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Zusammenfassung

Biologische Systeme arbeiten fern des thermodynamischen Gleichgewichts. Sie dissipieren
kontinuierlich Energie auf molekularen Längenskalen und verletzen dabei die so genannte
detailed balance-Bedingung. Die Verletzung von detailed balance kann jedoch auch als
Zirkulation im Koordinatensystem eines Paares mesoskopischer Freiheitsgrade auftreten.
Diese Dissertation konzentriert sich darauf, wie wir eine solche Zirkulation messen und
daraus Informationen über die Nichtgleichgewichtsaktivität im System gewinnen können.
Insbesondere schlagen wir die �cycling frequencies� (Umlau�requenzen) und �area enclosing
rates� als nichtinvasive Maÿe für Nichtgleichgewicht vor. Wir bauen ein Framework auf, mit
dem theoretische Vorhersagen zum �spatial scaling� (räumlichen Skalenverhalten) solcher
Maÿnahmen in biologischen Netzwerke abgeleitet werden können.
Diese Dissertation unterteilt sich in drei Hauptteile:

Teil I: Dieser Teil enthält die Einführung und Kapitel 1. Ziel dieses Teils ist die Motivati-
on zu erklären, die uns bei unserer Arbeit geleitet haben, und die theoretischen Werkzeuge
einführen, die in den nachfolgenden Kapiteln verwendet werden. In der Einführung kon-
zentrieren wir uns auf ein toy model, das die Basis für die De�nition des theoretischen
Modells bildet, das wir in unserer Forschung verwendet haben, um biologische Netzwer-
ke zu modellieren. Innerhalb dieses Modells führen wir auch die Nichtgleichgewichtsmaÿe
ein, die wir in den nachfolgenden Kapiteln anwenden werden, wie auch die Beziehungen
zwischen ihnen. In Kapitel 1 geben wir einen umfassenden Überblick über den Nachweis
von Nichtgleichgewichtsaktivität in biologischen Systemen.

Teil II: Dieser Teil enthält das zweite Kapitel dieser Arbeit: �Non-equilibrium scaling
behavior in driven biological assemblies�. Hier stellen wir ein einfaches, aber allgemei-
nes Modell für biologisch aktive Netzwerke vor. In diesem Modell untersuchen wir, wie
sich Nichtgleichgewichtsaktivität auf verschiedenen Längenskalen manifestiert. Wir stellen
fest, dass unsere Nichtgleichgewichtsmaÿe ein Potenzverhalten als Funktion des Abstands
zwischen zwei Messpunkten aufweisen. Wir stellen ein theoretisches Framework vor, das
uns ermöglicht, einen analytischen Ausdruck für das Potenzverhalten abzuleiten. Darüber
hinaus beziehen wir unsere Nichtgleichgewichtsmaÿe auf ein häu�ger angewandtes Maÿ,
die Entropieproduktionsrate. Wir zeigen, dass die cycling frequencies verwendet werden
können, um eine Untergrenze für die Entropieproduktionsrate des Systems zu ermitteln.

Teil III: In diesem Teil untersuchen wir, welche Informationen über die Nichtgleichge-
wichtsaktivität im System durch Auswertung des Skalierungsverhaltens von Nichtgleich-
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gewichtsmessungen ermittelt werden können. Während wir im vorangehenden Teil die
Nichtgleichgewichtsaktivität nur mit stochastisch unkorrelierten Monopolkräften model-
liert haben, betrachten wir hier mehrere Szenarien für die räumliche Struktur der internen
Triebkräfte, die für biologische und synthetische Systeme relevant sein könnten. Zum Bei-
spiel haben wir in unsere Modelle die Auswirkungen von Prozessen berücksichtigt, die nor-
malerweise als Kraftdipole modelliert werden. Ein typisches Beispiel ist das aktive Gleiten
von Myosin-�lamenten in einem ActinMyosin Netzwerk, das zu Paaren gleicher und entge-
gengesetzter Kräfte führt. Hier betrachten wir auch korrelierte Aktivitäten, die durch die
räumliche Organisation von Enzymen und molekularen Motoren entstehen können. Unse-
re Ergebnisse zeigen, dass solche Merkmale von Nichtgleichgewichtsaktivität sich auf das
Langzeitskalenverhalten von Zweipunkt-Nichtgleichgewichtsmessungen auswirken können.
Insgesamt legen unsere Untersuchungen nahe, dass die cycling frequencies und area en-
closing rates ein guter Kandidat sind, um die Nichtgleichgewichtsaktivität in biologischen
Systemen auf nicht-invasive Weise zu untersuchen.



Summary

Biological systems operate out of thermodynamic equilibrium, continuously dissipating en-
ergy and breaking detailed balance at the molecular scale. At larger scales, broken detailed
balance may also manifest as circulation in the coordinates space of a pair of mesoscopic
degrees of freedom. This thesis explores from a theoretical standpoint how it is possible
to measure such a circulation and use it to extract information on the non-equilibrium
activity in the system. In particular, we propose the cycling frequencies and area enclos-
ing rates as non-invasive measures of non-equilibrium. We then build a framework which
allows us to make theoretical predictions on the spatial scaling behavior of such measures
in biological assemblies.
This thesis is organized in three main parts:

Part I: The �rst part of this thesis consists of the Introduction and Chapter 1. The
goal is to provide the reader with the background needed to understand the motivations
that guided our work and the theoretical tools that are employed in the rest of the thesis.
In the introduction, we focus on a toy model that provides the basis for the de�nition of
the theoretical model that we used to study biological assemblies. Within this toy model,
we also introduce the non-equilibrium measures that we will employ in the rest of the
thesis and the relations among them. In Chapter 1, we provide an extensive review about
the detection of non-equilibrium in biological systems.

Related publications and contributors: The review work presented in Chapter 1
was carried out in collaboration with F. Gnesotto, J. Gladrow and under the supervision
of Prof. C. P. Broedersz. This work was published in the review paper "Broken detailed

balance and non-equilibrium dynamics in living systems: a review", Rep. Prog. Phys. 81,
066601 (2018), reprinted in Chapter 1.

Part II: This part consists of the 2nd Chapter of this Thesis: "Non-equilibrium scal-
ing behavior in driven biological assemblies". Here we introduce a simple yet general
model that we employ to study biological assemblies, i.e. elastic networks that are driven
out of equilibrium by active stochastic forces. Within this model, we investigate how
non-equilibrium manifests at di�erent length scales. To this end, we consider two probe
particles in the network and employ two non-equilibrium measures de�ned in the space
of the particles' coordinates: the cycling frequencies around the origin and area enclos-
ing rates of the stochastic trajectories. We �nd that these two points non-equilibrium
measures exhibit an average power law behavior as a function of the distance between
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the probes. We present a theoretical framework that allows us to derive an analytical
expression for such a power law. Furthermore, we relate our non-equilibrium measures to
a direct measure of irreversibility in the system, the entropy production rate. We show
that a measurement of the easily accessible cycling frequencies can be used to set a lower
bound to the entropy production rate of the system.

Related publications and contributors: This research was realized in collaboration
with G. Gradziuk, and under the supervision of Prof. C. P. Broedersz. This work resulted
in two publications: "Non-equilibrium scaling behavior in driven soft biological assem-

blies", Phys. Rev. Lett. 121, 038002 (2018), and "Scaling behavior of non-equilibrium

measures in internally driven elastic assemblies", Phys. Rev. E. 99, 052406, reprinted at
the end of Chapter 2.

Part III: This part corresponds to the 3rd Chapter of this thesis: "Non-equilibrium
measures reveal intrinsic features of the active driving". Here, we investigate what in-
formation on the non-equilibrium activity in the system can be recovered by looking at
the scaling behavior of non-equilibrium measures. While in the previous part we modeled
the non-equilibrium activity by means of stochastic uncorrelated monopole-forces, here
we consider several scenarios for the spatial features of the internal driving that may be
relevant in biological and synthetic systems. For instance, we included in our description
the e�ects of processes that are usually modeled as force dipoles. A typical example is the
active sliding of myosin mini�laments in actomyosin networks that gives rise to pairs of
equal and opposite forces. Here, we also consider the case of spatially correlated activities,
that may arise due to the spatial organization of enzymes and molecular motors. Our
results show that such features of the active noise are re�ected in the long-range scaling
behavior of two-point non-equilibrium measures. Overall, our research suggests that the
cycling frequencies and area enclosing rates are good candidates to explore non-equilibrium
activity in biological systems, in a non-invasive way.

Related publications and contributors: This research was realized in collaboration
with G. Gradziuk, and under the supervision of Prof. C. P. Broedersz. This work resulted
in a manuscript: "Mesoscopic non-equilibrium measures can reveal intrinsic features of the

active driving", currently submitted for publication, whose most recent version is reprinted
at the end of Chapter 3.
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Introduction

Living systems have always been a challenging target for Physics and Physicists. Newton
introduced the term 'foci of activity ' to explain the mystery of life: the spontaneous
generation of motion that didn't �nd justi�cation in the mechanical philosophy. Whether
these 'foci of activity ' were an intrinsic property of matter or were external to matter
remained a matter of contention among philosophers for a long time [48]. Thanks to the
striking developments of the twentieth century in the area of microscopy, the old abstract
concept of 'foci of activity ' is becoming, more and more, a concrete, detailed picture
available to us. For instance, nowadays, the spontaneous generation of motion is well
understood as a result of the presence of molecular machines that convert chemical energy
into mechanical forces and motion. Such a window into the panorama of living systems
has brought to light the complexity of the mechanisms governing life. This raised the need
of bringing together disciplines such as physics, chemistry, and biology in a new research
�eld called 'Active Matter'.

The �eld of Active Matter studies systems composed of active agents. Each of these
agents consumes energy to perform work, thereby driving the system out of thermody-
namic equilibrium. Living systems carry out vital functions, by constantly dissipating
energy at the molecular scale through enzymatic activity [26, 47, 55]. The action of these
enzymes often results in complex behaviors which can be clearly identi�ed as non-thermal
processes because of their orderly and self-organized dynamics. Striking examples are cell
migration, cell division or complex proteins patterns formed inside the cell, which orches-
trate a variety of cellular processes [3, 13, 27, 43]. However, for many processes, it can be
very challenging to say whether their dynamics di�er signi�cantly from those of a thermally
driven one. For instance, the di�usion of catalytic enzymes may appear at �rst glance very
similar to thermal di�usion, but it turns out to be di�erent: the intensities of their �uc-
tuations cannot be justi�ed just in terms of thermal energy [19, 37, 45, 68, 86]. Also the
erratic motion of biological assemblies, such as chromosomes [81], membranes [6, 7, 79],
cytoskeleton [22, 25, 41, 47, 51, 59], may appear at �rst sight indistinguishable from a
thermal process. Nevertheless, their dynamics are driven out of equilibrium at molecular
scales by internal enzymatic processes. Non-equilibrium activity is certainly essential to
maintain life, however, how to detect and characterize such non-equilibrium dynamics in
biological systems is still an open question. The work presented in this thesis is devoted
to address this question.



2 Introduction

I.0.1 Non-equilibrium dynamics in biological systems: a toolkit

Several methods have been developed to discern between equilibrium and non-equilibrium
dynamics. In this section we will give a brief overview of such methods, and we will shortly
discuss some experimental results, that will lead us to de�ne the goal of our research. A
more detailed and extensive review on non-equilibrium in biological systems is included in
Chapter 1.

Figure I.1: Schematic of the approach to detect non-equilibrium, based on the FDT vio-
lation. The response function χ̂(ω) appearing in Eq. (I.2) can be measured by applying,
via an optical tweezer, an external force to a particle embedded in biological environment.
The power spectrum of the the particle �uctuations Sx(ω) can be measured from the tra-
jectory of the freely di�using particle. The estimated χ̂(ω) and Sx(ω) are then used to
verify whether Eq. (I.2) holds.

Fluctuation-dissipation theorem violation One of the �rst approaches that has been
used to quantify non-equilibrium activity is based on the violation of the �uctuation dis-
sipation theorem (FDT). This theorem can be derived in the context of linear response

theory [14]. Linear response theory deals with physical systems described by an observ-
able quantity x(t) that depends on a time-dependent �eld f(t) through a linear response
function χ(t) as:

〈x(t)〉 = 〈x(0)〉+

∫ t

−∞
f(τ)χ(t− τ)dτ. (I.1)

The FDT relates the power spectrum of the observable x, Sx(ω) = 〈x̂(ω)x̂∗(ω)〉, to the
imaginary part of the Fourier transform of the response function Imχ̂(ω) [50]:

Sx(ω) =
2kBT

ω
Imχ̂(ω), (I.2)

where kB is the Boltzmann constant. Eq. (I.2) is derived by assuming that the system
is at thermal equilibrium at temperature T . A common procedure to verify whether a
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system is out of equilibrium is to check for the violation of Eq. (I.2), by directly measuring
the right and left hand-side of the equation. As practical example we can think of the
position x of a particle, subject to an external time-dependent force f(t). The linear
response function χ can be estimated by measuring x while applying a small periodic
perturbation f(t) to the system. We can obtain χ̂(ω) from the Fourier transform of
Eq. (I.1): χ̂(ω) = 〈∆x̂(ω)〉/f̂(ω). A direct measurement of the spontaneous �uctuations
of x(t) allows us to compute Sx(ω), the left hand-side of Eq. (I.2). In practice, in the case
of active soft materials, these measurements can be carried out by embedding microscopic
particles in the system. These particles can be used both as tracers and to impose external
forces on the system, for example by using optical tweezers or magnetic �elds (Fig. I.1).

The measure of the violation of the FDT has proven to be a useful method to asses
the non-equilibrium nature of biological systems. It has been employed both in in vitro

reconstituted systems and in vivo, for instance to prove the non-equilibrium dynamics of
the cytoskeletal network, due to the activity of molecular motors as Myosin II [22, 25,
41, 47, 51, 59]. These motors, by converting ATP into mechanical work, play a major
role in the active dynamics of the cytoskeleton. Examples of active dynamics, detected by
observing the violation of FDT, are found also in two dimensional and one dimensional
biological assemblies. The active �uctuations of red blood cell membranes have been
detected by anchoring several probes to the cellular membrane. In this case, the active
dynamics are generated by the actomyosin cortex situated beneath the membrane [7, 79].
To verify the violation of Eq. (I.2), it is not always necessary to embed arti�cial probes in
the system. For instance, the active dynamics in bacterial chromosomes has been detected
by �uorescently labeling multiple chromosomal loci [81], and the non-equilibrium dynamics
of a reconstituted actomyosin network has been detected by measuring the bending modes
of �uorescently labeled microtubules [9].

Even though the measurement of the FDT violation is a well established approach to
quantify non-equilibrium, it requires the measurement of the system's response function
which may be technically di�cult especially in living systems. It requires to perturb the
system, for example using optical tweezers. However, the detection of non-equilibrium
processes does not always have to rely on invasive techniques. Recently, new non-invasive
methods have been developed, which are based on the direct detection of irreversibility
in the stochastic trajectories of the variables describing the system. We will discuss these
methods in the following paragraphs.

Broken detailed balance An alternative and non-invasive method to detect non-
equilibrium activity, based solely on the observation of the system dynamics, consists
of detecting the breaking of the detailed balance condition. Put simply, this condition
states that at equilibrium every elementary process in the system should be equilibrated
by its reverse process, meaning that the two processes are equally likely (Fig. I.2). To for-
mally introduce this principle in its most general form, we can consider a physical system
described by a set of coordinates x, which under time reversal transform as xi → εixi,
with εi = ±1. For such system the detailed balance condition reads [30]:

p(x′, t+ τ ; x, t) = p(εx, t+ τ ; εx′, t), (I.3)



4 Introduction

Figure I.2: A) Two systems with states A,B,C and forward and backward transitions. The
left system obeys detailed balance (all arrows are of equal length), whereas the right system
does not (net counterclockwise probability �ux). B) When a stochastic trajectory (left)
violates detailed balance, the transitions between di�erent regions of the coordinate space
are not balanced. A possible way to verify this condition is to discretize the coordinates
space and count the number of transitions between �rst neighbour discrete states (right).

where we indicated with p(x′, t′;x, t) the joint probability density describing the system
transition from (x, t) to (x′, t′), and we de�ned εx = (ε1x1, ε2x2, . . .). A concrete example
would be a gas of particles described by positions and velocities (r,v), which under time
reversal transform as (r,v)→ (r,−v).

In this thesis we will focus on systems following Markovian dynamics, for which the
probability density distribution p(x, t) ful�lls a Fokker-Planck equation

∂tp(x, t) = −
∑

i

∂i [Ai(x)p(x, t)] +
∑

ij

∂i∂j [Dij(x)p(x, t)] := −∇ · j(x, t), (I.4)

where A(x) and D(x) represent the drift term and the di�usion matrix respectively, and
j(x) the probability density current. Within the Fokker Planck framework it is possible
to show that, for a stationary Markov process, the detailed balance is equivalent to the
following conditions [30]:

εiAi(εx)ps(x) = −Ai(x)ps(x) + 2
∑

j

∂j (Dij(x)ps(x)) , (I.5)

εiεjDij(εx) = Dij(x), (I.6)

where ps(x) indicates the steady state solution of Eq. (I.4). For a set of coordinates which
are all even under time reversal transformation (ε = 1), Eq. (I.6) is trivially satis�ed.
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Instead, Eq. (I.5) reduces to:

Ai(x)ps(x)−
∑

j

∂j (Dij(x)ps(x)) = ji = 0. (I.7)

We immediately notice from Eq. (I.7) that the probability density current j vanishes under
the condition of detailed balance. We can conclude that a non-zero probability current is
equivalent to the condition of broken detailed balance, and therefore to a system out of
equilibrium.

These results have been recently put to use to develop a non-invasive method for non-
equilibrium detection in biological systems [5]. Broken detailed balance has been observed
analyzing the stochastic �uctuations of primary cilia of Madin-Darby canine kidney cells.
Primary cilia are microtubule-based organelles that act as microscopic sensors to perceive
information on the environment surrounding the cell, while �uctuating with thermal like
oscillations. The basal body of the cilium is anchored to the cell actomyosin cortex and
is therefore subject to the action of myosin motor proteins, which can indeed induce non-
equilibrium �uctuations. The work in [5] proved that the detection of broken detailed
balance can be a helpful non-invasive method to asses whether stochastic �uctuations in
biological systems are driven by non-equilibrium dynamics.

However, to fully exploit the potential of this technique, there are still open questions
that require an answer. For instance, what are easily accessible measures that can be used
to quantify broken detailed balance, going beyond the binary information on the system
being or not at equilibrium? Recently, a lot of theoretical work has been devoted to
answer this question, proposing various candidates for a reliable and informative measure
of how far a system is from thermodynamic equilibrium. A natural and most commonly
employed measure to quantify the time-irreversibility of a process is the entropy production
rate, which can often be related to the energy dissipation in the system [8, 21, 28, 52, 65].
Alternative proposed measures are the average area enclosing rates [31, 38], and the average
cycling frequencies of the stochastic trajectory in the coordinate space of two representative
degrees of freedom [32, 33]. As we will see in the next section and in Chapter 2, all these
measures are closely related.

Toy model: two stochastically driven coupled beads

In this section we discuss a very simple toy model which is ideal to provide some basic
intuition for all the core concepts of this thesis. The model consists of two overdamped
beads connected to each other and to the boundaries with springs of elastic constant k. The
two beads are embedded in two independent thermal baths with respective temperatures
T1 and T2, and viscous coe�cient γ, as shown in Fig. I.3A. When T1 6= T2 the system is
clearly out of thermal equilibrium [5, 16, 52]. The overdamped equations of motion read

dx(t)

dt
= Ax(t) + η(t), (I.8)

where we indicated by x = (x1, x2)T the coordinates of the beads. The elastic interaction
is described by the 2 × 2 matrix A, which has elements aij = (k/γ) (−2δij + (1− δij)).
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Figure I.3: A) Schematic of the two coupled beads system and simulated time series of
the beads positions for T2 = 5T1. B) Probability distribution (color) and �ux map (white
arrows) obtained for T2 = 5T1. Adapted from [34]). C) Schematic trajectory in the
coordinate space of two beads. The light blue area enclosed in the triangle represents
[x × f(x)]/2γ: the area enclosing rate obtained upon averaging over phase space. Here
f(x) indicates the vector of elastic forces acting on the beads.
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The stochastic noise is described by

〈ηi(t)ηj(t′)〉 = δ(t− t′)δij
2kBTi
γ

. (I.9)

where 〈..〉 indicates the ensemble average. Typical stochastic trajectories for such system
can be obtained by numerically integrating Eq. (I.8), and are reported in Fig. I.3A. When
we set T1 6= T2 the system is not at thermal equilibrium, and as expected from the
discussion in the previous section, this non-equilibrium activity manifests as a circulating
current in the coordinate space of the two beads, as shown in Fig. I.3B.

The goal of this section is to clarify how such circulation relates to other non-equilibrium
measures, such as cycling frequency, area enclosing rates, and entropy production rate. In
this perspective, it is convenient to consider the Fokker Planck equation of this system

∂tp(x, t) = −∇ · [Axp(x, t)] +∇ ·D∇p(x, t) = −∇ · j, (I.10)

where the di�usion matrix D has entries dij = δij
kBTi
γ

, and the probability density current
is de�ned as j = [Axp(x, t)]−D∇p(x, t). The steady state solution ps(x) of Eq. (I.10) is
a Gaussian distribution, with covariance matrix C solution of the Lyapunov equation:

AC + CAT = −2D. (I.11)

Therefore we have ∇p = −C−1xps(x), and the steady state probability density current
can be expressed as j = Ωxps(x), with Ω = A + DC−1. An explicit calculation for Ω
yields:

Ω =
k(T1 − T2)

γc

(
2(T1 + T2) −(7T1 + T2)
(T1 + 7T2) −2(T1 + T2)

)
, (I.12)

with c = (T 2
1 + 14T1T2 + T 2

2 ). As expected, the �ux vanishes at thermal equilibrium
when T1 = T2. Such circulation can be directly measured from the beads trajectories by
discretizing the coordinates space and counting the average number of transitions between
neighbors cells [5], as shown in Fig. I.2B. However, instead of trying to infer the current
�eld in full details, is it possible to avoid a discretization of the coordinates by de�ning
some average quantities which are not space dependent, but still contain key information
about the non-equilibrium dynamics of the system.

Cycling frequency The term cycling frequency refers to the average rate at which the
trajectory revolves in the coordinate space. We have seen that the current density �eld
can be expressed as j = Ωxps(x). The average velocity of the trajectory in the phase
space is described by the �eld v = Ωx. From Eq. (I.11) it is possible to show that the
matrix Ω has purely imaginary eigenvalues, λ = ±iω, and therefore the velocity �eld v
has an elliptical structure and gives rise to trajectories which revolve with angular velocity
ω around the origin (Fig. I.3C).

In the particular case of the two beads system, the cycling frequencies measured in the

coordinate space of the bead i and bead j are : ωij =
√

3k(Ti−Tj)
γ
√
c

. The cycling frequencies are
indeed pseudo-scalar quantities, proportional to the temperature di�erence between the
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beads, and they vanish when the system is at thermodynamic equilibrium. It is convenient
to notice that:

Ω = A + DC−1 =
1

2

(
AC−CAT

)
C−1, (I.13)

where in the second step we used Eq. (I.11). By taking the determinant on both sides of
Eq. (I.13) we obtain

det Ω = ω2
ij =

(
CAT −AC

)2

ij

4 det C
, (I.14)

where we used the fact that
(
AC−CAT

)
= −

(
AC−CAT

)T
. In the next chapters we

will see how Eq. (I.14) also applies to higher dimensional systems and will play a key role
in our framework. Furthermore, Eq. (I.14) will also provide us with a direct connection
to another non-equilibrium measure, the area enclosing rate, as we will see in the next
paragraph.

Area enclosing rate The area enclosing rate is the mean area enclosed by the trajectory
per unit time (Fig. I.3C), and is de�ned as:

Aij =
1

2
〈x× ẋ〉, (I.15)

where 〈x × ẋ〉 = 〈xiẋj − ẋixj〉. For an overdamped system, ẋ = (Ax + η) where η is the
vector of stochastic noises acting on the coordinates i and j. By noting that 〈η1x2〉 =
〈η2x1〉 = 0, we can replace 〈x × ẋ〉 = (CAT −AC)ij. Therefore, we obtain for the area
enclosing rate

Aij =
1

2

(
CAT −AC

)
ij

= ωij
√

det C, (I.16)

where in the last step we used Eq. (I.14) to relate Aij to the cycling frequency ωij. Finally
we will see in the next paragraph how these two non-equilibrium measures are closely
related to another common measure of time irreversibility, the entropy production rate.

Entropy production rate The entropy production rate is the amount of entropy pro-
duced by an irreversible process per unit time. Here, starting from the Langevin frame-
work, we will derive an expression for the average entropy production rate as de�ned in
the Fokker Planck framework. Such an expression will be useful to connect the entropy
production rate to the cycling frequency ω. To this end we will use some basic concepts of
the theory of stochastic thermodynamics. For an extensive review on this topic the reader
is referred to [74].

The framework of stochastic thermodynamics is based on de�ning the main concepts of
classical thermodynamics, such as heat, work and entropy, as stochastic variables linked to
the single stochastic trajectories. The average of such variables over the trajectories leads
to the ensemble quantities we are used to deal with in classical thermodynamics theory.
In the simple case of the two coupled beads, by single trajectory we mean therefore the
trajectory resulting from a single realization of the stochastic variables η in Eq. (I.8). The
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entropy change of the bath ∆sm during a single trajectory, from time 0 to t, can be written
as

∆sm =
1

T1

∫ t

0

ẋ1(τ)f1(x1(τ))dτ +
1

T2

∫ t

0

ẋ2(τ)f2(x2(τ))dτ, (I.17)

where fi indicate the force acting on the ith bead. From Eq. (I.10) we obtain f
γ

= v +
D∇ ln p. This leads to

∆sm = kB

∫ t

0

ẋD−1vdτ + kB

∫ t

0

ẋ · ∇ ln p. (I.18)

The second term in Eq. (I.18) is associated to the change of entropy of the particles,
−∆s = kB(ln p(x, t)− ln p(x, 0)), and then its ensemble average corresponds to the change
in the common Gibbs entropy [73]. It is worth noting that in the limit of t→∞ the �rst
term is proportional to the work performed by the viscous force and thus increases with
the time t, while the second term does not. In such a limit we obtain for the total entropy
change of the system ∆stot = ∆sm + ∆s ' ∆sm .

By taking the time derivative of the total entropy change in the system, and its en-
semble average over the trajectories, we obtain the average entropy production rate Π

Π = 〈∂t∆stot〉 = kB

∫
jT(x)D−1j(x)

p(x)
dx, (I.19)

as usually de�ned within the Fokker Planck framework. Eq. (I.19) allows us to relate Π
to the cycling frequency ω. In particular

Π = kB

∫
dx(Ωx)TD−1(Ωx)p(x) = kBTr(Ω

TD−1ΩC). (I.20)

Since the entropy production is invariant under coordinate transformations, we can move
to the coordinate system where C = 1 ('covariance-identity coordinates '), such that Ω =
−ΩT [82]. Recalling that Ω has eigenvalues λ = ±iω, this yields to

Π = kBω
2Tr(D−1C), (I.21)

which is also invariant under coordinates transformation. The expression in Eq. (I.21)
provides us with a direct relation between the average entropy production rate and the
cycling frequency, and, as will become clear in Chapter 2, can be generalized to higher
dimensional linear systems. By closing this paragraph we also close the circle of non-
equilibrium measures that will be employed in the next chapters, and we are ready to
discuss how these measures may actually be helpful in studying biological systems.

I.0.2 Goals and signi�cance of this thesis

It is not surprising that living systems operate out of thermodynamic equilibrium. What is
surprising is how the overlapping e�ects of a collection of di�erent, complex and disordered
non-equilibrium processes can lead to global dynamics that still explicitly break detailed
balance. In fact, this broken detailed balance does not appear only at the length scales of
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the processes responsible for its violation, but also at larger length scales, accessible with
non-invasive microscopy techniques. For example, we have seen that the non-equilibrium
dynamics which arise at the level of molecular motors can propagate to the much larger
length scale of the primary cilia [5]. Finding a universal way to detect and characterize
non-equilibrium in living systems is still a challenge, but once it is solved, it may have inter-
esting applications. For instance, given that the intensity of the non-equilibrium activity
of a cell is ultimately related to its metabolism, it may be possible to distinguish di�erent
cell types from non invasive and inexpensive measurements of their non-equilibrium activ-
ities [13, 62]. The study of non-equilibrium may also lead to progress in materials science:
the internal driving characterizing biological soft materials can a�ect their macroscopic
mechanical properties, and therefore a systematic non-equilibrium characterization might
help to guide the development of engineered biomaterials [1].

There is still a long way to a comprehensive understanding of non-equilibrium pro-
cesses in biophysics, and there are still many unanswered fundamental questions. The
work presented in this thesis is devoted to make some progress in answering two of these
questions. We have seen that the active nature of living matter on larger scales can be
determined non-invasively by observing the breaking of the detailed balance condition in
the dynamics of mesoscopic degrees of freedom, simply tracked with time-lapse microscopy
experiments. However, it remains unclear how such non-equilibrium measures depend on
the spatial scale at which the measurement is performed. A theoretical understanding
of the spatial scaling behavior of broken detailed balance may reveal also how to extract
quantitative information from measurable phase space currents to characterize the active
nature of the system. Therefore, our research addresses the following questions:

How does non-equilibrium activity manifest at di�erent length scales?

What details can we learn on the source of non-equilibrium dynamics at small scales, by

measuring non-equilibrium at larger length scales?

To address these questions, we employed a simple yet general model to explore non-
equilibrium in biological systems from a theoretical standpoint. In particular, we focus on
studying biological assemblies, such as chromosomes, membranes or tissues, cytoplasm and
cytoskeleton. The basic structure of this model consists of a d-dimensional elastic network
of Brownian particles in a viscous medium, driven out of equilibrium by heterogeneously
distributed stochastic forces, representing the internal enzymatic activity. Such a model
can be seen as an extension of the two beads system discussed earlier. Within this model
we develop a theoretical framework which allows to predict the behavior of various non-
equilibrium measures. In particular, in Chapter 2 of this thesis, we focus on the �rst
question and discuss how we can use our framework to make predictions about the spatial
scaling of non-equilibrium measures. In Chapter 3, we focus on the second question, and
explore how non-equilibrium measures can be informative on the properties of the active-
noise in the system. Before jumping into the discussion of the results of our research
we will report a review of the �eld of non-equilibrium detection in biological systems in
Chapter 1.



Chapter 1

Non-equilibrium in living systems: a

review

In this chapter is included the work of review carried out during my �rst year of Ph.D., in
collaboration with my colleagues Federico Gnesotto, Jannes Gladrow, and under the guid-
ance of Prof. Chase Broedersz. In this work, we reviewed the state of the art approaches
to detect and characterize non-equilibrium in biological systems. Such a work helped us
to formulate the questions of our research, and may provide a useful background for the
reader interested in acquiring an overview of the �eld. However, this chapter is meant
as an in-depth introduction with a particular focus on biological applications. The main
concepts needed for the comprehension of the following Chapter 2 and Chapter 3 have
already been presented in the introduction of this thesis.

Chapter abstract This review discusses the recent developments and e�orts made to
discern non-equilibrium �uctuations from thermal noise, mainly focusing on applications
to biological systems. The �rst part focuses on the method to discern non-equilibrium
dynamics based on the violation of the FDT. In particular, in section 2, it is discussed
how a combination of active and passive microrheology can reveal the presence of active
�uctuations in a system. Applications of such a method to reconstituted cytoskeletal net-
works, the cytoplasm of living cells, and cell membranes are reviewed. The second main
block of the review discusses the alternative non-invasive method to detect non-equilibrium
dynamics based on the detection of broken detailed balance at mesoscales. The details
about the implementation of this technique are discussed in section 4 of the review, to-
gether with applications to biological systems. Additionally, we brie�y discuss, in section
3, recent theoretical developments in stochastic thermodynamics and non-equilibrium sta-
tistical mechanics, and how these theories o�er new perspectives to understand the physics
of living systems.
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Abstract
Living systems operate far from thermodynamic equilibrium. Enzymatic activity can induce 
broken detailed balance at the molecular scale. This molecular scale breaking of detailed 
balance is crucial to achieve biological functions such as high-fidelity transcription and 
translation, sensing, adaptation, biochemical patterning, and force generation. While biological 
systems such as motor enzymes violate detailed balance at the molecular scale, it remains 
unclear how non-equilibrium dynamics manifests at the mesoscale in systems that are driven 
through the collective activity of many motors. Indeed, in several cellular systems the presence 
of non-equilibrium dynamics is not always evident at large scales. For example, in the 
cytoskeleton or in chromosomes one can observe stationary stochastic processes that appear 
at first glance thermally driven. This raises the question how non-equilibrium fluctuations can 
be discerned from thermal noise. We discuss approaches that have recently been developed to 
address this question, including methods based on measuring the extent to which the system 
violates the fluctuation-dissipation theorem. We also review applications of this approach 
to reconstituted cytoskeletal networks, the cytoplasm of living cells, and cell membranes. 
Furthermore, we discuss a more recent approach to detect actively driven dynamics, which 
is based on inferring broken detailed balance. This constitutes a non-invasive method that 
uses time-lapse microscopy data, and can be applied to a broad range of systems in cells and 
tissue. We discuss the ideas underlying this method and its application to several examples 
including flagella, primary cilia, and cytoskeletal networks. Finally, we briefly discuss recent 
developments in stochastic thermodynamics and non-equilibrium statistical mechanics, which 
offer new perspectives to understand the physics of living systems.

Keywords: non-equilibrium, fluctuations, active living matter, fluctuation-dissipation theorem, 
detailed balance, cellular biophysics
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1. Introduction

Living organisms are inherently out of equilibrium. A con-
stant consumption and dissipation of energy results in non-
equilibrium activity, which lies at the heart of biological 
functionality: internal activity enables cells to accurately 
sense and adapt in noisy environments [1, 2], and it is crucial 
for high-fidelity DNA transcription and for replication [3, 4]. 
Non-equilibrium processes also enable subcellular systems to 
generate forces for internal transport, structural organization 
and directional motion [5–9]. Moreover, active dynamics can 
also guide spatial organization, for instance, through nonlin-
ear reaction-diffusion patterning systems [10–12]. Thus, non-
equilibrium dynamics is essential to maintain life in cells [13].

Physically, cells and tissue constitute a class of non-
equilibrium many-body systems termed active living matter. 
Importantly, cellular systems are not driven out of equilib-
rium by external forces, as in conventional active condensed 
matter, but rather internally by enzymatic processes. While 

much progress has been made to understand active behavior 
in individual cases, the common physical principles underly-
ing emergent active behavior in living systems remain unclear. 
In this review, we primarily focus on research efforts that 
combine recent developments in non-equilibrium statistical 
mechanics and stochastic thermodynamics [14–16] (see sec-
tion 3) together with techniques for detecting and quantifying 
non-equilibrium behavior [17] (see sections 2 and 4). For phe-
nomenological and hydrodynamic approaches to active mat-
ter, we refer the reader to several excellent reviews [18–21].

A characteristic feature of living systems is that they are 
driven out of equilibrium at the molecular scale. For instance, 
metabolic processes, such as the citric acid cycle in animals 
and the Calvin cycle for carbon fixation in plants, generally 
involve driven molecular reaction cycles. Such closed-loop 
fluxes break detailed balance, and are thus forbidden in ther-
modynamic equilibrium (figures 1(A) and (B) [23]. Similar 
directed chemical cycles also power reaction-diffusion pat-
terning systems in cells [11] and molecular motors, includ-
ing myosins or kinesins [24]. Indeed, such molecular motors 
can generate mechanical force by coupling the hydrolysis of 
adenosine triphosphate (ATP) to conformational changes in 
a mechano-chemical cycle [24, 25]. The dissipation of this 
chemical energy drives unidirectional transitions between 
molecular states in this cycle. Such unbalanced transitions 
break detailed balance and result in directional motion of an 
individual motor.

One of the central theoretical challenges in the field of 
active living matter is to understand how the non-equilibrium 
dynamics of individual molecular components act in concert 
to drive collective non-equilibrium behavior in large interact-
ing systems, which in general is made of both active and pas-
sive constitutents. Motor activity may drive sub-components 
of cells and tissue [17, 26, 27], but it remains unclear to what 
extent this activity manifests in the dynamics at large scales. 
Interestingly, even for systems out of equilibrium, broken 
detailed balance, for instance, does not need to be apparent 
at the supramolecular scale. In fact, at large scales, specific 
driven systems may even effectively regain thermodynamic 
equilibrium and obey detailed balance [28, 29].

There are, of course, ample examples where the dynam-
ics of a living system is manifestly out of equilibrium, such 
as cell division or cell migration. In many cellular systems, 
however, one can observe stationary stochastic processes 
that appear at first glance thermally driven. Indeed, for many 
macromolecular assemblies in cells such as chromosomes 
[30], the nucleus [31], the cytoplasm [32–34], membranes 
[35–39], primary cilia [22, 40], and tissue [41] it has been 
debated to what extent non-equilibrium processes dominate 
their dynamics. Such observations raise the fundamental and 
practical question how one can distinguish non-equilibrium 
dynamics from dynamics at thermal equilibrium. To address 
this question, a variety of methods and approaches have 
been developed to detect and quantify non-equilibrium in 
biological systems. When active and passive microrheology 
are combined, one can compare spontaneous fluctuations to 
linear response functions, which are related to each other 
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through the Fluctuation-Dissipation theorem (FDT) when the 
system is at thermal equilibrium [42–45]. Thus, the extent 
to which a system violates the FDT can provide insight into 
the non-equilibrium activity in a system. We will discuss 
this approach in detail in section 2. Other methods employ 
temperature or chemical perturbations to test the extent to 
which thermal or enzymatic activities primarily drive the 
behavior of a system, but such experiments are invasive and 
are often difficult to interpret. More recently, a non-invasive 
method to discriminate active and thermal fluctuations based 
on detecting broken detailed balance was proposed to study 
the dynamics of mesoscopic systems. This new approach has 
been demonstrated for isolated flagella (see  figure 1(C)) and 
primary cilia on membranes of living cells [22]. The ideas 
underlying this method will be detailed in section  4 after 
briefly reviewing related work in stochastic thermodynamics 
in section 3.

Additional important insights on the collective effects of 
internal activity came from studies on a host of simple recon-
stituted biological systems. Prominent examples include a 
variety of filamentous actin assemblies, which are driven inter-
nally by myosin molecular motors. 2D actin-myosin assays 
have been employed to study emergent phenomena, such as 
self-organization and pattern formation [46, 47]. Moreover, 
actin-myosin gels have been used as model systems to study 
the influence of microscopic forces on macroscopic network 

properties in cellular components [43, 48–51]. Microrheology 
experiments in such reconstituted actin cytoskeletal networks 
have revealed that motor activity can drastically alter the 
rigidity of actin networks [52–54] and significantly enhance 
fluctuations [43, 55]. Importantly, effects of motor forces 
observed in vitro, have now also been recovered in their native 
context, the cytoplasm [34, 45, 55] and membranes [35, 36]. 
Further experimental and theoretical developments have 
employed fluorescent filaments as multiscale tracers, which 
offer a spectrum of simultaneously observable variables: their 
bending modes [56–58]. The stochastic dynamics of these 
bending modes can be exploited to study non-equilibrium 
behavior by looking for breaking of detailed balance or break-
ing of Onsager symmetry of the corresponding correlations 
functions [59, 60]. This approach will be discussed further in 
section 4.3.

2. Non-equilibrium activity in biological systems 
and the fluctuation-dissipation theorem

Over the last decades, a broad variety of microrheological 
methods have been developed to study the stochastic dynam-
ics and mechanical response of soft systems. Examples of 
such systems include synthetic soft matter [61–65], reconsti-
tuted biological networks [26, 66–73], as well as cells, tissue, 
cilia and flagella [21, 22, 43, 71, 74–77]. In this section, we 
discuss how the combination of passive and active microrhe-
ology can be used to probe non-equilibrium activity in soft 
living matter. After briefly introducing the basic framework 
and the most commonly used microrheological techniques, 
we will discuss a selection of recent studies employing these 
approaches in conjunction with the fluctuation-dissipation 
theorem to quanti fy non-equilibrium dynamics.

2.1. The violation of the FDT as a non-equilibrium measure

Microscopic probes embedded in soft viscoelastic environ-
ments can not only be used to retrieve data about the sponta-
neous fluctuations of the surrounding medium, but can also be 
employed to measure the mechanical response of this medium 
to a weak external force. In the absence of an applied force, 
the average power spectrum Sx(ω) = 〈|∆x2(ω)|〉 of fluc-
tuations in the bead position x(t) can be directly measured. 
The brackets here indicate an ensemble average. The same 
bead can, in principle, be used to extract the linear response 
function χx(ω) = 〈∆x(ω)〉/f (ω) by measuring the average 
displacement induced by a small applied force f (ω). In sys-
tems at thermal equilibrium, these two quantities are related 
through the Fluctuation-Dissipation theorem (FDT), derived 
in the context of linear response theory [78, 79] (see figure 2). 
In frequency space, the FDT relates the autocorrelation func-
tion of position fluctuations of an embedded probe particle 
in the absence of external forces, to the imaginary part of the 
associated response function:

Sx(ω) =
2kBT

ω
χ′′

x (ω). (1)

Figure 1. (A) In thermodynamic equilibrium, transitions between 
microscopic states are pairwise-balanced, precluding net flux among 
states. (B) Non-equilibrium steady states can break detailed balance 
and exhibit flux loops. (C) Snapshots of an isolated Chlamydomonas 
flagellum’s beat cycle together with the 3D probability flux map of 
flagellar dynamics in a coarse grained phase space spanned by the 
first three modes. From [22]. Reprinted with permission from AAAS.
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Importantly, a system that is actively driven into a 
 non-equilibrium steady-state will typically not satisfy this 
equality; this fact can be used to our advantage to study activity 
in such a system. Indeed, the violation of the FDT has proven 
to be a useful method to assess the stochastic non-equilibrium 
nature of biological systems, for instance, by providing direct 
access to the active force spectrum in cells [45].

One of the first efforts to investigate deviations from the 
FDT in a biological system was performed on hair bundles 
present in the aural canal of a frog [80]. Hair bundles are 
thought to be primarily responsible for the capability of the 
ear to actively filter external inputs and emit sound [80, 81]. 
To trace the dynamics of the hair bundle, a flexible glass fiber 
was attached to the bundle’s tip to measure both the position 
autocorrelation function and the associated response to peri-
odic external stimuli. Interestingly, the magnitude of position 
fluctuations was observed to largely exceed the linear-reponse-
based levels for a purely thermal system. This violation of the 
FDT indicates the presence of an internal energy source driv-
ing the system out of equilibrium.

A suggested measure of the degree of violation of the FDT 
is a frequency-dependent ‘effective temperature’ Teff(ω) [80, 
82–86], defined as the ratio between fluctuations and dissipa-
tion: Teff(ω) ≡ ω Sx(ω)/2kBχ′′

x (ω). For a system at thermal 
equilibrium Teff = T . However, this quantity can be drasti-
cally modified for an actively driven bundle: Close to its spon-
taneous oscillation frequency ω0, the imaginary part of the 
response function of the hair bundle becomes negative. This 
implies that Teff is frequency dependent and can also assume 
negative values.

Even though this example illustrates how the dimen-
sionless quantity Teff/T  provides a simple metric for 
 non-equilibrium, the concept of an effective temperature in 
this context remains a topic of debate [36, 37, 80, 87, 88]. 
Note, the existence of an effective temperature should not be 
mistaken for the existence of a physical mapping between 
an active system and an equilibrium system at a temperature 
Teff. While there certainly are examples where such a map-
ping exists, this will not be the case in general. Furthermore, 
although it is not obvious how to interpret negative or fre-
quency dependent effective temperatures, an interesting per-
spective is offered by Cugliandolo et al [82]. These authors 
demonstrated for a class of systems that the effective temper-
ature can indicate the direction of heat flow and that this 
quantity can act as a criterion for thermalization [82]. In a 
more recent study, conditions were derived for systems in 
non-equilibrium steady states to be governed by a quasi-
FDT: a relation similar to the equilibrium FDT, but with the 
temperature replaced by a constant Teff > T  [89]. These con-
ditions entail that the intrinsic  relaxation time of the system 
is much longer than the characteristic time scale of the active 
forces. However, these conditions may become more com-
plicated in systems with a viscoelastic response governed by 
a spectrum of timescales for which the thermal force spec-
trum is colored [90]. Beyond being a simple way of meas-
uring deviations from the FDT, the concept of an effective 
temperature may thus provide insight into active systems, 
but this certainly requires further investigation. Alternative 
measures for non-equilibrium have been the subject of more 
recent developments based on phase spaces cur rents and 
entropy productions rates, which are discussed in sections 3 
and 4.

2.2. Active and passive microrheology

The successful application of the FDT in an active unidi-
mensional context, as in the case of the hair bundle described 
above, paved the road for new approaches: microscopic probes 
were embedded into increasingly more complex biological 
environ ments to study the mechanics and to detect activity 
inside reconstituted cytoskeletal systems [26, 42, 43, 70] and 
living cells [42, 75, 91].

Probing violations of the FDT in such soft biological sys-
tems relies on high-precision microrheological approaches. 
Conventional single particle microrheology is divided into 
two categories: passive microrheology (PMR) [92] and active 
microrheology (AMR) [93–95]. PMR depends on the basic 
assumption that both the FDT and the generalized Stokes 
relationship apply. This assumption ensures that a measure-
ment of the position fluctuation spectrum directly yields the 
rheological properties of the medium. Indeed, the generalized 
Stokes relation connects the force-response function to the 
viscoelastic response of the medium [92],

χx(ω) =
1

6πaG(ω)
, (2)

where a is the radius of the bead. This equation is valid in 
the limit of Stokes’ assumptions, i.e. overdamped spherical 

Figure 2. The fluctuation dissipation theorem implies a relation 
between thermal forces exerted by the molecules of the fluid on 
a Brownian bead and drag forces due to the viscosity of the fluid. 
(A) Cartoon of a freely diffusing Brownian particle. (B) Mean 
square displacement of the particle obtained by performing a 
Brownian simulation (black), and comparison with the analytical 
prediction  <(x(t)  −  x(0))2  >  =2Dt (red). (C) Schematic of an 
external force f in the positive x direction applied on the particle 
via an optical tweezer. (D) The average displacement for the driven 
particle (black), obtained from Brownian dynamics simulation, 
increases linearly with time, as < x(t) − x(0) >= µft, where μ is 
the mobility. In this simple cases, the FDT reduces to the Einstein 
relation: D = µkBT .
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particle embedded in a homogeneous incompressible con-
tinuum medium with no slip boundary conditions at the par-
ticle’s surface. Here, G(ω) = G′(ω) + iG′′(ω) describes the 
complex shear modulus, where the the real part is the storage 
modulus G′ describing the elastic component of the rheologi-
cal response, and the imaginary part, G′′, is the loss modulus 
accounting for the dissipative contribution. Under equilib-
rium conditions, the imaginary part of the response function 
χ′′

x  is also related to the position power spectral density via 
the FDT (equation (1)). Thus, in PMR, the response function 
and the shear modulus are measured by monitoring the mean 
square displacement (MSD) 〈∆x2〉(t) ≡ 〈(x(t) − 〈x〉)2〉 of 
the embedded beads. By contrast, in AMR the mechanical 
response is directly assessed by applying an external force on 
an embedded probe particle, usually by means of optical traps 
or magnetic tweezers. Within the linear response regime, the 
response function can be measured as χx = 〈∆x(ω)〉/f (ω), 
and the complex shear modulus can then be determined from 
the generalized Stokes relation (equation (2)).

Although one-particle PMR has proven to be a useful tool 
to determine the equilibrium properties of homogeneous sys-
tems, biological environments are typically inhomogeneous. 
Such intrinsic inhomogeneity can strongly affect the local 
mechanical properties [96, 97], posing a challenge to deter-
mine the global mechanical properties using microrheology. 
To circumvent this issue, two-point particle microrheology is 
usually employed [42, 98]. This method is conceptually simi-
lar to one-point microrheology, but it is based on a generalized 
Stokes-Einstein relation for the cross-correlation of two parti-
cles at positions r1 and r2 with a corresponding power spectral 
density Sr1,r2(R, ω) with R = |r2 − r1|. This correlation func-
tion depends only on the distance between the two particles 
and on the macroscopic shear modulus of the medium. Thus, 
Sr1,r2 is expected to be less sensitive to local inhomogeneities 
of the medium [98].

PMR has been extensively employed to assess the rheology 
of thermally driven soft materials in equilibrium, such as poly-
mer networks [44, 62, 92, 99–104], membranes and biopoly-
mer-membrane complexes [36, 105, 106], as well as foams 
and interfaces [107–109]. However, a PMR approach cannot 
be employed by itself to establish the mechanical properties of 
non-equilibrium systems, for which the FDT generally does 
not apply. If the rheological properties of the active system are 
known, the power spectrum of microscopic stochastic forces 
∆(ω)—with both thermal and active contributions—can be 
extracted directly from PMR data for a single sphere of radius 
a [42, 44, 110]

∆(ω) = 6πa Sx(ω)|G(ω)|2 . (3)

The expression for the power spectrum of force fluctuations 
was justified theoretically [42, 111], considering the medium 
as a continuous, incompressible, and viscoelastic continuum 
at large length scales. The results discussed above laid out the 
foundations for a variety of studies that employed microrheo-
logical approaches to investigate active dynamics in recon-
stituted cytoskeletal networks and live cells, which will be 
discussed next.

2.3. Activity in reconstituted gels

The cytoskeleton of a cell is a composite network of semi-
flexible polymers that include microtubules, intermediate fila-
ments, F-actin, as well as associated proteins for cross-linking 
and force generation [6, 26, 112, 113]. The actin filament 
network is constantly deformed by collections of molecular 
motors such as Myosin II. These motors are able to convert 
ATP into directed mechanical motion and play a major role in 
the active dynamics of the cytoskeleton [8, 34, 43, 114, 115].

To develop a systematic and highly controlled platform for 
studying this complex environment, simplified cytoskeletal 
modules with a limited number of components were recon-
stituted in vitro, opening up a new field of study [26, 66, 
116, 117]. Among these reconstituted systems, F-actin net-
works are perhaps the most thoroughly examined [20, 43, 68, 
117–120]. Indeed, in the presence of motor activity, these net-
works display a host of intriguing non-equilibrium behaviors, 
including pattern formation [46–48, 121], active contractiliy 
and nonlinear elasticity [49, 52, 122–125], as well as motor-
induced critical behavior [50, 53].

To study the steady state non-equilibrium dynam-
ics of motor-activated gels, Mizuno et  al constructed a 
 three-comp onent in vitro model of a cytoskeleton, includ-
ing filamentous actin, an actin crosslinker, and Myosin II 
molecular motors [43]. The mechanical properties of the net-
work were determined via AMR, while the activity-induced 
motion of an embedded particle was tracked via PMR. The 
measured imaginary component of the mechanical compli-
ance, χ′′

x (ω), was compared to the response predicted via the 
FDT, i.e. ωSx(ω)/2kBT , as shown in figure 3. In the presence 
of myosin, the fluctuations in the low-frequency regime were 

Figure 3. Violation of the FDT in reconstituted actin-myosin 
networks (inset). At frequencies below 10 Hz the response function 
estimated from spontaneous fluctuations of a probe bead via the 
FDT deviates significantly from the response χ′′ measured directly 
using active microrheology (full circles). From [43]. Reprinted with 
permission from AAAS.
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observed to be considerably larger than expected from the 
the measured response function and the FDT, indicating that 
myosin motors generate non-equilibrium stress fluctuations 
that rise well above thermally generated fluctuations at low 
frequencies.

These observations raise the question why motor-driven 
active fluctuations only dominate at low frequencies. This 
can be understood from a simple physical picture in which 
myosin motor filaments bind to the actin network and steadily 
build up a contractile force during a characteristic processivity 
time τp [126]. After this processivity time, the motor filament 
detaches from the actin polymers to which they are bound, 
producing a sudden drop in the force that is exerted locally 
on the network. Such dynamics generically generate a force 
spectrum ∆(ω) ∼ ω−2  [111, 127], which can dominate over 
thermally driven fluctuations in an elastic network on time 
scales larger than the characteristic relaxation time of the net-
work, but smaller than the processivity time of the motors (see 
section 2.6 for a more detailed discussion).

In addition to the appearance of non-equilibrium fluctua-
tions, the presence of motors in the network led to a substantial 
ATP-dependent stiffening. It is well known that crosslinked 
semiflexible polymer networks stiffen under an external strain 
[67, 128–131]. Motors can effectively crosslink the network 
leading to stiffening, but they can also generate local contractile 
forces, and it is less clear how internal stress generation from 
such motor activity can induce large scale stresses and con-
trol network stiffness [54, 111, 123, 125, 132–136]. In a more 
recent experimental study, it was shown that motor generated 
stresses can induce a dramatic stiffening behavior of semiflexi-
ble networks [52]. This mechanism could be employed by cells 
and tissues to actively regulate their stiffness [132, 137–139].

An ensemble of beads dispersed in an active gel can not 
only be used to obtain fluctuation spectra, but also to infer 
the full probability distribution of the beads’ displacements 
at a time-lag τ [88, 140, 141]. This distribution is typically 
observed to be Gaussian for a thermal systems, while non-
Gaussian tails are often reported for an active system. In 
actin-myosin gels, for example, exponential tails in the par-
ticle position distributions are observed at timescales τ less 
than the processivity time of the motors. By contrast, at larger 
time lags, a Gaussian distributions is observed, in agreement 
with what was previously found for fluctuation spectra in fre-
quency space [43]. Importantly however, non-Gaussianity is 
not a distinctive trait of non-equilibrium activity, since it can 
also appear in thermal systems with anharmonic potentials. 
In some cases, active systems are also governed by Gaussian 
distributions (see section 3.2).

The hallmarks of activity discussed above for actin-myo-
sin gels are also observed in synthesized biomimetic motor-
driven filament assemblies. For example, Betrand et al created 
a DNA-based gel composed of stiff DNA tubes with flexible 
DNA linkers [142]. As an active component, they injected 
FtsK50C, a bacterial motor protein that can exert forces on 
DNA. An important difference with the actin-based networks 
described above, is that here the motors do not directly exert 
forces on the DNA tubes, which constitute the filaments in the 
gel. Instead, the motors attach to long double-stranded DNA 

segments that were designed to act as cross-linkers between 
two stiff DNA tubes. Upon introduction of the motors, the 
MSD of tracer beads that were embedded in the gel was 
strongly reduced, even though the motors act as an additional 
source of fluctuations. This observation suggests a substantial 
stiffening of the gel upon motor activation. Furthermore, the 
power spectrum of bead fluctuations exhibited  ∼ω−2 behav-
ior, similar to results for in vitro actin-myosin systems and 
even for live cells, which we discuss next.

2.4. Activity in cells

The extensive variety of biological functions performed by 
living cells places daunting demands on their mechanical 
properties. The cellular cytoskeleton needs to be capable of 
resisting external stresses like an elastic system to maintain its 
structural integrity, while still permitting remodelling like a 
fluid-like system to enable internal transport as well as migra-
tion of the cell as a whole [113, 143]. The optimal mechanical 
response clearly depends on the context. An appealing idea is 
that the cell can use active forces and remodelling to dynami-
cally adapt its (nonlinear) viscoelastic properties in response 
to internal and external cues [144–146]. In light of this, it is 
interesting to note that experiments on reconstituted networks 
suggest that activity and stresses can lead to responses varying 
from fluidization to actual stiffening [7, 52, 147]. Currently, 
however, it remains unclear how such a mechanical response 
plays a role in controlling the complex mechanical response 
of living cells [6, 143, 145, 148–151].

Important insights into the mechanical response of cells 
were provided by experiments conducted by Fabry et al via 
beads attached to focal adhesions near the cortex of human 
airway muscle cells. Their data indicate a rheological 
response where the loss and storage moduli are comparable, 
with a magnitude roughly in the range 100–1000 Pa around 
1 Hz; also the moduli depend on frequency as a power law 
|G(ω)| ∼ ωx  with a small exponent 0.1 � x � 0.3 [75], remi-
niscent of soft glassy rheology [84, 152–155].

The studies conducted by Lau et al [42] and Fabry et al 
[75] employed different probes at different cell sites for 
active and passive measurements, and determined a diffusive-
like spectrum 〈∆x2〉 ∼ ω−2. A more recent assessment [74] 
was able to measure the cellular response and the fluctua-
tion spectrum with the same probe and at the same cellular 
location. The rheological measurement of G was found to 
depend critically on the size of the engulfed magnetic beads 
and yielded a power law dependence on the applied torque-
frequency G(ω) ∼ ω0.5−0.6. Furthermore, the conjuncted 
PMR and AMR assessments revealed a clear violation of the 
FDT, with the MSD of the beads increasing super diffusively 
with time. Measurements of the MSD of micron-size beads 
located around the nucleus of a living fibroblast also exhib-
ited super-diffusive spectra, with a ∼ t3/2 dependence [156]. 
Upon depoly merization of the microtubule network, diffusive 
behavior was restored suggesting that the rectifying action 
of microtubule-related molecular motors might be respon-
sible for the super diffusive behavior. Furthermore, when 
the motors were inhibited without perturbing the polymer 
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network, subdiffusive behavior was observed, in accordance 
to what is expected in equilibrium for a Brownian particle dif-
fusing in a viscoelastic environment [110].

A systematic measurement of both active and passive 
cytoplasmic properties was carried out by Guo et al via sub-
micron colloidal beads injected into the cytoplasm of live 
A7 Melanoma cells. The probe beads were conveniently 
employed to perform both PMR and AMR with the use of 
optical tweezers. The active microrheology experiments indi-
cated a response with a shear modulus around 1 Pa, softer than 
measured near the cortex in [75], but with a similar power-
law dependence of the complex shear modulus on frequency 
|G(ω)| ∼ ω0.15 [45]. Passive microrheology was employed 
to measure the mean square displacement (MSD) of posi-
tion fluctuations in the cytoplasm under the same conditions 
 (figure 4(A)). At short time-scales, the MSD is almost con-
stant, as expected for a particle embedded in a simple elas-
tic medium. By contrast, at long time scales, the system can 
relax, resulting in a MSD that increases linearly with time, 
as would be expected for simple diffusion-like behavior of a 
probe particle in a viscous liquid [91, 157].

Although these observations are deceptively close to 
the features of simple Brownian motion, this is clearly not 
the correct explanation for this phenomenon, given that the 
mechanical response of the system measured by AMR is 
predominantly elastic at these time scales. Furthermore, by 
treating cells with blebbistatin, an inhibitor of Myosin II, the 
magnitude of fluctuations notably decreased in the long time 
regime. While this suggests an important role for motor gener-
ated activity in driving the fluctuations of the probe particle, 
Myosin inhibition could also affect the mechanical proper-
ties of the cytoplasm, and thereby also the passive, thermally 
driven fluctuations of the probe particle. Nonetheless, by com-
bining AMR and PMR it became clear that the system violates 
the FDT at these long time scales, implying that the system 
is not only out of equilibrium, but also that non-equilibrium 
activity can strongly alter the spectrum of force fluctuations.

The combination of AMR and PMR measurements was 
employed to infer the spectrum of force fluctuations using 
a method called force spectrum microscopy (FSM). This 
method makes use of the relation ∆(ω) = |k(ω)|2〈∆x2〉(ω), 
where the complex spring constant k ≡ 1/χx  is related to G 
by k = 6πGa (see equation (2)). The measured force spectrum 
exhibited two different power-law regimes: at high frequen-
cies ∆(ω) ∼ ω−0.85, while at low frequencies (ω � 10 Hz), 
∆(ω) ∝ ω−2 , in agreement with what is expected for typical 
molecular motor power spectra, as depicted in figure 4(B).

The observed high-frequency behavior is in accord-
ance with predictions for particle fluctuations driven 
by thermal forces in a nearly elastic medium. In fact, if 
G ∼ ωβ, then 〈∆x2〉(ω) ∼ ω−(β+1) at thermal equilib-
rium [42]. This implies that ∆(ω) ∼ ω−0.85, with the 
measured β = 0.15. By contrast, an active model predicts 
〈∆x2〉(t) ∼ t1+2β if ∆(ω) ∼ ω−2 , which is consistent with 
what is observed in reconstituted motorized gels at timescales 
shorter than the processivity time τp [52, 55]. These experi-
ments and others [34, 158] have thus established the active 

nature and the characteristics of force spectra in the cytoplasm 
using embedded beads.

Various experiments employing PMR in live cells have 
been performed using alternative synthetic probes, such as 
nanotubes or embedded intracellular entities, including micro-
tubules, vesicles, and fluorescently labeled chromosomal loci. 
In a recent study, Fakhri et al developed a new technology to 
investigate the stochastic dynamics of motor proteins along 
cytoskeletal tracks [34]. This cutting-edge method consists 
of imaging the near-infrared luminescence of single-walled 
carbon nanotubes (SWNT) targeted to kinesin-1 motors in 
live cells. Although traces of moving SWNT show long and 
relatively straight unidirectional runs, the dependence of the 

Figure 4. Fluctuations of probe particles inside living cells. (A) The 
MSD, 〈∆x2(τ)〉, of tracer beads rescaled by the particle diameter d, 
for untreated, Myosin inhibited, and ATP depleted cells. For untreated 
cells the MSD shows a plateau at short time scales, after which the 
MSD increases linearly with time. When Myosin is inhibited by 
blebbistatin, the power law does not change but the magnitude of the 
MSD is reduced. By depleting ATP in the cytoplasm, the dependence 
of the MSD on time becomes consistent with thermal motion in a 
viscoelastic environment at short times. A cartoon of AMR and PMR 
performed inside the cytoplasm is shown in the inset. (B) Measured 
force spectrum in the cytoplasm of untreated (red), blebbistatin 
treated (blue) and ATP-depleted (black) A7 cells. Adapted from [45], 
Copyright (2014), with permission from Elsevier.
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tracers MSD on time exhibits several powerlaw regimes with 
an exponent that depends on the time range: At t ≈ 0.1 s the 
exponent transitions from a value around 0.25 at short times 
to a value of 1 at larger times. By decomposing the MSD in 
motion along and perpendicular to the microtubule axis, it was 
shown that the dynamics of SWNT tracers originates from 
two distinct contributions: directed motion along the microtu-
bules together with transverse non-directed fluctuations. The 
transverse fluctuations were attributed to bending fluctuations 
of the stiff microtubules, owing to motor-generated activity in 
the surrounding cytoskeleton, consistent with prior observa-
tions [158]. Indeed, the full time depend ence of the MSD of 
traced kinesin motors could be described quantitatively with a 
model that assumes cytoskeletal stress fluctuations with long 
correlation times and sudden jumps. This is in agreement with 
a physical picture in which myosin mini-filaments locally con-
tract the actin network during an attachment time set by the 
processivity time of the motors, followed by a sudden release.

Active bursts generated by Myosin-V are fundamental  
for nuclear positioning in mouse oocytes. In fact, active dif-
fusion is here thought to create pressure gradients and direc-
tional forces strong enough to induce nuclear displacements  
[31, 159, 160]. As in the earlier studies discussed above, the 
FDT is sharply violated at low frequencies, while it is recov-
ered at large ones [161].

To study the steady-state stochastic dynamics of chro-
mosomes in bacteria, novel fluorescence-labelling tech-
niques were employed on chromosomal loci in E.Coli cells. 
These experiments yielded sub-diffusive MSD behavior: 
〈∆x2〉(t) ∼ t0.4 [30, 156, 162, 163]. Although purely ther-
mal forces in a viscoelastic system, such as the cytoplasm 
or a nucleoid, can also generate sub-diffusive motion [164], 
Weber et al demonstrated a clear dependence of the MSD on 
ATP levels: When ATP was depleted from the cell, the MSD 
magnitude was reduced. Surprisingly however, the exponent, 
α = 0.4, was not affected by varying ATP levels. Under the 
assumption that a change in the ATP level does not effect the 
dynamic shear modulus of the cytoplasm, this effect could 
be interpreted as resulting from active forces with a white 
noise spectrum and from a shear modulus that scales with 
frequency as G ∼ ω0.7. While these results provide evidence 
for the existence of active diffusion by chromosomal loci, 
less invasive and more direct approaches are required to con-
firm and further study non-equilibrium behavior in the bacte-
rial cytoplasm [165] and to understand the dynamics of the 
chromosome.

2.5. ATP-dependent elastic properties and membrane 
 fluctuations in red blood cells

The elastic properties of cells play an important role in many 
biological systems. The unusually high deformability of red 
blood cells (RBCs) is a prominent example in this respect, 
lying at the heart of the cardiovascular system. RBCs have 
the astonishing capability to squeeze through micron-sized 
holes, which ensures seamless blood flow through tight capil-
laries. To explore how these astonishing properties emerge, a 
detailed understanding of passive and active behavior of the 

membrane enclosing RBCs and its connection to the underly-
ing cytoskeleton is required.

The bending dynamics of membranes are largely deter-
mined by their curvature and their response to bending forces 
thus depends on their local geometry [166–169]. In flat mem-
branes, the power spectral density of bending fluctuations 
is expected to scale as ω−5/3 for large w [35, 169, 170]. A 
spectrum close to a  −5/3-decay has indeed been reported in 
measurements of red blood cell membrane fluctuations [35]. 
Interestingly, the same experiments showed decreasing fluc-
tuation amplitudes upon ATP-depletion, possibly indicating 
the role of non-equilibrium processes. The precise origin and 
nature of these processes, however, is difficult to determine 
due to the composite, ATP-dependent structure of erythrocyte 
membranes and cytoskeleton.

In addition, a flickering motion of RBC membranes 
observed in in microscopy experiments has sparked a discus-
sion about the origin of these fluctuations. Indeed, the extent 
to which active processes determine the properties of RBCs is 
subject of intense research activity [35, 37, 171–177].

Although myosin is present in the cytoskeleton of human 
erythrocytes, mechano-chemical motors are not the only 
source of active forces in the cell. In the membrane of RBCs, 
actin forms triangular structures with another filamentous 
protein called spectrin. These structures are linked together 
by a protein known as 4.1R. Phosphorylation of 4.1R, an 
ATP-consuming process, causes the spectrin-actin complex 
to dissociate, which could lead to a softening of the cell. In 
accordance with this model, ATP-depletion was found to 
increase cell stiffness [38], and at the same time reduce mem-
brane fluctuations on the 1−  10 s time scale. This is exempli-
fied by the comparison between the green (ATP-depleted) and 
black (normal conditions) curves in figure 5(C).

In order to relate the magnitude of fluctuations to mem-
brane stiffness κ and tension σ, Betz et al [35] employed a 
classical bending free-energy [178]

F [h(r)] =

∫
d2r

[κ

2
(�h)

2
+

σ

2
(∇h)

2
]

. (4)

A mode decomposition of the transverse displacement h(�q), 
evolving under thermal equilibrium dynamics of this energy 
functional leads to the correlator,

〈h(�q, t)h(�q ′, t′)〉 =
(2π)

2 kBT
κq4 + σq2 δ(�q +�q ′)e− |t−t′|

τq , (5)

which is reminiscent of the correlator derived for semiflex-
ible filaments (see section 4.3). The decorrelation time τq is 
given by τq = 4ηq/(κq4 + σq2). A Fourier transformation of 
the correlator yields the theoretical prediction for the power 
spectral density shown in figure 5. This model was also gen-
eralized to consider membrane fluctuations in the presence of 
active forces [169, 174, 177].

The observed stiffening of the membrane upon ATP-
depletion, presented a dilemma: membrane stiffening at low 
ATP could be the cause of the reduction of thermally driven 
membrane flickering, as apposed to a picture in which mem-
brane flickering is primarily due to stochastic ATP-driven 
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processes. This conundrum was resolved in a subsequent 
study, in which RBC flickering motion was shown to violate 
the equilibrium FDT, providing strong evidence for an active 
origin of the flickering [36]. To demonstrate this, Turlier et al 

[36] attached four beads to live erythrocytes, three of them 
serving as a handle, while the remaining bead can either be 
driven by a force exerted by optical tweezers or the unforced 
bead motion can be observed to monitor spontaneous fluctua-
tions. The complex response χx(ω) is then obtained from the 
ratio of Fourier transformations of the position x(ω) and force 
F(ω). The equilibrium FDT in equation (1) relates these two 
quantities. The measured imaginary response χ′′

x (ω) is plot-
ted together with the response calculated from equation  (1) 
in  figure 5(B). While the two curves exhibit stark differences 
at low frequencies, they become comparable for frequencies 
above 10 Hz. Thus, whatever the precise nature of active pro-
cesses in erythocyte membranes is, the intrinsic timescales of 
these processes appear to be on the order of 1–10 Hz.

To explore the contributions to the mechanical properties 
of the membrane that arise specifically due to phosphoryla-
tion of 4.1R (and other molecules) in erythrocytes, the authors 
devised a semi-analytical non-equilibrium model for the elas-
tic response of the membrane. Phosphorylation events are 
here modelled as on-off telegraph processes, which are added 
to an equilibrium description of membrane bending, such as 
in equation (4). The authors then decompose the membrane 
shape into spherical harmonic modes and calculate the single-
mode power spectral density, which reads

Slm
x (ω) =

2kBT
ω

χlm
x (ω)′′ +

2〈na〉 (1 − 〈na〉) τa

1 + ωτa

∣∣Nlm(ω)
∣∣2

,

 (6)
with τa = (ka + ki)

−1 being the timescale, na = ka/(ka + ki) 
being the phosphorylation activity, and Nlm(ω) capturing the 
effects of tangential active noise on the membrane shape. The 
rate coefficients ka and ki characterize the simplified activate-
inactivate (a-i) telegraph model, that the authors employ. The 
expression in equation (6) bears interesting similarities with 
the power spectrum of filament fluctuations (see section 4.3, 
equations  (50) and (51)). The mode response here in equa-
tion  (6) is also composed of independent thermal and non-
equilibrium contributions. Interestingly, the model shows that 
the curvature of the membrane is crucial for it to sustain active 
flickering motions. Only a curved surface allows fluctuations 
of tangential stress to result in transversal motion. Modes that 
correspond to wavelengths too short to couple to tangential 
stresses also do not seem to be affected by non-equilibrium 
processes. The flickering therefore appears to be caused by 
a coupling of tangential stresses to transversal motion only 
within a certain window of spherical modes 2 � l � l∗.

ATP-dependent fluctuations seem to contribute directly 
to the extraordinary mechanic properties of erythrocytes and 
may even help maintain their characteristic biconcave shape 
[175]. Recently, bending fluctuations of membranes have 
been implicated in general cell-to-cell adhesion [179]. The 
satisfactory agreement of theoretical and experimental fluc-
tuation spectra in the examples discussed above highlights the 
merit of non-equilibrium statistical approaches to model and 
indeed explain properties of living biological matter.

In summary, the violation of the FDT is an elegant tool for 
the detection of activity in biological systems, as illustrated by 
the many examples discussed in the section above. That being 
said, for such a method to be applicable, the simultaneous 

Figure 5. (A) Cartoon of a red blood cell whose membrane 
conformations and response are tracked via four attached microscopic 
beads. (B) The response and flickering spectrum of a red blood cell 
differ below 10 Hz, indicating a clear violation of the FDT. Adapted 
by permission from Macmillan Publishers Ltd: Nature Physics [36], 
Copyright (2016). (C) Power spectrum of RBC membrane fluctuations 
under normal conditions (black), after ATP-depletion (green) and 
after addition of a PKC (red). PKC stands for protein kinase C, 
which catalyzes the phosphorylation of 4.1R, leading to increased 
dissociation of actin-spectrin structures. Adapted from [35] with 
permission. Copyright © 2009 National Academy of Sciences.
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measurement of fluctuations and response is required. Even 
though this method gives information on the rheological 
properties of the system, its applicability can be challeng-
ing in contexts where the system is particularly delicate or 
poorly accessible such as chromosomes, the cytoskeleton, 
intracellular organelles, and membranes. Thus, in many cases 
a less invasive approach might be desired. These alternative 
approaches are further discussed in section 4.

2.6. Simple model for ω−2 active force spectra in biological 
systems

As illustrated by the examples discussed above, the mean 
square displacement of a probe particle in the cytoskeleton 
or in a reconstituted motor-activated gel has been widely 
observed to be surprisingly similar to a diffusive spec-
trum in a viscous medium: 〈∆x2〉 ∼ t. In a purely viscous 
environ ment, with only Brownian thermal forces, the force 
spectrum is well-described by white noise, which has a flat 
power spectrum over the whole frequency range by defini-
tion. The magnitude of the complex shear modulus for such 
a purely viscous fluid is |G|2 ∼ ω2. Such a simple rheological 
response, taken together with a white noise force spectrum, 
yields a displacement spectrum 〈∆x2〉 ∼ ∆/|G|2 ∼ ω−2 at 
all frequencies. This mechanism, however, does not explain 
the effective diffusive behavior measured in cells below 10 
Hz [7, 32, 34, 45, 88, 180]. Below, we illustrate with a sim-
ple model [111, 127, 180–182] that any active force with 
a sufficiently rapid decorrelation time can induce effective 
diffusive behavior of a bead in an elastic medium. The rel-
evant range of time-scales is bound by the characteristic 
relaxation time of the network and by the processivity time 
of the motors.

Consider a particle moving in a simple viscoelastic solid 
with both active forces, fA, and thermal forces, fT. The sto-
chastic motion of such a particle can be described by an over-
damped Langevin equation [37, 42, 44, 65, 182–185]:

γẋ(t) = −kx(t) + fT(t) + fA(t) , (7)

where k is the elastic stiffness and γ the friction coefficient of 
the gel, which is modelled as a Kelvin–Voigt medium [186]. 
For such a system, the thermal noise is described by:

〈 fT(t)〉 = 0 ,
〈 fT(t′) fT(t)〉 = 2γkBTδ(t′ − t).

By contrast, the independent active contribution, fA, is model-
led as a zero-average random telegraph process of amplitude 
f0 [182, 187], whose autocorrelation function is

〈 fA(t) fA(s)〉 =
f 2
0

4
e−|t−s|/τ .

The inverse time constant τ−1 = τ−1
on + τ−1

off � k/γ  is the 
sum of the switching rates of the motors between on and off 
states.

Suppose we perform a PMR experiment in which we only 
have access to the power spectral density of the position, we 
would measure

Sx(ω) =
〈 f 2

T 〉 + 〈 f 2
A 〉

k2 + γ2ω2 =
2γkBT +

f 2
0
2

τ
(ωτ)2+1

k2 + γ2ω2 . (8)

If we consider frequencies τ−1 � ω � k/γ  and assume 
that, in this frequency range, the magnitude of thermal fluc-
tuations 2γkBT  is negligible in comparison to the active 
force amplitude, the spectrum reduces to Sx ≈ f 2

0 τ−1/2(kω)2. 
In other words, to observe the characteristic ω−2 spectrum, 
the frequency needs to be higher than the operational fre-
quency of the motors 1/τ , but smaller than the characteris-
tic frequency of the medium k/γ . Note that the functional 
depend ence on frequency in this limit is identical to the case 
of purely Brownian motion in a simple liquid. For frequen-
cies ω � 1/τ , Sx ∼ const., consistent with experiments (see 
figure 6(A) of [45]). Thus, this simple model illustrates how 
active forces with a characteristic correlation time can account 
for the characteristic features of active particle motion in vis-
coelastic solids.

3. Entropy production and stochastic 
thermodynamics

3.1. Entropy production as a stochastic non-equilibrium 
measure

Put colloquially, entropy is about disorder and irreversibility: 
transitions that increase the entropy of the universe are asso-
ciated with an exchange of heat and should not be expected 
to spontaneously occur in reverse. Historically, this picture 
was shaped by experiments on the macroscopic scale, where 
temper ature and pressure are well-defined variables. However, 
on length scales ranging from nanometers to microns, where 
most cellular processes occur, fluctuations matter. Entropy, 
once thought to increase incessantly, here becomes a stochas-
tic variable with fluctuations around its norm. These ideas 
sparked many new developments in stochastic thermodynam-
ics [14–16].

In this section, we briefly introduce and motivate several 
recent theoretical and experimental advances of this stochastic 
approach, which has extended thermodynamics to the realm 
of small systems. In particular, we will discuss a class of 
results known as ‘fluctuation theorems’ (FTs), together with 
a selection of general developments that highlight the appli-
cations of these results to living systems. In section 3.2 we 
discuss aspects of entropy production that are specific to lin-
ear multidimensional system, and in section 3.3, we review 
a recent study that demonstrates how these concepts can be 
used to understand noisy control systems in cells. Finally, in 
section  3.4, we discuss a recently introduced fundamental 
lower bound for fluctuations around the currents of probabil-
ity, which are associated with out-of-equilibrium systems.

A key idea of stochastic thermodynamics is to extend the 
classical notion of ensembles and define ensemble averages 
of variables, such as heat, work, and entropy over specific 
stochastic time trajectories of the system [188]. These tra-
jectories can be seen as realizations of a common generating 
process, associated with a particular thermodynamic state. 
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The distribution P(δ) of fluctuations δ is often of interest. 
Fluctuation theorems are usually applicable far from equilib-
rium and constrain the shape of this distribution. Most FTs 
derived so far adhere to the following form

P(δ)

P(−δ)
= eδ , (9)

which is always fulfilled for Gaussian probability distribu-

tions P(δ) ∝ e−1/2(δ−θ)2/σ2
 with a mean θ that equals the 

variance θ = σ2/2. Other distributions may of course also 
fulfill this theorem. The fluctuation theorem governing the 
amount of entropy produced after a time ∆t , S(∆t) = ±ω, 
P(ω)/P(−ω) = eω has received particular attention. This result 
underlines the statistical nature of the second law of thermo-
dynamics: a spontaneous decrease in the entropy of an iso-
lated system is not prohibited, but becomes exponentially 
unlikely. However, since the entropy is an extensive quantity, 
negative fluctuations only become relevant when dealing with 
small systems, such as molecular machines.

The first fluctuation theorems were derived in a determin-
istic context [189], then extended to finite time transitions 
between two equilibrium states [190], and finally to micro-
scopically reversible stochastic systems [191]. Later, meso-
scopic stochastic approaches based on a Langevin descriptions 
were proposed. These descriptions turn out to be especially 
suitable in an experimental biological context were typically 
only mesoscopic degrees of freedom are tracked [192–195].

Further physical intuition for entropy production can be 
obtained in the description provided by Seifert [195]. Here, 
the 1D overdamped motion of a colloidal particle is treated 
as a model system. The particle moves in a medium at fixed 
temperature T and is subject to an external force F(x, λ) at 
position x, which evolves according to a protocol λ. The 
entropy production associated with individual trajecto-
ries, ∆stot = ∆sm + ∆s, is given by the sum of two distinct 
contributions: the change of entropy of the medium ∆sm  
and the change of entropy of the system ∆s. The former is 
related to the amount of heat dissipated into the medium, 
q̇ = F(x, λ)ẋ, as ∆sm =

∫
dt′ q̇/T . The entropy change of the 

system is obtained from a trajectory-dependent entropy:

s(t) = −kB ln(P(x(t), t)). (10)

where P(x(t), t) is the probability of finding the particle at 
x(t) at time t. Taking the average of s(t) naturally leads to 
the Gibbs entropy, S = −kB〈ln(P(x(t), t))〉. Within this frame-
work, the integral fluctuation theorem (IFT) for ∆stot can be 
derived [195], which reads

〈
e− ∆stot

kB

〉
= 1. (11)

The IFT expresses a universal property of entropy production, 
which is valid if the process can be captured by a Langevin or 
master equation description. Note, that in this context this the-
orem also implies the second law, since it implies 〈∆stot〉 � 0. 
In steady-state, a similar approach leads to the steady-state 
fluctuation theorem (SSFT)

P(−∆stot)/P(∆stot) = e− ∆stot
kB , (12)

which is a stronger relation from which equation (11) follows 
directly. In early studies [192, 196] this theorem was obtained 
only in the long time limit, but it has been now extended to 
shorter timescales [195]. To experimentally validate the fluc-
tuation theorems discussed, Speck et al studied a silica bead 
maintained in a NESS by an optical tweezer. In this study, a 
single silica bead is driven along a circular path by an opti-
cal tweezer [197]. The forces felt by the bead fluctuate fast 
enough to result in an effective force f, which is constant 
along the entire circular path. The entropy production calcu-
lated directly from trajectories indeed adhered to the SSFT 
described above.

The development of fluctuation theorems has given a fresh 
boost to the field of stochastic thermodynamics and has led to 
a number of interesting studies. For example, several condi-
tions for thermodynamic optimal paths have been established  
[198–200]. These optimal paths represent a protocol for an 
external control parameter that minimizes the mean work 
required to drive the system between two equilibrium states in 
a given amount of time. These results could provide insight into 
thermodynamic control of small biological systems. Recently, a 
fundamental trade-off between the amount of entropy produced 
and the degree of uncertainty in probability currents has been 
derived, which was considered in the context of sensory adapta-
tion in bacteria. This trade-off is discussed in section 3.4.

Another important connection between energy dissi-
pation and the spontaneous fluctuations of a system in a 
 non-equilibrium steady-state was found by Harada and Sasa 
[201]. When a system is driven out of equilibrium, the fluctua-
tion dissipation theorem (FDT) is violated (see section 2). A 
natural question to ask is what the violation of the FDT teaches 
us about the non-equilibrium state of a system. Starting from 
a Langevin description for a system of colloidal particles in a 
non-equilibrium steady state, a relation was derived between 
the energy dissipation rate and the extent of violation of the 
equilibrium FDT [201],

〈Ẇ〉 =

N−1∑

i=0

γi

{
v2

i +

∫ +∞

−∞

[
S̃v,ii(ω) − 2Tχ̃′

v,ii(ω)
] dω

2π

}

 
(13)

where 〈Ẇ〉 is the average rate of energy dissipation and γi  
denotes the friction coefficient for the ith-coordinate; S̃v,ii(ω) 
and χ̃v,ii(ω) are the Fourier transform of the velocity correla-
tion function and response function respectively. A remark-
able feature of this relation is that it involves experimentally 
measurable quantities such as the correlation function and 
the response function, thereby allowing a direct estimate of 
the rate of energy dissipation. The violation of FDT has been 
measured, for instance, for molecular motors such as F1 ATP-
ase or Kinesin. Using the Harada–Sasa relation, it has been 
possible to infer information on the dissipated energy and effi-
ciencies of such biological engines [202, 203].

Intuitively, any experimental estimate of the entropy 
production rate will be affected by the temporal and spa-
tial resolution of the observation. In [204] a coarse-grained 
description of a system in terms of mesostates was con-
sidered. With this approach, it was shown how the entropy 
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production obtained from the mesoscopic dynamics, gives 
a lower bound on the total rate of entropy production. 
Interestingly, in systems characterized by a large separa-
tion of timescales [205] where only the slow variables are 
monitored, the hidden entropy production arising from the 
coupling between slow and fast degrees of freedom, can be 
recovered using equation (13). Another interesting notion in 
this context is the partial entropy production, which refers 
to the fraction of entropy production that can be recovered 
from a partial observation of the system, i.e. when only a 
subset of degrees of freedom is accessible. This concept is 
illustrated and discussed in [206, 207], and a partitioning of 
the entropy production related to the observed and hidden 
variables with relative FTs is derived in [208].

The entropy production rate appears to be a good way 
of quantifying the breakdown of time reversal symmetry 
and energy dissipation. However, it is still unclear how this 
quanti ty is affected by the timescales that characterize the sys-
tem. To address this, a system of active Ornstein–Uhlenbeck 
particles was considered [87]. This system can be driven out 
of equilibrium by requiring the self-propulsion velocity of 
each particle to be a persistent Gaussian stochastic variable 
with decorrelation time τ, thereby providing a simple, yet rich 
theoretical framework to study non-equilibrium processes. 
Interestingly, to linear order in τ, an effective equilibrium 
regime can be recovered: This regime is characterized by an 
effective Boltzmann distribution and a generalized FDT, even 
though the system is still being driven out of equilibrium. 
Indeed, the leading order contribution of the entropy produc-
tion rate only sets in at ∼ τ 2.

In complex systems, we may sometimes face limited infor-
mation about local or global thermodynamic forces. In such 
situations, the direction in which processes evolve, that is, the 
direction of time itself may in principle become unclear. Due 
to micro-reversibility, individual backward and forward tra-
jectories are indistinguishable in equilibrium. Thus, it is natu-
ral to ask‘ how much information is needed to tell if a given 
trajectory runs forward or backward in time? 

This question was studied by Roldan et  al [209] using 
decision-theory, a natural bridge between thermodynamic and 
information-theoretic perspectives. Entropy production is here 
defined as ∆stot(t) = kB ln(P(Xt)/P(X̃t)) with Xt and X̃t  denot-
ing a forward trajectory and its time-reversed counterpart . The 
unitless entropy production, ∆s(t)/kB assumes the role of a 
log-likelihood ratio L(t) of the probability associated with the 
forward-hypothesis P(Xt|H→) and the  backward-hypothesis 
P(Xt|H←), that is, L(t) = ln P(Xt|H→)/P(Xt|H←). In a 
sequential-probability ratio test, L(t) is required to exceed 
a pre-defined threshold L1 or subceed a lower threshold L0, 
to decide which of the respective hypotheses H1, H0 is to be 
rejected. The log-likelihood ratio L(t) evolves over time as 
more and more information is gathered from the trajectory 
under scrutiny.

Interestingly, for decision-thresholds placed symmetrically 
around the origin L0 = −L, L1 = L, the observation time τdec 
required for L(t) to pass either threshold turns out to be dis-
tributed independently of the sign of L, i.e.

P(τdec| ←) = P(τdec| →). (14)

From a thermodynamics perspective, this insight, implies 
that the average time it takes for a given process to produce 
a certain amount of entropy, must equal the average time it 
takes the same process to consume this amount of entropy. A 
process that consumes entropy takes up heat from the environ-
ment. This can only occur rarely, of course, so that the the 
second law is not violated.

In a related recent study, Neri et al [210] discuss the prop-
erties of ‘stopping times’ of entropy production processes 
using a rigorous mathematical approach. The stopping time 
here is defined as the time a process on average takes to pro-
duce or consume a certain amount of entropy relative to time 
t0. This stopping time equivalence is sketched in figure 6(B). 
Importantly, stopping times are first passage times condi-
tioned on the process actually reaching the threshold. The dis-
tribution of stopping times, therefore does not say anything 
about how probable it is for an observer to witness the process 
of reaching the threshold at all. Only if a trajectory reaches the 

Figure 6. Entropy as a stochastic variable: illustration of the mean 
infimum inequality and the equivalence of entropy production 
stopping times. (A) The average of the minimum of an ensemble of 
entropy-trajectories (purple, red and blue) 〈∆sinf(t)〉 (cyan) is bound 
from below by kB (thick yellow). (B) For entropy-bounds ±stot  
that are symmetrically placed around 0 (thick red and blue), the 
stopping times T+ and T− share the same probability distribution 
(the figure shows unnormalized histograms). The stopping time T+ 
(T−) here is defined as the first-passage time of the entropy past the 
upper (lower) bound. Reproduced from [210]. CC BY 3.0.
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threshold, the conditional first passage time can be measured. 
Figure 6(A) depicts another property of the entropy ∆s(t): the 
average entropy is bounded from below by kB.

These ideas were further illustrated by a few examples. 
The time a discrete molecular stepper, similar to the one 
illustrated in figure  9, would spend making N steps for-
ward in a row, on average, is the same as it would spend 
making N steps backwards. This results from the way the 
entropy production for this system scales with the position, 
∆stot(t) = −N(t)Fl/(kBT), where F is the driving force and 
l denotes the step length. Related first-passage-time equiva-
lences have been discussed in the context of transport [211], 
enzymes [212], molecular motors [213], and drift-diffusion 
processes [214]. Entropy stopping times, however, provide 
a unifying and fruitful perspective on first passage times of 
thermodynamic processes. Finally, we note that the properties 
of stochastic entropy production discussed above can also be 
derived from an Itô equation of the entropy that was recently 
derived [215].

Living systems form one of the most intriguing candidates 
to apply key concepts of stochastic thermodynamic. Several 
fluctuation relations have been experimentally verified for 
various biological processes[15, 216–222] and a stochastic 
thermodynamic description for chemical reaction networks 
have been developed [223] and applied, for instance, in cata-
lytic enzymatic cycles [216]. A multitude of thermodynamic 
equalities and lower bound inequalities involving the entropy 
production have been used to investigate the efficiency of bio-
logical systems. This provides insight into the energy dissipa-
tion required for a system to perform its biological function at 
some degree of accuracy. Important contributions in this direc-
tion can be found, for instance, in [224] where the efficiency 
of molecular motors in transforming ATP-derived chemical 
energy into mechanical work is discussed. Following this 
line, we could ask how precise cells can sense their environ-
ment and use this information for their internal regulation. 
This was addressed in several works [1, 2, 225], highlighting 
a close connection between the amount of entropy produced 
by the cellular reaction network responsible for performing 
the ‘measurement’, and the accuracy of the final measured 
information (see section  3.3). In [226, 227] these concepts 
were further expanded and applied to more complex macro-
scopic systems, such as the self-replication of bacteria, whose 
description is not captured by a simple system of chemical 
reaction networks. Despite the system’s complexity, insightful 
results were obtained by deriving the more general inequality:

∆Sm + ∆S � − ln
π(II → I)
π(I → II)

. (15)

Here, the system’s irreversibility, i.e the ratio of the prob-
ability of transition between two macrostates π(II → I) and 
the transition probability of the reversed process, represents 
a lower bound for the total entropy production: ∆Sm + ∆S, 
where ∆S is the internal entropy difference between the two 
macrostates and ∆Sm is the change of entropy of the bath. One 
can now identify the two macrostates I and II with an environ-
ment containing one and two bacterial cells respectively. 

Using probabilistic arguments it is then possible to express 
the probability ratio in equation (15) as a function of measur-
able parameters, which characterize the system’s dynamics. 
With this approach, one can make a quantitative comparison 
between the actual heat produced by E.coli bacteria during a 
self-replication event and the physical lower bound imposed 
by thermodynamics constraints. These results may also have 
implications for the adaptation of internally driven systems, 
which are discussed in [227, 228].

3.2. Coordinate invariance in multivariate stochastic systems

Energy dissipation, variability, unpredictability are traits 
not exclusively found in biological systems. In fact, it was a 
meterologist, Edward Lorenz, who coined the term ‘butter-
fly effect’ to describe an unusually high sensitivity on initial 
conditions in what are now known as ‘chaotic systems’ [229]. 
In a fresh attempt to explain their large variability, stochastic 
models have been applied to periodically recurring meteo-
rological systems. El-Niño, for example, is characterized by 
a slow oscillation of the sea surface temperature, which can 
cause violent weather patterns when the temperature is close 
to its maximum. Such a change in temperature can lead to 
new steady-states, in which the system is permanently driven 
out-of equilibrium under constant dissipation of energy and 
exhibits a rich diversity of weather ‘states’. Out of equilib-
rium, transitions between states are still random, but certain 
transitions clearly unfold in a preferred temporal sequence.

Interestingly, in an effort to model meteorological systems 
stochastically, Weiss uncovered a direct link between energy 
dissipation and variability, which is intimately related to bro-
ken detailed balance [230]. More specifically, he found that 
out-of equilibrium systems can react more violently to per-
turbations than their more well-behaved equilibrium counter-
parts. This finding may be relevant in a much broader context, 
including biology, and we will therefore briefly summarize 
the main points here. Specifically, we will briefly explore 
this phenomenon of noise amplification from a perspective of 
coordinate-invariant properties [230].

In an open thermodynamic system in equilibrium, all state 
variables �x , are subject to the dialectic interplay of random 
forcing (noise) �ξ , relaxation, and dissipation. Consider an 
overdamped two-bead toy system at equilibrium, for example 
(see figure 12(A) and section 4.2.3), where the two beads are 
coupled by springs and are placed in contact with independ-
ent heat baths. Energy stored in the springs is permanently 
released and refuelled by the thermal bath, and flows back and 
forth between the two colloids in a balanced way. A sustained 
difference in temperature between the beads, T1 �= T2, how-
ever, will permanently rectify the flow of energy and break 
this balance. Crucially, this temperature difference is a matter 
of perspective. If we set, for example, T1  =  0, then bead 1 
will not receive any noise any more and energy will flow to 
it from bead number 2. Interestingly, if we look at the nor-
mal coordinates of the beads u1(t) = (x1(t) − x2(t))/2 and 
u2(t) = (x1(t) + x2(t))/2, we find that their respective ther-
mal noise has exactly the same temperature T2/2. However, 
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if we could measure the fluctuations of noise in these coor-
dinates, we would find that both noise terms correlate. Thus, 
in this case, mode 1 and 2 are driven not only by the same 
temperature, but by the very same white noise process.

Correlations amongst noise processes ξ1(t) and ξ2(t) excit-
ing different variables x1(t) and x2(t) can, in principle, break 
detailed balance, even if the overall variance of the noise is 
equal in all directions, i.e. 〈ξ2

1〉 = 〈ξ2
2〉. In other words, cor-

relations in random forces in one coordinate system, result 
in differences in temperature in other coordinates and vice-
versa. The simple temperature criterion T1 = T2 is thus insuf-
ficient to rule out broken detailed balance (see section 4.1); a 
comprehensive coordinate-invariant criterion is required.

Consider variables �x(t) of a generic system, evolving sto-
chastically according to a Langevin equation (16),

d�x
dt

(t) = A�x(t) + F�ξ(t) (16)

while the dynamics of the associated probability density ρ(�x, t) 
is given by the corresponding Fokker-Planck equation (17).

∂ρ

∂t
(�x, t) = −∇ · (A�xρ (�x, t) − D∇ρ (�x, t)) . (17)

In the equations above, F denotes the forcing matrix, in which 
any noise variance is absorbed, such that �ξ  here has unit vari-
ance 〈�ξ(t)�ξT(t′)〉 = 1δ(t − t′). The forcing matrix is directly 
related to the diffusion matrix D = 1

2 FTF, and the term A�x  
describes deterministic forces, and the matrix A therefore 
contains all relaxational timescales. Any linear system with 
additive, state-independent white noise �ξ  can be mapped onto 
these generic equations.

In an equilibrium system with independent noise 
 processes, D is diagonal and fulfills the standard fluctua-
tion-dissipation theorem D = kBTM, where M denotes the  
mobility matrix. In steady-state, the correlation matrix 
C = 〈�x ·�xT〉 both in and out of equilibrium, obeys the 
Lyanpunov equation  AC + CAT = −2D, which can be 
thought of as a multidimensional FDT. The density ρ can 
therefore always be written as a multivariate Gaussian distri-

bution ρ(�x, t) = 1/
√

|C|e− 1
2�x

T C−1�x .
Apart from systems with temperature gradients, detailed 

balance is also broken in systems with non-conservative forces 
A�x , which have a non-zero rotation ∂i (A�x)j �= ∂j (A�x)i. Within 
our matrix framework, this condition simplifies to Ai,j �= Aj,i  
and thus requires A to be symmetric in equilibrium. In sec-
tion 4.2.3 we give a detailed example for a 2D linear system 
of this framework and the bootstrapping technique discussed 
in section 4.2.2. In our example, A would represent a prod-
uct between a mobility matrix and a stiffness matrix, both of 
which are symmetric resulting in a symmetric A.

Note, this framework only applies to systems with dissi-
pative coupling; reactive currents require a separate analy-
sis. The two ways of breaking detailed balance in our case 
(temper ature gradients and non-conservative forces) are 
reflected by a coordinate-independent commutation criterion 
for equilibrium [230]:

AD − DAT = 0. (18)

It was also argued that a system with broken detailed bal-
ance will sustain a larger variance than a similar system with 
the same level of noise, which is in equilibrium. This effect, 
referred to by Weiss as noise amplification, had previously 
been attributed to non-normality of the matrix A, which is 
only true for diagonal D. This type of noise amplification is 
now understood to be caused by broken detailed balance.

Although this amplification can be captured by different 
metrics, we here focus on the gain matrix G = 1 + ACD−1. 
The gain matrix is a measure of the variance of the system 
normalized by the amplitude of the noise input. To obtain a 
scalar measure, one can take, for example, the determinant of 
G which yields the gain g. It can be shown, that g � g0 when 
detailed balance is broken, where g0 is the gain of the same 
system in equilibrium. Finally, it is interesting to note, that the 
noise amplification matrix G is related to the average produc-
tion of entropy in our generic model system. Let Π denote the 
production of entropy, then

Π = kB tr (AG) , (19)

providing a direct link between dissipation and increased vari-
ability in multivariate systems out of equilibrium.

3.3. Energy-speed-accuracy trade-off in sensory adaption

Energy dissipation is essential to various control circuits found 
in living organisms [231]. Faced with the noise inherent to 
small systems, cells are believed to have evolved strategies to 
increase the accuracy, efficiency, and robustness of their chem-
ical reaction networks [232–234]. Implementing these strate-
gies, however, comes at an energetic price, as is exemplified 
by Lan et al in the case of the energy-speed-accuracy (ESA) 
trade-off in sensory adaption [1, 235, 236]. This particular cir-
cuit is, of course, not the only active control in cell biology. 
The canonical example of molecular ‘quality control’ is the 
kinetic proofreading process, in which chemical energy is used 
to ensure low error rates in gene transcription and translation 
[3]. Furthermore, fast and accurate learning and inference pro-
cesses, which form the basis of sensing and adaptation, require 
some energy due to the inherent cost of information processing 
[2, 237–239]. A similar trade-off occurs in biochemical oscil-
lations, which serve, for instance, as internal biological clocks. 
Here, the number of coherent cycles is linearly related to the 
energetic price that the system pays [240].

Sensory learning and adaptation at the cellular level 
involves chemical feedback circuits that are directly or indi-
rectly driven by ATP hydrolysis, which provides energy input 
to break detailed balance. Examples of adaptation circuits are 
shown schematically in figures 7(B) and (C). These examples 
include the chemotactic adaption mechanism in E. coli (panel 
(B)), a well-established model system for environmental sens-
ing. Common to all circuits is a three-node feedback struc-
ture, as depicted in figure  7(A). Conceptually, this negative 
feedback circuit aims to sustain a given level of activity a0, 
independent of the steady amplitude of an external stimulus s, 
which here is assumed to be inhibitory. This adaptive behav-
ior allows the circuit to respond sensitively to changes to the 
external stimulus over a large dynamic range in s.
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The authors condense the dynamics of such a chemical 
network into a simple model (figure 7(A)) with abstract con-
trol m(t) and activity a(t) variables described by two coupled 
Langevin equations,

ȧ = Fa(a, m, s) + ξa(t) (20)

ṁ = Fm(a, m, s) + ξm(t) (21)

with Fa, Fm denoting the coarse-grained biochemical 
response and ξa, ξm being white-noise processes with differ-
ent variances 2∆a and 2∆m, respectively. Importantly, these 
biochemical responses do not fulfil the condition for conser-
vative forces discussed in the previous section (above equa-
tion (18)). To function as an adaptive system with negative 
feedback, ∂mFa and ∂aFm must have different signs, which 
implies a breaking of detailed balance. Indeed, adaptation 
manifests in a sustained probability current j = ( ja, jm) in 
the phase space spanned by a × m; the energetic cost to 
maintain this non-equilibrium steady-state is given by the 
amount of heat exchanged with the environment per unit 
time, which must equal the entropy production rate Π mul-
tiplied by the temperature T of the heatbath to which the 
system is coupled.

In general, a non-equilibrium system at steady-state that 
adheres to a Fokker-Planck equation  produces entropy at a 
rate [14, 241],

Π = kB

∫
d�x

1
ρ(�x, t)

�jT(�x, t)D−1�j(�x, t) (22)

where ρ(�x, t) is the probability density in phase space and D−1 
is the inverse diffusion matrix. We note, that for linear systems 
equation (22) simplifies to equation (19).

Applying equation  (22) to the model above for 
sensory adaption, yields the heat exchange rate 

Ẇ =
∫ ∫

dmda
[

j2a/(∆aρ) + j2m/(∆mρ)
]
. An assumed 

separation of timescales that govern the fast activity a and 
the slower control m, allows the authors to derive an Energy-
Speed-Accuracy (ESA) relation, which reads

Ẇ ≈ (c0σ
2
a)ωm log

(ε0

ε

)
, (23)

where, σ2
a  represents the variance of the activity, and ε denotes 

the adaptation error defined as ε ≡ |1 − 〈a〉/a0|, while c0 and 
ε0 are constants that depend on details of the model. Here, ωm 
parametrizes the rate of the control variable m. Therefore, an 
increase in ωm or a reduction in ε requires an increased dissi-
pation Ẇ ; put simply, swift and accurate adaptation can only 
be achieved at high energetic cost.

The authors argue that a dilution of chemical energy in liv-
ing bacteria will mainly affect the adaptation rate, but leave 
the adaptation error unchanged. Starvation should therefore 
lead to lower adaptation rates to uphold the ESA relation. 
This prediction was tested in starving E. coli colonies under 
repeated addition and removal of MeAsp (see figure  8), an 
attractant which stimulates the chemotactic system shown in 
figure 7(B). The cells in this study were engineered to express 
fluorescent markers attached to two proteins involved in adap-
tation. Physical proximity between any of these two molecules 
is an indicator of ongoing chemosensing, and was measured 
using Foerster-resonance-energy transfer (FRET). Since the 
donor-acceptor distance correlates with the acceptor intensity, 
but anticorrelates with the donor intensity, the ratio of YFP 
(acceptor) and CFP (donor) intensities lends itself as a read-
out signal to monitor adaptation. Indeed, after each addition/

A

B C

Figure 7. Models of adaptive feedback systems. (A) Simplified topology of a feedback circuit. The input s here is chosen to have an 
inhibitory effect. On the right the response of the output a is shown following a step in the input s. (B) Chemotactic circuit in E. coli. 
Ligand binding to a methyl-accepting-protein (MCP) causes further addition (mediated by CheR) or deletion (mediated by CheB) of 
methylgroups to MCP. This methylation counteracts the effects of ligand binding. (C) Osmotic sensing circuit in yeast. A reduction 
of osmolarity results in dephosphorylation of Sln1p→ Sln1, which activates the HOG1 (High osmolarity glycerol) mechanism. This 
mechanism acts to restore the tugor pressure inside the cell and eventually phosphorylates Sln1→Sln1p. Adapted by permission from 
Macmillan Publishers Ltd: Nature Physics [1], Copyright (2012).
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removal cycle of MeAsp, the signal recovers, albeit at a gradu-
ally decreasing pace, as is shown in the inset in figure 8(A). 
The decrease in the speed of adaptation is attributed to the 
progressing depletion of nutrition in the colony. In panels b 
and c, the adaptation half-time and relative accuracy are plot-
ted. The graph in panel c clearly demonstrates the constancy 
of the accuracy of chemotatic system as nutrients are depleted 
over time, which is argued to be close to optimality.

3.4. Current fluctuations in non-equilibrium systems

Directed and chemically-specific transport of proteins, RNA, 
ions, and other molecules across the various membranes that 
foliate the cell is often achieved by active processes. A library 
of active membrane channel proteins has been described, 
which ‘pump’ ions into and out of cells to control osmolar-
ity, the electrical potential or the pH [242]. Furthermore, in 
eukaryotic cells, a concentration gradient of signalling mol-
ecules across the nuclear envelope causes messenger RNA 
(mRNA) molecules, expressed within the nucleus, to diffuse 
outwards through channels known as nuclear pore complexes 
(NPC) [112]. Outside of the nucleus, the mRNA is translated 
into proteins by the ribosomes, which are too large to traverse 
the NPCs. All these directed transport processes are essential 
to the cell. Thus, this raises the question of reliability of such 
processes [243, 244]. For example, how steady should we 
expect the supply of mRNA to the ribosomes to be [245]? 
Or, more generally, how predictable is the output rate of any 
given non-equilibrium process? Even active processes still 
endure fluctuations: molecular motors, at times, make a step 
backwards, or stall. Polymerizing filaments will undergo brief 
periods of sluggish growth or even shrinkage. Similarly, active 
membrane channels will sometimes transport more, and in 
other times fewer molecules. To illustrate this, an abstract 
example of such current fluctuations is depicted in figure 10, 
which will be further discussed below.

It seems intuitive, that predictability on the microscale 
always comes with an energy-price tag. In recent years, signifi-
cant progress has been made to calculate the level of deviations 
from the average rate of a non-equilibrium process that is to be 

expected over finite times [199, 246–250]. More formally, a 
universal bound for finite-time fluctuations of a probability cur-
rent in steady-state has been established. Such an uncertainty 
relation is perhaps best illustrated by the simple motor model 
discussed by Barato et al [247]: A molecular motor moves to 
the right at a rate k+ , and to the left at a rate k−. The move-
ment is biased, i.e. k+ > k−, driven by a free energy gradient 
∆F = kBT log (k+/k−). A few trajectories for various values 
of k+ are depicted in figure 9(A). As can be seen, the walker 
(shown in the inset), on average, moves with a constant drift 
〈x(t)〉 = t(k+ − k−). Associated with this drift is a constant 
rate of entropy production Π = (k+ − k−)∆F/T . Barato et al 
showed that the product of the total entropy produced S(t) = Πt 
and the squared uncertainty ε2 = 〈(x(t) − 〈x(t)〉)2〉/〈x(t)〉2 
always fulfils the bound

TS(t)ε(t)2 � 2kBT . (24)

For this particular model, the square uncertainty reads 
ε(t)2 = (k+ + k−)/[(k+ − k−)2t], such that the product 
TS(t)ε(t)2 is constant in time. To further illustrate this point, 
we plotted the quantity TS(t)ε(t)2 for each choice of k+ in 
 figure 9(A), averaged over an ensemble of a hundred simu-
lated trajectories in figure  9(B). Due to the finite ensemble 
size, the graphs fluctuate, but stay well above the universal 
lower bound of 2kBT  for longer times t. So far, the theory 
underlying uncertainty relations was shown to be valid in the 
long time limit. Only recently, its validity has been extended 
to finite time scales [249, 250].

The bound in equation  (24) can be generalized to any 
Markovian non-equilibrium steady-state [246, 248]. The four-
node system in the inset in figure 10 is an example. Here, the 
integrated current Jt =

∫ t j(t′)dt′ between any two nodes is 
distributed as P(Jt = tj) ∼ e−tI( j), with I( j) denoting the 
large deviation function. This function therefore controls the 
variability of Jt. Interestingly, it can be shown that the large 
deviation function obtained in the linear response regime ILR, 
is never exceeded by I, even far away from equilibrium [246]. 
Thus, an increase in currents is accompanied by an increase in 
the variability of these currents when a system is driven further 

Figure 8. Experimental evidence for an energy-speed-accuracy (ESA) trade-off in E. coli chemotaxis. (A) Ratio of intensity of 
fluorescent reporters of adaptation. Changes in this signal are indicative of adaptation in the chemotatic circuit to external stimuli 
presented by the addition/removal of MeAsp. The inset illustrates the reduction of the FRET signal at the three different points in time 
indicated by arrows. (B) Half-times inferred from the responses to addition/removal cycles shown in (A). (C) Relative accuracies of 
adaptation. Adapted by permission from Macmillan Publishers Ltd: Nature Physics [1], Copyright (2012).
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away from equilibrium. The relative uncertainty ε generalizes to 
ε2 = var(J)/〈J〉2. The lower bound for this general ε2 is similar in 
form to equation (24) and reads 2kB/(Πt), i.e. Πtε2 � 2kB, where 

Π = kB
∑

m<n j(m,n) log[( p(s)
(m)r(m,n))/( p(s)

(n)r(n,m))] is the 

average entropy production rate in the system in steady-state 
[246]. The steady-state probability distribution is denoted 

here by p(s)
(m). The relation above is a bound for the uncer-

tainty of the entire system. A similar relation also applies 
to any individual edge between two nodes n and m, 
〈( j(m,n) − 〈 j(m,n)〉)2〉/〈 j(m,n)〉2 � 2kB/(Π(m,n)t), where Π(m,n) 
denotes the entropy production associated with the edge (m, n). 
Recently, in an interesting connection to section 3, Gingrich et al 
[251] have found an uncertainty relation of the  first-passage 
time T of a cumulative current J. More precisely, the time T it 
takes J to exceed a given threshold Jthr fulfils the relation

var(T)

〈T〉 Π � 2kB. (25)

While the uncertainty relations discussed above appear 
abstract at first, they may soon prove useful in studying trans-
port or control systems in cellular biology due to their general 
applicability. Reminiscent of Carnot’s efficiency for mac-
roscopic engines, one implication of equation  (24) is that a 
reduction in uncertainty can only be achieved by dissipating 
more energy when the system is close to optimality.

4. Detecting broken detailed balance in living 
systems

Up to this point we discussed intrinsically invasive methods 
to probe biological systems for non-equilibrium dynamics. 

For instance, to determine violations of the fluctuation-
dissipation theorem a response function is required, which 
can only be measured by performing a perturbation in non-
equilibrium systems (see section 2). Other methods that are 
used to probe for non-equilibrium involve thermal or chemi-
cal perturbations, and are therefore also inherently invasive. 
Such approaches are not ideal for investigating the stochastic 
dynamics of delicate sub-cellular system. Performing a con-
trolled perturbation of such a system might not only be tech-
nically challenging, it may also be undesirable because of 
potential effects on the behavior or function of such a fragile 
system.

Ideally, we would like to avoid the technical and conceptual 
difficulties of invasive protocols to probe for non-equilibrium 
behavior. This raises the question: Could we perhaps measure 
a system’s non-equilibrium behavior simply by looking at it? 
With this purpose in mind, we recently developed a method 
that indeed uses conventional video microscopy data of cel-
lular and subcellular systems [22]. Detecting non-equilibrium 
behavior in the stochastic dynamics of mesoscopic coordi-
nates of such systems can be accomplished by demonstrating 
that these dynamics break detailed balance. In this section, 
we will illustrate these ideas and discuss some recent related 
theoretical developments.

4.1. Equilibrium, steady state, and detailed balance

Suppose we can describe a system on a mesoscopic level by 
dividing phase space into small cells, such that the state of the 
system can be described by a state variable n. If the system is 
ergodic and irreducible, it will evolve towards a unique sta-

tionary solution p(s)
n , which is constant in time. A necessary 

and sufficient requirement for such steady-state conditions is 
that the rate of transitions into any particular microstate, m, 
is balanced by the total rate of transitions from m to other 
microstates n:

∑

n

Wn,m =
∑

n

Wm,n, (26)

where Wn,m describes the rate of transitions from state m to 
n. This result must hold for any system, at equilibrium or far 
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Figure 9. Variability of non-equilibrium steady states: (A) Example 
trajectories to show the spread in the average position 〈x(t)〉 after 
t steps. The inset depicts a simple model for a molecular motor 
in a sawtooth potential. (B) The products TS(t)ε(t)2 calculated 
over an ensemble of trajectories are bounded from below by the 
uncertainty relation. Despite the small size of the ensemble (1 0 0), 
equation (24) is fulfilled.

Figure 10. Variability of non-equilibrium steady states: Fluctuations 
of the cumulative probability current JT(m, n) =

∫ T jm,n(t)dt  along 
all nodes in the four state system shown in the inset. Fluctuations 
result in perturbations of the currents around their intrinsic rates 
r(m, n). Adapted figure with permission from [246], Copyright 
(2016) by the American Physical Society.
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from equilibrium, that has reached steady state conditions. 
When the system is Markovian, equation (26) reduces to

∑

n

wnmp(s)
m =

∑

n

wmnp(s)
n , (27)

where wnm describes the rate of transitions from state m to n, 
given that the system is in state m.

In thermodynamic equilibrium, it can be shown that a sys-
tem must obey an even stronger condition: detailed balance. 
Classical closed ergodic systems are characterized by a time-
independent Hamiltonian, which we will here restrict to be an 
even function of the momenta and independent of magnetic 
fields. The microscopic degrees of freedom of such a system 
obey deterministic dynamics described by Hamilton’s equa-
tions, which are time reversal invariant. This has important 
implications also for the probability distribution of meso-
scopic observables, which characterize the systems states at 
thermodynamic equilibrium. Consider, for instance, a meso-
scopic variable y, which represents a generalized coordinate 
that either does not depend on the microscopic momenta, or 
that is an even functions of the microscopic momenta. Then, 
the transition between states must obey [187]

p(e)
2 (y2, τ ; y1, 0) = p(e)

2 (y1, τ ; y2, 0) . (28)

Here we indicate with p(e)
2  the two-point joint probability dis-

tribution. This result is referred to as the principle of detailed 
balance. Put simply, it means that the transitions between any 
two mesostates are pairwise balanced, and this result derives 
from the transition rates between any two microstates also 
being pairwise balanced. For Markovian systems we can write 
detailed balance more conveniently as

w(y2|y1) p(e)(y1) = w(y1|y2) p(e)(y2), (29)

where the w’s indicate the conditional rates between states. 
Finally, we note that if we add observables z, which are odd 
functions of the momenta, equation (28) needs to be general-
ized to

p(e)
2 (y2, z2, τ ; y1, z1, 0) = p(e)

2 (y1, −z1, τ ; y2, −z2, 0) . (30)

It is important to note that for a system in steady state 
dynamics, broken detailed balance is direct evidence of 
non-equilibrium, but showing that a system obeys detailed 
balance in a subspace of coordinates is insufficient to prove 
equilibrium. Indeed, even for systems out of equilibrium, 
broken detailed balance is not necessarily apparent at the 
supramolecular scale [28, 29, 59, 60]. One can also often 
observe stationary stochastic processes in cells that, at first 
glance, appear to be thermally driven. Examples include 
the fluctuations of cytoskeletal filaments such as microtu-
buli, F-actin filaments or the fluctuations of intracellular 
organelles. These cases should be contrasted with obvious 
examples of mesoscopic non-equilibrium, non-stationary, 
irreversible processes such as cell growth, locomotion and 
mitosis. Thus, in general, it is unclear how and when bro-
ken detailed balance that realized on the molecular level also 
manifests at larger scales.

4.2. Probability flux analysis

In this section, we describe the basis and methodology that 
can be used to infer broken detailed balance from micros-
copy data. We consider a system, which is assumed to evolve 
according to stationary dynamics. This could, for instance, be 
a primary cilium or a flagellum [22]. In general, these sys-
tems exhibit stochastic dynamics, comprised of both a deter-
ministic and a stochastic component. The dynamics of such 
systems can be captured by conventional video microscopy. 
To quantify this measured stochastic dynamics, we first need 
to parameterize the configuration of the system. The shape of 
a flagellum, for instance, could be conveniently decomposed 
into the dynamic normal modes of an elastic beam. In this 
example, the corresponding mode amplitudes represent time-
dependent generalized coordinates of the system. Note, these 
mode amplitudes can be extracted from a single time frame 
and strictly represent configurational coordinates, which are 
independent of the microscopic momenta.

In general, a video microsocopy experiment can be used 
to extract time traces of D mesoscopic tracked coordinates 
x1, ..., xD, which represent the instantaneous configuration 
of the system. Clearly, this only represents a chosen subset 
of all coordinates that completely specify the whole sys-
tem. Furthermore, only spatial or conformational degrees 
of freedom are considered in this discussion here. Indeed, 
fluctuations in momenta in a typical overdamped biologi-
cal or soft-matter systems relax on very short time-scales, 
which are not resolved in typical video microscopy experi-
ments. However, the basic methodology described below 
can readily be generalized to also include momentum-like 
variables.

We define a probability density, ρ(x1, ..., xD, t), in terms of 
only the tracked degrees of freedom. This probability den-
sity can be obtained from the full joint probability density in 
terms of a complete set of variables, by integrating out all the 
untracked degrees of freedom. In the reduced configurational 
phase space of the tracked degrees of freedom, the dynamics 
of the system still obeys a continuity equation:

∂ρ(x1, ..., xD, t)
∂t

= −∇ ·�j(x1, ..., xD, t) (31)

where �j(x1, ..., xD, t) is the current density describing the net 
flow of transitions of the system in the D-dimensional con-
figurational phase space. Here, we only consider systems with 
dissipative currents [90]. While at steady state the divergence 
of the current needs to vanish, in equilibrium any dissipative 
current itself must be identically zero.

4.2.1. Estimating phase space currents Here we discuss 
one way of estimating currents from a set of time-traces. To 
provide a simple illustration of this approach, we consider a 
system with a 2D configurational phase space, as illustrated 
in figure 11(A). The dynamics of the system is captured by a 
time trace in this configurational phase space. It is convenient 
to analyze these trajectories using a discretized coarse-grained 
representation of the 2D phase space. This coarse-grained 
phase space (CGPS) consists of a collection of equally sized, 
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rectangular boxes, each of which represents a discrete state 
 figure  11(B). Such a discrete state in CGPS encompasses 
a continuous set of microstates, each of which belongs to a 
unique, discrete state. The primary reason for using this dis-
cretized representation of phase space is to be able to obtain 
informative results on experimental data with limited statistics.

In this 2D CGPS, a discrete state α has two neighboring 
states, respectively α+ (larger xi) and α− (smaller xi), along 
each direction xi, resulting in four possible transitions. The 
dynamics of the system indeed satisfies the discrete continuity 
equation

dpα

dt
= −W̃(x1)

α−,α + W̃(x1)
α,α+ − W̃(x2)

α−,α + W̃(x2)
α,α+ , (32)

where W̃α,β = Wα,β − Wβ,α is the net rate of transitions from 
state β to α and pα is the probability to be in discrete state α, 
which will become time independent when the system reaches 
steady-state conditions.

This probability pα is related to the probability density 
ρ(x1, ..., x2, t) defined above, and equation (32) can be obtained 
by integrating equation  (31) on both sides over the volume 
of state α in CGPS. We can estimate this probability from a 
measured trajectory by using

pα = tα/ttotal, (33)

where tα is the accumulated time that the system spends in 
state α and ttotal is the total duration of the experiment.

The net rates W̃  in CGPS can be estimated from the meas-
ured trajectories simply by counting the net number of trans-
itions per unit time:

W̃(xi)
α,β =

N(xi)
α,β − N(xi)

β,α

ttotal
. (34)

Here N(xi)
α,β  is the number of transitions from state β to state α 

along the direction xi. In a mechanical system, the trajectories 
through phase space are continuous such that there can be only 
transitions between neighboring states. However, due to the 
discreteness in a measured time trajectory, it is possible that a 
transition between neighboring states is ‘skipped’, resulting in 
an apparent transition between non-neighboring states. In these 
cases, it is convenient to perform an interpolation of the time 
trace to estimate the intermediate transitions. It is important 
that this interpolation is performed in a time-symmetric way, 
so that the interpolation filter preserves time-reversal symme-
try. In fact, this should be taken into account with any kind of 
filtering that is performed on measured time traces.

The currents in CGPS that describes back-and-forth trans-
itions through all four boundaries of the box associated with a 
discrete state (figure 11(C)), can be defined by:

�J(�xα) =
1
2

(
W̃(x1)

α−,α + W̃(x1)
α,α+ , W̃(x2)

α−,α + W̃(x2)
α,α+

)
. (35)

Here, �xα is the center position of the box associated with state 
α.

With this approach, prominent examples such as an iso-
lated beating flagella of Chlamydomonas reinhardtii were 
examined [22] (see figure  1). Dynein motors drive relative 
axial sliding of microtubules inside the axoneme of the flagel-
lum [77, 252, 253]. To quantify the non-equilibrium dynamics 
of this system, we decomposed the axoneme shapes measured 
using time-lapse microscopy into the dynamic normal modes 
of an elastic filament freely suspended in a liquid. Using this 
approach, we obtained the amplitudes of the projections coef-
ficients for the first 3 modes. These amplitude time series were 
used to construct a trajectory in a phase space spanned by the 
three lowest-order modes, which were analyzed using PFA, 
as shown in figure 1(C). Here, the vector fields indicate the 
fluxes for the first three modes. Thus, this method can be used 
to quantify the non-equilibrium dynamics of the flagellum in a 
phase space of configurational degrees of freedom.

In addition, we considered primary cilia of Madin-Darby 
Canine Kidney (MDCK II) epithelial. Primary cilia are hair-
like mechano and chemosensive organelles that grow from the 
periphery of certain eukaryotic cells [40, 254, 255]. At first 
glance the dynamics of the deflection angle and curvature of 
primary cilia appear to exhibit random fluctuations. Using 
probability flux analysis (PFA), however, it was demonstrated 
that there are significant circulating probability fluxes in a 
configurational phase space of angle and curvature, providing 
evidence for the non-equilibrium nature of primary cilia [22]. 
This approach is now gaining traction in variety of systems, 
ranging from the post translation Kai circadian clock [256] 
to motility phenotypes [257]. When the mobility of a system 
is known, a related approach can be used to estimate the heat 
dissipation [258]. However, in a non-equilibrium system, the 
mobility must be obtained by a perturbative measurement.

4.2.2. Bootstrapping. In practice, the finite length of exper-
imental or simulated trajectories limits the accuracy with 
which we can estimate fluxes in phase space. This has an 

Figure 11. Schematic illustrating the coarse-graining procedure 
for the estimation of phase space currents and corresponding 
error bars. (A) Trajectory in continuous phase space. (B) Grid 
illustrating the discretization of the continuous phase space. (C) 
By counting transitions between first neighbour discrete states it is 
possible to estimate the currents (indicated by the arrows) across the 
boundaries. (D) Current error bars representation obtained through 
the bootstrapping procedure. From [22]. Reprinted with permission 
from AAAS.
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important implication: even when considering a system at 
thermodynamic equilibrium, a measurement from finite data 
will typically result in apparent non-zero currents. In such a 
case we can not statistically distinguish the measured apparent 
cur rent from a zero current. Therefore, it is important to asses 
if the estimated currents are statistically significant. Moreover, 
these current fluctuations may also be interesting to study in 
and of themselves (see section 3.4). In this section we briefly 
describe ‘bootstrapping’, a method that can be used to associ-
ate error bars to the measured currents.

The error bars on the probability flux can be determined 
by counting statistics of the number of transitions in equa-
tion  (34). In general, however, there may be correlations 
between in-and-outward transitions for a given state, which 
renders it difficult to perform a simple estimate of the error-
bar. A possible way around this, which naturally takes cor-
relations into account, is to bootstrap trajectories from the 
exper imentally measured or simulated trajectories.

To perform this bootstrapping procedure, we first deter-
mine all the transitions between discrete states in the CGPS 
from the measured trajectories. From this data, we construct a 
set A of n events, describing specific transitions of the system 
between two states, including the transition time. Given A, we 
can generate a new set of transitions, A′, by randomly sam-
pling n single events (with replacements) from A. This pro-
cedure, however, ignores possible correlations. To capture the 
effects of correlations on the accuracy of our current estima-
tor, we bootstrap trajectories by randomly sampling a group of 
m consecutive events from A to construct a new set of trans-
itions A’i(m) [259].

For each bootstrapped trajectory we calculate the current 
field and by averaging over all the realizations, we estimate 
the covariance matrix. To visualize the error bars (standard 
error of the mean) on the estimated currents, we depict an 
ellipse aligned with the principle components of this covari-
ance matrix. The short and long axes of these error-ellipses 
are defined by the square roots of the small and large eigen-
values, respectively, of the covariance matrix, figure  11(D). 
Empirically, we found that the estimated error bars reduce 
substantially by including pairwise correlations, i.e. in going 
from m  =  1 to m  =  2, after which the error bars became 
largely insensitive to m. Such correlations can arise because 
of the coarse graining of phase space, which can introduce a 
degree of non-Markovianity.

4.2.3. Toy model: two stochastically driven coupled 
beads. To provide some basic intuition for stochastic non-
equilibrium systems we next discuss a simple model, which 
can easily be solved both analytically and numerically. With 
this model, which was also studied in [260, 261], we illustrate 
how probability flux analysis (PFA) can be used on simulated 
data to obtain current densities in coarse grained phase space. 
The results are shown to be consistent with analytical calcul-
ations within error bars.

Consider a system consisting of two microscopic over-
damped beads in a liquid connected to each other and to a 
rigid boundary by springs with elastic constant k, as depicted 
in figure 12(A). The two beads are assumed to be in contact 

with two independent heat baths, respectively at temperatures 
T1 and T2. The stochastic dynamics of this system is described 
by the overdamped equation of motion

d�x
dt

= A�x + F�ξ,
 

(36)

where �x = (x1, x2)
T represents the beads positions. The deter-

ministic dynamics is captured by the matrix

A =
k
γ

(
−2 1
1 −2

)
. (37)

The drag coefficient γ, characterizing the viscous interactions 
between the beads and the liquid, is assumed to be identical 
for the two beads. The stochastic contribution, ξi, in the equa-
tion of motion is defined by

〈�ξ〉 = 0, 〈�ξ(t) ⊗ �ξ(t′)〉 = Iδ(t − t′), (38)

and the amplitude of the noise is captured by the matrix

F =

√
2kB

γ

(√
T1 0
0

√
T2

)
. (39)

We can generate simulated trajectories for this system 
by numerically integrating equation  (36). We will con-
sider two exemplificative cases: (i) thermal equilibrium 
with T1 = T2, and (ii) non-equilibrium with T2 = 5T1. An 
example of the two simulated trajectories for this last case 
is shown in  figure 12(A), where we note that the dynam-
ics of individual trajectories appears to be, at first glance, 
indistinguishable from equilibrium dynamics. Interestingly 
however, the non-equilibrium nature of this system is 
revealed by applying PFA to these data, which gives coher-
ently circulating probability fluxes in the phase space  
(figure 12(C)). By contrast, in the case of thermal equilib-
rium (T1 = T2) we find, as expected, that the flux vanishes, 
as shown in figure 12(B).

To compare these results of the estimated fluxes from 
simulations with analytical calculations, we next consider the 
time evolution for the probability density function ρ(�x, t) of 
the system, which is described by the Fokker Planck equation:

∂ρ(�x, t)
∂t

= −∇ · [A�xρ(�x, t)] + ∇ · D∇ρ(�x, t), (40)

where D = 1
2 FFT is the diffusion matrix. The steady-state 

solution of this equation  is a Gaussian distribution, with a 
covariance matrix, C, which is found by solving the Lyapunov 
equation

AC + CAT = −2D. (41)

The steady state probability flux density is given by 
�j = Ω�xρ(�x), where

Ω =
k(T1 − T2)

γc

(
2(T1 + T2) −(7T1 + T2)

(T1 + 7T2) −2(T1 + T2)

)
 (42)

with c = (T2
1 + 14T1T2 + T2

2 ). As expected, the flux vanishes 
at thermal equilibrium when T1 = T2. In the near equilibrium 
regime, we can consider T1  =  T and T2 = T + ε with ε small. 
Within this limit, the current field can be written as
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�j ∝ ε

T2 e− k(x2
1−x1x2+x2

2)
kBT

(
x1 − 2x2

−2x1 + x2

)
+ O(ε)2 (43)

where we note how the amplitude and the direction of the flux 
are set by the ratio ε

T2 , which vanishes at equilibrium. To gain 
some intuition on how the current decays with the distance 
in phase space, we can for example constrain equation  (43) 
along the vertical direction (x1  =  0),

�j ∝ ε

T2 e− kx2
2

kBT

(−2x2

x2

)
+ O(ε)2. (44)

From equation (44) we can notice two opposite contributions 
to the amplitude, the linear dependence, dominant for small x2 
and the exponential dependence, dominant for larger x2. This 
indicates an optimal distance from the origin at which the flux 
is maximum.

To compare the analytical expectation for the flux �j  with 
the results obtained using PFA on simulated trajectories, we 
calculate the compatibility cij,l between the estimated ĵ and 
the theoretical j values of the flux field in cell i, j, and in direc-
tion xl:

cij,l =
|̂jij,xl − jij,xl |

σ
, (45)

where σ is the error obtained from the bootstrapping analysis 
in PFA. The results for the second component of �j  yield an 
average compatibility of 〈cij〉 � 1.02 (figure 12(E)), indicat-
ing a good quantitative agreement between our estimation and 
the exact currents. A similar result is obtained in the equilib-
rium case (T1 = T2), for which the average compatibility is 

〈cij〉 � 0.95. This concludes our analysis of probability fluxes 
in phase space for stochastic trajectories. These results illus-
trate how PFA can be used to infer accurate currents in coarse 
grained phase space from stochastic trajectories.

4.3. Probe filaments to study broken detailed balance across 
scales in motor-activated gels

While mesoscopic objects, such as cilia or flagella, can often 
be directly imaged, detecting non-equilibrium dynamics inside 
live cells on the microscale and below is more challenging. 
The cellular cytoskeleton, discussed in section 2, is a promi-
nent example of active matter, which can best be described as 
a viscoelastic meshwork of biopolymers, activated by myosin 
motors [17, 21]. Random contractions of these myosin pro-
teins fuelled by ATP hydrolysis can drive vigorous steady-
state fluctuations in this polymer network. Such fluctuations 
can be quantified experimentally by embedding fluorescent 
probe particles. This technique has revealed multiple scal-
ing regimes of the time dependence of the mean-squared 
displacement [32], which were attributed to a combination 
of the viscoelastic behavior of the network and the temporal 
dynamics of motor activity. In particular, endogenous embed-
ded filaments such as microtubules, or added filaments such as 
single-walled carbon nanotubes have proved to be convenient 
probes [34, 55].

These experiments and others [45, 140, 262] have sparked 
a host of theoretical efforts [111, 185, 263–269] to elucidate 
the stochastic dynamics of probe particles and filaments in an 
active motorized gel. More recently, it has been suggested that 

Figure 12. (A) Schematic of the two coupled beads system and simulated time series of the beads positions for T2 = 5T1. ((B) and (C)) 
Probability distribution (color) and flux map (white arrows) obtained by Brownian dynamics simulations at equilibrium (T1 = T2) (B) and 
non-equilibrium (T2 = 5T1) (C). Translucent discs represent a 2σ confidence interval for fluxes. (D) Analytical result for the probability 
distribution (color) and flux map (white arrows) obtained for a non-equilibrium case, (T2 = 5T1). From [22]. Reprinted with permission 
from AAAS. (E) Compatibility estimated from equation (45) between the estimated and theoretical second components of the currents.
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probe filaments can be also used as a multi-variable probe to 
discriminate active from thermal fluctuations using detailed 
balance [59, 60], and could be used to detect correlations in 
the profile of active forces along its backbone [58].

In the following, we lay out a framework to describe fluc-
tuations of a semiflexible probe filament [56, 270–272], which 
is embedded in a motor-activated network [111, 127, 181]. We 
assume the probe filament to be weakly-bending, such that 
we can focus on the transverse coordinate r⊥(s, t), where the 
arclength 0  <  s  <  L parametrizes the backbone, as shown in 
figure 13. The overdamped dynamics of such a probe filament 
is governed by a balance of (i) viscous and elastic forces of 
the surrounding viscoelastic medium, (ii) bending forces, (iii) 
thermal agitation, and (iv) motor-induced fluctuations, which 
read in this order as

t∫

−∞

dt′ α(t − t′)r⊥(s, t′) + κ
∂4r⊥
∂t4 (s, t) = ξ(s, t) + fM(s, t).

 (46)

Terms on the left describe relaxation, while terms on the 
right contain stochastic contributions. For a predominantly 
elastic network, we can use the generalized Stokes equation, 
α̂(ω) = k0Ĝ(ω) to approximate the viscoelastic kernel on the 
left hand side as Ĝ = G0 + iηω, i.e. as a Kelvin–Voigt-type 
viscoelastic solid. The factor k0 has a geometrical origin, and 
is given by k0 ≈ 4π/ ln(L/d) for an infinitesimal rod seg-
ment of diameter d [126]. In a crosslinked actin network this 
approximation is reasonable for low frequencies typically 
below roughly 100 Hz, beyond which the network modulus 
exhibits a characteristic stiffening with frequency [45, 273, 
274]. When the network is described as such a simple visco-
elastic solid, the thermal noise is given by a Gaussian white-
noise process ξ(s, t), to which we add independent actively 
induced forces fM(s, t), specified in detail further below.

Bending forces can be conveniently studied from the per-
spective of bending modes of the probe filament. Following 
the approach in [59, 60], a description in terms of bend-
ing modes can be obtained from a decomposition of the 
backbone coordinates into orthogonal dynamic modes 
r⊥(s, t) = L

∑
q aq(t)yq(s) [56–58]. In this coordinate sys-

tem, the multiscale character of probe filaments becomes 
apparent: each bending mode amplitude aq(t) is sensitive to 
a lengthscale corresponding to its wavelength. The precise 
form of bending modes, however, depends on the boundary 
conditions of the filament. The simplest case is a filament 
with zero transverse deflections at its end, where classical 
sine-modes yqm(s) =

√
2/L sin(qms) form an orthonormal 

set. Importantly, these modes are independent in equilib-
rium, due to their orthogonality. For fixed-end modes, mode 
number m ∈ {1, 2, 3, ...} and wave-vector q are related via 
q(m) = mπ/L. The relaxational timescale of each mode is set 
by a balance between both elastic and viscous forces of the 
network and the bending rigidity of the filament. For inexten-
sible filaments in purely viscous environments, this results in 
a strongly length-dependent decay

τq =
η

κq4/k0 + G0
. (47)

In the linear-response regime, we obtain the mode-response 
function to transverse deflections, χq(t), in fourier space 
χ̂q(ω) = (α̂(ω) + κq4)−1. This response function is related 
to mode variances in equilibrium via the mode fluctuation-
dissipation theorem

〈|âq(ω)|2〉 =
2kBT
L2ω

χ̂′′
q (ω). (48)

Bending modes are thus ideally suited to not only detect motor 
activity, but also to measure their spatial and temporal charac-
teristics. Perhaps for these reasons, bending mode fluctuations 
have been the subject of a number of studies in biological non-
equilibrium systems.

In a study by Brangwynne et al [55], fluorescently labelled 
microtubuli were used to probe the active fluctuations in actin-
myosin gels. The persistence lengths of microtubuli is on the 
order of millimeters [57], such that these filaments can be 
treated effectively as rigid on microscopic lengthscales under 
thermal conditions. By contrast, in actin-myosin gels, micro-
tubuli exhibit significant fluctuations, caused by contractions 
of myosin, which deform the network in which the micro-
tubules are embedded. A quantitative analysis of thermal 
bending mode fluctuations reveals a q−4-decay in actin net-
works (without myosin). By contrast, adding myosin not only 
increases the amplitudes of fluctuations, but also results in a 
breakdown of the standard mode decay (see equation  (47). 
The spatial extent of individual indentations in motor-agitated 
microtubuli can be used to extract forces induced by myosing. 
These force range between 0−30 pN, in accord with more 
recent studies in live cells [34, 45]. Importantly, the results 
also suggest a very narrow profile of the force exerted on the 
microtubules. Furthermore, in the cell cortex, microtubules 
often appear considerably more curved, despite their rigid-
ity. Indeed, this curved microtubule structure is not due to 

Figure 13. Fluctuations of a probe filament (blue) embedded in 
a viscoelastic actin (grey) network, driven out of equilibrium by 
random contractions of myosin (red, red arrows). Adapted figure 
with permission from [60], Copyright (2017) by the American 
Physical Society.
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temporal bending fluctuations of the microtubule, but rather 
results from geometrical constraints that randomly deflect the 
microtubule tip during polymerization [158].

Motivated by these experimental observations, we can 
model the motor-induced force, exerted on the probe at the 
points where it is coupled elastically to the network, as a 
superposition of all active forces in the environment:

fM(s, t) =
∑

n

fn(s, t), (49)

where each fn(s, t) denotes the force contribution from active 
motors, which affect the filament at the nth entanglement 
point. Active forces have a characteristic spatial decay, since 
myosin motors exert forces in dipoles rather than in single 
directions [275]. The model in equation (49) does not account 
for such details; its main purpose is to provide a non-uniform 
force background f (s) along the backbone s.

Measurements of myosin dynamics have revealed a 
Lorentzian power spectrum [111, 274]. A simple on-off 
telegraph process T (t) is in accord with these observa-
tions and appears to be adequate to model the stochastic 
force dynamics of individual motors. Taking furthermore 
into account the narrow profile of motor forces inferred 
from experiments [55], we arrive at a model for motor-
induced forces, which reads fn(s, t) = fnδ(s − sn)Tn(t). Here 
Tn(t) is a telegraph process with exponential decorrelation 
〈T (t)T (t′)〉 = C2 exp(−|t − t′|/τM).

Using this simple description for the stochastic behav-
ior of motor-generated forces together with equation  (48), 
we compute the mode correlator, which decomposes 
into active and thermal contributions: 〈aq(t)aw(t′)〉 =  
〈aq(t)aw(t′)〉Th + 〈aq(t)aw(t′)〉M, given by

〈aq(t)aw(t′)〉Th =
kBTτq

L2γ
δq,we− |t−t′|

τq (50)

〈aq(t)aw(t′)〉M =
1

L2γ2 Fq,wC2Cq,w (t − t′) . (51)

Fq,w specifies the geometry of motor-induced forces in mode 
space and is defined by Fq,w =

∑
n f 2

n yq (sn) yw (sn), where the 
sum runs over the filament-network contacts. The function 
Cq,w(∆t) denotes the temporal decorrelation of active mode 
fluctuations. In contrast to thermal equilibrium, active fluctua-
tions decay as a double exponential

Cq,w(t − t′) = τqτw

(
e− |t−t′|

τM(
1 − τq

τM

) (
1 + τw

τM

) .

− 2
τq

τM

e− |t′−t|
τq

(
1 −

(
τq

τM

)2
) (

1 + τw
τq

)

)
,

 

(52)

which indicates a competition between two decorrelating pro-
cesses: mode relaxation and the internal decorrelation of the 
motor state. The correlator is not symmetric in the indices q 
and w as can be seen from equation (52), which results in a 
breaking of Onsager’s time-reversal symmetry [60].

This double exponential in equation (52) is the footprint of 
colour of the noise process, which we use to describe motor-
induced forces. The q−4-decay of mode amplitudes relaxation 
times, τq, levels off around τM as shown in figure 14(C). This 
saturation occurs because modes cannot decorrelate faster 
than the force that is driving them. Under coloured noise, 
the relaxation times cannot be directly inferred from decor-
relation. This is indeed confirmed in Brownian dynamics 
simulations of filaments subject to active fluctuations [59]. To 
further illustrate these results, simulations of mode variances 
over mode vector in passive (figure 14(A)) and active (figure 
14(B)) networks are shown together with theoretical predic-
tions from equations  (50) and (51). For comparison, exper-
imentally obtained mode variances [55] are plotted over q in 
figure 15. As one would expect, in both cases mode variances 
are elevated in active environments.

In the long time regime t � τM, motor forces effec-
tively appear as sources of white-noise. In this ‘white-
noise limit’, the motor correlator converges to a δ-function, 
〈∆T (t)∆T (t′)〉 → C2/2τMδ(t − t′) with a factor τM, which 
remains only as a scale of the variance of the motor process. 
The mode correlation function in the white-noise limit can be 
derived by a series expansion of Cq,w(t), which yields

〈aq(t)aw(t′)〉M =
C2τM

L2γ2 Fq,w
τqτw

τq + τW
δ(t − t′). (53)

We can now contract the thermal and motor-white noise 
processes into a single process ψ(t), with a correlator 

〈ψq(t)ψw(t′)〉 = (4kBTγδq,w + C2τMFq,w)
δ(t−t′)

2L2 .
It is useful at this stage to compare this scenario with 

that described in section 3.2: Here, mode variables are inde-
pendent, but are subject to noise with a cross-mode correla-
tions, such that different modes are simultanously excited 
by a motor event. By constrast, thermal noise is uniform in 
amplitude and uncorrelated throughout the system, giving 
rise to independent stochastic forces in mode-space. As we 
discussed in section  3.2, a correlation in the external noise 
in one coordinate system, may appear as a ‘temper ature’ 

Figure 14. Mode fluctuations under (A) purely thermal agitated 
and (B) under additional influence of motor-induced forces. C) 
Convergence of mode decorrelation times onto the motor timescale. 
Different colors correspond to the different times ∆t  shown in the 
legend in panel (A). Adapted figure with permission from [55], 
Copyright (2008) by the American Physical Society.
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gradient in different coordinates. It is this mechanism, 
which gives rise to a probability flux in mode space, which 
breaks detailed balance in the fluctuations of the probe fila-
ment. In other words, a motor-induced force background 

〈 fM(s, t)〉temporal = limt1→∞
∫ t1

t0
dtfM(s, t) (see lower panel 

in figure 13), which varies along the filament, will lead to a 
breaking of detailed balance in a hyperplane spanned by the 
affected modes.

The magnitude and structure of this probability current, is 
given as a solution of the multivariate Fokker-Planck equa-
tion  ∂tρ(�a, t) = −�∇ ·�j(�a, t) in mode space. The probability 
current, �j(�a), can be written in steady-state as

�j(�a) = (K + DC−1)�aρ(�a) ≡ Ω�aρ(�a), (54)

where Kq,w = −1/τqδq,w is the deterministic matrix which 
defines the linear force field, and D and C represent respec-
tively the diffusion and covariance matrices. Within this lin-
ear description, Ω is the matrix that captures the structure 
of the current [230, 276]. A rotational probability current in 
the Fokker-Planck picture is associated with a net rotation 
of variables in the Langevin description: On average, mode 
ampl itudes cycle around the origin, when detailed balance is 
broken in steady-state, as illustrated in figure 16.

The circular character of the current is reflected mathemat-
ically by the skew-symmetry of ΩT = −Ω in the coordinate 
system where C̃ = 1 (‘correlation-identity coordinates’). 
This can be seen from equation  (41), which dictates that 

K̃ + K̃T = −2D̃ in this system, such that Ω̃ = 1
2

(
K̃ − K̃T

)
. 

The eigenvalues of any skew-symmetric matrix R  are either 
zero or purely imaginary, with the latter leading to rotational 
currents in a hypothetical dynamical system described by 
�̇x = R�x . Moreover, since Tr (Ω) = 0, in two dimensions, this 
implies that the eigenvalues can be rewritten as λ1,2 = ±iω. 
In a steady-state, the probability current �j  (in any dimension) 
has to be orthogonal to the gradient of the density ρ(�a, t), since 
�∇ ·�j(�a) = ρ(�a)�∇ · (Ω�a) + (Ω�a) · �∇�ρ(�a) = ∂tρ = 0. The 
first term must be zero, since it is proportional to Tr (Ω)�a, 
so that the second term has to vanish as well. This, how-
ever, implies that �∇ρ ⊥ Ω�a : the gradient of the density must 
be perpendicular to the flow field. In a linear system, the 
probability density is always Gaussian ρ ∝ e− 1

2�a
T C−1�a , such 

that the flow field must have an ellipsoidal structure [230]. 
In correlation-identity coordinates, where the density has a 

radial symmetry, the profile of �̃j  would thus be purely azi-

muthal, and its magnitude would represent an angular veloc-
ity. An average over the angular movements 〈ϕ̇〉 of the mode 
vector �a(t) in the plane will yield the cycling frequency. The 
imaginary part of the positive eigenvalue of Ω must there-
fore represent the average cycling frequency of the mode 
vector in the plane.

In a reduced 2D system consisting only of aq(t) and aw(t), 
the cycling frequency can be calculated analytically and reads

Figure 16. Steady-state probability currents in mode space. (A) 
Projection of the multidimensional current on the mode amplitude 
pair a1 and a3. (B) The same current in three dimensions a1, a3, 
and a5. Due to the geometry of probe-network interactions in this 
example, only modes of similar number parity (e.g. odd–odd) 
couple. Adapted figure with permission from [59], Copyright (2016) 
by the American Physical Society.

Figure 15. Mode amplitude variations in fluctuating microtubules 
embedded in actin-myosin gels over mode number q. (A) In ATP-
depleted gels (purely thermal noise), mode variances follow a 
power law decay. (B) Active fluctuations result in enhanced mode 
variances in accord with the theory In figure 14. At high q-values 
measurement noise leads to an increase in mode variances. 
Adapted figure with permission from [59], Copyright (2016) by the 
American Physical Society.
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ω2D
q,w =

(τq − τw) Fq,w√
τqτw

(
(τq + τw)

2
β − 4τqτwF2

q,w

) (55)

where β = ( 2kBTγ
C2τM

)2 + 2kBTγ
C2τM

(Fq,q + Fw,w) + Fw,wFq,q.

Interestingly, equation (55) shows that in the case of equal 
relaxation times τq = τw, the cycling frequency would be zero 
and thus, detailed balance would be restored, regardless of 
differences between the modes in motor-induced fluctuations. 
This hints at an important role of relaxation times in deter-
mining the shape of the current in multidimensional systems. 
Furthermore, the denominator of equation (55) shows how an 
increase in overall temperature T could mask broken detailed 
balance by reducing the cycling frequency.

In summary, filaments as multi-scale and multi-variable 
probes offer a novel perspective on non-equilibrium phe-
nomena in active matter and could be used in the future as 
‘non-equilibrium antennae’. As we illustrated in this section, 
a heterogeneous force background fM(s, t) created by motor-
induced fluctuations leads to a breaking of detailed balance in 
mode space of embedded filaments. The intricate structure of 
the probability current in steady-state may contain a wealth of 
information about the geometric and, perhaps, temporal struc-
ture of impinging active forces.

The theory laid out in this section  can be generalized to 
other objects, such as membranes [35, 36, 167, 172]. In prin-
ciple, the membrane mode decomposition described in sec-
tion 2 could be used to detect a breaking of detailed balance, 
since active processes in the cortex of red blood cells might 
result in noise input that correlates over different membrane 
modes.

5. Outlook

The examples discussed in this review illustrate how exper-
imental measurements of non-equilibrium activity and irre-
versibility can provide a deeper conceptual understanding of 
active biological assemblies and non-equilibrium processes 
in cells. In many cases, non-equilibrium fluctuations have 
successfully been identified and quantified using the com-
bination of active and passive microrheology techniques to 
study the violation of the fluctuation-dissipation theorem,  
[36, 43]. Such studies can for instance reveal the force spec-
trum inside cells, [45]. However, these approaches require 
invasive micromechanical manipulation. Furthermore, a com-
plete generalization of the fluctuation-dissipation theorem for 
non-equilibrium system is still lacking, such that the response 
of a non-equilibrium system can not be inferred from its spon-
taneous fluctuations. However, this does not mean that the 
fluctuations of a non-equilibrium steady state do not contain 
valuable information about the nature of the system. Indeed, 
non-invasive approaches to measure broken detailed balance 
from stochastic dynamics have now been establishes to reveal 
phase space currents in mesoscopic degrees of freedom of 
biological systems, [22]. It remains an open question what 
information can be inferred about the underlying system from 
such phase space currents, [59, 60]. However, recently derived 

theoretical relations for energy dissipation and entropy pro-
duction to characterize non-equilibrium activity are find-
ing traction in various biological systems such as molecular 
motors and chemical control systems [1, 2, 225, 247].

Taken together, the research discussed in this review illus-
trate that the gap between fundamental approaches in sto-
chastic thermodynamics and its application to real biological 
system is slowly closing. Indeed, studies of biological active 
matter are not only yielding insights in non-equilibrium phys-
ics, they have also suggested conceptually novel mechanisms 
in cell biology. For instance, the collective effect of forces 
exerted by molecular motors has been implicated in intracel-
lular transport and positioning of the nucleus [31, 32, 34, 45, 
110]. This novel mode of transport, known as active diffusion, 
is thought to complement thermal diffusion and directed, 
motor-driven modes of transport in cells. Another intriguing 
example is the role of DNA-binding ATPases, which have 
been suggested to be capable of generating forces on the 
chromosomes through a DNA-relay mechanism [277] or loop 
extrusion [278, 279]. ATP- or GTPases can also interact with 
membranes or DNA to play a role in pattern forming systems 
[10–12], for instance in the Min system in E. coli and CDC42 
in yeast. In these systems, certain proteins can switch irrevers-
ibly between different conformational states, affecting their 
affinity to be in the cytosol or the membrane. This, together 
with nonlinear interactions between these different proteins, 
can result in non-equilibrium dynamic pattern formation.

Another important example in this respect is how cells 
break symmetry to form a polarity axes. Intracellular myosin 
activity has been implicated in establishing a sense of direc-
tion (‘polarity’) in cells. In order to divide, cells must ‘decide’ 
on the axis of the mytotic spindle, which is a crucial part of 
the cell division apparatus [280–283]. Cortical flows result-
ing from asymmetries in myosin activity have been shown to 
effectively polarize C. elegans cells and break the initial cel-
lular symmetry [284].

Non-equilibrium phenomena also emerge at the multicel-
lular scale: Groups of motile cells exhibit collective active 
dynamics, such as flocking, swarming, non-equilibrium 
phase transitions or the coordinated movements of cells 
during embryonic developments [285, 286]. More broadly, 
 non-equilibrium physics is emerging as a guiding framework 
to understand phenomena related to self-replication and adap-
tation [226–228], the origin of life (see for example [287, 
288]), as well as synthetic life-like systems (See [289] and 
references therein).

Acknowledgments

This work was supported by the German Excellence Initiative 
via the program NanoSystems Initiative Munich (NIM) and 
by the German Research Council (DFG) within the frame-
work of the Transregio 174 ‘Spatiotemporal dynamics of 
bacterial cells’. FM is supported by a DFG Fellowship 
through the Graduate School of Quantitative Biosciences 
Munich (QBM). This project has received funding from the 
European Union’s Horizon 2020 research and innovation 

Rep. Prog. Phys. 81 (2018) 066601



Review

26

programme under European Training Network (ETN) grant 
674979-NANOTRANS (JG) and was performed in part 
at the Aspen Center for Physics (CPB), which is supported 
by National Science Foundation grant PHY-1607611. We 
thank T Betz, G Berman, W Bialek, D Braun, D Brückner, C 
Brangwynne, G Crooks, N Fakhri, B Fabry, E Frey, N Gov, 
M Guo, G Gradziuk, R Granek, L Jawerth, F Jülicher, G 
Koenderink, K Kroy, M Lenz, T Liverpool, T Lubensky, B 
Machta, F MacKintosh, J Messelink, K Miermans, J Rädler, 
P Ronceray, J Shaevitz, D Schwab, M Sheinman, Y Shokef, 
C Schmidt, C Storm, J Tailleur, M Tikhonov, D Weitz, M 
Wigbers, and N Wingreen, for many stimulating discussions.

ORCID iDs

C P Broedersz  https://orcid.org/0000-0001-7283-3704

References

	 [1]	 Lan G, Sartori P, Neumann S, Sourjik V and Tu Y 2012 The 
energy speed accuracy trade-off in sensory adaptation 
Nat. Phys. 8 422–8

	 [2]	 Mehta P and Schwab D J 2012 Energetic costs of cellular 
computation Proc. Natl Acad. Sci. USA 109 17978–82

	 [3]	 Hopfield J J 1974 Kinetic proofreading: a new mechanism for 
reducing errors in biosynthetic processes requiring high 
specificity Proc. Natl Acad. Sci. USA 71 4135–9

	 [4]	 Murugan A, Huse D A and Leibler S 2012 Speed, dissipation, 
and error in kinetic proofreading Proc. Natl Acad. Sci. USA 
109 12034–9

	 [5]	 Needleman D and Brugues J 2014 Determining physical 
principles of subcellular organization Dev. Cell 29 135–8

	 [6]	 Fletcher D A and Mullins R D 2010 Cell mechanics and the 
cytoskeleton Nature 463 485–92

	 [7]	 Brangwynne C P, Koenderink G H, MacKintosh F C and 
Weitz D A 2008 Cytoplasmic diffusion: molecular motors 
mix it up J. Cell Biol. 183 583–7

	 [8]	 Juelicher F, Kruse K, Prost J and Joanny J-F 2007 Active 
behavior of the cytoskeleton Phys. Rep. 449 3–28

	 [9]	 Cates M E 2012 Diffusive transport without detailed balance 
in motile bacteria: does microbiology need statistical 
physics? Rep. Prog. Phys. 75 042601

	[10]	 Huang K C, Meir Y and Wingreen N S 2003 Dynamic 
structures in Escherichia Coli: spontaneous formation of 
MinE rings and MinD polar zones Proc. Natl Acad. Sci. 
USA 100 12724–8

	[11]	 Frey E, Halatek J, Kretschmer S and Schwille P 2017 
Protein pattern formation Physical Biology Members ed 
P Bassereau and P C A Sens (Heidelberg: Springer)

	[12]	 Halatek J and Frey E 2012 Highly canalized MinD transfer 
and MinE sequestration explain the origin of robust 
MinCDE-protein dynamics Cell Rep. 1 741–52

	[13]	 Bialek W 2012 Biophysics: Searching for Principles 
(Princeton, NJ: Princeton University Press)

	[14]	 Seifert U 2012 Stochastic thermodynamics, fluctuation theorems 
and molecular machines Rep. Prog. Phys. 75 126001

	[15]	 Ritort F 2007 Nonequilibrium fluctuations in small systems: 
from physics to biology Advances in Chemical Physics 
ed S A Rice, vol 137 (Hoboken, NJ: Wiley) (https://doi.
org/10.1002/9780470238080.ch2)

	[16]	 Van den Broeck C and Esposito M 2015 Ensemble and 
trajectory thermodynamics: a brief introduction Physica A 
418 6–16

	[17]	 MacKintosh F C and Schmidt C F 2010 Active cellular 
materials Curr. Opin. Cell Biol. 22 29–35

	[18]	 Marchetti M C, Joanny J F, Ramaswamy S, Liverpool T B, 
Prost J, Rao M and Simha R A 2013 Hydrodynamics of soft 
active matter Rev. Mod. Phys. 85 1143–89

	[19]	 Ramaswamy S 2010 The mechanics and statistics of active 
matter Annu. Rev. Condens. Matter Phys. 1 323–45

	[20]	 Joanny J-F and Prost J 2009 Active gels as a description of the 
actin-myosin cytoskeleton HFSP J. 3 94–104

	[21]	 Prost J, Julicher F and Joanny J-F F 2015 Active gel physics 
Nat. Phys. 11 111–7

	[22]	 Battle C, Broedersz C P, Fakhri N, Geyer V F, Howard J, 
Schmidt C F and MacKintosh F C 2016 Broken detailed 
balance at mesoscopic scales in active biological systems 
Science 352 604–7

	[23]	 Zia R K P and Schmittmann B 2007 Probability currents as 
principal characteristics in the statistical mechanics of non-
equilibrium steady states J. Stat. Mech. 2007 P07012

	[24]	 Ajdari A, Prost J, Ju F and Jülicher F 1997 Modeling 
molecular motors Rev. Mod. Phys. 69 1269–81

	[25]	 Howard J 2001 Mechanics of motor proteins and the 
cytoskeleton Sinauer 7 384

	[26]	 Bausch A R and Kroy K 2006 A bottom-up approach to cell 
mechanics Nat. Phys. 2 231–8

	[27]	 Glaser J and Kroy K 2010 Fluctuations of stiff polymers and 
cell mechanics Biopolymers 509–34

	[28]	 Egolf D A 2000 Equilibrium regained: from nonequilibrium 
chaos to statistical mechanics Science 287 101–4

	[29]	 Rupprecht J-F and Prost J 2016 A fresh eye on nonequilibrium 
systems Science 352 514–5

	[30]	 Weber S C, Spakowitz A J and Theriot J A 2012 Nonthermal 
ATP-dependent fluctuations contribute to the in vivo 
motion of chromosomal loci Proc. Natl Acad. Sci. USA 
109 7338–43

	[31]	 Almonacid M, Ahmed W W, Bussonnier M, Mailly P, Betz T, 
Voituriez R, Gov N S and Verlhac M-H 2015 Active 
diffusion positions the nucleus in mouse oocytes Nat. Cell 
Biol. 17 470–9

	[32]	 Brangwynne C P, Koenderink G H, MacKintosh F C and 
Weitz D A 2009 Intracellular transport by active diffusion 
Trends Cell Biol. 19 423–7

	[33]	 Brangwynne C P, Mitchison T J and Hyman A A 2011 Active 
liquid-like behavior of nucleoli determines their size and 
shape in Xenopus laevis oocytes Proc. Natl Acad. Sci. USA 
108 4334–9

	[34]	 Fakhri N, Wessel A D, Willms C, Pasquali M, 
Klopfenstein D R, MacKintosh F C and Schmidt C F 2014 
High-resolution mapping of intracellular fluctuations using 
carbon nanotubes Science 344 1031–5

	[35]	 Betz T, Lenz M, Joanny J-F and Sykes C 2009 ATP-dependent 
mechanics of red blood cells Proc. Natl Acad. Sci. USA 
106 15320–5

	[36]	 Turlier H, Fedosov D A, Audoly B, Auth T, Gov N S, 
Sylkes C, Joanny J-F, Gompper G and Betz T 2016 
Equilibrium physics breakdown reveals the active nature of 
red blood cell flickering Nat. Phys. 12 513–9

	[37]	 Ben-Isaac E, Park Y, Popescu G, Brown F L H, 
Gov N S and Shokef Y 2011 Effective temperature of 
red-blood-cell membrane fluctuations Phys. Rev. Lett. 
106 238103

	[38]	 Tuvia S, Almagor A, Bitler A, Levin S, Korenstein R and 
Yedgar S 1997 Cell membrane fluctuations are regulated by 
medium macroviscosity: evidence for a metabolic driving 
force Proc. Natl Acad. Sci. 94 5045–9

	[39]	 Monzel C, Schmidt D, Kleusch C, Kirchenbüchler D, 
Seifert U, Smith A-S, Sengupta K and Merkel R 2015 
Measuring fast stochastic displacements of bio-membranes 
with dynamic optical displacement spectroscopy Nat. 
Commun. 6 8162

Rep. Prog. Phys. 81 (2018) 066601



Review

27

	[40]	 Battle C, Ott C M, Burnette D T, Lippincott-Schwartz J and 
Schmidt C F 2015 Intracellular and extracellular forces 
drive primary cilia movement Proc. Natl Acad. Sci. USA 
112 1410–5

	[41]	 Fodor É, Mehandia V, Comelles J, Thiagarajan R, Gov N S, 
Visco P, van Wijland F and Riveline D 2015 From 
motorinduced fluctuations to mesoscopic dynamics in 
epithelial tissues 1 1–5 (arXiv:1512.01476)

	[42]	 Lau A W C, Hoffman B D, Davies A, Crocker J C and 
Lubensky T C 2003 Microrheology, stress fluctuations, 
and active behavior of living cells Phys. Rev. Lett. 
91 198101

	[43]	 Mizuno D, Tardin C, Schmidt C F and MacKintosh F C 2007 
Nonequilibrium mechanics of active cytoskeletal networks 
Science 315 370–3

	[44]	 Mizuno D, Head D A, MacKintosh F C and Schmidt C F 
2008 Active and passive microrheology in equilibrium and 
nonequilibrium systems Macromolecules 41 7194–202

	[45]	 Guo M, Ehrlicher A J, Jensen M H, Renz M, Moore J R, 
Goldman R D, Lippincott-Schwartz J, Mackintosh F C 
and Weitz D A 2014 Probing the stochastic, motor-
driven properties of the cytoplasm using force spectrum 
microscopy Cell 158 822–32

	[46]	 Schaller V, Weber C, Semmrich C, Frey E and Bausch A R 
2010 Polar patterns of driven filaments Nature 467 73–7

	[47]	 Schaller V, Weber C A, Hammerich B, Frey E and Bausch A R 
2011 Frozen steady states in active systems Proc. Natl 
Acad. Sci. USA 108 19183–8

	[48]	 Soares e Silva M et al 2011 Active multistage coarsening of 
actin networks driven by myosin motors Proc. Natl Acad. 
Sci. USA 108 9408–13

	[49]	 Murrell M P and Gardel M L 2012 F-actin buckling 
coordinates contractility and severing in a biomimetic 
actomyosin cortex Proc. Natl Acad. Sci. USA 109 20820–5

	[50]	 Alvarado J, Sheinman M, Sharma A, MacKintosh F C and 
Koenderink G H 2013 Molecular motors robustly drive 
active gels to a critically connected state Nat. Phys. 
9 591–7

	[51]	 Lenz M 2014 Geometrical origins of contractility in 
disordered actomyosin networks Phys. Rev. X 4 041002

	[52]	 Koenderink G H, Dogic Z, Nakamura F, Bendix P M, 
MacKintosh F C, Hartwig J H, Stossel T P and Weitz D A 
2009 An active biopolymer network controlled by 
molecular motors Proc. Natl Acad. Sci. USA 106 15192–7

	[53]	 Sheinman M, Broedersz C P and MacKintosh F C 2012 
Actively stressed marginal networks Phys. Rev. Lett. 
109 238101

	[54]	 Broedersz C P and MacKintosh F C 2011 Molecular motors 
stiffen non-affine semiflexible polymer networks Soft 
Matter 7 3186–91

	[55]	 Brangwynne C P, Koenderink G H, MacKintosh F C and 
Weitz D A 2008 Nonequilibrium microtubule fluctuations 
in a model cytoskeleton Phys. Rev. Lett. 100 118104

	[56]	 Aragon S R and Pecora R 1985 Dynamics of wormlike chains 
Macromolecules 18 1868–75

	[57]	 Gittes F, Mickey B, Nettleton J and Howard J 1993 Flexural 
rigidity of microtubules and actin filaments measured from 
thermal fluctuations in shape J. Cell Biol. 120 923–34

	[58]	 Brangwynne C P, Koenderink G H, Barry E, Dogic Z, 
MacKintosh F C and Weitz D A 2007 Bending dynamics 
of fluctuating biopolymers probed by automated high-
resolution filament tracking Biophys. J. 93 346–59

	[59]	 Gladrow J, Fakhri N, MacKintosh F C, Schmidt C F and 
Broedersz C P 2016 Broken detailed balance of filament 
dynamics in active networks Phys. Rev. Lett. 116 248301

	[60]	 Gladrow J, Broedersz C P and Schmidt C F 2017 
Nonequilibrium dynamics of probe filaments in actin-
myosin networks Phys. Rev. E 96 022408

	[61]	 Cicuta P and Donald A M 2007 Microrheology: a review of 
the method and applications Soft Matter 3 1449–55

	[62]	 Mason T G, Ganesan K, van Zanten J H, Wirtz D and Kuo S C 
1997 Particle tracking microrheology of complex fluids 
Phys. Rev. Lett. 79 3282–5

	[63]	 MacKintosh F and Schmidt C 1999 Microrheology Curr. 
Opin. Colloid Interface Sci. 4 300–7

	[64]	 Waigh T A 2005 Microrheology of complex fluids Rep. Prog. 
Phys. 68 685

	[65]	 Levine A J and Lubensky T C 2000 One- and two-particle 
microrheology Phys. Rev. Lett. 85 1774–7

	[66]	 Jensen M H, Morris E J and Weitz D A 2015 Mechanics and 
dynamics of reconstituted cytoskeletal systems Biochim. 
Biophys. Acta 1853 3038–42

	[67]	 Lieleg O, Claessens M M A E, Heussinger C, Frey E and 
Bausch A R 2007 Mechanics of bundled semiflexible 
polymer networks Phys. Rev. Lett. 99 88102

	[68]	 Lieleg O, Claessens M M A E and Bausch A R 2010 Structure 
and dynamics of cross-linked actin networks Soft Matter 
6 218–25

	[69]	 Mahaffy R E, Shih C K, MacKintosh F C and Käs J 2000 
Scanning probe-based frequency-dependent microrheology 
of polymer gels and biological cells Phys. Rev. Lett. 
85 880–3

	[70]	 Gardel M L, Valentine M T, Crocker J C, Bausch A R and 
Weitz D A 2003 Microrheology of entangled F-actin 
solutions Phys. Rev. Lett. 91 158302

	[71]	 Tseng Y, Kole T P and Wirtz D 2002 Micromechanical 
mapping of live cells by multiple-particle-tracking 
microrheology Biophys. J. 83 3162–76

	[72]	 Keller M, Tharmann R, Dichtl M A, Bausch A R and 
Sackmann E 2003 Slow filament dynamics and 
viscoelasticity in entangled and active actin networks Phil. 
Trans. R. Soc. 361 699–712

	[73]	 Uhde J, Keller M, Sackmann E, Parmeggiani A and Frey E 
2004 Internal motility in stiffening actin-myosin networks 
Phys. Rev. Lett. 93 268101

	[74]	 Wilhelm C 2008 Out-of-equilibrium microrheology inside 
living cells Phys. Rev. Lett. 101 28101

	[75]	 Fabry B, Maksym G N, Butler J P, Glogauer M, Navajas D and 
Fredberg J J 2001 Scaling the microrheology of living cells 
Phys. Rev. Lett. 87 148102

	[76]	 Bausch A R, Möller W and Sackmann E 1999 Measurement of 
local viscoelasticity and forces in living cells by magnetic 
tweezers Biophys. J. 76 573–9

	[77]	 Ma R, Klindt G S, Riedel-Kruse I H, Jülicher F and 
Friedrich B M 2014 Active phase and amplitude 
fluctuations of flagellar beating Phys. Rev. Lett. 
113 048101

	[78]	 Callen H B and Welton T A 1951 Irreversibility and 
generalized noise Phys. Rev. 83 34–40

	[79]	 Kubo R 1966 The fluctuation-dissipation theorem Rep. Prog. 
Phys. 29 255

	[80]	 Martin P, Hudspeth A J and Jülicher F 2001 Comparison of 
a hair bundle’s spontaneous oscillations with its response 
to mechanical stimulation reveals the underlying active 
process Proc. Natl Acad. Sci. USA 98 14380–5

	[81]	 Van Dijk P, Mason M J, Schoffelen R L, Narins P M and 
Meenderink S W 2011 Mechanics of the frog ear Hear. Res. 
273 46–58

	[82]	 Cugliandolo L F, Kurchan J and Peliti L 1997 Energy flow, 
partial equilibration, and effective temperatures in systems 
with slow dynamics Phys. Rev. E 55 3898–914

	[83]	 Loi D, Mossa S and Cugliandolo L F 2008 Effective 
temperature of active matter Phys. Rev. E 77 51111

	[84]	 Bursac P, Lenormand G, Fabry B, Oliver M, Weitz D A, 
Viasnoff V, Butler J P and Fredberg J J 2005 Cytoskeletal 
remodelling and slow dynamics in the living cell Nat. 
Mater. 4 557–61

	[85]	 Prost J, Joanny J-F and Parrondo J M R 2009 Generalized 
fluctuation-dissipation theorem for steady-state systems 
Phys. Rev. Lett. 103 090601

Rep. Prog. Phys. 81 (2018) 066601



Review

28

	 [86]	 Cugliandolo L F 2011 J. Phys. A Math. Theor. 44 483001
	 [87]	 Fodor É, Nardini C, Cates M E, Tailleur J, Visco P and 

van Wijland F 2016 How far from equilibrium is active 
matter? Phys. Rev. Lett. 117 038103

	 [88]	 Fodor É, Guo M, Gov N S, Visco P, Weitz D A and van 
Wijland F 2015 Activity-driven fluctuations in living cells 
Europhys. Lett. 110 48005

	 [89]	 Dieterich E, Seifert U, Ritort F, Camunas-Soler J, Ribezzi-
Crivellari M, Seifert U and Ritort F 2015 Single-molecule 
measurement of the effective temperature in non-
equilibrium steady states Nat. Phys. 11 1–8

	 [90]	 Chaikin P M and Lubensky T C 1995 Principles of 
Condensed Matter Physics (Cambridge: Cambridge 
University Press)

	 [91]	 Yamada S, Wirtz D and Kuo S C 2000 Mechanics of living 
cells measured by laser tracking microrheology Biophys. J. 
78 1736–47

	 [92]	 Mason T G and Weitz D A 1995 Optical measurements 
of frequency-dependent linear viscoelastic moduli of 
complex fluids Phys. Rev. Lett. 74 1250–3

	 [93]	 Ziemann F, Rädler J and Sackmann E 1994 Local 
measurements of viscoelastic moduli of entangled actin 
networks using an oscillating magnetic bead micro-
rheometer Biophys. J. 66 2210–6

	 [94]	 Amblard F, Maggs A C, Yurke B, Pargellis A N and Leibler S 
1996 Subdiffusion and anomalous local viscoelasticity in 
actin networks Phys. Rev. Lett. 77 4470–3

	 [95]	 Schmidt F G, Ziemann F and Sackmann E 1996 Shear field 
mapping in actin networks by using magnetic tweezers 
Eur. Biophys. J. 24 348–53

	 [96]	 Beroz F, Jawerth L M, Münster S, Weitz D A, Broedersz C P 
and Wingreen N S 2017 Physical limits to biomechanical 
sensing in disordered fibre networks Nat. Commun. 
8 16096

	 [97]	 Jones C A R, Cibula M, Feng J, Krnacik E A, McIntyre D H, 
Levine H and Sun B 2015 Micromechanics of cellularized 
biopolymer networks Proc. Natl Acad. Sci. USA 
112 E5117–22

	 [98]	 Crocker J C, Valentine M T, Weeks E R, Gisler T, 
Kaplan P D, Yodh A G and Weitz D A 2000 Two-point 
microrheology of inhomogeneous soft materials Phys. Rev. 
Lett. 85 888–91

	 [99]	 Schnurr B, Gittes F, MacKintosh F C and Schmidt C F 1997 
Determining microscopic viscoelasticity in flexible and 
semiflexible polymer networks from thermal fluctuations 
Macromolecules 30 7781–92

	[100]	 Addas K M, Schmidt C F and Tang J X 2004 Microrheology 
of solutions of semiflexible biopolymer filaments using 
laser tweezers interferometry Phys. Rev. E 70 021503

	[101]	 Gittes F and MacKintosh F C 1998 Dynamic shear modulus of 
a semiflexible polymer network Phys. Rev. E 58 R1241–4

	[102]	 Gittes F, Schnurr B, Olmsted P D, MacKintosh F C and 
Schmidt C F 1997 Microscopic viscoelasticity: shear 
moduli of soft materials determined from thermal 
fluctuations Phys. Rev. Lett. 79 3286–9

	[103]	 Chen D T, Weeks E R, Crocker J C, Islam M F, Verma R, 
Gruber J, Levine A J, Lubensky T C and Yodh A G 2003 
Rheological microscopy: local mechanical properties from 
microrheology Phys. Rev. Lett. 90 108301

	[104]	 Mason T G 2000 Estimating the viscoelastic moduli of 
complex fluids using the generalized Stokes–Einstein 
equation Rheol. Acta 39 371–8

	[105]	 Helfer E, Harlepp S, Bourdieu L, Robert J, MacKintosh F C 
and Chatenay D 2000 Microrheology of biopolymer-
membrane complexes Phys. Rev. Lett. 85 457

	[106]	 Fedosov D A, Caswell B and Karniadakis G E 2010 A 
multiscale red blood cell model with accurate mechanics, 
rheology, and dynamics Biophys. J. 98 2215–25

	[107]	 Lee M H, Reich D H, Stebe K J and Leheny R L 2010 
Combined passive and active microrheology study of 

protein-layer formation at an AirWater interface Langmuir 
26 2650–8

	[108]	 Prasad V, Koehler S A and Weeks E R 2006 Two-particle 
microrheology of quasi-2D viscous systems Phys. Rev. 
Lett. 97 176001

	[109]	 Ortega F, Ritacco H and Rubio R G 2010 Interfacial 
microrheology: particle tracking and related techniques 
Curr. Opin. Colloid Interface Sci. 15 237–45

	[110]	 Caspi A, Granek R and Elbaum M 2000 Enhanced diffusion 
in active intracellular transport Phys. Rev. Lett. 85 5655

	[111]	 MacKintosh F C and Levine A J 2008 Nonequilibrium 
mechanics and dynamics of motor-activated gels Phys. 
Rev. Lett. 100 18104

	[112]	 Vella F 1994 Molecular biology of the cell (third edition): 
By B Alberts, D Bray, J Lewis, M Raff, K Roberts and 
J D Watson. pp 1361. Garland Publishing, New York and 
London. 1994 Biochem. Educ. 22 164

	[113]	 Kasza K E, Rowat A C, Liu J, Angelini T E, 
Brangwynne C P, Koenderink G H and Weitz D A 2007 
The cell as a material Curr. Opin. Cell Biol. 19 101–7

	[114]	 Köhler S and Bausch A R 2012 Contraction mechanisms in 
composite active actin networks PLoS One 7 e39869

	[115]	 Stricker J, Falzone T and Gardel M L 2010 Mechanics of the 
F-actin cytoskeleton J. Biomech. 43 9–14

	[116]	 Lin Y-C, Koenderink G H, MacKintosh F C and Weitz D A 
2007 Viscoelastic properties of microtubule networks 
Macromolecules 40 7714–20

	[117]	 Kasza K E, Broedersz C P, Koenderink G H, Lin Y C, 
Messner W, Millman E A, Nakamura F, Stossel T P, 
MacKintosh F C and Weitz D A 2010 Actin filament 
length tunes elasticity of flexibly cross-linked actin 
networks Biophys. J. 99 1091–100

	[118]	 Gardel M L, Kasza K E, Brangwynne C P, Liu J and 
Weitz D A 2008 Mechanical response of cytoskeletal 
networks Methods Cell Biol. 89 487–519

	[119]	 Pelletier V, Gal N, Fournier P and Kilfoil M L 2009 
Microrheology of microtubule solutions and actin-
microtubule composite networks Phys. Rev. Lett. 
102 188303

	[120]	 Murrell M, Oakes P W, Lenz M and Gardel M L 2015 
Forcing cells into shape: the mechanics of actomyosin 
contractility Nat. Rev. Mol. Cell Biol. 16 486–98

	[121]	 Schaller V, Weber C, Frey E and Bausch A R 2011 Polar 
pattern formation: hydrodynamic coupling of driven 
filaments Soft Matter 7 3213–8

	[122]	 Bendix P M, Koenderink G H, Cuvelier D, Dogic Z, 
Koeleman B N, Brieher W M, Field C M, Mahadevan L 
and Weitz D A 2008 A quantitative analysis of 
contractility in active cytoskeletal protein networks 
Biophys. J. 94 3126–36

	[123]	 Ronceray P, Broedersz C P and Lenz M 2016 Fiber 
networks amplify active stress Proc. Natl Acad. Sci. USA 
113 2827–32

	[124]	 Lenz M, Thoresen T, Gardel M L and Dinner A R 2012 
Contractile units in disordered actomyosin bundles arise 
from F-actin buckling Phys. Rev. Lett. 108 238107

	[125]	 Wang S and Wolynes P G 2012 Active contractility 
in actomyosin networks Proc. Natl Acad. Sci. USA 
109 6446–51

	[126]	 Howard J 2002 Mechanics of motor proteins Physics of 
Bio-Molecules and Cells Physics des Biomolfégcules des 
Cellules (New York: Springer) pp 69–94

	[127]	 Levine A J and MacKintosh F C 2009 The mechanics and 
fluctuation spectrum of active gels J. Phys. Chem. B 
113 3820–30

	[128]	 Storm C, Pastore J J, MacKintosh F C, Lubensky T C and 
Janmey P A 2005 Nonlinear elasticity in biological gels 
Nature 435 191–4

	[129]	 Gardel M L 2004 Elastic behavior of cross-linked and 
bundled actin networks Science 304 1301–5

Rep. Prog. Phys. 81 (2018) 066601



Review

29

	[130]	 Kasza K E, Koenderink G H, Lin Y C, Broedersz C P, 
Messner W, Nakamura F, Stossel T P, Mac Kintosh F C and 
Weitz D A 2009 Nonlinear elasticity of stiff biopolymers 
connected by flexible linkers Phys. Rev. E 79 41928

	[131]	 Lin Y-C, Yao N Y, Broedersz C P, Herrmann H, 
MacKintosh F C and Weitz D A 2010 Origins of elasticity 
in intermediate filament networks Phys. Rev. Lett. 
104 58101

	[132]	 Shokef Y and Safran S A 2012 Scaling laws for the response 
of nonlinear elastic media with implications for cell 
mechanics Phys. Rev. Lett. 108 178103

	[133]	 Ronceray P and Lenz M 2015 Connecting local active 
forces to macroscopic stress in elastic media Soft Matter 
11 1597–605

	[134]	 Hawkins R J and Liverpool T B 2014 Stress reorganization 
and response in active solids Phys. Rev. Lett. 113 28102

	[135]	 Xu X and Safran S A 2015 Nonlinearities of biopolymer 
gels increase the range of force transmission Phys. Rev. E 
92 032728

	[136]	 Chen P and Shenoy V B 2011 Strain stiffening induced 
by molecular motors in active crosslinked biopolymer 
networks Soft Matter 7 355–8

	[137]	 Tee S-Y, Bausch A R and Janmey P A 2009 The mechanical 
cell Curr. Biol. 19 R745–8

	[138]	 Lam W A, Chaudhuri O, Crow A, Webster K D, Li T-D, 
Kita A, Huang J and Fletcher D A 2011 Mechanics and 
contraction dynamics of single platelets and implications 
for clot stiffening Nat. Mater. 10 61

	[139]	 Jansen K A, Bacabac R G, Piechocka I K and 
Koenderink G H 2013 Cells actively Stiffen Fibrin 
networks by generating contractile stress Biophys. J. 
105 2240–51

	[140]	 Toyota T, Head D A, Schmidt C F and Mizuno D 2011 Non-
Gaussian athermal fluctuations in active gels Soft Matter 
7 3234–9

	[141]	 Stuhrmann B, Soares e Silva  M, Depken M, MacKintosh F C 
and Koenderink G H 2012 Nonequilibrium fluctuations of 
a remodeling in vitro cytoskeleton Phys. Rev. E 86 20901

	[142]	 Bertrand O J N, Fygenson D K and Saleh O A 2012 Active, 
motor-driven mechanics in a DNA gel Proc. Natl Acad. 
Sci. USA 109 17342–7

	[143]	 Deng L, Trepat X, Butler J P, Millet E, Morgan K G, 
Weitz D A and Fredberg J J 2006 Fast and slow dynamics 
of the cytoskeleton Nat. Mater. 5 636–40

	[144]	 Ahmed W W and Betz T 2015 Dynamic cross-links tune the 
solid–fluid behavior of living cells Proc. Natl Acad. Sci. 
USA 112 6527–8

	[145]	 Ehrlicher A J, Krishnan R, Guo M, Bidan C M, Weitz D A 
and Pollak M R 2015 Alpha-actinin binding kinetics 
modulate cellular dynamics and force generation Proc. 
Natl Acad. Sci. USA 112 6619–24

	[146]	 Yao N Y, Broedersz C P, Depken M, Becker D J, Pollak M R, 
MacKintosh F C and Weitz D A 2013 Stress-enhanced 
gelation: a dynamic nonlinearity of elasticity Phys. Rev. 
Lett. 110 18103

	[147]	 Humphrey D, Duggan C, Saha D, Smith D and Kas J 2002 
Active fluidization of polymer networks through molecular 
motors Nature 416 413–6

	[148]	 Fernández P and Ott A 2008 Single cell mechanics: stress 
stiffening and kinematic hardening Phys. Rev. Lett. 
100 238102

	[149]	 Wolff L, Fernández P and Kroy K 2012 Resolving the 
stiffening-softening paradox in cell mechanics PLoS One 
7 1–7

	[150]	 Krishnan R et al 2009 Reinforcement versus fluidization in 
cytoskeletal mechanoresponsiveness PLoS One 4 e5486

	[151]	 Trepat X, Deng L, An S S, Navajas D, Tschumperlin D J, 
Gerthoffer W T, Butler J P and Fredberg J J 2007 
Universal physical responses to stretch in the living cell 
Nature 447 592–5

	[152]	 Sollich P, Lequeux F, Hébraud P and Cates M E 1997 
Rheology of soft glassy materials Phys. Rev. Lett. 
78 2020–3

	[153]	 Semmrich C, Storz T, Glaser J, Merkel R, Bausch A R 
and Kroy K 2007 Glass transition and rheological 
redundancy in F-actin solutions Proc. Natl Acad. Sci. USA 
104 20199–203

	[154]	 Hoffman B D and Crocker J C 2009 Cell mechanics: 
dissecting the physical responses of cells to force Annu. 
Rev. Biomed. Eng. 11 259–88

	[155]	 Balland M, Desprat N, Icard D, Féréol S, Asnacios A, 
Browaeys J, Hénon S and Gallet F 2006 Power laws in 
microrheology experiments on living cells: comparative 
analysis and modeling Phys. Rev. E 74 21911

	[156]	 Sakaue T and Saito T 2017 Active diffusion of model 
chromosomal loci driven by athermal noise Soft Matter 
13 81–7

	[157]	 Alcaraz J, Buscemi L, Grabulosa M, Trepat X, Fabry B, 
Farré R and Navajas D 2003 Microrheology of human 
lung epithelial cells measured by atomic force microscopy 
Biophys. J. 84 2071–9

	[158]	 Brangwynne C P, MacKintosh F C and Weitz D A 2007 
Force fluctuations and polymerization dynamics of 
intracellular microtubules Proc. Natl Acad. Sci. USA 
104 16128–33

	[159]	 Razin N, Voituriez R, Elgeti J and Gov N S 2017 Generalized 
Archimedes’ principle in active fluids Phys. Rev. E 
96 032606

	[160]	 Razin N, Voituriez R, Elgeti J and Gov N S 2017 Forces in 
inhomogeneous open active-particle systems Phys. Rev. E 
96 052409

	[161]	 Ahmed W W, Fodor E, Almonacid M, Bussonnier M, 
Verlhac M-H, Gov N S, Visco P, van Wijland F and Betz T 
2015 Active mechanics reveal molecular-scale force 
kinetics in living oocytes (arXiv:1510.08299)

	[162]	 Weber S C, Spakowitz A J and Theriot J A 2010 Bacterial 
chromosomal loci move subdiffusively through a 
viscoelastic cytoplasm Phys. Rev. Lett. 104 238102

	[163]	 Vandebroek H and Vanderzande C 2015 Dynamics of a 
polymer in an active and viscoelastic bath Phys. Rev. E 
92 060601

	[164]	 MacKintosh F C 2012 Active diffusion: the erratic 
dance of chromosomal loci Proc. Natl Acad. Sci. USA 
109 7138–9

	[165]	 Parry B R, Surovtsev I V, Cabeen M T, O’Hern C S, 
Dufresne E R and Jacobs-Wagner C 2014 The bacterial 
cytoplasm has glass-like properties and is fluidized by 
metabolic activity Cell 156 183–94

	[166]	 Evans E A 1983 Bending elastic modulus of red blood cell 
membrane derived from buckling instability in micropipet 
aspiration tests Biophys. J. 43 27–30

	[167]	 Granek R 1997 From semi-flexible polymers to membranes: 
anomalous diffusion and reptation J. Phys. II 7 1761–88

	[168]	 Granek R 2011 Membrane surrounded by viscoelastic 
continuous media: anomalous diffusion and linear 
response to force Soft Matter 7 5281

	[169]	 Lin L C, Gov N and Brown F L H 2006 Nonequilibrium 
membrane fluctuations driven by active proteins J. Chem. 
Phys. 124 074903

	[170]	 Milner S T and Safran S A 1987 Dynamical fluctuations 
of droplet microemulsions and vesicles Phys. Rev. A 
36 4371–9

	[171]	Brochard F and Lennon J 1975 Frequency spectrum 
of the flicker phenomenon in erythrocytes J. Phys. 
36 1035–47

	[172]	 Strey H, Peterson M and Sackmann E 1995 Measurement 
of erythrocyte membrane elasticity by flicker eigenmode 
decomposition Biophys. J. 69 478–88

	[173]	 Gov N 2004 Membrane undulations driven by force 
fluctuations of active proteins Phys. Rev. Lett. 93 268104

Rep. Prog. Phys. 81 (2018) 066601



Review

30

	[174]	 Gov N and Safran S 2005 Red blood cell membrane 
fluctuations and shape controlled by ATP-induced 
cytoskeletal defects Biophys. J. 88 1859–74

	[175]	 Park Y, Best C A, Auth T, Gov N S, Safran S A, Popescu G, 
Suresh S and Feld M S 2010 Metabolic remodeling of 
the human red blood cell membrane Proc. Natl Acad. Sci. 
USA 107 1289–94

	[176]	 Yoon Y Z, Kotar J, Brown A T and Cicuta P 2011 Red blood 
cell dynamics: from spontaneous fluctuations to non-linear 
response Soft Matter 7 2042–51

	[177]	 Rodríguez-García R, López-Montero I, Mell M, Egea G, 
Gov N S and Monroy F 2016 Direct cytoskeleton forces 
cause membrane softening in red blood cells Biophys. J. 
111 1101

	[178]	 Helfrich W 1973 Elastic properties of lipid bilayers: theory 
and possible experiments Z. Nat.forsch. C 28 693–703

	[179]	 Fenz S F, Bihr T, Schmidt D, Merkel R, Seifert U, 
Sengupta K and Smith A-S 2017 Membrane fluctuations 
mediate lateral interaction between cadherin bonds Nat. 
Phys. Nat. Phys. 13 906

	[180]	 Gallet F, Arcizet D, Bohec P and Richert A 2009 Power 
spectrum of out-of-equilibrium forces in living cells: 
amplitude and frequency dependence Soft Matter 5 2947

	[181]	 Osmanović D and Rabin Y 2017 Dynamics of active Rouse 
chains Soft Matter 13 963–8

	[182]	 Samanta N and Chakrabarti R 2016 Chain reconfiguration in 
active noise J. Phys. A: Math. Theor. 49 195601

	[183]	 Romanczuk P, Bär M, Ebeling W, Lindner B and 
Schimansky-Geier L 2012 Active Brownian particles Eur. 
Phys. J. Spec. Top. 202 1–162

	[184]	 Gardel M L, Valentine M T and Weitz D A 2005 
Microrheology Microscale Diagnostic Technology 
(New York: Springer) pp 1–49

	[185]	 Ben-Isaac E, Fodor É, Visco P, van Wijland F and Gov N S 
2015 Modeling the dynamics of a tracer particle in an 
elastic active gel Phys. Rev. E 92 12716

	[186]	 Doi M 2013 Soft Matter Physics (Oxford: Oxford University 
Press)

	[187]	 Gardiner C 1985 Stochastic Methods (Springer Series in 
Synergetics) (Berlin: Springer)

	[188]	 Jarzynski C 2017 Stochastic and macroscopic 
thermodynamics of strongly coupled systems Phys. Rev. X 
7 011008

	[189]	 Gallavotti G and Cohen E G D 1995 Dynamical ensembles 
in nonequilibrium statistical mechanics Phys. Rev. Lett. 
74 2694–7

	[190]	 Jarzynski C 1996 A nonequilibrium equality for free energy 
differences Phys. Rev. Lett. 78 2690–3

	[191]	 Crooks G E 1999 Entropy production fluctuation theorem 
and the nonequilibrium work relation for free energy 
differences Phys. Rev. E 60 2721–6

	[192]	 Kurchan J 1998 Fluctuation theorem for stochastic dynamics 
J. Phys. A: Math. Gen. 31 3719

	[193]	 Sekimoto K 1997 Kinetic characterization of heat bath and 
the energetics of thermal ratchet models J. Phys. Soc. 
Japan 66 1234–7

	[194]	 Sekimoto K 1998 Langevin equation and thermodynamics 
Prog. Theor. Phys. Suppl. 130 17–27

	[195]	 Seifert U 2005 Entropy production along a stochastic 
trajectory and an integral fluctuaction theorem Phys. Rev. 
Lett. 95 14380–5

	[196]	 Lebowitz J L and Spohn H 1999 A Gallavotti–Cohen-type 
symmetry in the large deviation functional for stochastic 
dynamics J. Stat. Phys. 95 333–65

	[197]	 Speck T, Blickle V, Bechinger C and Seifert U 2007 
Distribution of entropy production for a colloidal particle 
in a nonequilibrium steady state Europhys. Lett. 79 30002

	[198]	 Schmiedl T and Seifert U 2007 Optimal finite-time processes 
in stochastic thermodynamics Phys. Rev. Lett. 98 108301

	[199]	 Machta B B 2015 Dissipation bound for thermodynamic 
control Phys. Rev. Lett. 115 1–5

	[200]	 Sivak D A and Crooks G E 2012 Thermodynamic metrics 
and optimal paths Phys. Rev. Lett. 108 1–5

	[201]	 Harada T and Sasa S-I 2006 Energy dissipation and violation 
of the fluctuation-response relation in nonequilibrium 
Langevin systems Phys. Rev. E 73 026131

	[202]	 Toyabe S, Okamoto T, Watanabe-Nakayama T, Taketani H, 
Kudo S and Muneyuki E 2010 Nonequilibrium 
energetics of a single F-ATPase molecule Phys. Rev. Lett. 
104 198103

	[203]	 Ariga T, Tomishige M and Mizuno D 2017 Nonequilibrium 
energetics of molecular motor, kinesin-1 Biophys. J. 
114 509a

	[204]	 Esposito M 2012 Stochastic thermodynamics under coarse 
graining Phys. Rev. E 85 41125

	[205]	 Wang S-W, Kawaguchi K, Sasa S-I and Tang L-H 2016 
Entropy production of nanosystems with time scale 
separation Phys. Rev. Lett. 117 70601

	[206]	 Polettini M and Esposito M 2017 Effective thermodynamics 
for a marginal observer Phys. Rev. Lett. 119 240601

	[207]	 Shiraishi N and Sagawa T 2015 Fluctuation theorem for 
partially masked nonequilibrium dynamics Phys. Rev. E 
91 012130

	[208]	 Bisker G, Polettini M, Gingrich T R and Horowitz J M 2017 
Hierarchical bounds on entropy production inferred from 
partial information J. Stat. Mech. 2017 093210

	[209]	 Roldán É, Neri I, Dörpinghaus M, Meyr H and Jülicher F 
2015 Decision making in the arrow of time Phys. Rev. 
Lett. 115 250602

	[210]	 Neri I, Roldán É and Jülicher F 2017 Statistics of infima and 
stopping times of entropy production and applications to 
active molecular processes Phys. Rev. X 7 011019

	[211]	 Berezhkovskii A, Hummer G and Bezrukov S 2006 Identity 
of distributions of direct uphill and downhill translocation 
times for particles traversing membrane channels Phys. 
Rev. Lett. 97 020601

	[212]	 Qian H and Sunney Xie X 2006 Generalized Haldane 
equation and fluctuation theorem in the steady-state cycle 
kinetics of single enzymes Phys. Rev. E 74 010902

	[213]	 Kolomeisky A B, Stukalin E B and Popov A A 2005 
Understanding mechanochemical coupling in kinesins 
using first-passage-time processes Phys. Rev. E 
71 031902

	[214]	 Stern F 1977 An independence in Brownian motion with 
constant drift Ann. Probab. 5 571–2

	[215]	 Pigolotti S, Neri I, Roldán É and Jülicher F 2017 Generic 
properties of stochastic entropy production Phys. Rev. Lett. 
119 140604

	[216]	 Loutchko D, Eisbach M and Mikhailov A S 2017 Stochastic 
thermodynamics of a chemical nanomachine: the 
channeling enzyme tryptophan synthase J. Chem. Phys. 
146 025101

	[217]	 Berg J 2008 Out-of-equilibrium dynamics of gene expression 
and the Jarzynski equality Phys. Rev. Lett. 100 1–4

	[218]	 Liphardt J 2002 Equilibrium information from 
nonequilibrium measurements in an experimental test of 
Jarzynski’s equality Science 296 1832–5

	[219]	 Alemany A, Mossa A, Junier I and Ritort F 2012 
Experimental free-energy measurements of kinetic 
molecular states using fluctuation theorems Nat. Phys. 
8 688–94

	[220]	 Collin D, Ritort F, Jarzynski C, Smith S B, Tinoco I and 
Bustamante C 2005 Verification of the Crooks fluctuation 
theorem and recovery of RNA folding free energies Nature 
437 231–4

	[221]	 Hayashi K, Ueno H, Iino R and Noji H 2010 Fluctuation 
theorem applied to F 1 -ATPase Phys. Rev. Lett. 
104 218103

Rep. Prog. Phys. 81 (2018) 066601



Review

31

	[222]	 Ritort F 2006 Single-molecule experiments in biological 
physics: methods and applications J. Phys.: Condens. 
Matter 18 R531

	[223]	 Schmiedl T and Seifert U 2007 Stochastic thermodynamics 
of chemical reaction networks J. Chem. Phys. 
126 044101

	[224]	 Schmiedl T and Seifert U 2008 Efficiency of molecular 
motors at maximum power Europhys. Lett. 83 30005

	[225]	 Hartich D, Barato A C and Seifert U 2015 Nonequilibrium 
sensing and its analogy to kinetic proofreading 
New J. Phys. 17 055026

	[226]	 England J L 2013 Statistical physics of self-replication J. 
Chem. Phys. 139 121923

	[227]	 England J L 2015 Dissipative adaptation in driven self-
assembly Nat. Nanotechnol. 10 919–23

	[228]	 Perunov N, Marsland R A and England J L 2016 Statistical 
physics of adaptation Phys. Rev. X 6 021036

	[229]	 Rouvas-Nicolis C and Nicolis G 2009 Butterfly effect 
Scholarpedia 4 1720

	[230]	 Weiss J B 2003 Coordinate invariance in stochastic 
dynamical systems Tellus A 55 208–18

	[231]	 Horowitz J M, Zhou K and England J L 2017 Minimum 
energetic cost to maintain a target nonequilibrium state 
Phys. Rev. E 95 042102

	[232]	 Barkai N and Leibler S 1997 Robustness in simple 
biochemical networks to transfer and process information 
Nature 387 913–7

	[233]	 Alon U, Surette M G, Barkai N and Leibler S 1999 
Robustness in bacterial chemotaxis Nature 397 168–71

	[234]	 Qian H 2006 Reducing intrinsic biochemical noise in cells 
and its thermodynamic limit J. Mol. Biol. 362 387–92

	[235]	 Sartori P and Tu Y 2015 Free energy cost of reducing noise 
while maintaining a high sensitivity Phys. Rev. Lett. 
115 118102

	[236]	 Lan G and Tu Y 2016 Information processing in bacteria: 
memory, computation, and statistical physics: a key issues 
review Rep. Prog. Phys. 79 052601

	[237]	 Ito S and Sagawa T 2013 Information thermodynamics on 
causal networks Phys. Rev. Lett. 111 1–6

	[238]	 Sartori P, Granger L, Lee C F and Horowitz J M 2014 
Thermodynamic costs of information processing in 
sensory adaptation PLoS Comput. Biol. 10 e1003974

	[239]	 Lang A H, Fisher C K, Mora T and Mehta P 2014 
Thermodynamics of statistical inference by cells Phys. 
Rev. Lett. 113 148103

	[240]	 Cao Y, Wang H, Ouyang Q and Tu Y 2015 The free-energy cost 
of accurate biochemical oscillations Nat. Phys. 11 772–8

	[241]	 Tomé T and de Oliveira M J 2012 Entropy production in 
nonequilibrium systems at stationary states Phys. Rev. 
Lett. 108 020601

	[242]	 Stein W D and Litman T 2014 Channels, Carriers and 
Pumps: an Introduction to Membrane Transport 
(New York: Academic) pp 1–406

	[243]	 Bezrukov S M, Berezhkovskii A M, Pustovoit M A and 
Szabo A 2000 Particle number fluctuations in a membrane 
channel J. Chem. Phys. 113 8206–11

	[244]	 Berezhkovskii A and Bezrukov S 2008 Counting 
translocations of strongly repelling particles through single 
channels: fluctuation theorem for membrane transport 
Phys. Rev. Lett. 100 038104

	[245]	Grünwald D, Singer R H and Rout M 2011 Nuclear 
export dynamics of RNAprotein complexes Nature 
475 333–41

	[246]	 Gingrich T R, Horowitz J M, Perunov N and England J L 
2016 Dissipation bounds all steady-state current 
fluctuations Phys. Rev. Lett. 116 120601

	[247]	 Barato A C and Seifert U 2015 Thermodynamic uncertainty 
relation for biomolecular processes Phys. Rev. Lett. 
114 158101

	[248]	 Pietzonka P, Barato A C and Seifert U 2016 Universal bound 
on the efficiency of molecular motors J. Stat. Mech. 
124004

	[249]	 Pietzonka P, Ritort F and Seifert U 2017 Finite-time 
generalization of the thermodynamic uncertainty relation 
Phys. Rev. E 96 012101

	[250]	 Horowitz J M and Gingrich T R 2017 Proof of the finite-
time thermodynamic uncertainty relation for steady-state 
currents Phys. Rev. E 96 020103

	[251]	 Gingrich T R and Horowitz J M 2017 Fundamental bounds 
on first passage time fluctuations for currents Phys. Rev. 
Lett. 119 170601

	[252]	 Riedel I H, Hilfinger A, Howard J and Jülicher F 2007 
How molecular motors shape the flagellar beat HFSP J. 
1 192–208

	[253]	 Wan K Y and Goldstein R E 2014 Rhythmicity, recurrence, 
and recovery of flagellar beating Phys. Rev. Lett. 
113 238103

	[254]	 Singla V 2006 The primary cilium as the cell’s antenna: 
signaling at a sensory organelle Science 313 629–33

	[255]	 Barnes B G 1961 Ciliated secretory cells in the pars distalis 
of the mouse hypophysis J. Ultrastruct. Res. 5 453–67

	[256]	 Paijmans J, Lubensky D K and ten Wolde P R 2017 
A thermodynamically consistent model of the post-
translational Kai circadian clock PLoS Comput. Biol. 
13 e1005415

	[257]	 Kimmel J C, Chang A Y, Brack A S and Marshall W F 2018 
Inferring cell state by quantitative motility analysis reveals 
a dynamic state system and broken detailed balance PLoS 
Comput. Biol. 14 e1005927

	[258]	 Lander B, Mehl J, Blickle V, Bechinger C and Seifert U 
2012 Noninvasive measurement of dissipation in colloidal 
systems Phys. Rev. E 86 030401

	[259]	 Shannon C E and Weaver W 1949 The Mathematical 
Theory of Communication (Urbana: University of Illinois 
Press) p 125

	[260]	 Bérut A, Imparato A, Petrosyan A and Ciliberto S 2016 
Theoretical description of effective heat transfer between 
two viscously coupled beads Phys. Rev. E 94 052148

	[261]	 Crisanti A, Puglisi A and Villamaina D 2012 Nonequilibrium 
and information: The role of cross correlations Phys. Rev. 
E 85 061127

	[262]	Weber C A, Suzuki R, Schaller V, Aranson I S, 
Bausch A R and Frey E 2015 Random bursts determine 
dynamics of active filaments Proc. Natl Acad. Sci. USA 
112 10703–7

	[263]	 Everaers R, Jülicher F, Ajdari A and Maggs A C 1999 
Dynamic fluctuations of semiflexible filaments Phys. Rev. 
Lett. 82 3717–20

	[264]	 Liverpool T B 2003 Anomalous fluctuations of active polar 
filaments Phys. Rev. E 67 031909

	[265]	 Levine A J, Liverpool T B and MacKintosh F C 2004 
Dynamics of rigid and flexible extended bodies in viscous 
films and membranes Phys. Rev. Lett. 93 038102

	[266]	 Kikuchi N, Ehrlicher A, Koch D, Kas J A, Ramaswamy S 
and Rao M 2009 Buckling, stiffening, and negative 
dissipation in the dynamics of a biopolymer in an active 
medium Proc. Natl Acad. Sci. USA 106 19776–9

	[267]	 Loi D, Mossa S and Cugliandolo L F 2011 Non-conservative 
forces and effective temperatures in active polymers Soft 
Matter 7 10193

	[268]	 Ghosh A and Gov N S 2014 Dynamics of active semiflexible 
polymers Biophys. J. 107 1065–73

	[269]	 Eisenstecken T, Gompper G and Winkler R G 2017 Internal 
dynamics of semiflexible polymers with active noise 
J. Chem. Phys. 146 154903

	[270]	 Kratky O and Porod G 1949 Röntgenuntersuchung gelöster 
fadenmoleküle Recueil Travaux Chim. Pays-Bas 
68 1106–22

Rep. Prog. Phys. 81 (2018) 066601



Review

32

	[271]	 Goldstein R E and Langer S A 1995 Nonlinear dynamics of 
stiff polymers Phys. Rev. Lett. 75 1094–7

	[272]	 Hallatschek O, Frey E and Kroy K 2007 Tension dynamics 
in semiflexible polymers. I. Coarse-grained equations of 
motion Phys. Rev. E 75 031905

	[273]	 Koenderink G H, Atakhorrami M, MacKintosh F C and 
Schmidt C F 2006 High-frequency stress relaxation in 
semiflexible polymer solutions and networks Phys. Rev. 
Lett. 96 138307

	[274]	 Mizuno D, Bacabac R, Tardin C, Head D and Schmidt C F 
2009 High-resolution probing of cellular force 
transmission Phys. Rev. Lett. 102 168102

	[275]	 Yuval J and Safran S A 2013 Dynamics of elastic interactions 
in soft and biological matter Phys. Rev. E 87 042703

	[276]	 Weiss J B 2007 Fluctuation properties of steady-state 
Langevin systems Phys. Rev. E 76 061128

	[277]	 Lim H C, Surovtsev I V, Beltran B G, Huang F, Bewersdorf J 
and Jacobs-Wagner C 2014 Evidence for a DNA-relay 
mechanism in ParABS-mediated chromosome segregation 
Elife 3 e02758

	[278]	 Wang X, Llopis P M and Rudner D Z 2013 Organization and 
segregation of bacterial chromosomes Nat. Rev. Genet. 
14 191–203

	[279]	 Wilhelm L, Bürmann F, Minnen A, Shin H C, 
Toseland C P, Oh B H and Gruber S 2015 SMC 
condensin entraps chromosomal DNA by an ATP 
hydrolysis dependent loading mechanism in Bacillus 
subtilis Elife 4 https://doi.org/10.7554/eLife.06659

	[280]	 Grill S W, Gönczy P, Stelzer E H and Hyman A A 2001 
Polarity controls forces governing asymmetric spindle 
positioning in the Caenorhabditis elegans embryo Nature 
409 630–3

	[281]	 Grill S W 2003 The distribution of active force 
generators controls mitotic spindle position Science 
301 518–21

	[282]	Pecreaux J, Röper J C, Kruse K, Jülicher F, Hyman A A, 
Grill S W and Howard J 2006 Spindle oscillations 
during asymmetric cell division require a threshold 
number of active cortical force generators Curr. Biol. 
16 2111–22

	[283]	 Ou G, Stuurman N, D’Ambrosio M and Vale R D 
2010 Polarized myosin produces unequal-size 
daughters during asymmetric cell division Science 
330 677–80

	[284]	 Mayer M, Depken M, Bois J S, Jülicher F and Grill S W 
2010 Anisotropies in cortical tension reveal the physical 
basis of polarizing cortical flows Nature 467 617–21

	[285]	 Thutupalli S, Sun M, Bunyak F, Palaniappan K and 
Shaevitz J W 2015 Directional reversals enable 
Myxococcus xanthus cells to produce collective 1D 
streams during fruiting-body formation J. R. Soc. Interface 
12 20150049

	[286]	 Peruani F, Starruß J, Jakovljevic V, Søgaard-Andersen L, 
Deutsch A and Bär M 2012 Collective motion and 
nonequilibrium cluster formation in colonies of gliding 
bacteria Phys. Rev. Lett. 108 098102

	[287]	 Frauenfelder H, Wolynes P G and Austin R H 1999 
Biological physics Rev. Mod. Phys. 71 S419–30

	[288]	Agerschou E D, Mast C B and Braun D 2017 Emergence 
of life from trapped nucleotides? Non-equilibrium 
behavior of oligonucleotides in thermal gradients 
Synlett 28 56–63

	[289]	 Schwille P and Diez S 2009 Synthetic biology of minimal 
systems Crit. Rev. Biochem. Mol. Biol. 44 223–42

Rep. Prog. Phys. 81 (2018) 066601



Chapter 2

Non-equilibrium scaling behavior in

driven biological assemblies

Chapter abstract As we discussed in the Introduction and Chapter 1, measuring and
quantifying non-equilibrium dynamics in active biological systems is a major challenge in
biophysics. The stochastic nature of the dynamics and the limited number of accessible
variables in any experiment are the two main challenges to overcome. In this chapter,
we investigate what information on the non-equilibrium dynamics can be extracted from
non-invasive measurements, using a stochastic model of soft elastic networks. We describe
the enzymatic force generation with a heterogeneous distribution of activities. Within this
model, we investigate how the non-equilibrium activity, detected by tracking two probes in
the network, scales as a function of the distance between the probes. We quantify the non-
equilibrium dynamics through the cycling frequencies and the area enclosing rates, and
show that these non-equilibrium measures exhibit a power law scaling behavior with the
distance between the probes. In addition, we show that this scaling behavior governs also
the amount of entropy production rate that can be recovered from the two traced probes.
The results presented in this chapter provide insights into how internal enzymatic driving
generates non-equilibrium dynamics on di�erent scales in soft biological assemblies.

Research question: How does non-equilibrium activity manifest itself at di�erent length

scales?

Results: We predict the average measured non-equilibrium activity to scale as a power

law with the observed length scale. The characteristic exponent of this power law depends

on the dimensionality of the system. The prefactor of the power law is dependent on the

variance of the active noise in the system.



48 2. Non-equilibrium scaling behavior in driven biological assemblies

2.1 Soft biological assemblies

In this section we brie�y discuss what we refer to as driven biological assemblies, giving
some examples of the systems that motivated our study, and brie�y discussing the main
models proposed in the literature to describe such systems.

Biological assemblies All living systems require structures that maintain their orga-
nization and also, at the same time, allow them to adapt their shape to di�erent en-
vironments. A prominent example of these structures is the cellular cytoskeleton. The
cytoskeleton is a meshwork that works as an intracellular sca�old providing mechanical
resistance to the cell. In higher organisms, similar structures are present also outside the
cells. One example is the extracellular matrix, a collagen network that guides the organiza-
tion of cells in complex tissues. Most of the structural components in biological systems are
made of �exible �bers which entangle, or bind together via speci�c cross-linking proteins,
to form biopolymer assemblies [11].

Biopolymer assemblies present interesting mechanical properties that can be explained
and described from a physical standpoint. A characteristic of these polymer structures
is that they are semi�exible, meaning that their dynamics arise from the competition of
entropic and bending contributions. The entropic tendency of the polymer to collapse into
a random coil is balanced by its bending sti�ness, so that semi�exible polymers exhibit
stochastic �uctuations around a network-like structure (Fig.2.1). A general feature of
such polymers is their nonlinear response to applied strain: for instance, they exhibit a
rapid increase of the network sti�ening as a response to strain. As a consequence of such
nonlinear behavior, these materials are sensible to small deformations but resistant to large
deformations. This behavior plays an important role as protection against tissue damage
[11, 80].

Another peculiarity of these networks is the non-equilibrium state that characterizes
both their surrounding and their constituents [24, 49, 53]. As an example, we can con-
sider the continuous action of motors proteins, such as myosin, which can enhance the
local �uctuations of the network by tugging the F-actin �laments which are part of the
cytoskeletal structure. The action of motor proteins may also give rise to non-equilibrium
�uctuations indirectly: molecular motors seem to play a key role in regulating cytoskele-
ton reorganization, controlling microtubules length, and continuously polymerizing and
depolymerizing the actin �laments [57]. This internal activity and network reorganization
result in �uctuations in the stress on the network itself, as well as on its surrounding [36].
However, motors proteins are not the only source of non-equilibrium �uctuations in living
systems. Several experiments performed with di�erent kinds of enzymes (catalase, ure-
ase, aldolase, etc.) revealed a substrate-dependent increase in enzyme di�usivity during
catalysis [85]. Non-equilibrium �uctuations can also be found at the level of collagen net-
works and extracellular matrix. There, stochastic stresses are due to cellular traction, for
instance during cancer development and progression [15, 64].

Theoretical models Because of their importance in living systems, biological assem-
blies have been the subject of many experimental and theoretical studies. Various ex-
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Figure 2.1: A) Confocal microscopy image of the actin cytoskeleton of an Indian Muntjac
Cell. Reproduced from MicroscopyU (<http://www.microscopyu.com>). B) Confocal
microscopy image of a �uorescently labeled collagen network. Reproduced from [11].

periments have been performed on reconstituted networks of biopolymers to investigate
the remarkable mechanical and dynamical properties of these materials [11, 34]. At the
same time, many theoretical models have been proposed to describe these experimental
�ndings [11]. Since the features of these experimental systems are di�cult to incorporate
into a single theory, most of the proposed models focus on understanding what minimal
features are su�cient to recreate some aspects of the experimental results.

For instance, models based on nematic and hydrodynamic theories have been proposed
to describe the active nature of the cytoskeleton. These models have been very successful
in predicting the emergence of large scale patterns, spontaneous oscillations, and traveling
waves [4, 20, 29, 55, 67, 75]. Two further classes of models are the disordered lattice-based
model and the Mikado network [11]. The former consists of identical stretchable and
bendable �bers randomly arranged on a regular lattice. The latter is obtained by randomly
depositing identical rod-like �laments (stretchable and bendable as well) in a two/three-
dimensional system, and by adding freely hinging cross-links at the intersections between
�laments. Interestingly, these models, even if composed of purely linear elastic elements
interconnected together, show a global nonlinear elastic response at the network level [80].
Such minimal models allow to investigate how the complex viscosity of �brous networks
is related to processes at the molecular scale: the binding dynamics of the crosslinker and
the active stresses induced by molecular motors [10].

However, disordered networks are not the only way to describe biological assemblies: for
instance, a description based on regular elastic triangular networks has been used to study
the non-equilibrium �uctuations of the red blood cell membrane [39, 79]. Furthermore, it
is possible to apply an e�ective medium theory to map disordered lattice-based models
to uniform networks, which are more suitable for analytical calculations [11, 12]. These
e�ective theories allow to obtain insightful results on the viscoelastic response of such
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Figure 2.2: A) Example of a simulation of 2D Mikado network at low density. Reproduced
from [11] B) Example of a simulated 2D disordered triangular lattice. Reproduced from
[12]

complex networks.

2.2 Model

We introduce here a simpli�ed yet general toy model to describe soft biological assemblies,
which allows us to develop an analytical framework to study non-equilibrium propagation
through di�erent length scales. We will then discuss in Sec. 2.3 to what extent the results
obtained within this model apply to some of the more complex descriptions of biological
assemblies, mentioned in Sec.2.1.

We model soft subcellular or extracellular assemblies using d-dimensional overdamped
networks of Nd coupled beads (see Fig. 2.3) [11, 54, 63, 84]. We impose �xed boundary
conditions and consider the network suspended in a viscous �uid, assumed to be at thermal
equilibrium, at temperature T . We indicate with γ the friction coe�cient. The thermal
�uctuations resulting from the �uid are modeled as Gaussian white noise processes acting
independently on all the beads with the same amplitude kBT

γ
. Besides the thermal �uctu-

ations, we want to describe the additional active �uctuations deriving from the incoherent
non-equilibrium activity of enzymes and molecular motors. These active contributions
may in principle be heterogeneously distributed along the network, depending on local
features, such as the local activity and the local structures of the network. To take into
account the possibility of spatial heterogeneity, we implement the active forces as inde-
pendent Gaussian white noise processes with site-dependent amplitudes αi. We extract
the ensemble of independent active noise amplitudes αi from a probability distribution
pα with average ᾱ and variance σ2

α. Here, the noise intensities at di�erent locations are
independent, but in Chapter 3, we will apply this theoretical framework to the case of
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Figure 2.3: Schematic illustrating soft viscoelastic networks with heterogeneous driving
for various types of cellular systems. A) chromatin B) red blood cell membrane C) cy-
toskeletal network; Below each �gure the corresponding bead-spring model with heteroge-
neous active driving. The color of the bead indicates the intensity of activity, representing
the variance (increasing from blue to red) of the associated active noise process.

spatially correlated activities.
By modeling the active forces as white noise, we substantially restrict our model to

systems in which the correlation times of the active processes are shorter than the typical
relaxation times of the network. Such an assumption makes our model mathematically
equivalent to embedding the beads in local thermal baths at temperatures T + αi [23].

We indicate with x the displacements of the beads relative to their equilibrium posi-
tions, and with p(x, t) the probability distribution of x at time t. We also assume that the
elastic forces are linear in x, i.e. f(x)/γ = Ax via a symmetric matrix A. This simpli�ed
description allows us to study the dynamics of the system using a Fokker-Planck equation

∂tp(x, t) = −∇ · (Ax−D∇)p(x, t) := −∇ · j(x, t), (2.1)

where D = (kB/γ) diag{T + α1, . . . , T + αN} is the di�usion matrix. The right hand side
of the Eq. (2.1) can be interpreted as the divergence of the probability current density
j(x, t) = (Ax − D∇)p(x, t). The steady-state probability density p(x) of this active
network is described by

p(x) =
1√

(2π)Nd det C
e−

1
2
xTC−1x, (2.2)

where C = 〈x⊗x〉 is the covariance matrix, which can be obtained by solving the Lyapunov
equation [69]

AC + CAT = −2D. (2.3)
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At steady-state, the non-vanishing dissipative probability currents constitute a measure
of non-equilibrium dynamics in a system and thus play a key role in our approach.

2.2.1 Non-equilibrium in a reduced subspace

Description of a subset of degrees of freedom

If we were able to observe the stochastic motion of all beads in the network, we could
directly measure the full probability current j(x) and extract information about the whole
non-equilibrium dynamics of the system. However, in a typical experiment, only a small
subset of the degrees of freedom can be tracked (Fig. 2.4A). The question we ask here
is: Can we extract information about the non-equilibrium dynamics from these limited
observations?

To address this question, we consider a scenario where only a few degrees of freedom
are accessible. In our model, this corresponds to reducing our description to the marginal
distribution, pr(xr) =

∫
dxk 6∈[r]p(x1, x2, .., xdN), of a subset [r] of n tracked degrees of

freedom xr. By integrating out the subset [l] of m unobserved degrees of freedom xl on
both sides of Eq. (2.1), and taking the steady-state limit it is possible to show that the
marginal distribution satis�es the following equation

0 = −∇ · [Ae�xrpr(xr)] +∇ ·D[r,r]∇pr(xr), (2.4)

where the sub-index [r, r] indicates the sub-matrix corresponding to the reduced set of
observed variables. We indicate with Ae� a matrix such that the average elastic force
acting on the reduced degrees of freedom is 〈fr(x)|xr〉/γ = Ae�xr, where fr(x) is the
vector of forces acting on the reduced set of coordinates . Thus, Ae� is an e�ective
force combining the forces acting on the considered observables directly and indirectly
through interactions with the rest of the network (see Fig. 2.4B). It can be expressed as
Ae� = A[r,r] +A[r,l]C[l,r]C

−1
[r,r]. Here, A[r,l] and C[l,r] are rectangular matrices of sizes [n×m]

and [m× n], given by the elements of indices [r, l] of A and [l, r] of C, respectively.
We consider the simplest case of a reduced system where only two beads (i and j)

can be probed, as illustrated in Fig. 2.4A. We then consider a two-dimensional subset of
coordinates, for example x-coordinates or y-coordinates relative to these particles: xr =
{xi, xj}. In this reduced subspace, we can characterize the presence of non-equilibrium
dynamics by using the non-equilibrium measures introduced in Sec. I.0.1.

Two point non-equilibrium measures

From equation Eq. (2.4) it is clear that traces of the non-equilibrium in the system may
also appear in the reduced subspace. In fact there may be a non-vanishing current
jr = Ae�xrpr(xr) + D[r,r]C

−1
[r,r]xrpr(xr) = Ωrxrpr(xr) 6= 0, which gives rise to an ellipti-

cal circulation (Fig. 2.4C-D), in analogy to what is discussed in Sec. I.0.1 for the two
beads system.

As a �rst measure to quantify such circulation, we use the average area enclosing
rates Aij of the trajectory in the reduced subspace of the coordinates xi and xj. For an
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Figure 2.4: Reduced system of tracked probes. A) Schematic of two �uorescently labeled
probe beads in a larger system. B) Elastic force acting on bead j obtained at di�erent time
steps of a simulation of the Langevin dynamics of the full system (blue points), and the
e�ective linear force, Ae�xr, from analytical calculations (light blue plane). C) Probability
density (color map) and probability current (white arrows) calculated analytically from
the e�ective 2D system, together with results from simulating the full system in the inset.

D) The non-conservative part of the e�ective force �eld: (Ae�−AT
e�

)

2
xr (black arrows) can

contribute to the rotation in phase space in non-equilibrium systems. Note, for αi = α ∀ i
(e�ective equilibrium scenario), Ae� becomes symmetric.



54 2. Non-equilibrium scaling behavior in driven biological assemblies

overdamped system, in which the velocity is proportional to the force, this quantity can
be expressed as

Aij =
1

2γ
〈xr × fr(x)〉, (2.5)

where fr(x) = {fi, fj} is the vector of forces acting on the coordinate i and j, respectively.
By replacing γ−1〈xr× fr(x)〉 = γ−1〈xifj(x)−xjfi(x)〉 = (CAT−AC)ij we obtain [31, 38,
40]

Aij =
1

2
(CAT −AC)ij. (2.6)

As we already know from the analysis of the simple case of two elastically coupled Brow-
nian particles in Sec. I.0.1, this non-equilibrium measure is closely related to the cycling
frequency, which is the rate at which the trajectory revolves in the coordinates space. By
applying the expression for the cycling frequencies for a two-dimensional system (Eq. (I.14)
of Sec. I.0.1) to the two-dimensional reduced system, we obtain

ωij =
1

2

(C[r,r]A
T
e� −Ae�C[r,r])ij√
det(C[r,r])

=
1

2

(
C[r,r]A

T
[r,r] + C[r,l]A[l,r] −A[r,r]C[r,r] −A[r,l]C[l,r]

)
ij√

det(C[r,r])

=
1

2

(
CAT −AC

)
ij√

det(C[r,r])
,

(2.7)

where we recall that C[r,r] is a [2× 2] matrix with entries C[r,r] = {{cii, cij}, {cji, cjj}}.
In Sec. 2.3 we will discuss how we can use these non-equilibrium measures to investigate

how detailed balance breaks down at di�erent length scales in the network.

2.3 Results

We are now ready to investigate how non-equilibrium manifests itself at di�erent length
scales in soft assemblies. To this end, we calculate the cycling frequencies and area en-
closing rates between couples of beads at distance r in the network. We aim to compute
how these measures depend on r after averaging over all activity con�gurations. Since ω
and A are expected to be distributed symmetrically around 0, here we study the spatial
scaling behaviors for 〈A2(r)〉α and 〈ω2(r)〉α. We indicate with 〈. . .〉α the ensemble average
over the activities which, for a large enough system, can be obtained as a spatial average
over the network.

Intuitively, we expect the circulation, and consequently ω and A to decrease with the
distance between probes, because the interaction between the beads also decreases with
the distance. We can obtain an exact estimate of 〈A2(r)〉α and 〈ω2(r)〉α by numerically
calculating Eq. (2.6) and Eq. (2.7), where the covariance matrix C comes from the nu-
merical solution of the Lyapunov equation (Eq. (2.3)). Interestingly, we observe a power
law scaling for the non-equilibrium measures, as shown in Fig. 2.5.
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To get more insights on such a scaling behavior, we investigate whether it is a�ected by
the type of noise that we set in the network and by the architecture of the network itself.
The numerical results for the scaling behavior of one dimensional systems with di�erent
settings of the noise distribution are reported in Fig. 2.5B. The results for di�erent network
geometries, such as triangular and square lattices, and di�erent dimensionalities are shown
in Fig. 2.5C-D. The scaling behavior appears strongly dependent on the dimensionality of
the system but not so much on the geometry of the lattice or on the distribution of the
activities.

To gain a better understanding of the features of the system which underlie such power
law behavior, we consider the simple case of a one dimensional system, for which we derive
an analytical expression for the scaling of the non-equilibrium measures as a function of
the distance r.

2.3.1 One dimensional chain

In this section, we will derive an analytical expression for the scaling behavior of 〈A2(r)〉α
in one-dimensional systems starting from equation Eq. (2.6). We will later relate the
scaling of 〈A2(r)〉α to the one of 〈ω2(r)〉α.

For a one-dimensional system the interaction matrix A has a simple form with entries:
aij = k

γ
(−2δij + δi,i+1 + δi,i−1). By inserting this expression into Eq. (2.6), we can express

the area enclosing rates between any two tracer particles i and j as

Aij =
k

γ
∂̃2
xc, (2.8)

where we indicate the discrete second derivative along the rows of the covariance matrix
with ∂̃2

xc = ci,j+1 − 2ci,j + ci,j−1. Therefore, we reduced the problem of �nding the scaling
of the area enclosing rates with the distance r to �nd the scaling of ∂̃2

xc with r. As the
following shows, this can be achieved by solving Eq. (2.3) via a continuous approximation.

The structure of D and the linearity of the Lyapunov equation suggest a natural
decomposition of the covariance matrix C into equilibrium (C) and non-equilibrium (C∗)
contributions: C = (kBT/k)C + (kBᾱ/k)C∗, such that C and C∗ are dimensionless. Both
C and C∗ could be found by solving the Lyapunov equation (Eq. (2.3)). The principle
of detailed balance imposes ωij = Aij = 0 at thermal equilibrium, which together with
Eq. (2.8) implies ∂̃2

xcij = 0 and ∂̃2
xcij = (kBᾱ/k)∂̃2

xc
∗
ij. So the only equation left to solve is

the Lyapunov equation for the non-equilibrium contribution

∂̃2
xc
∗
ij + ∂̃2

yc
∗
ij = −2δij

αi
ᾱ
, (2.9)

where ∂̃2
y indicates the discrete second derivative along columns. This equation represents

a discrete stationary di�usion equation, with sources of divergence given by δij(αi/ᾱ).

Activity at a single site

Our goal is to calculate C∗ for a given distribution of activities {αi}. However, due to the
linearity of Eq. (2.9), C∗ is a superposition of steady-state solutions to the single-source
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Figure 2.5: Spatial scaling behavior of cycling frequencies and area enclosing rates. A)
Steady-state current cycles in phase space of the displacements (along the lattice direction)
of two tracer beads for a nearby pair of probes (right) and distant pair of probes (left). B)
Scaling behavior of the cycling frequencies,

√
〈ω2(r)〉, of pairs of probes beads as a function

of their spatial distances, obtained for a 1D chain and di�erent activity distributions, as
indicated in the legend. C) Scaling behavior of the cycling frequencies,

√
〈ω2(r)〉/〈ω2(1)〉,

obtained for di�erent lattices and a folded Gaussian activity distribution. Triangular and
square markers represent triangular and square/cubic lattices, respectively. Light/dark
blue triangles represent triangular networks with zero/�nite rest length springs. D) The
same results as in C), but obtained for the area enclosing rates

√
〈A2(r)/A2(1)〉. In B),

C) and D) we used ᾱ/T = 0.15
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problem, i.e. a delta-distribution for which all but one of the activities would be set to
zero, precisely: αi = αδi0 and ᾱ = α. Therefore, we �rst proceed with calculating the
solution for a single source problem. We denote by ρ =

√
i2 + j2 the distance from the

center of C∗, which is in (0,0). If we consider a continuous analog of our discrete problem
and neglect the boundary conditions, we can assume a rotational symmetry of the solution
c∗(ρ). The corresponding continuous di�usion equation takes the form: 1

ρ
∂ρρ∂ρc

∗(ρ) = 0.
Consequently, ρ∂ρc∗(ρ) = −a and c∗(ρ) = −a ln(ρ) + b, where a and b are integration
constants. Since at this point we are only interested in �nding an expression for the
second derivative of the covariance matrix, the constant b is not relevant for this purpose.
The constant a can be set by demanding that the covariance �ux through a circle of radius
ε centered around the source is not dependent on ε and equals 2 (Eq. (2.9)). This allows
to set a = 1/π. To �nd the scaling of the area enclosing rate measured between the active
bead and a bead a distance r from it, we can evaluate Eq. (2.8) in (i = 0, j = r). We can
indeed write the scaling of the area enclosing rate for a single source as

Asingle(r) =
αkB
πγ

1

r2
. (2.10)

Note that the distance r is dimensionless and measured in units of lattice spacing `. The
same procedure can be applied to Eq. (2.7) to obtain the cycling frequency scaling and
lead to

ωsingle(r) =
αkB

πγ
√

det C[r,r]

1

r2
. (2.11)

Note the presence of the term
√

det C[r,r] in the denominator of Eq. (2.11). This term
introduce a further contribution to the scaling of ω. We can calculate this contribution
in the limit of small displacements, by Taylor expanding

√
det C[r,r] in power of α/T , and

we arrive at

ωsingle(r) =
αk

Tπγ
√

det C[r,r]

1

2r2
+O

(
α2

T 2

)
∼ r−

5
2 , (2.12)

where in the last step we used that (det C[r,r](r))
− 1

2 = (1
2
r(N−r))− 1

2 ∼ r−
1
2 for r � N [40].

The comparison with numerical results is shown in Fig. 2.5B.

Spatially varying activity

The results obtained for the single activity provides the basis for the solution of the more
complicated problem of a distribution of spatially varying activities. Here, we consider
a distribution of activities {αi} with average ᾱ and variance σ2

α. We will exploit the
linearity of the Lyapunov equation to �nd a solution for the covariance matrix in the case
of a distribution of active sources, given by a superposition of single source solutions. In
general, owing to the linearity of the Lyapunov equation (see Eq. (2.3)), the covariance
matrix can be expressed as

C =
kB

k

(
TC +

∑

z

αzC
∗
z

)
, (2.13)
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where the index z runs along the chain positions. For simplicity, we index the beads so
that the bead in the center of the system has index 0. We calculate the area enclosing
rate in the coordinates space of two beads at distance 2r. In particular, we want to �nd
an expression for A(2r) = A−r,r. Therefore, we need to determine ∂̃2

xc
∗(2r) = ∂̃2

xc
∗
−r,r.

For beads far enough from the boundary we can use the results obtained for the case of
activity at a single site, and approximate c∗z(2r) by a logarithmic decay centered at (z, z).
We obtain

∂̃2
xc
∗
z(2r) =

1

π

(r + z)2 − (r − z)2

((r + z)2 + (r − z)2)2

=
1

π

rz

(r2 + z2)2
. (2.14)

Equipped with Eqs. (2.13) and (2.14), we can now proceed to calculate the scaling ex-
pressions for the ensemble averages 〈A2(2r)〉 and 〈ω2(2r)〉. Speci�cally, we calculate
〈(∑z αz∂̃

2
xc
∗
z(2r))

2〉 which is the main factor in the expression for 〈A2(2r)〉 and 〈ω2(2r)〉:

〈(
∑

z

αz∂̃
2
xc
∗
z(2r))

2〉 =

〈(∑

z

rzαz
π(r2 + z2)2

)(∑

z′

rz′αz′

π(r2 + z′2)2

)〉
(2.15)

=
∑

z

r2z2〈α2
z〉

π2(r2 + z2)4
+
∑

z

rz 〈αz〉
π(r2 + z2)2

∑

z′ 6=z

rz′ 〈αz′〉
π(r2 + z′2)2

=
∑

z

r2z2(〈α2
z〉 − 〈αz〉2)

π2(r2 + z2)4
≈ σ2

α

π2

∫ ∞

−∞

r2z2dz

(r2 + z2)4
=

σ2
α

π216r3
, (2.16)

where, in the second line, we used that
∑

z′ 6=z
rz′

(r2+z′2)2
= − rz

(r2+z2)2
and approximated the

sum by an integral. Rescaling 2r → r, we can use Eq. (2.8) to �nally obtain

〈A2(r)〉α =

(
kB
γ

)2
σ2
α

2πr3
, (2.17)

and for the cycling frequencies

〈ω2(r)〉α =
k2

γ2

σ2
α

T 2

1

2πr3

1

det C[r,r](r)
∼ r−4. (2.18)

From Eq. (2.17) we can conclude that
√
〈A2(r)〉 ∼ r−1.5 (See Fig. 2.6), and from Eq. (2.18)

that, in the limit of weak activity,
√
〈ω2(r)〉 ∼ r−2 (See Fig. 2.5B and Fig. 2.6A). In-

terestingly, our theoretical framework not only predicts the scaling behavior of the non-
equilibrium measures, but also the prefactor, which is directly proportional to the variance
of the active noise σ2

α.

2.3.2 d-dimensional lattices

The calculation presented in Sec. 2.3 for a one dimensional chain can be generalized to the
case of d-dimensional cubic lattices. Here we report the main results for the scaling behav-
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Figure 2.6: A) Comparison between the cycling frequencies (lower blue) and the area
enclosing rates (upper orange) in the weak noise limit (ᾱ/T = 0.2). B) Comparison
between the cycling frequencies (lower blue) and the area enclosing rates (upper orange)
above the weak noise limit (ᾱ/T = 4). All data points correspond to results obtained by
numerically solving Lyapunov equation (Eq. (2.3)).

ior of the area enclosing rates. A detailed derivation can be found in our manuscript [40],
included at the end of this Chapter.

We denote the bead indices corresponding to d independent directions with n1, . . . , nd.
We indicate the elements of the covariance matrix C as cn1,...,nd;n̄1,...,n̄d := cn,n̄. We assume
zero rest length for the springs so that the degrees of freedom corresponding to di�erent
directions decouple. Therefore, by C we actually mean the covariance matrix of only
the degrees of freedom that correspond to a single chosen direction, for instance, the one
corresponding to the index n1. From Eq. (2.6) we obtain for the area enclosing rate

An,n̄ ≈
k

γ

d∑

i=1

∂̃2
ni
cn,n̄. (2.19)

Furthermore, for this particular network, the Lyapunov equation is equivalent to
(

d∑

i=1

∂̃2
ni

+
d∑

i=1

∂̃2
n̄i

)
cn,n̄ = −2dn,n̄. (2.20)

Similarly to the 1-dimensional case, here we recognize a discretized stationary di�usion
equation in 2d dimensions, with the divergence of the sources given by the elements of D.
Following the same procedure as for the one dimensional case, we can solve Eq. (2.20) in
the continuous limit, for the case of a single source in (0, . . . , 0). This gives

c∗n,n̄ = ad

(
d∑

i=1

n2
i +

d∑

i=1

n̄2
i

)−(d−1)

= ad
(
n2 + n̄2

)−(d−1)
, (2.21)

where the constant ad = (d − 2)!/(2πd) can be obtained from the divergence theorem, as
we did in the 1-dimensional case. By replacing Eq. (2.21) in Eq. (2.19), and performing
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similar calculation to the one dimensional case, for d = 2 and d = 3 we obtain

〈
A2
d=2(r)

〉
α

=
k2
Bσ

2
α

γ2

8

5π3r6
, (2.22)

〈
A2
d=3(r)

〉
α

=
k2
Bσ

2
α

γ2

27

8π4r9
. (2.23)

As Fig. 2.5D demonstrates, these scaling exponents match their numerical counterparts.

2.3.3 Lower bound for the entropy production rate

Nonzero area enclosing rates and cycling frequencies are both measures that directly re�ect
broken detailed balance, suggesting a connection between these non-equilibrium measures
and the rate of entropy production of the system. We have seen in Sec. I.0.1 that for a two
bead system, the following relation between entropy production and cycling frequencies
holds

Π = kBω
2Tr(D−1C). (2.24)

Here we show that the same expression also applies to the case of a reduced system in the
lattice and, in this case, it provides a lower bound to the total entropy production of the
system Πtot. Like for the two bead system case (see Sec. I.0.1), the entropy production in
the reduced system can be derived from its integral de�nition [60]

Π(2)
r = kB

∫
dxr

jTr (xr)D
−1
[r,r]jr(xr)

pr(xr)
= kBω

2Tr(C[r,r]D
−1
[r,r]), (2.25)

where jr is the probability current in the reduced subspace. This result provides an explicit
relation between the partial entropy production rate and the cycling frequency ω. Note,
all quantities in the expression for Π

(2)
r can be observed in an experiment, providing a

direct way to non-invasively determine the reduced rate of entropy production for a set of
traced degrees of freedom. To make a prediction on the scaling behavior of Π

(2)
r we can

make the following observation: Since Tr(C[r,r]D
−1
[r,r]) depends only weakly on r, as long

as 1 � r � N , we expect a scaling behavior 〈Π(2)
r 〉 ∼ r−2µ, where µ is the characteristic

exponent of the cycling frequencies:
√
ω2 ∼ r−µ. Therefore, the spatial scaling behavior

of the cycling frequencies directly determines the spatial scaling behavior of the entropy
production rate (see Fig. 2.7).

Up to this point, we de�ned the partial entropy production rate, and related this
quantity to the cycling frequencies (Eq. (2.25)). However, we still need to discuss how this
partial entropy production rate can be informative on the total entropy production rate
of the system Πtot

Πtot = kB

∫
dx

jT (x)D−1j(x)

p(x)
, (2.26)

where we indicate with j(x) the probability current in the full coordinate space.
In the following part of this section we show that Eq. (2.25), can be experimentally

useful to set a lower bound to Πtot.
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Figure 2.7: Spatial scaling behavior of the average entropy production rate, 〈Π(2)
r 〉, of a

pair of probe beads as a function of their spatial distance r, obtained for di�erent lattices
and a folded Gaussian activity distribution with ᾱ/T = 0.15. Note, the entropy produc-
tion rate of the reduced system is scaled by the total entropy production rate of the whole
network, Πtot. Triangular and square markers represent triangular and square/cubic lat-
tices, respectively. Light/dark blue triangles represent triangular networks with zero/�nite
rest length springs.

As �rst step, we want to show with a direct calculation that Πtot−Πr

kB
> 0.

Πtot − Πr

kB

=

∫
dx

jT (x)D−1j(x)

p(x)
−
∫
dxr

jTr (xr)D
−1
[r,r]jr(xr)

p(xr)

=
γ

kB

∑

j∈[l]

∫
dx

v2
j (x)

(T + αj)
p(x) +

γ

kB

∑

i∈[r]

[(∫
dx

v2
i (x)

(T + αi)
p(x)

)
−
∫
dxr
〈vi(x)|xr〉2
(T + αi)

p(xr)

]

=
γ

kB


∑

j∈[l]

∫
dx

v2
j (x)

(T + αj)
p(x) +

∑

i∈[r]

∫
dxr

[(∫
dxl

v2
i (x)

(T + αi)
p(xl|xr)p(xr)

)
− 〈vi(x)|xr〉2

(T + αi)
p(xr)

]


=
γ

kB



∑

j∈[l]

〈v2
j (x)〉

(T + αj)
+
∑

i∈[r]

∫
dxr

(
〈v2
i (x)|xr〉 − 〈vi(x)|xr〉2

)
︸ ︷︷ ︸

≥0

p(xr)

(T + αi)


 ≥ 0,

(2.27)

where in the second line we use that D is diagonal, v(x) = j(x)/p(x), and jr(xr) =
p(xr)

∫
dxl vr(x)p(xl|xr) = p(xr) 〈vr(x)|xr〉, which follows from the derivation of Eq. (2.4).

It is worth noting, from the derivation in Eq. (2.27), that the lower bound holds more gener-
ally for a reduced system with even more than two traced degrees of freedom. Speci�cally,
a numerical calculation suggests that the fraction of the entropy production that we can
recover from a system where n degrees of freedom can be tracked, is proportional to n2

(See Fig. 2.8). Furthermore, if we consider several disjoint subsystems [r1] . . . [rn] of the
entire system, through the same derivation we can obtain even the stronger bound

Πr1 + . . .+ Πrn ≤ Πtot. (2.28)

Such a relation is interesting from an experimental point of view because it allows
to strengthen the experimental bound for the entropy production by analyzing several
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Figure 2.8: Entropy production rate as a function of the number of observed beads
(d = 1). Di�erent points, corresponding to a �xed number of observed beads, are obtained
from the possible choices of the subsets of observed degrees of freedom. The same data are
represented in linear scale on the left panel and in a log-log plot on the right panel. The
black line represents the average recovered entropy production rate, and displays a power
law dependency as a function of the number of observed beads, with a scaling exponent
Πr/Πtot ∼ n2, where n is the number of observed degrees of freedom.

couples of beads in two-dimensional coordinates spaces, instead of analyzing trajectories
in r-dimensional coordinates space.

2.3.4 Chapter summary

Our research predicts a power law behavior of mesoscopic non-equilibrium measures as a
function of the distance between two probe particles.

While our analytical framework is derived for a simple case of cubic lattices of zero
rest-length springs, it is possible to check numerically that our predictions also apply to
more complex systems. For instance, the results for a triangular lattice with zero and
�nite rest length are shown in Fig. 2.5C,D, and we can see that they overlap with those
obtained for a square lattice. This suggests the independence of our prediction from the
lattice geometry. Such a claim is also reinforced by the observation of our predicted
scaling exponent in diluted triangular networks, as we will see in Chapter 3 and as further
investigated in [35].

The results presented in this chapter give insights into how non-equilibrium mani-
fests at di�erent length scales. Furthermore, our analytical framework suggests that the
area enclosing rates and cycling frequencies are promising tools to study the features
of stochastic driving in active elastic assemblies. By measuring the scaling behavior of
these non-equilibrium measures would be possible to extract information on features of
the active driving: For instance, we have seen that the ensemble average of the consid-
ered non-equilibrium measures is directly proportional to the variance of the active noise.
Another interesting result is the connection between these measures and the entropy pro-
duction rates. Our calculations show that these measures can be used to access the entropy
production rate of reduced two dimensional subspaces of degrees of freedom, and the out-
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comes can in turn be used to set a lower bound to the total entropy production of the
system.

Our approach could be tested in reconstituted biological systems, for example in vitro

actomyosin networks. But also in in vivo biological assemblies, for instance using col-
loidal particles embedded in the system or applying �uorescent tags to cellular organelles.
Further details about possible experimental scenarios are discussed in Chapter 1 and in
the Outlook. However, the results presented in this chapter are limited to the case of
uncorrelated noise amplitudes. In Chapter 3 we will discuss more in detail how our results
may change when this important assumption does not hold.
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Measuring and quantifying nonequilibrium dynamics in active biological systems is a major challenge
because of their intrinsic stochastic nature and the limited number of variables accessible in any real
experiment. We investigate what nonequilibrium information can be extracted from noninvasive
measurements using a stochastic model of soft elastic networks with a heterogeneous distribution of
activities, representing enzymatic force generation. In particular, we use this model to study how the
nonequilibrium activity, detected by tracking two probes in the network, scales as a function of the distance
between the probes. We quantify the nonequilibrium dynamics through the cycling frequencies, a simple
measure of circulating currents in the phase space of the probes. We find that these cycling frequencies
exhibit power-law scaling behavior with the distance between probes. In addition, we show that this scaling
behavior governs the entropy production rate that can be recovered from the two traced probes. Our results
provide insight into how internal enzymatic driving generates nonequilibrium dynamics on different scales
in soft biological assemblies.

DOI: 10.1103/PhysRevLett.121.038002

Cells and tissue constitute a class of nonequilibrium
many-body systems [1–5]. Indeed, nonequilibrium activity
has been observed in various biological systems, including
membranes [6,7], chromosomes [8], and the cytoplasm
[9–11]. A distinguishing physical feature of such biological
assemblies is that they are driven out of equilibrium
collectively by internal enzymatic processes that break
the detailed balance at the molecular scale. The active
nature of living matter on larger scales can be determined
noninvasively by observing the steady-state stochastic
dynamics of mesoscopic degrees of freedom using time-
lapse microscopy experiments: the nonequilibrium dynam-
ics of these systems can manifest as circulating probability
currents in a phase space of mesoscopic coordinates [2,
12–14]. However, it remains unclear how such nonequili-
brium measures depend on the spatial scale on which the
measurement is performed. A theoretical understanding of
the spatial scaling behavior of broken detailed balance in
internally driven biologically assemblies may reveal how to
extract quantitative information from measurable phase
space currents to characterize the active nature of the system.
Here we consider a simple, yet general model for an

internally driven elastic assembly to study nonequilibrium
scaling behavior. This assembly is driven out of equilibrium
by heterogeneously distributed stochastic forces, represent-
ing internal enzymatic activity (Fig. 1). We quantify the
nonequilibrium dynamics of such an assembly by the
cycling frequencies associated with steady-state circulating
currents in phase space [13,14]. To study how broken
detailed balance manifests on different scales in a given
system, we investigate how the cycling frequency of a pair

of tracer probes depends on the spatial distance between
these probes. Interestingly, the cycling frequencies in our
model exhibit a power-law scaling with the distance
between probes with an exponent that depends on the
dimensionality of the system. To provide a conceptual
understanding of this scaling behavior, we develop an
analytical calculation of these exponents. Furthermore, we
show that the exponent associated with the power law of the
cycling frequencies also underlies the scaling behavior of
the entropy production rate that can be recovered from
measured trajectories. Therefore, we provide a framework
to study the spatial scaling behavior of nonequilibrium
measures in soft elastic assemblies.
Our model consists of a d-dimensional elastic network

of N beads, immersed in a simple Newtonian liquid at
temperature T [15–18]. We assume a lattice structure where
each bead is connected to its nearest neighbours by springs
of elastic constant k, as illustrated in Fig. 1. For simplicity,
we model internal enzymatic activity by a Gaussian white
noise with variance αi at bead i. By assuming white noise,
we effectively consider the dynamics of biological systems
on timescales much longer than the characteristic time-
scales of the active processes [13,19,20]. Importantly, these
activity amplitudes, αi ≥ 0, are spatially heterogeneous,
reflecting a spatial distribution of active processes in the
system. These activity amplitudes are drawn independently
from a distribution pα with mean ᾱ < ∞ and standard
deviation σα < ∞ for each realization of the system. This
description of a heterogeneously driven assembly is similar
to bead-spring models in which the beads are coupled to
distinct heat baths at different temperatures [21–23].
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The temporal evolution of the probability distribution
pðx; tÞ of the beads’ displacements x, relative to their rest
positions, is governed by a Fokker-Planck equation

∂pðx; tÞ
∂t ¼ −∇ · ½Axpðx; tÞ� þ ∇ · D∇pðx; tÞ;

¼ −∇ · jðx; tÞ; ð1Þ

where jðx; tÞ ¼ Axpðx; tÞ − D∇pðx; tÞ is the probability
current. Here, A is the elastic interaction matrix, incorpo-
rating all nearest neighbor spring interactions between
beads; the mobility matrix is assumed to be diagonal to
exclude hydrodynamic interactions between the beads and
is absorbed in A. The diffusion matrix D is diagonal with
elements dij ¼ δij½kBðT þ αiÞ=γ�, where γ is the damping
coefficient describing the viscous interaction between a
bead and the immersing liquid. The steady-state dynamics
of this active network is described by

pðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞdN detC

p e−
1
2
xTC−1x; ð2Þ

where C ¼ hx ⊗ xi is the covariance matrix, which can be
obtained by solving the Lyapunov equation ACþCAT ¼
−2D [24]. In the simplest limit, the activities are spatially
homogeneous: αi ¼ α∀ i, resulting in effectively equilib-
rium dynamics, with pðxÞ given by the Boltzmann distri-
bution [C−1 ¼ −A=ðT þ αÞ] and j ¼ 0. By contrast, in

heterogeneously driven systems with nonidentical αi’s, we
obtain nonequilibrium steady-state dynamicswith j ≠ 0 [24].
If we were able to observe the stochastic motion of all

beads in the network, we could directly measure the full
probability current jðxÞ and extract information about
the complete nonequilibrium dynamics of the system.
However, in an actual experiment, typically only a small
subset of the degrees of freedom can be tracked [Fig. 2(a)].
What information on the nonequilibrium dynamics of the
system can be extracted from such limited observations?
To address this question, we investigate a scenario where
only a few degrees of freedom are accessible.
We start by reducing our description to the marginal

distribution, prðxrÞ ¼
R
dxk∉½r�pðx1; x2;…; xdNÞ, of a sub-

set [r] of n tracked degrees of freedom xr. By integrating
out the subset [l] of m unobserved degrees of freedom xl
on both sides of Eq. (1) and taking the steady-state limit,
we obtain (see Supplemental Material [25])

0 ¼ −∇ · ½AeffxrprðxrÞ� þ ∇ ·D½r;r�∇prðxrÞ; ð3Þ

where the subindex ½r; r� of a matrix indicates the submatrix
corresponding to the reduced set of observed variables.
In addition, we introduce the effective linear interaction
[Fig. 2(b)], which can be written as Aeffxr, with Aeff ¼
A½r;r� þA½r;l�C½l;r�C−1

½r;r�. Here, A½r;l� and C½l;r� are rectangular
matrices of sizes ½n ×m� and ½m × n�, given by the

FIG. 2. Reduced system of tracked probed. (a) Schematic of two
fluorescently labeled probe beads in a larger system. (b) Elastic
force acting onbead j obtained at different time steps of a simulation
of the Langevin dynamics of the full system (blue points) and the
effective linear forceAeffxr from analytical calculations (light blue
plane). (c) Probability density (color map) and probability current
(white arrows) calculated analytically from the effective 2D system,
together with results from simulating the full system in the inset.
(d) The nonconservative part of the effective force field, ½ðAeff −
AT

effÞ=2�xr (black arrows), can contribute to the rotation in phase
space in nonequilibrium systems. Note, for αi ¼ α∀ i (effective
equilibrium scenario), Aeff becomes symmetric.

FIG. 1. Schematic illustrating soft viscoelastic networks with
heterogeneous driving for various types of cellular systems.
(a) Chromosome, (b) red blood cell membrane, (c) cytoskeletal
network with (d)–(f) associated bead-spring models with hetero-
geneous active driving. The color of the bead indicates the
intensity of activity, representing the variance (increasing from
blue to red) of the associated active noise process.
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elements of indices ½r; l� of A and ½l; r� of C, respectively.
Thus, we obtain an effective stationary Fokker-Planck
equation for the reduced system (3). From this, we obtain
the exact steady-state reduced probability distribution
prðxrÞ and probability current density:

jrðxrÞ ¼ AeffxrprðxrÞ þ D½r;r�C−1
½r;r�xrprðxrÞ; ð4Þ

which can, in principle, be measured from the trajectories
of the observed degrees of freedom [Fig. 2(c)].
We can use this reduced description to investigate how

broken detailed balance manifests at different scales in
the network. In particular, we consider the simplest case of
a reduced system of only two tracked beads in a larger
system, as illustrated in Fig. 2(a). It is convenient to
quantify the probability currents in the 2D phase space
of these two tracer beads by a pseudoscalar quantity: the
average cycling frequency around the origin [13,14,26].
For linear systems, we can express the reduced probability
current as jrðxrÞ ¼ ΩrxrprðxrÞ, where Ωr is a 2D matrix
with purely imaginary eigenvalues λ ¼ �iω, with ω
representing the cycling frequency.
This cycling frequency can be measured experimentally

for a pair of degrees of freedom; e.g. the displacements in a
certain direction of two probe beads at a distance r. This
frequency will depend on the specific configuration of all
activity amplitudes αi. We aim to compute how this cycling
frequency depends on r after averaging over all activity
configurations. Since ω is expected to be distributed
symmetrically around zero, we calculate

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hω2ðrÞiα

p
for

pairs of beads separated by a distance r. Here, the average
h� � �iα is taken over an ensemble of activities fαig drawn
from the distribution pα. Intuitively, the magnitude of the
circulation of currents in phase space typically decreases
with the distance between the probes, as shown in Fig. 3(a).
This reduction of the circulation is reflected by a decrease
of the cycling frequency ω with distance. Remarkably,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hω2ðrÞiα

p
appears to depend on the distance between the

tracer beads r as a power law,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hω2ðrÞiα

p
∝ r−μ, with μ ≈

1.9 for a 1D chain with a folded Gaussian or an exponential
distribution of activities, as depicted in Fig. 3(b).
To investigate how the architecture of the system

affects the scaling behavior of the cycling frequencies,
we considered different network structures, including
square, triangular, and cubic lattices. In particular, we
determined the ensemble average h� � �iα by performing
a spatial average for computational convenience (see
Supplemental Material [25]). Interestingly, we find that
the characteristic exponent μ appears to depend strongly on
the dimensionality of the lattice, but not on its geometry,
as shown in Figs. 3(b) and 3(c). These results suggest that
the distance dependence of the cycling frequency is
determined in part by the long wavelength elastic properties
of the system. Importantly, however, the scaling of cycling
frequency is sensitive to the spatial structure of the

activities. For example, in the simple case of a δ-distributed
(single-source) activity on a 1D chain, we find μsingle ≈ 2.4
[Fig. 3(b)] in contrast to the value 1.9 obtained above for
spatially distributed activities.
To obtain more insight into the scaling behavior of the

cycling frequencies, we derive an analytical expression for
the cycling frequency as a function of the distance between
the observed beads ωðrÞ. In general, it can be shown that,
for a linear system described by a Fokker-Planck equation,
the cycling frequencies are given by (see Supplemental
Material [25])

ωij ¼
1

2γ

hτijiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detC½r;r�

p ; ð5Þ

where τij ≔ xr × frðxÞ ¼ xifjðxÞ − xjfiðxÞ is a general-
ized phase space torque in the xi-xj plane, with fiðxÞ
denoting the deterministic force acting on the ith bead. This
result is intuitive: for an overdamped system, the mean
angular velocity is proportional to the mean torque and the
factor 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detC½r;r�

p
ensures coordinate invariance. For the

1D chain of beads [Fig. 1(d)], Eq. (5) reduces to

FIG. 3. Spatial scaling behavior of cycling frequencies.
(a) Steady-state current cycles in phase space of the displace-
ments (along the lattice direction) of two tracer beads for a nearby
pair of probes (left) and distant pair of probes (right). (b) Scaling
behavior of the cycling frequencies

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hω2ðrÞi

p
of a pair of probes

beads as a function of their spatial distances, obtained for a 1D
chain and different activity distributions, as indicated in the
legend. Black dashed line is obtained from Eq. (10). (c) Scaling
behavior of the cycling frequencies

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hω2ðrÞi=hω2ð1Þi

p
, obtained

for different lattices and a folded Gaussian activity distribution.
Triangular and square markers represent triangular and square or
cubic lattices, respectively. Light (dark) blue triangles represent
triangular networks with zero (finite) rest length springs. In both
(b) and (c), we used ᾱ=T ¼ 0.15.
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ωij ¼
k
γ

∂̃2
2cijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detC½r;r�
p ; ð6Þ

where cij is the ith, jth element of the covariance matrix C,
with the discrete second derivative across rows denoted as
∂̃2
2cij ¼ ci;jþ1 − 2ci;j þ ci;j−1. Thereby, we have reduced

the problem of calculating ωðrÞ to finding the covariance
matrix of the system.
The structure ofD suggests a natural decomposition of the

covariance matrix C into equilibrium (C̄) and nonequili-
brium (C�) contributions: C ¼ ðkBT=kÞC̄þ ðkBᾱ=kÞC�,
such that C̄ and C� are dimensionless. Both C̄ and C�
can be found by solving the Lyapunov equation, which for
the 1D chain is given by

∂̃2
1c̄ij þ ∂̃2

2c̄ij ¼ −2δij; ð7Þ

∂̃2
1c�ij þ ∂̃2

2c�ij ¼ −2δij
αi
ᾱ
; ð8Þ

where ∂̃2
1 indicates the discrete second derivative across

columns. These equations represent discrete stationary
diffusion equations, with sources of divergence given by
δij and δijðαi=ᾱÞ, respectively. This result prescribes how a
spatial distribution of activities structures the covariance
matrix.
We can make further progress by noting that the principle

of detailed balance imposes ωij ¼ 0 at thermal equilibrium,
which together with Eq. (6) implies ∂̃2

2c̄ij ¼ 0. We can,
therefore, substitute ∂̃2

2cij in Eq. (6) by ∂̃2
2c�ij, and then

expand this equation up to linear order in ᾱ=T to obtain

ωij ¼
k
γ

ᾱ

T

∂̃2
2c�ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det C̄½r;r�
q : ð9Þ

We proceed by calculating C� for a given distribution of
activities fαig. Because of the linearity of Eq. (8), C� is a
superposition of steady-state solutions to single-source prob-
lem, i.e., a δ-distribution for which all but one of the activities
would be set to zero. Denoting the element ofC� at a distance
r from the single activity source by c�ðrÞ, we obtain the
“covariance current” ∂rc�ðrÞ ∼ 1=r. Here we employed a
continuous approximation of the discrete diffusion problem
in Eqs. (7) and (8). Thus, c�ðrÞ ¼ −a lnðrÞ þ b for a single-
source problem, with integration constants a and b, repre-
senting the Green’s function for our problem. Using this
expression for c�ðrÞ together with Eq. (9), we obtain for
the single-source case ω2

singleðrÞ¼ ðk2=γ2Þðα2=T2Þða2=r4Þ
f1=detC̄½r;r�ðrÞg, where α is the source’s activity.
Next, we use a superposition of single-source solutions

for c�ðrÞ to obtain the nonequilibrium contribution of the
covariance matrix C� for a specific configuration of many
activity sources fαig. Using this result in conjunction with
Eq. (9) and performing an ensemble average over the

distribution of activity realizations, we arrive at the central
result

hω2ðrÞiα ¼
k2

γ2
σ2α
T2

πa2

2r3
1

det C̄½r;r�ðrÞ
: ð10Þ

Finally, we note that the elements of the equilibrium
covariance matrix are given by c̄i;j¼minði;jÞ−ij=ðNþ1Þ
and find that, for r ≪ N, det C̄½r;r�ðrÞ exhibits a power-law
behavior det C̄½r;r�ðrÞ ∼ Nr. Therefore, from this analysis,
we find for a 1D chain with heterogenous activities μ ¼ 2,
independent of the activity distribution pα. Furthermore,
we find μsingle ¼ 2.5 for a single-source activity, in accord
with our numerical result [see Fig. 3(b)]. This calculation
provides insight into how a combination of features of
the equilibrium and nonequilibrium contributions to the
covariance matrix determine the spatial scaling behavior of
cycling frequencies.
Nonzero cycling frequencies directly reflect broken

detailed balance, suggesting a connection between ω and
measures of the internal driving, including the rate of
entropy production. For a Markovian system described by a
Fokker-Planck equation, the total entropy production rate
under steady-state conditions is given by [27]

Πtot ¼ kB

Z
dx

jTðxÞD−1jðxÞ
pðxÞ ; ð11Þ

where kB is Boltzmann’s constant. The validity of this
result relies on the equivalence between the Fokker-Planck
and Langevin descriptions. However, the marginal prob-
ability density of the reduced system is described by a
Fokker-Planck equation only at steady state [see Eq. (3)
and Supplemental Material [25] ], reflecting the loss of
Markovianity after coarse graining. Even if the real
dynamics of the reduced system are non-Markovian, we
can define an effective Markovian dynamics through the
Langevin equation

dxrðtÞ
dt

¼ AeffxrðtÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffi
2D½r;r�

q
ξrðtÞ; ð12Þ

with Gaussian white noise ξrðtÞ. This equation of motion
results in the exact steady-state probability and current
densities, but with an approximate stochastic dynamics.
In particular, the effective interaction matrix Aeff [see
Eq. (3)] captures only the average interaction between the
traced variables, as illustrated in Fig. 2(b). Furthermore,
in contrast to the full deterministic forces (Ax), these
effective interactions [Fig. 2(c)] need not derive from a
potential and thus may contain a nonconservative compo-
nent [Fig. 2(d)].
The entropy production rate associated with the effective

Markovian dynamics in Eq. (12) is given by
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Πr ¼ kB

Z
dxr

jTr ðxrÞD−1
½r;r�jrðxrÞ

prðxrÞ
≤ Πtot; ð13Þ

where jrðxrÞ is defined in Eq. (4). Note, estimating Πr by
using the Markovian formalism allows us to set a lower
bound for the total entropy production rate Πtot (see
Supplemental Material [25]), similar to what has already
been shown for discrete systems [28]. In the n ¼ 2 case
with two traced degrees of freedom that we consider here,
Eq. (13) reduces to (see Supplemental Material [25])

Πð2Þ
r ¼ kBω2TrðC½r;r�D−1

½r;r�Þ: ð14Þ

This result provides an explicit relation between the partial
entropy production rate and the cycling frequency ω. Note,

all quantities in the expression for Πð2Þ
r can be observed in

an experiment, providing a direct way to noninvasively
determine the reduced rate of entropy production for a set
of traced degrees of freedom. Since TrðC½r;r�D−1

½r;r�Þ depends
only weakly on r, as long as 1 ≪ r ≪ N, we expect a

scaling behavior hΠð2Þ
r i ∼ r−2μ. This result shows that the

spatial scaling behavior of the cycling frequencies directly
determines the spatial scaling behavior of the entropy
production rate [see Fig. 4].
In summary, we here demonstrate theoretically how

experimental measures of nonequilibrium activity in inter-
nally driven linear networks are affected by the length scale
at which the system is observed. Specifically, we developed
a general framework to predict the scaling behavior of
cycling frequencies and the entropy production rate that
can be inferred by tracing pairs of degrees of freedom. We
showed that the exponent μ that governs this behavior for a
system with heterogeneous random activities is insensitive
to the details of distribution of activities. However,

this exponent depends sensitively on the dimensionality
of the system. The predicted scaling behavior can be tested,
for instance, by analyzing the fluctuations of pairs of
tracer particles embedded in biological [9–11,29,30] and
artificial [31–36] systems under nonequilibrium steady-state
conditions.
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DERIVATION OF EQ. (3)

Here, we derive Eq. (3), which describes the steady state distribution of traced variables. Integrating out the unob-
served degrees of freedom on both sides of the Fokker-Plank equation (Eq. (1)), and using the Einstein notation for
summing over repeated indexes, we obtain:

(I)
∫
dxl∂tp(x) = −

(II)
∫
dxl∂i[aijxjp(x, t)] +

(III)
∫
dxldij∂i∂jp(x, t) (S1)

where aij and dij are the elements of the interaction matrix A and the diffusion matrix D, respectively. Rewriting
the probability as p(x, t) = p(xl|xr, t)pr(xr, t), we can separately calculate each term in Eq.(S1). The first term (I)
gives:

∫
dxl∂tpr(xr, t)p(xl|xr, t) = ∂tpr(xr, t)

∫
dxlp(xl|xr, t) = ∂tpr(xr, t) (S2)

For the second term (II ), we obtain
∫
dxl∂i[pr(xr, t)p(xl|xr, t)aijxj ] = δi,[r]∂i[pr(xr, t)

∫
dxlp(xl|xr, t)aijxj ]

= δi,[r]∂i[pr(xr, t)aij 〈xj |xr, t〉]
(S3)

where δi,[r] = 1 if xi is one of the observed coordinates and zero otherwise. In the first line we use that the probability
density vanishes at infinity faster than 1/x. Similarly, the third term (III ) can be written as

∫
dxldij∂i∂j [pr(xr, t)p(xl|xr, t)] = δi,[r]δj,[r]dij∂i∂j [pr(xr, t)

∫
dxlp(xl|xr, t)]

= δi,[r]δj,[r]dij∂i∂jpr(xr, t)

(S4)

We seek a description for the stochastic dynamics, which only depends on the observed degrees of freedom. This
can be achieved by taking the steady-state limit. In this case, the conditional average appearing in Eq.(S3) yields
〈xl|xr〉 = C[l,r]C

−1
[r,r]xr [S1]. We substitute Eqs. (S2)-(S4) in Eq. (S1) to obtain Eq. (3), which therefore holds only at

steady-state.

DERIVATION OF EQ. (5)

Here we derive the expression in Eq. (5) for the cycling frequencies. To this end, we first show that the right hand
side of this equation is invariant under orientation preserving linear transformations restricted to the 2-dimensional
reduced subspace. Let us consider such a transformation: x′r = Bxr, f ′r = Bfr, and denote by C′[r,r] the reduced
covariance matrix in the transformed coordinates.

BC[r,r]B
T = C′[r,r] =⇒ det B =

√
det C′[r,r]
det C[r,r]

(S5)

Using this result together with the transformation properties of the vector product, we obtain

〈τij〉√
det C[r,r]

=
〈xr × fr(x)〉√

det C[r,r]

=
〈x′r × f ′r(x

′)〉√
det C[r,r]

1

det B
=

〈
τ ′ij
〉

√
det C′[r,r]

. (S6)
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The coordinate invariance of this term allows us to specifically consider the convenient coordinates in which C[r,r] = I:

1

γ
〈τij〉 =

1

γ
〈xr × fr(x)〉 =

1

γ

∫
dxr 〈xr × fr(x)|xr〉 pr(xr) =

1

γ

∫
dxr xr × 〈fr(x)|xr〉 pr(xr) (S7)

We can further expand this expression by using Ωr = Aeff + D[r,r]C
−1
[r,r]. (The expression for Ωr follows immediately

from Eq. (4), since we require jr(xr) = Ωrxrpr(xr).)

1

γ
〈fr(x)|xr〉 = Aeffxr = Ωrxr −D[r,r]C

−1
[r,r]xr. (S8)

Combining this result with Eq. (S7), we arrive at

1

γ
〈τij〉 =

∫
dxr xr × (Ωrxr)pr(xr)−

∫
dxr xr × (D[r,r]C

−1
[r,r]xr)pr(xr). (S9)

Using the explicit form of Ωr (see Eq. (S15)), we evaluate the first term in this expression,

∫
dxr xr × (Ωrxr)pr(xr) =

∫
dxr ωij(x

2
i + x2

j )pr(xr) = ωij(cii + cjj) = 2ωij . (S10)

In addition, we confirm by direct calculation, that, as expected, the second term in Eq. (S9) vanishes:

−
∫
dxr xr × (D[r,r]xr)pr(xr) =

∫
dxr (−xj , xi)

(
dii dij
dij djj

)(
xi
xj

)
pr(xr)

=

∫
dxr [−diixixj − dijx2

j + dijx
2
i + djjxixj ]pr(xr)

= cij︸︷︷︸
0

(djj − dii) + dij (cii − cjj)︸ ︷︷ ︸
0

= 0 (S11)

Altogether, this gives us the desired result:

1

2γ

〈τij〉√
det C[r,r]

= ωij (S12)

DERIVATION OF EQ. (13)

Here we show that Πtot ≥ Πr.

Πtot −Πr

kB
=

∫
dx

jT (x)D−1j(x)

p(x)
−
∫
dxr

jTr (xr)D
−1
[r,r]jr(xr)

p(xr)

=
γ

kB

∑

j∈[l]

∫
dx

v2
j (x)

(T + αj)
p(x) +

γ

kB

∑

i∈[r]

[(∫
dx

v2
i (x)

(T + αi)
p(x)

)
−
∫
dxr
〈vi(x)|xr〉2
(T + αi)

p(xr)

]

=
γ

kB




∑

j∈[l]

∫
dx

v2
j (x)

(T + αj)
p(x) +

∑

i∈[r]

∫
dxr

[(∫
dxl

v2
i (x)

(T + αi)
p(xl|xr)p(xr)

)
− 〈vi(x)|xr〉2

(T + αi)
p(xr)

]


=
γ

kB



∑

j∈[l]

〈v2
j (x)〉

(T + αj)
+
∑

i∈[r]

∫
dxr

(
〈v2
i (x)|xr〉 − 〈vi(x)|xr〉2

)
︸ ︷︷ ︸

≥0

p(xr)

(T + αi)


 ≥ 0

(S13)

where in the second line we use that D is diagonal, v(x) = j(x)/p(x), and jr(xr) = p(xr)
∫
dxl vr(x)p(xl|xr) =

p(xr) 〈vr(x)|xr〉, which follows from the derivation of Eq. (3).



3

DERIVATION OF EQ. (14)

Here we derive the expression for the partial entropy production rate in terms of the cycling frequencies (see Eq. (14)).
It is convenient to substitute the current field j = Ωxp(x) in Eq. (11), which gives

Π = kB

∫
dx(Ωx)TD−1(Ωx)p(x) = kB

∫
dxxiΩ

T
ij(D

−1)jlΩlmxmp(x)

= kBΩTij(D
−1)jlΩlmcmi = kB Tr (ΩTD−1ΩC).

(S14)

Since the entropy production is invariant under coordinate transformations, we can use a more suitable coordinate
system. In particular, we choose a set of coordinates such that C = I. In this set of coordinates, the entries of the
matrix Ωij correspond to the cycling frequencies in the coordinates space of the ith and jth coordinates [S2]. Thus,
in the 2D case Ωr is given by

Ωr =

(
0 ω
−ω 0

)
(S15)

Furthermore, in this coordinate system C[r,r] and Ωr commute, yielding

Π(2)
r = kBω

2 Tr (C[r,r]D
−1
[r,r]) (S16)

Note, this expression is invariant under coordinate transformations.

SYSTEM SIZE AND SPATIAL AVERAGE

We determined the scaling of cycling frequencies for a range of system sizes (Fig. S1A). By properly rescaling both
axes (see Eq.(10)), we can collapse all data on a mastercurve, which is consistent with a power-law over at least two
decades (Fig. S1B). This analysis suggests a universal behavior, which is not dependent on the size of the system.
These results provides additional numerical evidence for a power law scaling.

To determine ensemble averages of the cycling frequencies in Fig.(3) and Fig.(4) we employ spatial averages. For
an infinite heterogeneous system, the ensemble average is equivalent to a spatial average. In a finite system, we need
to be careful when using spatial averages because of edge effects. We investigated this aspect in a 1D chain, for which
edge effects will be stronger than in higher dimensional systems. We performed a spatial average over all the different
beads at distance r in the system, where we excluded data from beads at distances < 10 from the edge of system.
Using this procedure, we find results that are consistent with those obtained with the ensemble average. (Fig. S2)

FIG. S1. Spatial scaling behavior of cycling frequencies. A) Scaling behavior of the frequency for different system sizes in the
1D chain (other parameters as in Fig. 3). B) Data collapse obtained by properly rescaling both axes.
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FIG. S2. Comparison between spatial and ensemble averages of the cycling frequencies for a 1D chain of size N=1501 (other
parameters as in Fig. 3).
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Detecting and quantifying nonequilibrium activity is essential for studying internally driven assemblies,
including synthetic active matter and complex living systems such as cells or tissue. We discuss a noninvasive
approach of measuring nonequilibrium behavior based on the breaking of detailed balance. We focus on “cycling
frequencies”—the average frequency with which the trajectories of pairs of degrees of freedom revolve in phase
space—and explain their connection with other nonequilibrium measures, including the area enclosing rate
and the entropy production rate. We test our approach on simple toy models composed of elastic networks
immersed in a viscous fluid with site-dependent internal driving. We prove both numerically and analytically
that the cycling frequencies obey a power law as a function of distance between the tracked degrees of freedom.
Importantly, the behavior of the cycling frequencies contains information about the dimensionality of the system
and the amplitude of active noise. The mapping we use in our analytical approach thus offers a convenient
framework for predicting the behavior of two-point nonequilibrium measures for a given activity distribution in
the network.

DOI: 10.1103/PhysRevE.99.052406

I. INTRODUCTION

The field of active matter has developed over recent
decades to provide a physical description of classical many-
body systems operating far from thermodynamic equilibrium
[1–3]. A prominent class of such active matter are living
systems: Schools of fish [4], flocks of birds [5], and colonies
of bacteria [6,7] can all exhibit collective dynamics that are
manifestly out of equilibrium. However, the non equilibrium
activity of biological assemblies at smaller subcelluar scales is
not always straightforward to discern [8,9]. Examples include
the stochastic fluctuations of biological assemblies such as
chromosomes [10], the cytoskeleton [2,11–14], and cellular
membranes [15–17]. Indeed, while these fluctuations can at
first sight appear indistinguishable from thermal Brownian
motion, they are in many cases driven by energy-consuming
processes at molecular scales [1,2,8,9,18,19]. This molecular-
scale activity can propagate to mesoscopic scales, giving
rise to nonequilibrium dynamics that breaks detailed balance
[9,20–25] or that violates the fluctuation dissipation theorem
[12,15,16,26–28]. Soft-driven assemblies can also be realized
in synthetic systems, including chemical fueled synthetic
fibers [29], crystals of active colloidal particles [30], and artifi-
cial lipid membranes [31,32]. Numerous experimental studies
showed how molecular nonequilibrium processes affect the
mesoscopic mechanical properties of in vivo biological assem-
blies [2,11–13], in vitro reconstituted cytoskeletal networks
[33–35], and synthetic materials [36]. It still remains unclear,
however, how to characterize the nonequilibrium fluctuations
of soft-driven assemblies.

*C.broedersz@lmu.de

To make further progress on characterizing active systems,
various candidates for a reliable and informative nonequilib-
rium measure have been proposed. A natural and commonly
used measure of the time-irreversibility of a process is the
entropy production rate. In some cases, this measure is related
to the energy dissipation in a system [37]. Recent studies
made significant progress in inferring the entropy production
rate from the observed trajectories [25,38,39]. In general,
for complex systems it is unclear how to interpret measures
of the partial entropy production rate or how to relate the
measured quantities to the real entropy production rate of the
full system. It is possible, however, to set a lower bound to
the total entropy production from the observation of a few
mesoscopic degrees of freedom [23,40–43]. An alternative
approach of using area enclosing rates (AER) of stochastic
trajectories in phase space as a metric for the breaking of de-
tailed balance was presented in Refs. [44] and [45]. A closely
related concept—the cycling frequencies of the stochastic
trajectory—was used to analyze the nonequilibrium behavior
emerging in the mode-space trajectories of a probe filament in
an active gel [21,22] or the dynamics of a driven disordered
elastic network near its isostatic point [24].

Despite the multitude of available nonequilibrium mea-
sures, it is still unclear how to use them to extract useful
information about the nature of active driving in a system. The
cycling frequencies can be used to investigate the nonequilib-
rium dynamics emerging on different lengthscales in driven
elastic networks [23]. In particular, the cycling frequencies
measured from trajectories of two probe particles in an in-
ternally driven elastic network display a power-law behavior
as function of the distance between the particles, with an
exponent that depends on the dimensionality of the system;
the prefactor of this scaling law depends on the statistical
properties of the internal driving. Thus, these experimentally

2470-0045/2019/99(5)/052406(12) 052406-1 ©2019 American Physical Society
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FIG. 1. (a) One-dimensional elastic chain of beads at tempera-
ture T with spatially varying white-noise driving intensity αi, and
the corresponding diffusion matrix D. The tracked pair of beads is
indicated in green. (b) Two-dimensional and (c) three-dimensional
elastic networks investigated in Sec. V A.

accessible cycling frequencies and their associated scaling
behavior provide a promising candidate for a nonequilibrium
measure that may provide access to properties of the internal
driving.

In this work we present a detailed derivation of the scaling
behavior of cycling frequencies for d-dimensional elastic
networks with internal driving. Thus, we derive a theoretical
framework that allows us to relate the cycling frequency to
the lengthscale of the observation and to the properties of the
network and of the active noise. Furthermore, we clarify the
relation between the cycling frequencies and other nonequilib-
rium measures such as the area enclosing rate and the entropy
production rate.

II. DRIVEN ELASTIC NETWORKS

We use overdamped networks of elastically coupled beads
suspended in a viscous fluid (see Fig. 1) as a simple model
for soft subcellular assemblies, such as a chromosome, a cell
membrane, or the cytoskeleton [46–49]. For simplicity we
choose units in which the elastic spring constant, the damping
coefficient of the beads, and the Boltzmann constant kB equal
1. The fluid is assumed to be at thermal equilibrium and the
resulting thermal fluctuations in the system are thus modeled
as Gaussian white noise processes acting independently on
all the beads with the same amplitude T . Additional active
force fluctuations, which in a biological system would be
generated by enzymatic activity, drive the system out of
thermal equilibrium. In real systems, the binding kinetics
of enzymes such as molecular motors may depend on local
structural properties of the network. Consequently, we expect
the variance of the stochastic forces that these enzymes gen-
erate to depend on local features. We account for this possible
spatial heterogeneity implicitly by implementing the active
forces as independent Gaussian white noise processes with
site-dependent amplitudes αi. Here we shall only focus on the
case of spatially uncorrelated intensities of the noise, but the
theoretical framework we present in this paper can also be
applied in other scenarios.

By modeling the active forces as “white,” we essentially
restrict our model to systems in which the correlation times
of the active driving are shorter than the intrinsic relaxation
times of the network. This model is mathematically equivalent
to embedding the beads in local thermal baths at temperatures
T + αi [50].

This simplified description allows us to study the dynamics
of the system using a Fokker-Planck equation:

∂t p(x, t ) = −∇ · (Ax − D∇)p(x, t ) := −∇ · j(x, t ), (1)

where x represents the displacements of the beads relative
to their equilibrium positions, and p(x, t ) is the probability
distribution of x at time t . We also assume that the forces are
linear in x, i.e., f (x) = Ax with a symmetric matrix A, and
D = diag{T + α1, . . . , T + αN } is the diffusion matrix. The
right-hand side of Eq. (1) can be interpreted as the divergence
of the probability current density j(x, t ) = (Ax − D∇)p(x, t ).
At steady state, the nonvanishing dissipative probability cur-
rents constitute a measure of nonequilibrium dynamics in a
system and thus play the key role in our approach.

III. CYCLING FREQUENCIES AND
PHASE SPACE TORQUE

The steady-state probability currents, j(x), are mathemat-
ical objects that capture the presence of nonequilibrium ac-
tivity by revealing time-irreversibility of the dynamics at the
level of the Fokker-Planck equation. This time-irreversibility
manifests through the emergence of a mean velocity field
v(x) in the coordinate space, which is related to the proba-
bility current through j(x) = v(x)p(x) [51]. Therefore, from
an experimental perspective, an ideal way to quantify the
nonequilibrium dynamics of a system would be to measure
such a velocity field v(x). However, inferring the full v(x)
field is a challenge on its own. The most straightforward
approaches require a discretization of the phase space. Such
a measurement would require tracking many degrees of free-
dom for long time periods, which is difficult in practice.

Instead of inferring v(x) in full detail, one can alterna-
tively measure some coarse-grained quantities related to v(x),
which still retain key information about the nonequilibrium
dynamics of the system. For instance, we could track a pair of
degrees of freedom xr = {xi, x j} and measure the time average
of the angular velocity 〈β̇i j〉, or equivalently, the rate at which
the trajectory revolves around the origin in this reduced two-
dimensional subspace (Fig. 2). This simple measurement does
not require any discretization of phase space or inference of
the force field. We shall refer to 〈β̇i j〉 as the cycling frequency.

In general, 〈β̇i j〉 may contain only limited information
about v(x). For linear systems, however, the mean phase space
velocity can be written as [52]

v(x) = �x, � = A + DC−1, (2)

where C = 〈x ⊗ x〉 is the steady-state covariance matrix
obeying the Lyapunov equation

AC + CAT = −2D. (3)

Equation (2) sets strong constraints on the structure of v(x):
for dynamics projected on any two-dimensional subspace
{xi, x j} the probability currents have an elliptical structure.

052406-2
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FIG. 2. Schematic trajectory in the coordinate space [xi, x j] of
two tracer beads. The light blue area enclosed in the triangle
represents xr × fr (x)/2 appearing in Eq. (6), which gives the area
enclosing rate upon averaging over phase space.

The remaining information about the amplitude of the currents
is set by the cycling frequencies 〈β̇i j〉.

To show this, we denote the velocity of the system in the
reduced i j-subspace by vr (x) = {vi(x), v j (x)}. Note, what we
observe while looking at the xr-subspace only is a conditional
mean 〈vr (x)|xr〉. Similar to Eq. (2), we find that 〈vr (x)|xr〉 =
�rxr , with �r = Aeff + D[r,r]C−1

[r,r] [23]. Here Aeff is a matrix
such that 〈fr (x)|xr〉 = 〈{ fi(x), f j (x)}|xr〉 = Aeffxr; note, C[r,r]

and D[r,r] are matrices of size [2 × 2], given by C[r,r] =
{{cii, ci j}, {c ji, c j j}} and D[r,r] = {{dii, di j}, {d ji, d j j}}.

Next, we show that the eigenvalues of �r coincide with
the cycling frequencies 〈β̇i j〉. First, note that 〈β̇i j〉 is invariant
under orientation preserving linear transformations of the re-
duced subspace. We can therefore work in covariance identity
coordinates, yr , such that C[r,r] = I. In this basis, �r takes a
particularly simple form [52]

�r =
(

0 ωi j

−ωi j 0

)
, (4)

with the imaginary parts of its eigenvalues on the antidiagonal.
This form of �r implies that for C[r,r] = I, the probability
current field has a circular structure. Using Eq. (4), we find
that

〈β̇i j |yr〉 =
〈

yr × ẏr

|yr|2
∣∣∣∣yr

〉
= y2〈ẏ1|yr〉 − y1〈ẏ2|yr〉

y2
1 + y2

2

= y2〈v1(y)|yr〉 − y1〈v2(y)|yr〉
y2

1 + y2
2

= ωi j . (5)

This means that the conditional average of the angular veloc-
ity 〈β̇i j |yr〉 is yr-independent and equals ωi j at all points in
the reduced phase space. Hence, averaging over yr leads to
〈β̇i j〉 = ωi j , with ω2

i j = det �r.
Recently, new approaches have been developed to infer

current fields in nonlinear systems by considering an expan-
sion of the inferred force field [38]. Up to first order these
methods reduce to calculating area enclosing rates, which
are indeed closely related to the cycling frequencies, as we
discuss further below.

One of our central objectives is to derive a relation between
the observed currents and the properties of the system and the
active driving. Given that the cycling frequencies are set by
ωi j—the imaginary parts of the eigenvalues of �r—we can
make further progress by showing that for a general linear
system [23]

ωi j = 1

2

〈xr × fr (x)〉√
det Cr

, (6)

where 〈xr × fr (x)〉 = 〈xi f j (x) − x j fi(x)〉 = (CAT − AC)i j is
the mean phase space torque (Fig. 2). Intuitively, Eq. (6)
implies that for an overdamped linear system the mean phase
space angular velocity is proportional to the mean phase
space torque. A detailed derivation is presented in Ref. [23].
Moreover, in covariance identity coordinates Eq. (6) reduces
to ωi j = 1

2 (AT − A)i j = �i j , in accord with previous studies
[21,22,52]. One can equivalently identify (CAT − AC)i j with
mean area enclosing rates in the i j-subspace, as considered
in [44]. Here, we focus on the cycling frequencies, since
they are more directly related to the probability currents,
which constitute the basis of our work. In some instances,
however, the area enclosing rates turn out to be particularly
advantageous to work with. In these cases we shall briefly
discuss how switching to the area enclosing rates simplifies
the analysis (see Sec. IV).

Since the cycling frequencies contain information about
the amplitudes of the phase space probability currents, they
can be related to the entropy production rate. For linear
systems, in covariance identity coordinates, the full entropy
production rate can be expressed as a weighted sum of the
cycling frequencies squared: � =∑n

i−odd ω2
i,i+1[(D−1)i,i +

(D−1)i+1,i+1]. However, in many experimental contexts it
is typically impossible to track all the degrees of freedom
or to resolve all steps of a process. This practical lim-
itation motivated the introduction of various measures of
reduced/apparent entropy production rate [23,40–43]. For
the case of a two-point measurement, as the ones discussed
in this paper, one can consider a reduced entropy produc-
tion rate directly related to the cycling frequency: �(2)

r =
ω2

i jTr(C[r,r]D−1
[r,r] ), which gives a lower bound on the full

contribution to the total entropy production rate from the
observed pair of degrees of freedom [23].

IV. ONE-DIMENSIONAL CHAIN AND
DIFFUSION EQUATION

While Eq. (6) sets a relation between the cycling fre-
quencies observable in an experiment and the properties of
both the network and the active noise distribution, it is not
straightforward to explicitly derive these properties from the
cycling frequencies. In the following sections, we use Eq. (6)
to build a framework for extracting specific information about
the system from the behavior of the cycling frequencies ωi j .

We first consider the simplest case of a one-dimensional
chain of 2N − 1 beads coupled by harmonic springs. This
example will help us build intuition for more complex lattices.
To obtain insight into how nonequilibrium behavior manifests
at different length scales, we consider a two-point nonequi-
librium measure. Specifically, we study how the cycling
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frequency in the subspace of displacements of two chosen
beads {xi, xi+r} depends on the distance r between these
beads. Note that the distance r is expressed in the units of
the lattice constant. We study the behavior of the cycling
frequencies for two scenarios:

(i) Active noise present only at single site,
(ii) Random spatial distribution of activities {αi}.

In case (i) we plot the cycling frequency, ωsingle(r), between
the active bead and another bead at distance r. In case (ii)
we consider an ensemble of active noise distributions {αi},
in which the amplitude of the active noise at each site is
drawn randomly from a probability distribution pα , with
mean ᾱ and variance σ 2

α . The amplitudes αi are spatially
uncorrelated. We then calculate 〈ω2(r)〉—the squared cycling
frequency between two beads at distance r averaged over the
activity distributions αi. The first observation is that in both
scenarios the cycling frequencies follow a power law as a
function of distance, as shown in Fig. 3. The exponent in the
random distribution scenario is independent of the probability
distribution pα of the intensities, but different from the single
activity case.

To understand the origin of the power-law behavior and
to calculate the exponents, we use Eq. (6) to derive analyt-
ical expressions for ωsingle(r) and 〈ω(r)2〉. In the case of a
one-dimensional chain with spatially uncorrelated noise, the
expression for the cycling frequency [Eq. (6)] reduces to

ωi j = ∂̃2
2 ci j√

det C[r,r]
, (7)

where ci j indicates the elements of the covariance ma-
trix, and ∂̃2

2 ci j denotes the discrete second derivative across
rows: ∂̃2

2 ci j = ci, j+1 − 2ci, j + ci, j−1. Thus, this result reduces
the problem of calculating ωi j to finding the covariance
matrix C.

Motivated by the structure of D, we decompose C =
T C + ᾱC∗ into equilibrium (C) and nonequilibrium (C∗)
parts [Fig. 4(a)]. For the one-dimensional chain, the Lyapunov
equation [see Eq. (3)] is equivalent to

∂̃2
1 ci j + ∂̃2

2 ci j = −2δi j, (8)

∂̃2
1 c∗

i j + ∂̃2
2 c∗

i j = −2δi j
αi

ᾱ
. (9)

At equilibrium detailed balance is preserved, which im-
plies ∂̃2

2 ci j = 0 ∀i �= j [see Eq. (7)]. We can therefore replace
∂̃2

2 ci j with ∂̃2
2 c∗

i j in Eq. (7). Then, expanding the expression for
the cycling frequency in powers of (ᾱ/T ), we get

ωi j = ᾱ

T

∂̃2
2 c∗

i j√
det C[r,r]

+ O
(

ᾱ2

T 2

)
. (10)

Up to linear order in (ᾱ/T ) the contributions from C and
C∗ separate; consequently, ωi j becomes linear in {αi}. This
linearity appearing in the limit of weak activity will later allow
us to calculate cycling frequencies averaged over different
realizations of the activity {αi}. Note, if instead of ωi j , we
consider the area enclosing rates (AER = ᾱ∂̃2

2 c∗
i j), the factor√

det C[r,r] does not enter, implying that the expression for

FIG. 3. (a) Scaling behavior of the cycling frequencies as a
function of distance between the beads, obtained for a 1D chain with
a single activity (blue stars) and with spatial distribution of activities
with amplitudes drawn randomly from exponential (green diamonds)
and folded Gaussian (red circles) distributions. (b) Comparison
between the cycling frequencies (lower blue) and the Area Enclosing
Rates (AER) (upper orange) above the weak noise limit (ᾱ/T = 4).
All data points correspond to results obtained by numerically solving
Lyapunov equation.

the area enclosing rates is linear in {αi} irrespective of the
magnitude of ᾱ.

A. Activity at a single site

To obtain insight into what determines the cycling fre-
quencies in a concrete example, we first find the solution to
Eq. (9) for the case of activity appearing only at a single site
in the center of the chain. Later, we will use this solution to
construct C∗ for a more general case. For now, let us assume
that αi = αδiN and ᾱ = α.

We can think of Eq. (9) as a discretized stationary diffusion
equation with a single source with a divergence of 2 in the
middle of the C∗ matrix, and with absorbing boundary condi-
tions at the edges. The absorbing boundaries in the diffusion
equation reflect the fixed boundary conditions for the elastic
chain. We denote by r =

√
(i − N )2 + ( j − N )2 the distance
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FIG. 4. (a) Profiles of the matrices C and C∗ in the single
activity case. For visual purposes, the discrete data points have been
interpolated to a 2D surface. ci j is linear in both indices, resulting
in ωi j = 0 for αi = 0. (b) Values of c∗

i j versus the distance from the

center of the matrix r = √(i − N )2 + ( j − N )2. Large orange points
correspond to the entries at positions (i, N ). The inset depicts the
same plot in log-linear scale.

from the center of C∗. If we consider a continuous analog
of our discrete problem and neglect the boundary conditions,
then we can assume a rotational symmetry of the solution
c∗(r). The corresponding continuous diffusion equation takes
the form: 1

r ∂rr∂rc∗(r) = 0. Consequently, r∂rc∗(r) = −a and
c∗(r) = −a ln(r) + b.

One could also argue for ∂rc∗(r) ∼ 1/r scaling of the
“covariance current,” by demanding that the total “covariance
flux” through a circle of radius r, centered at 0 is independent
of r and equals 2—the divergence of the source. This also
allows us to identify a = 1/π . The integration constant b
is system-size dependent and has to be set such that the
covariance vanishes at the edge of the covariance matrix.

The functional form that we obtain from this approximate
analysis accurately describes the actual numerically obtained
values of c∗

i j far from the boundaries [see Fig. 4(b)]. Note,
the deviations that appear close to the boundaries are due to
neglecting the absorbing boundary conditions and not due to
the discrete nature of the problem. We can also consider a con-
tinuous limit of the problem, in which the chain is replaced by
a string, by taking the limit N → ∞, k → ∞, while keeping
k/N = const. In this limit the discrete diffusion equation is
replaced by a continuous one, but the boundary effects still
play the same role. We shall return to the continuous limit in
Sec. V B, where we discuss more complex networks.

We can use the approximate form of c∗(r) together with
Eq. (10) to calculate ωsingle(r). For large N , we can replace

FIG. 5. (a) Scaling behavior of ωsingle(r) as a function of the
distance between the beads and comparison with the analytical
prediction (dashed line) in Eq. (11). Below, the behavior of the (b)
equilibrium and (c) nonequilibrium contributions to ωsingle(r). The
contribution presented in (c) coincides with the area enclosing rates.
All data points correspond to results obtained by numerically solving
Lyapunov equation.

∂̃2
2 c∗

N,N+r with ∂2
r c∗(r), to arrive at

ωsingle(r) = α

T

1

πr2

1√
det C[r,r](r)

+ O
(

α2

T 2

)
. (11)

Interestingly, it turns out that b, which is in general unknown,
does not enter the equation for ω(r).

To find the equilibrium part C, we make the follow-
ing observation. At equilibrium all cycling frequencies ωi j

must vanish, which combined with Eq. (7) gives: ∂̃2
2 ci j =

0 ∀i �= j . Using Eq. (8) at point (i, i) and the symmetry of C
we find ∂̃2

2 cii = −1. In general, we can therefore write the
equation for C as ∂̃2

2 ci j = −δi j . Note that this condition is
equivalent to a discrete stationary diffusion equation in one
dimension, with a single source at site i and with absorb-
ing boundary conditions. This implies that ci j is linear in
both indices and one can easily verify that ci j = min(i, j) −
i j/(2N ) satisfies Eq. (8). Using this solution, we find that
[det C[r,r](r)]−

1
2 = [ 1

2 r(N − r)]−
1
2 ∼ r− 1

2 for r � N . There-

fore, ωsingle(r) ∼ r− 5
2 , as shown together with the numerical

results in Fig. 5. The good agreement between the numerical
and analytical results allows us to conclude that the scaling
exponent is determined by the ln(r)-like profile of C∗, which
in turn is set by the dimensionality of the system. One could
in principle find an analytical solution for c∗(r) that accounts
for the boundary conditions, but the ln(r) scaling captures the
essential features.
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FIG. 6. Profile of C∗ in the case of spatially correlated ampli-
tudes of the active noise, together with the lines {(i, j, c∗

i j )} j=i,...,2N−1

for i = 10, 17, 23. The color of a line indicates the sign of its
curvature. The red (blue) points in the plots of |ωi, j | correspond to
positive (negative) cycling frequencies. Here, the profile of C∗ is
presented for activities {αi − ᾱ}. This transformation of activities is
justified in Appendix A.

B. Spatially varying activity

Equipped with the results from the previous section, we
now consider a system with spatially varying activity. First,
we will further clarify the connection between calculating
cycling frequencies and solving a discretized steady-state
diffusion equation for the covariance function. To this end, we
consider a generic activity distribution {αi} and plot the corre-
sponding active part of the covariance matrix C∗ obtained by
solving Eq. (9) (see Fig. 6). From the form of Eq. (7), we see

that the cycling frequencies {ωi j} j=1,...,2N−1 are proportional
to the curvature of the line {(i, j, c∗

i j )} j=1,...,2N−1, as illustrated
by the plots in Fig. 6. The connection with the steady-state
diffusion equation [see Eq. (9)] allows us to understand how a
given distribution of activities translates to a particular profile
of the C∗ matrix and how this in turn determines the behavior
of the cycling frequencies.

In general, the amplitudes of the active noise may be
spatially correlated. Here, however, we restrict ourselves ex-
clusively to the case of spatially uncorrelated activities, which
is valid in the limit of distances larger than the correlation
length of the amplitudes. To the “ith” bead we assign a ran-
domly sampled amplitude αi. We assume all αi to be pairwise
independent and identically distributed with distribution p(α).
For simplicity we index the beads so that the bead in the center
of the system has index 0. To calculate ω(2r) = ω−r,r , we
need to determine ∂̃2

2 c∗
−r,r . For a given activity distribution

{αi} we can exploit the linearity of Eq. (9) to obtain the
corresponding C∗({αi}) as a superposition of single-source
solutions. Thus, we can write

∂̃2
2 c∗

−r,r ({αi}) =
∑

z

∂̃2
2 c∗

−r,r ({αiδiz}). (12)

For beads far enough from the boundary, we approximate
C∗({αiδi j}) by a logarithmic decay centered at ( j, j) to obtain

∂̃2
2 c∗

−r,r ({αiδiz}) = 1

π

αz

ᾱ

(r + z)2 − (r − z)2

[(r + z)2 + (r − z)2]2

= 1

π

αz

ᾱ

rz

(r2 + z2)2
. (13)

Combining Eqs. (12) and (13), we calculate 〈[̃∂2
2 c∗

−r,r ({αi})]2〉,
which is the main factor in the expression for 〈ω2(2r)〉.

(πᾱ)2〈[̃∂2
2 c∗

−r,r ({αi})
]2〉 =

〈[∑
z

rzαz

(r2 + z2)2

][∑
z′

rz′αz′

(r2 + z′2)2

]〉
=
∑

z

r2z2
〈
α2

z

〉
(r2 + z2)4

+
∑

z

rz〈αz〉
(r2 + z2)2

∑
z′ �=z

rz′〈αz′ 〉
(r2 + z′2)2

=
∑

z

r2z2
(〈
α2

z

〉− 〈αz〉2
)

(r2 + z2)4
≈ σ 2

α

∫ ∞

−∞

r2z2dz

(r2 + z2)4
= πσ 2

α

16r3
. (14)

In the second line of this result, we used that
∑

z′ �=z
rz′

(r2+z′2 )2 =
− rz

(r2+z2 )2 and approximated the sum by an integral. Evaluating
the integral and rescaling 2r → r, we arrive at the final result:

〈ω2(r)〉α = σ 2
α

T 2

1

2πr3

1

det C[r,r](r)
. (15)

Given the asymptotic behavior 1/ det C[r,r](r) ∼ r−1 for r �
N we conclude that in the limit of weak activity

√
〈ω2(r)〉 ∼

r−2 (see Fig. 3). Importantly, apart from reproducing the
observed exponent of the power law, our result gives a correct
prediction for the prefactor, which contains information about
the variance of the active forces.

V. d-DIMENSIONAL LATTICES

A. Cubic lattice

To explain the origin of the scaling behavior of ω(r) for
multidimensional networks we now focus on the simplest
possible case of a d-dimensional cubic lattice. Importantly, the
calculation presented for this case also provides us with intu-
ition for more complex lattices. Let us denote the bead indices
corresponding to d independent directions with n1, . . . , nd .
We will denote the elements of the covariance matrix C
as cn1,...,nd ;n̄1,...,n̄d := cn,n̄. We assume zero-restlength for the
springs, so that the degrees of freedom corresponding to
different directions decouple. Therefore, by C we actually
mean the covariance matrix of only these degrees of freedom
that correspond to a single chosen direction, for instance the
one corresponding to the index n1.
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For this particular network, the Lyapunov equation is
equivalent to (

d∑
i=1

∂̃2
ni

+
d∑

i=1

∂̃2
n̄i

)
cn,n̄ = −2dn,n̄. (16)

Similar to the one-dimensional case, here we recognize a
discretized stationary diffusion equation in 2d dimensions,
with the divergence of the sources given by the elements of
D. For convenience we index the beads such that the one in
the middle of the lattice is (0, . . . , 0).

Our goal is to calculate the cycling frequency
ωr,...,r;−r,...,−r = ω(2

√
dr). Here we consider a particular

case of relative position of the beads with respect to the
principal directions of the lattice. It turns out, however, that
the final result depends only on the distance between the
beads. From Eq. (6), we find that

ωr,...,r;−r,...,−r ≈ (ᾱ/T )√
det C[r,r]

d∑
i=1

∂̃2
ni

c∗
n,n̄

∣∣
r,...,r;−r,...,−r

. (17)

Following the procedure used for the one-dimensional chain,
we begin with finding the solution to a single source problem
with one active bead at site (0, . . . , 0). As before, we will
then use this solution as a Green’s function for our diffusion
problem with a generic activity distribution.

Taking a continuous limit of the diffusion equation and
neglecting the boundary conditions, we expect that ∂rc(r) ∼
1/r2d−1 and consequently c(r) ∼ 1/r2d−2, where r is the
distance from the center of the 2d-dimensional covariance
matrix. Therefore, for a single active bead at site (0, . . . , 0),
we obtain

c∗
n,n̄ = ad

(
d∑

i=1

n2
i +

d∑
i=1

n̄2
i

)−(d−1)

= ad (n2 + n̄2)−(d−1). (18)

The constant ad = (d − 2)!/(2πd ) can be obtained from the
divergence theorem, as we did in the one-dimensional case.

The contribution to ωn,n̄ from a single activity at site
(0, . . . , 0) is then given by (Appendix A)

d∑
i=1

∂2
ni

c∗
n,n̄ = 2d (d − 1)ad

n2 − n̄2

(n2 + n̄2)d+1
. (19)

Performing calculations analogous to those for the one-
dimensional chain, we arrive at (Appendix A)

〈
ω2

d=2(r)
〉
α

= σ 2
α

T 2

8

5π3r6

1

det C[r,r]
, (20)

〈
ω2

d=3(r)
〉
α

= σ 2
α

T 2

27

8π4r9

1

det C[r,r]
. (21)

Importantly, we obtain exactly the same results when con-
sidering different directions across the lattice, such as
ω(r,0,...,0),(−r,0,...,0). In general, for a d-dimensional lattice we
expect

∂2
r c(r) ∼ r−2d , (22)

ω2
single,d (r) ∼ r−4d/ det C[r,r](r), (23)

〈ω2
d (r)〉α ∼ r−3d/ det C[r,r](r). (24)

For completeness we investigate the behavior of
det C[r,r](r) for different dimensions. At equilibrium all
cycling frequencies vanish, leading to

d∑
i=1

∂̃2
ni

cn,n̄ = 0 ∀n �=n̄. (25)

For all points on the diagonal of the covariance matrix
(n, n) = (n1, . . . , nd ; n1, . . . , nd ) the diffusion equation [see
Eq. (16)] reads

d∑
i=1

∂̃2
ni

cn,n +
d∑

i=1

∂̃2
n̄i

cn,n = −2. (26)

Using the symmetry of the system, we conclude that the two
sums in Eq. (26) are equal, which together with Eq. (25) imply
that (

d∑
i=1

∂̃2
ni

)
cn,n̄ = −δn,n̄ (27)

for all points (n, n̄). This result can be interpreted in the
following way: for a given (n̄1, . . . , n̄d ), cn,n̄ as a function
of (n1, . . . , nd ) is a solution to a d-dimensional discretized
stationary diffusion equation with a single source at position
(n̄1, . . . , n̄d ), and with absorbing boundary conditions. Note,
there is an interesting symmetry of the diffusion equation
implied by the symmetry cn,n̄ = cn̄,n: the solution at point n
from a source at point n̄ is equal to the solution at point n̄
from a source at point n. While this property of the diffusion
equation would be obvious in an infinite space, it surprisingly
holds also in the presence of absorbing boundaries.

It can further be shown that

cn,n̄ ∼ ln[(n1 − n̄1)2 + (n2 − n̄2)2] for d = 2,

cn,n̄ ∼
[

d∑
i=1

(ni − n̄i )
2

]−( d−2
2 )

for d > 2. (28)

This result can also be understood using a simple dimension-
ality argument: A diffusion problem in d dimensions with a
source forming a ds-dimensional plane can be mapped to a
(d − ds)-dimensional diffusion problem with a point source.
In our case we are dealing with a diffusion problem in a 2d-
dimensional space, with a d-dimensional source. Reducing
the 2d-dimensional problem to a point source problem in d
dimensions, we arrive exactly at Eq. (28). From this equation
we conclude that for dimensions d � 2, the diagonal terms
of C[r,r](r) strongly dominate over the off-diagonal ones. In
fact one can verify that for dimensions d � 2 and for systems
large enough det C[r,r](r) depends on r only weakly and does
not influence the scaling behavior of ω2(r) anymore (see
Fig. 7). This is a consequence of the shorter range of elastic
interactions in higher dimensions.

It is important to note here that, as discussed after intro-
ducing Eq. (10), the area enclosing rates do not depend on
det C[r,r]. This allows us to perform calculations analogous to
the ones presented in this section, without assuming the limit
of weak activities. As a result we predict a scaling σαr−3d/2

052406-7



GRADZIUK, MURA, AND BROEDERSZ PHYSICAL REVIEW E 99, 052406 (2019)

FIG. 7. Scaling behavior of the cycling frequencies as function
of the distance between the beads. The results are obtained for
different lattices and a folded Gaussian activity distribution [23].
Triangles, big squares, and small squares represent triangular, square,
and cubic lattices, respectively. Light (dark) blue triangles represent
triangular networks with zero (finite) rest length springs. In all cases
we used ᾱ

T = 0.15. For computational convenience we determined
the ensemble average by performing a spatial average. All data points
correspond to results obtained by numerically solving Lyapunov
equation.

for the area enclosing rates even for high amplitudes of the
active noise.

B. Generic lattices

In Sec. V A we investigated the simplest possible case of
a d-dimensional zero-rest length cubic lattice Ld . For such
systems the Lyapunov equation for the covariance matrix
could be viewed as a discretized steady-state diffusion equa-
tion defined on a space Ld × Ld ∼ L2d . For instance, for
a two-dimensional square lattice we had to solve a diffusion
equation in a four-dimensional cube. A natural question is
how general the connection is between the Lyapunov equation
and diffusion equations. It turns out that for many zero-rest
length lattices there is simple procedure for translating a par-
ticular lattice structure to a corresponding diffusion equation
for the covariance. The condition which allows us to identify
the terms appearing in the Lyapunov equation with second
derivatives, as in Eq. (9), is that at all sites of the lattice a
spring pointing in one direction is accompanied by a spring
pointing in the opposite direction. If this is the case, then we
can directly read out the diffusion equation from the structure
of the lattice, as illustrated in Fig. 8. Each such pair of springs
gives rise to diffusive terms in the corresponding directions,
with diffusion constant proportional to the spring constant.

In the case of finite rest length elastic networks with
linearized forces, the same condition allows us to write the
Lyapunov equation as a discretized second order partial differ-
ential equation for the covariance. Importantly, the displace-
ments in x and y directions are no longer decoupled and one
has to solve a differential equation for three different covari-
ances: cxx, cxy, cyy. An example of such an equation for a
two-dimensional triangular lattice is included in Appendix B.
Importantly, the structure of the network determines not only
the equation for the covariance matrix but also the cycling
frequencies according to Eq. (6).

For a wide range of networks, including randomly diluted
networks [24], the condition given above is not satisfied and

FIG. 8. An exemplary lattice for which the Lyapunov equation
can be interpreted as a diffusion equation with nonisotropic diffusion.
The presented lattice is equivalent to the triangular lattice, if we
consider them in the zero-rest length case.

there is no straightforward way of translating the Lyapunov
equation to a continuous diffusionlike equation for the co-
variance. Nevertheless, for a given network G, which can be
thought of as a graph, we can still interpret the Lyapunov
equation as a Poisson equation on a graph G × G and relate
the cycling frequency between a pair of degrees of freedom to
the covariance flux through a corresponding vertex of G × G.
The theory of graph Laplacians, introduced by Kirchhoff in
his study of the properties of resistor networks, has found
applications in elasticity theory, graph theory, and computer
science [53–56].

Our numerical calculations reveal that the exponents of the
power laws for the cycling frequencies observed for various
lattices are set by the dimensionality of the system and are in-
dependent of the detailed structure of the lattice [23]. Heuris-
tically, this can be understood as follows: any d-dimensional
rigid network, with a given average coordination number can
be seen as an approximation to a continuous d-dimensional
elastic medium. For such an elastic medium, a continuous
diffusion equation, as the one we used to study d-dimensional
cubic lattices, would be an exact equation for the covariance
field, and we conjecture that the cycling frequencies for a
continuous medium can be obtained by taking appropriate
limits of our results for a discrete system. Note that a study
of the cycling frequencies directly at the level of a continuous
system would require introducing the Fokker-Planck equation
for fields and make the analysis considerably more difficult.
Since our results presented for the d-dimensional cubic lat-
tice should coincide with the results for a d-dimensional
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continuous medium, we argue that our analytical calculation
captures the essential origins of the power-law phenomenon
for all lattices that approximate a continuous medium well.

VI. CONCLUSIONS

Here we considered a simple model of an internally
driven elastic assembly. Using this model, we investigated
the properties of cycling frequencies—a two-point measure of
nonequilibrium dynamics, which can be used in experimental
and theoretical studies of active systems. We discussed how
to relate the cycling frequencies to other commonly used
nonequilibrium measures, such as the area enclosing rates or
the reduced entropy production rate. Furthermore, based on
our analytical approach, reinforced with numerical results, we
predict that the cycling frequencies follow a power law as
a function of distance between the two probes in an elastic
network. The exponent of the power law depends on the
dimensionality of the system, but not on the detailed structure
of the network. In the case of a random spatial distribution
of activities, we showed that the mean cycling frequencies√

〈ω2(r)〉 are proportional to the standard deviation of the
intensities of the active noise σα . Interestingly, the case of a
single-site activity gives a different exponent than the one with
randomly distributed activities.

For more complex activity distributions, the connection
between the Lyapunov equation and a diffusion equation, that
we presented in Secs. IV and V B, provides some intuition
for how the cycling frequencies in a system depend on the
structure of the active noise. Since the diffusive terms in

the Lyapunov equation originate solely from the structure
of the lattice, we expect that a similar framework can be
used to study the behavior of the cycling frequencies for
more complex distributions of the active noise, which include
spatial correlations [57].

The analytical approach we developed aims at finding
a mapping between the properties of the active noise and
two-point nonequilibrium measures. Based on the results we
obtained and their robustness to the detailed structure of a
network, we argue that the cycling frequencies and the area
enclosing rates are promising tools for studying the nature of
the stochastic driving in an active elastic assembly. Examples
of numerical studies of actively driven elastic assemblies in
which the nonequilibrium measures presented in our work
could be applied include [58–61]. Experimentally our ap-
proach can be tested on reconstituted actomyosin networks
[33–35] and other noise-driven biological [10,15,16] or syn-
thetic systems [29–32,36], which can be well approximated
by an elastic assembly at steady state. Such experiments could
be performed in chromosomes, membranes, or tissues, using
embedded colloidal particles or fluorescently tagged cellular
organelles.
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APPENDIX A: CALCULATION FOR A D-DIMENSIONAL ZERO-RESTLENGTH CUBIC LATTICE

First we find the profile of the C∗ matrix for the case of a single activity at site (0, . . . , 0). Neglecting the boundary conditions
and assuming a rotational symmetry of the solution we find

c∗
n,n̄ = ad

(
d∑

i=1

n2
i +

d∑
i=1

n̄2
i

)−(d−1)

, with ad = (d − 2)!

2πd
, (A1)

∂ni c
∗
n,n̄ = −(d − 1)ad

2ni(
n2

1 + . . . + n̄2
d

)d , (A2)

∂2
ni

c∗
n,n̄ = d (d − 1)ad

4n2
i(

n2
1 + . . . + n̄2

d

)d+1 − (d − 1)ad
2(

n2
1 + . . . + n̄2

d

)d (A3)

= 2(d − 1)ad(
n2

1 + . . . + n̄2
d

)d+1

[
2dn2

i − (n2
1 + . . . + n̄2

d

)]
. (A4)

Adding contributions from the all the second derivatives appearing in Eq. (17) we get

d∑
i=1

∂2
ni

c∗
n,n̄ = 2d (d − 1)ad

[(
n2

1 + . . . + n2
d

)− (n̄2
1 + . . . + n̄2

d

)](
n2

1 + . . . + n̄2
d

)d+1 = 2d (d − 1)ad
n2 − n̄2

(n2 + n̄2)d+1
. (A5)

To get an expression for
∑d

i=1 ∂2
xi

c in the case of one active bead at site (z1, . . . , zd ), one simply has to substitute ni → (ni −
zi ), n̄i → (n̄i − zi ) in Eq. (A5). Therefore, the contribution to ω from an activity αz1,...,zd at site (z1, . . . , zd ) reads

d∑
i=1

∂2
ni

cr,...,r;−r,...,−r = 2d (d − 1)ad

∑d
i=1(r − zi )2 −∑d

i=1(−r − zi )2(∑d
i=1(r − zi )2 +∑d

i=1(−r − zi )2
)d+1 αz1,...,zd (A6)
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= 2d (d − 1)ad

∑d
i=1(−4rzi)(

2r2d + 2
∑d

i=1 z2
i

)d+1 αz1,...,zd (A7)

= −d (d − 1)ad

2d−2

∑d
i=1 rzi(

r2d +∑d
i=1 z2

i

)d+1 αz1,...,zd . (A8)

Finally, we can proceed to calculating 〈ω2(2
√

d r)〉:

〈⎛⎜⎝ ∑
z1,...,zd

(∑d
i=1 rzi

)
αz1,...,zd(

r2d +∑d
i=1 z2

i

)d+1

⎞⎟⎠
⎛⎜⎝ ∑

z̃1,...,z̃d

(∑d
i=1 rz̃i

)
αz̃1,...,z̃d(

r2d +∑d
i=1 z̃2

i

)d+1

⎞⎟⎠〉 (A9)

(1)=
∑

z1,...,zd

(∑d
i=1 rzi

)2
σ 2

α(
r2d +∑d

i=1 z2
i

)2d+2

(2)=
∑

z1,...,zd

∑d
i=1 r2z2

i σ
2
α(

r2d +∑d
i=1 z2

i

)2d+2 (A10)

cont.≈
∫

z1,...,zd

∑d
i=1 r2z2

i σ
2
α(

r2d +∑d
i=1 z2

i

)2d+2 . (A11)

Step (1) follows from 〈αz1,...,zd αz̃1,...,z̃d 〉 = σ 2
α δz1,z̃1 · · · δzd ,z̃d . Thereby we have assumed that ᾱ = 0. This can be achieved by

replacing the noise amplitudes αi with αi − ᾱ. This transformation is justified, because any shift of the active noise amplitudes
by a constant value does not affect ∂̃2c∗

i j (compare with ∂̃2ci j = 0 ∀i �= j). Note that αi − ᾱ are introduced just for convenience
and one should not think of them as of any noise amplitudes. Step (2) results from the fact that the terms odd in zi sum up to 0.
In the last step we approximated the sum by an integral.

APPENDIX B: CALCULATION FOR FINITE RESTLENGTH TRIANGULAR LATTICE

Here we derive equation for the covariance matrix for the case of a finite restlength triangular lattice. We index the beads in
the lattice as shown in Fig. 9. Let us denote by f x

i j and f y
i j the x and y components of the force acting on bead (i, j), and by

xi j, yi j the x and y displacements of bead (i, j). Expanding the force up to linear order in displacements we find

f x
i j = α(xi−1, j−1 + xi+1, j+1 − 2xi, j + xi−1, j + xi+1, j − 2xi, j ) + (xi, j−1 + xi, j+1 − 2xi, j )

−β(yi−1, j−1 + yi+1, j+1 − 2yi, j ) + β(yi−1, j + yi+1, j − 2yi, j ),

f y
i j = γ (yi−1, j−1 + yi+1, j+1 − 2yi, j + yi−1, j + yi+1, j − 2yi, j )

− δ(xi−1, j−1 + xi+1, j+1 − 2xi, j ) + δ(xi−1, j + xi+1, j − 2xi, j ),

with α = 1/4, β = √
3/4, γ = 3/4, δ = √

3/4. It is convenient to rewrite the Lyapunov equation in the following way:

−2D = AC + CA = 〈AxxT + x(Ax)T 〉 = 〈fxT + xfT 〉. (B1)

FIG. 9. Triangular lattice and indexing of beads.
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Let us denote the elements of the covariance matrix by: 〈xi jxkl〉 = cxx
i j;kl , 〈xi jykl〉 = cxy

i j;kl , 〈yi jykl〉 = cyy
i j;kl and introduce the

discrete derivative operators:

∂̃2
1 ci j;kl = ci−1, j;k,l − 2ci, j;k,l + ci+1, j;k,l ,

∂̃2
2 ci j;kl = ci, j−1;k,l − 2ci, j;k,l + ci, j+1;k,l ,

∂̃2
3 ci j;kl = ci−1, j−1;k,l − 2ci, j;k,l + ci+1, j+1;k,l ,

∂̃2
1̄ ci j;kl = ci, j;k−1,l − 2ci, j;k,l + ci, j;k+1,l ,

∂̃2
2̄ ci j;kl = ci, j;k,l−1 − 2ci, j;k,l + ci, j;k,l+1,

∂̃2
3̄ ci j;kl = ci, j;k−1,l−1 − 2ci, j;k,l + ci, j;k+1,l+1.

Then, the Lyapunov equation translates to〈
f x
i jxkl + xi j f x

kl

〉 = [α(∂̃2
3 + ∂̃2

1

)+ ∂̃2
2

]
cxx

i j;kl − β
(
∂̃2

3 − ∂̃2
1

)
cyx

i j;kl + [α(∂̃2
3̄ + ∂̃2

1̄

)+ ∂̃2
2̄

]
cxx

i j;kl − β
(
∂̃2

3̄ − ∂̃2
1̄

)
cxy

i j;kl = −2δ(i j),(kl )di j,

(B2)〈
f x
i jykl + xi j f y

kl

〉 = [α(∂̃2
3 + ∂̃2

1

)+ ∂̃2
2

]
cxy

i j;kl − β
(
∂̃2

3 − ∂̃2
1

)
cyy

i j;kl + γ
(
∂̃2

3̄ + ∂̃2
1̄

)
cxy

i j;kl − δ
(
∂̃2

3̄ − ∂̃2
1̄

)
cxx

i j;kl = 0, (B3)〈
f x
i jykl + xi j f y

kl

〉 = [α(∂̃2
3̄ + ∂̃2

1̄

)+ ∂̃2
2̄

]
cyx

i j;kl − β
(
∂̃2

3̄ − ∂̃2
1̄

)
cyy

i j;kl + γ
(
∂̃2

3 + ∂̃2
1

)
cyx

i j;kl − δ
(
∂̃2

3 − ∂̃2
1

)
cxx

i j;kl = 0, (B4)〈
f y
i jykl + yi j f y

kl

〉 = γ
(
∂̃2

3 + ∂̃2
1

)
cyy

i j;kl − δ
(
∂̃2

3 − ∂̃2
1

)
cxy

i j;kl + γ
(
∂̃2

3̄ + ∂̃2
1̄

)
cyy

i j;kl − δ
(
∂̃2

3̄ − ∂̃2
1̄

)
cyx

i j;kl = −2δ(i j),(kl )di j . (B5)

If we want to move to a continuous picture, then we replace ∂̃2
1 → ∂2

1 , ∂̃2
2 → ∂2

2 , ∂̃2
3 → (∂1 + ∂2)2. In this picture

cxx, cxy, cyx, cyy should be seen as functions on a four-dimensional cube.
One can also write down equations for the cycling frequencies using

ωxi j ,ykl =
〈
f x
i jykl − xi j f y

kl

〉
2
√

det C[r,r]

D−diag.=
〈
f x
i jykl

〉√
det C[r,r]

. (B6)

In the last step we used the Lyapunov equation together with the fact that D is a diagonal matrix.
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Chapter 3

Non-equilibrium measures reveal

intrinsic features of the active driving

Chapter abstract Up to this point, we discussed several approaches to detect non-
equilibrium �uctuations in biological systems, and we developed a theoretical framework
to study non-equilibrium in biological assemblies. We have seen that two points non-
equilibrium measures, such as cycling frequencies, area enclosing rates, and partial en-
tropy production rates scale as power laws as a function of the observed length scale.
However, it is still unclear what kind of information about the system we can acquire by
measuring these quantities. Inspired by the method of two-point microrheology, in which
the equilibrium �uctuations of a pair of probe particles reveal the viscoelastic response
of an equilibrium system, in this chapter we investigate whether we can extend such an
approach to non-equilibrium assemblies: can one extract information on the nature of
the active driving of a system from the analysis of a two-point non-equilibrium measure?
The work presented in this chapter is devoted to answering this question theoretically, by
extending the framework presented in Chapter 2. Athermal �uctuations in biological and
synthetic systems can present various spatial features. We investigate how such features
of the active noise may be re�ected in the long-range scaling behavior of the two-point
non-equilibrium measures.

Research question: What information about the active driving in the system can we

learn by detecting non-equilibrium dynamics?

Results: A direct observation of the scaling behavior of two point non-equilibrium mea-

sures may provide a way to infer qualitative information on the nature of the active forces

in the system, and quantitative information on their densities, intensities, or their corre-

lation length.
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Figure 3.1: A) Cartoon of the cytoskeletal network. Molecular motors (light green) apply
force dipoles directly on the network, while other active processes in the surroundings (red
and dark green) can act on the network indirectly through hydrodynamic interactions. B)
Schematic of the elastic network with monopole and dipole forces. The colors of the beads
indicate the intensities of the monopole-like activity, the colors of the arrows indicate the
intensity of the dipole-like activity. Inset on the lower right: schematic of a trajectory
in the xi and xj coordinate space. The indicated non-equilibrium measures are: cycling
frequency ω, and area enclosing rate (light blue area).

3.1 Di�erent scenarios for the non-equilibrium driving

In this chapter we want to extend our model, by describing the non-equilibrium processes
in�uencing the dynamics of biological assemblies with a greater level of detail. We will
extend the model introduced in Chapter 2, including in the description several spatial
features of the active driving. We will then investigate the e�ect of these features on the
scaling behavior of the non-equilibrium measures.

Within the cellular environment, we can �nd several sources of athermal �uctuations,
driven by a variety of biochemical processes. Such �uctuations also a�ect the motion of
biological assemblies, i.e. the sca�old in which, or around which, these non-equilibrium
processes take place. To describe the �uctuations of the assembly, we can divide these
sources of non-equilibrium activity into two main groups, considering whether they act di-
rectly on the network or not. For instance, several experiments have shown that the active
motion of molecular motors, enzymes, or pumps may indirectly in�uence the dynamics of
other passive elements in their surroundings, through hydrodynamics interactions [41, 58].
From this perspective, we can think of parts of the network as passive objects, embedded
in an active environment. We can indeed assume that the collection of the incoherent
active processes in the network's surroundings can be e�ectively described as a collection
of zero-average randomly �uctuating monopole-forces acting on the network's elements.
The action of these forces results in a spatially heterogeneous enhanced di�usion of the
network's elements.
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However, certain classes of processes may also directly in�uence the network as, for in-
stance, the active sliding of molecular motors along the network �laments, which gives rise
to pairs of equal and opposite forces in the network [11, 46, 67, 70]. These direct contri-
butions may also arise from intrinsic components of the network itself as, for instance, the
forces generated by polymerization and depolymerization of microtubules [36]. Another
example, at larger length scales, is given by cells exerting stresses on the extracellular
matrix [43, 70, 72]. In all these cases, the direct action of a non-equilibrium source on
the network is usually modeled, due to momentum conservation, as a force-dipole.

In addition to this �rst classi�cation, other features of the non-equilibrium processes
that could signi�cantly a�ect the network dynamics are spatial and temporal correlations.
For instance, the intracellular organization of enzymes and the clustering of molecular
motors may results in long-range spatial correlation in the distribution of active processes
inside cells [42, 71, 78]. Moreover, molecular motors have a typical processivity time, that
introduces a temporal correlation of the forces that they generate [2]. While, as we will see
in the next sections, we can easily take into account the spatial correlation of the active
noise in our model, it is not straightforward to also include the temporal correlation. In
fact, systems with time correlations are not Markovian and can not be described by a
Fokker-Planck Equation. These systems would require a completely di�erent theoretical
framework, and are therefore not covered in this thesis.

3.2 Model

To describe a general scenario where both direct and indirect active processes are taken
into account, we generate the active driving in our network as Gaussian white noise of
either a monopole or a dipole nature, with respective densities ρM and ρD (Fig. 3.1). We
recall that by modeling the active forces as a white noise process, we assume the dynamics
of the microscopic active forces to take place on timescales shorter than the relaxation
times of the system.

We denote the displacements of the beads relative to their rest positions by the vector
x = {x1, . . . , xNd}. The overdamped equation of motion for the displacement of the ith
degree of freedom in the lattice reads

dxi(t)

dt
= aijxj(t) + ηTi (t) + bM

i η
M
i (t) +

∑

k∈nn

bD
ikη

D
ik(t), (3.1)

where aij are the entries of the elastic interaction matrix A, divided by the friction coef-
�cient γ. The thermal noise is described by the standard �uctuation-dissipation relation

〈ηTi (t)ηTj (t′)〉 =
2kBT

γ
δi,jδ(t− t′). (3.2)

The coe�cients bM
i and bD

ik are introduced to describe the presence of monopole and dipole
active noise; they are time-independent random variables such that bM/D

i/ik ∈ {0, 1}, bD
ik = bD

ki,

with probability distribution P
(
b

M/D
i/ik = 1

)
= ρM/D. The sum

∑
k∈nn runs only over
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nearest-neighbor beads. Finally, the stochastic variables for monopole forces ηM(t) and
dipole forces ηD(t) are characterized by

〈ηM
i (t)ηM

j (t′)〉 =
kB

γ
δi,jα

M
i δ(t− t′)

〈ηD
ij(t)η

D
kl(t
′)〉 =

kB

γ
(δij,kl − δij,lk)αD

ijδ(t− t′).
(3.3)

Here we indicate with αM
i and αD

ij the respective amplitudes of the monopole force acting
on the ith coordinate and of the dipole force acting between the ith and jth coordinates.

This simple model still admits a Fokker-Planck description for the evolution of the
probability distribution p(x, t) of x at time t

∂tp(x, t) = −∇ · (Ax−D∇)p(x, t) := −∇ · j(x, t), (3.4)

where j(x, t) is the probability current density, and D is the di�usion matrix. The steady-
state solution of Eq. (3.4) is a Gaussian distribution with covariance matrix C, satisfying
the Lyapunov equation:

AC + CAT = −2D. (3.5)

The di�usion matrix can be expressed as D = D̄ + D∗, where D̄ is a diagonal matrix with
entries d̄ij = δijkBT/γ, representing the thermal noise contributions, and D∗ is the non-
equilibrium part of the di�usion matrix which contains information on the activities. While
in Chapter 2 we considered a diagonal di�usion matrix, here the presence of dipole forces
gives rise to anticorrelations between neighboring beads and therefore to non-zero o�-
diagonals terms in D∗, as will be discussed in Sec. (3.3.1). As we will see, these correlations
in the di�usion matrix have a strong impact on the spatial scaling of mesoscopic non-
equilibrium measures of the system.

3.3 Results

To investigate the impact of the features of the active driving on the system dynamics, we
still employ the cycling frequencies and area enclosing rates as measures of non-equilibrium
in the reduced subspaces of two degrees of freedom (see Eq. (2.6) and Eq. (2.7)). Following
similar steps as those presented in Chapter 2, we investigate analytically and numerically
how these measures scale with the distance between a couple of observed degrees of free-
dom. In particular, since both cycling frequencies and area enclosing rates have zero
average, we focus on the spatial scaling behaviors for 〈A2(r)〉α and 〈ω2(r)〉α, the squared
area enclosing rate and cycling frequency between two tracer beads at distance r, averaged
over the distribution of activities αM/D

i/ij . Maintaining the same notation as in Chapter 2,
we indicate with 〈. . .〉α the ensemble average over the activities which, for a large enough
system, can be obtained as a spatial average over the network [60].

Also in this more complex model we will be able to derive closed form expressions for
the scaling of 〈A2(r)〉α and 〈ω2(r)〉α, which provide us with a direct connection between
these non-equilibrium measures and the properties of the active noise, such as the densities
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and activity intensities of monopoles and dipoles forces. The validity of the analytical
results obtained in the following sections will be tested by making a direct comparison
with numerical solutions of Eq. (2.6) and Eq. (2.7).

In Sec. (3.3.1), we �rst focus on a one-dimensional chain subject to monopole and
dipole active forces, and later we discuss the extension to a two-dimensional network.
Finally, in Sec. (3.3.2) we discuss how the scaling law is a�ected by the presence of �nite
spatial correlation of the intensities of the active noise.

The results presented in the following sections are in many aspects built on the frame-
work already presented in Chapter 2. To lighten the reading, we will omit the technical
aspects, only presenting the �nal results and the most important steps in their derivations.
More detailed calculations are reported in the manuscript [61], reprinted at the end of
this chapter.

3.3.1 Monopole and dipole activity

One dimensional chain

It is instructive to start analyzing the simple case of a one-dimensional system. In the fol-
lowing, by using a continuous approximation of the Lyapunov equation, we �nd a solution
of Eq. (3.5) for the covariance matrix, and derive the scaling laws for the non-equilibrium
measures 〈A2〉α and 〈ω2〉α as function of the distance r between the tracer particles.

As a �rst step, we set the form of the non-equilibrium part of the di�usion matrix
D appearing in Eq. (3.5). In the simple case of a one-dimensional chain we can replace
the double index of the dipoles amplitudes {αD

12, α
D
23, . . . , α

D
i,i+1, . . . , α

D
N−1,N} with a single

index running over the pairs of nearest-neighbor beads {αD
1 , α

D
2 , . . . , α

D
i , . . . , α

D
N−1}. The

activities amplitudes {αM/D
i } are sampled independently from a distribution p

M/D
α with

mean 0 < ᾱM/D <∞ and variance σ2
αM/D .

A monopole-like active noise at site z along the chain, contributes with an entry on the
diagonal of the di�usion matrix dz,z. By contrast, a dipole-like noise acts with completely
anti-correlated forces on the beads at positions z and z+ 1, contributing with four entries
in the di�usion matrix:

[
dz,z = dz+1,z+1 = (kB/γ)αDz

]
and

[
dz+1,z = dz,z+1 = −(kB/γ)αDz

]
.

Therefore, the non-equilibrium part of the di�usion matrix will be a sum over monopole
and dipole contributions of the form

Considering the linearity of the Lyapunov equation (see Eq. (3.5)), the covariance matrix
can be expressed as

C =
kB

k
(TC +

∑

z

αM
z CM

z + αD
z CD

z ), (3.6)
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Figure 3.2: A) Above: scaling behavior of the average cycling frequency with the distance
r for a system with only dipoles as active noise. Numeric results in red and analytic
predictions in gray. Below: numeric results for a single dipole activity (purple) and its
analytical prediction (gray). B) Scaling behavior of the cycling frequency with r for a
system with activity given by: only dipoles (red), only monopoles (blue), mixture of dipoles
and monopoles (gray) C) Rescaling of A for a range of r∗ and A∗ (crossover distance and
area enclosing rate de�ned in Eq. (3.13) and Eq. (3.14)), and analytic prediction of the
two scaling regimes in gray. D) Rescaling of ω for a range of r∗ and ω∗, and analytic
prediction of the two scaling regimes in gray.
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such that C, CM
z and CD

z are dimensionless. Here C is the equilibrium solution of Eq. (3.5)
obtained for {αM/D

i } = 0, and C
M/D
z are solutions of Eq. (3.5) for single monopole/dipole

noise source at position z along the chain. By inserting this expression for A together
with Eq. (3.6) into Eq. (2.6), we get an expression for the area enclosing rate between any
two tracer particles i and j that are not directly connected by a dipole activity (dij = 0),
as

Aij =
kB

γ

∑

z

(ξM
z ∂̃

2
xc

M
z + ξD

z ∂̃
2
xc

D
z ), (3.7)

where ξM/D
z = b

M/D
z αM/D, and we use ∂̃2

xc = ci,j+1 − 2ci,j + ci,j−1 to indicate the discrete
second derivative along rows. As we expected from the results in Chapter 2, also in this
case the scaling behaviors of Aij, and therefore ωij, are determined by the curvature of the
covariance matrix. To �nd an expression for the curvature, we can calculate the explicit
form of CM/D

z , as a solution of the equation

kBα
M/D
z

γ

(
∂̃2
yc

M/D
z + ∂̃2

xc
M/D
z

)
= −2dM/D

z , (3.8)

which is obtained from Eq. (3.5) by considering a single monopole/dipole contribution at
position z along the chain. Eq. (3.8) can be viewed as a discretized Poisson equation with
sources set by the elements of D. The solution for a generic di�usion matrix will be ob-
tained as a superposition of single-contribution solutions. We have seen in Chapter 2 that,
in the continuous limit and considering a single entry in the di�usion matrix dz,z̃, the single-
source solution of Eq. (3.8) gives cM(i, j) = − 1

π
ln(%) + b. Here, %=

√
(i− z)2 + (j − z̃)2

indicates the distance from the source at (z, z̃) in the covariance matrix, and b is an inte-
gration constant. However, the pro�le of Cz is di�erent in the case of a dipole single source,
and exhibits a power-law scaling cD ∝%−3. These distinct scaling laws of the covariance
will turn out to underlie the di�erent scaling laws for the non-equilibrium measures.

To determine the area enclosing rate for a pair of beads at distance r we need to com-
pute contributions of the form ∂̃2

xc
M/D
z;−r/2,r/2 := ∂̃2

xc
M/D
z (r). In the following we approximate

the discrete derivatives applied to the matrix elements ∂̃2
xc

M/D
z (r) with regular derivatives

applied to the solutions of the Poisson equation ∂2
xc

M/D
z (r).

A single monopole activity at site z contributes a diagonal entry in the di�usion matrix
dz,z. This appears as a monopole source at position (z, z) in the Poisson equation. Using
the continuous solution derived above, we obtain

∂2
xc

M
z (r) =

8rz

π(r2 + 4z2)2
. (3.9)

A single dipole activity between sites z and z + 1 contributes four entries in the di�u-
sion matrix: [dz,z = −dz+1,z = −dz,z+1 = dz+1,z+1]. These enter the Poisson equation as a
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quadrupole source. By summing these four contributions we obtain

∂2
xc

D
z (r) =

8rz

π(r2 + 4z2)2

− 4(−1 + r)(1 + 2z)

π(2 + (−2 + r)r + 4z(1 + z))2

− 4(1 + r)(1 + 2z)

π(2 + (2 + r)r + 4z(1 + z))2

+
8r(1 + z)

π(r2 + 4(1 + z)2)2
.

(3.10)

We are now ready to obtain the �rst central results of this chapter, the scaling behaviors
of 〈A2(r)〉α and 〈ω2(r)〉α, when both monopoles and dipoles are present in the system.
Inserting Eq. (3.9) and Eq. (3.10) into Eq. (3.7), and averaging over con�gurations of the
activity intensities, we obtain in the limit r � 1 (Sec. (1) supplementary in [61]):

〈A2(r)〉α =
1

π

(
kB

γ

)2(
ρMσ2

αM

1

2r3
+ ρDσ2

αD

45

r7

)
. (3.11)

Thus, we observe two di�erent regimes: a monopole-controlled regime 〈A2(r)〉α ∝ 1/r3

for long distances and a dipole-controlled regime 〈A2(r)〉α ∝ 1/r7 for short distances, as
shown in Fig. 3.2C.

A similar scaling behavior can be obtained also for the cycling frequencies ω by ap-
plying a similar approach to Eq. (2.7): Decomposing C = kB

k

(
TC + ᾱMCM + ᾱDCD

)
and

expanding the factor 1/(detC) up to linear order in ᾱM/D

T
, we obtain

〈ω2(r)〉α =
(k/γ)2

πT 2detC[r,r]

(
ρMσ2

αM

1

2r3
+ ρDσ2

αD

45

r7

)
. (3.12)

Considering that for r � N , detC[r,r] ∝ Nr [40], we obtain two di�erent regimes also for
the scaling of the cycling frequency: 〈ω2(r)〉α ∝ 1/r4 at short distances and 〈ω2(r)〉α ∝
1/r8 at long distances (Fig. 3.2B,D). Interestingly, in analogy to the case of single monopole
activity discussed in Chapter 2, also in the presence of a distribution of only dipoles in the
systems (ρM = 0), the scaling exponent for the average cycling frequency (

√
〈ω2〉α ∼ r−4)

di�ers from the exponent obtained with a single dipole activity at site z = i = −r/2
(
√
ω2 ∼ r−5.5) (Fig. 3.2A).
We can also investigate what are the parameters of our model that determine the

crossover distance r∗ between the two scaling regimes. A direct calculation of r∗ and the
mean cycling frequency at the crossover distance 〈ω2(r∗)〉 leads to

r∗ =

(
90ρDσ2

αD

ρMσ2
αM

)1/4

〈ω2(r∗)〉α =
2k2

πT 2γ245N

ρM2
σ4
αM

ρDσ2
αD

. (3.13)

For the the area enclosing rate at the crossover point, we �nd

〈A2(r∗)〉α =
k2

B

πγ290

ρM2
σ4
αM

ρDσ2
αD

r∗, (3.14)
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as shown in Fig. 3.2C,D, where we obtain a collapse of data by rescaling the x-axes by r∗

and the y-axes by A∗ and ω∗.
Our results are informative on what kind of measurements could be performed to gain

information on the non-equilibrium driving in an elastic system. For instance, we have
learned that the experimental observation of one of the scaling behaviors discussed here,
would allow one to discriminate the monopole or dipole nature of the active driving. In
the more general case of a mixture of monopoles and dipoles, a direct measure of the
transition points between two di�erent scaling regimes would help to gain quantitative
information on the quantities ρDσ2

αD and ρMσ2
αM .

Two dimensional networks

By following similar steps as in the one dimensional case, we can extend our results to
higher-dimensional networks (d>1). For simplicity, we consider a two-dimensional square
network for the analytical derivation, but we make a direct check on how the results
obtained for this simple case also apply to more complex geometries. We consider the
dipole forces acting always along the principal axes of the network, which corresponds to
the limit of small displacements in the systems. Under these assumptions, it is possible
to perform calculations similar to those presented in Sec. 3.3.1. We recall that a detailed
derivation of these calculations can be found in our manuscript [61], included at the end
of this chapter. The square area enclosing rate as function of the distance r between the
observed degrees of freedom turns out to be:

〈A2(r)〉α '
(

2kB

π2γ

)2 [
ρMσ2

αM

2π

5r6
+ ρDσ2

αD

529

r10

]
. (3.15)

Similarly to the one-dimensional case (see Eq. (3.11)), we recognize the presence of
two di�erent regimes at short and long distances. The crossover distance r∗2D between
the monopole and dipole dominated regimes and the corresponding 〈A2(r∗2D)〉 read:

r∗2D ' 4.5

(
ρDσ2

αD

ρMσ2
αM

)1/4

,

〈A2(r∗2D)〉α '
k2

B12 · 10−6

γ2

(
ρMσ2

αM

)5/2

(ρDσ2
αD)3/2

.

(3.16)

These analytical results are con�rmed by the numerical data in Fig. 3.3A, B, where we
obtain a collapse by properly rescaling the x-axis by r∗ and the y-axis by A2(r2D

∗).
To investigate the sensitivity of these results to the speci�c underlying lattice structure,

we studied triangular and bond-diluted triangular networks. We �nd numerically that such
lattice geometries are also well described by Eqs. (3.15) and (3.16). In fact, the curves
numerically obtained for the scaling behavior of 〈A2〉α in a triangular network and diluted
triangular network, overlap with the curves corresponding to the square lattice, as shown
in Fig. 3.3 B.
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Figure 3.3: A) Scaling behavior of
√
〈A2〉 as function of the distance for two-dimensional

lattices obtained for a square lattice and di�erent values of r∗. B) Data-collapse of the
results in A, obtained by rescaling the x and y axes respectively by r∗2d and

√
A2(r2d

∗).
The triangular markers correspond respectively to the data for a full triangular lattice
(in black) and a randomly diluted triangular lattice (in pink) with dilution probability
pd = 0.8
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3.3.2 Correlated activities

Up to this point, we considered two kinds of noise sources: dipoles and monopoles, ran-
domly distributed in space. Now we want to determine how the spatial distribution of
activities in�uences the scaling behavior of non-equilibrium measures. Therefore, we con-
sider a system where the intensities of the active noise are spatially correlated.

As an illustrative example, we consider a one-dimensional chain with only monopole
activities (ρD = 0 and ρM = 1). Thus, the di�usion matrix D is diagonal, with entries
di,j = (kB/γ)(T + αi)δi,j. We draw the amplitudes {αi} randomly from a probability

distribution with covariance: 〈αiαj〉 − 〈αi〉〈αj〉 = σ2
αe
− |i−j|

λ , exhibiting a characteristic
correlation length λ > 0 (see Fig. 3.4A). Also in this case, even though the di�usion matrix
is diagonal, the presence of correlations between its diagonal entries will have a marked
e�ect on the scaling behavior of the non-equilibrium measures. By setting cD

z = 0 ∀z in
Eq. (3.7), and considering the monopole contributions as in Eq. (3.9), we obtain for the
area enclosing rate:

〈A2(r)〉α =

(
kB

πγ

)2∑

z,z′

〈αzαz′〉
8rz

(r2 + 4z2)2

8rz′

(r2 + 4z′2)2

=

(
kB

πγ

)2∑

z,z′

σ2
αe
− |z−z

′|
λ

8rz

(r2 + 4z2)2

8rz′

(r2 + 4z′2)2

'
(
kB

πγ

)2 z′=z+λ∑

z,z′=z−λ

(1− |z − z
′|

λ
)

σ2
α8rz

(r2 + 4z2)2

8rz′

(r2 + 4z′2)2
,

(3.17)

where in the last step we approximated the exponential with a �rst order Taylor expansion
inside the interval [z − λ, z + λ], and zero outside the interval. Approximating the sum
with an integral, we arrive at:

〈A2(r)〉α '
(
kB

γ

)2
σ2
α

π

(
λ

2r3 + 2rλ2

)
. (3.18)

We identify two di�erent regimes:

〈A2(r)〉α ∼
{
k2Bσ

2
α

2γ2π
λ
r3

if r � λ
k2Bσ

2
α

2γ2π
1
λr

if r � λ

A comparison between our analytical prediction (Eq. (3.18)) and numerical results is shown
in Fig. 3.4A. The numerical results for correlated dipoles are shown in Fig. 3.4B.

We can notice that the behavior observed in the case of correlated activities is substan-
tially di�erent from what we observed for mixtures of uncorrelated dipoles and monopoles.
In particular, the scaling exponent of the short distance regime is now smaller than the
one of the long distances regime. Moreover, as one would expect, the exponent in the
long-distance regime (r � λ) is the same as for the case of uncorrelated activities. Such
a substantial di�erence in the observed scaling exponents would allow one to discern the
cases of spatially correlated activities from that of a mixture of dipoles and monopoles.
At last, we could also notice that a quantitative measure of the two scaling regimes would
allow one to estimate the correlation length λ or the intensities of the activities σ2

α.
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Figure 3.4: A) Scaling behavior of the area enclosing rate for a system with correlated
monopole-activities with correlation length λ = 10 (green), λ = 100 (blue) and uncorre-
lated activities (red). In gray the comparison with the analytical prediction. In the inset:
spatial correlation function of the activity amplitudes. In blue the correlation functions
calculated for 3 di�erent realizations of activities with correlation length λ = 10, and in
red the theoretical prediction σ2

αe
− |i−j|

λ . B) Scaling behavior of the area enclosing rate
for a system with dipole-activities with λ = 10 (green), λ = 100 (blue) and uncorrelated
activities (red).
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3.3.3 Chapter summary

In this Chapter we discussed how non-equilibrium measures such as cycling frequencies
and area enclosing rates may be used to learn information on the nature of the non-
equilibrium driving in the system. The scaling behavior of these measures exhibits di�erent
scaling exponents for dipole-/monopole-like activity. In the presence of both monopole and
dipole activity we observe the presence of two regimes: a dipole dominated regime and
a monopole dominated regime. The prefactors of the two scaling functions as well as
the crossover distance between the two regimes are set by the parameters characterizing
the stochastic forces: densities of monopoles ρM and dipoles ρD, and the variance of the
activities amplitudes σαM/D . Even though our analytical framework is derived in the simple
case of cubic lattices, we expect our predictions to hold also for more complex networks, as
suggested from our �ndings for triangular and diluted triangular networks. Furthermore,
we also showed that our framework can be used in the case of correlated intensities of the
active noise.

Altogether our results provide a new perspective on how to interpret experimentally
accessible two-point non-equilibrium measures: A direct observation of the scaling behav-
ior of such non-equilibrium measures may provide a way to infer qualitative information
on the nature of the active forces in the system, and quantitative information on their
densities, intensities, or their correlation length. In the next chapter we will discuss which
experimental settings would be good candidates to test the predictions of our framework.
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Biological assemblies such as chromosomes, membranes, and the cytoskeleton are driven out of
equilibrium at the nanoscale by enzymatic activity and molecular motors. Similar non-equilibrium
dynamics can be realized in synthetic systems, such as chemically fueled colloidal particles. Char-
acterizing the stochastic non-equilibrium dynamics of such active soft assemblies still remains a
challenge. Recently, new non-invasive approaches have been proposed to determine non-equilibrium
behavior, which are based on detecting broken detailed balance in the stochastic trajectories of
several coordinates of the system. Inspired by the method of two-point microrheology, in which the
equilibrium fluctuations of a pair of probe particles reveal the viscoelastic response of an equilibrium
system, here we investigate whether we can extend such an approach to non-equilibrium assemblies:
can one extract information on the nature of the active driving in a system from the analysis of a
two-point non-equilibrium measure? We address this question theoretically in the context of a class
of elastic systems, driven out of equilibrium by a spatially heterogeneous stochastic internal driving.
We consider several scenarios for the spatial features of the internal driving that may be relevant
in biological and synthetic systems, and investigate how such features of the active noise may be
reflected in the long-range scaling behavior of two-point non-equilibrium measures.

I. INTRODUCTION

Active matter theories aim to provide a physical de-
scription for systems intrinsically out of thermal equilib-
rium. A prominent collection of such systems is classi-
fied as soft biological materials, with typical examples
as tissue, membranes and cytoskeletal structures [1–5].
These soft materials can be easily deformed by thermally
driven stresses. However, temperature is not the only
source of fluctuations in these systems: additional ather-
mal fluctuations are generated at the molecular scale by
enzymes that drive the system out of thermal equilib-
rium. Examples of soft non-equilibrium materials are
also found in artificial and biomimetic systems, such as
chemically fueled synthetic fibers and crystals of active
colloidal particles [6–8]. In all these systems, traces of
non-equilibrium may propagate from molecular to larger
scales, with striking examples in biology, such as the mi-
totic spindle and protein pattern formation [9–11]. How-
ever, non-equilibrium may also manifests as random fluc-
tuations, seemingly indistinguishable from simple ther-
mal motion. For instance, active dynamics were ob-
served in the fluctuations of biological assemblies, such
as chromosomes [12], tissue[13], membranes [14–16] and
cytoplasm [17–20]. This active dynamics can affect the
macroscopic mechanical properties of soft materials and
a systematic non-equilibrium characterization could help
guide the development of engineered biomaterials [2, 21–
23]. While we have a comprehensive toolset to mea-
sure the equilibrium response of thermal soft materials,
it still remains an outstanding challenge to characterize
the stochastic non-equilibrium dynamics of active soft
assemblies.
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A well-established approach to quantify non-
equilibrium is based on the violation of the fluctuation-
dissipation theorem (FDT). The idea of this approach is
to compare the fluctuation spectrum of a probe particle
with the associated response function to investigate if
these two quantities obey the FDT. This method has
been used both in in vivo biological assemblies and
in vitro reconstituted networks [15, 17, 19, 20, 24].
However, such an approach requires a measurement of
the system’s response function, which may be technically
difficult especially in living systems. Recently, new non-
invasive approaches have been proposed, based on the
detection of the irreversibility of stochastic trajectories.
Such irreversibility can be expressed, for instance, in the
form of broken detailed balance [25–29] or in terms of
the entropy production rate [28, 30–34]. Broken detailed
balance can be determined from circulating currents
in the coordinates space of pairs of mesoscopic degrees
of freedom. Frequently used measures to quantify
circulating currents in phase space are the area enclosing
rate and the cycling frequency of the stochastic trajec-
tories [26, 35, 36]. These measures are closely related to
the entropy production rate [28, 29].

The interpretation of the results of various non-
equilibrium measurements can be aided by considering
concrete models for active systems. Recently, we con-
sidered a simple model of driven elastic assemblies con-
sisting of a bead-spring network [28, 29] where the beads
can experience both thermal and active fluctuations. Us-
ing this model, we estimated the area enclosing rate and
the cycling frequency from the trajectories of two probe
particles. On average such non-equilibrium measures ex-
hibit a power law behavior as a function of the distance
between the probe particles. Inspired by the approach of
two-point microrheology, in which the fluctuations of a
pair of probe particles reveal the viscoelastic response of
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an equilibrium system [37], here we investigate whether
we can extend such an approach to non-equilibrium as-
semblies: can one extract information on the nature of
the active driving in an elastic assembly, simply from the
analysis of a two-point non-equilibrium measure?

We consider this question in the context of a class of
elastic systems with stochastic internal driving. This in-
ternal driving can be described as a stochastic process
with specific statistical properties that characterize their
spatial and temporal features. Here we focus on the spa-
tial properties of the stochastic internal driving and in-
vestigate several scenarios that may be relevant in bio-
logical systems. For instance, the internal driving can
be implemented as a heterogeneous distribution of spa-
tially and temporally uncorrelated stochastic forces. This
description may be adequate to represent the enhanced
diffusion experienced within certain regions of a cellu-
lar environment due to catalytic enzymes [38–40]. How-
ever, the sources of activity in a biological environment
can take a variety of forms, including contributions from
chemophoresis [41] or molecular motors. For instance,
force-generation by molecular motors such as myosin can
be introduced as force dipoles randomly distributed over
the network [21, 42–44]. Furthermore, the intracellular
organization of enzymes and molecular motors may also
result in long-range correlation of the activities [45–47].

In this work we investigate how such intrinsic spa-
tial features of the active noise may be reflected in the
long-range scaling behavior of two-point non-equilibrium
measures. We employ a model of internally driven elas-
tic networks to describe biological assemblies. To con-
sider a general scenario, we describe internal activity with
stochastic forces acting either as monopoles or as dipoles.
Within this framework we show analytically and numer-
ically how the scaling behavior of the cycling frequencies
and area enclosing rates depends on the parameters that
characterize the active noise, i.e intensity and density
of the monopole- and dipole-like activities. Finally, we
show how our framework can be extended to account for
spatial correlations in the intensities of the noise. Our
results give insights into possible methods of quantify-
ing non-equilibrium in biological assemblies and, more
specifically, into how an experimental observation of a
particular scaling behavior of non-equilibrium measures
can give access to the properties of the active driving.

II. MODEL

To establish a relation between mesoscopic non-
equilibrium measures and the internal activity, we con-
sider a model for an elastic assembly driven by stochastic
activity [28, 48–50]. Our model consists of a network of
N beads connected by springs of elastic constant k. The
network is immersed in a thermal bath at temperature
T , and we indicate with γ the friction coefficient.

Within the cellular environment there may be sev-
eral sources of athermal fluctuations. Part of the ac-

FIG. 1. A) Schematic of the elastic network with monopole
and dipole forces. The colors of the beads indicate the inten-
sities of the monopole-like activity, the colors of the arrows
indicate the intensity of the dipole-like activity. Inset on the
lower right: schematic of a trajectory in the xi and xj co-
ordinate space. The indicated non-equilibrium measures are:
cycling frequency ω, and area enclosing rate obtained upon
averaging (fr × xr)/2γ (light blue area) in phase space.

tive fluctuations of the assembly comes from the active
agents exerting forces directly on the network. Exam-
ples are molecular motors sliding along the filaments,
or the continuous (dis)assembly of biopolymers. Such
contributions are often modelled as force-dipoles with
zero net force [21, 42–44, 51–55]. In other cases, non-
equilibrium fluctuations may also be generated indirectly,
e.g. through hydrodynamic interactions between the ac-
tive agents in the surrounding environment. Examples
include enzymes, ion pumps and motors that generate
hydrodynamic flows in the cytoplasm and indirectly in-
fluence the dynamics of the network. Such effects could
lead to active contributions in the form of randomly fluc-
tuating monopole-forces acting on the elements of the
network [19, 56–58]. Here, we focus on the general effects
of certain classes of active processes on the dynamics of
the cellular environment, without specifying the underly-
ing molecular mechanism. In our description, each class
of active forces is distinguished by the moment of the
forces.

To describe a general scenario, we generate the active
driving in our network as Gaussian white noise of either a
monopole or a dipole nature, with respective densities ρM

and ρD (Fig. 1). By modeling the active forces as a white
noise process, we assume a time scale separation between
the dynamics of the microscopic active forces and the
relaxation times of the system. We therefore expect our
results to hold in the regime of large distances, at which
the relaxation times of the network become larger than
the correlation times of the active processes.
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We denote the displacements of the beads relative to
their rest positions by the vector x = {x1, . . . , xNd},
where d indicates the dimensionality of the system. The
overdamped equation of motion for the displacement of
the ith degree of freedom in the lattice reads

dxi(t)

dt
= aijxj(t)+ηTi (t)+bMi η

M
i (t)+

∑

k∈nn

bDikη
D
ik(t), (1)

where aij are the entries of the elastic interaction matrix
A, divided by the friction coefficient γ. The thermal
noise is described by the standard fluctuation-dissipation
relation

〈ηTi (t)ηTj (t′)〉 =
2kBT

γ
δi,jδ(t− t′), (2)

where kB indicates the Boltzmann constant. The coef-
ficients bMi and bDik are introduced to describe the pres-
ence of monopole and dipole active noise; they are time-

independent random variables such that b
M/D
i/ik ∈ {0, 1},

bDik = bDki, with probability distribution P
(
b
M/D
i/ik = 1

)
=

ρM/D. The sum
∑
k∈nn runs only over nearest-neighbor

beads. Finally, the stochastic variables for monopole
forces ηM(t) and dipole forces ηD(t) are characterized by

〈ηM
i (t)ηM

j (t′)〉 =
kB

γ
δi,jα

M
i δ(t− t′)

〈ηD
ij(t)η

D
kl(t
′)〉 =

kB

γ
(δij,kl − δij,lk)αD

ijδ(t− t′).
(3)

Here we indicate with αM
i and αD

ij the respective ampli-
tudes of the monopole force acting on the ith coordinate
and of the dipole force acting between the ith and jth
coordinates. We factored out the term (kB/γ) for nota-
tional convenience.

This simple model admits a Fokker Planck description
for the evolution of the probability distribution p(x, t) of
x at time t

∂tp(x, t) = −∇ · (Ax−D∇)p(x, t) := −∇ · j(x, t), (4)

where j(x, t) is the probability current density, and D is
the diffusion matrix. The steady-state solution of Eq. (4)
is a Gaussian distribution p(x) ∼ exp[− 1

2x
TC−1x], with

covariance matrix C, satisfying the Lyapunov equa-
tion [59]:

AC + CAT = −2D. (5)

The diffusion matrix can be expressed as D = D̄ +
D∗, where D̄ is a diagonal matrix with entries d̄ij =
δijkBT/γ, representing the thermal noise contributions,
and D∗ is the non-equilibrium part of the diffusion matrix
which contains information on the activities. The pres-
ence of dipole forces gives rise to anticorrelations between
neighboring beads and therefore to non-zero off-diagonals
terms in D∗, as will be discussed in Sec. (III).

A. Two-point non-equilibrium measures

Our main goal is to connect a direct measure of non-
equilibrium to the properties of the active driving. With
this in mind, the first step is to define a two-point non-
equilibrium measure which can be estimated from the
trajectories of pairs of probe particles in the system.

Under steady-state conditions Eq. (4) reduces to
∇ · j(x, t) = 0. When j 6= 0 the system is out of equi-
librium, and exhibits on average a circulation in phase
space. Such circulation may emerge also in the reduced
subspace of a pair of degrees of freedom xr = {xi, xj}.
These reduced subspaces are more easily accessible ex-
perimentally as compared to the full set of degrees of
freedom. For this reason we restrict our non-equilibrium
measures to these two-dimensional subspaces.

As a first measure of circulation, we use the average
area enclosing rates Aij of the trajectory in the reduced
subspace of the coordinates xi and xj , as illustrated in
Fig. 1. For an overdamped system, for which the ve-
locity is proportional to the force, this quantity can be
expressed as [29]:

Aij =
1

2γ
〈xr × fr(x)〉 (6)

where fr(x) = {fi, fj} is the vector of forces acting
respectively on the coordinate i and j. By replacing
γ−1〈xr × fr(x)〉 = γ−1〈xifj(x) − xjfi(x)〉 = (CAT −
AC)ij we obtain [29, 35, 36].

Aij =
1

2
(CAT −AC)ij , (7)

This non-equilibrium measure turns out to be closely re-
lated to the cycling frequency– the rate at which the tra-
jectory revolves in the coordinates space:

ωij =
1

2

(CAT −AC)ij√
det(C[r,r])

, (8)

where C[r,r] is a [2 × 2] matrix with entries C[r,r] =
{{cii, cij}, {cji, cjj}}. Unlike the area enclosing rate, the
cycling frequency is invariant under an orientation pre-
serving change of basis. This invariance is ensured by
the factor

√
det(C[r,r]) in Eq. (8). Furthermore, the

cycling frequency is informative of the partial rate of
entropy produced in the reduced subspace of the pair
of observed degrees of freedom, through the expression
Π(2) = kBω

2
ij Tr(C[r,r]D

−1
[r,r]) [28].

Both these non-equilibrium measures display on aver-
age a power law behavior as function of the distance r
between the tracked particles [28, 29]. However, different
properties of the active noise in the system may give rise
to different functional forms of the scaling behavior. In
Sec. (III) we investigate this matter, and in particular we
aim to connect the scaling of these experimentally acces-
sible non-equilibrium measures to the intrinsic properties
of the internal driving.



4

FIG. 2. A) Covariance matrix of single monopole source and
its projection on the jz plane B) Covariance matrix of single
dipole source and its projection on the jz plane.

III. RESULTS

In this section we analytically and numerically study
the spatial scaling behaviors for 〈A2(r)〉α and 〈ω2(r)〉α,
the squared area enclosing rate and cycling frequency be-
tween two tracer beads at distance r, averaged over the

distribution of activities α
M/D
i/ij . Here we indicate with

〈. . .〉α the ensemble average over the activities, which
for a large enough system can be obtained as a spa-
tial average over the network [28]. Note, here we fo-
cus on the second moment of the non-equilibrium mea-
sures, because these measures are distributed symmet-
rically around zero with a vanishing first moment. Our
analytical expressions for the scaling laws of 〈A2(r)〉α
and 〈ω2(r)〉α provide a direct connection between these
non-equilibrium measures and the properties of the ac-
tive noise, such as the densities and activity intensities
of monopoles and dipoles forces. The validity of our an-
alytical results obtained in this section will be tested by
making a direct comparison with numerical solutions of
Eq. (7) and Eq. (8). In Sec. (III A) we focus for simplicity
on a one-dimensional chain, and in Sec. (III B) we show
an extension to a two-dimensional network. Finally, in
Sec. (III C) we discuss how the scaling law is affected by
the presence of finite spatial correlation of the intensities
of the active noise.

A. One-dimensional chain

We consider here the simple yet instructive case of a
one-dimensional chain. Using a continuous approxima-
tion, we find a solution of Eq. (5) for the covariance ma-
trix and derive the scaling laws for the non-equilibrium
measures 〈A2〉α and 〈ω2〉α as function of the distance r
between the tracer particles.

As a first step, we determine the form of the non-
equilibrium part of the diffusion matrix D appearing in
Eq. (5). The simple configuration of a one-dimensional
case allows us to replace the double index of the dipoles
amplitudes {αD

12, α
D
23, . . . , α

D
i,i+1, . . . , α

D
N−1,N} with a sin-

gle index running over the pairs of nearest-neighbor beads

{αD
1 , α

D
2 , . . . , α

D
i , . . . , α

D
N−1}. The activities amplitudes

{αM/D
i } are sampled independently from a distribution

p
M/D
α with mean 0 < ᾱM/D <∞ and variance σ2

αM/D .
A monopole-like active noise at site z along the chain,

contributes with an entry on the diagonal of the diffu-
sion matrix dz,z. By contrast, a dipole-like noise acts
with completely anti-correlated forces on the beads at
positions z and z + 1, contributing with four entries in
the diffusion matrix:

[
dz,z = dz+1,z+1 = (kB/γ)αDz

]
and[

dz+1,z = dz,z+1 = −(kB/γ)αDz
]
. Therefore, the non-

equilibrium part of the diffusion matrix will be a sum
over monopole and dipole contributions of the form

In general, owing to the linearity of the Lyapunov equa-
tion (see Eq. (5)), the covariance matrix can be expressed
as

C =
kB

k
(TC +

∑

z

αM
z CM

z + αD
z C

D
z ), (9)

such that C, CM
z and CD

z are dimensionless. Here
C is the equilibrium solution of Eq. (5) obtained for

{αM/D
i } = 0, and C

M/D
z are solutions of Eq. (5) for

single monopole/dipole noise of intensity α
M/D
z at po-

sition z along the chain. For a one-dimensional system
the interaction matrix A has a simple form with entries:
aij = k

γ (−2δij + δi,i+1 + δi,i−1). By inserting this expres-

sion for aij together with Eq. (9) into Eq. (7), we can
express the area enclosing rate between any two tracer
particles i and j that are not connected by a dipole ac-
tivity (dij = 0), as [29]

Aij =
kB

γ

∑

z

(ξM
z ∂̃

2
2c

M
z + ξD

z ∂̃
2
2c

D
z ), (10)

where ξM/D = bM/DαM/D and we replaced the double in-
dices in the coefficients {bD12, b

D
23, . . . , b

D
i,i+1, . . . , b

D
N−1,N}

with single index {bD1 , bD2 , . . . , bDi , . . . , bDN−1}. For nota-
tional simplicity we omit the subscripts i, j on the right

hand side, and we use ∂̃2
2c = ci,j+1 − 2ci,j + ci,j−1 to in-

dicate the discrete second derivative across rows. As can
be seen from Eq. (10), the scaling behaviors of Aij , and
therefore ωij , are determined by the curvature of the co-
variance matrix. To find an expression for the curvature,

we can calculate the explicit form of C
M/D
z , as a solution

of the equation

kBα
M/D
z

γ

(
∂̃2

1c
M/D
z + ∂̃2

2c
M/D
z

)
= −2dM/D

z , (11)

which is obtained from Eq. (5) by considering a sin-
gle monopole/dipole contribution at position z along the
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chain. Eq. (11) can be viewed as a discretized Poisson
equation with sources set by the elements of D. The
solution for a generic diffusion matrix will be obtained
as a superposition of single-contribution solutions. In
the continuous limit, for a single entry in the diffusion
matrix dz,z̃, the single-source solution of Eq. (11) gives

c(i, j) = − 1
π ln(%) + b, where %=

√
(i− z)2 + (j − z̃)2 in-

dicates the distance from the source in the matrix and
b is an integration constant. Here we assumed radial
symmetry of the solution around the source. The profile

of C
M/D
z is different for the monopole and dipole cases

and exhibits respectively a logarithmic profile cM ∝ ln(%)
and a power-law scaling cD ∝%−3, as illustrated in Fig. 2.
These distinct scaling laws will later turn out to underlie
the different scaling laws for the non-equilibrium mea-
sures.

To determine the area enclosing rate for a pair of beads
at distance r we need to compute contributions of the

form ∂̃2
2c

M/D
z;−r/2,r/2 := ∂̃2

2c
M/D
z (r). Here for concreteness

we have chosen beads with indices i = −r/2, j = r/2,
where the index 0 corresponds to the central bead. Note
that the distance r is dimensionless and measured in units
of lattice spacing `. In the following we approximate
the discrete derivatives applied to the matrix elements

∂̃2
2c

M/D
z (r) with regular derivatives applied to the solu-

tions of the Poisson equation ∂2
2c

M/D
z (r).

A single monopole activity at site z contributes a di-
agonal entry in the diffusion matrix dz,z. This appears
as a monopole source at position (z, z) in the Poisson
equation. Using the continuous solution derived above
we find [29]

∂2
2c

M
z (r) =

8rz

π(r2 + 4z2)2
, (12)

A single dipole activity between sites z and z +
1 contributes four entries in the diffusion matrix:
[dz,z = −dz+1,z = −dz,z+1 = dz+1,z+1]. These enter the
Poisson equation as a quadrupole source. By summing
these four contributions we obtain

∂2
2c

D
z (r) =

8rz

π(r2 + 4z2)2

− 4(−1 + r)(1 + 2z)

π(2 + (−2 + r)r + 4z(1 + z))2

− 4(1 + r)(1 + 2z)

π(2 + (2 + r)r + 4z(1 + z))2

+
8r(1 + z)

π(r2 + 4(1 + z)2)2
.

(13)

From Eq. (12) and Eq. (13), it follows that when the only
activity in the chain appears at one of the observed beads,
for instance z = i = −r/2, then Aij ∼ r−2 for a monopole
activity and Aij ∼ r−5 for a dipole activity, in the limit
r � 1. As we will see below, the scaling of the curvature
of the covariance (Eq. (12) and Eq. (13) underlies also
the scaling behavior of the average quantities 〈ω2(r)〉 and
〈A2(r)〉 with distance.

FIG. 3. A) Scaling behavior of the cycling frequency with r
for a system with only dipoles as active noise. Numerical re-
sults in red and purple, and analytical predictions in gray. B)
Scaling behavior of the cycling frequency with r for a system
with activity given by: only dipoles (red), only monopoles
(blue), mixture of dipoles and monopoles (gray) C) Rescaling
of A for a range of r∗ and A∗, and analytical prediction of the
two scaling regimes in gray. D) Rescaling of ω for a range of r∗

and ω∗, and analytical prediction of the two scaling regimes
in gray.

After this preparatory work, we are ready to obtain the
first central results of this paper: Inserting Eq. (12) and
Eq. (13) into Eq. (10), and averaging over configurations
of the activity intensities, we obtain in the limit r � 1
(Sec. (1) supplementary):

〈A2(r)〉α =
1

π

(
kB

γ

)2(
ρMσ2

αM

1

2r3
+ ρDσ2

αD

45

r7

)
. (14)

Thus, we observe two different regimes: a monopole-
controlled regime 〈A2(r)〉α ∝ 1/r3 for long distances and
a dipole-controlled regime 〈A2(r)〉α ∝ 1/r7 for short dis-
tances, as shown in Fig. 3C. Recall that r is measured in
units of the lattice spacing `. To rewrite Eq. 14 in terms
of the actual distance, r`, between the particles would
require introducing a dependence on ` in both terms.
Furthermore, we notice that in our model the dipole size
equals `, and a generalization of the model to describe
dipoles of arbitrary size would introduce a dependence
on the dipole’s size in the second term of Eq. 14

A similar scaling behavior can be obtained also for the
cycling frequencies ω by applying a similar approach to
Eq. (8): Decomposing C = kB

k

(
TC + ᾱMCM + ᾱDCD

)

and expanding the factor 1/(detC) up to linear order in
ᾱM/D

T , we obtain

〈ω2(r)〉α =
(k/γ)2

πT 2detC[r,r]

(
ρMσ2

αM

1

2r3
+ ρDσ2

αD

45

r7

)
.

(15)
Considering that [29] for r � N , detC[r,r] ∝ Nr, we ob-
tain two different regimes also for the scaling of the cy-
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cling frequency: 〈ω2(r)〉α ∝ 1/r4 at short distances and
〈ω2(r)〉α ∝ 1/r8 at long distances (Fig. 3B,D). Interest-
ingly, in the presence of a distribution of only dipoles
in the systems (ρM = 0), the scaling exponent for the

average cycling frequency (
√
〈ω2〉α ∼ r−4) differs from

the exponent obtained with a single dipole activity at
site z = i = −r/2 (

√
ω2 ∼ r−5.5) (Fig. 3A). The same

holds for a distribution of only monopoles (ρD = 0), for

which the scaling exponent
√
〈ω2〉α ∼ r−2 differs from

the single monopole scaling (
√
ω2 ∼ r−2.5) [29].

Which parameters of our model determine the
crossover distance r∗ between the two scaling regimes? A
direct calculation of r∗ and the mean cycling frequency
at the crossover distance 〈ω2(r∗)〉 leads to

r∗ =

(
90ρDσ2

αD

ρMσ2
αM

)1/4

〈ω2(r∗)〉α =
2k2

πT 2γ245N

ρM2
σ4
αM

ρDσ2
αD

.

(16)

Note that 〈ω2〉 decreases as 1/N , due to dependence
of the determinant (see Eq. (15)) on system size:
detC[r,r] ∼ N . However, such a scaling with system size
is a property of one-dimensional systems, and will not
appear in d = 2 and d = 3, where we expect respectively
detC[r,r] ∼ ln(N) and detC[r,r] ∼ constant [29].

For the the area enclosing rate at the crossover point,
we find

〈A2(r∗)〉α =
k2

B

πγ290

ρM2
σ4
αM

ρDσ2
αD

r∗, (17)

as shown in Fig. 3C,D, where we obtain a collapse of data
by rescaling the x-axes by r∗ and the y-axes by A∗ and
ω∗.

Our results provide an indication of what kind of mea-
surements could be performed to gain information on
the non-equilibrium driving in an elastic system. For in-
stance, the experimental observation of one of the scaling
behaviors discussed here, e.g. for the cycling frequencies
or area enclosing rates, would allow one to discriminate
the monopole or dipole nature of the active driving. In
the more general case of a mixture of monopoles and
dipoles, a direct measure of the transition points between
two different scaling regimes would help to gain quanti-
tative information on the quantities ρDσ2

αD and ρMσ2
αM .

Up to this point, we discussed the scaling behavior of
both non-equilibrium measures: cycling frequencies and
area enclosing rates. However, from the results presented
so far, it is clear that these two quantities are closely re-
lated. Depending on the context, one measure might be
preferable to the other. For instance, the cycling frequen-
cies are more directly related to the probability currents
and the entropy production rate [28]. However, the cy-
cling frequencies may be more sensitive to experimental
errors: for parts of trajectories that come close to the
origin of phase space, a small error in the position mea-
surement can lead to an error of order π for the angular
displacement. By contrast, a measurement of the area

FIG. 4. A)Scaling behavior of 〈A2〉 as function of the distance
for two-dimensional lattices obtained for a square lattice and
different values of r∗. B) Data-collapse of the results in A,
obtained by rescaling the x and y axes respectively by r∗2d and
A(r2d

∗)2. The triangular markers correspond respectively to
the data for a full triangular lattice (in black) and a randomly
diluted triangular lattice (in pink) with dilution probability
pd = 0.8

enclosing rate does not require specifying the position of
the origin. Furthermore, the derivation of the scaling law
for the area enclosing rate does not require any approxi-
mation, and holds irrespectively of the magnitudes of the
amplitudes of the active forces. In the limit of weak ac-
tivity, one can always easily obtain the scaling behavior
of the cycling frequencies using the approximate expres-
sions for detC[r,r] introduced above. Keeping these con-
siderations in mind, from now on we will only focus on
the scaling behavior of the area enclosing rates.

B. Two-dimensional network

In this section we discuss how the results from
Sec. (III A) can be extended to the case d > 1. For sim-
plicity, we focus on a two-dimensional square network,
but we will discuss how the results obtained for this sim-
ple case also apply to more complex geometries. In ad-
dition, we consider the dipole forces acting always along
the principal axes of the network, which corresponds to
the limit of small displacements in the systems (Sec. (2)
supplementary).

We denote the elements of the covariance matrix, cor-
responding to beads at sites i = (ix, iy) and j = (jx, jy)
in the lattice, as cix,iy ;jx,jy . We consider zero rest length
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springs in such a way that the x and y coordinates de-
couple. Therefore, by C we mean the covariance ma-
trix of only the degrees of freedom that correspond to a
single chosen direction, and we can restrict the dipoles
forces to always act along such direction, for instance the
y-direction. This allows us to employ a one to one cor-
respondence between dipoles and sites of the network.
From Eq. (7), we find [29]

Aix,iy ;jx,jy =
k

γ

2∑

l=1

∂̃2
l cix,iy ;jx,jy , (18)

for beads not connected by a dipole activity (dix,iy ;jx,jy =
0). Here, the index l runs over the directions ix and iy.
As in the one-dimensional case, we have a direct relation
between A and the second derivatives of the covariance
matrix. Therefore, to find the scaling of A with the dis-
tance between two beads r, we need to find an expression
for ∂̃2

l cix,iy ;jx,jy (r).

As in Sec. (III A), we can rewrite the covariance ma-
trix as: C = kB

k

(
TC +

∑
z ξ

M
z CM

z + ξD
z C

D
z

)
, where we

summed over contributions from all the monopole and
dipole activities at sites z = (zx, zy) in the lattice. The
continuous limit of the Lyapunov equation (Eq. (5))
gives a Poisson equation in a four-dimensional space [29].
In the case of a single non-zero entry in the diffusion
matrix, dzx,zy ;z̃x,z̃y , solving the Poisson equation gives

c(i, j) ∼%−2, where %=
√

(i− z)2 + (j− z̃)2 is the dis-
tance from the source. Using this continuous solution
and replacing the discretized derivatives with standard
ones we find

∂2c(i, j) =
2

π2

(i− z)2 − (j− z̃)2

((i− z)2 + (j− z̃)2)3
, (19)

where we redefined ∂2 =
∑2
l=1 ∂

2
l .

A monopole activity at site z = (zx, zy) contributes
a diagonal entry in the diffusion matrix: dzx,zy ;zx,zy .
As two beads at distance r we can take, for instance,
(ix, iy) = (0, r/2) and (jx, jy) = (0,−r/2), where for con-
venience we index the beads with the network center at
(0, 0). Then, for the case of a single monopole activity at
the site (zx, zy) we obtain

∂2cMz (r) =
2

π2

16rzy
(r2 + 4(z2

x + z2
y))3

. (20)

If we now consider a dipole random force of intensity αi
between two neighboring beads at position (zx, zy) and
(zx, zy+1), this would correspond to four non-zero entries
in the diffusion matrix: [dzx,zy ;zx,zy = dzx,zy+1;zx,zy+1 =
−dzx,zy ;zx,zy+1 = −dzx,zy+1;zx,zy ]. Therefore a sin-
gle dipole activity enters the Poisson equation as a
quadrupole source. Summing over all four contributions,
we obtain for the second derivative of the covariance ma-

trix for a single dipole activity

∂2cDz (r) =
2

π2

8(1− r)(1 + 2zy)

(2 + (−2 + r)r + 4z2
x + 4zy(1 + zy))3

− 2

π2

8(1 + r)(1 + 2zy)

(2 + (2 + r)r + 4z2
x + 4zy(1 + zy))3

+
2

π2

16rzy
(r2 + 4(z2

x + z2
y))3

+
2

π2

16r(1 + zy)

(r2 + 4(z2
x + (zy + 1)2))3

,

(21)

With similar steps as in the one-dimensional case, we find
for the area enclosing rate:

〈A2(r)〉α '
(

2kB

π2γ

)2 [
ρMσ2

αM

2π

5r6
+ ρDσ2

αD

529

r10

]
. (22)

where to obtain the numerical prefactor and the scaling
exponent in the second term we used a linear interpo-
lation (Sec. (1) supplementary). Similarly to the one-
dimensional case (see Eq. (14)), we recognize the presence
of two different regimes at short and long distances. The
crossover distance r∗2D between the monopole and dipole
dominated regimes and the corresponding 〈A2(r∗2D)〉
read:

r∗2D ' 4.5

(
ρDσ2

αD

ρMσ2
αM

)1/4

,

〈A2(r∗2D)〉α '
k2

B12 · 10−6

γ2

(
ρMσ2

αM

)5/2

(ρDσ2
αD)3/2

.

(23)

These analytical results are confirmed by the numerical
data in Fig. 4A, B, where we obtain a collapse by properly
rescaling the x-axis by r∗ and the y-axis by A2(r2D

∗).
To investigate the sensitivity of these results to the spe-

cific underlying lattice structure, we studied triangular
and bond-diluted triangular networks. We find numeri-
cally that such lattice geometries are also well described
by Eqs. (22) and (23). In fact, the curves numerically
obtained for the scaling behavior of 〈A2〉α in a triangu-
lar network and diluted triangular network, overlap with
the curves corresponding to the square lattice, as shown
in Fig. 4 B.

C. Spatially correlated activities

Up to this point, we considered two kinds of noise
sources: dipoles and monopoles, randomly distributed
in space. However, in biological systems the intensities
of active processes may exhibit spatial correlation, for
example due to the spatial organization of enzymes and
molecular motors [45–47]. Therefore, it is crucial to de-
termine how the spatial distribution of activities influ-
ences the scaling behavior of non-equilibrium measures.
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FIG. 5. A) Scaling behavior of the area enclosing rate for
a system with correlated monopole-activities with correlation
length λ = 10 (green), λ = 100 (blue) and uncorrelated activ-
ities (red). In gray the comparison with the analytical predic-
tion. In the inset: spatial correlation function of the activity
amplitudes. In blue the correlation functions calculated for
3 different realizations of activities with correlation length

λ = 10, and in red the theoretical prediction σ2
αe

− |i−j|
λ . B)

Scaling behavior of the area enclosing rate for a system with
dipole-activities with λ = 10 (green), λ = 100 (blue) and
uncorrelated activities (red).

In this section, we consider a system where the intensities
of the active noise are spatially correlated.

As an illustrative example we consider a one-
dimensional chain with only monopole activities (ρD = 0
and ρM = 1) and thus the diffusion matrix D is diag-
onal, with entries di,j = (kB/γ)(T + αi)δi,j . We draw
the amplitudes {αi} randomly from a probability distri-

bution with covariance: 〈αiαj〉 − 〈αi〉〈αj〉 = σ2
αe
− |i−j|λ ,

exhibiting a characteristic correlation length λ > 0 (see
Fig. 5A). By setting cD = 0 in Eq. (10), and considering
the monopole contributions as in Eq. (12), we obtain for
the area enclosing rate:

〈A2(r)〉α =

(
kB

πγ

)2∑

z,z′

〈αzαz′〉
8rz

(r2 + 4z2)2

8rz′

(r2 + 4z′2)2

=

(
kB

πγ

)2∑

z,z′

σ2
αe
− |z−z

′|
λ

8rz

(r2 + 4z2)2

8rz′

(r2 + 4z′2)2

'
(
kB

πγ

)2 z′=z+λ∑

z,z′=z−λ
(1− |z − z

′|
λ

)
σ2
α8rz

(r2 + 4z2)2

8rz′

(r2 + 4z′2)2
,

(24)

where in the last step we approximated the exponential

single r < λ r > λ

2 (2.5) 0.5 (1) 1.5 (2)

5 (5.5) 2.5 (3) 3.5 (4)

TABLE I. Summary of the scaling exponents of area enclosing
rate

√
〈A2(r)〉α, and cycling frequency

√
〈ω(r)2〉α (in brack-

ets) obtained in d = 1 for different cases: in the first column
the result for the case of a single monopole and dipole source,
in the second and third columns the results for the monopoles
and dipoles distributions, obtained for distances smaller and
bigger then the correlation length λ.

with a first order Taylor expansion inside the interval [z−
λ, z + λ], and zero outside the interval. Approximating
the sum with an integral, we arrive at:

〈A2(r)〉α '
(
kB

γ

)2
σ2
α

π

(
λ

2r3 + 2rλ2

)
. (25)

We identify two different regimes:

〈A2(r)〉α ∼
{
k2Bσ

2
α

2γ2π
λ
r3 if r � λ

k2Bσ
2
α

2γ2π
1
λr if r � λ

A comparison between our analytical prediction
(Eq. (25)) and numerical results is shown in Fig. 5A, and
the numerical results for correlated dipoles are shown in
Fig. 5B.

We can notice how the case of correlated intensities
exhibits a behavior that is quantitatively different from
the previous case of dipoles and monopole mixtures. In
contrast to the previous case, the scaling exponent of the
short distance regime is weaker than the one of the long
distances regime. The exponent for the long distances
(r � λ) is the same as for the case of uncorrelated activ-
ities.

We summarized the scaling exponents obtained in
d = 1 for the area enclosing rate and cycling frequen-
cies in Tab. (I). The differences in the observed scaling
exponents would allow one to discern the cases of spa-
tially correlated activities and of mixture of dipoles and
monopoles. Furthermore, a quantitative measure of the
two scaling regimes, would allow one to estimate the cor-
relation length λ or the intensities of the activities σ2

α.

IV. CONCLUSIONS

In this work we asked how the scaling behavior of two-
point non-equilibrium measures can be used to reveal
properties of the internal driving in an active elastic as-
sembly. To this end, we considered a lattice model of
a driven elastic assembly. Using this model, we investi-
gated how intrinsic features of the active noise influence
the scaling behavior of non-equilibrium measures, such as
cycling frequencies ω and area enclosing rates A. These
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measures are directly accessible from the stochastic tra-
jectories of pairs of tracer particles in the network.

Using our theoretical framework, we considered sev-
eral settings of the active noise. We started by focus-
ing in Sec. (III A) on a one-dimensional system driven
out of equilibrium by a mixture of stochastic monopole
and dipole forces. We performed an analytical cal-
culation to find an expression for the scaling law of√
〈A2〉α and

√
〈ω2〉α as a function of the distance be-

tween the observed particles, which we confirmed by
numerics. We predict two scaling regimes: a dipole-
dominated regime at short distances and a monopole-
dominated regime at long distances. The crossover
length between these two regimes is set by the param-
eters characterizing the stochastic forces: the densities
of dipoles ρD and monopoles ρM, and the variance of
their intensities σ2

αM/D . We extended these results in
Sec. (III B), where we performed analogous calculations
for a two-dimensional network, and observed qualita-
tively the same behavior as for the one-dimensional sys-
tem, but with different exponents. Importantly, we
demonstrated numerically that our predictions, obtained
for a square lattice, also apply to more complex networks
such as triangular and diluted triangular networks, more
commonly employed to describe soft biological materi-
als [14, 21, 60, 61]. Since in real systems active noise
amplitudes may be spatially correlated, in Sec. (III C)
we considered an illustrative example of a system driven
out of equilibrium by stochastic forces with intensities
correlated exponentially in space. Interestingly, we find
that these correlations are reflected as a weaker decay in
the scaling behavior of our non-equilibrium measures on

lengthscales below the correlation length (see Tab. (I)).

Altogether our results provide a new perspective
to interpret experimentally accessible two-point non-
equilibrium measures: A direct observation of the scaling
behavior of such non-equilibrium measures may provide
a way to infer qualitative information on the nature of
the active forces in the system, and quantitative infor-
mation on their densities, intensities, or their correlation
length. A typical setting where our approach could be
applied is time-lapse microscopy experiments in which
several probe particles are tracked in active assemblies
of soft materials [62, 63]. Promising examples would be
in vitro or in vivo biological actomyosin networks, cellu-
lar membranes, DNA polymers, but also synthetic and
biomimetic systems [2, 3, 7, 8, 64, 65]. Our approach
could help connect mesoscale non-equilibrium dynamics
to the microscopic properties of the internal driving in
such systems.
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[13] É. Fodor, V. Mehandia, J. Comelles, R. Thiagarajan,
N. S. Gov, P. Visco, F. van Wijland, and D. Riveline,
Biophys. J. 114, 939 (2018), arXiv:1512.01476.

[14] H. Turlier, D. A. Fedosov, B. Audoly, T. Auth, N. S.
Gov, C. Sylkes, J.-F. Joanny, G. Gompper, and T. Betz,
Nat. Phys. 12, 513 (2016).

[15] T. Betz, M. Lenz, J.-F. Joanny, and C. Sykes, Proc.
Natl. Acad. Sci. U.S.A. 106, 15320 (2009).

[16] E. Ben-Isaac, Y. Park, G. Popescu, F. L. Brown, N. S.
Gov, and Y. Shokef, Phys. Rev. Lett. 106, 1 (2011),
arXiv:1102.4508.

[17] D. Mizuno, C. Tardin, C. F. Schmidt, and F. C. MacK-
intosh, Science. 315, 370 (2007).

[18] C. P. Brangwynne, G. H. Koenderink, F. C. MacKintosh,
and D. A. Weitz, J. Cell Biol. 183, 583 (2008).

[19] M. Guo, A. J. Ehrlicher, M. H. Jensen, M. Renz, J. R.
Moore, R. D. Goldman, J. Lippincott-Schwartz, F. C.
Mackintosh, and D. A. Weitz, Cell 158, 822 (2014).

[20] Fodor, M. Guo, N. S. Gov, P. Visco, D. A. Weitz, and
F. Van Wijland, Epl 110, 1 (2015).



10

[21] C. P. Broedersz and F. C. MacKintosh, Soft Matter 7,
3186 (2011), arXiv:1009.3848v1.

[22] A. Agarwal and H. Hess, J. Nanotechnol. Eng. Med. 1,
011005 (2009).

[23] G. H. Koenderink, Z. Dogic, F. Nakamura, P. M. Bendix,
F. C. MacKintosh, J. H. Hartwig, T. P. Stossel, and
D. A. Weitz, Proc. Natl. Acad. Sci. U.S.A. 106, 15192
(2009).
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SUPPLEMENTARY NOTES

Derivation of 〈A2(r)〉α in d = 1 and d = 2

In this section we derive an expression for the average area enclosing rate 〈A2〉 as function of the distance r between
two observed probes. For a one-dimensional system the area enclosing rate can be expressed in terms of the elements
of the covariance matrix as:

Aij =
kB
γ

∑

z

(
ξM
z ∂̃

2
2c

M
z + ξDz ∂̃

2
2c

D
z

)
, (S1)
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where i and j are the bead indices such, that dij = 0, ∂̃2
2c = ci,j+1 − 2ci,j + ci,j−1 indicates the discrete second

derivative across rows, and ξM/D = bM/DαM/D. To find how 〈A2(r)〉α depends on the distance r between the observed
probes, we use the explicit expressions for ∂2cMz (r) and ∂2cDz (r), evaluated for i = −r/2 and j = r/2, appearing in
Eq. (12) and Eq. (13) in the main text.

For notational simplicity we rename: ∂2cMz (r) = fM(z, r) and ∂2cDz (r) = fD(z, r). The functions fM(z, r) and
fD(z, r) are informative of the contribution of a monopole or dipole activity, at position z, to A2(r) measured
between two tracers at i = r/2 and j = −r/2. Such contributions come primarily from activities in between the two
beads, as shown in Fig. S1.

FIG. S1. A) Plot of fD2
(z) in d = 1. The value of this function represents the contribution of a dipole, at position z, to the

area enclosing rate measured between two tracers beads at i = r/2 and j = −r/2 B) Plot of fD2
(zx, zy) in d = 2. The value of

this function represents the contribution of a dipole activity, acting between the beads at {zx, zy} and {zx, zy + 1}, to the area
enclosing rate measured from the y-displacements of two beads at {0, r/2} and {0,−r/2}.

By taking the square of Eq. (S1) and the ensemble average over the activities we obtain:

〈A2(r)〉α =
k2
B

γ2

〈[∑

z

ξM
z f

M(z, r) + ξD
z f

D(z, r)

]2〉

=
k2
B

γ2

∑

z

[
〈ξM
z

2〉fM2
(z, r) + 〈ξD

z

2〉fD2
(z, r)

]
+
k2
B

γ2
〈ξM〉2

∑

z,z′ 6=z
fM(z, r)fM(z′, r)

+
k2
B

γ2
〈ξD〉2

∑

z,z′ 6=z
fD(z, r)fD(z′, r) +

k2
B

γ2
2〈ξM〉〈ξD〉

∑

z

fM(z, r)
∑

z′

fD(z′, r).

(S2)

where we assumed that the noise amplitudes ξM
z and ξD

z′ are spatially uncorrelated and that their average does not
depend on z. By rewriting

∑
z,z′ 6=z =

∑
z,z′ −

∑
z,z′=z we obtain:

〈A2(r)〉α =
k2
B

γ2

∑

z

[
〈ξM
z

2〉fM2
(z, r) + 〈ξD

z

2〉fD2
(z, r)

]
+
k2
B

γ2
〈ξM〉2


∑

z,z′

fM(z, r)fM(z′, r)−
∑

z

fM2
(z, r)




+
k2
B

γ2
〈ξD〉2


∑

z,z′

fD(z, r)fD(z′, r)−
∑

z

fD2
(z, r)


+

k2
B

γ2
2〈ξM〉〈ξD〉

∑

z

fM(z, r)
∑

z′

fD(z′, r).

(S3)

and approximating the sum by an integral yields

〈A2(r)〉α =
k2
B

γ2

∫
dz
[
〈ξM
z

2〉fM2
(z, r) + 〈ξD

z

2〉fD2
(z, r)

]
+
k2
B

γ2
〈ξM〉2

[∫
dzdz′fM(z, r)fM(z′, r)−

∫
dzfM2

(z, r)

]

+
k2
B

γ2
〈ξD〉2

[∫
dzdz′fD(z, r)fD(z′, r)−

∫
dzfD(z, r)2

]
+
k2
B

γ2
2〈ξM〉〈ξD〉

∫
dzfM(z, r)

∫
dz′fD(z′, r).

(S4)
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FIG. S2. Numerical estimation of the second integral in Eq. (S7) as function of the distance (blue), and result of the linear
interpolation f(x) = 6, 27− 9.99 ln(r) (black).

Considering that
∫
fM/D(z, r)dz = 0:

〈A2(r)〉α =

(
kB
γ

)2(
σ2
ξM

∫
dzfM2

(z, r) + σ2
ξD

∫
dzfD2

(z, r)

)
. (S5)

Since σ2
ξM/D

is the variance of a stochastic variable ξM/D = bM/DαM/D, where b ∈ {0, 1} with 〈b〉 = ρM/D and

〈b2〉 = ρM/D, we have σ2
ξM/D

= ρM/Dσ2
αM/D . By solving the integral, and keeping only the leading terms in the limit

r � 1, we obtain

〈A2(r)〉α =
1

π

(
kB
γ

)2(
ρMσ2

αM

1

2r3
+ ρDσ2

αD
45

r7

)
. (S6)

Similar calculations can be performed in d=2, and lead to the integral form of the area enclosing rate:

〈A2(r)〉α =
k2
B

γ2

[
ρMσ2

αM

∫ ∞

−∞
dzxdzyf

M2
(zx, zy, r) + ρDσ2

αD

∫ ∞

−∞
dzxdzyf

D2
(zx, zy, r)

]
. (S7)

where fM(zx, zy, r) and fD(zx, zy, r) are defined in Eq. (20) and Eq. (21) in the main text. The second integral in
Eq. (S7) is arduous to calculate analytically. Therefore, we estimate the integral numerically for different values of
the distance r. The result is reported in Fig. S2, together with the result of a linear interpolation of such numerical

data
∫∞
−∞ dzxdzyf

D2
(zx, zy, r) ' 4

π4 ar
−b with a ' 529 and b ' 10. Finally, for d = 2 we obtain :

〈A2(r)〉α '
(

2kB

π2γ

)2 [
ρMσ2

αM

2π

5r6
+ ρDσ2

αD

529

r10

]
. (S8)

Small displacement approximation in d = 2

In a two-dimensional network, we assume that the dipole forces act along the directions of the springs at each point
in time. Here we show that in the limit of small displacements we can consider the action of the dipole forces to be
directed along the principal axes of the network at rest, as done in the main text. For simplicity, let’s consider a square
lattice of size N = n × n, with zero-rest length springs. We index the coordinates as x = {x1, . . . , xN , y1, . . . , yN},
and we assume the presence of only two dipole activities: one of intensity ηi,i+n acting vertically between the beads
of index i and i+ n, and the other one of intensity ηi,i+1 acting horizontally between the beads of index i and i+ 1.
The Langevin equations for the y-displacements of the ith bead reads:

dyi
dt

=
k

γ
ai,lyl + ηTi + ηD

i,i+n cos

(
∆xi,i+n

`

)
+ ηD

i,i+1 sin

(
∆yi,i+1

`

)
(S9)

where we defined ∆xi,i+n = xi − xi+n, ∆yi,i+1 = yi − yi+1 and ` is the lattice spacing. In the limit
∆xi,i+n

` � 1 and
∆yi,i+1

` � 1, the last term is negligible and the second last is ' ηD
i,i+n. Therefore in the limit of small displacements

we can consider the action of the dipole forces to be directed along the principal axes of the network.
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To check the validity of this approximation for the non-equilibrium measure, we explicitly simulated the dynamics
of the network. We employed the Euler-Maruyama method to numerically integrate the Langevin equation of a
square lattice where both vertical and horizontal dipoles are distributed randomly along the network and act along
the spring direction. When the standard deviation of displacements is small compared to the rest length of the springs
( σx/` < 1), our theoretical prediction is in good agreement with the simulation, as shown in Fig. S3. However, also
in the case of σx/` > 1, the simulation results are slightly shifted respect to our prediction, but the scaling exponent
remains the same.

FIG. S3. Theoretical prediction (black) of the average area enclosing rate (obtained from Eq. 7 in the main text by numerically
solving the Lyapunov equation), compared with simulation results for different values of the ratio σx/` (green and yellow).
For computational convenience the ensemble average over the activity distributions has been evaluated by performing a spatial
average over the lattice.





Outlook

After having discussed our theoretical framework in detail, we want now touch upon some
recent experimental �ndings that can be related to our results, and brie�y outline some
possible future directions of this research.
The work presented in this thesis is inspired in part by an experimental technique: Two-
point microrheology [17]. This technique is commonly used to investigate the mechanical
properties of biological systems, by embedding two tracer microparticles in an environ-
ment, for instance, a cellular cytoskeleton (Fig. O.1A). The coupling between the probe
and the medium in which the particles are immersed generates long range interparticle cou-
pling. Two-point microrheology takes advantage of such coupling to extract information
on the mechanical properties of the material in between the particles. In a typical exper-
iment, the bead positions are recorded and used to calculate the displacement correlation
function [17]:

Dα,β(r, τ) = 〈∆riα(t, τ)∆rjβ(t, τ)δ[r −Rij]〉, (O.1)

where the displacement of a single particle is ∆riα(t, τ) = rα(t + τ) − rα(t), with t the
absolute time and τ the lag time, and Rij is the distance between the particles. At
equilibrium and large distances r, the two point correlation function in Eq. O.1 is related
to the shear modulus through [17]

D̃‖(r, s) =
kBT

2πrsG̃(s)
, (O.2)

where D̃‖(r, s) is the Laplace transform of D‖(r, t), and ‖ indicates the longitudinal com-
ponent along the line connecting the two particles. We indicated with G̃(s) the Laplace
transform of the shear modulus, which describes the viscoelastic properties of the material.

The two-point correlation D‖(r, t) can be related to the scaling of the covariance matrix
that we studied in the previous chapters and that shapes the scaling of our non-equilibrium
measures (ω and A). In fact, under steady-state conditions, and in the limit τ → ∞ we
haveD‖(r, t) ∼ 〈r‖i(t)r‖j(t)〉 = C(r), where C(r) is the covariance between the longitudinal
components of couples of particles i and j at distance r. As we can see from Eq. O.2,
D‖(r, t) ∼ 1/r, and therefore also C(r) ∼ 1/r. The scaling behavior of D‖(r, t) has
been tested experimentally both in passive actin networks and in reconstituted active
actomyosin networks (Fig. O.1C-D) [76, 77] . In both cases, a scaling regime ∼ 1/r has
been observed for large interparticle distances. These �ndings are in agreement with our
predictions of a scaling C̄(r) ∼ 1/r for an equilibrium system [40].
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Figure O.1: A) Sketch of a two point microrheology experiment, with two probes at
distance r embedded in an actomyosin network. B) Trajectory of a particle in an active
actomyosin network. C) Scaling behavior of the displacements correlation function in
Eq. O.1, measured in an in vitro actin network. At large distances, where the particle
motion is governed by the network, a scaling behavior ∼ 1/r is observed. D) Scaling
behavior of the displacements correlation function in Eq. O.1, measured in an in vitro

actomyosin network. The scaling behavior is the same as the one observed in the passive
case. B) and D) are adapted from [77]. C) is adapted from [76].

Since the scaling behaviors in the active and passive networks are the same, the mea-
surement of the correlation function does not allow to easily quantify the contributions
of equilibrium and non-equilibrium processes to the system's dynamics. The theoretical
work presented in this thesis suggests that calculating the cycling frequencies and area
enclosing rates would be a way to extract information on the non-equilibrium nature of
the system.

Even though our model is a very simpli�ed description of real soft materials, we can
still use it to estimate the order of magnitude of our non-equilibrium measures in an ex-
periment. To this end, we use some experimental results reported in the literature for
actomyosin networks. To calculate the viscous friction acting on a node of the network,
to a �rst approximation we can neglect the cylindrical shape of the actin �laments, and
consider only the drag on an e�ective sphere of the same volume of the �lament bond.
In particular, we assume the viscosity η ∼ 10−3 Pa · s and the viscous friction of the
network γ = 6πηReff , where Reff ∼ 10−8 m corresponds to the radius of a sphere of
volume V = (d/2)2 · `π. Here ` ' 10−7 m and d ' 7 · 10−9 m are respectively the mesh
size of the actin network and the diameter of the actin �lament [44, 56, 77, 83]. Based
on the results reported in [77], we roughly estimate

√
det C ' 0.04 µm2 (Fig. O.1B),

and we assume σα to be comparable to room temperature, σα ' 300K. We consider a
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1 µm 5 µm 10 µm Units
√
〈A2〉 (d = 2) 0.03 2.4 · 10−4 3 · 10−5 µm2/s√
〈A2〉 (d = 3) 0.01 10−6 3 · 10−7 µm2/s√
〈ω2〉 (d = 2) 0.7 6 · 10−3 7 · 10−4 Hz√
〈ω2〉 (d = 3) 0.2 2 · 10−4 6 · 10−6 Hz

Table O.1: Estimation of the order of magnitude of the area enclosing rate and cycling
frequencies for di�erent distances between the observed particles, in d = 2 and d = 3. The
results in this table are obtained from Eq. 2.22 and Eq. 2.23.

Figure O.2: Example of a bright-�eld image of colloidal silica spheres dispersed in water
and organized in an optical trap array (green). The scale bar indicates 10 µm. Adapted
from [66]

range of intracellular distances [77], r ∈ [1− 10]µm. Under these assumptions, and using
Eq. 2.22 and Eq. 2.23 we obtain the results presented in Tab. O.1. Overall, the results
obtained in two-point microrheology experiments, together with our rough estimation of
the non-equilibrium measures are encouraging regarding the possibility of experimentally
testing the predictions of our analytical framework in real biological systems. The �rst
goal of an experimental study would be to investigate what are the minimal features of
the system that govern the scaling behavior of our non-equilibrium measures. However,
even experiments in in vitro reconstituted systems may be challenging for an initial inves-
tigation. Ideally, for a �rst proof of principle, we would need to maintain full control over
the system's parameters, and this may be di�cult in such systems. A more arti�cial but
more controllable approach may be to create an array of silica beads, trapped in a poten-
tial landscape obtained with holographic tweezers [66] (Fig. O.2). The non-equilibrium
�uctuations of di�erent beads can be tuned by controlling the positioning of the optical
trap and randomly shaking the potential landscape. Such a setting would be ideal not
only to control the spatial structure of the 'activity' in the system, but also to monitor
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Figure O.3: A) Typical elliptical probability current obtained in our linear framework. B)
Example of a probability current �eld obtained from a trajectory that exhibits an average
∞-shape circulation. C) Vanishing probability current �eld obtained for an equilibrium
system.

the distance between the particles easily, and to record more statistics for large distances
at which the measurement of cycling frequencies may be challenging.

From a theoretical standpoint, it would be interesting to try to go beyond the approx-
imation of linear systems with stochastic driving made in our work. In the linear systems
considered here, the probability currents exhibit an elliptical circulation in the phase space,
with a cycling frequency at steady state that is di�erent from zero (Fig. O.3A). In general,
the velocity �eld may exhibit more complex structures, sometimes with a vanishing cy-
cling frequency, even if the system is out of equilibrium. As an example, we can consider a
trajectory that performs an average∞−like shape circulation (Fig. O.3B). In this case, we
would measure a vanishing cycling frequency, which would not allow us to distinguish this
motion from that of an equilibrium system (Fig. O.3C). This observation suggests the need
to look for non-equilibrium dynamics not only through the lens of the cycling frequencies
and area enclosing rates, but looking at the entire shape of the probability current �eld.
Promising attempts in this direction have been reported in the recent literature [28, 52].
These new approaches, based on modes expansion of the force �eld, allow us to infer the
currents �eld in non-linear systems without performing any phase-space discretization. In
analogy to the work presented in this thesis, it would be interesting to investigate whether
also in these new frameworks some features of the active driving could be inferred from
the full analysis of the current �eld. These general approaches could be applied to speci�c
non-linear models of soft materials, and used to investigate the connections between the
probability currents and the non-equilibrium driving. One more question to ask is whether
it would still be possible to �nd some global property of the current �elds that would serve
as non-equilibrium measures for studying such complex non-linear systems.

Altogether, these potential future directions provide promising perspectives for an ever
more extensive application of theoretical tools of non-equilibrium physics to the study of
living systems.



Conclusions

This thesis aimed at investigating non-equilibrium detection and characterization in bio-
logical systems. We proposed a method to detect non-equilibrium dynamics in biological
assemblies, based on the measurement of the cycling frequency and area enclosing rate of
a stochastic trajectory in the coordinate space of two degrees of freedom.

In Chapter 1 we discussed the state-of-the-art approaches to detect non-equilibrium
activity, also in systems where the presence of non-equilibrium dynamics is not always
evident at �rst glance. In particular, in this chapter we reviewed a non-invasive method
to detect non-equilibrium dynamics, based on the detection of broken detailed balance
from mesoscale stochastic trajectories of pairs of degrees of freedom. This method was
introduced for the �rst time in [5] and tested to detect the non-equilibrium �uctuations
of primary cilia of canine kidney cells. However, the potential of such approach needed
further investigation, leading us to develop the work presented in the following chapters
of this thesis.

In Chapter 2, we proposed two measures to quantify broken detailed balance in systems
out of equilibrium: the cycling frequency and the area enclosing rate of the stochastic
trajectories. While the broken detailed balance detection introduced in [5] was based on the
phase space discretization to measure the phase space currents, the two non-equilibrium
measures proposed here do not require any phase space discretization and are therefore
more easily accessible. We used a simple yet general model of driven elastic networks
to build an analytical framework and investigate the properties of these non-equilibrium
measures. In particular, we considered the cycling frequencies ωij and area enclosing rates
Aij of the trajectories of couples of beads, i and j, at distance r. To gain insights into how
non-equilibrium manifests at di�erent length scales, we investigated how these measures
scale with the distance between the observed particles. We discovered that these non-
equilibrium measures display an average power-law behavior as function of the distance,
with an exponent that depends on the dimensionality of the system. Additionally, we
found that the prefactor of this scaling law depends on the variance of the activity in
the system. Thus, these experimentally accessible non-equilibrium measures and their
associated scaling behaviors are promising candidates for a non-equilibrium measure that
may give access to properties of the internal driving. This fact led us to develop the work
presented in the third chapter of this thesis.

In Chapter 3, we investigated how the scaling behavior of the cycling frequencies and
area enclosing rates can reveal the properties of the active driving in the system. To this
end, we considered in our model of driven elastic networks several scenarios that may be
relevant in biological systems, such as the presence of dipole active forces and spatial cor-
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relation of the activities. Within this model we showed analytically and numerically that
the scaling behavior of the cycling frequencies and area enclosing rates depends on the
parameters that characterize the active noise, i.e intensity and density of the monopole-
and dipole-like activities, and correlation length of the activities distribution. The re-
sults presented in this chapter con�rm that an experimental observation of a particular
scaling behavior of non-equilibrium measures may provide a way to infer qualitative and
quantitative information on the non-equilibrium activity in the system.

In a broader context this work represents a small step toward the development of a
theory for the description of biological assemblies. Several theories share this goal, each
of them focusing on di�erent aspects. For instance, hydrodynamics theories are promising
in describing collective phenomena and traveling waves inside cells [55], while theories
based on lattice models have been successful to capture the viscoelastic properties of such
active assemblies [11]. Other 'two-�uid models' try to combine the hydrodynamics and
viscoelastic interactions to describe the motion of elastic �exible polymers in solvents or
colloidal particles in viscoelastic environments [18, 83]. An interesting challenge would be
to extend the de�nition of the non-equilibrium measures de�ned in our simple model to
other more complex theories and investigate their potential in providing information on
di�erent aspects of non-equilibrium activity in biological systems.
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