showed an anti-tumor 

response, although up to 75 % of the circulating CD8+ T cells showed tumor specificity 

(Rosenberg et al., 2004a). The same effect was proven in this study. Although ovalbumin-

specific effector T cells (control-transduced OT-1 T cells) were injected into E.G7-OVA 

tumor-bearing mice, only a limited anti-tumor response occurred, and all mice reached the 

pre-defined abort criteria due to the tumor burden. Only mice treated with tumor-specific 

T cells additionally expressing CXCR6 showed the ability of tumor clearance (four out of five 

mice). Therefore, the magnitude and durability of treatment response to ACT are closely 

associated with the number of tumor-infiltrating lymphocytes (Besser et al., 2010). 

 

Based on the flow cytometry findings, a follow-up investigation using ex vivo two-photon 

laser scanning microscopy was performed to validate the enhanced tumor homing of 

CXCR6-transduced OT-1 T cells. This alternative method confirmed the more efficient 

homing of CXCR6-transduced OT-1 T cells in Panc02-OVA tumors. 

 

Besides adhesion and chemotaxis, CXCL16 is associated with enhanced proliferation (Liang 

et al., 2018). Stimulation of lymphocytes with plate-bound CXCL16 was described to 

increase proliferation. This phenomenon was specifically mediated by CXCL16 since 

antibodies against the chemokine inhibited the proliferative effect (Darash-Yahana et al., 

2009). It is interesting to consider this in context with CXCR6-expressing T cells in the tumor 

milieu. Flow cytometry and two-photon microscopy analysis demonstrated an accumulation 

of CXCR6-transduced T cell in the tumor tissue as a result of chemotaxis. Whether an 

increased proliferation of CXCR6-transduced T cells contributes to the intratumoral 

accumulation or whether this is exclusively a result of the enhanced tumor homing still 

remains to be elucidated.  

 

Moreover, homing and trafficking of lymphocytes is mediated by a specific combination of 

adhesion molecules and chemokine receptors. Circulating lymphocytes roll along vessel 

walls, followed by adhesion to endothelial cells, crawling and extravasation (Herter et al., 

2013). Different integrins have been described to be involved in this multistep process. For 

CD8+ T cells a VLA4-dependent rolling on vessel walls is described (Singbartl et al., 2001). 

Therefore, the a4b1 integrin VLA-4 seems to be a crucial integrin mediating lymphocyte 



Discussion 

47 

transmigration (Nandi et al., 2004). Interestingly, CXCR6 signaling in murine and human 

lymphocytes was shown to activate VLA-4 leading to increased binding to VCAM-1 

(Heydtmann et al., 2005). This observation suggests a role of CXCR6 in lymphocyte 

extravasation via VLA-4. Therefore, it would be interesting to investigate whether this 

signaling pathway is also involved in the trafficking of CXCR6-engineered T cell and still has 

to be examined. 

 

5.6 CXCR6 enables human primary T cells to migrate towards CXCL16 gradients and 
invade tumor spheroids 

As seen for the murine model, hCXCR6-transduced human T cells showed an improved 

migration capacity towards both recombinant CXCL16 and CXCL16-positive tumor cell 

supernatants. Thus, the effect size of the murine (1.5-fold increase in migration towards 

Panc02-OVA-CXCL16) and human migratory capability (1.3-fold increase in migration 

towards Capan-1) mediated by CXCR6 is reasonably comparable. A similar effect was 

described for the trans-well migration of CX3CR1-transduced human T cells towards 

recombinant human CX3CL1. Here, chemokine receptor-transduced T cells showed a 1.8-

fold increased migratory capacity in comparison to control-transduced T cells (Siddiqui et al., 

2016). Thus, the effect size is comparable with the one described in the present study.  

 

Additionally, hCXCR6-transduced human T cells were able to infiltrate into 3D tumor cell 

spheroids and invaded deeper into the spheroids, while control-transduced T cells remained 

superficial. Together with the results of the trans-well migration assays, these results indicate 

that transgenic expression of the human chemokine receptor has equal properties as the 

murine chemokine receptor, such as improving chemotaxis and penetration of 3D structures. 

Whether the human chemokine receptor also mediates adhesion to CXCL16-positive 

surfaces still has to be proven.  

 

After successfully equipping human T cells with improved tumor homing properties, the next 

critical step is to transfer a tumor antigen-specific CAR or TCR into the T cells mediating 

cytotoxicity. In this context, overexpression of the chemokine receptor CCR2b by anti-

mesothelin CAR-expressing T cells already led to a 12.5-fold increase in tumor infiltration 

and significantly increased anti-tumor activity in a murine xenograft model (Moon et al., 

2011). Therefore, the expression of CXCR6 should be combined with a CAR targeting tumor-

specific antigens described for CXCL16-positive tumors. For instance, colorectal cancer is 

described to express high levels of CXCL16 (Hojo et al., 2007). On the other hand, there are 

preclinical and clinical studies (NCT03018405) investigating the potential of NKG2D-CAR 

T cell therapy for the treatment of colorectal cancer patients (Lonez et al., 2017). It would be 
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interesting to investigate whether the anti-tumor efficiency of those CAR T cells could be 

improved by the additional expression of CXCR6.  

 

In general, the aim of future clinical trials should be to incorporate chemokine receptors into 

therapy protocols. In most cases ACT uses modified T cells, thus, minor protocol 

modifications are required including the transduction of chemokine receptors in addition to 

the TCR or CAR. This strategy has the potential to result in an incremental improvement of 

tumor homing of transferred T cells and an essential enhancement in the overall efficiency of 

ACT of solid tumors. Furthermore, the efficient tumor homing represents an important 

additional safety aspect because effector cells specifically accumulate on the target site 

instead of being distributed in the periphery where they can cause unpredictable side effects. 

The occurrence of severe adverse effects associated with adoptive T cell therapy, such as 

life-threatening cytokine storms, underline the importance to develop strategies improving 

tumor-targeted trafficking of transferred effector T cells (Fitzgerald et al., 2017).  

 

For the future, the concept of chemokine receptor-transduced tumor-specific T cells could not 

only help to improve ACT of solid tumors but also represents a novel avenue to optimize 

personalized anti-cancer therapy. Based on tumor biopsies, patient specific chemokine 

expression profiles and tumor antigens can be identified enabling the genetic engineering of 

highly individualized T cell products with a tremendous therapeutic response. 

 

5.7 Conclusion and perspective 

In 2017 the FDA has approved the first two autologous CAR T cell therapies for the 

treatment of hematological malignancies. Since then, the interest in ACT as a treatment 

option of cancer has been growing. However, ACT efficiency still needs to be improved, 

especially for solid tumors. So far several strategies have been described to optimize the 

success of ACT focusing on enhanced T cell persistence, tumor recognition and activation of 

the innate immune system (Lim et al., 2017; Wang et al., 2014). Another critical step for ACT 

success in solid tumors and a prerequisite for TCR- or CAR-mediated antitumor effects 

represents an efficient tumor infiltration (Di Stasi et al., 2009). This study showed an 

improved trafficking of adoptively transferred CXCR6-expressing T cells into established 

CXCL16-secreting subcutaneous tumors, which was accompanied by an enhanced 

therapeutic effect. Therefore, ectopic expression of the chemokine receptor CXCR6 on 

transferred cytotoxic T cells is a promising approach to enhance antitumor activity. Most 

likely this strategy is complementary and synergistic with other approaches such as the 

transfer of tumor antigen recognizing TCR or CARs, which ultimately can lead to a significant 

improvement of ACT of solid tumors (Figure 17). 
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Figure 17: Schematic overview of the putative mode of action investigated in the present study.  
ACT using T cells engineered to express a tumor-specific CAR plus a chemokine receptor matching the 
tumors chemokine profile might improve the antitumor effect in solid tumors. The ectopic chemokine receptor 
promotes exit of the blood vessel (1), trafficking along the CXCL16 gradient produced by tumor cells and TME 
cells (2) and homing into the tumor tissue (3). Here the CAR mediates the cytotoxic function of the transferred 
T cell resulting in T cell activation and target cell lysis (4). 

The ectopic expression of chemokine receptors on T cells mediating an improved recruitment 

to the tumor site is an approach, which is well compatible with current ACT protocols and has 

the potential for translation to the clinics. The vast majority of the ACT includes the transfer of 

T cells, which have been genetically engineered in order to enhance their antitumor 

specificity (Restifo et al., 2012). Thus, the addition of a chemokine receptor can be achieved 

with minor modifications of ACT protocols by two independent transductions or usage of a 

bicistronic vector expressing both transgenes.  

 

This strategy of chemokine receptor modification could theoretically be translated to any 

tumor with previously identified chemokine profile. Especially patients with multiple 

metastases could benefit from such a treatment because a biopsy of a single accessible 

metastatic lesion could be used to identify the chemokine profile and therefore enables the 

selection of relevant chemokine receptor for the modification. However, so far only a limited 

number of studies focused on the combination of CAR- or TCR-engineered T cells and 

chemokine receptors to ameliorate tumor infiltration into solid tumors (Table 1). All of those 

preclinical approaches showed an increased tumor access of double-equipped T cells. An 

ongoing phaseI/II trial (NCT01740557) elucidating the potential role of chemokine receptors 

to improve the homing capacity of T cells started in 2015. Here the overexpression of 

CXCR2 and nerve growth factor receptor (NGFR) in TILs as a novel therapeutic option for 
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metastatic melanoma patients is investigated. Upon completion, this study will be of major 

significance for the application of chemokine receptors in this setting.   
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6 Summary 

Adoptive T cell therapy using T cells engineered with tumor-specific CARs has been 

established as an effective treatment for hematological malignancies. In solid tumors, 

however, CAR T cell effectiveness remains anecdotal. While most current approaches aim to 

enhance T cell persistence or tumor recognition, the present study focuses on a strategy to 

enhance the effectiveness of ACT by improving T cell trafficking to the tumor tissue, which is 

a prerequisite of ACT of solid tumors. Therefore, the capability of the chemokine receptor 

CXCR6 to increase homing of cytotoxic T cells to tumor tissue expressing the corresponding 

chemokine CXCL16 was investigated. Of importance, this chemokine is expressed as a 

transmembrane molecule, mediating adhesion, as well as in a soluble form serving as 

chemoattractant. Furthermore, a broad variety of tumors produce CXCL16, whereas the 

majority of effector T cells lack the expression of CXCR6.  

 

In the present study, the forced expression of CXCR6 resulted in an efficient migration of 

cytotoxic T cells towards CXCL16 gradients. Adhesive effects mediated by the 

transmembrane form of CXCL16 led to increased T cell activation and an enhanced target 

cell lysis. Based on these in vitro findings, the therapeutic activity of CXCR6-expressing 

tumor-specific T cells was investigated. In two different tumor models, treatment with 

CXCR6-expressing T cells retarded tumor growth, partially with tumor control, and prolonged 

survival. The therapeutic response correlated with enhanced trafficking and an increased 

number of tumor-infiltrating CXCR6-expressing T cells as shown by flow cytometry and two-

photon microscopy. Tumor cells and non-tumor cells of the tumor microenvironment produce 

CXCL16. This promotes the recruitment of adoptively transferred T cells from blood vessels 

to the tumor tissue and reduces the chance of chemokine down-regulation during treatment. 

The chemoattractant effect of tumor-secreted CXCL16 on CXCR6-engineered T cells was 

transferable to the human system. Here, the next critical step will be the combination of a 

forced CXCR6 expression with a tumor antigen-specific CAR to equip human T cells with 

antitumor properties.  

 

Together these data demonstrate that transgenic CXCR6 expression by tumor-specific 

T cells can overcome poor tumor homing of adoptively transferred T cells and therefore 

improves ACT response in murine solid tumor models. 

 



Reference list 

52 

7 Reference list 

Abel S., Hundhausen C., Mentlein R., Schulte A., Berkhout T. A., Broadway N., Hartmann D., 
Sedlacek R., Dietrich S., Muetze B., Schuster B., Kallen K.-J., Saftig P., Rose-John S., 
Ludwig A. The transmembrane CXC-chemokine ligand 16 is induced by IFN-γ and TNF-α 
and shed by the activity of the disintegrin-like metalloproteinase ADAM10.  
The Journal of Immunology 2004;172:6362-72. 
 
Ahmed N., Brawley V. S., Hegde M., Robertson C., Ghazi A., Gerken C., Liu E., Dakhova O., 
Ashoori A., Corder A., Gray T., Wu M.-F., Liu H., Hicks J., Rainusso N., Dotti G., Mei Z., 
Grilley B., Gee A., Rooney C. M., Brenner M. K., Heslop H. E., Wels W. S., Wang L. L., 
Anderson P., Gottschalk S. Human epidermal growth factor receptor 2 (HER2) –specific 
chimeric antigen receptor–modified T cells for the immunotherapy of HER2-positive sarcoma.  
Journal of Clinical Oncology 2015;33:1688-96. 
 
Alexandrov L. B., Nik-Zainal S., Wedge D. C., Aparicio S. A. J. R., Behjati S., Biankin A. V., 
Bignell G. R., Bolli N., Borg A., Børresen-Dale A.-L., Boyault S., Burkhardt B., Butler A. P., 
Caldas C., Davies H. R., Desmedt C., Eils R., Eyfjörd J. E., Foekens J. A., Greaves M., 
Hosoda F., Hutter B., Ilicic T., Imbeaud S., Imielinski M., Jäger N., Jones D. T. W., Jones D., 
Knappskog S., Kool M., Lakhani S. R., López-Otín C., Martin S., Munshi N. C., Nakamura H., 
Northcott P. A., Pajic M., Papaemmanuil E., Paradiso A., Pearson J. V., Puente X. S., Raine 
K., Ramakrishna M., Richardson A. L., Richter J., Rosenstiel P., Schlesner M., Schumacher 
T. N., Span P. N., Teague J. W., Totoki Y., Tutt A. N. J., Valdés-Mas R., van Buuren M. M., 
van ’t Veer L., Vincent-Salomon A., Waddell N., Yates L. R., Australian Pancreatic Cancer 
Genome I., Consortium I. B. C., Consortium I. M.-S., PedBrain I., Zucman-Rossi J., Andrew 
Futreal P., McDermott U., Lichter P., Meyerson M., Grimmond S. M., Siebert R., Campo E., 
Shibata T., Pfister S. M., Campbell P. J., Stratton M. R. Signatures of mutational processes 
in human cancer.  
Nature 2013;500:415-21. 
 
Bajgain P., Tawinwung S., D’Elia L., Sukumaran S., Watanabe N., Hoyos V., Lulla P., 
Brenner M. K., Leen A. M., Vera J. F. CAR T cell therapy for breast cancer: Harnessing the 
tumor milieu to drive T cell activation.  
Journal for Immunotherapy of Cancer 2018;6:34. 
 
Balkwill F. R., Capasso M., Hagemann T. The tumor microenvironment at a glance.  
Journal of Cell Science 2012;125:5591-96. 
 
Besser M. J., Shapira-Frommer R., Treves A. J., Zippel D., Itzhaki O., Hershkovitz L., Levy 
D., Kubi A., Hovav E., Chermoshniuk N., Shalmon B., Hardan I., Catane R., Markel G., Apter 
S., Ben-Nun A., Kuchuk I., Shimoni A., Nagler A., Schachter J. Clinical responses in a phase 
II study using adoptive transfer of short-term cultured tumor infiltration lymphocytes in 
metastatic melanoma patients.  
Clinical Cancer Research 2010;16:2646-55. 
 
Bobisse S., Rondina M., Merlo A., Tisato V., Mandruzzato S., Amendola M., Naldini L., 
Willemsen R. A., Debets R., Zanovello P., Rosato A. Reprogramming T lymphocytes for 
melanoma adoptive immunotherapy by T-cell receptor gene transfer with lentiviral vectors.  
Cancer Research 2009;69:9385-94. 
 
Butcher M. J., Wu C.-I., Waseem T., Galkina E. V. CXCR6 regulates the recruitment of pro-
inflammatory IL-17A-producing T cells into atherosclerotic aortas.  
International Immunology 2016;28:255-61. 
 
Chow M. T., Luster A. D. Chemokines in cancer.  
Cancer Immunology Research 2014;2:1125-31. 



Reference list 

53 

 
Craddock J. A., Lu A., Bear A., Pule M., Brenner M. K., Rooney C. M., Foster A. E. 
Enhanced tumor trafficking of GD2 chimeric antigen receptor T cells by expression of the 
chemokine receptor CCR2b.  
Journal of Immunotherapy 2010;33:780-8. 
 
Darash-Yahana M., Gillespie J. W., Hewitt S. M., Chen Y.-Y. K., Maeda S., Stein I., Singh S. 
P., Bedolla R. B., Peled A., Troyer D. A., Pikarsky E., Karin M., Farber J. M. The chemokine 
CXCL16 and its receptor, CXCR6, as markers and promoters of inflammation-associated 
cancers.  
PLOS One 2009;4:e6695. 
 
Deng L., Chen N., Li Y., Zheng H., Lei Q. CXCR6/CXCL16 functions as a regulator in 
metastasis and progression of cancer.  
Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2010;1806:42-9. 
 
Di Stasi A., De Angelis B., Rooney C. M., Zhang L., Mahendravada A., Foster A. E., Heslop 
H. E., Brenner M. K., Dotti G., Savoldo B. T lymphocytes coexpressing CCR4 and a chimeric 
antigen receptor targeting CD30 have improved homing and antitumor activity in a Hodgkin 
tumor model.  
Blood 2009;113:6392-402. 
 
Dudley M. E., Wunderlich J. R., Shelton T. E., Even J., Rosenberg S. A. Generation of 
tumor-infiltrating lymphocyte cultures for use in adoptive transfer therapy for melanoma 
patients.  
Journal of Immunotherapy 2003;26:332-42. 
 
Eggermont A. M. M., Chiarion-Sileni V., Grob J.-J., Dummer R., Wolchok J. D., Schmidt H., 
Hamid O., Robert C., Ascierto P. A., Richards J. M., Lebbé C., Ferraresi V., Smylie M., 
Weber J. S., Maio M., Bastholt L., Mortier L., Thomas L., Tahir S., Hauschild A., Hassel J. C., 
Hodi F. S., Taitt C., de Pril V., de Schaetzen G., Suciu S., Testori A. Prolonged survival in 
stage III melanoma with ipilimumab adjuvant therapy.  
New England Journal of Medicine 2016;375:1845-55. 
 
Fisher D. T., Chen Q., Appenheimer M. M., Skitzki J., Wang W.-C., Odunsi K., Evans S. S. 
Hurdles to lymphocyte trafficking in the tumor microenvironment: Implications for effective 
immunotherapy.  
Immunological Investigations 2006;35:251-77. 
 
Fitzgerald J. C., Weiss S. L., Maude S. L., Barrett D. M., Lacey S. F., Melenhorst J. J., Shaw 
P., Berg R. A., June C. H., Porter D. L., Frey N. V., Grupp S. A., Teachey D. T. Cytokine 
release syndrome after chimeric antigen receptor T cell therapy for acute lymphoblastic 
leukemia.  
Critical Care Medicine 2017;45:e124-e31. 
 
Ganesan A.-P., Johansson M., Ruffell B., Beltran A., Lau J., Jablons D. M., Coussens L. M. 
Tumor-infiltrating regulatory T cells inhibit endogenous cytotoxic T cell responses to lung 
adenocarcinoma.  
Journal of Immunology 2013;191:2009-17. 
 
Garetto S., Sardi C., Martini E., Roselli G., Morone D., Angioni R., Cianciotti B. C., Trovato A. 
E., Franchina D. G., Castino G. F., Vignali D., Erreni M., Marchesi F., Rumio C., Kallikourdis 
M. Tailored chemokine receptor modification improves homing of adoptive therapy T cells in 
a spontaneous tumor model.  
Oncotarget 2016;7:43010-26. 
 



Reference list 

54 

Garrido F., Aptsiauri N., Doorduijn E. M., Garcia Lora A. M., van Hall T. The urgent need to 
recover MHC class I in cancers for effective immunotherapy.  
Current Opinion in Immunology 2016;39:44-51. 
 
Geng Y., Shao Y., He W., Hu W., Xu Y., Chen J., Wu C., Jiang J. Prognostic role of tumor-
infiltrating lymphocytes in lung cancer: A meta-analysis.  
Cellular Physiology and Biochemistry 2015;37:1560-71. 
 
Ghani K., Cottin S., Kamen A., Caruso M. Generation of a high-titer packaging cell line for 
the production of retroviral vectors in suspension and serum-free media.  
Gene Therapy 2007;14:1705-11. 
 
Gooden M. J. M., Wiersma V. R., Boerma A., Leffers N., Boezen H. M., ten Hoor K. A., 
Hollema H., Walenkamp A. M. E., Daemen T., Nijman H. W., Bremer E. Elevated serum 
CXCL16 is an independent predictor of poor survival in ovarian cancer and may reflect pro-
metastatic ADAM protease activity.  
British Journal of Cancer 2014;110:1535-44. 
 
Gorbachev A. V., Kobayashi H., Kudo D., Tannenbaum C. S., Finke J. H., Shu S., Farber J. 
M., Fairchild R. L. CXC chemokine ligand 9/monokine induced by IFN-γ production by tumor 
cells is critical for T cell-mediated suppression of cutaneous tumors.  
The Journal of Immunology 2007;178:2278-86. 
 
Gorelik L., Flavell R. A. Immune-mediated eradication of tumors through the blockade of 
transforming growth factor-β signaling in T cells.  
Nature Medicine 2001;7:1118-22. 
 
Grada Z., Hegde M., Byrd T., Shaffer D. R., Ghazi A., Brawley V. S., Corder A., Schönfeld 
K., Koch J., Dotti G., Heslop H. E., Gottschalk S., Wels W. S., Baker M. L., Ahmed N. 
TanCAR: A novel bispecific chimeric antigen receptor for cancer immunotherapy.  
Molecular Therapy Nucleic Acids 2013;2:e105. 
 
Günther C., Carballido-Perrig N., Kaesler S., Carballido J. M., Biedermann T. CXCL16 and 
CXCR6 are upregulated in psoriasis and mediate cutaneous recruitment of human CD8+ T 
cells.  
Journal of Investigative Dermatology 2012;132:626-34. 
 
Gutwein P., Schramme A., Sinke N., Abdel-Bakky M. S., Voss B., Obermüller N., Doberstein 
K., Koziolek M., Fritzsche F., Johannsen M., Jung K., Schaider H., Altevogt P., Ludwig A., 
Pfeilschifter J., Kristiansen G. Tumoural CXCL16 expression is a novel prognostic marker of 
longer survival times in renal cell cancer patients.  
European Journal of Cancer 2009;45:478-89. 
 
Ha H. K., Lee W., Park H. J., Lee S. D., Lee J. Z., Chung M. K. Clinical significance of 
CXCL16/CXCR6 expression in patients with prostate cancer.  
Molecular Medicine Reports 2011;4:419-24. 
 
Hald S. M., Kiselev Y., Al-Saad S., Richardsen E., Johannessen C., Eilertsen M., Kilvaer T. 
K., Al-Shibli K., Andersen S., Busund L.-T., Bremnes R. M., Donnem T. Prognostic impact of 
CXCL16 and CXCR6 in non-small cell lung cancer: Combined high CXCL16 expression in 
tumor stroma and cancer cells yields improved survival.  
BMC Cancer 2015;15:441. 
 
Hanahan D., Coussens Lisa M. Accessories to the crime: Functions of cells recruited to the 
tumor microenvironment.  
Cancer Cell 2012;21:309-22. 



Reference list 

55 

 
Hanahan D., Weinberg Robert A. Hallmarks of cancer: The next generation.  
Cell 2011;144:646-74. 
 
Hanenberg H., Xiao X. L., Dilloo D., Hashino K., Kato I., Williams D. A. Colocalization of 
retrovirus and target cells on specific fibronectin fragments increases genetic transduction of 
mammalian cells.  
Nature Medicine 1996;2:876-82. 
 
Hara T., Katakai T., Lee J.-H., Nambu Y., Nakajima-Nagata N., Gonda H., Sugai M., Shimizu 
A. A transmembrane chemokine, CXC chemokine ligand 16, expressed by lymph node 
fibroblastic reticular cells has the potential to regulate T cell migration and adhesion.  
International Immunology 2006;18:301-11. 
 
Harlin H., Meng Y., Peterson A. C., Zha Y., Tretiakova M., Slingluff C., McKee M., Gajewski 
T. F. Chemokine expression in melanoma metastases associated with CD8 T-cell 
recruitment.  
Cancer Research 2009;69:3077-85. 
 
Hattermann K., Ludwig A., Gieselmann V., Held-Feindt J., Mentlein R. The chemokine 
CXCL16 induces migration and invasion of glial precursor cells via its receptor CXCR6.  
Molecular and Cellular Neuroscience 2008;39:133-41. 
 
Herter J., Zarbock A. Integrin regulation during leukocyte recruitment.  
The Journal of Immunology 2013;190:4451-57. 
 
Heydtmann M., Lalor P. F., Eksteen J. A., Hübscher S. G., Briskin M., Adams D. H. CXC 
chemokine ligand 16 promotes integrin-mediated adhesion of liver-infiltrating lymphocytes to 
cholangiocytes and hepatocytes within the inflamed human liver.  
The Journal of Immunology 2005;174:1055-62. 
 
Hojo S., Koizumi K., Tsuneyama K., Arita Y., Cui Z., Shinohara K., Minami T., Hashimoto I., 
Nakayama T., Sakurai H., Takano Y., Yoshie O., Tsukada K., Saiki I. High-level expression 
of chemokine CXCL16 by tumor cells correlates with a good prognosis and increased tumor-
infiltrating lymphocytes in colorectal cancer.  
Cancer Research 2007;67:4725-31. 
 
Hombach A. A., Abken H. Of chimeric antigen receptors and antibodies: OX40 and 41BB 
costimulation sharpen up T cell-based immunotherapy of cancer.  
Immunotherapy 2013;5:677-81. 
 
Homey B., Müller A., Zlotnik A. Chemokines: Agents for the immunotherapy of cancer?  
Nature Reviews Immunology 2002;2:175-84. 
 
Hong M., Puaux A.-L., Huang C., Loumagne L., Tow C., Mackay C., Kato M., Prévost-
Blondel A., Avril M.-F., Nardin A., Abastado J.-P. Chemotherapy induces intratumoral 
expression of chemokines in cutaneous melanoma, favoring T-cell infiltration and tumor 
control.  
Cancer Research 2011;71:6997-7009. 
 
Hoyos V., Savoldo B., Quintarelli C., Mahendravada A., Zhang M., Vera J., Heslop H. E., 
Rooney C. M., Brenner M. K., Dotti G. Engineering CD19-specific T lymphocytes with 
interleukin-15 and a suicide gene to enhance their anti-lymphoma/leukemia effects and 
safety.  
Leukemia 2010;24:1160-70. 
 



Reference list 

56 

Iwamura T., Katsuki T., Ide K. Establishment and characterization of a human pancreatic 
cancer cell line (SUIT-2) producing carcinoembryonic antigen and carbohydrate antigen 19-
9.  
Japanese Journal of Cancer Research GANN 1987;78:54-62. 
 
Jacobs C., Duewell P., Heckelsmiller K., Wei J., Bauernfeind F., Ellermeier J., Kisser U., 
Bauer C. A., Dauer M., Eigler A., Maraskovsky E., Endres S., Schnurr M. An ISCOM vaccine 
combined with a TLR9 agonist breaks immune evasion mediated by regulatory T cells in an 
orthotopic model of pancreatic carcinoma.  
International Journal of Cancer 2011;128:897-907. 
 
Joyce J. A., Pollard J. W. Microenvironmental regulation of metastasis.  
Nature Reviews Cancer 2009;9:239-52. 
 
June C. H. Adoptive T cell therapy for cancer in the clinic.  
Journal of Clinical Investigation 2007;117:1466-76. 
 
Kalos M., June C. H. Adoptive T cell transfer for cancer immunotherapy in the era of 
synthetic biology.  
Immunity 2013;39:49-60. 
 
Ke C., Ren Y., Lv L., Hu W., Zhou W. Association between CXCL16/CXCR6 expression and 
the clinicopathological features of patients with non-small cell lung cancer.  
Oncology Letters 2017;13:4661-68. 
 
Keeley E. C., Mehrad B., Strieter R. M. Chemokines as mediators of tumor angiogenesis and 
neovascularization.  
Experimental Cell Research 2011;317:685-90. 
 
Kershaw M. H., Westwood J. A., Parker L. L., Wang G., Eshhar Z., Mavroukakis S. A., White 
D. E., Wunderlich J. R., Canevari S., Rogers-Freezer L., Chen C. C., Yang J. C., Rosenberg 
S. A., Hwu P. A phase I study on adoptive immunotherapy using gene-modified T cells for 
ovarian cancer.  
Clinical Cancer Research 2006;12:6106-15. 
 
Kobold S., Grassmann S., Chaloupka M., Lampert C., Wenk S., Kraus F., Rapp M., Düwell 
P., Zeng Y., Schmollinger J. C., Schnurr M., Endres S., Rothenfußer S. Impact of a new 
fusion receptor on PD-1–mediated immunosuppression in adoptive T cell therapy.  
Journal of the National Cancer Institute 2015;107:djv146. 
 
Lee J. T., Lee S. D., Lee J. Z., Chung M. K., Ha H. K. Expression analysis and clinical 
significance of CXCL16/CXCR6 in patients with bladder cancer.  
Oncology Letters 2013;5:229-35. 
 
Lehrke M., Millington S. C., Lefterova M., Cumaranatunge R. G., Szapary P., Wilensky R., 
Rader D. J., Lazar M. A., Reilly M. P. CXCL16 is a marker of inflammation, atherosclerosis, 
and acute coronary syndromes in humans.  
Journal of the American College of Cardiology 2007;49:442-49. 
 
Liang K., Liu Y., Eer D., Liu J., Yang F., Hu K. High CXC chemokine ligand 16 (CXCL16) 
expression promotes proliferation and metastasis of lung cancer via regulating the NF-κB 
pathway.  
International Medical Journal of Experimental and Clinical Research 2018;24:405-11. 
 



Reference list 

57 

Liao D., Luo Y., Markowitz D., Xiang R., Reisfeld R. A. Cancer associated fibroblasts 
promote tumor growth and metastasis by modulating the tumor immune microenvironment in 
a 4T1 murine breast cancer model.  
PLOS One 2009;4:e7965. 
 
Lim W. A., June C. H. The principles of engineering immune cells to treat cancer.  
Cell 2017;168:724-40. 
 
Liu X., Ranganathan R., Jiang S., Fang C., Sun J., Kim S., Newick K., Lo A., June C. H., 
Zhao Y., Moon E. K. A chimeric switch-receptor targeting PD1 augments the efficacy of 
second-generation CAR T cells in advanced solid tumors.  
Cancer Research 2016;76:1578-90. 
 
Lonez C., Verma B., Hendlisz A., Aftimos P., Awada A., Van Den Neste E., Catala G., 
Machiels J.-P. H., Piette F., Brayer J. B., Sallman D. A., Kerre T., Odunsi K., Davila M. L., 
Gilham D. E., Lehmann F. F. Study protocol for THINK: A multinational open-label phase I 
study to assess the safety and clinical activity of multiple administrations of NKR-2 in patients 
with different metastatic tumour types.  
BMJ Open 2017;7:e017075. 
 
Lugade A. A., Sorensen E. W., Gerber S. A., Moran J. P., Frelinger J. G., Lord E. M. 
Radiation-induced IFN-γ production within the tumor microenvironment influences antitumor 
immunity.  
The Journal of Immunology 2008;180:3132-39. 
 
Mackay C., Marston W., Dudler L. Naive and memory T cells show distinct pathways of 
lymphocyte recirculation.  
The Journal of Experimental Medicine 1990;171:801-17. 
 
Matloubian M., David A., Engel S., Ryan J. E., Cyster J. G. A transmembrane CXC 
chemokine is a ligand for HIV-coreceptor Bonzo.  
Nature Immunology 2000;1:298-304. 
 
Matsumura S., Wang B., Kawashima N., Braunstein S., Badura M., Cameron T. O., Babb J. 
S., Schneider R. J., Formenti S. C., Dustin M. L., Demaria S. Radiation-induced CXCL16 
release by breast cancer cells attracts effector T cells.  
The Journal of Immunology 2008;181:3099-107. 
 
Meijer J., Ogink J., Kreike B., Nuyten D., de Visser K. E., Roos E. The chemokine receptor 
CXCR6 and its ligand CXCL16 are expressed in carcinomas and inhibit proliferation.  
Cancer Research 2008;68:4701-08. 
 
Mittal D., Gubin M. M., Schreiber R. D., Smyth M. J. New insights into cancer immunoediting 
and its three component phases — elimination, equilibrium and escape.  
Current Opinion in Immunology 2014;27:16-25. 
 
Molon B., Gri G., Bettella M., Gómez-Moutón C., Lanzavecchia A., Martínez-A C., Mañes S., 
Viola A. T cell costimulation by chemokine receptors.  
Nature Immunology 2005;6:465-71. 
 
Moon E. K., Carpenito C., Sun J., Wang L.-C. S., Kapoor V., Predina J., Powell D. J., Riley J. 
L., June C. H., Albelda S. M. Expression of a functional CCR2 receptor enhances tumor 
localization and tumor eradication by retargeted human T cells expressing a mesothelin - 
specific chimeric antibody receptor.  
Clinical Cancer Research 2011;17:4719-30. 
 



Reference list 

58 

Morgan R. A., Johnson L. A., Davis J. L., Zheng Z., Woolard K. D., Reap E. A., Feldman S. 
A., Chinnasamy N., Kuan C.-T., Song H., Zhang W., Fine H. A., Rosenberg S. A. 
Recognition of glioma stem cells by genetically modified T cells targeting EGFRvIII and 
development of adoptive cell therapy for glioma.  
Human Gene Therapy 2012;23:1043-53. 
 
Morgan R. A., Yang J. C., Kitano M., Dudley M. E., Laurencot C. M., Rosenberg S. A. Case 
report of a serious adverse event following the administration of T cells transduced with a 
chimeric antigen receptor recognizing ERBB2.  
Molecular Therapy 2010;18:843-51. 
 
Morita S., Kojima T., Kitamura T. Plat-E: An efficient and stable system for transient 
packaging of retroviruses.  
Gene Therapy 2000;7:1063-66. 
 
Müller A., Homey B., Soto H., Ge N., Catron D., Buchanan M. E., McClanahan T., Murphy E., 
Yuan W., Wagner S. N., Barrera J. L., Mohar A., Verástegui E., Zlotnik A. Involvement of 
chemokine receptors in breast cancer metastasis.  
Nature 2001;410:50-6. 
 
Müller N., Michen S., Tietze S., Töpfer K., Schulte A., Lamszus K., Schmitz M., Schackert G., 
Pastan I., Temme A. Engineering NK cells modified with an EGFRvIII-specific chimeric 
antigen receptor to overexpress CXCR4 improves immunotherapy of CXCL12/SDF-1α-
secreting glioblastoma.  
Journal of Immunotherapy 2015;38:197-210. 
 
Musha H., Ohtani H., Mizoi T., Kinouchi M., Nakayama T., Shiiba K., Miyagawa K., Nagura 
H., Yoshie O., Sasaki I. Selective infiltration of CCR5+CXCR3+ T lymphocytes in human 
colorectal carcinoma.  
International Journal of Cancer 2005;116:949-56. 
 
Nakayama T., Hieshima K., Izawa D., Tatsumi Y., Kanamaru A., Yoshie O. Cutting edge: 
Profile of chemokine receptor expression on human plasma cells accounts for their efficient 
recruitment to target tissues.  
The Journal of Immunology 2003;170:1136-40. 
 
Nandi A., Estess P., Siegelman M. Bimolecular complex between rolling and firm adhesion 
receptors required for cell arrest: CD44 association with VLA-4 in T cell extravasation.  
Immunity 2004;20:455-65. 
 
Neel N. F., Schutyser E., Sai J., Fan G.-H., Richmond A. Chemokine receptor internalization 
and intracellular trafficking.  
Cytokine & Growth Factor Reviews 2005;16:637-58. 
 
Oh S.-T., Schramme A., Tilgen W., Gutwein P., Reichrath J. Overexpression of CXCL16 in 
lesional psoriatic skin.  
Dermato-Endocrinology 2009;1:114-18. 
 
Ohta M., Tanaka F., Yamaguchi H., Sadanaga N., Inoue H., Mori M. The high expression of 
Fractalkine results in a better prognosis for colorectal cancer patients.  
International Journal of Oncology 2005;26:41-7. 
 
Pardoll D. M. The blockade of immune checkpoints in cancer immunotherapy.  
Nature Reviews Cancer 2012;12:252-64. 
 



Reference list 

59 

Park J. H., Geyer M. B., Brentjens R. J. CD19-targeted CAR T-cell therapeutics for 
hematologic malignancies: Interpreting clinical outcomes to date.  
Blood 2016;127:3312-20. 
 
Peng W., Ye Y., Rabinovich B. A., Liu C., Lou Y., Zhang M., Whittington M., Yang Y., 
Overwijk W. W., Lizée G., Hwu P. Transduction of tumor-specific T cells with CXCR2 
chemokine receptor improves migration to tumor and antitumor immune responses.  
Clinical Cancer Research 2010;16:5458-68. 
 
Porter D., Frey N., Wood P. A., Weng Y., Grupp S. A. Grading of cytokine release syndrome 
associated with the CAR T cell therapy tisagenlecleucel.  
Journal of Hematology & Oncology 2018;11:35. 
 
Prapa M., Caldrer S., Spano C., Bestagno M., Golinelli G., Grisendi G., Petrachi T., Conte P., 
Horwitz E. M., Campana D., Paolucci P., Dominici M. A novel anti-GD2/4-1BB chimeric 
antigen receptor triggers neuroblastoma cell killing.  
Oncotarget 2015;6:24884-94. 
 
Rabinovich G. A., Gabrilovich D., Sotomayor E. M. Immunsuppressive strategies that are 
mediated by tumor cells  
Annual Review of Immunology 2007;25:267-96. 
 
Raman D., Baugher P. J., Thu Y. M., Richmond A. Role of chemokines in tumor growth.  
Cancer Letters 2007;256:137-65. 
 
Raman D., Sobolik-Delmaire T., Richmond A. Chemokines in health and disease.  
Experimental Cell Research 2011;317:575-89. 
 
Ran F. A., Hsu P. D., Wright J., Agarwala V., Scott D. A., Zhang F. Genome engineering 
using the CRISPR-Cas9 system.  
Nature Protocols 2013;8:2281-308. 
 
Rapp M., Grassmann S., Chaloupka M., Layritz P., Kruger S., Ormanns S., Rataj F., Janssen 
K.-P., Endres S., Anz D., Kobold S. C-C chemokine receptor type-4 transduction of T cells 
enhances interaction with dendritic cells, tumor infiltration and therapeutic efficacy of 
adoptive T cell transfer.  
Oncoimmunology 2016;5:e1105428. 
 
Rataj F., Kraus F. B. T., Chaloupka M., Grassmann S., Heise C., Cadilha B. L., Duewell P., 
Endres S., Kobold S. PD1-CD28 fusion protein enables CD4+ T cell help for adoptive T cell 
therapy in models of pancreatic cancer and Non-Hodgkin lymphoma.  
Frontiers in Immunology 2018;9. 
 
Restifo N. P., Dudley M. E., Rosenberg S. A. Adoptive immunotherapy for cancer: 
Harnessing the T cell response.  
Nature Reviews Immunology 2012;12:269-81. 
 
Rosenberg S. A., Dudley M. E. Cancer regression in patients with metastatic melanoma after 
the transfer of autologous antitumor lymphocytes.  
Proceedings of the National Academy of Sciences of the United States of America 
2004a;101:14639-45. 
 
Rosenberg S. A., Sherry R. M., Morton K. E., Scharfman W. J., Yang J. C., Topalian S. L., 
Royal R. E., Kammula U., Restifo N. P., Hughes M. S., Schwartzentruber D., Berman D. M., 
Schwarz S. L., Ngo L. T., Mavroukakis S. A., White D. E., Steinberg S. M. Tumor progression 



Reference list 

60 

can occur despite the induction of very high levels of self/tumor antigen-specific CD8 T cells 
in patients with melanoma.  
The Journal of Immunology 2005;175:6169-76. 
 
Rosenberg S. A., Yang J. C., Restifo N. P. Cancer immunotherapy: Moving beyond current 
vaccines.  
Nature Medicine 2004b;10:909-15. 
 
Rühland S., Wechselberger A., Spitzweg C., Huss R., Nelson P. J., Harz H. Quantification of 
in vitro mesenchymal stem cell invasion into tumor spheroids using selective plane 
illumination microscopy.  
Journal of Biomedical Optics 2015;20:3. 
 
Schaer D. A., Lesokhin A. M., Wolchok J. D. Hiding the road signs that lead to tumor 
immunity.  
The Journal of Experimental Medicine 2011;208:1937-40. 
 
Schmohl K. A., Müller A. M., Wechselberger A., Rühland S., Salb N., Schwenk N., Heuer H., 
Carlsen J., Göke B., Nelson P. J., Spitzweg C. Thyroid hormones and tetrac: New regulators 
of tumour stroma formation via integrin αvβ3.  
Endocrine-Related Cancer 2015;22:941-52. 
 
Schramme A., Abdel-Bakky M. S., Kämpfer-Kolb N., Pfeilschifter J., Gutwein P. The role of 
CXCL16 and its processing metalloproteinases ADAM10 and ADAM17 in the proliferation 
and migration of human mesangial cells.  
Biochemical and Biophysical Research Communications 2008;370:311-16. 
 
Siddiqui I., Erreni M., van Brakel M., Debets R., Allavena P. Enhanced recruitment of 
genetically modified CX3CR1-positive human T cells into Fractalkine/CX3CL1 expressing 
tumors: Importance of the chemokine gradient.  
Journal for Immunotherapy of Cancer 2016;4:21. 
 
Singbartl K. A. I., Forlow S. B., Ley K. Platelet, but not endothelial, P-selectin is critical for 
neutrophil-mediated acute postischemic renal failure.  
The FASEB Journal 2001;15:2337-44. 
 
Singh S. K., Mishra M. K., Eltoum I.-E. A., Bae S., Lillard J. W., Singh R. CCR5/CCL5 axis 
interaction promotes migratory and invasiveness of pancreatic cancer cells.  
Scientific Reports 2018;8:1323. 
 
Smith M. C. P., Luker K. E., Garbow J. R., Prior J. L., Jackson E., Piwnica-Worms D., Luker 
G. D. CXCR4 regulates growth of both primary and metastatic breast cancer.  
Cancer Research 2004;64:8604-12. 
 
Soria G., Ofri-Shahak M., Haas I., Yaal-Hahoshen N., Leider-Trejo L., Leibovich-Rivkin T., 
Weitzenfeld P., Meshel T., Shabtai E., Gutman M., Ben-Baruch A. Inflammatory mediators in 
breast cancer: Coordinated expression of TNFα & IL-1β with CCL2 & CCL5 and effects on 
epithelial-to-mesenchymal transition.  
BMC Cancer 2011;11:130-. 
 
Stancovski I., Schindler D. G., Waks T., Yarden Y., Sela M., Eshhar Z. Targeting of T 
lymphocytes to Neu/HER2-expressing cells using chimeric single chain Fv receptors.  
The Journal of Immunology 1993;151:6577-82. 
 
Stein J. V., Nombela-Arrieta C. Chemokine control of lymphocyte trafficking: A general 
overview.  



Reference list 

61 

Immunology 2005;116:1-12. 
 
Tabata S., Kadowaki N., Kitawaki T., Shimaoka T., Yonehara S., Yoshie O., Uchiyama T. 
Distribution and kinetics of SR-PSOX/CXCL16 and CXCR6 expression on human dendritic 
cell subsets and CD4+ T cells.  
Journal of Leukocyte Biology 2005;77:777-86. 
 
Topalian S. L., Sznol M., McDermott D. F., Kluger H. M., Carvajal R. D., Sharfman W. H., 
Brahmer J. R., Lawrence D. P., Atkins M. B., Powderly J. D., Leming P. D., Lipson E. J., 
Puzanov I., Smith D. C., Taube J. M., Wigginton J. M., Kollia G. D., Gupta A., Pardoll D. M., 
Sosman J. A., Hodi F. S. Survival, durable tumor remission, and long-term safety in patients 
with advanced melanoma receiving nivolumab.  
Journal of Clinical Oncology 2014;32:1020-30. 
 
Unutmaz D., Xiang W., Sunshine M. J., Campbell J., Butcher E., Littman D. R. The primate 
lentiviral receptor Bonzo/STRL33 is coordinately regulated with CCR5 and its expression 
pattern is conserved between human and mouse.  
The Journal of Immunology 2000;165:3284-92. 
 
Wang J., Jensen M., Lin Y., Sui X., Chen E., Lindgren C. G., Till B., Raubitschek A., Forman 
S. J., Qian X., James S., Greenberg P., Riddell S., Press O. W. Optimizing adoptive 
polyclonal T cell immunotherapy of lymphomas, using a chimeric T cell receptor possessing 
CD28 and CD137 costimulatory domains.  
Human Gene Therapy 2007;18:712-25. 
 
Wang M., Yin B., Wang H. Y., Wang R.-F. Current advances in T-cell-based cancer 
immunotherapy.  
Immunotherapy 2014;6:1265-78. 
 
Wente M., Gaida M., Mayer C. Expression and potential function of the CXC chemokine 
CXCL16 in pancreatic ductal adenocarcinoma.  
International Journal of Oncology 1992:297-308. 
 
Wilbanks A., Zondlo S. C., Murphy K., Mak S., Soler D., Langdon P., Andrew D. P., Wu L., 
Briskin M. Expression cloning of the STRL33/BONZO/TYMSTR ligand reveals elements of 
CC, CXC, and CX3C chemokines.  
The Journal of Immunology 2001;166:5145-54. 
 
Yang X., Chu Y., Wang Y., Zhang R., Xiong S. Targeted in vivo expression of IFN-γ-inducible 
protein 10 induces specific antitumor activity.  
Journal of Leukocyte Biology 2006;80:1434-44. 
 
Zhang J., Lu Y., Pienta K. J. Multiple roles of chemokine (C-C Motif) ligand 2 in promoting 
prostate cancer growth.  
Journal of the National Cancer Institute 2010;102:522-28. 
 
Zhang L., Conejo-Garcia J. R., Katsaros D., Gimotty P. A., Massobrio M., Regnani G., 
Makrigiannakis A., Gray H., Schlienger K., Liebman M. N., Rubin S. C., Coukos G. 
Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer.  
New England Journal of Medicine 2003;348:203-13. 
 
Zhang L., Ran L., Garcia G. E., Wang X. H., Han S., Du J., Mitch W. E. Chemokine CXCL16 
regulates neutrophil and macrophage infiltration into injured muscle, promoting muscle 
regeneration.  
The American Journal of Pathology 2009;175:2518-27. 
 



Reference list 

62 

Zhu Y. M., Webster S. J., Flower D., Woll P. J. Interleukin-8/CXCL8 is a growth factor for 
human lung cancer cells.  
British Journal of Cancer 2004;91:1970-76. 
 
Zlotnik A., Yoshie O. Chemokines.  
Immunity 2000;12:121-27. 
 
 

 



Appendices 

63 

8 Appendices 

8.1 Abbreviations 

ACT Adoptive cell therapy 

ADAM A disintegrin and metalloprotease 

ATCC American Type Culture Collection 

 

BSA Bovine serum albumin 

 

CAR Chimeric antigen receptor 

CD Cluster of differentiation 

CTLA-4 Cytotoxic T lymphocyte-associated antigen 4 

Cy Cyanine 

 

DMEM Dulbecco’s modified Eagle’s medium 

DMSO  Dimethyl sulfoxide 

DNA  Deoxyribonucleic acid  

 

EGFRvIII Epidermal growth factor receptor variant III 

ELISA Enzyme-linked immunosorbent assay 

 

FACS Fluorescence-activated cell sorting 

FCS Fetal calf serum 

FDA U.S. Food and Drug Administration 

FITC Fluorescein isothiocyanate 

 

GFP Green fluorescent protein 

 

HLA Human leukocyte antigen 

 
IFN-γ Interferon-γ 

IL Interleukin 

i.v. Intravenous 

 

LNi Ipsilateral lymph node 

LNc Contralateral lymph node 

 

MDSC Myeloid-derived suppressor cell 
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n.d. Not detectable 

NEAA Non-essential amino acids 

NK cell Natural killer cell 

 

OVA Ovalbumin 

 

qRT-PCR Quantitative real-time PCR 

 

PD-1 Programmed cell death protein 1 

PD-L1 Programmed cell death ligand 1 

PBMC Peripheral blood mononuclear cell 

PBS Phosphate-buffered saline 

PE Phycoerythrin 

PerCP Peridinin chlorophyll protein complex 

 

RNA Ribonucleic acid 

RPMI Roswell Park Memorial Institute 

 

s.c. Subcutaneous 

scFv Single chain variable fragment 

SEM Standard error of mean 

STR Short tandem repeats 

 

TAA Tumor-associated antigen 

TAM Tumor-associated macrophage 

TCR T cell receptor 

TGF-β Transforming growth factor-β 

TIL Tumor-infiltrating lymphocyte 

TME Tumor microenvironment 

Treg cell Regulatory T cell 

 

VLE Very low endotoxin 

 

WHO World Health Organization 
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